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1.1 Background and aim of the study 

Vascular barrier dysfunction, i.e. endothelial hyperpermeability and the subsequent 

edema formation, is involved in the initiation or progression of many diseases, such as 

sepsis, atherosclerosis, diabetes or cancer.1 Despite this knowledge, a 

pharmacological treatment that interferes with barrier-regulating systems in endothelial 

cells is still missing. We recently reported that the hawthorn (Crataegus spp.) extract 

WS® 1442 – a well established phytopharmaceutical to treat mild forms of heart  

failure – offers a promising novel approach for protecting against endothelial barrier 

impairment by activating cAMP/Epac1/Rap1- and inhibiting Ca2+/PKC/RhoA-signaling.2  

In the present study, we focus on endothelial Ca2+-signaling phenomena. Based on 

previous experiments of WS® 1442-evoked inhibition of a thrombin-generated increase 

of cytosolic calcium (Ca2+) levels,2 we hypothesized that WS® 1442 preincubation per 

se might elevate Ca2+ baseline levels. This is challenging, since an increase of 

intracellular Ca2+ concentration ([Ca2+]i) followed by a so-called store-operated calcium 

entry (SOCE) usually leads to the induction of hyperpermeability.3  

In addition, Ca2+/PKC/RhoA and cAMP/Epac1/Rap1 pathways were each found to be 

affected by only one distinct phytochemical group of the extract.4 However, individual 

bioactive compounds could not be identified yet. 

Thus, the aims of the present study were to  

1) examine the mechanisms of how WS® 1442 affects [Ca2+]i in the human 

endothelium, and to 

2) identify or at least narrow down the bioactive compounds of WS® 1442 that are 

responsible for the endothelial activity by bioguided fractionation. 
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1.2 Crataegus extract WS® 1442  

WS® 1442 represents an aqueous alcoholic special extract from leaves and flowers of 

predominantly Crataegus monogyna and laevigata. The extract is standardized to a 

content of 17.3-20.1% oligomeric proanthocyanidins (OPCs). The original hawthorn 

plant (Crataegus spp.) belongs to the rose family and grows as shrubs or trees with 

thorny branches all over the Northern hemisphere. In general, hawthorn is one of the 

oldest known medicinal plants in the Western world.5 It is utilized as a herbal remedy to 

treat chronic heart failure worldwide.6 In various European countries, WS® 1442 has 

even become an approved or registered drug for the treatment of congestive heart 

failure according to the New York Heart Association (NYHA) functional class II.  

1.2.1 Phytochemical composition of Crataegus leaves and 

flowers 

Crataegus preparations of leaves and flowers mainly contain two phytochemical 

groups, flavonoids (1.5–2.0%) and OPCs (2.5%).7 Both groups have been identified to 

exert the cardiovascular protective activity of hawthorn.8,9 Apart from those, pentacyclic 

triterpenic acids (ursolic and oleanolic acid), phenol carboxylic acids (chlorogenic and 

caffeic acid), aliphatic alcohols, amines, purines as well as polymeric carbohydrates 

have been isolated from Crataegus extracts to a lesser extent.9,10  

1.2.1.1 Flavonoids 

Flavonoids (lat. flavus = yellow), of which more than 4000 have been identified so far, 

represent a group of ubiquitous secondary plant metabolites belonging to the major 

class of polyphenols. Concerning biosynthesis, shikimic acid serves as a precursor of 

flavonoids. The flavonoid backbone (C6-C3-C6) contains two aromatic rings that are 

linked to each other by a C3 bridge of different oxidation states. According to their 

chemical structure, flavonoids can be categorized into flavans/catechins, 

flavanones/flavanonols, flavones/flavonols, anthocyanidins and chalcones. In each 

case, the flavonoid backbone can be derivatized for instance by O- or C-glycosylation, 

hydroxylation or methylation.10  

Investigating Crataegus leaves and flowers, a series of flavones, flavanones and 

predominantly flavone glycosides (hyperoside, rutin, vitexin) has been detected.6,7 

Interestingly, flavone glycosides are mainly based on apigenin and luteolin whereas 
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quercetin, kaempferol, and 8-methoxykaempferol provide the basic structures of the 

different flavonol glycosides.7 For glycosylation, β-D-glucose, α-L-rhamnose, α-L-4-

acetyl-rhamnose, xylose, arabinose, rutinose, and neohesperidose have been 

identified. Furthermore, apigenin and luteolin based flavones found in Crataegus form 

C- and O-glycosides while flavonols only build O-glycosides.6 Obviously, the flavonoids 

themselves already represent a huge variety of phytochemical compounds in this drug. 

Figure 1  Common flavonoids of Crataegus leaves and flowers 

1.2.1.2 Oligomeric proanthocyanidins (OPCs) 

Besides monomeric flavonoids, plants also synthesize a group of condensed flavanols, 

called oligomeric proanthocyanidins. This name originates from the fact that OPCs can 

be hydrolyzed into colored anthocyanidins upon acidification. Depending on the 

hydroxylation pattern of the monomers, OPCs are subdivided into prodelphinidins, 

propelargonidins and procyanidins. At this, the procyanidins represent the most widely 

spread group of OPCs in plant kingdom.10 

With regard to Crataegus leaves and flowers, procyanidins composed of predominantly 

two to six monomers of the diastereomeric couple epicatechin and catechin were 

found. In particular, the dimers B1, B2 (Figure 2A), B4, B5, trimer C1 (Figure 2B) and 

tetramer D1 have been isolated and identified. However, glycosylated OPCs have not 

been described in Crataegus leaves and flowers to date.7,10 
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A      B 

Figure 2 Chemical structure of procyanidin B2 (A) and C1 (B). B-group procyanidins contain a  
C-C bond between C4 (upper monomer) and C6 or C8 (lower monomer). Trimeric procyanidins are named 
C-group procyanidins. 

1.2.2 Pharmacology, efficacy and safety of Crataegus 

preparations 

Several well-performed clinical trials11-13 and meta-analyses14 have proven Crataegus 

extracts to be efficacious and safe15 in the treatment of mild heart failure. In a pooled 

study, only baseline severity, but not gender turned out to govern the physiological 

outcomes of WS® 1442 treatment.16 By the aid of animal models as well as in vitro 

experiments, Crataegus extracts were shown to exert positive inotropic,17,18 anti-

arrhythmic19 and cardio-protective activities.20-24 Besides the direct action on the heart, 

Crataegus extracts have been found to influence the vascular endothelium by a NO-

mediated vasorelaxation.25-28 Furthermore, Crataegus extracts were demonstrated to 

impair platelet function,29 lipid metabolism30 and inflammation.31 

1.3 The vascular endothelium 

The vascular endothelium represents a monolayer of closely juxtaposed endothelial 

cells (ECs), which line the inner surface of all blood vessels. These cells are covered 

with a polysaccharide rich layer (glycocalyx) and are attached to a basement 

membrane (basal lamina). The endothelium is no longer considered as an inert 

structure to separate blood and tissues, but displays a dynamic size-selective, semi-

permeable barrier to regulate the flux of fluids and solutes as well as the entry of 
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leukocytes into surrounding tissue.32 Moreover, it is perceived as a multifunctional 

disseminated organ that plays a crucial role in various pathological as well as 

physiological processes, such as regulation of vascular tone, transport of nutrients, 

blood flow homeostasis, host defence, or angiogenesis.33  

1.3.1 Regulation of endothelial permeability 

Vascular permeability in general describes the passage of proteins, fluids and solutes 

across the endothelial barrier.34 Macromolecules cross the endothelial barrier 

transcellularly in a caveolae-mediated vesicular way, whereas molecules less than  

3 nm in diameter diffuse between the adjacent cells in a paracellular manner.35 Under 

physiological conditions, paracellular permeability is limited by interendothelial 

junctions (IEJs) that are comprised of tight junctions and predominantly adherens 

junctions (AJs).34 Vascular endothelial (VE)-cadherin represents the most important 

transmembrane protein forming AJs in ECs. By the aid of catenins, VE-cadherin is 

associated to the cytoskeleton. Hence, a dynamic homeostasis between acto-myosin 

mediated cell contraction and intercellular adhesive forces is crucial to retain 

endothelial barrier function. 

However, this barrier function is altered upon pathological conditions such as 

atherosclerosis, diabetes, inflammation, tumor metastasis or hypertension.36 In most 

cases, endothelial barrier breakdown, i.e. the formation of intercellular gaps,37 is 

caused by the activation of the contractile machinery leading to the formation of stress 

fibers and the subsequent disruption of IEJs followed by degradation or 

internalization.34 Basically, two main signaling pathways regulate paracellular 

endothelial permeability. Figure 3 illustrates these pathways in agreement with the 

models described in literature. 

On the one hand, there is the barrier protecting cyclic adenosine monophosphate 

(cAMP) pathway leading to stabilization of IEJs as well as the cortical actin 

rearrangement. cAMP is able to activate protein kinase A (PKA) which phosphorylates 

vasodilator-stimulated phosphoprotein (VASP) and subsequently leads to the activation 

of the Rho GTPase Rac1.38 Rac1 induces translocation of cortactin to the cell borders 

that promotes the rearrangement of the actin cytoskeleton towards a cortical actin 

ring.37 Furthermore, cAMP activates the exchange protein directly activated by cAMP 

(EPAC1) in a PKA independent manner. EPAC1 functioning as guanine nucleotide 

exchange factor (GEF) activates the Ras-like GTPase Rap1 which results in the 
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augmentation of VE-cadherin-based cell-cell contacts. 39,40 Additionally, Rap1 is able to 

activate Rac1 by the aid of the two GEFs Tiam1 and Vav2.41  

On the other hand, there is the Ca2+-triggered barrier-disrupting pathway causing stress 

fiber formation and endothelial cell contraction. The Ca2+/calmodulin dependent myosin 

light chain kinase (MLCK) phosphorylates myosin light chain (MLC) thereby enabling 

acto-myosin driven endothelial cell contraction. This contraction can be antagonized by 

myosin light chain phosphatase (MLCP)-evoked dephosphorylation. In addition, Ca2+ 

dependent protein kinase C α (PKCα) activation leads to the formation of actin stress 

fibers in a RhoA dependent manner. Furthermore, the small GTPase RhoA is able to 

inhibit MLCP through its downstream effector Rho kinase (ROCK) which enhances 

MLC phosphorylation.  

Besides this explicit separation of both pathways – cAMP and Ca2+ – certain 

interactions exist. These are indicated in Figure 3 as dotted lines. cAMP-dependent 

PKA is able to prevent MLCK42 as well as RhoA43 activity, thereby protecting 

endothelial barrier function. Then, Rac1 controls RhoA activity.37 Apart from that, PKCα 

can phosphorylate VE-cadherin35 which disrupts junctional integrity. 

Figure 3  Signaling scheme of endothelial barrier function. Solid lines demonstrate signaling 
within one pathway. Dotted lines indicate interactions between the two different signaling pathways. 
Arrows describe activation, dead ends illustrate inhibition. 

For our experiments, we used the biogenic amine histamine and the serine protease 

thrombin to provoke transient endothelial hyperpermeability. Both agents operate via 

Ca2+/PKC/RhoA signaling.32  
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1.3.2 Ca2+-signaling in endothelial cells 

Besides endothelial permeability various endothelial functions depend on changes in 

intracellular Ca2+ concentration ([Ca2+]i). Therefore, calcium ions act as a highly 

versatile second messenger system in the endothelium. One of the most prominent 

examples is the Ca2+/calmodulin dependent activation of endothelial NO synthase 

(eNOS) leading to the production of NO44 and subsequent vasodilation. Apart from that, 

cellular processes such as cell proliferation, angiogenesis or, as previously mentioned, 

endothelial permeability are also regulated by increasing [Ca2+]i.
45 Usually, intracellular 

concentrations of free Ca2+ amount to approximately 100 nM, i.e. 20,000 fold lower 

than extracellular concentrations.46 To ensure this Ca2+ gradient across the plasma 

membrane, intracellular Ca2+ is trapped in special Ca2+ stores mainly by means of 

endogenous Ca2+ chelators. In endothelial cells, the endoplasmic reticulum (ER) 

represents the major intracellular Ca2+ store and accounts for 75% of the total 

intracellular Ca2+ reserve. Here, Ca2+ is bound to special Ca2+-binding proteins such as 

calreticulin thereby reaching Ca2+ concentrations of 3 mM within the ER.47 Besides this, 

mitochondria represent another important store of intracellular Ca2+ and account for the 

remaining 25% of the Ca2+ pool.  

Figure 4  Calcium signaling in endothelial cells. Standard black arrows indicate Ca2+ flux across 
membranes. Black bold arrows demonstrate activation, dotted black arrows illustrate tentative interactions 
between Stim-1, Orai and TRPC channels. 

