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1. SUMMARY 
 

 

Allergic asthma has a high prevalence and is characterized by airway inflammation, tissue 

remodeling and a decline in respiratory function. Although the pathogenesis is well known, 

the underlying mechanisms are still poorly understood. It is believed that a fine interplay 

exists between the exposure to environmental stimuli and relatively small changes in 

expression of several genes with inter-individual variation. As microRNAs (miRNAs) are 

known to be responsive to environmental exposures and show dysregulated levels in 

diseased states, their function as regulators of gene expression might be a missing link for 

the changes seen in asthma. 

In this project, changes in miRNA expression in a mouse model for allergic asthma were 

investigated and the interaction with possible target genes was analyzed. 

 

Female Balb/c mice were i. p. sensitized with ovalbumin (OVA) followed by aerosol challenge 

on two consecutive days. An asthmatic phenotype was confirmed by elevated total cell 

numbers due to a rise in inflammatory cells, as well as increased CCL17 levels in broncho-

alveolar lavage (BAL). High titres of OVA-specific serum IgE were measured and lung 

histopathology revealed infiltration of inflammatory cells with eosinophilia. 

 

To study changes in miRNA expression, whole lung RNA was subjected to miRNA-

microarray analysis (Exiqon). From 580 screened miRNAs, 319 were found to be expressed, 

of which 36 were differentially regulated in the allergic asthma group compared to healthy 

control mice. A second, TaqMan® chemistry based array was performed for validation. 

Based on the overlap between the two arrays in addition to fold changes and p-values 

(Exiqon), eight miRNAs were selected for single RT-qPCR measurement. Dysregulated 

expression of six miRNAs could be confirmed (miRNA-21, -142-3p, -144, -205, -208, -451).  

 

Due to relatively low fold changes and in order to monitor possible co-regulation, the top 100 

differentially regulated miRNAs from the Exiqon array were included in an in situ target 

prediction. Applying a “full consensus” approach of five prediction algorithms, 961 putative 

target genes were identified. Based on the assumption, that target genes harboring multiple 

miRNA sites might be more relevant, 11 targets containing more than four miRNA binding 

sites were selected. From these, the transcription factor cAMP-responsive element-binding 

protein 1 (CREB1) was chosen for further analysis because of its previous association with 

asthmatic disease. Moreover, four miRNAs (miRNA-17, -22, -144, -181a) were predicted to 
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bind at eight different sites, one of them being miRNA-144, a significantly up-regulated 

miRNA identified in the initial asthma profile. 

To experimentally test the functional interaction between CREB1 and the predicted miRNAs, 

a CREB1 3´-untranslated region (UTR) containing luciferase based reporter plasmid vector 

was constructed and co-transfected with precursor (pre-) miRNAs into human bronchial 

epithelial cells. Binding of all four miRNAs could be confirmed by measuring luciferase 

expression. Furthermore, three of four miRNAs, when transfected alone, were able to down-

regulate endogenous CREB1 expression in vitro. In the lung tissue of asthma mice, CREB1 

mRNA levels were significantly reduced compared to healthy controls, in contrast to two 

miRNAs, miRNA-17 and -144, which showed up-regulation.  

 

To gain further insight into expression patterns during sensitization and after challenge, 

expression of CREB1, the two validated binding partners miRNA-17, and -144, as well as the 

two miRNAs (miRNA-21, -451) with most significant p-values and high fold changes from the 

Exiqon array were analyzed. Clear expression changes happened after OVA aerosol 

challenge with CREB1 levels being steadily decreased, whereas all tested miRNAs showed 

elevated levels at 24 h post challenge, which further intensified after 120 h. This increase 

resembles measurements of inflammatory cell counts in BAL pointing at a possible origin 

within this population. 

 

In order to test whether findings can be translated into the human situation, miRNA changes 

in whole blood samples of mice were compared to miRNA patterns in peripheral blood of 

asthmatic children. In contrast to measurements in lung tissue, all four miRNAs showed 

markedly decreased expression in murine blood. In human samples this reduction was 

mirrored and significant for miRNA-144 and -451.  
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2. INTRODUCTION 
 
 

2.1. Asthma 
 
 

2.1.1. Clinical symptoms, prevalence and therapy 
 
Asthma bronchiale belongs to the chronic lung diseases. The WHO (world health 

organization) defines asthma as “chronic disease of the bronchi with recurrent attacks of 

breathlessness and wheezing, varying in severity and frequency from person to person” 

(WHO 2011). Patients suffering from asthma experience airway obstruction due to swelling 

and subsequent narrowing of the airways. Although the fatality rate is low, asthma is a 

burden for every day life with reduced activity, sleeplessness, work loss and frequent 

hospitalizations making it a public health problem. Currently, asthma affects 235 million 

people worldwide. In Germany, 9.2 % of the population is asthmatic, prevalence in the United 

States reaches 12 %, and is highest in Australia with 20 % (RKI 2009; AAFA 2011). Asthma 

onset often happens during childhood and thus is the most common chronic disease of this 

age group (Sly et al. 2008). There exists a gender bias with males being more frequently 

affected in younger age and females accounting for the majority of adult asthmatics (Postma 

2007). In more than half of all disease cases, patients show an additional allergic disease, 

also referred to as allergic asthma (Locksley 2010).  

 

Asthma is described to be under-diagnosed and under-treated and this is partly due to the 

observed variety of disease phenotypes with differences in pathology, clinical symptoms or 

response to treatment (Anderson et al. 2007; Haldar et al. 2008). Severe asthma is known to 

affect 5 % of patients making up a big part of total asthma health care costs. (Wenzel and 

Busse 2007).  

In general, half of all asthmatics experience poor disease control, nonetheless the other 50 

% are treated very effectively (Barnes 2002; Partridge et al. 2006). Overall compliance to 

medication is low, mainly due to fear of long term side-effects and the intermittent nature of 

disease with symptom free periods.  

Asthma therapy comprises treatment against bronchoconstriction using dilatory agents, like 

long-acting β2-adrenoreceptor agonists, as well as treatment against inflammation by inhaled 

corticosteroids (Holgate et al. 2010). Besides these two classical medications, novel 

therapies include antibodies against IgE as well as blocking agents against lipid mediators 
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(leukotriene modifiers) (Holgate 2009). Other selective therapies, including the inhibition of T 

cells or blockade of single cytokines, have not improved asthma control so far.  

 

2.1.2. Pathogenesis of allergic asthma 
 
Three common hallmark features of asthmatic disease are: airway inflammation, tissue 

remodeling and decline in respiratory function. The airway inflammation comprises activation 

and infiltration of several types of immune cells, like mast cells, eosinophils, T helper 2 (Th2) 

cells and others, which again release multiple signaling molecules, like cytokines, in order to 

modulate an immune response. Persistence of inflammation causes structural changes in the 

airways including thickening of the smooth muscle layer, collagen deposition, 

neovascularization, fibrosis as well as mucus hyperplasia with elevated numbers of goblet 

cells (Barnes 2008; Holgate et al. 2010; Locksley 2010). These structural changes are 

subsumed as airway remodeling which in turn leads to a persistent and poorly reversible 

airflow limitation and airway hyperresponsiveness (AHR). Although asymptomatic periods 

are very common, the pulmonary changes in chronic asthma patients are persistent.  

 

In allergic asthma, inhalation of an allergen, like pollen, grass, animal dander, mold or 

excreta from insects as dust mites or cockroaches, drive an immune response in the airways.  

First, allergens penetrate the mucus and epithelial barrier in the lung and come into contact 

with innate pattern recognition receptors on epithelia and resident myeloid cells, e. g. 

macrophages, dendritic cells or mast cells (see Figure 1). The epithelial cell releases several 

stimuli, e. g. IL-33 and stem cell factor (SCF) which recruits mast cells to the airway surface 

(Reber et al. 2006), thymic stromal lymphopoietin (TSLP) which activates and mobilizes 

dendritic cells, or CCL11 chemokine, attracting eosinophils to the site of inflammation. Mast 

cells release bronchoconstrictors, like histamine or lipid mediators such as leukotriene C4, D4, 

E4 and prostaglandin D2 mediating smooth muscle contraction. Next to epithelia and mast 

cells, dendritic cells are also involved in the first contact with allergens. Besides presenting 

processed antigen peptides they also release chemokines (CCL17 and CCL22) leading to 

activation of CD4+ T cells and differentiation into Th2 type cells (Ying et al. 2005; Hammad 

and Lambrecht 2006). The Th2 cell has a central role in promoting the inflammatory 

response in allergic asthma. Elevated numbers of these cells are a typical feature together 

with the secretion of several associated cytokines (Meyer et al. 2008). IL-9 stimulates mast 

cell proliferation, IL-5 drives eosinophil differentiation in the bone marrow and IL-4 and -13 

are known to act on B-cells promoting immunoglobulin class switch to produce IgE (Kay 

2006; Barnes 2008). Released IgE can bind to receptors present on mast cells and basophils 

as well as other inflammatory cells, like B cells or macrophages (Gould et al. 2000). The later 
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are found in high numbers in the lung after chemoattraction via CCL2 and CXCL1 and are 

involved in matrix remodeling and the retention of tissue inflammation. Besides, eosinophilia 

is another distinct feature of asthmatic disease and has been found to contribute to tissue 

remodeling and fibrosis (Leckie et al. 2000; Locksley 2010).  

Regulatory T (Treg) cells have been reported to be comprised in asthma and thus missing 

their suppressive effect on the CD4+ T cells (Larche 2007; Meyer et al. 2008). However, their 

overall role is not clear yet.  

 

 
 

Figure 1: Inflammatory and immune cells in allergic asthma. Inhaled allergens come in contact 
with airway epithelia cells, which secrete signaling molecules to influence several other cell types: 
SCF stimulates mast cells, TSLP activates dendritic cells and CCL11 attracts eosinophils. Sensitized 
mast cells are also directly activated by allergens via surface-bound IgE molecules causing the 
release of bronchoconstrictors. Dendritic cells are capable to process antigen peptides and present 
them to other immune cells. Chemokine secretion (CCL17 and CCL22) attracts Th2 cells which 
themselves release a number of cytokines: IL-9 stimulates mast cell proliferation, IL-5 drives 
eosinophilic inflammation and IL-4 and IL-13 act on B-cells to produce IgE. In addition, possible 
defects in Treg cell function may hinder suppression of Th2 cells (Barnes 2008). 
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2.1.3. Risk factors and underlying mechanisms 
 
Although symptoms and pathogenesis of allergic asthma are well understood, the underlying 

mechanisms and causes of the disease remain largely unresolved.  

The WHO claims the strongest risk factors to be a combination of genetic predisposition and 

environmental exposure to inhaled substances and particles (WHO 2011). These include 

indoor allergens, such as house dust mite, pet dander or pollution, as well as outdoor 

allergens like pollen or molds. Other substances include tobacco smoke, chemical irritants, 

ozone or air pollution.  

Notably, asthma prevalence in the western world has been rising during the second half of 

the 20th century, often referred to as “asthma epidemic” (Burr et al. 1989; Aberg et al. 1995) 

and has lately reached a plateau (Anderson et al. 2007; Lotvall et al. 2009). These 

epidemiological findings have led to the conclusion that this increase in allergic asthma over 

a relatively short period of time might be well attributed to environmental factors as 

overwhelming risk factors (Locksley 2010). With regard to the factors themselves, studies are 

ongoing, like increased risk for asthma due to urbanization of life style or after frequent lower 

respiratory infections in early childhood (Jackson et al. 2008; Wu, P. et al. 2008). After all, 

genetic predisposition seems clear, with family and twin studies estimating 60 % heritability 

(Duffy et al. 1990). Still, asthma is a genetically heterogeneous disease and more than 200 

asthma candidate genes have been identified in the last decades (Vercelli 2008). During the 

last years, genome wide studies became feasible and results suggest relatively small 

contribution by many different loci (Moffatt et al. 2010; Ricci et al. 2011). 

 

New aspects are arising from studies about epigenetic and prenatal influences on asthma. 

Epigenetics is defined as heritable changes in gene expression without alteration of the 

genetic code. Thereby, key environmental exposures are thought to induce epigenetic 

changes in gene expression which hence alters disease risk. This concept has been 

proposed and evaluated for microbial factors (Conrad et al. 2009; von Mutius and Vercelli 

2010), diet (Chatzi et al. 2008; Hollingsworth et al. 2008), tobacco exposure (Hylkema and 

Blacquiere 2009) and pollutants (Liu, J. et al. 2008; Perera et al. 2009).  

 

The factors which are thought to play major roles in the development and persistence of 

asthma are thus genes, environment and epigenetics. All three can be brought together in 

context with a new class of posttranscriptional regulators, named miRNAs.  

miRNAs regulate gene expression, are responsive to environmental stimuli and regulate 

components of the epigenetic machinery. A number of studies have reported dysregulated 

levels of miRNAs in diseased states (Calin and Croce 2006; Kloosterman and Plasterk 2006) 
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and loss-of function studies in vivo show their contribution to disease development 

(Rodriguez et al. 2007; Ventura et al. 2008).  

In 2007, Tan and colleagues reported the first connection between miRNAs and asthma risk. 

They found that the identified single nucleotide polymorphism in the asthma susceptibility 

gene human leukocyte antigen (HLA)-G did not affect gene expression but binding of three 

miRNAs to the 3´-UTR of the gene. This influence on miRNA targeting was associated with 

increased risk of asthma (Tan, Z. et al. 2007).  

 

 

2.2. miRNAs 
 
 

2.2.1. Occurence and importance 
 
In 1993 V. Ambros and coworkers discovered the first miRNA, lin-4, in the worm 

Caenorhabditis (C.) elegans (Lee, R. C. et al. 1993). Additionally they reported sequence 

complementarity between lin-4 and the 3´-UTR of lin-14 mRNA, a sequence known to play a 

role in the development of the worm (Wightman et al. 1991). This was the first hint at a new 

mechanism of gene regulation. However, it took almost seven years until the second miRNA, 

let-7 was identified, again in C. elegans (Reinhart et al. 2000). Similar to lin-4, also let-7 was 

found to function through binding to regions in the 3´-UTR of a gene, namely lin-41 (Vella 

and Slack 2005). The fact that both let-7 and lin-41 were already known to be evolutionarily 

conserved throughout metazoans, with homologues detected in several species, including 

mice and humans, indicated a more general role of these small RNAs (Pasquinelli et al. 

2000). In 2001, three parallel reports were published, describing a large class of small RNAs 

with regulatory roles. They were named “miRNAs” (Lagos-Quintana et al. 2001; Lau et al. 

2001; Lee, R. C. and Ambros 2001). Today, the 19- to 21-nucleotide long miRNAs are 

integrated in the class of small non-coding RNAs, next to siRNAs or other small RNAs like 

tRNA or rRNA (Storz 2002).  

 

Until now, more than 1400 human and 720 murine miRNAs have been identified (miRbase 

version 17), showing high conservation between species. Generally, miRNAs have been 

discovered in animal branches of eukaryota as well as in plants (Reinhart et al. 2002; 

Carthew and Sontheimer 2009). The biological effects of miRNAs are generally inhibitory and 

thus subsumed as RNA silencing. It is estimated that miRNAs affect at least 30 % of genes 

in the human genome (Bentwich et al. 2005; Lewis et al. 2005) and new studies propose 
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their function as large gene regulatory networks rather than solely being inhibitors of single 

genes (O'Connell et al. 2010). 

The role of miRNAs includes many aspects of development and physiology, such as 

differentiation, proliferation and growth, mobility or apoptosis (Ambros 2004; Bartel 2004; 

Hwang and Mendell 2006). As a consequence, dysregulation of miRNA levels can lead or 

contribute to diseases and has been observed in cardiovascular and liver disease, situations 

of immune dysfunction or metabolic disorders (Poy et al. 2004; Lindsay 2008; Bostjancic et 

al. 2009; Shu et al. 2011). Implication in cancer was one of the first explorations with Calin et 

al. (2002) showing reduced miRNA-15 and -16 levels in most chronic lymphocytic leukemias.  

Giving the fact of dysregulation in disease, therapeutic intervention could be either restoring 

decreased levels of miRNAs or inhibiting over-expression. miRNA silencing in vivo was 

shown to be successful when chemically engineered oligonucleotides, termed “antagomirs” 

were introduced in mice  (Krutzfeldt et al. 2005).  

The first therapeutic approach in the miRNA field aimed at inhibiting miRNA-122, a miRNA 

important for Hepatitis C viral replication (Santaris Pharma A/S). After initiation of clinical 

trials in may 2008, phase IIa assessements are ongoing since September 2010. Other fields 

of therapeutic investigation include cardiovascular diseases (miRagen Therapeutics), other 

viral and inflammatory diseases (GlaxoSmithKline and Regulus Therapeutics) or cancer 

(Enzon Pharmazceuticals) as well as miRNA-based diagnostic tests (i. e. by Rosetta 

Genomics, AsuraGen). 

 

2.2.2. Biogenesis 
 

miRNAs are encoded by genomic DNA with mostly intronic but also intergenic locations 

(Bartel 2004; Kim, V. N. 2005). Transcription is commonly performed by RNA polymerase II 

or to a lesser extent polymerase III. The primary transcripts (pri-miRNAs), which are capped 

and poly-adenylated can produce a single miRNA or, as many miRNAs are clustered, give 

rise to several miRNAs (Bartel 2004; Baskerville and Bartel 2005). Characteristics of pri-

miRNAs are an imperfectly paired stem of around 33 bp with a terminal loop and flanking 

segments. The pri-miRNA undergoes two sequential processing reactions (see Figure 2) 

which have been described to happen co-transcriptionally (Ballarino et al. 2009).  

The first processing step is performed by Drosha, also called ribonuclease 3, leading to the 

excision of the stem loop (Lee, Y. et al. 2003; Kim, V. N. 2005). For efficient and precise 

work, Drosha needs the cofactor DiGeorge syndrome critical region gene 8 (DGCR8), which 

interacts with the pri-miRNA stem and flanks the single stranded segments (Denli et al. 2004; 

Han et al. 2006). This interaction causes proper positioning of Drosha´s catalytic site and is 
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therefore critical for precise cleavage. The result of this first processing step is the so called 

precursor miRNA (pre-miRNA).  

Until this point, reactions happen in the nucleus, whereas exportin 5 now transports the pre-

miRNA into the cytoplasm. Here, a second excision step by Dicer leads to a duplex formation 

with around 22 bp length (Hutvagner et al. 2001; Bartel 2004). Due to the double stranded 

nature of the pre-miRNA, Dicer needs RNAse III enzymatic function. Under normal 

conditions Dicer is present as heterodimeric complex together with proteins, which contain 

additional double stranded RNA binding domains (TRBP and R2D2). In mammals, a single 

form of Dicer exists (Tomari and Zamore 2005). After the second processing reaction by 

Dicer, the mature miRNA has now reached its final length but still exists as double strand.  

 

Regulation of expression and function of miRNAs may happen at three levels. First, 

transcription can be controlled by transcription factors which are able to influence the 

production of miRNA transcripts. A second point is post-transcriptional regulation of miRNA 

processing. One example is the tumour suppressor protein p53, which forms a complex with 

Drosha and induces increased processing in DNA damaging situations (Suzuki et al. 2009). 

Moreover, interferons and cellular stress have been reported to inhibit Dicer expression, thus 

limiting processing of pre-miRNAs (Wiesen and Tomasi 2009). A third regulatory mechanism 

is subcellular localization, for example by association of miRNAs with stress granules (Leung 

et al. 2006). Beyond that, some reports hint towards regulation of miRNAs by negative 

feedback loops, like let-7, which is repressed by its own target gene lin-48 in C. elegans 

(Seggerson et al. 2002). Although yet not completely understood, tight regulation of miRNAs 

seems to be crucial for miRNA function and adaption.  
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Figure 2: Biogenesis and suppressive function of miRNAs in animal cells. Pri-miRNA molecules 
are transcribed by RNA polymerase II or III and subsequently processed by Drosha and its cofactor 
DGCR8 into pre-miRNAs (~70 nt). After transport from the nucleus to the cytoplasm by exportin 5, a 
second processing step by Dicer (together with TRBP) leads to a duplex formation of ~22 nt length. 
Incorporation into the RISC complex includes association of one strand with the effector protein Ago 
whereas the other strand is degraded. The RISC bound miRNA strand binds to target mRNAs leading 
to mRNA cleavage or translational repression depending on the level of complementarity. ORF, open 
reading frame. (adapted from He and Hannon 2004). 

 

2.2.3. Function 
 
After processing, the mature miRNA duplex is incorporated into the RNA induced silencing 

complex (RISC) in order to be functionally active. Within the complex, the duplex is unwound 

and one strand is stably packaged in association with an effector protein, named Argonaute 

(Ago) (Meister and Tuschl 2004; Meister et al. 2005; Tomari and Zamore 2005). Belonging to 

the Ago superfamily of RNA binding proteins, four of eight human gene paralogs are known 

to function in association with miRNAs or siRNAs. When associated with an Ago, the double 

stranded miRNA is rapidly unwound and one strand has to get retained. This strand selection 

is based on relative thermodynamic stability. The 5´ terminus of the chosen strand is the one 



INTRODUCTION   17  

with less stable base-pairing (Kim, V. N. 2005). The process of strand selection is still not 

fully understood considering the fact that also minor strands, which are supposed to be less 

probably associated in the RISC, have been found expressed as well (Okamura et al. 2008).  

The rapid unwinding is due to the presence of Ago in complex with Dicer and TRBP, the very 

factors involved in the generation of the mature duplex from the precursor form. In 

consequence, transfer of the selected single strand to Ago happens in close proximity 

(Gregory, R. I. et al. 2005; Tang et al. 2008).  

Moreover, the Dicer/Ago/miRNA complex is associated with further proteins, of which 

GW182 (also called TNRC6A) was found to be necessary for Ago to exhibit silencing (Bartel 

2004; Liu, J. et al. 2005; Meister et al. 2005; Eulalio et al. 2008).  

After association to the RISC complex, the miRNA strand guides the way to a target mRNA 

and binding sites have mostly been found in the 3´-UTR of genes. In contrast to siRNAs, 

miRNAs have the ability to bind to their target mRNAs with mismatches and bulges. 

Nevertheless, accurate base pairing seems to be necessary within the so called “seed 

region” of the miRNA, which comprises nucleotides 2-8 (Carthew and Sontheimer 2009).  

