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Abstract

The aim of this research study, is to contribute in the development of the Arbitrary high-
order DERivatives Discontinuous Galerkin (ADER-DG) method for elastic wave propaga-
tion and its application. Thus, after a general introduction we first explain the underlying
numerical scheme.

Then, the general benefits and capabilities of the proposed method are analyzed with
a special focus on the oil and gas industry. Therein, the performance on large scale par-
allel computer clusters is demonstrated as well as two typical applications in geophysical
exploration: a marine seismic survey and sonic logging in borehole wells.

Next, a rigorous accuracy study about accurate geometry representation is presented.
In this sense, we discuss advantages and disadvantages of structured meshes, which violate
material interfaces as they result in staircase approximations but are computationally very
efficient, and unstructured meshes, that are aligned to material interfaces. It is shown
that the accuracy of synthetic seismograms strongly depends on the signal frequency,
material contrast and mesh resolution if the material interfaces are not respected by the
mesh. Finally, we define clear rules that have to be adhered to guarantee acceptable
results for cases where material contrasts occurring along curved interfaces are discretized
with regular meshes.

The main goal of the work is to extend the ADER-DG method to three-dimensional
dynamic rupture problems for complex fault systems. We give a complete description of
the algorithm, benchmark the new implementation by the SCEC TPV3 test problem and
compare it with two well established numerical methods. Afterwards, the systematic con-
sistency is proved by a convergence test. In the end, we demonstrate the capabilities of the
high-order accurate ADER-DG scheme on unstructured meshes for strong ground motion
modeling. Therefore, an earthquake scenario, inspired by the 1992 Landers earthquake,
is simulated that includes curved faults, fault branches and surface topography.
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Chapter 1.

Introduction

Only very few events have such an impact on humans, their infrastructure and personal
properties as earthquakes. Most devastating earthquakes cause tens of thousands ca-
sualties and damage of up to a billion dollars. Recent examples are the 2008 Sichuan
earthquake killing estimated 68,000 people, the 2010 Haiti earthquake close to Haiti’s
capital Port-au-Prince with a death toll between 46,000 and 96,000 and millions of home-
less, and the 2011 Tohoku catastrophe with its followed Tsunami causing a nuclear core
melt, overall cost of up to US$ 300 billion and more than 15,000 fatalities. Beside these
dramatic numbers related to human life, large earthquakes also change planetary param-
eters of the earth. For instance, after the 2011 Tohoku earthquake the earth’s axis was
shifted by 10-25 cm, leading to a shortened day by 1.8 microseconds.

The basic mechanism of an earthquake can be understood in first order as frictional
sliding of gigantic rock masses. These rock masses move in order to release stresses, which
were accumulated in hundreds of years due to moving tectonic plates (several cm per year),
resulting in intensive shaking and displacement of the ground. Of course, scientists want
to understand under which circumstances earthquakes occur, how an earthquake works
and which seismic risk potentially affected areas may have.

Although neither the exact time nor the location of the next big one can be predicted,
statistics provide information about recurrence intervals as well as rough estimates of
stress accumulations. Furthermore, many faults are known along which earthquake rup-
tures propagate (e.g. the San Andreas fault). Hence, earthquake scientists have the
chance to model fictive earthquake ruptures at faults which are expected to break and
study the effect on nearby structures. This is known as strong ground motion modeling
and became an important tool that increased our knowledge about seismic hazard and
improved building construction codes, for instance. Those simulations of hypothetical
earthquakes provide information about ground shaking in terms of the intensity, acceler-
ation and velocity, in fact, their peak values and spectral response (see Fig. 1.1). Having
an educated guess of the above effects is the main benefit of the earthquake scenario for
planning and preparedness purposes.

State of the art in strong ground motion modeling is to include the rupture dynamics
directly in the simulations. It means that the slip on the fault is a function of the stress
state as well as the frictional parameters. This way, slip based on physical friction laws
has to be solved additionally. As a major benefit, the more realistic source representation
enables the interaction of transient wavefields, evaluating stresses, as well as site and
directivity effects with the rupture on the fault itself. Previous non-dynamically models
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with an a priori assumed kinematic source ignored those effects leading in some cases to
wrong conclusions or interpretations (e.g. analyzed by Dalguer et al., 2001). Despite the
fact, that dynamic rupture sources produce more realistic ground shaking information,
those simulations are much more challenging in terms of the mathematical formulation
and contain more unknowns, due to the non-linear nature and large uncertainties of
the underlying physics. The high level of accuracy which could be achieved requires, in
turn, more specific information and details about fault geometries, heterogeneous stress
distributions on small scale and the actual friction coefficients - parameters which often
must be assumed. Therefore, spontaneous rupture simulation remains an ongoing research
topic with many construction sites.

Dynamic rupture modeling became also an important tool in the field of earthquake
source physics. Hereby, the researchers try to understand the fundamental mechanisms
of an earthquake in all details. Typical research topics are testing of different friction
laws (linear slip-weakening, velocity weakening, rate-and-state), the effect of bimaterial
ruptures, or interaction of waves reflected by material interfaces as faults are often em-
bedded in low-velocity zones (e.g. Bizzarri et al., 2001; Rojas et al., 2009; Brietzke et al.,
2009; DeDontney et al., 2011b; Huang and Ampuero, 2011). Of particular interest is also
the influence of complex geometries, such as curved, rough and branching faults (Dun-
ham et al., 2011; DeDontney et al., 2011a; Tamura and Ide, 2011). Finally, the gained
insights are incorporated into strong ground motion models to improve the seismic hazard
knowledge.

It should be mentioned, that forward wave propagation tools are not exclusively sub-
jected to model earthquakes. The mathematical concept can be applied straight forward
to problems in the oil and gas exploration industry. Instead of earthquakes, artificial
sources (e.g. explosions, air guns, piezoelectric-controlled vibrations) generate here seis-
mic waves to probe subsurface properties. After complex processing of the collected
seismic data, teams of geophysicists, geologists and petroleum engineers construct models
of the underground. With the obtained maps hydrocarbon reservoirs are identified and
drilling engineers are supported with necessary information on meter scale to reach the
target horizons while avoiding dangerous gas cavities. The hereby involved inversion and
migration techniques rely on accurate synthetic data produced by seismic forward mod-
eling. Other areas where wave simulations come into play are, for instance, survey design
or principle investigations in research and development to improve the understanding of
seismic measurements.

Seismic wave propagation modeling is performed on computers as the earth’s properties
(temperatures, pressures, rupture speeds, details of geological settings, etc.) cannot be
sufficiently represented in laboratory experiments. This connects seismology with numer-
ics and informatics making earthquake science very interdisciplinary. In fact, realistic
simulations are computationally extremely expensive as many small scale features must
be included, but the waves propagate over large distances. Thus, the problems can only be
solved under usage of large-scale high-performance computing infrastructures. Whether
used in earthquake seismology or in industrial applications, the challenge is to develop
efficient numerical methods which are, first of all, very accurate and reliable, but also
flexible in order to include complex geological information and realistic initial and bound-
ary conditions. Many different approaches have been developed in the past. All of them
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have certain advantages, but also drawbacks. A brief summary and discussion is given in
Section 2.1.

In this work, we will focus on the so-called Arbitrary high-order DERivates Discon-
tinuous Galerkin (ADER-DG) method. As rather recently introduced in computational
seismology by Käser and Dumbser (2006), DG methods seem to become increasingly
popular (Etienne et al., 2009; Smith et al., 2010; Wilcox et al., 2010). DG supports dis-
cretization of the computational domain into very flexible tetrahedral elements to align
better geometrical constrains while generating high accurate synthetic data. Although
DG methods are in general more expensive than standard solvers (e.g. Finite Differences,
Spectral Element methods), various techniques (e.g. ℎp-adaptivity, local time stepping,
mortar elements; see Chapter 2) help to concentrate the computational power to areas
of interest. Furthermore, DG schemes show excellent scaling properties on modern large
scale parallel computer platforms (see Section 3.3). To conclude, we are convinced that
DG methods will pay off for large scale models with complex geometry and strongly
varying material properties.

A unique advantage compared to other methodologies is that the current ADER-DG
implementation is able to solve spontaneous rupture problems without generating nu-
merical noise. The seminal two-dimensional research study of de la Puente et al. (2009)
introduced a new concept of incorporating rupture dynamics via fluxes. An important
outcome of their study was that the ADER-DG solution is very smooth and free of spu-
rious high-frequency oscillations. Therefore, it does not require neither artificial damping
nor filtering that could influence the rupture propagation and bias the results. Due to the
tetrahedral mesh approach complex fault planes could be modeled adequately with small
elements while fast mesh coarsening is possible with increasing distance from the fault.
In combination with the high-order accuracy ADER-DG seems to be a promising concept
for strong ground motion modeling and earthquake physics investigations. Corollary, the
extension to three-dimensional rupture problems is the key task and main goal of this
Ph.D. thesis and led to the publication Pelties et al. (2012).

Although the mathematical formulation was defined decades ago by e.g. Burridge and
Knopoff (1967) or Andrews (1973), all suggested solutions of the problem remained un-
satisfying for a long time. The difficulties lie in the numerics as the physical description of
the frictional sliding is implemented as time-dependent Dirichlet (respectively Neumann)
boundary conditions. These artificially imposed boundaries amplify certain characteris-
tic modes (resonant frequencies) in the wavefield spectra of the tractions (respectively
velocities), which result in self-sustained oscillations in the time series. Dispersion anal-
yses clarify their origin (J.-P. Ampuero, personal communication, 2011). As mentioned
above, de la Puente et al. (2009) take advantage of numerical upwinding fluxes to im-
plement the rupture dynamics. In particular, the here used Godunov flux is intrinsically
dissipative, at which the amount of numerical dissipation increases as a function of fre-
quency (Hesthaven and Warburton, 2008, p.90, Fig. 4.1) acting in an optimal way on the
non-physical modes. Thus, the spurious oscillations are damped with minimal invasion
on the physically meaningful wavelengths. We will see in Chapter 5 how the scheme will
perform in benchmark tests and under realistic conditions.

The work is structured as follows: First, the ADER-DG method is introduced for
the three-dimensional, elastic, isotropic case in Chapter 2. The following Chapter 3
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introduces the advantages of the method for high-performance computing infrastructures
supported by two examples of the oil and gas exploration industry. Next, the importance
of correct approximations of material interfaces is discussed in Chapter 4. Hereby, a
quantitative error analysis was performed to obtain clear rules that should be respected
in order to generate reliable results. These rules are proved by two realistic test cases.
Finally, in Chapter 5 the implementation of three-dimensional dynamic rupture problems
in the ADER-DG framework is presented. For this purpose, we elaborate the algorithm
and compare the code with two well established numerical methods. A comprehensive
convergence study shall verify the systematic correctness. In the end, a hypothetical
earthquake is modeled on a complex fault system to demonstrate the features of the new
scheme. The scenario based on the 1992 Landers earthquake includes surface topography
as well as curved and branched fault segments.
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Figure 1.1.: Intensity of ground shaking of an hypothetical earthquake with Magnitude
7.2 in the vicinity of San Francisco. In this example, the rupture of a
part of the northern San Andreas fault was modeled. (Image was made
by U.S. Geological Service under public domain and can be obtained from
http://earthquake.usgs.gov/earthquakes/shakemap/)





Chapter 2.

The ADER-DG Method

A substantial part of the Ph.D. work was to apply and participate in the development
of the software SeisSol based on the so-called Arbitrary high-order DERivative Discon-
tinuous Galerkin (ADER-DG) method. SeisSol models seismic wave propagation with
the focus on large scale problems with complex geometry, heterogeneous media and re-
alistic earthquake sources. As the used numerical scheme is fundamental for this thesis,
the principal ideas of its theory will be briefly repeated and discussed in the following
Chapter. A rigorous derivation can be found in Käser and Dumbser (2006); Dumbser
and Käser (2006); Dumbser et al. (2007) and de la Puente (2008), accuracy analysis and
benchmarks in Käser et al. (2008); Pelties et al. (2010) and Chaljub et al. (2010), and
examples demonstrating its benefits in industrial and scientific applications in Käser et al.

(2007); Käser and Gallovič (2008); Gallovic et al. (2010); Hermann (2010) and Käser et al.

(2010).

2.1. Numerical Schemes for Seismic Wave

Propagation

Before the ADER-DG method is introduced, a brief overview over other methodologies
that exist to model seismic wave propagation is given. Of course, all of the different
techniques have certain advantages but also drawbacks.

Finite Difference (FD) methods are successfully used since decades to solve any partial
differential equation in many research fields and so also in seismology (e.g. Madariaga,
1976; Virieux, 1984, 1986; Levander, 1988; Moczo et al., 2002). FD schemes are relatively
easy to implement, robust and computationally efficient. Often, FD methods are still
implemented on regular Cartesian spatial grids. This way, topography or undulating
material interfaces usually result in staircase approximations leading to first-order errors
proportional to the grid spacing or time step that are insensitive to the approximation
order of the numerical scheme (Gustafsson and Wahlund, 2004; Symes et al., 2008). In
particular, free-surface boundaries require a high resolution in order to avoid numerical
artifacts (Robertsson, 1996; Bohlen and Saenger, 2006; Pelties et al., 2010). Furthermore,
the use of regular grids does not allow to concentrate the computational power to areas

This Chapter represents a summary in own words of the ADER-DG discretization. The original
fundamental research studies are by Käser and Dumbser (2006); Dumbser and Käser (2006); de la
Puente (2008) and Hermann (2010) and references therein.
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where it is needed. If a topography or a low-velocity sedimentary layer requires a fine
grid, this grid resolution must be applied to the complete model domain. An estimation
of the computational costs needed in the case for a large-scale strong ground motion
simulation is given by Bao et al. (1998). Note that the drawback of regular grids is method
independent. To overcome this issue, grid variability (Ely et al., 2008; Kozdon et al., 2012)
and so-called grid doubling techniques (Pitarka, 1999; Kristek et al., 2010; Lisitsa et al.,
2011) have been introduced into FD schemes. In particular, grid doubling techniques
might improve the efficiency, but are difficult to implement and can produce undesired
numerical artifacts like instabilities or spurious reflections at the grid interfaces. However,
those artifacts have not been observed in the study of Kristek et al. (2010) (P. Moczo,
personal communication, 2012). Furthermore, Moczo et al. (2007b) analyze existing FD
schemes for improving the topography and material interface representation in detail and
suggest solutions. An overview about modern FD techniques and their variations are
summarized in Moczo et al. (2007a).

The restriction to Cartesian structured grids holds in general for Pseudo-Spectral (PS)
methods, too (e.g. Carcione, 1994). The PS approach uses a set of orthogonal basis
functions to discretize the space dependent physical quantities to improve the accuracy.

Finite Element (FE) (e.g. Oglesby et al., 1998; Aagaard et al., 2001; Galis et al., 2008)
and Finite Volume (FV) (e.g. Benjemaa et al., 2007, 2009) methods overcome these draw-
backs as the formulation allows for various element types among tetrahedra. A useful
feature to create models with complex geometries. However, the accuracy is limited for
FE and FV schemes as they are usually only computationally efficient in low-order for-
mulations which are very dispersive and require a fine mesh.

The Spectral Element (SE) method can be seen as an evolution of classical FE schemes.
Due to an intelligent choice of the integration point locations high-order accurate formu-
lations can be realized with less computational costs compared to standard FE schemes.
The superior efficiency and scalability on parallel High-Performance Computing (HPC)
architectures of the SE method enables for the first time full elastic wave propagation
on the whole Earth. Combined with the fact that deformed hexahedral elements can be
used, SE became extremely popular in the seismological community (e.g. Seriani et al.,
1992; Priolo et al., 1994; Seriani, 1998; Komatitsch and Vilotte, 1998; Komatitsch et al.,
2002; Chaljub et al., 2007). However, although deformable hexahedral elements are more
flexible than regular grids, meshing complex topography and undulating interior material
interfaces is still challenging. Creating an unstructured hexahedral mesh is very time
consuming and can easily occupy a scientist for weeks or months. The flexibility of hexa-
hedral elements is limited and the discretized model is often unsatisfying. For spontaneous
rupture simulations, SE methods generate strong spurious oscillations which potentially
affect the rupture evolution itself.

The here proposed ADER-DG method might overcome many of the beforehand men-
tioned issues. A DG method can be understood as a FE method inheriting the desired
concept of numerical fluxes from FV while showing spectral convergence properties like
in SE (Reed and Hill, 1973; Hesthaven and Warburton, 2008). Furthermore, the method
enables the use of many different element types, in particular the here used tetrahedra, to
provide an enhanced meshing flexibility (see Section 2.6). The basic idea of a DG scheme is
that the physical variables are approximated by a set of polynomial basis functions within
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each element. The degree of the polynomials N correspond to the order of accuracy O of
the scheme via the relationship O = N + 1 and can be adjusted for each single element
(p-adaptivity). Information between neighboring elements is exchanged by fluxes. This
way, no global matrix has to be inverted and the scheme is entirely local independent of
the degree of the polynomials. Thus, DG methods show excellent scaling on large parallel
HPC infrastructures. In the present case, a high-order accurate time marching scheme,
the ADER approach, is used. The ADER approach was originally introduced by Toro
et al. (2001) and later combined with DG formulations by Schwartzkopff et al. (2002);
Dumbser and Munz (2005a,b) for linear hyperbolic systems. The concept of ADER for
DG schemes provides high-order accuracy in space and in time without the storage of
intermediate time levels. Furthermore, each element can run its own optimal time step
length regarding to the Courant-Friedrichs-Lewy (CFL) criterion (Courant et al., 1928).
This way, the time step length is not restricted by the smallest element in the entire model
domain. The feature is known as local time stepping (LTS) (Dumbser et al., 2007).

A special focus in this thesis lies on the numerical development and simulation of
spontaneous rupture propagation. At the moment, ADER-DG is the only method that
solves the problem without generating artificial high-frequency noise (de la Puente et al.,
2009, and Chapter 5).

It should be noticed, that the main drawback of DG methods is a higher computational
cost and a more complex algorithm, which decelerates the coding and general devel-
opment. However, with a smart use of the given features computational effort can be
concentrated where it is needed. Is the meshing process considered, at which tetrahedral
meshes can clearly be faster generated than hexahedral meshes, the concept pays off for
complex geometries.

2.2. Elastic Wave Equations

For modeling numerically seismic wave propagation we need to solve the linear hyper-
bolic elastic wave equations. A given media can be assumed to be isotropic elastic if no
other types of rheology as e.g. viscoelasticity, anisotropy or poroelasticity governs the
wave propagation and the linear relationships between stress and strain is valid (Aki and
Richards, 2002), which means strain lower ∼ 10−4 (Stein and Wysession, 2003). At this
point, it should be mentioned that the here introduced methodology is capable to model
various rheologies as demonstrated in de la Puente et al. (2007, 2008) and de la Puente
(2008), if the model requires a more complex material representation. However, we will
assume linear elasticity while developing the numerical scheme in the following as the
discretization is similar for all other rheologies, but we can concentrate on the technical
key issues.

The elastodynamic equations are derived from Hooke’s law and Newton’s laws of mo-
tion. There are several possibilities of the mathematical formulation which are in general
equivalent, but have certain advantages and drawbacks in the numerical implementation.
It will be seen that a first-order velocity-stress formulation is best suited for the ADER
time integration and the numerical fluxes. Omitting external source terms we formulate
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the mathematical problem as:
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where � is the first Lamé constant, � is the shear modulus, � is the density, �ij are the
components of the stress tensor and u, v and w are the components of the particle velocity
in the x, y, and z directions, respectively. Grouping stresses and velocities into a vector
Q = (�xx, �yy, �zz, �xy, �yz, �xz, u, v, w)

T , we write the system of equations (2.1) in a more
compact form following LeVeque (2002):

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0 , (2.2)

where the space-dependent Jacobian matrices A, B and C include the material properties.
Classical tensor notation and Einstein’s summation convention are assumed.

As the PDE (2.2) is hyperbolic, the Jacobian matrices have real eigenvalues,

�1 = −cp , �2 = −cs , �3 = −cs ,
�4 = 0 , �5 = 0 , �6 = 0 ,
�7 = cs , �8 = cs , �9 = cp ,

(2.3)

with

cp =

√

�+ 2�

�
and cs =

√

�

�
. (2.4)

cp and cs can be physically interpreted as the P wave and S wave velocities, respectively.
The eigenvalues (2.3) show, that two P waves propagate with speeds �1 and �9 and four
different polarized S waves with �2, �3, �7 and �8.
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Figure 2.1.: Transformation of an element from the global coordinate system into the
reference element in the local coordinate system.

2.3. Numerical Discretization

First step of the discretization is the division of the computational domain Ω ∈ ℝ
3 into

conforming elements T indexed by the superscript (m). The division or better meshing

is not a trivial task and will be addressed again in Section 2.6. Although various ele-
ment types could be chosen, the following description is based on tetrahedral elements
with completely flat surfaces as they are mostly used in the studies of this thesis. Each
tetrahedral element has four neighbors T (mj) with j = 1, . . . , 4 as long as it is not a
boundary element. Its location is uniquely specified by four vertices xi with i = 1, . . . , 4
and xi = (xi, yi, zi). A common concept in FE methods is to transform the individual
elements into a reference element Tref defined by the points x1 = (0, 0, 0), x2 = (1, 0, 0),
x3 = (0, 1, 0) and x4 = (0, 0, 1). The local coordinate system of the reference tetrahedron
is denoted by � = �, �, � (see Fig. 2.1 and Appendix B). This way, many calculations can
be precomputed and stored once in the reference element in order to avoid repeating or
identical tasks.

Here, we suppose the Jacobian matrices A, B and C of Eq. (2.2) to be constant inside an
element T (m). This approach implies that material interfaces have to be respected by the
mesh for an appropriate model discretization. Note, Castro et al. (2010) demonstrated
the case of a varying material representation inside an element for ADER-DG to save
computational costs where the dispersion properties would allow for large element sizes,
but the material properties of the model change on smaller scale. However, a varying
material distribution inside an element is not used in this thesis.

In the following, a complete discretization of the elastic wave equations using the ADER-
DG method will be shown.

2.3.1. Basis Functions

In every element the solution of Eq. (2.2) is approximated by a linear combination of
purely space-dependent polynomial basis functions Φl(�, �, �) of degree N and purely
time-dependent degrees of freedom Q̂

(m)
pl (t). The index p stands for the pth unknown
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in Q and l indicates the lth basis function. For the current implementation we are
using orthogonal and hierarchical Dubiner’s basis functions as given in Cockburn et al.

(2000) and quoted in Appendix A. A complete basis for a polynomial degree N embraces
L = (N+1)(N+2)(N+3)/6 basis functions. As any point of the global coordinate system
can be mapped into the reference tetrahedron we define the approximated solution for
element (m) as:

(

Q
(m)
ℎ

)

p
(�, t) = Q̂

(m)
pl (t)Φl(�) , (2.5)

Note, degrees of freedom ĝi of an approximated interpolation gℎ represented by the
linear combination

gℎ = ĝiΦi , (2.6)

can be obtained via a L2 projection

ĝi =

∫

Tref

gΦjdV

∫

Tref

ΦiΦjdV
, (2.7)

where g is the exact function. The integrals can be solved by Gaussian integration of
sufficient accuracy.