An increase of [Ca2+]i usually displays the initial response of endothelial cells to 

hormonal and chemical transmitters45 or to mechanical stress.48 Similar to other non-

excitable cells, this Ca2+ rise appears in a biphasic manner: Ca2+ release from 

intracellular stores is followed by Ca2+ influx from the extracellular space. Figure 4 

illustrates the fundamental properties and mechanisms of endothelial Ca2+-signaling. 
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The most important mechanisms that cause elevated Ca2+ levels in the endothelium 

are moderated by the activation of phospholipase C β (PLCβ) through G-protein 

coupled receptors (GPCR) such as histamine receptor 1 (H1 R) or proteinase-activated 

receptor 1 (PAR1).47,49 PLCβ provokes the formation of inositol-1,4,5-trisphosphate 

(IP3) and diacylglycerol (DAG). IP3 generates Ca2+ depletion from the ER through IP3 

receptors (IP3 R), whereas DAG activates Ca2+ influx from the extracellular space via 

canonical transient receptor potential (TRPC) channels TRPC 3, 6, and 7.50,51 

Subsequent to the ER depletion, a Ca2+ influx from the extracellular space typically 

amplifies the elevated cytosolic Ca2+ levels.52 This phenomenon is called store-

operated Ca2+ entry (SOCE). But how is the ER depletion linked to SOCE? Hereby, 

stromal interaction molecule-1 (Stim-1) plays the pivotal role. With an EF-hand domain, 

Stim-1 senses the luminal Ca2+ concentration in the ER.53 Decreasing Ca2+ 

concentrations evoke Stim-1 oligomerization into punctae. Afterwards, Stim-1 

translocates to junctions adjacent to the plasma membrane within the ER. Thereby, it 

can activate proteins of the Orai family which function as pore-forming subunits of 

SOCE channels.54 Additionally, TRPC channels TRPC 1 and 4 seem to be involved in 

SOCE as well. In contrast to the highly selective Orai channels, TRPC channels 

represent non-selective cation channels.52 However, it is not yet entirely clarified, 

whether TRPC channels are associated to Stim-1 and Orai or not.  

To recover Ca2+ baseline levels, endothelial cells can either refill the ER by 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) or export excessive Ca2+ 

to the extracellular space by the plasma membrane Ca2+ ATPase (PMCA) and the 

Na+/Ca2+-exchanger (NCX).55-57 Interestingly, SERCA is also responsible to 

compensate spontaneous Ca2+ leakage out of the ER. 
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2.1 Materials 

2.1.1 Crataegus extract WS® 1442 

The Crataegus extract WS® 1442 was kindly provided by Dr. Willmar Schwabe GmbH 

& Co. KG (Karlsruhe, Germany). It is a well-defined special dry extract of leaves and 

flowers of mainly Crataegus monogyna and laevigata (4-6.6:1), standardized to a 

content of 17.3-20.1% oligomeric proanthocyanidins. For extraction, ethanol 45% (w/w) 

was utilized. 

The extract was freshly dissolved to a concentration of 100 µg/ml, thereby using 0.1% 

DMSO for complete solubilization. 

2.1.2 Fractions of Crataegus extract WS® 1442 

WS® 1442 was stepwise fractionated using different chromatographic methods as 

indicated in the fractionation scheme (Figure 5). Most of the fractionation was 

performed by Evelyn Hartung within her Master Thesis58 at the Ludwig-Maximilians-

University Munich in collaboration with Dr. Willmar Schwabe GmbH & Co. KG. 

The first fractionation step of WS® 1442 was designated 30 to 36 containing 4 different 

fractions. Subfractions of fraction 32 were numbered 32.1 to 32.10 for example. 

The new fractions were investigated by immunocytochemistry (subfractions 34.x) or 

Ca2+ measurement (subfractions 32.x and the derived subfractions), respectively. Only 

those subfractions showing biological activity in these assays were taken into 

consideration and underwent additional subfractionation steps. 

In a first case, WS® 1442 subfractions were utilized in fixed concentrations of 5 µg/ml 

or 10 µg/ml. Alternatively, subfractions were applied in concentrations related to their 

weight proportion (yield) of the original extract (100%  100 µg/ml). 

Similar to WS® 1442, subfractions were also dissolved using 0.1% DMSO just before 

starting the experiment. 
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Figure 5  Fractionation scheme of WS® 1442. WS® 1442 was stepwise fractionated using different 
kinds of chromatography as indicated., insoluble residue. Fractions/subfractions were provided by  
Dr. Willmar Schwabe GmbH & Co. KG. 
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2.1.3 Biochemicals, inhibitors and cell culture reagents 

Table 1  Biochemicals 

Reagent Producer 

Non-fat dry milk powder (Blotto) Carl Roth, Karlsruhe, Germany 

Bovine serum albumin (BSA) Sigma-Aldrich, Taufkirchen, Germany 

DMSO AppliChem, Darmstadt, Germany 

Histamine Sigma-Aldrich, Taufkirchen, Germany 

Thrombin Sigma-Aldrich, Taufkirchen, Germany 

Triton X-100 Merck, Darmstadt, Germany 

Tween® 20 BDH/Prolabo®, Ismaning, Germany 

 

All other used biochemicals were purchased from Sigma-Aldrich, AppliChem, Carl Roth 

or Merck. 

Table 2  Inhibitors 

Inhibitor Producer 

2-Aminoethyldiphenyl borate (2-APB) Sigma-Aldrich, Taufkirchen, Germany 

Complete® mini EDTA free Roche diagnostics, Penzberg, Germany 

2,5-Di-tert-butylhydroquinone (BHQ) Sigma-Aldrich, Taufkirchen, Germany 

NaF  Merck, Darmstadt, Germany 

Na3VO4  ICN Biomedicals, Aurora, OH, USA 

Ouabain Sigma-Aldrich, Taufkirchen, Germany 

Phenylmethylsulfonyl fluoride (PMSF)  Sigma-Aldrich, Taufkirchen, Germany 

Thapsigargin Santa Cruz, Heidelberg, Germany 

U73122 Sigma-Aldrich, Taufkirchen, Germany 
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Table 3  Cell culture reagents 

Reagent Producer 

Amphotericin B 250 µg/ml AppliChem, Darmstadt, Germany 

Collagen A/G Biochrom AG, Berlin, Germany 

Collagenase A Roche, Mannheim, Germany 

Dulbecco’s modified Eagle’s medium 
(DMEM) 

Sigma-Aldrich, Taufkirchen, Germany 

Endothelial Cell Growth Medium (ECGM) 
with Supplement Mix  #C-39215 

PromoCell, Heidelberg, Germany 

FCS gold  PAA Laboratories, Pasching, Austria 

HAT supplement 50x liquid Invitrogen, Karlsruhe, Germany 

M199 medium PAA Laboratories, Pasching, Austria 

MEM amino acids 50x PAA Laboratories, Pasching, Austria 

MEM vitamins 100x PAA Laboratories, Pasching, Austria 

Penicillin/Streptomycin 100x PAA Laboratories, Pasching, Austria 

2.2 Cell culture 

2.2.1 Buffers, solutions and reagents 

The following buffers, solutions and reagents were used for the isolation as well as for 

the cultivation of endothelial cells: 

Table 4  Cell culture buffers 

PBS (pH 7.4)  PBS+ Ca2+/Mg2+ (pH 7.4) 

NaCl  123.3 mM  NaCl 137 mM

Na2HPO4 10.4 mM KCl 2.68 mM

KH2PO4 3.2 mM Na2HPO4 8.10 mM

H2O   KH2PO4 1.47 mM

   MgCl2 0.50 mM

   CaCl2 0.68 mM

   H2O 
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Table 5  Cell culture solutions 

Growth medium HUVEC/HMEC  Stopping medium 

ECGM  500 ml  FCS gold 10%

Supplement Mix #C-39215 23.5 ml M199 

FCS gold 50 ml  

Amphothericin B  
(250 µg/ml) 

5 ml   

Penicillin (10,000 U/ml)/ 
Streptomycin (10 mg/ml) 

5 ml   

 

DMEM  Growth medium EA.hy926 cells 

DMEM  10 g  FCS 9.9%

NaHCO3 0.85 g HAT 0.99%

HEPES 6 g DMEM 

Amphothericin B 
(250 µg/ml) 

5 ml   

Penicillin (10,000 U/ml)/ 
Streptomycin (10 mg/ml) 

10 ml   

H2O ad 1000 ml   

 

Freezing medium  Trypsin/EDTA (T/E) 

FCS gold 50%  Trypsin 0.05%

DMSO 8% EDTA 0.02%

Growth medium PBS 

 

Collagen G  Collagen A 

Collagen G 0.001%  Collagen A 0.01%

PBS PBS 

 

 

FCS gold (fetal calf serum) was used after heat inactivation: FCS gold was partially 

thawed for 30 min at room temperature. Afterwards, it was totally thawed at 37°C and 

finally inactivated at 56°C for 30 min. FCS aliquots were stored at -20°C. 
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2.2.2 Endothelial cells 

Endothelial cells (ECs) were cultured in an incubator (Heraeus, Hanau, Germany) 

ensuring constant humidity at 37°C with 5% CO2. Utilizing the PCR detection kit 

Venor®GeM (Minerva Biolabs, Berlin, Germany), cells were routinely tested for 

mycoplasma contamination. 30 min before use, cell culture flasks, Petri dishes and 

multiwell plates were coated with Collagen G. Glass coverslips were pretreated with 

Collagen A. For EA.hy926 cells, coating was not necessary. 

2.2.2.1 HMEC-1 – human dermal microvascular endothelial cells 

The cell line CDC/EU.HMEC-1 was kindly provided by the Centers for Disease Control 

and Prevention (Atlanta, GA, USA). Transfecting human dermal microvascular 

endothelial cells with a plasmid coding for the transforming SV40 large T-antigen led to 

the formation of the immortalized HMEC-1 cell line. This cell line still maintains 

endothelial morphologic, phenotypic, and functional characteristics.59,60 HMECs were 

solely used for macromolecular permeability assays. 

2.2.2.2 HUVECs – human umbilical vein endothelial cells 

Human umbilical cords were kindly provided by Klinikum München Pasing, Frauenklinik 

München West/Krüsmannklinik, Rotkreuzklinikum München, and Wolfart Klinik 

Gräfelfing. After childbirth, umbilical cords were deposited in PBS+ Ca2+/Mg2+ 

containing penicillin (100 U/ml)/streptomycin (100 μg/ml), and stored at 4°C. Cells were 

freshly isolated every week. The umbilical vein was washed with PBS+ Ca2+/Mg2+, filled 

with 0.1 g/l collagenase A, and incubated for 45 min at 37°C. To attain endothelial cells, 

the vein was flushed with stopping medium and the cell suspension was centrifuged 

(1,000 rpm, 5 min). Subsequently, cells were resuspended in growth medium and 

plated in a 25 cm2
 flask (passage #0). After reaching confluency, cells were trypsinized 

and plated in a 75 cm2
 flask. Experiments were performed using cells at passage #3.  

  



2  MATERIALS AND METHODS 25 

2.2.2.3 EA.hy926 cells 

EA.hy926 cells were kindly provided by C.J.S. Edgell (NC, USA). These cells represent 

one of the most frequently used and best characterized permanent human umbilical 

vein endothelial cell line. They were generated by fusing human umbilical vein 

endothelial cells (HUVECs) with the human lung carcinoma cell line A549 by the aid of 

polyethylene glycol.61 This cell line was shown to still possess typical characteristics of 

the endothelial phenotype and function, like the presence of Weibel-Palade bodies 

containing von Willebrand factor or the upregulation of ICAM-, VCAM- and E-selectin-

expression upon TNFα- treatment.60,62 EA.hy926 cells were employed in passages  

> 65 and cultivated using Dulbecco’s modified Eagle’s medium (DMEM) containing 

HAT (hypoxanthin, aminopterin, thymidine) for hybrid cell selection. EA.hy926 cells 

were exclusively used for calcium measurements. 

2.2.3 Passaging 

Having reached confluency, cells were either sub-cultured 1:3 in 75 cm2
 culture flasks 

or plated for experiments in multiwell-plates, dishes or on glass coverslips. For 

passaging, medium was removed and cells were washed twice with PBS. Afterwards, 

cells were incubated with T/E for 1-2 min at 37°C. Thereafter, cells were gradually 

detached and the digestion was terminated using stopping medium. After centrifugation 

(1,000 rpm, 5 min, 20°C), the pellet was resuspended in growth medium and cells were 

finally plated. 

2.2.4 Freezing and thawing 

HUVECs were only used until passage #3 without intermediate freezing/thawing steps. 

For freezing, confluent HMECs out of a 75 cm2
 flask were trypsinized, centrifuged 

(1,000 rpm, 5 min, 20°C) and resuspended in 3 ml ice-cold freezing medium. 1.5 ml 

aliquots were frozen in cryovials. After storage at -80°C for 24 h, aliquots were 

transferred into liquid nitrogen for long-term storage. To thaw cells, a cryovial was 

warmed to 37°C and the content was immediately mixed with prewarmed growth 

medium. In order to remove remaining DMSO, cells were centrifuged, resuspended in 

growth medium and cultured in a 75 cm2
 culture flask. 
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2.3 Cell viability assays 

2.3.1 CellTiter-Blue® Cell Viability Assay  

The CellTiter-Blue® Reagent contains the indicator dye resazurin. Viable cells retain 

the ability to reduce this non-fluorescent indicator resazurin into resorufin, which is 

highly fluorescent. The CellTiter-Blue® Cell Viability Assay was performed according to 

the manufacturer’s protocol (Promega Corp., Madison, WI, USA): HUVECs were grown 

to confluency in 96-well plates and treated as indicated. Afterwards, cells were 

incubated for 3 h with the CellTiter-Blue® Reagent and fluorescence (ex: 560 nm,  

em: 590 nm) was measured using a SpectraFluorPlus plate reader (Tecan, Crailsheim, 

Germany). 

2.3.2 Trypan Blue staining 

HUVECs were cultured in 6-well plates and treated as indicated. Supernatant was 

collected and cells were washed twice with PBS. Cells were trypsinized and 

resuspended in M199 containing 10% FCS. Cell suspension and supernatant were 

mixed. Finally, cells were stained with trypan blue (Sigma Aldrich, Taufkirchen, 

Germany) and analyzed using a Vi-CellTM XR cell viability analyzer (Beckman Coulter, 

Fullerton, CA, USA). 

