Angiogenesefaktoren PlGF, sFlt-1 und sEng in unauffälligen Schwangerschaften und bei Präeklampsie

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München

vorgelegt von

Veronika Sophie Thomas, geb. Saur

aus

Starnberg

Jahr

2012
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Prof. Dr. med. B. Schiessl

Mitberichterstatter: Priv. Doz. Dr. med. Ioannis Mylonas
Prof. Dr. med. Peter Bartenstein
(Vors. Promotionsausschuss)

Mitbetreuung durch den promovierten Mitarbeiter: Dr. med. M. Franz

Dekan: Prof. Dr. med. Dr. h.c. M. Reiser,
FACR, FRCR

Tag der mündlichen Prüfung: 29.03.2012
Zusammenfassung

Ergebnisse: Vorliegende Arbeit ergab signifikante Unterschiede zwischen den Gruppen Milde und Schwere Präeklampsie und dem Normalkollektiv bezüglich der Serumwerte sFlt-1, PlGF und sEng sowie der dopplersonographischen Daten.

Schlussfolgerung: Die Kombination von Dopplersonographie und den Serummarkern sFlt-1, PlGF und sEng stellt einen vielversprechenden Ansatz zur frühen Detektion von Präeklampsie dar, der zur Verbesserung von Diagnostik und therapeutischen Möglichkeiten in größer angelegten Studien unbedingt weiter verfolgt werden sollte.
Inhaltsangabe

ZUSAMMENFASSUNG ... 1

INHALTSANGABE .. 2

I. EINLEITUNG ... 1

II. THEORETISCHE GRUNDLAGEN ... 2

1. ANATOMISCHE UND PHYSIOLOGISCHE GRUNDLAGEN 2
 1.1 Plazenta und Implantation ... 2
 1.2 Uteroplazentare Zirkulation .. 3
 1.3 Fetoplazentare Zirkulation .. 5

2. PRAEKLAMPSIE ... 5
 2.1 Definition und Klassifikation von Hochdruckerkrankungen in der
 Schwangerschaft .. 5
 2.2 Ätiologie, Risikofaktoren und Komplikationen 10
 2.3 Screening, Früherkennung und Überwachung des klinischen Verlaufs 12
 2.4 Fetale Überwachung .. 17
 2.5 Behandlung bei Präeklampsie .. 18
 2.5.1 Medikamentöse Therapie ... 18
 2.5.2 Entbindungssindikationen und -management 19
 2.6 Nachbetreuung und Prognose .. 21
 2.7 Präventive Maßnahmen .. 22

3. DOPPLERSONOGRAPHIE IN DER SCHWANGERSCHAFT 23
 3.1 Grundlagen der Dopplersonographie 23
 3.2 Dopplersonographie der Aa. uterinae 26
 3.3 Dopplersonographie der A. umbilicalis 28

4. WACHSTUMSFAKTOREN .. 30
 4.1 VEGF und PIgf ... 30
 4.1.1 Struktur und Expression von VEGF und PIgf 31
 4.1.2 Wirkung von VEGF und PIgf 31
 4.1.3 VEGF und PIgf bei Präeklampsie 32
 4.2 sFlt-1 ... 32
 4.2.1 Struktur und Expression von sFlt-1 32
 4.2.2 Wirkung von sFlt-1 .. 33
 4.2.3 sFlt-1 bei Präeklampsie .. 34
 4.3 Soluble Endoglin ... 35
 4.3.1 Struktur und Expression von Soluble Endoglin 35
 4.3.3 sEng bei Präeklampsie ... 37

ZIEL DER ARBEIT UND FRAGESTELLUNG 38

III. MATERIAL UND METHODEN ... 39

1. MATERIALIEN .. 39
 1.1 Patientinnenkollektiv und Kontrollen 39
 1.2 Meßzeitpunkte ... 41
 1.3 Geräte und sonstige Hilfsmittel 41

2. METHODEN ... 42
 2.1 Durchführung der Untersuchungen 42
 2.2 Ultraschall und Dopplersonographie 43
Inhaltsangabe

2.2.1 Fetale Sonographie ... 43
2.2.2 Durchführung der Dopplersonographie 43
2.3 Quantifizierung der Serumparameter Endoglin, Flt-1 und PlGF 44
2.4 Statistik .. 46

IV. ERGEBNISSE .. 48

1. ERGEBNISSE DER DOPPLERSONOGRAPHIE 49
 1.1 Pulsatilität-Index und Notching der plazentaren A. uterina in normaler versus präeklamptischer Schwangerschaft 49
 1.2 Pulsatilität-Index und Notching der nichtplazentaren A. uterina in normaler versus präeklamptischer Schwangerschaft 50
 1.3 Pulsatilität-Index der A. umbilicalis in normaler versus präeklamptischer Schwangerschaft .. 51

2. ANALYSE DER WACHSTUMSFAKTOREN 52
 2.1 PlGF in normaler versus präeklamptischer Schwangerschaft 52
 2.2 sFlt-1 in normaler versus präeklamptisch verlaufender Schwangerschaft 54
 2.3 sEng in normaler versus präeklamptischer Schwangerschaft 55

V. DISKUSSION ... 57

1. ERGEBNISSE DER DOPPLERSONOGRAPHIE 57
 1.1 Pulsatilität-Index und Notching der plazentaren Aa. uterinae in normaler versus präeklamptischer Schwangerschaft 57
 1.2 Pulsatilität-Index der A. umbilicalis in normaler versus präeklamptischer Schwangerschaft .. 58

2. ERGEBNISSE DER WACHSTUMSFAKTORENANALYSE 59
 2.1 PlGF in normaler versus präeklamptischer Schwangerschaft 60
 2.2 sFlt-1 in normaler versus präeklamptischer Schwangerschaft 61
 2.3 sEng in normaler versus präeklamptischer Schwangerschaft 62

3. Kritik und Ausblick ... 63

VI. ZUSAMMENFASSUNG ... 66

VII. ANHANG .. 70

1. Aufklärungsbogen .. 70
2. Literaturverzeichnis .. 74
3. Tabellenverzeichnis ... 85
4. Abbildungsverzeichnis .. 86
5. Abkürzungsverzeichnis .. 87
6. Danksagung .. 89
7. Eidesstattliche Erklärung ... 90
I. Einleitung

Durch den gezielten Einsatz der Dopplersonographie zur fetalen Überwachung bei manifester Präeklampsie konnte eine Verbesserung des kindlichen Outcomes erzielt werden [4]. Durch vielfache Ansätze wird versucht, das Screening von Patientinnen auf die Entwicklung einer Präeklampsie zu optimieren. Dabei konzentriert sich die Forschung derzeit vor allem auf eine Kombination dopplersonographischer Untersuchungen des maternoplazentaren Blutflusses mit der Analyse angiogenetisch wirksamer Zytokine im maternalen Blut, die eine Rolle in der Pathogenese der Multiorganerkrankung spielen [5].

Unter Angiogenese versteht man die Neubildung von Blutgefäßen durch den Einfluss auf das Endothel stimulierend und hemmend wirkender Signalproteine. Zur Ausbildung des physiologischen Gefäßnetzes innerhalb der Plazenta während einer Schwangerschaft ist ein bestimmtes Verhältnis dieser Wachstumsfaktoren nötig [6].

Ziel der vorliegenden Arbeit ist es, die Angiogenesefaktoren PIGF, sFlt-1 und sEng zusammen mit der Dopplersonographie der Uterin- und Umbilikalerterien auf Unterschiede zwischen präeklamptisch und normal verlaufenden Schwangerschaften hin zu untersuchen.
II. Theoretische Grundlagen

1. Anatomische und physiologische Grundlagen

Die Plazenta stellt pathophysiologisch das zentrale Organ dar, ohne sie könnte es nicht zur Manifestation einer Präeklampsie kommen.

1.1 Plazenta und Implantation

II. Theoretische Grundlagen

Bis zur 20. Schwangerschaftswoche invadieren Zellen aus dem proliferierenden Reservoir extravillöser Trophoblasten am Übergang von Zottenbäumen zur Basalplatte die mütterliche Dezidua und das innere Drittel des Myometriums, welches die sogenannte interstitielle Invasion darstellt. Dabei büßen sie ihre Fähigkeit zur Proliferation ein und gehen endgültig in den invasiven Phänotyp über. Während dieser Invasion sezernieren die Trophoblastenzellen zu ihrer und damit der plazentaren Konsolidierung im Uterus adhäsive extrazelluläre Matrix [6].

1.2 Uteroplazentare Zirkulation

Die Gefäßversorgung von Uterus und Plazenta wird durch die Aa. uterinae, den viszeralen Ästen der Aa. iliacae internae, gewährleistet, deren Endäste R. ovaricus und R. tubarius beidseits mit Ästen der Aa. ovaricae anastomosieren. Die aus den Aa. uterinae entspringenden Aa. arcuatae (Arkadenarterien) durchziehen die Uteruswand, wobei sie untereinander zahlreiche Anastomosen ausbilden und ihrerseits die Aa. radiales (Radialarterien) abgeben, welche sich wiederum aufteilen in die zum basalen Endometrium ziehenden Aa. basales (Basalarterien) und die endometrial und dezidual verlaufenden Aa. spirales (Spiralarterien) [6].
Um die Versorgung von Plazenta und Fetus bis zum Ende der Schwangerschaft sicherzustellen, ist eine Zunahme der Durchblutung des aufgelockerten Gewebes des Uterus von anfänglich 50 ml/min auf etwa 500 - 800 ml/min notwendig. Noch im ersten Trimenon der Schwangerschaft dringen extravillöse Trophoblastenzellen invasiv in die dezidualen, im zweiten Trimenon dann auch in die endometrialen und myometrialen Anteile der Spiralarterienwände vor, wo sie zusammen mit ihrem umgebenden Fibrinoid die muskuloelastischen Zellen der Media sowie das Endothel der Intima weitgehend ersetzen. Dieser Vorgang wird als endovaskuläre Invasion bezeichnet, durch ihn vollzieht sich die hochgradige Dilatation der uteroplazentaren Arterien und deren Auskopplung aus der maternalen Kontrolle der Vasomotorik, was letztendlich die erforderliche Mehrdurchblutung zur Folge hat. Eine Störung der Trophoblasteninvasion mit einer folgenden Beeinträchtigung der Spiralarteriendilatation steht mit der Entwicklung von Hochdruckerkrankungen in der Schwangerschaft, speziell aber der Präeklampsie in enger Assoziation [12].

A Nicht-kontraktionsfähige Spiralarterie und hoher Blutfluss aufgrund des Umbaus der Spiralarterienwand durch einwandernde Trophoblasten.

II. Theoretische Grundlagen

1.3 Fetoplazentare Zirkulation

2. Präeklampsie

2.1 Definition und Klassifikation von Hochdruckerkrankungen in der Schwangerschaft

Die Arbeitsgemeinschaft Schwangerschaftshochdruck/Gestose der DGGG legte im November 2007 ihre Leitlinien neu auf und publizierte in Übereinstimmung zur ISSHP (International Society for the Study of Hypertension in Pregnancy) folgende Definitionen:
II. Theoretische Grundlagen

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Symptomkonstellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwangerschaftsinduzierte Hypertonie (SIH)</td>
<td>RR ≥ 140/90 mmHg nach der 20. SSW</td>
</tr>
<tr>
<td></td>
<td>Post partum RR-Normalisierung</td>
</tr>
<tr>
<td>Präeklampsie</td>
<td>SIH</td>
</tr>
<tr>
<td></td>
<td>Proteinurie ≥ 0,3 g/24 h nach der 20. SSW</td>
</tr>
<tr>
<td>Eklampsie</td>
<td>Präeklampsie</td>
</tr>
<tr>
<td></td>
<td>Krampfanfall unter Ausschluss anderer Ursachen</td>
</tr>
<tr>
<td>Pfropfpräeklampsie</td>
<td>Vorbestehende arterielle Hypertonie</td>
</tr>
<tr>
<td></td>
<td>Proteinurie nach der 20. SSW</td>
</tr>
<tr>
<td></td>
<td>Bei vorbestehender Hypertonie + Proteinurie: ↑↑RR und/oder ↑↑ Proteinurie und/oder Thrombozytopenie</td>
</tr>
<tr>
<td>Chronische Hypertonie</td>
<td>RR ≥ 140/90 mmHg vor der 20. SSW oder bei</td>
</tr>
<tr>
<td></td>
<td>Persistenz über 12 Wochen post partum</td>
</tr>
<tr>
<td>HELLP-Syndrom</td>
<td>Hämolyse</td>
</tr>
<tr>
<td></td>
<td>Pathologisch erhöhte Leberwerte</td>
</tr>
<tr>
<td></td>
<td>Thrombozytenzahl < 100.000/µl</td>
</tr>
</tbody>
</table>

Tab. 1. Klassifizierung hypertensiver Erkrankungen in Schwangerschaft und Wochenbett [1]

Die Grenzwerte für die schwangerschaftsinduzierte Hypertonie (SIH) liegen bei einem diastolischen Blutdruck von 110 mmHg bei einmaliger beziehungsweise bei 90 mmHg bei zweimaliger Messung mit einem zeitlichen Abstand von wenigstens vier Stunden, systolisch gilt 140 mmHg als oberer Grenzwert. Für die Diagnose einer SIH ist die präexistente arterielle Hypertonie, auch bezeichnet als vorbestehender Hypertonus (VHT), abzugrenzen, eine Proteinurie ist auszuschließen. Die klassische SIH tritt typischerweise erst im 2. Trimenon auf, wobei zu beachten gilt, dass sich erhöhte
Blutdruckwerte beim VHT im 1. Trimenon durch die schwangerschaftsbedingte Vasodilatation vorübergehend normalisieren können. Weiterhin muss sich der Blutdruck bis 12 Wochen nach der Geburt des Kindes wieder in den Normbereich senken.

