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Zusammenfassung 

Tierisches Leben ist auf funktionierende neuronale Netze angewiesen, die sich während der 

Entwicklung ausbilden. Um sich mit den richtigen Zielzellen verknüpfen zu können, verfügen 

wachsende Axone an ihrer Spitze über Wachstumskegel, die auf die chemische Umgebung im 

Organismus reagieren. Jede der Ommatidien im Facettenauge von D. melanogaster enthält acht 

verschiedene Photorezeptoren, R1 bis R8, die topographisch in unterschiedliche Schichten des 

Gehirns projizieren. Die Axone von R1 bis R6 enden in der Lamina, und die Axone von R7 und R8 

enden in zwei unterschiedlichen Schichten in der Medulla. 

gogo wurde in einem groß angelegten Screen für Mutanten, die die Wegfindung der 

Photorezeptoraxone in Drosophila beeinträchtigen, gefunden. Es kodiert ein 

Transmembranprotein, das, je nach Kontext, unterschiedliche Funktionen ausübt. Gogo sorgt für 

die gegenseitige Abstoßung zwischen R8-Axonen, um deren regelmäßige Verteilung in der 

Medulla sicher zu stellen, es wirkt adhäsiv bei der vorübergehenden Verankerung der R8-

Axonenden in ihrer intermediären Zielschicht an der Oberfläche der Medulla und kooperiert mit 

Flamingo in der finalen Phase der R8-Zielerkennung. Um die molekulare Funktion von Gogo 

aufzuklären, war es Ziel der vorliegenden Arbeit, ein anderes Protein zu finden, das mit Gogo 

physisch interagiert. Als solches identifiziert wurde Hts, das einzige Homologe von Säugetier-

Adducin in Drosophila. Bisher konzentrierte sich die Forschung über Hts auf seine Rolle während 

der Oogenese. Über seine Rolle in der Neuralentwicklung war noch nichts bekannt. 

Die physische Interaktion erfolgt zwischen dem zytoplasmatischen Teil Gogos und den 

N-terminalen 472 Aminosäureresten von Hts, die in allen bekannten Isoformen gleich sind, und ist 

unabhängig vom konservierten YYD-Motif im zytoplasmatischen Teil Gogos. 

Hts kann in larvalen Photorezeptoraxonen nachgewiesen werden, und sein Verlust verursacht 

Defekte in der Wegfindung der Photorezeptoraxone ähnlich denen in gogo Mutanten. Die 

Gesamtstruktur der Medulla ist gestört, die regelmäßige Anordnung der R7- und R8-Axone geht 

verloren, Axone verklumpen, R8-Axone überwachsen häufig ihre eigentliche Zielschicht M3, und 

es zeigen sich auffällig dicke Schwellungen an den Axonenden und in der Schicht M1. Spectrin-, 

nicht aber swallow-Mutanten, weisen ähnlich Defekte auf. 

Die durch den Verlust von Hts verursachten Defekte werden durch die Expression von Add1 oder 

HtsPD, Hts-Isoformen, die über seine Schweifdomäne verfügen, in Photorezeptoren abgemildert. 

Hts benötigt seine Schweifdomäne für die Lokalisation im Axon, und ShAdd, eine Hts Isoform ohne 

Schweifdomäne, kann hts-Mutanten nicht retten. 

Übermäßiges Add1 im Photorezeptor verursacht dicke Schwellungen der R8-Axone an der M1-

Schicht, ähnlich übermäßigem Gogo, das dicke Schwellungen der R8-Axone an M1 und M3 

verursacht. Überraschenderweise erscheinen die R8-Axone normal, wenn hts und gogo 

gemeinsam überexprimiert werden. Einen direkten Hinweis auf eine antagonistische Interaktion 
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zwischen Gogo und Hts liefert die Beobachtung, dass ein erhöhtes Gogo-Niveau zu einer 

Verminderung von Hts im Axon führt. 

Weder für Hts noch für Adducin wurde bisher eine Rolle in axonaler Wegfindung beschrieben. 

Adducin ist aber ein wichtiger Faktor für den korrekten Aufbau des Actin-Spectrin-Zytoskeletts, und 

so könnte die Funktion von Hts in der axonalen Wegfindung mit einer Beeinflussung des 

Zytoskeletts einhergehen. 
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Abstract 

Animal life relies on functional neuronal networks that are established during development. To 

connect to their correct target cells, the tips of growing axons are equipped with growth cones that 

respond to the chemical environment in the organism. Each of the ommatids in the compound eye 

of D. melanogaster contains eight different photoreceptors, R1 to R8, that project in a topographic 

manner to distinct target layers in the brain. The axons from R1 to R6 terminate in the lamina, and 

the axons from R7 and R8 terminate in two distinct layers in the medulla. 

gogo was identified in a large-scale screen for mutants that affect photoreceptor axon guidance in 

Drosophila. It encodes a transmembrane protein that serves distinct functions in different contexts. 

Gogo repels R8 axons from each other to assure their even spacing in the medulla, serves an 

adhesive function by transiently anchoring R8 termini to their intermediate target layer at the 

surface of the medulla, and co-operates with Flamingo in the final phase of R8 target selection. To 

elucidate the function of Gogo at the molecular level, this work aimed to detect another protein that 

physically interacts with Gogo and led to the identification of Hts, the single homolog of mammalian 

Adducin in Drosophila. As yet, research on Hts focused on its role during oogenesis and nothing 

was known about its role in neural development. 

The physical interaction occurs between the cytoplasmic part of Gogo and the N-terminal 472 aa of 

Hts that are shared among all known isoforms, and it does not depend on the conserved YYD motif 

in the cytoplasmic tail of Gogo. 

Hts can be detected in larval photoreceptor axons and its loss causes defects in photoreceptor 

axon guidance that are similar to those observed in gogo mutants: The overall structure of the 

medulla is disrupted, the regular array of R7 and R8 axons is lost, axons clump together, R8 axons 

often overshoot their correct target layer M3, and abnormally thick swellings at the axon termini 

and at the M1 layer can be observed. -Spectrin mutant flies show comparable defects, swallow 

mutant flies do not. 

The expression of Add1 or HtsPD, Hts isoforms containing its tail domain, in photoreceptors 

restores the defects caused by the loss of Hts. The tail domain of Hts is required for its localization 

to the axon, and ShAdd, an Hts isoform lacking the tail domain, does not rescue hts mutant flies. 

Excessive Add1 in photoreceptors causes abnormally thick swellings of R8 axons at the M1 layer, 

similar to excessive Gogo that causes thick swellings of R8 axons at M1 and M3. Surprisingly, R8 

axons appear normal when both hts and gogo are co-overexpressed. Direct evidence for an 

antagonistic interaction between Gogo and Hts comes from the observation that an increase in the 

level of Gogo reduces the axonal level of Hts. 

Neither for Hts nor for Adducin has a role in axon guidance been reported yet. However, Adducin is 

an important factor in the proper assembly of the Actin-Spectrin cytoskeleton, and the function of 

Hts in axon guidance is therefore likely to involve interactions with the cytoskeleton. 
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1. INTRODUCTION 

 

1.1 Axon guidance 

All manifestations of animal life, from the reflexes of Aplysia to the most sophisticated 

achievements of the human mind, rely on functional neuronal networks. These are established 

during development, when neurons send out axons and dendrites to connect to their target cells. 

How a certain axon is directed to its correct target cell became subject to scientific investigation 

more than a century ago, when the Spanish histologist Santiago Ramón y Cajal discovered “a 

concentration of protoplasm of conical form, endowed with amoeboid movements” at the tip of 

growing axons, which he named “growth cone” (Cajal 1966). The growth cone, he correctly 

assumed, leads the axon on the right track through the developing organism to its proper 

destination. However, for many decades it was completely unclear how the growth cone would 

fulfill this task. 

Several alternative concepts were discussed in the first half of the 20 th century before increasing 

experimental evidence approved the “chemoaffinity theory” by Roger Wolcott Sperry. The 

chemoaffinity theory proposed that axons are guided by chemical means, and that a certain neuron 

differs from other neurons in its cytochemical configuration, which makes it respond in a specific 

way to its chemical environment in the organism (Sperry 1963). In the following decades, some of 

the underlying molecules and mechanisms have been identified. It turned out that axons are 

guided both positively by attracting and negatively by repelling cues. The molecules mediating 

attraction or repulsion each can be diffusible or bound to cells or the extracellular matrix, resulting 

in four different modes of axon guidance: chemoattraction, chemorepulsion, contact attraction, and 

contact repulsion, respectively (Tessier-Lavigne and Goodman 1996). 

Any given organism can produce only a limited number of different molecules, and the sheer 

numbers of neurons and their connections to each other apparently exclude the existence of 

specific guidance molecules for each neuron. For example, the human brain was estimated to 

possess 1011 neurons that form 1014 synapses (Williams and Herrup 1988). Although the 

Drosophila axon guidance receptor gene Dscam that encodes 4 x 104 different potential proteins 

provides a prominent example for extreme molecular diversity reflecting the staggering complexity 

of brain wiring (Schmucker et al. 2000), this seems to be an exception. In general, it appears that 

specificity arises rather in a combinatorial manner from very precisely tuning the composition of a 

relatively moderate number of different ligand-receptor systems at the growth cone and the 

modulation of the received guidance information. Accordingly, the spatial, temporal, and cell-type 

specificity of a neuron’s responsiveness depends on the regulation of its axon guidance receptors 

and intracellular effectors from the transcriptional up to the posttranslational level (reviewed by 
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Gomez and Zheng 2006; Polleux et al. 2007; O'Donnell et al. 2009). The major classes of known 

ligand-receptor systems are described below. 

 

CAMs 

Three of the four major CAM families, Ig superfamily CAMs, cadherins, and integrins, are 

abundantly expressed in neural tissue (Rutishauser 1993). Many CAMs were among the earliest 

candidates for axon guidance molecules, but they were thought to act in a permissive manner 

rather than by actively inducing growth cone turning (Chilton 2006). However, recent experimental 

evidence suggests more instructive roles for CAMs during axon guidance. 

The LRR-type CAM Capricious has been demonstrated to be required and sufficient in the 

Drosophila visual system for the correct layer-specific targeting of R8 photoreceptor axons to the 

M3 layer in the medulla (Shinza-Kameda et al. 2006). capricious is specifically expressed in R8 

photoreceptors and in M3, the correct target layer of their axons, but not in R7 photoreceptors and 

M6, the correct target layer of R7 axons. Loss of capricious causes local R8 targeting errors, 

including layer change, and the ectopic expression of capricious in R7 photoreceptors redirects R7 

axon termini to M3. 

Another example for a CAM that rather acts in an instructional way during axon guidance is the Ig 

superfamily CAM L1. The extracellular domain of L1 mediates adhesion to the matrix or to other 

cells through interactions with 1-integrins in cis or homophilic binding in trans (Buhusi et al. 2008). 

Its cytoplasmic domain provides linkage to the cytoskeleton through ERM binding (Dickson et al. 

2002) and through binding to Ankyrin (Davis and Bennett 1994). L1 has been implicated in 

regulating the retinotopic mapping of retinocollicular projections of RGC axons in mice 

(Demyanenko and Maness 2003). The axons from wild type RGCs project from the retina to the 

contralateral superior colliculus in a temporal to anterior, nasal to posterior, dorsal to lateral, ventral 

to medial way. A point mutation in the L1 cytoplasmic domain that abolishes binding to Ankyrin is 

sufficient to disturb the correct projection of ventral RGCs to the medial superior colliculus and 

induces their mistargeting to abnormally lateral sites (Buhusi et al. 2008). This is clearly an axon 

targeting defect that can not be explained as the mere consequence of impaired axon extension 

and argues for an instructive role of L1 during RGC axon guidance. The correct medial-lateral 

position in the superior colliculus is targeted by interstitial branches that emanate from a primary 

RGC axon that has grown along the anterior-posterior axis before. If this primary axon has grown 

medially of the correct target area, the interstitial branches are biased towards the lateral side of 

the superior colliculus, and, vice versa, the branches from primary axons that lie laterally of their 

correct target area show a medial bias. If the binding of L1 to Ankyrin is abolished, the interstitial 

branches from primary axons that lie laterally of their correct target zone do not only lose their 

medial bias but show a lateral bias (Buhusi et al. 2008). This could suggest that the affected axons 
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do not merely lose their ability to sense the cue directing them towards their proper target but 

rather misinterpret it in an inverted way and are directed away from their target. Interestingly, L1 

was reported to control the directionality of a growth cone’s response to asymmetric Ca2+ 

concentrations within the growth cone via the AnkyrinB-dependent modulation of cAMP (Ooashi 

and Kamiguchi 2009). Growth cones on L1 or N-cadherin substrates respond attractive to 

asymmetric Ca2+ concentrations due to high levels of cAMP (Ooashi et al. 2005). The loss of 

AnkyrinB reduces the level of cAMP in growth cones on an L1 but not on an N-cadherin substrate 

and inverts their attractive response to asymmetric Ca2+ concentrations into a repulsive one 

(Ooashi and Kamiguchi 2009). 

 

Netrins and their receptors DCC and Unc-5 

Netrins are proteins of the Laminin superfamily and include the secreted molecules Unc-6 in 

C. elegans (Ishii et al. 1992), which was the first reported Netrin, Netrin-A and Netrin-B in 

D. melanogaster (Harris et al. 1996), and Netrin-1, Netrin-3, and Netrin-4 in vertebrates 

(Rajasekharan and Kennedy 2009). Netrins are bifunctional guidance cues that can act either 

attractive or repulsive on a growing axon, depending on the receptors on its growth cone (Round 

and Stein 2007). Attraction towards Netrins is mediated by members of the DCC family, which 

includes Unc-40 in C. elegans, Frazzled in D. melanogaster, and DCC and Neogenin in 

vertebrates (Huber et al. 2003). Upon Netrin-1 binding, DCC forms homodimers that mediate 

attraction (Stein et al. 2001). In the presence of an Unc-5 receptor, however, Netrin-1 binding 

induces the association of DCC and Unc-5 to form a complex that mediates repulsion (Hong et al. 

1999). In invertebrates, Unc-5 proteins can mediate repulsion from Netrins on their own without a 

requirement for DCC (Leung-Hagesteijn et al. 1992). The molecular pathways that mediate 

attraction towards Netrins downstream of DCC receptors are not completely understood yet. 

Members of the Rho family of GTPases play an important role and provide a direct link to 

rearrangements of the Actin cytoskeleton (Rajasekharan and Kennedy 2009). The molecular 

pathways that mediate Netrin induced repulsion downstream of Unc-5 are even less clear. 

 

Semaphorins and their receptors Plexin and Neuropilin 

Semaphorins are defined by having a Semaphorin and a PSI domain. They are categorized into 

eight classes on the basis of additional protein domains, with the five Semaphorins found in 

invertebrates belonging to classes 1, 2, and 5, and the 20 Semaphorins from vertebrates to 

classes 3 to 7. The eighth class V contains virally encoded Semaphorins. The Semaphorins of 

classes 2, 3, and V are secreted proteins, the remaining ones are transmembrane proteins or GPI 

linked (Zhou et al. 2008). Initially thought to act primarily as short-range inhibitory cues in axon 

guidance (Dickson 2002), Semaphorins turned out to conduct various functions by diverse 
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mechanisms. Semaphorins can be both repulsive and attractive, and they function not only as 

ligands but also as receptors (Zhou et al. 2008). They function not only in the nervous system, but 

also in the formation and functioning of the cardiovascular, endocrine, gastrointestinal, hepatic, 

immune, musculoskeletal, renal, reproductive, and respiratory systems. Accordingly, they were 

implicated in several human diseases like cancer, retinal degradation, decreased bone mineral 

density, and rheumatoid arthritis (Yazdani and Terman 2006). 

Semaphorins signal through various receptors and receptor complexes consisting of diverse 

proteins, most notably Plexins and members of the Neuropilin family. Apparently, the effects of 

Semaphorins are not mediated by canonical signal transduction pathways (Yazdani and Terman 

2006). The induction of changes in the cytoskeleton mediated by small GTPases plays an 

important role, and the cytoplasmic parts of several Plexins have GAP activity or bind GAPs or 

GEFs (Oinuma et al. 2004; Barberis et al. 2005; Pasterkamp 2005; Toyofuku et al. 2005). 

 

Ephrins and their Eph Receptors 

Ephrins are divided into two classes, the GPI anchored ephrinAs and the ephrinB transmembrane 

proteins. Alike, two classes of associated receptors, EphA receptors and EphB receptors, exist. 

Typically, ehphrinAs bind EphA receptors, and ephrinBs bind EphB receptors, with some 

exceptions known. The interaction of ephrin with Eph triggers not only forward signaling in the Eph 

producing cell, but also reverse signaling in the ephrin bearing cell, so that ephrins also function as 

receptors themselves (Egea and Klein 2007). Eph receptors comprise the largest family of RTKs 

but signal differently from the canonical RTK pathway in view of the fact that they activate Rho 

GTPases to remodel the Actin cytoskeleton (Noren and Pasquale 2004; Egea and Klein 2007). 

Ephs and ephrins are most prominent for their role in retinotectal topographic map formation in 

vertebrates. In the retina, ephrinAs are expressed in a high nasal to low temporal gradient, and 

EphAs are expressed in a high temporal to low nasal gradient. In the optic tectum, EphAs form a 

high rostral to low caudal gradient, and ephrinAs form a high caudal to low rostral gradient. 

Accordingly, axons from the temporal part of the retina project to the rostral part of the optic 

tectum. Likewise, ephrinB and EphB gradients regulate topographic map formation along the 

dorsal-ventral axis. Axons from the dorsal part of the retina that is characterized by high ephrinB 

and low EphB levels project to the ventral part of the optic tectum with high EphB and low ephrinB 

levels. Vice versa, the axons from RGCs in the ventral part of the retina with low ephrinB and high 

EphB levels project to the dorsal part of the optic tectum with low EphB and high ephrinB levels 

(Scicolone et al. 2009). 
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Slit and Robo 

Slit proteins serve a conserved role as midline repellents (Dickson and Gilestro 2006). In 

Drosophila, the single slit gene is expressed in midline glia and encodes a secreted protein 

(Rothberg et al. 1988; Rothberg et al. 1990). Slit prevents ipsilateral axons from crossing the 

midline and commissural axons from recrossing the midline through its receptor Robo that is 

present on the growth cones of ipsilateral axons and on the growth cones of commissural axons 

after they have crossed the midline (Kidd et al. 1998). In commissural axons that have not crossed 

the midline yet, Robo is sorted from the trans-Golgi network to endosomes by the protein 

Commissureless and does not reach the axonal membrane, allowing the axons to grow towards 

the midline (Keleman et al. 2002). Additionally, Robo and the two other Robo proteins found in 

Drosophila, Robo2 and Robo3, are involved in the lateral positioning of longitudinal fascicles 

(Rajagopalan et al. 2000; Simpson et al. 2000). The three Slit proteins found in mammals are 

secreted from the floor plate, the vertebrate equivalent to midline glila cells (Holmes et al. 1998; 

Itoh et al. 1998; Yuan et al. 1999b). Three Robo proteins, Robo1, Robo2 and Robo3, are 

expressed in the mammalian CNS, which are not the orthologues of Drosophila Robo, Robo2, and 

Robo3, respectively (Kidd et al. 1998; Yuan et al. 1999a; Dickson and Gilestro 2006). Only Robo1 

and Robo2 mediate the repulsive actions of Slits, whereas mammalian Robo3 rather takes over 

the function of Drosophila Commissureless and negatively regulates Robo1 to determine whether 

or not an axon crosses the midline (Long et al. 2004; Sabatier et al. 2004). However, the molecular 

mechanisms employed by mammalian Robo3 and Drosophila Commissureles to regulate Slit 

sensitivity are different, as mammalian Robo3 does not affect the localization of Robo1 or Robo2 to 

the axonal membrane (Sabatier et al. 2004). 

 

Morphogens 

Most morphogens are secreted signaling molecules that form a concentration gradient and 

determine the developmental fate of responding cells according to the specific morphogen 

concentration that these cells perceive (Gurdon and Bourillot 2001). Rather recently, it turned out 

that morphogen gradients are also capable of directly guiding axonal growth cones (Augsburger et 

al. 1999; Charron et al. 2003). Since then, work in mice, chicks, worms, and flies has revealed 

evolutionarily conserved roles in axon guidance for members of all three known major classes of 

morphogen families, the Hedgehog, the BMP/TGF , and the Wnt family (Osterfield et al. 2003; 

Sanchez-Camacho and Bovolenta 2009). The morphogenetic function of morphogens, imposing 

particular cell fates on their target cells, relies on the concentration-dependent activation of 

signaling cascades within the target cells that affect gene transcription (Sanchez-Camacho and 

Bovolenta 2009). Axon guidance, however, requires fast and local changes in the growth cone’s 

cytoskeletal organization (Guan and Rao 2003). Morphogens of the Hedgehog and the Wnt family 
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apparently solve this problem by binding to receptors different from those that they use for their 

morphogenetic function when guiding axons. BMP/TGF  family members instead bind exclusively 

to their classical receptors known from their role as morphogens also when performing their axon 

guiding function, which nevertheless activates a divergent pathway specific for axon guidance 

(reviewed by Sanchez-Camacho and Bovolenta 2009). 

 

The axonal growth cone and its cytoskeleton 

The growth cone is the highly dynamic, sensory-motile structure at the end of growing axons. It is 

divided into several morphological regions. In the axonal shaft, microtubules are tightly bundled by 

MAPs and oriented with their plus-ends pointing distally. Their array becomes looser as they 

extend through the axonal wrist into the central domain of the growth cone. The central domain is 

filled with mitochondria, vesicles, and reticulum. By the transition zone, it is connected to the 

peripheral domain. Only few microtubules extend into the peripheral domain, and F-Actin 

organized into filopodia and lamellipodia is the dominant cytoskeletal component here (Geraldo 

and Gordon-Weeks 2009). 

Within filopodia, Actin filaments are oriented with their barbed ends pointing distally and Actin 

polymerization takes place at the distal tips of the filopodia (Forscher and Smith 1988; Lin et al. 

1996). Actin polymerization causes a force that pushes the Actin filament in the proximal direction 

(retrograde flow) and the membrane into the distal direction (filopodium extension). The rates of 

retrograde flow and filopodium extension can vary independently of each other and depend partly 

on the strength of the filopodium’s adhesion to the substrate (Mallavarapu and Mitchison 1999; 

Bard et al. 2008). 

Retrograde Actin flow clears the filopodium from microtubules (Schaefer et al. 2002). If retrograde 

Actin flow is attenuated, microtubules extend further into the filopodium (Forscher and Smith 1988; 

Medeiros et al. 2006; Schaefer et al. 2008). Conversely, an increase in retrograde Actin flow lets 

microtubules penetrate filopodia less successfully (Zhou et al. 2002; Brown and Bridgman 2003). 

Growth cone turning relies on this interaction between F-Actin and microtubules, as the direction of 

growth cone turning is determined by stable microtubules. Artificial stabilization of microtubules at 

one side of the growth cone induces a turn towards this side. Conversely, artificial destabilization of 

microtubules at one side of the growth cone induces a turn away from that side (Buck and Zheng 

2002). Therefore, if the filopodial F-Actin is stabilized against retraction on one side of the growth 

cone by an attractive guidance cue, microtubules are able to enter these filopodia, and the growth 

cone will turn towards that side (Sabry et al. 1991). 
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1.2 The visual system of D. melanogaster 

The compound eye of adult Drosophila consists of approximately 750 single ommatids (Cagan and 

Ready 1989). Every ommatid contains eight photoreceptor cells, R1 to R8 (Dietrich 1909). Each 

photoreceptor carries a stack of photosensitive microvilli, the rhabdomere (Eakin 1972). The 

rhabdomeres are oriented such that the R7 rhabdomere lies on top of the R8 rhabdomere in the 

center, surrounded by the rhabdomeres of R1 to R6. Therefore, R7 and R8 are often referred to as 

“inner” photoreceptors and R1 to R6 as “outer” photoreceptors, respectively (Voas and Rebay 

2004). Additional components of an ommatidium are each four cone cells that are involved in 

secreting the corneal lens and two primary pigment cells. Every ommatid is optically insulated from 

its neighbors by six shared secondary and three shared tertiary pigment cells (Cagan and Ready 

1989; Voas and Rebay 2004). Finally, an ommatid usually contains one mechanosensory bristle. 

Each bristle group is formed by four cells, the socket secreting tormogen, the bristle secreting 

trichogen, the sensory neuron, and the thecogen, its supporting glial cell (Cagan and Ready 1989). 

However, tormogen and trichogen degenerate at the pupal stage (Perry 1968). 

In addition to the retina, the fly visual system comprises four optic ganglia: the lamina, the medulla, 

the lobula, and the lobula plate (Meinertzhagen and Hanson 1993). Unlike in vertebrates, 

Drosophila photoreceptors send their axons directly into the brain, with the eight axons from one 

ommatidium forming a single fascicle (Ting and Lee 2007). The axons from photoreceptors R1 to 

R6 defasciculate in the first optic ganglion, the lamina, and each projects in a stereotyped pattern 

to connect to lamina neurons, forming a synaptic unit called “cartridge” (Ting and Lee 2007). Every 

cartridge obtains visual input from each one of the six outer photoreceptors of six different 

ommatids in such a way that the six photoreceptors that project to the same cartridge see the 

same point in space. Thereby, a retinotopic map is formed where two adjacent points in the visual 

world are represented by two neighboring cartridges (Mast et al. 2006; Ting and Lee 2007). 

Axons from the inner photoreceptors R7 and R8 extend through the lamina into the second optic 

ganglion, the medulla, where they stop in two different layers. R8 axons stop in layer M3, and R7 

axons in the deeper layer M6. The medulla is organized into columns and the retinotopic map is 

sustained in the medulla. Every column obtains direct input from the R7 and the R8 axon of the 

same ommatid and indirect input from the corresponding R1 to R6 neurons via lamina neurons 

from the lamina cartridges (Mast et al. 2006). 

Like almost all structures of the adult fly, the eye develops from an imaginal disc, specifically the 

eye-portion of the eye-antennal disc, which is a sac-like epithelial bilayer (Cagan 2009). The eye 

disc remains unpatterned throughout the first and the second larval stage (Meinertzhagen and 

Hanson 1993). In third instar larvae, differentiation starts at the posterior edge of the eye disc and 

proceeds in the anterior direction, accompanied by an apical constriction of the disc epithelium 

known as “morphogenetic furrow” (Ready et al. 1976; Wolff and Ready 1993; Voas and Rebay 
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2004). As it traverses the epithelium, the morphogenetic furrow leaves behind proneural clusters 

consisting of approximately 12 cells each that are marked by a high expression level of atonal 

(Jarman et al. 1993). Through Notch-mediated lateral inhibition, atonal expression is then restricted 

to a single cell in each proneural cluster, which is the future R8 photoreceptor (Voas and Rebay 

2004). This newly specified R8 cell nucleates an ommatid and induces the sequential 

differentiation of R2 and R5, R3 and R4, R1 and R6, and finally R7 (Tomlinson and Ready 1987). 

Then, the four cone cells, the pigment cells, and the cells forming the mechanosensory bristle are 

recruited (Cagan 2009). Finally, unused cells are eliminated by apoptosis (Wolff and Ready 1991). 

Within every ommatid, R8 neurons are the first to differentiate, and also the first to send their 

axons to the posterior edge of the eye disc and through the optic stalk into the optic lobe. Here, 

they stop in the R8 temporary layer in the medulla region (Tayler and Garrity 2003; Mast et al. 

2006; Ting and Lee 2007). To enter the optic stalk, photoreceptor axons rely on the retinal basal 

glia, which originate in the optic stalk, migrate into the eye disc, and follow the morphogenetic 

furrow (Choi and Benzer 1994; Rangarajan et al. 1999; Tayler and Garrity 2003). The axons from 

R1 to R6 follow the pioneering R8 axon and stop in the lamina region of the optic lobe (Ting and 

Lee 2007). The axon from R7 follows the R8 axon into the medulla region of the optic lobe and 

then projects past the R8 temporary layer to the R7 temporary layer. In a second step later in 

development, R7, R8, and lamina neuron axons extend to form the adult structure of the medulla 

(Mast et al. 2006). 

