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1 Introduction 

1.1 The genetic transformation of plants  

A plant cell offers three genomes for genetic manipulation: the nuclear genome and the 

organellar genomes in the mitochondria and in the plastids. Stable genetic manipulation of a 

plant's nuclear genome was first reported in the early 1980s by Agrobacterium tumefaciens 

mediated transformation (Herrera-Estrella et al., 1983, Bevan et al., 1983). Today it represents a 

standard technique in many laboratories (Horsch et al., 1985, Clough and Bent, 1998).  

The technique does not require a sequenced DNA template of the target species (non-

homologous insertion) and is broadly applicable to a wide range of species (for review: Meyers et 

al., 2010). In contrast, the transformation of the organellar genomes is less established  

(Butow and Fox, 1990). Transformation of the mitochondrial genome is only reported in Yeast 

(Saccharomyces cerevisiae, Johnston et al., 1988) and Chlamydomonas reinhardtii, a unicellular 

green alga (Randolph-Anderson et al., 1993), but not in higher plants (Ijaz, 2010). Stable genetic 

transformation of a plastid genome (plastome) was first shown for Chlamydomonas reinhardtii 

(Boynton et al., 1988) and was successfully applied to the higher plant Nicotiana tabacum L. 

(tobacco) two years later (Svab et al., 1990). The technique of plastid transformation developed to 

an exciting research field with both basic and applied aspects (Koop et al., 2007). 

1.2 Plastid transformation 

Stable transformation of the plastid genome as a technique of manipulating a plant's DNA is 

considerably elegant. A key feature of the technology is the targeted insertion of transgenes in 

the plastome. This is based on the plastid's prokaryotic origin (Chan and Bhattacharya, 2010), 

which allows transformation vector integration based on homologous recombination.  

DNA sequences to be integrated into the plastome are therefore flanked by sequences amplified 

from the plastome of the target species. They are then subsequently incorporated at the specified 

site upon transformation vector delivery (Figure 1A). Although the plastomes of many species are 

sequenced (Verma et al., 2008) and substantial efforts are made towards stable transformation of 

those candidates (Herrera-Diaz, 2011), tobacco still represents the main model species in the 

field. For obvious candidates like the plant model Arabidopsis thaliana and monocot species of 

huge economic relevance like corn, rice, wheat etc. reproducible protocols are still elusive.  
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Transformation vectors are delivered to various explants by the biolistic method (Svab et al., 

1990) or to protoplasts by polyethylene glycol (Golds et al., 1993). Selection is commonly based 

on antibiotics resistance genes. Plastids are highly polyploid. The plastome copy number depends 

on plant species, tissue type and plastid number per cell – up to 10,000 plastome copies are 

present in tobacco leaf cells (Maliga, 2004). A successful transformation event involves a single or 

very few plastid DNA molecules initially which leads to cells with genetically different plastomes 

(Koop et al., 2007). This status of the cells is called heteroplasmic and these cells give rise to 

heteroplasmic shoots .This is the first regeneration event which emerges from tissue culture 

(Figure 1B). To sort out wild-type (WT) plastome copies, repeated rounds of regeneration under 

selection pressure are carried out. This leads to cells containing transformed plastome copies only  

(Figure 1C). The status of the resulting cells is called homoplasmic. Homoplasmic cells give rise to 

stably transformed transplastomic plants. Once homoplasmy is achieved, up to 10,000 copies of 

the new genetic information are present, offering the possibility to yield high protein 

accumulation levels. 

 

Figure 1. Events from the biolistic transformation vector delivery to the regeneration of a homoplasmic plant. 
 (A) Expression cassettes (PL_aadA_T) are flanked by homologous plastome sequences (INSR, INSL) for site-specific 
integration via homologous recombination. PL: promoter+leader (5’ regulatory region for trancription and translation), 
aadA: spectinomycin resistance cassette used for the selection of successful transformation events, T: terminator 
(3’ regulatory region). (B) Repeated rounds of regeneration under selection pressure lead to homoplasmic 
transformants. (C) Sorting out WT plastome copies under selection pressure (S) to obtain mutant copies only. Modified 
from Bock and Khan, 2004, and Cardi et al., 2010. 
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Due to their prokaryotic origin, plastids can be used for the expression of polycistronic operons 

(Staub and Maliga, 1995). Public concerns connected with genetic manipulation can be accounted 

for by the use of inducible systems (Lössl et al., 2005, Mühlbauer and Koop, 2005, Verhounig et 

al., 2010) and antibiotic selection marker removal strategies (for review: Day and Goldschmidt-

Clermont, 2011). Compared to nuclear transformants, transplastomic plants are save to grow in 

the field since plastids are maternally inherited in most crops (Corriveau and Coleman, 1988). 

It is therefore unlikely that the foreign sequence will escape to wild relatives. However, small 

scale leakage was observed (Ruf et al., 2007, Svab and Maliga, 2007) and long-time effects of such 

scenarios need to be investigated in the future. 

1.3 Current applied aspects of plastid transformation  

In basic science, plastid transformation is used to study plastid function e.g. by the mutation or 

inactivation of plastid genes (Mühlbauer et al., 2002). Applied aspects cover the establishment of 

novel traits in the plant. This may involve the introduction of new single traits e.g. herbicide 

resistance (McBride et al., 1995), but also biosynthetic pathways can be modified or newly 

introduced (Apel and Bock, 2009, Krichevsky et al., 2010). Recent reviews provide more 

information about the current field (Koop et al., 2007, Verma and Daniell, 2007, Maliga and Bock, 

2011). One major research branch of plastid transformation is based on the plastid's capacity to 

accumulate large amounts of proteins: the expression of therapeutics for human health, like 

antibodies, vaccines and more recently various antimicrobials (Daniell et al., 2009, Maliga and 

Bock, 2011). Until now, most studies focused on the expression of viral and bacterial vaccine 

antigens (Daniell et al., 2009, Bock and Warzecha, 2010, Cardi et al., 2010). Upon oral delivery, 

these vaccine antigens can trigger an immune response via the mucosa (Bienenstock and Befus, 

1980, Holmgren and Lycke, 1986) and adjuvants are used today to potentiate the response 

(Lycke and Holmgren, 1986, Holmgren and Czerkinsky, 2005). In contrast to a high number of 

reports focusing on the expression of antigens, there is a surprisingly limited number of reports 

on the plastid-based expression and subsequent application of other groups of therapeutics like 

small peptide drugs and human enzymes. Such therapeutic peptides / proteins ultimately need to 

enter the cytoplasm (pass the highly selective cell membrane barrier) to exert their action in the 

cytosol or organelles. Intracellular transport of membrane-impermeable biologically active 

molecules is one of the key problems in drug delivery (Torchilin, 2006). Although a first promising 

report about cellular delivery of plastid expressed proteins appeared in the field (Limaye et al., 

2006), the technology of cellular delivery is presently limited to the receptor-mediated route via 

adjuvants (Ruhlman et al., 2007, Verma et al., 2010, Boyhan and Daniell, 2011).  
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Despite the necessity to expand the advantages of plastid-based manufacture to new groups of 

therapeutics, modes of cellular delivery and intracellular targets for disease treatment,  

new carriers which offer the possibility for a receptor-independent passage across membranes, 

the highly selective brain-blood-barrier and even the human skin were not suggested. A field that 

offers extensive knowledge in this regard was established about twenty years ago with the 

discovery of cell penetrating peptides (CPPs). 

1.4 Cell penetrating peptides (CPPs) 

The concept of protein transduction into cells was first reviewed in 1968 by Ryser. Twenty years 

later, two independent groups reported the observation that the 86 AS HIV-1 transactivator 

protein Tat efficiently entered cells in vitro (Green and Loewenstein, 1988, Frankel and Pabo, 

1988). In a similar report in 1991, the group of Alain Prochiantz observed that the homeodomain 

of Antennapedia (a Drosophila transcription factor) was internalized by cells at conditions 

precluding endocytosis (Joliot et al., 1991). In 1994, Fawell et al. showed Tat-mediated 

transduction of covalently attached protein cargoes in vitro and in vivo – high molecular weight 

cargoes which would otherwise be excluded from cell entry. Vivès and co-workers (1997) mapped 

a minimal region responsible for Tat transduction, called Tat PTD (Protein transduction domain). 

PTDs are also referred to as cell penetrating peptides (CPPs). During this pioneering phase and the 

following years, a broad array of proteins that penetrate cells with and without an attached cargo 

were discovered and mapped to a minimal region (Prochiantz, 2000, Prochiantz, 2008).  

Short time after the discovery and study of structural properties of natural CPPs, artificial CPPs 

were designed. Today CPPs can be classified as naturally derived, chimeric or synthetic (Lindgren 

et al., 2000) and more than 100 sequences are known to be cell penetrating (Lindgren and Langel, 

2011). In the early years scientists were thrilled by the cellular drug delivery properties of CPPs 

since the therapeutic value of many new drugs is limited by their inability to cross the plasma 

membrane (Langel, 2002). The definition of CPPs is constantly evolving since their discovery. 

CPPs can be defined as short amphipathic or purely cationic peptides of less than 30 amino acids 

which possess a positive net charge, and which are able to penetrate biological membranes and 

transfer covalently or non-covalently attached bioactive cargoes into cells (Eiríksdóttir et al., 

2010). Once inside the cell, CPPs have been reported to accumulate in the nucleus (Bidwell et al., 

2009), but also mitochondria have been successfully targeted (Horton et al., 2008, Papadopoulou 

and Tsiftsoglou, 2011). The array and chemical nature of cargoes delivered by CPPs is impressive 

(Figure 2). 
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Figure 2. Schematic overview of possible applications where cell penetrating peptides have been shown to function 
well as delivery vehicles, both in vitro and in vivo. As presented in: Lindgren and Langel, 2011. 

1.5 Artefact discovery and CPP mechanism 

For the first decade data supported an energy-, temperature- and receptor-independent direct 

mechanism of cell entry for Tat and other CPPs (Langel, 2002). This independence of energy-

dependent endocytosis, however, was reported to be an artefact when it was discovered that cell 

fixation led to artificial CPP uptake (Lundberg and Johansson, 2001) and that the internalized 

amount of CPP was overestimated due to membrane bound peptide (Lundberg and Johansson, 

2002, Richard et al., 2003). In the following years a re-evaluation of CPP uptake started. 

Work on unfixed cells with inhibitors of endocytosis (to exclude endocytic uptake) and trypsin 

digest before FACS (to remove cell-bound CPPs), supported cellular uptake was due to different 

types of endocytosis (Fittipaldi et al., 2003, Wadia et al., 2004, Richard et al., 2005, Lundin et al., 

2008). Yet, studies still provided evidence for direct CPP penetration (Terrone et al., 2003, Thorén 

et al., 2003, Rothbard et al., 2004, Henriques et al., 2005, Deshayes et al., 2006, Fretz et al., 2007, 

Herce et al., 2009, Ter-Avetisyan et al., 2009, Watkins et al., 2009, Ciobanasu et al., 2010, Liu et 

al., 2011, Rydström et al., 2011, Hirose et al., 2012) and the discussions regarding the 

translocation mechanism are ongoing. Today it seems established that multiple transduction 

pathways are exploited in parallel by CPPs which depend on CPP concentration, size and nature of 

cargo, tested cell type and experimental setup (van den Berg and Dowdy 2011). 

Proposed pathways (Figure 3) for CPP transduction range from energy-independent direct 

penetration modes to energy-dependent endocytic modes (reviewed in: Madani et al., 2011, van 

den Berg and Dowdy, 2011). Historically, PTDs grouped under the name of CPPs are a very 

heterogenous group, which suggests that more than one single mechansim is involved. 
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It must be noted, however, that discussions about the mechansim are not only between but also 

within single CPPs. This is why the underlying mechansim of cell transduction of a given CPP-cargo 

complex needs to be investigated individually, and results from free CPPs cannot per se be 

extrapolated to their cargo-coupled counterparts (Holm et al., 2011). Recent reviews may serve as 

a source of further information (Magzoub and Gräslund, 2004, Ziegler et al., 2008, Järver, 2010, 

Walrant et al., 2012).  

A group of peptides with obvious structural and functional similarities to CPPs are antimicrobial 

peptides (AMPs) which are known for pore formation and / or lysis of target cells (Gunaratna et 

al., 2002, Henrigues et al., 2006). Some CPPs have been shown to act as antimicrobials 

(Nekhotiaeva et al., 2004). A recent review highlights the similarities between CPPs and AMPs 

(Splith and Neundorf, 2011). Lindgren and Langel (2011) mentioned in this regard that CPPs seem 

to have a position between antimicrobial peptides and peptides which use classical receptor-

mediated endocytosis for cell entry. However, neither of these peptides have shown such a 

potential for cargo and low-toxic delivery as CPPs (Lindgren and Langel, 2011). 

 

Figure 3. Suggested mechanisms of cell entry used by CPPs. Both energy-dependent and energy-independent 
mechanisms were shown to mediate CPP transduction. Endocytosis / Transcytosis are vesicle-based active processes 
(energy-dependent) of the internalization / redistribution of extracellular particles and fluids (Shen et al., 1992). 
Endocytosis can be further divided into sub-classes (for review: Doherty and McMahon, 2009) among which receptor-
independent macropinocytosis was increasingly shown to mediate the cell-entry of CPPs, especially in the transduction 
of large cargoes (Jones, 2007). Direct penetration mechanisms via e.g. the formation of a transient pore were reported 
to be most probable at high CPP concentrations and for primary amphipathic CPPs (see e.g. Madani et al., 2011) and do 
not require energy. Cell lysis as a result of energy-independent pore formation is suggested as mechanism for 
antimicrobial peptides which share similarities with CPPs in both sequence and degree of cell integrity disturbance 
(Splith and Neundorf, 2011). Schematic drawing modified from: Lindgen and Langel, 2011.  
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1.6 Clinical trials and future challenges 

Despite the ongoing discussions concerning the mechanism the concept of CPP-mediated delivery 

has proven successful with first phase II studies in 2003 (Rothbard et al., 2000, Chen and Harrison, 

2007). Over the years, CPP's versatile delivery potential was transferred to chemically diverse 

cargoes, targeting an impressive array of preclinical disease models (reviews documenting the 

drug field: Dietz and Bähr, 2004, Gupta et al., 2005, Patel et al., 2007, Foged and Nielsen, 2008, 

Heitz et al., 2009, Trabulo et al., 2010, Johnson et al., 2011). Today, over 20 phase I and phase II 

clinical trials are documented, none of which has reported adverse effects for patients (van den 

Berg and Dowdy, 2011). 

One strategy in the CPP field is the expression, purification and subsequent delivery of CPPs fused 

to therapeutic peptides / proteins. In 1999, a bacterial-expressed, fully-active 120 kDa 

ß-galactosidase was delivered in vivo to virtually every tissue of mouse including the brain 

(Schwarze et al., 1999). Since then, the CPP-mediated delivery of bioactive peptide / proteins was 

impressively expanded (reviews focusing on CPP fusion peptide / protein delivery: Dietz and Bähr, 

2005, Shi and Dowdy, 2007, Asoh and Ohta, 2008, Rapoport and Lorberboum-Galski, 2009, 

Johansson et al., 2011). 

In a recent work in CPP literature, attention is drawn to limitations in the current way of 

producing therapeutic CPP fusion peptides / proteins (Asoh and Ohta, 2008). Today, CPP fusion 

proteins are produced in bacterial cells, purified and then transduced to the disease model. 

The authors highlight limitations of the currently used bacterial system for the manufacture of 

CPP fusions, draw attention to endotoxin contamination and refer to unsolved problems with 

high-scale and low-cost purification. Until now, no alternative platform for the manufacture of 

CPP fusion proteins / peptides was suggested in the literature. 

1.7 Recently: Plants and CPPs 

Despite apparent mutual benefits for both research fields, the exchange of ideas, technology and 

the initiation of joint projects between scientists in the CPP sector and modern plant science is 

still at the beginning.  

One plant-derived CPP mentioned in the CPP literature (Prochiantz, 2000) is the maize homeobox 

transcription factor KNOTTED1 which was shown to pass plasmodesmata for cell-to-cell transport 

(Lucas et al., 1995, Kim et al., 2002). Tassetto et al. (2005) however, added a new aspect to the 

cell movement of KNOTTED1 with the observation of similarities between the cellular 

transduction of KNOTTED1 in plant and animal cells. Consequently, the third helix of KNOTTED1 
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showed the highest CPP properties, both with and without cargo when compared to the well-

studied CPPs Penetratin and (Arg)9 in a cell transduction study (Aussedat et al., 2006). Intercellular 

movement of transcription factors through plasmodesmata is today widely accepted (Wu and 

Gallagher, 2011).  

Besides the third helix of KNOTTED1 and members of the previously mentioned group of 

antimicrobial peptides (AMP members produced by the plants non-specific defense system; for 

review: Benko-Iseppon et al., 2010, Pelegrini et al., 2011) there is not much focus on the 

description of CPPs from plant origin. A recent publication suggests a new group of plant-derived 

CPPs, cyclic cell penetrating peptides, which are characterised by a cyclic cystine knot motif 

(Cascales et al., 2011). 

Recently, plant scientists started to elaborate the use of CPPs in their research (Roberts, 2005). 

In terms of CPP use for cargo delivery and manipulation of plant cells, the first study appeared in 

2004 (Rosenbluh et al., 2004). The group reported the successful delivery of Rhodamine and 66 

kDa BSA covalently attached to core histones into Petunia protoplasts. The authors refer to the 

artefact in the CPP field (see 1.5), provide evidence for direct translocation and clearly state that 

no endocytosis was involved.  

Since then reports appeared addressing the use of CPPs in plant science. Both, covalent and non-

covalent strategies were employed for the CPP-mediated delivery of different cargoes.  

Covalent strategies included the use of CPPs for the delivery of siRNA and silencing in tobacco 

suspension cells (Unnamalai et al., 2004) and the internalization of fluorescein into tobacco 

protoplasts (Mäe et al., 2005). CPP-GFP fusion protein was delivered to various root and 

epidermal explants (Chang et al., 2005). Fluorescent dye was delivered to Triticale protoplasts 

(Chugh and Eudes, 2007), to various Triticale explants and onion epidermal cells (Chugh and Eudes 

2008a) and to Triticale microspores (Chugh et al., 2009). The same group reported covalent 

(Chugh and Eudes, 2008b) and non-covalent (Chugh et al., 2009) delivery of GUS protein and 7.2 

kb linear plasmid encoding GUS to Triticale. Mizuno et al. (2009) delivered FDA labeled CPPs to 

tobacco suspension cells. It is interesting to note that the cell wall was not identified as a barrier 

in this study. 

Non-covalent strategies included the use of CPPs for the delivery of siRNA for gene silencing 

(Wang et al., 2007) and the delivery of fluorescent protein and ß-galactosidase to various explants 

(Wang et al., 2006, Chang et al., 2007). Transient GFP expression was achieved by the delivery of 

plasmid DNA (Chen et al., 2007). Hydrolase was delivered for the inhibition of seed germination 

 (Liu et al., 2007). Liu and co-workers (2008) tested fluorescent protein transduction in several 

organisms. CPP-mediated transduction was shown to work in archae bacteria, bacteria (both gram 

+ and gram -), cyanobacteria and yeast, but not in green algae and fungi. 
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While covalent delivery of GFP suggested an energy-independent direct pathway in plants (Chang 

et al., 2005), non-covalent studies suggested energy-dependent macropinocytosis (Chang et al., 

2007, Chen et al., 2007, Chugh et al., 2009).  

Combined covalent and non-covalent delivery and subsequent fluorescence resonance energy 

transfer (FRET) in onion epidermal cells suggested multiple endocytic internalization pathways 

 (Lu et al., 2010). Three reviews appeared in the field of CPPs and plants (Roberts, 2005, Eudes 

and Chugh, 2008, Chugh et al., 2010).  
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1.8 Aim of this thesis 

The present study aims at combining two exciting research areas which co-existed for more than 

20 years – the field of plastid transformation and the field of CPPs. 

 

The expression of CPP fusion proteins from the plastid attempts to answer the following 

questions: 

 

(1) CPPs were recently introduced to molecular plant science and some promising first reports in 

the field have emerged. However, there are no studies about the expression of CPPs in plants. 

This study addresses the following questions: Is it feasible to express fusions of nine classical CPPs 

to different proteins in plastids? What consequences do result for the plant? Are plants healthy, 

fertile, etc.? To which degree do CPP fusion proteins accumulate in the plant? Are there 

differences between the selected CPPs?  

 

(2) CPPs are reported to penetrate membranes by an array of suggested mechanisms.  

Today it seems established that CPPs with high molecular weight cargoes use endocytic 

transduction pathways (Edenhofer, 2008, Jones, 2010, Mäger et al., 2012), single studies, 

however, still report on direct modes (Hariton-Gazal et al., 2003, Rosenbluh et al., 2004, Chang et 

al., 2005, Cermenati et al., 2011). Which fusion protein localisation can be observed within the 

plant cell upon expression in the plastid? Are CPP fusion proteins restricted to the plastid or can 

any escape from the organelle to cytosol be observed?  

 

(3) Chances of CPP-mediated cellular delivery are currently evaluated in a number of phase I and II 

studies. Adverse effects are not reported so far (van den Berg and Dowdy, 2011). Recently, the 

search for alternative expression platforms for the manufacture of CPP fusion proteins was 

launched (Asoh and Ohta, 2008). Plants are a competitive platform for heterologous protein 

expression (Raskin et al., 2002, Koop et al., 2007, Paul and Ma, 2011). Can plastids be used for the 

expression of therapeutical CPP fusion proteins in a proof-of-principle study? 

 

 

 

 



2 Results 

The feasibility and benefits of CPP fusion protein expression in plastids was addressed in this 

study. Both basic science and applied aspects were tested. The approach was based on three 

plastid transformation vector series encoding for CPP fusions to three different proteins, stably 

expressed from the tobacco plastid genome:  

First, the enhanced green fluorescent protein (eGFP) vector series I (2.1) to track CPP fusion 

proteins by optical means, second, the production of anthocyanin pigment 1-Dominant (PAP1) 

vector series II (2.3) to provide a biological readout within the plant cell and, third, the 

phenylalanine hydroxylase (PAH) vector series III (2.4) to introduce the expression of CPP fusions 

to therapeutic proteins in plastids / plants. In section 2.2 the plastid transformation vector 

intermediate pUC18(C) is introduced which was used in the vector series II and III.  

2.1 eGFP vector series: tracking CPP fusion proteins 

As a starting point in the evaluation of CPP fusion protein expression in plastids, His-tagged CPP 

fusions with eGFP were expressed from the tobacco plastome. Such a system was supposed to 

fulfill two criteria:  

(1) eGFP fluorescence can be used as a convenient optical system to track CPP-eGFP fusion 

proteins upon expression in the plastid / plant.  

(2) CPP fusion proteins can be isolated via the His-tag for eGFP based transduction experiments 

into plant and animal cells.  

Nine prominent CPPs were selected for plastid transformation vector cloning (Table 1).  

 

Table 1. Selected CPPs, CPP abbreviation / number used in the text, origin, sequence and original publication.  
(1): Futaki et al., 2001, (2): Ho et al., 2001, (3): Vivès et al., 1997, (4): Joliot et al., 1991, (5): Soomets et al., 2000, (6): 
Morris et al., 2001, (7): El-Andaloussi et al., 2007, (8): Pooga et al., 1998, (9): Elliott and O’Hare, 1997. 

