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1 Summary 

 

Vertebrate embryos are derived from a transitory pool of pluripotent embryonic cells. 

By the process of induction, these precursor cells are assigned to specific fates and 

differentiation programs. Histone post-translational modifications are thought to play a 

key role in the establishment and maintenance of stable gene expression patterns 

underlying these processes. While at gene level histone modifications are known to 

change during differentiation, very little is known about the quantitative fluctuations in 

bulk histone modifications during development. To investigate this issue histones isolated 

from four different developmental stages of Xenopus laevis were analysed by mass 

spectrometry.  

Initally, a variety of different protocols for histone extraction from Xenopus 

laevis embryos and stable cell lines was tested and evaluated. Since non of the available 

methods worked sufficiently, a new reliable and effective protocol for nuclei preparation 

and histone extraction was established. Using mass spectrometry, core histone 

modifications were unambiguously determined. The techniques for identification and 

quantification of histone modifications by tandem mass spectrometry were improved as 

well.  

In total, an average sequence coverage of 68% of modification sites for the four 

core histones was achived by tryptic digestion after covalent modification of lysine 

residues with propionic anhydride. Using both LC-MS/MS and MALDI-TOF mass 

spectrometry,  a total number of 2 modifications of H2A and 3 modifications H2B, 39 

modifications of H3 and 20 modifications of H4 were identified and quantified. During 

this developmental period, an increase in the unmodified states, and a shift from histone 

modifications associated with transcriptionally active to transcriptionally repressive 

histone marks, was observed. Furthermore, these naturally occurring histone 

modifications were compared to the histone modifications of murine ES cells, detecting 

large differences in the methylation patterns of lysines 27 and 36 of histone H3 between 

pluripotent cells from Xenopus blastulae and murine ES cells. By combining all detected 

modification transitions, their patterns could be clustered according to their embryonic 

origin, defining specific histone modification profiles for each developmental stage. These 

specific histone modification profiles indicated a stepwise maturation of the embryonic 
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epigenome, which may be cause to the progressing restriction of cellular potency during 

development.  

This thesis has revealed major quantitative shifts for several histone 

modifications known to be involved in gene regulation and furthermore enabled the 

definition of stage specific histone modification profiles accompanying and potentially 

regulating the transition from pluripotent to determined cell states using an antibody-

independent method.  

 

 

2 Zusammenfassung 

 

Embryonen von Wirbeltieren entstehen aus Zellen, die sich für eine kurze 

Dauer in einem pluripotenten Zustand befinden. Durch den Prozess der embryonalen 

Induktion werden diese Vorläuferzellen ihrer spezifischen Differenzierung und der dafür 

notwendigen Regulierung zugewiesen. Man geht davon aus, dass der kovalenten 

Modifizierung der Histone eine Schlüsselrolle bei der Entstehung und Aufrechterhaltung 

von stabilen Genexperssionmustern, die der Differenzierung zugrunde liegen, zukommt. 

Man hat heute bereits einige Informationen über die Veränderungen der Modifizierungen 

von Histonproteinen in Bezug auf einzelne Gene während der Differenzierung von Zellen 

erworben. Es ist jedoch wenig über das Ausmaß dieser Veränderungen auf globaler Ebene 

während der Entwicklung bekannt. Um diese Veränderungen beschreiben zu können 

wurden in dieser Studie Histonproteine aus vier verschiedenen Entwicklungsstufen des 

Krallenfrosches Xenopus laevis mittels Massenspektrometrie untersucht. 

Zu Beginn der Versuche wurden verschiedene Methoden zur Aufreinigung von 

Histonproteinen aus den Embryonen sowie von Zelllinien des Krallenfrosches Xenopus 

laevis ausprobiert und bezüglich ihrer Qualität beurteilt. Da bei den Versuchen keine der 

verwendeten Methoden zufriedenstellende Ergebnisse erbrachte, wurde schrittweise eine 

neue Methode zur Isolierung von Zellkernen sowie Histonproteinen entwickelt. Die 

Charakterisierung und Identifizierung von verschiedenen Modifizierungen der vier Kern-

Histonproteine konnte durch die Verwendung der Massenspektrometrie eindeutig 

erfolgen. Zudem konnten die Methoden zur Erkennung von Modifizierungen sowie deren 

Quantifizierung dieser weiter verbessert werden.  

Durch die chemische Reaktion von Lysinseitenketten der Histonproteine mit 
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Propionsäureanhydrid und dem anschließenden Verdau der Histonproteine mit der 

Protease Trypsin konnten insgesamt 68% der Modifizierungsstellen der 

Aminosäuresequenz der vier Kern-Histonproteine beurteilt werden. Demnach konnten 2 

Modifizierungen an dem Histon H2A, 3 an H2B, 39 an H3 und 20 an H4 beschrieben 

werden. In besonderem Maße wurde dies gewährleistet durch die Kombination der LC-

MS/MS und der MALDI-TOF Massenspektrometrie. 

Während der entwicklungsbiologischen Phasen, die untersucht wurden, konnte 

ein Abfall der Häufigkeit von Histon-Modifizierungen festgestellt werden. Zudem zeigte 

sich während der Entwicklung eine Verlagerung solcher Modifizierungen, die mit der 

Aktivierung von Gensequenzen in Zusammenhang gebracht werden können, zu solchen, 

die mit dem Abschalten von Gensequenzen in Verbindung gebracht werden. Darüber 

hinaus wurden die in dem Krallenfrosch vorkommenden Modifizierungsmuster mit 

solchen aus embryonalen Stammzellen, die von der Maus stammen, verglichen. Darin 

wurden besonders Unterschiede in der Methylierung von den Lysinresten 27 und 36 

zwischen pluripotenten Embryonen des Frosches und den murinen Stammzellen 

gefunden. Mittels der Kombination aller beschriebener Modifizierungen der Histon-

Proteine konnten für die jeweiligen analysierte Entwicklungsstufen charakteristische 

Muster identifiziert und in einer speziellen Graphik gruppiert werden. Diese 

stadienspezifischen Modifikationsmuster deuten auf eine schrittweise Reifung des 

embryonalen Epigenoms hin, die ursächlich an der zunehmenden Restriktion der 

zellulären Differenzierung und Potenz beteiligt sein könnte.  

Diese Arbeit erbrachte einen bedeutenden Einblick in das Ausmaß der 

Bewegungen von zahlreichen Modifizierungen von Histonproteinen, die bei der 

Genregulierung beteiligt sind. Zudem ermöglichte diese Studie, Profile von 

charakteristischen Modifizierungsmustern der Histone zu definieren und diese 

entsprechend den Entwicklungsstadien zuzuordnen. Diese spezifischen 

Modifikationsmuster könnten bei der Regulierung des Übergangs von einem 

pluripotenten zu einem in der Differenzierung festgelegten Zustand der Zelle beteiligt 

sein. 
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3 Introduction 

3.1 Development of Vertebrates 

The embryonic development of a vertebrate organism is defined as the time 

between the fertilization of the egg and the end of organogenesis. The developmental 

process starts with only a single cell, the zygote, and leads over a period with fundamental 

steps to the formation of an adult organism, comprising of a huge variety of specialized 

and differentiated cell types. Among the events taking place during embryonic 

development are gastrulation, neurulation and organogenesis, the formation of the three 

germ layers - ectoderm, mesoderm and endoderm – and the stepwise specification of cell 

fates (Gilbert, 2006). 

  

3.1.1 Morphological Differentiation 

Embryonic development in Xenopus starts at fertilization, where male and 

female pronuclei fuse and the subsequent cleavage divisions begin. These cleavage 

divisions occur rapidly after each other and last only 20-30 minutes each. This short cell 

cycle is achieved by the lack of gap phases. The volume of the blastomeres is constantly 

reduced by each cell division and thus the nuclei to cytoplasm ratio increases constantly. 

After 12 cell divisions, the nuclei to cytoplasm ratio is assumed to reach a critical value 

leading to the subsequent activation of the zygotic genome. This time point is known as 

Mid-Blastula Transition (MBT; Newport et al., 1982a/b). During this transition, the rate of 

cell division slows down and the cell cycle lengthens (Heasman, 2006).  

The animal-vegetal axis is defined by the two hemispheres of the animal and 

vegetal pole of the oocyte. Coincidentially with the first cleavage division, cortical rotation 

takes place, which is a movement driven by microtubular organisation due to the entry of 

the sperm. The maximal movement, however, is directed into the opposite direction of the 

sperm entry point. The point of maximal cortical rotation becomes the future dorsal 

blastoporus and, thus, defines the anterior-posterior axis of the embryo (Heasman, 2006).  

Shortly after the activation of the zygotic genome the embryo reaches with the 

gastrulation the next critical stage. During gastrulation, cells move to different positions 

within the embryo and establish the multilayered body plan. The amphibian gastrulation 

starts at the future dorsal side of the embryo by the formation of the blastopore lip. The 
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cells migrating from the outside to the inside of the embryo will form the endoderm and 

mesoderm; the cells remaining at the outer surface become the ectoderm. In order to cover 

the entire surface of the embryo, the ectodermal cells expand by epiboly, which is driven 

by the intercalation of cell layers in the animal hemisphere of the embryo. The vegetal cells 

will form the prospective endoderm (Beetschen, 2001). At the end of gastrulation, the three 

germ layers have been formed and the body axes have been determined. Furthermore, the 

segregation of the primordial germ cells, specific for reproduction, takes place during 

gastrulation (Gilbert, 2006). 

By the end of gastrulation the three germ layers are differentiated and the 

formation of the organ precursors and the neurulation can begin. The ectodermal cells of 

the animal hemisphere show high BMP expression leading to epidermal differentiation. 

However, if the ectodermal cells are beneath the involuted mesodermal cells, the BMP 

signal is suppressed leading to proneural fate. Later, the neuroectoderm forms the neural 

plate, from which the brain and the neural tube arise. During the same time, 

organogenesis starts where the organ precursors - such as the heart, the archenteron and 

the kidney - are formed from derivates of the three germ layers (Heasman, 2006).  

Early embryonic development is ending on the way to the tadpole stage. 

Characteristic for amphibians - the tadpole continues its development with 

metamorphosis.  

 

3.1.2 Differences concerning the Development of Amphibians and Mammals 

 In amphibians, such as the frog, development is extra-corporal of the female. 

On the other hand, in mammals, such as mice, both fertilization and development take 

place in the female´s reproductive organs.  

The mammalian embryo has no internal nutrient supply and, thus, the 

establishment of external nutrient and oxygen supply is crucial. Consequently, the earliest 

differentiation event of the mammalian embryo is the separation of trophectodermal cells 

and the inner cell mass (ICM; Dyce et al., 1987). The trophectoderm will form the placenta 

together with the decidual cells of the female uterus. The amphibian embryo, in contrast, 

possesses a large yolk supply to nourish it until it starts feeding at day 7 of development.  

Another difference between mammals and frog is the activation of the zygotic 

genome. As described above, the frog genome is activated after 12 rapid cell divisions 
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when the embryo consists of roughly 4000 cells at MBT. The mouse genome, however, 

becomes activated at the 2-cell stage (Moore et al., 1993) and the human genome between 

the 4- and 8-cell stage (Braude et al., 1988).  

 

3.2 Regulatory Mechanisms of Early Development 

As described above, major events take place during embryonic development of 

a vertebrate organism. All the morphological processes, the rapid cell divisions, the 

formation of the germ layers and the body axes during gastrulation as well as the 

following development, require a distinct regulation. 

 

3.2.1 Differential Gene Expression in Pluripotent and Somatic Cells 

Although the adult organism consists of a huge variety of differentiated and 

specialized cells, every cell - with the exception of lymphocytes - has the identical genomic 

information, the DNA. Pluripotent cells such as ES cells are transcriptional permissive and 

show a genome wide gene transcription at low levels (Efroni et al., 2008), but the 

transcription is potentially unproductive due to stalled polymerase (Gunther et al., 2007). 

Differentiated cells, however, have restricted transcriptional potential. These cells have 

both stably repressed genes as well as actively transcribed genes and thus use only a small 

portion of the genome present in the cell. This has been shown by experiments 

determining the mRNA and protein pool found in differentiated cells, which is highly 

specific for the cell type (Wetmur et al., 1968). These results indicate that differentiated, 

somatic cells utilize differential gene expression.  

 During the embryonic development, the potency of cells is constantly reduced. 

At the beginning, the totipotent zygote is capable to produce all cell types of an adult 

organism as well as extra-embryonic tissues. During development, the cellular potency is 

reduced constantly, and there are pluripotent stem cells present, which are able to give 

rise to the embryonic tissues but have a more restricted ability to differentiate than the 

totipotent zygote. Adult organisms consist mostly of differentiated cells and have only 

small populations of multipotent stem cells remaining, like the haematopoietic stem cells, 

which give rise only to the different blood cells – erythrocytes, platelets and neutrophils.     

Next to the totipotent zygote and the early blastomeres, there are embryonic 

stem cells (ESCs) derived from the ICM of the mouse blastocyst embryo (Evans et al., 1981; 
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Martin, 1981). The cells of the ICM are still pluripotent. These pluripotent embryonic stem 

cells have characteristic features differing from somatic cell types. Embryonic stem cells 

cultured in vitro show permanent self-renewal, are able to form all embryonic cell types 

and, as determined in transplantation experiments, these cells can form teratocarcinomas 

and can give rise to derivates of all the three germ layers as well as the germ line by 

implantation of the ES cells into blastulae embryos. On the other hand, these ES cell 

cultures require co-culture on a feeder layer or leukaemia-inducing factor (LIF) in the 

medium to prevent spontaneus differentiation (Prelle et al., 2002).  

Furthermore, mouse ES cells are characterized by the expression of the 

pluripotency core network. This network requires the expression of certain transcription 

factors such as Oct-4 and Sox-2 as well as the expression of either Klf-4 and c-Myc or 

Nanog and Lin-28 for reprogramming of somatic cells (Takahashi et al., 2007; Yu et al., 

2007).  These transcription factors share most of their target genes. Many targets of Oct-4, 

Sox-2 and Nanog encode key transcription factors for differentiation and development, 

and are transcriptionally inactive in ES cells.  

 

3.2.2 Inductive Events and Transcription Factor Cascades 

Inductive events and the activation of transcription factor cascades are 

necessary for the differential gene expression found in differentiating somatic cells.  

Induction is the interaction of different cell types in close proximity, where one 

cell type is providing a signal called inducer to another cell type, which has to be 

competent for the signal and is responding to it accordingly. As for Conrad Waddington, 

competence is no passive state but an active ability to be responsive (Slack, 1993; Gilbert, 

2006). Cellular competence can be explained best by the fact that a signal has different 

functions at different times, for example maternal Wnt dorsalizes, zygotic Wnt ventralizes 

the embryo. Competence may be the presence of a transcription factor in the cell, which is 

able to interact with the signalling molecule of the inducer.  

Inductive events commit cells to a specific differentiation program. As the cells 

of the embryo stepwise differentiate into their somatic fate, they are first specified to 

become a certain cell type. This specification means that they are able to differentiate 

autonomously, but only in a neutral surrounding. However, they still can respond to 

environmental changes, which induce a change in cell fate. In the next step, these cells are 
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determined for their fate, meaning they are irreversibly committed to form one certain cell 

type (Slack, 1993).  

On the other hand, transcription factors can bind to enhancer and promoter 

elements of genes from where they modulate gene transcription. The expression of certain 

transcription factors as well as their co-factors is very important for the establishment of 

gene expression. The presence of a transcription factor or transcription factor networks in 

the cell nucleus can establish differential gene expression, as it is found in differentiating 

cells. Among the transcription factor pathways are FGF, TGF-β, WNT- or BMP-signaling.  

 

3.2.3 Establishment and Maintenance of Differential Gene Expression 

Regarding the induction and the function of transcription factor networks, how 

is the early embryonic development regulated?  

The zygote has a pool of maternal mRNAs and proteins, which become 

unevenly distributed during the rapid cell divisions at the beginning of embryonic 

development. Among those factors are transcriptional activators as well as repressors 

(Houston et al., 2002, Kofron et al., 2004). As mentioned above, the cortical rotation 

movement distributes the maternal Wnt11 mRNA. The Wnt pathway is crucial for the 

establishment of the organizer structur and the subsequent formation of dorsal structures 

in the embryo (Heaseman, 2006). 

By the start of zygotic transcription at MBT, a wave of inductive events is 

triggered. These signals lead to the activation of localized transcription factors. The 

activation of transcription factors becomes more and more stable through a process called 

self-enhancement. 

At the beginning, the induction events lead to unstable expression of 

transcription factors. The initiation of transcription factor pathways, such as the FGF, TGF-

β or Wnt, leads through the mechanisms of self-enhancement and feedback-loops to stabel 

differentiated gene expression profiles. The consequence of the activation of specific 

pathways is the expression only of subsets of genes. This limited gene expression causes 

stepwise differentiation of the cell.   

To establish and maintain the differential gene expression in different cells, the 

transcription factors are linked to mechanisms which affect the chromatin structure.  

But how are these transcription profiles, established by the inductive signals, 
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maintained over several cell divisions? 

Among the mechanisms underlying the establishment and maintenance of 

differential gene expression, the epigenetic regulation has increasingly gained attention 

during the last decades. Epigenetic mechanisms have shown to influence the regulation of 

the potency of cells such as pluripotency and differentiation, reprogramming of somatic 

nuclei as well as the transformation to malignant cancer cells (Jones et al., 2007).  

 

3.2.4 Epigenetics 

Conrad Waddington defined the term “epigenetics” in 1957 as “a phenomenon 

that changes the final outcome of a locus or chromosome without changing the underlying 

DNA sequence. Thus, cellular differentiation may be considered […] largely governed by 

changes in the “epigenetic landscape” rather than alterations in genetic inheritance” 

(Slack, 2002). A very attractive consequence of this hypothesis is the fact that these 

epigenetic modifications are stable enough to allow the faithful replication of gene 

expression patterns, but on the other hand have a higher level of variability than DNA 

sequence. The possibility to reverse the epigenetic modifications allows a return to the 

previous state of gene expression whenever necessary (Jaenisch et al., 2003). This has led to 

the assumption, that through alterations in epigenetic modifications, somatic cells could 

be reversed to a pluripotent state and thus be differentiated in vitro in any cell type of 

interest (Campbell et al., 1996; Gurdon et al., 2000). This possibility would have 

tremendous impact on the medical treatment of diseases like strokes, myocardial 

infarction or dementia. Through the generation of replacement tissues from the patients´ 

own somatic cells, these illnesses could be cured in principle. 

 

3.3 Chromatin 

Epigenetic regulation involves mechanisms linked to the packaging of genes 

into chromatin, which regulate the accessibility of genes through different mechanisms 

like DNA methylation, histone post-translational modifications (PTMs) and histone 

variant incorporation, nucleosomal remodeling, non-coding RNA mediated silencing, 

chromatin compaction into higher order structures as well as its distribution in the nuclear 

space (Berger, 2007).  

Chromatin, the template for gene transcription, DNA replication and repair, 
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consists of DNA wrapped around the nucleosomes (see Figure 1). It can be distinguished 

into the transcriptionally active euchromatin, the inactive facultative heterochromatin and 

the constitutive heterochromatin. The last contains only few genes and the centromeric 

and telomeric regions (Fischle et al., 2003).  

DNA can be methylated at CpGs, first described in 1948 and this methylation of 

CpGs is found in most eukaryotes (Hotchkiss, 1948). This modification is linked to gene 

regulation, genomic imprinting, X-chromosome inactivation and normal embryonic 

development in mammals. Three different DNA methyltransferases were found: Dnmt1, 

which is involved in maintenance of the methylation after DNA replication; and Dnmt3a 

as well as 3b, which both function during early development in establishing tissue specific 

DNA methylation signatures which are then transmitted to differentiating cells. DNA 

methylation can influence histone modifications via the MeCP2 complex (Shiraishi et al., 

2002), a reader of methylated DNA, which also functions as histone deacetylase. Thus 

DNA methylation could facilitate gene repression by removal of histone acetylations. In 

cancer cells, both hypomethylation and hypermethylation are found and may be linked to 

aberrant gene expression and cell function (Hermann et al., 2004; Sulewska et al., 2007).  

 

 

 

Figure 1: The Nucleosome 
Depicted is the histone octamere with the DNA wrapped around (orange). The 
four core histones H2A, H2B, H3 and H4 (yellow) build the histone hetero-
octamere in the center of the nucleosome, whereas the histone tails are protruding 
of the nucleosome. The histone tails are the sites of most histone modifications. 
Possible modifications are indicated by the dot and the number for the 
corresponding amino acid residue (modified after Alberts et al., 2002).  
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During the last years, evidence accumulated that in addition to the chromatin 

modifications, non-coding RNA molecules are also involved in gene regulation among 

other functions. These interference RNAs (RNAi) are found in prokaryotes as well as in 

eukaryotes and their mechanism of action seems to be conserved among species as they 

function in degradation, modification and inhibition of the function of nuclei acids. The 

RNAi molecules base-pair with the nucleotide sequence of target RNAs mostly in the 3´ 

untranslated region, and lead to degradation or translational inhibition of the target 

RNAs. There are three different small non coding RNAs known, small interfering 

(siRNA), micro RNA (miRNA) and PIWI interacting RNA (piRNA). All of them are 

derived from long double stranded RNA templates, that are processed by Dicer, a 

ribonuclease, to small-interfering RNAs, which are then loaded onto members of the 

Argonaute protein family such as the RISC complex (RNA-induced silencing complex; 

Peters et al., 2007).  

 

3.3.1 The Nucleosome  

The fundamental and repeating unit of chromatin is the nucleosome, first 

detected by Kornberg in 1974 (Kornberg, 1974). The nucleosome consists of two copies of 

the four core histones - H2A, H2B, H3 and H4 – assembled to the histone octamere and 

147bps of DNA which are wrapped around the histone octamere in a flat, left handed 

superhelix in 1.65 turns (Luger et al., 1997; see Figure 1). This interaction is achieved by 14 

mainly water mediated contact points between the minor groove of the DNA and the 

histone-octamere (see Figure 1). The water molecules arrange the interaction between the 

basic, positively charged amino acid side chains of the histones and the negatively 

charged phosphate backbone of the DNA and thus can overcome structural differences of 

the DNA sequence (Muthurajan et al., 2003). The nucleosome is the most stable protein 

DNA complex under physiological conditions. At the entry of the DNA to the 

nucleosome, the linker histone H1 is situated to further compact and stabilize the complex. 

Two adjacent nucleosomes are connected through the linker DNA, which varies, tissue 

and species dependent, between 10 and 80 bps in length (Bednar et al., 1998). The linker 

DNA together with the linker histone H1 and the nucleosome complex is referred to as the 

chromatosome.  

 



Tobias Schneider Introduction 12 

 

 

   

3.3.2 ATP-dependent Nucleosome Remodeling 

ATP-dependent nucleosome remodeling can alter the DNA histone interaction 

with the usage of ATP hydrolysis to overcome the non-covalent contacts between DNA 

and histone-octameres. Through their action, the underlying DNA sequence can become 

more accessible to enzymes such as the polymerases for gene transcription. Remodeling 

complexes can either slide the nucleosomes which either leads to dense package of the 

adjacent nucleosomes, opening of the DNA in between the nucleosomes, or total eviction 

of the nucleosome from the DNA. Chromatin remodeling factors can be grouped in four 

families, which are conserved from yeast to human. These complexes comprise of 2 to 12 

different subunits with the common denominator being a single Swi2/Snf2 APTase 

subunit. The four families are: (i) Swi2/Snf2, (ii) ISWI/SNF2 type, (iii) CHD family and 

the (iv) INO80 complex (Becker et al., 2002; Tsukiyama, 2002). 

 

3.3.3 The Higher Order Organization of the Chromatin 

     The nucleosome condenses the primary DNA molecule in a five-fold manner 

and shapes the DNA molecule not just by bending, but also by facilitating higher order 

structures (Luger et al., 1997). The unfolded “beads on a string” model (see Figure 2) 

consists of nucleosomes separated by 10-80 bps of linker DNA. This is then further 

compacted into the so-called 30 nm fiber, for which several models exist: (i) the “one start 

helix” with bent linker DNA followed immediately by the next nucleosome known as the 

solenoid (Thoma et al., 1979), where the nucleosomes coil around a central cavity with 

eight nucleosomes per turn; (ii) the “two start helix” models consisting of straight linker 

DNA connecting two adjacent stacks of helically arranged nucleosome cores. The two start 

helical model can either form a helical ribbon or the crossed linker model (Chubb, 2009). 

The formation of higher order structures requires both the N-terminal domains of the 

histones as well as the linker histones. In the 30 nm fiber, DNA is compacted 

approximately 50 fold. Although the further levels of compaction are still under debate, 

there are models for a 60-130 nm chromonema fiber (see Figure 2) and chromatin-loop 

domains consisting of 100 kbps-1 Mbps (Figure 2; Cremer et al., 2001). The overall 

compaction of DNA through this folding is roughly 400,000 fold in the eukaryotic nucleus. 

In the interphase nucleus, chromosomes are found unevenly distributed (see Figure 2), 

where gene rich territories are rather in the center of the nucleus and gene-poor regions 
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rather at the nuclear periphery. The interchromosome regions, which are thought to 

contain the complexes for transcription, and the chromosome territories build up an entire 

nuclear architecture (Cremer et al., 2001).  To further stabilize this nuclear organization, 

the chromosomes seem to be physically linked to the nuclear envelope via binding to 

specific proteins (Bartova et al., 2008).   

 

         

Figure 2: Levels of Chromatin Compaction 
The DNA double helix is depicted in the uppermost panel. This DNA double helix is 
wrapped around the histone octamere to form the nucleosome. This conformation is 
often called “beads-on a string”, where histone octameres represent the beads and 
the DNA the string. Furhter compaction is achieved by the formation of the 30nm 
fiber, which is then folded into the chromonema fiber. The chromonema fiber is 
further compacted into the chromatin-loop domains. Finally, during mitosis, the 
chromatin loops are condensed to form the metaphase chromosomes (Picture taken 
from Felsenfeld et al., 2003). 
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3.3.4 Histones and Histone-Variants 

Histone proteins, first discovered in 1884 by Kossel (Kossel, 1884), are basic 

proteins grouped into the four core histones H2A, H2B, H3 and H4 and the linker histone 

H1 (Turner, 2005). The histone proteins are encoded in gene clusters, which are necessary 

for the allocation of high amounts of histones during DNA replication (Braastad et al., 

2004). The clustering of histone genes is well conserved among different species such as 

sea urchin, flies (Sierra et al., 1982), mice (Wang et al., 1996) and humans (Marzluff, 2002). 

Next to the conserved organization of the histone genes, the sequences of the histones are 

also among the most invariant proteins known (Kornberg, 1999). The four core histones 

are small proteins – their size ranging from 11 kDa and 16 kDa – consisting of a large 

globular domain and a small flexible N-terminal domain referred to as the histone tail. 

The globular domains are necessary for the interaction of the histone proteins among each 

other by the formation of the histone-octamere complex (Arents et al., 1995; see Figure 1). 

The tail domains which are protruding from the nucelosome and thus are easily accessible 

for enzymes, contain high amounts of lysine and arginine residues, which are subjected to 

a variety of post-translational modifications. Removing the histone tails by genetic 

engineering in yeast is cell-lethal, which points out their importance.   

For three of the four core histones – i.e. H2A, H2B and H3 - histone variants 

exist, which mostly differ only in few amino acids from their canonical counterparts. The 

so-called H3.1 is incorporated into the chromatin in a replication-dependent manner. The 

H3 variants H3.2 and H3.3, however, are incorporated in a replication-independent 

manner. Furthermore there are some specific variants, such as the testis specific H3.1t and 

CENP-A (centromeric protein A), which is found at centromers and is required for correct 

kinetochor assembly (Henikoff et al., 2005). H3.1 is associated with repressed gene loci and 

is mainly associated with repressive histone modifications. In contrast, the H3.3 variant is 

associated with actively transcribed genes and mostly carries active histone marks, such as 

K9, K18 and K23 acetylation. Nucleosomes containing the H3.3 variant are much less 

stable than those with H3.1 (Jin et al., 2007). According to a common model, H3.1 is linked 

to constitutive heterochromatin, H3.2 to facultative heterochromatin and H3.3 to 

euchromatic regions (Hake et al., 2006). However the proof for the function of H3.2 is still 

missing. Support for the idea that different variants have different functions may come 

from the finding that H3.1 is bound by the histone chaperone CAF-1 (chromatin assembly 

factor 1), whereas H3.3 is bound by Hira (Loyola et al., 2006). However, this may, on the 
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other hand, simply reflect different modes of histone deposition.   