Unter der vormals EPH-Gestose genannten Präeklampsie versteht man eine simultan mit der schwangerschaftsinduzierten Hypertonie einhergehende, neu aufgetretene Proteinurie von mindestens 0,3 g im 24-Stunden-Sammelurin, welche erst nach abgeschlossener 20. Schwangerschaftswoche einsetzt. Hinter der Abkürzung EPH verbirgt sich hierbei beschriebenes Symptomtrias von Ödemen, Proteinurie und Hypertension (edema, proteinuria and hypertension). Die Diagnose Präeklampsie kann jedoch auch bei fehlender Proteinurie gestellt werden, falls sich zu einem Hypertonus weiterhin noch mindestens eines der folgenden Symptome präsentiert:

- fetale Wachstumsretardierung
- Leberbeteiligung
- Nierenfunktionsstörungen
- neurologische Probleme
- hämatologische Störungen

Eine schwere Präeklampsie besteht bei Vorliegen zumindest eines der Kriterien:

- Nierenfunktionseinschränkung (Kreatinin \geq 0,9 g/l oder Oligurie <500 ml/24 h)
- Leberbeteiligung (Transaminasenanstieg, schwere Oberbauchschmerzen)
- Lungenödem oder Zyanose
- hämatologische Störungen (Thrombozytopenie, Hämolyse)
- neurologische Symptome (schwere Kopfschmerzen, Sehstörungen)
- fetale Wachstumsrestriktion
- Blutdruck $\geq 170/110$ mmHg
- Proteinurie ≥ 5 g/24 h
II. Theoretische Grundlagen

<table>
<thead>
<tr>
<th>Organ</th>
<th>Symptomatik</th>
<th>Pathologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plazenta</td>
<td>IUGR/Oligohydramnion</td>
<td>akute/chronische Hypoxie vorzeitige Plazentalösung</td>
</tr>
<tr>
<td>[17, 18]</td>
<td>Schmerzen im Uterusbereich vaginale Blutung</td>
<td></td>
</tr>
<tr>
<td>Nieren</td>
<td>Oligurie</td>
<td>glomeruläre/tubuläre Störung Hämolyse akutes Nierenversagen</td>
</tr>
<tr>
<td>[19-21]</td>
<td>Anurie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hämoglobinurie</td>
<td></td>
</tr>
<tr>
<td>Bindegewebe</td>
<td>Schwellung (Beine, Gesicht, Hände)</td>
<td>Ödemeinlagerung</td>
</tr>
<tr>
<td>[22, 23]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutgerinnung</td>
<td>Petechien/Hämatome gastrointestinale Blutungen</td>
<td>Verbrauchskoagulopathie Hämolyse DIG</td>
</tr>
<tr>
<td>[24, 25]</td>
<td>Hämaturie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unstillbares Nasenbluten</td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td>Übelkeit/Erbrechen Oberbauchschmerzen (rechts-</td>
<td>Leberparenchymnekrosen Leberhämatome und -ruptur</td>
</tr>
<tr>
<td>[26, 27]</td>
<td>seitig/epigastrisch)</td>
<td>HELLP-Syndrom</td>
</tr>
<tr>
<td>Lunge</td>
<td>Dyspnoe</td>
<td>Lungenödem nach eklampfischem Anfall:</td>
</tr>
<tr>
<td>[28]</td>
<td>Zyanose</td>
<td>Aspiration, Pneumonie Larynxödem</td>
</tr>
<tr>
<td></td>
<td>Husten, Auswurf</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atemstillstand</td>
<td></td>
</tr>
<tr>
<td>ZNS [29-31]</td>
<td>Kopfschmerzen Ohrensausen, Sehstörungen</td>
<td>Hirnodem intrakranielle Blutungen zerebrale Infarkte</td>
</tr>
<tr>
<td></td>
<td>Hyperreflexie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bewusstseintrübung/Koma</td>
<td>intrakranielle Druckerhöhung</td>
</tr>
<tr>
<td></td>
<td>Krampfanfall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lähmungserscheinungen</td>
<td></td>
</tr>
<tr>
<td>Auge [31, 32]</td>
<td>reduzierte Sehschärfe Photopsien Skotome/Amaurose</td>
<td>Retinaödem/-ablösung/-blutung Optikusatrophie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posteriorinfarkt</td>
</tr>
</tbody>
</table>

Tab. 2. Organmanifestation, klin. Symptome bei schwerer Präeklampsie, Eklampsie und HELLP

Die **Eklampsie** bezeichnet die schwerstmögliche Verlaufsform der Präeklampsie, die in plötzlich einsetzenden, generalisierten tonisch-klonischen Krampfanfällen gipfelt. Andere Ursachen dieser Konvulsionen müssen ausgeschlossen sein. Mögliche Folgen

- ein plötzliches Ansteigen der Proteinurie

- ein plötzlicher Blutdruckanstieg

- ein laborchemischer oder klinischer Marker der schweren Präeklampsie

Die chronische arterielle Hypertonie, die in der Schwangerschaft auch als vorbestehender Hypertonus (VHT) bezeichnet wird, ist definiert als ein Bluthochdruck von ≥ 140/90 mmHg, der bereits präkonzeptionell erkannt wurde oder aber ab der ersten Schwangerschaftshälfte über mehr als zwölf Wochen postpartal persistiert.

Weiterhin wird zum Formenkreis der SIH auch das HELLP-Syndrom gezählt, hinter dessen Namen sich die Symptomentrias aus Hämolyse, pathologisch erhöhten Leberwerten und erniedrigter Thrombozytenzahl \(< 100.000/\mu l\) (haemolysis, elevated liver enzymes, low platelets) verbirgt. Erhöhte Blutdruckwerte liegen bei dieser seltenen, für Mutter und Kind jedoch potentiell letalen Erkrankung in bis zu 80 %, eine Proteinurie in 85 - 95 % der Fälle vor, in 15 % fehlen sowohl arterielle Hypertonie als auch Proteinurie. Laborchemisch wird die Hämolyse mittels Bestimmung des erniedrigten Haptoglobins nachgewiesen, welches hierfür der sensitivste Marker ist, die relevanten Leberwerte bilden die Glutamat-Oxalat-Transaminase GOT (= Aspartat-
Aminotransferase AST) und die Glutamat-Pyruvat-Transaminase GPT (= Alanin-Aminotransferase ALT) [1].

2.2 Ätiologie, Risikofaktoren und Komplikationen

Eine zentrale Rolle in der Pathogenese der Präeklampsie spielen pro- und antiangiogenetische Proteine und deren Verhältnis und Interaktion zueinander im Verlauf der Schwangerschaft. Der heranwachsende Fet ist auf eine ausreichende Blutzufuhr angewiesen, damit Sauerstoffangebot und Ernährung sicher gestellt sind. Damit sich ein entsprechendes Gefäßnetzwerk etablieren kann, wird die Angiogenese der Plazenta durch proangiogenetische Faktoren gefördert, welche die Migration der Trophoblastenzellen positiv beeinflussen [6]. Wesentlich verantwortlich hierfür sind Mitogene aus der Familie der VEGF (vascular endothelial growth factor). Der Effekt von VEGF wird durch die beiden hochaffinen Tyrosinkinasen VEGFR-1 (VEGF Rezeptor-1, auch fms-like tyrosine kinase-1 [Flt-1]) und VEGFR-2 vermittelt, welche selektiv auf der Endothelzellmembran exprimiert werden. VEGFR-1 liegt im Organismus in zwei verschiedenen Isoformen vor, außer der transmembranösen Form existiert die lösliche Variante sFlt-1 (soluble Flt-1), bei der die zytoplasmatische und die transmembranöse
II. Theoretische Grundlagen

Domäne fehlen [40]. Bindet sFlt-1 nun an VEGF, unterbleibt dessen Interaktion mit seinen Rezeptoren, die biologische Aktivität des zirkulierenden Faktors wird dadurch an-tagonisiert. Die gleiche Wirkung zeigt sFlt-1 auch an PIGF (placental growth factor), einem weiteren Mitglied der VEGF-Familie, welches vorwiegend in der Plazenta exprimiert wird. In Präeklampsie-Patientinnen ist das Gleichgewicht dieser angiogenetisch wirksamen Proteine durch einen Überschuss an sFlt-1 zugunsten der antiangiogenetischen Faktoren [41, 42] verschoben, das physiologische Einwachsen der Gefäße und die Etablierung des uteroplazentaren Kreislaufs werden gestört. Es wird von weiteren Veränderungen in antiangiogenetisch wirksamen Faktoren wie dem sEng (soluble Endoglin) ausgegangen, die zur Pathogenese der Präeklampsie beitragen [40, 43].

Die früheste Abweichung zur normalen Schwangerschaftsentwicklung bei Präeklampsie betrifft die Ausbildung des uteroplazentaren Kreislaufs, wobei die endovaskuläre Invasion der Trophoblastenzellen entscheidend ist. Histopathologisch findet sich bei der Hochdruckerkrankung eine Infiltration des dezentralen Anteils der Spiralarterien durch den Zytotrophoblasten, nicht jedoch des myometrialen Anteils. Der fibrinoide Umbau der muskuloelastischen Gefäßwand bleibt aus und die Arterien wandeln sich somit nicht in die zur Versorgung des Feten benötigten Hochkapazitätsgefäße niedrigen Widerstands um. Es resultiert eine relativ hypoxische Umgebung der Trophoblastenzellen im plazentaren Gewebe [44].

Auch immunologische Faktoren scheinen bei der gestörten Entwicklung der Plazenta mitzuwirken. Diese Annahme basiert vor allem auf der Beobachtung, dass eine Expo-sition der Patientin gegenüber väterlicher Antigenen vor der Imprägnation zu reduzierten Erkrankungsfällen führt [45]. Als auffällig zeigte sich weiterhin eine höhere Präeklampsie-Inzidenz in einem Kollektiv von Patientinnen, die bis zur Konzeption mit Präservativa verhütet hatten oder deren Partnerschaft erst seit kurzem bestand. Biochemisch weist eine ungewöhnliche, von extravillösen Trophoblastenzellen exprimierte Kombination an HLA-I Antigenen, namentlich HLA-C, HLA-E und HLA-G auf einen immunologischen Zusammenhang hin. Natürliche Killerzellen (NK) erkennen diese Antigene aufgrund ihrer verschiedenen Rezeptoren (u. a. CD94, KIR, ILT), der physiologische Prozess der NK-Einwanderung in die maternale Dezidua
II. Theoretische Grundlagen

und deren Eingreifen in die Implantation wird im Erkrankungsfall vermeintlich gestört [46].

2.3 Screening, Früherkennung und Überwachung des klinischen Verlaufs

Bislang hat sich noch keine Screeningmethode etabliert, um alle Schwangeren mit zuverlässiger Vorhersagekraft unter reelem Kosten- bzw. Aufwand-Nutzen-Verhältnis auf eine im Verlauf der Schwangerschaft auftretende Präeklampsie zu testen.

Die Auswertung geläufiger Laborparameter wie Blutbild, Elektrolyte, Leber- und Nierenwerte zeigt sich für eine Vorhersage des Schwangerschaftsverlaufs als ungeeignet. Auch apparative Methoden wie die Blutdruckmessung beim Roll-over Test erbrachten keine zufriedenstellende Sensitivität, Sensibilität und Reliabilität für das Screening auf eine Risikoschwangerschaft bezüglich hypertensiver Schwangerschaftserkrankungen [49, 50].
Routinemäßig eingesetzt werden die arterielle Blutdruckmessung und Schnelltestverfahren für Eiweißnachweis im Urin, wobei beide Methoden lediglich bereits mani- stete Störungen aufdecken und so auch nicht als Screening fungieren [1].

Die wichtigste Rolle in der Früherkennung der Präeklampsie spielt somit bislang die individuelle Anamnese und daraus folgend das exakte Wissen um etwaige Risikofak- toren.

Aufgaben der Überwachung der Schwangerschaft sind die genaue Erfassung der charakteristischen Symptome und deren kritische Beurteilung, das frühzeitige Erkennen einer etwaigen Lebensgefährdung auf maternaler und fetaler Seite und damit auch die Chance einer rechtzeitigen Intervention.

Als Indikationen zur stationären Aufnahme der Patientin gelten [54]:

- Hypertonie ≥ 160 mmHg systolisch bzw. ≥ 100 mmHg diastolisch
- manifeste Präeklampsie
- Proteinurie und starke Gewichtszunahme im 3. Trimenon (≥ 1 kg/Woche)
- drohende Eklampsie (Prodromalsymptome)
• klinischer Verdacht auf HELLP-Syndrom, v. a. bei persistierenden Oberbauchschmerzen

• Hinweise für eine fetale Bedrohung

• suspektes/pathologisches CTG oder Dopplersonogramm

• intrauterine Wachstumsretardierung (Schätzgewicht < 10. Perzentile)

• Hypertonie oder Proteinurie in Kombination mit weiteren Faktoren wie
 o vorbestehende mütterliche Erkrankungen (z. B. Diabetes mellitus)
 o Mehrlingsgravität
 o frühes Gestationsalter (< 34. SSW)
 o An-/Oligohydramnion

Die Gewichtsdokumentation stellt einen Routinepart der Vorsorgeuntersuchung dar, welche auf eine Entstehung von Ödemen hinweisen kann. Wassereinlagerungen in
das Gewebe sind in der Schwangerschaft als physiologischer Prozess anzusehen, da die Gefäßpermeabilität erhöht ist und der vergrößerte Uterus durch Druck auf V. cava inferior und die pelvinen Gefäße einen Blutrückstau in die unteren Extremitäten verursacht. Ein plötzliches, starkes Auftreten von Ödemen mit deutlicher Gewichtszunahme innerhalb von Tagen (> 1 kg/Woche) signalisiert jedoch einen möglicherweise krankhaften Verlauf [1].

