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Summary 

 

 

I. Total Synthesis of Loline Alkaloids 

Loline (1) is the eponymous member of an alkaloid family, originally isolated in 1892 

from tall fescue grasses, but later found in many other plant families (Scheme 1).[1] 

They are produced by endophytic fungi and are as toxic to insects as nicotine, 

thereby protecting the host plant from herbivores, but many aspects of their chemical 

ecology are not yet understood. 

 

 

 

Scheme 1: Loline alkaloids and their synthesis via key azide 7. 
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Despite its long history and intriguing biological activity, there has been only one 

successful asymmetric synthesis of loline to date, which required 20 steps.[2] This 

may be due to its strained, heterotricyclic molecular skeleton, that incorporates polar 

functionalities in close proximity, thus rendering the loline alkaloids more challenging 

targets than they may appear at first sight. 

This dissertation deals with different approaches for the synthesis of loline alkaloids 

and reports interesting outcomes. The synthesis, which finally led to success, started 

with an achiral alcohol that can be easily desymmetrized to give epoxide 2. 

Nucleophilic epoxide opening with butenylamine and in situ protection yielded diene 

3. A ring-closing metathesis converted this compound into the eight-membered 

heterocycle 4, which was activated as a cyclic sulfite and selectively substituted in 

the allylic position to yield azidoalcohol 5. In the key step, compound 5 was treated 

with bromine in methanol to give the bicyclic pyrrolizidine 6. After a Finkelstein like 

reaction and subsequent Williamson ether formation, the heterotricyclic core of the 

loline alkaloids was established. Azide 7 serves as a branching point for the total 

synthesis of various loline alkaloids. 

In summary, we have developed a highly efficient, asymmetric total synthesis of 

(+)-loline (1) that requires only 10 steps.[3] Our synthesis is scalable, diversifiable, 

gives access to all loline alkaloids and has served to provide several research groups 

sufficient material to investigate the interesting chemical ecology of these alkaloids. 

 

 

II. Studies toward Naphthomycin K 

The naphthomycins are a class of ansamycin antibiotics that contain a macrocycle of 

polyketide origin with an amide linkage to a naphthalenic moiety. To date, 11 different 

naphthomycins (naphthomycin A–K) have been isolated and structurally elucidated. 

In spite of their unique structure and broad spectrum of biological activities, none of 

the naphthomycins have been synthesized to date. 

  



XVII 

Recently, a novel member of the naphthomycin family, naphthomycin K (8) depicted 

in Scheme 2, was isolated from the commercial strain Streptomyces sp. of the 

medicinal plant Maytenus hookeri.[4] Naphthomycin K shares a number of unique 

structural features, including an unprecedented heterocyclic ring system, a highly 

modified naphthoquinone core and nine stereogenic centers. In view of its interesting 

biological properties and unique molecular architecture, we engaged in the total 

synthesis of naphthomycin K. 

 

 

 

Scheme 2: Retrosynthetic analysis of naphthomycin K. 
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Scheme 2 presents, in retrosynthetic format, the devised synthetic strategy for the 

total synthesis of naphthomycin K. Thus, the oxa-azabicyclo[3.3.1]-nonenone is 

expected to be formed via intramolecular hetero-Diels-Alder reaction between the 

quinone-carbonyl and the diene of the ansa chain of naphthomycin A (9). We 

envisioned that a double Stille-coupling employing bis-stannane 10 would facilitate 

late-stage macrocyclization and allow us to both control the geometry of the C4C5 

double bond and to construct the challenging triene. Compound 9 could be further 

dissected to arrive at naphthalene 11, aldehyde 12 and phosphonate 13.  

This dissertation includes the syntheses of aldehyde 12 and phosphonate 13 from 

inexpensive commercially available starting materials in 9 steps each and their 

coupling in a Horner-Wadsworth-Emmons reaction (HWE) and further transformation 

to give the C6C23 fragment of naphthomycin A (9). In addition, naphthoquinone 

precursor 14 has been synthesized starting from literature known quinone 15 and 

cyanide 16. The synthesis of the novel Danishefsky-type diene 16 and its reactivity in 

Diels-Alder reactions is reported.[5] 
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1. Introduction to Lolines 

1.1 History of Loline 

Fescue, belonging to the family of poaceae, is extensively used as a pasture grass. 

Originally native to Europe and the Mediterranean, it is now spread throughout the 

world.[1] Reports construe that livestock poisonings can be caused by tall fescue. 

Cows grazing on this grass have been known to show signs of a lameness called 

“fescue foot”.[2] However, it is widely used due to the fact that it grows well on 

marginal soil, is inured to drought and affords good yield of dry matter per acre.[3] 

Therefore, much effort has been put into the isolation of the toxic compounds causing 

the illness. This led to the identification of several alkaloids, amongst others a 

number of pyrrolizidine alkaloids with a unique ether linkage bridging C2 and C7 

(Figure 1). 

 

 

Figure 1: Members of the loline alkaloids with a common heterocyclic core. The distinguishing feature 

is the different substitution pattern of the nitrogen at C1. 

 

The first report of an alkaloid isolated from tall fescue dates back to the 1890´s. 

Hofmeister isolated and identified a compound from Lolium temulentum with the 

elemental formula C7H12N2O and named it temuline (1) (Figure 1), which was later 

renamed norloline.[4-5] In 1955, loline (2) was first mentioned by Yanusov and 

Akramov after extraction of the alkaloid from darnel seeds together with related 

alkaloids, such as N-acetyl norloline (3) and N-formyl loline (4). Another loline 

derivative, N-senecioyl norloline (5), which is an apparent metabolite, could be 
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extracted from horse urine.[6] The most unusual loline alkaloid, lolidine (6), consists of 

a loline linked to another pyrrolizidine, that instead of an ether bridge bears a chlorine 

at C-7 and a hydroxyl group at C-2. The structure of lolidine (6) was proposed based 

on mass-spectrometric data, but due to lack of material it could not be further 

elucidated.[7] If this structure could be confirmed, a biosynthetic pathway for the ether 

bridge formation could be suggested. 

After initial misassignment of the loline structure, the absolute configuration was 

finally established by X-ray crystallographic analysis of loline dihydrochloride.[8] 

Degradation studies of loline (1) showed that upon treatment with concentrated 

hydrochloric acid, the ether bridge gets nucleophilicly opened by chlorine to form 

chlorinated pyrrolizidine 7. Further degradation led to a mixture of N-

methylpyrrolizidine, methylamine and pyrrolizidine (Figure 2).[9]  

 

 

Figure 2: Degradation of loline (2). 

 

Until 1993, isolations and identifications had been done without knowing that a fungal 

endophyte was the producer of these alkaloids in the plant tissue.[10] In the 1890´s, 

first studies of Lolium temulentum mentioned a novel symbiotic fungus as well as a 

novel group of metabolites, nowadays known as loline alkaloids.[4, 11] Despite the 

early discovery it took more than 70 years until the endophytes and lolines were 

explicitly linked in literature.[10] The symbiotic fungus is now known as Neotyphodium 

occultans (family Clavicipitaceae) and lolines have since been found constantly with 

congeners of N. occultans.[12] Final evidence for the hypothesis that clavicipitaceous 

endophytes are capable of de novo synthesis of lolines was provided through results 

showing that Neotyphodium uncinatum is able to produce lolines in defined-medium 

fermentation cultures. It was demonstrated that this endophyte is capable of the full 

biosynthesis if provided with sugars and either organic or inorganic nitrogen 

sources.[13] Many of these symbiotic fungi protect their plant hosts from herbivory by 

producing these alkaloids.  
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Eventually, the toxicity of ryegrasses, always tied to lolines, could be traced to ergot 

alkaloids (necines).[1] Neither lolines nor N. occultans could be connected to mammal 

toxicity. Instead, lolines rather exhibit potent activity against a wide range of insect 

herbivores, which is a highly desirable feature for pasture grass.[14-15] 

 

1.2 Biological Activity of Loline Alkaloids 

Antiinsect activities of lolines have been reported consistently. A first survey of tall 

fescue plants infected with an endophytic fungus demonstrated a correlation between 

feeding deterrence of the bird-cherry oat aphid (Rhopalosiphum padi) and the 

greenbug (Schizaphis graminum) to the presence of loline alkaloids in the plant 

tissue.[16] In order to identify the compounds causing the deterring feeding, tissue 

extracts from the endophyte infected plants were prepared. Unfortunately all of the 

extracts contained a mixture of alkaloids. The loline containing fractions always 

included a known insect feeding deterrent, peramine. In contrast to the greenbug, 

which effectively deters feeding, peramine seemed to have no effect on the bird-

cherry oat aphid. However it is still possible that lolines and peramines might act 

synergetically. Therefore the effect of loline could not be confirmed.[16] 

First tests in which alkaloid-containing extracts from seeds of N. coenophialum-

symbiotic tall fescue were fed to the large milkweed bug showed that fractions 

enriched with N-formyl loline (4) were highly toxic to the insect larvae.[14] Later 

surveys investigating the effects of loline derivatives on the fall armyworm 

(Spodoptera frugiperda) and the European corn borer (Ostrinia nubilalis) utilized a 

variety of naturally occurring lolines, such as loline (2), N-acetyl loline (3) or N-formyl 

loline (4) as well as synthetic loline derivatives with longer acyl groups. These studies 

demonstrated that the presence of N-acyl loline derivatives in the diet of these bugs 

modified their feeding behavior. For instance N-acetyl loline (3) significantly reduced 

larval weight gain in both test subjects. However, the specific effect of a derivative 

was dependent upon the species of larvae tested, suggesting that different insect 

species respond differently to loline derivatives.[15] The authors stated that the reason 

for the reduced weight gain could simply result from decreased ingestion of diet 

rather than toxicity. For further investigation of the toxicity against insects, solutions 

of loline derivatives were sprayed on plants infested with adult greenbugs. The LC50 

values measured were very close to the levels of the potent insecticide nicotine 

sulfate.[15]  
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These observations suggest a protective role for lolines. Due to the fact that all of the 

previous tests varied in the combination of fungus and plant the toxicity assays were 

necessarily artificial.[17] Therefore a Mendelian genetic analysis to determine the 

antiinsect activity of lolines was conducted. Epichloaë fustucae, which is the fungal 

symbiont of lolium grasses, is a close sexual relative of the asexual Neotyphodium 

species.[18] Two sexually compatible E. festucae parents, differing in loline 

expression, were crossed and their progenyies were segregated into loline 

expression (Lol+) and nonexpression (Lol-) phenotypes. Linkage to DNA 

polymorphisms was consistent to the anti-aphid activity with expression of lolines. 

Only the symbionts expressing loline exhibited activity against populations of S. 

graminum and R. padi. (Figure 3).  

 

  

 

Figure 3: (a) Antiinsect activity of lolines against the aphids S. gramium (left) and R. padi (right). 

Meadow fescue plants containing no endophyte (E-) and the progenies segregated for their loline 

production (Lol
+
) or nonproduction (Lol

-
). Picture (b) and (c) show leaves of the tall fescue without (b) 

or with (c) the loline producing endophyte N. coenophialum. In contrast to leave (b) there is no 

infestation of P. padi aphids on the leave shown in panel (c).
[1, 17]

 

 

Given the results that lolines provide significant protection to their host plants, which 

is a prime example for a symbiotic mutualism, it is even more remarkably that 

wounding of plants induces high levels of lolines (Figure 4). Hence it can be 

concluded that lolines, although they are produced by fungi, are plant defenses 

against chewing insects. It is of crucial importance for the plants to reduce parasites 

in order to retain their capability of photosynthesis. The rise of loline alkaloids, due to 

mock herbivory (clipping), could be observed in tall fescue with N. coenophialum and 
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in meadow fescue with N. unicatum.[10, 19-20] The most dramatic induction, with a rise 

from 0.1 % to 1.9 % of plant dry mass could be observed in meadow fescue with N. 

siegelii within eleven days after clipping.[20] Consequently induction of loline 

production implies communication between host and symbiont, but the mechanism is 

unknown and still a point for further investigations. It is imaginable that a specific 

signal from the wounded plant could be detected by the endophyte, which then could 

affect its metabolism. 

 

  

 

Figure 4: Loline levels from tall fescue uninfected and infected with N. coenophialum 14 days after 

clipping and from unclipped control plants. White bars indicate concentration of N-acetyl loline (3) and 

N-formyl loline (4). Grey bars indicate the percentage of total nitrogen of dry mass of plants (error bars 

represent ± 1 SE).
[19]

 

 

Arising from the studies, which employed crude or partially purified extractions from 

tall fescue, the wrong impression that lolines might be the cause for fescue foot and 

summer syndrome in cattle was generated.[14] Although the extracts most certainly 

contained significant amounts of ergot alkaloids, which are known for their toxicity to 

livestock, the lolines were related to the problem as well.[21] This misassignment 

could to some extent be attributed to the abundance of lolines in tall fescue 

symbionts and the fact that they are more easily assayed than ergot alkaloids. All of 

this led to the wrong hypothesis that lolines are toxic to livestock. However, no 

evidence for mammal toxicity could be found.[1] 

Nevertheless very small physiological effects, even at extremely high doses, on 

mammalian herbivores have been reported. Studies show that lolines are capable of 
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reducing the release of prolactin by rat pituitary cells.[22] Furthermore, N-Acyl lolines 

show modest antitumor activity. In brine shrimp assays and human breast, lung and 

colon cancer cell lines, N-acyl derivatives with a chain length of 12 to 18 showed 

significant cytotoxicity.[23] However, the in vivo antitumor effects remain to be 

determined. 

 

1.3 Biosynthesis 

1.3.1 First Proposed Biosynthesis 

Due to the structural similarity of the loline alkaloids to the plant-produced 

pyrrolizidines (necines), the assumption that lolines and necines might share similar 

biosynthetic pathways, deriving from polyamines, was widely established.[10] This 

hypothesis was particular attractive when it was believed that lolines were plant 

metabolites (Scheme 1). 

 

 

Scheme 1: First proposed biosynthesis on the hypothesis that lolines are plant metabolites.
[10, 24]

 

 

A pyridoxal-phosphate (PLP) dependent decarboxylation of L-ornithine (8) gives 

putrescine (9). The aminopropyl group is transferred from a decarboxylated S-

adenosyl methionine (dcSAM, 10) giving spermidine (11). Ring closure would give 

amino pyrrolizidine 13 and linkage in position 2 and 7 through an oxygen bridge 

would yield norloline (1).[10] 

The hypothesis shown in Scheme 1 has been tested and rejected by precursor 

feeding experiments.[25] These studies utilized the endophyte of meadow fescue N. 

unicatum, which is capable of producing lolines, especially N-formyl loline (4), in 
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defined-medium fermentation cultures. The obtained results demonstrated that loline 

alkaloid biosynthesis differs from the pyrrolizidine biosynthesis of necines.[25] 

1.3.2 Revised Biosynthesis 

The use of radiolabeled precursors allowed the determination of the origin of the 

pyrrolizidine moieties. Proline (Pro, 14) contributes N-4 and C-5 till C-8, labeled L-

methionine (L-Met, 15, 16) contributes the N-methyl and N-formyl groups and 

homoserine (Hse, 17, 18) the 1-amino group and C-1 till C-3 (Scheme 2).[26] 

 

 

Scheme 2: Incorporation of labeled precursors into N-formyl loline.
[26]

 

 

The established biosynthetic pathway commences with aspartate (Asp 19), which is 

converted to homoserine (Hse 20). The proposed first determinant step is a -

substitution of the 3-amino-3-carboxypropyl moiety from O-acetylhomoserine 

(HseOAc 21) to the N of L-proline (22) giving the first committed intermediate 23 

(Scheme 3). This unusual C-N bond formation, which seems to be unprecedented in 

biosynthetic pathways, might be catalyzed by a -type pyridoxal phosphate (PLP)-

containing enzyme, most likely the product of the LolC gene. Subsequently two 

oxidative decarboxylations of pyrrolidine 23 take place to form the imminium ion 12. 

One decarboxylation could be catalyzed by a PLP-containing enzyme, probably LolD. 

The intermediate 12 can also be found in the biosynthetic pathway of polyamines, 

raising the question whether endophytes might incorporate both plant and endophyte 

metabolized 1-(3-aminopropyl) pyrrolium (12). Another PLP containing enzyme, 

encoded by LolT, probably closes the ring. The next step in the biosynthesis appears 

to be the incorporation of an O atom bridging C-2 and C-7.[1] 
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Scheme 3: Biosynthesis of loline alkaloids.
[1]

 

 

There are four plausible options how the enzyme LolE could form the biosynthetically 

unique ether bridge (Scheme 3). It is possible that either C-2 (25) or C-7 (26) could 

be hydroxylated followed by a subsequent oxidative ring closure. Another option 

might be the insertion of a single oxygen atom into 13 yielding norloline (1). The third 

possible option is that C-2 and C-7 could be hydroxylated and halogenated to form 

haloalcohols 27 or 28, respectively. The last option would be dihydroxylation to yield 

diol 29. Haloalcohols 27 and 28 and diol 29 could undergo a Williamson-type 

reaction. Therefore, if the structure of lolidine (6) could be confirmed, a plausible 

pathway for the loline biosynthesis, including an unusual C-7 chlorinated intermediate 

27, could be postulated.[26] 

Methylation carried out by S-adenosylmethionine (SAM) gives loline (2) and  

N-methyl loline (30). The sequence of LolP indicates that it encodes a cytochrome 

P450 monooxydase responsible for an NADPH+H+ dependent two step oxidation of a 

N-methyl group to form a N-formyl group yielding N-formyl loline (4).[27] 
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Gene Predicted function 

LolC γ-Type PLP enzyme 

LolE Epoxidase/hydroxylase 

LolD -Type PLP enzyme/group IV decarboxylase 

LolT -Type PLP enzyme 

LolF FAD-monooxygenase 

LolO Oxidoreductase/dioxygenase 

MeT Methyltransferase 

LolP Cytochrome P450 monooxygenase 

 

Table 1: Functions of the predicted products of the LOL1 gene cluster of N. unicatum.
[1]

 

 

1.4 Semisyntheses and Total Syntheses of Lolines 

1.4.1 Interconversions and Semisyntheses of Lolines 

Because there was no practical synthesis providing sufficient material, loline alkaloids 

were accessed through extraction and purification from darnel seeds. Subsequent 

interconversions between lolines with methyl, formyl or acyl substituents at the C-1 

amine can be easily achieved by using standard reaction conditions.[28-29] For 

instance, temuline (1) can be prepared by treatment of loline (2) with KMnO4 in cold 

20% H2SO4. Refluxing of 1 in an equimolar mixture of formaldehyde and formic acid 

yields N-methyl loline (30). A variety of N-acyl derivatives can be obtained by reaction 

of 2 with the appropriate acyl chlorides. 

The first attempt towards the total synthesis of loline was carried out by Glass and 

coworkers in 1978 (Scheme 4).[30] Tetrabromoacetone (31) in dry furan (32) was 

treated with Fe2(CO)9, followed by a Zn-Cu couple reduction, in order to prepare 

ketone 33. Oxim formation and subsequent tosylation gave compound 34, which 

underwent a Beckmann rearrangement to afford lactam 35. Upon reduction with 

lithium aluminum hydride (LAH) and acetylation with trifluoroacetic anhydride (TFAA) 

compound 36 was epoxidized with meta-chloro-peroxybenzoic acid (m-CPBA) to 

yield 37.  
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Scheme 4: Studies toward loline by Glass and coworkers.
[30]

 

 

Cleavage of the trifluoroacetyl group followed by intramolecular cyclization through 

nucleophilic attack of the resulting amine yielded 38. Unfortunately a SN2-type 

substitution with a nitrogen nucleophile was unsuccessful.  

A second approach by Wilson and coworkers exploited a similar concept,[31] in which 

compound 40 was synthesized in an analogous fashion as performed by Glass 

(Scheme 5). The main difference between both approaches was the ring closing 

step. Whereas Glass utilized an epoxide, Wilson used halonium ions (bromine and 

iodine) as the reactive intermediates to achieve ring closure. However, nucleophilic 

substitution could not be achieved either. The absence of SN2-type reactions can be 

attributed to the small angle between C-8, C-1 and C-2 (88°) and electronic 

repulsions between the lone pair of the nitrogen and the incoming nucleophile.[31] 
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Scheme 5: Studies towards loline by Wilson and coworkers.
[31]

 

 

The only reaction observed was a bromine-metal exchange upon treatment with t-

BuLi affording 43. This lithiated intermediate subsequently underwent  

-elimination upon hydrolysis to give the amine 40 (Scheme 6). 

 

 

Scheme 6: Bromine-metal exchange and subsequent hydrolysis of compound 43. 

 

1.4.2 Racemic Synthesis of Loline 

The first racemic total synthesis of loline (2) was accomplished by Tufariello and 

coworkers in 1986 (Scheme 7).[32] In this approach a nitrone-based methodology was 

used, which had been successfully applied in the synthesis of several pyrrolizidine 

alkaloids.[33-34]  

The synthesis started with a 1,3-dipolar cycloaddition of dimethoxynitrone 44 and 

methyl 4-hydroxycrotonate 45, followed by mesylation to give isoxazolidine 46. 

Hydrogenolysis of the N-O bond afforded pyrollizidine 47 by simultaneous 

substitution of the mesylate by the newly formed secondary amine.[33] Alteration in 

the stereochemistry at C-1 was carried out using NaOMe in excellent yield. The 

driving force for the formation of the diastereomer was the removal of steric 

compression between the methyl ester and the ketal methoxy groups. Ester 48 was 

then reduced with LAH to give a diol which was subsequently protected as the 
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diacetate 49. Hydrolysis afforded ketone 50, which was selectively hydrogenated in 

the presence of Adams catalyst in glacial acetic acid. The hydrogenation occurred 

selectively from the less hindered convex side to give alcohol 51 in good yield.[32] 

Introduction of the chloride with inversion of configuration was achieved by using 

Vilsmeier reagent. Deprotection of the hydroxyl groups and the resulting Williamson-

type cycloetherfication gave the lolium alkaloid skeleton present in 53. The latter was 

next converted into the corresponding ethyl ester by oxidation with Jones reagent 

followed by acidic esterification. Treatment of ester 54 with hydrazine afforded 

hydrazide 55, which underwent a Curtius rearrangement when exposed to isoamyl 

nitrite (giving intermediary 56) and acidic ethanol to yield ethyl carbamate 57. Finally 

carbamate 57 was reduced with LAH to complete the synthesis of racemic loline.[32] 

 

Scheme 7: Synthesis of racemic loline (2) by Tufariello and coworkers.
[32-33]
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In summary the key steps of this synthesis were the Huisgen-type 1,3-dipolar 

cycloaddition to generate the pyrrolizidine ring system 47, the efficient 

diastereoselective reduction of ketone 50 and the employment of a Curtius 

rearrangement to introduce the secondary amine 57, which avoided the substitution 

problems described by Glass and Wilson.[30-31] Although the introduction of the amine 

seems a bit tedious, the total synthesis of racemic loline could be accomplished in 12 

steps.  

1.4.3 First Asymmetric Synthesis of Loline 

The first asymmetric synthesis of loline (2) was performed in 20 steps and employed 

an intramolecular hetero-Diels-Alder reaction of a reactive acylnitrosodiene 

intermediate as a key step (Scheme 8).[35]  

The synthesis commenced with malic acid (58), which was reduced with borane and 

converted diastereoselectively into p-methoxyphenyl acetal 59. The aldehyde 

generated by Swern Oxidation was subjected to a Wittig reaction yielding diene 60 as 

a 3:7 mixture of E- and Z-isomers. Reduction and isomerization afforded diene 61 in 

an E:Z ratio of ≥95:5. Carboxylic acid 62, obtained by a two-step oxidation, was 

reacted with N-trifluoroacetoxy-succinimide to give first the corresponding O-

succinimidyl ester which was then replaced by hydroxylamine to yield hydroxamic 

acid 63. Acylnitrosodiene 64 was generated in situ by oxidation of compound 63, 

which spontaneously underwent an intramolecular hetero-Diels-Alder reaction to yield 

a mixture of endo 65a and exo 65b diastereomers in a ratio of 57:43. Pyrrolizidine 66 

was prepared out of diastereomer 65a within three steps by a sequence of reductive 

N-O bond cleavage, mesylation and reannealing. Sharpless asymmetric 

aminohydroxylation in the presence of chiral bischinchona alkaloid ligand 

[(DHQD)2PHAL] afforded amino alcohol 67 and its regioisomer (not shown in the 

scheme) in a 3:1 ratio in moderate yield. Subsequent functional group manipulations 

yielded hydroxyl mesylate 68, which upon thermal treatment cyclized to yield N-tosyl 

loline (69). Reductive cleavage of the N-tosyl group yielded loline (2).[35] 

In consideration of a 20 step synthesis that employs two key steps with moderate 

diastereo- (hetero-Diels-Alder) and regionselectivity (Sharpeless asymmetric 

aminohydroxylation) combined with modest yields this approach seems not very 

efficient. Nevertheless a hetero-Diels-Alder chemistry was established as an effective 

way for pyrrolizidine synthesis. 
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Scheme 8: Synthesis of (+)-loline by White and coworkers.
[35]

 

 

1.4.4 Racemic Synthesis of N-Acetyl Norloline 

In 2011, a new racemic synthesis of N-acetyl norloline (3) by Scheerer and 

coworkers was reported using a tethered aminohydroxylation (Scheme 9).[36]  
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Scheme 9: Total synthesis of racemic N-acetyl norloline (3) by Scheerer and coworkers.
[36]

 

 

The synthesis starts with a Claisen condensation of -lactam 70 and ethyl 

diazoacetate to yield the condensation product 71, which was subjected to rhodium 

catalyzed N-H insertion to afford -ketoester 72. Reduction and subsequent 

acetylation of 72 afforded the racemic ester 73 which upon treatment with LiHMDS 

underwent Dieckmann condensation to yield enol lactone 74 in good yield. To 

convert enol lactone 74 into the , -unsaturated lactone 75, a sequence of 

reduction-elimination steps was performed. Hydrolysis of lactone 75, esterification 

and conversion of the hydroxyl group into the primary carbamate with trichloroacetyl 

isocyanate afforded ester 76. Reduction of ester 76 yielded allylic alcohol 77, which 

was subjected to OsO4 catalyzed intramolecular aminohydroxylation to yield diol 78. 

