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1 Abbreviations	
  

AD	
  	
   	
   -­‐	
  Alzheimer’s	
  Disease	
  

ADHD	
   	
   -­‐	
  Attention	
  Deficit	
  Hyperactivity	
  Disorder	
  

BLP	
   	
   -­‐	
  Band-­‐Limited	
  Power	
  

BOLD	
   	
   -­‐	
  Blood-­‐Oxygen-­‐Level-­‐Dependent	
  

DMN	
   	
   -­‐	
  Default	
  Mode	
  Network	
  (ICN)	
  

EEG	
   	
   -­‐	
  Electroencephalography	
  

ECoG	
   	
   -­‐	
  Electrocorticography	
  

FC	
  	
   	
   -­‐	
  Functional	
  Connectivity	
  

fMRI	
  	
   	
   -­‐	
  Functional	
  MRI	
  

ICA	
  	
   	
   -­‐	
  Independent	
  Component	
  Analysis	
  

ICN	
  	
   	
   -­‐	
  Intrinsic	
  Connectivity	
  Network	
  

FC	
  	
   	
   -­‐	
  Intrinsic	
  FC	
  

LFF	
  	
   	
   -­‐	
  Low	
  Frequency	
  Fluctuations	
  

MCI	
  	
   	
   -­‐	
  Mild	
  Cognitive	
  Impairment	
  

MRI	
  	
   	
   -­‐	
  Magnetic	
  Resonance	
  Imaging	
  

PET	
  	
   	
   -­‐	
  Positron-­‐Emission-­‐Tomography	
  

ROI	
  	
   	
   -­‐	
  Region-­‐of-­‐interest	
  

rs-­‐fMRI	
   -­‐	
  resting	
  state	
  fMRI	
  

SC	
  	
   	
   -­‐	
  Structural	
  Connectivity	
  

SMN	
  	
   	
   -­‐	
  Sensorimotor	
  Network	
  (ICN)	
  

SN	
   	
   -­‐	
  Salience	
  Network	
  (ICN)	
  

vmPFC	
  	
   -­‐	
  Ventromedial	
  Prefrontal	
  Cortex	
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4 Summary	
  

The	
  majority	
  of	
  energy	
  consumed	
  by	
  the	
  brain	
  is	
  dedicated	
  to	
  intrinsic	
  neuronal	
  

signaling.	
  Recently,	
  methods	
  emerged	
  that	
  allow	
  the	
  investigation	
  of	
  intrinsic	
  brain	
  

activity	
  in	
  the	
  resting	
  brain	
  with	
  functional	
  magnetic	
  resonance	
  imaging	
  (fMRI).	
  These	
  

functional	
  connectivity	
  (FC)	
  methods	
  detect	
  large	
  scale	
  brain	
  networks	
  of	
  coherent,	
  

ongoing	
  signal	
  fluctuations,	
  called	
  resting	
  state	
  or	
  intrinsic	
  connectivity	
  networks	
  (ICN).	
  

ICNs	
  consistently	
  occur	
  in	
  humans	
  across	
  the	
  whole	
  life	
  span,	
  during	
  waking,	
  sleep,	
  and	
  

altered	
  levels	
  of	
  consciousness.	
  Furthermore	
  ICNs	
  have	
  been	
  detected	
  in	
  other	
  species	
  

like	
  rats	
  and	
  monkeys.	
  Therefore,	
  the	
  intrinsic	
  functional	
  architecture	
  of	
  coherent	
  brain	
  

activity	
  is	
  a	
  fundamental	
  organizational	
  principle	
  of	
  the	
  brain.	
  	
  

The	
  papers	
  of	
  this	
  thesis	
  cover	
  resting-­‐state	
  fMRI	
  (rs-­‐fMRI)	
  studies	
  with	
  healthy	
  subjects	
  

and	
  patients	
  with	
  neuropsychiatric	
  diseases.	
  We	
  report	
  FC	
  methods	
  to	
  analyze	
  

organized	
  intrinsic	
  brain	
  activity	
  as	
  an	
  emerging	
  tool	
  for	
  discovery	
  science	
  of	
  the	
  brain.	
  

We	
  then	
  revealed	
  plasticity	
  in	
  the	
  intrinsic	
  network	
  connectivity	
  of	
  healthy	
  subjects	
  that	
  

repeatedly	
  experienced	
  pain.	
  Furthermore,	
  we	
  showed	
  that	
  altered	
  sensory	
  experiences	
  

in	
  healthy	
  individuals	
  with	
  synesthesia	
  correlate	
  with	
  altered	
  connectivity	
  between	
  

sensory	
  ICNs	
  in	
  the	
  resting	
  state.	
  We	
  also	
  investigated	
  ICNs	
  in	
  patients	
  with	
  

neuropsychiatric	
  diseases.	
  First,	
  we	
  showed	
  selective	
  changes	
  in	
  two	
  cortical	
  ICNs	
  in	
  

patients	
  with	
  early	
  Alzheimer’s	
  Disease.	
  And	
  second,	
  we	
  revealed	
  altered	
  intrinsic	
  FC	
  in	
  

a	
  subcortical	
  ICN	
  that	
  correlates	
  with	
  symptom	
  dimensions	
  in	
  patients	
  with	
  

schizophrenia.	
  These	
  data	
  show	
  that	
  networks	
  of	
  ongoing	
  brain	
  activity	
  form	
  an	
  

intrinsic	
  functional	
  architecture	
  in	
  the	
  human	
  brain	
  that	
  is	
  robustly	
  detectable	
  in	
  rs-­‐

fMRI	
  data.	
  Moreover,	
  dynamic	
  changes	
  occur	
  in	
  organized	
  intrinsic	
  brain	
  activity	
  in	
  

healthy	
  and	
  diseased	
  brains	
  and	
  these	
  changes	
  are	
  related	
  to	
  differences	
  in	
  sensory	
  

experiences	
  or	
  behavior.	
  

5 Aims	
  of	
  the	
  thesis	
  

Analysis	
  of	
  resting	
  state	
  fMRI	
  data	
  with	
  multivariate	
  methods	
  to	
  characterize	
  and	
  detect	
  	
  

-­‐	
  ICNs	
  as	
  the	
  organizational	
  principle	
  of	
  intrinsic	
  brain	
  activity	
  	
  

-­‐	
  Plasticity	
  of	
  ICNs	
  in	
  healthy	
  subjects	
  after	
  sensory	
  experiences	
  

-­‐	
  Alterations	
  of	
  ICNs	
  in	
  neuropsychiatric	
  diseases	
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6 Introduction	
  

In	
  the	
  last	
  three	
  decades,	
  neuroimaging	
  evolved	
  as	
  a	
  new	
  discipline	
  to	
  investigate	
  the	
  

neurobiological	
  correlates	
  of	
  human	
  behavior.	
  The	
  two	
  major	
  techniques,	
  positron-­‐

emission-­‐tomography	
  (PET)	
  and	
  functional	
  magnetic	
  resonance	
  imaging	
  (fMRI),	
  allow	
  

the	
  mapping	
  of	
  human	
  brain	
  function	
  by	
  revealing	
  spatial	
  patterns	
  of	
  brain	
  regions	
  that	
  

activate	
  or	
  deactivate	
  in	
  a	
  variety	
  of	
  cognitive	
  tasks,	
  from	
  simple	
  sensory	
  to	
  complex	
  

cognitive	
  processing	
  like	
  emotions	
  and	
  decision-­‐making1,2.	
  Still,	
  the	
  brain	
  consumes	
  

most	
  energy	
  already	
  in	
  the	
  resting	
  state	
  when	
  a	
  subject	
  is	
  not	
  involved	
  in	
  performing	
  

any	
  externally	
  oriented	
  task3	
  (see	
  Figure	
  1).	
  So	
  far,	
  this	
  intrinsic	
  brain	
  activity	
  has	
  not	
  

been	
  the	
  focus	
  of	
  interest	
  in	
  the	
  analysis	
  of	
  neuroimaging	
  data,	
  but	
  only	
  served	
  as	
  a	
  

reference,	
  or	
  baseline	
  in	
  comparison	
  to	
  task	
  conditions4.	
  To	
  fully	
  understand	
  the	
  

neurobiological	
  correlate	
  of	
  human	
  behavior	
  it	
  is	
  crucial	
  not	
  only	
  to	
  investigate	
  the	
  

causes	
  of	
  regional	
  activations	
  or	
  deactivations	
  but	
  also	
  to	
  explore	
  the	
  organizational	
  

principle	
  of	
  the	
  intrinsic	
  brain	
  state	
  and	
  how	
  its	
  activity	
  influences	
  immediate	
  behavior.	
  

This	
  thesis	
  will	
  approach	
  these	
  questions	
  by	
  investigating	
  organized	
  intrinsic	
  brain	
  

activity	
  with	
  rs-­‐fMRI	
  and	
  its	
  modulation	
  by	
  sensory	
  experiences	
  and	
  in	
  neuropsychiatric	
  

diseases.	
  	
  

	
  
Figure 1: Whole body glucose consumption. In the resting state brain blood flow accounts for 11% of the 
cardiac output and brain metabolism accounts for 20% of the energy consumption of the body, 

overshadowing the metabolism of other organs such as the heart, liver and skeletal muscle as shown in 

this classic image of whole body glucose consumption. Taken from5. 
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6.1 Imaging	
  cognitive	
  processes	
  with	
  functional	
  magnetic	
  resonance	
  imaging	
  

Functional	
  neuroimaging	
  is	
  a	
  noninvasive	
  method	
  for	
  mapping	
  human	
  brain	
  function	
  

with	
  PET	
  and	
  fMRI6	
  (for	
  review,	
  see2,7,8).	
  FMRI	
  indirectly	
  measures	
  mass	
  neuronal	
  

activity	
  in	
  circumscribed	
  volumes,	
  or	
  voxels,	
  of	
  the	
  brain9.	
  The	
  method	
  relies	
  on	
  the	
  fact	
  

that	
  increased	
  neuronal	
  activity	
  induces	
  increased	
  blood	
  flow	
  in	
  the	
  same	
  voxel	
  or	
  brain	
  

region.	
  As	
  a	
  consequence,	
  the	
  ratio	
  of	
  available	
  oxygen	
  bound	
  to	
  oxygenated	
  

hemoglobin,	
  also	
  increases.	
  All	
  these	
  parameters,	
  i.e.	
  tissue	
  perfusion,	
  blood-­‐volume	
  

changes,	
  and	
  changes	
  in	
  the	
  concentration	
  of	
  oxygen	
  can	
  be	
  used	
  to	
  indirectly	
  infer	
  

changes	
  in	
  neuronal	
  activity.	
  However,	
  the	
  blood-­‐oxygen-­‐level-­‐dependent	
  (BOLD)	
  signal	
  

is	
  the	
  parameter	
  most	
  often	
  reported	
  since	
  its	
  discovery	
  in	
  animal	
  10	
  and	
  human	
  brain	
  

imaging	
  studies11-­‐13.	
  	
  

	
  

	
  
Figure 2: Traditional fMRI analysis and BOLD noise. BOLD signal time course (magenta) from a region in 

the primary visual cortex during a simple task paradigm that requires subjects to open and close their 
eyes. The paradigm is shown in blue. Traditional fMRI analysis involves correlating BOLD data with a 

stimulation time-course across multiple blocks. In this case, subtraction of the eyes-closed condition 

from the eyes-open condition identifies a BOLD signal intensity difference in the primary visual cortex 
(shown on the right). Taken from14. 

	
  

The	
  traditional	
  approach	
  to	
  investigate	
  the	
  involvement	
  of	
  a	
  brain	
  region	
  in	
  a	
  cognitive	
  

task	
  is	
  the	
  voxel-­‐wise	
  comparison	
  of	
  the	
  BOLD	
  signal	
  during	
  a	
  condition	
  of	
  high	
  task	
  

demand	
  (e.g.	
  viewing	
  pictures	
  of	
  faces)	
  with	
  that	
  during	
  a	
  lesser	
  demanding	
  baseline	
  

state	
  (for	
  review,	
  see4,5).	
  The	
  following	
  two	
  experiments	
  illustrate	
  this	
  BOLD-­‐subtraction	
  

method	
  to	
  map	
  human	
  brain	
  function.	
  When	
  a	
  black	
  and	
  white	
  checkerboard	
  is	
  visually	
  

presented	
  to	
  human	
  subjects	
  for	
  several	
  minutes,	
  primary	
  and	
  secondary	
  visual	
  areas	
  in	
  

the	
  occipital	
  cortex	
  activate	
  above	
  baseline	
  (when	
  no	
  visual	
  stimulation	
  is	
  present)	
  as	
  

shown	
  in	
  Figure	
  2.	
  A	
  more	
  complex	
  task	
  of	
  allocating	
  attention	
  to	
  detect	
  a	
  certain	
  target	
  

in	
  a	
  visual	
  scene	
  reveals	
  a	
  distributed	
  attention	
  related	
  network	
  of	
  fronto-­‐parietal	
  

cortices	
  (see	
  Figure	
  3).	
  This	
  means	
  that	
  certain	
  brain	
  regions	
  increase	
  their	
  activity	
  

consistently	
  above	
  baseline	
  when	
  an	
  experimentally	
  controlled	
  task	
  is	
  performed.	
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Water phantom
Glass sphere containing water 
that is used to study fMRI 
signal properties in a non-
biological system.

Linear regression
Computation of a scaling factor 
such that multiplication of a 
regressor time course by this 
scaling factor will remove the 
greatest amount of variance 
when subtracted from a signal 
of interest.

Voxel
A volume element that is the 
smallest distinguishable, box-
shaped part of a three-
dimensional space.

spontaneous activity with task conditions and address 
several important questions regarding how spontaneous 
BOLD activity should be interpreted. We briefly discuss 
what is known about the physiology of spontaneous 
BOLD activity and conclude with a discussion of areas 
for future advancement in the field.

Methods for analysing spontaneous BOLD data
Spontaneous neuronal activity refers to activity that is 
not attributable to specific inputs or outputs; it repre-
sents neuronal activity that is intrinsically generated by 
the brain. As such, fMRI studies of spontaneous activity  
attempt to minimize changes in sensory input and 
refrain from requiring subjects to make responses or 
perform specific cognitive tasks. Most studies are con-
ducted during continuous resting-state conditions such 
as fixation on a cross-hair or eyes-closed rest. Subjects 
are usually instructed simply to lie still in the scanner 
and refrain from falling asleep. After data acquisition, 
two important data analysis issues must be considered: 
how to account for non-neuronal noise and how to 
identify spatial patterns of spontaneous activity.

Accounting for non-neuronal noise. An important differ-
ence between studies of spontaneous activity and more 
traditional studies of task-evoked responses is that the 
latter usually involve averaging across many trials. This 
averaging eliminates noise and increases confidence 
that the effect being studied is not an artefact. In studies 
of spontaneous activity, the signal being analysed and 
interpreted is the noise that task-evoked studies seek 
to remove by averaging. A natural concern, therefore, 
is that spontaneous activity results are contaminated  
by or even due to an artefact, such as scanner instability 
or non-neuronal physiological fluctuations. Consistent 
with this concern, spontaneous BOLD fluctuations have 
been observed in a water phantom16 and physiological 
fluctuations, such as cardiac or respiratory activity, 
account for a significant fraction of spontaneous BOLD 
variance in human data17–20. Fortunately, a large amount 
of work has gone into addressing this concern.

One strategy to account for non-neuronal noise is 
to use a high sampling rate, which prevents aliasing of 
higher frequency cardiac or respiratory activity11,12,21,22; 
however, this comes with the limitation of reduced spatial 
coverage. Alternatively, physiological parameters can be 
measured during BOLD acquisition and removed from 
the data through linear regression18–20,23,24. Finally, noise 
sources can be isolated from the BOLD data itself through 
techniques such as independent components analysis 
(ICA, see below)25–27, regressing out signals that are com-
mon to all voxels (the global signal)16,28,29 or signals from 
regions that are likely to have a relatively high degree of 
physiological artefact relative to the amount of neuronal 
activity, such as the ventricles or white matter24,29.

In a sense, these strategies take the place of the aver-
aging in task-evoked studies and attempt to ensure that 
spontaneous BOLD analyses are not simply interpreta-
tions of non-neuronal noise. Thoughtful implementation 
allows the neurobiologically meaningful information in 
spontaneous BOLD data to be emphasized.

Identifying spatial patterns. Techniques for identifying 
spatial patterns of coherent BOLD activity, an analysis 
often referred to as functional connectivity (BOX 1), are 
also required. The simplest technique is to extract the 
BOLD time course from a region of interest (called a 
seed region) and determine the temporal correlation 
between this extracted signal and the time course from 
all other brain voxels (FIG. 2). This approach is widely 
used owing to its inherent simplicity, sensitivity and 
ease of interpretation10–14,24,29–36. However, it has some 
disadvantages. The results are dependent on the a priori 
definition of a seed region, multiple systems cannot be 
studied simultaneously and the extracted waveform may 
not be a true independent variable when assessing statis-
tical significance. In response to these limitations other 
more sophisticated techniques for analysing spontane-
ous BOLD data have been proposed.

Hierarchical clustering still requires a priori defini-
tion of seed regions37–40. However, instead of extracting 
the time course from just one seed region, the time 

Figure 1 | Traditional fMRI analysis and BOLD noise. Unaveraged blood oxygen level dependent (BOLD) time course 
(magenta) from a region in the primary visual cortex during a simple task paradigm that requires subjects to open and close 
their eyes. The paradigm is shown in blue (delayed to account for the haemodynamic response). Traditional functional 
magnetic resonance imaging (fMRI) analysis involves correlating BOLD data with a stimulation time-course across multiple 
blocks. This in effect averages across each condition and performs a subtraction, minimizing ‘noise’ in the BOLD signal and 
highlighting regions that are modulated by the task paradigm. In this case, subtraction of the eyes-closed condition from 
the eyes-open condition identifies a BOLD signal intensity difference in the primary visual cortex (shown on the right).

REVIEWS

NATURE REVIEWS | NEUROSCIENCE  VOLUME 8 | SEPTEMBER 2007 | 701
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Figure 3: Definition of dorsal and ventral networks from activation data and putative interactions. Results 

from a meta-analysis of activation data. Regions in blue are consistently activated by central cues, 
indicating where a peripheral object will subsequently appear or what is the feature of an upcoming 

object. Regions in orange are consistently activated when attention is reoriented to an unexpected but 

behaviorally relevant object. Taken from15. 

	
  

6.2 Imaging	
  the	
  brain’s	
  resting	
  state	
  	
  

During	
  the	
  baseline	
  condition,	
  however,	
  the	
  resting	
  brain	
  is	
  by	
  no	
  means	
  in	
  an	
  idle	
  state	
  

(for	
  review,	
  see3).	
  PET,	
  a	
  method	
  measuring	
  the	
  voxel-­‐wise	
  distribution	
  of	
  glucose	
  

consumption,	
  revealed	
  that	
  the	
  resting	
  brain	
  consumes	
  ~20%	
  of	
  the	
  body’s	
  energy	
  (see	
  

Figure	
  1).	
  The	
  vast	
  majority	
  of	
  this	
  energy	
  is	
  provided	
  by	
  aerobic	
  glycolysis,	
  the	
  

metabolism	
  of	
  glucose	
  to	
  carbon	
  dioxide	
  and	
  water.	
  Up	
  to	
  80%	
  of	
  the	
  entire	
  energy	
  

consumption	
  at	
  rest	
  is	
  devoted	
  to	
  glutamate	
  cycling	
  and,	
  hence,	
  neural	
  signaling	
  

processes16.	
  This	
  means	
  that	
  the	
  majority	
  of	
  energy	
  consumed	
  by	
  the	
  brain	
  is	
  dedicated	
  

to	
  intrinsic,	
  ongoing	
  neuronal	
  signaling	
  while	
  the	
  processing	
  of	
  an	
  external	
  task	
  as	
  

described	
  above	
  (Figure	
  2)	
  increases	
  local	
  energy	
  consumption	
  only	
  in	
  the	
  range	
  of	
  

additional	
  3-­‐5%17	
  (see	
  Figure	
  4).	
  	
  

	
  

	
  
Figure 4: The changes in regional blood flow associated with task performance are often no more than 

5% of the resting blood flow of the brain from which they were derived (center) and, hence, only 

discernable in difference images averaged across subjects as shown above on the left. These modest 
modulations in ongoing circulatory and metabolic activity rarely affect the overall rate of brain blood flow 

and metabolism during even the most arousing perceptual and vigorous motor activity. Taken from5 



INTRINSIC FUNCTIONAL BRAIN NETWORKS IN HEALTH AND DISEASE Valentin Riedl, 2012 

	
   9	
  

During	
  a	
  resting	
  state	
  scan,	
  subjects	
  lie	
  in	
  the	
  scanner	
  without	
  performing	
  an	
  

experimentally	
  controlled	
  cognitive	
  task.	
  Therefore,	
  the	
  classical	
  procedure	
  of	
  analyzing	
  

fMRI	
  data	
  by	
  subtracting	
  the	
  voxel-­‐wise	
  BOLD	
  signal	
  of	
  two	
  cognitive	
  conditions	
  from	
  

each	
  other	
  is	
  not	
  applicable	
  to	
  resting	
  state	
  data.	
  Instead,	
  functional	
  connectivity	
  (FC)	
  

methods	
  have	
  been	
  developed	
  to	
  detect	
  correlations	
  in	
  the	
  rs-­‐fMRI	
  BOLD-­‐signal	
  

between	
  voxels18-­‐20:	
  (i)	
  Seed-­‐based	
  correlational	
  analyses	
  detect	
  the	
  FC	
  of	
  a	
  region-­‐of-­‐

interest	
  (ROI)	
  to	
  any	
  other	
  ROI	
  or	
  ultimately	
  to	
  any	
  other	
  voxel	
  in	
  the	
  brain.	
  This	
  results	
  

in	
  a	
  whole	
  brain	
  connectivity	
  map	
  indicating	
  voxels	
  with	
  significant	
  FC	
  to	
  the	
  seed	
  

region.	
  (ii)	
  Data-­‐driven	
  methods,	
  such	
  as	
  independent	
  component	
  analysis	
  (ICA)	
  are	
  

approaches	
  where	
  no	
  a	
  priori	
  hypothesis	
  about	
  a	
  seed	
  region	
  is	
  needed.	
  The	
  ICA-­‐

algorithm	
  simultaneously	
  detects	
  independent	
  spatial	
  maps	
  of	
  coherent,	
  ongoing	
  brain	
  

activity	
  in	
  the	
  rs-­‐fMRI	
  data	
  set.	
  (iii)	
  Finally,	
  frequency-­‐domain	
  analyses	
  target	
  

differences	
  in	
  the	
  amplitude	
  of	
  certain	
  frequency	
  components	
  in	
  the	
  BOLD	
  signal21.	
  After	
  

transforming	
  the	
  time	
  series	
  into	
  the	
  frequency	
  domain,	
  the	
  power	
  spectrum	
  of	
  low-­‐

frequency	
  (<0.1	
  Hz)	
  fluctuations	
  (LFF)	
  is	
  calculated	
  for	
  each	
  voxel	
  and	
  compared	
  across	
  

conditions	
  or	
  groups.	
  While	
  this	
  last	
  approach	
  tests	
  for	
  correlations	
  in	
  amplitudes	
  across	
  

voxels	
  it	
  differs	
  from	
  the	
  other	
  two	
  measures	
  that	
  test	
  for	
  coherence	
  between	
  voxel	
  

time-­‐series.	
  A	
  single	
  rs-­‐fMRI	
  scan	
  (as	
  brief	
  as	
  5	
  min)	
  can	
  thus	
  be	
  used	
  to	
  interrogate	
  a	
  

multitude	
  of	
  functional	
  circuits	
  simultaneously,	
  without	
  the	
  requirement	
  of	
  selecting	
  a	
  

priori	
  hypotheses22.	
  Building	
  on	
  the	
  term	
  “connectome,”	
  initially	
  applied	
  to	
  the	
  

comprehensive	
  map	
  of	
  structural	
  connections	
  in	
  the	
  human	
  brain23,	
  the	
  term	
  “functional	
  

connectome”	
  describes	
  the	
  collective	
  set	
  of	
  functional	
  connections	
  in	
  the	
  human	
  brain24.	
  	
  

	
  

6.3 Intrinsic	
  connectivity	
  networks	
  in	
  the	
  resting	
  state	
  

Analyzing	
  intrinsic	
  FC	
  of	
  rs-­‐fMRI	
  data	
  reveals	
  spontaneous	
  fluctuations	
  in	
  the	
  low	
  

frequency	
  band	
  of	
  the	
  BOLD	
  signal	
  that	
  are	
  temporally	
  correlated	
  across	
  functionally	
  

related	
  areas14,25	
  (see	
  Figure	
  5).	
  These	
  spatial	
  patterns	
  of	
  coherent	
  intrinsic	
  brain	
  

activity	
  have	
  been	
  termed	
  resting	
  state	
  or	
  intrinsic	
  connectivity	
  networks	
  (ICN).	
  In	
  

1995,	
  Bharat	
  Biswal	
  and	
  colleagues	
  described	
  the	
  first	
  ICN	
  in	
  the	
  motor	
  system25.	
  They	
  

found	
  that	
  ongoing	
  BOLD	
  signal	
  fluctuations	
  in	
  the	
  right	
  primary	
  motor	
  cortex	
  are	
  highly	
  

correlated	
  with	
  the	
  resting	
  state	
  BOLD	
  signal	
  in	
  contralateral	
  primary	
  motor	
  cortex,	
  

premotor	
  cortices	
  and	
  regions	
  in	
  the	
  cerebellum.	
  Thus,	
  they	
  detected	
  a	
  whole	
  network	
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of	
  distributed	
  brain	
  regions	
  characterized	
  by	
  coherent	
  ongoing	
  neuronal	
  activity	
  in	
  the	
  

resting	
  state	
  that	
  is	
  usually	
  activated	
  together	
  during	
  motor	
  tasks.	
  

	
  

	
  
Figure 5: Generation of resting-state correlation maps. a) Seed region in the left somatomotor cortex 
(LSMC) is shown in yellow. b) Time course of spontaneous BOLD activity recorded during resting fixation 

and extracted from the seed region. c) Statistical z-score map showing voxels that are significantly 

correlated with the extracted time course. In addition to correlations with the right somatomotor cortex 
(RSMC) and medial motor areas, correlations are observed with the secondary somatosensory 

association cortex (S2), the posterior nuclei of the thalamus (Th), putamen (P) and cerebellum (Cer). 

Taken from14. 

	
  

After	
  the	
  initial	
  description	
  of	
  this	
  motor	
  network	
  in	
  rs-­‐fMRI	
  data,	
  further	
  ICNs	
  have	
  

been	
  repeatedly	
  reported26-­‐34.	
  These	
  ICNs	
  cover	
  occipital,	
  temporal	
  and	
  fronto-­‐parietal	
  

cortices	
  that	
  show	
  strong	
  correspondence	
  to	
  spatial	
  patterns	
  known	
  from	
  task-­‐fMRI	
  

studies	
  mapping	
  visual,	
  sound	
  or	
  attention	
  processing.	
  One	
  can	
  distinguish	
  primary	
  ICNs	
  

covering	
  sensori-­‐motor	
  cortices	
  and	
  spatially	
  distributed	
  ICNs	
  similar	
  to	
  networks	
  

related	
  to	
  higher	
  cognitive	
  functions	
  like	
  attention,	
  emotion	
  and	
  cognitive	
  control	
  

processing	
  (see	
  Figure	
  6).	
  The	
  primary	
  ICNs	
  cover	
  primary	
  and	
  secondary	
  visual	
  

cortices,	
  primary	
  auditory	
  cortices,	
  somatosensory	
  and	
  motor/premotor	
  cortices.	
  ICNs	
  

similar	
  to	
  higher	
  cognitive	
  functions	
  are	
  fronto-­‐parietal	
  networks	
  mimicking	
  dorsal	
  

(spatial)	
  and	
  ventral	
  attention	
  networks,	
  insular	
  networks	
  related	
  to	
  emotion	
  and	
  

cognitive/executive	
  control	
  and	
  a	
  self	
  related	
  default	
  mode	
  network.	
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Figure 6: FC within and between ICNs. (A) In this publication by Allen et al, 28 components of an ICA were 
identified as ICNs. ICNs are divided into groups based on their anatomical and functional properties and 

include basal ganglia, auditory, sensorimotor, visual, default-mode, attentional, and frontal networks. 

Taken from32. 

	
  

This	
  intrinsic	
  network	
  architecture	
  of	
  ongoing	
  brain	
  activity	
  has	
  now	
  emerged	
  as	
  a	
  

common	
  organizational	
  principle	
  in	
  humans,	
  monkeys,	
  and	
  rats30,35-­‐37.	
  Studies	
  have	
  

provided	
  insight	
  into	
  the	
  development	
  of	
  ICNs	
  in	
  the	
  maturing	
  and	
  aging	
  brain38-­‐41,	
  and	
  

delineated	
  the	
  effects	
  of	
  sleep42,43,	
  anesthesia44,45,	
  and	
  pharmacologic	
  agents	
  on	
  rs-­‐fMRI	
  

measures46,47.	
  Others	
  have	
  investigated	
  the	
  anatomical	
  properties	
  of	
  intrinsically	
  

coupled	
  brain	
  regions.	
  In	
  the	
  beginning,	
  it	
  was	
  suggested	
  that	
  patterns	
  of	
  FC	
  rather	
  

reflect	
  underlying	
  anatomical	
  connections,	
  or	
  structural	
  connectivity	
  (SC)36,48.	
  While	
  

connections	
  between	
  certain	
  core	
  regions	
  indeed	
  show	
  this	
  similarity,	
  the	
  majority	
  of	
  

functionally	
  coupled	
  regions	
  (like	
  homotopic	
  functional	
  regions)	
  are	
  not	
  directly	
  

anatomically	
  connected49.	
  This	
  suggests	
  a	
  layer	
  of	
  functional	
  processing	
  in	
  the	
  intrinsic	
  

functional	
  architecture	
  that	
  reaches	
  beyond	
  mimicking	
  anatomical	
  connections.	
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Finally,	
  a	
  large	
  body	
  of	
  literature	
  analyzed	
  the	
  neurophysiological	
  underpinnings	
  of	
  

ongoing,	
  coherent	
  BOLD	
  signal	
  fluctuations	
  (for	
  review,	
  see50).	
  Typically,	
  coherence	
  of	
  

rs-­‐fMRI	
  signal	
  fluctuations	
  between	
  cortical	
  and	
  subcortical	
  brain	
  regions	
  occurs	
  in	
  

distinct	
  bins	
  of	
  the	
  low	
  frequency	
  domain	
  (<0.1Hz)51.	
  However,	
  the	
  BOLD-­‐signal	
  is	
  

heavily	
  blurred	
  and	
  temporally	
  sampled	
  only	
  every	
  2-­‐3s.	
  Therefore,	
  these	
  MRI	
  

parameters	
  might	
  be	
  responsible	
  for	
  the	
  strong	
  representation	
  of	
  LFF.	
  Combined	
  fMRI-­‐

electrophysiological	
  recordings	
  found	
  evidence	
  for	
  additional	
  representations	
  of	
  higher	
  

frequencies	
  in	
  the	
  electrical	
  signal.	
  In	
  primates,	
  neural	
  spiking	
  activity	
  and	
  the	
  band-­‐

limited	
  power	
  (BLP)	
  of	
  high-­‐frequency	
  gamma	
  oscillations	
  correlated	
  best	
  with	
  ongoing	
  

BOLD-­‐signal	
  fluctuations52.	
  In	
  humans,	
  electrocorticograhpy	
  (ECoG)	
  found	
  correlated	
  

spontaneous	
  neuronal	
  activity	
  between	
  both	
  hemispheres	
  of	
  the	
  sensorimotor	
  ICN	
  in	
  

slow	
  frequencies	
  as	
  well	
  as	
  in	
  the	
  gamma-­‐range	
  BLP53,54.	
  Furthermore,	
  studies	
  have	
  

investigated	
  the	
  spatial	
  similarity	
  of	
  electrophysiological	
  and	
  BOLD	
  FC	
  patterns	
  and	
  

found	
  strong	
  overlap	
  for	
  ECoG	
  recordings53,55	
  and	
  electroencephalography	
  (EEG)	
  

recordings56.	
  Together,	
  these	
  data	
  suggest	
  that	
  the	
  networks	
  of	
  ongoing	
  BOLD	
  signal	
  

fluctuations	
  reflect	
  an	
  intrinsic	
  functional	
  architecture	
  of	
  neuronal	
  activity	
  in	
  the	
  resting	
  

state	
  that	
  is	
  more	
  than	
  a	
  mere	
  copy	
  of	
  anatomical	
  connections.	
  This	
  assumption	
  is	
  

supported	
  by	
  the	
  studies	
  presented	
  in	
  this	
  thesis	
  as	
  well	
  as	
  by	
  an	
  increasing	
  amount	
  of	
  

work	
  by	
  others	
  that	
  show	
  modulations	
  of	
  coherent,	
  intrinsic	
  brain	
  activity	
  by	
  

cognitive57-­‐60	
  or	
  emotional61,62	
  states.	
  