 

8x Arg  CPP1 synthetic RRRRRRRR (1) 

PTD-4 CPP2 synthetic, variant of CPP3 YARAAARQARA (2) 

Tat  CPP3 HIV-1 GRKKRRQRRRPPQ (3) 

Penetratin CPP4 Drosophila RQIKIWFQNRRMKWKK (4) 

Tp-10  CPP5 synthetic, variant of CPP8 AGYLLGKINLKALAALAKKIL (5) 

Pep-1  CPP6 synthetic KETWWETWWTEWSQPKKKRKV (6) 

M918 CPP7 synthetic MVTVLFRRLRIRRACGPPRVRV (7) 

Transportan CPP8 synthetic GWTLNSAGYLLGKINLKALAALAKKIL (8) 

VP22 CPP9 Herpes-Simplex Virus DAATATRGRSAASRPTERPRAPARSASRPRRPVE (9) 
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Cloning was performed with codon-optimized parts (adapted to the tobacco plastid codon usage) 

obtained by gene synthesis (GENEART). Ten expression cassettes were assembled in total and 

cloned into chloroplast transformation vector pKCZglpk (Scharff, 2002) to give rise to the eGFP 

vector series (Figure 4). 

 
 
Figure 4. Codon-optimized expression cassette for CPP fusion protein expression and transformation vector assembly 
of the eGFP vector series. (A) Elements and amino acid sequence of the His-tagged CPPx_eGFP in-frame fusion cassette. 
Principle cassette design according to Han et al., 2000 - GENEART condon optimized for the expression in tobacco 
plastids. His-tag: affinity tag for fusion protein purification, T: thrombin site, cppx: one out of nine CPPs (see Table 1.), 
egfp: eGFP, codon-optimized for plastid gene expression. A control cassette was assembled without CPP between Pst I 
and Xho I. (B) Assembly of nine CPPx_eGFP and one control_eGFP plastid transformation vectors. GENEART provided 
808 bp eGFP pre-cassette and 91 bp control pre-cassette were cloned via Nco I / Nhe I in working vector 
pPNG1014_MCS120 (Waheed et al., 2011). Single cppx coding regions were isolated from 100 bp fragments by 
digestion and were shotgun cloned via Pst I and Xho I upstream of egfp. Likewise, control cassette, 717 bp egfp was 
cloned in pPNG1014_MCS120_control via Xho I and Mlu I. Finally, the assembled ten expression cassettes were 
transferred via Xba I / EcoR V into tobacco transformation vector pKCZglpK (Scharff, 2002). pKCZglpK targets integration 
site trnN (INSL) / trnR (INSR) in the large inverted repeat (IR) (Zou et al., 2003). IRA: nucleotides 109,230–110,348 and 
110,349–111,520, IRB: nucleotides 131,106–132,277 and 132,278–133,396 tobacco plastome sequence according 
Yukawa et al., 2005.  
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The complete set of ten CPPx_eGFP vectors was transferred into tobacco leaves by the biolistic 

method. Leaves were cut two days post transformation and put on RMOP regeneration medium 

supplemented with 500 mg/l spectinomycin (Spec) as selective agent.  

Putative positive primary shoots were obtained for all vectors. No major differences were 

observed, however it should be noted that CPP7 yielded the highest number of transformants 

while CPP9 yielded the lowest. GFP positive shoots were identified by fluorescence microscopy. 

PCR analysis confirmed site-directed vector integration in the plastome with an internal / external 

primer pair (Figure 5). Cyclisation to achieve homoplasmy (compare Figure 1B) of positive 

transplastomic shoots continued until cycle V. At this stage, correct integration was further 

confirmed via Southern blot analysis (Figure 5).  

 

Figure 5. Identification of transplastomic CPPx_eGFP lines and confirmation of correct vector integration into the 
plastome by PCR and Southern blot. (A) Schematic drawing of eGFP transformation vector, WT plastome and 
transplastomic plastomes after homologous transformation vector integration. Primers for PCR are indicated with 
arrows. External primer (binds to the plastome): red; internal primer (binds to vector element): black. 
For Southern blot, BamH I cutting sites and probe location are given. (B) PCR with external primer LF fwd and internal 
primer GFP rev amplified a 3078 bp mutant fragment in the transplastomic lines but not in WT. (C) Southern blotting 
confirmed site-directed integration in the plastome and indicated homoplasmy by the detection of the mutant 
fragment and the absence of the WT fragment in the transplastomic lines. 2 µg of DNA was digested with BamH I and 
hybridized with a 325 bp probe which was amplified with primers Probe new CPP fwd / Probe new CPP rev. Expected 
fragment sizes: WT: 7063 bp, mutant 2888 bp. WT: wild-type, c: control_eGFP line, numbers 1 to 9: CPPx_eGFP lines, 
according to the CPP abbreviation code introduced in Table 1. 
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Homoplastomic lines were grown to maturity in the greenhouse and the plants’ ability of self-

pollinating and to develop seeds was monitored. When lines were allowed to self-pollinate, eight 

from ten lines produced viable seeds. Self-pollination in the case of line CPP7_eGFP led to tiny 

capsules (Figure 6) with degenerated, infertile seeds. Self-pollinating in the case of line 

CPP9_eGFP did not lead to any fertilization event at all.  

These results were confirmed using a reciprocal cross approach (Figure 6A). All line-♀ x WT-♂ 

crosses were successful and resulted in viable seeds. WT-♀ x CPP7_eGFP-♂ resulted in a tiny 

capsule. Accordingly, the cross WT-♀ x CPP9_eGFP-♂ was unsuccessful. 

To further confirm homoplasmy indicated by Southern blot (Figure 5), seeds originating from the 

reciprocal crosses were germinated on B5Spec (Figure 6). Seedlings originating from a cross lines-♀ 

x WT-♂ exhibited a green phenotype confirming that plastids in the progenies were of maternal 

origin and only contained the mutant plastome. Accordingly, when a WT-♀ was crossed with the 

lines-♂, all resulting seedlings showed a pale white phenotype on B5Spec. This further confirmed 

that no plastids were spread by pollen and all plastids inherited by the mother were of WT origin. 

 

Figure 6. Crossing experiments with the CPPx_eGFP lines. (A) Handling of lines for reciprocal crossing (modified from 
Herrera-Diaz, 2011). (B) Tobacco WT capsule in comparison to a capsule originating from a fertilization event with 
CPP7_eGFP line pollen. (C) Germination of seeds originating from reciprocal crosses: WT-♀ x CPP1_eGFP-♂ (1) on B5 (2) 
on B5Spec, CPP1_eGFP-♀ x WT-♂ (3) on B5 (4) on B5Spec – one exemplary result is shown. 
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To determine fusion protein localisation in seed-grown homoplastomic plants, early division 

stages of protoplast-derived cells embedded in alginate were studied at CLSM. CLSM provided 

exciting insights in the highly dynamic network of stromules within dividing protoplasts. However, 

no fundamental differences between the CPPx-eGFP fusion proteins were observed (Figure 7). 

Stromules (stroma-filled tubules) are tubular extensions of the plastid envelope (Köhler and 

Hanson 2000). They occur in all types of plastids and are connected to actin mircofilament

 

Figure 7. First division stages of CPPx_eGFP protoplast-derived cells. CPPx-fusion protein was contained in the plastid-
stromule-network. Stromules, long extensions originating from the plastid envelope, were detected in all lines.  
Note, that these must not be mistaken for cytosolic components. Characteristic differences accounting for single CPPs 
were not identified. Detection of stromules was correlated with the degree of CPPx-eGFP fusion protein accumulation. 
Arrows: stromules. WT: wild-type, c: control_eGFP line protoplast-derived cell, numbers 1 to 9: CPPx_eGFP lines 
protoplast-derived cells. CLSM was performed with a Leica TCS-SP2. Scale bar: 20 µm. 

 

bundles which are responsible for their dynamics (Kwok and Hanson, 2003, Natesan et al., 2005). 

Stromules were repeatedly described in the literature in the last 100 years (Gray et al., 2001) and 

were rediscovered only 15 years ago with the advent of GFP (Köhler et al., 1997). Their role is not 

fully understood but the transport of proteins as large as RubisCO (550 kDa) has been shown 

(Kwok and Hanson 2004). Mitochondria, the ER and the nucleus have been reported to be 

associated (Schattat et al., 2011 and references therein). Stromules greatly extend the surface of 

the plastid network, which suggests a role in communication / import / export with the cytosol 

(Natesan et al., 2005, Hanson and Sattarzadeh, 2008, Hanson and Sattarzadeh, 2011).  
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Recently, plastid DNA and ribosomes were shown not to travel through stromules which suggests 

that the exchange of genetic information via this route is not common (Newell et al., 2012). 

Work with the CPPx-eGFP system was repeatedly challenged by artefacts displaying cytosolic 

fusion protein localisation. Initially, water-infiltrated leaves were studied. Water-infiltration 

however turned out to cause damage to the leaf tissue, which resulted in fusion protein release to 

the cytoplasm (Figure 8A). Accordingly, when scalpel cutting edges were studied, only cells in 

proximity to the cutting edge revealed cytosolic fusion protein localisation (Figure 8B). Even the 

most sensitive method to assess fusion protein localisation, the cultivation of protoplast-derived 

cells, yielded low frequencies of cells with CPPx-eGFP fusion protein in the cytosol (Figure 8C).  

In this regard it is important to note that in homoplasmic tissues the localisation of plastid- 

 

Figure 8. Ease of artefact generation as a drawback of the CPPx-eGFP system. (A) Water-infiltration in leaves can 
disrupt the integrity of the cells which results in CPPx-eGFP fusion protein release from the plastid to the cytoplasm – 
shown here: CPP6_eGFP. Fusion protein is distributed over the cytoplasm of all cells in the tissue. Scale bar: 25 µM. 
(B) Scalpel cutting edges reveal the effect of disruptive methods on CPPx-eGFP fusion protein localisation within the 
plant tissues. Dashed line: cutting edge of CPP4_eGFP leaf. Cells in proximity of the cutting edge are filled with fusion 
protein which was released from the plastids. Scale bar: 25 µM. (C) Cytosolic fusion protein localisation as a rare event 
of studying dividing protoplast-derived cells – CPP7_eGFP. Fusion protein which is released from the plastids (P) stains 
the cytoplasm (arrows) which is distributed to border regions in the cell by vacuolar elements (VE). Scale bar 10 µm.  
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expressed proteins should be identical. Cytosolic localisation in only a small fraction (less than 5%) 

of the cells is therefor probably due to leakage from plastids caused by mechanical damage during 

sample preparation. Challenged by these limitations and taken into account that small scale 

escape from the plastid may not be detectable by visual means at all, we decided to highlight a 

potential escape scenario from the plastid with a second, highly sensitive physiological system. 

This system is described in section 2.4. 

The degree of fusion protein accumulation in the transplastomic CPPx_eGFP lines was 

determined. Total soluble protein (TSP) of mature plants before flowering was extracted and 

quantified by the Bradford assay. Ten µg of TSP were separated by SDS-PAGE. Only in the case of 

CPP7_eGFP a faint band of the expected ~ 30 kDa was detected (Figure 9). 

 
Figure 9. Adult stages of CPPx_eGFP lines and SDS-PAGE of extracted total soluble protein (TSP). (A) TSP was extracted 
from seed-grown CPPx_eGFP lines before flowering. WT: wild-type, c: control_eGFP line, numbers: CPPx-eGFP lines. 
(B) Separation of 10 µg TSP by 10% SDS-PAGE. Faint band of CPP7-eGFP accumulation is marked with a star.  
Defined amounts of BSA were loaded for comparison. WT: wild-type, c: control_eGFP line, numbers: CPPx_eGFP lines, 
LSU: RubisCO large subunit, SSU: RubisCO small subunit. 
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To perform CPP fusion protein transduction assays into protoplasts and human cells, CPPx-eGFP 

fusion proteins were isolated from the transplastomic plants via the His-tag. Some fusion proteins 

(CPP1-eGFP, CPP3-eGFP, CPP7-eGFP) in the plant extracts, however, did not bind to the 

Ni2+-agarose (Biontex). To selectively isolate fusion proteins from the plants, the isolation strategy 

was switched to Hi-Trap Butyl HP columns (GE Healthcare). Only in the case of CPP7-eGFP 

(compare Figure 9), the enriched band was clearly visible in the SDS-gel (Figure 10). 

 

Figure 10. HIC purified CPPx-eGFP fusion proteins separated on SDS-PAGE. 15 µl each were loaded. Amount of CPP7-
eGFP was estimated 3 µg, which equals 1.7 mg fusion protein per ~40 g of FW. c: control-eGFP line, numbers 1 to 9: 
CPPx-eGFP lines. Enriched band of CPP7-eGFP protein is marked with a star. LSU: RubisCO large subunit. 

 

Due to the low accumulation levels of CPPx-eGFP fusion proteins in the plastids, fusion proteins 

were isolated from the E. coli XL1 blue cells used for cloning (6.2.8.4). In six out of ten cases, there 

was detectable expression judged from GFP fluorescence of the harvested bacterial cell pellets. 

Purification was carried out with Ni2+-agarose and / or HIC columns according to the 

manufacturer's suggestions. Samples were dialyzed against 50 mM Tris-HCl pH 8.0 at 4 °C, 

adjusted to 10% glycerol, quantified by the Bradford assay and stored at - 80 °C until the analysis. 

 

Fusion proteins purified from E. coli or plants (CPP7-eGFP) were used for transduction 

experiments into freshly isolated protoplasts and partially digested young leaf tissue (6.2.9.1). 

Incubations were carried out at fusion protein concentrations from 1-5 µM for one hour (Figure 

11) and 5 µM for 24 hours (Figure 12). However, no fusion protein internalization was observed 

under these conditions.  

 

 

USE THE SCANNED PICS 
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Figure 11. Transduction of CPPx-eGFP fusion proteins into tobacco WT protoplasts. Freshly isolated protoplasts were 
incubated with 1-5 µM CPPx-eGFP fusion protein for 1 h. Gain for GFP fluorescence was normalised to zero with the 
help of WT protoplasts before studying the eGFP signal after incubation with cPPx-eGFP fusion protein. No differences 
were revealed. For cytoplasmatic localisation compare Figure 8. Left row: bright field and chlorophyll autofluorescence 
overlay, Right row: GFP fluorescence recorded from protoplasts after incubation with CPPx-eGFP fusion protein. 
+: stands for fusion protein addition to WT protoplasts, c: control-eGFP fusion protein, numbers: CPPx-eGFP fusion 
proteins. Scale bar: 10 µm. 

 

In addition to this experimental setup, fusion proteins were heat denatured (95 °C for 10 min), 

since it has been stressed that denaturation might facilitate the transduction of CPPs into cells 

(Nagahara et al., 1998). However, heat denaturation did not alter the outcome of the experiments 

(data not shown). It was later recognized that denaturation is not a prerequisite for transduction 

(Han et al., 2000, Caron et al., 2001). 
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Figure 12. Transduction of CPPx-eGFP fusion proteins into partially digested young WT tissues. Partially digested 
young tissues were incubated with 5 µM CPPx-eGFP fusion protein for 24 h. Gain for GFP fluorescence was normalised 
to zero with the help of WT tissue before studying the eGFP signal after incubation. No differences were observed. 
For cytoplasmatic localisation compare Figure 8. Upper row: bright field and chlorophyll autofluorescence overlay, 
Lower row: GFP fluorescence recorded after incubation with CPPx-eGFP fusion protein. Ø: untreated WT protoplasts, 
+: stands for fusion protein addition to WT protoplasts, c: control-eGFP fusion protein, numbers: CPPx-eGFP fusion 
proteins. Scale bar: 50 µm. Scale bar for Ø: 70 µm.  

 

After CPPx-eGFP fusion proteins failed to penetrate plant cells, we were interested, if the isolated 

fusion proteins were able to penetrate human cells. Three cell lines were selected for 

transduction experiments: Jurkat T cells (suspension), HeLa cells (adherent) and Phoenix cells 

(adherent). Transduction was tested in a range of CPPx-eGFP fusion protein concentrations from 1 

to 10 µM with incubation times from 30 min to 24 h at 37 °C.  
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To avoid artefacts, cells were trypsinized and quenched prior to FACS analysis. Interestingly, 

experiments could not detect differences between untreated, control-eGFP-treated and CPPx-

eGFP-treated human cells. The result of a characteristic experiment is shown in Figure 13.  

 

Figure 13. Transduction of CPPx-eGFP fusion proteins into human cells (FACS analysis). The read-out of the 
transduction of one exemplary CPPx-eGFP fusion protein (CPP3-eGFP = Tat-eGFP) in two cell lines is presented  
(fusion protein concentration in the experiment: 10 µM). FACS revealed an increase in GFP fluorescence in both the 
control-eGFP and the CPPx-eGFP-treated cells. Adherent Pheonix cells: (A) 1 h of incubation. (B) 24 h of incubation. 
Jurkat T suspension cells: (C) 1 h of incubation. (D) 24 h of incubation. HeLa cells were tested separately and gave 
comparable results (not shown). 
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2.2 Plastid transformation vector intermediate pUC18(C) 

Low fusion protein accumulation was observed in the transplastomic lines of vector series I (2.1). 

To potentially increase the protein yield in the plastids, a new plastid transformation vector 

intermediate was cloned (Figure 14). The same regulatory elements were used as with the  

vector series I, but a new insertion site was targeted, namely the trnfM / trnG insertion site  

(Ruf et al., 2001).  

Increased expression strength was considered desirable, since modes of CPP penetration were 

reported to be associated with CPP concentration (Duchardt et al., 2007, Kosuge et al., 2008). 

Increased protein accumulation in the plastid and a resulting high protein pressure might favour a 

switch to a direct penetration mode and a subsequent transfer of CPP fusion protein from the 

plastid to the cytosol (vecort series II, 2.3). Besides this aspect, for a biotechnological production 

of therapeutic CPP fusion proteins in plastids, high protein yields are mandatory (vector series III, 

2.4). 

 

Figure 14. Cloning the transformation vector intermediate pUC18_IN*_CPP cassette_rbcL (= pUC18(C)), targeting 
insertion site trnfM / trnG. A 3637 kb INS* fragment was amplified from the tobacco plastome as part of a larger 
fragment (Primer INS**fwd / INS**rev) and was inserted via Pst I / Kpn I (Pst I (36840) and Kpn I (40481), restriction 
enzyme site locations in the tobacco plastome, Yukawa et al., 2005)) into pUC18 resulting in pUC18_INS*. 
CPP expression cassette with promoter and 5´regulatory elements was amplified from the eGFP vector series 
(Primer KNT1 fwd / KNT1 rev) and transferred into the Spe I site (38316, location in tobacco plastome) in pUC18_ INS*, 
resulting in pUC18_INS*_CPP cassette. Finally, TrbcL 3’ (Primer rbcL fwd / rbcL rev) was inserted downstream of the CPP 
cassette via Nhe I and Afl III to give rise to pUC18_INS*_CPP cassette_rbcL (=pUC18(C)). Transformation vector 
intermediate pUC18(C) allows the convenient exchange of CPPx and Goi. It further allows the insertion of the aadA 
gene in the vector backbone for antibiotics selection marker removal according to Klaus et al., 2004. 
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2.3 PAP1 vector series: providing a physiological CPP read-out 

To overcome the artefact susceptibility of the fluorescence based eGFP system (see 2.1) and to 

increase the overall detection sensitivity, we were interested in a system which could provide a 

physiological read-out induced by a potential CPP-mediated fusion protein transfer from the 

plastid to the cytosol. Preferably such biological read-out could be detected by easy means 

without any processing of the plant.  

The purple Arabidopsis thaliana mutant Production of anthocyanin pigment 1-Dominant (pap1-D) 

was identified by screening activation-tagged lines (Borevitz et al., 2000). The underlying 

phenotype is caused by overexpression of a gene encoding MYB transcription factor PAP1. 

When PAP1 was overexpressed in tobacco, PAP1 activated the anthocyanin pathway which 

resulted in massive production of anthocyanins throughout the plant but no other morphological 

phenotype (Borevitz et al., 2000, Xie et al., 2006). Such dominant phenotypic readout was 

regarded suitable to test for CPP-mediated escape from the plastid. The following system was 

proposed (Figure 15). 

 

Figure 15. Proposed action of CPPx-PAP1 fusion proteins upon their production in the plastid. In a first step, 

the CPPx-PAP1 fusion protein is translocated to the cytoplasm via CPP-mediated transfer from the plastid to the cytosol.  
This is followed by nuclear targeting sequence-mediated import into the nucleus. PAP1 activation of anthocyanin 
biosynthesis results in a high anthocyanin phenotype of the transplastomic plant. T: transformation vector delivery of 
the CPPx_PAP1 series. 

 

Agrobacterium harboring PAP1 transformation vector pSB419 (Sharma and Dixon, 2005) was a 

kind gift of Richard Dixon. Leave disc transformation (Horsch et al., 1985) was carried out to 

generate a positive control (nuclear transformant) for the approach. 
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Regeneration of nuclear transformants started from bleached leaf pieces with a purple callus 

which subsequently gave rise to pap1 shoots (Figure 16). Pap1 transformants were grown to 

maturity and allowed to self-pollinate in the greenhouse. Crossing was carried out until T2 

generation. 

 
Figure 16. Generation and phenotype of nuclear transformant pap1. Top left corner: high anthocyanin callus as the 
result of Agrobacterium tumefaciens-mediated tobacco leaf disc transformation with transformation vector pSB419. 
Other pictures: anthocyanin accumulation in pap1 compared to WT, pap1 left, WT right side. 
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For stable transformation of the plastid genome, transformation vectors encoding fusion proteins 

of all nine CPPs with PAP1 and one control vector without CPP were cloned (Figure 17). Vector 

cloning was based on transformation vector intermediate pUC18 (C) introduced in 2.2 (Figure 14).  

 

Figure 17. Cloning of the PAP1 transformation vector series. Briefly, the 747 bp PAP1 coding region was amplified 
(primer: Pap1 fwd / Pap1 rev) from Agrobacterium transformation vector pSB419 (Sharma and Dixon, 2005) and cloned 
via Xho I and Nhe I sites into pUC18_INS*_CPP cassette_rbcL (see 2.2, Figure 14). Next, the dicistronic operon was 
restored by exchanging TrbcL with aadA_TrbcL via Nhe I / Not I transfer from the eGFP vector series (see 2.1, Figure 4). 
Finally, cppx parts were exchanged via Sac II and Xho I to give rise to the PAP1 plastid transformation vector series. 

 

The full set of CPPx_PAP1 vectors was transformed into tobacco by the biolistic method. 