In order to form the pyrrolizidine core and the ether bridge subsequent modification of 
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the functional groups were performed to provide carbamate 79. The strained ether 

bridge of compound 80 was formed upon methanolysis of carbamate 79 in very 

moderate yield. Deprotection of the Boc protecting group led to subsequent 

intramolecular alkylation, forming the N-Cbz norloline (81). By simple hydrogenation 

and acetylation it was demonstrated that Cbz-protected amine 81 can be transformed 

into N-acetyl norloline in good yield. 

Scheerer and coworkers demonstrated that a tethered aminohydroxylation is a 

powerful tool to functionalize alkenes. He circumvented the regioselectivity issues of 

the aminohydroxylation used by White and coworkers and synthesized racemic N-

acetyl norloline (3) in 17 steps. 



19 

References 

 

[1] C. L. Schardl, R. B. Grossman, P. Nagabhyru, J. R. Faulkner, U. P. Mallik, 

Phytochemistry 2007, 68, 980996. 

[2] J. R. Cowan, Advances in Agronomy, (Ed.: A. G. Norman), Academic Press, 

1956, pp. 283320. 

[3] S. G. Yates, H. L. Tookey, J. J. Ellis, W. H. Tallent, I. A. Wolff, J. Agr. Food 

Chem. 1969, 17, 437442. 

[4] F. Hofmeister, N-S Arch. Pharmacol. 1892, 30, 202230. 

[5] G. Dannhardt, L. Steindl, Planta Med. 1985, 212214. 

[6] A. Takeda, E. Suzuki, K. Kamei, H. Nakata, Chem. Pharm. Bull. (Tokyo) 1991, 

39, 964968. 

[7] É. Batirov, V. Malikov, S. Yunusov, Chem. Nat. Compd. 1976, 12, 5254. 

[8] R. B. Bates, S. R. Morehead, Tetrahedron Lett. 1972, 17, 16291630. 

[9] S. Y. Yunusov, S. T. Akramov, Zh. Obshch. Khim. 1960, 30, 683689. 

[10] L. P. Bush, F. F. Fannin, M. R. Siegel, D. L. Dahlman, H. R. Burton, Agric. 

Ecosyst. Environ. 1993, 44, 81102. 

[11] P. Guérin, Journal de Botanique 1898, 12, 230238. 

[12] C. D. Moon, B. Scott, C. L. Schardl, M. J. Christensen, Mycologia 2000, 92, 

11031118. 

[13] J. D. Blankenship, M. J. Spiering, H. H. Wilkinson, F. F. Fannin, L. P. Bush, C. 

L. Schardl, Phytochemistry 2001, 58, 395401. 

[14] S. G. Yates, J. C. Fenster, R. J. Bartelt, J. Agr. Food Chem. 1989, 37, 354

357. 

[15] W. E. Riedell, R. E. Kieckhefer, R. J. Petroski, R. G. Powell, J. Entomol. Sci. 

1991, 26, 122129. 

[16] M. R. Siegel, G. C. M. Latch, L. P. Bush, F. F. Fannin, D. D. Rowan, B. A. 

Tapper, C. W. Bacon, M. C. Johnson, J. Chem. Ecol. 1990, 16, 33013315. 

[17] H. H. Wilkinson, M. R. Siegel, J. D. Blankenship, A. C. Mallory, L. P. Bush, C. 

L. Schardl, Mol. Plant Microbe In. 2000, 13, 10271033. 

[18] A. Leuchtmann, C. L. Schardl, M. R. Siegel, Mycologia 1994, 86, 802812. 

[19] T. L. Bultman, G. Bell, W. D. Martin, Ecology 2004, 85, 679685. 



20 

[20] K. D. Craven, J. D. Blankenship, A. Leuchtmann, K. Hignight, C. L. Schardl, 

Sydowia 2001, 53, 4473. 

[21] J. D. Robbins, S. R. Wilkinson, J. G. Sweeny, D. Burdick, J. Agr. Food Chem. 

1972, 20, 10401043. 

[22] J. R. Strickland, D. L. Cross, G. P. Birrenkott, L. W. Grimes, Am. J. Vet. Res. 

1994, 55, 716721. 

[23] R. J. Petroski, R. G. Powell, S. Ratnayake, J. L. McLaughlin, Int. J. Pharm. 

1994, 32, 409412. 

[24] P. M. Dewick, Medicinal natural products : a biosynthetic approach, 3. ed., 

Wiley, Chichester, 2009. 

[25] J. D. Blankenship, J. B. Houseknecht, S. Pal, L. P. Bush, R. B. Grossman, C. 

L. Schardl, ChemBioChem 2005, 6, 10161022. 

[26] J. R. Faulkner, S. R. Hussaini, J. D. Blankenship, S. Pal, B. M. Branan, R. B. 

Grossman, C. L. Schardl, ChemBioChem 2006, 7, 10781088. 

[27] M. J. Spiering, J. R. Faulkner, D. X. Zhang, C. Machado, R. B. Grossman, C. 

L. Schardl, Fungal Genet. Biol. 2008, 45, 13071314. 

[28] R. J. Petroski, S. G. Yates, D. Weisleder, R. G. Powell, J. Nat. Prod. 1989, 52, 

810817. 

[29] S. Y. Yunusov, S. T. Akramov, Zh. Obshch. Khim 1960, 30, 677682. 

[30] R. S. Glass, D. R. Deardorff, L. H. Gains, Tetrahedron Lett. 1978, 19, 2965

2968. 

[31] S. R. Wilson, R. A. Sawicki, J. C. Huffman, J. Org. Chem. 1981, 46, 3887

3891. 

[32] J. J. Tufariello, H. Meckler, K. Winzenberg, J. Org. Chem. 1986, 51, 3556

3557. 

[33] J. J. Tufariello, G. E. Lee, J. Am. Chem. Soc. 1980, 102, 373374. 

[34] J. J. Tufariello, J. P. Tette, J. Chem. Soc. D. 1971, 469470. 

[35] P. R. Blakemore, S. K. Kim, V. K. Schulze, J. D. White, A. F. T. Yokochi, J. 

Chem. Soc. Perk. T. 1 2001, 18311845. 

[36] M. T. Hovey, E. J. Eklund, R. D. Pike, A. A. Mainkar, J. R. Scheerer, Org. Lett. 

2011, 13, 12461249. 

 
  



21 

 

 
 
 
 
 
 
 

2. Results 

 

2.1 M. Cakmak, P. Mayer, D. Trauner, Nat. Chem. 2011, 3, 543–545. 

 
  



22 

  



23 



24 



25 

 

  



26 

  



27 



28 



29 



30 



31 



32 



33 



34 



35 



36 



37 



38 



39 



40 



41 



42 



43 



44 



45 



46 



47 



48 



49 



50 



51 



52 



53 



54 



55 



56 



57 



58 



59 



60 



61 



62 

 

  



63 

2.2 Loline Alkaloids: Evolution of a Strategy 

 

The first loline alkaloid, temuline (1) was isolated in 1892 from Lolium temulentum.1 

Six years later there was the report of a novel fungus from the same plant, currently 

known as Neotyphodium occultans.2 It took almost a century to reveal that these 

fungal symbionts produce loline alkaloids. The plant profits from the antifeedant and 

insecticidal activities of loline alkaloids.3 Furthermore, wounding of plants induces 

high levels of loline production which suggests communication between plant and 

fungi.4  

 

Lolines are pyrrolizidine alkaloids bearing unique bridgehead ether connecting C2 

and C7. Members of the loline alkaloids basically differ only in the substitution pattern 

of the amine in position 1 (loline nomenclature). The eponymous member is loline (2), 

of which methylated (3), formylated (4) and acetylated (5) family members exist. 

Besides these, there are six other temuline derivatives (6) with different alkyl chains.  

 

Figure 1: Members of the Loline Alkaloid Family 

 

 

Although loline alkaloids have been known for more than a century, there has been 

no practical synthesis providing sufficient quantities to allow detailed studies of the 

biology and ecology of these natural products. This may not only be due to the 

strained ether linkage, but also to the density of polar heteroatoms. With the 

exception at C6, every other carbon is attached to a heteroatom, which makes the 

synthesis more challenging than it appears at first sight. 
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Indeed, loline (2) has been the target of several synthetic groups, including our own 

research group.5 Glass and Wilson independently built up the loline skeleton but 

were not able to introduce the amine at C1 via nucleophilic substitution.6,7 In 1986 

Tufariello published a racemic synthesis of the alkaloid based on a nitrone-

cycloaddition.8 The first asymmetric synthesis of loline was reported 14 years later by 

White. His synthesis required 20 steps and incorporated an intramolecular hetero-

Diels-Alder reaction and an aminohydroxylation to reach the target molecule.9,10 In 

2011 Scheerer overcame the regioselectivity issues of the aminohydroxylation used 

by White by using an efficient tethered aminohydroxylation (TA) and synthesized (±)-

Acetlynorloline.11 

 

The investigations of the fascinating ecological relationships between plants, fungi, 

insects and bacteria could greatly benefit from a reliable synthetic source of loline 

and its derivatives. This prompted us to revisit the loline alkaloids as synthetic targets 

and develop a new strategy for their synthesis. Initially, we hoped to synthesize 

temuline (2) by means of a Schmidt-Aubé rearrangement followed by reduction of the 

highly reactive amide 7 (Scheme 1). That these kinds of bridgehead amides can be 

formed was demonstrated by Stoltz in his synthesis of 2-quinuclidonium 

tetraflouroborate.12 Precursor 8 could be traced back to diol 9, which was envisioned 

to be formed from bicyclic ketone 10, the same compound used by Wilson and Glass. 

 

Scheme 1: First Retrosynthetic Analysis 

 

 

Our synthesis commenced with literature known bicycle 10, which can be prepaired 

in multigram quantities.13-16 An Upjohn Dihydroxylation at 50 °C yielded diol 9, the 

structure of which was proven unambiguously by X-ray crystallographic analysis. 

Exhaustive conditions have been tried to convert diol 9 to bisazide 8, but none of 

them were successful. Reaction with two equivalents of MsCl gave bismesylate 11. 
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This compound showed sensitivity towards all commercially available azides. Instead 

of the desired substitution an aromatization occurred to give hydroxybenzaldehydes. 

This aromatization is caused most likely by the basicity of the azide reagents, for 

instance sodium acetate, which has a similar pKa as sodium azide, also led to the 

formation of hydroxybenzaldehydes. Besides the reported formation of m-

hydroxybenzaldehyde from 8-Oxabicyclocyclo[3.2.1]octan-3-one systems17,18, we 

also observed o-hydroxybenzaldehyde formation, but always in favor of the m-

product. In the first step a weak base is sufficient to generate the enolate which 

substitutes the mesylate to form a three membered ring. When forming a second 

enolate, the molecule can undergo a hetero-retro-Diels–Alder/elimination cascade 

resulting in m-hydroxybenzaldehyde. However, the o-hydroxybenzaldehyde arises 

from a direct elimination of the mesylate leaving group without undergoing a retro-

[4+2]-reaction (Scheme 2). These rearrangements could not be avoided when forcing 

the system towards substitution.  

 

Scheme 2: Preparation of Compound 11 and its Rearrangementsa 

 
a
Reagents and Conditions: (a) K2OsO4 ∙ 2 H2O (0.02 eq.), NMO (2 eq.), acetone/H2O, 50 °C, 2 h, 69%; 

(b) MsCl (2.4 eq.), NEt3 (3.0 eq.), CH2Cl2, 0 °C, 2 h, 96%. NMO = N-methylmorpholine-N-oxide, MsCl 

= methanesulfonyl chloride, MsOH = methanesulfonic acid. 

 
In order to reduce the sensitivity towards bases we decided to reduce the carbonyl 

group and protect it. The equatorial alcohol was preferred in order to avoid steric 

clash with the incoming nucleophile in the concave site. Thus, reduction of ketone 10 

using SmI2 and iPrOH gave the desired alcohol 1213, which was subsequently 
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protected as the TBS-ether 13. A side product of the reduction was the formation of 

dimer 14, a compound isolated in good yield when iPrOH was not added. The 

structure was confirmed by X-ray crystallographic analysis. Upjohn Dihydroxylation 

provided access to diol 15, which was transformed into the corresponding mesylate 

16 or triflate 17, respectively. Compound 16 turned out to be surprisingly unreactive 

towards substitution while triflate 17 tended to decompose rather than react with 

azide anions. 

 

Scheme 3: Synthesis of Reduced Bicycles 16 and 17a 

 
a
Reagents and Conditions: (a) Sm (2.5 eq.), I2 (2.0 eq.), THF, 70 °C, 3 h, 72%; (b) Sm (2.5 eq.), I2 (2.0 

eq.), iPrOH (1.0 eq.), THF, 70 °C, 3 h; (c) TBSCl (1.2 eq.), im (2.5 eq.), CH2Cl2, rt, 12 h, 56% for two 

steps; (d) K2OsO4 ∙ 2 H2O (0.02 eq.), NMO (2 eq.), acetone/H2O, 50 °C, 2 h, 73%; (e) MsCl (2.4 eq.), 

NEt3 (3.0 eq.), CH2Cl2, 0 °C, 2 h, 99%; (f) Tf2O (2.2 eq.), py (6.0 eq.), CH2Cl2, -10 °C, 45 min. THF = 

tetrahydrofuran, TBSCl = tert-butyldimethylsilyl chloride, im = imidazol, Tf2O = triflic anhydride, py = 

pyridine. 

 

A new strategy was envisioned to assemble the heterotricylic core of loline (2), which 

is outlined in Scheme 4. This requires epoxy aziridine 18 for the key step. A critical 

feature of the plan is the final ether formation, which is a 5-endo-tet cyclisation. 

Although disfavored by the Baldwin rules19, exceptions have been reported, 

especially in nitrogen containing systems.20,21 Boc was chosen as a protecting group 

of the aziridine because it is directly convertible into a methyl group. Epoxy aziridine 

18 can be traced back to cyclic diol 19 and the route to this molecule was projected 

employing metathesis of diene 20. Literature known epoxide 21 is the starting point 

of the synthesis.  
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Scheme 4: Second Retrosynthetic Analysisa 

 
a
 RCM = ring-closing-metathesis. 

 

The synthesis commenced with the desymmetrisation of divinyl carbinol (Scheme 5). 

A highly enantioselective Sharpless epoxidation set the first two stereocenters 

through a racemic resolution.22,23 Epoxide 21 was next opened with commercially 

available 4-butenylamine hydrochloride and the resulting secondary amine was 

subsequently protected as a benzyl carbamate in a one-pot procedure to yield diene 

20. This compound was treated with Grubbs II catalyst to form the 8-membered ring. 

Various attempts to convert the diol 19 into an aziridine failed. However, exposure of 

cyclic diol 19 to thionyl chloride afforded the cyclic sulfite 22 which could then be 

substituted with lithium azide. The reaction occurred selectively in allylic position to 

give azido alcohol 23 in good yield. Heating of azido alcohol 23 with triphenyl 

phosphine in toluene cleanly formed the aziridine, which was subsequently protected 

as tert-butoxy carbamate 24. This compound could alternatively synthesized via 

azido-mesylate 25, reduction of the azide followed by cyclisation and protection.  
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Scheme 5: Synthesis of Aziridine 24a 

 
a
Reagents and Conditions: (a) 4-butenylamine hydrochloride (1.5 eq.), DIPEA (3.3 eq.), MeOH, 45 °C, 

12 h then Na2CO3 (3.0 eq.), CbzCl (2.4 eq.), H2O/MeOH, rt, 3 h, 75%; (b) Grubbs 2
nd

 Generation 

catalyst (0.05 eq.), CH2Cl2, 45 °C, 1 h; (c) SOCl2 (3.0 eq.), NEt3 (4.0 eq.), CH2Cl2, 0 °C, 1 h, 85% for 

two steps; (d) LiN3 (3.0 eq.), DMF, 130°C, 2.5 h, 83%; (e) PPh3 (1.2 eq.), tolunene, 130 °C, 12 h; (f) 

Boc2O (3.0 eq.), DMAP (0.3 eq.), CH2Cl2, rt, 3 h, 98% for two steps; (g) MsCl (1.2 eq.), NEt3 (2.4 eq.), 

CH2Cl2, 0 °C, 2 h, 85%. SAE = Sharpless asymmetric epoxidation, DIPEA = N,N-diisopropylethylamin, 

CBzCl = benzyl chloroformate, DMF = N,N-dimethylformamide, Boc2O = di-tert-butyl dicarbonate, 

DMAP = 4-(dimethylamino)-pyridine. 

 

The epoxidation of 24 using DMDO proceeded with excellent diastereoselectivity to 

afford epoxy aziridine 18 as the only observed isomer in quantitative yield (Scheme 

6). The relative stereochemistry of 18 was confirmed by X-ray crystallographic 

analysis. Hydrogenolysis of 18 generated a secondary amine, which underwent 

transanular epoxide opening at 60 °C to afford pyrrolizidino-aziridine 26. We have not 

been able to open this aziridine by way of a (formal) 5-endo-tet cyclization. Treatment 

of 26 under a variety of thermal, basic, Brønsted-acidic or Lewis-acidic conditions 

failed to give the loline skeleton but has sometimes yielded surprising results. 

 

Exposure of 26 to three equivalents of trifluoroacetic acid, which presumably 

protonates both the pyrrolizidine and the pyramidalized aziridine nitrogen, only 

yielded aminopyrrolizidine diol 27 in excellent yield. This compound is presumably 

formed from the protonated aziridine by nucleophilic attack of the trifluoroacetic acid 

anion, rather than intramolecular opening by the hydroxyl group. The corresponding 
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trifluoro acetate is not stable and gets cleaved upon quenching with aqueous 

ammonia (Scheme 6). The use of acids with less nucleophilic corresponding anions, 

such as methanesulfonic acid or trifluoromethanesulfonic acid also resulted in the 

undesired intermolecular attack. 

 

Scheme 6: Synthesis of Aziridine 26 and its Unexpected Behaviora 

 
a
Reagents and Conditions: (a) DMDO (2.5 eq.), CH2Cl2/acetone, -10 °C, 10 h, 99%; (b) H2 

atmosphere, Pd/C (0.10 eq.), EtOH, rt, 16 h then 60 °C, 72%; (c) CF3CO2H (3.0 eq.), CHCl3, 0 °C → 

rt, 10 h then NH4OH (excess), 99%. DMDO = dimethyldioxirane,  

 

While 27 does not represent a “dead end”, attempts to streamline it further to loline or 

find better conditions for the intramolecular aziridine ring opening were not pursued 

due to a more interesting outcome during the bromination of azido alcohol 23. This 

compound has the correct stereochemistry in position 1 and 2. Due to steric 

hindrance we assumed a backside attack of bromide from the less hindered side.24,25 

Substitution of the two bromines with deprotected amine and alcohol would give the 

loline skeleton. To our surprise, treatment of 23 with bromine in methanol led to the 

formation of bromopyrrolizidine 28 in very good yield. This reaction is probably 

initiated by the formation of bromonium ion 29. Instead of an attack from the bromide, 

the bromonium ion is trapped by the carbamate nitrogen, which resides in Van-der-

Waals distance (ca. 3.1 Å) to C8 according to crystal structure 25. An O-attack of the 

carbamate would lead to a strained cyclic carbonate and would therefore be 

unfavored. Transannular nucleophilic attack would initially yield acyl ammonium ion 

30, which would be subsequently cleaved by the solvent methanol. Our proposed 

mechanism is supported by the fact that benzyl methyl carbonate was identified as a 

byproduct in stoichiometric amounts. 
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Scheme 7: Bromination of Azidoalcohol 23, expected reactivity and experimental 

outcomea 

 
a
Reagents and Conditions: (a) Br2 (1.0 eq.), MeOH, 0 °C → rt, 10 h, 97%. 

 

In order to form the quintessential ether bridge of the loline alkaloids 

bromopyrrolizidine 28 requires inversion at C7. Thus, bromide was substituted with 

chloride in a Finkelstein type reaction, using LiCl in DMF. This reaction yielded two 

chloropyrrolizidines 31 and 32 in a ratio of 19:1 in favor of the desired 

chloropyrrolizidine 31 in 86% yield. When using bromopyrrolizidine as a free base, 

the yield decreased to 24% with a ratio of 9:1. This interesting result raises questions 

about the mechanism of this substitution reaction, weather it partially occurs via SN1. 

The structure of chloropyrrolizidine 32 was confirmed by X-Ray crystallographic 

analysis (Scheme 8). 

 

With sufficient amounts of chloropyrrolizidine 31 in hand, the synthesis of various 

loline alkaloids was straightforward. Heating a solution of 31 in a microwave 

apparatus with potassium carbonate as a base led to formation of the ether bridge 

and gave azide 33 in very good yield. Under these conditions, no elimination 

products could be observed. In order to streamline our synthesis, the Finkelstein 

reaction and Williamson ether synthesis could be carried out as a one-pot procedure. 
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Scheme 8: Synthesis of Azide 32. 

 
a
Reagents and Conditions: (a) LiCl (20 eq.), DMF, 105 °C, 6 h then workup NaOH, 86%; (b) K2CO3 

(2.5 eq.), MeOH, µ-wave, 150 °C, 300 W, 10 min, 90%. 

 

The key azide 33 serves as a branching point for the total synthesis of various loline 

alkaloids (Scheme 9). Hydrogenation afforded temuline (norloline) (2), whereas 

hydrogenation followed by addition of acetic anhydride gave N-acetyl temuline (34). 

Formylation of temuline with acetic-formic anhydride yielded in N-formyl temuline 

(35). Hydrogenation in the presence of para-formaldehyde gave N-methyl loline (3). 

To make loline itself, azide 33 was hydrogenated in the presence of Boc2O to yield N-

Boc temuline (36) in very good yield. The Boc group was reduced with lithium 

aluminum hydride to the corresponding methyl group. Treatment of loline (2) with 

acetic-formic anhydride or acetic anhydride gave N-formyl loline (4) and N-acetyl 

loline (5), respectively.  

 

Interestingly, N-Boc urea 37 was identified as an unexpected side product when 

azide 33 was hydrogenated in the presence of Boc2O. Although these conditions are 

well represented in literature26-28, to the best of our knowledge no Boc protected urea 

of this type has been reported as a side product. The structure was unambiguously 

confirmed by X-Ray crystallographic analysis (Scheme 9). 
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Scheme 9: Azide 33 as a Branching Point for the Synthesis of Several Loline 

Alkaloidsa 

 
a
Reagents and Conditions: (a) H2 atmosphere, Pd/C (0.06 eq.), MeOH, rt, 4 h, 90%; (b) H2 

atmosphere, Pd/C (0.05 eq.), THF, rt, 3 h then Ac2O (1.2 eq.), rt, 16 h, 98%; (c) AFA, rt, 8 h, 99%; (d) 

H2 atmosphere, Pd/C (3.7 eq.), (CH2O)n (excess), MeOH, rt, 8 h, 99%; (e) H2 atmosphere, Pd/C (0.05 

eq.), Boc2O (2.0 eq.), THF, rt, 48 h, 93% of 36, 5% of 37; (f) LiAlH4 (6.0 eq), THF, 70 °C, 8 h, 96%; (g) 

AFA, rt, 8 h, 81%. AFA = acetic formic anhydride. 

 

It soon came to our attention that azide 33 is a substrate which could be easily 

derivatized with click chemistry. This is a powerful reaction to build up libraries under 

very mild conditions.29 The azide at C1 is fairly hindered and requires higher 

temperatures for the cycloaddition. While this type of cycloaddition usually proceeds 

at room temperature, in our case elevated temperature was needed to make the 

reaction occur. In an example of the rapid diversification that is possible with this 

approach four alkynes were exposed to the optimized 13 dipolar cycloaddition 

condition with azide 33 yielding triazols 3841. The crystal structure of compound 41 

is depicted in Scheme 10. 
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Scheme 10: Click Chemistry with Azide 33 

 
a
Reagents and Conditions: (a) alkyne (0.9 eq.), CuSO4 ∙5H2O (0.08 eq.), sodium ascorbate (0.11 eq.), 

MeOH/H2O, 45 °C, 12 h, 82-98%. 