Unlike the development of the retina, which takes place autonomously, the development of the 

lamina region of the optic lobe depends on retinal innervation (Meyerowitz and Kankel 1978; 

Steller et al. 1987; Halder et al. 1995). By delivering Hedgehog and Spitz in the optic lobe, 

photoreceptor axons induce the differentiation of the lamina neurons with which they then form 

lamina cartridges (Huang and Kunes 1996; Huang et al. 1998). This assures the numeral 

adjustment of postsynaptic lamina neurons to afferent photoreceptor axons. Also the outgrowth of 

scaffold axons that guide glial cell migration is dependent on photoreceptor axons, adjusting the 

distribution of glia to photoreceptor axons (Dearborn and Kunes 2004). As rows of R8 neurons 

differentiate sequentially from the posterior to the anterior part of the retina following the 

morphogenetic furrow, their axons enter the brain in a temporal sequence. Consequently, the 

development of lamina cartridges is induced row by row from the posterior to the anterior part of 

the lamina, as every row of R8 axons targets immediately anterior to the preceding row (Mast et al. 

2006). 

Compared to the lamina, the development of the more proximal parts of the visual system happens 

independently of innervation from the retina. The medulla and the lobular complex contain 

differentiated neurons and display their columnar organization also in the absence of the eye 

(Fischbach 1983). However, innervation by photoreceptor axons is required for the survival of 
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neurons, and they die after failure to establish a sufficient number of functional connections 

(Fischbach and Technau 1984). 

During the pupal stage, the structure of the visual system is heavily reorganized. The eye disc 

evaginates to form the eye, and the optic lobe moves in such a way that the lamina is placed 

directly underneath the retina afterwards, which lets the optic stalk disappear. Instead, as the 

medulla rotates relative to the lamina, the optic chiasm is formed between lamina and medulla 

(Meinertzhagen and Hanson 1993). 

 

1.3 Pathfinding of Drosophila photoreceptor axons 

The navigation of Drosophila photoreceptor axons covers several distinct choices. First, 

photoreceptor axons have to choose the correct neuropil, the lamina in the case of R1 to R6 axons 

and the medulla in the case of R8 and R7 axons. Within the medulla, R8 and R7 axons have to 

choose their correct target layer M3 and M6, respectively. Moreover, photoreceptor axons have to 

choose their correct position along both the anterior-posterior axis and the dorsal-ventral axis to 

sustain their relative spatial relations to each other, establishing a retinotopic map. 

 

Choosing the correct neuropil 

On its way to the medulla, the pioneering R8 axon transits the lamina. Here, the R8 axon does not 

only induce the differentiation of lamina neurons, but is also responsible for the migration of glial 

cells into the lamina (Dearborn and Kunes 2004). These glial cells then provide a stop signal to the 

following axons from R1 to R6, which differentiate and send out their axons after the R8 neuron in 

every ommatid. Accordingly, R1 to R6 axons extend into the medulla when glial differentiation or 

migration is disrupted (Poeck et al. 2001; Suh et al. 2002; Mast et al. 2006). The molecular identity 

of the glial stop signal is not yet known (Mast et al. 2006; Ting and Lee 2007). However, several 

factors have been implicated in the response of R1 to R6 axons to the stop signal. These include 

the transcription factors Brakeless and Runt, the adaptor protein Dreadlocks, the receptor tyrosine 

phosphatase PTP69D, the receptor tyrosine kinase Off-track, and the serine/threonine kinase 

Misshapen (Garrity et al. 1996; Garrity et al. 1999; Ruan et al. 1999; Newsome et al. 2000a; Rao et 

al. 2000; Senti et al. 2000; Kaminker et al. 2002; Ruan et al. 2002; Cafferty et al. 2004; Ting and 

Lee 2007). R7 axons are apparently insensitive to the stop signal provided by the glia in the lamina 

and extend into the medulla. 

 

Choosing the correct target layer in the medulla 

R8 and R7 axons reach their final target layers in the medulla in a step-wise fashion. The R8 axon 

first stops extension in a superficial layer of the medulla, which the following R7 axon then passes 

to stop extension shortly underneath in the R7 temporary target layer. During the late pupal stage, 
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the R8 and the R7 axon progress synchronously to their final target layers M3 and M6, respectively 

(Ting et al. 2005). 

Several proteins, including N-cadherin, PTP69D, and LAR, were implicated in R7 axon layer 

targeting, as mutations in the corresponding genes cause R7 axons to terminate at the R8 target 

layer M3 or between M3 and the correct R7 target layer M6. However, none of these proteins 

seems to specifically instruct R7 axons to target the M6 layer, as their presence in R8 axons does 

not cause them to overshoot their correct target layer M3 (Newsome et al. 2000a; Clandinin et al. 

2001; Lee et al. 2001). But then, what does distinguish R8 and R7 axons and lets them terminate 

in different target layers in the medulla? 

One protein was reported to be present exclusively in R8, but not in R7 axons, namely Capricious 

(Shinza-Kameda et al. 2006). In addition to R8 axons, Capricious is present at M3, but not in R7 

axons or at M6. Loss of capricious causes R8 axons to target improper layers, and its ectopic 

expression in R7 redirects R7 axons to terminate in M3. Capricious is therefore required and 

sufficient for correct R8 target layer recognition (Shinza-Kameda et al. 2006). Flamingo is another 

transmembrane protein that was implicated in R8 axon layer targeting, but due to its broad 

expression and pleiotropic functions in other photoreceptors, its mode of action eluded a plain 

mechanistic explanation (Senti et al. 2003; Ting and Lee 2007). Recently, it could be shown that 

Flamingo is indeed responsible for the recognition of M3 as the correct target layer specifically by 

R8 axons. This specificity is conferred by Gogo, another transmembrane protein. Gogo and 

Flamingo cooperate in the M3 targeting of R8 axons, and ectopic expression of both Gogo and 

Flamingo in R7 photoreceptors is sufficient to redirect R7 terminals to M3 (Hakeda-Suzuki et al. 

2011). In addition to confer R8 specificity to the recognition of M3 by Flamingo, Gogo has other 

functions in axon guidance. Gogo anchors R8 growth cones to their intermediate target layer and 

repels R8 axons from each other to assure their proper spacing in the medulla (Tomasi et al. 

2008). 

 

Establishing a retinotopic map 

Drosophila possesses a single ephrin gene and a single gene encoding an Eph receptor (Mellott 

and Burke 2008). Ephrins and their Eph receptors are key players during the formation of the 

retinotopic map in vertebrates, and also the Drosophila Eph receptor was implicated in topographic 

map formation in the visual system (Dearborn et al. 2002). The Drosophila Eph receptor is 

expressed in the medulla in a symmetrical concentration gradient along the dorsal-ventral axis with 

a high level of Eph receptor along the midline that decreases towards the dorsal and the ventral 

edge of the medulla. The loss of Eph receptor function affects the correct topographic projection of 

photoreceptor axons along the dorsal-ventral axis. Although this could be a secondary 

consequence of severe disruptions in the medulla, results on DWnt4 and Dfrizzled2 make the 
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symmetrically graded distribution of the Eph receptor a promising candidate cue for routing 

photoreceptor axons along the dorsal-ventral axis. The photoreceptors of the ventral half of the 

retina, unlike those of the dorsal half, express Dfrizzled2. Their axons are able to respond to 

DWnt4, a secreted protein of the Wnt family expressed in the ventral half of the lamina through the 

non-canonical Wnt pathway involving the adaptor protein Dishevelled (Sato et al. 2006; Ting and 

Lee 2007). In the photoreceptors of the dorsal half of the retina, expression of Dfrizzeld2 is 

presumably suppressed by the homeobox transcription factor Iroquois to prevent their axons from 

entering the ventral half of the lamina. However, DWnt4 does not show a graded expression in the 

lamina but instead a binary expression pattern, which can not explain the precise axonal 

intercalations that occur along the dorsal-ventral axis. Therefore, DWnt4 may provide only rough 

positional information that must be combined with other cues provided by proteins expressed in a 

graded manner. 

Other proteins that were implicated in the maintenance of the spatial relationships among 

photoreceptor axon bundles to establish a retinotopic map are Dreadlocks, Pak, and Trio that form 

a conserved signaling module coupled to the activation of the Drosophila insulin-like receptor 

(Garrity et al. 1996; Steven et al. 1998; Hing et al. 1999; Newsome et al. 2000b; Hakeda-Suzuki et 

al. 2002; Song et al. 2003; Ng and Luo 2004; Mast et al. 2006). However, mutations in dreadlocks, 

pak or trio cause complex phenotypes and do not only lead to a disordered topography, but also to 

axonal clumps and overshoots (Garrity et al. 1996; Hing et al. 1999; Newsome et al. 2000b; Mast 

et al. 2006). Therefore, they may play a more general role in axon guidance than specifically 

mediating the positional information to photoreceptor axons that they require to form a retinotopic 

map in the brain. 

So far, no guidance cue is known that routes photoreceptor axons along the anterior-posterior axis. 

However, the sequential differentiation of photoreceptors and their concomitantly sequential 

innervation of the brain may enable their axons to find their correct position along the anterior-

posterior axis. 

 

1.4 A saturating screen for mutants affecting photoreceptor axon guidance in Drosophila 

Although classical screens for genes involved in Drosophila photoreceptor axon guidance were 

successful in the past (Martin et al. 1995; Garrity et al. 1996), they always were limited by two 

major obstacles. First, a gene that is involved in axon guidance may have an essential function 

earlier in development. If a mutant animal dies before photoreceptor axon guidance takes place, 

that particular mutant will, of course, be missed in screens specifically aiming for defects in 

photoreceptor axon guidance. This is best illustrated by the classic morphogenes that appear to 

play a major role in axon guidance but were identified as guidance molecules only quite recently 

(Zou and Lyuksyutova 2007). Second, severe overall defects resulting from the lack of a certain 
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protein in other tissues may obscure specific defects in photoreceptor axon guidance and the 

corresponding mutant will escape, even if it reaches the age at which axon guidance defects could 

be observed. 

To circumvent these problems and to perform a screen that also detects photoreceptor axon 

guidance defects resulting from mutations in pleiotropic genes, a strategy to screen mosaic 

animals that are overall heterozygous but possess homozygously mutant eyes was developed 

(Newsome et al. 2000a). 

 

 

 

Figure 1.4: A saturating screen for mutants affecting photoreceptor axon guidance in Drosophila 

FRT chromosomes were mutagenized by EMS in males carrying the ey-Flp construct and the gl-lacZ marker. The males 

were then crossed to virgins carrying the corresponding FRT chromosome with a cell lethal mutation (cl), the ey-Flp 

construct and the gl-lacZ marker. Among the progeny, smooth-eyed males that had not inherited the balancer marked by 

y
+
 were selected and crossed back. 3

rd
 instar larvae of the F2 generation that had not inherited the balancer and had 

therefore eye-discs almost completely homozygously mutant for the newly induced mutation indicated by ☼ were 

tested for defects in photoreceptor axon guidance. (Adapted from Newsome et al. 2000a). 

 

Genetically mosaic flies can be generated using the Flp/FRT system (Figure 2.5), which is based 

on the yeast protein Flipase that induces recombination between FRT sites (Golic and Lindquist 

1989). For the generation of mosaic animals, an FRT site has been introduced close to the 

centromere on each chromosome arm (Xu and Rubin 1993). If two homolog chromosome arms 

carry such an FRT site, the expression of Flipase mediates the recombination between these FRT 

sites and leads to an exchange of the chromosome arms, resulting in two daughter cells of 

different genotypes. One daughter cell is homozygous for the paternal chromosome arm, and the 

other one is homozygous for the maternal chromosome arm. To extinguish the clones homozygous 

for a certain chromosome arm and to enlarge the clones homozygous for the other chromosome 

arm, a recessive cell lethal mutation can be introduced on the undesired chromosome arm. 
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Expression of Flipase specifically in the eye then leads to mosaic flies that are overall 

heterozygous but have eyes almost completely homozygous for a certain chromosome arm 

(Newsome et al. 2000a). 

For each of the four major autosomal arms, males with an FRT chromosome, the ey-Flp construct, 

and the gl-lacZ reporter were mutagenized with EMS (Figure 1.4 and Newsome et al. 2000a). The 

ey-Flp construct causes expression of Flipase mainly in the eye disc (Hauck et al. 1999; Newsome 

et al. 2000a), and the gl-lacZ reporter marks photoreceptor axons by -galactosidase activity 

(Moses and Rubin 1991). The mutagenized males were crossed to females that carried the 

corresponding FRT chromosome arm with a cell lethal mutation, the ey-Flp construct, and the 

gl-lacZ reporter. As a roughening of the eye surface indicates patterning defects in the retina, 

rough-eyed F1 progeny was discarded and only smooth-eyed male descendants were individually 

backcrossed. The F2 progeny from more than 32 000 F1 backcrosses was scored for defective 

photoreceptor projections at the 3rd instar larval stage (Newsome et al. 2000a). In the end, 122 

mutant lines with correctly specified photoreceptor cell fates but abnormal photoreceptor 

projections were obtained (Berger et al. 2008). 

Subsequent systematic analysis of the 122 mutations obtained from the screen revealed that they 

affected 42 different genes, 36 of which could be identified (Newsome et al. 2000a; Newsome et al. 

2000b; Senti et al. 2000; Berger et al. 2001; Maurel-Zaffran et al. 2001; Senti et al. 2003; Berger et 

al. 2008). One complementation group consisted of three alleles that affected the previously 

undescribed gene CG32227, which was termed gogo (Berger et al. 2008; Tomasi et al. 2008). 

 

1.5 gogo 

All three mutant gogo alleles (Figure 1.5) are recessive lethal and considered as null alleles. The 

loss of Gogo causes defects in all photoreceptor subtypes. In the gogo mutant adult visual system, 

R1 to R6 axons correctly target the lamina, but the overall lamina structure shows mild 

irregularities. R7 axons cross each other and sometimes undershoot their correct target layer M6 in 

the medulla. R8 axons are affected most, cross and bundle each other, often overshoot their 

correct target layer M3 and stop in the R7 target layer M6 instead, or stall at their superficial 

intermediate target layer M1 and fail to innervate the medulla. In gogo mutants, axon pathfinding 

defects can already be detected at the 3rd instar larval stage. In the optic lobe, adjacent R8 axons 

form bundles with irregular gaps in between instead of the evenly distributed parallel tracts 

observed in wild type animals (Tomasi et al. 2008). 

gogo encodes a 1272 aa single transmembrane protein (Figure 1.5). Its extracellular part features 

a TSP1 and a CUB domain, which are found in several proteins implicated in directing cell and 

growth cone migration. Additionally, it contains a region termed GOGO domain that is 

characterized by eight conserved cystein residues and dominated by beta strands. The GOGO 



28  INTRODUCTION 

 

domain, together with the adjacent TSP1 but not the CUB domain, was also found in Gogo 

homologs in other insects, nematodes, and vertebrates. As shown by rescue experiments with 

fragments covering different parts of Gogo, the GOGO domain and the TSP1 domain are required 

for Gogo’s function in axon guidance, whereas the CUB domain is not (Tomasi et al. 2008). In 

contrast to the extracellular part of Gogo, its intracellular part does not display any informative 

sequences. Only a short motif consisting of three aa, YYD, is conserved among species. The YYD 

motif is functionally important, as its deletion or mutation to DDD abolishes Gogo’s axon guidance 

function, whereas mutating it to FFD does not (Luu 2008). 

 

 

 

Figure 1.5: Schematic of Gogo’s protein domain architecture and mutant alleles 

The extracellular part of Gogo features a signal peptide (SP), the GOGO domain, a TSP1 domain, and a CUB domain. 

C-terminally of the transmembrane domain (TM), only the short YYD motif is conserved. In gogo
H1675

 mutants, the 

triplet normally encoding Q
1255

 is replaced by a stop codon. In gogo
D1600

 and gogo
D869

 mutants, the splicing donor 

following the triplet encoding Q
573

 and L
669

, respectively, is defective, leading to 28 or 2 novel aa residues before 

translation is terminated. Scale bar: 100 aa. 

 

Gogo is dynamically expressed in the developing visual system. In 3rd instar larvae, Gogo can be 

detected at the tips of R8 axons in the medulla region and in medulla neurons, but not at the 

termini of R1 to R6 axons. Later, during the early pupal stages, Gogo is present at the tips of all 

photoreceptors. From the midpupal stage onward, gogo expression decreases, but low protein 

levels persist on R7 and R8 axons (Tomasi et al. 2008). Although gogo is expressed in R7, it is 

apparently not required there for guiding R7 axons. Neither does the lack of Gogo specifically in R7 

cause axon guidance defects, nor does the expression of gogo specifically in R7 restore the R7 

axon guidance defects in gogo mutants. In contrast, expressing gogo specifically in R8 restores the 

axon guidance defects of both R8 and R7. Therefore, Gogo functions in R8 but not in R7 to guide 

axons, and the defective projections of R7 axons in gogo mutants are a secondary consequence of 

misguided R8 axons. Likewise, the expression of gogo in the brain is not required for 

photoreceptor axon guidance (Tomasi 2008; Tomasi et al. 2008). In contrast, the defects in the 

lamina of gogo mutants are directly due to the lack of Gogo in R1 to R6 and not the consequence 

of misguided R8 axons. In gogo mutants, the assembly of lamina cartridges is disturbed, leading to 

cartridges that contain an abnormal number of R1 to R6 termini instead of the six termini in wild 
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type lamina cartridges (Tomasi 2008). This defect can still be observed when the R8 pathfinding 

errors are restored by R8 specific expression of gogo (Hakeda-Suzuki et al. 2011). 

Gogo appears to have distinct functions in different contexts. In the larval visual system, it was 

supposed to act as a heterophilic receptor that repels R8 axons from each other to assure their 

proper, evenly spaced array in the medulla. gogo mutant R8 axons entangle each other even if 

only small numbers of neighboring R8 axons are mutant, but neighboring wild-type axons are not 

affected, and also single mutant R8 axons appear normal (Tomasi et al. 2008). At the temporary 

R8 target layer, Gogo serves an adhesive function and anchors the termini of R8 axons. Excessive 

Gogo enhances the affinity for the temporary R8 target layer, which becomes manifest in enlarged 

swellings of R8 axons at the M1 layer in the adult medulla (Tomasi et al. 2008). This adhesive 

function of Gogo is antagonized by Flamingo, as the number of abnormal swellings is reduced if 

flamingo is co-overexpressed, whereas excessive Gogo results in a permanent stalling of many R8 

axons at the M1 layer in a flamingo hypomorphic background (Hakeda-Suzuki et al. 2011). 

However, Gogo and Flamingo cooperate in the later phase of R8 target selection, when the R8 

axons extend into the medulla to reach their final target layer M3. This becomes most evident in 

the re-targeting of R7 axon termini to the R8 target layer M3 when both flamingo and gogo are 

overexpressed specifically in R7 axons. Unlike Gogo, Flamingo is also required in the target area 

of R8 axons in the brain. In the photoreceptors, the cytoplasmic part of Gogo but not that of 

Flamingo is required for normal R8 axon targeting. Therefore, it was supposed that Gogo and 

Flamingo cooperate in R8 photoreceptor axons to detect M3 labeled by Flamingo as the correct 

target layer of R8 axons. 

 

1.6 Hts and Adducin 

The cytoplasmic part of Gogo is indispensable for its function. However, as it does not include any 

informative sequence, it was completely unclear how the cytoplasmic part of Gogo would act to 

guide photoreceptor axons. To elucidate its function at the molecular level, this work aimed to 

detect another protein that physically interacts with the cytoplasmic part of Gogo and led to the 

identification of Hts, the single homolog of mammalian Adducin in Drosophila. As yet, research on 

Hts focused on its role during oogenesis and nothing was known about its role in neural 

development. 

 

Adducin 

Adducin is a ubiquitously expressed protein that resides, amongst others, at the axonal growth 

cone (Matsuoka et al. 2000). In vitro, Adducin bundles Actin filaments (Mische et al. 1987; Taylor 

and Taylor 1994), caps the fast-growing ends of Actin filaments (Kuhlman et al. 1996) and recruits 

Spectrin to Actin filaments (Gardner and Bennett 1987; Bennett et al. 1988; Hughes and Bennett 
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1995). By linking Spectrin tetramers to short Actin filaments, it is required for the proper assembly 

of the Actin-Spectrin cytoskeleton underlying the plasma membrane (reviewed by Matsuoka et al. 

2000). Adducin consists of a head, a neck and a tail domain (Joshi and Bennett 1990; Joshi et al. 

1991). The function of the head domain is largely unclear (Matsuoka et al. 2000). It may assist in 

forming the proper Adducin tetramers found in vivo although it is not required for oligomerization 

per se (Hughes and Bennett 1995; Li et al. 1998). The neck domain self-associates to form 

oligomers and is necessary but not sufficient for all interactions of Adducin with Actin and Spectrin 

(Li et al. 1998). In addition, these interactions require the tail domain with its highly conserved 

22-residue MARCKS-related domain that has homology to the MARCKS protein (Li et al. 1998; 

Matsuoka et al. 2000). The MARCKS-related domain is an important site for the regulation of 

Adducin. Both phosphorylation of Adducin within the MARCKS-related domain by PKC (Matsuoka 

et al. 1998) or PKA (Matsuoka et al. 1996) as well as binding of Ca2+-Calmodulin to the MARCKS-

related domain (Gardner and Bennett 1987; Kuhlman et al. 1996) inhibit its activities. 

 

Hts 

“Hu li tai shao” is a Chinese expression that can be translated as “too little nursing”. Hts was first 

described as an important factor in oogenesis (Yue and Spradling 1992). The Drosophila ovary 

consists of several ovarioles, each of which contains a series of developing egg chambers. A 

mature egg chamber comprises a surrounding epithelium of somatic “follicle cells” and a syncytium 

of 16 interconnected cells, one of which is the oocyte and 15 of which are “nurse cells” that nourish 

the oocyte through the cytoplasmic bridges. The 16-cell cysts derive from four synchronized, 

incomplete divisions of a “cystoblast” in the anterior part of the ovariole, the germarium (reviewed 

by de Cuevas et al. 1997). The cystoblast contains a structure called “spectrosome” that grows and 

branches during cystoblast divisions to form the “fusome” that extends through the cytoplasmic 

bridges, possibly to stabilize the cleavage furrows until “ring canals” form (Lin et al. 1994; Robinson 

et al. 1994). Spectrosome and fusome are areas of highly condensed vesicles (de Cuevas et al. 

1997; Snapp et al. 2004). The fusome membranes are associated with a cytoskeleton that includes 

a product of the hts locus, Ovhts-Fus, as well as -Spectrin, -Spectrin and Ankyrin (Lin et al. 

1994; de Cuevas et al. 1996; Petrella et al. 2007). When proliferation stops and differentiation 

begins, the fusome disappears and ring canals form at the arrested cleavage furrows (Robinson et 

al. 1994). Ring canals contain another product of the hts locus, Ovhts-RC, as well as F-Actin and 

Filamin (Warn et al. 1985; Robinson et al. 1997; Petrella et al. 2007). hts mutant females are sterile 

due to a loss of oocyte specification, too few nurse cells, absence of fusomes, deformities of the 

ring canals and a defective organization of the early embryonic cytoskeleton (Yue and Spradling 

1992; Ding et al. 1993; Lin et al. 1994; Zaccai and Lipshitz 1996b; Petrella et al. 2007). 
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The hts locus encodes several different proteins (Figure 1.6 and Whittaker et al. 1999; Petrella et 

al. 2007). They all share the first 472 N-terminal aa that correspond to the head and the neck 

domain of Adducin, but have unique C-termini. 

ShAdd (495 aa in length) is a truncated Hts isoform that has only 23 more unique aa.  

Add1 (718 aa) and Add2 (741 aa) contain the Adducin tail including the MARCKS-related domain 

and are the Hts isoforms most closely related to Adducin (Petrella et al. 2007). 

HtsPD (668 aa) is another Hts isoform predicted by FlyBase. Its N-terminal 659 aa are identical to 

Add1 and it contains most of the Adducin tail but lacks the very C-terminal part including the 

MARCKS-related domain. HtsPD has not been found in vivo yet. 

 

 

 

Figure 1.6: Schematic of the different Hts proteins 

Add1 is the Hts isoform most similar to Adducin and comprises the head (red), the neck (green), and the tail (blue) 

domain including the MARCKS-related domain (yellow). Add2 resembles Add1 and differs only in 23 additional aa 

(dark blue). ShAdd is a truncated isoform that lacks almost the complete tail domain. HtsPD is very similar to Add1 and 

contains most of the tail domain, but it lacks the MARCKS-related domain. Ovhts is posttranslationally cleaved to 

produce the two functional proteins Ovhts-Fus that resembles Adducin and Ovhts-RC that shows a completely unrelated 

sequence. Hts
472

 is the fragment of Hts that is shared among all isoforms. Hts
658

 is the fragment of Hts that is shared 

among all isoforms but ShAdd. In hts
W532X

 mutants, the triplet normally encoding W
532

 is replaced by a stop codon. In 

hts
G
 mutants, the deletion of a single G in the triplet encoding R

650
 causes a frameshift that leads to the replacement of 

R
650

 by 6 novel aa, followed by a premature stop codon. Same color indicates same sequence. Scale bar: 100 aa. 

 

Ovhts (1156 aa) contains most of the Adducin tail (excluding the MARCKS-related domain) and 

continues after its N-terminal 658 aa that are identical to Add1 with a large novel domain 

designated the RC domain. Ovhts is posttranslationally cleaved to produce two distinct proteins, 
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Ovhts-Fus that is associated with the fusome, and Ovhts-RC that is associated with ring canals 

(Petrella et al. 2007). Ovhts is not expressed in the head and not at all in males (Telonis-Scott et 

al. 2009). Therefore, it is inconceivable to function in photoreceptor axon guidance and was 

excluded from the experiments presented in this work. 
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2. MATERIALS AND METHODS 

 

2.1 Generation of transgenic fly stocks 

Transgenic flies are usually obtained from the microinjection of a P-element based transformation 

vector together with a helper plasmid into preblastoderm stage embryos. The P-element is a 

natural transposon ocurring in Drosophila. It features 31 bp inverted terminal repeats and 11 bp 

inverted subterminal repeats as the major cis-acting elements required for tansposition, which flank 

the transposase encoding gene that consists of four exons (Castro and Carareto 2004). As not 

more than 138 bp at the 5’ end and 216 bp at the 3’ end of the P-element are required for 

transposition in cis (Beall and Rio 1997), the transposase gene can be removed from the 

P-element. Replacing it by a selectable marker, usually a w+ allele confering red eyes to w mutant 

flies that otherwise have white eyes, and an MCS to take up exogenous DNA yields a 

transformation vector that is able to transpose from the injected plasmid into the genome. 

Moreover, removing the transposase gene from the P-element prevents it from continued 

transpositions and allows for stable transgenic stocks. For the initial transposition from the injected 

plasmid into the genome, the transposase is supplied from a co-injected helper plasmid. 

Transformation vector and helper plasmid are injected into the posterior pole of the embryo before 

cellularization. The Drosophila embryo develops as a syncytium for the first 1.5 h after fertilization 

(Allis et al. 1977). Upon cellularization, the nuclei deposited at the posterior pole of the syncytium 

are incorporated into the pole cells, which are the precursors of the germ cells. A transgene 

inserted into the genome of a pole cell will therefore be passed on to gametes generated by the fly 

arising from the injected embryo and eventually to its progeny, which will then consist entirely of 

transgenic cells. These transgenic animals can be identified by means of the selectable marker 

included in the transformation vector. 

 

Microinjections 

In order to generate transgenic flies with gogo constructs, embryos homozygous for the w1118 

mutation, which causes white eye color, were collected for 30’ at 25 °C on apple juice agar plates 

from a population cage. To dechorionate the embryos, they were treated with 50 % household 

bleach for 2’ directly on the apple juice agar plates, then poured onto a vacuum-driven membrane 

filter and rinsed with plenty of tap water. The dechorionated embryos were manually lined up on 

the filter side by side using a fine brush. Typically, 200 embryos were used per construct. The 

embryos were transferred onto a coverslip that had been moistened with Scotch glue in heptane 

and air-dried before. Scotch glue in heptane was obtained by simply leaving Scotch Tape in 

n-heptane for some days with some agitation. The coverslip with the embryos was placed onto a 

microscope slide and the embryos were dried in a large Petri dish over silica gel for approximately 
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15’. Then, the embryos were covered with halocarbon oil, and a mixture of 0.6 µg/µl of the plasmid 

carrying the particular transgenic construct and 0.2 µg/µl of the helper plasmid in water was 

injected using a FemtoJet microinjector from Eppendorf (Hamburg, Germany). After injection, the 

coverslip with the embryos was transfered to a vial with fresh fly food. 