Most histone variants are found for H2A, among the best characterized are 

H2A.X, H2A.Z, H2A.Bbd (Bar body dependent) and macroH2A (West et al., 1980). H2A.X 

has high sequence similarity to H2A except the C-terminal domain, where it is specifically 

phosphorylated upon DNA damage (Rogakou et al., 1998). This phosphorylated H2A.X, 

also referred to as γ-H2A.X, is directly linked to DNA double strand break repair 

processes. The function of H2A.Z is more controversial. H2A.Z is found ubiquitinated at 

the inactivated X-chromosome in mammals, suggesting its involvement in the formation 

or maintenance of heterochromatin structures (Sarcinella et al., 2007).  In yeast, however, 

H2A.Z is associated with transcriptionally active gene promoters (Jin et al., 2007). The 

most diverged H2A variant is macroH2A. The molecular weight is roughly three times 

higher than canonical H2A, due to a large C-terminally located “macro” domain. 

MacroH2A is involved in X-chromosome inactivation of mammals by regulating ADP-

ribosylation with its macro domain (Ladurner, 2003). 

Next to the four core histones, there is the H1 linker histone family, which has 

the highest diversity among different species. Furthermore, there are many variants found 

of H1 proteins in humans, including five somatic subtypes, a spermatogenic subtype, and 

an oocyte subtype, suggesting diverse functions for linker histones (Wood et al., 2009). 

Typically, they contain a globular domain and a highly basic C-terminal domain necessary 

for the maintenance of the nucelosome positioning (Zhang et al., 2003). H1 hinders both 

spontaneous disruption of the nucleosome and ATP-dependent nucelosome remodeling. 

The stochiometry of H1 to nucleosomes differs remarkably among different tissues and 

cell types, possibly reflecting the global accessibility of the genome (Rupp et al., 2005).  

 

3.3.5 Post-Translational Histone Modifications 

Histone proteins are subjected to a variety of covalent post-translational 

modifications (PTMs). These modifications are mainly situated at the tails of the histones 

(see Figure 3), although there are also some modification sites found in the globular 

domains. As this thesis work only pertains to the four core histones, only the 

modifications of these histones will be discussed, with special focus on H3 and H4, that 

harbour most known modifications (Kouzarides, 2007; Lee et al., 2009; Dambacher et al., 

2010).  
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Figure 3: Modifications of the Core Histones 
The number displays the modified amino acid residue. Blue indicates Methylation 
(Me), yellow indicates Acetylation (Ac), green indicates Phosphorylation (Phos), 
brown indicates Biotinylation (Bio), violet indicates Ubiquitination (Ubi), and red 
indicates SUMOylation (SUMO) of Histones (adopted from Kouzarides 2007, Latham 
et al., 2007; Bhaumik et al., 2007). 
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Common modifications are the metylation of lysine (K) and arginine (R) 

residues (me; Allfrey et al., 1964) and the acetylation of lysines (ac; Allfrey et al., 1964). 

Next to these modifications there is also phosphorylation of serine (S) and threonine (T) 

residues (phos), ubiquitination (ubi, Shilatifard et al., 2006) and SUMOylation of lysines 

(sumo, Nathan et al., 2006), ADP-ribosylation of glutamines (G) and arginines (adp). 

Furthermore, core histones are known to be biotinylated and subjected to prolin 

isomerization (Nelson et al., 2006; Kouzarides, 2007).  

According to a recent rule of nomenclature, modifications are described by the 

core histone, the site and the kind of modification (Turner, 2005). For instance, the tri-

methylation state of lysine residue at amino acid position 4 of the histone H3 is referred to 

as H3K4me3 (Turner, 2005).  

The different post-translational histone modifications differ in their functional 

readout and in the enzymes involved in the establishment and erasure of these 

modifications. 

The histone modifications are established by specialized enzymes, also called 

the “writers”, and they get removed by another set of enzymes, also referred to as 

“erasers” (Berger, 2007). The steady state reflects the competing activities of the two sets of 

enzymes.  

For the function of the histone modifications frequently other proteins and 

protein complexes are recruited, which are able to selectively “read” the histone 

modification via special domains. These enzymes lead to the establishment or erasure of 

other histone modifications (cross-talk), nucleosomal remodeling, initiation of 

transcription factor binding, DNA accessibility and repair, cell cycle progression or 

replication (Kouzarides, 2007).  

 

3.3.5.1 Acetylation 

Acetylation of lysines is found on K5, K9, K13 on histone H2A and of K5, K12, 

K15 and K20 on H2B, K4, K9, K14, K18, K23, K27, K36 and K56 of H3 as well as K5, K8, 

K12, K16 and K20 of H4 (Bhaumik et al., 2007). 

Acetylation of lysine residues of histones was first described in 1964 (Allfrey et 

al., 1964). The enzymes establishing the acetyl marks are called histon acetyl transferase 

(HATs; Vaquero et al., 2003). There are three classes of HATs known: GNAT, NYST and 
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CBP/p300. HATs are rather unspecific in their substrate recognition, however, the 

associsation of the HAT activity in different complexes provides substrate specificity (Lee 

et al., 2007). Histone deacetylation is performed by histone deacetylases (HDAC). The 

acetylation and deacetylation of histones is a highly dynamic process. 

In general, acetylation of lysines is linked to transcriptional activation. The 

acetylation of the core histones partially neutralizes the positive charge of the lysine 

residues consequently decreasing the binding efficiency of the histone to the DNA and, 

thus, facilitating transcription. Furthermore, acetylated histones are recognized by specific 

bromodomain containing poteins (Kouzarides, 2007).  

Via the acetylation of histones and the interaction of protein-domains which 

bind to the acetylated histones, protein complexes such as nucleosome remodeling 

ATPases are subsequently recruited to chromatin and lead to transcriptional permissive 

chromatin regions. On the other hand, transcriptional silencing is associated with 

hypoacetylated nucleosomes (Braunstein et al., 1993). 

The histone acetylation cycle is probably best understood in yeast. For H4, 

acetylation occurs in a hierarchical fashion. The mono-acetylated histone is predominantly 

acetylated at K16. The diacetylated H4 is eihter acetylated at K8 or K12 together with K16, 

and K5ac is found only at the tri- or tetra-acetylated histones (Clarke et al., 1993). In 

general, H4K5 and K8 are frequently found acetylated in euchromatic regions with active 

transcription. In contrast, H4K12ac is increased in heterochromatic regions (Kimura et al., 

2005). High acetylation levels of H3K9ac and K14ac are found in active genes (Liang et al., 

2004). Acetylation of the N-terminus of H3, nominally at H3K4, K9, K14, K18, K23, K27 

and K36 is linked to active transcription (Taverna et al., 2007). H3K56ac is found on newly 

synthesized histones. H3K56 is acetylated by Rtt109 in yeast, however, in humans, this 

mark is established by CBP and p300 and removed by SIRT1/2 (Das et al., 2009). H3K56ac 

shows only a weak correlation to gene expression in genome wide ChIP analysis (Xie et al., 

2009). 

 

3.3.5.2 Methylation 

Methylation is found on both lysine as well as arginine residues of histones. 

Lysines can be mono-, di- or tri-methylated, in contrast to arginines, which can only be 

mono- and di-methylated (Paik et al., 1969). Methylation of histones is always interpreted 
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by enzymes, which recognize the methylation by specialized domains like the 

chromodomain, the WD40 repeat, the Tudor domain, the MBT domain or the PHD finger 

domain (De la Cruz et al., 2005).  

Lysine methylation is established by very specific histone methyltransferases 

(KMTs) and for arginines by arginine methyltransferases (PRMTs). Methylation of both 

arginines and lysines is reversible. Methylated arginine can be deiminated to citrulline by 

PADI4 (peptidylarginine deiminase 4; Wang et al., 2004). This does not totally reverse the 

modification but at least removes the methyl-group. Whether the citrulline then gets 

converted to an arginine residue again or the histone gets replaced is currently unknown. 

For the removal of methylation of lysines there are two classes of lysine demethylases 

known, the LSD1/BHC110 (Shi et al., 2004) class and the jumonji class (Klose et al., 2006).   

Arginine methylation is linked to transcriptional active genes.  Methylation of 

arginines occurs at H3R2, H3R8, H3R17, H3R26 and H4R3 (Kouzarides, 2007). 

In contrast, methylation of lysine residues is involved in diverse function. The 

methylation of H4K20 was first described in 1969 (DeLange et al., 1969). H4K20me1 is 

involved in the inactivation of the X-chromosome in mammals. The mono-methylation is 

established by PR-Set7 (Nishioka et al., 2002). Lack of PR-Set7 in mouse embryos is lethal 

at the eight-cell stage. These embryos show depletion of H4K20me1 and reduced levels of 

H4K20me2 and me3 (Oda et al., 2009). H4K20me2 and me3 is associated with constitutive 

heterochromatin and silencing of imprinted gene clusters (Schotta et al., 2004). The di- and 

tri-methylation is established by the Su(var) 4-20h1/h2 enzymes, which use the K20me1 as 

their substrate. In addition to its function in transcription, H4K20me also functions in cell 

cycle progression and DNA repair (Yang et al., 2008). 

     H3K4me is established by MLL HMTs, especially SETD1A/B and Ash1 

(Gregory et al., 2007). These enzymes belong to the Trithorax group, which is involved in 

the segmental activation of the Hox genes. Demethylases of both the LSD1/BHC110 class 

and the Jumonji class are able to remove the methyl mark of H3K4. H3K4me3 is found at 

the 5´ end of ORFs of genes and is associated with actively transcribed genes (Bernstein et 

al., 2002). H3K4me is able to recruit a variety of different factors such as nucleosome 

remodeling enzymes (Flanagan et al., 2005), HATs (Taverna et al., 2006) and HDACs (Shi et 

al., 2006). Furthermore H3K4me is involved in the binding and initiation of Polymerase II 

(Pol II; Fuda et al., 2009).  

H3K9me2 and me3 is established by the SETDB1 enzymes. The Jumonji class of 
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histone demethylases is able to remove the me2 and me3 again. H3K9me2 and me3 was 

shown to be repressive and associated with heterochromatin (Rea et al., 2000). However, 

H3K9me1 has also been found at active transcribed regions (Barski et al., 2007). H3K9me2 

and me3 is found in heterochromatin where it is established by Su(var)3-9 (Rea et al., 

2000). The methylation of H3K9 is a prerequisite for the subsequent recruitment of other 

factors such as HP1 and the compaction of heterochromatin. In euchromatic regions, 

H3K9me2 and me3 are established mainly by G9a and Glp (Tachibana et al., 2002). 

Recently K9me2 was found in large regions in differentiated tissues by ChiP analysis. 

These regions are conserved between mice and humans and the H3K9me2 occupancy has 

low levels. H3K9me2 was shown to correlate inversely to the expression of the underlying 

genes. Wen and coworkers termed these regions as large organized chromatin K9 

modifications (LOCKs; Wen et al., 2009). 

     H3K27me2 and me3 are established by the Enhancer of Zeste (Ezh2) HMT (Cao 

et al., 2002). Ezh together with Suz12 and Eed belongs to the Polycomb repression complex 

2 (PRC2). H3K27me2 and me3 are hardly found at active promoters and genes, thus being 

strongly correlated with silenced genes. At euchromatic regions, H3K27me3 is necessary 

for gene silencing and it functions in heterochromatin maintenance. The H3K27me3 mark 

recruits the PRC1 complex. PRC1, together with the associated protein Cbx2, establishes 

the H2AK119ubi mark via the Ring1A subunit (Wang et al., 2004). Those genes being 

occupied by the PRC2 and PRC1 machinery are mainly developmental regulators (Boyer 

et al., 2006). H3K27me1, however, is found at regions with active transcription (Barski et 

al., 2007). 

     H3K36me is established by SETD2 of the Set2 class of the HMTs and associated 

with active RNA-Pol II. H3K36me2 and me3 are predominantly found near the 3´ end of 

genes (Bannister et al., 2005). The Jumonji class of histone lysine demethylases is capable to 

remove H3K36me2 and me3 again. H3K36me3 can recruit HDAC to the gene body to 

prevent the aberrant initiation of the Pol II in the gene body (Carroza et al., 2005). 

Lysine 79 is located in the globular domain of H3 and can be methylated in 

most eukaryotic species. The mark is established by DOT1, the only HMT lacking the Set 

domain (Ng, et al., 2002). H3K79me3 is linked to constitutive heterochromatin and the 

silencing of telomers, as the name of the enzyme DOT1 implies (disruptor of temoleric 

silencing). Furthermore, methylation is described for H2BK5, H3K14 and H3K56 

(Bhaumik et al., 2007). 
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3.3.5.3 Phosphorylation 

All core histones have been shown to be phosphorylated (see Figure 3). The 

modification is established by kinases and removed by specific histone phosphatases 

again. Phosphorylation of histones is associated with chromosome condensation during 

mitosis, as well as with transcriptional activation. Sites of phosphorylation are H2AS1 and 

H2AT120, H2BS13, H3T3, H3S10, H3T11, H3S28 and H4S1 (Kouzarides, 2007). The best 

characterized site of phosphorylation is H3S10, which inhibits the modification of the 

adjacent H3K9 residue (Fischle et al., 2005). H3K10phos is established by the Aurora B 

kinase, which is involved in mitotic regulation (Vaquero et al., 2003).  

 

3.3.5.4 Ubiquitination 

Ubiquitination of histones is known for all core histones except H4, whereas 

H2A and H2B show higher levels than H3 (see Figure 3). This modification occurs as 

mono- ubiquitination and involves the transfer of the 76-amino-acid peptide ubiquitin to a 

lysine residue (Shilatifard et al., 2006). De-ubiquitinating enzymes can remove this 

modification again. Poly-ubiquitination is linked to the degradation of the histone by the 

proteasome, whereas the mono-ubiquitination functions in transcriptional regulation. 

Ubiquitinated lysines are found at position 119 at H2A and 120 at H2B. H2AK119ubi is 

linked to transcriptional repression as it is established by Bmi/Ring 1a. This ubiquitin-

ligase, a subunit of the polycomb repression complex 1 (PRC1), is supposed to be involved 

in inhibition of the elongating RNA-Pol II. Recent data, however, questions the silencing 

function of H2AK119ubi as the protein ZRF1, which specifically binds to the histone 

modification is also involved in gene activation (Richly et al., 2011). 

H2BK120ubi is associated with transcriptional activation in yeast (Zhu et al., 

2005). However, deubiquitination of H2BK120 also seems to represent an activating 

stimulus. According to a model of sequential modification, H2BK120 is deubiquitinated 

first by Ubp8, a deubiquitination factor and component of the SAGA complex. This leads 

to the methylation of H3K4. Then the recruitment of Set2 is possible, which methylates 

H3K36, a mark of elongating Pol II (Kouzarides, 2007).  

 

3.3.5.5 SUMOylation 

SUMOylation (Small Ubiquitin like Modifier), related to ubiquitination, is also a 
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very large modification. It has been found at all the four core histones (see Figure 3; 

Kouzarides, 2007). It is linked to transcriptional repression as it correlates inversely to the 

level of acetylation (Lee et al., 2007a). SUMOylation is found at H4K5, K8 and K16 

(Bhaumik et al., 2007). 

  

3.3.5.6 ADP-ribosylation  

ADP-ribosylation (Adenosine-diphosphate) of histone proteins involves the 

enzymatic transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to 

glutamine or arginine residues and it occurs as mono- or poly-ribosylation (Hassa et al., 

2006). All four core histones have been shown to bear possible modification sites. The 

highest prevalence of ADP-ribosylation is found at H2B. As the establishment of the ADP-

ribosylation mark is NAD+ dependent, it may be connected to cell metabolism. Only little 

is known about the function of ADP-ribosylation. Because it is enriched at hyperacetylated 

H4, it might be linked to transcriptional activation as it is found together with 

hyperacetylated histone H4 (Vaquero et al., 2003).  

 

3.3.5.7 Biotinylation 

Biotinylation of H4K12 is linked to heterochromatin (Latham et al., 2007). It is 

found at H2AK9 and K13, H3K18 and H4K12 (see Figure 3). So far, little is known about 

the function of Biotinylation (Bhaumik et al, 2007). 

 

3.3.5.8 Interactions among Histone Modifications 

As mentioned above, the establishment or removal of one histone PTM can 

influence other histone modifications. In that model, different histone modifications are 

either elusive or concomitant. An example of histone PTM cross-talk is the methylated 

H3K4 mark. The active H3K4me3 mark is found on hyperacetylated histones, but never 

coexists with the repressive H3K9me3 mark. Thus, H3K4me3 has been found to coexist 

with up to penta-acetylated histones at H3K9, K14, K18, K23 and K27 (Taverna et al., 2007). 

Furthermore, the methylation of H3K4 by MLL1 complex links the acetylation of H4K16 

by the MOF acetyltransferase, because both enzymatic activities are found in one complex. 

Both these marks are required for optimal transcription in vitro and at the Hox a9 gene in 
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vivo (Dou et al., 2005). It is also known, that acetylation of H3K18 and K23 promotes the 

methylation of H3R17 by CARM1 in the course of estrogen-dependent gene activation 

(Daujat et al., 2002). Interestingly, demethylation of H3R17 is enzymatically linked to 

histone deacetylation (Lee et al., 2006). 

Chromatin may be devided in eu- and heterochromtin. Euchromatin, which is 

less condensed, accessible and easily transcribed, contains the genes, which are eighter 

active or silent. Active genes are assoctiated with high levels of H3K4me1, me2 and me3, 

K9me1, K36me3, K27me1 and H4K20me1. Silent genes in euchromatin are marked by high 

levels of K27me2 and me3, K79me3 and lowest levels of K4me3, K36me3, K27me1, K9me1 

and H4K20me1 (Barski et al., 2007).  

The genome consists to a large extent of non-coding DNA sequences such as 

satellite repeats, telomeric repeats, mobile elements and interspersed elements. To prevent 

their transcription and thus to maintain genome stability, it is necessary to have these 

elements under tight control. This constitutive heterochromatin can be devided into 

pericentric and telomeric heterochromatin. Pericentric heterochromatin consists of major 

satellite repeats. It is marked by H3K9me3 and H4K20me3. In yeast, this histone PTM 

pattern is established by the Su(var) 3-9 homologue, which is recruited by RNAi. The 

Su(var) 3-9 enzymes establish H3K9me3, which in turn recruits HP1 (Lachner et al., 2001). 

Via HP1 Su(var) 4-20 enzymes are recruited and the H4K20me3 mark is established 

(Schotta et al., 2004). Teleomeric heterochromatin is very similar to pericentric 

heterochromatin. Chromatin fragments enriched in H3K9me3 and H4K20me3 often 

contain elevated levels of H3K79me3 established by Dot1.  

 

3.4 Mass Spectrometry 

The soft-ionization methods in mass spectrometry such as Matrix Assisted 

Laser Desorption/ Ionization – Time of Flight (MALDI-TOF; Karas et al., 1988) and Electro 

Spray Ionization (ESI; Whitehouse et al., 1985) led to the identification of new sites of 

histone modifications (Zhang et al., 2003) as well as description of bulk chromatin 

modifications (Strahl et al., 2000). Histone modifications have been described using mass 

spectrometry in several species like Drosophila (Bonaldi et al., 2004), Xenopus oocytes 

(Nicklay et al., 2009), chicken erythrocytes (Zhang et al., 2002) and human cells (Strahl et 

al., 2001).  
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Common to all mass spectrometric methods is that the sample is first ionized 

and then accelerated in an electrical field. In case of MALDI-TOF, the electrical energy is 

equal the charge of a molecule q multiplied with the electrical voltage of the electrical field 

U (see Figure 4A). Thus the energy a single molecule gains in the electrical field is the 

same for all molecules given that the charge is identical. The electrical energy, however, is 

equal to the kinetic energy of the molecule according to the law of conservation of energy. 

The kinetic energy depends on the mass and the velocity of the molecule (see Figure 4A). 

The velocity is defined as the distance s traveled during the time t (see Figure 4B). By 

meassuning the time of flight (t) a molecule needs for a defined distance (s), one is able to 

determine the mass of the molecule (see Figure 4C; Lottspeich et al., 2006). 

 

 

       

 

Figure 4: Physical Equations  

 

As mentioned above, there exist several techniques for the ionization of the 

analyte. Using MALDI (matrix assisted LASER desorption/ionization) the analyte is 

embedded in a solid matrix, consisting of the co-cristallized matrix and analyte molecules. 

As the solid matrix absorbs the energy of the LASER beam, the solid matrix is desorbed 

and matrix and analyte molecules are transferred to the gas phase. Simultanously, the 

analyte molecules are ionized via proton transfer (Lottspeich et al., 2006).  

Mass spectrometry allows the exact measurement of the mass of the analyte. As 

proteins consist of only twenty different amino-acids, the mass of different proteins can be 

identical. To increase the specificity for the identification, the proteins are digested into 

peptides with proteinases. The combination of different peptides of one protein – like a 

fingerprint - is much more characteristic for a protein than its single mass. Consequently 
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this peptide mass fingerprint technique is used to identify proteins.   

Another difficulty concerning the detection of modifications of proteins is that 

modifications lead to a mass shift, but do not necessarily point to the exact localization of 

the modification. To circumvent this problem, the digested peptides are further 

dissoziated into smaller fragments. This fragmentation occurs theoretically at all bonds of 

the molecule, but peptide bonds are favoured. One ends up with a series of different 

fragments of one peptide. The mass shift of a protein modification can then be exactly 

localized due to the altered mass of the corresponding fragments (Lottspeich et al., 2006). 

Knowing the sequence of a protein, covalent modifications can easily be 

detected in peptide mass fingerprint without the need for peptide sequencing. To be able 

to distinguish between the mass shift for tri-methylation (42.0470Da) and the one for 

acetylation (42.0106Da) of an amino acid, ultra-high resolution technology is necessary 

(Freitas et al., 2004; Gropengiesser et al., 2009).  The separation of different histone 

modification states in a reversed-phase HPLC chromatography prior to mass 

spectrometry allows the precise quantification of different modifications (Freitas et al., 

2004). Striking advantages of mass spectrometry are the possibility to quantify different 

proteins or modifications and to possibly identify new proteins or protein modifications 

(Gropengiesser et al., 2009).   
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3.5 Objectives 

 

The aim of this thesis was to establish a broad compendium of covalent histone 

modifications and their quantitative flux during normogenesis in a vertebrate model 

organism.  

Recent scientific studies were conducted in Drosophila revealing alterations in 

histone modifications during Drosophila development (Bonaldi et al., 2004) and the 

mammalian systems such as mouse and human (Bernstein et al., 2002; Phantsiel et al., 

2007). As experimental data is difficult to achieve during mammalian development, 

several studies were performed in the in vitro system using embryonic stem cells 

(Bernstein et al., 2002; Phantsiel et al., 2007). Analysis of histone modifications of the 

vertebrate organism Xenopus laevis allows to fil the gap between the results of Drosophila 

studies and the in vitro data sets of murine ES cells. To allow comparison to recent data 

sets of ES cells (Bernstein et al., 2002; Phantsiel et al., 2007), analysis of primary embryonic 

fibroblasts and murine ES cells was included. Furthermore, a considerable amount of 

developmental studies in the field has been conducted in Xenopus laevis (Heaseman, 

2006) and our laboratory has exquisite expertise in Xenopus development.  

During normogenetic development of Xenopus laevis, precursor cells are 

assigned to specific fates and differentiation programs. Histone post-translational 

modifications are thought to play a key role in the establishment and maintenance of 

stable gene expression patterns underlying these processes. Thus the aim was to achive a 

detailed and quantitative description of histone modifications and their alterations during 

vertebrate development. 

One goal was to define a broadly applicable method for histone purification for 

diverse samples such as Xenopus embryos as well as cultured cells. In order to obtain 

quantitative information on variety of different histone modifications and modification 

sites by an antibody-independent approach, mass spectrometry is the method of choice. 

The information from ChIP-based studies is invariably dictated by many technical 

parameters, most notably the antibody quality (Minard et al., 2009; Trelle et al., 2007). Mass 

spectrometry, on the other hand, has the advantage of quantification, the possibility to 

identify new modifications, no limitations in the availability of specific antibodies and no 

limit in the detection of combinatorial modifications (Gropengiesser et al., 2009). 
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4 Material and Methods 

4.1 Laboratory Equipment 

CCD camera: Q Imaging (Retiga) Gel-documentation System 

Centrifuges: Eppendorf centrifuge 5417C (Eppendorf), Sorvall RC-6 Plus (Thermo 

Scientific), Optima MAX-E Ultracentrifuge (Beckman), PicoFuge (Stratagene), miniSpin 

(Eppendorf), miniCentrifuge (neoLab), 3-18 (Sigma) 

Columns: 5ml FPLC self preparable column (Pharmacia Biotech), Jupiter C4 5ml 300Å 

(15061.0 Phenomex) 

FPLC: Äkta FPLC (Amersham Pharmacia Biotech) 

Gel Documentation: (peqLab), G-Box (Syngene) 

Homogenizer: Glass-Glass Homogenizer 5ml narrow (Braun, Melsungen), LSC 

Homogenizer LH-21 (Yamoto) 

HPLC: Ultimate 3000 (Dionex), Ettan microLC (Amersham Pharmacia Biotech) 

MALDI-TOF: Voyager-DETM STR, BioSpectrometryTM Workstation (Applied Biosystems)  

Microscopes: Stereomicroscope Stemi SV6, Axiophot (Zeiss),  

Orbitrap: LTQ-XL (Thermo Scientific) 

Software: Photoshop CS5 (Adobe), Illustrator CS5 (Adobe), MacVector 7.1 (Oxford 

Molecular Group), Office 2004 for Mac (Microsoft), QCapture Imaging (Zeiss/Axiophot), 

Voyager for MALDI-TOF (Applied Biosystems), Data Explorer for MALDI Analysis 

(Applied Biosystems), Bioworks for Orbitrap Analysis (Thermo Scientific), Xcalibur for 

Orbitrap Analysis (Thermo Scientific), Manuelito (open source: 

http://sourceforge.net/projects/manuelito), Vision Capture (Vilber Lourmat), Unicorn 

5.1 (G.E. Healthcare), GPMAW 5.5 (Lighthouse Data), Gene Snap (Synoptics), R (open 

source: http://www.r-project.org) 

Sonicator: Bioruptor (Diagenode), Ultrasonic Bath (Merck) 

Target Plate:  Hydrophobic Target Plate (Applied Biosystems) 

Shaker: Thermomixer comfort (Eppendorf) 

Western-Blot Quantification: Li-cor Odysse (Bioscience) 
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4.2 Reagents  

4.2.1 Chemicals 

Acetonitril HPLC-grade (Sigma); Ammoniumbicarbonate (Sigma); 

Ammoniumpersulfate (Merck); Aprotinin (Sigma); Chicken Serum (Invitrogen); 

Coomassie brilliant blue G250 (Serva); DMSO (Sigma); DTT (Sigma); Enhanced 

Chemiluminescence solution (GE); Fetal Calf Serum (GIBCO BRL); Gentamycin (GIBCO 

BRL); Human Chorionic Gonadotropin (Sigma, Amsa); ddH2O HPLC-grade (Merck); 

Dulbecco´s Modified Eagle Medium, DMEM (Sigma); Leupeptin (Sigma); L-Glutamine 

(GIBCO BRL); Mitomycin C (GIBCO BRL); MNase (Sigma);  Nonessential Amino Acids 

(GIBCO BRL); NP-40 (Fluka); Monothioglycerol (Sigma); Page Ruler Prestained Protein 

Ladder (Fermentas);  Penicillin (GIBCO BRL); Pepstatin (Sigma); PMSF (Sigma); Propionic 

Anhydride (Sigma); Proteinase K (Sigma); Precision Plus Protein Prestained Standard 

(Biorad); Recombinant Mouse Leukemia Inhibitory Factor (ESGRO); Sinapinic Acid 

(Fluka); Sodium Butyrate (Sigma); Spermine (Sigma); Spermidine (Sigma); Streptomycin 

(GIBCO BRL); Triton X100 (Roth); Trypsin (Promega); Tween (Sigma); α-Cyano-4-

Hydroxycinnamic Acid (Sigma), β-Mercaptoethanol (Sigma). 

Other fine- and biochemicals were ordered at the following companies: Fluka, 

Merck, Sigma-Aldrich, Roth and Biomol. 

