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The English Sparrow 

 

So dainty in plumage and hue, 

A study in grey and in brown, 

How little, how little we knew, 

The pest he would prove to the town! 

From dawn until daylight grows dim, 

Perpetual chatter and scold. 

No winter migration for him, 

Not even afraid of the cold! 

Scarce a song-bird he fails to molest, 

Belligerent, meddlesome thing! 

Wherever he goes as a guest 

He is sure to remain as a King. 

 
Mary Isabella Forsyth (1840-1914) 
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Summary 
_____________________________________________________________________ 

Animals have evolved a variety of ornamental characteristics.  Ornaments are 

conspicuous traits used as signals in a wide range of contexts.  The most common 

types of ornaments are indicators or “signals of quality”, traits that convey 

information about phenotypic and genetic constitution, status, parental care abilities, 

and other factors that are important for male-male competition and mate choice.  In 

birds, signals of quality are often very colourful and can vary from inflexible plumage 

traits to rather dynamic bare parts (i.e. the bill, legs or wattles).  Different colours 

stem from either structural or pigmentary underlying mechanisms.  For pigmentation, 

melanins and carotenoids are by far the most common types and have been commonly 

argued to be linked to different information signalled.  However recent research, 

including the results of my dissertation, challenges this view.   

In order to remain evolutionarily stable (i.e. honest) quality signals need to be coupled 

with inescapable costs.  For testosterone dependent ornaments, various costs 

associated with testosterone have been argued to provide the honesty enforcing 

mechanism.  This could be either via social costs of challenging testosterone related 

aggressiveness for signals of dominance (the Badges of Status Hypothesis), or via 

physiological trade-offs such as immunosuppression or oxidative stress (the 

Testosterone Handicap Model).  Immunosuppression and oxidative stress have 

especially attained widespread interest and acceptance.  However, there are several 

assumptions that need to be tested before the generality of these hypotheses can be 

assumed.   

For my dissertation I have addressed several of the underlying assumptions of the 

Testosterone Handicap Model in a model species for honest signalling research:  the 

House Sparrow (Passer domesticus).   

In chapter one I could show that there is seasonal variation in plasma testosterone 

levels and that individual levels in different seasons are very weakly correlated with 

each other.  This has important implications on theories about signal honesty that are 

based on the correlations between testosterone levels during the time of ornament 

elaboration and ornament importance. This result also suggests that caution is 
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required when testosterone measurements for individuals are based on point samples.  

Finally, I demonstrated that badge size, a commonly argued testosterone dependent 

badge of status, was not related to day time testosterone levels.  In contrast however, I 

provided strong evidence that bill colour could potentially function as a signal of 

behaviours and/or strategies related to average testosterone levels outside the breeding 

season.   

In chapter two, I have shifted my emphasis from seasonal variation to diel variation, 

and I demonstrated that night time testosterone levels were significantly higher than 

day time levels during all seasons.  I further argue that the expression of night time 

levels is considerably closer to individual maximal potential values.  However, the 

reason why individuals have consistently elevated night time testosterone levels 

remains unclear.  In contrast to day time levels, I found that badge size was positively 

correlated with night time levels (during the peak breeding season).  This suggests 

that badge size has the potential to signal maximal testosterone levels and maximal 

potential aggression.  

In chapter three, I broadened the number of House Sparrow ornaments I focused on to 

four, and studied the interplay of them over several years using a correlational 

approach.  I found that House Sparrows have at least three ornaments that relate to 

testosterone levels and thus could potentially signal testosterone related behaviours 

(related to agonistic interactions).  In addition, I demonstrate that at least two traits 

were strongly related to age. 

In the last two chapters I used an experimental approach to test the developmental 

mechanisms underlying ornamentation.  First, in chapter four, I tested whether social 

group composition (as determined by badge sizes) during moult influenced badge size.  

In one year I found that males housed in cages where every individual had similar 

badges tended to have stronger changes in their badges.  However in two years there 

was no effect of group composition on badge size, indicating that the effect of social 

environment on badge size is weak and possibly dependent on as yet unknown factors.  

Finally, in chapter five I examined three fundamental assumptions underlying recent 

theories on signal honesty of testosterone related ornaments.  These were that (1) 
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testosterone is immunosuppressive, (2) carotenoids are immunoenhancing, and (3) 

testosterone increases the bioavailability of carotenoids.  None of them were 

supported in either House Sparrows or Red-billed Queleas (Quelea quelea quelea) 

demonstrating that they are not of a general nature and that other costs than 

physiological trade-offs are needed to enforce signal honesty.  This result provides 

compelling support for the important idea that developmental mechanisms for 

ornaments are best viewed as adaptations designed to optimize signalling, rather than 

as honesty-enforcing constraints.  

To conclude, in this dissertation I have addressed several assumptions underlying the 

honesty of signals of quality and show that they are not as general as typically 

assumed.  In combination, these results provide a consistent pattern that has major 

consequences for theories about signal honesty.  I suggest that it is much more likely 

that testosterone related ornaments remain honest via costs of testosterone related 

behaviours such as social challenges from competitive rivals (as in the badge of status 

hypothesis).  In addition I have also raised new questions that future research can 

profitably address to facilitate a full understanding of the enforcement mechanisms 

that keep quality signals honest.   
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Zusammenfassung 
_____________________________________________________________________ 

Im Laufe der Evolution wurde bei Tieren eine Vielzahl schmückender Merkmale, 

sogenannte Ornamente, selektiert, die in verschiedensten Zusammenhängen als 

Signale verwendet werden.  Die häufigste Art von Ornamenten sind 

„Qualitätssignale“, die Informationen über phänotypische und genetische Verfassung, 

Dominanzstatus, Brutpflegeeigenschaften und andere Faktoren, die beim 

Konkurrenzkampf zwischen zwei Männchen oder bei der Partnerwahl eine Rolle 

spielen, preisgeben.  Bei Vögeln sind Qualitätssignale oft in der Färbung der Tiere zu 

finden, bei der zwischen unveränderbaren Gefiedermerkmalen und variablen Haut- 

beziehungsweise Schnabelfarben unterschieden wird.  Unterschiedliche Farben 

können entweder durch unterschiedliche Mikrostrukturen der Federn oder durch die 

Einlagerung verschiedener Farbpigmente (meist Karotenoide und Melanine) entstehen.  

Grundsätzlich wurden verschiedenen Pigmente mit unterschiedlicher 

Signalinformation in Zusammenhang gebracht.  Aber neue Forschungsergebnisse, 

einschließlich meiner Dissertation, zweifeln diese Theorien an. 

Um evolutionär stabil (d.h. also ehrlich) zu bleiben, müssen Qualitätssignale mit 

unausweichlichen Kosten verbunden sein.  Bei Testosteron-regulierten Ornamenten 

wurden verschiedene Ehrlichkeit erzwingende Kosten, die in direktem 

Zusammenhang mit Testosteron stehen, vorgeschlagen.  Diese können zum einen 

soziale Kosten bei Dominanzsignalen sein, die durch Herausforderung von 

Testosteron-regulierter Aggressivität entstehen (Hypothese über Statusmerkmale), 

oder zum anderen physiologische Kompromisse wie z.B. Immunsuppression oder 

oxidativer Stress (Testosteron Handicap Modell).  Gerade Immunsuppression und 

oxidativer Stress stießen in der letzten Zeit auf viel Interesse und Akzeptanz.  Aber 

bevor diese Hypothesen als allgemein gültig angenommen werden, sollten noch 

einige Annahmen getestet werden. 

In meiner Dissertation habe ich einige Annahmen, die dem Testosteron Handicap 

Modell zu Grunde liegen, in einem Modellorganismus für Signal-Forschung 

untersucht:  dem Haussperling (Passer domesticus).   
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In Kapitel eins konnte ich saisonale Schwankungen in Plasmatestosteronleveln 

aufzeigen.  Außerdem korrelierten die Level von einzelnen Individuen zu 

verschiedenen Jahreszeiten nur schwach miteinander.  Das hat bedeutende 

Auswirkungen auf Theorien zur Signalehrlichkeit, die darauf basieren, dass 

Testosteronlevel zur Zeit der Merkmalsausbildung mit denen zu der Zeit, wenn das 

Merkmal bedeutend ist, korrelieren.  Dieses Ergebnis zeigt auch, dass man vorsichtig 

sein muss, wenn Testosteronmessungen für Individuen auf Einzelmessungen basieren.  

Schließlich konnte ich auch zeigen, dass die Größe des Brustflecks, der weithin als 

Testosteron-abhängiges Statusmerkmal betrachtet wird, nicht mit Testosteronleveln, 

die im Tagesverlauf gemessen wurden, korreliert.  Im Gegensatz dazu konnte ich 

wichtige Hinweise erbringen, dass die Schnabelfarbe als potentielles Merkmal 

fungieren könnte, das Verhalten und Strategien in Abhängigkeit von mittleren 

Testosteronleveln außerhalb der Brutzeit signalisiert.   

In Kapitel zwei habe ich meinen Schwerpunkt von saisonaler Variation auf 

Schwankungen im Tagesverlauf verlegt und konnte zeigen, dass 

Nachttestosteronlevel zu allen Jahreszeiten signifikant höher waren als Tagwerte.  

Des Weiteren denke ich, dass diese Nachtwerte deutlich näher an möglichen 

Maximalwerten eines Individuums liegen.  Aber es bleibt weiterhin unklar, warum 

Nachtwerte so viel höher sind.  Im Gegensatz zu den Ergebnissen mit den Tagwerten, 

konnte ich eine Abhängigkeit der Größe des Brustflecks von Nachtwerten (zur 

Brutzeit gemessen) feststellen.  Das könnte bedeuten, dass der Brustfleck maximale 

Testosteronwerte und maximal mögliche Aggressivität signalisiert. 

In Kapitel drei habe ich das Spektrum der untersuchten Ornamente auf vier erweitert 

und deren Zusammenspiel über mehrere Jahre in einem korrelativen Ansatz 

untersucht.  Ich konnte feststellen, dass Haussperlinge mindestens drei Merkmale 

haben, die mit Testosteronleveln korrelieren und somit möglicherweise Testosteron-

abhängiges Verhalten (im Zusammenhang mit agonistischen Interaktionen) 

signalisieren.  Außerdem waren mindestens zwei Merkmale altersabhängig. 

In den letzten beiden Kapiteln verwendete ich einen experimentellen Ansatz, um 

Entwicklungsmechanismen, die Ornamenten zu Grunde liegen, zu überprüfen.  In 

Kapitel vier untersuchte ich, ob die soziale Gruppenzusammensetzung (über den 
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Brustfleck bestimmt) während der Mauser einen Einfluss auf die Größe des 

Brustflecks hat.  In einem Jahr konnte ich einen Trend zu größeren Veränderungen in 

der Brustfleckgröße bei Männchen feststellen, die in Volieren mit Individuen mit 

ungefähr gleich großen Brustflecken waren.  Aber in den anderen beiden Jahren gab 

es keinen solchen Effekt.  Das bedeutet, dass der Einfluss von sozialer Umwelt auf 

Brustfleckgröße schwach und möglicherweise von noch unbekannten Faktoren 

abhängig ist.  

In Kapitel fünf schließlich untersuchte ich drei grundlegende Annahmen, auf denen 

Theorien zur Ehrlichkeit von Testosteron-abhängigen Ornamenten basieren.  Diese 

sind: (1) Testosteron ist immunosuppressiv, (2) Karotinoide sind immunverstärkend 

und (3) Testosteron vergrößert die Verfügbarkeit von Karotinoiden.  Ich konnte keine 

Bestätigung für keine von ihnen bei Haussperlingen und Blutschnabelwebern (Quelea 

quelea quelea) finden, was zeigt, dass sie nicht allgemeingültig sind und dass andere 

Kosten, und nicht physiologische Kompromisse, benötigt werden, um die 

Signalehrlichkeit zu garantieren.  Diese Ergebnisse bieten unmittelbare Beweise für 

die Idee, dass Entwicklungsmechanismen für Ornamente am besten als Anpassungen 

zur Signaloptimierung gesehen werden sollten, anstatt als Ehrlichkeit erzwingende 

Einschränkungen. 

Abschließend stelle ich fest, dass ich in dieser Dissertation einige Annahmen, auf 

denen die Ehrlichkeit von Qualitätssignalen basiert, untersucht habe und zeigen 

konnte, dass sie nicht so allgemein gültig sind wie weithin angenommen.  

Zusammenfassend zeigen meine Ergebnisse ein konsistentes Muster, welches weit 

reichende Folgen für Theorien zur Signalehrlichkeit hat.  Ich schlage deshalb vor, 

dass es wahrscheinlicher ist, dass Testosteron-regulierte Ornamente über Kosten 

durch Testosteron-abhängiges Verhalten wie soziale Herausforderungen von Rivalen 

(nach der Hypothese über Statusmerkmale) ehrlich bleiben.  Des Weiteren habe ich 

neue Fragen aufgeworfen, die künftige Studien adressieren sollten, um somit ein 

tiefgreifendes Verständnis von Mechanismen, die die Ehrlichkeit von 

Qualitätsmerkmalen bedingen, zu erlangen.   
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General Introduction 
_____________________________________________________________________ 

    

“[…] we may conclude that weapons for battle, organs for producing sound, ornaments of many kinds, 

bright and conspicuous colours, have generally been acquired by the males through variation and 

sexual selection […].” (Darwin 1871, p. 560).   

When watching animals one can observe that they use different traits such as 

colourful ornaments, sounds, or gestures to communicate with each other and also 

with individuals of other species.  Also plants apply some traits to communicate 

information to potential herbivores or pollinators.  Such general occurrence and 

consistency within and between species suggests general mechanisms underlying the 

evolution and development of such traits.  But how can it be ensured that these traits 

provide honest information?  How can lying, i.e. cheating, be prevented?  For my 

dissertation I have addressed several assumptions underlying theories about the 

honesty of some traits – testosterone related colourful signals of quality – by using the 

House Sparrow (Passer domesticus) as a model species.  In the following introduction 

I will briefly define and describe the nature of signals of quality, before going into 

details about different colour causing mechanisms underlying signals of qualities in 

birds and contrasting static and dynamic characters of such signals.  Then, I will 

introduce theories on honesty-ensuring mechanisms, that is I will discuss costs 

associated with signals of quality.  Subsequently, I will establish testosterone as one 
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of the links associating signals of quality with inescapable costs.  Finally, I will give a 

short summary on House Sparrows and their ornaments before describing some 

general methods and an outline of my thesis.   

Signals of quality 

Animals have evolved an amazing number and diversity of ornamental traits as 

signals.  Signals are traits that function in communication, that consist of one or 

several cues, and that are subject to selective pressures different than for other traits 

because of the social interactions between signaller and receiver (Candolin 2003).  

Although there is no universally accepted biological definition of ornaments that I am 

aware of, they are typically considered to be morphological characteristics that are 

particularly showy or elaborate, that are often sexually dimorphic, and that function as 

signals used in a wide range of contexts.  For instance, ornamental coloration in birds 

can convey information about the signaller’s quality, attractiveness, strategy, genetic 

compatibility, kinship, individual identity, and presence (Dale 2006).   

Ornamental signals of quality are by far the most studied and are typically considered 

as signals of phenotypic and genetic constitution (Andersson 1994; reviewed in Dale 

2006).  More specifically signals of quality can provide information about a variety of 

traits related to the bearer’s constitution such as social status, fighting ability, parental 

care abilities, disease status, good genes, ability to evade predators, etc. (Dale 2006).  

In addition, signals of quality can therefore be assessed in the context of male-male 

interactions (e.g. acquisition or defence of territories, mates, or other resources) or of 

male-female interactions (e.g. mate attraction) (summarized in Berglund et al. 1996).   

Signals of quality are expected to have several characteristics in common, no matter 

what particular aspect of quality they convey (reviewed in Dale 2006):  First, they 

demonstrate a high degree of between-individual variability, presumably because 

overall quality is also highly variable and affected by various developmental 

pathways.  Second, they are largely influenced by environmental conditions (reviewed 

in Hill 2006).  Third, like most quantitative traits, they generally display unimodal 

frequency distributions.  However, bimodal distributions could occur in status signals 
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(reviewed in Dale 2006).  Finally, interspecific variation between different species 

can be huge depending on the type of ornament and its particular information content.   

Colourful signals of quality 

Different animal species display a huge variety of ornamental traits that function as 

signals of quality.  These include horns and antlers (e.g. a kudu’s horns), modified or 

elongated fur (e.g. a lion’s mane) or elaborate feather plumes (e.g. tail feathers of 

birds of paradise), bizarre forms of skin appendices (e.g. a cock’s comb), or extremely 

colourful patches of fur, feathers, scales or skin, etc. (e.g. wing pattern of butterflies).  

In birds, bright coloration often functions as ornaments in general, and as signals of 

quality in particular.   

Different colours are thought to be caused by different types of colour generating 

mechanisms, i.e. by differences in microstructure and from different pigments, 

typically melanins and carotenoids (Badyaev and Hill 2000, and references therein).  

Variation in microstructures is usually responsible for the blues and greens while 

variation in melanins or carotenoids is responsible for blacks/browns and yellow/reds, 

respectively.  Because the mechanisms of different colours (i.e. peak wavelengths) 

differ, different coloured ornaments are commonly considered to potentially signal 

different information.  Below, I describe in more detail each of the major types of 

colour generating mechanisms in birds.   

Structure mediated colours are generally blue, purple, green, and ultraviolet, and often 

appear iridescent and glossy.  They are caused when incoming light waves are 

scattered, reflected and constructively interfered by melanin granules and/or air 

vacuoles in the keratin that feathers are made of (Keyser and Hill 1999; Loyau et al. 

2007).  Structural colour changes considerably in the course of the year due to 

abrasion of feathers and microstructures, but this could be reduced by intensive 

preening and feather maintenance (summarized in Peters et al. 2006).  Many plumage 

ornaments based on structural colours were found to signal condition and age, and to 

play a significant role in mate choice (e.g. Bennett et al. 1997; Keyser and Hill 1999; 

Delhey and Kempenaers 2006; Peters et al. 2006; Loyau et al. 2007).   
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Melanin based colours are generally black, grey, brown, rufous, and yellow, and can 

be summarized as earth tone colours (Badyaev and Hill 2000).  Melanins are thought 

to be cheap because they can be synthesized by animals de novo during either (1) the 

amino acid catabolism from the nonessential amino acid tyrosine or (2) as non-toxic 

end products from the essential amino acid phenylalanine (summarized in Badyaev 

and Hill 2000; Griffith et al. 2006).  Melanin based ornaments are also commonly 

considered to be more under genetic than environmental control (Badyaev and Hill 

2000).  Because they are thought to be cheap and genetically determined, melanin 

based ornaments are often argued to be less good indicators of genetic quality, but 

instead function as signals of dominances (reviewed in Badyaev and Hill 2000).  

However, recent research has challenged this conclusion by highlighting a lack of 

evidence for a significant difference between melanin and carotenoid based signals, 

and therefore suggests that more studies are needed (Griffith et al. 2006).   

Carotenoid based colours are generally bright red, orange and yellow.  Carotenoids 

are often argued to be limited in availability because they cannot be produced by the 

animal itself, but instead have to be taken up from food - potentially in rather high 

amounts for producing striking colours (reviewed in Badyaev and Hill 2000).  

Carotenoids are also thought to be required for the immune system - they are 

immunoenhancing and function as anti-oxidants (Chew and Park 2004; Alonso-

Alvarez et al. 2008).  Because carotenoids are potentially limited, they are often 

argued to be costly and thus good indicators of quality (Badyaev and Hill 2000).  

However, recent research suggests that carotenoids might not be as important for the 

immune system as widely assumed (Pérez-Rodríguez 2009; Vinkler and Albrecht 

2010), and other factors such as haemoglobin or melatonin may have similar 

functions (Bertrand et al. 2006; Griffith et al. 2006; McGraw and Klasing 2006).   

In sum, various colours of ornaments originate from different mechanisms.  There is 

great interest in determining whether function can be implied from these underlying 

mechanisms, however to date it appears that we still have to definitively answer this 

question.  Indeed, it seems quite likely that the signalling function of ornaments is 

context and species dependent more so than mechanism dependent.  My view is that 

research on bird ornaments needs to compare ornaments with similar functions and 

contexts rather than ornaments with similar developmental mechanisms.   
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Static versus dynamic signals 

In addition to different mechanisms and colours, visual signals of quality in birds can 

also be separated into plumage versus bare part ornaments.  This contrast is quite 

important because these different kinds of ornaments vary in terms of their dynamism, 

that is in their capacity to change over time.  

First, plumage ornaments are developed only once or twice per year during moult and 

then remain fixed (Pérez-Rodríguez 2008).  Moreover, pigments used to colour 

feathers are irrepealably incorporated into the feathers and cannot be drawn-off for 

other purposes (Lozano 1994).  They are therefore rather inflexible, and any 

information signalled needs to be consistent up until the next moult.  Some species 

partly circumvent the inflexibility of plumage ornaments by adding gray or white 

edgings to the newly moulted feathers that conceal the ornament and that are worn off 

by preening until the ornament is fully needed (e.g. in male House Sparrows, Passer 

domesticus; (Møller and Erritzøe 1992)).  Overall, plumage ornaments related to 

quality are generally suggested to function as long-term indicators of past condition, 

i.e. the condition that the individual was in when it moulted into the ornament.   

Bare part ornaments include skin appendices such as wattles, eye rings or combs, 

other parts of skin such as the legs, and horned structures such as the bill.  In contrast 

to plumage coloration, bare part coloration can change rather quickly and any time 

during the year (Karubian 2008).  In addition, pigments used for coloration can be at 

least partly taken back and used for other purposes (Lozano 1994).  Bare part 

coloration is often argued to function as a short-term indicator of current condition 

(Pérez-Rodríguez 2008; Ardia et al. 2010).  Dynamic signals are considered 

especially important in environments that can change rapidly and where decisions 

(such as breeding) are based on current conditions (Bro-Jørgensen 2010).   

Costly signals of quality 

Presumably it would be advantageous, in terms of fitness gains, for individuals to 

signal the highest possible quality no matter what their actual quality is.  What 

prevents low quality males from “cheating” and producing signals that convey that 
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they are actually high quality?  In order to remain evolutionarily stable, signals of 

quality have to be inescapably costly (Zahavi 1975; Zahavi 1977; Grafen 1990).  This 

means that they have to be correlated with handicaps they impose on the individuals 

so that an individual can only elaborate an ornament as much as it can withstand the 

costs associated with the handicap (Zahavi 1975).  Classic examples of handicaps 

include the enormous tail of a peacock that constrains the bearer when moving around 

or when trying to escape from a predator, or conspicuous sexual displays that 

advertise an individual’s location to predators as well as potential mates.  Inter-

individual variation in ornaments arises when higher quality males can afford the 

costs of elaborate ornamentation more than lower quality males, and when there is 

considerable variation between individuals in how many costs they can afford (Zahavi 

2007).   

Generally, honesty enforcing costs of signals of quality can be divided into social and 

physiological (e.g. production and maintenance) costs.  Social costs of an ornament 

mean that an individual will be challenged by its conspecifics that have similarly 

sized ornaments and are trying to improve their rank (Jawor and Breitwisch 2003).  

Only when an ornament honestly signals the level of aggression and status, an 

individual can withstand attacks and energy costs imposed by fights (Maynard Smith 

and Harper 1988; Jawor and Breitwisch 2003; Tibbetts and Dale 2004).  Therefore, 

cheaters will be selected against.  Ornaments signalling status and level of aggression 

are also called ‘badges of status’.   

Physiological costs arise via trade-offs of resources that are used for ornament 

production or maintenance and other important physiological processes such as 

immune response (e.g Alonso-Alvarez et al. 2007; Peters 2007).  They are based on 

the assumption that these resources are limited and trade-offs can form.  One classic 

example are carotenoids that were suggested to be traded off between colourful 

ornamentation and oxidant defence (see above).   
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Hormone dependence of quality signals 

Hormones play a major role in the regulation of diverse processes during an animal’s 

life.  Because of this diversity, they are thought to cause trade-offs by producing 

antagonistic effects on different traits (Ketterson and Nolan 1992) and therefore 

provide a potential solution to defining honesty enforcing costs of signalling.  In this 

respect, the steroid hormone testosterone has gained increased interest.  Testosterone 

is well recognized to impact physiological (e.g. sperm production), morphological 

(e.g. development of secondary sexual characters) and behavioural (e.g. courtship, 

aggression) characteristics of animals (Adkins-Regan 2005).  Inter-individual 

variation in plasma testosterone levels might therefore be reflected in variation in 

these attributes (Laucht et al. 2011) and therefore in accordant testosterone dependent 

ornaments.  Because testosterone has many costly behavioural and physiological 

effects on individuals (Wingfield et al. 2001) testosterone potentially provides a 

developmental mechanism whereby signal honesty can be enforced.   

As discussed above, there are two kinds of costs that can ensure signal honesty:  

social and physiological costs.  Testosterone can potentially regulate both kinds of 

costs.  First, it can cause social costs via its effects on aggressive behaviour (reviewed 

in Soma 2006).  Testosterone regulated aggression and thus dominance status can be 

advertised via badges of status.  As described above testing of conspecifics will cause 

social costs, and an individual can only withstand these challenges when testosterone 

levels are high enough to cause the signalled level of aggression.   

Second, testosterone can ensure the honesty of signals of quality by causing 

physiological costs via physiological trade-offs.  This is known as the “Testosterone 

Handicap Model” (Adkins-Regan 2005) and it depends on physiological costs of high 

testosterone levels such as high energetic costs or the suppression of the immune 

system (Wingfield et al. 2001).  Suppression of the immune system has especially 

achieved widespread attention.   

Folstad and Karter (1992) argued that because testosterone tends to suppress the 

immune system, only individuals with good immune systems can withstand the costs 

of high testosterone levels and thus develop elaborate ornaments.  This hypothesis is 
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known as the “Immunocompetence Handicap Hypothesis” (ICHH), and it has been 

highly influential.  Alonso-Alvarez et al. (2007) extended this model, and suggested 

in their “Oxidation Handicap Hypothesis” that high testosterone levels cause 

oxidative stress (see also von Schantz et al. 1999) and that ornaments therefore signal 

the ability to counteract oxidative stress via antioxidant pigments.  As carotenoids are 

thought to be traded off between colour pigments and antioxidants (see above) they 

were predicted to be the honest link between testosterone caused oxidative stress and 

carotenoid based ornamentation (Alonso-Alvarez et al. 2007; Alonso-Alvarez et al. 

2008).  The majority of research into the costs of ornamentation is currently based on 

these hypotheses.  Support for the ICHH is weak however (Roberts et al. 2004), and 

Wedekind and Folstad (1994) questioned the evolutionary stability of the ICHH and 

suggested that immunosuppression by testosterone is better viewed as adaptive rather 

than as a cost.   

Despite the large amount of studies and effort put into answering questions about 

signalling content and signal honesty of ornaments in birds and other species, there is 

still a huge number of questions that need to be addressed and answered.  During my 

dissertation I have endeavoured to challenge current thinking by addressing some of 

the key assumptions of contemporary views of honest signalling.  I have chosen one 

model species of ornamentation research, the House Sparrow (Passer domesticus) in 

order to do this.   

The House Sparrow (Passer domesticus):  model species for ornamentation 

research 

“The house sparrow has several attributes that make it an ideal subject for many types 

of biological inquiry.  These include its accessibility as a widespread commensal of 

urban and agricultural communities; its ready acceptance of nest-boxes as nest sites; 

its status as a pest of agriculture and as a disease vector for both humans and their 

livestock; its highly social behavior, which results in its foraging flocks and breeding 

semicolonially; its ready adaptation to laboratory conditions permitting extensive 

laboratory research (including captive breeding); and its lack of formal governmental 

protection in many places.” (Anderson 2006, preface) 
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Fig. 1:  a) Male House Sparrow, b) Female House Sparrow 

The House Sparrow is a small well-known passerine (~28g) that belongs to the genus 

Passer and the family Passeridae.  The House Sparrow is probably the bird species 

with the widest distribution:  it can be found nearly world-wide and in almost all 

kinds of habitats (Anderson 2006).  It appears in close association with human-

modified environments such as farms and surrounding farmland, residential, and 

urban areas (Lowther and Cink 2006).  House Sparrows have a highly social life-style 

all year round with foraging flocks, breeding colonies, and roosting congregations 

(Anderson 2006).  This sociality includes both males and females in mixed-sex 

groups.   