II. Theoretische Grundlagen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hinweisende Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämatokrit</td>
<td>> 38 %</td>
</tr>
<tr>
<td>Thrombozyten</td>
<td>< 100.000/μl</td>
</tr>
<tr>
<td>GPT (ALT)</td>
<td>Anstieg über Normbereich</td>
</tr>
<tr>
<td>GOT (Ast)</td>
<td>Anstieg über Normbereich</td>
</tr>
<tr>
<td>LDH</td>
<td>Anstieg über Normbereich</td>
</tr>
<tr>
<td>Bilirubin (indirekt)</td>
<td>> 1,2 mg/dl</td>
</tr>
<tr>
<td>Harnsäure</td>
<td>> 5 mg/dl ab der 32. SSW</td>
</tr>
<tr>
<td>Kreatinin</td>
<td>> 0,9 mg/dl</td>
</tr>
<tr>
<td>Eiweiß im Urin</td>
<td>≥ 300 mg/24 h</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>Abfall unter Normbereich</td>
</tr>
<tr>
<td>Blutgerinnungsteste (Hinweis auf DIC)</td>
<td>Verlaufsbefundung</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>< 150 mg/dl</td>
</tr>
</tbody>
</table>

Tab. 3. Relevante klinisch-chemische Laborparameter [1]

Bei bekannter Hypertonie sollten je nach Grad die sonographischen Kontrollen ein- bis zweiwöchentlich durchgeführt werden, wobei dem kindlichen Wachstum aufgrund der erhöhten Gefahr von intrauteriner Wachstumsretardierung und der utero- und fetoplazentaren Flussverhältnisse zur Sicherstellung einer suffizienten fetalen Versorgung besondere Beachtung zu schenken ist. Ab dem Auftreten von höhergradig pathologischen Dopplerbefunden sind die Biometrie- und Dopplerwerte wöchentlich bis täglich zu erfassen, um den richtigen Entbindungszeitpunkt unter Berücksichtigung von Gestationsalter und medikamentöser Blutdruckeinstellung individuell festlegen zu können.
2.4 Fetale Überwachung

Auf fetaler Seite stehen als Überwachungsparameter des gegenwärtigen kindlichen Zustandes und somit als Entscheidungskriterien zur Entbindung die Aussagen von Ultraschall, Dopplersonographie und Kardiotokographie (CTG) zur Verfügung.

Sonographisch erfolgt die Erfassung der biometrischen Daten des Feten, über dessen Wachstumsverlauf ein Nährstoff- beziehungsweise Sauerstoffmangel registriert werden kann. Zudem besteht die Möglichkeit, eine fetale Beeinträchtigung durch akute oder chronische Hypoxie mittels der Erstellung des Biophysikalischen Profils (BPP) abzuschätzen. Hier fließen die fetale Atemfrequenz, Kindsbewegungen, Muskeltonus und die Fruchtwassermenge mit ein. Letztere wird semiquantitativ ermittelt über die maximale Tiefe des größten Depots oder alternativ über den Amniotic Fluid Index (AFI), also die Summe der maximalen Depots der vier Uterusquadranten [58].

In der Dopplersonographie werden die Flusswerte der Umbilikalarterien und des Ductus venosus bestimmt. Die Einleitung der Geburt wird bei enddiastolischem Reverse-Flow, also der Flussumkehr in den Aa. umbilicales, empfohlen [59], eine dringliche Indikation zur Beendigung der Schwangerschaft besteht bei persistierend pathologischem Pulsatilitäts-Index des Ductus venosus.

Oben beschriebene fetale Überwachungsmethoden stehen nicht in Konkurrenz zueinander, sondern stellen eine sinnvolle Kombination dar. Mittels Dopplersonographie kann dabei eher die chronische Hypoxie des Feten festgestellt werden, die CTG-Aufzeichnung sowie das BPP ermöglichen die Erfassung eines akut auftretenden Sauerstoffmangels [58]. Die stationäre Überwachung einer manifesten Präeklampsie er-
II. Theoretische Grundlagen

fordert die wöchentliche bis tägliche Durchführung einer Dopplersonographie sowie die ein- bis dreimal tägliche Ableitung eines CTGs. Fetometrie und Bestimmung der Fruchtwassermenge sollten alle 10 bis 14 Tage erfolgen [1].

2.5 Behandlung bei Präeklampsie

Die einzige kausale Therapie der Präeklampsie ist die Entbindung. Diese resultiert teilweise in einer erheblichen Frühgeburtlichkeit, weshalb die Indikation sehr vorsichtig zu stellen ist, um das Risiko für Mutter und Kind weitestgehend zu limitieren.

Bis zur Indikation einer Entbindung erfolgt ein konservatives Management mittels oben beschriebener, engmaschiger Überwachung. Die medikamentöse Behandlung konzentriert sich auf die Symptome des mütterlichen Organismus, was die optimale Einstellung des maternalen Hypertonus und die Prophylaxe der Eklampsie wesentlich in den Vordergrund stellt.

2.5.1 Medikamentöse Therapie

Bei mildem bis mäßigem schwangerschaftsinduzierten Hypertonus sowie Präeklampsie mit Blutdruckspitzenwerten von weniger als 170/100 mmHg ist durch antihypertensive Therapie kein besseres Outcome erreichbar, gemessen u. a. an fetaler Sterblichkeitsrate, Frühgeburtslichkeit, fetaler Wachstumsretardierung oder Entwicklung eines schwerwiegenden Hypertonus. Auch die Ausbildung einer Pfropfgestose ist durch Gabe von Antihypertensiva nicht abzuwenden. Im Gegenteil erwies sich sogar eher ein nachteiliger Effekt mit einer erhöhten Rate kindlicher Wachstumsretardierungen und vermindertem Geburtsgewicht [62] bei lediglich geringem Nutzen auf mütterlicher Seite [61].

Dem gegenüber ist die antihypertensive Behandlung bei Blutdruckwerten ab 170/110 mmHg obligatorisch [63], da es dann direkte Schäden am Gefäßsystem abzuwenden
II. Theoretische Grundlagen

gilt, welche lebensbedrohliche Komplikationen wie Niereninsuffizienz, Herzinfarkt oder Hirnblutung der Mutter sowie Hypoxie nach sich ziehen können.

Therapieziel in der Akutbehandlung ist vornehmlich die Senkung des diastolischen Blutdruckwertes auf unter 100 mmHg, wofür die Wirkstoffe Nifedipin (Kalziumkanal-Blocker), Dihydralzin (Vasodilatator), und Urapidil (α-Rezeptorblocker) zur Verfügung stehen. Zur längerfristigen Behandlung eignen sich aufgrund des besseren Nebenwirkungsprofils vor allem α-Methyldopa als zentraler α-Rezeptorantagonist [3]. Der systolische Blutdruck sollte jedoch nicht unter den Zielbereich von 140 - 155 mmHg gesenkt werden [15], da dies auch eine geringere Durchblutung der Plazenta und somit eine Unterversorgung des Feten nach sich ziehen würde. Daher sollte der Beginn einer antihypertensiven Therapie bei schwerer Präeklampsie auch initial unter fetaler CTG-Überwachung stattfinden, um eine akute fetale Gefährdung durch Blutdruckabfall wahrnehmen zu können [1].

2.5.2 Entbindungssindikationen und -management

Als maternale Indikationen zur Entbindung gelten ernste Komplikationen [3]:

- therapierefraktäre Kopfschmerzen
- schwere Sehstörungen, Amaurose
- Eklampsie
- therapierefraktäre Oberbauchschmerzen
- disseminierte intravasale Gerinnung
- therapierefraktäre Oligurie
- Lungenödem
- therapierefraktäre, schwere Hypertonie

Die Entbindung kann gegen abwartendes Verhalten diskutiert werden bei:

- Nierenfunktionseinschränkungen
- Dyspnoe
- zentralen Symptomen
- HELLP-Syndrom

Kindliche Indikationen zur Schwangerschaftsbeendigung bei Präeklampsie sind [3]:

- hochpathologische Flussveränderungen im Ductus venosus
- wiederholt späte oder schwer variable Dezelerationen

Abgewartet werden kann gegebenenfalls bei:

- Zero-/Reverse-Flow in der A. umbilicalis
- abnehmende Kurzzeitvariationen im CTG
- Fruchtwasserindex < 2 cm
II. Theoretische Grundlagen

Wird die stationäre Betreuung zwischen 24 + 0 und 34 + 0 Schwangerschaftswochen notwendig, sollte prophylaktisch die Gabe von 2 x 12 mg Betamethason i.m. im Abstand von 24 Stunden zur Lungenreifeinduktion des Feten und zur Reduktion von intraventrikulären Blutungen und periventrikulärer Leukomalazie erfolgen [66].

Nach abgeschlossenen 37 Schwangerschaftswochen, also bei erreichter Reife des Kindes, ist bei Diagnose einer Präeklampsie die Indikation zur Entbindung gegeben. Bei schwerer Verlaufsform ist die Geburtseinleitung spätestens nach vollendeter 34. SSW angebracht [67].

2.6 Nachbetreuung und Prognose

Bei der Präeklampsie handelt es sich prinzipiell um einen komplett reversiblen Symptomkomplex, Bluthochdruck und Proteinurie bilden sich meistens auch bei einer erst postpartalen Manifestation bis spätestens drei Monate nach Entbindung zurück [3]. In
II. Theoretische Grundlagen

der Regel kann die medikamentöse antihypertensive Therapie bis sechs Wochen postpartal ausgeschlichen werden. In etwa 8 % der Fälle liegt eine Persistenz oder noch nicht diagnostizierte Grunderkrankung im Sinne eines Hypertonus oder einer renalen Funktionsstörung vor [71]. Falls die Proteinurie oder der Hochdruck noch über vier Monate post partum fortbestehen, ist es wahrscheinlich, dass die Schwangerschaft das Vorliegen einer chronischen Erkrankung demaskiert hat [3]. Insbesondere bei einer bereits früh in der Schwangerschaft aufgetretenen Manifestation ist an diesen Verlauf zu denken [72]. Weiterhin muss auf eine fortwährende Mikroalbuminurie geachtet werden, da das gleichzeitige Vorhandensein eines Diabetes mellitus oder einer arteriellen Hypertonie einen kardialen Risikofaktor darstellt [73]. Diese Erkrankungen nimmt die Patientin selbst kaum wahr, daher sollte eine internistische und nephrologische Nachbetreuung eingeleitet werden.

Auch neurologisch bilden sich aufgetretene Symptome ebenso wie pathologische Befunde in EEG und neuroradiologischen Verfahren in der Regel vollständig zurück [32]. Auch bei neurologisch unauffälligen Patientinnen konnten reversible Dichteänderungen im cMRT nachgewiesen werden. In wenigen Fällen jedoch persistieren solche pathologischen Korrelate, auch können im Verlauf durch zerebrale Einblutungen oder Hypoxie entstandene Veränderungen fokale und generalisierte zentralnervöse Symptome hervorrufen [30], weshalb gegebenenfalls auch neurologische Weiterbetreuung angeschlossen werden sollte.

2.7 Präventive Maßnahmen

Der einzige evidenzbasierte Ansatz zur Prävention einer Präeklampsie ist die Gabe von niedrig dosierter Acetylsalicylsäure (ASS) bereits im 1. Trimenon, wenn bei der Patientin durch Zustand nach Präeklampsie oder IUGR in vorangegangener Schwangerschaft ein erhöhtes Risiko für die Entwicklung einer Präeklampsie vorliegt [1, 74]. Der Wirkungsmechanismus von ASS basiert auf der irreversiblen Hemmung des Enzyms Cyclooxygenase, welches unter anderem das Schlüsselenzym zur Synthese des für die Pathogenese der Präeklampsie wichtigen Thromboxans ist. Bei der Präeklampsie liegt bereits vor Symptomentwicklung eine thrombozytäre Hyperaktivität vor, wodurch das vasokonstriktorische Thromboxan vermehrt freigesetzt wird. Dieser Mechanismus kann also durch eine ASS-Prophylaxe unterbunden werden, Studien
zufolge reduziert sich das Präeklampsiersisko darunter um 17 %, die perinatale Mortalität sinkt um 14 % [75].

Weitere präventiv-therapeutische Ansätze wie die Gabe von Vitamin C und E als antioxidative Substanzen, der Supplementierung von Kalzium und Magnesium sowie einer Umstellung der Ernährungsweise bleiben in den publizierten Studien ohne Effekt auf das Schwangerschafts-Outcome [78, 79].

3. Dopplersonographie in der Schwangerschaft

3.1 Grundlagen der Dopplersonographie

Der Blutstromgeschwindigkeitsmessung zugrunde liegt der Doppler-Effekt, erstmals beschrieben vom österreichischen Physiker und Mathematiker Christian Doppler im Jahre 1842. Dieser beruht auf der Veränderung der gemessenen Frequenz einer Welle bei relativ zueinander stattfindender Bewegung von Quelle und Betrachter. Auf die Dopplersonographie bezogen bedeutet dies, dass die vom Schallkopf des Ultraschall-
gerätes erzeugte Welle beim Auftreffen auf die korpuskulären Anteile des Blutstroms je nach deren Geschwindigkeit und Richtung eine Änderung der Frequenz erfährt, welche nun als Echosignal zum Schallkopf zurückgesandt und somit detektiert werden kann. Das reflektierte Signal ist nun um eine bestimmte Frequenz Δf im Vergleich zur ausgesandten Frequenz verschoben, diese nennt sich Dopplershift [82].

Bei der Dopplersonographie wird mit dem pulsed-wave-Verfahren (PW) dasselbe piezoelektrische Element alternierend als Sender und Empfänger verwendet, wobei ein Zeitfenster als Weiche eingesetzt wird, um die Signale voneinander zu trennen. Dafür wählt der Untersucher vorher eine bestimmte Eindringtiefe als definiertes Dopplerfenster (sample volume) auf einem Gefäßausschnitt, sodass nur die Schallwellen erkannt werden, die mit einer idealisierten Ausbreitungsgeschwindigkeit aus eben jenem Gefäß stammen. Mit dem spektralen PW-Doppler erhält man so den zeitlichen Verlauf der Geschwindigkeitsverteilung an genau einem Messort [82].

Als Duplexsystem wird die Kombination aus herkömmlichem B-Bild und der gepulsten Dopplersonographie bezeichnet. Das so genannte „color flow mapping“-Verfahren ermöglicht die Darstellung selbst kleiner Gefäße wie den Aa. arcuatae, die Farbkodierung gibt Aufschluss über die Flussrichtung des Blutstroms, der sich simultan zu den umliegenden Weichteilen darstellen und beurteilen lässt. Die auf den Schallkopf und somit den Betrachter zulaufende Flussrichtung wird hierbei üblicherweise rot kodiert, sich in Gegenrichtung bewegendes Blut erscheint in blauer Farbe, die Helligkeit des Farbtons erlaubt Rückschluss auf die Geschwindigkeit.