 

4.2.2 Consumables 

0.2ml tubes, stripes of 8 (Nunc); 0.5ml tubes LoBind (Eppendorf); 10cm dishes 

(Falcon); 15cm dishes (Greiner Cellstar); 15mL, 50mL tubes (Sarstedt); Dialysis Membrane, 

MWCO 6-8 (SpectraPor); Histone Purification Kit (Active Motif, Cat.No 40025); Carbon 

Tips (Glygen); Mirocloth® (CalBiochem); ZipTips –C18 (Millipore) 

 

4.3 Biological Material 

4.3.1 Xenopus laevis (Nasco, Xenopus Express) 

Adult wild-type Xenopus laevis frogs were used. The frogs were kept in tap 

water with a temperature of 17-19°C and a population density of one frog per 5l water. 

The animals were fed three times per week with Pondsticks Premium brittle (Interquell 
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GmbH, Wehringen; Sieve et al., 1989). 

 

4.3.2 XTC and A6 Culture Cells (ATCC, LGC-Promochem) 

Cells were cultured in 75% DMEM medium, supplemented with 15% fetal 

bovine serum, 100U/ml penicillin/100ng/ml streptomycin, at 26°C in 26mm Petri dishes 

in a humidified atmosphere with 5% CO2. A6 and XTC cells were subcultured with 0.25% 

trypsin and 0.03% EDTA for cell detachment. Medium was renewed twice per week. Cells 

were split in a dilution 1:2 every 3-4 days (Rafferty 1969; Pudney et al., 1972). A6 and XTC 

cells were kindly provided by Barbara Hölscher.  

 

4.3.3 ES Cell and Primary Embryonic Fibroblast Culture  

Electroporation and isolation of stable clones using the murine ES cell line GSES 

was performed according to standard protocols with minor modifications (Muller et al., 

2000). Transgenic ES cells were grown on inactivated MEFs (3 hrs. 8g/ml mitomycin C) 

in high glucose DMEM supplemented with 10% heat-inactivated ES qualified fetal calf 

serum, 2mM L-glutamine, 50U/ml penicillin, 50µg/ml streptomycin, 1x nonessential 

amino acids and 0.1mM ß-mercaptoethanol. They were kept undifferentiated under feeder 

free conditions by addition of 1000U/ml recombinant mouse LIF. Cells were maintained 

at 37°C in a humidified atmosphere of 5% CO2/95% air. Monolayers were passaged by 

trypsinization at 70–80% confluency. The growth medium for the attached differentiation 

cultures was changed every day. ES cells were kindly provided by Christiane Groß and 

Robert David, Grosshadern.  

 

4.4 Embryological Methods 

4.4.1 Solutions 

Modified Barth’s Saline (MBS): 5mM HEPES-KOH, 88mM NaCl, 1mM KCl, 0.7mM 

CaCl2 (added freshly), 1mM MgSO4, 2.5mM NaHCO3 (pH 7.6 at 23°C) 

Cystein: 2% L-Cystein in 0.1xMBS (pH7.8 at 23°C, adjusted with 5M NaOH) 

Human Chorionic Gonadotropin (HCG): 1000U/ml HCG in ddH2O 

MBS/high salt: MBS with 50mM NaCl 
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0.1xMBS/Gentamycin: 0.1x MBS, 10µg/ml Gentamycin 

MBS/CS: 0.8x MBS high salt with 20% chicken serum, 200U/ml penicillin and 200g /ml 

streptomycin 

 

4.4.2 Superovulation of Female Xenopus laevis 

Xenopus laevis females were stimulated to lay eggs by injection of 500-800 units 

of human chorionic gonadotropin into the dorsal lymph sac and incubation at 18-20°C 

over night. Egg laying started about 10-18h later (Sieve et al., 1989). 

 

4.4.3 Preparation of Testis 

A male frog was anaesthethized in 0.1% 3-Aminobenzoeacid-ethyl-ester in 

ddH2O for 30min, cooled down in ice-cold water, and killed by decapitation. The two 

testes were taken from the abdominal cavity. Until use, the testes were stored in MBS/CS 

for maximal 7 days (Sieve et al., 1989). 

 

4.4.4 In vitro Fertilization of Eggs and Culture of the Embryos 

For in vitro fertilization, a piece of testis was minced in 1x MBS and mixed with 

freshly laid eggs. Afterwards the embryos were cultured in 0.1x MBS at 16-23°C in 110mm 

Petri dishes. 

 

4.4.5 Removal of the Egg Jelly Coat 

One hour after fertilization or later, the egg jelly coat was removed in 2% 

cysteine solution pH 7.8 for about 5min with gentle agitation in an Erlenmeyer flask. 

Embryos were washed three times with 0.1x MBS and cultured further in 0.1x 

MBS/Gentamycin at 16-23°C. 

 

4.5 Biochemical Methods 

4.5.1 Solutions 

3x Lämmli buffer: 150mM Tris/HCl (pH6.8 at 23°C), 300mM DTT, 4% SDS, 30% glycerol; 
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E1-buffer: 110mM KCl, 50mM Tris/HCl (pH7.4 at 23°C), 5mM MgCl2, 0.1mM spermine, 

0.1mM EDTA, 2mM DTT, 0.4mM PMSF;  

PBS buffer: 140mM NaCl, 27mM KCl, 8mM Na2HPO 4, 1.5mM KH2PO 4 (pH7.4 at 23°C); 

Glycine buffer: 15mM HEPES-KOH, pH 7.6, 10mM KCl, 5mM MgCl2, 0.05mM EDTA, 

0.25mM EGTA, 1mM DTT, 10% Glycerol, 0.4mM PMSF; 

Sucrose buffer: 15mM HEPES-KOH, pH 7.6, 10mM KCl, 5mM MgCl2, 0.05mM EDTA, 

0.25mM EGTA, 1mM DTT, 30mM Surose, 0.4mM PMSF; 

TE-buffer: 10mM Tris-HCl, pH 7.6, 1mM EDTA; 

No-Salt Buffer: 3mM EDTA, 0.2mM EGTA; 

High-Salt Solubilization Buffer: 50mM Tris-HCl, pH 8.0, 2.5M NaCl, 0.05% NP-40 

High Salt Dialysis Solution: 10mM Tris-HCl, pH 8.0; 

Acid Extraction Dialysis Solution: 100mM Acetic Acid, 1mM DTT; 

HPLC solvent A: 0.065% TFA in H2O;  

HPLC solvent B: 84% ACN with 0.05% TFA; 

 

4.5.2 Nuclear Preparation from Cell Cultures 

Approximately 107 cells of A6, XTC, ES cells or murine embryonic fibroblasts 

were collected by trypsin treatment. The cells were washed twice with PBS and then 

resuspended in 1ml PBS buffer containing 0.3% Triton; with freshly added Spermine, 

Spermidine, Sodiumbutyrate and Pepstatin, Leupeptin, Aprotinin and PMSF. The cells 

were put on a rotating wheel at 4°C for 20min and then centrifuged in an Eppendorf 

Centrifuge 5417C with top speed. The supernatent containing the cytoplasmatic fraction 

was discarded and the nuclear pellet was used eihter directly for SDS-PAGE (for protocol 

see 4.5.11), or for extraction with high salt (for protocol see 4.5.7) or acidic conditions (for 

protocol see 4.5.8). 

 

4.5.3 Nuclear Preparation from Xenopus laevis Embryos  

Around 50 to 100 embryos were collected at the required developmental stage 

defined by the normal table of Nieuwkoop and Faber (Nieuwkoop et al., 1967) in 1.5ml 

Eppendorf tubes and washed with 1ml E-1 buffer containing 0.2% NP-40 and 0.25M 

sucrose as well as with freshly added Spermine, Spermidine, Sodiumbutyrate and 
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Pepstatin, Leupeptin, Aprotinin and PMSF (=complete protease inhibitors). Embryos were 

homogenized by pipetting in E-1/0.25M sucrose as well as complete protease inhibitors 

(20µl per 5 embryos) with a 200µl tip until the suspension appeared homogenous. 

Additional E-1/0.25M sucrose buffer was added to a final volume of 8µl per embryo, 

followed by vortexing for 10s on top speed (Vortex, Bachofer) with another 200µl E-1 with 

0.05% NP-40 and 2.2M sucrose as well as complete protease inhibitors. The homogenate 

was layered on a 10µl cushion of E-1/2.2M sucrose as well as complete protease inhibitors 

in a 5x20mm centrifuge tube (Beckman) and centrifuged at 130 000g for 2h at 4°C in an 

Beckman ultra-centrifuge Optima MAX-E (TLA-55 rotor). Yolk and lipids were on top of 

the supernatant, which contained the cytoplasmatic fraction. The nuclear pellet was used 

for acidic extraction of core histone proteins (for protocol see 4.5.8).  

 

4.5.4 Cell Lysate from Xenopus laevis Embryos 

Around 200 embryos were collected at the appropriate stage according to 

Nieuwkoop and Faber (Nieuwkoop et al., 1967) in 15ml Falcon tubes and washed in 3ml E-

1 buffer containing 0.2% NP-40 and 0.25M sucrose as well as complete protease inhibitors. 

The embryos were transferred to a narrow 5ml glass-glass homogenizer together with 1ml 

E-1/0.25M sucrose as well as complete protease inhibitors and homogenized until the 

embryos were completely disrupted. The embryo lysate was used for acidic extraction of 

core histone proteins (for protocol see 4.5.8) and then further purified using a reversed-

phase HPLC (see 4.5.10).    

 

4.5.5 Histone Purification by FPLC  

Between 800-1200 embryos were collected at the appropriate stage according to 

Nieuwkoop and Faber (Nieuwkoop et al., 1967) in 15ml Falcon tubes. The embryos were 

washed 3x in glycine buffer and then re-suspended in 10ml glycine buffer, containing 

complete protease inhibitors. The solution was homogenized with a Homogenizer 

(Yamato) with 6 strokes at 1000rpm at 4°C. Afterwards, the homogenate was filtered 

through Mirocloth® to remove larger un-minced particles. The homogenate was 

centrifuged in a Sorvall RC-6+ centrifuge at 8000rpm for 10 min with the HP-4 rotor. The 

supernatent containing the cytoplasmatic fraction was discarded and the nuclear pellet 

was washed twice in Sucrose buffer and finally resuspended in 2ml Sucrose buffer. CaCl2 
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was added to a final concentration of 1M, necessary for the correct function of the MNase, 

and the solution was incubated in a water bath at 27°C for 10min. 3l MNase (50U/l) were 

added for the digestion of DNA and the reaction was stopped after 10 min at 27°C in the 

water bath by adding 20l 0.5M EDTA. The suspension was centrifuged in an Eppendorf 

5417C centrifuge with 8000rpm for 10min. The supernatent was discarded and the pellet 

was re-suspended in 1.5ml of TE buffer pH 7.6 and put on a rotating wheel for 30min at 

4°C. The solution was centrifuged in an Eppendorf 5417C centrifuge with top speed for 

10min. The supernatant, containing the fragmented chromatin, was used for further 

purification via FPLC. 8ml hydroxyapatite suspension was washed several times with 

0.63M KCl/100mM KPO4 with a total volume of 150ml. The hydroxyapaptite was put in a 

5ml FPLC column. The column was equilibrated with 0.63M KCl/100mM 

KH2PO4/K2HPO4 buffer for 120min with a flow rate of 0.5ml/min. The column was 

loaded with the supernatent containing the fragmented chromatin and washed with 

0.5ml/min 0.63M KCl/100mM KH2PO4/K2HPO4 buffer for 100min. The core histones 

were eluted with a step elution to 2M KCl/100mM 100mM KH2PO4/K2HPO4 buffer. The 

histones were collected in 500l fractions to separate them from DNA and other 

contaminating proteins. The eluted histones of the fractions were precipitated with TCA 

and the entire pellet was loaded onto SDS-PAGE (Simon et al., 1979).  

 

4.5.6 Nuclear Preparation from Xenopus laevis Embryos by Density Gradient 

Centrifugation 

Around 50 to 100 embryos were collected at the required developmental stage 

according to the normal table of Nieuwkoop and Faber (Nieuwkoop et al., 1967) in 1.5ml 

Eppendorf tubes and washed 3x with E-1/0.25M sucrose as well as complete protease 

inhibitors. The embryos were incubated in 1ml of E-1/0.25M sucrose buffer with complete 

protease inhibitors at room temperature for 20min and the transferred to a narrow 5ml 

glass-glass homogenizer. Another 2ml of E-1/0.25M sucrose buffer was added and the 

embryos were disintegrated according to Table 1. The correct number of strokes is crucial 

to minimize disruption of the nuclei and subsequent loss of histone proteins. The 

homogenate was transferred to a 15ml Falcon tube and centrifuged in a 3-18 Sigma 

centrifuge with 1000rpm for 10min at 4°C. The supernatent containing the cytoplasmatic 

fraction was discarded and the pellet containing the nuclei was re-suspended in 3ml 
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E1/0.25M sucrose buffer containing 0.5% triton and 0.5% NP-40. The solution was 

incubated on ice for 20min. 5ml E1/1.25M sucrose buffer containing complete protease 

inhibitors was put in a 50ml Falcon tube as cushion and the nuclei suspension was 

carefully layered on top and centrifuged in a 3-18 Sigma centrifuge with 1000rpm for 

30min at 4°C. The pellet was washed in 1ml E1 buffer and used for acidic extraction (for 

protocol see 4.5.8).  

 

Stage NF9 NF12 NF18 NF37 

Amount of Embryos 200 100 100 50 

Strokes for Disruption 10 20 20 20 

 

Table 1: Specification for Nuclear Preparation  
Amount of Xenopus laevis embryos for nuclear preparation by density gradient 
centrifugation and number of strokes for complete homogenization 
 
 

4.5.7 High Salt Extraction of Histones 

Nuclear pellets from cell lines (see 4.5.2) were re-suspended in 1ml of no-salt 

buffer and vortexed for 10s on top speed (Vortex, Bachofer) discontinously. Afterwards 

the solution was incubated on a rotating wheel for 30min at 4°C and centrifuged in an 

Eppendorf 5417C centrifuge with top speed for 10min. The supernatant was discarded 

and the pellet was re-suspended in 400µl High-Salt Solubilization buffer. After vortexing, 

the solution was incubated on a rotating wheel for 30min at 4°C and centrifuged in an 

Eppendorf 5417C centrifuge with top speed for 10min. The supernatant was transferred to 

dialysis tubing and put in a beaker with 1l of high salt dialysis solution for about 3h. The 

dialysed histones were precipitated by adding TCA to a final concentration of 30%. The 

fractions were centrifuged in an Eppendorf 5417C centrifuge with top speed for 10min 

and the pellet was washed twice with 4% perchloric acid, twice with acidified acetone and 

twice with pure acetone. 

 

4.5.8 Acidic Extraction of Histones 

Nuclear pellets from embryonic material (see 4.5.6) were re-suspended in 1ml 

0.4M HCl containing complete protease inhibitors and incubated on a rotating wheel over 

night at 4°C. The next day, the solution was centrifuged in an Eppendorf 5417C centrifuge 
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with top speed for 10min, after which the supernatant was transferred to dialysis tubing 

and put in a beaker with 1l of acid extraction dialysis solution for about 3h. The dialysed 

histone solution was put in the Concentrator (Eppendorf) for 4-5h at room temperature 

and then stored at -20°C. 

 

4.5.9 Extraction of Histones via Active Motif Histone Purification Kit 

Around 800-1200 embryos were collected at the appropriate stage according to 

Nieuwkoop and Faber (Nieuwkoop et al., 1967) in 15ml Falcon tubes. The histone 

extraction was performed as described in the instructions for tissue material according to 

the manufacturer´s manual. 5ml Extraction buffer was added to the embryos and then 

completely homogenized in a narrow 5ml glass-glass homogenizer. The suspension was 

transferred to a 15ml Falcon tube and put on a rotating wheel over night at 4°C. The 

homogenate was centrifuged in a 3-18 Sigma centrifuge at top speed and the supernatent 

was transferred to a 15ml Falcon tube. Neutralization buffer was added until pH reached 

7.0. The column was prepared as explained in the instruction manual, including pre-

wetting with H2O of the filter and equilibration with EB-buffer. The filter disc was put in 

the column tip and washed twice with water. The entire homogenate was passed through 

the column by gravity flow and the flow-through fraction was discarded. The column was 

washed with 10ml of Wash buffer and 5ml H2A/H2B Elution buffer was added on the 

column. The eluate was collected in 1ml fractions. Histones H3 and H4 were eluted with 

5ml of H3/H4 Elution buffer and collected in 1ml fractions. 70% Perchloric acid was 

added to a final concentration of 4% to all sample fractions and put on a rotating wheel 

over night. The fractions were spun in an Eppendorf 5417C centrifuge with top speed for 

10min and the supernatent was kept. Histones were precipitated by adding TCA to a final 

concentration of 30%. The fractions were cleaned in an Eppendorf 5417C centrifuge with 

top speed for 10min and the pellet was washed twice with 4% perchloric acid, twice with 

acidified acetone and twice with pure acetone. The pellet of the entire input was air dried 

and used for SDS-PAGE (for protocol see 4.5.11).   

 

4.5.10 HPLC Purification of Histones  

The histones, obtained by acidic extraction (see 4.5.8) and stored in 0.1% TFA, 

were loaded directly onto a C4 reversed-phase HPLC column (Phenomenex). The histone 
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proteins were eluted via HPLC (Ettan microLC), using 0.065% TFA in H2O (solvent A) and 

84% Acetonitril with 0.05% TFA (solvent B). The flow rate was set to 40µl/min after 10 

min and solvent B was increased from 35% to 55% over a 15min period. After another 

45min, the concentration of solvent B was increased to 65% over 30min and maintained for 

15min. Then the solvent B concentration was set to 100% for 10min. 50µl fractions were 

collected. Fractions were lyophylized and subsequently used for SDS-PAGE and mass 

spectrometry. 

 

4.5.11 SDS-PAGE 

SDS-PAGE (SDS-polyacrylamide gel electrophoresis) was carried out according 

to standard protocols (Sambrook et al., 1989), with 15% to 18% PAA gels to separate the 

small core histone proteins (40mA, 130-190V). The lyophyllized protein was dissolved in 

3x Laemmli and boiled up to 95°C for 5min in order to denature the proteins before 

loading into the stacking gel pockets. Approximately 5-20 embryo equivalents were 

loaded per slot for Coomassie staining and approximately 1-3 embryo-equivalents for 

Western-blotting. 

 

4.5.12 Coomassie-staining 

SDS-PAA gels were incubated over night at room temperature in 0.4g of 

Coomassie brillant blue G250 dissolved in 200ml of 40% (v/v) methanol in water. 

Afterwards the SDS-PAA gels were destained in 60% ddH2O, 30% methanol and 10% 

acetic acid for roughly 8h, with exchange of the destain-solution every 2 hours, stopped as 

soon as the background color had vanished.  

 

4.5.13 Quantitative Western Blot Analysis 

Western blot analysis was carried out according to standard protocols 

(Sambrook et al., 1989). After SDS-PAGE proteins were blotted with 1.5mA/cm2 for 1h to 

nitrocellulose membranes, which were blocked using PBS containing 3% BSA for 1h. 

Primary H4K20me3 antibody (1:500; Schotta et al., 2008) and core region-H3 (1:25 000; 

Abcam) were incubated using PBS containing 3% BSA. Secondary fluorophore linked 

antibody (Li-cor, IRDye 700Dx goat anti-rabbit, 1: 5 000) was incubated in PBS with 5% 
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milk powder, 0.1% Tween 20. Quantification was done using Li-cor Odysse wet 

membrane technique for 700nm absorbance.  

 

4.6 MALDI-TOF 

4.6.1 Preparation of Proteins for Linear Mode Mass Spectrometry 

For mass spectrometric preparations HPLC-grade fine chemicals and water 

were used. The proteins in the 50µl fractions from reversed-phase HPLC purification (for 

protocol see 4.5.10) were lyophyllized. Then the proteins were re-dissolved in 1-2µl of 50% 

ACN/0.1% TFA saturated with sinapinic acid and eluted onto a hydrophobic target plate. 

The sinapinic acid forms crystals with the proteins and allows a soft-ionization technique.  

                        

4.6.2 Preparation of Histones for Proteolysis  

The protein bands were cut out of the Coomassie brilliant blue stained SDS-PAGE and 

minced into small pieces (1mm x 1mm x 1mm) with a clean scalpel. Gel pieces were 

covered in water to prevent them from drying out. The gel pieces were washed twice with 

200µl H2O by shaking them in a Shaker (Thermomixer comfort, Eppendorf) at 650rpm at 

37°C for 5min. For neutralization of acidic components, 100µl of 10mM 

Ammoniumbicarbonate (Ambic) was added to the gel pieces. The subsequent destaining 

of the gel pieces from the Coomassie stain was done with 100µl of 0.1M Ambic and 100µl 

of HPLC-grade Acetonitrile (ACN). Afterwards the sample was shaken in a Shaker 

(Thermomixer comfort, Eppendorf) at 650rpm 37°C for 30-90 min. After destaining, gel 

pieces were washed twice with 200µl H2O and shaken in a Shaker (Thermomixer comfort, 

Eppendorf) at 650 rpm 37°C for 1min. The gel was dehydrated by application of 100µl 

ACN until the gel pieces appeared white (2-3 times). Excess ACN was removed with a 

small gel loader tip.  

 

4.6.3 Digestion with Trypsin 

For detection of the core histones in MALDI-TOF the peptide refelctor mode 

was used. In order to apply this method the proteins had to be digested prior to analysis. 

The core histones were propionylated to chemically modify lysines before digestion with 
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trypsin. As histones are very basic proteins, they contain a high number of lysines and 

arginines. The endoprotease trypsin cleaves after every lysine and arginine side chain, 

except if a proline is following. Thus, untreated histones are digested into many peptides 

too small for convenient detection with MALDI-TOF. Therefore, lysines were blocked for 

trypsin digestion with propionic anhydride in a reaction called propionylation.  

Lysines in histones can either be unmodified, acetylated or mono-, di- or tri-

methylated. Propionic anhydride can react only with unmodified or mono-methylated 

lysine residues; other modifications of lysines are not recognized by the proteinase 

trypsin. Thus cleavages occur only after unmodified arginine residues. Propionylation 

also happens at the N-terminus of each peptide and gives a mass shift of 56.0262Da that 

has to be included in the calculation of to the expected peptide masses (Villar-Garea et al., 

2008). For the propionylation reaction, 1µl propionic anhydride and 49µl of 1M Ambic 

were added to the gel pieces. The propionylation mixture was incubated in a Shaker 

(Thermomixer comfort, Eppendorf) at 37°C and 650rpm for one hour. Afterwards, the gel 

pieces were washed with 50µl 0.1M Ambic thoroughly. 100µl of ACN was added and 

removed again until the gel pieces appeared white. When ACN was completely removed, 

the gel pieces were air dried in room air.  

All core histones were digested with the endoproteinase trypsin. Trypsin was 

added to the reaction on ice to avoid self digestion. 1µl of 0.2µg/µl trypsin in 50µl 0.1M 

Ambic was pipetted on the dried gel pieces until complete absorption. The digestion mix 

was incubated in a Shaker (Thermomixer comfort, Eppendorf) for at least 3h or over night 

at 37°C and 650rpm. The reaction was stopped by freezing the solution. 

 

4.6.4 Preparation of Peptides for Mass Spectrometry 

4.6.4.1 Acid Extraction of Trypsin-digested Peptides 

To maximize the recovery, an acidic extraction was performed after digestion. 

The supernatants of the different steps were pooled in a 0.5ml LoBind tube. First, the 

supernatant of the digestion was put in the LoBind tube. 30µl 25mM Ambic was applied 

on the gel pieces and incubated in a Shaker (Thermomixer comfort, Eppendorf) for 15min 

at 37°C and 650rpm. 40µl ACN were added and the gel pieces were shaken in a Shaker 

(Thermomixer comfort, Eppendorf) for 15min at 37°C and 650rpm. The supernatants were 

pooled in the LoBind tubes with the trypsin mixture. 50 µl of 5 % formic acid were applied 
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to the gel pieces and incubated for 15min at 37°C 650rpm then 50µl of ACN was added 

and incubated in a Shaker (Thermomixer comfort, Eppendorf) for 15min at 37°C and 

650rpm. The supernatants were pooled and the gel pieces were incubated a second time 

with 30µl ACN, which was then transferred to the other supernatants. The LoBind tubes 

were then lyophilized in a speed vac until complete evaporation. The pellets were 

thoroughly re-dissolved in 10µl 0.1% TFA and stored at -20°C until further analysis.  

 

4.6.4.2 Zip Tip Extraction 

As a preparative step for MALDI-TOF analysis, peptides were desalted and 

concentrated using ZipTips. The ZipTip contains a stationary phase which binds the 

peptides. The bound peptides can then be washed and eluted onto a hydrophobic target 

plate. The peptides of interest required a hydrophobic stationary phase, such as a –C18 

column. The ZipTip volume is 10µl. Solutions for wetting, equilibrating and washing were 

prepared in 1.5ml tubes before starting. Wetting buffer consisted of 50 % ACN, the 

stationary phase was equilibrated and washed with 0.1% TFA. The sample was diluted in 

0.1% TFA and eluted using 50% ACN/0.1% TFA. For the α-4-hydroxy-cinnamic acid 

matrix, 50% ACN/0.3% TFA together with a small spatula of the α-4-hydroxy-cinnamic 

acid powder were vortexed for 60 seconds to achieve a saturated solution. The tip was 

first wetted three times in 50% ACN. To equilibrate the tip, 0.1% TFA was applied to the 

tip. Then, the sample was loaded to the tip-column. To remove contamination, the column 

was washed with 0.1% TFA. Finally the peptides were eluted using 2µl elution buffer and 

spotted onto the target plate. After complete drying, 1µl of matrix solution was applied on 

the spot.  

 

4.6.4.3 Carbon Tip Extraction 

Carbon Tips were used to enrich the peptide aa 3-8 of the histone H3, which 

was hardly detected in MALDI-TOF because of its low ionization efficacy.  After digestion 

with trypsin, the peptide solution was used for Carbon Tip enrichment. The Carbon Tip 

was wetted with 20µl 40% ACN, 30% 0.6% TFA and 20% H2O. The peptides were loaded 

onto the Carbon Tip matrix. To remove contamination, the Carbon Tip was washed with 

0.1% TFA. The peptides were eluted from the Carbon Tip matrix with 20µl 0.1% TFA 

followed by a second elution step with 20µl 40% ACN, 30% 0.6% TFA and 20% H2O. The 



Tobias Schneider Materials and Methods 40 

 

 

   

eluted peptides were lyophilized and reconstituted in 10µl of 0.1% TFA and spotted as 

described above.  

 

4.6.5 Analysis by MALDI-TOF 

MALDI-TOF is a standard technique in protein and peptide analysis, which 

uses the assistance of a matrix for softened and efficient laser desorption and ionization. 

The peptides or proteins are embedded in a matrix, which absorbs the energy of the laser 

shot. The energy of the laser is then transferred to the peptides/proteins via the matrix, 

leading to ionization. Moreover, the matrix increases the intensity of single 

peptides/proteins in the spectra and facilitated better analysis. The matrix is selected 

depending on the mode in which the mass spectrometer is operated and the composition 

of the analyte (Lottspeich et al., 2006). 

 

4.6.5.1 Linear Mode MALDI-TOF  

Undigested proteins were analysed using the linear mode MALDI-TOF. 

Depending on the instrument settings, a mass up to 50 000Da can be detected. The core 

histones have a molecular mass between 11kDa and 16kDa, these settings were sufficient 

for histone detection. As matrix for the soft-ionization we used sinapinic acid. The detailed 

instrument settings of the instrument are provided in Table 2. Analyzed spectra resulted 

from 500 laser shots.  

 

 

Table 2: Settings of Linear Mode 

 

4.6.5.2 Peptide Reflector Mode MALDI-TOF  

The peptide reflector mode is especially suited for the detection of peptides 

because of its higher resolution. The unique combination of peptides originating from the 
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digested protein like a unique fingerprint allows the identification of the protein as well as 

detection of peptide modifications of known proteins. The instrument settings are 

displayed in Table 3.  

 

 

Table 3: Settings of MALDI-TOF for Peptide Reflector Mode 

 

4.6.6 Quantitation of MALDI-TOF Data 

Spectra were analyzed using the Data Explorer software. First, spectra were de-

isotoped. For internal calibration the two peaks 842.51Da and 2211.10Da of trypsin were 

used. The advantage of this calibration is that the two peaks are adjacent to the detection 

limits of the spectra (500-3500Da) and, thus, lead to adequate calibration in between the 

range of most of the peptides of interest. For quantification of the different post-

translational modifications of the various peptides obtained after digestion, the relative 

intensities of each PTM were taken into account. For this purpose, the software integrates 

the area under the curve reflecting the number of extracted ion counts (XIC), which 

correspond to the relative intensities. The areas of all modifications of one peptide were 

summarized and from this, the relative abundance of each modification was calculated in 

percentage. 

