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Mündliche Prüfung am 11.07.2011





meiner lieben Familie gewidmet





Acknowledgements

I would like to thank Prof. Dr. Hubert Ebert for his guidance and support throughout my
work in Munich and for allowing me time to finish writing this document. I would also
like to thank Dr. Jan Minár for his constant help and support and for fixing uncountable
bugs in the KKR code. Moreover, I would like to express my appreciation to Dr. Sergey
Mankovsky for his scientific advice and time for discussions.

I am very grateful to Prof. Dr. Julie Staunton for welcoming me at Warwick University
and providing a very motivating working atmosphere.

I would like to thank my scientific collaborators Dr. Jan Honolka, Dr. Violetta Sessi,
Dr. Safia Ouazi, Dr. Stefano Rusponi, Prof. Dr. Harald Brune, Dr. Michael Martins,
Prof. Dr. Wilfried Wurth, Prof. Dr. Hans-Gerd Boyen, Prof. Dr. Kai Fauth and especially
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8 Résumé 133

A Magnetic Anisotropy Energy of Ptn/Co/Pt(111) 137

B Breit Interaction 139
B.1 Evaluation of the Retardation Term . . . . . . . . . . . . . . . . . . . . . . 139
B.2 Relativistic Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C Computational Details 143

Curriculum Vitae 151

List of Publications 153



Chapter 1

Introduction

The intense research in the field of nanomagnetism has lead in the past two decades to
the development of new functional magnetic materials with remarkable new properties.
This opened the way for novel applications in many different areas of modern science and
technology ranging for instance from chemical catalysis via diagnostics and therapy in
medicine to new magnetic devices in information technology. In medicinal applications
for example, polymer coated magnetic nanoparticles are successfully used as contrast en-
hancers in magnetic resonant imaging (MRI) as well as in cancer treatment by means of
magnetic fluid hyperthermia where parts of a tissue can be heated and selectively destroyed
using microwave radiation. In modern organic chemistry on the other hand catalysts can
be linked to nanometre-sized magnets so that they can be easily recovered from a reaction
solution with an ordinary permanent magnet which allows for example to recycle precious
chiral catalysts. Apart from the applications in such separation processes specially de-
signed magnetic nanoparticles are today also used in magnetic inks, vacuum sealing as
well as magnetic cooling appliances.

However, by far the largest impact of nanomagnetism on technology has been in the
field of magnetic recording which enabled the extreme growth in storage capacity that we
see today for modern computer hard drives. This fact has also been acknowledged by the
Nobel committee by awarding the Nobel Prize in Physics to Peter Grünberg and Albert
Fert in 2007 for their discovery of the so-called giant magnetoresistance (GMR) effect
that paved the way to control charge transport via magnetisation. This revolutionised
the fabrication of magnetic read heads in hard disks within a few years and it inspired
many scientists to study the interaction of magnetisation dynamics and charge currents
in novel nanostructured materials with the long term goal to replace the charge currents
in electronic information processing with so-called spin currents which would allow faster
and more energy efficient operations.

Hand in hand with these developments went the search for the ultra-high density limit
in magnetic recording which requires the engineering of ordered arrays of non-interacting
ferromagnetic nanoparticles with each particle storing one bit of information. In the ideal
case these particles consist then of just one single domain, i.e. the magnetic moments of
all atoms form a so-called macrospin so that all atomic moments rotate coherently upon
changing the magnetisation direction. However, with reducing the size of the magnetic
particles the energy barrier ∆E that prevents thermally excited magnetisation reversals be-
comes too small leading to a superparamagnetic behaviour of these materials. This makes
it an ongoing challenge to reduce the particle size while maintaining ∆E large enough so
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8 Chapter 1. Introduction

that thermally excited magnetisation reversals remain kinetically blocked. This magnetic
anisotropy and the resulting blocking temperature Tb have their origin in the particle’s
electronic structure, albeit that ∆E is usually artificially decomposed into two often com-
peting contributions. The fist one, the magnetic shape anisotropy ∆Esh, depends on the
particle geometry and is caused by dipolar interactions between the individual magnetic
moments located at each atomic site. The second contribution is the magnetocrystalline
anisotropy energy ∆Esoc which arises from spin-orbit coupling (SOC), a relativistic quan-
tum mechanical effect that relates the direction of an atom’s spin magnetic moment with
its local surroundings. In addition to the blocking temperature Tb also the Curie tempera-
ture TC is of central importance. The latter can be directly associated with the electronic
exchange interaction energy J which determines type and strength of the magnetic order.

Pushing the limits of information storage capacity thus depends on the successful
synthesis of nanostructured particles with TC and Tb well beyond 300 K while using as
few atoms as possible. This is often attempted by using 3d elements with high magnetic
moments and large exchange interaction energy J , such as Fe or Co, in combination
with heavier non-magnetic but polarisable elements with large spin-orbit coupling, such
as Pd or Pt. For ordered bulk systems and thin films that combine these elements, the
magnetocrystalline anisotropy energy ∆Esoc is often enhanced due to hybridisation effects
so that it becomes the dominant contribution.

The difficulty that remains is to transfer these high ∆Esoc values to nanometric parti-
cles or clusters. Extensive experimental efforts have been made for the synthesis of such
bimetallic particles and the measurement of their magnetic properties which evidenced
that the presence of interfaces as well as alloy formation can play an important role for
the magnetism in these systems [1, 2, 3]. But the reduced size of the particles and the large
number of low-coordinated atoms can bring unexpected behaviour, like a composition de-
pendence of magnetic moments that completely differs from the bulk ones or unexpected
low anisotropies [4] as well as the emergent role of Dzyaloshinski-Moriya (DM) interac-
tions [5, 6], another SOC induced effect that can cause noncollinear spin structures in
systems with reduced symmetry. All this makes it rather difficult to find promising and
reliable candidates for technical applications.

Due to the complex correlations between atomic composition and magnetism within
these systems a quantitative theory to describe them should be based on a fully relativistic
ab initio description of their electronic structure. By this means a correct account of the
subtle role played by spin-orbit coupling that links the magnetic moments with their
spatial environment is guaranteed. Therefore theoretical approaches based on relativistic
spin density functional theory (DFT) [7] are applied to a large extend in computational
simulations to support these experimental efforts.

The aim of the present dissertation is the systematic theoretical investigation of two-
dimensional Fe and Co nanostructures deposited on the Pt(111) surface and to investigate
how their magnetic properties evolve with changing their size and composition or with
deposition onto other metallic substrates. The thesis is structured as follows: Chapter 2
gives a brief overview of the theoretical methods that have been used for the calculations of
the magnetic properties. In Chapter 3 the magnetic properties of free-standing Fe1−xCox
alloy monolayers which are structurally isomorphic to a (111) plane in Pt are analysed with
a special focus in understanding the SOC induced electronic mechanism that determines
the magnetocrystalline anisotropy energy. Chapter 4 then presents corresponding results
for Fe1−xCox alloy monolayers deposited on a Pt(111) surface and compares them to the
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free-standing case as well as the case of an Au(111) substrate. Chapter 5 is a detailed
account of the magnetic behaviour of small Fe, Co and Ni clusters on the three different
substrates Ir(111), Pt(111) and Au(111). Here, the complex magnetic interactions between
the individual magnetic moments are disentangled and ascribed to separate physical mech-
anisms. Chapter 6 presents a study of two-dimensional nanometre-sized Fe and Co islands
on Pt(111) and how their magnetic anisotropy energy is affected by alloy and interface
formation. The theoretical results are compared to so far unpublished experimental data
from the group of Prof. Harald Brune at the EPF Lausanne. Finally, Chapter 7 introduces
a novel theoretical approach for getting access to the magnetic shape anisotropy energy
via an ab initio formalism. This is achieved by including the Breit interaction into the
Dirac equation of relativistic spin density functional theory.
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Chapter 2

Theoretical Framework

Calculating the electronic structure of many-body systems is a very complex task with
still very high demands to modern computer hardware. The traditional quantum chemical
approach to calculate the electronic properties of finite systems like molecules or atomic
clusters is usually based on the variational principle. Here, one normally expands a trial
wavefunction using a suitable basis set and applies the Rayleigh-Ritz variation proce-
dure in order to find the wavefunction, which minimises the energy of the whole system.
Another method for the calculation of electronic properties, is the so-called Korringa-
Kohn-Rostoker Green’s function (KKR-GF) method, which is more or less never used by
quantum chemists. The method has its roots in the calculation of the electronic band
structure of solids and has also been applied to electronic systems of finite extend. Within
the KKR-GF approach the electrons are separated into two groups. The core electrons,
which are tightly bound to the nuclei are treated in an atomic like way. The valence
electrons, on the other hand, are able to move freely within the whole system and are just
scattered by the partially screened nuclear potentials. Therefore, one can apply a multiple
scattering formalism to the valence electrons, giving access to the electronic Green’s func-
tion from which expectation values can be calculated. In order to be able to do calculations
for systems containing many atoms it is also necessary to map the many-body electronic
problem to a problem of a single electron ’seeing’ an averaged effective potential. For this
the very successful density functional theory (DFT) is used.

2.1 Density Functional Theory

Nowadays, density functional theory is one of the most popular and widely used quantum
mechanical approaches to the calculation of molecular and condensed matter properties
and in spite of its great versatility and flexibility, DFT is based on rigid conceptual frame-
work.

As often in many-body electronic structure calculations, the nuclei of the atomic sys-
tems under consideration are treated as fixed (Born-Oppenheimer approximation), gen-
erating a static external potential Vext in which the electrons are moving. A stationary
electronic state is then described by a wave function Ψ(r1, ..., rN ) fulfilling the Schrödinger

11



12 Chapter 2. Theoretical Framework

equation

ĤΨ =




N∑

i

(
− ~

2

2m
∇2

i + Vext(ri)

)
+
∑

i<j

U(ri, rj)


Ψ (2.1)

=
[
T̂ + V̂ + Û

]
Ψ = EΨ , (2.2)

where N is the number of electrons and U is the electron-electron interaction. The opera-
tors T̂ and Û are so-called universal operators as they are the same for any system, while
V̂ is system dependent or non-universal [8]. As one can see the actual difference between a
single-particle problem and the much more complicated many-particle problem just arises
from the interaction term Û . Now, there are many sophisticated methods for solving
the many-body Schrödinger equation, e.g. there is diagrammatic perturbation theory in
many-body physics, while in quantum chemistry one usually uses configuration interaction
(CI) methods, based on the systematic expansion of the wave function in terms of Slater
determinants. However, the problem with these methods is the huge computational effort,
which makes it impossible to apply them efficiently to large complex systems.

Here DFT provides an appealing alternative, being much more versatile as it provides
a way to systematically map the many-body problem, with interaction Û , onto a single-
body problem without Û . In DFT the key variable is the particle density n(r) which is
given by

n(r) = N

∫
d3r2

∫
d3r3 ...

∫
d3rNΨ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN ) . (2.3)

Hohenberg and Kohn [9] proved in 1964 that the relation expressed by Eq. (2.3) can be
reversed, i.e. to a given ground state density n0(r) there exists the corresponding ground
state wave function Ψ0(r1, ..., rN ). In other words, Ψ0 is a unique functional of n0

Ψ0 = Ψ0[n0] (2.4)

and consequently all other ground state observables are also functionals of n0

〈O〉[n0] = 〈Ψ0[n0] | Ô |Ψ0[n0] 〉 . (2.5)

From this follows in particular, that also the ground state energy is a functional of n0, i.e.

E0 = E[n0] = 〈Ψ0[n0] | T̂ + Û + V̂ |Ψ0[n0] 〉 , (2.6)

where the contribution of the external potential 〈Ψ0[n] | V̂ |Ψ0[n] 〉 can be written explicitly
in terms of the density

V [n] =

∫
d3rVext(r)n(r) . (2.7)

The functionals T [n] and U [n] are called – as the corresponding operators – universal
functionals while V [n] is obviously non-universal, as it depends on the system under study.
Having specified a system, i.e. Vext is known, and seeking its electronic ground state one
then has to minimise the functional

E[n] = T [n] + U [n] +

∫
d3rVext(r)n(r) (2.8)
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with respect to n(r), assuming one has got reliable expressions for T [n] and U [n]. A
successful minimisation of the energy functional (2.8) will yield the ground state density
n0 and thus all other ground state observables.

The variational problem of minimising the functional (2.8) can be solved by apply-
ing the Lagrangian method of undetermined multipliers, which was done by Kohn and
Sham [10] in 1965. Hereby, one uses the fact that the functional in Eq. (2.6) can be
written as a fictitious density functional of a non-interacting system

Es[n] = 〈Ψs[n] | T̂s + V̂eff |Ψs[n] 〉 , (2.9)

where Ts = 〈T̂s〉 denotes the non-interacting kinetic energy and Veff = 〈V̂eff〉 is an external
effective potential in which the particles are moving. Obviously, ns(r) ≡ n(r) if Veff is
chosen to be

Veff = Vext + U + (Ts − T ) . (2.10)

Thus, one can solve the so-called Kohn-Sham equations of this auxiliary non-interacting
system [

− ~
2

2m
∇2 + Veff(r)

]
φi(r) = Eiφi(r) , (2.11)

which yields the electron orbitals φi that reproduce the density n(r) of the original many-
body system

n(r) ≡ ns(r) =

N∑

i

|φi(r)|2 . (2.12)

The effective single-particle potential Veff can be written in more detail as

Veff = Vext + VH + Vxc (2.13)

= Vext + e2
∫
d3r′

n(r′)

|r − r′| +
δExc[n(r)]

δn(r)
, (2.14)

where the second term denoted as VH is the so-called Hartree term describing the electron-
electron Coulomb repulsion, while the last term Vxc is called exchange correlation potential.
Here, Vxc includes all the many particle interactions.

Since the Hartree term and Vxc depend on n, which depends on the φi, which in turn
depend on Veff , the problem of solving the Kohn-Sham equation has to be done in a
self-consistent cycle. Usually one starts with an initial guess for n, then one calculates
the corresponding Veff and solves Eq. (2.11) for the φi. From these one calculates a
new density, using Eq. (2.12) and starts again. This procedure is then repeated until
convergence is reached. Alternatively, one can also calculate the electron density directly
from the electronic Green’s function which is described in the following sections. Finally,
the problem which is now left is to find an expression for the exchange correlation potential
Vxc which is only known for the homogeneous electron gas. Here the very successful local
density approximation (LDA) can be applied assuming that Vxc is only locally dependent
on the particle so that it can be set to the corresponding value of the homogeneous electron
gas.

For the treatment of systems containing heavy atoms in which relativistic effects play
an immanent role a relativistic four-current† version of density functional theory (CDFT)

†jµ = (n, 1
c
j) and V µ

eff = (Veff ,−eAeff)
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can be formulated by using the corresponding Dirac Hamiltonian (see e.g. Ref. [11]). This
gives the Dirac-Kohn-Sham equations

(
−i~cα ·∇+ βmc2 + Veff + eα ·Aeff

)
ψi = Eiψi , (2.15)

with the four component wavefunctions ψi and the 4 × 4 Dirac matrices α and β which
are defined as [12]:

α =

(
0 σ

σ 0

)
and β =

( 12 0

0 −12 ) , (2.16)

where 12 and σ denote the 2×2 unit matrix and the standard Pauli matrices, respectively.
Moreover, one has the effective single particle potential

Veff = Vext + VH + Vxc (2.17)

= Vext + e2
∫
d3r′

n(r′)

|r − r′| +
δExc[n(r), j(r)]

δn(r)
, (2.18)

and the effective vector potential

Aeff = Aext +AH +Axc (2.19)

= Aext −
e

c

∫
d3r′

j(r′)

|r − r′| +
δExc[n(r), j(r)]

δj(r)
. (2.20)

Thus, Eq. (2.15) fully accounts for the Coulomb and the magnetic interaction as well as
retardation effects among electrons. Unfortunately, Eq. (2.15) is not suitable for practi-
cal calculations as there is no corresponding local or otherwise simple approximation to
Exc[n(r), j(r)]. However, the part of the Dirac Hamiltonian depending on Aeff can be
separated into orbital and spin contributions by means of a Gordon decomposition paving
the way for further approximations [7, 11]. With this decomposition one can formulate
a relativistic spin density functional theory where the exchange correlation energy is a
functional of the charge density n and (spin) magnetisation m, respectively, i.e. one has
Exc[n(r),m(r)] for which local approximations are available. The corresponding simplified
Dirac-Kohn-Sham equations have then the form

(
−i~cα ·∇+ βmc2 + Veff + βσ ·Beff

)
ψi = Eiψi , (2.21)

with

Veff = Vext + VH +
δExc[n(r),m(r)]

δn(r)
+
e

c

∫
d3r′AH(r

′) · δj(r
′)

δn(r′)
, (2.22)

and the effective magnetic field

Beff = Bext +
δExc[n(r),m(r)]

δm(r)
+
e

c

∫
d3r′AH(r

′) · δj(r
′)

δm(r′)
, (2.23)

where the last terms of Veff and Beff that account for magnetic interactions between elec-
trons are usually neglected [13, 14]. Moreover, for systems with a collinear magnetisation
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density one can restrict the effective magnetic field to Beff(r) = Beff(r)êM with the ori-
entation of the magnetisation êM that fixes the local z-axis. This gives the following
simplified Dirac-Kohn-Sham equations of relativistic spin density functional theory

(
−i~cα ·∇+ βmc2 + Veff + βσzBeff

)
ψi = Eiψi , (2.24)

with

Veff = Vext + VH +
δExc[n(r),m(r)]

δn(r)
, (2.25)

and

Beff = Bext +
δExc[n(r),m(r)]

δm(r)
. (2.26)

The magnetisation density can be expressed via the spin projected densities n↑(r) and
n↓(r), respectively, i.e.

n(r) = n↑(r) + n↓(r) (2.27)

m(r) = n↑(r)− n↓(r) . (2.28)

All theoretical results presented in chapters 3–6 are based on Eq. (2.24) applying the local
spin density approximation to Vxc with the parametrisation given by Vosko, Wilk and
Nusair [15]. Chapter 7 presents a new computational approach where the Breit interaction
is included into Eq. (2.24) via an additional term in the Dirac Hamiltonian.
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2.2 The Korringa-Kohn-Rostoker Formalism

In the previous section it was demonstrated that by using DFT the many-body electronic
problem can be reduced to the problem of a single electron moving independently in an
effective potential created by the nuclei and all other electrons within the system. Here,
the Korringa-Kohn-Rostoker (KKR) formalism based on multiple scattering represents a
powerful and versatile approach to solve this independent electron problem by providing
the single electron Green’s function for the system under investigation.

Using the idea of multiple scattering of electronic waves in a crystal as a way to obtain
the electronic band structure of solid materials was first suggested by Korringa [16] and
it was described a few years later from a different viewpoint by Kohn and Rostoker [17]
as well as Morse [18]. The early formalism was still a variational approach to solve the
Schrödinger equation for the Bloch eigenstates of periodic solids and it was just another
way for obtaining a set of secular equations. Johnson and Slater [19] applied this approach
also to molecules, which became known as Xα multiple scattering method. Later, it was
realised, that by using the multiple scattering approach one can also obtain the Green’s
function of the system under study [20]. Since then, many more contributions to the
further development of the KKR-GF method have been made for the non-relativistic
case [21, 22, 23, 24] as well as for the relativistic one [25, 26, 27, 28]. Initially, the
KKR-GF method was developed for the treatment of infinite extended crystals. In this
case the multiple scattering problem is solved by using lattice Fourier transformation and
Brillouin-zone integration. However, by changing the boundary conditions to that of a
finite system, one can also apply this method to molecules in the gas phase or surface
deposited nanostructures.

2.2.1 Single Particle Green’s Functions

Instead of using the common quantum mechanical approach by solving the Schrödinger
equation

(E − Ĥ) |ψ 〉 = 0 , (2.29)

for the eigenstates |ψ 〉 and their corresponding eigenvalues one can also solve the following
operator equation:

(E − Ĥ)Ĝ = 1̂ . (2.30)

Here, the integral operator Ĝ is formally defined as

Ĝ = (E − Ĥ)−1 . (2.31)

Ĝ is called the resolvent operator or Green’s function of Ĥ and in analogy to the wave
function approach knowledge of Ĝ is sufficient for calculating expectation values of any
Hermitian operator Ĥ.

Ĝ is in general an analytic function of the complex energy argument E, except for the
eigenvalues Ei of the Hermitian operator Ĥ. In this case Ĝ is singular and has simple poles
for the discrete eigenvalues of Ĥ and a branch cut in the case of a continuous eigenvalue
spectrum [29]. However, in order to avoid the unboundness of Ĝ for the real energy
eigenvalues of Ĥ one can define Ĝ as a limit of operators in Hilbert space:

Ĝ± = lim
δ→0+

(E − Ĥ ± iδ)−1 . (2.32)
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If the complex energy argument E approaches the real axis from above (+iδ), one gets the
so-called retarded Green’s function Ĝ+, whereas if E approaches the real axis from below
(−iδ), one gets the so-called advanced Green’s function Ĝ−.

If the eigenvalues Ei and eigenstates |ψi 〉 of Ĥ are known, then Ĝ can be written in
its spectral representation

Ĝ± =
∑

i

|ψi 〉〈ψi |
E −Ei ± iδ

, (2.33)

where the sum symbol implies summation over the discrete eigenstates and integration
over the continuous eigenstates. In this diagonal form one can see that Ĝ is indeed a
solution of Eq. (2.30) as well as the important property:

(Ĝ+)† = Ĝ− . (2.34)

By taking the difference of Ĝ+ and Ĝ− one obtains

G̃ = Ĝ+ − Ĝ− (2.35)

= 2i ImĜ+ , (2.36)

which can be seen as the discontinuity of Ĝ across the branch cut in case of a continuous
spectrum. Using the following identity for the Dirac delta function [30]:

lim
δ→0+

1

E − E0 ± iδ
= P

1

E − E0
∓ iπδ(E − E0) , (2.37)

one can write G̃ or ImĜ± as

G̃ = − 2πi
∑

i

|ψi 〉〈ψi | δ(E −Ei) (2.38)

Im Ĝ± = ∓ π
∑

i

|ψi 〉〈ψi | δ(E − Ei) , (2.39)

where the quantity
∑

i δ(E − Ei) is the density of states n(E) at energy E with n(E)dE
giving the number of states for the chosen energy interval dE. The expectation values of
all other observables are then obtained by taking the trace of the product between the
Green’s function and the operator of interest:

〈Ô〉 = − 1

π
ImTr Ĝ+Ô . (2.40)

Splitting Ĥ into a Hamiltonian of an unperturbed reference system Ĥ0 and a pertur-
bation V̂ so that

Ĥ = Ĥ0 + V̂ , (2.41)

one can also introduce the Green’s function Ĝ0 for the unperturbed system being the
inverse operator to (E − Ĥ0) and fulfilling the equation

(E − Ĥ0)Ĝ0 = 1̂ . (2.42)
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Considering the two Green’s functions Ĝ and Ĝ0 of the perturbed and unperturbed system,
respectively, they are coupled via

Ĝ = (E − Ĥ0 − V̂ )−1 =
(
(E − Ĥ0)(1 − Ĝ0V̂ )

)−1
(2.43)

= (1− Ĝ0V̂ )−1Ĝ0 (2.44)

= Ĝ0 + Ĝ0V̂ Ĝ , (2.45)

where Eq. (2.45) is the so-called Dyson equation, giving Ĝ in terms of a self-consistent
relation. Eq. (2.45) can be solved by successive iterations yielding the Born expansion or
Neumann series for Ĝ

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + ... . (2.46)

By partitioning Eq. (2.46) as

Ĝ = Ĝ0 + Ĝ0

(
V̂ + V̂ Ĝ0V̂ + ...

)
Ĝ0 . (2.47)

and looking at the term in parentheses one can define the so-called transition or T-operator
as

T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + ... , (2.48)

so that Eq. (2.45) becomes
Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0 . (2.49)

The previous relationship transforms the problem of finding Ĝ into the determination of
T̂ assuming full knowledge of the unperturbed reference Green’s function Ĝ0. Comparing
Eq. (2.49) with Eq. (2.45) one can see that

V̂ Ĝ = T̂ Ĝ0 , (2.50)

and by multiplying both sides of Eq. (2.44) with V̂ one gets in combination with Eq. (2.50)

T̂ = V̂ (1− Ĝ0V̂ )−1 , (2.51)

which formally reduces the calculation of T̂ to an inversion of the operator (1− Ĝ0V̂ ).

2.2.2 The Scattering Integral Equation

In order to show the relationship between Green’s functions and wave functions one can
transform the Schrödinger (differential) equation of a given electronic system into its
corresponding integral equation, which then already includes the given boundary condi-
tions. Starting from

(E − Ĥ0) |ψ 〉 = V̂ |ψ 〉 = |χ 〉 , (2.52)

one can expand |ψ 〉 and |χ 〉 in the orthonormal basis of the eigenfunctions of Ĥ0 so that

|ψ 〉 =
∑

i

ai |φi 〉 and |χ 〉 =
∑

i

bi |φi 〉 . (2.53)

Substituting Eqs. (2.53) into Eq. (2.52) one gets

(E − Ĥ0)
∑

i

ai |φi 〉 =
∑

i

(E −Ei)ai |φi 〉 = |χ 〉 =
∑

i

bi |φi 〉 . (2.54)
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Thus ∑

i

[(E − Ei)ai − bi] |φi 〉 = 0 , (2.55)

and since the |φi 〉 are linearly independent, one can conclude that

ai =
bi

(E − Ei)
. (2.56)

Thus

|ψ 〉 =
∑

i

1

(E − Ei)
bi |φi 〉 , (2.57)

where bi = 〈φi | χ 〉. Writing Eq. (2.57) in more detail and resubstituting V̂ |ψ 〉 for |χ 〉
one finally arrives at

|ψ 〉 =
∑

i

1

(E − Ei)
|φi 〉〈φi | χ 〉 (2.58)

=
∑

i

|φi 〉〈φi |
(E − Ei)

V̂ |ψ 〉 , (2.59)

where the term in front of V̂ can be recognised as Ĝ0 in the basis of the unperturbed
system Hamiltonian Ĥ0 (see Eq. (2.33)). Hence, one can write Eq. (2.59) as

|ψ 〉 = Ĝ0V̂ |ψ 〉 . (2.60)

However, the equation just derived is not giving the complete solution for the inhomo-
geneous Schrödinger equation. It is a well known fact from the theory of differential
equations that one can add to a particular solution of an inhomogeneous problem like
Eq. (2.60) any solution |φ0 〉 satisfying the homogeneous problem where V̂ is zero

(E − Ĥ0) |φ0 〉 = 0 . (2.61)

Therefore, the complete solution of Eq. (2.52) is given by

|ψ 〉 = |φ0 〉+ Ĝ0V̂ |ψ 〉 (2.62)

= |φ0 〉+ Ĝ0V̂ |φ0 〉+ Ĝ0V̂ Ĝ0V̂ |φ0 〉+ ... (2.63)

= (1− Ĝ0V̂ )−1 |φ0 〉 , (2.64)

or by rewriting Eq. (2.62) in the r-representation one obtains

ψ(r, E) = φ0(r, E) +

∫
d3r′ G0(r, r

′, E)V (r′)ψ(r′, E) . (2.65)

Eqs. (2.62) and (2.65) are known as the Lippmann-Schwinger equation, which in analogy to
the Dyson equation (2.45) expresses |ψ 〉 in terms of itself. Thus, one has finally achieved
the conversion of the Schrödinger differential equation and its boundary conditions into
an integral equation, where the boundary conditions are already contained implicitly in
the integral operator. Applying the definition of the T-operator in Eq. (2.48) to the Born
expansion in Eq. (2.63) one also gets an expression for |ψ 〉 in terms of |φ0 〉

|ψ 〉 = |φ0 〉+ Ĝ0T̂ |φ0 〉 (2.66)

= (1 + Ĝ0T̂ ) |φ0 〉 . (2.67)

The transition operator as well as the Lippmann-Schwinger equation play a central role in
the quantum mechanical description of scattering processes, which can also be exploited
in electronic structure calculations.
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2.2.3 Multiple Scattering

As mentioned above, the movement of a valence electron within the potential of an ex-
tended atomic system can be seen as a multiple scattering process, in which the electron
can propagate freely from one atomic site to another. In order to break the multiple scat-
tering problem into single scattering events at each atomic site and free propagation in
between it is important to make sure that one electronic scattering process is finished be-
fore the next one starts. Therefore, the potential V̂ is split into a sum of non-overlapping
potentials vi centred at each atomic site

V̂ =
∑

i

vi . (2.68)

In practise, there are several ways in realising the splitting of the potential for the whole
system. For a full description of V̂ all space can be filled completely by so-called Voronoi
polyhedra. These polyhedra have a rather low symmetry when compared to the spherical
symmetry of atoms, which increases the computational effort for accurate single site cal-
culations considerably. Therefore, some approximations can be introduced. Probably the
most famous one is the so-called muffin-tin construction, which describes V̂ by atomic-like
potentials of spherical symmetry centred at each atomic site, while the potential in the
interstitial region is set to a constant value. A better approach to the reduction of the
not well-described interstitial regions is the so-called atomic sphere approximation (ASA)
which was used for all the calculations described below. This approximation is analogous
to the muffin-tin construction with the exception, that one allows for the overlap of the
potential spheres, so that the extent of the interstitial region is reduced to zero. In this
case however, the potential is not well-defined in regions where two spheres overlap, i.e.
ASA calculations give only good results when this overlap is ’small’. The radii of the
atomic like spheres are then chosen, so that the sphere at each site will have the same
volume as the corresponding Voronoi polyhedron.