Die physikalischen Gegebenheiten im Gefäßlumen bedingen unterschiedliche Strömungsgeschwindigkeiten der einzelnen Erythrozyten, durch deren Verteilung man im zeitlichen Verlauf eine Mischung an Dopplerfrequenzverschiebungen erhält. Dieses Spektrum kann durch das Anlegen der Hüllkurve nach Verteilung und Amplitude analysiert werden. Ergebnis dieser Analyse ist ein Dopplerspektrum, dargestellt als Frequenz-Zeit-Diagramm, worauf wiederum die Ermittlung und Quantifizierung der Flussgeschwindigkeiten und die Berechnung von Widerstandswerten basiert. Bei bekanntem Insonationswinkel kann das systolische (S) und das enddiastolische Geschwindigkeitsmaximum (D) ermittelt werden, über mehrere kardiale Zyklen hinweg ergibt sich die mittlere Maximalgeschwindigkeit (V_{mean}) im Volumenelement. Es besteht ein umgekehrt proportionaler Zusammenhang zwischen Erythrozyten-
geschwindigkeit und Gefäßwiderstand, was bedeutet, dass eine niedrige diastolische Geschwindigkeit auf einen hohen plazentaren Widerstand deutet und umgekehrt [82].

Zur Vergleichbarkeit haben sich verschiedene Indizes etabliert, durch die die Beurteilung peripherer Gefäßwiderstände vereinheitlicht wird. Der Pulsatilitäts-Index PI [83] bezieht sich auf die Funktion der arteriellen Blutflussgeschwindigkeit, er quantifiziert die Pulsatilität der zweidimensionalen Hüllkurve. Der original 1971 von Gosling entwickelte PI war äußerst komplex, heute bedient man sich daher im Klinikalltag einer vereinfachten Form. Hier errechnet sich der PI winkelunabhängig aus der Differenz vom Maximum der Frequenzverschiebung in der Systole (A) und dem Minimum der Frequenzverschiebung in der Enddiastole (B), dividiert durch die mittlere Maximalgeschwindigkeit Vmean [84].

\[
\text{Pulsatilitäts-Index (PI) = } \frac{A - B}{V_{\text{mean}}}
\]

Weiterhin werden die ebenso winkelunabhängigen Indizes Resistance-Index (RI), also der Gefäßwiderstands-Index, und die A/B-Ratio [85] verwendet, deren Aussagekraft etwa der des PI entsprechen. Bei hochpathologischen Werten stoßen diese Indizes jedoch an ihre Grenzen, da bei diastolischem Nullfluss der RI immer gleich eins ist und eine Flussverminderung in den negativen Bereich nicht mehr erfasst werden kann [84].

\[
\text{Resistance-Index (RI) = } \frac{A - B}{A}
\]

\[
\text{A/B-Ratio = } \frac{A}{B}
\]

III. Theoretische Grundlagen

Abb. 2. Physiologische Dopplersonogramme in utero-plazentaren und fetalen Gefäßen ([86])

3.2 Dopplersonographie der Aa. uterinae

II. Theoretische Grundlagen

Abb. 3. Physiologisches Strömungsprofil der A. uterina in der 22. SSW

II. Theoretische Grundlagen

Abb. 4. Plazentare A. uterina in der 25. SSW mit persistierendem Notch

3.3 Dopplersonographie der A. umbilicalis

Charakteristischerweise zeichnet sich die sägezahnartige, monomorphe Normalkurve des Blutflusses der Nabelschnurarterie durch einen steilen Geschwindigkeitsanstieg
während der Systole und einen etwas weniger abschüssigen Verlauf binnen der Diastole aus, physiologischerweise wird der Nullpunkt nicht erreicht, typisch ist auch die relativ zu anderen arteriellen Gefäßen breite Ausprägung der Systole, beurteilt wird die systolisch-diastolische Variabilität.

Abb. 5. Physiologischer Fluss in der A. umbilicalis

Abb. 6. Referenzkurve Pulsatilitäts-Index der A. umbilicalis (5./50./95. Perzentile)

Pathologische Messwerte der Widerstandsindizes der A. umbilicalis präsentieren sich bei morphologischen Veränderungen im fetoplazentaren Gefäßbett, welche unter anderem durch Infarzierungen, Fibrosen oder zu kleiner Plazentaanlage hervorgerufen

Abb. 7. ARED (absent or reverse enddiastolic) -Flow der A. umbilicalis

Diese pathologischen Flow-Muster gehen mit einem erhöhten fetalen Risiko einher und spiegeln die plazentare Pathologie auf fetaler Seite bei Erkrankungen aus dem Formenkreis der schwangerschaftsinduzierten Hypertonie wieder [94].

4. Wachstumsfaktoren

Die Angiogenese, also die Neubildung von Blutgefäßen, wird durch das Zusammenwirken verschiedener auf das Endothel mitogen oder chemotaktisch wirksamer Peptide kontrolliert. Diese Wachstumsfaktoren bilden eine heterogene Untergruppe innerhalb der Zytokine, einer Familie sezernierter Signalproteine, die charakteristischerweise mit spezifischen zellulären Rezeptoren reagieren und darüber Einfluss auf die Regulation von Wachstums-, Regenerations- und Differenzierungsprozessen nehmen [6].

Bei Präeklampsie ist das physiologische Equilibrium der pro- und antiangiogenetischen Faktoren zugunsten derjenigen, die ein suffizientes Einwachsen der Gefäße in die Plazenta stören, verschoben, also zu Ungunsten der Angiogenese [6].

4.1 VEGF und PlGF

Zu den Faktoren, die Angiogenese und Endothelzellproliferation stimulieren, gehören VEGF (vascular endothelial growth factor) und PlGF (placental growth factor), wel-
che zusammen mit den bislang identifizierten weiteren vier Glykoproteinen die VEGF-Familie bilden.

4.1.1 Struktur und Expression von VEGF und PI GF

Zu dieser Familie zählen außer dem zuerst entdeckten VEGF-A165 und PI GF auch noch die VEGF-Isoformen VEGF-B, VEGF-C, VEGF-D und VEGF-E, welche durch alternatives Exon-Splicing entstehen und aus jeweils 121, 145, 189 und 206 Aminosäuren zusammengesetzt sind. Als Genlokus wurde das Chromosom 6p21.3 identifiziert. Das Glykoprotein vascular endothelial growth factor (VEGF) ist ein antiparalleles, über eine Disulfid-Brücke gebundenes Homodimer von 46 kDa Größe [95].

Das dimere Glykoprotein PI GF hat eine Größe von 45 bis 50 kDa und weist eine mit VEGF zu 53 % identische Aminosäuresequenz auf. Es wurden bislang vier verschiedene Isoformen PI GF-1, PI GF-2, PI GF-3 und PI GF-4 identifiziert, welche durch alternatives Splicing der reifen mRNA entstehen [96]. Anders als für VEGF existiert für PI GF mit Flt-1 in seiner löslichen (s-Flt-1) und seiner endothelständigen Form nur ein einziger Ligand.

Beide Faktoren werden in der Plazenta exprimiert, wobei im Zytotrophoblasten die VEGF-Expression dominiert [97], während sich PI GF vorwiegend im Synzytiotrophoblasten, also in direktem Kontakt mit dem mütterlichen Blutkreislauf findet [98].

4.1.2 Wirkung von VEGF und PI GF

Das in hypoxischer Umgebung auf Genebene hochregulierte VEGF wirkt autokrin auf die Endothelzelle, es stimuliert dabei die Angiogenese und erhöht die Gefäßpermeabilität, woher auch die frühere Bezeichnung „vascular permeability factor“ stammt [99].

Der proangiogenetische Effekt von VEGF wird vor allem über die Bindungen an den Rezeptor VEGFR-2 auf der Endothelzellmembran vermittelt. VEGF bindet großenteils an VEGFR-1 (Flt-1), welcher lediglich vergleichsweise geringe Tyrosinkinase-Aktivität besitzt und somit eher als Reservoir für VEGF dient. Flt-1 dient gleichzeitig als einziger Rezeptor für PI GF. Wird PI GF vermehrt produziert, besetzt es die Rezeptostellen von Flt-1, das „gespeicherte“ VEGF wird freigesetzt und kann nun vermehrt
über VEGFR-2 seine Wirkung entfalten, die Angiogenese wird gefördert. Somit haben VEGF und PlGF, obwohl sie um die gleichen Rezeptorstellen konkurrieren, beide proangiogenetische Wirkung.

4.1.3 VEGF und PlGF bei Präeklampsie

4.2 sFlt-1

Zu den Rezeptoren der VEGF-Familie werden die beiden vorwiegend endothelständig vorkommenden Proteine VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) sowie auch VEGFR-3 (Flt-4) gezählt, welche alle der Rezeptoren-Superfamilie der Tyrosinkinasen angehören und von denen VEGFR-1 seinen Liganden VEGF mit der weitaus höchsten Affinität bindet [103].

4.2.1 Struktur und Expression von sFlt-1

Das Gen für Flt-1 wurde erstmals 1990 von Shibuya et al. aus der cDNA-Bank der menschlichen Plazenta isoliert und das Produkt aufgrund seiner strukturellen Ähnlichkeit zur Fms-Familie als Fms-like tyrosine kinase-1 benannt [104]. Das humane Flt-1 enthält in seiner extrazellulären Region sieben immunglobulinartige Domänen im Vergleich zu den in der Struktur der Fms-Familie lediglich fünf vorhandenen entsprechenden Domänen.
II. Theoretische Grundlagen

Durch alternatives Splicing werden in der Plazenta und in den Endothelzellen der Umbilikalvene zwei bedeutende mRNA-Varianten von jeweils 3,0 und 2,4 kbp Größe [104] exprimiert, welche für die lösliche Form soluble Flt-1 (sFlt-1) kodieren. Diese besteht aus der ersten bis sechsten immunoglobulinartigen Domäne und 31 zusätzlichen Aminosäuren, welche von einer Intron-Sequenz in der terminierenden Carboxyregion abgeleitet werden [106].

Wie aus Abbildung 8 ersichtlich, wurde dieselbe Sequenz ebenso in Mäusen gefunden, was darauf hinweist, dass es sich bei der Kurzform der mRNA nicht etwa um eine Nonsense-Sequenz handelt, sondern das VEGFR-1-Gen tatsächlich für zwei Polypeptide kodiert, namentlich VEGFR-1, ein Membranprotein voller Länge, und solubles VEGFR-1, der löslichen Variante des VEGF bindenden Proteins [105]. Die Expression von VEGFR-1 wird in vivo wie in vitro in hypoxischer Umgebung hochreguliert.

4.2.2 Wirkung von sFlt-1

VEGFR-2 ist der Rezeptor, der die eigentliche mitogene und angiogene Wirkung von VEGF auf die Endothelzelle überträgt. VEGFR-1 (Flt-1) hingegen wird aufgrund seiner geringen Tyrosinkinase-Aktivität eher als Scheinrezeptor oder, wie oben beschrieben, als Reservoir für VEGF angesehen. Flt-1 besitzt jedoch eine gegenüber VEGFR-2 höhere Affinität zu VEGF, wodurch es erst durch eine Steigerung der
PIGF-Freisetzung und somit Verdrängung von VEGF von Flt-1 zu einer vermehrten Interaktion von VEGF und seinem wirkungsvermittelnden Rezeptor VEGFR-2 kommt [101].

In situ Hybridisierung bei Mäusen ergab, dass sich kurze VEGFR-1 mRNA ab Mitte der Schwangerschaft vorwiegend und in zunehmender Zahl in der Trophoblastenschicht präsentierten, während das endothelständige Pendant bereits in der sehr frühen Schwangerschaft nachweisbar ist [107]. Aufgrund der gleich hohen Affinität von VEGF zu sowohl der löslichen als auch der endothelständigen Form seines Rezeptors bedeutet eine Veränderung deren Verhältnisses zugunsten von sFlt-1, dass der Weg der Signaltransduktion in die Zelle sowohl über VEGFR-2 als auch über Flt-1 entsprechend weniger beschritten wird. Somit nimmt soluble Flt-1 im Verlauf der Schwangerschaft Einfluss auf die ablaufenden angiogenetischen Prozesse durch die gegenüber VEGF antagonistische Wirkung auf die Endothelzelle [108]. sFlt-1 ist also ein weiterer Baustein zur Modulation der biologischen Aktivität von VEGF und PIGF.

4.2.3 sFlt-1 bei Präeklampsie

Experimentell bestätigte sich die Theorie, dass das in präeklamptischen Plazenten vermehrt vorhandene sFlt-1 an VEGF und PIGF bindet, dadurch die zelluläre Antwort auf frei zirkulierendes VEGF entkräftet und so die für eine physiologische Angiogenese notwendige Zellmigration reduziert. Aus diesen Vorgängen resultiert ein Netzwerk unvollständig ausgebauter und enger Gefäße innerhalb der Plazenta, die lediglich eine unzureichende Versorgung des Feten zulassen [108].
II. Theoretische Grundlagen

In vivo Versuche an Ratten demonstrierten den Zusammenhang von erhöhtem sFlt-1 in der Schwangerschaft und der endothelialen Dysfunktion, welche in Hypertension, Proteinurie und glomerulärer Endotheliose, kurz, dem klinischen Erscheinungsbild der Präeklampsie resultiert. Der Abfall der erhöhten systemischen Konzentration an sFlt-1 korreliert auch klinisch mit dem Rückgang der Symptome der Präeklampsie ab dem Zeitpunkt der Entbindung [40].

4.3 Soluble Endoglin

Mit soluble Endoglin [112], einem von der Plazenta stammenden TGF-β-Korezeptor, fand sich ein weiterer Faktor, der bei präeklamptischen Patientinnen im Serum erhöht vorliegt. Die Höhe der Konzentration korreliert mit dem Schweregrad der Erkrankung und fällt direkt nach Entbindung ab. Es wird davon ausgegangen, dass sEng zusammen mit sFlt-1 zum Pathomechanismus beitragen, welcher ursächlich hinter der Entwicklung einer Präeklampsie steht [43].