 

4.7 Orbi-Trap 

4.7.1 Sample Preparation for Orbi-Trap 

Samples for Orbi-Trap analysis were digested with the proteinase trypsin 

followed by Zip-Tip treatment to remove the salts.  
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4.7.2 Analysis by Orbi-Trap 

The sample was lyophilized and stored or reconstituted in 15µl 0.1% TFA. 10 - 

15µl of the sample were loaded to the reversed-phase HPLC in an analytical C18 micro 

column (75µm packed with C18 PepMapTM, 3µm, 100Å by LC Packings) and with a 80min 

gradient from 5 to 60% ACN in 0.1% FA. The eluate from the LC was directly electro-

sprayed into the LTQ-Orbitrap mass spectrometer. The MS instrument was operated in 

data dependent mode to automatically switch between full scan MS and MS/MS 

acquisition. Survey full scan MS spectra (from m/z 300 – 2000) were acquired in the 

orbitrap with resolution R=60,000 at m/z 400. The six most intense peptide ions with 

charge states between 2 and 4 were sequentially isolated and fragmented in the linear ion 

trap by collision induced dissociation (CID). All fragment ion spectra were recorded in the 

LTQ part of the instrument. For all measurements with the orbitrap detector, 3 lock-mass 

ions from ambient air (m/z=371.10123, 445.12002, 519.13882) were used for internal 

calibration as described. Typical mass spectrometric conditions were: spray voltage, 1.5 

kV; no sheath and auxiliary gas flow; heated capillary temperature, 200ºC.  

 

4.7.3 Identification of Histone PTMs by Orbi-Trap 

For the analysis of different histone modifications the resulting raw files (.raw) 

were converted into data files (.dta) and searched against the NCBI database using the 

SEQUEST search algorithm to identify the corresponding histones using the BIOWORKS 

3.3 software package (Thermo). In order to determine the post-translational modifications 

on the histone peptides, the data files (.dta) were then re-searched against a targeted 

histone database containing all histone molecules from the NCBI database with the 

following modification settings (static modification on lysine: 56.0262; variable 

modifications: me1: 14.01565; me2: -27.99490; me3: -13.97925; ac: -14.10565 on K and phos: 

79.96633 on S). The resulting SEQUEST files (.srf) were filtered for a peptide probability 

score of 0.0005 and X correlation values of 1.5, 2.0, 2.5 and 3 for charge states 1, 2, 3 and 4 

accordingly. In the cases where a MS/MS spectrum could be interpreted by two different 

modifications with both having a probability score of lower than 0.0005, only the one with 

the lowest score (top hit) was counted. A similar search against a reversed histone decoy 

database did not lead to an identification of peptides that matched the filter criteria. 

Therefore the false discovery rate was estimated to be less than 1%. For all peptides that 
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were quantified an extracted ion chromatogram (XIC) was obtained from the raw file 

using the Xcalibur 2.0.7 software (Thermo) extracting doubly and triply charged ions with 

a user defined mass tolerance of 5-10ppm and a mass precision of 4 decimals to be able to 

distinguish between modifications such as acetylation or tri-methylation with a mass 

difference of 0.043Da. For quantification particular attention was paid to the retention 

times of the corresponding peptides from the pep map column. The retention time for 

each specific peptide varied less than one minute when the same LC-MS/MS method was 

used. Therefore, only these XIC were used for quantification, which eluted at time points 

where at least two MS/MS spectra that unambiguously identified the identity of the 

peptide and the position of the modification within the peptide. For a relative 

quantification of the modifications the same method as described above was used (4.6.6).      

 

4.8 Heatmap Generation 

The Heatmap shown in Figure 24 was generated using R (http://www.r-

project.org) and the gplots package (http://CRAN.R-project.org/package=gplots). All 

functions were called using default parameters if not indicated otherwise. First, the mean 

and the standard deviation of the quantifications obtained by mass spectometry across the 

four developmental cell stages were calculated (each stage containing two biological 

replicates). Histones with small mean values contain low mass spectometry 

quantifications that could have obscured the clustering analysis that were observed in the 

heatmap. Thus, as a preprocessing step of the data, modifications with mean values less 

than 0.5% (22 modifications) were discarded. In order to compare appropriately the 

contribution of each modification to the the specific cell stages, the mass spectometry 

quantifications were standardized using individual Z-scores. Using these Z-scores, the 

Heatmap was produced using the Ward's minimum variance method to perform the 

hierarchical clustering analysis.  
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5 Results 

5.1 Histone Extraction from Stable Cell Lineages  

Several methods have been described in the literature for enrichment and 

purification of histone proteins from various sources. The objective of this thesis was to 

identify histone modifications using mass spectrometry and thus purity as well as 

enrichment of histone proteins was important for this analysis. As different sources for 

histone purification such as early embryos or cell cultures were used, which all have 

different features considering the abundance of the histones and the amount and 

abundance of contaminating moieties such as fat or yolk, the extraction of histones was 

considered to be a major topic. To test different common extraction methods, two different 

Xenopus laevis cell lines, XTC and A6, were used. These cells are easily grown under 

standard culture conditions and furthermore have only little contaminants such as yolk 

and lipids compared to differently staged embryos. Moreover, a protocol was established 

which purifies nuclei of the two cell lines. To compare different extraction protocols, 

nuclei were all obtained using this protocol. Following the nuclei extration, different 

protocols for histone extraction were applied and their quality was evaluated by 

Coomassie stained SDS-PAGE and MALDI-TOF spectra of these histones. After all, four 

different protocols were tested and evaluated with extraction of entire nuclei without 

further extraction, high salt extraction and three different protocols for acidic extraction.   

 

5.1.1 Direct Lysis of Nuclei 

As histones are a major fraction of nuclear proteins, boiling of entire nuclei in 3x Laemmli 

buffer is expected to yield high amounts of histone proteins (Rodriguez-Collazo et al., 

2009). Direct lysis is done by preparation of nuclei of the cell lines followed by lysis of the 

nuclei via boiling in 3x Laemmli buffer. The nuclear and cellular proteins were then used 

for Coomassie stained SDS-PAGE (see Figure 5A). 

First, the reliability of the nuclear preparation protocol was evaluated using phase contrast 

microscopy and DAPI (4′,6-Diamidino-2-phenylindol) staining of the nuclei (see Figure 

5B). Nuclei were clearly visible in both phase contrast and DAPI stain pointing to 

successful nuclear preparation. The theoretical masses of the core histone proteins range 

from 11kDa for Histone H4 and 16kDa for Histone H3. In Coomassie stained SDS-PAGE, 
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the four core histone give a characteristic pattern, which was visible for the direct lysed 

nuclei in Figure 5C lane 1 and 3. The direct lysis method was compared to acidic 

extraction in Figure 5C lanes 2 and 4. The four core histone proteins were detected in the 

Commassie stained SDS-PAGE, but the concentration of histone proteins was much lower 

than in acidic extraction for the same input (Compare lanes 1 and 3 with 2 and 4 in Figure 

5C). 

 

                        

Figure 5: Preparation of Nuclei from Stable Cell Lineages and Direct Lysis for 
Histone Purification  
A) Flowchart of nuclei preparation from stable cell lineages and histone purification 
with SDS-PAGE. B) Microscopic pictures of nuclei after nuclei preparation of A6 cell 
line in phase contrast and stained with DAPI. The preparation was successful as the 
nuclei are clearly visible. C) Coomassie stained SDS-PAGE of one biological repeats of 
histones of A6 and XTC in direct lysis compared to hydrochloric acid extracted 
histones. The yield of core histone proteins of the same amount of cells (each lane 106 
cells) was much higher in the hydrochloric acid extracted samples compared to the 
directly lysed ones. 
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Mass spectrometry was used to identify the trypsin digested proteins from Coomassie 

stained SDS-PAGE with the use of the MASCOT database search. The sequence of the four 

proteins of the SDS-PAGE matched the core histone sequences significantly. The 

reproducibility, signal to noise ratio and the quality of the internal calibration of the 

MALDI-TOF spectra were evaluated. For the spectra of histones extracted with direct lysis 

the quality of internal calibration was low and only 50% of the spectra had sufficient 

signal to noise ratio for analysis. Furthermore the recovery of modifications of technical 

replicates was low with a correlation coefficient of 0.702.  

In summary, direct lysis was sufficient for histone extraction of cell lineages. These results 

have also been confirmed by mass spectrometry and subsequent Database search resulting 

in significant identification of histone proteins. However, the histones purified with this 

protocol could not be used to quantify histone modifications as the spectra quality was not 

sufficient. A considerable advantage of direct lysis is its ease of use and the quick protocol. 

On the other hand, comparing the yield of histone proteins in the SDS-PAGE of this 

method to the one of acidic extraction, it is approximately 5-10 times lower with equal 

amount of input (Compare Figure 5C, lane 1 and 3 to lane 2 and 4).    

 

5.1.2 High Salt Extraction of Histones 

The method of high salt extraction for histone proteins, first described by 

Burton in 1978, uses buffers containing high salt concentrations to dissolve the DNA-

histone interaction. The use of buffers containing high concentrations of salt results in 

precipitation of the contaminants, whereas the four core histones remain soluble and thus 

can be enriched and purified (Burton et al., 1978).  

For high salt extraction, nuclei were prepared and disrupted as described above followed 

by histone extraction with the high salt buffers and Coomassie stained SDS-PAGE (see 

Figure 6A). SDS-PAGE with Coomassie staining revealed the characteristic core histone 

pattern visible between 11kDa and 16kDa (Figure 6B).  

Mass spectrometry of tryptic digested proteins was performed. Using the MASCOT 

Database Search, the sequences of the four proteins were significantly matched to the 

sequences of the core histones. Compared to the amount of histones present in the SDS-

PAGE, this extraction method yielded around twice as much compared to direct lysis (see 

Figure 5C). 
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The reproducibility, signal to noise ratio and the quality of the internal calibration of the 

MALDI-TOF spectra was evaluated for the aberration of the expected mass to the 

measured peaks. For the spectra of histones extracted with high salt extraction, the quality 

of internal calibration was low, but around 70% of the spectra had sufficient signal to 

noise ratio for analysis. The recovery of modifications of technical replicates was low, but 

better than in direct lysis with a correlation coefficient of 0.79. 

In summary, high salt extraction as described by Burton yielded more core 

histone proteins compared to direct lysis (Burton et al., 1978). The quantity of histone 

proteins and the quality of spectra, however, was not sufficient for analysis of post-

translational histone modifications.  

 

                  

 

Figure 6: High Salt Extraction of Histones of Stable Cell Lineages 
A) Flowchart of nuclei preparation and histone purification with buffers containing 
high salt concentrations and SDS-PAGE. B) Coomassie stained SDS-PAGE of high 
salt extracted histones of A6 and XTC versus hydrochloric acid extracted histones in 
two concentrations (1x 106 cells and 4x 106 cells). The yield of core histone proteins of 
same amount of cells was higher in the hydrochloric acid extracted samples 
compared to the high salt extracted ones. 
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5.1.3 Acid Extraction of Histones 

Acid extraction is used frequently for histone proteins and is the method of 

choice according to Lindner (Lindner et al., 2008). This method is described to be easy to 

use and to have a high yield. Acidic extraction relies on the high amount of basic amino 

residues mainly in the N-termini of the histone proteins as this feature leads to solubility 

despite the presence of high concentrations of acid. Furthermore it is described to be 

especially well suited for samples containing only little amounts of chromatin and thus 

might be useful for histone extractions of low cell numbers or young embryos such as 

blastulae or 106 cells. In the literature, the use of three different acids is described for the 

extraction. These are hydrochloric acid and sulphuric acid for core histone purification 

(Ausio et al., 1998) and perchloric acid for separate enrichment of linker histones (Lindner 

et al., 1998). Perchloric and hydrochloric acid extraction in series was evaluated first, to 

find out whether the two step approach led to satisfying results.  

 

5.1.3.1 Acid Histone Extraction with Perchloric Acid  

Perchloric linker histone extraction is performed by preparation and disruption 

of nuclei. As perchloric acid extraction is supposed to extract only the linker histone 

fraction, it is followed by eighter hydrochloric or sulphuric acid extraction of core 

histones. Histone proteins were separated by Coomassie stained SDS-PAGE (see Figure 

7A; Lindner et al., 1998).  

In the Coomassie stained SDS-PAGE, there was a protein band visible 

correlating to the 40kDa Marker band. Mass spectrometric analysis of the tryptic digested 

putative linker histone identified the protein sequence as the linker histone H1 by 

MASCOT Database Search. Furthermore, the characteristic pattern of the four core 

histones was present in much lower concentration than the linker histones in the 

perchloric extraction. Thus linker histones were enriched in the perchloric acid extraction. 

The pellet after perchloric linker histone extraction and hydrochloric core histone 

extraction showed few core histones and no linker histones. As the focus of this thesis was 

mainly on the four core histones, sequential elution with first perchloric linker histone 

extraction followed by hydrochloric core histone extraction led to a separation of the core 

histones in fractions.  
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Figure 7: Acidic Extraction of Histones from Somatic Cell Lines 
A) Flowchart of nuclei preparation and subsequent linker histone extraction with 
perchloric acid and core histone extraction via hydrochloric or sulfuric acid. B) 
Coomassie stained SDS-PAGE of increasing concentration (1x 106 cells and 4x 106 
cells) of linker histones extracted with perchloric acid (lanes 1, 4) and core histones 
extracted with hydrochloric acid (lanes 2, 5) of A6 and XTC nuclei. The nuclear pellet 
after both extractions (lanes 3, 6) had core histones left, but no linker histones. The 
linker histone extraction (lanes 1, 4) enriched core histones. The hydrochloric 
extraction (lanes 2, 5) did still contain linker histones, despite of the separate linker 
histone extraction step and yielded a high amount of core histone proteins. C) 
Coomassie stained SDS-PAGE of histone proteins extracted with hydrochloric (lanes 
1-3) and sulfuric acid (lanes 4-6). The concentration of acid used for extraction 
increased in the lanes 1-3 and 4-6 from 0.4M over 0.8M to 1.2M acid. As the 
concentration of the acid used for the extraction increased so did the purity of the 
histone extraction, mainly seen at the proteins present above the 25kDa marker 
band. D) Coomassie stained SDS-PAGE of the core histones extracted by acidic 
extraction with 0.4M HCl of the four different cells used.  

 



Tobias Schneider  Results 50 

 

 

   

Potentially, specific post-translational histone modifications might be extracted 

together with the linker histones in perchloric extraction, leading to biased post-

translational histone modification analysis.  

In summary, the method of linker histone extraction with perchloric acid in 

series with core histone extraction with hydrochloric acid yielded linker histones as 

described by Lindner (Lindner et al., 1998). No linker histones were lost in the pellet, 

which did not contain any linker histone in the Coomassie stained SDS-PAGE. However, 

as linker histones were also present in the extraction with hydrochloric acid, the linker 

histones were separated in several fractions. As the focus of the thesis was on core 

histones, the two step extraction was not superior to a one step hydrochloric histone 

extraction (Figure 7B and C).  

 

5.1.3.2 Acid Histone Extraction with Hydrochloric Acid  

As described above, the sequential extraction of histones with perchloric acid, 

followed by hydrochloric acid has led to a low yield of core histones. In a next experiment 

the yield of hydrochloric extraction on its own was compared to sequential acidic histone 

extraction.  

As depicted in Figure 7C, the characteristic pattern of the four core histone 

proteins was visible in the Coomassie stained SDS-PAGE. The tryptic digested proteins 

were analysed using mass spectrometry and the sequences matched significantly to the 

core histones by MASCOT Database Search. The yield of the core histones was much 

higher compared to directly lysed nuclei (see Figure 5C, lane 1 and 3), high-salt extraction 

(see Figure 6B, lane 1 and 3) as well as in comparison to the two-step perchloric-

hydrochloric extraction (see Figure 7B). However, there were more other protein bands 

visible in the Coomassie stained SDS-PAGE compared to other extraction protocols 

(compare Figures 5C, 6B and 7C). To possibly reduce the amount of other proteins, 

different concentrations of hydrochloric acid, 0.4M, 0.8M and 1.2M respectively, were 

tested. The results are depicted in the Coomassie stained SDS-PAGE (Figure 7C, lanes 1-3). 

The protein bands visible between 40kDa and 60kDa of the Marker band were reduced as 

the concentration of hydrochloric acid was increased. The amount of the four core histone 

proteins was not changed by the increased hydrochloric acid concentration in the 

Coomassie stained SDS-PAGE. Tryptic digested histone proteins were analysed using 
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mass spectrometry. MASCOT database search matched the sequences significantly to the 

four core histone proteins, confirming the enrichment of core histones at higher acid 

concentrations.  

                      The reproducibility, signal to noise ratio and the quality of the internal 

calibration of the MALDI-TOF spectra was evaluated for the different hydrochloric acid 

concentrations. As the concentration of hydrochloric acid was increased, the 

reproducibility of histone spectra, the quality of internal calibration and the signal to noise 

ratio for analysis was reduced. The recovery of modifications of technical replicates of 

0.4M hydrochloric extraction had a correlation coefficient of 0.96 and thus was much 

better than of all other extraction methods tested. 

Summarizing, hydrochloric acid extracted core histones in high amounts and 

resulted in high quality of MALDI-TOF spectra for post-translational histone modification 

analysis. The use of 0.4M hydrochloric acid was on the one hand sufficient for enrichment 

and purity of histones and on the other hand resulted in best mass spectrometric analysis 

conditions.  

 

5.1.3.3 Histone Extraction with Sulfuric Acid  

Sulfuric acid can also be used to extract core histones, although there are fewer 

remarks on this compared to hydrochloric achid (H. Gould, 1998). To evaluate differences 

in the two acidic core histone protocols, the method using sulphuric acid was performed 

in the same way as hydrochloric acid extraction (see Figure 7A).  

Coomassie stained SDS-PAGE of three different concentrations of sulfuric acid, 

0.4M, 0.8M and 1.2M revealed the characteristic core histone pattern (see Figure 7C). Mass 

spectrometric analysis of tryptic digested proteins followed by MASCOT Database search 

confirmed the sequence of the core histone proteins. The different concentrations of 

sulfuric acid, 0.4M, 0.8M and 1.2M resulted in reduced protein bands visible between 

40kDa and 60kDa of the Marker band as the concentration of hydrochloric acid was 

increased in the Coomassie stained SDS-PAGE (Figure 7C). The amount of the four core 

histone proteins was not changed by the increased sulfuric acid concentration in the 

Coomassie stained SDS-PAGE.  

The reproducibility, signal to noise ratio and the quality of the internal calibration of the 

MALDI-TOF spectra were evaluated for the different sulfuric acid concentrations. As the 
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concentration of sulfuric acid was increased, the reproducibility of histone spectra, the 

quality of internal calibration and the signal to noise ratio for analysis was reduced. The 

recovery of modifications in technical replicates was comparable to hydrochloric 

extraction. However the correlation coefficient of sulphuric acid extracted core histone 

was 0.89 and thus was slightly lower as of hydrochloric extracted histones. 

Certainly, both hydrochloric and sulphuric acidic extraction methods for core 

histones were comparable in regard to yield and purity of histones, as well as reliability 

and internal calibration of mass spectra. However the reproducibility of hydrochloric acid 

extracted histones was superior to sulphuric extracted histones.  

 

In summary, all tested protocols were able to yield core histones in Coomassie 

stained SDS-PAGE. However, the four different protocols produced very different 

amounts of histones with lowest yield in directly lysed nuclei and the highest yield in both 

hydrochloric and sulphuric acid extractions, differing at least by an order of magnitude. 

Using tryptic digested proteins for mass spectrometry followed by MASCOT Database 

Search the four core histones were identified significantly. However there were significant 

differences between the reproducablility of the spectra acquisition and the analysis of 

post-translational histone modifications using mass spectrometry. The highest quality as 

well as best correlation of different histone modifications of spectra was achieved with the 

method of 0.4M hydrochloric acid core histone extraction.  

For further core histone extraction from cell nuclei, 0.4M hydrochloric acid was 

used (Figure 7D). One additional advantage of hydrochloric acid extraction is that this 

method is frequently used for histone preparations and thus is best suited to compare our 

results to published data (Zhang et al., 2003, Bonaldi et al., 2004).  

   

5.2 Histone Extraction of Embryos of Different Stages   

Aiming to establish a histone modification profile of Xenopus laevis embryos of 

four different stages - blastula, gastrula, neurula and tadpole stage - there was the need for 

an easy, reliable and efficient protocol to obtain histones of these embryos (see Figure 8). 

The embryos consist of much more proteins compared to cultured cells as well as of yolk 

and fat. Thus, histone extraction of embryos requires a higher degree of purification and 

enrichment compared to histone extraction of stable cell lines. As there was hydrochloric 
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extraction from nuclei of cell lines described previously to be a method with high yield, 

high purity and sufficient quality in mass spectrometry, the first attempt was to apply this 

method to embryos.  

 

              

 
             Figure 8: Xenopus Developmental Time Line 

Time line of Xenopus laevis embryonic development – NF stages according to 
Nieuwkoop and Faber and by hours after fertilization (hpf). The stages selected for 
mass spectrometric analysis are characterized by the following embryonic and 
cellular features: blastula (NF9) naivé/multipotent cells; gastrula (NF12) germ 
layers specified; neurula (NF18) germ layer patterning and differentiation; tadpole 
(NF37) embryonic development completed, larvae hatched. (Pictures taken from 
http://www.xenbase.org/xenwiki/index.php) 
 

 

5.2.1 Nuclei Extraction with an Ultracentrifuge Step 

In our lab, protocols established by Blobel were used previously for nuclei 

preparation of different embryonic stages of Xenopus laevis (Blobel et al, 1966). The 

method uses staged cohorts of embryos which were then homogenized by pipetting. The 

nuclei were then separated from the cell debris by ultracentrifugation on a density 

gradient of sucrose (Figure 9A). Before applying hydrochloric acid extraction to the nuclei, 

the nuclei were visualized in phase contrast microscopy and by DAPI staining (see Figure 

9B). Phase contrast microscopy revealed the presence of many vesicles and cell debris in 

addition to nuclei, with the DAPI fluorescent images identifying the nuclei. These results 

indicate that the method quite effectively disrupted embryos, tissues and cells, but failed 

to separate nuclei from cellular debris. The pellet of the centrifugation was used for 

hydrochloric acid extraction to enrich and purify the histone proteins (Murray et al., 1966). 

The Coomassie stained SDS-PAGE of the acidic extraction showed the characteristic core 

histone (see Figure 9C). However, there was a wide spread of other protein bands visible 

in the SDS-PAGE. Thus, the histone extraction of embryos is not as pure as for cell lines. 

http://www.xenbase.org/xenwiki/index.php)
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Figure 9: Nuclei Preparation of Xenopus laevis Embryos and Acidic Histone 
Extraction 
A) Flowchart of nuclei preparation of Xenopus laevis and hydrochloric acid histone 
extraction. B) Microscopic pictures of nuclei after nuclei preparation of neurula stage 
Xenopus laevis embryos in phase contrast and stained with DAPI. The preparation 
was successful as the nuclei were visible, but together with the nuclei a huge amount 
of debris was present in the sample. C) Coomassie stained SDS-PAGE of four 
biological repeats of histones extracted with hydrochloric acid after nuclei 
preparation of neurula staged Xenopus laevis embryos. The four core histone 
proteins were visible in the gel but the yield differed significantly among the 
different samples reflecting the heterogeneity of the nuclear preparation. 

 

As the different amount of histone proteins and other proteins in the four biological 

repeats in the Coomassie stained SDS-PAGE indicated, there is some variation between 

extracted samples of the same amount of input. This reflected the heterogeneity of the 

nuclear preparation and thus the hydrochloric acid histone extraction.  Mass spectrometry 

of tryptic digested proteins was performed. The subsequent MASCOT database search did 
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not identify sequences of core histone proteins.  The purity and the amount of extracted 

histone proteins were not sufficient for significant identification. The quality of spectra 

was low and other proteins were present in the same samples (External contamination 

was ruled out as cause for the reduced quality of the histone spectra).  

Homogenization of embryos followed by density gradient ultracentrifugation with 

sucrose yielded no intact nuclei in phase contrast microscopy and DAPI staining. 

Furthermore the destructed nuclei were not separated from cell debris. By Coomassie 

stained SDS-PAGE putative core histone proteins were detected next to high amounts of 

other proteins. Thus, applying hydrochloric acid to the ultracentrifuge pellet did not result 

in rather pure histones. By the use of mass spectrometry, no histones were identified and 

the quality of histone spectra was not sufficient for post-translational histone modification 

analysis.  

 

5.2.2 Extraction of Nucelosomes with FPLC via Hydroxylapatite Column 

As the nuclei preparation of embryos followed by acidic extraction did not 

result in histones suited for post-translational histone modification analysis, the need for 

another extraction method was obvious. Another frequently used technique for histone 

purification is the use of chromatography via a hydroxyapatite resin (Brand et al., 2008). 

This method uses staged cohorts of embryos followed by nuclei preparation (see Figure 

10A). To increase the yield, the nuclei were digested with Micorcoccal Nuclease (MNase) 

producing small chromatin fragments consisting of 1-3 nucleosomes (see Figure 10B). 

MNase predominantly cleaves DNA in the internucleosomal regions and the aim was to 

obtain 1-3 nucleosome fractions. Figure 10B shows an Etidiumbromide stained agarose gel 

of separated DNA purified after different digestion times for MNase. Chromatin 

fragments containing 1-3 nucleosomes were visible after 5 and 10 minutes of MNase 

digestion. This digestion was sufficient for loading soluble chromatin onto the 

hydroxyapatite matrix. The DNA-nucleosome complex was bound tightly to the 

hydroxyapatite matrix. The hydorxyapatite resin was then washed to reduce the amount 

of contaminants. The method relies on the stable DNA-nucleosome complex, which 

remains bound to the resin by the use of low salt buffers, whereas other proteins are 

eluted.  
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Figure 10: Hydroxyapatite Histone Octamere Purification after Nuclei Preparation 
of Xenopus laevis Embryos 
A) Flowchart of nuclei preparation and hydroxyapatite purification of histone 
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octameres of Xenopus laevis embryos. B) Etidiumbromide stained Agarose gel of 
MNase digestion of chromatin after nuclei purification and lysis of different digest-
duration. After 10 Min of MNase digestion the number of nucleosomes per DNA 
segment was between 1 and 3 and best suited for subsequent hydroxyapatite 
purification. C) Chromatogram of histone octamere purification with a hydroxy-
apatite column. Abscissa displays the time, ordinate displays the UV absorption. In 
blue is the UV absorption, in green the flow rate and in red the H2PO4 concentration. 
A step gradient of H2PO4 after 110 minutes elutes the histone octameres indicated by 
the UV absorption (box). D) Coomassie stained SDS-PAGE of precipitated fractions 
as indicated after the FPLC run. Histone H3 and H4 are present in aequimolar 
amounts whereas H2A and H2B are present in much less quantity. 

 

After washing, a sharp increase in the salt concentration led to the elution of the 

core histones whereas the DNA remaind bound to the resin (see Figure 10C). One big 

advantage of this method is the high purity of histones and the preservation of the hetero-

octamer conformation in buffers containing high salt concentrations (Bloom et al., 1977). 

On the other hand, disadvantages of this method are the high amount of starting material 

necessary for the resin together with low recovery of histones from the resin (Ausio et al., 

1998). The fractions eluting form the resin were precipitated with TCA followed by 

Coomassie stained SDS-PAGE (see Figure 10D). The recovery of the elution of the FPLC in 

the SDS-PAGE was small (see Figure 10D). Furthermore, the four core histones did not 

elute in equal amounts, but H3 and H4 were present in higher concentration compared to 

H2A and H2B. Elution of histone proteins in other fractions was checked and ruled out by 

Western blot (data not shown). Mass spectrometric analysis of tryptic digested proteins 

revealed the presence of H3 and H4, however the quality of spectra was neither sufficient 

for significant identificaton of the histones nor for analysis of post-translational histone 

modifications. Furthermore, the recovery of histones for early embryonic stages such as 

blastula and gastrula was low yielding no histone proteins in Coomassie stained SDS-

PAGE. Therefore, the material input became limiting, at least for the younger embryonic 

stages. These findings pointed to either insufficient nuclei preparation or high loss of 

histone proteins during the chromatography. To check the nuclei preparation, phase 

contrast microscopy and DAPI staining was performed. Independent from the embryonic 

stage analysed, no intact nuclei were detected by microscopic means (data not shown).   