The two sexes differ slightly in size and clearly in plumage characteristics.  As House 

Sparrows have only one annual moult (after the breeding season in early fall) these 

differences remain constant over the year.  While females are inconspicuously greyish 

brownish coloured, males have several distinct ornaments superimposed onto a grey 

and dark brown background (Fig. 1).  The best studied male ornaments include the 

black breast bib –the so-called badge, bill coloration, the white wingbar, and the black 

area around the eye (see Fig. 2), but this list clearly does not include all conspicuous 

patches and potential ornaments.   
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Fig. 2:  Ornaments of a male House Sparrow.  Indicated are all known ornaments and their general 
function.  For references see General Introduction.   
Drawing by Helga Gwinner.  

The badge is by far the most studied ornament.  Variation in badge size has been 

found to be related to social status (i.e. larger badges signal higher dominance), age 

(i.e. increase with age), and variation in sexual behaviour (mixed results for pairing 

and paternity, but larger badged males defend more their nest boxes and mates) 

(Møller 1987; Møller 1990; Veiga 1993; Reyer et al. 1998; Liker and Barta 2001; 

Václav and Hoi 2002; McGraw et al. 2003; Nakagawa et al. 2007; Morrison et al. 

2008).  In addition, several correlative and manipulative studies have found that badge 

size was related to testosterone levels around the time of the annual moult (Evans et al. 

2000; Buchanan et al. 2001; Gonzalez et al. 2001).   

The signalling function of male bill colour, in contrast to badge size, has not been 

examined in any detail.  Nevertheless, it has been long-known that bill colour changes 

from a pale horn colour in the non-breeding season to a blackish dark colour in the 

breeding season (Witschi and Woods 1936), and that this change is due to different 

pigmentation with eumelanins and linked to increases in male hormones (testosterone) 

(Keck 1933; Witschi 1936; Pfeiffer et al. 1944; Haase 1975; Donham et al. 1982).  In 

addition, Hegner and Wingfield (1986) suggested that social competition might have 

caused bill darkening in fall.  Furthermore, Václav (2006) proposed a possible effect 

of condition on bill colour; however, this has not yet been studied.   
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The white wingbar of the male House Sparrow is outlined by the white tips of the 

median coverts (Bókony et al. 2006).  Bókony et al. (2006) found that the 

conspicuousness of this wingbar was related to defence success and suggested that it 

was a signal of defence ability of already occupied resources.  Together with badge 

size it comprises one of multiple ornaments with different signalling functions during 

aggressive interactions (Bókony et al. 2006).   

In contrast, the black area around the eyes was found to be a reasonably good 

indicator of male age and thus termed the “mask of seniority” (Nakagawa and Burke 

2008).  However, this has not been studied in any more detail, and correlations with 

other ornaments such as badge size are likely.  

The above four ornaments have each been suggested to be signals of quality, and 

indeed they seem to largely fulfil the generally expected characteristics of such traits.  

However, in most cases they are not well studied.  And in the case of the badge size 

results were inconsistent between different studies (on different populations).  This 

leaves scope for more research and in-depth questions.   

Aims of thesis 

During my dissertation I have endeavoured to challenge current thinking by 

addressing some of the key assumptions underlying theories of honest signalling.  

More specifically, I have concentrated on several assumptions underlying the 

Testosterone Handicap Model explaining the honesty of testosterone related 

signalling.  I will describe these assumptions that I have set out to challenge in more 

detail in the following. 

First, plasma testosterone levels at different times in the course of the year and of the 

day need to correlate with each other to ensure signal honesty.  Because plumage 

ornaments are often developed during the time of year when plasma testosterone 

levels are the lowest (i.e. moult), but ornaments are important during other seasons 

such as breeding when testosterone levels are high (e.g. Humphrey and Parkes 1959; 

Wingfield et al. 1990; Hahn et al. 1992), individuals with the highest levels during 

moult should also be the individuals with the highest levels during breeding season.  
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Similarly, testosterone levels fluctuate in the course of the day and therefore 

individuals with the highest levels at one time point should also be the ones with the 

highest levels at a different time point.   

Second, testosterone is immunosuppressive.  This is because testosterone causes 

physiological trade-offs and thus is thought to enforce signal honesty (see above).  

One physiological trade-off that has been widely discussed is immunosuppression.   

Third, carotenoids are immunoenhancing.  Because carotenoids can function as anti-

oxidants (Chew and Park 2004; Alonso-Alvarez et al. 2008) they should be able to 

counteract negative endproducts that form during immune responses and are therefore 

immunoenhancing.   

Fourth, testosterone increases the bioavailability of carotenoids.  High quality 

individuals have high testosterone levels and will therefore try to circumvent the 

trade-offs of these high testosterone levels, i.e. immunosuppression.  Because 

carotenoids are immunoenhancing, they could be used to counteract negative effects 

of high testosterone levels.  Therefore, higher circulating testosterone levels should 

increase the bioavailability of carotenoids.   

Because these assumptions are of a very general nature, signal elaboration and 

honesty should always be regulated in a similar way.  This should also be the case, 

when testosterone levels vary under the influence of a variety of external and intrinsic 

factors.  Therefore, I have chosen to examine these assumptions and the assumed 

influence on ornamentation in more detail and in different contexts:  (1) in the course 

of the year, (2) in the course of the day, (3) as a function of age, (4) as the inter-play 

of different signals, (5) as a function of social environment, and (6) as function of 

changing physiology.  In more detail, I have chosen the course of the year and of the 

day to represent changing external and internal factors, age to represent changes of 

internal factors and the outcome of current selection, social environment to represent 

the two-way relationship between testosterone and (aggressive) behaviour (e.g. 

Wingfield et al. 1990; Ketterson and Nolan 1992; Oyegbile and Marler 2005; Hau 

2007), and the manipulation of circulating testosterone levels and immune challenges 

to represent changes in physiology.   
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General methods:  study species 

I used the House Sparrow as a study species because of its sociality and need of 

communication via ornaments, and because ornamentation is only based on one type 

of colour mediating mechanism, the melanin pigments.  From the described 

ornaments I have focused mainly on badge size and bill colour:  badge because of the 

variety of published studies, and bill colour because of the lack of information and 

high potential for being a short-term signal.   

I studied a captive population of House Sparrows because this allowed me to collect 

long-term data on individuals, and to obtain repeated measures of individuals spread 

over the year and over a day.  A captive environment also allowed to standardize 

environmental factors possibly influencing ornamentation and group life.  For this 

purpose I kept more than 200 male and female House Sparrows in large semi-outdoor 

aviaries of 1.2 x 2.0 x 4.0 m in groups of six to ten.  The aviaries, located in a barn-

like building, were enclosed on one side only by chicken wire; hence, the birds were 

exposed to natural light and temperatures, but had ad libitum food and water.  The 

fact that this population readily breeds in captivity, that most of the birds were wild-

caught, and that housing conditions were very similar to where they had been caught 

provide some confidence that the results reflect patterns present in wild populations.   

General methods:  measurements of ornament colour and size 

To measure ornament size and colour, I used digital photography.  I demonstrated that 

this is a fairly accurate and repeatable measurement and that it is thus valid to be used 

in the context of bird ornamentation research (see chapter one).  Out of the three 

possible methods for colour measurements (assessment of colour by eye and the 

classification into categories according to colour charts, photo spectrometry, and 

digital photography) I have chosen the latter because (1) pictures can be taken fairly 

quickly and easily, (2) pictures can be saved and scored multiple times, (3) 

photographs can be used for additional colour measurements such as size or pattern of 

ornaments, and (4) photos can be standardized afterwards.  Despite its disadvantages 

(light conditions should be fairly standardized, and measurements cannot be 
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performed in the UV spectrum), this method has become a reasonable alternative to 

photo spectrometry (see chapter 1 and 2 in Hill and McGraw 2006).   

To measure coloration and size of an ornament, I took two to four pictures of an 

individual bird in a standardized set-up:  similar light conditions, constant distance 

between bird and camera, standardized camera settings, colour and size standard in 

the background, and birds always held the same way.  These pictures were later 

analyzed using imaging processing software.  To determine ornament size I encircled 

the ornament on the photograph and measured the encircled pixels using the program 

ImageJ 1.36b (Abramoff et al. 2004).  To determined ornament coloration I used 

software written in R 2.4.0 (R Development Core Team 2006) to collect brightness 

values as measured in the standard HSB (i.e. hue, saturation, brightness) colour space.  

I measured the brightness of five pixels located at five randomly chosen positions on 

the ornament.  I then calculated the mean of these five measures.  Measurements were 

standardized by using the colour and size standards in the background of the photos.  

In addition, I used averages of all pictures taken per individual.   

Thesis outline 

Here, I address several assumptions underlying the Testosterone Handicap Model to 

explain honesty of testosterone related signals in a model species for ornamentation 

research, the House Sparrow.  In particular, I have considered (1) how testosterone 

levels in the course of the year and of the day are related to the long-term changes of 

ornaments, (2) how age influences ornaments, (3) how different ornaments interact 

with each other, (4) how the social environment influences ornaments, and (5) how 

changes in physiology affect ornaments.   

In chapter one, I have studied variation in badge size and bill colour in relation to 

plasma testosterone levels over the course of one full year, i.e. over four different 

seasons.  First, I aimed to replicate results of other researchers about the relationship 

between badge size, testosterone levels and condition.  Second, I tested the 

relationship between testosterone levels and changes in bill colour and I tested 

whether bill colour is a signal of quality.  Third, and most importantly, I tested the 

basic underlying assumption of the testosterone handicap model of signal honesty - 
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that testosterone levels are correlated between the season when plumage ornaments 

are developed and the season when ornaments are most important. 

In chapter two, I have compared testosterone levels at day and night in the course of 

one year and evaluated their impact on badge size.  I first wanted to extend the 

assumption examined in chapter one about between seasonal correlations of 

testosterone levels to correlations between day and night testosterone levels.  And 

second, I wanted to test how this variation is reflected in variation in the size of the 

badge.   

In chapter three, I have studied the interrelationships of four different ornaments 

(badge size, bill colour, wingbar area and brightness, and leg colour) over several 

years and examined their information signalling potential.  First, I wanted to confirm 

that all of them are potential signals of quality.  Second, I aimed to distinguish 

between different possibilities of how multiple ornaments inter-play, i.e. if they signal 

different or similar information.  And third, I examined the changes of these 

ornaments with age and over time.   

In chapter four and five, I have used an experimental approach.  In chapter four, I 

have studied how manipulations of the group composition of badge sizes, and thus of 

social environment, during moult affect the development of badge size across three 

different years.  With this I have examined the variability of a fixed ornament and the 

influence of environment (in this case social environment) on mechanisms of 

ornament development. 

In chapter five, I have studied the influence of testosterone implants and immune 

challenges on ornamentation (bill colour), plasma carotenoid levels and immune 

parameters in the House Sparrow and the Red-billed Quelea (Quelea quelea quelea).  

With this I wanted to test the key underlying assumptions of the “Testosterone 

Handicap Model” in one species with melanin based testosterone dependent 

ornaments and in one species with carotenoid based testosterone independent 

ornaments to examine the generality of these assumptions and the validity of these 

theories for explaining signal honesty. My results of this experiment have critical 
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implications to our understanding of how signal honesty can be maintained via 

developmental mechanisms.   
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Chapter One 
_____________________________________________________________________ 

Bill color, not badge size indicates testosterone-related 

information in house sparrows 

Silke Laucht, Bart Kempenaers, James Dale 

Abstract 

The honesty of ornamental signals of quality is often argued to be enforced via costs associated 

with testosterone.  It is still poorly understood, however, how seasonal variation of testosterone 

within individuals is related to the timing and extent of ornament development.  Here we studied 

inter- and intra-individual variability of plasma testosterone levels in a population of 150 captive 

male House Sparrows (Passer domesticus) through the course of a full year.  We further analyzed 

the relationship between plasma testosterone levels and two sexually dimorphic ornaments:  badge 

size and bill coloration.  Also, because of a known negative relation between molt and circulating 

testosterone levels, we analyzed the relationship between ornamentation and molt status during the 

fall.  We found that testosterone levels increased towards the breeding season and decreased 

before the onset of annual molt.  However, within individuals, relative testosterone titers 

demonstrated low repeatability between seasons.  Plasma testosterone levels were not correlated 

with badge size in any season, but were correlated strongly with bill coloration during all periods, 

except the breeding season when variation in bill color was low.  Finally, we found that bill 

coloration strongly correlated with molt status during fall.  Our results indicate that bill coloration, 

not badge size, is the best ornamental indicator of a “running average” of male testosterone in 

House Sparrows, and therefore the best potential indicator of qualities and/or behavioral strategies 

associated with testosterone. 
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Introduction 

Current interest in the relationship between the steroid hormone testosterone (T) and 

sexually selected ornamentation is high because testosterone is well known to be 

responsible for the elaboration of many sexually selected ornaments (reviewed in e.g. 

Candolin 2003; Roberts et al. 2004).  The honesty of ornamental traits which 

specifically signal quality is argued to be enforced through inescapable costs 

associated with signaling (Grafen 1990; Johnstone and Norris 1993; Veiga 1993; 

Buchanan et al. 2003; Peters et al. 2004).  Potential costs hypothesized to be 

associated with quality signals are testosterone-related suppression of the immune 

system (e.g. the Immunocompetence Handicap Hypothesis (ICHH) Folstad and Karter 

1992)) or testosterone-related depression of resistance to oxidative stress (e.g. the 

Oxidation Handicap Hypothesis (OHH) (Alonso-Alvarez et al. 2007)).  Another form 

of signaling cost (often suggested for melanin-based ornaments) is social enforcement 

via costs created by aggressive interactions with, or testing by, conspecifics (i.e., the 

badge of status hypothesis (Maynard Smith and Harper 1988; Jawor and Breitwisch 

2003; Tibbetts and Dale 2004)).  Testosterone-dependent ornaments can thus be 

expected to provide information to conspecifics about qualities associated with either 

physiological characteristics such as immunosuppression and/or oxidative stress or 

behavioral characteristics such as aggression (Folstad and Karter 1992; Johnstone and 

Norris 1993; Alonso-Alvarez et al. 2007; McGraw and Ardia 2007).   

Since testosterone dramatically affects both behavior and physiology (reviewed in 

Wingfield et al. 1990; Ketterson and Nolan 1992; Adkins-Regan 2005; Hau 2007) 

maintaining elevated testosterone levels all year round can be costly (e.g. through 

increased risk of aggression-related injury or through increased metabolic costs (see 

Wingfield et al. 2001)).  Temperate zone bird species, for example, show dramatic 

fluctuations in plasma testosterone levels over the course of the year.  They rise 

towards the breeding season to levels needed for the physiological changes and 

behaviors associated with breeding and drop to baseline levels with the onset of 

prebasic (or post-nuptial) molt in early fall when birds are more vulnerable and less 

aggressive (Humphrey and Parkes 1959; Wingfield et al. 1990; Hahn et al. 1992).  

Even during periods of elevated testosterone, T-levels are generally kept at a certain 

breeding baseline and are then modulated on a short term basis as a result of social 
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interactions (e.g. aggression associated with reproductive behavior (Wingfield 1984; 

Wingfield 1985; Wingfield et al. 1990)).  Overall, it is generally argued that 

testosterone levels are kept at an optimum that is well balanced with the various 

behavioral and physiological costs of maintaining them (Folstad and Karter 1992; 

Wingfield et al. 2001; Adkins-Regan 2005; Hau 2007).   

To date, researchers have resolved many examples of an endocrine basis to variation 

in color-based ornaments occurring in birds (reviewed in Hill and McGraw 2006), 

monkeys (e.g. Setchell et al. 2008; Clough et al. 2009; Lewis 2009), fish (e.g. Dijkstra 

et al. 2007; Kurtz et al. 2007) and lizards (e.g. Thompson and Moore 1991; Salvador 

et al. 1996; Calisi and Hews 2007; Huyghe et al. 2009), and comprised of all of the 

three major mechanisms of coloration: structural (e.g. Peters et al. 2006), carotenoid-

based (e.g. Hill 2002) and melanin-based (reviewed in Jawor and Breitwisch 2003; 

Bókony et al. 2008), in ornaments consisting of feathers (e.g. Evans et al. 2000; 

Safran and McGraw 2004), integuments (e.g. Verhulst et al. 1999; Mougeot et al. 

2004; Blas et al. 2006) or bill (e.g. Keck 1933; Mundinger 1972; Murphy et al. 2009).  

Among these studies the House Sparrow (Passer domesticus) has become one of the 

model organisms for the study of testosterone and melanin-based ornaments.   

Male House Sparrows have at least two noteworthy sexually dimorphic ornaments:  

the black breast bib or the “badge”, and the black bill.  Many studies have 

demonstrated that the size of the badge relates to social status, age, and variation in 

sexual behavior (Møller 1987; Møller 1990; Veiga 1993; Liker and Barta 2001; 

Vaclav and Hoi 2002; McGraw et al. 2003; Nakagawa et al. 2007; Morrison et al. 

2008) and is subject to natural and sexual selection (Jensen et al. 2008).  Furthermore, 

three studies found that badge size correlated positively with plasma testosterone 

levels around annual (prebasic) molt (Evans et al. 2000; Buchanan et al. 2001; 

Gonzalez et al. 2001) when the new badge is formed.  In contrast, the signaling 

function of the bill is still a mystery.  Male bill color changes between seasons from a 

pale horn color in the non-breeding season to a blackish dark color in the breeding 

season (Witschi and Woods 1936), and the color change is due to pigmentation with 

eumelanins and is known to be mediated by male hormones (testosterone) (Keck 1933; 

Witschi 1936; Pfeiffer et al. 1944; Haase 1975; Donham et al. 1982).  Although 
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Václav (2006) suggested the possibility of an effect of condition on bill color, so far 

there have been no tests of this.   

Even though there appear to be clear relationships between testosterone levels and 

these two ornaments in House Sparrows, the relationship between within-individual 

variation in testosterone levels and the timing and extent of ornament development is 

still very poorly understood.  For example, feather ornaments molted during times of 

lowest testosterone levels (such as the badge in the House Sparrow) can only remain 

honest indicators of testosterone levels during the breeding season if testosterone 

levels during different periods of the year are correlated.  This, however, is 

surprisingly poorly studied (Kempenaers et al. 2008).  To the best of our knowledge 

only one study has examined the relationship between breeding and post-breeding 

testosterone levels in House Sparrows (Buchanan et al. 2003).  To address this gap, 

here we studied plasma testosterone levels, badge size, and bill color in a large captive 

population of male House Sparrows over the course of one year.  The objectives of 

the study were to test the following four non-exclusive predictions.   

1) Within individuals, plasma testosterone levels should be correlated between 

seasons.  This was found by the only study comparing two different seasons 

(Buchanan et al. 2003) despite it being a fundamental assumption of theories 

trying to explain the testosterone-related honesty of signals that are developed 

at different times than when they are actually used (e.g. the ICHH (Folstad and 

Karter 1992; Alonso-Alvarez et al. 2007) and the OHH (Alonso-Alvarez et al. 

2007)).   

2) Badge size should be positively correlated with testosterone levels.  As 

previously stated, badge size signals social status and sexual behavior (e.g. 

communal displays), both testosterone-related traits.  Additionally, such a 

relation was previously found in correlational approaches and after artificial 

increases of testosterone levels during molt (Evans et al. 2000; Buchanan et al. 

2001).   

3) Bill color should be positively correlated with testosterone levels.  As 

described above, seasonal changes in bill color are mediated by changes in 
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testosterone levels, and therefore we predicted that the extent of coloration in 

this dynamic ornament should be related to current testosterone levels.   

4) Bill color should be correlated with molt status.  In other species, molt status is 

strongly negatively correlated with plasma testosterone levels (Schleussner 

1990; Hahn et al. 1992; Nolan et al. 1992).  Therefore, because we expected a 

positive relation between bill color and testosterone levels, we also predicted a 

relation between bill color and molt status.   

Although our study is correlational and we do not test the signaling role of the bill 

directly, we nevertheless assume here that bill coloration is an evolved signal (i.e. that 

it can influence decision-making in receivers), because it is a conspicuous, sexually 

dimorphic trait which has some apparent design in terms of the complex physiological 

processes responsible for its dynamic expression.   

Material and Methods 

Study population 

We studied a population of 150 captive male House Sparrows held at the Max-

Planck-Institute for Ornithology, Seewiesen, Germany.  All males were after-hatching 

year birds.  They were either caught in rural areas in Bavaria, Germany (under license:  

permit nr. 55.1-8642.3-3-2006 of the “Regierung Oberbayern”, with several 

extensions) and held in captivity for at least eight months (n = 136) or born in 

captivity (n = 14; exclusion did not qualitatively change the results).  From July 2006 

until July 2007, individuals were kept in all-male groups of five or six in aviaries of 

size 1.2 x 2.0 x 4.0 m.  After July 2007, we kept them in the same aviaries in groups 

of nine or ten (note that we did not measure testosterone in the males after we 

changed the group size).  At all times, the birds had ad libitum access to food (wild 

seed mix for forest birds (Waldvogelfutter: RKW Sued, Universal Kraftfutterwerk, 

Kehl, Germany), sunflower seeds, crushed corn and wheat, oats, chicken starter, 

soybean meal extract, and mineral mix for birds), drinking and bathing water, and 

sand.  The light-dark cycle and temperatures in the aviaries were close to natural 

conditions, as the aviaries were semi-outdoor with one side enclosed only by chicken 
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wire.  Although our study is on a captive population of House Sparrows, we have 

confidence that our results reflect patterns present under wild populations because our 

sparrows were mostly wild-caught individuals that were housed in large semi-outdoor 

aviaries that were grouped together in a barn-like building that was very similar to the 

actual barns where we caught the sparrows.  Moreover our House Sparrows readily 

bred under these conditions, indicating conditions were highly favorable for natural 

behavior.  Finally our study replicates research by other groups working on captive 

sparrows, and so our results are highly comparable to theirs.  

During five periods throughout the course of the year (Oct./Nov. 2006, Jan. 2007, 

March 2007, June 2007, and Sept./Oct. 2007) we caught all individuals and took 

biometric measurements, standardized photographs of the bill and badge, and blood 

samples (except in Sept./Oct. 2007, when no blood samples were taken).  In fall 2007, 

we additionally scored molt status.  During each blood sampling period, conducted 

between 07:00 and 10:00h and between 13:00 and 15:00h, we took 150-200 μl of 

blood from the wing vein within fifteen minutes after first starting to catch the birds.  

The time passed since first starting to catch birds did not have an influence on T levels 

(lme:  t = 1.13, p = 0.26, n = 551 with season, day time, and bird ID as random 

effects).  We collected the blood in 75 mm Na-heparinized micro haematocrit 

capillaries and centrifuged it at 13000 rpm for three minutes to separate the plasma.  

Plasma was stored at -80°C.   

Determination of plasma T levels 

Frozen plasma samples were sent to the endocrine laboratory of the Leibniz Institute 

for Zoo and Wildlife Research in Berlin, Germany, where testosterone (T) levels were 

determined by enzyme immunoassays (for details on the methods see Roelants et al. 

2002).  The inter-assay CV for the enzyme immunoassay was 12.3% and the intra-

assay CV was 9.0%.  Additionally, to calculate the true repeatability (intra-class 

correlation coefficient) of measuring serum T-levels, we split plasma samples of 

several males into duplicates right after centrifuging.  Across the whole year, 

repeatability of these plasma T estimates was R = 0.967 + 0.006 (SE) (p < 0.001, n = 

2*122).  Note that this estimate includes additional non-assay sources of variation 

because of the immediate separation after centrifugation.  It thus gives a conservative 
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estimate of measurement error in plasma T-levels.  We assumed that all data points 

with a value of zero (29 out of 579) were actually below the detection limit (for each 

assay slightly different, but around 20 pg/ml) and thus assigned them the lowest value 

measured (15 pg/ml).  Excluding those individuals entirely from the analysis did not 

qualitatively change the results.  T levels are reported in pg per ml.  Testosterone 

concentrations were natural log transformed to achieve a normal distribution, in order 

to fit standard least-squares models.   

Determination of bill color 

Immediately after blood samples were taken, we took two standardized photographs 

of each bird’s bill.  We used a Canon Power Shot S2 IS camera and took pictures at 

the highest resolution with flash.  All males were held the same way (presenting the 

right side of the head and bill to the camera) in front of a gray card and color standard 

background at the same distance from the camera.   

Digital photograph processing software written into R 2.4.0 (R Development Core 

Team 2006) was used to collect values of bill “brightness” as measured in the 

standard HSB (i.e. hue, saturation, and brightness) color space.  Note that in this 

color-scoring scheme, “brightness” is an indicator of how dark or light a color is and 

correlates closely with mean total reflectance (Montgomerie 2006, also see Fig. 1).  

SL measured brightness of the individual pixels located at five randomly chosen 

positions each on the upper bill, lower bill and the gray background around the bill 

(used as a brightness standard).  To standardize our bill brightness measurements 

between photos, we calculated overall mean gray card brightness of all photos of each 

season, we then determined the deviation of gray card brightness of a focal photo 

from the overall mean, and subtracted this deviation from mean bill brightness for 

each picture.  This standardization renders a bill brightness score for each male that 

both compensates for any minor differences in overall brightness between photos and 

that also keeps our brightness variable as an actual color measurement (rather than a 

difference).  For analyses, we used the mean of the standardized upper and lower bill 

brightnesses from both pictures.  As expected for a trait with considerable phenotypic 

variation, these measurements were highly repeatable within individuals (repeatability 

(Lessells and Boag 1987): R = 0.949 + 0.004 (SE), p < 0.001, n = 2*581 for two 
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pictures).  For repeatability measures between two consecutive years, we took 

additional photographs of the bills in January 2008. 

To illustrate the correspondence between bill brightness (measured with digital 

photographs) and total reflectance, we measured the bills of two differently colored 

males with a hand-held spectrometer (Avantes, AvaSpec-2048, Eerbek, The 

Netherlands) with a deuteriume-halogen light source (Avantes, Ava-Light-D(H)-S).  

We measured five points each on the bill.  In Fig. 1 we present averages over each 

20nm spectral range averaging also the five measurements, and clearly demonstrate 

that total reflectance is dramatically different in bills with different brightness values.   

 

Fig. 1  Full spectrogram of two differently colored male House Sparrow bills.  Our measures of 
bill brightness as measured from digital photographs corresponds closely with total reflectance as 
measured with spectrophotometry.  Open circles represent a medium dark bill color, closed circles 
a pale bill color. 

Determination of badge size 

We took four pictures of the birds’ breast badges during each season.  For each 

picture, we held the birds ventrally such that the throat and badge was stretched and 

presented to the camera.  Between each photograph of the badge, the bird was 

arranged into a different position, before rearranging it into the badge-exposed 
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position.  SL measured the size of the badge from the photographs by encircling and 

measuring the area of the melanized badge in pixels using the program ImageJ 1.36b 

(Abramoff et al 2004).  For standardization, we divided this area by a standard area 

present in each photograph and measured in the same way, and then converted the 

result into cm2.  For analyses, we used the average of all four pictures for each bird.  