Returning to the definition of the transition operator T̂ for the whole system in
Eq. (2.48)

T̂ = V̂ + V̂ Ĝ0V̂ + V̂ Ĝ0V̂ Ĝ0V̂ + ... (2.69)

= V̂ + V̂ Ĝ0T̂ (2.70)

= V̂ + V̂ ĜV̂ , (2.71)

one can now write T̂ as the infinite series

T̂ =
∑

i

vi +
∑

i,j

viĜ0v
j +

∑

i,j,k

viĜ0v
jĜ0v

k + ... =
∑

i

T̂ i (2.72)

where the new operators T̂ i are given by

T̂ i = vi +
∑

j

viĜ0v
j +

∑

j,k

viĜ0v
jĜ0v

k + ... (2.73)

= vi + viĜ0

∑

j

(
vj +

∑

k

vjĜ0v
k + ...

)
(2.74)

= vi + viĜ0

∑

j

T̂ j . (2.75)



2.2. The Korringa-Kohn-Rostoker Formalism 21

Bringing the term containing T̂ i in the sum of Eq. (2.75) to the left-hand side gives

(1− viĜ0)T̂
i = vi + viĜ0

∑

j 6=i

T̂ j . (2.76)

Using the definition of the single site T-operator

ti = vi + viĜ0t
i = vi(1− viĜ0)

−1 (2.77)

one finally gets a Dyson equation for T̂ i in terms of the single site scattering operators ti

T̂ i = ti + tiĜ0

∑

j 6=i

T̂ j . (2.78)

By applying the self-consistent relation of Eq. (2.78) in combination with expression (2.72)
one can express T̂ by the contributions of each single site

T̂ =
∑

i

ti +
∑

i6=j

tiĜ0t
j +

∑

i6=k
k 6=j

tiĜ0t
kĜ0t

j + ... . (2.79)

The first term of Eq. (2.79) describes all single site scattering processes, while the higher
terms describe processes involving several scattering sites. Comparing Eq. (2.79) to
Eq. (2.72), the obvious difference is that in the corresponding sums the adjacent site-
indices cannot be identical. This simply means that the ti operators account for all the
subsequent scattering events which occur at the same site including also self-scatterings.
Therefore, the T-operator describes the multiple scattering of an electron at all single site
atomic potentials within a crystal, cluster or molecule. Alternatively, scattering events
starting at site i and finishing at site j can be described by the so-called scattering path
operator τ̂ ij, which was introduced by Gyorffy and Stott [31], i.e.

T̂ =
∑

i,j

τ̂ ij . (2.80)

If the scattering path operator τ̂ ij is acting on an incident electron wave at side j, then it
creates an outgoing wave at side i including all possible scatterings in between. Comparing
Eq. (2.80) with Eq. (2.79) it is obvious that

τ̂ ij = tiδij + tiĜ0t
j +

∑

i6=k
k 6=j

tiĜ0t
kĜ0t

j +
∑

i6=k
k 6=l
l6=j

tiĜ0t
kĜ0t

lĜ0t
j + ... (2.81)

and from Eq. (2.81) follows the equation of motion for the scattering path operator

τ̂ ij = tiδij +
∑

i6=k

tiG0τ̂
kj . (2.82)

Up to now, the derivation of all the formulae was not written in any special representa-
tion. However, for practical calculations an operator always needs to be represented in a
certain set of basis functions. As this would turn the operator equations above into ma-
trix equations with matrices of infinite dimensions, the underlying expansion is truncated
in a reasonable way (see below). This turns single site operators into matrices of finite
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dimension, which can then be combined to a super matrix. Such a super matrix has the
dimension equal to the number of atomic sites in the system and each matrix element is
a single site operator matrix with the dimensionality of the chosen representation. Thus,
writing Eq. (2.82) in super matrix form gives

τ = t+ tG
0
τ , (2.83)

where the super-matrix τ contains all the submatrices τ ij. Finally one can transform
Eq. (2.83) into

τ =
(
t−1 −G

0

)−1
, (2.84)

which is the fundamental equation of multiple scattering theory as it allows the calculation
of the scattering path operators τ ij from the single site T-operators ti and the structural
constants Gij

0 :

τ ij =

[(
t−1 −G

0

)−1
]

ij

. (2.85)

Thus, by the splitting of T̂ into the scattering path operators τ ij the multiple scattering
problem is successfully divided into several single site scattering problems, which can be
solved as described in the following subsections. The Green’s function for the whole system
is then given by

G = G0 +
∑

i,j

G0τ
ijG0 , (2.86)

where the Dyson equation (2.49) and the definition of the scattering path operator Eq. (2.80)
have been used.

2.2.4 Free Electron Green’s Functions

Starting with the non-relativistic description of a free electron with momentum p and
energy E = p2/2m which is scattered by a localised potential V , one can express the
coherent scattered state ψ(r, E) in terms of the Lippmann-Schwinger equation:

ψ(r, E) = eip r +

∫
d3r′G0(r, r′, E)V (r′)ψ(r′, E) . (2.87)

Here, the incoming free electron is described by the plane wave eip r and G0(r, r′, E)
denotes the so-called retarded free electron Green’s function which represents a correspon-
ding outgoing spherical wave. From the spectral representation of the Green’s function
in Eq. (2.33) and using a plane wave basis for the free electron states one can derive the
following expression for G0(r, r′, E) [32, 33, 34]:

G0(r, r′, E) = − 1

4π

eip|r−r′|

|r − r′| . (2.88)

This result shows the property of the free particle propagator that it depends only on the
difference r − r′ and not on r and r′ separately reflecting the invariance of the system
under simultaneous translations of r and r′.

Expansion of a plane wave in terms of complex spherical harmonics using the identity

eip r = 4π
∑

L

iℓjℓ(pr)Y
∗
L (p̂)YL(r̂) , (2.89)
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with the combined angular index L = (ℓ,m), allows to rewrite G0(r, r′, E) in the angular
momentum representation:

G0(r, r′, E) = −ip





∑
L

jℓ(pr)h
+
ℓ (pr

′)Y ∗
L (r̂)YL(r̂

′) for r < r′

∑
L

h+ℓ (pr)jℓ(pr
′)Y ∗

L (r̂)YL(r̂
′) for r > r′

(2.90)

where jℓ(pr) and h
+
ℓ (pr

′) are spherical Bessel and Hankel functions‡, respectively, which
are the solutions of the free electron Schrödinger equation in spherical coordinates.

In the relativistic case the free electron Green’s function is defined via the correspon-
ding Dirac Hamiltonian H0

D (
E −H0

D

)
G0 = 14 (2.91)

or in the real space representation

(
E −

[
cα · p+ βmc2

])
G0(r, r′, E) = δ(r − r′)14 . (2.92)

Here, the free electron propagator G0(r, r′, E) is a 4×4 matrix that can be constructed in
analogy to the non-relativistic case from the four-component solutions of the free electron
Dirac equation in spherical coordinates, i.e.

G0(r, r′, E) = −ip





∑
Λ

jΛ(r, E)h×Λ (r
′, E) for r < r′

∑
Λ
hΛ(r, E)j×Λ (r

′, E) for r > r′
(2.93)

with p being now the relativistic momentum p =
√
E2/c2 −m2c2 and with the bispinors

jΛ(r, E) =

√
E +mc2

c2

(
jℓ(pr)χΛ(r̂)

icpSκ

E+mc2 jℓ̄(pr)χ−Λ(r̂)

)
,

hΛ(r, E) =

√
E +mc2

c2

(
h+ℓ (pr)χΛ(r̂)

icpSκ

E+mc2h
+
ℓ̄
(pr)χ−Λ(r̂)

)
(2.94)

and the corresponding left-hand side solutions of the Dirac equation which are row spinors

j×Λ (r, E) =

√
E +mc2

c2

(
jℓ(pr)χ

†
Λ(r̂)

−icpSκ

E+mc2 jℓ̄(pr)χ
†
−Λ(r̂)

)T

,

h×Λ (r, E) =

√
E +mc2

c2

(
h+ℓ (pr)χ

†
Λ(r̂)

−icpSκ

E+mc2h
+
ℓ̄
(pr)χ†

−Λ(r̂)

)T

. (2.95)

The four-component wavefunctions jΛ(r, E) and hΛ(r, E) are characterised by the com-
bined spin-angular index Λ = (κ, µ) with the quantum numbers κ that incorporate the

‡Here used as defined in Ref. [35]: h+
ℓ (pr) =

(

π
2r

) 1

2 H
(1)

ℓ+ 1

2

(r) moreover h+
ℓ = jℓ + inℓ, h

−
ℓ = jℓ − inℓ and

jℓ =
1
2
(h+

ℓ + h−
ℓ ).
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orbital and total angular momentum quantum numbers ℓ and j, respectively. One has the
following relations:

κ =

{
−ℓ− 1 for j = ℓ+ 1/2

ℓ for j = ℓ− 1/2
(2.96)

ℓ =

{
−κ− 1 for κ < 0

κ for κ ≥ 0
(2.97)

ℓ̄ = ℓ− Sκ (2.98)

j = |κ| − 1/2 (2.99)

and with the magnetic quantum number µ = −j,−j+1, . . . , 0, . . . , j−1, j. The occurring
spin-angular functions χΛ arise from a unitary Clebsch-Gordan transformation

χΛ(r̂) =
∑

ms=− 1
2
, 1
2

Cms

Λ Y µ−ms

ℓ (r̂)χms (2.100)

with Cms

Λ = C(ℓ12j;µ −ms,ms) being the Clebsch-Gordan coefficients that appear when
going from the non-relativistic (ℓ,m,ms) to the relativistic (κ, µ) representation [12]. The
two-component Pauli spinors χms form the standard orthonormal basis in spin space, i.e.
for the quantisation axis along ẑ one has as usual

χ 1
2
=

(
1

0

)
and χ− 1

2
=

(
0

1

)
. (2.101)

By construction, the spin-angular functions χΛ are simultaneous eigenfunctions of the
operators j2, jz, l

2, σ2 and the spin-orbit operator K = β(1 + σ · l) with the following
eigenvalue relations:

j2|χΛ〉 = j(j + 1)|χΛ〉
jz|χΛ〉 = µ|χΛ〉
l2|χΛ〉 = ℓ(ℓ+ 1)|χΛ〉

σ2|χΛ〉 =
3

4
|χΛ〉

K|χΛ〉 = −κ|χΛ〉 . (2.102)

Moreover, application of the operator cσ · p/(E + mc2) to the large component of the
wavefunction gives the corresponding small component [12], e.g.

cσ · p
E +mc2

jℓ(pr)χΛ(r̂) =
−icpSκ
E +mc2

jℓ̄(pr)χ−Λ(r̂) . (2.103)

The wavefunctions j×Λ (r, E) and h×Λ(r, E) are row spinors that are the left-hand side
solutions of the adjoint free electron Dirac equation

ψ×(r, E)
(
E −H0

D

)
= 0 (2.104)

The relations between left-hand side and right-hand side solutions of the Dirac equation as
stated by Eqs. (2.94) and (2.95) also hold for the case of spherically symmetric scattering
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potentials as well as magnetically polarised spherical potentials with B = Bz, i.e. with B

being everywhere collinear to the z-axis. For magnetic scattering potentials of arbitrary
shape, however, the solutions ψ(r, E) and ψ×(r, E) cannot be related to each other in a
simple way and must be determined separately. This issue is discussed in more detail by
Tamura [36].

The bispinor products jΛ(r, E)h×Λ (r
′, E) and hΛ(r, E)j×Λ (r′, E) in Eq. (2.93) are to be

interpreted as tensor products which give G0(r, r′, E) as

G0(r, r′, E) =

(
G0

11 G0
12

G0
21 G0

22

)
(2.105)

with

G0
11 = −ip

(
E +mc2

c2

)




∑
Λ
jℓ(pr)h

+
ℓ (pr

′)χΛ(r̂)χ
†
Λ(r̂

′) for r < r′

∑
Λ
h+ℓ (pr)jℓ(pr

′)χΛ(r̂)χ
†
Λ(r̂

′) for r > r′
(2.106)

G0
12 = −p

2Sκ
c





∑
Λ
jℓ(pr)h

+
ℓ̄
(pr′)χΛ(r̂)χ

†
−Λ̄

(r̂′) for r < r′

∑
Λ
h+ℓ (pr)jℓ̄(pr

′)χΛ(r̂)χ
†
−Λ̄

(r̂′) for r > r′
(2.107)

G0
21 = +

p2Sκ
c





∑
Λ
jℓ̄(pr)h

+
ℓ (pr

′)χ−Λ(r̂)χ
†
Λ̄
(r̂′) for r < r′

∑
Λ
h+
ℓ̄
(pr)jℓ(pr

′)χ−Λ(r̂)χ
†
Λ̄
(r̂′) for r > r′

(2.108)

G0
22 = −ip

(
E −mc2

c2

)




∑
Λ
jℓ̄(pr)h

+
ℓ̄
(pr′)χ−Λ̄(r̂)χ

†
−Λ̄

(r̂′) for r < r′

∑
Λ
h+
ℓ̄
(pr)jℓ̄(pr

′)χ−Λ̄(r̂)χ
†
−Λ̄

(r̂′) for r > r′
. (2.109)

From this one obtains the following special relations for the relativistic free electron Green’s
function:

G0
22 =

E −mc2

E +mc2
G0

11 (2.110)

G0
12 = G0

21 (2.111)

As discussed by Tamura [36] and Wang et al. [37] the latter relation is often incorrectly
stated as for example in the books of Rose [12], Gonis [33] and Strange [27]. Moreover
one should mention that the tensor products between the spin-angular functions χΛ and
χ†
Λ give 2× 2 submatrices of the form

∑

Λ

χΛ(r̂)χ
†
Λ(r̂

′) =
∑

m

Y m
ℓ (r̂)Y m

ℓ
∗(r̂′)

(
1 0

0 1

)
. (2.112)

In summary, Eqs. (2.90) and (2.93) give the analytic form of the Green’s function for a free
electron in the angular momentum representation for the non-relativistic and relativistic
case, respectively, and it will now be discussed how this Green’s function changes when
the electron moves under the influence of a localised spherical potential.
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2.2.5 Single Site Scattering Green’s Functions

For a non-zero, spherically symmetric scattering potential V (r) of finite range defined by
the radius rcrit, i.e.

V (r) =

{
V (r) for r < rcrit

0 for r > rcrit ,
(2.113)

the solutions ΨΛ(r, E) of the Dirac equation

(
E −

[
cα · p+ βmc2 + V (r)

])
ΨΛ(r, E) = 0 (2.114)

can be expressed in terms of the solutions for the free electron jΛ(r, E) via the Lippmann-
Schwinger equation (2.65). With this one obtains for r > rcrit:

ΨΛ(r, E) = jΛ(r, E) +

∫
d3r′

∫
d3r′′ G0(r, r′, E)T (r′, r′′, E)jΛ(r

′′, E)

= jΛ(r, E) − ip

∫
d3r′

∫
d3r′′

∑

Λ′

hΛ′(r, E)j×Λ′(r
′, E)T (r′, r′′, E)jΛ(r

′′, E)

= jΛ(r, E) − ip
∑

Λ′

hΛ′(r, E)tΛ′Λ(E) (2.115)

with the single site t-matrix

tΛ′Λ(E) =

∫
d3r′

∫
d3r′′ j×Λ′(r

′, E)T (r′, r′′, E)jΛ(r
′′, E) (2.116)

In an analogous way one can also derive the corresponding single site scattering Green’s
function, e.g. for r < r′ and r, r′ > rcrit:

G(r, r′, E) = G0(r, r′, E) +

∫
d3r′′

∫
d3r′′′ G0(r, r′′, E)T (r′′, r′′′, E)G0(r′′′, r′, E)

= −ip
(
∑

Λ

jΛ(r, E)h×Λ (r
′, E)

+

∫
d3r′′

∫
d3r′′′

∑

Λ′

hΛ′(r, E)j×Λ′(r
′′, E)T (r′′, r′′′, E)

∑

Λ

jΛ(r
′′′, E)h×Λ (r

′, E)

)

= −ip
∑

Λ

(
jΛ(r, E)− ip

∑

Λ′

hΛ′(r, E)tΛ′Λ(E)

)
h×Λ(r

′, E) (2.117)

= −ip
∑

Λ

ΨΛ(r, E)h×Λ (r
′, E) (2.118)

For the arguments r < rcrit the free electron solutions jΛ(r, E) and hΛ(r, E) can be
continued according to the Dirac equation demanding the correct continuous and smooth
behaviour at r = rcrit. These new functions are then denoted by JΛ(r, E) and HΛ(r, E),
respectively, i.e.

jΛ(r, E) → JΛ(r, E) and hΛ(r, E) → HΛ(r, E)
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with the solutions of the Dirac equation ΨΛ(r, E) becoming then

ΨΛ(r, E) → JΛ(r, E)− ip
∑

Λ′

HΛ′(r, E)tΛ′Λ(E) = RΛ(r, E) .

The functions RΛ(r, E) are regular (finite) at r = 0 and they are composed of the incoming
contribution JΛ(r, E) and the outgoing functions HΛ′(r, E) which are weighted with the
t-matrix elements tΛ′Λ(E). This means that in general the functions RΛ(r, E) are not of
pure spin-angular character. For the complete single site scattering Green’s function one
then arrives at the following expression:

G(r, r′, E) = −ip





∑
Λ

RΛ(r, E)H×
Λ (r′, E) for r < r′

∑
Λ
HΛ(pr, E)R×

Λ (r
′, E) for r > r′

. (2.119)

An alternative expression for G(r, r′, E) can be obtained by using the functions

ZΛ(r, E) =
∑

Λ′

RΛ′(r, E)t−1
Λ′Λ(E) =

∑

Λ′

JΛ′(r, E)t−1
Λ′Λ(E)− ipHΛ(r, E) (2.120)

−ipHΛ(r, E) = ZΛ(r, E)−
∑

Λ′

JΛ′(r, E)t−1
Λ′Λ(E) . (2.121)

With this G(r, r′, E) has the form

G(r, r′, E) = −ip





∑
ΛΛ′

ZΛ(r, E)tΛΛ′H×
Λ′(r′, E) for r < r′

∑
ΛΛ′

HΛ(r, E)tΛΛ′Z×
Λ′(r′, E) for r > r′

, (2.122)

and in case of a symmetric t-matrix one can write G(r, r′, E) as

G(r, r′, E) =
∑

ΛΛ′

ZΛ′(r, E)tΛ′Λ(E)ZΛ(r
′, E) −





∑
Λ
ZΛ(r, E)J×

Λ (r′, E) for r < r′

∑
Λ

JΛ(r, E)Z×
Λ (r′, E) for r > r′

.

(2.123)
This representation of the single site scattering Green’s function has the advantage that for
many practical applications the irregular solutions JΛ(r, E) are not needed reducing the
computational effort to the numerical evaluation of the regular solutions ZΛ(r, E) which
will be discussed in the following section.

2.2.6 Solving the Single Site Scattering Problem

In order to determine the quantities ZΛ(r, E), JΛ(r, E) and tΛ′Λ(E) which are needed
to construct the single site scattering Green’s function it is useful to rewrite the effective
single particle Dirac equation (2.24) in spherical coordinates [12]:

[
E − iγ5σrc

(
∂

∂r
+

1

r

(
1− βK̂

))
+ V (r) + (β − 1)

c2

2

]
Ψν(r, E) = 0 . (2.124)
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Here, the electron rest energy 1
2c

2 has been subtracted§. The matrices γ5 and σr are given
by

γ5 =

(
0 −12

−12 0

)
σr =

1

r
r · σ . (2.125)

In accordance with the atomic sphere approximation in combination with relativistic spin
density functional theory the potential V (r) is assumed to be of finite range consisting of a
spherically symmetric scalar potential and a spin-dependent part described by an effective
magnetic field:

V (r) = Veff(r) + βσzBeff(r) (2.126)

with Veff(r) = Beff(r) = 0 for r > rcrit. As the magnetic field breaks the symmetry in spin
space the linearly independent solutions to the Dirac equation are in general composed
of several bi-spinors ΦΛ with different spin angular character Λ, i.e. in order to solve
Eq. (2.124) for a given energy one chooses an ansatz of the form:

Ψν(r, E) =
∑

Λ

ΦΛν(r, E) =
∑

Λ

(
gΛν(r,E)χΛ(r̂)

ifΛν(r,E)χ−Λ(r̂)

)
, (2.127)

where ν is indexing the linearly independent solutions.
By inserting the formal solution Ψν(r, E) into the radial Dirac Equation (2.124), re-

naming Λ to Λ′ and carrying out a projection onto the basis |χΛ 〉 one finally arrives at
the following infinite set of coupled radial differential equations

∂

∂r
PΛν(r,E) = −κ

r
PΛν(r,E) +

[
E − Veff(r)

c2
+ 1

]
QΛν(r,E)

+
Beff(r)

c2

∑

Λ′

〈χ−Λ |σz |χ−Λ′ 〉QΛ′ν(r,E) (2.128)

∂

∂r
QΛν(r,E) =

κ

r
QΛν(r,E) − [E − Veff(r)]PΛν(r,E)

+Beff(r)
∑

Λ′

〈χΛ | σz |χΛ′ 〉PΛ′ν(r,E) , (2.129)

using the notation PΛν(r,E) = rgΛν(r,E) and QΛν(r,E) = crfΛν(r,E). The spin-angular
matrix elements of σz are given by:

〈χΛ | σz |χΛ′ 〉 = δµµ′





− µ
(κ+1/2) for κ = κ′

−
√

1− ( µ
κ+1/2 )

2 for κ = −κ′ − 1

0 otherwise.

(2.130)

The selection rules given in Eq. (2.130) allow only for a coupling between partial waves of
the same magnetic quantum number, i.e. ∆µ = 0 and wave functions with ∆ℓ = 0,±2,±4
etc., i.e. wave functions with same parity. Fortunately, it turns out that all couplings with
∆ℓ 6= 0 are negligibly small as their contribution is of the order of 1/c2. Thus, for the
calculations to be presented below only the case ∆ℓ = 0 was taken into account, restricting
the number of coupling terms in Eqs. (2.128) and (2.129) to at most two: Λ1 = (κ, µ) and

§In the following atomic Rydberg units, i.e. ~ = 2me = e2/2 = 1 are used throughout.
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Λ2 = (−κ − 1, µ). Truncating the angular momentum expansion for the solutions in
Eq. (2.127) at ℓmax one gets a set of 2(ℓmax + 1)2 linearly independent solutions ΨΛν(r)
for which the radial Eqs. (2.128) and (2.129) have to be solved numerically.

In order to obtain a complete set of linearly independent regular solutions one can
demand for example as boundary condition that

Ψν(r, E) → ΨΛ(r, E) for r → 0 , (2.131)

i.e. that it has the pure spin-angular character in the vicinity of the origin. The func-
tions Ψν(r, E) are then obtained by expanding ΨΛ(r, E) at r = 0 in terms of a power
series followed by an outward integration according to the coupled radial differential equa-
tions (2.128) and (2.129), where with increasing r the other spin-angular contributions
will be mixed in. The irregular solutions JΛ(r, E) for a given energy can be obtained by
calculating jΛ(r, E) at r = rcrit and integrating Eqs. (2.128) and (2.129) inwards.

The elements of the corresponding t-matrix tΛΛ′(E) can be determined by an efficient
procedure derived by Ebert and Gyorffy [38] where

tΛΛ′(E) =
i

2p

([
a(E)− b(E)

]
b−1(E)

)
ΛΛ′

, (2.132)

with the auxiliary matrices aΛΛ′(E) and bΛΛ′(E) given by

aΛΛ′(E) = −ipr2
[
h−Λ (r, E),ΦΛν(r, E)

]
r

(2.133)

bΛΛ′(E) = ipr2
[
h+Λ (r, E),ΦΛν(r, E)

]
r
. (2.134)

Here, the term in parenthesis denotes the relativistic form of the Wronskian expression [38]:

[
h+Λ(r, E),ΦΛν(r, E)

]
r
= h+ℓ (pr)cfΛν(r,E) − p

1 + E/c2
Sκh

+
ℓ̄
(pr)gΛν(r,E) . (2.135)

From a set of linearly independent regular solutions Ψν(r, E) of mixed spin-angular char-
acter, one can then construct any other regular solutions like RΛ(r, E) or ZΛ(r, E), i.e.

ZΛ(r, E) =
∑

ν

AΛνΨν(r, E) . (2.136)

The coefficients AΛν can then be determined from the asymptotic behaviour of the func-
tions ZΛ(r, E) and Ψν(r, E).

2.2.7 Multiple Scattering Green’s Function

The Green’s function for a system that contains many or even an infinite number of
scattering sites can be obtained via a similar approach as the single site scattering Green’s
function. As a starting point one can use the following Dyson equation:

G = Gn +GnV̄ nG . (2.137)

Here, Gn is the single site Green’s function for the scattering potential V n and V̄ n is the
potential for the whole system without the V n contribution. In analogy to Eq. (2.45) this
Dyson equation can be reformulated into

G = Gn +GnT nnGn , (2.138)
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where T nn describes the scattering of the system without the scattering site n. One then
obtains in the real space representation:

G(r, r′, E) = Gn(r, r′, E) +

∫
d3r′′

∫
d3r′′′ Gn(r, r′′, E)T nn(r′′, r′′′, E)Gn(r′′′, r′, E) ,

(2.139)
where according to Eq. (2.80) T nn can be written as

T nn(r, r′, E) =
∑

i6=n

∑

j 6=n

τ ij(r, r′, E) , (2.140)

with the multiple scattering path operators τ ij being given by Eq. (2.82):

τ ij(r, r′, E) = δijt
i(r, r′, E)

+

∫
d3r′′

∫
d3r′′′ ti(r, r′′′, E)

∑

k 6=i

G0(r
′′, r′′′, E)τkj(r ′′′, r′, E) . (2.141)

Here, ti(r, r′, E) is only non-zero when r and r′ are located within the potential region
of scatterer i, i.e. within the corresponding atomic cell. The same is true for τkj(r, r′, E)
where r and r′ must lie within the atomic cells k and j, respectively, in order to give a
non-zero contribution. It is thus useful to indicate by an additional subscript in which
atomic cells the vectors r and r′ are located and rewrite the free electron Green’s function
with respect to these cell-centred coordinates as

G0(Ri + ri,Rj + r′j, E) = Gij
0 (ri, r

′
j , E) = G0(r,Rj −Ri + r′j , E) , (2.142)

i.e. one shifts the spatial arguments so that the occurring functions jΛ(r, E) and hΛ(r, E)
in Eq. (2.93) are centred at the corresponding atomic sites i and j. Moreover, G0(ri, r

′
j, E)

enters in Eq. (2.141) only for i 6= j so that one has by construction |ri| < |Rj −Ri + r′j |.
As the Hankel functions hΛ(r, E) are only irregular at the atomic positions Ri they can
be reexpanded in terms of the regular Bessel functions jΛ(r, E) around all other atomic
cells located at Rj

− iph×Λ(Rj −Ri + r′, E) =
∑

Λ′

Gij
0,ΛΛ′(E)j×(r′j , E) (2.143)

so that Gij
0 (ri, r

′
j, E) can be written as

Gij
0 (ri, r

′
j, E) =

∑

ΛΛ′

jΛ(ri, E)Gij
0,ΛΛ′(E)j×Λ′(r

′
j , E) . (2.144)

As the energy dependent coefficients Gij
0,ΛΛ′(E) depend only on the spatial arrangement

of the atomic sites but not on the shape of the individual potentials V i they are called
structure constants. Insertion of Eq. (2.144) into Eq. (2.141) followed by multiplication
from the left and right with j×Λ (ri, E) and jΛ′(r′j , E), respectively, and integration over
the spatial arguments results in the matrix equation

τ ijΛΛ′(E) = δijt
i
ΛΛ′(E) +

∑

k 6=i

∑

Λ′′Λ′′′

tiΛΛ′′(E)Gik
0,Λ′′Λ′′′(E)τkjΛ′′′Λ′(E) , (2.145)
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with the matrix elements of the scattering path operator

τ ijΛΛ′(E) =

∫
d3r

∫
d3r′ j×Λ (ri, E)τ ij(ri, r

′
j , E)jΛ′(r′j, E) . (2.146)

Insertion of Eqs. (2.122) and (2.140) into the Dyson equation (2.139) followed by appli-
cation of Eqs. (2.145) and (2.143) gives for the site diagonal multiple scattering Green’s
function

G(ri, r
′
i, E) = Gi(ri, r

′
i, E) +

∑

ΛΛ′

ZΛ(ri, E)
[
τ iiΛΛ′(E)− tiΛΛ′(E)

]
Z×
Λ′(r

′
i, E) (2.147)

=
∑

ΛΛ′

ZΛ(ri, E)τ iiΛΛ′(E)Z×
Λ′(r

′
i, E)

−
∑

ΛΛ′

ZΛ(ri, E)tiΛΛ′(E)
[
Z×
Λ′(r

′
i, E) + ipH×

Λ′(r
′
i, E)

]
(2.148)

or for the case that tiΛΛ′(E) is symmetric one obtains with −ipHΛ = ZΛ −∑Λ′ JΛ′t−1
ΛΛ′

G(ri, r
′
i, E) =

∑

ΛΛ′

ZΛ′(ri, E)τ iiΛ′Λ(E)Z×
Λ (r′i, E)−





∑
Λ
ZΛ(ri, E)J×

Λ (r′i, E) for r < r′

∑
Λ
JΛ(ri, E)Z×

Λ (r′i, E) for r > r′
.

(2.149)
Here, the functions ZΛ(ri, E), JΛ(ri, E) and HΛ(ri, E) are the solutions of the Dirac
equation (2.124) for the atomic site located at Ri. So far, only the site diagonal elements
with i = j of G(ri, r

′
j , E) are given by Eq. (2.149). For the corresponding off-diagonal

terms with i 6= j an analogous derivation can be done resulting in the following general
expression [23]:

G(ri, r
′
j , E) =

∑

ΛΛ′

ZΛ′(ri, E)τ ijΛ′Λ(E)Z×
Λ (r′j , E)−δij





∑
Λ
ZΛ(ri, E)J×

Λ (r′i, E) for r < r′

∑
Λ

JΛ(ri, E)Z×
Λ (r′i, E) for r > r′

.