Although not fully necessary for the binding, complementarity is described as determinant of 

the mechanism of inhibition. Perfect complementarity thereby leads to Ago catalyzed 

cleavage of the target mRNA whereas central mismatches lead to repression of translation. 

The two mechanisms are subject to ongoing debate. One question is whether degradation 

might be a consequence of a primary effect on translation as observed in some experimental 

settings (Mathonnet et al. 2007; Meister 2007). On the other hand, there exist several reports 

concluding that destabilization of target mRNA is the predominant reason for reduced protein 

output (Bagga et al. 2005; Lim et al. 2005; Guo et al. 2010; Wu, D. et al. 2010). Degradation 

of mRNA is based on de-adenylation, de-capping and exonucleolytic digestion (Behm-

Ansmant et al. 2006).  
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3. AIMS and OBJECTIVES 
 
 
miRNAs are small, non-coding RNAs regulating gene expression on a posttranscriptional 

level. Lately, several miRNAs have been implicated to play important roles in the immune 

system and dysregulated levels have been found in complex diseases. Their mode of action 

allows a small number of miRNAs to regulate whole signaling pathways, making them key 

players in disease biology.  

 

The aim of this project was to analyze dysregulation of miRNA expression in a murine OVA-

model for allergic asthma and to investigate interaction with possible target genes. This 

should be achieved as outlined below: 

 

• Characterization of the murine OVA model mimicking asthmatic disease 

 

• Generation and analysis of miRNA profiles from asthma, sensitized and healthy 

control mice 

 

• Identification of potential target genes and their experimental validation 

 

• Following the kinetics of validated miRNA candidates during the sensitization and 

challenge phase of the protocol 

 

• Investigation of the selected miRNAs as potential “biomarkers” in human and murine 

blood samples.
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4. MATERIAL 
 

 

4.1. Chemicals and reagents 
 
 
Substance Provider 

Acetic acid Carl Roth Karlsruhe (DE) 

Acid Phenol:Chloroform Ambion/ Applied Biosystems Carlsbad (US) 

Adenosine triphosphate (ATP) pjk Kleinblittersdorf (DE) 

Agar-Agar Carl Roth Karlsruhe (DE) 

Agarose Invitrogen Carlsbad (US) 

Albumin from chicken egg white, 
grade V (OVA) 

Sigma-Aldrich Taufkirchen (DE) 

Ampicillin Carl Roth Karlsruhe (DE) 

Bio-Rad Protein Assay BioRad Hercules (US) 

Bovine serum albumin (BSA) New England BioLabs Beverly (US) 

Citric Acid Monohydrate Sigma-Aldrich Taufkirchen (DE) 

Coelenterizine SynChem Illinois (US) 

Coenzym A pjk Kleinblittersdorf (DE) 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Taufkirchen (DE) 

Dithiothreitol (DTT) pjk Kleinblittersdorf (DE) 

D-Luciferin SynChem Illinois (US) 

dNTP Fermentas Waltham (US) 

ElectroMAXTM DH10BTM cells Invitrogen Carlsbad (US) 

Entellan Merck Darmstadt (DE) 

Ethidium bromide Biomatik Wilmington (US) 

Ethylenediaminetetraacetic acid 
(EDTA) 

Sigma-Aldrich Taufkirchen (DE) 

Fetal calf serum (FCS) Invitrogen Carlsbad (US) 

Filler DNA pUC21 Plasmid Factory Bielefeld (DE) 

Formaldehyde solution 32% Science Services München (DE) 

Formamide Carl Roth Karlsruhe (DE) 

Gene RulerTM 1 kb DNA Ladder Fermentas Waltham (US) 

Gene RulerTM 50 bp DNA 
Ladder 

Fermentas Waltham (US) 
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Glycerol Merck Darmstadt (DE) 

Hydrochloric acid (HCl), 2 M Merck Darmstadt (DE) 

Hydrogen peroxide (H2O2) Merck Darmstadt (DE) 

Imject® Alum Thermo Fisher Scientific Waltham (US) 

Ketamin CD-pharma Québec (CAN) 

LB (Luria Bertani) Fertigmedium Carl Roth Karlsruhe (DE) 

LipofectamineTM 2000 Invitrogen Carlsbad (US) 

Magnesium carbonate 
(pentahydrate) 
(MgCO3)4Mg(OH)2 *5 H2O 

Carl Roth Karlsruhe (DE) 

Magnesium sulfate 
(heptahydrate)  
MgSO4 *7 H2O 

Carl Roth Karlsruhe (DE) 

MEM (Minimal Essential 
Medium) 

Invitrogen Carlsbad (US) 

Methanol Carl Roth Karlsruhe (DE) 

Nuclease-free water Ambion/ Applied Biosystems Carlsbad (US) 

Paraffin 52-54° Carl Roth Karlsruhe (DE) 

Penicillin/Streptomycin Invitrogen Carlsbad (US) 

PfuUltra® High-Fidelity DNA 
Polymerase 

Stratagene/ Agilent 
Technologies 

California (US) 

Phosphate buffered saline (PBS) Invitrogen Carlsbad (US) 

Power SYBR® Green Master 
Mix 

Applied Biosystems Carlsbad (US) 

Protein standard Sigma-Aldrich Taufkirchen (DE) 

psiCHECKTM-2 Vector Promega Wisconsin (US) 

QIAzol Lysis Reagent Qiagen Hilden (DE) 

RNAlater® Ambion/ Applied Biosystems Carlsbad (US) 

Rotiphorese® Gel 30 Carl Roth Karlsruhe (DE) 

Sodium bicarbonate (NaHCO3) Merck Darmstadt (DE) 

Sodium carbonate (Na2CO3) Sigma-Aldrich Taufkirchen (DE) 

Sodium chloride (NaCl) Merck Darmstadt (DE) 

Streptavidin-Peroxidase Calbiochem/ Merck Darmstadt (DE) 

Sufluric acid (H2SO4) Carl Roth Karlsruhe (DE) 

T4 DNA Ligase Fermentas Waltham (US) 

TaqMan® 2x Universal PCR 
Master Mix, No AmpErase® 
UNG 

Applied Biosystems Carlsbad (US) 

TaqMan® PreAmp Master Mix 
(2x) 

Applied Biosystems Carlsbad (US) 

Tetramethylbenzidine (TMB) Sigma-Aldrich Taufkirchen (DE) 
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Tricine Carl Roth Karlsruhe (DE) 

Tris Carl Roth Karlsruhe (DE) 

Triton X-100 Sigma-Aldrich Taufkirchen (DE) 

Trizol Invitrogen Carlsbad (US) 

Trypan blue Sigma-Aldrich Taufkirchen (DE) 

Trypsin-EDTA Invitrogen Carlsbad (US) 

Tween-20 Sigma-Aldrich Taufkirchen (DE) 

Xylazin aniMedica Senden-Bösensell 
(DE) 

Xylene Merck Darmstadt (DE) 

 
 

4.2. Buffers and solutions 
 
 
Name Volume Substance 

60.55 g Tris 10x Tris/HCl 
(pH 7.4) 

ad 1 l  H2O 

6 g BSA Blocking Buffer/  
Dilution Buffer  

ad 200 ml 1 x Tris 

4.2 g NaHCO3 

1.78 g Na2CO3 

Coating Buffer 
(pH 9.5) 

ad 500 ml  H2O 

10 mg Coelenterazine Coelenterizine stock 

ad 1 ml MeOH 

69.32 µl Coelenterizine stock 

32.93 ml PBS 

protect from light 

Coelenterizine substrate buffer 

Use 1:5 diluted in PBS 
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100 mg D-Luciferin 

159 mg Coenzym A 

3894 mg DTT 

221 mg ATP 

394 mg (MgCO3)4Mg(OH)2 *5 H2O 

498 mg MgSO4 *7 H2O 

2715 mg Tricine 

28.2 mg EDTA 

ad 757 ml H2O bidest 

D-Luciferine substrate buffer 

30 min sonification 

20 g LB Fertigmedium Luria-Bertani (LB) medium 

ad 1000 ml H2O 

15.14 g  Tris 

5 g Triton X-100 

Lysis buffer 
(pH 7.4) 

ad 500 ml H2O 

8.41 g Citric acid monohydrate Substrate Buffer  
(Gallati Buffer) 
(pH 3.9) ad 200 ml  H2O 

242 g Tris 

57.1 ml  Acetic acid 

100 ml EDTA, 0.5 M 

TAE buffer 
(pH 8.5) 

ad 1000 ml H2O 

24 mg TMB 

500 µl EtOH absolute 

TMB solution 

ad 1ml DMSO 

100 ml 10 x Tris/HCl 

0.5 ml Tween-20 

Wash Buffer  
(1x Tris/Tween) 

ad 1 l  H2O 
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4.3. Antibodies 
 

 

Step Antibody/ Antigen Provider 

Coating Albumin from chicken 
egg white (OVA) 

Sigma-Aldrich Taufkirchen (DE) 

OVA-specific IgE 
Detection 

Biotin rat anti-mouse IgE 
(monoclonal) 

BD Biosciences Heidelberg (DE) 

OVA-specific IgE 
Standard 

Mouse anti-ovalbumin 
IgE (monoclonal) 

Biozol Eching (DE) 

OVA-specific IgG1 
Detection 

Biotin rat-anti-mouse 
IgG1 (monoclonal) 

BD Biosciences Heidelberg (DE) 

OVA-specific IgG1 
Standard 

Anti-chicken egg albumin 
clone OVA 14 
(monoclonal) 

Sigma-Aldrich Taufkirchen (DE) 

 

 

4.4. Oligonucleotides 
 
 
Name Sequence (5`- 3`) Tm (°C) 

CREB 1 fwd CCCAGCAACCAAGTTGTTGTTC 62 

CREB 1 rev CTGCCTCCTGTTCTTCATTAGAC 65 

CREB1 
3´-UTR fwd 

P-GTACTCGAGTTTGGGATTTAAGTTCTCTCCTGTTAC 73 

CREB1 
3´-UTR rev 

GTAGCGGCCGCACACATTATGATTCCATTTATTTGAAATTTCTC 76 

HPRT1 fwd CTGGATTACATTAAAGCACTGAA 58 

HPRT1 rev TCAAGACATTCTTTCCAGTTAAAG 58 

 

Oligonucleotides were synthesized by Metabion international AG, Martinsried (DE) unless 

noted otherwise. Melting temperature (Tm) was calculated by the Metabion using the formula 

100.5 + (41* (yG+zC)/(wA+xT+yG+zC)) - (820/(wA+xT+yG+zC)) + 16.6*log10([Na+]). 

 

miRNA probes by Ambion/Applied Biosystems: 
 
TaqMan®-
microRNA-Assay 

miRNA sequence 

hsa/mmu-miR-17 CAAAGUGCUUACAGUGCAGGUAG 

hsa/mmu-miR-21 UAGCUUAUCAGACUGAUGUUGA 

hsa/mmu-miR-22 AAGCUGCCAGUUGAAGAACUGU 

hsa/mmu-miR-142-3p UGUAGUGUUUCCUACUUUAUGGA 
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hsa/mmu-miR-144 UACAGUAUAGAUGAUGUACU 

hsa/mmu-miR-181a AACAUUCAACGCUGUCGGUGAGU 

mmu-miR-193b AACUGGCCCUCAAAGUCCCGCU 

hsa/mmu-miR-205 UCCUUCAUUCCACCGGAGUCUG 

hsa/mmu-miR-208 AUAAGACGAGCAAAAAGCUUGU 

hsa/mmu-miR-451 AAACCGUUACCAUUACUGAGUU 

mmu-miR-763 CCAGCUGGGAAGAACCAGUGGC 

hsa RNU48 CTTTTGGACTGAATCTAAGTGATTTAAAATTCGTCACTACCACTGAGA 

mammalian RNU6B TCGCGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTTT 

mmu snoRNA-202 GCTGTACTGACTTGATGAAAGTACTTTTGAACCCTTTTCCATCTGATG

mmu snoRNA-234 AGTGATGATGACCCCAGGTAACTCTGAGTGTGTCGCTGATGCCAT 
CACCGCAGCGCTCTG 

 

Pre-miRNA precursor molecules by Ambion/Applied Biosystems: 
 
Pre-miRNA Sequence (5´-3´) 

Pre-miRTM hsa-miR-17 CAAAGUGCUUACAGUGCAGGUAG 

Pre-miRTM hsa-miR-22 AAGCUGCCAGUUGAAGAACUGU 

Pre-miRTM hsa-miR-144 UACAGUAUAGAUGAUGUACU 

Pre-miRTM hsa-miR-181a AACAUUCAACGCUGUCGGUGAGU 

Pre-miRTM negative control #1 Sequence is not provided 

 
 

4.5. Restriction enzymes 
 

 

Enzyme Buffer Tempera-
ture 

Recognition 
site 

Provider 

Cla I Buffer 4 37°C AT/CGAT 
TAGC/TA 

New England 
BioLabs 

Beverly (US) 

Not I Buffer O 37°C GC/GGCCGC 
CGCCGG/CG 

Fermentas Waltham (US) 

Sma I Buffer 4 25°C CCC/GGG 
GGG/CCC 

New England 
BioLabs 

Beverly (US) 

Xho I Buffer R 37°C C/TCGAG 
GAGCT/C 

Fermentas Waltham (US) 
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4.6. Commercial kits 
 

 

Kit Provider 

ArtisanTM Congo Red Stain Kit DakoCytomation Glostrup (DK) 

Agilent RNA 6000 Nano Kit  Agilent/ ThermoFisher 
Scientific 

Waltham (US) 

Diff-Quick Kit Medion Diagnostics Düdingen (CH) 

DNA-freeTM Kit Ambion/ Applied Biosystems Carlsbad (US) 

DNeasy Blood & Tissue Kit Qiagen Hilden (DE) 

High Capacity RNA-to-cDNA Kit Applied Biosystems Carlsbad (US) 

MegaplexTM PreAmp Primers, 

Rodent Pool A and B 

Applied Biosystems Carlsbad (US) 

MegaplexTM RT Primers, Rodent 

Pool A and B 

Applied Biosystems Carlsbad (US) 

miRCURY LNATM microRNA Array 

Kit  

Exiqon Vedbaek (DK) 

miRCURY LNATM microRNA Array 

Power Labeling Kit 

Exiqon Vedbaek (DK) 

miRNeasy Mini Kit Qiagen Hilden (DE) 

NucleoSpin® Extract II  Macherey-Nagel Düren (DE) 

QIAprep® Miniprep Kit (Plasmid 

DNA purification) 

Qiagen Hilden (DE) 

Quantikine mouse CCL17/TARC R&D Systems Minneapolis (US) 

TaqMan® microRNA Array A and 

B 

Applied Biosystems Carlsbad (US) 

TaqMan® microRNA Reverse 

Transcription Kit 

Applied Biosystems Carlsbad (US) 
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4.7. Model systems 
 

 

4.7.1. In vitro cell culture 
 

Cells Description/ Provider 

BEAS-2B Isolated from human bronchial epithelium from autopsy of non-
cancerous individuals. Infected with adenovirus 12-SV40 virus 
hybrid (Ad12SV40). ATCC (CRL-9609) 

16HBE14o- Isolated from human bronchial epithelium. Transformed with SV-40 
virus.  

ElectroMAXTM 
DH10BTM cells 

Electrocompetent Escherichia coli cells. Invitrogen, Carlsbad (US) 

 

4.7.2. Mice 
 
Strain Provider 

Balb/c Charles River  Sulzfled (DE) 

 

4.7.3. Patient samples 
 

Whole peripheral blood samples stored in Trizol reagent from a multicenter, double-blind, 

randomized intervention study (German Infant Nutrition Intervention study) were used.  

Samples were selected based on the following criteria: current allergic asthma, lack of acute 

infections (in the last 4 weeks) and absence of environmental tobacco smoke exposure. Age 

matched controls from the same cohort were included in case they never had asthma and 

were non-atopic. 

 

 

4.8. Miscellaneous Consumables 
 

 

Miscellaneous consumable Provider 

24-well plates NunclonTM Nunc, ThermoFisher 
Scientific 

Waltham (US) 

Cell culture flasks,  
75 and 175 cm2 

Greiner bio-one Frickenhausen (DE) 

Cryotubes Sarstedt Nümbrecht (DE) 

Gene Pulser® Cuvettes (0.1 cm 
gap) 

BioRad Hercules (US) 
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Glass slides Gerhard Menzel Braunschweig (DE) 

Histology cassettes ThermoFisher Scientific Waltham (US) 

LumiNunc, F96 Nunc, ThermoFisher 
Scientific 

Waltham (US) 

MicroAmpTM  Fast Optical 96-well 
Reaction Plate 

Applied Biosystems Carlsbad (US) 

MicroAmpTM 96-well Optical 
Adhesive Film 

Applied Biosystems Carlsbad (US) 

Micropipettes (10µl) Marienfeld Lauda-Königshofen 
(DE) 

NUNC-MaxiSorp, round bottom Nunc, ThermoFisher 
Scientific 

Waltham (US) 

Petri-dishes Greiner bio-one Frickenhausen (DE) 

Shandon cytofunnels ThermoFisher Scientific Waltham (US) 

 

 

4.9. Equipment and devices 
 

 

Equipment/ device Name Provider  

Bioanalyzer Agilent 2100 
Bioanalyzer  

Thermo Fisher 
Scientific 

Waltham (US) 

Array reader GenePix 4000A 
Scanner 

Axon Instruments Foster City (US) 

Centrifuge 
5810R 

Eppendorf Hamburg (DE) 

Heraeus 
Multifuge 3S+ 

Thermo Fisher 
Scientific 

Waltham (US) 

Centrifuge 

Mikro 200R  Andreas Hettich Tuttlingen (DE) 

Cytospin centrifuge Shandon 
Cytospin 3 

Thermo Fisher 
Scientific 

Waltham (US) 

Lyophilizer MICRO STP 
420D 

Thermo Fisher 
Scientific 

Waltham (US) 

Capacitance 
Extender Plus 

BioRad Hercules (US) 

Gene Pulser II BioRad Hercules (US) 

Electroporation device 

Pulse Controller 
Plus 

BioRad Hercules (US) 

ELISA reader MRXII  Thermo Labsystems Egelsbach (DE) 

Embedding machine MICROM EC 
350-1 

Thermo Fisher 
Scientific 

Waltham (US) 

Freezer Heraeus Hera 
freeze -80°C 

Thermo Fisher 
Scientific 

Waltham (US) 

Gel Imager Intas  Science Imaging 
Instrument GmbH 

Göttingen (DE) 

Hemocytometer Neubauer cell 
chamber 

GLW Würzburg (DE) 
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Histology Staining 
automat 

MICROM HMS 
740 

Thermo Fisher 
Scientific 

Waltham (US) 

Homogenizer Polytron TP2100 Kinematika Luzern (CH) 

HeraCell 240 
Incubator 

Thermo Fisher 
Scientific 

Waltham (US) Incubator 

Heraeus 
Function Line 
Incubator 

Thermo Fisher 
Scientific 

Waltham (US) 

Liquid nitrogen tank MVE 600 series Chart Industries Burnsville (US) 

Luminometer Wallac Victor2, 
1420 Multilabel 
Counter 

Perkin Elmer Massachusetts (US) 

Microscope DMIL Leica Microsystems Wetzlar (DE) 

Microtom HYRAX M55 Zeiss Oberkochen (DE) 

Nebulizer Pari boy Pari Starnberg (DE) 

ABI  7900HT 
Fast Real-Time 
PCR System 

Applied Biosystems Carlsbad (US) Real-time Thermocycler 

ABI StepOneTM 
Plus Real-Time 
PCR System 

Applied Biosystems Carlsbad (US) 

Spectrophotometer Nanodrop ND-
1000 

Thermo Fisher 
Scientific 

Waltham (US) 

Thermocycler peqStar 96 
universal 
gradient 

peqLab 
Biotechnology 

Erlangen (DE) 

Water bath 1008 GFL Burgwedel (DE) 

 

 

4.10. Software and internet resources 
 

 

Software and Internet resources 

GenePix Pro 6.0 Axon Instruments, Foster City (US) 

GraphPad Prism v5.0 GraphPad Prism software, San Diego (US) 

miRanda http://www.microrna.org//miranda.html 

miRNA registry/ miRBase http://microrna.sanger.ac.uk 

PicTar http://pictar.bio.nyu.edu 

PITA http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html 

SDS v2.2 Applied Biosystems, Carlsbad (US) 

Target spy http://www.targetspy.org 

TargetScanS http://genes.mit.edu/targetscan 

 

http://pictar.bio.nyu.edu/
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5. METHODS 
 

 

5.1. Mice 
 

 

5.1.1. Animal maintenance 
 

Female Balb/c mice (Charles River, Sulzfled, Germany) were housed in individually 

ventilated cages and received a standard pellet diet and water ad libitum. The study was 

conducted under the federal guidelines for the use and care of laboratory animals and was 

approved by the government of the district of Upper Bavaria.  

 

5.1.2. Treatment protocol 
 
At an age of 6-7 weeks mice underwent treatment consisting of 6 intra-peritoneal (i. p.) 

injections of either PBS or OVA (1 µg in 200 µl of PBS) together with 2.5 mg of alum 

adjuvant (Imject® alum containing aluminum hydroxide and magnesium hydroxide) on days 

0, 7, 15, 28, 42 and 56. On days 70 and 71 mice received an aerosol challenge (Pari) for 20 

min consisting of either nebulized PBS or ovalbumin (1 % in PBS). All analyses were 

performed after a lethal i. p. anesthesia with 20 µl/g/body weight Ketamin (10 %) and Xylazin 

(2 %). 

 

 

5.2. Serum analysis 
 

 

Blood was taken from the retrobulbar veins. After coagulation for 1-2 h at room temperature 

serum was separated by centrifugation (10 000 rpm, 10 min at room temperature) and stored 

at -80°C. 