2.3.2. Semi-discrete Formulation

Following the standard procedure of FE schemes we first multiply Eq. (2.2) by a test
function Φk, which is identical to the basis functions in Galerkin schemes, and integrate
over an entire element T (m):

∫

T (m)

Φk

∂Qp

∂t
dV +

∫

T (m)

Φk

(

Apq

∂Qq

∂x
+Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

)

dV = 0. (2.8)

By integrating the second term by parts we obtain
∫

T (m)

Φk

∂Qp

∂t
dV +

∫

T (m)

∇ [Φk (Apqx̂+Bpqŷ + Cpqẑ)]Qq dV

−
∫

T (m)

(∇Φk) (Apqx̂+ Bpqŷ + Cpqẑ)Qq dV = 0 .

(2.9)

Hereby, x̂, ŷ, ẑ denote the normal vectors in x-,y- and z-direction. Applying Gauss’ theo-
rem on the second term we can rewrite Eq. (2.9) as

∫

T (m)

Φk

∂Qp

∂t
dV +

∫

∂T (m)

ΦkF
ℎ
p dS −

∫

T (m)

(∇Φk) (Apqx̂+ Bpqŷ + Cpqẑ)Qq dV = 0 . (2.10)

where the numerical flux F ℎ
p = (Apqx̂+Bpqŷ + Cpqẑ)Qqn has been introduced since Qℎ

is discontinuous at an element boundary.
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In the isotropic case of Eq. (2.2) the system is rotational invariant. Thus, the flux
can be computed in a face-aligned coordinate system, which is aligned with the outward
pointing unit normal vector n of an element boundary. The equation

Qp = TpqQ
n
q (2.11)

transforms the unknowns vector Qp to the vector Qn
q in the local normal coordinate system.

With the normal vector n = (nx, ny, nz)
T and the two tangential vectors s = (sx, sy, sz)

T

and t = (tx, ty, tz)
T with respect to one face of the element, the rotation matrix T is given

by

T =

(

T � 0
0 T v

)

∈ ℝ
9×9 . (2.12)

T � ∈ ℝ
6×6 corresponds to the rotation matrix for the stress tensor rotation and is explicitly

written as

T � =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n2
x s2x t2x 2nxsx 2sxtx 2nxtx

n2
y s2y t2y 2nysy 2syty 2nyty

n2
z s2z t2z 2nzsz 2sztz 2nztz

nynx sysx tytx nysx + nxsy sytx + sxty nytx + nxty
nzny szsy tzty nzsy + nysz szty + sytz nzty + nytz
nznx szsx tztx nzsx + nxsz sztx + sxtz nztx + nxtz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2.13)

whereas T v ∈ ℝ
3×3 is the rotation matrix for the velocity tensor and given as

T v =

⎛

⎝

nx sx tx
ny sy ty
nz sz tz

⎞

⎠ . (2.14)

Within the face-aligned coordinate system, we follow the concept of exact Riemann
solver to compute the state at element interfaces by upwinding (e.g. Toro, 1999). We
decompose the surface integral into the sum of integrals over the individual element faces.
For one interface between the actual element (m) and its neighbor element (mj) the
so-called Godunov flux reads

F ℎ
p =

1

2
Tpq

(

A(m)
qr + ∣A(m)

qr ∣
)

(Trs)
−1Q(m)

s

+
1

2
Tpq

(

A(m)
qr + ∣A(m)

qr ∣
)

(Trs)
−1Q(mj)

s ,

(2.15)

where Q(m)
s and Q

(mj)
s are the boundary extrapolated values of the numerical solution from

element T (m) and the jth-side neighbor T (mj), respectively. Only the Jacobian matrix
A

(m)
qr of Eq. (2.2) in x-direction contributes to the flux term due to the rotation.
The given setting as in the present case for the flux term is known as the Riemann

problem: Solving a PDE with a discontinuity as an initial condition. We know, that a
number of waves given by the amount of eigenvectors and eigenvalues from the Jacobian
A will be generated. These waves propagate with the speeds given in (2.3). For each
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boundary face the outgoing as well as the incoming flux has to be considered. Furthermore,
only those waves must contribute which have the correct travel direction. This means,
positive normal direction for outgoing and negative direction for incoming. Eq. (2.15)
account for above, if we define

∣Aqr∣ = RA
qp∣Λps∣(RA

sr)
−1, with ∣Λps∣ = diag(∣�1∣, ∣�2∣, . . . ) , (2.16)

where RA denotes the matrix of the right eigenvectors RA
p1, . . . , R

A
p9 of the Jacobian A:

RA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�+ 2� 0 0 0 0 0 0 0 �+ 2�
� 0 0 0 1 0 0 0 �
� 0 0 0 0 1 0 0 �
0 � 0 0 0 0 0 � 0
0 0 0 1 0 0 0 0 0
0 0 � 0 0 0 � 0 0
cp 0 0 0 0 0 0 0 −cp
0 cs 0 0 0 0 0 −cs 0
0 0 cs 0 0 0 −cs 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.17)

Independent of the used degree of the basis functions only direct neighbors exchange in-
formation via fluxes. Besides this welcome and important feature for parallel computing,
Godunov fluxes are intrinsically dissipative. In fact, the amount of numerical dissipation
depends on the frequency and the order O of the scheme. At a certain point, an effec-
tive high-frequency cutoff that depends on the element size is reached (Hesthaven and
Warburton, 2008, p.90, Fig. 4.1). Hence, short wavelengths that are not well resolved by
a certain grid spacing are adaptively damped, without leading to numerical instabilities
or affecting longer wavelengths. In particular, this attribute of the exact Riemann solver
becomes extremely important for the implementation of spontaneous rupture sources as
elaborated in Chapter 5.

Inserting Eqs. (2.5) and (2.15) in Eq. (2.10) we obtain the semi-discrete DG formulation:

∂
∂t
Q̂

(m)
pl

∫

T (m)

ΦkΦldV

+
4
∑

j=1

1
2
T j
pq

(

A
(m)
qr +

∣

∣

∣
A

(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(m)
sl

∫

(∂T (m))
j

Φ
(m)
k Φ

(m)
l dS

+
4
∑

j=1

1
2
T j
pq

(

A
(m)
qr −

∣

∣

∣A
(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(mj)
sl

∫

(∂T (m))
j

Φ
(m)
k Φ

(mj)
l dS

− ApqQ̂
(m)
ql

∫

T (m)

∂Φk

∂x
ΦldV −BpqQ̂

(m)
ql

∫

T (m)

∂Φk

∂y
ΦldV − CpqQ̂

(m)
ql

∫

T (m)

∂Φk

∂z
ΦldV = 0 .

(2.18)
As mentioned above, the surface integral is split into the sum over the four parts corre-
sponding to the triangular element faces. One sum refers to the outgoing flux and the
other one for the incoming flux of the neighbor, respectively. Note, that only the space
dependent basis functions remain under the volume and surface integrals.

In the next Section, we will demonstrate how we transform the semi-discrete DG for-
mulation of Eq. (2.18) into a reference coordinate system to reduce the computational
effort.
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2.3.3. Coordinate Transformation into Reference Element

Equation (2.18) is formulated in the global and physical xyz-coordinate system. As
already introduced in the beginning of Section 2.3 and Fig. 2.1, each tetrahedron T (m) is
transformed to a canonical reference tetrahedron Tref in order to precompute and store
identical integrals.

The resulting influence on the integration variables is

dx dy dz = ∣J∣ d� d� d� , (2.19)

where ∣J∣ is the determinant of the Jacobian matrix of the transformation as given in
Appendix B, Eq. (B.2). The transformed gradients have the form

⎛

⎜

⎝

∂
∂x

∂
∂y

∂
∂z

⎞

⎟

⎠
=

⎛

⎜

⎜

⎝

∂�

∂x

∂�

∂x

∂�

∂x

∂�

∂y

∂�

∂y

∂�

∂y

∂�

∂z

∂�

∂z

∂�

∂z

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∂
∂�

∂
∂�

∂
∂�

⎞

⎟

⎟

⎠

. (2.20)

Before we proceed, we define

A∗
pq = Apq

∂�

∂x
+ Bpq

∂�

∂y
+ Cpq

∂�

∂z
,

B∗
pq = Apq

∂�

∂x
+ Bpq

∂�

∂y
+ Cpq

∂�

∂z
,

C∗
pq = Apq

∂�

∂x
+ Bpq

∂�

∂y
+ Cpq

∂�

∂z
. (2.21)

In consideration of Eqs. (2.19), (2.20) and (2.21), the semi-discrete DG formulation of
Eq. (2.18) transforms into

∂
∂t
Q̂

(m)
pl ∣J∣

∫

Tref

ΦkΦld�d�d�

+
4
∑

j=1

T j
pq

1
2

(

A
(m)
qr +

∣

∣

∣A
(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(m)
sl ∣Sj∣F−,j

kl

+
4
∑

j=1

T j
pq

1
2

(

A
(m)
qr −

∣

∣

∣
A

(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(mj)
sl ∣Sj∣F+,j,i,ℎ

kl

−A∗
pqQ̂

(m)
ql ∣J∣

∫

Tref

∂Φk

∂�
Φld�d�d�

−B∗
pqQ̂

(m)
ql ∣J∣

∫

Tref

∂Φk

∂�
Φld�d�d�

−C∗
pqQ̂

(m)
ql ∣J∣

∫

Tref

∂Φk

∂�
Φld�d�d� = 0 ,

(2.22)

where ∣Sj∣ denotes the area of face j. At this point, the mass matrix M and the stiffness
matrices K are introduced

Mkl =

∫

Tref

ΦkΦld�d�d� , (2.23)
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Table 2.1.: Face definition on tetrahedrons.

Face Points

1 1 3 2
2 1 2 4
3 1 4 3
4 2 3 4

K�
kl =

∫

Tref

∂Φk

∂�
Φld�d�d� , (2.24)

K�
kl =

∫

Tref

∂Φk

∂�
Φld�d�d� , (2.25)

K�
kl =

∫

Tref

∂Φk

∂�
Φld�d�d� . (2.26)

Obviously, these integrals can be precomputed by a computer algebra system (e.g. Maple
or Matlab). Furthermore, the flux matrices F−,j

kl and F+,j,i,ℎ
kl in Eq. (2.22) can be calculated

analytically once on the reference element employing Eq. (2.27) as shown in the following.
First, the local faces and their local vertex ordering are defined according to Table 2.1.

The vertex numbering is strictly counter-clockwise as seen in Fig 2.1. Furthermore, the
vector of volume coordinates � is given on the faces by mapping functions from the
face parameters � and � , as shown in Table 2.2(a). For the flux computation over the
face, integrations along the faces inside the local element T (m) as well as in the neighbor
element T (mj) are necessary. Hence, we transform the face parameters � and � inside the
local element to the corresponding face parameters �̃ and �̃ in the neighbor face. This
transformation depends on the orientation of the neighbor’s face with respect to the local
face of the considered element T (m), as there may be three possible orientations due to
the rotation of the triangular faces. Their mapping functions are given in Table 2.2(b).

Finally, all possible flux matrices in three dimensions are given by

F−,j
kl =

∫

∂(Tref)
j

Φk

(

�(j) (�, �)
)

Φl

(

�(j) (�, �)
)

d�d� ,

F+,j,i,ℎ
kl =

∫

∂(Tref)
j

Φk

(

�(j) (�, �)
)

Φl

(

�(i)
(

�̃(ℎ) (�, �) , �̃ (ℎ) (�, �)
)

)

d�d� ,
(2.27)

for 1 ≤ j ≤ 4, 1 ≤ i ≤ 4 and 1 ≤ ℎ ≤ 3. The left state flux matrix (superscript ’-’) F−,j
kl

refers to the contribution to the fluxes over face j of the element T (m) itself. And, the
right state flux matrix (superscript ’+’) F+,j,i,ℎ

kl refers to the contribution to the fluxes
over the face j of the element’s direct side neighbor T (mj). Index 1 ≤ i ≤ NE denotes the
local number of the common face from the perspective of its neighbor T (mj) and depends
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Table 2.2.: (a) 3D volume coordinates �(j) as function of the face parameters � and � .
(b) Transformation of the face parameters � and � of the tetrahedron’s face
to the face parameters �̃ and �̃ in the neighbor tetrahedron according to the
three possible orientations ℎ of the neighbor face.

j 1 2 3 4

�(j) (�, �) � � 0 1− �− �
�(j) (�, �) � 0 � �
�(j) (�, �) 0 � � �

(a)

ℎ 1 2 3

�̃(ℎ) (�, �) � 1− �− � �
�̃ (ℎ) (�, �) � � 1− �− �

(b)

on the mesh generator. Index 1 ≤ ℎ ≤ 3 represents the number of the local node in the
neighbor’s face which matches the local vertex 1 of face j in tetrahedron T (m). Index ℎ
also depends on the mesh generator. On a given mesh, where indices i and ℎ are known,
only four of the 48 possible matrices F+,j,i,ℎ

kl are used per element.
Including Eqs. (2.23)-(2.26), we reformulate Eq. (2.22) in a more compact way as

∂
∂t
Q̂

(m)
pl ∣J∣Mkl

+
4
∑

j=1

T j
pq

1
2

(

A
(m)
qr +

∣

∣

∣
A

(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(m)
sl ∣Sj∣F−,j

kl

+
4
∑

j=1

T j
pq

1
2

(

A
(m)
qr −

∣

∣

∣A
(m)
qr

∣

∣

∣

)

(T j
rs)

−1Q̂
(mj)
sl ∣Sj∣F+,j,i,ℎ

kl

− Q̂
(m)
ql ∣J∣

(

A∗
pqK

�
kl + B∗

pqK
�
kl + C∗

pqK
�
kl

)

= 0 .

(2.28)

The next Section will explore the ADER time integration for the derived equation in the
reference coordinate system to achieve a fully discretized expression of the elastodynamic
system.

2.3.4. The High-order Accurate Time Discretization: ADER

Eq. (2.28) could be integrated in time by the Runge-Kutta method in order to obtain
a quadrature free Runge-Kutta DG scheme (Atkins and Shu, 1998). However, due to
the so-called Butcher barrier (Butcher, 1987), the efficiency for integrations of an order
of accuracy greater than O4 decreases dramatically. As higher-order accuracy might be
quite advantageous for propagating waves over many wavelengths the Arbitrary high-
order DERivative (ADER) technique is applied. ADER enables efficient time integration
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of very high orders while storing only one single time step level. The approach implies
that the same approximation order in space and in time is achieved automatically.

Its main ingredients are a Taylor expansion in time, the solution of Derivative Riemann-
Problems (DRP) (Toro and Titarev, 2002) to approximate the space derivatives at the
interface and the Cauchy-Kovalewski procedure for replacing iteratively the time deriva-
tives in the Taylor series by space derivatives. As mentioned in Section 2.1, the ADER
approach was originally introduced by Toro et al. (2001) and later combined with DG
formulations by Schwartzkopff et al. (2002); Dumbser and Munz (2005a,b) for linear hy-
perbolic systems.

For the development of the ADER-DG schemes, we start with the basic equation
Eq. (2.2) but transformed in the reference system

∂Qp

∂t
+

(

A∗
pq

∂

∂�
+ B∗

pq

∂

∂�
+ C∗

pq

∂

∂�

)

Qq = 0 . (2.29)

Then, we integrate for a time increment Δt assuming that origin time is t = 0 without
loss of generality

Δt
∫

0

∂Qp

∂t
dt = −

Δt
∫

0

(

A∗
pq

∂

∂�
+ B∗

pq

∂

∂�
+ C∗

pq

∂

∂�

)

Qqdt . (2.30)

The left hand side of the equation has the simple solution

Δt
∫

0

∂Qp

∂t
dt = Qp(Δt)−Qp(0) . (2.31)

That means, we basically seek for the solution of the time integral of the right hand side

Δt
∫

0

Qp(t) dt , (2.32)

which is not trivial to solve with high-order accuracy.
A key issue for the solution is the Cauchy-Kovalewski procedure applied to Eq. (2.29)

which is given by

∂kQp

∂tk
= (−1)k

(

A∗
pq

∂

∂�
+ B∗

pq

∂

∂�
+ C∗

pq

∂

∂�

)k

Qq . (2.33)

Hereby, the kth time derivative is expressed as a function of pure space derivatives. Ap-
parently, the relationship is valid for k = 1 as we obtain Eq. (2.29). The validation for
k ≥ 2 is proved by complete induction in Käser and Dumbser (2006).

In the next step, we evaluate the solution of Eq. (2.29) as a Taylor series in time up to
order N ,

Qp(�, �, �, t) =
N
∑

k=0

tk

k!

∂k

∂tk
Qp(�, �, �, 0), (2.34)
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and replace all time derivatives by space derivatives, using (2.33):

Qp(�, �, �, t) =
N
∑

k=0

tk

k!
(−1)k

(

A∗
pq

∂

∂�
+ B∗

pq

∂

∂�
+ C∗

pq

∂

∂�

)k

Qq(�, �, �, 0) . (2.35)

We then use the Discontinuous Galerkin approximation (2.5) in order to get

Qp(�, �, �, t) =
N
∑

k=0

tk

k!
(−1)k

(

A∗
pq

∂

∂�
+ B∗

pq

∂

∂�
+ C∗

pq

∂

∂�

)k

Φl(�, �, �)Q̂ql(0) . (2.36)

This approximation can now be projected onto each basis function to obtain an approxi-
mation of the evolution of the degrees of freedom during one time step from time level n
to time level n+ 1. We obtain

Q̂pl(t) =

〈

Φn,
N
∑

k=0

tk

k!
(−1)k

(

A∗
pq

∂
∂�

+ B∗
pq

∂
∂�

+ C∗
pq

∂
∂�

)k

Φm(�, �, �)

〉

⟨Φn,Φl⟩
Q̂qm(0) , (2.37)

where ⟨a, b⟩ =
∫

TE
a⋅b dV denotes the inner product over the reference tetrahedron TE and

the division by ⟨Φn,Φl⟩ denotes the multiplication with the inverse of the mass matrix. In
fact, due to the orthogonality of the used basis functions, the mass matrix is diagonal and
the multiplication simplifies to a division by its entries. Equation (2.37) can be integrated
analytically in time and we obtain

Δt
∫

0

Q̂pl(t)dt =

〈

Φn,
N
∑

k=0

Δt(k+1)

(k+1)!
(−1)k

(

A∗
pq

∂
∂�

+ B∗
pq

∂
∂�

+ C∗
pq

∂
∂�

)k

Φm(�, �, �)

〉

⟨Φn,Φl⟩
Q̂qm(0).

(2.38)
With the definition

Iplqm(Δt) =

〈

Φn,
N
∑

k=0

Δt(k+1)

(k+1)!
(−1)k

(

A∗
pq

∂
∂�

+ B∗
pq

∂
∂�

+ C∗
pq

∂
∂�

)k

Φm(�, �, �)

〉

⟨Φn,Φl⟩
(2.39)

the time-integrated degrees of freedom in equation (2.38) can be expressed as

Δt
∫

0

Q̂pl(t)dt = Iplqm(Δt)Q̂qm(0), (2.40)

where Iplqm(Δt) represents a four-dimensional tensor including the Cauchy-Kovalewski
procedure and Q̂qm(0) denotes the q×m-matrix of the degrees of freedom at time level n.
Finally, by integration of (2.22) in time all parts to assemble the fully discrete ADER-DG
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scheme are derived and we obtain:
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The scheme is quadrature-free and performs high order time-integration from time level
tn to tn+1 in one single step while communicating only with its direct neighbors. Further-
more, only the memory of a first order explicit Euler time stepping scheme is consumed.
The high-order approximation in space and in time provides spectral convergence prop-
erties as verified in Käser and Dumbser (2006) and Dumbser and Käser (2006).

As every explicit time marching scheme, also the numerical stability of the ADER
approach depends on a limited time step length according to the CFL criterion (Courant
et al., 1928). A rigorous von Neumann stability analysis can be found in Dumbser (2005).
In the present case, the time step is bounded by

Δt(m) ≤ C
1

2N + 1

l(m)

c
(m)
max

, (2.42)

where l is the diameter of the inscribed sphere of tetrahedron (m) and cmax the maximum
wave speed depending on the element’s material properties. The coefficient C denotes the
CFL-number, which must necessarily be C ≤ 0.7 for stability and has to be chosen even
smaller under certain circumstances. In most situations, a value of 0.5 has proven to be
practical.

In general, the smallest Δt(m) of all elements in the whole domain governs the time step
length. Hence, a model discretization including only one single small tetrahedron could
be extremely costly as all other elements are restricted by a potentially undersized time
step. Note, it frequently happens that a mesh generator produces small or even deformed
elements to better align the geometries of a given model. However, the ADER approach
enables local time stepping (LTS) as introduced by Dumbser et al. (2007) to reduce the
number of element updates. In a LTS scheme each element run its own optimal time step
length respecting Eq. (2.42) without changing the fundamental properties of the ADER-
DG method nor its accuracy. Due to different time step lengths, the update levels of
neighboring elements do not match anymore. But, the required interpolation of element
time levels needed by a consistent flux computation is automatically done the Cauchy-
Kovalewski procedure as an accurate prediction of the evolution of the degrees of freedom
during one time step is naturally given. The volume integrals are always computed for
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the full local time step as they depend purely on the local element information. In fact,
the interpolation for the flux computation causes some overhead. However, the approach
can significantly reduce the computational time when element sizes are very different or
material properties change strongly. For instance, such cases occur in borehole modeling
for industrial applications (see Chapter 3) and strong ground motion simulations including
low-velocity sedimentary layers. Hereby, LTS definitely pays off and give remarkable
speed-up’s compared to simulations with a global time stepping scheme.

2.4. Sources

In the previous documentation of the numerical scheme, possible sources have been ne-
glected. As the focus of the thesis lies on the implementation of dynamic rupture physics,
which is explained in detail in Chapter 5, the concept of standard sources is only briefly
addressed in this Section.

In general, sources are handled as individual source time functions Sp = Sp(x, t) acting
on one or more variables p at an arbitrary position in the computational domain. S

can contain a complex time series (e.g. assumed slip of an earthquake, Ricker wavelet,
Gaussian pulse), but also a Dirac Delta function to compute Green functions. Using a
Dirac Delta function has the advantage that different source types can be convoluted
on the resulting seismograms. This way, only one simulation is needed to test various
source mechanism, if identical source origins are assumed. Classical sources, like the
double-couple mechanism, are created by an appropriate combination of the relevant
stress components in S. If extended earthquake faults are modeled kinematically, many
sources at various positions are used at the same time as input (Käser et al., 2007).