Transformation yielded transplastomic plants for all constructs, however, despite repeated 

transformations attempts, no transplastomic line for transformation vector CPP5_PAP1 was 

recovered. Positive lines were identified by PCR (Figure 18) and cyclization was carried out until 

cycle II to IV. No enhanced anthocyanin phenotype was observed. In contrast, upon shoot 

formation, lines showed a pale-green chlorotic phenotype. Southern blot analysis confirmed 

correct integration and indicated homoplasmy state for all lines except for CPP8_PAP1 (Figure 18).  
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Figure 18. Identification of transplastomic CPPx_PAP1 lines and confirmation of correct vector integration into the 
plastome by PCR and Southern blot. (A) Schematic drawing of PAP1 transformation vector, WT plastome and 
transplastomic plastomes. Primers for PCR are indicated with arrows. External primer (binds to the plastome): red; 
internal primer (binds to vector element): black. For Southern blot, Hind III cutting sites and probe location are given. 
(B) PCR with external primer INS**fwd and internal primer PAP1 proof rev amplified a 3719 bp mutant fragment in the 
transplastomic lines but not in WT. (C) Southern blotting confirmed site-directed integration in the plastome and 
indicated homoplasmy by the detection of the mutant fragment and the absence of the WT fragment in the 
transplastomic lines. 2 µg of DNA was digested with Hind III and hybridized with a 376 bp probe which was amplified 
with primers Probe v2 fwd / Probe v2 rev. Expected fragment sizes: WT: 4494 bp, mutant: 3120 bp. Line CPP8_PAP1 did 
show WT fragment. WT: wild-type, c°: control_PAP1 line, numbers 1° to 9°: CPPx_PAP1 lines.  

 
Plants were transferred to the greenhouse for seed production. Growth under greenhouse 

conditions did not suggest elevated anthocyanin contents (Figure 19). This was further confirmed 

by thin-layer chromatography analysis of anthocyanin contents in leaves of greenhouse-grown 

plants (not shown). All lines in the greenhouse were capable of self-pollination except for line 7°. 

Line 8° and line 9° developed less and smaller capsules. Seeds obtained from pollinations with WT 

were surface sterilized and sown on B5Spec to check seed-grown phenotype plants (not shown).  
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Figure 19. Phenotype of transplastomic PAP1 lines in comparison to pap1 nuclear transformant. PAP1 lines were 
regenerated from tissue culture and Southern blot confirmed homoplasmy. In T1 grown from seeds, the chlorotic 
phenotype was established however the growth size phenotype was less pronounced. c°: control_PAP1 line, numbers 
1° to 9°: CPPx_PAP1 lines, pap1: nuclear transformant (positive control).  

 

To determine whether the observed chlorotic phenotype was due to high protein accumulation 

levels in the lines, TSP was extracted and separated by SDS-PAGE. No prominent band resulting 

from CPPx-PAP1 fusion protein accumulation was observed. Chlorosis, however, exhibited an 

effect on the amount of RubisCO large subunit (Figure 20). 

 

Figure 20. SDS-PAGE of extracted CPPx_PAP1 soluble protein (TSP). 10 µg TSP were separated, defined amounts of 
BSA were loaded for comparison. WT: wild-type, pap1: pap1 nuclear transformant, c°: control_PAP1 line, numbers 1° to 
9°: CPPx_PAP1 lines. LSU: RubisCO large subunit, SSU: RubisCO small subunit. 
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2.4 PAH vectors series: CPP fusions for the clinic 

To date, CPP fusion proteins / peptides are expressed in bacterial cells, alternative expression 

systems are missing (Asoh and Ohta, 2008). To introduce the expression of CPP fusions of clinical 

value in plants, we aimed to express CPP fusions to a human enzyme from the plastid. Such a 

plastid-expressed fusion protein could be used for the substitution of a non-functional protein in 

the human body. Approaches like this are termed enzyme replacement therapy (ERT) (Fratantoni 

et al., 1968, Neufeld, 2006). ERT is a promising field of disease treatment, especially in the 

treatment of lysosomal storage diseases (Brady 2006, Goldblatt et al., 2011). ERT is challenged by 

high costs for the development and subsequent production of the enzyme in question 

(Wraight, 2006). In 2007, studies have shown the feasibility of plant-based production of 

glucocerebrosidase for the ERT of Gaucher's disease (Shaaltiel et al., 2007, Aviezer et al., 2009) 

and today plant-based production of pharmaceuticals has proven successful in several clinical 

trials (for review: Paul and Ma, 2011).  

Only recently, CPPs have entered the field of ERT with great success (Rapoport and  Lorberboum-

Galski, 2009). CPP-mediated ERT in the case of phenylketonuria (PKU) (Eavri and Lorberboum-

Galski, 2007) is considered a very promising approach in the treatment of the disease (Sarkissian 

et al., 2009). PKU is the most frequent inborn genetic disorder of amino acid catabolism (Online 

Mendelian Inheritance in Man 261600). It is characterised by the body´s inability to convert food 

supplied phenylalanine (Phe) to tyrosine, caused by deficiency of phenylalanine hydroxylase 

(PAH). If untreated, resulting Phe accumulation leads to impaired postnatal development. PKUs 

classical treatment includes a life-time vegan diet / dietary protein restriction combined with the 

supplementation of tyrosine. BH4 supplementation, PAHs natural co-factor, was identified as an 

effective treatment for mild forms of PKU (Muntau et al., 2002). This led to the first commercial 

product on the market: Kuvan® (sapropterin dihydrochloride), the synthetic form of BH4. 

Kuvan® is today widely applied, its effect, however, is limited in some genotypes and its chemical 

synthesis is very expensive (Santos-Sierra et al., 2012).  

Given the great promise of CPP-PAH fusions for the treatment of PKU, the diseases clear 

connection to food and the classical dietary way of treatment, PKU was selected for the proof-of-

principle analysis of plastid expressed CPP fusions for the clinic.  

Besides the CPP Tat (= CPP3) which was used by Eavri and Lorberboum-Galski (2007), synthetic 

Tat variant PTD-4 (= CPP2) was chosen since PTD-4 showed 43-times the transduction ability when 

compared with native Tat (Ho et al., 2001). 
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Transformation vector cloning was based on the transformation vector intermediate pUC18(C), 

which targets the trnfM / trnG insertion site in the plastid genome (see 2.2, Figure 14). Pah ORF 

for cloning was a kind gift of Ania Muntau (Dr. von Hauner Children’s Hospital, LMU Munich).  

Two vector categories were generated (Figure 21). One with the aadA gene (antibiotics selection 

marker) between the homologous insertion flanks for conventional stable resistance marker 

integration and one with aadA cassette in the vector backbone for cointegrate formation and 

subsequent antibiotics resistance marker removal (Klaus et al., 2004). 

 

Figure 21. Cloning of the PAH transformation vector series. (A) Cloning of the PAH transformation vector with aadA 
gene between the homologous insertion flanks for conventional resistance marker integration. First, the dicistronic 
operon was restored in pUC18_INS*_CPP cassette_rbcL (see 2.2, Figure 14) by exchanging TrbcL with aadA_rbcL via 
Nhe I / Not I transfer from eGFP vector series (see 2.1, Figure 4). Next, cppx parts were exchanged to cpp2, cpp3 and 
control via   Sac II and Xho I. Finally, 1360 bp pah was inserted via Xho I / Nhe I into all three constructs to get final 
plastid transformation vectors. (B) Cloning of the PAH transformation vector with aadA cassette in vector backbone. 
Sac II / Nhe I part from pUC18_INS*_CPP cassette_rbcL_PAP1_aadA_extern (unpublished, aadA cassette was inserted in 
the Sca I site, position: 2108, in pUC18 vector backbone) was exchanged with Sac II / Nhe I part from the PAH 
transformation vector series with the aadA gene between the homologous insertion flanks (see Figure 21 A). 
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Vectors of the CPPx_PAH series were transformed into tobacco plastids by the biolistic method. 

Plants were regenerated for both vector categories. Despite several transformation attempts, no 

transplastomic plant was identified for the control transformation vector.  

This happened to be the case for both the construct with aadA in the vector backbone and for the 

one with aadA between the homologous insertion flanks. For CPP2 and CPP3, however, PCR and 

Southern blotting identified and confirmed successful transformation events. One plant per 

category was studied in greater detail (Figure 22). 

 

Figure 22. Identification of transplastomic CPPx_PAH lines and confirmation of correct vector integration into the 
plastome by PCR and Southern blot. (A) Schematic drawing of PAH transformation vector (internal aadA), WT plastome 
and transplastomic plastomes. Primers for PCR are indicated with arrows. External primer (binds to the plastome): red; 
internal primer (binds to vector element): black. For Southern blot, Hind III cutting sites and probe location are given. 
Note: PAH transformation vector (external aadA) is also presented. PCR and Southern blot for this construct resulted in 
the same fragment sizes as for the PAH transformation vector with internal aadA. (B) PCR with external primer 
INS**fwd and internal PAH Nhe I rev amplified a 4410 bp mutant fragment in the transplastomic lines but not in WT.  
(C) Southern blotting confirmed site-directed integration in the plastome and indicated homoplasmy by the detection of 
the mutant fragment and the absence of the WT fragment in the transplastomic lines. 2 µg DNA was digested with Hind 
III and hybridized with a 376 bp probe which was amplified with primers Probe v2 fwd / Probe v2 rev. 
Expected fragment sizes: WT: 4494 bp, mutant: 3120 bp. WT: wild-type, 2*: CPP2_PAH (external aadA) line, 
3*: CPP3_PAH (internal aadA) line.  
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Regenerated CPP2_PAH (internal aadA) line showed a normal growth phenotype and faintly 

chlorotic leaves. CPP3-PAH (external aadA) in contrast had thick leaves combined with severe 

stunted growth and difficulties in root production (Figure 23). CPP2_PAH plant was rooted and 

transferred to the greenhouse. To check for protein accumulation in the lines, total soluble 

protein was extracted from the homoplasmic lines and separated by SDS-PAGE (Figure 23).  

 

Figure 23. Phenotype of CPPx_PAH lines and TSP separated by SDS-PAGE. (A) Phenotype of CPPx_PAH lines. 
2*: CPP2_PAH (external aadA) line, 3*: CPP3_PAH (internal aadA) line. (B) 10 µg of TSP were separated by SDS-PAGE. 
No CPPx-PAH fusion protein accumulation was observed. LSU: RubisCO large subunit, SSU: RubisCO small subunit. 

 

Seeds of line CPP2_PAH were obtained by self-pollination in the greenhouse. When CPP2_PAH 

(external aadA) seeds of T1 generation were germinated on B5 and B5spec medium, pale white 

seedlings occurred in presence of the antibiotics (Figure 24). This indicated the loss of the 

antibiotics marker aadA by loop-out recombination as suggested by Klaus et al., 2004. 
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Figure 24. Germination of CPP2_PAH (external aadA) T1 seeds on B5 (left jar) and on B5Spec (right jar). Loss of the 
antibiotics resistance gene aadA resulted in pale white seedlings on media with antibiotics. 

To test plastid-manufactured CPP2-PAH fusion proteins in the clinic, CPP2-PAH fusion proteins 

were isolated from CPP2_PAH (external aadA) crude plant extract via FPLC and gel filtration. 

However, when fusion protein accumulation was assayed by Western blot, no CPP2-PAH fusion 

protein was detected in the analysed samples (Figure 25). 

 

Figure 25. Gel filtration and identification of CPP2-PAH fusion protein by Western blot. (A) Gel filtration profile 
revealed two peaks (B1-B5, D8-D4) and one degraded fraction (E11-G09). (B) Western blot identification of CPP2-PAH 
fusion protein in different fractions. In the positive control only, PAH was detected. 1: crude plant extract, 2: pooled 
fractions after FPLC (Ni

2+
-affinity chromatography via His-tag), 3: fraction B1-B5 (gel filtration), 4: fraction D8-D4 

(gel filtration), 5: control (PAH purified from E. coli). Analyses were performed by Dunja Reiß at Dr. von Hauner 
Children’s Hospital, LMU Munich. 



3 Discussion 

This study was designed in view of the high number of reports about the expression of vaccine 

antigens and the comparably limited number of studies on the expression of other therapeutic 

peptides / proteins in plastids. Today, many promising therapeutics are limited in their clinical 

application due to limitations in their cellular delivery. Size and chemical nature of these drug 

candidates do not allow free diffusion across the plasma membrane and consequently demand a 

suitable carrier system. A group of versatile carrier peptides mediating cellular delivery are cell 

penetrating peptides (CPPs). Despite a long history of uncertainties concerning the exact CPP 

mechanism, clinical trials of CPP-mediated cellular delivery were launched only short time after 

CPP discovery. To date, CPP fusions for the clinic are prepared from bacterial cells with associated 

bottlenecks like endotoxin contamination, scale up etc. From the perspective of scientists working 

in the CPP field (Asoh and Otha, 2008), alternative expression platforms are highly desirable.  

To date, no reports about the expression of CPP fusion proteins in plants have emerged in the 

literature. This study aimed to fill this gap. Three approaches were employed in a proof-of-

principle study.  

First, the general feasibility of CPP fusion protein expression in the plant was assessed. Second, it 

was addressed which fusion protein localisation results upon expression in the plastid. Third, it 

was asked whether plastids can be used for the expression of therapeutical CPP fusion proteins in 

a proof-of-principle study. 

The results of this study suggest that the production of CPP fusion proteins is feasible in general. 

Leakage of CPP fusion protein from the plastid was not observed. The clinical proof-of-principle 

was not conducted due to low CPP fusion protein expression levels. Limitations of the current 

study are identified and discussed to provide a framework for further approaches.  

3.1 Expression of CPP fusion proteins in tobacco plastids is 
feasible 

Twenty transplastomic lines were established in this work, expressing an array of cell penetrating 

peptide fusions to proteins in the tobacco plastid. Up to nine different CPPs were fused to the 

fluorescent protein eGFP (vector series I, see 2.1), the transcription factor of anthocyanin 

biosynthesis PAP1 (vector series II, see 2.3) and the human enzyme of phenylalanine metabolism 

PAH (vector series III, see 2.4).  
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CPP fusion proteins have never been expressed in the plastid / plant before. Judging from the 

experiences made in this study, the expression of CPP fusion proteins in the organelle is feasible. 

Transplastomic plants reached homoplasmy, produced viable seeds and stably inherited the 

desired trait to their progenies in a maternal fashion. Transplastomic plants also provided an 

insight into pleiotropic effects, which can result from the expression of heterologous proteins in 

plastids (reviewed in Ruiz and Daniell, 2005, Lössl and Waheed, 2011). 

A chlorotic phenotype was observed in some CPP_PAP1 lines (Figure 19). This phenotype was also 

reflected by the lower amount of RubisCO large subunit detected by SDS-PAGE (Figure 20). 

In addition to chlorosis, small growth occurred in this vector series. Severe stunted growth was 

observed in the case of CPP3_PAH (Figure 23). In this line, the observed dwarf phenotype was 

combined with impaired root development and late flowering (not shown). Reproducible traits, 

like male sterility and reduced seed capsule size were observed in both eGFP and PAP1 vector 

series. No plant was regenerated for CPP5_PAP1. No plant could also be regenerated for the 

control construct of the PAH vector series.   

For all lines SDS-PAGE revealed low levels of fusion protein accumulation in adult plants. 

This suggests that the mentioned phenotypic effects are rather a consequence of the nature of 

the CPP fusion protein itself than of the high degree of fusion protein accumulation. 

As introduced by Tregoning et al. (2003), high amounts of accumulated protein in the plastid can 

result in unwanted phenotypic effects, which can lead to even more severe pleiotropic effects if 

protein accumulation in the plastid increases (Oey et al., 2009). Recently, the group of Daniell 

reported protein accumulation up to 70% total leaf protein without negative effects on the plant 

(Ruhlman et al., 2010). Our results, however, are in agreement with studies which showed that 

comparably small amounts of heterologous protein accumulation can result in pleiotropic effects 

in the plant (Lössl et al., 2003, Magee et al., 2004, Waheed et al., 2011).  

The expression of eGFP in tobacco plastids was reported before without any mentioned 

phenotypic effects (Newell et al., 2003). This was confirmed by our control plant expressing eGFP 

only. When CPPs were coupled to eGFP in our study, the transplastomic plants’ phenotype was 

not greatly altered. However, effects like male sterility and impaired capsule development 

occurred in two out of nine lines (CPP7_eGFP and CPP9_eGFP). The underlying mechanism is 

currently not known. It seems however that the observed pleiotropic effects do result from a 

combination of the single CPP and the respective protein, which phenotypic outcome cannot be 

predicted. This is supported by the PAP1 lines. Expression of the Arabidopsis thaliana MYB 

transcription factor PAP1 resulted in chlorosis in the control line (PAP1 without CPP). 

Interestingly, when CPPs were coupled to PAP1, resulting fusion protein expressing lines either 

resembled WT (CPP1_PAP1) or showed even more pronounced pleiotropic effects (CPP3_PAP1). 
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Plants aimed for the clinical trial, CPP_PAH (vector series III), exhibited the most profound 

consequences of fusion protein expression, spanning from normal growth (CPP2_PAH), to a dwarf 

phenotype (CPP3_PAH) and no regeneration at all (control_PAH without CPP). For this group, an 

interference of the heterologous protein with the amino acid metabolism of the organelle cannot 

be excluded. Although PAH was recently reported only to be present in gymnosperms, mosses 

and Chlamydomonas (Pribat et al., 2010), one might speculate that human PAH is functional when 

it is expressed in the plastid of a higher plant. Although the human co-factor BH4 is missing, 

plastids were reported to be rich in 10-formyltetrahydrofolate (10-formyl THF, Orsomando et al., 

2005). 10-formyl THF was identified as a co-factor for the enzyme in non-flowering plants 

(Pribat et al., 2010) and is also present in higher plants (Collakova et al., 2008). The observed 

phenotypes may therefore possibly result from a functional PAH enzyme in the plastid, in which 

the N-terminal fused CPPs attenuate PAH action. According to this hypothetical model, 

CPP2 hinders the function of the enzyme in the plastid which results in a WT phenotype. 

Accordingly, CPP3 does not completely interfere with PAH action and the plant shows the 

observed stunted bulky growth. A control plant, PAH without CPP, cannot be regenerated. 

Phenylalanine is converted to tyrosine which leads to the inability to regenerate the control PAH 

plant. Such explanation for the phenotypic consequences of CPPx_PAH lines is supported by the 

observation that CPPs can interfere with the function of their cargo (Dowdy, 2006). 

Although the expression of CPP fusion proteins turned out to be feasible in the plant, an issue that 

still needs to be optimized is the level of protein accumulation in the transplastomic lines. 

In principle, and in contrast to nuclear transformants which, with some exception, commonly 

accumulate as little as 0.01-0.4% TSP (Molina et al., 2004), the expression of transgenes from the 

plastid today enables to achieve protein accumulation up to 70 % TSP (Oye et al., 2009).  

To maximize expression levels of CPP fusion proteins in our study, we optimized the CCPx_eGFP 

expression cassettes in terms of codon-usage and structural elements for the expression in 

tobacco plastids (GENEART). In addition, expression cassette elements were chosen that were 

reported to confer high protein expression in the plastid (Scharff, 2002). However, despite this 

optimisation, protein accumulation levels were below what we had expected.  

In vector series I, CPPx_eGFP, high CPP fusion protein accumulation was probably hindered due to 

a directed repeat the underlying transformation vector pKCZglpk forms with the tobacco 

plastome (Scharff, 2002, Zou et al., 2003). This direct repeat is enabled through the use of tobacco 

rrn promoter (Prrn, plastid 16S rRNA promoter) in the transformation vector pKCZglpk 

(Zou et al., 2003). Upon site-specific integration, a 91 bp Prrn direct repeat is established with the 

native Prrn in the plastome and consequently recognized by plastid recombination machinery. 

This can lead to loop-out recombination events (Koop et al., 2007), which were confirmed for 
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vector series I by the detection of the recombined transcript (not shown). Although no vector 

elements are affected, the recombination affects the coding regions for 16S rRNA, 23S rRNA, 

4.5S rRNA, 5S rRNA, tRNA-Isoleucine, tRNA-Alanine. Despite this unfavorable condition, 

CPP7_eGFP showed detectable CPP fusion protein accumulation in the Coomassie gel (Figure 9) 

and at the whole plant level by the bare eye upon UV illumination (not shown).  

To overcome this structural limitation, the insertion site for homologous transformation vector 

integration was changed from trnN / trnR (Zou et al., 2003) to trnfM / trnG (Ruf et al., 2001) in the 

transformation vector intermediate pUC18(C) (Figure 14). However, for both resulting vector 

series (series II and series III), protein accumulation levels were not increased. Low fusion protein 

yields were observed for both CPPx-PAP1 (Figure 20) and CPPx-PAH (Figures 23, 25). 

This raises the question, whether low protein accumulation levels are common feature of CPP-

fusions protein expression in plastids or if rather structural determinants of the expression 

cassette are more important for the observed low yields. On which level the different CPPs / CCP 

fusion proteins or the vector design (Figure 4) exert an effect on the final level of protein 

accumulation awaits to be determined. Codon-optimisation was reported to increase protein 

accumulation only a few-fold in higher plants (Ye et al., 2001, Tregoning et al., 2003), whereas 

optimisation of translation control signals affect protein accumulation in a 10,000-fold range 

(Maliga, 2002). Bock and Warzecha (2010) conclude that not accumulation of stable transcript, 

but rather translational efficiency and protein stability limit protein accumulation. In a systematic 

approach to identify determinants of protein stability in chloroplasts, the importance of  

N-terminal amino acid residues after the start codon was highlighted (Apel et al., 2010).  

Among these are N-terminal determinants of stability are targeting sequences and purification 

tags. These elements consequently affect protein stability and subsequent protein accumulation 

in transplastomic plants (Elghabi et al., 2011). One might speculate that the combination of a His-

tag with the varying CPPs upstream of the respective fusion protein partner decreases protein 

stability and largely accounts for the low protein accumulation in the vector series I to III. 

Besides the need to increase CPP fusion protein accumulation, the phenotypic effects, which 

already resulted from low CPP fusion protein accumulation levels, suggest the use of an inducible 

system for future approaches. Although previous reports of inducible systems were still 

challenged by unsolved problems like low expression levels and promoter leakage in the non-

induced state (Koop et al., 2007), inducibility represents a key achievement when it comes to 

heterologous protein expression in plants. Equally important for the plants to accept foreign 

protein expression in their organelle is public acceptance in this regard. A functional inducible 

system could account for public concerns which are connected with the constitutive production of 

heterologous proteins in plants. Respective main concerns are not connected with a plants’ 
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overall gene content but rather if a gene in question is expressed or not. The use of an inducible 

system has the potential to account for those demands. In addition it could help studying the 

detailed effect of PAH and CPPx-PAH fusions on the plastid. 

3.2 CPP fusion proteins are entrapped in the organelle  

The current study marks the first expression of CPP fusion proteins in the plastid. Performing such 

a study is not only exciting from the perspective, that two fields, co-existing now for more than 

twenty years, get to know the chances and benefits the other field offers. We, from a plant 

biology point of view were interested in the effect of CPP fusion protein expression in the 

organelle, especially in terms of CPP fusion protein distribution.  

A number of mechanisms were proposed for CPP transduction spanning from direct modes 

(energy-independent) to endocytic modes (based on endocytosis, energy-dependent), 

both between and within single CPPs (see introduction 1.5). Which mechanism is exactly exploited 

depends on a number of factors (van den Berg and Dowdy, 2011) and the read-out of an 

experiment is not per se predictable (Holm et al., 2011). Although the majority of recent data 

after artefact discovery in the year 2001 (Lundberg and Johansson, 2001) supported an endocytic 

mode of uptake especially for CPP fusion proteins (Trabulo et al., 2010), there are still reports 

providing evidence for direct penetration modes of CPP fusions (Hariton-Gazal et al., 2003, 

Rosenbluh et al., 2004, Chang et al., 2005, Cermenati et al., 2011). Such a direct mode of 

transduction could result, in terms of plastid expressed CPP fusion proteins, in a transfer of CPP 

fusion protein from the organelle to the cytosol.  

