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Summary 

 

1.13nm tobermorite belongs to the mineral group of calcium-silicate-hydrates or short 

CSH-phases. Natural CSH-phases are due to the specific areas of formation rare in 

nature but synthetic members have applications in many different sections of the 

industry. 1.13nm tobermorite for example is the main binding phase in aerated 

autoclaved concrete (AAC), a building material which became more and more 

important over the last decades. It is easy to process due to its low density but 

nevertheless offers an excellent strength resistance caused by the interlocking 

lathlike tobermorite crystals. The embodied air filled pores effect very good insulation 

behaviour, which is of great importance for an ecologically sensitive method of 

construction. Despite the high significance of AAC for the building industry the 

standard of knowledge referring to the ongoing processes during production is still 

not satisfying. The applied conditions during the production are in part based on 

empirical values and just the macroscopic properties of the product are controlled. 

The macroscopic properties are primary determined by the microscopic ones, like 

type and amount of formed mineral phases and their structure and texture. Several 

scientific studies dealing with this topic are already published but the hence resulting 

set of data on mineral forming processes and their kinetics is still deficient. Previous 

studies have shown that the formation of 1.13nm tobermorite is just metastable under 

the conditions present during productions. In equilibrium 1.13nm tobermorite 

decomposes to xonotlite and quartz, which has a fatal influence on the strength 

resistance of the building material. Therefore the present work addresses in detail on 

the determination of the reaction kinetics of the formation of 1.13nm tobermorite 

within the system CaO-SiO2-H2O by in situ neutron diffraction. To assure a 

successful interpretation of  the experimental data, crystallographic well 
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characterised sample material is needed. Therefore the crystal chemistry of natural 

xonotlites was previously studied and the results are integrated in the presented 

work. The neutron diffraction experiments were conducted at three different 

temperatures and to different grain sizes of quartz to determine the influence of these 

parameters. The experiments were carried out at the D20 powder diffractometer of 

the the Institute Laue Langevin research reactor in Grenoble (France). For this 

purpose an autoclave (HAND) was designed which enables an investigation of the 

previously synthesized greenbodies under saturated steam pressure. The high 

neutron flux at the D20 provides a time resolution of 1 exposure per minute, hence 

sufficient data for the early state of the reaction could be collected as well. The 

obtained diffraction pattern were evaluated with respect to the reaction progress and 

subsequently interpreted in terms of the present reaction process by using a kinetic 

model. It could be shown that the formation of 1.13nm tobermorite is a non-isokinetic 

process with changes in the reaction mechanism from solution control to diffusion 

control and in most of the cases back to diffusion control. The determined transition 

times and points of portlandite expense and tobermorite occurrence were compared 

with respect to the influence of reaction temperature and grain size of quartz. Based 

on the data for the reaction progress, the rate constant for the different sections of 

the reaction were calculated. Using the rate constants determined at different 

temperatures the activation energies of the tobermorite formation were calculated. 
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Zusammenfassung 

 

1.13nm Tobermorite gehört zur Mineralgruppe der Calciumsilikathydrate oder kurz 

CSH-Phasen. Natürliche Vertreter dieser Gruppe sind aufgrund der speziellen 

Bildungsräume in der Natur eher selten, synthetische CSH-Phasen finden jedoch 

Anwendung in den verschiedensten Bereichen der Industrie. 1.13nm Tobermorite 

zum Beispiel ist die primäre Phase in Porenbeton, einem Baustoff der in den letzen 

Jahrzehnten immer mehr an Bedeutung gewann. Er ist aufgrund seiner geringen 

Dichte leicht zu verarbeiten, bietet aber trotzdem hervorragende 

Festigkeitseigenschaften durch die Verzahnung der lattenförmigen 

Tobermoritkristalle. Die enthaltenen luftgefüllten Poren bewirken außerdem sehr gute 

Dämmeigenschaften, welche für eine ökologische umweltbewusste Bauweise von 

hoher Bedeutung sind. Trotz des hohen Stellenwertes von Porenbetonprodukten in 

der Bauindustrie ist der Wissensstand über die während der Herstellung ablaufenden 

Prozesse noch unbefriedigend. Die während der Herstellung herrschenden 

verwendeten Produktionsbedingungen beruhen meist auf empirischen Werten und 

überprüft werden nur die makroskopischen Eigenschaften des fertigen Baustoffs. Die 

makroskopischen Eigenschaften werden aber primär durch die mikroskopischen 

Eigenschaften, sprich Menge und Art der entstehende Mineralphasen und deren 

Struktur und Textur, bestimmt werden. Mehrere wissenschaftliche Arbeiten zu 

diesem Thema wurden bereits veröffentlicht, der daraus resultierende Datensatz 

bezüglich der ablaufenden Mineralbildungsprozesse und deren Kinetik ist aber immer 

noch unzureichend. In vorangegangenen Arbeiten wurde gezeigt, dass sich 1.13nm 

Tobermorit im Porenbeton unter den gegebenen Bedingungen nur metastabil bildet. 

Unter Gleichgewichtbedingungen zerfällt dieser zu Xonotlite und Quarz, was sich in 

verheerendem Maße negativ auf die Festigkeitseigenschaften des Baustoffs 
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auswirken würde. Die vorliegende Arbeit befasst sich daher eingehend mit der 

Bestimmung der Reaktionskinetik von 1.13nm Tobermorit im System CaO-SiO2-H2O 

mittels in situ Neutronenbeugung..Um die in den Versuchen gewonnenen Daten 

erfolgreich auswerten zu können, erfordert es kristallographisch gut charakterisiertes  

Probenmaterial. Aus diesem Grund wurde die Kristallchemie von natürlichen 

Xonotliten im Vorfeld eingehend studiert und die gewonnenen ergebnisse sollen mit 

in die vorliegende Arbeit einfließen. Die Neutronenbeugungs-Experimente wurden 

bei drei verschiedenen Temperaturen und mit zwei unterschiedlichen Korngrößen der 

Quartzfraktion durchgeführt, um den Einfluss dieser Parameter beurteilen zu können 

Die in die Auswertung einbezogenen Experimente wurden am D20 

Pulverdiffraktometer des Forschungsneutronenreaktors des Instituts Laue-Langevin 

in Grenoble (Frankreich) durchgeführt. Hierfür wurde eigens ein Autoklav (HAND) 

entwickelt, der es ermöglicht die zuvor hergestellten Grünkörper unter gesättigter 

Dampfatmosphäre zu untersuchen. Der hohe Neutronenfluss am D20 ermöglicht 

eine zeitliche Auflösung von 1 Diffraktogramm pro Minute, so konnten genügend 

Daten für das Frühstadium der Reaktion gesammelt werden. Die so erhaltenen 

Aufnahmen wurden bezüglich des Reaktionsumsatzes ausgewertet und mithilfe von 

kinetischen Modellen hinsichtlich des Reaktionsmechanismus interpretiert. Es zeigte 

sich das die Bildung von 1.13nm Tobermorit nicht isokinetisch ist, sondern zunächst 

ein lösungskontrollierter Abschnitt vorliegt welcher übergeht in einen 

diffusionskontrollierten Teil und in den meisten Fällen erneut wechselt zu einem 

lösungskontrollierten Abschnitt. Die so erhaltenen Üebergangszeiten und Zeitpunkte 

des vollständigen Verbrauchs von Portlandit und des ersten Auftretens von 1.13nm 

Tobermorit wurden hinsichtlich des Einflusses von Reaktionstemperatur und 

Quarzkorngröße miteinander verglichen. Aus den Daten wurden anschließend die 

Geschwindigkeitskonstanten für die verschiedenen Abschnitte der Reaktion 
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berechnet. Aus den so erhaltenen Geschwindigkeitskonstanten bei verschiedenen 

Temperaturen konnten die Aktivierungsenergien bestimmt werden.  
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Chapter 1: Introduction 

1.1 Calcium Silicate Hydrates (CSH) 

 

Calcium-silicate-hydrates are mineral phases mostly formed in weathered and 

hydrothermally altered basic rocks. One of the most famous deposits is known from 

Maroldsweisach, Bavaria, 

where natural calcium-

silicate-hydrates are found 

in xenolites inside basalt. 

Due to the spatial and in 

terms of geology short 

occurrence of the needed 

formation conditions, 

calcium silicate hydrates 

are rather rare. The huge 

variety and the complicate 

crystal chemistry despite a 

simple composition of calcium silicium and water (Fig:1.1) made them subject of 

several studies. But their main importance lies in the construction industry. Calcium-

silicate-hydrates are the main binding phases in many building materials. The basic 

principal is the bonding of grained materials by inorganic or hydraulic binders like 

lime and portland cement, respectively. As most common and widespread material 

concrete needs to be mentioned. Concrete can be described as artificial chemical 

sedimentary rock where aggregates like sand or gravel are bonded by the 

crystallizing phases in the cement after adding water. The acicular crystals are 

interlock with each other causing the desired resistance and constructive strength of 

 
 
Fig.1.1.: ternary system CaO-SiO2-H2O with some of the most 

important natural CSH-phases and the composition of 
recipes of common building materials 
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the material. Already 2000 years ago the Romans had this knowledge and used the 

first concrete like building material known as OPUS CAEMENTITIUM for their 

monumental examples of architecture like the pantheon (cover picture) or the 

colosseum in Rome. But beside concrete ,steam cured building materials like lime-

sand bricks and aerated autoclaved concrete gained more and more importance in 

our era.  

 

1.2. Aerated autoclaved concrete 

 

1.2.1 History 

 

 
 
Fig.1.2: increase of YTONG products in 10³m³ from 1930 to 1975 and improvement of thermal 

conductivity from 1975 to 2000 for the strength categories 2, 4 and 6 madified after Dubral 
(1992) 
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Due to the scarcity of energy and recourses after the First World War the 

governments of many European countries tightened the requirements of building 

materials in terms of insulation behaviour and cost of production and supported a lot 

of scientific research. In 1924 the Swedish scientist A. Eriksson developed the basic 

method of producing aerated autoclaved concrete based on the preliminary work of 

Zernikov and Michaelis on lime sand mortar combined with the pore-forming method 

of Aylsworth and Dyer by adding metal powders to the mixture. The material is 

outstanding for its good heat insulation behaviour caused by the pores (Fig.1.2.) and 

a high compressive strength despite a low density. 

 

1.2.2 Industrial production 

 

The first industrial production started in 1929 in Yxhult (Sweden) intrducing the trade 

name YTONG (YXHULTS ÅNGEHÄRDADE GASBETONG). The number of plants 

increased over the thirties due to the huge demand. The Second World War 

temporarily haltered the quick spread of AAC but nevertheless the development of 

AAC product worldwide increased immensely between 1929 and 1975 as depicted in 

Fig.1.2. Today the annual production In western Europe add up to 8.65 mio m³ over 

50% of which are produced in Germany (Dubral, 1992).The global success was first 

 
 
Fig.1.3.:formation of pores by the alkaline reaction of Al and Ca(OH) after Homann (2008) 
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of all established by the companies YTONG, Siporex and Durox.  

Over the years some improvements were made on the industrial production of AAC 

like cutting with wires instead of saw but the main concept stayed the same. After 

grinding the raw materials lime, sand and cement are mixed followed by an 

exhaustive dispersing with water. To safe cost the waste from cutting and recycled 

AAC is added to the raw materials as well as anhydrite or gypsum to advance the 

formation of the desired mineral phase. Right before pouring the paste through the 

moulds aluminium is added to the mixture as pore-builder. The paste rests for about 

 
 
Fig.1.4: hydration of CaO and cement clinker phases to form ca(OH) and Ca(OH) and tricalcium 

silicate hydrate,respectively, modified after Homan (2008) 

 
 
Fig.1.5.: formation of 1.13nm tobermorite by the reaction of ground quartz and Ca(OH) or calcium 

silicate hydrate, respectively, modified after Homan (2008) 
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two hours at elevated temperatures. During that time pores are formed by the 

reaction of aluminium with calcium hydroxide and water (see Fig 1.3) causing an 

expansion of the cake. Meanwhile the quicklime and the cement clinker phases 

dicalciumsilicate (C2S) and tricalciumsilicate (C3S) react with water to form calcium 

hydroxide and calciumhydroxide and tricalciumsilicatehydrate, respectively (see 

fig.1.4) and a basic resistance is reached. The greenbody is removed from the 

mould, cut and stored in the autoclaves for hydrothermal curing. The curing normally 

takes place at temperatures around 190°C and saturated steam pressure (12.5bar) 

over a time span of 6 up to 12h. During autoclaving the crystalline phase 1.13nm 

tobermorite is formed by the reactions shown in (Fig 1.5)  

 

1.2.3 Properties 

 

The material AAC is outstanding for its high compressive strength despite a very low 

weight and density due to the pores. The pores causing as well a extremely good 

heat and acoustic insulation behaviour. Important values to determine quality of the 

building material are the shrinkage, the e-modul and the heat conductivity which are 

monitored regularly during production. Those values are optimized in the industrial 

production process by changing the ratio of the different raw materials and therefore 

the raw density of the “cake” as explained in the unpublished report resulting from an 

internship in an AAC-plant in Bourgoin Jallieu, France (appendix A).  

This empiric method in fact leads to the desired results but the scientific research of 

the last decades has shown that the macroscopic properties of AAC and other 

construction materials are controlled by the microscopic ones, speaking of the type 

and structure of the evolving CSH-phases. A targeted control of the ongoing mineral 

forming reactions and therefore the macroscopic properties of AAC is just possible 
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with an extensive quantitative 

knowledge of the structural 

characteristics, the thermodynamic 

parameters and the reaction kinetic. 

Despite the intense research of the 

last decades this is still insufficient 

and should be the main aim of the 

presented work. The influence of 

temperature and grain size of quartz on the formation of 1.13nm tobermorite was 

studied by in-situ neutron diffraction. Based on the experiments detailed information 

on the reaction mechanisms were obtained and beyond that rate constants and 

activation energies were calculated as explained in the chapter 4. 

 

1.3 Tobermorite in AAC 

 

As mentioned before (Fig. 

1.4), 1.13nm tobermorite is 

the main phase evolving 

during the hydrothermal 

hardening of AAC. The 

lathlike crystals interlock to 

each other to form a network 

causing the good 

compressive strength of the 

product (Fig. 1.6). The tobermorite-forming reactions does not reach the chemical 

equilibrium within the technical time scales, thus under the chosen curing conditions 

 
 

Fig.1.7: p-T diagram of tobermorite stability 

 
 
Fig.1.6: network of lathlike tobermorite crystals in 

AAC 
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the formed 1.13nm tobermorite is stabilized metastable (Gabrosek et al., 1993; Fehr 

and Zuern, 1997; Zuern and Fehr,2000.). Under equilibrium conditions 1.13nm 

tobermorite decomposes to xonolite and quartz (fig.1.7). Xonotlite has a fibrous 

structure which would remarkably decrease the compressive strength of the brick.  

Both 1.13nm tobermorite 

and xonotlite show the 

characteristic structural 

features of infinite silicate 

double chains of a type 

called Dreier-Doppelketten 

built up of condensed 

Dreierketten common to 

almost all CSH-Phases 

(fig.1.8). The chains are 

intercalated by a Ca-O 

layer (portlandite layer) so 

the structure consists of a 

central layer of calcium 

octahedra which has 

silicate sheets on each 

side. The calcium octahedra share oxygens with the silicate tetrahedra, the distance 

between two edges in the calcium octahedral layer is about the same length as a 

silicate Dreierketten unit. This feature enables differing linkage possibilities of Ca and 

Si layers and therefore polytism occurs. For both xonotlite and tobermorite several 

polytypes are known. Often the crystals show an intergrowth of more then one 

polytype which complicates an assignment by diffraction techniques. An intergrowth 

 
 
Fig.1.8: structure of tobermorite (a) and xonotlite (b) modified 
after Bonaccorsi et al (2005) and Hejny & Armbruster (2001) 
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in nanoscale causes order/disorder phenomena which also hinder a clear description 

of the structure. These rare minerals are often too small in size for single crystal 

diffraction which is needed to obtain a detailed solution of the structure. For this 

reason we wanted to find a way to use the simple and fast method of X-ray powder 

diffraction to describe the structural characteristics of crystalline material obtained by 

synthesis without limitations by crystal size or time consuming Rietveld analysis of 

the patterns. The method was proofed based on natural samples of xonotlite and will 

be explained in chapter 2. 

Coming back to tobermorite, here the composite layers of one calcium and two 

silicate layers are bound together by an interlayer containing calcium ions and water 

molecules. The grade of hydration affects the basal spacing of the structure in [001]. 

Based on that three members are known from the tobermorite group 0.9nm 

tobermorite or riversideite, the 1.13nm tobermorite or tobermorite senso stricto (part 

of this study) and the 1.4nm tobermorite also named as plombierite. Tobermorite 

1.4nm transforms into the 1.13nm one by heating to 100°C, further heating up to 

300°C leads to the 0.9nm tobermorite. by proceeding dehydration (Merlino et al. 

2001). it is known from some 1.13 nm tobermorites to not shrink on dehydration and 

are therefore called “anomalous (Mitsuda & Taylor 1978). The average structure was 

described by Hamid but the real structure was solved by Merlino et al. (2001, 1999) 

which is based on two polytypic modification of orthorhombic and monoclinic 

symmetry leading to a disordered structure (O/D character). In AAC, 1.13nm 

tobermorite is close to the composition Ca5Si6O16 
(OH)2 *4H2O and occurs in 

association with semi-crystalline CSH-phases CSH (I ) and CSH (II) as minor 

components. In contrast to tobermorite these phases are highly disordered and 

display a wide range of compositions. 
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Chapter 2: Crystal Chemistry of Xonotlite Ca6Si6O17(OH)2. Part I: Determination 

of Polytypes using X-Ray Powder Diffraction 

 

 

2.1. Introduction: 

As already mentioned in chapter 1 1.13nm tobermorite is formed metastable under 

the normally conditions during production of AAC. The thermodynamically stable 

phase is xonotlite (fig 1.7). Xonotlite differs from 1.13nm tobermorite by its structure 

and texture. While tobermorite forms lathlike crystals which influence the pressure 

resistance of the product in a positive way due to the interlocking “house of card” 

structure, xonotlite crystallizes more needle-like what extensively decreases the 

pressure resistance. Despite this knowledge just a few data exist on the reaction 

kinetics and mechanisms present during the formation of 1.13nm tobermorite in AAC. 

There is a strong need of collecting kinetic data to understand and control the 

processes during the hydrothermal curing of AAC, which are the major aim of this 

work and will be discussed in detail in chapter 4. 

The determination of reaction and growth kinetics of CSH-phases and the calculation 

of thermodynamic equilibrium demands material well characterized by its crystal 

chemistry. Single crystal diffraction would be the most exact method to determine the 

structure of CSH-phases but is often not applicable due to the lack of single crystals 

of sufficient size. Beyond that one has to deal with short range order effects due to 

the order disorder behaviour of many CSH-phases and the presence of one ore more 

polytypes intergrown in one crystal. Applying the Rietveld method on data obtained 

by synchrotron or neutron diffraction is often time consuming and reaches the limits if 

more then two polytypes occur in the same crystal. Therefore another aim of the 

present work was to find a fast and easy method to distinguish between different 
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polytypes by x-ray powder diffraction, which would be suitable for fine grained 

crystals as well. In the presented paper this method was tested on different natural 

polytypes. Based on the work of Hejny and Armbruster deriving structural data for the 

different polytypes present in xonotlite by single crystal x-ray diffraction, the 

theoretical powder diffraction patterns were calculated. The polytypes of natural 

xonotlites were determined by matching the measured patterns with the model 

patterns Characteristic peaks of lower intensities were chosen in the range of 10 and 

35° 2Θ to distinguish between the different polytypes. Ten natural xonotlite samples 

from seven different localities and different lithologies were investigated. After 

determining the present polytypes a correlation to the conditions of formation was 

done. 

 

2.2. Structure and polytypism of xonotlite 

 

Mamedov & Belov (1955, 1956) were the first to propose a structure model for 

xonotlite which was later confirmed by Eberhard et al. (1981). The structure of 

xonotlite consists of Ca-O-polyhedral layers in both sevenfold and octahedral 

coordination and [Si6O17]-Dreier-Doppelketten. The CaO polyhedras are edge-

sharing to form infinite chains in b-direction and joined together resulting in layers 

parallel to (001). Between these layers the [Si6O17]-Dreier-Doppelketten are located. 

Each of these double chains consists of two wollastonite-like Dreier-Einfachketten 

with two paired tetrahedra and one bridging tetrahedron (Fig.: 1.8). The structural 

units were confirmed by extended X-ray absorption fine structure (EXAFS) 

investigations of Ca (Lequeux et al., 1999) and by 29Si NMR (Cong et al., 1996; 

Noma et al., 1998) on synthetic material, respectively.  
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Due to the same length of [Si6O17]-Dreier-Doppelketten and two Ca-polyhedra there 

exist two different ways of attachment of the double chains to the polyhedral layers 

and hence various polytypes are possible (Gard, 1966; Kudoh & Takeuchi, 1979). 

Based on the structure model of Mamedov & Belov (1955, 1956a) and the 

confirmation of Eberhart et al (1981) six different polytypes (four ordered and two 

one-dimensional disordered) were suggested for xonotlite. These Polytypes can be 

seen as different stacking in [100]- and [001]-direction of a protoxonotlite-cell 

introduced by Kudoh & Takeushi (1979). In [100]-direction a continuous shift of +b/4 

or –b/4 or an alternating shift of +b/4 and –b/4 is possible. In [001]-direction the 

protoxonotlite-cells are either in juxtaposed positions or shifted by b/2. The 

combination of these different stacking modes leads to four ordered polytypes 

M2a2bc, M2a2b2c, Ma2bc and Ma2b2c as shown in Figure 2.1. The letter M 

indicates  the monoclinic symmetry of the protoxonotlite-cell and the three lower case 

letters, with numerical values in front if necessary, indicate the periodicity of the three 

directions in space according to the modified Gard-notation (Guinier et al., 1984). The 

different cell parameters were determined by Hejny & Armbruster (2001) 

For M2a2bc and M2a2b2c twinning is possible if one species displays intergrowth of 

domains with continuous shift of +b/4 in a-direction and continuous shift of –b/4. 