	
  

6.4 Investigating	
  modulations	
  and	
  plasticity	
  of	
  intrinsic	
  connectivity	
  networks	
  

The	
  studies	
  presented	
  in	
  this	
  thesis	
  investigate	
  organized	
  intrinsic	
  brain	
  activity	
  with	
  rs-­‐

fMRI	
  and	
  its	
  modulation	
  by	
  sensory	
  experiences	
  and	
  in	
  neuropsychiatric	
  diseases.	
  We	
  

studied	
  ICNs	
  in	
  healthy	
  subjects	
  and	
  patients	
  with	
  neuropsychiatric	
  diseases.	
  We	
  

participated	
  in	
  a	
  multicenter	
  study	
  of	
  35	
  research	
  sites	
  to	
  describe	
  a	
  comprehensive	
  and	
  

ubiquitous	
  set	
  of	
  ICNs	
  in	
  the	
  resting	
  state	
  forming	
  the	
  human	
  functional	
  connectome37.	
  

Although	
  stable	
  across	
  individuals,	
  we	
  revealed	
  modulations	
  of	
  intrinsic	
  network	
  

connectivity	
  in	
  healthy	
  subjects	
  that	
  repeatedly	
  experienced	
  pain59	
  (1st	
  author).	
  

Furthermore,	
  we	
  showed	
  that	
  altered	
  sensory	
  experiences	
  in	
  healthy	
  individuals,	
  here	
  

synesthesia,	
  correlate	
  with	
  altered	
  connectivity	
  between	
  sensory	
  ICNs	
  in	
  the	
  resting	
  

state	
  (Dovern	
  2011,	
  J	
  Neurosci,	
  under	
  revision)	
  (senior	
  author).	
  We	
  also	
  investigated	
  

ICNs	
  in	
  patients	
  with	
  neuropsychiatric	
  diseases.	
  First,	
  we	
  showed	
  selective	
  changes	
  in	
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two	
  cortical	
  ICNs	
  in	
  patients	
  with	
  early	
  Alzheimer’s	
  Disease	
  (AD)	
  that	
  precede	
  

structural	
  changes	
  in	
  the	
  same	
  brain	
  regions63	
  (shared	
  1st	
  author).	
  And	
  second,	
  we	
  

revealed	
  altered	
  FC	
  in	
  a	
  subcortical	
  ICN	
  that	
  correlates	
  with	
  symptom	
  dimensions	
  in	
  

patients	
  with	
  schizophrenia64	
  (senior	
  author).	
  Together,	
  these	
  data	
  show	
  that	
  dynamic	
  

changes	
  occur	
  in	
  the	
  intrinsic	
  architecture	
  of	
  ongoing	
  brain	
  activity	
  in	
  healthy	
  and	
  

diseased	
  brains	
  and	
  these	
  changes	
  are	
  related	
  to	
  differences	
  in	
  sensory	
  experiences	
  or	
  

behavior.	
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7 Paper	
  1:	
  Towards	
  discovery	
  science	
  of	
  human	
  brain	
  function	
  (PNAS	
  2010)	
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Although it is being successfully implemented for exploration of
the genome, discovery science has eluded the functional neuro-
imaging community. The core challenge remains the development
of common paradigms for interrogating the myriad functional
systems in the brain without the constraints of a priori hypoth-
eses. Resting-state functional MRI (R-fMRI) constitutes a candidate
approach capable of addressing this challenge. Imaging the brain
during rest reveals large-amplitude spontaneous low-frequency
(<0.1 Hz) fluctuations in the fMRI signal that are temporally corre-
lated across functionally related areas. Referred to as functional
connectivity, these correlations yield detailed maps of complex
neural systems, collectively constituting an individual’s “functional
connectome.” Reproducibility across datasets and individuals sug-
gests the functional connectome has a common architecture, yet
each individual’s functional connectome exhibits unique features,
with stable, meaningful interindividual differences in connectivity
patterns and strengths. Comprehensive mapping of the functional
connectome, and its subsequent exploitation to discern genetic
influences and brain–behavior relationships, will require multicen-
ter collaborative datasets. Here we initiate this endeavor by gath-
ering R-fMRI data from 1,414 volunteers collected independently
at 35 international centers. We demonstrate a universal architec-
ture of positive and negative functional connections, as well as
consistent loci of inter-individual variability. Age and sex emerged
as significant determinants. These results demonstrate that inde-
pendent R-fMRI datasets can be aggregated and shared. High-
throughput R-fMRI can provide quantitative phenotypes for
molecular genetic studies and biomarkers of developmental and

pathological processes in the brain. To initiate discovery science of
brain function, the 1000 Functional Connectomes Project dataset is
freely accessible at www.nitrc.org/projects/fcon_1000/.

database | neuroimaging | open access | reproducibility | resting state

Much like the challenge of decoding the human genome, the
complexities of mapping human brain function pose a

challenge to the functional neuroimaging community. As dem-
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onstrated by the 1000 Genomes Project (1), the accumulation
and sharing of large-scale datasets for data mining is necessary
for the first phase of discovery science.
Although the neuroimaging community has traditionally focused

on hypothesis-driven task-based approaches, resting-state func-
tional MRI (R-fMRI) has recently emerged as a powerful tool for
discovery science. Imaging the brain during rest reveals large-
amplitude spontaneous low-frequency (<0.1Hz) fluctuations in the
fMRI signal that are temporally correlated across functionally
related areas (2–5). A single R-fMRI scan (as brief as 5min) can be
used to interrogate a multitude of functional circuits simulta-
neously, without the requirement of selecting a priori hypotheses
(6). Building on the term “connectome,” coined to describe the
comprehensive map of structural connections in the human brain
(7), we use “functional connectome” to describe the collective set of
functional connections in the human brain.
Buttressed by moderate to high test–retest reliability (8–10) and

replicability (11, 12), as well as widespread access, R-fMRI has
overcome initial skepticism (13) regarding the validity of examining
such an apparently unconstrained state (5, 8, 14). Recent R-fMRI
studies have identified putative biomarkers of neuropsychiatric
illness (12, 15–18), provided insight into the development of func-
tional networks in the maturing and aging brain (19–22), demon-
strated a shared intrinsic functional architecture (23) between

humans and nonhuman primates (24, 25), and delineated the
effects of sleep (26), anesthesia (27), and pharmacologic agents on
R-fMRI measures (28, 29). Given the many sources of variability
inherent in fMRI, the remaining challenge is to demonstrate the
feasibility and utility of adopting a high-throughput model for R-
fMRI, commensurate with the scale used by human genetics studies
to have the power to detect both single gene and combinatorial
genetic and environmental effects on complex phenotypes.
Accordingly, the 1000 Functional Connectomes Project was

formed to aggregate existing R-fMRI data from collaborating cen-
ters throughout theworld and to provide an initial demonstration of
the ability to pool functional data across centers. As of December
11, 2009, the repository includes data from 1,414 healthy adult
participants contributed by 35 laboratories (Table S1). The intent is
to expand this open resource as additional data are made available.
Here we provide an initial demonstration of the feasibility of

pooling R-fMRI datasets across centers. Specifically, we (i)
establish the presence of a universal functional architecture in
the brain, consistently detectable across centers; (ii) investigate
the influence of center on R-fMRI measures; (iii) explore the
potential impact of demographic variables (e.g., age, sex) on R-
fMRI measures; and (iv) demonstrate the use of an intersubject
variance–based method for identifying putative boundaries
between functional networks.

Fig. 1. Independent center-, age-, and sex-related variations detected in R-fMRI measures of functional connectivity and amplitude fluctuation. The first row
depicts group-level maps for representative seed-based (column 1) and ICA-based (column 3) functional connectivity analyses (SI Results), as well as fALFF
(column 2). Group-level maps were derived from one-way ANOVA across 1,093 participants from 24 centers (factor: center; covariates: age and sex). All group-
level maps depicted were corrected for multiple comparisons at the cluster level using Gaussian random-field theory (Z > 2.3; P < 0.05, corrected). For each
measure, the second row shows robust between-center concordances (Kendall’s W), with the voxelwise coefficients of variation above the diagonal and the
voxelwise means below the diagonal. Kendall’s W concordance between any two centers was calculated across all voxels in the brain mask for the mean (or
coefficient of variation) connectivity map across all participants included in each center. Rows 3, 4, and 5 depict voxels exhibiting significant effects of center,
age, and sex, respectively, as detected by one-way ANOVA. “Male” refers to significantly greater connectivity (or amplitude, i.e., fALFF) in males; similarly,
“female” refers to significantly greater connectivity (or amplitude) in females. “Older” refers to significantly increasing connectivity (or amplitude) with
increasing age, whereas “younger” refers to significantly increasing connectivity (or amplitude) with decreasing age. “Pos” refers to positive functional
connectivity, and “neg” refers to negative functional connectivity. The PCC seed region is indicated by a white dot. (Top Left) Surface map legend: LL, left
lateral; RL, right lateral; LM, left medial; RM, right medial. All surface maps are rendered on the PALS-B12 atlas in CARET (http://brainvis.wustl.edu).
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Results
We applied three distinct analytic methods commonly used in the
R-fMRI literature: seed-based functional connectivity, inde-
pendent component analysis (ICA), and frequency-domain
analyses. Across the three approaches, we found evidence of (i) a
universal intrinsic functional architecture in the human brain, (ii)
center-related variation in R-fMRI measures, and (iii) consistent
effects of age and sex on R-fMRI measures, detectable across
centers despite the presence of center-related variability (Fig. 1).
Specifically, seed-based correlational analyses revealed highly
consistent patterns of functional connectivity across centers for
both the “default mode” (30) and “task-positive” networks (31),
supporting a universal functional architecture (Fig. S1). Similarly,
a data-driven, temporal concatenation ICA approach, combined
with dual regression (32–34), revealed consistent patterns of
functional connectivity across centers for 20 spatially independent
functional networks (Fig. 1 and Figs. S2 and S3). In addition, for
each of the functional connectivity measures, within-center
coefficient of variation maps showed a high degree of con-
cordance across centers (Fig. S4). This suggests that common loci
of variation exist: centers demonstrated a high degree of agree-
ment on which connections are characterized by relative variance
or invariance. Despite the high degree of concordance between
centers, there were appreciable center-related variations in the
strength of functional connectivity throughout the brain (8). The
effect of center was especially prominent in regions exhibiting
greater interregional connection strength, because these have the
least within-center variability (See SI Results and Fig. S5 for fur-
ther discussion of center-related variability.) However, even when
taking this center-related variability into account, robustly reliable
effects of age and sex remained appreciable (Fig. 2 and Figs. S1
and S2). (See SI Results and Fig. S6 for an examination of the
impact of sample size on effects of age and sex.)
The detection of sex differences was particularly noteworthy,

because these differences are rarely appreciated in the R-fMRI

literature (35). Sexual dimorphism in human genomic expression
(36) is known to affect numerous physiological variables that can
influence the fMRI signal (37, 38). For example, males and
females differ in terms of hemoglobin concentrations and hema-
tocrit (39). However, global variables such as these do not explain
the regionally specific sex-related phenomenon noted in the
present work. Hormonal effects (e.g., estrogen), operating both
during brain development (40) and acutely (41), are known to
have regional specificity (42), making them potential contributors
to the differences observed. Given the discovery nature of the
present work and the lack of prior coordination among centers,
the specific sex differences that we observed should be interpreted
with caution until replicated in an independent sample.
Along with examining patterns of functional connectivity, we

measured the amplitude of low-frequency fluctuations at each
voxel using two common periodogram-based measures: ampli-
tude of low frequency fluctuation (ALFF; total power<0.1Hz) (2,
17, 43) and fractional ALFF (fALFF; total power <0.1 Hz/total
power in the measured spectrum) (44). Concordant with previous
work, the dominance of low-frequency fluctuations was con-
sistently noted within gray matter regions, but not white matter
(44). As with our analyses of functional connectivity, despite clear
evidence of center-related effects, we were again able to dem-
onstrate age- and sex-related differences in the magnitude of low-
frequency fluctuations in various regions, particularly medial wall
structures (Fig. 2 and Fig. S7).
Beyond data pooling for statistical analyses, we demonstrate

the potential to use high-throughput datasets to develop norma-
tive maps of functional systems in the brain, which is a pre-
requisite for clinical applications. Specifically, we exploit a key
property of functional connectivity maps, the presence of well-
differentiated borders between functionally distinct regions (45).
The voxelwise measures of coefficients of variation for each type
of functional connectivity map delineate putative functional
boundaries based on the presence of marked variability in func-

Fig. 2. Illustrative areas exhibiting age- and sex-related variation in R-fMRI properties. Significant group-level variance in functional connectivity maps was
explained by age and sex (cluster-based Gaussian random-field corrected: Z > 2.3; P < 0.05). For each of three methods (seed-based, fALFF, and ICA), variance
in connectivity strength explained by age (Left) and sex (Right) is illustrated both anatomically and graphically. Age-related differences are represented as
scatterplots. Sex-related differences are represented as histograms depicting the distributions of resting-state functional connectivity (RSFC) values for males
and females separately. Vertical lines indicate peak values. Corresponding topographical brain areas are indicated with dots. “Male” refers to significantly
greater connectivity (or amplitude, i.e., fALFF) in males; similarly, “female” refers to significantly greater connectivity (or amplitude) in females. “Older”
refers to significantly increasing connectivity (or amplitude) with increasing age, whereas “younger” refers to significantly increasing connectivity (or
amplitude) with decreasing age.
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tional connectivity across participants. The variation observed at
these boundaries stands in contrast to the low degree of variability
observed in regions exhibiting consistently positive or negative
connectivity (Fig. 3). In addition, examination of the coefficients
of variation for fALFF measures revealed sharp boundary zones
between white matter and gray matter. It also identified areas of
variability in the amplitude of spontaneous fluctuations that
coincided with anatomic areas of notable sulcal variability (e.g.,
cingulate and frontal opercular regions).

Discussion
The present work represents a watershed event in functional
imaging: demonstration of the feasibility of sharing and pooling
functional data across multiple centers, alongside the establish-
ment of an open-access data repository.We have demonstrated (i)
the presence of a universal functional architecture, with remark-
able stability in the functional connectome and its loci of variation
across participants and centers; (ii) evidence of systematic sex
differences in R-fMRI measures, as well as age-related gradients
even in middle adulthood; and (iii) a method for highlighting the
complex array of putative functional boundaries between net-
works from which normative maps can be developed. Future work
should focus on using the functional connectome to catalog phe-
notypic diversity in brain–behavior relationships.
Functional connectivity is both related to and distinct from ana-

tomic connectivity. Specifically, a recent study reported that a
structural core appears to play “a central role in integrating infor-
mation across functionally segregated brain regions” (23). As such,
our finding of a universal functional architecture was not unex-
pected. But structure and function are not completely coupled, as
illustrated by the robust homotopic (i.e., contralateral) functional
connectivity for such regions as the primary visual cortex or the
amygdala, both of which lack direct callosal projections (24, 46).
Such findings imply that functional connectivity is subserved by
polysynaptic as well as monosynaptic anatomic circuits. In addition,
functional connectivity exhibits dynamic properties that are absent

in structural connectivity. For instance, functional connectivity is
modulated by cognitive (47) and emotional state (48), arousal, and
sleep (26), whereas structural connectivity is grossly unaffected by
such factors. In short, the presence of a demonstrable structural
connection does not necessitate that of a functional connection, nor
does the demonstration of a functional connection imply the pres-
ence of a direct structural connection.
Task-based fMRI and R-fMRI approaches have comple-

mentary roles in the study of human brain function. Task-based
approaches require sufficient a priori knowledge to articulate
specific hypotheses, and they are invaluable in refining such
hypotheses. But when the knowledge base is insufficient, task-
based approaches may be compared to candidate gene studies,
which have had limited success when applied to complex genetic
disorders. In contrast, genome-wide association studies are
increasingly providing initial findings for complex traits (49) and
diseases that are subsequently validated through replication,
extension, and deep sequencing (50). Our demonstration that R-
fMRI data can be aggregated and pooled, and that variability
among individuals can be explained in terms of specific subject
variables (e.g., sex, age), suggests that this approach can provide
quantitative phenotypes to be integrated into molecular studies.
Our results must be considered in light of several limitations of

the present study. First, we used a convenience sample com-
prising previously collected data from an array of centers, with-
out prior coordination of acquisition parameters or scanning
conditions. Although the robustness of our results attests to the
consistency of intrinsic brain activity, it still represents a potential
underestimate of the true across-center consistency. Our dem-
ographic data warrant caution, because centers were heteroge-
neous with respect to male:female ratio, mean age, and age
range. Our findings should motivate more systematic exploration
of these variables, because future high-throughput imaging
studies will need to take such factors into account.
Despite the promise of R-fMRI, some theoretical and pragmatic

issues need to be addressed. Examples include the determination of

Fig. 3. Variation across individuals reveals functional boundaries. Previous work has noted that functionally segregated regions are frequently characterized
by well-demarcated boundaries for an individual (45). As such, variability in boundary areas is detectable across participants. Here we detect functional
boundaries via examination of voxelwise coefficients of variation (absolute value) for fALFF and selected seed-based [intraparietal sulcus (IPS), posterior
cingulate/precuneus (PCC)] and ICA-based (IC13) functional connectivity maps. For the purpose of visualization, coefficients of variation were rank-ordered,
whereby the relative degree of variation across participants at a given voxel, rather than the actual value, was plotted to better contrast brain regions.
Ranking coefficients of variation efficiently identified regions of greatest interindividual variability, thus delineating putative functional boundaries.
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theorigins andbiological significanceof spontaneous low-frequency
fluctuations of neuronal and hemodynamic activity, the impact of
intrinsic activity on evoked responses (and vice versa), and the ideal
means of acquiring, processing, and analyzing R-fMRI data. Nev-
ertheless, the potential of discovery science is vast, from the devel-
opment of objective measures of brain functional integrity to help
guide clinical diagnoses and decision-making, to tracking treatment
response and assessing the efficacy of treatment interventions.
Finally, whereas the present work examines functional connectivity
alone, future studiesmay combineR-fMRIwithothermodalities (e.
g., EEG, magnetoencephalography, diffusion-tensor imaging,
volumetrics) and genetics to achieve a more complete under-
standing of the human brain.
All data and analytic tools used in the present work will be made

available at www.nitrc.org/projects/fcon_1000/. We anticipate that
theopenavailability of the1000FunctionalConnectomesdatasetwill
recruit the broadparticipation and collaboration among the scientific
community necessary for successful implementation of discovery-
based science of human brain function. In addition, we hope that it
will further advance the ethos of data sharing and collaboration ini-
tiated by such efforts as fMRIDC (www.fmridc.org), FBIRN (www.
birncommunity.org), OASIS (www.oasis-brains.org), BrainScape
(www.brainscape.org), and BrainMap (www.brainmap.org).

Methods
Resting-state fMRI scanswere aggregated from35 community-based datasets
(n = 1,414). The present analysis was restricted to 24 centers (n = 1,093; 21
published, 3 unpublished; mean age <60 years; only participants over age 18;
one scan per participant; duration: 2.2–20 min; n = 970 at 3 T, n = 123 at 1.5 T;
voxel size, 1.5–5mmwithin plane; slice thickness, 3–8 mm). Each contributor’s
respective ethics committee approved submission of deidentified data. The
institutional review boards of NYU Langone Medical Center and New Jersey
Medical School approved the receipt and dissemination of the data.

For functionalconnectivity,weused seed-basedcorrelationanalysis,basedon
six previously identified seed regions (31), and model-free ICA, using temporal

concatenation to generate group-level components and dual regression to
generate individual participantmaps. For amplitudemeasures at each voxel, we
used the FFT-based ALFF (2, 17, 43) and its normalized variant, fALFF (44).

Standard image preprocessing was performed (i.e., motion correction,
spatial filtering with FWHM = 6 mm, 12-dof affine transformation to MNI152
stereotactic space). For seed-based correlation approaches and dual regres-
sion following ICA analysis, nuisance signals (e.g., global signal, WM, CSF,
motion parameters) were regressed out. Temporal filtering was tailored for
each analytic approach (29, 31, 32, 44).

ICA components for dual regression analyses were determined by (i) low-
dimensional (20 components) temporal concatenation ICAcarriedout25 times
(each with 18 participants randomly selected from each of 17 centers with
minimum of 165 time points) and (ii) low-dimensional (20 components) meta-
ICA, a second concatenation-based ICA using the component sets produced by
the 25 runs (see SI Results for a description of an alternativemethod). For each
participant, dual regression (32–34) was performed using the 20 components
identified by the meta-ICA (Fig. S3), yielding a connectivity map for each
component.

Aggregate statistical analyses of center, sex, and age effects were based on
a generalized linear model implementation of one-way ANOVA (factor:
center; covariates: age and sex). To identify functional boundaries, we cal-
culated voxelwise coefficients of variation across all 1,093 participants, and
ranked each voxel based on the absolute value of its coefficient of variation.
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SI Methods
Image Preprocessing.Overview.Allavailable resting-state scanswere
preprocessed using bothAFNI (1) and FSL (www.fmrib.ox.ac.uk).
Specific commands can be found in the preprocessing scripts that
will be released at www.nitrc.org/projects/fcon_1000/ on pub-
lication of this paper. After the first five time points of every scan
were discarded, to remove possible T1 stabilization effects, the
data were corrected for motion by aligning each volume to the
mean image volume using Fourier interpolation in AFNI. Then
the data were spatially smoothed using a 6-mm FWHMGaussian
kernel.Mean-based intensity normalizationwas done by scaling all
volumes by the same factor (10,000).
Seed-based correlation analyses. The data were temporally filtered
using both a high-pass (Gaussian-weighted least squares straight-
line fitting, with σ = 100.0 s) and low-pass (Gaussian low-pass
temporal filtering, with a HWHM of 2.8 s) filter, followed by
linear detrending to remove any residual drift.
Independent component analysis. Temporal concatenation group analysis.
Consistent with common practice, temporal filtering for ICA
analyses was limited to high-pass filtering (Gaussian-weighted least
squares straight-line fitting, with σ = 100.0 s).
Dual regression.This step used the same preprocessed data as used
in the seed-based correlation analyses.
ALFF/fALFF. No temporal filtering was carried out, because the data
were examined in the frequency domain within select bands (2, 3).
Temporal despiking with a hyperbolic tangent squashing function
was performed, however, to limit extreme values. Linear trends
were then removed from the data.
Registration and normalization. After the skull was removed using
AFNI, registration of each individual’s high-resolution anatomic
image to a common stereotactic space [the Montreal Neurological
Institute’s 152-brain template (MNI152); 3mm isotropic voxel size]
was done using a 12–degrees of freedom linear affine trans-
formation (FLIRT) (4, 5). The resulting transformation was then
applied to each individual’s functional dataset. We did not further
optimize the normalization with a nonlinear algorithm, because of
concerns about imagequality and limited coverage in somedatasets.

Functional Connectivity: Seed-Based Correlation Analysis. Nuisance
signal regression. Consistent with common practice in the R-
fMRI literature, nuisance signals were removed from the data via
multiple regression before functional connectivity analyses were
performed. This step is designed to control for the effects of
physiological processes, such as fluctuations related tomotion and
cardiac and respiratory cycles. Specifically, each individual’s 4D
time series data were regressed on nine predictors: white matter
(WM), cerebrospinal fluid (CSF), the global signal, and six motion
parameters. The global signal regressor was generated by aver-
aging across the time series of all voxels in the brain. TheWM and
CSF covariates were generated by segmenting each individual’s
high-resolution structural image (using FAST in FSL). The re-
sulting segmented WM and CSF images were thresholded to
ensure 80% tissue type probability. These thresholdedmasks were
then applied to each individual’s time series, and a mean time
series was calculated by averaging across time series of all voxels
within each mask. The six motion parameters were calculated in
the motion-correction step during preprocessing. Movement in
each of the three cardinal directions (X, Y, and Z) and rotational
movement around three axes (pitch, yaw, and roll) were included
for each individual.
Seed selection. Six 7.5-mm-radius seed regions of interest (ROIs)
(containing 33 voxels) centered on the coordinates previously used

by Fox et al. (6) were created to examine functional connectivity
for each of six regions, three regions within the “task-positive”
network and three within the “default mode” network. The ROIs
within the task-positive network were located in the IPS (-25, -57,
46), the middle temporal region (MT+; -45, -69, -2), and the right
frontal eye field (FEF) region of the precentral sulcus (25, -13,
50). The default mode network seed ROIs were located in the left
lateral parietal cortex (LP; -45, -67, 36), medial prefrontal cortex
(MPF; -1, 47, -4), and PCC (-5, -49, 40).
Individual seed-based functional connectivity analysis. First, each indi-
vidual’s residual 4D time series data were spatially normalized by
applying the previously computed transformation to the MNI152
standard space. Then the time series for each seed was extracted
from these data. Time series were averaged across all voxels in
each seed’s ROI. For each individual dataset, the correlation
between the time series of the seed ROI and that of each voxel in
the brain was determined. This analysis was implemented using
3dfim+ (AFNI) to produce individual-level correlation maps of
all voxels that were positively or negatively correlated with the
seed’s time series. Finally, these individual-level correlation maps
were converted to Z-value maps using Fisher’s r-to-z trans-
formation.

Functional Connectivity: Independent Component Analysis. Overview.
Temporal-concatenation group ICA (TC-GICA) was used to
generate group-level components for the dataset (7) using ME-
LODIC (FSL). Given computational resource limitations (e.g., 32
GB of physical memory), as well as a number of centers with a
small number of time points due to repetition times >2.0 s, each
TC-GICA run was applied to a dataset consisting of 18 partic-
ipants/center from the 17 centers that collected a minimum of 165
functional volumes per scan. This approach also ensured that a
single center’s data would not drive the ICA components de-
tected. Consistent with recent work on low-dimensional ICA (8),
the number of components was fixed at 20. Given the potential for
such factors as initial random values and subject sampling to affect
ICA results, 25 TC-GICA analyses were performed, each using a
unique resampling from each of the 17 centers. A meta-ICA
analysis was then carried out across the 25 runs to extract the 20
spatially independent components consistently identified across
the 25 runs. An alternative hierarchical clustering approach based
on ICASSO (9) is described below. The two approaches yielded
similar results. Dual regression (10, 11) was then carried out using
the 20 resulting components as templates, to produce individual
participant maps for each of the 20 components.
TC-GICA.Specifically, TC-GICA comprised five fundamental steps:

1. Each individual’s preprocessed data were first truncated to
the same number of time points (i.e., 165 EPI volumes).

2. A bootstrapping dataset was generated by randomly choos-
ing 18 individual datasets per center, resulting in 306 indi-
vidual functional datasets.

3. All 306 individual functional datasets were spatially aver-
aged in MNI152 standard space and then used to estimate
the mean covariance matrix.

4. The number of components was set at 20, and all individual
functional data were projected into a subspace spanned by
the first 20 eigenvectors of the mean covariance matrix,
resulting in reduced individual fMRI data (in a common
subspace).
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5. All 306 reduced individual datasets were temporally con-
catenated, reduced via principal component analysis to 20
dimensions, and fed into the probabilistic ICA algorithm
with a random initial value (12).

This procedure produced 20 group-level components for each
TC-GICA run. Finally, 500 (20 × 25) group-level components
were generated from the 25 TC-GICA runs.
Generation of component templates for dual regression (meta-ICA). To
provide more accurate and robust ICA component templates, we
carried out another low-dimensional (20 components) TC-GICA.
Here we concatenated the 500 components produced by the 25
TC-GICA runs as the input data of a single-session ICA in
MELODIC. The resultant maps were used as final component
templates for the dual regression procedure. Of note, this method
was selected as the primary approach over the alternative
approach described because it guarantees the spatial independ-
ence of the 20 components, whereas the alternative approach
does not.
Generation of component templates for dual regression model (alternative
approach).To emphasize the robustness of the findings of themeta-
ICA, here we describe an alternative approach that yields nearly
identical components to the meta-ICA. The findings of the two
approaches differed notably for only one of the 20 components,
for which the meta-ICA finding was more plausible. Given the
high degree of similarity between the two methods, we present
only the findings from the meta-ICA in the present work. In the
alternative approach, we used the hierarchical clustering algo-
rithm implemented in the ICASSO toolbox (9). ICASSO was
designed for validating the robustness of ICA with respect to
random initial values (of the ICA mixing matrix) and the ICA
cost function optimization search strategy. However, due to
limitations in computational resources (e.g., 32 GB of memory in
the present work), TC-GICA cannot be carried out on the full
datasets. Thus, we used the bootstrapping approach described
above with 25 ICA analyses, in which initial values and the
specific participants selected from each center varied from one
ICA analysis to the next. Here the 500 group-level components
(20 components per run × 25 runs) were sorted using hier-
archical clustering. The number of clusters (20) was selected to
match the number of components. The similarity between
components was measured by the combination of both spatial Rs
and temporal Rt correlations in Eq. (1) and the distance between
components as defined in Eq. (2) (13):

Sði; jÞ ¼ λ∗Rsði; jÞ þ ð1− λÞ∗Rtði; jÞ (1)

Dði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Sði; jÞ

p
; 1≤i; j≤500 (2)

Considering the spatial ICA, λ =0.8 was chosen in our clustering
procedure. Finally, the median value at each voxel for each of
the 20 clusters was calculated to determine the final component
templates for the dual regression procedure.
Individual component reconstruction via the dual regression model. To
reconstruct component maps for each participant, the recently
developed dual regression procedure (11, 14) was applied to each
of the 1,093 individual participants’ datasets. Specifically, in the
present work, dual regression consisted of two linear regressions
carried out independently for each of the 20 component maps
identified in temporal concatenation ICA. For each component
template, the first regression model used the template as a
spatial predictor for the participant’s 4D data, producing a set of
individual regression weights in the time domain (i.e., a time
series for each spatial map). Using this time series as a temporal
predictor for the 4D BOLD data, the second regression equation
estimated the individual regression weights in the spatial domain
(i.e., the participant-level individual spatial map). Both re-
gressions used the same data set used for the seed-based con-

nectivity approaches, that is, each participant’s 4D dataset after
removal of the nine nuisance covariates. Component time series
were demeaned in both regressions, but no variance normal-
ization was used. The dual regression procedure was carried out
for all 1,093 participants included across 24 centers, not just
those used for the generation of ICA-based templates. For each
component, these individual spatial maps were then used to
evaluate group-level statistics.
Amplitude of spontaneous low-frequency fluctuations. To examine the
potentially meaningful information contained within the ALFF,
two fast-Fourier transformation (FFT)-based indices, ALFF and
fALFF, were used to compute the amplitude of low-frequency
fluctuations in the frequencydomain (2, 3, 15).For each individual,
ALFF and fALFF were computed to identify those voxels with
significantly detectable low-frequency fluctuation amplitudes.
Specifically, at each voxel, ALFF is calculated as the sum of am-
plitudes within a specific low frequency range (0.01–0.1 Hz).
fALFF is the normalized ALFF, calculated by dividing the ALFF
value by the total sum of amplitudes across the entire frequency
range measured in a given time series. Voxelwise ALFF and
fALFF maps were calculated for each participant in native space,
and then transformed into the MNI152 standard brain space with
3-mm isotropic voxel size. Before statistical analyses, each in-
dividual ALFF or fALFF map was Z-transformed (i.e., by sub-
tracting the mean voxelwise ALFF or fALFF obtained for the
individual’s entire brain, and then dividing by the corresponding
SD) to improve its suitability for group-level parametric analyses.
The individual Z-transformed ALFF or fALFF maps were used in
subsequent group- and center-level analyses.
Unified group-level statistical model. For all three types of R-fMRI
measures (seed-based correlations, ICA, and ALFF/fALFF), a
unified general linear model frame was developed for center-level
statistical analyses. The unified statistical model is a one-way
ANOVA, treating centers as the between factor. F-contrasts were
used to measure the effect of centers. Overall group mean
contrasts across all centers were modeled as well. Specifically, a
one-factor 24-level ANOVA (factor: center; 1,093 participants),
with age and sex as covariates, was used to examine the effects of
age, sex, and center on the three R-fMRI measures. Multiple
comparisons were corrected at the cluster level using Gaussian
random field theory (min Z > 2.3; cluster significance: P < 0.05,
corrected).