In the past, endocytosis-free models like the transduction in organism not capable of endocytosis 

(Nekhotiaeva et al., 2004, Geueke et al., 2005, Liu et al., 2008) and CPP escape / transduction 

experiments with artificial lipid vesicles (Magzoub et al., 2005, Björklund et al., 2006, Bárány-

Wallje et al., 2007, Säälik et al., 2011) were employed in CPP research to shed light on CPP 

mechanism. The expression of CPP fusions and studying their potential escape from the plastid as 

enclosed organelle is in line with such approaches. 

Recently, the transfer of dually located proteins (proteins with dual location in different 

compartments of cell) from mitochondria and chloroplasts to other cellular compartments has 

gained increased attention (for review: Krause and Krupinska, 2009, Pfannschmidt, 2010). 

One major group of these dually located proteins has DNA binding ability (transcription factors, 

telomere binding proteins) - a feature which is also characteristic for many CPPs, which are often 

derived from transcription factors (Heitz et al., 2009). The association of CPPs with DNA is 

mediated by the net positive charge of their cationic sequence.  
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Interestingly, in a recent study (Isemer et al., 2012) plant transcription factor Whirly1 was 

reported to be relocated from the plastid to the nucleus. The underlying mechanism of 

translocation is currently unknown. This draws attention to parallels with the maize homeobox 

transcription factor KNOTTED1, which was first shown to travel between plant cells and later on 

shown to function as CPP in animal cells (see introduction 1.7).  

Although further evidence in Whirly1 translocation is needed and the detailed mechanism is still 

elusive, the report demonstrates the growing interest in studying routes from plant organelles to 

the cytoplasm and the nucleus. Once established, such route could potentially be used for an 

export of proteins from the organelles to the cytosol. A route, regarded highly desirable for both 

basic and applied science. In basic science it would offer the possibility to study plastid to nucleus 

communication in e.g. in terms of retro signaling. For applied approaches it would allow to couple 

the high expression capacity of the plastid with the glycosylation machinery mediated from the 

cytosol. This would be of great interest for the expression of complex human proteins in the 

plastid, since glycosylation is a feature plastids do not offer. 

However, when we first studied such CPP-mediated translocation scenario from the plastid to the 

cytosol with the CPPx-eGFP fusion proteins by optical means (vector series I), it became obvious 

that a second system was desirable. It was discovered that the optical eGFP system was amenable 

to artefacts (Figure 8). Water-infiltration turned out to disrupt cell integrity which resulted in 

fusion protein release from the plastid to the cytoplasm. Consequently, although first data 

suggested differences between the single CPPx-eGFP fusions, artefacts could be generated in all 

lines including the control. When dividing protoplast-derived cells were studied, CPP-eGFP signals 

were contained in the chloroplast / stromule network (Figure 7). However, even in this system 

artefacts were detected (Figure 8). Artefact and stromule detection were a function of the 

expression strength which varied between but also within the CPPx_eGFP lines. 

The second line of evidence which was established in terms of CPPx-fusion protein distribution 

was the PAP1 system. The proposed system (Figure 15) is per se considerably elegant since it is 

designed to provide a biological read-out which does not require any sample handling. 

However, also with this vector series, no differences between the control_PAP1 and the 

CPPx_PAP1 lines were detected when scored visually (Figure 19) and when judged from the thin 

layer chromatography (not shown). This is in line with the result from vector series I (CPPx_eGFP) 

and suggests no fusion protein escape from the plastid by a direct mechanism of CPP 

translocation. This is in accordance with the majority of studies in the CPP field, which reported 

endocytic routes of transduction for CPPs coupled to large cargoes. Among these endocytic 

routes, macropinocytosis has increasingly gained importance for transduction (Kaplan et al., 2005, 

Nakase et al., 2007). This was confirmed by recent data from the Langel lab (Mäger et al., 2012) 



Discussion 47 

and is also supported by the majority of contributions from the plant sector (Chugh et al., 2010, 

Qi et al., 2011). It seems that CPP definition keeps evolving and an updated version was reported 

to be suggested in the near future (Mäger et al., 2012). 

Taking provided data into account, one could argue, that the general functionality of the 

physiological PAP1 system remains to be proven. If there is leakage from the organelle, and the 

fusion proteins successfully access the cytosol, CPPx-PAP1 proteins still have to enter the nucleus 

to provide a positive read-out. Cermenati et al. (2011) reported FITC labeled Tat (CPP3) 

accumulation in the nucleus of insect cells, however no Tat-eGFP fusion protein transduction in 

the nucleus. The authors state structural reasons of eGFP for this phenomenon, which, however, 

do not necessarily apply to the transcription factor PAP1.  

For future studies, it could be interesting to test if protein fusions to lytic peptides, the class of 

peptides with even more disruptive effect on membranes, offer a tool to deliver cargoes to and 

from compartments. In addition, exciting candidates like plant transcription factors should be 

studied as fusions to GFP, most importantly in the case of Whirly1.  

Taken together, from the current perspective, combined results from the eGFP and the PAP1 

vector series suggest that none of the CPP fusion protein combinations was leaking from the 

plastid. However, when we tested for “classical” membrane transduction we were surprised that 

we found no transduction properties at all. 

3.3 Do plant-produced CPP-fusion proteins penetrate into 
protoplasts and human cells? 

The use of CPPs in plant biology marks a very recent expansion of the CPP field. CPP-mediated 

manipulations carried out in molecular plant science were so far performed from the “outside”, 

trying to manipulate plant cells in terms of protein, RNA and more recently DNA delivery. 

The benefits of CPP use in plant science have been shown in many cases and a first 

comprehensive review in the field provides an overview about the achievements (Chugh et al., 

2010).  

Besides introducing the concept of CPP fusion protein expression in plants, we were interested 

whether or not our plastid-expressed CPPx-eGFP fusion proteins were able to penetrate into plant 

and human cells – the characterising feature of CPPs which is described throughout the CPP 

literature.  

However, the low CPPx-eGFP fusion protein accumulation in the plastids did not yield sufficient 

fusion protein for transduction experiments except for CPP7-eGFP (Figure 10). 

Consequently, recombinant CPP-eGFP fusion proteins were isolated from E. coli. This enabled us 
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to study the transduction of one plastid-produced and six bacterial-produced CPPx-eGFP fusion 

proteins. 

To our great surprise, we could not observe any transduction. There was no CPPx-eGFP 

penetration into tobacco protoplasts (Figure 11) and young tobacco leaf tissue (Figure 12). 

When CPPx-eGFP fusion protein transduction into human cell lines was studied, the same 

observation was made (Figure 13). Even altered experimental conditions (incubation time, 

concentration of fusion protein and buffer regime) did not change this result.  

This is not consistent with the majority of reports in the CPP literature in which fast, 

concentration dependent CPP uptake is reported. If one only refers to studies of CPP-(e)GFP 

fusion protein delivery, transduction was shown into human cells (Park et al., 2002, Yang et al., 

2002, Cao et al., 2002, Ryu et al., 2003, del Gaizo and Payne, 2003, Ferrari et al., 2003, Fittipaldi et 

al., 2003, Sengoku et al., 2004), into plants (Chang et al., 2005, Liu et al., 2008, Lu et al., 2010, Qi 

et al., 2011) and into insect cells (Cermenati et al., 2011). 

In our experiments, transduction experiments were carried out at concentrations of 1-10 µM with 

incubation times from 30 min to 24 h, at room temperature for plant cells and 37 °C for human 

cells – experimental conditions under which transduction is expected to occur according to the 

above mentioned literature. In addition, well studied CPPs were chosen for our approach  

(Table 1). Even if one takes into account that experimental CPP transduction results cannot be 

predicted (Holm et al., 2011) and that CPP read-outs can differ despite of the same experimental 

setup (Cai et al., 2006, Dupont et al., 2011), the results obtained raise serious questions and 

consequently draw the attention to studies where transduction failed. Reports on the 

unsuccessful transduction of CPPs are not dominant in the CPP literature. Leifert and Whitton 

(2003) review discrepancies in the transduction of Tat (CPP3), Penetratin (CPP4) and VP22 (CPP9) 

and attempt to explain transduction by well-established biological principles. Factors leading to 

contradictory experimental read-outs in CPP experiments were presented in a nice work by 

Fischer and co-workers (compare Figure 3 in: Fischer et al., 2005). Chauhan and co-workers (2007) 

review the CPP literature and identify factors for discrepancies in CPP research among which are: 

cell age, proteolytic degradation within the cell, permeability of cell type, conformational reasons, 

effects of time, nature of CPP-cargo linkage. Foerg and Merckle (2008) finally challenge the 

hypothesis of CPPs as unrestricted delivery tools and come to the conclusion that “the concept of 

CPPs as a universal tool in drug delivery needs to be abandoned”. Recently, Simon et al., 2010 

shed light on the on-going discrepancy why some groups reported successful transduction across 

brain-blood-barrier (BBB) and others did not. The authors observed efficient transduction across 

BBB was correlated with a disrupted state of the barrier following ischemic injury. For an intact 

BBB in their hands and others, Tat (CPP3) was not identified as an effective vehicle for trans-BBB 
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delivery. The achievements in the application of CPPS in hypoxia and ischemia were recently 

reviewed (Dietz, 2011). 

Why all CPPx-eGFP fusion proteins expressed in our hands were unable to penetrate protoplasts 

and human cells under all tested experimental conditions is currently beyond our knowledge. 

It is interesting to note that although the combination of CPP with eGFP caused pleiotropic effects 

in the plant upon expression in the plastid (3.1), no differences in transduction behaviour were 

observed. However, these pleiotropic effects do not necessarily account for a functional fusion 

protein. To which degree the low expression levels are correlated to the absent transduction 

ability remains as a further question. To confirm the integrity of our CPP-eGFP fusions, proteins 

used in our transduction studies were sequenced. Although trypsin digest led to tiny fragments 

and e.g. an inability to detect CPP1, which consists of eight arginine residues, data confirmed that 

CPPs were present and correctly fused to eGFP.  

Essential elements of the CPP fusion cassette in our study were arranged according to the design 

of Han et al. (2000) and Kwon et al. (2000). Reported vector series was used by this group for the 

successful transduction of proteins fused to different CPPs in a number of studies (Jin et al., 2001, 

Park et al., 2002, Ryu et al., 2004, Eum et al, 2004, Kim et al., 2005, Song et al., 2008). 

Most importantly the group worked on unfixed cells and included trypsin-EDTA washings to avoid 

artefacts in their studies. In addition, the N-terminal His-tag did not interfere with the 

transduction ability of fusion proteins. 

The alternative fusion protein vector system which does not require cleavage of the N-terminal 

His-tag is pTAT-HA, provided by the Dowdy lab (Nagahara et al., 1998). This vector was used in the 

majority of CPP fusion protein studies but does solely rely on Tat (=CPP3) for transduction. 

For future approaches and to identify possible bottle-necks in our system, it would be interesting 

to integrate the pTAT-HA system in a chloroplast transformation vector and to test different 

combinations of CPPs fused to proteins. 

In plant biology, a potential application is CPP-mediated transformation vector delivery. 

It has been shown that CPPs can be used for the delivery and transient expression of DNA 

(Chugh and Eudes, 2008b, Chugh et al., 2009), stable transformation however was not achieved. 

Experiments in our laboratory towards the non-covalent CPP-mediated delivery of nuclear 

genome and plastid transformation vectors with company-synthesized CPPs (MPG, Morris et al., 

1999, MPGΔNLS, Simeoni et al., 2003) did not yield transplastomic plants. Recently, Ziemienowicz 

et al. (2012) reported the successful dimer-Tat-mediated delivery of a T-DNA, VirD2 and RecA 

nano-complex for the integration of transgenes into the genome of triticale. 
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3.4 Do CPP-PAH fusion proteins expressed in plastids exert a 
positive effect in vivo? 

The field of plastid transformation is characterised by approaches of both basic and applied 

aspects. Applied research for human health in the past focused mainly on the expression of 

vaccine antigens in the plastid. Oral application for the delivery of these plastid-expressed vaccine 

antigens and targeting to the mucosa via adjuvants is one of the main strategies for their 

application. Reports of other protein therapeutics are rare, especially since therapeutics like 

human enzymes require targeting to tissues and compartments beyond the mucosa. 

Besides reports by the Daniell lab making use of adjuvants like CTB and LTB for trans-mucosal 

delivery (Limaye et al., 2006, Ruhlman et al., 2007, Verma et al., 2010, Boyhan and Daniell, 2011), 

there are no reports of versatile carrier system which allows for cellular delivery in the 

transplastomic field.  

CPPs introduced in the present study offer a unique potential for cellular delivery of peptides and 

proteins and the huge, highly established field of CPPs can easily be connected to the plastid 

technology.  

To finally introduce CPP fusion protein expression in plastids / plants with a concrete example, 

we focused on the expression of CPP fusions to a human enzyme in the plastid. The ultimate goal 

was to show the value of such a plastid-expressed CPP fusion protein in the substitution of a 

non-functional enzyme in a clinical mouse model. The mendelian disorder phenylketonuria (PKU) 

and its committing enzyme phenylalanine hydroxylase (PAH) was selected due to its metabolic 

character, its clear connection to nutrition and the resulting long history of dietary treatment of 

the disease. The approach was coordinated with the help of Ania Muntau’s lab at Dr. von Hauner 

Children’s Hospital at LMU Munich, which has expert knowledge in the characterization and 

treatment of PKU. Vector cloning, plant regeneration and characterization were carried out in our 

laboratory, purification and testing of fusion proteins in the mouse model was thought to take 

place at the Muntau lab. 

However, when we tried to isolate CPP2-PAH fusion protein from greenhouse grown plants, 

no PAH fusion protein was detected in the analysed samples including the raw extract (Figure 25).  

The second transplastomic line, CPP3_PAH, which was established in the approach, showed a 

dwarf phenotype and consequently did not yield sufficient amounts of fusion protein for 

extraction. In addition, when this line was tested for TSP banding pattern, no CPP3-PAH-specific 

band was observed, which suggests fusion protein accumulation to less than 1% TSP also for this 

line (Figure 23). As discussed in 3.1, no transformant was obtained for the control vector (PAH 

without CPP).  
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At the moment, not much can be said about the value of the PKU system since CPP-PAH fusion 

proteins for testing are still elusive. Compared to the protein accumulation levels observed for the 

eGFP and PAP1 vector series, even lower CPP fusion protein levels were provided by the plant for 

PAH. It is established in the literature that PAH stability can be negatively affected in the presence 

of a His-tag. For this reason an MBP tag is preferred for purification (Dunja Reiß, personal 

communication). This might affect the per se low accumulation level in the plastid and lead to the 

protein degradation products which were observed in the gel filtration profile (Figure 25). 

This explanation is supported by the effect N-terminal elements exert on the stability of fusion 

proteins in plastids as suggested in 3.1 (Apel et al., 2010, Bock and Warzecha, 2010). 

In contrast to this are the results in the report which served as guideline for our approach. 

In this study, a His-tagged CPP3-PAH fusion was successfully expressed (in E. coli) and applied 

without constraints of degradation (Eavri and Lorberboum-Galski, 2007). Similar to our results and 

promoting rather an effect of the protein itself than of N-terminal elements, Belluci and co-

workers (2005) were unable to detect ß-zein accumulation in transplastomic tobacco after stably 

inserting the ß-zein gene in the plastome. 

Currently, the low protein accumulation levels of CPPx-PAH fusion proteins in this study are not 

promoting the manufacture of CPP-PAH fusions in plastids. As mentioned before, also for this 

vector series, inducible expression again turned out to be desirable since this could ensure plant 

regeneration upon vector delivery (PAH control) and a higher biomass in terms of the CPP3-PAH. 

Marker removal by the formation of a transient cointegrate (Klaus et al., 2004) was nicely shown 

in our study by the incorporation of the antibiotics selection cassette in the backbone of 

transformation vector pUC18(C) (Figures 21, 24). Towards a potential application, however, more 

studies are needed to address further safety related issues. We have observed substantial 

changes in CPP fusion protein expression levels within single lines as was concluded from CLSM 

microscopy (not shown). For the favoured oral application of fusion proteins in edible plants 

(Daniell et al., 2001), highly standardized doses of the active proteins are required. 

It is questionable if plants can meet these requirements, especially when grown in the field. 

In addition, more future focus must be drawn on the effects of the raw consumption of transgenic 

plant material. Lacking knowledge in terms of these questions currently favours the contained 

(facility-based) expression in plants with subsequent product purification, although higher costs 

do result from such procedure.  

As soon as these limitations are solved and requirements are met, contained expression of CPP 

fusions in plants will have the chance to become reality. The established field of CPP technology 

and the large number of clinical approaches suggest that CPPs could play a vital in plastid 

engineering in the future. 
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So far our study may serve as a starting point for future collaborations between the two fields. 

For future directions, reviews listed in the introduction (1.6) of this study suggest an impressive 

number of potential targets for the use of CPPs in the transplastomic field. To start with, a study 

addressing a direct comparison between adjuvant- and CPP-mediated delivery is of interest, since 

CPPs can be used for the delivery of antigens (for review: Brooks et al., 2010),  

a field classically targeted with adjuvants. A recent review highlights aspects of CPP-mediated oral 

delivery (Khafagy and Morishita, 2012). An additional route to test with extracts made of plants 

could be CPP-mediated transdermal delivery (Rothbard et al., 2000, Song et al., 2008, 

Lohcharoenkal et al., 2011). This could be of interest for the treatment of rare skin diseases like 

ichtyosis which suffer from insufficient treatment (Huber et al., 1995, Smith et al., 2006).  

In conclusion we have introduced CPP fusion protein expression in plants, more specifically in the 

plastid. Further work is needed to fine-tune the technique and to study long-term effects. If these 

requirements will be met and if the expression of CPP fusion proteins in plants will increasingly 

gain importance remains to be determined. 

 

 

 

 

 

 

 

 

 



4 Summary 

Plastid transformation is a valuable technique for both basic and applied science. In basic science 

the technique is used to study chloroplast function. Applied approaches deal with the potential of 

the plastid for the production of medicinal therapeutics, in most cases vaccine antigens coupled 

to adjuvants. Adjuvants are used for the trans-mucosal delivery of attached cargoes.  

Cell penetrating peptides (CPPs) emerged as valuable tools for the delivery of cell-impermeable 

cargoes across cell barriers more than twenty years ago. Although the exact mechanism of CPP 

penetration of cells is still discussed, the applied value of CPPs is documented in a number of 

clinical studies. Recently, scientists working in the CPP field launched a call for an alternative 

expression platform for CPP fusion peptides / proteins. Only a short time before, CPPs were 

introduced into plant science and some impressive first results, manipulating plant cells from the 

“outside”, were achieved. 

 The present study aimed at combining the fields of plastid transformation and CPPs from the 

“inside”. We report the first expression of CPP fusion proteins in a plant, more precisely in the 

plastid. The approach focused on three aspects of CPP fusion protein expression in the organelle: 

(A) the principal feasibility of CPP-fusion protein expression in the plastid, (B) the location of CPP 

fusion proteins in the plant cell upon plastid-based expression and (C) the use of plastids for the 

manufacture of CPP fusions to provide an alternative to the bacterial expression system.  

Nine prominent CPPs were employed in three vector series to investigate these aspects. In vector 

series I the selected CPPs were fused to the fluorescent protein eGFP to provide an optical read-

out; in vector series II, the CPPs were fused to Arabidopsis MYB transcription factor PAP1 to 

provide a biological read-out and in vector series III, two CPPs were fused to the human enzyme 

PAH to introduce plant-based CPP fusion protein expression. 

Taken together, the expression of CPP fusion in the plastid turned out to be feasible. 

Transplastomic plants reached homoplasmy, produced viable seeds and stably inherited the 

desired trait to their progenies in a maternal fashion. Only low protein accumulation levels were 

detected. Pleiotropic effects occured at the low protein accumulation levels observed. 

Localisation of CPP fusion proteins was shown to be restricted to the plastid. An inability of CPP 

fusion proteins isolated from vector series I to penetrate protoplasts, young plant tissue and 

human cell lines was revealed. The value of a plastid-based manufacture of CPP fusion proteins 

for clinical approaches failed to be demonstrated due to low fusion protein accumulation levels. 

Bottlenecks of the current study are discussed and suggestions are made to provide a framework 

for future efforts. 





5 Zusammenfassung 

Plastidentransformation ist eine wertvolle Technik sowohl für die Grundlagenforschung als auch 

für die angewandte Wissenschaft. In der Grundlagenforschung wird die Technik verwendet um 

die Funktion von Chloroplasten zu studieren. Angewandte Aspekte der Technologie beschäftigen 

sich mit der Produktion von Therapeutika für die menschliche Gesundheit. Dabei handelt sich in 

den meisten Fällen um Impfstoff-Antigene, die an Adjuvantien gekoppelt sind. Adjuvantien 

werden zur Vermittlung der Antigene über die Mucosa eingesetzt. Vor mehr als zwanzig Jahren 

wurden mit zell-penetrierenden Peptiden (cell penetrating peptide, CPP) wertvolle Tools 

eingeführt um membran-inpermeable Substanzen in die Zelle zu vermitteln. Obwohl der genaue 

Mechanismus, wie CPPs dies bewerkstelligen, immer noch diskutiert wird, ist der Wert von CPPs 

in einer Reihe von klinischen Studien dokumentiert. Vor kurzem äußerten Wissenschaftler in der 

CPP Forschung den Wunsch nach alternativen Plattformen für die Produktion von CPP-

Fusionspeptiden und -proteinen. Nur kurze Zeit zuvor wurden CPPs das erste Mal in den 

modernen Pflanzenwissenschaften eingesetzt. Dies umfaßte Manipulationen von Pflanzenzellen 

von „außen“ und welche in beeindruckenden ersten Ergebnissen dokumentiert wurden. 

Die vorliegende Studie konzentrierte sich auf eine Kombination der Felder der 

Plastidentransformation und der CPPs von "innen". Wir berichten die erste Expression von CPP-

Fusionsproteinen in einer Pflanze, genauer gesagt in den Plastiden. Drei Aspekte der Expression 

von CPP-Fusionsproteinen in den Organellen wurden untersucht: (A) Die prinzipielle Machbarkeit, 

(B) die Verteilung von CPP-Fusionsproteinen in der Pflanzenzelle bei Expression in den Plastiden, 

und (C) die Eignung von Plastiden zur Herstellung von CPP-Fusionsproteinen als eine Alternative 

zu dem bakteriellen Expressionssystem. 

Um diese Aspekte zu untersuchen wurden neun prominente CPPs in drei Vektor-Serien an 

verschiedene Proteine gekoppelt und in den Plastiden produziert. In Vektor-Serie I, wurden die 

CPPs an das fluoreszierende Protein eGFP fusioniert, um eine optische Nachverfolgung zu 

ermöglichen. In Vektor-Serie II wurden die CPPs an den Arabidopsis MYB Transkriptionsfaktors 

PAP1 fusioniert, um eine biologische Auslese zu ermöglichen. In Serie III wurden zwei CPPs an das 

menschliche Enzym PAH gekoppelt um auf die prinzipielle Möglichkeit einer pflanzen-basierten 

Produktion von CPP Fusionsproteinen hinzuweisen.  