In the end, the histone fractions from hydroxyapatite purification were pure, 

but not enriched. The nuclear preparation was not efficient as nuclei were not detectable 

by microscopy. Furthermore, the recovery of histones was very low regarding the high 

amount of starting material and the size of the hydroxyapatite resin. The amount of 
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embryos necessary for extraction exceeded our possibilities. For early embryonic stages 

(NF9, NF12), no histones were present most likely caused by the low abundance of nuclei 

in these stages. The quality and reproducablility of mass spectra was not sufficient for 

significant histone identification or analysis of post-translational histone modifications. 

Consequently this method did not meet the expectations for an easy, efficient and reliable 

method for histone extraction.     

 

5.2.3 Direct Lysis of Embryos and Further Purification via HPLC 

As described above, two independent methods for nuclei extraction were used 

followed by two different techniques for histone extraction. The yield of one of these 

methods was low as nuclei preparation was not possible as the nuclei were not separated 

from cytoplasmatic and yolk components. Furthermore, both methods did not yield 

histones with purity sufficient for subsequent mass spectrometric analysis. As the 

common denominator of both approaches was the low quality of the nuclear preparation, 

a different technique starting from whole embryo lysates that are further purified by 

reversed-phase chromatography. Using reversed-phase HPLC, the histone proteins were 

separated from other proteins according to their chemical and physical properties. The 

different fractions of the RP-HPLC were then analysed by SDS-PAGE or mass 

spectrometry (see Figure 11A).  

Reversed-phase HPLC for histone purification, first introduced by Certa and Ehrenstiel in 

1981, is a quick and efficient method especially suited for small-scale purification. This 

method allows to separat even histone variants under optimal conditions (Schechter et al., 

2007).  

In the method described by Schechter, H3 typically eluates as a broad peak and is well 

separated from H2A, H2B and H4, which elute in close proximity (Schechter et al., 2007).  

Regarding these advantages of RP-HPLC together with whole embryo lysates to 

circumvent the difficulties with nuclei preparation, this method seemed to offer an easy 

and quick solution. After embryo disruption, the samples were evaluated by SDS-PAGE 

prior to the RP-HPLC runs (data not shown). There was a variety of different protein 

bands visible in the Coomassie staining together with putative histone proteins. 
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Figure 11: Reversed-phase HPLC Purification of Histones of Xenopus Whole 
Embryo Lysates 
A) Flowchart of reversed-phase HPLC histone protein purification. B) reversed-
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phase HPL-Chromatogram of whole lysates of different stages of Xenopus laevis 
embryos. Abscissa displays the time, ordinate displays the UV absorption. Light blue 
was the UV absorption of blastula staged embryos, in orange gastrula, in green 
neurula and in purple tadpole. The red line indicates the gradient of the 
hydrophobic buffer. The four different embryonic stages showed a similar UV 
absorption profile, but different composition and intensity according to the different 
stages. C) MALDI-TOF spectrum of undigested H3 protein in linear mode of 
reversed-phase HPLC fractions. Abscissa displays mass, ordinate displays the 
intensity. H3 protein was clearly detectable in the fractions. D) MALDI-TOF 
spectrum of undigested H4 protein in linear mode of reversed-phase HPLC 
fractions. Abscissa displays mass, ordinate displays the intensity. H4 protein was 
clearly detectable in the fractions. E) Coomassie stained SDS-PAGE of pooled 
fractions of reversed-phase HPLC runs of neurula staged Xenopus laevis embryos. 
The histone proteins were visible in several fractions and were eluting at different 
time points as expected. Nevertheless there were other proteins eluting at the same 
time points as histone proteins. 

  

 

Then RP-HPLC runs were performed using an increasing gradient of ACN to 

stepwise elute the core histones (see Figure 11B). The eluting proteins were collected in 

fractions of 200µl. The chromatogram shows the increasing gradient of ACN and the 

optical density measurements of several runs of differently staged embryos (see Figure 

11B). After 5-10 minutes, the proteins which did not bind to the resin were eluted. 

According to the optical density measurement, several different peaks were eluting at 

around 18-25 minutes and 35 minutes. The pattern of the RP-HPLC runs was very similar 

comparing different runs of the differently staged embryos. To check for histone proteins 

in those fractions with high UV absorption, mass spectrometry in linear mode was 

performed to visualize undigested protein (see Figure 11C and D). The use of the linear 

mode allows detection of undigested protein, however, significant identification of the 

protein is not possible. The molecular weight of the proteins found in mass spectrometry 

correlated to H3 (see Figure 11C) and H4 (see Figure 11D). In the Coomassie stained SDS-

PAGE of different fractions from the RP-HPLC runs, putative histone proteins matched 

the mass of recombinant histones H3 and H4. Thus, putative core histones were visible in 

several fractions. The histone H3 was eluting earlier than H4, which was consistent with 

published data (Ausio et al., 1998; Schechter et al., 2007). Mass spectrometric analysis of 

tryptic digested proteins revealed low reproducibility and signal to noise ratio. Histone 

H4 was significantly identified by the use of MASCOT database search, but not H3 for 

several technical and biological repeats. The recovery of modifications of histone H4 of 
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technical replicates was low, but better than in direct lysis with a correlation coefficient of 

0.67.  

Summarizing, RP-HPLC purification of histones derived from whole lysates of 

different staged embryos did not result in histones of sufficient quantity and quality for 

mass spectrometric analysis. Based on these results, further investigation with this method 

was not made.  

 

5.2.4 Development of a New Protocol for Histone Extraction 

Having tested three different approaches for histone purification and 

enrichment, which did not yield enough pure core histones, the idea arouse that rather the 

nuclei preparation is the cause of the problem, than the histone extraction methods. This 

idea was further supported by the findings using the somatic cell lines A6 and XTC, where 

even direct lysis of entire nuclei led to histone enrichment (see Figure 5C). The use of 

whole embryo lysates with RP-HPLC purification did not improve the histone extraction 

(see Figure 11E). As the frequently used methods for nuclear preparation did not result in 

nuclei, the need to develop a new protocol for nuclei extraction of Xenopus laevis embryos 

was obvious. A variety of methods to extract histone proteins from pure nuclei, like high-

salt (Burton et al., 1978), acid extractions (Murray et al., 1966) or chromatography methods 

(Simon et al., 1979; Certa et al., 1981) is available.  

There are several methods described in the literature how to extract nuclei of 

embryos or cells (Gould, 1998). The use of aqueous buffers is described to better preserve 

the structure of the nucleus as compared to other extraction methods. Thus, three different 

buffer conditions on the basis of aqueus buffers were tested (see Figure 12A).  

After homogenization of the embryos of stage NF18, the quality of the nuclei was checked 

by phase contrast microscopy and DAPI staining (see Figure 12B). Best results were 

obtained using buffer E1 and further extractions were done with this buffer.  In the next 

step, homogenization was tested with two 5ml-glass-glass homogenizers differing in the 

gap width. Nuclei structure was best conserved using the loose fit homogenizer compared 

to the tight fitting homogenizer (data not shown). The best quantity of strokes was 

determined to yield as much intact nuclei as possible together with high efficient cell 

disruption. Best results were obtained by 20 strokes (data not shown). 
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Figure 12: Optimizing the Preparation of Embryonic Cell Nuclei for Xenopus laevis 
Embryos 
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A) Different buffers used for the extraction. B) Microscopic pictures of neurula (NF18) 
staged Xenopus laevis embryos after homogenization in different buffers in DAPI 
stain and phase constrast. Nulcei were visible in all buffers tested but the morphology 
of the nuclei extracted with modified buffer E1 and T1 appeared irregular whereas the 
nuclei extracted with buffer E1 appeared normal. C) Microscopic pictures of neurula 
(NF18) staged Xenopus laevis embryos after homogenization, after centrifugation of 
the homogenate and after a second centrifugation step in phase contrast and DAPI 
stain. The nuclei in DAPI stain were clearly visible and the debris and contaminants 
were highly reduced by the two centrifugation steps, as seen in the phase contrast 
pictures. D) Microscopic pictures of blasutla (NF9), gastrula (NF12), neurula (NF18) 
and tadpole (NF37) staged Xenopus laevis embryos after homogenization and first 
centrifugation in phase contrast and DAPI stain. Nuclei were visible for all the four 
embryonic stages. 

 

     In the first steps of the method development, stable buffer and homogenizing 

conditions were established. Then, a method to separate the nuclei from the cytoplasmatic 

components was developed.  

Different centrifugation velocities were tested from 100rpm to 3000rpm in a 

swing-out rotor. At a centrifugation velovity of 1000rpm, high amounts of nuclei were 

detectable by phase contrast microscopy and DAPI staining, whereas no nuclei were 

present in the supernatant. Centrifugation with more than 1000rpm resulted in more cell 

contaminants in the pellet, whereas the yield of nuclei was not increased. Thus the 

centrifugation velocity was set to 1000rpm. In the pellet cell debris and other contaminants 

were present despite the centrifugation (Figure 12C). In the next step, the nuclei were 

washed in buffer E1 containing the non-ionic detergents Triton X-100 and NP-40 to get rid 

of lipoproteins and yolk. A second centrifugation on a gradient of sucrose with 1000rpm 

to further purify the nuclei was performed. The density of the nuclei is usually higher than 

the density of cell debris and yolk. Consequently, the centrifugation on a density gradient 

such as sucrose was expected to purify the nuclei. As optimal sedimentation of nuclei was 

already determined at 1000rpm, different concentrations for the sucrose gradient were 

tested. Best results were obtained using 2.0M sucrose in buffer E1 (Figure 12C). As shown 

in Figure 12B and C, the newly developed method was able to deliver rather pure nuclei 

of roughly 50 neurula staged embryos.  

Finally, this protocol had to be adopted to the other developmental stages with 

slight changes (see Figure 12D and Figure 13A). 
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Figure 13: Purification of Core Histone Proteins from Xenopus laevis Embryos 
A) Flowchart of nuclei extraction and purification and acidic histone extraction. B) 
Coomassie stained SDS-PAGE of blastula (NF9), gastrula (NF12), neurula (NF18) 
and tadpole (NF37) staged Xenopus laevis embryos. The four core histones were 
clearly visible and enriched in the SDS-PAGE and only little other proteins were 
present in the extracts. 

 

Trypsin digested putative histone proteins were analysed using mass 

spectrometry. MASCOT database search matched the sequences significantly to the four 

core histone proteins. The reproducibility of histone spectra, the quality of internal 

calibration and the signal to noise ratio was sufficient for analysis. The recovery of 

modifications of technical replicates of 0.4M hydrochloric acid extraction had a correlation 

coefficient of 0.93 and thus was comparable to the correlation coefficient found for 

histones from cell lines.  

In summary, a new, efficient and reliable method for preparation of rather pure 

nuclei of maximal 50 embryos for one biological repeat of different staged Xenopus laevis 

embryos was developed. Using acid extraction of these nuclei resulted in high yield of 

pure core histones in SDS-PAGE (see Figure 13B). The extraction conditions of the four 

core histones met the requirements for analysis of post-translational histone modifications 

in mass spectrometry.  
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5.2.5 Comparison to the Commercially Available Histone Purification Kit 

During the time when the new method for nuclei purification of Xenopus laevis 

embryos was developed, a commercially available histone purification Kit was placed on 

the market by Active Motif. This kit claimed to purify histones of all kinds of tissues and 

organisms.  

      

 

 

Figure 14: Histone Purification via the Active Motif Histone Purification Kit 
A) Flowchart of the purification as described in the users manual. B) Coomassie 
stained SDS-PAGE of histones purified with the kit of blastula (NF9) and tadpole 
(NF37) staged Xenopus laevis embryos collected in H2A/H2B and H3/H4 fractions. 
Histone proteins were present in the fractions although the two fractions were not 
able to elute H2A/H2B separate from H3/H4 and lots of other proteins were present 
in the extracts as well. 

 

To check the efficiency of the kit, the protocol (see Figure 14A) for purification of 

core histones was applied as mentioned in the manufactor´s manual. Staged cohorts of 

embryos were used for homogenization followed by histone extraction using a histone 

binding resin provided with the kit. After loading and washing, the histones were eluted 
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in fractions (Figure 14A and B).  The Coomassie stained SDS-PAGE of different fractions 

revealed a variety of proteins. The amount of the four histones was not equally distributed 

in Coomassie stained SDS-PAGE (see Figure 14B). Tryptic digested proteins analysed by 

mass spectrometry revealed high reproducibility but low signal to noise ratio. MASCOT 

database search identified the core histones significantly, however, the spectra had a low 

correlation coefficient of 0.80 likely caused by the low recovery from the column. The 

amount of embryos needed for the kit was very high with at least 800-1200 embryos for 

one technical repeat.  

With the use of the histone purification Kit as described by Active Motif, histone 

proteins could be isolated. The kit is very expensive and together with the high input of 

embryonic material especially the use in preparative scale histone purification is not 

suitable. The histones were significantly identified in mass spectrometry, but the quality of 

the spectra was lower compared to the ones of acidic extracted histones. The kit was 

considered as an alternative histone extraction method for Xenopus laevis embryos next to 

the protocol previously developed.  

 

         In summary, hydrochloric acid extraction of histones of embryonic cell nuclei 

turned out to be the method of choice, based on yield and purity of histones for the 

quantitative analysis by mass spectrometry. Thus core histones of the eight different 

conditions of interest, four embryonic stages (blastula, gastrula, neurula and tadpole; see 

Figure 13B) as well as of the four cell lines (A6, XTC, ES cells and Feeder cells; see Figure 

7D) were prepared according to this new protocol. 

 

5.3 Technical Preparation for the Identification and Quantification of Histone 

Modifications by Mass Spectrometry 

5.3.1 Histone Sequences 

In order to investigate histone post-translational modifications during 

vertebrate embryogenesis, core histone proteins were purified from unmanipulated 

Xenopus laevis embryos of four different developmental stages (see Figure 8). The stages 

included blastula (NF9), gastrula (NF12), neurula (NF18) and tadpole (NF37) embryos, 

representing key steps in vertebrate development (see Figure 8).  
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Figure 15: Conservation of Core Histone Sequences 
Clustal alignment of core histone proteins from frog, human, mouse and fruitfly 
showing conservation of the histone sequences. 
 

     At late blastula, shortly after the onset of zygotic transcription, embryos consist 

mostly of uncomitted, pluripotent cells (Nieuwkoop et al., 1967; Nicetto and Rupp, 

unpublished data). By the gastrula stage, the germ layers have been induced, and 

embryonic patterning increases the cellular diversity of the embryos during neurulation 

(Heaseman, 2006; De Robertis, 2009). After hatching, tadpoles are composed largely of 

differentiated, although premetamorphic, somatic cells. To evaluate the results from the 

embryonic samples, histones from Xenopus A6 and XTC cell lines, as well as from murine 

germline-transmission competent ES cells (Maisonneuve et al., 2009) and primary 
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embryonic fibroblasts (MEF) were prepared. 

Essential for the identification of post-translational modifications of proteins is 

detailed knowledge of the protein sequence. In order to align the sequences of Xenopus 

laevis core histone with histones of other species, a NCBI database search for Xenopus 

laevis core histone sequences was done (see Supplement Figure 1). Alignment of the 

primary sequences of Xenopus histones with core histones of other species such as human, 

mouse and fruitfly revealed some variability of the H2A and H2B histones and high 

interspecies conservation of the H3 and H4 (see Figure 15). For histone H2A, there are 

differences in single amino acid residues at several positions of the histone sequences 

among different species. Noteworthy is the extended N-terminus of the histone H2A of 

mouse, which has another seven amino acids more than the other three species. The amino 

acid exchanges do not cluster in one domain but are distributed over the entire sequence. 

The sequence of Histone H2B has amino acid exchanges in different species. The 

differences of the amino acid sequence cluster in the N-terminus. In Drosophila H2B, 

insertions of amino acids are found. For histone H2B, the vertebrate sequences show 

higher similarity to the sequence of Drosophila. The histone variant H3.1 is only found in 

mammals and thus not present in Xenopus laevis. The alignment of the replication-

dependent histone variants H3.2 and the replication-independent H3.3 shows no sequence 

differences among different species. The amino acid sequence of histone H4 is well 

conserved among species and has one amino acid exchange at the first position.  

 

5.3.2 Histone Preparation for Mass Spectrometric Analysis of Histone Modifications 

In a next step, in silico digestion of the four core histones was done using the 

endoproteinase Trypsin. Trypsin, which cleaves N-terminally of lysine and arginine 

residues, is frequently used for digestion of proteins in mass spectrometry.  The resulting 

peptides of tryptic digestion of the four core histones are depicted in Table 4. The mass 

spectrometer MALDI-TOF requires a peptide mass between 500 and 3500 Da, other 

peptides cannot be analysed. The four core histone proteins have a high number of 

arginine and lysine residues in close proximity resulting in frequent cleavage sites. The 

peptides of tryptic digestion are often too small for detection in MALDI-TOF.  To prevent 

trypsin from cleavage and thus to increase the size of the peptides, a covalent modification 

of lysine residues with propionic anhydride was introduced.  
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Table 4: Tryptic Peptides of Core Histone Proteins  
Displayed are the peptides of H2A, H2B, H3 and H4 after digestion with Trypsin 
(upper panel) and after Propionylation of lysine residues and Trypsin digestion 
(lower panel). Peptides highlighted in grey are not detectable by MALDI-TOF 
analysis.  Abr. aa = amino acid.  
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The propionic anhydride only reacts with unmodified or mono-methylated lysine 

residues, however, if the lysine residue is di- or tri-methylated, trypsin will also not cleave 

after the lysine residue. The peptides resulting from these digestions are displayed in 

Table 4. For all the core histones, the sequence coverage was higher with tryptic digestion 

with covalent lysine modification with propionic anhydride (see Table 4).  In total, the 

trypsin digestion of the four core histones had sequence coverage of 51.5% for H2A, 68.8% 

for H2B, 68.9% for H3 and 87.3% for H4.  

Notably, most of the best known sites of modifications were covered. After the 

acquisition of MALDI-TOF spectra they were evaluated for their quality. Only spectra 

fulfilling the quality characteristics such as high signal to nosie ratio and sufficient internal 

calibration were used for the quantification of post-translational histone modifications. 

The MALDI-TOF spectra display the mass at the x-axis and the intensity at the y-axis. The 

sum of the intensities of different modified states of a single histone peptide is 100%. The 

relative abundance of a modification is the intensity of the modification devided by the 

summarized intensity being equal to 100% (Bondarenko et al., 2002).  

 

5.4 Identification and Quantification of Histone Modifications by Mass Spectrometry 

Histone post-translational modifications were analysed in triplicate biological 

repeats for MALDI-TOF and duplicate for Orbi-Trap and each biological sample was 

analysed in at least two technical repeats. The average correlation coefficient between 

biological replicates was 0.9962, indicating high robustness of the analysis for the reported 

epigenetic states.  

For the identification of histone post-translational modifications, preferentially 

high mass accuracy LC-MS/MS mass spectrometry was used (Orbi-Trap, Thermo 

Scientific). This technique combines the advantages of reversed-phase HPLC and of high-

resolution tandem mass spectrometry. In the reversed-phase LC, the different peptides 

and their modified counterparts were separated according to their hydrophobic 

interaction with the micro-column in the liquid chromatography. The histone proteins of 

the Coomassie stained SDS-PAGE were propionylated and then digested using the 

endoproteinase trypsin (see Figure 16A).  
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Figure 16: LC-MS/MS Quantification 
A) Flow chart of sample preparation for LC-MS/MS B) Elution time of different 
acetylation states of H4 4-17 peptides in LC. The elution on the LC shifted to earlier 
time points as the amount of acetyl groups increased.  C) Averaged elution times of 
different acetylation states of H4 4-17 peptides in LC. The error bars indicate standard 
deviation of several independent LC runs of different samples. The elution time was a 
conserved feature of a modification.  
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According to the hydrophobic binding properties of the reversed-phase 

column, different modified peptides of one core histone could be separated. The different 

modified peptides were eluting from the column at different time points (see Figure 16B). 

Specifically, peptides with different acetlyation states of the H4 4-17 peptide led to an 

earlier elution from the column in the LC run. 

Higher acetylation states further polarized this effect by even eluting earlier.  

Histones of different sources showed a similar distribution on the LC and consequently 

the peak elution time of different modifications of the peptides did not spread. Examplary 

shown for the peptide 4-17 of H4 in Figure 16C are the averaged elution times of several 

independent LC runs of differently staged Xenopus laevis embryos, and stable cell lines 

A6 and XTC. The addition of one acetyl-group shifted the elution time by 0.7 Min to an 

earlier elution. These findings indicated that in addition to the mass of a histone peptide 

and its fragmentation spectrum, the elution time was also a unique parameter to 

characterise the modification of a peptide. In the following analysis, the elution time was 

used as a third parameter to determine the identity of a given peptide. 

The feature of the elution time to be unique together with the mass of a peptide 

was also used for precise quantification of different modifications of histone peptides. The 

area under the peak of the LC run was determined by the extracted ion counts (XICs) of 

the ions with this mass and was proportional to its abundance in the sample of the 

corresponding doubly and triply charged ions.  As different modified histone peptides 

were separated by the reversed-phases chromatography, different modification states 

could be quantitated individually.  

Another advantage of the tandem MS approach is the possibility to fragment 

peptides of interest with collision by small gas molecules, called collision induced 

dissociation (CID). The collision of the histone peptides with Argon gas molecules leads to 

a random fragmentation of mainly the peptide backbone. The consequence of the 

fragmentation is the generation of series of smaller ionized fragments. Depending whether 

the ion is situated at the N-terminus or the C-terminus the fragment is referred to as b- or 

y-fragment. The two fragments originating of one peptide are complementary. The series 

of fragments are able to cover the entire sequence of the peptide and thus a modification 

at an amino acid residue can be traced to its exact localization in the peptide.  

Using LC-MS/MS, a total number of 36 modifications on 5 peptides of H3 and 

16 modifications on 4 peptides of H4 were detected (see Supplement Table 2-5). Specific 
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biochemical characteristics of some peptides precluded analysis by LC-MS/MS and, 

therefore, were analysed by conventional MALDI-TOF mass spectrometry to investigate 

their modification states. Thus, for H2A, one modification state was detected, for H2B 3 

modifications, for H3 4 modifications and for H4 3 modifications were detected using 

MALDI-TOF (see Supplement Table 1). 

 

5.4.1 Post-Translational Modifications of Histones H2A and H2B 

                   A total of 6 peptides of histone H2A and 12 peptides of H2B were detected 

using MALDI-TOF mass spectrometry. For the peptide 83-89 with the sequence 

HLQLAVR of histone H2A mass shifts corresponding to mono- and di-methylation were 

detected identifying the methylation of the arginine residue 89. The level of mono-

methylation was 3.31% in NF9 and was reduced to 0.8% in NF12, 0.98% in NF18 and 

0.68% in NF37 (see Figure 17A and B). However, the reduction of the levels of R89me1 

was not significant. With mono-methylation of 3.61% and 4.49% for A6 and XTC, 

respectively, the levels of mono-methylation were in the same range as the embryonic 

levels. Di-methylation of R89 was generally less abundant than the levels of mono-

methylation. R89me2 was found with 0.66% in NF9, 0.43% in NF12 and 2.96% in NF37  

and 0.34% in A6, but it was not detected in NF18 and XTC (see Figure 17A and B).  

The peptide 93-99 of histone H2B has the sequence EIQTAVR. Mass shifts 

corresponding to di-methylation, but not to mono-methylation, were detected. For NF12 

R99me2 was low with 2.92% (see Figure 17C and D). Next to di-methylation, 

phosphorylation was detected on the same peptide 93-99. The level of T99phos was 

10.36% in NF37, 5.19% in A6 and 1.08% in XTC (see Figure 17C and D).   

Phosphorylation was also detected for the peptide 87-92 of H2B. As the 

sequence, STITSR, of this peptide revealed, there are several amino-acids which may be 

phosphorylated. As this peptide was analysed using MALDI-TOF mass spectrometry 

which did not have the possibility for CID, precise localization of the phosphorylation was 

not possible. Furthermore, the phosphorylation was only detected for A6 with a level of 

10% (see Figure 17E). 
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Figure 17: Histone H2A and H2B Modifications in Xenopus Embryos 
Bar-Charts showing the relative abundance of histone post-translational 
modifications, identified by MALDI-TOF mass spectrometry. Abbreviations: unmod 
= unmodified peptide, Kac = acetylated lysine residue, Rme1 = mono-methylated, 
Rme2 = di-methylated arginine residue, phos = phosphorylation.  
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5.4.2 Post-Translational Modifications of Histone H4 

For the analysis of post-translational modifications of histone H4, preferentially 

high mass accuracy LC-MS/MS was used. The small mass and specific biochemical 

characteristics of the peptide 20-23 precluded analysis by LC-MS/MS and, therefore, this 

peptide was analysed by conventional MALDI-TOF mass spectrometry to investigate its 

modification states. A total of 7 peptides of H4 were detected and in five of these peptides, 

post-translational histone modifications were identified (see Supplement Table 1). The 

peptide 4-17 with the sequence GKKGKGLGKGGAKR has four lysine residues, which 

according to previous findings are subjected to multiple acetylations (Kouzarides, 2007).  

The mono-acetylated peptides were always modified at the lysine K16. The blastula 

staged embryo was in 38% of the total H4 4-17 peptide acetylated at K16. The level rised 

significantly in later developmental stages to 44% in NF12 and remained at high levels in 

NF18 (43%) and NF37 (42%; see Figure 18A).  The percentage of K16 mono-acetylation 

was lower in A6 with 38% and 34% in XTC (see Figure 18B).  In this case, the amount of 

unmodified peptide was much higher than at any embryonic stage tested with 54% in A6 

and 58% in XTC. Thus, the embryos had a higher amount of multiply acetylated H4 

peptides. The highest prevalence was found in the di-acetylated N-terminus. The blastula 

staged embryo had 27% of the total H4 protein acetylated at K5 plus K12. This 

modification, however, was not present at any other condition tested, neither in the 

embryos nor in the two cell lines (see Figure 18A and B). The gastrula, though, had 11% of 

K8 plus K16 acetylation. This combination of acetylation marks peaked at the neurula 

stage with 17% and decreased again to 11% in the tadpole and even further to 6.6% and 

6.8% in the two cell lines. The blastula staged embryo, however, had none of this di-

acetylation pattern. Considering tri-acetylation, there was one combination detected, 

which was K5ac plus K8ac and K16ac. The global trend of this modificaion was a 

reduction from 9% in NF9 to 3% in tadpole stage with a transient peak of 7% in the 

neurula stage. The two stable cell lines showed lower levels of this combinatorial mark 

with both times 1.3% compared to embryos. The developmental reduction in tetra-

acetylation was similar to the tri-acetylation mark. Globally, there was a reduction in the 

levels of tetra-acetylation with an exception at the neurula stage embryo, which had the 

highest levels with 3.4%. The amount of tetra-acetylated H4 peptide decreased from 1.9% 

in NF9 to 1.15% in NF37 and to 0.3% in both of the cell lines.   
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Figure 18: Histone H4 Modifications in Xenopus Embryos and Cell Lines 
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Bar-Charts show the relative abundance of histone modifications, identified either by 
Orbi-Trap LC-MS/MS mass spectrometry (A+B; error bars indicate SD of two 
independent biological replicates) or MALDI-TOF mass spectrometry (C+D; error bars 
indicate SD of three independent biological replicates). E) Immunoblotting for total 
histone H3 and histone H4 tri-methylated at lysine 20. Upper panel – Western blot 
Odyssey infrared imaging signals; lower panel – bar chart showing increase of H4K20me3 
levels relative to total histone H3 protein during development. Abbreviations: unmod = 
unmodified peptide, Kac = acetylated lysine residue, Kme1 = mono-methylated, Kme2 = 
di-methylated, Kme3 = tri-methylated lysine residue. Where applicable, p values are given 
by numbers above brackets to indicate significant differences in the abundance of a 
histone modification between samples.  
 

Overall, this data indicated a general trend towards reduction of multiple 

acetylated lysine residues in the tail of H4 as the embryo developed from blastula to 

tadpole stage. At blastula stage, there was a total level of multiple acetylation marks of 

38% decreasing to 17% in tadpole stage and 8% in XTC cells.  