Microinjections of plasmids with hts constructs into w1118 embryos were performed by BestGene 

(Chino Hills, California). 

 

Balancing 

The flies developing from the injected embryos were individually crossed to w1118 flies. Successful 

germline transformation resulted in red-eyed flies in the F1 generation. To breed stable transgenic 

stocks and to determine at which chromosome the transformation vector was inserted, red-eyed 

flies were crossed to flies from balancer stocks. If possible, the balancer chromosomes were 

removed from the transgenic stocks to obtain homozygous flies. 

The following fly stocks were used to generate transgenic fly stocks: 

w
1118                          Suzuki Lab (M45) 

w
1118

 / Y, hs-hid                       Suzuki Lab (M46) 

y* w* / Y, hs-hid ; Pin* / CyO                    this work, S011 

y* w* / Y, hs-hid ; sens
Ly-1

 / TM3, Sb
1                 this work, S012 

 

List of transgenic fly stocks that were generated 

All transgenic fly stocks that were generated and used in this work are listed below. 

genotype plasmid chromosome promoter protein 

w*, P{GMR-gogo-Myc}XA pGMR-gogo-Myc X GMR Gogo-Myc 

y* w* ; P{GMR-gogo-Myc}2A pGMR-gogo-Myc 2 GMR Gogo-Myc 

w*, P{GMR-gogo
C
-Myc}XA pGMR-gogo

C
-Myc X GMR Gogo

C
-Myc 

y* w* ; P{GMR-gogo
C
-Myc}2A pGMR-gogo

C
-Myc 2 GMR Gogo

C
-Myc 

y* w* ; P{GMR-gogo
cyto

-Myc}3B pGMR-gogo
cyto

-Myc 3 GMR Gogo
cyto

-Myc 

w*, P{GMR-Add1}XA pGMR-Add1 X GMR Add1 

y* w* ; P{GMR-Add1}2A pGMR-Add1 2 GMR Add1 

y* w* ; P{GMR-Add1}3A pGMR-Add1 3 GMR Add1 

y* w* ; P{GMR-Add1}3B pGMR-Add1 3 GMR Add1 

w*, P{GMR-ShAdd}XA pGMR-ShAdd X GMR ShAdd 

y* w* ; P{GMR-ShAdd}3A pGMR-ShAdd 3 GMR ShAdd 

y* w* ; P{GMR-ShAdd}3B pGMR-ShAdd 3 GMR ShAdd 

w*, P{GMR-htsPD}XA pGMR-htsPD X GMR HtsPD 
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genotype plasmid chromosome promoter protein 

y* w* ; P{GMR-htsPD}3A pGMR-htsPD 3 GMR HtsPD 

y* w* ; P{GMR-htsPD}3B pGMR-htsPD 3 GMR HtsPD 

y* w* ; P{UAS-gogo-Myc}2B / CyO pUAST-gogo-Myc 2 UAS Gogo-Myc 

y* w* ; P{UAS-gogo-Myc}3B pUAST-gogo-Myc 3 UAS Gogo-Myc 

y* w* ; P{UAS-Add1-Myc}2A / CyO pUAST-Add1-Myc 2 UAS Add1-Myc 

y* w* ; P{UAS-Add1-Myc}3A pUAST-Add1-Myc 3 UAS Add1-Myc 

y* w* ; P{UAS-ShAdd-His}2A pUAST-ShAdd-His 2 UAS ShAdd-His 

y* w* ; P{UAS-ShAdd-His}2B / CyO pUAST-ShAdd-His 2 UAS ShAdd-His 

y* w* ; P{UAS-hts
472

-His}3A pUAST-hts
472

-His 3 UAS Hts
472

-His 

y* w* ; P{UAS-hts
472

-His}3B pUAST-hts
472

-His 3 UAS Hts
472

-His 

 

Table 2.1: List of transgenic fly stocks that were generated 

The genotype of each stock is denoted in the first column. The second column states the plasmid that was injected and 

the third column the chromosome at which the transformation vector was inserted. The fourth column quotes the 

promoter contained in the transgenic construct to control the expression of the protein listed in the fifth column. 

 

2.2 Generation of other fly stocks 

All fly stocks that were generated in addition to the transgenic fly stocks mentioned above are 

listed below. 

 

hts mutations over GFP balancers 

w* ; nub* b* pr* hts
G
 bw* / CyO, Kr-Gal4, UAS-GFP           this work, S026 

w* ; nub* b* pr* hts
W532X

 bw* / CyO, Kr-Gal4, UAS-GFP          this work, S027 

w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; ry

506
 / +         this work, S024 

w* ; Df(2R)BSC26 / CyO, Kr-Gal4, UAS-GFP             this work, S025 

The following fly stocks were used to obtain these genotypes: 

w* ; nub* b* pr* hts
G
 bw* / CyO, b*                Cooley 

w* ; nub* b* pr* hts
W532X

 bw* / CyO, b*               Cooley 

cn
1
 P{PZ}hts

01103
 / CyO ; ry

506                 BL FBst0010989 

Df(2R)BSC26 / CyO                    BL FBst0006866 

w* ; L
2
 Pin

1
 / CyO, Kr-Gal4, UAS-GFP               M89 
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hts mutation with rescue construct 

y* w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; P{GMR-htsPD}3B      this work, S033 

The following fly stocks were used to obtain this genotype: 

cn
1
 P{PZ}hts

01103
 / CyO ; ry

506                 BL FBst0010989 

y* w* ; P{GMR-htsPD}3B                  this work 

w* / + ; m -lacZ / CyO, Kr-Gal4, UAS-GFP ; gogo
D1600

 FRT80B / TM6B, y
+     M451 

y* w* ; wg
Sp-1

 / CyO ; MKRS / TM3, Sb
1
 Ser

1
, y

+            this work (S007) 

 

hts mutations with R8 axon marker 

y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
G
 bw* / CyO, y

+        this work, S041 

y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
W532X

 bw* / CyO, y
+       this work, S042 

y* w* ey-Flp, Rh6-mCD8-GFP ; cn
1
 P{PZ}hts

01103
 / CyO, y

+
 ; ry

506
 / +      this work, S036 

y* w* ey-Flp, Rh6-mCD8-GFP ; Df(2R)BSC26 / CyO, y
+          this work, S037 

The following fly stocks were used to obtain these genotypes: 

w* ; nub* b* pr* hts
G
 bw* / CyO, Kr-Gal4, UAS-GFP           this work, S026 

w* ; nub* b* pr* hts
W532X

 bw* / CyO, Kr-Gal4, UAS-GFP          this work, S027 

w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; ry

506
 / +         this work, S024 

w* ; Df(2R)BSC26 / CyO, Kr-Gal4, UAS-GFP             this work, S025 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            Suzuki Lab (M527) 

y* w* ; Pin* / CyO                     M43 

y* w*, omb-Gal4, UAS-GFPnls / FM7c               M344 

 

Virginator balancer stocks 

y* w* / Y, hs-hid ; Pin* / CyO                  this work, S011 

y* w* / Y, hs-hid ; sens
Ly-1

 / TM3, Sb
1               this work, S012 

The following fly stocks were used to obtain these genotypes: 

y* w* ; Pin* / CyO                     M43 

y* w* ; sens
Ly-1

 / TM3, Sb
1
                  M44 

w
1118

 / Y, hs-hid                     Suzuki Lab (M46) 

 

Double balancer stock 

y* w* ; wg
Sp-1

 / CyO ; MKRS / TM3, Sb
1
 Ser

1
, y

+            this work, S007 

The following fly stocks were used to obtain this genotype: 

y* w* ; wg
Sp-1

 / CyO ; MKRS / TM2, y
+               M151 

y* w* ; D* gl* / TM3, Sb
1
 Ser

1
, y

+                M92 
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2.3 Other fly stocks 

All other fly stocks that were used are listed below. 

 

Stocks from the Suzuki lab stock collection 

y* w* ey-Flp ; gogo
D869

 FRT80B / TM6B, y
+             stock Y95 

y* w* ey-Flp ; gogo
D1600

 FRT80B / TM6B, y
+             stock Y99 

y* w* ey-Flp ; gogo
H1675

 FRT80B / TM6B, y
+             stock Y136 

P{UAS-gogo}T1 / CyO                   stock T152 

P{UAS-gogo}T3 / TM6B, y
+                  stock T153 

y* w* ey-Flp GMR-lacZ ; wg
Sp-1

 / CyO, y
+
 ; MKRS / TM6B, y

+         stock M1 

y* w* ey-Flp GMR-lacZ ; RpS17
4
 P{w

+
}70C FRT80B /  TM6B, y

+        stock M35 

y* w* ; Pin* / CyO                     stock M43 

y* w* ; sens
Ly-1

 / TM3, Sb
1
                  stock M44 

w
1118                        stock M45 

w
1118

 / Y, hs-hid                     stock M46 

GMR-hid, y* w* FRT19A ; ey-Gal4 UAS-Flp             stock M52 

y* w* ey-Flp GMR-lacZ ; FRT42D                stock M77 

w* ; L
2
 Pin

1
 / CyO, Kr-Gal4, UAS-GFP               stock M89 

y* w* ; D* gl* / TM3, Sb
1
 Ser

1
, y

+                stock M92 

y* w* ; wg
Sp-1

 / CyO ; MKRS / TM2, y
+               stock M151 

y* w*, omb-Gal4, UAS-GFPnls / FM7c               stock M344 

y* w* ; ey1x-Flp.Exel / CyO ; GMR-mCD8-KO, tubP-Gal80 FRT80B / TM6B, y
+    stock M412 

elav-Gal4, UAS-mCD8-GFP, hs-Flp ; GMR-mCD8-KO, tubP-Gal80 FRT80B / TM6B, y
+ stock M415 

y* w* ; GMR-Gal4, P{UAS-gogo}T1 / CyO              stock M434 

w* / + ; m -lacZ / CyO, Kr-Gal4, UAS-GFP ; gogo
D1600

 FRT80B / TM6B, y
+     stock M451 

y* w*, Rh6-mCD8-GFP ; gogo
D869

 FRT80B / TM6B, y
+          stock M481 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT80B / TM3, Sb
1           stock M510 

y* w* ey-Flp, Rh6-mCD8-GFP ; gogo
D869

 FRT80B / TM3, Sb
1        stock M513 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            stock M527 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / CyO       stock M528 

y* w* ey-Flp GMR-lacZ ; GMR-Gal4 ; ato-tau-Myc FRT80B / TM6B, y
+      stock M558 
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Stocks from the Bloomington Drosophila stock center 

v
1
 swa

1
 / FM3                      FlyBase ID: FBst0003162 

y
1
 cv

1
 swa

3
 v

1
 f

1
 / FM3                   FlyBase ID: FBst0002174 

cn
1
 P{PZ}hts

01103
 / CyO ; ry

506                 FlyBase ID: FBst0010989 

Df(2R)BSC26 / CyO                    FlyBase ID: FBst0006866 

 

Stocks from other sources 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / CyO, y
+          Satoko 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{PZ}hts
01103

 / CyO, y
+        Satoko 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / CyO, y

+     Satoko 

from Satoko Hakeda-Suzuki, Suzuki Lab. 

-Spec
G113

 FRT19A / FM7a                  Klämbt T0516 

from Christian Klämbt, Westfälische Wilhelms-Universität, Münster, Germany (stock T0516). 

w* ; nub* b* pr* hts
W532X

 bw* / CyO, b*               Cooley 

w* ; nub* b* pr* hts
G
 bw* / CyO, b*                Cooley 

from Lynn Cooley, Yale University, New Haven, Connecticut. 

 

2.4 Fly genotypes 

The full genotypes of the flies used in this work are listed below. 

 

Figure 3.1.2 

A: y* w* ey-Flp GMR-lacZ / Y ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D869
 FRT80B 

B: y* w* ey-Flp GMR-lacZ / y* w* or Y ; + / P{GMR-gogo
C
-Myc}2A ; RpS17

4
 P{w

+
}70C FRT80B / gogo

D869
 FRT80B 

C: y* w* ey-Flp GMR-lacZ / y* w* or Y ; + / P{GMR-gogo-Myc}2A ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D869
 FRT80B 

D: y* w* ey-Flp GMR-lacZ / w*, P{GMR-gogo
C
-Myc}XA ; RpS17

4
 P{w

+
}70C FRT80B / gogo

D869
 FRT80B 

E: y* w* ey-Flp GMR-lacZ / w*, P{GMR-gogo-Myc}XA ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D869
 FRT80B 

F: y* w* ey-Flp GMR-lacZ / Y ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D1600
 FRT80B 

G: y* w* ey-Flp GMR-lacZ / y* w* or Y ; + / P{GMR-gogo
C
-Myc}2A ; RpS17

4
 P{w

+
}70C FRT80B / gogo

D1600
 FRT80B 

H: y* w* ey-Flp GMR-lacZ / y* w* or Y ; + / P{GMR-gogo-Myc}2A ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D1600
 FRT80B 

I: y* w* ey-Flp GMR-lacZ / w*, P{GMR-gogo
C
-Myc}XA ; RpS17

4
 P{w

+
}70C FRT80B / gogo

D1600
 FRT80B 

J: y* w* ey-Flp GMR-lacZ / w*, P{GMR-gogo-Myc}XA ; RpS17
4
 P{w

+
}70C FRT80B / gogo

D1600
 FRT80B 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-gogo
C
-Myc}2A                 this work 

y* w* ; P{GMR-gogo-Myc}2A                 this work 

w*, P{GMR-gogo
C
-Myc}XA                  this work 

w*, P{GMR-gogo-Myc}XA                  this work 
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y* w* ey-Flp ; gogo
D869

 FRT80B / TM6B, y
+             Suzuki Lab (Y95) 

y* w* ey-Flp ; gogo
D1600

 FRT80B / TM6B, y
+             Suzuki Lab (Y99) 

y* w* ey-Flp GMR-lacZ ; RpS17
4
 P{w

+
}70C FRT80B /  TM6B, y

+        Suzuki Lab (M35) 

 

Figure 3.1.3 

A: w1118
 / w

1118
 or Y                    Suzuki Lab (M45) 

B: y* w* / y* w* or Y ; P{GMR-gogo
C
-Myc}2A             this work 

C: y* w* / y* w* or Y ; P{GMR-gogo-Myc}2A             this work 

 

Figure 3.2.1 

A: w1118
 / w

1118
 or Y                    Suzuki Lab (M45) 

B: y* w* / y* w* or Y ; P{GMR-gogo
cyto

-Myc}3B            this work 

 

Figure 3.2.2 

A: w1118
 / w

1118
 or Y                    Suzuki Lab (M45) 

A: y* w* / y* w* or Y ; P{GMR-gogo
cyto

-Myc}3B            this work 

B: w1118
 / w

1118
 or Y                    Suzuki Lab (M45) 

B: y* w* / y* w* or Y ; P{GMR-gogo
cyto

-Myc}3B            this work 

 

Figure 3.3 

A: w1118
 / w

1118
 or Y                    Suzuki Lab (M45) 

 

Figure 3.4 

A: y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
G
 bw* 

B: y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
W532X

 bw* 

C: y* w* ey-Flp, Rh6-mCD8-GFP ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

D: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D P{PZ}hts

01103 

E: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null 

F: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null 

G: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D 

The following fly stocks were used to obtain these genotypes: 

y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
G
 bw* / CyO, y

+        this work, S041 

y* w* ey-Flp, Rh6-mCD8-GFP ; nub* b* pr* hts
W532X

 bw* / CyO, y
+       this work, S042 

y* w* ey-Flp, Rh6-mCD8-GFP ; cn
1
 P{PZ}hts

01103
 / CyO, y

+
 ; ry

506
 / +      this work, S036 

y* w* ey-Flp, Rh6-mCD8-GFP ; Df(2R)BSC26 / CyO, y
+          this work, S037 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{PZ}hts
01103

 / CyO, y
+        Satoko Hakeda-Suzuki 
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y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / CyO, y
+          Satoko Hakeda-Suzuki 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / CyO, y

+     Satoko Hakeda-Suzuki 

y* w* ey-Flp GMR-lacZ ; FRT42D                Suzuki Lab (M77) 

J: w
1118

 / w
1118

 or Y
 

J: w* / w* or Y ; nub* b* pr* hts
G
 bw* 

J: w* / w* or Y ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

J: w* / w* or Y ; nub* b* pr* hts
W532X

 bw* 

K: w1118
 / w

1118
 or Y 

K: w* / w* or Y ; nub* b* pr* hts
G
 bw* 

K: w* / w* or Y ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

K: w* / w* or Y ; nub* b* pr* hts
W532X

 bw* 

The following fly stocks were used to obtain these genotypes: 

w
1118                        Suzuki Lab (M45) 

w* ; nub* b* pr* hts
G
 bw* / CyO, Kr-Gal4, UAS-GFP           this work, S026 

w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; ry

506
 / +         this work, S024 

w* ; Df(2R)BSC26 / CyO, Kr-Gal4, UAS-GFP             this work, S025 

w* ; nub* b* pr* hts
W532X

 bw* / CyO, Kr-Gal4, UAS-GFP          this work, S027 

 

Figure 3.5 

A: -Spec
G113

 FRT19A / GMR-hid, y* w* FRT19A ; ey-Gal4 UAS-Flp / + 

The following fly stocks were used to obtain this genotype: 

-Spec
G113

 FRT19A / FM7a                  Christian Klämbt 

GMR-hid, y* w* FRT19A ; ey-Gal4 UAS-Flp             Suzuki Lab (M52) 

 

Figure 3.6 

A: v1
 swa

1 

B: y1
 cv

1
 swa

3
 v

1
 f

1 

The following fly stocks were used to obtain these genotypes: 

v
1
 swa

1
 / FM3                      BL FBst0003162 

y
1
 cv

1
 swa

3
 v

1
 f

1
 / FM3                   BL FBst0002174 
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Figure 3.7.1 

A: y* w* ; P{GMR-Add1}3A                  this work 

B: w*, P{GMR-Add1}XA                   this work 

C: y* w* ; P{GMR-ShAdd}3B                 this work 

D: w*, P{GMR-ShAdd}XA                  this work 

E: y* w* ; P{GMR-htsPD}3B                 this work 

F: w*, P{GMR-htsPD}XA                  this work 

 

Figure 3.7.2 

A: w* / Y ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

B: w* / y* w* ey-Flp GMR-lacZ or y* w* ; cn
1
 P{PZ}hts

01103
 / Df(2R)BSC26 ; + / P{GMR-Add1}3A 

C: w* / w*, P{GMR-Add1}XA ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

D: w* / y* w* ey-Flp GMR-lacZ or y* w* ; cn
1
 P{PZ}hts

01103
 / Df(2R)BSC26 ; + / P{GMR-ShAdd}3B 

E: w* / w*, P{GMR-ShAdd}XA ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

F: w* / y* w* ey-Flp GMR-lacZ or y* w* ; cn
1
 P{PZ}hts

01103
 / Df(2R)BSC26 ; + / P{GMR-htsPD}3B 

G: w* / w*, P{GMR-htsPD}XA ; Df(2R)BSC26 / cn
1
 P{PZ}hts

01103 

H: y* w* / y* w* or y* w* ey-Flp or Y ; cn
1
 P{PZ}hts

01103
 / Df(2R)BSC26 ; P{GMR-htsPD}3B / P{GMR-Add1}3A 

I: y* w* / y* w* or y* w* ey-Flp or Y ; cn
1
 P{PZ}hts

01103
 / Df(2R)BSC26 ; P{GMR-htsPD}3B 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-Add1}3A                   this work 

w*, P{GMR-Add1}XA                    this work 

y* w* ; P{GMR-ShAdd}3B                  this work 

w*, P{GMR-ShAdd}XA                   this work 

y* w* ; P{GMR-htsPD}3B                  this work 

w*, P{GMR-htsPD}XA                   this work 

w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; ry

506
 / +         this work, S024 

w* ; Df(2R)BSC26 / CyO, Kr-Gal4, UAS-GFP             this work, S025 

y* w* ; cn
1
 P{PZ}hts

01103
 / CyO, Kr-Gal4, UAS-GFP ; P{GMR-htsPD}3B      this work, S033 

y* w* / Y, hs-hid ; Pin* / CyO                  this work, S011 

y* w* ey-Flp GMR-lacZ ; wg
Sp-1

 / CyO, y
+
 ; MKRS / TM6B, y

+         Suzuki Lab (M1) 
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Figure 3.9 

A: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null
 ; + / P{GMR-Add1}3A 

B: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null
 ; + / P{GMR-Add1}3B 

C: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null
 ; + / P{GMR-htsPD}3A 

D: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null
 ; + / P{GMR-htsPD}3B 

E: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / FRT42D hts

null 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-Add1}3A                   this work 

y* w* ; P{GMR-Add1}3B                   this work 

y* w* ; P{GMR-htsPD}3A                  this work 

y* w* ; P{GMR-htsPD}3B                  this work 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / CyO, y
+          Satoko Hakeda-Suzuki 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D P{w
+
}47A l(2)cl-R11

1
 / CyO, y

+     Satoko Hakeda-Suzuki 

 

Figure 3.10 

A: w1118                       Suzuki Lab (M45) 

B: y* w* ; P{GMR-Add1}3A                  this work 

C: y* w* ; P{GMR-ShAdd}3A                 this work 

D: y* w* ; P{GMR-ShAdd}3B                 this work 

 

Figure 3.11 

A: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / P{UAS-hts
472

-His}3A 

B: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / P{UAS-hts
472

-His}3B 

C: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / P{UAS-ShAdd-His}2A 

D: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / P{UAS-ShAdd-His}2B 

E: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; TM6B, y
+
 / + 

F: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / P{UAS-Add1-Myc}2A 

G: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / P{UAS-Add1-Myc}3A 

H: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; TM6B, y
+
 / + 

I: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / P{UAS-Add1-Myc}2A 

J: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{UAS-Add1-Myc}3A 

K: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{UAS-hts
472

-His}3A 

L: y* w*, Rh6-mCD8-GFP / y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{UAS-hts
472

-His}3B 

M: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / P{UAS-ShAdd-His}2A 

N: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / P{UAS-ShAdd-His}2B 
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The following fly stocks were used to obtain these genotypes: 

y* w* ; P{UAS-hts
472

-His}3A                  this work 

y* w* ; P{UAS-hts
472

-His}3B                  this work 

y* w* ; P{UAS-ShAdd-His}2A                 this work 

y* w* ; P{UAS-ShAdd-His}2B / CyO                this work 

y* w* ; P{UAS-Add1-Myc}2A / CyO                this work 

y* w* ; P{UAS-Add1-Myc}3A                  this work 

y* w*, Rh6-mCD8-GFP ; gogo
D869

 FRT80B / TM6B, y
+          Suzuki Lab (M481) 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            Suzuki Lab (M527) 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / CyO       Suzuki Lab (M528) 

 

Figure 3.12.1 

A: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / P{UAS-gogo}T1 

B: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / P{UAS-gogo}T3 

C: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / P{UAS-gogo-Myc}2B 

D: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / P{UAS-gogo-Myc}3B 

E: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / + ; + / TM3, Sb
1 

The following fly stocks were used to obtain these genotypes: 

P{UAS-gogo}T1 / CyO                   Suzuki Lab (T152) 

P{UAS-gogo}T3 / TM6B, y
+                  Suzuki Lab (T153) 

y* w* ; P{UAS-gogo-Myc}2B / CyO                this work 

y* w* ; P{UAS-gogo-Myc}3B                  this work 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT80B / TM3, Sb
1           Suzuki Lab (M510) 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            Suzuki Lab (M527) 

 

Figure 3.12.2 

A: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4 / P{UAS-Add1-Myc}2A 

B: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4 / + ; + / P{UAS-Add1-Myc}3A 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{UAS-Add1-Myc}2A / CyO                this work 

y* w* ; P{UAS-Add1-Myc}3A                  this work 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            Suzuki Lab (M527) 
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Figure 3.13 

A: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / TM3, Sb
1 

B: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{GMR-Add1}3A 

C: y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{GMR-Add1}3B 

D: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / GMR-Gal4, P{UAS-gogo}T1 

E: y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / CyO, y
+ 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-Add1}3A                   this work 

y* w* ; P{GMR-Add1}3B                   this work 

y* w* ey-Flp, Rh6-mCD8-GFP ; FRT42D hts
null

 / CyO, y
+          Satoko Hakeda-Suzuki 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / CyO       Suzuki Lab (M528) 

y* w* ey-Flp, Rh6-mCD8-GFP ; gogo
D869

 FRT80B / TM3, Sb
1        Suzuki Lab (M513) 

 

Figure 3.14.1 

A: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4 / + ; + / P{GMR-Add1}3A 

B: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{GMR-Add1}3A 

D: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4 / + ; + / P{GMR-Add1}3B 

E: y* w* ey-Flp, Rh6-mCD8-GFP / y* w* ; GMR-Gal4, P{UAS-gogo}T1 / + ; + / P{GMR-Add1}3B 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-Add1}3A                   this work 

y* w* ; P{GMR-Add1}3B                   this work 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4 / CyO            Suzuki Lab (M527) 

y* w* ey-Flp, Rh6-mCD8-GFP ; GMR-Gal4, P{UAS-gogo}T1 / CyO       Suzuki Lab (M528) 

 

Figure 3.14.2 

A: y* w* ; + / GMR-Gal4, P{UAS-gogo}T1 ; P{GMR-Add1}3B / + 

& y* w* ; P{UAS-gogo}T1 / GMR-Gal4 ; + / P{GMR-Add1}3B 

B: y* w* ; + / GMR-Gal4 ; P{UAS-gogo}T3 / P{GMR-Add1}3B 

C: y* w* ; P{UAS-gogo-Myc}2B / GMR-Gal4 ; + / P{GMR-Add1}3B 

D: y* w* ; + / GMR-Gal4 ; P{UAS-gogo-Myc}3B / P{GMR-Add1}3B 

E: y* w* ; CyO / GMR-Gal4 ; + / P{GMR-Add1}3B 

The following fly stocks were used to obtain these genotypes: 

y* w* ; P{GMR-Add1}3B                   this work 

y* w* ; GMR-Gal4, P{UAS-gogo}T1 / CyO              Suzuki Lab (M434) 

P{UAS-gogo}T1 / CyO                   Suzuki Lab (T152) 

P{UAS-gogo}T3 / TM6B, y
+                  Suzuki Lab (T153) 
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y* w* ; P{UAS-gogo-Myc}2B / CyO                this work 

y* w* ; P{UAS-gogo-Myc}3B                  this work 

y* w* ey-Flp GMR-lacZ ; GMR-Gal4 ; ato-tau-Myc FRT80B / TM6B, y
+      Suzuki Lab (M558) 

 

Figure 3.14.3 

A: y* w* ey-Flp / Y ; gogo
H1675

 FRT80B / GMR-mCD8-KO, tubP-Gal80 FRT80B 

B: y* w* ey-Flp / y* w* ; + / P{GMR-Add1}2A ; gogo
H1675

 FRT80B / GMR-mCD8-KO, tubP-Gal80 FRT80B 

The following fly stocks were used to obtain these genotypes: 

y* w* ey-Flp ; gogo
H1675

 FRT80B / TM6B, y
+             Suzuki Lab (Y136) 

y* w* ; P{GMR-Add1}2A                   this work 

elav-Gal4, UAS-mCD8-GFP, hs-Flp ; GMR-mCD8-KO, tubP-Gal80 FRT80B / TM6B, y
+ Suzuki Lab (M415) 

y* w* ; ey1x-Flp.Exel / CyO ; GMR-mCD8-KO, tubP-Gal80 FRT80B / TM6B, y
+    Suzuki Lab (M412) 

 

2.5 Genetic tools 

This section briefly explains the most important genetic tools and lists the genetic elements that 

were used in this work. 

 

Balancer chromosomes 

Keeping a recessive lethal or recessive sterile mutation in a genetically stable stock requires the 

suppression of recombination. This is achieved by the use of balancer chromosomes. A balancer 

chromosome is the product of multiple chromosomal inversions and translocations, which prevent 

recombination with a homologue chromosome whose structure has not been changed. 