4.3.1 Struktur und Expression von Soluble Endoglin

Der Rezeptorkomplex der Zellmembran besteht zudem noch aus zwei weiteren Transmembranproteinen, den beiden Co-Rezeptoren Endoglin und Betaglykan. Diese enthalten bestimmte Homologien in den Aminosäurensequenzen ihrer großen extrazellulären Domänen sowie ihrer serin- und threoninreichen zytoplasmatischen Abschnitte. Im Gegensatz zu Endoglin, welches vorwiegend und in großer Zahl auf der
Endothelzelloberfläche exprimiert wird, ist Betaglykan hier jedoch nur in geringem Maße lokalisiert. In Anwesenheit der TGF-β-Rezeptoren Typ I und Typ II bindet Endoglin unter anderem TGF-β1 und TGF-β3 mit hoher Affinität, nicht jedoch TGF-β2, und wirkt auf die von TGF-β1 abhängige Zellreaktion modulierend [116].

Das durch Hypoxie induzierbare TGF-β1 scheint abhängig von dessen Konzentration auf die Endothelzelle verschiedene Wirkungen auszuüben, es wurden in vitro sowohl positive als auch negative Effekte auf deren Proliferationsvermögen nachgewiesen. Niedrige Dosen an TGF-β1 wirken stimulierend, eine große Menge des Zytokins eher inhibierend [119].

TGF-β1 ist in der Lage, eine Dephosphorylierung von Thr495 der endothelialen NO-Synthase (eNOS) zu initiieren, wodurch diese aktiviert wird und in diesem Status wiederum eine Vasorelaxation induziert. Die Interaktion zwischen sEng und TGF-β1 verhindert, dass letzteres an den endothelständigen Rezeptorkomplex binden kann,
wodurch die weitere Signaltransduktion unterbunden und die NO-abhängige Vasorelaxation vermindert wird [120].

Der genaue Entstehungsmechanismus von sEng ist noch ungeklärt, es wird jedoch vermutet, dass die lösliche Form des Glykoproteins ähnlich deriviert wird wie das strukturverwandte soluble Betaglykan. Dieses geht durch proteolytische Spaltung, dem so genannten shedding, aus seiner membranständigen Form hervor, zu der bestimmte Matrixmetalloproteasen, namentlich die der Membrantypen 1 und 3 (MT1-MMP, MT3-MMP), die Kapabilität besitzen [121].

4.3.3 sEng bei Präeklampsie

Analog zu der oben beschriebenen Erhöhung von sFlt1 im Serum präeklamptischer Frauen ist ebenso ein verstärkter Anstieg der löslichen Form von Endoglin, dem soluble Endoglin, zu verzeichnen. Zusammen rufen die beiden Faktoren in vitro endotheliale Dysfunktion hervor und sind in vivo dazu in der Lage, die Symptome der Präeklampsie zu induzieren [112].
Ziel der Arbeit und Fragestellung

Ziel der vorliegenden Arbeit ist die Untersuchung der Angiogenesefaktoren placentagrowth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble Endoglin [112] im Serum bei gleichzeitiger Bestimmung uteriner und umbilikaler Dopplerbefunde bei Patientinnen mit normal verlaufenden Schwangerschaften, milder sowie schwerer Präeklampsie.

Unter der Kenntnis, dass die Serumfaktoren PlGF, sFlt-1 und sEng eine wichtige Rolle in der Entstehung der Präeklampsie spielen, wurde untersucht, welche Veränderungen der Parameter sich zwischen den Patientinnengruppen ergeben. Es soll herausgearbeitet werden, ob sich signifikante Unterschiede zwischen physiologischen und pathologischen Schwangerschaften aufzeigen lassen.

Die Proteine PlGF, sFlt-1 und sEng wurden hierfür mittels ELISA-Tests aus dem Serum der Patientinnen quantifiziert und die Werte mit den Ergebnissen der Dopplersonographie der A. uterina verglichen.

Folgende Fragestellungen wurden bearbeitet:

I. Bestimmung von Serumwerten der Angiogenesefaktoren PlGF, sFlt-1 und sEng bei Patientinnen mit normal verlaufenden Schwangerschaften, milder sowie schwerer Präeklampsie.

II. Vergleich von Serumwerten der Angiogenesefaktoren PlGF, sFlt-1 und sEng zwischen Patientinnen mit milder und schwerer Präeklampsie vor und während manifester Präeklampsie.

III. Material und Methoden

1. Materialien

1.1 Patientinnenkollektiv und Kontrollen

Als Einschlusszeitpunkt für die Studie wurde die Nackentransparenz-Messung festgelegt, alternativ bestand die Möglichkeit, Patientinnen bei Neuvorstellung mit Hochdruckerkrankung einschließlich Präeklampsie und IUGR zu jedem Zeitpunkt der Schwangerschaft nachträglich einzubeziehen.

Vorbestehende Tumor-, Nieren- oder Lebererkrankungen, Infektionskrankheiten, bekannte fetale Fehlbildungen oder chromosomale Aberrationen sowie alle Bedingungen, die dazu führen, dass die Patientin das Studienprotokoll nicht in vollem Umfang einsehen, verstehen oder befolgen kann, galten als Ausschlusskriterien für die Studie.

Nachfolgende Tabelle gibt eine Übersicht über das Patientinnenkollektiv und das fetale Outcome mit Durchschnittswerten und Standardabweichung:
Tab. 4. Übersicht über Patientinnen und Outcome (Durchschnitt ± Standardabweichung)

<table>
<thead>
<tr>
<th></th>
<th>Normalkollektiv</th>
<th>Milde PE</th>
<th>Schwere PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl</td>
<td>92</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Alter (J)</td>
<td>33,21 ± 4,88</td>
<td>32,78 ± 5,86</td>
<td>32,93 ± 6,77</td>
</tr>
<tr>
<td>Gravidität</td>
<td>1,88 ± 1,11</td>
<td>1,57 ± 0,85</td>
<td>2,47 ± 2,07</td>
</tr>
<tr>
<td>Parität</td>
<td>0,51 ± 0,68</td>
<td>0,36 ± 0,63</td>
<td>0,53 ± 0,74</td>
</tr>
<tr>
<td>Gestationsalter (SSW)</td>
<td>38,93 ± 1,64</td>
<td>33,71 ± 4,05</td>
<td>33,14 ± 4,74</td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td>3283 ± 446</td>
<td>1898 ± 735</td>
<td>1699 ± 745</td>
</tr>
<tr>
<td>Apgar 5’</td>
<td>9,67 ± 1,44</td>
<td>9,57 ± 0,85</td>
<td>9,33 ± 1,54</td>
</tr>
<tr>
<td>Apgar 10’</td>
<td>9,75 ± 1,41</td>
<td>9,79 ± 0,43</td>
<td>9,8 ± 0,41</td>
</tr>
<tr>
<td>Nabelschnur-pH</td>
<td>7,32 ± 0,08</td>
<td>7,29 ± 0,06</td>
<td>7,29 ± 0,04</td>
</tr>
<tr>
<td>BE (mmol/l)</td>
<td>-4,09 ± 2,69</td>
<td>-4,12 ± 2,43</td>
<td>-2,64 ± 3,14</td>
</tr>
<tr>
<td>Sectio caesaria (%)</td>
<td>44 %</td>
<td>79 %</td>
<td>93 %</td>
</tr>
</tbody>
</table>

fetale Komplikationen
- 1 x IUFT
- 5 x Apnoen
- 2 x Intubation
- 3 x Reanimation
- 1 x Intubation
- 1 x Reanimation
- 1 x Chorioamnionitis
- 2 x fetale Bradykardie, Notsectio
1.2 Meßzeitpunkte

<table>
<thead>
<tr>
<th>Meßzeitpunkt</th>
<th>Gestationsalter</th>
<th>Besonderheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23 + 0 - 27 + 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28 + 0 - 32 + 6</td>
<td>III. Screening</td>
</tr>
<tr>
<td>3</td>
<td>33 +0 - 37 + 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ab 38 + 0</td>
<td>am errechneten Termin ET</td>
</tr>
</tbody>
</table>

Tab. 5. Meßzeitpunkte im Schwangerschaftsverlauf

1.3 Geräte und sonstige Hilfsmittel

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herafreeze -85°C Freezer</td>
<td>Heraeus Instruments</td>
<td>Hanau</td>
</tr>
<tr>
<td>MaxData Pro 6100X</td>
<td>MaxData Systeme GmbH</td>
<td>Wüerselen</td>
</tr>
<tr>
<td>Omnifuge 2,0 RS</td>
<td>Heraeus Sepatech GmbH</td>
<td>Osterode</td>
</tr>
<tr>
<td>Voluson 730 expert 3,5 MHz Sonde</td>
<td>GE Healthcare</td>
<td>Solingen</td>
</tr>
</tbody>
</table>

Tab. 6. Geräte und sonstige Hilfsmittel
III. Material und Methoden

2. Methoden

2.1 Durchführung der Untersuchungen

Am Einschlusstermin einer jeden Patientin wurde eine ausführliche Anamnese anhand eines standardisierten Studienprotokolls erhoben und das Alter der Patientin, die Anzahl vorausgegangener Schwangerschaften und erfolgter Geburten, ihre medizinische Vorgeschichte speziell auch im Hinblick auf frühere Gravidität, bestehende akute oder chronische Erkrankungen und eine etwaige Medikation, ihre Familienanamnese bezüglich Präeklampsie und Hochdruckkrankungen sowie ein eventueller Zigarettenkonsum dokumentiert.

III. Material und Methoden

2.2 Ultraschall und Dopplersonographie

2.2.1 Fetale Sonographie

Der transabdominelle Ultraschall wurde ausgeführt mit einem hoch auflösenden, farbkodierten Doppler-System (Voluson 730 expert, GE Healthcare, Solingen, Deutschland), ausgestattet mit einem 4 MHz Curved-array-Schallkopf.

2.2.2 Durchführung der Dopplersonographie

III. Material und Methoden

2.3 Quantifizierung der Serumparameter Endoglin, Flt-1 und PlGF

Die Konzentrationsbestimmung der Serumparameter erfolgte durch Roche Diagnostics GmbH mittels folgender Immunoassay Kits:

<table>
<thead>
<tr>
<th>Quantikine Human Endoglin/CD105 Immunoassay</th>
<th>R&D Systems, Inc.</th>
<th>Minneapolis, USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantikine Human Soluble VEGF R1/Flt-1 Immunoassay</td>
<td>R&D Systems, Inc.</td>
<td>Minneapolis, USA</td>
</tr>
<tr>
<td>Quantikine Human PlGF Immunoassay</td>
<td>R&D Systems, Inc.</td>
<td>Minneapolis, USA</td>
</tr>
</tbody>
</table>

Tab. 7. Verwendete Immunoassay-Kits

Die Quantikine Kits Human Endoglin/CD105 Immunoassay, Human Soluble VEGF R1/Flt-1 Immunoassay und Human PlGF Immunoassay basieren auf dem Prinzip des ELISA-Tests und bedienen sich der quantitativen Sandwich-Enzym-Technik, ihre Ausführung läuft in den jeweiligen Arbeitsschritten gleich ab. Hierbei werden monoklonale, für den jeweiligen Serumparameter spezifische Antikörper verwendet, welche eine Titrierplatte überziehen. Die im Serum enthaltenen Proteine werden ge-
bunden und nach Zugabe von weiteren enzymgebundenen spezifischen Antikörpern und Färbereagenzien durch Farbintensitätsmessung quantifizierbar.

Zur Verdünnung des Standards werden in sechs Reagenzgläser jeweils 500 µl des Calibrator Diluents RD6-11 pipettiert, dann wird durch Zugabe von 500 µl des bei 1000 pg/ml hochkonzentrierten Standards eine Verdünnung dessen mit nunmehr nur 500 pg/ml geschaffen. Von dieser werden wiederum 500 µl entnommen und dem nächsten Reagenzglas hinzugefügt und dieser Zyklus solange wiederholt, bis eine in Konzentration absteigende Verdünnungsreihe von 1000 pg/ml über 500 pg/ml, 250 pg/ml, 125 pg/ml, 62,5 pg/ml und 31,2 pg/ml bis hin zu 15,6 pg/ml vorliegt.

III. Material und Methoden

sem Zeitintervall das jeweilige freie Protein in den unterschiedlichen Proben an die Antikörper auf der Platte gebunden ist. Der Überstand kann aspiriert und die Vertiefungen mit je 400 μl des Waschpuffers gespült werden. Dieser Arbeitsschritt wird wiederholt, bis jede Mulde insgesamt viermal gewaschen ist, der letzte Überstand kann mittels Umdrehens und Ausklopfens der Titrierplatte verworfen werden.

Jede Vertiefung wird nun wiederum mit je 200 μl eines Endoglin-, Flt-1- oder PlGF-Konjugats gefüllt, welches mit Meerrettich-Peroxidase konjugierte polyklonale Antikörper enthält, und erneut zwei Stunden lang inkubiert.

2.4 Statistik

Das statistische Signifikanzniveau wurde als zweiseitiges Alpha von 0,05 definiert, also die Signifikanz eines Unterschiedes zwischen zwei zu vergleichenden Gruppen angenommen, wenn der errechnete p-Wert bei < 0,05 lag. Bei einem p-Wert von <
3. Material und Methoden

0,001 wurde von einem hochsignifikanten Ergebnis ausgegangen. Der p-Wert ist dabei das Maß für die Wahrscheinlichkeit der Null-Hypothese, welche besagt, dass zwei zu vergleichende Gruppen hinsichtlich des zu untersuchenden Merkmals vergleichbar sind. Die Null-Hypothese wird abgelehnt, wenn der p-Wert bei < 0,05 liegt. Ist dies der Fall, ist von einem signifikanten Unterschied zwischen den zwei zu vergleichenden Gruppen auszugehen.

Die Varianzanalyse innerhalb der und zwischen den Gruppen und deren Überprüfung auf das Vorliegen eines signifikanten Unterschiedes zwischen den jeweils zu vergleichenden Gruppen wurde anhand des einfaktoriellen ANOVA-Verfahrens (analysis of variance) auf einem Signifikanzniveau von 5 % ausgeführt.

IV. Ergebnisse

Die Aufteilung der Patientinnen erfolgte nach Blutdruckwerten und Eiweißausscheidung im Urin in das normotensive, nicht proteinurische Kontrollkollektiv einerseits und in die Patientinnengruppe mit Präeklampsie andererseits, beziehungsweise in jeweils ein Kollektiv "Gesund" und "Präeklampsie", wobei die Gruppe "Gesund" bei der Analyse der Wachstumsfaktoren auch die Patientinnen vor Manifestation einer Präeklampsiesymptomatik beinhaltet.