In males with white tips to their badge feathers (Møller and Erritzøe 1992), badge size 

was estimated by outlining as best as possible the area occupied by any apparent 

melanized feathers underlying the white tips.  The measurements were highly 

repeatable within individuals (R = 0.943, estimated according to Falconer and 

Mackay (1996) from repeatability of single pictures).  

Determination of molt stage  

From September 4th to 14th, we scored molt of 145 males.  On October 9th and 

October 18th, we re-scored 30 males each.  We determined molt status according to 

Ginn and Melville (2000, p 28 Fig. 7b) for primaries.  When wing feathers were 

asynchronously molted on the right wing, we used the scores of the left wing.  We 

scored old feathers as 0, fully grown new feathers as 5, and growing feathers as 1 to 4 

according to their length.  For analyses, we added up all scores of the single primaries 

of one bird (hereafter BTO (= British Trust for Ornithology) score).  Additionally, we 

used a binary score, where a feather was simply determined as old (= 0) or molting 

and/or new (= 1).  We then added up these scores (hereafter binary score).  As the 

BTO score and the binary score produced very similar results, we only present the 

results of the BTO score in the results section.  

Statistical analyses  

We performed all statistical analyses using R 2.6.2 (R Development Core Team 2008; 

packages: ape, effects, nlme, RODBC, survival) at the significance level α = 0.05.  

For overall analyses, we used linear mixed effect models (lmes) using individual ID 

as a random factor to account for repeated sampling.  When using data from single 

seasons where each individual was represented only once, we used linear models 

(lms).  Before analysis we checked for normal distribution, after analysis we assessed 

whether the assumption of lms and of lmes on the within-group errors and on the 
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random effects were violated.  In the analyses reported here we did not remove any 

outliers (max. 4 per model) because we had large samples sizes and no a priori 

expectations of what constitutes normal ranges for our biological variables.  In 

addition, all analyses yielded qualitatively similar results with or without outliers 

included.  

For analyses of relationships between bill color and testosterone levels, we used the 

data of the four periods when plasma samples were taken.  In addition, in the analysis 

of the relationship between badge size and testosterone or condition, we used the 

average of the March and June scores as a male’s badge phenotype because at these 

times the white feather edges have mostly abraded off (Møller and Erritzøe 1992).  

For analyses of molt status, we used the data of fall 2007.  For analyses with body 

condition we fitted three separate models, the first used the residuals of body mass 

regressed onto tarsus length, the second used body mass alone, and the third one used 

tarsus length alone.  We calculated date as days passed since the beginning of 

measurements (Sept 25th 06 for analyses of testosterone, badge size, and bill color; 

Sept 4th 07 for analyses of molt and bill color).  Therefore, date starts in fall (during 

molt) and ends in June (peak breeding season), and we expect close to linear 

relationships between date and T levels or bill color.  We additionally accounted for 

day time in all models including T or used residuals of T in relation to date and day 

time (see indication in results).  Note that differences in sample sizes are due to 

missing data points for single individuals because of sample loss during centrifugation 

or natural death of few individuals. 
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Results  

 

Fig. 2  Plasma testosterone levels (a, natural logarithm), bill color (b, brightness, actual bill color 
at sampling time presented), badge size (c, for each season the mean of March and June badge is 
plotted), and molt status (d, BTO score) of House Sparrows in the course of a year.  We changed 
transparency of points and lines to improve visibility of overlapping points and lines.   
The gray lines in a) and b) connect measurements of the same individuals at different seasons.  
Parallel lines would be expected if individuals’ relative phenotypes are consistent between seasons.   

Dynamics in plasma testosterone levels 

Plasma T levels changed dramatically throughout the course of the year (Fig. 2a).  We 

found a significant positive relationship between T and date (lme:  p < 0.0001, t424 = 

24.67, random effect: bird ID; after accounting for day time:  p < 0.0001, t414 = 23.58).  
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However, within individuals, T levels were only weakly correlated between seasons 

(see lines in Fig. 2a connecting measurements of the same individuals):  T levels were 

significantly correlated only between Sept/Oct and January and between January and 

March (Table1).   

Table 1:  Correlations of plasma testosterone levels of House Sparrows between seasons within 
individuals.   
We used Pearson correlation tests of the residuals of ln testosterone in relation to date and day 
time for each of the two seasons compared.   
 
periods compared r 95% ci statistic p-value 
fall - January 0.24 0.08, 0.39 t137 = 2.88 0.005 
fall - March 0.07 -0.10, 0.23 t136 = 0.78 0.440 
fall - June 0.02 -0.15, 0.19 t134 = 0.26 0.799 
January - March 0.19 0.03, 0.35 t136 = 2.29 0.023 
January - June -0.05 -0.21, 0.12 t134 = -0.54 0.589 
March - June 0.10 -0.07, 0.27 t133 = 1.20 0.232 

We found no significant relationship between T and body condition when accounting 

for date:  Neither tarsus length nor the residuals of body mass on tarsus length were 

related to T (lmes for overall analyses, lms for single seasons; all p > 0.07; body mass 

and tarsus length were positively correlated:  p < 0.001 overall and for all seasons 

separately when accounting for date).  However, when January data were analyzed 

separately, T was positively related to body mass after accounting for date (t136 = 2.63, 

p = 0.009, variance explained by the model R2 = 0.21; other seasons and overall:  p > 

0.06).  These results were very similar when using residuals of T in relation to date 

and day time instead of T except for the relation between T and body mass over all 

seasons (t412 = 2.78, p =  0.006).   

Badge size 

Badge size was not related to plasma testosterone levels in any of the four periods (r < 

0.09, t < 1.10, p > 0.27; Fig. 2 & 3), even after accounting for tarsus length (variance 

explained by the model R2 < 0.06, t < 0.64, p > 0.53).  This did not change when 

using residuals of T in relation to date and day time.  However, badge size was 

positively related to tarsus length (r = 0.24, t133 = 2.90, p = 0.004) and to body mass in 

March (r = 0.17, t133 = 2.03, p = 0.04) and June (r = 0.18, t133 = 2.15, p = 0.03), but 

not in fall and January (t < 1.67, p > 0.09).  The residuals of body mass on tarsus 

length were not related to our badge scores for any season (t < 0.86, p > 0.39).  Thus, 
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although there were weak positive correlations between badge size and overall size, 

there was no significant relationship between badge size and testosterone levels. 

 

Fig. 3  Badge size in relation to plasma testosterone levels in House Sparrows during the fall 
(Sept.-Oct.).   
We defined badge size as the mean of the March and June measurements and used the natural 
logarithm of plasma testosterone values.  p = 0.9, r = 0.01 

Dynamics in bill color and its relation to plasma T levels  

Similar to testosterone, bill color changed dramatically throughout the course of the 

year (Fig. 2b).  We found a highly significant relation between bill color and date 

(lme:  t423 = -42.31, p < 0.0001, random effect: bird ID).  From September until March, 

individuals varied substantially in bill color, ranging from pale horn-colored to almost 

black.  Nevertheless, the distribution of bill color shifted from a majority of 

individuals with pale horn-colored bills in September to a majority of individuals with 

dark bills in March.  During the breeding season between-individual variation in bill 

coloration was very low, i.e. all birds had dark bills (Bartlett Test of homogeneity of 

variances comparing breeding season with the other three seasons: Bartlett's K2
1= 

239.85, p < 0.001).  Within individuals, bill color was correlated between all seasons 

except the breeding season (Table 2).  Bill color was also significantly repeatable 

between January measurements of two consecutive years (r = 0.518 + 0.065 (SE), p < 

0.001, n = 2*127).  Bill color was not related to body condition when accounting for 
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date:  Neither body mass, nor tarsus length, nor the residuals of body mass on tarsus 

length were correlated with bill color (lmes for overall analyses, lms for single 

seasons; all p > 0.18).   

Table 2:  Correlations of bill color of House Sparrows between seasons within individuals.   
We used Pearson correlation tests of residuals of bill color (brightness) in relation to date for each 
of the two seasons compared.   
 
periods compared r 95% ci statistic p-value 
fall - January 0.49 0.35, 0.61 t134 = 6.44 < 0.001 
fall - March 0.33 0.18, 0.47 t137 = 4.14 < 0.001 
fall - June 0.05 -0.12, 0.22 t134 = 0.63 0.532 
January - March 0.60 0.48, 0.69 t134 = 8.59 < 0.001 
January - June 0.02 -0.15, 0.19 t131 = 0.21 0.838 
March - June -0.02 -0.18, 0.15 t134 = -0.18 0.856 

 

We found a significant overall relationship between bill color and plasma T levels 

(lme:  t421 = -24.23, p < 0.001, random effect: bird ID; Fig. 2a & b).  Bill color and T 

were also correlated in all periods separately, except June when variation in bill color 

was very low (Table 3, Fig. 4).  To exclude all date effects, we further used residuals 

of linear mixed effect models of bill color in relation to date and of T levels in relation 

to date:  in this analysis bill color and T were still highly correlated for all seasons 

combined (t574 =  -6.94, p < 0.0001).   

 

Table 3:  Correlations of bill color and plasma testosterone levels in House Sparrows during 
different seasons.   
We used Pearson correlation tests of bill color (brightness) in relation to residuals of linear models 
of the natural logarithm of testosterone levels in relation to day time.   
 
period r 95% ci statistic p-value 
fall -0.25 -0.40, -0.09 t137 = -3.06 0.003 
January -0.24 -0.39, -0.08 t134 = -2.88 0.005 
March -0.25 -0.40, -0.09 t136 = -3.02 0.003 
June -0.09 -0.25, 0.07 t148 = -1.13 0.262 
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Fig. 4 Bill color in relation to plasma testosterone levels in House Sparrows (a:  fall, b:  January, 
and c:  March data).   
We measured bill color as brightness and used the natural logarithm of plasma testosterone values.  
(a:  p = 0.003, r = -0.25, b:  p = 0.005, r = -0.24, c:  p = 0.003, r = -0.25).   

Bill color and molt status 

BTO molt score was highly significantly related to date (lme:  t57 = 39.23, p < 0.001, 

random effect: bird ID).  After accounting for date, the score was not related to body 

mass, tarsus length, or the residuals of mass on tarsus length (lmes for overall 

analyses, lms for September and October separately; all p > 0.07).   

Bill color was independent of molt status in October and for September and October 

combined (lme for overall analysis, lm for October separately; all p > 0.14).  However, 

when including date in the overall model and when looking at the September data 
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alone, we found a highly significant negative relationship between bill color and BTO 

molt score (lme for overall analysis after accounting for date:  t56 = 3.03, p = 0.004, 

random effect: bird ID; lm for September:  r = 0.31, t142 = 3.84, p < 0.001, Fig. 5).  

This means that birds got paler bills during the course of molt, but only as long as 

they were molting (hence no relation in October).   

 

Fig. 5  Bill color in relation to molt status in House Sparrows (September data).   
We measured bill color as brightness and molt status according to Ginn and Melville (2000, p 28 
Fig. 7b).  p < 0.001, r = 0.31.   
 

Discussion  

As expected and in accordance with many other studies (reviewed in Anderson 2006), 

plasma testosterone levels of captive male House Sparrows changed dramatically in 

the course of the year.  We found the lowest values during the prebasic molt and the 

highest values during the breeding season, whereby there was only a slight increase 

between values in March, the beginning of breeding season, and June, the peak 

breeding season.  The breeding season is the time with the most aggressive 

interactions between males establishing and defending territories, nest sites, and mates 

(e.g. Wingfield et al. 1990; Hau 2007).  In contrast, molt is the time when aggression 

is lowest as molting birds are more vulnerable and their flight abilities are reduced 

(Swaddle and Witter 1997; Anderson et al. 2004).  As House Sparrows show flocking 

behavior all year round, and tend to establish dominance ranks, inter-individual 
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aggression occurs most of the year (Anderson 2006) as reflected in increases of 

plasma testosterone levels after the termination of molt, but long before breeding 

commences.   

In contrast to our first prediction, within-individual testosterone levels were only very 

weakly correlated between periods.  Thus males with relatively high (or low) levels in 

one period did not have relatively high (or low) levels in another period.  This result 

suggests that caution is required when interpreting point-sample testosterone 

measurements.  Our result contrasts strongly with Buchanan et al (2003) who did find 

some consistency in individual testosterone levels between breeding and post-

breeding season, albeit with a much lower sample size (n = 19) and medium effect (R2 

= 19.3, p = 0.027).   

We did not find any relationship between badge size and testosterone levels in our 

population of House Sparrows during any of the studied periods, thus failing to 

support our second prediction.  This is surprising as the result strongly contrasts with 

previous studies (Evans et al. 2000; Buchanan et al. 2001; Gonzalez et al. 2001).  

However, our analysis is based on a much larger sample size, and four separate 

measurements of T per individual.  Since we did find very strong correlations between 

testosterone levels and another ornament (bill color, see below), it seems unlikely that 

the lack of a correlation with badge size was a type II error.  In our study population, 

badge size therefore does not seem to predict testosterone-related dominance and 

aggression (Ketterson and Nolan 1992).  We therefore suggest that if badge size does 

reflect dominance in House Sparrows, then it is more likely that it indicates 

dominance related to both body size (this study, Buchanan et al. 2001) and age (see 

Nakagawa et al. 2007; Morrison et al. 2008) rather than dominance related to 

testosterone per se.  For a better understanding of the potential signaling function of 

badge size in our population the determination of dominance ranks and of the degree 

of inter-individual aggression would be necessary.  Note that testosterone could still 

be an important factor for the badge ornament despite the above results:  For example, 

badge size could be related to true baseline testosterone levels or to true maximum 

levels (released during agonistic interactions), but these are hard to measure.  

Alternatively, testosterone could be negatively related to the length of the white tips 

of the badge feathers which may hide color signals during times when the signaling 
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function is less needed as suggested by Gonzalez et al. (2001).  At any rate, the 

relationship between badge size and circulating testosterone in our population of 

House Sparrows is, at best, weak.   

The lack of support for our first two predictions has important implications for the 

discussion of signal honesty in general (see also Kempenaers et al. 2008).  The 

Immunocompetence Handicap Hypothesis (ICHH, Folstad and Karter 1992) and the 

Oxidation Handicap Hypothesis (OHH, Alonso-Alvarez et al. 2007) explain the 

honesty of signals of quality via the testosterone dependent immunosuppression and 

depressed resistance to oxidative stress, respectively (e.g. Evans et al. 2000; Gonzalez 

et al. 2001).  However, both hypotheses assume that testosterone levels are correlated 

between seasons, so that a signal is not only honest at the time it is produced (i.e. molt 

for the badge), but also when it is used (i.e. all year round for the badge).  Our 

observed inconsistency of testosterone levels between different seasons violates this 

basic assumption.  Moreover, our results suggest only a weak (at best) correlation of 

testosterone levels with badge size, and therefore a relationship to physiological 

effects of testosterone such as immunosuppression is an unlikely explanation for the 

badge signal’s honesty.  Overall, we conclude that the honesty of the badge cannot be 

ensured via testosterone related physiological effects but rather via different costs, 

such as social costs.   

In clear contrast to badge size, we found that bill color was strongly correlated with 

testosterone levels in three of the four studied periods (no correlation in June, when 

variation in bill color was reduced).  Furthermore, these relationships were 

independent of condition and repeatable in similar environmental conditions in 

consecutive years.  These findings are in accordance with our third prediction and 

with other studies that have found that the degree of blackening in the bill coincided 

with an increase in testosterone levels (Keck 1933; Keck 1934; Witschi 1936; Pfeiffer 

et al. 1944; Haase 1975; Donham et al. 1982).  This suggests that at any time outside 

the breeding season, bill color is a very good predictor of relative testosterone levels.  

A complete change of bill color takes about three and a half weeks in male House 

Sparrows (Anderson 2006).  Therefore, bill color probably reflects average baseline 

testosterone levels (i.e. a running average) over a short period of time (a few weeks at 

most).  Our results strongly suggest that any ornamental signaling function in male 
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House Sparrows that is directly related to testosterone-dependent information will be 

much more likely found with bill coloration rather than with the badge.  More 

specifically we suggest that bill color might serve as a signal of “strategy” (see Dale 

2006), rather than as a signal of quality per se.  Although signals of strategy are 

distinct from signals of overall quality (see Dale 2006), strategy signals can still 

indirectly reveal relative quality provided only good quality males pursue more costly 

strategies (as might be associated with increased aggression associated with higher T 

levels, or higher T levels maintained over a longer period of time).   

We thus hypothesize that between molt and breeding, some males in the population 

keep their testosterone levels relatively high, indicate this with darker bills, and are 

more dominant because of testosterone related aggressiveness, while other males 

maintain low testosterone levels, indicate this with paler bills, and are thus rather 

subdominant while avoiding costs of high testosterone levels.  The former is similar to 

what some studies have described as ‘autumn sexuality’ which may be related to 

higher breeding success (reviewed in Hegner and Wingfield 1986) and to any inherent 

qualities associated with different durations of elevated testosterone levels (see e.g. 

Kempenaers et al. 2008).  Such a potential signal for behavioral strategies could be 

used either in the context of mediating competitive interactions in feeding flocks (with 

potentially variable flock sizes and group members; as suggested for melanin based 

ornaments in new and old world sparrows (Tibbetts and Safran 2009)), and/or 

alternatively in the context of establishing early breeding territories/sites and 

acquiring a mate early (as suggested for Red Grouse (Mougeot et al. 2005)).  Indeed, 

McGraw (2004) noted that the melanin based black cap of male American 

Goldfinches Carduelis tristis was particularly more variable in the non-breeding 

season and suggested that such “remnant” winter ornaments might be expected to 

evolve in animals that live in large non-breeding groups (e.g. status-signaling systems) 

or in those where mates begin associating before breeding onset.  In both scenarios, a 

signal announcing the degree of aggressiveness a male is willing to engage in could 

help to resolve encounters without true fights as is often suggested for badge size 

(Møller 1987).  Because bill color is a much more dynamic ornament and because 

badge size does not signal testosterone levels in our population we suggest that bill 

color signals testosterone related aggressiveness in the non-breeding season in House 

Sparrows.  That is, we suggest that in House Sparrows bill color is the more likely 
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“badge-of-status” than is the badge.  This is in accordance with another study that 

suggested bill darkening in fall to be a response to social competition (Hegner and 

Wingfield 1986).   

We found a negative relation between bill color and molt in September - the peak 

period of molt.  This reflects the general relationship between molt and decreased 

testosterone (Schleussner 1990; Nolan et al. 1992) when the majority of males had 

pale bills.  The hypothesis that male bill color is a signal of strategy predicts that all 

molting males signal low aggression perhaps because they are more vulnerable at this 

time.  Molt can therefore be considered the mirror image to breeding as in both 

seasons all males are pursuing the same strategy at the same time.  Nevertheless, bill 

color variation during molt is larger than during breeding.  This may reflect (1) that 

the timing and speed of molt are more flexible in response to external and internal 

factors (Hahn et al. 1992), and (2) that individuals do not need to synchronize to 

successfully complete molt (in contrast to breeding).   

In summary, we found that individual plasma testosterone levels were highly variable 

and not repeatable.  We furthermore found that badge size and bill color in male 

House Sparrows likely signal different kinds of information.  Bill color is a strongly 

T-related trait, whereas badge size is not.  We hypothesize that bill color indicates 

different aggression related strategies during the non-breeding season.  More detailed 

studies on the function of bill color in the context of social interactions are needed for 

a better understanding of this testosterone related trait in male House Sparrows.   
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Individual variation in plasma testosterone levels and its relation 

to badge size in House Sparrows Passer domesticus:  It’s a 

night-and-day difference 

Silke Laucht, James Dale, Ariane Mutzel, Bart Kempenaers 

Abstract 

The steroid hormone testosterone (T) plays a central role in the regulation of reproduction in 

animals.  Although seasonal variation in T levels is well-studied, differences between day and 

night have only been described in relatively few species, and daily within-individual variation has 

been largely neglected when evaluating the relationship between T and the expression of sexual 

ornaments or behaviour.  We measured plasma T levels during day and night in a captive 

population of House Sparrows, and analyzed their relationship with an important male ornament - 

badge size.  T levels were on average twice as high at night than during daytime.  This was true in 

all seasons, and in both males and females.  Disturbance of the birds at night, but not during the 

day, led to significantly lower T levels, suggesting a rapid drop after an individual wakes up.  The 

relationship between T levels and badge size depended on the time when T was measured.  During 

the breeding season, badge size was strongly positively correlated with night-time, but not with 

daytime T levels.  This suggests that badge size signals information related to an individual’s 

maximum potential T level such as social dominance.  Our study highlights that integrative 

research on the endocrine control of ornament expression needs to take diel variation in hormone 

levels into account. 
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Introduction 

The steroid hormone testosterone (T) is well known to influence physiological, 

morphological and behavioural characteristics of animals (Adkins-Regan 2005), and 

individual variation in plasma T levels may reflect variation in these characteristics.  

Sources of individual variation in T include genetic, maternal, age, time-of-day, and 

social environment effects (Kempenaers et al. 2008).  Variation in plasma T levels 

occurs seasonally (Wingfield et al. 1990), within seasons over different phases of 

reproduction (Wingfield et al. 1990), and over the 24h period (e.g. Aschoff 1979; 

Plant 1981), which may partly be due to pulsatile T secretion (Vizcarra et al. 2004).  

In contrast to seasonal variation, patterns of diel variation in T levels have been 

studied in comparatively fewer species (all known studies are summarized in Table 1).   

In human males T levels show considerable diel variation with a maximum occurring 

in the early morning (Evans et al. 1971; Barberia et al. 1973; Walton et al. 2007).  

Similarly, in both diurnal mammals and birds, male testosterone levels were generally 

higher at night than during daytime (Table 1).  The only study on female birds showed 

similar patterns (Hau et al. 2002), suggesting a general increase in night testosterone 

levels.  Earlier studies on human males also suggested a relationship between 

increased T levels and sleep (Evans et al. 1971; Weitzman 1976; Aschoff 1979), and 

more recent studies describe a correlation of diel variation in T levels with REM sleep 

(Luboshitzky et al. 1999; Luboshitzky et al. 2001; Luboshitzky et al. 2003).  The 

association of high T levels and sleep (rather than night-time per se) is strongly 

supported by patterns observed in nocturnal species, where T levels show the opposite 

pattern and peak during the day (Wilson et al. 1976; Hoffmann and Nieschlag 1977; 

Dixson and Gardner 1981; Perret 1985; Guchhait and Haldar 1999).  The functional 

significance of the diel variation in T levels, if any, remains unknown.   

In behavioural or evolutionary ecology, among the most studied roles of T is its 

influence on ornament elaboration (reviewed in e.g. Candolin 2003; Roberts et al. 

2004; Kempenaers et al. 2008), and on behaviours related to male-male competition 

or female choice, such as aggression, mate guarding, song output and courtship (e.g. 

Hegner and Wingfield 1986; Wingfield et al. 1990; Adkins-Regan 2005).  In most 

studies, T levels are measured in a single blood plasma sample taken from individuals 
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that were caught during the day.  However, plasma T levels can show both 

pronounced daily rhythms (see above) and even shorter-term episodic pulses within 

the day (Vizcarra et al. 2004).  Such short-term within-individual variation has not 

been taken into account when evaluating the relationship between individual T levels 

and ornament elaboration or behaviours.  It also remains unclear whether the diel 

variation in T levels is more or less pronounced during the period when the influence 

of T on reproductive behaviour and ornament expression is most important.  We are 

unaware of any studies that have specifically addressed these issues.  

To examine circadian variation of plasma T levels, we studied a population of captive 

birds (House Sparrows, Passer domesticus).  This allowed multiple sampling of the 

same individuals during day and night in different seasons.  Our study had three 

general objectives:  (1) to describe individual differences in night and day T levels in 

males and females during four periods covering an entire year;  (2) to examine the 

effect of disturbance during day and night by sampling immediately after disturbance 

or 30-60 min later;  (3) to investigate the relationship between day and night T levels 

and a male sexual ornament (badge size).  Note that our study specifically focuses on 

broad-scale diel changes in T (i.e. night versus day values).  Since we cannot sample 

T levels continually throughout the course of a day our study does not provide enough 

resolution to infer shorter-term T pulses (e.g. Vizcarra et al. 2004) although such 

episodic release of T may be an important additional source of individual variation. 

The House Sparrow (Passer domesticus) is one of the model organisms for studies on 

endocrine control of breeding behaviour and ornamentation expression (Hegner and 

Wingfield 1986; Anderson 2006).  House Sparrows have an obvious ornament, the 

black bib or badge, which is present in males but not in females.  Previous studies 

showed that badge size is related to social status, age, and variation in sexual 

behaviour (Møller 1987; Møller 1990; Veiga 1993; Liker and Barta 2001; McGraw et 

al. 2003; Nakagawa et al. 2007; Morrison et al. 2008).  The link between individual 

daytime plasma T levels and badge size has also been studied, but the results differ 

among studies.  Some studies found a positive correlation between plasma T levels 

measured around the time of the annual (pre-basic) moult and the size of the new 

badge (Evans et al. 2000; Buchanan et al. 2001; Gonzalez et al. 2001).  However, 

Laucht et al. (2010) found no correlation between badge size and daytime plasma T 
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levels during any season.  The difference between studies is difficult to explain, in 

particular because Evans et al. (2000) also demonstrated a causal effect of 

testosterone via implants.  However, information about diel variation in T levels and 

its influence on badge size is lacking.  This is important because differences in 

ornaments (here badge size) could reflect differences in individual variation of T 

levels (e.g. McGlothlin et al. 2008).  This individual variation could be most 

prominent either in average T levels or in the increase of T levels above average (due 

to time, seasonal or social effects) and thus also leading to differences in maximal T 

levels.   

Table 1:  Review of studies that investigated diurnal variation in testosterone levels. 

 
group species period of highest T study 
    
diurnal 
mammals 

Human Homo 
sapiens 

early morning1 Evans et al. (1971)  

  early morning Barberia et al. (1973) 
  early morning1 Aschoff (1979) and 

references therein  
  night Schulz et al. (1995)  
  night Luboshitzky et al. (2001, 

2003)  
  early morning Walton et al. (2007)  
 Bonnet Monkey 

Macaca radiata  
night Kholkute et al. (1993)  

 Rhesus Monkey 
Macaca mulatta  

night2 Plant (1981)  

   night Sehgal et al. (1986)  
 Ring-tailed Lemur 

Lemur catta 
night Van Horn et al. (1976)  

 Stallion  
Equus caballus 

early morning Sharma (1976)  

 Boar Sus scrofa afternoon and night Claus and Giménez (1977)  
 Dog Canis lupus several peaks in T, but no 

clear diurnal rhythm 
DePalatis et al. (1978)  

 NZ Rabbit 
Oryctolagus 
cuniculus 

peaks every 4 - 5 hours Moor and Younglai (1975)  

       
diurnal 
birds 

Domestic Fowl 
Gallus gallus 
domesticus 

night Schanbacher et al. (1974)  

 Ring Dove 
Streptopelia risoria  

night Balthazart et al. (1981)  

 Blue Tit Cyanistes 
caeruleus  

night3 Kempenaers et al. (2008)  

 Lapland Longspur 
Calcarius lapponicus 

for some males4: night Hau et al. (2002)  
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 European Stonechat 
Saxicola torquata 
rubicolor 

higher T metabolite 
concentration in faeces at 
night and in early morning 

Goymann and Trappschuh 
(2011) 

       
nocturnal 
mammals 

Owl Monkey Aotus 
trivirgatus  

day Dixson and Gardner (1981)  

 Thick-tailed Galago 
Galago 
crassicaudatus 

day Wilson et al. (1976)  

 Lesser Mouse Lemur 
Microcebus murinus 

day Perret (1985)  

 Djungarian Hamster 
Phodopus sungorus  

day Hoffmann and Nieschlag 
(1977)  

 Sprague-Dawley Rat 
Rattus norvegicus 

day Wilson et al. (1976)  

       
nocturnal 
birds 

Indian Spotted Owlet 
Athene brama  

day Guchhait and Haldar (1999) 

        
reptiles Tuatara Sphenodon 

punctatus 
no daily cycle Cree et al. (1990)  

        
insects Sand Field Cricket 

Gryllus firmus 
cycles in Juvenile Hormone5 
in flight-capable6 morph with 
peaks before dark 

Zera et al. (2007)  

 

1) suggested to be somewhat sleep dependent 

2)  drop with lights 

3) one study showed the opposite 

4) higher T levels at night in males kept in Alaska, but not in Seattle; no change in Alaska females, but a 

trend in May in Seattle females 

5) JH is the insect analogue to T (Nijhout 1994; Tibbetts and Huang 2010 and references therein)  

6) JH might regulate aspects of flight 

 

Material and Methods 

Study population 

A population of 150 male and 9 female House Sparrows was held at the Max Planck 

Institute for Ornithology, Seewiesen, Germany, in 1.2 x 2.0 x 4.0 m aviaries.  At all 

times, the birds had ad libitum access to food, drinking and bathing water, and sand 

for dust-bathing.  The light-dark cycle and temperature regime in the aviaries were 

close to natural conditions, as the aviaries were semi-outdoor with one side enclosed 

only by chicken wire.  All sparrows were after-hatch year at the time of the study, and 
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were either caught in rural areas in Bavaria, Germany (under license:  permit nr. 55.1-

8642.3-3-2006 of the “Regierung Oberbayern”, with several extensions) and held in 

captivity for at least eight months (136 males, 4 females) or raised in captivity (14 

males, 5 females).  Males raised in captivity did not have different T levels compared 

to birds that were caught in the wild and held in captivity (linear mixed effect model: 

z = 0.45, n = 710 observations, p = 0.65, random effects: bird ID (n = 150), season (n 

= 4), time of day (n = 66).  Males were kept in groups of five or six per aviary, and 

females were housed together in one aviary around the time of sampling.  Aviary ID 

only explained 4.6 % of variation in T levels and including it in models did not 

qualitatively change our results.  For simplicity, we do not further include it.  Further 

details about the study population can be found in Laucht et al. (2010).   

