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I Summary 

The adult central nervous system (CNS) is a highly plastic system that not only shows 

ultrastructural plasticity (e.g. the movement of processes of glia or the turnover of neuronal 

synapses), but it is also interspersed with proliferating cells that generate continuously new 

cells. Besides the proliferative-active stem cell niches, dividing NG2+ cells reside within the 

adult brain parenchyma. In particular, these NG2+ glia attracted attention as they also react 

to a variety of brain injuries by altered proliferation, e.g. after acute traumata, in brain 

tumors and in the case of neurodegenerative diseases and demyelinating diseases. However, 

little is known about the function and role of NG2+ cells in the adult brain in vivo. Therefore, 

the aim of this PhD study was to characterize the proliferative behavior of NG2+ glia in the 

intact and acutely lesioned brain parenchyma in order to determine regulatory mechanisms 

that control their proliferation. Here, it is shown that adult NG2+ cells are the major 

proliferative cell population in the adult cerebral cortex that is slowly dividing due to a long 

G1-phase. Interestingly, these cells can alter their cell cycle speed according to the 

environment: Increased neuronal activity resulted in a temporal reduction of NG2+ cell 

proliferation and simultaneously increased their differentiation. In contrast, after acute 

inflammatory conditions NG2+ cells acutely re-entered the cell cycle and proliferated faster 

than in the intact cortex. In order to follow these cells live and pursue their fate in the intact 

and injured adult CNS a novel transgenic mouse line was generated. Therefore, a bacterial 

artificial chromosome (BAC) was constructed, expressing an inducible fusion protein 

(iCreER
T2

) under the Sox10 promoter that allows mediating high recombination in NG2+ cells 

upon tamoxifen administration. This Sox10-iCreER
T2

 mouse line is now a new tool to gain 

further insights in the role and biology of adult NG2+ glia in the intact and lesioned brain, 

e.g. by cell- and time-specific ablation of distinct genes. 



 

II Zusammenfassung 

Das erwachsene zentrale Nervensystem (ZNS) stellt ein plastisches System dar, das sich nicht 

nur durch ultrastrukturelle Plastizität (z.B. die Motilität der Fortsätze von Gliazellen oder 

Veränderungen neuronaler Synapsen) zeigt, sondern auch sich teilende Zellen enthält, die 

stetig neue Zellen produzieren. Neben den teilungsaktiven Stammzellnischen, befinden sich 

auch teilende NG2+ Zellen im umgebenden Gehirngewebe. Besondere Aufmerksamkeit 

haben diese NG2+ Gliazellen erhalten, nachdem gezeigt wurde, dass sie auch auf 

verschiedene Verletzungen des Gehirns mit einer veränderten Zellteilungsrate reagieren 

können, z.B. nach akuten Traumata, in Gehirntumoren, neurodegenerativen Erkrankungen 

und in demyelinisierenden Krankheiten. Jedoch ist bisher relativ wenig über die Funktionen 

und Aufgaben von NG2+ Zellen im erwachsenen Gehirn in vivo bekannt. Daher war es das 

Ziel dieser Doktorarbeit das Zellteilungsverhalten von NG2+ Zellen im gesunden und im akut 

geschädigten Gehirn zu untersuchen und dabei regulatorische Mechanismen zu klären, die 

das Teilungsverhalten dieser Zellen beeinflussen. In dieser Arbeit konnte gezeigt werden, 

dass NG2+ Gliazellen die größte sich teilende Zellpopulation in der erwachsenen zerebralen 

Kortex darstellen und sich langsam teilen, in dem sie länger in der G1-Phase des Zellzykluses 

verweilen. Interessanterweise können diese Zellen die Geschwindigkeit ihres Zellzykluses der 

Umgebung anpassen: Bei erhöhter neuronaler Aktivität teilen sich NG2+ Zellen zeitweise 

langsamer und differenzieren vorwiegend. Bei akuten Entzündungen im Gehirn können 

NG2+ Zellen jedoch sofort wieder den Zellzyklus beginnen und teilen sich damit schneller als 

in der gesunden Kortex. Um nun diese NG2+ Zellen live zu beobachten und ihre 

Nachkommen weiter zu verfolgen, wurde eine neue genetisch veränderte Mauslinie 

generiert. Ein künstliches Chromosom mit bakteriellen Ursprung (BAC) wurde konstruiert, in 

dem ein induzierbares Fusionsprotein (iCreER
T2

) unter dem Sox10-Promoter gebildet wird, 

wodurch nach Tamoxifen-Gabe NG2+ Zellen rekombiniert werden können. Diese neue 

Sox10-iCreER
T2

-Mauslinie bietet nun die Möglichkeit die Funktion und Biologie von NG2+ 

Gliazellen, z.B. durch die zell- und zeitspezifische Auslöschung von bestimmten Genen, zu 

untersuchen.  
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1 Introduction 

Glial cells constitute one of the major cell population in the adult mammalian brain and can 

be divided into macroglia and microglia. In particular cells belonging to the group of 

macroglia can be further subdivided into astrocytes and oligodendrocytes providing either 

e.g. trophic support to neurons (reviewed in Nave and Trapp, 2008; Wang and Bordey, 2008) 

or facilitating neuronal conduction by enwrapping axons with myelin sheaths (reviewed in 

Trotter et al., 2010). These macroglial cells are not only morphologically heterogeneous in 

different areas of the central nervous system (CNS) but have also unique features, as for 

example a subpopulation of dividing macroglial cells persists in the adult intact brain (in the 

following referred to as “progenitors”). Besides the proliferative-active stem cell niches in 

the adult brain (Beckervordersandforth et al., 2010; Kriegstein and Alvarez-Buylla, 2009), 

parenchymal progenitors are widespread in the adult brain and are named either NG2+ cells, 

based on their antigenic expression profile, or oligodendrocyte progenitor cells (OPCs) as 

their progenies are mainly myelin-producing oligodendrocytes (Dimou et al., 2008; Kang et 

al., 2010; Nishiyama et al., 2009; Rivers et al., 2008). Therefore, these progenitors are 

historically considered to belong to the oligodendrocyte lineage. Notably, parenchymal 

progenitors are recently considered to constitute a 4
th

 glial population, besides microglia, 

astrocytes and oligodendrocytes, due to their widespread distribution and unique properties 

in the mammalian brain (summarized in Nishiyama et al., 2009; Trotter et al., 2010). 

 

1.1 Origin and fate of parenchymal progenitors – the oligodendrocyte 

lineage 

Macroglial cells in the mammalian forebrain arise from the neuroepithelium and are 

generated at distinct time points during development (Wang and Bordey, 2008). In 

particular, the origin of OPCs in the CNS is heterogeneous which was first shown for the 

spinal cord (reviewed by Richardson et al., 2006)(Richardson et al., 2006). Here, the majority 

of OPCs in the spinal cord are generated from ventral domains at embryonic day (E) 12.5 

before they spread and populate the gray and white matter of the spinal cord (Richardson et 

al., 2006). However, a smaller proportion of the spinal cord OPCs also derives from dorsal 

sources later during development (Cai et al., 2005; Vallstedt et al., 2005). In line with this 

data, Kessaris et al. (2006) could show that also telencephalic OPCs are generated by 
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different precursors in three waves (Figure 1). The first cortical OPCs derive from ventral 

precursors at the ventricular zone of the medial ganglionic eminence (MGE) and anterior 

entopeduncular area, appearing around embryonic day (E) 11.5 (in mice) and enter the 

cerebral cortex at E16 (Kessaris et al., 2006). Although these OPCs are largely depleted 

postnatally, they are replaced by OPCs originating from dorsal precursors in the lateral 

ganglionic eminence (LGE) and from endogenous cortical precursors at the day of birth 

(Kessaris et al., 2006; Richardson et al., 2006). Interestingly, these precursors do not account 

for all OPCs in the adult telencephalon thereby indicating additional sources of adult OPCs 

(Ventura and Goldman, 2006) .  

 

 

Figure 1 Origin of NG2+ cells (OPCs) during development. The first OPCs derive from Nkx2.1+ precursors of the MGE and 

arrive in the cortex during the mid-neurogenesis. Gsh2+ progenitors of the LGE give rise to a second wave of OPCs. Finally, 

OPCs also derive from Emx1+ cortical progenitors. Gsh2+ and Emx1+ derived OPCs compensate the loss of Nkx2.1 derived 

OPCs and account for the majority of cortical OPCs postnatally. However, the contribution of Emx1-derived OPCs declined 

later on. aOPCs – oligodendrocyte precursor cells; MGE – medial ganglionic eminence; LGE – lateral ganglionic eminence 

(adapted from Kessaris et al. 2006) 

 

Postnatal OPCs differentiate into myelinating oligodendrocytes with a peak of myelination in 

the second postnatal week (Greenwood and Butt, 2003). However, not all postnatal OPCs 

differentiate but some also remain as progenitors in the adult CNS. These adult OPCs express 

similar antigens as their developmental counterparts (Figure 2), e.g. membrane proteins like 

neuron-glia antigen 2 (NG2; (Nishiyama et al., 1997), platelet-derived growth factor receptor 

α (PDGFRα; (Dawson et al., 2003), junctional adhesion molecule A (JAMA; (Stelzer et al., 

2010) and O4 (Nishiyama et al., 2009; Polito and Reynolds, 2005; Reynolds and Hardy, 1997; 

Sommer and Schachner, 1982) or the transcription factors OLIG2 (Takebayashi et al., 2002; 

Zhou et al., 2000) and SOX10 (Kuhlbrodt et al., 1998). Lately, it is proposed that adult OPCs 

differentiate via an intermediate state during which they express the G-protein coupled 

receptor 17 (GPR17; (Boda et al., 2011)). This intermediate state can be clearly distinguished 

by its morphology and antigenic expression profile (Figure 2) from mature oligodendrocytes 
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that express cytoplasmatic proteins like glutathione-S-transferaseπ (GSTπ), adenomatosis 

polyposis coli (APC/CC1) and aspartoacylase (ASPA). Whether these mature 

oligodendrocytes could further differentiate to myelinating oligodendrocytes in adult 

mammals was controversially discussed in the field of research as myelination should be 

finished within the first postnatal weeks (Greenwood and Butt, 2003). Only recently, 

independent research groups showed a continuous generation of new myelinating 

oligodendrocytes in the adult CNS (Dimou et al., 2008; Rivers et al., 2008). These myelinating 

oligodendrocytes express typical antigens being present in the myelin sheath, e.g. myelin-

associated glycoprotein (MAG), myelin oligodendrocyte glycoprotein (MOG), myelin basic 

protein (MBP) and myelin proteolipid protein (PLP/DM20; Figure 2; reviewed in Baumann 

and Pham-Dinh, 2001). One myelinating oligodendrocyte can ensheath several axons, 

thereby providing the basis for the fast saltatory conduction of action potentials between 

neurons (reviewed by Simons and Trotter, 2007), but also maintaining the axonal integrity 

(reviewed by Nave, 2010).  