 

5.2.1. OVA-specific Ig ELISA 
 

OVA-specific IgE and IgG1 were measured in serum samples of mice by ELISA. For coating, 

a stock solution of OVA (1 mg/ml in PBS) was diluted 1:100 in coating buffer and 100 µl were 

added to each well of a 96-well plate (NUNC-MaxiSorp, round bottom). After overnight 
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incubation at 4°C plates were washed three times with washing buffer followed by blocking 

with 200 µl of blocking buffer for 2 h at room temperature and subsequent washing. Serum 

samples and serial dilutions of standard for IgE or IgG1 in blocking buffer were prepared. All 

samples were analyzed in duplicates using a volume of 50 µl per well and incubated at 4°C 

overnight. After washing, 50 µl of detection antibody (biotin anti-mouse IgE or IgG1, diluted 

1:400 in blocking buffer) was added per well and incubated for 2 h at room temperature After 

washing, 50 µl of streptavidin-peroxidase (diluted 1:1000 in blocking buffer) was added for 30 

min at room temperature before plates were washed five times. The substrate for the 

enzymatic reaction was mixed just before use (single preparation for each plate using 50 µl 

per well) consisting of 55 µl TMB solution and 2.55 µl of cold H2O2 (30 %) filled up to 5.5 ml 

with substrate buffer. After stopping the colorimetric reaction with 25 µl of 2 M sulfuric acid 

per well, plates were analyzed with a microplate reader at 450 nm. 

 

 

5.3. BAL analysis 
 

 

BAL fluid was obtained by intra-tracheal instillation of three times 0.8 ml of PBS. 

Centrifugation at 1200 rpm for 10 min at 4°C separated cells and fluid. The cellular fraction 

was promptly investigated, fluid was stored at -80°C until further use.  

 

5.3.1. Total cell counts 
 

The BAL cell pellet was resuspended in 160 µl of cold PBS (5 % FCS) and total cell numbers 

were counted using a hemocytometer. Briefly, 10 µl of a 1:2 dilution of cell suspension and 

trypan blue were added to a hemocytometer and four big squares were counted. The number 

of cells per ml was calculated considering dilutions and chamber volume  

(counted cells in four squares / 4 x 2 (dilution) x 104/ml = cells per ml). 

 

5.3.2. Differential cell counts 
 
According to cell numbers, 10000 to 100000 cells in 150 µl of PBS (5 % FCS) were 

transferred to a sample slide using cytocentrifugation (400 rpm, 10 min at room temperature). 

Samples were left to dry overnight and cells stained using the Diff-Quick Kit. After drying, 

samples were embedded using Entellan.  

Counting of different cell types was performed by light microscopy using 100 x magnification 

and counting a minimum of 500 cells per slide. Cells were morphologically distinguished into 
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macrophages, neutrophils, lymphocytes and eosinophils. The Diff-Quick Kit stains cells 

according to the method of May-Giemsa-Grünwald. The DNA-rich nuclei are stained by 

alkaline components of the dye (methylenblue and azur B) and appear dark blue or violet. 

The cytoplasma shows a lighter blue, with dark blue granula in basophils or acidophilic pink 

granula in eosinophils (stained by eosin). Neutrophils contain weak acidophilic granula in 

their cytoplasm, which are practically not visible. Epithelial cells were not included in the cell 

counts. Their pink staining and lack of visible intracellular components were used to 

distinguish them from other cell types. The epithelial cells present in BAL were squamous 

epithelium with a characteristic oval form and ciliated epithelium.  

 

5.3.3. CCL17 ELISA 
 

Cell-free BAL fluid was used for chemokine measurement. CCL17 (also named TARC) 

protein levels were analyzed by ELISA following instructions of the Quantikine® mouse 

CCL17/TARC kit (R&D Systems, MN). 

 

 

5.4. Histopathology 
 
 
For histopathological analysis, either the whole lung or the left lung lobe was fixed by intra-

tracheal instillation and subsequent immersion with 4 % formaldehyde for 24 h at 4°C. Lungs 

were washed in PBS and trimmed according to histological standard analyzing left lobe 

and/or right cranial, middle, caudal and accessory lobe. Tissue slices were transferred to 

histology cassettes and immersed in 70 % ethanol for up to three days before being 

dehydrated applying washing steps with solutions of increasing ethanol concentrations 

(ethanol 70 %, 80 %, two times 95 %, two times 100 %). After clearance in xylene (2 washes 

for 5 min), samples were automatically embedded in paraffin (MICROM EC 350-1). The 

tissue blocks were cut into sections of 5-8 µm thickness on a microtom (HYRAX M55) and 

transferred to glass slides. After drying, slides were deparaffinized in xylene (2 washes for 5 

min) and hydrated applying washing steps with solutions of decreasing ethanol 

concentrations (two times 2 min in 100 %, 1 min in 90 %, 1 min in 80 %, 1 min in 70 % and 

30 sec in H2O). Staining of lung tissue slides was done with Congo Red staining kit (Dako) 

using a histology staining automate (MICROM HMS 740). The Congo Red staining 

procedure includes three steps: an alcoholic Congo Red staining (8 % alcohol, 0.2 % Congo 

Red and NaCl in deionized H2O), an alkaline alcohol step (80 % alcohol and NaCl in 

deionized H2O) and a counterstain with Mayer´s Hematoxylin (0.1 % hematoxylin, 5 % 
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aluminum ammonium sulfate and additives in deionized H2O). After staining, slides were 

washed in H2O for 10 min before being dehydrated (ethanol each for 1 min in 70 %, 80 %, 90 

%, 100 %). Clearance with two washes for 5 min in xylene was followed by addition of cover 

slips using Entellan mounting medium.  

Analysis using light microscopy reveals pale pink colours for amyloid, collagen or fibrous 

material whereas nuclei have a blue appearance. Qualitative changes in lung tissue structure 

and cell composition were evaluated in stained sections. 

 

 

5.5. RNA analysis 
 
 

5.5.1. Isolation of total RNA including small RNAs 
 

For depletion of blood from lung tissue, trans-cardial perfusion was undertaken. 

Approximately 8 ml of PBS were injected via the right ventricle and loss of blood was 

indicated by a change in colour of lung tissue. 

Lung or spleen tissue was cut in pieces and stored in RNAlater® until further processing. 

Tissue was transferred to Qiazol reagent and underwent homogenization (Polytron TP2100). 

Approximately 70 mg of lung or 10 mg of spleen tissue were used for a volume of 700 µl 

Qiazol. For blood miRNA analysis, whole blood was directly transferred to Qiazol solution 

(approximate ratio 1: 6). Cell culture samples were directly dissolved by addition of Qiazol. 

All samples were processed following instructions of the miRNeasy Mini Kit (Qiagen).  

 

5.5.2. Quality testing 
 

Concentration and quality was monitored by absorbance measurement (Nanodrop). 

Acceptable values were defined as 260/280 nm ratios above 1.8 and 260/230 nm ratios 

between 1.8 and 2.2. In addition, RNA integrity was analyzed by native agarose gel 

electrophoresis inspecting 28S and 18S rRNA bands. Therefore, 1 µg of RNA was added to 

5 µl formamide (total volume 10 µl) and treated with 65°C for 15 min. After cooling on ice and 

addition of 2 µl loading dye, samples were loaded on a 0.8 % agarose gel in TAE buffer with 

0.5 µg/ml ethidium bromide added to the gel and run at ~65 V.  

For further testing the Bioanalyzer system (Agilent) was applied following manufacturer´s 

guidelines for the Agilent RNA 6000 Nano Kit. RNA integrity numbers (RIN) above 7 indicate 

sufficient RNA quality. 
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5.5.3. miRNA analysis 
 
5.5.3.1. miRNA profiling by microarray (Exiqon) 
 

The Exiqon miRNA microarray experiment includes 2 steps: labeling of RNA molecules 

(miRCURYTM LNA microRNA Power Labeling Kit) and second, hybridization of the labeled 

RNA to pre-spotted microarrays (miRCURYTM LNA microRNA Array Kit). 

For normalization, 10 different synthetic miRNAs in various concentrations are spiked into a 

RNA sample. The spike-in miRNAs bind to corresponding capture probes on the array. 

Additionally, positive and negative miRNA probes are available. The Exiqon array is based 

on locked nucleic acid (LNA)-modified capture probes which have been tested to achieve 

high detection sensitivity (Castoldi et al. 2006).  

 

All steps were performed according to manufacturer´s guidelines. Briefly, 1 µg total RNA was 

combined with spike-in miRNAs and calf intestinal alkaline phosphatase plus buffer, 

incubated for 30 min at 37°C followed by heating for 5 min at 95°C. After cooling on ice for 2 

min, labeling enzyme catalyzed the attachment of fluorescent labels (Hy3TM or Hy5TM 

respectively) in presence of labeling buffer and DMSO during 1 h at 16°C followed by a stop 

reaction for 15 min at 65°C. Next, the two samples aimed to be compared were mixed (e.g. 

healthy control RNA/Hy3TM-labeled plus asthma RNA/Hy5TM-labeled) and denatured with 

hybridization buffer at 95°C for 2 min followed by 2 min on ice. Moreover, every comparison 

was done twice including a colour-swop (reversed dyes) in order to minimize differences 

originating from the labeling reaction. The RNA preparation was then pipetted into the 

prepared microarray slide and incubated for hybridization within a tightly closed slide 

chamber for 16-18 h in a water bath at 56°C. Afterwards, microarray slides underwent a 

series of stringency washes (with decreasing concentrations of salt buffer and detergent 

solution) before drying. Fluorophore emissions of 556 nm and 656 nm (Hy3TM and Hy5TM) 

were measured by scanning at 5 µM resolution using GenePix 4000A Scanner (Axon 

Instruments, Foster City, US).  

Prior to data analysis, fluorescent signals were matched to species-specific GenePix® Array 

Lists (GAL) files consistent with the micorarray layout. The matching was verified manually 

for each slide using GenePix Pro 6.0 (Axon Instruments, Foster City, US).  

Bioinformatic analyses were performed by PD Dr. Philip Pagel (Institute for Bioinformatics 

and Systems biology/MIPS, Helmholtz Zentrum München). Analyses were generated with 

the R statistical language (R Development Core Team 2008) using packages of the 

Bioconductor framework (Gentleman et al. 2004). Quality control comprised spot and 

background as well as raw colour intensities of all arrays. For data processing, background 



METHODS   34  

correction and within-array normalization was considered. Repeatability was tested as 

correlation between replicate spots within arrays and between arrays with colour-swop 

(reversed dyes). Analysis of differentially expressed miRNAs (given as log fold change and 

average expression) was carried out with the limma package (Smyth, G.K. 2005) which fits a 

linear model for each gene and computes a moderated t-statistic and its p-value (Smyth, G. 

K. 2004). Adjustment for multiple testing (adjusted p-value) was done using the method by 

Benjamini and Hochberg (Benjamini and Hochberg 1995). 

 

5.5.3.2. miRNA profiling by TaqMan® MicroRNA Array 
 

The TaqMan® array is based on TaqMan® RT-PCR technology. The reaction comprises a 

high-throughput system with a multiplex RT and qPCR reaction on pre-configured micro 

fluidic cards (Lao et al. 2006; Mestdagh et al. 2008). An optional pre-amplification step 

between RT and PCR is supposed to increase sensitivity. Each array of the two-array set 

contains endogenous control assays for species-specific normalization.  

All experimental steps were performed according to manufacturer´s guidelines. Briefly, 350 

ng of isolated RNA including small RNAs (see 5.5.1) was subjected to RT including 

MegaplexTM RT primers and TaqMan® MicroRNA Reverse Transcription Kit (including 

MulitScribeTM Reverse Transriptase, RT buffer, dNTPs, RNase inhibitor and nuclease-free 

water). Thermal cycling conditions were set to 40 cycles including 2 min at 16°C, 1 min at 

42°C, 1 sec at 50°C followed by a terminal heating to 85°C for 5 min and cool down to 4°C. 

The achieved RT product was then combined with MegaplexTM PreAmp Primers and 

TaqMan® PreAmp Master Mix under the following thermal cycling conditions: 10 min at 

95°C, 2 min at 55°C, 2 min at 72°C followed by 12 cycles including 15 sec at 95°C and 4 min 

at 60°C, ending with a cool down to 4°C. Next, the diluted pre-amplified RT product was 

mixed with TaqMan® Universal PCR Master Mix (No AmpErase® UNG) and the 384-well 

microfluidic card of the TaqMan® Array was loaded, centrifuged and sealed. The SDS v2.2 

software was applied to import the plate layout and perform the experiment on the Applied 

Biosystems 7900HT Fast Real-Time PCR System before analyzing relative quantification 

(ΔΔCt method).  

 

5.5.3.3. miRNA expression quantification by RT-qPCR 
 

Expression of single miRNAs was tested using TaqMan® MicroRNA Assays in a two-step 

reaction setting.  

In the RT reaction, a miRNA-specific stem-loop primer is extended to bind to the miRNA 

before a cDNA strand is synthesized (Chen, C. et al. 2005). Therefore, 50 ng total RNA was 
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combined with TaqMan® MicroRNA RT primer and given amounts of the TaqMan® 

MicroRNA Reverse Transcription Kit following manufacturer´s guidelines. Thermal cycling 

conditions were 30 min at 16°C, 30 min at 42°C followed by 5 min at 85°C.  

In the second step, PCR products were amplified from cDNA samples using the TaqMan® 

MicroRNA Assay (specific forward and reverse PCR primers and a specific TaqMan® probe) 

together with the TaqMan® Universal PCR Master Mix, No AmpErase® UNG.  Thermal 

cycling conditions for the PCR reaction included 10 min at 95°C followed by 40 cycles of 15 

sec at 95°C (denaturation) and 60 sec at 60°C (annealing/extension). The PCR reaction was 

carried out in 96-well format using Applied Biosystems StepOnePlusTM Real-Time PCR 

system and analyzed using SDS software. All reactions were run in triplicate.  

Data analysis included setting of baseline and threshold values and calculation of differential 

expression using the ΔΔCt method. Only samples run in the same RT reaction were 

considered for direct comparison.  

 

5.5.4. mRNA analysis 
 
Total RNA was isolated using the miRNeasy Mini Kit (Qiagen) and quality testing was 

performed as described in section 5.5.2. Prior to real-time PCR, DNase treatment was done 

following instructions of the DNA-freeTM Kit (Ambion, Applied Biosystems). 

 
5.5.4.1. mRNA Expression quantification by RT-qPCR 
 

The High Capacity RNA-to-cDNA Kit (Applied Biosystems) was used for reverse 

transcription. In every experiment, “no amplification” controls were included for each sample. 

According to manufacturer´s instructions, RT buffer (containing dNTPs) and enzyme mix 

(containing MuLV and RNase inhibitor protein) were combined with 900 ng RNA per reaction 

for 60 min at 37°C followed by 5 min at 95°C. 

For real-time qPCR the Power SYBR® Green PCR Master Mix (Applied Biosystems) was 

used containing SYBR® Green I Dye, AmpliTaq Gold® DNA Polymerase, dNTPs, passive 

reference (ROX) and optimized buffer components. Reactions were run in triplicates and “no 

amplification” as well as “no template” controls were included. Applied Biosystems 

StepOnePlusTM Real-Time PCR System was used and a melting curve was processed after 

each run.  
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Optimized reaction set up: 
 
 Concentration for 

Reagent Volume [µl] CREB1 HPRT1 

Power SYBR Green Mix 10   

cDNA 1   

Primer forward 1 375 nM 1 µM 

Primer reverse 1 375 nM 1 µM 

nuclease-free water 7   

Total  20   

 

Thermal cycling conditions: 
 
 Step Temperature Time  

1 Denaturation/Enzyme activation 95°C 10 min  

2 Denaturation 95°C 15 sec 

3 Annealing/Extension 60°C 60 sec 
40 cycles 

4 95°C 15 sec  

5 60°C 60 sec 

6 

Melting Curve 

95°C 15 sec 

with 0.3°C 

increments 

 

Correct size of PCR products was tested by agarose gel electrophoresis using 2.5 % 

agarose in TAE buffer with 0.5 µg/ml ethidiumbromid run at 100 V for ~90 min. For size 

discrimination a 50 bp ladder was applied in a concentration of 0.5 µg/well. Data analysis 

comprised baseline and threshold settings using the SDS software (Applied Biosystems) and 

calculation of differential expression using the ΔΔCt method.  

 
5.5.5. Normalization 
 

Microarray and real-time qPCR based data for miRNA expression was normalized using 

control genes. These were either provided in the assay, namely RNU6B (Exiqon), 

determined to be most stable (snoRNA-202 for TaqMan® array), or experimentally verified to 

fulfill the role of control genes in different tissues and organs analyzed in the present study. 

For example, levels of snoRNA-234 were found to be particularly stable in murine lungs and 

spleen whereas snoRNA-202 was the candidate of choice for murine blood. For human 

blood samples RNU48 was selected. For the analysis of human cell lines RNU6B was 

applied as control gene.  
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Expression of CREB1 gene was normalized using Hypoxanthine guanine phosphoribosyl 

transferase 1 (HPRT1) which was employed for both human cell lines and mouse tissue 

samples.  

 

 

5.6. Cell culture 
 

 

5.6.1. Culture of cell lines 
 

Adherent cell lines (BEAS-2B, 16HBE14o-) were cultured in MEM medium containing 10 % 

FCS and 1 % Penicillin/Streptomycin at 37°C and 5 % CO2 under standard conditions. 

Detachment of cells was achieved by addition of Trypsin-EDTA (0.05 % (w/v) Trypsin and 

0.5 mM EDTA, Invitrogen) when cells were needed for experiments or reached high 

confluency. After addition of 2 ml of Trypsin-EDTA (175 cm2 cell culture flasks), cells were 

incubated for 4 min at 37°C. As soon as detachment was visible, cell culture medium was 

added to stop the enzymatic reaction. 

 

5.6.2. Cell counts 
 

Cell numbers were examined with a Hemocytometer as described in section 5.3.1. 

 

5.6.3. Cryopreservation 
 

For preservation, cells were spun for 5 min at 300 g and the pellet was resuspended in cell 

freezing medium consisting of MEM, 20 % FCS and 10 % DMSO. A number of 2- 5 x106 

cells/ cryotube were slowly frozen at -80°C before transfer to cryopreservation in nitric 

oxygen at -196°C. 

For defrosting of cryopreserved cells, tubes were directly set into a waterbath at 37°C until 

defrozen, transferred to pre-warmed medium and the pellet resuspended and cultivated in 

fresh medium after centrifugation at 400 g for 5 min. 

 

5.6.4. Transfection via lipofection 
 

For transfection experiments, 80 000 cells/ well (BEAS-2B and 16HBE14o-) were seeded in 

a 24-well format and visually monitored for viability before and after every treatment. After 24 

h cells reached ~95 % confluency and transfection was performed with Lipofectamine 2000 
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(Invitrogen) following manufacturer´s instructions. Either 20 pmol of precursor miRNA 

(Ambion) alone, or precursor miRNA plus 50 ng of 3´-UTR-plasmid-vector construct were 

transfected. In case of the co-transfection experiment, a non-specific filler DNA (pUC21, 

Plasmid factory; kindly provided by PD Dr. Carsten Rudolph) was added to the plasmid 

vector DNA to achieve a total amount of 400 ng and an according volume of 1 µl of 

Lipofectamine. miRNAs of interest were tested and compared to a negative control. In every 

experiment, untransfected cells and/ or cells transfected with CREB1 3´-UTR-plasmid only, 

were also monitored. Analysis was done 72 h after transfection. 

 

 

5.7. Bacterial culture 
 

 

5.7.1. Culture of bacteria 
 

Transformed E.coli cells (ElectroMAXTM DH10BTM cells, Invitrogen) were cultured on agar 

plates (15 g Agar-Agar in 1 l LB medium) including ampicillin (75 µg/ml) for selection. 

Bacterial colonies were grown in shaking suspension of ~5 ml LB medium containing 100 

µg/ml ampicillin. Both culturing conditions were performed overnight (12-16 h) at 37°C.  

 

5.7.2. Glycerol stocks 
 

To prepare frozen stocks of desired clones, 700 µl of an overnight culture grown in medium 

was mixed with 150 µl of glycerol (~17 %) and stored at -80°C. For inoculation, some crystals 

of frozen glycerol stock were transferred to ampicillin containing LB medium and cultured as 

shaking suspension at 37°C overnight 

 

5.7.3. Transformation using electroporation 
 

Electrocompetent E.coli cells underwent transformation by electroporation in order to take up 

and amplify plasmid vector constructs. Therefore, 2 µl of electrocompetent E.coli were 

combined with 50-100 ng plasmid vector filled up to 50 µl with nuclease-free water. 

Transferred to a pre-cooled electroporation cuvette (GenePulser® cuvettes, 0.1 cm gap, 

BioRad), the following conditions were applied: 1.8 kV, 100 Ω, 25 µF using a Gene Pulser II 

(BioRad). Transformed solution was pipetted into 2 ml of LB medium and cultivated for 1 h at 

37°C before centrifugation at 4000 rpm for 4 min. Supernatant was decanted and the pellet 

resuspended with the remaining liquid. Two agar plates with ampicillin (75 µg/ml) were plated 
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with 50 µl and 100 µl of resuspension and incubated at 37°C overnight. On the next day, 

formed colonies were picked and transferred to ampicillin-LB medium as described in section 

5.7.1. 

 

5.7.4. Plasmid purification 
 

To purify the plasmid vector DNA after amplification in E.coli, the QIAprep® Miniprep Kit 

(Qiagen) was applied following manufacturer´s instructions. Before starting the procedure, 

bacterial cultures were spun at 4000 rpm for 5-10 min and supernatant was decanted. 

 

 

5.8. miRNA expression reporter gene assay 
 

 

5.8.1. 3´-UTR amplification 
 

For amplification of the CREB1 3´-UTR, genomic DNA was isolated from murine heart tissue 

using the DNeasy Blood & Tissue Kit (Qiagen). To obtain the complete 3´-UTR of CREB1, 

PCR primers were designed to target the 7.2 kb long segment and amplification was 

performed using Pfu Ultra High-Fidelity DNA Polymerase (Agilent). Suggested extension 

time of 2 min per kb was extended to ~2.6 min per kb (total extension time 19 min).  

 

Optimized reaction set up: 
 

Reagent Volume [µl] Concentration 

10x Pfu Ultra HF buffer 3.75  

dNTPs  1.25 500 µM 

DNA 2 250 ng 

CREB1 3´-UTR Primer forward 1 500 nM 

CREB1 3´-UTR Primer reverse 1 500 nM 

Pfu Ultra HF DNA Polymerase 1 2.5 U 

BSA  1 0.4 µg 

DMSO  1.25 5 % 

Total 25  
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Thermal cycling conditions: 
 
 Step Temperature Duration  

1 Denaturation 95°C 5 min  

Denaturation 95°C 30 sec 

Annealing 55°C 30 sec 

2 

Extension 68°C 19 min 

10 cycles 

Denaturation 95°C 30 sec 

Annealing 55°C 30 sec 

3 

Extension 68°C 19 min plus 

10 sec/cycle 

20 cycles 

 

Successful reaction was ascertained by agarose gel electrophoresis followed by gel 

extraction and PCR clean-up of the 3´-UTR (NucleoSpin® Extract II, Macherey-Nagel). 