Streaks parallel to a* observed in single crystal patterns by Gard (1966) were 

assigned to the two known disordered polytypes P∞21 and A∞22 ( Corresponding to 

Mad2bc and Mad2b2c in modified Gard-notation). Hejny & Armbruster (2001) 

 
 
Fig 2.1: polytypes of xonotlite 
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extended the group of possible polytypes by Ma2bcd and M2a2bcd, which have one-

dimensional disorder in c-direction as indicated by streaks observed parallel to c*  

(Chisholm, 1980; Eberhard et al.,1981). Short spikes recorded perpendicular to the c* 

streaks have been interpreted in terms of two-dimensional disorder (Dornberger-

Schiff, 1964), and they are termed with the corresponding symbol Mad2bcd (Hejny & 

Armbruster, 2001). 

 

2.3. Assigned polytypes 

 

X-ray powder diffraction (XRPD) data were determined with a STOE STADI P-

diffractometer using a SIEMENS KRISTALLOFLEX 710/710H generator operating at 

the following conditions: 40 kV, beam current 30mA, curved Germanium 

monochromator, step scan in the 2Θ region 10-60° with 0,01 2Θ steps and Cu-Ka-

radiation (l=1.5406 Å). Most of the xonotlites show intergrowth of two or three 

different polytypes. As the characteristic peaks are of very low intensity sometimes 

not all are detectable in the investigated patterns. Due to occurring texture effects 

some peaks have highly increased and others decreased intensities. Some of the 

characteristic peaks can coincide with those of other polytypes (if present in the same 

sample). For this reason different peaks had to be used for polytype assignment in 

the different samples. The reproducibility of the obtained results was verified by 

means of random sampling. 

In all samples the M2a2b2c polytype was found but in Xon2, Xon8 and Xon9 with 

only minor amounts. This predominance is an effect of specific growth conditions 

availing the development of one polytype. Hejny and Armbruster (2001) explain this 

preferred development by the more balanced and therefore favourable distribution of 

OH-groups at the free apices of each Ca-octahedron in the structure of this polytype. 
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The Ma2b2c-polytype could be detected in two samples found in Russian rodingites 

of Bazhenovskoe (Xon1) and Chukotka (Xon3) and in two samples found in Mn-ore 

deposits from the Wessels Mine located in the Kalahari Manganese Field of South 

Africa (Xon8) and from Franklin, New Jersey (Xon9), respectively. 

Ma2bc is developed in the xonotlite from Mäntijärvi (Finland) with an exceptionally 

high amount and in the well crystalline sample from N’Chwaning Mine (Xon4) 

investigated by Hejny & Armbruster (2001). In addition this polytype does exist with 

minor amounts in xonotlites of Bazhenovskoe (Xon1) and Chukotka (Xon3). 

The occurrence of M2a2b2c and Ma2bc in Xon4 is in good agreement with the 

investigations of Hejny & Armbruster (2001) on xonotlites from the same locality. 

They also reported the presence of Ma2b2c polytype which could not be confirmed in 

this study. This can be explained by different intergrown polytypes even in samples 

from the same locality due to small scale fluctuations in the physico-chemical 

conditions during formation. 

The M2a2bc-polytype was first detected in natural xonotlite from Chukotka (Russia) 

by Garbev (2004) using Rietveld-modelling of diffraction data obtained by syncrotron 

radiation. In this study the M2a2bc polytype could clearly be detected in xonotlites 

from Mäntijärvi (Xon2) and Chukotka (Xon3). Esteban et al. (2003) made their 

assignment in Xonotlites from Carratraca (Spain) by use of X-ray powder diffraction, 

too. Due to the missing description of the occurrence of M2a2bc polytype in natural 

xonotlites in literature, this polytype was not taken into account by Esteban et 

al.(2003). This is in contrast to the results of this study where the development of 

M2a2bc polytype in xonotlite from Carratraca (Xon5) could be confirmed by the 

presence of three characteristic reflections.  

The above mentioned lower intensity of (h0l)-reflections in all patterns can be 

explained by a preferred orientation of the acicular crystals along their elongated b-
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axes during preparation. The observed phenomenon of inverse intensity-ratio in (0kl) 

and (hkl)-reflections in M2a2bc-polytype may be caused by preferred orientation of 

more disk-shaped crystals. 

 

2.4. Correlation of chemical composition and assigned polytypes 

 

Quantitative chemical data for xonotlites were obtained by electron microprobe 

analysis (EMPA) using a CAMECA SX100 operated at 15 keV acceleration voltage 

and 20 nA beam current. Synthetic wollastonite (Ca,Si), periclase (Mg), corundum 

(Al), hematite (Fe), escolaite (Cr), natural ilmenite (Mn,Ti), albite (Na) and osumilite 

(K) were used as standards and matrix correction was performed by the PAP 

procedure (Pouchou & Pichoir, 1984). The reproducibility of standard analyses was 

<1% for each element routinely analysed. For a detailed description of the chemical 

composition of all investigated xonotlite samples the reader is referred to the 

appended article (appendix B). 

Due to the different lithologies of the localities the investigated samples were divided 

into three different groups. Xonotlites formed in kimberlites (1), xonotlites in rodingites 

(2) and xonotlites formed by metasomatic processes close to Mn- and Mn-Zn- ore-

deposits (3), respectively. Group 1 is only represented by the xonotlite from Mäntijärvi 

(Finland). This sample exhibits a low SiO2- and CaO-content and a slight 

enhancement of Na2O up to 0.09 wt%. 

Group 2-xonotlites were formed in rodingites (Xon1, Xon3, Xon5, Xon6) and are 

characterized by the highest CaO-amount of 47.07 up to 47.59 wt%. Analyses of 

Carratraca-xonotlites (Xon5) are in good agreement to those of acicular crystals 

replacing hydrogrossular of the same locality published by Esteban et al. (2003)  
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Samples belonging to group 3 are formed by hydrothermal alteration (250-400ºC) of 

the primary sedimentary and low-grade metamorphic Mn-ores (Kalahari Manganese 

Field ; Xon4, Xon8) or high-grade metamorphic Mn-Zn-ores (Franklin, New Jersey; 

Xon9) and showing slightly higher Mn-content. This could be explained by a preferred 

integration of Mn on the Ca-positions in Xonotlite-structure, likewise indicated by a 

lower Ca-content. A substitution of Al for Si on tetrahedral-sites, indicated by the 

higher amount of Al2O3 could be detected noticeably only in the sample from 

Carratraca and one from Wessels mine. De Bruiyn et al. (1999) described a higher 

SiO2- and CaO-content in xonotlites of N’Chwaning Mine in comparison to those of 

Wessels Mine, which could be confirmed in this investigation. In addition De Bruiyn et 

al. (1999) detected slightly higher FeO-contents which could not be verified in the 

samples of this study. In all investigated xonotlites Al, Na and Mn are the only 

elements which are enriched in remarkable amounts. A enhancement of Mg known 

from synthetic xonotlites (Quian et al., 1997) could not be detected in the investigated 

natural xonotlites 

 

2.5. Conclusion: 

A clear coherence of different lithology of the habitat and the developed polytype 

could not be confirmed. Xon2 from kimberlites (Mäntijärvi, Finland) is in a special 

position referring to this question. It displays a very high amount of Ma2bc polytype 

compared to all other investigated samples. This can be linked to the special growth 

conditions in kimberlites. 

The results of this study clearly demonstrate that X-ray powder diffraction is a useful 

and fast method to distinguish the different polytypes developed in xonotlite. It is the 

preferable option if crystallite size is too small for X-ray single crystal diffraction as it 

is typical for natural and synthetic xonotlites 
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Chapter 3: HAND - An Hydrothermal Autoclave for Neutron Diffraction 

 

3.1. Introduction: 

As described in chapter 1 1.13nm tobermorite is formed during the hydrothermal 

curing of AAC. To optimize the reaction conditions and control the formation of 

phases the exact determination of thermodynamic data and the kinetics of the 

reaction are needed. Most commonly hydrothermal reactions and their evolving 

phases at a certain temperature and pressure are studied by performing experiments 

using so called Parr-bombs. Initial materials and water are filled in the bomb and kept 

under the desired temperature for a certain amount of time. Subsequently the bomb 

is quenched with water and the products are investigated by the usual methods. This 

method reaches the limit when it comes to the determination of reaction kinetics. The 

scientist has to struggle with several problems. First of all, quenching effects can 

influence the final phase relations in particular and there is no guarantee to freeze 

the process exactly at one stage and to quench it without change. Furthermore a 

huge number of experiments at different compositions and temperatures are needed 

to obtain a sufficient amount of data-points which means an enormous expenditure of 

time. Reliable kinetic data can only be obtained by performing in-situ experiments by 

x-ray or neutron diffraction. For those experiments special reaction cells are needed 

tailored to the particular requirements of the scientific problem and of course the 

instrument, respectively. Therefore an autoclave was designed to perform neutron 

diffraction experiments on the formation of 1.13nm tobermorite.  
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3.2. Design of HAND 

 

The hydrothermal autoclave for 

neutron diffraction (HAND) was 

designed to be a simple and cheap 

reaction cell fitting to the well-

established ILL D20 (Walton and 

O’Hare, 2000; Hansen et al., 2008) 

station with its vanadium furnace. 

For a detailed description of the 

instrument the reader is referred to 

the appended article (appendix C) 

Changes of samples and 

apparatus must be possible fast 

and easy. Therefore the apparatus 

is mainly an upright steel tube 

closed at both ends. The steam necessary for the hydrothermal reaction is generated 

inside this tube during heating, so no separate steam supply is needed. The material 

chosen for the autoclave is cobalt-free stainless steal ( 4301, Linster, Aschau). The 

thickness of the walls is a compromise between the demands of a stability at an 

internal pressure of up to 40 bars and the aim to obtain a maximum penetration of the 

neutron beam. The schematic diagram of the reaction cell is given in Figure 3.1. 

 HAND consist of three parts: bottom, sample support and cover (Fig.3.1.). The 

bottom is fixed inside the vanadium furnace device below the neutron beam. It serves 

as reservoir for D2O and contains the bushings for the internal thermocouples. Inside 

the bottom the sample support is placed above the water reservoir. The cover is a 

 
Fig.3.1: schematic drawing of HAND 
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tube of 14 cm in length and 2.5cm in diameter which is closed at the upper end. It is 

simply screwed upon the bottom and can easily be replaced. Its walls have a 

narrowing down to 1 mm at the level of the neutron beam to maximize the intensity of 

the neutron flow through the sample. 

 

3.3. Applicability for neutron diffraction experiments 

To proof the applicability of HAND the pure system CaO-SiO2-D2O was chosen to be 

studied first. The fast and easy sample preparation allows it to easily add different 

additives to the system. The bulk composition was set to a Ca/Si ratio of 0.5 

projecting on the join tobermorite-quartz and a chosen D2O/solids ratio of 0.8 

resembles the recipes of industrially 

manufactured steam cured building 

materials [Fehr & Zuern, 2000]. 

Until now HAND was used for 

several beam times at ILL to perform 

experiments to investigate the 

influence of temperature, quartz 

grain size and Al-content on the 

formation of 1.13nm tobermorite. 

The results for these experiments 

are summarized and interpreted in 

chapter 4 and related articles 

(appendix D and E). The monitoring 

of the inner and outer thermocouple 

reveals an accuracy in sample 

temperature of ± 0.5°C and the desired reaction temperature of 190° was reached 

 
 
Fig.3.2: time resolved diffraction patterns of an 

experiment at 190°C and 16µm quartz grain 
size (modified after Zuern, Fehr & Hansen, 
2002) 
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after 60 min of heating up. The expense of the initial solid phases quartz and 

portlandite with reaction time and the formation of 1.13nm tobermorite can be 

observed by the decrease of their Bragg-peaks in the time-resolved neutron 

diffraction pattern as demonstrated in Figure 3.2. within the range of 40° to 55° 2-Θ.  

Sequential fitting of multiple, 

individual Bragg-peaks of every 

powder pattern were performed by a 

procedure programmed to perform 

this task from inside the ‘Large Array 

Manipulation Program’ (LAMP, 

http://wwwold.ill.fr/data_treat/lamp/la

mp.html), the data-visualization and 

treatment system used at ILL. The 

main diffraction peak of iron (mantle of HAND) did not interfere with any peaks of the 

phases of the sample and was used to calibrate the intensities of the phases of 

interest. After 200 min. portlandite was dissolved completely, but crystallization of 

1.13nm tobermorite did not start until 331 min. at 190°C (Fig.3.2.). The amount of 

quartz did not remain constant after the consumption of complete portlandite, 

indicating a reaction of quartz and initially formed semi-crystalline Ca-rich C-S-H(I). 

The first detectable reflections of tobermorite were those of (hk0) planes, (00l) 

reflections follow with a time lag of about 60 minutes (see fig. 3.3).  

 

3.4. Conclusion 

The high flux instrument D20 enables a time resolution of one minute for recording 

one diffraction pattern with a good peak/background ratio. Each single diffractogram 

allows an exact determination of the amount of phases and the decrease or increase 

 
 
Fig.3.3: different onset of hk0 and 00l reflections of 

1.13nm tobermorit during crystallisation 
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of phases as a function of time. The low scattering of the data on the amount of 

phases involved indicates, that a detailed kinetic modeling (e.g. using the model of 

Chan et al. (1978) or an Avrami-equation (Shaw et al., 2000) is possible on data 

obtained by HAND experiments. The steel used for HAND has the advantage to 

behave chemically inert and derived kinetic data correspond to the pure system SiO2-

CaO-D2O. Furthermore, steel is a cheap material and easy to handle in contradiction 

to gold-coated Ti-Zr alloys used by Walton et al (1999). 

The detailed compilation of information obtained by HAND-experiments leads to a 

better insight in the reaction kinetics and mechanisms of CSH-formation. Its 

applicability has been proofed in a variety of experiments studying the influence of 

different parameters on the reaction kinetics of 1.13nm tobermorite as will be shown 

in the next chapter. Beyond that, this autoclave offers a multitude of other possible 

applications in geo.- and material sciences. The mature design of HAND allows an 

easy adaptation on powder diffraction devices of other neutron sources assumed that 

they can provide a sufficient neutron flux. 
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Chapter 4: reaction and growth kinetics of 1.13nm tobermorite crystallizing in 

AAC 

 

4.1. Introduction: 

1.13nm tobermorite (Ca5Si6O16 
(OH)2 *4H2O) is known to be formed during the 

hydrothermal hardening of aerated autoclaved concrete (AAC), a widely-used 

building material for light weight constructions. In consequence of the rapid increase 

in applications of such materials during the last 10 years a strong need of more 

detailed scientific research arose simultaneously. Fundamental knowledge on the 

nature of CSH-phases had been given by Taylor (1964) with his studies on portland 

cement phases but there is still a demand of further investigations. The existence of 

various poorly ordered and metastable phases in the CSH-system hinder 

experimental work thus the thermodynamics, kinetics and structural features of 

1.13nm tobermorite and its neighbours are still poorly understood. The knowledge of 

these properties is of essential importance as the mechanical properties of the 

mentioned building materials are strongly dependent from the type, amount and 

texture of the evolving CSH-phases. In AAC, 1.13nm tobermorite is close to the 

composition Ca5Si6O16 
(OH)2 *4H2O and occurs in association with semi-crystalline 

CSH-phases CSH (I ) and CSH (II) as minor components. In contrast to tobermorite 

these phases are highly disordered and display a wide range of compositions. They 

are classified by their Ca:Si ratio: CSH (I) with a Ca:Si ratio <1.5 and CSH (II) with a 

Ca:Si ratio > 1.5 according to Taylor (1950,1968). There has been a lot of work in this 

field aimed at understanding the formation mechanisms and growth kinetics of CSH-

phases (Chan & Mitsuda., 1978; Klimesch & Ray,2002). But little quantitative data 

exist on the kinetics of 1.13 nm tobermorite formation. In addition there is no 

accordance on the nature of the reaction mechanism because some studies 
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proposed being solution controlled and others being diffusion controlled as pointed 

out in detail by Klimesch et al. (1996). The reaction mechanism and kinetics of the 

formation of 1.13 nm tobermorite in the pure cement-free system CaO-SiO2-H2O from 

lime, silica and water under hydrothermal conditions were determined by quenching 

experiments at 180°-190°C/Psat (Taylor,1968; Chan et al. ,1978; Zürn & Fehr, 2000) 

and by an in-situ Neutron diffraction experiment (Fehr et al., 2002) as well. As 

mentioned in chapter 3, quenching experiments reveal the disadvantage of missing 

data for the early evolution of phases in time and have prevented a quantitative 

kinetic description so far. 

The major aim of this study was to determine the influence of reaction temperature 

and quartz grain size on the formation of 1.13nm tobermorite in terms of reaction 

mechanism and reaction rate. Therefore the reaction mechanism was determined 

from in situ- neutron diffraction experiments and reaction constants were calculated 

for the pure system CaO-SiO2-D2O at different temperatures (170,190,210°C, Psat) 

and the employment of two different grain sizes of the quartz component with 16 and 

8 µm, respectively.  

The time-resolved neutron diffraction pattern were taken within the range of 8° to 

153.6° 2-θ at λ = 2.4 Å to allow the analysis of d-spacing up to 11.3 Å, where the 

basal (002) reflection of the evolving 1.13nm tobermorite is expected. The 

mechanisms of the 1.13nm tobermorite forming reaction can be evaluated on the 

basis of the reaction conversion of quartz according to Chan et al (1978) assuming 

that there are no seeds in the reactants and the growth rate is low: 

 

( ) nkt13
1

11 =−− α  (1) 
 
where α gives the fractional reaction conversion of quartz, k the reaction constant 

and t the reaction time. According to equation (1) the factor n reveals information on 
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the reaction mechanism. If n=1 the reaction is solution controlled (phase boundary 

model), if n=2 the reaction is diffusion controlled (Jander equation),(Hancock & 

Sharp, 1972). Values for α were calculated from the decreasing integral intensity of 

the (101)-Bragg reflection of quartz. Rate constants for the overall reaction progress 

were calculated using equation (1) assuming slopes of 1 (n = 1) and 0.5 (n = 2) for a 

solution and diffusion controlled reaction mechanism, respectively. Based on the 

calculated rate constants for the three temperatures a first attempt to determine 

activation energies was done. Therefore activation energies EA can be determined 

according to the Arrhenius equation (2) when data were plotted according to equation 

as follows 

RT
E A

eAk −⋅=  (2) 

where k is the rate constant, EA the activation energy, T the temperature in Kelvin, R 

the gas constant and A the pre-exponential factor.  

 

4.2. Results 

The results for the neutron diffraction experiments are described and discussed in 

detail in the related articles (see appendix D and E). At this point, only the main 

findings will be mentioned. After determining the reaction conversion of quartz for all 

experiments and plotting the results terms of equation (1) as explained in the 

introduction, a change in slope can be seen. This could now lead to the conclusion 

that the chosen kinetic model of Chan et. al. (1978) is not valid for the investigated 

reaction but if one survey the single segments of each curve they are either 

described with a slope of 1 or 0.5 referring to an exponent of n= 1 or n= 2 in equation 

(1), respectively. Interpreting this in terms of the reaction mechanism it implies 

changing reaction mechanisms with the reaction progress. All experiments show a 
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change from a solution controlled mechanism to a diffusion controlled mechanism. In 

some of them a third segment could be assigned with a further solution controlled 

reaction mechanism. 1.13nm tobermorite is not formed directly, it is just found after 

the complete 

expense of 

portlandite. By 

determining the 

Ca/Si ratio of the 

evolving phases 

over the reaction 

progress one can 

see that the 

phases formed first 

are richer in Ca 

then expected for 

1.13nm tobermorite. The Ca/Si ratio first reaches a maximum of 1.4 and then 

converges to the theoretical value of 1.13nm tobermorite of 0.83  This was first 

detected by our workgroup from neutron diffraction experiments in 2002 (Fehr et al., 

2002). The initial step of the reaction is controlled by the solution of quartz and its 

reaction with portlandite, leading to the formation of a layer of semi crystalline CSH-

phases surrounding the quartz grains as shown in Figure 4.1 for AAC steam cured at 

190°C/Psat(Zürn,1997). The second part of the reaction is controlled by the diffusion 

of SiO2 through this layer of CSH-phases, portlandite is expensed completely and the 

Ca/Si ratio decreases. 1.13nm tobermorite is then formed by the reaction of quartz 

with the previously formed CSH-phases. 

 
Fig.4.1:electron optical picture of a quartzgrain surrounded by a rim 

of freshly formed 1.13nm tobermorite and semicrystaline 
CSH-phases (Zürn,1997) 
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Comparing the transition times, the point of portlandite expense and the first 

occurrence of 1.13nm tobermorite-reflections the strong influence of temperature and 

grain size of quartz becomes apparent (Fig.4.2). 

 

4.3. Influence of temperature and grain size of quartz 

On the first glance, the use of finer quartz generally accelerates the reaction, 

portlandite is expensed earlier and also 1.13 tobermorite crystallizes faster. This is 

expected as a change in grain size from 16 to 8µm increases the specific surface 

about 44% resulting in a higher reactive area. But an increase in specific surface do 

 
Fig. 4.2: changing transition time with reaction temperature and points of expense of 
portlandite and occurrence of 1.13nm tobermorite determined from experiments with 
16µm quartz (a and b) and 8µm quartz (c) 
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not only accelerate the reaction, it also has a strong influence on the present reaction 

mechanisms as well, demonstrated by the missing second diffusion controlled 

segment in the experiments at 170 and 190°C/Psat applying the 8µm quartz. 