 

Figure 2 The oligodendrocyte lineage in the adult CNS. Pictures showing recombined cells of the Sox10-iCreER
T2

 mouse line 

that are stained for GFP. These GFP-expressing cells label the oligodendrocyte lineage and allow discriminating distinct 

differentiation states of this lineage by morphology. The oligodendrocyte lineage comprises some proliferating NG2+ cells 

that can differentiate into mature oligodendrocytes over a GPR17+ intermediate state. If these intermediate cells might 

also become again NG2+, remains to be open (gray interrogation mark). However, depending on the brain region some 

mature oligodendrocytes can differentiate to myelin-sheath producing oligodendrocytes. Examples of antigen expression 

are given for each differentiation state of the oligodendrocyte lineage. 
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1.2 NG2+ glia (OPCs) – a 4th glial cell population 

Since OPCs are the major proliferating population in the adult brain parenchyma (Aguirre et 

al., 2004; Buffo, 2007; Dawson et al., 2000; Dawson et al., 2003; Dimou et al., 2008; Gensert 

and Goldman, 1997; Horner et al., 2000), these cells attract attention as a possible 

intracranial source for cellular regeneration upon disease conditions. OPCs constitute 5-8 % 

of cells in the mammalian brain (Horner et al., 2000) and remain constant in life (Dawson et 

al., 2003; Rivers et al., 2008). These glial cells are characterized by a stellate morphology 

with fine processes leaving from a central cell body and are uniformly distributed within the 

brain. Besides their fate to become mainly myelinating oligodendrocytes in higher 

vertebrates during development, these cells are already detectable in lower vertebrates with 

unmyelinated axons, suggesting additional functions of OPCs in the CNS (reviewed in Mangin 

and Gallo, 2011). Therefore, OPCs are recently considered to be a 4
th

 glial population and are 

in the following referred to as “NG2+ cells” due to their diverse nature.  

 

Cellular characteristics of NG2+ glia 

NG2+ cells form a network with slightly overlapping domains in the CNS and are tightly 

integrated within the astrocytic and the neuronal network (Wigley and Butt, 2009). It is 

shown that they can form contacts with unmyelinated and myelinated axons, neurons, 

astrocytes and pericytes allowing probably a bidirectional communication between these 

cells and NG2+ glia (Hamilton et al., 2010; Wigley and Butt, 2009). While the contact of NG2+ 

cells to pericytes might be involved in regulating the blood flow (Wigley and Butt, 2009), the 

synaptic contact of NG2+ glial processes to neurons, e.g. at the nodes of Ranvier, the 

neuronal soma and the dendrites, might have an impact on diverse cellular functions like 

migration and maturation of NG2+ glia (Mangin and Gallo, 2011). These synapses between 

neurons and NG2+ cells can be either glutamatergic or γ-aminobutyric acid (GABA)-ergic 

(reviewed in Mangin and Gallo, 2011) mediating excitatory (EPSC) or inhibitory postsynaptic 

currents (IPSC) in NG2+ cells via α–amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 

(AMPA) receptors (Figure 3) or GABAA receptors, respectively (reviewed in Mangin and Gallo, 

2011). The resulting currents are transduced in a locally restricted increase in Ca
2+

 in NG2+ 

glial processes (Figure 3; (Bergles et al., 2000; Blaustein and Lederer, 1999; De Biase et al., 

2010; Hamilton et al., 2010; Lin et al., 2005; Mangin et al., 2008; Tong et al., 2009)). In 

addition, the EPSC/ IPSC induced opening of voltage-dependent Na+ channels might even 
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result in the generation of action potentials in NG2+ cells (Karadottir et al., 2008), although 

this is still controversially discussed (reviewed by Frohlich et al., 2011).  

 

 

Figure 3 Scheme depicting the formation of a glutamate-mediated (Glu) tripartite contact between neurons, astrocytes 

and NG2+ cells in the gray and white matter. In the cortical gray matter, NG2+ cells form a synaptic contact to neurons. 

Glutamate, released by neurons, results in an intracellular increase of Ca
2+

in NG2+ cells by Ca
2+

-permeable AMPA receptors. 

In contrast, the neurotransmitter transmission between NG2+ cells and axons in the white matter is probably mediated via 

ectopic transmission, spillover or diffuse volume transmission (reviewed in Maldonado, 2011). (adapted from Nishiyama et 

al. 2009) 

In contrast, Hamilton et al. (2010) suggests that ATP, released by neurons and astrocytes 

upon neuronal activity under physiological conditions, is a key signaling molecule that results 

in a widespread intracellular Ca
2+

 increase in NG2+ glia. ATP and its metabolites are well-

known as sensors in energy metabolism and cellular homeostasis (reviewed by Butt, 2011) 

and are shown to bind to metabotropic P2Y and ionotropic P2X receptors on NG2+ cells 

(Hamilton et al., 2010). Besides glutamate and ATP, the activation of muscarinic and nicotinic 

acetylcholine receptors (AChR; (Cui et al., 2006; Velez-Fort et al., 2009)) and cannabinoid 

receptors (Mato et al., 2009) on NG2+ glia are also shown to alter their intracellular Ca
2+

 

level. This signaling onto NG2+ glia, via all these different released transmitters, has 

pronounced roles in the proliferation, differentiation and migration ability of NG2+ cells in 

vitro (Agresti et al., 2005a; Chen et al., 2009; Gallo et al., 1996; Ghiani et al., 1999; Gudz et 

al., 2006; Tong et al., 2009; Yuan et al., 1998). However, the impact of transmitters onto 

NG2+ cells in vivo under physiological conditions in the intact CNS is unknown. Therefore, a 

fate mapping approach was established during my PhD thesis in order to follow proliferating 

NG2+ cells and to discriminate environmental influences onto them in vivo.  
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The fate of NG2+ glia 

Although NG2+ cells belong to the oligodendrocyte lineage (as described above) and seem to 

have a restricted fate, several publications challenged this point of view over the last 

decades of research. Early in vitro data of white matter (WM)-derived, postnatal NG2+ cells 

proposed a broader potential of these cells as they can give rise to type-2 astrocytes as well 

as oligodendrocytes (Raff et al., 1983; Shi et al., 1998; Wolswijk and Noble, 1989; Wren et 

al., 1992). Therefore, NG2+ glia are also termed “O-2a” precursor cells in literature. In 

addition, postnatal NG2+ cells are shown to grow as neurospheres (a generally accepted in 

vitro method to test cells for their stem cell potential (Jensen and Parmar, 2006)) and can be 

differentiated into oligodendrocytes, astrocytes and neurons in vitro (Aguirre and Gallo, 

2004; Aguirre et al., 2004; Belachew et al., 2003; Kondo and Raff, 2000). Interestingly, WM-

derived NG2+ cells seem to keep this multipotency also until adulthood (Nunes et al., 2003) 

whereas NG2+ cells of other brain regions seem to lose this property (Buffo et al., 2008). In 

contrast, in vivo data suggest a restriction of the multilineage-potential of NG2+ glia to early 

embryonic stages, shown by giving rise to neurons, astrocytes and oligodendrocytes,  

(Masahira et al., 2006). At later stages the fate of NG2+ cells is successively restricted to 

generate only astrocytes and oligodendrocytes (E16.5; (Zhu et al., 2008)) or solely 

oligodendrocytes in the postnatal and adult brain (Dimou et al., 2008; Kang et al., 2010; Zhu 

et al., 2011). There is also now a growing body of evidence that adult NG2+ cells can 

generate astrocytes after several types of injury (Busch et al., 2010; Komitova et al., 2011; 

Sellers et al., 2009; Tatsumi et al., 2008). Although so far other studies failed to confirm this 

so far (Barnabe-Heider et al., 2010; Dimou et al., 2008; Kang et al., 2010; Zawadzka et al., 

2010), suggesting that this lineage plasticity may depend on the injury site and condition. In 

addition to the controversy about the astrocytic potential of adult NG2+ glia, the potential of 

these cells to generate neurons in vivo is highly debated (reviewed by Richardson et al., 

2011). There are publications suggesting the generation of neurons by NG2+ glia at distinct 

regions in the brain at postnatal stages (Aguirre and Gallo, 2004; Aguirre et al., 2004; 

Belachew et al., 2003) and adult stages (Guo et al., 2010; Rivers et al., 2008). However, these 

data could not be confirmed by others (Dimou et al., 2008; Kang et al., 2010; Zhu et al., 

2011). Thus, one explanation may be leakiness of the used transgenic lines (Kang et al., 

2010). On the other hand, other mouse lines (e.g. Olig2CreER
TM

) showed a very low 

recombination rate raising concerns about the detection of only a subpopulation of NG2+ 
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cells (Dimou et al., 2008; Richardson et al., 2011). In order to unravel the fate of NG2+ cells 

in the adult cortex, a mouse line independent approach was chosen in my PhD thesis to 

circumvent the described difficulties above.  