(2.150)
Comparison of the Green’s function for the whole system with the single site scattering
Green’s function Gi(ri, r

′
i, E) in Eq. (2.123) shows that both Green’s functions differ only

in the first term where the single site t-matrix is replaced by the corresponding multiple
scattering path operator τ ij . This suggests to rewrite G(ri, r

′
j, E) in terms of Gi(ri, r

′
i, E)

and a so-called back-scattering Green’s function Gbs(ri, r
′
j , E)

G(ri, r
′
j, E) = Gbs(ri, r

′
j , E) +Gi(ri, r

′
i, E) (2.151)

=
∑

ΛΛ′

ZΛ′(ri, E)
[
τ ijΛ′Λ(E) − tiΛ′Λ(E)

]
Z×
Λ (r′j, E)

+ ZΛ′(ri, E)tiΛ′Λ(E)ZΛ(r
′
j , E)− δij





∑
Λ
ZΛ(ri, E)J×

Λ (r′i, E) for r < r′

∑
Λ
JΛ(ri, E)Z×

Λ (r′i, E) for r > r′
.

(2.152)
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Using Gi(ri, r
′
j, E) as expressed in Eq. (2.119) together with the alternative regular wave-

functions
RΛ(r, E) =

∑

Λ′

ZΛ′(r, E)tΛ′Λ(E) (2.153)

allows to write G(ri, r
′
j, E) as

G(ri, r
′
j, E) =

∑

ΛΛ′

RΛ′(ri, E)Gij
Λ′Λ(E)R×

Λ (r
′
j, E) (2.154)

− δijip





∑
Λ
RΛ(ri, E)H×

Λ (r′i, E) for r < r′

∑
Λ

HΛ(ri, E)R×
Λ (r

′
i, E) for r > r′

(2.155)

with Gij(E) being called structural Green’s function as it contains the whole multiple
scattering information as the scattering path operator. Gij and τ ij are related to each
other via

Gij = ti
−1
τ ijtj

−1 − δijt
i−1

(2.156)

τ ij = tiGijtj + δijt
i . (2.157)

2.2.8 Solving the Multiple Scattering Problem

With the derived expressions for the relativistic multiple scattering Green’s function
G(ri, r

′
j , E) in Eqs. (2.151) and (2.154) the remaining problem is to calculate the scat-

tering path operators τ ij or equivalently the structural Green’s function Gij . For a finite
ensemble of atomic scatterers this can be done in real space via Eq. (2.83). For an ordered
system with 3D periodicity τ ij can be obtained by means of a lattice Fourier transforma-
tion, i.e. τ ij can be written as an integral over the first Brillouin zone of the 3D lattice
with the form:

τ ijΛ′Λ(E) =
1

ΩBZ

∫

ΩBZ

d3k
[
t−1(E)−G0(k, E)

]−1

Λ′Λ
eik(Ri−Rj) , (2.158)

with G0(k, E) being the Fourier transform of the real-space free electron Green’s function
G0(r, r

′, E). For the treatment of systems with 2D periodicity such as interfaces between
two semi-infinite crystals or surfaces a mixed representation is the natural choice so that
the integral in Eq. (2.158) is reduced to a 2D Brillouin zone within each atomic layer while
the interlayer part is treated in real space.

Moreover, by applying a Dyson equation it is straight forward to calculate τ ij for a
perturbed system, e.g. for impurities within perfect crystals or deposited atomic clusters
on surfaces. This is especially simple if one assumes that the impurity atoms occupy ideal
lattice sites of the unperturbed host system. In this case one has

τ−1
host = t−1

host −G0 and τ−1
imp = t−1

imp −G0 (2.159)

so that the structure constants G0 can be eliminated giving

τimp =
(
τ−1
host − t−1

host + t−1
imp

)−1
(2.160)

= τhost

[
1 +

(
t−1
imp − t−1

host

)
τhost

]−1
. (2.161)
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Thus for calculating the scattering path operators of the perturbed system only the new
t-matrices timp have to be calculated. The above procedure is also applicable to the case
where the atomic positions within the perturbed region differ from the positions of the
underlying host lattice. This however, requires a reexpansion of the unperturbed structure
constants around the relaxed atomic positions of the impurity sites. This impurity scheme
can be of course applied to systems with 3D as well as 2D translational invariance where
τhost is first calculated for the corresponding unit cell and then in a second step τ ijhost is
calculated for a finite region in real space into which the impurity is embedded. In this
way the results presented in chapters 5 and 6 were obtained.

This arbitrariness of a host or reference system can also be exploited in a so-called
screening or tight-binding transformation of the free space structure constants that occur
in Eq. (2.145). These screened structure constants are then short ranged, i.e. they are
much more localised around atomic sites and show a rapid spatial decay with increasing
distance |Ri − Rj |. As a consequence the resulting scattering path operators τ ij are
essentially zero if the distance between the atomic cells i and j is larger than between
next-nearest neighbouring sites. In practise such a screening transformation is achieved
by choosing the new reference system to consist of a lattice with repulsive potentials of
constant height so that the new tight-binding structure constants are given by [39, 40]:

G
tb

= G
0

(
1− t

tb
G

0

)−1
. (2.162)

With respect to this new reference system of repulsive potentials one can then define the
single site t-matrix as

∆t = t− ttb (2.163)

as well as the corresponding scattering path operators

∆τ =
(
∆t−1 −G

tb

)−1
. (2.164)

From ∆τ ij one can then obtain the true structural Green’s function and scattering path
operators by applying the transformations (2.156) and (2.157):

Gij = ∆ti
−1

∆τ ij∆tj
−1 − δij∆t

i−1
(2.165)

τ ij = tiGijtj + δijt
i . (2.166)

Thus, the Green’s function G(ri, r
′
j , E) in Eqs. (2.151) and (2.154) stays invariant with

respect to the screening transformation. The major numerical advantage of this tight
binding formalism results from the sparseness of the occurring matrices in Eq. (2.164)
which become even band diagonal in the case of layered systems or surfaces leading to a
linear scaling of computation time with increasing system size. Further technical details
about the implementation of this calculational scheme and its application to finite slabs
as well as semi-infinite half-spaces can be found in the literature [39, 41].

2.2.9 Configuration-averaged Green’s Functions

For the treatment of randomly disordered alloys as for instance compounds like A1−xBx

where a scattering site is occupied by an atom of type A or B with the probabilities
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cA = 1− x and cB = x, respectively, one can construct a so-called configuration-averaged
Green’s function 〈G〉. The ensemble for such an alloy is given by the set of all configurations
that can be obtained by arranging M atoms of type A and N −M atoms of type B on
the available number of scattering sites N . As it becomes impossible to calculate the full
configuration-averaged Green’s function 〈G〉 for large N several mean field theories within
single-site approximations have been suggested, where the true potential of the system is
replaced by a model potential which is constructed in such a way that the same effective
scatterer occupies all atomic sites.

In the virtual crystal approximation (VCA) for instance this effective potential is sim-
ply the weighted average of the potentials of the atomic species that constitute the alloy
whereas for example the average t-matrix approximation (ATA) constructs the effective
scatterers by taking the average of the corresponding t-matrices of the atoms that make
up the compound. However, VCA and ATA suffer from unphysical defects in the proper
description of the electronic states of a random alloy. Here, the coherent potential ap-
proximation (CPA) of Soven [42] remedies these shortcomings and provides a much more
adequate imitation of the true configuration-averaged Green’s function of such disordered
systems. This is achieved by applying much more stringent conditions to the effective
scatterers: if an atom of type A or B is embedded into this CPA medium of effective scat-
tering sites then the weighted average of the additional scattering should vanish. Using
the expression in Eq. (2.161) for embedded impurities one can write the CPA condition
as follows:

cAτ
ii
A + cBτ

ii
B = τ iiCPA , (2.167)

with

τ iiA = τ iiCPA

[
1 +

(
t−1
A − t−1

CPA

)
τ iiCPA

]−1
= DAτ

ii
CPA = τ iiCPAD̃A (2.168)

τ iiB = τ iiCPA

[
1 +

(
t−1
B − t−1

CPA

)
τ iiCPA

]−1
= DBτ

ii
CPA = τ iiCPAD̃B (2.169)

and
τ ijCPA = tiCPAδij +

∑

i6=k

tiCPAG0τ
kj
CPA , (2.170)

where DA and DB are the so-called CPA projectors. From the above relations the ef-
fective scattering t-matrix tCPA and thus also τCPA can be determined in an iterative
procedure [43, 44]. The site-diagonal part of configuration-averaged Green’s function can
then be written in the coherent potential approximation as [23]

GCPA(ri, r
′
i, E) =

∑

Λ=Λ′

(
cAZA,Λ′(ri, E)τ iiA,Λ′Λ(E)Z×

A,Λ(r
′
i, E)

+ cBZB,Λ′(ri, E)τ iiB,Λ′Λ(E)Z×
B,Λ(r

′
i, E)

)

−





∑
Λ

(
cAZA,Λ(ri, E)J×

A,Λ(r
′
i, E)

+ cBZB,Λ(ri, E)J×
B,Λ(r

′
i, E)

)
for r < r′

∑
Λ

(
cAJA,Λ(ri, E)Z×

A,Λ(r
′
i, E)

+ cBJB,Λ(ri, E)Z×
B,Λ(r

′
i, E)

)
for r > r′

. (2.171)
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The non-site-diagonal part GCPA(ri, r
′
j , E) is more complicated and reads [23]

GCPA(ri, r
′
j, E) =

∑

Λ=Λ′

(
cAcAZA,Λ′(ri, E)τ ijAA,Λ′Λ(E)Z×

A,Λ(r
′
j , E)

+ cAcBZA,Λ′(ri, E)τ ijAB,Λ′Λ(E)Z×
B,Λ(r

′
j, E)

+ cBcAZB,Λ′(ri, E)τ ijBA,Λ′Λ(E)Z×
A,Λ(r

′
j, E)

+ cBcBZB,Λ′(ri, E)τ ijBB,Λ′Λ(E)Z×
B,Λ(r

′
j, E)

)
, (2.172)

where τ ijAB is given by

τ ijAB = DAτ
ij
CPAD̃B . (2.173)

In contrast to the VCA and ATA models the coherent potential VCPA is a complex mathe-
matical quantity which implies that the electronic states described by the CPA are damped,
i.e. due to their complex energy eigenvalues they have a finite lifetime. As the CPA is
a mean field theory it does not account for any short-range ordering effects that may
be of importance in realistic systems. Here, the recently developed non-local CPA [45]
gives an improvement in treating such occurring short-range correlations, albeit that the
computational cost may become enormous.

2.2.10 Calculation of Observables

With the Green’s function at hand it is then straightforward to calculate physical observ-
ables via Eq. (2.40) so that one obtains in particular for the density of states n(E), the
electron density ρ(r) and the spin- and orbital magnetic moments

n(E) = − 1

π
Im Tr

∫

Ω
d3r G(r, r, E) (2.174)

ρ(r) = − 1

π
Im Tr

∫ EF

dE G(r, r, E) (2.175)

µspin = − 1

π
Im Tr

∫ EF

dE

∫

Ω
d3r βσzG(r, r, E) (2.176)

µorb = − 1

π
Im Tr

∫ EF

dE

∫

Ω
d3r lzG(r, r, E) . (2.177)

As one can see for these quantities only the site-diagonal part of G(ri, r
′
j , E) is needed

and thus only the scattering path operators τ ii need to be evaluated. Moreover, due to
the analytic properties of G(ri, r

′
j , E) as function of E the energy integration in the above

equations can be carried out on a contour in the complex energy plane which needs only
16 to 32 energy mesh points for sufficient numerical accuracy.

Further detailed information on the electronic structure is accessible via the so-called
Bloch spectral function AB(k, E) which is defined as the imaginary part of the Fourier
transform of G(ri, r

′
j, E), i.e.

AB(k, E) = − 1

π
ImTr

1

N

N∑

i,j

eik(Ri−Rj)

∫

Ω
d3r G(r +Ri, r

′ +Rj , E) . (2.178)
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Thus, AB(k, E) provides a k-resolved density of states with integration of AB(k, E) over
the full Brillouin zone giving

n(E) =
1

ΩBZ

∫

ΩBZ

d3k AB(k, E) . (2.179)

For an ordered periodic system AB(k, E) is just a sum of δ-functions δ(E − E(k)), i.e.
AB(k, E) is in fact equivalent to the dispersion relation E(k). In contrast to E(k), however,
AB(k, E) is also well-defined for disordered systems where the Bloch symmetry breaks
down.

In order to demonstrate the subtle features contained in the Bloch spectral function
AB(k, E) was evaluated for a Co monolayer on a Pt(111) surface, modelling the substrate
by finite slabs of nPt=9 and nPt=37 layers and by a proper semi-infinite crystal. The
diagrams in Fig. 2.1 depict AB(k, E) along the high symmetry lines Γ̄-K̄-M̄-Γ̄ in the 2D
Brillouin zone. For simplicity only the minority spin states are shown. The local densities
of minority-spin states n↓(E) for the Co atoms is presented in the left-hand panels which
were obtained by applying the integration in Eq. (2.179) to the full surface Brillouin zone,
i.e. they represent also other states than only those for which AB(k, E) is displayed. The
bottom diagram of Fig. 2.1 illustrates how the energy bands of the Co monolayer (dark
regions) are broadened due to hybridisation with the states of the underlying semi-infinite
Pt substrate (grey-shaded areas). For finite Pt slabs, however, the continuum of the Pt
substrate states is replaced by discrete energy bands resulting in considerable changes
in AB(k, E) (especially for the thinner slab in the top graph). In contrast to this, the
difference in the densities of states between finite slabs and semi-infinite crystal is much
smaller.

2.2.11 Magnetic Anisotropy and Exchange Interaction

Magnetic anisotropy denotes the change in total energy of a magnetic system when chang-
ing the orientation of its magnetisation. Usually the resulting magnetic anisotropy energy
(MAE) is decomposed into a contribution that has its origin in spin-orbit coupling (SOC)
and a second part that is associated with the magnetic dipole-dipole interaction of the
individual magnetic moments and thus depends on the shape of the magnetic sample.
Although both contributions to the MAE are intrinsically generated by the materials un-
derlying electronic structure there has been so far always an artificial inconsistency in
their theoretical description. While the SOC induced part ∆Esoc is normally obtained
via relativistic ab initio calculations based on spin density functional theory (SDFT) the
shape dependent ∆Esh is always calculated classically albeit that for many systems both
contributions are of the same order of magnitude. With ∆Esh being actually caused by
the Breit interaction [46, 47, 48] between individual electrons the inclusion of this energy
term in the Hamiltonian of SDFT opens a new way to treat both parts of the MAE on
a consistent quantum mechanical footing. This approach will be described in detail in
chapter 7.

The standard approach, however, is to calculate ∆Esh by evaluating the classical mag-
netostatic energy of localised atomic magnetic moments and to restrict the electronic
contribution to ∆Esoc. Thus, ∆Esh is determined by performing a Madelung summation
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Figure 2.1: Bloch spectral function AB(k, E) for the minority states of the Co sites in a
Co monolayer on a Pt(111) surface. The substrate is calculated via a slab with 9 layers of
Pt (top) and 38 layers of Pt (middle) as well as a semi-infinite Pt crystal (bottom). The
colour code for the intensity of AB(k, E) is shown at the top. The left panels show the
corresponding minority DOS. For the finite slabs, the DOS of the semi-infinite Pt crystal
is also plotted via dotted lines for comparison.
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for two different directions ê and ê0 of the magnetisation with

Esh(ê) =
∑

i6=j

mimj

c2

∑

R

1

|R+ qi − qj |3

(
1− 3

[(R + qi − qj) · ê]2
|R+ qi − qj|2

)
. (2.180)

Here, mi and mj are the total magnetic moments at sites i and j, respectively, with qi
and qj denoting the atomic positions in the unit cell and R being the translation lattice
vector. The sum in Eq. (2.180) runs over all pairs (i,j) of lattice sites.

Calculation of ∆Esoc or the MAE means in general to determine the system’s total
electronic energy for two magnetisation directions ê0 and ê and taking the difference. The
fact that the total energies and the corresponding MAE can differ by about eight or nine
orders of magnitude makes an accurate calculation of the MAE a very challenging and
expensive computational task. In order to reduce the computational effort by avoiding
the necessity of performing fully self-consistent calculations for the two magnetisation
directions one can make use of the so-called magnetic force theorem. This allows to
approximate the MAE by taking only the difference of the single particle or band energies
while using a frozen spin dependent potential.

A different approach to extract ∆Esoc from electronic structure calculations is to calcu-
late the torque vector T that is exerted on the magnetic moments when the magnetisation
is tilted away from its equilibrium position, i.e. the magnetic easy axis. The torque com-

ponent T
(êi)
i,û that acts on the magnetic moment at site i about an axis û is given by the

analytic derivative of the system’s total energy E with respect to the rotation angle α, i.e.

T
(êi)
i,û = − ∂E

∂αû
i

. (2.181)

The magnetic anisotropy energy between two different orientations of the magnetisation
ê0 and ê is then determined by the corresponding path integral

∆Esoc(ê, ê0) =

∫ ê

ê0

T
(n̂)
û dn̂ , (2.182)

assuming a collinear configuration of all magnetic moments.
Expanding E(ê, ê0) in powers of the directions cosines α1, α2 and α3 of the magnetisa-

tion along the three coordinate axes gives in second order with no spatial symmetry taken
into account:

E(θ, φ) = E0 +K2,1 cos 2θ

+K2,2(1− cos 2θ) cos 2φ+K2,3(1− cos 2θ) sin 2φ

+K2,4 sin 2θ cosφ+K2,5 sin 2θ sinφ . (2.183)

Using a corresponding expression for the torque it is straight forward to deal with the inte-
gral occurring in Eq. (2.182). The evaluation of the anisotropy constants Kn,m occurring
in this equation can then be determined in a rather easy way by determining the corres-
ponding torque components for certain orientations ê, i.e. at angles (θ, φ) of the magnetic
moments with respect to the z-axis. The MAE of free-standing and surface deposited
monolayers which are discussed in the next two chapters show an almost perfect uniaxial
character where K2,1 is by far the most dominant term determining the energetic differ-
ence between in-plane and out-of-plane magnetisation. For the surface deposited clusters
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presented in chapter 5, however, all anisotropy constants in Eq. (2.183) can be of the same
order of magnitude due to the reduced symmetry in these systems.

Instead of looking at the energy differences when all magnetic moments are tilted away
from the easy axis simultaneously one can also consider the corresponding change in energy

∆Eij =
∂2E

∂αû
i ∂β

v̂
j

, (2.184)

when only two magnetic moments at sites i and j are rotated away from their equilibrium
orientation. In this way one obtains the exchange coupling energy which can be mapped
onto an effective model Hamiltonian H which includes spin-spin interactions up to second
order and which has only the magnetic moment directions as degrees of freedom. The
mapping relies on the rigid-spin approximation, i.e. it implies that the magnitude of the
magnetic moments is independent of their direction. The details of this procedure have
been outlined by Udvardi et al. [49] employing the method of infinitesimal rotations to
calculate the cost in energy when two magnetic moments at sites i and j are infinitesimally
tilted away from the ferromagnetic alignment. Moreover, this method also assumes the
validity of the magnetic force theorem, i.e. that the occurring changes in the systems
total energy E due to rotations of magnetic moments are only related to changes in the
single particle energy levels. In the nonrelativistic case this approach leads to a classical
Heisenberg model (HM) Hamiltonian

H = −
∑

i6=j

Jij êi · êj (2.185)

where êi and êj are unit vectors along the magnetic moment directions and Jij is the
corresponding exchange interaction constant between the sites i and j. Based on the so-
called Lloyd formula Lichtenstein et al. [50] worked out an expression for the isotropic Jij
coupling constants suitable for a direct implementation into a multiple scattering formal-
ism

Jij = − 1

4π
Im

∫ EF

dE Tr
(
t−1
i↑ − t−1

i↓

)
τ ij↑

(
t−1
j↑ − t−1

j↓

)
τ ji↓ . (2.186)

A corresponding fully relativistic scheme produces exchange interaction tensors Jij for use
in an extended Heisenberg model Hamiltonian [49]

H = −1

2

∑

i6=j

êiJij êj +
∑

i

K(êi) . (2.187)

Here, the Jij in the first term are 3× 3 matrices of the form

Jij =




Jxx
ij Jxy

ij Jxz
ij

Jyx
ij Jyy

ij Jyz
ij

Jzx
ij Jzy

ij Jzz
ij


 (2.188)

and K in the second term represents the anisotropy energy for each specific site. In line
with the method of infinitesimal rotations the elements of an interaction tensor Jαβ

ij are
given by the mixed second derivatives of the systems energy with respect to an infinitesimal
spatial variation of the magnetic moment directions at sites i and j, i.e.

Jαβ
ij =

∂2H
∂αi∂βj

. (2.189)
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In order to identify distinct physical interactions the tensor Jij is decomposed into

Jij = JijI + J S
ij + J A

ij (2.190)

with I being the unit matrix and

Jij =
1

3

(
Jxx
ij + Jyy

ij + Jzz
ij

)
=

1

3
TrJij . (2.191)

J S
ij and J A

ij are the traceless symmetric and antisymmetric part of Jij, respectively

J S
ij =

1

2

(
Jij + J T

ij

)
− JijI (2.192)

J A
ij =

1

2

(
Jij − J T

ij

)
, (2.193)

where J T
ij stands for the corresponding transposed matrix. From this follows that the

effective interaction Hamiltonian in Eq. (2.187) can be split into four terms

H = −1

2

∑

i6=j

Jij êi · êj −
1

2

∑

i6=j

êiJ S
ij êj −

1

2

∑

i6=j

Dij · (êi × êj) +
∑

i

Ki(êi) (2.194)

with the isotropic exchange interactions Jij , the symmetric anisotropic exchange inter-
actions J S

ij as well as the antisymmetric anisotropic exchange interactions that are rep-
resented by the Dzyaloshinski-Moriya (DM) vectors Dij . The components of the DM
vectors are defined as

Dx
ij =

1

2

(
Jyz
ij − Jzy

ij

)
, Dy

ij =
1

2

(
Jxz
ij − Jzx

ij

)
, Dz

ij =
1

2

(
Jxy
ij − Jyx

ij

)
. (2.195)

Employing spherical coordinates to represent the magnetic moment directions, i.e. by
using êi = (sin θ cosφ, sin θ sinφ, cos θ) one can express the interaction constants Jαβ

ij as
derivatives with respect to θ and φ. With the magnetisation pointing along x, i.e. θ = π/2,
φ = 0 one has

Jyy
ij =

∂2H
∂φi∂φj

, Jzz
ij =

∂2H
∂θi∂θj

, −Jyz
ij =

∂2H
∂φi∂θj

, −Jzy
ij =

∂2H
∂θi∂φj

. (2.196)

For the magnetisation being parallel to z, i.e. θ = 0, φ = 0, π/2 one gets

Jyy
ij =

∂2H
∂φi∂φj

, Jxx
ij =

∂2H
∂θi∂θj

, Jyx
ij =

∂2H
∂φi∂θj

, Jxy
ij =

∂2H
∂θi∂φj

(2.197)

and finally with the magnetisation in y direction, i.e. θ = π/2, φ = π/2 results

Jxx
ij =

∂2H
∂φi∂φj

, Jzz
ij =

∂2H
∂θi∂θj

, Jxz
ij =

∂2H
∂φi∂θj

, Jzx
ij =

∂2H
∂θi∂φj

. (2.198)

Note, there are two expressions to calculate the diagonal elements Jxx, Jyy and Jzz and
that the above procedure can be repeated for any three independent orientations of the
magnetisation. This may result in sets of coupling parameters Jαβ

ij that are not necessarily
unique, which is a consequence of the fact that H has been derived via a second order
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expansion of the exact total energy E for a given magnetic configuration. This means
for example that Jαβ

ij calculated from a ferromagnetic configuration may differ from the
results obtained for the antiferromagnetic one.

When applying the magnetic force theorem, the contribution of the single particle
states to the total energy E is given by

E =

∫ EF

dE′ (E′ − EF)n(E
′) = −

∫ EF

dE′ N(E′) (2.199)

with n(E′) and N(E′) =
∫ E′

n(E′′)dE′′ being the DOS and integrated DOS, respectively.
Thus, the change in E is directly related to the change in N(E′). With the help of Lloyd’s
formula [51]

N(E′)−N0(E
′) =

1

π
ImTr ln τ(E′) , (2.200)

the change in the integrated density of states is connected with the multiple scattering
path operator τ and the total energy then becomes

E = − 1

π
Im

∫ EF

dE′ Tr ln τ(E′) . (2.201)

Using the relation Tr lnA = ln detA one can rewrite Eq. (2.201) as

E = − 1

π
Im

∫ EF

dE′ ln det τ(E′) (2.202)

=
1

π
Im

∫ EF

dE′ ln det τ−1(E′) (2.203)

and with the matrix relation ∂(ln detA) = Tr(A−1∂A) one can write the variation of the
total energy with respect to a rotation of the magnetic moment at site i about an axis û
as

∂E

∂αû
i

=
1

π
Im

∫ EF

dE′ Tr τ
∂

∂αû
i

τ−1 . (2.204)

The corresponding second derivative of E with respect to another rotation of the magnetic
moment at site j about an axis v̂ gives

∂2E

∂αû
i ∂β

v̂
j

=
1

π
Im

∫ EF

dE′ Tr

(
∂

∂βv̂j
τ
∂

∂αû
i

τ−1 + τ
∂

∂βv̂j

∂

∂αû
i

τ−1

)
(2.205)

=
1

π
Im

∫ EF

dE′ Tr

(
−τ ∂

∂βv̂j
τ−1τ

∂

∂αû
i

τ−1 + τ
∂

∂βv̂j

∂

∂αû
i

τ−1

)
, (2.206)

where the matrix relation ∂A = −A(∂A−1)A has been used. The partial derivatives of τ−1

can then be reduced to partial derivatives of the respective inverse t-matrices

∂

∂αû
i

τ−1 =
∂

∂αû
i

(
t−1 −G0

)
=

∂

∂αû
i

t−1 (2.207)

as G0 is independent of the magnetisation direction. The ∂/∂αû
i acts solely on the elements

of the inverse t-matrix that are related with site i so that one can write

∂

∂αû
i

t−1 =
∂

∂α
ti
−1

= mi
α . (2.208)
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Substituting Eqs. (2.207) and (2.208) into Eqs. (2.204) and (2.206) gives

∂E

∂αû
i

=
1

π
Im

∫ EF

dE′ Tr τ iimi
α (2.209)

for the first derivatives of E while for the second derivatives of E one gets

∂2E

∂αû
i ∂β

v̂
j

= − 1

π
Im

∫ EF

dE′ Tr
(
τ jimi

ατ
ijmj

β

)
(2.210)

for the off-diagonal terms (i 6= j) and

∂2E

∂αû
i ∂β

v̂
i

= − 1

π
Im

∫ EF

dE′ Tr
(
τ iimi

ατ
iimi

β + τ iimi
αβ

)
(2.211)

for the diagonal terms (i = j). Eq. (2.209) gives an expression for the magnetic torque
component acting on the magnetic moment at site i about an axis û

T
(êi)
i,û = − ∂E

∂αû
i

. (2.212)

Following the derivation of Staunton et al. [52] the dependence of the inverse single site
t-matrix on the direction of the magnetisation is represented by a unitary transformation
rotating the ẑ axis of the reference system to the new direction ê,

ti
−1

= mi = R(ê)mi
0R

(ê)† , (2.213)

where m0
i denotes the inverse t-matrix of site i in the local frame where the ẑ axis is

parallel with the magnetisation direction at site i. Writing the rotation matrix

R(ê) = eiα
û(û·Ĵ) , (2.214)

i.e. rotation by an angle α about an axis û with Ĵ being the total angular momentum
operator. From this follows that

∂R(ê)

∂αû
= i
(
û · Ĵ

)
R(ê) and

∂R(ê)†

∂αû
= −i

(
û · Ĵ

)
R(ê)† . (2.215)

Substituting Eq. (2.213) into Eq. (2.209) one gets

∂E

∂αû
i

=
1

π
Im

∫ EF

dE′ Tr τ ii
∂

∂αû

(
R(ê)mi

0R
(ê)†
)

(2.216)

and finally, applying Eq. (2.215) one gets

∂E

∂αû
i

=
1

π
Im

∫ EF

dE′ Tr τ ii
[(
û · Ĵ

)
mi −mi

(
û · Ĵ

)]
(2.217)

as well as similar expressions for the second derivatives of Eq. (2.210). Apart from the
way presented above Ebert et al. [53] have recently presented another scheme to calculate
the exchange coupling tensor Jij.



Chapter 3

The Free-standing fcc(111)
Fe1−xCox Monolayer

In this chapter a detailed investigation of the magnetic properties of a fcc(111) struc-
tured free-standing Fe1−xCox alloy monolayer is presented. This analysis is very instruc-
tive for understanding the more complex situations when such a monolayer or large two-
dimensional islands having the same geometry are deposited on a Pt(111) substrate. In
order to exclude effects of structural relaxation and thus allow for a direct comparison with
the deposited case discussed in the next chapter the results presented in this section have
been obtained for an in-plane lattice constant of 2.77 Å which is structurally equivalent to
a (111) plane in bulk fcc Pt. At first, the variation of the magnetic moments and the un-
derlying electronic structure with changing Co concentration x is discussed followed by a
detailed analysis of the spin-orbit coupling (SOC) induced magnetocrystalline anisotropy
energy ∆Esoc. It will be shown that the SOC induced splittings of degenerate d-states
with energies lying close to the Fermi level EF play an important role for the qualitative
understanding of the magnetic anisotropy in these systems. Astonishingly, this important
SOC effect on the electronic structure is often not considered in connection with theoretical
studies of the magnetic anisotropy.