Usually, a balancer chromosome carries an easily visible marker mutation to facilitate the 

distinction of progeny that inherited the balancer chromosome from progeny that inherited the 

homologue chromosome carrying the mutation of interest. 

Moreover, balancer chromosomes themselves are recessive lethal or strongly reducing 

reproductive fitness to prevent the stock from losing the chromosome with the mutation of interest 

and becoming homozygous for the balancer chromosome. 

GFP balancer chromosomes additionally cause a broad expression of GFP during embryonic and 

larval stages. This allows for the easy distinction of embryos and larvae that have inherited the 

GFP balancer chromosome from their siblings that have not. 

 

The virginator 

For genetic experiments, it is essential that crosses are performed with virgin females that have not 

been fertilized yet. Usually, virgin females are obtained by manually collecting freshly hatched 
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females of the desired genotype. However, if many virgins of a particular genotype are needed, the 

virginator is the method of choice. 

The virginator is a Y chromosome that carries a lethal gene under the control of a heat inducible 

promoter. To obtain virgin flies, the developing flies are heat-shocked by exposing them to 37 °C 

for 2 h during their larval stages. This kills all male larvae and only females will survive and hatch. 

The resulting population will consist entirely of female flies, which will not be fertilized and stay 

virgins due to the lack of males. 

 

The Gal4/UAS system 

The Gal4/UAS system was developed in 1993 by Andrea Brand and Norbert Perrimon (Brand and 

Perrimon 1993). It allows the ectopic expression of any transgene in a wide variety of cell type and 

tissue specific patterns. 

The expression pattern of the transgene is determined by the Gal4 driver used. Gal4 drivers can 

be generated by inserting the gene encoding the yeast transcription factor Gal4 into the fly 

genome. Depending on the site of insertion, the expression of Gal4 may then be driven by a 

particular genomic enhancer, which defines the Gal4 expression pattern. Alternatively, a construct 

consisting of any fly promoter and the Gal4 encoding gene can be generated in vitro and inserted 

into the fly genome to drive Gal4 expression from that particular promoter. 

The UAS promoter is then, in turn, activated by the transcription factor Gal4. Therefore, any coding 

sequence that is put under control of the UAS promoter in vitro and inserted into the fly genome 

will be expressed in those cells that express the Gal4 transcription factor.  

The Gal4/UAS system also works in cultured fly cells. When expressing proteins in cell culture, it is 

often desired to obtain high expression levels in all cells, which is accomplished by the use of a 

Gal4 driver that is based on a strong promoter with a broad expression pattern, such as an Actin 

promoter. Conveniently, when the Gal4/UAS system is applied in cell culture, neither the Gal4 

driver nor the UAS target(s) have to be inserted into the genome. Instead, both can be supplied 

from plasmids with which the cells are transfected. 

 

The Flp/FRT system 

The Flp/FRT system is also derived from yeast and allows for the generation of mosaic animals 

that are overall heterozygous but contain tissue homozygous mutant for a lethal mutation. It is 

based on the protein Flipase that induces recombination between FRT sites (Golic and Lindquist 

1989). For the generation of mosaic animals, an FRT site has been introduced close to the 

centromere on each chromosome arm (Xu and Rubin 1993). If both homologue chromosome 

arms, the one that carries the mutation of interest and the one that carries the wild type allele, 

contain an FRT site (Figure 2.5A), a cell contains four FRT sites after DNA replication, one on each 
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chromatid (Figure 2.5B). If Flipase is expressed in this cell, it may mediate the recombination 

between the FRT sites on non-sister chromatids, which leads to an exchange of the chromosome 

arms (Figure 2.5C) and to two daughter cells of different genotypes. One is homozygous mutant 

and one is homozygous for the wild type allele (Figure 2.5D). As continued expression of Flipase in 

the daughter cells can, of course, not restore the heterozygous state, each daughter cell is the 

founder of a homozygous clone that arises from further cell divisions. 

 

 

 

Figure 2.5: The Flp/FRT system 

(A) This heterozygous cell contains the mutation of interest on a chromosome arm that features an FRT site near the 

centromere. The homologous chromosome arm possesses an FRT site, a marker, and a cell lethal mutation. (B) After 

DNA replication, the cell contains four FRT sites. (C) Expression of Flipase may cause the recombination between two 

FRT sites on non-sister chromatids, which causes the exchange of these two chromatids. (D) After cell division, two 

daughter cells with different genotypes can occur. One is homozygous for the mutation of interest and lost the marker. It 

will found an unmarked homozygous mutant clone. Its sister cell is homozygous wild type with regard to the mutation 

of interest. As it is also homozygous for the cell lethal mutation, it will perish. Alternatively, two marked heterozygous 

cells can be generated, which can be subject to Flipase mediated mitotic recombination during the next round of cell 

division. 

 

The spatial and temporal occurrence of mosaic tissue is determined by the activity of the Flipase 

and thereby by the promoter that controls the expression of Flipase. For the generation of mosaic 

eyes including the photoreceptors, eye-specific enhancer fragments from the promoter of the gene 
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ey, the Drosophila homologue of Pax6, are well suited and were used in this work (Hazelett et al. 

1998; Hauck et al. 1999; Newsome et al. 2000a) 

To extinguish the clones homozygous for the wild type allele and to enlarge the clones that are 

homozygous for the mutation of interest, a recessive cell lethal mutation or a lethal transgene can 

be introduced on the chromosome arm with the wild type allele. Additionally, marking the “wild 

type” chromosome arm with a w+ transgene allows for the easy tracing of recombination efficiency 

in a w background (Figure 2.5D). Usually, more than 90 % of the eye is homozygous for the 

mutation of interest when a cell lethal mutation is used on the chromosome arm with the wild type 

allele (Newsome et al. 2000a). 

If the wild type chromosome arm carries a gene encoding a fluorescent protein, the homozygous 

mutant clone can also be identified by the absence of fluorescence. Likewise, a fluorescence 

marker on the mutant chromosome arm allows for the identification of homozygous wild type 

clones by the absence of fluorescence. 

 

List of genetic elements that were used 

Genetic elements that were used in this work are listed in the following table. 

genetic element FlyBase designation Flybase ID use 

FM3 FM3 FBba0000002 
X chromosome balancer 

marked by B
1
 

FM7a FM7a FBba0000007 
X chromosome balancer 

marked by B
1
 

FM7c FM7c FBba0000009 
X chromosome balancer 

marked by B
1
 

CyO CyO FBba0000025 
2

nd
 chromosome balancer 

marked by Cy
1
 

CyO, y
+
 CyO-y

+
 FBba0000035 

2
nd

 chromosome balancer 

marked by Cy
1
 and y

+
 

CyO, Kr-Gal4, UAS-GFP CyO-19 FBba0000315 
2

nd
 chromosome GFP balancer 

marked by Cy
1
 

MKRS MKRS FBba0000066 
3

rd
 chromosome balancer 

marked by Sb
1
 

TM3, Sb
1
 TM3-Sb FBba0000187 

3
rd

 chromosome balancer 

marked by Sb
1
 

TM3, Sb
1
 Ser

1
, y

+
 TM3-vSc FBba0000149 

3
rd

 chromosome balancer 

marked by Sb
1
, Ser

1
, and y

+
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genetic element FlyBase designation Flybase ID use 

TM6B, y
+
 TM6B-y

+
 FBba0000339 

3
rd

 chromosome balancer 

marked by Antp
Hu

 and y
+
 

B
1
 B

1
 FBal0000817 

dominant X chromosome marker mutation 

affects eye shape 

Pin* Pin* FBgn0003088 
dominant 2

nd
 chromosome marker mutation 

affects shape of thoracic bristles 

wg
Sp-1

 wg
Sp-1

 FBal0015984 
dominant 2

nd
 chromosome marker mutation 

affects number of sternopleural bristles 

Cy
1
 Cy

1
 FBal0002196 

dominant 2
nd

 chromosome marker mutation 

affects wing shape 

sens
Ly-1

 sens
Ly-1

 FBal0011759 
dominant 3

rd
 chromosome marker mutation 

affects wing shape 

Sb
1 Sb

1
 FBal0015145 

dominant 3
rd

 chromosome marker mutation 

affects shape of thoracic bristles 

Ser
1 Ser

1
 FBal0015427 

dominant 3
rd

 chromosome marker mutation 

affects wing shape 

Antp
Hu

 Antp
Hu

 FBal0000583 
dominant 3

rd
 chromosome marker mutation 

affects number of humeral bristles 

w* w* FBgn0003996 recessive X chromosome marker mutation 

affects eye color, complemented by w
+
 w

1118
 w

1118
 FBal0018186 

y* y* FBgn0004034 
recessive X chromosome marker mutation 

affects body color, complemented by y
+
 

Y, hs-hid P{hs-hid}Y FBti0017539 virginator 

ey-Gal4 P{GAL4-ey.H}SS5 FBti0012711 ey Gal 4 driver 

GMR-Gal4 P{GAL4-ninaE.GMR}12 FBti0002994 GMR Gal4 driver 

P{UAS-gogo}T1 gogo
Scer\UAS.T1

 FBal0248994 
full-length Gogo from UAS promoter 

inserted on 2
nd

 chromosome 

P{UAS-gogo}T3 - - 
full-length Gogo from UAS promoter 

inserted on 3
rd

 chromosome 

UAS-Flp P{UAS-FLP1.D}JD2 FBti0012285 Flipase from UAS promoter 
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genetic element FlyBase designation Flybase ID use 

ey-Flp P{ey-FLP.N}2 FBti0015982 Flipase from ey promoter 

FRT19A P{neoFRT}19A FBti0000870 
FRT site for mitotic recombination 

X chromosome 

FRT42D P{neoFRT}42D FBti0002072 
FRT site for mitotic recombination 

right arm of 2
nd

 chromosome 

FRT80B P{neoFRT}80B FBti0002073 
FRT site for mitotic recombination 

left arm of 3
rd

 chromosome 

GMR-hid P{GMR-hid}SS1 FBti0012707 
kills photoreceptor cells 

inserted on X chromosome 

l(2)cl-R11
1
 l(2)cl-R11

1
 FBal0104506 

recessive lethal mutation 

on right arm of 2
nd

 chromosome 

RpS17
4
 RpS17

4
 FBal0011935 

recessive lethal mutation 

on left arm of 3
rd

 chromosome 

 
P{w

+
}47A P{white-un1}47A FBti0001286 

w
+
 marker 

on right arm of 2
nd

 chromosome 

P{w
+
}70C P{white-un1}70C FBti0001287 

w
+
 marker 

on left arm of 3
rd

 chromosome 

GMR-lacZ P{GMR-lacZ.C(38.1)}TPN1 FBti0015985 
-galactosidase marker 

marks all photoreceptor axons 

GMR-mCD8-KO P{GMR-mCD8mKOrange} FBtp0052779 
KO marker 

marks all photoreceptor axons 

Rh6-mCD8-GFP P{Rh6-mCD8-GFP} FBtp0052780 
GFP marker 

marks R8 axons 

swa
1
 swa

1
 FBal0016664 swallow mutation 

swa
3
 swa

3
 FBal0016666 swallow mutation 

-Spec
G113

 -Spec
G113

 FBal0213000 -Spectrin mutation 

gogo
D869

 gogo
D869

 FBal0242619 gogo mutation 

gogo
D1600

 gogo
D1600

 FBal0242620 gogo mutation 
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genetic element FlyBase designation Flybase ID use 

gogo
H1675

 gogo
H1675

 FBal0242620 gogo mutation 

hts
null

 hts
null

 FBal0248988 hts mutation 

hts
G
 hts

G
 FBal0212993 hts mutation 

hts
W532X

 hts
W532X

 FBal0212992 hts mutation 

P{PZ}hts
01103

 P{PZ}hts
01103

 FBti0005179 
hts mutation 

caused by P- element insertion 

Df(2R)BSC26 Df(2R)BSC26 FBab0029945 deficiency covering hts locus 

 
Table 2.5: List of genetic elements that were used 

The genetic elements used in this work are listed in the first column. The second column gives the corresponding 

FlyBase designations and the third column the corresponding FlyBase IDs. The forth column gives a short description 

of the purpose of each genetic element. 

 

2.6 Molecular biology 

This section describes all the plasmids that have been used in this work and their construction. 

Most of the plasmids were generated using the Gateway cloning system from Invitrogen (Carlsbad, 

California). 

 

The Gateway cloning system 

The Gateway cloning system is based on the site-specific recombination system of the E. coli 

bacteriophage  (reviewed by Landy 1989)). The circular  phage contains a DNA sequence called 

attP that recombines with the attB site in the bacterial chromosome to mediate the integration of 

the  phage into the host chromosome. The DNA sequences that are formed by the recombination 

of attP and attB are called attL and attR, which, in turn, are able to recombine with each other to 

mediate the excision of bacteriophage  from the host chromosome. Integration and excision are 

driven by two different yet overlapping sets of proteins. The attB site has been modified to 

generate the distinct recombination sites attB1 and attB2. Likewise, attP1 and attP2 are modified 

attP sites (Hartley et al. 2000). attB1 specifically recombines with attP1 and attB2 specifically with 

attP2. To subclone a piece of DNA by the Gateway cloning system, it can be amplified by PCR 

using a 5’ primer that adds the 25 bp attB1 site and a 3’ primer that adds the 25 bp attB2 site. The 
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PCR product is then mixed with a so-called donor vector and the commercially available BP 

clonase, an enzyme mix that mediates the recombination between attB and attP (Figure 2.6). 

Instead of an MCS, the donor vector contains the Gateway cassette, which consists of an attP1 

and an attP2 site flanking the ccdB gene. ccdB inhibits the growth of most bacterial strains 

(Bernard and Couturier 1992). Therefore, after transformation, only bacteria that contain the 

recombined plasmid with the DNA of interest flanked by attL1 and attL2, referred to as entry clone, 

will form colonies, but not those that contain the original donor vector with the ccdB gene. 

 

 

 

Figure 2.6: The Gateway system 

The attB sites can be added to the gene of interest (cyan) by PCR. BP recombination between the PCR product and a 

donor vector containing attP sites that flank the ccdB gene (magenta) is mediated by BP clonase. It generates an entry 

clone containing the gene of interest flanked by attL sites and, as a by-product, the ccdB gene flanked by attR sites. LR 

recombination between the entry clone and a destination vector with the ccdB gene flanked by attR sites is mediated by 

LR clonase and generates the expression clone, which contains the gene of interest flanked by attB sites. As a by-

product, a plasmid consisting of the donor vector’s / entry clone’s backbone, attP sites and the ccdB gene is generated. 

 

From the entry clone, the DNA of interest can be shuttled into any destination vector by simply 

mixing entry clone, destination vector and LR clonase enzyme mix, yielding the so-called 

expression clone (Figure 2.6). A destination vector can be obtained from a conventional plasmid 

vector by inserting a Gateway cassette consisting of the ccdB gene flanked by attR sites into its 

MCS. The destination vector / expression clone should confer a different antibiotic resistance than 
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the donor vector / entry clone to allow for the specific selection of bacteria with the expression 

clone but not those with the entry clone after LR recombination. The Gateway cassette to generate 

a destination vector is available in different reading frames. This allows adjusting the reading frame 

of the subcloned DNA to the reading frame of the vector when fusion proteins should be produced. 

 

Expression clones 

All expression clones that were used in this work are listed below. 

expression clone destination vector entry clone 

pGMR-gogo-Myc pGMR-W-Myc pDONR221-gogo+ 

pGMR-gogo
C
-Myc pGMR-W-Myc pDONR221-gogo

C
+ 

pGMR-gogo
cyto

-Myc pGMR-myr-W-Myc pDONR221-gogo
cyto

+ 

pGMR-Add1 pGMR-W-His pDONR221-Add1.stop 

pGMR-ShAdd pGMR-W-His pDONR221-ShAdd.stop 

pGMR-htsPD pGMR-W-His pDONR221-htsPD.stop 

pUAST-gogo-Myc pUAST-W-Myc pDONR221-gogo+ 

pUAST-gogo
FFD

-Myc pUAST-W-Myc pDONR221-gogo
FFD

+ 

pUAST-gogo
DDD

-Myc pUAST-W-Myc pDONR221-gogo
DDD

+ 

pUAST-Add1-Myc pUAST-W-Myc pDONR221-Add1+ 

pUAST-htsPD-Myc pUAST-W-Myc pDONR221-htsPD+ 

pUAST-Add1-His pUAST-W-His pDONR221-Add1+ 

pUAST-ShAdd-His pUAST-W-His pDONR221-ShAdd+ 

pUAST-htsPD-His pUAST-W-His pDONR221-htsPD+ 

pUAST-hts
472

-His pUAST-W-His pDONR221-hts
472

+ 

pUAST-hts
658

-His pUAST-W-His pDONR221-hts
658

+ 

pUAST-hts
AAAA

-His pUAST-W-His pDONR221-hts
AAAA

+ 

pUAST-hts
DEDE

-His pUAST-W-His pDONR221-hts
DEDE

+ 

pUAST-GFP-His  pUAST-W-His pDONR221-GFP+ 

pUAST-Wnk-Myc  Klaudiusz Mann, Suzuki Lab 

 

Table 2.6.1: List of expression clones 

The expression clones are listed in the first column. They were obtained from LR recombinations between the 

destination vectors quoted in the second and the entry clones in the third column or from the quoted source. 
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Destination vectors 

All destination vectors that were used in this work are listed below. 

destination vector vector backbone insert 

pGMR-W-Myc pCaSpeR-GMR-gogo (KpnI + XbaI) pBSIIKS(+)-W-Myc (KpnI + XbaI) 

pGMR-myr-W-Myc pCaSpeR-GMR-gogo (KpnI + XbaI) pBSIIKS(+)-myr-W-Myc (KpnI + XbaI) 

pGMR-W-His pCaSpeR-GMR-gogo (KpnI + XbaI) pBSIIKS(+)-W-His (KpnI + XbaI) 

pUAST-W-Myc pCaSpeR-UAS-gogo (KpnI + XbaI) pBSIIKS(+)-W-Myc (KpnI + XbaI) 

pUAST-W-His pCaSpeR-UAS-gogo (KpnI + XbaI) pBSIIKS(+)-W-His (KpnI + XbaI) 

 

Table 2.6.2: List of destination vectors 

The destination vectors are listed in the first column. Their vector backbones were obtained from digesting the plasmids 

listed in the second column with the restriction enzymes indicated. They were ligated to the inserts derived from 

restriction digests of the plasmids listed in the third column with the indicated restriction enzymes. 

 

Entry clones 

All entry clones that were used in this work are listed below. 

entry clone template primers 

pDONR221-gogo+ pCaSpeR-UAS-gogo SO001 + SO016 

pDONR221-gogo
C
+ pCaSpeR-UAS-gogo SO001 + SO015a 

pDONR221-gogo
cyto

+ pCaSpeR-UAS-gogo SO008 + SO016 

pDONR221-Add1.stop pDONR221-Add1+ SO151 + SO202 

pDONR221-ShAdd.stop pDONR221-ShAdd+ SO151 + SO203 

pDONR221-htsPD.stop pDONR221-htsPD+ SO151 + SO204 

pDONR221-Add1+ Add1 cDNA SO 151 + SO153 

pDONR221-ShAdd+ ShAdd cDNA SO 151 + SO154 

pDONR221-htsPD+ htsPD cDNA SO 151 + SO155 

pDONR221-hts
472

+ pDONR221-ShAdd+ SO151 + SO205 

pDONR221-hts
658

+ pDONR221-htsPD+ SO151 + SO207 

pDONR221-hts
AAAA

+ pDONR221-hts
658

+ SO151 + AAAA megaprimer 

pDONR221-hts
DEDE

+ pDONR221-hts
658

+ SO151 + DEDE megaprimer 

pDONR221-GFP+ pUAST-DEST12 SO252 + SO253 

pDONR221-gogo
FFD

+ Si-Hong Luu, Suzuki Lab (pSL6) 

pDONR221-gogo
DDD

+ Si-Hong Luu, Suzuki Lab (pSL7) 

 

Table 2.6.3: List of entry clones 

The entry clones listed in the first column were obtained from BP recombinations between the pDONR221 vector and 

the products of PCRs using the templates in the second and the primers in the third column or from the quoted source. 
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Add1 cDNA, ShAdd cDNA and htsPD cDNA were amplified by PCR from the embryonic GH cDNA 

library, a gift from Gaja Tavosanis (Max-Planck Institute of Neurobiology), using the primers SO173 

and SO175, SO176 or SO177. The AAAA megaprimer was generated by a PCR using 

pDONR221-hts658+ as template and the primers SO217a and SO207. The DEDE megaprimer was 

generated by a PCR using pDONR221-hts658+ as template and the primers SO218b and SO207. 

 

Other plasmids 

All other plasmids that were used in this work are listed below. 

plasmid vector backbone insert 

pBSIIKS(+)-W-Myc pBSIIKS(+)-Myc (EcoRV) pBSIIKS(+)-rfA (EcoRV) 

pBSIIKS(+)-myr-W-Myc pBSIIKS(+)-myr-Myc (EcoRV) pBSIIKS(+)-rfA (EcoRV) 

pBSIIKS(+)-W-His pBSIIKS(+)-W-Myc (BglII/XbaI) 6xHis (BglII + XbaI) 

pBSIIKS(+)-Myc pBSIIKS(+)-[KSEBX] (BglII/XbaII) pBS-AGAP(N-C)-Myc (BglII + XbaI) 

pBSIIKS(+)-myr-Myc pBSIIKS(+)-Myc (KpnI/SphI) myr (KpnI + SphI) 

pBSIIKS(+)-rfA pBSIIKS(+) (EcoRV) rfA 

pBSIIKS(+)-[KSEBX] pBSIIKS(+) (KpnI/XbaI) [KSEBX] 

pCaSpeR-GMR-gogo Takashi Suzuki (pTS65) 

pCaSpeR-UAS-gogo Takashi Suzuki (pTS67) 

pBS-AGAP(N-C)-Myc Takashi Suzuki (pTS15) 

pBSIIKS(+) Stratagene (La Jolla, California) 

pDONR221 Invitrogen (Carlsbad, California) 

pUAST-DEST12 Frederik Wirtz-Peitz, Perrimon Lab, Harvard Medical School, Boston, Massachusetts 

actin-Gal4 Takashi Suzuki 

transposase helper plasmid Takashi Suzuki 

 

Table 2.6.4: List of other plasmids 

All other plasmids that have been used in this work are listed in the first column. For newly generated plasmids, the 

second column states the source of the vector backbones, which were obtained from digesting the listed plasmids with 

the indicated restriction enzymes. They were ligated to the inserts listed in the third column, which where obtained from 

digesting the listed plasmids with the stated restriction enzymes when indicated. For all other plasmids, the source has 

been quoted. 

 

6xHis was generated by simply mixing oligonucleotides SO063 and SO064. The myristoylation 

signal myr was the product of a PCR using SO045 and SO046a as primers and genomic DNA from 

a w1118 fly as template. The Gateway cassette rfA is commercially available from Invitrogen 

(Carlsbad, California). The multiple cloning site [KSEBX] was obtained by mixing oligonucleotides 

SO055 and SO056. 
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Oligonucleotides 

All oligonucleotides mentioned in this work were synthesized by Metabion (Martinsried, Germany). 

name sequence 

SO001 GGGGACAAGTTTGTACAAAAAAGCAGGCTCAAA ATG CGG AAA AAC TCA AAG GAA 

SO008 G GGG ACA AGT TTG TAC AAA AAA GCA GGC TGG GCC CAA TAT GTG GTG CGA TAT 

SO015a GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG TTC GTC CTG TCG CCG AGC CAC 

SO016 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG CAC GGC CAC TTC CTT TGA CTT 

SO045 GGGGTACCCAAA ATG GGC AAC AAA TGC TGC AGC 

SO046a GG GCA TGC ACC GGT TGG TGT GGT GCG TGG 

SO055 CGCATGCGATATCCCAGATCTT 

SO056 CTAGAAGATCTGGATATCGCATGCGGTAC 

SO063 GG AGA TCT CAT CAC CAT CAC CAT CAC GTC TA GAC C 

SO064 GGT CTA GAC GTG ATG GTG ATG GTG ATG AGA TCT CC 

SO151 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAA ATG ACT GAA GTT GAG CAA CCG 

SO153 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG GGC CTC GGC CTT CTT CTT CTC 

SO154 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG TTT TCC CTC AAT CTC CTT AAG 

SO155 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG TTT TAT GAA CGC CGT ACA ACA 

SO173 AAAGTATTATAACCACGCAACAAATTC 

SO175 AAGATTGCTACTCCTACGGATCAC 

SO176 TAAAGAGTTGAAGGATTCGGTGTC 

SO177 GGATTGATGTGCTGTCGTATTG 

SO202 GGGGACCACTTTGTACAAGAAAGCTGGGT CTA GGC CTC GGC CTT CTT CTT CTC 

SO203 GGGGACCACTTTGTACAAGAAAGCTGGGT CTA TTT TCC CTC AAT CTC CTT AAG 

SO204 GGGGACCACTTTGTACAAGAAAGCTGGGT CTA TTT TAT GAA CGC CGT ACA ACA 

SO205 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG CTT TGT AAT CTT CTT GGG ATC 

SO207 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG ATC GCT CAG CAC GAC TTC CGC 

SO217a ACA AAG TGG GTG GCT GAG GGT GCC CCC GCC CAC GCA GCG CCA GTG AGG ATA GAA GAT C 

SO218b ACA AAG TGG GTG GCT GAG GGT GAC CCC GAA CAC GAC GAG CCA GTG AGG ATA GAA GAT CC 

SO252 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAA ATG GTG AGC AAG GGC GAG GAG 

SO253 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG CTT GTA CAG CTC GTC CAT GCC G 

 

Table 2.6.5: List of oligonucleotides 

The sequences of the oligonucleotides listed in the left column are specified in the right column from 5’ (left) to 3’ 

(right). Green indicates nucleotides complementary to the PCR template. Blue indicates attB recombination sites. Kozak 

sequences and stop codons are in magenta, recognition sequences for restriction enzymes in cyan. Red indicates 

nucleotides that are not complementary to the PCR template in order to introduce mutations into the PCR product. 
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2.7 Identification of Hts as a Gogo binding protein 

To identify proteins that physically interact with the cytoplasmic part of Gogo, a large amount of 

eye imaginal discs from late 3rd instar larvae expressing Gogocyto-Myc (Figure 3.1.1) was 

mechanically isolated as described previously (1979 Eugene). Gogocyto-Myc was 

immunoprecipitated from the lysat of these discs, and co-precipitated proteins were separated by 

PAGE, detected by Coomassie staining and identified by mass spectrometry. 

 

Solutions 

Organ Medium: 

 25 mM  glycerol phosphate disodium salt 

 10 mM  KH2PO4 

 30 mM  KCl 

 10 mM  MgCl2 

 3 mM   CaCl2 

 162 mM  sucrose 

 10 U/ml  Penicillin 

 10 µg/ml Streptomycin 

Ringer’s solution: 

 130 mM  NaCl 

 5 mM   KCl 

 1.5 mM  CaCl2 

TENT buffer (pH 7.5): 

 25 mM  TrisCl 

 5 mM   EDTA 

 250 mM  NaCl 

 0.5 %   Triton X-100 

 1 mM   PMSF 

 2 mM   DTT 

 10 µM  pepstatin 

 1x    Roche complete protease inhibitor 

HNGT buffer (pH 7.4): 

 20 mM  HEPES 

 150mM  NaCl 

 10 %   glycerol 

 0.1 %   Triton X-100 
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Disc isolation 

Imaginal discs were isolated from each approximately 250 ml of 3rd instar transgenic larvae 

expressing Gogocyto-Myc and of control w1118 larvae. To obtain the larvae, eggs were collected on 

apple juice agar plates for a period of 8 h and allowed to develop to the 3 rd instar larval stage 

directly on the collection plates while being fed with yeast paste. The larvae were washed with tap 

water to get rid of yeast and pupae, which, in contrast to larvae, float on top. 

The larvae were suspended in 500 ml Organ Medium and grinded by means of a Model 4-E 

grinding mill (QCG Systems, Phoenixville, Pennsylvania). The ground material was passed through 

two screens with 2 mm and 0.8 mm openings, respectively (Retsch, Haan, Germany) and through 

a polyamide sieve mesh with 150 µm openings (Fisher Scientific, Schwerte, Germany). To 

maximize the yield, any material left on the grinding plates and the sieves was flushed with 

additional Organ Medium. 