Die Präeklampsiegruppe wurde weiterhin unterschieden in "Vor Präeklampsie", also vor der Symptommanifestation, und "Während Präeklampsie". Zudem wurde die Gruppe nach Schweregrad der Erkrankung in "Milde Präeklampsie" und "Schwere Präeklampsie" unterteilt. Anhand der Blutdruckwerte wurde die milde Ausprägung definiert als systolischer Blutdruck < 160 mmHg beziehungsweise diastolischer Blutdruck < 110 mmHg, darüberliegende Werte qualifizierten für das Vorliegen der schweren Verlaufsform der Präeklampsie. Probandinnen, welche lediglich einen reinen schwangerschaftsinduzierten Hypertonus ohne Proteinurie oder aber weitere Schwangerschaftskomplikationen wie die Entwicklung eines HELLP-Syndroms aufwiesen, wurden in der Auswertung nicht berücksichtigt.

Die Serumwerte innerhalb des nachfolgenden Textes wurden der Übersichtlichkeit halber auf ganze Zahlen auf- beziehungsweise abgerundet.
1. Ergebnisse der Dopplersonographie

1.1 Pulsatilitäts-Index und Notching der plazentaren A. uterina in normaler versus präeklamptischer Schwangerschaft

Der mittlere Pulsatilitäts-Index der plazentaren A. uterina betrug im gesunden Kontrollkollektiv 0,68. Demgegenüber zeigte sich eine deutliche Mittelwert-Erhöhung des Pulsatilitäts-Indexes auf 1,06 im Kollektiv mit milder sowie auf 1,03 im Kollektiv mit schwerer Präeklampsie. Eine Übersicht über die erhobenen Daten gewähren Tabelle 8 sowie nachfolgendes Säulendiagramm in Abbildung 9.

<table>
<thead>
<tr>
<th>Kollektiv</th>
<th>Mittlerer PI</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>0,683</td>
<td>0,28 - 3,00</td>
<td>0,079</td>
</tr>
<tr>
<td>Milde PE</td>
<td>1,062</td>
<td>0,37 - 2,13</td>
<td>0,308</td>
</tr>
<tr>
<td>Schwere PE</td>
<td>1,030</td>
<td>0,59 - 1,53</td>
<td>0,101</td>
</tr>
</tbody>
</table>

Tab. 8. Mittlerer PI, Streubreite und Standardabweichung der plazentaren A. uterina

Abb. 9. Säulendiagramm für PI plazentare A. uterina (Mittlerer PI ± SD)

Zwischen dem Normalkollektiv und der Gruppe mit milder Präeklampsie besteht damit mit p < 0,01 ein signifikanter Unterschied des mittleren Pulsatilitäts-Indexes.
IV. Ergebnisse

Zwischen Normalkollektiv und schwerer Präeklampsie ist dieser Unterschied mit \(p < 0,001 \) hochsignifikant.

In 6 von 131 Untersuchungen, also in knapp 5 %, zeigte sich im gesunden Kontrollkollektiv ein Notching in der Dopplerkurve der plazentaren A. uterina. Bei Patientinnen mit milder Präeklampsie machte dieser Anteil 40 % aus, bei Patientinnen mit schwerer Präeklampsie ließ sich in 33 % der Fälle ein Notching nachweisen. Übersichtlich sind diese Daten in Tabelle 9 dargestellt.

<table>
<thead>
<tr>
<th>Kollektiv</th>
<th>Anzahl</th>
<th>Anzahl notching</th>
<th>Anteil notching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>131</td>
<td>6</td>
<td>4,6 %</td>
</tr>
<tr>
<td>Milde PE</td>
<td>10</td>
<td>4</td>
<td>40,0 %</td>
</tr>
<tr>
<td>Schwere PE</td>
<td>12</td>
<td>4</td>
<td>33,3 %</td>
</tr>
</tbody>
</table>

Tab. 9. Notch der plazentaren A. uterina

Es besteht mit \(p < 0,001 \) eine hochsignifikante Korrelation des Notchings zu beiden Präeklampsiegruppen, sowie dessen Ausbleiben zum Normalkollektiv.

1.2 Pulsatilitäts-Index und Notching der nichtplazentaren A. uterina in normaler versus präeklamptischer Schwangerschaft

Der mittlere Pulsatilitäts-Index der nichtplazentaren A. uterina betrug im gesunden Kontrollkollektiv 0,78. Demgegenüber zeigte sich eine deutliche Mittelwert-Erhöhung des Pulsatilitäts-Indexes auf 1,46 im Kollektiv mit milder sowie auf 1,42 im Kollektiv mit schwerer Präeklampsie. Eine Übersicht über die erhobenen Daten gewähren die Tabelle 10 sowie nachfolgende Abbildung 10.

<table>
<thead>
<tr>
<th>Kollektiv</th>
<th>Mittlerer PI</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>0,782</td>
<td>0,33 - 2,80</td>
<td>0,120</td>
</tr>
<tr>
<td>Milde PE</td>
<td>1,459</td>
<td>0,47 - 2,70</td>
<td>0,461</td>
</tr>
<tr>
<td>Schwere PE</td>
<td>1,418</td>
<td>0,60 - 2,80</td>
<td>0,616</td>
</tr>
</tbody>
</table>

Tab. 10. Mittlerer PI, Streubreite und Standardabweichung der nichtplazentaren A. uterina
IV. Ergebnisse

Zwischen dem Normalkollektiv und der Gruppe mit milder Präeklampsie besteht damit mit \(p < 0,001 \) ein hochsignifikanter, im Vergleich mit der Gruppe mit schwerer Präeklampsie mit \(p < 0,01 \) ein signifikanter Unterschied des mittleren Pulsatilitäts-Indexes.

In 5 von 131 Untersuchungen, also in 4\%, zeigte sich im gesunden Kontrollkollektiv ein Notching in der Dopplerkurve der nichtplazentaren A. uterina. Bei Patientinnen mit milder Präeklampsie machte der Anteil 55 \% aus, bei Patientinnen mit schwerer Präeklampsie ließ sich sogar in 60 \% der Fälle ein Notching nachweisen. Übersichtlich sind diese Daten in Tabelle 10 dargestellt.

<table>
<thead>
<tr>
<th>Kollektiv</th>
<th>Anzahl</th>
<th>Anzahl notching</th>
<th>Anteil notching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>128</td>
<td>5</td>
<td>3,9 %</td>
</tr>
<tr>
<td>Milde PE</td>
<td>11</td>
<td>6</td>
<td>54,5 %</td>
</tr>
<tr>
<td>Schwere PE</td>
<td>10</td>
<td>6</td>
<td>60,0 %</td>
</tr>
</tbody>
</table>

Tab. 11. Notch der nichtplazentaren A. uterina

Es besteht mit \(p < 0,001 \) eine hochsignifikante Korrelation des Notchings zu beiden Präeklampsiegruppen sowie dessen Ausbleiben zum Normalkollektiv.

1.3 Pulsatilitäts-Index der A. umbilicalis in normaler versus präeklamptischer Schwangerschaft

Übersicht über die erhobenen Daten gewähren die Tabelle 12 sowie nachfolgende Abbildung 11.

<table>
<thead>
<tr>
<th>Kollektiv</th>
<th>Mittlerer PI</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>1,006</td>
<td>0,48 - 1,86</td>
<td>0,031</td>
</tr>
<tr>
<td>Milde PE</td>
<td>1,148</td>
<td>0,71 - 1,71</td>
<td>0,064</td>
</tr>
<tr>
<td>Schwere PE</td>
<td>1,286</td>
<td>1,08 - 1,42</td>
<td>0,079</td>
</tr>
</tbody>
</table>

Tab. 12. Mittlerer PI, Streubreite und Standardabweichung der A. umbilicalis

Zwischen dem Normalkollektiv und der Gruppe mit milder Präeklampsie besteht damit mit $p < 0,05$ ein gering signifikanter, im Vergleich mit der Gruppe mit schwerer Präeklampsie mit $p < 0,001$ ein hochsignifikanter Unterschied des mittleren Pulsatilitäts-Indexes.

2. Analyse der Wachstumsfaktoren

2.1 PlGF in normaler versus präeklamptischer Schwangerschaft

IV. Ergebnisse

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalkollektiv</td>
<td>202</td>
<td>327,878</td>
<td>224,600</td>
<td>15,803</td>
</tr>
<tr>
<td>Während milder PE</td>
<td>10</td>
<td>54,104</td>
<td>40,310</td>
<td>12,747</td>
</tr>
<tr>
<td>Während schwerer PE</td>
<td>10</td>
<td>93,013</td>
<td>90,035</td>
<td>28,756</td>
</tr>
<tr>
<td>Vor schwerer PE</td>
<td>12</td>
<td>139,703</td>
<td>153,026</td>
<td>44,175</td>
</tr>
</tbody>
</table>

Tab. 13. Deskriptive Statistik für PIGF (Angaben in pg/ml)

Abb. 12. Säulendiagramm für PIGF (Angaben in pg/ml)

Abb. 13. Boxplot für PIGF (Max/Oberes Quartil/Median/Unteres Quartil/Min; Angaben in ng/ml)
IV. Ergebnisse

2.2 sFlt-1 in normal versus präeklamptisch verlaufender Schwangerschaft

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollkollektiv</td>
<td>207</td>
<td>3.930,678</td>
<td>3.630,274</td>
<td>273,201</td>
</tr>
<tr>
<td>Während milder PE</td>
<td>10</td>
<td>29.566,711</td>
<td>24.263,948</td>
<td>7.672,934</td>
</tr>
<tr>
<td>Während schwerer PE</td>
<td>10</td>
<td>40.057,880</td>
<td>34.397,478</td>
<td>108.877,437</td>
</tr>
<tr>
<td>Vor schwerer PE</td>
<td>14</td>
<td>1.626,486</td>
<td>1.819,797</td>
<td>486,361</td>
</tr>
</tbody>
</table>

Tab. 14. Deskriptive Statistik für sFlt-1 (Angaben in pg/ml)

Im direkten Vergleich weist die Gruppe mit aktuell vorliegender Präeklampsie, wie aus nachfolgender Abbildung 14 ersichtlich, mit 34.812 ± 29.467 pg/ml gegenüber den Serumwerten des gesunden Kollektivs von 3.843 ± 3.480 pg/ml in etwa eine Vierzehnfachung des zirkulierenden Wachstumsfaktors auf.

Abb. 14. Säulendiagramm für sFlt-1 (Angaben in pg/ml)

Zwischen den Gruppen „Gesund“ und „Präeklampsie“ besteht mit p < 0,0001 ein hochsignifikanter Unterschied der Serumwerte für sFlt-1. Die Varianz der Werte innerhalb der einzelnen Gruppen ist mit 0,0001 signifikant geringer als die Varianz im Vergleich der Gruppen untereinander, womit auch varianzanalytisch ein hochsignifi-
IV. Ergebnisse

kanter Unterschied zwischen den Serumwerten der zu vergleichenden Gruppen zu verzeichnen ist. Das in Abbildung 15 dargestellte Boxplot-Diagramm zeigt die unterschiedlichen Ergebnisse des Kontrollkollektivs im Vergleich zu der Gruppe mit milder beziehungsweise schwerer Präeklampsie.

Abb. 15. Boxplot für sFlt-1 (Max/Oberes Quartil/Median/Unteres Quartil/Min; Angaben in ng/ml)

2.3 sEng in normaler versus präeklamptischer Schwangerschaft

Der mittlere Serumspiegel für soluble Endoglin betrug im gesunden Kontrollkollektiv 9 ± 6 ng/ml. Deutlich höher fielen die Serumwerte während manifester Präeklampsie mit 43 ± 19 ng/ml bei milder respektive 54 ± 42 ng/ml bei schwerer Präeklampsie aus. Vor Symptomausprägung zeigte sich innerhalb der Gruppe „Schwere Präeklampsie“ ein gegenüber dem Gesamtkollektiv eher niedriger Serumspiegel von 6 ± 3 ng/ml. Eine Übersicht über die erhobenen Daten gewähren Tabelle 14 und Abbildung 16.

<table>
<thead>
<tr>
<th></th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrollkollektiv</td>
<td>207</td>
<td>8,535</td>
<td>5,573</td>
<td>0,387</td>
</tr>
<tr>
<td>Während milder PE</td>
<td>9</td>
<td>42,999</td>
<td>19,186</td>
<td>6,395</td>
</tr>
<tr>
<td>Während schwerer PE</td>
<td>11</td>
<td>54,306</td>
<td>42,318</td>
<td>12,759</td>
</tr>
<tr>
<td>Vor schwerer PE</td>
<td>14</td>
<td>5,919</td>
<td>2,509</td>
<td>0,671</td>
</tr>
</tbody>
</table>

Tab. 15. Deskriptive Statistik für sEng (Angaben in ng/ml)
IV. Ergebnisse

Abb. 16. Säulendiagramm für sEng (Angaben in ng/ml)

Abb. 17. Boxplot für sEng (Max/Oberes Quartil/Median/Unteres Quartil/Min; Angaben in ng/ml)
V. Diskussion

1. Ergebnisse der Dopplersonographie

In der vorgelegten Arbeit wurde mittels Dopplersonographie der Blutfluss in der A. umbilicalis und den Aa. uterinae im normalen Schwangerschaftsverlauf sowie bei Präeklampsie untersucht.

Durch den gezielten Einsatz der Dopplersonographie lässt sich in Zusammenhang mit anamnestischen Angaben der Mutter kostengünstig und nichtinvasiv abschätzen, wie hoch das Risiko für das Auftreten einer Präeklampsie im Verlauf der Schwangerschaft ist [51].

1.1 Pulsatilitäts-Index und Notching der plazentaren Aa. uterinae in normaler versus präeklamptischer Schwangerschaft

Die in vorliegender Arbeit erhobenen Daten bestätigen die bekannte Pathophysiologie: Der erhöhte plazentare Widerstand und die damit einhergehenden Veränderungen in der Blutversorgung der Plazenta mit erhöhtem PI und persistierendem Notch sind in der Beeinträchtigung der uteroplazentaren Perfusion durch unzureichende endomuskuläre Invasion des Trophoblasten und der folgenden Beeinträchtigung der Spiralarteriendilatation begründet [12].