Zusammengefasst, stellte sich die Expression von CPP-Fusionsproteinen in Plastiden als machbar 

heraus. Transplastomische Pflanzen erreichten Homoplastie, produzierten keimfähige Samen und 

vererbten die gewünschte Eigenschaft stabil an ihre Nachkommen. Nur geringe Ausbeuten von 

Fusionsproteinen wurden erzielt wobei pleiotrophe Effekte auftraten. Die Akkumulation von CPP-



56 Zusammenfassung 

 

 

Fusionsproteinen war auf die Plastide beschränkt. Die Unfähigkeit von isolierten CPP-

Fusionsproteinen der eGFP Vektor-Serie in Protoplasten, junges Pflanzengewebe und humane 

Zelllinien einzudringen, wurde aufgezeigt. Der Wert einer plastiden-basierten Herstellung von 

CPP-Fusionsproteinen für klinische Ansätze konnte wegen einer zu geringen Ausbeute an 

Fusionsprotein nicht aufgezeigt werden. Einschränkungen der aktuellen Studie werden diskutiert 

und Vorschläge gemacht, um einen Rahmen für zukünftige Anstrengungen zu geben. 

 

 

 

 

 

 



6 Material and Methods 

6.1 Material 

Experimental work was conducted in molecular laboratories equipped with standard laboratory 

equipment, chemicals and consumables for cell and plant culture and analysis. Critical chemicals, 

additional equipment and the software used for this work are mentioned in the following. 

6.1.1 Chemicals and Enzymes 

Water was deionized by absorption and ultrafiltration (SG ultra-Clear, Barsbüttel, Germany) and 

autoclaved if necessary. Standard analytical (analytical grade) and tissue culture (for in vitro 

culture) chemicals were purchased from AppliChem (Darmstadt, Germany), Bayer Vital 

(Leverkusen, Germany), Duchefa (Harlem, Netherlands), Merck (Darmstadt, Germany), Serva 

(Heidelberg, Germay), Sigma-Aldrich (Taufkirchen, Germany). Critical compounds used in this 

work for cell / tissue culture sorted by supplier: 

  

AppliChem     Ampicillin, sodium salt     

Ca-Panthotenate   

D-Glucose  

Bayer Vital     Dimanin C   

Duchefa     B5 salts   

Cellullase R10      

D(+)-Biotin  

Macerozyme R10    

MS salts  

Phyto agar  

Pyridoxine-HCl  

Spectinomycin dihydrochlorid  

Sucrose        

Merck      Thiamine-HCl  

Serva      Insosit   

Sigma-Aldrich    Alginic acid     

Benzylaminopurine  

     Naphthalene acetic    

     Nicotinic acid   
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DNA and protein markers, DNA modifying enzymes and polymerases were purchased from MBI 

Fermentas (St. Leon-Rot, Germany), Finnzymes (Espoo, Finland), New England Biolabs (Frankfurt / 

Main, Germany), Promega (Mannheim, Germany), and Roth (Karlsruhe, Germany). 

6.1.2 Kits, Consumables, Equipment and Software 

 Kits 
 

Clone Jet    MBI-Fermentas, St. Leon-Rot, Germany  

Nucleo spin extract II   Machery and Nagel, Düren, Germany  

Nucleo spin plasmid   Machery and Nagel, Düren, Germany 

Prime-a-gene labelling system  Promega, Mannheim, Germany 

Plasmid Maxi Kit   Qiagen, Hilden, Germany 

 

 Consumables 
 

AB mouse anti-PAH   Calbiochem, Darmstadt, Germany 

AB Goat anti-mouse IgG HRP   Santa Cruz Biotechnology, Heidelberg, Germany 

DMEM (Gibco)    Life Technologies, Darmstadt, Germany  

Doppelseitiges Klebeband   Tesa, Hamburg, Germany 

Gene gun consumables   Bio-Rad, München, Germany  

HiLoad 16/60 Superdex 200 column  GE Healthcare, München, Germany 

HisTrap affinity column   GE Healthcare, München, Germany  

HiTrap Butyl HP column   GE Healthcare, München, Germany 

MicroSpin-Columns S-200 HR   GE Healthcare, München, Germany 

N+-Nylonmembran     Amersham Biosciences, UK 

Nescofilm    Roth, Karlsruhe, Germany 

Ni2+- agarose    Biontex, Martinsried, Germany 

Nitrocellulose membrane BA-S 85  Schleicher & Schuell, Dassel, Germany 

Novex NuPAGE Bis-Tris gel system Life Technologies, Darmstadt, Germany  

Optimem (Gibco)   Life Technologies, Darmstadt, Germany  

Polypropylene grids Scrynel PP2000  K.H.Büttner, Wasserburg, Germany 

RPMI Media 1640 (Gibco)  Life Technologies, Darmstadt, Germany 

Steril filter PES 0.22µm    Serva, Heidelberg, Germany  

Steril filter PES 0.22µm, 250 ml   Serva, Heidelberg, Germany 

Tissue culture tube 163160   Greiner, Solingen, Germany 
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 Equipment 
 

ÄKTApurifier     GE Healthcare, München, Germany 

Canon EOS 400D   Canon GmbH, Krefeld, Germany 

Centrifuge Universal II   Hettich, Tuttlingen, Germany 

Centrifuge Z323K    Hermle, Wehingen, Germany 

Clean bench HERA safe KS12  Thermo Scientific, Langenselbold, Germany 

Confocal microscope TCS SP5  Leica Microsystems, Wetzlar, Germany 

DIANA III imaging system   Raytest GmbH, Sprockhövel, Germany 

FACS Canto II     BD Biosciences, Heidelberg, Germany 

Leica DM 100     Leica Microsystems, Wetzlar, Germany    

Microcentrifuge Fresco 17              Heraeus, Hanau, Germany 

Microcentrifuge 5415   Eppendorf, Hamburg, Germany 

Osmomat O30    Gonotech GmbH, Berlin, Germay 

Particle-gun PDS-1000/He      Bio-Rad, München, Germany 

Sterilbank Hera Safe Typ KS12  Thermo Scientific, Langenselbold, Germany 

Sorvall RC6    Thermo Scientific, Langenselbold, Germany 

 

 Software  
 

Clone Manager Professional  Sci-Ed Software, Cary NC, USA 

Double digest    http://www.fermentas.com/en/tools/doubledigest 

Google scholar    http://scholar.google.de/ 

ImageJ 1.45    http://rsbweb.nih.gov/ij/ 

NCBI     http://www.ncbi.nlm.nih.gov/ 

Office 2010    Microsoft GmbH, Unterschleißheim, Germany 

Vector NTI 7.0    InforMax, Oxford, UK 

Windows 7    Microsoft GmbH, Unterschleißheim, Germany 

6.1.3 DNA and Organisms 

 Vectors 
 

o Custom gene synthesis   GENEART, Regensburg, Germany 

o pKCZglpK    Scharff, 2002 

o pPNG1014_MCS120   Waheed et al., 2011 



60 Material and Methods 

 

 

o PSB419    Sharma and Dixon, 2005 

o pUC18    MBI-Fermentas, St. Leon-Rot, Germany 

o Oligos    Metabion, Martinsried, Germany 

 

Primer name Sequence 5' -> 3' (restriction sites underlined if present) 

GFP  rev GACGTCATTCCGGATCCAAGG 

INS**fwd TTAGCTGGTCGTGACCAAG 

INS**rev CACAGGCATCCCAGGTAATTC 

KNT1 fwd AACTAGTCCGCGGGCCGTCGTTC 

KNT1 rev TACAACTAGTGATATCTTAGAGCTCGT 

LF fwd CTACCTGCACCTGGACAGAAAG 

Pah fwd TTCTCGAGATGTCCACTGCGGTCCTG 

Pah NheI rev TTTTGCTAGCTTACTTTATTTTCTGGAGGGCACTG 

Pap1 fwd CTACCTGCACCTGGACAGAAAG 

Pap1 rev GACGTCATTCCGGATCCAAGG 

Pap1 proof rev GACGTCATTCCGGATCCAAGG 

Probe new CPP fwd GGTTTTGTTGGTTGGTTAATTG 

Probe new CPP rev CCTGTTTAGTCCCCTTCATTTC 

Probe v2 fwd GGTGATGGGCAATATCAG 

Probe v2 rev GCAGGTTGGTTACACCTA 

rbcL fwd AATTGCTAGCCTGCAGGCATGCAAG 

rbcL rev TTAGTACTTCCCGAGAGGTCACAATTCC 

 

 Organisms 

 

o E. coli 

XL1 blue (genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZ∆M15 Tn10 

(Tetr)] 

o Agrobacterium tumefaciens 

GV3101 (pMP90) (Koncz and Schell, 1986) 

 

o Tobacco 

Nicotiana tabacum L-cv. Petite Havana (wild-type, WT)   

 

o Human cell lines 

HeLa cells, Jurkat T cells, Pheonix cells (293 derived cell line) 
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6.2 Methods 

6.2.1 Vector cloning 

Standard molecular manipulation techniques of DNA like restriction digest, agarose gel 

electrophoresis, purification of DNA from agarose gels, dephosphorylation and ligation were 

carried out as described by the supplier protocols or in Sambrook and Russell (2001). DNA of high 

purity for vector cloning and subsequent transformation of E. coli and tobacco was purified with 

kits from Machery-Nagel and Qiagen (see 6.1.2). Cloning work was confirmed by LMU Biocentre 

sequencing service.  

6.2.2 Transformation  

6.2.2.1 E. coli 

 Bacterial growth 

 

E. coli cells were cultured in LB medium at 37 °C under shaking for 180 rpm. Cell growth was 

monitored by measuring the optical density at 600 nm. For selective bacterial growth, sterile 

antibiotics (100 mg/l ampicillin, 75 mg/l spectinomycin) were added. 

 

LB medium 

5 g  Yeast extract 

10 g  Bacto-Trypton  

10 g  NaCl  

10 g  Bacto agar, for solid plates 

pH 7.0 with 1 M KOH, Q.S. 1 l, autoclave. 

 Competent cells 

  

A 5 ml E. coli XL1 blue pre-culture was grown overnight as described in ‘Bacterial growth’. 

The next day, 100 ml LB medium was inoculated with OD 0.1 and grown to OD 0.5-0.6. Cells were 

incubated on ice for 15 min and harvested by centrifugation at 7,000 rpm for 10 min at 4 °C. 

After resuspension in 20 ml RF1 the cells were further incubated on ice for 2 h. Cells were pelleted 

again and the pellet resuspended in 4 ml RF2 followed by ice incubation for 15 min. 50 µl aliquots 

were shock frozen in liquid nitrogen and stored at - 80 °C. 
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RF1 

15.0 ml  Glycerol  

0.9 g  MnCl2*2H2O  

0.295 g  KAc  

0.145 g  CaCl2*2H2O  

1.2 g  RbCl  

pH 5.8 with acetic acid, Q.S. to 100 ml with ultra-filtrated autoclaved H2O, sterile filtrate. 

 

RF2      

0.505 g  CaCl2*2H2O  

0.105 g  MOPS   

0.51 g  RbCl 

7.5 g  Glycerol 

pH 6.8 with 1 M NaOH, Q.S. to 50 ml with ultra-filtrated autoclaved H2O, sterile filtrate. 

 Heat shock transformation 

 

An aliquot of competent XL1 blue cells was thawed on ice. Up to 10 µl ligation product were 

added and the mixture was incubated on ice for 10 min. Heat-shock was performed for 45 s at 

42 °C, followed by incubation on ice for 2 min.  

Cells transformed with a vector harbouring an ampicillin resistance gene were plated 

immediately on solid LB plates with 100 mg/l ampicillin and grown over night. 

Cells transformed with a vector carrying aadA (spectinomycin resistance gene) were 

adjusted to 500 µl with LB medium, shaken for 1 h and pelleted by centrifugation 

(3 min, 2,000 rpm). Part of the supernatant was removed and harvested cells were resuspended 

in the remaining volume and plated on solid LB plates with 75 mg/l spectinomycin. 

6.2.2.2 Tobacco 

 Plant growth 

 

Tobacco seeds were surface sterilized (1 min 70% ethanol, 10 min 5% Dimanin C, 3 washing steps 

with sterile H2O) and air-dried in the clean bench. Seeds were germinated in high density on B5mod 

in an environmental chamber at 25 °C, 2000 Lux (Osram L58 W/25 Weiss/Universal, 16 h day). 

After one week, plants were separated in jars for continuous growth on B5mod in the same 

chamber.  
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For transformation by the biolistic method and for protoplast isolation, four to five week old  

wild-type (WT) donor plants were used.  

At the same age, WT and transplastomic lines were routinely transferred to the greenhouse for 

prolonged growth, flowering and seed development. 

 

B5mod (Dovzhenko et al., 1998)  

3.1 g  B5-salts  

10 ml   100x B5-vitamins (Gamborg et al., 1968)  

10 g               Inosit  

100 mg      Pyridoxine-HCl   

1 g           Thiamine-HCl 

100 mg          Nicotinic acid 

Q.S. to 1 l with ultra-filtrated H2O, store at -20 °C. 

0.983 g  MgSO4*7 H2O 

20 g  Sucrose  

5 g  Phyto agar  

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated H2O, autoclave. 

 

 Transformation of the plastid genome 

 

Transformation of the plastid WT genome was performed by the biolistic method (BioRad 

PDS1000/He Biolistic Gene Gun) – either by the bombardment of tobacco leaves or by the 

bombardment of protoplast-derived microcolonies. 

 

o Leaves 

 

True leaves of aseptically grown four to five week old tobacco WT plants were placed with the 

adaxial side up on petri dishes with simple RMOP (composition see page 68) the day before the 

experiment and stored in the environmental chamber used for plant growth until the 

bombardment. 

 

o Protoplast-derived microcolonies 

 

For the bombardment of protoplast-derived microcolonies tobacco protoplasts were isolated and 

embedded in grids with alginate.  



64 Material and Methods 

 

 

 Protoplast isolation 

 

Sterile grown true leaves of four to five week old tobacco WT plants were digested enzymatically 

for protoplast isolation. Leaves were cut in 1-3 mm stripes in 10 ml F-PIN for pre-plasmolysis (1 h). 

Medium was exchanged to the digestion medium (9.5 ml F-PIN + 250 µl 10% Macerozyme 

solution + 250 µl 10% Cellulase solution) and leaves were incubated at 25 °C in darkness 

for 14-16 h. The next day, protoplasts released from the digested leaf tissue were separated by 

filtration (Ø 100 µm mesh size), gently overlaid with 2 ml F-PCN and centrifuged for 10 min at 70g. 

The interphase (intact protoplasts) was transferred to a new tube and was adjusted to 10 ml with 

MMM. Protoplasts were counted and the desired number was pelleted (10 min at 50 g) for 

further processing (embedding, CLSM). 

 

F-PIN   Fast Protoplast Isolation Medium Nicotiana (Dovzhenko et al., 1998)  

100 ml  10x Macro MS-modified   

10.12 g   KNO3   

4.4 g            CaCl2* 2H2O  

3.7 g            MgSO4*7H2O  

1.7 g             KH2PO4  

Q.S. to 1 l with ultra-filtrated autoclaved H2O, store at - 20 °C. 

10 ml  2 M Ammoniumsuccinate  

   23.6 g  Succinic acid 

10.6 g            NH4Cl   

~ 22.4 g       KOH 

pH 5.8 (KOH), Q.S. to 100 ml with ultra-filtrated autoclaved H2O, sterile 

filtrate. 

10 ml  100x Micro MS   

4 g  Fe(III)-EDTA  

83 mg  KJ   

620 mg         H3BO3  

2.33 g              MnSO4* H2O  

860 mg           ZnSO4*7H2O  

25 mg             Na2MoO4*2H2O  

2.5 mg            CuSO4*5H2O  

2.5 mg             CoCl2*6H2O  

Q.S. to 1 l with ultra-filtrated autoclaved H2O, store at - 20 °C.  
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10 ml  100x PC-Vitamins  

   20 g          CaCl2*2H2O   

20 g               Inosit 

200 mg         Pyridoxine-HCl 

100 mg        Thiamine-HCl  

2 mg             Biotin  

200 mg        Ca-Panthotenate   

200 mg        Nicotinic acid  

Q.S. to 1 l with ultra-filtrated autoclaved H2O, store at -20° C.   

1.952 g  MES 

1 ml  Benzylaminopurine (1 mg/ml)   

100 µl  Naphthalene acetic acid (1 mg/ml)   

~ 130 g   Sucrose (to 550 mOsm) 

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated autoclaved H2O, sterile filtrate. 

 

10% Macerozyme solution 

1 g  Macerozym R-10  

1.37 g  Sucrose 

Q.S. to 10 ml with autoclaved ultra-filtrated H2O, centrifuge full-speed, sterile filtrate 

supernatant. 

 

10% Cellulase solution 

1 g  Cellulase R-10  

1.37 g  Sucrose 

Q.S. to 10 ml with autoclaved ultra-filtrated H2O, centrifuge full-speed, sterile filtrate 

supernatant. 

 

F-PCN    Fast Protoplast Culture Medium Nicotiana (Dovzhenko et al., 1998)  

same basic composition as F-PIN, instead of 130 g sucrose, use: 

20 g  Sucrose  

~ 65 g  Glucose (to 550 mOsm) 

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated autoclaved H2O, sterile filtrate. 
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 Embedding 

 

For grid bombardments of protoplast-derived microcolonies, isolated tobacco protoplasts were 

embedded in a 1:1 mixture of F-PCN with alginate and kept growing for about 7-10 days before 

transformation (16-32 cell stadium). Briefly, 500,000 isolated protoplasts in MMM were harvested 

by centrifugation (50 g, 10 min) and carefully resuspended in a mixture of 3 ml F-PCN with 3 ml 

F-Alginate. 625 µl were pipetted on a dry polypropylene grid (10x10 meshes) on a Ca2+-agar plate. 

The mixture was allowed to solidify for 1.5 h before the grids were transferred to 4 ml new F-PCN 

for 1 h. After adaption to F-PCN, the medium was removed and exchanged by 2 ml fresh F-PCN. 

Grids were incubated in darkness for 14-24 h at 25 °C. The next day, embedded protoplasts with 

regenerated cell wall were exposed to light for subsequent microcolony formation. One day 

before particle bombardment, grids with protoplast-derived microcolonies were placed on dishes 

with RMOP (see page 68) stored in the environmental chamber until the bombardment. 

 

F-Alginate  

137 mg  MES  

250 mg  MgSO4*7H2O   

204 mg  MgCl2*6H2O   

~ 7.7 g  Mannitol (to 550 mOsm) 

2.4 g  Alginic acid 

pH 5.8 with 1 M KOH, Q.S. to 100 ml with ultra-filtrated H2O, autoclave. 

 

MMM MES-Magnesium Mannit (Dovzhenko et al., 1998)    

1.952 g  MES 

1.250 g  MgSO4*7 H2O  

1.020 g  MgCl2*6 H2O  

~ 85 g  Mannitol (to 550 mOsm) 

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated autoclaved H2O, sterile filtrate. 

 

Ca2+-agar  

2.94 g  CaCl2*2 H2O 

1.95 g  MES 

~ 82 g  Manniol (to 550 mOsm) 

10 g  Phyto agar  

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated H2O, autoclave. 
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o Particle gun-mediated transformation  

 

Prior to transformation by the biolistic method, gene gun, parts and consumables were surface 

sterilized and air-dried in the clean bench.  

Next, transformation vector DNA was coated on gold particles. A stock of 0.6 µm gold particles 

(Biorad) was suspended in 100% enthanol (60 mg/ml) and stored at - 20 °C. 35 µl of the gold stock 

were transferred into an Eppendorf tube, and pelleted at 14,000 rpm for 10 s. The supernatant 

was removed, the gold pellet resuspended in 1 ml sterile water and pelleted again (14,000 rpm, 

1 min). The following steps were carried out on ice. 

The washed pellet was resuspended in a mixture of 230 µl water and 250 µl 2.5 M CaCl2, and 

25 µg of DNA (in water) were added. DNA was coated on gold particles by the addition of 

50 µl 0.1 M spermidine and incubation on ice for 10 min, while gently vortexing every 2-3 min. 

The stabilized complex was centrifuged for 1 min at 10,000 rpm and the supernatant was 

removed. The gold-DNA complex was washed two times with 600 µl of 100% ethanol by 

resuspension and centrifugation at 10,000 rpm for 1 min. The complex was taken up in 72 µl 

ethanol and 5.4 µl were pipetted on each macrocarrier placed in the macrocarrier holder and 

allowed to dry for a few minutes. Transformation was carried out using the following parameters: 

 

Pressure of helium:             1100 psi  

Rupture discs:                900 psi  

Distance rupture disc to macrocarrier:       8-10 mm  

Distance macrocarrier to stopping screen:      10 mm  

Distance stopping plate to leaf:          7 cm  

Vacuum:                 27-28 inHg  

 

o Tissue culture conditions 

 

2-3 days post bombardment, leaves were cut into small pieces and placed on RMOP (regeneration 

medium) with 500 mg/l spectinomycin as selective agents. After two weeks, enlarged leaf pieces 

were cut again and recultured on fresh RMOP selection plates. Cultivation continued 

(from now every 3-4 weeks transferred to a new plate) until green, putative transplastomic, 

primary shoots emerged from the bleached leaf pieces. Bombarded protoplast-derived 

microcolonies were subcultured according to the same regime. 
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RMOP (Svab et al., 1990)  

4.4 g  MS-salts  

10 ml  100x NT-Vitamins  (Nagata und Takebe, 1971)       

10 g           Inosit  

100 mg         Thiamin-HCl 

Q.S. to 1 l with ultra-filtrated H2O, store at - 20 °C.   

1.0 ml  Benzylaminopurine (1 mg/ ml)   

100 µl  Naphthalene acetic acid (1 mg/ ml)   

30.0 g  Sucrose  

5.5 g   Phyto agar  

pH 5.8 with 1 M KOH, Q.S. to 1 l with ultra-filtrated H2O, autoclave. 

 

 Transformation of the nuclear genome 

 

Transformation of the nuclear genome was performed according to Horsch et al. (1985). 

Agrobacterium GV3101 harboring plasmid PSB419 was a kind gift from Richard Dixon (Sharma and 

Dixon, 2005).  

6.2.3 Transgenic plants 

6.2.3.1 Transplastomic lines 

 

Primary shoots emerging from bombarded leaves or microcolonies were isolated and transferred 

to fresh RMOP medium (6.2.2.2) for cyclization. Cyclization, i.e. the repeated regeneration of 

heteroplasmic leaf material on RMOP plates with selection pressure (500 mg/l spectinomycin), 

was carried until homoplasmy was achieved.  

6.2.3.2 Nuclear transformants 

 

Nuclear transformants (T0) obtained by Agrobacterium-mediated transformation were allowed to 

self in the greenhouse. Resulting seeds (T1) were sterilized and germinated on B5mod. 

Transformants were separated and grown in the greenhouse to produce T2.  
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6.2.4 Molecular analysis 

6.2.4.1 DNA isolation from plant tissue 

 

 Quick protocol 

 

About 100 mg of leaf tissue was ground in a screw cap tube with glass beads and 400 µl extraction 

buffer. Tubes were centrifuged for 15 min at 15,000 rpm and 330 µl of the supernatant were 

transferred to a new tube with an equal volume of isopropanol. After mixing and 10 min 

incubation at -20 °C, the DNA was pelleted by centrifugation (30 min, 15,000 rpm). 