SI Results
Center-Related Variability. The results presented in Fig. 1 show that
the effects ascribable to center can be either interpreted as negli-
gible, as indicated by the high between-center Kendall’sW (row 2),
or substantial, accounting for much of the variance (row 3). These
opposite interpretations are not mutually exclusive. The high be-
tween-center Kendall’sW indicates that the resting-state measures
(i.e., functional connectivity, fluctuation amplitude) obtained from
different centers have a high degree of similarity. Nevertheless,
systematic differences exist between centers, and these are easily
quantified by ANOVA. In Fig. S5 for each center, the mean func-
tional connectivity across 40 peak voxels derived from the center
effect map for the PCC seed is depicted. As the figure shows, there
are between-center differences in the height of the functional con-
nectivity values. Some centers have overall higher functional con-
nectivity values than others; these differences in the height of
functional connectivity values drive the significant between-center
effects. The variability in functional connectivity values could be
related to a number of factors (e.g., the specific scanner used,
scanner sequence, sample characteristics, specific instructions to
participants, degree of variability in participant wakefulness). Be-
cause there was no previous coordination among centers regarding
scanning parameters, each of these parameters could contribute to
across-center differences. Specific examination of these factors is
beyond the scopeof thepresentwork,butweanticipate that itwill be
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the focus of future studies. Fortunately, as demonstrated by our
analyses, these sources of variation did not preclude us from being
able to effectively pool data and carry out discovery-based analyses.

Effect of Sample Size on the Relationship Between RSFC and Age.We
investigated the effect of sample size on the strength of the corre-
lation betweenRSFCand age in two regions identified by our group
analyses. For this purpose, we randomly sampled participants from
the entire study sample using subgroups of 10–1,090 individuals (of
the total 1,093 participants), then calculated the correlation be-

tween age and connectivity strength for each subgroup. We re-
peated this procedure 10,000 times to optimize randomization.
Finally, we calculated the mean correlation and SD across the
10,000 iterations. As shown inFig. S6, the variability in the observed
correlation naturally decreased as a function of sample size, with a
tipping point observed when samples exceeded ∼100–200 partic-
ipants. This suggests that results obtained with sample sizes that
have been presumed to be sufficient (e.g., 50 participants) are likely
to lead to false-negative results for small effects.
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Fig. S1. Center-, age-, and sex-related variations detected in R-fMRI measures of functional connectivity using seed-based correlation analyses. The first
column depicts group-level functional connectivity maps for three representative “default mode” seeds (A) and three “task-positive” network seeds (B). The
seed ROIs are shown as white circles. The second column depicts voxels exhibiting significant effects of center, as detected by one-way ANOVA (across 24
centers, including 1,093 participants). Columns 3 and 4 depict voxels exhibiting age- and sex-related variations (modeled as covariates). Center, sex, and age
findings were corrected for multiple comparisons (Z > 2.3; P < 0.05, corrected). All supplementary cortical surface maps are arrayed as shown in Fig. 1, with
lateral views in upper rows, medial views in lower rows, left hemisphere on the left, and right hemisphere on the right. “Male” refers to significantly greater
connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers to significantly increasing connectivity with
increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age. “Pos”, positive functional connectivity; “neg”, negative
functional connectivity.
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Fig. S2. Center-, age-, and sex-related differences detected in R-fMRI measures of functional connectivity combining independent component and dual re-
gression analyses. The first column depicts group-level maps for 20 functional connectivity ICs. For each component, the second column depicts voxels ex-
hibiting significant effects of center, as detected by one-way ANOVA (across 24 centers, including 1,093 participants). Columns 3 and 4 depict voxels exhibiting
age- and sex-related variations. Center, age and sex findings were corrected for multiple comparisons (Z > 2.3; P < 0.05, corrected). “Male” refers to sig-
nificantly greater connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers to significantly increasing
connectivity with increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age. “Pos,” positive group effect: “neg,”
negative group effect.
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Fig. S3. IC templates used for dual regression analyses. Independent component maps resulting from the meta-ICA analysis shown on standard brain views (A)
and surface maps (B). Component maps were thresholded at P > 0.05 using spatial mixture modeling. Peak coordinates of each IC’s activity are displayed in the
lower right corner of each grid panel (MNI152 standard space).
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Fig. S4. Consistency of R-fMRI measures across centers: ICA combined with dual regression (A), and seed-based correlation (B). For each center, the vox-
elwise mean and coefficient of variation was calculated for each R-fMRI measure. The Kendall’s W concordance of the mean or coefficient of variation maps
between any two centers was calculated. The coefficient of variation is depicted above the diagonal, the mean below.
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Fig. S5. Functional connectivity values observed at peak locations of between-center differences. For each center we calculated the mean across a 3 mm
radius sphere centered at each of the 40 most significant voxels indexing the effect of center for the PCC seed ROI (Fig. 1, column 1, row 3). Connectivity values
indexed the functional connectivity between the 3 mm radius sphere and the PCC seed ROI. All centers included in the analyses are shown (n = 24). Although
the strength of functional connectivity values observed across centers clearly varies, the within-center variability is relatively low. This indicates that the
differences in functional connectivity strength among centers are relatively stable across the brain. A center that shows higher functional connectivity in one
area of the brain compared with another center most likely also shows higher functional connectivity in other areas of the brain.
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Fig. S6. Effect of sample size on the correlation between age and RSFC. Shown is the mean correlation ± 2 SD across 10,000 calculations of the correlation
between age and functional connectivity strength as a function of sample size. For each of the two regions illustrating the effect of age for the PCC seed ROI in
Fig. 2, we calculated the correlation between age and RSFC as a function of sample size. We randomly sampled subgroups, ranging in size from 10 to 1,090
participants, from the total of 1,093 participants. We then calculated the correlation between age and RSFC for each of the subgroups. This procedure was
iterated 10,000 times to optimize randomization. (A) Mean correlation ± 2 times the SD across 10,000 iterations for the region illustrated in Fig. 2 that showed
a positive correlation between age and RSFC with the PCC seed. (B) Mean correlation ± 2 times the SD across the 10,000 iterations for the region illustrated in
Fig. 2 that showed a negative correlation between age and RSFC with the PCC seed. In each figure, the actually observed correlation is indicated on the y-axis in
a smaller font.

Fig. S7. Center-, age-, and sex-related variations in R-fMRI amplitude measures. The first column depicts group-level maps for voxelwise measures of ALFF
(Upper) and fALFF (Lower). Before group-level analyses, each participant’s ALFF/fALFF map is Z-transformed, such that positive voxels reflect greater low-
frequency fluctuation amplitudes than baseline (whole brain mean) and negative voxels reflect low-frequency fluctuation amplitudes below baseline. The
second column depicts voxels exhibiting significant effects of center, as detected by one-way ANOVA (across 24 centers, including 1,093 participants). Columns
3 and 4 depict voxels exhibiting age- and sex-related variations. Center, age, and sex findings were corrected for multiple comparisons (Z > 2.3; P < 0.05,
corrected). “Male” refers to significantly greater connectivity in males; similarly, “female” refers to significantly greater connectivity in females. “Older” refers
to significantly increasing connectivity with increasing age, whereas “younger” refers to significantly increasing connectivity with decreasing age.
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Table S1. Data currently included in the 1,000 Functional Connectomes Project

Center PI N n*
Age

years, mean (SD)
Age range

years
Male sex

%

1. Baltimore, MD J. J. Pekar/S. H. Mostofsky 23 29.26 (5.46) 20–40 35%
2. Bangor, UK S. Colcombe 20 23.4 (5.32) 19–38 100%
3. Beijing, China YF. Zang 198 193 21.16 (1.83) 18–26 39%
4. Beijing, China XC. Weng 28 27 20.41 (1.39) 18–24 27%
5. Berlin, Germany D. Margulies 26 29.77 (5.21) 23–44 50%
6. Bethesda, MD M. Ernst 18 33.00 (13.31) 18–53 22%
7. Cambridge, MA R. L. Buckner 198 21.03 (2.31) 18–30 38%
8. Cambridge, MA S. Whitfield-Gabrieli 39 35 25.09 (3.53) 20–32 49%
9. Cleveland, OH M. J. Lowe 31 43.55 (11.14) 24–60 35%
10. Dallas, TX B. Rypma 24 42.63 (20.07) 20–71 50%
11. Hvidovre, Denmark A.-M. Dogonowski/K. Madsen 28 41.75 (10.7) 21–68 50%
12. Leiden, The Netherlands S. A. R. B. Rombouts 31 22.19 (2.57) 18–28 74%
13. Leipzig, Germany A. Villringer 37 26.22 (5) 20–42 43%
14. Magdeburg, Germany M. Walter 29 28 30.43 (5.71) 22–43 93%
15. Milwaukee, WI SJ. Li 64 53.59 (5.79) 44–65 64%
16. New Haven, CT M. Hampson 19 18 31.61 (10.27) 18–48 56%
17. New York, NY

†

M. Milham/F. X. Castellanos 59 32.78 (8.83) 20–49 68%
18. New York, NY

†

M. Milham/F. X. Castellanos 20 29.75 (9.94) 18–46 40%
19. Newark, NJ B. B. Biswal 19 24.11 (3.91) 21–39 47%
20. Orangeburg, NY

‡

M. J. Hoptman 21 20 40.65 (11.03) 20–55 75%
21. Oulu, Finland

‡

V. J. Kiviniemi/J Veijola 103 21.52 (0.57) 20–23 36%
22. Oxford, UK S. M. Smith/C. Mackay 22 29 (3.79) 20–35 55%
23. Queensland, Australia K. McMahon 19 18 26.28 (3.71) 20–34 61%
24. St. Louis, MO B. L. Schlaggar/S. E. Petersen 31 25.1 (2.31) 21–29 45%

Data from the following centers will be included in the 1000 Functional Connectomes data release but are not included in the
current analyses: Ann Arbor, MI: C. S. Monk/R. D. Seidler/S. J. Peltier; Atlanta, GA: H. S. Mayberg; Berlin, Germany: S. Schmidt; Durham,
NC: D. J. Madden; Durham, NC: L. Wang; London, Ontario, Canada: P. Williamson; Munich, Germany, C. Sorg/V. Riedl; Nanjing, China:
GJ. Teng/HY. Zhang; Pittsburgh, PA: G.J. Siegle; Portland, OR: D. Fair/B. J. Nagel; Taipei, Taiwan: CP. Lin; Vienna, Austria: C. Wind-
ischberger.
*Actual number of participants included in the analysis, if different from N.
†Data from the same magnet, different sequence.
‡1.5-T magnet.

Funding sources for each contributor (numbered by site): 1: R01 MH085328, R01 MH078160, HD-24061 (Intellectual Disabilities
Research Center), M01 RR00052 (Johns Hopkins General Clinical Research Center) and P41 RR15241 (National Center for Research
Resources); 3: NSFC (No.30621130074); 4: Chinese Ministry of Science and Technology (No. 2007CB512300); 5: Berlin School of Mind and
Brain (DFG); 7: Howard Hughes Medical Institute; 9: National Multiple Sclerosis Society; 13: Competence Net Stroke (BMBF) and Berlin
School of Mind and Brain (DFG); 17-18: NIDA (RO1DA016979), NIMH (RO1MH083246), Stavros Niarchos Foundation; 19: NINDS
(RO1NS049176); 20: R01 MH064783, R21 MH084031, R01 MH0663674; 21: Academy of Finland (Grant codes 124257, 212181,
214273); 23: Australian Research Council (ARC) Discovery grant (DP0452264); 24: NIH NS053425; Atlanta, G.A.: H.S. Mayberg: URC
Grant, Emory University; Durham, NC: D.J. Madden: NIH/NIA R01 AG011622; Durham, NC: L. Wang: Paul B. Beeson Career Develop-
mental Awards (K23-AG028982); Portland, OR: D. Fair/B. Nagel: Oregon Clinical and Translational Research Institute, Medical Research
Foundation, UNCF-Merck, Ford Foundation, Dana Foundation; Taipei, Taiwan: C-P. Lin: National Health Research Institute grant (NHRI-
EX98-9813EC), Taiwan; Vienna, Austria: C. Windischberger: OeNB-P11468 and OeNB-P12982.
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Recent neuroimaging studies have revealed a persistent architecture of intrinsic connectivity networks (ICNs)
in the signal of functional magnetic resonance imaging (fMRI) of humans and other species. ICNs are
characterized by coherent ongoing activity between distributed brain regions during rest, in the absence of
externally oriented behavior. While these networks strongly reflect anatomical connections, the relevance of
ICN activity for human behavior remains unclear. Here, we investigated whether intrinsic brain activity adapts
to repeated pain and encodes an individual's experience. Healthy subjects received a short episode of heat
pain on 11 consecutive days. Across this period, subjects either habituated or sensitized to the painful
stimulation. This adaptation was reflected in plasticity of a sensorimotor ICN (SMN) comprising pain related
brain regions: coherent intrinsic activity of the somatosensory cortex retrospectively mirrored pain
perception; on day 11, intrinsic activity of the prefrontal cortex was additionally synchronized with the
SMN and predicted whether an individual would experience more or less pain during upcoming stimulation.
Other ICNs of the intrinsic architecture remained unchanged. Due to the ubiquitous occurrence of ICNs in
several species, we suggest intrinsic brain activity as an integrative mechanism reflecting accumulated
experiences.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Traditionally, functional magnetic resonance imaging (fMRI)
studies have investigated changes of brain activity in response to
sensory, motor or cognitive tasks that subjects performed in the MR
scanner. Only recently, colleagues have revealed networks of
distributed brain regions that are characterized by coherent ongoing
activity in subjects at rest, in the absence of any observable behavior
(Biswal et al., 1995; Greicius et al., 2003; Laufs et al., 2003;
Damoiseaux et al., 2006; Fox and Raichle, 2007). These resting-state
or intrinsic connectivity networks (ICNs) strongly resemble previ-
ously described task-activation patterns (Smith et al., 2009). Howev-
er, the relevance of ICNs for human behavior remains a controversial
issue.

ICNs transcend levels of consciousness and consistently occur in
humans, monkeys and rats (Lu et al., 2007; Vincent et al., 2007;
Greicius et al., 2008; Larson-Prior et al., 2009; Biswal et al., 2010). The
ubiquity and robustness of the intrinsic functional architecture
strongly supports the notion of ICNs reflecting underlying structural
connectivity (Fox and Raichle, 2007; Hagmann et al., 2008; Honey et
al., 2009). But there have also been reports of immediate variations in
the coherence of ICNs associated with task performance of humans
(Fox et al., 2007; Seeley et al., 2007; Albert et al., 2009; Lewis et al.,
2009). We therefore hypothesize that at least portions of ICN activity
continuously adapt with ongoing experiences and that intrinsic brain
activity reflects past and anticipates future experiences.

In this study, we focused on repeated pain experiences and their
relation to ICN activity before and after pain. More concretely, we asked
whether recurring pain modulates functional connectivity (FC) within
pain-relevant ICNs in a way that reflects recent pain and enables the
prediction of future pain experiences. FC is a measure to quantify the
strength of covarying activity between distributed voxels or brain
regions. We derived ICNs by applying Independent Component
Analysis (ICA) to resting state fMRI (rs-fMRI) data. Acute pain is
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consistently associated with neuronal activity in a distinct network of
subcortical and cortical brain regions (Apkarian et al., 2005; Tracey and
Mantyh, 2007). Among these, somatosensory cortices (SSC) process
sensory aspects of pain, while the ventromedial prefrontal cortex
(vmPFC) has been associated with its modulation (Koyama et al., 2005;
Seymour et al., 2005). Despite our knowledge about activating these
brain regions by acute pain, less is known about their role in encoding
past and future pain. Yet, understanding how the brain processes pain
beyond an immediate experience might help to explain the develop-
ment of chronic pain conditions.

Materials and methods

Participants

Thirteen healthy male volunteers without any history of neuro-
logical, psychiatric or pain disease participated in this study. All
participants received detailed information about the experimental
procedures, were free to withdraw from the study at any time, and
gave written informed consent. The Ethics Committee of the
university hospital “Klinikum Rechts der Isar” (Technische Universi-
taet Muenchen) approved the protocols of the study. The data of an
additional group of 16 healthy subjects that were scanned on the
same scanner twice within a 14-day interval while participating in
another study of our department were re-examined as a control group
(Sorg et al., 2007).

Experimental design

Volunteers received a daily series of 8 painful and 8 non-painful
alternating heat stimuli (40 s each, followed by 20 s baseline) on 11
consecutive working days. On the first and last day of the study we
acquired resting-state functional MRI (rs-fMRI) data during 6 min
before (PREpain) and after (POSTpain) painful stimulation. At the
beginning of each fMRI session we collected an anxiety score (5-point
Likert scale) from each subject in order to control for an overall level
of arousal or anxiety to the study. The thermal stimulation protocol
has previously been implemented in our group and described in detail
(Valet et al., 2004). On the first day the pain threshold was assessed
for each subject individually. Painful stimuli (1 °C above the pain
threshold) were then applied via a thermode to the inner side of the
right forearm in an undulating way and to one of three possible
positions on the forearm to prevent skin sensitization. For each
subject the stimulation temperature was kept constant during the
11 days of painful stimulation and the absolute temperature only
varied slightly within the group (median: 44.0±1 °C). After the
stimulation period the volunteers rated the perceived pain intensity
(PAIN) on an 11-point numerical rating scale (NRS). Differences in
PAIN-ratings between days 1 and 11 were tested nonparametrically
using the Wilcoxon signed-rank test (pb0.05).

Imaging data

We collected functional neuroimaging data on a 1.5 Tesla Siemens
Symphony magnetic resonance system (Erlangen, Germany) using a
gradient-echo EPI sequence (TE=50 ms, TR=3000 ms, flip
angle=90°, FoV=230 mm2, matrix=64 x 64, 28 slices, slice
thickness=5 mm). Subjects were instructed to think of nothing
particular and keep their eyes closed. Each rs-fMRI run comprised 117
functional volumes (~ 6 min) of which the first 3 volumes were
discarded due to T1 saturation effects. Structural MRI data
(TE=3.93 ms, TR=1500 ms, TI=760 ms, flip angle=5°, FoV=256
mm2, matrix=256×256, 160 slices, voxel size=1×1×1 mm3) were
acquired at the end of each session.

Processing of imaging data

Data preprocessing and ICA were performed as previously applied
to rs-fMRI data in our group (Sorg et al., 2007).

Preprocessing
Functional MRI data were pre-processed using the SPM software

package (SPM5, Wellcome Department of Cognitive Neurology,
London) and in-house code for Matlab 7.1 (MathWorks, Natick,
MA). Data were motion corrected, spatially normalized into the
stereotactic space of the Montreal Neurological Institute (MNI) and
spatially smoothed with an 8x8x8 mm Gaussian kernel. Before the
volumeswere entered into the ICA analysis we applied a voxel-wise z-
transformation on the time-course data yijk(t) by subtracting the
meanbyijkNand dividing by the standard deviation σijk: ŷijk(t)=(yijk
(t)− byijkN) /σijk (t being the time, indices i, j, k represent the three
directions in space). The sensitivity of the multivariate ICA algorithm
for correlation of variance between voxels, i.e. functional connectivity,
was thereby rendered independent of the original BOLD signal
magnitude across subjects.

ICA
We used the Group ICA toolbox (GIFT 1.3d; icatb.sourceforge.net)

established for independent component analyses of fMRI data
(Calhoun et al., 2001, 2009, 2004). The toolbox performed the analysis
in four stages on a concatenated data set comprising the 4 rs-fMRI
runs of all subjects: first the GIFT dimensionality tool estimated 18
independent components (IC) based upon the MDL criteria (Li et al.,
2007). The aggregated data set was then reduced using principal
component analysis (PCA) before the Infomax ICA algorithm (Bell and
Sejnowski, 1995) calculated the ICs. For each individual GIFT finally
reconstructed independent spatial maps of each rs-fMRI run (Calhoun
et al., 2001) converted to z-scores. Hence individual maps are
normalized with respect to variance in the component timecourse
and the between-subject analyses are then performed on the maps of
spatial weights (REF calhoun 2004). From the group spatial maps, we
selected functionally relevant ICNs in a fully automated manner. On
the basis of previous descriptions of brain regions covered by each ICN
(Brodmann areas in Damoiseaux et al., 2008; Sorg et al., 2007), we
created spatial templates representing each ICN using the marsbar
toolbox (http://marsbar.sourceforge.net/). We then calculated the
spatial regression of these templates against the ICA-derived maps as
implemented in the GIFT toolbox and selected the best-fit ICNs from
our analysis. From this set of ICNs we selected those networks that
covered at least one brain region previously described in task-
activation studies of pain processing in humans (Bingel et al., 2007;
Gundel et al., 2008): primary and secondary somatosensory cortices,
medial and lateral prefrontal cortices, insula, cingulate cortex and
thalamus; see Table S2 for peak coordinates. Before we entered the
individual's spatial maps into second-level statistics we reintegrated
the initially calculated scaling factor σijk into the data by voxel-wise
multiplication in order to preserve each individual's profile of
variance magnitude while leaving the normalized timecourse com-
ponent unchanged (Sorg et al., 2007).

Second-level statistics
Group analyses were performed on the back-reconstructed spatial

maps of all 13 subjects using SPM5 (Wellcome Trust Centre for
Neuroimaging, UCL, London). We first evaluated the consistency of
each ICN across sessions by calculating a repeated-measures ANOVA
on the spatial maps of all 4 runs that we projected on a mean
anatomical image of all subjects (pb0.05, FDR-corrected)(see Fig. S1).
We then tested the five ICNs comprising pain related brain regions
(maps B, C, F, G, J/K of Fig. S1) for plastic changes in response to the
11 days of repeated pain and entered the four spatial maps of each
subject into within-subject ANOVAs (factors “subject,”“session PRE/
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POST,”“day 1/11”). The resulting SPMs were masked with the
average effect of conditions and FDR-corrected on the voxel level
(pb0.05).

Regression analysis of behavioral and network scores

For the regression analyses of behavioral and functional imaging
data we used each individual's PAIN rating and FC scores representing
a brain region's participation in an ICN. For each individual we
calculated the FC-score as the mean z-score of all voxels within a
regions-of-interest (ROI) from the ICA-derived spatial map. The
coordinates for a combined SSC/PPC and a vmPFC ROI (r=10 mm)
were taken from two independent fMRI studies on pain processing
(Bingel et al., 2007; Gundel et al., 2008) listed in Table S2. In case
multiple clusters have been reported for a region, those coordinates
were chosen that maximally covered grey matter in our dataset as
validated with the grey matter segmentation masks from SPM5. On
day 11, behavioral and neuroimaging data strongly depend on the
subject's initial experience of the noxious stimulation. All scores on
day 11 are therefore referenced to the status of day 1 and calculated as

ΔNRS (NRSday11−NRSday1) for PAIN and Δz-score (zday11−zday1) for
FC. The correlations were tested for significance using nonparametric
Spearman's rho measure (pb0.05) and FDR-corrected for the
8 correlations tested.

Results

Healthy volunteers received a short episode of noxious heat
stimulation to their right forearm and subsequently rated the
perceived pain intensity. We repeated this procedure on 11
consecutive days and recorded 6 min of rs-fMRI before (PREpain)
and after (POSTpain) painful stimulation on the initial and last day of
the study (Fig. 1A).

Long-term adaptations of behavior and functional connectivity to
repeated pain

We observed long-term adaptations to 11 days of experimentally
induced pain both in behavioral and functional imaging data.
Following each stimulation period, subjects rated the level of

Fig. 1. Study design and brain network analysis. (A) Healthy volunteers received a short episode of noxious heat stimuli to their right forearm on 11 consecutive days and
subsequently rated the perceived pain intensity (PAIN) on a numerical rating scale (0–10). Before (PREpain) and after (POSTpain) stimulation on the initial and last day of the study,
wemeasured intrinsic brain activity in subjects at rest with resting-state functional magnetic resonance imaging (rs-fMRI). (B) Intrinsic connectivity networks (ICNs) covering brain
regions known to process pain. We extracted ICNs representing the functional connectivity (FC) between brain regions with independent component analysis (ICA). We then tested
ICNs including brain regions known to process pain for short-term (within day) and long-term (across 11 days) changes in response to the repeated pain. *Only the sensorimotor ICN
(SMN) revealed changes of coherent intrinsic activity during rest in response to repeated pain (see Fig. 2).

208 V. Riedl et al. / NeuroImage 57 (2011) 206–213



perceived pain intensity. Fig. 2A shows the exponential decay of
experienced pain over 11 days (averaged data of all 13 volunteers)
resulting in significantly lower PAIN ratings between days 1 and 11
(p=0.012), a finding supported by previous reports (Bingel et al.,
2007). From the imaging data, we identified five ICNs covering brain
regions known for pain processing (Fig. 1B and Table S2) by applying
network-sensitive group-ICA to a concatenated data set of the 4 rs-
fMRI runs of all subjects (Fig. S1) (Albert et al., 2009; Calhoun et al.,
2009; Beckmann et al., 2005; Damoiseaux et al., 2006; Greicius, 2008;
Sorg et al., 2007). We then tested these ICNs in SPM for FC changes in
response to the painful stimulation. The within-subject ANOVA
revealed long-term plasticity in two pain related brain regions of
the sensorimotor ICN (SMN) (Fig. 2B, pb0.05 FDR-corrected): after
11 days of painful stimulation, coherent intrinsic activity significantly
increased between bilateral somatosensory (SSC)/posterior parietal
(PPC) cortices. Additionally, the ventromedial prefrontal cortex
(vmPFC) was recruited into the SMN by coherent activity (Fig. 2B, C
right). Initially, the SMN encompasses somatosensory, posterior
parietal and motor cortices (Fig. 2C left). Tests for “within-day” and
interaction effects in the ANOVA revealed no significance in the SPM
at pb0.01 uncorrected at the voxel level (kN10 voxel/mm3).

The vmPFC has been described in several different ICNs of resting
state fMRI analyses (Baliki et al., 2008; Damoiseaux et al., 2006;
Dhond et al., 2008; Seeley et al., 2007; Smith et al., 2009; Sorg et al.,
2007). It is therefore crucial to distinguish an additional recruitment
of a brain region into an ICN from a simple shift of connectivity for this
brain region from one ICN into another. The latter can be ruled out
from our data, as we found no significant short- and long-term
adaptations (pb0.01 uncorrected at the voxel level; kN10 voxel/mm3)
in other ICNs that covered the vmPFC. Therefore, FC changes after
11 days occurred selectively in the SMN.

To prove the consistency of intrinsic networks and to exclude any
artificial fMRI scanning drifts or habituation effects of repetitive fMRI
scanning of the SMN across several days we chose rs-fMRI data from a
control group of healthy subjects (n=16). This control group was
scanned twice with identical scanning parameters on the same
scanner in a 2-week interval while participating in another study
(Sorg et al., 2007). The SMN was identified and analyzed as described
in the methods section. We found no changes in the SMN of this
control group (pb0.01 uncorrected) which demonstrates the consis-
tency and robustness of intrinsic networks across days and which is in
accordance with other test–retest studies (Albert et al., 2010; Biswal

Fig. 2. Long-term adaptations of behavior and intrinsic SMN activity to repeated pain. (A) Mean PAIN ratings across 11 days of noxious stimulation with significantly lower PAIN
between days 1 and 11 (p=0.012, two-tailed Wilcoxon test, n=13). Error bars indicate standard error of mean. (B) Network plasticity in the SMN after 11 days of noxious
stimulation. The statistical parametric map (SPM) shows brain regions with increased FC in the SMN at the group level rendered on a mean anatomical image of all subjects (pb0.05,
FDR-corrected, zmax=4.20). The analysis revealed significantly higher FC in bilateral somatosensory (SSC), left posterior parietal (PPC) and ventromedial prefrontal (vmPFC)
cortices. Peak-voxel coordinates in MNI space [x y z]: SSC left/right (BA 2,3) [−21−30 66]/[36–30 57], [15–45 66], PCC left (BA 5) [−18−60 66], [−27−51 69], vmPFC (BA 11/12)
[0 42–18]. BA, Brodmann area. (C) The SMN on day 1 (left) and day 11 (right). Conjunction maps are overlaid on a mean anatomical image of all subjects (pb0.05, FDR-corrected,
zmax=7.90). Additionally, average FC-scores of the two SPM clusters (red: medial and lateral parts of SSC/PPC, green: vmPFC cluster) are plotted for illustration purposes. The FC-
score encodes the participation of a brain region within an ICN and was calculated as the mean z-score of all voxels within this cluster. Error bars indicate standard error of mean.
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et al., 2010; Damoiseaux et al., 2006; Meindl et al., 2010; Shehzad et
al., 2009). Therefore, we attribute the long-term FC changes in the
SMN of our study group to the effects of repetitive painful stimulation.

Activity of distinct brain regions in the intrinsic SMN reflects past and
future pain

Brain imaging studies have found increased electrical or BOLD
signal activity in primary sensory cortices immediately following
tactile or painful stimulation (Albanese et al., 2007; Ohara et al.,
2006). We hypothesized that a short episode of pain might also affect
the intrinsic FC of the somatosensory system. We therefore tested
whether the level of pain that a subject experienced correlates with
the coherent intrinsic activity of the SSC/PPC region during POSTpain
rest. We extracted the FC of the SSC/PPC by calculating the mean z-
score of all voxels within a region of interest (ROI) that we
independently derived from task-fMRI studies (Table S2). The
regression analysis between PAIN and POSTpain FC (day 1) (Fig. 3A)
of the first day shows that higher pain perception is associated with
increased FC in SSC/PPCminutes after stimulation (r=0.57, p=0.02).
In contrast, we found no correlation between PAIN and FC during rest
prior to painful stimulation (r=−0.03, p=0.80). This means that a
recent painful experience substantially modulates coherent activity in
somatosensory cortices of the SMN. Notably, this effect was also
present in the resting state data from day 11. The significant
correlation between PAIN and POSTpain FC (day 11) in SSC/PPC
(r=0.52, p=0.03) supports the notion of retrospective coding in the
SMN also to repeatedly processed noxious stimuli.