Individual sampling and measuring 

We caught all individuals during four periods over the course of an entire year:  26 

Sept - 3 Nov 2006 (“fall”), 15 Jan – 2 Feb 2007 (“winter”), 8 - 16 March 2007 

(“spring”), and 31 May - 22 June 2007 (“summer”).  During each season, all birds 

were blood sampled twice, once during the day and once during the night, with a 

range of 4 -21 days recovery time between bleeding events.  For the daytime sampling, 

we captured all males either in the morning or in the afternoon at approximately the 

same times and took biometric measurements, standardized photographs of the badge, 

and a blood sample.  For the nighttime samples, we caught a subsample of the males 

we sampled during the day (36 individuals in fall, 36 individuals in winter, 17 

individuals in spring, and 53 individuals in summer).  In fall, winter and spring all 

individuals were caught between midnight and 1:00.  In summer, we caught six 

groups of individuals between 22:00-04:30.  At night in fall, winter and spring each 

time we caught a different set of birds.  In summer, about half of the birds had been 

caught at night in the previous season.  Excluding these birds did not qualitatively 

change the results of the day-night comparison.  All nighttime sampling was 

performed at 45 min (for first summer samples) or more than five hours (other 

seasons) after sunset and all birds were roosting during this time.   

In winter, half of the birds (n = 18) were sampled first at night and second during the 

day, while the other half were sampled first during the day, and second at night.  We 
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did this to check for an influence of previous bleeding on subsequent T-values, and 

found there was no such effect (linear model:  t33 = -1.30, p = 0.204).  In the other 3 

season, all nighttime samples were taken after daytime bleeding.   

During nighttime sampling in fall, winter and summer, we sampled half of the birds 

immediately after waking them up and the other half approximately 30-60 minutes 

after they woke up.  For the daytime samples in spring and summer, we first sampled 

birds from one group of aviaries and 30-60 minutes later sampled individuals from a 

second group of aviaries.   

In the summer, we additionally tested whether diel changes in testosterone occurs in a 

small sample of females (n = 9).  These individuals were sampled once in the morning 

(at 07:45) and once at night (at 01:45, 8 days later).   

During each sampling event, we took 150-200 μl of blood from the wing vein within 

15 min after first starting to catch the birds.  We collected the blood in 75 mm Na-

heparinised micro-haematocrit capillaries, centrifuged it at 13000 rpm for three 

minutes, separated the plasma, and stored it at -80°C until analysis.  The time passed 

since first starting to catch birds did not have an influence on T levels (linear mixed 

effect models with season, daytime, and bird ID as random effects:  day: z = 1.13, p = 

0.26, n = 551 (Laucht et al. 2010); night: z = 0.41, p = 0.68, n = 159).   

Determination of plasma T levels 

Frozen plasma samples were sent to the endocrine laboratory of the Leibniz Institute 

for Zoo and Wildlife Research in Berlin, Germany, where T levels were determined 

blindly by enzyme immunoassays (for further details on the methods see Roelants et 

al. (2002); see also Laucht et al. (2010)).  The inter-assay coefficient of variation (CV) 

for the enzyme immunoassay was 12.3% and the intra-assay CV was 9.0%.  To 

calculate the true repeatability (i.e. the intra-class correlation coefficient) of 

measuring serum T-levels, we split 122 plasma samples of several males into 

duplicates right after centrifugation.  Based on samples from the whole year, the 

repeatability of these plasma T estimates was R = 0.967 + 0.006 (SE) (F121, 122 = 59.24, 

p < 0.001).  We assumed that all values of zero were below the detection limit (9 out 
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of 282 cases) and assigned them the lowest value measured (15 pg/ml).  T levels are 

reported in pg per ml, but were ln-transformed for statistical analyses.  Daytime T 

levels are the same as reported in Laucht et al. (2010).   

Determination of badge size 

During each season, we took four pictures of the black bib of each male.  For each 

picture, we held the birds ventrally such that the throat and bib were stretched and 

presented to the camera.  We rearranged the bird’s position between each photograph.  

SL measured the size of the badge from the photographs by encircling and measuring 

the area of the bib in pixels using the program ImageJ 1.36b (Abramoff et al. 2004) 

and later converting it into cm2 using an area standard present in each photograph. For 

analyses, we used the average of all four pictures for each bird.  These scores were 

highly repeatable within individuals (R = 0.943, estimated according to Falconer and 

Mackay (Falconer and Mackay 1996) from repeatability of single pictures).  See 

Laucht et al. (2010) for additional details.   

Statistical analyses  

We performed all statistical analyses using R 2.8.0 (R Development Core Team 2008) 

(packages: lme4, nlme, RODBC) at the significance level α = 0.05.  We compared 

day and night T levels in each period both at the population level (including those 

individuals for which only day T-values were available; t-test) and at the individual 

level (paired t-test).  To analyze the relationship between badge size or disturbance 

and plasma T levels, we used linear models and linear mixed effect models as 

indicated in the results.  There was no need for model simplification.  For analyses on 

badge size, we used the summer scores (means of the four photos), because badge size 

changed due to abrasion of the white feather edges in fall and early spring (Møller and 

Erritzøe 1992).  The results did not qualitatively change when using means of spring 

and summer badge scores.   

Note that sample sizes differ due to missing data points for single individuals and due 

to the exclusion of males in breeding aviaries for the summer samples. 
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Results   

Day/night variation in T levels 

In males, plasma T levels were on average 1.3 - 4.8 times higher during the night than 

during the day and this was significant during all four seasons (Fig. 1a & b, Table 2).  

However, the within-individual correlation between day and night levels was rather 

weak (Spearman rank correlation: fall: rho = 0.29, n = 36, p = 0.091; winter: rho = 

0.38, n = 35, p = 0.023; spring: rho = -0.12, n = 17, p = 0.640; summer: rho = 0.27, n 

= 53, p = 0.054) indicating that males with the highest day levels did not necessarily 

have the highest night levels (Fig. 1b).  Female plasma T levels were also 

significantly higher at night than during the day, at least in summer (Fig. 1a, Table 2).   

 

Fig. 1  Day and night plasma testosterone levels of male (closed circles) and female (open circles) 
House Sparrows at four different seasons.  
a) at the population level: mean + standard error  
b) at the individual level 
For statistics and sample sizes see Table 2. 
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During daytime there was no effect of previous disturbance on T levels (Fig. 2; linear 

models: in spring, in summer, or in both periods combined; all p > 0.59).  However, at 

night T levels were significantly lower when birds had been awake for 30-60 min 

before being sampled (Fig. 2, Table 3; linear mixed effects model: all periods 

combined:  z = -3.12, n = 124 observations, p = 0.002, crossed random effects: bird 

ID (n = 100 individuals) and season (n = 3)).  The effect was observed in every season 

(Fig. 2), but it was only significant in winter (t-tests; fall: t34 = -1.80, p = 0.082; winter: 

t33 = -3.22, p = 0.003; summer: t51 = -1.79, p = 0.081).   

 

 

Fig. 2  Plasma testosterone levels of male House Sparrows at three different seasons in 
undisturbed (U, closed circles) and disturbed (D, open circles) groups.  Presented are means + 
standard errors.  For statistics and sample sizes see Table 3.  
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Night T levels and badge size 

Badge size was related to night plasma T levels in summer (linear model: t43 = 2.54, R 

= 0.36, p = 0.015; Fig. 3), but not significantly in any of the other sampled seasons 

(all p > 0.48).  Because badge size was not related to day plasma T levels in June (Fig. 

3, data from Laucht et al. (2010)), we further tested whether the relationship between 

T levels and badge size differed depending on the time when plasma samples were 

collected.  This was indeed the case (interaction with time period: linear mixed effect 

model:  z = 2.54, p = 0.015, n = 180 observations, random effect: bird ID (n = 135 

individuals); Fig. 3).  

 

 

Fig. 3  Badge size in relation to June plasma night (closed circles, straight line; R = 0.35, t43 = 
2.44, p = 0.019) and day (open circles, dashed line; R = 0.03, t133 = 0.31, p = 0.76) testosterone 
levels for male House Sparrows.  We defined badge size as the June measurements.   
The relationship between T levels and badge size differed between day and night:  interaction with 
time period: linear mixed effect model:  t43 = 2.54, p = 0.015, n = 180, random effect: bird ID. 
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Discussion 

We found that in captive male and female House Sparrows plasma T levels were 

significantly higher during the night than during the day.  T levels on average doubled, 

demonstrating dramatic daily within-individual fluctuations in plasma T levels.  The 

higher night T levels were observed in males throughout the year.  These results are in 

accordance with findings from diurnal mammals, and some diurnal bird species 

(Table 1).  The only other study that has examined diel variation in T levels in female 

birds also found a trend towards higher night levels (Hau et al. 2002).  However, the 

sample size in this as well as in our study was small and birds were only sampled at 

one time point during the night during one season.  Overall, however, our results 

indicate strongly that nocturnal increases in T levels occur in diurnal species, 

independent of season and sex.  Hence, there seems to be a general mechanism that 

causes T levels to increase at night.   

Elevated nocturnal testosterone and sleep 

Higher T levels may be associated with sleeping, as opposed to night-time per se.  

Studies on human males showed a correlation between the first REM sleep and the 

increase in T levels (Evans et al. 1971; Luboshitzky et al. 1999) and a significant 

delay in this T rise when sleep was fragmented (Luboshitzky et al. 2001) or shifted to 

daytime (Evans et al. 1971; Boyar et al. 1974).  Consistent with the hypothesis that 

increased T levels are linked to sleep and not to night-time per se, is the observation 

that nocturnal animals show highest T levels during the day (Table 1).  Our results are 

also consistent with this hypothesis:  we found that T levels at night were lower when 

the birds were sampled 30-60 min after being disturbed (Fig. 2), suggesting a quick 

drop in T levels after waking up.  An alternative explanation is that T levels dropped 

due to increased stress associated with disturbance.  However, we would then have 

expected a decrease in T levels after disturbance during the day, which we did not 

observe (Fig. 2).  Nevertheless, it remains possible that the House Sparrows 

experienced disturbance during the night as a much stronger stressor, and that this 

explains the difference in T level changes. 
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An alternative explanation for higher night T levels in diurnal animals, is that T levels 

are affected by social interactions, assuming that such interactions generally lead to a 

decrease in plasma T levels.  Lower plasma T levels are expected in individuals that 

lose out in competitive interactions (e.g. subordinate individuals) (reviewed in 

Adkins-Regan 2005).  Under this scenario, we would expect individuals with low day 

T levels (e.g. subordinate individuals) to show the strongest increase during the night, 

whereas those with the highest T levels should not show a further increase.  One 

would then expect a lower variance in T levels at night than during the day, for which 

we found no evidence (F-test for equality of variances: each season analysed 

separately, p = 0.31-0.93).  However, we note that particularly during the breeding 

season not all individuals had higher T levels at night (Fig. 1b).  More detailed studies 

on the effects of sleep, (nocturnal) stress, and social interactions on within-individual 

variation in T levels are needed.   

Function of elevated nocturnal testosterone 

The patterns observed here and in other species (Table 1) raise an intriguing and 

important question.  What is the functional significance – if any – of the nocturnal 

increase in plasma T?  T may simply accumulate during the night (i.e. accumulation 

occurring due to diel changes in the half life of testosterone or of its binding proteins, 

in testosterone secretion or in the secretion of other hormones such as LH or 

prolactin), either because it is not used up (non-functional) or because individuals 

physiologically prepare for a (functionally) high T level in the early morning.  The 

highest T levels should then be found when morning activity starts, which is indeed 

true for human males (highest levels found just before sunrise:  Barberia et al. 1973; 

Schulz et al. 1995; Luboshitzky et al. 2003; Walton et al. 2007).  However, other 

studies (Table 1) suggest that in some species T levels may fluctuate throughout the 

night, rather than gradually increase until early morning.   

Alternatively, increased nocturnal T may itself be adaptive.  A change in the secretion 

of T (rather than metabolic clearance rate) (Walton et al. 2007) could be functional, if 

higher T levels are required for short-term organizational functions such as neuronal 

development or memory consolidation, functions also suggested for sleep (Stickgold 

2005).  Additionally, the observation that nocturnal increase in T levels occurred 
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independently of season also suggests that T might play a role in regulating diurnal 

changes in physiology, i.e. function as a “sleep hormone”. 

An alternative organizational function of increased nocturnal T is that it is associated 

with increased spermatogenesis.  Early studies on male House Sparrows found that 

spermatogenesis takes place at night with greatest activity between 02:00 and 04:00 

(Foley 1929; Allender 1936; Riley 1937).  It was further suggested that it is related to 

the drop of body temperature that occurs during sleep, which itself might be triggered 

by increased T (Feuerbacher and Prinzinger 1981).  In Bonnet Monkeys (Macaca 

radiata), long term suppression of night-time T peaks had a negative influence on 

testis activity in general and on spermatogenesis in particular (Suresh and Moudgal 

1995).  However, we also found elevated night T levels in males during the fall when 

the testes are regressed, and in females.  Although this does not refute the idea that 

one function of elevated night T is increased spermatogenesis; it is clear that other 

functional explanations cannot be excluded. 

Night-time testosterone and ornamentation 

We found a significant correlation between badge size of male House Sparrows and 

night-time plasma T levels in the peak breeding season (June).  This contrasts with 

our previous finding (on the same population) that badge size was not correlated with 

daytime T levels in any season (Laucht et al. 2010), but is in agreement with other 

studies that found correlations between badge size and post-breeding or breeding 

daytime T levels (Buchanan et al. 2001; Gonzalez et al. 2001), and an effect of 

artificially increased T levels on badge size (Evans et al. 2000).   

Previous studies suggest that – in House Sparrows and other bird species – agonistic 

interactions or challenges cause a short-term increase in T levels above breeding 

baseline levels (the “Challenge Hypothesis”) (Hegner and Wingfield 1986; Wingfield 

et al. 1987; Wingfield et al. 1990; Hill 2002; McGlothlin et al. 2008).  We suggest 

that night-time T levels reflect maximum T levels achieved during challenges and that 

these levels reflect competitive ability better than day levels do.  Under the hypothesis 

that night-time T levels indeed reflect maximum T levels (see also below), the 

relationship between night-time T levels and badge size suggests that badge size could 
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be an “honest” signal of status.  Maximum T levels during challenges could maintain 

signal honesty via social costs (i.e. keep the signal evolutionarily stable by preventing 

cheating via high costs; the badge of status hypothesis (Maynard Smith and Harper 

1988; Jawor and Breitwisch 2003; Tibbetts and Dale 2004)).  Badge size could 

therefore indicate an individual’s dominance, level of aggression, and ability to 

defend itself in agonistic interactions during the breeding season.   

Although the relationship between night-time T levels and maximal T levels during 

social challenges needs to be tested directly, there is indirect evidence that they may 

be similar.  An experimental paradigm that is often used to estimate an individual’s 

maximum T level is an injection with gonadotropin-releasing hormone (GnRH) 

(Wingfield and Farner 1993; Jawor et al. 2006).  Previous studies showed that plasma 

T levels measured after GnRH challenge correlate positively with elevated T levels 

after social challenges (McGlothlin et al. 2008).  Studies in several bird species and in 

several seasons showed that plasma T levels on average increased 2.1 fold (range: 

1.0-5.7 fold) after GnRH challenge (Hirschenhauser et al. 2000; Moore et al. 2002; 

Jawor et al. 2006; Jawor et al. 2007).  Our results indicate that plasma T levels 

increased on average 2.6 fold (range 1.3-4.8) from day to night (all seasons, males and 

females), which is similar to the effects shown by the GnRH challenge.   

Conclusions 

In summary, we found that plasma T levels of male and female House Sparrows were 

much higher at night than during the day, and we provide evidence that higher 

nocturnal T could be associated with sleep because disturbance at night, but not 

during the day, reduces T levels.  Additionally, we found that male badge size, an 

ornament generally associated with dominance, was related to night-time T levels, but 

not to daytime levels.  Overall, our results imply that diel cycles need to be considered 

in studies using measurements of plasma T levels. 
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Condition, testosterone and age correlations with multiple 

ornaments in male House Sparrows:  patterns and implications 

Silke Laucht, Bart Kempenaers, James Dale  

Abstract 

Why many animal species display several different kinds of ornaments has been a question of 

recent interest to researchers of animal communication.  Originally, three key hypotheses that 

explain the evolution of multiple signals have been suggested:  they can function as (1) multiple 

messages (different information for each ornament), (2) redundant messages or back-up signals 

(the same information for all ornaments), and (3) unreliable signals (no information).  Even 

though these hypotheses were originally developed for signals of quality used in mate choice, they 

are also broadly applicable to other contexts of quality signalling such as rival competition.  Here 

we tested the signal properties of ornamental traits in male House Sparrows (Passer domesticus) 

in order to better resolve the potential information that different ornaments reveal.  We repeatedly 

measured badge size, wingbar conspicuousness, bill colour, and leg colour in 175 captive males 

over 3 years.  We tested how these ornamental traits correlated with each other and to physical 

condition, plasma testosterone, age, and place of origin (i.e. wild or captive born).  We found that 

(1) badge size and wingbar area were related to condition, (2) badge size, wingbar area, and bill 

colour were related to testosterone levels, (3) all ornaments except bill colour were related to age, 

and (4) origin had only minor effects.  We conclude that badge size, wingbar area, and bill colour 

have the potential to function as multiple messages of different testosterone related behaviours, 

and that badge size, wingbar area, and leg colour have the potential to function as back-up signals 

of age.  However, the empirical classification of ornaments as multiple messages or back-up 

signals is not clear, and we suggest instead it is best to view multiple ornaments as providers of 

varying degrees of various overlapping types of information.   
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Introduction 

Many animals show several pronounced ornaments that are thought to be important in 

the context of mate choice (reviewed in Candolin 2003).  Why do animals frequently 

employ more than one ornament when it would (presumably) be easier to provide a 

single distinct and easily discriminable signal to the receiver?  In a groundbreaking 

paper, Møller and Pomiankowski (1993) proposed three hypotheses to explain the 

functional advantages of multiple ornaments:  (1) The “multiple messages” hypothesis 

posits that different signals provide information of different aspects of signaller 

quality, such as different kinds of qualities (e.g. access to resources versus genetic 

immunity to current contagions) or condition on different time scales (Møller and 

Pomiankowski 1993; Johnstone 1996).  Receivers can then either evaluate the signals 

together or selectively.  Or alternatively the different signals could be directed to 

different receivers (Andersson et al. 2002).  (2) The “back-up” (or redundant) signals 

hypothesis posits that multiple signals communicate the same aspect of quality.  This 

assumes that each single ornament includes some error, and the receiver uses the 

combined stimuli of all ornaments to infer a more accurate estimate of this quality 

(Møller and Pomiankowski 1993; Johnstone 1996).  Finally, (3) the “unreliable” (or 

uninformative) signal hypothesis predicts that multiple ornaments do not signal 

quality, but have instead evolved from an arbitrary preference, such as via the 

Fisherian runaway process (known as Fisherian cues), or to ease signal detection and 

assessment (Møller and Pomiankowski 1993; Candolin 2003).  Overall, multiple 

ornaments could be advantageous over one single ornament as long as costs for the 

assessment of additional ornaments are not much higher than for a single ornament 

(Iwasa and Pomiankowski 1994; Johnstone 1995; Johnstone 1996; Candolin 2003).  

More recently, additional hypotheses have included other aspects of mate choice such 

as interference of males by hindering female choice or female resistance to male 

signals (Holland and Rice 1998; reviewed in Candolin 2003; Lozano 2009) and 

additional types of information such as behavioural strategy, or individual identity 

(Dale 2006).   

Originally, all explanations for multiple ornaments were developed with mate choice 

in mind as the driving force.  These hypotheses therefore neglected another important 

aspect of honest signalling: rival competition.  Up to now, very few studies have 



Information content and testosterone dependence of animal signals  91

considered multiple ornaments in the context of pure competitive interactions (Balph 

et al. 1979; Bókony et al. 2006; Chaine et al. 2011).  However, Berglund et al. (1996) 

suggested that single traits with a dual signalling function (i.e. signals that are used as 

both armaments in male-male competition and ornaments in mate choice) could 

evolve from signals that are kept honest only through competitive interactions.  

Additionally, Anderson et al. (2002) described a version of the multiple messages 

hypothesis called the “multiple receiver hypothesis” which states that multiple 

ornaments could be assessed by multiple receivers (i.e. mates and rivals) and thus 

signalling different contents to different receivers.  Taken together, this suggests that 

multiple signals could reveal a huge variety of different information in addition to the 

ones originally described, important both in male-male and male-female interactions 

(Kekäläinen et al. 2010).  This includes information about an individual’s quality 

(genetic and phenotypic constitution), age, testosterone dependent behavioural traits 

(such as status, aggressiveness and breeding state), and combinations of these (Dale 

2006).   

In light of this, there are several reasons why it is of great value to perform detailed 

analyses of the characteristics that correlate with different ornaments within a single 

species over multiple years.  Although correlational, this approach is valuable because 

it provides a detailed window into what different kinds of information are potentially 

available to any receivers of the ornaments at different time points over the year and 

at different life history stages of the signaller.  For example, Freeman-Gallant et al. 

(2010) recently suggested that different ornaments in the Common Yellowthroat 

(Geothlypis trichas) signal redundant information at different life stages, 

demonstrating the importance of long-term studies and of the consideration of an 

individual’s age.  In addition, age can also reveal information about the role of 

different quality parameters on the development of traits that, once fully developed, 

signal the same information for a long time (e.g. song type (Rivera-Gutierrez et al. 

2010)).  Furthermore, for a powerful approach it is crucial to include all potential 

ornaments (Galván 2010) and to examine a large number of individuals.  The 

examination of the relationship with hormone levels, in particular testosterone, is 

fundamental given that many ornaments are testosterone related (e.g. reviewed in 

Roberts et al. 2004; McGlothlin et al. 2008) or that many behaviours and 

physiological processes associated with male-male and male-female interactions are 
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testosterone dependent (summarized in Ketterson and Nolan 1992; Hau 2007).  

Finally, different parameters of body condition should be considered because they can 

give insights into the actual physical state and health of an individual (e.g. 

summarized in Schulte-Hostedde et al. 2005).  Studies on multiple ornaments should 

therefore be based on a much broader framework and include as many parameters and 

individuals as possible.   

Here, we studied four very different ornaments in a model species of visual 

communication research - the House Sparrow (Passer domesticus).  Three of these 

ornaments (badge size, wingbar conspicuousness, and bill colour) are rather well-

studied, and one of them (leg colour) is new.  First, the size of the black breast bib or 

the “badge” has been found to correlate with social status, fighting success, age, 

variation in sexual behaviour, and plasma levels (Møller 1987; Møller 1990; Veiga 

1993; Evans et al. 2000; Buchanan et al. 2001; Gonzalez et al. 2001; Liker and Barta 

2001; McGraw et al. 2003; Bókony et al. 2006; Nakagawa et al. 2007; Morrison et al. 

2008; Laucht et al. 2011).  Secondly, wingbar size was found to signal body condition 

(Poston et al. 2005), parasite resistance (Moreno-Rueda 2010), and competitive 

defence success (Bókony et al. 2006).  Third, bill coloration is a conspicuous and 

dynamic testosterone dependent trait that changes from a pale horn coloration during 

the non-breeding season to black during the breeding season (Keck 1933; Witschi 

1936; Witschi and Woods 1936; Pfeiffer et al. 1944; Haase 1975; Donham et al. 

1982).  Outside of breeding, variation in bill colour is correlated to plasma 

testosterone levels and therefore also a possible signal of testosterone related 

behaviours during these times (Laucht et al. 2010).  Fourth, we include here a hitherto 

unstudied, putative ornament: leg colour.  Leg colour is melanin based and ranges 

from a very pale horn colour to a brownish coloration.  Because it is a bare part, it can 

not only be easily perceived by a receiver, but it could also change colour over a 

period of time by changing melanin content of the skin.  Thus, leg colour has the 

hallmarks for a possible ornament.   

Even though the function of male ornamentation in House Sparrows seems to be 

rather well known, only very few studies have looked at the interplay of multiple 

ornaments in a single population (e.g. Bókony et al. 2006; Laucht et al. 2010), and 

none have looked over multiple years.  In order to distinguish between the three main 
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hypotheses about multiple ornaments we evaluate the properties of our candidate 

ornaments in a large captive population over three years.  We test for (1) inter-

correlations between the various ornaments and general correlations with (2) 

condition, (3) testosterone dependence, (4) age and (5) place of origin (captive bred or 

wild born).   

Because we use a large data set of many different individuals, many putative 

ornaments, the same individuals over several years, and a variety of quality 

parameters, this study has great power to separate the three hypotheses for the 

function of multiple ornaments from each other and to better understand complex 

signalling in general.  Under the general framework developed by Møller and 

Pomiankowski (1993), we made the following predictions for each of the three 

hypotheses:  First, under the multiple messages hypothesis each ornament should 

convey different information, and so we predict low correlations between different 

ornaments and high correlations with different quality measures, respectively.  Second, 

under the back-up signals hypothesis all ornaments should signal the same 

information, and so we predict high correlations between different ornaments and 

correlations of all ornaments with similar quality measures.  And third, under the 

unreliable signal hypothesis ornaments should signal no information, and so we 

expect low correlations between ornaments and no correlations with the measures of 

quality.  In addition to quality parameters directly important during mate choice and 

male-male interactions such as body condition, age and testosterone dependence, we 

also examined effects of origin (i.e. captive or wild born) because origin potentially 

provides information on population differences and on early development effects.  

Because we kept birds of both origins for several years together under the same 

conditions we expected interactive effects of origin and age.   