 

5.8.2. Restriction enzyme digestion 
 

Restriction enzyme digestions were performed with Not I and Xho I (Fermentas) as well as 

with Cla I and Sma I (New England Biolabs) according to manufacturer´s guidelines. 

Reaction volume was 20 µl including 2 µl of specific 10x buffer, 0.2 µl of enzyme (1 U/µl) and 

0.5-1 µg DNA. Digestions were run at 37°C for 3 h unless stated otherwise. Size distribution 

of digested DNA was tested on a 0.8 % agarose gel (see section 5.5.4.1) using a 1 kb 

ladder. 

 

5.8.3. Ligation 
 

The complete Creb1 3´-UTR was ligated into psiCHECKTM-2 reporter plasmid (see Figure 3; 

100 ng DNA per reaction) using T4 DNA ligase (5 U/µl, Fermentas) following manufacturer´s 

instructions. In order to verify the identity of the cloned insert, a restriction map was 

prepared. Three different restriction enzymes were used (Cla I, Sma I and Xho I) and size 

distribution was determined by agarose gel electrophoresis. 
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Figure 3: Plasmid map of psiCHECKTM-2 vector Structure of reporter plasmid with a multiple cloning 
region downstream of a primary reporter gene (Renilla luciferase). The target 3´-UTR of interest is 
ligated to the reporter gene, which, after effective silencing by precursor miRNAs, leads to a reduction 
in Renilla luciferase activity. A secondary Firefly luciferase expression cassette can be used for 
normalization of the luciferase signals (Promega). 

 

5.8.4. Measurement of reporter gene expression 
 

Direct interaction between the target 3´-UTR of CREB1 gene and the four predicted miRNAs 

was examined using a reporter gene assay. Activity of the cloned 3´-UTR could be indirectly 

measured by quantifying Renilla luciferase using coelenterizine as substrate. Firefly 

luciferase, encoded on the same plasmid, was used as a control for transfection efficiency 

and was quantified by addition of its substrate luciferin. Binding of a miRNA to target sites in 

the 3´-UTR hinders Renilla luciferase expression and thus lowers Renilla/Firefly ratio. 

72 h after transfection, cells were lysed by addition of 120 µl of lysis buffer per well and 

incubated for 10 min at room temperature with constant agitation. Using a white 96-well plate 

(Nunc), 50 µl of lysed sample was pipetted per well. The according substrate buffers 

(luciferine or coelenterizine) were added automatically using a volume of 100 µl per well. 

Luminescence was measured  with a Luminometer (Wallac Victor2).  

 

5.8.5. Bradford protein measurement 
 

After measurement of luminescence, 5 µl of each lysed sample was transferred to a 96-well 

microtiter plate and protein content was measured using Bio-Rad Protein Assay following 

manufacturer´s guidelines (Bradford method). 200 µl of dye reagent (diluted 1:5 in PBS) was 
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added per well and measured at 595 nm (Wallac Victor2). For calculation, a standard curve 

was prepared using BSA as standard protein in a concentration range of 0.2 –0.7 mg/ml. 

 

 

5.9. Statistical analysis 
 

 

Statistical analyses were performed with GraphPad Prism software version 5.0 (San Diego, 

US). The level of significance was accepted for p values ≤ 0.05. 

For comparison of different treatment groups (means of two unmatched groups), the 

unpaired Student´s t-test was applied. In order to test association between two variables, 

Spearman rank correlation analysis was used. This non-parametric test gives a correlation 

coefficient “rho” that varies between -1 and +1, with ±1 describing perfect degree of 

correlation. Values near 0 point towards a weaker relationship of the two variables.  
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6. RESULTS 
 

 

6.1. Mouse model characterization 
 
 
The present study aimed at investigating miRNA dysregulation in allergic airway disease 

using an ovalbumin based mouse model. Sensitization and challenge scheme followed in 

this study is presented as Figure 4. Mice were analysed on day 72 post treatment, i. e. 24 h 

post final challenge, and none of the treatment groups showed any visible symptoms of 

physical distress. Before sacrificing the mice, body weight was measured and a small but 

significant decrease in body weight was observed for the asthma group (mean 19.69 g ± 

1.87) compared to healthy control animals (mean 20.91 g ± 0.55). No significant difference 

could be observed between healthy control and sensitized groups (Figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 4: Treatment protocol. Six to seven week old female mice were i.p. sensitized on days 0, 7, 
14, 28, 42 and 56 with either 1 µg OVA or PBS in 200 µl together with 2.5 mg alum, followed by 
aerosol challenge on two consecutive days (70 and 71) with 1 % OVA or PBS for 20 min. Three 
treatment groups were studied: healthy control, sensitized and asthma mice. Mice were sacrificed on 
day 72. 
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For characterization of the mouse model, the following analyses were performed: OVA-

specific IgE and IgG1 titres in serum, total and differential cell counts as well as CCL17 

chemokine levels in BAL, and lung histopathology. 
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Figure 5: Body weight of mice in different treatment groups. Body weight was measured on day 
72. 15 mice per group are shown with each point reflecting one animal (data from 3 independent 
experiments with n = 5); unpaired t-test with *p ≤ 0.05 

 

6.1.1. OVA-specific Ig levels in serum 
 

Sensitization with an antigen leads to a systemic immune reaction and raised Ig against the 

administered OVA can be detected in serum samples using ELISA technique. Mice that 

received i. p. OVA treatment (sensitized and asthma group) showed a significant increase in 

both IgE and IgG1 levels compared to healthy control mice (Figure 6A and B). Briefly, 

sensitized (305.40 ± 134.60 ng/ml) as well as asthma mice (301.00 ± 66.83 ng/ml) showed 

~30-fold higher IgE levels compared to controls (10.04 ± 10.0 ng/ml). For IgG1, sensitized 

and asthma mice had serum levels of 4.69 (± 1.89) x 106 ng/ml and 4.75 (± 1.97) x 106 ng/ml 

whereas in control animals very little OVA-specific IgG1 could be detected (1.97 ± 4.21 x 10-5 

ng/ml). 
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Figure 6: OVA-specific serum Ig levels in different treatment groups. OVA-specific IgE (A) and 
IgG1 (B) levels were detected in serum samples of healthy control, sensitized and asthma mice. Each 
point reflects one animal; n = 15 per group (data from 3 independent experiments with n = 5); unpaired 
t-test with ***p ≤ 0.0005. 

 

6.1.2. BAL analysis 
 

Performing BAL enables cells and signaling molecules to be retrieved from the airways which 

provide information about inflammatory changes. BAL was analysed with respect to total cell 

numbers and differential cell counts. As additional maker for inflammation CCL17 chemokine 

levels were investigated, which have previously been shown to be increased in asthmatic 

patients (Hartl et al. 2005).  

 

6.1.2.1. Total cell counts 
 

Total cell numbers, as presented in Figure 7, were significantly increased in BAL from 

asthma mice (16.11 x 104 cells/ml) compared to healthy control (3.11 x 104 cells/ml) and 

sensitized mice (2.41 x 104 cells/ml).  
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Figure 7: Total cell counts in BAL of different treatment groups of mice. Lungs were lavaged 
three times with 0.8 ml PBS and the cellular fraction was analyzed. Total cell counts were measured in 
healthy control, sensitized and asthma animals. Values represent mean x 104 cells/ ml ± SD with n = 7 
per group (data from 2 independent experiments with n = 3 and n = 4); unpaired t-test with ***p ≤ 
0.0005. 

 
6.1.2.2. Differential cell counts 
 

Differential cell counts in BAL were explored by cytocentrifugation and subsequent staining 

(Diff-Quik Kit, Figure 8). The different cell types were distinguished as described in 5.3.2. In 

both healthy control and sensitized mice, macrophages constituted the major cell type 

whereas all other cell types constituted less than 1 % (Fig. 9A). In asthma samples the 

proportion of macrophages was ~33 % due to a rise in neutrophils (~30 %), eosinophils (~34 

%) and to a lower extent also lymphocytes (~3 %). Cell numbers per ml are depicted in 

Figure 9B. Next to the appearance of inflammatory cells in the asthma samples, morphology 

of macrophages changed due to activation and increased phagocytosis during inflammation. 

This was visible as increase in size as well as foam-like appearance of cytoplasma.  
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Figure 8: BAL cytospin pictures of different treatment groups. BAL was retrieved by intratracheal 
instillation of three times 0.8 ml PBS into the lungs. The cellular fraction was counted and cells were 
transferred to glass slides by cytocentrifugation. After staining with Diff-Quick, a minimum of 500 cells 
per slide were distinguished into macrophages (m), neutrophils (n), eosinophils (e), lymphocytes (l) or 
epithelial cells (ep); magnification 40x. Pictures are representative examples of (A) healthy control 
animals (B) sensitized animals and (C) asthma animals. 
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Figure 9: Differential cell counts of healthy control, sensitized and asthma mice. The cellular 
fraction of retrieved BAL was analyzed by cytospin technique using Diff-Quick staining. A minimum of 
500 cells per slide were distinguished into macrophages, neutrophils, eosinophils or lymphocytes. (A) 
The proportion of each cell type is illustrated as percent of total cells or as (B) cells x 104/ml. Bars 
represent mean ± SD with n = 7 per group (data from 2 independent experiments with n = 3 and n = 
4); unpaired t-test with *p ≤ 0.05 and ***p ≤ 0.0005. 

 
6.1.2.3. CCL17 protein levels 
 

Cell free BAL was used for chemokine measurement via ELISA. CCL17 is secreted by 

immune cells (dendritic cells, monocytes, CD4+ T cells) and acts as a chemo-attractant 

recruiting mainly T cells of the Th2 type. Significantly higher CCL17 levels were observed in 

BAL from asthma mice (mean 101.20 ± 82.51 pg/ml) compared to healthy control and 

sensitized groups where CCL17 was undetectable (≤ 6 pg/ml; Figure 10). 
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Figure 10: CCL17 protein levels in cell-free BAL in healthy control, sensitized and asthma mice. 
Cell-free fluid gained after BAL was assayed for CCL17 expression by ELISA. CCL17 levels of control, 
sensitized and asthma mice with n = 15 per group and each point representing one mouse (data from 
3 independent experiments with n = 5). CCL17 levels of the asthma group were significantly higher 
with substantial variation within the asthma group when compared to controls and sensitized animals; 
unpaired t-test with ***p ≤ 0.0005. 

 

6.1.3. Histopathology 
 
In order to gain insight into tissue changes after sensitization and challenge of mice with 

different treatments, histological analysis was undertaken. Samples were stained with Congo 

Red, a dye that intensively stains the cytoplasma of eosinophils. In Figure 8, microscopic 

pictures of lung tissue slices are shown with images 11A and 11B presenting healthy 

bronchial and vascular structures. In Figures 11C peri-vascular infiltration of cells is 

demonstrable. Higher magnification (Figure 11D) reveals enrichment of eosinophils with 

typically pink stained cytoplasm. 
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Figure 11: Histological evaluation of healthy control, sensitized and asthma lung tissue. After 
fixation lung lobes were prepared for morphological analysis from paraffin embedded samples. 
Staining was performed using Congo Red and pictures are taken in 20x magnification as 
representatives from groups of five mice per treatment. (A) healthy control (B) sensitized and (C) 
asthma lung tissue. In (D) a higher magnification of an asthma sample is shown (63x); white arrows 
show inflammatory infiltrate around vessels (v); black arrowheads point at eosinophils.  
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6.2. miRNA profiling of lung tissue 
 

 

After confirming the successful development of an asthma-like allergic inflammation in the 

chosen mouse model, miRNA profiles were generated. Isolated lung RNA from three animals 

per group was pooled for analysis by microarray (Exiqon) and TaqMan® array. Afterwards, 

single samples were examined by miRNA specific RT-qPCR reactions. Differences between 

the groups were compared to identify candidate miRNAs dysregulated in asthmatic disease. 

 

6.2.1. miRNA microarray (Exiqon) 
 

To identify dysregulated miRNAs in asthma compared to control, an array based expression 

profile was performed. For comparison, miRNAs that are changed in sensitized versus 

control animals were also examined. Expression of 580 miRNAs (miRBase release 10.0) in 

whole lung tissue was investigated with a dual colour hybridization array (miRCury LNATM 

microRNA Array, Exiqon). Differential expression of miRNAs was identified using a linear 

model approach (limma, Bioconductor analysis suite). Bioinformatical data analysis included 

background correction as well as within-, and between-array normalization. Every miRNA is 

spotted in quadruplicates on an array and additionally each sample was probed on two 

arrays including a colour-swop (array 1: control sample Hy3TM/asthma sample Hy5TM; array 

2: control sample Hy5TM/asthma sample Hy3TM) which in total leads to eight repeated 

measurements per miRNA. Data was further normalized to a constitutively expressed small 

nuclear RNA (RNU6B) and fold changes relative to the control samples were calculated. An 

adjusted p-value was built after correction for multiple testing. Significance was analyzed 

after Bonferroni correction. From 580 miRNAs included on the array, expression of 55 % was 

detected in lung tissue. To confine the resulting miRNA profile, only miRNAs with adjusted p-

values under 10-4 were taken into account.  

 

The comparison of asthma versus control animals revealed a signature of 36 statistically 

significant miRNAs of which five showed a fold change above 1.5 (Table 1). Additionally, two 

miRNAs with higher adjusted p-values but high fold changes were included (miRNA-193b 

and miRNA-205). In the sensitized versus control situation, a number of 11 miRNAs showed 

significant differences (Table 2) and of these, seven showed fold changes above 1.5.  

When examining miRNAs of the two data sets one can find four miRNAs that are exclusively 

changed in the sensitized (atopic) state (miRNA-1, -133a, -133b and miRNA-665), whereas 

15 miRNAs show dysregulation in asthma airways only (see Table 1, underlined). The 

overlap between the two data sets for sensitized and asthma revealed five miRNAs that 
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characterize changes seen in both conditions. These are miRNAs-126-5p, -144, -193a-5p, -

208 and miRNA-451 (see Table 1 and 2 in grey). Notably, the coding regions of miRNA-144 

and -451 are overlapping (clustered) and thus similar expression patterns can possibly be 

attributed to shared transcription.  

 

Table 1: Differentially regulated miRNAs in lung tissue of asthma versus control mice 
evaluated by Exiqon microarray, TaqMan® miRNA array and single RT-qPCR. Dysregulated 
miRNAs in asthma compared to healthy control mice are depicted. Exiqon microarray gives statistical 
significance expressed by adjusted p-value (n = 3 per group; two experiments with reversed dyes; 
normalized to RNU6B). Verification was performed by TaqMan® microarray and fold changes (FC) are 
displayed (n = 3 per group; one experiment; normalized to snoRNA-202). In the right column, results 
of single RT-qPCR measurements of selected candidates are noted in FC (n = 3 per group; means of 
two independent experiments; normalized to snoRNA-234). FC above 1.5 are highlighted bold. 
Underlined miRNAs were found deregulated in asthma samples only (compared to healthy control); 
deregulated miRNAs in sensitized and asthma samples are highlighted in grey. Negative regulation is 
marked with a minus; n.d. not detected; / stands for miRNA not available on the array; n. a. stands for 
not analyzed; * stands for minor strand of miRNA 

 
Exiqon 

miRNA microarray 
TaqMan® 

miRNA array 
TaqMan® 
RT-qPCR 

miRNA adj. p-value FC FC FC 

hsa/mmu/rno-miRNA-451 1.47 x10-14 1.97 1.90 1.98 

hsa/mmu/rno-miRNA-21 6.18 x10-13 1.88 1.40 1.61 

hsa/mmu-miRNA-208/rno-miRNA-

208 
8.89 x10-10 -1.57 -2.1 -1.34 

hsa/mmu/rno-miRNA-144 3.93 x10-9 1.63 / 1.89 

hsa/rno-miRNA-126*/mmu-

miRNA-126-5p 
2.07 x10-8 -1.29 -1.16 n. a. 

hsa142-5p/mmu/rno-miRNA-142-

5p 
2.84 x10-7 1.41 1.37 n. a. 

hsa-miRNA-371-5p 4.98 x10-7 1.36 / n. a. 
hsa/mmu/rno-miRNA-30e* 1.12 x10-6 -1.31 -1.25 n. a. 
hsa/mmu/rno-miRNA-125b-5p 5.31 x10-6 -1.20 -1.25 n. a. 
hsa/mmu/rno-miRNA-365 5.31 x10-6 -1.37 -1.45 n. a. 
hsa/mmu/rno-miRNA-125a-5p 1.0 x10-5 -1.23 -1.82 n. a. 
hsa/mmu/rno-miRNA-142-3p 1.25 x10-5 1.40 1.46 1.36 

hsa-miRNA-193a-5p 1.31 x10-5 1.35 / n. a. 
hsa/mmu/rno-miRNA-181a 1.34 x10-5 -1.37 -1.25 n. a. 
hsa/mmu/rno-miRNA-100 1.73 x10-5 -1.27 -1.10 n. a. 
Mmu-miRNA-199b* 2.73 x10-5 -1.32 -1.69 n. a. 
hsa/mmu/rno-let-7b 4.58 x10-5 -1.26 -1.44 n. a. 
hsa/mmu/rno-miRNA-145 4.73 x10-5 -1.18 -1.27 n. a. 
hsa/mmu/rno-miRNA-101a 4.73 x10-5 -1.23 1.05 n. a. 
mmu/rno-miRNA-21* 5.65 x10-5 1.37 3.40 n. a. 
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rno-miRNA-135a* 6.06 x10-5 1.23 1.15 n. a. 
hsa-miRNA-933 1.09 x10-4 1.22 / n. a. 
hsa/mmu/rno-miRNA-24-2* 1.35 x10-4 -1.28 -1.12 n. a. 
mmu-miRNA-875-3p 1.35 x10-4 1.16 n.d. n. a. 
hsa/mmu/rno-miRNA-26a 1.74 x10-4 -1.24 -1.16 n. a. 
hsa/mmu/rno-miRNA-193 2.01 x10-4 -1.23 -1.18 n. a. 
hsa/mmu/rno-miRNA-23b 3.21 x10-4 -1.20 -1.20 n. a. 
hsa/mmu-miRNA-668 3.47 x10-4 1.22 n.d. n. a. 
mmu-miRNA-763 3.82 x10-4 1.70 n.d. 1.12 

hsa/mmu/rno-miRNA-30e 3.84 x10-4 -1.18 -1.25 n. a. 
mmu-miRNA-720 4.64 x10-4 1.21 -1.35 n. a. 
hsa-miRNA-519c-5p/-519b-5p/ -

523*/ -518e*/ -522*/ -519a* 
6.67 x10-4 1.18 / n. a. 

mmu/rno-miRNA-290 6.73 x10-4 1.22 -2.60 n. a. 
hsa-miRNA-768-5p 6.80 x10-4 -1.23 / n. a. 
hsa/mmu/rno-miRNA-152 7.21 x10-4 -1.22 1 n. a. 
hsa/mmu/rno-miRNA-29c 7.21 x10-4 -1.18 1.1 n. a. 
hsa/mmu/rno-miRNA-205 1.13 x10-3 1.61 1.34 2.43 

hsa/mmu-miRNA-193b 1.02 x10-2 2.73 -1.60 -1.20 

 

Table 2: Differentially expressed miRNAs in lung tissue of sensitized versus healthy control 
mice examined by Exiqon microarray and single TaqMan® RT-qPCR. Lung tissue RNA samples 
were profiled for dysregulated miRNAs in sensitized versus control mice using Exiqon microarray. 
miRNAs with statistical significance according to adjusted p-value are displayed (n = 3 per group; two 
experiments with reversed dyes; normalized to RNU6B) and FC are given. FC above 1.5 is highlighted 
bold. Underlined miRNAs were found in sensitized samples (compared to healthy control) only; 
deregulated miRNAs in sensitized and asthma samples are highlighted in grey. Validation of selected 
candidates by single TaqMan® RT-qPCR is shown in the right column (n = 3 per group; means of two 
independent experiments; normalized to snoRNA-234). Negative regulation is marked with a minus; n. 
a. not analyzed; * stands for minor strand of miRNA 

 
Exiqon 

miRNA microarray 
TaqMan® 
RT-qPCR 

miRNA adj. p-value FC FC 

hsa/mmu/rno-miRNA-451 1.68 x10-17 2.48 2,86 

hsa/mmu/rno-miRNA-144 7.51 x10-14 2.29 3,27 

hsa/mmu/rno-miRNA-208 9.94 x10-12 -1.75 -1,36 

mmu-miRNA-665 1.48 x10-11 2.22 n. a. 

hsa/mmu/rno-miRNA-133b 1.90 x10-11 -1.73 n. a. 
hsa/mmu-miRNA-1 4.31 x10-10 -1.58 n. a. 
hsa/mmu/rno-miRNA-133a 6.41 x10-9 -1.76 n. a. 
hsa-miRNA-193a-5p 1.34 x10-5 1.36 n. a. 
hsa/mmu/rno-miRNA-378 1.45 x10-5 -1.46 n. a. 
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6.2.2. Verification by miRNA TaqMan® array 
 

In order to validate data from the Exiqon miRNA-microarray, a TaqMan® chemistry based 

array (TaqMan® microRNA Array, v2.0 miRNABase v.10.0) was performed using the same 

RNA samples as in the Exiqon array. On two 384-well plates, a number of 518 murine 

miRNAs can be profiled. After normalization to a small nucleolar RNA (snoRNA-202), 

differential expression of miRNAs in asthma versus control mice was calculated. Mean 

detection efficiency was 75 %.  

In Table 1 (middle column), results from the TaqMan® array are matched to the Exiqon 

microarray. Fold change values of the 36 top miRNAs resulting from the Exiqon array 

correlate significantly (Spearman r = 0.62, ***p ≤ 0.0005) although six out of 36 miRNAs were 

not present on the TaqMan® array mainly because of strict limitation to murine sequences.  