We then investigated behavioral correlates for the intrinsic
coupling of vmPFC into the SMN that we observed after 11 days of
stimulation. fMRI data acquired during pain processing have revealed
a modulating role of vmPFC in pain perception (Apkarian et al., 2005;
Bingel et al., 2007; Ohara et al., 2006; Seymour et al., 2005). Hence the
vmPFC might already fulfill an anticipatory role in the SMN prior to
the re-occurrence of previously experienced and learned perceptions.
We extracted the vmPFC's FC-score from the ICA spatial maps prior to
stimulation and correlated it with each subject's PAIN rating. As our
subjects adapted from a broad range of initial PAIN ratings across the
study period, we entered difference values (day 11−day 1) for the
data from the last day of the study. After 11 days of repeated exposure,
a significant correlation between PREpain FC of vmPFC and PAIN
exists (r=0.65 p=0.015) (Fig. 3B, top). This plot also revealed that
three subjects sensitized with repeated stimulation resulting in the
strongest increase in FC of the vmPFC with the SMN.

To further substantiate the specificity of adapted vmPFC connectiv-
ity for upcoming pain, we also evaluated data from the initial day of the
study as well as the somatosensory system of the SMN. PAIN ratings
were indeed exclusively related to vmPFC activity on day 11. We found
neither correlation between PAIN and PREpain FC of the vmPFC on the
initial day of the study (r=0.36 p=0.23), nor with PREpain FC of the
SSC/PPC region on day 11 (r=−0.003, p=0.99). Additionally, we
aimed at controlling for a potential “session effect” that might account
for the increased FC in the vmPFC. We therefore entered the anxiety
score that we collected at the beginning of each fMRI session as an
additional parameter into a partial correlation analysis of PREpain FC in
vmPFC and PAIN rating. The analysis revealed that the correlation
between adapted PAIN and intrinsic FC of the vmPFC before stimulation
remains significant, even when controlling for the habituation
parameter of anxiety (r=0.60 p=0.043).

Finally, we tested intra-network dependencies between long-term
changes in vmPFC and the somatosensory system. We correlated the
FC-score of vmPFC before painful stimulation with the FC-score of SSC/
PPC after stimulation. Fig. 3B (bottom) shows the significant correlation
between PREpain FC in vmPFC and POSTpain FC in SSC/PPC (r=0.70,
p=0.007). Importantly, autocorrelation effects between regions and
scanning sessions were ruled out (pN0.40). This means that the extent

of POSTpain encoding in the somatosensory system adapts with the
level of PREpain activity in the vmPFC within the same ICN.

Discussion

In this study, we found that coherent ongoing activity between
pain processing brain regions in the resting state changes with
repeatedly experienced pain. Within the SMN, FC of the somatosen-
sory system reflected retrospective coding of recent pain, while
activity in the vmPFC anticipated forthcoming pain of a repeatedly
experienced episode.

Repeated pain leads to increased coherent activity of pain regions in the
resting state

After 11 days of pain sensation, bilateral somatosensory cortices
exhibited increased intrinsic brain activity within the SMN. Addition-
ally, vmPFCwas recruited into the SMN on day 11. The FC of remaining
brain regions in this and four other ICNs did not change. Notably, the
two brain regions that adapted to repeated pain play a fundamental
role in the processing of acute pain (Apkarian et al., 2005; Tracey and
Mantyh, 2007). While somatosensory cortices process sensory
discriminatory information of a pain sensation, the vmPFC has been
ascribed a modulatory role in pain perception (Ploghaus et al., 2003;
Apkarian et al., 2005; Bingel et al., 2007; Seymour et al., 2005). Hence,
our data show that repeated pain selectively alters intrinsic
connectivity between brain regions initially involved in processing
acute pain sensations.

Our data suggest that pain processing is not restricted to the
immediate experience but continues during the resting state. While
no study so far revealed long-term dynamics of ICNs in response to
pain, two recent studies demonstrated an immediate interaction of
pain with ICNs. Acupuncture modulates connectivity between pain
regions in the default mode and sensorimotor ICN during the minutes
after treatment (Dhond et al., 2008). Baliki et al. found that task-
related deactivations of the DMN were diminished in patients with
chronic back pain, especially in the vmPFC (Baliki et al., 2008). It is
important to note that the ensemble of brain regions processing acute
pain does not form a single pain ICN during rest. These brain areas are
rather synchronized with various ICNs, such as the sensorimotor,
default mode or salience network (Fig. 1B). In our study, only the
sensorimotor ICN showed functional plasticity in response to repeated
pain with increased coherent activity between somatosensory regions
and an additionally recruited vmPFC. This implies that ICNs do not
form a rigid architecture but adapt with continuous experiences. In
the following, we will discuss a potential role of the two SMN
subsystems for distinctive coding of past and future aspects of
repeated pain.

Activity in distinct parts of the SMN support learning and anticipation of
pain

The resting-state connectivity of the SMN increased following the
intervention (Fig. 3A). Before stimulation, however, FC in these
regions did not indicate any behavioral relevance. Our finding is in
accordance with electrophysiological data indicating that short-term
memory encoding of incoming sensory information (Pasternak and
Greenlee, 2005), and specifically of pain (Albanese et al., 2007; Ohara
et al., 2006), involves primary sensory brain regions. Furthermore,
learning related plasticity of the intrinsic functional architecture has
recently been shown for the visual and motor system (Albert et al.,
2009; Lewis et al., 2009). Here, we show that intrinsic brain activity in
a subsystem of the SMN retrospectively encodes an individual pain
experience. Moreover, we found that behavioral adaptations to the
same sensation (pain rating on day 11) are also reflected in adapted
FC of the somatosensory system. Together, these studies and our data
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Fig. 3. Distinct coding of learning and anticipation of pain in the SMN. (A) During the POSTpain resting state, FC in SSC/PPC correlates with the individual PAIN rating (lower graph: r=0.57, p=0.02, n=13), while no correlation was found
during PREpain resting state (upper graph: r=−0.03, p=0.80, n=13). (B) After 11 days of pain, the change in resting state FC in the vmPFC before stimulation already predicts the change in PAIN rating and in FC of the SSC/PPC. Upper graph:
FC in PREpain vmPFC correlates with subsequent PAIN ratings (r=0.65 p=0.015, n=13). Lower graph: FC in PREpain vmPFC correlates with POSTpain FC in the somatosensory system (r=0.70, p=0.007, n=13).
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suggest that intrinsic brain activity is involved in memory coding of
past experiences in various sensory modalities and continuously
adapts with learning.

Intrinsic brain activity in the vmPFC predicted subjective pain
intensity of a noxious stimulationminutes before the actual sensation.
Importantly, predictive coding only evolved after subjects had
repeatedly experienced, or learned, this particular situation. While
most subjects habituated, three subjects rated the identical stimula-
tion as being more painful than on the first day of the study. The
sensitization of these individuals was predicted by the strongest
coupling between vmPFC and the somatosensory system within the
SMN. However, the prefrontal cortex is a heterogeneous brain region
subserving various cognitive and regulatory functions. Therefore,
further data are needed to concretize the cognitive processes
underlying the “anticipatory coding” after repeated experiences
suggested here. While we already corrected for several experimental
parameters and anxiety as a potential confounding factor, a mixture of
bodily and cognitive processes might account for the effect observed
in the vmPFC. A limitation of this study is that we could not compare
subjects perceiving repeated pain to subjects perceiving a different
sensory sensation. Still, the circumscribed long-term effects in
somatosensory and medial prefrontal regions fit well with the
literature on brain activations during repeated acute pain and during
chronic pain conditions (see following paragraph).

“Chronic pain is a state of continuous learning” (Apkarian et al.,
2009). The anticipatory role we observed in vmPFC during the resting
state might account for this learning effect. The literature on pain
processing points to opposite brain activity in prefrontal regions
between healthy subjects and patients suffering from chronic pain
(Apkarian et al., 2005; Baliki et al., 2006; Bingel et al., 2007; Gundel et
al., 2008). Healthy subjects that habituate to repeated pain show
decreased activation in mPFC during pain processing (Bingel et al.,
2007). In chronic pain patients, however, mPFC is the only region
within the pain network being more strongly involved in pain
processing as compared to normal subjects (Apkarian et al., 2005;
Baliki et al., 2006). Drawing from these observations in pain activation
studies, we suggest that intrinsic brain activity in the vmPFC
anticipates upcoming pain on the basis of previous experiences and
might ultimately indicate if an individual tends to pathological pain
sensitization.

Two layers of processing in the intrinsic functional architecture of ICNs

Our finding of a dynamic intrinsic architecture across several days
integrates two layers of processing currently discussed for ICNs (Fox
and Raichle, 2007). On the one hand, immediate changes in the
coherence of spontaneous activity are related to fluctuations in
cognitive functions (Kelly et al., 2008; Mason et al., 2007; Seeley et al.,
2007) and motor behavior (Fox et al., 2007, 2006). This suggests a
volatile layer of intrinsic brain fluctuations influencing behavior in the
range of seconds. On the other hand, intrinsic brain activity forms
highly consistent patterns of synchronized brain regions in humans
(Biswal et al., 2010; Smith et al., 2009), various species (Lu et al., 2007;
Vincent et al., 2007) and even reduced states of vigilance (Boly et al.,
2008; Horovitz et al., 2009). The intrinsic functional architecture
might therefore reflect a rather robust layer of anatomical connections
(Fox and Raichle, 2007; Vincent et al., 2007; Hagmann et al., 2008).
We suggest that coherent intrinsic activity stabilizes networks of
brain regions that are commonly activated together across the life
span but continuously adapts to interactions with the environment to
prepare the organism for what may happen. The intrinsic brain state
might therefore have more impact on human behavior than does the
brain's immediate response to an event (Fox and Raichle, 2007).

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.04.011.
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Brain region Peak coordinates [x,y,z] in MNI space. Left / Right 

Pain processing brain regions from a previous task-fMRI study of our group (Gundel et al., 2008) 
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Posterior parietal cortex (PPC) -57, -48, 51 / 45, -48, 30 
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Anterior cingulate cortex -6, -21, 30 / 9, -18, 33 
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Brain regions from a task-activation study on habituation to repeated pain (Bingel et al., 2007) 
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Studying cognitive processes underlying synesthesia, a condition in which stimulation of one sensory modality automatically leads to
abnormal additional sensory perception, allows insights into the neural mechanisms of normal and abnormal cross-modal sensory
processing.

Consistent with the notion that synesthesia results from hyperconnectivity, functional connectivity analysis (adopting independent
component analysis and seed-based correlation analysis) of resting-state functional magnetic resonance imaging data of 12 grapheme–
color synesthetes and 12 nonsynesthetic control subjects revealed, in addition to increased intranetwork connectivity, both a global and
a specific (medial and lateral visual networks to a right frontoparietal network) increase of intrinsic internetwork connectivity in
grapheme– color synesthesia. Moreover, this increased intrinsic network connectivity reflected the strength of synesthetic experiences.
These findings constitute the first direct evidence of increased functional network connectivity in synesthesia.

In addition to this significant contribution to the understanding of the neural mechanisms of synesthesia, our results have important
general implications. In combination with data derived from clinical populations, our data strongly suggest that altered differences in
intrinsic network connectivity are directly related to the phenomenology of human experiences.

Introduction
Numbers or letters evoke additional color perceptions in graph-
eme– color synesthesia, one of the most common forms of syn-
esthesia. Although to date the underlying neural mechanisms
remain elusive, it has often been hypothesized that the concom-
itant perception of a sensation not inherent to the stimulus is
caused by an increased connectivity (or hyperconnectivity) be-
tween the relevant brain regions (Hubbard and Ramachandran,
2005). During synesthetic experience, neural activity increases in
occipital and temporal brain regions involved in grapheme and
color processing, but also in parietal and frontal areas involved in
binding processes (Weiss et al., 2001, 2005; Nunn et al., 2002;
Hubbard and Ramachandran, 2005; Hubbard et al., 2005). In
addition to these findings from functional activation studies,

morphometric data revealed structural changes in similar brain
regions (Rouw and Scholte, 2007, 2010; Jäncke et al., 2009; Weiss
and Fink, 2009; Hänggi et al., 2011). These morphometric
changes suggest altered connectivity in brain networks of pri-
mary sensory and higher cognitive integration areas already in
the resting state, i.e., when no synesthesia-inducing stimulus is
present. However, the hypothesized hyperconnectivity in synes-
thesia has so far been mainly explored at the structural level. For
example, a recent diffusion tensor imaging study revealed region-
ally increased structural connectivity in inferior temporal, pari-
etal, and frontal cortices of grapheme– color synesthetes (Rouw
and Scholte, 2007).

In this study, we tested whether similar differences also occur
in the functional network architecture of the resting synesthetic
brain. We therefore investigated intrinsic functional connectivity
(FC) of brain networks with resting-state functional magnetic
resonance imaging (rs-fMRI). Spontaneous low-frequency fluc-
tuations of the blood-oxygen level-dependent (BOLD) signal can
be temporally correlated across functionally related brain areas
(Biswal et al., 1995; Fox and Raichle, 2007) and may thereby form
intrinsic connectivity networks (ICN). ICNs consistently occur
in healthy subjects and show strong correspondence to structural
networks (Damoiseaux et al., 2006; Honey et al., 2007). However,
deviations from this consistent architecture of intrinsic connec-
tivity networks also occur. Neuropsychiatric patients with altered
experiences or impaired cognitive functions, like in schizophre-
nia or Alzheimer’s disease, show characteristic changes of intrin-
sic FC in several ICNs (Greicius et al., 2004; Jafri et al., 2008;
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Vercammen et al., 2010; Gour et al., 2011). In analogy, the addi-
tional (abnormal) experiences of synesthetes may be reflected in
an altered intrinsic FC. Thus, we hypothesized that (1) grapheme–
color synesthetes show specific patterns of functional hyperconnec-
tivity at rest and (2) this hyperconnectivity correlates with the
consistency of synesthetic experiences. To test these hypotheses, we
investigated the intrinsic FC of synesthesia-related brain networks of
coherent ongoing neuronal activity with independent component
analysis (ICA) (Fox and Raichle, 2007; Biswal et al., 2010; Schölvinck
et al., 2010) and with an additional seed-based FC approach for the
cytoarchitectonically defined color area V4.

Materials and Methods
Subjects. In the current study, 12 grapheme– color synesthetes and 12
control subjects without a history of neurological or psychiatric disease
were investigated. The two groups were matched for gender (10 female in
each group), age [synesthetes: 32.6 � 9.9 years (mean � SD); controls:
30.6 � 5.7 years; t(22) � 0.611, p � 0.55], handedness as assessed by the
Oldfield handedness inventory (Oldfield, 1971) (3 subjects with left-
hand and 9 subjects with right-hand preference in each group; laterality
quotient: synesthetes: 38.7 � 77.6; controls: 41.3 � 74; t(22) � �0.084,
p � 0.93), and IQ as assessed by the Mehrfachwahl-Wortschatz Intelli-
gence Test type B (Lehrl et al., 1995) (synesthetes: 117.6 � 10.3; controls:
113.9 � 11.1; t(20) � 0.817, p � 0.42).

Authenticity of synesthesia was verified by applying a test of consis-
tency (Baron-Cohen et al., 1993) in which synesthetic color experiences
for 129 items were retested without warning after at least 6 months
(15.2 � 12.4 months) in all synesthetes (Weiss et al., 2005). This test
confirmed the high consistency of the synesthetic color experiences in the
12 grapheme– color synesthetes (rate of consistent responses: 84.8 �
14.5%). All but one grapheme– color synesthete reported also having
phoneme–color synesthesia, i.e., sounds of single phonemes also trigger syn-
esthetic color experiences. The local ethics committee of the Medical Faculty
of the Rheinisch-Westfaelische Technische Hochschule) Aachen University
approved the study and all subjects gave written informed consent.

fMRI data acquisition. Subjects were instructed to keep their eyes
closed but remain alert and awake during the resting-state measurements
in the scanner. Resting-state data were acquired on a 3-tesla MRI System
(Trio; Siemens) using a standard echo-planar imaging (EPI) sequence to
obtain standard T2*-weighted EPI images with BOLD contrast (field of
view, 200 mm; matrix size, 64 � 64; voxel size, 3.1 � 3.1 � 3.0 mm 3). A
total of 280 functional volumes of 36 3-mm-thick axial slices were col-
lected sequentially with a 0.3 mm gap for each subject within a single
scanning session (repetition time, 2.2 s; echo time, 30 ms; total duration,
�10 min). The first six EPI volumes were discarded to allow for T1
equilibration effects. Standard preprocessing procedures were applied to
the remaining 274 EPI images using Statistical Parametric Mapping soft-
ware (SPM5; Wellcome Department of Imaging Neuroscience, London,
UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm5/).

Independent component analysis. ICA is a method that can be used to
decompose fMRI data into spatially independent components, each
comprising a spatial map of functionally connected brain regions and an
associated time course. In the current study, ICA was used to identify
synesthesia-relevant ICNs and to assess differential functional intranet-
work and internetwork connectivity in grapheme– color synesthetes and
control subjects.

Before the volumes were entered into the ICA, we applied a voxelwise
z-transformation (ŷijk(t)) on the time course data yijk(t) by subtracting
the mean �yijk� and dividing by the standard deviation �ijk: ŷijk(t) �
( yijk(t) � �yijk�)/�ijk (t is time; indices i, j, k represent the three direc-
tions in space). The sensitivity of the multivariate ICA algorithm for
correlation of variance between voxels, i.e., functional connectivity, was
thereby rendered independent of the original BOLD signal magnitude
across subjects (Sorg et al., 2007).

To obtain the most robust and comparable set of independent com-
ponents from the resting-state fMRI dataset, we performed a spatial
group ICA on the combined, concatenated dataset of synesthetes and
controls (n � 24) using GIFT software (http://icatb.sourceforge.net/,

version 2.0 d) and iteratively ran 30 ICAs using the ICASSO procedure
(Himberg et al., 2004). We calculated 25 independent components ac-
cording to the minimum description length criteria that can be imple-
mented in GIFT (Calhoun et al., 2001). The analysis was performed in
three steps (Calhoun et al., 2001): data reduction with principal compo-
nent analysis (PCA), ICA using the Infomax algorithm on the concate-
nated dataset of all subjects (including both synesthetes and controls),
and finally back-reconstruction of the group independent components
into the single-subject space using GICA3 (Erhardt et al., 2011). Each
independent component was composed of a spatially independent brain
map and an associated time course of ongoing fMRI fluctuations during
rest. We selected functionally relevant ICNs from the whole set of inde-
pendent components by applying a multiple spatial regression analysis
against brain templates comprising synesthesia-related brain regions that
were created with the anatomy toolbox (Eickhoff et al., 2005). The brain
regions assumed to be critically involved in synesthetic experiences were
derived from previous functional and structural imaging studies (Nunn
et al., 2002; Hubbard et al., 2005; Weiss et al., 2005; Rouw and Scholte,
2007; Weiss and Fink, 2009; Rouw and Scholte, 2010) and covered the
visual, auditory, and intraparietal cortices. The anatomy toolbox by Eick-
hoff and colleagues (2005) was used to build spatial masks covering these
three brain regions. The visual mask included area 17, area 18, hOC3v
(V3v), hOC4 (V4), and hOC5 (V5); the auditory mask included areas TE
1.0, TE 1.1, and TE 1.2; and the intraparietal mask comprised the areas
hIP1, hIP2, and hIP3. A threshold of beta � 1 for at least one of the three
spatial variables was determined to select synesthesia-relevant ICNs. In
addition, a separate group ICA was applied to each of the two groups
using identical parameters as in the combined (controls and synesthetes)
approach. This procedure validated the presence of all synesthesia-
relevant ICNs in both the synesthetes and the control subjects in inde-
pendent analyses.

To analyze group differences of within-network connectivity, we en-
tered spatial maps of individual ICNs of the combined group ICA into an
ANOVA with the factors subject, group, component, and a group �
component interaction using SPM5. Contrasts were masked by conjunc-
tion maps of the one-sample t test (FWE corrected, p � 0.05; Fig. 1, left)
of the respective network and thresholded at p � 0.05, FWE corrected at
the voxel level. Finally, each individual subject’s FC between the
synesthesia-relevant ICNs was derived by calculating pairwise zero-lag
correlation coefficients between the BOLD signal time courses of the
synesthesia-relevant ICNs. We performed this functional network con-
nectivity (FNC) analysis using the FNC Matlab toolbox (version 2.3)
(Jafri et al., 2008).

Seed-based correlation analysis for the cytoarchitectonically defined color
area V4. To complement the ICA results by an independent approach, we
performed a seed-based correlation analysis by calculating the FC from
cytoarchitectonically defined color area V4 to all other voxels of the
brain. The bilateral V4 seed regions were created using the Anatomy
Toolbox (Eickhoff et al., 2005). The REST toolkit (Song et al., 2011) was
used for removing the linear trend of time courses from the data, tem-
poral bandpass filtering of the data (0.01– 0.1 Hz), and calculating the
individual FC maps. Finally, a Fisher’s z transformation was used to
normalize the individual correlation maps to z maps. Then, for each
group, the Fisher’s z maps were entered into a separate one-sample t test
(using SPM5) to identify regions showing significant FC with color area
V4. A height threshold of p � 0.05 (FWE corrected) and an extent thresh-
old of 50 voxels were applied to the one-sample t tests. Moreover, z maps
were entered into a two-sample t test to detect significant group differ-
ences between synesthetes and controls. The two-sample t test was
masked by the conjunction map of the one-sample t tests (FWE cor-
rected; height threshold, p � 0.05; extent threshold, 50 voxels) of synes-
thetes and control subjects. Again, a height threshold of p � 0.05 (FWE
corrected) was applied.

Results
Independent component analysis
We identified seven synesthesia-relevant ICNs in a multiple spa-
tial regression analysis using three spatial priors (visual cortex,
auditory cortex, and intraparietal cortex): medial and lateral vi-
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sual network, auditory network, left and right frontoparietal net-
work, and medial and lateral parietal network (Fig. 1; Tables 1, 2).
These ICNs strongly resemble previously described ICNs in-
volved in sensory and cognitive processing (Smith et al., 2009).
Figure 1 illustrates that all synesthesia-relevant ICNs from the
combined group analysis were also detected by separate ICAs of
each group. In addition to this qualitative assessment, we also
quantified group differences of within-network connectivity in
an ANOVA between grapheme– color synesthetes and control
subjects. This ANOVA revealed regions with significantly stron-
ger functional connectivity for synesthetes compared with con-
trols for all networks of interest, while only the left and right
frontoparietal networks also included regions showing stronger
functional connectivity in the control subjects (Table 3). Note
that the within-network differences between groups were limited
to rather small clusters.

We nest investigated group differences of network connectiv-
ity between the seven synesthesia-relevant ICNs. This FNC
analysis revealed clear differences in the intrinsic network archi-
tecture between grapheme– color synesthetes and control sub-
jects. For the control group, only five significant connections
emerged (as indexed by significant correlations between the time
courses of the seven ICNs, one-sample t tests, two-sided, p �

Figure 1. Illustration of the seven synesthesia-relevant ICNs revealed by the combined and separate group ICAs. Seven synesthesia-relevant ICNs were identified by ICA and spatial regression
analysis (for further details, see Materials and Methods). Results of the one-sample t tests on the individual subjects ICN patterns are visualized on axial, sagittal, or coronal sections of the standard
brain template provided by SPM5. Due to differences in statistical power, a threshold of p � 0.05, FWE corrected, was applied for the combined group ICA, while the within-group ICA results for both
groups are shown for a height threshold of p � 0.05, FDR corrected, and an extent threshold of 50 voxels.

Table 1. Results of the multiple spatial regression analysis conducted to identify
synesthesia-relevant ICNs to be included in the FNC analysis

ICN
number Label of ICNs

Betas
Multiple
regression
value

Auditory
mask

Intraparietal
mask Visual mask

1 Medial visual network �0.12433 �0.00555 1.81960 0.30953
18 Auditory network 3.53987 0.01085 �0.18998 0.13207
12 Lateral visual network �0.11789 �0.01240 1.02344 0.09962
16 Left frontoparietal network �0.06476 1.70691 �0.05126 0.05326
25 Lateral parietal network �0.01792 1.06765 �0.02037 0.02193
19 Medial parietal network �0.02189 1.07975 0.08141 0.02109
21 Right frontoparietal network �0.03788 1.01988 �0.03213 0.01828

3 0.01709 0.03890 �0.24333 0.00560
— — — — —
— — — — —
— — — — —
11 �0.00122 �0.02028 �0.01598 0.00003

Only components with a beta �1 (bold) on at least one of the three spatial variables were subjected to the FNC
analysis to ensure that only ICNs that covered at least one of the synesthesia-relevant brain regions (visual cortex,
auditory cortex, and intraparietal cortex) were included. This threshold is represented in the table by the line. Note
that already the betas of the next ICN in the table (arbitrarily numbered “3”) are far from the critical value 1,
indicating that this and all the other ICNs (with even lower betas) do not contain significant parts of the synesthesia-
relevant brain regions.
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0.05, FDR corrected; Fig. 2A). In stark contrast, 15 significant
connections between the seven ICNs were present in the synes-
thetes (one-sample t tests, two-sided, p � 0.05, FDR corrected;
Fig. 2B). Note that all significant connections observed in con-
trols were also present in the synesthetes (Fig. 2A,B, black lines).
Thus, the global functional network architecture in synesthesia
consisted of the intrinsic nonsynesthetic network connectivity
plus additional intrinsic connections (Fig. 2B, double lines). Spe-
cifically, the integration of the two visual ICNs into the network
architecture was clearly different between controls and synes-
thetes: while the visual networks were only interconnected (and

not connected to any other ICN) in controls, these two networks
were highly interconnected with the other ICNs in the graph-
eme– color synesthetes.

In addition to these global differences of the intrinsic network
architecture between synesthetes and control subjects (i.e., three
times more significant connections in the synesthetes), the direct
group comparison revealed that two specific network connec-
tions were significantly stronger in the grapheme– color synes-
thetes (two-sample t tests, two-sided, p � 0.05, FDR corrected):
these were the connections between the medial (p � 0.0024) and
lateral (p � 0.0022) visual networks and the right frontoparietal
network (Fig. 2B, gray lines). In addition, the connection be-
tween the lateral visual and auditory network showed a trend
toward significance (p � 0.05).

To test whether the increased FNC determined the consis-
tency of synesthetic experiences, correlation analysis was per-
formed with the individual consistency scores and the strength of
the three functional network connections that differed between
synesthetes and controls. In synesthetes, the connection strength
of the lateral visual ICN with both the auditory ICN (p � 0.006)
and the right frontoparietal ICN (p � 0.03) significantly corre-
lated with the consistency scores (Fig. 2C). No significant corre-
lation was found for the connection between the medial visual
and right frontoparietal ICNs (p � 0.10).

Seed-based correlation analysis for the cytoarchitectonically
defined color area V4
One-sample t tests based on the z-transformed individual FC
maps revealed that in grapheme– color synesthetes, color area V4
showed a significant FC with other synesthesia-relevant regions,
namely primary and secondary visual areas, auditory cortex bi-
lateral, and right parietal cortex, while in control subjects, V4 was
also functionally connected to primary and secondary visual ar-
eas but showed no FC with the auditory cortices and the right
parietal cortex (Fig. 3; Table 4). Thus, the seed-based correlation
analysis confirmed the FNC analysis results of a significantly in-
creased intrinsic FC between the lateral visual network (including
the color area V4) and the bilateral auditory network as well as the
right frontoparietal network in synesthetes compared with con-
trols (Fig. 2B). However, the differences in the seed-based corre-
lation patterns between synesthetes and controls did not survive

Table 2. Brain regions belonging to the seven synesthesia-relevant ICNs

Region Hemisphere
Cluster size
(voxels) t value

MNI coordinates

x y z

Medial visual network
Calcarine gyrus R 2217* 23.5 12 �69 6
Calcarine gyrus L 21.7 �3 �72 9
Thalamus R 261* 12.6 12 �21 12
Thalamus L 10.7 �6 �15 9
Superior medial gyrus M 180 11.4 0 36 45

Lateral visual network
Fusiform gyrus R 2677* 24.1 27 �69 �9
Fusiform gyrus L 19.6 �21 �78 �9
Insula R 61 9.2 42 9 6

Auditory network
Superior temporal gyrus; TE

1.2
R 1697 19.0 54 �3 0

Superior temporal gyrus; TE
1.2

L 1521 17.6 �54 �9 0

Middle cingulate cortex L 78 10.2 �9 3 39
Left frontoparietal network

Inferior frontal gyrus L 1591 20.4 �48 30 18
Inferior parietal lobule L 721 18.4 �51 �39 45
Insula L 69 17.0 �33 18 0
Posterior cingulate cortex L 67 11.9 �3 �36 33
Inferior temporal gyrus L 67 9.5 �51 �54 �9
Thalamus L 65 10.2 �6 �15 9
Middle frontal gyrus R 50 8.6 48 36 21
Precuneus L 40 9.1 �6 �51 15

Right frontoparietal network
Inferior frontal gyrus R 1909 14.5 45 33 27
Inferior parietal lobule R 756 18.6 51 �54 39
Precuneus R 151 12.4 6 �42 45
Superior parietal lobule R 48 7.5 15 �72 54
Middle temporal gyrus R 33 9.7 63 �27 �9
Insula R 30 6.6 39 21 �3
Thalamus R 29 9.3 9 �24 12
Inferior parietal lobule L 17 7.6 �42 �51 42

Lateral parietal network
Supramarginal gyrus L 2615* 19.1 �54 �27 33
Supramarginal gyrus R 13.6 57 �30 33
Middle cingulate cortex L 122 12.0 �6 0 42
Insula R 108 10.1 42 �3 6
Insula L 100 9.3 �42 �3 9
Inferior temporal gyrus L 30 10.6 �54 �63 �12
Inferior temporal gyrus R 25 10.0 54 �54 �6
Inferior frontal gyrus L 27 9.2 �54 9 24
Inferior frontal gyrus R 14** 8.0 54 9 24

Medial parietal network
Cuneus R 2445* 20.8 15 �69 33
Cuneus L 15.5 �15 �69 36
Posterior cingulate cortex R 210* 8.3 6 �42 24
Posterior cingulate cortex L 8.0 �6 �45 18
Midbrain M 22 8.4 0 �27 �9

One-sample t test, p�0.05, FWE corrected. Note that only clusters including at least 15 voxels are listed. Anatomical
locations and terms were derived from the Anatomy toolbox (Eickhoff et al., 2005). *These voxels belong to a
contiguous bilateral cluster. **Although this cluster just missed the predefined threshold of 15 voxels, it was in-
cluded in the table as it reflects the bilateral organization of the lateral parietal ICN.

Table 3. Within-network differences between synesthetes and controls

Hemisphere
Cluster size
(voxels)

Max. t
value

MNI coordinates

x y z

Synesthetes � controls
Lateral visual network R 5 4.46 15 �60 �3
Auditory network L 3 5.47 �57 �9 3

L 2 4.62 �39 �27 18
Left frontoparietal network L 37 7.5 �6 21 45

L 5 5.38 �33 0 60
L 3 4.39 �39 33 15

Right frontoparietal
network

R 17 6.4 42 12 39
R 13 5.25 24 6 54

Medial parietal network R 2 4.61 18 �57 33
Lateral parietal network L 12 5.82 �33 �36 42

L 2 5.02 �33 �39 48
Controls � synesthetes

Left frontoparietal network L 6 4.91 �39 6 48
Right frontoparietal

network
R 37 8.06 39 �42 36
R 2 4.66 6 39 45

Please note that single voxels are not listed in the table. Also note that there was a higher significant FC in the medial
visual network in synesthetes compared to controls, although limited to two single voxels. All reported results are
significant at p � 0.05 (FWE corrected).
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the predefined statistical threshold (p �
0.05, FWE corrected) when assessed by a
two-sample t test.