Material and Methods 

Study population 

We studied a population of 175 captive male House Sparrows.  Birds were held at the 

Max Planck Institute for Ornithology, Seewiesen, Germany.  They were either caught 

in rural areas in Bavaria, Germany (under license:  permit nr. 55.1-8642.3-3-2006 of 
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the “Regierung Oberbayern”, with several extensions) and held in captivity for at least 

eight months (n = 142) or raised in captivity (n = 33).  Housing was in unisexual 

groups (except for breeding in spring) ranging between five and ten individuals 

(depending on other experiments) in semi-outdoor (one side only enclosed by chicken 

wire) aviaries of 1.2 x 2.0 x 4.0 m.  At all times, the birds had ad libitum access to 

food, sand for dust bathing, and drinking and bathing water.  The light-dark cycle and 

temperatures in the aviaries were close to natural conditions.  Further details about our 

study population can be found in Laucht et al (2010).  Sample size changes over the 

years reflect natural deaths of some individuals and other individuals hatching into 

captivity during the study period.   

During several periods in the course of four years (July 06, Oct./Nov. 2006, Jan. 2007, 

March 2007, June 2007, Jan. 08, June 08, and Jan. 09), we caught all individual birds, 

took biometric measurements, standardized photographs of the ornaments, and -in 

four seasons of one year- blood samples.   

Blood sampling and determination of plasma T levels 

During four periods throughout the course of one year (Oct./Nov. 2006, Jan. 2007, 

March 2007, and June 2007) we took blood samples at similar times either in the 

mornings or in the afternoons.  During each blood sampling event, we took 150-200 

μl of blood from the wing vein within fifteen minutes after first starting to catch the 

birds.  We collected the blood in 75 mm Na-heparinized micro haematocrit capillaries 

and centrifuged it at 13000 rpm for three minutes to separate the plasma.  Plasma was 

stored at -80°C.   

Frozen plasma samples were sent to the endocrine laboratory of the Leibniz Institute 

for Zoo and Wildlife Research in Berlin, Germany, where testosterone (T) levels were 

determined blindly by enzyme immunoassays (for details on the methods see Roelants 

et al. 2002; see also Laucht et al. 2010).  The inter-assay CV for the enzyme 

immunoassay was 12.3% and the intra-assay CV was 9.0%.  Additionally, to calculate 

the true repeatability (intra-class correlation coefficient) of measuring plasma T levels, 

we split samples of several individuals into duplicates right after centrifuging.  Across 

the whole year, repeatability of these plasma T estimates was R = 0.967 + 0.006 (SE) 
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(p < 0.001, n = 2*122).  We assumed that all data points with a value of zero were 

actually below the detection limit and thus assigned them the lowest value measured 

(15 pg/ml).  T levels are reported in pg per ml, and we natural log transformed T 

values for statistical analyses.  T levels are the same as reported in Laucht et al. 

(2010).   

Determination of bill colour 

During each sampling season we took two standardized photographs of each male’s 

bill.  For this, we used a Canon Power Shot S2 IS camera and took pictures at the 

highest resolution with flash.  All males were held the same way (presenting the right 

side of the head and bill to the camera) in front of a gray card and colour standard 

background at the same distance from the camera.  Digital photograph processing 

software written into R 2.4.0 (R Development Core Team 2006) was used to 

determine bill “brightness” as measured in the hue, saturation, and brightness colour 

space.  SL measured brightness of the individual pixels located at five randomly 

chosen positions each on the upper bill, lower bill and the gray background around the 

bill (used as a brightness standard).  To standardize our bill brightness measurements 

between photos, we calculated overall mean gray card brightness of all photos of each 

season, we then determined the deviation of gray card brightness of a focal photo 

from the overall mean, and subtracted this deviation from mean bill brightness for 

each picture.  This standardization renders a bill brightness score for each male that 

both compensates for any minor differences in overall brightness between photos and 

that also keeps our brightness variable as an actual colour measurement (rather than a 

difference).  For analyses, we used the mean of the standardized upper and lower bill 

brightnesses from both pictures.  Using data of the first year of sampling, these 

measurements were highly repeatable within individuals (repeatability (Lessells and 

Boag 1987): R = 0.949 + 0.004 (SE), p < 0.001, n = 2*581 for two pictures).  See 

Laucht et al. (2010) for additional details.  

Determination of badge size 

We took four pictures of the males’ breast bibs during each season.  For each picture, 

we held the birds ventrally such that the throat and bib was stretched and presented to 
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the camera.  Between each photograph of the bib, the bird was rearranged into a 

different position.  SL measured the size of the badge from the photographs by 

encircling and measuring the area of the bib in pixels using the program ImageJ 1.36b 

(Abramoff et al. 2004) and later converting it into cm2 using an area standard present 

in each photograph.  For analyses, we used the average of all four pictures for each 

bird.  The measurements were highly repeatable within individuals within the first 

year (R = 0.943, estimated according to Falconer and Mackay (1996) from 

repeatability of single pictures).  See Laucht et al (2010) for additional details.   

Determination of wingbar area and brightness 

We took two standardized pictures of the males’ white wingbars during each season.  

For each picture, we held the birds dorsally with the right wing opened and the 

wingbar presented to the camera.  Between each photograph of the wingbar, the bird 

was rearranged into a different position.  Two students measured the size and the 

brightness of the wingbar by encircling and measuring the area in number of pixels 

and brightness of the white wingbar using the program ImageJ 1.36b (Abramoff et al. 

2004).  For standardization of the area, we divided this by a standard area present in 

each photograph and measured in the same way, and then converted the result into 

cm2.  For analyses, we used the average of both pictures for each bird.  The 

measurements were highly repeatable within individuals (repeatability (Lessells and 

Boag 1987): area: R = 0.883 + 0.006 (SE), brightness: R = 0.960 + 0.002 (SE), p < 

0.001, n = 2*1289 for two pictures). 

Determination of leg colour 

Each season, we took two standardized photographs of each bird’s right leg.  As for 

bill colour, we used digital photograph processing software written into R 2.4.0 (R 

Development Core Team 2006) to determine leg “brightness” (see ‘Determination of 

bill colour’).  We used brightness as a colour measurement because leg colour varies 

from a pale horn colour to a brown, i.e. apparent variation in total light reflectance.  

Additionally, leg colour is very similar to non-breeding bill colour for which we used 

brightness measurements.  SL measured five points each on the leg and on the gray 

background around the leg (measured as a brightness standard).  We then 
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standardized each picture as described above for bill colour.  For analyses, we used 

the mean of both pictures.  These measurements were highly repeatable within 

individuals (repeatability (Lessells and Boag 1987): brightness R = 0.769 + 0.009 

(SE), p < 0.001, n = 2*2074 for two pictures).   

Statistical analyses  

We performed all statistical analyses using R 2.8.0 (R Development Core Team 2008); 

packages: nlme, lme4, multcomp, RODBC) at the significance level α = 0.05.  For 

overall analyses, we used linear mixed effect models (lme, and lmer for crossed 

random effects) using individual ID as a random factor to account for repeated 

sampling.  When using data from single seasons where each individual was 

represented only once, we used linear models (lm).  For correlations between 

ornaments we used the Pearson correlation test.   

For analyses on badge size, we used the averages of the seasonal scores of each year 

(starting in autumn after moult and ending in July before the next moult), because 

badge size changed due to abrasion of the white feather edges in autumn and early 

spring (Møller and Erritzøe 1992).  This score is highly correlated with the score we 

had previously used (Laucht et al. 2010; p < 0.001, t153 = 28.05, r = 0.91) but easier to 

perform with the set of sampled periods over the four years.  Similarly, for analyses 

on wingbar area and brightness, we also used “yearly” averages of all seasonal scores.  

We decided to also use “yearly” averages as final leg colour scores because between-

seasonal variation in leg colour was not consistent (i.e. not similar in the same seasons 

or of a regular fluctuation).   

To test for correlations between any two ornaments, between ornaments and age, as 

well as ornaments and body condition we used the four yearly measurements for 

badge size, leg colour and wingbar area and brightness.  For correlations with bill 

colour we used seasonal scores as bill colour changes regularly in the course of the 

year (Laucht et al. 2010).  This means that we used the same yearly scores repeatedly 

when analyzing relationships with seasonal scores such as bill colour or T levels, and 

only once when analyzing relationships with yearly scores such as age or tarsus length.   
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For analyses with body condition we used body mass, tarsus length, and the 

interaction of both.  For analyses with T levels, we controlled for time of day by 

fitting this in each model.  For analyses with age, we used minimum age for wild 

caught birds calculated as if all wild caught birds were born in the summer before 

capture and true age for captive born birds.  The time period from the beginning of the 

annual moult (August) until before the start of the next annual moult represented one 

year for these age measurements.  Thus, age 1 is the time from moult into adult 

plumage until the completion of the first year, age 2 the following year and so on.   

Results   

The results of the various tests conducted in this study are qualitatively summarized in 

Table 1.  

Table 1:  Summary of results of the four different ornaments in relation to the four addressed test: 
ornament inter-correlation, condition dependence, testosterone dependence, and age dependence.   

ornament correlation 
with other 
ornaments 

condition 
dependence 

testosterone 
dependence 

age 
dependence  

badge size in one year 
with wingbar 
area 

tarsus, mass 
in March and 
June 

in June yes 

wingbar area in one year 
with badge 
size 

mass in Jan 
and March 

in fall yes 

wingbar brightness none no no  

bill brightness summer of 2 
years with leg 
brightness 

no all seasons 
but June 

no 

leg brightness summer of 2 
years with bill 
brightness 

no no yes 

Inter-correlations between ornaments 

We found no consistent patterns of correlations for any combination of two ornaments 

(Table 2).  The few significant correlations seem rather arbitrary, and after Bonferroni 

correction the only one still significant is a correlation between bill colour and leg 
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colour in one of the eight studied seasons (June 08).  Overall, this suggests that all 

ornaments are at best very weakly correlated with each other.   

Table 2:  Correlations between any two of the four studied ornaments of male House Sparrows.  
We used yearly means of measurements for badge size, wingbar area and brightness, and leg 
colour.  Because of the changes in bill colour in the course of the year, we used seasonal 
measurements for correlations with bill colour.   
    year R P 
badge size wingbar area 05/06 0.220 0.021 
  06/07 0.063 0.511 
  07/08 -0.037 0.697 
  08/09 0.053 0.584 
badge size wingbar brightness 05/06 0.162 0.092 
  06/07 -0.139 0.147 
  07/08 -0.060 0.532 
  08/09 0.037 0.698 
bill colour leg colour July 06 0.224 0.019 
  autumn 06 -0.010 0.921 
  Jan 07 -0.061 0.529 
  March 07 -0.049 0.612 
  June 07 0.023 0.808 
  Jan 08 0.028 0.77 
  June 08 0.356 < 0.001 
  Jan 09 0.069 0.476 
bill colour wingbar area July 06 -0.027 0.782 
  autumn 06 -0.163 0.088 
  Jan 07 -0.014 0.886 
  March 07 0.054 0.576 
  June 07 0.090 0.349 
  Jan 08 -0.164 0.087 
  June 08 0.166 0.084 
  Jan 09 -0.128 0.184 
bill colour wingbar brightness July 06 0.014 0.886 
  autumn 06 -0.014 0.887 
  Jan 07 -0.027 0.781 
  March 07 -0.017 0.858 
  June 07 0.105 0.273 
  Jan 08 0.049 0.614 
  June 08 0.043 0.657 
  Jan 09 -0.052 0.592 
badge size leg colour 05/06 -0.012 0.902 
  06/07 -0.038 0.696 
  07/08 0.039 0.683 
  08/09 0.019 0.846 
wingbar area leg colour 05/06 -0.046 0.633 
  06/07 0.039 0.684 
  07/08 0.140 0.146 
  08/09 -0.042 0.661 
wingbar brightness leg colour 05/06 -0.106 0.270 
  06/07 0.042 0.663 
  07/08 0.040 0.675 
  08/09 0.097 0.313 
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Condition dependence of ornaments 

We first analyzed the different ornaments in relation to condition in overall models 

including all data of the four years (Table 3), and then for each season separately (see 

Table 4 for results of the single seasons).  In the overall models, we found that badge 

size and wingbar area were condition dependent, whereas bill colour was not (Table 

3).  Leg colour also seemed condition dependent, however, because there were no 

correlations in single seasons (see Table 4) this result seems rather arbitrary.   

The seasonal relationships (Table 4) show an influence of condition on badge size, 

wingbar area and to some extent on wingbar brightness.  Bill and leg colour seem to 

not be related to condition since the significant relationships in one year are rather 

weak and do not hold when applying Bonferroni corrections.   

T dependence of ornaments 

In a previous study we found that bill colour and T levels were correlated in an overall 

model and during all different seasons, except in June (r < -0.24, t < -2.88, p < 0.005; 

see also Table 3 in Laucht et al. (2010).  Badge size was not related to day time T 

levels (p > 0.27; Laucht et al. 2010), but in a different study we found it to correlate 

with night time T levels in peak breeding season (t42 = 2.54, r = 0.36, p = 0.015; see 

also Fig 3 in Laucht et al. (2011)).  Leg colour was not related to testosterone levels at 

any of the four studied seasons (p > 0.25, n = 136 per season).  But wingbar area was 

significantly and positively related to T levels in autumn (p = 0.005, t133 = 2.85; Fig 1), 

but not in any of the other studied periods (p >0.12, n = 136 per season).  However, 

wingbar brightness was not related to testosterone levels in any season (p > 0.44, n = 

136 per season).   
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Fig. 1  Correlation between wingbar area and testosterone levels of male House Sparrows in 
autumn.   
We defined wingbar area as the mean of the four studied seasons and used the natural logarithm of 
plasma T levels.  p = 0.005, t134 = 2.87, r = 0.24 

Age dependence of ornaments 

Leg colour, wingbar area and wingbar brightness, and badge size were all strongly 

correlated with age (Table 5, Fig 2 a-d).  Bill colour was not related to age.  We 

further examined the differences between individuals by modelling the relationship of 

each ornament to age for each individual (after accounting for season in bill colour 

analyses) and then looking at the coefficients of slope in relation to intercept.  We 

found this to be highly significant for badge size, wingbar area, leg colour, and bill 

colour (p < 0.001, badge size: t148 = -13.76, wingbar area: t150 = -15.88, leg colour: t150 

= -16.85, bill colour: t168 = 5.50).  This means that birds with more elaborate 

ornaments at a younger age increased ornaments less strongly than birds with less 

elaborate ornaments at a younger age.   
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Table 5:  Results of liner mixed effect models (lme) of ornaments in relation to age with bird ID 
as random effects.  For bill colour we used also season as a random effect, and for the first model 
origin (lmer, hence no df).  Sample sizes for badge size, wingbar conspicuousness, and leg colour 
were n = 595, for the analyses with bill colour n = 1174.   

 

   origin as random 
effect, age: 1-4 

age: 1-4   age: 1 or 
older 

 

ornament   statistic p statistic p statistic p 
badge size age t = 8.71 < 0.001 t415 = 1.99 0.05 t415 = 2.08 0.04 
 origin    t176 = 1.00 0.32 t176 = -0.77 0.44 
 age:origin    t415 = -0.08 0.93 t415 = 4.48 < 0.001 
wingbar area age t = 4.93 < 0.001 t415 = 3.46 < 0.001 t415 = 3.93 < 0.001 
 origin    t176 = 3.85 < 0.001 t176 = 2.37 0.02 
 age:origin    t415 = -2.42 0.02 t415 = 0.38 0.70 

age t = -9.27 < 0.001 t415 = -2.37 0.02 t415 = -3.34 < 0.001 wingbar 
brightness origin    t176 = 1.60 0.11 t176 = 0.25 0.81 
 age:origin    t415 = 0.23 0.81 t415 = 2.19 0.03 

age t = 15.91 < 0.001 t415 = 3.55 < 0.001 t415 = 3.27 0.001 leg 
brightness origin    t176 = -0.79 0.43 t176 = -2.02 0.05 
 age:origin    t415 = -0.03 0.98 t415 = 2.86 0.005 
bill brightness age t = -1.85 0.06 t = -0.89 0.38 t = 0.19 0.85 
 origin    t = 1.20 0.23 t = -0.71 0.48 
 age:origin    t = -1.01 0.31 t = 0.58 0.56 

 

 a) 
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 b) 

 c) 
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 d) 

Fig. 2  Correlations between badge size (a), wingbar area (b), leg colour (c), and bill colour (d) 
and age of male House Sparrows.   
Open circles represent birds born in captivity, closed circles birds born in the wild.  We present 
estimates and 95% confidence intervals of linear mixed effect models of ornament in relation to 
age accounting for bird ID (and season for bill colour).  We also present sample sizes and 
significances for a t-test between captive and wild born birds for a given age and ornament (* p < 
0.05, *** p < 0.001) except for bill colour.  
We defined badge size, wingbar area and leg colour as the yearly means, and bill colour as 
seasonal values (as bill colour changes over the seasons).  Age was defined as true age for captive 
born birds and as minimum age for wild born birds.   

 

Interactive age and origin dependence of ornaments 

We found moderate effects of origin (born in captivity or in the wild) on badge size, 

wingbar conspicuousness, and leg colour (Table 5, Fig 2 a-d).  This was not the case 

in bill colour.  The observed effect was mainly due to stronger fluctuations in 

ornament elaboration in wild born birds.  This could have resulted from the fact that 

all wild born birds were the same age, and thus environmental influences were not 

levelled out. 
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Discussion 

In order to test the three original hypotheses (multiple messages, back-up signal, and 

unreliable signal hypothesis (Møller and Pomiankowski 1993)) about the function of 

multiple ornaments in an extended (i.e. in a male-female and male-male) context we 

studied four different (putative) ornamental signals in male House Sparrows:  badge 

size, wingbar area and brightness, bill colour, and leg colour.  We found that none of 

the ornaments was consistently correlated with any of the others.  In addition, we 

found that badge size and wingbar were related to body condition, but not bill and leg 

colour.  Except for leg colour, all ornaments were testosterone dependent, but clearly 

differed in the timing of dependency (i.e. relations in autumn, breeding season, or all 

seasons but breeding).  Additionally, all ornaments but bill colour were age dependent.  

Badge size, wingbar area, and leg colour were also weakly related to origin.  Overall, 

this suggests that all four traits have the potential to function as quality signals and 

that each of them as a whole could signal a different, albeit overlapping, aspect of 

male quality.   

Taken together, our results provide insight into the complexity of House Sparrow 

signalling because they demonstrate that male House Sparrows possess at least four 

ornamental traits that could function at providing information about phenotypic and 

age related quality.  House Sparrows have a highly social lifestyle (foraging flocks, 

colony breeding, roosting congregations) where a multifaceted communication and 

thus signalling system could facilitate the complex dynamics of frequent interactions 

among individuals (Anderson 2006), i.e. to help avoid conflicts and to improve mate 

choice.  Badge size has previously been suggested to signal social status, overall 

fighting success, age, variation in sexual behaviour, and (maximal) testosterone levels, 

and thus to play a role in male-male interactions as well as for female mate choice 

(Møller 1987; Møller 1990; Veiga 1993; Evans et al. 2000; Buchanan et al. 2001; 

Gonzalez et al. 2001; Liker and Barta 2001; McGraw et al. 2003; Bókony et al. 2006; 

Nakagawa et al. 2007; Morrison et al. 2008; Laucht et al. 2011).  Our results are in 

accordance with this.  A different aspect of testosterone and age related behaviour and 

quality (this study) is conveyed by wingbar conspicuousness that has previously been 

suggested to signal defence success, body condition, and parasite resistance (Poston et 

al. 2005; Bókony et al. 2006; Moreno-Rueda 2010).  In contrast, bill colour 
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potentially does not signal quality, but testosterone related behavioural strategies and 

readiness to breed (Laucht et al. 2010).  In addition to age signalling integrated into 

these ornaments, leg colour might be a true signal of age, although more research is 

needed.  These findings demonstrate support for the hypothesis that multiple 

ornaments can play a role as armaments and ornaments (Berglund et al. 1996) and be 

addressed to multiple receivers (i.e. mates and rivals) (Andersson et al. 2002).  

However, the actual function as a signal and the addressing of one or multiple 

receivers still remains to be tested.  

Three of the four studied ornaments were relatively strongly related to age.  Age has 

often been argued to influence aspects of quality and/or status (i.e. older males are in 

better condition and attain higher status) (Ketterson 1979; Cucco and Malacarne 1999; 

Komdeur et al. 2005; e.g. Delhey and Kempenaers 2006; Nakagawa et al. 2007; 

Nakagawa and Burke 2008; Botero et al. 2009; Galván and Møller 2009).  This could 

apply for badge size and wingbar area that both most likely signal age integrated into 

quality or status.  However, House Sparrows seem to also signal true age via leg 

colour and another ornament –the black eye mask (Nakagawa and Burke 2008).  This 

suggests that it could be potentially beneficial for an individual male to signal true age 

in addition to the interaction of age and condition or status (Nakagawa and Burke 

2008).  This could be especially important in the context of mate choice when females 

choose mates of certain age classes.  The benefits and disadvantages of mating with 

an older (as opposed to very old) partner have been discussed widely (Manning 1985; 

Kokko 1997; Kokko 1998; Brooks and Kemp 2001).  In general, when trading off 

advantages and disadvantages (for a detailed list see Brooks and Kemp 2001) it seems 

likely that benefits of choosing older mates are context dependent (such as stability of 

the environment, spread of diseases, etc.).  If this is true, a female could disentangle 

different age effects and decide context dependently for an older or a younger mate if 

male ornaments did not only signal quality but also true age.  However, so far, in 

House Sparrows it has been only found that reproductive success increased with age 

(Hatch and Westneat 2007), but context dependent choice of older males has not been 

examined yet.   

For three ornaments, badge size wingbar area and leg colour, we found a weak effect 

of origin (i.e. captive or wild born) at different age classes.  This was mainly due to 
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stronger fluctuations in ornament elaboration in wild born birds.  One reason for this 

could have been that all wild born birds were caught at the same time and thus were in 

the same age class throughout the study.  In contrast, captive born birds were born in 

different years and thus not in the same age classes throughout the study.  Therefore, 

effects other than age were more levelled out in captive born birds and could have 

thus led to fluctuations in wild born birds.  Though housing conditions were the same 

over all years, other environmental conditions such as temperature, sun light, or 

humidity could have changed.  In addition, the social environment for single 

individuals was not the same each year.  Therefore, environmental factors could have 

had differently strong influences on ornamentation in different years and led to 

fluctuations.  Taken together, this suggests that recent condition is more important for 

ornamentation rather than early developmental condition.   

Ignoring the observed age-relationships for a moment, our results generally support 

the multiple messages hypothesis (Møller and Pomiankowski 1993; Candolin 2003) 

because the four ornaments did not correlate with each other and they co-varied 

differentially with our condition parameters and testosterone measures.  For support 

of the back-up signal hypothesis we would have expected inter-correlations between 

ornaments and relationships with similar quality parameters, while for the unreliable 

signal hypothesis we would have expected no inter-correlations and no relationships 

with the condition measures (Møller and Pomiankowski 1993; Candolin 2003).  This 

conclusion is in accordance with previous studies on House Sparrow ornamentation 

that have suggested that badge size and wingbar conspicuousness as well as badge 

size and bill colour were multiple messages (Bókony et al. 2006; Laucht et al. 2010).  

However when we take the age relationship into consideration it is more challenging 

to unequivocally categorize multiple ornaments in House Sparrows.  This is because 

several ornaments were related to age in a similar way suggesting that they could 

function as back-up signals of age and age related qualities.  Therefore, the strict 

separation of multiple ornaments into one of these three alternative functions seems 

contrived.  

Instead, we suggest that all ornaments seem to signal different but overlapping aspects 

of quality.  Similarly, a study on Great Tit (Parus major) song found that song as a 

multidimensional signal was signalling multiple and back-up information (Rivera-
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Gutierrez et al. 2010) suggesting that the phenomenon observed in the House Sparrow 

might be more general.  This means that quality signals, and potentially others as well, 

rather lie on a spectrum revealing varying degrees of varying types of information 

instead of in one of three categories (along the lines of the three hypotheses).  

Therefore, multiple ornaments are better described as a continuum between different 

classes or in context dependent classifications.   

In summary, we found badge size, wingbar area, bill and leg colour of male House 

Sparrows to have potential for functioning as both multiple messages of various 

qualities and back-up messages of age.  Overall, our results provide strong evidence 

for the signalling importance of multiple ornaments in birds (Calkins and Burley 2003; 

Doucet and Montgomerie 2003; Jawor et al. 2003; Jawor et al. 2004; Hegyi et al. 

2007; Karubian 2008; Reudink et al. 2009).  However our powerful analysis provides 

a significant challenge to the notion that multiple ornaments can be empirically 

classified into simple categories such as multiple, back-up, and unreliable signals. 
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The effects of intra-flock variability in badge size on ornament 

development in male House Sparrows, Passer domesticus 

Silke Laucht, Bart Kempenaers, James Dale  

Abstract 

To better comprehend the signalling content of ornamental signals of quality, it is crucial to 

understand the underlying mechanisms that influence ornament development.  Environmental 

conditions are especially known to affect quality signals, because the environment is strongly 

expected to impact overall phenotypic condition.  However, among many different environmental 

factors that affect ornaments, the social environment (i.e. the composition of individuals a focal 

animal interacts with) has been largely neglected in research on ornamental signals of quality.  

The social environment is especially expected to play a strong role on the development of status-

related signals, because status is a relative phenotype and thus highly dependent on the 

composition of an individual’s competition.  Here, we investigated the role of the social 

environment on the development of badge size in moulting male House Sparrows (Passer 

domesticus).  House Sparrow badges are testosterone dependent ornaments that are typically 

argued to be “badges of status” – all-purpose signals of dominance and aggression.  We 

experimentally manipulated the composition of individuals in groups by creating groups with 

similarly sized badges (i.e. presumably high social instability) or variable badges (i.e. presumably 

low social instability).  We tested the effect of this treatment on the individuals’ new badges, and 

we predicted in groups with similarly sized badges both (1) larger changes (on average) between 

pre- and post-moult badge and (2) increases in between-individual variation.  We found support 

for prediction 1 in one year of three years and no support for prediction 2.  We provide possible 

reasons why we found inconsistent patterns between years, and we conclude that the social 

environment can have an influence on ornament development, albeit a complex one.  More 

research on this particularly poorly known area of honest signalling is badly needed. 
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Introduction 

In the broad sense, ornamental signals of quality can potentially provide information 

about various components of overall genetic and phenotypic constitution (such as 

good genes, physical condition, freedom from disease, parental care abilities and 

social status) (Dale 2006).  However, to better resolve a signal’s specific information 

content it is critical to understand the various factors that influence signal 

development.  All phenotypic development is determined by genetic and 

environmental parameters to varying degrees, and in the case of signals of quality, 

environmental conditions are especially well known to largely affect their expression 

(Hill 2006).  This is presumably because “quality” or overall constitution is generally 

expected to be largely environmentally dependent.  Using plumage colour of birds as 

a model, Hill (2006) described four broad classes of environmental factors that can 

influence quality signals: (1) pigment access, (2) nutritional condition, (3) parasites, 

and (4) social environment.  While the former three have been largely studied in a 

variety of different bird species, to date very little is known about the influence of the 

social environment on ornament elaboration (Hill 2006).   