The vector S is mathematically introduced as a right hand side term in Eq. (2.2). Basi-
cally, the discretization as presented in this Chapter holds also in the case of considering
an additional term. However, for a complete derivation including the source term the
reader is referred to Käser and Dumbser (2006).

2.5. Boundary Conditions

An important piece of solving a PDE and of a realistic simulation is the boundary con-
dition. Therefore, we will discuss three often used one in this Section. In a DG scheme
a boundary condition affects solely the flux term. Although the dynamic rupture source
implementation is mathematically a boundary condition, we will address this topic in
Chapter 5.

2.5.1. Free-Surface Boundaries

If acoustic emission can be neglected, we can model the Earth surface as a free surface.
This is realized by imposing the normal and shear stresses perpendicular to the free surface
to be zero. Thereby, we use the incoming flux to mirror exactly those components with
the aid of matrix Λ = diag(−1, 1, 1,−1, 1,−1, 1, 1, 1). Then, the flux term at an element
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side adjacent to a free surface reads:
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2.5.2. Absorbing Boundaries

Many applications are on a regional or even smaller scale. E.g. strong ground motion
models range over a few tens or hundred kilometers and industrial applications sometimes
go down to meter scale. Instead of modeling the whole Earth only chunks are considered
in such cases leading to artificial bounded domains. At those boundaries, waves should
simply travel outwards of the model. To this end, we set the incoming flux values of
Eq. (2.15) to zero at the corresponding site of a boundary element:

FAbsorbingBC
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s . (2.44)

Unfortunately, the mathematical problem is ill-posed for waves with shallow incident
angle causing unwanted reflections of significant amplitude. Therefore, many approaches,
e.g. exact working absorbing boundaries or Convolutional Perfectly Matched Layers
(CPML), to improve the behavior of absorbing boundaries can be found in the litera-
ture (e.g. Engquist and Majda, 1979; Givoli and Keller, 1990; Givoli et al., 2006; Roden
and Gedney, 2000). However, the improvement of better absorbing boundaries is a non-
trivial task and still ongoing research.

2.5.3. Periodic Boundaries

Periodic boundary conditions are an important concept for accuracy studies of the method
and convergence tests. Waves traveling out of the domain at one side enter the model
again on the opposite side. Due to this trick, propagation over many wavelengths can be
simulated without unnecessarily increasing the computational domain. Essentially, the
surface meshes at the boundaries of opposing faces have to match exactly.

2.6. Computational Aspects

So far, several practical aspects regarding computational science have not been addressed
in this thesis yet, although they play a major role in the choice of which numerical forward
solver should be used for an actual application.

The flexibility of tetrahedral meshing was only touched in Section 2.1, but the model
building is an important and potentially time consuming part in the workflow and will dic-
tate the overall accuracy of the simulation. Usually, the first step is to create the model
geometry in a Computer Aided Design (CAD) tool by volumes and surfaces. In some
cases, the actual mesh generator provides some CAD capabilities, e.g. ANSYS ICEM
CFD and Gambit. Then, the element size has to be chosen carefully in order to guarantee
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an accurate experiment according to the geological material properties, the demands of
the geometry, and the frequency of the propagated signal. Taking this information as
input, the meshing software creates a mesh almost automatically. However, this state-
ment is valid for tetrahedral meshes. The experience has shown that hexahedral element
generation is a very time consuming task and requires a degree of manual manipulation
which should not be underestimated. Furthermore, although deformable hexahedral el-
ements can nowadays be used in modern forward simulators, they are less flexible than
tetrahedral grids when meshing complex topography and undulating interior material in-
terfaces. On the other hand, a tetrahedral mesh is computational more expensive than a
hexahedral discretization. Before the model setup is tackled the user should decide which
approach is more appropriated in the particular situation. To overcome this issue, Her-
mann et al. (2011) developed an approach to combine different element types to reduce
the costs further while keeping the possibility of using tetrahedral elements.

As many interesting applications lead to a huge number of elements, the workload is
divided into many smaller tasks each solved in parallel by a distinct processor in a so-called
HPC-cluster to accomplish the simulation in an acceptable time period. As the resulting
communication takes place only between direct neighbors, a good scalability on HPC
architectures is achieved (see Section 3.3). The technical realization of the data exchange
between processors is performed by the Message Passing Interface (MPI) libraries and
the partition into smaller subdomains by the free software METIS (Karypis and Kumar,
1998). If all elements are of equal computational cost, a perfect load balance between
the used cores is reached when every subdomain contains the same amount of elements.
Of course, a minimal surface to volume ratio is also desired. Situation is different when
LTS or p-adaptivity are applied. In this case, the load balance is improved by grouping
elements of similar computational cost and distribute a subdomain out of each group to
every processor.

Illustration of the modeled wavefield is often very helpful for the interpretation of the
experiment. Considering computations on thousands of cores, a huge amount of data is
produced in order to provide snapshots of the wavefield. In the current implementation,
every core processes only a small part of elements out of the full computational domain.
Therefore, each node writes only its own results into a file on the hard drive. In a post-
processing step, all the files of each node have to be gathered and ported into a proper
format of the used visualization tool. This can be done on a local workstation as well as
the visualization with commonly used tools as Matlab, Tecplot and Paraview.





Chapter 3.

Wave Field Modeling in Exploration

Seismology Using the Discontinuous

Galerkin Finite Element Method on

HPC-infrastructure

3.1. Introduction

Seismic and acoustic measurements in a broad sense, including surface seismic, borehole
seismic and sonic waveforms, play an important role in improving our knowledge of hydro-
carbon reservoirs in both exploration and production phases. In that context, accurate
modeling of wave propagation, in particular when considering irregular free-surface ef-
fects, complicated subsurface geological structures, or the physics of a sonic tool deployed
downhole, is one of the major challenges geophysicists are facing.

We present a Discontinuous Galerkin (DG) finite element method, recently developed
in computational seismology for the application on High Performance Computing (HPC)
facilities, and illustrate its potential for seismic and sonic modeling in oil and gas explo-
ration.

The exploration industry has developed a broad spectrum of techniques to initially de-
tect, accurately survey, and constantly monitor these reservoirs to supply our still increas-
ing demand of fossil fuels. Typically, surface seismic acquisitions are characterized with
sources at or near free-surface and 3D multi-component seismic data that are recorded ei-
ther at the free-surface or eventually at the sea-bottom using ocean-bottom-cables (OBC).
With a typical frequency bandwidth of about 5-250 Hz the flexibility and density of source
and receiver distributions provide a wide lateral coverage of the prospected area that
ranges on a scale of several square kilometers. Borehole seismic surveys are characterized
with sources either at the surface (e.g. 3D VSP) or downhole (cross-well imaging, micro-
seismic events localization) with receivers in the borehole close to the targeted reservoir.
They provide complementary information, as compared to surface seismic interpretation,
by shedding more light onto particular structures of the reservoir that are up to several
hundred meters away from the wellbore. For much higher depth-resolution imaging (typi-
cally 0.5 ft) along the wellbore sonic measurements with frequencies of 1-5 kHz are used to

This chapter presents the work of Martin Käser, Christian Pelties, Cristóbal E. Castro, Hugues
Djikpesse and Michael Prange published in The Leading Edge (2010) in a slightly modified form.
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derive, for instance, lithology properties and rock textures at different depths. They are
also used, when deemed necessary, to analyze borehole stability, borehole mud invasion
and any formation damage up to a few meters away from the wellbore.

For instance, independent of the scale of the problem, seismic and sonic waves within
this broad frequency range are used to extract reservoir structural characteristics and
compositional properties. The underlying inversion and migration techniques often rely
on accurate synthetic data produced via special forward modeling tools. Solving the for-
ward problem, in this case, means solving the full 3D seismic wave equations. This way,
synthetic datasets of seismograms recorded at desired locations are generated for a given
velocity model and source characteristics. Another application of wave propagation sim-
ulations is in the design of survey geometries and parameters to save valuable resources.
The generation of highly accurate and reliable synthetic data incorporating all impor-
tant model features can be challenging, but represents an absolutely crucial prerequisite.
The importance as well as the difficulties to produce such data sets are emphasized by
the foundation of the SEG Advanced Modeling (SEAM) project (Fehler, 2009), which is
dedicated to large-scale geophysical modeling in industry. New numerical methods can
provide such synthetics, even though they might still be computationally more involved
than standard techniques, like finite differences (FD) due to their better approximation
capabilities. Thus, future developments aim for strong interconnections between flexible
and accurate numerical simulation methods and powerful computational resources such
as those provided by current HPC-facilities.

In this article, we present the Discontinuous Galerkin finite element method to empha-
size its advantages and future potential, especially for seismic modeling in the exploration
industry. In the following, the principles of this numerical scheme are explained and its
promising properties with respect to HPC-hardware are discussed. Two 3D examples oc-
curring in seismic exploration demonstrate the method’s applicability and flexibility on a
span of scales: a marine seismic survey on the kilometer scale and sonic logging on the
centimeter to meter depth-scale.

3.2. Discontinuous Galerkin Method

As computational modeling techniques are becoming increasingly important in all fields of
seismology over the last decades, various innovative numerical methods have been devel-
oped. A new approach introduced for the simulation of seismic wave propagation by Käser
and Dumbser (2006) is the Discontinuous Galerkin (DG) finite element approach. In par-
ticular, its combination with the explicit time integration method of Titarev and Toro
(2002) using Arbitrary high-order DERivatives (ADER) leads to a high-order accuracy
in both space and time. The extension of the method to 3D unstructured tetrahedral
meshes (Dumbser and Käser, 2006) enables the use of automatic mesh generation for
complex model geometries. Furthermore, a number of different material properties can
be considered, such as acoustic fluids and elastic, anisotropic, viscoelastic or poroelastic
solids (de la Puente et al., 2007, 2008; de la Puente, 2008). Therefore, the ADER-DG
scheme provides extremely high flexibility with respect to a wide range of wave propaga-
tion problems. The numerical method belongs to the class of Finite Element (FE) meth-
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Figure 3.1.: Tetrahedral element with its direct neighbor elements for minimal communi-
cation across their common interfaces (red).

ods, but uses the Discontinuous Galerkin approach (e.g. Cockburn et al., 2000; Hesthaven
and Warburton, 2008). Here, the approximating 3D polynomials inside each element are
allowed to be discontinuous along interfaces between neighboring elements in contrast to
classical FE schemes. These discontinuities are then treated as in high-order Finite Vol-
ume (FV) methods using the well-established theory of Riemann problems and Riemann
solvers (e.g. Toro, 1999). While the degree of the approximation polynomials determines
the spatial order of accuracy, the ADER time integration approach provides the same
time accuracy. Thereby, the time extrapolation of the solution to future time levels uses
a Taylor expansion where higher-order time derivatives are replaced by space derivatives
via a recursive use of the velocity-stress wave equation. A further advantage is that the
polynomial basis functions are orthogonal which leads to a diagonal mass matrix. In fact,
such basis functions exist for many different element types, e.g. triangles, quadrilaterals,
tetrahedrons, hexahedrons, pyramids, and prisms. Furthermore, the scheme’s extension
to higher approximation orders does not require an increased stencil as typically neces-
sary for FV or FD schemes. Instead, only the number of degrees of freedom, i.e. the
polynomial coefficients, inside an element increases. Therefore, the numerical algorithm
keeps a spatially local character as each time update of the solution inside one element
only depends on the minimum number of direct neighbors sharing a common interface as
shown in Figure 3.1. At these interfaces the concept of numerical fluxes is a key ingredient
and strength of the ADER-DG method as it allows for a variety of physical effects to be
accommodated: boundary conditions, friction laws for dynamic rupture processes, or the
combination of different element types and non-conforming mesh transitions.

In order to focus the computational effort on particular areas of interest local adaptation
of the approximation order and local time stepping is possible. Especially, the local time
stepping approach allows each element to use its own optimal time step length according to
the local stability condition. Hence, these features increase the performance and efficiency
in models with strongly varying element sizes without losing accuracy.
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Figure 3.2.: CPU time decrease (top) and speed-up (bottom) for an increasing number
of cores for the strong-scaling test (solid) in comparison to the theoretically
ideal case (dashed).

3.3. Suitability for HPC-Infrastructure

A major advantage of the ADER-DG scheme is its locality as an element updated in time
only requires information from the direct neighbors in form of polynomial coefficients.
This property does not change with increasing approximation order as only the amount
of coefficients grows. Therefore, the scheme is well-suited for parallelization. In fact,
communication between elements takes place only once per time step and represents
much less than 1% of the CPU-time. The results of a strong-scaling test for the borehole
application shown below, where the model size, i.e. the total number of elements, remains
constant (∼ 1.3 ⋅ 106) but the number of cores increases, are shown in Figure 3.2. The
CPU-time reduction remains still close to the ideal case and the speed-up is satisfactory
up to 1024 cores with an efficiency of 76%. The crucial issue for the scaling properties
of the algorithm is the load balance which depends on the mesh partitioning strategy.
For a standard, global time stepping scheme, where all elements are updated to the
next time level, optimal load balance is achieved by dividing the computational domain
into subdomains with the same number of elements. However, the local time stepping
approach yields more difficulties as each element runs its own time step. Therefore,
element updates happen asynchronously as smaller elements update more often than
larger ones. The resulting load imbalances are currently overcome by grouping elements
into zones, partition each zone separately as shown in Figure 3.3(c), and spread the parts
equally to different cores.



3.4. Applications 29

Order O 1 2 3 4 5 6 7 8

m (DOF
per element) 1 4 10 20 35 56 84 120
Me (memory per
element [bytes]) 2664 2880 3312 4032 5112 6624 8640 11232
103 elements per
core Mc = 0.5 GB 200 180 160 130 100 80 60 45

Table 3.1.: Number m of degrees of freedom (DOF), memory consumption Me per ele-
ment, and an estimate of the element number per core of Mc = 0.5 GB memory
in dependence of approximation order.

Therefore, significant improvements of the algorithm should be achieved by run-time
optimization of the serial part of the code. In fact, each tetrahedral element update re-
quires the computation of three volume integrals and eight flux integrals (two per element
face). Each of these integral computations consists of local matrix multiplications where
three matrices of dimensions 9×9, 9×m, and m×m are related to the nine velocity-stress
variables and the number m of degrees of freedom (DOF), which depend on the degree N
of the approximation polynomial as m = (N + 1)(N + 2)(N + 3)/6.

Memory consumption is not an issue as all data can be kept in arrays for each core. For
every element there are 9×m degrees of freedom and 9×9 entries of the Jacobian matrices
as double-precision real numbers to store in memory. In contrast, volume and flux integral
matrices of size m×m are element-independent and have to be kept in memory only once.
Table 3.1 shows the memory requirement and the estimated maximum number of elements
on an IBM BlueGene architecture with Mc = 0.5 GB of memory per core with respect to
the approximation order O.

The 3D wave equations in velocity-stress formulation contain nine unknowns (six stresses
and three velocities), each of which is approximated by the DOF inside an element lead-
ing to a 9 × m matrix. Furthermore, each element side has its own 9 × 9 matrix of
flux-orientation and material information. Therefore, the total memory per tetrahedral
element is given by Me = (9 ⋅ m + 4 ⋅ 92) ⋅ 8 bytes as given in Table 3.1. Note that the
estimate of elements per core considers the memory requirement of a few MB for addi-
tional data, e.g. volume and flux matrices, basis functions, mesh coordinates, etc. Other
architectures like the SGI Altix system or the IBM Power 6 often have 2 GB or 4 GB of
memory per core and therefore can accommodate correspondingly more elements.

3.4. Applications

The applicability and geometrical flexibility of the ADER-DG method using 3D unstruc-
tured tetrahedral meshes is demonstrated in the following two examples relevant in hy-
drocarbon reservoir exploration. The examples are chosen to show the wide range of
applications from borehole sonic measurements on the centimeter scale up to fully 3D salt
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reservoir models on the kilometer scale. Both problems are solved on HPC-facilities of
SGI and IBM.

3.4.1. Borehole-Scale Modeling

Sonic logging is one of the common techniques to estimate the geophysical and petro-
physical properties (especially velocities and porosity) of the penetrated formation with
a depth resolution of ∼ 0.5 ft. To validate sonic measurements via acoustic wave prop-
agation modeling it turns out to be fundamental to consider the model geometry and
heterogeneous material distribution in and around the well. In Figure 3.3(a) we sketch a
setup of a sonic logging experiment, where a logging tool is placed inside a fluid-filled well
penetrating an interbedded formation of two different materials. It is assumed that a steel
casing separates the borehole fluid from a damaged formation zone. Due to the damage
of the formation around the wellbore the drilling fluid (mud) typically causes an invasive
zone leading to a nearly radial material gradient of a few meters away from the well. In
our study, we investigate the effect of the steel casing on sonic measurements and the
importance of the material gradient with respect to the recorded signals. To this end, we
use an explosive source at the lower end of the tool and 25 equally spaced receivers along
the tool as sketched in Figure 3.3(a). In Figure 3.3(b) we show a cut through the 3D mesh
where the ratio between smallest and largest elements (here ∼ 50) is visible. The mesh of
the fluid and the uppermost layers is omitted for better visualization of the geometry. In
this case, the local time step algorithm particularly pays off, as the steel tool and casing
force the usage of extremely small elements (∼ 1 inch edge length), but yield a P-wave
speed of 5000 m/s. This parameters lead to a time step length of ∼ 1�s in these elements.
Figure 3.3(c) shows the mesh partition strategy, where each color represents a different
subdomain. Note that the tool, fluid, casing, and formation are partitioned individually
via the separation into zones. Then subdomains of each zone are collected and put to one
core to achieve an acceptable load balance as in the local time stepping approach smaller
elements are computationally more expensive than larger ones. Comparisons show, that
the local time step approach is about three times faster than a global time step algorithm
for this application.

Table 3.2 gives the material properties of the steel tool and casing, the fluid, and the
geological formation for our tests. First we consider a cased well and a material gradient
around the well of 2 m radius where the properties change linearly from the bore fluid
to the unperturbed formation values. The interbedded layers consist of material 1 and 2
producing a synthetic data set shown in blue in Figure 3.4(a). Enhancing the material
contrast by replacing material 2 by material 3 results in virtually the same dataset (shown
in red). However, we obtain clear differences by removing the casing and repeating the
experiments as shown by the green and black data in Figure 3.4(a). Obviously, the
casing strongly obscures the effect of different material properties on the seismogram. In
a second series of tests, we omit the gradient and use the unaltered material properties
of the formation directly adjacent to the wellbore. In this case, the casing again has a
larger effect on the seismograms than the material contrasts in the formation. In fact, the
removal of the casing leads to increasing phase shifts of later arrivals in the seismograms.
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(a) (b) (c)

Figure 3.3.: Problem setup for sonic logging. (a) Sonic logging tool in a cased, fluid-filled
borehole penetrating a formation of tilted layers with an invasive zone of
mud in the vicinity of the well. (b) Sketch of the sliced 3D model discretized
by a problem-adapted tetrahedral mesh. (c) 2D projection of a cut through
the 3D mesh showing the zonal partitioning approach for multi-processor
computations, where different colors represent the subdomains processed on
different cores.
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� [kg/m3] � [109 Pa] � [109 Pa] vp [m/s] vs [m/s]

tool/casing 7800 65.0000 65.0000 5000 2887
bore fluid 1020 2.2950 0.0000 1500 0
material 1 2700 14.5480 14.5480 4020 2321
material 2 2700 13.5480 13.5480 3880 2240
material 3 2500 10.5480 10.5480 3423 1977

Table 3.2.: Material properties of the modeling setup for sonic measurements in the bore-
hole considering the logging tool, the bore fluid, the casing, and the heteroge-
neous formation.

Consideration of the z-velocity components in Figure 3.4(c) and (d) shows slightly dif-
ferent results with less pronounced phase shifts. However, the effect of the tool’s geometry
on the P-wave bouncing up and down the tool due to the strong impedance contrast be-
tween the steel and the surrounding fluid (Käser and Dumbser, 2008) is clearly visible.
Furthermore, a systematic analysis of the rotational motion (not shown) could provide
additional information and promote the construction and design of rotational borehole
sensors.

3.4.2. Reservoir-Scale Modeling

Surface seismic data generally provides a large-scale picture of the geological subsurface
and the geometrical features of a reservoir. Seismic simulations are used for model val-
idation or survey design. In particular, time-lapse seismic measurements allow for the
assessment of changes in the subsurface with time, such as fluid movement or effects of
secondary oil recovery. Such data are examined for variations in seismic attributes related
to pore-fluid content. Therefore, reservoirs are described by dynamically changing prop-
erties and reduced turn-around times for model updates through efficient model building
technologies are becoming an increasingly important issue in oil and gas exploration.

The ADER-DG method is capable of using unstructured tetrahedral meshes for the
accurate simulation of seismic wave propagation phenomena. Especially for geometrically
complex models, such as the SEG/EAGE salt model shown in Figure 3.5(a), the mesh
generation process for tetrahedral meshes can be highly automated once the model geom-
etry is defined. The mesh can be aligned to complex shapes of free surface topography,
structural interfaces, or faults in order to approximate correctly such structural features.
This is particularly important when these features represent sharp material discontinuities
that should not be smoothed out by strong gradients. To demonstrate the capability of
the methodology we apply our software to a simplified salt model in Figure 3.5(b) that
contains the main features, like complex salt body, the major fault, and some sedimentary
layers, of the SEG/EAGE model. The problem of the original complete model is that it
requires a tedious, manual correction of the geometry definition, as some interfaces and
surfaces forming the geological units are intersecting in a non-physical manner. Different
sections and parts of our simplified salt model are shown in Figure 3.6 and the according
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(a) (b)

(c) (d)

Figure 3.4.: Synthetic wave forms of velocity components for the sonic logging experiment.
(a) Damage zone (material gradient) of 2 m radius is assumed. Results are
shown for four experiments: small (blue-solid) and large (red-dashed) ma-
terial contrast with casing, and small (green-solid) and large (black-dashed)
material contrast without casing. (b) Same as (a), however, without damage
zone. (c), (d) Same as (a), (b) for the z-velocity component instead of the
y-component.
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(b)(a)

Figure 3.5.: SEG/EAGE salt model. (a) Complete and (b) simplified model including the
fundamental features of intersections of layers, faults, and the salt body. The
horizontal red line indicates the cross section along A-A’, the vertical red lines
indicate the two boreholes.

material properties are given in Table 3.3. A 2D cut along the profile A-A’ indicated
as a red surface line in Figure 3.5 is shown in Figure 3.6(a) together with the notation
of the material distribution. In Figure 3.6(b) we display a 3D perspective view of the
model, where the water layer and geological units 1b and 2b are removed in order to
see the deformation of the fault due to the salt body intrusion. A separate view of the
complex 3D geometrical structure of the salt body is shown in Figure 3.6(c). Note that
holes in the original definition of the enclosing salt body surface are closed according to
the geometry of the intersecting faults. Here, we emphasize that a crucial precondition
of the automatic mesh generation process is the exact definition of the model’s geometry.
Once this is done, the appropriate mesh spacing has to be chosen such that the geomet-
rical features are accounted for with sufficient resolution and that the propagated seismic
waves are approximated with the desired accuracy.