Applying 16µm quartz all experiments show a second change back to a solution 

controlled segment. With increasing reaction temperature the length of the diffusion 

controlled segment increases but the time for portlandite out and tobermorite in 

decreases. Initial semicrystalline CSH starts to react earlier with quartz to form 1.13 

tobermorite indicated by the longer persistence of a diffusion controlled mechanism. 

Experiments with 8µm quartz show a differing behaviour. For 170 and 190°C the 

second change to a solution controlled mechanism is missing or not detectable. Only 

at 210°C this change is present. But again the transition time from solution to 

diffusion control decreases with increasing reaction temperature. The point of 

portlandite expense slightly decreases with rising temperature. For 170 and 190° this 

is also valid for the point of tobermorite occurrence but at 210°C the time increases 

again, due to the present second change in reaction mechanism. This behaviour was 

assigned to the clear metastable formation of 1.13nm tobermorite under these 

conditions (Zürn & Fehr, 2000). 

 

4.4 Quenching experiments 

Based on this study kinetic data obtained from quenching experiments were 

recalculated in terms of equation (1) and can be now interpreted by applying two 

different slopes (n=1 and n=2) due to two distinct mechanisms during the reaction 

progress. Literature values (Klimesh & Ray, 2002; Zürn & Fehr 1997) were used to 

determine the transition temperatures ( see appendix D, Fig.3) and interpreted 

concerning to the grain size dependency ( see appendix D, Fig.4) The results are in 
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good agreement with findings of this study, showing an increase of reaction time with 

increasing grain size of quartz 

 

4.5. Calculated rate constants and activation energies 

The influence of both grain size and reaction temperature can as well be seen in the 

calculated rate constants and activation energies 

The change of the rate constants with increasing specific surface for the three 

investigated reaction 

temperatures clearly 

shows an increase 

at a given 

temperature. The 

strongest increase 

occurs at 210°C, the 

rate constant 

changes from 

2.795*10-4 s-1 to 

3.214*10-4 s-1 for the 

first solution controlled part and from 2.784*10-4 s-1 to 2.794*10-4 s-1 for the diffusion 

controlled part with a decreasing grain size of quartz. Likewise the rate constant 

increases with increasing temperature what can be extracted from Figure 4.3. Based 

on the calculated rate constants for the three temperatures a first attempt to 

determine activation energies was done. The determined activation energies for the 

experiments containing the 16µm quartz are with 0.2 kJ/mol for the solution 

controlled segment and 1.8 kJ/mol for the diffusion controlled segment. They reveal 

values which were remarkably lower than those determined from the 8µm quartz 

Fig.4.3: changing rate constant with increasing specific surface 
(decreasing  grain size of quartz) 
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experiments of 6.2 kJ/mol and 7.4 kJ/mol, respectively. These values are 

considerably below 26 kJ/mol, 37 kJ/mol and 33kJ/mol determined for the system 

CaO-Al2O3-SiO2-H2O assuming an isokinetic behaviour (Shaw et al., 2000). 

 

4.6. Conclusion 

 

It could be shown that in-situ neutron diffraction is a very suitable method to 

investigate the kinetics of the 1.13nm tobermorite formation. The non isokinetic 

behaviour of the reaction could be evidenced by combining the high intensity of the 

D20 powder diffractometer at ILL together with an improved hydrothermal autoclave 

(manuscript 2) allowing constant reaction conditions and a fast and easy sample 

exchange.  Furthermore exact times for the transition and the consumption of 

portlandite and the occurrence of 1.13nm tobermorite could be determined. Based on 

the data obtained by applying the kinetic model of Chan et al. (1978) on the values 

for the overall reaction progress rate constants could be determined for the first time. 

Likewise Shaw et al. calculated rate constants for the Tobermorite forming reaction 

but did not interpret their date in terms of the present reaction mechanism. By 

conducting experiments at three different temperatures, the temperature dependence 

and hence activation energies could be determined. The results of this study yield 

detailed kinetic data on the 1.13nm tobermorite formation, which were just insufficient 

investigated in the past. These data give a better understanding of the processes 

present during the production of AAC and could help to optimize production 

conditions and recipes resulting in shorter production times and an optimal exploit of 

the available resources. 

 

 



42 

 

5.1.Outlook 

The presented work successfully studied the reaction kinetics of the 1.13nm 

Tobermorite formation in the system SiO2-CaO-H2O. But answering one question 

leads to several new ones, that is how science works. Future work should therefore 

focus on the influence of additives like Al, SO4 and K to the reaction kinetics. They 

can enter the production process by the natural sand minerals like feldspar and mica. 

High temperature long term experiments could give insights in the decomposition of 

1.13nm tobermorite to xonotlite and quartz. 

The possibility to use porous samples for neutron diffraction experiments would 

improve the comparability to the production of AAC but is difficult to implement so far. 

The pattern matching method to characterise the material in terms of polytism like 

done for natural xonotlite in the presented work should be assigned to neutron 

diffraction experiments as well. At the same time more analytical methods should be 

used for the characterisation. First attempts with FTIR and Raman yield promising 

result but need further work. 
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5.3 Appendix 
 
Appendix A 
 
 Report of the industrial internship at Xella Thermopierre, Bourgoin- Jallieu, 
France (unpublished) 
 
 
Praktikumsbericht 
 
Indusrtiepraktikum 13.09.-06.10.2006  
YTONG/ Xella Thermopierre 
St Savin ( Bourgoin-Jallieu) 
 
 
Herstellung von Porenbeton 

 
Zur Produktion von Porenbeton wird eine 
Mischung aus Branntkalk, Quarzsand und Zement 
verwendet. Die Sandfraktion wird fein gemahlen 
um die Kristallisation zu begünstigen. Im Werk von 
St Savin sollen in Zukunft 2  Sande verwendet mit 
unterschiedlichen Quarzgehalten. Der eine wird in 
der Nähe des Werks aus einem See gefördert und 
ist Quarzärmer der andere stammt aus Bedoin mit 
SiO2 – Gehalten um die 93 %. Ein höherer 
Quarzgehalt wirkt sich positiv auf die 
Druckfestigkeit aus. 
Das beim Zuschneiden der Kuchen anfallende 
Material wird als sogenanntes Rückgut dem 
Produktionsprozess wieder zugeführt. Für ein 
besseres Ansteifen der Masse wird zusätzlich 
noch Anhydrit (CaSO4) beigemengt. Die Rohstoffe werden in den gewünschten 
Anteilen vermischt und mit Wasser zu einer Mörtelmischung angemacht in der der 
Kristallisationsprozess beginnt. Erst kurz vor dem Gießen wird fein gemahlenes 
Aluminiumpulver (2 Korngrößen) zugegeben das mit der alkalischen Mörtelmischung 
unter Bildung von Wasserstoff reagiert. Dadurch kommt es zur Porenbildung und 
zum Aufschäumen der ansteifenden Masse. 
Die Formen (4x1x0.8m)  werden bis zu ca. 2/3 mit der fertigen Masse befüllt und 
ruhen anschließend bei ca 37°C für 115 min in Kammern. Nach ca. 50 Minuten ist 
der „Kuchen“ bis zum Rand der Formen aufgegangen. Nach dem Ansteifen werden 
die Formen um 90° gedreht und der grünfeste Kuchen wird auf einen Wagen 
umgelagert. Anschließend erfolgt das Zuschneiden der Blöcke auf das gewünschte 
Maß mit Hilfe von Drähten. Am Ende des Produktionsprozesses steht die 

Abb.1: Verwendung von  Porenbeton 
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Autoklavierung. Hier werden die Kuchen bei ca. 190°C und einem 
Sättigungsdampfdruck von 10-12 bar für 8-12 Stunden  hydrothermal gehärtet. 
Das fertige Produkt, YTONG® (SIPOREX®), zeichnet sich bei relativ geringer Dichte 
durch hohe Wärmedämmung (geringe Wärmeleitfähigkeit) und ausreichender 
Drückfestigkeit aus und findet im Hausbau auch aufgrund der einfachen Verarbeitung 
(geringes Eigengewicht und leicht zu schneiden) Anwendung. 
Die Wärmeleitfähigkeit und die Druckfestigkeit des Materials sind von der Rohdicht, 
dem Quarzgehalt, der Feinheit des Sandes und der Menge an Bindemittel abhängig 
und werden im Werk täglich kontrolliert. 
 
 
  
 
 
Kontrolle und Optimierung von Wärmeleitfähigkeit, Druckfestigkeit und 

Korngröße der Sandfraktion 

 
Zur Optimierung dieser beiden Größen 
werden Versuchsgießungen mit 
bestimmten Gehalten an Bindemittel, 
Mischungsverhältnissen der beiden Sande 
und definierter Rohdichte hergestellt. Pro 
Gießung werden zwei Blöcke entnommen 
und aus ihnen drei Prüfwürfel mit 10 cm 
Kantenlänge herausgesägt. Die Richtung 
des entweichenden Wasserstoffs, die 
Nummer und der Tag der Gießung werden 
auf den Blöcken vermerkt (Abb.2). 
Anschließend werden die Würfel von 4 
Seiten geschliffen um eine glatte 
Oberfläche zu erhalten die für die 
Messungen nötig ist. Die Würfel werden 
dann im Trockenschrank bei ca. 80°C 
getrocknet und vor den Messungen eine 
Nacht lang im Exikator gelagert um die 
Restfeuchte zu beseitigen. 
 
 
. 

Messung der Wärmeleitfähigkeit: 

 
Die Wärmeleitfähigkeit λ gibt an welche Wärmemenge Q in der Zeit t und bei einem 
Temperaturunterschied dT durch die Fläche A strömt. Die Prüfwürfel werden in der 
Reihenfolge B (bas) M (millieu) H (haut) in einem Exikator gestapelt. Der Wert für λ 
wird einmal zwischen den Würfeln B und M und einmal zwischen M und H  auf der in 
Abb.2 mit 1 gekennzeichneten Fläche (vert × horiz 1) mittels einer Sonde gemessen. 
Bei der letzten Messung werden die Steine zusätzlich mit einem Gewicht beschwert. 
Aus dem Unterschied zwischen der vorgegebenen Temperatur und der in den 

Abb.2: Prüfwürfel mit Beschriftung, Flächen zur  
Messung von λ (1) und A (2) und Angaben 
über Abmessungen 
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Steinen gemessenen Temperatur berechnet das Gerät den wert für λ in W/min*K. 
Die am in St Savin vorhandenen Messgerät ermittelten Werte werden anschließend 
korrigiert anhand einer Eichkurve die aus Messungen an einem genormten Gerät in 
Paris ermittelt wurde. 
 

2.2 Prüfung der Druckfestigkeit: 

 
Die Druckfestigkeit des Materials wird an der Fläche Nr 2 in Abb.2 gemessen. Es 
wird dabei die auf den Prüfquerschnitt (horiz1 × horiz2 siehe Abb2) wirkende Kraft 
ermittelt wen es zum Bruch kommt. 
Die Druckfestigkeit des Materials steigt im Allgemeinen mit zunehmender Rohdichte 
(abnehmende Porosität). Um Gießungen unterschiedlicher Rohdichte miteinander 
vergleichen zu können muss noch auf diese normiert werden. Zur Ermittlung der 
Rohdichte werden zusätzlich Gewicht und Kantenlänge des Prüfkörpers gemessen. 
Der auf die Rohdichte normierte Wert wird als A-Zahl angegeben. 
 
 
A-Zahl =     Rc   Rc    :  Druckfestigkeit in MPa/dm² 
     const. • ρ²     ρ      :  Rohdichte, trocken in kg/dm³ 
    const:  62500000 
 

Korngrößenbestimmung mittels Laser – Granulometrie 

 
Eine weitere Größe die Einfluss auf die Eigenschaften des Porenbetons hat ist die 
Mahlfeinheit (Korngröße) der Sandfraktion. Hier gilt je feiner der Sand gemahlen ist 
desto besser verläuft die Kristallisation und desto höher ist die Druckfestigkeit des 
Produkts. 
Es wurden zwei verschiedene Feinheiten des Sandes aus St Savin verwendet. Zum 
einen eine Mischung mit fein gemahlenem Sand aus St Savin wie er bisher auch in 
der normalen Produktion verwendet wurde. Zum anderen eine Mischung mit gröber 
gemahlenem Sand aus St Savin. 
Die Korngröße des Sandes wird mit der Methode der Laser-Granulometrie bestimmt. 
Die Korngrößenbestimmung mittels Laser-Granulometrie ist eine Methode, die die 
Projektionsfläche der Teilchen anhand der Beugung des Laserstrahls an den 
Teilchenrändern ermittelt. Über die Fläche wird auf das Volumen der Teilchen 
geschlossen. Bei der Berechnung der Volumenanteile einer bestimmten Korngröße 
wird davon ausgegangen das die Teilchen annähernd kugelförmig sind. 
 
 
Aufgaben und Ziele des Praktikums 

 
Während meines Praktikums wurden mehrere Versuchsgießungen produziert die ich 
dann hinsichtlich Wärmeleitfähigkeit und Druckfestigkeit untersuchen sollte. Dazu 
habe ich, wie unter 2. beschrieben, Prüfwürfel aus den Blöcken gesägt, diese 
anschließend geschliffen und  für 5 Tage im Trockenschrank bei ca. 80°C gelagert. 
Nach der Trocknung habe ich die Werte für die Wärmeleitfähigkeit und die 
Druckfestigkeit an den dafür vorgesehenen Messgeräten (siehe Punkt 2) ermittelt. 
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Ziel dieser Untersuchungen war es neue Rezepturen mit Verwendung des SiO2 
reichen Sandes zu testen und somit die Werte für Wärmeleitfähigkeit, Druckfestigkeit 
und auch der Korngröße der Sandfraktion zu optimieren. Hierfür wurden die beiden 
Sande in verschiedenen Mischungsverhältnissen verwendet. Bisher konnte nur eine 
Mischung in einem extra Silo hergestellt werden, die dann in allen Gießungen des 
Tages verwendet wurde. Die Installation eines neuen Programms ermöglicht es jetzt 
in jeder einzelnen Gießung die Anteile der beiden Sande zu variieren. Dies ist 
vielleicht für die normale Produktion weniger von Bedeutung, bietet aber für die 
Versuchsgießungen einen großen Vorteil.  
Am Ende des Praktikums soll anhand der in dieser Zeit ermittelten Daten und anhand 
von Daten aus vorangegangenen Versuchen Optimierungskurven erstellt werden. In 
diesen werden die ermittelten A-Zahlen und Werte für λ gegen das CaO/SiO2 –
Verhältnis und zusätzlich den prozentualen Anteil an Bindemittel aufgetragen. Die 
Wärmeleitfähigkeit λ sollten idealer weise einen Wert 0.098 W/k*m nicht 
überschreiten. Denn je geringer die Wärmeleitfähigkeit umso besser ist die 
Wärmedämmung des Baumaterials. Für die A-Zahl gilt generell, je größer desto 
besser, sie sollte am Optimum aber über 1450 liegen. Einfluss auf diese Größen hat 
die Rohdichte des Materials, der Anteil an Calciumbinder, die Feinheit und der 
Quarzanteil in der Sandfraktion. 
 
 
Versuche 

 
Es wurden generell 2 Versuchsansätze verwendet. Zum einen wurden Gießungen 
produziert in denen, bei konstanten Mischverhältnis der beiden Sande der 
prozentuale Anteil an Bindemittel (taux de liant) variiert. Im zweiten Ansatz wurden 
die Mischverhältnisse variiert und der Anteil an Calciumbinder konstant gehalten. Die 
verwendeten Sandmischungen lagen bei 20, 30, 40, 45, 50,60 und 70% des Sandes 
aus Bedoin (quarzreich). Die Menge an Calciumbinder variierte zwischen 25 und 
35% wobei ein Hauptaugenmerk auf den Bereich zwischen 28 und 30% gelegt 
wurde. Das CaO/SiO2 Verhältnis wurde im Nachhinein aus den reellen 
Mengenangaben der verschiedenen Bestandteile berechnet und variiert in beiden 
Versuchsansätzen. 
Die Mischverhältnisse der Sandfraktion sind durch die verschiedenen Farben der 
Zeilen zu erkennen (siehe Legende) 
Um das CaO/SiO2 Verhältnis zu berechnen wurde die chemischen Analysen der 
Firma Brück vom 25.06. 2006 verwendet  
Der Wert für λ und ρ ist der Durchschnitt  aus den Werten der bei jeder Gießung 
hergestellten 3 Prüfwürfeln (H M B).  
 
 
Ergebnisse und Auswertung 

 
Ohne Rücksicht auf eine Optimierung der Kenngrößen lässt sich zunächst einmal 
sagen das der Wert für λ mit abnehmender Rohdichte sinkt: Bei sinkender Rohdichte 
werden aber ebenfalls die werte für die Druckfestigkeit kleiner, was bis zu einem 
gewissen Grad tolerierbar ist. 
Betrachtet man für die einzelnen Sandmischungen die besten erreichten Werte für λ 
und A so zeigt sich das unabhängig vom Mischungsverhältnis dieses Maximum sich 
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immer bei ca. 28 % Bindemittel befindet. Dies erscheint zunächst ein wenig seltsam 
da bei Zunahme des Quarzanteils auch der Anteil an Bindemittel steigen müsste. 
Erklären lässt sich dies meiner Ansicht nach durch das Verhältnis von CaO zu SiO2. 
Dieses sinkt mit zunehmendem Anteil von Quarz bei konstanter Bindemittelmenge 
(siehe Abb 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Für die Maximalwerte heißt das, dass mit zunehmendem Anteil an Quarz im Sand 
die besten Werte für λ und A mit einem kleineren CaO/SiO2 Verhältnis zu finden sind. 
Generell liegen das Maximum für die Quarzreichen Mischungen bei wesentlich 
höheren Werten als bei den Quarzarmen (Abb.4). 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abb.3: Änderung des CaO/SiO2 Verhältnis mit steigendem 
Anteil an Sand Bedoin bei konst taux de liant 
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a)                                                                                    b)          
 

 
 
 
 
 
 
 
 
 

 
c) 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Für die Auswertung der Ergebnisse wurden die ermittelten A-Zahlen gegen das 
CaO/SiO2 Verhältnis aufgetragen. Um die Optimierungskurve zu erhalten wurden 
diese Daten mit einem Polynom 2. Ordnung angefittet. 
Eine Auswertung hinsichtlich der Änderung von λ mit steigendem CaO/SiO2 
Verhältnis ist aufgrund der stark schwankenden Rohdichte schwierig. 
Mit eine hohen Rohdichte nimmt zwar die Druckfestigkeit zu es wird aber auch der 
Wert für λ zu groß und umgekehrt. 
Die Schwankungen in der Rohdichte sind auf unterschiedliches Aufgehen des 
Kuchens zurückzuführen. Geht der Kuchen stark auf wird in der Produktion viel 
Material weggeschnitten und der Wert für die Rohdichte wird geringer als der 
gewünschte.  

Maximal Fit Melange 
  liant 

A 1350 1333 

liant 26,4 26.2 20
Ca/Si 0,52 0.52 

A 1442 1381 
liant 27 28.1 30

Ca/Si 0.51 0.53 

A 1445 1405 

liant 27.9 27.9 40
Ca/Si 0.51 0.51 

A 1456 1437 
liant 28.9 28.6 45

Ca/Si 0.51 0.5 

A 1559 1416 

liant 26.9 27.7 50
Ca/Si 0.46 0.47 

A 1481 1471 
liant 27.1 27.6 60

Ca/Si 0.45 0.45 

A 1498 1498 

liant 27.1 27.1 70
Ca/Si 0.42 0.42 

Melange % 
Sable bedoin Gießung Bindemittel % 

20 6 26,28,29 
30 26 23-33 
40 13 26-30 
45 7 28,29 
50 35 23-35 
60 6 26,27,28 
70 10 27-31 

Melange % 
Sable bedoin A Rc l r 

20 1350 2.64 0.093 350 
30 1442 2.9 0.094 354 
40 1445 3.29 0.1 377 

45 1456 3.09 0.098 364 
50 1559 3.47 0.103 373 
60 1481 2.98 0.097 355 

70 1498 3.04 0.096 356 

Tabelle 1 
a) Anzahl der Versuchsgießungen mit den verschiedenen Sandmischungen und den   abgedeckten 

Bereich an Bindemittelanteil 
b) Maximal ermittelte Werte für A (mit liant und Ca/Si) in den einzelnen Sandmischungen und werte 

der Maxima aus den Näherungskurven  
c) Druckfestigkeit (Rc), Wärmeleitfähigkeit (λ) und Rohdichte (r) der Versuche mit maximaler A-

Zahl in den verschiedenen Sandmischungen  
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Mit zunehmendem Quarzanteil im Sand sinkt der Grenzwert für die Rohdichte bei 
dem noch gute werte für λ erzielt werden. 
Das bedeutet bei gleicher Rohdichte ist der Wert für λ besser bei niedrigeren 
Quarzgehalten der Sandmischung. 
Betrachtet man das Maximum der ermittelten Optimierungskurven so wird deutlich das die A-
Zahl mit steigendem Quarzgehalt im Sand zunimmt. 

Das CaO/SiO2 Verhältnis nimmt jedoch ab 
Für 20, 45 und 60 % S-Bedoin wurden keine vollständigen Optimierungskurven 
ermittelt da nur Werte für einen Ast der Kurve vorliegen und die A-zahlen erst 
beginnen wieder kleiner zu werden. 
Deswegen sind in der Auswertung die Maximal ermittelten Werte berücksichtigt 
worden. Die maximal und aus den Optimierungskurven ermittelten Werte sind mit 
den dazugehörigen CaO/SiO2 und Bindemittelanteil und zusätzlich ρ, λ und Rc für 
die Maxima aus den Tabellen 1a) und b) zu entnehmen.  
 