 

Our collaborators were interested in pyrrolizidine derivatives, which could be potential 

metabolites of lolines consumed by insects. For this purpose, we aimed for 

derivatives that bear a hydroxyl, chlorine or hydrogen at C7 instead of the ether 

oxygen (Scheme 11). The N-Boc protecting group of substrate 27 can be cleaved or 

reduced to a methyl group to give diols 42 and 43, respectively. Chloropyrrolizidine 

32 already possesses a chlorine at C7 and simple reduction followed by acetylation 

gave amides 44 and 45. Bromopyrrolizidine 28 can be fully reduced with PtO2 to yield 

amino alcohol 46. The crystal structures of pyrrolizidines 45 and 46 are depicted in 

Scheme 11. 
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Scheme 11: Pyrrolizidine Derivatives made for Biological Investigationsa 

 
a
Reagents and Conditions: (a) HCl (g), MeOH, rt, 10 min., 99%; (b) LiAlH4 (6.0 eq.), THF, 70 °C, 8 h 

then HCl (g), 96%; (c) H2 atmosphere, Pd/C (0.05 eq.), THF, rt, 3 h then Ac2O (2.0 eq.), rt, 16 h, 78% 

of 45, 15% of 46; (d) H2 atmosphere, PtO2 (0.1 eq.), H2O, rt, 30 min., 75%. 

 

The ethylenediamine unit of the loline alkaloids could be a suitable ligand for 

transition metal complexes. Natural product complexes, such as the sparteine-

palladium complex, have been synthesized and successfully used for organic 

reactions.30 In a similar fashion, PdCl2 was refluxed in acetonitrile and the resulting 

acetonitrile complex was treated with loline (2) or N-methyl loline (3) to give 

complexes 47 and 48, respectively. The syntheses and the crystal structures of 

complexes 47 and 48 are depicted in Scheme 12.  

 

Scheme 12: Synthesis and X-Ray Structures of Pd Complexes 47 and 48a 

 
a
Reagents and Conditions: (a) MeCN, 90 °C, 2 h; (b) 2 (1.0 eq.), MeCN, rt, 12 h, 79%; (c) 3 (1.0 eq.), 

MeCN, rt, 12 h, 85%; 
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An unusual chemical characteristic of temuline (1) is that it binds CO2 when exposed 

to air and forms a crystalline solid.8 Only a few examples of free carbamate crystal 

structures have been reported.31,32 Thus, in order to understand this affinity, we 

exposed a methanolic solution of temuline (1) to CO2, that upon slow evaporation 

yielded suitable crystals of temuline carbamate (49) for X-ray analysis (Scheme 13). 

The structure revealed no intramolecular hydrogen bonds but rather strong 

intermolecular hydrogen bonds were apparent, leading to form a zig-zag motive. This 

unexpected result sparked our interest in free carbamates, prompting us to 

investigate if this type of CO2 binding is a general motive for ethylenediamines. 

Therefore, a diisopropylamine 50 solution in acetonitrile was saturated with CO2 to 

give carbamate 51, which shows different and weaker interactions than carbamate 

49. Instead of forming a zitterionic compound, the primary amine of a second 

molecule is protonated, leading to both intermolecular and intramolecular hydrogen 

bonds. Further efforts to crystallize and understand interactions of other 

ethylenediamine carbamates are continuing in our laboratories. 

 

Scheme 13: Synthesis and X-Ray Structure of Free Carbamates 49 and 51 
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In summary, we have shown an unprecedented rearrangement of 8-

oxabicyclocyclo[3.2.1]octan-3-one systems. We have seen confirmation of the validity 

of the Baldwin rules, due to an unexpected aziridine opening. In the end, we have 

developed a highly efficient, asymmetric total synthesis of loline that proceeds in 10 

steps from divinyl carbinol and successfully synthesized 7 different loline alkaloids. 

Our synthesis features a Sharpless epoxidation, a Grubbs olefin metathesis and 

incorporates an unusual transannular attack of a carbamate nitrogen to yield the 

pyrrolizidine skeleton. The only protecting group used is lost in the course of a 

strategic bond formation and does not require an additional cleavage step. Our 

synthesis is scalable, diversifiable and gives ample access to all loline alkaloids. 

These synthetic natural products and the derivatives have been used to explore the 

complex interactions between fungi, insects and bacteria in fescue grass. In addition 

click chemistry has been performed with azide 33 and the affinity of lolines to Pd and 

CO2 has been investigated. 
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2.2.1 Supplementary Information 

 

General Experimental Details. Unless stated otherwise, all reactions were performed in 

oven-dried or flame-dried glassware under a positive pressure of nitrogen.  Commercial 

reagents and solvents were used as received with the following exceptions. Tetrahydrofuran 

(THF) was distilled from benzophenone and sodium immediately prior to use. 

Diisopropylethylamine (DIPEA) and Triethylamine (TEA) were distilled over calcium 

hydride immediately before use. Reactions were magnetically stirred and monitored by crude 

NMR or analytical thin-layer chromatography (TLC) using E. Merck 0.25 mm silica gel 60 

F254 precoated glass plates.  TLC plates were visualized by exposure to ultraviolet light (UV, 

254 nm) and/or exposure to an aqueous solution of ceric ammoniummolybdate (CAM) or an 

aqueous solution of potassium permanganate (KMnO4) followed by heating with a heat gun.  

Flash column chromatography was performed as described by Still et al. employing silica gel 

(60 Å, 40-63 m, Merck) and a forced flow of eluant at 1.3–1.5 bar pressure.
1
 Yields refer to 

spectroscopically (
1
H NMR and 

13
C NMR) pure material.  

 

Instrumentation. Proton nuclear magnetic resonance (
1
H NMR) spectra were recorded on 

Varian VNMRS 300, VNMRS 400, INOVA 400 or VNMRS 600 spectrometers.  Proton 

chemical shifts are expressed in parts per million ( scale) and are calibrated using residual 

undeuterated solvent as an internal reference (CHCl3:  7.26, MeOH:  3.31, H2O:  4.79). 

Data for 
1
H NMR spectra are reported as follows: chemical shift ( ppm) (multiplicity, 

coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad, or combinations thereof. Carbon 

nuclear magnetic resonance (
13

C NMR) spectra were recorded on Varian VNMRS 300, 

VNMRS 400, INOVA 400 or VNMRS 600 spectrometers. Carbon chemical shifts are 

expressed in parts per million ( scale) and are referenced from the carbon resonances of the 

solvent (CDCl3:  77.0, MeOH:  49.0). Infrared (FTIR) spectra were recorded on a Perkin 

Elmer Spectrum BX II (FTIR System). FTIR Data is reported in frequency of absorption (cm
-

1
). Mass spectroscopy (MS) experiments were performed on a Thermo Finnigan MAT 95 (EI) 

or on a Thermo Finnigan LTQ FT (ESI) instrument. Microwave reactions were performed on 

a CEM machine (Model: Discovery System, No. 908010). 
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Synthetic procedures. 

 

 

Bicyclodiol 9 

100 mg (0.81 mmol, 1 eq.) alkene 10 was dissolved in 30 mL acetone/H2O (1/1) and 6 mg (16 

µmol, 0.02 eq.) K2OsO4 ∙2H2O was added at rt followed by addition of 189 mg (1.62 mmol, 2 

eq.) NMO. The mixture was stirred at 50 °C for 2 h, quenched with 450 mg (2.85 mmol, 3.5 

eq.) solid Na2S2O3, filtered and concentrated in vacuo to afford 110 mg of a brown oil. The 

crude product was purified by flash column chromatography (EtOAc) to yield 88.0 mg (0.56 

mmol, 69%) of the desired product 9 as colorless crystals (one spot on TLC). 

 

TLC (EtOAc), Rf  = 0.30 (KMnO4). 

1
H NMR (MeOH-d4, 400 MHz): δ= 4.42–4.40 (m, 2H), 4.01 (s, 2H), 2.69 (dd, J=6.1, 

16.7 Hz, 2H), 2.36–2.31 (m, 2H). 

13
C NMR (MeOH-d4, 100 MHz): δ= 207.8, 83.7, 75.9, 47.3.  

IR (Diamond-ATR, neat) max: 3320, 2907, 1707, 1419, 1341, 1295, 1194, 1101, 1032, 968, 

840, 799, 679 cm
-1

. 

HRMS (ESI) calcd for C7H10O4 [M]
+
: 158.0579; found: 158.0561. 

 

 

 

Bismesylate 11 

158 mg (1.0 mmol, 1 eq.) diol 9 was dissolved in CH2Cl2 (30 mL) and 418 µL (3.0 mmol, 3 

eq.) NEt3 was added. The reaction mixture was cooled to 0 °C and 186 µL (2.4 mmol, 2.4 eq.) 

MsCl was added dropwise. The reaction mixture was stirred for 2 h at 0 °C and 1 h at rt. The 

reaction mixture was diluted with EtOAc (50 mL) and 1N HCl (30 mL). The water layer was 

separated and extracted with EtOAc (3  30 mL). The combined organic layers were dried 

over MgSO4, filtered and concentrated in vacuo to afford 240 mg of a yellow solid. The crude 

product was purified by flash column chromatography (EtOAc/hexane = 1/1) to yield 301 mg 

(0.96 mmol, 96%) of the desired product 11 as a colorless solid (one spot on TLC). 
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TLC (EtOAc), Rf  = 0.53 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 5.00 (s, 2H), 4.87–4.86 (m, 2H), 3.14 (s, 6H), 2.80 (dd, 

J=6.3, 17.1 Hz, 2H), 2.56–2.53 (m, 2H). 

13
C NMR (CDCl3, 150 MHz): δ= 202.3, 80.3, 79.7, 45.8, 38.6.  

IR (Diamond-ATR, neat) max: 3026, 2940, 1724, 1338, 1169, 984, 866, 841, 811, 757 cm
-1

. 

HRMS (ESI) calcd for C9H14O4S2 [M+Na]
+
: 337.0028; found: 337.0024. 

 

 

 

Alcohol 12 

182 mg (1.21 mmol, 2.5 eq.) Samarium was suspended in THF (12 mL), 245 mg (0.967 

mmol, 2 eq.) I2 was added and the mixture was stirred for 2h at rt in the dark (deep blue 

solution). After heating to reflux, 60 mg (0.483 mmol, 1 eq.) ketone 10 and 37 µL (0.483 

mmol, 1 eq.) iPrOH in THF (3 mL) were added dropwise. The reaction mixture was refluxed 

for 3h, then cooled to rt, quenched by addition of ice, 1N HCl (7 mL) and sat. aq. Na2S2O3 (8 

mL). The reaction mixture was diluted with EtOAc (30 mL), layers were separated and the 

water layer was extracted with EtOAc (3  25 mL). Combined organics were dried over 

MgSO4, filtered and concentrated in vacuo to afford 35 mg of crude alcohol 12.  

 

TLC (EtOAc), Rf  = 0.12 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 6.09 (s, 2H), 4.79–4.77 (m, 2H), 3.93–3.77 (m, 1H), 2.08 

(brs, 1H), 1.96–1.86 (m, 2H), 1.65–1.52 (m, 2H). 

 

TBS-ether 13 

35 mg (0.277 mmol, 1 eq.) crude alcohol 12 and 47 mg (0.694 mmol, 2.5 eq.) imidazol was 

dissolved in CH2Cl2 (2 mL). 50 mg (0.333 mmol, 1.2 eq.) TBSCl was added and the reaction 

mixture was stirred at rt for 12h. The reaction mixture was diluted with CH2Cl2 (15 mL), 

filtered through Celite and concentrated in vacuo. The crude product was purified by flash 

column chromatography (EtOAc/hexane = 1/1) to afford a 65 mg (0.271 mmol, 56% over two 

steps) of the protected alcohol 13 as a colorless oil.  

 

TLC (EtOAc), Rf  = 0.86 (KMnO4). 
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1
H NMR (CDCl3, 300 MHz): δ= 6.10 (d, J=0.8 Hz, 2H), 4.76–4.74 (m, 2H), 3.88 (tt, J=6.5, 

9.3 Hz 1H), 1.80–1.62 (m, 4H), 0.85 (s, 9H), 0.00 (s, 6H). 

13
C NMR (MeOH-d4, 100 MHz): δ= 130.9, 78.1, 64.6, 35.8, 25.8, 18.0, -4.6.  

IR (Diamond-ATR, neat) max: 2949, 2854, 1471, 1251, 1110, 1086, 1045, 961, 871, 835, 

774, 702, 668 cm
-1

. 

HRMS (EI) calcd for C12H21O2Si [M-CH3]: 225.1311; found: 225.1302. 

 

 

 

Dimer 14 

137 mg (0.915 mmol, 2.5 eq.) Samarium was suspended in THF (10 mL), 186 mg (0.732 

mmol, 2 eq.) I2 was added and stirred for 2h at rt in the dark (deep blue solution). After 

heating to 70 °C, 45 mg (0.366 mmol, 1 eq.) ketone 10 in THF (3 mL) was added dropwise. 

The reaction mixture turned green after 3h. After cooling to rt, the reaction mixture was 

quenched by addition of ice, 1N HCl (5 mL) and sat. aq. Na2S2O3 (6 mL). The reaction 

mixture was diluted with EtOAc (20 mL), layers were separated and the water layer was 

extracted with EtOAc (3  20 mL). Combined organics were dried over MgSO4, filtered and 

concentrated in vacuo to afford 75 mg of a yellow solid. The crude product was purified by 

flash column chromatography (EtOAc) to yield 33 mg (0.132 mmol, 72%) of dimer 14 as a 

colorless solid (one spot on TLC). 

 

TLC (EtOAc), Rf  = 0.16 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 6.40 (s, 2H), 6.26 (m, 2H), 4.85 (d, J=8.6 Hz, 2H), 4.50 (d, 

J=4.5 Hz, 2H), 2.31 (d, J=11.9 Hz, 2H), 1.91 (dd, J=9.0, 14.3 Hz, 2H), 1.73 (d, J=13.4 Hz, 

2H), 1.36 (d, J=14.3 Hz, 2H). 

13
C NMR (CDCl3, 150 MHz): δ= 135.2, 134.5, 78.4, 77.3, 76.1, 74.0, 34.3, 32.0.  

IR (Diamond-ATR, neat) max: 3496, 2949, 2924, 1345, 1276, 1216, 1058, 1048, 1021, 954, 

859, 825, 752, 706 cm
-1

. 

HRMS (ESI) calcd for C14H17O4 [M-H]

: 249.1127; found: 249.1138. 
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Diol 15 

65 mg (0.271 mmol, 1 eq.) alkene 13 was dissolved in 20 mL acetone/H2O (1/1) and 2 mg (6 

µmol, 0.02 eq.) K2OsO4∙2H2O was added at rt followed by addition of 65 mg (0.554 mmol, 2 

eq.) NMO. The mixture was stirred at 50 °C for 2 h, quenched with 150 mg (0.970 mmol, 3.5 

eq.) solid Na2S2O3, filtered and concentrated in vacuo to afford 94 mg of a brown oil. The 

crude product was purified by flash column chromatography (EtOAc) to yield 54 mg (0.197 

mmol, 73%) of the desired product 15 as colorless oil (one spot on TLC). 

 

TLC (EtOAc), Rf  = 0.26 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 4.20 (brs, 2H), 4.09 (s, 2H), 3.58–3.52 (m, 1H), 1.87–1.83 

(m, 2H), 1.66–1.61 (m, 2H), 0.85 (s, 9H), 0.02 (s, 6H). 

13
C NMR (CDCl3, 150 MHz): δ= 82.6, 74.6, 63.6, 38.7, 25.7, 18.0, -4.6.  

IR (Diamond-ATR, neat) max: 3296, 2950, 2926, 2855, 1469, 1256, 1242, 1101, 1081, 1027, 

1033, 997, 986, 869, 834, 776, 668, 619 cm
-1

. 

HRMS (ESI) calcd for C13H26O4Si [M-H]

: 273.1522; found: 273.1537. 

 

 

 

Bismesylate 16 

25 mg (0.091 mmol, 1.0 eq.) diol 15 was dissolved in CH2Cl2 (3 mL) and 38 µL (0.273 mmol, 

3.0 eq.) NEt3 was added. The reaction mixture was cooled to 0 °C and 17 µL (0.219 mmol, 

2.4 eq.) MsCl was added dropwise. The reaction mixture was stirred for 2 h at 0 °C. The 

reaction mixture was diluted with EtOAc (10 mL) and 1N HCl (3 mL). The water layer was 

separated and extracted with EtOAc (3  5 mL). The combined organic layers were dried over 

MgSO4, filtered and concentrated in vacuo to afford 42 mg of a yellow solid. The crude 

product was purified by flash column chromatography (EtOAc/hexane = 1/1) to yield 39 mg 

(0.090 mmol, 99%) of the desired product 16 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 1:1), Rf  = 0.24 (KMnO4). 
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1
H NMR (CDCl3, 600 MHz): δ= 5.01 (s, 2H), 4.52 (s, 2H), 3.61–3.55 (m, 1H), 3.12 (s, 6H), 

1.94 (ddd, J=1.6, 5.8, 14.7 Hz, 2H), 1.74–1.69 (m, 2H), 0.85 (s, 9H), 0.04 (s, 6H). 

13
C NMR (CDCl3, 150 MHz): δ= 80.4, 79.3, 62.9, 38.7, 38.0, 25.6, 17.9, -4.5.  

HRMS (ESI) calcd for C15H31O8S2Si [M+H]
+
: 431.1230; found: 431.1253. 

 

 

 

Bistriflate 17 

20 mg (0.073 mmol, 1.0 eq.) diol 15 was dissolved in CH2Cl2 (5 mL) and 35 µL (0.437 mmol, 

6.0 eq.) py was added. The reaction mixture was cooled to –10 °C and 27 µL (0.160 mmol, 

2.2 eq.) Tf2O was added dropwise. The reaction mixture was stirred for 45 min at –10 °C 

before it was concentrated in vacuo. The reaction mixture was triturated with Et2O (2  10 

mL) and filtered to afford 37 mg (0.069 mmol, 94%) of the desired product 17 as a colorless 

solid. 

 

TLC (hexanes:EtOAc = 1:1), Rf  = 0.20 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 5.17 (s, 2H), 4.60 (s, 2H), 3.58–3.52 (m, 1H), 1.95 (dd, J= 

5.8, 13.1 Hz, 2H), 1.83–1.78 (m, 2H), 087 (s, 9H), 0.07 (s, 6H). 

13
C NMR (CDCl3, 150 MHz): δ= 119.4, 84.7, 80.2, 62.5, 37.7, 25.5, 17.8, -4.5.  

HRMS (ESI) calcd for C15H25F6O8S2Si [M+H]
+
: 539.0664; found: 539.0649. 

 

 

 

Diene 20: 

6.97 g (69.7 mmol, 1 eq.) epoxy alcohol 21
2
 was dissolved in methanol (150 mL) and treated 

with 11.19 g (104.5 mmol, 1.5 eq.) 4-butenylamine hydrochloride and 39.0 mL (230.0 mmol, 

3.3 eq.) DIPEA. The reaction mixture was stirred at 45 °C for 12 h in a sealed tube. 22.1 g 

(209.1 mmol, 3 eq.) Na2CO3 in water (100 mL) and 23.7 mL (167.3 mmol, 2.4 eq.) benzyl 

chloroformate were subsequently added at 0 °C and stirred for 3 h at rt. The reaction mixture 

was diluted with H2O (200 mL) and extracted with EtOAc (3  150 mL). The combined 

organic layers were washed with brine (300 mL), dried over MgSO4, filtered and concentrated 
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in vacuo. The crude product was purified by flash column chromatography (hexanes:EtOAc = 

3:1) to yield 15.9 g (52.3 mmol, 75%) diene 20 as a clear oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 1:1), Rf  = 0.48 (UV, CAM). 

1
H NMR (CDCl3, 600 MHz): δ= 7.35 (m, 5H), 5.93–5.87 (m, 1H), 5.73–5.67 (m, 1H), 5.34 

(d, J=17.3 Hz, 1H), 5.25 (d, J=10.5 Hz, 1H), 5.13 (s, 2H), 5.03–4.98 (dd, J=9.9, 16.7 Hz, 2H), 

4.06 (s, 1H), 3.70 (s, 1H), 3.62 (dd, J=6.2, 14.8 Hz, 1H), 3.43–3.29 (m, 6H), 2.36 – 2.24 (m, 

2H). 

13
C NMR (CDCl3, 150 MHz): δ= 158.4, 136.7, 136.3, 134.9, 128.5, 128.1, 127.9, 117.2, 

117.0, 74.3, 74.0, 67.7, 49.9, 48.6, 32.9. 

IR (Diamond-ATR, neat) max: 3397, 2978, 2937, 1743, 1671, 1478, 1423, 1221, 1147, 1094, 

994, 917, 734, 697 cm
-1

. 

[]
25

 D  = – 9.2° (c = 0.46, CHCl3). 

HRMS (ESI) calcd for C17H23NO4 [M+H]
+
: 306.1700; found: 306.1706. 

 

 

 

Diol 19 

A solution of 2.10 g (6.9 mmol, 1.0 eq.) diene 20 in CH2Cl2 (3.0 L) was heated to 45 °C and 

292 mg (0.34 mmol, 0.05 eq.) Grubbs 2
nd

 Generation catalyst was added in one portion. The 

reaction mixture was refluxed for 1 h, then concentrated in vacuo to a total volume of ca. 50 

mL and in general used for the next reaction without further purification.  

The reaction was repeated five times using the same batch of CH2Cl2, which was recycled by 

distillation from the reaction mixture. 

For characterization purpose, the reaction mixture was concentrated in vacuo and the crude 

product was purified by flash column chromatography (hexanes:EtOAc = 2:1) to yield 1.64 g 

(5.9 mmol, 86%) diol 19 as brown oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 1:1), Rf  = 0.15 (UV, CAM). 

1
H NMR (CDCl3, 600 MHz): δ= 7.37–7.27 (m, 5H), 5.92–5.65 (m, 2H), 5.17–5.06 (m, 2H), 

4.46–4.25 (m, 2H), 4.21–3.62 (m, 2H), 3.30 (brs, 1H), 3.18 (brs, 1H), 2.95 (brs, 1H), 2.71–

2.56 (m, 1H), 2.30–2.12 (m, 2H). 
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13
C NMR (CDCl3, 151 MHz): δ= 156.9, 156.1, 136.4, 136.3, 133.7, 132.5, 129.2, 128.6, 

128.5, 128.3, 128.1, 128.1, 127.9, 127.8, 73.1, 72.7, 69.9, 69.4, 67.5, 67.4, 51.7, 51.3, 50.2, 

49.5, 28.3, 28.1. 

IR (Diamond-ATR, neat) max: 3408, 2936, 1680, 1472, 1419, 1264, 1222, 1107, 1053, 955, 

731, 697 cm
-1

. 

[]
25

 D  = + 48.5° (c = 0.42, CHCl3). 

HRMS (EI) calcd for C15H19NO4: 277.1314; found: 277.1291. 

Note: Multiple signals of 
1
H- and 

13
C-NMR are due to rotamers and conformers. 

 

Sulfite 22 

Crude diol 19 (100% yield assumed from RCM reactions, 34.5 mmol ) in CH2Cl2 (ca. 250 

mL) was cooled to 0 °C. 19.2 mL (138.0 mmol, 4 eq.) NEt3 was added followed by a 

dropwise addition of 7.51 mL (103.5 mmol, 3 eq.) SOCl2 and stirred at 0 °C for 1 h. The 

reaction mixture was diluted with CHCl3 (400 mL), washed with H2O (3  150 mL) and brine 

(400 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (hexanes:EtOAc = 3:1) to yield 9.48 g (29.3 mmol, 

85% over 2 steps) sulfite 22 as a mixture of diastereomers in ratio of (54:46). 

 

TLC (hexanes:EtOAc = 2:1), Rf  = 0.81 (UV, CAM). 

1
H NMR (CDCl3, 300 MHz): δ= 7.36 (brs, 5H), 6.19–5.94 (m, 2H), 5.63–5.43 (m, 1H), 5.39–

5.05 (m, 2H), 5.04–4.69 (m, 1H), 4.45–4.12 (m, 2H), 3.31–2.91 (m, 1H), 2.82–2.60 (m, 1H), 

2.43–2.21 (m, 1H), 2.19–1.93 (m, 1H). 

13
C NMR (CDCl3, 75 MHz): δ= 155.6, 136.2, 136.0, 132.7, 132.1, 131.6, 130.3, 129.7, 129.2, 

128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 84.1, 83.1, 81.7, 81.6, 80.8, 80.5, 78.8, 78.1, 

67.9, 67.8, 67.7, 48.1, 47.9, 47.7, 47.7, 47.2, 47.1, 46.3, 29.8, 29.5, 29.2, 29.0. 