The material was allowed to settle for 30’, and the supernatant was reduced to a total volume of 

1.4 l by aspiration from the surface. 2.5 l of fresh Organ Medium were added, the material was 

allowed to settle for 10’, and the total volume was reduced to 200 ml. As additional washing steps, 

the total volume was brought to 500 ml with fresh Organ Medium, the material was allowed to 

settle for 10’, and the supernatant was aspired to a total volume of 100 to 200 ml for three times. 

Then, the supernatant was reduced to a minimum and the remainder was centrifuged for 1’ at 

800 g and 4 °C. The supernatant was discarded. The pellet was resuspended in 40 ml 14 % Ficoll. 

Each 10 ml were layered onto a discontinuous density gradient in a 50 ml Falcon tube consisting of 

a bottom layer containing 15 ml 50 % sucrose, an intermediate layer of 10 ml 21 % Ficoll in Organ 

Medium, and a top layer containing 12.5 ml 14 % Ficoll in Organ Medium. The gradients were spun 

for 8’ at 800 g and 4 °C. Air bubbles and other undesired material at the top were aspirated and 

discarded. Imaginal discs were enriched near the top of the 14 % Ficoll layer and at the interface 

between the 14 % and the 21 % Ficoll layer. They were collected, put into 150 ml Ringer’s solution, 

and allowed to settle for 20’. The volume was reduced to 50 ml and 150 ml of additional Ringer’s 

solution were added. The discs were allowed to settle for 10’. The volume again was reduced to 

50 ml. After centrifuging for 1’ at 800 g and 4 °C, the supernatant was aspired, and approximately 

1 ml of isolated imaginal discs was obtained. 

 

Immunoprecipitation 

To the 1 ml of imaginal discs in Ringer’s solution, 2 ml of TENT buffer were added. The discs were 

transferred to a 3 ml tissue grinder potter (Fisher Scientific, Schwerte, Germany) and homogenized 

by 20 strokes with the pestle. After 30’ on ice, the lysate was cleared by a 15’ centrifugation at 

10 000 g and 4 °C, followed by a 15’ centrifugation at 16 000 g and 4 °C. 40 µl of a slurry of anti 

c-Myc antibody conjugated to agarose beads (Sigma-Aldrich, St. Louis, Missouri) were added to 
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2 ml of cleared lysate. After 2 h at 4 °C with agitation, the beads were washed five times for each 

15’ with 1 ml of HNGT buffer at 4 °C. 40 µl Laemmli buffer were added to the beads. After cooking 

10’ at 94 °C and centrifuging 1’ at 16 000 g, 30 µl of the cleared Laemmli buffer were subjected to 

SDS-PAGE. 

 

Detection and identification of co-immunoprecipitated proteins 

After SDS-PAGE, the gels were stained with EZBlue gel staining reagent (Sigma-Aldrich, St. Louis, 

Missouri). Protein bands that occurred only in the lane with the proteins from Gogocyto-Myc 

expressing larvae but not in the control lane were cut out. The proteins were identified by mass 

spectrometry (Toplab, Martinsried, Germany). 

 

2.8 Cell culture binding assay 

The Drosophila Schneider cell line was derived from a primary culture of late stage, 20 to 24 h old 

D. melanogaster embryos (Schneider 1972). Some of its properties suggest that it descends from 

a macrophage-like lineage. Schneider cells, like flies, grow at temperatures from 18 to 28 °C. They 

form semi-adherent monolayers in tissue culture flasks. They grow in ambient air and do not 

require supplemental CO2. 

 

Transfection 

Schneider cells were cultivated at 25 to 28 °C in Schneider’s Drosophila medium (PromoCell, 

Heidelberg, Germany) supplemented with 10 % FCS. Shortly before forming a confluent layer, the 

cells of a 75 cm2 cell culture flask were resuspended and divided to the wells of a 6-well multiwell 

plate for transfection. They were allowed to settle over night. One well was used per transfection. 

For a single transfection, each 1.5 to 2 µg of the actin-Gal4 plasmid and the expression plasmid(s) 

encoding the desired protein(s) under control of the UAS promoter were diluted in 100 µl serum-

free medium. 10 µl Cellfectin (Invitrogen, Carlsbad, California) were diluted in another 100 µl of 

serum-free medium. The diluted cellfectin and the diluted DNA were mixed and left for 30’, during 

which the cells were washed with 1 ml of serum-free medium. Then, the medium was removed 

from the cells and replaced by the DNA-Cellfectin mix to which 800 µl of additional serum-free 

medium were added. Transfection was allowed to proceed for at least 6 h up to 1 d. 

Then, the transfection mix was removed from the cells and replaced by 2 ml of fresh medium 

supplemented with FCS. The cells were incubated for 3 d to allow for the expression of the desired 

proteins. 
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Immunoprecipitation 

The cells were resuspended and harvested by centrifugation at 1 000 g for 5’ at room temperature. 

The supernatant was discarded, and the cells were resuspended in 500 µl lysis buffer. Lysis took 

place on ice for 30’. The lysate was cleared by a 15’ centrifugation at 16 000 g and 4 °C. 10 µl of 

the cleared lysate were kept back as input control, 400 µl were used for the immunoprecipitation. 

To the latter, 20 µl of a slurry of anti c-Myc antibody conjugated to agarose beads (Sigma-Aldrich, 

St. Louis, Missouri) were added. After 2 to 4 h at 4 °C with agitation, the beads were collected by 

centrifugation at 800 g for 5’ at 4 °C. The beads were washed three times for each 10’ to 20’ with 

300 to 500 µl lysis buffer at 4 °C. Then, 20 µl Laemmli buffer were added to the beads and 10 µl 

Laemmli buffer were added to the input control. After cooking 10’ at 94 °C and centrifuging 1’ at 

16 000 g, 20 µl of the cleared Laemmli buffer were subjected to SDS-PAGE. 

 

Solutions 

Lysis buffer (pH 8.0) (Figures 3.2.3A-C, 3.8, 3.15): 

 25 mM  TrisCl 

 27.5 mM NaCl 

 20 mM  KCl 

 25 mM  sucrose 

 10 mM   EDTA 

 10 mM  EGTA 

 0.75 %  Nonidet P-40 

 10 %   glycerol 

 20 mM   NaF 

 2 mM   sodium pyrophosphate 

 1 mM   PMSF 

 1 mM   DTT 

 1x    Roche complete protease inhibitor 

Lysis buffer (pH 7.5) (Figures 3.2.3D-E): 

 50 mM  TrisCl 

 150 mM  NaCl 

 1 %   Nonidet P-40 

 1x    Roche complete protease inhibitor 
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2.9 Preparation of lysates from larval brains 

Per lane, 15 hand-dissected larval brains were directly put into 15 µl Laemmli loading buffer, 

cooked for 10’ at 94 °C, crushed with a plastic pestle and cooked for another 10’. The proteins in 

the lysate were separated by PAGE and Hts was detected by western blot. 

 

2.10 Western blot 

After PAGE, proteins were transferred onto Amersham Hybond ECL membrane (GE Healthcare, 

Waukesha, Wisconsin). The transfer was controled by staining the membrane with Ponceau S 

afterwards. Then, the membrane was blocked with 5 % milk powder in PBS for 1 h at room 

temperature. The blocked membrane was incubated with the primary antibody in 5 % milk powder 

in PBS over night at 4 °C. The membrane was washed three times with PBS for 10’ each and then 

incubated with the secondary antibody in PBS for 4 h at room temperature. The membrane was 

wasched thrice with PBS for 10’ each, once with PBS containing 0.1 % Tween 20 for 10’, and once 

shortly with PBS. The membrane was submerged in Amersham ECL detection reagent (GE 

Healthcare, Waukesha, Wisconsin). Exposure times of the films ranged from 5’’ to several h. 

 

Membrane stripping 

If a second protein was to be detected on the same membrane, the antibodies were stripped off 

the membrane by submerging it for 1 h in strip solution at 65 °C. Starting with the blocking step, 

the detection procedure was then repeated as described above. 

 

Strip solution (pH 7.5) 

 100 mM  TrisCl 

 0.2 %   SDS 

 100 mM  2-mercaptoethanol 

 

2.11 Immunostaining of adult brain cryosections 

Adult flies were anesthetized with carbonic acid gas. Body and proboscis were removed from the 

head. For fixation, the heads were put into PBS containing 2 % formaldehyde and 0.05 % Triton 

X-100 for 60’ to 90’ at 4 °C. After washing the heads with PBS, they were transfered into a 12 % 

sucrose solution. The sucrose solution was allowed to infiltrate the tissue for 16 h at 4 °C. Then, 

the heads were submerged in a drop of Tissue Tek O.C.T. Compound (Sakura Finetek Europe, 

Zoeterwoude, The Netherlands). The heads were allowed to be permeated for 10’ to 30’ at room 

temperature, embeded and aligned in Peel-A-Way embedding molds (Polysciences, Warrington, 

Pennsylvania) and frozen on an ethanol bath with dry ice. The embedded heads were cut in 10 to 

14 µm thick horizontal slices with a cryostat microtome. 
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The slices were deposited on SuperFrost Plus microscope slides (Gerhard Menzel 

Glasbearbeitungswerk, Braunschweig, Germany), dried for 5’ at room temperature, subjected to 

fixation in PBS containing 0.5 % formaldehyde for 20’ to 60’ at room temperature, washed with 

PBS three times for 3’ each, blocked in PBS containing 0.3 % Triton X-100 and 1 % BSA for 30’ 

and washed three times for 10’ each with PBS containing 0.3 % Triton X-100. The primary 

antibody was applied over night at 4 °C in PBS containing 0.3 % Triton X-100 and 5 % NGS. After 

several washings with PBS containing 0.3 % Triton X-100, the HRP conjugated secondary 

antibody was applied in PBS containing 0.3 % Triton X-100 and 5 % NGS for 4 h at room 

temperature, followed by another round of washings with PBS containing 0.3 % Triton X-100. 

Then, the staining reaction was started by applying 0.05 % diaminobenzidine in 0.003 % hydrogen 

peroxide, monitored, and, when proceeded to the desired stage, stopped by washing with PBS. 

The samples were embeded in PBS containing 70 % glycerol and covered with cover slips. 

 

2.12 Whole mount immunostaining of larval and adult brains 

To obtain larval brains, late 3rd instar larvae that were crawling on the wall of the culture vial were 

collected and dissected in PBS containing up to 0.1 % Triton X-100. 

Adult flies were anesthetized with carbonic acid gas, immersed in ethanol for 30’’ to remove 

hydrophobic compounds from their cuticle, and dissected in PBS containing up to 0.1 % Triton 

X-100. The tracheae covering the brain were removed. 

Directly after dissection, the brains were transferred into PBS containing up to 0.1 % Triton X-100 

and stored on ice. Fixation was performed by adding formaldehyde to a final concentration of 

approximately 3.5 % and agitating for 20’ to 35’ at room temperature. The brains were washed 

three times for at least 10’ each with PBS containing 0.1 to 0.5 % Triton X-100 and blocked for 30’ 

with 5 % NGS in PBS containing 0.1 to 0.5 % Triton X-100 at room temperature. Then, the primary 

antibodies were added and left on at least over night at 4 °C with agitation. 

After washing the brains again three times for at least 10’ each with PBS containing 0.1 to 0.5 % 

Triton X-100, the fluorescently labeled secondary antibodies were applied in PBS containing 5 % 

NGS and 0.1 to 0.5 % Triton X-100 and left on at least over night at 4 °C with agitation. 

Finally, the brains were washed again three times for at least 10’ each with PBS containing 0.1 to 

0.5 % Triton X-100, transferred into Vectashield Mounting Medium (Vector Laboratories, 

Burlingame, California) and mounted on microscope slides. 

 

2.13 Estimation of Add1 levels in R axons in the medulla 

The ratio of the mean fluorescence intensity of the axons to the mean fluorescence intensity of the 

background was determined for htsF and 24B10 immunostainings by means of Adobe Photoshop 

CS3. In the channel displaying the 24B10 immunostaining, the average intensity value of the 



MATERIALS AND METHODS  63 

 

medulla was determined. All pixels with a higher intensity value, considered to represent the 

axons, were selected and their average intensity value was divided by the average intensity value 

of the remaining pixels, considered as background, to get the relative fluorescence intensity of the 

24B10 staining. Then, the average intensity values of the selected area and the remaining pixels 

were determined in the channel displaying the htsF immunostaining, and the ratio of both values 

was calculated to obtain the relative fluorescence intensity of the htsF immunostaining. 

 

2.14 Antibodies 

The following antibodies were used in this work. 

 

Antibody used for immunoprecipitations 

For immunoprecipitations, anti c-Myc antibody raised in rabbit and conjugated to agarose beads 

(Sigma-Aldrich, St. Louis, Missouri) was used. 

 

Antibodies used for western blots 

The antibodies used for western blots are listed below. 

antibody host species dilution source 

htsF (anti Hts) rat 1:5000 
Lynn Cooley, Yale University, 

New Haven, Connecticut 

1B1 (anti Hts) mouse monoclonal 1:10 
Developmental Studies Hybridoma Bank, 

Iowa City, Iowa 

HIS.H8 (anti 6xHis) mouse monoclonal 1:1000 
Abcam, 

Cambridge, United Kingdom 

9E10 (anti c-Myc) mouse monoclonal 1:100 
Santa Cruz Biotechnology, 

Santa Cruz, California 

anti mouse IgG 

HRP conjugated 
sheep 1:4000 to 1:5000 

GE Healthcare, 

Waukesha, Wisconsin 

 anti rat IgG 

HRP conjugated 
goat 1:3000 

GE Healthcare, 

Waukesha, Wisconsin 

  

Table 2.14.1: List of antibodies used for western blots 

The antibodies are listed in the first column. The second column quotes the host species it was raised in, the third the 

dilution it was used at, and the fourth the source from which it was obtained. 

 

Antibodies used for immunostainings 

The antibodies used in immunostainings are listed below. Alexa Fluor 488 conjugated anti GFP 

antibody was included in both the primary and the secondary staining step. 



64  MATERIALS AND METHODS 

 

antibody host species dilution source 

anti -galactosidase 
mouse 

(monoclonal) 
1:300 

Promega, 

Madison, Wisconsin 

anti Gogo rabbit 1:1000 Takashi Suzuki 

htsF (anti Hts) rat 1:400 to 1:500 
Lynn Cooley, Yale University, 

New Haven, Connecticut 

1B1 (anti Hts) 
mouse 

(monoclonal) 
1:5 to 1:10 

Developmental Studies Hybridoma Bank, 

Iowa City, Iowa 

anti c-Myc rabbit 1:300 
Gramsch Laboratories, 

Schwabhausen, Germany 

24B10 (anti Chaoptin) 
mouse 

(monoclonal) 
1:5 to 1:50 

Developmental Studies Hybridoma Bank, 

Iowa City, Iowa 

anti GFP 

Alexa Fluor 488 conjugated 
rabbit 1:100 to 1:500 

Invitrogen, 

Carlsbad, California 

anti mouse IgG 

HRP conjugated 
goat 1:600 

Jackson ImmunoResearch Laboratories, 

West Grove, Pennsylvania 

anti mouse IgG 

Alexa Fluor 488 conjugated 
goat 1:200 to 1:250 

Invitrogen, 

Carlsbad, California 

anti rabbit IgG 

Alexa Fluor 488 conjugated 
goat 1:200 to 1:300 

Invitrogen, 

Carlsbad, California 

anti rat IgG 

Alexa Fluor 488 conjugated 
goat 1:200 

Invitrogen, 

Carlsbad, California 

anti mouse IgG 

Alexa Fluor 568 conjugated 
goat 1:200 to 1:500 

Invitrogen, 

Carlsbad, California 

anti rat IgG 

Alexa Fluor 568 conjugated 
goat 1:200 

Invitrogen, 

Carlsbad, California 

anti mouse IgG 

Alexa Fluor 633 conjugated 
goat 1:200 

Invitrogen, 

Carlsbad, California 

anti rat IgG 

Alexa Fluor 633 conjugated 
goat 1:200 to 1:500 

Invitrogen, 

Carlsbad, California 

 

Table 2.14.2: List of antibodies used for immunostainings 

The antibodies are listed in the first column. The second column quotes the host species it was raised in, the third the 

dilution it was used at, and the fourth the source from which it was obtained. 
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3. RESULTS 

 

3.1 Gogo requires its cytoplasmic part to function in photoreceptor axon guidance 

Gogo was proposed to function as an axon guidance receptor in R8 (Tomasi et al. 2008), and the 

aim of this thesis was to elucidate the molecular mechanisms that underlie its function during axon 

guidance by identifying proteins that physically interact with Gogo. Unlike its N-terminal 

extracellular part that contains well-defined protein domains and presumably senses the growth 

cone’s environment by binding to as yet unidentified ligands, the cytoplasmic C-terminus of Gogo 

lacks any such domain (Figure 1.5 and Tomasi et al. 2008). It appeared especially exciting to 

clarify how this uncharacterized region would transmit the information required for proper axon 

guidance into the growing axon. To ensure that the cytoplasmic part of Gogo is indeed essential for 

proper photoreceptor axon guidance, a C-terminally 4xMyc-tagged fragment of Gogo lacking 

almost all the cytoplasmic part (Gogo C-Myc, Figure 3.1.1) was tested for its ability to rescue gogo 

mutants. 

 

 

 

Figure 3.1.1: Schematic of the different artificial Gogo constructs used 

Gogo-Myc comprises the complete full-length Gogo protein, whereas Gogo
C
-Myc lacks almost all the cytoplasmic 

part. In Gogo
cyto

-Myc, the extracellular part and the transmembrane domain were replaced by a myristoylation signal. 

All constructs feature a C-terminal 4xMyc-tag (Myc). SP: signal peptide. TM: transmembrane domain. Same color 

indicates same sequence. Scale bar: 100 aa. 

 

In mosaic flies that are overall heterozygous but have eyes homozygous mutant for the gogo null 

allele gogoD869, the medullae are severely disrupted, and the regular array of R7 and R8 axons is 

lost (Figure 3.1.2A). This defect can be restored by expressing C-terminally 4xMyc-tagged full-

length Gogo (Gogo-Myc, Figure 3.1.1) under direct control of the GMR promoter (Figure 3.1.2C). 

The GMR promoter drives expression in all differentiating cells of the developing eye, including all 

photoreceptors (Ellis et al. 1993). Expressing Gogo C-Myc does not restore the defects caused by 

gogoD869 (Figure 3.1.2B), indicating that Gogo requires its cytoplasmic region for its function in 

photoreceptor axon guidance. This result was confirmed with each a second transgenic insertion of 
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GMR-gogo C-Myc (Figure 3.1.2D) and GMR-gogo-Myc (Figure 3.1.2E) as well as with another 

gogo null allele, gogoD1600 (Figures 3.1.2F-J). 

 

 

 

Figure 3.1.2: Gogo requires its cytoplasmic part to function in photoreceptor axon guidance 

Horizontal head sections of (A-E) gogo
D869

 or (F-J) gogo
D1600

 ey-Flp mosaic flies carrying the gl-lacZ reporter and the 

indicated transgene stained for -galactosidase. The defects caused by (A,F) gogo null mutations are restored by 

(C,E,H,J) GMR-gogo-Myc but not by (B,D,G,I) GMR-gogo
C
-Myc. 

 

To exclude that the inability of GMR-gogo C-Myc to rescue gogo mutants was merely an unspecific 

secondary effect of reduced expression, protein instability or mislocalization, optic lobes of 

transgenic GMR-gogo C-Myc or GMR-gogo-Myc late 3rd instar larvae were stained with anti-Myc 

antibody. Both Gogo C-Myc (Figure 3.1.3B) and Gogo-Myc (Figure 3.1.3C) are detected along 

photoreceptor axons, in the lamina plexus, and at the tips of R7 / R8 axons in the developing 

medulla. The staining intensity of Gogo C-Myc appears to be somewhat lower compared to 

Gogo-Myc, but apart from that, there is no obvious overall difference between the appearance of 

Gogo C-Myc and Gogo-Myc. The staining is specific as it is absent from the negative control 

(Figure 3.1.3A). 
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Figure 3.1.3: Gogo
C
-Myc and Gogo-Myc are present in larval photoreceptor axons 

Whole mount immunostainings of optic lobes from (A) w
1118

, (B) transgenic GMR-gogo
C
-Myc, and (C) transgenic 

GMR-gogo-Myc late 3
rd

 instar larvae. Both (B) Gogo
C
-Myc and (C) Gogo-Myc are detected along photoreceptor axons 

(white arrows), in the lamina plexus (yellow arrows), and at the tips of R7 / R8 axons (arrowheads). The staining is 

specific as it is absent from the (A) negative control. All genotypes were imaged at the same settings. Scale bars: 

10 m. 

 

3.2 Gogo physically interacts with Hts 

To identify proteins that physically interact with Gogo, transgenic flies that express a myristoylated, 

C-terminally 4xMyc-tagged version of the cytoplasmic part of Gogo (Gogocyto-Myc, Figure 3.1.1) 

under direct control of the GMR promoter were generated. 
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Gogocyto-Myc is present in photoreceptor axons of late 3rd instar larvae, as shown by 

immunostaining with anti-Myc antibody (Figure 3.2.1). 

 

 

 

Figure 3.2.1: Gogo
cyto

-Myc is present in larval photoreceptors 

Whole mount immunostainings of optic lobes from (A) w
1118

 and (B) GMR-gogo
cyto

-Myc 3
rd

 instar larvae. Gogo
cyto

-Myc 

is detected along photoreceptor axons (white arrows), in the lamina plexus (yellow arrows), and at the tips of R7 / R8 

axons (arrowheads). The staining is specific as it is absent from the (A) negative control. Scale bars: 10 m. 

 

Using an antibody directed against the Myc-epitope, Gogocyto-Myc was immunoprecipitated from a 

large amount of mechanically isolated 3rd instar larval imaginal discs. Coimmunoprecipitated 

proteins were separated by PAGE and detected by Coomassie staining (Figure 3.2.2A). A protein 

with an apparent molecular weight of approximately 93 kDa appeared specifically together with 

Gogocyto-Myc but not in the control performed with w1118 discs. It was identified as Hts by mass 

spectrometry, but the obtained set of peptide masses did not allow for the unambiguous 

identification of the specific isoform observed. However, the apparent molecular weight of 93 kDa 

points to Add1 or Add2 that have been described to appear as a doublet at around 90 kDa on 

western blots (Petrella et al. 2007). 

The identity of Gogocyto-Myc was proven by western blot (Figure 3.2.2B). 

 



RESULTS  69 

 

 

 

Figure 3.2.2: Hts physically interacts with Gogo
cyto

-Myc 

Gogo
cyto

-Myc was immunoprecipitated from lysates of imaginal discs from late 3
rd

 instar larvae. Proteins were 

separated by PAGE and detected by (A) Coomassie. A band that appeared together with Gogo
cyto

-Myc but not in the 

control was identified as Hts by mass spectrometry. The identity of Gogo
cyto

-Myc was proven by (B) western blot. 

 

The physical interaction was verified by coimmunoprecipitation from lysates of Schneider cells that 

coexpressed a C-terminally 6xHis-tagged version of Add1 (Add1-His) and Gogo-Myc. As the YYD 

motif is the only outstanding structure in the cytoplasmic part of Gogo and functionally important 

(Luu 2008), two mutant versions of Gogo-Myc have also been tested for their ability to bind to 

Add1-His. In one of these mutants, the Tyrosine residues of the YYD motif have been replaced by 

Phenylalanine residues (GogoFFD-Myc), which does not affect the function of Gogo, and in the 

other one by Aspartic acid residues (GogoDDD-Myc), which compromises Gogo’s function (Luu 

2008). Add1-His appears on the western blot together with immunoprecipitated Gogo-Myc, 

GogoFFD-Myc and GogoDDD-Myc, but not in the control lacking any Gogo constructs (Figure 3.2.3A). 

No difference was observed in Add1-His binding to Gogo-Myc, GogoFFD-Myc or GogoDDD-Myc. 

Analogous experiments showed that also the Hts isoforms ShAdd (Figure 3.2.3B) and HtsPD 

(Figure 3.2.3C) are able to bind to Gogo, suggesting that binding to Gogo is mediated by the 

region of Hts that is common to all isoforms (Figure 1.6). This was directly shown by coexpressing 

Gogo-Myc and a 6xHis-tagged version of this common region (Hts472-His), followed by 

immunoprecipitation and western blot (Figure 3.2.3D). To prove that the physical interaction is 

indeed specific for Hts and Gogo, two unrelated proteins, Wnk and GFP, were supplied with a 

4xMyc and a 6xHis tag in an identical way as Gogo-Myc and Hts472-His, respectively. Hts472-His did 

not coimmunoprecipitate with Wnk-Myc, and GFP-His not with Gogo-Myc, demonstrating that the 

binding between Hts472-His and Gogo-Myc is specific for Hts and Gogo. As the expression level of 

Gogo-Myc and GFP-His was very low when both were coexpressed, this control was repeated 

using double the amount of cells coexpressing Gogo-Myc and GFP-His as cells coexpressing 

Gogo-Myc and Hts472-His (Figure 3.2.3E). Again, the interaction between Hts472-His and Gogo-Myc 

could be shown to be specific for Hts. 
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Figure 3.2.3: Gogo binds to all Hts isoforms independently of its YYD motif 

(A) Schneider cells expressed Add1-His alone (lane 4) or together with the indicated Gogo construct (lanes 1 to 3). 

Add1-His coimmunoprecipitated with Gogo-Myc (lane 5), Gogo
DDD

-Myc (lane 6) and Gogo Gogo
FFD

-Myc (lane 7) but 

was absent from the control (lane 8). Analogous results were obtained for (B) ShAdd-His and (C) HtsPD-His. (D) The 

N-terminal 472 aa of Hts are sufficient for the interaction with Gogo. The cells coexpressed Gogo-Myc and Hts
472

-His 

(lane 2), Wnk-Myc and Hts
472

-His (lane 1) or Gogo-Myc and GFP-His (lane 3). Hts
472

-His coimmunoprecipitated with 

Gogo-Myc (lane 5). Hts
472

–His did not coimmunoprecipitate with Wnk-Myc (lane 4) and GFP-His not with Gogo-Myc 

(lane 6), demonstrating that the physical interaction is specific for Gogo and Hts. (E) To compensate for the low 

expression level of Gogo-Myc and GFP-His when they are coexpressed, lysate from twice the amount of cells 

coexpressing Gogo-Myc and GFP-His (lane 1) than from those coexpressing Gogo-Myc and Hts
472

-His (lane 2) was 

used. Hts
472

-His coimmunoprecipitated with Gogo-Myc (lane 4), but GFP-His did not (lane 3). 

 

3.3 Hts can be detected in larval photoreceptor axons 

 

 

 

Figure 3.3: Hts in optic lobes of wild type larvae 

Wild type 3
rd

 instar larval optic lobes were immunostained with (I) anti-Hts antibody htsF, (II) antibody 24B10 to 

visualize photoreceptor axons, and (III) anti-Gogo antibody. Hts is ubiquitously expressed. It is detected along 

photoreceptor axons (white arrows) and in the lamina plexus (yellow arrows) where R1 to R6 terminate. R7 / R8 

termini (arrowheads) stain strongly positive for Gogo but show a reduction of the otherwise uniform Hts staining of the 

medulla. (IV) Merge of I and II. (V) Merge of I and III. (VI) Merge of II and III. Scale bar: 10 m. 
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As revealed by immunostaining with the anti-Hts antibody htsF, Hts is ubiquitously expressed in 

the optic lobes of late 3rd instar wild type larvae (Figure 3.3).  htsF labels photoreceptor axons and 

the termini of R1 to R6 in the lamina plexus. The medulla exhibits an overall uniform and diffuse 

staining, but interestingly, the signal is reduced at the termini of R7 / R8 axons that stain strongly 

positive for Gogo (Figure 3.3 and Tomasi et al. 2008). 

 

3.4 Loss of Hts severely affects axon guidance in the visual system 

As Adducin was not known to be involved in axon guidance yet and research on Hts in Drosophila 

so far focused on its role during oogenesis, it was interesting to see if hts mutant flies would show 

defects in photoreceptor axon guidance. 