It is important to remember that the accuracy of the numerical seismograms depends on
three factors: (1) the mesh spacing, (2) the approximation order, and (3) the propagation
distance of the waves. A detailed study of the influence of these parameters on the
accuracy of synthetic seismograms obtained by the ADER-DG method has been carried
out by Käser et al. (2008).

An example of the effect of different approximation orders for the SEG/EAGE salt
model is show in Figure 3.7. The seismogram is obtained by using a tetrahedral mesh of
3.1 ⋅ 106 elements of ∼ 200 m edge length and is recorded by a receiver inside one of the
boreholes indicated as vertical red lines in Figure 3.5. An explosive source producing a
Ricker wavelet with dominant frequency of 5 Hz is located in the other well. Using an
ADER-DG scheme of second order (O2) in time and space generates a smooth seismogram,
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(a)

(b)

(c)

1b 1a

2a
2b

salt

Figure 3.6.: (a) Cut through the tetrahedral mesh produced with ICEM-CFD (AN-
SYS) along the A-A’ profile showing the geometry of the salt body of the
SEG/EAGE salt model. (b) 3D perspective of the salt (yellow) exhibiting
complex features due to its intersection with a fault. (c) 3D geometry of the
discretized salt body.
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� [kg/m3] � [109 Pa] � [109 Pa] vp [m/s] vs [m/s]

water 1020 2.2950 0.0000 1500 0
layer 1a 2000 4.5067 4.5067 2600 1501
layer 1b 2050 5.0000 5.0000 2705 1562
layer 2a 2500 7.5000 7.5000 3000 1732
layer 2b 2600 9.0000 9.0000 3223 1861
salt 2160 20.8000 14.4570 5094 3103

Table 3.3.: Material properties of the modeling example of the simplified 3D salt model
problem.

where much of the amplitude information is essentially lost due to numerical diffusion.
Therefore, the problem is under-resolved, but gives a first rough estimate of the solution
without producing numerical artifacts. Increasing the order to O3 or O4 preserves more
amplitude information, while the change between two consecutive orders indicates how
close the solution has already converged towards a quasi-analytic solution. The frequency
spectra in Figure 3.7 clearly show the extended frequency content of the synthetic signal
of higher approximation quality while preventing spurious high-frequency noise.

We finally apply the ADER-DG O4 scheme to the simplified salt model to produce syn-
thetic raw shots similar to acquired data in surface seismic surveys running a computation
on 512 cores. Examples of resulting data sets are shown in Figure 3.8 for two different
shot locations recorded along surface receiver lines (a) on cross-section A-A’ and (b) con-
necting the two boreholes. The strong direct water wave is clearly visible in Figure 3.8(a)
while effects due to the structural features of the salt body are visible in Figure 3.8(b).
Data processing can now be applied as for real data. Besides, the synthetics allow for
systematic studies of source signature effects and structural or compositional subsurface
properties on the seismic response.

3.5. Concluding Remarks

We presented the new Discontinuous Galerkin finite element method for seismic wave
propagation modeling applied to relevant problems in oil and gas exploration using HPC-
infrastructures. The geometrical flexibility of unstructured tetrahedral meshes combined
with the method’s high-order approximation properties in space and time, due to a novel
time integration scheme for explicit schemes, demonstrates the potential of the proposed
simulation technology to produce accurate and reliable synthetic datasets for challenging
modeling problems. The applicability of the software using different hardware architec-
tures of modern HPC-infrastructure, its scaling properties and memory usage allow for the
solution of large-scale wave propagation problems to support model validation by compar-
ing synthetics with acquired field data. Further technical improvements with respect to
run-time and cache optimization are necessary to enhance the method’s performance on
HPC-facilities, whereas developments covering a broader field of geophysical applications
should be motivated by specific needs of the users.
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Figure 3.7.: Reduced numerical diffusion and extended frequency content of synthetic seis-
mograms due to higher approximation orders on the same mesh spacing.

(a) (b)

Figure 3.8.: Synthetic raw shots of two surface receiver lines across the salt model. (a)
The source position is at the surface close to the center of the receiver line
A-A’. (b) The source is inside a borehole with a receiver line connecting the
two wells at the surface.





Chapter 4.

Regular vs. Irregular Meshing for

Complicated Models and Their

Effect on Synthetic Seismograms

We present a detailed study on the numerical effects due to staircase approximations
of non-planar material interfaces and the importance of mesh alignment to such material
boundaries using the Discontinuous Galerkin Finite Element method. Our aim is to define
clear rules that have to be adhered to guarantee acceptable synthetic data in seismic
forward modeling for the cases where material contrasts occurring along curved interfaces
are discretized with regular meshes. To this end, we compare results of structured staircase
approximations with reference results obtained by unstructured triangular meshes that
can be aligned to non-planar interfaces. We investigate different mesh spacings, wave
frequencies, and material contrasts to cover various parameter ranges that allow us to
measure their influence on the accuracy of the resulting wave forms. Our results show
that acceptable synthetic results strongly depend on the material contrast and we give a
quantitative estimate of the required mesh resolution in the sense of numbers of elements
per shortest dominant wave length to obtain satisfying seismograms even if the material
interfaces are not respected by the mesh. We apply our rules to two different test cases
including a multi-layered model and a basin structure, both with non-planar interfaces
of small and large material contrasts to confirm the validity of our study. We finally
conclude that for moderate material contrasts regular meshing can be beneficial due to its
simple mesh generation process and typically superior computational efficiency compared
to unstructured meshes, however, the correct frequency- and material-dependent mesh
resolution has to be chosen.

4.1. Introduction

Recently, the development of seismic forward modeling tools seem to increasingly con-
sider the use of unstructured meshes (Bao et al., 1998; Gao and Zhang, 2006; Stupazzini
et al., 2008; Ichimura et al., 2009; Etienne et al., 2009; Wilcox et al., 2010). The main
motivation for this discretization approach is the alignment of the mesh to geometrically

This chapter presents the work of Christian Pelties, Martin Käser, Cristóbal E. Castro and Verena
Herman published in Geophysical Journal International (2010) in a slightly modified form.



40 Chapter 4. Regular vs. Irregular Meshing for Complicated Models

complex material discontinuities or topographic features. The accurate representation of
the real geometry of a physical problem is generally assumed to be important to achieve
high-quality simulation results avoiding numerical artifacts due to inappropriate model
discretization. However, unstructured meshes typically require more computational mem-
ory than regular, structured grids as the connectivity between element vertices has to be
stored explicitly. Furthermore, they often are computationally more expensive to ob-
tain a numerical solution. Nevertheless, unstructured meshes tend to become a popular
choice for wave propagation applications, as the mesh spacing ℎ can be changed locally
(ℎ-adaptation) to adjust the element size to the material properties or to improve the
resolution of particular areas of interest. Alternatively, a solution can be approximated
within each element using polynomials of various degree p leading to locally increased
accuracy (p-adaptation). In addition, local time stepping might be used (Dumbser et al.,
2007) to reduce the computational cost. Unfortunately, these advanced methods can be
difficult to implement, maintain, or extend to further functionalities due to the underlying
data structures and sophisticated algorithms.

Within the topic of unstructured 3D meshes there is a further distinction, mainly be-
tween meshes of hexahedral or tetrahedral elements, as other element types like pyra-
mids or prisms are rarely used. Methods like the Spectral Element Method (SEM) show
particular advantages for hexahedral meshes, while their efficient formulation even for
2D triangular meshes seems to be problematic (Pasquetti and Rapetti, 2006; Mercerat
et al., 2006). On the other hand, the Discontinuous Galerkin (DG) method is well-suited
for tetrahedral or triangular meshes but in general computationally more expensive. In
both cases, however, the creation of the computational meshes for geometrically complex
domains requires advanced mesh generators, e.g. CUBIT, ANSYS ICEM-CFD, Fluent
Gambit, or TetGen. Most of this meshing software is developed and used for engineering
problems such as structural mechanics, fluid dynamics, etc. and can handle geometries
that typically represent combinations and modifications of simple geometrical shapes. In
contrast, many problems in geoscience consists of more complicated structures and geo-
logical units with irregular internal material interfaces, non-planar earthquake faults, or
complex domain boundaries due to topography. Furthermore, the geometrical informa-
tion is given as a large data set of discrete points of regular or irregular distributions,
which have to be interpolated to obtain surface splines that can then be processed by the
mesh generators. The step of building this geometry typically is a time consuming task
requiring a large amount of manual interaction. Finally, not all geoscientists, or com-
putational seismologists in particular, have access to the appropriate, often commercial
software, which hinders the distribution of codes based on specific mesh generators within
the community of seismology or geoscience in general.

On the other hand, methods based on regular, structured grids like Finite-Differences
(FD) (e.g. Moczo et al., 2007a; Olsen et al., 2006) helped tremendously to answer many
scientific questions in the past and are widely spread in the seismological community.
However, the assignment of material properties to nodes located at the interface can be
problematic and staircase approximations of material discontinuities usually occur. For
internal material interfaces the accuracy often relies on sufficiently fine grid spacing and
special treatments to avoid spurious diffractions (Zahradnik et al., 1993; Collino et al.,
1997). The misalignment of the regular grid to material discontinuities leads to first-order
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errors proportional to the grid spacing or time step that are insensitive to the approx-
imation order of the numerical scheme (Gustafsson and Wahlund, 2004; Symes et al.,
2008). Therefore, work has been done to represent such interfaces through an appropriate
usage of effective material using harmonic and arithmetic averaging of elastic moduli and
densities (e.g. Graves, 1996; Moczo et al., 2002). Zhang and LeVeque (1997) developed
a second-order accurate method for the acoustic wave equations in heterogeneous media
using high resolution multi-dimensional flux-limiters on a Cartesian grid. Near the ma-
terial interface special formulas are developed using the immersed interface method that
incorporate the jump conditions and give pointwise second order accuracy even when the
interface is not aligned with the grid. This approach was then extended to fourth-order
accuracy and for elastic waves (Zhang and Symes, 1998). A major disadvantage of regular
grid methods occurs when dealing with complex free-surface topography. It is well known
that standard FD schemes require a high grid resolution at free-surface boundaries to
avoid numerical artifacts, in particular, if non-planar free-surface topography has to be
included (Robertsson, 1996; Bohlen and Saenger, 2006). Moczo et al. (2007b) summarize
and analyse existing FD schemes for this topic in detail and suggest an alternative ap-
proach to model free-surface topography. However, standard FD schemes rely on dense
meshes which could result in an enormous computational effort. An interesting estimation
of the computational requirements needed for a large-scale FD simulation is given by Bao
et al. (1998). Nevertheless, the use of regular grids allows in general for highly efficient
codes both in terms of memory and computational cost.

In this paper we analyse quantitatively numerical errors of synthetic seismograms due
to staircase approximations of material discontinuities using the DG method, as its imple-
mentation on regular meshes is computationally also much more efficient. To this end, we
focus on the systematic dependence of the errors on mesh spacing, material contrast, and
frequency content of the seismic signal. To our knowledge only few quantitative studies
exist for this topic and mainly consider the FD approach (e.g. van Vossen et al., 2002;
Bohlen and Saenger, 2006). There, FD schemes are investigated by modeling free-surface
conditions and solid-fluid contrasts using variable grid spacings and different angles be-
tween the orientation of the grid and the interface. However, they perform their studies
for material properties typically occurring in geosciences but do not focus explicitly on
error dependencies on the wave speed ratio. In our study, we simulate the reflection and
transmission of a 2D plane wave at a semi-circular interface between two materials and
also investigate the effects at a non-planar free-surface boundary condition using regu-
lar, quadrilateral meshes. The reference solution for all tests is produced with the same,
well-tested high-order DG method on unstructured triangular meshes to fully account
for the geometrical features of the test cases. This way, differences due to the usage of
different numerical methods are excluded. Hence, we can compare synthetic seismograms
whose misfits can only originate from the different discretization approaches. Our goal
is to define proper discretization rules that should be considered in forward modeling of
seismic wave propagation in order to guarantee a desired accuracy. Finally, we show that
these rules also hold for more realistic applications with complicated geometrical prop-
erties and material distributions typically encountered in layered or sedimentary basin
environments.
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The paper is structured as follows: Section 4.2 defines the model setup and studies
the results of the different staircase discretization approaches. We analyse in detail the
errors of the synthetic seismograms and their spatial distribution to set up discretization
rules which should help modelers to choose a sufficient geometry sampling. In a second
step, we verify these rules in Section 4.3 with a more complicated layered model with two
arbitrary shaped interfaces. Finally, we apply and test our rules in a realistic scenario of
a basin structure in Section 4.4 and finally draw our conclusions in Section 4.5.

4.2. Importance of Interface Approximation

To quantify the dependency of the numerical errors on the approximation quality of the
discretization, the material contrast, and the frequency content of the seismic waves, we
set up a test case which allows us to perform a systematic analysis by the variation of
the respective parameters. This will then lead to the definition of some fundamental
rules concerning the discretization of complex geometries with regular meshes and the
importance of the interface approximation by mesh alignment.

4.2.1. Model Setup

Similar to previous work (Kawase, 1988; Ohminato and Chouet, 1997) we simulate the
incidence of a plane P-wave with a Ricker-type source time function onto a semi-circular
material interface separating a basin-like structure from a homogeneous half-space (see
Fig. 4.1). Material 1 located in the half-circle of radius r = 100 m is surrounded by
material 2 of higher wave velocities. In addition to five different material contrasts of
elastic media, we also consider two special cases, where the material 1 in the basin is
an acoustic fluid, or where the material interface represents a free-surface boundary such
that material 1 vanishes. We will focus on the computational domain (x, z) ∈ Ω =
[−400, 400]× [−400, 0] m ∈ ℝ

2 with the top boundary (z = 0 m) being a free surface. In
fact, the other boundaries of the model are extended sufficiently to avoid any interference
of possible reflections from non-perfectly absorbing boundaries with the waves of interest
that are reflected, transmitted, or converted at the material interface or the free surface.
Tests, which are not shown here, indicated that, in principle, similar results are obtained
for plane S-wave incidence or waves from single-force sources generating P- and S-waves
as well as for different interface geometries, e.g. a notch (Godinho et al., 2009). The dots
in Fig. 4.1 denote the locations of 21× 21 receivers allowing for a dense sampling of the
wave field to obtain an overview of the spatial error distribution.

In Fig. 4.2 we show the two different discretization approaches used. On the left side
a regular, structured grid with a mesh spacing of ℎ = 20 m is sketched. In our study we
assign constant material properties within each element determined by the location of the
element’s geometrically barycenter. With the displayed coarse resolution of only a fifth of
the semi-circle’s radius the discretized shape of the material interface hardly represents
the true geometry. On the right side of Fig. 4.2 we show an unstructured, triangular mesh
with an average triangular edge length of ℎ = 10 m. This discretization is used to produce
a reference solution for the problem and provides a sufficiently accurate discretization, as
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further mesh refinement to ℎ = 5 m generates quasi-identical seismograms. Therefore, we
also remark that the unstructured triangular mesh with its piecewise linear edge-alignment
of ℎ = 10 m represents the material interface sufficiently accurate.

For our tests concerning the sensitivity of numerical seismograms to the discretization
of complex geometry, we use a series of regular square-shaped meshes with ℎ = 20 m, ℎ =
10 m, and ℎ = 5 m providing an improved discretization of the curved material interface by
an increasingly fine staircase approximation. Furthermore, we vary the material contrast
to investigate its importance with respect to the discretization approach. The material
contrast between two materials 1 and 2 is given through the ratio of the S-wave speeds
vS,1/vS,2, with vS,1 ≤ vS,2. In this way, small numbers represent strong material contrasts.
Table 4.1 gives an overview of the applied material contrasts and wavelengths. Finally,
we use plane, Ricker-type P-waves of different dominant frequency contents, f15 = 15 Hz,
f20 = 20 Hz, and f25 = 25 Hz to analyse the dependence of the discretization effects on
the seismic wavelengths. We mention, that the Ricker wavelet of a dominant frequency f
contains significant energy up to a maximum frequency of around 2.5f .

The used simulation code is based on a DG method and is well-tested and verified
against analytical solutions and other numerical schemes (Dumbser and Käser, 2006;
Käser et al., 2008). Its accuracy and applicability to strong material heterogeneities was
also confirmed in previous work (Chaljub et al., 2010; Castro et al., 2010). Using the
same numerical solver for structured and unstructured meshes ensures that differences
in the seismograms originate only from diverse geometry representations and not from
numerical biases like diffusion, dispersion, under-resolution, or different ways of incor-
porating material properties. We remark, that all simulations are performed with order
7 in space and time and use enough elements per wavelength to resolve the wave field
sufficiently accurate. This is confirmed by running the simulations of highest frequency
content and coarsest discretization with a decreased order of accuracy, which basically
does not change the resulting seismograms and therefore proves numerical convergence of
the solution. The remaining small differences are much smaller than the effects obtained
by varying the parameters of our accuracy analysis.
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Figure 4.1.: Model setup of the accuracy study with a basin-like structure (material 1) in a
homogeneous half-space (material 2). We show a zoomed section of the area of
the material interface with receiver locations denoted by dots. Seismograms at
positions of highlighted geophones (downward-pointing triangle) are discussed
in detail in Section 4.2.2.

200 m 200 m

20 m
Figure 4.2.: Sketch of the two different discretization approaches. Material properties

for the DG method are set element-wise determined by the geometrically
barycenter of each element. Hence, the discrete material interface (red line)
is dislocated from the exact position (black semi-circle) and depends on the
mesh. Left: an example of a regular mesh with 20 m spacing is shown which
is not able to represent the interface properly leading to a coarse and jagged
approximation. Right: an example of a triangular mesh with 10 m spacing
(triangular edge lengths) used to compute the reference solution. In this
case, the shape of semi-circle is approximated with piecewise linear edges of
triangular elements.
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Table 4.1.: Material properties for the seven test cases with different contrasts across the interface. Furthermore, the dimen-
sionless values of the shortest wavelength per mesh spacing �S/ℎ are given for the dominant frequencies f . Please,
note that a P wave represents the shortest wavelength in the Solid-Fluid test case.

�s/ℎ for f25 �s/ℎ for f20 �s/ℎ for f15

test case � [kg/m3] vP [m/s] vS [m/s] h20 h10 h5 h20 h10 h5 h20 h10 h5

Solid-Solid 1:

material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
material 2 1299 2249 1299 2.6 5.2 10.4 3.2 6.5 13 4.3 8.7 17.3
contrast 0.77 0.77

Solid-Solid 2:

material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
material 2 1538 2665 1538 3.1 6.2 12.3 3.8 7.7 15.4 5.1 10.2 20.5
contrast 0.65 0.65

Solid-Solid 3:

material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
contrast 0.5 0.5

Solid-Solid 4:

material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
material 2 2500 4503 2600 5.2 10.4 20.8 6.5 13 26 8.7 17.3 34.7
contrast 0.38 0.38

Solid-Solid 5:

material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
material 2 5000 8660 5000 10 20 40 12.5 25 50 16.7 33.3 66.7
contrast 0.2 0.2

Solid-Free Surface:

material 1 - - - - - - - - - - - -
material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
contrast - -

Solid-Fluid:

material 1 1020 1500 0 3 6 12 3.8 7.5 15 5 10 20
material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
contrast 0.43 -
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4.2.2. Accuracy Analysis

In the following we analyse the results of the 63 test cases obtained by 7 different material
contrasts, 3 mesh spacings and 3 frequencies. First, we study the spatial error distribution
to identify areas of particularly high errors. Then we investigate and display the misfits of
selected seismograms to define some basic rules. These rules should guarantee a desired
level of accuracy for curved interface approximations, that have to be obeyed when using
structured meshes.

Spatial Error Distribution

We compare the quality of the obtained seismograms at all 441 receivers indicated in
Fig. 4.1. To measure the misfit between the simulated test seismogram Sℎ,i(t) and the
reference solutions Sref,i(t) we use the root mean square (RMS) error

Ei =

√

√

√

√

√

⎷

∫

∣

∣

∣
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∣

∣

∣

2

dt

∫

∣

∣

∣Sref,i(t)
∣

∣

∣

2

dt
, (4.1)

where i is the index of the receiver, ℎ the mesh spacing of the numerical computation,
and t is time. We emphasize that the RMS error is not always suitable to compare
seismograms quantitatively. Instead, time-frequency (TF) misfit criteria as suggested
by Kristeková et al. (2006) and Kristeková et al. (2009) represent a more appropriate
approach for the comparison of two signals. The main advantage of the TF-misfit is to
obtain separate information about phase and envelope errors. We also determined the
envelope and phase misfits individually, however, it turned out that the combined analysis
of these envelope and phase misfits at each receiver gives at least a similar pattern as the
RMS error. Even though we, in general, strongly recommend the use of the TF-misfit
analysis we prefer the single-valued RMS error in this case to provide an overview of the
spatial error distribution without splitting all our results considering envelope and phase
misfits separately. Furthermore, the RMS error typically tends to overestimate the errors
compared to separate envelope and phase misfits and therefore serves as an upper limit
estimation.

To present the errors we assign a colored pixel to each receiver depending on the single
valued RMS misfit of its seismograms distinguishing horizontal and vertical components.

In Figs 4.3-4.9 we show the spatial error maps representing the single valued RMS misfit
Ei between reference solutions and seismograms obtained with the structured grid. Each
figure belongs to one material contrast and contains the results of the three dominant
frequencies f15, f20, and f25 (ordered from left to right) obtained from the three refined
mesh spacings ℎ = 20, 10, 5 m (ordered from top to bottom). For each frequency and mesh
size we display the horizontal and vertical velocity components. For better visualization
and comparison the colorbars are normalized ranging between 0 and 1 for the minor
material contrasts Solid-Solid 1 (Fig. 4.3) to Solid-Solid 3 (Fig. 4.5) and between 0 and
2 for the stronger contrasts Solid-Solid 4 (Fig. 4.6) to Solid-Fluid (Fig. 4.9) where the
errors are larger.
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Figure 4.3.: Error maps of the RMS error E for the test case Solid-Solid 1 with the material
contrast 0.77.

A first and obvious observation is that the misfit of the horizontal velocity compo-
nents in the center of the model (x = 0 m) is always zero, as no energy appears on this
component caused by the plane vertical P-wave incident from below. However, higher
error levels appear, in general, for the horizontal component. This is also due to the fact
that all energy in the system is primarily in the vertical component and only by reflec-
tions, refractions, and transmissions energy is transferred into the horizontal component.
Therefore, the horizontal component seems to be especially sensitive to the geometry ap-
proximations of the semi-circular interface. A further observation is the higher error level
close to the material interface, at the free-surface, and at two areas leading away from the
semi-circular basin at approximately 30 degrees downward. The shape of the semi-circle
is easily identifiable by warmer colors for the stronger material contrasts. Besides higher
errors occur at the inside of the semi-circle close to the material contact. Furthermore, a
general increase of the error level with increasing mesh spacing, higher frequency content,
and stronger material contrast is visible.