 

1.3 Acute cortical injury as a model for glial scar formation 

Traumatic brain injury, e.g. mechanical lesions or ischemia, causes stressed or dying cells at 

the site of injury as well as in retrograde connected cortical areas (reviewed by Viscomi et 

al., 2009)y to release molecules, e.g. heat shock proteins, nucleotides, glutamate and 

metalloproteinases (MMPs), that initiate an inflammatory response around the primary 

lesion site (reviewed by Pineau and Lacroix, 2009). Within this process of inflammation the 

composition of the extracellular matrix is altered and different cells are recruited within the 

lesion site in a time-dependent manner, e.g. microglia, astrocytes, NG2+ cells, blood cells 

and other vascular cells (if the blood-brain barrier (BBB) was disrupted) as well as connective 

tissue (fibroblasts; if the meninges were injured; (Fawcett and Asher, 1999; Kerschensteiner 

et al., 2009; Rolls et al., 2009)). These alterations in the tissue structure persist in the lesion 

side for weeks and thereby create a glial scar. The formation of a scar around the damaged 

area is an immediate response to seal off the lesion side from the intact brain areas and to 

restore homeostasis during the acute phase of the injury (Rolls et al., 2009). However, at 

later time points (chronic phase) the glial scar can inhibit regenerative mechanism, e.g. 

replacement of damaged neurons, axonal growth and remyelination (Alilain et al., 2011; 

Fawcett and Asher, 1999; Silver and Miller, 2004).  

 

Reaction of NG2+ glia upon traumatic brain injury 

 

NG2+ cells respond to variety of acute traumata in the CNS, e.g. viral infection (Levine et al., 

1998), demyelinating lesions (Di Bello et al., 1999; Keirstead et al., 1998; Levine and 

Reynolds, 1999; Zawadzka et al., 2010) and mechanical injuries (Alonso, 2005; Buffo et al., 

2005; Hampton et al., 2004; Levine, 1994; Lytle et al., 2006; McTigue et al., 2001; Zai and 

Wrathall, 2005). Upon acute injuries, there is an increased extracellular level of 

excitatory/inhibitory neurotransmitters (Karadottir et al., 2008) and ATP/adenosine (Matute, 

2011) that results in a (prolonged) activation of AMPA receptors as well as P1 and P2 

receptors on NG2+ cells, respectively. Both mechanisms can cause an increased death of 
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glial cells (Karadottir et al., 2008; McTigue and Tripathi, 2008). However, remaining NG2+ 

cells within the lesion site undergo morphological changes as shown by shortening and 

thickening of their processes and cellular hypertrophy (reviewed by Levine et al., 2001). In 

addition, NG2 expression is increased after acute injury, not only in NG2+ glia but also in 

meningeal cells, pericytes and in the extracellular matrix (ECM) surrounding the injury 

(Fawcett and Asher, 1999; Jones et al., 2002; Levine et al., 2001; Tang et al., 2003). In 

particular, the accumulation of NG2 in the ECM is due to the release of the extracellular 

glycosaminoglycans chains of NG2 by proteases (Nishiyama et al., 2009; Trotter et al., 2010). 

Otherwise, NG2 localized on NG2+ cells is shown to have a supportive role by stabilizing 

axons within the lesion side against inflammatory-associated dieback (Figure 4; (Busch et al., 

2010)). But at the same time they prevent axonal regeneration after lesion (Chen et al., 

2002; Tan et al., 2006). Therefore, the number of NG2+ glia in the lesion site has a profound 

impact on the regenerative capacity of the CNS showing the importance to analyze the 

proliferative response of NG2+ cells upon acute injury and to determine its regulation. 

 

 

Figure 4 Scheme showing an acute lesion side. Although the lesion core contains mainly macrophages, the surrounding 

lesion area (penumbra) is composed of reactive astrocytes, reactive NG2+ glia and microglia (not depicted herein). Upon 

injury NG2+ cells support regrowing axons and help them to even pass the injury site by protecting them from macrophage 

associated axonal dieback. (adapted from Busch et al. 2010) 

 

Reaction of microglia upon traumatic brain injury 

However, NG2+ cells are not the only glial population reacting to injury. In order to gain 

further insights in the mechanism influencing the proliferation of NG2+ cells upon acute 

injury, one approach could be to correlate their response to the reactivity of other glial cells. 

Another cell type that responds immediately to lesions, e.g. brain structure disruption, 
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energy deprivation (e.g. during ischemia) or viral/bacterial infections, are microglia. They 

start to express and release proinflammatory chemokines and cytokines early after lesion 

(Pineau and Lacroix, 2007). However, the level of microglia reactivity depends on the 

severity of the injury. So traumatic lesions with disruption of the BBB can cause 

morphological alterations in microglia, e.g. retraction of their processes and hypertrophy 

(reviewed in (Kettenmann et al., 2011). In addition, these cells increase in number around 

the lesion by migration (Davalos et al., 2005; Nimmerjahn et al., 2005) as well as by 

proliferation (Fawcett and Asher, 1999; Kettenmann et al., 2011). In particular, upon 

activation microglia up-regulate the expression of Iba1, CD45 and CD11b (Kettenmann et al., 

2011). The latter protein is part of the innate immune system and involved in phagocytosis 

of cellular debris and dead cells (Ma et al., 2003). At the same time activated microglia are 

able to secrete for example cytokines (that trigger the invasion of leukocytes into the brain 

parenchyma), MMPs, reactive oxygen species and nitric oxid that have detrimental roles and 

might augment the tissue destruction in the CNS (Figure 5;(Kerschensteiner et al., 2009; 

Rolls et al., 2009; Wang et al., 2007)). In contrast, microglia also release factors that are 

neuroprotective, thereby supporting tissue remodeling and repair (Figure 5; reviewed in 

(Kerschensteiner et al., 2009; Kreutzberg, 1996)). This two-sided role of microglia could 

depend on the severity of the lesion, in particular of the disruption of the BBB, and the state 

of the lesion (acute phase in contrast to chronic lesions; (Kerschensteiner et al., 2009; 

Kreutzberg, 1996; Wang et al., 2007)). 

 

  
 

Figure 5 Scheme summarizing factors that are released by microglia amongst others upon acute inflammation and 

grouped according their effect on neurons into pro-inflammatory and anti-inflammatory cues. (adapted from 

Kerschensteiner et al. 2009) 
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Reaction of astrocytes upon traumatic brain injury  

 

Besides NG2+ cells and microglia, also astrocytes respond to a variety of brain injuries 

including for example viral infections, acute traumata (e.g. stroke and ischemia) and 

neurodegenerative mechanism, in a process named astrogliosis (Sofroniew and Vinters, 

2010). The degree of the gliotic reaction of astrocytes depends on the severity of the lesions, 

e.g. site of the lesion and BBB breakdown (Sofroniew and Vinters, 2010). The reaction of 

astrocytes comprises the up-regulation of distinct intermediate filaments (e.g. glial fibrillary 

acidic protein (GFAP), vimentin and nestin), cell body hypertrophy, thickening of their 

processes and an increased number around the injury site (Figure 6; (Buffo et al., 2010; 

Robel et al., 2011b; Sofroniew and Vinters, 2010)). In the intact brain parenchyma, 

astrocytes are quiescent whereas upon (severe) injury conditions reactive astrocytes re-

enter the cell cycle and thereby increase in number around the lesion site. Due to these 

cellular alterations astrocytes form a tight barrier that restricts the area of inflammation and 

its associated neuronal cell death (Sofroniew, 2009; Sofroniew and Vinters, 2010). However, 

the long-term effect of astrogliosis is rather harmful. Reactive astrocytes are prone to 

secrete chondroitin sulphate proteoglycans, e.g. aggrecan, brevican, neurocan (Fawcett and 

Asher, 1999), after lesion that are all known to inhibit regeneration (Silver and Miller, 2004).  

In addition, reactive astrocytes in the brain parenchyma mimic features, e.g. antigen 

expression profile and proliferation, of astrocytes in the stem cell niches of the intact CNS 

and therefore attracted attention as a possible in vivo source to regenerate neurons (Robel 

et al., 2011b). In particular, Buffo et al. (2008) showed a stem cell potential for reactive 

astrocytes in the brain parenchyma upon acute injury by using the Glast::CreER
T2

 mouse line 

that labels astrocytes and their progeny in vivo. These recombined astrocytes can grow in 

vitro as multipotent neurospheres by giving rise to neurons, astrocytes and oligodendrocytes 

upon differentiation (Buffo et al., 2008). However, there is so far no in vivo evidence that 

reactive astrocytes can generate new neurons upon acute injury without further 

manipulation (Barnabe-Heider et al., 2010; Buffo et al., 2008; Tatsumi et al., 2008).  
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Figure 6 Scheme summarizing the reaction of gray matter astrocytes upon acute injury. Astrocytes react to traumata by 

morphological changes and the up-regulation of certain antigens, for example GFAP, nestin, vimentin and BLBP. Depending 

on the severity of the lesion reactive astrocytes start to proliferate, therefore being Ki67+ and incorporating BrdU. BrdU – 

5’bromo-desoxyuridine, GFAP – glial fibrillary acidic protein, BLBP – brain lipid-binding protein, DSD1 – DSD1 proteglycan, 

TNC – tenascin(adapted from Robel et al. 2011) 

 

Nevertheless, these data also show the importance of genetically modified mouse lines in 

order to gain further insights in the reactivity and potential of astrocytes upon acute injury in 

vivo. Besides the fate-mapping, such modified mouse lines are essential tools (e.g. 

Glast::CreER
T2

 line) to determine new molecular mechanism. For example the deletion of the 

RhoGTPase Cdc42 in astrocytes in vivo resulted in an increased number of microglia upon 

acute cortical injury (Robel et al., 2011a). In order to understand now the role and function 

of proliferating NG2+ cells and their interaction with other cell types after lesion, genetically 

modified mouse lines are engineered to specifically target NG2+ cells. 