The supernatant was removed and the pellets air-dried. A final volume of 40 µl sterile water was 

added to the tubes without disturbing the pellet. Tubes were stored at 4 °C overnight prior to 

PCR. For immediate analyses, about 1 h is sufficient for resolving the DNA from the pellet. 

 

Extraction buffer (Quick and Dirty) 

0.2 M   Tris-HCl (pH 7.5) 

0.25 M   NaCl 

0.025 M EDTA 

0.5% (w/v) SDS 

Use ultra-filtrated H2O, autoclave. 

 

 2x CTAB 

 

400 mg of fresh leaves were ground in liquid nitrogen. 2x CTAB (1 equal volume) was added to the 

ground powder in a 2 ml Eppendorf tube and the frozen samples were allowed to thaw (aided by 

short vortexing). Cells were lysed in a water bath at 65 °C for at least 1 h. One volume of 

chloroform was added and the tubes were rotated 30 min at RT. Samples were centrifuged for   

20 min at 15,000 rpm and the RNA in the supernatant was digested (10 µl RNAse; 10 µg/ml,  

30 min, 42 °C), After a second chloroform extraction step, the DNA in the supernatant was 

precipitated by incubation with 0.7 vol isopropanol (30 min, - 20 °C) and centrifugation (30 min at 

15,000 rpm, 4 °C). DNA was washed two times with ethanol, air-dried, redissolved in 60 µl sterile 

water and frozen at - 20 °C. 
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2x CTAB-Extractionbuffer  

200 mM  Tris-HCl (pH 8.0)       

2% (w/v) CTAB                 

20 mM   EDTA            

1400 mM  NaCl              

1% (w/v) Polyvinylpyrrolidon (40 kDa)    

Use ultra-filtrated H2O, autoclave. 

6.2.4.2 Polymerase chain reaction  

 

DNA fragments for cloning purposes were amplified with Phusion polymerase (Finnzyme), while 

Taq polymerase was used for colony PCR and for screening transplastomic lines (MBI Fermentas). 

Reaction conditions were adapted to the oligos used for amplification, the length of the PCR 

product and the polymerase. PCR products were analysed on agarose gels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taq Polymerase 

2.0 µl (10x) 

1.6 µl 

0.4 µl 

0.4 µl 

0.4 µl 

0.2 µl 

100 ng 

Q.S. 20 µl 

 

Heated Lid 112.0 °C 

95.0 °C for 5 min 

30-35x 

95.0 °C for 30 s 

Anneal for 30 s 

72.0 °C for elongation 

End  

72 °C for 5 min 

Store at 4 °C 

 

Phusion Polymerase 

10 µl (5x) 

/ 

1 µl 

2.5 µl  

2.5 µl  

0.5 µl  

100 ng 

Q.S. 50 µl 

 

Heated Lid 112.0 °C 

98.0 °C for 30 s 

30-35x 

98.0 °C for 10 s 

Anneal for 30 s 

72.0 °C for elongation 

End 

72 °C for 10 min 

Store at 4 °C 

 

Buffer 

MgCl2 

dNTP (10 mM) 

Oligo fwd (10 pmol/ul) 

Oligo rev (10 pmol/ul) 

Polymerase 

Template 

Water 
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6.2.4.3 Southern blot analysis 

 

2 µg of CTAB-extracted DNA was digested with an appropriate restriction enzyme for 4 h and 

separated on an agarose gel at 10-30 Volt overnight. The next day, DNA was transferred to a 

positive charged nylon membrane via blotting the gel in an alkali environment (0.4 M NaOH). The 

gel was placed on the blotting aperture, followed by the membrane, two layers of Whatmann 

paper, several layers of tissue paper and a weight on top to apply pressure. After blotting, the gel 

was checked for complete transfer using UV illumination. The membrane was washed with 2x SSC 

until a neutral pH was achieved, air-dried, UV-cross linked and stored at RT until hybridization.  

For hybridisation probes were PCR amplified, kit extracted and adjusted to 5 ng/µl. Radioactive 

labeling was performed with α-32-P-dCTP using the prime-a-gene labeling system (Promega) as 

indicated by the manufacturer. Radioactively labeled probes were purified via MicroSpin-Columns 

S-200 HR (GE Healthcare), denatured for 3 min at 100 °C and put on ice. After pre-hybridization 

for 1 h at 65 °C in hybridization buffer, the membrane was incubated with the labeled probe in 

7.5 ml hybridization buffer at 65 °C overnight. 

Unspecifically bound probe was removed the next day by washing steps with increasing 

stringency (1x 30 minutes with 0.5x SSC-buffer, 0.1% (w/v) SDS at 60 °C, 2x 30 minutes with 

0.1x SSC-Puffer und 0.1% (w/v) SDS at 65 °C). The membrane was exposed to a phoshoimager 

screen and signals were detected with a BAS 1500-Phosphoimager (Fujifilm). 

 

20 x SSC 

3.0 M  NaCl 

0.3 M  Sodium citrate (pH 7.0) 

pH 7.0 with 1 M HCl, use ultra-filtrated H2O, autoclave. 

 

Hybridization buffer (Church and Gilbert, 1984) 

250 mM Na2HPO4 / NaH2PO4 (pH 7.5) 

7% (w/v) SDS 

Store at - 20 °C. 
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6.2.5 Macroscopic analysis 

6.2.5.1 Vegetative and reproductive growth 

 

Sterile seed-grown homoplastomic plants at an age of 3-4 weeks were transferred to the 

greenhouse and the growth was documented. At the time of flowering, floral buds were covered 

with paper bags to avoid cross pollination and the plants ability to self-pollinate and to develop 

seeds was monitored. 

6.2.5.2 Seed assay 

 

Seed-grown plants were crossed with and to WT plants. Resulting seeds were surface sterilized 

and germinated on B5mod medium (6.2.2.2) with and without 100 mg/l Spec. After 14 days, 

germination rates and seedlings phenotypes were documented. 

6.2.6 Microscopic analysis 

6.2.6.1 Fluorescence microscopy 

  

Expression strength of plant lines were routinely checked with a DM 1000 (Leica Microsystems). 

6.2.6.2 Confocal laser scanning microscopy (CLSM) 

 

Confocal laser scanning microscopy was performed on a TCS SP5 (Leica Microsystems), with an 

argon laser excitation at 488 nm (Leica EGFP) and detection at 496 nm-559 nm. 

 

 Leaves 

 

Leaves of seed-grown homoplastomic plants were water-infiltrated for microscopy. Water-

infiltration was carried out with a 50 ml syringe by first applying a vacuum to the leaf in the water-

filled syringe, followed by release of the vacuum and subsequent water in-flow into the leaf. An 

explant of the water-infiltrated leaf was cut, carefully mounted on slides with custom prepared 

spacers to avoid cover glass damage to the explant and studied by CLSM. 
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 Protoplast-derived cells 

 

Protoplasts of seed-grown homoplastomic plants were isolated and embedded in grids as 

described in 6.2.2.2. For the microscopy of early division stages of protoplast-derived cells, the 

grid was carefully removed from the cells embedded in alginate. Released alginate embedded 

cells were mounted on custom prepared slides and studied by CLSM. 

6.2.7 Chromatographic analysis 

 Thin-layer chromatography (TLC) 

 

200 mg leaf tissue from greenhouse-grown plants before flowering were shock frozen in liquid 

nitrogen and ground with glass beads in a screw-cap tube for 40 s at 5,000 rpm in darkness. 1 ml 

methanol:HCl [99.5:0.5 (v/v)] was added and the extraction was repeated. The extract was 

centrifuged for 5 min at 5,000 rpm and the supernatant was transferred to new tube. For analysis 

of anthocyanin content, cellulose analytic TLC plates (Sigma) were developed in concentrated 

HCl:formic acid:water (19.0:39.6:41.4). 

6.2.8 Biochemical analysis 

6.2.8.1 Extraction of total soluble protein (TSP) 

 

Total soluble protein was extracted from 100 mg leaf tissue of adult plants before flowering. 

Leaves were ground with glass beads in 500 ml ice-cold TSP extraction buffer in a bead mill for 

3 min at 250 rpm. The extract was placed on ice and centrifuged at 15,000 rpm for 30 min at 4 °C. 

The supernatant was taken as total soluble protein. 

 

TSP extraction buffer: 

50 mM   NaH2PO 4 / Na2HPO 4 (pH 7.0) 

10 mM   EDTA 

10 mM   2-mercaptoethanol 

0.1% (v/v)  Triton X-100 

1  Tablet Complete Protease Inhibitor Cocktail (Roche) per 10 ml 
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6.2.8.2 The Bradford assay 

 

5 µl of TSP was added to 1 ml 1 : 5 diluted Bradford solution in PBS. Samples were mixed and 

extinction at 595 nm was measured after 10 min. Protein content was calculated using a standard 

curve of known BSA concentrations. 

 

6.2.8.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Total soluble proteins were separated on discontinuous 10% denaturing polyacrylamide gels 

(with 20 mA for each mini gel) according to Laemmli. Gels were stained with Coomassie Brilliant 

Blue R-250 (Serva) on a shaker for 1 h. Background staining was removed with washing solution 

(10% acetic acid) and the gels scanned. 

6.2.8.4 Isolation of CPP fusion proteins 

 

CPP fusion proteins were isolated from E. coli cells and tobacco leaves. 

 

 from E. coli  

 

E. coli XL1 blue harbouring CPP_eGFP plastid transformation vectors were grown in 1-1.5 l LBAmp 

(see 6.2.2.1) cultures for fusion protein isolation. Cells were harvested (10 min, 4,000 rpm, 4 °C) 

and lysed in binding buffer by sonification. Purification was carried out by binding to Ni2+-agarose 

(Biontex) according to the manufacturer’s protocol. Isolated proteins were dialysed overnight 

50 mM Tris-HCl pH 8.0 at 4 °C, adjusted to 10% glycerol, shock-frozen and stored at - 80 °C. 

 

 from Nicotiana tabacum L. 

 

CPPx-eGFP fusion proteins were isolated from greenhouse-grown tobacco plants before 

flowering. About 50 g of FW plant material was ground in liquid nitrogen to a fine powder and 

total proteins extracted in ice-cold Tris-HCl pH 8.0. The extract was centrifuged at 15,000 rpm for 

20 min at 4 °C and the supernatant was vacuum filtrated (0.45 µM filter pore size). 

Prior to HIC column purification, ammonium sulfate precipitation was carried out. Unwanted 

proteins were precipitated by adjusting to 30% (w/v) ammonium sulfate. The eGFP fusion 

proteins were finally precipitated with 80% ammonium sulfate. The pellet was resuspended in 
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high salt buffer (50 mM Tris-HCl pH 8.0, 3 M NaCl) and applied to a HiTrap Butyl HP column 

(GE Healthcare). Binding and washing was carried out as suggested in application note 28-9192-12 

AB (GE Healthcare). Proteins were adjusted to 50 % glycerol and stored short-time at - 20 °C. 

Before transduction assays (6.2.9), purified proteins were dialyzed against 50 mM Tris-HCl pH 8.0 

at 4 °C overnight and quantified using the Bradford assay. 

 

 Fast protein liquid chromatography (FPLC) 

 

CPP-PAH fusion proteins were isolated from adult greenhouse plants. 20 g FW were ground to a 

fine powder and extracted in 40 ml sodium phosphate buffer (20 mM NaH2PO 4 / Na2HPO 4   pH 7.4, 

100 mM NaCl, 20 mM Imidazol). The extract was centrifuged at 15,000 rpm for 20 min at 4 °C and 

the supernatant was vacuum filtrated (0.45 µM pore size). The recombinant fusion proteins were 

purified on ÄKTApurifier (GE Healthcare) at 4 °C by loading crude extract on a HisTrap affinity 

chromatography column (GE Healthcare) equilibrated with sodium phosphate buffer and 

subsequent step-wise gradient elution was performed with the same buffer supplemented with 

500 mM imidazol. The fractions from affinity chromatography were analysed by gel filtration on a 

HiLoad 16/60 Superdex 200 column (GE Healthcare) equilibrated with 20 mM NaHEPES, pH 7.0 

containing 200 mM NaCl. 

6.2.8.5 Western blot 

 

Proteins were separated by SDS-PAGE (4-12% Novex NuPAGE Bis-Tris gel system, Invitrogen) at a 

constant voltage of 200 Volt for 90 min and subsequently blotted onto nitrocellulose membrane 

(BA-S 85; Schleicher & Schuell). The blocked membrane (5% milk powder in TBS-Tween) was 

incubated for 1 h with the primary antibody, mouse anti-PAH (1:1,000 dilution; Calbiochem), and 

1 h with the secondary, goat anti-mouse IgG HRP conjugated antibody (1:10,000 dilution; Santa 

Cruz Biotechnology). The blot was visualized with SuperSignal West Femto Substrate (Thermo 

Scientific) and chemiluminescence was monitored with a DIANA III imaging system (Raytest).  

6.2.9 Functional fusion protein assays 

6.2.9.1 Transduction of CPP fusion proteins into plant cells 

 

For the transduction of fusion proteins into protoplasts, 2.5 x 105 freshly isolated protoplasts 

(6.2.2.2) were incubated with protein concentrations from 1-5 µM in F-PCN for 1 h in darkness. 
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After incubation, protoplasts were washed two times with 10 ml F-PCN (10 min at 50 g) and 

studied by CLSM. 

In addition, transduction in partially digested young leaves was studied. Young leaves of 4-5 week 

old tobacco leaves were digested for 20 h. The resulting partially digested young leaves were 

washed two times in F-PCN and adjusted to 5 µM peptide in F-PCN. Incubation was carried out for 

24 h at RT in darkness. For analysis, leaf tissue was washed two times with F-PCN and studied by 

CLSM. 

6.2.9.2 Transduction of CPP fusion proteins into human cells 

 

To test transduction into human cells lines, suspension cells were kept in RPMI medium 1640 

(Gibco) with 10% FCS (fetal calf serum), 5% penicillin / streptomycin, 5% L- glutamin and 0.1% 

beta-mercaptoethanol at standard cell culture conditions (37 °C, 5% CO2) in cell culture flasks.  

For transduction assay 2 x 106 cells were washed twice with PBS, resuspended in Optimem 

medium (reduced serum medium, Gibco) and transferred into a 6-well plate. The fusion protein 

was added and incubated with the cells (37 °C, 5% CO2). At selected time-points, cells were 

washed twice with PBS and treated with trypsin for 15 min to remove membrane-bound fusion 

protein. Reaction was stopped by adding complete medium, in which cells were washed again. 

In order to quench the residual signal coming from unspecific membrane attachment, cells were 

resuspended in trypan blue (0.005% in PBS). Flow cytometric analysis was performed on a FACS 

Canto II (BD Biosciences). 

Adherent Phoenix (293 derived cell line) cells were kept in DMEM medium (Gibco) containing 10% 

FCS, 5% penicillin / streptomycin, 5% L-glutamine and 0.1% beta-mercaptoethanol at standard cell 

culture conditions in cell culture dishes. The day before the transduction assay 5 x 105 cells per 

well were seeded out in 6-well plates. Prior to transduction, cells were washed twice with PBS and 

incubated with Optimem for 1 h. The fusion protein was added and incubated with the cells  

(37 °C, 5% CO2). At selected time-points, cells were washed twice with PBS and treated with 

trypsin. The reaction was stopped with complete medium, in which cells were washed again.  

Finally cells were resuspended trypan blue (0.005% in PBS) and analysed by FACS. 

 

 

 

 



7 Abbreviations 

5’ UTR   5’-untranslated region 

aadA     3’ aminoglycoside-adenyltransferase, antibiotics selection gene 

AB   Antibody 

(Arg)9   Nonaarginine, CPP 

Amp   Ampicillin  

Arg   Arginine 

AS    Amino acid(s) 

bp/kb   Base pair(s)/ Kilo base pairs 

BH4   6-R-L-erythro-5,6,7,8-tetrahydrobiopterin 

BSA   Bovine serum albumin 

B5      Gamborg´s medium 

c    Centi 

CLSM   Confocal laser scanning microscopy 

CPP(x)   Cell penetrating peptide (x represents a CPP/number according to Table 1) 

CPPx-XXX   Fusion protein of given vector series 

CPPx_XXX  Vector or resulting plant line of given vector series 

CTAB   Cetyl trimethyl ammonium bromide 

CTB   Mucosa-binding subunit B of cholera toxin 

Da   Dalton 

DNA    Deoxyribonucleic acid   

E. coli    Escherichia coli 

EDTA     Ethylenediaminetetraacetic acid 

e.g.   Exempli gratia, Latin: "for example" 

(e)GFP    (Enhanced) green fluorescent protein 

ER   Endoplasmic reticulum 

ERT   Enzyme replacement therapy 

FACS   Fluorescence activated cell sorting 

FDA   Fluorescein diacetate 

FPLC   Fast protein liquid chromatography 

FW   Fresh weight 

g   Centrifugal force or gram 

G10L RBS  Ribosomal binding site from gene 10 leader sequence 

gfp14   First 14 amino acids of GFP 

Goi   Gene of interest 

GUS     β-glucuronidase 

h    Hour(s) 

HIC   Hydrophobic interaction chromatography 

His-tag   Polyhistidine-tag 

HIV-1   Human immunodeficiency virus type 1 

inHg   Inches of mercury 

INSR   Right insertion site 

INSL   Left insertion site 

k    Kilo 
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l   Litre 

Lab   Laboratory 

LB    Luria-Bertani 

LMU   Ludwig Maximilian University of Munich 

LTB   Escherichia coli heat-labile enterotoxin subunit B 

m    Milli or metre 

MCS   Multiple cloning site 

MES    2-(N-morpholino)ethanesulfonic acid 

min   Minute(s) 

(m)M    (milli)Molar = (milli)moles/l 

MOPS   3-(N-morpholino)propanesulfonic acid 

mOsm   Milliosmole 

n   Nano 

NEP   Nuclear encoded polymerase 

numbers 1 to 9  CPP abbreviation / number used in the text (compare Table 1.) 

OD   Optical density 

ORF   Open reading frame 

PAH   Phenylalanine hydroxylase 

PAP1   Production of anthocyanin pigment 1 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PEP   Plastid-encoded polymerase from rrn 16 

PKU   Phenylketonuria 

PNG10-   Fusion of PEP, NEP and G10L RBS 

psi    Pounds per square inch 

Q.S.    Quantity sufficient 

rbcL   Large subunit of the ribulose-bisphosphate carboxylase 

rpm   Revolutions per minute 

RT   Room temperature 

RNA   Ribonucleic acid 

SDS-PAGE   Sodium dodecyl sulfate polyacrylamide gel electrophoresis  

siRNA   Small interfering RNA 

Spec   Spectinomycin 

T   Thymus or trangenic plant generation or Thrombin site 

Tat   Transactivator of transcription (HIV-1), CPP 

TrbcL   rbcL terminator from C. reinhardtii 

tRNA   Transfer RNA 

TSP   Total soluble protein 

UV   Ultraviolet light 

WT   Wild-type 

w/v    Weigth per volume  

v/v   Volume per volume 

♀/♂   Female / male 

°C   Degree Celsius 

µ    Micro 
o
   Symbol for PAP1 vector series 

*   Symbol for PAH vector series or insertion site: trnfM / trnG 



8 Tables and Figures 

Table 1. Selected CPPs, CPP abbreviation / number used in the text, origin, sequence and original 

publication.  .................................................................................................................. 19 

 

Figure 1. Events from the biolistic transformation vector delivery to the regeneration of a 

homoplastomic plant.  ................................................................................................. 10 

Figure 2. Schematic overview of possible applications where cell-penetrating peptides have been 

shown to function well as delivery vehicles, both in vitro and in vivo. ....................... 13 

Figure 3. Suggested mechanisms of cell entry used by CPPs.  ......................................................... 14 

Figure 4. Codon-optimized expression cassette for CPP fusion protein expression and 

transformation vector assembly of the eGFP vector series.  ....................................... 20 

Figure 5. Identification of transplastomic CPPx_eGFP lines and confirmation of correct vector 

integration into the plastome by PCR and Southern blot.  .......................................... 21 

Figure 6. Crossing CPPx_GFP lines.  .................................................................................................. 22 

Figure 7. First division stages of CPPx_eGFP protoplast-derived cells.  ........................................... 23 

Figure 8. Ease of artefact generation as a drawback of the CPPx-eGFP system.  ............................ 24 

Figure 9. Adult stages of CPPx_eGFP lines and SDS-PAGE of extracted total soluble protein (TSP) 25 

Figure 10. HIC purified CPPx-eGFP fusion proteins separated on SDS-PAGE.  ................................. 26 

Figure 11. Transduction of CPPx-eGFP fusion proteins into tobacco WT protoplasts.  ................... 27 

Figure 12. Transduction of CPPx-eGFP fusion proteins into partially digested young WT tissues.  . 28 

Figure 13. Transduction of CPPx-eGFP fusion proteins into human cells.  ...................................... 29 

Figure 14. Cloning the transformation vector intermediate pUC18_INS*_CPP cassette_rbcL           

(= pUC18(C)), targeting insertion site trnfM / trnG.  .................................................... 30 

Figure 15. Proposed action of CPPx-PAP1 fusion proteins upontheir production in the plastid ..... 31 

Figure 16. Generation and phenotype of nuclear transformant pap1.  ........................................... 32 

Figure 17. Cloning of the PAP1 transformation vector series.  ........................................................ 33 

Figure 18. Identification of transplastomic CPPx_PAP1 lines and confirmation of correct vector 

integration into the plastome by PCR and Southern blot.  .......................................... 34 

Figure 19. Phenotype of transplastomic PAP1 lines in comparison to pap1 nuclear transformant. 

 ...................................................................................................................................... 35 

Figure 20. SDS-PAGE of extracted CPPx_PAP1 soluble protein (TSP).  ............................................. 35 

Figure 21. Cloning of the PAH transformation vector series.  .......................................................... 37 

Figure 22. Identification of transplastomic CPPx_PAH lines and confirmation of correct integration 

into the plastome.  ....................................................................................................... 38 

Figure 23. Phenotype of CPPx_PAH lines and TSP separated by SDS-PAGE.  ................................... 39 

Figure 24. Germination of CPP2_PAH (external aadA) seeds on (A) on B5 (B) on B5Spec. ................ 40 

Figure 25. Gel filtration and identification of CPP2-PAH fusion protein by Western blot. .............. 40 

 

file:///C:/Users/scsi/Desktop/Dissertation/The%20expression%20of%20CPP%20fusion%20proteins%20in%20plastids_Abbildungsverzeichnis.docx%23_Toc320898340




9 References 

Apel W and Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes 
by induced lycopene-to-provitamin A conversion. Plant Physiol 151: 59-66. 
 
Apel W, Schulze WX and Bock R (2010) Identification of protein stability determinants in 
chloroplasts. Plant J 63: 636-650.  
 
Asoh S and Ohta S (2008) PTD-mediated delivery of anti-cell death proteins/peptides and 
therapeutic enzymes. Adv Drug Deliv Rev 60: 499-516. 
 
Aussedat B, Sagan S, Chassaing G, Bolbach G and Burlina F (2006) Quantification of the efficiency 
of cargo delivery by peptidic and pseudo-peptidic Trojan carriers using MALDI-TOF mass 
spectrometry. Biochim Biophys Acta 1758: 375-383. 
 