3.1 Magnetic Moments and Electronic Structure

Starting the analysis of the magnetic properties of the free-standing Fe1−xCox(111) mono-
layer with a discussion of the magnetic moments one can see in Fig. 3.1 that the spin
magnetic moment per atom is a linear function of the Co concentration decreasing from
3.0 µB for pure Fe to 2.0 µB for pure Co. As µspin for Fe and Co atoms, respectively,
is almost constant over the whole concentration range its linear variation with x is just
caused by averaging and can therefore be explained in terms of a Slater-Pauling type
model [54, 55]. This means that Fe as well as Co behave like ’strong’ ferromagnets with
their majority spin bands being completely filled. Thus, the alloying leaves the number
of majority spin electrons constant and only the minority spin bands get filled when in-
creasing the number of d-electrons from Fe to Co. This is in contrast to the well-known
Slater-Pauling curve for standard bulk bcc Fe1−xCox alloys that show a maximum spin
moment for an alloy composition of about 70% Fe. Furthermore, the Fe and Co spin
magnetic moments of the monolayer are strongly enhanced with respect to bulk bcc Fe

43
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Figure 3.1: Magnetic moments for the free-standing fcc(111) Fe1−xCox monolayer with
an in-plane lattice constant of 2.77 Å (being equivalent to a (111) plane in bulk fcc Pt):
spin moments (left panel) and orbital moments (right panel) as a function of the Co
concentration x.

(2.1 µB) as well as bulk hcp Co (1.5 µB) which can be attributed mainly to the large
lattice constant of Pt rather than the reduced coordination. The corresponding results
for the orbital moments presented in the right panel of Fig. 3.1 show a different and more
complex behaviour with a clear maximum of 0.19 µB at around 70% Fe. This maximum
arises from the fact that the SOC induced orbital magnetic moments depend in a subtle
way on the relative positions of SOC split energy bands with respect to the Fermi level of
the system which will be shown in more detail below.

Some reference results for the homologous bulk fcc Fe1−xCox systems with the same
lattice parameter as fcc Pt are shown in Fig. 3.2. One can see that for this reference
structure one gets a similar behaviour for the spin magnetic moments showing that bulk
fcc γ-Fe with a lattice constant of 3.92 Å is also a strong ferromagnet in the Slater-
Pauling sense. Due to the higher coordination in the bulk the µspin values are about 10%
smaller when compared to their monolayer analogues. Thus, there is only a relatively small
increase in the spin magnetic moment when going from the bulk fcc Fe1−xCox system to
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Figure 3.2: Magnetic moments for bulk fcc Fe1−xCox calculated with the lattice constant
of Pt (3.92 Å): spin moments (left panel) and orbital moments (right panel) as a function
of the Fe concentration.
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the free-standing fcc(111) Fe1−xCox monolayer. These results also show that the orbital
magnetic moments can have comparable magnitudes for the monolayer and bulk, although
they show different trends due to the differences in atomic coordination. Furthermore, it
should be stressed that a change from a 3D bulk system to a 2D monolayer system does not
lead to any ’unquenching’ of the orbital magnetic moment so that the observed residual
orbital moments are still exclusively induced by SOC.

Fig. 3.3 shows the energy band structures for the free-standing Fe and Co monolayers
along the high-symmetry lines Γ̄-K̄-M̄-Γ̄ of the two-dimensional Brillouin zone. Within the
given energy window only the majority (left column) and minority (right column) d-states
are depicted, respectively, showing strong exchange splittings for both monolayers. The
faint but visible lines in these diagrams demonstrate the fact that SOC causes mixing
between both spin channels which becomes especially pronounced at the crossing points
of bands with opposite spin. On closer inspection of Fig. 3.3 one can recognise that
there are strong similarities between the Fe and Co monolayer band structures. In both
cases the majority d-bands are located about 2 eV below EF showing an almost identical
dispersive behaviour. The dominant angular character of the d-bands at Γ̄ is also indicated
by symbols in Fig. 3.3. The dz2-bands (mℓ = 0) show only a slight dispersion and are
very flat within large parts of the Brillouin zone. This is caused by the small overlap
between dz2-orbitals as they are orientated out-of-plane with respect to the monolayers.
The bands with dxy and dx2−y2 orbital character (|mℓ| = 2), on the other hand, show the
largest dispersion due to their in-plane orientation, while the dispersion of the dxz and dyz-
bands is somewhere in between. As discussed further below the degeneracies that occur at
band crossings within the 2D Brillouin zone play a very important role in understanding
the magnetic anisotropy energy. This is due to the fact that under the influence of spin-
orbit coupling these degeneracies may be lifted with changing the magnetisation direction
and thus altering the total energy of the system.

The effect of random atomic disorder on the electronic band structure is shown in
Fig. 3.4 depicting the Bloch spectral function of the Fe0.75Co0.25 alloy monolayer. At first
it is apparent that the electronic energy bands are now broadened due to finite life-time
effects as the Bloch theorem is not fulfilled any more. This broadening, however, depends
strongly on the hybridisation among the mixed atomic species. The majority dz2-orbitals
of the Co atoms for instance do not hybridise with other orbitals of Fe or Co resulting in
a dispersionless dz2-band at -1.5 eV. This can give rise to so-called virtual bound states
which are very common in many diluted alloys as well as other impurity host systems [56].

Based on the band structures in Figs. 3.3 and 3.4 the d-orbital (mℓ) resolved density
of states (DOS) for the Fe, Co and Fe0.75Co0.25 monolayers are given in Fig. 3.5. The
dashed and full lines correspond to majority and minority states, respectively. There is
an appreciable variation in the bandwidth for the different d-orbitals arising from their
different spatial orientations. This can give some qualitative insights into the chemical
bonding in terms of hybridisation. The dz2-orbitals (mℓ = 0) are very localised for Fe
and Co and do not contribute significantly to the interatomic bonding which is a direct
consequence of their out-of-plane orientation, i.e. perpendicular to the monolayer. The
dxz and dyz (mℓ = ±1) density of states show a broader double peak structure while the
DOS for the in-plane oriented dx2−y2 and dxy-orbitals (mℓ = ±2) is very broad indicating
their large contribution to the interatomic bonding.
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Figure 3.3: Relativistic Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄
of the two-dimensional Brillouin zone for free-standing Fe (top) and Co (bottom) mono-
layers. The left and right columns show the band structure for majority and minority
states, respectively. The faint lines in each panel show the energy bands of the other
spin channel demonstrating the fact that spin is not a ’good’ quantum number in this
relativistic description of the electronic structure. The Fermi energy is indicated by the
dashed horizontal lines. The dominant orbital character of the d-bands at Γ̄ is encoded
by the symbols: ⋆ (xy,x2 − y2), � (z2) and � (xz,yz).
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Figure 3.6: Orbital and element resolved density of states (DOS) as function of the Co
concentration x for isolated Fe1−xCox monolayers: averaged DOS (left column) together
with the Fe (middle column) and Co (right column) contributions. The dashed and full
lines denote majority and minority states, respectively, with mℓ = −1 (red), mℓ = +1
(green), mℓ=−2 (blue), mℓ=+2 (yellow) and mℓ=0 (black).
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Figure 3.7: Density of states for free-standing fcc(111) Fe and Co monolayers (left) in
comparison with corresponding bulk fcc Fe and Co (middle) and standard bulk bcc Fe
and hcp Co (right).

In line with what has been said for the electronic band structures alloy formation
between Fe and Co leads to an additional broadening of the DOS which eliminates for
instance the pronounced localised structure for the dz2 states. Moreover some extra peaks
may occur as seen for example in the majority dz2-states in the right panel of Fig. 3.5.
Especially in the limit of low Co or Fe concentrations virtual bound states (VBS) form
within the bands of the impurity species. In Fig. 3.6 element projected density of states
for various Co concentrations x are presented. For small concentrations of Co a very
sharp VBS is formed by the majority states of Co at 0.8 eV below EF whereas for small
Fe concentrations a VBS occurs within the Fe minority band lying 0.5 eV above EF. In
the intermediate concentration regime these trends are conserved, i.e. the majority DOS
can be characterised by a sharp Co peak and much less localised Fe states while things
are reversed, although less strong, for the minority states. Following the concentration
dependence in Fig. 3.6 it becomes clear that the emerging VBS for low concentrations of
Fe and Co, respectively, is threefold degenerate and forms from the mℓ = 0 and mℓ = ±1
states. Moreover, alloying leads to a broadening of the Co minority states with mℓ = 0
character and thus to a considerable reduction of the DOS at the Fermi level.

Fig. 3.7 shows the total DOS for pure Fe and Co monolayers in comparison with
corresponding bulk fcc Fe and Co as well as standard bulk bcc Fe and hcp Co. In con-
junction with the band structures discussed above the densities of states for the Fe and
Co monolayers have very similar structural features with both exhibiting a pronounced
triple peak structure. In fact they seem to differ only in the exchange splitting. Due to
the reduced dimensionality the DOS of the monolayers is much sharper when compared
to the corresponding bulk densities of states. For the artificial bulk fcc structures with Pt
lattice constant one can see that the DOS of Fe and Co is still very similar whereas in the
bulk bcc Fe case one can see the well-known fact that Fe is a weak ferromagnet with the
majority spin band not completely filled.
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3.2 Magnetic Anisotropy Energy

In this section an analysis of the concentration dependent magnetic anisotropy energy
(MAE) for the free-standing fcc(111) Fe1−xCox monolayer is presented. In this context
only the magnetocrystalline part of the anisotropy ∆Esoc has been calculated using the
magnetic torque formula in Eq. (2.217).

The left panel of Fig. 3.8 shows ∆Esoc of the free-standing monolayer as function of the
Co concentration x. One can see that the pure Co monolayer has a large negative ∆Esoc,
i.e. in-plane anisotropy of 2.9 meV per atom, whereas the pure Fe monolayer has an out-of-
plane anisotropy of 0.6 meV. Similar to the orbital magnetic moments in Fig. 3.1 ∆Esoc also
exhibits a more complex dependence on x when compared to the spin magnetic moments.
Adding Co to a pure Fe monolayer leads first to a small increase in the anisotropy energy
reaching a shallow maximum of 0.8 meV around x = 0.3. Interestingly, further addition
of Co then causes a rapid reduction of ∆Esoc with a flip of the magnetisation from out-
of-plane to in-plane around x = 0.5. This fast decay then continues with rising x reaching
finally the large negative ∆Esoc of the pure Co monolayer.

In Fig. 3.8 one can also see the contributions to ∆Esoc coming from Fe and Co atoms,
respectively. The Fe atoms (red circles) have always positive ∆Esoc, i.e. out-of-plane
anisotropy with an almost constant value around 1 meV for x > 0.5. The Co contribution
to ∆Esoc (blue triangles) shows a similar concentration dependence as the total anisotropy
which is however always in-plane.

The comparison of the current ∆Esoc values with previous theoretical work is fairly
good. Here, the anisotropy results of Daalderop et al. [57] are shown by the dashed green
line in the left panel of Fig. 3.8. These were obtained as function of the band filling
for a free-standing fcc(111) Co monolayer with Pd lattice constant (aPd = 2.72 Å vs.
aPt = 2.77 Å). The studies of Daalderop et al. also revealed that for this system the
magnetic anisotropy energy changes only slowly with variation of the lattice parameter.
Thus a direct comparison with the current results obtained for a 2% larger lattice constant
seems to be justified. It is interesting to see that the calculations done by Daalderop et
al., which neglected any changes in the electronic band structure due to alloying, concur
very well with the present ∆Esoc values for a large concentration range. For the Fe rich
monolayers, however, the effects of alterations in the band structure on ∆Esoc become more
pronounced resulting in larger deviations for small x. Burkert et al. [58] have also reported
large MAE values of about 0.8 meV per atom at x = 0.6 for tetragonally distorted bulk bcc
Fe1−xCox. However, their results based on the virtual crystal approximation (VCA) could
not be reproduced by the author when applying the coherent potential approximation
(CPA) to this system.

The right panel of Fig. 3.8 shows the corresponding concentration dependence of the
anisotropy in the orbital magnetic moment ∆µorb = µzorb − µxorb. This quantity is closely
related to the magnetic anisotropy energy via Bruno’s formula [59, 60]:

∆Esoc =
ξ

4
∆µorb , (3.1)

where ξ is the so-called spin-orbit coupling parameter being approximately 50 meV for
Fe and 85 meV for Co, respectively. One can see that ∆µorb for Fe and Co individually
as well as for their weighted average correspond rather well to the ∆Esoc curves of the
left panel. However, the direct proportionality between the two quantities cannot be
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Figure 3.8: Magnetic anisotropy energy for the free-standing Fe1−xCox monolayer as a
function of the Co concentration (left panel) and the corresponding change in the orbital
magnetic moment ∆µorb = µzorb − µxorb (right panel). The Fe and Co contributions are
given by the red circles and blue triangles, respectively. The dashed green line in the left
panel shows theoretical data of Daalderop et al. [57].

confirmed. Surprisingly, for the pure Fe monolayer the Bruno model fails as there is a
considerable out-of-plane anisotropy of 0.6 meV whereas µorb shows an almost isotropic
behaviour. This is essentially due to the fact that the approximations made by Bruno
assume a full occupation of the majority spin states and neglect the contributions coming
from the spin-off-diagonal matrix elements of the SOC operator σ · l. Van der Laan [61]
has given a more detailed derivation and discussion of the perturbative expansion of ∆Esoc

in ξ up to second order and demonstrated that a decomposition of ∆µorb into spin up and
spin down contributions becomes important when the majority states are not completely
filled. Furthermore, he also accounted for the spin-off-diagonal contributions of the SOC
operator that can be ascribed to a magnetic dipole term so that ∆Esoc can be expressed
as

∆Esoc =
ξ

4

(
∆µ↓orb −∆µ↑orb

)
− ξ2

∆E

(
∆a↑↓ +∆a↓↑

)
(3.2)

where a↑↓ and a↓↑ are the corresponding off-diagonal matrix elements of the operator σ · l
and ∆E is the energy difference between the spin-orbit coupled occupied and unoccupied
states, respectively. That the spin-orbit induced coupling between states of different spin
can have a non-negligible impact on the MAE has also been stressed previously by Wang
and Freeman et al. [62].

A calculational scheme which allows for a decomposition of σ · l into spin-diagonal (zz)
and spin-off-diagonal (xy) terms

ζ̂ = K − 1 = σ · l = σzlz + (σxlx + σyly) = ζ̂zz + ζ̂xy (3.3)

has been suggested by Ebert et al. [63] giving access to ∆Ezz
soc and ∆Exy

soc, respectively.
Table 3.1 shows the results for the Bruno model, the orbital part of the van der Laan model
and the decomposition scheme of Ebert for Fe and Co monolayers. As the Bruno model
accounts only for the contributions to the MAE coming from the minority states it can
only give qualitatively correct predictions for systems where this ∆µorb term is dominant
as for example in the case for the Co monolayer. For the Fe monolayer, however, the
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n̂ µorb µ↓orb µ↑orb ξ ∆Eµorb
soc ∆E

µ↓↑
orb

soc ∆Ezz
soc ∆Exy

soc ∆Esoc

ẑ 0.1283 0.1398 -0.0115
Fe

x̂ 0.1275 0.1331 -0.0056
50 0.01 0.16 0.28 0.24 0.58

ẑ 0.1672 0.1796 -0.0124
Co

x̂ 0.3589 0.3644 -0.0056
85 -4.07 -3.78 -3.54 0.53 -2.88

Table 3.1: Spin-resolved orbital magnetic moments and magnetic anisotropy energies for

free-standing Fe and Co monolayers: ∆Eµorb
soc and ∆E

µ↓↑
orb

soc correspond to the anisotropy
constants derived from the Bruno model and the first term of the van der Laan model in
Eq. (3.2), respectively. ∆Ezz

soc and ∆Exy
soc have been obtained by decomposing σ · l into

spin-diagonal (zz) and spin-off-diagonal (xy) contributions in spin-orbit coupling. The
last column gives ∆Esoc when the full Dirac equation is applied. All energies are given in
meV. The unit for the orbital magnetic moments is µB.

Bruno model is not sufficient. Here, the inclusion of the majority spin contribution as
done by the first term of the van der Laan formula in Eq. (3.2) gives already a major
improvement in the description of the MAE for Fe and Co when compared to ∆Ezz

soc. One
should mention that the decomposition scheme includes also some approximations so that
one cannot expect the sum of ∆Ezz

soc and ∆Exy
soc to give exactly ∆Esoc calculated via the

full Dirac equation. Nevertheless, the results in Table 3.1 underline the importance of
taking the spin-off-diagonal matrix elements of σ · l into account.

Explaining the trends in the magnetic anisotropy energy for the Fe1−xCox monolayer
with the changes in the underlying electronic structure is obviously much more demanding.
As the ∆Esoc values are so small in comparison to the total energies it is in general rather
difficult to derive the occurring trends in the anisotropy from modifications in the local
DOS when the direction of the magnetisation is changed. For some systems, however,
considerable deformations of the Fermi surface occur upon rotating the magnetisation
which allows for some qualitative assessments with respect to the resulting ∆Esoc. One
should note that the perturbative schemes of Bruno and van der Laan neglect such changes
at the Fermi level and also Freeman et al. [64, 65] have neglected them explicitly in
their ab initio approach by applying their so-called state tracking method. It has been
argued by several authors, however, that the spin-orbit induced splittings at the Fermi
surface can play an important role for the correct qualitative description of magnetic
anisotropies [66, 67, 68] and the state tracking method should in general lead to unreliable
results.

Understanding how spin-orbit coupling affects the electronic band structure upon
changing the magnetisation direction will give the necessary qualitative insights into the
origin of the magnetic anisotropy energy. Fig. 3.9 presents fully relativistic band structures
along Γ̄-K̄-M̄-Γ̄ for the minority d-states of the pure Fe and Co as well as the Fe0.72Co0.28
monolayer. The left and right columns display the energy bands for out-of-plane and in-
plane magnetisation, respectively. For Fe and Co the SOC induced splittings are clearly
visible. As these band splittings depend on the magnetisation direction, so does the total
energy. With an in-plane magnetisation direction for instance the bands with |mℓ| = 1
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Figure 3.9: Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the two-
dimensional Brillouin zone for the minority spin d-states of a Fe (top), Fe0.72Co0.28 (middle)
and Co (bottom) monolayers. The left and right column shows the band structure for out-
of-plane and in-plane magnetisation, respectively. The symmetry character of the d-states
at the Γ̄ point is indicated in-between the panels: ⋆ (xy,x2 − y2), � (z2) and � (xz,yz).
The insets of the bottom panels show a magnification the SOC splittings occurring at the
accidental degeneracies along Γ̄-K̄ for Co.
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Figure 3.10: Fermi surfaces for the minority spin d-states of a Fe (top), Fe0.72Co0.28
(middle) and Co (bottom) monolayers. The left and right column shows the Fermi surfaces
for out-of-plane and in-plane magnetisation, respectively.
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as well as |mℓ| = 2 are degenerate in Γ̄ and K̄. With an out-of-plane magnetisation, on
the other hand, these degeneracies are lifted by SOC leading especially around Γ̄ to a
shift of the electronic states which is in the order of ξmℓ. Moreover there are many other
occurring degeneracies among energy bands of different orbital and also spin character in
low-symmetry regions of the 2D Brillouin zone. Depending on the SOC selection rules
which have been outlined by Daalderop et al. [57] such degeneracies may be lifted for one
or another direction of the magnetisation.

Such particular SOC split energy band regions have certainly a large impact on the
total energy when they are located directly or close to EF where they cause the above
mentioned deformations of the Fermi surface. In order to make this effect more visible
Fig. 3.10 shows the corresponding Fermi surfaces of the Fe, Co and Fe0.72Co0.28 monolayers
for out-of-plane and in-plane magnetisation, respectively.

One should bear in mind however, that in addition to these major SOC induced split-
tings all electronic states may be shifted by the order of 0.1 to 1.0 meV when the magneti-
sation is changed from one direction to another. This global effect (not visible in Fig. 3.9)
makes it in general very challenging to draw qualitative conclusion about the sign of ∆Esoc

from electronic band structures if no Fermi surface deformations are present.

Looking first at the Co band structure one can clearly identify the SOC induced band
splitting at Γ̄ and K̄ and also many other points of lower symmetry. When the magnetisa-
tion vector M lies in-plane the d-bands with orbital momentum character |mℓ| = 1 as well
as |mℓ| = 2 are degenerate in Γ̄ and K̄ whereas this degeneracy is lifted whenM is pointing
out-of-plane. The faint lines in both diagrams correspond to hybridisations with bands
of majority spin character due to the relativistic description of the electronic structure,
i.e. due to spin-mixing caused by SOC. At the crossings between majority and minority
bands where this effect is much more pronounced its dependence on the direction of M
can be observed. Of crucial importance with respect to the magnetic anisotropy of the Co
monolayer is the degeneracy between the |mℓ| = 1 band and the mℓ = 0 band lying in the
region between Γ̄ and K̄ and being close to EF. The insets within both diagrams for Co
show a magnification of this situation and one can see that in this region the SOC induced
splitting pushes the electronic states below the Fermi level when M points in-plane and
thus causing a pronounced lowering in energy. The corresponding Fermi surfaces for the
Co monolayer in the bottom row of Fig. 3.10 reveal the magnitude of this deformation
within the 2D Brillouin zone. In fact the strong in-plane MAE of the Co monolayer can be
ascribed to these large changes in the Fermi surface upon rotation of the magnetisation.

The consecutive addition of Fe to a pure Co monolayer has then several effects on the
band structure. Firstly, upon alloy formation the Bloch theorem does not hold anymore
resulting in electronic states with finite life time and thus to a broadening of the energy
bands. Secondly, there is a continuous increase in exchange splitting as well as band width
when going from Co to Fe and thirdly, as the effective atomic number decreases the filling
of the energy bands is reduced leading to the fact that other SOC split degeneracies can
come close to the Fermi energy where their impact on the MAE becomes much larger.

The middle panels of Fig. 3.9 show the magnetisation dependence of the Bloch spectral
function for the monolayer having a composition of Fe0.72Co0.28 and which has a maximum
out-of-plane MAE of 0.8 meV. One can clearly see the above mentioned changes when
compared to the band structure of the pure Co monolayer. Most characteristic for this
system is that the degeneracies of the |mℓ| = 2 bands around the Γ̄ point are now located
directly at EF. This leads to a decrease in energy when M lies along the surface normal,
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i.e. out-of-plane. The two-dimensional Fermi surfaces for both magnetisation directions are
shown in the middle row of Fig. 3.10. One can recognise the changes in the electronic states
in the circular region around Γ̄. One should notice however, that due to the broadening
of the bands the effect of SOC is reduced when compared to cases with pure systems
having sharp energy bands. On the other hand it may be possible to tune the electronic
structure of pure systems by changing for instance the lattice parameter so that SOC split
degeneracies are coming close to EF and thus maximising the impact of SOC on the MAE.

Finally, for the pure Fe monolayer (top row of Fig. 3.9) no SOC split degeneracies
close to EF and thus no noticeable contribution of changes in the band structure can be
observed. In this case one cannot explain the obtained MAE in terms of Fermi surface
deformations.

3.3 Summary and Conclusions

In summary, the spin magnetic moments of the free-standing Fe1−xCox monolayer shows
a linear dependence on x with µspin = 3.0 µB for x = 0 and µspin = 2.0 µB for x = 1.
This result is qualitatively different from the Slater-Pauling curve known for standard
bulk bcc Fe1−xCox. The orbital magnetic moment on the other hand, shows a clear and
characteristic maximum around x = 0.3 which coincides with the maximum in out-of-plane
MAE of 0.8 meV per monolayer atom. In contrast to the orbital moment the MAE shows a
strong concentration dependence with 0.6 meV for x = 0 and −2.9 meV for x = 1 resulting
in an out-of-plane and in-plane magnetic easy axis for pure Fe and Co, respectively. It
has been demonstrated that the large in-plane MAE for the pure Co monolayer as well as
the local maximum for Fe0.72Co0.28 are the result of the Fermi level crossing of degenerate
spin-orbit coupled 3d-states.



Chapter 4

The Fe1−xCox Monolayer on the
Pt(111) Surface

After discussing the magnetic properties of the free-standing Fe1−xCox monolayer in the
previous chapter it will now be investigated how these properties change when the mono-
layer is deposited on a Pt(111) surface. In this theoretical investigation it is assumed
that the Fe and Co atoms occupy ideal lattice sites of the underlying Pt lattice, i.e. the
interlayer distance between Fe1−xCox and Pt is not relaxed which is at variance with
corresponding experiments. It will be shown that the magnetic moments of Fe and Co
are not very sensitive with respect to deposition on Pt(111) while the magnetic anisotropy
energy changes in a qualitative way. The obtained theoretical results are compared with
the data of a recently published experimental and theoretical study of this system which
was done by Moulas et al. [69]. Finally, the results of Fe1−xCox on Pt(111) are also
compared to the case where Fe1−xCox is deposited on Au(111), with Au being much less
polarisable than Pt.

4.1 Magnetic Moments and Electronic Structure

Deposition of Fe1−xCox monolayers on a Pt(111) surface results in a charge transfer of
about 0.2 electrons from Pt to the alloy layer which has a subtle effect on the magnetic
moments of Fe and Co. Fig. 4.1 presents a comparison of the µspin values for the Pt(111)
supported (left panel) and Fe1−xCox free-standing (right panel) monolayer, respectively.
One can see that µspin as function of the Co concentration x behaves the same in both cases
and the increase in coordination due to deposition reduces the Fe and Co spin magnetic
moments by about 0.05 µB. Moreover, there is also a considerable spin polarisation within
the Pt substrate atoms. The open squares in the left panel of Fig. 4.1 show that the total
spin magnetic moments, i.e. µspin of the Fe1−xCox monolayer together with the induced
µspin in Pt, is even larger when compared to the free-standing case.

The comparison between Pt(111) supported and free-standing case for the correspon-
ding orbital magnetic moments is shown in Fig. 4.2. As the orbital magnetic moments
are much more sensitive with respect to modifications in coordination the relative changes
in µorb are expected to be more pronounced than the changes in µspin. Surprisingly, for
the pure Fe monolayer the decrease in µorb upon deposition on the Pt(111) surface is only
8 %. For the pure Co as well as for the Fe and Co atoms in the alloy monolayer this effect

57
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Figure 4.1: Spin magnetic moments as a function of the Co concentration for the FexCo1−x

monolayer deposited on a Pt(111) substrate (left panel) in comparison with the free-
standing case (right panel).

on µorb is much stronger resulting in a reduction of about 25 % when compared to µorb of
the respective free-standing monolayer.

Interestingly, apart from its reduction the concentration dependence of µorb and espe-
cially the maximum around x = 0.25 remains unchanged when the Fe1−xCox monolayer
is deposited on the Pt(111) substrate. Also shown in the left panel of Fig. 4.2 is the total
orbital magnetic moment (open squares), i.e. the µorb located at Fe and Co together with
µorb localised within the Pt substrate atoms. The total orbital moment increases linearly
with increasing x between pure Fe and x = 0.25, whereas it is almost constant for x > 0.25.

The concentration dependence of the induced spin and orbital magnetic moments
within the Pt atoms of the first three substrate layers are presented in the left- and right
hand side panels of Fig. 4.3, respectively. Within the first Pt substrate layer µspin shows
a small variation with the Co concentration from 0.17 µB for Fe to 0.19 µB for Co. For
the µspin values of the second Pt layer there is a stronger linear dependence on x (0.02 µB
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Figure 4.2: Orbital magnetic moments as a function of the Co concentration for the
FexCo1−x monolayer deposited on a Pt(111) substrate (left panel) in comparison with the
free-standing case (right panel).
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Figure 4.3: Induced magnetic moments within Pt for a FexCo1−x monolayer deposited on
Pt(111): spin magnetic moments (left panel) and orbital magnetic moments (right panel)
as a function of the Co concentration.

for Fe and 0.08 µB for Co) although the absolute values of the induced spin moments are
much smaller than for the first Pt substrate layer. This fast decay of the induced spin
polarisation continues with increasing depth of the Pt atoms. For the third Pt layer the
spin magnetic moments are already very small with the subsequent Pt layers having µspin
values of the order of 10−3 µB or below. While the spin magnetic moments of the first
two Pt substrate layers couple always ferromagnetically to the magnetic moments of the
Fe1−xCox monolayer an occasional antiparallel coupling is observed for the tiny moments
of the deeper lying Pt atoms.

Due to the strong spin-orbit coupling in Pt the SOC induced orbital magnetic moments
reach about 25% of the corresponding µspin values. The trends of µorb with respect to Pt
layer depth as well as Co concentration dependence concur with the trends of the spin
magnetic moments. For the very small magnetic moments in the third substrate layer or
below an antiparallel alignment of µspin and µorb is observed on the Co-rich side.

Fig. 4.4 shows the spin-projected electronic band structure of the Fe and Co sites for
Fe/Pt(111) and Co/Pt(111), respectively. The large grey-shaded areas represent surface
projected Pt bulk states which decay into the Fe and Co overlayers and the adjacent
vacuum region. The sharp black lines within the band gaps of the Pt bulk states depict
surface states, i.e. electronic states that are localised in the Fe and Co surface layers and
which hybridise with the Pt bulk states in many regions of the two-dimensional Brillouin
zone forming so-called surface resonances (thick black lines). As one can see in the left
panels of Fig. 4.4 the majority spin states of the deposited Fe and Co monolayers hybridise
strongly with the states of the Pt substrate. Thus, the majority spin band structure of
the corresponding free-standing monolayers shown in Fig. 3.3 changes completely upon
deposition on the Pt(111) surface. For the minority states, however, the interaction with
the Pt states is less strong so that many characteristic band structure features of the
free-standing Fe and Co monolayers remain.