20% Bedoin-Sand 
 
Mit einer Mischung mit 20 % S-Bedoin wurde die größte A-Zahl (1350) bei einem 
Bindemittelanteil von 26.4% und einem CaO/SiO2 Verhältnis von 0.52 ermittelt. A 
liegt somit noch deutlich unterhalb der geforderten 1450. Die Rohdichte dieser 
Gießung beträgt 350 kg/dm³ und λ ist gleich 0.093, beide Werte liegen im optimalen 
Bereich. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30% Bedoin-Sand 
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Abb.3: Optimierungskurve für A-Zahl bei 20% Bedoin-Sand 
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Bei 30%-iger Mischung liegt die aus der Optimierungskurve entnommene A-Zahl bei 
1385 mit einem Bindemittelanteil von 27% und einem CaO/SiO2 von 0.52. Auch der 
maximal ermittelte Wert liegt mit 1442 noch knapp unter dem Zielwert. Sowie r als 
auch λ sind mit 354 und 0.094 als gut einzustufen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40% Bedoin-Sand 
 
Mit 40% Bedoin-Sand beträgt der Wert aus der Kurve bei 1405 bei einem CaO/SiO2 
von 0.507 und einem Bindemittelanteil von. Der maximal ermittelte Wert liegt bei 
1445 mit aufgrund der hohen ρ von 377einem zu großen λ von 0.100, dafür aber mit 
3.29 bei einem sehr guten Wert für Rc. Die Rohdichte und somit auch λ sind besser 
bei geringeren Bindemittelanteilen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45 % Bedoin-Sand 
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Abb.5: Optimierungskurve für A-Zahl bei 40% S-Bedoin 
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Abb.4: Optimierungskurve für A-Zahl bei 30% Bedoin-Sand 
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Bei 45% liegen sowohl λ als auch Rc im akzeptablen Bereich und auch die A-Zahl 
übersteigt knapp das Limit von 1450 des zu erzielenden Werts. 
Ein anfittten der Werte ist nicht möglich da die Versuche ganz knapp das Maximum 
erreicht haben und noch nicht genügend Werte für den „absteigenden Ast“ zur 
Verfügung stehen 
 
50% Bedoin-Sand 
 
Bei 50% Bedoin-Sand beträgt der Höchstwert von A (1416) laut Optimierungskurve 
bei einem CAO/SiO2 von 0.47 und einem Bindemittelanteil von 27.7%. Die maximal 
ermittelte Wert 1559 liegt bei einem CaO/SiO2 von 0.45 und einem Bindemittelanteil 
von 26.9 %. Dieser sehr hohe Wert ist auf die ebenfalls hohe ρ zurückzuführen was 
auch der schlechte Wert für λ von 0.103 bestätigt.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
Sandfeinheit (Lasergranulometrie) 
 
Der Einfluss der verschiedenen Sandfeinheiten wird in Abb. 5 deutlich. Es wurden zwei 
verschiedene Mahlfeinheiten des Sandes aus St Savin verwendet. In den Mischungen mit dem 
feinen Sand sind die Korngrößenverteilungen der beiden Sande ungefähr gleich in den 
anderen ist der Sand aus Bedoin relativ zum Sand aus St Sv feiner. Diese Gießungen mit dem 
liegen mit ihren A-Zahlen im Durchschnitt um 30 höher als die gleichen Gießungen mit 
feinerem Sand aus St Savin (siehe Abb.5). Auch hier zeigt sich wieder eine Zunahme der 
Differenz der A-Zahlen mit steigendem Quarzanteil im Sand Die große Abweichung des 
Wertes bei 50%-iger Mischung in der Reihe 2 ist auf eine zu hohe Rohdichte zurückzuführen. 

Eine größere Feinheit des quarzreichen Sandes begünstigt somit die Kristallisation 
des Tobermorits und führt zu besseren Werten für die Druckfestigkeit. 

Abb.6: Optimierungskurve für A-Zahl bei 50% S-Bedoin 
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 Abb.7: Ergebnisse der Lasergranulometrie fur den Bedoin-Sand 
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Abb.8: Ergebnisse der Lasergranulometrie für den feinen Savin-Sand (Standard) 
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Abb.9: Ergebnisse der Lasergranulometrie für den groben Savin-Sand 
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     Tabelle 2 

        Ergebnisse der Lasergranulometrie 
 

Sand D < 10 D < 50 D < 90 
St Savin fein 4.72 43.88 125.97 
St Savin grob 5.67 58.10 181.94 
Bedoin 6.08 45.34 125.18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Azahl gegen Sandfeinheit
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Abb.5: A-Zahl aufgetragen gegen die verschiedenen Sandmischungen mit feinem und 
gröber gemahlenem Sand aus St Savin 

Abb.10: Granulometriekurven der verwendeten Sande 
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Zusammenfassung 

 
Zusammenfassend ist zu sagen, dass eine sehr gute Optimierung der A-Zahlen fur die 
Mischung mit 30% Bedoin-Sand leider nicht möglich war. Es konnten nur Maximalwerte von 
1380 erreicht werden. 
Dieses Maximum erreicht man mit einem Bindemittelanteil von ca. 28% und einem 
entsprechenden CaO/SiO2 Verhältnis von 0.53. 
Mit quarzreicheren Mischungen können wesentlich bessere Ergebnisse erzielt werden. 
Hierbei ist aber auf den Grenzwert der Rohdichte zu achten. Es fällt auf das mit höherem 
Anteil an BR, Zement und Kalk die Rohdichten oft zu hoch liegen. 
Sehr deutlich in den Versuchen mit 50% Bedoin-Sand zu erkennen. 
Es sollte daher beim Erstellen der Rezepte darauf geachtet werden diese werte möglichst 
gering zu halten und Bindemitttelanteil und CaO/SiO2 über die Gesamtmasse an festem 
Material zu steuern. 
Es reicht anscheinend nicht aus für eine kleinere rohdichte nur die Gesamtmasse an festen 
material zu verringern. 
Weitere Versuche die durchgeführt werden sollten sind meiner Meinung nach auch 
Gießungen mit 100% Quarzsand. Hierzu können die Rezepte aus Montreau mit leichten 
Modifikationen übernommen werden. Dort verwendet man für die Rohdichte von 350 
ausschließlich 100% Quarzsand da dieser in der werkseigenen Grube zur Verfügung steht. 
 
 
 
 
Rezepte 

 
Tabelle 3 
 
  20 30 40 45 50 60 70
liant 26.3 28.0 28.1 28.5 27.6 27.6 27.1
Ca/Si 0.52 0.53 0.51 0.50 0.47 0.45 0.42
Ms 1940 1930 1940 1930 1940 1940 1940
Ss 1070 1030 1035 1020 1045 1045 1055
BR 280 280 280 280 280 280 280
Cim 360 370 380 380 375 380 375
Chaux 150 170 165 170 160 155 150
Anh 80 80 80 80 80 80 80
Al1 1.75 1.75 1.75 1.75 1.75 1.75 1.75
Al2 0.75 0.75 0.75 0.75 0.75 0.75 0.75
 
In Tabelle 3 sind die theoretischen Rezepte aufgeführt, die zum erreichen der jeweiligen 
Maximumswerte verwendet werden sollten. 
 
In Tabelle 4 sind die Rezepte aufgelistet die tatsächlich verwendet wurden für die Gießungen 
mit den maximalen A-Zahlen. 
Die dazugehörigen Nummern und das Datum der Gießung sind ebenfalls aus der Tabelle 4 zu 
entnehmen. 
Diese Rezepte können immer nur Richtwerte sein da sie den Schwankungen der 
Mischmaschine unterliegen. 
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Tabelle 4 
 
melange 20 30 40 45 50 60 70 
taux de liant 26.4 27.3 27.9 28.9 26.9 27.2 30.2 
CaO/SiO2 0.52 0.51 0.51 0.51 0.45 0.45 0.49 
Ms 1900 1900 1940 1980 1980 1950 1940 
Ss 1037.7 1021 999.2 1026.8 1087.2 1059 975 
Br 280 280 320 300 280 280 300 
Cim 358.5 367 380.8 413.2 391 371 399 
Chaux 143.8 152 160 160 141.8 160 186 
Anh 80 80 80 80 80 80 80 
Al1 1.75 1.75 1.75 1.7 1.7 1.75 1.75 
Al2 0.75 0.75 0.75 0.75 0.75 0.75 0.75 
Gießung 64 101 75 78 76 81 59 

Datum 19.09.2006 14.09.2006 21.09.2006 24.08.2006 07.09.2006 27.09.2006 29.09.2006 
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Appendix B 
 
Crystal Chemistry of Xonotlite Ca6Si6O17(OH)2. Part I: Determination of 
Polytypes using X-Ray Powder Diffraction 
published in: Neues Jahrbuch für Mienralogie, Vol. 186/2, p 153-162, August 2009 
 
 
Crystal Chemistry of Xonotlite Ca6Si6O17(OH)2. Part I: 

Determination of Polytypes Using X-Ray Powder Diffraction 

(XRPD) 

Saskia Bernstein, Karl Thomas Fehr, Rupert Hochleitner 

 

Abstract: The crystal chemistry of xonotlite is mainly controlled by its four different polytypes. Ten natural 

xonotlites from three different lithologies were studied in order to determine their polytypes by  powder methods 

as X-ray powder diffraction (XRPD). The chemical compositions were obtained by electron microprobe analysis 

(EMPA) and show constant compositions with minor substitutions of Mn and Al. To determine the 4 ordered 

polytypes known for xonotlite (M2a2b2c, M2a2bc, Ma2b2c, Ma2bc), the theoretical diffraction patterns were 

calculated based on atom coordinates of Hejny & Armbruster (2001). For each polytype characteristic reflections 

can be chosen. The assignments were conducted by means of pattern matching. The results reveal that xonotlite 

mainly occurs in nature as intergrowths of two up to four polytypes. It could be demonstrated that X-ray powder 

diffraction is a useful and fast method to determine the different polytypes of xonotlite. 

 

Key words: xonotlite, crystal chemistry, polytypism, XRPD, pattern matching 

 

Introduction 

The physico-mechanical properties of steam-cured building materials are determined by the 

type and the structure of the Calcium-Silicate-Hydrates or CSH phases using the notation of 

cement chemistry for CaO, SiO2 and H2O, respectively. These binders are formed during the 

hydrothermal curing at elevated temperatures under saturated steam pressure. They could 

account for 10 up to 80 weight percent of the solid phases of the product. Depending on the 



62 

 

type of material and hardening temperature 1.13 nm tobermorite or xonotlite are the 

predominant phases with semi crystalline CSH-phases as minor components. In addition to 

steam cured building materials like light weight RPC there is a wide range of technical 

applications of xonotlite ranging from storage of hazardous wastes to insulating material and 

flame retardants. Xonotlite (Ca6Si6O17(OH)2), was described first by Rammelsberg (1866) in 

contact-metamorphic limestones of Tetela de Xonotla, Mexico and can be found in nature as a 

vein-forming mineral in many different localities. Xonotlite is formed mainly as a product of 

Ca-metasomatism in the contact-zone of Ca-bearing rocks with igneous (often ultramafic) 

rocks (Brown, 1978, Henry, 1999; Marincea et al., 2001; Esteban et al., 2003). Xonotlite 

crystallizes in monoclinic symmetry and is usually forming acicular to fibrous crystals up to 

centimetre size.  

Mamedov & Belov (1955, 1956a) were the first to propose a structure model for xonotlite 

which was later confirmed by Eberhard et al. (1981). The structure of xonotlite consists of Ca-

O-polyhedral layers and [Si6O17]-Dreier-Doppelketten. Two of the Ca-atoms are in sevenfold 

coordination surrounded by 6 oxygens in form of a trigonal prism and one additional oxygen 

on one prism plane, the third Ca-atom is in octahedral coordination (Fig. 1). CaO6-octahedra 

and CaO7-polyhedra in sevenfold coordination are both edge-sharing to form infinite chains in 

the b-direction. These structural elements were confirmed by extended X-ray absorption fine 

structure (EXAFS) investigations of Ca by Lequeux et al. (1999). The different chains are 

joined together by sharing edges and build up layers parallel to (001). Between these layers 

the [Si6O17]-Dreier-Doppelketten are located. Each of these double chains consists of two 

wollastonite-like Dreier-Einfachketten with two paired tetrahedra and one bridging 

tetrahedron as shown in Figure 1. These structural units were also confirmed by 29Si NMR 

(Cong et al., 1996; Noma et al., 1998) on synthetic material. In comparison to Cong et al. 

(1996), Noma et al. (1998) observed a splitting of Q2 sites which was attributed to different 

Si-O bond lengths and Si-O-Si angles of the paired tetrahedra and additional Q1 sites which 
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were interpreted in terms of disorder and may be due to the synthesis path. In xonotlite the 

bridging tetrahedra are connected to the Ca-polyhedral layers. Due to the same length of 

[Si6O17]-Dreier-Doppelketten and two Ca-polyhedra there exist two different ways of 

attachment of the double chains to the polyhedral layers and hence various polytypes are 

possible (Gard, 1966; Kudoh & Takeuchi, 1979). The OH-group is located at the free apex of 

a CaO6-octahedron where no bridging tetrahedra are attached (Kudoh & Takeuchi., 1979). 

Either every CaO6-octahedron carries one OH-group, or CaO6-octahedra containing two OH-

groups are alternating with non-hydroxylated ones depending on the polytype developed. 

Noma et al. (1998) measured a 1H NMR signal of 1.86 ppm in synthetic xonotlite. This proton 

was attributed as a component of a silanol-group. According to the xonotlite structure silanol-

groups should not exist and their occurrence was not confirmed by other NMR studies 

(Grimmer & Wieker, 1971; Cong et al., 1996). In addition Noma et al. (1998) detected a 

broad shoulder at 5.26 ppm assigned to interlayer water, which was not verified by NMR- 

(Cong et al., 1996), IR- (Kalousek & Roy, 1957) and TGA/DSC-studies (Shaw et al., 2000). 

 

Polytypism of xonotlite 

Based on the structure model of Mamedov & Belov (1955, 1956a) and the confirmation of 

Eberhart et al (1981) six different polytypes (four ordered and two one-dimensional 

disordered) were suggested for xonotlite. These Polytypes can be seen as different stacking in 

[100]- and [001]-direction of a protoxonotlite-cell introduced by Kudoh & Takeushi (1979). 

In [100]-direction a continuous shift of +b/4 or –b/4 or an alternating shift of +b/4 and –b/4 

is possible. In [001]-direction the protoxonotlite-cells are either in juxtaposed positions or 

shifted by b/2. The combination of these different stacking modes leads to four ordered 

polytypes M2a2bc, M2a2b2c, Ma2bc and Ma2b2c as shown in Figure 2. The letter M 

indicates  the monoclinic symmetry of the protoxonotlite-cell and the three lower case letters, 

with numerical values in front if necessary, indicate the periodicity of the three directions in 
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space according to the modified Gard-notation (Guinier et al., 1984). The different cell 

parameters were determined by Hejny & Armbruster (2001) and are listed in Table 1. For 

M2a2bc and M2a2b2c twinning is possible if one species displays intergrowth of domains 

with continuous shift of +b/4 in a-direction and continuous shift of –b/4. Streaks parallel to a* 

observed in single crystal patterns by Gard (1966) were assigned to the two known disordered 

polytypes P∞21 and A∞22 ( Corresponding to Mad2bc and Mad2b2c in modified Gard-

notation). Hejny & Armbruster (2001) extended the group of possible polytypes by Ma2bcd 

and M2a2bcd, which have one-dimensional disorder in c-direction as indicated by streaks 

observed parallel to c*  (Chisholm, 1980; Eberhard et al.,1981). Short spikes recorded 

perpendicular to the c* streaks have been interpreted in terms of two-dimensional disorder 

(Dornberger-Schiff, 1964), and they are termed with the corresponding symbol Mad2bcd 

(Hejny & Armbruster, 2001). 

 

Scope of this study 

The determination of reaction and growth kinetics of CSH-phases and the calculation of 

thermodynamic equilibria demands material well characterized by its crystal chemistry. 

Single crystal diffraction is the most exact method to determine the different polytypes but 

these examinations are very time consuming and require crystals of a certain size. ufficiently 

big crystals of xonotlite are rare in nature and usually do not occur in synthesis experiments or 

technical applications. Therefore a less time-consuming determination method is required 

suitable for fine grained samples as well. Esteban et al (2003) could confirm the occurrence of 

M2a2b2c and Ma2b2c in the investigated sample from Carratraca (Spain) by comparing 

recorded and calculated diffraction patterns. Another attempt to determine the different 

polytypes was carried out by Garbev (2004) by using Rietveld-analysis and a structural model 

containing all polytypes.  In the first part of this study the main focus is put on X-ray powder 

diffraction and pattern matching techniques of natural xonotlites. In addition a systematic 
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study on the composition of xonotlite from different localities is missing and only one report 

on the chemical variation in xonotlite from the Kalahari Manganese Field is given by de 

Bruiyn et al. (1999). Therefore a further aim of this study is to check for a dependency of the 

polytypes evolved and the chemical composition.  

 

Experimental 

Ten natural xonotlite samples from seven different localities and different lithologies were 

investigated (Tab. 2). All samples form polycrystalline aggregates of white to whitish crystals. 

Most of them consist of fine fibres sometimes displaying radial growth. In the sample from 

Mäntijärvi, Finland (Xon2) xonotlite is filling small cavities in a kimberlite and is 

accompanied by calcite. Xonotlites from Bazhenovskoe and Chukotka, Russia (Xon1, Xon3, 

Xon6, Xon7) and Carratraca, Spain (Xon5) occur in rodingite veins crosscutting serpentinites. 

Xon4, Xon8 and Xon10 from the Kalahari Manganese Field, RSA and Xon9 from Franklin, 

New Jersey, are products of metasomatism caused by low temperature hydrothermal fluids in 

manganese- and zinc-manganese-deposits respectively. Xon4 is a well crystallized xonotlite 

forming acicular crystals up to 30 mm long and 1mm in diameter, which were previously used 

by Hejny & Armbruster (2001) for single crystal diffraction. 

 

Quantitative chemical data for xonotlites were obtained by electron microprobe analysis 

(EMPA) using a CAMECA SX100 operated at 15 keV acceleration voltage and 20 nA beam 

current. Synthetic wollastonite (Ca,Si), periclase (Mg), corundum (Al), hematite (Fe), 

escolaite (Cr), natural ilmenite (Mn,Ti), albite (Na) and osumilite (K) were used as standards 

and matrix correction was performed by the PAP procedure (Pouchou & Pichoir, 1984). The 

reproducibility of standard analyses was <1% for each element routinely analysed. 
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X-ray powder diffraction (XRPD) data were determined with a STOE STADI P-

diffractometer using a SIEMENS KRISTALLOFLEX 710/710H generator operating at the 

following conditions: 40 kV, beam current 30mA, curved Germanium monochromator, step 

scan in the 2Θ region 10-60° with 0,01 2Θ steps and Cu-Kα-radiation (λ=1.5406 Å). For 

determination of the present polytype or polytypic intergrowth the theoretic powder 

diffraction patterns of the four ordered polytypes were simulated for Cu-Kα-radiation. For 

calculations the tool “Visualizer” of ICSD was applied  using the atomic coordinates for 

M2a2bc, Ma2bc and Ma2b2c of Hejny & Armbruster (2001). The diffraction pattern for the 

polytype M2a2b2c described by Kudoh & Takeushi (1979) was calculated with  the software 

package “Fullprof” for Rietveld-refinement (Rodriguez-Carvajal; 1993). The obtained 

patterns were used to define every polytype by a set of diagnostic peaks in the range of 10-35° 

2Θ. The polytypes of natural xonotlites were determined by matching the measured patterns 

with the model patterns. To revise the quality of the results Rietveld-analysis was performed 

for a selected sample (Figure 5) by using the FULLPROF-software (Rodriguez-Carvajal; 

1993)  

 

Results 

 

Chemical composition 

The chemical compositions of xonotlites under investigation are shown in Table 4. The data 

are the mean out of 10 analyses except for Xon2 where only three analyses were taken into 

account. All xonotlites are predominately Calciumsilikates, other elements only occur as 

minor components. The amount of SiO2 ranges from 49.37 wt% up to 51.10 wt%. The CaO 

contents vary between 45.76 wt% and 47.48 wt%. Samples from the Kalahari Manganese 

Field (N’Chwaning and Wessels Mine) show the highest amounts of SiO2 (49.37-51.10 wt%) 
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accompanied by a lower amount of CaO (45.82-47.48 wt%). Xonotlites from rodingites 

(Bazhenovskoe, Chukotka and Carratraca) contain the highest amounts of CaO up to 47.37 

wt%. The content of Al2O3 is low and varies between 0.02 wt% and 0.04 wt% except for a 

sample from the Wessels Mine (Xon10 in Tab.4) and from Carratraca (Xon5 in Tab.4) 

revealing 0.12 and 0.06 wt%, respectively. The contents of FeO are negligible except for 

samples Xon2 showing  a slightly higher value of 0.10wt%. MnO is considerably enriched in 

samples from the Kalahari Manganese Field (Xon4,Xon8 in Tab. 4) and the Franklin (Xon9), 

revealing contents of MnO from 0.18 up to 0.36 wt% as shown in Table 3. Only xonotlite 

from a kimberlite (Xon2 in Tab.4) and from rodingites in Carraraca (Spain, Xon5 in Tab.4) 

contains slightly higher alkali contents of 0.09 and 0.04 wt% Na2O, respectively. The contents 

of MgO, K2O, TiO2 and Cr2O3 are negligible in all samples. 