Particularly high errors appear in the case of the Solid-Free Surface (Fig. 4.8) and
Solid-Fluid (Fig. 4.9) contrasts where the staircase approximation of the curved interface
obviously creates large misfits compared to the reference solution obtained with the rather
smooth approximation via aligned triangular edges. In these two cases even for the finest
mesh spacing ℎ = 5 m and lowest frequency f15 the horizontal component already shows
an error level clearly above Ei = 0.5. However, for the Solid-Solid material interfaces in
Figs 4.3-4.7 the finest mesh spacing ℎ = 5 m seems to work surprisingly well.

Based on this investigation of the spatial error distribution we can now focus on the
seismogram misfits and the effects of the staircase approximation of a curved interface on
the seismic signature in more detail.

Seismogram Misfits

After the analysis of the overall distribution of RMS errors, we study the seismic wave
forms at two receivers in different areas of the computational domain. To this end,
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Figure 4.4.: Error maps of the RMS error E for the test case Solid-Solid 2 with the material
contrast 0.65.
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Figure 4.5.: Error maps of the RMS error E for the test case Solid-Solid 3 with the material
contrast 0.5.
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Figure 4.6.: Error maps of the RMS error E for the test case Solid-Solid 4 with the material
contrast 0.38.
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Figure 4.7.: Error maps of the RMS error E for the test case Solid-Solid 5 with the material
contrast 0.2.
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Figure 4.8.: Error maps of the RMS error E for the test case Solid-Free Surface.
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Figure 4.9.: Error maps of the RMS error E for the test case Solid-Fluid.
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we show the variation of the seismograms for the test cases Solid-Solid 1 (Fig. 4.10),
Solid-Solid 3 (Fig. 4.11), Solid-Free Surface (Fig. 4.12), and Solid-Fluid (Fig. 4.13) with
respect to their dependence on the mesh spacing (different colors) and frequency (or-
dered from top to bottom) for both horizontal (left) and vertical (right) components.
In each figure we display the results obtained for receivers r111 and r126 at the loca-
tions indicated by the downward-pointing triangles in Figure 4.1. While receiver r111
(x, z) = (−100.0,−152.5) m lies in an area of a generally low RMS error, receiver r126
(x, z) = (−100.0,−2.5) m has a crucial position close to the free-surface boundary at the
top of the computational domain and directly at the material interface. If we compare the
behavior of the seismogram misfit in Figs 4.10-4.13 with each other, the growing misfits
with increasing material contrast is clearly observable again. The seismograms of the test
case Solid-Solid 1 (Fig. 4.10) are examples of an remarkably good fit, which is due to the
small material contrast. Only at the crucial position of r126 for a coarse mesh spacing of
ℎ = 20 m we obtain larger amplitude errors and phase shifts for the horizontal velocity
component. The seismograms of receiver r126 for the test case Solid-Solid 3 (Fig. 4.11)
show nicely how the error decreases with decreasing mesh spacing. However, we can ob-
serve only a small decrease of the misfit at lower frequencies. In contrast, receiver r111
seems to be much less affected. As expected, the quality of seismograms at receiver r126
depends strongly on the combination of the three different simulation parameters due to
its worst case position identified in Section 4.2.2.

Furthermore, the seismograms of the test cases Solid-Free Surface (Fig. 4.12) and Solid-
Fluid (Fig. 4.13) clearly demonstrate that the wave forms are strongly affected by the
staircase approximation of the semi-circular interface. While the misfits at receiver r111
again are much smaller and decrease even more with reduced mesh spacing and frequency,
the seismograms at receiver r126, especially the horizontal components, are not acceptable
even for the finest mesh h5 and lowest frequency f15.

4.2.3. Discretization Rules

To facilitate the definition of useful discretization rules that have to be considered when
approximating curved material interfaces we introduce the total error

Etot =
1

N

∑

i

(

E
i,horizontal + E

i,vertical

)

(4.2)

over all receivers i that occur in an error map of Figs 4.3-4.9, where N is the number of
receivers. Note, that N changes for the test case Solid-Free Surface depending on how
many receivers are still below the free-surface boundary, while N = 441 for all other test
cases. The error Etot allows us to measure the overall seismogram misfit of a simulation
depending on different mesh spacings, frequencies, and material contrasts. A threshold
of the error Etot is shown as a dashed red line in all plots of Figs 4.14-4.16. The results
of the systematic error analysis are shown in Figs. 4.14-4.15 on the left displaying the
behavior of the error Etot with respect to mesh refinement for each of the seven different
material contrasts. The three lines of different symbols represent the frequencies. Clearly,
the errors are consistently smaller for lower frequencies and decrease almost linearly with
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Figure 4.10.: Example seismograms of the accuracy study test case Solid-Solid 1 with
the material contrast 0.77. Shown are the horizontal and vertical velocity
components of r126 (top) and r111 (bottom).
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Figure 4.11.: Example seismograms of the accuracy study test case Solid-Solid 3 with
the material contrast 0.5. Shown are the horizontal and vertical velocity
components of r126 (top) and r111 (bottom).
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Figure 4.12.: Example seismograms of the accuracy study test case Solid-Free Surface.
Shown are the horizontal and vertical velocity components of r126 (top) and
r111 (bottom).
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Figure 4.13.: Example seismograms of the accuracy study test case Solid-Fluid. Shown
are the horizontal and vertical velocity components of r126 (top) and r111
(bottom).
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mesh refinement for all seven test cases. Therefore, our DG approach confirms the first-
order error behaviour due to the simple staircase approximation as predicted by studies
on the immersed interface method (Zhang and LeVeque, 1997; Zhang and Symes, 1998)
even though the approximation of the solution using our DG scheme is of order 7 in
space and time. We mention that the basic idea in immersed interface methods is to
take into account the jump conditions for the discontinuous solution or its derivatives at
an interface and to find linear combinations of these discontinuous values that give more
accurate numerical approximations at or near the interface.

Presenting the results in a different way in Figs. 4.14-4.15 on the right, where the error
is plotted against frequency, shows that systematically finer meshes provide smaller er-
rors that increase with higher frequency content. In a third presentation of our results in
Fig. 4.16 we show the behavior of the error for all seven material contrasts (different line
symbols) in one plot. In the top row the frequency is fixed in each plot and the error de-
creases with decreasing mesh spacing ℎ. In the bottom row the mesh spacing is fixed and
the error behavior depending on frequency is shown. Obviously, the errors are generally
smaller for smaller material contrasts, however, the test case Solid-Fluid seems to be even
more sensitive to the staircase approximation than the Solid-Free Surface. We point out
that it is important to consider interface waves such as Rayleigh waves at the free surface
and Scholte waves at an elastic-acoustic interface when signals are recorded directly at or
in the vicinity of the interface. Even though such interface waves propagate slower than
the S wave inside the elastic material their phase velocities are usually close to the S wave
velocity. Therefore the suggested mesh spacing of the following discretization rules would
have to be adjusted by using a correspondingly smaller mesh spacing. Furthermore, the
velocities of the interface waves show significant frequency-dependence (dispersion) and
their energy content compared to the body waves is difficult to estimate. Therefore, a
systematic study of their influence would go beyond the scope of this work. However, our
results agree, in general, with the studies of Bohlen and Saenger (2006) concerning stair-
case approximations of free-surface boundaries in numerical modeling of seismic wave
propagation, as accurate simulations including topography or bathymetry (van Vossen
et al., 2002) require a much higher mesh resolution than those treating internal elastic
interfaces. They show that surface waves are particularly sensitive to non-smooth topogra-
phy. In contrast, for the Solid-Solid test cases a regular mesh with staircase approximation
of material interfaces can generate acceptable results depending on the combination of
mesh spacing, frequency, and material contrast. For seismic wave speed contrasts across
a material discontinuity of 0.77 (Solid-Solid 1) only small differences in the seismograms
are obtained even for relatively high frequencies and coarse meshes (see Fig. 4.3). An
increase of the material contrast requires in turn an adjustment of either a higher mesh
resolution or a reduction of the frequency.

Finally, we can establish rules, which should be adhered when modeling complex ge-
ological interfaces, especially with the DG approach using regular, structured meshes
and which should also be considered in wave propagation modeling using other methods.
First we define a threshold for classifying a seismogram to be acceptable. In our case,
this threshold is defined as Etot = 0.3 above which seismograms are degenerated too
much due to the geometrical representation of the interface. This threshold is shown as
a dashed red line in all plots of Figs 4.14-4.16. As examples to clarify the meaning of
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this threshold with respect to the seismic waveforms and their misfits we refer to the
seismograms shown in Section 4.2.2. In Fig. 4.11 the horizontal component obtained at
receiver r126 with frequency content f15 and mesh spacing h10 (green) has an error level
Ei = 0.285 and is therefore classified as just acceptable. A non-acceptable example is
given in the same graphic for frequency f25 obtained with h10 (green) with Ei = 0.500.
In contrast, a clearly acceptable horizontal seismogram is shown in Fig. 4.11 for receiver
r111, frequency f25, and h10 (green), with Ei = 0.135.

If we now use the results shown e.g. in Fig. 4.15, none of our simulations of the Solid-
Free Surface or Solid-Fluid cases produced acceptable seismograms. Therefore, we will
focus on the different Solid-Solid test cases in the following. However, we point out that
our tests consider a vp/vs-ratio of

√
3 of a Poisson material. As shown recently by Moczo

et al. (2010) the accuracy of most of the used numerical schemes decreases with increasing
vp/vs-ratio and values of 5 and larger can occur in near-surface sedimentary structures.
From each of the plots of Fig. 4.14 we use the acceptable data point with the highest error
value but still below the red threshold line. Also, we use the non-acceptable data point
with the lowest error level but larger than the error threshold. Using the information of
the shortest dominant wavelength per mesh spacing for each test case given in Table 4.1
we can plot these data into the graph in Fig. 4.17 to determine a transition zone that
separates two regions. Above the transition zone (grey shaded), bounded by the solid black
line from above, the sampling in the sense of elements per wavelength is good enough for
the particular material contrast to produce acceptable seismograms. Below the transition
zone, bounded by the dashed red line from below, the sampling is insufficient and non-
acceptable seismograms according to our threshold are obtained. Considering this result
is extremely important for high-order accurate numerical schemes, like the DG or SEM
methods, as such methods usually allow for large mesh spacings due to their high-order
approximation properties within an element. In cases, where geometrically complicated
material interfaces cannot be honored by mesh alignment or regular meshes are used for
computational efficiency, it is crucial to respect the results represented in Fig. 4.17 to
reduce numerical artifacts due to the staircase approximation. From Fig. 4.17 we also
can conclude that low-order schemes using the staircase approximation naturally seem to
overcome the problem of complex geometry as the number of grid points or elements per
wavelength is typically chosen high enough (e.g. 8 grid points per wavelength) to obtain
satisfying results. Furthermore, our results confirm the exceptionally fine mesh spacing
required to model solid-fluid or solid-free surface contacts with methods which cannot
align the mesh to such non-planar interfaces typically occurring for strong bathymetry
or topography. For further details on this topic for FD schemes we refer to the work
of Robertsson (1996) and Bohlen and Saenger (2006).

4.3. Multiple Layers with Undulating Interfaces

Since our previous study consist of a rather simple geometry with only one interface, we
here construct a more complex situation representing a more realistic application. This
test case contains three layers separated by two undulating interfaces with a material
contrast of 0.5 each. The regular grid spacing of the quadrilateral mesh is constructed by
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Figure 4.14.: Left: Error Etot versus mesh spacing ℎ with varying frequencies f for the
different material contrasts. Right: Error Etot versus frequency f with vary-
ing mesh spacing ℎ. The threshold of acceptance is shown as a dashed red
line.
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Figure 4.15.: Left: Error Etot versus mesh spacing ℎ with varying frequencies f for the
different material contrasts. Right: Error Etot versus frequency f with vary-
ing mesh spacing ℎ. The threshold of acceptance is shown as a dashed red
line.
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Figure 4.16.: Error Etot versus mesh spacing ℎ and frequency f respectively with varying
material contrasts. The threshold of acceptance is shown as a dashed red
line.
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Figure 4.17.: Diagram representing the discretization rules by displaying what mesh spac-
ing (measured in elements per shortest dominant wavelength) is required for
a given material contrast to obtain acceptable seismograms above the black
solid line. The material contrast between two materials 1 and 2 is given
through the ratio of S-wave speeds vS,1/vS,2, with vS,1 ≤ vS,2. Values below
the red dashed line produce non-acceptable results, while the grey shaded
area denotes a transition zone.

respecting the rules of Section 4.2.3. Representative seismograms of selected receivers are
analysed and discussed in detail.

4.3.1. Test Case Description

An overview of the layered model is given in Fig. 4.18 with material properties given in
Table 4.2. The top boundary at z = 0 m is a free surface, the bottom at z = −8000 m
is absorbing and the lateral boundaries are set periodic. The source is a point source at
(x, z) = (10,−1990) m using a force pair on the two velocity components with a Ricker-
type source time function of dominant frequency f = 8 Hz. The total simulation time is
10 s.

Considering Fig. 4.17, we should be able to use a mesh spacing of 5 elements per dom-
inant wavelength to represent an interface with material contrast 0.5 sufficiently accurate
with a structured discretization. Like in Section 4.2, we cover a large part of the domain
with a dense receiver array of 31 × 31 receivers distributed within a rectangular area of
(x, z) ∈ [−3000, 3000] × [−6000, 0] m. The shortest dominant wavelengths for material
1 and 2 are 125 m and 250 m, respectively, leading to mesh spacings of ℎ = 25 m and
ℎ = 50 m at the interfaces. The employment of a regular but non-conforming mesh (Her-
mann et al., 2011) enables us to test both interfaces with their specific resolutions. In
more specific terms, this means that we use a regular mesh spacing of ℎ = 25 m above
z = −3000 m and ℎ = 50 m below this depth. An example of the interface discretization
by the structured grid is given in Fig. 4.18 (b). To ensure a correct resolution of the
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Table 4.2.: Material properties used for the multiple layer application.

� [kg/m3] vP [m/s] vS[m/s]

Material 1 1000.0 1732.1 1000.0
Material 2 2000.0 3464.1 2000.0
Material 3 4000.0 6928.2 4000.0
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Figure 4.18.: (a) S-wave velocity distribution of the multiple layer application. The area
within the red rectangular is zoomed in (b) together with an overlay of the
quadrilateral mesh.

wave field we choose the approximation order 6 in space and time. Again, a reliable refer-
ence solution is produced using the same numerical method and order of accuracy on an
unstructured edge-aligned triangular mesh with a resolution of 2.5 elements per shortest
dominant wavelength.

4.3.2. Results and Discussion

The overall RMS error distribution is shown in Fig. 4.19 and its level is very small as
expected. A clear error pattern with error concentrations at the material interfaces is
much harder to recognize than in the test cases of Section 4.2.2. However, a trace of higher
errors along the lower interface still can be identified. Our interpretation is that due to the
complicated wave field, interface waves, multiple reflections, and transmissions the errors
might locally sum up close to the interfaces. Therefore, the seismogram with the largest
misfit is obtained by receiver r911 and one with a very small misfit by r545. The locations
of these stations are denoted in the overview Fig. 4.18(a) and the seismograms together
with their time-frequency envelope (TFEM) and phase (TFPM) misfits (Kristeková et al.,
2006, 2009) are shown in Figs 4.20 and 4.21, respectively, using Kristeková’s signal analysis
code from www.nuquake.eu/Computer_Codes/index.html.

Obviously, the envelope misfits of both components at r911 are relatively large compared
to the much smaller phase misfits. Furthermore, the misfits dominate in the frequency
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Table 4.3.: Table of envelope misfit (EM), phase-misfit (PM) and corresponding goodness-
of-fit values of envelope (EG) and phase (PG) for selected receivers r545 and
r911.

horizontal vertical

EM [%] EG PM [%] PG EM [%] EG PM [%] PG

r545 12.4 8.8 5.3 9.5 11.4 8.9 4.3 9.6
r911 32.5 7.2 11.4 8.9 24.9 7.8 12.0 8.8
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Figure 4.19.: Error maps of the RMS error Ei for the multiple layer test case.

range from f = 8 Hz to 2.5f = 20 Hz as expected due to the dominant and maximum
frequency content of the Ricker wavelet. However, most features of the wave forms can be
found in both seismograms and the goodness-of-fit values (Kristeková et al., 2009) are still
equal or better than 7.2, which in the verbal classification is a ’good’ result (Table 4.3).
We point out that Anderson (2004), introducing this classification, used the empirical
earthquake-engineering characteristics of earthquake ground motion and adjusted his scale
to the fact that differences between synthetics and real records are in most cases large.
Therefore, for comparisons of numerical solutions the chosen scale of the time-frequency
goodness-of-fit might be too robust, as the comparison of numerical solutions typically has
differences much less than those between synthetics and real records. Nevertheless, the
seismograms at receiver r545 shown in Fig. 4.21 are in our opinion in a perfect agreement
as underscored by the goodness-of-fit values equal or better than 8.8.

Note that this test case includes two non-planar interfaces and that the 10 s simulation
time allows for the arrival of waves that crossed these interfaces several times. Further-
more, waves can travel through the model in the horizontal direction due to the periodic
boundaries and could be strongly affected by the material interfaces. Nevertheless, our
rules of Section 4.2.3 still hold. The structured mesh with 5 elements per shortest dom-
inant wavelength seems to represent an arbitrarily shaped interface of material contrast
0.5 with satisfying accuracy.
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Figure 4.20.: Time-Frequency misfits of the horizontal and vertical velocity components
of the worst receiver r911. We also show the seismograms comparison be-
tween the reference solution obtained on the triangular mesh (black) and
the solution obtained on the quadrilateral mesh (red) together with their
single-valued EM and PM of Table 4.3.
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Figure 4.21.: Time-Frequency misfits of the horizontal and vertical velocity components
of the receiver r545. We also show the seismograms comparison between the
reference solution obtained on the triangular mesh (black) and the solution
obtained on the quadrilateral mesh (red) together with their single-valued
EM and PM of Table 4.3.
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4.4. Sedimentary Basin

The accuracy and reliability of synthetic seismograms is of fundamental importance for
the investigation of realistic modeling scenarios. Therefore, we use our previous study
on the sensitivity of numerical seismograms on geometrically complex material interfaces
and apply our resulting discretization rules on a realistic example of a sedimentary basin
derived from the EuroseisTest Verification and Validation Project (Chaljub et al., 2009).
The aim is to test if the numerical effects of staircase approximations of curved boundaries
are acceptable under the consideration of our proposed rules, as this would justify simple
and fast regular mesh generation in contrast to a more involved mesh alignment procedure
to well-defined material interfaces. Our simplified EuroseisTest model contains a strong
discontinuity that separates the bedrock of constant seismic wave velocities from the basin
with depth-dependent wave speeds producing moderate material contrasts from 0.32 at
the deepest part of the basin to extreme contrasts of 0.1 close to the surface as shown
in Fig. 4.22. In this Section, we check, if our rules hold also in a real world case, where
a sedimentary basin with extremely low wave velocities is embedded in a high-velocity
bedrock.

4.4.1. Test Case Description

The model setup is a simplified 2D version of the ’EuroseisTest Verification and Valida-
tion Project’ model (Chaljub et al., 2009) describing the geological setting of the Myg-
donian sedimentary basin near the city of Thessaloniki in northern Greece as shown in
Fig. 4.22(a). The vertical direction of the S-wave velocity structure is stretched by a fac-
tor of 3 for better visualization of the thin basin. The complete extension of the physical
domain has 28.32 km width and 15 km depth. So only the part of the computational
domain around the basin is shown. The free surface elevation is at z = 63 m and the
deepest point of the basin is at z = −319.6 m. Within the basin the wave speeds depend
on depth d from the surface and are constant for the bedrock as given in Table 4.4.

Thus, high S-wave velocity contrasts of 0.1 exist at the top left and right borders
of the basin. With increasing depth the S-wave ratio continuously changes to 0.32 in
d = −382.6 m depth. In the following we select two positions, one with high and one
with low material contrast, which will be discussed on the basis of recorded seismograms.
Again, we use a 21 × 21 receiver array to cover the basin and the adjacent bedrock but
focus on two sets of receivers to illustrate representative results. These receiver stations
are marked by six black triangles in Fig. 4.22(a). The two highlighted receiver sets cross
the material discontinuity, which means that the lowest receiver is based in the bedrock
(r218, r103), the middle close to the interface but already in the basin (r219, r104), and
the topmost clearly inside the basin (r220, r105). As a source we choose again the force
pair with a 5 Hz Ricker pulse of Section 4.3.1 located at (x, z) = (−4.5075 ⋅106,−1000) m.
The total simulation time is 10 s.

Like in the previous experiments material properties are assigned elementwise, but to
achieve a better representation of the velocity gradient in the basin we first assign the
material properties to the vertices of an element and average them in a second step. A
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Table 4.4.: Material properties used for the sedimentary basin application.

� [kg/m3] vP [m/s] vS[m/s]

basin 2100.0 1000.0 + 100.0
√
d 200.0 + 32.0

√
d

bedrock 2600.0 4500.0 2600.0

reference solution is produced with a fine triangular mesh respecting the material discon-
tinuities by element edges and using a DG scheme of accuracy order 5.

Fig. 4.22(b) and (c) show a zoomed view of the left part of the basin with an overlay
of the triangular and quadrilateral meshes, respectively. The triangles of the reference
model have a mean edge size of 10 m in the basin and for the bedrock we allow a smooth
increase to 100 m, enough to resolve the propagating waves properly. The mesh spacing
for the regular mesh is 10 m in a box including the basin and 100 m around this box
using the non-conforming mesh approach introduced by Hermann et al. (2011). An edge
size of 100 m in the bedrock corresponds to 3.7 elements per shortest dominant wave-
length, while the higher resolution of 10 m in the basin area leads to depth-dependent
sampling of 2.8-11.7 elements per shortest dominant wavelength. Since large parts of
the basin-bedrock interface lie in larger depth with material contrast of 0.32 an interface
approximation using 10 elements per shortest dominant wavelength should be sufficient,
as suggested by the graph in Fig. 4.17. We admit that this value represents a lower limit
regarding our rules, however, we remark that even the regular mesh aligns well to the
predominantly flat and smoothly varying basin-bedrock interface. At smaller depth the
stronger material contrasts cause an undersampling of the interface geometry with 2.8
elements per shortest dominant wavelength, which is clearly less than what is required
by our rules of Section 4.2.3. However, these cases appear only in very small areas near
the borders of the basin at the surface. As computational efficiency is also an issue in
real applications we deliberately avoid the very fine mesh spacing close to the surface to
prohibit heavy oversampling of the interface in the deeper parts of the model and to keep
the computational cost low. In the following we will show that even in such extreme cases
where compromises have to be found we still obtain satisfactory results.