Hill (2006) further described three major pathways how the social environment can 

influence ornamentation: (1) competition for food and thus access to important 

nutrients, (2) effects of parasites exchanged between group members, and (3) effects 

of agonistic interactions on hormone levels.  So far, most research has focused on the 

effects of the agonistic behaviour on hormone levels of group members.  There is a 

complex interplay between hormones and aggression, where hormone levels are 

known to affect aggression, while the outcome of aggressive interactions in turn can 

strongly affect hormone levels.  For example, under the “Challenge Hypothesis” 

(Wingfield et al. 1990) circulating testosterone levels are activationally increased 

above baseline levels during agonistic interactions.  In addition, the outcome of earlier 

contests can influence hormone levels which then influence the outcome of later 

interactions, so-called “winner-loser” effects (e.g. Oyegbile and Marler 2005).  In 

unstable social groups, increased aggression might occur regularly and thus should 

consequently affect testosterone related ornaments during their development 

(McGraw et al. 2003).  In agreement with this, it was found in male Mandrills 

(Mandrillus sphinx) and Red Junglefowl (Gallus gallus) that ornaments were related 
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to social rank within groups and circulating androgen levels at the same time (Parker 

et al. 2002; Setchell et al. 2008).  Additionally, a study on House Sparrows (Passer 

domesticus) suggested that the size of the black breast patch – a male status signal – 

increased more in beta males that experienced higher aggression during moult 

(McGraw et al. 2003).   

The above empirical examples involve aggression related “badges of status” traits 

which are strongly testosterone dependent and generally thought to indicate aspects of 

fighting ability, willingness to take risks and age related status (reviewed in Jawor and 

Breitwisch 2003; Tibbetts and Dale 2004).  In general, such types of status related 

signals should make good candidates for indicators that are strongly influenced by 

conditions of the social environment because status is basically a relative 

characteristic of an individual.  That is, social status is determined not just by absolute 

phenotypic characteristics such as health and physical condition, but also by relative 

traits such as how good you fair against the current competition.  For example, a male 

with an average ornament competing in a group comprised of below average 

individuals is of relatively higher quality than he would be in a group comprised of 

above-average individuals.  As such, one could in theory manipulate the relative 

quality of individuals simply by re-organizing the ornamental phenotypic variability 

of the population.  To date, no study has manipulated the actual spectrum of 

ornamentation in group members that individuals interact with, and then evaluated 

how this affected subsequent ornament development.    

In this study, we experimentally tested the influence of the social environment (as 

determined by group ornament distribution) on badge size in House Sparrows (Passer 

domesticus).  House Sparrows are well suited for testing the effects of social 

parameters on phenotypes because of their highly social lifestyle with foraging flocks, 

breeding colonies, and roosting congregations (Anderson 2006).  In addition, the size 

of the black breast bib or badge has been widely studied and is commonly accepted as 

an all-purpose badge of status (Møller 1987a; Møller 1987b; Veiga 1995; Hein et al. 

2003).  As mentioned earlier, McGraw et al. (2003) have demonstrated that the 

amount of aggression within groups during the annual moult had a positive effect on 

the size of the moulted badge.  Additionally, across various studies badge size has 

been found to correlate with overall fighting success, age, and testosterone levels 
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(Møller 1987b; Møller 1990; Veiga 1993; Evans et al. 2000; Buchanan et al. 2001; 

Gonzalez et al. 2001; Liker and Barta 2001; McGraw et al. 2003; Bókony et al. 2006; 

Nakagawa et al. 2007; Morrison et al. 2008; Laucht et al. 2011).   

 

Fig. 1  Examples of the two treatment groups:  a) uniform badges group, large badges, b) uniform 
badges group, small badges, and c) variable badges group 

Over three annual moults, we monitored a large captive population of male House 

Sparrows (>117 individuals per year), kept in flocks of 6 to 10 individuals in large 

semi-outdoor aviaries.  In each flock, we manipulated group composition of badge 

sizes just prior to each annual moult and then examined its effects on post-moult 

badge size.  We created two different treatment groups: birds of the first treatment 

group shared an aviary with only individuals with similarly sized badges (see Fig 1 a 

and b; hereafter “uniform” badges).  Birds of the second group shared an aviary with 

individuals with badge sizes in a continuum from large to small (see Fig 1 c, hereafter 

“variable” badges).  We reasoned that in uniform groups, individuals would be 

competing with relatively similar rivals with respect to badge related qualities 

(Maynard Smith and Harper 1988; Jawor and Breitwisch 2003; Tibbetts and Dale 

2004; Tibbetts and Safran 2009).  In contrast, individuals in variable groups would be 
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competing with relatively dissimilar rivals with respect to badge related qualities.  

Thus, a small-badged male in a uniform group, for example, would be more likely to 

increase in relative quality than a small-badged male in a variable group (who would 

be competing mostly with larger-badged individuals).  Therefore, from the 

perspective of any individual in the experiment, relative (badge related) quality is 

expected on average to change more for individuals in uniform groups.   

Based on the reasoning outlined above we made two a priori predictions about the 

effect of our treatment on the new badges males moulted into.  First, we predicted that 

birds in the uniform groups would have on average stronger changes in their badges, 

while birds in the variable groups should not change badge size as dramatically (see 

above).  Second, we predicted as a consequence of this, an increase in between-

individual differences in badge size in uniform groups.  To test these predictions we 

need to control for regression toward the mean, where we generally expect larger 

changes, in opposite directions, in birds at either ends of the continuum.  Thus, 

irrespective of treatment, individuals with a small pre-moult badge will tend to 

increase badge size while individuals with a large pre-moult badge will tend to 

decrease badge size.  Thus, in our tests, we control for pre-moult conditions, and 

examine the slopes (i.e. interactions between treatment and pre-moult conditions). 

Using a large captive population, three different years, a suitable signal, and two 

treatment groups we created a powerful setup to test the effects of group composition 

(i.e. social environment) on ornament development.  Note that in this experiment we 

do not monitor individual-level changes in dominance, behaviour or hormone levels.  

Although such data would be extremely insightful, for the scale involved in this 

experiment we did not have the resources required to measure such variables 

accurately during the short time frame available of annual moult.  Moreover, accurate 

assessment of hormone levels are difficult at this time of year because they are 

particularly low (Laucht et al. 2010), point-samples of hormones offer very limited 

measures of baseline T-levels (Laucht et al. 2010), and we wanted to leave the birds 

relatively undisturbed and free to interact in their social groups.  Thus, instead of 

getting detailed data on each individual, we elected to pursue a large-scale 

manipulation powerful enough to detect broad scale population-level changes based 
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on two logically derived predictions based on current views of status related 

ornaments. 

Material and Methods 

Study population 

We studied a population of 169 captive male House Sparrows held at the Max Planck 

Institute for Ornithology, Seewiesen, Germany.  At the time of study, all birds were 

after hatching year.  They were either caught in rural areas in Bavaria, Germany 

(under license: permit nr. 55.1-8642.3-3-2006 of the “Regierung Oberbayern”, with 

several extensions) and held in captivity for at least 8 months (n = 139) or raised in 

captivity (n = 30).  We kept birds in groups of varying sizes (see below) in aviaries of 

size 1.2 x 2.0 x 4.0 m equipped with perches, nest boxes and big branches.  At all 

times, the birds had ad libitum access to food, drinking and bathing water, and sand 

for dust-bathing.  The light-dark cycle and temperatures in the aviaries were close to 

natural conditions, as the aviaries were semi-outdoor with one side enclosed only by 

chicken wire.  The sides towards neighbouring aviaries were covered with hessian to 

prevent interactions with non-group members.  Further details about our study 

population can be found in Laucht et al (2010).   

Experimental procedures 

We performed each experiment during annual moult in three different years (2006, 

2007, and 2009) with roughly the same birds in each year (some birds were born later 

and some birds died of natural causes before the end of the study).  Prior to each 

experiment we scored male badge sizes with digital photography (see below) and used 

these scores to assign individuals to treatments and groups.  In groups with uniform 

badges individuals had relatively similarly sized badges; in groups with variable 

badges individuals had a diverse range of badges from small to large (e.g. see Fig. 1).  

To assign males to groups, male badge scores were ranked, and then individuals were 

assigned randomly to either the uniform or variable treatment, such that the mean and 

variance of badge sizes were similar across each treatment.  Males were then 

randomly assigned into new social groups (i.e. aviaries), and we made sure new 
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groups were comprised of males that had not been housed together in the same aviary 

previously.  Group sizes in each aviary were six in 2006, ten in 2007, and seven to 

eight in 2009.  In 2006 and 2009, birds were moved into new groups just at the start of 

their annual moult (early August).  In 2007 birds were arranged into new groups about 

three weeks before their annual moult (mid-July).  In all years, birds were kept in their 

groups until long after the completion of moult at which point we scored the males’ 

new badge sizes.    

Determination of badge size 

In each year we took four pictures of the males’ black bibs prior to the experiment and 

then again after the completion of moult.  For each picture, we held the birds ventrally 

such that the throat and bib were stretched and presented to the camera (as in Fig 1).  

Between each photograph of the bib, the bird was rearranged into a different position.  

SL measured the size of the badge from the photographs by encircling and measuring 

the area of the bib in pixels using the program ImageJ 1.36b (Abramoff et al. 2004) 

and later converting it into cm2 using an area standard present in each photograph.  

For analyses we used the mean of the scores of each of the four photographs.  Using 

photographs taken at four different seasons in the course of one year, these 

measurements were highly repeatable within individuals (R = 0.943, estimated 

according to Falconer and Mackay (1996) from repeatability of single pictures).  See 

Laucht et al (2010) for additional details.   

Statistical analyses  

We performed all statistical analyses using R 2.11.0 (R Development Core Team 

2010; packages: nlme, RODBC) at the significance level α = 0.05.  Generally, for 

overall analyses, we used linear mixed effect models (lme) including year as a fixed 

effect and individual ID as a random factor to account for repeated sampling.  For 

analyses on single years (each individual was represented only once) we used linear 

models (lm).  When controlling for body condition, we fitted tarsus length and body 

mass in the model, because the use of residuals has been criticized (e.g. Green 2001; 

Freckleton 2002).  . 
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First we tested at the population level whether there was a general effect of treatment 

on badge size.  A priori, we did not expect any effect because individuals in both 

treatments are expected to express similar changes in badge size on average (it is the 

slopes that should differ – see below).  Thus for this analysis, we tested for a 

relationship between post-moult badge size and treatment after accounting for pre-

moult badge size and body condition in each year separately and in all years 

combined (individual ID included as random factor).  Using absolute or relative 

change in badge size instead of final badge size accounted for pre-moult badge size 

did not qualitatively change the results.  Including social group ID (i.e. aviary ID) as a 

random factor also did not qualitatively change the results.   

We tested our first prediction using linear mixed effect models of post-moult badge 

size in relation to the interaction of pre-moult badge size and treatment after 

accounting for body condition and with social group ID as random effect, both overall 

and in the three years separately.  This is the best way of testing the first prediction 

because we expect a high correlation between post-moult and pre-moult badge size, 

but with different slopes in the two treatment groups.  More specifically, in the 

uniform groups we expect a more-shallow slope of the post-moult badge versus pre-

moult badge regression.  This shallower slope should manifest from the stronger 

average changes in badge size in this treatment.  Note that for graphical presentation 

we used centred (i.e. yearly means subtracted from individual badges) and scaled 

(divided by the yearly standard deviation) post- and pre-moult badges to exclude 

confounding year effects.   

We tested our second prediction by examining post-moult group standard deviation 

(SD) of badge sizes in relation to treatment.  We a priori expected higher intra-flock 

variance of badge sizes in the uniform treatment groups after moult (i.e. an increase), 

but not in the variable treatment groups.  Again due to regression toward the mean, a 

key predictor of change in SD is expected to be pre-moult cage SD.  In this particular 

test, we expected an effect of treatment, but no significant interaction between 

treatment x pre-moult SD (i.e. we expected the model line fits to be parallel for each 

treatment, but higher (a greater post-moult SD) in the uniform groups).  We only 

performed this analysis on all years pooled together since, because group values are 

used, our power is too low to look for meaningful trends within-years.  Because of 
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this, each individual bird is included in the analysis up to three times.  However 

because group composition changed consistently from year to year and because we 

use group values as data points (not individual values) there is no pesudoreplication 

(i.e. each group is unique). 

Results   

First, we analyzed changes in badge size on the individual level for the whole 

population.  Badge size did not change differently in the two experimental groups:  

neither overall (lme:  t214 = -1.55, p = 0.123 after accounting for year and condition, 

random effect: bird ID) nor in single years (lm:  |t| < 1.66, p > 0.099).  This means that 

there were no overall population effects.   

To test prediction 1 we tested for an effect of the interaction of pre-moult badge size 

and treatment on post-moult badge size.  In all years pooled together there was no 

significant effect (Table 1), however in 2007 (but not in 2006 and 2009) there was a 

significant effect of treatment with the predicted shallower slope in the uniform 

groups (Fig. 2, Table 1).   

Third, as expected the change in intra-flock badge SD was strongly negatively related 

to pre-moult badge SD (lm:  t51 = -12.05, p < 0.001, after accounting for year, Fig 3a).  

Thus, groups with high pre-moult SD tended to have reductions in post-moult SD, 

while groups with low pre-moult SD tended to have increases in post-moult SD (i.e. 

regression toward the mean).  However there was no indication that experimental 

treatment had any additive impact on the nature of this relationship.  Then, we 

analyzed post-moult SD in relation to treatment after accounting for pre-moult SD 

(Fig. 3b).  As expected, the slopes of the relationship were similar between treatments 

after accounting for year (lm:  t49 = 0.69, p = 0.491 after accounting for year).  

Contrary to our prediction however, there was no effect overall for treatment (lm:  t50 

= 0.11, p = 0.914 after accounting for year).  
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Fig. 3  a) Delta (i.e. post-moult minus pre-moult) group standard deviation of badge sizes in 
relation to pre-moult group standard deviation in the two experimental groups in the three years 
combined.  b) Post-moult group standard deviation in relation to pre-moult group standard 
deviation in the two experimental groups in the three years combined.   
Closed circles and straight lines represent birds in the uniform-badges-treatment group, open 
circles and dashed lines represent birds in the variable badges treatment group.   

Discussion 

We expected that a uniform group composition would on average change an 

individual’s quality more (relative to its flock mates) than in variable badges groups.  

We predicted that this would be reflected in stronger changes in badge size and more 

intra-flock variability in uniform groups.  However, we found that in our two 

treatment groups badge sizes changed differently in only one of the three years.  In 

addition, between individual variation in badge size was not affected by treatment.  

Note that the analyses for group variation were not very powerful and new statistical 

methods such as double GLMs (D. Westneat personal communication) would be 

highly recommended for the future.  Overall, our results demonstrate that group 

composition of badge sizes during moult had only a weak effect on male 

ornamentation in House Sparrows.   

The above results suggest that either our treatment only weakly influenced levels of 

aggressive interactions and hence social environment or that there is no general effect 

of group composition on badge size.  Aggression during moult is generally low (Hahn 
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et al. 1992), and thus the manipulation of social environment might be hard to 

perform or might only cause weak effects.  In addition, we used large aviaries, where 

the birds could have had enough space to escape from each other and to establish 

social structures without much aggressive interactions.  However, group sizes were 

rather large (six to ten individuals) and close to the maximal capacity of these aviaries 

which led to massive interactions during breeding season (personal observations).   

Nevertheless, we did find a relatively clear significant effect in the predicted direction 

in 2007 (Fig 2b).  It is noteworthy that group sizes were larger in this year than in the 

other two years, which potentially led to more social interactions between flock mates.  

Additionally, in 2007, we started the experiment a few weeks before the onset of 

moult in contrast to the other two years when we formed the groups immediately 

before the beginning of moult.  (Note that the group sizes we used and the dates we 

formed the groups were largely dependent on other research protocols operating 

concurrently to this experiment).  Therefore in 2007, the birds placed in new groups 

still had presumably elevated testosterone levels and higher motivation to engage in 

aggressive interactions because testosterone levels do not drop until the onset of moult 

(Laucht et al 2010).  Moreover, it is unknown exactly when any physiological 

“programming” of badge size can or does occur.  It could be that a critical window of 

physiological and cellular badge size programming occurs in advance of the 

oncoming moult.  In 2007, it could have therefore been that this programming 

occurred after the males were placed in their new groups, but in 2006 and 2009 this 

programming had already occurred prior to new group formation.  If so, then this 

suggests that the social environment could indeed have a general effect on ornament 

development, but that the critical window for this effect to manifest occurs before 

moult rather than during moult.  

Our results differed from the only other study that examined social effects during 

moult on House Sparrow badge sizes (McGraw et al. 2003).  This study, which 

looked at the effects of aggression levels and dominance in triads of House Sparrows 

kept in cages, suggests clear effects of the social environment while our study 

suggests rather small carry-over effects from before moult.  These differences could 

be due to differences in the two experimental set-ups.  First, we used large aviaries as 

opposed to small cages.  Thus, escalated aggressive interactions in these small cages 
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could have led to a larger increase of testosterone.  Additionally, interactions could 

have been more severe because contestants could not escape from each other.  Second, 

McGraw et al. (2003) only found effects of social environment on badge sizes of beta 

males.  Because we did not score dominance ranks we cannot exclude the possibility 

that beta males in our groups had more pronounced effects on badge size changes.  

However, dominance structures in large groups are rarely linear (reviewed in 

Anderson 2006) suggesting that more than one bird per group should have been 

affected which we should have been able to observe with our set-ups.  Third and most 

importantly, McGraw et al. (2003) arranged groups of birds long before the onset of 

moult.  Therefore, the observed effect in their study could have easily resulted from 

social interactions occurring during a badge programming window that occurs prior to 

moult rather than during moult.  If so, then McGraw et al’s (2003) results would be in 

agreement with ours.   

To conclude, we found that group composition during moult had probably no direct 

influence on badge size.  However, social group composition in the period just before 

moult potentially had an effect.  Our results suggest the possibility of a critical 

“programming” window just prior to moult where social interactions contribute to 

future badge size.  Future research aimed at identifying the exact timing of when 

badge size is determined relative to moult would be extremely valuable.  The fact that 

there are so many unknowns here is testimony to the exploratory nature of this 

research and to how little we actually know about the mechanisms of ornament 

development in general. 
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Abstract 

It is poorly understood how different factors of the signalling system inter-play and ensure signal 

honesty with respect to individual quality.  The “testosterone handicap model” (THM) is probably 

the most widely accepted model to explain the honesty of testosterone (T) dependent signals of 

quality.  It posits inescapable physiological trade-offs between elevated T levels, the degree of 

ornament elaboration, and various physiological costs of T (especially immunosuppression and/or 

oxidative stress).  Putatively strong support for the THM has come from research on carotenoid 

based ornamentation.  Because carotenoids are assumed to be limited in availability, are required 

for signal development, and are thought to be immunoenhancers and powerful antioxidants they 

provide an intuitive mechanism whereby T related handicaps can manifest.  In this study we test 

three fundamental assumptions of the THM as applied to carotenoid based ornamentation:  (1) T is 

immunosuppressive, (2) carotenoids are immunoenhancing, and (3) T increases the bioavailability 

of carotenoids.  Unlike previous research, however, we test these assumptions using one species 

with a T dependent melanin based ornament (the House Sparrow, Passer domesticus), and one 

species with a non-T dependent carotenoid based ornament (the Red-billed Quelea, Quelea quelea 

quelea).  Although the predicted trade-offs in these species should also occur, we show that they 

do not; which raises the critical question of whether they can contribute to signal honesty in any 

species.  Our results strongly support the view that the observed effects of T on ornaments and 

various physiological processes are the adaptive outcome of selection on the signalling system, 

rather than proximate constraints which can maintain signal honesty. 
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Introduction 

Despite widespread animal ornamentation research over the past three decades, it is 

still very poorly understood how different factors of the signalling system inter-play 

and ensure signal honesty with respect to individual quality.  The fundamental 

assumption underlying the vast majority of research is that ornamental traits require 

inescapable costs (or handicaps) in order to remain honest indicators of quality 

(Zahavi 1975; Zahavi 1977; Grafen 1990; Johnstone and Norris 1993).  A great 

majority of studies about costly signals of quality have reasoned that signal honesty 

might be enforced through the “testosterone handicap model” (hereafter referred to as 

the THM) (Adkins-Regan 2005) which posits inescapable physiological trade-offs 

between elevated testosterone (T) levels, the degree of ornament elaboration, and 

various physiological costs of T – most notably decreased immune function and 

increased oxidative-stress (Folstad and Karter 1992; Wedekind and Folstad 1994; von 

Schantz et al. 1999; Poiani et al. 2000; McGraw and Ardia 2003; Alonso-Alvarez et al. 

2004; Mougeot et al. 2004; Owen-Ashley et al. 2004; Bertrand et al. 2006; Blas et al. 

2006; Alonso-Alvarez et al. 2007; McGraw and Ardia 2007; Mougeot et al. 2007; 

Peters 2007; Roberts et al. 2007; Alonso-Alvarez et al. 2008; Mougeot et al. 2009; 

Martínez-Padilla et al. 2010; Vinkler and Albrecht 2010).   

The THM has received particularly strong support in studies focused on carotenoid 

based T dependent ornaments.  Carotenoids are bioactive yellow-red pigments that 

need to be acquired from the diet (in vertebrates) and are also argued to have 

important immunoenhancing and anti-oxidant physiological functions (reviewed in 

Peters 2007).  Carotenoid based T dependent ornaments are hypothesized, under the 

THM, to therefore honestly signal the quality of the immune system and/or the ability 

to withstand oxidative stress to potential mates.  This view critically assumes that the 

costs that keep ornaments honest are physiological trade-offs stemming from limited 

carotenoid bioavailability:  carotenoids can either be used for signal elaboration or to 

physiologically buffer the immunosuppression and/or oxidative stress caused by 

elevated T levels (Peters 2007).  The ability to negotiate this trade-off is expected to 

be positively correlated with the degree of ornament elaboration.   
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Studies that have evaluated the THM in species with carotenoid based ornamentation 

typically test for (1) the T dependency of the ornament (e.g. Mougeot et al. 2007; 

Cassagrande 2010; Martínez-Padilla et al. 2010), (2) the immunosuppressive effect of 

T (e.g. Hasselquist et al. 1999; Duffy et al. 2000; Owen-Ashley et al. 2004), (3) a 

positive correlation between carotenoids and enhanced immune function and/or anti-

oxidant capacity (e.g. Alonso-Alvarez et al. 2004; McGraw and Klasing 2006; Biard 

et al. 2009), and (4) a T related increase of the bioavailability of carotenoids (e.g. Blas 

et al. 2006; McGraw et al. 2006; McGraw and Ardia 2007).  Support for any of these 

mechanistic predictions is usually taken as positive evidence that the ornament 

functions as an honest signal of immune system quality and/or the ability to withstand 

oxidative stress to choosy females (e.g. in Faivre et al. 2003).   

In this approach, the hypothesized function (inter-sexual signalling) is used to predict 

expected physiological mechanisms.  Although elegant, this approach is conceptually 

problematic because it is an example of “mechanistic just-so story-telling”:  the 

observed mechanisms are used to infer putative function (e.g. if there is a link 

between ornamentation and immune response, the ornament must therefore signal 

immune function to receivers (Faivre et al. 2003)).  Indeed, it is very rarely 

considered whether alternative costs for ornamentation are also consistent with the 

predicted mechanisms of the THM (Martin et al. 2006c).  For example, although a 

simple relationship between immune response and ornamentation is consistent with an 

inter-sexual immune signalling function, it is also predicted by signalling social 

dominance to competitive rivals (dominant individuals should have better immune 

systems (Hasselquist et al. 1999; Verhulst et al. 1999; Poiani et al. 2000; Roberts et al. 

2007)), or even traditional Zahavian-type handicaps such as advertising the ability to 

avoid predators (individuals with compromised immune systems should decrease their 

ornamentation because they are more vulnerable to predators (Møller and Erritzøe 

2000)).  Indeed all of the putative mechanistic links of the THM are consistent with 

multiple alternative signalling functions and costs for ornaments.  However, the THM 

does critically assume that the underlying mechanisms provide inescapable 

physiological constraints that ensure the signalling honesty of the ornament.  

Importantly, other functional hypotheses (such as signalling social dominance or 

predator-avoidance abilities) do not make this assumption - they instead argue that 
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these underlying mechanisms are byproducts (i.e. physiological adaptations) that are 

the consequences of (rather than constraints on) signalling function.   

In this study we test the THM by evaluating whether the underpinning physiological 

mechanisms are general.  That is, we test whether these mechanisms have the general 

potential to provide mechanistic constraints that can enforce honest signalling of 

immune function and/or oxidative stress per se.  Therefore, a counter-intuitive but 

strong test for the potential signal honesty via the THM is to evaluate these 

mechanisms in species that either (1) do not have carotenoid based ornaments or (2) 

do not have T dependent ornaments.  This approach removes one confounding factor 

(i.e. the carotenoid dependency or the T dependency of the ornament, respectively) of 

this complex inter-play in order to test for the generality of the required critical 

assumptions for signal honesty.  In the first case, for an ornament that is not 

carotenoid based, T should increase ornament elaboration as much as it suppresses the 

immune system/causes oxidative stress, and T should enhance carotenoid availability 

for the immune and anti-oxidant system (since carotenoids are not needed for the 

ornament).  In the second case, T should be immunosuppressive even though the 

ornament is not T dependent and T should enhance bioavailability of the carotenoids 

in order to buffer these immunosuppressive effects and oxidative stress.   

Here we evaluate these links between T, carotenoids, and immune function in one 

species with a T dependent but not carotenoid based ornament (the House Sparrow, 

Passer domesticus) and in one species with a carotenoid based ornament that is not T 

dependent (the Red-billed Quelea, Quelea quelea quelea).  We measured plasma T 

and carotenoid levels, ornamentation, and immune response in T and placebo-

implanted birds before and after two different immune challenges.  Both species have 

dynamic traits, their bill colours, that can change within a few days to weeks 

(Anderson 2006) and thus, respond faster to changes in underlying factors than 

plumage ornaments would.   

The House Sparrow has a melanin based bill colour that changes from a pale horn 

colour in non-breeding season to a black in the breeding season (Witschi and Woods 

1936; Laucht et al. 2010).  Outside the breeding season, variation in bill colour is 

strongly T dependent (Laucht et al. 2010).  The T bill colour relationship reaches a 
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plateau in peak breeding season (i.e. higher T levels do not increase coloration further, 

but are needed to maintain the coloration) when all males have dark bills.  We 

evaluated birds in breeding condition for the sexual selection context (Blas et al. 

2006), and to provide a maximally natural physiological T treatment to show maximal 

suppressive effects of T (Duffy et al. 2000).  This ensures our study captures all 

potential seasonal physiological cascades and mechanisms associated with the 

immune system, carotenoids and T, and in order to have comparable values to other 

studies (e.g. Poiani et al. 2000; Westneat et al. 2003; Blas et al. 2006; McGraw and 

Ardia 2007).   

The Red-billed Quelea has a carotenoid based red bill that is correlated to social 

dominances (Shawcross and Slater 1984) and phenotypic condition (Dale 2000).  Bill 

redness in this species is not T dependent, but rather estrogen inhibited  (Witschi 

1961).  Males maintain red bills all year round (despite massive seasonal fluctuations 

in T), whereas females only develop the red coloured bills in the non-breeding season 

when their ovaries are regressed (Witschi 1961; Owens and Short 1995).  Castrated 

males maintain their red bill colour, whereas ovariectomized females develop red bills 

(Witschi 1961; Owens and Short 1995).  Queleas do not have any known T dependent 

ornaments.   

In this study, we test three general predictions underlying the THM’s expected 

relationships between carotenoids, testosterone, and the immune system:  (1) T is 

immunosuppressive, (2) carotenoids are immunoenhancing, and (3) T increases the 

bioavailability of carotenoids.  Our reasoning is that since the THM assumes these 

relationships provide inescapable physiological constraints that enforce signal honesty, 

then they should occur independently of whether the ornament is carotenoid 

dependent (e.g. House Sparrow), or T dependent (e.g. Red-billed Quelea).  If, on the 

other hand, these relationships are not supported in these species, then this suggests 

that when they do occur in other species, they are best interpreted as physiological 

adaptations that are consequences of signal function, rather than mechanistic 

constraints that enforce signal honesty.  