 

Simulated diffraction patterns 

The calculated diffractograms of all four polytypes are shown in Figure 3. The patterns are 

displayed in two different scales (Figure 3) ranging from 10 to 25° 2Θ and 25 to 35° 2Θ, 

respectively. At the first sight the four diffraction patterns are quite similar. Seven peaks of 

high intensity and five of lower intensity are common for all four polytypes. Characteristic 

differences can only be found by a detailed investigation of peaks with lower intensities in the 

region between 10 and 35° 2Θ as depicted in Table 5.  Peaks which allow distinction between 

the four polytypes are called "characteristic peaks". The indication corresponding to the 

values of ° 2Θ used in the text can be taken likewise from Table 5. 

 

The calculated pattern of the M2a2b2c polytype shows ten characteristic peaks. Most 

demonstrative is the (013) peak at 22.7°2Θ. Weaker characteristic peaks are those at 13.8, 

15.7, 18.8, 23.9, 26.1, 27.2, 29.2, 32.0 and 34.3° 2Θ.  
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The M2a2bc polytype shows nine characteristic peaks. The strongest are the (011), (-111) and 

(012) peaks at 17.6, 19.1 and 28.4° 2Θ, respectively. Further weaker peaks are those at 12.3, 

14.3, 21.8, 29.3, 31.1 and 33.6° 2Θ. 

 

The pattern of the Ma2b2c polytype has two stronger characteristic peaks at 23.1° 2Θ (113) 

and 29.6° 2Θ (511). Weaker peaks are to be found at 22.5, 30.8, 24.9, 34.5 and 14.6° 2Θ.  

 

The pattern of the Ma2bc polytype shows the strongest peak at 18.2° 2Θ (111) and also 

distinct characteristic peaks at 17.4, 18.2, 20.4 and 28.6° 2Θ. Weaker peaks are at 12.0, 13.1, 

15.9, 19.7, 23.6, 28.2, 30.2 and 32.3° 2Θ.  

 

Polytypes in natural xonotlites 

The characteristic peaks of the different polytypes in the investigated samples are summarized 

in Table 5. Most of the xonotlites show intergrowth of two or three different polytypes. As the 

characteristic peaks are of very low intensity sometimes not all are detectable in the 

investigated patterns. The assignement is demonstrated in Figure 4 for Xon2 (Mäntijärvi, 

Finland). Due to occurring texture effects, which are discussed later, some peaks have highly 

increased and others decreased intensities. Some of the characteristic peaks can coincide with 

those of other polytypes (if occurring in the same sample). For this reason different peaks had 

to be used for polytype assignment in the different samples. The reproducibility of the 

obtained results was verified by means of random sampling.  

 

 

 

M2a2b2c 
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Every investigated xonotlite shows the peaks at 13.8, 22.7 and 34.3° 2Θ, characteristic for the 

M2a2b2c-polytype. These three peaks often have broad, asymmetrical shapes. They show a 

weaker intensity in the patterns of Xon2 (Mäntijärvi, Finland, Fig.4) and Xon8 (Wessels 

Mine, South Africa). This is due to a minor amount of the M2a2b2c polytype in these 

samples. In addition there is a distinct reflection at 26.1° 2Θ in Xon2 (see Fig.4). This 

reflection is also visible in the patterns of Xon3 (Chukotka, Russia) and Xon10 (Wessels 

Mine, South Africa) but here with a medium intensity. The characteristic peaks at 18.8 and 

23.9° 2Θ are detectable only in the pattern of Xon5 (Carratraca, Spain). The (-111) peak at 

15.7° has been found only subordinate in the patterns of Xon1 and Xon3, both from Russian 

rodingites. In sample 1, 3 and 10 the (2-13) peak is weakly developed. The (3-11) peak is 

detectable in patterns of Xon1, Xon4, Xon6 and Xon8 (Tab. 6). Sample 6, 7 and 10 show only 

characteristica of the M2a2b2c polytype. Whereas the peak at 13.8° 2Θ is weak in the 

calculated pattern, nearly all natural xonotlites show a much higher intensity. In contrast the 

2-13 peak is of medium intensity in the calculated pattern, whereas in Xon5 it shows only a 

weak intensity.  

 

M2a2bc 

The M2a2bc polytype could be found in three of the investigated xonotlite samples. All three 

patterns show the peaks at 28.4, 29.3 and 33.6° 2Θ which have been used for the assignment 

of this polytype. Xon3 (Chukotka, Russia) shows every peak characteristic for the M2a2bc 

polytype (see Table 5) with exception of the (011) peak at 17.6° 2Θ, whereas the latter peak is 

strongly developed in the pattern of Xon2 (Mäntjärvi, Finland, Fig. 4). 

The normally weak (-112) peak is highly increased in sample 5 from Carratraca (Spain), 

additional characteristic peaks of the M2a2bc polytype have been found only between 25 and 

35° 2Θ. 
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Ma2b2c 

This polytype could be found in four xonotlite samples. Two of them come from Russian 

rodingites (Xon1, Xon3) and the two remaining from manganese ore deposits at Wessels 

Mine in South Africa (Xon8) and at Franklin (New Jersey) in the USA (Xon9). All four 

patterns show the (213) and (511) reflections at 24.9 and 29.6° 2Θ. The (-111) peak at 14.6 

2Θ, which has a very low intensity in the calculated pattern, is missing only in Xon9 

(Franklin, New Jersey). The detection of the (013) and (611) characteristic peaks at 22.5 and 

34.5° 2Θ is difficult due to the superposition with characteristic peaks of the M2a2b2c 

polytype at 22.7 and 34.3° 2Θ. The peaks at 23.1 2Θ and 30.8 2Θ were detected in the 

patterns of Xon9 and Xon3, respectively. 

 

Ma2bc 

This polytype has been found in four of the investigated xonotlites (Xon1, Xon2,Xon3, 

Xon4). The highest amount is detected in Xon2 due to very strong peaks at 30.2 and 32.3° 2Θ 

and a medium peak at 20.4° 2Θ which are to be seen with much lower intensities in the other 

patterns. 

The peaks at 13.1, 28.2 and 28.6° 2Θ are missing in Xon2 but developed in the remaining 

three xonotlites. The peak at 12.0° 2Θ (weak in the calculated pattern) is detectable in Xon1 

and Xon2, the peak at 18.2° 2Θ in Xon2 and Xon3 patterns. Both xonotlites from Russian 

rodingites show the  peak at 15.9° 2Θ. The very weak peaks at 19.7 and 23.6° 2Θ of the 

calculated pattern are only developed in Xon3 and Xon1, respectively. The peak at 17.4 2Θ 

could not be detected. 
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Discussion  

 In this study ten different natural xonotlites were investigated concerning chemical 

composition and polytypism. Due to the different lithologies of the localities the samples 

could be assigned to three different groups. Xonotlites formed in kimberlites (1), xonotlites in 

rodingites (2) and xonotlites formed by metasomatic processes close to Mn- and Mn-Zn- ore-

deposits (3), respectively. 

 

Chemical composition 

Group 1 is only represented by the xonotlite from Mäntijärvi (Finland). This sample exhibits a 

low SiO2- and CaO-content and a slight enhancement of Na2O up to 0.09 wt%. 

Group 2-xonotlites were formed in rodingites (Xon1, Xon3, Xon5, Xon6) and are 

characterized by the highest CaO-amount of 47.07 up to 47.59 wt%. Analyses of Carratraca-

xonotlites (Xon5) are in good agreement to those of acicular crystals replacing hydrogrossular 

of the same locality published by Esteban et al. (2003) as shown in Table 3 and 4.  

Samples belonging to group 3 are formed by hydrothermal alteration (250-400ºC) of the 

primary sedimentary and low-grade metamorphic Mn-ores (Kalahari Manganese Field ; 

Xon4, Xon8) or high-grade metamorphic Mn-Zn-ores (Franklin, New Jersey; Xon9) and 

showing slightly higher Mn-content. This could be explained by a preferred integration of Mn 

on the Ca-positions in Xonotlite-structure, likewise indicated by a lower Ca-content. 

A substitution of Al for Si on tetrahedral-sites, indicated by the higher amount of Al2O3 could 

be detected noticeably only in the sample from Carratraca and one from Wessels mine. 

De Bruiyn et al. (1999) described a higher SiO2- and CaO-content in xonotlites of 

N’Chwaning Mine in comparison to those of Wessels Mine, which could be confirmed in this 

investigation, as depicted in Table 3 and 4. In addition De Bruiyn et al. (1999) detected 

slightly higher FeO-contents which could not be verified in the samples of this study.  
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In all investigated xonotlites Al, Na and Mn are the only elements which are enriched in 

remarkable amounts. A enhancement of Mg known from synthetic xonotlites (Quian et al., 

1997) could not be detected in the investigated natural xonotlites. 

 

Polytypes 

Due to the minor crystal size of xonotlites X-ray single crystal diffraction is often not 

applicable to distinguish between the different polytypes. Therefore the determination in this 

study is made by pattern matching powder diffractograms of investigated xonotlites and 

calculated patterns of the four ordered polytypes. Most of the investigated xonotlites show 

intergrowth of two or more polytypes. 

In all samples the M2a2b2c polytype was found but in Xon2, Xon8 and Xon9 with only 

minor amounts. This predominance is an effect of specific growth conditions availing the 

development of one polytype. Hejny and Armbruster (2001) explain this preferred 

development by the more balanced and therefore favourable distribution of OH-groups at the 

free apices of each Ca-octahedron in the structure of this polytype. 

The Ma2b2c-polytype could be detected in two samples found in Russian rodingites of 

Bazhenovskoe (Xon1) and Chukotka (Xon3) and in two samples found in Mn-ore deposits 

from the Wessels Mine located in the Kalahari Manganese Field of South Africa (Xon8) and 

from Franklin, New Jersey (Xon9), respectively. 

Ma2bc is developed in the xonotlite from Mäntijärvi (Finland) with an exceptionally high 

amount and in the well crystalline sample from N’Chwaning Mine (Xon4) investigated by 

Hejny & Armbruster (2001). In addition this polytype does exist with minor amounts in 

xonotlites of Bazhenovskoe (Xon1) and Chukotka (Xon3). 

The occurrence of M2a2b2c and Ma2bc in Xon4 is in good agreement with the investigations 

of Hejny & Armbruster (2001) on xonotlites from the same locality. They also reported the 

presence of Ma2b2c polytype which could not be confirmed in this study. This can be 
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explained by different intergrown polytypes even in samples from the same locality due to 

small scale fluctuations in the physico-chemical conditions during formation. 

The M2a2bc-polytype was first detected in natural xonotlite from Chukotka (Russia) by 

Garbev (2004) using Rietveld-modelling of diffraction data obtained by syncrotron radiation. 

In this study the M2a2bc polytype could clearly be detected in xonotlites from Mäntijärvi 

(Xon2) and Chukotka (Xon3). Esteban et al. (2003) made their assignment in Xonotlites from 

Carratraca (Spain) by use of X-ray powder diffraction, too. Based on the by then missing 

description of the occurrence of M2a2bc polytype in natural xonotlites in literature, this 

polytype was not taken into account by Esteban et al.(2003). This is in contrast to the results 

of this study where the development of M2a2bc polytype in xonotlite from Carratraca (Xon5) 

could be confirmed by the presence of three characteristic reflections.  

The above mentioned lower intensity of (h0l)-reflections in all patterns can be explained by a 

preferred orientation of the acicular crystals along their elongated b-axes during preparation. 

The observed phenomenon of inverse intensity-ratio in (0kl) and (hkl)-reflections in M2a2bc-

polytype may be caused by preferred orientation of more disk-shaped crystals. 

The powder diffraction data of  sample 8 from Wessels mine ( South Africa) were used 

additionally to perform a Rietveld refinement (Figure 5). The two polytypes determined by 

pattern matching were used as phases for the refinement. We obtained the best results by 

taking into account a preferred orientation in [010] which corresponds to the elongated b-

direction of the crystals. But there is also a recognizable influence of the above mentioned 

[h0l] direction which could explain the observed difference in the region of the (102) 

reflection. The results show the exigence of further refinement with main focus on the 

different preferred orientations. For this reason we abandoned a quantitative analysis for now.  
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Conclusions 

A clear coherence of different lithology of the habitat and the developed polytype could not 

be confirmed. Xon2 from kimberlites (Mäntijärvi, Finland) is in a special position referring to 

this question. It displays a very high amount of Ma2bc polytype compared to all other 

investigated samples. This can be linked to the special growth conditions in kimberlites. 

The results of this study clearly demonstrate that X-ray powder diffraction is a useful and fast 

method to distinguish the different polytypes developed in xonotlite. It is the preferable option 

if crystallite size is too small for X-ray single crystal diffraction as it is typical for natural and 

synthetic xonotlites. The results show also the need of further investigations by other powder 

methods like FTIR and Raman spectroscopy. FTIR-data of xonotlite were published by 

Hochleitner & Fehr (2002) and an extensive investigation will be published in a forthcoming 

paper. 
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Table headings: 
 
TABLE 1: Lattice parameter and symmetry of the ordered polytypes  

after Hejny & Armbruster (2001) 
 
TABLE 2: Localities of investigated xonotlites 
 
TABLE 3: Literature values for chemical composition of natural xonotlites  
 
TABLE 4: Average composition of investigated xonotlites obtained by EMPA, 

n= number of analyses taken into account, numbers in parentheses 

denote for standard deviation  

 
TABLE 5: Characteristic peaks found in the 10 diffraction patterns and the resulting assigned 

polytypes (w=weak, m= medium, s=strong, b=broad) 
 the dominating polytype is marked by “+” those of minor amounts by “*” 
 
 
 
Figure captions 
 
Fig 1: structure of xonotlite  
 
 Ca-polyhedra: dark grey in octahedral coordination and light grey in sevenfold 

coordination 
 Si6O17 tetrahedral-double chains in middle grey 
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 protoxonotlite-cell with white dashed outlines 
 notice the two different possibilities (light and middle grey) of connecting a SiO4-

tetrahedral chain to the Ca-polyhedra 
 
Fig 2: Four ordered polytypes shown as different stacking of the protoxonotlite-cell (dark 

outlines) after Hejny & Armbruster (2001). 
 Cells with displacement in c-direction are drawn with dashed outlines 

 
Fig 3: Calculated powder diffraction patterns for all ordered polytypes (Cu-Kα) in the range 

of 10-25 and 25-35° 2Θ 
 
Fig 4: Diffraction pattern of Xon2 (Mäntijärvi, Finland), peaks taken for assignment are 

marked by arrows and the number of corresponding polytype  
 1= M2a2b2c, 2=M2a2bc, 3=Ma2b2c, 4=Ma2bc 
 
Fig 5: Rietveld-refinement for Xon8 (Wessels Mine, Souh Africa) 
 
TABLE 1 

 
 
 
 
 
 
 

 
  
TABLE 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Mineralogische Staatssammlung München 
b) Hejny & Armbruster 
 
 
 
 
 

 a [A] b [A] c [A] α [°] β [°] γ[°] space group 
protoxonotlite cell 8.516 7.363 7.012 90.00 90.37 90.00  
M2a2bc 8.712 7.363 7.012 89.99 90.36 102.18 P1 
M2a2b2c 8.712 7.363 14.023 89.99 90.36 102.18 A1 
Ma2bc 17.032 7.363 7.012 90.00 90.36 90.00 P2/a 
Ma2b2c 17.032 7.363 14.023 90.00 90.36 90.00 A2/a 

sample locality reference 
Xon 1 Bashenovskoje, Russia  a)MSM 30538 
Xon 2 Mäntijärvi, Finland a)MSM 30536 
Xon 3 Tschukotka, Russia a)MSM 27382  
Xon 4 N’Chwaning, South Africa Fe175b) 
Xon 5 Carratraca, Malaga,Spain MSM 30537 
Xon 6 Bashenovskoje, Russia a)MSM 
Xon 7 Bashenovskoje, Russia a)MSM 28676 
Xon 8 Wessels Mine, South Africa Fe50 
Xon 9 Franklin, New Jersey USA a)MSM 1218 
Xon 10 Wessels Mine, South Africa Fe 
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TABLE 3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Carratraca 
(1)  

N´chwaning 
South Africa 
(2) 

Wessels mine South Africa 
(2) 

Heguri Japan 
(3) 

Ohmi-Machi 
Japan (4) 

Tchukotka 
Russia 
(5) 

Tetela de Xonotla Mexico 
(6) 

Cornett Hill, Romania 
(7) 

SiO2 50.07 50.02 49.96 49.99 50.80 49.52 49.58 49.79 
CaO 47.39 46.15 45.85 46.19 44.70 46.26 43.56 47.28 
Al2O3 0.04 n.m n.m. n.m. 0.38. 0.29 n.m. 0.20 
FeO 0.07 0.28 0.62 0.36 0.04 n.m. 1.31 0.03 
MnO 0.03 0.18 0.21 0.16 0.01 n.m. 1.79 0.01 
MgO 0.00 0.05 0.05 n.m. n.m. n.m. n.m. 0.08 
Na2O 0.02 n.m n.m. 0.17 0.78 0.01 n.m. 0.00 
K2O 0.01 n.m. n.m. 0.02 0.02 0.01 n.m. n.m. 
TiO2 0.00 n.m. n.m. n.m. n.m. n.m. n.m. n.m. 
Cr2O3 0.02 n.m. n.m. n.m. n.m. n.m. n.m. n.m. 
H2O  2.50 2.50 3.05 3.18.  3.70 2.51 
total  99.18 99.19 99.94 99.92 96.11(incl. 0.02SO2) 99.94 99.90 

(1) Esteban et al., 2003; (2) de Bruiyn et al, 1999; (3) Kudoh et al, 1979;(4) Noma et al., 1998: 
(5) Garbev, 2004; (6) Dana,E.S., 1892; (7) Marincea et al., 2001 
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TABLE 4 
 

  Xon1 Xon2 Xon3 Xon4 Xon5 Xon6 Xon7 Xon8 Xon9 Xon10 
K2O b.d. b.d. b.d. b.d. 0.00 b.d. b.d. b.d. b.d. b.d. 

Na2O b.d. 0.09(01) b.d. b.d. 0.03 b.d. b.d. 0.05(03) b.d. b.d. 
MgO b.d. b.d. b.d. b.d. 0.03 b.d. b.d. b.d. b.d. b.d. 
Al2O3 0.04(02) b.d. 0.03(01) b.d. 0.08 0.02(01) 0.02(02) b.d. 0.02(01) 0.12(06) 
SiO2 49.80(36) 479.37(05) 49.71(16) 51.10(18) 49.93 50.11(18) 49.37(23) 50.21(62) 49.41(23) 50.08(81) 
CaO 47.37(22) 45.76(37) 47.37(29) 47.01(28) 47.08 47.10(16) 47.48(18) 46.73(41) 46.55(25) 45.82(77) 
TiO2 b.d. b.d. b.d. b.d. 0.00 b.d. b.d. b.d. b.d. b.d. 
MnO b.d. b.d. b.d. 0.36(03) 0.01 b.d. b.d. 0.18(02) 0.36(16) b.d. 
FeO b.d. 0.10(05) b.d. b.d. 0.02 b.d. b.d. b.d. b.d. b.d. 

Cr2O3 b.d. b.d. b.d. b.d. 0.01 b.d. b.d. b.d. b.d. b.d. 
Total 97.31(19) 95.37 97.21(30) 98.53(20) 97.19 97.31(23) 96.99(39) 97.20(45) 96.42(48) 96.09(12) 
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TABLE 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

° 2Θ hkl Xon1 Xon2 Xon3 Xon4 Xon5 Xon6 Xon7 Xon8 Xon9 Xon10 
M2a2b2c 

13.8 011 s,b w s,b s m s,b s,b w m s,b 
15.7 -111 w - s - - - - - - - 
18.8 111 - - - - m - - - - - 
22.7 013 s,b w s.b s s s,b s,b m,b m s,b 
23.9 1-13 - - - - w - - - - - 
26.1 113 - s m - - - - - - m 
27.2 211 - - - w s s - - - m 
29.2 2-13 m - w - - - - - - ww 

32 3-11 w - - w - ww - w - - 
34.3 015 s,b w s s,b s m s ww w m 

M2a2bc 
12.3 010 - w m - - - - - - - 
14.3 1-10 - - m - - - - - - - 
17.6 011 - m - - - - - - - - 
19.1 -111 - - s - - - - - - - 
21.8 111 - - m m* - - s* - - - 
28.4 012 - m m - w,b - - - m - 
29.3 -112 - s m - ss - - - - - 
31.1 -1-12 - - m-s - m - - - - - 
33.6 -212 - m m - w - - - ww - 

Ma2b2c 
14.6 -111 w - s - w - - m - - 
22.5 013 m,b - s,b -   - - - - - 
23.1 113   - - - s - - - m - 
24.9 213 w - m - - - - w w - 
29.6 511 s - s - w,b - - w s - 
30.8 -413 - - m - - - - - - - 
34.5 611 - - - - - - -   w - 

Ma2bc 
12 010 m w,b - - m - - - - - 

13.1 110 w - m w - - - - - - 
15.9 210 m - m - - - -  - w - 
17.4 011 - - - - - - ww - - - 
18.2 111 - w m - m - - - - - 
19.7 310 - - s - - - - - - - 
20.4 211 w m m w - - - - - - 
23.6 311 m - - - - - - - - - 
28.2 012 w - m w - - - - - - 
28.6 -112 m - w w,b - w - - - - 
30.2 212 m,b ss m w - - - - - - 
32.3 312 w s w m - - m* - - - 

M2a2b2c + * + + + + + + * + 
M2a2bc  * *  *      

Ma2b2c *  *     * +  

Ma2bc * + * *       
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Appendix C 
 
 
A Hydrothermal Autoclave for Neutron Diffraction (HAND) – 
Design, Technique and Applicability 
submitted to: Journal of Powder Diffraction, under rewiev 
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Abstract 

An autoclave cell has been designed for performing time-resolved neutron diffraction 

analyses of dynamic processes occurring during hydrothermal reactions in the presence of a 

hydrous fluid. The hydrothermal autoclave for neutron diffraction (HAND) is described and 

its successful use on the crystallization of 1.13 nm tobermorite from lime and silica at 190°C 

and saturation pressure is demonstrated. The reaction time was set to 8 hours and the reaction 

product consisted of tobermorite, semi-crystalline calcium-silicate-hydrate C-S-H(I) and 

quartz. Tobermorite is formed on the expense of portlandite and quartz and by the reaction of 

semi-crystalline calcium-silicate-hydrate C-S-H(I) with quartz. 
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1. Introduction 
   

Hydrothermal syntheses under saturated steam pressure are usually performed by using so 

called Parr-bombs. Once the experiment is completed the sample is quenched and the reaction 

products are analysed. By this way of synthesizing one always has to deal with several 

problems. Quenching effects can influence the final phase relations in particular and there is 

no guarantee to freeze the process exactly at one stage and to quench it without change. 