In Fig. 4.5 the corresponding spin-projected band structure of the atomic Pt layer below
Fe and Co is presented and which can be compared to the analogous band structure of the
pure Pt(111) surface in Fig. 4.6. In the case of Fe/Pt(111) and Co/Pt(111) the Pt states
are clearly spin polarised while for the pure Pt substrate there are only subtle differences
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Figure 4.4: Bloch spectral function along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the two-
dimensional Brillouin zone for the Fe and Co sites in Fe/Pt(111) (top) and Co/Pt(111)
(bottom). The left and right columns show the band structure for majority and minority
states, respectively. The Fermi energy is indicated by the dashed lines.
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Figure 4.5: Bloch spectral function along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the two-
dimensional Brillouin zone for the Pt sites below Fe and Co in Fe/Pt(111) (top) and
Co/Pt(111) (bottom). The left and right columns show the band structure for majority
and minority states, respectively. The Fermi energy is indicated by the dashed lines.
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Figure 4.6: Relativistic Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄
of the two-dimensional Brillouin zone for the topmost Pt layer sites of a clean Pt(111)
surface. The left and right columns show the band structure for majority and minority
states, respectively. The Fermi energy is indicated by the dashed horizontal lines. Due
to the Rashba effect (see footnote) the nonmagnetic clean Pt(111) surface has a different
band structure for the two spin channels. Replacing k with −k gives the same figures but
with both spin channels interchanged, i.e. integration over the full Brillouin zone results
in zero spin polarisation.

between both spin channels which can be ascribed to the strong SOC interactions within
Pt in combination with the broken inversion symmetry†.

For the Fe1−xCox alloy monolayer the changes in the electronic structure upon depo-
sition on a Pt(111) surface are very similar when compared to the case of pure Fe and
Co, i.e. the majority d-states hybridise strongly with Pt while the shape of the minority
energy bands still resembles the energy bands of the respective free-standing monolayer.

This fact is also reflected in the orbital resolved DOS for the 3d-states of Fe and Co
shown in Fig. 4.7 for Fe1−xCox/Pt(111). In comparison with the orbital resolved DOS of
the corresponding free-standing monolayer in Fig. 3.6 one can see that the out-of-plane dz2
orbitals (mℓ = 0) have now a similar bandwidth as the states with |mℓ| = 1 and |mℓ| = 2
orbital character. This is caused by the strong 3d-5d orbital overlap between Fe/Co and
Pt. In line with what has been discussed for the band structures above, Fig. 4.7 shows a
much larger bandwidth for the majority spin states (indicated by the dashed lines) when
compared to the free-standing Fe1−xCox monolayer.

†These spin-splittings at zero magnetic field are called Rashba [70] or Dresselhaus [71] type effects
caused by the motion of electrons within an inversion asymmetric potential in combination with SOC
which can result in a lifting of spin degeneracy
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Figure 4.7: Orbital and element resolved density of states (DOS) as function of the Co
concentration x for the Pt(111) deposited Fe1−xCox monolayer: averaged DOS (left col-
umn) together with the Fe (middle column) and Co (right column) contributions. The
dashed and full lines denote majority and minority states, respectively, with mℓ = −1
(red), mℓ=+1 (green), mℓ=−2 (blue), mℓ=+2 (yellow) and mℓ=0 (black).
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4.2 Magnetic Anisotropy Energy

The changes in the electronic structure that occur for the Fe1−xCox monolayer upon
deposition on Pt(111) have of course a large impact on the magnetic anisotropy ener-
gies. This can be seen in Fig. 4.8 where the concentration dependence of the MAE for
Fe1−xCox/Pt(111) is shown and compared with the free-standing case. The left panel of
Fig. 4.8 depicts ∆Esoc as function of x for the deposited alloy monolayer and the MAE
is decomposed into contributions coming from the alloy layer and the first Pt substrate
layer. The MAE contribution of the other subjacent Pt layers is very small (in the order
of 10−3 meV per atom) and thus negligible for the following discussion.

Interestingly, the pure Fe and Co monolayer both alter their magnetic easy axis upon
deposition on Pt(111). For the Fe monolayer ∆Esoc changes from 0.6 meV to −0.07 meV,
i.e. preferring an in-plane direction of the magnetisation. In the case of Co the situation
is reversed. Here, the strong in-plane ∆Esoc value of −2.9 meV for the free-standing
Co monolayer is changed to a stable out-of-plane MAE of 0.4 meV per Co atom for Co
on Pt(111). Starting from pure Fe, ∆Esoc exhibits a steep increase with increasing x
reaching the maximum value of 0.7 meV per atom for x = 0.25. Further addition of Co
then continuously reduces the magnetic anisotropy energy to the value of the pure Co
monolayer passing through a shallow minimum at x = 0.8.

The decomposition of ∆Esoc into Fe1−xCox and Pt contributions reveals that its char-
acteristic concentration dependence originates from the alloy monolayer while the Pt con-
tribution depends only weakly on x showing always positive ∆Esoc values. In fact the
concentration dependence of the MAE ascribed to the first atomic layer of Pt correlates
with the variation of the induced magnetic moments shown in Fig. 4.3.

The left panel of Fig. 4.9 shows a further decomposition of the Fe1−xCox contribution
to the magnetic anisotropy energy into its Fe and Co parts, respectively. The right panel
of Fig. 4.9 depicts the corresponding data for the change in the orbital magnetic moments
∆µorb. As in the case of the free-standing Fe1−xCox monolayer (see Fig. 3.8) the relation
between ∆Esoc and ∆µorb established by the Bruno and van der Laan models has only a
limited validity. Application of the van der Laan formula Eq. (3.2) gives 0.44 meV and
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Figure 4.8: Magnetic anisotropy energy per surface atom for FexCo1−x on Pt(111) as
function of the Co concentration (left). The total MAE is decomposed into contributions
from the FexCo1−x alloy layer and first Pt layer. The right panel shows for comparison
the corresponding data for the free-standing monolayer (see Fig. 3.8).
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0.42 meV for the Fe and Co contribution to the MAE in Fe/Pt(111) and Co/Pt(111),
respectively, predicting the wrong sign in ∆Esoc for Fe. While in the free-standing case a
qualitative agreement could be achieved by using this approach one can see that it fails now
completely in the case of Fe. Although ∆µorb shows the same pronounced maximum as
∆Esoc at x = 0.25 one should thus be careful with the relation between the two quantities.
The occurring discrepancies are not astonishing as Bruno and van der Laan derived their
models for pure 3d transition metal systems and due to the strong spin-orbit coupling in
Pt which is at the order of 0.5 eV a perturbative treatment of SOC as done by the above
mentioned authors is not justified anymore.

An inspection of the occurring differences within the electronic band structures upon
changing the magnetisation can give some qualitative insight into the mechanisms at work
concerning the magnetic anisotropy energy. Fig. 4.10 shows the Bloch spectral functions
along Γ̄-K̄-M̄-Γ̄ for pure Fe (top row) and Co (bottom row) as well as Fe0.75Co0.25 for out-
of-plane (left column) and in-plane (right column) magnetisations, respectively. In the
same way as it has been shown for the corresponding free-standing monolayer in Fig. 3.9
one can clearly see the occurring band splittings which are caused by spin-orbit coupling
when the direction of the magnetisation is changed. Like this, the maximum in ∆Esoc

which remains at x = 0.25 is caused by the Fermi level crossing of SOC split states with
orbital character |mℓ| = 2 around Γ̄. This situation is still clearly visible in the middle
row of Fig. 4.10 albeit that the energy bands of the alloy monolayer are now even more
diffuse due to hybridisation with Pt states.

For the pure Co monolayer one can see that the SOC split degeneracy at ǫF between Γ̄
and K̄ causing the large negative ∆Esoc value of −2.9 meV in the free-standing case (see
Fig. 3.9), has vanished as the dz2-orbitals (mℓ = 0) are now participating in the bonding
with the subjacent Pt atoms leading to band splittings and shifts in energy. Thus, the
reason for the strong in-plane MAE in case of the pure Co monolayer is removed by depo-
sition on Pt(111). However, a straightforward qualitative conclusion about the magnetic
easy axis in terms of a band structure analysis does not seem possible for pure Fe and
Co monolayers on Pt(111) as for these systems there are also considerable modifications
in the energy bands below ǫF when the magnetisation is changed from in-plane to out-of-
plane. This indicates that in such cases the magnetic anisotropy energy is not dominated
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Figure 4.10: Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the
two-dimensional Brillouin zone for the minority spin states of an Fe (top), Fe0.75Co0.25
(middle) and Co (bottom) monolayer deposited on Pt(111). The left and right columns
show the band structure for out-of-plane and in-plane magnetisation, respectively.
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Figure 4.11: Left: ∆Esoc for the Fe1−xCox monolayer deposited on Pt(111) with results
obtained from fully relativistic self-consistent calculations (full circles) compared to results
where a scalar relativistic self-consistency scheme was applied (diamonds). The squares
show the theoretical (without lattice relaxation) results of Ref. [69]. Right: fully relativistic
self-consistent ∆Esoc together with ∆Esh as well as the total MAE ∆E. The triangles
show the experimental results of Ref. [69].

exclusively by energy band deformations at the Fermi level (see Fig. 4.16 and discussion
below).

The left panel of Fig. 4.11 shows a comparison between the present MAE results and
the recently published theoretical data of Moulas et al. [69]. Although these authors used
nearly the same computational KKR scheme with almost identical computational param-
eters their results of the magnetic anisotropy energy as function of the Co concentration
x shows a considerable deviation for small x. For the pure Fe monolayer they predict
an in-plane MAE of −0.71 meV while in the present theoretical study only a very weak
in-plane MAE of -0.07 meV has been obtained. The main differences in the computa-
tional parameters are that Moulas et al. calculated the self-consistent potentials and the
corresponding Fermi energy in a scalar relativistic approach using a rather low number of
k-points (80 k-points vs. 1717 k-points used in this study for the irreducible part of the
two-dimensional Brillouin zone). The MAE was then obtained from the difference of the
single particle energies. This however, gives usually identical results as the application of
the torque formula in Eq. (2.217), which has been checked for many cases by the author
in trying to find the reasons for the occurring deviations. Performing the calculations
the same way as done by Moulas et al., i.e. performing the self-consistency procedure in
a scalar relativistic way, does indeed have an influence on the MAE. This is shown by
the diamonds in Fig. 4.11 showing a very similar ∆Esoc variation with changing x as the
results of Moulas et al. depicted by the squares. The two scalar relativistic curves are
just shifted with respect to each other by a constant off-set and the reason for this is the
different contribution of the Pt substrate. This example demonstrates that the magnetic
anisotropy energy is a rather delicate quantity which can depend strongly on the applied
calculational scheme as well as the chosen parameters.

The right panel of Fig. 4.11 shows in addition also the magnetic shape anisotropy
energy ∆Esh calculated on the basis of Eq. (2.180) as well as the total MAE ∆E. One can
see that ∆Esh always gives an in-plane contribution to the MAE varying almost linearly
between -0.19 meV for x = 0 and -0.09 meV for x = 1. Thus, for Fe/Pt(111) ∆Esh turns
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out to be the dominating contribution. The experimental MAE values of Moulas et al.
are also shown in the right panel Fig. 4.11 indicated by the triangles. These were obtained
from XMCD measurements performed on monolayer high granular Fe1−xCox films on a
Pt(111) substrate. The increase in ∆Esoc for the alloy is also seen in experiment but the
position of the maximum is located around x = 0.5.

4.3 Comparison with Fe1−xCox on Au(111)

In order to demonstrate the sensitivity of the magnetic properties with respect to a different
substrate a corresponding study has been done for the Au(111) surface. Au (a = 4.08 Å)
has a four percent larger lattice constant than Pt (a = 3.92 Å) and the 5d-electrons of Au
are more contracted and low-lying in energy resulting in a much smaller density of states
at the Fermi level when compared to Pt. Fig. 4.12 shows the spin (left panel) and orbital
(right panel) magnetic moments of the Fe1−xCox monolayer when placed on a Au(111)
substrate. Also in this case, the concentration dependence of µspin for Fe and Co as well
as the absolute µspin values are almost identical when compared to Fe1−xCox on Pt(111)
or the corresponding free-standing case. Due to the small orbital overlap between the 3d-
states of Fe and Co with the 5d-states of Au the interaction between alloy monolayer and
Au(111) substrate is rather small leading to induced spin magnetic moments in the first
atomic Au layer that are one order of magnitude smaller when compared to the induced
spin moments in Pt (see Fig. 4.1). Moreover, the induced spin magnetic moments in Au
are aligned antiparallel with respect to the magnetic moments in Fe and Co.

The weak interaction between Fe1−xCox monolayer and Au(111) substrate leave also
the orbital magnetic moments almost unchanged when compared to the free-standing
Fe1−xCox monolayer with Pt lattice constant. For the pure Fe monolayer an even slightly
increased µorb value has been found while the characteristic maximum in µorb remains
around x = 0.25.

More interesting is the comparison of the magnetic anisotropy energy with the pre-
viously discussed trends observed for the free-standing case and for the deposition on
Pt(111). Fig. 4.13 shows ∆Esoc as function of the Co concentration x for the FexCo1−x
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Figure 4.12: Magnetic moments for the Fe1−xCox monolayer deposited on Au(111): spin
moments (left panel) and orbital moments (right panel) as a function of the Co concen-
tration.
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Figure 4.13: Magnetic anisotropy energy for the Au(111) supported FexCo1−x monolayer
as a function of the Co concentration. Left: ∆Esoc and its decomposition into contributions
from FeCo alloy layer and first Au layer. Right: ∆µorb of the FexCo1−x alloy layer and its
decomposition into Fe and Co contributions.

monolayer on Au(111) (left panel) together with the corresponding ∆µorb data (right
panel). One can see the ∆Esoc curve in Fig. 4.13 still resembles the ∆Esoc curve of the
free-standing FexCo1−x monolayer in the right panel of Fig. 4.8 but it is shifted upwards.
For the pure Fe monolayer the out-of-plane MAE is increased to 1.27 meV per Fe atom and
for the pure Co monolayer the previously strong in-plane MAE is reduced to −1.23 meV
per Co atom when compared to the free-standing case. The maximum in ∆Esoc is located
at x = 0.2 having the very large value of 1.63 meV per surface atom. Surprisingly, the
previously mentioned Bruno and van der Laan models predict now the correct qualitative
trends over the whole concentration range.

In conjunction with the small induced magnetic moments in the first Au(111) substrate
layer its contribution to the total MAE is negligible which is quite different when compared
to the MAE contribution of the polarised Pt(111) substrate where the MAE that originates
from the Pt atoms can be of the same order of magnitude as the contribution coming from
the atoms of the alloy monolayer.

An inspection of the Bloch spectral functions for in-plane and out-of-plane magneti-
sation directions, respectively, again reveals some aspects of the electronic origin of the
magnetic anisotropy energy. Fig. 4.14 presents the Bloch spectral functions within the
two-dimensional Brillouin zone along Γ̄-K̄-M̄-Γ̄ for the minority spin states of the pure
Fe (top) and Co (bottom) as well as the Fe0.75Co0.25 monolayer (middle) deposited on
Au(111). In comparison with the corresponding band structures of the same monolayers
on the Pt(111) surface shown in Fig. 4.10 one can see that the hybridisation between the
electronic states localised within the FexCo1−x alloy layer and the Au bulk states (grey
shaded areas) is much weaker when compared to the Pt(111) substrate. Especially, around
Γ̄ there is no DOS at ǫF making the impact of the above mentioned spin-orbit induced
band splittings more pronounced in the case of Fe0.75Co0.25. Furthermore, there is also a
SOC split energy band close to the Fermi level between K̄ and M̄ (indicated by the red
circles) in the case of the pure Fe monolayer on Au(111) giving an additional out-of-plane
contribution to the magnetic anisotropy energy. For the pure Co monolayer the prevailing
in-plane MAE is a result of the weak hybridisation of the Co energy bands with the Au
bulk states between Γ̄ and K̄ leaving the SOC split energy states at ǫF and thus their
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Figure 4.14: Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the
two-dimensional Brillouin zone for the minority spin states of an Fe (top), Fe0.75Co0.25
(middle) and Co (bottom) monolayer deposited on Au(111). The left and right columns
show the band structure for out-of-plane and in-plane magnetisation, respectively.
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M along ẑ M along x̂

E
n
er
gy

(e
V
)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

0

20

40

60

80

100

120

140

ar
b
.
u
n
it
s

Γ̄ K̄ M̄ Γ̄ Γ̄ K̄ M̄ Γ̄

Co/Au(111)

Figure 4.15: Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the
two-dimensional Brillouin zone for the majority spin states of an Fe (top), Co (bottom)
monolayer deposited on Au(111). The left and right columns show the band structure for
out-of-plane and in-plane magnetisation, respectively.
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Figure 4.16: Bloch spectral functions along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the
two-dimensional Brillouin zone for the majority spin states of an Fe (top), Co (bottom)
monolayer deposited on Pt(111). The left and right columns show the band structure for
out-of-plane and in-plane magnetisation, respectively.
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in-plane contribution to the MAE partially intact. However, the in-plane MAE is much
reduced when compared to the free-standing Co monolayer.

It should be stressed once more that such a qualitative analysis of the electronic band
structure and its implications with respect to the magnetic anisotropy energy may not
be conclusive in all cases of surface deposited magnetic monolayers. Also in the case of
FexCo1−x on Pt(111) and Au(111) the Bloch spectral functions and their modifications
with changing the magnetisation direction are much more complex when compared to
the corresponding free-standing monolayer. This concerns in particular the majority spin
states far below the Fermi level. Figs. 4.15 and 4.16 show the Bloch spectral functions
of the majority spin states and their dependence on the magnetisation direction for pure
Fe and Co monolayers deposited on Au(111) and Pt(111), respectively. As one can see,
there occur considerable changes in the hybridisation between the 3d-states of the magnetic
overlayers and the bulk states of the underlying substrate. Unfortunately, the contribution
of this effect to the MAE cannot be analysed in a straightforward manner not even in a
qualitative way.

4.4 Summary and Conclusions

The deposition of the previously discussed freestanding Fe1−xCox monolayer on a Pt(111)
surface has only a small effect on the spin magnetic moments of Fe and Co. The corres-
ponding orbital magnetic moments also exhibit the same qualitative behaviour as in the
free-standing case, however, µorb is much more reduced (by 8% for pure Fe and by 25%
for pure Co) upon deposition on Pt(111). There is also a considerable spin polarisation
in the Pt substrate which can reach up to 0.2 µB for Pt atoms interfacing the Fe1−xCox
layer. It is noteworthy that Co can induce larger magnetic moments in Pt than Fe, albeit
that the spin magnetic moment of Co with 1.9 µB is much smaller than the one of Fe
with 2.9 µB. The effect of Pt(111) deposition onto the magnetic anisotropy energy of the
Fe1−xCox monolayer is qualitative in nature. While in the free-standing case the pure Fe
and Co monolayers have out-of-plane and in-plane magnetic easy axis, respectively, this
trend is reversed in the case of Fe1−xCox/Pt(111). Only the position of maximum MAE at
x = 0.3 remains unchanged due to the fact that the responsible SOC splitting mechanism
for the 3d-states is retained.

In contrast to the Pt(111) substrate, the µspin and µorb of Fe1−xCox/Au(111) are almost
unchanged when compared to the free-standing case. The Au atoms show only a very small
induced spin polarisation that is orientated antiparallel with respect to the moments in the
Fe1−xCox alloy layer. The concentration dependence of the MAE for Fe1−xCox/Au(111)
also resemble the one for the corresponding free-standing monolayer, however, with a
constant upward shift of about 1 meV. An analysis of the Bloch spectral functions for
in-plane and out-of-plane magnetisation for Fe1−xCox/Pt(111) and Fe1−xCox/Au(111)
indicate that apart from Fermi level crossings of spin-orbit coupled 3d-states also changes
in the hybridisation between alloy layer and substrate can give large contributions to the
MAE.
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Chapter 5

Small Fe, Co and Ni Clusters on
Ir(111), Pt(111) and Au(111)

In this chapter an investigation of small (1-7 atoms) one monolayer high Fe, Co and
Ni clusters deposited on the (111) surfaces of Ir (a=3.84 Å), Pt (a=3.92 Å) and Au
(a=4.08 Å) is presented. The results have been partially published in collaboration with
Ondrej Šipr [72]. The magnetic properties of these clusters have been studied in detail
with focus on the systematic trends that occur in these systems. Therefore, all clusters
have been treated with the same numerical parameters. At first the element and size
specific variations of the cluster magnetic moments are analysed together with changes
in the respective electronic structure. This includes a discussion of the different cluster
substrate interactions. The second part of this chapter describes the mutual interactions,
i.e. the coupling between the individual magnetic moments located at different cluster
sites as well as the magnetic anisotropy energies in these systems. These considerations
show that for submonolayer magnetic structures with reduced symmetry a non-collinear
alignment of the magnetic moments will emerge.

5.1 Magnetic Moments and Electronic Structure

Calculated values of the local spin magnetic moments (µspin) for Fe clusters of 1-7 atoms
deposited on Ir(111), Pt(111) and Au(111) are displayed in Fig. 5.1. For identical Co and
Ni clusters the analogous data are presented in Figs. 5.2 and 5.3. The corresponding data
for the orbital magnetic moments (µorb) are shown in Figs. 5.4, 5.5 and 5.6. In addition,
these figures also show the induced magnetic moments of the respective substrate atoms
that are adjacent to cluster atoms. One can see that in some cases there are considerable
variations of µspin and µorb between the different sites of deposited clusters. The magnetic
moments depend not only on the position of the site with respect to other Fe, Co or
Ni atoms but also on its position with respect to the underlying substrate atoms. This
can be seen for example in the cross-shaped Fe5 clusters in Figs. 5.1 and 5.4. Sites
with a lower coordination number generally have larger µspin and µorb than sites with a
higher coordination number. Here, only Ni on Ir(111) seems to be an exception. Clusters
supported by Pt(111) have largest µspin when compared with Ir(111) and Au(111) while
the µorb values are increasing from Ir to Pt to Au.
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Figure 5.1: Local spin magnetic moments at Fe as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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Figure 5.2: Local spin magnetic moments at Co as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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Figure 5.3: Local spin magnetic moments at Ni as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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Figure 5.4: Local orbital magnetic moments at Fe as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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Figure 5.5: Local orbital magnetic moments at Co as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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Figure 5.6: Local orbital magnetic moments at Ni as well as substrate sites for clusters of 1-7 atoms supported by Ir(111), Pt(111)
and Au(111). Only those substrate atoms which are nearest neighbours of any cluster atom are shown.
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82 Chapter 5. Small Fe, Co and Ni Clusters

Of special interest are the single adatoms as their spin and orbital magnetic moments
can be easily compared to what is expected from Hund’s rules for the corresponding free
atoms of Fe, Co and Ni. Deposition of a free Fe atom onto the Pt substrate for instance
reduces its spin magnetic moment from 4 µB to 3.50 µB. For Co1 and Ni1 on Pt(111)
the change in µspin becomes more pronounced. While µspin is reduced from 3 µB to
2.27 µB for Co a 50% decrease in µspin is found for Ni1 (from 2 µB to 0.98 µB). This
increasing deviation from Hund’s first rule (maximise spin) with rising atomic number of
the magnetic adatom is caused by the accompanying contraction of the 3d-orbitals. This
leads to a disproportionate large increase in the occupation of minority 3d-states for the
adatoms while less charge is transferred to neighbouring substrate atoms and the vacuum
region. For Fe1, Co1 and Ni1 on Pt(111) for example 6.36, 7.53 and 8.68 3d-electrons are
found in the sphere of the respective adatom, i.e. the increment of 3d-electrons is always
larger than one electron when going from Fe to Co and from Co to Ni. As the majority
3d-states are almost fully occupied for all three elements the minority 3d-states are filled
up with the additional electrons leading to a faster decay of µspin with respect to the case
of the corresponding free atoms.

Concerning the trend of µspin for the three different substrates there are two competing
effects that must be considered. At first there is an increase in the lattice constant when
going from Ir (a=3.839 Å) to Pt (a=3.924 Å) to Au (a=4.0782 Å), i.e. as the deposited
atoms occupy ideal lattice sites their distance from the substrate is largest in the case
of Au. This means that the interaction between adatoms and substrate is also smallest
for Au and one would therefore expect to observe the largest µspin values for clusters
deposited on Au(111). On the other hand hybridisation of the electronic states between
adatoms and substrate atoms leads to a small charge transfer of minority 3d-electrons into
empty 5d-states of adjacent substrate atoms. This however, happens only for the spatially
extended 5d-states of Ir and Pt with their 5d-states having an appreciable energetic overlap
with the minority 3d-states of the adatoms. This can be clearly seen from the density of
states curves which are presented in Fig. 5.11. In contrast to this there is no interaction
between the adatom’s minority 3d-states with the energetically low-lying 5d-states of Au.
Moreover, the larger electronic interactions that occur for the Ir and Pt substrates lead
also to a more pronounced energetic lowering of the adatoms 4p states. This causes an
additional charge redistribution within the Fe, Co and Ni atoms, i.e. 4p states become
occupied at the cost of minority 3d-states. In this way Fe1 deposited on Pt(111) ends up
with about 0.1 electrons less in the minority 3d-orbitals and thus a slightly larger spin
magnetic moment when compared to the deposition on Au(111).

The orbital magnetic moments of Fe, Co and Ni atoms are much more reduced than
their spin magnetic moments by deposition onto a metallic substrate. This strong sen-
sitivity of µorb with respect to the surroundings is related to the partial or total lifting
of orbital degeneracies by breaking the spherical symmetry of the free atom. As a conse-
quence increasing the coordination of a magnetic atom leads to a ’quenching’ of its orbital
magnetic moment [73, 61]. Due to spin-orbit coupling on the other hand a finite µorb
survives even in dominantly itinerant spin magnetic systems like bcc Fe, hcp Co or fcc
Ni bulk. For the adatoms the largest values of µorb are obtained for deposition on the
Au(111) surface where hybridisation between adatom and substrate atoms is very small.
This can be seen from the corresponding density of states in the top row of Fig. 5.11 which
show very pronounced atomic-like features for Au(111) leading to an imperfect quenching
as well as an stronger SOC influence.
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There is a big difference between the induced magnetic moments in the Ir(111) and
Pt(111) substrates on the one hand and the Au(111) substrate on the other hand. Ir and
Pt atoms which are nearest neighbours of any Fe or Co atom have a relatively large µspin
of up to 0.15 µB, while corresponding Au atoms have always small negative µspin, not
larger than 0.03 µB in the absolute value. Substrate atoms with a larger number of Fe, Co
or Ni neighbours usually have a larger µspin than substrate atoms with a smaller number
of neighbouring cluster atoms. However, this is not a general rule as seen for the atoms
below the central atom of cross-shaped Fe5 and Co5 clusters on Ir(111) and Pt(111).

The orbital magnetic moments induced in the substrate atoms are always small: they
can reach up to 0.03 µB for Fe and Co on Pt(111) while being smaller than 0.007 µB for
Ir(111) and smaller than 0.004 µB for Au(111). Except for the Au(111) substrate atoms
µorb is found to be always parallel with µspin. The finding that Pt is the most polarisable
of the three elements and that Ir is more polarisable than Au is consistent with earlier
theoretical [74, 75] and experimental works [76, 77, 78, 79]. The high spin polarisability
of Pt can be ascribed to its high spin susceptibility that in turn is caused by its relatively
large density of states at the Fermi level.

By plotting the local magnetic moments as a function of the coordination number
one can visualise the site-dependence of µspin and µorb. Such a graph is shown for µspin
of Fe, Co and Ni clusters on the Pt(111) substrate in Fig. 5.7. Here, only neighbouring
cluster atoms are considered in defining the coordination number. For comparison the
results for compact clusters of 19 and 37 atoms with the height of one monolayer are also
shown together with the corresponding monolayer value. For the 1-7 atom clusters of Fe,
Co and Ni a quasi-linear relationship between µspin and coordination number is found.
Interestingly, increasing the coordination number for the atoms of such small clusters
leads to a stronger reduction of µspin when compared to equally coordinated atoms in
larger clusters or full monolayers. For example the central atom of a compact 7 atom
cluster has always lower µspin than a monolayer atom. A very similar trend is seen for the
Au(111) substrate (not shown here) as well as for Fe and Co on Ir(111). Ni on Ir(111),
however, does not show such a trend. This is the only system discussed here, where µspin
for the adatom (0.38 µB) is smaller than for the full monolayer (0.49 µB).

The orbital magnetic moments are much more sensitive with respect to coordination.
The graphs in Fig. 5.8 show a strong decay of µorb with increasing coordination number
which is also observed for the Au(111) substrate and for Fe and Co on Ir(111) (not shown).
Also here, Ni on Ir(111) behaves differently where µorb is small not showing large varia-
tions with changing coordination. An analysis of the average spin and orbital magnetic
moments as function of cluster size is shown in Figs. 5.9 and 5.10. For the 3 and 5 atom
clusters the lower µspin and µorb values correspond to the compact clusters. All clusters
have largest µspin when deposited on Pt(111) followed by the Au(111) substrate. The
lowest µspin values are obtained for deposition on Ir(111). The fact that µspin is largest
for the Pt substrate having a 4 per cent smaller lattice constant than Au indicates that
this is caused by an electronic structure effect (see above). The highest values of µorb,
however, are found for clusters deposited on Au(111) where the interaction between cluster
and substrate atoms is weak and the lattice constant largest. Within a cooperation with
Ondrej Šipr it has been demonstrated for Pt(111) and Au(111) that the observed increase
in µorb can be attributed to the larger lattice constant of Au alone, by performing similar
calculations for Co clusters on an Au(111) substrate with the lattice constant of Pt [72].
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Figure 5.7: Local spin magnetic moments of atoms in Fe (left), Co (middle) and Ni (right)
clusters with 1-7, 19 or 37 atoms deposited on Pt(111) as function of the number of
neighbouring cluster atoms. As a reference the results for the monolayer are shown as
well.