The mutant analysis started with the two point mutations hts G (Koundakjian et al. 2004) and 

htsW532X (Petrella et al. 2007) that both cause premature stop codons (Petrella et al. 2007). The 

latter has been suggested to be a null mutant based on the lack of detectable amounts of Hts 

protein on western blots from mutant ovaries, whereas a truncated form of Hts protein is expressed 

in hts G mutants (Petrella et al. 2007). Both mutants are homozygous viable, and adult 

homozygous mutant flies expressing GFP as a marker in R8 were tested for axon guidance 

defects in the medulla. hts G did not cause any observable defects (n=5, Figure 3.4A, Table 3.4), 

but the majority of htsW532X mutant medullae (3 of n=5, Table 3.4) showed sporadic irregularities. 

Approximately 3 % (21 of 616) of the columns in the medulla contained aberrant axons 

(Figure 3.4B).  

Another hts mutant, namely hts01103 (Spradling et al. 1999), is caused by a P-element insertion into 

an intron of the 5’ UTR (Figure 3.4H) that strongly reduces Hts protein amount and function 

(Wilson 2005). hts01103 hemizygous flies are viable and show a severe disruption of the medulla in 

adult flies (29 of n=30, Figure 3.4C, Table 3.4). When compared to the wild type (Figure 3.4G), the 

regular array of R7 and R8 axons is lost and instead, axons clump together, forming irregularly 

spaced thick bundles and gaps in between. Instead of going straight from M1 to M3 and M6, 

respectively, R8 and R7 axons follow disordered paths from M1 to their respective target layer and 

R8 often overshoots its correct target layer M3. 

As htsW532X was supposed to be a null mutant, it was surprising to see this much stronger 

phenotype in hts01103 hemizygous flies. To clarify this inconsistency, the expression of Hts proteins 

in the three mutants was analyzed using the antibody htsF that recognizes all Hts isoforms 

(Petrella et al. 2007). On western blots from lysates of late 3rd instar larval brains, htsF detected 

full-length Add1/2 and ShAdd from wild type larvae and a truncated protein plus ShAdd from hts G 

mutant larvae (Figure 3.4J), as expected. htsF did not detect any clear band from hts01103 

hemizygous larvae, but surprisingly, it detected not only ShAdd but two additional weak but definite 

bands from htsW532X mutant brains. 
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genotype 
no defects 

(e.g. Fig. 3.4A) 

rare defects 

(e.g. Fig. 3.4B) 

intermediate defects 

(e.g. Fig. 3.4F) 

strong defects 

(e.g. Fig. 3.4C) 

hts
G
 homozygous (n=5) 5 / 100 % 0 0 0 

hts
W532X

 homozygous (n=5) 1 / 20 % 3 / 60 % 1 / 20 % 0 

hts
01103

 hemizygous (n=31) 0 1 / 3 % 5 / 16 % 25 / 81 % 

hts
null

 homozygous (n=4) 0 0 0 4 / 100 % 

hts
01103

 mosaic (n=3) 3 / 100 % 0 0 0 

hts
null

 mosaic (n=31) 0 2 / 6 % 12 / 39 % 17 / 55 % 

hts
wt

 mosaic (n=5) 5 / 100 % 0 0 0 

 

Table 3.4: Severity of the defects observed in different hts mutants 

For each genotype listed in the left column, the number / percentage of medullae that had no defective phenotype, 

showed only sporadic irregularities, had an intermediate or a strongly defective phenotype is denoted. 

 

Based on their apparent molecular weights, they can be considered as the truncated protein 

caused by the premature stop codon and full-length Add1/2, respectively. Since a comparable 

band corresponding to full-length Add1/2 is absent from both hts G and hts01103, it seems unlikely 

that the detected full-length protein is maternally contributed. Rather, it could be attributed to stop 

codon readthrough as it was reported for other nonsense mutations in Drosophila (Washburn and 

O'Tousa 1992; Samson et al. 1995). 

The result found using htsF was confirmed with another antibody against Hts. 1B1 (Zaccai and 

Lipshitz 1996a) recognizes all Hts isoforms but ShAdd (Whittaker et al. 1999; Petrella et al. 2007) 

and detected exactly the same pattern of protein bands except for the lack of bands corresponding 

to ShAdd (Figure 3.4K). 

Although Hts could not be detected unambiguously in hts01103 hemizygous brains, there is no 

obvious defect in the medullae of mosaic animals that are overall heterozygous but have 

homozygous hts01103 mutant eyes including the photoreceptors (n=3, Figure 3.4D, Table 3.4), 

suggesting that hts01103 is not a null mutant either. 

To abolish any doubt about the nature of the mutation, a definite hts null mutation (htsnull) was 

generated by removing almost the complete hts coding sequence (Figure 3.4I). htsnull is recessive 

lethal at 25 °C, but a few escapers survive when the flies are raised at 18 °C. The medullae of both 

homozygous htsnull (n=4, Figure 3.4E, Table 3.4) and htsnull mosaic (29 of n=31, Figure 3.4F, 

Table 3.4) animals show severe defects that resemble the hts01103 hemizygous phenotype. The 

overall structure of the medulla is disrupted. Axons loose their regular array and clump together. 

Some R8 axons overshoot M3, and abnormally thick swellings at the axon termini and at the M1 

layer can be observed. 
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Figure 3.4: Loss of Hts severely affects axon guidance in the visual system 

(A-G) Photoreceptor axons in the medulla of flies with the indicated genotype and GFP as a marker in R8 axons. 

(A) Homozygous hts
G
 mutants do not exhibit defects. (B) In homozygous hts

W532X
 mutants, single axons occasionally 

enter the wrong column and inappropriately fasciculate with neighboring axons (arrow). (C) In hts
01103

 hemizygous 

flies, the medulla looks overall disorganized and the regular array of photoreceptor axons is lost. (D) Mosaic flies with 

eye-specific clones homozygous for hts
01103

 do not exhibit defects in the medulla. (E) Homozygous hts
null

 mutants show 

strong defects similar to hts
01103

 hemizygous flies. (F) Compared to hts
01103

 hemizygous flies, mosaic flies with eye-

specific clones homozygous for hts
null

 more often show only an intermediately defective phenotype as shown here with 

large areas of the medulla unaffected. However, the majority exhibits equally strong defects. (G) Wild type control. 

Layers M1, M3, and M6 are denoted by dashed lines. Anterior up, lateral left. Scale bars: 10 m. (H) Genomic site of 

the P{PZ}hts
01103

 insertion. Genomic sequence in capital letters, 8 bp direct repeat flanking P{PZ} in red. (I) Generation 

of the hts
null

 mutation. Almost the complete region of the hts locus containing exons (blue box) was removed by Flp 

mediated recombination of FRT sites in the P-elements PBac{WH}hts
f02762

 and P{RS5}hts
5-SZ-4016

. (J-K) Immunoblots of 

lysates from eye-brain complexes of control (lane 1), homozygous hts
G
 (lane 2), hemizygous hts

01103
 (lane 3) and 

homozygous hts
W532X

 (lane 4) 3
rd

 instar larvae probed with Hts antibody (J) htsF or (K) 1B1. 

 

The majority of medullae from both htsnull mosaic and hts01103 hemizygous flies have strong defects 

(Table 3.4), but compared to the latter ones, medullae from htsnull mosaic flies more often exhibit 

still severe yet somewhat milder defects (Figure 3.4F). This finding may be explained by the 

different genetic backgrounds, but it may also be attributed to the use of the Flp/FRT system. In the 

mosaic flies, the majority of the cells of the eye are homozygous for htsnull, but a small fraction 

stays heterozygous as the rest of the body does. Moreover, some wild type Hts protein from their 

heterozygous progenitors may persist in these homozygous mutant cells. Both could contribute to 

the attenuation of the defects observed in htsnull mosaic flies compared to the hts01103 hemizygous 
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flies. Assuming that a low amount of Hts protein that is below the detection limit of western blots is 

expressed from the hts01103 allele, the use of the Flp/FRT system in addition to the doubled gene 

dosage in homozygous hts01103 compared to hemizygous cells may also explain the absence of 

defects in hts01103 mosaic flies. 

 

3.5 -Spectrin mutants show defects in photoreceptor axon guidance 

The close functional conjunction of human Adducin and Spectrin and the kindred localization of Hts 

and Spectrin to fusomes, spectrosomes and the submembranous regions of follicle cells (Lin et al. 

1994; de Cuevas et al. 1996) suggested that Hts may cooperate with Spectrin also in flies. Indeed, 

mosaic flies with homozygous -SpecG113 (Hulsmeier et al. 2007) mutant eyes show defects in the 

medulla qualitatively similar to, but even more severe than those caused by the loss of hts. All of 

the medullae examined (n=6) appeared overall disorganized (Figure 3.5). Axons took aberrant 

pathways within the medulla and formed inappropriate bundles, destroying the regular array of 

axons. 

 

 

 

Figure 3.5: -Spectrin mutants show defects in photoreceptor axon guidance 

Medullae of flies with eye clones homozygous for the -Spectrin mutation -Spec
G113

 exhibit defects qualitatively 

similar but more severe compared to the defects caused by the loss of hts. Anterior up, lateral left. Scale bar: 10 m. 

 

The resemblance between the defects caused by -Spectrin and hts mutations affirms the 

assumption that Hts may collaborate with Spectrin to execute its function in photoreceptor axon 

guidance. 
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3.6 swallow mutants do not show defects in photoreceptor axon guidance 

mRNA trafficking and local protein synthesis in the axon, especially of cytoskeletal and 

cytoskeleton associated proteins, are essential for proper axon pathfinding (reviewed by Yoon et 

al. 2009)). For example, the steering of X. laevis retinal growth cones towards Netrin-1 requires the 

local synthesis of -Actin in the axon (Campbell and Holt 2001; Leung et al. 2006), whereas their 

collapse mediated by the repellent Slit-2 requires local translation of cofilin (Piper et al. 2006). 

In the Drosophila oocyte and early embryo, the targeting of specific mRNAs to distinct subcellular 

compartments is required to establish the anterior-posterior and the dorsal-ventral axes (reviewed 

by Bashirullah et al. 1998)). One of these localized mRNAs is encoded by hts, and its correct 

localization in the oocyte and the embryo is dependent on maternal swallow (Yue and Spradling 

1992; Ding et al. 1993; Whittaker et al. 1999). Although only the localization of the hts transcript 

encoding Ovhts has been shown to be affected by swallow mutations, it was tempting to test if 

swallow mutants would show defects in photoreceptor axon pathfinding. Two swallow alleles that 

both were shown to affect hts mRNA localization in the Oocyte (Ding et al. 1993; Whittaker et al. 

1999; Pokrywka et al. 2004), swa1 and swa3, were tested for defects in the adult medulla. 

However, neither homozygous swa1 (n=3, Figure 3.6A) nor homozygous swa3 (n=3, Figure 3.6B) 

mutants showed any observable defect in the medulla. 

 

 

 

Figure 3.6: swallow mutants do not show defects in photoreceptor axon guidance 

Neither (A) homozygous swa
1
 nor (B) homozygous swa

3
 mutants show observable defects due to impaired 

photoreceptor axon guidance in the adult medulla. Anterior up, lateral left. Scale bars: 10 m. 

 

3.7 Add1 and HtsPD rescue hts01103 hemizygous flies but ShAdd does not 

To test which of the Hts protein isoforms function in photoreceptor axon guidance in vivo, 

transgenic flies were generated that hold constructs encoding the different Hts isoforms under 



78  RESULTS 

 

direct control of the GMR promoter. Two independent transgenic insertions of each construct were 

tested for their ability to rescue hts01103 hemizygous flies. To exclude that their presence causes 

severe defects in the medulla on its own, flies holding the constructs in a wild type background 

were examined. In none of them any obvious defect in the medulla was observed (Figure 3.7.1, 

n=4 each). 

 

 

 

Figure 3.7.1: The hts rescue constructs do not cause defects in the medulla on their own 

None of each two independent insertions of the hts rescue constructs encoding (A-B) Add1, (C-D) ShAdd or (E-F) 

HtsPD causes detectable defects in the adult medulla. Anterior up, lateral left. Scale bars: 10 m. 

 

To test their ability to rescue hts01103 hemizygous flies, the extent of defects in the medulla of flies 

holding the different rescue constructs in the mutant background was estimated blindly. Whereas 

almost always more than 50 % of the medulla was defective when no rescue construct (8 of n=9, 

Figure 3.7.2A, Table 3.7) or GMR-ShAdd (13 of n=14, Figure 3.7.2D and 8 of n=10, Figure 3.7.2E, 

Table 3.7) was present, both GMR-Add1 and GMR-HtsPD eliminated the defects to a large extent. 

At least approximately half of the medullae from flies holding GMR-Add1 (8 of n=17, Figure 3.7.2B 

and 8 of n=10, Figure 3.7.2C, Table 3.7) or GMR-HtsPD (16 of n=16, Figure 3.7.2F and 5 of n=10, 

Figure 3.7.2G, Table 3.7) were defective only up to 50 %. 
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Figure 3.7.2: Ability of different rescue constructs to rescue hts
01103

 hemizygous flies 

The indicated rescue constructs were tested for their ability to compensate for the (A) defects in the medulla of hts
01103

 

hemizygous flies. Pie charts show the fraction of examined medullae that are defective to 0 % - 10 % (green), 

10 % - 30 % (yellow), 30 % - 50 % (orange) and 50 % - 100 % (red), respectively (see also Table 3.7). (B-C) Two 

independent insertions of GMR-Add1 rescued the mutants at least partially. (D-E) None of the two insertions of 

GMR-ShAdd that were tested clearly reduced the defects in the medulla. (F-G) At least half of the medullae of hts
01103

 

hemizygous flies expressing HtsPD in their photoreceptors are defective only up to 50 %. (H) GMR-Add1 and 

GMR-HtsPD together do not reduce the defects better than (I) two copies of GMR-HtsPD do. Anterior up, lateral left. 

Scale bars: 10 m. 

 

Since none of the rescue constructs eliminated the defects completely, it seemed possible that 

both Hts protein isoforms Add1 and HtsPD instead of either one may be required for proper axon 

guidance. This was tested by coexpressing both Add1 and HtsPD in hts01103 hemizygous 

photoreceptors. To exclude that a better rescue potentially observed in the flies expressing both 

protein isoforms could be ascribed rather to a higher amount of Hts protein in general than to the 

presence of the two different isoforms, flies holding two copies of GMR-HtsPD were used as 

control. However, the extent of defects in the medulla of flies with the combination of GMR-Add1 

and GMR-HtsPD was not less than in flies holding two copies of GMR-HtsPD (Figures 3.7.2H-I, 

Table 3.7). 
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rescue construct 
0 % - 10 % 

defective 

10 % - 30 % 

defective 

30 % - 50 % 

defective 

50 % - 100 % 

defective 

none (n=9) 0 0 1 / 11 % 8 / 89 % 

GMR-Add13A (n=17) 0 2 / 12 % 6 / 35 % 9 / 53 % 

GMR-Add1XA (n=10) 4 / 40 % 2 / 20 % 2 / 20 % 2 / 20 % 

GMR-ShAdd3B (n=14) 0 0 1 / 7 % 13 / 93 % 

GMR-ShAddXA (n=10) 0 1 / 10 % 1 / 10 % 8 / 80 % 

GMR-HtsPD3B (n=16) 3 / 19 % 10 / 63 % 3 / 19 % 0 

GMR-HtsPDXA (n=10) 2 / 20 % 0 3 / 30 % 5 / 50 % 

GMR-Add13A 

GMR-HtsPD3B 
 (n=12) 1 / 8 % 4 / 33 % 6 / 50 % 1 / 8 % 

GMR-HtsPD3B 

GMR-HtsPD3B 
 (n=15) 8 / 53 % 3 / 20 % 3 / 20 % 1 / 7 % 

 

Table 3.7: Ability of different rescue constructs to rescue hts
01103

 hemizygous flies 

Flies that were hemizygous for hts
01103

 and held the rescue constructs listed in the left column were assayed blindly for 

defects in the medulla. Each two independent transgenic insertions were used. Also flies that held both GMR-Add1 and 

GMR-HtsPD were examined as were flies with two copies of GMR-HtsPD. For each genotype, the 

numbers / percentages of medullae that were defective up to 10 %, to 10 % - 30 %, to 30 % - 50 % or to more than 50 % 

are quoted. 

 

3.8 Mutating putative phosphorylation sites in Hts does not affect its interaction with Gogo 

Adducin is functionally regulated by Calmodulin binding to its MARCKS-related domain and by 

phosphorylation (Ling et al. 1986; Gardner and Bennett 1987; Matsuoka et al. 1996; Matsuoka et 

al. 1998). -Adducin is phosphorylated by PKA, PKC, and Rho-kinase at Serine or Threonine 

residues at positions 408, 436, 445, 480, and 481, which lie within or a little downstream of the 

neck domain, and at two Serine residues in the MARCKS related domain (Matsuoka et al. 1996; 

Fukata et al. 1999). 

The physical interaction between Gogo and Hts suggests that they may form a functional complex 

that guides photoreceptor axons. The function of this complex could be controlled by regulating the 

binding of Hts and Gogo, potentially via phosphorylation of Hts. Candidate phosphorylation sites 

that may regulate the binding of Hts to Gogo to form a functional complex should be common 

among Add1 and HtsPD, because both protein isoforms are able to function in photoreceptor axon 

guidance. Contrarily, they should not be included in ShAdd, as it does not function in photoreceptor 

axon guidance. The only phosphorylation sites of -Adducin that lie within a region that fulfills 

these criteria are the Threonine residue at position 480 and the Serine residue at position 481. In 
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its homologous region, Hts possesses a Serine residue at position 478, a Threonine residue at 

position 480, a Serine residue at position 482, and a Threonine residue at position 483. 

To test the relevance of these amino acid residues for the interaction between Hts and Gogo, three 

artificial constructs were generated that comprise the amino acid residues 1 to 658 of Hts that 

constitute the part of Hts that is common to Add1 and HtsPD (Figure 1.6). In one construct 

(HtsAAAA-His), the above mentioned amino acid residues were changed to Alanine residues, 

preventing phosphorylation. In the second one (HtsDEDE-His), they were changed to Aspartic acid 

and Glutamic acid residues, respectively, which can partially mimic phosphorylated Serine or 

Threonine residues (Thomas et al. 1998). No changes to the wild type sequence were made in the 

third one (Hts658-His). All three Hts fragments feature a C-terminal 6xHis-tag. 

As revealed by coimmunoprecipitation with Gogo-Myc from the lysates of Drosophila Schneider 

cells that coexpressed Hts658-His, HtsAAAA-His or HtsDEDE-His, all three Hts fragments bind equally 

well to Gogo (Figure 3.8). The putative phosphorylation sites in Hts are not required for the binding 

to Gogo. 

 

 

 

Figure 3.8: Mutating putative phosphorylation sites in Hts does not affect Gogo binding 

Drosophila Schneider cells expressed the indicated Hts construct alone as control (lanes 4 to 6) or together with Gogo-

Myc (lanes 1 to 3). Hts
658

-His, Hts
AAAA

-His, and Hts
DEDE

-His all coimmunoprecipitated with Gogo-Myc (lanes 7 to 9) 

but were absent from the control (lanes 10 to 12). 

 

3.9 Add1 and HtsPD rescue htsnull mosaic flies 

The different rescue constructs were also tested for their ability to rescue htsnull mosaic flies that 

expressed GFP as a marker to label R8 axons. Here, flies that had inherited the rescue construct 

could not be distinguished by eye from their siblings that had not. Instead, htsF antibody staining 

was used to identify flies that possessed the rescue construct. Again, two independent insertions of 

each construct were used. 
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Figure 3.9: Add1 and HtsPD rescue hts
null

 mosaic flies 

Mosaic flies that were overall heterozygous but had eyes consisting almost completely of cells homozygous for hts
null

 

expressed the indicated Hts isoform under direct control of the GMR promoter. Each two independent insertions of the 

rescue constructs were used. Both (A-B) Add1 and (C-D) HtsPD almost completely suppressed the defects seen in the 

medulla of (E) control flies that did not exhibit detectable Hts protein in the photoreceptors in the medulla. Pie charts 

show the fraction of examined medullae that are defective to 0 % - 10 % (green), 10 % - 30 % (yellow), 30 % - 50 % 

(orange) and 50 % - 100 % (red), respectively (see also Table 3.9). Anterior up, lateral left. Scale bars: 10 m. 

 

As expected, Add1 could be detected in some (6 of n=14, Figure 3.9A and 12 of n=21, 

Figure 3.9B, respectively) medullae of flies tested for GMR-Add13A or GMR-Add13B, but not in 

their siblings. Similarly, some (8 of n=17, Figure 3.9C and 11 of n=14, Figure 3.9D, respectively) 

medullae were positive for HtsPD and the remaining ones were not when tested for GMR-HtsPD3A 

or GMR-HtsPD3B. However, ShAdd was never detected in the medulla when flies were tested for 

either GMR-ShAdd3A (n=13) or GMR-ShAdd3B (n=14). 

Both Add1 and HtsPD were able to rescue the defects caused by htsnull in the medulla. When the 

extent of defects in the medulla was estimated blindly, all medullae with photoreceptor axons 

positive for either Add1 (n=6, Figure 3.9A and n=8, Figure 3.9B) or HtsPD (n=8, Figure 3.9C and 

n=11, Figure 3.9D) were rated to be defective up to 30 % at the most (Table 3.9). Contrariwise, the 

majority (18 of n=29) of medullae with photoreceptor axons negative for Hts were rated to be 

defective to at least 30 % (Figure 3.9E, Table 3.9). 

rescue construct 
0 % - 10 % 

defective 

10 % - 30 % 

defective 

30 % - 50 % 

defective 

50 % - 100 % 

defective 

none (n=29) 4 / 14 % 7 / 24 % 12 / 41 % 6 / 21 % 

GMR-Add13A (n=6) 6 / 100 % 0 0 0 

GMR-Add13B (n=12) 12 / 100 % 0 0 0 

GMR-HtsPD3A (n=8) 8 / 100 % 0 0 0 

GMR-HtsPD3B (n=11) 9 / 82 % 2 / 18 % 0 0 

 

Table 3.9: Ability of different rescue constructs to rescue hts
null

 mosaic flies. 

Heterozygous flies with eyes comprising large clones of hts
null

 homozygous cells that held the rescue constructs listed in 

the left column were assayed blindly for defects in the medulla. Each two independent transgenic insertions were used. 

For each genotype, the numbers / percentages of medullae that were defective up to 10 %, to 10 % - 30 %, to 

30 % - 50 % or to more than 50 % are quoted. 

 

Interestingly, the isoform-specific rescue experiment shows that the C-terminal MARCKS-related 

domain included in Add1 but not HtsPD is not required to rescue the defects in the medulla caused 

by hts. This is consistent with the lack of defects in homozygous hts G mutant flies (Figure 3.4A, 

Table 3.4), which have only truncated Hts protein lacking the MARCKS-related domain. Both were 
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surprising, since the MARCKS-related domain of Adducin has been shown to be required for all of 

its known activities in vitro (Li et al. 1998; Matsuoka et al. 2000). 

 

3.10 ShAdd does not localize to photoreceptor axons 

ShAdd was never detected in photoreceptor axons in the medulla when looking for flies that had 

inherited the GMR-ShAdd rescue construct, suggesting that ShAdd may not be able to localize to 

photoreceptor axons. To test this, transgenic flies that held the GMR-ShAdd rescue construct in an 

otherwise wild type background were probed with htsF antibody. Indeed, htsF did not label the 

photoreceptor axons in the medulla of any of the two transgenic lines tested (Figures 3.10C-D) or 

in wild type flies without a transgenic construct (Figure 3.10A) but did clearly label them in control 

flies that expressed Add1 (Figure 3.10B). 

 

 

 

Figure 3.10: ShAdd does not localize to photoreceptor axons 

(A) The antibody htsF does not label photoreceptor axons in the medulla of wild type flies (n=5). (B) Add1 is clearly 

detected in photoreceptor axons of GMR-Add13A transgenic flies that served as a positive control (n=9). In contrast, the 

photoreceptor axons are not labeled in the medullae of (C) GMR-ShAdd3A (n=6) or (D) GMR-ShAdd3B (n=5) 

transgenic flies. Anterior up, lateral left. Scale bars: 10 m. 
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The same result was obtained when ShAdd and Add1, respectively, were encoded by UAS 

constructs. The examined flies possessed the GMR-Gal4 driver and a construct encoding ShAdd 

or Add1 under control of the UAS promoter. Again, each two independent insertions were used. 

htsF clearly labels the photoreceptor axons in the medulla of flies expressing Add1 (n=10, 

Figure 3.11F and 8 of n=13, Figure 3.11G), but does not label them in flies with a UAS construct 

encoding ShAdd (n=5, Figure 3.11C and n=3, Figure 3.11D) or in flies with only the Gal4 driver but 

without a UAS target (n=6, Figure 3.11E). This indicates that at least some part of the tail domain 

of Hts that is covered by Add1 and HtsPD but not ShAdd is required for the presence of Hts in 

photoreceptor axons or, alternatively, that the unique 23 amino acids at the C-terminus of ShAdd 

are responsible for its absence from the axons. 

It was not ascertained if this absence of ShAdd was due to reduced translation, degradation, 

impaired transport to or efficient removal from the axon. Either way, the absence of ShAdd protein 

from photoreceptor axons can account for the failure of GMR-ShAdd to rescue the defects caused 

by hts. 

 

3.11 The tail domain of Hts is required for its localization to the axon 

To test whether the absence of ShAdd from R7 / R8 axons was due to the lack of the tail domain or 

to the presence of its unique 23 amino acids, Hts472, the part of Hts which is common to all Hts 

protein isoforms, was tested for its localization to photoreceptor axons in the medulla. 

The examined flies possessed the GMR-Gal4 driver and a construct encoding Hts472 under control 

of the UAS promoter. As usual, two independent insertions were examined. In none of them did 

htsF detect Hts472 in the photoreceptor axons in the medulla (n=4, Figure 3.11A and n= 4, Figure 

3.11B), revealing that the tail domain of Hts is indeed required for the presence of Hts in R7 / R8 

axons. 
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Figure 3.11: Overexpression of different Hts constructs 

(A-B) Hts can not be detected by immunostaining in photoreceptor axons of flies that have the GMR-Gal4 driver and 

either of two independent insertions of a construct encoding Hts
472

 under control of the UAS promoter. Neither of the 

two insertions causes any abnormality in the medulla. (C-D) The same holds true for a construct encoding ShAdd under 

control of the UAS promoter. Hts can not be detected in photoreceptor axons and neither of two independent insertions 

causes abnormalities in the medulla. Unlike in the (E) control, Add1 can be detected when expressed from either of the 

two transgenic insertions (F) UAS-Add12A or (G) UAS-Add13A. Expression of Add1 from UAS-Add13A causes R8
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axons to form abnormally thick swellings at the M1 layer of the medulla. (H) Excessive Gogo causes R8 axons to form 

abnormally thick swellings at both the M1 and the M3 layer. (I-J) These abnormal swellings are suppressed when Add1 

is co-overexpressed from either of the two insertions UAS-Add12A or UAS-Add13A. Moreover, the amount of Add1 

protein seems to be dramatically decreased when compared to flies with an endogenous Gogo level. Neither of each two 

independent insertions encoding (K-L) Hts
472

 or (M-N) ShAdd under control of the UAS promoter has a marked effect 

on the defects caused by excessive Gogo. Anterior up, lateral left. Scale bars: 10 m. 
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genotype no abnormal swellings swellings at M1 swellings at M1 and M3 

GMR-Gal4 (n=6) 6 / 100 % 0 0 

GMR-Gal4 UAS-hts
472

3A (n=4) 4 / 100 % 0 0 

GMR-Gal4 UAS-hts
472

3B (n=4) 4 / 100 % 0 0 

GMR-Gal4 UAS-Add12A (n=10) 10 / 100 % 0 0 

GMR-Gal4 UAS-Add13A (n=13) 5 / 38 % 8 / 62 % 0 

GMR-Gal4 UAS-ShAdd2A (n=5) 5 / 100 % 0 0 

GMR-Gal4 UAS-ShAdd2B (n=3) 3 / 100 % 0 0 

GMR-Gal4 UAS-gogoT1 (n=5) 1 / 20 % 0 4 / 80 % 

GMR-Gal4 UAS-gogoT1 

UAS-hts
472

3A 
(n=4) 1 / 25 % 0 3 / 75 % 

GMR-Gal4 UAS-gogoT1 

UAS-hts
472

3B 
(n=4) 0 0 4 / 100 % 

GMR-Gal4 UAS-gogoT1 

UAS-Add12A 
(n=17) 7 / 41 % 0 10 / 59 % 

GMR-Gal4 UAS-gogoT1 

UAS-Add13A 
(n=9) 6 / 67 % 0 3 / 33 % 

GMR-Gal4 UAS-gogoT1 

UAS-ShAdd2A 
(n=6) 0 1 / 17 % 5 / 83 % 

GMR-Gal4 UAS-gogoT1 

UAS-ShAdd2B 
(n=4) 1 / 25 % 0 3 / 75 % 

 

Table 3.11: Effects of different transgenic hts constructs 

Flies with the GMR-Gal4 driver and the transgenic insertions listed in the left column were assayed blindly for 

abnormal swellings of R8 axons. For each genotype, the numbers / percentages of medullae assessed to have no 

remarkable swellings, abnormal swellings at the M1 or at the M1 and the M3 layer are quoted. 