IR (Diamond-ATR, neat) max: 2947, 1695, 1463, 1417, 1211, 963, 740, 698 cm
-1

. 

[]
25

 D  = – 7.2° (c = 0.42, CHCl3). 

HRMS (EI) calcd for C15H17NO5S: 323.0827; found: 323.0826. 

 

 

 

Azido alcohol 23 
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500 mg (1.55 mmol, 1.0 eq.) sulfite 22 was dissolved in DMF (37 mL) and treated with 1.14 

mL (4.64 mmol, 3.0 eq., 20% solution in water) LiN3. The reaction mixture was stirred at 130 

°C for 2.5 h, cooled to room temperature and diluted with H2O (150 mL). The reaction 

mixture was extracted with EtOAc (3  50 mL) and the combined organic layers were 

subsequently washed with H2O (3  100 mL), 10% aq. LiCl (100 mL) and brine (100 mL). 

The organic layer was dried over MgSO4, filtered and concentrated in vacuo. The crude 

product was purified by flash column chromatography (hexanes:EtOAc = 3:1) to yield 390 

mg (1.29 mmol, 83%) azido alcohol 23 as a clear oil (one spot on TLC). 

Note: Reaction scales larger than 1.55 mmol afforded the product in 55-70% yield.  

 

TLC (hexanes:EtOAc = 6:4), Rf  = 0.50 (UV, CAM). 

1
H NMR (CDCl3, 300 MHz): δ= 7.45–7.31 (m, 5H), 5.95–5.79 (dd, J=8.0, 18.8 Hz, 1H), 

5.61–5.47 (m, 1H), 5.29–5.16 (m, 3H), 4.27–4.02 (m, 2H), 3.82–3.69 (m, 1H), 3.15 (dd, 

J=4.2, 15.2 Hz, 1H), 2.75–2.54 (m, 1H), 2.40–2.22 (m, 2H). 

13
C NMR (CDCl3, 75 MHz): δ= 158.8, 136.0, 130.1, 130.0, 129.3, 128.7, 128.5, 128.3, 128.2, 

77.0, 68.3, 63.9, 54.3, 49.5, 28.8. 

IR (Diamond-ATR, neat) max: 3376, 2930, 2099, 1663, 1417, 1258, 1210, 1132, 1066, 987, 

733, 696 cm
-1

. 

[]
25

 D =  – 11.6° (c = 0.43, CHCl3). 

HRMS (ESI) calcd for C15H18N4O3 [M+Na]
+
: 325.1277; found: 325.1271. 

 

 

 

Aziridine S1 

240 mg (0.795 mmol, 1.0 eq.) azidol 23 and 360 mg (0.954 mmol, 1.2 eq.) of triphenylphos-

phine was dissolved in 10 mL of anhydrous toluene and heated to 130 °C for 12h (evolution 

of N2). After cooling to room temperature, the reaction mixture was diluted with toluene (30 

mL) and extracted with 20% sat. aq. NaHSO3 (3  25 mL). The combined aqueous layers 

were cooled to 0 °C and adjusted to pH > 10 with K2CO3. The aqueous layer was extracted 

with EtOAc (3  25 mL) and the combined organic layers were washed with brine (100 mL), 

dried over MgSO4, filtered and concentrated in vacuo to yield 204 mg aziridine S1 as 

colorless oil (one spot on TLC). 
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TLC (CH2Cl2:MeOH = 9:1), Rf  = 0.52 (CAM). 

1
H NMR (CDCl3, 300 MHz): δ= 7.39–7.31 (m, 5H), 5.81–5.67 (m, 2H), 5.19–5.11 (m, 2H), 

4.24–4.09 (m, 2H), 2.91–2.81  (m, 1H), 2.62 (brs, 2H), 2.48–2.41 (m, 2H), 2.26–2.17 (m, 1H). 

HRMS (ESI) calcd for C15H18N2O2 [M+H]
+
: 258.1368; found: 258.1376. 

 

N-Boc aziridine 24 

204 mg (0.791 mmol, 1.0 eq.) aziridine S1, 544 µL (2.37 mmol, 3.0 eq.) di-tert-butyl 

dicarbonate and 22 mg (0.237 mmol, 0.3 eq.) 4-dimethylaminopyridine were dissolved in 

CH2Cl2 (8 mL) and stirred at rt for 3 h. The reaction mixture was concentrated in vacuo. The 

crude product was purified by flash column chromatography (hexanes:EtOAc = 5:1) to yield 

280 mg (0.782 mmol, 98% over two steps) N-Boc aziridine 24 as a colorless oil (one spot on 

TLC). 

 

TLC (hexanes:EtOAc = 6:4), Rf  = 0.59 (CAM). 

1
H NMR (CDCl3, 300 MHz): δ= 7.41–7.30 (m, 5H), 5.86–5.70 (m, 2H), 5.22–5.10 (m, 2H), 

4.45–4.10 (m, 2H), 3.04–2.94  (m, 1H), 2.86–2.76 (m, 2H), 2.69–2.50 (m, 1H), 2.40–2.21 (m, 

2H), 1.45–1.42 (m, 9H). 

13
C NMR (CDCl3, 100 MHz): δ= 162.1, 155.5, 136.6, 132.4, 132.1, 128.5, 128.0, 127.8, 

125.8, 125.5, 81.4, 67.3, 47.0, 46.5, 46.3, 41.8, 41.6, 38.9, 38.4, 29.6, 29.3, 27.8. 

HRMS (ESI) calcd for C20H26N2O4 [M+H]
+
: 358.1893; found: 358.1904. 

 

 

 

Azido mesylate 25 

To a solution of 90 mg (0.298 mmol, 1 eq.) azido alcohol 23 and 100 L (0.715 mmol, 2.4 

eq.) NEt3 in CH2Cl2 (12 mL) at 0 °C was added dropwise 28 L (0.358 mmol, 1.2 eq.) MsCl. 

The reaction mixture was stirred for 2 h at 0 °C and then diluted with sat. aq. NH4Cl (10 mL). 

The reaction mixture was extracted with EtOAc (3  25 mL) and the combined organic layers 

were washed with brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo to 

yield 96 mg  (0.253 mmol, 85%) azido mesylate 25 as a yellow solid (one spot on TLC). 

 

TLC (hexanes:EtOAc = 6:4), Rf  = 0.45 (UV, CAM). 
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1
H NMR (CDCl3, 400 MHz): δ= 7.44–7.32 (m, 5H), 5.92–5.83 (m, 1H), 5.54–5.41 (m, 1H), 

5.27–5.09 (m, 2H), 4.74–4.50 (m, 1H), 4.38 (dt, J=9.3, 17.7 Hz, 1H), 3.65 (m, 3H), 3.31–3.20 

(m, 2H), 2.91 (s, 2H), 2.33 (s, 2H). 

13
C NMR (CDCl3, 100 MHz): δ= 156.3, 136.2, 131.7, 131.3, 128.8, 128.5, 128.3, 128.0, 

127.4, 80.6, 67.8, 67.6, 61.5, 50.4, 50.4, 47.3, 38.5, 38.0, 28.1, 27.8. 

IR (Diamond-ATR, neat) max: 2102, 1693, 1467, 1419, 1350, 1255, 1171, 1137, 946, 737 

cm
-1

. 

HRMS (EI) calcd for C16H27N4O4S: 380.1154; found: 380.1156. 

 

 

 

Epoxyaziridine 18 

210 mg (0.586 mmol, 1.0 eq.) alkene 24 was dissolved in CH2Cl2 (5 mL) and cooled to –10 

°C. 14.7 mL (1.47 mmol, 2.5 eq., 1M solution in acetone) freshly prepared DMDO was added 

dropwise and the reaction mixture was stirred at –10 °C for 30 h. The reaction mixture was 

concentrated in vacuo to yield 219 mg (0.585 mmol, 99%) of the desired epoxide 18 as a 

colorless solid (one spot on TLC). 

 

TLC (hexanes:EtOAc = 6:4), Rf  = 0.44 (CAM). 

1
H NMR (CDCl3, 300 MHz): δ= 7.47–7.30 (m, 5H), 5.24–5.08 (m, 2H), 4.60–4.36 (m, 1H), 

4.34–4.19 (m, 1H), 3.18 (d, J=3.1 Hz, 1H), 3.09–2.95 (m, 1H), 2.86 (dd, J=10.5, 14.8 Hz, 

1H), 2.75–2.64 (m, 2H), 2.62–2.49 (m, 1H), 2.46–2.25 (m, 1H), 1.47–1.44 (m, 9H), 1.28–1.12 

(m, 1H). 

13
C NMR (CDCl3, 100 MHz): δ= 162.2, 155.5, 136.4, 128.6, 128.1, 127.9, 81.9, 67.5, 55.6, 

52.9, 52.8, 48.1, 47.2, 42.8, 42.7, 40.1, 40.0, 39.9, 37.6, 37.2, 31.4, 31.1, 27.8. 

IR (Diamond-ATR, neat) max: 2977, 1697, 1449, 1420, 1367, 1285, 1232, 1152, 1076, 970, 

900, 851, 827, 766, 752, 732, 697 cm
-1

. 

[]
25

 D =  – 33.6° (c = 0.44, CHCl3). 

HRMS (ESI) calcd for C20H26N2O5 [M+H]
+
: 375.1914; found: 375.1914. 
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Hydroxyaziridine 26 

A solution of 260 mg (0.693 mmol, 1.0 eq.) epoxide 18 and 74 mg (69.3 µmol, 0.10 eq.) 10% 

Pd/C in ethanol (20 mL) was flushed with H2 (3 ) and stirred for 16 h at rt under H2 

atmosphere (balloon). The reaction mixture was filtered through a pad of Celite and the 

filtrate was heated to 60 °C for 1 h before concentrating in vacuo to yield 120 mg 

(0.499 mmol, 72%) of the desired product 26 (one spot on TLC). 

 

TLC (CH2Cl2:MeOH:NH4OH = 8:8:0.2), Rf  = 0.34 (KMnO4). 

1
H NMR (MeOH-d4, 400 MHz): δ= 4.31 (q, J=3.3 Hz, 1H), 3.44 (d, J=3.5 Hz, 1H), 3.39 (d, 

J=10.4 Hz, 1H), 3.25 (dd, J=2.5, 4.6 Hz, 1H), 3.23 (d, J=4.6 Hz, 1H), 3.08 (dt, J=6.2, 

10.9 Hz, 1H), 2.83–2.74 (m, 1H), 2.00–1.96 (m, 2H), 1.43 (s, 9H). 

13
C NMR (MeOH-d4, 100 MHz): δ= 162.6, 82.3, 73.4, 71.4, 57.8, 53.4, 44.9, 42.8, 37.7, 28.2. 

IR (Diamond-ATR, neat) max: 3357, 2922, 2852, 1714, 1575, 1367,1319, 1293, 1256, 1154, 

1020, 795 cm
-1

. 

[]
25

 D  = – 6. 8° (c = 0.64, CHCl3). 

HRMS (ESI) calcd for C12H20N2O3 [M+H]
+
: 240.1474; found: 240.1460. 

 

 

 

Dihydroxy pyrrolizidine 27 

72 mg (0.30 mmol, 1.0 eq.) aziridin 26 was dissolved in CHCl3 (9 mL) and cooled to 0 °C. 

69 µL (0.90 mmol, 3.0 eq.) trifluoroacetic acid was added dropwise and the reaction mixture 

was allowed to warm to rt while stirring for 10 h. The reaction mixture was treated with 

NH4OH (0.5 mL) dropwise and concentrated in vacuo. The crude product was purified by 

flash column chromatography (CH2Cl2:hexanes:MeOH:NH4OH = 8:10:3:0.2) to yield 77 mg 

(0.29 mmol, 99%) of the desired product 27 as a colorless solid (one spot on TLC). 

 

TLC (CH2Cl2:hexanes:MeOH:NH4OH = 8:10:3:0.2), Rf  = 0.21 (KMnO4). 
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1
H NMR (MeOH-d4, 400 MHz): δ= 4.26–4.19 (m, 2H), 3.97 (t, J=7.5 Hz, 1H), 3.28 (dd, 

J=6.0, 9.4 Hz, 1H), 3.18 (dd, J=4.2, 7.3 Hz, 1H), 3.11 (t, J=7.8 Hz, 1H), 2.78 (ddd, J=5.8, 9.3, 

12.1 Hz, 1H), 2.56 (t, J=9.1 Hz, 1H), 2.03 (dd, J=5.7, 13.2 Hz, 1H), 1.96–1.86 (m, 1H), 1.45 

(s, 9H). 

13
C NMR (MeOH-d4, 100 MHz): δ= 159.0, 80.6, 77.5, 74.6, 71.0, 61.0, 56.6, 53.9, 36.8, 28.7. 

IR (Diamond-ATR, neat) max: 3407, 3325, 2973, 2952, 2828, 1663, 1554, 1368, 1313, 1158, 

1147, 1064, 1002, 855, 746, 686 cm
-1

. 

[]
25

 D  = – 22.1° (c = 0.22, CHCl3). 

HRMS (ESI) calcd for C12H22N2O4 [M+H]
+
: 258.1580; found: 258.1571. 

 

 

 

Bromo pyrrolizidine hydrobromide 28 

To a solution of 2.30 g (7.62 mmol, 1 eq.) azido alcohol 23 in MeOH (1.4 L) at 0 °C was 

added 390 L (7.62 mmol, 1 eq.) Br2. The reaction mixture was stirred under exclusion of 

light (to avoid radical reactions) for 12 h at 0 °C and concentrated in vacuo. The crude 

product was triturated with Et2O (200 mL) and the formed precipitate was filtered off to yield 

2.40 g (7.40 mmol, 97%) bromo pyrrolizidine hydrobromide 28 as colorless crystals.  

The filtrate was concentrated in vacuo to yield 1.20 g (7.24 mmol, 95%) benzyl methy 

carbonate. 

TLC (CHCl3:MeOH:NH4OH = 9:1:0.2), Rf  = 0.65 (KMnO4). 

1
H NMR (MeOH-d4, 400 MHz): δ= 4.86–4.82 (m, 1H), 4.38–4.31 (m, 1H), 4.29 (t, J=7.3 Hz, 

1H), 4.11 (t, J=7.3 Hz, 1H), 3.90 (dd, J=6.1, 11.7 Hz, 1H), 3.67 (ddd, J=6.5, 7.5, 11.9 Hz, 

1H), 3.49 (dt, J=6.5, 11.8 Hz, 1H), 3.20 (dd, J=9.1, 11.8 Hz, 1H), 2.72–2.56 (m, 2H). 

13
C NMR (MeOH-d4, 100 MHz): δ= 74.1, 70.5, 68.6, 57.4, 53.4, 44.4, 34.8. 

IR (Diamond-ATR, neat) max: 3308, 2528, 2458, 2110, 1471, 1381, 1284, 1129, 1063, 986, 

860 669 cm
-1

. 

[]
25

 D  = + 22.0° (c = 0.41, MeOH). 

HRMS (ESI) calcd for C7H11BrN4O [M+H]
+
: 247.0189; found: 247.0189. 

M.p.: 172 °C  

 

 



92 

 

Choro pyrrolizidine 31 

A solution of 1.71 g (5.26 mmol, 1 eq.) bromo pyrrolizidine hydrobromide 28 and 4.42 g 

(105.2 mmol, 20 eq.) LiCl in DMF (90 mL) was stirred for 6 h at 105 °C. The reaction 

mixture was cooled to rt, diluted with H2O (700 mL) and 1 aq. HCl (30 mL) and washed 

with EtOAc (2  250 mL). The aqueous layer was adjusted to pH = 10 with 1M aq. NaOH 

and extracted with EtOAc (5  300 mL). The combined organic layers were subsequently 

washed with H2O (2  500 mL), 10% aq. LiCl (500 mL) and brine (500 mL). The organic 

layer was dried over MgSO4, filtered and concentrated in vacuo to yield 913 mg (4.52 mmol, 

86%) chloro pyrrolizidine 31 as a brown oil (one spot on TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:1:0.2), Rf  = 0.65 (KMnO4). 

1
H NMR (CDCl3, 400 MHz): δ= 4.28 (dd, J=5.5, 12.0 Hz, 1H), 4.24 (dd, J=5.9, 12.5 Hz, 

1H), 3.60 (t, J=5.5 Hz, 1H), 3.45 (dd, J=4.9, 10.4 Hz, 1H), 3.34 (dd, J=5.5, 10.6 Hz, 1H), 

3.33–3.28 (m, 1H), 2.87–2.77 (m, 1H), 2.62 (dd, J=6.4, 10.6 Hz, 1H), 2.42–2.34 (m, 1H), 

2.12–2.04 (m, 1H). 

13
C NMR (CDCl3, 100 MHz): δ= 76.5, 76.5, 70.1, 60.0, 59.6, 53.6, 35.6. 

IR (Diamond-ATR, neat) max: 2928, 2853, 2096, 1450, 1379, 1251, 1128, 1084, 978, 872, 

792, 753, 698, 668 cm
-1

. 

[]
25

 D  = – 68.3° (c = 0.38, CHCl3). 

HRMS (ESI) calcd for C7H11ClN4O [M+H]
+
: 203.0694; found: 203.0694. 

 

 

 

Iso-Choro pyrrolizidine 32 

A solution of 1.71 g (5.26 mmol, 1 eq.) bromo pyrrolizidine hydrobromide 28 and 4.42 g 

(105.2 mmol, 20 eq.) LiCl in DMF (90 mL) was stirred for 6 h at 105 °C. The reaction 

mixture was cooled to rt, diluted with H2O (700 mL) and 1 aq. HCl (30 mL) and washed 

with EtOAc (2  250 mL). The aqueous layer was adjusted to pH = 10 with 1M aq. NaOH 

and extracted with EtOAc (5  300 mL). The combined organic layers were subsequently 
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washed with H2O (2  500 mL), 10% aq. LiCl (500 mL) and brine (500 mL). The organic 

layer was dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (CHCl3:MeOH = 9:1) to yield 45 mg (0.226 mmol, 

4%) chloro pyrrolizidine 32 as a yellowish solid (one spot on TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:1:0.2), Rf  = 0.65 (KMnO4). 

1
H NMR (CDCl3, 400 MHz): δ= 4.52 (dd, J=4.2, 7.2 Hz, 1H), 4.47 (ddd, J=6.4, 8.2, 9.7 Hz, 

1H), 4.13 (t, J=7.9 Hz, 1H), 3.54 (dd, J=4.7, 7.6 Hz, 1H), 3.39 (dd, J=6.4, 8.6 Hz, 1H), 3.18 

(ddd, J=3.3, 6.0, 9.4 Hz, 1H), 2.87 (ddd, J=6.7, 8.0, 9.7 Hz, 1H), 2.63 (dd, J=8.7, 9.7 Hz, 1H), 

2.35–2.32 (m, 2H). 

13
C NMR (CDCl3, 150 MHz): δ= 78.0, 71.0, 67.9, 60.4, 59.6, 51.7, 38.0. 

IR (Diamond-ATR, neat) max: 3061, 2920, 2856, 2114, 1377, 1303, 1281, 1108, 1094, 1060, 

972 cm
-1

. 

[]
25

 D  = –8.6° (c = 0.18, CHCl3). 

HRMS (ESI) calcd for C7H11ClN4O [M+H]
+
: 203.0700; found: 203.0696. 

 

 

 

Azide 33 

A solution of 580 mg (2.87 mmol, 1 eq.) chloro pyrrolizidine 31 and 990 mg (7.18 mmol, 2.5 

eq.) K2CO3 in MeOH (30 mL) was stirred in a microwave reactor for 10 min at 150 °C/300 

W. 10 g silica was added and the reaction mixture was concentrated in vacuo. The crude 

product was purified by flash column chromatography (CHCl3:MeOH = 10:1) to yield 429 

mg (2.58 mmol, 90%) azide 33 as a yellow oil (one spot on TLC). 

 

 

 

One-pot-procedure: azide 33 

A solution of 15 mg (0.046 mmol, 1 eq.) bromo pyrrolizidine hydrobromide 28 and 48 mg 

(1.15 mmol, 25 eq.) LiCl in DMSO (1 mL) was stirred for 4 h at 85 °C. The reaction mixture 
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was cooled to rt, treated with 26 mg (0.230 mmol, 5 eq.) KOtBu and stirred for 12 h at rt. The 

reaction mixture was diluted with H2O (10 mL) and extracted with CHCl3 (5  5 mL). The 

combined organic layers were washed with H2O (2  20 mL) and brine (20 mL). The organic 

layer was dried over MgSO4, filtered and concentrated in vacuo to yield 5 mg (0.030 mmol, 

65%) azide 33 as a yellow oil. 

 

TLC (CHCl3:MeOH:NH4OH = 9:1:0.2), Rf  = 0.67 (KMnO4). 

1
H NMR (CDCl3, 400 MHz): δ= 4.47 (dd, J=1.8, 4.5 Hz, 1H), 4.15 (s, 1H), 4.06 (s, 1H), 3.49 

(d, J=11.7 Hz, 1H), 3.31 (s, 1H), 3.14–3.10 (m, 1H), 3.02–2.97 (m, 1H), 2.45 (d, J=11.7 Hz, 

1H), 2.10–2.05 (m, 1H), 2.02–1.96 (m, 1H). 

13
C NMR (CDCl3, 100 MHz): δ= 82.1, 74.4, 69.6, 66.4, 61.2, 54.8, 33.7. 

IR (Diamond-ATR, neat) max: 2940, 2103, 1354, 1310, 1263, 1097, 1050, 1006, 958, 849, 

791, 724 cm
-1

. 

[]
25

 D  = – 49.2° (c = 0.44, CHCl3). 

HRMS (ESI) calcd for C7H10N4O [M+H]
+
: 167.0927; found: 167.0928. 

 

 

 

Temuline (1) 

A solution of 15 mg (0.090 mmol, 1 eq.) azide 33 and 6 mg (0.006 mmol, 0.06 eq.) 10% Pd/C 

in MeOH (3 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed with H2 (3 

) and stirred for 4 h at rt under H2 atmosphere (balloon). The reaction mixture was filtered 

through a pad of Celite and the filtrate was concentrated in vacuo to yield 11.4 mg (0.081 

mmol, 90%) temuline (1) as a yellow oil (one spot on TLC). 

Note: When temuline (1) is exposed to air, it readily forms the corresponding carbamate, a 

crystalline solid. 

 

TLC (CHCl3:MeOH = 2:1), Rf  = 0.16 (KMnO4). 

1
H NMR (CDCl3, 400 MHz): δ= 4.40 (dd, J=1.9, 4.5 Hz, 1H), 3.84 (d, J=1.7 Hz, 1H), 3.60 

(dd, J=0.8, 1.7 Hz, 1H), 3.50 (dd, J=0.7, 11.7 Hz, 1H), 3.10 (ddd, J=3.6, 8.3, 12.7 Hz, 1H), 

3.05 (dd, J=1.4, 1.5 Hz, 1H), 2.93 (ddd, J=7.3, 9.3, 12.8 Hz, 1H), 2.42 (d, J=11.8 Hz, 1H), 

2.03 (ddd, J=7.3, 8.2, 14.3 Hz, 1H), 1.97 (dddd, J=3.6, 4.4, 9.4, 14.2 Hz, 1H). 
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13
C NMR (CDCl3, 100 MHz): δ= 81.7, 76.2, 71.9, 60.8, 60.5, 54.5, 34.1. 

IR (Diamond-ATR, neat) max: 3366, 3288, 3184, 1606, 1472, 1318, 1250, 1216, 1174, 1087, 

1040, 1020, 955, 846, 798, 772, 695, 626 cm
-1

. 

[]
25

 D  = + 27.3° (c = 0.37, CHCl3). 

HRMS (ESI) calcd for C7H12N2O [M+H]
+
: 141.1022; found: 141.1024. 

 

 

 

N-Acetyl temuline acetate (34) 

A solution of 30 mg (0.181 mmol, 1 eq.) azide 33 and 9.6 mg (0.009 mmol, 0.05 eq.) 10% 

Pd/C in THF (9 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed with H2 

(3 ) and stirred for 3 h at rt under H2 atmosphere (balloon). The atmosphere was exchanged 

for N2 and 22 mg (0.217 mmol, 1.2 eq.) Ac2O was added. The reaction mixture was stirred for 

16 h, filtered through a pad of Celite and the filtrate was concentrated in vacuo to afford 43 

mg (0.178 mmol, 98%) N-Acetyl temuline acetate (34) as a yellowish solid (one spot on 

TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.28 (KMnO4).* 

1
H NMR (CDCl3, 300 MHz): δ= 8.67 (brs, 1H), 4.52 (brs, 2H), 4.35 (s, 1H), 3.63 (d, 

J=11.9 Hz, 1H), 3.53 (s, 1H), 3.19 (t, J=7.6 Hz, 1H), 2.62 (d, J=11.9 Hz, 1H), 2.22–2.08 (m, 

2H), 1.99–1.96 (m, 6H). 