4.4.2. Results and Discussion

As expected from Section 4.2.2 both discretization approaches produce similar seismo-
grams except for small differences, since we are using less elements per wavelength than
required by Section 4.2.3 in areas of extremely high material contrasts. Thus, we focus
on two representative areas.

One of the best matching seismograms are recorded at receivers r218-r220 although
they are located directly at the basin-bedrock interface and are shown in Fig. 4.23. While
the arrival times fit almost perfectly, differences in amplitude can be observed in r219 and
r220. A quantitative determination of the single-valued EM and PM criteria of Kristeková
et al. (2009) shows a decrease of the misfit with increasing depth (Table 4.5). This means
that seismograms in the bedrock are less affected by the geometry approximation than the
ones in the basin. As numerous reflections are typical for low velocity basins embedded in
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(a)

(b)

(c)

Figure 4.22.: (a) S-wave velocity structure of the basin model stretched in vertical direc-
tion by a factor of 3. (b) Zoomed section of the left border of the basin
with an overlay of the triangular mesh which respects the interface of the
bedrock. White triangles mark the positions of the three geophone positions
r103-r105. (c) Same area as (b) but with an overlay of the quadrilateral
mesh with staircase approximation of the interface.
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Table 4.5.: Table of envelope misfit (EM), phase-misfit (PM) and corresponding goodness-
of-fit values of envelope (EG) and phase (PG) for selected receivers.

horizontal vertical

EM [%] EG PM [%] PG EM [%] EG PM [%] PG

r220 14.3 8.7 5.5 9.5 18.0 8.4 6.2 9.4
r219 20.4 8.2 8.1 9.2 10.8 9.0 3.2 9.7
r218 5.4 9.5 2.2 9.8 9.1 9.1 3.9 9.6

r105 23.7 7.9 29.0 7.1 12.6 8.8 15.1 8.5
r104 20.3 8.1 15.7 8.4 12.5 8.8 15.8 8.4
r103 3.7 9.6 3.7 9.6 6.0 9.4 4.2 9.6

high-velocity bedrock, it is expected that amplitude and phase errors are accumulating.
However, the resulting goodness-of-fit values of around 9 confirm the excellent agreement.
A time-frequency misfit analysis for the best matching receiver r218 is given in Fig. 4.25.
Occurring errors are smaller than 10% and provide acceptable numerical seismograms
obtained by the chosen staircase approximation. Furthermore, all receivers located in the
bedrock and most of the stations in the basin show similar well matching seismograms.

In contrast, receivers r103-r105 located in a very shallow region of the basin and close
to the basin-bedrock interface show the largest differences of all receivers. In this area
the basin has a depth of only 50 m. Hence, the resulting S-wave speed ratio is 0.16.
Due to the high material contrast and the vicinity to the left boundary numerical effects
due to insufficient geometry approximation are most prevalent here. The corresponding
seismograms are shown in Fig. 4.24. Although still satisfactory a regress to a goodness-of-
fit value of 8 or even 7 is observable for receivers r104 and r105 (Table 4.5). r103 is located
in the bedrock and as mentioned above is less affected by the geometry approximation
effects, which results in a significantly smaller misfit. Actually, seismograms of r103 are
among the best matching seismograms of all, while the largest misfits appear only 30 m
or 60 m above at receivers r104 and r105. Most obvious are the strong phase misfits
at receivers r104 and r105 starting after 3 s as shown in the time-frequency analysis for
receiver r105 in Fig. 4.26. Here, stong envelope misfits are also observed directly after the
first arrival on the horizontal component and after 3 s on the vertical component. These
critical misfit levels can be explained by the lower number of elements per wavelength for
the interface approximation in this area than suggested in Section 4.2.3.

However, with respect to the different discretization approaches and the compromise
between computational effort and approximation accuracy of the material interface, the
agreement between the seismograms is still remarkably good. Furthermore, we mention
that the obtained results still provide goodness-of-fit values of ’good’ or ’excellent’, which
are reasonable for comparisons of synthetics in benchmarks of seismic wave propagation
scenarios.
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Figure 4.23.: Seismograms of the receiver set r218-r220 located in the middle of the basin.
The seismogram in the lowermost plot (r218) is recorded in the bedrock, the
other two are 30 m and 60 m above already in the basin. The black line
denotes the reference solution, the red line the seismogram obtained using
the quadrilateral mesh.
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Figure 4.24.: Seismograms of the receiver set r103-r105 located in the middle of the basin.
The seismogram in the lowermost plot (r103) is recorded in the bedrock, the
other two are 30 m and 60 m above already in the basin. The black line
denotes the reference solution, the red line the seismogram obtained using
the quadrilateral mesh.
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Figure 4.25.: Time-Frequency misfits of the horizontal and vertical velocity components
of receiver r218. We also show the seismograms comparison between the
reference solution obtained on the triangular mesh (black) and the solution
obtained on the quadrilateral mesh (red) together with their single-valued
EM and PM of Table 4.5.
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Figure 4.26.: Time-Frequency misfits of the horizontal and vertical velocity components
of receiver r105. We also show the seismograms comparison between the
reference solution obtained on the triangular mesh (black) and the solution
obtained on the quadrilateral mesh (red) together with their single-valued
EM and PM of Table 4.5.
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4.5. Conclusions

In this work, we investigated the effect of staircase approximations of material discontinu-
ities along curved interfaces using a Discontinuous Galerkin (DG) Finite Element method
trying to clarify under which conditions such geometry approximations, typically used by
regular grid schemes like FD, provide acceptable results. We produced reference solutions
using a high-order accurate DG scheme on triangular meshes which can be aligned to
the geometry of curved interfaces. We then solved the wave equations on regular square-
shaped meshes leading to jagged material contacts. We studied the misfits of seismograms
depending on the signal frequency, the mesh spacing, and the material contrast. In fact,
the misfits increase with a decreasing number of elements per wavelength and with in-
creasing material contrast. The systematic parameter study of Section 4.2 enabled us
to define rules that should be adhered to ensure high quality synthetic data, if regular
meshing is applied. A general finding was that up to a material contrast, in the sense of a
S-wave speed ratio, of 0.5 a discretization of 5 elements per shortest dominant wavelength
generates acceptable seismograms in spite of complex material interfaces. Furthermore,
high-order accurate numerical methods can reduce this resolution on structured grids for
weaker material contrasts. However, in the case of stronger material contrasts than 0.5
the number of elements per wavelength has to be increased significantly to avoid numeri-
cal artifacts due to the staircase approximation. Special cases of a free-surface boundary
or an acoustic-elastic coupling should be treated by mesh alignment to the interface as we
were not able to produce acceptable seismograms within the range of tested frequencies
and mesh spacings with the staircase approximation of such boundaries.

In Section 4.3, we considered a more complicated test case to verify our discretiza-
tion rules containing a three layer problem separated by two undulating interfaces with
material contrasts of 0.5 each and using a minimum number of elements for geometry
approximation. In summary, all seismograms show the expected minor misfits compared
to the reference solution.

Finally, we applied our results to a realistic scenario of a basin structure. The main
issue was to find a compromise between a correct resolution of the material interface and
computational efficiency. At the shallow basin boundaries where extremely high material
contrasts occur we used less elements per wavelength than suggested by our rules to keep
the computational cost low and still obtain good matching seismograms. As expected,
the largest but surprisingly moderate misfits can be found in these areas. However, these
critical areas are very localized and therefore do not seem to influence the overall error
or the accuracy in other areas dramatically. Nevertheless, the surprising result is that
even for such untypically high material contrasts over a basin-bedrock interface close to
the surface we still obtained a satisfying accuracy of the synthetic seismograms although
a structured mesh is applied, which does not respect the material interface.

We conclude that taking into account our approximation rules defined in this study
ensures reliable modeling results when using structured discretizations including non-
planar material interfaces. Furthermore, adhering these rules can help to minimize the
mesh generation effort and computational cost. Conclusions for high-order methods, like
SEM and DG, applied on structured meshes can also be drawn. If the material properties
allow for large elements these coarse meshes can violate the interface geometry to a certain
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degree and do not have to be aligned exactly with them in order to produce acceptable
results. On the other hand, we remark that fine discretizations often required by low-order
methods often account for the geometry with sufficient accuracy automatically.



Chapter 5.

Three-Dimensional Dynamic Rupture

Simulation with a High-order

Discontinuous Galerkin Method on

Unstructured Tetrahedral Meshes

Accurate and efficient numerical methods to simulate dynamic earthquake rupture and
wave propagation in complex media and complex fault geometries are needed to address
fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into
emerging approaches for dynamic source inversion and to generate realistic physics-based
earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture
and seismic wave propagation by a high-order discontinuous Galerkin (DG) method com-
bined with an Arbitrarily high-order DERivatives (ADER) time integration method was
introduced in 2D by de la Puente et al. (2009). The ADER-DG method enables high ac-
curacy in space and time and discretization by unstructured meshes. Here we extend this
method to three-dimensional dynamic rupture problems. The high geometrical flexibility
provided by the usage of tetrahedral elements and the lack of spurious mesh reflections
in ADER-DG allows the refinement of the mesh close to the fault, to model the rupture
dynamics adequately while concentrating computational resources only where needed.
Moreover, ADER-DG does not generate spurious high-frequency perturbations on the
fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-
dimensional implementation by comparing results of the SCEC TPV3 test problem with
two well established numerical methods, finite differences and spectral boundary integral.
Furthermore, a convergence study is presented to demonstrate the systematic consistency
of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme
on unstructured meshes we simulate an earthquake scenario, inspired by the 1992 Landers
earthquake, that includes curved faults, fault branches and surface topography.

This chapter presents the work of Christian Pelties, Josep de la Puente, Jean-Paul Ampuero, and
Martin Käser published in Journal of Geophysical Research, Solid Earth (2012) in a slightly modified
form.
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5.1. Introduction

Strong ground motion simulations of earthquakes require, in order to describe natural
phenomena, the proper description and modeling of several features, e.g. seismic source
representation, geometry of fault systems, material properties of the bedrock and sedi-
ment, topography. A highly accurate solution of the resulting wave field is also essential.
The seismic source can be described through a prescribed evolution of slip along the fault
or by prescribing physical criteria for earthquake rupture and letting the fault slip be a
spontaneous consequence of the state of the fault. The two approaches are called kine-
matic and dynamic fault representation, respectively. The advantage of dynamic source
modeling is that one can investigate how the fault interacts with the surrounding con-
ditions such as confining stress, free-surface or transient wavefields. Furthermore, the
influence on the rupture process of the fault geometry and potential heterogeneities are
taken into account. As a drawback, dynamic rupture modeling is much more challenging
computationally and suffers from large uncertainties on the underlying physics.

Many numerical algorithms have been tested in the past to model dynamic earthquake
rupture, such as finite differences (FD) (e.g. Andrews, 1973; Day, 1982; Madariaga et al.,
1998; Andrews, 1999; Day et al., 2005; Dalguer and Day, 2007; Moczo et al., 2007a),
boundary integral (BI) (e.g. Das, 1980; Andrews, 1985; Cochard and Madariaga, 1994;
Geubelle and Rice, 1995; Lapusta et al., 2000; Tada and Madariaga, 2001), finite volume
(FV) (e.g. Benjemaa et al., 2007, 2009), finite element (FE) (e.g. Oglesby et al., 1998,
2000; Aagaard et al., 2001; Galis et al., 2008) or spectral element (SE) (e.g. Ampuero,
2002; Vilotte et al., 2006; Kaneko et al., 2008; Galvez et al., 2011) methods. All these
methods provide certain advantages, but have also disadvantages. For instance, schemes
implemented on structured and regular grids are in general efficient to solve very large
problems but have difficulties in modeling non-planar faults and strong material con-
trasts, like in sedimentary basins with extremely low wave velocities, which require grid
adaptivity. The BI method is one of the most accurate methods but is impractical in het-
erogeneous media and non-linear materials. FV and FE methods can be implemented on
unstructured meshes, which gives flexibility to describe realistic fault and crustal model
geometries. However, they are usually formulated as low-order accurate operators that
are very dispersive, which affects the small-scale resolution in the near-field and in turn
the rupture front evolution. In contrast, SE methods are high-order accurate for seismic
wave propagation, but are limited to hexahedral elements, which penalizes geometrical
flexibility: it remains challenging to generate hexahedral meshes for complex three di-
mensional branched fault systems with smooth element refinement or coarsening that
adapts to material properties. Furthermore, all approaches suffer from spurious high-
frequency oscillations, most notably in the slip-rate time series. Several approaches have
been proposed in order to reduce these oscillations, e.g. spatial low-pass filtering (Am-
puero, 2002), absorption by a frequency-selective Perfectly Matched Layer surrounding
the fault (Festa and Vilotte, 2005, 2006), adding an ad-hoc Kelvin-Voigt damping term
to the solution (Day et al., 2005) or adaptive smoothing algorithms (Galis et al., 2010).
None of these solutions is completely satisfactory and high-frequency oscillations remain
an unsolved nuisance in the numerical modeling of dynamic rupture.
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A new approach to overcome these issues was first presented by de la Puente et al.

(2009). They incorporated the earthquake source physics into a discontinuous Galerkin
(DG) scheme linked to an arbitrary high-order derivatives (ADER) time integration (Tita-
rev and Toro, 2002; Käser and Iske, 2005; Dumbser and Käser, 2006). The DG method
combines ideas from FE methods, where a polynomial basis approximates the physical
variables of the elastic wave equations inside each element, and FV methods, introducing
the desired concept of numerical fluxes. In addition to providing a high-order accurate ap-
proximation of the physical variables, the flux concept favors data locality: the temporal
update of the solution inside one element depends only on its direct neighbors. Therefore,
the method is well suited for massively parallel high-performance facilities. This formu-
lation enables the use of fully unstructured meshes, i.e. triangles (2D) or tetrahedrons
(3D), to better represent the geometrical constrains of a given geological setting and in
particular the fault. The fault is honored by the mesh and can be sampled with small
elements in order to capture small-scale rupture phenomena. Fast mesh coarsening with
increasing distance from the fault reduces the computational cost without introducing
significant spurious grid reflections. Between any two elements the approximated vari-
ables of the elastic wave equation are discontinuous in a DG discretization. In our case,
fluxes are defined by the exact solution of the elastic wave equations at a discontinuity
(Godunov state) to exchange information between elements. Such kind of problem is
known as the Riemann problem (Toro, 1999; LeVeque, 2002). At a fault, de la Puente
et al. (2009) showed how the exact solution of the Godunov state has to be modified to
take the frictional boundary conditions into account. An important result of their study
was that the ADER-DG solution is very smooth and free of spurious high-frequency os-
cillations. Therefore, it does not require artificial Kelvin-Voigt damping or filtering. The
good numerical dispersion properties of the ADER-DG method (Dumbser et al., 2006;
Käser et al., 2008; Hu et al., 1999; Sherwin, 2000), the possibility of using unstructured
meshes (Pelties et al., 2010), and the natural representation of variables’ discontinuities
with Godunov fluxes (de la Puente et al., 2009) might be key features for accurate and
efficient dynamic rupture simulations in very complex scenarios.

The main goal of this paper is the extension of the ADER-DG rupture modeling scheme
to three-dimensional problems on tetrahedral meshes. We present the Riemann problem
for the three-dimensional case and show how its solution is used to compute high-order
accurate numerical fluxes. We further use these fluxes together with a DG discretization
of the elastodynamic system to build up a highly accurate fault modeling and wave prop-
agation algorithm. The accuracy and convergence properties of the method are shown
in convergence tests. Further verification is obtained by comparing the results of our
novel 3D DG dynamic rupture scheme with other well established numerical solutions in
a standard community test problem of fault rupture. Finally, a large earthquake simula-
tion including complex fault systems, inspired from the 1992 Landers earthquake, shows
the potential of the method in dealing with complicated geometrical constrains both in
the rupture process and in the wave propagation itself.
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5.2. Dynamics of Fault Rupture

In the classical three-dimensional dynamic rupture models considered here a fault is rep-
resented by a 2D plane of arbitrary shape (or a set of planes in a fault system with
branches) across which fault coplanar displacements can be discontinuous. The kinemat-
ics of the sliding process are described by the spatio-temporal distribution of the slip
vector Δd = d+ − d−, or the slip rate vector Δv = Δḋ, where d± are the displacements
on each side of the fault, in the directions tangential to the fault plane (see Fig. 5.1a).
Earthquakes may involve small-scale fault opening, especially at shallow depth but, for
simplicity, here we consider only examples in which both sides of the fault remain in con-
tact. On any point of the fault surface, �n > 0 represents the compressive normal stress
and � the shear traction vector resolved on the + side of the fault. The dynamics of
the sliding process are governed by friction relations between traction and slip (Andrews,
1976a,b; Day et al., 2005). The shear traction is bounded by the fault strength , �s, which
is proportional to the normal stress via the friction coefficient �f :

�s = �f�n. (5.1)

Active slip requires the shear traction to reach and remain at the fault strength level,
with a direction anti-parallel to the slip rate. These conditions are encapsulated in the
following equations for Coulomb friction:

∣� ∣ ≤ �s ,
(∣� ∣ − �s) ∣Δv∣ = 0 ,
Δv∣� ∣+ ∣Δv∣� = 0 .

(5.2)

The evolution of the friction coefficient with ongoing slip is described by the following
linear slip weakening friction law:

�f =

⎧

⎨

⎩

�s −
�s − �d

Dc

� if � < Dc ,

�d if � ≥ Dc .

(5.3)

where �(t) =
∫ t

0
∣Δv∣dt′ is the slip path length. With increasing � the friction coefficient

�f drops linearly from the static value �s to the dynamic value �d over the critical slip
distance Dc, as shown in Fig. 5.1b. In combination with equations (5.2) the linear slip
weakening friction law is capable of modeling initial rupture, arrest of sliding and reacti-
vation of slip. Since it is very simple and easy to implement, it is well suited to verifying
numerical methods with dynamic rupture boundary condition. More advanced, realistic
friction laws, incorporate rate-and-state effects (Dieterich, 1979; Ruina, 1983) and ther-
mal phenomena such as flash heating and pore pressure evolution (Lachenbruch, 1980;
Mase and Smith, 1985, 1987; Rice, 1999). We do not expect any fundamental issue in the
implementation of other friction laws in the ADER-DG method and leave that for future
work.
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Figure 5.1.: In (a) is depicted a fault segment discretized as the contact surface of two
tetrahedral elements. The different fault sides are indicated by plus and
minus. In (b) we plot the friction coefficient �f vs. the slip � for the linear
slip weakening friction law.

5.3. Fault Dynamics within the Discontinuous

Galerkin Framework

In contrast to other numerical dynamic rupture implementations, like the traction-at-
split-node (TSN) approach (Andrews, 1973, 1999; Day, 1982), de la Puente et al. (2009)
followed a new idea employing the concept of fluxes. A detailed description of the adopted
DG scheme can be found in Dumbser and Käser (2006). The mathematical and technical
analysis of dynamic rupture boundary conditions in a high-order DG formulation was
presented by de la Puente et al. (2009) in 2D. Therefore, in this section we will explain
only the basic ideas and show the extension to three-dimensional spontaneous rupture
problems.
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5.3.1. Discretization of the Linear Elastic Wave Equation

The three-dimensional elastodynamic equations for an isotropic medium are written in
velocity-stress form as the linear hyperbolic system

∂

∂t
�xx − (�+ 2�)

∂

∂x
u− �

∂

∂y
v − �

∂

∂z
w = 0 ,

∂

∂t
�yy − �

∂

∂x
u− (�+ 2�)

∂

∂y
v − �

∂

∂z
w = 0 ,

∂

∂t
�zz − �

∂

∂x
u− �

∂

∂y
v − (�+ 2�)

∂

∂z
w = 0 ,

∂

∂t
�xy − �(

∂

∂x
v +

∂

∂y
u) = 0 ,

∂

∂t
�yz − �(

∂

∂z
v +

∂

∂y
w) = 0 ,

∂

∂t
�xz − �(

∂

∂z
u+

∂

∂x
w) = 0 ,

�
∂

∂t
u− ∂

∂x
�xx −

∂

∂y
�xy −

∂

∂z
�xz = 0 ,

�
∂

∂t
v − ∂

∂x
�xy −

∂

∂y
�yy −

∂

∂z
�yz = 0 ,

�
∂

∂t
w − ∂

∂x
�xz −

∂

∂y
�yz −

∂

∂z
�zz = 0 ,

(5.4)

where � is the first Lamé constant, � is the shear modulus, � is the density, �ij are the
components of the stress tensor and u, v and w are the components of the particle velocity
in the x, y, and z directions, respectively. Grouping stresses and velocities into a vector
Q = (�xx, �yy, �zz, �xy, �yz, �xz, u, v, w)

T , we write the system of equations (5.4) in a more
compact form:

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0 , (5.5)

where the space-dependent Jacobian matrices A, B and C include the material properties.
Classical tensor notation and Einstein’s summation convention are assumed.

The computational domain Ω is divided into conforming tetrahedral elements T (m) iden-
tified by an index m. The physical variables Q are approximated within each tetrahedral
element T (m) by high-order polynomials

Qm
p (�, t) = Q̂m

pl(t)Φl(�) , (5.6)

where Φl are orthogonal basis functions and � = (�, �, �) are the local coordinates in
a canonical reference element TE, where all the computations are done. Note, that we
are using a modal basis formulation. The physical variables are expressed by a linear
combination of these basis functions with time-dependent coefficients Q̂m

pl(t). The index
p is associated with the unknowns in the vector Q. The index l indicates the l-th basis
function and ranges from 0 to L−1, where L = (N +1)(N +2)(N +3)/6 is the number of
required basis functions for a polynomial degree N . The numerical approximation order
is O = N + 1.
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The elastic wave equation is solved in the weak form. We multiply equation (5.5) by a
test function Φk and integrate over an element T (m) and over a time increment of size Δt:

t+Δt
∫

t

∫

T (m)

Φk

∂Qp

∂t
dV dt

+

t+Δt
∫

t

∫

T (m)

Φk

(

Apq

∂Qq

∂x
+Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

)

dV dt = 0.

(5.7)

Integration by parts of equation (5.7) yields

t+Δt
∫

t

∫

T (m)

Φk

∂Qp

∂t
dV dt+

4
∑

j=1

ℱ j
pk

−
t+Δt
∫

t

∫

T (m)

(

∂Φk

∂x
Apq +

∂Φk

∂y
Bpq +

∂Φk

∂z
Cpq

)

Qq dV dt = 0 .

(5.8)

Equation (5.8) provides the values of Qp at time t+Δt, following the procedures explained
by Käser and Dumbser (2006) and Dumbser and Käser (2006). In those papers the
integration of the first and third terms in equation (5.8) are fully elaborated. A thorough
analysis of the used high-order accurate ADER time integration can be found in (Dumbser
et al., 2006). The second term is the sum of numerical fluxes ℱ j

pk across the four faces
of a tetrahedral element (j = 1, 2, 3, 4) accounting for the discontinuity of Q. This term
achieves the exchange of information between elements. The incorporation of dynamic
rupture boundary conditions is based on a modification of these fluxes. Thus, we will
have a closer look at them in the next section.