From the five miRNAs characterizing sensitization and asthma, three were validated with 

similar or higher fold changes (-126-5p, -208, -451) whereas the remaining two miRNAs were 

not available on the array (miRNA-144, -193a-5p). The signature for specific asthma-related 

miRNAs that comprised a number of 15 in the Exiqon array was validated for eight miRNAs 

with three showing augmented, and three having slightly lowered fold changes in the 

TaqMan® array (Table 1). Three miRNAs were not available on the array and four were not 

detected or revealed contradictory expression patterns.  

 

6.2.3. Verification by miRNA TaqMan® RT-qPCR 
 

As a third experiment for validating miRNA expression in asthma lung tissue compared to 

healthy control animals, specific miRNA RT-qPCR was undertaken using TaqMan® assays 

for single miRNAs selected from the achieved profile. Eight candidates were investigated and 

normalized to a small nucleolar RNA (snoRNA-234). The selection was based on the fold 

changes measured in the Exiqon array experiment which were also validated in the 

TaqMan® array. The three selected miRNAs demonstrating highest expression changes 

were miRNA-144, -208 and -451 for sensitization plus asthma and miRNA-21, -142-3p and -

205 for asthma only. Two additional miRNAs, -193b and -763 were tested, that appeared 

clearly up-regulated in asthma versus control after Exiqon array with fold changes of 2.7 and 

1.7 respectively, but which showed contradictory results in the TaqMan® array. Further 

analysis was done to examine the reliability of the two arrays. Expression levels of miRNA-

193b showed down-regulation in both the TaqMan® array and the single PCR (-1.6 and -1.2-

hsa/rno-miRNA-126*/mmu-miRNA-126-5p 1.54 x10-5 -1.19 n. a. 
mmu-miRNA-467e* 1.25 x10-4 1.19 n. a. 
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fold change). This miRNA was included in the Exiqon array signature exhibiting the highest 

fold change measured (2.73-fold) but irrespective of a high p-value (above x10-4). Due to 

these contradictory results, miRNA-193b was not investigated further. miRNA-763, selected 

based on p-value and high fold change (1.70-fold) in the Exiqon array was not detected in 

the TaqMan® array but could be analyzed by single RT-qPCR and asserted a 1.12-fold 

change which let to exclusion for further analysis.  

As an overview, Figure 12 illustrates the expression of miRNAs investigated by the three 

methods. Six miRNAs could be validated with similar or intensified expression levels in 

asthma samples (miRNA-21, -142, -144, -205, -208 and miRNA-451). The three miRNAs that 

were similarly expressed in asthma and sensitized groups in the Exiqon microarray were 

tested, with miRNA-144 and -451 showing enhanced expression also in single RT-qPCR 

analysis (see table 3). Down-regulated expression of miRNA-208 can be seen in asthma and 

sensitized treatment although single RT-qPCR values were lower (-1.36 in sensitized and -

1.34 in asthma respectively) than in the array analysis. Table 3 lists the expression of the 

eight selected and six validated miRNA candidates in asthma and sensitized lung tissue 

compared to the healthy control group. 
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Figure 12: Differences in expression of eight miRNA candidates in lungs of asthma versus 
healthy control animals evaluated by three different methods. Isolated RNA samples from lungs 
of asthma and control mice underwent profiling for miRNA expression using Exiqon microarray (n = 3 
per group; mean of two experiments with reversed dyes; normalized to RNU6B), TaqMan® array (n = 
3 per group; one experiment; normalized to snoRNA-202) and single RT-qPCR (n = 3 per group; 
values describe mean of two experiments; normalized to snoRNA-234). Values are FC of asthma 
compared to healthy control samples with normalization to endogenously expressed small RNAs 
validated for each experiment, respectively.   
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Table 3: Overview of expression of eight selected miRNA candidates in asthma and sensitized 
lung tissue compared to healthy control. Results of the Exiqon microarray (n = 3 per group; mean 
of two experiments with reversed dyes; normalized to RNU6B) and validation by TaqMan® array (n = 
3 per group; one experiment; normalized to snoRNA-202) and single RT-qPCR (n = 3 per group; 
values describe mean of two experiments; normalized to snoRNA-234). Values are FC. Negative 
regulation is marked with a minus; FC ≥ 1.5 is marked bold; n.a. not analyzed; n.s. not significantly 
changed; / stands for miRNA not available on the array; Chr stands for chromosomal location in 
mouse genome 

 

 

 

6.3. Target gene search 
 

 

The profiling experiment revealed a number of miRNA candidates that were dysregulated in 

asthma mice compared to control animals. Although expression changes were reproducible 

for most miRNAs tested, fold changes stayed in a low range (highest expression 3.27-fold). 

As a consequence it was decided to include the top 100 miRNAs profiled by Exiqon 

microarray in “asthma versus healthy control mice” for a bioinformatical target gene search.  

To elucidate the function of a miRNA, it is necessary to know the genes that are putative 

targets and thus can be regulated. Because of the imperfect complementarity that 

characterizes the binding between a miRNA and its target gene, different algorithms have 

been created that give a prediction for possible binding sites. Prediction criteria differ 

between algorithms, the most common ones are based on sequence complementarity 

Accession miRNA Asthma 
(Exiqon ) 

Asthma
(TaqMan® 

array) 

Asthma
(RT-

qPCR) 

Sensitized 
(Exiqon) 

Sensitized   
(RT- 

qPCR) 

Chr

MI0001729 
miRNA-

451 
1.97 1.90 1.98 2.48 2.86 11 

MIMAT0000076 
miRNA- 

21 
1.88 1.40 1.61 n.s. n.a. 11 

MIMAT0000241 
miRNA-

208 
-1.57 -2.1 -1.34 -1.75 -1.36 14 

MIMAT0000436 
miRNA-

144 
1.63 / 1.89 2.29 3.27 11 

MIMAT0000434 
miRNA-

142-3p 
1.40 1.46 1.36 n.s. n.a. 11 

MIMAT0003896 
miRNA-

763 
1.70 n.d. 1.12 1.38 n.a. 10 

MIMAT0000266 
miRNA-

205 
1.61 1.34 2.43 n.s. n.a. 1 

MIMAT0002819 
miRNA-

193b 
2.73 -1.60 -1.20 n.s. n.a. 16 
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between miRNA seed region and 3´-UTR of the target mRNA, conservation of binding sites 

as well as number and thermodynamic stability of binding. 

 

6.3.1. In silico prediction of target genes 
 

Binding site prediction often leads to a high number of putative target genes for a miRNA. 

Figure 13 shows the number of predicted targets, depending on the algorithm chosen, for six 

validated miRNAs from the expression profiling in asthma lung tissue. To avoid high numbers 

of false positive target genes, a very strict, “full consensus approach”, based on five 

algorithms was applied. For bioinformatical analysis, four publically available algorithms 

(TargetScanS, miRNAanda, PITA and PicTar) as well as one newly created algorithm, 

“target spy”, were used (collaboration with PD Dr. Philip Pagel, Institute for Bioinformatics 

and Systems biology/MIPS, Helmholtz Zentrum München). The top 100 differentially 

expressed miRNAs from the Exiqon microarray (asthma versus healthy control) were 

included in the search and out of these, 33 families were built. miRNAs with identical seed 

regions (nucleotides 2-8 of mature sequence) were grouped into one family (mapping by 

TargetScan). By applying the strict “full consensus approach”, number of putative target 

genes could be diminished, for example for miRNA-144 from more than 490 or 2700 with 

single algorithms to 32 possible binding partners (Figure 13).  
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Figure 13: Differences in the number of predicted miRNA-targets according to used algorithms. 
For prediction of a putative binding between a miRNA and a target gene, different algorithms are 
available which consider aspects like complementarity, conservation or stability of the binding product. 
The number of target genes for the miRNAs-21, -142-3p, -144, -205, -208 and -451 (candidates from 
the profiling experiment) are shown either predicted by single algorithms (miRNAanda or 
TargetScanS) or by a full consensus approach considering five different algorithms (TargetScanS, 
miRNAanda, PITA, Target spy and pictar). 

 

Target prediction analysis revealed 961 genes in total that are possible targets for miRNAs 

from the 33 families. Figure 14 depicts the number of target genes predicted for one miRNA 

or family of miRNAs. The miRNA-15/16/195/424/497 family shows the highest number of 

predicted genes with 149 hits whereas five miRNA families only have one or two hits.  
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Figure 14: Number of predicted target genes for single miRNAs or miRNA families calculated 
by a full consensus approach of five algorithms. 100 miRNAs showing differential expression in 
asthma versus control lung samples analyzed by Exiqon microarray were grouped into 33 families 
according to identical seed regions (TargetScan). Putative gene binding sites were evaluated using 
five prediction algorithms (TargetScanS, miRNAanda, PITA, Target spy and pictar) and the resulting 
number of possible target genes per miRNA is depicted. 

 

In most cases of the 961 targets identified, single genes offer binding sites for one or two 

miRNAs. Multiple binding of different miRNAs at the same gene might strengthen the 

regulatory effects. In Figure 15, the number of target genes that have either one or multiple 

binding sites, predicted by the “full consensus approach”, is indicated. Around 75 % of the 

identified target genes (723 of 961 in total) were predicted to have a single binding site for a 

miRNA, 20 % contain two sites, 4 % of target genes harbor three miRNA binding sites and a 

total number of 10 genes possess four sites. Only one target gene (TNRC6B) was predicted 

to have nine miRNA binding sites. 
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Figure 15: Number of target genes that harbor single or multiple binding sites for miRNAs. 
Applying the “full consensus approach” of five prediction algorithms led to 961 target genes for a total 
number of 100 miRNAs (summarized into 33 miRNA families). The number of miRNA binding sites on 
one gene are depicted with most target genes offering one or two binding sites for different miRNAs.  

 

Of the predicted 961 target genes, 11 contain at least four miRNA binding sites. These 

targets were further investigated and are listed in Table 4 together with their binding miRNAs. 

 

Table 4: Target genes with four or more binding sites and the corresponding miRNAs. Predicted 
miRNAs which harbor four or more binding sites for miRNAs are noted (abbreviation and name) as 
well as the miRNAs which are supposed to bind (by full consensus approach with five algorithms).  

 

Target gene Target gene name Binding miRNAs  

TNRC6B Trinucleotide repeat-

containing gene 6B protein 

miRNA-15/16/195/424/497  

miRNA-21/590-5p 

miRNA-22 

miRNA-26ab/1297 

miRNA-34a/34b-5p/34c/34c-5p/449/449abc/699 

miRNA-101 

miRNA-103/107 

miRNA-148/152 

miRNA-181 

ACVR2A Activin receptor type-2A miRNA-15/16/195/424/497 

miRNA-27ab 

miRNA-145 

miRNA-223 

BAZ2B Bromodomain adjacent to zinc 

finger domain, 2B 

miRNA-26ab/1297 

miRNA-30a/30a-5p/30b/30b-5p/30cde/384-5p 

miRNA-181 

miRNA-200bc/429 
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CREB1 cAMP responsive element 

binding protein 1 

miRNA-17-5p/20/93/106/519d 

miRNA-22 

miRNA-144 

miRNA-181 

ELAVL2 ELAV-like protein 2 miRNA-26ab/1297 

miRNA-27ab 

miRNA-144 

miRNA-200bc/429 

HMGA2 High-mobility group AT-hook 2 

 

let-7/98 

miRNA-17-5p/20/93/106/519d 

miRNA-26ab/1297 

miRNA-503 

NFAT5 Nuclear factor of activated T-

cells 5 

miRNA-17-5p/20/93/106/519d 

miRNA-29abc 

miRNA-30a/30a-5p/30b/30b-5p/30cde/384-5p 

miRNA-181 

SOCS6 Suppressor of cytokine 

signaling 6 

miRNA-15/16/195/424/497 

miRNA-17-5p/20/93/106/519d 

miRNA-23ab 

miRNA-27ab 

SOX6 Transcription factor SOX-6 miRNA-15/16/195/424/497 

miRNA-101 

miRNA-181 

miRNA-194 

STYX Serine/threonine/tyrosine-

interacting protein 

miRNA-15/16/195/424/497 

miRNA-17-5p/20/93/106/519d 

miRNA-26ab/1297 

miRNA-103/107 

ZBTB39 Zinc finger and BTB domain- 

containing protein 39 

miRNA-15/16/195/424/497 

miRNA-27ab 

miRNA-30a/30a-5p/30b/30b-5p/30cde/384-5p 

miRNA-103/107 

 

Besides different miRNAs being able to bind to one target gene at a time, single miRNAs can 

also bind at multiple locations within a given gene. The number of binding sites for a 

particular miRNA per target gene is presented in Table 5, concentrating on the genes with at 

least four binding sites for different miRNAs.  
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Table 5: Number of binding sites of one miRNA per gene. Genes which harbor four or more 
miRNA-binding sites are listed and the predicted miRNAs were searched for their binding frequency. 
Colours illustrate the number of binding sites for one miRNA in the 3´-UTR of a gene with grey = 0 
sites, yellow = 1, orange = 2, dark orange = 3 and red = 5 sites. Binding site information is based on 
TargetScan and microRNA.org. 
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let-7/98            
miRNA-101            
miRNA-103/107            
miRNA-144            
miRNA-145            
miRNA-148/152            
miRNA-15/16/195/424/497            
miRNA-17-5p/20/93/106/519d            
miRNA-181            
miRNA-194            
miRNA-200bc/429            
miRNA-21/590-5p            
miRNA-22            
miRNA-223            
miRNA-23ab            
miRNA-26ab/1297            
miRNA-27ab            
miRNA-29abc            
miRNA-30a/30a-5p/30b/30b-            
miRNA-34a/34b-5p/34c/34c-            
miRNA-503            
            

Binding sites in 3´-UTR 0 1 2 3 5       
            

 

In order to select which gene with its binding miRNAs should be investigated further, three 

aspects were taken into account. First, the total number of binding sites per gene, second, 

binding miRNAs that were found to be differentially regulated in allergic airway disease with a 

fold change above 1.5 (see Table 3 with selected candidates) and third, biological function of 

a gene with attention to asthmatic or inflammatory involvement.  

As depicted in Table 5, TNRC6B, which is the gene with the highest number of different 

miRNAs predicted to attach, also contains the maximum number of binding sites in total (9 

miRNAs binding at 14 sites). Of the remaining target genes, HMGA2 has nine sites in total 

with the let-7/98 family adhering at five different locations within its 3´-UTR, miRNA-

26ab/1297 family binding three times and miRNA-17-5p family as well as miRNA-503 binding 

at one site respectively. CREB1 possesses eight binding sites for four different miRNAs in 

total, with the miRNA-17-5p family attaching three times, miRNAs-181 and -22 two times and 

miRNA-144 binding once. Of the remaining eight genes, half have four miRNAs binding at 

five sites, whereas the other half are supposed to bind four miRNAs at four sites.  
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The second criteria is the comparison of the significantly dysregulated miRNAs from the 

asthma profile (chapter 6.2) which showed fold changes above 1.5 with the miRNAs that are 

predicted to target the selected genes (Table 5). The profiling experiment revealed six 

miRNA candidates that were tested and validated with three different methods. After analysis 

with five target prediction algorithms, two miRNAs (miRNA-208 and -451) had no overlap and 

could thus not be included further. For miRNA-142-3p and miRNA-205 a number of six and 

three target genes were identified, respectively. However, the number of binding miRNAs per 

gene was 3 or less which was not compatible with the criteria of having at least four binding 

sites (see Table 4). miRNA-21 and -144 were both found to be differentially expressed in 

asthma and had a total number of 17 and 32 predicted target genes, including some with 

more than 4 binding sites. miRNA-21 was predicted to bind to TNRC6B at two different sites 

whereas miRNA-144 binds CREB1 and ELAVL2 at one site each (Table 5).  

Looking at the third criteria, the biological function of genes, it should be mentioned that all 

11 candidate genes are involved in regulatory processes, for example the transcription factor 

SOX6, the zinc finger protein ZBTB39 or the transcriptional regulator HMGA2. The gene 

which inhabits most binding sites for miRNAs, TNRC6B, plays a role in miRNA-dependent 

translational repression by interacting with Ago complexes and thus is part of a negative 

feedback loop of the miRNA machinery (Meister et al. 2005; Lazzaretti et al. 2009). 

Focussing on an association with asthma or immune regulation, three genes can be named: 

the transcription factors CREB1 and NFAT5 and SOCS6 protein. SOCS6 is reported to play 

a role in the negative regulation of T cell activation (Choi et al. 2009) but has also been 

described to stimulate cytokine signaling through interaction with other SOCS family 

members (Piessevaux et al. 2006). NFAT5 regulates the response of immune cells to 

osmotic stress by induction of gene expression and stimulation of cytokine expression. Such 

conditions are typically found in lymphoid organs and at inflammatory sites (Go et al. 2004; 

Berga-Bolanos et al. 2010). The third gene of interest, CREB1 is known to regulate diverse 

cellular responses including many immune-related mechanisms. Examples are 

transcriptional regulation of IL-2, 6 or IL-10, inhibition of nuclear factor (NF) κB or regulation 

of macrophages and T and B cells (Wen et al. 2010). Moreover, the transcription factor is 

brought in context with lung diseases, like asthma or chronic obstructive pulmonary disease 

(COPD) (Chiappara et al. 2007; Mroz et al. 2007).  

With regard to the aspects listed above, the target gene CREB1 was chosen for further 

analysis. Taken together, CREB1 offers a high number of binding sites in total (eight sites for 

four different miRNAs), miRNA-144 is both validated to be differentially regulated in allergic 

airway disease and predicted to bind CREB1 and associations of CREB1 with asthma have 

been previously reported.  
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6.3.2. Target gene CREB1 
 

CREB1 is encoded on mouse chromosome 1 (human chromosome 2) and consists of nine 

exons. Alternate splicing results in several transcript variants encoding different isoforms 

(seven for mouse, two for human with identical 3´-UTR).  

To study a possible interaction between the identified miRNAs in allergic lung inflammation 

and the 3´-UTR of CREB1, the next experiments were performed to test binding and 

interaction in vitro and besides, to evaluate expression levels in lung tissue of asthma and 

healthy mice. Based on the “full consensus approach”, CREB1 is predicted to contain binding 

sites for four miRNAs: miRNA-17, -22, -144 and miRNA-181a. The number, location and 

complementarity of binding sites for each miRNA is depicted in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: see next page 
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Figure 16: 3´-UTR of CREB1 as target region for four miRNAs with their specific binding. 
CREB1 offers eight binding sites for four different miRNAs (-17, -22, -144 and -181a). (A) Binding sites 
within the 3´-UTR of CREB1 gene are depicted with starting points referring to the 3´-UTR sequence 
(in orange). In blue, the different miRNAs are shown. (B) Specific binding between the ~20 nt 
sequence of the miRNAs and CREB1 3´-UTR is presented with miRNA-144 having one, miRNA-22 
and -181a having two and miRNA-17 showing three sites for potential binding. 

 

 

6.4. miRNA-target gene interaction in vitro 
 
 

To test whether the prediction of CREB1 being a target gene for miRNA-17, -22, -144 and -

181a is valid, in vitro experiments in human bronchial epithelial cells were undertaken. 

Firstly, a reporter gene assay was performed as indirect proof of binding, and secondly, the 

effect of increased miRNA levels on target gene expression was imitated by transfection of 

precursor miRNAs into cells followed by quantification of CREB1 mRNA.  
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6.4.1. Co-transfection of CREB1 3´-UTR-vector construct and pre-miRNA-17, -
22, -144 and -181a into human bronchial epithelial cells 

 

Two human bronchial epithelial cell lines, BEAS-2B and 16 HBE-14o- were used for 

transfection experiments with reporter plasmid and miRNA precursors as described in 

section 5.6. 

Figure 17 displays the ratio of Renilla to Firefly luciferase in both cell lines with the 

investigated pre-miRNAs. Significant reduction in the Renilla/Firefly ratio was observed after 

treatment with each of the four miRNAs in both cell lines. In BEAS-2B, this decrease was 

more than 40 % for miRNA-17 and -22 as well as 39 % for miRNA-181a and 25 % for 

miRNA-144 respectively (Figure 17A). In 16 HBE-14o- cells, luciferase signal was lowered by 

more than 55 % for miRNA-17 and -22 as well as 52 % for miRNA-181 and 46 % for miRNA-

144 respectively (Figure 17B). In all experiments, total protein levels were measured by 

Bradford assay as supplementary control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Reporter assay for testing the binding of four miRNAs to CREB1-3´-UTR in human 
bronchial epithelial cells. Pre-miRNAs-17, 22, 144 and 181a were co-transfected at a concentration 
of 20 pmol/well together with a plasmid-vector-construct containing the CREB1-3´-UTR binding site 
and two luciferase reporters. Renilla and Firefly luciferase signal was measured in cell lysates 72 h 
after transfection. Experiment in (A) BEAS-2B and (B) 16 HBE-14o- cell lines. Bars represent means ± 
SD of two independent transfections with n ≥ 4; unpaired t-test with ***p ≤ 0.0005, **p ≤ 0.005 and *p ≤ 
0.05. 
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6.4.2. Analysis of CREB1 expression after transfection of pre-miRNA-17, -22,     
-144 and -181a in human bronchial epithelial cells 

 

The performed reporter assay proved interaction between the transfected miRNAs and the 

binding sites in the 3´-UTR of the gene of interest. However, this does not ascertain whether 

an increase in miRNA is sufficient to have an impact on physiological gene expression. 

Therefore, in the next experiment, the effect of increased miRNA levels on endogenous 

CREB1 expression was tested by transfection of precursor miRNA-17, -22, -144 or -181a 

and subsequent quantification of target gene expression. 