     The tryptic peptide 20-23 from propionylated histone H4 with the sequence 

KVLR has one lysine residue at the position 20, which is known to be methylated (Schotta 

et al, 2004). Its different methylation states have been linked to diverse epigenetic 

functions. The H4K20me3 marks are correlated with the formation of pericentromeric 

heterochromatin, maintenance of genome integrity and transcriptional repression, while 

the role of H4K20me1 is controversal (Dambacher et al., 2010). Using MALDI-TOF, 

peptides corresponding to unmodified, mono-methylated and di-methylated states were 

detected in all samples (see Figure 18C and D). The amount of the unmodified peptide 

decreased slightly from blastula to tadpole stage, and was even lower in the A6 (20%) and 

XTC (17%) cell lines. It is known that the specific properties of the tri-methylated H4 

peptide 20-23 makes it very difficult to quantify this PTM by mass spectrometry, and 

reproducible detection in the samples was not possible. To determine the relative 

abundance of H4K20me3 in frog embryos, Western blot analysis with antibodies against 

tri-methylated H4K20 as well as pan-histone H3 was performed. This confirmed the 

consistent presence of the H4K20me3 mark during embryonic development (Figure 18E), 

and revealed also that its abundance increased approximal five-fold from blastula to 

tadpole stages. 

Next to the two peptides described above, mass shifts corresponding to post- 

translational histone modifications were detected by MALDI-TOF in the peptides 24-35, 

56-67 and 79-92 (see Supplement Table 1). The peptide 24-35 has the sequence 
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DNIQGITKPAIR. A mass shift corresponding to acetylation of lysine 31 was detected.  

The overall abundance of this modification ranged between 0.17% in NF12 and 1.49% in 

XTC. Furthermore, a mass shift corresponding to a mono-methylation of the peptide 56-67 

was found in NF12-NF37. The level of K59me1 ranged between 0.67% in NF18 and 6.6% in 

NF37. The H4 peptide 79-92 with the sequence KTVTAMDVVYALKR has two lysine 

residues at position 79 and 91, respectively, explaining the two mass shifts corresponding 

to mono- and di-acetlyation. The di-acetylated peptide was found in the Xenopus laevis 

embryonic stages with the lowest abundance in NF37 with 0.79% and the highest 

abundance in NF18 with 3.34%. The level of di-acetylation was 0.53% in XTC.    

  

5.4.3 Post-Translational Modifications of Histone H3 

For the analysis of post-translational modifications of histone H3 preferentially 

high mass accuracy LC-MS/MS was used. However, the small mass and specific 

biochemical characteristics of the peptide 3-8 precluded analysis by LC-MS/MS, and, 

therefore, this peptide was analysed by conventional MALDI-TOF mass spectrometry to 

investigate its modification states.  8 out of 9 peptides from H3 were found to be modified.  

The peptide 3-8 with the sequence TKQTAR has one lysine residue which is 

known to be methylated (Zhang et al., 2003). As for specific biochemical characteristics, 

this peptide was difficult to detect in MALDI-TOF (see Figure 19A). To improve the 

detectablilty of the peptide 3-8, a special enrichment technique with charcoal mini-tips 

(Carbon-Tips, Glygen) was used. According to Chin and coworkers, the peptide 3-8 is 

bound selectively to the charcoal and thus is enriched (Chin et al., 1998). Our data 

indicated an enrichment of the peptide as detection was improved as well as the signal to 

noise ratio was increased (compare Figure 19A and B). By the use of this enrichment 

technique, analysis of modification of the H3 peptide 3-8 was possible.  

The amount of the unmodified peptide 3-8 increased significantly during 

embryonic development from 27% in NF9 to 44% in NF37. This was largely due to a 

decrease in tri-methylation from 28% in NF9 to 16% in NF37. The levels of the mono- and 

di-methylated isoforms remained relatively constant. In comparison, the two cultured frog 

cell lines had much higher levels of unmodified (67% in A6 and 62% in XTC), and much 

lower levels of di- and tri-methylated H3K4 (10% each; Figure 20A and B). This data 

indicated an unusual and transcriptionally permissive state of the uncomitted blastula 
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epigenome, in which half of the histone H3 tails appeared to be di- or tri-methylated at 

Lysine 4. 

      One of the best characterized modifications that is associated with 

heterochromatin and transcriptionally repressed regions is di-/tri-methylation of lysine 9 

on the H3 tail. 

 

        

Figure 19: MALDI-TOF Spectra of Porous Graphite Carbon Enrichment of H3 
Peptide 3-8  
A) MALDI-TOF spectra of H3-3-8 peptide B) MALDI-TOF spectra of enriched H3 

3-8 peptide with porous graphite carbon. MALDI-TOF spectra display mass on x-
axis and intensity on y-axis. Abbreviations: unmod = unmodified peptide, me1 = 
mono-methylated, me2 = di-methylated, me3 = tri-methylated lysine residue. 

 

In contrast, K9 mono-methylation has been associated with regulatory DNA elements and 

maintenance of activation potential during differentiation. K9 mono-, di- and tri-
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methylation was present in all the samples, altough at very different levels (Figure 20C). 

The different modification states of K9 fluctuated less than two-fold during frog 

development, except for K9me1, which showed a small but significant transient peak at 

gastrula, when it accounts for 20% of the total H3 9-17 peptides. A similar distribution of 

mono-, di- and tri-methylated K9 was found also in the two cultured Xenopus cell lines 

(Figure 20D).           

 Combined, the K9me2/me3 marks made up for less than 4% of the total H3 tails in 

the different Xenopus samples, suggesting a rather low density of this mark in both 

constitutive and facultative heterochromatin. 

The peptide 9-17 with the sequence KSTGGKAPR has two lysine residues at the 

position 9 and 14 and a serine residue at the position 10 which is known to be 

phosphorylated (Kouzarides, 2007). At low abundance, di-acetylated peptides (K9ac + 

K14ac) were detected in all stages, however, acetylation of K9 without the presence of 

K14c was not found (Figure 20E and F). The level of mono-acetylation of this peptide 

decreased significantly as development proceeded from 45% in blastulae to 31% in 

gastrulae, after which it increased again gradually up to 37% in tadpoles. As it is the case 

for H4 mono-acetylation, the tissue culture cells contained less acetylated H3 (Figure 20F). 

Di-acetylated H3 K9/K14 molecules had low abundance and their levels did not change 

significantly during development. However, the levels were slightly lower again in the 

two frog cell lines, compared to blastulae, which contained the lowest value of the four 

embryonic stages (1.17%).  

In addition to the K9 and K14 residues, the nearby lysines 18 and 23 on the H3 tail 

can also be acetylated. A similar pattern for both mono-acetylated states with a significant 

shift between NF9 and the three other embryonic stages was found (Figure 20G). Like for 

the K9/K14 pair, K18 acetylation was found only in combination with acetylated K23. 

These levels were between 4% in NF12 and 9% in NF37. Mono-acetylated K23 ranged 

from 57% in blastula to 45% in the other embryonic stages. In the two Xenopus cell lines, 

the level of K23 mono-acetylation was around 20% and the di-acetylation at 2% (see Figure 

20H). Thus, in the same manner as for H3K9 and K14, the acetylation of K18 and K23, was 

very different comparing the four embryonic samples and the somatic cell lines from 

Xenopus.  
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Figure 20: Histone H3 Modifications in Xenopus Embryos and Cell Lines 
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Bar-Charts showing the relative abundance of histone modifications, identified 
either  by MALDI-TOF mass spectrometry (A+B; error bars indicate SD of three 
independent biological replicates) or Orbi-Trap LC-MS/MS mass spectrometry (C-

K; error bars indicate SD of two independent biological replicates). Abbreviations: 
unmod = unmodified peptide, Kac = acetylated lysine residue, Kme1 = mono-
methylated, Kme2 = di-methylated, Kme3 = tri-methylated lysine residue. Where 
applicable, p values are given by numbers above brackets to indicate significant 
differences in the abundance of a histone modification between samples.  

 

Besides N-terminal acetylation marks, acetylation in the H3 histone-fold domain at 

Lysine 56 was also detected (H3K56ac; Figure 20I and K). The frog blastula contained 1.3% 

of acetylated K56, and the level of this mark was decreasing to 0.11% in the gastrula stage, 

however, not significantly (see Figure 20I and K). After this, the abundance of acetylated 

K56 remained low with 0.32% in the tadpole embryo. Notably, both cultured frog cell lines 

contained K56ac levels around 0.1%, which were comparable to the lowest level found in 

the gastrula stage (Figure 20I). Thus, the overall abundance of K56ac mark was quite low 

in frog embryos, but decreased rapidly during the blastula/gastrula transition.  

Furthermore, the peptide 64-69 was found to be di-methylated at levels of 0.74% 

in NF9 to 3.56% in MEFs (see Supplement Table 1). According to Zhang the peptide 73-83 

is methlyated at lysine 79 (Zhang et al., 2003). By detection of mass shifts corresponding to 

mono-, di- and tri-methylation of lysine 79, these findings were confirmed. The mono-

methylated peptide´s abundance increased as the embryo developed further from 2.3% in 

NF9 to 7.2% in NF37. In the cell lines A6 and XTC, the mono-methylation level varied 

between 4.4% in XTC and 5.94% in A6. On the other hand, the tri-methylation was 

decreasing from 1.44% at NF9 to 0% at NF37. The level of di-methylated peptide was low 

in all embryonic samples. For the H3 peptide 117-128 a mass shift corresponding to a di-

methylation with an abundance of 1.68% was detected only for NF37 (see Supplement 

Table 1).  

     Methylation of lysines 27 and 36 within the histone H3 tail has been mapped to 

mutually exclusive regions within the genome of most eukaryotes. The H3K27me2/me3 

marks were almost exclusively found at inactive genomic regions, whereas the 

H3K36me2/me3 marks were localized predominantly in actively transcribed genes 

(Barski et al., 2007). Both modifications reside on the same tryptic peptide (H3, 27-40; see 

Figure 21A), which provided the possibility to determine combinations of modification 

states on these two lysines by mass spectrometry.  
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Figure 21: Histone Modifications on the H3 27-40 Peptide in Xenopus  
Embryos and Cell Lines 
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A) Amino-acid sequence of the H3 27-40 peptide and its isobaric modification 
forms, which have identical mass although being differently modified at K27 and 
K36 residues. Panels B+C; Extracted ion chromatograms (XICs) showing 
separation of isobaric H3 27-40 peptides from the four Xenopus embryonic stages 
by differential elution from a C18 micro-column on the reversed-phase HPLC of 
on-line mass spectrometry. X-axis represents retention time, y-axis the intensity of 
ion currents in the quadrupole Orbi-Trap mass spectrometer. Peak separation was 
called by the ICIS peak detection algorithm program (Thermo), indicated here by 
the vertical black lines. B) XICs of isobaric di-methylated peptides, modified at 
either K27 or K36. C) XICs of isobaric tri-methylated peptides representing 
K27me3/K36me3, K27me2+K36me1 and K27me1+K36me2. D+E) Bar-Chart of 
H3K27 and K36 modification states. Note that isobaric mono- (data not shown) and 
tri-methylated peptides, which are methylated either at K27 or K36, elute 
simultanously and cannot be distinguished. F+G) Bar-Chart of combinatorial 
K27/K36-methylated peptides. Abbreviations: unmod = unmodified peptide, me1 
= single mono-methylated lysine at position 27 or 36, K27me2 = di-methylated 
lysine 27, K36me2 = di-methylated lysine 36, Kme3 = single tri-methylated lysine at 
position 27 or 36, K27me1/K36me1 = double mono-methylated, K27me2/K36me2 
= double di-methylated, K27me1/K36me2 = combinatorial tri-methylated peptide 
with dimethlyted K36, K27me2/K36me1 = combinatorial tri-methylated peptide 
with dimethlyted K27. Error bars represent SD. Where applicable, p values are 
given by numbers above brackets to indicate significant differences in the 
abundance of a histone modification between samples.  

 

     However, as peptides carrying a single tri-methyl group at either K27 or K36, or 

combinations of a mono-methyl and a di-methyl group at these two lysines, are isobaric 

(i.e. they have the same mass), they cannot be distinguished solely by this parameter (see 

Figure 21A). Although tandem MS/MS analysis can facilitate the assignment of the 

modifications, the relative quantification based on extracted ion chromatograms was only 

possible, when the differentially modified isobaric peptides were physically separated.  

    Indeed, tandem mass spectra revealed that most peptides that have a higher 

methylation degree at position 27 eluted earlier from a C18 reversed phase column than 

the corresponding ones that carry the same number of methyl groups on K36 (Figure 21B 

and C). With the exception of the isobaric mono-methylated peptides (i.e. K27me1 or 

K36me1), which were not separated on the C18 micro-column, 12 additional, distinct 

methylation states for the K27 and K36 positions on single H3 27-40 peptides were 

identified. 

    In genome wide studies, tri-methylation of H3K36 is found at strongly expressed 

genes, which are also preferentially enriched for the replication-independent histone 

variant H3.3. On canonical histone H3 (i.e. replication-dependent H3.2) that is highly 
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abundant in early embryos, H3K36me3 was detected only in frog tadpoles at very low 

abundance by its fragmentation spectrum (see Figure 21D and E; Supplement Table 4). 

The ratio of H3.3 to H3.2, as measured by comparing all spectra derived from the peptides 

unique for each isoform, decreased during development from 20% in blastula to 

approximately 7% in tadpoles (see Supplement Figure 2). However, a very similar 

distribution of modifications within these peptides was found in all cases, and therefore 

the analysis was focused on the peptide derived from the more abundant, canonical H3 

molecule. Overall, this data indicates that H3K36me3 levels are low during frog 

development. 

   Consequently, these findings implied that practically all the single tri-methylated 

27-40 peptides of H3 represent K27me3, a conclusion that was supported by the 

fragmentation spectra (see Supplement Table 4). H3K27me3 was readily identified in 

many, but not all samples. Notably, it was not detected in blastula and gastrula, and 

appeared only at very low levels in neurula (0.05%) and tadpole stages (0.1%; Figure 21B 

and D). However, in Xenopus cell lines (Figure 21E), as well as in mammalian cells (see 

below), H3K27me3 levels were at least 100-fold higher than in bulk embryonic chromatin 

up to neurula stages. It was concluded that the repressive K27me3 modification is present 

in the histone extracts, but extremely underrepresented in the early frog embryo 

compared to cultured frog and mammalian cell lines. 

    Overall, the abundance of methylated H3K27 rose during development (Figure 

21B-G). This trend became particularly obvious, when the XIC profiles of the di-

methylated peptide species were compared to each other. While the K36me2 peak stayed 

more or less constant, the K27me2 peak increased gradually from 1.6% in the blastula to 

14% in the tadpole stage (Figure 21D). During this time, the ratio of H3K27me2 to 

H3K36me2 changed from 0.14 in the blastula to 1.6 in the neurula stage, i.e. by more than 

10-fold. In comparison, the cultured cell lines A6 and XTC showed the highest percentage 

of H3K27me2 peptides (33% and 22% respectively), and contained more than 10% of 

H3K27me3 (Figure 21E).  

   The abundance of peptides with combinatorial methylation on both K27 and K36 

residues rose siginificantly during development. In the frog blastula, less than 2% of the 

H3 tails were simultanously modified on these sites, while one third is combinatorially 

modified in tadpoles (Figure 21F and G). Among these, low levels of unexpected 

combinations such as K27me3 paired with K36me1/me2 in late embryonic and tissue 
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culture cell samples were found, too. In general, the level of modifications within this 

peptide showed a major increase during development. This trend may be connected 

functionally to the establishment of stable gene expression profiles as cells differentiate. 

 

5.4.4 Post-Translational Histone Modifications of murine ES Cells and MEFs 

     Most cells in the blastula stage of Xenopus embryos are uncomitted and capable 

to differentiate into derivatives of all three germ layers (Heaseman et al., 1984). This raised 

the issue, whether the observed histone modification profiles in the frog blastula 

represented common features of pluripotent cells. To address this point, the histone PTMs 

of murine ES cells and of primary embryonic fibroblasts (MEFs), which were used as 

feeder cells in the ES cell culture and represent a murine somatic cell type for comparison, 

were also analysed. 

     The degree of acetylation on the H3 18-26 and H4 4-17 peptides of MEFs and ES 

cells indicated that both cell types were separated successfully from each other (see 

Supplement Figure 3).  In depth analysis confirmed then that the two murine cell types 

contained very specific profiles of histone modifications, and that the histone 

modifications of pluripotent cells from Xenopus blastulae were related to, but also clearly 

distinguishable from the profiles of pluripotent murine ES cells. Bivalent chromatin 

fragments, which simultanously carry the active H3K4me3 and the repressive H3K27me3 

marks, are considered a hallmark of pluripotent ES cells. With this technical approach it 

was not determined, whether histone H3 tails were modified on both Lysine 4 and 27, 

since these residues were located on different tryptic peptides. Nevertheless, the overall 

abundance of modifications at these sites was observed. For H3K4, this comparison 

revealed a high similarity between Xenopus blastula and murine ES cells (Figure 22A). Of 

all samples, these two contained the lowest amount of unmodified K4 (below 30%), but 

maximal amounts of H3K4me2/me3 (50% together). In contrast, H3K4me1 levels were 

not only similar between blastula, ES cells and MEFs, but almost constant in all samples 

(Figure 22A). In contrast to H3K4, the methylation profiles of the H3 peptide 27-40, 

including Lysines 27 and 36, were very different between blastulae and ES cells. As 

described earlier, the majority of the di-methyl marks were situated on K36 in frog 

blastulae.  
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Figure 22: Opposing Histone Modifications on the H3 27-40 Peptide of Xenopus 
Blastulae Compared to Murine ES Cells and MEFs.  
A) Bar-Charts showing H3K4 methylation states of Xenopus laevis blastulae, ES cells 
and mouse embryo fibroblasts. Data obtained by MALDI-TOF mass spectrometry, 
error bars indicate SD of three independent biological replicates. B) XIC profiles of 
K27me2 and K36me2 modification states of the H3 27-40 peptide of Xenopus laevis 
blastulae, murine ES Cells and MEFs on a C18 micro-column on a reversed-phase 
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HPLC during Orbi-Trap on-line mass spectrometry. C) XIC profiles for K27/K36me3, 
K27me2+K36me1 and K27me1+K36me2 of the H3 27-40 peptides from the same 
samples. In B and C, x-axis gives relative elution times of peptides, the y-axis shows 
their intensity according to the ion current of the quadrupole Mass Spectrometer. Peak 
separation was called by the ICIS peak detection algorithm program (Thermo), 
indicated here by vertical black lines. D) Bar-Chart of mutually exclusive H3K27 and 
K36 methyl states. E) Bar-Chart of peptides with combinatorial H3K27 and K36 
methylation. D and E - data from Orbi-Trap Mass Spectrometry, error bars indicate SD 
of two independent biological replicates. Abbr.: unmod = unmodified peptide, Kme1 = 
mono-methylated lysine residue, Kme2 = di-methylated lysine residue, Kme3 = tri-
methylated lysine residue. Where applicable, p values are given by numbers above 
brackets to indicate significant differences in histone modifications between samples. 

 

In ES cells, however, they were found predominantly on H3K27 (Figure 22C and 

D). MEFs had a similar di-methyl-distribution like ES cells, but contained significantly 

more K36me2 than these. A dichotomy was also found for the higher modification states 

of this peptide, including three to five methyl groups (Figure 22E). Whereas in frog 

blastulae, H3K27me3 was below the detection limit, mouse ES cells had with 8.3% the 

third-highest K27me3 level of all samples tested, and twice as much as MEFs (Figure 22D). 

Combinatorial tri-methylated states, such as K27me1/K36me2 and K27me2/K36me1 were 

also significantly more abundant in ES cells than in frog blastulae, and comparable to the 

levels found in MEFs (Figure 22E). Notably, the highest levels of tetra- (K27me2+K36me2) 

and penta-methylated (K27me3+K36me2) states of the H3 27-40 petides were also found 

in ES cells and to a less extent in MEFs, but were not detected in frog blastulae (Figure 

22E). Therefore, with the exceptions of the mono-methyl (K27 or K36) and the K36me2 

states, frog blastulae were characterized by the lowest methylation levels for the H3 27-40 

peptide of all the samples tested.  

Overall, these results indicate that frog blastulae and murine ES cells share high 

H3K4me2/me3 levels, but the former were dramatically undermethylated at the H3 27-40 

peptide. In fact, uncommitted frog cells had a 15-fold higher level of the unmodified state 

of this peptide than pluripotent ES cells.  
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6 Discussion 

 In this study, a variety of different protocols for histone extraction from 

Xenopus leavis embryos was tested and evaluated. In concern of this test, a reliable and 

efficient protocol for nuclei preparation and histone extraction from Xenopus laevis 

embryos was established. By the use of both MALDI-TOF and the Orbi-Trap as a tandem 

mass spectrometer, many core histone modifications were quantitatively determined. The 

techniques for both identification and quantification of histone modifications in mass 

spectrometry were improved. 

      A total number of 63 modification states was detected on the four core 

histones. Specifically, using LC-MS/MS a total number of 36 modifications on 5 peptides 

of H3 and 16 modifications on 4 peptides of H4 were detected. Analysis by conventional 

MALDI-TOF mass spectrometry revealed one modification state of H2A, 3 modifications 

of H2B, 4 modifications of H3 and 3 modifications of H4. The histone modification states 

at important developmental time points of Xenopus laevis were analysed and compared 

to the histone modification profiles of somatic cell lines. Furthermore, the quantitative 

shifts, which were observed during development, were clustered into stage-specific 

histone modification profiles accompanying and potentially regulating the transition from 

pluripotent to determined cell states. As a characteristic histone modification profile of the 

pluripotent blastula staged Xenopus embryos was determined, the in vivo data of the 

blastulae were compared to the profile of murine pluripotent ES cells. Despite the 

pluripotent nature of both Xenopus blastulae and murine ES cells, there were significant 

differences in the histone modification profiles of both samples.   

          This mass spectrometric analysis of histone modifications present in bulk 

embryonic chromatin through Xenopus laevis development revealed major quantitative 

shifts for several histone modifications known to be involved in gene regulation, and has 

also identified specific differences between pluripotent cells from blastula staged Xenopus 

embryos and later developmental stages such as tadpole or even the somatic cell lines A6 

and XTC. Thus, the study complemented the data of Bonaldi and collegues who did 

analysis of histone PTMs at three distinct time points of Drosophila development (Bonaldi 

et al., 2004) and Nicklay and Schechter, who analysed predeposition histone modifications 

of Xenopus sperm and oocytes (Nicklay et al., 2009; Schechter et al., 2009). 
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6.1 Technical Aspects of the Histone Extraction 

The extraction and purification of histone proteins is frequently described in the 

literature as a non-demanding method (Murray et al., 1966; Burton et al., 1978). For the 

subsequent analysis of the histone modifications by mass spectrometry, however, a 

sufficient purity as well as quantity of histones is required. In order to determine the yield 

as well as the suitability for mass spectrometric modification analysis, different frequently 

used histone extraction protocols were tested.  

Common protocols for histone extraction rely on acidic histone extraction 

(Murray et al., 1966) or high salt extraction (Burton et al., 1978). Next to these protocols, a 

variety of chromatographic methods has been applied to purify histones, such as the 

selective absorption of histone-DNA complex to the hydroxyapatite matrix (Simon et al., 

1979) and the separation of histones from contaminants by reversed-phase HPLC (Certa et 

al., 1981; Lindner et al., 1989). While these methods provide histones for Western blot 

analysis of post-translational modifications, it has been very difficult to use them for mass 

spectrometric analysis. Consequently, mass spectrometric analysis of histone 

modifications from embryos has rarely been published (Bonaldi et al., 2004; Nicklay et al., 

2009). 

As the histone proteins have high abundance of basic amino acid residues, the 

pI ranges around 12. Consequently the histone proteins can be enriched and purified 

using 0.4M hydrochloric acid, because the high acid concentrations lead to the 

precipitation of most proteins whereas the histones remain soluble because of the high pI. 

Although the method was the first to be introduced, it remains the methods of choice for 

many studies (Rodriguez-Collazo et al., 2009; Schechter et al., 2007).  

The experiments with the cell lines A6 and XTC as well as with Xenopus 

embryos revealed that acidic extraction of nuclei with both hydrochloric and sulfuric acid 

had the highest yield of all protocols tested (see Figure 7C). Important for the high yield 

and purity of the extraction was the proper isolation of nuclei in advance to the histone 

extraction. The development of an efficient and reliable method to isolate intact nuclei 

from embryos of different developmental stages was the most critical prerequisite for 

subsequent isolation of histones by acidic extraction. The conclusion of these findings is, 

that acidic histone extraction is the method of choice as it had the highest yield of all 

protocols tested, but proper nuclei extraction is the determinant of success. 

High salt extraction is described as a useful alternative to acidic histone 
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extraction. Salt extraction relies on the different affinities of non-histone proteins and 

histones to DNA. Non-histone proteins dissolve from the DNA at low salt concentrations, 

followed by the linker histones. The four core histones remain bound to the DNA until 2M 

salt buffers are applied. Thus this method is described to purify and enrich histone 

proteins by collection of eluting fractions (Burton et al., 1978). High salt extraction for 

Xenopus cell lines was performed and the core histone proteins were purified as described 

(see Figure 6). However, the yield of histone proteins was very low compared to acidic 

extraction and the purity was not sufficient for subsequent mass spectrometric analysis. 

Summarizing, these findings suggested that high-salt extraction is a useful 

alternative for histone purification, however it seemed not to be suited for mass 

spectrometry analysis of post-translational histone modifications.  Despite these results, 

this method might still be useful for the analysis of post-translational histone 

modifications of the linker histones. 

 

Hydroxyapatite purification of proteins was first described by Bloom in 1977 

(Bloom et al., 1977). Simon and Felsenfeld applied this technique the first time for the 

purification of histone proteins (Simon et al., 1979). However, the method is also described 

to require high amounts of starting material together with a low yield of only 20-30% 

(Simon et al., 1979; Kurokowa et al., 1984).  

On the other hand, reversed-phase HPLC purification of histones is described 

as a powerful technique on an analytical as well as preparative scale. The recovery is 

around 80-90% of input material and the method is described to be efficient and quick 

(Lindner, 2008). The purification is achieved by a separation of the mixture of proteins by 

elution over time. Depending on the use of mobile and stationary phase and the gradient, 

the method is able to even separate differently modified histone proteins (Schechter et al., 

2007).  

The experiments of both chromatographic techniques used for the separation 

and thus purification of histones yielded histone proteins in the hydroxyapatite 

purification, but not in the reversed-phase HPLC. The amount of histone proteins after the 

purification was not sufficient for further mass spectrometric analysis in both techniques 

(see Figures 10 and 11).  

Considering these findings, chromatographic techniques may offer a convenient 

approach for large cell numbers, but the yield is too low for limiting starting material such 
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as embryos.  

In summary, among the different protocols described for histone extraction in 

the literature, there were major differences concerning both quantity and quality of both 

purification and enrichment. Successful histone extraction of Xenopus embryos was 

finally achieved by proper nuclei preparation prior to hydrochloric acidic extraction.  

 

As pointed out before, the preparation of nuclei from Xenopus embryos was 

crucial for the histone extraction. In the literature, this step is not frequently described. 

Histone analysis by Dimitrov and colleagues was done by autoradiography, because 

histone visualization using silver staining in 2D gels was not possible due to low 

abundance of histones after the extraction (Dimitrov et al., 1993).  

Notably, a procedure for the isolation of nuclei from Xenopus embryos together 

with the subsequent histone extraction sufficient for mass spectrometry has not been 

described so far.  

 One of the first protocols published describes the preparation of nuclei by the 

use of an ultrazentrifugation step. This method was described to yield about 90% of intact 

nuclei (Blobel et al., 1966). One difficulty for the application of protocols to Xenopus laevis 

embryos is the nuclear size, being around 2000µm3 at the blastula stage. The nuclear size 

constantly decreases to 300µm3 at the tadpole stage (Heaseman et al., 1984).  

Applying the protocol described by Blobel and collegues did neither yield intact 

nuclei nor histones (see Figure 9).  Thus, the need to develop a new protocol for the nuclei 

preparation of Xenopus laevis was obvious. The stepwise approach to the new method 

revealed that as the size of the nuclei varies, the homogenization conditions had to be 

adapted to the nuclei volume. Consequently, the method was optimized for each 

embryonic stage (see Figure 12D). The efficiency of the method, yielding high purity as 

well as enrichment, was able to decrease the amount of starting material necessary for 

histone extraction. Furthermore this protocol solved the technical problems with the 

embryo specific contaminants such as yolk and lipids. The subsequent acidic extraction of 

the nuclei then yielded enough material for several technical repeats as well as of enough 

purity for SDS-PAGE and mass spectrometric analysis. The high efficiency of the protocol 

reduced also the amount of material required for Western blot analysis to less than one 

embryo equivalents per lane. This amount was totally sufficient for reliable detection of 

rare histone modifications reducing the amount of starting material by one to two orders 
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of magnitude (Dario Nicetto, personal communication).  