Um die Vorhersagekraft der dopplersonographischen Untersuchung der Aa. uterinae noch zu steigern, wurde deren Kombination mit der Bestimmung biochemischer Angiogenesefaktoren im Serum der Patientinnen untersucht und aufgrund der Studienergebnisse empfohlen [126-128].

1.2 Pulsatilitäts-Index der A. umbilicalis in normaler versus präeklamptischer Schwangerschaft

Die Dopplersonographie der A. umbilicalis befähigt nach heutiger Studienlage nicht nur zur genauen Beobachtung der fetalen Blutzufuhr bei bereits manifester Erkrankung durch Erfassung von Absent- oder Reverse-Flow der Dopplerkurve [129-131], sondern dient durch die Bestimmung des Blutflusses in der Diastole und der Widerstandsindizes wie dem Pulsatilitäts-Index bereits in der Frühschwangerschaft zur Erkennung von Patientinnen mit gestörter fetoplazentarer Versorgung und somit erhöhtem fetalen Risiko für IUGR und assoziierte Schwangerschaftskomplikationen. Der
höhere Widerstand im fetoplazentaren Gefäßbett mit peripher-arteriell erhöhtem Pulsatilitäts-Index auf fetaler Seite und konsekutiv verringelter diastolischer Blutströmung kommt durch die bereits früh insuffiziente Entwicklung des Gefäßbaumes und Reifung der Tertiärzotten in der Plazenta zustande, später kommen Infarzierungen und Fibrosen der Plazenta verstärkend hinzu, sodass sich die Gewährleistung des steigenden fetalen Bedarfs reduziert beziehungsweise sie sogar zusammenbricht.

2. Ergebnisse der Wachstumsfaktorenanalyse

In vorliegender Arbeit wurden gleichzeitig zu oben beschriebenen dopplersonographischen Untersuchungen die Serumspiegel der Wachstumsfaktoren PlGF, sFlt-1 und sEng bei Patientinnen mit normalem Schwangerschaftsverlauf sowie mit Prämeklampsie bestimmt.

Bei der Entwicklung einer Prämeklampsie ist das suffiziente Einwachsen von Gefäßen in die Plazenta gestört, was auf ein verschobenes Gleichgewicht von pro- und antiangiogenetischen Faktoren wie PlGF, sFlt-1 sowie sEng zurückgeführt wird. Diese Fak-
toren werden während einer Schwangerschaft in großen Mengen in der Plazenta synthetisiert und spielen unter anderem eine zentrale Rolle in der Regulation von Gefäßproliferation und Trophoblastzellfunktion [86, 87].

2.1 PlGF in normaler versus präeklamptischer Schwangerschaft

che die Identifikation der meisten Patientinnen, die im Verlauf der Schwangerschaft an einer schweren Präeklampsie erkranken werden. Den Cut-Off-Wert für PI GF als Präeklampsiemarker bestimmten sie mit < 280 pg/ml. Aufgrund der geringen Fallzahlen unserer Studie kann in vorliegender Arbeit kein Cut-Off-Wert definiert werden, die Tendenz geht aber bei einer Streubreite unserer Werte im Normkollektiv von 552 pg/ml bis minimal 103 pg/ml eher zu einem noch etwas niedriger gelegenen Grenzwert.

2.2 sFlt-1 in normaler versus präeklampatischer Schwangerschaft

sFlt-1 verhindert als löslicher VEGF-Rezeptor mit hoher Affinität die Interaktion von VEGF mit seinem zellständigen Rezeptor VEGFR-2. In normotensiven Schwangerschaften weist sFlt-1 vergleichsweise stabile Serumwerte auf, diese steigen vor allem in den letzten beiden Schwangerschaftsmonaten linear an. Dieser Anstieg ist in präeklampatisch endenden Schwangerschaften wesentlich ausgeprägter und geht konsekutiv mit einer Abschwächung der proangiogenetischen Wirkung von VEGF einher. Studien haben ergeben, dass sich eine signifikante Veränderung der Serumwerte etwa fünf bis acht Wochen vor Symptommanifestation bemerkbar macht [110] und die Höhe des sFlt-1-Levels mit Schweregrad und Manifestationszeitpunkt der Präeklampsie korreliert [137].

Die vorliegende Arbeit enthält die Bestimmung der Serumkonzentration von sFlt-1 in insgesamt 244 Proben. Es zeigte sich ein Mittelwert von 3.630 pg/ml bei Patientinnen mit unkompliziert verlaufender Schwangerschaft, welche sich zwischen 23 + 0 SSW und Entbindung befanden. Die entsprechenden Serumproben der präeklamptischen Patientinnen wiesen hingegen signifikant erhöhte Spiegel von 29.567 pg/ml bei milder beziehungsweise 40.058 pg/ml bei schwerer Präeklampsie auf. Auch diese Ergebnis-
nisse kongruieren mit bekannten Daten aus der Literatur und damit auch mit dem Erklärungsmodell, welches besagt, dass das in präeklамptischen Schwangerschaften zusätzlich verfügbare sFlt-1 frei zirkulierendes VEGF bindet und so die zellulären Mechanismen abschwächt, welche zur physiologischen Angiogenese beitragen.

Weitere Studien haben gezeigt, dass exogen zugeführtes sFlt-1 in tragenden Ratten präeklampsieartige Symptome mit Hypertension und Proteinurie induziert [40] und dass präeklамptisches Plazentagewebe durch Reduktion von vorhandenem sFlt-1 mittels Immunpräzipitation zur Angiogenese angeregt werden kann [108]. Daraus ergibt sich die Annahme, dass das Wissen um veränderte sFlt-1-Level durchaus in der Behandlung der Patientinnen relevant werden könnte und daher in Studien weiter untersucht werden sollte. Frühere Studien weisen der Bestimmung des Verhältnisses von sFlt-1 zu PlGF einen nicht zu vernachlässigenden positiv prädiktiven Wert zu [139], ebenso zeigte sich das bereits erwähnte Screening-Kit in der ersten klinischen Anwendungsphase erfolgversprechend [135].

2.3 sEng in normaler versus präeklамptischer Schwangerschaft

Von der Plazenta stammt weiterhin der TGFβ-Korezeptor sEng, welcher durch kompetitive Interaktion mit TGFβ dessen proangiogenetische und vasodilatatorische Wirkung abschwächt [133]. Soluble Endoglin wurde bei präeklамptischen Patientinnen im Vergleich zu normotensiven Kontrollen signifikant im Überschuss gefunden, die Serumkonzentration scheint auch hier mit Ausmaß und Manifestationszeitpunkt der Erkrankung zu korrelieren [43, 140, 141]. Analog zu sFlt-1 steigt die Serumkonzentration von sEng hauptsächlich in den letzten zwei Schwangerschaftsmonaten an, bei Entwicklung einer Präeklampsie ist dieser Anstieg früher und steiler zu verzeichnen [127, 141]. Erste Unterschiede lassen sich nach heutiger Studienlage frühestens neun bis elf Wochen vor Symptommanifestation feststellen [142].
Die vorliegende Arbeit enthält die Auswertung der Daten von 236 entnommenen Serumproben, welche eine mittlere sEng-Serumkonzentration von 9 ng/ml bei Patientinnen mit normal verlaufender Schwangerschaft im Zeitraum von $23 + 0$ SSW bis zur Entbindung ergab. Die im gleichen Zeitrahmen entnommenen Proben bei Präeklampsie lieferten signifikant höhere Serumwerte für sEng von im Mittel 43 ng/ml bei milder respektive 54 ng/ml bei schwerer Präeklampsie.

Ähnliche Resultate für den physiologischen Verlauf von Schwangerschaften und deren Veränderungen bei der Entstehung einer Präeklampsie sind bereits in vorausgehenden Studien beschrieben [141]. Neure Daten weisen auf einen niedrigeren falsch-positiven Wert und eine höhere Odds Ratio bezüglich der Entwicklung einer Präeklampsie für das Verhältnis von sEng zu seinem Liganden TGFβ-1 hin [139], analog zur höheren Aussagekraft von sFlt-1/PIGF im Vergleich zu den Einzelfaktoren.

Weitere Studien haben ergeben, dass veränderte sEng-Level auch mit SGA-Schwangerschaften ohne mütterliche Symptome assoziiert sind und somit nicht alleinig als Prädiktor für die Entwicklung einer Präeklampsie zu verwenden sind [143]. Wie auch bei der Untersuchung anderer Serummarker konnte aber durchaus festgestellt werden, dass die Bestimmung von sEng in Kombination mit verschiedenen Angiogenesefaktoren, deren Verhältnis zueinander sowie die zusätzliche Information aus dopplersonographischen Untersuchungen in der Präeklampsiediagnostik wertvoll sein kann [144].

3. Kritik und Ausblick

Kritisierbarer Schwachpunkt der Studie sind die geringen Fallzahlen, zumindest auf Seiten der präeklamptischen Patientinnen. Aufgrund der generell großen interindividuellen Unterschiede im Expressionsprofil ergeben sich Schwankungen in den Se-
V. Diskussion

rumwerten, welche beeinträchtigend auf die Signifikanzen rückwirken. Diese Fehlerquelle lässt sich nur durch entsprechend große Patientinnenkollektive umgehen. Weiterhin war es aufgrund der geringen Anzahl der Patientinnen nicht möglich, frühe Serumwerte mit dem Verlauf und Outcome der Schwangerschaft zu korrelieren, wodurch sich keine Aussage zu einem sinnvollen Screening der Serumwerte zu einem früheren Zeitpunkt als ab 23 + 0 SSW treffen lässt.

Aus den Ergebnissen dieser Studie lässt sich im Einklang mit vorausgehenden Studien die Annahme herleiten, dass sFlt-1, PlGF und sEng in der Präeklampsie zumindest teilverantwortlich sind für die gestörte gefäßstrukturelle Entwicklung in der Plazenta, die mit der Erkrankung assoziiert ist. Aufgrund der geringen Fallzahlen konnten auch keine aussagekräftigen Werte für das Verhältnis sFlt-1/PlGF ermittelt werden, dessen Werte sich in anderen Arbeiten als eine der wesentlichen Zusatzinformationen in der klinischen Abklärung bei Verdacht auf Präeklampsie erwiesen haben [135, 145, 146]. Der Zusammenhang der Angiogenesefaktoren mit der insuffizienten Trophoblasteninvasion und schlussendlich der Manifestation einer schwangerschaftsassoziierten hypertensiven Erkrankung birgt jedoch gewiss potentielle Ansätze zur Prävention und Therapie der Präeklampsie und macht die pharmakologische Inhibition von sFlt-1 und sEng zu einem interessanten Gebiet der weiterführenden Forschung. Gegenwärtig bestehen bereits Überlegungen, Faktoren zur Neutralisation der zirkulierenden Serummarker der Präeklampsie sFlt-1 und sEng zu entwickeln [147].

V. Diskussion

des klinischen Managements zu erreichen [152]. Abgesehen vom Aspekt der frühen Diagnosestellung und der Schwere der Erkrankung ist die Verfügbarkeit eines verlässlichen, prädiktiven biochemischen Tests auf Präeklampsie wünschenswert, da eine Fehldiagnose aufgrund der unterschiedlichen Ausprägung des Syndroms vor allem in der ambulanten Geburtshilfe immer noch verbreitet ist [153].

Am wichtigsten für die Patientinnen und deren Feten selbst ist jedoch die frühe Identifizierung des Risikokollektivs, um dieses einer engmaschigen Vorsorge und Diagnostik der Präeklampsie zuzuführen. Als langfristiges Ziel dieser Bemühungen stehen die Verhinderung der gravierenden Komplikationen wie der intrauterine Fruchttod und die Eklampsie, die Verlängerung der Schwangerschaftsdauer bei präeklamptischen Patientinnen zur Verminderung der Fühgeburtslichkeit und deren Folgen sowie die Verringerung von Spätfolgen des hohen Blutdruckes wie Nierenschäden und kardiovaskuläre Erkrankungen von Mutter und Kind.
VI. Zusammenfassung

In normalen Schwangerschaften zeigte die Dopplersonographie entsprechend dem physiologischen Verlauf geringe Widerstandswerte in der A. umbilicalis und den Aa. uterinae. Der mittlere PI-Wert der plazentaren A. uterina lag bei milder Präeklampsie im Schwangerschaftsverlauf im Vergleich zum Normalkollektiv signifikant (p < 0,01), bei schwerer Präeklampsie hochsignifikant (p < 0,001) höher. Auch in der nichtplazentaren A. uterina konnte zwischen Normalkollektiv und milder Präeklampsie beziehungsweise schwerer Präeklampsie eine hochsignifikante (p < 0,001) respektive signifikante (p < 0,01) PI-Erhöhung festgestellt werden. Weiterhin war in der A. umbilicalis im Vergleich zur Kontrollgruppe im mild präklamptischen Kollektiv eine gering signifikante (p < 0,05) Erhöhung des mittleren PI zu verzeichnen, bei schwerer Präeklampsie im Verlauf war der Unterschied hochsignifikant (p < 0,001).

Dopplersonographisch konnte zusätzlich in normal verlaufenden Schwangerschaften in 95 - 96 % der Fälle kein persistierender Notch in der plazentaren und nichtplazentaren A. uterina nachgewiesen werden. Eine unverändert bestehende Inzisur der Hüllkurve der plazentaren A. uterina zeigte sich in 40 % bei milder beziehungsweise 33 % bei schwerer Präeklampsie, in der nichtplazentaren A. uterina persistierte das Notching sogar in 55 % bei milder und in 60 % bei schwerer Präeklampsie im Verlauf. Damit besteht eine hochsignifikante Korrelation (p < 0,001) des Notchings zu beiden Präeklampsiegruppen.

Im direkten Vergleich der sFlt-1-Werte wies die Gruppe mit aktuell vorliegender Präeklampsie gegenüber dem gesunden Kollektiv in etwa eine Verzehnfachung des zirkulierenden Wachstumsfaktors auf. Zwischen den Guppen „Gesund“ und „Präeklampsie“ bestand ein hochsignifikanter Unterschied (p < 0,001) der Serumwerte.