 

1.4 Transgenic animal models to fate-map and to manipulate NG2+ glia  

The most common approaches to target time and tissue-specific cells are the 

tetracycline/doxycycline system and the Cre/loxP system (reviewed by Bockamp et al., 

2002). In particular, the latter system contains the site-specific DNA recombinase Cre, being 

originally expressed in the P1 bacteriophage (Sauer, 1998). This recombinase recognizes 

distinct DNA sequences (loxP sites) and excises/ inverts the DNA sequence located between 

two loxP sites. Such loxP sites are most often used to (1) flank a stop cassette in front of a 

reporter gene, e.g. green fluorescent protein (GFP), to visualize successfully recombined cells 
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or (2) flank a gene of interest for loss-of-function experiments upon recombination. The 

efficiency of the Cre-mediated recombination is between 80-100%, but one recombination 

event requires at least four Cre molecules (Sauer, 1998). Temporal control can be acquired 

by fusing Cre to a mutated estrogen-receptor binding domain (ER) that has a higher affinity 

for synthetic estrogens (e.g. tamoxifen (Tam) and its metabolite 4-hydroxy-tamoxifen (OHT)) 

than for the endogenous estrogen (Jaisser, 2000). The advantage of the CreER system is its 

localization in the cytosol. Only after tamoxifen application the fusion protein is translocated 

in the nucleus (Figure 7). 

  

 

Figure 7 Cartoon summarizing the Cre/loxP system using the example of Olig2::CreER
TM

 mice crossed to a green 

fluorescent protein (GFP) reporter mouse line. Olig2CreER
TM

 mice express CreER
TM

 in the cytosol of Olig2 expressing cells. 

By administrating tamoxifen to the mice, tamoxifen and its metabolite 4-hydroxy-tamoxifen can pass the blood brain 

barrier and bind to the estrogen component of the CreER
TM

 protein. Thereby, CreER
TM

 will be translocated to the nucleus 

where the Cre recombinase can bind to the loxP sites within the DNA and removes the stop-cassette in front of the GFP. 

Thus, GFP will be expressed in Olig2+ cells and will remain expressed in Olig2+ progeny and Olig2- progeny, independently 

of the expression of Olig2.  

 

Several ER constructs exist using either the mouse estrogen receptor (ER
TM

; (Vasioukhin et 

al., 1999)) or the human estrogen receptor (ER
T
 or ER

T2
 – an improved ER

T
-version that is 

more sensitive to OHT (Indra et al., 1999; Metzger et al., 1995)). In addition to this temporal 

specificity, tissue-specificity can be achieved by expressing CreER under a gene-specific 

promoter, typically expressed within the tissue of interest. The most reliable cell-specific 

expression of CreER is achieved by knock-in of CreER into the endogenous gene locus. The 

disadvantage is however that only one CreER molecule is inserted in the endogenous locus, 

resulting probably in low recombination rate as it is the case in the Olig2::CreER
TM

 mouse 
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line (Masahira et al., 2006). Although preserving the endogenous expression at a lower level 

in heterozygote knockin-mice, this can already alter the cellular homeostasis, causing cellular 

and behavioral abnormalities, e.g. in the Sox10-lacZ mice (Britsch et al., 2001; Ludwig et al., 

2004). To overcome these limitations, transgenic mice can be generated by random 

integration of conventional bacterial vectors (e.g. pBluescript), expressing CreER, within the 

genome that would not influence endogenous expression levels. However, the integration 

side of these vectors can result in a cellular and tissue-dependent inaccurate expression of 

CreER. In addition, these bacterial vectors have a limited cloning capacity and contain usually 

a “minimal”-promoter in front of the gene of interest. Using parts of the promoter that are 

not well characterized or the lack of distal regulatory elements within these vectors might 

cause CreER-misexpression. In contrast, the use of bacterial artificial chromosomes (BACs) 

would circumvent such a limitation by inserting between 100-250 kilo basepairs (kb) of non-

bacterial DNA into the BAC. In addition, it is shown that BACs can integrate multiple times 

within the genome which would result in a higher CreER expression and better 

recombination rate (Chandler et al., 2007).  

So far different inducible mouse lines are published targeting NG2+ cells and are 

summarized in Table 1. However, some of the available mouse lines either have a low 

recombination rate in NG2+ glia and thereby risk the analysis of a subpopulation of NG2+ 

cells (as mentioned above) or target different cell types besides the oligodendrocyte lineage.  
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Table 1 Summary of inducible transgenic mouse lines to target NG2+ glia 

Mouse line Type of 

transgenic 

mice 

Recombination 

efficiency in 

adult NG2+ 

glia 

Recombined 

cell types in 

the adult CNS 

Literature 

reference 

Olig2::CreER
TM

 Knockin; Olig2 

gene locus 

low NG2+ cells, 

mature 

oligodendrocytes, 

astrocytes, few 

neurons 

(Dimou et al., 

2008; Tatsumi 

et al., 2008) 

NG2-CreER
TM

 Bac-transgenic 

(RPCI 23-library) 

low NG2+ cells, 

mature 

oligodendrocytes 

(Zhu et al., 

2008; Zhu et 

al., 2011) 

PDGFRα-CreER
TM

 Bac-transgenic 

(RP24-148N4) 

high NG2+ cells, few 

neurons, 

pericytes, choroid 

plexus  

(Kang et al., 

2010) 

PDGFRα-CreER
T2

 PAC-transgenic 

(PAC 546-M3) 

high NG2+ cells, 

mature 

oligodendrocytes, 

(neurons) 

(Rivers et al., 

2008) 

Plp1-CreER
T2

 Transgenic 

(2.4 kb Plp1-

promoter 

fragment) 

low NG2+ cells, 

mature and 

myelinating 

oligodendrocytes, 

neurons, 

astrocytes 

(Doerflinger et 

al., 2003; Guo 

et al., 2010; 

Kang et al., 

2010) 

 



 

2 Aim of the study 

Given the importance of NG2+ glia the purpose of my study was to determine the 

proliferative behavior and the fate of NG2+ glia in the intact adult CNS and after acute injury. 

Therefore, the following questions were addressed: 

1) How long is the cell cycle length of NG2+ cells in the intact cortical gray matter? 

2) Do all NG2+ cells divide in the intact cortex? 

3) Do NG2+ cells change their proliferative behavior under altered environmental 

conditions?  

4) What is the fate of NG2+ glia in the intact and acutely injured cortex? 

Thus, the cell cycle length of NG2+ cells in the intact cortical gray matter of rodents was 

determined first, in order to characterize then their proliferative response to two altered 

environmental conditions: (1) Acute cortical injury in the model of stab wound injury and (2) 

Physiologically increased neuronal activity by physical exercise (running wheel experiments). 

In addition, the fate of NG2+ cells was analyzed in two different ways either by 

characterizing the progeny of proliferating NG2+ cells with BrdU-retaining studies or by 

tracing the fate of randomly labeled NG2+ cells, comprising proliferating as well as non-

proliferating NG2+ cells, by using the Olig2::CreER
TM

 mouse line (as described above). Given 

the low recombination rate in this genetically modified mouse line, I generated a new mouse 

line using a BAC-transgene that contains an improved Cre variant (iCre) fused to the ER
T2

, as 

a basis to achieve high recombination rates. The transcription factor Sry-related high 

mobility group box protein 10 (Sox10) was chosen to drive the expression of iCreER
T2

, having 

the advantage that the distal regulatory elements of Sox10 are well-described and Sox10 is 

exclusively expressed in the oligodendrocyte lineage in the adult CNS. Then the 

characterization of this new mouse line by fate-mapping analysis was intended. 

 

 



 

3 Results 

This chapter is split into three paragraphs, each of them representing an independent study 

that is already published or under revision in international peer-reviewed journals. The main 

results are summarized below and the contributions of the single authors to each study are 

provided.  

 

 



 

3.1 Proliferative behavior of NG2+ glia and the regulation by acute injury and 

physical activity 

This study herein is published as “Progenitors in the Adult Cerebral Cortex: Cell Cycle 

Properties and Regulation by Physiological stimuli and injury” by Simon C, Dimou L and Götz 

M in Glia 2011, 59: 869-881.  

Here, I examined the cell cycle length of NG2+ glia in the adult cerebral cortex and the 

impact of environmental cues on the proliferative behavior of NG2+ glia. By administrating 

BrdU to wild type mice combined with immunohistochemical stainings for BrdU and Ki67 (an 

antigen highly expressed from the S- to M-phase), the cell cycle length of NG2+ cells in the 

adult cerebral GM was determined. NG2+ glia in the intact cortical GM had an impressively 

long cell cycle length. Interestingly, while the S- to M-phase took only five days these cells 

remained in the G1-phase for at least 32 days. Despite this, proliferating NG2+ cells can 

either re-enter the S- to M-phase and thereby self-renew, or enter the G0-phase and 

differentiate into mature oligodendrocytes. In addition, within a three day time window only 

12% of the NG2+ cells proliferated whereas 80% of them divided within three months, 

thereby showing that NG2+ glia divide in an asynchronous manner. However, NG2+ cells can 

considerably shorten their cell cycle length in response to the environment. Stab wound 

injury resulted in an acute re-entry of the majority of NG2+ cells surrounding the injury site 

into the cell cycle. In contrast, increased physical exercise resulted in a temporarily increased 

exit of the cell cycle of NG2+ cells accompanied by fast differentiation. In summary, this 

study suggests a modulation of the cell cycle length of NG2+ glia by environmental 

influences. Thus, NG2+ glia proliferation and oligodendrocyte generation is profoundly 

influenced by environmental cues – a finding with implications for other pathologies, such as 

epilepsy and Multiple Sklerosis. 