Aviezer D, Brill-Almon E, Shaaltiel Y, Hashmueli S, Bartfeld D, Mizrachi S, Liberman Y, Freeman 
A, Zimran A and Galun E (2009) A plant-derived recombinant human glucocerebrosidase enzyme-
a preclinical and phase I investigation. PLoS One 4: e4792. 
 
Bárány-Wallje E, Gaur J, Lundberg P, Langel Ü and Gräslund A (2007) Differential membrane 
perturbation caused by the cell-penetrating peptide Tp10 depending on attached cargo. FEBS Lett 
581: 2389-2393. 
 
Bellucci M, de Marchis F, Mannucci R, Bock R and Arcioni S (2005) Cytoplasm and chloroplasts 
are not suitable subcellular locations for ß-zein accumulation in transgenic plants. J Exp Bot 56: 
1205-1212.  
 
Benko-Iseppon AM, Galdino SL, Calsa T Jr, Kido EA, Tossi A, Belarmino LC and Crovella S (2010) 
Overview on plant antimicrobial peptides. Curr Protein and Pept Sci 11: 181-188. 
 
Bevan MW, Flavell RB and Chilton M-D (1983) A chimaeric antibiotic resistance gene as a 
selectable marker for plant cell transformation. Nature 304: 184-187. 
 
Bidwell III GL, Davis AN and Raucher D (2009) Targeting a c-Myc inhibitory polypeptide to specific 
intracellular compartments using cell penetrating peptides. J Control Release 135: 2-10. 
 
Bienenstock J and Befus AD (1980) Mucosal immunology. Immunology 41: 249-270. 
 
Björklund J, Biverståhl H, Gräslund A, Mäler L and Brzezinski P (2006) Real-time transmembrane 
translocation of penetratin driven by light-generated proton pumping. Biophys J 91: L29-L31.  
 
Bock R and Khan MS (2004) Taming plastids for a green future. Trends Biotechnol 22: 311-318. 
 
Bock R and Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends 
Biotechnol 28: 246-252.  
 
Borevitz J, Xia Y, Blount JW, Dixon RA and Lamb C (2000) Activation tagging identifies a 
conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2393. 
Boyhan D and Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce plastids 
for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9: 585-598. 
 
Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, 
Robertson D, Klein TM, Shark KB and Sanford JC (1988) Plastid transformation in 
Chlamydomonas with high velocity microprojectiles. Science 240: 1534-1538. 
 
Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57: 283-296.  
 
Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V and Pietersz GA (2010) Cell-penetrating 
peptides: application in vaccine delivery. Biochim Biophys Acta 1805: 25-34. 
 



82 References 

 

 

Butow RA and Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends in 
Biochemical Sciences 15: 465-468. 
 
Cai SR, Xu G, Becker-Hapak M, Ma M, Dowdy SF and McLeod HL (2006) The kinetics and tissue 
distribution of protein transduction in mice. Eur J Pharm Sci 27: 311-319.  
 
Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH and Chen J (2002) In vivo 
delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects 
against ischemic brain injury and neuronal apoptosis. J Neurosci 22: 5423-5431. 
 
Cardi T, Lenzi P and Maliga P (2010) Plastids as expression platforms for plant-produced vaccines. 
Expert Rev Vaccines 9: 893-911. 
 
Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N and Tremblay 
JP (2001) Intracellular delivery of a Tat–eGFP fusion protein into muscle cells. Mol Therapy 3: 310-
318. 
 
Cascales L, Henriques ST, Kerr MC, Huang Y-H, Sweet MJ, Daly NL and Craik DJ (2011) 
Identification and characterization of a new family of cell penetrating peptides: Cyclic cell 
penetrating peptides. J Biol Chem 286: 36932-36943.  
 
Cermenati G, Terracciano I, Castelli I, Giordana B, Rao R, Pennacchio F and Casartelli M (2011) 
The CPP Tat enhances eGFP cell internalization and transepithelial transpor t by the larval midgut 
of Bombyx mori (Lepidoptera, Bombycidae). J Insect Physiol 57: 1689-1697.  
 
Chan CX and Bhattacharya D (2010) The origin of plastids. Nat Education 3: 84. 
 
Chang M, Chou J-C, Chen C-P, Liu BR and Lee H-J (2007) Noncovalent protein transduction in 
plant cells by macropinocytosis. New Phytol 174: 46-56. 
 
Chang M, Chou J-C and Lee H-J (2005) Cellular internalization of fluorescent proteins via arginine-
rich intracellular delivery peptide in plant cells. Plant Cell Physiol 46: 482-488. 
 
Chauhan A, Tikoo A, Kapur AK and Singh M (2007) The taming of the cell penetrating domain of 
the HIV Tat: myths and realities. J Control Release 117: 148-162.  
 
Chen C-P, Chou J-C, Liu BR, Chang M and Lee H-J (2007) Transfection and expression of plasmid 
DNA in plant cells by arginine-rich intracellular delivery peptide without protoplast preparation.  
FEBS Lett 581: 1891-1897. 
 
Chen L and Harrison SD (2007) Cell-penetrating peptides in drug development: enabling 
intracellular targets. Biochem Soc Trans 35: 821-825. 
 
Chugh A, Amundsen E and Eudes F (2009) Translocation of cell-penetrating peptides and delivery 
of their cargoes in triticale micro-spores. Plant Cell Rep 28: 801-810. 
 
Chugh A and Eudes F (2007) Translocation and nuclear accumulation of monomer and dimmer of 
HIV-1 Tat basic domain in triticale mesophyll protoplasts. Biochim Biophys Acta Biomembr 1768: 
419-426. 
 
Chugh A and Eudes F (2008a) Cellular uptake of cell-penetrating peptides pVEC and transportan in 
plants. J Pept Sci 14: 477-481. 
 
Chugh A and Eudes F (2008b) Studies of uptake of cell-penetrating peptides and their cargoes in 
wheat immature embryos. FEBS J 275: 2403-2414. 
 
Chugh A, Eudes F and Shim YS (2010) Cell-penetrating peptides: Nanocarrier for macromolecule 
delivery in living cells. IUBMB Life 62: 183-193. 
 
Church GM and Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-1995. 
 
Clough SJ and Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated 
transformation of Arabidopsis thaliana. Plant J 16: 735-743. 
 



References 83 

Ciobanasu C, Siebrasse JP and Kubitscheck U (2010) Cell-penetrating HIV1 Tat peptides can 
generate pores in model membranes. Biophys J 99: 153-162. 
 
Collakova E, Goyer A, Naponelli V, Krassovskaya I, Gregory JF, Hanson III AD and Shachar-Hill Y 
(2008) Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration.  
Plant Cell 208: 1818-1832.  
 
Corriveau JL and Coleman AW (1988) Rapid screening method to detect potential biparental 
inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75: 1443-1458. 
 
Daniell H, Singh ND, Mason H and Streatfield SJ (2009) Plant-made vaccine antigens and 
biopharmaceuticals. Trends Plant Sci 14: 669-679. 
 
Daniell H, Streatfield SJ and Wycoff K (2001) Medical molecular farming: production of 
antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6: 219-226. 
 
Day A and Goldschmidt-Clermont M (2011) The plastid transformation toolbox: selectable 
markers and marker removal. Plant Biotech J 9: 540-553. 
 
Del Gaizo V and Mark Payne R (2003) A novel TAT-mitochondrial signal sequence fusion protein is 
processed, stays in mitochondria, and crosses the placenta. Molec Ther 7: 720-730.  
 
Deshayes S, Plénat T, Charnet P, Divita G, Molle G and Heitz F (2006) Formation of 
transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences 
on the mechanism of cell penetration. Biochim Biophys Acta 1758: 1846-1851. 
 
Dietz GPH and Bähr M (2004) Delivery of bioactive molecules into the cell: the Trojan horse 
approach. Mol Cell Neurosci 27: 85-131. 
 
Dietz GPH and Bähr M (2005) Peptide-enhanced cellular internalization of proteins in 
neuroscience. Brain Res Bull 68: 103-114. 
 
Dietz GPH (2011) Protection by neuroglobin and cell-penetrating peptide-mediated delivery in 
vivo: a decade of research. Comment on Cai et al.: TAT-mediated delivery  of neuroglobin protects 
against focal cerebral ischemia in mice. Exp Neurol. 2011; 227(1): 224-31. Experimental neurology 
231: 1-10. 
 
Doherty GJ and McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78: 857-
902. 
 
Dovzhenko A, Bergen U and Koop H-U (1998) Thin-alginate-layer technique for protoplast culture 
of tobacco leaf protoplasts: Shoot formation in less than two weeks. Protoplasma 204: 114-118.  
 
Dowdy SF (2006) Applications of cell-penetrating peptides in gene modulation and protein 
transport. In: Langel Ü (eds) Handbook of cell-penetrating peptides, Second Edition. CRC Press: 
Boca Raton, FL, pp 309-311. 
 
Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R and Brock R (2007) A comprehensive model 
for the cellular uptake of cationic cell-penetrating peptides. Traffic 8: 848-866. 
 
Dupont E, Prochiantz A and Joliot A (2011) Penetratin story: an overview. Methods Mol Biol 683: 
21-29. 
 
Eavri R and Lorberboum-Galski H (2007) A novel approach for enzyme replacement therapy. The 
use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. J 
Biol Chem 282: 23402-23409. 
 
Edenhofer F (2008) Protein transduction revisited: Novel insights into the mechanism underlying 
intracellular delivery of proteins. Curr Pharm Des 14: 3628-3636. 
 
Eiríksdóttir E, Konate K, Langel U, Divita G and Deshayes S (2010) Secondary structure of cell-
penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta 1798: 
1119-1128. 
 



84 References 

 

 

El-Andaloussi S, Johansson HJ, Holm T and Langel Ü (2007) A novel cell-penetrating peptide, 
M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15: 1820-1826. 
 
Elghabi Z, Karcher D, Zhou F, Ruf S and Bock R (2011) Optimization of the expression of the HIV 
fusion inhibitor cyanovirin-N from the tobacco plastid genome. Plant Biotechnol J 9: 599-608.  
 
Elliott G and O’Hare P (1997) Intercellular trafficking and protein delivery by a herpes virus 
structural protein. Cell 88: 223-233. 
 
Eudes F and Chugh A (2008) Cell-penetrating peptides: From mammalian to plant cells. Plant 
Signal and Behavior 3: 549-550. 
 
Eum WS, Choung IS, Li MZ, Kang JH, Kim DW, Park J, Kwon HY and Choi SY (2004) HIV-1 Tat 
mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic  β  cells  in vitro and  
in vivo. Free Radic Biol Med 37: 339-349. 
 
Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B and Barsoum J (1994) Tat-mediated 
delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91: 664-668. 
 
Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M and Beltram F (2003) Caveolae-
mediated internalization of extracellular HIV-1 Tat fusion proteins visualized in real time. Molec 
Ther 8: 284-294. 
 
Fischer R, Fotin-Mleczek M, Hufnagel H and Brock R (2005). Break on through to the other side-
biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 6: 2126-2142. 
 
Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F and Giacca M (2003) Cell 
membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278: 
34141-34149.  
 
Foerg C and Merkle HP (2008) On the biomedical promise of cell penetrating peptides: limits 
versus prospects. J Pharm Sci 97: 144-162.  
 
Foged C and Nielsen HM (2008) Cell-penetrating peptides for drug delivery across membrane 
barriers. Expert Opin Drug Deliv 5: 105-117. 
 
Smith FJD, Irvine AD, Terron-Kwiatkowski A, et al. (2006) Loss-of-function mutations in the gene 
encoding filaggrin cause ichthyosis vulgaris. Nat Genetics 38: 337-342. 
 
Frankel AD and Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency 
virus. Cell 55: 1189-1193.  
 
Fratantoni JC, Hall CW and Neufeld EF (1968) Hurler and Hunter syndromes: mutual correction of 
the defect in cultured fibroblasts. Science 162: 570-572. 
 
Fretz MM, Penning NA, Taei SA, Futaki S, Takeuchi T, Nakase I, Storm G and Jones AT (2007)  
Temperature, concentration and cholesterol dependent translocation of L- and D-octa-arginine 
across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem J 403: 335-342. 
 
Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K and Sugiura Y (2001) Arginine-rich 
peptides. An abundant source of membrane-permeable peptides having potential as carriers for 
intracellµlar protein delivery. J Biol Chem 276: 5836-5840. 
 
Gamborg OL, Miller RA and Ojima K (1968) Nutrient requirements of suspension cultures of 
soybean root cells. Exp Cell Res 50, 151-158. 
 
Geueke B, Namoto K, Agarkova I, Perriard JC, Kohler H-PE and Seebach D (2005) Bacterial cell 
penetration by β3-oligo-homoarginines: indication for passive transfer through the lipid bilayer.  
Chembiochem 6: 982-985. 
 
Goldblatt J, Fletcher JM, McGill J, Szer J and Wilson M (2011) Enzyme replacement therapy “drug 
holiday”: results from an unexpected shortage of an orphan drug supply in Australia. Blood Cells 
Mol Dis 46: 107-110. 
 



References 85 

Golds TJ, Maliga P and Koop H-U (1993) Stable plastid transformation in PEG-treated protoplasts 
of Nicotiana tabacum. Nat Biotechnol 11: 95-97. 
 
Gray JC, Sullivan JA, Hibberd JM and Hansen MR (2001) Stromules: mobile protrusions and 
interconnections between plastids. Plant Biology 3: 223-233. 
 
Green M and Loewenstein PM (1988) Autonomous functional domains of chemically synthesized 
human immunodeficiency virus tat trans-activator protein. Cell 55: 1179-1188. 
 
Gunaratna KR, Andersson M and Good L (2002) Microbial membrane-permeating peptides and 
their applications. In: Langel Ü (eds) Cell penetrating peptides: processes and applications. CRC 
Press: Boca Raton, FL, pp. 377-396. 
 
Gupta B, Levchenko TS and Torchilin VP (2005) Intracellular delivery of large molecules and small 
particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57: 637-651. 
 
Han K, Jeon MJ, Kim KA, Park J and Choi SY (2000) Efficient intracellular delivery of GFP by 
homeodomains of Drosophila Fushi-tarazu and engrailed proteins. Mol Cells 10: 728-732. 
 
Hanson MR and Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in 
angiosperm plants. Plant Cell Environ 31: 646-657. 
 
Hanson MR and Sattarzadeh A (2011) Stromules: recent insights into a long neglected feature of 
plastid morphology and function. Plant Physiol 155: 1486-1492. 
 
Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C and Loyter A (2003) Direct translocation of 
histone molecules across cell membranes. J Cell Sci 116: 4577-4586.  
 
Heitz F, Morris MC and Divita G (2009) Twenty years of cell-penetrating peptides: from molecular 
mechanisms to therapeutics. Br J Pharmacol 157: 195-206. 
 
Henriques ST, Costa J and Castanho MA (2005) Translocation of beta-galactosidase mediated by 
the cell-penetrating peptide Pep-1 into lipid vesicles and human HeLa cells is driven by membrane 
electrostatic potential. Biochemistry 44: 10189-10198. 
 
Henriques ST, Melo MN and Castanho MA (2006) Cell-penetrating peptides and antimicrobial 
peptides: how different are they? Biochem J 399: 1-7. 
 
Herce HD, Garcia AE, Litt J, Kane RS, Martin P, Enrique N, Rebolledo A and Milesi V (2009) 
Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation 
translocation mechanism of cell-penetrating peptides. Biophysical Journal 97: 1917-1925. 
 
Herrera Díaz A (2011) Regeneration and plastid transformation approaches in Arabidopsis 
thaliana and Rapid-Cycling Brassica rapa. Dissertation, LMU München 
 
Herrera-Estrella L, Depicker A, Van Montagu M and Schell J (1983) Expression of chimaeric genes 
transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209-213. 
 
Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, Kobayashi S, Haraguchi T and 
Futaki S (2012) Transient focal membrane deformation induced by arginine-rich peptides leads to 
their direct penetration into cells. Molecular Therapy: in press (doi:10.1038/mt.2011.313). 
 
Ho A, Schwarze SR, Mermelstein SJ, Waksman G and Dowdy SF (2001) Synthetic protein 
transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61: 474-
477. 
 
Holm T, Andaloussi SE and Langel U (2011) Comparison of CPP uptake methods. Methods Mol 
Biol 683: 207-217. 
 
Holmgren J and Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Medicine 11: S45-S53. 
 
Holmgren J and Lycke N (1986) Immune mechanisms in enteric infections. In: Holmgren J, 
Lindberg A and Möllby R (eds) Development of vaccine and drugs against diarrhea, 
Studentlitteratur/Chartwell-Bratt Ltd: Lund, Sweden, 9 p. 



86 References 

 

 

Horsch RB, Fraley RT, Rogers SG, Sanders PR and Lloyd A (1985) A simple and general method for 
transferring genes into plants. Science 227: 1229-1231. 
 
Horton KL, Stewart KM, Fonseca SB, Guo Q and Kelley SO (2008) Mitochondria-penetrating 
peptides. Chem Biol 15: 375-382. 
 
Huber M, Rettler I, Bernasconi K, Frenk E, Lavrijsen SP, Ponec M, Bon A, Lautenschlager S, 
Schorderet DF and Hohl D (1995) Mutations of keratinocyte transglutaminase in lamellar 
ichthyosis. Science 267: 525-528.  
 
Ijaz S (2010) Plant mitochondrial genome: “A sweet and safe home’’ for transgene. African Journal 
of Biotechnology 9: 9196-9199. 
 
Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop H-U and Krupinska K (2012) Plastid encoded 
Whirly1 is translocated to the nucleus. FEBS Lett 586: 85-88. 
 
Järver P, Mäger I and Langel Ü (2010) In vivo biodistribution and efficacy of peptide mediated 
delivery. Trends Pharmacol Sci 31: 528-535. 
 
Jin LH, Bahn JH, Eum WS, Kwon HY, Jang SH, Han KH, Kang TC, Won MH, Kang JH, Cho SW, Park J 
and Choi SY (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic 
domain and arginine-rich peptides into mammalian cells. Free Radical Biol Med 31: 1509-1519.  
 
Johansson HJ, EL Andaloussi S and Langel Ü (2011) Mimicry of protein function with cell-
penetrating peptides. Methods Mol Biol 683: 233-247. 
 
Johnson RM, Harrison SD and Maclean D (2011) Therapeutic applications of cell-penetrating 
peptides. Methods Mol Biol 683: 535-551. 
 
Johnston SA, Anziano PQ, Shark K, Sanford JC and Butow RA (1988) Mitochondrial 
transformation  in  yeast  by bombardment with microprojectiles. Science 240: 1538-1541. 
 
Joliot A, Pernelle C, Deagostini-Bazin H and Prochiantz A (1991) Antennapedia homeobox 
peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88: 1864-1868. 
 
Jones AT (2007) Macropinocytosis: searching for an endocytic identity and role in the uptake of 
cell penetrating peptides. J Cell Mol Med 11: 670-684. 
 
Jones AT (2010) Uptake and intracellular dynamics of proteins internalized by cell-penetrating 
peptides, in organelle-specific pharmaceutical nanotechnology. In: Weissig V and D'Souza GGM 
(eds) Organelle-specific pharmaceutical nanotechnology. John Wiley & Sons Inc: Hoboken, NJ, 
Chapter 15. 
 
Kaplan IM, Wadia JS and Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells 
by macropinocytosis. J Control Release 102: 247-253. 
 
Khafagy E-S and Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv 
Drug Deliv Rev: in press (doi: 10.1016/j.bbr.2011.03.031). 
 
Kim DW, Eum WS, Jang SH, Kim SY, Choi HS, Choi SH, et al. (2005) Transduced Tat-SOD fusion 
protein protects against ischemic brain injury. Mol Cells 19: 88-96.  
 
Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z and Jackson D (2002) Intercellular trafficking of a 
KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc 
Natl Acad Sci USA 99: 4103-4108. 
 
Klaus SM, Huang FC, Golds TJ and Koop H-U (2004) Generation of marker-free plastid 
transformants using a transiently cointegrated selection gene. Nat Biotechnol 22: 225-229. 
 
Koncz C and Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression 
of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 
383-396.  
 



References 87 

Koop H-U, Herz S, Golds T and Nickelsen J (2007) The genetic transformation of plastids. In: Bock 
R (eds) Cell and molecular biology of plastids. Springer: Berlin / Heidelberg, pp 457-510. 
 
Kosuge M, Takeuchi T, Nakase K, Jones AT and Futaki S (2008) Cellular internalization and 
distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, 
and plasma membrane-associated proteoglycans. Bioconjugate Chem 19: 656-664. 
 
Köhler RH, Cao J, Zipfel WR, Webb WW and Hanson MR (1997) Exchange of protein molecules 
through connections between higher plant plastids. Science 276: 2039-2042.  
 
Köhler RH and Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and 
developmentally regulated. J Cell Sci 113: 81-89. 
 
Krause K and Krupinska K (2009) Nuclear regulators with a second home in organelles. Trends 
Plant Sci 14: 194-199.  
 
Krichevsky A , Meyers B, Vainstein A , Maliga P and Citovsky V (2010) Autoluminescent plants.  
PLoS ONE 5: e15461. 
 
Kurata T, Okada K and Wada T (2005) Intercellular movement of transcription factors. Curr Opin 
Plant Biol 8: 600-605. 
 
Kwok EY and Hanson MR (2003) Microfilaments and microtubules control the morphology and 
movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35: 16-26. 
 
Kwok EY and Hanson MR (2004) GFP-labeled RubisCO and aspartate aminotransferase are 
present in plastid stromules and traffic between plastids. J Exp Bot 55: 595-604.  
 
Kwon HY, Eum WS, Jang HW, Kang JH, Ryu J, Ryong Lee B, Jin LH, Park J and Choi SY (2000) 
Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into 
mammalian cells. FEBS Lett 485: 163-167.  
 
Langel Ü (2002) Preface In: Langel Ü (eds) Cell penetrating peptides: processes and applications. 
CRC Press: Boca Raton, FL. 
 
Leifert JA and Whitton JL (2003) “Translocatory proteins” and “Protein transduction domains”: a 
critical analysis of their biological effects and the underlying mechanisms. Mol Ther 8: 13-20.  
 
Limaye A, Koya V, Samsam M and Daniell H (2006) Receptor-mediated oral delivery of a 
bioencapsulated green fluorescent protein expressed in transgenic plastids into the mouse 
circulatory system. FASEB J 20: 959-961. 
 
Lindgren M, Hallbrink M, Prochiantz A and Langel Ü (2000) Cell-penetrating peptides. Trends 
Pharmacol Sci 21: 99-103. 
 
Lindgren M and Langel Ü (2011) Classes and prediction of cell-penetrating peptides. Methods Mol 
Biol 683: 3-19. 
 
Liu BR, Chou J-C and Lee H-J (2008) Cell membrane diversity in noncovalent protein transduction.  
J Membr Biol 222: 1-15. 
 
Liu BR, Huang YW, Winiarz JG, Chiang HJ and Lee H-J (2011) Intracellular delivery of quantum 
dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct 
membrane translocation mechanism. Biomaterials 32: 3520-3537. 
 