2.3.3 ATP measurement 

The luciferase-catalyzed, ATP dependent oxidation of luciferin causes light emission. 

This property was utilized to determine cellular ATP contents luminometrically. The 

ATP Bioluminescence Assay Kit HS II (Roche Diagnostics GmbH, Mannheim, 

Germany) was performed according to the manufacturer’s protocol: Briefly, HUVECs 

were cultured in 24-well plates and treated as indicated. Cells were incubated for 5 min 

with pre-warmed lysis buffer to detach the adherent cells. Subsequently, cells were 

harvested on ice to prevent ongoing cellular events. Afterwards, HUVECs were boiled 

for cell lysis (2 min, 95°C), centrifuged and supernatants were diluted 1:1 with dilution 

buffer. Samples were analyzed by integrating the luciferase-generated luminescence 

signal over 10 s using an Orion II Microplate Luminometer (Berthold Detection 

Systems, Pforzheim, Germany). 
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2.4 Western Blot analysis 

2.4.1 Sample preparation 

Endothelial cells were treated as indicated, washed once with ice-cold PBS and then 

lysed in modified RIPA lysis buffer for phosphoproteins. Cells were frozen at -80°C. 

Afterwards, cells were scraped off on ice, transferred to Eppendorf tubes (Peske, 

Aindling-Arnhofen, Germany) and centrifuged (14,000 rpm, 10 min, 4°C). An aliquot of 

the supernatant was utilized to determine protein concentration via Bradford assay. 

Remaining supernatant was mixed with Laemmli sample buffer (3x) and samples were 

finally heated at 95°C for 5 min. Samples were kept at -20°C until Western blot 

analysis. 

Table 6  Buffers for protein sample preparation 

Lysis buffer for phosphoproteins  3x Laemmli buffer 

Tris/HCl (pH 7.4) 50 mM  Tris/HCl (pH 6.8) 187.5 mM

NaCl 150 mM SDS (sodium 6%

Nonidet NP 40 1% dodecyl sulfate) 

Deoxycholic acid 0.25%  Glycerol 30%

SDS 0.1%  Bromphenol blue 0.025%

Na3VO4 0.3 mM  H2O 

NaF 1.0 mM  β-Mercaptoethanol 12.5%

β-Glycerophosphate 3.0 mM   

Pyrophosphate 10 mM   

H2O   

Freshly added:   

Complete®mini EDTAfree 4.0 mM   

PMSF 1.0 mM   

H2O2 600 µM   

2.4.2 Protein quantification – Bradford assay 

In order to employ equal amounts of proteins in all samples for Western blot analysis, 

protein concentrations were determined using the Bradford Assay. After measurement, 

protein concentration was adjusted by adding Laemmli sample buffer (1x). 
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Bradford Assay was performed as previously described, thereby using Coomassie 

Brilliant Blue G250 (Carl Roth, Karlsruhe, Germany) to stain proteins.63 10 μl protein 

samples were incubated with 190 μl Bradford solution (Roti®-Quant Bradford Reagent, 

Carl Roth, Karlsruhe, Germany, 1:5 dilution in water) for 5 min upon shaking. 

Thereafter, absorbance was measured photometrically at 592 nm (Tecan Sunrise 

Absorbance reader, TECAN, Crailsheim, Germany). Protein standards were obtained 

by stepwise diluting a 2 mg/ml stock solution of bovine serum albumin (BSA). Linear 

regression was used to determine the actual protein concentration of each sample. 

2.4.3 SDS-Page electrophoresis 

According to Laemmli et al.,64 proteins were separated by discontinuous SDS-

polyacrylamide gel electrophoresis (SDS-PAGE). Equal amounts of protein were 

loaded on discontinuous polyacrylamide gels, which are composed of a separating and 

a stacking gel. Samples were separated using the Mini-PROTEAN 3 electrophoresis 

module (Bio-Rad, Munich, Germany). To ensure optimal separation of the proteins, the 

concentration of acrylamide (RotiphoreseTM
 Gel 30, Carl Roth GmbH & Co. KG, 

Karlsruhe, Germany) in the separating gel was adapted to their molecular weights. 

Electrophoresis was run at 100 V for 21 min for protein stacking and at 200 V for  

45 min for protein separation. By the aid of a prestained protein ladder (PageRulerTM, 

Fermentas, St. Leon-Rot, Germany), the molecular weight of the proteins was 

determined. 

Table 7  Acrylamide gels and electrophoresis buffer 

Separating gel 10%  Stacking gel 

RotiphoreseTM Gel 30  33.3%  RotiphoreseTM Gel 30  17%

Tris (pH 8.8) 375 mM Tris (pH 6.8) 125 mM

SDS 0.1% SDS 0.1%

TEMED 0.1%  TEMED 0.2%

APS 0.05%  APS 0.1%

H2O  H2O 

 

  



2  MATERIALS AND METHODS 29 

Electrophoresis buffer 

Tris  0.3%

Glycine 1.44%

SDS 0.1%

H2O 

2.4.4 Tank electroblotting 

Subsequent to protein separation, proteins were transferred to a nitrocellulose 

membrane (Hybond-ECLTM, Amersham Bioscience, Freiburg, Germany) by 

electroblotting.65 A blotting sandwich was prepared in a box filled with 1x tank buffer as 

follows: cathode–pad–blotting paper–separating gel (from SDS-PAGE)–nitrocellulose 

membrane–blotting paper–pad–anode. The membrane was equilibrated with 1x tank 

buffer 15 minutes before starting the tank blot. Sandwiches were mounted on the Mini 

Trans-Blot® system (Bio-Rad, Munich, Germany) and the chamber was filled with ice-

cold 1x tank buffer. Additionally, a cooling pack was inserted to avoid excessive heat. 

Transfers were performed at 4°C, 100 V for 90 min. 

Table 8  Tank blotting buffer 

5x Tank buffer  1x Tank buffer 

Tris base 240 mM  5x Tank buffer  20%

Glycine 195 mM Methanol 20%

H2O  H2O 

2.4.5 Protein detection 

Prior to the immunological detection of the relevant proteins, unspecific protein binding 

sites were blocked. For this purpose, the membrane was incubated for 2 h at room 

temperature in either non-fat dry milk powder 5% (Blotto) or BSA 5%. Afterwards, the 

membrane was incubated with the respective primary antibody at 4°C overnight. 

Subsequent to four washing steps with PBS containing 0.1% Tween® 20 (PBS-T), the 

membrane was incubated with the secondary antibody, followed by four additional 

washing steps. All incubation steps were performed under gentle agitation. For protein 

visualization, two different methods have been used depending on the labels of the 

secondary antibodies: enhanced chemiluminescence or infrared imaging. 
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2.4.5.1 Enhanced chemiluminescence 

Membranes were incubated for 2 h with the HRP-conjugated secondary antibody. In 

order to detect protein bands, luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) was 

used as a substrate. The membrane was incubated with ECL (enhanced 

chemiluminescence) solution for 1 minute (ECL Plus Western Blotting Detection 

Reagent RPN 2132, GE Healthcare, Munich, Germany). Protected from light, the 

membrane was exposed to an X-ray film (Super RX, Fuji, Düsseldorf, Germany), which 

detected the arising luminescence. Subsequently, the film was developed using the 

Curix 60 Developing system (Agfa-Gevaert AG, Cologne, Germany). 

2.4.5.2 Infrared imaging 

A secondary antibody coupled to Alexa Fluor®
 680 with emission at 700 nm was used. 

Membranes were incubated for 1 h. The incubation as well as the washing procedure 

were performed protected from light. Protein bands of interest were detected utilizing 

the Odyssey imaging system (Li-COR Biosciences, Lincoln, NE). 

Table 9  Primary antibodies 

Antigen Source Dilution In Provider 

β-actin  mouse monoclon. 1:1,000 Blotto 5% Millipore 

phos.-MLC2T18/S19 rabbit polyclon. 1:1,000 BSA 5% Cell Signaling 

Table 10 Secondary antibodies 

Antibody Dilution In Provider 

Alexa Fluor® 680 goat anti-mouse IgG 1:20,000 Blotto 1% Molecular Probes 

Goat anti-rabbit HRP 1:10,000 Blotto 1% Dianova 

2.4.5.3 Quantification 

The intensity of Western blot bands detected with enhanced chemiluminescence was 

quantified using the ImageJ Gel analyzer (Version 1.43q; NIH, Bethesda, MD, USA).  

Analysis of bands obtained from infrared imaging was performed with the Quant Data 

function of the Odyssey software (Odyssey 2.1, Infrared Imaging system, Li-COR 

Biosciences, Lincoln, NE). 
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2.5 Macromolecular permeability assay 

HMECs were grown to confluency on collagen G-coated 12-well Transwell® inserts 

(pore size 0.4 μm; Corning, New York, NY, USA). At t = 0 min, fluorescein 

isothiocyanate (FITC)-dextran (40 kDa; 1 mg/ml; Sigma-Aldrich, Taufkirchen, 

Germany) was added to the upper compartment of the Transwell® plates and cells 

were treated as indicated. Out of the lower compartment, samples were taken at  

t = 0/5/10/15/30/60 min. To analyze the fluorescence increase of the samples  

(ex: 485 nm, em: 535 nm), a SpectraFluorPlus plate reader (Tecan, Crailsheim, 

Germany) was used. Mean fluorescence of samples from untreated cells at t = 60 min 

was defined as 1.0. Data are expressed as percent increase of fluorescence versus 

control. 

Figure 6  Scheme of a Transwell® insert with a HMEC monolayer 

2.6 Immunocytochemistry and confocal laser scanning 
microscopy 

A Zeiss LSM 510 META confocal microscope (40x oil objective, Zeiss, Oberkochen, 

Germany) was used to obtain immunofluorescence images of fixed cells. 

HUVECs were grown to confluency in 8-well μ-slides (ibiTreat, ibidi GmbH, 

Martinsried, Germany). Cells were treated as indicated, washed with warm PBS+ 

Ca2+/Mg2+ and fixed with 10% Accustain® paraformaldehyde (Sigma-Aldrich, 

Taufkirchen, Germany) at room temperature for 10 min. After three washing steps with 

PBS, HUVECs were permeabilized for 2 min with 0.2% Triton X-100. Again, cells were 

washed three times and subsequently incubated for 20 min with 0.2% BSA to block 

unspecific binding. Thereafter, cells were incubated over night with the primary 

antibodies in 0.2% BSA at 4°C. Following three washing steps with PBS, cells were 

incubated for 1 h at room temperature with the respective AlexaFluor®-labeled 

secondary antibodies or rhodamine-phalloidin for F-actin staining in 0.2% BSA. Finally, 

preparations were again washed three times with PBS, embedded in FluorSaveTM 

upper compartment

HMECs

Transwell® insert

FITC-dextran 40 kD

microporous membrane

lower compartment
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Reagent mounting medium (Merck, Darmstadt, Germany) and covered with 8 mm x  

8 mm glass coverslips (custom made by Helmut Saur Laborbedarf, Reutlingen, 

Germany). Slides were stored at 4°C protected from light. 

Table 11  Primary antibodies 

Antigen Source Dilution In Provider 

phos.-cortactinY421 rabbit polyclon. 1:400 BSA 0.2% Cell Signaling 

VE-cadherin mouse monoclon. 1:400 BSA 0.2% Santa Cruz 

Table 12  Secondary antibodies 

Antibody/dye Dilution In Provider 

Alexa Fluor® 488 goat anti-rabbit IgG 
(H+L) 

1:400 BSA 0.2% Molecular Probes 

Alexa Fluor® 633 goat anti-mouse IgG 
(H+L) 

1:400 BSA 0.2% Molecular Probes 

rhodamine-phalloidin 1:400 BSA 0.2% Molecular Probes 

2.7 Patch clamp recordings 

The patch clamp recordings were kindly performed by Dr. Oleksandr Bondarenko in the 

lab of Prof. Graier (Institute for Molecular Biology and Biochemistry, Medical University 

Graz, Austria). 

HUVECs were grown on glass coverslips. Membrane potential was recorded by patch-

clamp technique in a current-clamp mode using a List EPC7 amplifier (List, Germany). 

Borosilicate glass pipettes were pulled with a Narishige puller (Narishige Co. Ltd, 

Tokyo, Japan), fire-polished and had a resistance of 4–5 MΩ. The signals obtained 

were digitized with a sample rate of 10 Hz utilizing a Digidata 1200A A/D converter 

(Axon Instruments, Foster City, CA, USA). Data collection and analysis were performed 

with the Clampex and Clampfit software of pClamp (version 8.2, Axon Instruments). 

Figures show representative traces of a single cell measurement obtained from one 

adjacent cell out of a cell cluster. For K+-free measurements, the standard external 

solution was adapted to 150 mM NaCl to compensate the absence of KCl whereas all 

the other constituents remained unchanged. 
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Table 13  Buffers for patch-clamp measurements 

Standard external solution  
(ph 7.4/NaOH) 

 Solution filled in patch pipette 
(ph 7.2/KOH) 

NaCl 145 mM  Potassium aspartate  100 mM

KCl 5 mM KCl 40 mM

MgCl2 1.2 mM HEPES 10 mM

HEPES 10 mM  MgCl2 1 mM

Glucose 10 mM  EGTA 0.2 mM

CaCl2 2.4 mM  H2O 

H2O   

2.8 Calcium imaging 

To analyze cellular calcium responses, two different methods were used:  

Fura-2 calcium imaging and FRET-based calcium measurements. 