 

To quantify the corresponding miRNA levels post transfection, RT-qPCR (TaqMan®, ABI) 

was performed for miRNA-17, -22, -144 and -181a as well as a stably expressed small RNA 

(RNU6B, see figure 18). Cells transfected with a negative control were used for 

normalization. Though equal amounts of pre-miRNAs were transfected, varying amounts 

were observed for different miRNAs. Increase in values varied from more than 800-fold with 

miRNA-181a to more than 3000-fold increase after miRNA-144 transfection. Untreated 

BEAS-2B cells had higher endogenous expression of miRNA-17 and -22 and to a lower 

degree miRNA-181a when normalized to a negative control.  
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Figure 18: miRNA expression levels after pre-miRNA transfection into BEAS-2B cells. Cellular 
levels of miRNA-17, -22, -144 and -181a were increased using 20 pmol of pre-miRNA transfected with 
Lipofectamine 2000. RNA was isolated 72 h post transfection (miRNANeasy Mini Kit, Qiagen), single 
miRNAs evaluated by RT-qPCR normalized to RNU6B and compared to a negative control. miRNA 
levels of untreated cells were used as additional control. Bars represent mean fold change; grey line at 
1.  
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To explore whether the miRNAs of interest are able to influence CREB1 mRNA levels, gene 

expression was measured 72 h after transfection by real-time qPCR. Figure 19 illustrates 

significantly reduced CREB1 mRNA levels after miRNA-17 and -22 transfections whereas no 

change was observed after transfection with miRNA-181. In cells transfected with miRNA-

144, a trend of lowered CREB1 levels is visible but is not significant.  
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Figure 19: CREB1 mRNA expression in BEAS-2B cells after transfection of miRNAs. Human 
bronchial epithelial BEAS-2B cells were transfected with 20 pmol of pre-miRNA-17, -22, -144 or -181a 
using Lipofectamine 2000. After 72 h post transfection, RNA was isolated and CREB1 expression 
examined by RT-qPCR (normalized to HPRT1). Cells transfected with a negative control were used 
for comparison and CREB1 gene expression in untreated cells was assayed as additional control. 
Bars represent mean ± SD of two independent experiments with each n = 4 wells/ transfection; 
unpaired t-test with ***p ≤ 0.0005, **p ≤ 0.005 and *p ≤ 0.05. 

 

 

6.5. Quantification of CREB1 and binding miRNAs in lung tissue 
 

 

To further test relevance of CREB1 and its four binding miRNAs in asthmatic conditions in 

this animal model, expression was quantified in lung tissues from healthy control, sensitized 

and asthma mice. The mice had been characterized with respect to the development of 

allergic asthma, OVA specific antibodies, BAL analysis and lung histology in section 6.1 

(Figures 6-11). In accordance with bioinformatic prediction (Table 4 and 5) and in vitro 

transfection data presented above, highly significant down-regulation of CREB1 in the 

asthma group (-1.36-fold) was observed. CREB1 levels were unchanged in sensitized mice 

compared to their control counterparts (Figure 20). 
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Figure 20: CREB1 mRNA expression in lung tissue of healthy control, sensitized and asthma 
mice. RT-qPCR was performed to quantify expression levels of CREB1 in lung tissue of different 
treatment groups. Mean expression of CREB1 in healthy control, sensitized and asthma mice with n = 
15 animals per group (data from 3 independent experiments with n = 5); bars represent mean ± SD 
normalized to HPRT1 as endogenous control; unpaired t-test with ***p ≤ 0.0005. 

 

As mRNA expression of CREB1 was unchanged in the sensitized group, expression of 

miRNAs was further examined in the healthy control and asthma groups only. CREB1 is 

predicted to contain binding sites for four miRNAs: miRNA-17, -22, -144 and miRNA-181a. 

Expression levels of these miRNAs are presented as Figure 21. In accordance with the 

Exiqon and TaqMan® array data, no differences were observed for miRNA-22 whereas 

significantly elevated levels of miRNA-144 could be measured in asthma-like murine lungs 

compared to controls (2.23-fold). miRNA-17 levels were also significantly elevated in asthma 

mice compared to controls (1.34-fold). Measured down-regulation of miRNA-181a in the two 

arrays was not reproduced by single RT-qPCR. As no significant difference could be 

observed for miRNA-22 and miRNA-181a, they were not investigated further. 
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Figure 21: Relative expression of miRNA-17, -22, -144 and -181a in murine lung tissue of 
asthma and healthy control animals. Mean miRNA expression in RNA samples isolated from lung 
tissue was tested by RT-qPCR with n = 15 per group (data from 3 independent experiments with n = 
5). Bars represent mean ± SD; unpaired t-test with **p ≤ 0.005 and ***p ≤ 0.0005 

 

 

6.6. Kinetics of expression changes in murine lung during  
sensitization and after OVA challenge 

 

 

In the interest of gaining more information about the dynamics of dysregulation in miRNA and 

target gene expression during the development of the asthma-like changes in the Balb/c 

OVA mouse model, different time points during the treatment protocol were evaluated. In the 

protocol depicted in Figure 22, a total of six different time points were selected for analysis.  

On four time points during the sensitization phase, mice were studied 24 h after i. p. 

treatment with OVA/alum or PBS/alum (days 15, 29, 43, 56) in order to evaluate whether 

miRNAs and/ or target gene respond to allergic treatment only. The two aerosol OVA 

challenges have been shown to lead to directed inflammatory changes in the lung of OVA 

sensitized animals (see 6.1). In addition to the acute time point analysed 24 h after the last 

challenge (d 72), a second time point, 120 h later (d 76), was investigated as well. 
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Figure 22: Treatment protocol of healthy control and asthma mice and analysis time points 
during sensitization and after challenge. Adult female Balb/c mice were treated with repeated i. p. 
sensitizations of PBS/alum or OVA/alum (1 µg in 200 µl total volume) followed by aerosol challenge 
with 1 % ovalbumin for 20 min on two consecutive days (day 70 and 71). Six analysis time points were 
studied, days 15, 29, 43 and 57 during sensitization and days 72 and 76 after challenge. The control 
and asthma treatment groups consisted of five mice per group for each time point. 

 

6.6.1. BAL analysis 
 
BAL total cell counts were uniform in all treatments on days 15, 29, 43 and 57 with a mean of 

3.6 x 104 cells/ml BAL. After aerosol challenge with ovalbumin, control animals had 

consistent numbers of cells (2.8 x 104 cells/ml) whereas asthma animals showed markedly 

and significantly elevated numbers of cells in BAL with 15.1 x 104 cells/ml on day 72 and 

112.2 x 104 cells/ml on day 76 (Figure 23). 
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Figure 23: Kinetics of total cell counts in BAL of healthy control and asthma animals during 
sensitization and after challenge. BAL was performed by instillation of three times 0.8 ml of PBS 
into the lungs and subsequent analysis of the cellular fraction. Results for days 15, 29, 43 and 57 
during sensitization and days 72 and 76 after challenge are depicted for control and asthma groups. 
Bars represent means ± SD; n=5 per group and time point; unpaired t-test with *p ≤ 0.05 and ***p  ≤ 
0.0005. 
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Due to high similarity with respect to total cell counts in BAL samples before ovalbumin 

challenge, differential cell counts are presented only for day 29 of the sensitization period 

(Figure 24A and B). Control values are shown as mean of control samples of day 29, 72 and 

76 (macrophages 97.57 ± 0.40 %, neutrophils 0.97 ± 0.68 %, eosinophils 0 ± 0 %, 

lymphocytes 1.37 ± 0.29 %).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
Figure 24: Differential cell counts in BAL of healthy control and asthma mice on day 29, 72 and 
76. Cells from BAL fluid were analyzed after cytocentrifugation of a minimum of 10 000 cells per slide 
and staining with Diff-Quick. At least 500 cells per sample were distinguished into macrophages, 
neutrophils, eosinophils and lymphocytes. Values are presented as (A) percent of total cells and (B) 
cells x104/ml of control and asthma mice; mean ± SD of 5 animals per group and time point; unpaired 
t-test with **p ≤ 0.005 and ***p  ≤ 0.0005; compared to the healthy group of each time point, 
respectively. 
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Cell type composition is shifted in asthma samples with an increase in eosinophils and 

lymphocytes. This change in cellular composition was clearly visible on day 72 and further 

intensified on day 76. Looking at Figure 24B, a strong increase in total numbers of 

macrophages, eosinophils and lymphocytes on day 76 is reflected.  

 

6.6.2. miRNA-17, -21, -144 and -451 expression in lung tissue 
 

The two significantly elevated miRNAs in lung tissue that bind to 3’-UTR of CREB1, miRNA-

17 and -144, were investigated over time on four time points during sensitization and on two 

time points after aerosol challenge. In addition, the two miRNAs showing the highest 

changes in expression in asthma versus control animals from the profiling experiment, 

namely miRNA-21 and -451 were also included in the analysis (mean fold change with three 

different methods 1.63 and 1.95 respectively, see Table 3). Besides, miRNA-451 is encoded 

clustered with miRNA-144. 

 

Levels of miRNA-17 remained unchanged during sensitization but increased 1.45-fold and 

3.67-fold on day 72 and 76 respectively (Figure 25). miRNA-21 levels in ovalbumin 

sensitized animals resembled expression in controls but then increased 1.97-fold on day 72 

and 4.86-fold on day 76. miRNA-144 levels were fluctuating before challenge, being elevated 

on day 15 (1.5-fold) but lowered on days 29, 43 and 57 (mean -1.5-fold) compared to control 

animals. On the contrary, expression was enhanced after challenge to 2.00-fold and 4.19-

fold on days 72 and 76 respectively. Figure 25 shows the expression pattern of the clustered 

miRNA-451 with an increase at day 15 (1.96-fold) and a reduction on day 57 (-2.00-fold) 

compared to control mice. Challenge lead to 1.72-fold and 3.44-fold up-regulation. 
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Figure 25: Expression pattern of miRNA-17, -21, -144 and -451 in lung tissue of healthy control 
and asthma mice during sensitization and after challenge. RNA including miRNAs was isolated 
from lung tissue on days 15, 29, 43, 57, 72 and 76 of the study protocol and RT-qPCR was performed. 
Expression of miRNA-17, -144, -21 and -451 was monitored, normalized to snoRNA-234 and the 
comparison of asthma versus control animals is shown. Points illustrate mean ± SD with n = 5 mice 
per group and time point; unpaired t-test with *p ≤ 0.05, **p ≤ 0.005 and ***p ≤ 0.0005. 

 

6.6.3. CREB1 mRNA expression 
 

After exploring miRNA changes during the treatment protocol, CREB1 mRNA levels in lung 

tissue were evaluated. Since expression of the binding miRNAs-17 and -144 was only 

slightly changed during sensitization phase, day 29 was chosen as a representative 

measurement for this period. mRNA analysis revealed no changes in asthma samples 

compared to controls after sensitization only (Figure 26). CREB1 expression was significantly 

reduced after OVA challenge on days 72 (-1.30) and 76 (-1.35) in asthma mice.  
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Figure 26: Expression of CREB1 mRNA in lung tissue of healthy control and asthma mice on 
days 29, 72 and 76 of treatment. CREB1 gene expression was analyzed at one time point before 
(day 29) and two time points (day 72 and day 76) after challenge with OVA. Mice of the asthma group 
are compared to control mice and data is normalized to HPRT1 as control. Bars represent mean ± SD; 
n = 5 animals per group and time point. 

 

 

6.7. miRNA expression in spleen and blood 
 

 

Expression of miRNAs in lung tissue was followed through the sensitization phase and after 

OVA challenge in asthma and control mice. To gain information about possible changes in 

other immunologically important compartments, miRNA-17, -21, -144, and -451 expression 

was studied in spleen tissue and blood samples. For analysis, time points of day 29, 72 and 

76 were tested. 

 

6.7.1. Expression of selected miRNAs in murine spleen samples 
 

miRNA expression in spleen remained mostly unchanged during sensitization, tested on day 

29 (Figure 27). After aerosol challenge on days 70 and 71, a slight increase was noted on 

day 72 for miRNA-17 (1.30-fold), miRNA-144 (1.48-fold) and miRNA-451 (1.33-fold). 

Significant up-regulation was seen on day 76 for all four miRNAs with miRNA-144 being 

most prominent with 7.51-fold change, miRNA-451 being 3.0-fold increased and miRNAs-17 

and -21 with 2.42, and 1.46-fold enhancement compared to controls.  
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Figure 27: Expression of miRNA-17, -21, -144 and -451 in spleen tissue of healthy control and 
asthma mice. Spleen samples from days 29, 72 and 76 of control and asthma mice were investigated 
for miRNA expression after isolation of RNA (miRNANeasy Mini Kit, Qiagen). RT-qPCR was 
performed normalizing to snoRNA-234. (A) miRNA-17 (B) miRNA-22 (C) miRNA-144 and (D) miRNA-
451. Bars represent mean ± SD with n = 5 mice per group and time point; unpaired t-test with ***p ≤ 
0.0005, **p ≤ 0.005 and *p ≤ 0.05. 

 

6.7.2. Expression of selected miRNAs in murine blood samples 
 

Due to their great stability compared to other types of RNA, the study of miRNA levels in 

biofluids, like blood or serum, is profitable (Chen, X. et al. 2008). The perspective to use 

them as biomarkers for diagnosis or disease activity is attractive and has gained attention in 

the last years, mainly for malignant disease (Hu et al. 2010; Liu, X. G. et al. 2011). By 

analyzing expression of selected miRNAs in blood, the following information was supposed 

to be gained: first, are the observed miRNA changes in lung or spleen also visible in blood 

and, second, do differentially expressed miRNAs detected in blood of mice with an asthma 

phenotype resemble human blood samples of asthmatic children. 

With regard to the most pronounced augmentation of miRNA expression in lung and spleen 

tissue on day 76, whole blood samples from this time point were evaluated. All four selected 

miRNAs (miRNA-17, -21, -144 and -451) showed reduced expression levels in asthma 

compared to control samples (Figure 28). Down-regulation was not significant for miRNA-17 
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showing a -1.79-fold change. Highest decreases could be observed for miRNAs-144 and -

451 (each -2.70-fold), followed by miRNA-21 showing -2.63-fold reduction compared to 

control.  
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Figure 28: Expression of miRNA-17, -21, -144 and -451 in murine blood samples of healthy 
control and asthma groups. RNA including miRNAs was isolated (miRNANeasy Mini Kit, Qiagen) 
from whole blood of healthy control and asthma mice gained on day 76. For normalization snoRNA-
202 was used and bars represent mean ± SD of asthma compared to control mice with n = 4 per 
group; unpaired t-test with *p ≤ 0.05. 

 

 

6.7.3. Expression of selected miRNAs in human blood samples of asthmatic 
children 

 

For direct comparison to the human situation, bio-banked blood samples of 10 year old 

children participating in a multicenter, double-blind, randomized intervention study (German 

Infant Nutrition Intervention study) were analyzed. Out of 8 children with diagnosed asthma, 

five had a record of atopic eczema at any time (four current) and four children were positive 

for rhinitis ever (Table 6).  
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Table 6: Patient characteristics. Peripheral blood samples of healthy and asthmatic children from a 
multicenter, double-blind, randomized intervention study (GINI) were analyzed. Characteristics of the 
selected groups are shown. f female; m male. 

 
 Healthy children Asthmatic children 

N 8 8 

Age (years) 10 10 

Sex (f/m) 4/4 4/4 

Asthma onset (mean age) - 5.1 (1-8) 

Atopy ever 0 8 

Atopic eczema ever 0 5 

Rhinitis ever 0 4 

 

 

In Figure 29 miRNA expression in human blood samples from asthmatic and healthy children 

is depicted. Similar to observations made in murine blood, miRNAs-144 and -451 are 

significantly decreased in asthmatic samples with fold changes of -1.75 and -1.89 

respectively. miRNA-17 exhibits only slight changes (-1.27-fold) and miRNA-21 shows no 

detectable differences.  
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Figure 29: Expression of human miRNAs in blood of healthy and asthmatic children. RNA was 
isolated (miRNANeasy Mini Kit, Qiagen) from bio-banked blood samples of healthy and asthmatic 
children participating in the GINI study. The miRNAs-17, -21, -144 and -451 are conserved in human 
and mouse and were normalized to hsa RNU48. Bars represent mean ± SD with n = 8 children per 
group; unpaired t-test with ***p ≤ 0.0005 and **p ≤ 0.005. 
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7. DISCUSSION 
 

 

7.1. The chosen Balb/c OVA model reflects a mild form of acute 
asthma 

 

 

In the present project, mice of Balb/c background were subjected to treatment with the 

allergen OVA in order to mimic allergic asthma. The mouse strain has been widely used for 

the study of allergic immune reactions and is known for its susceptibility to mount prominent 

Th2 responses, high antigen-specific titres of IgE and elevated cytokine concentrations in 

BAL (Shinagawa and Kojima 2003; Zosky et al. 2009). Treatment protocol included a number 

of six i. p. injections of 1 µg OVA/alum, leading to allergen-specific immunity, followed by two 

pulmonary aerosol challenges. The applied i. p. dose of OVA is comparatively low as other 

studies applied doses between 10 and 50 µg. (Liu, X. et al. 2009; Swedin et al. 2010; 

Garbacki et al. 2011). The sensitization period of 70 days stands in contrast to other 

descriptions in literature, where protocols between 18 and 30 days were reported. However, 

a short, high dose allergen exposure only reflects very strong acute human asthma. The 

treatment used here, led to markedly increased allergen-specific titres of IgE and IgG1 and to 

an increase in total cells in BAL. The absolute numbers and percentages of cells, including 

macrophages, neutrophils, eosinophils and lymphocytes were in the lower range of 

comparable studies indicating a milder, yet evident form of acute airway disease (Kumar, R. 

K. et al. 2008; Liu, X. et al. 2009; Zosky et al. 2009; Swedin et al. 2010; Garbacki et al. 

2011).  

 

Several time points during sensitization and after challenge were investigated and 

inflammatory cell numbers in BAL were further increased at 120 h compared to 24 h after the 

last challenge. This rise is due to higher numbers of macrophages (7-fold increase), 

eosinophils (12-fold increase) and lymphocytes (18-fold increase). A study analyzing BAL 

cells 24 and 48 h after allergen challenge confirms augmentation in cell numbers at the later 

time point (Swedin et al. 2010).  

Eosinophilic inflammation is one important hallmark of allergic asthmatic disease which was 

also evident in our histological analysis. Compared to BAL samples from asthmatic patients, 

levels of eosinophils are exaggerated in mice, representing up to 80% of the inflammatory 

cells in BAL (Hartl et al. 2005; Mattes et al. 2009; Garbacki et al. 2011). Moreover, 
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histopathology revealed more perivascular than peribronchial infiltrates of inflammatory cells 

in mice which is not the case in lungs of asthmatic patients (Cohn 2001).  

 

The Balb/c OVA model used in our studies has been established previously by our 

collaborators who had already demonstrated increased AHR and mucus hyper-secretion as 

well as enhanced IL-5 and IL-13 levels in BAL (Alessandrini et al. 2009). Nonetheless, 

aspects of chronic disease, such as recurrent episodes of inflammation or airway remodeling 

are not mirrored in this model adding to the general limitations of any asthma mouse model 

such as the absence of spontaneous disease, differences in airway anatomy, the transient 

nature of AHR after induction of asthma as well as mechanistic differences in the generation 

of allergic asthma (Epstein 2004). 

 

 

7.2. Pulmonary miRNA expression is changed in experimental 
asthma 

 

 

In the last years, numerous miRNA profiling studies have been performed to enlarge the 

understanding of regulatory mechanisms in specific organs, tissues or cell types. In the first 

part of this project, a miRNA signature characteristic for changes in lung tissue of Balb/c 

mice treated according to our protocol was established. Most profiling approaches are 

undertaken using either microarray technology (Lu, Z. et al. 2008; Mattes et al. 2009; 

Garbacki et al. 2011) or, to a lesser extent, RT-qPCR based signatures (Williams, A. E. et al. 

2007; Williams, A. E. et al. 2009).  In the present study, three different methods were used, 

an Exiqon microarray for the initial profile, a TaqMan® array for a validating screen and third, 

single TaqMan® RT-qPCR for a smaller number of selected miRNAs. The second profiling 

experiment was aimed at broadly validating the identified signature, which was evidenced by 

a positive correlation.  

The Exiqon array version used (v.10) offered 580 miRNAs for profiling of which ~55 %, a 

number of 319 miRNAs, were expressed in lung tissue. One study measured 256 miRNAs in 

whole lung tissue of healthy Balb/c mice (Williams, A. E. et al. 2007). Comparison of the 

miRNAs with our assessed profile of 36 significantly changed candidates from the Balb/c 

OVA model shows an overlap of 24 miRNAs. This indicates that the assessment of 

pulmonary miRNA profiles by different investigators yields comparable results. Furthermore, 

a relatively high number of miRNAs seem to be abundantly present, whereas only a smaller 

proportion of miRNAs are induced de novo after experimental induction of allergic asthma. In 

2007, Landgraf et al. set up an expression atlas of miRNAs in different tissues and species 
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applying next generation sequencing technique. It became clear that only few miRNAs are 

found exclusively in a single tissue or cell type. This result was replicated in another study 

where the inquiry for specific lung miRNAs in rats revealed only two miRNAs that were not 

found to be expressed in any other organ tested (Wang, Y. et al. 2007).  

 

The number of up- versus down-regulated miRNAs in our profiling experiment is almost 

balanced (16 up-regulated, 20 down-regulated). This is also reported in other asthma 

profiling studies (Polikepahad et al. 2010; Garbacki et al. 2011). In contrast, measurements 

in lung tissue after aerosolised lipopolisaccharide (LPS) (Moschos et al. 2007) or diesel 

exhaust particle inhalation (Jardim et al. 2009) showed overall up-regulation of miRNAs. On 

the other hand, studies of cigarette smoke exposure in lungs of rats and humans found 

miRNAs to be almost exclusively down-regulated (Izzotti et al. 2009; Schembri et al. 2009). 

Thus, direction of miRNA regulation in the lung may be dependent on the type of 

provocation. As a consequence, application of different allergens for the induction of airway 

disease in mice might lead to different results and needs confirmation in various models. 

 

In the last two years, six reports published lung miRNA profiles in asthma mouse models (Lu, 

Z. et al. 2008; Mattes et al. 2009; Polikepahad et al. 2010; Collison et al. 2011a; Collison et 

al. 2011b; Garbacki et al. 2011). One further study analyzed airway biopsies from asthmatic 

patients (Williams, A. E. et al. 2009). The later did not find any differences in levels of 

miRNAs expressed in patients suffering from mild asthma compared to healthy donors. The 

authors suggest that this may be due to the mild form of disease. Moreover, variation in 

expression between individuals might have hindered the exploration of changed miRNAs. 

Nevertheless, they described expression of miRNAs in lung tissue with high abundance, like 

members of the let-7 family, miRNA-23b, -24, -26, -30 and -125. This confirmed findings from 

previous studies, which were performed mainly in murine samples (Landgraf, Pablo et al. 

2007a; Williams, A. E. et al. 2007). Notably, the named miRNAs were also present in our 

OVA model with some showing expression changes in the asthma phenotype. When 

comparing our miRNA profile with the results gained in the six studies, a total number of 16 

miRNAs are overlapping. From these, eight miRNAs are regulated in a similar manner: 

miRNAs-29c, 101a, 142-3p, 142-5p and 720 were each found in two other studies whereas 

miRNAs-152, 208 and 451 each appeared in one other study.  