Furthermore a huge number of experiments at different compositions and temperatures are 

needed to obtain a sufficient amount of data points which means an enormous expenditure of 

time. This is hardly possible by using Parr bombs without an enormous amount of both time 

and work. Reactions with fast kinetics are impossible to record by this method and reliable 

data especially from the early state of the reaction are missing. The best way to obtain kinetic 

data of a reaction is to observe it in-situ by x-ray or neutron diffraction. For those experiments 

special reaction cells are needed tailored to the particular requirements of the scientific 

problem and of course the applied instrument, respectively.  

The reaction we are focussed on is the formation of 1.13nm tobermorite taking place during 

the hydrothermal hardening of aerated autoclaved concrete, a building material used 

worldwide due to its excellent mechanical properties. Corresponding to the production 

process of AAC or lime silicate bricks the hydrothermal hardening of lime silica based 

samples in the vapour phase and not in suspension should be examined. Former 

thermodynamic and experimental studies [Gabrosek et al., 1993; Fehr and Zuern, 1997; Zuern 

and Fehr, 2000a] have shown that tobermorite is metastable in the presence of quartz at 

temperatures of production and decomposes to the equilibrium phases xonotlite (Ca6Si6(OH)6) 
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or gyrolite according to the bulk composition. This fact shows the strong need of kinetic 

models in order to describe the metastable formation of 1.13 nm tobermorite.  

Requirement for successful in-situ experiments according to reaction kinetics is a high-flux 

neutron source [Polak et al., 1990;Walton et al., 2000; Walton and O’Hare, 2000] that enables 

an adequate time resolution in spite of the absorption of X-rays by the reaction cell and a 

diffractometer with a sufficient 2Θ range to detect the basal reflections of tobermorite. All 

this is fulfilled at the D20 powder diffractometer of the neutron reactor at ILL. Based on that 

background a functional and cheap reaction cell was designed. The hydrothermal autoclave 

for neutron diffraction (HAND) allows a fast sample exchange and can easily be fitted to the 

D20 or by minor modification to powder diffraction devices at other neutron sources.   

.  

2. The Neutron Powder Diffractometer D20 at ILL 

D20 [Walton and O`Hare, 2000, Hansen et al., 2008] is a medium to high-resolution 2-axis 

diffractometer at the high flux reactor source at the ILL in Grenoble, providing a neutron flux 

of up to 108 ns-1cm-2 at the sample position. The schematic set up is given in figure 1. A 

stationary curved linear position sensitive detector (PSD),consisting of 48 precisely cut 

microstrip gas chamber detector (MSGC) plates provides a usable aperture of 153.6° (2Θ). 

The polygonal arrangement of the juxtaposed plates enables the continuous and homogeneous 

coverage of the whole 2Θ range, each plate covering 3.2°. The gas filling of 3 bar ³He and 1 

bar CF4 and the detection gap of 5 cm results in a neutron detection efficiency from 60% (λ= 

0.8Å) to 90% (λ=2.4Å). 

 A vertically focusing monochromator of pyrolytic graphite HOPG (002) in reflection position 

offers λ = 2.4 or 2.5 Å at a take-off angle of 42° or 44°. It is equipped with graphite filters to 

suppress harmonics. A copper monochromator Cu (200) in transmission gives wavelengths of 

λ ≈ 0.82, 0.88, 0.94 or 1.3Å at take-off angles of 26°, 28°, 30° or 42°. At λ = 1.3 Å the 
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monochromatic beam has its highest flux of about 9.8⋅107 n⋅cm-2⋅s-1. Soller collimators allow 

to reduce the divergence of the incident polychromatic beam (27’) to α1 = 10’ or 20’. 

Beyond that, D20 is equipped with a furnace consisting of a heating element,45 mm in 

diameter, made of a vanadium sheet. As vanadium has a very low coherent scattering length 

for neutrons this material only adds constant incoherent scattering to the powder diffraction 

pattern. This heating device is placed in a large vacuum vessel, to avoid scattering by air and 

oxidizing of the vanadium sheet and to improve thermal insulation. It is equipped with 

neutron-absorbing B4C screens and a direct beam-stop to avoid neutrons diffracted by the 

aluminium walls of vessel to propagate to the detector. 

All the above mentioned characteristics enable a large choice in Q-space, resolution, 

wavelengths and flux and accomplish high precision in intensity measurements. This makes 

D20 adaptable to various levels of crystallographic complexity and rapidity of the observed 

phenomenon and therefore an ideal tool for in-situ diffraction studies with time constants 

even below a second. 

 

 

3. The Hydrothermal Autoclave for Neutron Diffraction (HAND) 

The hydrothermal autoclave for neutron diffraction was designed to be a simple and cheap 

reaction cell fitting to the well-established ILL D20 [ Walton and O’Hare, 2000; Hansen et 

al., 2008] station with its vanadium furnace. Changes of samples and apparatus must be 

possible fast and easy. Therefore the apparatus is mainly an upright steel tube closed at both 

ends. The steam necessary for the hydrothermal reaction is generated inside this tube during 

heating, so no separate steam supply is needed. The material chosen for the autoclave is 

cobalt-free stainless steal ( 4301, Linster, Aschau). The thickness of the walls is a 

compromise between the demands of a stability at an internal pressure of up to 40 bars and 

the aim to obtain a maximum penetration of the neutron beam. The schematic diagram of the 
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reaction cell is given in Figure 2. HAND consists of three parts: bottom, sample support and 

cover. The bottom is fixed inside the vanadium furnace device below the neutron beam. It 

serves as reservoir for D2O and contains the bushings for the internal thermocouples. Inside 

the bottom the sample support is placed above the water reservoir. The cover is a tube of 14 

cm in length and 2.5cm in diameter which is closed at the upper end. It is simply screwed 

upon the bottom and can easily be replaced. Its walls have a narrowing down to 1 mm at the 

level of the neutron beam to maximize the intensity of the neutron flow through the sample. 

During the first experiments HAND was equipped in addition with a valve to evacuate the 

interior but following experiments have shown that this is not necessary. In Contrary the 

valve on top causes problems with leak tightness. Therefore we decided to remove it in the 

new version (see Fig 2) 

HAND is mounted in the vertical axis of the diffractometer inside the furnace device available 

at the instrument D20. Due to the geometric arrangement of the there existing neutron option 

(fig. 1) the lower limit of the 2Θ range is 8° using HAND with a sample diameter of 20 mm. 

Below this angle the obligatory beamstop cuts of the diffracted intensity. 

 

4. Experimental 

 

To proof the applicability of HAND we have chosen the pure system CaO-SiO2-D2O to be 

studied first. D2O instead of H2O was chosen due to the lower interaction between deuterium 

and neutrons. The fast and easy sample preparation allows us to add different additives to the 

system easily. The bulk composition was set to a molar Ca/Si ratio of 0.5 projecting on the 

join tobermorite-quartz and a chosen D2O/solids ratio of 0.8 resembles the recipes of 

industrially manufactured steam cured building materials [Fehr and Zuern, 2000]. 

The starting materials were mixed with mortar and pestle, the compound was poured into a 

mold (diameter 2cm, height 8cm) and then dried for 1 hour at 60°C to obtain the mandatory 
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solidity to place it on the sample support. For detailed description of used materials and 

sample preparation it shall be referred to the studies of  Fehr and Zuern (2000) and Bernstein 

and Fehr (2010). 

The temperature of the sample is controlled and monitored with thermocouples using a WEST 

controller. To determine the temperature gradient through the autoclave-cross-section an 

additional thermocouple was fixed on the exterior of HAND. Due to the sensitivity of 

hydrothermal reactions to temperature this is of great importance. Therefore the adjustment 

control parameter were optimized so that the desired temperature was reached after 1 hour 

and kept constant for 8 h of  reaction time. The rather high background from heavy water and 

the presence of semi-crystalline phases demands good counting statistics Therefore the typical 

acquisition time for one powder pattern was set to one minute.  

To observe a d-spacing up to 11.3 Å, where the (002) reflection of the evolving tobermorite is 

expected, the wavelength was set on 2.4 Å instead of 1.3 Å (highest flux). The option of 10’ 

Soller collimators was abandoned, as this would decrease the intensity by a factor of four 

without an enormous gain in angular resolution. This is mainly limited by the large sample 

size [Caglioti et al., 1958].  

  

5. Results 

 

Until now HAND was used for several beam times at ILL to perform experiments under 

different conditions. The detailed description and discussion of the experiments was not the 

main scope of this paper and for further information we would like to draw the attention on 

other publications of our workgroup [Fehr & Zuern, 2000; Bernstein & Fehr, 2010]. The 

maximum reaction temperature of 190 °C was reached after 60 minutes of up heating (see fig. 

3). The monitoring of the inner and outer thermocouple reveals an accuracy in sample 

temperature of ± 0.5°C depicted at the bottom part of figure 3. The homogeneity of the 
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sample cross-section and in the field of the incoming beam was verified by electron 

microprobe analyses. The reproducibility of standard analyses was <1% for each element 

routinely analysed. 

The expense of the initial solid phases quartz and portlandite with the reaction time and the 

formation of 1.13 nm tobermorite can be observed by the decrease of their Bragg-peaks in the 

time-resolved neutron diffraction pattern as demonstrated in Fig. 4 within the range of 40° to 

55° 2-Θ.  

Sequential fitting of multiple, individual Bragg-peaks of every powder pattern were 

performed by a procedure programmed to perform this task from inside the ‘Large Array 

Manipulation Program’ (LAMP, http://wwwold.ill.fr/data_treat/lamp/lamp.html), the data-

visualization and treatment system used at ILL. To take correctly into account the asymmetry 

due to the ‘umbrella’-effect of detecting sections of the Debye-Scherrer cones with a linear 

PSD of a certain height, the correction of Finger et al. [1994] was applied to the data. The 

instrumental peak-shape of a Bragg-peak was described using a pseudo-Voigt function.  The 

main diffraction peak of iron (mantle of HAND) did not interfere with any peaks of the 

phases of the sample and was used to calibrate the intensities of the phases of interest. The 

decrease of the calibrated intensities of quartz and portlandite is depicted in Fig. 4. After 200 

min. portlandite was dissolved completely, but crystallization of 1.13nm tobermorite did not 

start until 331 min. at 190°C. The amount of quartz did not remain constant after the 

consumption of complete portlandite, indicating a reaction of quartz and initially formed 

semi-crystalline Ca-rich C-S-H. The first detectable reflections of tobermorite were those of 

(hk0) planes, (00l) reflections follow with a time lag of about 60 minutes (see fig. 5).  

 

6. Discussion 

The high flux instrument D20 provides a time resolution of one minute for recording one 

diffraction pattern with a good peak/background ratio. Each single diffractogram allows an 
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exact determination of the amount of phases and the decrease or increase of phases. The low 

scattering of the data on the amount of phases involved indicates, that a detailed kinetic 

modeling (e.g. using the model of Chan et al. [1978] or an Avrami-equation [Shaw et al., 

2000] is possible on data obtained by HAND experiments.  

 The steel used for HAND remains chemically inert during an experiment. An autoclave cell, 

designed for D1B diffractometer at ILL by Polak et al. [1990], consisted of aluminum. 

Synthesis of CSH-phases in a hydrous atmosphere takes place at high pH-values (>12). At 

such conditions metallic aluminum does not behave chemically inert and will be dissolved. 

The presence of Al-ions in the system will change the reaction mechanism of 1.13 nm 

tobermorite formation [Huber et al., 1998; Mitsuda and Taylor, 1975; Klimesch and Ray, 

1999, Bernstein and Fehr. 2010]. In addition, Al3+ is substituted for Si4+ in the tobermorite 

structure and the intra-crystalline order state of 1.13nm tobermorite will be changed resulting 

in an increase of the reaction rate [Fehr et al., 2003]. The steel used for HAND has the 

advantage to behave chemically inert and derived kinetic data correspond to the pure system 

SiO2-CaO-D2O. Furthermore, steel is a material cheap and easy to handle in contradiction to 

gold-coated Ti-Zr alloys used by Walton et al.[1999]. 

. The detailed compilation of information obtained by HAND-experiments leads to a better 

insight in the reaction kinetics and mechanisms of CSH-formation. Until now a large number 

of experiments has successfully be performed studying the pure system and the influence of 

different ions like Al3+.or a varrying grain size of quartz [Fehr and Zuern, 2000; Bernstein and 

Fehr, 2010]  Beyond that, this autoclave offers a multitude of other possible applications in 

Geo.- and Material sciences. The mature design of HAND allows an easy adaptation on 

powder diffraction devices of other neutron sources assumed that they can provide a sufficient 

neutron flux.  

 
 
 



94 

 

References 

1. Journal article 
 
BERNSTEIN, S.; FEHR, K.T. (2010), “The Formation of 1.13nm Tobermorite under 

Hydrothermal Conditions:1. The influence of quartz grain size within the 
system CaO-SiO2-D2O” Progress in Crystall Growth and Characterization of 
Materials , accepted 

 
CAGLIOTI, G., PAOLETTI, A. and RICCI, F.P. (1958), “Choise of collimators for a crystal 

spectrometer for neutron diffraction” Nucl. Instr. and Meth. 35 223-228. 
 
CHAN, C.F., SAKIYAMA, M. and MITSUDA, T. (1978), “Kinetics of CaO-Quartz-H2O 

reaction at 120°C in suspension” Cem. Con. Res. 8, 1-6. 
 
FINGER, L.W., COX, D.E. and JEPHCOAT, A.P. (1994) “A correction for powder 

diffraction peak asymmetry due to axial divergence,” J. Appl. Cryst. 27, 892-900. 
 
GABROVSEK, R., KURBUS B., MUELLER D. and W. WIEKER (1993) “Tobermorite 

formation in the system CaO, C3S-SiO2-Al2O3-NaOH-H2O under hydrothermal 
conditions,” Cem. Con. Res. 23, 321. 

 
HANSEN, T.C.; HENRY, P.F., FISCHER, H.E. (2008), “The D20 instrument at the ILL: a 

versatile high-intensity two-axis neutron diffractometer,” Measurement Science & 
Technology. 

 
KLIMESCH, D.S and RAY, A.S. (1999), “Effect of quartz content in the nature of  al-

substituted 11A tobermorite in hydrothermaly treated CaO-Al2O3-SiO2-H2O 
system,” Advanc. Cem. Res. 11, 179. 

 
MITSUDA T. and TAYLOR, H.F.W. (1975) “Influence of aluminum on the conversion of 

calcium silicate hydrate gels into 11Å tobermorite at 90° and 120°,”Cem. Con. Res. 5, 
203-210. 

 
POLAK, E., MUNN, J., BARNES, P., TARLING, S.E. and RITTER, C. (1990), Time-

resolved neutron diffraction analyses of hydrothermal Synthesis using a novel 
autoclave cell,” J. Appl. Cryst. 23, 258-262. 

 
SHAW, S, CLARK, S.M. and HENDERSON, C.M.B. (2000) “Hydrothermal formation of the 

calcium silicate hydrates, tobermorite (Cs5Si6O16(OH)2)  4H2O and xonotlite 
(Ca6Si6O17(OH)2): an in situ synchrotron study,”Chem. Geol. 167, 129-140. 

 
WALTON, R.I., SMITH, R.I., MILLANGE, F.,. CLARK, I.J,. SINCLAIR D.C and O'HARE, 

D. (2000), An in-situ time resolved neutron diffraction study of the hydrothermal 
crystallisation of barium titanate,” Chem. Commun. 14, 1267 – 1268. 

 
WALTON, R.I. and O'HARE, D. (2000), Watching solids crystallise using in situ powder 

diffraction, Chem. Commun. 23, 2283 – 2291. 
 
WALTON, R.I., FRANCIS, R.J., HALASYAMANI, P.S., O'HARE, D., SMITH, R.I., DONE, R. and 

HUMPHREYS, R.J. (1999) Novel apparatus for the in situ study of hydrothermal 
crystallizations using time-resolved neutron diffraction, Rev. Sci. Instr. 70, 3391. 



95 

 

 
 
 
 
2. Selections from an anthology 
 
FEHR, K.T. and ZUERN, S.G. (1997), “Phase relations of 1.13 nm tobermorite, xonotlite, 

truscottite and gyrolite under hydrothermal conditions,” in Proc. 5th Int. Symp. 
Hydrotherm. Reactions, 225-227. 

 
FEHR, K.T. and ZUERN, S.G. (2000), Mechanisms of calcium-silicate-hydrates under 

hydrothermal conditions,” in Proc. 6th Int. Symp. Hydrotherm. Reactions, 278-281. 
 
FEHR, K.T; HUBER, M.; ZÜRN, S.G. and PETERS E. (2003): Determination of the reaction 

kinetics and reaction mechanisms of Al-tobermorite under hydrothermal conditions by 
in-situ neutron diffraction. In FENG, S.H.; CHEN, J.S. & SHI, Z. (eds.): Hydrothermal 
Reactions and Techniques. World Scientific, New Jersey, 19-26 

 
HUBER, M., FEHR, K.T. and ZUERN, S.G. (1998), Kinetische Studien zur Bildung von 1.13 

nm Tobermorit unter hydrothermalen Bedingungen,” in: Bauchemie von der 
Forschung bis zur Praxis“, Monogr. 11 d. GDCh , 29-32, edited by W. Hiller. 

 
ZUERN, S.G. and FEHR, K.T. (2000a), “Phase relations and thermodynamic properties of 

1.13 nm tobermorite and xonotlite,” in Proc. 6th Int. Symp. Hydrotherm. Reactions, 
286-289. 

 
3. Computer programs 
 
LAMP, The Large Array Manipulation Program. 

http://wwwold.ill.fr/data_treat/lamp/lamp.html 
 
 

 

 

 

 

 

 

 

 

 



96 

 

Figure captions 

 

Figure 1  Schematic diagram of the setup on the ILL D20 station  

Figure 2  Schematic diagram of the HAND reaction cell (vertical section). 

Figure 3  Cumulative distribution (Q3) and density distribution (q3) of quartz grainsize  

Figure 4  Time resolved neutron diffraction pattern in the 2-Theta range 40 – 55 ° at T = 

190°C.Time resolution is one minute. 

Figure 5  Variation of the integral intensity of portlandite (●)and quartz (○) and the maximum 

intensity of  tobermorite (002) (∗) with time, temperature profile for the experiment 

is shown in the lower part of the diagram. 

Figure 6  occurrence of (hk0) and (00l) reflections in the course of the experiment 
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The Formation of 1.13nm Tobermorite under Hydrothermal Conditions: 

1. The influence of quartz grain size within the system CaO-SiO2-D2O 

 
S. Bernsteina,*, K.T. Fehra 

 
aLudwig Maximilians University, Department of Earth and Environmental Sciences, 
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1. Abstract 

 
The influence of grain size of quartz on the formation of 1.13nm tobermorite in aerated 
autoclaved concrete was investigated by applying in-situ neutron diffraction. Experiments 
were performed at 210°C/Psat employing quartz of 8µm and 16µm, respectively. The results 
reveal changes in the reaction mechanism from solution control to diffusion control. The grain 
size of the quartz fraction clearly influences the occurrence of those changes. Based on those 
results an interpretation of former not clearly interpretable quenching experiments was 
performed. An interpretation using different reaction mechanisms for those experiments leads 
to a coherent picture of the reaction. 
 