Discussion
Supporting neurobiological models of
synesthesia that hypothesize increased
connectivity in grapheme– color synes-
thetes (Hubbard and Ramachandran,
2005), the current rs-fMRI study reveals
increased intrinsic functional connectiv-
ity in grapheme– color synesthetes, com-
plementing earlier findings of increased
structural connectivity in synesthesia
(Rouw and Scholte, 2007). Our results
thus complement the findings of previous
studies in nonsynesthetes showing the
structural correlates of intrinsic FC net-
works (Honey et al., 2007; Vincent et al.,
2007). Moreover, our results are in line
with a recent resting-state electroenceph-
alography (EEG) study in which several
synesthesia-relevant brain regions re-
vealed stronger functional connectivity in
lower frequencies of the theta and al-
pha band in colored– hearing synesthetes
compared with nonsynesthetic control
subjects (Jäncke and Langer, 2011). Such
connectivity changes in the low-frequency
band may well constitute the electrophys-
iological correlate for the low-frequency
BOLD fluctuations in resting state fMRI
data as suggested by simultaneous EEG–
fMRI studies (Laufs et al., 2003; Van de
Ville et al., 2010).

Applying a multiple spatial regression
analysis to the combined group ICA,

Figure 2. A, B, Illustration of the intrinsic network architecture in controls (A) and synesthetes (B) composed of coherent,
ongoing neuronal activity between seven synesthesia-relevant ICNs. C, Intrinsic network connectivity correlates with the

4

consistency of synesthetic experiences. By means of multiple
spatial regression analysis, the following seven synesthesia-
relevant ICNs were selected for further correlation analyses in
an automated manner: three primary sensory ICNs (medial
and lateral visual network, auditory network), the right and
left frontoparietal ICN, and the medial and lateral parietal
ICNs. A, Significant pairwise correlations between the time
courses of the ICNs in both groups are represented by thick
black lines connecting the respective ICNs (one-sample t tests,
two-sided, p � 0.05, FDR corrected). B, Additional significant
connections in synesthetes are indicated by double lines (one-
sample t tests, two-sided, p � 0.05, FDR corrected). Gray lines
represent significant group differences, i.e., additional con-
nections in synesthetes that are significantly stronger com-
pared with the control group (two-sample t test, two-sided,
p � 0.05, uncorrected; * indicates group differences surviving
FDR correction). C, Correlation analyses between the func-
tional connectivity and the consistency of synesthetic experi-
ences (using the normalized scores for the three functional
connections that were significantly stronger in grapheme–
color synesthetes and the normalized consistency scores) re-
vealed a significant correlation between the synesthetic
consistency scores and the intrinsic connectivity strength be-
tween the lateral visual and the auditory ICNs (r 2 � 0.49, p �
0.006, left) and the lateral visual and the right frontoparietal
ICNs (r 2 � 0.29, p � 0.03, right).
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we identified seven synesthesia-relevant ICNs whose intranet-
work and internetwork connectivity was investigated. These
seven ICNs were also identified in the separate within-group
ICAs, indicating a homogenous distribution of the ICNs in syn-
esthetes and controls. Consistent with the notion of functional
hyperconnectivity in grapheme– color synesthesia, the direct
group comparison of intranetwork connectivity differences re-
vealed regions showing significantly stronger intrinsic FC in syn-
esthetes than control subjects for all seven synesthesia-relevant
ICNs. In contrast, only two ICNs (i.e., the left and right fronto-
parietal networks) contained regions with stronger FC in controls
compared with synesthetes.

The finding of increased intranetwork connectivity in synes-
thetes is consistent with the results of a recent study by Hupé et al.
(2011) that suggests that the joint coding of real and synesthetic
colors is distributed rather than localized in the visual cortex. In
fact, our findings are direct support for the assumption of Hupé
et al. (2011) that “. . . if synesthetic experience relies on connect-
ing regions together, it does not necessarily involve a stronger

BOLD response in any region but maybe
subtle coactivations in distributed re-
gions.” Thus, the current study strongly
supports Hupé et al.’s hypothesis that
“network analysis of brain connectivity
appears then as a promising approach to
elucidate principles underlying synesthe-
sia” (Hupé et al., 2011, page 11).

With respect to the internetwork con-
nectivity, the current study revealed in-
creased global and specific intrinsic
functional network connectivity in synes-
thetic subjects. Here, “global” refers to the
overall increased amount of significant
connections between the seven investi-
gated ICNs in the group of synesthetic
subjects compared with the nonsynes-
thetes. In contrast, “specific” refers to
those connections for which a significant
group difference was revealed, emphasiz-
ing the relevance of these specific connec-
tions in processing synesthetic
experiences. With respect to the increased
global intrinsic network connectivity in

grapheme– color synesthesia, it is remarkable that all (five) sig-
nificant connections between the ICNs found in the control
group were also present in the synesthetic subjects. This observa-
tion is in line with the notion that synesthetes are healthy subjects
without any neurological or psychiatric disease (Hubbard, 2007),
but are endowed with additional competences. The finding that
the additional experiences of synesthetic subjects are associated
with an increased functional network connectivity is also in line
with a study by Jafri and colleagues (2008), who revealed an in-
creased functional network connectivity of the default mode net-
work in schizophrenic patients and speculated that this increased
functional network connectivity was linked to their hallucinatory
experiences. In contrast, reduced functional connectivity has
been shown in patients with psychiatric deficits resulting in lim-
ited experiences [as in dementia (Greicius et al., 2004)]. How-
ever, with respect to this notion, the findings in the ICA literature
are inconclusive as the opposite pattern, i.e., decreased functional
connectivity in schizophrenia (Vercammen et al., 2010) and in-
creased functional connectivity in dementia (Gour et al., 2011),
has also been reported. Grapheme– color synesthetes showed not
only a threefold increase of global intrinsic network connectivity
compared with controls, but also specific (quantitative) differ-
ences in the intrinsic network connectivity: the two visual
ICNs were significantly more strongly connected to the right-
lateralized frontoparietal ICN in synesthetes compared with non-
synesthetes. This is in accordance with the known role of
frontoparietal networks in color-form binding for normal per-
ception (Donner et al., 2002) and previous studies reporting at-
tenuation of synesthetic binding following transcranial magnetic
stimulation of the right parietal cortex (Esterman et al., 2006;
Muggleton et al., 2007).

Moreover, the strength of the functional connectivity in the
resting state between the lateral visual, auditory, and right fron-
toparietal ICN were associated with the individual consistency of
the synesthetic experiences. Recently, different patterns of effec-
tive connectivity were shown to be associated with the type of
grapheme– color synesthesia (van Leeuwen et al., 2011). In
projectors, i.e., synesthetes experiencing the appearance of the
synesthetic color in external space (colocalized with the induc-

Figure 3. A, B, Surface renderings of brain regions functionally connected with bilateral color area V4 in grapheme– color
synesthetes (A) and control subjects (B). The synesthesia-relevant brain regions (right parietal cortex and bilateral auditory
cortices) that are functionally connected to color area V4 in synesthetes (A) but not control subjects (B) are circled. Please note that
also the functional connectivity of V4 with other primary and secondary visual areas was more pronounced in synesthetes. All
shown regions reached significance at p � 0.05 (FWE corrected, extent threshold 50 voxels).

Table 4. Regions functionally connected with bilateral color area V4 in synesthetes
and controls

Hemi-sphere
Cluster size
(voxels)

Max. t
value

MNI coordinates

X y z

Synesthetes
Primary and secondary visual

cortex
L 4573* 32.67 �27 �87 �9
R 27 �84 �9

Auditory cortex L 250 17.74 �63 �36 3
R 336 16.55 66 �21 6

Parietal cortex R 58 13.40 24 �54 57
Controls

Primary and secondary visual
cortex

R 3506* 30.70 21 �87 �18
L �27 �66 �21

Medial frontal cortex M 88 15.96 6 63 12
Inferior temporal cortex L 136 15.49 �57 �9 �27
Cuneus R 52 14.84 21 �72 27
Superior parietal cortex M 132 14.37 0 �72 54

*These voxels belong to a contiguous bilateral cluster. Note that the clusters in grapheme– color synesthetes are
more extensive than in controls (Fig. 3). In contrast, control subjects show smaller, separable clusters.

Dovern et al. • Functional Hyperconnectivity in Synesthesia J. Neurosci., May 30, 2012 • 32(22):7614 –7621 • 7619



ing grapheme), the cross-activation of V4 was elicited by a
bottom-up pathway in the fusiform gyrus. In contrast, V4 cross-
activation was evoked by a top-down process via the parietal lobe
in associators, i.e., synesthetes who experience the synesthetic
color internally, in their mind’s eye. Together, these data suggest
that the stability and characteristics of synesthetic experiences are
reflected by the degree of functional connectivity at rest and ef-
fective connectivity during the performance of tasks inducing
synesthetic color perceptions.

The seed-based correlation analysis revealed a significant
functional connectivity of bilateral color area V4 with the audi-
tory cortex bilaterally and the right parietal cortex in synesthetes
but not in controls. Constituting an independent approach, the
seed-based correlation analysis confirmed our findings of the
FNC analysis of the seven synesthesia-relevant ICNs, as this anal-
ysis also revealed an increased internetwork connectivity between
the lateral visual network (including color area V4) with the au-
ditory network and the right frontoparietal network.

Although the converging results of the seed-based correlation
and the FNC analyses show the potential of resting-state fMRI for
assessing functional connectivity by different approaches, there
are also limitations to this method. For example, some authors
related the connectivity of networks covering midline and brain-
stem structures, at least in part, to pulsation artifacts (Birn et al.,
2008). Moreover, it needs to be noted that during resting-state
fMRI, sensory input (e.g., scanner noise) is present. Nevertheless,
as our main findings are unrelated to midline or brainstem struc-
tures and our synesthetes did not report synesthetic experiences
triggered by the scanner noise, it is unlikely that these aspects
have confounded the current results.

Our data, together with previous data showing structural dif-
ferences and differences in functional network characteristics be-
tween synesthetes and nonsynesthetes at rest (Rouw and Scholte,
2007, 2010; Jäncke et al., 2009; Weiss and Fink, 2009; Hänggi et
al., 2011; Jäncke and Langer, 2011), indicate that there are general
differences between the brains of synesthetes and nonsynesthetes
even when no synesthesia-inducing stimuli are present. We sug-
gest that these structural and functional differences predispose
the synesthetes’ brains to elicit synesthetic experience in response
to particular inducer stimuli. One should keep in mind, however,
that these structural and functional differences might occur as a
result of the synesthetic experiences rather than causing them.
The latter possibility can only be examined by longitudinal stud-
ies preferentially performed in synesthetic and nonsynesthetic
children (Simner et al., 2009).

A further important step is to investigate the functional net-
work architecture during the actual perception of synesthetic ex-
periences. First evidence for increased functional connectivity in
this context is provided by Specht and Laeng (2011), who showed
an increased coherence of the color area V4 with a perceptual
network during a single letter stroop task in two grapheme– color
synesthetes (compared with 10 control subjects). Such task-
related ICA analysis should be replicated in a larger group of
synesthetes and should be complemented with an FNC analysis.

Our data on globally and specifically increased intrinsic net-
work connectivity in grapheme– color synesthetes may help to
inform the current debate whether hyperconnectivity in synes-
thesia occurs either locally, i.e., within circumscribed anatomical
regions (Hubbard, 2007), or globally, i.e., widespread through-
out the brain (Bargary and Mitchell, 2008). Previous studies in-
vestigating structural alterations in grapheme– color synesthetes
provided (equivocal) evidence for either type of (structural) hy-
perconnectivity in synesthesia: structural differences between

synesthetes and controls emerged either at the local (Rouw and
Scholte, 2007, 2010; Weiss and Fink, 2009) or at the global
(Jäncke et al., 2009; Hänggi et al., 2011) level. Our functional
connectivity data suggest that a combination of both models
most appropriately characterizes grapheme– color synesthetes
since they differ functionally from nonsynesthetes at both levels,
i.e., at a global level (i.e., overall increased number of significant
ICNs in synesthetes compared with controls) and a specific level
(i.e., significantly increased FC between some specific ICNs).
Furthermore, the current finding stress the importance of inves-
tigating both global and specific functional network connectivity
in clinical populations to properly characterize the pathophysio-
logical changes in the network architecture caused by schizophre-
nia, dementia, or other systemic diseases.
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Alzheimer’s disease (AD) is a neurodegenerative disorder that
prominently affects cerebral connectivity. Assessing the functional
connectivity at rest, recent functional MRI (fMRI) studies reported
on the existence of resting-state networks (RSNs). RSNs are char-
acterized by spatially coherent, spontaneous fluctuations in the
blood oxygen level-dependent signal and are made up of regional
patterns commonly involved in functions such as sensory, atten-
tion, or default mode processing. In AD, the default mode network
(DMN) is affected by reduced functional connectivity and atrophy.
In this work, we analyzed functional and structural MRI data from
healthy elderly (n ! 16) and patients with amnestic mild cognitive
impairment (aMCI) (n ! 24), a syndrome of high risk for developing
AD. Two questions were addressed: (i) Are any RSNs altered in
aMCI? (ii) Do changes in functional connectivity relate to possible
structural changes? Independent component analysis of resting-
state fMRI data identified eight spatially consistent RSNs. Only
selected areas of the DMN and the executive attention network
demonstrated reduced network-related activity in the patient
group. Voxel-based morphometry revealed atrophy in both medial
temporal lobes (MTL) of the patients. The functional connectivity
between both hippocampi in the MTLs and the posterior cingulate
of the DMN was present in healthy controls but absent in patients.
We conclude that in individuals at risk for AD, a specific subset of
RSNs is altered, likely representing effects of ongoing early neu-
rodegeneration. We interpret our finding as a proof of principle,
demonstrating that functional brain disorders can be characterized
by functional-disconnectivity profiles of RSNs.

default mode network " intrinsic brain activity " mild cognitive impairment

A lzheimer’s disease (AD) is a neurodegenerative disorder
clinically characterized by progressive dementia and neu-

ropsychiatric symptoms (1). AD is neuropathologically defined
by tau pathology and amyloid aggregations (2). Tau pathology
starts in regions of the medial temporal lobe (MTL) and is well
correlated with cell loss and atrophy; amyloid deposition pri-
marily affects distributed neocortical regions but is not especially
prominent in the MTL (2, 3). Atrophy of the MTL is correlated
with the degree of dementia and also the extent of temporopa-
rietal hypometabolism; both results are assumed to reflect
changes in cerebral connectivity, especially between the MTL
and the neocortex (3–5). In non-human primates, prominent
structural connectivity between the MTL and neocortical re-
gions as well as broad neocortical hypometabolism after ablation
of parts of the MTL were demonstrated (6, 7). Evidence for
disrupted structural and functional connectivity (FC) further
suggests that AD includes a disconnection syndrome (5, 8–10).

Mild cognitive impairment (MCI) is a syndrome with cogni-
tive decline greater than expected for an individual’s age and
educational level but not interfering notably with activities of
daily living; prevalence of MCI is !15% in adults older than 65
years; more than half of patients with MCI progress to dementia
within 5 years; the amnestic subtype of MCI has a high risk of

progression to AD constituting a prodromal stage of AD (1, 11,
12). Previous results of task-related functional MRI (fMRI) in
patients with MCI (13, 14) indicate that FC seems to be already
impaired in prodromal stages of AD (15). Reduced white matter
volumes of the MTL in amnestic MCI (aMCI) point at changed
MTL–neocortex connectivity (16). Very recent fMRI studies in
AD reported on FC changes especially during rest (5, 9, 17).
Together, these findings suggest that the functional integration
of brain areas in the cerebral resting state in individuals at risk
for AD is disturbed and that functional changes are related to
MTL atrophy.

The study of intrinsic brain activity may be central for under-
standing the physiology of functional brain disorders (5, 18–20).
Functional brain disorders such as AD, schizophrenia, or autism
are characterized by structural alterations that are subtle or have
an uncertain relationship to clinical symptoms (21). Such struc-
tural lesions might be functionally related to alterations of
intrinsic brain activity that are reflected by changes of connec-
tivity (18, 19). Here, the study of spontaneous coherent fluctu-
ations of the blood oxygen level-dependent (BOLD) signal at
rest by fMRI is of special interest. Synchronized BOLD fluctu-
ations overlap with brain systems that are involved in functions
such as motor, sensory, language, attention, or default mode
processing (22–28). Evidence for the neuronal nature of so-
called resting state networks (RSNs) comes from studies that
employ simultaneous fMRI and electroencephalograms (EEGs)
(29, 30), from the observation of altered connectivity caused by
neurological diseases (5), and from the existence of homologous
RSNs in non-human primates that overlap with neuroanatomi-
cally defined systems (31).

Regions including the posterior cingulate, inferior parietal,
and medial prefrontal cortex, constitute a RSN called default
mode network (DMN) (32, 33). The areas of the DMN show
consistently greater BOLD activity during rest than during any
attention-demanding task, a phenomenon called deactivation;
the same regions are prominently involved in episodic memory
processes together with the MTL; their spontaneous fluctuations
at rest are anticorrelated to the spontaneous fluctuations of a
widely distributed neocortical system that largely overlaps with
attention-related RSNs (5, 22, 27, 28, 32, 34–36). In AD, parietal
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regions of the DMN demonstrate altered functional connectivity
at rest within the DMN itself, to the MTL, and to neocortical
areas that are involved in attention processes (5, 9, 17). Ac-
counting for these findings, the hypothesis suggested above of
altered FC at rest in individuals at high risk for AD can be
specified in terms of RSNs with a focus on FC changes in the
DMN and attention-related RSNs. In general, the finding of
RSNs allows for a broadened perspective on functional brain
disorders in the field of neuroimaging: the brain shows rich
intrinsic dynamics in absence of tasks, with external stimuli more
modulating than determining brain activity (19, 20, 27, 31, 37);
the plurality of RSNs reflects this structured intrinsic activity,
and selective changes of RSNs may characterize traits and states
of functional brain disorders such as AD (18, 19, 21, 26).

Most previous studies investigating RSNs have used region-
of-interest (ROI)-based correlation analyses (9, 17, 22–24). The
signal time course of a selected ROI is correlated with remaining
brain areas, resulting in a ROI specific correlation map. More
recently, instead of defining a priori spatial hypotheses, a number
of studies used model-free approaches involving independent
component analysis (ICA) to describe RSNs in rest-fMRI data
(5, 25, 26, 30). ICA allows for the extraction of distinct spatio-
temporal patterns by identifying spatially independent and tem-
porally synchronous brain regions (38).

In the present work, we combined ICA and ROI-based
correlation methods to investigate RSNs in patients with aMCI.
We focused on the following questions: (i) Are any RSNs
changed in aMCI compared with healthy elderly? (ii) Are there
any volumetric changes in the patient group pointing at possible
ongoing neurodegeneration? (iii) How are potential functional
and structural changes related with respect to their spatial
extent?

We examined 24 patients and 16 healthy elderly (Table 1).
Participants were instructed to close their eyes and relax during
4 min of fMRI scanning. Rest-fMRI data were analyzed by using
a group ICA approach involving subject-wise concatenation of
the individual fMRI data sets and subsequent back-projection
into subject space (15, 39). Voxel-based morphometry (VBM) of
additional structural MRI data and ROI-based correlation
analyses of the rest-fMRI data were performed to analyze
possible causes of altered functional connectivity.

Results
RSNs in Healthy Elderly and Patients with aMCI. The ICA was
performed employing a group ICA model for fMRI data
(GIFT).§§ After the IC estimation on the subject-wise concate-
nated data, the toolbox performs the analysis in three stages:
data reduction through principal component analysis (PCA),

ICA decomposition of aggregate data, and subsequent back-
reconstruction of individual subject maps and time courses (39,
40). Results of the separate analyses for each study group are
depicted in Fig. 1 [see also supporting information (SI) Table 2].
Each group IC image contains a pair of two spatial IC patterns
that are correlated (red) or anticorrelated (blue) with the time
course of the component (data not shown). In the corresponding
glass brain projection, the result of a one-sample t test for the
back-reconstructed individual subject IC patterns across both
groups is shown [P � 0.05 false discovery rate (FDR) corrected
for multiple comparisons]. Eight IC patterns represented func-
tionally relevant RSNs as described previously (26). Both IC
patterns of Fig. 1e/E and f/F were pairwise anticorrelated within
one IC. The first two IC patterns of Fig. 1 partly coincide with
the visual cortex: a/A covers inferior parts of the occipital cortex
such as the striate area [Brodmann area (BA) 17/18]; b/B shows
lateral and dorsal parts of the occipital gyrus (BA 19). The
transverse (BA 41) and superior temporal gyrus (BA 22/42) of
the auditory cortex are depicted in Fig. 1c/C. Fig. 1d/D repre-
sents a right lateralized frontoparietal network comprising the
supramarginal gyrus (BA 39/40), middle temporal gyrus (BA
21), and middle frontal gyrus (BA 8) on the right side as well as
bilateral frontal areas covering middle and inferior frontal gyrus
(BA 8/9/46). This network is consistent with a ventral/reorienting
attention network (34).

In Fig. 1e/E the upper IC pattern covers medial and lateral
parts of the superior parietal lobe as well as the precuneus (BA
7). This network is constituted by areas well known to be active
during spatial attention (41). The anticorrelated network of Fig.
1e/E (blue) includes a number of areas relevant for sensorimotor
coordination in pre- and postcentral gyri (BA 3/4), the caudal
zone of the cingulate motor cortex (BA 24), and parts of the
superior frontal gyrus (BA 8) (41). The upper IC pattern of Fig.
1f/F includes medial prefrontal areas (BA 9/10/11), anterior (BA
12/32), and posterior cingulate cortex (PCC) (BA 23/31), the
inferior temporal gyrus (BA 21), and bilateral supramarginal
gyrus (BA 39) in the parietal lobe. This pattern corresponds to
the DMN (26, 32, 42). Involvement of the hippocampus (HC), as
seen by Greicius et al. (5), was not observed here. The anticor-
related network of Fig. 1f/F covers the superior parietal lobe (BA
7/40), V5/MT, and inferior temporal gyrus (BA 37), as well as
parts of the inferior frontal gyrus mainly on the right side. These
areas comprise a dorsal/executive attention network (34).

Altered RSNs in Patients with aMCI. The second analysis aimed at
between-group differences in corresponding RSNs. We per-
formed a two-sample t test on each of the eight RSNs contrasting
the individual, back-reconstructed IC patterns of both groups.
The only contrasts revealing any group difference concerned
both IC patterns of Fig. 1f/F and are shown in Fig. 2 (P � 0.05,
FDR corrected). None of the two-sample t tests on the five
remaining components revealed significant group difference at
P � 0.001, uncorrected for multiple comparisons (cluster extent
threshold, 15 voxels). The following areas of the DMN associated
IC pattern demonstrated reduced component time course-
related activity in the patient group (see also SI Table 3): left
PCC (BA 31), right medial prefrontal cortex (BA 10), and two
small clusters in parietal cortex bilaterally (BA 39). Accordingly,
we found reduced activity in the patient group in bilateral
superior parietal lobes (BA 7, 40) and in the right prefrontal
cortex, namely precentral (BA 4) and inferior frontal gyrus (BA
9) of the anticorrelated IC pattern of Fig. 1f/F.

Patients with aMCI Have Reduced Gray Matter Volume in the Medial
Temporal Lobes. To assess possible causes of reduced functional
connectivity, we analyzed our data for structural differences
between both study groups. Neither the analyses of global
volumes of gray matter (GM) and white matter (WM) nor the

§§Correa, N., Adali, T., Li, Y., and Calhoun, V. D. (2005) in Proceedings of the IEEE Conference
on Acoustics, Speech, Signal Processing, Philadelphia, PA, pp. 401–404.

Table 1. Subject demographic information

Parameter NC MCI

n 16 24
Age, years 68.1 � 3.8 69.3 � 8.1
Sex, male/female 10/6 13/11
Education, �/�12 years 10/6 14/10
CDR, sum of boxes 0 � 0 2.2 � 0.9*
MMSE 29.6 � 0.5 27.7 � 1.1*
CERAD (delayed recall) 7.4 � 1.3 4.3 � 2.1*

Data are presented as mean � SD. NC, normal control; CDR, Clinical De-
mentia Rating scale; MMSE, Mini-Mental State Exam; CERAD, Consortium to
Establish a Registry for Alzheimer’s Disease. *, P � 0.05 difference between
groups.
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voxel-wise analysis of WM revealed significant differences.
However, the voxel-wise analysis of GM revealed GM loss
bilaterally in the MTL including the HC, the thalamus, the
insular cortex, as well as in patches within the inferior parietal
lobe (Fig. 3). These findings comply with previous reports on
subtle abnormalities in structural brain images of patients with
aMCI (16, 43). These areas did not overlap with those regions
found to be altered in RSNs of the patient group.

At-Rest Coactivation of HC and PCC Is Absent in Patients with aMCI.
To examine the relation of neocortical disconnectivity and MTL
atrophy we investigated the functional connectivity between the

HC and the RSNs with ROI correlation analyses. We hypoth-
esized reduced coactivation of HC and PCC of the DMN in the
patient group. The PCC is the central region of the posterior
DMN that is primarily affected by AD-associated alterations
such as hypometabolism or elevated atrophy rate; impaired
PCC–MTL connectivity is assumed to be the main cause for
prominent metabolic PCC changes in AD (3–7, 17). We com-
puted the pairwise correlations between the time courses from
each HC and the PCC cluster which was identified by ICA. The
average correlation between left/right HC and PCC was z �
0.37/0.30, SE � 0.08/0.08 in the control group and z � �0.03/
�0.09, SE � 0.10/0.08 in the patient group. We found significant
group differences for each HC (P � 0.04/0.02, Bonferroni-

Fig. 1. RSNs of normal controls (a–f ) and patients with aMCI (A–F). Each group IC image contains a pair of two spatial IC patterns that are correlated (red) or
anticorrelated (blue) with the time course of the component (data not shown). (a/A–d/D) Each pair of IC patterns is shown within one brain image. (e/E and f/F)
Each upper row represents the correlated IC pattern, each lower row the anticorrelated one. IC patterns are superimposed on a single-subject high-resolution
T1 image. The black to yellow/light blue color scale represents z values, ranging from 1.8 to 8.0. Glass brain projections illustrate results of one-sample t tests
on the individual back-reconstructed subject IC patterns across both groups (P � 0.05, FDR-corrected). (a/A–d/D) One-sample t test on the anticorrelated
individual subject IC patterns provided no significant results. In axial view the right hemisphere is displayed on the right. NC, normal controls.

Fig. 2. Contrasts of RSNs between normal controls and patients with aMCI.
(Left) Maps corresponding to DMNs of Fig. 1f/F, Upper. (Right) Maps corre-
sponding to executive attention networks of Fig. 1f/F, Lower. Color maps
represent significant (P � 0.05, FDR-corrected) voxels of higher component-
related activity in controls compared with patients. Corresponding t values are
color-coded with black to yellow (from 0 to 5.0) to light blue (from 0 to 6.2).
Maps are superimposed on a single-subject high-resolution T1 image. The
patient group did not show any significant higher activation for DMN and
executive attention network. For all remaining RSNs of Fig. 1, two-sample t
tests did not reveal any significant difference between the two groups. R, right
hemisphere.

Fig. 3. Color maps showing significant (P � 0.05, FDR-corrected) voxels of
decreased GM in aMCI compared with controls superimposed on sagittal and
coronal slices transformed in standard MNI space. Corresponding t values are
color-coded with black to yellow (from 0 to 6.3). The distribution of the
complete regional pattern of decreased GM in patients is represented by glass
brain projections.
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corrected) by applying an analyses of covariance, which included
corresponding HC volume as covariate. The correlation between
left and right HC did not differ significantly between healthy
controls (z � 0.76, SE � 0.10) and patients (z � 0.62, SE � 0.08)
in a two-sample t test. To evaluate the degree of functional
coactivation of the HCs and any RSN, we separately correlated
the time courses of each HC with the time course of each RSN
across all subjects. The strongest and only significant effect was
found between left HC and the DMN (z � 0.13, SE � 0.06, P �
0.003, Bonferroni-corrected, one-sample t test), indicating rel-
evant functional integration of the HC and the DMN during
rest (5).

Discussion and Conclusion
In this work we investigated spatiotemporal patterns of hemo-
dynamic activity during relaxed wakefulness and underlying
brain volumes in healthy elderly and patients with amnestic MCI.
By applying ICA, VBM, and ROI-based correlation analyses, we
characterized eight RSNs that were spatially consistent across
subjects and corresponded with functionally relevant patterns.
Areas of the DMN and the executive attention network showed
diminished functional connectivity in patients, whereas the
respective volumes remained unaffected. Atrophy was found for
both MTLs, including HCs in the patient group. Functional
connectivity between both HCs and left PCC of the DMN was
absent in patients. These results suggest that in aMCI a selected
subset of RSNs is affected by altered functional connectivity,
likely representing effects of early neurodegeneration.

Selectively Altered RSNs in Patients with aMCI. Our data suggest that
disconnection phenomena associated with prodromal stages of
AD are specific to a subset of RSNs whereas other networks
remain unaffected. By applying ICA in patients with aMCI, we
found left PCC and right medial prefrontal cortex of the DMN
as well as bilateral superior parietal lobes and bilateral inferior
frontal gyri of the executive attention network to be selectively
affected (Fig. 2). Regions of the affected RSNs did not differ
significantly in volumetric aspects between the two groups,
confirming the functional nature of the observed alterations
(Fig. 3). Our finding concerning the DMN is consistent with
previous results demonstrating altered deactivation in regions of
the DMN in MCI (44). The areas constituting the DMN and the
executive attention network also seem to be involved in early
changes of AD: In patients at risk for AD activity of the PCC or
superior parietal cortex is changed during memory or executive
attention-related tasks, respectively (14, 15). In mild AD, these
regions show changed functional connectivity at rest (5, 9) and
overlap with regional patterns of atrophy, glucose hypometab-
olism, and hypoperfusion (for overview, see ref. 3). Also, regions
showing early amyloid deposition overlap with posterior parts of
the default mode and executive attention network (2, 3, 45). In
summary, our result of selective changes of RSNs in individuals
at risk for AD corresponds very well with changes that have
previously only been described in AD.

Changes of the MTL are discussed as a possible factor causing
neocortical disconnectivity in AD (2, 4, 5, 7). The HC and
posterior parts of the DMN display coherent spontaneous
activity at rest (36) and constitute an episodic memory network
that is linked to successful recollection (35). Functional connec-
tivity of the HC with neocortical areas, especially with the PCC,
is reduced in AD during rest (17). The VBM analysis (Fig. 3)
demonstrated reduced GM within the MTL in the patient group.
This finding is in line with previous results for aMCI (16, 43) and
points to MTL neurodegeneration (3) as well as impaired
MTL—neocortex connectivity (16). Our ROI correlation anal-
ysis revealed that both HCs show significantly reduced functional
connectivity with the left PCC of the DMN in patients compared
with controls. Among all RSNs, the DMN was functionally most

strongly related to the HC at rest. This relation was demon-
strated by the only significant correlation between left HC and
DMN across all subjects, which is in line with previous results (5,
36). Taken together, the presented results indicate relevant
functional integration of the HC in the DMN at rest as well as
an impaired HC–parietal memory system in aMCI.