 

3.12 Overexpression of Add1 and Gogo cause similar but different defects in the medulla 

In flies that expressed GFP as a marker in R8 axons and that possessed the GMR-Gal4 driver, the 

presence of the UAS-Add13A insertion caused R8 axons to form abnormally thick swellings at the 

M1 layer (8 of n=13, Figure 3.11G, Table 3.11). Interestingly, a similar gain-of-function phenotype 

was reported for Gogo. When it is expressed from the transgenic insertion UAS-gogoT1, R8 axons 

exhibit abnormal swellings at the M1 and the M3 layer (4 of n=5, Figure 3.11H, Table 3.11 and 

Tomasi et al. 2008). The same defects were also observed when gogo was expressed from other 

transgenic insertions. UAS-gogoT3 is another insertion of the same construct as in UAS-gogoT1, 
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Figure 3.12.1: Defects of photoreceptor axons in the medulla caused by excessive Gogo 

Medullae of flies with the indicated genotype were assayed blindly for abnormal swellings of R8 axons at M1 and M3. 

Almost all medullae from flies overexpressing Gogo from the (A) UAS-gogoT1 or the (B) UAS-gogoT3 insertion were 

assessed to have abnormal swellings at M1 and M3. When Gogo was expressed from either the (C) UAS-gogo-Myc2B 

or the (D) UAS-gogo-Myc3B insertion, only a small fraction of the medullae examined were assessed to show these 

abnormal swellings. (E) Medullae from control flies with the GMR-Gal4 driver but no UAS target always look normal, 

demonstrating that the defects are indeed due to the excessive Gogo protein. See also Table 3.12. Anterior up, lateral 

left. Scale bars: 10 m. 

 

which encodes untagged full-length Gogo. UAS-gogo-Myc2B and UAS-gogo-Myc3B are two 

independent insertions of a construct that encodes C-terminally 4xMyc-tagged full-length Gogo. 
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Abnormal swellings at M1 and M3 were observed at least in a small fraction of medullae from flies 

that had either one of these transgenic gogo insertions and the GMR-Gal4 driver, but never in the 

control flies that had the GMR-Gal4 driver without a UAS target (Figure 3.12.1, Table 3.12). 

Therefore, hts and gogo cause not only similar loss-of-function, but also similar gain-of-function 

phenotypes, indicating again that they act together in a common pathway to guide photoreceptor 

axons. 

 

genotype no abnormal swellings swellings at M1 swellings at M1 and M3 

GMR-Gal4 UAS-gogoT1 (n=10) 0 0 10 / 100 % 

GMR-Gal4 UAS-gogoT3 (n=10) 1 / 10 % 0 9 / 90 % 

GMR-Gal4 UAS-gogo.Myc2B (n=10) 8 / 80 % 0 2 / 20 % 

GMR-Gal4 UAS-gogo-Myc3B (n=10) 9 / 90 % 0 1 / 10 % 

GMR-Gal4 (n=18) 18 / 100 % 0 0 

 

Table 3.12: Penetrance of several insertions of constructs encoding Gogo 

Flies with the GMR-Gal4 driver and the transgenic insertions listed in the left column were assayed blindly for 

abnormal swellings of R8 axons. For each genotype, the numbers / percentages of medullae assessed to have no 

remarkable swellings, abnormal swellings at the M1 or at the M1 and the M3 layer are quoted. 

 

However, a second transgenic insertion of the UAS-Add1 construct, UAS-Add12A, did not cause 

any noticeable abnormalities (n=10, Figure 3.11F, Table 3.11). This is probably due to the lower 

expression level of Add1 from this transgenic insertion, as judged from the intensity of Hts 

immunostainings (Figure 3.12.2). 
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Figure 3.12.2: UAS-Add13A produces more axonal Hts protein than UAS-Add12A 

Medullae of flies expressing Add1 from the two transgenic insertions (A) UAS-Add12A (n=10) and (B) UAS-Add13A 

(n=9) were immunostained with htsF antibody. (C) As judged from the fluorescence intensities of the immunostainings, 

the photoreceptor axons in the medulla contain more Hts protein when they express it from the UAS-Add13A than from 

the UAS-Add12A insertion. ns: not significant. **: P<0.01, Mann Whitney test. Error bars represent the SEM. All 

samples were imaged at the same settings. Anterior up, lateral left. Scale bars: 10 m. 

 

None of the insertions of the UAS-hts472 (n=4, Figure 3.11A and n=4, Figure 3.11B) or the 

UAS-ShAdd (n=10, Figure 3.11C and n=13, Figure 3.11D) construct tested caused any 

abnormalities when compared to the control (n=6, Figure 3.11E, Table 3.11). 

 

3.13 hts antagonizes gogo overexpression 

The physical interaction between Hts and Gogo, the similar defects caused by the loss of either hts 

or gogo, and the similarity of the defects caused by an excess of either Gogo or Hts suggested a 

collaborative function of Hts and Gogo in photoreceptor axon guidance. However, the 

co-overexpression of both gogo and hts in photoreceptor axons using the Gal4/UAS system gave 

an unexpected result. In many cases, the abnormal swellings caused by excessive Gogo 

(Figure 3.11H) were dramatically reduced both at the M1 and the M3 layer, and the R8 axons 

appeared almost like wild type R8 axons when Add1 was co-overexpressed (Figures 3.11I-J, 

Table 3.11). In contrast, no reduction of the defects caused by excessive Gogo could be attributed 

to the constructs UAS-hts472 (Figures 3.11K-L) and UAS-ShAdd (Figures 3.11M-N, Table 3.11). 

As both Add1 and Gogo were expressed by means of the Gal4/UAS system, the same amount of 

Gal4 transcription factor but double the dose of UAS promoters was present in cells that 

possessed both a UAS-Add1 and a UAS-gogo construct compared to cells that had only one type 

of UAS target. This could potentially result in lower protein levels of each Add1 and Gogo when 

both are co-expressed, which then could explain the mutual suppression of their overexpression 

phenotypes. To confirm that the mutual suppression of their overexpression phenotypes is not an 

unspecific implication of the change in the Gal4 / UAS ratio resulting in lower protein levels, the 

finding was reproduced with flies that expressed only Gogo by means of the Gal4/UAS system but 

Add1 under direct control of the GMR promoter. Again, the abnormal swellings caused by an 

excess of Gogo (Figure 3.13A) were strongly reduced when Add1 was co-expressed (Figures 

3.13B-C, Table 3.13). 

Conversly, the effect of gogo overexpression was enhanced by removing one copy of hts. Both 

number and size of swellings were increased in gogo overexpressing, htsnull heterozygous flies, 

especially at the M1 layer (Figures 3.13D,F), although heterozygosity for htsnull did not cause any 

obvious abnormalities of R8 axons in the medulla on its own (Figure 3.13E, Table 3.13). 
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Figure 3.13: hts antagonizes gogo overexpression 

The abnormally thick swellings of R8 axons at M1 and M3 caused by (A) excessive Gogo are suppressed by the 

co-expression of Add1 under direct control of the GMR promoter from either of the two insertions (B) GMR-Add13A 

and (C) GMR-Add1IIIB. (D) Removing one copy of hts enhances the defects caused by excessive Gogo, leading to even 

more prominent swellings. (E) Removing one copy of hts does not cause defects on its own. (F) Removal of one copy 
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of hts increases the percentage of R8 axons with abnormal swellings caused by excessive Gogo significantly at M1 but 

only moderately at M3. ns: not significant. *: P<0.05, Mann Whitney test. Anterior up, lateral left. Scale bars: 10 m. 

genotype no abnormal swellings swellings at M1 swellings at M1 and M3 

GMR-Gal4 UAS-gogoT1 (n=11) 2 / 18 % 0 9 / 82 % 

GMR-Gal4 UAS-gogoT1 

GMR-Add13A 
(n=10) 8 / 80 % 0 2 / 20 % 

GMR-Gal4 UAS-gogoT1 

GMR-Add13B 
(n=12) 10 / 83 % 0 2 / 17 % 

GMR-Gal4 UAS-gogoT1 

hts
null

 heterozygous 
(n=5) 0 0 5 / 100 % 

hts
null

 heterozygous (n=8) 8 / 100 % 0 0 

 

Table 3.13: hts antagonizes the effects of excessive Gogo in photoreceptor axons 

Flies with the genotypes listed in the left column were assayed blindly for abnormal swellings of R8 axons. For each 

genotype, the numbers / percentages of medullae assessed to have no remarkable swellings, abnormal swellings at the 

M1 or at the M1 and the M3 layer are quoted. 

 

Although the similarities of both their loss-of-function and gain-of-function phenotypes rather 

suggested a synergistic interaction between hts and gogo, these data show that the gogo 

overexpression phenotype is antagonized by hts. 

 

3.14 Gogo reduces the level of Add1 protein in photoreceptor axons 

While exploring the mutual interference between hts and gogo, it became apparent that the 

intensity of Hts antibody staining in R7 and R8 axons in the medulla was consistently lower when 

gogo was co-overexpressed compared to axons with an endogenous Gogo level. The endogenous 

Hts level in photoreceptor axons in the adult medulla is too low to be detected by immunostaining 

(Figures 3.10A and 3.11E), but Add1 is readily detected when expressed using the Gal4/UAS 

system (Figures 3.11F-G). However, in photoreceptor axons that co-express Gogo, the protein 

level of Add1 seems to be strongly reduced as it is hardly detectable by immunostaining 

(Figures 3.11I-J). 

To exclude that the decrease in Add1 protein level is merely an unspecific effect of the change in 

the Gal4 / UAS ratio, Add1 was expressed under direct control of the GMR promoter and again 

was clearly labeled by the htsF antibody in axons with an endogenous Gogo level (Figure 3.14.1A). 

When Gogo was co-overexpressed using the Gal4/UAS system, the intensity of Add1 

immunofluorescence was significantly reduced (Figures 3.14.1B-C). Therefore, one of the 

functions of Gogo during axon guidance may be the reduction of the Hts protein level in 
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Figure 3.14.1: The axonal Hts protein level is reduced by excessive Gogo 

The intensity of Hts immunofluorescence of (A) axons overexpressing Add1 was strongly reduced by (B) excessive 

Gogo. (C) This difference was statistically significant. Also if (D) Add1 was expressed from another transgenic 

insertion, (E) excessive Gogo somewhat reduced the relative fluorescence intensity of the axons. (F) However, the 

difference was not found to be statistically significant in this case. ns: not significant. **: P<0.01, Mann Whitney test. 

Error bars represent the SEM. All samples were imaged at the same settings. Anterior up, lateral left. Scale bars: 10 m. 
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 Gogo immunofluorescence Hts immunofluorescence 

genotype low mid high low mid high 

GMR-Gal4 UAS-gogoT1 

GMR-Add13B 
(n=57) 0 35 / 61 % 22 / 39 % 28 / 49 % 29 / 51 % 0 

GMR-Gal4 UAS-gogoT3 

GMR-Add13B 
(n=28) 0 22 / 79 % 6 / 21 % 4 / 14 % 22 / 79 % 2 / 7 % 

GMR-Gal4 UAS-gogo-Myc2B 

GMR-Add13B 
(n=28) 0 7 / 25 % 21 / 75 % 2 / 7 % 19 / 68 % 7 / 25 % 

GMR-Gal4 UAS-gogo-Myc3B 

GMR-Add13B 
(n=28) 0 20 / 71 % 8 / 29 % 4 / 14 % 21 / 75 % 3 / 11% 

GMR-Gal4 

GMR-Add13B 
(n=46) 46 / 100 % 0 0 0 21 / 46 % 25 / 54 % 

 

Table 3.14: Decrease in Hts caused by different insertions of Gogo constructs 

Flies with the genotypes listed in the left column were immunostained with anti-Gogo and anti-Hts antibody. The 

intensities of the Gogo and the Hts immunostainings were estimated blindly and independently. For each genotype, the 

numbers / percentages of medullae assessed to show low, mid or high fluorescence intensity of Gogo and Hts are 

quoted. Data were pooled from three experiments. 

 

photoreceptor axons. This could also explain the absence of Hts labeling from the tips of R7 / R8 

axons in the medulla of wild type larvae because they contain a high amount of Gogo protein 

(Figure 3.3 and Tomasi et al. 2008). 

The experiment included also a second transgenic insertion of GMR-Add1 (Figures 3.14.1D-F). 

Here, the average fluorescence intensity of the Hts immunostainings was somewhat decreased by 

excessive Gogo, but the difference was not found to be statistically significant. 

Next, the effect of other transgenic insertions encoding full-length Gogo on the Hts protein level in 

photoreceptor axons was examined. Due to the lack of a counterstaining of the photoreceptor 

axons, the fluorescence level of each sample was subjectively and blindly estimated to be low, mid 

or high independently for both the Hts and the Gogo immunostaining. Whereas the Hts protein 

level in the axons was assessed mid or high in all control samples without a Gogo construct 

(Figure 3.14.2E), it was on average reduced by each of the four gogo constructs tested 

(Figure 3.14.2A-D, Table 3.14). 

As for the induction of the overexpression phenotype, UAS-gogoT1 was found to be the most 

potent to reduce the Hts protein level. UAS-gogoT3, UAS-gogo-Myc2B and UAS-gogo-Myc3B 

reduced Hts to a somewhat lower extent. Therefore, the effectiveness of the different Gogo 

constructs in reducing Hts did not completely correlate with the severity of their overexpression 

phenotypes, which was much stronger for UAS-gogoT1 and UAS-gogoT3 than for 
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UAS-gogo-Myc2B and UAS-gogo-Myc3B (Figure 3.12.1, Table 3.12). Also, it did not correlate with 

the estimated level of Gogo protein that they produce, which was higher for UAS-gogo-Myc2B than 

for the other constructs (Figure 3.14.2 and Table 3.14). 

 

 

 

Figure 3.14.2: Decrease in Hts caused by different insertions of Gogo constructs 

In flies that had the GMR-Gal4 driver and expressed Add1 under direct control of the GMR promoter from the 

transgenic insertion GMR-Add13B, the intensity of Hts immunofluorescence of axons overexpressing Add1 was 

reduced by excessive Gogo expressed from (A) UAS-gogoT1, (B) UAS-gogoT3, (C) UAS-gogo-Myc2B and 

(D) UAS-gogo-Myc3B when compared to the (E) control without a UAS-gogo construct. All samples shown were 

imaged at the same settings. Anterior up, lateral left. Scale bars: 10 m. 
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Since an excessive amount of Gogo lead to a reduction of the Hts protein level in photoreceptor 

axons, it appeared possible that a reduction of Gogo would have the opposite effect and lead to an 

increased amount of Hts. To test this hypothesis, mosaic flies that had clones consisting of either 

photoreceptors homozygous mutant for gogo or heterozygous photoreceptors expressing KO as a 

marker were examined. Like in the neighboring heterozygous photoreceptors, the Hts protein level 

in homozygous gogo mutant clones that were identified by the absence of KO fluorescence was 

still too low to be detected by immunostaining (Figure 3.14.3A). Therefore, it could not be decided 

whether or not the loss of Gogo affected the amount of Hts protein in photoreceptor axons. 

 

 

 

Figure 3.14.3: Loss of Gogo does not detectably increase the axonal Hts level 

Mosaic flies with clones consisting of homozygous gogo mutant photoreceptors identified by the absence of KO 

fluorescence (brackets) were immunostained with the anti-Hts antibody 1B1. (A) As in the neighboring heterozygous 

photoreceptors, Hts can not be detected by immunostaining in homozygous gogo mutant photoreceptors. (B) When 

expressed under direct control of the GMR promoter, Add1 can be detected by immunostaining. The intensity of the Hts 

immunostaining is not noticeably increased in homozygous gogo mutant clones (brackets). Anterior up, lateral left. 

Scale bars: 10 m. 

 

Next, Add1 was expressed under direct control of the GMR promoter to increase its amount to a 

level at which it could be detected. However, the intensity of Add1 immunofluorescence was not 

noticeably elevated in gogo mutant clones compared to the surrounding heterozygous 

photoreceptors (Figure 3.14.3B). This does not necessarily contradict the assumption that Gogo 

reduces the level of Hts protein in photoreceptor axons since the loss of Gogo could lead to an 

increase in the level of Add1 that may be too marginal to be noticed by antibody staining. 

 

3.15 Hts forms oligomers 

To clarify whether Hts was able to form oligomers as mammalian Adducin does (Hughes and 

Bennett 1995), C-terminally 4xMyc- and 6xHis-tagged versions of Add1 (Add1-Myc and Add1-His) 
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and HtsPD (HtsPD-Myc and HtsPD-His) were coexpressed in Drosophila Schneider cells. 

Add1-His coimmunoprecipitated with Add1-Myc, and so did HtsPD-His with HtsPD-Myc 

(Figure 3.15), demonstrating that both Add1 and HtsPD are able to form homooligomers.  

Moreover, HtsPD-His coimmunoprecipitated with Add1-Myc, indicating that also oligomers 

consisting of different Hts isoforms are possible. 

 

 

 

Figure 3.15: Hts forms oligomers 

Drosophila Schneider cells expressed the indicated Hts constructs (lanes 1 to 5). The expression levels of Add1-His and 

HtsPD-His were lower when Add1-Myc or HtsPD-Myc was coexpressed (lanes 1 to 3) than in the negative controls 

lacking the Myc constructs (lanes 4 and 5). Add1-His coimmunoprecipitated with Add1-Myc (lane 6) but was absent 

from the negative control (lane 9). HtsPD-His coimmunoprecipitated with both Add1-Myc (lane 7) and HtsPD-Myc 

(lane 8) but was absent from the negative control (lane 10). 
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4. DISCUSSION 

 

4.1 Hts and Gogo: collaborators or antagonists? 

The results presented in this work show that the axon guidance receptor Gogo physically interacts 

with the cytoskeletal protein Hts (Figures 3.2.2 and 3.2.3). The loss-of-function phenotypes of hts 

and gogo mutants are qualitatively very similar, albeit gogo null mutants show a phenotype slightly 

more severe than the htsnull mutant (Figures 3.1.2 and 3.4 and Tomasi et al. 2008). This suggests 

that Gogo and Hts collaborate in a functional complex to guide R7 and R8 axons to their correct 

targets in the medulla. 

However, there is also evidence for an antagonistic interaction between Hts and Gogo. Strong 

overexpression of Gogo causes abnormally thick swellings of R8 axons at layers M1 and M3 

(Figures 3.11, 3.12.1, and 3.13). Strong overexpression of Add1 causes a different, but similar 

phenotype leading to abnormal swellings that are restricted to layer M1 (Figure 3.11). If both Gogo 

and Add1 are overexpressed, no abnormally thick swellings occur and R8 axons do not look 

different from wild type R8 axons. Moreover, in flies lacking one copy of the hts locus, the effect of 

excessive Gogo is enhanced (Figures 3.11 and 3.13). This indicates that Hts and Gogo antagonize 

each other and need to be in balance for the correct formation of axons.  

Direct evidence for an antagonistic interaction between Gogo and Hts comes from the observation 

that an increase in axonal Gogo protein level reduces the amount of Add1 protein in the axon 

(Figure 3.14.1). The fact that the Add1 protein level is regulated by Gogo also strongly suggests 

that gogo acts upstream of hts. 

How can these superficially contradictory results be explained and reconciled? In the following, two 

mutually not exclusive hypotheses about how the Gogo-Hts complex could function to guide 

photoreceptor axons will be discussed. 

 

4.2 Hypothesis I: Gogo affects the axonal cytoskeleton via Hts 

Axons find their way through the developing embryo to their correct target by means of the growth 

cone that is equipped with guidance receptors reading guidance cues provided by the growth 

cone’s environment. These guidance cues can be attractive or repulsive, diffusible or tethered to 

the extracellular matrix or to cell membranes (Chilton 2006). The growth cone translates this 

guidance information into rearrangements of its cytoskeleton, which leads to a directed growth of 

the axon (Kalil and Dent 2005; Wen and Zheng 2006; Zhou and Snider 2006). 

The two main components of the growth cone cytoskeleton are F-Actin appearing as filopodia and 

lamellipodia in the peripheral domain of the growth cone and microtubules oriented with their plus-

ends pointing distally (reviewed by Dent and Gertler 2003; Rodriguez et al. 2003; Gordon-Weeks 



102  DISCUSSION 

 

2004; Zhou and Cohan 2004; Kalil and Dent 2005; Conde and Caceres 2009; Lowery and Van 

Vactor 2009). 

The microtubules are tightly crosslinked into bundles within the axon shaft and become looser as 

they extend through the axonal wrist into the central domain of the growth cone. Single 

microtubules extend through the transition zone into the peripheral domain and contact the F-Actin 

within the filopodia. How far the microtubules extend into a filopodium is dependent on the 

behavior of the filopodial F-Actin (Forscher and Smith 1988; Zhou et al. 2002; Brown and Bridgman 

2003; Medeiros et al. 2006; Schaefer et al. 2008). 

Within a filopodium, F-Actin is organized as parallel bundles, which requires the action of F-Actin 

bundling proteins like -Actinin (Sobue and Kanda 1989) and Fascin (Edwards and Bryan 1995). 

The barbed ends of these F-Actin bundles point distally, so that F-Actin assembly takes place at 

the very tip of the filopodium. The assembly of F-Actin at the tip of the filopodium produces a force 

on the F-Actin bundle that moves the bundle rearwards (retrograde flow) and a force on the plasma 

membrane that extends the filopodium (Geraldo and Gordon-Weeks 2009). Actin assembly and 

retrograde flow are regulated independently (Mallavarapu and Mitchison 1999). F-Actin capping 

proteins influence the rate of Actin assembly (Pollard and Cooper 1986; Mallavarapu and Mitchison 

1999), whereas the rate of retrograde F-Actin flow has been suggested to be regulated by a 

“clutch” that links the cytoskeleton via transmembrane proteins to the substrate and thereby 

countervails the retrograde F-Actin flow (Mitchison and Kirschner 1988; Suter and Forscher 2000; 

Bard et al. 2008; Chan and Odde 2008; Geraldo and Gordon-Weeks 2009). 

Many lines of evidence attest that the behavior of the filopodial F-Actin determines the organization 

of microtubules in the growth cone and consequently the directed growth of the axon (reviewed by 

Geraldo and Gordon-Weeks 2009). When the filopodial F-Actin bundles are stabilized against 

retraction by attractive guidance cues at a certain site of the growth cone, microtobules will 

penetrate those filopodia more efficiently, and the growth cone will consequently steer towards that 

side. Conversely, localized F-Actin disassembly inhibits microtubule extension into the filopodium, 

and an increased F-Actin flow clears microtubules from the filopodium. The growth cone will turn 

away from that side. 

Adducin bundles Actin filaments (Mische et al. 1987; Taylor and Taylor 1994; Matsuoka et al. 

2000) and caps barbed Actin filament ends (Kuhlman et al. 1996; Matsuoka et al. 2000) in vitro. 

Assuming that its Drosophila homolog Hts serves the same molecular functions makes it an 

attractive candidate for a protein that is involved in the proper organization of the filopodial F-Actin 

during axon guidance. Due to some analogies to the L1-Ankyrin system, which has been shown to 

function as a molecular clutch, especially a possible involvement in the regulation of retrograde 

F-Actin flow immediately comes to mind. 
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Like Adducin, the peripheral membrane protein Ankyrin is a part of the Actin-Spectrin cytoskeleton 

(Bennett and Stenbuck 1979). Whereas Adducin binds to the N-terminus of -Spectrin that 

interacts with Actin (Bennett and Baines 2001), Ankyrin binds to a different site near the 

C-terminus of -Spectrin (Kennedy et al. 1991). Ankyrin also binds to the cell adhesion molecule 

L1, especially when L1 is homophilically bound to another L1 molecule in trans (Nishimura et al. 

2003). The binding of L1 to Ankyrin is regulated by phosphorylation of a Tyrosine in the conserved 

SFIGQY1229 motive in the L1 cytoplasmic region (Garver et al. 1997), and phosphorylation or 

mutation to Histidine abolishes Ankyrin binding (Jenkins et al. 2001; Needham et al. 2001). Gogo 

also bears a conserved sequence motif containing Tyrosines in its cytoplasmic tail (Tomasi et al. 

2008), but mutating YYD did not affect the interaction between Gogo and Adducin (Figure 3.2.3). 

The physical link of Ankyrin via L1 to the substrate exerts a pulling force on the filopodial F-Actin 

during the outgrowth of neurites, which is dependent on the binding of Ankyrin to Spectrin 

(Nishimura et al. 2003). However, Ankyrin is not required for neurite extension after their initial 

outgrowth (Nishimura et al. 2003) nor for neurite outgrowth on substrates other than L1 (Ooashi 

and Kamiguchi 2009), indicating that other, Ankyrin independent molecular clutches exist. It is 

tempting to speculate that Hts could act as a component of one of these, especially in the growth 

cones of R8 axons. The extension of htsnull mutant R8 axons is not inhibited completely (Figure 

3.4), so it must be assumed that, if Hts indeed acts as a component of a molecular clutch together 

with Gogo, it does so in addition to other, maybe more constitutively acting molecules. 

One prerequisite for the function of Hts as a component of a molecular clutch is that Hts is 

physically connected to the cytoskeleton, which is very likely based on its homology to Adducin. 

Another indication for an intimate link between Adducin and the Actin-Spectrin cytoskeleton, 

especially during photoreceptor axon guidance, are the similar loss-of-function phenotypes of hts 

and Spectrin mutants (Figures 3.4 and 3.5). They furthermore suggest that the hypothetical 

function of Hts as a component of a molecular clutch is dependent on the binding of Hts to 

Spectrin, like Ankyrin’s function during neuritogenesis is dependent on its binding to Spectrin 

(Nishimura et al. 2003). 

The second prerequisite for this hypothesis is that Hts is physically linked via a transmembrane 

protein to the substrate. The work presented here shows that Hts binds to the transmembrane 

protein Gogo (Figures 3.2.2 and 3.2.3). Could Gogo function to link Hts to the substrate? At the 

first sight, this seems rather unlikely. Excessive Gogo removes Hts from the axon (Figure 3.14.1). 

Therefore, Gogo should not be able to provide a stable link between Hts and the substrate. Of 

course, Hts could be linked to the substrate by a transmembrane protein other than Gogo, and the 

binding of Gogo to Hts may function merely in a regulatory manner. However, it is possible that the 

binding of Gogo to Hts and the Gogo-mediated removal of Hts from the axon do not happen 

simultaneously. Possibly, Gogo provides an anchor for Hts to the substrate as long as this is 
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necessary for filopodial extension, and only later functions to remove Hts from the axon when the 

Hts-clutch is no longer required. The two functions of Gogo, anchoring Hts to the substrate and 

removing Hts from the axon, could be separated not only temporally, but also spatially. Gogo could 

serve as a linker to the substrate at the tip of the growth cone to pull the axon straight forward, but 

on the sides of the growth cone, it may have another function (possibly due to the binding of a 

ligand) and clear Hts from the filopodia in order to prevent the axons from steering aside 

(Figure 4.2A). This fits to the suggested R8-R8 repulsion mediated by Gogo (Tomasi et al. 2008).  