 

Contribution of the authors 

The herein published experiments and analysis were done by me as well as the writing of the 

manuscript. L. Dimou and M. Götz thoroughly revised the manuscript, planned experiments and 

discussed implications of the results. The study was financed by M. Götz. 
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3.2 Fate of NG2+ glia in the cortical gray and white matter 

This study herein is published as “Progeny of Olig2-Expressing Progenitors in the Gray and 

White Matter of the Adult Mouse Cerebral Cortex” by Dimou L, Simon C, Kirchhoff F, 

Takebayashi H and Götz M in Journal of Neuroscience 2008, 28 (41): 10434-10442.  

NG2+ cells are potent progenitors that give rise to myelinating oligodendrocytes postnatally. 

Although NG2+ cells are a widespread cell population in the adult CNS, the fate of these cells 

in adult mammals was largely unknown at the time of this study. In order to analyze the 

progeny of NG2+ cells in the adult  mouse brain, the Olig2::CreER
TM

 mouse line, crossed to 

the Z/EG, GFP or R26R-reporter mouse line, was used as Olig2 is expressed in nearly all 

proliferating NG2+ cells in the brain parenchyma. However, Olig2 expression is not restricted 

to the oligodendrocyte lineage in Olig2::CreER
TM

 mice, but also recombines in some 

parenchymal astrocytes and in very few neurons. Despite the low reporter expression 

outside of the oligodendrocyte lineage, this study revealed intriguing regional differences in 

the progeny of NG2+ glia. NG2+ cells in the adult cerebral white matter (WM) mainly gave 

rise to new myelinating oligodendrocytes whereas NG2+ cells in the cerebral gray matter 

(GM) the majority remained as NG2+ glia and only gave rise only to few maturate (but not 

myelinating) oligodendrocytes. This regional heterogeneity can be either due to intrinsic 

differences in NG2+ cells, e.g. cell cycle differences as suggested within this publication, or 

be instructed by the environment. In summary, this study shows the generation of new 

myelinating and mature oligodendrocytes throughout life with an intriguing difference in 

gray and white matter regions.  

 

Contribution of the authors 

I performed the proliferation experiments in C57BL/6 mice by administrating 5’-bromo-desoxyuridine 

(BrdU) to the mice to label dividing cells. Following perfusion, I did the sectioning, staining and 

quantifications for Olig2+/ BrdU+ cells in the adult CNS (as shown in Suppl. Fig. 1). L. Dimou did all 

the experiments and analysis in the Olig2::CreER
TM

 mice that were kindly provided by H. Takebayashi. 

F. Kirchhoff kindly provided the Plp-DsRed mice. The experiments were planned and the manuscript 

was written by L. Dimou and M. Götz. M.Götz financed this work. 
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3.3 Generation and characterization of the Sox10-iCreERT2 mouse line 

The revised manuscript of this study is submitted as “Sox10-iCreER
T2

: a mouse line to 

inducibly trace the neural crest and oligodendrocyte lineage” by Simon C, Lickert H, Götz M 

and Dimou L (2011). 

Here, the generation and use of a new transgenic mouse line to target exclusively the 

oligodendrocyte lineage in the adult CNS with high efficiency is described. We generated a 

BAC-transgenic mouse with the expression of an improved Cre (iCre) fused to the ER
T2

 under 

the Sox10 promoter. I characterized two BAC lines which both recombine in NG2+ cells with 

high efficiency and specificity. During development Sox10 is also expressed in neural crest 

and its derivatives and in the adult peripheral nervous system. Thus, the Sox10-iCreER
T2

 

mouse line is also a new potent tool to study distinct progeny of the neural crest at different 

developmental stages. Indeed, by inducing recombination at early embryonic stages we 

showed that pericytes in the adult brain are the progeny of the neural crest. This result is in 

contrast to the notion that CNS pericytes belong to the hematopoietic system and therefore 

have a mesodermal origin. In summary, the Sox10-iCreER
T2

 mouse line is a powerful tool to 

gain further insights in the biology of neural crest cells and the oligodendrocyte lineage.  

 

Contribution of the authors 

The generation of the mouse line, comprising the cloning, sequencing and purification of the BAC-

transgenic construct, and the characterization of this new mouse line was performed by me (except 

the fusion of the iCre to the ER
T2

 sequence). H. Lickert helped with his technical know-how and 

provided additionally several vector constructs for cloning. The manuscript was written by me and 

revised by H. Lickert, M. Götz and L. Dimou. This study was directed by H. Lickert, M. Götz and L. 

Dimou. 
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4 Discussion 

4.1 Adult NG2+ glia – a slow cycling and self-renewing cell population 

NG2+ glia are the predominant proliferating cells outside the neurogenic niches in the adult 

intact CNS (Dawson et al., 2003; Dimou et al., 2008; Gensert and Goldman, 2001; Horner et 

al., 2000; Simon et al., 2011a). In the cortical GM these cells have a cell cycle length of about 

37 days with a particular long G1-phase (Simon et al., 2011a), being in line with other recent 

publications in humans and rodents (Geha et al., 2010; Psachoulia et al., 2009). Notably, the 

cell cycle length of NG2+ cells increases with age that might be due to a further prolongation 

of the G1-phase (Lasiene et al., 2009; Psachoulia et al., 2009) and results in a decrease in 

differentiation (Kang et al., 2010; Zhu et al., 2011). This age-dependent alteration of the cell 

cycle is not specific for parenchymal progenitors, but has already been described for 

neuroepithelial precursors, as for example during development (Takahashi et al., 1995). 

Here, the length of the G1-phase of neuroepithelial progenitors increases during 

embryogenesis and can be even correlated to the fate of neuroepithelial progenitors and the 

mode of cell division (reviewed in Gotz and Huttner, 2005). In short, this cell cycle length 

hypothesis suggests that during early neurogenesis neuroepithelial progenitors (with a short 

G1-phase) divide symmetrically by expanding their pool. Later on, these progenitors have a 

prolonged G1-phase and will divide asymmetric by giving rise to a neuron and a 

neuroepithelial progenitor or symmetrically by generating two neurons (Gotz and Huttner, 

2005). Then, at adult stages the stem cells in the neurogenic niches divide mainly 

asymmetric by giving rise to another stem cell and to a intermediate progenitor that can 

generate continuously new neurons via symmetric divisions in vitro (Costa et al., 2011). 

However, adult NG2+ glia have been shown to divide mainly symmetrically in vivo, according 

to their morphology and receptor distribution (Ge et al., 2009). In contrast, recent data now 

provide more evidence that a considerable proportion of NG2+ glia divides also asymmetric 

when analyzing NG2 and epidermal growth factor receptor (EGFR) expression (Sugiarto et 

al., 2011) and thereby supporting previous publications in vivo (Polito and Reynolds, 2005; 

Zhu et al., 2011). In summary, these in vivo data suggest heterogeneity amongst proliferating 

NG2+ cells: Some NG2+ cells divide symmetrically and either remain NG2+ or give rise to two 

mature oligodendrocytes or divide asymmetrically with one daughter cell to remain NG2+ 

and the other one to differentiate. However, it remains open whether there is a similar 
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relationship between the cell cycle length and the mode of division for NG2+ cells as it is 

shown for neural-glial progenitors. Instead, the age-dependent alterations of the cell cycle 

length of NG2+ glia and their differentiation seem to be rather complex. Their proliferation/ 

differentiation behavior might reflect intrinsic differences (Shi et al., 1998), changes in the 

access to growth factors that are released by neighboring cells, e.g. neurons, astrocytes and 

endothelial cells (Arai and Lo, 2009a, 2009b; Kang et al., 2010), or simply the reduced need 

of mature oligodendrocytes with age.  

Despite the fact that adult NG2+ cells can differentiate into mature oligodendrocytes (Dimou 

et al., 2008; Kang et al., 2010; Rivers et al., 2008; Zhu et al., 2011), the number of NG2+ glia 

remains constant over life (Rivers et al., 2008), thereby suggesting indirectly that these cells 

can self-renew. In my study I could provide for the first time direct evidence that NG2+ cells 

in the intact brain parenchyma can self-renew. In addition, radiation experiments of the 

adult cortex, causing a depletion of NG2+ glia, showed a subsequent restoration of the NG2+ 

glial network by the remaining NG2+ progenitors (Irvine and Blakemore, 2007; Panagiotakos 

et al., 2007). Therefore, these data suggest a feedback mechanism between NG2+ cells to 

regulate their cellular density. However, less is known about it on a molecular basis 

(reviewed by Orentas and Miller, 1998). Results of primary oligodendrocytes cultures 

propose a regulatory system that is independent of other cell types, e.g. astrocytes and 

neurons (Zhang and Miller, 1996), and does not rely on the coupling of NG2+ glia to other 

cells by gap-junctions or electrical activity (Von Blankenfeld et al., 1993). Therefore, to keep 

the NG2+ cell population constant a remaining model might consist of cell-cell contacts 

mediated by glycoproteins, as shown for fibroblasts (Wieser et al., 1990), and/ or a locally 

restricted autocrine release of proliferative factors by NG2+ cells. In the future, it might be 

important to define the mechanisms that control NG2+ cell density as these cells are the 

basis to generate mature (myelinating) oligodendrocytes. Failure in repopulation of a 

functional NG2+ glial network could result in demyelination (Panagiotakos et al., 2007), that 

contributes to neurodegeneration (Nave, 2010). Therefore, it would be interesting to 

distinguish the intrinsic properties of NG2+ glia from environmental influences in regard to 

their proliferation/ differentiation behavior. Such studies would certainly help to shed more 

light on the development of demyelinating diseases, e.g. Multiple Sclerosis.  
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4.2 Heterogeneity of NG2+ glia 

Although NG2+ cells show mainly a homogenous antigen expression pattern (Figure 2), 

studies analyzing properties of NG2+ glia in different brain regions, e.g. cell cycle length, 

progeny and electrophysiological characteristics, suggest a region-dependent heterogeneity 

amongst the NG2+ cell population. Several publications could show that NG2+ cells in the 

cortical WM have an accelerated cell cycle speed compared to NG2+ progenitors in the 

cortical GM (Psachoulia et al., 2009; Rivers et al., 2008). This decrease in cell cycle length in 

the WM could be correlated to an increased differentiation of NG2+ progenitors to mature 

oligodendrocytes (Dimou et al., 2008; Kang et al., 2010; Psachoulia et al., 2009; Rivers et al., 

2008). Indeed, fate-mapping analysis of the Olig2::CreER
TM

 mouse line extended this regional 

heterogeneity by showing that NG2+ cells in the WM generate more myelinating 

oligodendrocytes while NG2+ progeny in the cortical GM remain largely NG2+ and give rise 

to few mature oligodendrocytes (Dimou et al., 2008). Kang et al. (2010) confirmed a cortical 

GM and WM difference, although they could demonstrate that NG2+ cells in both cortical 

areas are able to generate myelinating oligodendrocytes (Kang et al., 2010). These 

contradicting results might be due to differences in the mouse lines, used in both studies. 