We conclude that the selectively changed functional connectivity
of RSNs in individuals at high risk for AD reflects altered connec-
tivity between the MTL and neocortical areas (4, 5, 7, 9, 15, 44).
Apparently, MTL—neocortex disconnectivity is related to neuro-
degeneration, which is expressed by MTL atrophy (16). In addition
to FC changes in the DMN, our result also points to relevant
functional disconnectivity of the executive attention network, which
is in line with observed attentional deficits in MCI and AD (9, 14,
15). This finding indicates impaired interaction between these two
anticorrelated networks that prominently organize intrinsic brain
activity (9, 22, 28). Finally, our work suggests that rest-fMRI has the
potential for the evaluation of connectivity in patients at risk for AD
for diagnostic purposes; one possible way would be to use ICA-
derived patterns to define ROIs where FC analysis can classify
patients from controls. We are currently in the process of assessing
symptom progression in our patients in a two-year follow-up
examination where FC analysis might provide a more accurate way
to evaluate the risk of conversion to dementia for individual patients
than neuropsychological testing and structural imaging alone.

RSNs and Functional Brain Disorders. In this work we identified
spatially consistent RSNs across both study groups that match
previous results (22, 24, 26, 46). Damoiseaux et al. (26) evaluated
the spatial consistency of RSNs and found a set of 10 reliably
detectable RSNs across subjects and sessions. Although we changed
many parameters such as ICA model, age, and health condition of
participants, the regional patterns of detected RSNs show large
regional concordance with their findings. Identified RSNs can be
divided into two groups. The spatial patterns of the first group (Fig.
1 a/A, b/B, c/C, and e/E) are associated with sensory or sensori-
motor functions, characterized in several previous studies (23, 24,
46, 47). The remaining networks encompass regions involved in
higher cognitive functions (34, 35, 41, 48, 49). The bilateral poste-
rior parietal network of map e/E including precuneus and intrapa-
rietal sulcus is known to be associated with spatial attention
processes (41). This network is anticorrelated to the RSN of map
e/E representing regions normally involved in sensorimotor inte-
gration; areas of both networks are part of a functional system
participating in goal-directed movement coordination (41). The
spatial pattern of Fig. 1f/F (Upper) covers areas of the DMN; this
network is suggested to support default mode function, such as
maintaining a background level of attention for the detection of
salient events by monitoring internal and external environment
(49). Evidence increases that large parts of the posterior DMN
together with the hippocampal system are associated with autobio-
graphical and prospective memory processing (35, 36, 50). Both the
network of Fig. 1f/F (Lower), involving bilateral superior parietal
cortex, intraparietal sulcus, and inferior frontal gyrus, and the right
lateralized frontoparietal network of Fig. 1d/D overlap with the
regions of the dorsal/executive and ventral/reorienting attention
systems (34). The dorsal attention system is assumed to be involved
in top–down direction of attention, and the ventral system, later-
alized to the right, supports reorienting of attention in response to
salient stimuli (27). Rest fluctuations of the two systems, which are
considered member of a group of areas routinely exhibiting task-
related activation, are anticorrelated to spontaneous BOLD fluc-
tuations of the DMN, demonstrated by ROI-based methods (22,
28). Using ICA, we found the anticorrelated coupling of the DMN
limited to the dorsal attention network. Our result is supported by
the finding that the two attention networks can be distinguished by
their spontaneous rest activity (27); it seems plausible that a system
concerned with attentional shifts in response to salient external
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stimuli is less strongly connected to introspectively oriented default
mode processing during rest than a system involved in goal-directed
orienting of attention.

In summary, we identified eight distinct, partly anticorrelated,
and spatially consistent RSNs in healthy elderly and patients with
aMCI. The division of the rest-related BOLD signal into separate
RSNs presumably reflects the functional organization of brain
activity into stabilized functional–anatomical systems (18, 19, 31).
Regarding the synchronicity of spontaneous BOLD fluctuations
during rest, pathology-induced changes seem to exist also in pa-
tients with autism, schizophrenia, attention deficit hyperactivity
disorder, or major depression (51–54). Taking into account these
findings and our result of selective changes of RSNs in aMCI, we
suggest that rest-fMRI and especially RSNs constitute very prom-
ising tools for the functional characterization of functional brain
disorders, for intergroup comparisons, and possibly with some
potential for assessing functional connectivity on a single-subject
level.

Materials and Methods
Subject data and ICA of rest-fMRI data are described below.
Detailed information regarding ROI-based correlation analyses
of fMRI data and VBM analysis of structural MRI data can be
found in SI Materials and Methods.

Subjects and Task. Sixteen healthy controls (6 female, ages 63–73
years) and 24 patients (11 female, ages 58–80 years) diagnosed with
aMCI participated in the study. All subjects provided informed
consent in accordance with the Human Research Committee
guidelines of the Klinikum Rechts der Isar, Technische Universität,
München. Patients were recruited from the Memory Clinic of the
Department of Psychiatry, controls by word-of-mouth advertising.
Examination of every subject included medical history, neurological
examination, informant interview (only for patients), neuropsycho-
logical assessment [CERAD battery, Consortium to Establish a
Registry for AD (55)], structural MRI, and for patients additional
blood tests. Patients met criteria for aMCI which contain reported
and neuropsychologically assessed memory impairments, largely
intact activities of daily living, and excluded dementia (Table 1)
(11). Exclusion criteria for entry into the study were other neuro-
logical, psychiatric, or systemic diseases (e.g., stroke, depression,
alcoholism), or clinically remarkable MRI (e.g., stroke lesions)
which could be related to cognitive impairment. Five controls and
nine patients were treated for hypertension (�-blockers, angioten-
sin-converting enzyme inhibitors, and calcium channel blockers),
and six controls and eight patients were treated for hypercholes-
terolemia (statins). None of the subjects had diabetes mellitus.
None of the subjects or patients received psychotropic medication,
especially cholinesterase inhibitors.

All subjects underwent 4 min of resting-state scan first followed
by an attention and a memory task, which are not discussed here.
For the resting-state scan, subjects were instructed simply to keep
their eyes closed, not to think of anything in particular, and not to
fall asleep.

Imaging Methods. Imaging was performed on a 1.5T Siemens
Symphony system. Functional data were collected by using a
gradient echo EPI sequence (TE � 50 ms, TR � 3,000 ms, f lip
angle � 90°, FoV � 200 mm2, matrix � 64 � 64, 33 slices, slice
thickness � 4 mm, and 0.4-mm interslice gap) (where TE is echo
time, TR is repetition time, FoV is field of view, and T1 is
inversion time) for a 4-min period resulting in a total of 80
volumes. The first three functional scans were discarded before
the subsequent analysis. A T1-weighted anatomical dataset was
obtained from each subject by using a magnetization-prepared
rapid acquisition gradient echo sequence (TE � 3.93 ms, TR �
1,500 ms, TI � 760 ms, f lip angle � 5°, FoV � 256 mm2, matrix �
256 � 256, 160 slices, voxel size � 1 � 1 �1 mm3).

Preprocessing. Functional MRI data were preprocessed by using the
Oxford Centre for Functional Magnetic Resonance Imaging of the
Brain Software Library (FMRIB; FSL version 3.2), statistical
parametric mapping (Wellcome Department of Cognitive Neurol-
ogy; SPM5), and in-house software for Matlab (MathWorks).

In a first step, nonbrain structures were removed from the echo
planar imaging volumes. Next we performed a mean-based inten-
sity normalization of all slices within a volume by the same factor
(56). Data were then motion-corrected, spatially normalized into
the stereotactic space of the Montreal Neurological Institute
(MNI), and spatially smoothed with an 8 � 8 � 8 mm Gaussian
kernel with SPM5. Before they were entered into the ICA, a
voxel-wise transformation was applied on the time course data
yijk(t), ŷijk(t) � [yijk(t) � �yijk	]/�ijk (for each voxel: t, time; i, j, k, three
directions in space; �yijk	, mean; �ijk standard deviation). This
procedure removed any systematic, between-group differences with
respect to BOLD amplitudes from the four-dimensional data set
ŷijk(t). Sensitivity for variance correlation was thereby rendered
independently of variance magnitude.

ICA. We performed the ICA by using group ICA for fMRI
toolbox (GIFT version 1.3b; icatb.sourceforge.net)§§ established
for the analysis of fMRI data (15, 39, 54). The toolbox supports
a group ICA approach, which first concatenates the individual
data across time, followed by the computation of the subject-
specific components and time courses. For each of the two study
groups the toolbox performed the analysis in three stages: (i)
data reduction, (ii) application of the ICA algorithm, and (iii)
back-reconstruction for each individual subject (39).

In the first step (i), data from each subject were reduced by
using PCA, whereby computational complexity was reduced
and most of the information content of the data was preserved.
After concatenating the resulting volumes, the number of
independent sources was estimated by the GIFT dimension-
ality estimation tool based on the aggregated data: 28/31 ICs
for the control/patient group (57). The final reduction step
according to the selected number of components was achieved
by PCA again. In the second stage of the analysis (ii) we chose
the Infomax algorithm for running the proper IC analysis and
a GM mask based on all subjects. In the final stage of
back-reconstruction (iii), time courses and spatial maps were
computed for each subject. After back-reconstruction, the
mean spatial maps of each group were transformed to z scores
for display (39). Before any statistics were applied to the
individual subject maps, the initially calculated scaling factor
�ijk was reintegrated into the data by voxel-wise multiplication.

Each IC contains a pair of two spatial IC patterns that are
correlated or anticorrelated to the time course of the component.
Upon visual inspection, eight IC patterns were located in the cortex
and represented functionally relevant RSNs as described previously
(26, 46). The remaining IC patterns were attributed to two major
forms of artifacts: IC patterns representing tissue border artifacts
near the ventricular system, the skull, and cerebrospinal fluid space
or IC patterns with main activation in midbrain structures below z �
�20 (MNI) in axial slices burdened by major vessel artifacts and
lack of reliability in EPI scans. Individual subject IC patterns
representing RSNs were entered into one- and two-sample random-
effects analyses in SPM5. Results were thresholded at P � 0.05,
FDR-corrected for multiple comparisons. The between-group two-
sample t tests were masked with a within-group mask thresholded
at P � 0.05, uncorrected.
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For statistical comparison of the anatomical T1-weighted images VBM2 software (http://dbm.neuro.uni-

jena.de/vbm), an extension of SPM2 software (http://www.fil.ion.ucl.ac.uk/spm), was used. VBM2 applies the 

“optimized” protocol (1, 2) and, additionally, a hidden Markov random field model (3). We used study-specific 

prior probability maps and a Gaussian kernel of 8 mm for smoothing. Global volumes of gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF) were derived from the non-normalized segmented images as 

provided by SPM2 after the first segmentation process. Total intracranial volume (TIV) was approximated by the 

sum of the global volumes of GM, WM, and CSF. To correct for head size, brain tissue fractions of FGM, FWM, 

and FCSF were calculated by dividing the respective volumes by the TIV. For group comparisons of global 

values, 2-sided independent t-tests were performed. Differences between groups at a level of p < 0.05 were 

regarded as significant. For the voxel-wise analysis of GM, we applied an analysis of covariance (ANCOVA) 

and included gender, age, and the global GM volume as nuisance variables. White matter reportedly is not 

dependent on these covariates therefore analysis was performed as Analysis of Variance (ANOVA) (1, 2) with p 

< 0.05. We included only voxels with a GM value greater than 0.1 (maximum value: 1) to avoid possible edge 

effects around the border between GM, WM, and CSF. We applied a height threshold of p<0.05, FDR corrected, 

corresponding to a voxel level of p<0.001 uncorrected and an extent threshold of p<0.05 family wise error 

(FWE) corrected corresponding to a cluster extent of 542 contiguous voxels. 

	
  

Data	
  analysis:	
  ROI-­‐based	
  correlation	
  analysis	
  	
  	
  	
  	
  

Data	
  were	
  preprocessed	
  as	
  described	
  in	
  Methods	
  with	
  two	
  additional	
  steps:	
  After	
  smoothing	
  and	
  before	
  

variance	
  normalising	
  data	
  were	
  low-­‐pass	
  filtered	
  (f<0.1	
  Hz)	
  and	
  mean	
  signal	
  values	
  which	
  were	
  calculated	
  

by	
  averaging	
  over	
  the	
  gray	
  matter	
  mask	
  were	
  removed	
  for	
  each	
  group.	
  These	
  procedures	
  eliminate	
  any	
  

systematic	
  fluctuations	
  not	
  involved	
  in	
  specific	
  regional	
  correlations.	
  Three	
  ROIs	
  were	
  created:	
  The	
  ROIs	
  

for	
  the	
  left	
  and	
  right	
  HC	
  were	
  derived	
  from	
  the	
  automated	
  anatomical	
  labeling	
  ROI	
  library	
  (4);	
  the	
  most	
  

significant	
  cluster	
  from	
  the	
  between-­‐group	
  two-­‐sample	
  t-­‐test	
  of	
  the	
  DMN	
  of	
  our	
  ICA	
  approach	
  which	
  was	
  

centred	
  in	
  the	
  left	
  posterior	
  cingulate	
  provided	
  the	
  third	
  ROI	
  (see	
  Results).	
  For	
  the	
  correlation	
  analysis	
  

between	
  left/right	
  HC	
  and	
  left	
  posterior	
  cingulate	
  voxelwise	
  BOLD	
  time	
  courses	
  for	
  each	
  ROI	
  were	
  

extracted	
  and	
  first	
  eigenvectors	
  of	
  each	
  ROI	
  were	
  computed.	
  Then	
  correlation	
  coefficients	
  for	
  each	
  pair	
  of	
  

ROIs	
  were	
  calculated.	
  Temporal	
  correlation	
  coefficients	
  were	
  converted	
  to	
  z	
  values	
  by	
  using	
  Fischer’s	
  r-­‐to-­‐

z	
  transformation.	
  This	
  transformation	
  generates	
  values	
  that	
  are	
  approximately	
  normally	
  distributed.	
  

Afterwards	
  data	
  from	
  patients	
  and	
  healthy	
  controls	
  concering	
  the	
  HC-­‐PCC	
  correlation	
  were	
  entered	
  into	
  

corresponding	
  ANCOVAs	
  with	
  HC	
  volumes	
  as	
  covariates	
  and	
  results	
  were	
  Bonferroni	
  corrected.	
  HC	
  

volumes	
  were	
  derived	
  from	
  the	
  VBM	
  analysis.	
  The	
  significance	
  for	
  the	
  correlation	
  between	
  both	
  HCs	
  was	
  

tested	
  in	
  a	
  two-­‐sample	
  t-­‐test.	
  For	
  the	
  analysis	
  of	
  the	
  functional	
  integration	
  of	
  the	
  HC	
  into	
  any	
  RSN	
  the	
  time	
  

courses	
  of	
  each	
  IC	
  representing	
  a	
  RSN	
  were	
  extracted	
  using	
  the	
  group	
  ICA	
  for	
  fMRI	
  toolbox	
  (GIFT,	
  see	
  

Results).	
  Correlation	
  analyses	
  for	
  both	
  HC	
  and	
  each	
  RSN	
  were	
  performed	
  separately	
  as	
  described	
  above	
  

for	
  pairwise	
  ROI	
  correlation	
  analysis.	
  After	
  using	
  Fischer’s	
  r-­‐to-­‐z	
  transformation	
  data	
  of	
  all	
  subjects	
  were	
  

entered	
  into	
  a	
  one-­‐sample	
  random-­‐effects	
  analysis	
  and	
  results	
  were	
  Bonferroni	
  corrected.	
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Table	
  2.	
  Peak	
  foci	
  for	
  ICs	
  d/D	
  to	
  f/F	
  corresponding	
  to	
  Figure	
  1	
  
lobe voxels anatomy BA L/R z-­‐score peak	
  x;y;z 

       

IC	
  d/D 

frontal 1524 middle	
  frontal	
  gyrus 8,	
  9,	
  46 R 5.85 [42;42;24] 

    R 5.61 [42;12;30] 

  inferior	
  frontal	
  gyrus  R 5.20 [45;48;-­‐6] 

 73 medial	
  frontal	
  gyrus 8 R 4.87 [3;30;42] 

 655 middle	
  frontal	
  gyrus 9,	
  46 L 6.09 [-­‐48;27;24] 

     4.69 [-­‐42;45;15] 

     4.65 [-­‐45;18;39] 

temporal 126 middle	
  temporal	
  gyrus 21 R 4.67 [63;-­‐54;-­‐3] 

     4.18 [66;-­‐30;-­‐15] 

parietal 522 supramarginal	
  gyrus 39,	
  40 R 5.60 [39;-­‐69;39] 

     4.28 [54;-­‐57;27] 

     3.96 [48;-­‐48;54] 

 30 supramarginal	
  gyrus 39 L 3.93 [-­‐36;-­‐78;45] 

     3.62 [-­‐39;-­‐69;39] 

       

IC	
  e/E	
   

time-­‐course	
  correlated	
  IC-­‐pattern	
  (red) 

parietal 3454 superior	
  parietal	
  lobe,	
  precuneus 7 L/R 6.10 [39;-­‐72;42] 

     5.73 [6;-­‐75;48] 

     5.54 [-­‐12;-­‐81;51] 

 78 MT	
  + 19 L 4.12 [-­‐48;-­‐60;-­‐15] 

 59  19 R 3.29 [54;-­‐54;-­‐18] 

 22 cerebellum  R 4.01 [6;-­‐54;-­‐51] 
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time-­‐course	
  anti-­‐correlated	
  IC-­‐pattern	
  (blue) 

frontal 375 cingular	
  motor	
  cortex,	
  caudal	
  zone 24 L/R 5.39 [12;-­‐15;42] 

  superior	
  frontal	
  gyrus 8 L 4.87 [-­‐15;15;51] 

     4.67 [-­‐12;-­‐18;21] 

 239 post-­‐	
  /precentral	
  gyrus	
   3/4	
   L 4.67 [-­‐33;-­‐27;45] 

     4.43 [-­‐51;-­‐9;39] 

 51 post-­‐	
  /precentral	
  gyrus	
   3/4	
   R 4.22 [57;-­‐15;39] 

     3.79 [63;-­‐6;36] 

 22 anterior	
  cingulate	
  cortex,	
  caudal	
  zone 24 R 4.13 [6;18;33] 

 50 inferior	
  frontal	
  gyrus 47 L 4.67 [-­‐51;33;0] 

       

IC	
  f/F 

time-­‐course	
  correlated	
  IC-­‐pattern	
  (red) 

frontal 2510 orbital	
  gyrus,	
  superior	
  frontal	
  gyrus 11 L/R 6.53 [-­‐3;51;-­‐9] 

  anterior	
  cingulate 12    

  superior	
  frontal	
  gyrus 10  6.32 [6;51;12] 

  anterior	
  cingulate 32    

  superior	
  frontal	
  gyrus 9  5.96 [-­‐18;27;48] 

temporal 125 middle	
  temporal	
  gyrus 21 L 5.58 [-­‐60;-­‐15;-­‐21] 

     5.35 [-­‐60;-­‐24;-­‐21] 

 97   R 4.44 [57;-­‐3;-­‐30] 

     4.10 [63;-­‐6;-­‐21] 

parietal 805 posterior	
  cingulate 31 L/R 6.09 [-­‐6;-­‐51;24] 

  posterior	
  cingulate 30  5.10 [-­‐6;-­‐57;6] 

 253 supramarginal	
  gyrus 39 L 4.71 [-­‐45;-­‐66;33] 

     4.70 [-­‐51;-­‐66;24] 

 137   R 4.33 [51;-­‐69;30] 

     4.19 [57;-­‐60;21] 

       

time-­‐course	
  anti-­‐correlated	
  IC-­‐pattern	
  (blue) 

frontal 173 inferior	
  frontal	
  gyrus,	
  opercular	
  part 44 R 5.18 [54;9;-­‐3] 

 178 inferior	
  frontal	
  gyrus,	
  triangular	
  part 9 R 5.00 [36;30;-­‐3] 

     4.57 [42;39;21] 

     4.49 [45;45;0] 

 130 inferior	
  frontal	
  gyrus  L 4.72 [-­‐45;42;30] 

     4.29 [-­‐45;42;15] 
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 21 precentral	
  gyrus 4 R 3.96 [54;9;45] 

     3.60 [51;0;54] 

temporal 47 inferior	
  temporal	
  gyrus 37 L 4.63 [-­‐48;-­‐48;-­‐15] 

 21 insula  R 4.22 [39;-­‐9;-­‐9] 

 40 inferior	
  temporal	
  gyrus 37 R 3.91 [54;-­‐51;-­‐12] 

     3.84 [42;-­‐51;-­‐15] 

 28 V5/MT  L 4.26 [-­‐54;-­‐63;0] 

parietal 1164 superior	
  parietal	
  lobe 7,	
  40 R 5.69 [18;-­‐66;54] 

  intraparietal	
  sulcus   5.67 [57;-­‐36;33] 

     5.09 [42;-­‐45;36] 

 945 superior	
  parietal	
  lobe 7,	
  40 L 6.16 [-­‐60;-­‐33;33] 

     5.42 [-­‐54;-­‐42;39] 

     4.89 [-­‐60;-­‐45;30] 
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Table	
  3.	
  Peak	
  foci	
  of	
  brain	
  regions	
  showing	
  higher	
  activation	
  in	
  the	
  control	
  group	
  

in	
  the	
  default	
  mode	
  and	
  executive	
  attention	
  network	
  (IC	
  f/F	
  in	
  Fig.1)	
  

corresponding	
  to	
  Fig.	
  2	
  	
  

	
  
lobe voxels anatomy BA L/R z-­‐score peak	
  x;y;z 

       

Default	
  mode	
  network 

frontal 48 superior	
  frontal	
  gyrus 10 R 4.33 [6;63;27] 

parietal 126 posterior	
  cingulate 31 L 4.47 [-­‐6;-­‐54;24] 

     3.92 [0;-­‐54;15] 

 45 supramarginal	
  gyrus 39 L 3.76 [-­‐45;-­‐69;36] 

 20 supramarginal	
  gyrus  R 3.26 [51;-­‐66;33] 

       

Executive	
  attention	
  network 

frontal 59	
   precentral	
  gyrus	
   4	
   R	
   4.11	
   [45;3;57]	
  

	
   	
   	
   	
   	
   4.07	
   [54;9;45]	
  

	
   	
   	
   	
   	
   3.22	
   [54;-­‐3;48]	
  

	
   34	
   inferior	
  frontal	
  gyrus	
  (triangular	
  part)	
   9	
   R	
   3.81	
   [36;45;33]	
  

	
   	
   	
   	
   	
   3.52	
   [33;51;27]	
  

	
   	
   	
   	
   	
   2.95	
   [33;42;24]	
  

	
   10	
   inferior	
  frontal	
  gyrus	
  (opercular	
  part)	
   	
   R	
   3.20	
   [57;12;-­‐6]	
  

parietal	
   245	
   superior	
  parietal	
  lobe	
   7,	
  40	
   R	
   5.31	
   [63;-­‐30;30]	
  

	
   	
   	
   	
   	
   3.67	
   [57;-­‐21;51]	
  

	
   	
   	
   	
   	
   3.41	
   [66;-­‐24;18]	
  

	
   237	
   superior	
  parietal	
  lobe	
   	
   L	
   4.87	
   [-­‐63;-­‐30;24]	
  

	
   	
   	
   	
   	
   4.12	
   [-­‐54;-­‐30;48]	
  

	
   	
   	
   	
   	
   3.68	
   [-­‐60;-­‐18;42]	
  

	
   63	
   anterior	
  cingulate	
   24	
   R	
   4.17	
   [3;12;48]	
  

	
   	
   	
   	
   	
   3.72	
   [6;6;36]	
  

	
   	
   	
   	
   	
   3.67	
   [9;0;48]	
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Afra M. Wohlschläger2,5, and Valentin Riedl2–5,*

1DepartmentofPsychiatry,KlinikumrechtsderIsar,TechnischeUniversitätMünchen,Munich,Germany;2DepartmentofNeuroradiology,
Klinikum rechts der Isar, Technische Universität München, Ismaninger strasse 22, 81675 Munich, Germany; 3Department of Nuclear
Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; 4Munich Center for Neurosciences Brain and
Mind,Ludwig-Maximilians-UniversitätMünchen,Martinsried,Germany;5DepartmentofNeurology,Klinikumrechtsder Isar,Technische
Universität München, Munich, Germany; 6Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway;
7The Mind Research Network, Albuquerque, NM

!Both the authors equally contributed to the study.

*To whom correspondence should be addressed; tel: 49-89-4140-7631, fax: 49-89-4140-7665, e-mail: valentin.riedl@mytum.de

Striatal dysfunction is thought to be a fundamental element
in schizophrenia. Striatal dopamine dysfunction impacts on
reward processing and learning and is present even at rest.
Here, we addressed the questionwhether and how spontaneous
neuronal activity in the striatum is altered in schizophrenia.
We therefore assessed intrinsic striatal activity and its re-
lation with disorder states and symptom dimensions in
patients with schizophrenia. We performed resting-state
functional (rs-fMRI) and structural magnetic resonance
imaging as well as psychometric assessment in 21 schizo-
phrenic patients during psychosis. On average 9 months
later, we acquired follow-up data during psychotic remis-
sion and with comparable levels of antipsychotic medica-
tion. Twenty-one age- and sex-matched healthy controls
were included in the study. Independent component analysis
of fMRI data yielded spatial maps and time-courses of
coherent ongoing blood-oxygen-level-dependent signal fluc-
tuations, which were used for group comparisons and corre-
lation analyses with scores of the positive and negative
syndromescale.Duringpsychosis, coherent intrinsicactivity
ofthestriatumwasincreasedinthedorsalpartandcorrelated
with positive symptoms such as delusion and hallucination.
In psychotic remission of the same patients, activity of the
ventral striatum was increased and correlated with negative
symptoms such as emotional withdrawal and blunted affect.
Results were controlled for volumetric and medication
effects. These data provide first evidence that in schizophre-
nia intrinsic activity is changed in the striatum and corre-
sponds to disorder states and symptom dimensions.

Key words: schizophrenia/psychosis/intrinsic brain
activity/resting-state fMRI/striatum

Introduction

Striatal dysfunction is thought to be a fundamental ele-
ment in schizophrenia.1 Especially, dopamine transmis-
sion in the striatum is increased during prodromal and
psychotic states.2,3 Such elevated dopamine levels correlate
with positive disease symptoms and antidopaminergic
drugs reduce these symptoms in most patients.4

It is still unclear, how striatal dopamine relates to brain
activity in humans, but animal experiments revealed that
increased dopamine modulates spontaneous activity in the
striatum.5,6 Furthermore, theoretical accounts suggest
that changed spontaneous brain activity contributes to
psychotic symptoms byworsening the signal-to-noise ratio
(SNR) of evoked and intrinsic activity.7,8 In particular,
noisy striatal signals are assumed to contribute to aberrant
salience processing and disrupted reinforcement learning
that both underlie positive symptoms in schizophrenia
such as delusions.9–11

These data suggest that an investigation of intrinsic brain
activity in humans might help to better understand the
pathophysiology of schizophrenia. Few studies reported
on global connectivity changes in the intrinsic functional
architecture of schizophrenic patients.12 Others have con-
centrated on cortical networks of intrinsic activity and
found distributed changes in frontal, temporal, and parietal
cortices.13–16 However, in vivo evidence for specifically
altered intrinsic activity in the resting-state signal of the
striatum is missing.
In order to test for aberrant intrinsic striatal activity,

we measured ongoing hemodynamic signal fluctuations
with fMRI during a 10-minutes rest period (rs-fMRI) in
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patients with schizophrenia and healthy controls (HCs).
Patients were assessed during psychosis and during psy-
chotic remission. We decomposed the rs-fMRI data with
independent component analysis (ICA) into spatially inde-
pendent maps of intrinsically coupled brain regions with as-
sociated blood-oxygen-level-dependent (BOLD) signal
fluctuations.17 From these spatial maps, we selected a pre-
viously described basal ganglia resting-state network
(BGN) including the striatum.18 Additionally, we selected
any further intrinsic cortical network with striatal contribu-
tions. The ICA approach allows the simultaneous explora-
tion of intrinsic connectivity changes of the striatum within
several networks.19 We controlled our analyses of intrinsic
functional connectivity for medication effects and struc-
tural changes.

We addressed the following questions: (1) is intrinsic
striatal activity changed in schizophrenia; (2) are poten-
tial changes modulated by psychosis, which is character-
ized by hyperdopaminergia1; and (3) are changes related
to symptom dimensions of schizophrenia.

Methods

Participants and Task

Twenty-one patients and 21 HCs participated in the study
(table 1). All participants provided informed consent in ac-
cordance with the Human Research Committee guidelines
of the Klinikum Rechts der Isar, Technische Universität
München. Patients were recruited from the Department
of Psychiatry, Klinikum Rechts der Isar, TU München,
controls by word of mouth advertising. Participants’ exam-
ination included medical history, psychiatric interview,

psychometric assessment, and blood tests for patients
(all performed by D.S. and M.S.). Psychiatric diagnoses
were based on Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV).20 The Structured
Clinical Interview for DSM-IV (SCID-I German version)
was used to assess the presence of psychiatric diagnoses.
The severity of clinical symptoms was measured with
the positive and negative syndrome scale (PANSS)21 on
the day of scanning. D.S. and M.S. have been profession-
ally trained for SCID and PANSS-based interviews with
interrater reliability for diagnoses and scores of more
than 95%. The global level of social, occupational, and
psychological functioning was measured with the Global
Assessment of Functioning Scale.22

All patients were diagnosed with schizophrenia. Fur-
ther inclusion criteria were an age between 18 and
60 years, current psychotic symptoms for the fMRI-session
during psychosis (SP) and remission of psychotic symptoms
(indicated by significantly decreased PANSS scores) for the
fMRI-session during psychotic remission (SPR). Patients
wereinpatientduringSPandambulatoryduringSPR.Onav-
erageabout9monthsafterpsychosis (tmean=285.84days,SD
= 167.66), 13 of 21 patients approved a second investigation
during remission. The 8 remaining patients that also were di-
agnosed as remitted from psychosis by external psychiatrists
could not be convinced of an additional reexamination and
rescanning. Importantly, the subsample of patients that
was reexamined did not differ from the initial patient group
with respect to demographical or medication parameters
(table 1) but had significantly reduced PANSS scores.