A comparison of the present results for µspin and µorb with previous theoretical inves-
tigations in the literature is only possible for small Co clusters deposited on Pt(111) as
well as Fe and Co adatoms on Pt(111) and Ir(111). Among all systems the Co adatom on
Pt(111) is the most studied case and a detailed comparison with their µspin and µorb val-
ues is compiled in Tab. 5.1. The calculations done by Gambardella et al. [81], Lazarovits
et al. [82], Etz et al. [83] as well as Balashov et al. [84] also applied the KKR formal-
ism and their results for µspin and µorb agree very well with the values presented in this
work. The small occurring deviations can be ascribed to the different parameters used in
the calculations as for example different meshes with respect to the energy contour inte-
gration etc. as well as parameters concerning selfconsistency and host cluster size. The
studies performed by Shick et al. [86], Conte et al. [87], Sabiryanov et al. [80, 88] as well
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Figure 5.8: Local orbital magnetic moments of atoms in Fe (left), Co (middle) and Ni
(right) clusters with 1-7, 19 or 37 atoms deposited on Pt(111) as function of the number
of neighbouring cluster atoms. As a reference the results for the monolayer are shown as
well.
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Figure 5.9: Average spin magnetic moments for Fe (left), Co (middle) and Ni (right)
clusters on Ir(111), Pt(111) and Au(111), respectively. The horizontal lines at the right
border of each panel show the corresponding values for the full monolayers.

as Blonski et al. [85] used a band structure scheme with periodic boundary conditions.
Also here, the obtained magnetic moments for the unrelaxed Co1 on Pt(111) are very
close to the values shown in Figs. 5.2 and 5.5. From references [84, 86, 87, 80, 85] one
can see the qualitative trend of geometry relaxation leading to a reduction of the Co-Pt
distance of about 20%. This causes a slight decrease of µspin at Co and an increase of
the induced moments in the neighbouring Pt atoms. While the agreement for the local
magnetic moments at the Co site is very good with all previous studies, there are some
larger discrepancies with Sabiryanov et al. [80, 88] and Blonski et al. [85] concerning the
induced moments in the Pt substrate. While the values of Sabiryanov et al. are given for
the relaxed geometry, the induced moments in Pt obtained by Blonski et al. are about
twice as high when compared to values from Lazarovits et al. [82], Etz et al. [83] or this
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Figure 5.10: Average orbital magnetic moments for Fe (left), Co (middle) and Ni (right)
clusters on Ir(111), Pt(111) and Au(111), respectively. The horizontal lines at the right
border of each panel show the corresponding values for the full monolayers.
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Table 5.1: Site-resolved spin and orbital magnetic moments for Co1 on Pt(111) compared
to results from the literature. All values are given in µB. Ptnn indicates the Pt atom
being the next nearest neighbour to Co. 1)The results from [80] are given for their relaxed
geometry. 2)This value is taken from an identical calculation but with a spherical host
cluster containing 249 atoms.

Ref. present

work

[81] [82] [83] [84] [85] [86] [87] [80]1)

Co: µspin 2.27 2.14 2.21 2.15 2.20 2.15 2.18 2.18 2.00

Co: µorb 0.60 0.60 0.77 0.73 0.63 0.57

Ptnn µspin 0.08 0.09 0.09 0.11

Pttot µspin 0.402) 0.49 1.14 1.65

work. The reason for these discrepancies with [80, 88, 85] could be the applied super-cell
approach or their implementation of SOC as a perturbation instead of solving the Dirac
equation.

In Tab. 5.2 the average spin and orbital magnetic moments of Con clusters deposited
on Pt(111) are compared to values obtained by Gambardella et al. [81] and Lazarovits
et al. [82]. The agreement with these previous calculations is fairly good. In addition
the magnetic moments of Fe and Co adatoms on Pt(111) and Ir(111) are compared to
the results of Etz et al. [83] and Blonski et al. [85]. Furthermore, the magnetic moments

Table 5.2: Spin magnetic moments (left panel) and orbital magnetic moments (right panel)
in this present work compared with results from the literature. All values are given in µB.

Pt(111) p.w. Ref.[81] Ref.[82]

Co1 2.27 2.14 2.21

Co2 2.16 2.11 2.17

Co3 comp. 2.08 2.10

Co3 lin. 2.12 2.08 2.14

Co4 2.06 2.08

Co5 cross 2.06 2.08

Pt(111) p.w. Ref.[83] Ref.[85]

Co1 2.27 2.15 2.15

Fe1 3.50 3.40 3.37

Ir(111) p.w. Ref.[83]

Co1 2.16 2.04

Fe1 3.43 3.34

Pt(111) p.w. Ref.[81] Ref.[82]

Co1 0.60 0.60 0.77

Co2 0.44 0.38 0.40

Co3 comp. 0.23 0.25

Co3 lin. 0.37 0.34 0.37

Co4 0.22 0.22

Co5 cross 0.32 0.27

Pt(111) p.w. Ref.[83] Ref.[85]

Co1 0.60 0.73 0.63

Fe1 0.75 0.63 0.34

Ir(111) p.w. Ref.[83]

Co1 0.49 0.49

Fe1 0.39 0.24
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Figure 5.11: Spin projected density of states for Fe, Co and Ni monomers (top row) and
dimers (second row) as well as the central atom of a 7 atom cluster (third row) and the
corresponding full monolayers (bottom row) deposited on Ir(111), Pt(111) and Au(111).
The filled grey curves show the DOS of the clean surface layer of the corresponding sub-
strate atoms.
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for Con/Pt(111) show very similar trends with results for Con on Pd(111) obtained by
Félix-Medina et al. [89].

Fig. 5.11 shows the spin-resolved density of states (DOS) for the adatoms, dimers and
the central atom of the 7-atom clusters as well as the corresponding full monolayers. The
DOS for the respective undisturbed first substrate layers are also shown by the shaded
areas. For Ir and Pt there is appreciable energetic overlap between electronic 5d-states of
the substrate and 3d-states located at cluster sites resulting in hybridisation with a promi-
nent broadening in the cluster DOS. The energetically low-lying states of Au, however,
can only hybridise with the majority states of Fe while in the cases of Co and Ni as well
as the minority states of Fe very distinct atomic-like features prevail. With increasing the
number of cluster atoms a complex fine structure appears in the DOS which also broadens
appreciably with increasing the coordination number of the cluster atoms. As for such
small clusters the DOS at the Fermi level varies strongly with changing the number of
atoms so do the corresponding chemical and magnetic properties in this finite size regime.

5.2 Isotropic Exchange Interactions

The isotropic exchange coupling constants Jij were calculated on the basis of Eq. (2.210).
As an example the pair-wise Jij constants for the Fe, Co and Ni cross-shaped 5-atom
clusters on all three substrates are displayed in Fig. 5.12. In addition the sum of all
couplings

J i =
∑

i6=j

Jij (5.1)

related to every atom is shown as well including also the coupling to the induced magnetic
moments in the substrate atoms. This quantity can thus be seen as the total strength
by which the magnetic moment at site i is held along its direction by all other atoms.
Furthermore, the coupling constants for all other (except the 6-atom) clusters are given
in Tab. 5.3.

All Fe and Co clusters show a strong ferromagnetic coupling while for Ni clusters the
Jij values are four to five times smaller. From Fig. 5.12 and Tab. 5.3 one can see that
for Fe and Co the couplings between nearest neighbouring atoms are about one order of
magnitude larger than couplings between more distant atoms, i.e. the coupling strength
falls off very rapidly with increasing the interatomic distance. For Ni clusters, however, and
especially Ni on Ir(111) where the couplings are very weak this trend is less pronounced.
The results show that there is an occasional weak anti-ferromagnetic coupling between
more distant atoms, which however, gives only an insignificant contribution to the total
coupling J i of each respective atom. As each Jij contains by definition (see e.g. Eq. (2.186)

on page 39) the product between the involved spin magnetic moments µispin and µjspin the
coupling is largest for Fe and smallest for Ni clusters.
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Figure 5.12: Exchange coupling in cross-shaped Fe5, Co5 and Ni5 clusters on Ir(111), Pt(111) and Au(111). The diagrams on the
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Figure 5.13: Critical temperature Tcrit as function of cluster size for Con clusters on
Pt(111). The Monte Carlo (MC) simulations have been performed by Svitlana Polesya [90].
The full circles show MC results that took only the Jij values into account while for the
MC calculations represented by the open squares also magnetic anisotropy energies were
included in the corresponding Heisenberg Hamiltonian.

Apart from the magnitude of the spin magnetic moments also atomic coordination as
well as substrate effects play an important role. Especially for Fe clusters the Jij values
between low coordinated cluster atoms can be much larger when compared to atoms with
higher coordination. Nevertheless, the total coupling per atom J i increases monotonically
with increasing coordination, i.e. given a fixed number of Fe, Co or Ni atoms the most
compact structure will form the most stable ferromagnet. The isotropic exchange coupling
is also affected by the arrangement of cluster atoms with respect to the underlying surface
sites. For the two compact Fe trimers on Ir(111) for instance the coupling values differ by
10% whereas in the case of the 7-atom Fe cluster on Ir(111) Jij for nearest neighbouring
edge atoms varies by almost 30 meV. These differences show that transferring Jij coupling
constants obtained from bulk calculations to low-dimensional finite nanostructures will
lead in general to unreliable results.

For Fe and Co the isotropic exchange interaction is quite similar on all three different
substrates. For Ni clusters the highest nearest neighbour Jij values being about 15 meV
are obtained for deposition on Pt(111) while deposition on Ir(111) reduces the coupling
strength to just a few meV so that also the total coupling per atom J i remains in the
order of about 10 meV. As the exchange interaction is so small for these Ni clusters, there
is a large tendency that their magnetic ground state deviates strongly from a collinear
configuration (see below).

The coupling of magnetic cluster atoms to the induced magnetic moments in the sub-
strate is very small. Jij is about 2 meV between Fe or Co cluster atoms and topmost
layer atoms of an Ir or Pt surface. The small induced moments in the Au(111) substrate
couple anti-ferromagnetically to the cluster atoms. Here the nearest neighbour Jij ’s are
only at the order of 0.1 meV being of similar magnitude as the ferromagnetic coupling of
Ni cluster atoms to Ir or Pt surface sites.

The next nearest neighbour exchange coupling among the Fe and Co cluster atoms is
larger than the corresponding values of standard bcc Fe (37.8 meV), hcp Co (26.3 meV)
and fcc Ni (4.8 meV). Using the calculated Jij values as input to subsequent Monte Carlo
(MC) simulations [91, 92] on the basis of the classical Heisenberg Hamiltonian given in
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Eq. (2.185) one can obtain the associated Curie temperatures TC or in the case of finite
system such as magnetic clusters critical temperatures Tcrit, respectively. The results of
such MC simulations which have been carried out by Svitlana Polesya [90] are shown for
Con clusters on Pt(111) in Fig. 5.13. One can see that already for quite small clusters
Tcrit values above 300 K are obtained.

Table 5.3: Isotropic exchange coupling constants Jij for Fe, Co and Ni clusters deposited
on Ir(111), Pt(111) and Au(111). The icons in the left column indicate the corresponding
cluster geometry as well as the cluster sites i and j, respectively. Note that in some cases
the cluster symmetry is reduced due to the underlying substrate as it can be seen for
example in Fig. 5.1.

Fe Co Ni

ij Ir Pt Au Ir Pt Au Ir Pt Au

128.8 137.8 143.8 97.5 107.7 112.8 7.9 30.4 26.7

110.5 111.8 114.6 69.8 77.6 72.5 0.8 14.6 16.1

100.3 107.9 114.2 64.5 71.0 67.4 1.8 16.4 15.7

76.8 90.9 90.6 66.9 76.9 74.8 11.2 24.9 20.9

-15.9 -8.4 -12.2 5.2 3.9 -0.4 4.3 6.1 3.4

79.5 79.2 82.3 49.5 59.8 47.5 0.4 7.6 8.0

83.0 92.1 99.4 59.3 66.1 60.5 2.0 15.9 13.5

97.2 99.4 100.7 61.4 69.7 60.2 1.4 14.6 12.7

-1.2 -0.8 -3.8 6.7 8.4 10.1 0.4 3.3 1.6

74.2 75.6 75.9 50.3 57.9 45.1 0.8 7.9 7.1

71.8 79.3 68.8 48.6 53.8 46.2 3.8 16.9 11.7
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5.3 Anisotropy and Spin Structure

This section presents an analysis of the magnetic torque vector T
(êi)
i acting on an atomic

magnetic moment on cluster site i which is aligned along direction êi. T
(êi)
i is defined in

terms of the change in energy E({êk}) = E(ê1, . . . , êk) of the system when changing the

orientation of the magnetic moment êi on site i, i.e. T
(êi)
i = −∂E({êk})/∂êi × êi. The

component

T
(êi)
i,û = −∂E({êk})

∂êi
· (û× êi) (5.2)

of T
(êi)
i with respect to the axis û can be determined from first-principles using Eq. (2.217)

which also allows to test whether the extended Heisenberg model given in Eq. (2.194)

H = −1

2

∑

i6=j

Jij êi · êj −
1

2

∑

i6=j

êiJ S
ij êj −

1

2

∑

i6=j

Dij · (êi × êj) +
∑

i

Ki(êi) (5.3)

is justified. Moreover, the torque approach provides another route for obtaining the values

for the Jij , Ki, J S
ij and Dij parameters. Thus, for the Heisenberg Model in Eq. (5.3) T

(êi)
i,û

can be partitioned into the following contributions:

T
(êi)
i,û = T iso

i,û + T S
i,û + TDM

i,û + TK
i,û , (5.4)

where the term of T
(êi)
i,û arising from the Dzyaloshinski-Moriya (DM) interaction is given

by

TDM
i,û =

∑

j 6=i

(Dij · û)(êi · êj)−
∑

j 6=i

(Dij · êi)(û · êj) (5.5)

while the torque term due to the magnetic anisotropy reads

TK
i,û =

∂Ki(êi)

∂êi
· (û× êi) . (5.6)

By focusing on clusters with a collinear arrangement of their magnetic moments the MAE

terms can be determined. Note that the last term in Eq. (5.5) does not contribute to T
(êi)
i,û

in the case of a collinear magnetic structure and also the sum of the DM contributions TDM
i,û

from all sites in a cluster vanishes in this case. However, the anisotropy of the exchange
interaction, represented by the symmetric tensor J S

ij can give rise to a finite contribution

to T
(êi)
i,û and thus to the total MAE of a nanocluster.

For obtaining the MAE from torque calculations a collinear configuration of all mag-
netic moments including all cluster as well as substrate sites is assumed with all moments
being orientated at an angle to the surface normal (z-axis). This is expressed in terms of
polar and azimuth angles θ and φ, respectively, i.e. with êi = (sin θ cosφ, sin θ sinφ, cos θ).
Fig. 5.14 shows the atomic configuration for a monomer and dimer together with the
projection of the magnetic moments onto the surface (xy-plane). In parallel to the fixed
frame of reference (x, y, z) a second one (x′, y′, z′) is used which is rotated by φ with res-
pect to the fixed one with z = z′. For the discussion presented in the following the torque

component T
(êi)
i,û has been taken around the y′-axis, i.e. û = ŷ′ = (− sinφ, cosφ, 0), for θ
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Figure 5.14: Magnetic configuration of the transition metal monomers (left) and dimers
(right) deposited on a Pt(111) substrate. The large (small) spheres present Pt surface
(subsurface) atoms. The medium size spheres represent the dimer atoms with the projec-
tion of their magnetic moments onto the surface (xy-plane) represented by arrows. For
the dimer the projection of the DM-vector D12 onto the surface is represented by a short
arrow.

fixed to π/4 as a function of the azimuth angle φ (i.e. one can write Ti ≡ T
(êi)
i,ŷ′ ). Taking

the derivative of Eq. (2.183) gives the single site contribution to the torque in the present
magnetic configuration (θ = π/4) to be

TK
i = −2(K2,1 +K2,2 cos 2φ+K2,3 sin 2φ) , (5.7)

whereas TDM
i deduced from the Heisenberg model has a cosφ or sinφ variation when the

corresponding DM vector lies in the yz- or xz-plane, respectively. To start with the most

simple case Fig. 5.15 shows the dependence of Tθ ≡ T
(ê)
ŷ′ on the azimuth angle φ for Fe,

Co and Ni adatoms deposited on Pt(111) at θ = π/4. The fact that Tθ is found to be
negative for Fe and Co for all angles φ implies that the torque forces the magnetisation
to the z-axis. This means that the system’s easy axis points out-of-plane along ẑ. For
the Ni monomer Tθ is positive indicating an easy axis that lies parallel to the surface
plane. One can see in all cases that the threefold symmetry imposed by the underlying
Pt substrate is directly reflected by the small oscillations of Tθ with changing φ. This also
demonstrates the high sensitivity of this approach. The curves show no numerical noise
even for an energy resolution below 0.1 meV. As the φ dependence of Tθ is so small when
compared to its absolute value the Fe and Co adatoms behave almost like perfect uniaxial
magnets. In this case the anisotropy energy can be extracted from the minima of Tθ(φ).
For the single adatoms this gives then 8.41 meV, 4.83 meV and -1.56 meV for Fe, Co and
Ni, respectively. Fig. 5.15 also shows the influence of the induced anisotropy coming from
the Pt substrate atoms. This induced MAE is about -30 µeV for Fe and even smaller in
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Figure 5.15: Torque component Tθ(θ, φ) for Fe1 (left), Co1 (middle) and Ni1 (right) at
θ = π

4 as a function of the azimuth angle φ. The circles show the same results including
the contribution coming from the Pt substrate atoms.
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the case of Co and Ni. In fact it seems to be negligible for very small clusters composed
of only few atoms. For larger two-dimensional clusters or nanostructures, however, it is
found that the MAE contribution coming from the induced magnetisation in the substrate
becomes much more important with increasing cluster size and can rise to the same order
of magnitude as the contribution coming from the cluster atoms themselves.

It will now be investigated how well the torque values calculated directly via Eq. (2.217)
for deposited transition metal dimers agree with the corresponding torques deduced from
the extended Heisenberg model. This is done throughout for constrained magnetically
collinear spin configurations in order to exclude isotropic exchange effects. Figs. 5.16d)-f)
show the φ dependent torque results for θ = π/4 of the Fe, Co and Ni dimers, respectively,
deposited on Pt(111). Apart from the total torques Tθ (thick lines) these graphs also show
the site resolved contributions T1 (circles) and T2 (squares) as well as the contributions
to T1 and T2 that are caused by the mutual DM interaction between both atoms. For all
three dimers the total torque Tθ is negative implying an out-of-plane MAE. For Fe and
Co the absolute MAE values are significantly reduced when compared to the monomers,
while in the case of Ni the magnetic easy axis has changed from in-plane (monomer)
to out-of-plane (dimer). The φ-dependence of Tθ on the other hand is now much more
pronounced due to the reduced symmetry of the cluster/substrate system when compared
to the monomers in Fig. 5.15. From Figs. 5.16d)-f) one can see that E(ê, ẑ) is smallest if
the magnetic moments are oriented along the x̂ direction, i.e. along the cluster dimer axis
(see Fig. 5.16a) for geometrical details).

The panels on the right-hand side in Fig. 5.16 show the corresponding φ dependence
of the orbital magnetic moments for θ = π/2. One can see that the oscillations in µorb
follow the oscillations of Tθ in an anticyclic manner for Fe and Co and a cyclic manner
in the case of Ni. Here it should be pointed out that the largest values for the orbital
magnetic moments for Fe2 and Co2 are obtained when the magnetisation points along the
z-axis (see Figs. 5.4 and 5.5) while for Ni2 the maximum µorb is obtained for M along ŷ.
This demonstrates once more the limitations of the Bruno and van der Laan anisotropy
models [93, 61] that establish a qualitative relation between MAE and anisotropy of the
orbital magnetic moment for Fe2 and Co2 but fail in the case of Ni2 where in fact µorb
becomes maximal along the magnetic hard axis.

In Fig. 5.16b) the ab initio results T dir
i are compared with Tmod

i deduced from the
extended Heisenberg model for Co2 on Pt(111). As one notes, T1 and T2 are different
but are related with respect to their φ-dependence according to the Cs symmetry of the
system. On comparing T dir

i and Tmod
i of the two Co atoms one finds the symmetric part

of the exchange interaction tensor T S
i to be negligible. The contributions TDM

i and TK

are shown in Fig. 5.16c). Clearly, TDM
1 and TDM

2 vary with cosφ and are opposite in sign
being in accordance with symmetry and forcing the DM vector D12 to lie in the yz-plane
as shown in Fig. 5.16a). For TK

i K2,3 is found to be very small and the dominating terms
K2,1 and K2,2 to be the same for both atomic sites leading to TK

1 = TK
2 . The contribution

to TK
i connected with K2,1 does not depend on φ, while that connected with K2,2 varies

with cos 2φ. As one can see, Tmod
i reproduces the results T dir

i rather well. The remaining
deviations are primarily due to the limitations of the Heisenberg model with respect to
the dependency of the magnetic energy on the magnetic moment orientations E({êk}).
From the decomposition of Ti it becomes clear that its φ-dependence is dominated by the
DM-contribution while the K2,2 contribution gives rise to a minor additional modulation.
Owing to the large positive value of K2,1 for both atoms an out-of-plane MAE results for
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Figure 5.16: Tθ(φ) for Fe, Co and Ni dimers on Pt(111) for θ = π/4. a): Magnetic configuration of the dimers as shown in Fig. 5.14.
b): Ab initio T dir

i compared with HM Tmod
i for Co2 on Pt(111). c): TDM

i and TK
i contributions to Tmod

i for Co2 on Pt(111). d-f):
T dir
i for the two atoms of Fe2 (d), Co2 (e) and Ni2 (f). T dir

1 and T dir
2 are presented by circles and squares, respectively, and their sum

by the thick solid line. The thin solid lines give the DM contributions according to Eq. (5.5). g-i): µorb(φ) at θ = π/2 for Fe2 (g), Co2
(h) and Ni2 (i).
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the total system. This can also be seen from Fig. 5.16e) where T dir
tot = T dir

1 + T dir
2 for Co2

on Pt(111) is shown together with the individual contributions T dir
i and the corresponding

DM terms TDM
i .

Once more one can see that the φ-dependence of Ti is determined by TDM
i while that of

T dir
tot is set by the K2,2 on-site MAE terms. This also holds for Fe2 in Fig. 5.16d) for which

the DM terms are even more dominant, i.e. the φ-dependence of Ti is nearly exclusively
due to TDM

i .

A further increase in the number of 3d-electrons leads to a noticeably different situation
for Ni2 on Pt(111) as shown in Fig. 5.16f) for which the DM terms give only minor
contributions to Ti. In contrast to Fe2 and Co2 the difference between T1 and T2 cannot
be attributed to DM coupling as the period of oscillation is varying with sin 2φ. Clearly,
this effect is not represented by the exchange interaction terms in the extended Heisenberg
Hamiltonian of Eq. (5.3) and must derive from interactions of the Ni moments with those
induced in the Pt substrate. As a DM-type interaction can produce only torques of the
type T1 = −T2 a sin 2φ variation would arise if a term of the form (A · ê1)(B · ê1)−(A · ê2) ·
(B · ê2) were added to Eq. (5.3), with A pointing along x̂ and B along ŷ. These Ni dimer
results indicate that a Heisenberg model must be used with caution for systems where the
magnetic structure of a nanocluster is strongly influenced by the spin polarisability of the
substrate.

For Fe2 and Co2, however, the generalised Heisenberg model works very well. For the
chosen geometry θ = π/4 and φ = 0 and using the symmetry properties of the elements
in the exchange tensor, one finds for Co2 on Pt(111) with TK

1 = TK
2 the total torque

Tθ = T1 + T2 = −(JSzz
12 − JSxx

12 ) + 2TK
1 . Finally, the MAE, (∆Esoc) of the dimer being

the difference in energy when the magnetic moments are both oriented along êb and êa,
respectively, is given by the integral −

∫ êb
êa

T (ê)dê. Obviously, this has no contribution from
the DM interaction. For Co2 on Pt(111) it is found that the exchange parameters Jxx

12 ,
Jyy
12 and Jzz

12 are nearly identical which implies that the total MAE of the dimer is nearly
exclusively due to the on-site contributions. The values K2,1 = 1.5 meV and K2,2 = 0.39
meV for Co2 on Pt(111) lead as mentioned above to a pronounced out-of-plane MAE, i.e.
in the ground state the total magnetisation should point along the surface normal. Taking
the difference between T1 and T2 one arrives at the relation Dy

12 = (T1 − T2)/2 allowing
Dy

12 to be deduced directly from T dir
i . Table 5.4 shows the corresponding results for all

three dimers in comparison with data derived from a mapping to the extended Heisenberg
Hamiltonian.

The excellent agreement justifies once more the use of the Heisenberg model for Fe2
and Co2 and one notes that Dy

12 has an appreciable value when compared to the isotropic
exchange constant J12. Fixing the azimuth angle φ to be π/2 and performing similar
steps one finds Dx

12 to be zero, while Dz
12 may take a non-zero value and is found to be

comparable to Dy
12 (see Table 5.4). Thus, the above analysis shows that T1 and T2 may

differ even if the total torque is zero, i.e. if the moments are collinearly aligned along the
easy axis (surface normal). The difference between T1 and T2 is caused exclusively by
the Dy

12 term leading to a rotation around the y-axis. Minimising the magnetic energy
E({êk}) of the two atoms leads to an outward tilting of the magnetic moments by an
angle α given by α = atan (Dy

12/J12). The corresponding results given in Table 5.4 show
that the DM interaction causes the deposited Fe and Co dimers to have an appreciable
deviation from collinear configurations in spite of the pronounced ferromagnetic exchange
coupling.
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Table 5.4: Components Dα
12 of the DM vector Dij, the isotropic exchange constant Jij (in

meV) and the tilt angle α (in degrees) for the Fe, Co and Ni dimers on Pt(111). The results
from the direct torque calculations are compared with the values obtained via mapping
onto the Heisenberg Hamiltonian.

direct model

Dy
12 Dx

12 Dy
12 Dz

12 J12 α

Fe2 6.04 0.00 6.07 -3.34 138.0 2.52

Co2 3.69 0.00 3.89 -3.84 108.0 2.07

Ni2 -0.02 0.00 -0.04 -0.24 30.4 0.07

This effect of SOC on the magnetic moment configuration is completely in line with
the findings of Sandratskii and Kübler for bulk systems [94] while in the present case
the surface clearly plays a crucial role in the DM interaction as the hybridisation with
the substrate breaks the inversion symmetry for the dimers leading to a non-zero DM
vector. This can be illustrated in more detail by manipulating the SOC strength within
the cluster or substrate atoms separately. Figs. 5.17d-f) show that switching off SOC in
the Pt substrate leads to large changes in the corresponding nonmanipulated torque curves
of Fe2, Co2 and Ni2 are presented again for comparison in Figs. 5.17a-c). Apart from the
strong modifications in the total torque curves due to changes in the anisotropy energy one
can clearly recognise in Figs. 5.17d-f) that for Fe2 and Co2 the Dy

12 component of the DM
vector has changed sign and is also strongly reduced in magnitude while in the case of Ni2
Dy

12 increases. Switching off SOC in the dimer atoms on the other hand has the opposite
effect on the DM interaction which is shown in Figs. 5.17g-i) revealing that the resulting
DM vectors in these systems arise from competing contributions. This demonstrates that
the hybridisation with the substrate also allows the SOC effects of the substrate to be
transferred to the magnetic 3d transition metal dimer. Moreover, enhancing the SOC for
Co2 only as shown in Fig. 5.18a) leads primarily to an increase of the on-site anisotropy
constant K2,2. However, enhancing the SOC for the Pt substrate atoms as shown in
Fig. 5.18b) leads to a strong increase in the anisotropy constant K2,1 as well as to a larger
difference in T1 and T2, reflecting an increase of the DM interaction. This behaviour is in
line with Levi’s model of the indirect DM interaction between two spin moments, which is
mediated by nearby atoms [95]. As a consequence, the magnitude of the DM interaction
is essentially determined by the SOC strength of the neighbouring atoms. This role of the
substrate is once more confirmed by corresponding calculations for a free Co dimer which
has been modelled by placing the Co atoms in the fifth vacuum layer above the Pt surface.
As one can see in Fig. 5.18c) the two Co atoms are now magnetically equivalent for any
direction of the magnetisation with no DM interactions present.

The complex SOC induced interactions of the substrate atoms with the cluster atoms
can be also shown for the trimers of Fe, Co and Ni. What makes this even more interesting
is the fact that for a compact trimer there exist two possibilities in occupying the fcc sites
of the underlying Pt lattice. Figs. 5.19a) and e) show the two different cluster/substrate
geometries while the panels of the left and right column show the corresponding Fe, Co
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Figure 5.18: Tθ(φ) for Co dimer for θ = π/4. a): Co2 on Pt(111) with SOC of Pt substrate
atoms scaled by a factor of two. b): Co2 on Pt(111) with SOC of Co atoms scaled by a
factor of two. c): Co2 located in the 5th vacuum layer above Pt substrate.
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Figure 5.19: Tθ(φ) for two different compact trimers of Fe, Co and Ni on Pt(111) for
θ = π/4. Left column: Tθ(φ) of compact Fe3 (b), Co3 (c) and Ni3 (d) with a hole below
the trimer centre. Right column: corresponding Tθ(φ) curves for Fe3 (f), Co3 (g) and Ni3
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Figure 5.20: Tθ(φ) for two Co adatoms on Pt(111) for θ = π/4. The Co adatoms are
separated by one (left), two (middle) and three (right) atomic sites. The thick lines show
the average Tθ(φ) of both atoms.

and Ni torque curves for geometry a) and c) respectively. For Fe both trimers produce
identical torque curves while for Co and Ni the MAE as well as the DM interactions are
strongly modified with changing the Pt coordination.

Another important aspect is the decay of this substrate mediated DM interaction with
increasing interatomic distance which is shown for Co2 in Fig. 5.20. Here, one can see
from the corresponding torque curves that the Dy

12 component decreases in an oscillatory
way with the interesting situation that if the two Co atoms are separated by a few Å the
isotropic exchange, the DM interaction as well as the MAE can be of the same order of
magnitude. If the Co atoms are separated by a distance that corresponds to two sites of
the underlying lattice it is found that Dy

12 = 0.39 meV while J12 = 0.29 meV. However, the
anisotropy energy is 4.6 meV, i.e. the MAE gives the dominant energetic contribution for
the alignment of the magnetic moments. Similar situations can also occur when magnetic
atoms are separated by nonmagnetic atoms with large SOC which can lead to a tantamount
competition between MAE, isotropic exchange and DM interactions.