In brief, the only protocol for nuclei preparation of Xenopus embryos described 

by Blobel yielded only insufficient amounts of histones (Blobel et al., 1966). Other nuclei 

preparation protocols - such as hydroxyapatie and reversed-phase HPLC purification - 

did not result in histones sufficient for subsequent analysis. By the step-wise 

establishment of a method for nuclei preparation of Xenopus laevis embryos, histone 

extraction was possible in a quick, efficient and reliable manner. Furthermore this protocol 

was well suited for both mass spectrometric and Western blot analyses.  

 

6.2 Technical Aspects of the Histone Modification Analysis by Mass Spectrometry 

Mass spectrometry is a highly useful tool for the investigation of histone post-

translational modifications, as it allows quantification over a high dynamic range and of 

several different modifications as well as identification of noval histone modifications 

(Neilson et al., 2011). For these reasons, mass spectrometry has frequently been used for 

detection of histone modifications of different sources (Zhang et al., 2003; Bonaldi et al., 

2004; Phanstiel et al., 2007; Nicklay et al., 2009). However, some histone modifications 

require special techniques for proper detection using mass spectrometry. For example, 

ubiquitination still poses a challenge as this modification is often heterogenous, and on 

SDS-PAGE the modification leads to a mass shift due to the ubiqutination. Nevertheless, 

improvements with ubiqitination detection have been made by special chromatographic 

means and the use of ultra high resolution tandem MS (Kirkpatrick et al., 2005). 

SUMOylation and APD-ribosylation of histones also require special technical means for 

mass spectrometric detection. While SUMOylation is still difficult to detect, a first report 

describes the fragmentation spectrum for ADP-ribosylation. A specific cleavage of ADP-

ribosyl-arginine into N-ADP-ribosyl-carbodiimide and ornithine was described as a 

specific fragmentation pattern for this modification (Osago et al., 2009). Arginine 

methylation has low abundance and other modifications, such as phosphorylation, are 

unstable and thus difficult to detect in mass spectrometry (Thomas et al., 2006; Buszczak et 

al., 2009).  

Next to the necessity of specific enrichment techniques for some modifications, 

the ionization efficiency of the mass spectrometer has an impact on the identification of 

different histone modifications. Methylation of both lysine and arginine residues as well 
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as acetylation of lysines is known to have high ionization efficiency and thus might be 

slightly overrepresented (Pesavento et al., 2006; Gropengiesser et al., 2009). Over the last 

years, reliable and effective methods for label free quantification have been developed to 

overcome these technical difficulties. Among these methods is the integration of peptide 

peak areas of the chromatographic runs, also called extracted ion chromatograms (XICs). 

This approach is expected to be quite accurate and to decrease possible over-

representation of histone modifications (Bondarenko et al., 2002; Eberl et al., 2011). 

For the analysis of post-translational histone modifications, tryptic digestion of 

propionic anhydride treated histones was used (see Table 4). Some peptides of the 

digestion were difficult to detect due to low ionization efficiencies or loss during 

preparative procedures.  

This problem was overcome by absorption to porous graphite carbon (TipTop, 

Gylgen) which retained and enriched the small hydrophilic peptides, which would 

otherwise be lost (see Figure 19; Chin et al., 1998).  

For the identification of known and novel post-translational histone 

modifications, the most reliable technique is to use fragmentation of the modified 

peptides. The fragmentation allows sequencing of the peptide and thus the determination 

of the exact localization of the modification (see Supplement Tables 4 and 5). Furthermore, 

biological variability of the peptide sequences might pretend possible post-translational 

modifications which can be ruled out by sequencing due to fragmentation spectra (Eberl et 

al., 2011). The use of search algorithms, such as SEQUEST, for the identification of peptide 

modifications together with decoy searches against reversed or scrambled databases 

reduces the false negative rate and helps to improve the significant identification of 

histone modifications (Kapp et al., 2005).  

This study was focused on the identification of methylation and acetylation of 

lysine residues, however, phosphorylation, methylation of lysine and arginine residues of 

H2A and H2B was detected, too (see Figure 23). As phosphorylation is often under-

represented due to reduced elution times of phosphorylated peptides in the RP-HPLC, 

phosphorylation of histones was not considered for significant quantification (Eberl et al., 

2011). 

Using RP-HPLC as well as MALDI-TOF, the H3 3-8 peptide was not detected. 

The porous graphite carbon is especially well suited for polar molecules such as the 

methylated H3 3-8 peptide.  
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Figure 23: Detected Histone Modifications of the Core Histones 
The number displays the modified amino acid residue. In blue is methylation, in 
yellow acetylation, in green phosphorylation of Histones. Abr.: Me-methylation, Ac-
acetylation, Phos-phosphorylation.  
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In some cases, the retention of small polar components in RP-HPLC is not 

sufficient and the use of porous graphite carbon can improve the retention (West et al., 

2010). Thus, for detection and quantification of the methylation H3K4, the special 

enrichment technique with tips (TipTop, Glygen) containing a small stationary porous 

graphite carbon phase was used (see Figure 19). 

Although the unmodified, mono- and di-methylated H4 20-23 peptides were 

detected using MALDI-TOF, the tri-methylated isoform was not detectable. The use of the 

porous graphite carbon did not improve the detection of the H4K20me3 mark (data not 

shown). Special chemical methods to derivate the small peptide consisting of only 4 amino 

acids such as the reaction of malondialdehyde with arginine residues can improve the 

detectablility in LC-MS. However, as the unmodified arginine residues were already 

modified by propionic anhydride to prevent digestion by trypsin, this technique was not 

applicable. Recent publications of histone modification analysis using mass spectrometry 

did either not detect H4K20me3 (Bonaldi et al., 2004) or detected it in very low overall 

abundance of under 1% (Zhang et al., 2003; Phanstiel et al., 2007; Nicklay et al., 2009). This 

implies a general technical problem with this small peptide, which together with its low 

abundance precluded the detection of the H4K20me3 mark by MALDI-TOF. To determine 

the course of the tri-methylation mark during development, quantitative Western blot 

analysis had to be performed (see Figure 18E).  

Summarizing, mass spectrometry is a highly reliable technique for histone 

modification analysis (Eberl et al., 2011). The method is frequently used, and comparison 

to other datasets is possible (Zhang et al., 2003; Bonaldi et al., 2004; Nicklay et al., 2009).   

 

 

6.3 Global Alterations of Histone Modifications during Xenopus laevis Development 

Embryonic development, comprising of phases such as reprogramming and 

differentiation, is guided by changes in gene expression. Both transcription factors and 

epigenetic regulation such as histone modifications establish cellular memories and 

lineage specificity (Reik et al., 2007).  Thus, differences in the epigenetic states between 

different stages of Xenopus development were expected for histone modifications to 

reflect active transcription or repressive epigenetic states.   
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 6.3.1   Histone Modifications of Active Transcription 

Several histone modifications have been shown to be linked to active genes, either 

by initiation or elongation of transcription (Lee et al., 2009). During Xenopus development, 

a general shift from highly abundant histone modifications of active transcription to a 

lower abundance of active marks in later developmental stages was obvious (see Figures 

18 and 20). There was a drop in the level of methylation - H3K4me3, H3K36me2 - and 

actelytion of active histone modifications - H3K14ac, H3K23ac, and H4K5ac/K12ac/16ac 

as well as H4K5ac/K12ac - from the blastula to the gastrula stage. These modifications, 

which all function in gene activation, showed a similar course over development.  During 

gastrulation, there were highest levels found for the active marks H4K16ac, H4K20unmod 

and me1, H3K9me1, H3K4me1, which again had a similar time course over development.  

These findings implied a general trend towards active transcription in the blastula 

stage with a stepwise reduction of transcriptional activity as development of the embryo 

proceeded as well as the esthablishment of repressed gene loci.  

Recent studies of the ICM of the mouse embryo as well as later developmental 

stages revealed high levels of H3K9ac, H3K4me2 and me3 as marks of active transcription. 

As the mouse embryo proceeds its development, these histone modifications of active 

transcription were reduced in their abundance to lower levels (Hemberger et al., 2009). 

These findings are consistent with this data set for Xenopus development (see Figures 18,  

20 and 24). 

Previous ChIP studies showed, that H3K4me3, which functions as a binding 

platform for example for NURF, was found at promotors of active genes (Wysocka et al., 

2006). Methylation of some lysine residues, such as H3K4, is linked to gene activation 

(Bernstein et al., 2002).  H3K4me3 is found at the 5´ end of ORFs of genes and is often 

associated with actively transcribed genes (Bernstein et al., 2002). However, recent human 

ChIP data suggested that H3K4me3 marks promoter and enhancer regions irrespective of 

production of full length transcripts (Guenther et al., 2007). Next to the recruitment of a 

great variety of different factors, H3K4me1 can also activate HATs (Taverna et al., 2006). 

This links the active transcription of genes, marked by H3K4me1, to the presence of 

multiple acetylated histones.   

Commitantly, during Xenopus development, the overall level of H3K4 methylation 

is reduced with a concomitant increase in unmodified K4 residues (see Figure 20A).  

 Furthermore, high levels of acetylation of the H3 N-terminus were linked to active 
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transcription (Liang et al., 2004; Taverna et al., 2007). As mentioned above, H3K4me3 is 

linked to gene activation and was found in high levels in Xenopus blastulae. H3K4me3, 

however, is recognized by the TFIID complex, a member of the pre-initiation complex for 

transcription, which also recognizes the acetylation of H3K9 and H3K14 by its 

bromodomain (Dambacher et al., 2010). Thus the active mark H3K4me3 was linked to the 

acetylation of the H3 N-terminus. The clusters of the Xenopus embryo histone 

modifications revealed a comparable course for both the marks H3K4me3 as well as for 

the N-terminal acetylation of H3K9, K14, K18 and K23 (see Figures 20 and 24). 

H3K36me2 and me3 is found on genes with elongating Pol II and is highly 

enriched at the 3´ end of the ORF (Bannister et al., 2005). Again, H3K4me3 and H3K36me3 

have been linked and both marks have been implicated in transcriptional elongation in 

yeast. The methylation of H3K36 was shown to recruit deacetylase complexes to the 

coding regions and inhibits inappropriate initiation of transcription from cryptic start sites 

(Carrozza et al., 2005).  

The Xenopus embryo histone modification clusters showed a comparable course 

for H3K4me3 and H3K36me2 (see Figure 24). For unknown reasons, H3K36me3 was 

rarely detected in our data set.  In a ChIP study of human T cells, acetylation of H3K9 and 

H3K27, and H3K9me1 and H3K4me1/me2/me3 were found on active transcribed genes 

(Wang et al., 2008).  H3K4me3, H3K9ac and H3K36me1 are found at promoter regions of 

actively transcribed genes (Barski et al., 2007).  

Summarizing, the blastula stage had much higher levels for numerous histone 

modifications associated with active transcription compared to the other embryonic 

stages. Furthermore, several key modifications of active transcription were clustered 

together implying comparable regulation during development. There is a general trend of 

high abundance of active histone marks in blastula to a gradual reduction in gastrula to 

the neurula and tadpole stage and consistent with findings of other studies (Bernstein et 

al., 2002; Barski et al., 2007; Hemberger et al. 2009). 

 

6.3.2 Repressive Histone Modifications  

Gene silencing, as determined by ChIP profiling across silenced genes, is linked 

to H3K27me3 as a prominent modification for gene repression, and H3K9me3 and 

H4K20me3. Surprisingly, the early Xenopus embryo has very low abundance of histone 

modifications associated with gene silencing (see Figure 21C and D). Heatmap cluster 
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analysis grouped H4K20me2 and me3, H3K27me2 together with highest levels in tadpole 

stage (see Figure 24). These findings implied that the early embryos such as blastulae and 

gastrulae have lowest levels of repressive histone modifications, which only become 

established during later development.  

A recent study showed that differentiated cells carry large domains, up to several 

megabases long, with high levels of H3K9me2, and genes within these domains are 

repressed (Wen et al., 2009). This mode of repression involves the recruitment of KMTases 

and HP1 to the promoter of repressed genes.  

The level of H3K9me2 and me3 did not change significantly during development 

of Xenopus laevis (see Figure 20C). This unexpected finding might be explained by recent 

studies showing that a large proportion of silent genes did not carry any of the tested 

epigenetic modifications. It is possible that these genes are passively repressed and that 

their silent state is just due to the lack of activating factors (Bas van Steensel, 2011).  

Major satellite repeats, which are also repressed, have a distinct H3K9me3 and 

H4K20me3 chromatin signature, which is found in almost all cell types and 

developmental stages suggesting that these modifications have a general function in 

heterochromatin. H3K9me3 is established by Suv3-9h1 and Suv3-9h2 enzymes (Rea et al., 

2000). Two other HMTases, Suv4-20h1 and Suv4-20h2 establish H4K20me3 (Schotta et al., 

2004).  

Both the levels of mono- and di-methylation of H4K20 remained unaltered during 

development (see Figure 18C). However, Western blot quantification revealed a steady 

and linear increase in the tri-methylation of H4K20 between NF9 and NF37 (see Figure 

18E). These results point to a steady increase of the level of repressive H4K20me3 during 

development. 

The histone mark with the strongest association with gene repression is 

H3K27me3. Both H3K27me2 and me3 are linked to the repression of genes via the 

Polycomb machinery. H3K27me2 and me3 is hardly found at active promoters. At 

euchromatic regions, H3K27me3 is necessary for gene silencing and it functions in 

heterochromatin maintenance. H3K27me3 recruits the PRC1 complex, which further 

compactes the chromatin structure via the establishment of H2AK119ubi. H3K27me1, 

however, is found at regions with active transcription (Barski et al., 2007).  

Both levels of H3K27me2 as well as H3K27me3 were strikingly low at blastula and 

gastrula stages but, then, increased during later development to reach high levels in the 
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two cell lines A6 and XTC (see Figure 21B-E). Remarkably, H3K27me3 levels in blastula 

and gastrula stages were below the detection limit. Technical problems are unlikely to 

explain this finding, as high levels of H3K27me3 were found in other samples (see Figures 

18 and 20). Moreover, these findings of low repressive histone modifications in early 

Xenopus embryos (NF9 and NF12), are in agreement with recent ChIP-Seq results from 

Xenopus tropicalis (Akkers et al., 2009). 

It is not known, why the chromatin of the frog blastula is so devoid of the 

H3K27me2/me3 marks. Recently, an antagonistic relationship between methylation and 

acetylation of Lysine 27 has been reported that reflects a competition between PcG and 

trithorax/MLL complexes, which recruit H3K27 methyltransferase or acetyltransferase 

activities, respectively (Pasini et al., 2010). Since frog embryos contained the highest 

relative K27ac levels in this data set (see Figure 21D and E), one might speculate that some 

regulatory mechanism in blastula embryos favors MLL-mediated recruitment of HATs. 

However, a direct competition between trx and PcG proteins on target genes is unlikely to 

explain entirely the initial depletion in H3K27 methylation, because K27ac levels remain 

high during subsequent development despite the dramatic increase in K27me2/me3 from 

gastrula stages onwards (see Figure 21D and E). Furthermore, K27me3 is as high as 10% in 

ES cells whereas the level of H3K27ac reaches only 1.5% in blastulae. This makes it very 

unlikely that the acetylation of H3K27 accounts for the low levels of K27me3 (Bernstein et 

al., 2002). 

Chromatin fragments have been identified that simultanously carry active as 

well as repressive histone modifications, specifically the H3K4me3 and H3K27me3 marks. 

This chromatin state has been termed bivalent to indicate its ambiguous regulatory nature 

(Bernstein et al., 2006, Azura et al., 2006). Bivalent domains first have been described in 

embryonic stem (ES) cells, where they may keep developmental regulatory genes in a state 

poised for subsequent activation during cellular differentiation. However, bivalent 

domains are not restricted to pluripotent cells and most likely have functions beyond 

priming genes for activation (Sharov et al., 2007).  In contrast to mammalian ES cells, 

bivalent chromatin domains are practically absent from Xenopus blastulae (Akkers et al., 

2009). Lysine tri-methylation of H3K4 and H3K27 appears in the zebrafish epigenome 

only after the maternal-zygotic transition and in the same sequence as in frogs. 

Although the co-existance of the H3K4me3 and H3K27me3 mark on one histone 

tail cannot completely be ruled out, both levels for H3K4me3 and H3K27me3 can be 
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described separately in this study. As no H3K27me3 was found in Xenopus blastulae, it 

appears very unlikely that bivalent histone modifications exist (see Figure 21C and D). 

 In general, our study described the presence of tri-methlyation of other 

modification sites as well as for the K27 site in other stages, limiting the possibility of 

technical problems. However, it may be that mass spectrometry is not as sensitive as 

antibody based approaches for the detection of H3K27me3.  

According to the recent publication of Akkers and coworkers, the presence of 

H3K27me3 was ruled out at the early stages of the zebrafish embryo (Akkers et al., 2009). 

This finding suggests that the formation of somatic cell lines in Xenopus species occurs 

from an epigenetic state practically devoid of bivalent domains. Future studies in Xenopus 

will have to address, whether the derepressed state at blastula exists also in earlier pre-

MBT stages such as the morula. General changes in histone modifications occur in mouse 

embryos between fertilisation and the blastocyst stage (Hemberger et al., 2009; Young, 

2011). However, histone PTMs have not been investigated from post-implantation 

embryos, except for one pioneering study using carrier ChIP (Rugg-Gunn et al., 2009). 

Here, both K4me3 and K27me3 marks were found on several developmental loci in 

epiblast tissue, but the bivalent status of these loci was not rigorously established and the 

opposing marks may derive from distinct cell populations. Nevertheless, this study 

demonstrates that K27me3 exists in the mouse embryo at the time of germ layer 

formation, unlike in Xenopus embryos.  

Nicklay and Schechter have incubated sperm nuclei with Xenopus egg extract in 

vitro to generate chromatin of an “early embryo equivalent” that may represent the 

chromatin state before or at MBT (Nicklay et al., 2009). This sample contains quite 

abundant K27me3 levels (estimated 10-50% by Western blot and mass spectrometry), 

confirming the maternal expression of biologically active PRC2 components in early 

embryos (Aldiri et al., 2009). However, neither this study nor others (Akkers et al., 2009) 

have found evidence for this in blastulae. If chromatin of the “early embryo equivalent” 

corresponds to a physiological state, one would have to postulate that practically all 

K27me3 marks become erased before midblastula. The presence of maternal and 

potentially active PRC2 complexes in turn suggests for the unmanipulated frog embryo 

that PRC2 activity is either negatively controlled or efficiently antagonized by 

demethylation around the onset of zygotic transcription. The sudden increase of K27me2 

at gastrula suggests a regulatory switch that quite rapidly brings a significant portion of 
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the epigenome under the influence of the polycomb system. This switch may include the 

upregulation of Suz12 mRNA levels that has been described during gastrulation (Aldiri et 

al., 2009). 

 

6.3.3 Clustering of Histone Modification Profiles   

   As mentioned above, significant quantitative changes in histone modifications of 

both active and repressive function were observed during frog embryogenesis (see Figures 

18, 20 and 21). In order to investigate, whether particular developmental stages could be 

described by characteristic groups of histone modification states, hierarchical clustering 

analysis was performed to identify potential epigenetic patterns. A heatmap of the 

obtained clusters was generated to visualize the results (see Figure 24, kindly provided by 

Jose Arteaga-Salas). The dendrogram on the left axis of the heatmap shows four well-

defined clusters between the second and third levels. The most obvious features of the 

heatmap are the four red-colored areas, each representing a cluster of histone 

modifications at their individual maximal abundance, which describe the four 

developmental stages that were analysed. The separation is very clear between blastula 

and tadpole clusters, where the red groups generally indicate a global shift from active to 

repressive histone marks as the embryonic cells undergo differentiation. It is less clear 

between gastrula and neurula stages, in particular at the bottom third of the heatmap, 

where several histone modification states persist at similar, intermediate abundances until 

the tadpole stage. As gastrula and neurula stages are biologically characterized by 

ongoing cellular diversification, these modifications may be associated with transitory 

features of germ-layer comitted precursor cell populations. Importantly, the apparent 

clustering provides unique evidence for a global, stepwise maturation of the embryonic 

epigenome in vertebrate embryos. This finding extends the hypothesis of individualized 

epigenomes for different cell types (Schechter et al., 2009) to whole embryos. This 

surprising result does not necessarily imply that all cells of an embryo at a given stage 

share the same histone PTM profile, but rather reveals the existence of stage-specific 

constraints that shape the histone modifications according to global cellular transitions, 

such as the development from pluripotency to germ layer precursor to committed and 

differentiated cell states.  
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Figure 24: Stage-Specific Histone Modification Profiles 
The heatmap visualizes clusters of histone modifications according to their relative 
abundance at the four developmental stages, which have been investigated. The 
hierarchical clustering analysis produced a dendrogram, shown on the left side, with 
four major branches that correspond to specific developmental stages. The four 
clusters define histone modifications profiles (HMPs), which reflect the gradual 
transition from uncomitted to determined cell fates. 
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6.4 Comparison of Histone Modification Profiles of Murine ES Cells and Xenopus 

Blastulae 

During the amphibian blastula-gastrula transition, pluripotent embryonic cells are 

programmed by induction to germ-layer related cell fates (De Robertis et al., 2009). This 

phase corresponds in mammalian embryos to the specification of the epiblast at 

implantation, from when on pluripotency is gradually lost (Silva, 2008).  This raised the 

issue, whether the histone modification profiles of Xenopus blastulae represent a common 

feature of pluripotent cells. To address this point, the analysis was extended to murine ES 

cells and of primary embryonic fibroblasts (MEFs), which were used as feeder cells in the 

ES cell culture and represent a murine somatic cell type for comparison. 

As the primary embryonic fibroblasts were used as feeder cells in the ES cell 

culture, their successful separation had to be evaluated first. The analysis confirmed that 

the two murine cell types contained very specific profiles of histone modifications (see 

Supplement Figure 3). 

Despite its low abundance, acetylation of H3K56 is specifically enriched at 

promoters bound by the core pluripotency factors Oct-4/Sox-2/Nanog. The acetylation of 

H3K56 is situated at the major groove of the DNA histone complex. The chromatin 

remodeling complex SWI/SNF can be recruited to genes recognizing H3K56ac and thus 

transcription is facilitated at certain genes in yeast (Xu et al., 2006). Upon cellular 

differentiation, H3K56ac is found on genes involved in the differentiation process (Xie et 

al., 2009). 

K56ac levels stay rather constant between blastula and gastrula (Figure 20I). The 

analysis of murine ESC displayed higher levels of H3K56ac than in MEFs and comparable 

levels to Xenopus embryos (see Supplement Table 3). At the same time, the embryonic 

K9me1 level rises to a transient maximum of 20% abundance.  

H3K9me1 has been recognized as a stable mark of cis-regulatory elements for both 

active and inactive genes (Lee et al., 2009). Together, the observed changes in the H3K56ac 

and H3K9me1 profiles may thus be important for the programming of cell fates.  

Consequently, between the in vivo pluripotency model of Xenopus laevis 

blastulae and the in vitro model for pluripotent mouse ES cells, significant differences in 

the lelves of H3K56ac and H3K9me1 were present.  

The bivalent pattern of two modifications, so far known to be involved in 

opposing functions, might be characteristic for pluripotency as it had first been found in 
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ES cells, but resolved upon differentiation. The hypothesis evolved, that the dual marking 

of histones at developmental genes are poised for quick activation (Bernstein et al., 2006).  

With the bottom up approach, it was not possible to determine, whether histone 

H3 tails are modified on both Lysine 4 and 27, since these residues were located on 

different tryptic peptides (see Table 4). Nevertheless, comparison of the overall abundance 

of modifications at these sites revealed high similarity between Xenopus blastula and 

murine ES cells for H3K4me3 (see Figure 21). However, for H3K27me3, there were 

dramatic differences in the abundance. The murine ESCs had the highest levels of 

H3K27me3 of all samples tested, whereas the level of the K27 tri-methylation was not 

detectable in Xenopus blastulae (see Figure 21D). Thus, it was expected that the blastulae 

had no bivalent histone modifications.  

Furthermore, the combinatorial methylation profiles of the H3 peptide 27-40, 

including Lysines 27 and 36, were very different between blastulae and ES cells. As 

described earlier, the majority of the di-methyl marks resided on K36 in frog blastulae. In 

ES cells, however, they were found predominantly on K27 (Figure 20C and D). MEFs had 

a similar di-methyl-distribution as ES cells, but contained significantly more K36me2 than 

these. A dichotomy was also found for the higher modification states of this peptide, 

including three to five methyl groups. Whereas in frog blastulae H3K27me3 was below 

the detection limit, mouse ES cells had with 8.3% the third-highest K27me3 level of all 

samples tested, and twice as much as MEFs (Figure 21E). The combinatorial tri-methylated 

states, such as K27me1/K36me2 and K27me2/K36me1 were also significantly more 

abundant in ES cells than in frog blastulae, and comparable to the levels found in MEFs. 

Notably, the highest levels of tetra- (K27me2+K36me2) and penta-methylated 

(K27me3+K36me2) states of the H3 27-40 petides were also found in ES cells and to a less 

extent in MEFs, but were not detected in frog blastulae (Figure 21E).  

Overall, these results indicated that frog blastulae and murine ES cells shared 

high H3K4me2/me3 levels, but the former were dramatically undermethylated at the H3 

27-40 peptide. Based on this, the polycomb repression complex 2 (PRC2) activity seems to 

have a very different impact on the epigenomes of frog embryos and in vitro cultured 

murine ES cells. This dramatic increase in K27 methylation was consistent with the results 

of recent ChIP-studies in Xenopus tropicalis and Dario rerio, which reported a hierarchical 

acquisition of H3K4 and K27 methyl marks (Akkers et al., 2009; Vastenhouw et al., 2010). 

In extension to these studies, however, we have found that the K27me3 mark is at least 
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100-fold less abundant in Xenopus early embryos than in cultured frog or mammalian cell 

lines, including murine ES cells. As a consequence, the K27me3 density in chromatin may 

be rather low throughout the embryo. Alternatively, it could be high within a subfraction 

of either cells or genomic regions, and consequently being depleted from the rest. 

Whatever may be the case, this finding is very unexpected, given current models on the 

epigenetic nature of pluripotency. Functional tests are required to clarify, whether at this 

low abundance (0.1%) H3K27me3 represses transcription in Xenopus blastulae as 

reported for human and murine ES cells, in which H3K27me3 is much more abundant 

(Dai et al., 2007; and our data here). 

Furthermore, it seems possible that different histone modifications, although 

opposing in their single function, act totally different in concert in order to fine-tune the 

current activation state of a locus. Thus, co-existance of H3K4me3 and H3K27me3, 

although opposing in their single readout, may have completely different function for the 

underlying genomic region.  

Another possible explanation for this finding might be the fact that the 

epigenetic regulation during mouse and frog development is different. Differences in the 

histone modifications of mouse development have been described for imprinting of genes, 

which does not exist in Xenopus but is present in mouse as well as for global alterations in 

DNA methylation during development. Genetic imprinting is frequently found in 

gametes, where it especially marks genes differing in their expression from parental and 

maternal origin. Whereas the mouse genome becomes demethylated during early 

development the frog genome remains hypermethylated during this time (Veenstra et al., 

2001). However the Polycomb complex, which is required for the establishment of 

H3K27me3, is shown to be present in Xenopus embryos. The two PcG proteins EED and 

YY1 of Xenopus laevis are highly expressed in the fertilized egg and throughout the 

blastula stage. The EED transcripts decline during gastrula stages, the YY1 during neurula 

stages (Satijn et al., 2001). Moreover the Xenopus polycomb XPcg and Xbmi-1 are also 

expressed in early Xenopus embryos with similar kinetics (Reijnen et al., 1995). However, 

in Xenopus laevis, both genes are predominantly expressed in the ectoderm, especially in 

the central nervous system compared to the mouse embryos, where both genes have a 

much broader distribution. Even though bivalency may be important for mouse 

development, it seems not to be required in non-mammalian vertebrates such as the frog.  

Given the reprogramming of the genome after fertilization, the removal of 
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repressive marks and re-establishment of active marks is required. It might be that the 

high abundance of the bivalent histone modification in the in vitro system of ES cells just 

reflects a short time window during the epigenetic reprogramming of the gamet´s 

precursors. As the repressed state of both maternal and parental pronuclei are 

reprogrammed to an active epigenetic state, a short period of the co-existance of the 

repressed and active histone modifications might be present. Because development is a 

highly dynamic process and pluripotency of the zygote is no enduring state, the bivalent 

modifications are present only for a very short time window in vivo. The presence of the 

bivalent state of histone modifications in ES cells, however, might simply reflect an 

artificial state of pluripotency in vitro. 