Table 14  Frequently used agonists/antagonists of endothelial Ca2+-signaling 

Agonist/antagonist  

2-APB66 IP3 R antagonist 

BHQ67 Reversible SERCA antagonist 

Histamine68 H1 R agonist 

Thapsigargin67 Irreversible SERCA antagonist 

Thrombin69 PAR1 agonist 

U7312270 PLC antagonist 

Table 15  Buffers for Ca2+ measurements 

Ca2+-containing HEPES buffer  
(pH 7.4/NaOH) 

 Ca2+-free HEPES buffer  
(pH 7.4/NaOH) 

CaCl2 2 mM  NaCl 138 mM

NaCl 138 mM  MgCl2 1 mM

MgCl2 1 mM KCl 5 mM

KCl 5 mM HEPES 10 mM

HEPES 10 mM  EGTA 1 mM

Glucose 10 mM  Glucose 10 mM

H2O  H2O 
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Ca2+-containing 0 Na+ HEPES buffer 
(pH 7.4/KOH) 

 Ca2+-free 0 Na+ HEPES buffer  
(pH 7.4/KOH) 

CaCl2 2 mM  Choline chloride 138 mM

Choline chloride 138 mM  MgCl2 1 mM

MgCl2 1 mM KCl 5 mM

KCl 5 mM HEPES 10 mM

HEPES 10 mM  EGTA 1 mM

Glucose 10 mM  Glucose 10 mM

H2O  H2O 

 

EA.hy926-loading buffer 
(pH 7.35/NaOH) 

CaCl2 2 mM

Choline chloride 135 mM

MgCl2 1 mM

KCl 5 mM

HEPES 10 mM

NaHCO3 2.6 mM

KH2PO4 0.44 mM

Na2HPO4 0.34 mM

MEM amino acids 50x 2%

MEM vitamins 100x 1%

Glucose 10 mM

L-Glutamine 2 mM

Penicillin/Streptomycin 1%

Amphotericin B 1%

H2O 

2.8.1 Fura-2 measurements 

Changes of cytosolic calcium concentrations were detected ratiometrically using the 

fluorescent dye Fura-2.71 Upon calcium binding, the excitation maximum of Fura-2 is 

shifted from 380 nm to 340 nm, whereas the emission wavelength remains unchanged 

(510 nm). The emission ratio of 340/380 is directly correlated to the amount of cytosolic 

calcium. For measurements, a membrane-permeable derivative called Fura-2-

acetoxymethyl ester (Fura-2-AM) was applied. Having crossed the cell membrane, 
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Fura-2-AM is cleaved through cellular esterases resulting in the generation of Fura-2, 

which is consequently trapped in the cell. 

A static tempered and a perfusion system were used for Fura-2 measurements.  

2.8.1.1 Perfusion system 

The author performed all EA.hy926 cell calcium measurements at Prof. Graier’s lab 

(Institute for Molecular Biology and Biochemistry at Medical University Graz, Austria). 

Graier’s experimental setup of the perfusion system was adopted and successfully 

established at Prof. Vollmar’s lab by the author. Thereafter, HUVEC measurements 

were carried out in Munich.  

All experiments were performed at room temperature (20-23°C). HUVECs were 

cultured on glass coverslips (Ø 42 mm, Helmut Saur Laborbedarf, Reutlingen, 

Germany), loaded for 45 min in the dark with 4 μM Fura-2-AM (Biotrend, Cologne, 

Germany) in HEPES-buffered solution and washed twice. For further procedures the 

coverslips were mounted into an experimental chamber and perfused (1 ml/min, 

ismatec MS-reglo peristaltic pump/2 stop tubing Tygon R3607 ID 2.06 mm, IDEX 

Health & Science GmbH, Glattbrugg, Germany) with the appropriate HEPES-buffered 

solution. Fluorescence measurements (ex: 340/380 nm, em: 510 nm) were obtained by 

a Zeiss Axiovert 200 inverted microscope (40x objective) with a Polychrome  

V monochromator and an IMAGO-QE camera (TILL Photonics). Images were acquired 

every 3 s and analyzed with the TILLvisION Software 4.0.1.2 (TILL Photonics). Each 

data point of the graph was calculated from nine randomly chosen cells out of a 

uniform confluent cell monolayer. F340/F380 values of these nine cells are expressed as 

mean  S.E.M. One representative plot of each graph is shown for clarity. At least three 

independent experiments (with not less than three replicates per treatment) using 

different HUVEC preparations were performed. 

In case of EA.hy926 cell measurements, 6 glass coverslips (Ø 30 mm, Paul Marienfeld 

GmbH & Co.KG, Lauda Königshofen, Germany) were loaded simultaneously for 45 min 

in the dark with 4 μM Fura-2-AM in EA.hy926-loading buffer. Cells were washed twice 

and kept in loading buffer at room temperature protected from light until measurement. 

The perfusion rate amounted to 2 ml/min. For data acquisition, a Zeiss Axiovert 200 M 

(40x oil objective, Zeiss) microscope, a polychromator illumination system (VisiChrome 

High Speed, Xenon lamp, Visitron Systems, Puchheim, Germany) and a 

thermoelectric-cooled CCD camera (Photometrics Coolsnap HQ, Visitron Systems) 
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were utilized. Data recordings and analysis were achieved by VisiView 2.0.6 (Universal 

Imaging, Visitron Systems, Puchheim, Germany). Experiments were performed once 

with at least three replicates per treatment. 

2.8.1.2 Static tempered system  

Experiments were performed at 37°C. HUVECs were grown to confluency on ibidi  

8-well µ-slides (ibiTreat, ibidi GmbH) and incubated for 30 min with 2 μM Fura-2-AM in 

HEPES buffer, washed twice, and treated as indicated. Fluorescence measurements 

were obtained using an incubator in addition to the identical technical equipment as 

described above. For each sample, a total period of 30 min with images being acquired 

every 5 s was analyzed with the TILLvisION Software 4.0.1.2 (TILL Photonics). Each 

data point of the different graphs was calculated from a randomly chosen rectangle 

containing at least 20 adjacent cells, of which mean values are expressed. One 

representative plot of each graph is shown for clarity. At least three independent 

experiments (with at least two replicates per treatment) using different HUVEC 

preparations were performed. 

2.8.2 FRET analysis using D1ER 

All FRET analyses were performed by the author in Prof. Graier’s lab. 

In this study, we took advantage of fluorescence resonance energy transfer (FRET) to 

detect alterations in the free Ca2+ concentration of the endoplasmic reticulum (ER) 

using the D1ER cameleon.72-74 The D1ER plasmid contains a mutant calmodulin 

(CaM)/skeletal muscle myosin light chain kinase (skMLCK) pair that is cloned between 

ECFP (donor) and citrine (acceptor). Moreover, a calreticulin signal sequence and a 

KDEL (lysine, aspartic acid, glutamic acid, leucine) ER-retention tag are inserted to 

facilitate an effective and specific localization of the construct inside the ER. Upon 

Ca2+-binding, CaM wraps around M13 (CaM binding peptide of skMLCK) leading to a 

conformational change of the construct which in turn allows FRET.  

For measuring FRET, cells were excited at 420 nm (ECFP) and the emitting 

fluorescence of ECFP (480 nm) as well as citrine (535 nm) were recorded to calculate 

the emission ratio of both wavelengths. This ratio is correlated to the free [Ca2+]ER. 
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2.8.2.1 Cell transfection 

For transfection experiments, cDNA for D1ER was inserted into a pcDNA3 vector 

(Invitrogen, Karlsruhe, Germany). HUVECs and EA.hy926 cells were plated on glass 

coverslips (Ø 30 mm, cultured in 6-well plates) to approximately 80% confluency and 

transiently transfected with the plasmid DNA using the TransFastTM (Promega, Vienna, 

Austria) transfection reagent. For this purpose, 1.5 µg DNA per each 6-well were 

diluted in 1 ml transfection medium (HUVEC: M199, EA.hy926: DMEM without 

Pen/Strep, AmB), mixed with 4 µl TransFastTM reagent and incubated for 15 min at 

room temperature. Meanwhile, cells were washed once with transfection medium to 

exclude remaining FCS and antibiotics. Then, medium was removed and cells were 

incubated for 1 h with 1 ml of the transfection mixture at 37°C. Thereafter, 1 ml of pre-

warmed culture medium was added per well. 4-5 h later, this medium mixture was 

aspirated and replaced by 2 ml of culture medium. Experiments were performed 48 h 

(EA.hy926 cells: 24 h) after transfection.  

2.8.2.2 FRET measurements 

Transfected cells were washed twice, transferred into the experimental chamber, 

perfused (2 ml/min) with HEPES-buffered solution and treated as indicated. 

Images were obtained by using a Zeiss Axiovert 200 M (40x oil objective, Zeiss) 

microscope, a polychromator illumination system (VisiChrome High Speed, Xenon 

lamp, Visitron Systems, Puchheim, Germany) and a thermoelectric-cooled CCD 

camera (Photometrics Coolsnap HQ, Visitron Systems). D1ER-expressing cells were 

excited at 420 nm (high speed monochromator, Visitron Systems) and emission was 

recorded at 480 and 535 nm. Emission filters were adjusted through a filter-wheel 

(MAC 6000, Ludl Electronic Products, Hawthorne, NY, USA). Devices were controlled 

and data were recorded by VisiView 2.0.6 (Universal Imaging, Visitron Systems, 

Puchheim, Germany). To compensate the signal decay in the F535/F480 ratio during 

the experiments, which was probably due to photobleaching or photochromism of 

D1ER, the changes of the ER Ca2+ concentration were expressed as (F535/F480)/R0. 

Cells were analyzed individually. The graph represents the result of one single cell 

measurement. Each run was repeated several times within the same experiment.  

Three independent experiments using different HUVEC preparations were performed. 

For EA.hy926 cells, experiments were performed once with at least three replicates per 

treatment. 
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2.9 Statistical analysis 

Bar graph data are standardized to control measurements and expressed as mean  

 S.E.M. Each experiment was at least performed three times. In case of HUVECs, a 

different preparation (i.e. cells from a different donor) was utilized each time. The 

precise number of independently performed experiments is noted in the respective 

figure legend. Statistical analysis was performed using the GraphPad Prism software 

version 5.04 (GraphPad Software, San Diego, CA, USA). To compare only two 

different groups, a paired t-test was performed. For analyzing three or more groups, a 

one-way analysis of variance (ANOVA) followed by a Newman-Keuls post-test was 

carried out. Statistical significance was assumed if p  0.05.  



 

3 RESULTS 
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3.1 Mechanisms of WS® 1442-induced Ca2+-signaling in 
endothelial cells 

Our group previously demonstrated that WS® 1442 preincubation prevents thrombin-

induced Ca2+ response in HUVECs.2 In the present study, we hypothesized that  

WS® 1442 preincubation per se elevates calcium baseline levels. Therefore, the first 

aim of this study was to explore the mechanisms of how WS® 1442 affects [Ca2+]i in the 

human endothelium. 

3.1.1 WS® 1442 elevates cytosolic Ca2+ levels in human 

endothelial cells 

We investigated the basic impact of WS® 1442 on cytosolic Ca2+ levels in HUVECs 

(Figure 7). After a lag time of 5 min, WS® 1442 clearly augmented [Ca2+]i, which finally 

reached a plateau value after 30 min of treatment. In contrast to untreated cells, which 

show the typical Ca2+ response caused by the hyperpermeability-inducing factor 

histamine, WS® 1442 treatment abrogated the histamine-evoked Ca2+ signal.  

Figure 7  WS® 1442 increases [Ca2+]i and prohibits a histamine-evoked Ca2+ response. The 
change of [Ca2+]i was monitored using Fura-2-AM-loaded HUVECs in a perfusion system. Cells were 
treated for 30 min with WS® 1442 (100 µg/ml, grey line) in HEPES buffer or were left untreated (black line). 
At the end, histamine (100 µM) was added.  

To clarify the reversibility of this observed phenomenon, cells were pretreated with 

WS® 1442 for 24 h (Figure 8, grey line). However, even after this pretreatment, freshly 

added WS® 1442 was still able to induce the same calcium response. Again, histamine 

could not change the elevated Ca2+ signal. Also base levels did not show any 

difference, pointing towards a reversible effect.  
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Figure 8  WS® 1442 reversibly increases [Ca2+]i. The change of [Ca2+]i was monitored using Fura-2-
AM-loaded HUVECs in a perfusion system. Cells were pretreated with WS® 1442 (100 µg/ml) for 24 h  
(24 h pretreated) or left untreated (not pretreated). Afterwards, cells were treated with WS® 1442 (30 min,  
100 µg/ml) in HEPES buffer or left untreated. At the end, histamine (100 µM) was added.  

 

Importantly, the rise of [Ca2+]i was concentration-dependently starting at the lowest 

effective concentration of 20 µg/ml and reaching saturation between 80-100 µg/ml  

(Figure 9). Therefore, WS® 1442 was applied at 100 µg/ml for all further experiments. 

Interestingly, also the onset of the Ca2+ signal was affected: higher concentrations led 

to an earlier onset. 

Figure 9  WS® 1442 causes a concentration-dependent increase of [Ca2+]i. The change of [Ca2+]i 
was monitored using Fura-2-AM-loaded HUVECs in a perfusion system. Cells were perfused with different 
concentrations (10-100 µg/ml) of WS® 1442 in a Ca2+-containing buffer (n = 3). 