Patients were free of any current or past neurological
or internal systemic disorder, current depressive or manic

Table 1. Demographic and Clinical Characteristics

HC
(n = 21)

SP
(n = 21)

SPR
(n = 13)

SP (n = 21) vs
HC (n = 21)a

SPR (n = 13) vs
HC (n = 13)a

SP (n = 13) vs
SPR (n = 13)b

Measure
Mean
(SD)

Mean
(SD)

Mean
(SD) T Score P Value T Score P Value T Score P Value

Age 33.57 (13.6) 34.05 (12.27) 33.69 (10.53) �0.121 0.904 �0.330 0.745

Sex
(male/female)

10/11 10/11 9/4

PANSS
Total 30.14 (0.65) 80.76 (20.77) 52.75 (13.93) 8.96 .000* 3.240 .004* 6.466 .000*

Positive 7.05 (0.22) 19.4 (6.09) 11.92 (3.63) 9.091 .000* 4.801 .000* 3.212 .008*

Negative 7 10 (0.44) 21.14 (8.20) 13.58 (5.63) 7.84 .000* 4.102 .000* 3.345 .007*

General 16.05 (0.22) 39.81 (11.06) 27.25 (8.30) 9.846 .000* 4.858 .000* 4.473 .001*

GAF 99.76 (1.09) 39.62 (11.68) 59.25 (14.44) �23.492 .000* �10.046 .000* �3.627 .004*

CPZ 388.61 (384.67) 206.95 (189.67) 1.281 .227

Note: HC, healthy control group; SP, group of patients with schizophrenia during psychosis; SPR, group of patients with schizophrenia
during psychotic remission; PANSS, Positive and Negative Syndrome Scale; GAF, Global Assessment of Functioning Scale; CPZ,
chlorpromazine equivalent dose.
aTwo-sample t test.
bPaired t test.
*Significant for P < .05 corrected for multiple comparisons.
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episode, substance abuse (except nicotine), and cerebral
pathology in MRI. Three of 21 patients during psychosis
and 4 of 13 patients during psychotic remission were free
of antipsychotic medication. All other patients received
mono- or dual therapy with atypical antipsychotic med-
ication, including Amilsupride (2 cases during SP/1
case during SPR), Olanzapine (11/1), Clozapine (4/3),
Quetiapine (2/3), Ziprasidone (1/0), Risperidone (5/2),
Aripiprazole (2/1), and Paliperidone (3/1) (see online
supplementary table S1 for individual medication proto-
cols and dosage; see also table 1 for mean chlorpromazine
(CPZ) equivalent dose23). Importantly, CPZ did not dif-
fer significantly between SP and SPR. All controls were
free of any current or past psychiatric, neurological or
systemic disorder, or psychotropic medication.

All participants underwent 10 minutes of rs-fMRI with
the instruction to keep their eyes closed and not to fall
asleep. We verified that subjects stayed awake by inter-
rogating via intercom immediately after the rs-fMRI
scan. Before and after scanning, a medical examination
of patients validated their stable condition and investi-
gated whether they had feelings of odd situations during
the scanning. No patient dropped out during the first
scanning session. HCs were scanned only once to define
the range of normal BGN coherence; thus, it was not pos-
sible to directly test for schizophrenia-specific changes
between first and second scan. However, several indepen-
dent rs-fMRI studies in HCs confirmed the consistency of
rs-fMRI networks across days and months.24,25

FMRI Data Acquisition and Analysis

MRI was performed on a 3 T whole-body MR scanner
(Achieva; Philips, Netherland) using an 8-channel
phased-array head coil. For coregistration and volumet-
ric analysis, T1-weighted anatomical data were obtained
from each subject by using a magnetization-prepared
rapid acquisition gradient echo sequence (echo time
[TE] = 4 ms, time of repetition [TR] = 9 ms, inversion
time [TI] = 100 ms, flip angle = 5�, field of view
[FoV] = 240 3 240 mm2, matrix = 240 3 240, 170 slices,
voxel size = 1 3 1 3 1 mm3). FMRI data were collected using
a gradient echo planar imaging sequence (TE = 35 ms, TR =
2000 ms, flip angle = 82�, FoV = 220 3 220 mm2, matrix = 80
3 80, 32 slices, slice thickness = 4 mm, and 0 mm interslice
gap; 10 minutes of scanning result in 300 volumes).

For each participant, the first 3 functional scans of each
fMRI-session were discarded due to magnetization effects.
Statistical parametric mapping 8 (SPM8) (Wellcome De-
partment of Cognitive Neurology, London) was used for
motion correction, spatial normalization into the stereo-
tactic space of the Montreal Neurological Institute and
spatial smoothing with an 8 3 8 3 8 mm Gaussian kernel.
None of the participants had to be excluded due to exces-
sive head motion (linear shift <3 mm across run and on
a frame-to-frame basis, rotation <1.5�). We also verified
nonsignificant differences in the SNR ratio of the fMRI

data between healthy subjects (mean: 47.27, SD: 10.79)
and patient group (mean: 46.21, SD: 11.6) with P = .76.

Preprocessed data were decomposed into 40 spatial in-
dependent components within a group ICA framework,17

which is based on the infomax algorithm and implemented
in the GIFT-software (http://icatb.sourceforge.net).
Dimensionality estimation was performed by using the
minimum description length criteria and resulted in
40 components representing the mean of all individual
estimates. Before volumes were entered into ICA analysis,
voxel-wise z-transformation on time course data yijk(t) was
applied by subtracting the mean Æyijkæ and dividing by the

SDrijk ( ijkðtÞ=
�
yijkðtÞ � Æ yijkæ

�
=rijk, t time, i,j,k directions

in space). The sensitivity of the multivariate ICA algo-
rithm for correlation of variance between voxels, ie, func-
tional connectivity, was thereby rendered independent of
the original BOLD signal magnitude across subjects. Data
were concatenated and reduced by 2-step principal compo-
nent analysis, followed by independent component estima-
tion with the infomax algorithm. We subsequently ran
40 ICA (ICASSO) to ensure stability of the estimated com-
ponents. This results in a set of average group components,
which are then back reconstructed into single-subject space.
We then applied a multiple spatial regression with a mask
containing caudate nucleus and putamen to the 40 indepen-
dent components to automatically select those including the
striatum (figure 1, supplementary figure S1 and tables S2
and S3). The mask was generated with the WFU-Pickatlas
(http://www.fmri.wfubmc.edu/). Before we entered the indi-
vidual’s spatial maps into second-level statistics, we reinte-
grated the initially calculated scaling factor rijk into the
data by voxel-wise multiplication in order to preserve
each individual’s profile of variance magnitude while leav-
ing the normalized time course component unchanged.26

To statistically evaluate spatial maps of selected inde-
pendent components (ICs), we calculated voxel-wise one-
sample t tests on participants’ reconstructed spatial maps
for each group and session, using SPM8 (P < .05, false
discovery rate [FDR], figure 1). To analyze group effects,
participants’ spatial maps were entered into two-sample
t tests with striatal volumes as covariate of no interest
when comparing patients with HC (P< .05 FDR-corrected,
figure 2, supplementary table S4). To evaluate the temporal
aspect of selected ICs, we investigated the frequency distri-
bution of each IC’s time course. The power spectral density
of each participant’s time course for each session was cal-
culated and then averaged across frequencies ranging from
0.01 to 0.1 Hz. Differences across groups were assessed by
using two-sample t tests (supplementary figure S2).

The relation between striatal activity and symptom
dimensions was studied within a region of interest
(ROI)–based approach. ROI-restricted z scores (derived
from subjects’ BGN-ICs) were partially correlated with
PANSS scores in patients with striatal volume and anti-
psychotic medication CPZ as regressors of no interest
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(partial correlation, P < .05; figure 3, table 1). Striatal
ROIs were created by using the MARSBAR-toolbox
(Release 0.42, http://marsbar.sourceforge.net/). Centers
of spheric ROIs with 6 mm radius were derived from
the study of Martinez and colleagues,27 including left
and right associative striatum (624, 12, 0) and left and
right limbic striatum (612, 9, �9). For patients’ BGN-
IC of each session, z scores were extracted for each
ROI and averaged across each bilateral ROI-pair.

Voxel-Based Morphometry Analysis

In order to control any functional connectivity results
for potentially structural alterations, we calculated an av-
eraged volumetric score for the striatum and included
that as a covariate of no interest. For data preprocessing
and analysis, the voxel-based morphometry 8 (VBM8)
toolbox (http://dbm.neuro.uni-jena.de/vbm.html) was
used. Images were corrected for bias-field inhomogeneity,
registered using linear (12-parameter affine) and nonlinear
transformations, and tissue classified into gray matter

(GM), white matter, and cerebrospinal fluid within the
same generative model.28 The resulting GM images were
modulated to account for volume changes resulting from
the normalization process. Here, we only considered non-
linear volume changes so that further analyses did not have
to account for differences in head size. Finally, images were
smoothed with a Gaussian kernel of 8 mm (FWHM). We
then calculated an averaged score for bilateral ventral and
dorsal striatum and tested that for group differences.
Additionally, we included this averaged VBM score as
covariate of no interest in the above-described functional
analysis of group differences across spatial IC maps.

Results

The Basal Ganglia Network Includes the Ventral and
Dorsal Striatum

For each subject, ICA of fMRI data resulted in spatial
maps, displayed in z scores, and associated time course
values. Together, these measures represent the relative

Fig. 1.Spatial mapsofcoherent intrinsic activitywithinthebasal ganglianetwork(BGN).After independent componentanalysis ofresting-state
fMRI data, spatial maps of single-subject ICs representing the BGN were entered into voxel-wise one-sample t tests across individuals of each
group and thresholded at P < .05, corrected for false discovery rate. Statistical parametric maps representing brain areas with significantly
covarying activity were superimposed on a single-subject high-resolution T1 image (color scale representing z values from 0 to 16). The BGN
includes the striatum, pallidum, and thalamus. (a) Patients during psychosis, (b) patients during psychotic remission, and (c) healthy controls.
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degree to which the component contributes to the overall
BOLD signal at a given time point. Automated component
selection by spatially regressing a striatum mask with all
spatial maps revealed a subcortical basal ganglia network
(BGN) in each individual (supplementary table S2). This
BGN was spatially consistent across groups and sessions,
matched previous results,18 and included the striatum
(nucleus caudatus, putamen), globus pallidus, and thalamus
(figure 1, one-sample t test, P< .05, correction for false dis-
covery rate). Additionally, 3 further ICs with cortical cen-
ters of mass had minor striatal contribution (supplementary
figure S1 and tables S2 and S3).

Spatial Maps of Coherent Intrinsic Brain Activity Reflect
Psychosis andPsychoticRemission inDistinctParts of the
Striatum

Compared with controls, psychotic patients showed
increased activity in the associative and sensorimotor

striatum of the BGN (figure 2 and supplementary table
S4, two-sample t test, P< .05 FDR, corrected for striatal
volume). During psychotic remission, the same patients
showed stronger activity in bilateral limbic striatum
(figure 2 and supplementary table S4, two-sample t test, P
< .05 FDR, corrected for striatal volume) when compared
with HC. The 3 cortical ICs with striatal involvement did
not differ across groups and sessions (P< .001 uncorrected).

Spectral Power of Time Courses of Synchronous Activity
Was Changed During Psychotic Remission

As a complementary measure to the spatial information
provided by component maps, we estimated the spectral
power of BGN-time courses, averaged for frequencies
from 0.01 to 0.1 Hz, and compared them across groups
and sessions (supplementary figure S2; two-sample t tests
for comparisons with controls, paired t test for compar-
isons across sessions). Patients in psychotic remission

Fig. 2. Increasingly synchronized intrinsic activity in distinct locations of the striatum depends on disorder state. Statistical parametric maps
(SPMs) of brain areas with significantly increased covarying activity in patients. (a) Two-sample t test between patients during psychosis and
healthy controls (HCs), Montreal Neurological Institute (MNI)-coordinates [x,y,z] of the SPM: [27,12,4]; (b) Two-sample t test between
patients during psychotic remission and HCs, MNI-coordinates: [17,5,�8]; (c) Overlay of (a) and (b) reveals spatially distinct subregions
within the striatum, MNI-planes (y,z): [�7,�1]. Striatal volume was entered as covariate of no interest. All t tests were thresholded atP< .05
and corrected for false discovery rate. SPMs were superimposed on a single-subject high-resolution T1 image (color scale representing zvalues
from 0 to 6).
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had significantly reduced power compared with controls
(P = .02). Patients during psychosis had a trend for reduced
power compared with controls (P = .08). Again, the other
ICs with striatal involvement did not differ across groups
and sessions for temporal aspects of striatal activity.

Intrinsic Striatal Activity Predicted Positive andNegative
Symptoms

To study the relation between increased striatal activity
and symptom dimensions, we correlated ROI-restricted
z scores with total PANSS scores in patients. The coordi-
nates of ROIs for functional subdivisions of the striatum
(limbic/ventral and associative/dorsal) were indepen-
dently derived from a previous brain imaging study.27

During psychosis, we found that synchronous activity
of the dorsal striatum correlated with total positive
(r = .53, P< .05) but not with negative (r = .02) symptoms
(partial correlation, corrected for striatal volume and
medication (CPZ), Bonferroni corrected for 4 tests);
during psychotic remission, the correlation between ac-
tivity in the ventral striatum and total negative symptoms
demonstrated a trend to significance (r = .35, P = .09
corrected), while there was no relation to positive symp-
toms (r = �.07). Post hoc analyses of correlations with
PANSS subscores revealed that the severity of delusions
and hallucinations during psychosis positively correlated
with activity increases within the associative striatum
(figure 3, supplementary table S5, P < .05). During
psychotic remission, the severity of blunted affect and

Fig. 3.Positive and negative symptoms of schizophrenia are related to intrinsic activity in dorsal and ventral parts of the striatum. In patients,
the positive syndrome scale of positive and negative syndrome scale (PANSS) correlated with intrinsic activity in the dorsal striatum, while the
negative syndrome scale was related to activity in the ventral striatum. In this figure, PANSS subscores responsible for the overall syndrome-
brain relationship are plotted. From the positive syndrome scale, only (a) delusions and (b) hallucinations were significantly correlated with
coherent activity in the dorsal striatum (red region of interest [ROI], Montreal Neurological Institute (MNI)-coordinates:624,12,027) during
psychosis (P < .05). The negative scores (c) blunted affect and (d) emotional withdrawal were significantly correlated with activity in the
ventral striatum (blue ROI, MNI:612,9,�927) during psychotic remission (P< .05). ROI-signals were calculated as averaged z scores across
left/right ROI from single-subject ICs of the basal ganglia network (figure 1). Partial correlations were corrected for striatal volume and
antipsychotic medication (CPZ).
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emotional withdrawal positively correlated with activity
increases within the limbic striatum (figure 3, supplemen-
tary table S5, P < .05).

Changes of Striatal Coactivity Are Not Explained by
Medication or Striatal Volume Changes

Finally, we investigated whether medication or structural
changes in the striatum influence our result of coactivity
changes. For each subject, we summarized his/her med-
ication in terms of chlorpromazine equivalents (CPZ)
and tested these for differences across disease states
and for any correlation with striatal connectivity
measures. We found no difference between psychosis
and psychotic remission for the patient group (paired t
test, P < .05, see table 1). Furthermore, the voxel-wise
correlation analysis—restricted to the striatum—between
z scores reflecting coactivity and CPZs across patients
during psychosis and psychotic remission respectively
revealed no significant correspondence (P < .05, FDR-
corrected). Also, the analysis of volumetric data revealed
no significant group differences for the striatum between
healthy subjects and patients (P = .57).

Discussion

This study revealed changed intrinsic striatal activity in
patients with schizophrenia. Changes were modulated
by psychosis and related to various symptom dimensions
in spatially distinct regions: Coherent intrinsic activity in
the dorsal striatum was increased during psychosis and
predictive for delusion and hallucination; the ventral stria-
tum, however, showed increased activity during psychotic
remission and predicted blunted affect and emotional
withdrawal in the same patients. These findings extend
our knowledge about striatal dysfunction in schizophrenia
and suggest a link between intrinsic activity, symptom
dimensions, and possibly striatal dopamine dysfunction.

The Link Between Changed Intrinsic Activity in the
Striatum and Symptom Dimensions in Schizophrenia

The striatum is integrated into multiple cortico—basal
ganglia—cortical loops. The ventral part projects into
limbic, the associative part into associative, and the sen-
sorimotor part into sensorimotor cortices.29,30 Activity
across these corticostriatal loops is coordinated particu-
larly at the striatal level.30 In order to retrieve distinct
intrinsic networks with striatal contribution, we decom-
posed the rs-fMRI data with ICA and subsequently
analyzed several components. Voxel-wise z values in a com-
ponent’s spatial map reflect the strength of functional con-
nectivity to all other parts of this particular network.17,19

While we found no disease-related differences of func-
tional connectivity in the cortical networks covering parts
of the basal ganglia, the BGN itself revealed strong changes
of coherent intrinsic activity within the striatum.

Dorsal Striatum Activity Correlates With Positive
Symptoms

We found that coherent intrinsic activity in the dorsal
striatum was increased during psychosis but not during
psychotic remission. Moreover, activity in the associative
part correlated with positive symptoms and particularly
with delusion and hallucination. With respect to regional
specificity and behavioral relevance, our result is well in
line with previous findings focusing on dopaminergic
dysfunctions.2,3 For example, Howes and colleagues2

found elevated dopamine function of the associative
striatum to be linked with positive signs in patients
with prodromal schizophrenia. The consistency between
our resting-state fMRI study and previous dopamine-
relatedresting-statepositronemissiontomographystudies
in terms of brain-behavior relations suggest a link between
intrinsic activity and dopamine dysfunction at rest.

Ventral Striatum Activity Correlates With Negative
Symptoms

We found increased coherence of intrinsic activity in the
ventral striatum during psychotic remission corresponding
to blunted affect and emotional withdrawal in these pa-
tients. The ventral striatum is critically involved in emotion
processing and reward-based learning.30 In schizophrenia,
task-fMRI studies on reward and emotion processing also
revealed a link between activity changes in the ventral stria-
tum and negative symptoms.31–33 We interpret the increase
of intrinsic connectivity in the ventral striatum with an in-
creased frequency of negative symptom behavior. This is in
accordance with rs-fMRI data of healthy subjects where re-
petitive sensory experiences lead to increased intrinsic con-
nectivity in sensory systems.26 Similarly, patients with major
depression (MD) suffer from frequent negative feelings or
repetitive behaviors such as rumination. Accordingly, stud-
ies on resting-state networks in MD reveal increased intrin-
sic connectivity in associated brain regions.34

The Link Between Changed Spontaneous Activity in the
Striatum and Dopamine Dysfunction in Schizophrenia

We found that increased intrinsic activity in the ventral and
dorsal striatum of patients differentially predicts disorder
states and symptom dimensions. Our finding of locally di-
verging dysfunctions in the striatum correspond well with
two distinct dopaminergic pathways: dopaminergic cells
in the ventral tegmentum release dopamine into the ventral
striatum and dopaminergic cells of the substantia nigra pro-
ject to the dorsal striatum.35 Although direct evidence for an
interaction of intrinsic activity and dopamine signaling is
still missing, there is experimental evidence for a relationship
between dopamine levels and intrinsic activity in the dorsal
striatum of animals and humans. In monkeys, iontophoret-
ically applied dopamine modulates the spontaneous firing
rate of neurons in the dorsal striatum,6 see also Goto et al.5

In patients suffering from Parkinson’s disease (PD), where
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dopamine levels in the dorsal striatum are reduced due to
substantia nigra degeneration, resting-state fMRI data
show an increase of intrinsic activity in the dorsal striatum
after administration of levodopa, almost reaching levels of
healthy persons.36,37 In schizophrenia, psychosis is linked to
elevated striatal dopamine function in the associative
part,2,3 which corresponds well to our data of increased in-
trinsic activity also in the dorsal part of the striatum. To-
gether, these results from various domains suggest
a potential link of intrinsic activity and dopamine signaling,
at least in the dorsal striatum, which is particularly altered
in patients with PD and schizophrenia. However, other
neurotransmitter systems and structural changes might
also impact on striatal dysfunction and should therefore
be investigated with respect to intrinsic brain activity.

Control Parameters and Limitations

The BGN consistently shows low-frequency BOLD signal
fluctuations across both groups, a typical characteristic of
functionally relevant intrinsic brain networks.19 However,
we also found slight differences in the low-frequency power
between healthy subjects and patients (supplementary fig-
ure S2). While the meaning of alterations in the frequency
range is still a matter of discussion,38 a recent study re-
ported decreased low-frequency power in a cortical IC of
patients with schizophrenia.14 Together, our data provide
evidence for consistent changes of spatial and temporal
characteristics of intrinsic striatal activity in schizophrenia.

We also aimed at controlling for several parameters
related to the disease that might impact on our findings.
We therefore included medication and striatal volume as
confounding effects into the analyses.

Medication. It is important to note that the remitted sub-
sample that we investigated approximately 9 months later
only differed with respect to symptom dimensions (PANSS)
but not with respect to medication and demographical
aspects. Still, drug effects might confound our results
from the group analysis compared with HCs. However, 2
recent studies found evidence that (1) the resting-state signal
in the striatum of drug-naı̈ve schizophrenic patients is also
increased16 suggesting that rs-fMRI effects are rather due to
the pathology than due to drug effects. And that (2) dopa-
minergic substitution in PD increases resting-state connec-
tivity in the striatum.36,37 Therefore, any antidopaminergic
medication in our patients should even have a contrary ef-
fect on the coherent activity in the striatum.39 Finally, (3)
both direction and localization of change in spontaneous
activity were in accordance with the literature.3,16,36,37

Striatal Volume. It is also unlikely that increased striatal
spontaneous activity is due to volumetric changes; again,
we included striatal volume from a VBM analysis as vari-
able of no interest into statistical analyses. Although a pre-
vious study observed volume reduction in the striatum of

schizophrenic patients depending on disorder state, med-
ication, and duration of disorder,40 we did not find any
changes of striatal volume in our patient group.

A limitation of the study is the fact that we were not able
to recruit all 21 patients for another reexamination and
rescan during remission. Although all patients were in re-
mission at the time of contact, 8 subjects did not agree to
return to the clinic due to several reasons. Furthermore, we
did not rescan HCs a second time as various test-retest stud-
ies with rs-fMRI data proved the consistency of the intrinsic
functional architecture across days and months.24,25 Al-
though we cannot rule out any order effects in the patient
group, we conclude that the long-term shift that exclusively
occurred in the BGN and not in any other network is un-
likely to be caused simply by changes over time.

Conclusions

Overall, we found intriguing similarities between changes of
intrinsic activity in the striatum, behavioral symptoms, and
previous dopamine findings. Increased coherent intrinsic
activity in the dorsal striatum during psychosis is predictive
for delusion and hallucination; increased activity during
psychotic remission in the ventral striatum is predictive
for blunted affect and emotional withdrawal in the same
patients. However, further studies exploring both a patient’s
dopamine function and intrinsic activity at the same time
would be needed to reveal any direct relation between ab-
errant striatal dopamine function and intrinsic activity.
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Supplementary Tables 

Table S1.  Individual subject medication protocol and dosage 
Patient_ID First scan during acute state of 

psychosis 
Second scan during state of 

remission 
1	
   20	
  mg	
  Olanzapine	
   400	
  mg	
  Clozapine	
  

2	
  
100	
  mg	
  Clozapine,	
  80	
  mg	
  

Ziprasidone	
   NO	
  medication	
  

3	
  
30	
  mg	
  Olanzapine,	
  15	
  mg	
  

Aripiprazole	
   no	
  second	
  scan	
  

4	
  
10	
  mg	
  Olanzapine,	
  5	
  mg	
  

Risperidone	
   2	
  mg	
  Risperidone	
  

5	
  
30	
  mg	
  Olanzapine,	
  5	
  mg	
  

Risperiodone	
   no	
  second	
  scan	
  
6	
   NO	
  medication	
   no	
  second	
  scan	
  

7	
  
12,5	
  mg	
  Olanzapine,	
  6	
  mg	
  

Paliperidone	
   NO	
  medication	
  
8	
   NO	
  medication	
   6	
  mg	
  Paliperidone	
  
9	
   20	
  mg	
  Olanzapine	
   12,5	
  Olanzapine	
  

10	
  
400	
  mg	
  Quetiapine,	
  9	
  mg	
  

Paliperidone	
   NO	
  medication	
  
11	
   25	
  mg	
  Olanzapine	
   NO	
  medication	
  

12	
  
30	
  mg	
  Olanzapine,	
  50mg	
  

Clozapine	
   300	
  mg	
  Clozapine	
  

13	
  
30	
  mg	
  Olanzapine,	
  5	
  mg	
  

Risperidone	
   600	
  mg	
  Quetiapine	
  

14	
  
400	
  mg	
  Quetiapine,	
  5	
  mg	
  

Risperidone	
   no	
  second	
  scan	
  

15	
  
25	
  mg	
  Olanzapine,	
  50	
  mg	
  

Clozapine	
   no	
  second	
  scan	
  

16	
  
400	
  mg	
  Amilsupride,	
  5mg	
  

Risperidone	
  
600	
  mg	
  Amilsupride,	
  400	
  mg	
  

Quetiapine	
  

17	
   NO	
  medication	
  
600	
  mg	
  Quetiapine,	
  5	
  mg	
  

Risperidone	
  

18	
  
200	
  mg	
  Amilsupride,	
  15	
  mg	
  

Aripiprazol	
   no	
  second	
  scan	
  

19	
  
30	
  mg	
  Olanzapine,	
  400	
  mg	
  

Quetiapine	
   no	
  second	
  scan	
  
20	
   15	
  mg	
  Olanzapine	
   no	
  second	
  scan	
  

21	
  
200	
  mg	
  Clozapine,	
  12mg	
  

Paliperidone	
  
450	
  mg	
  Clozapine,	
  15	
  mg	
  

Aripiprazole	
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Table S2.  Striatal contributions to brain networks in healthy controls: Spatial 
Regression  

Network 
Spatial 
Regression 
coefficient 

one-sample-t-
test, FDR-
corrected 

two-sample-t-
test, SP vs. HC, 
FDR-corrected 

Basal Ganglia Network 0.393 p<0.05  (Fig 1) none 
Artefact (White Matter) 0.006 p<0.05 - 
Artefact (White Matter) 0.005 p<0.05 - 
Lateral Temporal Network 0.002 p<0.05 (Fig S1) none 
Hippocampal Cingular Network 0.001 p<0.05 (Fig S1) none 
Salience Network 0.0001 p<0.05 (Fig S1) none 

 
A multiple spatial regression was conducted using a mask comprising the bilateral striatum (Putamen, globus pallidus, caudate 
nucleus) to identify independent components covering the striatum. For all networks with spatial regression coefficient >0.0001, 
a one-sample-t-test was performed to investigate the statistical significance of striatal contributions. For all networks with 
significant striatal co-activations (p<0,05, FDR-corrected), a two-sample-t-test between HC and SP was performed. The tests 
yielded no significant between-group differences. 
 
 
 
 
 
 
Table S3.  Striatal contributions to cortical-subcortical intrinsic brain networks in 
healthy controls: one-sample-t-test, FDR-corrected, see Figure S1, Table S2. 

Anatomical region L/R cluster Z-score p-value (FDR-
corected) MNI (x,y,z) 

Lateral Temporal network 
Operculum R 1720 7,73 <0,001 57, -15, 9 

Superior temporal 
gyrus R  6,95 <0,001 48, -33, 12 

Operculum L 1864 7,34 <0,001 -48, -30, 15 
Precuneus R 91 4,79 <0,001 12, -48, 69 

Lingual Gyrus L 101 4,56 <0,001 -18, -54, -3 
Anterior cingulate 

cortex R 170 3,96 <0,001 6, 15, 27 

Middle cingulate cortex R 170 3,96 <0,001 6, 24, 30 
Cerebellum VII L 17 3,83 <0,001 -24, -72, -45 

Caudate Nucleus R 24 3,66 0,001 12,12, 0 
Postcentral Gyrus R 8 3,64 0,001 60, -15, 48 

Superior frontal gyrus L 21 3,63 0,001 -18, 33, 39 
Lingual Gyrus R 24 3,53 0,001 15, -45, -3 

Middle cingulate cortex R 24 3,10 0,001 9, -52, 36 
Middle orbital gyrus R 19 3,47 0,001 36, 54, -3 
Cerebellum Crus 2 L 10 3,45 0,001 -42, -69, -39 

Cerebellum IX L 20 3,37 0,001 -15, -54, -42 
Hippocampal-insular-cingular network 

Insula Lobe R 2568 7,28 <0,001 48, 9, -6 
Hippocampus L 2668 6,14 <0,001 -15. -27, -12 
Hippocampus R 2568 5,95 <0,001 18, -33, -12 

Superior temporal 
gyrus L 1227 7,21 <0,001 -57, 3, 0 

Insula Lobe L 1227 6,36 <0,001 -24, 3, 6 
Anterior cingulate 

cortex L 428 6,34 <0,001 0, 39, 12 

Middle occipital gyrus L 39 5,12 <0,001 -36, -72, 33 
Thalamus L 61 4,84 <0,001 -3, -18, 3 

Caudate Nucleus L 24 4,59 <0,001 -9, 6, 3 



INTRINSIC FUNCTIONAL BRAIN NETWORKS IN HEALTH AND DISEASE Valentin Riedl, 2012 

	
   70	
  

Middle frontal gyrus L 77 4,55 0,001 -33, 48, 12 
Superior frontal gyrus L 77 3,59 0,001 -21, 57, 18 

Middle cingulate cortex R 14 3,06 0,001 6, -36, 48 
Salience Network 

Superior medial gyrus R 3900 7,65 <0,001 6, 21, 42 
Middle cingulate cortex R 3900 7,61 <0,001 6, 30, 30 
Middle cingulate cortex L 3900 7,45 <0,001 -3, 24, 36 

Insula Lobe R 670 6,89 <0,001 48, 15, -3 
Caudate Nucleus R 670 5,64 <0,001 15, 12, 3 

Insula Lobe L 727 6,46 <0,001 -45, 12, -6 
Cerebellum Crus 1 R 181 6,21 <0,001 39, -63, -27 
Cerebellum Crus 1 L 227 5,97 <0,001 -39, -60, -27 

Precuneus L 727 4,58 0,001 -9, -51, 12 
Precuneus R 113 3,62 0,001 18, -60, 42 
Thalamus L 37 3,95 <0,001 -12, -15, 15 

 

 

 
Table S4.  Striatal subregions of changed spontaneous activity in patients with 
schizophrenia during psychosis and psychotic remission  
Functional subdivisions Anatomical subdivisions 

(peak voxel) L/R p-value MNI (x, y, z) 

(a) SP > HC 
Associative striatum Precommissural dorsal putamen L 0,005* -27, 6, 6 

  R 0,007* 24, 15, 3 
Sensorimotor Striatum postcommissural dorsal putamen L 0,018* -27, -6, 3 

  R 0,002* 24, 12, -9 
(b) SPR > HC 

Limbic striatum Precommissural ventral putamen L 0,019* -15, 9, -6 

  R 0,038* 12, 6, -9 
*Significant for p<0.05, FDR-corrected for multiple comparisons (for comparisons SP vs HC and SPR vs HC two-sample t-test, 

corrected for striatal volume). Abbreviations: SP: patients with schizophrenia during psychosis; SPR: patients with schizophrenia 

during psychotic remission; HC: healthy controls 

 

 
 
Table S5.  Post-hoc tests for correlations between positive/negative PANSS subscores 
and striatal coactivity for significant total PANSS score correlations. 
 

 SP SPR 

 
Dorsal / Associative 
striatum 

Ventral / Limbic 
striatum 

Positive subscores   

Delusions (P1) 0,505*  

Conceptual disorganization (P2) -0,025  

Hallucinations (P3) 0,582*  

Hyperactivity (P4) 0,521  

Grandiosity (P5) 0,033  

Suspiciousness/persecution (P6) 0,166  
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Hostility (P7) 0,185  

Negative subscores   

Blunted affect (N1)  0,775** 

Emotional withdrawal (N2)  0,854** 

Poor rapport (N3)  0,377 
Passive/apathetic social withdrawal 

(N4)  0,372 

Difficulty in abstract thinking (N5)  -0,284 
Lack of spontaneity and flow of 

conversation (N6)  -0,102 

Stereotyped thinking (N7)  -0,332 
Significant for *p<0.05, **p<0.005 partial correlation, corrected for striatal volume and chlorpromazine equivalent dose (CPZ). 

Abbreviations: SP: patients with schizophrenia during psychosis; SPR: patients with schizophrenia during psychotic remission. 

 

 

 

Supplementary Figures 

 

Figure S1. Additional intrinsic brain networks comprising parts of the striatum as 

revealed by the multiple spatial regression analysis (see Tables S2, S3). 
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Figure S2. Spectral power of time courses of the basal ganglia network for patients and 

healthy controls. 