5.3.2. Flux computation

For simplicity, we consider a single tetrahedral face with its normal aligned with the x
axis. The flux term in (5.8) can then be written as

ℱpk = Apr

∫ t+Δt

t

∫

S

ΦkQ̃r dS dt, (5.9)

where Q̃ stands for a suitable approximation of the unknowns on the fault and the integral
covers the face S and a time interval of size Δt. In order to solve the integrals numerically,
we evaluate Q at a set of space-time Gaussian integration points on the tetrahedral face
at space locations �i = (�i, �i, �i), with i = 1, . . . , (N + 2)2, and along the time axis
at time levels �l ∈ [t, t + Δt], with l = 1, . . . , N + 1. We define Qil = Q(�i, �l) and
Qp,il = Qp(�i, �l). We solve the flux locally at each space-time integration point while
ensuring causality by updating the time levels in a sequential way. At special boundaries,
such as the free-surface or faults, the values of Q̃ in (5.9) might be imposed in order to
satisfy the physical boundary conditions. In the particular case of dynamic faults, we
impose values derived from the Coulomb friction model (5.2).
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At a given time � ∈ [t, t+Δt], a suitable temporal expansion of the variables is obtained
via a Taylor expansion of order O = N + 1 with respect to time t:

Qp(�, �) ≈
N
∑

k=0

(� − t)k

k!

∂kQq(�, t)

∂tk
. (5.10)

The high-order time derivatives in (5.10) are substituted by spatial derivatives using the
expression (5.5) in an iterative way

∂kQp(�, t)

∂tk
= (−1)k

(

Apq

∂

∂x
+ Bpq

∂

∂y
+ Cpq

∂

∂z

)k

Qq(�, t). (5.11)

This yields

Qp(�, �) ≈
N
∑

k=0

(� − t)k

k!
(−1)k

(

Apq

∂

∂x
+ Bpq

∂

∂y
+ Cpq

∂

∂z

)k

Qq(�, t) .
(5.12)

The expansion (5.12) provides a high-order prediction of the evolution of the degrees of
freedom. We compute it at each time substep �l, separately for the states Q+(�, t) and
Q−(�, t) of the two elements on the + and the − side of the face across which the flux is
evaluated (see Fig. 5.1a). This yields predicted states Q+

il and Q−
il .

As mentioned above, between any two elements the variables of the elastic wave equa-
tions are in general discontinuous. A partial differential equation problem with discontin-
uous initial conditions is called a Riemann problem. The solution of the Riemann problem
at an element interface is the Godunov state and can be written in terms of explicit values
as (Toro, 1999; LeVeque, 2002; de la Puente et al., 2009)

2�G
xx,il = (�+

xx,il + �−
xx,il) + �cp(u

−
il − u+

il ) ,

2�G
xy,il = (�+

xy,il + �−
xy,il) +

�

cs
(v−il − v+il ) ,

2�G
xz,il = (�+

xz,il + �−
xz,il) +

�

cs
(w−

il − w+
il ) ,

2uG
il = (u+

il + u−
il ) +

1
�cp

(�−
xx,il − �+

xx,il) ,

2vGil = (v+il + v−il ) +
cs
�
(�−

xy,il − �+
xy,il) ,

2wG
il = (w+

il + w−
il ) +

cs
�
(�−

xz,il − �+
xz,il) .

(5.13)

The stresses �yy, �zz, �yz are associated to the so-called zero wave speeds and do not
contribute to the Godunov state. Equations (5.13) are readily evaluated based on the
predicted states Q+

il and Q−
il .

When the fault is locked, the Godunov state is used in place of Q̃ in the flux (5.9).
When active slip is expected, we have to impose the shear stresses �xy,il and �xz,il on
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the fault according to the Coulomb friction model (5.2) to obtain new traction values
�̃xy,il and �̃xz,il, which might be different from �G

xy,il and �G
xz,il. Note that fault-normal

and fault-parallel components are uncoupled in equations (5.13). Because we ignore the
possibility of fault opening, the Godunov state values are assigned to the fault-normal
component of stress and velocity, �̃xx,il = �G

xx,il and ũil = uG
il . We can now evaluate the

fault strength defined in equation (5.1):

�s = �f,il(�
G
xx,il + �0

xx,i) , (5.14)

where the superscript zero denotes the initial stress values. The value of the friction
coefficient is taken from the previous iteration and is updated later if active slip is detected.

To solve for the friction conditions we seek an independent relation between the fault-
parallel variables of Q̃ derived from the structure of the fluxes. Substituting �G

xy,il and
�G
xz,il in equations (5.13) with their imposed values �̃xy,il and �̃xz,il, then multiplying the

second and third equations by cs/� and subtracting or adding the fifth and sixth equations,
respectively, leads to

ṽ+il = v+il +
cs
�

(

�̃xy,il − �+
xy,il

)

and ṽ−il = v−il −
cs
�

(

�̃xy,il − �−
xy,il

)

,

w̃+
il = w+

il +
cs
�

(

�̃xz,il − �+
xz,il

)

and w̃−
il = w−

il −
cs
�

(

�̃xz,il − �−
xz,il

)

.
(5.15)

These expressions are crucial for the understanding of fault dynamics using fluxes, as they
state that an imposed shear traction instantly and locally generates an imposed velocity
parallel to the fault. By subtracting them, the two components of slip rate are obtained:

Δṽil =
2cs
�

(

�̃xy,il − �G
xy,il

)

,

Δw̃il =
2cs
�

(

�̃xz,il − �G
xz,il

)

.

(5.16)

These expressions capture explicitly the analytical form of the immediate slip velocity
response to changes in fault tractions, also known as radiation damping (Cochard and
Madariaga, 1994; Geubelle and Rice, 1995). A consequence of the equations in (5.16)
is that slip (non zero Δṽil or Δw̃il) occurs only if �̃xy,il ∕= �G

xy,il or �̃xz,il ∕= �G
xz,il. The

friction solver amounts to find the shear traction and slip rate (both vectors) that satisfy
equations (5.2) and (5.16). The resulting algorithm is described next.

We first test if the Godunov state satisfies the failure criterion

∣�G∣ ≥ �s , (5.17)

where ∣�G∣ =
√

(�G
xy,il + �0

xy,i)
2 + (�G

xz,il + �0
xz,i)

2. If this inequality is not satisfied the

fault is locked and the Godunov state values are assigned to all variables, Q̃il = QG
il .
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Otherwise, active slip is declared and we compute �̃xy,il and �̃xz,il as

�̃xy,il =
�G
xy,il + �0

xy,i

∣�G∣ �s ,

�̃xz,il =
�G
xz,il + �0

xz,i

∣�G∣ �s .

(5.18)

Next, the slip path length �il is obtained by integrating (5.16). Therefore, we apply
the linear slip weakening friction law (5.3) to update the friction coefficient for the next
iteration as

�f,il+1 = max

{

�d, �s −
�s − �d

Dc

�il

}

. (5.19)

Using the shear stresses �̃xy,il and �̃xz,il and the velocities from (5.15) all values of Q̃ at
the interface are known and the flux (5.9) can be computed with the discrete expression

ℱpk = Apr

(N+2)2
∑

i=1

N+1
∑

l=1

!S
i !

T
l Φk(�i) Q̃r,il . (5.20)

where !S
i and !T

l are the weights of the spatial and temporal Gaussian integration, re-
spectively.

5.4. Verification

For geophysically relevant dynamic rupture problems no analytical solution exists that
could be used as a reference for code verification. Therefore, the Southern California
Earthquake Center (SCEC) created the Dynamic Earthquake Rupture Code Verification
Exercise, in which different codes and methodologies are compared on a suite of benchmark
problems of increasing complexity (Harris et al., 2009). Here, we verify our method with
the Test Problem Version 3 (TPV3). Additionally, in section 5.4.2 the convergence of the
ADER-DG method is discussed.

5.4.1. Code verification on the SCEC TPV3

The TPV3 problem involves rupture on a 30 km long by 15 km deep vertical strike-slip
fault embedded in a homogeneous elastic full-space. The fault is governed by linear slip
weakening friction and bounded by unbreakable barriers. The initial fault stresses are
homogeneous except on a nucleation zone of higher initial shear stress (Fig. 5.2). The
friction parameters and background stresses can be found in Table 5.1. The medium
has density � = 2670 kg/m3, P-wave velocity cp = 6000 m/s and S-wave velocity cs =
3464 m/s. We use a conservatively large computational domain, a cube of edge length
72 km, to avoid spurious reflections from non-perfectly absorbing boundaries.

We compare our O4 ADER-DG solution with the results of the spectral boundary inte-
gral equation (SBIE) method of Geubelle and Rice (1995) and of a second-order staggered-
grid finite difference method with traction at split nodes (Day et al., 2005). In particular,
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we considered two codes that have been verified during the SCEC exercises, the SBIE
implementation of E.M. Dunham (MDSBI: Multidimensional spectral boundary integral,
version 3.9.10, 2008, available at http://pangea.stanford.edu/˜edunham/codes/codes.html)
and the finite difference code DFM (Dynamic Fault Model) of Day et al. (2005). Both
codes were run with a 50 m grid spacing. DFM incorporates artificial Kelvin-Voigt vis-
cosity (Day and Ely, 2002).

We discretize the model by an unstructured mesh of tetrahedra. The edge length on
the fault plane is ℎ = 200 m on average. We allow the size of the tetrahedral elements
in the bulk to increase gradually to 3000 m edge length, to reduce the computational
effort. No artificial reflections possibly caused by the mesh coarsening are observed. To
facilitate a fair comparison between the methods we define an equivalent mesh spacing
Δx = ℎ/(N +1), which accounts for the sub-cell resolution of our high-order DG scheme.
Although Δx is not consensually accepted as an exact measure of the spatial resolution
it is often used for comparing different discretization techniques. The relatively large
element size of our ADER-DG simulation, ℎ = 200 m, corresponds to an equivalent mesh
spacing of Δx = 50 m, the same as in the DFM and MDSBI computations considered
here.

Figs. 5.3a, b, c and d show, for all three schemes, the time series of the shear stress and
slip rate at the two fault locations indicated as PI and PA in Fig. 5.2, which probe the
in-plane and anti-plane rupture fronts, respectively, at hypocentral distance 7500 m and
6000 m, respectively. The ADER-DG solution (black) is in excellent agreement with the
results produced by MDSBI (blue) and DFM (red). The signal amplitudes, the arrival
time of the rupture front and stopping phases and the subsequent stress relaxation are
mutually consistent. A closer inspection of these results (Figs. 5.3e and f) reveals that the
rupture front arrives slightly earlier in DFM than in the other two methods, whereas the
rupture times of MDSBI and ADER-DG are more similar. These differences could be due
to the Kelvin-Voigt damping in DFM or to different implementations of the non-smooth
initial stress conditions.

Spurious high-frequency oscillations are visible in the slip rates produced by MDSBI and
DFM, especially around the slip rate peak at the PA station. These are identified clearly
in the spectra in Figs. 5.3g and h: the MDSBI slip rates have a significant spectral peak
around 25 Hz and DFM has peaks between 10 and 40 Hz, especially at PA. Such spurious
peaks are absent from the slip rate spectra of ADER-DG, which are smoother and follow
the theoretically expected frequency decay (Ida, 1973). Therefore, no artificial Kelvin-
Voigt damping has to be applied in ADER-DG, which would further reduce the time step
size and increase the computational cost. Our DG method is based on upwind numerical
fluxes, which are intrinsically dissipative. In particular, in our high-order DG approach
the amount of numerical dissipation increases very steeply as a function of frequency,
beyond an effective high-frequency cutoff that depends on the element size (Hesthaven
and Warburton, 2008, p.90, Fig. 4.1). Hence, the very short wavelengths that are poorly
resolved by the mesh elements are adaptively damped, without perturbing the longer,
physically meaningful wavelengths. The temporal discretization by the ADER scheme
also introduces dissipation (Dumbser et al., 2006) with a frequency cut-off that scales
with the time step Δt. However, because Δt is global and controlled by the smallest
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PI

PA

30km

15km
nucleation patch

Figure 5.2.: Sketch of the SCEC test case with the nucleation zone (grey shaded). The
fault is surrounded by a box with an edge length of 72 km. The black triangles
indicate the in-plane receiver (PI) and the anti-plane receiver (PA).

Parameter Nucleation zone Outside nucleation zone

Initial shear traction (MPa) 81.6 70.0
Initial normal stress (MPa) 120.0 120.0
Static friction coefficient 0.677 0.677
Dynamic friction coefficient 0.525 0.525
Critical slip distance (m) 0.4 0.4

Table 5.1.: Parameters describing the fault for the SCEC test case.

or most deformed elements, the effect of this dissipation usually appears at much higher
frequencies.

The absence of spurious oscillations in ADER-DG enables the observation of interesting
details of the solution. For instance, the ADER-DG solution reveals a slope discontinuity
of the slip velocity shortly after the peak (at 3.15 s in Fig. 5.3e and at 3.07 s in Fig. 5.3f).
This coincides with the time when the slip reaches Dc and is due to the slope discontinuity
in the slip weakening friction law. In the other methods this feature is masked by the
spurious oscillations.

5.4.2. Convergence test

In section 5.4.1 the good agreement between our ADER-DG method and other numerical
methods has been shown. However, since there is no analytical solution available, one
cannot determine which numerical method solves the proposed test better. A commonly
used technique in computational science to verify the performance of a code is a conver-
gence test. Thereby, we measure the error of the method by the root mean square (RMS)
difference of rupture time, peak slip rate and final slip between the finest grid solution
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Figure 5.3.: Comparison of solutions for the SCEC TPV3 problem obtained by differ-
ent methods with comparable grid spacing: the boundary integral method
(MDSBI, in blue) with a grid interval of ℎ = 50 m, the FD staggered-grid
split node method (DFM, in red) with grid interval ℎ = 50 m, and our ADER-
DG scheme (black) with an equivalent mesh spacing of Δx = 50 m at the
fault. Shown are the shear stresses (a and b) and the slip rates (c and d)
at two fault locations indicated as PI (left panels) and PA (right panels) in
Fig. 5.2. The panels (e) and (f) provide a focused view of the slip rate peaks.
In the bottom row (g),(h) the spectra of the slip are shown. All results are
in good agreement. The ADER-DG solution does not produce spurious high-
frequency oscillations.
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and the solutions for coarser grids. The particular RMS metrics we use in this chapter
are taken from Day et al. (2005).

We solved the SCEC TPV3 with five different mesh spacings, ℎ = 1061, 707, 530,
424 and 354 m, defined as the longest triangular edge length on the fault plane, and
four different orders of accuracy ranging from O2 to O5. The resolution of dynamic
rupture problems can be quantified by Nc, the number of elements per median process
zone length (here, 440 m (Day et al., 2005)). Our meshes correspond to Nc = 0.41,
0.62, 0.83, 1.04 and 1.24, respectively. Some of the coarsest meshes at low orders lead
to unphysical results and are ignored (ℎ = 707 and 1061 m for O2 and ℎ = 1061 m for
O3). To facilitate comparisons between simulations of different resolution, we designed
meshes that are uniform on the fault plane by first generating a regular surface mesh
of quadrilateral elements of edge length ℎ/

√
2, then dividing each quadrilateral into two

triangles. In contrast, the tetrahedral mesh in the bulk is highly unstructured. We used
mesh coarsening by increasing the element edge length by 10% per element with increasing
distance from the fault, up to a maximum edge length of 10ℎ. The regular meshing of
the fault plane does not affect the generality of our results: the accuracy of the simulation
presented in Section 5.4.1, executed on a fully unstructured mesh (irregular even on the
fault plane), is consistent with the results presented hereafter. Our reference solution was
obtained with ℎ = 354 m and O6. We sampled the solution with 400 randomly distributed
receivers along the fault plane. The rupture time is defined as the first time sample at
which the slip rate exceeds 1 mm/s. The 15 receivers located in the nucleation zone are
excluded for the rupture time measurement since their rupture time is exactly the first
time step.

The results are summarized in Table 5.2 and visualized in Fig. 5.4. The RMS difference
in rupture time, final slip and peak slip rate decrease with increasing mesh refinement and
increasing order. This implies that a low-order approximation can achieve the accuracy
of high-order approximations only when using a much smaller element size. Except for
O2, the RMS rupture time difference is low (Fig. 5.4a) and all chosen resolutions capture
the rupture front evolution reasonably well with respect to the reference solution. The
difference between the finest test solution and the reference solution is indeed very small,
0.04% (Table 5.2). The time step size Δt, shown by dashed lines in Fig. 5.4a, is much
smaller than the RMS rupture time differences, hence temporal sampling does not bias our
measurement of rupture times. The RMS difference of the final slip is also low, around 1%
at best (Fig. 5.4b). The RMS difference of peak slip rate is larger (Fig. 5.4c), as usually
found for this very sensitive error metrics based on extreme values of a spiky signal.
Overall, the error levels are similar to those obtained by methods such as DFM (Day
et al., 2005). The ADER-DG solutions achieve numerical convergence with respect to the
applied order and element size reduction.

The convergence of the errors as a function of ℎ is well described by power laws. The
small scattering of the error data around their power law regressions (Fig. 5.4) is expected
when using structured mesh refinement strategies, like “red-refinement” (split a triangle
into four geometrically similar triangles), but is remarkable given our fully unstructured
meshes. The smooth convergence to the reference solution confirms the robustness and
reliability of the method. The exponent of the power laws, or convergence rate, is given
in Table 5.3. The O2 simulations achieve the highest convergence rates but they also
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have the largest errors, as mentioned above. Between O3 and O5 the convergence rate
saturates. This implies that spectral convergence is not achieved in this problem. In
general, the convergence rate of a numerical solution improves when increasing the order of
the method only if the exact solution is sufficiently smooth (Godunov, 1959; Krivodonova,
2007; Hesthaven and Warburton, 2008, p.87). Dynamic rupture problems contain non-
smooth features. Linear slip weakening friction guarantees continuity of slip velocity and
shear stress but slip acceleration remains singular at the leading and trailing edges of the
process zone Ida (1973). Moreover, the initial stress conditions and the stopping barriers
are not smooth in the TPV3 problem. However, in smoother rupture problems involving
rate-and-state friction and smooth initiation conditions improvements of convergence rate
with increasing order have not been observed (Rojas et al., 2009), only reduced rupture
time errors below the time sampling precision (Kaneko et al., 2008). In Table 5.3 the
convergence rates of DFM and of a boundary integral method (from Day et al. (2005))
are included for comparison. Whereas the convergence rates of the rupture time agree for
the different methods, DFM and BI converge slightly faster than ADER-DG with O > 2
for the other error metrics, final slip and peak slip rate.

Fig. 5.4d shows the convergence of the rupture time misfit as a function of CPU time,
the actual duration of the simulation multiplied by the number of processors involved. The
number of processors ranges from 256 to 8192 since the problem size varies so much that
the smallest simulation will not run efficiently on the maximum number of processors and
the largest problem cannot be solved with fewer processors. Although the scalability of our
DG code is in general good, it is still not perfect over this range of number of processors,
which affects our measurements of CPU time. From Fig. 5.4d higher order methods are not
more efficient for solving the test problem at a given accuracy. For a given ℎ, high-order
methods are more computationally demanding as they store and update more unknowns
per element, and this cost is not significantly offset by their improved accuracy. However,
the smoothness of the slip rate time series (Section 5.4.1) and the quality of the wave
propagation away from the fault are not quantified by the error metrics considered here.
Both aspects are an important part of the overall quality and accuracy of the solution. It
has been demonstrated that a high-order approximation in a DG scheme is much more
efficient for wave propagation problems than a low-order approximation, i.e. it requires
lower computational cost to achieve a given error level (Käser et al., 2008). The flexibility
of the ADER-DG method allows the resolution to be optimized (ℎ- and p-adaptivity)
independently for the fault and for the surrounding media based on different criteria,
the cohesive zone size and the maximum target frequency, respectively. A high-order
approximation is advantageous in strong ground motion simulations based on dynamic
rupture scenarios because it provides an accurate wave field at lower cost.

For illustration purposes, we show time series of the shear stresses and slip rates used
for the convergence test in Fig. 5.5. The receiver has been picked randomly and is located
at along-strike distance of 8525 m and down-dip distance of 6893 m from the center of
the nucleation zone. On the left panels, results of all used orders of accuracy O are
given for a fixed mesh spacing ℎ = 354 m. Note that O6 is our reference solution.
On the right, the order is fixed to O4 but the mesh spacing varies. Obviously, the O2
simulation has the largest delay compared to the reference solution, explaining the large
errors of the low order runs. Also visible is a significant delay in the simulation with
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ℎ = 1061 and O4 (Fig. 5.5 right panels). The differences of all other simulations are
only noticeable in the detail views of the rupture front (Fig. 5.5(c), (d), (g) and (h)). No
spurious oscillations occur, independent of the mesh spacing and the order of accuracy.
Furthermore, no artifacts of the high-order formulation (e.g. over- or undershoots) appear
at the discontinuities.
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ℎ (m) O RMS rupture time (%) RMS final slip (%) RMS peak slip rate (%) CPU time (s)

1061 4 2.79 2.88 14.52 2288640
5 0.95 2.35 12.58 7280640

707 3 3.05 2.38 13.48 2764800
4 0.74 1.85 11.39 8386560
5 0.31 1.42 8.36 26081280

530 2 37.32 54.31 37.98 1474560
3 1.44 1.61 10.84 4945920
4 0.43 1.31 8.00 14991360
5 0.19 1.22 6.87 49827840

424 2 15.34 39.62 25.84 2580480
3 0.69 1.35 9.18 8847360
4 0.20 1.20 6.76 29675520
5 0.08 1.03 6.20 99901440

354 2 9.99 29.74 21.38 3993600
3 0.44 1.20 7.65 14499840
4 0.12 0.98 5.95 45772800
5 0.04 1.03 5.84 163553280

Table 5.2.: Convergence results for the 3D TPV3 SCEC test case.



90 Chapter 5. Dynamic Rupture with a 3D DG Method

Method Rupture time Final slip Peak slip rate

ADER-DG O2 3.28 1.48 1.43
ADER-DG O3 2.84 0.99 0.80
ADER-DG O4 2.83 0.97 0.85
ADER-DG O5 2.83 0.75 0.70
DFMa 2.96 1.58 1.18
BIa 2.74 1.53 1.19

Table 5.3.: Error convergence exponents for ADER-DG schemes of different order. aThe
convergence rates of DFM and BI are from Day et al. (2005).

5.5. The Landers 1992 Earthquake

To demonstrate the potential of the introduced ADER-DG method on unstructured
meshes for simulations of rupture dynamics in complex fault geometries we consider the
June 28th 1992 MW7.3 Landers, California, earthquake as an example. Our purpose here
is not to re-examine the dynamics of this event in detail, as in many previous studies (e.g.,
Olsen et al., 1997; Aochi and Fukuyama, 2002; Aochi et al., 2003; Fliss et al., 2005), but
rather to illustrate the potential of our method for future studies. We hence follow the
simplified setup introduced by de la Puente et al. (2009) and extend it to three dimensions,
including topography.