13
C NMR (CDCl3, 75 MHz): δ= 177.9, 171.4, 80.2, 73.8, 69.3, 60.8, 57.0, 53.6, 31.7, 22.6, 

22.3. 

IR (Diamond-ATR, neat) max: 3252, 2922, 1660, 1558, 1407, 1377, 1296, 1092, 1012, 962, 

933, 841 cm
-1

. 

[]
25

 D  =  28.0° (c = 0.84, MeOH). 

HRMS (ESI) calcd for C9H14N2O2 [M+H]
+
: 183.1134; found: 183.1129. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 
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N-Formyl temuline (35) 

A mixture of formic acid (1 mL) and acetic anhydride (2 mL) was stirred for 2 h at 55 °C and 

then added to 40 mg (0.189 mmol) temuline ∙2HCl (1). The reaction mixture was stirred at rt 

for 8 h and then treated carefully with MeOH (5 mL) before concentrating in vacuo. The 

crude product was purified by flash column chromatography (CHCl3:MeOH:NH4OH = 

9:1:0.5) to yield 32 mg (0.189 mmol, 99%) N-formyltemuline (35) as a clear oil (one spot on 

TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:1:0.5), Rf  = 0.39 (KMnO4). 

1
H NMR (CDCl3, 300 MHz): δ= 8.73 (brs, 1H), 8.24 (s, 1H), 4.73–4.61 (m, 3H), 4.48 (s, 1H), 

4.14 (d, J=12.0 Hz, 1H), 3.89–3.79 (m, 1H), 3.59 (ddd, J=4.3, 8.5, 12.8 Hz, 1H), 3.09 (d, 

J=12.2 Hz, 1H), 2.48–2.33 (m, 2H). 

13
C NMR (CDCl3, 75 MHz): δ= 161.7, 78.4, 73.6, 71.3, 61.9, 55.7, 53.2, 30.3. 

IR (Diamond-ATR, neat) max: 3260, 2942, 2878, 2360, 1662, 1533, 1472, 1387, 1315, 1295, 

1226, 1107, 1047, 1021, 1004, 980, 961, 886, 848, 793, 746 cm
-1

. 

[]
25

 D  = + 32.1° (c = 0.47, CHCl3). 

HRMS (ESI) calcd for C8H12N2O2 [M+H]
+
: 169.0977; found: 169.0972. 

 

 

 

N-Methyl loline (3) 

A solution of 21 mg (0.126 mmol, 1 eq.) azide 33, 50 mg (0.472 mmol, 3.7 eq.) 10% Pd/C 

and 0.1 ml (37 wt% in H2O) formaldehyde solution in MeOH (2 mL) was degassed with N2 in 

a sonicator for 5 minutes, then flushed with H2 (3 ) and stirred for 8 h at rt under H2 

atmosphere (balloon). The reaction mixture was filtered through a pad of Celite and the 

filtrate was concentrated in vacuo. The crude product was purified by flash column 

chromatography (CHCl3:MeOH:NH4OH = 140:10:0.5) to afford 21 mg (0.125 mmol, 99%) 

N-methyl loline (3) as a yellowish oil (one spot on TLC). 
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TLC (CHCl3:MeOH = 6:1), Rf  = 0.41 (KMnO4).* 

1
H NMR (CDCl3, 300 MHz): δ= 4.41 (dd, J=1.8, 4.4 Hz, 1H), 3.99 (s, 1H), 3.54 (d, 

J=10.9 Hz, 1H), 3.18 (s, 1H), 3.10–2.90 (m, 2H), 2.69 (d, J=1.8 Hz, 1H), 2.35 (d, J=10.9 Hz, 

1H), 2.28 (s, 6H), 2.08–1.86 (m, 2H). 

13
C NMR (CDCl3, 75 MHz): δ= 82.4, 74.7, 74.5, 69.7, 61.6, 54.7, 44.7, 33.8. 

IR (Diamond-ATR, neat) max: 3392, 2943, 2822, 2772, 1651, 1466, 1368, 1271, 1182, 1094, 

1041, 1022, 961, 888, 854, 814, 793 cm
-1

. 

[]
25

 D  =  8.0° (c = 0.58, MeOH). 

HRMS (ESI) calcd for C9H16N2O [M+H]
+
: 169.1341; found: 169.1336. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 

 

 

 

N-Boc temuline (36) 

A solution of 10 mg (0.060 mmol, 1 eq.) azide 33, 26 mg (0.120 mmol, 2 eq.) Boc2O and 6 

mg (0.006 mmol, 0.09 eq.) 10% Pd/C in THF (5 mL) was degassed with N2 in a sonicator for 

5 minutes, then flushed with H2 (3 ) and stirred for 48 h at rt under H2 atmosphere (balloon). 

The reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in 

vacuo. The crude product was purified by flash column chromatography (CHCl3:MeOH = 

9:1) to yield 13.4 mg (0.056 mmol, 93%) N-Boc temuline (36) as a yellow oil (one spot on 

TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:2:0.2), Rf  = 0.66 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 5.45 (brs, 1H), 4.46 (dd, J =1.6, 4.4 Hz, 1H), 4.23 (d, 

J=5.6 Hz, 1H), 4.14 (s, 1H), 3.36 (d, J=11.8 Hz, 1H), 3.12–3.08 (m, 2H), 2.96–2.91 (m, 1H), 

2.43 (d, J=11.8 Hz, 1H), 2.10–2.04 (m, 1H), 2.02–1.97 (m, 1H), 1.43 (s, 9H). 

13
C NMR (CDCl3, 150 MHz): δ= 155.5, 81.0, 79.6, 74.1, 69.7, 61.0, 58.5, 54.6, 33.8, 28.3. 

IR (Diamond-ATR, neat) max: 2974, 2937, 1697, 1547, 1365, 1289, 1251, 1161, 1152, 999, 

961, 850, 794, 749, 665 cm
-1

. 

[]
25

 D  = + 38.7° (c = 0.35, CHCl3). 

HRMS (ESI) calcd for C12H20N2O3 [M+H]
+
: 241.1547; found: 241.1545. 
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N-Boc urea (37) 

A solution of 350 mg (2.11 mmol, 1 eq.) azide 33, 920 mg (4.217 mmol, 2 eq.) Boc2O and 

110 mg (0.105 mmol, 0.05 eq.) 10% Pd/C in THF (60 mL) was degassed with N2 in a 

sonicator for 15 minutes, then flushed with H2 (3 ) and stirred for 48 h at rt under H2 

atmosphere (balloon). The reaction mixture was filtered through a pad of Celite and the 

filtrate was concentrated in vacuo. The crude product was purified by flash column 

chromatography (CHCl3:MeOH = 9:1) to yield 31 mg (0.109 mmol, 5%) N-Boc urea 37 as a 

yellowish solid (one spot on TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:2:0.2), Rf  = 0.75 (KMnO4). 

1
H NMR (CDCl3, 300 MHz): δ= 8.23 (d, J=6.7 Hz, 1H), 7.60 (s, 1H), 4.47 (dd, J =1.8, 

4.2 Hz, 1H), 4.38 (d, J=6.3 Hz, 1H), 4.17 (s, 1H), 3.42 (d, J=11.6 Hz, 1H), 3.27 (s, 1H), 3.12 

(ddd, J=3.7, 8.1, 12.2 Hz, 1H), 3.03–2.93 (m, 1H), 2.45 (d, J=12.0 Hz, 1H), 2.13–1.95 (m, 

2H), 1.46 (s, 9H). 

13
C NMR (CDCl3, 150 MHz): δ= 153.3, 153.0, 82.8, 81.3, 74.0, 69.7, 61.0, 57.7, 54.8, 33.8, 

28.0. 

IR (Diamond-ATR, neat) max: 3318, 3214, 3120, 2973, 2942, 1714, 1691,1552, 1480, 1268, 

1247, 1152, 959, 791, 768, 661 cm
-1

. 

[]
25

 D  = + 9.3° (c = 1.32, CHCl3). 

HRMS (ESI) calcd for C13H22N3O4 [M+H]
+
: 284.1610; found: 284.1608. 

 

 

 

Loline ∙2HCl (2) 

A solution of 11 mg (0.046 mmol, 1 eq.) N-Boc temuline (36) in THF (5 mL) was degassed 

with N2 in a sonicator for 5 minutes, then treated with 275 L (0.275 mmol, 6 eq., 1M 

solution in THF) LiAlH4 and refluxed for 8 h. The reaction mixture was quenched with 1M 

aq. NaOH (0.3 mL) and 0.5 g silica was added and concentrated in vacuo. The crude product 
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was purified by flash column chromatography (CHCl3:MeOH:NH4OH = 10:4:1) and the 

resulting free base was treated with 3M HCl in methanol (2 mL) and concentrated in vacuo to 

yield 10 mg (0.044 mmol, 96%) loline ∙2HCl (2) as a yellow oil (one spot on TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 9:3:0.5), Rf  = 0.12 (KMnO4). 

1
H NMR (D2O, 400 MHz): δ= 4.82 (s, 1H), 4.80 (s, 1H), 4.75 (dd, J=2.3, 4.8 Hz, 1H), 4.26 

(s, 1H), 4.15 (d, J=13.9 Hz, 1H), 3.82–3.76 (m, 1H), 3.76–3.70 (m, 1H), 3.60 (d, J=13.9 Hz, 

1H), 2.83 (d, J=0.9 Hz, 3H), 2.42 (ddd, J=7.6, 10.0, 15.0 Hz, 1H), 2.31 (ddd, J=5.0, 8.4, 15.0 

Hz, 1H). 

13
C NMR (D2O, 100 MHz): δ= 83.4, 74.0, 72.2, 66.0, 64.2, 58.2, 36.4, 36.1. 

IR (Diamond-ATR, neat) max: 2920, 2692, 2555, 1553, 1462, 1349, 1216, 1160, 1074, 1056, 

1002, 958, 832, 793 cm
-1

. 

[]
25

 D  = + 5.4° (c = 0.31, H2O). 

HRMS (ESI) calcd for C8H14N2O [M+H]
+
: 155.1179; found: 155.1176. 

 

 

 

N-Formylloline (4) 

A mixture of formic acid (0.1 mL) and acetic anhydride (0.2 mL) was stirred for 2 h at 55 °C 

and then added to 10 mg (0.044 mmol) loline ∙2HCl (2). The reaction mixture was stirred at rt 

for 8 h before concentrating in vacuo. The crude product was purified by flash column 

chromatography (CHCl3:MeOH = 9:1) to yield 6.5 mg (0.036 mmol, 81%) N-formylloline (4) 

as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 3:1), Rf  = 0.50 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 8.44 (s), 8.07 (s), 4.71 (d, J=2.1 Hz), 4.52 (dd, J=1.8, 4.4 

Hz), 4.45 (dd, J=1.8, 4.4 Hz), 4.21 (d, J=1.6 Hz), 4.06–4.04 (m), 3.85 (d, J=1.3 Hz), 3.42 (s), 

3.37 (s), 3.27 (d, J=11.9 Hz), 3.23 (d, J=11.6 Hz), 3.13 (s), 3.12–3.08 (m), 3.05–2.98 (m), 

2.95 (d, J=0.5 Hz), 2.51 (d, J=12.0 Hz), 2.44 (d, J=11.8 Hz), 2.09 (ddd, J=7.1, 7.4, 14.4 Hz), 

1.98 (dddd, J=4.3, 4.3, 9.4, 14.4 Hz). 

13
C NMR (CDCl3, 150 MHz): δ= 163.5, 163.2, 82.0, 80.3, 74.0, 73.1, 67.9, 67.5, 65.4, 62.4, 

61.0, 60.5, 54.8, 54.6, 33.4, 33.1, 32.8, 29.9. 
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IR (Diamond-ATR, neat) max: 3488, 2934, 2880, 1665, 1388, 1355, 1254, 1085, 1049, 1024, 

962, 811, 751 cm
-1

. 

[]
25

 D  = + 4.3° (c = 0.22, CHCl3). 

HRMS (ESI) calcd for C9H14N2O2 [M+H]
+
: 183.1128; found: 183.1126. 

 

 

 

N-Acetylloline HCl (5) 

18 mg (79.6 mol, 1 eq.) loline ∙2HCl (5) was dissolved in Ac2O (1 mL) and the reaction 

mixture was stirred at rt for 16 h and then treated carefully with MeOH (3 mL) before 

concentrating in vacuo. The crude product was coevaporated with toluene (4  3 ml) to afford 

18 mg (77.3 mmol, 97%) N-acetylloline HCl (5) as a viscous oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.38 (KMnO4). * 

1
H NMR (MeOH-d4,  400 MHz): δ= 5.02 (d, J=2.0 Hz, 1H), 4.92 (s, 1H), 4.66 (dd, J=2.2, 4.7 

Hz, 1H), 4.15 (s, 1H), 3.88 (d, J=12.5 Hz, 1H), 3.73 (t, J=7.8 Hz, 2H), 3.39 (d, J=12.5 Hz, 

1H), 3.10 (d, J=0.8 Hz, 3H), 2.49–2.40 (m, 1H), 2.37–2.29 (m, 1H), 2.15 (s, 3H). 

13
C NMR (MeOH-d4, 150 MHz): δ= 175.8, 80.2, 74.9, 73.0, 66.6, 63.3, 54.8, 37.0, 30.9, 23.1. 

IR (Diamond-ATR, neat) max: 3388, 2927, 2538, 1751, 1638, 1474, 1399, 1347, 1311, 1215, 

1144, 1090, 1036, 1015, 1001, 959, 911, 858, 844, 803, 747, 661 cm
-1

. 

[]
25

 D  = + 42.8° (c = 0.51, CHCl3). 

HRMS (ESI) calcd for C10H16N2O2 [M+H]
+
: 197.1290; found: 197.1285. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 

 

 

 

Triazol 38 

20 mg (0.120 mmol, 1.1 eq.) azide 33, 12 mg (0.109 mmol, 1 eq.) 1-octyne, 2.4 mg (8.76 

mol, 0.08 eq.) CuSO4 ∙5H2O and 2.6 mg (13.2 mol, 0.11 eq.) sodium ascorbate were 
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dissolved in 2.5 mL MeOH/H2O (4/1) and the reaction mixture was stirred at 45 °C for 12 h 

in a sealed tube before concentrating in vacuo. The crude product was purified by flash 

column chromatography (CHCl3:MeOH = 98:2) to yield 24.5 mg (0.089 mmol, 82%) of the 

desired product 38 as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.65 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 7.74 (s, 1H), 5.11 (d, J =2.0 Hz, 1H), 4.66 (dd, J =1.8, 

4.5 Hz, 1H), 4.53 (d, J=2.5 Hz, 1H), 3.60 (m, 1H), 3.16 (ddd, J=3.4, 8.7, 12.5 Hz, 1H), 3.07 

(d, J=11.0 Hz, 1H), 3.09–3.04 (m, 1H), 2.69 (td, J=4.3, 7.5 Hz, 1H), 2.51 (d, J=12.2 Hz, 1H), 

2.18–2.13 (m, 1H), 2.09–2.04 (m, 1H), 1.68–1.63 (m, 1H), 1.37–1.32 (m, 2H), 1.29–1.27 (m, 

5H), 1.24 (s, 1H), 0.87 (t, J=7.1 Hz, 3H). 

13
C NMR (CDCl3, 150 MHz): δ= 148.1, 120.9, 82.1, 75.0, 69.4, 65.7, 60.8, 55.1, 33.3, 31.6, 

29.4, 29.0, 25.7, 22.6, 14.1. 

HRMS (ESI) calcd for C15H24N4O [M+H]
+
: 277.2028; found: 277.2026. 

 

 

 

Triazol 39 

20 mg (0.120 mmol, 1.1 eq.) azide 33, 12 mg (0.109 mmol, 1 eq.) 3-butyne-1-ol, 2.4 mg (8.76 

mol, 0.08 eq.) CuSO4 ∙5H2O and 2.6 mg (13.2 mol, 0.11 eq.) Sodium ascorbate were 

dissolved in 2.5 mL MeOH/H2O (4/1) and the reaction mixture was stirred at 45 °C for 12 h 

in a sealed tube before concentrating in vacuo. The crude product was purified by flash 

column chromatography (CHCl3:MeOH = 95:5) to yield 22 mg (0.094 mmol, 85%) of the 

desired product 39 as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.27 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 7.86 (s, 1H), 5.11 (d, J =2.0 Hz, 1H), 4.66 (dd, J =1.9, 

4.5 Hz, 1H), 4.58 (d, J=2.5 Hz, 1H), 3.96–3.90 (m, 2H), 3.64 (m, 1H), 3.17 (ddd, J=3.4, 8.6, 

12.4 Hz, 1H), 3.08 (d, J=11.1 Hz, 1H), 3.07–3.04 (m, 1H), 2.94 (t, J=5.8 Hz, 1H), 2.53 (d, 

J=12.3 Hz, 1H), 2.28 (brs, 1H), 2.20–2.15 (m, 1H), 2.12–2.07 (m, 1H). 

13
C NMR (CDCl3, 150 MHz): δ= 145.2, 122.0, 82.0, 75.0, 69.5, 65.7, 61.6, 60.7, 55.1, 33.3, 

28.7. 
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HRMS (ESI) calcd for C11H17N4O2 [M+H]
+
: 237.1352; found: 237.1344. 

 

 

 

Triazol 40 

20 mg (0.120 mmol, 1.1 eq.) azide 33, 13 mg (0.109 mmol, 1 eq.) 4-ethynyl-aniline, 2.4 mg 

(8.76 mol, 0.08 eq.) CuSO4 ∙5H2O and 2.6 mg (13.2 mol, 0.11 eq.) Sodium ascorbate were 

dissolved in 2.5 mL MeOH/H2O (4/1) and the reaction mixture was stirred at 45 °C for 12 h 

in a sealed tube before concentrating in vacuo. The crude product was purified by flash 

column chromatography (CHCl3:MeOH = 9:1) to yield 27 mg (0.097 mmol, 89%) of the 

desired product 40 as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.45 (KMnO4).* 

1
H NMR (CDCl3, 600 MHz): δ= 8.16 (s, 1H), 7.66–7.64 (m, 2H), 6.74–6.71 (m, 2H), 5.19 (d, 

J =2.2 Hz, 1H), 4.67 (dd, J =1.8, 4.5 Hz, 1H), 4.56 (d, J=2.5 Hz, 1H), 3.74 (brs, 2H), 3.63 (s, 

1H), 3.19 (ddd, J=3.4, 8.6, 12.4 Hz, 1H), 3.15 (d, J=12.4 Hz, 1H), 3.09 (ddd, J=7.2, 9.4, 

13.0 Hz, 1H), 2.55 (d, J=12.3 Hz, 1H), 2.21–2.16 (m, 1H), 2.12–2.07 (m, 1H). 

13
C NMR (CDCl3, 150 MHz): δ= 147.8, 145.4, 127.0, 121.1, 118.8, 115.2, 82.1, 75.0, 69.4, 

65.8, 60.7, 55.2, 33.4. 

HRMS (ESI) calcd for C15H17N5O [M+H]
+
: 284.1511; found: 284.1503. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 

 

 

 

Alkin S4 

100 mg (0.325 mmol, 1 eq.) azobenzene S2, 185 L (1.299 mmol, 4 eq.) trimethyl-

silylacetylene, 2.5 mg (12.99 mol, 0.04 eq.) CuI, 17 mg (64.9 mol, 0.2 eq.) PPh3,  and 12 

mg (12.99 mol, 0.04 eq.) Pd(dba)2 was dissolved in NEt3 (2 mL). The reaction mixture was 

freeze-pump-thaw degassed three times and then heated to 70°C for 10 h. The reaction 
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mixture was diluted with EtOAc (10 mL) and filtered through a plug af silica. The silica pad 

was washed with EtOAc (20 mL) and the combined organics were dried over MgSO4, filtered 

and concentrated in vacuo to yield 86 mg of the crude product S3 as an orange solid, which 

was used without further purification. 

86 mg (0.309 mmol, 1 eq) of crude TMS-alkin S3 was dissolved in 6 mL THF/H2O (5/1) and 

treated with 340 L (0.340 mmol, 1.1 eq., 1M solution in THF) TBAF. The reaction mixture 

was stirred at rt for 12 h before concentrating in vacuo. The crude product was dissolved in 

EtOAc (15 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product 

was purified by flash column chromatography (hexanes:CH2Cl2 = 4:1) to yield 57 mg (0.277 

mmol, 85% over two steps) of the desired product S4 as an orange solid (one spot on TLC). 

 

TLC ((hexanes:EtOAc = 9:1), Rf  = 0.67 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 7.93–7.88 (m, 4H), 7.64–7.63 (m, 2H), 7.54–7.43 (m, 3H), 

3.23 (s, 1H). 

IR (Diamond-ATR, neat) max: 3278, 1584, 1493, 1481, 1462, 1440, 1395, 1299, 1242, 1216, 

1155, 1106, 1016, 1006, 853, 771, 725, 683 cm
-1

. 

HRMS (EI) calcd for C14H10N2 [M]
+
: 206.0844; found: 206.0828. 

 

 

 

Triazol 41 

10 mg (0.060 mmol, 1.1 eq.) azide 33, 11.3 mg (0.055 mmol, 1 eq.) alkin S4, 1.2 mg (4.82 

µmol, 0.08 eq.) CuSO4 ∙5H2O and 1.2 mg (6.02 µmol, 0.10 eq.) sodium ascorbate were 

dissolved in 1.25 mL MeOH/H2O (4/1) and the reaction mixture was stirred at 45 °C for 12 h 

in a sealed tube before concentrating in vacuo. The crude product was purified by flash 

column chromatography (CHCl3:MeOH = 95:5) to yield 20 mg (0.054 mmol, 98%) of the 

desired product 41 as a orange solid (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.44 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 8.43 (s, 1H), 8.04–8.02 (m, 2H), 8.00–7.98 (m, 2H), 7.94–

7.92 (m, 2H), 7.54–7.51 (m, 2H), 7.49–7.46 (m, 1H), 5.25 (d, J =2.3 Hz, 1H), 4.70 (dd, J 
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=1.8, 4.5 Hz, 1H), 4.60 (d, J=2.5 Hz, 1H), 3.70 (m, 1H), 3.23 (ddd, J =3.4, 8.6, 12.4 Hz, 1H), 

3.18 (d, J=12.4 Hz 1H), 3.16–3.07 (m, 1H), 2.60 (d, J=12.5 Hz, 1H), 2.24–2.19 (m, 1H), 

2.15–2.10 (m, 1H).* 

13
C NMR (CDCl3, 150 MHz): δ= 152.7, 152.2, 146.7, 133.0, 131.0, 129.1, 128.8, 126.4, 

126.0, 123.5, 122.9, 121.3, 120.8, 120.4, 82.1, 82.1, 75.0, 75.0, 69.4, 69.4, 65.9, 65.9, 60.7, 

60.7, 55.2, 55.2, 33.3, 33.2. 

IR (Diamond-ATR, neat) max: 2931, 1606, 1444, 1434, 1217, 1054, 1024, 962, 854, 835, 

810, 770, 743, 687 cm
-1

. 

[]
25

 D  = + 13.0° (c = 0.37, CHCl3). 

HRMS (ESI) calcd for C11H17N4O2 [M+H]
+
: 373.1777; found: 373.1776. 

* Signals only of the major trans-isomer are reported. 

 

 

 

Aminodiol 42 

Through a solution of 13 mg (50.3 µmol, 1 eq.) N-Boc diol 27 in EtOAc (5 mL) and MeOH 

(0.2 mL) was bubbled HCl for 10 min at rt and the resulting colorless solid was filtered to 

yield 11.5 mg (49.7µmol, 99%) of the desired amine 42 (one spot on TLC). 

 

 TLC (CHCl3:MeOH:NH4OH = 10:8:1), Rf  = 0.16 (KMnO4). 

1
H NMR (MeOH-d4, 400 MHz): δ= 4.62–4.56 (m, 2H), 4.20 (dd, J=4.4, 7.3 Hz, 1H), 4.02 (t, 

J=7.8 Hz, 1H), 3.94 (dd, J=6.4, 11.2 Hz, 1H), 3.83–3.77 (m, 1H), 3.40 (td, J=6.4, 11.5 Hz, 

1H), 3.06 (t, J=10.5 Hz, 1H), 2.33–2.18 (m, 2H). 

13
C NMR (MeOH-d4, 151 MHz): δ= 74.6, 71.9, 69.4, 59.2, 54.4, 54.0, 36.5. 

HRMS (EI) calcd for C7H14N2O2 [M]: 158.1055; found: 158.1022. 

 

 

 

N-Me-amine 43 

A solution of 11 mg (42.6 µmol, 1 eq.) N-Boc diol 27 in THF (6 mL) was treated with 256 µL 

(0.256 mmol, 6 eq., 1M solution in THF) LiAlH4 and heated to 70 °C for 8 h. The reaction 
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mixture was quenched with 1M aq. NaOH (0.3 mL) and 0.5 g silica was added and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

(CHCl3:MeOH:NH4OH = 10:5:1) and the resulting free base was treated with 3M HCl in 

methanol (2 mL) and concentrated in vacuo to yield 10 mg (41.0 µmol, 96%) of the desired 

N-Me-amine 43 as a colorless solid (one spot on TLC). 