First, the recombination rate is higher in the PDGFRα-CreER
TM

 mice than in Olig2::CreER
TM

 

mice (Dimou et al., 2008; Kang et al., 2010). Second, the Olig2::CreER
TM

 mouse line might 

restrict the analysis to a distinct subpopulation of NG2+ cells as mainly cells with high Olig2 

levels were recombined (as discussed in Simon et al., 2011a). Instead, Kang et al. (2010) 

labeled a broader NG2+ cell population independent of their Olig2 expression level. 

However, there seems to be a consistency about the diversity of NG2+ cells between cortical 

GM and WM that is not only reflected in their speed of proliferation and differentiation, but 

probably also in their receptor expression and structural relationship to neurons and 

astrocytes (reviewed by Maldonado et al., 2011). How is this diversity of cortical NG2+ glia 

achieved? One assumption could be an intrinsic heterogeneity of cortical NG2+ cells. 

Therefore, NG2+ cells might be pre-primed based on their diverse developmental origin by 

being progeny of the lateral and dorsal wall of the subventricular zone and the diencephalon 

(Kessaris et al., 2006; Psachoulia et al., 2009). So far studies failed to show any correlation of 

the fate to distinct developmental origins (Psachoulia et al., 2009). Therefore, regional 

diversity of NG2+ glia might be intrinsically instructed, independent of the developmental 
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origin, or rather being instructed by environmental cues, e.g. neuronal activity (as discussed 

below).  

Nevertheless, all published studies can show likewise a continuous differentiation of NG2+ 

glia to mature and even to myelinating oligodendrocytes in the adult CNS (Barnabe-Heider et 

al., 2010; Dimou et al., 2008; Kang et al., 2010; Psachoulia et al., 2009; Rivers et al., 2008; 

Simon et al., 2011a). These data suggest de novo myelination, supported by results showing 

an increased number of myelinated axons during adulthood (Nunez et al., 2000; Yates and 

Juraska, 2007). Also a life-long turnover of myelin with continuous de- and re-myelination 

could be possible as there is no obvious change in brain weight (before the onset of age-

related decline) and only localized volume plasticity is detectable under physiological 

conditions (reviewed by Sowell et al., 2004). However, the differentiation rate of mature 

oligodendrocytes towards myelinating oligodendrocytes in the adult cortical GM and WM is 

low compared to the number of mature oligodendrocytes being present and newly 

generated from NG2+ cells in the adult CNS (Dimou et al., 2008; Simon et al., 2011a). This 

raises questions about the biological relevance of the continuous generation of these mature 

oligodendrocytes in vivo. One possible function of mature oligodendrocytes is to alter the 

conduction velocity of neurons locally as a possible adaptation mechanism to neuronal firing 

(Nave, 2010; Sanchez et al., 1996). In addition, oligodendrocytes might be relevant to 

support axonal integrity and survival (Nave, 2010). For example, loss of peroxisomes in 

oligodendrocytes can cause neurodegeneration (Kassmann et al., 2007), whereas lack of 

peroxisomes in astrocytes and even in neurons has no impact on neuronal integrity 

(Bottelbergs et al., 2010). Additionally, the direct cell-to-cell communication between 

mature oligodendrocytes and neurons might be important to maintain the axonal integrity 

as alterations in their signalling can cause progressive axonal loss as shown for non-

myelinating Schwann cells – the cell type in the peripheral nervous system equivalent to 

oligodendrocytes (Chen et al., 2003). Taken together, the precise biological impact of the 

diverse NG2+ progenitors and their progeny on neuronal survival and brain homeostasis in 

the adult CNS has just started to be elucidated and requires further analysis in regard to 

NG2+ glia heterogeneity.  
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4.3 Regulation of proliferation and differentiation of NG2+ glia by neuronal 

activity 

Early in vitro data of primary oligodendrocyte cultures suggested a cell-intrinsic timer 

mechanism in NG2+ glia that measures the rounds of cell division (Raff, 2006) or time in 

general (Gao et al., 1997) before these cells start to differentiate. However, co-cultures of 

NG2+ cells together with neurons pointed to additional regulatory mechanisms for their 

proliferation/differentiation, comprising environmental cues that might outweigh the 

intrinsic timer (Rosenberg et al., 2008). In line with this, there are observations showing that 

NG2+ cells can keep their synaptic connections, e.g. to neurons, during cell division (Ge et 

al., 2009; Tanaka et al., 2009), whereas they receive less neuronal input upon differentiation 

(De Biase et al., 2010; Kukley et al., 2010). Not only the contact of NG2+ cells to neurons but 

also neuronal activity can influence the rate of proliferation/differentiation of NG2+ glia in 

the intact adult cortex. Upon increased physical activity the number of NG2+ progenitors is 

temporarily decreased while their differentiation is enhanced (Simon et al., 2011a). The 

remaining proliferating cells are not randomly localized within the cortical GM compared to 

control mice. Instead, these NG2+ progenitors show a specific column-like distribution 

within the somatosensory and motor cortex upon increased physical activity (Simon et al., 

2011a). This proliferative pattern might be associated with neuronal activity as a 

synchronized firing of neurons in a column-like structure upon stimulation has been already 

described (Opris et al., 2011; Zhang and Alloway, 2004). In addition, NG2+ progenitors 

prematurely leave the G1-phase and differentiate into oligodendrocytes, thereby supporting 

previous publications (Barres and Raff, 1993; Demerens et al., 1996; Li et al., 2010). Although 

direct stimulation of neurons resulted in an increase in proliferating cells in the spinal cord 

WM (Li et al., 2010), NG2+ cells in the cortical GM decrease in proliferation temporarily upon 

a two weeks period of voluntary physical exercise (Simon et al., 2011a). This difference could 

be due to different experimental approaches or the regional diversity of NG2+ glia (see 

discussion above about heterogeneity of NG2+ cells). However, NG2+ glia can compensate 

the decrease in proliferation during an additional two weeks period on the running wheel (in 

total: four weeks of increased physical activity; Simon et al. unpublished data). In addition, 

the generation and maintenance of new mature oligodendrocytes in the cortical GM during 

voluntary exercise seems to be dependent on increased neuronal activity: While the number 

of mature oligodendrocytes decreases during a subsequent period without running wheels, 
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BrdU+ oligodendrocytes are maintained during a prolonged period of voluntary exercise 

(Simon et al., unpublished data). Therefore, this neuronal activity-dependent differentiation 

mechanism of NG2+ cells might support distinct neuronal networks and may contribute to 

improved behavior. For example practicing playing the piano is related to structural changes 

in the human cortical GM and WM (Bengtsson et al., 2005; Fields, 2005; Gaser and Schlaug, 

2003). Along this line, Juraska et al. (1988) could show that an enriched environment results 

in an increased number of myelinated axons in the WM of adult rodents (Juraska, 1998). In 

contrast, reduced neuronal activity, e.g. by postnatal visual deprivation, resulted in a delay 

of myelination of the optic nerve and a delayed maturation of retinal neurons (Gyllensten 

and Malmfors, 1963). Overall this neuronal activity-dependent mechanism of 

proliferation/differentiation of NG2+ cells could be an additional form of plasticity in the 

adult brain whereby distinct neuronal circuits might be improved, newly generated or 

stabilized. However, it remains open whether neuronal stimulation not only results in the 

generation of mature oligodendrocytes, but also in myelinating oligodendrocytes and if this 

is directly correlated with a permanent improved behavior of adult mammals. In addition, it 

would be interesting to analyze the molecular correlation to this neuronal activity-

dependent plasticity. In vitro data suggest that proliferation of NG2+ cells which, in turn, 

could be regulated for example (1) by a neuronal release of glutamate, adjacent activation of 

AMPA receptors on NG2+ cells that in turn could result in the activation of cAMP response 

binding element (CREB; (Redondo et al., 2007)) or (2) by the secretion of PDGF (a known 

mitogenic signal for NG2+ glia) from astrocytes due to neuronal activity (Figure 8; (Barres 

and Raff, 1993; Calver et al., 1998; Engel and Wolswijk, 1996)).  

Little is known about mitogenic signals or even cell cycle inhibitors that are released by 

neurons and astrocytes upon neuronal activity in vivo. Instead, more data exist regarding the 

differentiation of NG2+ cells upon electrical stimulation of neurons. Pathways, that could be 

stimulated upon neuronal activity, are the expression of serum-response factor (SRF) in 

neurons (Knoll and Nordheim, 2009; Stritt et al., 2009), resulting in the transcriptional 

inhibition of connective tissue growth factor (CTGF) – a neuronal paracrine factor, known to 

sequester extracellular insulin-like growth factor 1 (IGF 1; (Chong and Chan, 2010)). 