Keywords: 1.13nm tobermorite, kinetic, aerated autoclaved concrete, in situ neutron 

diffraction 
 

1. Introduction 

 
Calcium Silicate Hydrates (CSH-phases) are very rare in nature but one deploys their 
properties in several technical applications. Up to now the main scope lies in the production 
of steam cured building materials. For the fabrication of aerated autoclaved concrete 
(AAC),one of the most popular building materials in Europe for lightweight mode of 
construction, 1.13 nm tobermorite is the predominant phase. The evolved crystal texture 
mainly controls the mechanical and thermal properties of the product, like high pressure 
resistance and low thermal conductivity. 
1.13 nm tobermorite crystallizes in a layered structure, stacked along [001] with a basal 
spacing of 1.13 nm. The average structure was described by Hamid [1] but the real structure 
was solved by Merlino et al. [2,3] which is based on two polytypic modification of 
orthorhombic and monoclinic symmetry leading to a disordered structure (O/D character). 
The common structural feature is characterized by infinite silicate double chains of a type 
called Dreierdoppelketten built up of condensed dreierketten (kinked to repeat at intervals of 



104 

 

three tetrahedra) along [010]. The chains are intercalated by a Ca-O layer (portlandite layer) 
so the structure consists of a central layer of calcium octahedra which has silicate sheets on 
each side. The calcium octahedra share oxygens with the silicate tetrahedra, the distance 
between two edges in the calcium octahedral layer is about the same length as a silicate 
dreierketten unit. This type of structural unit is characteristic for most of all CSH-phases. In 
1.13nm tobermorite the composite layers of one calcium and two silicate layers are bound 
together by an interlayer containing calcium ions and water molecules. The interlayer contains 
variable amounts of calcium so that charge balance is achieved by variation of hydrogen 
atoms bonded to the silicate chains. Therefore, the variable occupancy of calcium in these 
layers allows the Ca:Si ratio to vary from Ca5Si6O16 

(OH)2 *4H2O (C5S6H5) to Ca4Si6O(OH)2 
*2H2O (C4S6H3) [2,3]. In AAC, 1.13nm tobermorite is close to the composition Ca5Si6O16 (OH)2 *4H2O and occurs in association with semi-crystalline CSH-phases CSH (I ) and CSH 
(II) as minor components. In contrast to tobermorite these phases are highly disordered and 
display a wide range of compositions. They are classified by their Ca:Si ratio: CSH (I) with a 
Ca:Si ratio <1.5 and CSH (II) with a Ca:Si ratio > 1.5 according to Taylor [4,5]. 
There has been a lot of work in this field aimed at understanding the formation mechanisms 
and growth kinetics of CSH-phases [e.g.6,7]. But little quantitative data exist on the kinetics 
of 1.13 nm tobermorite formation. In addition there is no accordance on the nature of the 
reaction mechanism because some studies proposed being solution controlled and others 
being diffusion controlled as pointed out in detail by Klimesch et al. [8]. 
The reaction mechanism and kinetics of the formation of 1.13 nm tobermorite in the pure 
cement-free system CaO-SiO2-H2O from lime, silica and water (CaO + SiO2 + H2O) under 
hydrothermal conditions were determined by quenching experiments at 180°-190°C/Psat 
[5,6,9] and by an in-situ Neutron diffraction experiment [10] as well. Quenching experiments 
reveal the disadvantage of missing data for the early evolution of phases in time and have 
prevented a quantitative kinetic description so far. 
The formation of tobermorite is, in addition to reaction temperature and the amount of Al in 
the initial mixture, mainly affected by the grain size of quartz [8,11] .Therefore, the major aim 
of this investigation was to determine reaction mechanism and kinetics of the formation of 
1.13 nm tobermorite under hydrothermal conditions as a function of the grain size of quartz. 
Experiments were conducted at 210°C employing quartz with a grain size of 8µm and 16 µm, 
respectively. In order to avoid quenching effects in short-time runs the experiments were 
conducted at in-situ conditions and data will be collected by means of neutron-diffraction 
with the HAND apparatus [12]. 
 
3. Experimental 
 
In-situ experiments under hydrothermal conditions were conducted at 210°C under saturation 
pressure and within a time-range of up to 10 hours by applying a hydrothermal autoclave cell 
for neutron diffraction HAND [12] at the D20 powder diffractometer of the high-flux 
neutron-source (4.2* 107 n cm-2 s-1) at Institute Laue-Langevin (ILL), Grenoble. In order to 
obtain neutron diffraction spectra with a low background noise, hydrogen-free substances 
have to be used, and contact of the materials with humidity must be minimized. Thus the 
experiments were carried out with heavy water (D2O) instead of H2O as hydrous reactant. To 
control the influence of D2O on the kinetics of the tobermorite-forming reaction two 
preliminary quenching experiments were conducted in cold seal pressures vessel at 190°C/Psat 

for 8 hours, using D2O and H2O as hydrothermal fluid, respectively. Analyses of the final 
products by X-rax diffraction demonstrate no differences between both runs as indicated by 
similar phase assemblages and phase amounts.  
Pure SiO2, CaO and D2O were used as starting materials in order to determine the reaction 
kinetics in the simple system CaO-SiO2-D2O according to the reaction:  
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( ) OHOHOSiCaOHSiOCaO 22166522 4565 ∗⇒++   (1) 

 
CaO used was produced by heating calcium carbonate (Merck p.a.), having a particle size of 
<0.090mm at 1250° C for 14 h. The source of SiO2 was ground Miocene quartz sand (SiO2 > 
99.5 wt.-%) supplied by the Quarzwerke Company in Frechen, Germany, revealing a medium 
grain size of 8µm (SH500) and 16µm (W12), respectively. Pure deuterium oxide (Merck, 
Uvasol, D2O > 99.8 %) was used as liquid reactant. The mixture was prepared at D2O/solids 
ratio of 0.8 with a Ca:Si ratio of 0.5. 
The experiments were designed to examine in-situ the hydrothermal hardening of lime-silica 
based samples in the vapour phase and not in suspension like Shaw et al. [13] corresponding 
to the production process of AAC or lime-silicate bricks. Therefore the initial specimen has to 
reveal a mechanical stability that is great enough to be placed on the sample support. For this 
purposes the raw materials were mixed using mortar and pestle to obtain a homogeneous 
paste. The mass was poured into a previously prepared paper wrapper (diameter 1.5 cm, 
height 8 cm) and stored at 60° C for 120 minutes in a sealed container. The raised temperature 
resulted in an acceleration of the binding process. After this thermal treatment, the solid and 
hardened sample was placed on the sample holder in the autoclave. The desired temperature 
was reached by 1 hour of controlled heating up and then held for the defined length of time (8 
up to 10h). The inner and outer temperature of the sample was monitored and regulated with 
thermocouples inside and on the bottom of the sample. The temperature gradient across as 
well as along the sample determined in some preliminary tests is 2°C.  
The time-resolved neutron diffraction pattern were taken within the range of 8° to 153.6° 2-θ 
at λ = 2.4 Å to allow the analysis of d-spacing up to 11.3 Å, where the basal (002) reflection 
of the evolving tobermorite is expected. Due to a rather high background from heavy water 
and the presence of semi-crystalline phases in the initial steps of the reaction, good counting 
statistics are necessary. Therefore the typical acquisition time for one powder pattern was set 
to one minute.  
The mechanisms of the tobermorite forming reaction can be evaluated on the basis of the 
reaction conversion of quartz according to Chan et al (1978)[6] assuming that there are no 
seeds in the reactants and the growth rate is low: 
 

( ) nkt13
1

11 =−− α  (2) 
 
where α gives the reaction conversion of quartz, k the reaction constant and t the reaction 
time. According to equation 2 the factor n reveals information on the reaction mechanism. If 
n=1 the reaction is solution controlled (phase boundary modell), if n=2 the reaction is 
diffusion controlled (Jander equation) [14]. Values for α were calculated from the decreasing 
integral intensity of the (101)-Bragg reflection of quartz. The integral intensity was obtained 
by using the peakfitting-routine “STR_fit” implemented in the Large Array Manipulation 
Program (LAMP) provided by the ILL. The diffraction patterns were fitted in the range from 
41 to 44 ° 2theta, the peak shape was set to Pseudo-Voigt and a linear background was 
chosen. By applying equation 2 to these data and plotting them in logarithmic scale, one 
obtains information on the reaction mechanism from the slope of the data points. The 
complete expense of portlandite was determined by the disappearance of the (101) reflection 
at 54.3° 2Θ. The first occurrence of tobermorite was determined by the appearance of (hk0) 
reflections at 46° 2Θ. 
 
4. Results  
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The results for the experiments are depicted in Figure 1a) and b). Both experiments don’t 
show a curve linearity but different slopes of 1 and 0.5 within the reaction progress. 
According to equation (2) the slope of the data points yields information on the reaction 
mechanism. Therefore the reaction can be split into 3 sections with a diffusion or solution 
controlled mechanism. The times where the changes in slope occur are labelled here with 
t1_transit and t2_transit respectively. Determined transition temperatures, the moment of 
portlandite expense and 1.13nm tobermorite occurrence are summarized in Table 1.  
For the first experiment (Fig. 1a) a quartz with a mean grainsize of 16µm was used in the 
initial mixture. The desired reaction temperature of 210°C was reached after 60 min of 
heating up. Up to 30 min (t1_transit) after starting the experiment the reaction is solution 
controlled, followed by a diffusion controlled period. After 228 min a further change back to 
a solution controlled reaction mechanism can be observed. Portlandite is consumed after 142 
minutes of the running experiment within the diffusion controlled section of the reaction. Just 
after 250 min, within the second solution controlled period, the first reflections of 1.13nm 
tobermorite could be observed. 
On the first glance the second experiment using quartz with a mean grain size of quartz at 
8µm shows a similar curve progression. The differences becomes just apart if one compares 
the transition times and the expense and occurrence of protlandite and tobermorite, 
respectively. The reaction starts again with a solution controlled segment but the first change 
to a diffusion controlled mechanism already occurs after 18 minutes (t1_transit). The second 
change back to solution control is detectable after 180 min, compared to the 16µm experiment 
almost 50 min earlier. Also the consumption of portlandite after 60 min and the first 
appearance of tobermorite is accelerated. The transition times, the moment of the expense of 
portlandit and the occurrence of tobermorite show a clear increasing trend with increasing 
grain size of quartz  ( Fig.2)   
  
5. Discussion 
 
In situ neutron diffraction experiments conducted in this study at 210°C with two different 
grain sizes of quartz revealed a non isokinetic behaviour of the tobermorit forming reaction in 
AAC. The reaction mechanism changes from solution control to diffusion control and back to 
a solution controlled segment. The duration of these segments is strongly influenced by the 
grain size of quartz employed in the initial mixture. If the grain size is decreased to 8µm, the 
first solution controlled part is reduced from 30 to 18 minutes. Likewise the following 
diffusion controlled stage is just present up to 180 min (t2_transit) compared to 228 min 
(t2_transit) in the experiment with the coarser quartz.  With the finer quartz portlandite is 
expensed earlier and 1.13 tobermorite can be detected already after 140 min in the diffusion 
controlled segment of the reaction. Lasaga & Luettge [15] used a modified Gibbs Thomson 
equation to describe the dissolution of crystals (equation 3).  
 

VruAaaRTGG sl ∆+∆++∆=∆ )(ln0 σ            (3) 
 
By neglecting the term for the strain field of dislocation defects, this equation can also be 
used to see the influence of different factors to the formation of 1.13nm tobermorite. 
This equation shows the dependence of solubility to the activity (a) of the liquid and the solid 
reactants and the surface free energy( σ). the surface free energy depends on the grain size of 
the solids and the activity (a) on the composition of the reactants (in case of tobermorite if Al 
is added to the system. Equation (3) shows a linear correlation between the solubility and the 
influencing factors. To generalize this for 1.13nm tobermorite formation, the reaction is 
constrained by the grain size of the reactants (this study) and the composition of the initial 
mixture (forthcoming paper) 
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With the results from this study one can make interpretations in terms of the reaction path. 
The changing reaction mechanism denote that tobermorite is not formed initially but by an 
intermediate step. The initial reaction is controlled by the solution of quartz to form 
semicrystalline CSH-phases. Such phases are evident by a bumb in the background of the 
diffraction patterns. The second step is controlled by the diffusion of quartz through a layer of 
semicrystalline CSH-phases and the last step, after the expense of portlandite,is controlled by 
the reaction of still existing quartz with the CSH-phases to form tobermorite. This is in good 
agreement with results of Fehr et al. [10]   
Quenching experiments conducted in the past [6,7,9] could not be interpreted in terms of a 
reaction displaying a isokinetic behaviour with just a single slope. Interpretations are often not 
unambiguous due to a low density of data points. Furthermore information for the initial part 
of the reaction are missing due to lacking short time experiments.   
Based on the results of this study some quenching experiments [6,7,9] were recalculated in 
terms of reaction conversion of quartz according to equation (2) and reinterpreted.  Non-
isokinetic reaction mechanisms of the quenching experiments becoming evident by applying 
the findings from in-situ experiments as demonstrated in Figure 3. the determined transition 
temperatures are summarized in Table 2. The quenching experiments at 180°C/Psat 

[6,7] are 
carried out in the system CaO-SiO2-H2O beyond the stability field of 1.13 nm tobermorite [9]. 
The experiments of Chan et al. [6] were carried out with different Ca:Si ratios (0.8 and 1.0) 
but there are no differences in reaction mechanism as displayed in Figure 2. Their 
experiments applying quartz < 10 µm only exhibit a diffusion controlled mechanism and 
higher values for the reaction conversion of quartz (α) compared to the results on 8 µm-quartz 
used by Klimesch & Ray [7] as shown in Figure 3. The reaction mechanism for 8 µm-quartz 
[7] is solution controlled up to 5.0 hours (t3_transit time) followed by diffusion control and 
indicating an estimated t2_transit time below 1 hour. 
The reaction mechanism for 16 µm-quartz [6] is solution controlled up to 5.2 hours (t3_transit 
time) followed by diffusion control and indicating an estimated t2_transit time below 1.5 
hours. Finally, the reaction mechanism for 35 µm-quartz [7] is diffusion controlled up to 2.1 
hours (t2_transit time) followed by solution control up to 7.2 hours (t3_transit time) reaching 
diffusion control at the final stage.  
The quenching experiments at 190°C/Psat 

[9] are carried out in the system CaO-SiO2-H2O 
beyond the stability field of 1.13 nm tobermorite [9] and this phase crystallizes metastable. 
The quartz used in these experiments displays a grain size of 45 µm [9]. The reaction 
mechanism for 45 µm-quartz is diffusion controlled up to 6 hours (t2_transit time) followed 
by solution control up to 9.8 hours (t3_transit time) ending in diffusion control at the final 
stage. Summarizing the quenching experiments at 180°C/Psat 

[6,7] no t1_transit time dividing 
solution from diffusion control can be observed due to the lack of short-time experiments. 
Two additional transition times occur dividing diffusion from solution control (t2_transit time) 
and finally solution from diffusion control (t3_transit time). 
 Comparing the transition times from experiments with different grin sizes of quartz the same 
increasing trend with increasing grain size becomes apparent as shown in Figure 4. 
The reaction temperature seems to have just a minor influence on the reaction mechanism 
though data from experiments with different temperatures are compareable and are plotted in 
one diagram ( Fig.3). 
Experiments with quartz < 10µm at 180 °C [6] just show a slope indicating a diffusion 
controlled mechanism. for the early stage of the reaction, where solution controlled 
mechanism is expected, no data are available thus one can just assume the same progress as 
found for experiments performed by Klimesch & Ray [7]. In addition data from Chan et al [6] 
show higher values for the reaction progress then the one from Klimesch & Ray [7]. This 
could be ascribed to the different upheating and the different water /solid ratios in the 
experimental setup. Data from the experiment with 35mm quartz at 180 °C are ambiguous but 
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transition times were constructed with regard to the results from in situ experiments. As the 
initial step of the reaction is very fast and the density of data points obtained by quenching 
experiments is low the t1_transit time can not be determined from those but an additional 
change from solution to diffusion control (t3_transit) can be assigned. Due to lacking data for 
short time experiments at 180°C with a quartz grain size of 8µm [7] and 10-20µm [6], t2-
transition times where estimated to be under 0.8 and 1.4h respectively. Comparing the results 
for different grain sizes of quartz one can observe the same trend of decreasing transition 
times with increasing grain size of quartz (Fig.4) as found by in situ experiments of this study. 
The t2_transit times obtained by quenching experiments are much lower than the one from in-
situ experiments. This can be assigned to the different calcination temperatures for the CaO 
used. There is a strong influence of the calcination temperature to the reactivity of CaO as 
shown by .Moropoulou et al. [16]. As the reaction is solution driven, the solution of the 
reactants plays an important role for the reaction progress. The solution (reactivity) is for both 
reactants quartz and CaO is primarily influenced by their specific surface area but for CaO the 
reactivity is additionally increased by lower calcination temperatures.  
 
6. Conclusion 
 
The formation of 1.13 tobermorite in AAC can be described as a non isokinetic reaction. One 
can observe changes in the reaction mechanism between solution and diffusion controlled 
when plotting the reaction conversion of quartz against reaction time in terms of equation (2). 
Based on experiments conducted at 210°C with two different grain sizes of quartz it could be 
shown that a finer quartz fraction is decreasing the several transition times and therefore 
accelerating the reaction due to an increase in reactivity. The moment of portlandite expense 
and 1.13 tobermorite occurrence and the related change in reaction mechanism could be 
assigned to the reaction path. 1-13nm tobermorite is not formed initially but by an 
intermediate step of semicrystalline CSH-phases. 
The effect of decreasing transition temperatures when using a smaller grain size of quartz was 
also detectable in quenching experiments (6,7) after recalculating them by applying equation 
(2). The 1.13 nm tobermorite forming reaction is mainly controlled by the solubility of the 
involved phases and their speciation. This solubility is influenced by the specific surface area 
of the reactant and in case of CaO on the calcination temperature. 
 
* corresponding author: Tel.: +49 89 2180 4276; fax: +49 89 2180 4176 
   email address: bernstein@min.uni-muenchen.de 
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Tables 
 
 
Table 1: net weight, determined transition times and points of portlandite out and tobermorite 

in 
 
experiment. W12 

g 

SH500 
g 

CaO
g 

t1 
min 

t2 
min 

portlandite 
out 

tobermorite 
in 

W12_210 16 - 8 30 228 142 250 

SH500_210 - 16 8 18 180 60 140 

 
 
Table 2: employed grain size of quartz and reaction temperatures and determined transition 

times of recalculated quenching experiments from literature 
 

experiment grain size 
(µm) 

temperature 
(°C) 

t2 
(h) 

t3 
(h) 

K&R02 1 8 180 ~0.8 5.0 
K&R02 1 35 180 2.1 7.2 
C&M78 2 16 180 ~1.4 5.2 

1 Klimesch &Ray (2002) [7]; 2 Chan et al. (1978)[6] 
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Figures: 
 

 
 
Figure 1: 
Reaction conversion of quartz in the system CaO-SiO2-D2O at 210°C/Psat and employing 
quartz of 16µm (a) and 8µm (b) according to equation (2) 
 
 
 
 
 
 

 
 
Figure 2:  
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Grain size dependency of t1_transit (squares) and t2_transit (circles) determined from in situ 
experiments 
 
 

 
 
Figure 3: 
Recalculated data from quenching experiments [6,7,9] in terms of equation (2) assigned 
transition times are displayed in boxes 
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Figure 4: 
Grain size dependency of t2_transit (circles) and t3_transit (squares) determined from 
recalculated quenching experiments [6,7] 
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Abstract 

 

1.13 nm tobermorite was synthesized hydrothermal within the system CaO-SiO2-D2O 

simulating the conditions during the hydrothermal hardening of aerated autoclaved concrete. 

The reaction was monitored in situ by neutron diffraction at the D20 powder diffractometer of 

the ILL (Grenoble) and the influence of reaction temperature ( 170-210 °C) and grain size of 

quartz (8 and 16µm) was investigated. The experiments revealed the non isokinetic nature of 

the mineral forming reaction with changes in the dominant reaction mechanisms between 

solution and diffusion control. Based on these insights rate constant (9.924·10-5 – 5.5·10-3 s-1) 

and for the first time activation energies (16.5-33.8 kJ/mol*K) were calculated. 

 

keywords: 1.13nm tobermorite, neutron diffraction, reaction mechanism, kinetics 

 

Introduction 

 

The group of Calcium Silicate Hydrates (CSH-phases) is a comparatively rare mineral family 

with 40 members known from natural sources, nevertheless their synthetic equivalents are 
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used for  a multitude of applications. One of the phases of most interest is the 1.13nm 

tobermorite (Ca5Si6O16 
(OH)2 *4H2O) which is known to be formed during the hydrothermal 

hardening of aerated autoclaved concrete (AAC), a widely-used building material for light 

weight constructions. In consequence of the rapid increase in applications of such materials 

during the last 10 years a strong need of more detailed scientific research arose 

simultaneously. Fundamental knowledge on the nature of CSH-phases had been given by 

Taylor [1] with his studies on portland cement phases but there is still a demand for further 

investigations. The existence of various poorly ordered and metastable phases in the CSH-

system hinders experimental work, thus the thermodynamics, kinetics and structural features 

of 1.13nm tobermorite and its neighbours are still poorly understood. The knowledge of these 

properties is of essential importance as the mechanical properties of the aforementioned 

building materials are strongly dependent from the type, amount and texture of the evolving 

CSH-phases. 

For the tobermorite-family three members are known, the 0.9 nm tobermorite or riversideite, 

the 1.13 nm tobermorite or tobermorite sensu stricto and the 1.4 nm tobermorite also called 

plombierite. The numerical value in the name indicates the different d[002]-spacing due to 

different water contents in the structure. Tobermorite 1.4nm transforms into the 1.13 nm one 

by heating to 100 °C, further heating up to 300 °C leads to the 0.9nm tobermorite due to 

proceeding dehydration [2]. Some tobermorites are known not to shrink on dehydration and 

are therefore called “anomalous [3]. Recently a new member is described, crystallizing in 

monoclinic symmetry and hence called clinotobermorite. This polytype was first found in 

Fuka (Japan) [4] and also at Wessels mine (South Africa) [5]. The d-spacing in [001] is 

similar to the one of 1.13 nm tobermorite which is in focus of this study. An accurate 

description of the tobermorite structure in general and the one of 1.13 nm tobermorite in 

particular is complicated by presence of structural disorder evidenced by diffuse streaks or 

spots in X-ray or electron diffraction patterns [6]. A first structural model was given by 
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Megaw & Kelsey [7] in which they just outlined the main modules of the average structure 

without presenting any quantitative structural data. First cell dimensions are given by Hamid 

[6], determined by single crystal diffraction on a specimen from Zeilberg (Germany). 

According to the most recent structural refinement the structure of 1.13 nm tobermorite 

consists of layers of Ca2O7-polyhedras flanked on both sides by wollastonite-like Si- 

Dreiereinfachketten running along [010] [8] as the basic structural unit.  