To test these three general predictions we performed repeated measures of 

ornamentation and T levels in T- and placebo-implanted males.  We assessed immune 
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response by challenging birds with (1) PHA, and (2) LPS or PBS (as controls).  PHA 

(phytohaemagglutinin) injections are very widely used to assess a bird’s 

immunocompetence, and specifically they provide a multifaceted measure of 

cutaneous immune activity (Martin et al. 2006b).  LPS (lipopolysaccharides of a 

gram-negative bacterium) injections as immune challenges have recently become 

more common and induce an immediate inflammatory response and the production of 

specific antibodies within a few days (summarized in e.g. Bonneaud et al. 2003; 

Owen-Ashley et al. 2006).  We measured various immune parameters such as skin 

swelling after PHA, haematocrit, activity of natural antibodies and complement 

proteins, lysozyme concentration, haptoglobin concentration, total IgG antibodies, and 

specific LPS antibodies.  We assessed carotenoid levels by repeated samples of blood 

serum carotenoids.  In addition we also measured dietary intake, to see if carotenoid 

requirements were affecting the amount of food eaten.  For each general prediction, 

we performed multiple specific tests listed in Table 1. 

Table 1:  Summary of hypotheses and observations in our study. 

 

General Prediction Test Observation 

T is immunosuppressive negative effect of T implant on PHA skin swelling no effect 

  negative effect of T implant on immune measures no effect 

Carotenoids are 
immunoenhancing 

PHA response should be positively correlated with 
carotenoids 

no correlation 

 immune measure should be positively correlated with 
carotenoids 

no correlation 

 total carotenoids should decrease after immune 
challenge because they were used up 

observed, but differently 
in the two species 

  higher food intake after immune challenges to counteract 
usage of carotenoids 

stress- and sickness-
related lower intake 

T increases 
bioavailability of 
carotenoids 

positive relation between plasma carotenoids and T 
levels 

no relationship 

 negative effect of T implant and LPS challenge on 
carotenoids (2-way-interaction) 

no interaction 

 combined effect of implant, immune challenge and 
carotenoids on immune response (3-way-interaction) 

no interaction 

  higher food intake in T implanted birds to counteract 
usage of carotenoids 

no difference 
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Material and Methods 

Study population 

a) House Sparrows (Passer domesticus) 

We studied 34 randomly chosen male House Sparrows from our captive population 

held at the Max Planck Institute for Ornithology, Seewiesen, Germany (see Laucht et 

al. 2010).  All males were wild caught in rural areas in Bavaria, Germany (under 

license:  permit nr. 55.1-8642.3-3-2006 of the “Regierung Oberbayern”, with several 

extensions) and held in captivity for 28 months.  Before the experiment all individuals 

were kept in groups of five to ten in aviaries of size 1.2 x 2.0 x 4.0 m.  At all times, 

the birds had ad libitum access to food (wild seed mix for forest birds 

(Waldvogelfutter: RKW Sued, Universal Kraftfutterwerk, Kehl, Germany), sunflower 

seeds, crushed corn and wheat, oats, chicken starter, soybean meal extract, and 

mineral mix for birds), drinking and bathing water, and sand.  The light-dark cycle 

and temperatures in the aviaries were close to natural conditions, as the aviaries were 

semi-outdoor with one side enclosed only by chicken wire.   

b) Red-billed Queleas (Quelea quelea quelea)  

We studied 34 randomly chosen male Red-billed Queleas from our captive population 

held at the Max Planck Institute for Ornithology, Seewiesen, Germany.  The birds had 

been wild caught at unknown specific locations in Senegal and then transported to 

Germany for sale in the pet trade.  The birds had been at the institute for over two 

years prior to the experiment.  All birds were held in a single mixed-sexed group in an 

indoor/outdoor flight pen of size 7.0 x 2.5 x 14.7 m before the experiment (during the 

winter the birds were excluded from the outdoor portion of the enclosure; aviary size 

was then 7.0 x 2.5 x 3.7 m).  At all times, the birds had ad libitum access to food 

(tropical seed mixture (Supravit GmbH, Bruckmühl, Germany):  five different kinds 

of millet, 10% canary grass, 2% blackseed), drinking and bathing water.  In the 

indoor-aviary, the daily light dark cycle was maintained at 12:12, and the temperature 

was maintained at 24 ºC.  
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Experimental approach 

The experiment was performed in 2008 starting in May with the House Sparrows and 

August with the Queleas.  Three weeks prior to the experiment we moved the birds 

into cages of size 0.61 x 0.5 x 0.4 m for acclimatization.  Each bird was kept alone in 

one cage to facilitate experimental procedures and to avoid social modulation of T 

levels and ornaments.  However, since both species are social, we kept all 

experimental birds in the same room in such a way that each male could interact with 

another male (visually and acoustically) through a grid and with the rest of the males 

acoustically.  Each cage was equipped with three perches, food (as described above 

for each species), drinking water ad libitum, and bathing water twice a week.  Birds 

were exposed to natural light and temperature fluctuations at the times of year of their 

experiment.   

 
Fig. 1  Timeline of experiment  

Fig. 1 provides an overview of the experimental timeline.  On day zero, 14 and 28 of 

the experiment we caught all birds, took blood samples, photographs of the bill and 

measured body mass.  On day seven we implanted half of the birds (n = 17) with 

testosterone pellets (1.5 mg testosterone, 60 day release, Innovative Research of 
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America, Sarasota, Florida) and half of them (n = 17) with placebo pellets consisting 

of pure binding material (60 day release, Innovative Research of America, Sarasota, 

Florida) subcutaneously through a small incision on the upper back.  For more details 

on release rates of pellets and a comparison to silastic tubes see Fusani (2008).  The 

incision was sealed with VetGlu tissue adhesive (Heiland Vet GmbH, Germany).  On 

day 21 of the experiment, we measured the thickness of the right wing web with a 

metric mechanical thickness gage (model 304-196, The Dyer Company, Lancaster PA, 

USA) and injected 50 μg PHA (Lectin from Phaseolus vulgaris, L8754, Sigma-

Aldrich Co., Missouri, USA) diluted in 50 μl of PBS buffer on the same spot.  We 

used the simplified method without control injection of PBS in the other wing web as 

suggested by Smits et al. (1999) and supported by Martin II et al. (2006b).  After 24h 

(Martin et al. 2003; Biard et al. 2009) (day 22 of the experiment), we re-measured 

thickness of the wing web.  On day 35 of the experiment, we injected half of the T-

implanted (n = 9) and half of the placebo-implanted (n = 9) birds intraperitoneally 

with 0.001 mg LPS (Lipopolysaccharides from Salmonella enterica serotype 

typhimurium, L7261, Sigma-Aldrich Co., Missouri, USA) per gram body mass (i.e. 

0.028 mg for the House Sparrows and 0.018 mg for the Queleas) diluted in 0.1 ml 

PBS buffer.  The other halves of the birds were injected with the same amount of PBS 

buffer for control.  We took additional blood samples 24 hours (day 36), five (day 40) 

and ten (day 45) days after the LPS injection.  For logistical feasibility of the above 

procedures we divided all birds into two groups and staggered day 0 of the experiment 

by two days.  All treatments were evenly distributed among these two groups and 

among cages and neighbours.   

During blood sampling we always caught and bled birds at the same time of day in the 

afternoon, and in the same order to keep effects of stress and time since first starting 

to catch birds constant.  We took 150-200 μl of blood from the wing vein, collected 

the blood in 75-mm Na-heparinized micro haematocrit capillaries, and centrifuged it 

at 13,000 rpm for 3 min to separate the plasma.  Plasma was stored at -70 ºC.   

All experimental procedures were approved by the Ethical Committee of the 

government of Upper Bavaria (permit nr:  55.2-1-54-2531-118-07 of the “Regierung 

von Oberbayern”). 
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Determination of food intake 

We measured individual food intake two days of each week of the experiment.  On 

the first day the birds were unstressed, i.e. not captured for measurements.  At time 0, 

we cleaned all cages and equipped them with fresh paper on the floor, and weighed 

the amount of food that was provided.  After 24 hours we weighed the food that was 

remaining in the food dish and scattered uneaten on the cage floor, and calculated the 

difference between food weights as total intake.  We repeated the procedure on the 

second day, however on this day the birds were stressed at some point because of 

blood sampling, implanting or immune challenges.  So, each week we could compare 

food intake on a day they were unstressed and a day they were stressed.   

In addition, immediately after the LPS challenge we measured food intake daily for as 

many days needed for the birds to get back to pre-challenge levels of intake (three 

days for House Sparrows and four for Queleas).  

Determination of plasma T levels 

We measured T levels from blood samples taken on day zero, 14 and 28.  We 

determined plasma T levels via direct radio-immunoassay using testosterone 

antiserum T3-125 (Esoterix Endocrinology, Calabasas, CA, USA) following the 

protocols described in Goymann et al. (2002; 2006).  Cross reactivities of this 

antiserum are as follows:  testosterone 100%, 5a-dihydrotestosterone 44%, d-1-

testosterone 41%, d-1-dihydrotestosterone 18%, 5a-androstan-3b,17b-diol 3%, 4-

androsten-3b,17b-diol 2.5%, d-4-androstenedione 2%, 5b-androstan-3b,17b-diol 1.5%, 

estradiol 0.5%, and less than 0.2% with 23 other steroids tested.  Plasma samples were 

equilibrated with 1500 dpm of tritiated testosterone (Perkin Elmer, Wellesley, MA, 

USA) for the calculation of recoveries.  Mean + SD extraction efficiency for plasma T 

was 91 + 0.4 % for House Sparrows and 88 + 1.3 % for Queleas.  We measured 

standard curves and sample concentrations in duplicates and calculated them with 

Immunofit 3.0 (Beckman Inc., Fullerton, CA, USA) using a four parameter logistic 

curve fit.  We defined the lower detection limits of the standard curves as the first 

value outside the 95% confidence intervals for the zero standard (Bmax); it was 0.3 

(House Sparrow samples) and 0.4 pg/tube (Quelea samples).  The intra-assay 
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coefficient of variation was 6.9 % (determined from standard testosterone) and 7.7 %.  

The intra-extraction coefficient of variation of extracted plasma pools was 1.3 and 0.2 

%.  Because of the significant cross-reactions of the used testosterone antibodies with 

5a-dihydrotestosterone (44%) our T measurements may include a fraction of 5a-DHT.   

As the amount of time passed since first starting to catch the birds had a slight 

negative effect on T levels in House Sparrows (lme: t = -2.52, df = 67, p = 0.014, 

random effect bird ID) and as body mass had a slight positive effect in Queleas (lme 

after accounting for time since starting to capture: House Sparrows: t = 0.35, df = 66, 

p = 0.275; Queleas: t = 2.25, df = 64, p = 0.028; random effect: bird ID) we included 

time and body mass in the statistical models of both species. 

Determination of bill color 

Before starting the experiment and on days zero, 14, 21, 28, and 45 we photographed 

bill coloration under standardized flash-photography conditions with a Canon Power 

Shot S2 IS camera.  We took two photos of each House Sparrow’s right profile and 

one photo of each Quelea’s right profile, left profile and top of the head respectively 

(i.e. three photos of the bill in total).   

We quantified bill coloration in both species by measuring bill “brightness” on the 

HSB (i.e. hue, saturation, brightness) colour scale as measured with image processing 

software written into R 2.4.0 (R Development Core Team 2006).  Bill brightness is 

analogous to total reflectance and we have previously demonstrated this measure to be 

an intuitive quantification of House Sparrow bill colour variation (Laucht et al. 2010).  

In Queleas, brightness also best represented apparent colour variation because bill 

colour in this subspecies varies from very dark red to brighter orange.  Note that 

analyses on other measures of bill coloration in Queleas (i.e. hue, saturation, and PC1 

& PC2 of RGB scores) yielded qualitatively similar results to those we report here for 

brightness.  

On each photo, SL measured the brightness at five randomly chosen positions each on 

the upper bill, the lower bill and the gray colour background immediately adjacent to 

the bill (in the case of the top of the head Quelea photos, only the upper bill and grey 
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card were measured).  To standardize slight variation between photos, we calculated 

the mean gray card brightness of all photos, determined the deviation of the grey card 

brightness of a focal photo from this overall mean, and subtracted this deviation from 

the mean bill brightness for focal photo (for more details see Laucht et al. 2010).  For 

analyses, we used the total means of upper and lower brightness scores of the two or 

three photos for House Sparrows and Queleas respectively.  These measurements 

were highly repeatable within individuals (repeatability (Lessells and Boag 1987):  for 

House Sparrows: R = 0.805 + 0.025 (SE), p < 0.001, n = 2 x 204 for two pictures; for 

Queleas: R = 0.656 + 0.040 (SE), p < 0.001, n = 2 x 201 for two pictures).   

Determination of plasma carotenoid levels 

Whenever we took blood samples we collected some plasma for carotenoid analyses.  

We extracted plasma carotenoids according to the protocol for the ethanol-TBME 

extraction method described in McGraw et al. (2008).  In brief, solvent was added to 

the plasma, and after centrifugation evaporated to dryness with nitrogen.  Extracted 

carotenoids were immediately frozen and sent to Tempe, Arizona, USA for further 

analyses via high-performance liquid chromatography (McGraw et al. 2008).   

For both species, the different carotenoid measures (lutein, zeaxanthin, lutein cis 

isomers, and total carotenoids for House Sparrows; lutein, zeaxanthin, alpha-

doradexanthin, astaxanthin and total carotenoids for Queleas) were highly correlated 

(R > 0.512).  Therefore, we used total carotenoids for the analyses.  

As total carotenoids were slightly correlated with time passed since first starting to 

capture birds (lme: House Sparrows: t = 2.04, df = 169, p = 0.043; Queleas: t = -3.08, 

df = 150, p = 0.003; random effect: bird ID), we included time in the models. 

Determination of immune responses 

At various times of the experiment (Fig. 1) we measured haematocrit, activity of 

natural antibodies and complement proteins, lysozyme concentration, haptoglobin 

concentration, total IgG antibodies, and specific LPS antibodies (each described in 

more detail below).  Because results were very similar for single immune measures, 
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we also combined these different measures (after z-transformation) into a single 

immune-response index in order to facilitate detection of broad patterns. 

a) Haematocrit 

We measured this as the ratio of red blood cells to overall blood after centrifugation in 

the capillary tube.  

b) Activity of natural antibodies and complement proteins 

We used this measure as an estimation of constitutive immune defences (i.e. 

expressed at all times).  We followed the protocol by Matson et al. (2005), however 

scaled down to 15μl of plasma with the blood samples taken on day 28, 40 and 45 in 

the House Sparrows and on day 40 and 45 in the Queleas.  Natural antibody (Nab) 

titres and complement activity were scored as –log2 of the highest dilution exhibiting 

agglutination (Nab) or lysis (complement).  Samples in which no agglutination or no 

lysis was observed were scored as 0.  Samples with less than 15μl of plasma were not 

used in the assay.   

c) Lysozyme concentration 

We measured this with blood samples taken on day zero and 36 in House Sparrows 

and with the samples of day 28 and 36 in Queleas.  We followed the protocol of 

Millet et al. (2007), except we used 300 μl agar suspension and 15 μl of plasma per 

well.  Note that we excluded some samples because of too little plasma.   

d) Haptoglobin concentration 

We measured this with blood samples taken on day zero and 36 in House Sparrows 

and day 28 and 36 in Queleas.  We used a commercial haptoglobin test kit (TP-801, 

Tridelta Development Limited, Maynooth, Co. Kildare, Ireland).  Briefly, we 

measured peroxidase activity of haemoglobin that is directly proportional to the 

concentration of haptoglobin in the sample.  Concentration was determined via a 

standard curve and readings with a plate reader (VersaMax ELISA Microplate Reader, 

Molecular Devices, Inc., Sunnyvale, CA, USA) at 630 nm.   
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e) Total IgG and anti-LPS antibodies 

We measured this with blood samples taken on day 28, 40 and 45 (and day zero for 

some House Sparrow samples).  Note that we excluded some samples because of too 

little plasma.  We analyzed samples in Lund, Sweden.  Generally, we followed the 

protocol described in Westneat et al. (2003).  Briefly, we coated plates with donkey-

anti-chicken-IgG for total IgG antibodies and with rabbit-anti-redwing-LPS antibodies 

for specific LPS antibodies.  We diluted plasma samples 1:200 for LPS antibodies and 

1:400 for total IgG antibodies.  On each plate we ran duplicates of each sample and 

seven different dilutions of a known standard plus blanks for the calculation of the 

standard curve.  For analyses, we used the means of the calculated concentrations of 

the two duplicates of each sample.   

Statistical analyses  

We performed all statistical analyses using R 2.11.0 (R Development Core Team 

2010; packages: effects, gdata, lattice, lme4, nlme, RODBC) at the significance level 

α = 0.05.  To account for multiple measures of the same individuals we used linear 

mixed effect models (lme) with bird ID as a random effect.  When only one 

measurement per bird was needed we used linear models (lm).   

Unless indicated, results do not qualitatively change when analyzed with delta values 

(i.e. between the beginning of the experiment and the focal time point) for carotenoids, 

testosterone levels, bill color, or food intake.  Results also do not change when using 

food intake per unit body size.   

Results   

Effect of implants on T levels 

a) House Sparrows 

T levels were higher in T-implanted birds than in control birds (lme: p = 0, t = 6.72, df 

= 32, random effect: bird ID).  One week after implanting T levels of C birds ranged 

between 189 and 4938 pg/ml with a mean of 1051 pg/ml.  Thos of T birds ranged 
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between 3077 and 10760 pg/ml with a mean of 6722 pg/ml.  The natural range of our 

population was between 110 and 7260 pg/ml in a previous summer (Laucht et al. 

2010).   

b) Queleas 

T levels were higher in T-implanted birds than in control birds (lme: p = 0, t = 11.87, 

df = 31, random effect: bird ID).  One week after implanting T levels of C birds 

ranged between 95 and 1732 pg/ml with a mean of 510 pg/ml. Those of T birds 

ranged between 248 and 11840 pg/ml with a mean of 7296 pg/ml.  The natural range 

of our population was between 60 and 1900 pg/ml in a previous summer (unpublished 

data). 

Relationship of bill colour with testosterone, plasma carotenoids, and immune 

function 

a) House Sparrow 

Bill colour was not related to T levels in an overall model (lme: after accounting for 

time since capture and body mass t = 1.73, df = 65, p = 0.089, random effect: bird ID), 

but positively related to T levels when looking at T and placebo-implanted birds 

separately (lme: after accounting for time since capture and body mass t > 2.77, p < 

0.009, random effect: bird ID).  A positive relation means higher T levels were 

correlated with less black bills and is in the opposite direction to the expected 

relationship.  However, bill colour was not related to implant, LPS or PBS injection or 

the interaction of the two (t < 1.53, p > 0.135) indicating that the observed correlation 

between T and bill colour in summer (when all males have relatively dark bills) is 

very weak, and possibly spurious.  

Bill colour was not correlated with total carotenoids after controlling for time (lme: t 

= 0.36, df = 100, p = 0.722).  Bill colour did not change in relation to LPS challenge 

(lm: t = -1.06, df = 32, p = 0.297).  Similarly, bill colour was not related to immune 

response (lmer: z = -0.217, p = 0.828, random effects: bird ID, type of immune 

measure and experiment action; after accounting for T levels).   
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b) Queleas 

Bill colour was not correlated with T levels in an overall model (lme: after accounting 

for time since capture and body mass t = -1.44, df = 63, p = 0.156, random effects: 

bird ID) nor when splitting the data into T and placebo implanted birds (lme: after 

accounting for time since capture and body mass t < 1.05, p > 0.311, random effects: 

bird ID).  Bill colour was also not related to implant, LPS or PBS injection or the 

interaction of the two (|t| < 1.50, p > 0.145; using delta bill colour makes the 

interaction significant p = 0.045). 

Bill colour was not correlated with total carotenoids after controlling for time (lme: t 

= 1.03, df = 84, p = 0.308).  Bill colour did not change in relation to LPS challenge 

(lm: t = 1.50, df = 31, p = 0.145).  Bill colour was not related to immune response 

(lmer: z = -1.03, p = 0.305, random effects: bird ID, type of immune measure and 

experiment action; after accounting for time since capture and T levels).   

Prediction 1:  testosterone is immunosuppressive 

Table 2 provides details on the various immune responses measured in both species. 

a) House Sparrows 

Skin swelling after PHA injection was not correlated with implant or T level (after 

accounting for time since capture) (lm: |t| < 1.37, p > 0.180; Fig 2).  Overall immune 

response was not related to T levels (lme: t = 1.63, p = 0.103, df = 243, random effect: 

bird ID; after accounting for time since capture and body mass; Fig 2), nor to the 

interaction of implant and LPS/PBS injection (lme: t = -1.45, p = 0.157, df = 30, 

random effect: bird ID; after accounting for time since capture and body mass).   

b) Queleas 

Skin swelling after PHA injection was not correlated with implant or T level (after 

accounting for time since capture) (lm: |t| < 0.56, p > 0.577; Fig 2).  Overall immune 

response was not related to testosterone level (lme: t = -0.63, df = 178, p = 0.529, 

random effect: bird ID; after accounting for time since capture and body mass; Fig 2).  
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There was a significant marginal effect of the interaction of implant (testosterone or 

placebo) and LPS/PBS injection on immune response (lme: t = 2.01, df = 29, p = 

0.044, random effect: bird ID; after accounting for time since capture and body mass).   

 

Fig. 2  Effects of implants (C = placebo, T = testosterone) on PHA response and on other immune 
measures in a) House Sparrows and b) Red-billed Queleas 

Prediction 2:  carotenoids are immunoenhancing 

a) House Sparrows 

Total carotenoids were not related to body mass, tarsus length or the interaction of 

both after accounting for time (|t| < 0.60, p > 0.55).  PHA response was not related to 

total carotenoids (lm: after accounting for time since starting to capture birds: t = -

1.09, df = 31, p = 0.282, Fig 3).  Similarly, immune response was not related to total 
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carotenoids (lme: t = 0.43, df = 640, p = 0.67, random effect: bird ID; after accounting 

for type of immune measure, time since capture, and body mass, Fig 4).   

Total carotenoids did not change between before and after PHA injection, neither 

overall nor when splitting the data into T and placebo implanted birds (paired t-tests: 

|t| < 0.94, p > 0.36).  However, there was a significant decrease in total carotenoids in 

LPS injected birds (after controlling for time and implant) 24h after LPS injection 

(lme: t = -3.08, df = 50, p = 0.003, random effect: bird ID).  

Food intake after PHA injection was lower than before PHA injection (paired t-test: t 

= 3.06, df = 33, p-value = 0.004).  However, this could be only an effect of stress as 

food intake was lower when birds were stressed (t = -6.73, df = 237, p = 0).  There 

was an influence of LPS on food intake within 24h after LPS/PBS injection (t = 4.57, 

df = 31, p < 0.001), but not of implant or the interaction of implant and LPS/PBS (t < 

0.83, p > 0.415).  This effect disappeared after one day.  

 

Fig 3:  Relationship between total plasma carotenoids and PHA response in a) House Sparrows 
and b) Red-billed Queleas.  Black dots represent T-implanted birds; gray dots represent placebo-
implanted birds.  
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Fig 4:  Relationship between total plasma carotenoids and immune response in a) House Sparrows 
and b) Red-billed Queleas.  Black dots represent T-implanted birds; gray dots represent placebo-
implanted birds.  

b) Queleas 

Total carotenoids were not related to body mass, tarsus length or the interaction of 

both after accounting for time (|t| < 1.73, p > 0.093).  PHA response was not related to 

total carotenoids (lm: after accounting for time since starting to capture birds: t = 0.78, 

df = 31, p = 0.441, Fig 3).  There was a trend for a relationship between immune 

response and total carotenoids (lme: t = 1.66, df = 515, p = 0.097, random effect: bird 

ID; after accounting for type of immune measure, time since capture, and body mass, 

Fig 4).   

Total carotenoids were significantly lower after PHA injection than before, both, 

overall or when splitting the data into T and placebo implanted birds (paired t-tests: t 

< 2.21, p < 0.043).  However, there was a significant increase in total carotenoids in 

LPS injected birds (after controlling for time and implant) after LPS injection (lme: t 

= -3.08, df = 50, p = 0.003, random effect: bird ID) that is due to the low levels after 
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PHA test and that does not hold when comparing carotenoids after LPS injection and 

at the start of the experiment (t < 1.25, p > 0.240).  

Food intake after PHA injection was lower than before PHA injection (paired t-test: t 

= 5.54, df = 33, p < 0.001).  However, this could be only an effect of stress as food 

intake was lower when birds were stressed (t = -9.84, df = 334, p = 0).  There was an 

influence of LPS on food intake within 24h and 48h after LPS/PBS injection (t > 2.40, 

df = 31, p < 0.023), but not of implant or the interaction of implant and LPS/PBS (t < 

1.25, p > 0.221). This effect disappeared after two days.  

Prediction 3:  T increases bioavailability of carotenoids 

a) House Sparrows 

There was a trend for a negative correlation between total carotenoids and T levels 

after accounting for time in an overall model (lme: t = -1.98, df = 66, p = 0.052, 

random effects: bird ID, Fig 5), but this did not hold when splitting data into T and 

placebo-implanted birds (lme: |t| < 1.09, p > 0.21, random effects: bird ID).  Total 

carotenoids were also not related to implant, LPS/PBS injection or the interaction of 

both (|t| < 1.49, p > 0.146).   

Immune measures were not correlated with the three-way-interaction of implant, 

LPS/PBS injection, and total carotenoids (lme: after accounting for type of measure, 

time since capture and body mass: t = -0.96, df = 357, p = 0.336; random effect: bird 

ID).  

Food intake was not different in T than in C implanted birds (lme: t = 0.75, df = 32, p 

= 0.460, random effect: bird ID, Fig 5).   

b) Queleas 

There was a trend for a negative correlation between total carotenoids and T levels 

after accounting for time in an overall model (lme: t = -1.71, df = 64, p = 0.092, 

random effects: bird ID, Fig 5), but this did not hold when splitting data into T and 

placebo-implanted birds (lme: |t| < 0.93, p > 0.360, random effects: bird ID).  Total 
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carotenoids were also not related to implant, LPS/PBS injection or the interaction of 

both (|t| < 1.17, p > 0.244). 

Immune measures were not correlated with the three-way-interaction of implant, 

LPS/PBS injection, and total carotenoids (lme: after accounting for type of measure, 

time since capture and body mass: t = 0.64, df = 296, p = 0.522; random effect: bird 

ID).  

Food intake was not different in T than in C implanted birds (lme: t = 0.45, df = 32, p 

= 0.642, random effect: bird ID, Fig 5).   

 

Fig 5:  Effects of implants (C = placebo, T = testosterone) on testosterone levels, total plasma 
carotenoids, and food intake in a) House Sparrows and b) Red-billed Queleas.  

Discussion 

Our study, which is comprised of experimental T increases in two species (each with 

different mechanisms of ornament coloration), two forms of immune challenges, a 
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thorough arsenal of immunocompetence measures, and repeated measurements of 

ornament elaboration, plasma carotenoids and T levels, represents the most thorough 

test of the THM to date.  In brief, we found no support for any of the predictions 

about carotenoid, testosterone, and immune system interrelationships underlying 

testosterone handicap models of signal honesty (Table 1).  In particular, we first found 

no support for an immunosuppressive effect of T.  Second, we found no support for 

an immunoenhancing effect of carotenoids.  Third, and perhaps most surprisingly, we 

found absolutely no effect of increased T on the bioavailability of carotenoids in 

plasma.  Therefore, we can reject all three predictions.  We discuss the consequences 

of this below. 

First, there was no suggestion that T was immunosuppressive in House Sparrows or 

Queleas (Table 1) implying that the proposed immunosuppressive effect of T is not 

general.  Although this stands in contrast to many studies (e.g. Hasselquist et al. 1999; 

Duffy et al. 2000; Owen-Ashley et al. 2004) several others have also found that T is 

not immunosuppressive (Braude et al. 1999; Hasselquist et al. 1999; Westneat et al. 