The Landers earthquake occurred on a 60 km long complex fault system along the west-
ern edge of the Eastern California Shear Zone. Its surface rupture involved at least parts
of four major right-lateral strike-slip fault segments, breaking successively from south to
north the Johnson Valley, Homestead Valley, Emerson and Camp Rock faults (Hauksson
et al., 1993). These sub-parallel main segments are curved, overlapping and connected by
shorter faults (e.g. the Kickapoo, or Landers fault, connecting the Johnson Valley and
Homestead Valley faults). A fault geometry comprising six non-planar fault segments
(Fig. 5.6) was adopted from (Aochi and Fukuyama, 2002). Studies based on guided
waves (Li et al., 1994) and analysis of the aftershock distribution (Hauksson et al., 1993)
show that the surface geometry continues to a depth of at least 10 km. Source inversion
results indicate a vertical dip of the fault planes (Wald and Heaton, 1994; Cohee and
Beroz, 1994; Cotton and Campillo, 1995). We hence model the three-dimensional fault
system geometry by extending the surface fault traces vertically into depth. The fault
plane starts below the surface at sea level and extends to 15 km below sea level. Although
we do not allow for surface rupture in this tentative test scenario, surface rupture was
successfully verified with the current ADER-DG implementation with the SCEC TPV5.
This data is freely available from the SCEC website (http://scecdata.usc.edu/cvws/).

The model domain is a polygon of lateral extension of 180 km times 220 km and depth
of 50 km. Fig. 5.6 shows a map of the model area and its topography. The fault system
is enclosed in the south by the San Bernardino mountains, with a maximum elevation of
3505 m, and in the north by smaller dissected mountain ranges.
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Figure 5.4.: Convergence results for the 3D TPV3 SCEC test case. Nc is the number
of elements per median process zone length. Dots are the simulation results
colored by their order of accuracy. The solid lines represent the regression
and the dashed lines denote the levels determined by the timestep Δt. Misfits
are shown for the rupture time (a), final slip (b), and peak slip rate (c). Panel
(d) shows the convergence of the rupture time misfit as a function of its CPU
time.
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Figure 5.5.: Representative solutions of the SCEC TPV3 problem with ADER-DG of vary-
ing grid spacing and order. Shown are time series of shear stress (a and b)
and slip rate (e and f) at fault location at a distance of 8525 m along-strike
and 6893 m down-dip from the center of the nucleation zone. Panels (c), (d),
(g) and (h) show details near the rupture front. The left panels show the
results of all used orders of accuracy O for a fixed mesh spacing ℎ = 354 m,
including the reference solution O6. On the right panels, the order is fixed
to O4 but the mesh spacing varies.
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Since our purpose is to focus on the rupture process on a geometrically complex fault
system, we assume a homogeneous medium (vp = 6200 m/s, vs = 3520 m/s and � =
2700 kg/m3) and a homogeneous initial stress field with horizontal principal stresses �1 =
300 MPa and �2 = 100 MPa. The assumed direction of the largest principal stress, N22∘E,
is representative of the northern part of the rupture in the model of Aochi and Fukuyama
(2002) and is indicated by a red double arrow in Figs. 5.6 and 5.8. Although the stress
field is homogeneous, the varying fault strike generates a heterogeneous stress state along
the fault. The nucleation is initiated by a lower principal stress value of �2 = 70 MPa
in a square patch of edge length 3 km around the hypocenter, located on the southern
portion of the Johnson Valley fault. Table 5.4 contains the frictional parameters of the
fault. We compute the spontaneous rupture for a total duration of 10 s.

Fig. 5.7 shows the fault discretized by triangles of size ℎ = 500 m (edge length). The
horizontal plane below the fault shows the mesh coarsening up to ℎ = 2500 m in the closer
neighborhood of the fault. The surface mesh above the fault has ℎ = 500 m to ensure an
accurate representation of the topography. This high-resolution area is surrounded by a
much coarser mesh consisting mainly of ℎ = 5 km elements, but we allow for ℎ = 10 km
at the outer borders of the domain. The fast mesh coarsening does not affect the rupture
propagation, it only damps the high-frequency content of the wave field in areas of larger
mesh spacing (de la Puente et al., 2009). This allows to concentrate the computational
effort on the rupture area, where it is needed. The domain boundaries are located far
enough away from the fault to avoid the effect of possible artificial reflections.

The resulting mesh contains 587,585 elements. Using an O5 approximation this model
size is relatively inexpensive and can be computed on a small scale cluster of approximately
100 nodes, which can be currently found in many research institutions. We used the
BlueGene/P machine Shaheen of the King Abdullah University of Science and Technology,
Saudi Arabia. Our 10 s long simulation ran for 20 hours on 512 processors. This relatively
large number of processors was conditioned by the low frequency of the BlueGene/P
CPUs (850 MHz) and, for standard CPUs, it can be reduced by a factor of 4 to 6. The
entire discretization process including topography and fault geometry definition, mesh
generation, and boundary specifications took less than two days due to the flexibility and
robustness of tetrahedral mesh generation. Hence the manual effort and related cost in
terms of expert working hours are kept at a minimum.

Fig. 5.8 shows the amplitude of the particle velocity generated by the earthquake at
four different times on a horizontal cross-section of the nucleation area at a depth of
5 km below sea level. Initially, the rupture propagates bilaterally on the Johnson Valley
fault (Fig. 5.8a). At time 1.5 s the northern rupture front approaches the first branching
point (Fig. 5.8b). It then continues into the Kickapoo fault, without breaking the northern
portion of the Johnson Valley fault (Fig. 5.8c). The rupture breaks the complete Kickapoo
segment and continues on the Homestead Valley fault where it stops approximately at
time 6 s (Fig. 5.8d). This rupture branching to the extensional side is consistent with
the 2D study of de la Puente et al. (2009) and with theoretical considerations Poliakov
et al. (2002). While some interesting features of the Landers earthquake rupture, like
the backward branching to the southern segment of the Homestead Valley fault (Poliakov
et al., 2002; Fliss et al., 2005), are not reproduced by our simulation, it achieves our main
intention to conceptually illustrate the capabilities of the 3D ADER-DG method.
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Parameter Nucleation zone Outside nucleation zone

Principal stress �1 (MPa) 300.0 300.0
Principal stress �2 (MPa) 70.0 100.0
Static friction coefficient 0.6 0.6
Dynamic friction coefficient 0.4 0.4
Critical slip distance (m) 0.8 0.8

Table 5.4.: Frictional parameters for the test case of the Landers fault system.

Fig. 5.9 shows the surface wave field developing with time from 2.5 s to 4.5 s. There
is a clear directivity effect: most of the energy is traveling northwards, like the rupture
front. From visual inspection, the topography seems to increase the complexity of the
wave field. However, we expect stronger site effects when incorporating a more realistic
geological model with low velocity layers in the valley and stiffer material in the mountains.

5.6. Conclusions

We successfully incorporated 3D earthquake rupture dynamics in the ADER-DG scheme
by modifying the Riemann problem according to the Coulomb friction model. Although
we considered here linear slip weakening friction, the method allows for the implementa-
tion of more advanced friction laws, e.g. rate-and-state friction. Accuracy was verified by
comparing results of the SCEC TPV3 benchmark problem for spontaneous rupture to well
established methods. The ADER-DG solution is notably free of spurious high-frequency
oscillations, most likely owing to the high-order frequency dependence of the intrinsic
dissipation of the DG method. Hence, no further artificial viscous damping mechanism
has to be applied which could potentially affect the rupture process. The robustness and
systematic correctness of the ADER-DG method was proved by a convergence test, which
showed that mesh refinement or increasing the order leads to smaller errors.

An example of dynamic rupture simulation on a complex fault system, inspired by
the surface rupture geometry of the Landers earthquake, demonstrates the great benefits
of the proposed method based on unstructured tetrahedral meshes that can be aligned
into merging faults under shallow angles. Areas of interest, here the topography and the
fault, can be modeled adequately by small elements while mesh coarsening can be applied
elsewhere to reduce the computational cost. This is of interest in particular for dynamic
rupture studies which require a fine sampling of the fault in order to capture the cohesive
zone for a correct simulation of the rupture process while adapting the resolution to the
dispersion requirements of wave propagation at lower frequencies far from the fault. We
do not observe any artificial reflection due to mesh coarsening in ADER-DG. In methods
based on structured grids the mesh refinement is instead applied uniformly in the entire
computational domain, propagating frequencies much higher than required for strong
ground motion investigations, or through grid-doubling techniques, which could generate
artificial reflections.
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Figure 5.6.: Map view of the 1992 Landers earthquake fault system with topography. The
red double arrow indicates the assumed principal stress direction of N22∘E.
The lateral center of the model domain is the location of the epicenter at
34.20∘N and 116.43∘W.
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70 km

15 km

Figure 5.7.: Discretization of the Landers fault system with triangles of 500 m edge length.
In the area indicated by a red line the topography is described by a fine mesh
of 500 m edge length. The box below is filled by 2500 m elements with only
moderate mesh coarsening away from the fault.
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T = 3.0s

T = 2.5s

T = 3.5s

T = 4.0s

T = 4.5s

Figure 5.9.: Development of the ground velocity field with time. The topography is scaled
by a factor of 3. v represents the absolute particle velocity in m/s. The
viewing direction is roughly from southeast to northwest. The directivity
effect can be clearly observed.
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We conclude that the combination of meshing flexibility and high-order accuracy of
the ADER-DG method will make it a very useful tool to study earthquake dynamics
on complex fault systems. Future steps in the development include the incorporation of
bimaterial fault interfaces, more realistic friction laws and non linear bulk rheologies.





Chapter 6.

Conclusion

In this work we applied, analyzed and further developed the software SeisSol based on
the ADER-DG method. SeisSol is a numerical forward solver for linear hyperbolic partial
differential equations. The scheme enables the use of fully unstructured tetrahedral meshes
while keeping high-order accuracy. It is designed to model seismic waves in complex and
heterogeneous media. We introduced the mathematical formulation in Chapter 2 including
a complete discretization of the elastic wave equations.

The advantages of the framework are demonstrated in Chapter 3 with an emphasis on
industry applications. In the first application of a sonic logging experiment, the challenge
was that small scale features (borehole well, tool) had to be respected by the mesh, al-
though the surrounding material properties would allow for large element sizes. Without
ℎp-adaptivity and local time stepping the problem would have not been computational
feasible. In the second example of a complicated salt dome model, the enhanced meshing
flexibility due to the use of tetrahedra pays off. After the geometry is defined, the ele-
ments can be easily adjusted and aligned to the geological material interfaces. In spite of
the method’s flexibility required by the complex models, it was shown that the method
performs excellent on various HPC-infrastructures.

The importance of aligning elements to material interfaces was discussed in Chapter 4.
In general, methods implemented on regular grids are computationally very efficient com-
pared to methods with unstructured grid approaches. However, regular grids can result
in artificial staircase approximations of material interfaces. The scope of our study was to
analyze how fine the regular grid spacing must be in order to produce comparably accurate
seismograms as obtained by the mesh aligned version using an irregular grid. We found a
strong dependence on mesh spacing, material contrast and signal frequency. In fact, the
misfits increase with a decreasing number of elements per wavelength and with increasing
material contrast. A systematic parameter study enabled us to define rules that should
be adhered to ensure accurate synthetic data, if regular meshing is applied. For the tested
geometry, a discretization of 5 elements per shortest dominant wavelength generates ac-
ceptable seismograms up to a material contrast of 0.5 in the sense of the S-wave speed
ratio. This resolution could be reduced for weaker material contrasts. However, in the
case of stronger material contrasts a significant grid refinement is necessary to avoid nu-
merical artifacts. In particular, for a free-surface boundary or an acoustic-elastic coupling
the mesh should be aligned to the interface since we were not able to produce reliable data
within the range of tested frequencies and mesh spacings with a staircase approximation
of such boundaries. Finally, the proposed rules have been tested in two realistic scenarios.
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In both cases an expected minor misfit was obtained. The study supports particularly
high-order methods, like SEM and DG, implemented on structured meshes as the rules
help to choose mesh resolutions that generate reliable seismograms while minimizing the
computational cost. Nevertheless, in consideration of the results we highly recommend
the use of aligned meshes for topography and solid-fluid interfaces.

In the introduction we proclaimed the extension of the ADER-DG method to three-
dimensional spontaneous rupture problems on complex fault shapes as the main goal of
this work. For this purpose, we follow the study of de la Puente et al. (2009) and employ
numerical fluxes to incorporate the rupture dynamics. This is object in Chapter 5, where
the mathematical algorithm is described first. The superior accuracy of the concept was
shown by comparison with two well established numerical methods. ADER-DG repro-
duces the rupture process correctly. Neither problems at discontinuities occur nor spurious
high-frequency oscillations are observed. Discontinuities in the solution could have been
an issue due to Godunov’s theorem that predicts over- and undershoots using high-order
formulations. Furthermore, Godunov’s theorem states that no high-order convergence
can be expected in such cases. Indeed, although integrating the equations with high-
order accuracy in space and in time, ADER-DG did not reach better convergence rates
while improving the approximation. However, the quality of the obtained seismograms
enhances significantly by increasing the order of accuracy following well described power
laws that determine the correctness of the new implementation. Moreover, the ADER-
DG solution is notably free of non-physical high-frequency oscillations, which have been
observed in all other numerical approaches until now. Hence, no artificial viscous damp-
ing mechanism has to be applied in the ADER-DG framework which could potentially
affect the rupture process. Reason for both addressed issues is most likely the intrinsic
dissipation of the upwinding flux damping non-physical high-frequency oscillations caused
by the dynamic rupture source that is somehow artificially imposed on the system.

Finally, the benefits for strong ground motion modeling have been demonstrated for
an earthquake scenario based on the Landers fault system. In this example, we tested
our dynamic rupture implementation on unstructured meshes on a complex fault system
that includes curved faults and fault branches. The flexibility of the tetrahedral elements
makes it possible to align small elements into merging faults under shallow angles. Areas
of interest, here the topography and the fault, have been modeled adequately by small
elements while mesh coarsening was applied where the dispersion requirements of the
wave propagation allowed for it. This way, the computational cost could be reduced sig-
nificantly. The ability of local mesh refinement is in particular advantageous for dynamic
rupture modeling as the cohesive zone requires a dense spatial sampling for a correct rup-
ture front evolution while the interesting frequencies for ground motion analysis are rather
low and can be resolved with much larger elements. Unstructured meshes represent the
most elegant way to adapt spatially the resolution while avoiding any numerical artifacts
that occur e.g. in grid doubling techniques. Furthermore, to our knowledge it was the first
fully dynamic rupture simulation that includes such a complex fault system and topogra-
phy. To conclude, we are convinced that the ADER-DG method on unstructured meshes
including the physical correct representation of the spontaneous rupture process will be
the tool of choice for realistic strong ground motion simulation in the future. Therewith,
the main goal of this project was accomplished successfully.
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However, the method has to be extended further in many ways to incorporate all fea-
tures of a modern strong ground motion simulator. First of all, the method’s correctness
must be proved and its accuracy quantified for curved and kinked faults which is not a
trivial task as there exists no analytical solution for these kinds of problems. Probably, the
verification process will include comparisons to other methods and to solutions obtained
by semi-analytical estimations. Although we have strong evidence the intrinsic dissipation
of the numerical flux is the reason for the absence of spurious oscillations, the mathemat-
ical proof in form of a dispersion analysis is still outstanding. Such a dispersion analysis
could also provide helpful insights to improve other numerical methods. Another future
task could be the incorporation of more advanced friction laws as rate-and-state and non
linear bulk rheologies. Hereby, plasticity and material damage are of particular interest
which would lead to a more realistic representation of fault branches where extremely
high strain rates can be observed and the purely elastic approach might not be valid any-
more. Furthermore, the current earthquake source implementation should be combined
with computational time reducing features like local time stepping and mortar element
concepts that are already successfully tested and applied for the ADER-DG scheme. This
is important as the ADER-DG algorithm is in general computationally expensive com-
pared to other numerical methods. At this point, we note that the efficient installation
of high-order DG methods on unstructured meshes on parallel HPC architectures is still
ongoing research in computational science and applied mathematics. One crucial prob-
lem is an observed high rate of cache misses as the character of the unstructured mesh
has direct influence on the memory management whose complexity increases dramatically
by that. Furthermore, an optimal way to treat the tremendous number of small sparse
matrix-matrix multiplication has not been found yet. Although the topic seems to be
challenging, we expect large improvements for the optimization in the near future since
a clear trend to unstructured meshes and high-order accurate methods can be identified
in many disciplines within the natural sciences leading to a high motivation for further
investigations.

Besides the lack of certain features, the framework is already feasible to answer a
range of scientific questions in many aspects of earthquake source physics. For instance,
extremely sensitive but interesting details of the friction law can be observed in the pro-
duced results, e.g. the slope discontinuity in the slip rate time series when the slip reaches
Dc of the linear slip weakening friction law (see Section 5.4.1). A future implementation
of rate-and-state friction laws would enable confident research on various physical pa-
rameters of the frictional sliding. Furthermore, the influence of bimaterial faults on the
rupture evolution and the ground motion can be studied on a new level of accuracy due
to the absence of spurious oscillations. First convergence tests under Prakash-Clifton reg-
ularization appear promising. Investigations in low-velocity fault zone structures will also
benefit from the current methodology. Hereby, the elements can be easily aligned to the
geometrical shape of so-called flower structures that typical embed active faults while the
method allows for surface rupture at the same time. First studies have shown interesting
results such as naturally created pulse-like ruptures. The pulse-like ruptures are here
generated by transient waves reflected by the low-velocity fault zone and bulk material
contrast. These reflected waves stop the primal crack-like rupture due to a change of the
stress conditions on the fault. Moreover, a splitting of the pulse-like rupture front into
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two could be observed near the free surface. This all represent interesting possibilities
and starting points for further research of dynamic rupture.
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Appendix A.

Orthogonal Basis Functions for

Tetrahedral Elements

The presented ADER-DG implementation makes use of the orthogonal hierarchical Du-
biner’s basis functions (Cockburn et al., 2000). Hierarchical means in this context, that
every set of basis functions of degree N includes all basis functions of all lower degrees as
a subset. The basis functions are expressed in terms of the Jacobi polynomials P�,�

n (x),
which are solutions of the Jacobi differential equation

(1− x2)y
′′

+ [� − �− (� + � + 2)x]y
′

+ n(n+ � + � + 1)y = 0 . (A.1)

In the interval [−1, 1] the polynomials can be written as

P�,�
n (x) =

(−1)n

2nn!
(1− x)−�(1 + x)−� dn

dxn
[(1− x)�+n(1 + x)�+n] . (A.2)

For � = � = 0 the Jacobi polynomials P 0,0
n (x) reduce to the Legendre polynomials. We

construct the DG basis functions as products of up to the three primal functions

Θa
i (x) = P 0,0

i (x) ,

Θb
ij(x) =

(

1−x
2

)i
P 2i+1,0
j (x) , s

Θc
ijk(x) =

(

1−x
2

)i+j
P 2i+2j+2,0
k (x) .

(A.3)

For tetrahedrons the reference element Tref is defined as

Tref =
{

(�, �, �) ∈ ℝ
3∣0 ≤ � ≤ 1 ∧ 0 ≤ � ≤ 1− � ∧ 0 ≤ � ≤ 1− � − �

}

. (A.4)

The basis functions Φk(�, �, �) on this reference element are given by the following product
of primal functions:

Φk(p,q,r)(�, �, �) = Θa
p(e) ⋅Θb

pq(f) ⋅Θc
pqr(g) , (A.5)

with

e =
� − 1 + � + 2�

1− � − �
, f =

2� − 1 + �

1− �
, g = 2� − 1 . (A.6)
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The mono-index k = k(p, q, r) is a function of the index triple (p, q, r). For a third order
scheme O3 (polynomial degree N = 2) the three-dimensional basis functions are:

Φ0 = 1 ,

Φ1 = −1 + 2� + � + � ,

Φ2 = −1 + 3� + � ,

Φ3 = −1 + 4� ,

Φ4 = 1− 6� + 6�2 − 2� + 6�� + �2 − 2� + 6�� + 2�� + �2 ,

Φ5 = 1− 2� − 6� + 10�� + 5�2 − 2� + 2�� + 6�� + �2 ,

Φ6 = 1− 8� + 10�2 − 2� + 8�� + �2 ,

Φ7 = 1− 2� − � − 7� + 12�� + 6�� + 6�2 ,

Φ8 = 1− 3� − 7� + 18�� + 6�2 ,

Φ9 = 1− 10� + 15�2 .

(A.7)



Appendix B.

Coordinate Transformation of

Tetrahedra

From Dumbser and Käser (2006) we obtain the coordinate transformation of a tetrahedron
in the global, Cartesian xyz-coordinate system into the ���-reference system as shown in
Figure 2.1 which is defined by

� = 1
∣J∣

[

x1(y4z3 − y3z4) + x3(y1z4 − y4z1) + x4(y3z1 − y1z3)+
(

y1(z3 − z4) + y3(z4 − z1) + y4(z1 − z3)
)

x+
(

x1(z4 − z3) + x3(z1 − z4) + x4(z3 − z1)
)

y+
(

x1(y3 − y4) + x3(y4 − y1) + x4(y1 − y3)
)

z
]

� = 1
∣J∣

[

y1(x4z2 − x2z4) + y2(x1z4 − x4z1) + y4(x2z1 − x1z2)+
(

y1(z4 − z2) + y2(z1 − z4) + y4(z2 − z1)
)

x+
(

x1(z2 − z4) + x2(z4 − z1) + x4(z1 − z2)
)

y+
(

x1(y4 − y2) + x2(y1 − y4) + x4(y2 − y1)
)

z
]

� = 1
∣J∣

[

z1(x3y2 − x2y3) + z2(x1y3 − x3y1) + z3(x2y1 − x1y2)+
(

y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)
)

x+
(

x1(z3 − z2) + x2(z1 − z3) + x3(z2 − z1)
)

y+
(

x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)
)

z
]

(B.1)

where
∣J∣ = x1

(

y2(z4 − z3) + y3(z2 − z4) + y4(z3 − z2)
)

+

x2

(

y1(z3 − z4) + y3(z4 − z1) + y4(z1 − z3)
)

+

x3

(

y1(z4 − z2) + y2(z1 − z4) + y4(z2 − z1)
)

+

x4

(

y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)
)

,

(B.2)

is the determinant of the Jacobian matrix J of the transformation being equal to 6 times
the volume of the tetrahedron.
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The back-transformation is given through

x = x1 + (x2 − x1) � + (x3 − x1) � + (x4 − x1) �,

y = y1 + (y2 − y1) � + (y3 − y1) � + (y4 − y1) �,

z = z1 + (z2 − z1) � + (z3 − z1) � + (z4 − z1) �.

(B.3)
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