However, five miRNAs showed contradictory expression changes. Up-regulation of miRNA-

145 was replicated in two OVA and one house-dust mite model for asthma (Collison et al. 

2011a; Collison et al. 2011b; Garbacki et al. 2011) whereas it was found down-regulated in 

our signature. Notably, inhibition of miRNA-145 by Collison and coworkers led to diminished 

eosinophilic inflammation, mucus hypersecretion, Th2 cytokine production and AHR. These 
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effects were comparable to steroid treatment which makes this miRNA a new candidate for 

further research. In the very same study, let-7b, was up-regulated, yet again levels appeared 

reduced in our profile. These contradictory results might be due to the use of different 

allergens and treatment protocols, like house-dust mite versus ovalbumin treatment. 

Two other recent studies concentrated on the role of let-7 in allergic asthma. In 2010, 

Polikepahad et al. stated a proinflammatory role of let-7 miRNAs in experimental asthma, 

whereas another group (Kumar, M. et al. 2011) recently published incompatible findings. 

They showed decreased levels of let-7 miRNAs in disease and detected reduction of 

asthmatic features after administration of let-7 miRNA mimics in vivo by repression of its 

target gene IL-13. 

Looking at the performed array, several members of the let-7 family have been detected but 

did not reach significance according to p-values. All let-7 members show a moderate 

decrease in asthma compared to control samples. Members of the let-7 family have also 

been found down-regulated in other chronic lung diseases, like fibrosis, cancer or after 

cigarette smoke exposure (Takamizawa et al. 2004; Izzotti et al. 2009; Pandit et al. 2010).  

 

One of the best-studied miRNAs up to date, miRNA-21, was up-regulated in our profiling 

experiment, which was confirmed in three other asthma studies (Lu, T. X. et al. 2009; Mattes 

et al. 2009), but expression decreased in one OVA-model (Garbacki et al. 2011). Just as 

miRNA-21, miRNA-126 appeared in four out of six other studies with two showing up-

regulation (Mattes et al. 2009; Collison et al. 2011a) and two showing down-regulation as 

here (Lu, T. X. et al. 2009; Garbacki et al. 2011). This miRNA was extensively studied by 

Mattes et al. in a house-dust mite model where they could repress features of the asthmatic 

phenotype by selective inhibition of miRNA-126 using inhalative “antagomiRs”. In addition, 

blocking the miRNA led to a decrease in GATA3 expression and Th2 cell function. The group 

followed miRNA-126 in a second, chronic OVA asthma model where they could confirm the 

increase of miRNA-126 predominantly in early phases of asthmatic lesions in the airways 

(Collison et al. 2011a). miRNA-126 has also been associated with various other lung 

diseases, such as idiopathic pulmonary fibrosis, cystic fibrosis or cancer, which points to a 

possible role in common mechanisms (Oglesby et al. 2010; Pandit et al. 2010; Miko et al. 

2011).  

 

Next to the 16 miRNAs that have been detected in other studies as well, 20 miRNAs have 

not been monitored in other murine asthma studies before. Notably, seven “minor sequence” 

miRNAs, marked with a star, were described (miR-21*, -24-2*, -30e*, -135a*, -199b*, -522* 

and -523*). The minor sequence is defined as the strand which is less likely incorporated in 

the RISC complex and thus is less abundant. Some arrays do not offer more rare sequences 
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which might be a reason why they were not detected so far. Thereby, some miRNAs are 

present with both strands, major and minor at the same time, like miRNA-21 and -21* and 

miRNA-30e and -30e*. This raises the question why and how these miRNA strands are 

expressed in parallel as it is believed that after selection of one strand, the other, in general 

the minor strand, gets degraded. However, one paper describes cooperative and dynamic 

cooperation of miRNA-155 and its minor strand partner in the regulation of type I interferon 

production in dendritic cells (Zhou, H. et al. 2010).  

 

Of the 20 miRNAs which were not previously reported in asthma, five have been associated 

with pulmonary fibrosis (miRNA-26a, -30e, -125a, -144 and -205) and of these, miRNA-26a 

and -125a have been down-regulated upon cigarette smoke exposure. miRNA-125a has 

been found to be expressed in alveolar and bronchial epithelium, whereas miR-26a was 

located in hematopoietic cells and neutrophils. In addition, miRNA-26a expression increased 

after mechanical stretch in human airway smooth muscle cells leading to hypertrophy via 

binding to its target gene glycogen synthase kinase-3β (GSK3) (Mohamed et al. 2010). 

miRNA-26a is one of two miRNAs brought in context with smooth muscle cell physiology, 

which is markedly changed in asthma and a major cause of airway obstruction. The second, 

miRNA-133a, was not identified in our asthma signature. Reasons might be the analysis of 

whole lung tissue in contrast to Chiba et al. (2009), who evaluated a reduction in miRNA-

133a and concordant increase of the target gene RhoA in bronchial smooth muscle in an 

OVA mouse model. 

  

The asthma mouse models available for comparison had different experimental 

backgrounds: IL-13 transgenic mice, house-dust-mite or ovalbumin provocation.  

The study with the highest overlap is from Lu and colleagues (Lu, T. X. et al. 2009), who 

analyzed an IL-13 transgenic mouse model and all eight miRNAs that are overlapping are 

also regulated in the same direction. In addition, Lu et al. reproduced their findings, at least 

for their top candidate miRNA-21, in three additional asthma models: two allergen-induced 

models with OVA and Aspergillus fumigatus and one IL-4 lung transgenic model. For miRNA-

21 highest expression changes in airway inflammation versus control animals was measured 

in the IL-13 and IL-4 lung transgenic mice with 6-fold induction each. This was followed by a 

4-fold elevation in the Aspergillus fumigatus model and a 2.6-fold increase in the OVA model. 

This finding suggests that different models of the same disease can cause variances in 

miRNA expression levels.  

It is easily imagined that also within similar models, like the applied OVA model, differences 

in concentration and duration of allergen exposure are the cause of possible variation. It 

might be hypothesized that the 2.6-fold induction seen by Lu et al. is well comparable to the 
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measured 1.8-fold induction in our model, considering a concentration difference in OVA 

sensitization of 100 µg versus 1 µg.  

Overall, the fold changes measured in the performed profile are comparatively low with 2.7-

fold being the highest change. Looking at the other available profiling studies, highest fold 

changes are between 5- and 12-fold. Besides the differences in model or allergen 

concentration, also the number of challenges were more numerous (between 4 and 8 times) 

compared to two challenges in our milder model, which might add to the more pronounced 

changes in miRNA levels observed in other studies. Nonetheless, till date it is not clear 

whether and in which range a fold change of a miRNA can be defined as “biologically 

relevant”. 

 

 

7.3. Selective analysis of miRNA-17, -21, -142-3p, -144, -205, -208,   
-451 

 

 

After setting up the signature of 36 significantly changed miRNAs in the OVA model for 

allergic airway disease, six candidates were selected for further analysis. The criteria for 

selection were level of fold change and reproducibility with three methods. 

Lately, miRNA-208 has been found to be expressed in embryonic stem cells and to play a 

role in cardiac differentiation (Wilson et al. 2010) with implications on the regulation of 

cardiac hypertrophy and stress-dependent cardiac growth (van Rooij et al. 2007; Callis et al. 

2009). Notably, miRNA-208 is differentially expressed in myocardial infarction together with 

miRNA-133a (Bostjancic et al. 2009), a key regulatory miRNA of bronchial smooth muscle 

changes in a previously mentioned model for allergic AHR (Chiba et al. 2009). Besides, Lu et 

al. (Lu, T. X. et al. 2009) identified miRNA-208 to be equally down-regulated in their IL-13 

transgenic asthma-model. Until now, there are no validated target genes for this miRNA.  

 

The highest up-regulation was measured for miRNA-205 (2.4-fold). A number of studies have 

been conducted in order to elucidate miRNA-205 function, the majority pointing at a 

connection with carcinogenesis (Dar et al. 2011; Tellez et al. 2011). Moreover, studies 

exploring its utility as sputum biomarker for squamous cell lung cancer are ongoing 

(Lebanony et al. 2009; Xing et al. 2010). Although miRNA-205 has not been considered to be 

changed in allergic airway inflammation so far, it has been implicated in the regulation of 

epithelial to mesenchymal transition (Gregory, P. A. et al. 2008) and in idiopathic pulmonary 

fibrosis (Pandit et al. 2010). 
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miRNA-142-3p showed slight up-regulation in the asthma group and a similar change in 

expression has been examined in two other asthma models thus strengthening its possible 

role in the disease (Lu, T. X. et al. 2009; Polikepahad et al. 2010). Profiling studies have 

identified miRNA-142-3p to be specifically expressed in the hematopoietic lineage and being 

part of a distinct profile of miRNAs found in human bronchial stem cells (Brown, B. D. et al. 

2006; Landgraf, P. et al. 2007b; Qian et al. 2008; Bissels et al. 2011). Furthermore, studies 

investigating single immune cell types, like macrophages or CD8+ T cells could measure 

expression of this miRNA (Wu, H. et al. 2007; Williams, A. E. et al. 2009). Adenylate cyclase 

(AC) 9 is a validated target gene of miRNA-142-3p leading to a restriction of cAMP 

production in regulatory T cells and their subsequently suppressed function. At the same 

time, forkhead box protein (FOX) P3, a selective transcription factor of regulatory T cells, 

inhibits miRNA-142-3p, thus drawing a negative feedback loop (Huang et al. 2009). A 

decrease in FOXP3 has been found in patients with asthma (Provoost et al. 2009) pointing 

towards a possible connection with increased miRNA-142-3p levels found in this and other 

models of asthmatic airway disease. In addition, examination of samples from asthmatic 

children revealed functional impairment of a subtype of pulmonary regulatory T cells (Hartl et 

al. 2007) which further underlines a possible involvement in functional aspects.  

miRNA expression can be regulated dynamically in response to specific immune and 

inflammatory stimuli. Several studies have investigated the response of miRNAs to 

lipopolysacchride (LPS), the Toll-like receptor (TLR) 4 ligand (Taganov et al. 2006; Moschos 

et al. 2007) demonstrating up-regulation of miRNA-142-3p and other miRNAs. 

 

Another candidate from our profiling experiment in allergic airway disease, miRNA-21, has 

also been found up-regulated upon LPS stimulation. Induction of TLR4 signaling leads to 

augmented expression of miRNA-21 and subsequent inhibition of the target gene 

programmed cell death (PDCD) 4, which is a signaling molecule contributing to apoptosis. As 

a consequence, miRNA-21 protects against the pro-inflammatory response by limiting LPS 

induced lethality (Sheedy and O'Neill 2008; Sheedy et al. 2009; Quinn and O'Neill 2011). 

miRNA-21 further has a role in ras induced tumor growth (Frezzetti et al. 2010) and was 

identified in multiple studies of various types of cancer (Lu, Z. et al. 2008; Liu, G. et al. 2010; 

Wei et al. 2011; Yu, L. et al. 2011). PDCD4 seems to represent a general binding partner, as 

its inhibition was also confirmed to play a role in the regulation of transforming growth factor 

(TGF) β induced myofibroblast differentiation (Lu, Z. et al. 2008; Yao et al. 2010). Moreover, 

this miRNA-target gene couple has been observed in autoimmunity (Iliopoulos et al. 2011) 

and Lupus disease (Stagakis et al. 2011).  

The analyzed up-regulation of miRNA-21 in our model of allergic airway inflammation might 

as well lead to inhibition of PDCD4, and as a consequence, might enable protection against 
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apoptosis in situations of strong inflammation. This interaction yet has to be proven 

experimentally. 

Looking at other diseases, dysregulation of miRNA-21 expression has been described in 

fibroblasts of myocardial disease as well as idiopathic pulmonary fibrosis (Thum et al. 2008; 

Liu, G. et al. 2010; Xie et al. 2011). With regard to allergic diseases, expression changes 

were found in atopic eczema (Sonkoly et al. 2007) as well as in three studies for allergic 

airway disease (Lu, T. X. et al. 2009; Mattes et al. 2009; Collison et al. 2011a). Lu et al. 

(2009), as mentioned before, investigated miRNA-21 expression in four parallel models, two 

transgenic and two allergen based provocation models. Besides the common up-regulation 

of miRNA-21, the authors localized elevated miRNA-21 levels in inflammatory leukocytes 

and myeloid cells and identified IL-12p35 as target gene of miRNA-21 in allergic airway 

disease. These findings are in line with an observed decrease in IL-12 and a polarization of 

Th1/Th2 immune responses in asthma (Trinchieri 2003).  

 

Next to miRNA-21, two more miRNAs were selected from the initial signature of allergic 

airway inflammation to be further analyzed. miRNA-144 and -451 are encoded ~100 bp apart 

from each other on mouse chromosome 11, being transcribed as a bicistronic transcript that 

gives rise to the two mature forms which are highly conserved in evolution (Dore et al. 2008). 

As they are highly expressed in bone marrow, spleen and erythropoietic cells, the two 

miRNAs and their contribution to erythroid development and homeostasis has been 

investigated in zebrafish (Wienholds et al. 2005; Du et al. 2009), mouse (Patrick et al. 2010; 

Rasmussen et al. 2010) and humans (Masaki et al. 2007; Zhan et al. 2007). Both miRNA-

144 and -451 are regulated by the erythroid-specific transcription factor GATA1 (Dore et al. 

2008), and both have been shown to functionally inhibit negative regulators of erythropoiesis 

(Zhan et al. 2007; Du et al. 2009; Fu et al. 2009; Pase et al. 2009). Notably, it seems that 

miRNA-451 is more relevant for erythropoiesis, giving the fact that a single knock-out of 

miRNA-451 but not 144 is sufficient to display the seen abnormalities in erythropoiesis 

(Patrick et al. 2010; Rasmussen et al. 2010).  

Although some studies monitored miRNA-144 and -451 to be mainly expressed in 

erythropoietic cells (Merkerova et al. 2008), others found different sources like neurons or 

hematopoietic cells (Gentleman et al. 2004; Landgraf, P. et al. 2007b; Zhang, H. Y. et al. 

2011). Expression in lung tissue and disease has been reported, such as miRNA-144 in 

fibrosis (Xie et al. 2011) and miRNA-451 in pulmonary hypertension (Caruso et al. 2010) as 

well as in asthmatic disease (Garbacki et al. 2011).  

miRNA-451 has also been brought in context with cancerous disease, bearing tumor 

suppressive functions (Li, X. et al. 2011; Wang, R. et al. 2011). Several studies point to 

therapeutic relevance of miRNA-451, as restoring its levels improved cancer drug resistance 
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(Gal et al. 2008; Kovalchuk et al. 2008; Bandres et al. 2009). In glioma cells, miRNA-451 is 

able to regulate adaptation to metabolic stress by reacting to changes in glucose levels 

(Godlewski et al. 2010). A stress-protective role has also been stated in a miRNA-451 knock-

out study where Patrick et al. detected ineffective erythropoiesis in response to oxidative 

stress. They identified the chaperone protein 14-3-3ζ as direct target which coordinates 

signal transduction downstream from hematopoietic growth factor receptors by interacting 

with granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as with IL-3, -5 

and -9 receptors (Stomski et al. 1999; Sliva et al. 2000; Barry et al. 2009). Until now, there 

are no reports to whether miRNA-451 changes in asthma models might have effects on 14-3-

3ζ levels and as a consequence influence signaling of GM-CSF, IL-3, -5 or -9, all of which 

are being associated to the pathogenesis of allergic asthma. 

In parallel, another group attributed the protective effect against oxidant stress by repressed 

14-3-3ζ to up-regulation of FOXO3, a regulator of the anti-oxidative response (Yu, D. et al. 

2010). The miRNA-451-14-3-3ζ–FOXO3 axis may be of interest in stress situations beyond 

erythropoiesis as FOXO3 has been found to work also in other tissues, like the heart (Tan, 

W. Q. et al. 2008). It thus might be, that elevated miRNA-451 levels in allergic airway disease 

lead to anti-oxidative properties regulated via 14-3-3ζ and FOXO3.  

FOXO3 is a predicted transcriptional activator of miRNA-21 (transmiR analysis) which was 

found to be up-regulated in this study as well and which would highlight a possible protective 

circuit including anti-oxidative pathways via FOXO3 and, for example reduced PDCD4 levels 

via the induced miRNA-21, thereby diminishing apoptosis due to inflammatory reactions. 

However, most of this information was gained very recently and detailed investigations into 

this direction still need to be undertaken.  

 

For miRNA-144, a recent study revealed elevated erythrocytic expression levels in a 

subgroup of patients with sickle cell disease characterized by more severe anemia 

(Sangokoya et al. 2010). The authors identified nuclear factor-erythroid 2-related factor 2 

(NRF2) as direct target, which is a central regulator of cellular response to oxidative stress. 

During oxidative stress, NRF2 binds to the antioxidant response element (ARE), which 

further activates key genes of the oxidative stress response, such as superoxide dismutase, 

catalase or gluthathione synthetase H connected enzymes. Notably, NRF2 not only plays a 

role in erythrocytes, but has repeatedly been identified as important protective factor in 

asthma (Rangasamy et al. 2005) with special involvement in the anti-oxidative pulmonary 

defense after provocation with diesel exhaust particles (Li, N. et al. 2004; Williams, M. A. et 

al. 2008; Li, Y. J. et al. 2010b).  

Given the up-regulation of miRNA-144 in allergic airway disease, this would in theory lead to 

repression of NRF2 and thus hinder its anti-oxidative functions.  
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The possible pro-inflammatory role of miRNA-144 stands in contrast with another report 

where this miRNA was found to repress Caspase 3, a known factor of the tumor necrosis 

factor-related apoptosis inducing ligand (TRAIL) - induced apoptotic cascade (Ovcharenko et 

al. 2007). This is of special interest as TRAIL is known to be elevated in the airways of 

asthma patients (Williams, M. A. et al. 2008) and the fact that miRNA-144 is enhanced in this 

model of allergic airway disease might hint to a regulatory and anti-apoptotic function.  

 

After all, it is surprising that the two miRNAs, -144 and -451, although being transcribed 

together seem to have distinct functions. Therefore, they most probably undergo additional 

posttranscriptional regulation. Zhang X. et al. (2010) found synergistic effects of miRNA-144 

and -451, mediated by GATA4 in a study examining cardiomyocyte death after simulation of 

ischemic disease. Both miRNAs led to augmented survival which could be explained by 

direct inhibition of the RNA-binding protein (CUG triplet repeat-binding protein 2) which is 

known to repress translation of cyclooxygenase-2 (COX-2). This indicates increase of COX-2 

as an indirect effect of miRNA-144/451 up-regulation. COX-2 has been found to be elevated 

in airway cells of asthmatic patients (Taha et al. 2000) although another study could not 

validate these findings (Demoly et al. 1997). In general, COX-2 has pro-inflammatory 

attributes and is activated exclusively after inflammation or induction by growth factors, 

cytokines and mitogens. COX-2 levels are decreased after corticosteroid treatment in airway 

epithelia (Aksoy et al. 1999) reflecting a common mechanism for treatment of asthmatic 

disease. The reported pro-survival effect in cardiomyocytes could thus be a pro-inflammatory 

effect in a setting of inflammation. There is not enough published information in order to 

decipher the possible consequences of miRNA up-regulation on COX-2 levels in asthma. 

However, a recent study claimed suppression of mast cells by bone marrow-derived stromal 

cells (BMSC) which was dependent on up-regulation of COX-2 in BMSCs (Brown, J. M. et al. 

2011).   

 

From the six selected miRNAs, four are encoded on mouse chromosome 11: miRNA-21, -

142-3p, -144 and -451. Chromosome 11 encodes a total of 69 miRNA genes. Except for the 

clustered miRNAs-144 and 451, these coding regions are not in close proximity. In silico 

analysis of transcription factor binding sites (DIANA analysis) shows co-regulation of miRNA-

144 and -451 by GATA1 and GATA4. A common transcription factor predicted to influence all 

four miRNAs is octamer-binding transcription factor (OCT-1). It has been described to act as 

a sensor for stress signals (Kang et al. 2009; Wang, P. and Jin 2010), which would be in line 

with the stress-associated target genes NRF2, FOXO3 or COX-2 which could be brought in 

context with the miRNAs-144 and -451. Additionally, OCT-1 was reported to play a role in 

asthma susceptibility (via IgE) and in polymorphic effects of the IL-4 promoter (Gervaziev et 
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al. 2009; Holt et al. 2011). However, real co-regulation would have to be proven 

experimentally.  

  

As described in results section 6.3, a target prediction analysis was done and CREB1 was 

chosen to be studied in more detail. Two predicted miRNA binding partners could be 

confirmed to be differentially expressed in asthma lung tissue, one being miRNA-144, a 

candidate that had been selected because of its fold change beforehand and which was 

discussed above. The second predicted binding partner for CREB1 is miRNA-17. Exiqon 

array analysis determined a 1.12-fold difference in asthma versus control mice, which led to 

initial exclusion in the miRNA signature. Being predicted to bind to CREB1, miRNA-17 

expression was tested in a larger group of mice (n=15) where a 1.34-fold change was 

measured. So far, this miRNA has not been reported in allergic airway disease. However, 

one study measured up-regulation in atopic eczema (Sonkoly et al. 2007). miRNA-17 is 

expressed in most tissues (Landgraf, P. et al. 2007; Ventura et al. 2008) and belongs to the 

miRNA-17~92 cluster. Located on human chromosome 13, the cluster consists of six 

miRNAs (miRNA-17, 18a, 19a, 20a, 19b-1 and 92-1) which are transcribed as polycistronic 

primary transcript before being processed into individual mature miRNAs. As a typical trait for 

clustered miRNAs, they are highly conserved in vertebrates and their coordinated regulation 

and function is thought to reflect their important roles (Mendell 2008). There exist two cluster 

paralogs, the miRNA-106b~25 cluster on chromosome 7 (miRNA-25, 93 and 106b) and the 

miRNA-106a~363 cluster located on the X chromosome (miRNA-18b, 19b-2, 20b, 92-2, 106a 

and 363) which are explained by ancient gene duplications. Although all miRNAs from the 

17~92 cluster and its two paralogs were available on the Exiqon microarray, only miRNA-17 

and miRNA-18a (1.26-fold change) were measured to be differentially expressed in the 

asthma group. 