 

TLC (CHCl3:MeOH:NH4OH = 10:5:1), Rf  = 0.20 (KMnO4). 

1
H NMR (D2O, 300 MHz): δ= 4.89–4.83 (m, 1H), 4.78–4.73 (m, 1H), 4.47 (t, J=5.7 Hz, 1H), 

4.16–4.11 (m, 2H), 3.96 (ddd, J=2.7, 7.9, 10.7 Hz 1H), 3.31 (td, J=7.0, 11.6 Hz, 1H), 3.27 

(dd, J=10.0, 11.5 Hz, 1H), 2.96 (s, 3H), 2.46–2.30 (m, 2H). 

13
C NMR (CDCl3, 75 MHz): δ= 72.3, 69.9, 68.8, 60.0, 57.8, 53.6, 34.7, 32.1. 

HRMS (ESI) calcd for C8H16N2O2 [M+H]
+
: 173.1285; found: 173.1285. 

 

 

 

N-Acetyl chloro pyrrolizidine (44) 

A solution of 30 mg (0.148 mmol, 1.0 eq.) azide 44 and 7.9 mg (7.42 mol, 0.05 eq.) 10% 

Pd/C in THF (9 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed with H2 

(3 ) and stirred for 3 h at rt under H2 atmosphere (balloon). The atmosphere was exchanged 

for N2 and 18 mg (0.178 mmol, 1.2 eq.) Ac2O was added. The reaction mixture was stirred for 

8 h, filtered through a pad of Celite and the filtrate was concentrated in vacuo. The crude 

product was purified by flash column chromatography (CHCl3:MeOH = 6:1) to yield 22 mg 

(0.102 mmol, 69%) of the desired product 44 as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 4:1), Rf  = 0.19 (KMnO4). 

1
H NMR (CDCl3, 400 MHz): δ= 6.83 (d, J=4.8 Hz, 1H), 4.38 (dd, J=6.0, 11.3 Hz, 1H), 4.17 

(dd, J=5.5, 11.6 Hz, 1H), 3.97 (q, J=5.6 Hz, 1H), 3.52 (t, J=5.4 Hz, 1H), 3.39 (dd, J=5.5, 

10.7 Hz, 1H), 3.32 (dt, J=6.5, 11.1 Hz, 1H), 2.90 (dt, J=6.5, 11.0 Hz, 1H), 2.67 (dd, J=6.3, 

10.7 Hz, 1H), 2.51–2.43 (m, 1H),  2.10–2.01 (m, 1H),  2.04 (s, 3H). 

13
C NMR (CDCl3, 100 MHz): δ= 172.0, 77.3, 61.9, 60.8, 59.9, 53.3, 35.4, 29.7, 23.1. 

IR (Diamond-ATR, neat) max: 3290, 2923, 2853, 1649, 1538, 1371, 1312, 1260, 1127, 1082, 

1034, 727, 703 cm
-1

. 

[]
25

 D  =  9.2° (c = 0.45, CHCl3). 
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HRMS (ESI) calcd for C9H15ClN2O2 [M+H]
+
: 219.0900; found: 219.0893. 

 

 

 

N,O-diacetyl chloro pyrrolizidine (45) 

A solution of 30 mg (0.148 mmol, 1.0 eq.) azide 33 and 7.9 mg (7.42 mol, 0.05 eq.) 10% 

Pd/C in THF (9 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed with H2 

(3 ) and stirred for 3 h at rt under H2 atmosphere (balloon). The atmosphere was exchanged 

for N2 and 18 mg (0.296 mmol, 2.0 eq.) Ac2O was added. The reaction mixture was stirred for 

8 h, filtered through a pad of Celite and the filtrate was concentrated in vacuo. The crude 

product was purified by flash column chromatography (CHCl3:MeOH = 9:1) to yield 10 mg 

(0.038 mmol, 26%) of the desired product 45 as a colorless solid (one spot on TLC). 

 

TLC (CHCl3:MeOH = 4:1), Rf  = 0.51 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 6.08 (d, J=6.6 Hz, 1H), 5.15 (dd, J=7.2, 13.4 Hz, 1H), 4.58–

4.56 (m, 1H), 4.11 (q, J=7.2 Hz, 1H), 3.45 (dd, J=6.1, 10.5 Hz, 1H), 3.37 (dd, J=3.1, 7.1 Hz, 

1H), 3.30 (ddd, J=5.9, 8.6, 11.2 Hz, 1H), 2.80 (ddd, J=4.2, 6.8, 11.1 Hz, 1H), 2.69 (dd, J=7.3, 

10.5 Hz, 1H), 2.39–2.33 (m, 1H), 2.04 (s, 3H), 2.03–2.00 (m, 1H), 1.99 (s, 3H).   

13
C NMR (CDCl3, 100 MHz): δ= 170.8, 170.5, 78.4, 76.2, 61.3, 58.3, 56.8, 53.2, 34.4, 23.2, 

20.9. 

IR (Diamond-ATR, neat) max: 3178, 2924, 2917, 1713, 1649, 1446, 1368, 1292, 1243, 1110, 

1032, 1029, 786, 757, 723 cm
-1

. 

HRMS (ESI) calcd for C11H17ClN2O2 [M+H]
+
: 261.1006; found: 261.0999. 

 

 

 

Pyrrolizidine (47) 

A solution of 45 mg (0.138 mmol, 1.0 eq.) azide 15 and 3 mg (13.8 mol, 0.1 eq.) PtO2 in 

H2O (3 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed with H2 (3 ) and 

stirred for 1 h at rt under H2 atmosphere (balloon) until a black precipitation was formed. The 



107 

reaction mixture was filtered through a pad of Celite and the filtrate was concentrated in 

vacuo to yield 36 mg (0.120 mmol, 87%) of the desired product 46 as a colorless solid (one 

spot on TLC). 

 

TLC (CHCl3:MeOH = 2:1), Rf  = 0.10 (KMnO4).* 

1
H NMR (MeOH-d4, 400 MHz): δ= 4.07 (q, J=5.3 Hz, 1H), 3.65 (m, 2H), 3.43–3.38 (m, 1H), 

3.16–3.10 (m, 2H), 2.95 (ddd, J=2.4, 5.5, 11.6 Hz, 1H), 2.25–2.01 (m, 2H), 1.93–1.84 (m, 

1H).  

13
C NMR (MeOH-d4, 75 MHz): δ= 78.2, 73.4, 63.7, 59.7, 57.5, 31.1, 26.1. 

IR (Diamond-ATR, neat) max: 3228, 2910, 2597, 1572, 1480, 1406, 1338, 1127, 1038, 869 

cm
-1

. 

HRMS (ESI) calcd for C7H14N2O [M+H]
+
: 143.1184; found: 143.1181. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 

 

 

 

Palladium complex 47 

17 mg (96.0 mol, 1.0 eq.) PdCl2 was suspended in MeCN (3mL) and heated to 90 °C for 2 h 

until the formation of (MeCN)2PdCl2 was indicated by the color change from yellow to 

orange. The reaction mixture was cooled down to rt and 15 mg (97.0 mol, 1.0 eq.) loline (2) 

in MeCN (1 mL) was added. The reaction mixture was stirred at rt for 12 h before 

concentrating in vacuo. The resulting solid was triturated with Et2O (10 mL) and filtered off 

to afford 28 mg (75.7 mol, 79%) Palladium complex 47 as an orange solid.  

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.53 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 6.07 (s, 1H), 5.44 (s, 1H), 5.15 (dd, J=1.9, 13.1 Hz, 1H), 

4.57 (dd, J=2.7, 5.9 Hz, 1H), 4.32 (s, 1H), 3.29 (ddd, J=1.5, 7.9, 12.1 Hz, 1H), 3.22 (s, 1H), 

3.10 (dt, J=8.9, 12.4 Hz, 1H), 2.96 (d, J=13.1 Hz, 3H) 2.53 (d, J=6.3 Hz, 3H), 2.24 (dddd, 

J=1.9, 6.2, 9.1, 15.3 Hz, 1H), 2.13 (dt, J=5.1, 8.3 Hz, 1H), 2.00 (s, 3H). 

13
C NMR (CDCl3, 150 MHz): δ= 116.3, 79.6, 78.1, 72.5, 65.3, 64.2, 54.8, 37.0, 31.8, 1.9. 

IR (Diamond-ATR, neat) max: 3367, 2919, 2687, 1627, 1469, 1342, 1283, 1213, 1164, 1048, 

1002, 957, 833, 795 cm
-1

. 
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[]
25

 D  = + 21.6° (c = 0.31, CDCl3). 

HRMS (ESI) calcd for C10H16ClN3OPd [M+H]
+
: 336.0095 and 338.0095; found: 336.0096 

and 338.0093. 

 

 

 

Palladium complex 48 

17 mg (96.0 mol, 1.0 eq.) PdCl2 was suspended in MeCN (3mL) and heat to 90 °C for 2 h 

until the formation of (MeCN)2PdCl2 was indicated by the color change from yellow to 

orange. The reaction mixture was cooled down to rt and 16 mg (95.0 mol, 1 eq.) N-methyl 

loline (3) in MeCN (1 mL) was added. The reaction mixture was stirred at rt for 12 h before 

concentrating in vacuo. The resulting solid was triturated with Et2O (10 mL) and filtered off 

to afford 28 mg (81.1 mol, 85%) Palladium complex 48 as an orange solid.  

 

1
H NMR (DMSO-d6, 400 MHz): δ= 5.00 (dd, J=2.0, 13.6 Hz, 1H), 4.48 (dd, J=2.7, 5.2 Hz, 

1H), 4.43 (s, 1H), 4.38 (s, 1H), 3.19–3.11 (m, 1H), 3.06–3.00 (m, 2H), 2.93 (s, 3H), 2.63–2.58 

(m, 1H), 2.50 (s, 3H), 2.14–2.02 (m, 2H). 

13
C NMR (DMSO-d6, 100 MHz): δ= 78.2, 77.3, 73.9, 72.4, 63.1, 54.2, 51.3. 46.9, 31.2. 

 

 

 

Temuline carbamate (49) 

CO2 was bubbled trough a solution of 14 mg (0.1 mmol) temuline (1) in methanol (5 mL) for 

2 min. The reaction mixture was concentrated down to afford 18.2 mg (0.099 mmol, 99%) 

temuline carbamate (49) as a colourless crystalline solid. 

 

TLC (CHCl3:MeOH = 7:3), Rf  = 0.27 (KMnO4).* 
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1
H NMR (MeOH-d4, 600 MHz): δ= 4.61 (dd, J=2.2, 5.0 Hz, 1H), 4.33 (s, 1H), 4.27 (s, 1H), 

4.18 (d, J=12.0 Hz, 1H), 3.95 (d, J=2.2 Hz, 1H), 3.67 (ddd, J=3.6, 9.0, 12.4 Hz, 1H), 3.59–

3.54 (m, 1H), 3.19 (d, J=12.0 Hz, 1H), 2.43–2.37 (m, 1H), 2.31–2.26 (m, 1H). 

13
C NMR (MeOH-d4, 151 MHz): δ= 79.3, 74.9, 74.0, 61.3, 57.8, 52.5, 29.9. 

IR (Diamond-ATR, neat) max: 3354, 2921, 2784, 2549, 1653, 1475, 1444, 1375, 1343, 1215, 

1181, 1085, 1001, 963, 937, 836, 799, 778cm
-1

. 

[]
25

 D  =  46.0° (c = 0.19, MeOH). 

HRMS (EI) calcd for C8H12N2O3 [MCO2]: 140.0944; found: 140.0936. 

* Note: TLC was saturated with NH3 before running in the solvent mixture. 

 

 

 

Carbamate (51) 

CO2 was bubbled trough a solution of 100 mg (0.69 mmol) amine (50) in acetonitrile (15 mL) 

for 10 min. Slow evaporation of the solvent gave X-ray suitable crystals of carbamate (51). 

 

 

 

Thiourea XX 

5 mg (23.58 mol; 1 eq.) temuline ∙2HCl (2), 7.5 l (49.52 mol, 2.1 eq.) DIPEA and 6.1 mg 

(22.41 mol, 0.95 eq.) Isothiocyanate was dissolved in CH2Cl2 (1 mL) and stirred at rt for 10 

h. The reaction mixture was concentrating in vacuo and the crude product was purified by 

flash column chromatography (CHCl3:MeOH = 95:5) to yield 9 mg (21.73 mmol, 98%) of the 

desired product XX as a clear oil (one spot on TLC). 

 

TLC (CHCl3:MeOH = 9:1), Rf  = 0.34 (KMnO4). 

1
H NMR (CDCl3, 600 MHz): δ= 7.90 (s, 2H), 7.69 (s, 1H), 4.83 (s, 1H), 4.53 (dd, J=1.9, 

4.6 Hz, 1H), 4.46 (s, 1H), 3.64 (m, 1H), 3.33 (d, J=12.0 Hz, 1H), 3.31 (s, 1H), 3.07–3.03 (m, 
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1H), 2.92–2.87 (m, 1H), 2.50 (d, J=12.0 Hz, 1H), 2.26 (brs, 2H), 2.16–2.11 (m, 1H), 2.08–

2.03 (m, 1H). 

13
C NMR (CDCl3, 150 MHz): δ= 181.2, 139.5, 132.6, 123.7, 121.9, 120.1, 119.2, 80.7, 73.7, 

69.4, 60.9. 54.6, 33.6. 

IR (Diamond-ATR, neat) max: 2948, 1538, 1472, 1383, 1275, 1173, 1129, 955, 884, 847, 

792, 759, 700, 682 cm
-1

. 

[]
25

 D  = + 11.4° (c = 0.19, CHCl3). 

HRMS (ESI) calcd for C16H15ON3F6S [M+H]
+
: 412.0918; found: 412.0914. 
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NMR spectra.  
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Crystal structure of 18 
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Crystal structure of 28 
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Crystal structure of 18 
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Crystal structure of 45 

 

                    

 

 

Crystal structure of 46 
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Crystal structure of 47 

                                                    

 

 

Crystal structure of 48 

                    

 

 

  



158 

Crystal structure of 49  
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1. Introduction of Naphthomycins 

 

1.1 History of Antibiotics 

Paul Ehrlich, a German medicinal scientist, was awarded with the Nobel Prize in 

Physiology in 1908 for his work on immunity. He was the first researcher who 

developed a medical treatment of pox and is therefore the founder of chemotherapy. 

In 1910 he invented Salvarsan, also known as Arsphenamine, which was the first 

antibiotic drug.1 

 

 

 

Figure 1: Paul Ehrlich and Salvarsan on the 200-Deutsche Mark bill. 

 

Salvarsan is a narrow-spectrum antibiotic and only targets spirochetes. The first 

commercially available and more effective antibiotic Prontosil was developed by 

Gerhard Domagk in 1932.2 Prontosil, which is a sulfonamide, opened a new era in 

medicine and was effectively used to treat wounds and ulcers during World War II. 

Sulfonamides inhibit the folate metabolism of bacteria and do not influence 

eukaryotic cells. Domagk received the 1939 Nobel Prize for Medicine for his efforts. 

 

 

Figure 2: General structure of sulfonamides. 

 

Penicillin, the next milestone in the history of antibiotics, could not be synthesized 

and had to be produced by microorganisms. Although the antibiotic properties of 

http://en.wikipedia.org/wiki/Nobel_Prize_in_Physiology_or_Medicine
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fungus Penicillium chrysogenum had been known for many years3, the first patient 

could be treated with Penicillin first in 1942 because of difficulties in purifying and 

isolating sufficient material. Penicillins bind to DD-transpeptidase, which only occurs 

in bacteria and inhibits the cell wall peptidoglycan formation. In 1945 the discovery of 

penicillin was awarded with the Nobel Prize in Medicine. Such a powerful antibiotic 

was unprecedented and its development led to a keen interest in the search for 

antibiotic compounds. 

 

 

Figure 3: General structure of penicillins. 

 

A common phenomenon is that many antibiotics, that had high initial efficacy against 

many bacterial species have become less effective over time because of increased 

resistance of many bacterial strains. The evolutionary stress of decades of 

antibacterial drug therapy has caused the emergence of resistance by means of 

natural selection. During antibiotic treatment the selection occurs when bacteria with 

enhanced fitness against antibiotics survive and sensitive bacteria are inhibited in 

growth. Another problem is cross-resistance, where bacteria tolerate antibiotics as a 

result of exposure to substances with similar chemical structure or acting mechanism. 

Bacteria showing resistance to multiple antibiotics are called multidrug resistant 

(MDR) or, informally, superbugs. 

 

In addition to cell wall formation and folate metabolism, RNA translation and DNA 

replication are targets for successfully antagonize bacterial infections. The task of 

scientists is on the one hand to find new points of actions and the other hand to 

develop appropriate chemical compounds in order to treat bacterial infections. 

 

1.2 Naphthomycins 

Naphthomycins are antibiotics from the family of ansamycins and are potential 

candidates for antibacterial drugs. There is no total synthesis reported, which makes 

the evaluation of their biological activity difficult. For instance, naphthomycin K has 

known antifungal activity and shows cytotoxicity against P388 and A-549 cell lines, 
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but no inhibitory activity against Staphylococcus aureus and Mycobacterium 

tuberculosis.4 

Naphthomycins are described having a basket like structure. All of them contain a 

naphthoquinone moiety that forms a planar portion and a polyketide chain, which 

forms a macrocyclic lactam and has a handle like structure.5 Eleven various 

compounds of the naphthomycin family are known to date.4-7 The letter of their 

names refers to their chronological discovery (Figure 4). 

 

 

 

Figure 4: All members of the naphthomycin family. 

 

All members of this family, excluding naphthomycin K, consist of the same structure 

with three modifications: the substituents at C2 and C30 and the conformation of the 

C4 double bond, highlighted in red (Figure 5). 
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naphthomycin R30 R2 DB-Geometry

A Cl Me (Z)

B Cl H (E)

C H H (E)

D OH Me (Z)

E H Me (Z)

F CysNAc (Me) Me (Z)

G CysNAc H (Z)

H Cl H (Z)

I CysNAc Me (Z)

J CysNAc H (Z)
 

 

Figure 5: Naphthomycins and their crucial distinctions. 

 

The oldest member of this family, naphthomycin A, was first isolated in 1969 from 

Streptomyces collinus by Balerna et al.7 The latest member, naphthomycin K, was 

isolated together with naphthomycin A in 2007. They were extracted from the chinese 

medical plant Maytenus hookeri, specifically from one of its commensal 

microorganisms: Streptomyces sp. CS.4  

The distinctive feature of naphthomycin K compared to the other naphthomycins is its 

structure, which is not a result of modifying the above mentioned three positions. In 

naphthomycin K the bicyclic nucleus is extended by an additional 

oxa-azabicyclo-[3.3.1]nonen-one. In nature naphthomycin K probably arises out of 

naphthomycin A via a hetero-Diels-Alder reaction of C2 to C5 diene and to the C28 

carbonyl, highlighted in red and green in Scheme 1.  

 

 

 

Scheme 1: Naphthomycin K and its arise from naphthomycin A. 

 

1.3 Biosynthesis of Naphthomycin A 

The biosynthesis of naphthomycin A was discovered by Lee et al. in 19948 and S. 

Chen et al. in 1999.9 The polyketide macrocycle is formed by a type I polyketide 
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synthase using six acetate and seven proprionate units which are provided as 

malonyl-CoA and methylmalonyl-CoA (Scheme 2). The polyketide synthase uses a 

Coenzyme A thioester of 3-amino-5-hydroxybenzoic acid (1) (AHBA) as starter unit. 

This compound is synthesized by the aminoshikimate pathway. 

 

 

 

Scheme 2: Biosynthetic origin of naphthomycin A. 

 

The aminoshikimate starts with glycerol (2), out of which phosphoenolpyruvate (3) 

and erytrose 4-phosphate (4) In combination with a nitrogen source (e.g. glutamine) 

both merge to (amino)-deoxy-arabino-heptulosonate-7-phosphate (5). An enzymatic 

ring closing reaction creates the (amino)-dehydroquinic acid (6), which is converted 

to (amino)-dehydroshikimic acid (7) and further to AHBA (1).  

 

 

 

Scheme 3: Biosynthesis of AHBA (1) via aminoshikimate pathway. 
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1.4 Retrosynthetic Analysis of Naphthomycins 

Our aim is the biomimetic synthesis of naphthomycin K via Hetero-Diels-Alder shown 

in Scheme 1. That implies the key intermediate in the total synthesis of 

naphthomycin K is naphthomycin A.  

Naphthomycin A has molecular weight of 720.25 g/mol and the formula C40H46ClNO9. 

It has a napthoquinone portion and a polyketide chain, which has 23 carbons, 3 

hydroxy- and 3 keto-groups as well as 3 double bonds, 6 stereocenters and a 

(Z,Z,E)-triene.  

Our retrosynthetic plan, depicted in Scheme 4, primary targets naphthomycin A but is 

supposed to be applicable for the synthesis of all naphthomycins through simple 

modifications. The key step for making the macrocycle is a double Stille coupling[7, 8] 

with distannane (8), which can be made in both, (E)-and (Z)-configuration. The 

substituent in position 2 is either hydrogen or a methyl group, both accessible 

through known corresponding vinyl iodides (9). The final distinguishing feature is the 

substituent in position 30, which is planned to be introduced at a late stage through 

nucleophilic addition of the corresponding anion into the quinone functionality.  

We envisioned two strategies for the crucial attachment of the polyketide chain to the 

naphthalenic portion in position 24. In the first strategy, phosphonate (10), which 

could be made out of the corresponding cyanide (11), and aldehyde (12) could be 

connected through a Horner-Wadsworth-Emmons reaction (HWE).[9] The second 

strategy envisions a lithiation of bromide (13) followed by a nucleophilic attack to the 

aldehyde (14). 
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Scheme 4: Two strategies for the synthesis of naphthomycins. 

 

No matter which strategy will lead to success, both can be divided into two equally 

challenging subprojects. Hence, this project was distributed to two PhD students. 

One of them was me, focusing on the synthesis of the polyketide chain 12 or 14, 

respectively. The synthesis of the aromatic moiety (10 or 13, respectively) was the 

focus of my team player Christian A. Kuttruff, who was temporary supported by 

Masters Student Simon Geiger. This segmentation should not give the impression of 

two separate and independent subprojects. Quite the contrary, there was a constant 

exchange of ideas and even crucial practical support. Progresses, failures and 

strategies of both subprojects were discussed on a daily basis, allowing both, me and 

Christian, to gain expertise in polyketide chemistry and aromatic chemistry. 
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2.2 Synthesis of the C6C23 Fragment of Naphthomycins 

 

Naphthomycins, exemplified by naphthomycin A (1) depicted in Scheme 1, are 

described as having a basket like structure.[1] All of them contain a naphthoquinone 

moiety, which forms the flat part and is linked to a polyketide chain, that forms a 

macrocyclic lactam. Distinguishing features in the naphthomycin family are a variety 

of substituents at C30, methyl or hydrogen substitution at C2 and the double bond 

configuration of C4. Recently, results from our laboratories have been published, 

dealing with the synthesis of the aminonaphthoquinone core of naphthomycins and 

other ansamycins.[2] To date, there is no total synthesis of any naphthomycin 

reported. Our ongoing interest in ansamycines and their potential biological activity 

render the naphthomycins as attractive synthetic targets.  