Finally, Table 5.5 summarises the Jij , D
α
12 and MAE values for the Fe, Co and Ni

dimers and trimers on Ir(111), Pt(111) and Au(111). For the Fe and Co clusters the
isotropic exchange is always by one order of magnitude larger than the DM interaction
or the magnetic anisotropy. In the case of Ni, however, the rather weak coupling of the
magnetic moments can be strongly influenced by the substrate.

As concerns the magnetic anisotropy energy of all Fe, Co and Ni clusters discussed in
this chapter the corresponding data is compiled in Table 5.6. As in the previous chapters
positive ∆Esoc values denote an out-of-plane anisotropy while a negative ∆Esoc value
corresponds to an in-plane magnetic easy axis. Fe clusters on Pt(111) and Au(111) show
always an out-of-plane MAE whereas all other cluster substrate systems exhibit a rather
nonuniform behaviour of their MAE with varying cluster size.

In accordance with the qualitative explanations that were given for monolayers in the
two previous chapters one can explain how ∆Esoc depends on the SOC induced changes in
the electronic structure upon rotating the magnetisation. Due to the lack of translational
symmetry, however, one has to consider now the information provided by the density of
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Table 5.5: Components Dα
12 of the DM vector Dij, the isotropic exchange constant Jij and

the magnetic anisotropy energy ∆Esoc (in meV) for the Fe, Co and Ni dimers and the two
different compact trimers on Ir(111), Pt(111) and Au(111). ∆Esoc for the monomers is
also given for comparison. The icons in the left column indicate the cluster geometries with

and corresponding to the atomic arrangements in Figs. 5.19a) and e), respectively.
The positive (negative) values of ∆Esoc correspond to an out-of-plane (in-plane) magnetic
easy axis.

Fe Co Ni

Ir Pt Au Ir Pt Au Ir Pt Au

∆Esoc 0.10 8.42 11.45 3.95 4.88 9.02 -0.21 -1.57 -5.11

J12 128.78 137.82 143.77 97.47 107.66 112.78 7.85 30.35 26.65

∆Esoc -2.03 0.96 5.50 1.07 4.49 -0.78 0.19 0.16 -2.34

Dy
12 -1.15 6.07 -0.80 2.26 3.89 -2.23 -0.22 -0.04 -0.43

Dz
12 -0.24 -3.34 -1.40 -2.65 -3.84 -0.72 -0.15 -0.23 0.24

J12 110.51 111.76 114.62 69.81 77.63 72.49 0.77 14.55 16.06

∆Esoc 1.10 1.07 3.99 0.20 -0.37 -7.34 2.52 1.48 0.71

Dy
12 2.33 5.43 -0.28 0.79 1.16 -2.19 -0.34 -1.22 -0.87

Dz
12 -3.97 -2.91 -0.64 0.71 -0.08 3.57 -0.19 -0.78 0.46

J12 100.31 107.93 114.24 64.46 71.00 67.36 1.83 16.40 15.73

∆Esoc -1.36 1.00 4.32 5.47 6.00 1.56 0.52 -0.38 -1.86

Dy
12 0.46 5.34 -1.54 2.73 3.27 -1.23 0.14 0.72 -0.22

Dz
12 -0.82 -3.37 -1.91 -5.07 -7.64 -8.58 0.19 2.23 1.30

states rather than the Bloch spectral functions. As an example of such an analysis Fig. 5.21
shows the orbital resolved minority 3d DOS for the Fe, Co and Ni monomers deposited on
Pt(111). As discussed above for this substrate Fe1 and Co1 show a pronounced out-of-plane
MAE of 8.42 and 4.88 meV, respectively, whereas Ni1 has an in-plane MAE of -1.57 meV.
Looking at the DOS curves in Fig. 5.21 one can see the presence of a pronounced SOC
induced splitting of the states with orbital character mℓ = ±2 that occurs for an out-
of-plane orientation of the magnetisation. For an in-plane magnetisation, however, this
splitting is very small for Fe1 but it becomes larger with increasing SOC strength resulting
in a noticeable splitting of the mℓ = ±2 states for Ni1. In analogy with the discussions for
the monolayers the resulting anisotropy energies depend on the relative location of these
splittings with respect to the Fermi energy EF, i.e. ∆Esoc can become quite large when
degenerate states are located directly at EF. This situation is almost perfectly fulfilled for
Fe1 resulting in the large anisotropy energy of 8.42 meV. Reducing the exchange splitting
by increasing the number of 3d-electrons then shifts the states below and also further
away from EF leading to a reduced out-of-plane MAE for Co1 when compared to Fe1. For
Ni1 on the other hand the situation is different. For an out-of-plane orientation of the
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Table 5.6: Magnetic anisotropy energy ∆Esoc for Fe, Co and Ni clusters deposited on
Ir(111), Pt(111) and Au(111). The icons in the left column indicate the corresponding
cluster geometry. The positive (negative) values of the ∆Esoc (in meV) correspond to an
out-of-plane (in-plane) magnetic easy axis. The last line shows ∆Esoc per atom for the
full monolayer (ML).

Fe Co Ni

Ir Pt Au Ir Pt Au Ir Pt Au

0.10 8.41 11.45 3.95 4.83 9.02 -0.21 -1.56 -5.11

-2.03 0.96 5.50 1.07 4.49 -0.78 0.19 0.16 -2.34

1.10 1.07 3.99 0.20 -0.37 -7.34 2.52 1.48 0.71

-1.36 1.00 4.32 5.47 6.00 1.56 0.52 -0.38 -1.86

-0.22 3.68 10.39 -0.68 1.81 -11.53 0.31 -1.74 9.23

-0.35 1.46 6.94 0.16 -0.74 -10.26 0.34 1.76 0.62

-2.46 0.26 6.31 3.72 7.11 -0.14 0.72 1.17 -3.84

0.54 2.43 8.24 0.84 -2.20 -11.6 0.26 1.05 1.06

0.57 2.90 11.39 2.17 -0.69 -12.02 0.48 1.31 0.55

6.31 15.02 27.04 2.12 -1.79 -14.86 0.74 2.62 4.54

ML 0.83 -0.07 1.27 0.29 0.40 -1.24 -0.18 -0.38 -0.43

magnetisation the centre of the SOC split mℓ = ±2 states is already about 200 meV below
EF being more than the energetic splitting between these states which is only 140 meV
so that the energetic benefit from this SOC splitting is much reduced when compared to
Fe or Co. For an in-plane orientation of the magnetisation, however, the corresponding
SOC splitting, albeit weaker in magnitude, occurs in closer proximity to EF and therefore
leads to a larger reduction of the total energy when compared to the out-of-plane magnetic
configuration resulting in the observed in-plane MAE for Ni1.

Unfortunately, this type of analysis seems only feasible for adatoms and very small
clusters as with increasing atomic coordination the DOS curves become very quickly too
complex even for drawing qualitative conclusions with respect to the magnetic anisotropy
energy. For this reason, only the more detailed information provided by the Bloch spectral
function may give sufficient qualitative insights when one studies the MAE of multi-layer
or bulk systems.

A comparison of the obtained magnetic anisotropy energies for Co1 and Fe1 on Pt(111)
with corresponding values from the literature gives in general a good agreement with the
references listed in Tables 5.1 and 5.2 if one takes into account the high sensitivity of
the MAE with respect to the various calculational parameters and approximations. The
XMCD experiments of Gambardella et al. [81] ascribe a magnetic anisotropy energy of
9.3±1.6 meV to the Co adatom on Pt(111) which is about twice as large as the value given
in Tab. 5.6. Moreover, Balashov et al. [84] determined an MAE value of 6.5±0.1 meV and
10.3±0.2 meV for Fe1 and Co1, respectively, via inelastic scanning tunnelling spectroscopy,
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Figure 5.21: Minority spin 3d density of states (ml-resolved) for Fe1 (top), Co1 (middle)
and Ni1 (bottom) deposited on Pt(111). The left and right columns show the density of
states for M out-of-plane and in-plane, respectively.
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Figure 5.22: Experimental magnetisation curvesM(B) (dots) of an ensemble if Fen clusters
on Pt(111) measured at T = 6 K for an orientation of the magnetic field M(B) along the
easy axis ẑ(θ = 0◦) and rotated by θ = 65◦ with respect to that. The full lines give
corresponding theoretical results obtained on the basis of the calculated properties of Fen
clusters and the Langevin formula given in Eq. (5.8). The dashed line is obtained by
including Fe4 clusters in the simulation.

which demonstrates that the MAE values of the present work are in a reasonable semi-
quantitative agreement with experiment.

This can be further demonstrated for Fen clusters (n=1,2,3) on Pt(111) by making
contact to corresponding experimental investigations for an ensemble of Fen clusters on
Pt(111) done by Jan Honolka (MPI Stuttgart) [96]. The ensemble was dominated by
clusters of size n =1-3. Fig. 5.22 shows the magnetisation curves M(B) measured for this
cluster ensemble at T = 6 K for an orientation of the external magnetic field B along the
easy axis (ẑ) (circles) and at an angle θ = 65◦ with respect to this axis (triangles). With
the theoretical magnetic moments and the anisotropy parameters for the Fen clusters
available the magnetisation curves M(B) can be simulated by means of the so-called
Langevin formula [81]. This way the thermal average of the z-component mnz(B,T ) of
the moment mn of an Fen cluster can be expressed by:

mnz(B,T ) =

∫ π
0 dθ sin θ cos θe

−E(B,T,θ)/kTmn∫ π
0 dθ sin θe

−E(B,T,θ)/kT
. (5.8)

For the simulation the energy E(B,T, θ) was assumed to consist of its Zeeman and
anisotropy contributions

E(B,T, θ) = Bmn cos θ +Kn
2,1 sin

2 θ , (5.9)

where for the later one an uniaxial behaviour has been assumed. The corresponding
anisotropy constants for the Fe clusters Kn

2,1 have been obtained from the results for
∆Esoc shown above. Adding the magnetisation curves for the Fen clusters weighted by
their corresponding statistical weight one obtains the full lines shown in Fig. 5.22. The
additional dashed lines stem from a second simulation done including also Fe4. This
indicates that a certain amount of larger Fe clusters are formed during the preparation
process as expected.
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5.4 Summary and Conclusions

The results presented in this chapter show that the spin and orbital magnetic moments
of the investigated Fe and Co clusters on Ir(111), Pt(111) as well as Au(111) decrease
monotonously with increasing cluster size but they remain always enhanced when com-
pared to the corresponding complete monolayers or bulk systems. For Ni clusters this
is also true for Pt(111) and Au(111) while the magnetic moments of small Ni clusters
on Ir(111) behave in a nonuniform way. In general the atomic magnetic moments de-
pend strongly on coordination and they decrease with increasing number of neighbouring
atoms. This decay is much faster for µorb than for µspin. Ir and Pt surface atoms that
are nearest neighbours to cluster atoms show an appreciable induced spin polarisation
between 0.05-0.15 µB. The corresponding Au atoms are only weakly polarised and their
tiny magnetic moments couple antiparallel to the magnetic moments at cluster atoms.
The exchange coupling among the cluster atoms is very strong for Fe and Co on all three
substrates exceeding the values of standard bulk bcc Fe and hcp Co. Ni clusters show
a much weaker exchange coupling which can be ascribed to their smaller magnetic mo-
ments. Using this data within subsequent Monte Carlo simulations (performed by Svitlana
Polesya) revealed that already quite small Fe and Co clusters consisting of about 20-30
atoms remain ferromagnetically ordered above 300 K.

Moreover, it has been shown that ab initio magnetic torque calculations enable to
monitor the impact of SOC on magnetic interactions within finite nanostructures in a
very detailed way revealing subtle anisotropic effects. The detailed analysis of these results
within an extended Heisenberg Hamiltonian gives further insight and identifies the role
of various contributions as well as the limitations of such models. For Fe2 and Co2 on
Pt(111) the Dzyaloshinski-Moriya interaction was found to be pronounced owing primarily
to the SOC of the substrate leading to non-collinear magnetic configurations for the dimers
in spite a strong ferromagnetic isotropic coupling and out-of-plane MAE. These SOC
induced effects can be quite profound in more complex systems where for example magnetic
atoms are separated by non-magnetic spacers having large SOC as this allows the isotropic
exchange to become comparable in size with the DM couplings. In particular one can infer
from these findings that the magnetic structure around the edges of magnetic nanoparticles
is likely to be significantly affected by these interactions.

Finally, it could be demonstrated that using the calculated magnetic properties of small
Fe clusters on Pt(111) the results of experimental magnetisation curves can be reproduced
in a very satisfying way confirming the adequateness of the used approach as well as the
interpretation of the experimental findings.
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Chapter 6

FeCo Nanoislands on Pt(111)

In this chapter the magnetic properties of various Fe and Co nanostructures with a height
of one monolayer and deposited on a Pt(111) surface are discussed. These systems repre-
sent the intermediate regime between full monolayers and the small clusters that have been
considered in the previous chapters. Here, the special focus lies on perfectly hexagonal Co
islands and the manipulation of their magnetic anisotropy energy either by interface or
alloy formation with other elements. The theoretical results are compared with blocking
temperatures obtained from MOKE measurements that were done for experimental is-
lands being of comparable size. These experiments were done by Safia Ouazi and Stefano
Rusponi in the group of Harald Brune at the Ecole Polytechnique Federal in Lausanne.
The description of the experiments and the interpretation of the experimental results as
well as parts of the discussion were taken from a common manuscript [97]. In addition the
effect of atomically sharp interfaces on the magnetic anisotropy has also been studied for
various FePt nanostructures on the Pt(111) surface. All these results show that full control
on the atomic arrangement is mandatory for designing hard magnets at the nanometre
scale. Before looking at the more complex deposited islands having one-dimensional in-
plane interfaces it is worthwhile to consider the evolution of the magnetic properties when
going from small clusters to islands containing a few hundred atoms.

6.1 Hexagonal Fe and Co Islands on Pt(111)

The geometries of the theoretically studied Fe and Co islands are depicted in the top part
of Fig. 6.1. They are compact one monolayer high islands which consist of a central atom
with surrounding hexagonal atomic shells. The largest simulated island has nine shells
and contains 271 atoms with a total width of about 5 nm. From an analytical viewpoint
one can divide the larger islands into an inner core region having monolayer-like properties
and a cluster-like rim region comprised of the three to four outermost shells depending
on the magnetic properties under consideration. Fig. 6.1 shows the average spin and
orbital magnetic moments per Fe or Co atom, respectively, as function of island size. In
conjunction with Figs. 5.9 and 5.10 on page 85 in the previous chapter this illustrates
once more the fast decay of the average µspin and µorb towards monolayer values with
increasing atomic coordination. Fig. 6.2 presents shell-resolved profiles of µspin and µorb
for the largest simulated Fe and Co islands. One can see that the spin moments of almost
all island atoms are identical to the corresponding values of a full monolayer and that

107
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Figure 6.1: Top: Geometries of the investigated islands: central atom with 2-9 surrounding
atomic shells. Bottom: Average atomic spin (left) and orbital (right) magnetic moments
for hexagonal Fe and Co islands as function of island size. The dashed lines show the
corresponding values for the full monolayers.

only the edge atoms of such islands have increased spin moments due to their reduced
coordination. The behaviour of the orbital magnetic moments is very similar except that
these are much more sensitive with respect to the local atomic environment resulting in
larger relative changes for the edge atoms. The occurring variations of µorb in the vicinity
of an island edge resemble a damped oscillatory behaviour with different characteristics
for Fe and Co islands.

Looking at the interatomic exchange interactions Jij for such islands also reflects this
difference between the low-coordinated edge atoms and atoms located at the island centre.
Fig. 6.3 shows the Jij coupling constants as function of interatomic distances for compact
Fe37 and Co37 islands. A positive Jij value means ferromagnetic while negative Jij cor-
responds to antiferromagnetic coupling, respectively. For the nearest neighbour coupling
a strong ferromagnetic exchange is found for both transition metals. There is, however,
a large spread in the case of Fe ranging from 45 meV for the inner monolayer like island
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Figure 6.2: Spin (left) and orbital (right) magnetic profiles for hexagonal Fe and Co islands
containing 271 atoms. The dashed lines show the corresponding monolayer values.
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Figure 6.3: Exchange coupling constants Jij as function of interatomic distance for hexag-
onal Fe (left) and Co (right) islands containing 37 atoms. The values Jab and Jcd are
indicated to highlight the difference in exchange coupling for the outer and inner island
atoms, respectively.

atoms (e.g. for the atoms marked with c and d) to 81 meV for the coupling among low-
coordinated edge atoms (e.g. atoms a and b). For both elements the Jij values decay
very quickly with increasing interatomic distance as seen already for the small Fe and Co
clusters in the previous chapter. This strong ferromagnetic exchange coupling between
nearest neighbouring atoms is comparable in magnitude to the values of standard bcc Fe
(37.8 meV) and hcp Co (26.3 meV) which results in critical temperatures Tcrit = 440 K
and Tcrit = 470 K for Co37 and Fe37, respectively [90].

Performing magnetic torque calculations for such systems gives access to the anisotropic
atomic exchange interactions as well as the magnetocrystalline anisotropy energy ∆Esoc

in a site-resolved way (see chapter 2.2 for a more detailed description). Fig. 6.4 shows the
φ dependence of the torque component Tθ at θ = π/4 for the 37 atoms of a hexagonal
Co island. Similar to the torque results for deposited dimers and trimers presented in the
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Figure 6.4: Magnetic torque results for Co37 deposited on Pt(111): The figure on the
left-hand side depicts the partitioning of the island into hexagonal atomic shells. The
colour code corresponds to the Tθ(φ) curves in the graph on the right-hand side. The
thick coloured lines show the sum of Tθ,i(φ) over each atomic shell with each Tθ,i(φ) given
by a thin dashed line. The black dashed line gives the total Co contribution to Tθ(φ) while
the thick black line also includes the Pt contribution from the substrate atoms.
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Figure 6.5: Magneto-crystalline anisotropy energy ∆Esoc for pure Fe and Co islands having
hexagonal geometry: total ∆Esoc as function of island size (left panel) and shell-resolved
∆Esoc profiles for islands containing 271 atoms (right panel).

previous chapter each magnetic moment experiences its individual site dependent torque
resulting from the presence of DM interactions among the atoms. From the amplitude of
Tθ(φ) for atoms located in different hexagonal shells one can see that the DM contributions
to Tθ(φ) are most pronounced for atoms in the outermost atomic shell, i.e. for atoms with
reduced local symmetry. For Co atoms having a higher local symmetry, i.e. in or close to
the island centre the φ dependence of Tθ becomes very small. The thick lines in Fig. 6.4
show the sum of the Tθ(φ) curves over each hexagonal atomic shell together with the total
torque acting on the Co atoms. Due to the highly symmetric island shape there is only a
negligible φ dependence of Tθ which demonstrates that the island as a whole behaves like
an uniaxial magnet with

∆Esoc = K2,1 = −
∑

i

Tθ=π
4
,i . (6.1)

In this way it is convenient to decompose ∆Esoc into contributions coming from the dif-
ferent hexagonal atomic shells which results in similar profiles of ∆Esoc as shown above
for the magnetic moments. Moreover, it should be stressed that in contrast to very small
clusters the contribution to the anisotropy generated by the substrate atoms is no longer
negligible.

In the left panel of Fig. 6.5 one can see a nearly linear increase in ∆Esoc with increasing
island size for Co islands. For Fe islands, however, a different trend is obtained with ∆Esoc

showing a converging behaviour followed by a probable decrease in ∆Esoc when going to
even larger islands. The reason for this different behaviour is shown in the right panel
of Fig. 6.5 where the corresponding ∆Esoc profiles for the largest simulated islands are
shown. Here, the substrate contribution is not included. The atomic ∆Esoc profiles for
Fe and Co show a different oscillatory behaviour for approaching the value of the full
monolayer when going from the edge towards the island centre. For Co the maximum
anisotropy is obtained for the step atoms, going towards the centre by one atom ∆Esoc

jumps to a negative value, then back to larger positive values for the next two atomic
shells until it enters a more or less constant regime slowly approaching the full monolayer
value. In the case of Fe the situation is different. Here, the second outermost atomic shell
shows the highest anisotropy followed by a smooth decay towards the monolayer value
with negative ∆Esoc. In both cases the islands are large enough so that the ∆Esoc profiles
for the outermost four atomic shells are independent of the island size. This is shown in
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Figure 6.6: Dependence of the shell-resolved ∆Esoc profiles on the island size for hexagonal
Fe (left panel) and Co (right panel) islands. In order to stress the convergence of ∆Esoc

for the outer island atoms the graphs start with the outermost island shell (left) going
towards the island centre (right). The dashed lines show the corresponding values for the
full monolayer.

Fig. 6.6 where one can see that the local ∆Esoc values converge first for the outer edge
atoms of the islands when increasing the island size. By contrast the central island atoms
approach only slowly the ∆Esoc value of the full monolayer.

6.2 Fe and Pt decorated Co Islands on Pt(111)

The effect of atomically sharp one-dimensional interfaces on the blocking temperature Tb
of Co islands on Pt(111) has been investigated experimentally by S. Ouazi and S. Rusponi.
Monolayer high Co islands surrounded by Fe or Pt shells have been assembled. The growth
temperatures and deposition rates have been optimised such as to maintain the interface
lengths and island morphologies independent of the shell element. The STM image in
Fig. 6.7a) shows the morphology of Co islands decorated by an Fe shell. The ramified
islands are about 1000 atoms in size and correspond to a surface coverage θ of 0.155 ML
with a Co core part θc of 0.12 ML and an Fe shell part θs of 0.035 ML. In addition Fig. 6.7a)
depicts a comparison of sizes with the simulated hexagonal Co islands which illustrates
that experiment and theory are within the same size regime. The experimental results for
Tb shown in Fig. 6.7b) reveal the qualitative difference between decoration with Fe and
Pt shells, respectively. While small amounts of Fe steeply increase Tb, Pt strongly reduces
it. For comparison pure Co islands with the same size are also shown. Their blocking
temperature increases much less than in the Fe case and this increase is proportional to
the increase in perimeter length. The increase of Tb for Fe takes on a smaller slope at
Θs,Fe = 0.07 ML, where the Fe shell is on average two atoms wide. At that point Tb
has increased by 55 % when compared to pure Co islands of the same size (Tb = 172 vs.
111 K).

Fig. 6.7c) shows calculated magnetic anisotropy energies ∆Esoc for hexagonal Co cores
of fixed size (127 atoms) perfectly decorated with one, two, three and four atom wide shells
of Fe, Co and Pt, respectively. The pure Co islands show a linear increase in ∆Esoc with
increasing island size. For the decoration with Fe and Pt, however, one finds features not
observed for the experimental blocking temperatures. Placing a one atom wide shell of
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Figure 6.7: Co-Fe and Co-Pt core-shell islands: a) STM image showing the morphology
of monolayer high Co cores decorated by Fe. The blue hexagon with red rim corresponds
to an island containing 271 atoms, i.e. 127 atoms Co core surrounded by three atomic
shells (144 atoms) Fe. b) Measured blocking temperature Tb as function of shell coverage
θs for Co core islands with Fe (red circles), Co (blue triangles) or Pt (green diamonds)
shells. The shell thickness is also expressed in an estimated number of atomic rims. c)
Calculated ∆Esoc values for a compact hexagonal Co core of 127 atoms decorated by one
to four atom wide shells of Fe, Co and Pt.

Fe around the Co core reduces its ∆Esoc and for Pt a perfect one atom wide shell suffices
to even flip the island magnetisation from out-of-plane to in-plane. Further surrounding
with Pt then restores the positive values of ∆Esoc, however, much reduced when compared
to the pure Co island. For the Fe decorated Co islands, however, a second, third and
fourth atomic shell of Fe gives a 50%, 74% and 40% increase in ∆Esoc, respectively, when
compared to pure Co islands of the same size.

Decomposition of ∆Esoc into contributions of individual atomic sites reveals that for
pure Co islands about half of the magnetic anisotropy is contributed by the polarised
Pt(111) substrate. Interestingly, this substrate contribution is reduced for the Fe dec-
orated Co cores while in the case of Pt shells the anisotropy contribution coming from
the substrate is responsible for obtaining a positive ∆Esoc in total, i.e. an out-of-plane
magnetic easy axis.

For the purpose of making the core-shell interface effects more visible Fig. 6.8 presents
radial ∆Esoc profiles, i.e. averaged over each hexagonal shell of the simulated islands.



6.2. Fe and Pt decorated Co Islands on Pt(111) 113

The left and right columns of Fig. 6.8 display radially resolved ∆Esoc values for Co cores
successively decorated with Fe and Pt, respectively. For comparison the black squares
show ∆Esoc for the island atoms of the corresponding bare Co cores. Upon inspection
of these figures one can clearly see the qualitative difference between Fe and Pt shells
with the largest variations in ∆Esoc occurring at the core-shell interfaces and at the island
edges. A monoatomic Fe shell reduces the anisotropy of the outermost Co atoms to a
small negative value and also the shell atoms themselves have slightly negative, i.e. in-
plane anisotropy. In contrast, a biatomic Fe shell gives rise to large positive anisotropies
for the Fe shell atoms. The anisotropies of the two adjacent atomic rings of Co at the
interface are only slightly shifted with respect to a pure Co island of the same size resulting
in an almost unchanged ∆Esoc coming from the Co core. The profiles for Co cores with
tri- and tetraatomic shells of Fe continue this trend with large positive ∆Esoc values for
the shell atoms and minor anisotropy changes for the Co cores. The surrounding of Co
islands with perfect two or three atom wide Fe rims gives independent of the island size
always a higher total ∆Esoc per island arising from the large ∆Esoc increase for the atoms
in the Fe shells. The comparison of the ∆Esoc profiles in the right panel of Fig. 6.5 shows
that the ∆Esoc values of the Fe shell atoms are strongly increased when compared to the
corresponding values of pure Fe islands. This reveals that the strong increase in ∆Esoc for
Co islands that are decorated by Fe atoms has its origin in the finite shell width rather
than a pure interface effect.

The different shell widths for Pt presented in the right column of Fig. 6.8 show the
strong effect of Pt decoration on the anisotropies of neighbouring Co core atoms. Here,
a monoatomic Pt rim alters ∆Esoc for the outermost Co atoms from 0.4 to −1.2 meV
switching the anisotropy for the whole island to be in-plane. Additional surrounding with
Pt immediately reduces this effect so that an out-of-plane anisotropy for the island is
recovered. The influence of the Pt shell on the Co cores is limited to the two outermost
atomic Co shells. In the case of Pt the interface effect on ∆Esoc with respect to the
Co cores is more pronounced when compared to Fe shells. Also here one can see clearly
the strong impact on ∆Esoc when the decorating Pt rim is just one atom wide. It is
worth mentioning that the change in the orbital magnetic moment ∆µorb when changing
the direction of the magnetisation has a similar spatial dependence when compared to
the ∆Esoc values for the individual island atoms. These similar behaviours for ∆Esoc

and ∆µorb are mostly coherent with the analytical models of Bruno [60, 59] and van der
Laan [61] as discussed in the previous chapters. Nevertheless, for some island atoms the
correct sign of ∆µorb with respect to ∆Esoc is not obtained which demonstrates once more
the limitations of these models which were derived for pure 3d systems. These spatially
resolved results underline that the presence of an interface in a core-shell island affects
significantly the magnetic properties, in an element-specific way. The occurring changes
are in general not locally restricted to the two atomic shells forming the interface.

The trends for the calculated ∆Esoc- and the measured Tb-curves in Figs. 6.7b) and c)
compare very well for each core-shell combination. The only qualitative differences oc-
cur for the monoatomic shells as the theoretically obtained minima are not observed in
experiment. One possible explanation is that the shell growth around the islands is par-
tially irregular so that one atom wide shells are never dominantly present among the
deposited islands. As the magnetic shape anisotropy ∆Esh for the islands is still small
(∆Esh ≈ 0.08 meV per atom) when compared to ∆Esoc one can set ∆E ≈ ∆Esoc. As-
suming further a coherent magnetisation reversal, as it has been observed for 600 atoms
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Figure 6.8: Radially resolved ∆Esoc profiles for Co islands surrounded by Fe and Pt
shells: reducing the core size while increasing the shell width from one to four Fe atoms
(left column) and Pt atoms (right column), respectively. The black squares show the
corresponding ∆Esoc profiles for pure Co cores.
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large Co islands on an Au(11, 12, 12) surface [98], yields Tb = 145 K for Co-cores with an
average Fe shell of 0.07 ML, which compares reasonably well with the experimental value
of 172 K. This shows that the absolute values of ∆Esoc are of the right order of magnitude.

These results demonstrate that the magnetic anisotropy energy of deposited islands
can be strongly affected by the formation of lateral atomically thin interfaces and this
with a strong chemical dependence. Former experiments for CoPt multilayers have shown
that a vertical interface between Co and Pt can lead to a doubling of the orbital magnetic
moment anisotropy and an uniaxial out-of-plane magnetic anisotropy of the Co atoms
increased by a factor of five [99]. This trend is also confirmed by corresponding theoretical
investigations for Ptn/Co/Pt(111) presented in Appendix A. For Pt decorated Co islands,
however, the lateral CoPt interface leads to the opposite effect, i.e. a strong in-plane
anisotropy.

Regarding the FeCo interface, it could be shown by magnetic moment measurements
for multilayered thin films [100] as well as for Fe coated Co particles [101] that the FeCo
interface leads to increased magnetic moments in the first case and to comparable moments
existing at Co surfaces. Such previous investigations in thin films are then very helpful to
suggest which combination of elements could lead to magnetically hard bimetallic particles.
But the role of the shell-thickness reinforced by the nanometric size of the particles should
be taken into account for future experimental studies.