Hence, we conclude that WS® 1442 concentration-dependently increases [Ca2+]i and 

inhibits an additional histamine-induced Ca2+ response. 
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3.1.2 WS® 1442 does neither influence endothelial barrier 

function nor endothelial cell contraction 

A rise of [Ca2+]i can trigger actomyosin mediated cell contraction leading to an increase 

of endothelial permeability.75 To check whether WS® 1442 alters basal permeability, 

macromolecular permeability assays were performed. However, WS® 1442 did not 

affect endothelial barrier function (Figure 10) in contrast to the typical [Ca2+]i-increasing 

agents thrombin and thapsigargin (irreversible SERCA inhibitor), which clearly induced 

hyperpermeability.76,77  

A B 

Figure 10  WS® 1442 does not induce endothelial hyperpermeability. A macromolecular 
permeability assay was performed. HMECs were treated with either WS® 1442 (100 µg/ml), thrombin  
(3 U/ml), thapsigargin (1 µM) or were left untreated. (A) One representative image illustrating the time 
course is shown. (B) Data are expressed as mean  S.E.M. at t = 60 min. *, p  0.05 vs. control (n = 5). 

 

WS® 1442 did also not influence endothelial cell contraction (i.e. contractile machinery), 

as indicated by Western blot analysis of the phosphorylation (Thr18/Ser19) status of 

myosin light chain 2 (MLC2). Thrombin and thapsigargin clearly increased MLC 

activation. 
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A B 

Figure 11  WS® 1442 does not increase the amount of phosphorylated myosin light chain (MLC). 
The phosphorylation status of MLC was investigated by Western blot analysis using a phospho-T18/S19-
MLC2 antibody. HUVECs were treated for 30 min with thrombin (1 U/ml), thapsigargin (1 µM), WS® 1442 
(100 µg/ml) or were left untreated. (A) One representative Western blot is shown. (B) Data are expressed 
as mean  S.E.M (n = 3). 

 

Thus, WS® 1442 does not influence basal endothelial barrier function or endothelial cell 

contraction, which is in striking contrast to typical [Ca2+]i-elevating agents. 

3.1.3 Cell viability is not affected by WS® 1442 

A rise of [Ca2+]i could be a result of cellular stress induced by WS® 1442.78,79 To clarify 

if HUVECs were stressed upon WS® 1442 application, we studied various hallmarks of 

cell vitality, such as ATP content, cell membrane integrity and cellular metabolic 

activity. The endothelial ATP content did not change upon WS® 1442 (100 µg/ml) 

exposition within 15-60 min (Figure 12A). Moreover, even after long-term treatment  

(24 h) WS® 1442 (1-100 µg/ml) did not alter the percentage of cells with an intact 

plasma membrane (trypan blue dye exclusion, Figure 12B). At this, the detergent  

Triton X-100 served as a positive control. In addition, the metabolic activity of HUVECs 

was also not influenced by WS® 1442 (1-100 µg/ml) after 24 h (CellTiter-Blue® assay, 

Figure 12C).  

 

These results demonstrate that WS® 1442 does not impair endothelial cell vitality. 
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A 

B 

C 

Figure 12  WS® 1442 does not impair cell viability. (A) WS® 1442 does not modify the cellular ATP 
content. Cells were treated with WS® 1442 (100 µg/ml) for 15, 30 or 60 min. Control cells were left 
untreated. ATP contents were determined. Data are expressed as mean  S.E.M. *, p  0.05 (n = 3).  
(B) WS® 1442 does not alter the proportion of intact cells. For 24 h, cells were either treated with different 
concentrations of WS® 1442 (1, 10, 100 µg/ml) or left untreated and a trypan blue staining was performed. 
The positive control was incubated with Triton X-100 (0.2%) just before staining. Data are expressed as 
mean  S.E.M. *, p  0.05 (n = 3). (C) The metabolic activity of HUVECs is not changed due to WS® 1442 
treatment. Cells were treated with different concentrations of WS® 1442 (1-100 µg/ml) for 24 h and the 
CellTiter-Blue® assay was performed. Fluorescence intensity of the reduced dye, which correlates to the 
number of viable cells, was determined. Data are expressed as mean  S.E.M. *, p  0.05 (n = 3). 
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3.1.4 WS® 1442 does not interfere with the endothelial  

Na+/K+-ATPase 

WS® 1442 was reported to interfere with the Ca2+ response in cardiomyocytes by 

blocking the Na+/K+-ATPase similar to the mode of action of cardiac glycosides.18 

Information about an influence of WS® 1442 on endothelial Na+/K+-ATPase is not 

available. Using patch clamp technique, we investigated whether WS® 1442 affects the 

resting membrane potential of ECs, which is mainly controlled by this ATPase. As 

mentioned under 2.7, all patch clamp measurements were performed by Dr. Oleksandr 

Bondarenko. WS® 1442 transiently depolarized ECs by approx. 4 mV (Figure 13A). In 

comparison, the cardiac glycoside ouabain, used at a concentration sufficient to block 

both α1 and α2 ion-transporting subunits of the Na+/K+-ATPase,80 depolarized the cells 

by approx. 10 mV (Figure 13A). Additional administration of WS® 1442 on an already 

ouabain-depolarized membrane potential had no further influence (Figure 13B).  

A B 

Figure 13  WS® 1442 differently affects endothelial membrane potential compared to ouabain. 
The membrane potential of HUVECs was recorded using patch clamp technique. (A) WS® 1442 only 
slightly depolarizes membrane potential in contrast to ouabain. HUVECs were treated with WS® 1442  
(100 µg/ml) for 430 s. After washing out, ouabain (100 µM) was applied (n = 5). (B) WS® 1442 does not 
alter an already ouabain-depolarized membrane potential. 1 min after starting the run, HUVECs were 
treated with ouabain (100 µM). 3 min later, WS® 1442 (100 µg/ml) was added. At the end, both agents 
were washed out (n = 6). 

 

Employing a K+ deprivation/readdition protocol (Figure 14), removal of extracellular K+, 

i.e. inhibition of the ATPase, caused a strong endothelial cell depolarization by approx.  

11 mV. Accordingly, K+ readdition, which reestablished the functionality of the ATPase, 

repolarized the cell membrane. WS® 1442 did only marginally affect this repolarization 

process.  
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Figure 14  WS® 1442 does not inhibit Na+/K+-ATPase in HUVECs. The membrane potential of 
HUVECs was recorded using patch clamp technique. Cells were perfused with K+-free buffered solution for 
approximately 2 min. After K+ readdition (2 min), external K+ was removed again. 2 min later, cells were 
treated with WS® 1442 (100 µg/ml). After 1.5 min, external K+ was added whilst WS® 1442 treatment 
remained (n = 5). 

 

Finally, we tested whether inhibition of the Na+/K+-ATPase by ouabain affects [Ca2+]i in 

the endothelium. As shown in Figure 15, ouabain – irrespective of the used 

concentration – did not alter [Ca2+]i.  

Figure 15 Ouabain does not affect [Ca2+]i in HUVECs. The change of [Ca2+]i was monitored using 
Fura-2-AM-loaded HUVECs in a tempered static system. 1 min after starting the measurement, ouabain 
(10 or 100 µM) was added. Control cells were left untreated (10 µM: n = 3, 100 µM: n = 2). 

 

Therefore, our data suggest that WS® 1442 does not evoke the profound increase of 

[Ca2+]i by targeting the endothelial Na+/K+-ATPase. 
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3.1.5 WS® 1442 increases [Ca2+]i by emptying the ER with two 

different mechanisms involved 

Under nominally Ca2+-free conditions, WS® 1442 was still able to raise [Ca2+]i  

(Figure 16, black line), suggesting that the increase of [Ca2+]i is generated by 

intracellular calcium stores. The ER represents the main intracellular Ca2+ store. We 

depleted the ER by a combination of the IP3-generating agonist histamine and the 

SERCA pump inhibitor BHQ. Then, histamine was removed and WS® 1442 was added, 

whilst BHQ was permanently present to prevent ER refilling. Upon store depletion,  

WS® 1442 was no longer able to affect cytosolic Ca2+ levels (Figure 16, grey line).  

Figure 16  Having depleted the ER by the combination of histamine/BHQ, WS® 1442 is no longer 
able to increase [Ca2+]i. The change of [Ca2+]i was monitored using Fura-2-AM-loaded HUVECs in a 
perfusion system. Cells were treated with a combination of histamine (100 µg/ml)/BHQ (15 µM) in EGTA-
containing (thus Ca2+-free) buffer. After removing only histamine, WS® 1442 (100 µg/ml) was added. 
Control cells (black line) were only treated with WS® 1442 (100 µg/ml) (n = 4). 

 

Single cell Ca2+-imaging FRET experiments were carried out in D1ER-expressing 

endothelial cells to verify the involvement of the ER. In a Ca2+-containing environment, 

WS® 1442 clearly depleted the ER (Figure 17, grey line). Removal of calcium during a 

continuing WS® 1442 perfusion did not alter the signal. This behavior was similar to 

that of BHQ-treated cells, which served as control (Figure 17, black line). Interestingly, 

after removing WS® 1442 and switching to a Ca2+-containing buffer, an ER refilling 

could not be observed, pointing towards an irreversible SERCA inhibition (at least 

during observation). In contrast, ER refilling immediately started when the reversible 

SERCA inhibitor BHQ was eliminated.  
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Figure 17  WS® 1442 depletes the ER and prohibits its refilling. [Ca2+]ER was measured using FRET 
technique. D1ER transfected HUVECs were treated with either WS® 1442 (100 µg/ml, grey line) or BHQ 
(15 µM, black line) in Ca2+-containing buffer. After 9.5 min, Ca2+ was removed by switching into EGTA-
containing buffer. Approx. 4.5 min later, BHQ or WS® 1442 was removed and Ca2+ was added (n = 3). 

 

Besides SERCA inhibition, the ER is well known to be depleted in endothelial cells by 

activating the IP3 receptor, too.47 Thus, we applied two different inhibitors of the IP3 

pathway: 2-APB (Figure 18A), an antagonist of the IP3 receptor, and U73122  

(Figure 18C), which blocks the formation of IP3 by phospholipase C (PLC) inhibition. If 

endothelial cells were preincubated with these inhibitors in a Ca2+-free buffer, the  

WS® 1442-triggered increase of [Ca2+]i was either reduced (Figure 18A, grey line) or 

decelerated (Figure 18C, grey line) compared to control measurements (black lines). 

Functionality of these inhibitors was proven by confirming their inhibitory action on a 

[Ca2+]i increase evoked by histamine (Figure 18B/D).  
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C D 

Figure 18  Pharmacological interaction with the IP3 pathway alters the WS® 1442-evoked rise of 
[Ca2+]i. The change of [Ca2+]i was monitored using Fura-2-AM-loaded HUVECs in a perfusion system. 
Cells were pretreated with either 2-APB (A, 100 µM, 15 min, grey line) or U73122 (C, 1 µM, 10 min, grey 
line) in EGTA-containing buffer or were left untreated (black line). Subsequently, WS® 1442 (100 µg/ml) 
was added (n = 3). (B, D) Functionality of each inhibitor is demonstrated using histamine (100 µM). 

 

We conclude that WS® 1442 increases [Ca2+]i by a dual mechanism: It blocks SERCA 

and activates the IP3 pathway. 

3.1.6 WS® 1442 inhibits store-operated Ca2+ entry and Ca2+ 

extrusion capacity 

After a lag time of approx. 5 min, WS® 1442 clearly increased [Ca2+]i in a Ca2+-

containing as well as in a Ca2+-free (EGTA) buffer (Figure 19). The plateau values, the 

onset of the Ca2+ signal, and the areas under the curve were identical for the different 

buffers. This confirms that the WS® 1442-evoked rise of [Ca2+]i does not depend on the 

extracellular [Ca2+].  
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Figure 19  WS® 1442 induces a Ca2+ response that is independent of the extracellular [Ca2+]. The 
change of [Ca2+]i was monitored using Fura-2-AM-loaded HUVECs in a perfusion system. HUVECs were 
treated with WS® 1442 (100 µg/ml) for 21 min in Ca2+-containing (black line) or Ca2+-free (grey line) buffer 
(n = 3). (A) One representative graph is shown. (B) Area under the curve was calculated taking into 
account all single graphs of Ca2+-containing and Ca2+-free measurements out of 3 independent 
experiments. The averaged area under the ratiometric signal was normalized to 100% for the Ca2+-
containing results. Data are expressed as mean  S.E.M. *, p  0.05 (n = 3). 

 

In contrast, histamine-treated cell recordings highlight the strong difference between 

Ca2+-containing and Ca2+-free measurements: In the Ca2+-free buffer, the lack of SOCE 

prevented the development of an elevated plateau phase (Figure 20A). This effect 

could be mimicked by pretreating endothelial cells for 24 h with WS® 1442: Applying 

histamine to these pretreated cells in a Ca2+-containing buffer did no longer cause the 

typical [Ca2+]i plateau, suggesting an irreversible SOCE inhibition (Figure 20B).  
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Figure 20  Histamine application on WS® 1442-pretreated cells in HEPES buffered solution 
imitates a Ca2+-free measurement. The change of [Ca2+]i was monitored using Fura-2-AM-loaded 
HUVECs in a perfusion system. (A) Histamine induces a Ca2+ response, which depends on the 
extracellular [Ca2+]. HUVECs were treated with histamine (100 µM) for 21 min in Ca2+-containing (black 
line) or Ca2+-free (grey line) buffer, respectively (n = 3). (B) WS® 1442 blocks store-operated calcium entry 
in an irreversible manner. Cells were pretreated for 24 h with WS® 1442 (100 µg/ml) or only with vehicle 
(not pretreated). 1 min after starting the measurement, cells were perfused with histamine (100 µM)-
containing buffer (n = 4). 