The polyketide chain from C6 to C23 is a shared moiety in all naphthomycins. This 

common fragment (2) is characterized by six stereogenic centers, two enones and a 

labile hydroxyl group at C15. Access to this fragment (2) would allow its incorporation 

in the syntheses of all naphthomycins. Retrosynthetically, we anticipated this general 

building block to arise from aldehyde 3 and phosphonate 4 by means of a Horner-

Wadsworth-Emmons (HWE) reaction. 
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Scheme 1. Synthetic Approach to C6-C23 Fragment 2 of Naphthomycin A (1) 

 

 

Our synthesis of aldehyde 3 is outlined in Scheme 2 and commenced with DIBAL-H 

reduction of PMB protected Roche ester 5 to the corresponding aldehyde in very 

good yield. Roush crotylation with borane 6 followed by protection of the resulting 

alcohol with TBSOTf yielded literature known alkene 7.[3]  Subsequent exposure to 

cross metathesis conditions with crotonaldeyde and Grubbs Hoveyda 2nd Generation 

catalyst afforded an α,β-unsaturated aldehyde, which was allylated with commercially 

-Ipc2B(allyl) followed by protection to give TBS ether 8. With all carbon 

atoms in place, oxidative cleavage of the terminal double bond was required. Various 

conditions have been tried to achieve the final transformation, but the desired 

aldehyde 3 could not be isolated in higher than 32% yield. This is due to its sensitivity 

towards elimination of the TBS ether under slightly acidic or basic conditions giving a 

dienenale (not shown in Scheme 2), which further decomposes. However, exposure 

to Sharpless dihydroxylation conditions followed by glycol cleavage with Pb(OAc)4 

gave rise to the desired aldehyde 3 in 79% yield. 
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Scheme 2. Synthesis of Aldehyde Building Block (3) 

 

 

Being able to synthesize multigram quantities of building block 3, a scalable route for 

building block 4 was next targeted. Our successful synthesis is outlined in Scheme 3 

and started with mono-protection of diol 9.[4] Dess-Martin periodane (DMP) oxidation 

followed by Brown crotylation with borane 10 set the two stereocenters and gave 

alcohol 11.[5]  Subsequent protection of the secondary alcohol followed by selective 

primary deprotection and DMP oxidation afforded aldehyde 12. Efforts to convert 

aldehyde 12 or further oxidized derivatives, such as the corresponding acyl chloride 

or the Weinreb amide, into the desired building block 4 were all fruitful. Eventually the 

best yield was achieved when the corresponding methyl ester, prepared by Pinnick 

oxidation followed by methylation with TMS-diazomethane, was treated with lithiated 

phosphonate to give building block 4 as a 1:1 mixture of diastereomers. 
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Scheme 3. Synthesis of Phosphonate Building Block (4) 

 

 

With multigram quantities of both building blocks in hand, the crucial HWE was 

investigated.  Standard bases, such as LDA, NaH, LiHMDS, KOtBu amongst others, 

mostly led to decomposition of aldehyde 3 and reisolation of phosphonate 4. Mild 

conditions for sensitive compounds have been reported[6], but in this case only gave 

poor yield and were not scalable.  The best result was obtained when a modified 

procedure with dried Ba(OH)2 at –18 °C for six days was applied.[7]  These conditions 

allowed for a multigram synthesis of desired enone 13 in reliable 70% yield. Finally, 

PMB-ether was selectively cleaved by means of DDQ and the liberated alcohol was 

oxidized with DMP. Treatment of the later with phosphanylidene 14 at 130 °C for 12 

hours gave access to the complete fragment 2 in 73% over two steps.   
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Scheme 4. Completion of the Synthesis of Fragment (2) 

 

 

 

accomplished within nine steps and in an overall yield of 30.6%. Building blocks 3 

and 4 were both prepared in each five steps from literature known compounds in 

multigram quantities. The preparation of sensitive aldehyde building block 3 and its 

linkage in a Horner-Wadsworth-Emmons reaction were crucial steps in the synthesis 

and required careful optimization. 
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2.2.1 Supplementary Information 

 

General Experimental Details. Unless stated otherwise, all reactions were performed in 

oven-dried or flame-dried glassware under a positive pressure of nitrogen.  Commercial 

reagents and solvents were used as received with the following exceptions. Tetrahydrofuran 

(THF) was distilled from benzophenone and sodium immediately prior to use. 

Diisopropylethylamine (DIPEA) and Triethylamine (TEA) were distilled over calcium 

hydride immediately before use. Reactions were magnetically stirred and monitored by crude 

NMR or analytical thin-layer chromatography (TLC) using E. Merck 0.25 mm silica gel 60 

F254 precoated glass plates.  TLC plates were visualized by exposure to ultraviolet light (UV, 

254 nm) and/or exposure to an aqueous solution of ceric ammoniummolybdate (CAM) or an 

aqueous solution of potassium permanganate (KMnO4) followed by heating with a heat gun.  

Flash column chromatography was performed as described by Still et al. employing silica gel 

(60 Å, 40-63 m, Merck) and a forced flow of eluant at 1.3–1.5 bar pressure.
1
 Yields refer to 

spectroscopically (
1
H NMR and 

13
C NMR) pure material.  

 

Instrumentation. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on 

Varian VNMRS 300, VNMRS 400, INOVA 400 or VNMRS 600 spectrometers.  Proton 

chemical shifts are expressed in parts per million ( scale) and are calibrated using residual 

undeuterated solvent as an internal reference (CHCl3:  7.26, MeOH:  3.31, H2O:  4.79). 

Data for 1H NMR spectra are reported as follows: chemical shift ( ppm) (multiplicity, 

coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad, or combinations thereof. Carbon 

nuclear magnetic resonance (13C NMR) spectra were recorded on Varian VNMRS 300, 

VNMRS 400, INOVA 400 or VNMRS 600 spectrometers. Carbon chemical shifts are 

expressed in parts per million ( scale) and are referenced from the carbon resonances of the 

solvent (CDCl3:  77.0, MeOH:  49.0). Infrared (FTIR) spectra were recorded on a Perkin 

Elmer Spectrum BX II (FTIR System). FTIR Data is reported in frequency of absorption (cm-

1). Mass spectroscopy (MS) experiments were performed on a Thermo Finnigan MAT 95 (EI) 

or on a Thermo Finnigan LTQ FT (ESI) instrument. Microwave reactions were performed on 

a CEM machine (Model: Discovery System, No. 908010).  
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Synthetic procedures. 

 

 

PMB-ether 5 

A solution of 1.34 g (11.3 mmol, 1 eq.) (S)-methyl 3-hydroxy-2-methylpropanoate in CH2Cl2 

(10 mL) was cooled to 0 °C and a solution of 4.49 g (15.9 mmol, 1.4 eq.) PMB 

trichloroacetimidate (freshly prepaired) in CH2Cl2 (2 mL) was added dropwise. 130 mg (0.6 

mmol, 0.05 eq.) CSA was added and the reaction mixture was allowed to warm to rt and 

stirred for 48 h. The precipitate was removed by filtration through a plug of silica and the 

silica was washed with CH2Cl2 (50 mL). Combined filtrates were washed with sat. aq. 

NaHCO3, brine, dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (hexanes:EtOAc = 19:1) to yield 1.77 g (7.4 mmol, 

81%) PMB ether 5 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 5:1): Rf = 0.40 (CAM, UV). 

1
H-NMR (CDCl3, 200 MHz): δ = 7.27–7.20 (m, 2H), 6.89–6.83 (m, 2H), 4.45 (s, 2H), 3.79 

(s, 3H), 3.68 (s, 3H), 3.62 (dd, J=7.3, 9.1 Hz, 1H), 3.45 (dd, J=5.9, 9.1 Hz, 1H), 2.85–2.68 (m, 

1H), 1.16 (d, J=7.1 Hz, 3H). 

 

 

 

Alcohol S2 

1.83 g (7.68 mmol, 1 eq.) methyl ester 5 was dissolved in CH2Cl2 (30 mL) and cooled to −78 

°C. 9.2 mL (9.20 mmol, 1.2 eq., 1 M solution in CH2Cl2) DIBAL-H was added dropwise and 

the reaction mixture was stirred for 2 h at −78 °C. 
1
/3 sat. aq. Rochelles-salt (30 mL) was 

added and the reaction mixture was allowed to warm to rt and further stirred for 1 h. The 

reaction mixture was diluted with Et2O (100 mL) and the layers were separated. The organic 

layer was washed with brine (50 mL), dried over MgSO4, filtered and concentrated in vacuo 

to yield 1.5 g (7.20 mmol, 94%) of the desired aldehyd S1 as a greenish oil (one spot on 

TLC).  
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Flame dried 4Å mol sieves (1 g) were treated with 25.5 mL (10.1 mmol, 1.4 eq., 0.4 M 

solution in toluene) boronate 6 and stirred for 30 min at rt. The reaction mixture was cooled to 

−78 °C and 1.5 g (7.203 mmol, 1 eq.) aldehyde S1 in toluene (5 mL) was added dropwise via 

syringe pump over 1 h. The reaction mixture was stirred for 24 h at −78 °C and subsequently 

quenched with 10% aq. NaOH (25 mL) and allowed to warm to rt. 50 % aq. H2O2 (25 mL) 

was added dropwise and stirred for 3 h. The reaction mixture was diluted with Et2O (60 mL) 

and the layers were separated. The milky water layer was extracted with Et2O (2  50 mL). 

The combined organic layers were washed with brine (100 mL), dried over MgSO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column chromatography 

(hexanes:EtOAc = 9:1) to yield 885 mg (3.354 mmol, 46%) alcohol S2 as a colorless oil (one 

spot on TLC). 

 

TLC (hexanes:EtOAc = 4:1): Rf = 0.44 (CAM, UV). 

1
H-NMR (CDCl3, 200 MHz): δ = 7.29–7.21 (m, 2H), 6.90–6.83 (m, 2H), 5.79 (ddd, J=8.4, 

10.4, 17.1 Hz, 1H), 5.16–5.06 (m, 2H), 4.44 (s, 2H), 3.80 (s, 3H), 3.57–3.42 (m, 3H), 2.35–

2.17 (m, 2H), 2.01–1.87 (m, 1H), 0.97 (d, J=2.9 Hz, 3H), 0.93 (d, J=3.1 Hz, 3H). 

 

 

 

TBS ether 7 

A solution of 5.10 g (47.34 mmol, 2.0 eq.) 2,6-lutidine and 6.25 g (23.67 mmol, 1.0 eq.) 

homoallylic alcohol S2 in CH2Cl2 (35 mL) was cooled to 0 °C and 9.37 g (35.51 mmol, 1.5 

eq.) TBSOTf was added dropwise. The reaction mixture was stirred at 0 °C for 1 h. The 

reaction mixture was diluted with sat. aq. NH4Cl (50 mL) and CH2Cl2 (50 mL) and the layers 

were separated. The aqueous layer was extracted with CH2Cl2 (3  100 mL). The combined 

organic layers were dried over MgSO4, filtered and concentrated in vacuo. The crude product 

was purified by flash column chromatography (hexanes:EtOAc = 94:4) to yield 8.93 g 

(23.6 mmol, 99%) TBS ether 7 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.54 (CAM, UV). 

1
H-NMR (CDCl3, 200 MHz): δ = 7.29–7.21 (m, 2H), 6.91–6.84 (m, 2H), 5.84 (ddd, J=7.8, 

10.4, 17.2 Hz, 1H), 5.03–4.93 (m, 2H), 4.46–4.33 (m, 2H), 3.81 (s, 3H), 3.65 (dd, J=3.3, 5.0 
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Hz, 1H), 3.37 (dd, J=6.6, 9.1 Hz, 1H), 3.21 (dd, J=6.8, 9.0 Hz, 1H), 2.42 (m, 1H), 1.94, (ddd, 

J=3.3, 6.8, 13.6 Hz, 1H), 0.99 (d, J=7.0 Hz, 3H), 0.90 (d, J=6.8 Hz, 3H), 0.89 (s, 9H), 0.03 (s, 

3H), 0.01 (s, 3H). 

 

 

 

Aldehyde S3 

A solution of 7.30 g (19.3 mmol, 1.0 eq) alkene 7 and 27.0 g (386 mmol, 20.0 eq) 

crotonaldehyde in CH2Cl2 (800 mL) was treated with 604 mg (0.966 mmol, 0.05 eq) Grubbs 

Hoveyda 2
nd

 Generation catalyst. The reaction mixture was stirred at 55 °C for 12 h. The 

reaction mixture was concentrated in vacuo and the crude product was purified by flash 

column chromatography (hexanes/EtOAc = 19:1→7:1) to yield 6.36 g (15.64 mmol, 81%) 

aldehyde S3 as a colorless oil (one spot on TLC).  

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.33 (CAM). 

1
H-NMR (CDCl3, 300 MHz): δ = 9.49 (d, J=7.9 Hz, 1H), 7.25–7.21 (m, 2H), 6.92 (dd, J=7.9, 

15.8 Hz, 1H), 6.89–6.86 (m, 2H), 6.07 (ddd, J=1.1, 7.9, 15.8 Hz, 1H), 4.43–4.34 (m, 2H), 

3.81 (s, 3H), 3.78 (dd, J=3.5, 4.8 Hz, 1H), 3.34 (dd, J=6.9, 9.1 Hz, 1H), 3.19 (dd, J=6.2, 9.1 

Hz, 1H), 2.70–2.59 (m, 1H), 1.97–1.85 (ddd, J=3.5, 6.9, 13.2 Hz, 1H), 1.09 (d, J=6.9 Hz, 3H), 

0.91–0.88 (m, 12H), 0.04 (s, 3H), 0.04 (s, 3H). 

13
C-NMR (CDCl3, 75 MHz): δ = 194.2, 161.8, 159.2, 132.2, 130.5, 129.2, 113.8, 75.8, 72.6, 

72.5, 55.3, 41.9, 37.9, 26.1, 18.4, 17.1, 12.3, –3.7, –4.1. 

IR (Diamond-ATR, neat) νmax: 2956, 2930, 2884, 2856, 2361, 1691, 1613, 1513, 1471, 1462, 

1248, 1172, 1141, 1083, 1035, 1006, 835, 773 cm
-1

. 

[α]
20

 D = -10.8° (c = 0.42, CHCl3). 

HRMS (ESI) calcd for C23H38O4Si [M+H]
+
: 407.2618; found: 407.2607. 

 

 

 

Alcohol S4 
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25 mL (25 mmol, 3.0 eq., 1M solution in pentane) ()-Ipc2B(allyl) was dissolved in Et2O 

(50 mL) and cooled to −78 °C. A solution of 3.38 g (8.31 mmol, 1.0 eq.) aldehyde S3 in Et2O 

(50 mL) was added dropwise and the reaction mixture was allowed to warm to rt over 12 h. 

The reaction mixture was cooled to 0 °C, aq. 2 M NaOH (30 mL) and aq. 30 % H2O2 (30 mL) 

were subsequently added dropwise and stirred for 12 h at rt. The reaction mixture was diluted 

with H2O (40 mL) and extracted with Et2O (4 x 100 mL). The combined organic layers were 

washed with sat. aq. NH4Cl (200 mL), brine (200 mL), dried over MgSO4, filtered and 

concentrated in vacuo. Ipc-alcohol was removed from the crude product on high vacuo (96 h 

at 50 °C). Further purification by flash column chromatography (hexanes/EtOAc = 19:1 → 

12:1) yielded 3.29 g (7.33 mmol, 88%) alcohol S4 as a colorless oil (one spot on TLC).  

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.33 (CAM). 

1
H-NMR (CDCl3, 400 MHz): δ = 7.25–7.22 (m, 2H), 6.89–6.85 (m, 2H), 5.85–5.72 (m, 1H), 

5.69 (ddd, J=1.0, 7.6, 15.6 Hz, 1H), 5.44 (ddd, J=1.0, 6.7, 15.6 Hz, 1H), 5.15–5.10 (m, 2H), 

4.43–4.36 (m, 2H), 4.10 (q, J=6.4 Hz, 1H), 3.80 (s, 3H), 3.65 (dd, J=3.4, 4.6 Hz, 1H), 3.35 

(dd, J=6.6, 9.0 Hz, 1H), 3.20 (dd, J=6.8, 9.0 Hz, 1H), 2.39–2.31 (m, 1H), 2.30–2.25 (m, 2H), 

1.98–1.81 (m, 1H), 0.99 (d, J=7.0 Hz, 3H), 0.89 (d, J=6.8 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 3H), 

0.02 (s, 3H). 

13
C-NMR (CDCl3, 100 MHz): δ = 159.0, 135.0, 134.5, 131.6, 130.7, 129.1, 117.9, 113.7, 

76.0, 73.3, 72.5, 72.0, 55.2, 41.9, 41.3, 37.2, 26.1, 18.4, 17.5, 12.6, –3.8, –4.2. 

IR (Diamond-ATR, neat) νmax: 3396, 2956, 2929, 2904, 2856, 1513, 1472, 1462, 1361, 1302, 

1247, 1462, 1361, 1302, 1247, 1172, 1069, 1036, 1005, 834, 772 cm
-1

. 

[α]
20

 D = -18.9° (c = 0.42, CHCl3). 

HRMS (ESI) calcd for C26H44O4Si [M+NH4]
+
: 466.3353; found: 466.3345. 

 

 

 

Protected alcohol 8  

1.06 g (4.02 mmol, 1.2 eq.) TBSOTf and 860 mg (8.04 mmol, 2.4 eq.) lutidine were dissolved 

in CH2Cl2 (45 mL) and cooled to 0 °C. 1.50 g (3.35 mmol, 1.0 eq.) alcohol S4 was added 

dropwise and the reaction mixture was stirred at 0°C for 30 min. The reaction was quenched 

with sat. aq. NH4Cl (20 mL), diluted with H2O (20 mL) and extracted with CH2Cl2 (3 x 

40 mL). The combined organic layers were washed with brine (50 mL), dried over MgSO4, 
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filtered and concentrated in vacuo. The crude product was purified by flash column 

chromatography (hexanes/EtOAc = 29:1 → 19:1) to yield 1.67 mg (2.99 mmol, 89%) of 

protected alcohol 8 as a colorless oil (one spot on TLC).  

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.58 (CAM). 

1
H-NMR (CDCl3, 400 MHz): δ = 7.26–7.23 (m, 2H), 6.90–6.86 (m, 2H), 5.84–5.73 (m, 1H), 

5.63 (ddd, J=1.1, 7.8, 15.6 Hz, 1H), 5.38 (ddd, J=1.0, 6.15, 15.6 Hz, 1H), 5.05–4.99 (m, 2H), 

4.43–4.35 (m, 2H), 4.08 (q, J=6.7 Hz, 1H), 3.80 (s, 3H), 3.64 (t, J=3.9 Hz, 1H), 3.36 (dd, 

J=6.1, 9.0 Hz, 1H), 3.21 (dd, J=6.9, 9.0 Hz, 1H) 2.37–2.28 (m, 1H), 2.27–2.16 (m, 2H), 1.94–

1.88 (m, 1H), 0.99 (d, J=7.0 Hz, 3H), 0.92–0.87 (m, 21H), 0.04 (s, 3H), 0.04 (s, 3H), 0.02 (s, 

3H), 0.01 (s, 3H). 

13
C-NMR (CDCl3, 100 MHz): δ = 159.0, 135.4, 132.6, 132.5, 130.8, 129.1, 116.5, 113.7, 

76.1, 73.3, 73.2, 72.5, 55.2, 43.2, 41.4, 37.5, 26.1, 25.9, 18.4, 18.2, 18.0, 13.2, -3.9, -4.1, -4.3, 

-4.8. 

IR (Diamond-ATR, neat) νmax: 2955, 2928, 2855, 1613, 1513, 1472, 1462, 1247, 1171, 1079, 

1037, 1004, 833, 772, 677 cm
-1

. 

[α]
22

 D = - 18.2° (c = 0.48, CHCl3). 

HRMS (ESI) calcd for C32H58O4Si2 [M+NH4]
+
: 580.4217; found: 580.4221. 

 

 

 

Aldehyde 3 

A solution of 3 g (5.34 mmol, 1.0 eq.) alkene 8 in tert-butanol (90 mL) was treated with 5.27 

g (16.01 mmol, 3.0 eq.) K3Fe(CN)6, 2.21 g (16.01 mmol, 3.0 eq.) K2CO3, 0.51 g (5.34 mmol, 

1.0 eq.) MeSO2NH2 and 1.66 g (2.1 mmol, 0.4 eq.) (DHQ)2Phal. H2O (90 mL) was added to 

the reaction mixture was stirred for 15 min and treated dropwise with 870 µL (0.85 mmol, 

0.016 eq., 2,5% wt in tert-butanol) OsO4. The reaction mixture was stirred for 2.5 h at rt 

before quenching with 16.8 g (133 mmol, 25 eq.) Na2SO3. The reaction mixture was stirred 

for 30 min at rt, diluted with H2O (50 mL), extracted with EtOAc (3 x 250 mL), washed with 

1 M HCl (200 mL), brine (200 mL), dried over MgSO4, filtered and concentrated in vacuo to 

afford 4.4 g of crude diol S5 as a yellowish oil.  

A solution of crude diol S5 (100% yield assumed from Sharpless dihydroxylation reaction, 

5.34 mmol) in EtOAc (290 mL) was cooled to 0°C and treated with 3.07 g (6.94 mmol, 
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1.3 eq.) Pb(OAc)4. The reaction mixture was stirred for 1 h at 0°C. The reaction mixture was 

filtered through a pad of silica, washed with 1 L Et2O/hexanes (1:1) and the combined filtrates 

were concentrated in vacuo to yield 2.95 g aldehyde 3 as a brown oil. 

For characterization purpose the crude product from a previous batch was purified by flash 

column chromatography* (hexanes:EtOAc = 19:1) to yield the desired aldehyde FF10 (in 

79% isolated yield) as a colorless oil (one spot on TLC). 

*Product is not very stable on silica, a quick column is recommended. Purification is not 

necessary for the next step. 

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.38 (CAM). 

1
H-NMR (CDCl3, 400 MHz): δ = 9.75 (t, J=2.5 Hz, 1H), 7.25–7.23 (m, 2H), 6.88–6.86 (m, 

2H), 5.73 (ddd, J=1.2, 7.8, 15.6 Hz, 1H), 5.42 (ddd, J=1.0, 6.1, 15.6 Hz, 1H), 4.62–4.57 (m, 

1H), 4.39 (q, J=11.6 Hz, 2H), 3.80 (s, 3H), 3.65 (t, J=3.8 Hz, 1H), 3.33 (dd, J=6.3, 9.0 Hz, 

1H), 3.19 (dd, J=6.7, 9.0 Hz, 1H), 2.55 (ddd, J=2.8, 7.2, 15.5 Hz, 1H), 2.44 (ddd, J=2.2, 4.8, 

15.5 Hz, 1H), 2.34 (td, J=4.0, 7.1 Hz, 1H), 1.91–1.85 (ddd, J=3.9, 6.6, 13.3 Hz, 1H), 0.99 (d, 

J=7.0 Hz, 3H), 0.91–0.86 (m, 21H), 0.05, (s, 3H), 0.04 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H). 

13
C-NMR (CDCl3, 100 MHz): δ = 201.9, 159.1, 133.8, 131.4, 130.8, 129.2, 113.7, 76.0, 73.2, 

72.6, 69.2, 55.3, 51.7, 41.3, 37.7, 26.1, 25.8, 18.4, 18.1, 18.0, 13.1, -3.9, –4.1, –4.2, –5.0. 

IR (Diamond-ATR, neat) νmax: 2956, 2929, 2885, 2856, 1513, 1472, 1463, 1248, 1082, 1035, 

832, 773 cm
-1

. 

[α]
22

 D = - 17.7° (c = 0.57, CHCl3). 

HRMS (ESI) calcd for C31H56O5Si2 [M+NH4]
+
: 582.4010; found: 582.4009. 

 

 

 

3-((tert-butyldimethylsilyl)oxy)propan-1-ol (S6) 

6.7 g (100 mmol, 1.0 eq., 60% dispersion in mineral oil) NaH was dissolved in THF (50 mL) 

and 7.6 g (100 mmol, 1.0 eq.) 1,3-propanediol (9) in THF (20 mL) was added dropwise at rt. 

The reaction mixture was stirred for 45 min and 15.7 g (100 mmol, 1.0 eq.) TBSCl in THF 

(50 mL) was added dropwise. After 3 h, the reaction was quenched with sat. aq. 

NaHCO3 (150 mL). The reaction mixture was extracted with Et2O (3  150 mL). The 

combined organic layers were washed with brine (150 mL), dried over MgSO4, filtered and 

concentrated in vacuo. The resulting oil was purified by flash column chromatography 
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(hexanes:EtOAc = 4:1) to yield 17.6 g (93 mmol, 93%) of the desired product S6 as a 

colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 2:1), Rf = 0.60 (CAM). 

1
H-NMR (CDCl3, 200 MHz) δ: 3.86–3.78 (m, 4H), 1.78 (dt, J=5.6, 11.1 Hz, 2H), 0.90 (s, 

9H), 0.08 (s, 6H). 

 

 

 

3-((tert-butyldimethylsilyl)oxy)propanal (S7) 

11.0 g (57.9 mmol, 1.0 eq.) TBS-alcohol S6 was dissolved in CH2Cl2 (500 mL) and 31.8 g 

(75.0 mmol, 1.3 eq.) Dess-Martin periodinane was added portion wise at rt. The reaction 

mixture was stirred for 2 h at rt before it was quenched with sat. aq. NaHCO3/Na2S2O3/H2O 

1:1:1 (500 mL) and stirred further for 1 h. The reaction mixture was extracted with Et2O (3  

150 mL). The combined organic layers were washed with brine (150 mL), dried over MgSO4, 

filtered and concentrated in vacuo. The obtained crude product was purified by flash column 

chromatography (hexanes:Et2O = 6:1) to yield 9.9 g (52.7 mmol, 91%) aldehyde S7 as a 

colorless liquid (one spot on TLC).* 

*Product is volatile. 

 

TLC (hexanes:EtOAc = 3:1), Rf = 0.74 (CAM). 