 
 

The three frequency-power plots represent spectral power density of time courses of the basal 

ganglia network for healthy controls (HC), patients during psychosis (SP), and patients during 

psychotic remission (SPR). The bar plots (bottom) reflect average spectral power in the 

frequency range of 0.01 – 0.1 Hz for each group. During psychotic remission patients’ 

spectral power is significantly reduced compared with controls (p=0.02) and during psychosis 

a trend for reduced power remains (p=0.08). 
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12 Discussion	
  

The	
  resting	
  brain	
  hosts	
  intrinsic	
  networks	
  of	
  coherent	
  ongoing	
  neuronal	
  activity	
  

between	
  distributed	
  brain	
  regions5,14.	
  These	
  ICNs	
  persist	
  in	
  humans	
  across	
  the	
  whole	
  

life	
  span38-­‐41,	
  during	
  waking	
  and	
  sleep42,43,	
  and	
  even	
  in	
  complete	
  unconsciousness	
  like	
  in	
  

patients	
  in	
  a	
  vegetative	
  state65.	
  Moreover,	
  ICNs	
  occur	
  in	
  anaesthetized	
  rats	
  and	
  

monkeys35,36.	
  Therefore	
  the	
  intrinsic	
  functional	
  architecture	
  of	
  coherent	
  brain	
  activity	
  is	
  

a	
  fundamental	
  organizational	
  principle	
  of	
  the	
  brain.	
  	
  

	
  

We	
  participated	
  in	
  a	
  multi-­‐center	
  study	
  of	
  35	
  research	
  groups	
  that	
  defined	
  the	
  intrinsic	
  

functional	
  architecture	
  of	
  ongoing	
  brain	
  activity	
  as	
  an	
  emerging	
  tool	
  for	
  discovery	
  

science	
  of	
  the	
  brain37.	
  The	
  study	
  reported	
  several	
  FC	
  methods	
  that	
  consistently	
  detect	
  

ICNs	
  of	
  coherent	
  low-­‐frequency	
  BOLD	
  fluctuations	
  in	
  rs-­‐fMRI	
  data.	
  This	
  is	
  in	
  accordance	
  

with	
  other	
  studies	
  performing	
  test-­‐retest	
  analyses	
  of	
  data	
  from	
  the	
  same	
  subjects	
  across	
  

days	
  and	
  months30,66-­‐68.	
  Despite	
  this	
  overall	
  consistency	
  of	
  ICNs,	
  our	
  study	
  also	
  revealed	
  

effects	
  of	
  age	
  and	
  sex	
  on	
  network	
  connectivity.	
  While	
  changes	
  related	
  to	
  sex	
  were	
  subtle	
  

in	
  our	
  as	
  in	
  other	
  studies32,	
  age	
  effects	
  were	
  more	
  prominent.	
  Most	
  studies	
  investigating	
  

the	
  intrinsic	
  functional	
  architecture	
  across	
  the	
  life	
  span	
  report	
  overall	
  uncoupling,	
  or	
  

decreased	
  FC	
  of	
  mainly	
  long-­‐range	
  connections	
  that	
  might	
  start	
  as	
  early	
  as	
  in	
  young	
  

adulthood32,41.	
  	
  	
  

	
  

12.1 Organized	
  intrinsic	
  brain	
  activity	
  influences	
  behavior	
  in	
  healthy	
  subjects	
  

We	
  then	
  investigated	
  the	
  behavioral	
  relevance	
  of	
  organized	
  intrinsic	
  brain	
  activity.	
  

Specifically,	
  we	
  explored	
  whether	
  variations	
  in	
  sensory	
  experiences	
  relate	
  to	
  altered	
  

patterns	
  of	
  intrinsic	
  brain	
  activity	
  in	
  the	
  resting	
  state,	
  beyond	
  the	
  immediate	
  experience.	
  

First,	
  we	
  tested	
  short-­‐term	
  modulation	
  of	
  ICN	
  activity	
  by	
  exposing	
  healthy	
  subjects	
  to	
  

repeated	
  painful	
  stimulation	
  across	
  11	
  consecutive	
  days59.	
  In	
  a	
  different	
  study	
  we	
  

explored	
  long-­‐term	
  differences	
  in	
  organized	
  intrinsic	
  brain	
  activity.	
  We	
  tested	
  whether	
  

aberrant	
  visual	
  perception	
  of	
  synesthetes,	
  healthy	
  subjects	
  that	
  consistently	
  perceive	
  

unimodal	
  stimuli	
  (grey	
  letters)	
  as	
  multimodal	
  stimuli	
  (grey	
  letters	
  as	
  colored	
  letters;	
  

letters	
  associated	
  with	
  tones)	
  is	
  related	
  to	
  permanent	
  changes	
  in	
  the	
  intrinsic	
  brain	
  

architecture	
  (Dovern	
  et	
  al,	
  J	
  Neurosci,	
  under	
  revision).	
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In	
  the	
  study	
  on	
  short-­‐term	
  plasticity	
  of	
  intrinsic	
  brain	
  activity	
  we	
  exposed	
  healthy	
  

subjects	
  to	
  identical	
  painful	
  stimuli	
  on	
  11	
  consecutive	
  days	
  and	
  explored	
  intrinsic	
  FC	
  in	
  

ICNs	
  during	
  rest	
  before	
  (preREST)	
  and	
  after	
  (postREST)	
  stimulation.	
  On	
  a	
  network	
  level,	
  

we	
  found	
  that	
  repeated	
  pain	
  selectively	
  increased	
  FC	
  in	
  the	
  sensorimotor	
  ICN	
  (SMN)	
  

during	
  postREST.	
  We	
  also	
  found	
  that	
  the	
  degree	
  of	
  increased	
  FC	
  during	
  postREST	
  

correlated	
  with	
  the	
  subjective	
  experience	
  of	
  pain	
  intensity	
  the	
  subjects	
  had	
  during	
  

stimulation.	
  After	
  11	
  days,	
  FC	
  of	
  the	
  ventromedial	
  prefrontal	
  cortex	
  (vmPFC)	
  in	
  the	
  SMN	
  

even	
  predicted	
  the	
  intensity	
  a	
  subject	
  will	
  perceive	
  during	
  the	
  final,	
  forthcoming	
  

stimulation.	
  This	
  study	
  revealed	
  experimentally	
  induced	
  plasticity	
  of	
  organized	
  intrinsic	
  

brain	
  activity	
  in	
  response	
  to	
  repeated	
  pain.	
  

	
  

These	
  results	
  on	
  modulated	
  intrinsic	
  brain	
  activity	
  with	
  repeated	
  pain	
  are	
  in	
  line	
  with	
  

task-­‐fMRI	
  studies	
  testing	
  acute	
  pain	
  processing.	
  While	
  somatosensory	
  cortices	
  process	
  

sensory	
  discriminatory	
  information	
  of	
  a	
  pain	
  sensation,	
  the	
  vmPFC	
  has	
  been	
  ascribed	
  a	
  

modulatory	
  role	
  in	
  pain	
  perception69-­‐71.	
  Hence,	
  our	
  data	
  show	
  that	
  repeated	
  pain	
  

selectively	
  alters	
  intrinsic	
  connectivity	
  between	
  brain	
  regions	
  initially	
  involved	
  in	
  

processing	
  acute	
  pain	
  sensations.	
  	
  

“Chronic	
  pain	
  is	
  a	
  state	
  of	
  continuous	
  learning”72.	
  In	
  our	
  study,	
  predictive	
  coding	
  in	
  the	
  

vmPFC	
  only	
  evolved	
  after	
  subjects	
  had	
  repeatedly	
  experienced,	
  or	
  learned,	
  this	
  

particular	
  situation.	
  The	
  anticipatory	
  role	
  of	
  the	
  vmPFC	
  in	
  the	
  resting	
  state	
  might	
  

account	
  for	
  this	
  learning	
  effect.	
  The	
  literature	
  on	
  pain	
  processing	
  shows	
  opposite	
  

directions	
  of	
  prefrontal	
  activity	
  between	
  healthy	
  subjects	
  and	
  patients	
  suffering	
  from	
  

chronic	
  pain70,71,73.	
  Healthy	
  subjects	
  that	
  habituate	
  to	
  repeated	
  pain	
  show	
  decreased	
  

activation	
  in	
  prefrontal	
  cortex	
  during	
  pain	
  processing71.	
  In	
  chronic	
  pain	
  patients,	
  

however,	
  vmPFC	
  is	
  the	
  only	
  region	
  within	
  the	
  pain	
  network	
  being	
  more	
  strongly	
  

involved	
  in	
  pain	
  processing	
  as	
  compared	
  to	
  normal	
  subjects70.	
  Our	
  data	
  imply	
  that	
  a	
  

painful	
  experience	
  is	
  not	
  only	
  coded	
  by	
  immediate	
  changes	
  of	
  neuronal	
  activity	
  but	
  also	
  

in	
  coherent	
  ongoing	
  brain	
  activity	
  during	
  rest.	
  Furthermore	
  aberrant	
  plasticity	
  in	
  the	
  

intrinsic	
  functional	
  architecture	
  might	
  be	
  related	
  to	
  chronic	
  pain	
  states.	
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In	
  the	
  following,	
  I	
  will	
  relate	
  the	
  changes	
  of	
  intrinsic	
  brain	
  activity	
  we	
  found	
  in	
  response	
  

to	
  pain	
  to	
  similar	
  changes	
  observed	
  in	
  other	
  sensory	
  and	
  cognitive	
  modalities.	
  

Robertson	
  et	
  al	
  showed	
  that	
  learning	
  of	
  a	
  difficult	
  spatial	
  navigation	
  task	
  across	
  several	
  

minutes	
  changes	
  FC	
  in	
  the	
  resting	
  state	
  immediately	
  after	
  the	
  task57.	
  These	
  changes	
  

selectively	
  occurred	
  in	
  an	
  ICN	
  supposed	
  to	
  process	
  attention	
  to	
  spatial	
  information.	
  In	
  a	
  

different	
  study,	
  subjects	
  had	
  to	
  detect	
  a	
  visual	
  target	
  on	
  a	
  screen	
  and	
  learned	
  this	
  task	
  

for	
  several	
  hours60.	
  Again,	
  the	
  FC	
  of	
  primary	
  visual	
  and	
  attention	
  related	
  brain	
  regions	
  

increased	
  from	
  the	
  resting	
  state	
  before	
  learning	
  the	
  task	
  to	
  the	
  resting	
  state	
  after	
  

successful	
  performance	
  of	
  the	
  task.	
  Together,	
  these	
  and	
  our	
  data	
  show	
  that	
  

configurations	
  of	
  intrinsic	
  brain	
  activity	
  change	
  with	
  the	
  repeated	
  experience	
  or	
  

performance	
  of	
  somatosensory,	
  visual	
  and	
  motor	
  tasks.	
  This	
  suggests	
  that	
  ICNs	
  of	
  

certain	
  functional	
  entities	
  are	
  integrated	
  into	
  a	
  stable	
  architecture	
  of	
  intrinsic	
  brain	
  

activity,	
  and	
  are	
  selectively	
  modulated	
  by	
  recent	
  experiences	
  or	
  different	
  cognitive	
  

states.	
  A	
  possible	
  interpretation	
  of	
  these	
  data	
  is	
  that	
  intrinsic	
  brain	
  activity	
  might	
  be	
  

involved	
  in	
  memory	
  coding	
  of	
  past	
  experiences	
  and	
  continuously	
  adapts	
  with	
  learning.	
  

Two	
  recent	
  studies	
  explored	
  the	
  FC	
  of	
  the	
  hippocampus	
  as	
  an	
  integrator	
  of	
  new	
  

memories	
  with	
  the	
  cortex	
  after	
  learning	
  tasks.	
  Both	
  studies	
  showed	
  that	
  coherent	
  brain	
  

activity	
  between	
  hippocampi	
  and	
  cortex	
  was	
  increased	
  in	
  the	
  resting	
  state	
  after	
  a	
  

memory	
  task74	
  and	
  this	
  FC	
  correlated	
  with	
  later	
  memory	
  retrieval75.	
  	
  

	
  

In	
  addition	
  to	
  above	
  described	
  short-­‐term	
  modulations	
  of	
  intrinsic	
  brain	
  activity,	
  we	
  

also	
  investigated	
  state	
  dependent	
  differences	
  in	
  the	
  intrinsic	
  functional	
  architecture.	
  

Individuals	
  with	
  synaesthesia	
  are	
  healthy	
  subjects	
  with	
  altered	
  sensory	
  experiences	
  

since	
  birth76.	
  They	
  report	
  additional	
  color	
  perceptions	
  while	
  viewing	
  numbers	
  or	
  letters.	
  

These	
  additional	
  experiences	
  are	
  stable	
  across	
  years	
  (e.g.	
  an	
  “a”	
  always	
  occurs	
  in	
  light	
  

blue)	
  and	
  are	
  hypothesized	
  to	
  relate	
  to	
  hyperconnectivity	
  between	
  visual	
  grapheme,	
  

color	
  and	
  multimodal	
  integration	
  sites	
  in	
  the	
  cortex77,78.	
  We	
  therefore	
  investigated	
  

organized	
  intrinsic	
  brain	
  activity	
  in	
  ICNs	
  covering	
  primary	
  sensory	
  and	
  integration	
  sites	
  

in	
  subjects	
  with	
  synaesthesia	
  and	
  controls	
  (Dovern	
  et	
  al,	
  J	
  Neurosci,	
  under	
  revision).	
  We	
  

found	
  both	
  a	
  global	
  and	
  a	
  specific	
  (visual	
  to	
  fronto-­‐parietal	
  networks)	
  increase	
  of	
  FC	
  in	
  

grapheme-­‐color	
  synaesthesia.	
  Moreover,	
  this	
  increased	
  intrinsic	
  network	
  connectivity	
  

reflected	
  the	
  strength	
  of	
  synaesthetic	
  experiences.	
  This	
  is	
  the	
  first	
  study	
  to	
  investigate	
  

organized	
  intrinsic	
  brain	
  activity	
  in	
  synaesthetes	
  and	
  also	
  first	
  evidence	
  for	
  increased	
  

functional	
  hyperconnectivity	
  in	
  synaesthesia.	
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Beyond	
  a	
  better	
  understanding	
  of	
  the	
  neural	
  mechanisms	
  of	
  synaesthesia,	
  our	
  results	
  fit	
  

into	
  recent	
  approaches	
  investigating	
  influences	
  of	
  inherited	
  or	
  acquired	
  variations	
  of	
  

intrinsic	
  brain	
  circuits	
  on	
  human	
  behavior	
  like	
  feeling,	
  experiences,	
  and	
  action	
  patterns.	
  

The	
  question	
  is	
  if	
  organized	
  intrinsic	
  brain	
  activity	
  is	
  linked	
  to	
  emotional	
  and	
  cognitive	
  

functions.	
  Seeley	
  and	
  colleagues	
  showed	
  that	
  FC	
  in	
  a	
  salience	
  related	
  ICN	
  (SN)	
  

comprising	
  anterior	
  cingulate	
  cortex	
  and	
  bilateral	
  insula	
  correlated	
  with	
  the	
  level	
  of	
  

anxiety	
  measured	
  in	
  prescan	
  resting	
  state	
  before	
  the	
  fMRI	
  session61.	
  In	
  another	
  study,	
  

Hampson	
  et	
  al.	
  showed	
  that	
  the	
  strength	
  of	
  FC	
  in	
  the	
  default	
  mode	
  network	
  (DMN)	
  

correlated	
  with	
  performance	
  on	
  a	
  working	
  memory	
  task,	
  during	
  the	
  task	
  and	
  also	
  during	
  

postTASK	
  resting	
  state79.	
  A	
  very	
  recent	
  study	
  also	
  showed	
  correlations	
  between	
  FC	
  

measures	
  and	
  personality	
  traits80.	
  In	
  combination,	
  our	
  data	
  suggest	
  that	
  differences	
  in	
  

intrinsic	
  network	
  connectivity	
  are	
  directly	
  related	
  to	
  the	
  phenomenology	
  of	
  human	
  

experiences	
  and	
  continuously	
  change	
  with	
  further	
  experiences.	
  	
  

	
  

12.2 Intrinsic	
  connectivity	
  networks	
  and	
  neuropsychiatric	
  diseases	
  

Our	
  final	
  two	
  studies	
  explored	
  disease	
  related	
  changes	
  of	
  organized	
  intrinsic	
  brain	
  

activity	
  in	
  neuropsychiatric	
  patients.	
  In	
  healthy	
  subjects	
  the	
  intrinsic	
  functional	
  

architecture	
  of	
  organized	
  brain	
  activity	
  is	
  rather	
  robust	
  with	
  only	
  subtle	
  changes	
  

occurring	
  across	
  lifetime.	
  Neuroimaging	
  of	
  brain	
  development	
  in	
  preterms	
  or	
  during	
  

adolescence	
  revealed	
  that	
  several	
  aspects	
  of	
  ICNs	
  are	
  already	
  present	
  at	
  birth81,82,	
  while	
  

others,	
  especially	
  long-­‐range	
  connections,	
  continuously	
  change	
  during	
  adulthood	
  and	
  

aging40,41,81,83.	
  Furthermore,	
  data	
  from	
  colleagues	
  and	
  our	
  own	
  work	
  on	
  network	
  

adaptations	
  in	
  healthy	
  subjects	
  suggest	
  that	
  the	
  ensemble	
  of	
  ICNs	
  is	
  crucial	
  for	
  

behavior59-­‐61.	
  Therefore	
  several	
  groups	
  have	
  hypothesized	
  that	
  the	
  connectivity	
  within	
  

and	
  between	
  ICNs	
  might	
  be	
  altered	
  in	
  neuropsychiatric	
  diseases	
  such	
  as	
  schizophrenia,	
  

major	
  depression,	
  Attention	
  Deficit	
  Hyperactivity	
  Disorder	
  (ADHD)	
  or	
  Parkinson’s	
  

Disease84,85	
  and	
  have	
  tried	
  to	
  link	
  changes	
  in	
  the	
  intrinsic	
  functional	
  architecture	
  to	
  

disease	
  related	
  symptoms.	
  

	
  

We	
  reported	
  the	
  first	
  network-­‐wide	
  analysis	
  of	
  intrinsic	
  brain	
  activity	
  comparing	
  a	
  

group	
  of	
  neuropsychiatric	
  patients	
  with	
  healthy	
  controls.	
  We	
  analyzed	
  patients	
  with	
  

early	
  AD,	
  Mild	
  Cognitive	
  Impairment	
  (MCI),	
  and	
  found	
  prominent	
  alterations	
  in	
  only	
  2	
  

out	
  of	
  8	
  ICNs	
  in	
  the	
  patient	
  group63.	
  The	
  MCI	
  patients	
  had	
  severely	
  impaired	
  FC	
  in	
  the	
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DMN	
  and	
  an	
  attention	
  related	
  ICN	
  comprising	
  cortical	
  midline	
  structures,	
  parietal	
  

cortices	
  and	
  hippocampus.	
  All	
  other	
  ICNs,	
  especially	
  primary	
  sensory	
  systems	
  remained	
  

unchanged.	
  Most	
  importantly,	
  cortical	
  regions	
  with	
  affected	
  FC	
  are	
  key	
  regions	
  for	
  

structural	
  deficits	
  in	
  later	
  stages	
  of	
  AD.	
  As	
  we	
  could	
  exclude	
  any	
  structural	
  deficits	
  in	
  the	
  

patient	
  group,	
  we	
  suggest	
  that	
  the	
  subtle	
  memory	
  and	
  behavioral	
  deficits	
  of	
  the	
  patients	
  

might	
  rather	
  be	
  related	
  to	
  the	
  functional	
  connectivity	
  deficits	
  we	
  observed	
  in	
  organized	
  

intrinsic	
  brain	
  activity.	
  	
  

	
  

Our	
  study	
  was	
  an	
  initial	
  rs-­‐fMRI	
  approach	
  to	
  test	
  the	
  hypothesis	
  of	
  AD	
  being	
  a	
  

disconnection	
  syndrome86.	
  Earlier,	
  Greicius	
  and	
  colleagues	
  already	
  revealed	
  uncoupling	
  

of	
  long-­‐range	
  FC	
  selectively	
  in	
  the	
  DMN	
  of	
  patients	
  with	
  AD87	
  which	
  was	
  followed	
  by	
  a	
  

similar	
  results	
  in	
  whole	
  brain	
  analyses	
  of	
  FC88	
  as	
  well	
  as	
  SC89.	
  Additionally,	
  local	
  

measures	
  of	
  the	
  amplitude	
  of	
  LFF	
  also	
  revealed	
  disease	
  related	
  differences	
  in	
  similar	
  

brain	
  patterns90.	
  Overall	
  these	
  data	
  suggest	
  that	
  AD	
  patients	
  are	
  associated	
  with	
  

abnormalities	
  in	
  large-­‐scale	
  brain	
  networks	
  which	
  might	
  provide	
  new	
  insights	
  into	
  the	
  

disease	
  mechanism91.	
  

	
  

In	
  addition	
  to	
  cortical	
  ICNs	
  that	
  we	
  investigated	
  in	
  MCI,	
  we	
  also	
  studied	
  intrinsic	
  brain	
  

activity	
  of	
  a	
  subcortical	
  ICN	
  in	
  different	
  stages	
  of	
  schizophrenia64.	
  Striatal	
  dysfunction	
  is	
  

thought	
  to	
  be	
  a	
  fundamental	
  element	
  in	
  schizophrenia.	
  Striatal	
  dopamine	
  dysfunction	
  

impacts	
  on	
  reward	
  processing	
  and	
  learning	
  and	
  is	
  present	
  even	
  at	
  rest.	
  We	
  acquired	
  rs-­‐

fMRI	
  data	
  and	
  psychometric	
  assessment	
  in	
  schizophrenic	
  patients	
  during	
  psychosis	
  and	
  

during	
  remission	
  9	
  months	
  later.	
  We	
  found	
  that	
  during	
  psychosis,	
  coherent	
  intrinsic	
  

activity	
  of	
  the	
  striatum	
  was	
  increased	
  in	
  the	
  dorsal	
  part	
  and	
  correlated	
  with	
  positive	
  

symptoms	
  such	
  as	
  delusion	
  and	
  hallucination.	
  In	
  psychotic	
  remission	
  of	
  the	
  same	
  

patients	
  activity	
  of	
  the	
  ventral	
  striatum	
  was	
  increased	
  and	
  correlated	
  with	
  negative	
  

symptoms	
  such	
  as	
  emotional	
  withdrawal	
  and	
  blunted	
  affect.	
  Our	
  finding	
  of	
  altered	
  

intrinsic	
  activity	
  in	
  distinct	
  parts	
  of	
  the	
  striatum	
  depending	
  on	
  predominant	
  

schizophrenic	
  symptoms	
  supports	
  previous	
  transmitter	
  studies	
  on	
  schizophrenia.	
  PET	
  

imaging	
  revealed	
  that	
  elevated	
  dopamine	
  function	
  of	
  the	
  associative,	
  or	
  dorsal	
  striatum	
  

correlated	
  with	
  positive	
  signs	
  in	
  patients	
  with	
  prodromal	
  schizophrenia92.	
  These	
  

findings	
  extend	
  our	
  knowledge	
  about	
  striatal	
  dysfunction	
  in	
  schizophrenia	
  and	
  suggest	
  a	
  

link	
  between	
  intrinsic	
  activity,	
  symptom	
  dimensions,	
  and	
  possibly	
  striatal	
  dopamine	
  

dysfunction.	
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Although	
  we	
  concentrated	
  on	
  subcortical	
  ICNs	
  in	
  this	
  study,	
  colleagues	
  also	
  found	
  global	
  

alterations	
  in	
  the	
  intrinsic	
  architecture	
  of	
  cortical	
  networks	
  in	
  schizophrenia.	
  Early	
  work	
  

described	
  decreased	
  FC	
  within	
  the	
  DMN	
  of	
  patients	
  during	
  rest93,94.	
  However,	
  further	
  

network	
  metrics	
  exist	
  that	
  reflect	
  the	
  global	
  efficiency	
  in	
  communication	
  between	
  

several	
  large	
  scale	
  brain	
  networks.	
  In	
  schizophrenia,	
  these	
  measures	
  reveal	
  less	
  strongly	
  

integrated	
  configuration	
  within	
  and	
  between	
  several	
  ICNs.	
  E.g.	
  Lynall	
  et	
  al.	
  showed	
  

globally	
  reduced	
  strength	
  of	
  FC,	
  whereas	
  diversity	
  of	
  functional	
  connections	
  was	
  

increased95.	
  Topologically,	
  functional	
  brain	
  networks	
  in	
  schizophrenia	
  had	
  reduced	
  

clustering	
  and	
  small-­‐worldness,	
  reduced	
  probability	
  of	
  high-­‐degree	
  hubs,	
  and	
  increased	
  

robustness	
  in	
  the	
  schizophrenic	
  group95,96.	
  These	
  data	
  suggest	
  that	
  patients	
  with	
  

schizophrenia	
  have	
  a	
  less	
  strongly	
  integrated	
  and	
  diverse	
  profile	
  of	
  subcortical	
  and	
  

cortical	
  intrinsic	
  brain	
  networks	
  already	
  in	
  the	
  resting	
  state.	
  
	
  

12.3 Overall	
  conclusion	
  on	
  organized	
  intrinsic	
  brain	
  activity	
  	
  

Subjects	
  at	
  rest	
  dedicate	
  the	
  largest	
  amount	
  of	
  energy	
  to	
  the	
  brain3.	
  This	
  fuels	
  ongoing	
  

neuronal	
  activity	
  that	
  is	
  not	
  random	
  noise	
  but	
  is	
  organized	
  into	
  large-­‐scale	
  networks	
  of	
  

coherent	
  low-­‐frequency	
  signal	
  fluctuations	
  in	
  fMRI14.	
  Organized	
  intrinsic	
  brain	
  activity	
  

therefore	
  is	
  a	
  fundamental	
  and	
  ubiquitous	
  organizational	
  principle	
  of	
  the	
  brain	
  yet	
  its	
  

functional	
  meaning	
  is	
  still	
  largely	
  unknown.	
  Early	
  work	
  on	
  the	
  intrinsic	
  functional	
  

architecture	
  suggested	
  that	
  patterns	
  of	
  FC	
  simply	
  reflect	
  underlying	
  anatomical	
  

connections,	
  or	
  SC,	
  between	
  brain	
  regions36,48.	
  This	
  is	
  supported	
  by	
  the	
  fact	
  that	
  intrinsic	
  

brain	
  activity	
  forms	
  patterns	
  of	
  ICNs	
  robustly	
  occurring	
  in	
  several	
  species35,36,	
  across	
  

time	
  (test-­‐retest	
  reliability)66-­‐68,	
  and	
  even	
  in	
  states	
  of	
  altered	
  consciousness44.	
  However,	
  

recent	
  data	
  clearly	
  showed	
  that	
  only	
  a	
  certain	
  amount	
  (25%)	
  of	
  distinct	
  brain	
  regions	
  is	
  

indeed	
  coupled	
  by	
  FC	
  when	
  also	
  strong	
  SC	
  is	
  present49.	
  As	
  soon	
  as	
  polysynaptic	
  

connections	
  are	
  assumed	
  on	
  the	
  structural	
  level,	
  no	
  correlation	
  exists	
  with	
  FC	
  patterns.	
  

Moreover,	
  a	
  prominent	
  feature	
  of	
  certain	
  ICNs	
  is	
  strong	
  FC	
  between	
  contralateral	
  

hemispheres	
  where	
  no	
  direct	
  anatomical	
  connections	
  exist	
  (e.g.	
  bilateral	
  occipital	
  

cortices).	
  Therefore,	
  SC	
  can	
  only	
  partly	
  explain	
  coherent	
  intrinsic	
  brain	
  activity	
  in	
  ICNs.	
  	
  

	
  

This	
  implies	
  that	
  the	
  volatile	
  aspects	
  of	
  intrinsic	
  brain	
  activity	
  should	
  be	
  inspected	
  in	
  

more	
  detail.	
  Several	
  studies	
  reported	
  that	
  the	
  emotional	
  or	
  cognitive	
  state	
  of	
  a	
  subject	
  is	
  

partly	
  related	
  to	
  FC	
  in	
  certain	
  ICNs.	
  E.g.	
  the	
  level	
  of	
  anxiety	
  or	
  anticipated	
  pain	
  can	
  

already	
  be	
  implied	
  from	
  the	
  coherence	
  of	
  intrinsic	
  brain	
  activity	
  in	
  certain	
  networks59,61.	
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Furthermore,	
  we	
  have	
  shown	
  that	
  consistent	
  differences	
  in	
  subjective	
  experiences	
  of	
  

primary	
  sensory	
  processing	
  can	
  be	
  predicted	
  from	
  an	
  altered	
  intrinsic	
  brain	
  architecture	
  

(Dovern	
  et	
  al,	
  J	
  Neurosci,	
  under	
  revision).	
  But	
  modulations	
  of	
  FC	
  even	
  occur	
  on	
  shorter	
  

time	
  scale	
  of	
  days	
  or	
  seconds.	
  We	
  have	
  shown	
  that	
  the	
  repeated	
  experience	
  of	
  an	
  

identical	
  painful	
  stimulation	
  leads	
  to	
  plasticity	
  in	
  the	
  intrinsic	
  functional	
  architecture59.	
  

Fox	
  and	
  colleagues	
  even	
  showed	
  immediate	
  influence	
  of	
  the	
  strength	
  of	
  FC	
  in	
  the	
  motor	
  

system	
  on	
  the	
  motor	
  force	
  a	
  subject	
  applied	
  to	
  a	
  lever	
  on	
  a	
  trial-­‐by-­‐trial	
  basis97.	
  	
  

	
  

We	
  therefore	
  suggest	
  two	
  layers	
  of	
  processing	
  inherited	
  in	
  ongoing	
  brain	
  activity	
  of	
  

large	
  scale	
  brain	
  networks.	
  On	
  the	
  one	
  hand,	
  intrinsic	
  brain	
  activity	
  forms	
  a	
  robust	
  

architecture	
  of	
  consistent	
  ICNs	
  reflecting	
  mainly	
  anatomical	
  connections.	
  On	
  the	
  other	
  

hand,	
  immediate	
  changes	
  in	
  the	
  coherence	
  of	
  spontaneous	
  activity	
  relate	
  to	
  fluctuations	
  

in	
  cognitive	
  functions	
  and	
  motor	
  behavior.	
  This	
  suggests	
  a	
  volatile	
  layer	
  of	
  intrinsic	
  

brain	
  fluctuations	
  influencing	
  behavior	
  in	
  the	
  range	
  of	
  seconds.	
  We	
  hypothesize	
  that	
  

with	
  continuous	
  experiences,	
  coherent	
  intrinsic	
  activity	
  might	
  stabilize	
  networks	
  of	
  

brain	
  regions	
  that	
  are	
  commonly	
  activated	
  together	
  during	
  sensory	
  or	
  cognitive	
  

processing.	
  These	
  organized	
  patterns	
  of	
  intrinsic	
  activity	
  continuously	
  adapt	
  with	
  

ongoing	
  experiences	
  to	
  reflect	
  past	
  and	
  anticipate	
  future	
  experiences.	
  By	
  this,	
  the	
  

intrinsic	
  architecture	
  of	
  ongoing	
  brain	
  activity	
  continuously	
  adapts	
  and	
  prepares	
  the	
  

organism	
  for	
  what	
  might	
  happen.	
  In	
  conclusion,	
  the	
  intrinsic	
  brain	
  state	
  might	
  have	
  

more	
  impact	
  on	
  human	
  behavior	
  than	
  does	
  the	
  brain's	
  immediate	
  response	
  to	
  an	
  event.	
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