 

Furthermore, we found that the addition of extracellular Ca2+ does not alter the 

increased [Ca2+]i levels upon application of WS® 1442 in a Ca2+-free buffer (Figure 21, 

red line). This is in obvious contrast to BHQ-treated cells, which exhibited a clear 

SOCE due to the readdition of extracellular Ca2+ (Figure 21, black line). Combining 

both treatments by preincubating HUVECs with the SERCA inhibitor BHQ in a Ca2+-

free buffer before adding WS® 1442 also prevented SOCE after Ca2+ readdition  

(Figure 21, grey line).  
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Figure 21  WS® 1442 prohibits BHQ-induced SOCE. The change of [Ca2+]i was monitored using 
Fura-2-AM-loaded HUVECs in a perfusion system. In EGTA-containing buffer, HUVECs were treated with 
either BHQ (15 µM, black line), WS® 1442 (100 µg/ml, red line) or a combination of both (grey line), 
thereby preincubating the cells for 8.5 min with BHQ. At the end, external Ca2+ was added by switching to 
normal buffer (n = 3). 

Besides the influence of WS® 1442 on Ca2+ influx, we investigated if the Ca2+ efflux is 

affected as well. We observed that WS® 1442-induced increase of [Ca2+]i clearly 

remained at an elevated level even after extracellular Ca2+ had been removed  

(Figure 22, grey line). This is in striking contrast to histamine: Ca2+ removal clearly 

lowered [Ca2+]i down to basal levels (Figure 22, black line).  

Figure 22  WS® 1442 prohibits the Ca2+ extrusion of HUVECs. The change of [Ca2+]i was monitored 
using Fura-2-AM-loaded HUVECs in a perfusion system. Cells were treated with either histamine  
(100 µM, black line) or WS® 1442 (100 µg/ml, grey line) in HEPES buffer. 16.5 min later, extracellular Ca2+ 
was removed by changing the buffer solution to an EGTA-containing buffer (n = 3). 
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Thus, WS® 1442 prevents the wash out of augmented Ca2+ levels in ECs, which 

explains why the signal remains at an elevated range in the plateau phase even in 

Ca2+-free measurements. Obviously, Ca2+ is trapped within the cell at least in the time 

frame of our experiment, i.e. for more than 10 min. Nevertheless, after 24 h we 

routinely observed normal baseline [Ca2+]i levels even in a Ca2+-containing buffer as 

shown in Figure 8 and Figure 20B.  

These results suggest that WS® 1442 inhibits Ca2+ extrusion capacity and - despite its 

ER-depleting action - does not induce SOCE. Moreover, WS® 1442 even irreversibly 

prevents agonist-induced SOCE. 

3.1.7 WS® 1442 induced Ca2+-signaling in EA.hy926 cells 

Further research in this project will depend on the successful transfection of plasmids 

or siRNA into endothelial cells, which strongly limits the usage of primary HUVECs. 

EA.hy926 cells – easily to be transfected – represent a very well established cell line to 

investigate endothelial Ca2+-signaling. Several selected key experiments were 

performed in EA.hy926 cells to check their response to WS® 1442 treatment.  

3.1.7.1 WS® 1442 increases cytosolic Ca2+ levels and inhibits Ca2+ extrusion 
capacity in EA.hy926 cells 

WS® 1442 immediately increased [Ca2+]i in a peak-plateau shaped manner  

(Figure 23A). Moreover, we detected that the WS® 1442-induced rise of [Ca2+]i clearly 

remained on elevated levels when extracellular Ca2+ had been removed. Even if the 

extract had been excluded, Ca2+ levels still persisted in the elevated status. We further 

investigated this phenomenon. We applied WS® 1442 during the very strong histamine-

induced plateau phase which prevented Ca2+ extrusion after removal of external Ca2+ 

(Figure 23B, grey line) in contrast to control measurements (Figure 23B, black line). In 

a Na+-free environment, the Na+/Ca2+-exchanger is deactivated and consequently, Ca2+ 

extrusion can only be generated by the plasma membrane Ca2+ ATPase (PMCA). 

Figure 23C clearly illustrates that Ca2+ extrusion was strongly inhibited in Na+-free 

buffer. 
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 A      B 

C 

Figure 23  WS® 1442 influences [Ca2+]i in EA.hy926 cells. The change of [Ca2+]i was monitored 
using Fura-2-AM-loaded EA.hy926 cells in a perfusion system. (A) WS® 1442 immediately increases 
[Ca2+]i in EA.hy926 cells. Cells were treated with WS® 1442 (100 µg/ml) in HEPES buffer. 5 min later, 
external buffer was changed into an EGTA-containing buffer. After 4 min, the extract was removed (n = 1).  
(B) WS® 1442 inhibits Ca2+ extrusion capacity. Cells were treated with histamine (100 µM) in HEPES 
buffer. After 5 min, WS® 1442 (100 µg/ml) was added and 6 min later, external Ca2+ was removed. Control 
cells (black line) were only treated with histamine (100 µM) (n = 1). (C) WS® 1442 alters Ca2+ extrusion 
mainly by blocking PMCA. Cells were treated with a combination of histamine (100 µM)/BHQ (15 µM) in 
Na+-free HEPES buffer. 2 min later, WS® 1442 (100 µg/ml) was added. After 7 min, external Ca2+ was 
removed and 5.5 min later, Na+ was added. At the end, only pure HEPES buffer was perfused. Control 
cells (black line) were only treated with histamine (100 µM)/BHQ (15 µM) (n = 1). 
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Thus, WS® 1442 increases [Ca2+]i and in addition alters Ca2+ extrusion capacity mainly 

by blocking PMCA in EA.hy926 cells.  

3.1.7.2 WS® 1442 raises [Ca2+]i by depleting the ER 

WS® 1442 was still able to raise [Ca2+]i in EGTA-containing buffer, pointing towards an 

involvement of intracellular calcium stores (Figure 24A, black line). In Figure 24A (grey 

line) we used BHQ to deplete the ER. Subsequent to this ER depletion, WS® 1442 was 

no longer able to affect cytosolic Ca2+ levels. To verify these data FRET experiments of 

D1ER-expressing EA.hy926 cells were performed (Figure 24B). In EGTA-containing 

buffer, WS® 1442 clearly depleted the ER. Calcium readdition during a continuing  

WS® 1442 perfusion did not alter the signal. Even after removing WS® 1442, an ER 

refilling could not be observed, suggesting an irreversible SERCA inhibition (at least 

within our observation period).  

A      B 

Figure 24  WS® 1442 depletes intracellular stores. (A) Having depleted the ER upon BHQ treatment, 
WS® 1442 is no longer able to increase [Ca2+]i. The change of [Ca2+]i was monitored using Fura-2-AM-
loaded EA.hy926 cells in a perfusion system. Cells were treated with BHQ (15 µM) in EGTA-containing 
buffer. 9 min later, WS® 1442 (100 µg/ml) was added. Control cells (black line) were only treated with  
WS® 1442 (100 µg/ml) (n = 1). (B) WS® 1442 depletes the ER. [Ca2+]ER was measured using FRET 
technique. D1ER transfected EA.hy926 cells were treated with WS® 1442 (100 µg/ml) in EGTA-containing 
buffer. After 5 min, Ca2+ was added by switching into Ca2+-containing buffer. 4 min later, WS® 1442 was 
removed (n = 1). 

 

As a result, WS® 1442 increases [Ca2+]i due to an ER depletion. Moreover, this 

depletion is at least partly caused by an irreversible SERCA inhibition.   
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3.2 In search of the bioactive compounds of WS® 1442  

The original extract had been fractionated into four different fractions using column 

chromatography. By the aid of these fractions, we recently could show that the two 

different endothelial signaling mechanisms triggered by the extract can clearly be 

assigned to specific phytochemical groups of WS® 1442.4 

Table 16  First fractionation of WS® 1442 

Fraction Eluate % (m/m) of WS® 1442 Main compounds 

30 H2O 56.83 Non-phenolic, aliphatic 
compounds 

32 Ethanol 95% 17.00 Flavonoids 

34 Methanol 100% 12.17 Oligomeric 
proanthocyanidins 

36 Acetone 70% 8.13 Proanthocyanidins n > 4 

 

The most prominent activation of the barrier protecting cAMP/Rap1/Rac1 pathway 

could be detected using fraction 34 (oligomeric proanthocyanidins, OPCs). Concerning 

the inhibition of the barrier disrupting Ca2+/PKC/RhoA signaling, fraction 32 (small 

phenolic compounds, flavonoids) showed the strongest effect. However, both fractions 

still represent multi-component systems. For a better understanding of this complex 

polypharmacology, it would be important to identify the active principles of WS® 1442.  

Consequently, the second part of this study aimed to elucidate the bioactive 

compounds of this multi-component phytopharmaceutical. Therefore, fractions 32 and 

34, representing the active fractions of WS® 1442 in the endothelium, were stepwise 

subfractionated as indicated in the Materials and Methods part and examined for their 

endothelial activity.  

3.2.1 Subfractions 32.x differently inhibit agonist-induced Ca2+-

signaling 

Fura-2-AM Ca2+ measurements were performed to determine which subfraction of 

fraction 32 still exhibits an inhibitory effect on agonist-induced Ca2+-signaling. For all 

experiments, thrombin was employed to activate the Ca2+-signaling cascade. In the 

following paragraph, only the active subfractions are visualized for clarity. 
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3.2.1.1 Subfractions 32.x 

According to their weight proportion, subfractions were applied in concentrations 

related to 100 µg/ml of the original extract. Only two out of ten subfractions, i.e. 

subfractions 32.1 and 32.4, could prevent the typical thrombin-induced biphasic Ca2+ 

response (Figure 25A, B). As described above for WS® 1442, both subfractions also 

had raised [Ca2+]i during the preceding incubation period (Figure 25C, D).  

A      B 

C      D 

Figure 25  Only subfractions 32.1 and 32.4 affect endothelial Ca2+-signaling. The change of [Ca2+]i 
was monitored using Fura-2-AM loaded HUVECs in a tempered static system. (A, B) Subfractions 32.1 
and 32.4 inhibit thrombin-induced Ca2+

 response in HUVECs. Cells were either preincubated for 30 min 
with fraction 32.1 (A: 4.32 µg/ml), fraction 32.4 (B: 3.83 µg/ml) or left untreated. At t = 1 min, thrombin  
(1 U/ml) was added (n = 3). (C, D) Subfractions 32.1 and 32.4 raise [Ca2+]i in HUVECs. HUVECs were 
either treated with subfraction 32.1 (C, 4.32 µg/ml), subfraction 32.4 (D, 3.83 µg/ml) or just vehicle at  
t = 1 min (n = 3). 

 

Hence, subfractions 32.1 and 32.4, which represent the major part of fraction 32, were 

further fractionated (Figure 29) and analyzed. 
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3.2.1.2 Subfractions 32.1_x 

Among subfractions 32.1_x, only subfractions 32.1_5 and 32.1_6 seemed to affect 

cytosolic calcium levels in concentrations related to their weight proportion. However, 

thrombin was still able to evoke its Ca2+ response (Figure 26A, C). As a result of 

repeated fractionation, the applied concentrations of the subfractions were already very 

low. Taking into account the loss of starting material during fractionation, we verified 

our results enhancing the concentrations to 5 µg/ml of each subfraction. Once again, 

subfractions 32.1_5 and 32.1_6 altered cytosolic calcium levels (Figure 26B, D). This 

time, they even inhibited the Ca2+ signal caused by thrombin and exhibited clearly 

elevated baseline levels.  

A      B 

C      D 

Figure 26  Only subfractions 32.1_5 and 32.1_6 affect endothelial Ca2+-signaling. The change of 
[Ca2+]i was monitored using Fura-2-AM loaded HUVECs in a tempered static system. (A, B) Cells were 
either preincubated for 30 min with subfraction 32.1_5 (A: 0.07 µg/ml, B: 5 µg/ml), subfraction 32.1_6  
(C: 0.17 µg/ml, D: 5 µg/ml) or left untreated. At t = 1 min, thrombin (1 U/ml) was added (n = 1).  
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Interestingly, besides the two subfractions mentioned above, subfraction 32.1_uR 

turned out to influence endothelial Ca2+-signaling as well (Figure 27). Thrombin was no 

longer able to induce SOCE – indicated through the lack of the elevated plateau phase 

– after preincubating HUVECs with subfraction 32.1_uR.  

Figure 27  Subfraction 32.1_uR inhibits thrombin induced SOCE in HUVECs. The change of [Ca2+]i 
was monitored using Fura-2-AM loaded HUVECs in a tempered static system. Cells were either 
preincubated for 30 min with subfraction 32.1_uR (5 µg/ml) or left untreated. At t = 1 min, thrombin  
(1 U/ml) was added (n = 3). 

 

As a result, subfractions 32.1_5 and 32.1_6 were further fractionated (Figure 29). 

3.2.1.3 Subfractions 32.4_x 

Regarding subfractions 32.4_x, we achieved similar results compared to subfractions 

32.1_x. Again, the last two subfractions – subfraction 32.4_4 and 32.4_5 – influenced 

[Ca2+]i and inhibited thrombin-evoked Ca2+ response (Figure 28A, C). Once more, we 

reassessed our results by applying both subfractions with 5 µg/ml (Figure 28B, D): Both 

subfractions completely inhibited the Ca2+ signal caused by thrombin.  
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C      D 

Figure 28  Only subfractions 32.4_4 and 32.4_5 affect endothelial Ca2+-signaling. The change of 
[Ca2+]i was monitored using Fura-2-AM loaded HUVECs in a tempered static system. (A, B) Cells were 
either preincubated for 30 min with subfraction 32.4_4 (A: 0.1 µg/ml, B: 5 µg/ml), subfraction 32.4_5  
(C: 0.05 µg/ml, D: 5 µg/ml) or left untreated. At t = 1 min, thrombin (1 U/ml) was added (n = 1). 