Eighter way, it remains to be determined whether the bivalent histone 

modifications are of biological importance for pluripotency. 

 

6.5 Biological Implications of Histone Modification Profiles  

6.5.1 Reprogramming during Xenopus laevis Development 

As mentioned above, the fertilization of the zygote is followed by epigenetic 

reprogramming (Mayer et al., 2000). Even before fertilization, characteristic histone 

modification patterns are established during germ cell differentiation (Hajkova et al., 

2008), and nucleosomes, which are retained in low numbers in human sperm, carry 

histone modifications on particular developmental loci (Hammoud et al., 2009). Following 

the fertilization of the zygote, epigenetic reprogramming and at least partial erasure of 

marks such as imprints occurs in the embryo (Mayer et al., 2000). Reprogramming during 

development comprises hypermethylation at H3K4 and differential H3K4 di/tri-

methylation at tissue-specific genes during haematopoiesis (Orford et al., 2008), 

establishment of differentiation-specific H3K9me2 regions associated with silencing (Wen 

et al., 2009) and the modulation of bivalent domains (Bernstein et al., 2006; Mikkelsen et al., 

2007). 

The vertebrate model organism Xenopus has recently provided key information 

on epigenetic changes in early development. Histone modifications from various Xenopus 

laevis cell types including oocytes, sperm and somatic cells, have been characterized by 

immunoblotting and mass spectrometry, indicating unique histone modification 

signatures for each cell type (Schechter et al., 2009; Nicklay et al., 2009). The histone 

modification profile of sperm showed very low levels of H3K4me3, medium levels of 
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H3K9me3, low levels of H3K27me3, but a variety of combinations of H3K27 and K36 

methylation. The level of H4K20me3 was high in sperm, however, it was not detected for 

the early embryo equivalent. Furthermore, the early embryo equivalent had no H3K4me3, 

high levels of H3K27me3 but no combinations of the methylation of both K27 and K36 

(Nicklay et al., 2009). The in vivo relevance of the early embryo equivalent, which is 

generated in vitro by incubation of pronuclei with Xenopus egg extract is unclear. 

However, the early embryo equivalent dispays a totally different histone modification 

profile compared to sperm. Furthermore, the profile of the early embryo equivalent 

dramatically differs from the findings of blastula staged embryos from this data set.  

Considering both our data and the findings from Nicklay and Schechter, 

reprogramming between the early embryo equivalent and the blastula stage includes the 

reduction of H3K27me3 levels to not detectable as well as the levels of H4K20me3, which 

have very low abundance by quantitative Western blotting. On the other hand, the 

blastula stage has very high levels of H3K4me3 indicating that the blastula stage has a 

transcriptionally permissive epigenome. This abundance of H3K4me3 (almost 30%) in frog 

blastulae is a puzzling observation. In mammals, the H3K4me3 mark is found on gene 

promoters and enhancers. Given that frog and human genomes are comparable in size 

and gene numbers, this level exceeds the expected genome proportion represented by 

these transcriptional regulatory elements. Notably, murine ES cells have similarly high 

levels, and even in somatic cells (A6, XTC and MEFs) its abundance is around 10%. 

Although H3K4 acetylation levels are generally low (Garcia et al., 2007), it is possible that 

some fraction of the H3K4me3 peak represents acetylated peptides. Nevertheless, one may 

speculate that H3K4me3 could be deposited differently in embryonic cells compared to 

somatic cells.  

 In addition to the typical promoter-proximal peaks, which have been observed in 

recent genome-wide ChIP experiments both in frog and zebrafish, this mark could exist at 

higher base-levels throughout the embryonic epigenome, and/or be enriched significantly 

in still unannotated areas. The high abundance of H3K4me3 in embryos certainly merits 

further investigation. 

Another example for the transition from repressed to activated chromatin states 

is given by the androgen receptor (AR), which is part of the steroid hormone receptor 

family of ligand-activated transcription factors. The cytoplasmic androgen receptor 

dissociates upon hormone binding from chaperones, and translocates to the nucleus, 
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where it binds to androgen response elements (AREs) of target genes (Metzger et al., 2006). 

The activation of genes through the action of the androgen receptor requires a distinct 

histone modification profile of H3K4 and H3K9. An important first step in the transition 

from a repressed state to an activated state is the demethylation of the repressive 

H3K9me3. Following the removal of H3K9me3, the acetylation of both H3K9 and K14 and 

tri-methylation of H3K4 at several AR-receptor-dependent genes leads to transcriptional 

gene activation (Metzger et al., 2008). The level of H3K4me3, H3K9ac and K14ac rises and 

the level of H3K9me3 decreases between the early embryo equivalent and blastula stage 

(Nicklay et al., 2009). These findings indicate a general shift of the chromatin template 

from repressive to active during reprogramming. 

 

6.5.2 Biological Function of different Histone Modifications 

Different modes exist how histone modifications influence chromatin and genomic 

activation. Among these mechanisms is the ability of a post-translational histone 

modification to cause changes in chromatin dynamics such as heterochromatin or 

euchromatin formation. H4K16ac is involved in the inhibition of the formation of 

compacted 30-nanometer structures (Shogren-Knaak et al., 2006). A second mechanism 

involves the ability of a histone mark to serve as docking sites for non-histone proteins. 

Through the recruitment of proteins and complexes, diverse outcomes of the chromatin 

template such as establishment or removal of histone modifications involved in 

transcription, DNA synthesis and repair or gene silencing may be the consequence.  

The notion that certain histone modifications seem to carry out consistent 

functions on the chromatin template led to the hypothesis of a distinct histone code (Strahl 

et al., 2000).  Unlike the genetic triplet code, where a triplet codon always results in the 

same amino acid in the mRNA, one single histone post-translational modification mark 

does not necessarily correlate with one outcome. However, the single histone 

modifications may act as the single bases of the triplet and only function in concert with 

presence or absence of other histone modifications or trans-acting enzymes (Oliver et al., 

2011). The interaction of several histone modifications situated in close proximity, 

however, not necessarily on the same nucleosome, can function in a (i) cooperative 

manner – several histone marks act together – in (ii) independent manner – several 

modifications co-exist but do not interfere – and in (iii) antagonistical manner – presence 

of one modification blocks the modification of an adjacent residue (Seet et al., 2006). 
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     An example for the cooperative manner of histone modifications is H3K4me3, 

which is recognized by the NuA3 histone acetyltransferase complex which then recruits a 

histone acetyltransferase complex for acetylation of H3K14 (Taverna et al., 2006). 

Additionally, recent data revealed that a single point mutation in histone H3K14, 

hindering its acetylation, resulted in specific loss of H3K4 tri-methylation, but not mono- 

or di-methylation in yeast (Nakanishi et al., 2008). During Xenopus development, the level 

of H3K4me3 and H3K14ac showed a sharp decrease from blastula to gastrula stage, 

indicating at least compatible behavior during early development (see Figure 20).  

Antagonistic behavior of histone modifications has been shown for H3K9me3 

recruiting heterochromatin protein 1 (HP1). However, when the adjacent serine residue is 

phosphorylated during mitosis or during gene activation, the binding of HP1 is prevented 

(Fischle et al., 2005).  

Although a huge amount of data exists for the function of single histone 

modifications (Kouzarides, 2007; Lee et al., 2009; Dambacher et al., 2010), the exact 

meaning of the co-existence of different histone modifications is only at the beginning to 

be discovered. This may reflect the difficulties to study the function of several histone 

modifications in close proximity. For mass spectrometry, the bottom-up approach with 

digestion of histone proteins prior to identification and quantification is used most 

frequently (Zhang et al., 2003, Bonaldi et al., 2004, Nicklay et al., 2009). The potential 

complexity of co-existance of up to 60 or more histone modifications at one histone tail 

poses a challenge to the scientist and is rarely addressed (Phanstiel et al., 2007). However, 

by the use of digested histone peptides, the description of the co-existance of different 

histone modifications at one histone tail is mostly impossible. In this study, the bottom-up 

technique was used for this reason and the co-existance of different histone modifications 

was described for H3K9me/ac and H3K14ac, H3K18ac and H3K23ac, H3K27me/ac and 

H3K36me as well as H4K5ac/8ac/12ac/16ac. On the other hand, the use of antibody 

based techniques such as ChIP to identify histone modifications in the genome have 

frequently been used (Bernstein et al., 2002; Barski et al., 2007). However, to be able to 

describe the presence of several histone modifications at one histone tail, the use of special 

and technically challenging Re-ChIP experiments has to be performed. Sequential ChIP 

experiments indicated, that only a small proportion of the two bivalent histone 

modifications, K4me3 and K27me3, co-exist on the same nucleosome (Bernstein et al., 

2006). Studies at higher resolution rather favored the localization of the opposing histone 
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marks at different nucleosomes (Barski et al., 2007; Akkers et al., 2009).  

               One has to keep in mind, that histone modifications also function in DNA 

repair, cell cycle progression and may have currently unknown functions. Consequently, 

the co-existence of several marks may simply reflect the coincidence of different chromatin 

influences such as DNA repair, gene silencing, transcription, cell cycle progression as well 

as nuclear spacing. Furthermore, histone modification crosstalk might also be dictated by 

a time dependent manner by which these modifications are introduced and, thus, just 

looking at the pattern of chromatin modifications at a locus at an arbitrary time point is 

not sufficient to determine its gene expression status (Lee et al., 2010). Summarizing, 

further studies are needed to provide better insight into the language of modification 

crosstalk and the function of co-existing histone modifications. 
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7 Abbreviations 

 

A   Alanin 

Å   Angström 

aa   Amino acid 

Abr   Abreviation 

ac   Acetylation 

ACN   Acetonitril 

ADP   Adenosin-diphosphate 

adp   ADPribosylation 

Ambic   Ammoniumbicarbonate 

AR   Androgen Receptor 

ARE   Androgen Response Element 

Asf-1   Anti Silencing Function-1 

Ash1   Histone Methyltransferase 

ATCC   Biological Resource Center 

ATP   Adenosin-triphosphate 

ATPase  Adenosin-triphosphate Hydrolase 

AuroraB  Kinase involved in Centromere Formation during Mitosis 

A6   Adult kidney Cell Line of Xenopus laevis 

b-fragment Peptide Fragment with the Ion situated at the N-terminus of the 

Peptide after CID in MS/MS 

BHC110  Histone Demethylase 

Bioworks  Mass Spectrometric Software 

BMI   Component of the PRC1 complex 

BMP   Bone-Morphogenetic Protein 

bps Base Pairs 

BSA  Bovine Serum Albumine 

C Cystein 

CaCl2 Calcium Chloride 

CAF-1   Chromatin-Assembly Factor-1 

Carbon Tip  Pipette Tip with Porous Graphite Carbon 
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CARM1  Arginine Methyltransferase 

CBP/p300  Histone Acetyltransferase 

Cbx2   Chromobox Protein Homolog 2 

CENP-A  Centromeric Protein-A 

CHD   Chromodomain-Helicase-DNA-Binding Protein  

ChIP   Chromatin Immuno-Precipitation 

CID   Collision Induced Dissociation 

cm   Centimeter  

cm2   Square Centimeter 

c-Myc   Protooncogene 

CO2   Carbondioxide 

CpG Cytosin followed by a Guanosin in the DNA, which is possibly 

methylated 

C-terminus  Carboxy-Terminus of a Protein/Peptide 

C4   Length of the Fatty Acid Chains of the Resin in the HPLC 

C18   Length of the Fatty Acid Chains of the Resin in the HPLC 

D   Aspartart 

d   Days 

Da   Dalton 

DAPI   4′,6-Diamidin-2-phenylindol 

ddH2O   Double distilled Water 

DMEM  Dulbecco´s Modified Eagle Medium 

DMSO   Dimethylsulfoxide 

DNA   Desoxyribonucleic Acid 

Dnmt   DNA Methyltransferase 

Dot1   Disruptor of Telomeric Silencing 1 

dta   Data Filtering File of MS/MS 

DTT   Di-Thio-Threitiol 

Dx    Wavelength for measurement of the quantitative Western Blot  

E   Glutamate 

EB   Buffer used for Histone Extraction via Histone Purification Kit 

EBs   Embryoid Bodies 

ECL   Enhanced Chemiluminescence 
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EDTA   Ethylendiamin-Tetra Acetat 

EED   Subunit of Polycomb Repression Complex 

EGTA   Ethylene Glycol Tetraacetic Acid 

ESC   Embryonic Stem Cell 

ES    Embryonic Stem 

ESI   Electro-Spray Ionization 

Ezh2   Enhancer of Zeste 

E1   Buffer used for Nuclei Preparation of Xenopus embryos 

F   Phenylalanine 

FA   Formic Acid 

FGF   Fibroblast Growth Factor 

FPLC   Fast Protein Liquid Chromatography 

FRAP   Fluorescence Recovery after Photobleaching 

G   Glycine 

g   Gravity 

G9a   Histone Methyltransferase 

GLp   Histone Methyltransferase 

GNAT   Histone Acetyltransferase 

GSES   Murine Embryonic Stem Cell Line 

H   Histidine 

h   Hour  

HAT   Histone Acetyl-Transferase 

HCG   Human Chorionic Gonadotropine 

HCl   Hydrochloric Acid 

HClO4   Perchloric Acid 

HCO3   Hydrogencarbonate  

HDAC   Histone Deacetylase  

HEPES   2-(4-(2-Hydroxyethyl)- 1-Piperazinyl)-Ethansulfon Acid 

high salt  High-salt Extraction 

Hira   Histone Chaperone 

HMT   Histone Lysine Methylatransferase    

Hox   Homeobox 

HP1   Heterochromatic Protein-1 
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HPLC   High-Preassure-Liquid-Chromatography 

H1   Histone 1, linker Histone 

H2A   Histone 2A 

H2A.Bbd  Histone 2A Bar body dependent, Histone Variant of H2A 

H2A.Z   Histone 2A.Z, Histone Variant of H2A 

H2B   Histone 2B 

H2O   Water 

H2PO4   Dihydrogen Phophoric Acid 

H2SO4   Sulfuric Acid 

H3.1   Replication-dependent Histone Variant of H3 

H3.1t   Testis specific Histone Variant of H3.1 

H3.2   Replication-independent Histone Variant of H3 

H3.3   Replication-independent Histone Variant of H3 

H4   Histone 4 

I   Isoleucin 

ICM   Inner Cell Mass 

INO80   ATPase subunit 

in vitro  Studies isolated from an Organism or their usual Biological Context 

in vivo  Studies performed in an Organism or in their usual Biological 

Context 

ISCOVES  Media for ES Cell Culture 

ISWI/SNF2  Chromatin Remodeling Complex 

I.U.   International Units 

K   Lysine 

kbps   Kilo basepairs  

KCl   Potassium Chloride    

kDa   Kilo Dalton 

KH2PO4  Potassiumdihydrogenphosphate 

K2HPO4  Potassiumhydrogenphosphate 

Klp-4   Transcription Factor involved in Pluripotency 

KMT   Histone Lysine Methyltransferase 

KOH   Potassiumhydroxite 

KPO4   Potassiumphosphate 
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kV   KiloVolts 

L   Leucine 

l   Liter 

LASER   Light Amplification of Stimulated Emission or Radtiation 

LC   Liquid Chromatography 

LC-MS/MS  Liquid Chromatography-Tandem Mass Spectrometry 

LIF   Leukemia Induced Factor 

Lin-28   Transcription Factor involved in Pluripotency 

LoBind  Special coated tube for minimal Protein Binding 

LOCK   Large Organized Chromatin K9 Modifications 

LSD1   Lysine Demethylase-1 

LTQ   Linear Trap Quadrupole, a mass spectrometer 

M   Methionine 

M   Molar 

mA   Milli Ampere 

macroH2A  Histone 2A Variant, contains the Macro Domain 

MALDI-TOF Matrix Assisted LASER Desorption Time of Flight Mass Spetrometer 

MASCOT  Search Engine for Peptide Analysis 

mAU   Milli Absorption Units 

Mbps   Mega Base Pairs 

MBS   Modified Barth Saline 

MBT   Mid-Blastula Transition 

MBT   Protein Domain Recognizing Methylation 

me   Methylation 

me1   Mono-methylation 

me2   Di-methylation 

me3   Tri-methylation 

MeCP2  Methyl CpG binding Protein 2 

MEF   Mouse Embryonic Fibroblast 

MgCl2   Magnesiumchloride 

microLC  Liquid Chromatography using small Sample and Buffer Volumes 

min   Minute 

miRNA  MicroRNA 
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ml   Milliliter 

MLL   Histone Methylase 

mM   Milli Molar 

mm   Millimeter 

MNase   Micrococcus Nuclease 

MOF   Histone Acetylase 

mRNA   Massanger Ribonucleic Acid 

MS   Mass Spectrometry 

MS-1   No sequential Mass Spectrometry 

MS/MS  Sequential or Tandem Mass Spectrometry 

m/z   Mass over electrical Charge 

N   Asparagine 

NaCl   Sodium Chloride 

NAD+   Nicotine Amide Adenine Dinucleotide 

NaHCO3  Sodiumhydrogencarbonate 

NaH2PO4  Sodiumdihydrogenphosphate 

Nanog   Transcription Factor involved in Pluripotency 

NCBI   National Center for Biotechnology Information 

NF   Nieuwkoop-Faber 

ng   Nano Gram 

NH2   Amino Group 

nm   Nano Meter 

Non-coding RNA RNA Molecule which is not translated into a Protein 

NP-40   Normidet P-40 

N-terminus  Amino-Terminus of a protein/peptide 

NuA3   Histone Acetyltransferase Complex 

NURF   Chromatin Remodeling Complex 

NYST   Histone Acetyltransferase Complex 

Oct-4   Transcription Factor involved in Pluripotency 

OD   Optical Density 

Orbi-Trap Mass Spectrometer containing a Trap for the Ions for subsequent 

CID 

ORF   Open Reading Frame 

http://de.wikipedia.org/wiki/Nicotinamidadenindinukleotid
http://www.ncbi.nlm.nih.gov/
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P   Proline 

PAA   Poly Acryl Amide 

PADI4   Peptidyl Arginine Deiminase 4 

pan   Total 

PBS   Phosphate Buffered Saline 

PcG   Polycomb 

pH   Measurement of the Acidity or Basicity of an Aqueous Solution 

PHD   Protein Domain Recognizing Methylation 

Phos   Phosphorylation 

piRNA   Piwi interacting RNA 

PIWI P-element induced Wimpy Testis Protein, involved in piRNA 

Formation 

pmf   Peptide Mass Fingerprint 

PMSF   Phenylmethylsulfonylfluorid 

Pol II   Polymerase II 

ppm   Parts per Million 

PRC1/2  Polycomb Repression Complex 1/2 

PRE/TRE  Polycomb/ Thrithorax Repression Element 

PRMT   Arginine Methyltransferase 

PR-SET7  Histone Methyltransferase 

PTM   Post-Translational Modification 

Q   Glutamine 

R   Arginine 

R   Open Source Software for Statistical Analysis  

RAW   Raw Data File of the MS/MS 

rec   Recombinant 

Re-ChIP  Sequential Chromatin Immunoprecipitation 

Ring1A  Polycomb Subunit, Ubiquitin Ligase 

RISC   RNA-induced Silencing Complex 

RNA   Ribonucleic Acid 

RNAi   Ribonucleotide Inhibition  

RP-HPLC  Reversed-Phase High-Preassure Liquid Chromatography 

rpm   Rounds per Minute 



Tobias Schneider Abbreviations 120 

 

 

   

Rtt109   Histone Acetyltransferase 

S   Serine 

s   Seconds  

SAGA   Acetyltransferase Complex 

SAM      S-Adenosyl Methionine 

SEM   Standard Error of the Mean 

SDS-PAGE  Sodiumduodecosyulfate-Polyacrylamid-Gelelectrophorese  

SET   Protein Domain of Histone Methyltransferases 

SETD1A/B  Histone Methyltransferases 

SETD2   Histone Methyltransferase 

SEQUEST  Software for Mass Spectrometry 

siRNA   Small Interfering Ribonucleotic Acid 

SIRT1/2  Histone Deacetylases 

Sox-2   Transcription Factor involved in Pluripotency 

srf   SEQUEST result file 

SUMO   Small Ubiquitin like Modifier 

sumo   SUMOylation 

SU(VAR)3-9  Supressor of Variegation, H3K9 

SU(VAR)4-20  Supressor of Variegation, H4K20 

Suz12   Subunit of Polycomb 

SWI/SNF  Chromatin Remodeling Complex 

Swi2/Snf2  Remodeling Complex 

T   Threonine 

T-box   Gene Family involved in Embryonic Development 

TE   Tris and EDTA Buffer 

TFA   Trifluoracetic Acid 

TGF-β   Transfroming Growth Factor-β 

Tip Top   Pipette Tip used for Porouse Graphie Carbon enrichment 

TM   Copyright 

Tris/HCl  Tris(hydroxymethyl)-aminomethan Buffer  

trx   Trithorax 

Tudor   Protein Domain recognizing Di-methylated Arginine 

U   Unit 
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ubi   Ubiquitination 

Ubp8   Ubiquitin-specific Protease, Component of the SAGA Complex 

unmod  Unmodified Peptide 

UV   Ultraviolet 

V   Valine 

V   Volts 

VegT   Transcription Factor 

W   Watt 

W   Tryptophan 

WD40 Structural Motif forming a Propeller-Structure for Protein-Protein 

Interactions 

Wnt   Signalling Molecule important for Development 

X   X-chromosome  

x   Multiplied by 

X-chr   X-chromosome 

Xbmi   Xenopus Homologue of the Polycomb Group Gene bmi 

Xbra   Transcription Factor 

XIC   Extracted Ion Count 

XPcg   Xenopus Homologue of the Polycomb Gene  

XTC   Xenopus Tissue Cell Culture 

Y   Tyrosine 

y-fagment                 Peptide Fragment with the Ion situated at the C-terminus of the   

Peptide after CID in MS/MS 

YY1   Xenopus Homologue of the Polycomb Group Gene Ying-Yang-1 

ZipTip   Pipette Tip with a C18 RP Column for sample desalting 

2D   Two-Dimensional 

3´   C3 Atom of the Phosphate Backbone of the DNA 

3-8   Peptide consisting of for instance amino acid 3 to 8 

5´   C5 Atom of the Phosphate Backbone of the DNA 

°C Degree Celsius 

%   Percent 

®   Copyright 

γ-H2A.X  Histone 2A Variant 
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µg   Micro Gram 

µl   Micro Liter 

µm   Micro Meter 

µM   Micro Molar 

µm3    Cubic Micrometer 
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Supplement Figure 1: Histone Sequences of Xenopus laevis 
Amino acid sequence of the four core histones of Xenopus laevis. Accession numbers 
of the histones according to NCBI database searches. 
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Supplement Figure 2: Quantification of H3.3/H3.2 Ratios in Xenopus Bulk Histones 
isolated from Different Developmental Stages 
The ratios of MS/MS events for the unique H3.3 peptide KSAPSTGGVKKPHR and the 
corresponding H3.2 peptide KSAPATGGVKKPHR were calculated and used as a proxy 
to determine the ratio of H3.3/H3.2 in histones isolated from various embryo samples. 
Abbreviations: NF9 =blastula, NF12 = gastrula, NF18 = neurula, NF37 = tadpole, A6 - 
frog kidney cell line. Values represent the mean of at least two independent biological 
replicates. Error bars represent the calculated SD values. 
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Supplement Figure 3: Comparision of Representative Histone Modifications of 
Murine ES Cells and MEFs to illustrate adequate Separation by FACS 
Bar-Charts of Histone Modifications. Data from Orbi-Trap Mass Spectrometry, Error 
bars indicate SD of two independent biological replicates (B,C). Abr. unmod = 
unmodified peptide, Kac = acetylated lysine residue, Kme1 = mono-methylated 
lysine residue, Kme2 = di-methylated lysine residue, Kme3 = tri-methylated lysine 
residue.  
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Supplement Table 1: Modifications of the Four Core Histones Detected by MALDI-
TOF 
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Supplement Table 2: Tandem Mass Spectrometric Quantitative Results of Histone 
Modifications of Histone H3 
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Supplement Table 3: Tandem Mass Spectrometric Quantitative Results of Histone 
Modifications of Histone H4  
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Supplement Table 4: Tandem Mass Spectrometric MS2 Events after Collision 
Induced Dissociation (CID) of Histone H3 
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Supplement Table 5: Tandem Mass Spectrometric MS2 Events after Collision 
Induced Dissociation (CID) of Histone H4 
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Supplement Table 1: Modifications of H2A, H2A.Z and H2B detected by MALDI-
TOF 
Indicated is the Peptide with its amino acid sequence and the different modifications 
and their masses (M(cal)H+) and the percentile value of the modification according 
to the LC quantification. Abr. NF9 = blastula stage, NF12 = gastrula stage, NF18 = 
neurula stage, NF37 = tadpole stage, A6 and XTC are stable Xenopus laevis Cell 
Lines, ES Cells and MEFs are derived from mouse. M(cal)H+ is the mass of the 
positively charged peptide, Av. RT is the average Retention time of the peptide on 
the C18 micro colum of the reversed-phase LC-MS, mean of two independent 
biological replicates. 

 
Supplement Table 2: Tandem Mass Spectrometric Quantitative Results of Histone 
Modifications of Histone H3 
Indicated is the Peptide with its amino acid sequence and the different modifications 
and their masses (M(cal)H+) and the percentile value of the modification according 
to the LC quantification. Abr. NF9 = blastula stage, NF12 = gastrula stage, NF18 = 
neurula stage, NF37 = tadpole stage, A6 and XTC are stable Xenopus laevis Cell 
Lines, ES Cells and MEFs are derived from mouse. M(cal)H+ is the mass of the 
positively charged peptide, Av. RT is the average Retention time of the peptide on 
the C18 micro colum of the reversed-phase LC-MS, mean of two independent 
biological replicates. 

 
 

Supplement Table 3: Tandem Mass Spectrometric Quan 
titative Results of Histone Modifications of Histone H4  
Indicated is the Peptide with its amino acid sequence and the different modifications 
and their masses (M(cal)H+) and the percentile value of the modification according 
to the LC quantification. Abr. NF9 = blastula stage, NF12 = gastrula stage, NF18 = 
neurula stage, NF37 = tadpole stage, A6 and XTC are stable Xenopus laevis Cell 
Lines, ES Cells and MEFs are derived from mouse. M(cal)H+ is the mass of the 
positively charged peptide, Av. RT is the average Retention time of the peptide on 
the C18 micro colum of the reversed-phase LC-MS, mean of two independent 
biological replicates. 

 
Supplement Table 4: Tandem Mass Spectrometric MS2 Events after Collision 
Induced Dissociation (CID) of Histone H3 
Indicated is the Peptide with its amino acid sequence and the different modifications 
and their masses (M(cal)H+) and the number of MS2 events for each modification. 
Numbers highlighted in grey are not used for quantifications as their peptide 
probability score was lower than other modifications of the same modification state. 
Abr. NF9 = blastula stage, NF12 = gastrula stage, NF18 = neurula stage, NF37 = 
tadpole stage, A6 and XTC are stable Xenopus laevis Cell Lines, ES Cells and MEFs 
are derived from mouse. M(cal)H+ is the mass of the positively charged peptide, Av. 
DeltaM is the average mass deviation of the theoretical mass and the measured 
values. Av. RT is the average Retention time of the peptide on the C18 micro colum 
of the reversed-phase LC-MS. z is the load of the most abundant peptide, mean of 
two independent biological replicates. 
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Supplement Table 5: Tandem Mass Spectrometric MS2 Events after Collision 
Induced Dissociation (CID) of Histone H4 
Indicated is the Peptide with its amino acid sequence and the different modifications 
and their masses (M(cal)H+) and the number of MS2 events for each modification. 
Numbers highlighted in grey are not used for quantifications as their peptide 
probability score was lower than other modifications of the same modification state. 
Abr. NF9 = blastula stage, NF12 = gastrula stage, NF18 = neurula stage, NF37 = 
tadpole stage, A6 and XTC are stable Xenopus laevis Cell Lines, ES Cells and MEFs 
are derived from mouse. M(cal)H+ is the mass of the positively charged peptide, Av. 
DeltaM is the average mass deviation of the theoretical mass and the measured 
values. Av. RT is the average Retention time of the peptide on the C18 micro colum 
of the reversed-phase LC-MS. z is the load of the most abundant peptide, mean of 
two independent biological replicates. 
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