2003; Roberts et al. 2004; McGraw and Ardia 2007; Garvin et al. 2008).  Taken 

together all this suggests that T is immunosuppressive only in certain circumstances, 

and that models that assume a general (i.e. constraining) immunosuppressive effect of 

T need to be reassessed.  We suggest that when T is immunosuppressive the 

immunosuppression is best viewed as an adaptive response to elevated T levels rather 

than as a potential honesty enforcing constraint on T dependent ornaments – i.e. that 

the elevated T effectively functions as an internal signal that modulates investment 

into various physiological processes.  In agreement with this hypothesis several other 

studies testing costs of elevated T levels have also found only minor modulations of 

physiological processes that are best seen as flexible adaptations rather than 

constraints.  Along this line, the findings that suppression of one immune parameter is 

not necessarily an indication of an overall suppression of the immune system or a 

general trade-off with other physiological functions (Adamo 2004), and that resources 

within the immune system are rather redistributed (Braude et al. 1999; Martin et al. 

2006c; Garvin et al. 2008) do not suggest that T is generally immunosuppressive but 

rather that these are special circumstances and signs of flexible adaptations.  This is 

additionally supported by effects of environment (Buehler et al. 2009; Martínez-

Padilla et al. 2010), captivity (Kuhlman and Martin 2010), or season (Martin et al. 
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2006a; Owen-Ashley and Wingfield 2006) that should not exist if T was generally 

immunosuppressive.   

Second, our study provides little support for an immunoenhancing effect of 

carotenoids.  Although we did observe decreases in carotenoid levels after immune 

challenges (Table 1), these decreases were rather small and they occurred 

inconsistently (i.e. after LPS injection in the House Sparrows and after PHA injection 

in the Queleas).  For most of the tests we conducted, there was no relationship 

between carotenoid levels and immunocompetence.  Although we did not test for an 

enhancement of the anti-oxidant capacity by carotenoids per se, it is generally argued 

that the immune system and anti-oxidant system are coupled (Alonso-Alvarez et al. 

2008).  Indeed, the immunoenhancing function of carotenoids is suggested to work 

via anti-oxidation processes because the activation of immune cells and killing of 

pathogens produces reactive oxygen species (ROS) that cause oxidative stress (Chew 

and Park 2004).  Considering the widely assumed generality of the immunoenhancing 

properties of carotenoids, then immunoenhancement in both our study species was 

strongly predicted (e.g. Alonso-Alvarez et al. 2004; McGraw and Klasing 2006; Biard 

et al. 2009).  However, we found no clear relationships between immune response and 

carotenoid levels, suggesting they do not function generally as immunoenhancers 

and/or anti-oxidants (Pérez-Rodríguez 2009).   

One reason why carotenoids did not function as immunoenhancers in this study is that 

carotenoid availability might not be particularly limited in our two species, and so no 

trade-offs occur between immunoenhancement/anti-oxidant function and other 

functions (such as signalling).  Indeed, this could be the case in Queleas, where Dale 

(2000) demonstrated that a high degree of intraspecific variation in carotenoid based 

plumage coloration was not related to male quality.  Therefore it seems likely that the 

carotenoids required for plumage in Queleas are not limited (note that this is not 

necessarily the case for Quelea bill coloration, which probably requires considerably 

higher amounts of carotenoids than plumage).  However, this situation is improbable 

in House Sparrows, because plasma carotenoid levels are low compared to other 

species (e.g. ~25% to 50% of levels in Zebra Finches, Taeniopygia guttata (McGraw 

et al. 2006), or Red-legged Partridges, Alectoris rufa (Blas et al. 2006), respectively).   
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Third, there was no indication that T is involved in the modulation of plasma 

carotenoids in our two species.  This result contrasts strongly with patterns in other 

species where there are clear increases of carotenoid bioavailability in response to T 

augmentation (e.g. Blas et al. 2006; McGraw et al. 2006; McGraw and Ardia 2007; 

Alonso-Alvarez et al. 2008).  Because our T implants caused considerably higher T 

levels, they should have had large effects on overall metabolism and increased 

oxidative stress.  If T is generally associated with increased oxidative stress, and 

decreased immune function, then we should have observed a change in carotenoids as 

a function of T.  Given that carotenoids did not have an immunoenhancing effect in 

our study species, that T was not immunosuppressive, and that in House Sparrows 

there is no carotenoid based ornament and in Queleas the carotenoid ornament is not 

T dependent, we propose that there is no need to increase the bioavailability of 

carotenoids in response to elevated T in these two species.  We conclude that other 

species demonstrate an increase in plasma carotenoids in response to T augmentation 

because of a need to modulate the elaboration of T dependent carotenoid based 

ornaments, rather than to negotiate immunosuppression/oxidative stress per se. 

A fundamental question that is raised by our study is why are House Sparrows and 

Red-billed Queleas different from other species that have been looked at so far?  In 

particular, Zebra Finches and Red-legged Partridges provide strong contrasts because 

in these species, much clearer links occur between T levels, carotenoids, the 

immune/anti-oxidation systems and ornamentation.  This question represents a 

considerable challenge for future research to address.  However, in general, we 

contend that interspecific differences in the physiological processes that underlie 

ornament development will be the outcome of selection for different mechanisms that 

facilitate and/or optimize signalling different kinds of information.  That is, we view 

different mechanisms as the product of differences in the evolved function of the 

ornament.  This view contrasts strongly with much of the contemporary research on 

ornamentation, where mechanisms are instead often used to infer function.   

In order to understand the complexities of any mechanisms of signal development, we 

need a thorough understanding of the social function of the signal.  Integrative 

biology research typically assumes that ornaments function as costly sexually selected 

indicators of overall genetic and phenotypic quality directed towards females during 
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mate choice.  However, support for this assumption is rarely provided and alternative 

signalling functions are rarely considered.  Indeed, in House Sparrows it is unlikely 

that variation in bill coloration is used in mate choice, given that during the breeding 

season there is virtually no variance in its expression (Laucht et al. 2010).  Given its 

strong seasonal dependency and threshold relationship with T, it is more likely that 

bill colour signals something to do with different behavioural strategies (Dale 2006) 

associated with being in non-breeding versus breeding condition (such as aggression, 

Laucht et al. 2010).  In Queleas, it is also unlikely that variance in bill coloration is 

particularly important during mate choice given that females also develop red bills 

only during the non-breeding season, when competition for limited food resources is 

very high.  Even Zebra Finches and Red-legged Partridges have mating systems 

where sexual selection is not expected to be particularly strong: monogamy with long-

term pair bonds.  In Zebra Finches, demonstrating a strong mate choice for redder 

bills (let alone a benefit to females for having such preferences) has been notoriously 

difficult (Sullivan 1994; Balzer and Williams 1998; Forstmeier and Birkhead 2004) in 

comparison to other systems.  In Red-legged Partridges, we are unaware of any 

research directed towards understanding the social contexts and decision making 

influences their carotenoid based ornaments are used for.  Considering the current 

state of knowledge, we argue that it is just as likely that these ornaments signal 

aggression and dominance to competitive rivals as it is that they signal quality of the 

immune/anti-oxidation system to potential mates.  Indeed, in Zebra Finches, Ardia et 

al. (2010) have recently demonstrated that a short term exposure to T produces a rapid 

change in bill colour and dominance.  Moreover, the ornaments of Red-legged 

Partridges are deliberately displayed to rivals during aggressive interactions (Cramp 

and Simmons 1977-1994) suggesting a prominent role for them as signals used during 

competitive interactions.  

In summary, none of the three general predictions was supported by our study.  Since 

the assumptions of the THM need to be of a general nature (i.e. provide unavoidable 

costs of ornamentation), we expected them to apply to all species.  However, our 

results demonstrate rather that these three assumptions are species and/or situation 

specific.  As such they suggest that they are evolutionarily dynamic, and therefore 

avoidable as honesty-enforcing costs of ornamentation (i.e. in principle, easily 

cheatable).  Our study provides a broader window into alternative cost-bearing 
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mechanisms of honest signalling systems.  One possibility is enforcement via social 

costs according to the “badge of status hypothesis” (Maynard Smith and Harper 1988; 

Jawor and Breitwisch 2003; Tibbetts and Dale 2004).  Unlike the THM, social costs 

for ornamentation do not require cheatable physiological constraints to enforce signal 

honesty, but instead argue that physiological mechanisms function as fine-tuned 

adaptations which facilitate optimal signalling.  
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General Discussion 
_____________________________________________________________________ 

                

I have investigated a number of critical questions and assumptions of theories to 

explain the honesty of ornamental signals of quality.  I have used the House Sparrow 

as a model, and so these results have important implications for our understanding of 

the ecology and ornamentation of this species.  However House Sparrows also 

provide a generalized model system which can be extended to other species and other 

types of ornaments.  The key conclusions that can be drawn from this work are as 

follows.  

In chapters one and two I have demonstrated that House Sparrow plasma testosterone 

levels vary considerably in the course of the year.  Correlations between different 

seasons were absent or very weak.  Testosterone also varied considerably over the 

course of the day, with night time values being consistently higher than day time 

values.  I hypothesized that night time testosterone levels approach similar levels as 

an individual’s potential maximal levels.  I demonstrated that bill colour is strongly 

correlated to current testosterone levels, and I argued that bill colour has strong 

potential to function as a short-term signal of testosterone activated behaviours and 

strategies.  In contrast, I found that badge size was not related to day time testosterone 

levels, but was positively correlated with night time levels.  Badge size is therefore a 
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potential signal of maximal testosterone levels and related behaviours such as 

aggression.   

In chapter three I have investigated in detail some of the aspects of quality related 

information that badge size, bill colour, and wingbar area potentially signal.  I 

concluded that these traits can possibly function as signals of multiple messages of 

different testosterone related behaviours.  I also provided, for the first time, evidence 

for the potential signalling function of a previously unrecognized ornament –leg 

colour.  Leg colour appears to be strongly related to age and contrasts with badge size 

and wingbar area which are also correlated with age but in an interactive fashion with 

other physiological parameters.   

In the last two chapters I used an experimental approach to investigate the 

mechanisms of ornament development by manipulating the social environment and 

physiology.  In chapter four I demonstrated that the development of badge size is 

largely independent of group composition and thus of social environment during 

moult, although in one year there was an apparent effect of the inter-male variability 

in badge size on later badge development.  While my experiment yielded complex 

results, overall the patterns suggested the existence of a "programming window" for 

badge size already before the onset of moult.   

In chapter five I investigated the generalizability of three key assumptions of the 

“Testosterone Handicap Model” to explain the honesty of carotenoid based 

ornamental quality signals:  (1) testosterone is immunosuppressive, (2) carotenoids 

are immunoenhancing, and (3) testosterone increases the bioavailability of 

carotenoids.  Because of the very general nature of these assumptions, they provide 

inescapable physiological constraints that should occur independently of the 

carotenoid or testosterone dependence of the ornament.  Therefore, I tested them in 

one species with testosterone dependent carotenoid independent ornaments, the House 

Sparrow, and in one species with testosterone independent carotenoid dependent 

ornaments, the Red-billed Quelea.  I found that these assumptions were not supported.  

These challenging findings suggest that other explanations of signal honesty may 

therefore be more likely.   



Information content and testosterone dependence of animal signals  171

Variation in plasma testosterone levels 

Seasonal and probably also diel variation in hormone levels reflect the need and usage 

of these hormones to regulate different life history stages and physiology.  Indeed, 

and in agreement with other studies and other species (Dawson 1983; Wingfield et al. 

1990; Cockrem and Seddon 1994; Kellam et al. 2004; Anderson 2006; Jawor 2007), I 

found that House Sparrow plasma testosterone levels vary considerably in the course 

of the year and between seasons (chapter one).  In addition, plasma testosterone levels 

also differ between day and night (chapter two) and therefore fluctuate considerably 

over the 24 hour period as has been suggested for a variety of other species (see Table 

1 in chapter two).  Because high levels of hormones, especially testosterone, are 

linked with numerous physiological and behavioural costs (reviewed in Wingfield et 

al. 2001) hormone levels cannot be kept at maximum levels at all times.  The more 

efficient strategy is to flexibly adapt release rates.  This adaptation needs to be so 

plastic and quick that hormone levels can be modulated to stochastic short-term 

changes of the environment (including social environment) such as has been 

suggested for testosterone during agonistic interactions (Wingfield et al. 1990).   

As an important consequence, the high flexibility of release rates makes it extremely 

difficult to accurately measure (baseline) hormone levels.  Nevertheless, the common 

approach in behavioural ecology is to take one blood sample at one time point.  There 

are several good reasons for this:  small animals cannot be sampled multiply in short 

time intervals, and wild animals often cannot be recaptured.  Furthermore, it is 

commonly assumed that despite all this variation hormone levels at different time 

points are still correlated with each other and repeatable (Romero and Reed 2008).  

However, my research shows that day and night testosterone levels of the same 

individuals measured a few days apart were only weakly correlated (chapter two) 

invalidating the latter assumption in House Sparrows.  In addition, when comparing 

plasma testosterone levels across the four different seasons, I found only low 

correlations (chapter one).  This strongly suggests that testosterone levels at different 

seasons are either not correlated, or that environmental conditions mask these 

correlations. 
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Because I used captive birds in the same aviary set-up over all four seasons I greatly 

reduced the possibility that environmental conditions differently influenced 

individuals.  It is therefore more likely that individuals pursue different strategies 

concerning baseline and elevated testosterone levels in one season that are rather 

independent from strategies in a different season.  However, seasonal average or 

maximum levels could still be correlated.  Correlations of average testosterone levels 

in our House Sparrows population are likely because male bill colour is correlated 

between seasons (chapter one), and bill colour reflects an approximately 3.5-week 

running average of testosterone levels.  To test for a correlation between maximal 

testosterone levels, GnRH (gonadotropin releasing hormone) injections that cause a 

maximal release of testosterone would be useful (Wingfield and Farner 1993; Jawor et 

al. 2006).  GnRH induced maximal testosterone levels were highly repeatable in 

Dark-eyed Juncos (Junco hyemalis) whereas unchallenged testosterone levels were 

not (Jawor et al. 2006).  Taken together, this suggests that point samples of 

testosterone levels have only very limited value for the interpretation of running 

hormone levels.  Other methods such as GnRH induced testosterone levels might be 

more useful.   

The flexible release rates of testosterone and inconsistencies between different time 

points pose challenges for theories about testosterone dependent ornaments.  

Testosterone Handicap Models of signal honesty (see introduction) have assumed that 

testosterone levels - and hence honesty enforcing costs - are correlated between 

seasons.  More specifically, how can an ornament be developed via a testosterone 

dependent mechanism in one season and function as an honest signal of testosterone 

related traits (such as immunocompetence) in a different season?  Above all, when 

ornament elaboration takes place, testosterone levels are minimal (annual moult of 

plumage) (Wingfield et al. 1990; Hahn et al. 1992), even barely measurable in some 

species, and thus at this time putative honesty-enforcing costs linked with testosterone 

levels may be low or absent.  Therefore the required assumption of Testosterone 

Handicap Models does not hold (see above) and the link between ornaments, signal 

honesty and testosterone clearly needs revision.   
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Ornaments in House Sparrows 

House Sparrows have a number of ornaments.  In our captive population, I 

demonstrated that badge size, bill colour, wingbar size and leg colour could each 

potentially signal a different aspect of quality.  These qualities include testosterone 

related characters, body condition and age (all chapters, mainly chapter three).  

Synthesizing my results with those of other studies (e.g. Møller 1987; Bókony et al. 

2006; Nakagawa and Burke 2008) we can now argue that male House Sparrows have 

at least two potential signals of age (the black area around the eye and leg colour) and 

three potential signals of fighting ability, testosterone related behaviours and 

strategies (badge size, bill colour, and wingbar area) (Fig. 1).  However, the transition 

between signals of age and of testosterone related information is continuous, because 

some of the testosterone related ornaments (badge size and wingbar area) were also 

related to age, and because condition had an additional influence on some ornaments 

(badge size and wingbar area).  My data suggest that ornaments in general are 

correlated with multiple aspects of quality, with different ornaments having slightly 

different weightings for each aspect.  This makes sense, given the overall expectation 

of these traits to incur costs.  However, more research on receiver behaviour in 

response to variation in these putative signals is necessary.  

 
Fig. 1:  Ornaments of male House Sparrows.  Indicated are all known ornaments and their general 
function including the results of my dissertation.  This figure is adapted from Fig. 2 of the 
introduction.  
Drawing by Helga Gwinner.  
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In general, signals of age could be important in cases where young adults pursue 

different strategies than older birds, i.e. after the second adult moult (Lyon and 

Montgomerie 1986; Karubian 2002; Hatch and Westneat 2007; Karubian 2008).  

Different strategies could simply evolve when yearlings are less experienced and not 

able to defend themselves, their territories, or their mates as well as older birds, or 

when they are of inferior condition.  This has been studied extensively in the context 

of delayed plumage maturation, whose main function seems to be to reduce 

aggression of adults towards yearlings (summarized in Dale 2006).  House Sparrows 

do not have delayed plumage maturation per se, but they do show several continuous 

age related traits.  All ornaments combined could provide receivers with even more 

detailed information on age related status.  This could be essential in large feeding 

flocks (Ketterson 1979; Porter and Sealy 1982; Lyon and Montgomerie 1986).  In 

addition, age related ranks and strategies could be of importance during breeding 

given coloniality, no territoriality, multiple broods, facultative extra-pair matings, and 

facultative polygyny (Anderson 2006).   

In House Sparrows, badge size and wingbar conspicuousness potentially signal 

different aspects of fighting ability (Bókony et al. 2006).  Badge size and bill colour 

also signal different relationships with testosterone levels (maximal and average, 

respectively; chapter one and two).  In addition, bill colour is a dynamic ornament that 

can change within a few days to weeks and flexibly signal current states, whereas 

badge size and wingbar conspicuousness are fixed ornaments that signal the same 

information all year round.  Bill coloration most importantly is strongly related to 

breeding condition, and therefore presumably signals aspects of behaviours related to 

being in breeding state or not.  

Diverse signals of testosterone related behaviours and strategies, such as aggression 

and fighting abilities, are important to reduce serious agonistic interactions.  For 

example, if two contestants differ largely in their underlying abilities, both 

participants would be better off to avoid the violent conflict.  The assessment of 

testosterone dependent ornaments could reduce conflicts and minimize escalation 

because the inferior individual can quickly assess that he has no chance in winning 

and avoid injury or even death (Maynard Smith and Harper 1988; Jawor and 
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Breitwisch 2003; Tibbetts and Safran 2009).  Actual fights could then be reduced to 

situations where differences in ornaments are too small to be assessed at first glance.   

I have concentrated here on ornamentation in the context of male-male competition 

which is only one aspect of sexual selection and signals of quality.  Another important 

aspect of sexual selection and signals of quality is mate choice.  Especially the badge 

has been widely studied in this context.  It was found that males with larger badges 

were more engaged in communal displays and both forced and unforced extra-pair 

and within-pair copulations (Møller 1990), whereas males with smaller badges 

invested more in their current broods (Griffith 2000), were preferred as social fathers 

(Griffith et al. 1999) and were more likely to be polygynous (Griffith et al. 1999).  

However, being cuckolded was independent of badge size (Cordero et al. 1999; 

Whitekiller et al. 2000; Stewart et al. 2006).  In our population we have 

experimentally set up small breeding colonies, and have found that males with smaller 

badges were more likely to be polygynous and to gain extra-pair paternity (trend, S. 

Laucht, unpublished data).  Because findings between different studies and thus 

populations are inconsistent and because the badge is so far the only male ornament of 

House Sparrows studied in the context of mate choice it would be fruitful to examine 

more ornaments in the context of mate choice and to move from signals of status to 

signals of other qualities.   

Broadening the scope:  other species, other ornaments 

In the last chapter of my thesis I broadened the scope and moved from ornamentation 

and signal honesty in House Sparrows as a model system to other species, and I 

addressed the assumed generality of theories explaining signal honesty.  This study 

also represents a step from melanin based ornaments to carotenoid based ornaments.  

More specifically, I have tested several general assumptions of the Testosterone 

Handicap Model and its further developments to explain the honesty of testosterone 

dependent carotenoid based signals of quality.  Because of the very general nature of 

these assumptions, I expected them to provide inescapable physiological constraints 

that should occur independently of the carotenoid or testosterone dependence of the 

ornaments.  However, I found that none of them applied for House Sparrows (melanin 

based testosterone dependent ornament) and Red-billed Queleas (carotenoid based 



  General Discussion 176

testosterone independent ornament).  I showed that testosterone was not 

immunosuppressive, that carotenoids were not immunoenhancing, and that 

testosterone did not increase the bioavailability of carotenoids.  Taken together, this 

suggests that these generally accepted assumptions about signalling honesty might not 

be as general but rather species and/or situation specific (see discussion of chapter 

five).  The suggested physiological trade-offs therefore seem to be evolutionarily 

dynamic and for this reason unsuitable as honesty-enforcing costs of ornamentation 

(see discussion of chapter five).   

My results represent a challenge to the results and interpretation of other studies that 

have suggested support for some or all of these assumptions (see chapter five) and 

more importantly a challenge of current theories that posit a testosterone based cost to 

honest ornaments.  However, they also demonstrate that we are far from 

understanding signal honesty in animals, and that it is important to develop theories 

that can be tested in a variety of species and circumstances to prove their generality.   

If high testosterone levels do not cause costs via inescapable trade-offs but rather 

adaptive physiological changes, the question what keeps signals honest remains.  In 

the House Sparrow it is very likely that the honesty of testosterone related ornaments 

can be enforced via social costs of testosterone related behaviour via challenges by 

and defence against conspecifics (all chapters).  A main argument for this theory 

(known as the Badges of Status Hypothesis, see general introduction) is that there is 

no possibility to cheat, hence it is evolutionarily stable.  Furthermore, it is 

independent of mechanisms underlying ornament development which makes it 

applicable to a wide array of ornaments, assuring its generality.  The hypothesis is 

also in agreement with recent suggestions about the similarity of carotenoids and 

melanins (Griffith et al. 2006).  It has been suggested as an explanation for signal 

honesty in several other species (Rohwer 1975; McGraw 2004; Tibbetts and Safran 

2009) and might also be true for species that were studied in the context of the 

Immunocompetence Handicap Hypothesis such as Zebra Finches (Taeniopygia 

guttata) or Red-legged Partridges (Alectoris rufa) (see discussion of chapter five).  

However, the examination of social costs and a critical test of the badges of status 

hypothesis in different species are still needed before this hypothesis can be 
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considered as a generally applicable explanation for the honesty of testosterone 

related signals. 

In addition, the Badge of Status Hypothesis was created to only explain the honesty of 

signals of status, that is only of a subset of signals of quality.  The question arises 

therefore of how quality signals other than signals of status (e.g. those important in 

mate choice) remain honest.  As it can be seen from the badge of the male House 

Sparrow, many signals of status might also play an important role in mate choice (see 

above).  Therefore, the separation into different kinds of testosterone related quality 

signals might, in fact, not be very meaningful.  This is likely because testosterone 

affects not only aggressiveness but also other reproductive behaviours (e.g. Wingfield 

et al. 1990).  As a consequence, the honesty of ornaments signalling different kinds of 

behaviours, such as aggression and breeding behaviour, that are linked with each 

other via testosterone levels, need to be only enforced for one of them, e.g. for 

aggression.  As aggression or status can be easily tested and thus honesty can be 

enforced via social costs (see above), and as choosing females could potentially 

eavesdrop on these encounters (or at least their outcome, i.e. achieved status as 

inferred by phenotype), signals of any kind of testosterone related quality (no matter 

what type of ornament or what species) could be kept honest via social costs 

(discussed in Berglund et al. 1996).  However, this remains to be experimentally 

tested in future studies.   

Besides signals of quality there is a range of other types of ornaments such as signals 

of kinship, of individual identity, or for species recognition (summarized in Dale 

2006).  For some of them, honesty enforcing costs could still be social costs in the 

broader sense, simply if individuals with a certain phenotype are avoided by 

conspecifics.  For others, such as Fisherian traits that evolve from female preferences, 

no costs are needed because such ornaments do not signal any true information.  

Generally, no matter what information is conveyed signal honesty can be enforced as 

long as costs for cheating are higher than benefits gained from cheating (reviewed in 

Számadó 2011).   
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Conclusion 

I have addressed and challenged a range of questions concerning ornamentation and 

signal honesty using the House Sparrow as a model species.  More specifically, I have 

shown that several key assumptions of the Testosterone Handicap Model about 

signalling honesty are not of a general nature.  Instead, I provided indirect support for 

the honesty enforcement of testosterone related signals of quality via alternative costs 

such as social costs (according to the Badges of Status Hypothesis).  For future 

studies it would be therefore important to critically test the social costs hypothesis not 

only in House Sparrows but in a range of different species.  This should be done by 

testing whether cheating is costly, i.e. whether it would be punished by conspecifics 

via aggressive challenges.  Cheating in this context means more elaborate ornaments 

than one would expect from underlying testosterone levels and testosterone related 

behaviours.  This could be achieved by manipulations of ornaments of individuals that 

are known or unknown to conspecifics.  Several studies have used such ornament 

manipulations to test signal honesty (Parsons and Baptista 1980; Fugle et al. 1984; 

Veiga 1995; Tibbetts and Dale 2004; Tibbetts and Izzo 2010), however, all of them 

have focused on one ornament alone and have therefore neglected the interplay of 

multiple ornaments.  As multiple ornaments are commonly used to signal quality 

related information (chapter three) this should, despite its difficulties, be taken into 

account when manipulating ornamentation.  In addition, it could be also fruitful to 

compare individuals whose ornaments have been manipulated with other individuals 

whose plasma testosterone levels were simultaneously manipulated, because in the 

latter one would expect an honest relationship between signal and behaviour.  A 

mismatch between signal and behaviour was found in Paper Wasps (Polistes 

dominulus) to cause social punishment according to the incongruence hypothesis 

(Tibbetts and Izzo 2010).  This hypothesis predicts aggression towards any type of 

inaccurate signalling (behavioural or ornamental) as a function of self interest, i.e. of 

testing a rival in order to obtain a higher rank or better resources (reviewed in Tibbetts 

and Izzo 2010).  Therefore, a careful test could potentially explain signal honesty in a 

wide range of contexts.   

In addition to the direct examination of social costs, it could be also useful for future 

studies to concentrate on maximal testosterone levels as enforced via GnRH injections 
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or to focus on external factors that modulate circulating testosterone levels.  It has 

been suggested for example, that testosterone levels are suppressed by immune 

activation (Verhulst et al. 1999; Boonekamp et al. 2008).  The manipulation of 

environmental and physiological factors and the examination of their effects on 

natural testosterone levels could potentially reveal (1) how individual variation of 

testosterone levels can exist when the main costs of high testosterone levels are 

behavioural costs and (2) how other studies have found relationships with testosterone 

levels and e.g. parasite load.  Additionally, it could explain why studies on different 

populations of the same species (e.g. the House Sparrow) or on different species with 

similar ecologies often find different and contradictory results.   

Finally, another very important aspect for future studies is the detailed examination of 

elevated testosterone levels at night.  More specifically, the question still remains why 

night time plasma testosterone levels are much higher than day time levels (discussion 

of chapter two).  Furthermore, details of testosterone levels of focal individuals in the 

course of the day and the night and over several seasons or even years could uncover 

not only individual differences and generalities in secretion patterns but also 

potentially explain different behavioural strategies related to testosterone levels.  Last 

but not least the comparison of night time testosterone levels with levels after social 

challenges (according to the Challenge Hypothesis (Wingfield et al. 1990)) and after 

GnRH challenges could prove if night time testosterone levels are close to potential 

maximal levels and hence especially important for the development of signals used in 

the context of male-male competition and aggression.   
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