Two alternative occupied positions of the silicate chains shifted by b/2 and two opposite 

orientations of the bridging tetrahedron in the chain [6] lead to long range stacking disorder in 

both natural and synthetic 1.13nm tobermorite. Merlino et al. [2;8] successfully described the 

order-disorder character of 1.13nm tobermorite (normal and anomalous) by means of OD-

theory [9]. Moreover they have shown that the difference in the thermal behaviour is not 

related to a different arrangement of the tetrahedral chains [10] but rather by the presence of 

interlayer Si-O-Si linkage in the anomalous tobermorites and their absence in the normal 

ones. 

In 1.13nm tobermorite the composite layers of one calcium and two silicate layers are bound 

together by an interlayer containing calcium ions and water molecules. The interlayer contains 

variable amounts of calcium so that charge balance is achieved by variation of hydrogen 

atoms bonded to the silicate chains. Therefore, the variable occupancy of calcium in these 

layers allows the Ca:Si ratio to vary from Ca5Si6O16 
(OH)2 *4H2O (C5S6H5) to Ca4Si6O(OH)2 

*2H2O (C4S6H3) [8;11]. In AAC, 1.13 nm tobermorite is close to the composition Ca5Si6O16 

(OH)2 *4H2O and occurs in association with semi-crystalline CSH-phases CSH (I ) and CSH 

(II) as minor components. In contrast to tobermorite, these phases are highly disordered and 

display a wide range of compositions. They are classified by their Ca/Si ratio: CSH (I) with a 

Ca:Si ratio <1.5 and CSH (II) with a Ca/Si ratio > 1.5 according to Taylor [11;12]. 

There has been a lot of work in this field aimed at understanding the formation mechanisms 

and growth kinetics of CSH-phases [13; 14]. But little quantitative data exist on the kinetics 
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of 1.13 nm tobermorite formation. In addition there is no agreement on the nature of the 

reaction mechanism. Some studies proposed it being solution controlled and other authors 

determined a diffusion controlled mechanism. as pointed out in detail by Klimesch et al.[15]. 

The reaction mechanism and kinetics of the formation of 1.13 nm tobermorite in the pure 

cement-free system CaO-SiO2-H2O from lime, silica and water under hydrothermal 

conditions were determined by quenching experiments at 180°-190 °C/Psat [12;13;16] and by 

an in-situ Neutron diffraction experiment [17] as well. Quenching experiments reveal the 

disadvantage of missing data for the early evolution of phases in time and have prevented a 

quantitative kinetic description so far. 

The major aim of this study was to determine the influence of reaction temperature and quartz 

grain size on the formation of 1.13 nm tobermorite in terms of reaction mechanism and 

reaction rate. Therefore, the reaction mechanism was determined by in situ neutron diffraction 

experiments at different temperatures (170,190,210 °C) and a varying grain size of the quartz 

component (16 and 8 µm). Based on this experiments, reaction constants and activation 

energies were calculated. 

 

Methods and experimental setup: 

 

Pure SiO2, CaO and D2O were used as starting materials to prepare the samples for neutron 

diffraction. In order to obtain a low background noise in the diffraction patterns hydrogen free 

substances are necessary. Therefore heavy water (Merck, Uvasol, >99.8%) was used as liquid 

reactant. CaO used was produced by heating calcium carbonate (Merck p.a.), having a particle 

size of <0.090 mm at 1250 °C for 14 h. The source of SiO2 was ground Miocene quartz sand 

(SiO2 > 99.5 wt.-%) supplied by the Quarzwerke Company in Frechen, Germany, revealing a 

medium grain size of 8 µm (SH500) and 16 µm (W12) and a specific surface of 0.9 m²/g and 
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1.6 m²/g, respectively. The grain size and the specific surface was determined by Gas- 

absorption (BET) at Quarzwerke Frechen.  

The solid initial materials were mixed well using mortar and pistil then the required amount 

of D2O for a water/solid ratio of 0.8 was added. The CaO/SiO2 ratio was set to 0.5, the exact  

initial weight can be taken from Table 1. The compound was poured into a mould and stored 

in a drying furnace for 60 minutes to obtain a cylindrical greenbody of 8 cm in length and 1.5 

cm in diameter of sufficient solidness.  

For neutron diffraction experiments a hydrothermal autoclave was designed consisting of a 

steal tube and a bottom part with the sample support and the D2O reservoir as described by 

Zürn et al. [18] with modifications concerning the housing of the thermocouples and the 

evacuating valve (see Fig. 1). The temperature during the experiments was controlled and 

regulated by two thermocouples on the bottom and inside the sample. The whole cell was 

heated using a vanadium furnace. The desired temperatures of 170, 190 or 210 °C were 

reached after a heating period of 60 minutes and subsequently the real experiment started. 

After the experiment was completed, the furnace was turned off for cooling down. The 

wavelength was set to 2.4 Å by applying a pyrolitic graphite monochromator (HOPG (002)) 

at a take-off angle of 42°. This set up leads to an effective neutron flux of 4.2x107 n s-1cm-2 

which provides the possibility to measure a wide 2Θ range (8-156 °2Θ) accompanied by a 

sufficient time resolution of one diffraction pattern per minute and good counting statistics. A 

wide 2Θ range is important especially for the low values of 2Θ to record also the basal 

reflections of 1.13 nm tobermorite which are expected at d-values of 11.3 Å. Once the 

experiment was succesfully finished, the now hydrothermal hardened sample and the 

remaining eluate was kept for possible further investigation.  

The obtained enormous amount of neutron diffraction data of up to 600 patterns for 

experiments conducted at 170 °C/Psat were handled with the LAMP software provided by 

ILL [19]. 
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The time-resolved neutron diffraction patterns were taken within the range of 8° to 153.6° 2-θ 

at λ = 2.4 Å to allow the analysis of d-spacing up to 11.3 Å, where the basal (002) reflection 

of the evolving 1.13 nm tobermorite is expected. The mechanisms of the 1.13 nm tobermorite 

forming reaction can be evaluated on the basis of the reaction conversion of quartz according 

to Chan et al [13] assuming that there are no seeds in the reactants and the growth rate is low: 

 

( ) nkt13
1

11 =−− α  (1) 
 
where α gives the reaction conversion of quartz, k the reaction constant and t the reaction 

time. According to equation 1 the factor n reveals information on the reaction mechanism. If 

n=1 the reaction is solution controlled (phase boundary model), if n=2 the reaction is 

diffusion controlled (Jander equation) [20]. Values for α were calculated from the decreasing 

integral intensity of the (101)-Bragg reflection of quartz. The integral intensity was obtained 

by using the peak fitting-routine “STR_fit” implemented in the Large Array Manipulation 

Program (LAMP) provided by the ILL [19]. The diffraction patterns were fitted in the range 

from 41 to 44 °2Θ, the peak shape was set to Pseudo-Voigt and a linear background was 

chosen. By applying equation (1) to these data and plotting them in logarithmic scale, one 

obtains information on the reaction mechanism from the slope of the data points. The 

complete consumption of portlandite was determined by the disappearance of the (101) 

reflection at 54.3° 2Θ. The first occurrence of 1.13 nm tobermorite was determined by the 

appearance of (hk0) reflections at 46° 2Θ. 

 

Results: 

 

The results for the reaction conversion of quartz in terms of equation (1) for each experiment 

are depicted in Figure 2.  
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What immediately becomes apparent is that the experiments cannot be described applying one 

slope over the whole reaction progress. The experiments can be divided into different 

segments and compared to each other by the changing transition times from one segment to 

the other. The different transition times for all experiments are summarized in Table 2. 

(Table 2 here) 

The changes in slope could now lead to the assumption that the chosen kinetic model of Chan 

[13] is not valid for the investigated reaction. However, if one surveys the single segments of 

each curve they are either describable with a slope of 1 or 0.5 referring to an exponent of n= 1 

or n= 2 in equation (1), respectively. Interpreting this in terms of the reaction mechanism it 

implies changing reaction mechanisms with the reaction progress. This is also confirmed by 

the changing Ca/Si ratio during the proceeding reaction depicted for the run at 190 °C/ Psat 

and16mm quartz (Fig. 3). First the Ca/Si ratio of the evolving products increases to a 

maximum of 1.4 after 230 min and then decreases again and converge to the theoretical Ca/Si 

ratio of 1.13 nm tobermorite after 500 min of reaction [17]. The same effect of first increasing 

and then decreasing Ca/Si Ratio was described by Klimesch & Ray [14] 

For all experiments one can observe changes from solution controlled mechanisms to 

diffusion controlled ones. An additional change back to a solution controlled part is present 

for experiment 1, 2, 3 and 4 (Table 1). Comparing the transition times, the consumption of 

portlandite and the occurrence of 1.13 nm tobermorite, one can notice a strong influence of 

the employed grain size of quartz and the reaction temperature.  

For the experiment conducted at 210 °C/Psat (Exp 3 in Table 1, Fig. 2e), applying a grain size 

of quartz of 16 µm, the first transition from a solution to a diffusion controlled mechanism 

occurs after 30min and the second one back to solution control after 228min. Portlandite is 

expensed after 142 min within the diffusion controlled part and first reflexions of 1.13 nm 

tobermorite could be assigned after 250 min. Using the fine grained quartz (8µm) at the same 

conditions, (exp.6 in Table 1 and 2, Fig. 2f) a considerable acceleration of the reaction can be 
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detected. The first transition occurs at 12min and the second at 150 min of reaction time, 18 

and 78 min earlier as in experiment 3. Likewise, portlandite is already expensed after 60 min 

and 1.13 nm tobermorite occurs after 140min, at the end of the diffusion controlled part. 

Plotting the transition times against the reaction temperature a trend of increasing transitions 

times with increasing temperature becomes apparent for the experiments employing quartz 0f 

16 µm grain size (Fig 4a). T1_transit ascends from 10 min at 170 °C to 30 min at 210 °C 

(Table 2). The influence of increasing temperature becomes more distinct at t2_transit, it 

increases from 30 min at 170 °C over 190 min at 190 °C up to 230 min at 210 °C (Fig 4a, 

Table 2). 

Whereas the times of portlandite consumption and 1.13 nm tobermorite occurrence shows an 

opposite trend. The time decreases from 254 min and 374 min at 170 °C/Psat to142 min and 

250 min at 210 °C/Psat with decreasing temperature, respectively (see Fig. 4b, Table 2). One 

could also detect a temperature dependence of the length of the diffusion controlled segment. 

An increase in temperature leads to an extension of the period of diffusion control (Fig. 4a). 

Experiments employing the 8 µm quartz ( Exp. 4,5,6 in Table 1 and 2, Fig 2 b,d,f) show a 

slightly different behaviour. 

What stands out is the missing second change back to a solution controlled mechanism for the 

experiments at 190 and 170 °C/Psat (exp. 4,5 in Tab 1&2, Fig. 2d,f). Hence, just t1_transit 

could be determined for all three experiments revealing a strong decrease from 93 min over 

65 min down to 12 min with rising temperature (see exp 6,5,4 in Table 2, Fig.5). Likewise, 

the consumption of portlandite is accelerated from 70 to 60 min with increasing reaction 

temperature (see exp 4,5,6 in Table 2; Fig 5). The same trend can be determined comparing 

the first occurrence of 1.13 nm tobermorite at 87min at 190 °C/Psat and 105 min at 170 °C/Psat 

(exp 4 and 3 in Table 2, Fig. 5). For the experiment at 210 °C/Psat, a change back to a solution 

controlled reaction can be detected and the occurrence of 1.13 nm tobermorite seems to be 
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retarded (140 min) compared to the experiments at lower reaction temperatures (see exp. 6 in 

Table 2, Fig 5). 

Rate constants for the overall reaction progress were calculated using equation (1) assuming 

slopes of 1 (n = 1) and 0.5 (n = 2) for a solution and diffusion controlled reaction mechanism, 

respectively (9.924·10-5 – 5.5·10-3 s-1,see Table 2). 

The change of the rate constants with increasing specific surface for the three investigated 

reaction temperatures clearly shows an increase as depicted in Figure 6. Based on the 

calculated rate constants at three different temperatures, activation energies (EA) can be 

determined according to the Arrhenius equation (2) by plotting the data according to equation 

as follows 

RT
E A

eAk −⋅=  (2) 

where k is the rate constant, EA the activation energy, T the temperature in Kelvin, R the gas 

constant and A the pre-exponential factor. The pre-exponential factor A is equivalent to the 

amount of collisions between reactants with energies higher than the activation energy. Its 

temperature dependence can be neglected due to the fact that the exponential part changes 

much stronger with temperature. From experiments with coarse quartz EA could be 

determined for the three different segments of the reaction. Whereas for the experiments with 

fine quartz, EA could just be determined for the first solution controlled segment, due to the 

fact that just one experiment shows two changes in the reaction mechanism. Experiments 

using fine quartz reveal remarkably lower values for EA of 16.5 kJ/mol*K compared to 30.8 

kJ/mol*K for the ones using coarse quartz (Fig. 7).  
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Discussion 

 

Neutron diffraction experiments were conducted to determine the reaction kinetics of 1.13nm 

tobermorite formation in the system CaO-SiO2-D2O. The varying slopes for the reaction 

conversion of quartz after applying the kinetic model of Chan et al. [13] indicate a change in 

the present reaction mechanism between solution and diffusion control during the proceeding 

reaction. The initial step of the reaction is controlled by the solution of quartz and its reaction 

with portlandite, leading to the formation of a layer of semicrystalline CSH-phases 

surrounding the quartz grains as shown in Figure 8 for AAC steam cured at 190 °C/Psat, 

previously published by Zürn et al [18]. The second part of the reaction is controlled by the 

diffusion through this layer of CSH-phases and portlandite is expensed completely, however, 

the two experiments applying the 8µm quartz conducted at 170 and 190 °C/ Psat do not show 

further changes in the reaction mechanism. In contrast, all other experiments of this study 

show a second change back to diffusion control (see Fig. 2). If this second change is present 

the first reflections of 1.13 nm tobermorite occur within the last diffusion controlled segment 

of the reaction. Implying that 1.13 nm tobermorite is formed by the reaction of quartz with the 

primarily formed semicrystalline CSH-phases.  

This acceleration of the reaction can be explained by the increase in specific surface of quartz 

with decreasing grain size. A 50% reduction of the mean grain size results in a 44% increase 

of the reactive surface. An increase in specific surface does not only accelerate the reaction, 

but it also has a strong influence on the present reaction mechanisms as well, demonstrated by 

the missing second diffusion controlled segment in the experiments at 170 and 190 °C/Psat 

applying the 8µm quartz. At 210 °C/ Psat with a grain size of quartz of 8 µm again two 

changes are present.  

Elevating the reaction temperature using 16µm quartz causes an increase in the transition 

times between the different reaction mechanisms. The period of diffusion control seems to 
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extend (see Fig 4a), whereas the consumption of portlandite and the formation of 1.13 nm 

tobermorite is accelerated by rising the reaction temperature (Fig. 4b). 

In experiments with the fine quartz fraction, t1_transit clearly shows a decrease by increasing 

the reaction temperature (Fig. 5). The time needed to consume portlandite is as well decreased 

by elevating the reaction temperature but this trend could not be detected for the 1.13 nm 

tobermorite occurrence. At first the formation of 1.13 nm tobermorite was slightly accelerated 

by increasing the temperature but at 210 °C it could not be detected before 140 minutes of 

reaction. This means a retarding of tobermorite formation at high temperatures using fine 

quartz powder. This effect can be attributed to the metastable formation of 1.13 nm 

tobermorite beyond its stability field under these conditions [16]. Comparing the increasing 

intensities of 1.13 nm tobermorite hk0 and 00l reflections, it stands out that the (hk0) 

reflections occur before the (00l) reflections (see Fig: 3). This can be interpreted in terms of 

how the crystallization of 1.13 nm tobermorite takes place. It starts with the of nanoscale ab-

planes which then, at a later stage of the reaction, start to stack along [001] to form the 

characteristic lathlike tobermorite crystals. 

With decreasing grain size of quartz the calculated rate constants are increasing at a given 

temperature(Fig. 6). Based on these data, activation energies for the pure system CaO-SiO2-

D2O were calculated for the first time. The calculated values (Table 2) for coarse quartz 

experiments, 30.8 kJ/mol*K (solution controlled segment) and 33.8 kJ/mol*K (diffusion 

controlled segment), are within the range of activation energies for the Al-bearing system 

determined by Shaw et al. [21]. Activation energies for experiments using fine quartz (16.5 

kJ/mol*K, Tab. 2) are considerably below those values. This may be due to the fact that Shaw 

was assuming an isokinetic reaction and applying a slope of 1 to the Arrhenius equation. 

There exist several studies trying to determine the reaction kinetics of 1.13 nm tobermorite 

and describe the influence of the reaction temperature and grain size of quartz by performing 

quenching experiments. Those experiments were not interpretable at all with the hitherto level 
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of knowledge of an isokinetic reaction. Now, taking into account that the reaction mechanism 

changes between solution and diffusion control, this is possible. Based on the results and new 

insights in the1.13 nm tobermorite forming reaction kinetic data obtained from quenching 

experiments  [14;22,23] were recalculated in terms of equation (1,) applying two different 

slopes (n=1 and n=2). The transition temperatures were determined (Fig.9) and interpreted 

concerning to the grain size and temperature dependency (Fig.10). The results are in good 

agreement with findings of this study, showing an increase of reaction time with increasing 

grain size of quartz. 

 

Conclusion: 

It could be shown that in-situ neutron diffraction is a very suitable method to investigate the 

kinetics of the 1.13 nm tobermorite formation. For the first time the non isokinetic behaviour 

of the reaction could be evidenced by combining the high intensity of the D20 powder 

diffractometer at ILL together with an improved hydrothermal autoclave (HAND, Fig. 1) 

allowing constant reaction conditions and a fast and easy sample exchange. Furthermore exact 

times for the transition and the consumption of portlandite and the occurrence of 1.13 nm 

tobermorite could be determined. Based on the data obtained by applying the kinetic model of 

Chan et al. [13] on the values for the overall reaction progress rate constants could be 

determined for the first time. Likewise Shaw et al. [21] calculated rate constants for the 

tobermorite forming reaction but did not interpret their date in terms of the present reaction 

mechanism. By conducting experiments at three different temperatures, the temperature 

dependence and hence activation energies could be determined. The results of this study yield 

detailed kinetic data on the 1.13 nm tobermorite formation, which were just insufficient 

investigated in the past. Beyond that the conducted experiments yield information on the 

crystallisation path of 1.13 nm tobermorite as well. These data give a better understanding of 

the processes present during the production of AAC and could help to optimize production 



125 

 

conditions and recipes resulting in shorter production times and an optimal exploit of the 

available resources. 
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Table 1 

Reaction conditions, composition, employed grain size of quartz and corresponding specific 
surface of the conducted experiments. 

 
 
Table 2 

Transition times, portlandite expense, tobermorite occurrence and calculated rate constants 
and activation energies for the conducted experiments  

 
 

 

 

 

 

 

 

 

 

 

 

run temperature     (°C) quartz grain size 
(µm) 

specific surface 
(m²/g) 

SiO2        
(g) 

CaO        
(g) 

W/M 

1 170 16 0.9 20 10 0.8 
2 190 16 0.9 30 15 0.8 
3 210 16 0.9 30 15 0.8 
4 170 8 1.6 16 8 0.8 
5 190 8 1.6 16 8 0.8 
6 210 8 1.6 16 8 0.8 

ru
n 

t1_transit 
(min) 

t2_transit 
(min) 

port_ou
t (min) 

tob_in 
(min) 

rate 
constants P1

(s-1, x 10-5) 

rate 
constants P2 

(s-1, x 10-3) 

EA            
solution 
controlled 
part 
(kJ/mol*K) 

EA             
diffusion 
controlled part 
(kJ/mol*K) 

1 15 36 254 374 5.529(39) 0.885(03) 
2 42 150 120 360 4.754(14) 2.398(01) 
3 30 228 142 250 7.667(10) 3.343(02) 

30.8(16.04) 33.8(10.68) 

4 93 - 70 105 6.882(08) 4.863(03) 
5 65 - 64 87 9.924(17) 5.599(02) 
6 12 150 60 140 8.935(21) 2.651(01) 

16.5(11.15) - 
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Figure headings 
 
 
Figure 1: 
 
mechanical drawing of the hydrothermal autoclave for neutron diffraction designed for this 
study 
 
Figure 2 
 
Consumption of quartz versus reaction time for different reaction temperatures and grain sizes 
of quartz in terms of equation (1) (Chan et al., 1978) for the conducted experiments. Time of 
portlandite expense and 1.13nm tobermorite occurrence are marked by arrows, slopes with n= 
1 or n=2 indicating a solution or diffusion controlled reaction mechanism, respectively.  
 
Figure 3 
 
Changing Ca/Si ration with increasing reaction time for the run at 190°/ Psat and 16µm grain 
size of quartz after [17] 
 
Figure 4 
 
Temperature dependence of t1_transit and t2_transit (a) and portlandite expense and 
tobermorite occurrence (b) for experiments conducted with 16µm grain size of quartz 
 
Figure 5 
 
Temperature dependence of t1_transit (small graphic) ,portlandite expense and tobermorite 
occurrence (b) for experiments conducted with 8µm grain size of quartz 
 
Figure 6 
 
Rate constants versus specific surface for the first solution controlled part of the reaction 
 
Figure 7 
 
calculated activation energies (EA) versus specific surface for the solution controlled segment 
of the reaction. 
 
Figure 8: 
Backscattered electrons image of AAC showing a large quartz grain (qz) next to 
semicrystalline CSH-phases (CSH) and 1.13nm tobermorite (Tob) crystallizing into the gap 
between qtz and CSH. 
 
Figure 9 
Recalculated quenching experiments [14;22,23] according to equation (1) ,determined 
transition times are given in boxes 
 
Figure 10 
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transition time versus grain size of quartz from recalculated quenching experiments 
[14,22,23] 
 
 
 
Figure 1 
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