Liu K, Lee H-J, Leong SS, Liu C-L and Chou J-C (2007) A bacterial indole-3-acetyl-L-aspartic acid 
hydrolase inhibits mung bean (Vigna radiata L.) seed germination through arginine-rich 
intracellular delivery. J Plant Growth Regul 26: 278-284. 
 
Lohcharoenkal W, Manosaroi A, Götz F, Werner RG, Manosroi W and Manosaroi J (2011) Potent 
enhancement of GFP uptake into HT-29 cells and rat skin permeation by coincubation with tat 
peptide. J Pharmaceu Sci 100: 4766-4773. 
 



88 References 

 

 

Lössl A, Eibl C, Harloff HJ, Jung C and Koop H-U (2003) Polyester synthesis in transplastomic 
tobacco (Nicotiana tabacum L.): Significant contents of polyhydroxybutyrate are associated with 
growth reduction. Plant Cell Rep 21: 891-899. 
 
Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S and Koop H-U (2005) Inducible trans-
activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic 
tobacco. Plant Cell Physiol 46: 1462-1471. 
 
Lössl A and Waheed MT (2011) Chloroplast-derived vaccines against human diseases: 
achievements, challenges and scopes. Plant Biotechnol 9: 527-539. 
 
Lu SW, Hu JW, Liu BR, Lee CY, Li JF, Chou JC and Lee H-J (2010) Arginine-rich intracellular delivery 
peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. 
J Agric Food Chem 58: 2288-2294. 
 
Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B and Hake S (1995) Selective 
trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 
270: 1980-1983. 
 
Lundberg M and Johansson M (2001) Is VP22 nuclear homing an artifact? Nat Biotechnol 19: 713. 
 
Lundberg M and Johansson M (2002) Positively charged DNA-binding proteins cause apparent 
cell membrane translocation. Biochem Biophys Res Commun 291: 367-371. 
 
Lundin P, Johansson H, Guterstam P, Holm T, Hansen M, Langel Ü and EL Andaloussi S (2008) 
Distinct uptake routes of cell-penetrating peptide conjugates. Bioconjug Chem 19: 2535-2542. 
 
Lycke N and Holmgren J (1986) Strong adjuvant properties of cholera toxin on gut mucosal 
immune responses to orally presented antigens. Immunology 59: 301. 
 
Madani F, Lindberg S, Langel Ü, Futaki S and Gräslund A (2011) Mechanisms of cellular uptake of 
cell-penetrating peptides. J Biophys 2011: ID 414729. 
 
Mäe M, Myrberg H, Jiang Y, Paves H, Valkna A and Langel Ü (2005) Internalisation of cell-
penetrating peptides into tobacco protoplasts. Biochim Biophys Acta 1669: 101-107. 
 
Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P and Kavanagh TA (2004) T7 RNA 
polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-
lethal pale-green seedling phenotype. Transgenic Res 13: 325-337. 
 
Magzoub M and Gräslund A (2004) Cell-penetrating peptides: small from inception to application. 
Quart Rev Biophy 37: 147-195. 
 
Magzoub M, Pramanik A and Gräslund A (2005) Modeling the endosomal escape of cell-
penetrating peptides: transmembrane pH gradient driven translocation across phospholipid 
bilayers. Biochemistry 44: 14890-14897. 
 
Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5: 164-172. 
 
Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55: 289-313. 
 
Maliga P and Bock R (2011) Plastid biotechnology: Food, fuel, and medicine for the 21st century.  
Plant Physiol 155: 1501-1510. 
 
Mäger I, Langel K, Lehto T, Eiríksdóttir E and Langel Ü (2012) The role of endocytosis on the 
uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim Biophys Acta 1818: 502-
511. 
 
McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM and Maliga P (1995) Amplification of a 
chimeric Bacillus gene in plastids leads to an extraordinary level of an insecticidal protein in 
tobacco. Biotechnology 13: 362-365. 
 



References 89 

Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV and Krichevsky A (2010) Nuclear and plastid 
genetic engineering of plants: Comparison of opportunities and challenges. Biotechnology 
Advances 28: 747-756. 
 
Mizuno T, Miyashita M and Miyagawa H (2009) Cellular internalization of arginine-rich peptides 
into tobacco suspension cells: a structure-activity relationship study. J Pept Sci. 15: 259-263. 
 
Molina A, Hervás-Stubbs S, Daniell H, Mingo-Castel A and Veramendi J (2004) High-yield  
expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 
2: 141-153. 
 
Morris MC, Chaloin L, Mery J, Heitz F, Divita G (1999) A novel potent strategy for gene delivery 
using a single peptide vector as a carrier. Nucleic Acids Res 27: 3510-3517. 
 
Morris MC, Depollier J, Mery J, Heitz F and Divita G (2001) A peptide carrier for the delivery of 
biologically active proteins into mammalian cells. Nat Biotechnol 19: 1173-1176. 
 
Muntau AC, Roschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP and Roscher 
AA (2002) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 
347: 2122-2132. 
 
Mühlbauer SK and Koop H-U (2005) External control of transgene expression in tobacco plastids 
using the bacterial lac repressor. Plant J 43: 941-946. 
 
Mühlbauer SK, Lössl A, Tzekova L, Zou Z and Koop H-U (2002) Functional analysis of plastid DNA 
replication origins in tobacco by targeted inactivation. Plant J 32: 175-184. 
 
Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, 
Ezhevsky SA and Dowdy SF (1998) Transduction of full-length TAT fusion proteins into 
mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4: 1449-1452.  
 
Nagata T and Takebe I (1971) Plating of isolated tobacco mesophyll protoplasts on agar medium. 
Planta 99: 12-20.  
 
Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, 
Sugiura Y and Futaki S (2007) Interaction of arginine-rich peptides with membrane-associated  
proteoglycans is crucial for induction of actin organization  and  macropinocytosis. Biochemistry 
46: 492-501. 
 
Natesan SKA, Sullivan JA and Gray JC (2005) Stromules: a characteristic cell-specific feature of 
plastid morphology. J Exp Bot 56: 787-797. 
 
Nekhotiaeva N, Elmquist A, Rajarao GK, Hallbrink M, Langel Ü and Good L (2004) Cell entry and 
antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18: 394-396. 
 
Neufeld EF (2006) Enzyme replacement therapy – a brief history. In: Mehta A, Beck M, Sunder-
Plassmann G (eds) Fabry Disease: Perspectives from 5 Years of FOS. Oxford PharmaGenesis: 
Oxford, Chapter 10. 
 
Newell CA, Birch-Machin I, Hibberd JM and Gray JC (2003) Expression of green fluorescent 
protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Res 12: 631-634.  
 
Newell CA, Natesan SKA, Sullivan JA, Jouhet J, Kavanagh TA and Gray JC (2012) Exclusion of 
plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis. Plant J 69: 399-410. 
 
Oey M, Lohse M, Kreikemeyer B and Bock R (2009) Exhaustion of the chloroplast protein 
synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57: 436-445. 
 
Orsomando G, de la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ, Gregory III JF and Hanson AD 
(2005) Plant γ-glutamyl hydrolases and folate polyglutamates: characterization, 
compartmentation, and co-occurrence in vacuoles. J Biol Chem 280: 28877-28884.  
 



90 References 

 

 

Papadopoulou LC and Tsiftsoglou AS (2011) Transduction of Human Recombinant Proteins into 
Mitochondria as a Protein Therapeutic Approach for Mitochondrial Disorders. Pharmaceu Res 28: 
2639-2656. 
 
Park J, Ryu J, Jin LH, Bahn JH, Kim JA, Yoon CS, Kim DW, Han KH, Eum WS, Kwon HY, Kang TC, 
Won MH, Kang JH, Cho SW and Choi SY (2002) 9-Polylysine protein transduction domain: 
enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol 
Cells 13: 202-208. 
 
Patel LN, Zaro JL and Shen WC (2007) Cell penetrating peptides: intracellular pathways and 
pharmaceutical perspectives. Pharm Res 24: 1977-1992. 
 
Paul M and Ma JK (2011) Plant-made pharmaceuticals: leading products and production 
platforms. Biotechnol Appl Biochem 58: 58-67. 
 
Pelegrini PB, Perseghini del Sarto R, Silva ON, Franco OL and Grossi-de-Sa MF (2011) 
Antibacterial peptides from plants: What they are and how they probably work. Biochemistry 
Research International: 2011: ID 250349. 
 
Pfannschmidt T (2010) Plastidial retrograde signaling - A true “plastid factor” or just metabolite 
signatures? Trends Plant Sci 15: 427-435. 
 
Pooga M, Hällbrink M, Zorko M and Langel Ü (1998) Cell penetration by transportan. FASEB J 12: 
67-77. 
 
Pribat A, Noiriel A, Morse AM, Davis  JM, Fouquet R, Loizeau K, Ravanel S, Frank W, Haas R, 
Reski R, Bedair M, Sumner LW and Hanson AD (2010) Nonflowering plants possess a unique 
folate-dependent phenylalanine hydroxylase that is localized in chloroplasts. Plant Cell 22: 3410-
3422.  
 
Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by 
expression of β-ketothiolase. Plant Physiol 138:1232-1246. 
 
Prochiantz A (2000) Messenger proteins: homeoproteins, TAT and others. Curr Opin Cell Biol 12: 
400-406. 
 
Prochiantz A (2008) Protein and peptide transduction, twenty years later a happy birthday. Adv 
Drug Deliv Rev 60: 448-451. 
 
Qi X, Droste T and Kao CC (2011) Cell-penetrating peptides derived from viral capsid proteins. Mol 
Plant Microbe Interact 24: 25-36. 
 
Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu M-P and 
Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of 
Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Molecular 
and General Genetics 236: 235-244. 
 
Rapoport M and Lorberboum-Galski H (2009) TAT-based drug delivery system - new directions in 
protein delivery for new hopes? Expert Opin Drug Deliv 6: 453-463. 
 
Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll 
C, Yakoby N, O'Neal JM, Cornwell T, Pastor I and Fridlender B (2002) Plants and human health in 
the twenty-first century. Trends Biotechnol 20: 522-531. 
 
Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV and Lebleu B 
(2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 
278: 585-590. 
 
Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B and Chernomordik LV (2005) Cellular uptake 
of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparin sulfate 
receptors. J Biol Chem 280: 15300-15306. 
 
Roberts MR (2005) Fast-track applications: the potential for direct delivery of proteins and nucleic 
acids to plant cells for the discovery of gene function. Plant Methods 1: 12. 



References 91 

Rosenbluh J, Singh SK, Gafni Y, Graessmann A and Loyter A (2004) Non-endocytic penetration of 
core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction 
of macromolecules into plant cells. Biochim Biophys Acta 1664: 230-240. 
 
Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA and Khavari 
PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and 
inhibition of inflammation. Nat Med 6: 1253-1257. 
 
Rothbard JB, Jessop TC, Lewis RS, Murray BA and Wender PA (2004) Role of membrane potential 
and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells.  
J Am Chem Soc 126: 9506-9507. 
 
Ruf S, Hermann M, Berger IJ, Carrer H and Bock R (2001) Stable genetic transformation of tomato 
plastids and expression of a foreign protein in fruit. Nat Biotechnol 19: 870-875.  
 
Ruf S, Karcher D and Bock R (2007) Determining the transgene containment level provided by 
plastid transformation. Proc Natl Acad Sci USA 104: 6998-7002. 
 
Ruhlman, T, Ahangari R, Devine A, Samsam M and Daniell H (2007) Expression of cholera toxin B-
proinsulin fusion protein in lettuce and tobacco plastids - oral administration protects against 
development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5: 495-510. 
 
Ruhlman T, Verma D, Samson, N and Daniell H (2010) The role of heterologous chloroplast 
sequence elements in transgene integration and expression. Plant Physiol 152: 2088-2104. 
 
Rydström A, Deshayes S, Konate K, Crombez L, Padari K, Boukhaddaoui H, Aldrian G, Pooga M 
and Divita G (2011) Direct translocation as major cellular uptake for CADY self-assembling  
peptide-based nanoparticles. PLoS ONE 6: e25924. 
 
Ryser HJP (1968) Uptake of protein by mammalian cells: an underdeveloped area. Science 159: 
390-396. 
 
Ryu J, Han K, Park J and Choi SY (2003) Enhanced uptake of a heterologous protein with an HIV-1 
Tat protein transduction domain (PTD) at both termini. Mol Cells 16: 385-391.  
 
Ryu J, Lee H-J, Kim KA, Lee JY, Lee KS, Park J and Choi SY (2004) Intracellular delivery of p53 fused 
to the basic domain of HIV-1 Tat. Mol Cells 17: 353-359. 
 
Sambrook J and Russell DV (2001) Molecular cloning, a laboratory manual, Third edition. Cold 
Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2344 p.  
 
Santos-Sierra S, Kirchmair J, Perna AM, Reiß D, Kemter K, Röschinger W, Glossmann H, Gersting 
SW, Muntau AC, Wolber G and Lagler FB (2012) Novel pharmacological chaperones that correct 
phenylketonuria in mice. Hum Mol Genet 21: 1877-1887. 
 
Sarkissian CN, Gamez A and Scriver CR (2009) What we know that could influence future 
treatment of phenylketonuria. J Inherit Metab Dis 32: 3-9. 
 
Säälik P, Niinep A, Pae J, Hansen M, Lubenets D, Langel Ü and Pooga M (2011) Penetration 
without cells: membrane translocation of cell-penetrating peptides in the model giant plasma 
membrane vesicles. J Control Release 153: 117-125. 
 
Scharff LB (2002) Die Eignung der Glycerin-Kinase für die positive Selektion transgener Pflanzen.  
Diplomarbeit LMU München 
 
Schattat MH, Barton K, Baudisch B, Klösgen RB and Mathur J (2011) Plastid stromule branching 
coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol 155: 1-11. 
 
Schwarze SR, Ho A, Vocero-Akbani A and Dowdy SF (1999) In vivo protein transduction: delivery 
of a biologically active protein into the mouse. Science 285: 1569-1572. 
 
Sengoku T, Bondada V, Hassane D, Dubal S and Geddes JW (2004) Tat-calpastatin fusion proteins 
transduce primary rat cortical neurons but do not inhibit cellular calpain activity. Exp Neurol 188: 
161-170.  



92 References 

 

 

Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin Adamsky SA, 
Silman I, Sussman JL, Futerman AH and Aviezer D (2007) Production of glucocerebrosidase with 
terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell 
system. Plant Biotechnol J 5: 579-590. 
 
Sharma SB and Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic 
expression of transcription factors in Arabidopsis thaliana. Plant J 44: 62-75. 
 
Shen W-C, Wan J and Ekrami H (1992) Means to enhance penetration. Enhancement of 
polypeptide and protein absorption by macromolecular carriers via endocytosis and transcytosis. 
Adv Drug Deliv Rev 8: 93-113. 
 
Shi W and Dowdy SF (2006) Tat-mediated peptide/protein transduction in vivo. In: Ülo Langel 
(eds) Handbook of cell-penetrating peptides, Second Edition. CRC Press: Boca Raton, FL, pp 201-
217. 
 
Simeoni F, Morris MC, Heitz F and Divita G (2003) Insight into the mechanism of the peptide-
based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic 
Acids Res 31: 2717-2724. 
 
Simon MJ, Kang WH, Gao S, Banta S and Morrison III B (2010) Increased delivery of TAT across an 
endothelial monolayer following ischemic injury. Neurosci Lett 486: 1-4. 
 
Soomets U, Lindgren M, Gallet X, Hällbrink M, Elmquist A, Balaspiri L, Zorko M, Pooga M, 
Brasseur R and Langel Ü (2000) Deletion analogues of transportan. Biochim Biophys Acta 1467: 
165-176. 
 
Song HY, Lee JA, Ju SM, Yoo KY, Won MH, Kwon HJ, Eum WS, Jang SH, Choi SY and Park J (2008)  
Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain 
ameliorates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice. Biochem 
Pharmacol 75: 1348-1357. 
 
Splith K and Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties 
and vice versa. Eur Biophys J 40: 387-397. 
 
Staub JM and Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic 
mRNAs are efficiently translated in tobacco plastids. Plant J 7: 845-848. 
 
Svab Z, Hajdukiewicz P and Maliga P (1990) Stable transformation of plastids in higher plants.  
Proc Natl Acad Sci USA 87: 8526-8530. 
 
Svab Z and Maliga P (2007) Exceptional transmission of plastids and mitochondria from the 
transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 
104: 7003-7008. 
 
Tassetto M, Maizel A, Osorio J and Joliot A (2005) Plant and animal homeodomains use 
convergent mechanisms for intercellular transfer. EMBO Rep 6: 885-890. 
 
Ter-Avetisyan G, Tünnemann G, Nowak D, Nitschke M, Herrmann A, Drab M and Cardoso MC 
(2009) Cell entry of arginine- rich peptides is independent of endocytosis. J Biol Chem 284: 3370-
3378. 
 
Terrone D, Sang SL, Roudaia L and Silvius JR (2003) Penetratin and related cell-penetrating 
cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. 
Biochemistry 42: 13787-13799. 
 
Thorén PEG, Persson D, Isakson P, Goksör M, Önfelt A and Nordén B (2003) Uptake of analogs of 
penetratin, Tat (48–60) and oligoarginine in live cells. Biochem Biophys Res Commun 307: 100-
107. 
 
Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organellee 
targeting. Annual Review of Biomedical Engineering 8: 343-375.  
 



References 93 

Trabulo S, Cardoso AL, Mano M and Pedroso de Lima MC (2010) Cell-penetrating peptides - 
Mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals 3: 961-993. 
 
Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk 
KJ, Dougan G and Maliga P (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts.  
Nucleic Acids Res 31: 1174-1179. 
 
Unnamalai, N., Kang, BG and Lee WS (2004) Cationic oligopeptide-mediated delivery of dsRNA for 
post-transcriptional gene silencingin plant cells. FEBS Lett 566: 307-319. 
 
van den Berg A and Dowdy SF (2011) Protein transduction domain delivery of therapeutic 
macromolecules. Curr Opin Biotechnol 22: 888-893. 
 
Verhounig A, Karcher D and Bock R (2010) Inducible gene expression from the plastid genome by 
a synthetic riboswitch. Proc Natl Acad Sci USA 107: 6204-6209. 
 
Verma D and Daniell H (2007) Plastid vector systems for biotechnology applications. Plant Physiol 
145: 1129-1143. 
 
Verma D, Samson NP, Koya V and Daniell H (2008) A protocol for expression of foreign genes in 
chloroplasts. Nat Protoc 3: 739-758. 
 
Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW and Daniell H (2010) Oral 
delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal 
anaphylaxis in hemophilia B mice. Proc Natl Acad Sci USA 107: 7101-7106. 
 
Vivès E, Brodin P and Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly 
translocates through the plasmamembrane and accumulates in the cell nucleus. J Biol Chem 272: 
16010-16017. 
 
Wadia JS, Stan RV and Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape 
of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10: 310-315. 
 
Waheed MT, Thönes N, Müller M, Hassan SW, Gottschamel J, Lössl E, Kaul HP and Lössl A (2011) 
Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 
L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant 
Biotechnol J 9: 651-660.  
 
Walrant A, Bechara C, Alves ID and Sagan S (2012) Molecular partners for interaction and cell 
internalization of cell-penetrating peptides: How identical are they? Nanomed 7: 133-143. 
 
Wang Y-H, Chen C-P, Chan M-H, Chang M, Hou Y-W, Chen H-H, Hsu H-R, Liu K and Lee H-J (2006)  
Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells. 
Biochem Biol Res Commun 346: 758-767. 
 
Wang Y-H, Hou Y-W and Lee H-J (2007) An intracellular delivery method for siRNA by an arginine-
rich peptide. Journal of Biochemical and Biophysical Methods 70: 579-586. 
 
Watkins CL, Schmaljohann D, Futaki S and Jones AT (2009) Low concentration thresholds of 
plasma membranes for rapid energy - independent translocation of a cell penetrating peptide.   
Biochem J 420: 179-189. 
 
Wraith JE (2006) Limitations of enzyme replacement therapy: current and future. J Inher Metab 
Dis 29: 442-447. 
 
Wu S and Gallagher KL (2011) Mobile protein signals in plant development. Curr Opin Plant Biol 
14: 563-570. 
 
Xie DY, Sharma SB, Wright E, Wang ZY and Dixon RA (2006) Metabolic engineering of 
proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB 
transcription factor. Plant J 45: 895-907. 
 
Yang Y, Ma J, Song Z and Wu M (2002) HIV-1 TAT-mediated protein transduction and subcellular 
localisation using novel expression vectors. FEBS Lett 532: 36-44. 



94 References 

 

 

Ye GN, Hajdukiewicz PTJ, Broyles D, Rodriquez D, Xu CW, Nehra N and Staub JM (2001) Plastid-
expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate 
tolerance in tobacco. Plant J 25: 261-270. 
 
Yukawa M, Tsudzuki T and Sugiura M (2005) The 2005 version of the chloroplast DNA sequence 
from Tobacco (Nicotiana tabacum). Plant Mol Biol Rep 23: 359-365. 
 
Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides 
with lipids and glycosaminoglycans. Advanced Drug Delivery Reviews 60: 580-597. 
Ziemienowicz A, Shim Y-S, Matsuoka A, Eudes F and Kovalchuk I (2012) A novel method of 
transgene delivery into triticale plants using the Agrobacterium T-DNA-derived nano-complex. 
Plant Physiol 158: 1503-1513. 
 
Zou Z, Eibl C and Koop H-U (2003) The stem-loop region of the tobacco psbA 5'UTR is an 
important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269: 
340-349. 

 

 

 

 

 



10 Acknowledgements 

Ulrich Koop, Dario Leister and Cordelia Bolle for making this study possible. Ulrich`s supervision 

was probably the best I ever had. 

Elisabeth Weiss, Angelika Böttger, Cordelia Bolle and Heinrich Jung for reading the manuscript. 

Our great team: Christian, Stefan, Caro, Lena and Areli – a hard to beat crew inside and outside 

the lab. 

The AG Vothknecht, especially Norbert, Claudia, Monika, Geraldine for advice, equipment and 

bright moments. 

Ania Muntau for the collaboration in the PAH project (Christineh N. Sarkissian for her kind advice) 

and especially Dunja Reiß for the joint efforts in getting the project working. 

Ulrich Wißnet and Ariel Rosenberger for taking care of my plants in the greenhouse. 

Mattias Pribil and Ulrike Oster for protein sequencing. 

Ykä Helariutta, Ove Lindgren, Hannes Kollist, Günter Brader and Hans-Peter Kaul for their support. 

Stefan Wanninger, Verena Spitzauer, Felix Armbruster, Paul Seidler, Christian Fraunhofer, Verena 

Kunz, Susanne Gschwendner, Eva Kammergruber, Michi Brand, Jonas Grube, Alarich Reiter, 

Martin Bergbauer, Oliver Gorka, Sabine Nick, Martina Köstinger, Stefanie Schweizer for friendship, 

hostage, support, comments on the manuscript & leisure time. 

My Family for all their support. 

Christine for being so wonderful. 

 

 

 

 

 





11 Erklärung 

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbständig und 
ohne unerlaubte Hilfe angefertigt ist. Ich habe weder an anderer Stelle versucht eine Dissertation 
oder Teile einer solchen einzureichen bzw. einer Prüfungskommission vorzulegen, noch eine 
Doktorprüfung zu absolvieren.  

    

  

_______________________   _______________________  
  Datum, Ort Unterschrift 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

  