There exists a large body of research about the 17~92 cluster and its members with most 

studies concentrating on the role in cancerous disease. miRNA-17, along with its clustered 

members, has been found up-regulated in several cancers with anti-apoptotic function (He et 

al. 2005; Matsubara et al. 2007; Chow et al. 2009; Li, H. et al. 2010a; Heegaard et al. 2011; 

Yu, L. et al. 2011). Mice with targeted deletion of the 17~92 cluster die shortly after birth with 

striking defects in lung and heart development and a defect in B cell development. Notably, 

deleting each of the two paralog clusters showed no phenotypic consequences whereas both 

triple and double knock-outs including the miRNA-17~92 cluster led to death even before 

birth (Ventura et al. 2008). miRNA-17~92 plays important roles in both B and T cell 

development (Lu, Y. et al. 2007; Xiao et al. 2008). As with the knock-out studies, a key 

function of miRNA-17~92 was identified to be inhibition of the pro-apoptotic protein BCL-2 

interacting mediator of cell death (BIM), as well as the tumor suppressor PTEN. The 
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previously mentioned miRNA-21, which was found up-regulated in asthma compared to 

control samples, also targets PTEN which might point to a co-regulation of target genes by 

several miRNAs. miRNA-17 was additionally shown to play a role in monocyte differentiation 

and maturation by targeting acute myeloid leukaemia-1 (AML-1, also called RUNX1), a factor 

known to induce expression of the receptor for M-CSF, as well as IL-3 and GM-CSF 

(Fontana et al. 2007). Another study identified miRNA-17 among others to regulate stress-

induced immune responses (Stern-Ginossar et al. 2008) which further underlines this 

miRNA´s role in innate and adaptive immune responses.  

Recently, Zhang M. et al. (2011) identified signal transducer and activator of transcription 

(STAT) -3 to be a miRNA-17 target and its inhibition blocked the suppressive function of 

myeloid derived suppressor cells known to play a role in tumor immune tolerance. Blocking 

STAT-3 signaling has been described beneficial in an asthma mouse model, where 

hallmarks of airway inflammation, like AHR and eosinophilia were markedly reduced. The 

authors explained the effects by up-regulation of counter-balancing immune factors like IL-

10, IL-12 and enhanced FOXP3 expression (Hausding et al. 2010). Regarding this, one 

might speculate whether elevated miRNA-17 levels in the asthma model might have the 

intention to regulate inflammatory changes via inhibition of STAT-3.  

 

 

7.4. Temporal expression patterns of selected miRNAs in lung and 
spleen 

 

 

Three miRNAs were chosen based on fold change (miRNA-144 and -451) as well as 

previous association to inflammation (miRNA-21). In addition, target prediction led to the 

inclusion of a fourth candidate, miRNA-17. With the exception of miRNA-21, which has lately 

been investigated in allergic asthma to target IL-12p35 (Lu, T. X. et al. 2009), no other 

miRNA candidate of this selection has been investigated for its role in allergic asthma.  

In a kinetic experiment all four miRNAs were examined in lung and spleen tissue at several 

time points during sensitization and after aerosol challenge.  

miRNA-17 as well as miRNA-21 expression was increased only after allergen challenge in 

parallel with the inflammatory changes in lung tissue ascertained in the total and differential 

cell counts in BAL. The observed inflammatory changes on day 72 were intensified on day 

76. This trend of increase was also visible in the expression levels of miRNA-144 and -451. 

BAL samples on day 76 consisted of elevated numbers of macrophages, eosinophils and to 

a vast extent lymphocytes. As a consequence, the measured miRNAs might be located in 

these cells. For miRNA-21, macrophages as well as T cells have been found to be a source 
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before (Lu, T. X. et al. 2009; Salaun et al. 2011) whereas there is no report about expression 

in eosinophils so far.  

Expression of miRNA-17 as well as 451 in spleen was unchanged prior to airway challenge 

and increased afterwards. Changes were again more prominent at the later time point. 

The miRNA-144 experienced a boost in expression from a 1.5-fold change on day 72 to 7.5-

fold elevation on day 76. This strong increase distinguishes miRNA-144 from its clustered 

miRNA-451. Except for this measurement in spleen, the two miRNAs were expressed very 

similarly in all other measurements.  

 

 

7.5. Target gene search 
 

 

The first part of this project aimed to set up an expression signature of allergic airway 

disease in our experimental model. After describing the changes in miRNA levels during 

disease, the question of function was addressed. miRNAs are post-transcriptional regulators 

and work through binding to a target mRNA which is subsequently repressed. There exist 

several possibilities to find miRNA-gene couples. The biological most meaningful approach 

might be to study a phenotypic change, as was done with the very first miRNA lin-4 and its 

target lin-14, which were discovered in a screen for larval defects in C.elegans (Lee, R. C. et 

al. 1993; Wightman et al. 1993). Other studies concentrated on genes that are known to be 

important in a biological context, such as IL-13 in asthma, and thus screen for putative 

regulatory miRNAs (Novershtern et al. 2008; Kumar, M. et al. 2011). Over-expression or 

knock-down experiments of single miRNAs have been undertaken and mostly followed by 

transcriptome and proteome analyses or immunoprecipitation studies in order to identify 

relevant gene targets (Ventura et al. 2008; Xiao et al. 2008; Thomas et al. 2010).  

 

In this study, the miRNA profile did not project any single miRNA as a “hot candidate”, as fold 

changes were mostly less than 2-fold. Nevertheless, it is an emerging principle that co-

regulation by several miRNAs can occur. Therefore, also small changes of single miRNAs 

might be relevant (Zhou, Y. et al. 2007; Xu and Wong 2008; Xiao and Rajewsky 2009).  

 

We chose a target search that included the top 100 differentially expressed miRNAs 

identified in the Exiqon array experiment. Based on identical seed regions, the miRNAs were 

categorized into families, which led to the formation of 33 families. These were analyzed 

using five computational target prediction algorithms in a “full consensus” approach. Most 

prediction algorithms include criteria for seed region complementarity, conservation between 
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species and thermodynamic stability of the formed heteroduplex. Single algorithms take non-

conserved sequences (Target Scan) or sequences outside the 3´-UTR of genes into account 

(PITA). Although seed based predictions still have the highest specificity and sensitivity, 

there are prominent examples of non-predictable, so called “seedless” targets (Rajewsky 

2006; Lal et al. 2009).  

In this study, application of 5 prediction algorithms led to a reduction in number of target 

genes and putative false positives results. The false positive rate of the most common 

algorithms is estimated to be between 22 and 30 % (Yoon 06). However, the disadvantage of 

a strict approach is a higher rate of false negatives, meaning the loss of possible target 

genes. As an example, the miRNAs-208 and -451 did not have a single target after the 

analysis. Applying only one prediction algorithm reveals 14 putative targets for miRNA-451 

by TargetScan whereas PicTar does not give any target thus causing the complete loss of 

this miRNA in the full consensus approach which includes this prediction program.  

 

Although some studies rely solely on one prediction algorithm, many studies are now 

combining two or three programs (Thum et al. 2008; Stagakis et al. 2011). The recently 

improved availability of bioinformatic programs that offer overlapping target predictions and 

combine several algorithms are gaining popularity (miRGator, miRecords). 

Our strict prediction strategy still revealed 961 putative target genes. We reasoned that 

genes with multiple binding sites might have a more important biological role than less 

targeted genes. The majority of genes, around 95 %, offered one or two binding sites for 

miRNAs whereas 8 % of genes had three sites. Four or more miRNA binding sites were 

found with 11 genes (around 1 %) and these were further evaluated. Notably, all candidate 

genes were involved in regulatory mechanisms with most being involved in transcriptional 

regulation, like the transcription factors CREB1, NFAT5, SOX6 or transcripts for regulatory 

proteins ELAVL2, HMGA2, SOCS6, ZBTB39, STYX, BAZB2 and TNRC6B. Asirvatham et al. 

(2008) studied more than 600 genes involved in immune regulation and found that miRNAs 

preferentially target immune genes compared to the genome. They identified major gene 

targets to consist of transcription factors, cofactors and chromatin modifiers and to a much 

lesser extent ligands or receptors (Cui et al. 2007). This goes in line with the identified gene 

list in this study. In addition, miRNAs are frequently regulating themselves by repressing 

factors needed for their own generation or function, like in this case TNRC6B. Thereby, tight 

regulation could be a reflection of their importance and subsequent strict control (Carthew 

and Sontheimer 2009).  

A comparison of the 11 identified genes that harbor multiple miRNA binding sites with the 

literature reveals that five genes have no reported and experimentally validated miRNA 

partners (TNRC6B, BAZ2B, ELAVL2, STYX, ZBTB39). Three genes (NFAT5, SOCS6, 
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SOX6) do have validated sites for miRNAs but these were not included in the profile of 

miRNAs in allergic airway disease. CREB1 and ACVR2A are proven target genes of miRNA-

34b (Pigazzi et al. 2009) and miRNA-29b (Li, Z. et al. 2009), respectively, and although these 

miRNAs can be found in the asthma profile to be differentially regulated, the applied 

prediction method does not suggest these interactions. Nevertheless, the let-7/miRNA-98 

family has been predicted to target HMGA2 and this validated couple was also predicted in 

the applied analysis (Pandit et al. 2010).  

The target prediction has been done irrespective of miRNA fold changes. Looking at the 

miRNAs that had been selected based on their differential regulation and highest fold 

changes, two candidates also fulfill the criteria of having putative target genes that harbor 

four or more binding sites for different miRNAs and thus could include co-regulation. miRNA-

21 binds TNRC6B, whereas miRNA-144 targets CREB1 and ELAVL2.  

 

 

7.6. Interaction of the target gene CREB1 with the predicted 
miRNAs 

 

 

After evaluating the list of predicted target genes, the transcription factor CREB1 was chosen 

for further analysis. This decision was based on 3 aspects: 1) its 3´-UTR can be targeted by 

several miRNAs at multiple sites, 2) miRNA-144 is a predicted binding partner and has been 

validated to be one of the highest up-regulated miRNAs in the performed asthma signature 

and 3) CREB1 has been previously associated with asthmatic disease (Couetil et al. 2006; 

Chiappara et al. 2007; Kim, C. H. et al. 2009). 

To test functional interaction and ascertain the prediction, binding of the miRNAs-17, -22, -

144 and -181a to the 3´-UTR of CREB1 were tested. A reporter gene assay performed in two 

bronchial epithelial cell lines proved binding of all tested miRNAs. This finding confirms the 

prediction made by the bioinformatic analysis.  

 

A second experiment showed significant down-regulation of endogenous CREB1 gene levels 

by in vitro transfected miRNAs-17 and -22. Repression was also seen to a lesser extent with 

miRNA-144. The effect of miRNA-181a seen in the reporter gene assay could not be 

confirmed. It should be mentioned that levels of different miRNAs varied after transfection, 

but these differences had no visible effect on inhibition of CREB1 mRNA. A speculative 

reason for this could be additional regulatory steps in the processing and incorporation of the 

single miRNAs into the RISC complex or differences in accessibility of the binding sites.  
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To elucidate biological relevance in allergic airway inflammation, expression levels of CREB1 

and the predicted miRNAs were measured in a large number of lung samples (n=15) of 

asthma and healthy mice. The reduction in CREB1 level was highly significant, whereas only 

miRNA-17 and -144 showed a statistically relevant increase. The inverse relation of 

expression, together with data from the reporter assay point towards a role of miRNA-17 and 

-144 in repressing CREB1 gene levels in this model of allergic asthma.  

miRNA-mediated regulation of CREB1 has been studied by one group in acute myeloid 

leukaemia (Pigazzi et al. 2009). They found disease-associated reduction of miRNA-34b and 

in parallel increased levels of CREB1. Restoring miRNA-34b levels not only let to a 

subsequent decrease in CREB1 expression but also affected downstream targets like B cell 

lymphoma-2 (BCL-2), NFκB, STAT-3 and others, thus pointing towards broad effects 

following miRNA regulation.  

 

Belonging to the CREB/ATF subfamily of cAMP responsive basic region-leucine zipper 

transcription factors, CREB1 influences expression of various genes with involvement in 

immune regulation, cell survival/ DNA repair, neuropeptides and others (Mayr and Montminy 

2001). Concentrating on the function in immune regulation, CREB1 is involved in T and B cell 

activation and proliferation (Hsueh et al. 1997; MuthUSmy and Leiden 1998; Zhang, F. et al. 

2000; Blois et al. 2004). Moreover, immune signaling via interleukins or chemokine receptors 

has been brought in context with CREB pathway activation (Kuipers et al. 2008; Kawaguchi 

et al. 2009). A reduction in CREB1 levels determined in this model of allergic asthma could 

thus indicate a repression of immune response, perhaps in a counter-regulatory fashion.  

Possible co-regulation of genes by miRNA-17 might be present in the repression of the 

apoptotic factor BIM. CREB1 is a known activator of BIM expression and both genes are 

validated target genes of miRNA-17. One could speculate that a reduction of BIM expression 

could lead to a pro-survival response, possibly protecting against apoptotic effects during 

strong inflammation. 

On the other hand, CREB1 is known to promote anti-inflammatory immune responses 

through repression of NFκB signaling and induction of IL-10 and regulatory T cells (Ollivier et 

al. 1996; Parry and Mackman 1997; Kim, H. P. and Leonard 2007; Ananieva et al. 2008; 

Ruan et al. 2009). The observed decrease in CREB1 would consequently support pro-

inflammatory signaling. Heijink et al. (2005) investigated the impact of elevated CCL17 levels 

on T cells. They observed a shift from CREB1 signaling, which is associated with reduced T 

cell activity, to MAPK signaling leading to T cell mediated inflammation. A scenario like this 

would indicate a pro-inflammatory situation in the investigated model.  
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A study in asthma patients reported elevated CREB1 phosphorylation in severe disease and 

Kim et al could show involvement in mucus hypersecretion, which is a hallmark of asthmatic 

disease (Chiappara et al. 2007; Kim, C. H. et al. 2009). In contrast, a study in horses with 

airway obstruction saw negative correlation of CREB1 activation with disease (Couetil et al. 

2006), eventually pointing at differences between humans and other species. Although 

phosphorylation of CREB1 rather than expression is mostly studied, one report in COPD 

patients showed overlapping patterns for CREB1 expression and activation (Mroz et al. 

2007) which might allow speculations towards similar regulation.  

Nevertheless, the role of CREB1 in asthma pathology is not well understood, given the 

different implications of CREB1 function in immune regulation alone. In the applied asthma 

model, a reduction of CREB1 gene expression was observed which goes in line with the 

increase of two miRNAs proven to bind to the 3´-UTR of CREB1.  

 

 

7.7. miRNA expression in human and murine peripheral blood 
 
 
Due to the high stability of miRNAs it is feasible to measure their expression in a multitude of 

body fluids, like urine, tear, ascetic or amniotic fluid as well as BAL fluid (Chen, X. et al. 

2008; Gilad et al. 2008; Turchinovich et al. 2011).  

In this study, it was possible to explore miRNA expression in stored peripheral blood samples 

of asthmatic children, originating from the GINI study (von Berg et al. 2008; Rzehak et al. 

2011). The expression of candidate miRNAs, miRNA-17, -21, -144 and -451 were assessed 

and compared to age-matched, healthy children that served as control group.  

Beyond the analysis of expression and possible changes in human asthmatic disease, 

interest was laid on the question whether murine blood miRNA expression resembles the 

human situation and how the tested miRNAs behave in blood versus lung tissue of one 

animal.  

 

Analysis of human blood miRNAs revealed down-regulation of the measured miRNAs with 

miRNA-144 and -451 being reduced in asthma, miRNA-17 showing only slight reduction and 

miRNA-21 being unchanged. Comparison to murine blood samples mirrored these findings, 

with the exception of miRNA-21 which was 2.6-fold down-regulated. Fold changes were 

generally higher in mice. Interestingly, all miRNAs were found to be up-regulated in lung 

tissue of diseased mice giving an adverse picture of increase in lung versus decrease in 

blood samples. A study examining the miRNA response to LPS in human leukocytes found 

reduced miRNA-146b expression, a miRNA known to be typically up-regulated after 

endotoxin exposure which might hint towards an adverse link of expression in different 
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compartments (Taganov et al. 2006; Moschos et al. 2007; Schmidt et al. 2009). Although 

most miRNAs are found to be similarly expressed in serum and blood cells under normal 

conditions in literature, analysis of diseased states displayed some differences which 

indicates that further investigations should be done in restricted blood components, like 

serum, plasma or the different blood cells (Chen, X. et al. 2008).  

 

Until now, origin and possible function of miRNAs in blood are not well understood. There 

exist reports proposing that extracellular miRNAs are of non-vesicular origin and stay 

associated to Ago or other stabilizing proteins (Wang, K. et al. 2010; Turchinovich et al. 

2011). The authors propose that these miRNAs might be by-products of dead cells. The 

diagnostic specificity found in numerous biomarker studies yet does not support this idea. In 

contrast, specific loading of miRNAs into exosomes has been proposed as well as transfer 

between circulating cells, such as T cells and monocytes (Gibbings et al. 2009; Pegtel et al. 

2010). A very recent study showed that plasma miRNAs are transported and delivered to 

recipient cells by high-density-lipoproteins and that these miRNAs do have functional 

targeting capabilities (Vickers et al. 2011). The hypothesis that circulating miRNAs can lead 

to signal transmission has been stated earlier (Valadi et al. 2007; Kosaka et al. 2010), for 

example during the initiation of immune responses in peripheral lymphoid tissues. Such a 

scenario could play a role in the situation of allergic asthma as well. Here, the lung might be 

a place of special interest, as it is a site of extensive contact between cellular tissue and 

blood.  

 

 
 
7.8. Outlook 
 

 

Beyond their role in the patholphysiology of disease, an increasing number of reports 

describe the potential of miRNAs as non-invasive biomarkers easily detectable by RT-qPCR 

methods. Application includes diagnosis, as well as prognosis, like survival prediction in non-

small-cell lung cancer based on serum samples (Hu et al. 2010; Chen, X. et al. 2011; Liu, X. 

G. et al. 2011; Yaman Agaoglu et al. 2011; Yu, L. et al. 2011). 

Due to difficulties in the diagnosis of asthmatic disease, identification of novel biomarkers is 

of great relevance. Especially in young children, wheezing or respiratory infections are hard 

to distinguish from developing asthma (Bacharier et al. 2008). Early diagnosis and therapy 

are important to avoid airway remodeling and to minimize allergen exposure.  
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The results gained in our experiments show translational potential of distinct miRNAs. In 

future experiments, miRNA expression profiles in human blood samples could be further 

analyzed with regard to their possible function as biomarkers for asthma.  

 

Besides, the distinct roles of miRNA-17 and -144 and others, which have been found up-

regulated in this mouse model for asthma, can be further explored. Validation in other 

asthma mouse models, as well as cell type specific localization of the identified miRNAs 

would be precious. Moreover, loss-of function studies, applying antisense-miRNAs (anti-

miRNAs) can bring important information (Mattes et al. 2009; Pandit et al. 2010; Lu, T. X. et 

al. 2011). Overall consequences for disease outcome as well as the interaction with the in 

vitro validated target gene CREB1 can thus be analyzed. Thereby, direct application of anti-

miRNAs into the lungs has been proven to be effective, functional and attractive with regard 

to possible therapeutic use (Collison et al. 2011a; Collison et al. 2011b).  
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9. APPENDIX 
 

 

9.1. Abbreviations 
 

 

Ago Argonaute 
alum aluminium hydroxid/magnesium hydroxid 
AML-1 Acute Myeloid Leukaemia-1 
ARE Antioxidant Response Element 
ATP Adenosine triphosphate  
BAL Broncho-Alveolar Lavage 
BCL-2 B-cell lymphoma-2 
BIM BCL-2-Interacting Mediator of cell death 
BMSC Bone Marrow-derived Stromal Cells 
bp base pair 
BSA Bovine Serum Albumin 
C. elegans Caenorhabditis elegans 
COX2 Cyclooxygenase 2 
CREB cAMP Responsive Element Binding protein 
DGCR8 DiGeorge syndrome Critical Region gene 8 
DMSO Dimethyl Sulfoxide 
DNA Deoxy-Ribonucleic Acid 
dNTP deoxy-Nucleotide-Tri-Phosphate 
DTT Dithiothreitol  
E. coli Escherichia coli 
ELISA Enzyme Linked Immuno Sorbent Assay 
FC Fold change 
FCS Fetal calf serum 
FOXP3 Forkhead box protein P3 
GINI study German Infant Nutrition Intervention study 
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor  
h hour 
HLA-G Human Leucocyte Antigen-G 
HPRT1 Hypoxanthine guanine phosphoribosyl transferase 1 
i. n. intra-nasal 
i. p. intra-peritoneal 
Ig Immunoglobulin 
IL Interleukin 
LB medium Luria-Bertani medium 
LNA Locked Nucleic Acid 
LPS Lipopolysacchride 
MEM  Minimum Essential Medium 
min minute 
miRNA microRNA 
n. a.  not analyzed 
n. d. not detected 
NFκB Nuclear Factor-κB 
NRF2 Nuclear factor-erythroid 2-Related Factor 2 
OCT-1 octamer-binding transcription factor-1 
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OVA Ovalbumin 
PBS Phosphate Buffered Saline  
PCR Polymerase Chain Reaction 
PDCD4 Programmed Cell Death 4 
pre-miRNA precursor microRNA 
pri-miRNA primary microRNA 
qPCR quantitative Polymerase Chain Reaction 
RISC RNA Induced Silencing Complex 
RNA Ribonucleic Acid 
rpm rounds per minute 
RT Reverse Transcription 
SCF Stem Cell Factor 
sec second 
siRNA small interfering RNA 
snoRNA small nuclear RNA 
STAT-3 Signal Transducer and Activator of Transcription-3 
TAE buffer Tris Acetate EDTA buffer 
TGFβ Transforming Growth Factor beta 
Th2 T helper 2 
TLR4 Toll-Like Receptor 4 
TMB Tetramethylbenzidine  
TRAIL Tumor necrosis factor-Related Apoptosis Inducing Ligand  
Treg regulatory T cell 
TSLP Thymic Stromal Lymphopoietin 
U Units (enzyme activity) 
UTR Un-Translated Region 
WHO World Health Organisation 
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