 

Hence, subfractions 32.4_4 and 32.4_5 were further fractionated.  

Interestingly, additional data acquired by Simone Fuchs indicate that subfraction 

32.4_uR applied with 5 µg/ml affects SOCE similar to subfraction 32.1_uR.  

At the end, the purification process led to the identification of three distinct flavonoids, 

namely rutin, hyperoside and isoquercitrin. However, these flavonoids did not exhibit 

any Ca2+-signaling activity (Simone Fuchs). Consequently, other flavonoids/compounds 

that could not be identified so far, are expected to play the decisive role in Ca2+-

signaling. 

Figure 29 summarizes the action profiles of subfractions 32.x as well as their 

fractionation scheme. According to this fractionation scheme, subfractions 32.1_x and 

32.4_x were separated using the same chromatographic setup. Surprisingly, the 

sequence of the active subfractions is similar in both fractionation branches, suggesting 

that corresponding subfractions might contain comparable compounds.  
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Figure 29  Fractionation scheme of fraction 32. Ca2+-active fractions are marked by colored boxes 
(blue: highly active, light blue: slightly active)., insoluble residue. 

 

3.2.1.4 Ca2+-active subfractions of WS® 1442 neither impair endothelial barrier 
integrity nor contractile machinery 

As already mentioned above, an increase of [Ca2+]i can activate the contractile 

machinery of endothelial cells which in turn induces hyperpermeability. Thus, we 

examined if the Ca2+-active subfractions alter basal endothelial barrier integrity  

(Figure 30). In this setting, the cAMP pathway activating fraction 34 was utilized as 

negative control. Once again, only the typical [Ca2+]i-increasing agents thrombin and 

thapsigargin clearly evoked hyperpermeability. 
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A 

B 

Figure 30  None of the selected fractions/subfractions of WS® 1442 induces endothelial 
hyperpermeability. A macromolecular permeability assay was performed. HMECs were treated with 
either WS® 1442 (100 µg/ml), thrombin (3 U/ml), thapsigargin (1 µM), fraction 32 (17 µg/ml), fraction 34  
(12 µg/ml), subfraction 32.1 (4.32 µg/ml), subfraction 32.4 (3.82 µg/ml), or were left untreated. (A) One 
representative image illustrating the time course is shown. (B) Data are expressed as mean  S.E.M. at  
t = 60 min. *, p  0.05 vs. control (left panel: n = 4, right panel: n = 5). 

 

As indicated by Western blot analysis of the phosphorylation (Thr18/Ser19) status of 

myosin light chain 2 (MLC2), the contractile machinery was not influenced by the Ca2+-

active subfractions which is in agreement with WS® 1442 treatment (Figure 31). By 

contrast, thrombin and thapsigargin clearly activated MLC. 
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A 

B 

Figure 31  Ca2+-active fractions/subfractions of WS® 1442 do not increase the amount of 
phosphorylated myosin light chain (MLC). The phosphorylation status of MLC was investigated by 
Western blot analysis using a phospho-T18/S19-MLC2 antibody. HUVECs were treated for 30 min with 
thrombin (1 U/ml), thapsigargin (1 µM), WS® 1442 (100 µg/ml), fraction 32 (17 µg/ml), subfraction 32.1 
(4.32 µg/ml), subfraction 32.4 (3.83 µg/ml) or were left untreated. (A) One representative Western blot is 
shown. (B) Data are expressed as mean  S.E.M. *, p  0.05 (n = 3). 

 

To conclude, Ca2+-active fractions/subfractions behave similar to the original extract. 

They do neither induce hyperpermeability nor activate endothelial cell contraction, 

which is in striking contrast to the well established Ca2+-increasing agents thrombin or 

thapsigargin.  

3.2.2 Subfractions 34.x differently affect cAMP pathway 

In order to analyze cAMP pathway activation by the respective subfractions, we 

focused on cortactin, a downstream effector of cAMP/Rac1 signaling.81,82 Upon 

phosphorylation on Tyr421, cortactin gets activated and mediates cortical actin 

rearrangement which tightens the endothelial barrier. Using confocal laser scanning 

microscopy, we investigated the phosphorylation status of cortactin triggered by the 

different subfractions of fraction 34. Original fraction 34 was used as positive control. 
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All subfractions apart from fraction 34.2 induced phosphorylation of cortactin and 

subsequent cortical actin formation in a concentration of 10 µg/ml (Figure 32A). To 

distinguish between the biological activity of the different subfractions, experiments 

were repeated utilizing a lower concentration of 5 µg/ml (Figure 32B). Only subfractions 

34.3 and 34.5 were still able to evoke cortactin phosphorylation and actin 

rearrangement. 
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Figure 32  Subfractions 34.x differently affect cortactin and subsequently the actin cytoskeleton. 
Images were achieved by confocal microscopy after immunocytochemical staining. A confluent HUVEC 
monolayer was either left untreated, treated with fraction 34 (A: 30 µg/ml, B: 12 µg/ml) or with one of the 
different subfractions of fraction 34 (34.1-34.6, A: 10 µg/ml, B: 5 µg/ml) for 15 min. One representative 
image is shown for each type of treatment (n = 3). White bar: 50 µm.  

 

To summarize, subfractions 34.3 and 34.5 exhibited the strongest activation of the 

cAMP pathway amongst all subfractions and thus were chosen to be further 

fractionated and analyzed (Figure 33).  
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This project has been pursued by Simone Fuchs. However, the available column 

chromatographical system Sephadex LH-20 was unable to properly separate these 

subfractions probably due to molecular rearrangements.83 For this reason, two typical 

oligomeric proanthocyandins – procyanidin B2 and C1 – that had been isolated from 

the original extract by Dr. Willmar Schwabe GmbH & Co. KG in a different attempt were 

applied. Indeed, it could be demonstrated that at least these two OPCs account for the  

WS® 1442-evoked activation of the cAMP pathway in human endothelial cells. 

Figure 33  Fractionation scheme of fraction 34. cAMP-active subfractions are marked by colored 
boxes (orange: highly active, light orange: slightly active). 
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4.1 WS® 1442 protects endothelial barrier integrity 
despite increasing [Ca2+]i 

As yet, only two compounds have been described that reduce endothelial permeability 

despite increasing [Ca2+]i: ATP84 and sphingosine 1-phosphate (S1-P),85 the 

prototypical endogenous barrier-protecting agent. Our study for the first time shows 

that this action can also be evoked by a phytopharmaceutical, WS® 1442. S1-P was 

shown to induce Rac activation due to the rise of [Ca2+]i. Rac, in turn, ameliorated 

intercellular adhesion, thereby stabilizing endothelial barrier integrity. Our group had 

previously checked this potential connection between increased [Ca2+]i and Rac 

activation in WS® 1442-treated ECs.4 However, a link does not exist in our model 

system. 

4.1.1 Key role of SOCE in endothelial hyperpermeability  

Instead of Ca2+-triggered Rac activation, we propose another mode of action: Typically, 

an agonist-induced depletion of the ER – no matter if it is IP3- or SERCA-mediated – 

causes the induction of a Stim-1-triggered SOCE from the extracellular space.52,86 

Proteins of the Orai family function as pore-forming subunits of SOCE channels 

responsible for the so-called calcium release activated calcium current (ICRAC). It is still 

a controversial matter if TRP channels connected to store-operated calcium currents 

(ISOC) are also involved in Stim-1/Orai-gated regulation of SOCE or not.87-89 The 

presence of SOCE, accompanied by an interendothelial gap formation due to EC 

shape changes, is crucial for the induction of endothelial hyperpermeability.50,90 This 

phenomenon has been demonstrated in endothelial cells from various vascular  

beds.91-93 Mechanistically, a further study impressively showed that in bovine artery 

ECs the activation of SOCE is coupled to the phosphorylation of MLC leading to the 

formation of intercellular gaps and increased permeability. Both thrombin and 

thapsigargin activated a Ca2+ entry and led to the phosphorylation of MLC, which could 

be prevented by blocking Ca2+ influx. Concerning thapsigargin, an inhibition of SOCE 

also prevented the induction of hyperpermeability.94 

In our study, we could confirm that these two agonists raise [Ca2+]i, cause MLC 

phosphorylation and increase permeability also in HUVECs. Surprisingly, although 

increasing [Ca2+]i, WS® 1442 did not cause these effects. We assume that this might be 

due to its inhibition of SOCE. Moreover, WS® 1442 did not trigger intercellular gap 
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formation. By contrast, WS® 1442 caused a substantial cortical F-actin distribution by 

activating the Epac1/Rap1/Rac1/cortactin pathway.2 

4.1.2 Suggested modes of SOCE inhibition induced by  

WS® 1442 

Interestingly, it has been described that the cytoskeleton plays a pivotal role in the 

modulation of SOCE.95-97 Galan et al.97 demonstrated that stabilization of the cortical 

actin ring by the actin polymerizing agent jasplakinolide leads to the inhibition of 

thapsigargin-induced association of Stim-1 with SOC channels. This in turn prevents 

SOCE in HEK-293 cells. The authors assume that actin filaments as well as 

microtubules function as a cortical barrier which impedes the association between 

Stim-1 and the Ca2+ channels and consequently prohibits SOCE. Therefore, stabilizing 

these networks serves to prevent SOCE. As demonstrated in Figure 21, WS® 1442 is 

able to inhibit SOCE in a low Ca2+ environment after Stim-1 clustering has already 

been activated upon BHQ treatment. This indicates that WS® 1442 most likely impairs 

Stim-1/SOC channel communication. Thus, a possible mechanism for WS® 1442-

evoked SOCE inhibition might be the strong rearrangement of cortical actin upon  

WS® 1442 treatment.2 

Additionally, a negative feedback mechanism of Stim-1 regulation could supplement 

WS® 1442-induced SOCE inhibition. By the aid of an EF-hand domain, Stim-1 senses 

the Ca2+ concentration within the lumen of the ER.53 Upon ER depletion, Stim-1 

oligomerizes into punctae and translocates within the ER to junctions adjacent to the 

plasma membrane. Thereby, it can activate Orai.54 Malli et al.98 could demonstrate that 

an elevated cytosolic Ca2+ concentration is able to inhibit subplasmalemmal Stim-1 

clustering, preventing SOCE and consequently cellular Ca2+ overload. Obviously, 

SOCE is under the control of cytosolic free Ca2+. This mechanism is crucial to maintain 

endothelial barrier integrity, since cytosolic Ca2+ overload is believed to evoke F-actin 

disintegration leading towards endothelial hyperpermeability.99 Our preliminary results 

in EA.hy926 cells suggest that WS® 1442 treatment does not induce Stim-1 clustering 

in contrast to histamine addition. A possible explanation would be that the interplay 

between WS® 1442-induced increase of [Ca2+]i and inhibition of Ca2+ extrusion might 

transiently generate a situation of high Ca2+ which prevents Stim-1 clustering.  
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According to the fact that WS® 1442 actually blocks agonist-induced SOCE in a low 

Ca2+ situation, we believe that actin rearrangement by activating cAMP/Epac1/Rap1 

pathway2 contributes in a superior way to WS® 1442-evoked SOCE inhibition 

compared to the negative regulation of Stim-1 clustering. Moreover, one might even 

speculate that this SOCE inhibition combined with the ER depletion enables WS® 1442 

to overcome thrombin-induced deleterious effects on endothelial barrier. This will be an 

interesting topic of further research.  

4.2 WS® 1442 and its influence on Ca2+ extrusion 
capacity 

Concerning the endothelial Ca2+ extrusion capacity, the question arises of how  

WS® 1442 is able to hamper the decrease of elevated Ca2+ levels. WS® 1442 inhibits 

the SERCA pump, which prevents Ca2+ reuptake into the ER. As a result, increased 

Ca2+ levels can only be eliminated through a plasma membranous transport.100 In 

principle, this can mainly be achieved by the plasma membrane Ca2+ ATPase (PMCA), 

by the Na+/Ca2+-exchanger (NCX) or by both,55-57 depending on the cell type or tissue. 

Originally, it has been believed that the predominant role of NCX is to counteract large 

and rapid raises of [Ca2+]i in contrast to PMCA, which regulates the basal status. In calf 

pulmonary artery endothelial cells, it was shown that PMCA acts as a high-affinity Ca2+ 

removal system to correct baseline levels, whereas the low-affinity NCX erases fast 

and large increases of Ca2+.101 However, this hypothesis was refuted due to the strong 

functional versatility among the different isoforms of PMCA, of which some also allow a 

rapid Ca2+ clearance.102 PMCA belongs to the P-type ATPases, just as the SERCA 

pump, thereby sharing fundamental properties like membrane topology and reaction 

mechanism. The two pumps, however, display significant sequence differences leading 

to an altered regulation, action of some inhibitors, and role in cellular processes.103 

According to that, BHQ and thapsigargin specifically act on the SERCA pump.104 Based 

on the inhibitory effect of WS® 1442 on SERCA function, we therefore cannot simply 

conclude that PMCA is blocked as well. However, in EA.hy926 cells we got first hints 

that Ca2+ extrusion is in fact considerably abolished by WS® 1442-induced PMCA 

inhibition. Further investigations are needed to clarify the role of PMCA and NCX in the 

WS® 1442-evoked repression of Ca2+ extrusion in our system. 
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4.3 Na+/K+-ATPase and WS® 1442 

In cardiomyocytes, a different target of WS® 1442 was found that is responsible for a 

rise of [Ca2+]i: WS® 1442 increases [Ca2+]i by inhibiting Na+/K+-ATPase similar to the 

mode of action of cardiac glycosides. The extract concentration-dependently displaces 

the cardiac glycoside ouabain from its binding partner, the Na+/K+-ATPase, thereby 

enhancing the force of contraction in human failing and non-failing myocardium.18 In 

addition to its action on the heart, the Na+/K+-ATPase also plays an important role in 

pathological processes of the vasculature.105 Although the regulation of Ca2+ levels 

differs between non-excitable (e.g. endothelial) cells and excitable cardiomyocytes, it 

has nevertheless been reported that ouabain is able to alter [Ca2+]i in the rat 

descending vasa recta106 by targeting the Na+/K+-ATPase and subsequent inhibition of 

the Na+/Ca2+-exchanger. Interestingly, ECs were in fact found to express different 

isoforms of this ATPase107 and ouabain, applied in the nanomolar range, was even 

shown to induce a breakdown of endothelial barrier integrity in ECs, which could be 

overcome by preventing Na+/K+-ATPase blockade using a special digoxin antibody.108 

Referring to Ca2+ measurements and patch clamp recordings, our work clearly shows 

that in the endothelium this ATPase is not the primary target of WS® 1442. 