Therefore, IGF 1 could bind to its receptor on NG2+ cells that would result in differentiation, 

at least in vitro (Cui et al., 2010; Galvin et al., 2010). Besides neuronal SRF, the release of ATP 

by neurons could influence the proliferation and differentiation of NG2+ glia. Neuronal ATP 
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release can result for example in the secretaion of physiological concentrations of leukemia 

inhibitory factor (LIF) by astrocytes that in turn could promote maturation of NG2+ cells 

(Ishibashi et al., 2006). In addition, adenosine (a metabolite of ATP) can inhibit the 

proliferation of NG2+ cells and promote their differentiation dependent on neuronal activity 

(Stevens et al., 2002). Besides the above mentioned molecules, there is a wide range of 

other factors, being expressed by neurons (e.g. Jagged 1, Lingo and PSA-NCAM) or secreted 

by other cell types that can influence the differentiation of NG2+ glia (Figure 8; (Chong and 

Chan, 2010; Emery, 2010; Kremer et al., 2011)). However, the majority of these data derived 

from in vitro experiments and the analysis of neonatal NG2+ cells 

 

Figure 8 Scheme summarizing the neuronal influence on the differentiation of NG2+ cells. Possible neuronal cues are 

shown that can either enhance or block the differentiation of NG2+ glia towards myelinating oligodendrocytes. (adapted 

from Emery 2010) 

The major intracellular pathways in NG2+ cells involved in the regulation 

proliferation/differentiation are the Notch and Wnt/BMP pathways that act as negative 

regulators, blocking the differentiation of NG2+ cells (Figure 8; (Emery, 2010; Feigenson et 

al., 2011; Li and Richardson, 2009; Teo and Kahn, 2010; Wang et al., 1998; Zhou and 

Armstrong, 2007)). Otherwise, sonic hedgehog (Shh; (Ulloa and Marti, 2010)), released by 

neurons in an activity-dependent way (Beug et al., 2011), promotes the differentiation of 

NG2+ glia at least during development (Nery et al., 2001). Although the differentiation of 

NG2+ cells seems to be tightly regulated by neuronal activity, it remains still open if neuronal 

stimulation has a direct impact on the proliferation rate of adult NG2+ glia. It could also be 

possible that the proliferation of NG2+ cells is a secondary consequence of the 

differentiation of NG2+ cells upon neuronal activity: Once a NG2+ cell differentiates, 

surrounding NG2+ cells could start to proliferate in order to maintain the NG2+ cell density 
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within the CNS as shown after four weeks of voluntary exercise (Simon et al., unpublished 

data). This would suggest that neuronal activity might largely influence NG2+ cell 

differentiation. Furthermore, it is still not clear whether the communication between 

neurons and NG2+ glia is uni- or bidirectional. Therefore, ablating NG2+ cells in the adult 

CNS might reveal new insights in the plasticity of neuronal networks and its behavioral 

impact. In addition, studying the reaction of NG2+ glia under pathological conditions, e.g. 

neuronal hyperexcitibility (epilepsy) or transmitter imbalance (autism), might shed new light 

on the disease mechanisms.  

 

4.4 Reaction of NG2+ glia to acute injury 

The response of NG2+ glia to trauma occurs with a similar temporal profile as microglia. 

Moreover, NG2+ glia react not only by cellular hypertrophy and up-regulation of NG2, but 

also by increased proliferation around the injury side (Simon et al., 2011a). These data are 

consistent with other publications analyzing either acute lesion (stab wound as well as cryo 

injuries) in the cortical GM (Buffo et al., 2005; Hampton et al., 2004; Rhodes et al., 2006; 

Tatsumi et al., 2005) and in the cerebellum (Levine, 1994) or demyelinating lesion in the 

spinal cord (Watanabe et al., 2002). The morphological and proliferative reaction of NG2+ 

cells is transient and decreases to basal levels already 14 days post injury (Simon et al., 

2011a). This decline in NG2+ glial reactivity again correlates again to the decrease in 

reactivity of microglia. Rhodes et al. (2006) showed that the response of NG2+ cells to 

traumata is dependent on the break-down of the BBB. Signals, being secreted by 

macrophages and platelets (e.g. tumor necrosis factor α, transforming growth factor β, 

interleukin 1α and interferon γ), can cause morphologically alterations of NG2+ cells towards 

a reactive phenotype. In addition, NG2+ cells achieve the fast proliferative response to acute 

traumata by re-entering the cell cycle and by shortening its length (Simon et al., 2011a), 

consistent with data from spinal cord lesions (Watanabe et al., 2002). This short cell cycle 

length after injury is comparable to postnatal stages (as determined by Psachoulia et al. 

(2009)), thereby supporting the hypothesis that NG2+ glia can recapitulate developmental 

stages upon pathological conditions (Chong and Chan, 2010). Indeed, in vitro data support 

the concept that adult NG2+ cells can accelerate their cell cycle speed in the presence of 

distinct mitogens, e.g. PDGF, neuregulin-1 and increased cAMP levels (Shi et al., 1998), or 

decrease their proliferation by inhibitory signals, e.g. ADP/ ATP (Agresti et al., 2005b) and 
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interferon-γ (Agresti et al., 1996). In addition, numerous factors have been shown or 

proposed to regulate the proliferation of NG2+ cells after lesion in vivo, as for example 

factors that are released by injured axons and endothelial cells or by neighboring 

oligodendrocytes and astrocytes (reviewed in (Fawcett and Asher, 1999; Levine et al., 2001). 

These molecules include growth factors that are up-regulated after injury, e.g. PDGF, FGF, 

IGF and CNTF (Barres and Raff, 1994; Fortin et al., 2005; Liu et al., 1994; Mason et al., 2003; 

Redwine and Armstrong, 1998; Tripathi and McTigue, 2008). In particular, inflammatory 

lesions induce local production of several cytokines and chemokines (McTigue and Tripathi, 

2008) which, together with other blood derived factors, might influence the proliferation of 

NG2+ cells (Kerstetter et al., 2009; Rhodes et al., 2006; Taylor et al., 2010). In addition, other 

pathways might have an impact on the reactivity of NG2+ glia upon injury, e.g. Shh, Wnt, 

Notch and BMP signalling (Amankulor et al., 2009; Boda and Buffo, 2010). However, the 

effects of mitogens on NG2+ glia might vary in different brain areas and injury paradigms 

and could also be dependent on the developmental stage (Mason and Goldman, 2002; 

Pfeiffer et al., 1993).  

The recapitulation of developmental stages of NG2+ cells upon acute injury might not only 

be limited to the cell cycle speed, but could also compromise a fate change towards 

astrocytes. Indeed, several studies showed that a small subpopulation of adult NG2+ glia can 

up-regulate intermediate filaments, e.g. GFAP, vimentin and nestin, upon acute injury 

(Alonso, 2005; Busch et al., 2010; Komitova et al., 2011; Sellers et al., 2009; Tatsumi et al., 

2008). So far, these molecules are known to be expressed in reactive astrocytes after trauma 

in the adult brain parenchyma (Robel et al., 2011b) and in adult stem cells (Kriegstein and 

Alvarez-Buylla, 2009). In addition, our fate-mapping data of the Sox10-iCreER
T2

 mouse line 

support the expression of astrocytic antigens (e.g. GFAP, S100β and vimentin) after acute 

injury in progeny of the oligodendrocyte lineage (Simon et al., unpublished data). This 

observation is supported by recent fate-mapping study, using NG2-CreER
TM

 mice (Komitova 

et al., 2011) suggesting that some NG2+ cells could adopt at least partially astrocytic-like 

features. However, the generation of astrocytes from NG2+ cells is controversially discussed 

as others failed to confirm it, e.g. in fate-mapping analysis of Olig2+ progenitors in lesions in 

Olig2::CreER
TM

 mice (Barnabe-Heider et al., 2010; Dimou et al., 2008). The discrepancy 

between these studies could be due to differences between the mouse lines, e.g. particularly 

the different recombination rate (as already discussed herein) and the altered 
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recombination of distinct cell types. The Olig2::CreER
TM

 mouse line is characterized by 

recombining low numbers of parenchymal astrocytes already in the intact CNS (Dimou et al., 

2008) while recombined cells in Sox10-iCreER
T2

 mouse line are restricted to the 

oligodendrocyte lineage (Simon et al., 2011b). In addition, the fate-mapping analysis of the 

Sox10-iCreER
T2

 mice after injury revealed that astrocytic-like NG2+ cells probably derive 

from non-dividing NG2+ cells as they do not incorporate BrdU after stab wound injury 

(Simon et al., unpublished data). Therefore, these cells also remained undetectable in other 

studies, focusing only on proliferating NG2+ glia (Simon et al., 2011a). Additional data even 

suggest that these astrocytic-like subpopulation of NG2+ cells appear only transient 

(Komitova et al., 2011; Sellers et al., 2009) or these cells upregulate only transiently GFAP, 

S100β and vimentin. Furthermore, this subpopulation of NG2+ cells seems to be related to 

acute traumata while chronic/ degenerative lesion paradigms lack them (Kang et al., 2010).  

Nevertheless, less is known about the function of NG2+ cells around the injury site. Ablation 

of proliferating glial cells after acute trauma suggested an improved axonal recovery (Rhodes 

et al., 2003). Whether this is due to a decrease in microglia, astrocytes or NG2+ glia, as all of 

them proliferate after acute injury, is still unkown. In addition, the astrocytic-like NG2+ cells 

are only detectable during the acute phase of lesions (Komitova et al., 2011; Sellers et al., 

2009) and might be associated with phagocytic functions (Sellers et al., 2009), e.g. by 

removing myelin debris that is another toxic component in the lesion site (Nave, 2010). To 

gain further insights in the contribution of NG2+ cells within the glial scar it would be 

important to define new molecules, allowing to distinguish “quiescent” NG2+ cells from 

reactive ones and to ablate NG2+ glia from the lesion.  