1
H-NMR (CDCl3, 200 MHz) δ: 9.78 (t, J=2.1 Hz, 1H), 3.97 (t, J=6.0 Hz, 2H), 2.58 (td, J=2.1, 

6.0 Hz, 2H), 0.86 (s, 9H), 0.05 (s, 6H). 

 

 

 

Alcohol 11 

In a flame dried flask equipped with a mechanical stirrer 4.17 g (74.4 mmol, 2.0 eq.) cis-

butene was condensed at −78 °C. 4.17 g (37.2 mmol, 1.0 eq.) KOtBu and THF (10 mL) were 

added and the solution was treated dropwise with 15.5 mL (37.2 mmol, 1.0 eq., 2.4 M 



221 

solution in hexanes) n-BuLi. The reaction mixture was warmed to −30 °C for 30 min, 

recooled to −78 °C and 14.11 g (44.6 mmol, 1.2 eq.) (+)-Ipc2BOMe in THF (20 mL) was 

added. The viscous solution was stirred 45 min at −78 °C, treated with 5.26 g (37.2 mmol, 1.0 

eq.) BF3·Et2O and after 5 min with 7.00 g (37.2 mmol, 1.0 eq.) aldehyde S7 in THF (10 mL). 

After stirring for 12 h at −78 °C, the reaction mixture was quenched carefully with 3 N aq. 

NaOH (36 mL) and 50% aq. H2O2 solution (20 mL), allowed to warm to rt and stirred for 12 

h. The reaction mixture was extracted with Et2O (3  150 mL) and the combined organic 

layers were washed with brine (150 mL), dried over MgSO4, filtered and concentrated in 

vacuo. The crude product was purified by flash column chromatography (hexanes:EtOAc = 

19:1) to yield 4.24 g (17.4 mmol, 47%) alcohol 11 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 4:1), Rf = 0.72 (CAM). 

1
H-NMR (CDCl3, 200 MHz) δ: 5.78 (ddd, J=7.7, 10.5, 17.3 Hz, 1H), 5.07–4.96 (m, 2H), 

4.04–3.59 (m, 3H), 2.38–2.12 (m, 1H), 1.75–1.49 (m, 2H), 1.05 (d, J=6.8 Hz, 3H), 0.89 (s, 

9H), 0.07 (s, 6H). 

 

 

 

Alkene S8 

2.81 g (41.3 mmol, 2.4 eq.) imidazole was dissolved in CH2Cl2 (12 mL) and treated with 4.20 

g (17.2 mmol, 1.0 eq.) alcohol 10 in CH2Cl2 (5 mL). 3.10 g (20.6 mmol, 1.2 eq.) TBSCl was 

added in one portion and the reaction mixture was stirred for 60 h at rt, filtered through Celite 

and concentrated in vacuo. The crude product was purified by flash column chromatography 

(hexanes:EtOAc = 29:1) to yield 5.54 g (15.5 mmol, 90%) product S8 as a colorless oil (one 

spot on TLC). 

 

TLC (hexanes:EtOAc = 10:1), Rf = 0.49 (CAM). 

1
H-NMR (CDCl3, 200 MHz) δ: 6.00–5.81 (m, 1H), 5.05–4.94 (m, 2H), 3.77–3.57 (m, 3H), 

2.38–2.22 (m, 1H), 1.67–1.48 (m, 2H), 0.96 (d, J=6.9 Hz, 3H), 0.89 (s, 18H), 0.04 (m, 12H). 

 

 



222 

 

Primary alcohol S9 

HF·pyridine (18 mL) was cooled to 0 °C in a plastic vessel, diluted with THF (150 mL) and 

carefully treated with pyridine (72 mL). 5.7 g (15.9 mmol, 1 eq.) protected alcohol S8 in THF 

(60 mL) was added dropwise to the HF-solution and the reaction mixture was stirred for 3 h at 

rt before it was quenched with sat. aq. NaHCO3 (200 mL) and solid NaHCO3 (20 g). After 

extraction with Et2O (4  150 mL) the combined organic layers were washed with sat. aq. 

CuSO4 (6  150 mL), brine (200 mL), dried over MgSO4, filtered and concentrated in vacuo 

to yield 3.85 g (15.8 mmol, 99%) product S9 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 3:1), Rf = 0.53 (CAM). 

1
H-NMR (CDCl3, 300 MHz) δ: 5.87 (ddd, J=6.9, 9.8, 18.0 Hz, 1H), 5.08–5.00 (m, 2H), 3.85–

3.66 (m, 3H), 2.50–2.35 (m, 1H), 2.20 (br s, 1H), 1.77–1.62 (m, 2H), 1.00 (d, J=6.9 Hz, 3H), 

0.92 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H). 

13
C-NMR (CDCl3, 75 MHz) δ: 140.3, 114.6, 74.7, 60.1, 42.8, 35.0, 25.9, 18.0, 15.7, –4.4,  

–4.6. 

IR (Diamond-ATR, neat) max: 3330, 2930, 1253, 1060, 1005, 912, 834, 773, 666 cm
-1

. 

[α]
20

 D = – 33.0° (c = 0.48, CHCl3). 

HRMS (ESI) calcd for C13H29O2Si1 [M+H]
+
: 245.1931; found: 245.1931. 

 

 

 

Aldehyde 12 

570 mg (2.33 mmol, 1.0 eq.) alcohol S9 was dissolved in CH2Cl2 (25 mL) and 1.98 g (4.67 

mmol, 2.0 eq.) Dess-Martin periodinane was added in one portion. The reaction mixture was 

stirred for 3 h at rt, quenched with sat. aq. NaHCO3/Na2S2O3/H2O 1:1:1 (200 mL) and stirred 

further for 1 h. The reaction mixture was extracted with CH2Cl2 (3  100 mL) and the 

combined organic layers were washed with brine (100 mL), dried over MgSO4, filtered and 

concentrated in vacuo. The crude product was purified by flash column chromatography 

(hexanes:EtOAc = 49:1) to yield 495 mg (2.04 mmol, 88%) aldehyde 12 as a colorless oil 

(one spot on TLC). 



223 

TLC (hexanes:EtOAc = 5:1), Rf = 0.72 (CAM). 

1
H-NMR (CDCl3, 300 MHz) δ: 9.80 (t, J=2.4 Hz, 1H), 5.82 (ddd, J=6.9, 10.4, 17.3 Hz, 1H), 

5.09–5.07 (m, 1H), 5.03 (ddd, J=1.6, 17.2 Hz, 1H), 4.11–4.05 (m, 1H), 2.58–2.33 (m, 3H), 

1.00 (d, J=6.9 Hz, 3H), 0.88 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H). 

13
C-NMR (CDCl3, 75 MHz) δ: 202.2, 139.7, 115.5, 71.7, 48.1, 43.8, 25.8, 18.0, 15.4, −4.4, 

−4.6. 

IR (Diamond-ATR, neat) max: 2957, 2930, 2858, 1726, 1253, 1089, 834, 774 cm
-1

. 

[α]
20

 D = – 34.3° (c = 0.46, CHCl3). 

HRMS (ES) calcd for C13H26O2Si [M]
+
: 242.1702; found: 242.1694. 

 

 

 

Carboxylic acid S10 

1.20 g (4.94 mmol, 1.0 eq.) aldehyde 12 was dissolved in 72 mL tBuOH/H2O (1:1) and 

2-methyl-2-butene (5.3 mL) was added. To the biphasic solution 5.93 g (49.4 mmol, 10.0 eq.) 

NaH2PO4 and 4.47 g (49.4 mmol, 10.0 eq.) NaClO2 were added and the reaction mixture was 

stirred for 4 h at rt under exclusion of light. The reaction was quenched with solid NH4Cl (15 

g) and extracted with Et2O (3  100 mL). The combined organic layers were washed with 

brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo. The crude product was 

purified by flash column chromatography (hexanes:EtOAc = 9:1 → 3:1) to yield 1.21 g (4.69 

mmol, 95%) carboxylic acid S10 as a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 3:1), Rf = 0.38 (CAM). 

1
H-NMR (CDCl3, 300 MHz) δ: 5.93–5.81 (m, 1H), 5.10–5.04 (m, 2H), 4.07 (dt, J=5.0, 6.8 

Hz, 1H), 2.55–2.36 (m, 3H), 1.03 (d, J=6.9 Hz, 3H), 0.90 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H). 

13
C-NMR (CDCl3, 75 MHz) δ: 177.8, 139.7, 115.3, 72.8, 43.3, 39.3, 25.8, 18.0, 14.9, −4.5, 

−4.8. 

IR (Diamond-ATR, neat) max: 2957, 2930, 2888, 2858, 1710, 1253, 1083, 830, 774 cm
-1

. 

[α]
20

 D = – 32.6° (c = 0.48, CHCl3). 

HRMS (ESI) calcd for C13H25O3Si1 [M−H]
−
: 257.1578; found: 257.1577. 
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Weinreb amide S11 

100 mg (0.388 mmol, 1.0 eq.) acid S10 in CH2Cl2 (10 mL) was treated dropwise with the 78 

mg (0.582 mmol, 1.5 eq.) 1-chloro-N,N,2-trimethylprop-1-en-1-amine (Ghosez-reagent). 

After stirring for 1 h at rt, 42 mg (0.427 mmol, 1.1 eq.) N,O-dimethylhydroxylamine·HCl was 

added to the reaction mixture. The reaction mixture was cooled to 0 °C and treated dropwise 

with 110 mg (0.854 mmol, 2.2 eq.) DIPEA. The reaction was allowed to warm to rt and 

stirred 14 h before it was diluted with 1 N aq. HCl (10 mL). The resulting layers were 

separated and the organic layer was washed with brine (10 mL), dried over MgSO4, filtered 

and concentrated in vacuo. The crude product was purified by flash column chromatography 

(hexanes:EtOAc = 9:1 → 5:1) to yield 78 mg (0.259 mmol, 67%) Weinreb amide S11 as a 

colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 4:1), Rf = 0.43 (CAM). 

1
H-NMR (CDCl3, 300 MHz) δ: 5.96–5.85 (m, 1H), 5.04–4.98 (m, 2H), 4.20 (dt, J=4.4, 8.4 

Hz, 1H), 3.66 (s, 3H), 3.15 (s, 3H), 2.68–2.60 (m, 1H), 2.40–2.30 (m, 2H), 0.99 (d, J=6.9 Hz, 

3H), 0.85 (s, 9H), 0.06 (s, 3H), 0.00 (s, 3H). 

13
C-NMR (CDCl3, 75 MHz) δ: 172.7, 140.5, 114.5, 72.7, 61.3, 43.5, 37.6, 36.3, 25.9, 18.1, 

14.5, −4.6, −4.8. 

IR (Diamond-ATR, neat) max: 2957, 2930, 2857, 1664, 1385, 1075, 1004, 829, 775 cm
-1

. 

[α]
20

 D = – 65.8° (c = 0.46, CHCl3). 

HRMS (ESI) calcd for C15H32N1O3Si1 [M+H]
+
: 302.2146; found: 302.2145. 

 

 

 

Methy ester S12 

1.24 g (4.8 mmol, 1.0 eq.) acid S10 in MeOH (11 mL) and benzene (36 mL) was treated with 

3.6 mL (7.2 mmol, 1.5 eq., 2 M solution in hexanes) TMS-CHN2. After 10 min the reaction 

mixture was concentrated in vacuo and the crude product was purified by flash column 
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chromatography (hexanes:EtOAc = 49:1) to yield 1.12 g (4.1 mmol, 96%) methyl ester S12 as 

a colorless oil (one spot on TLC). 

 

TLC (hexanes:EtOAc = 9:1), Rf = 0.81 (CAM). 

1
H-NMR (CDCl3, 400 MHz) δ: 5.86 (ddd, J=6.7, 10.8, 17.0 Hz, 1H), 5.07–4.99 (m, 2H), 4.08 

(dt, J=4.9, 7.4 Hz, 1H), 3.66 (s, 3H), 2.45–2.33 (m, 3H), 1.00 (d, J=6.9 Hz, 3H), 0.87 (s, 9H), 

0.08 (s, 3H), 0.03 (s, 3H). 

13
C-NMR (CDCl3, 100 MHz) δ: 172.6, 140.0, 114.9, 73.0, 51.5, 43.3, 39.4, 25.8, 18.0, 14.7, 

−4.5, −4.8. 

IR (Diamond-ATR, neat) max: 2955, 2930, 2858, 1741, 1251, 1172, 1081, 830, 775 cm
-1

. 

[α]
20

 D = – 50.8° (c = 0.48, CHCl3). 

HRMS (EI) calcd for C13H25O3Si1 [M−CH3]
−
: 257.1578; found: 257.1566. 

 

 

 

Phosphonate 4 

1.81 g (10.90 mmol, 3.0 eq.) diethyl ethylphosphonate in THF (40 mL) was treated with 4.45 

mL (10.90 mmol, 3.0 eq., 2.45 M solution in hexanes) n-BuLi dropwise at −78 °C and stirred 

for 1 h at −78 °C. 990 mg (3.63 mmol. 1.0 eq.) methylester S12 in THF (30 mL) was added 

dropwise to the solution and stirred 1 h at −78 °C before it was quenched with sat. aq. NH4Cl 

(150 mL). The reaction mixture was extracted with CH2Cl2 (4  150 mL) and the combined 

organic layers were washed with brine (150 mL), dried over MgSO4, filtered and concentrated 

in vacuo. The crude product was purified by flash column chromatography (hexanes:EtOAc = 

6:1 → 2:1) to yield 1.20 g (2.95 mmol, 81%) phosphonate 4 as a mixture of diastereomers 

(two spots on TLC). 

 

TLC (hexanes:EtOAc = 1:1), Rf = 0.41 (CAM). 

1
H-NMR (CDCl3, 300 MHz) δ: 5.93 (ddd, J=6.7, 10.7, 17.7 Hz, 1H), 5.82 (ddd, J=6.7, 10.7, 

17.7 Hz, 1H), 5.09–5.00 (m, 4H), 4.20–4.07 (m, 10H), 3.29–3.10 (m, 2H), 2.88–2.67 (m, 4H), 

2.38–2.24 (m, 2H), 1.39–1.27 (m, 18H), 0.97 (d, J=6.9 Hz, 6H), 0.88 (s, 9H), 0.86 (s, 9H), 

0.09– –0.02 (m, 12H). 
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13
C-NMR (CDCl3, 75 MHz) δ: 204.8, 204.8, 204.2, 204.1, 140.5, 140.0, 114.7, 114.7, 72.2, 

71.6, 62.6, 62.5, 62.5, 62.4, 47.9, 47.4, 43.8, 43.0, 25.8, 18.0, 18.0, 16.4, 16.4, 16.3, 16.3, 

15.0, 14.4, 10.9, 10.8, 10.6, 10.5, −4.6, −4.6, −4.7. 

31
P-NMR (CDCl3, 162 MHz) δ: 23.54, 23.50. 

IR (Diamond-ATR, neat) max: 2931, 1715, 1250, 1049, 1021, 960, 832, 813, 775, 673 cm
-1

. 

[α]
20

 D = – 55.4° (c = 0.50, CHCl3). 

HRMS (ESI) calcd for C19H39Na1O5P1Si1 [M+Na]
+
: 429.2197; found: 429.2196. 

 

 

 

Alkene 13  

4.04 g (12.82 mmol, 2.4 eq.) Ba(OH)2 · 8H2O was dried on high vacuo at 130 °C for 4 h. The 

salt was cooled to rt and 2.60 g (6.41 mmol, 1.2 eq.) phosphonate 4 in THF (90 mL) was 

added and the reaction mixture was stirred for 1 h at rt. The reaction mixture was cooled to 0 

°C and crude aldehyde 3 (100% yield assumed from glycol cleavage, 5.34 mmol) dissolved in 

THF (56 mL) and H2O (3 mL) was added and stirred for 2 min at 0 °C before placing the 

reaction flask in the freezer for 6 d. The reaction mixture was diluted with CH2Cl2 (200 mL), 

washed with sat. aq. NaHCO3 (150 mL), brine (150 mL), dried over MgSO4, filtered and 

concentrated in vacuo. The resulting oil was purified by flash column chromatography 

(hexanes/EtOAc = 49:1 → 29:1) to yield 2.42 g (2.96 mmol, 55% over 3 steps) of alkene 13 

as a colorless oil (one spot on TLC).  

TLC (hexanes:EtOAc = 9:1): Rf = 0.45 (CAM). 

1
H-NMR (CDCl3, 600 MHz): δ = 7.24–7.23 (m, 2H), 6.88–6.86 (m, 2H), 6.67 (td, J=0.9, 7.1 

Hz, 1H), 5.90 (ddd, J=6.6, 10.7, 17.2 Hz, 1H), 5.66 (dd, J=7.9, 15.6 Hz, 1H), 5.39 (dd, J=6.3, 

15.5 Hz, 1H), 5.03–4.99 (m, 2H), 4.38 (dd, J=11.6, 26.2 Hz, 2H), 4.24–4.22 (m, 1H), 4.18 (q, 

J=6.1 Hz, 1H), 3.80 (s, 3H), 3.65 (t, J=3.8 Hz, 1H), 3.34 (dd, J=6.3, 9.0 Hz, 1H), 3.21 (dd, 

J=6.6, 9.0 Hz, 1H), 2.85 (dd, J=7.7, 15.8 Hz, 1H), 2.52 (dd, J=4.1, 15.8 Hz, 1H), 2.39 (t, 

J=6.7 Hz, 2H), 2.32 (ddd, J=4.1, 7.4, 11.1 Hz, 2H), 1.89 (ddd, J=3.9, 6.7, 13.3 Hz, 1H), 1.74 

(s, 3H), 0.98 (t, J=6.8 Hz, 6H), 0.91–0.90 (m, 12H), 0.89 (s, 9H), 0.83 (s, 9H), 0.06 (s, 3H), 

0.04 (s, 6H), 0.02 (s, 6H), –0.07 (s, 3H). 
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13
C-NMR (CDCl3, 150 MHz): δ = 200.5, 159.1, 140.6, 139.5, 138.9, 133.4, 132.3, 130.8, 

129.1, 114.4, 113.7, 76.0, 73.3, 72.7, 72.6, 72.6, 55.3, 43.6, 41.5, 41.3, 38.3, 37.6, 26.1, 25.9, 

25.9, 18.4, 18.1, 18.1, 14.5, 13.0, 11.6, -3.8, –4.1, –4.2, –4.6, –4.7, –4.8. 

IR (Diamond-ATR, neat) νmax: 2955, 2928, 2856, 2895, 1669, 1513, 1472, 1462, 1249, 1078, 

1038, 830, 774 cm
-1

. 

[α]
22

 D = - 25.1° (c = 0.34, CHCl3). 

HRMS (ESI) calc’d for C46H84O6Si3 [M+NH4]
+
: 834.5919; found: 834.5927 

 

 

 

Alcohol S13 

A solution of 20 mg (24.8 mol, 1.0 eq.) PMB-ether 13 in CH2Cl2 (0.8 mL) and H2O 

(0.2 mL) was cooled to 0 °C and 7 mg (0.030 mmol, 1.2 eq.) DDQ was added in one portion 

and the reaction mixture was stirred for 4h at 0 °C. Sat. aq. NaHCO3 (3 mL) was added and 

the reaction mixture was extracted with CH2Cl2 (3 x 10 mL). The combined organic layers 

were washed with brine (15 mL), dried over MgSO4, filtered and concentrated in vacuo. The 

crude oil was purified by flash column chromatography (hexanes/EtOAc 19:1 → 14:1). To 

remove the PMB-aldehyde the product was put on high vacuo to yield 16 mg (0.0230 mmol, 

93%) of deprotected alcohol S13. 

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.15 (CAM). 

1
H-NMR (CDCl3, 600 MHz): δ = 6.66 (td, J=1.2, 7.1 Hz, 1H), 5.90 (ddd, J=6.6, 10.8, 17.2 

Hz, 1H), 5.73 (ddd, J=0.9, 7.9, 15.6 Hz, 1H), 5.45 (ddd, J=0.8, 6.3, 15.6 Hz, 1H), 5.03–4.99 

(m, 2H), 4.24–4.21 (m, 2H), 3.67 (t, J=3.6 Hz, 1H), 3.63–3.59 (m, 1H), 3.46–3.42 (m, 1H), 

2.84 (dd, J=7.6, 15.9 Hz, 1H), 2.54 (dd, J=4.1, 15.9 Hz, 1H), 2.42 (m, 3H), 2.35–2.30 (m, 

1H), 1.89–1.79 (m, 1H), 1.76 (s, 3H), 1.02 (d, J=7.0 Hz, 3H), 0.98 (d, J=6.9 Hz, 3H), 0.92 (s, 

9H), 0.89 (s, 9H), 0.88 (s, 3H), 0.83 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 

3H), 0.04 (s, 3H), –0.06 (s, 3H). 

13
C-NMR (CDCl3, 150 MHz): δ = 200.6, 140.6, 139.2, 138.9, 133.2, 132.5, 114.5, 72.7, 72.4, 

65.8, 43.6, 41.4, 40.5, 39.9, 38.2, 26.0, 25.9, 25.8, 18.6, 18.3, 18.1, 18.1, 14.6, 12.9, 11.7,  

–4.1, –4.2, –4.3, –4.6, –4.7, –4.8. 

IR (Diamond-ATR, neat) νmax: 3460, 2955, 2928, 2886, 2856, 1666, 1472, 1462, 1251, 1074, 

1031, 834, 769 cm
-1

. 
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[α]
22

 D = - 108.2° (c = 0.77, CHCl3). 

HRMS (ESI) calcd for C38H76O5Si3 [M+Na]
+
: 719.4898; found: 719.4911. 

 

 

  

Ethylester 2 

A solution of 81 mg (0.116 mmol, 1.0 eq.) alcohol S13 and 100 mg (0.233 mmol, 2.0 eq.) 

Dess-Martin-periodinane in CH2Cl2 (15 mL) was stirred at rt for 3 h. The reaction mixture 

was quenched with sat. aq. NaHCO3/Na2S2O3/H2O 1:1:1 (20 mL) and stirred further for 1 h. 

The reaction mixture was extracted with CH2Cl2 (3  20 mL) and the combined organic layers 

were washed with brine (40 mL), dried over MgSO4, filtered and concentrated in vacuo. The 

crude product was triturated with hexanes (20 mL), filtered and concentrated in vacuo to yield 

88 mg aldehyde S14 as a yellowish oil. 

88 mg (100% yield assumed from DMP oxidation, 0.112 mmol) crude aldehyde S14 and 

122 mg (0.337 mmol, 3.0 eq.) phosphoranylidene 14 were dissolved in toluene (6 mL) and 

stirred at 130 °C for 12 h in a pressure tube. The reaction mixture was concentrated in vacuo. 

Purification by flash column chromatography (hexanes/EtOAc 49:1) yielded 66 mg 

(0.085 mmol, 73% over two steps) ester 2.  

 

TLC (hexanes:EtOAc = 9:1): Rf = 0.50 (CAM). 

1
H-NMR (CDCl3, 600 MHz): δ = 6.65 (td, J=1.2, 7.0 Hz, 1H), 6.58 (dd, J=1.4, 10.3 Hz, 1H), 

5.90 (ddd, J=6.6, 10.8, 17.2 Hz, 1H), 5.62 (ddd, J=0.8, 8.4, 15.5 Hz, 1H), 5.37 (dd, J=6.6, 

15.5 Hz, 1H), 5.02–4.99 (m, 2H), 4.25–4.16 (m, 4H), 3.43 (dd, J=2.4, 7.6 Hz, 1H), 2.83 (dd, 

J=7.6, 15.9 Hz, 1H), 2.66–2.59 (m, 1H), 2.52 (dd, J=4.1, 15.8 Hz, 1H), 2.41–2.39 (dd, J=4.1, 

9.4 Hz, 2H), 2.34–2.29 (dq, J=6.8, 13.5 Hz, 1H), 2.25–2.22, (m, 1H), 1.82 (d, J=1.4 Hz, 3H), 

1.75 (s, 3H), 1.29 (t, J=7.1 Hz, 3H), 1.00 (d, J=7.0 Hz, 3H), 0.98 (s, 3H), 0.97 (s, 3H), 0.93 (s, 

9H), 0.89 (s, 9H), 0.83 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H), 0.05 (s, 6H), 0.04 (s, 3H), –0.07 (s, 

3H). 

13
C-NMR (CDCl3, 150 MHz): δ = 200.4, 168.3, 145.2, 140.6, 139.4, 138.9, 133.2, 132.6, 

126.5, 114.4, 95.8, 79.7, 72.6, 60.5, 43.5, 41.8, 41.2, 38.3, 38.0, 26.2, 25.9, 25.8, 18.5, 18.4, 

18.1, 18.0, 16.6, 14.5, 14.3, 12.8, 11.7, –3.6, –3.8, –4.2, –4.6, –4.7, –4.8. 
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IR (Diamond-ATR, neat) νmax: 2957, 2930, 2886, 2857, 1712, 1671, 1472, 1463, 1388, 1368, 

1290, 1250, 1081, 1033, 1005, 833, 773 cm
-1

. 

[α]
19

 D = -44.4° (c = 0.44, CHCl3). 

HRMS (ESI) calcd for C43H82O6Si3 [M+Na]
+
: 801.5317; found: 801.5311. 
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