4.4 Comparison between HUVECs and EA.hy926 cells 
concerning WS® 1442-induced Ca2+-signaling 

For in vitro experiments, immortalized cell lines like EA.hy926 are often chosen 

because of significant advantages such as stable cell viability, unaltered expression 

profile of endothelial cell markers during passaging and genetical homogeneity. In our 

case, EA.hy926 cells would offer the possibility to easier perform transfection 

experiments. It has been described that despite hybridization, EA.hy926 cells still 

maintain endothelial cell characteristics of native HUVECs.62 Nevertheless, we checked 

the comparability between HUVECs and EA.hy926 cells concerning WS® 1442-induced 

Ca2+-signaling. 

This study shows that WS® 1442-induced Ca2+ response does not exclusively appear 

in HUVECs but also in EA.hy926 cells. However, there is a difference regarding the 

onset and the shape of the Ca2+ response: In EA.hy926 cells, WS® 1442 immediately 

elevates [Ca2+]i in a peak-plateau shaped manner, whereas in HUVECs, a lag time of 

approximately 5 min is observed while the peak is completely missing. Because of the 
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immediate onset of the Ca2+ signal in EA.hy926 cells, an IP3 involvement besides 

SERCA inhibition can be assumed. This would be in agreement with the dual 

mechanism demonstrated for HUVECs, but has yet to be examined. WS® 1442 

treatment inhibits Ca2+ efflux in both cell types. However, focusing on the histamine-

induced Ca2+ response, EA.hy926 cells exhibit a stronger Ca2+ influx, i.e. SOCE, which 

is indicated throughout the more pronounced plateau phase. Therefore, WS® 1442-

induced SOCE inhibition should be revised in EA.hy926 cells as well.  

To conclude, WS® 1442 treatment seems to influence similar Ca2+-signaling pathways 

in both cell types. Apparent kinetic differences might originate from the epithelial 

portion of the hybrid cell line and, thus, from an altered expression pattern of Ca2+ 

channels. 

4.5 Bioactive compounds of WS® 1442 

The cardiovascular protective activity of hawthorn is ascribed to its flavonoid and 

oligomeric proanthocyanidin8 (OPC) content.9 Consequently, most of the studies 

dealing with the efficacy of hawthorn were accomplished utilizing one of the two 

standardized extracts LI 132 (MCM Klosterfrau Vertriebsgesellschaft mbH) or  

WS® 1442. LI 132 and WS® 1442 are adjusted to a definite content of flavonoids  

(2.2%, LI 132) or OPCs (18.75%, WS® 1442), respectively.  

These polyphenols exert various bioactive properties109,110 such as antioxidant,111-113 

anti-inflammatory114-116 and vasodilatory28,117,118 actions. Interestingly, we could 

demonstrate that these two phytochemical groups also contribute to the observed 

endothelial activity in our study. In fact, we could even assign each group to one single 

pathway regulating endothelial barrier function.4  

4.5.1 Flavonoids and their role in Ca2+-signaling 

Within all fractions, only the flavonoid containing fraction 32 as well as particular 

subfractions 32.x were able to prevent thrombin-induced increase of [Ca2+]i and to 

concomitantly raise [Ca2+]i by themselves. This observation suggests an involvement of 

flavonoids in the WS® 1442-evoked Ca2+ response, even if the three already identified 

flavonoids were not the active candidates.  
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Several groups have already established a clear alliance between flavonoids and 

cellular Ca2+-signaling. For instance, flavonoids impair IgE-mediated proinflammatory 

mediator release119 or Ca2+ dependent cell oxidation120 by inhibiting agonist-evoked 

increase of [Ca2+]i. Therefore, some flavonoids could provide health benefits in the 

treatment of allergic or inflammatory diseases. Additionally, flavonoids themselves are 

able to increase [Ca2+]i by affecting SERCA,121 which could also be observed in  

WS® 1442 treated cells. Certain flavonoids alter ATP affinity to SERCA by binding to 

the cytosolic region of the Ca2+ ATPase between ATP-binding and phosphorylation 

domain. Moreover, they can stabilize the enzyme in one single conformational state 

(E1). As a result, both mechanisms suppress functionality of the pump.67 Interestingly, 

polyhydroxylation of flavones with hydroxylation at position 3 and 6 were shown to be 

particularly relevant for the inhibitory activity.122 In the same study, one of our isolated 

flavonoids, i.e. rutin, was shown to not measurably inhibit SERCA, which is in 

agreement to our findings. In contrast to SERCA inhibition, the antioxidant flavonoids 

were also shown to even safeguard SERCA activity against oxidative damage,123 

whereby the ability to protect the functionality of the Ca2+ ATPase depends on the 

mode of oxidative injury.124  

Besides SERCA, flavonoids also interact with other Ca2+ ATPases, like the Ca2+ 

transport ATPase of synaptosomal vesicles125 or the liver plasma membrane Ca2+ 

pump.126 However, a repression of plasma membrane Ca2+ ATPase (PMCA) 

functionality, which is probably responsible for the altered Ca2+ extrusion capacity upon 

WS® 1442 treatment, has not been described for flavonoids so far. 

Another aspect of flavonoid/Ca2+-signaling interaction concerns myosin light chain 

kinase (MLCK). An agonist-induced increase of [Ca2+]i can activate Ca2+/calmodulin 

regulated MLCK, which subsequently phosphorylates MLC leading towards cell 

contraction.127 As already discussed above, WS® 1442 treatment does not cause MLC 

phosphorylation despite the clear rise of cytosolic Ca2+ levels. Additionally, WS® 1442 

as well as the flavonoid-rich fraction 32 even block thrombin-evoked MLC 

phosphorylation.4 Interestingly, flavonoids were found to inhibit MLCK activity 

demonstrated in vitro on isolated, purified MLCK from chicken gizzard in a kinase 

assay.127 This topic has not been studied in great detail until today, but could be an 

additional explanation for the influence of WS® 1442 on MLC-signaling.  

We conclude that particular flavonoids of WS® 1442 probably inhibit SERCA function. 

Nevertheless, it is still an open question whether these flavonoids are also responsible 
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for the WS® 1442-evoked change of Ca2+ extrusion (NCX, PMCA) and IP3-mediated 

ER depletion or not. It remains to be clarified if unidentified Ca2+-active compounds 

other than flavonoids exist which can complement the WS® 1442-induced Ca2+ 

response.  

4.5.2 Oligomeric proanthocyanidins and endothelial barrier 

function 

We could demonstrate that the OPC rich fraction 34 of WS® 1442,4 its subfractions 

34.3 and 34.5 as well as the pure procyanidins B2 and C1 activate the barrier 

protecting and strengthening cAMP-signaling most significantly within all WS® 1442 

fractions.  

Several publications report a barrier protecting property of OPCs. With the aid of 

quantitative morphology, Robert et al. demonstrated that OPCs are able to prevent 

collagenase-induced permeability increase in rat cerebral capillaries, aorta and cardiac 

muscle capillaries.128 In 2001, another publication described that OPCs counterbalance 

this deleterious effect of collagenase-evoked hyperpermeability in rat blood brain 

barrier by inhibiting proteolytic degradation of extracellular matrix macromolecules.129 

Furthermore, procyanidin130 as well as an enriched fraction of OPCs from grape 

seeds131 were found to block agonist-induced edema formation in rat hind paw. It was 

also shown in rats that OPCs partially prevent the formation of a re-expansion 

pulmonary edema probably due to their antioxidant activity.132 Moreover, Endotélon® 

(Sanofi Aventis, Paris, France), a French pharmaceutical product of OPCs from grape 

seeds, reduces surgically-evoked lymphedema in rat hindlimb.133 As a result, all these 

studies suggest a barrier protecting potential for oligomeric proanthocyanidins. The 

authors were not able to elucidate the distinct mechanisms of OPC-induced barrier 

protection. However, they speculate that binding of OPCs to areas with a high content 

of glycosaminoglycans134 might prevent degradation of extracellular matrix. This anti-

proteolytic property is believed to protect barrier function. 

Beyond this, we discovered that OPCs in WS® 1442 activate cAMP-signaling thereby 

protecting endothelial barrier. To our best knowledge, neither a detailed mode of 

action, nor a link between OPCs and the cAMP-signaling has ever been described to 

date.
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We demonstrated for the first time that WS® 1442 increases [Ca2+]i without impairing 

barrier integrity or cell viability. All important effects related to endothelial Ca2+-signaling 

are illustrated schematically in Figure 34. 

In brief, WS® 1442 

 depletes the ER by activating IP3 pathway and inhibiting SERCA.  

 does not cause SOCE despite increasing [Ca2+]i. 

 prevents agonist-induced SOCE generation. 

 blocks endothelial Ca2+ extrusion capacity. 

 does not target endothelial Na+/K+-ATPase (in contrast to cardiomyocytes). 

 

 

Figure 34  WS® 1442-induced Ca2+-signaling 

Focusing on the search for the bioactive compounds, only the flavonoid rich fraction 32 

and particular subfractions are able to alter thrombin-induced Ca2+-signaling. Similar to 

the original extract, the Ca2+-active fractions do not cause cellular stress. Although 

three inactive flavonoids of the extract could be identified in our lab, we hypothesize 

that certain flavonoids provide the key players of WS® 1442-induced Ca2+-signaling in 

agreement to the evidence found in literature. In the future, further fractionation 

procedures as well as structural analysis are needed to discover the Ca2+-active single 

compound(s) of WS® 1442. Concerning cAMP-signaling, only the OPC rich fraction 34 

as well as its subfractions 34.3 and 34.5 are found to activate this pathway most 

significantly. Additionally, the two isolated procyanidins B2 and C1 also induce 
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activation of the cAMP downstream effector cortactin. Therefore, we propose that 

OPCs in WS® 1442 are responsible for the activation of the cAMP pathway in the 

endothelium thereby protecting and strengthening endothelial barrier function.  

These findings strengthen the rational basis for the use of this herbal medicinal 

product by providing a better understanding of the complex pharmacological 

action of WS® 1442. 
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7.1 Abbreviations 

Table 17  Abbreviations 

Acronym Term 

AJ(s) Adherens junction(s) 

2-APB 2-Aminoethyldiphenyl borate 

BHQ 2,5-Di-tert-butylhydroquinone 

Blotto Non-fat dry milk powder  

BSA Bovine serum albumin 

cAMP Cylic adenosine monophosphate 

[Ca2+]ER Calcium concentration of the endoplasmic recticulum 

[Ca2+]i Intracellular calcium concentration 

CaM Calmodulin 

DAG Diacylglycerol 

DMEM Dulbecco’s modified Eagle’s medium 

EC(s) Endothelial cell(s) 

ECGM Endothelial cell growth medium 

EPAC1 Exchange protein directly activated by cAMP 1 

ER Endoplasmic reticulum 

FCPC Fast centrifugal partition chromatography 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

FRET Fluorescence resonance energy transfer 

GEF(s) Guanine nucleotide exchange factor(s) 

GPCR G-protein coupled receptor 

HAT Hypoxanthin, aminopterin, thymidine 

HMEC Human dermal microvascular endothelial cells 

HUVECs Human umbilical vein endothelial cells 

H1 R Histamine receptor 1 

IEJ(s) Interendothelial junction(s) 

IP3 Inositol-1,4,5-trisphosphate 

MLC(K, P) Myosin light chain (kinase, phosphatase) 

NCX Na+/Ca2+-exchanger 

NYHA New York Heart Association 

OPCs Oligomeric proanthocyanidins 
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Acronym Term 

PAR1 Proteinase activated receptor 1 

PHPLC Preparative high performance liquid chromatography 

PKA Protein kinase A 

PKCα Protein kinase C α 

PLCβ Phospholipase C β 

PMCA Plasma membrane calcium ATPase 

PMSF Phenylmethylsulfonyl fluoride 

SDS Sodium dodecyl sulfate 

SERCA Sarcoplasmic/endoplasmic reticulum calcium ATPase 

skMLCK Skeletal muscle myosin light chain kinase 

SOC(E) Store-operated calcium (entry) 

Stim-1 Stromal interaction molecule-1 

S1-P Sphingosine 1-phosphate 

T/E Trypsin/EDTA 

TRPC channel Canonical transient receptor potential channel 

VASP Vasodilator-stimulated phosphoprotein 

VE-cadherin Vascular endothelial cadherin 
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