 

4.5 Sox10-iCreERT2 mouse line – a new tool to fate-map neural crest cells 

and the oligodendrocyte lineage 

In this study, I generated a mouse line to overcome the low recombination rate in NG2+ 

cells, as published for other mouse lines (Dimou et al., 2008; Zhu et al., 2011), and yet being 

specific to the neural crest and to the oligodendrocyte lineage in the adult CNS (Simon et al., 

2011b). This Sox10-iCreER
T2

 mouse line is indeed unique as the fate of Sox10+ cells can be 

analyzed at distinct stages. In contrast, previously published mouse lines, e.g. Sox10-Cre or 

Sox 10-Venus, label either Sox10+ cells already at embryonic stages or only transiently when 

the Sox10 promoter is active, respectively (Shibata et al., 2010; Stine et al., 2009). In 
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addition, the expression from both endogenous Sox10 alleles is spared in the BAC-transgenic 

Sox10-iCreER
T2

 mouse line and thereby circumventing a heterozygote phenotype, that is 

characterized e.g. by partial aganglionosis in the intestine of the Sox10::lacZ and Sox10::rtTA 

mice (Britsch et al., 2001; Ludwig et al., 2004; Paratore et al., 2001). Taken together the 

results obtained so far, this new Sox10-iCreER
T2

 mouse line can reveal new insights in the 

neural crest lineage due to its unique features. We have now direct evidence that pericytes 

in the adult CNS are the progeny of neural crest. This data support similar observations in 

the thymus (Muller et al., 2008) and are in line with results obtained from quail-chick 

transplantation experiments (Korn et al., 2002) and in the human tissue plasminogen 

activator-Cre mice (Pietri et al., 2003). Recently, neural crest derivatives gained in 

importance as these cells display stem cell capacity and can be reprogrammed to other cell 

types (Binder et al., 2011; Dupin et al., 2007; Zhao and Prather, 2011). In particular, adult 

cortical pericytes have been shown to be reprogrammed to neurons in vitro (Sanchez et al., 

2011, under revision) and might serve as a new endogenous source for brain repair upon 

lesion. In general, the Sox10-iCreER
T2

 mice recapitulate the endogenous Sox10 expression in 

the PNS and CNS during development and in the adult. For example, recombination in the 

adult CNS of Sox10-iCreER
T2

 mice will label exclusively the oligodendrocyte lineage with high 

efficiency in contrast to previous published mouse lines using the Olig2, NG2 and PDGFRα 

promoter (Dimou et al., 2008; Kang et al., 2010; Rivers et al., 2008; Zhu et al., 2011). This 

highly efficient recombination of Sox10+ cells is not only limited to the CNS but also 

detectable in the PNS. Therefore, the Sox10-iCreER
T2

 mouse line is a useful tool to 

conditionally ablate genes in Sox10+ cells to obtain more information about the Sox10+ 

lineage. This is of particular importance as Sox10+ cells can be involved in a variety of 

diseases in peripheral organs as well as in the CNS, e.g. melanoma, Wardenburg-

Hirschsprung disease, glioma, acute traumata, MS, schizophrenia and autism (Agnarsdottir 

et al., 2010; Britsch et al., 2001; Carmody and Lewis, 2010; Iwamoto et al., 2005; Lim et al., 

2011; Nishiyama et al., 2009; Simon et al., 2011a).  
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4.6 A translational perspective: NG2+ glial biology towards clinical 

application 

NG2+ glia compose not only the major dividing cell population in the brain parenchyma of 

rodents, but also in humans (Geha et al., 2010; Nunes et al., 2003). Therefore, these cells are 

susceptible for oncogenic mutations that might result in tumor formation (Visvader, 2011). 

Indeed, NG2+ cells are the predominant proliferative population in different types of glioma 

(Chekenya and Pilkington, 2002; Liu et al., 2011; Shoshan et al., 1999) and are shown to be 

the origin of these tumors (Lindberg et al., 2009; Liu et al., 2011). Glioma are the most 

common brain tumors with a high rate of malignancy that goes along with poor survival 

probability (Norden and Wen, 2006). Common treatments besides operations are the 

administration of cytostatic drugs and the radiation of tumorigenic brain areas that are both 

strategies targeting proliferating cells. Liu et al. (2011) labeled a profound number of dividing 

tumorigenic NG2+ cells within one week BrdU pulse, suggesting that these cells might have 

an accelerated cell cycle speed compared to non-tumorigenic NG2+ progenitors (Simon et 

al., 2011a). However, the cell cycle of tumorigenic NG2+ glia might be too slow to be 

efficiently targeted by cytostatica with short half-life times, e.g. Temozolomide 

(EssexPharma, 2009). In addition, brain-permeable cytostatica might also hit non-

tumorigenic NG2+ cells that could result in an increased proliferation of surrounding NG2+ 

glia (as discussed above). In addition, radiation might, for example, cause neurotoxicity, 

disruption of BBB, inflammation and demyelination (Panagiotakos et al., 2007; Perry and 

Schmidt, 2006; Zhao and Robbins, 2009) that are events associated with a high reactivity of 

NG2+ glia (as discussed above). Overall, cytostatic drugs and radiation might increase the 

likelihood of a tumorigenic transformation of NG2+ cells and could probably be one 

explanation for the high chemoresistance and recurrence rate of glioma (Giannopoulos and 

Kyritsis, 2010). Therefore, there is the need to distinguish non-tumorigenic NG2+ progenitors 

from their tumorigenic counterparts on a molecular basis to develop novel cellular-specific 

pharmacological approaches in glioma therapy.  
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A1 List of abbreviations 

 

µm Micrometer 

AChR Acetylcholine receptor 

AMPA α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate 

APC (CC1) Adenomatosis polyposis coli 

AraC Cytosine-D-arabinofuranoside 

ASPA Aspartoacylase 

ATP Adenosine triphosphate 

BAC Bacterial artificial chromosome 

BBB Blood brain barrier 

BDNF Brain-derived neurotrophic factor 

BLBP Brain lipid binding protein 

BMP Bone morphogenic protein 

bp Base pairs 

BrdU 5’-bromo-desoxyuridine 

Ca
2+

 Calcium ion 

cAMP Cyclic adenosine monophosphate 

CC1 See APC 

CD11b Cluster of differentiation 11b 

CD45 Cluster of differentiation 45 

CNS Central nervous system 

CNTF Ciliary neurotrophic factor 

CsCl Cesium chloride 

CTGF Connective tissue growth factor 

d Day 

DAPI 4’,6’-diamidino-2-phenylindole 

Dcx Doublecortin 

DIG Digoxigenin 

dpi Days post injury 

dpr Days post recombination 

DRG Dorsal root ganglia 

E Embryonic day 

e.g. Exempli gratia 

ECM Extracellular matrix 

EGFR Epidermal growth factor receptor 

EPSC Excitatory postsynaptic current 

ER Estrogen receptor 

FGF Fibroblast growth factor 

G gram 

GABA γ-aminobutyric acid 

GDNF Glial cell line derived neurotrophic factor 

GFAP Glial fibrillary acidic protein 

GFP Green fluorescent protein 

GLAST Alias Slc1a3 – solute carrier family 1 (glial high affinity glutamate transporter), member 3 

Glu Glutamate 

GM Gray matter 

Gp Guinea pig 

GPR17 G-protein coupled receptor 17 

GSTπ Glutathione-S-transferase π 

h Hour 

HDAC Histon deacetylase  

Hes Hairy and enhancer of split 

Iba1 Induction of brown adipocytes 1 

iCreER
T2

 Improved Cre recombinase fused to a truncated estrogen receptor 

Id Inhibitor of differentiation 

IGF Insulin-like growth factor 

IL interleukin 

IPSC Inhibitory postsynaptic current 

JAMA Junctional adhesion molecule A 

kb Kilo base pairs 

kg Kilogram 
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lacZ β-galactosidase 

LGE Lateral ganglionic eminence 

LI Labeling index 

LIF Leukemia inhibitory factor 

Lingo Leucine rich repeat and Ig domain containing 

m Mouse 

M Molar 

MAG Myelin-associated glycoprotein 

Mash Ascl1 – achaete-scute complex homolog 1 

MBP Myelin basic protein 

mg Milligram 

MGE Medial ganglionic eminence 

min Minute 

mm Millimeter 

MMP Metalloproteinase 

MOG Myelin oligodendrocyte glycoprotein 

MS Multiple sklerosis 

Neo Neomycine 

NeuN Neuronal nuclear antigen 

NG2 Neuron-glia antigen 2 

NGF Nerve growth factor 

NT Neurotrophin 

OHT 4-hydroxy tamoxifen 

OLIG2 Oligodendrocyte transcription factor 2 

OPC Oligodendrocyte precursor cell 

PAC P1-derived artificial chromosome 

PDGF Platelet-derived growth factor 

PDGFRα Platelet-derived growth factor α receptor 

PFA Paraformaldehyde 

PhD Doctor of Philosophy 

PLP/ DM20 Myelin proteolipid protein 

PNS Peripheral nervous system 

PSA-NCAM Poly sialated-neural cell adhesion molecule 

R26R Rosa26 reporter mouse line, expressing β-galactosidase 

Rb Rabbit 

Rt Rat 

rtTA Tetracycline reverse transcription activator 

s.c. Subcutan 

S100β S100 calcium binding protein β 

SEM Standard error of the mean 

Shh Sonic hedgehog 

Sox SRY (sex determining region Y)-related high mobility group box protein 

SRF Serum response factor 

TAM Tamoxifen 

Tcf Transcription factor 

TGF T growth factor 

TH1 T-helper cell 1 

TH2 T-helper cell 2 

TIMP Tissue inhibitory of metalloproteinase 

TM Tamoxifen 

TNC Tenascin 

TNF Tumor necrosis factor 

UTR Untranslated region 

WM White matter 

Wnt Wingless-related MMTV integration site 

Wt Wildtype 

YY Ying and Yang 

z.B. Zum Beispiel 

Z/EG GFP reporter mouse line 

ZNS Zentrales Nervensystem 
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