Die Konzentrationen für sEng erbrachten im direkten Vergleich der Gruppe mit aktuell vorliegender Präeklampsie gegenüber dem gesunden Kollektiv in etwa eine Ver-

Insbesondere durch Bestimmung des PI GF-Spiegels im maternalen Serum scheint damit bereits vor Symptommanifestation einer Präeklampsie im Verlauf der Schwangerschaft eine Identifizierung dieser Patientinnen möglich. Besonders in Zusammenhang mit bestehenden Risikofaktoren für die Erkrankung und den dopplersonographischen Daten könnte damit die Früherkennung eines Risikokollektivs möglich werden. Die Daten aus vorliegender Arbeit deuten in Anbetracht der Serumfaktoren sFlt-1 und sEng eher auf deren Relevanz für die Klassifizierung der Patientinnen in solche mit milder und solche mit schwerer Ausprägung der Erkrankung hin und damit auf eine mögliche Beeinflussung des Krankheitsmanagements bei bereits manifester Symptomatik.

Die Aussagekraft der für diese Arbeit erhobenen Daten ist aufgrund der geringen Fallzahlen eingeschränkt, die Ergebnisse ergänzen sich jedoch mit denen der Literatur. Die Auswertung sollte auch auf die Bestimmung von Verhältnissen der Angiogenesefaktoren zueinander ausgeweitet werden, um eine exaktere Risikoerkennung bei einem Präeklampsie-Screening zu ermöglichen.
VII. Anhang

1. Aufklärungsbogen

Klinikum der Universität München
Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe – Innenstadt
Direktor: Prof. Dr. med. Klaus Friese

Dr. med. B. Schiessl
Dr. med. M. Franz
Fr. Anna Neubauer
Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe – Innenstadt
Maistr. 11
80337 München
Tel.: 089/5160-4111

Aufklärung und Einwilligung des Patienten zur Teilnahme an einer klinischen Studie

Angiogenesefaktoren und Gefäßwiderstandsmessungen in physiologischen und pathologischen Schwangerschaften

Sehr geehrte Patientin,

Sie haben heute einen Termin zur Schwangerschaftsvorsorge in unserer Klinik.

Wir möchten Sie bitten, während Ihrer Schwangerschaft an einer klinischen Studie teilzunehmen. In dieser Studie möchten wir die konventionelle Dopplersonografie der mütterlichen und fetalen Gefässe und die Untersuchung von sogenannten Angiogenesefaktoren untersuchen. Als „Dopplersonographie“ bezeichnet man die ultrasonographische Untersuchung des Blutflusses und dessen Veränderung in...

Studienablauf:

Wenn Sie einer Gruppe mit „Schwangerschaftsrisiko“ angehören, wie z.B. Präeklampsie oder Bluthochdruck in der Schwangerschaft, so werden die Untersuchungen entsprechend der Anordnung
des betreuenden Facharztes in der Klinik oder Ambulanz durchgeführt, mindestens jedoch alle 4 Wochen.

Die Entbindung in unserer Klinik ist nicht Voraussetzung für die Teilnahme an dieser Studie. Falls Sie in unserer Klinik entbinden, möchten wir Sie bitten, dass wir nach der Geburt ein kleines Stück des Mutterkuchens für unsere Untersuchungen entnehmen dürfen.

Selbstverständlich brauchen Sie für die Verlaufsun tersuchungen keinen Überweisungsschein und bekommen im Falle einer Privatversicherung keine Rechnung.

Die Ultraschall- und Doppleruntersuchungen bedeuten kein Risiko für Sie oder Ihr Kind.

Rechte, Widerruf, Vertraulichkeit:
Die Teilnahme an der Studie ist freiwillig. Sie können jederzeit von der Teilnahme zurücktreten. Sie haben jederzeit das Recht, alle wichtigen Informationen über die Studie einzuholen. Alle im Rahmen der Studie erhobenen und anfallenden Daten werden pseudonymisiert (verschlüsselt) ausgewertet und nicht an Dritte weitergegeben.

Bei Fragen wenden Sie sich bitte an die betreuenden Studienärzte:

Fr. Anna Neubauer
Herr Dr. Maximilan Franz
Fr. OÄ Dr. med. Barbara Schiessl

Tel.: 089/5160-4111

Sie erhalten eine Kopie dieser Information und Ihrer Einverständniserklärung.
Einwilligung

Angiogenesefaktoren und Gefäßwiderstandsmessungen in physiologischen und pathologischen Schwangerschaften

Alle Fragen zur vorliegenden Studie wurden von meiner behandelnden Ärztin/Arzt zu meiner Zufriedenheit beantwortet. Ich bin über den Inhalt der Studie informiert worden und habe die Patienteninformation gelesen. Eine Kopie derselben wurde mir ausgehändigt.

Ich erkläre mich damit einverstanden, dass im Rahmen dieser Studie erhobene Daten/Krankheitsdaten auf Fragebögen und elektronischen Datenträgern aufgezeichnet und ohne Namensnennung oder Rückschlussmöglichkeiten an wissenschaftliche Kooperationseinrichtungen oder Partner an anderen Universitäten weitergegeben werden.

Name, Datum

Unterschrift

_____________________________ ________________________
Ort, Datum und Unterschrift der behandelnden Ärztin/Arzt

_____________________________ ________________________
Ort, Datum und Unterschrift der Patientin
2. **Literaturverzeichnis**

1. DGGG, A.S.G.d., *Diagnostik und Therapie hypertensiver Schwangerschaftserkrankungen*. 2007, AWMF.

54. DGGG, A.S.G.d., *Indikationen zur Klinikeinweisung 2002*, AWMF.

3. **Tabellenverzeichnis**

Tab. 1. Klassifizierung hypertensiver Erkrankungen in Schwangerschaft und Wochenbett [1] ... 6

Tab. 2. Organmanifestation, klin. Symptome bei schwerer Präeklampsie, Eklampsie und HELLP .. 8

Tab. 3. Relevante klinisch-chemische Laborparameter [1] ... 16

Tab. 4. Übersicht über Patientinnen und Outcome .. 40

Tab. 5. Meßzeitpunkte im Schwangerschaftsverlauf ... 41

Tab. 6. Geräte und sonstige Hilfsmittel .. 41

Tab. 7. Verwendete Immunoassay-Kits .. 44

Tab. 8. Mittlerer PI, Streubreite und Standardabweichung der plazentaren A. uterina .. 49

Tab. 9. Notch der plazentaren A. uterina .. 50

Tab. 10. Mittlerer PI, Streubreite und Standardabweichung der nichtplazentaren A. uterina .. 50

Tab. 11. Notch der nichtplazentaren A. uterina .. 51

Tab. 12. Mittlerer PI, Streubreite und Standardabweichung der A. umbilicalis 52

Tab. 13. Deskriptive Statistik für PlGF ... 53

Tab. 14. Deskriptive Statistik für sFlt-1 ... 54

Tab. 15. Deskriptive Statistik für sEng .. 55
4. Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Physiologische Dopplersonogramme in utero- und fetalen Gefäßen ([86])</td>
<td>26</td>
</tr>
<tr>
<td>3.</td>
<td>Physiologisches Strömungsprofil der A. uterina in der 22. SSW</td>
<td>27</td>
</tr>
<tr>
<td>4.</td>
<td>Plazentare A. uterina in der 25. SSW mit persistierendem Notch</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Physiologischer Fluss in der A. umbilicalis</td>
<td>29</td>
</tr>
<tr>
<td>6.</td>
<td>Referenzkurve Pulsatilitäts-Index der A. umbilicalis</td>
<td>29</td>
</tr>
<tr>
<td>7.</td>
<td>ARED (absent or reverse enddiastolic) -Flow der A. umbilicalis</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>Splicing-Varianten von Flt-1 [105]</td>
<td>33</td>
</tr>
<tr>
<td>9.</td>
<td>Säulendiagramm für PI plazentare A. uterina</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Säulendiagramm für PI nichtplazentare A. uterina</td>
<td>51</td>
</tr>
<tr>
<td>11.</td>
<td>Säulendiagramm für PI A. umbilicalis</td>
<td>52</td>
</tr>
<tr>
<td>12.</td>
<td>Säulendiagramm für PlGF</td>
<td>53</td>
</tr>
<tr>
<td>13.</td>
<td>Boxplot für PlGF</td>
<td>53</td>
</tr>
<tr>
<td>14.</td>
<td>Säulendiagramm für sFlt-1</td>
<td>54</td>
</tr>
<tr>
<td>15.</td>
<td>Boxplot für sFlt-1</td>
<td>55</td>
</tr>
<tr>
<td>16.</td>
<td>Säulendiagramm für sEng</td>
<td>56</td>
</tr>
<tr>
<td>17.</td>
<td>Boxplot für sEng</td>
<td>56</td>
</tr>
</tbody>
</table>
5. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(a.)</td>
<td>Arteria(e)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgemeinschaft</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanin-Aminotransferase</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>Asp</td>
<td>Asparaginsäure</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartat-Aminotransferase</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
</tr>
<tr>
<td>CTG</td>
<td>Kardiotokogramm</td>
</tr>
<tr>
<td>CW</td>
<td>continuous-wave</td>
</tr>
<tr>
<td>D</td>
<td>diastolisches Geschwindigkeitsmaximum</td>
</tr>
<tr>
<td>DGGG</td>
<td>Deutsche Gesellschaft für Gynäkologie und Geburtshilfe</td>
</tr>
<tr>
<td>Diagr.</td>
<td>Diagramm</td>
</tr>
<tr>
<td>DIG</td>
<td>Disseminierte intravasale Gerinnung</td>
</tr>
<tr>
<td>(s)Eng</td>
<td>(soluble) Endoglin</td>
</tr>
<tr>
<td>EPH</td>
<td>Edema, Proteinurie, Hypertension</td>
</tr>
<tr>
<td>(s)Flt1</td>
<td>(soluble) fms-like tyrosine kinase 1</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>(m/kg)</td>
<td>(Milli-/Kilo-)Gramm</td>
</tr>
<tr>
<td>GG</td>
<td>Geburtsgewicht</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycin</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat-Oxalat-Transaminase</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyruvat-Transaminase</td>
</tr>
<tr>
<td>HLA</td>
<td>humanes leukocyte antigen</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>ISSHP</td>
<td>International Society for the Study of Hypertension in Pregnancy</td>
</tr>
<tr>
<td>IUFT</td>
<td>Intrauteriner Fruchttod</td>
</tr>
<tr>
<td>IUGR</td>
<td>intrauterine growth restriction</td>
</tr>
<tr>
<td>J</td>
<td>Jahre</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>kbp</td>
<td>Kilo-Basenpaare</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo-Dalton</td>
</tr>
<tr>
<td>klin.</td>
<td>klinisch</td>
</tr>
<tr>
<td>Lig.</td>
<td>Ligamentum</td>
</tr>
<tr>
<td>(m/d)l</td>
<td>(Milli-/Dezi-)Liter</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter Quecksilbersäule</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger-RNA</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NT</td>
<td>Nackentransparenz (nuchal translucency)</td>
</tr>
<tr>
<td>PE</td>
<td>Präeklampsie</td>
</tr>
<tr>
<td>PI</td>
<td>Pulsatilitäts-Index</td>
</tr>
<tr>
<td>PI GF(R)</td>
<td>platelet derived growth factor (receptor)</td>
</tr>
<tr>
<td>pp</td>
<td>post partum</td>
</tr>
<tr>
<td>pO₂</td>
<td>Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>R.</td>
<td>Ramus</td>
</tr>
<tr>
<td>RI</td>
<td>Resistance-Index</td>
</tr>
<tr>
<td>RR</td>
<td>Blutdruck (nach Riva-Rocci)</td>
</tr>
<tr>
<td>S</td>
<td>systolisches Geschwindigkeitsmaximum</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for gestational age</td>
</tr>
<tr>
<td>SIH</td>
<td>Schwangerschaftsinduzierte Hypertonie</td>
</tr>
<tr>
<td>Smad</td>
<td>small-mothers-against-decapentaplegic</td>
</tr>
<tr>
<td>SSW</td>
<td>Schwangerschaftswoche</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TGF-B</td>
<td>transforming growth factor-β</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor-β</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>v. a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>(s)VEGF(R)</td>
<td>(soluble) vascular endothelial growth factor (receptor)</td>
</tr>
<tr>
<td>VHT</td>
<td>vorbestehender Hypertonus</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>V</td>
<td>Geschwindigkeit</td>
</tr>
</tbody>
</table>
6. Danksagung

Zunächst möchte ich mich bei all den werdenden Müttern bedanken, die sich zu den regelmäßigen Untersuchungen und Blutentnahmen bereit erklärt und somit die Studie erst ermöglicht haben.

Mein ganz besonderer Dank gilt meiner Doktormutter, Fr. Prof. Dr. Barbara Schiessl, die mich nicht nur durch ihre besondere fachliche Kompetenz unterstützt, gefördert wie gefördert hat, sondern mich auch auf eine liebe persönliche Weise motiviert hat, wissenschaftlich zu arbeiten und diese Dissertation zu erstellen.

Weiterhin bedanke ich mich bei der Firma Roche, welche die Studie finanziell unterstellt und die laborchemischen Tests durchgeführt hat.

Schließlich möchte ich mich von Herzen bei meiner Familie und meinen Freunden bedanken:

Bei meiner Mutter Heidi, zunächst einmal für ihre Geduld und Ausdauer bei den Korrekturarbeiten, vor allem aber dafür, dass sie mich mein Leben lang unterstützt und begleitet hat, ohne sie hätte ich es nie bis hierhin geschafft.

Bes meinem momentanen Verlobten und baldigen Ehemann Adrian, der nun schon seit über 10 Jahren niemals müde wird mich wissen zu lassen, wie stolz er auf mich ist und mich liebt, genauso wie ich bin.

Ebenso gilt mein Dank meiner Schwester Anne, meinem Neffen Moritz, meinem Bruder Christoph, meinem Vater Heinz, meiner Schwiegermutter in spe Jill und all den Lieben, die stets mit offenem Ohr und aufmunternden Worten für mich da sind.
7. **Eidesstattliche Erklärung**

Hiermit erkläre ich an Eides Statt, dass ich die vorliegende Arbeit selbständig ohne die unzulässige Hilfe Dritter und nur unter Nutzung der angegebenen Hilfsmittel und Literatur angefertigt habe.

München, den 27.02.2011

Veronika Thomas