Additionally to repelling R8 axons from each other to assure their proper spacing in the medulla, 

Gogo has been shown to have another, adhesive function (Tomasi et al. 2008). Before R8 axons 

enter the medulla, they are temporarily anchored to the M1 layer (Ting et al. 2005). R8 axons 

lacking Gogo stray uncoordinatedly at the surface of the medulla, and R8 axons overexpressing 

Gogo sometimes are stuck to M1 and never leave it to innervate the medulla (Tomasi et al. 2008). 

This again fits to an adhesive function of Hts mediated by Gogo. 

To summarize, this model suggests that, at the distal tip of the growth cone, Hts links the filopodial 

F-actin via Gogo to the substrate, which inhibits retrograde Actin flow, lets microtobules invade the 

filopodia and the growth cone steer straight forward. On the lateral filopodia of the growth cone, 

ligand-bound Gogo acts as a repulsive receptor removing this Hts-clutch, enabling retrograde Actin 

flow, preventing microtubules from invading the filopodia and thereby assuring the proper spacing 

of single R8 axons (Figure 4.2A). In addition to this function as a molecular clutch and based on its 

homology to Adducin, Hts may serve an antipodal function by capping the barbed ends of filopodial 

Actin filaments, which should inhibit the extension of filopodia. Unlike in the filopodia at the distal 

tip of the growth cone, this Actin capping function of Hts may predominate in lateral filopodia, 

assuming that the ligand-bound Gogo removes preferentially those Hts molecules that are 

incorporated in the molecular clutch but not those capping Actin filaments. There are two reasons 

for this assumption. First, there is no need to assume that the Actin capping Hts molecules, unlike 

those that constitute the molecular clutch, are in direct physical contact to (ligand-bound) Gogo 

molecules, which would protect them from Gogo-mediated removal. Second, Adducin binds much 

stronger to the barbed ends of Actin filaments (Kd = 60 nM) than it does to the sides of the 

filaments (Kd = 1500 nM) (Matsuoka et al. 2000). If the same is true for Hts, than the Hts molecules 

capping the barbed ends may be less susceptible to Gogo-mediated removal than those at their 

sides. 
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Figure 4.2: A speculative model of the Hts and Gogo functions 

(A) At the tip of a wild type axon, Hts could serve as a molecular clutch that links Actin filaments, possibly via Gogo, 

to the substrate to counteract the retrograde flow driven by Actin polymerization at the barbed end, thus leading to the 

extension of filopodia. A second function of Hts may be the capping of Actin filaments. At the sides of the growth cone, 

Gogo may encounter its repulsive ligand from neighboring axons, switch its function and remove Hts from the filopodia 

to enable the retrograde flow of Actin bundles, thereby counteracting the extension of filopodia. In summary, this would 

lead to a directed growth of axons and assure their proper spacing. Loss of either Gogo or Hts would impair this 

directional cue and let the axons grow randomly. (B) Excessive Hts may form ectopic molecular clutches at lateral 

filopodia, leading to abnormal swellings of the axons. (C) Excessive Gogo could remove additional, Actin capping Hts 

from the lateral filopodia. The increased Actin polymerization may not completely be compensated by retrograde Actin 

flow and “blow up” the growth cone. This effect may be even stronger in hts heterozygous animals. (D) Excessive Hts 

may be antagonized by excessive Gogo, leading to morphologically normal axons. 
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4.3 Experimental evidence supporting hypothesis I 

How do the results presented in this work fit the model described above? Assuming that Gogo and 

Hts act together to pull photoreceptor axons straight forward through the medulla and to assure 

their proper regular spacing, then the loss of either Hts or Gogo would obviously lead to the 

uncoordinated growth of axons within the medulla that is indeed observed in hts (Figure 3.4) or 

gogo (Figure 3.1.2) mutants. 
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Figure 4.3: A possible explanation of the hts and gogo overexpression phenotypes 

(A) A wild type R8 axon enters the medulla and pauses at the M1 layer in response to an as yet unidentified positive 

cue, which may be mediated by an attractive function of the Gogo-Hts complex (left). After resuming extension, this 

attractive function may pull the growth cone towards the M3 layer. Simultaneously, a repulsive function of the Gogo-

Hts complex induced by the putative Gogo ligand could assure the correct distance of the emerging axon to its 

neighbors (middle). After reaching M3, the function of the Gogo-Hts complex ceases as Gogo expression decreases 

(right). (B) Excessive Hts protein may boost the attractive function of the Gogo-Hts complex at the intermediate R8 

target layer (left), which may cause the abnormal swellings observed at M1 (middle). After reaching M3, excessive Hts 

no longer has any effect due to the lack of Gogo (right). (C) Excessive Gogo protein may increase the attractive 

function of the Gogo-Hts complex at the intermediate R8 target layer (left) and cause abnormal swellings at M1 

(middle). Ectopic Gogo protein is still present after the growth cone has reached its final target layer M3, the function of 

the Gogo-Hts complex does not cease, and this may cause the additional swellings observed at M3 (right). Cyan 

represents Hts, yellow represents Gogo. 

 

The thickening of R8 axons at the M1 layer caused by excessive Hts (Figure 3.11) can be 

explained as the result of an excessive anchoring of the growth cones to M1 where Gogo serves 

its adhesive function (Figures 4.2B and 4.3B). If the inhibition of retrograde actin flow is increased 

in the filopodia compared to wild type growth cones by additional Hts, the filopodia would extend 

radially in all directions and “blow up” the growth cone. This may become evident at the M1 layer, 

because Gogo serves it adhesive function here. In contrast, excessive Hts does not blow up the 

growth cones at their terminal layer M3. After the growth cone has reached this final destination, 

the Gogo-Hts complex is no longer required to guide the axons and therefore might be shut off 

(Figure 4.3A). In fact, Gogo expression has been shown to decrease in late pupal stages when the 

process of R8 axon guidance finishes (Tomasi et al. 2008). Without Gogo, excessive Hts no longer 

functions as an adhesive, F-Actin retraction inhibiting molecular clutch and therefore, no abnormal 

thickenings arise at this late stage of R8 axon guidance (Figure 4.3B). 

In contrast, excessive Gogo causes abnormal thickenings not only at M1, but also at M3 

(Figures 3.11, 3.12.1, and 3.13). This is in accordance with the assumption that the excessive 

expression of Gogo causes abnormally strong adhesion of the growth cone not only at M1, but also 

in the late steps of final targeting when Gogo expression normally decreases (Figure 4.3C). An 

alternative explanation for the abnormal thickenings of R8 axons caused by excessive Gogo may 

be the removal of additional Hts molecules that normally are not susceptible to Gogo-mediated 

removal and inhibit Actin polymerization at the barbed ends of filopodial F-Actin (Figure 4.2C). 

When both Hts and Gogo are overexpressed, no abnormally thick swellings are observed 

(Figures 3.11 and 3.13). Although the anchoring of R8 growth cones to their temporary target M1 

and to their final target M3 should be abnormally strong in this situation, the Hts antagonizing 

function of Gogo is also increased and may counteract the elevated adhesive force by removing 

excessive Hts (Figure 4.2D). There is no good formal explanation why excessive Gogo alone 
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causes abnormally thick swellings presumably due to an enhanced anchoring of the growth cones, 

whereas its Hts antagonizing function completely outbalances this increased adhesive force when 

Hts is co-overexpressed. However, not only Gogo and Hts are involved in the function of the Gogo-

Hts complex. At least the putative repulsive Gogo ligand should play an important role, and 

possibly there is another transmembrane protein linking Hts to the substrate. The substrate 

molecule that mediates the adhesion of the growth cone may be another player. Additionally, 

Spectrin seems to be involved. Whether the Hts antagonizing or the adhesive function of Gogo 

prevails in one or the other overexpression situation may depend on which of these factors is the 

limiting one in a certain context. 

 

4.4 Hypothesis II: Hts recruits Gogo to the Spectrin cytoskeleton 

The model presented above nicely explains the findings from this work, but it does not exclude 

another possible function of the Hts-Gogo interaction. The Spectrin cytoskeleton was suggested to 

participate in the formation of specialized membrane subdomains by localizing membrane proteins 

(Bennett 1985; Bennett and Baines 2001), as many membrane proteins are mislocalized when the 

Spectrin cytoskeleton is disturbed (Zhou et al. 1998; Dubreuil et al. 2000; Jenkins et al. 2001; 

Komada and Soriano 2002). 

-Spectrin mutants show defects in embryonic midline axon guidance. In Drosophila, the 

embryonic CNS has a ladder-like axon scaffold with longitudinal axon bundles on both sides of the 

ventral midline that are connected by an anterior and a posterior commissure in each segment. 

Ipsilateral neurons whose axons do not cross the midline express the axon guidance receptor 

Robo, which senses the Slit ligand produced by midline glia to prevent midline crossing (Kidd et al. 

1998; Kidd et al. 1999). Commissural neurons overcome this Slit mediated repulsion by expressing 

the Commissureless protein prior to midline crossing, which prevents Robo from reaching the cell 

surface by sorting it directly from the trans-Golgi network into endosomes (Keleman et al. 2002). In 

-Spectrin mutant embryos, some Fas2-positive axons that normally do not cross the midline are 

no longer repelled by Slit and do cross the midline. This defect can be restored by expressing 

-Spectrin in neurons, but not by expressing it in midline glia. Moreover, mutations in -Spectrin 

genetically interact with the Slit-Robo pathway, as significantly more Fas2-positive axons cross the 

midline in -Spectrin mutant, slit, robo trans-heterozygous embryos than in embryos that are only 

-Spectrin mutant or only slit, robo trans-heterozygous. -Spectrin specifically modifies the Slit-

Robo pathway, as no genetic interactions were detected with either the Netrin-Frazzled or the 

Semaphorin-Plexin pathway. Therefore, -Spectrin was considered to modulate the Slit-Robo 

pathway by regulating the distribution of Robo in Drosophila midline CNS axons. However, as no 

obvious changes in the level or localization of Robo protein were observed when -Spectrin mutant 

embryos were compared with wild type embryos, -Spectrin may rather affect another component 
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of the Robo pathway downstream of the receptor itself (Garbe et al. 2007). An alternative 

explanation could be that the changes in the distribution of Robo protein in -Spectrin mutant 

axons may be too subtle to be detected by confocal microscopy. The Spectrin cytoskeleton may be 

required to integrate Robo and some of the downstream components of the Slit-Robo pathway into 

functional protein complexes, which does not exclude an overall proper localization of these 

molecules also in -Spectrin mutant axons. 

Similarly, the Spectrin cytoskeleton or, more specifically, the Hts-Gogo interaction, may be required 

for the proper localization of the Gogo receptor or assist in the correct establishment of interactions 

between Gogo and its downstream effectors. This would easily explain the similar loss-of-function 

phenotypes observed in gogo and hts mutants, as both would ultimately cause the loss of 

functional Gogo protein. However, the axonal Hts protein level is regulated by Gogo 

(Figure 3.14.1), which strongly suggests that hts acts downstream of gogo and seems to contradict 

the assumption that the localization of Gogo is dependent on Hts. Yet, one could imagine that the 

reduction of axonal Hts protein by excessive Gogo provides a mechanism of self-restriction to 

prevent excessive Gogo function. In this scenario, the amount of Gogo function is determined by 

the axonal Hts protein level. The defects caused by excessive Hts must be interpreted as the result 

of an abnormally high level of functional Gogo. The mutual suppression of hts and gogo when both 

are overexpressed can be explained as the additional amount of Hts is simply reduced to a regular 

level by the excessive Gogo, which, in turn, limits the amount of Gogo function to a regular level. 

However, the defects caused by excessive Gogo alone can not be explained. The additional 

amount of Gogo protein should not be functional, as an increase in functional Gogo would require 

additional Hts. Rather, the increase in the amount of Gogo should cause an abnormally low level of 

Hts protein and therefore a phenotype that resembles more the hts or gogo loss-of-function 

phenotype. 

Assuming that the subcellular localization of Gogo is regulated by Hts and taking into account that 

Hts, like Adducin, is able to oligomerize (Figure 3.15), it could be speculated that at least two Gogo 

molecules must be in close proximity to function properly (Figure 4.4A). Similarly, receptor tyrosine 

kinases signal only upon dimerization induced by ligand binding (Li and Hristova 2010). In this 

scenario, it would be possible that oligomerization is required for Gogo to function properly, but 

monomeric Gogo protein could exert some ectopic function that leads to abnormal swellings of R8 

axon growth cones. An increase in the protein level of either Hts (Figure 4.4B) or Gogo 

(Figure 4.4C) could cause some monomeric Gogo protein to occur and therefore lead to abnormal 

swellings of growth cones. However, if both Hts and Gogo are present in excess, the additional Hts 

molecules could integrate the excessive Gogo molecules into oligomers and therefore prevent the 

ectopic function of monomeric Gogo leading to abmormal swellings (Figure 4.4D). 
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Figure 4.4: Overexpression phenotypes resulting from an ectopic function of monomeric Gogo 

(A) Hts forms oligomers and is therefore suitable to bring two or more Gogo molecules into close proximity. This could 

be required for normal Gogo function. (B) Excessive Hts disturbs the Gogo / Hts stoichiometry and may cause 

monomeric Gogo to occur. Single Gogo molecules may have an unnatural function that causes the observed defects, 

swellings of R8 axons. (C) Similarly, excessive Gogo could cause monomeric Gogo molecules to occur and lead to 

swellings of R8 axons. (D) If both hts and gogo are overexpressed, the normal ratio of Gogo / Hts molecules is restored. 

No monomeric Gogo and no ectopic function of monomeric Gogo molecules appear. R8 axons do not suffer defects. 

 

4.5 Hypothesis III: A disordered Spectrin cytoskeleton causes unspecific phenotypes 

-Spectrin mutants show phenotypes that can be explained by defective axon guidance in both 

worms and flies. unc-70 is the single C. elegans gene encoding -Spectrin. In unc-70 mutants, 

GABA motor neurons exhibit a defective axonal morphology in the ventral nerve cord, the 

commissures that connect the ventral and the dorsal nerve cord, and the dorsal cord. The ventral 

cord is discontinuous and defasciculated. Only few commissures are present, and they usually do 

not reach the dorsal cord. The commissures display a variety of aberrant morphologies and are 

elaborately branched or prematurely terminated. Some commissures extend anteriorly of the 

GABA expressing RME neurons, where none are normally present (Hammarlund et al. 2000). In 

the embryonic CNS of D. melanogaster, -Spectrin is required in neurons for proper midline axon 

guidance. In -Spectrin mutant embryos, many axons inappropriately cross the CNS midline 

(Garbe et al. 2007). 

Nevertheless, there is no hard proof for a direct, instructional role of the Spectrin cytoskeleton in 

the process of axon guidance yet. One of the main duties of the Spectrin cytoskeleton is to provide 

mechanical strength to the plasma membrane (Tchernia et al. 1981; Discher et al. 1993), and it 

has been demonstrated that -Spectrin is required for the physical integrity of neuronal processes 

in C. elegans. The defective morphology of axons in unc-70 mutants is merely a secondary effect 

of axon breaks. Several types of neurons were shown to initially establish correct axonal 

projections in unc-70 mutants. The observed defects in axonal morphology accumulate over time, 

as the axons break and attempt to regenerate by initiating a new growth cone. This second round 
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of axon extension is error prone compared with initial outgrowth and produces axons with defective 

morphology. The guidance errors are indeed the consequence of axon breaks due to the acute 

strains caused by movement, as they are significantly reduced when axon breaks are prevented by 

paralyzing the mutant animals (Hammarlund et al. 2007). Could the defects observed in -Spectrin 

mutant fly embryos also be explained as secondary effects of axon breaks due to strains caused 

by movement? On the first sight, this seems indeed likely, as pCC and dMP2 pioneer axons initially 

make appropriate ipsilateral projections in -Spectrin mutant embryos and only later show crossing 

defects, even in a slit, robo transheterozygous background. Similarly, axons of Ap neurons 

correctly project toward the midline and make ipsilateral turns from stage 14 to early stage 15, but 

show midline crossing defects by late stage 16 in -Spectrin mutant animals. In contrast, they 

exhibit crossing defects during their initial extension toward the midline and throughout 

development in robo mutants. This suggests that -Spectrin is required rather for the maintenance 

of properly established connections on the correct side of the midline than for initial axon guidance 

(Garbe et al. 2007). On the other hand, -Spectrin mutant stage 14 embryos already show axonal 

defects as characteristic loops are formed where commissural axons normally enter the 

connectives (Hulsmeier et al. 2007). Therefore, the first axonal defects are observed at a stage 

when the embryo is still completely immobile, several hours before the onset of muscle 

contractions about 14 hours after egg laying (Crisp et al. 2008), which corresponds to embryonic 

stage 16 at least (Campos-Ortega and Hartenstein 1985). This seems to contradict the hypothesis 

that all defects observed in -Spectrin mutants are the secondary effect of axon breaks due to 

acute strains caused by movements of the embryo. But then again, one could argue that these 

early defects are the result of axon breaks that are caused rather by morphogenetic movements 

than by embryonic movements due to muscle contractions. 

Could the defective phenotypes reported in this work also be explained as the mere consequence 

of axon breaks due to an impaired Spectrin cytoskeleton and reduced mechanical strength of the 

axons? For the hts loss-of-function phenotype, this seems possible. Adducin is well known to be an 

essential factor in the assembly of the Spectrin cytoskeleton (Gardner and Bennett 1987; Bennett 

et al. 1988), and based on homology, it can be assumed that the Spectrin cytoskeleton is severely 

affected in hts mutant flies. However, broken axons can be clearly observed in -Spectrin mutants 

as a proximal and the corresponding detached distal fragment of an axon belonging to a single 

neuron can be identified (Hammarlund et al. 2007). This is not obvious in hts mutant flies 

(Figure 3.4). Moreover, it seems unlikely that the defects observed in gogo mutants are the 

consequence of axon breaks, as this would premise that Gogo is an essential component of the 

Spectrin cytoskeleton. This is unlikely, because the expression of Gogo is restricted to certain 

tissues, cell types and developmental stages (Tomasi et al. 2008), whereas the Spectrin 

cytoskeleton is present in almost all cells of metazoan organisms (Bennett 1990; Bennett and 
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Gilligan 1993). Although it was possible that other proteins take over Gogo’s function where it is 

not expressed, it seems more reasonable to assume that the defects in gogo mutants are caused 

rather by the loss of a more specific function in axon guidance than by the sheer loss of physical 

strength of the axonal membrane. Assuming that Gogo and Hts fulfill this function together in a 

protein complex as their physical interaction (Figures 3.2.2 and 3.2.3) and their similar loss-of-

function phenotypes (Figures 3.1.2 and 3.4 and Tomasi et al. 2008) imply, this also argues for a 

specific axon guidance function of Hts. 

By contrast, the defects caused by the overexpression of either hts or gogo indeed may be 

explained as unspecific consequences of an impaired Spectrin cytoskeleton. In both cases, it 

causes abnormally thick swellings of R8 axons in the medulla (Figures 3.11, 3.12.1, and 3.13). 

Interestingly, -Spectrin mutants have been reported to possess dramatically enlarged growth 

cones, which are presumably the consequence of an increased fusion of intracellular membrane 

vesicles with the axonal membrane (Hulsmeier et al. 2007). As the Spectrin cytoskeleton prevents 

the premature fusion of vesicles with the plasma membrane in secretory cells (Aunis and Bader 

1988; Perrin et al. 1992), it may also regulate the fusion of intracellular membrane vesicles with the 

axonal cell membrane that is required to enlarge and advance the growth cone (Gitler and Spira 

1998). Accordingly, the removal of the submembranous Spectrin cytoskeleton by the Ca2+ 

dependent proteolytic activity of the protease Calpain is necessary for the formation of a new 

growth cone after axotomy and sufficient for the induction of growth cone formation in the axon of 

an intact neuron (Gitler and Spira 1998). Therefore, the defective phenotypes caused by either 

excessive Hts or excessive Gogo could be the result of an increased fusion of vesicles with the 

membrane, assuming that both lead to a destabilized Spectrin cytoskeleton. Excessive Gogo is 

likely to compromise the Spectrin cytoskeleton, as it reduces the amount of its essential structural 

component Hts (Figure 3.14.1). It is also reasonable to assume that a strong overexpression of hts 

perturbs the stoichiometry of the molecules setting up the Spectrin cytoskeleton and therefore the 

integrity of the Spectrin cytoskeleton. In erythrocytes, each junctional complex of the Actin-Spectrin 

cytoskeleton was supposed to link three Spectrin dimers to each other and to contain one Adducin 

tetramer (Matsuoka et al. 2000), which corresponds to a stoichiometric ratio of -Spectrin to 

Adducin of three to four. 

It seems implausible that the same phenotype, the swelling of axons, should be caused once by 

too much Hts protein and once, in the case of Gogo overexpression, by too little Hts protein. 

However, the mutual suppression of the hts and the gogo overexpression phenotype (Figures 3.11 

and 3.13) as well as the antagonistic effect of Gogo on the protein level of Hts (Figure 3.14.1) 

suggests that the overexpression phenotypes of hts and gogo are indeed the consequences of 

opponent mechanisms. 
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4.6 Why is the MARCKS-related domain of Hts not required for axon guidance? 

An interesting finding from the work presented here is that the MARCKS-related domain seems not 

to be required for the functions of Hts during axon guidance. Expression of either Add1, the Hts 

isoform including the MARCKS-related domain, or HtsPD, an isoform lacking the MARCKS-related 

domain, in photoreceptors restores the defects caused by the loss of hts (Figures 3.7.2 and 3.9). 

This is consistent with the observation that homozygous hts G mutant flies, which have only 

truncated Hts protein lacking the MARCKS-related domain, do not show defects in the medulla 

(Figure 3.4). Both were surprising, since the MARCKS-related domain of Adducin has been shown 

to be required for the in vitro functions of Adducin including Actin binding, Actin capping, and 

Spectrin recruiting (Li et al. 1998; Matsuoka et al. 2000). 

A possible explanation is that the function of Hts during axon guidance is indeed independent of 

Actin and Spectrin and that Hts serves a completely novel function here. However, for several 

reasons it seems more likely that the Drosophila Hts can interact with Actin and Spectrin as the 

mammalian Adducin does, but does not strictly require its MARCKS-related domain for that. There 

are several reasons for this assumption. 

First, in the Drosophila germ line exclusively the Hts isoforms ShAdd and Ovhts are expressed, 

both lacking the MARCKS-related domain (Whittaker et al. 1999; Petrella et al. 2007). 

Nevertheless, in hts mutants, the fusome, a Spectrin based cytoskeletal structure in the 

germarium, is disorganized (Lin et al. 1994). This indicates that these MARCKS-related domain 

lacking proteins are required for the proper assembly of the Spectrin cytoskeleton. 

Second, the similar phenotypes of hts and spectrin mutants in photoreceptor axon guidance 

(Figures 3.4 and 3.5) suggest that Hts and Spectrin are functionally linked during photoreceptor 

axon guidance. The hts mutant phenotype can be restored by Hts lacking the MARCKS-related 

domain. This indicates that the interaction with Spectrin does not require the MARCKS-related 

domain. 

Third, it has not been shown directly that mammalian Adducin binds Spectrin via its MARCKS-

related domain. The MARCKS-related domain is the target of many regulatory processes. It 

contains phosphorylation sites for PKA and PKC and it binds calmodulin in a Ca2+ dependent 

manner (Matsuoka et al. 2000). The MARCKS-related domain could function merely in a regulatory 

manner, regulating the binding of Spectrin to another part of Adducin. Indeed, the neck domain is 

also required for Adducin binding to Spectrin (Li et al. 1998; Matsuoka et al. 2000) and may 

therefore contain the actual binding site. 

 

4.7 Outlook 

The results presented in this work provide an insight into a mechanism of axon guidance that is 

largely unexplored yet. Gogo has been described as a novel axon guidance receptor only recently 
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(Tomasi et al. 2008). Research on Hts so far focused on its function during oogenesis, and a role 

for Hts in axon guidance has not been reported yet. Also the functions that Adducin and, 

surprisingly, the Spectrin cytoskeleton in general serve during axon guidance are largely unknown. 

Are components of the Spectrin cytoskeleton constituents of a clutch module? Does the Spectrin 

cytoskeleton direct navigating growth cones by organizing the subcellular distribution of axon 

guidance receptors or other guidance molecules? Does the Spectrin cytoskeleton, as findings on 

its constituent Ankyrin suggest (Ooashi and Kamiguchi 2009), control growth cone navigation via 

the modulation of cAMP? Or is its sole duty the supply of mechanical strength to the axonal 

membrane? 

Neither Gogo nor Hts may serve a single, unitary function during axon guidance. Gogo was 

reported to serve two opposing functions as it is required for the adhesion of R8 growth cones to 

their intermediate target layer M1 and for the repulsion of R8 axons from each other (Tomasi et al. 

2008). Hts is likely to serve diverse molecular functions as its homologue Adducin does. This may 

also be reflected by the superficial inconsistency of the results shown in this work. 

Therefore, it was not possible to sum up the results from this work in a single consistent model that 

matches the body of literature. Rather, this work raises several new questions and hypotheses that 

can be tested only by subsequent work. 

The first and most important question to answer is whether the Gogo-Hts complex has indeed an 

instructional role in axon guidance or is required solely for the structural integrity of the axonal cell 

membrane. Detailed tracking of axons emerging from single labeled neurons could reveal whether 

the guidance errors observed in hts or gogo mutants are preceded by axon breaks or occur in the 

initial navigation of the primary axon. 

If an instructive role for the Gogo-Hts complex emerges, it will be crucial to determine if this 

function involves a direct interaction of Hts with the Actin-Spectrin cytoskeleton. Here, a key 

experiment will be to determine whether Hts proteins lacking the MARCKS-related domain are able 

to interact with Actin and Spectrin. A negative result would point to a completely novel molecular 

function of Hts independent of Actin and Spectrin, because the MARCKS-related domain of Hts 

seems not to be required for the function of Hts in axon guidance (Figures 3.4, 3.7.2, and 3.9). A 

positive result would enforce the revision of the assumption that the MARCKS-related domain is 

the actual interface of Adducin with Actin and Spectrin as its strict requirement for all in vitro 

activities of Adducin involving Actin and Spectrin suggests (Matsuoka et al. 2000). Moreover, it 

would raise the question about the precise function of the interaction between Hts and the Spectrin 

cytoskeleton during axon guidance and provide a promising starting point to determine the role of 

the Spectrin cytoskeleton in the process of axon guidance in general. 

Based on the literature about the Spectrin cytoskeleton, at least three distinct functions of the 

Spectrin cytoskeleton must be considered. First, the hypothesis that the Gogo-Hts complex acts as 
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a Spectrin dependent clutch module that inhibits retrograde Actin flow can be tested. For L1 and 

AnkyrinB, this has been shown by monitoring the movement of fluorescently labeled AnkyrinB in 

transfected cultured neurons, by comparing the rate of the cytochalasin D sensitive retrograde flow 

of AnkyrinB with the rate of retrograde Actin flow, and by bead-tracking experiments (Kamiguchi 

and Yoshihara 2001; Nishimura et al. 2003). Analogous experiments can be performed with Hts 

and Gogo. Second, a function of the Spectrin cytoskeleton in organizing the subcellular distribution 

of Gogo can not be ruled out. AnkyrinG and -Spectrin were shown to be required for the 

localization of several proteins to rather large compartments of cell membranes such as axon initial 

segments, nodes of Ranvier, and the basolateral side of epithelial cells (Zhou et al. 1998; Dubreuil 

et al. 2000; Jenkins et al. 2001; Komada and Soriano 2002). By contrast, no defects in Gogo 

localization were observed at the scale of confocal microscopy in homozygous htsnull mutant clones 

in the optic lobes of late 3rd instar larvae (Ohler et al. 2011). However, it is still possible that the 

distribution of Gogo in the plasma membrane depends on Hts at a smaller scale, and this may be 

tested by electron or STED microscopy. Third, the Spectrin cytoskeleton was implicated in the 

modulation of the growth cone’s response to asymmetric Ca2+ signals across the growth cone, as 

L1 regulates cAMP levels in neurons via AnkyrinB (Ooashi and Kamiguchi 2009). It is possible that 

the Gogo-Hts complex functions in a similar way, which can be tested by comparing the levels of 

cAMP and its distribution in wild type neurons and in neurons that either lack or overexpress gogo 

or hts. Genetically encoded cAMP reporters are available (Nikolaev and Lohse 2006). 
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