6.3 Fe1−xCox Alloy Islands on Pt(111)

The effect of the alloy stoichiometry on the blocking temperature has also been studied
experimentally for Pt-Fe1−xCox core-shell islands. The STM image in Fig. 6.9a) displays
apparent height contrast between the Pt cores (green) and the Fe1−xCox shells (grey).
The white spots are atoms in the second layer that sit on top of the Pt cores. In order to
make the contrast between Pt cores and alloy shells more visible the original STM image
has been modified by the author replacing the grey values for Pt with green colour and
setting the background to black. The cartoons at the bottom of Fig. 6.9a) show the size
comparison with the theoretically investigated systems depicted in Figs. 6.9d) and e). In
Fig. 6.9b) Tb is shown for these islands as a function of the Co concentration x. The curve
shows a maximum in Tb located at x = 0.5 being two times as high as Tb for pure Fe
(x = 0) or pure Co (x = 1). From the STM images the shell areas As and their outer
perimeters Ps were determined for each alloy composition. Fig. 6.9c) shows that the mean
values of both quantities, obtained from a statistical analysis of ensembles of more than
1000 islands for each composition, do not depend on composition. The compositional
independence of the island morphology is mandatory to clearly reveal the alloy effect on
Tb since the perimeter length and the shell area strongly influence Tb as well. One should
emphasise here that this approach of core decoration, done in the group of Prof. H. Brune,
has been so far the only method to achieve this compositional independence of morphology.
Deposition of both elements without Pt cores would result in compositionally dependent
island densities and shapes due to the different diffusion barriers of both elements.

Looking at the STM image one can see that there are only few regions where the
Fe1−xCox shells are atomically thin. Most of the Fe and Co atoms form larger compact
islands that surround the Pt cores. The STM data suggest that strain effects are small
since the alloy shells appear for all compositions with uniform heights without stacking
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Figure 6.9: Pt-Fe1−xCox core-shell islands: a) Colour-coded constant current STM image
showing monolayer-high compact Pt islands (green) surrounded by Fe0.5Co0.5 shells (grey).
The white spots correspond to atoms in the second atomic layer. The hexagons at the
bottom show the size comparison with the simulated structures. b) Measured blocking
temperature Tb as function of shell composition x. c) The mean shell area As as well as
the shell perimeter Ps do not vary with x. d) ∆Esoc per alloy atom as function of x for
alloy islands containing 169 atoms, alloy islands (119 atoms) with partial Pt interface as
well as for a full alloy monolayer. e) Same as in d) but for smaller compact alloy islands
with partial Pt interface and hexagonal Pt cores (37 atoms) with a two atom wide alloy
shell (54 atoms).
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Figure 6.10: ∆Esoc profiles for Fe1−xCox alloy islands consisting of 169 atoms with varying
Co concentration x. Note the different edge behaviour for pure Co and Fe. The alloy
exhibiting maximum ∆Esoc at around x = 0.2 shows almost no spatial variations in the
anisotropy. The crosses indicate the values of the corresponding full monolayers.

faults and thus are pseudomorphic with the Pt(111) substrate. For pure Co and Fe islands
this is expected from former experiments. Co islands with a size comparable to the shell
width are pseudomorphic, they exhibit partial dislocations only upon reaching 5 to 8 nm
in diameter [102]. Fe grows pseudomorphic on Pt(111) up to completion of the first
monolayer [103]. The chemical order in the alloy shells can be assumed to be random due
to growth by codeposition at room temperature, impeding significant rearrangement of
the atoms.

A quantitative analysis of the experimental data gives an additional energy barrier
∆E = 0.14 ± 0.02 meV per atom for x = 0.5 when compared to pure Co or Fe islands
adjoined to Pt cores. The corresponding ab initio results shown in Fig. 6.9d) for deposited
Fe1−xCox islands with and without Pt interface exhibit a doubling in ∆Esoc for x ≈ 0.25.
In fact the experimental and theoretical trends for Pt-Fe1−xCox core-shell islands are
very similar to the ones of deposited Fe1−xCox monolayers discussed in chapter 4. For the
monolayers the strong out-of-plane ∆Esoc results from the lifting of electronic degeneracies
upon changing the magnetisation direction of two spin-orbit coupled in-plane orbitals with
dxy and dx2−y2 character (see Fig. 4.10 on page 66). The increase in ∆Esoc in the alloy
is then achieved by a gradual change of the effective number of electrons and thus a fine
tuning of the relative energetic positions of electronic states with respect to the Fermi
level. It is also instructive to have a look at radially resolved ∆Esoc data for different alloy
islands. Fig. 6.10 depicts again the ∆Esoc profiles for pure Fe and Co islands consisting of
seven atomic shells. Variation of x demonstrates how the transition of the local anisotropy
values occurs when going from Fe to Co. Interestingly, the Fe0.75Co0.25 alloy island being
close to maximum ∆Esoc shows almost no spatial variations in the anisotropy, i.e. the
monolayer like atoms in the island centre show the same high ∆Esoc values per atom as
the low coordinated edge atoms. This behaviour is very different from the pure Fe and Co
islands or the shell surrounded Co islands in the previous section where the exposed edge
atoms show much larger absolute ∆Esoc values when compared to the inner island atoms.

From the data in Fig. 6.9d) one can see that the influence of the Pt interface on ∆Esoc

is strongest for pure Fe and Co while for a large concentration range the anisotropy of the
alloy stays unaffected. Fig. 6.9e) shows how decreasing the Fe1−xCox island size makes the
Pt interface effect much more pronounced. For a small trapezoidal shaped alloy island of
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Figure 6.11: ∆Esoc as function of island size comparing Fe0.75Co0.25 alloy islands with
Co-Fe core-shell islands. The Fe shells are two atoms wide. In addition ∆Esoc for pure Fe
and Co islands is also shown.

46 atoms being attached to an identical Pt island the position of the maximum of ∆Esoc

stays unchanged (red squares). For pure Co and Fe, however, the Pt interface effect is now
dominant causing an in-plane anisotropy for small Co islands and a strong out-of-plane
anisotropy in the case of Fe. Finally, the black circles in Fig. 6.9e) reveal another change
in ∆Esoc as function of x when finite size effects come into play. For a two atom wide
alloy shell surrounding a Pt core the original alloy effect on ∆Esoc is not present any more
making the previously observed maximum vanish. Instead ∆Esoc decays monotonically
with increasing x from more than 0.6 meV per atom for Fe to about 0.2 meV per atom
for pure Co.

From these results one can conclude that the alloy effect on ∆Esoc becomes quickly
dominant over interface and finite-size effects with increasing island size while the lateral
Pt interface has its strongest influence on pure Fe and Co islands. Comparing these
results with the experimental blocking temperatures one can see a good agreement in
the concentration dependent behaviour of ∆Esoc. As in the case for the full monolayers
the theoretical maximum is shifted by about x = 0.25 with respect to the experimental
one towards the Fe rich side. The reasons for this deviation remain unclear and it can be
either ascribed to theory, i.e. shortcomings in the approximative nature of the calculational
scheme, or experiment, i.e. for the arrangement of Fe and Co atoms within an island is
not totally random. In fact a slight submesoscopic precipitation of Co could cause an Fe
enriched phase leading to a corresponding shift in maximum ∆Esoc. Nevertheless, from
analysing the theoretical results for the island systems one can deduce that the alloy effect
is dominant in the experimentally investigated system and that the ratio between alloy
island size and Pt interface length is important for drawing conclusions concerning the
role of the observed energy barriers.

In comparison with the previously discussed compact Co-Fe core-shell systems the alloy
islands with optimal composition x ≈ 0.25 have about 30% larger anisotropies. Fig. 6.11
shows ∆Esoc as function of island size for hexagonal Fe0.75Co0.25 alloy islands as well as for
Co cores having two atom wide Fe shells. Independent of the island size the alloy islands
always show the largest total ∆Esoc values which can be ascribed to the better atomic
efficiency with all atoms having a large contribution.
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6.4 Co Islands Decorated by Fe1−xCox Alloy Shells

In order to study the interplay between interface, finite-size and alloy effects the combi-
nation of Co cores with Fe1−xCox shells has also been investigated experimentally. These
show the combined influences of the alloy, interface as well as finite-size effects on the
blocking temperature. The left panel of Fig. 6.12a) shows the variation of Tb as function
of x, while the mean size of the experimental islands is kept constant. In contrast to the
Pt-Fe1−xCox core-shell islands in Fig. 6.9 the concentration dependent maximum is now
shifted to the Fe rich side.

Accounting for the variety of possible Fe1−xCox shell structures around the Co cores
theoretical ∆Esoc results for two idealised configurations are presented in the right panel
of Fig. 6.12: an island with one half Co (46 atoms) and the other half Fe1−xCox (45 atoms)
as well as a Co core (37 atoms) with a perfect two atom wide alloy rim (54 atoms). In
the first case the theoretical maximum in ∆Esoc occurs at similar x when compared to
the case of Pt cores, i.e. its position is essentially determined by the alloy effect. In the
second case, however, a maximum in ∆Esoc is obtained for x = 0, i.e. here the finite size
of the surrounding shell dominates the anisotropy in this system. The linear combination
of the theoretical curves is again in good agreement with the experimental observations
taking into account that theory predicts a maximum in ∆Esoc due to the alloy effect for
x = 0.25 while the experimental blocking temperatures have their maximum at x = 0.50.

Concerning the two atom wide alloy shell it is worthwhile to analyse how its anisotropy
is modified when the element of the island core is changed. Fig. 6.13 shows the ∆Esoc

contribution of the shell atoms as function of composition x for a shell with Co and Pt
core, respectively. The same information is also given for the two cases when the core-shell
interface is removed, i.e. no core as well as the corresponding complete alloy island of the
same composition. Interestingly, the anisotropy that originates from the two atom wide
alloy shell is almost identical for Co and Pt cores. Removal of the core leads to strong
shifts in ∆Esoc for pure Fe and Co while for the alloy between x = 0.2 and x = 0.8 the
anisotropy remains almost unchanged. The atoms in the two outermost atomic shells
of the complete alloy islands exhibit a similar trend in ∆Esoc vs. x as the whole island.
Presumably by accident, the Co and Pt cores influence the anisotropy of the isolated alloy
shell in a similar way. For a pure Fe core at x = 0, however, the situation is different. In
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Figure 6.12: Blocking temperature Tb and magneto-crystalline anisotropy energy ∆Esoc

for Co-Fe1−xCox core-shell islands: Measured Tb values as function of x (left panel) versus
theoretical ∆Esoc per island atom calculated for the depicted model systems.
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Figure 6.13: ∆Esoc per alloy atom for an isolated two atom wide shell containing 54
atoms (black circles). Filling up the inside with Co (blue squares), Pt (green diamonds)
or Fe1−xCox alloy (crosses) cores shows the influence of the interface effect. For all three
systems only the alloy contribution to ∆Esoc is presented.

this case the Pt-Fe core-shell islands have a much larger total ∆Esoc when compared to
pure Fe islands of the same size. This analysis helps to interpret the experimental findings
of Rusponi et al. [104] which resulted in the conjecture that only the island edge atoms
are responsible for the strong out-of-plane anisotropy of Co islands deposited on Pt(111).
The authors concluded this by comparing the measured energy barrier values for pure Co
islands having different perimeter lengths. In a second step they demonstrated that the
anisotropies of pure Co islands are almost identical to Pt-Co core-shell islands having the
same size and perimeter length. However, the theoretical results presented in this chapter
have clearly pointed out that for low-dimensional nanostructures the magnetic anisotropy
energy is not a separable quantity and that in general one cannot transfer known magnetic
properties from one system to another.

6.5 FePt Islands on Pt(111)

How the one-dimensional Pt decoration affects the magnetic anisotropy has also been
theoretically investigated for Fe-Pt core-shell islands. Fig. 6.14a) shows what happens
when a 61 atom Fe or Co island is successively decorated by one, two and three atom
wide shells of Pt. In addition an infinitely thick Pt shell has been simulated (indicated by
the crosses) which corresponds to the case where the islands are trapped within the first
Pt(111) substrate layer. In comparison with the Co islands (blue triangles) the anisotropy
of the Fe islands (red circles) is even more susceptible to surrounding with Pt and shows
very strong dependence on the Pt shell thickness. In analogy with what has been found
for Co-Pt core-shell islands a monoatomic shell of Pt atoms around Fe islands switches
their magnetic anisotropy from out-of-plane to in-plane. A second atomic rim of Pt atoms,
however, has the opposite effect and increases the out-of-plane ∆Esoc by 100% with respect
to the bare Fe core. Any further expansion of the Pt shell then maintains a large out-of-
plane anisotropy being about 50% larger when compared with the pure Fe island. The
radial ∆Esoc profiles in Figs. 6.14b)-e) depict how this strong oscillation in the anisotropy
with increasing shell thickness is caused by dramatic ∆Esoc variations in the outermost Fe
edge atoms. For completeness in Fig. 6.14f) the ∆Esoc profile for the 61 atom Co island
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Figure 6.14: Magnetic anisotropy for Fe-Pt and Co-Pt core-shell islands: a) total ∆Esoc

as function of Pt shell width for Fe and Co cores consisting of 61 atoms. The crosses
indicate the value for the case when the Co and Fe cores are sunken into the first Pt
substrate layer. b-d) corresponding ∆Esoc profiles for Fe cores surrounded by one, two
and three atom wide Pt shells. e) ∆Esoc profile for an Fe island in the first Pt substrate
layer. f) ∆Esoc profile for a Co island in the first Pt substrate layer. The black squares
show the ∆Esoc profiles for the pure Fe and Co cores, respectively, and the green diamonds
correspond to the interfacing Pt atoms.

inside the first Pt substrate layer is shown in accordance with the Co-Pt core-shell results
presented in Fig 6.8.

Another interesting situation arises when the number of Fe-Pt interfaces is increased.
Fig. 6.15 shows the low-temperature (T = 0.1 K) magnetic configuration of an FePt island
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Figure 6.15: Magnetic configuration of a 91 atom FePt island deposited on Pt(111): The
island’s structure corresponds to a (2× 1)-two-dimensional unit cell with alternating rows
of Fe (red) and Pt (green). The Pt substrate atoms are not shown. The alignment of the
magnetic moments presented by the arrows has been obtained via Monte Carlo simulations
for T = 0.1 K.

consisting of alternating Fe (red) and Pt (green) rows deposited on a Pt(111) surface. The
directions of the magnetic moments located at the Fe sites are indicated by the red arrows.
This non-collinear magnetic structure is the outcome of a subsequent Monte Carlo (MC)
simulation based on the calculated parameters for the effective Heisenberg Hamiltonian in
Eq.(2.187). The MC simulation has been performed by Svitlana Polesya.

The non-collinearity between the Fe chains is essentially caused by the nearest neigh-
bour Fe-Fe interchain DM interaction (|D| = 4.6 meV) being of similar magnitude as the
isotropic exchange coupling (J = 8.8 meV). Within a Fe chain, however, the DM interac-
tion is more than one order of magnitude smaller when compared to the nearest neighbour
intrachain isotropic exchange (J = 60 meV) leading only to a slight screwing of the Fe
magnetic moments along the chain. Intriguingly, this system shows a strong in-plane MAE
with up to 1.1 meV per Fe atom and the magnetic easy axis being perpendicular to the
chains. However, the island has a considerable net magnetic moment pointing along the
surface normal due to the peculiar interplay between anisotropy, exchange coupling and
DM interactions leading to an unexpected hysteresis behaviour which has been observed
by Honolka et al. [4] for a comparable FePt surface alloy.

6.6 Conclusions and Summary

The theoretical results presented in this chapter demonstrate how the magnetic anisotropy
energy of Fe and Co nanostructures deposited on Pt(111) can be manipulated, either by
alloying or via formation of one-dimensional interfaces. In analogy to full alloy mono-
layers the Fe1−xCox alloy islands show a 100% increased out-of-plane anisotropy around
x = 0.25 when compared to pure Fe and Co islands of the same size. Sharp lateral inter-
faces between Fe, Co and Pt can also strongly influence ∆Esoc, however, in a much less
predictable way. Here, finite size effects of the interfacing species are of crucial impor-
tance and can cause tremendous changes in the anisotropy of adjoined atoms. The good
agreement between calculations and experiments opens the way for future investigations
with promising candidates for large anisotropies predicted by theory.



Chapter 7

Ab initio Calculations of the
Magnetic Shape Anisotropy

The magnetic anisotropy energy ∆E that determines the preferred direction of the mag-
netisation is usually decomposed into a magnetocrystalline part ∆Esoc caused by spin-orbit
coupling (SOC) and a magnetic dipolar contribution ∆Esh that depends on the shape of
the sample. Although both contributions to ∆E are caused by the underlying electronic
structure their theoretical description has been split so far in an artificial way. While
the SOC induced ∆Esoc is normally obtained via relativistic ab initio calculations based
on spin density functional theory (SDFT) [7] the shape dependent ∆Esh is always calcu-
lated in a classical way. For many systems, however, both contributions are on the same
order of magnitude so that the incoherent mixture of quantum mechanical and classical
treatment seems to be questionable. In this chapter an ab initio approach is introduced
that gives direct access to the magnetic shape anisotropy energy ∆Esh. With ∆Esh being
actually caused by the Breit interaction [46, 47, 48] between individual electrons the inclu-
sion of this energy term in the SDFT Hamiltonian opens a way to treat both parts of the
magnetic anisotropy energy in a coherent quantum mechanical scheme. Interestingly, the
Breit interaction is commonly included in many relativistic molecular quantum chemical
calculations [105] while its application to extended 2D or 3D magnetic structures is almost
unexplored. Concerning this only the works of Jansen [106] and Stiles et al. [107] can be
mentioned who included the Breit Hamiltonian in their magnetic anisotropy calculations
for 3d transition metals. While Jansen performed model calculations to estimate the order
of magnitude to be expected for the anisotropy due to the Breit interaction, Stiles et al.
carried out numerical investigations on the basis of the local spin density approximation
(LSDA) accounting for the so-called spin-other-orbit part of the Breit interaction only.
Application to the pure elements Fe, Co and Ni could not remove the discrepancy found
in previous investigations between theory and experiment for the magnetic anisotropy
∆E. In these highly symmetric bulk systems, however, the shape anisotropy is very small
(in the order of 10−6 eV) whereas for systems with reduced dimensionality like mono- or
multilayers a much higher anisotropy energy (in the order of 10−4 eV) is very common.
For the latter systems a coherent quantum mechanical treatment of ∆Esh seems to be
very important as ∆Esh and ∆Esoc are often competing quantities. This can cause for
example a ’flip’ of the magnetic easy axis from an out-of-plane to an in-plane direction
with increasing the number of magnetic layers.
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7.1 Theoretical Framework

The Breit interaction between two electrons is given by the Hamiltonian∗ (in atomic Ry-
dberg units) [105, 108]

HBreit(r1, r2) = − 2

r12
α1 ·α2 +

1

r12

[
α1 · α2 − (α1 · e12) (α2 · e12)

]
, (7.1)

where the first term is known as magnetic or Gaunt part and the second term as retar-
dation part. Here, the vectors of the Dirac matrices αi represent the corresponding total
electronic current density operator ji = ecαi that includes orbital as well as spin contribu-
tions. Finally the distance vector r12 = r1−r2 connects the positions of two electrons and
the vector e12 denotes the unit vector along r12. Expanding 1/r12 in complex spherical
harmonics and writing the scalar products in spherical coordinates one obtains for the
dominant magnetic term

Hmag(r1, r2) = −2
∑

ℓm

4π

2ℓ+ 1

rℓ<

rℓ+1
>

(−1)mY m
ℓ (r̂1)Y

−m
ℓ (r̂2)

∑

m̃

(−1)m̃α−m̃,1αm̃,2 , (7.2)

with r< = min(r1, r2) and r> = max(r1, r2). An analogous approach can also be applied
to rewrite the second part of the retardation term (see appendix B.1). In terms of the
electronic Green’s function one can calculate the effective Breit Hamiltonian for an electron
(1) due to all other electrons (2) via the following expression:

HBreit(r1) = − 1

π
Im Tr

∫ EF

dE

∫
d3r2 HBreit(r1, r2)G(r2, r2, E) . (7.3)

Within the relativistic KKR multiple scattering formalism described in section 2.2.7 the
electronic Green’s function can be expressed via Eq. (2.150)

G(ri, r
′
j , E) =

∑

ΛΛ′

ZΛ′(ri, E)τ ijΛ′Λ(E)Z×
Λ (r′j , E)−δij





∑
Λ

ZΛ(ri, E)J×
Λ (r′i, E) for r < r′

∑
Λ
JΛ(ri, E)Z×

Λ (r′i, E) for r > r′
,

(7.4)
with ZΛ(ri, E) and JΛ(ri, E) being regular and irregular solutions of the Dirac equation
for the atomic site i, respectively, having the form

ZΛ(r, E) =
∑

Λ′

(
gΛ′(r,E)χΛ′(r̂)

ifΛ′(r,E)χ−Λ′ (r̂)

)
.

The radial functions gΛ(r,E) and fΛ(r,E) are the large and small radial components of
the relativistic bispinor wavefunctions ZΛ(r, E), respectively and the spin-angular index
Λ = (κ, µ) combines the relativistic spin-orbit and magnetic quantum numbers κ and
µ [12].

Inserting Eqs. (7.2) and (7.4) into Eq. (7.3) yields the Breit interaction of one electron
with all electrons in the system under consideration. This can be expressed in terms of
an effective vector potential A(r) coupling to the electronic current density operator, i.e.

HBreit ≡ eα ·A(r) = e
∑

m̃

α−m̃

∑

ℓm

Am̃
ℓm(r)Y m

ℓ (r̂) , (7.5)

∗Detailed derivations (from semiclassical theory as well as quantum electrodynamics) and an exhaustive
discussion of this Hamiltonian is presented in the book of Reiher and Wolf [105].
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with the radial vector potential functions Am̃
ℓm(r). This demonstrates that the Breit in-

teraction corresponds to the coupling of the current density connected with an electron
to a vector potential that is generated by currents due to the motion of all electrons. As
a consequence the Breit interaction can be represented by an additional term of the form
eα ·A in the effective single particle Dirac equation set up in the framework of relativistic
SDFT [7], i.e. Eq. (2.24) turns into

[
−icα ·∇+ βmc2 + Veff(r) + βσzBeff(r) + eα ·A(r)

]
ψi(r) = Eiψi(r) . (7.6)

For the evaluation of the vector potential A(r) within an atomic cell i of an extended
system it is advantageous to decompose A(r) into on- and off-site contributions according
to

Ai(r) =
1

c

∫
d3r′

j(r′)

|r − r′| = Aon
i (r) +Aoff

i (r) . (7.7)

For the on-site contribution to the magnetic part of HBreit the corresponding radial func-
tions Am̃

ℓm(r) are given within multiple scattering theory by:

Am̃
ℓm(r) = e

4π

2ℓ+ 1
(−1)m+m̃

1

π
Im

∫ EF

dE

[
∑

ΛΛ′

τΛΛ′〈Z×
Λ′ |

rℓ<

rℓ+1
>

Y −m
ℓ αm̃ | ZΛ〉

−
∑

Λ

〈J×
Λ | rℓ<

rℓ+1
>

Y −m
ℓ αm̃ | ZΛ〉

]
, (7.8)

where the occurring matrix elements can be decomposed into radial and angular parts:

〈Z×
Λ | rℓ<

rℓ+1
>

Y −m
ℓ αm̃ | ZΛ′〉 = i

[
〈gΛ | rℓ<

rℓ+1
>

| fΛ′〉〈χΛ | Y −m
ℓ σm̃ | χ−Λ′〉

−〈fΛ | rℓ<

rℓ+1
>

| gΛ′〉〈χ−Λ | Y m
ℓ σ−m̃ | χΛ′〉

]
. (7.9)

For the angular matrix elements one obtains

〈χΛ | Y −m
ℓ σm̃ | χ−Λ′〉 =

√
2C

−1/2
Λ C

1/2
−Λ′〈Y µ+1//2

l | Y +1
ℓ | Y µ′−1/2

l̄′
〉 for m̃ = −1

= −
√
2C

1/2
Λ C

−1/2
−Λ′ 〈Y µ−1//2

l | Y −1
ℓ | Y µ′+1/2

l̄′
〉 for m̃ = +1

=
∑

ms

2msC
ms

Λ Cms

−Λ′〈Y µ−ms

l | Y −m
ℓ | Y µ′−ms

l̄′
〉 for m̃ = 0 ,

with Cms

Λ = C(ℓ12j;µ −msms) being Clebsch-Gordan coefficients [12].

The off-site contribution Aoff
i (r) caused by the currents within all other cells j is

obtained by applying the common far field approximation

Aoff
i (r) =

∑

j 6=i

mj × (r −Rj)

|r −Rj|3
(7.10)
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where the total magnetic moment mj represents the current distribution in atomic cell j.
The lattice summation in Eq. (7.10) is dealt with by an Ewald summation technique in
the case of 2D and 3D systems.

The representation of the vector potential via the radial functions Am̃
ℓm(r) and complex

spherical harmonics allows then a straightforward implementation into the Dirac equation
written in spherical coordinates. Inserting the wave functions as represented by Eq. (7.5)
into Eq. (7.6) and projecting on the spin-angular index Λ = (κ, µ) leads to the following
system of coupled radial differential equations (omitting the energy arguments)

∂

∂r
PΛ(r) = −κ

r
PΛ(r) +

[
E − Veff(r)

c2
+ 1

]
QΛ(r) +

Beff(r)

c2

∑

Λ′

〈χ−Λ|σz|χ−Λ′〉QΛ′(r)

−1

c

∑

m̃
Λ′

∑

ℓm

Am̃
ℓm(r) 〈χ−Λ| Y m

ℓ σm̃|χΛ′〉PΛ′(r) (7.11)

∂

∂r
QΛ(r) =

κ

r
QΛ(r)− [E − Veff(r)]PΛ(r) +Beff(r)

∑

Λ′

〈χΛ|σz|χΛ′〉PΛ′(r)

−1

c

∑

m̃
Λ′

∑

ℓm

Am̃
ℓm(r) 〈χΛ| Y m

ℓ σm̃|χ−Λ′〉QΛ′(r) (7.12)

for the auxiliary functions PΛ(r) = rgΛ(r) and QΛ(r) = crfΛ(r). Eqs. (7.11) and (7.12)
are in fact identical to the radial equations (2.128) and (2.129) of spin-polarised relativistic
SDFT [109, 110, 111] except for the additional last term that includes the radial functions
Am̃

ℓm(r) in combination with the angular matrix elements of the type 〈χ−Λ| Y m
ℓ σm̃|χΛ′〉.

One can see that the incorporation of A(r) into the Dirac equation causes additional
couplings among the large and small components gΛ and fΛ′ of the four-component wave-
functions, respectively. In contrast to this the effective magnetic exchange field Beff causes
only couplings between gΛ and gΛ′ as well as fΛ and fΛ′ components, respectively.

The current implementation is based on the atomic sphere approximation (ASA), i.e.
one assumes Veff(r) = Veff(r) and B(r) = Beff(r)êz . In line with these geometrical sim-
plifications A(r) is restricted accordingly to have rotational symmetry around the z-axis
pointing everywhere in tangential direction, i.e. all A0

ℓ0(r) = 0 and A+1
ℓ−1(r) = −A−1

ℓ+1(r).
Moreover, in order to keep the computational effort within practical limits the couplings
in Eqs. (7.11) and (7.12) are restricted to µ = µ′ and κ = κ′ or κ = −κ′ − 1 which leads
to independent sets of at most four coupled radial differential equations (see Feder et
al. [109] for more details). According to these restrictions no new additional couplings of
partial waves with different spin-angular character are introduced by the introduction of
A(r) into the radial equations (7.11) and (7.12) compared to the conventional relativistic
SDFT situation [109].

On the basis of the radial differential equations in conjunction with the symmetry of
the occurring potential terms one can show that for the construction of the relativistic
electronic Green’s function in Eq. (7.4) no distinction needs to be made with respect to
the left-hand side and right-hand side radial solutions for gΛ(r) and fΛ(r) [36]. Moreover
Mann and Johnson [112] showed that retardation effects do not occur within the Hartree
approximation, i.e. in this case only the magnetic part of HBreit needs to be considered.
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7.2 Results and Discussion

7.2.1 Free-standing Fe Monolayer

As a first example it is instructive to consider a free-standing bcc(001) Fe monolayer with
a lattice constant of bulk Fe (a = 2.867 Å). Taking only SOC into account, one obtains a
total magnetic moment of 3.29 µB and a magnetic anisotropy energy ∆Esoc = 0.096 meV
per Fe atom, i.e. the magnetisation points out-of-plane, with the surface normal being
the z-axis of the system. The left panel of Fig. 7.1 shows the radial functions Am̃

ℓm(r)
for this situation which contribute to the on- and off-site part of the vector potential
A(r) within each atomic sphere, respectively. In the right panel of Fig. 7.1 one can
see the resulting radial dependence of Aon(r) along the x-direction, i.e. Aon

φ (x) (black

line) together with Aoff
φ (x) (red line) obtained via Eq. (7.10). Applying the far field

approximation of Eq. (7.10) also to the on-site term results in the blue curve which is
divergent at the origin. One can clearly see that in the outermost region of an atomic
sphere the far field approximation to A(r) is already very good which justifies the use of
Eq. (7.10) also for nearest neighbouring atoms.

In order to verify the correctness of the the on-site vector potential Aon(r) when
calculated via Eq. (7.8) Aon(r) was also determined from the current density j(r) within
the Fe sphere via Eq. (7.7). The left panel of Fig. 7.2 shows the corresponding radial
electronic current density functions jm̃ℓm(r) for an Fe atom and the right panel of Fig. 7.2
presents a comparison of Aon(r) obtained from jm̃ℓm(r) with Aon(r) resulting from HBreit.
As one can see both approaches give nearly identical results.

A further impression of the spatial variation of A(r) and j(r) is given in Fig. 7.3, that
shows the vector fields in the xy-plane and their colour-coded amplitude in the xz-plane.
The figure reflects the rotational symmetry of A(r) and j(r) imposed by the use of the
ASA with the alignment of the magnetisation along the z-direction.

Accounting for HBreit gives the total MAE ∆E = ∆Esoc + ∆EBreit = −0.063 meV,
i.e. the magnetisation favours now an in-plane orientation. Taking the difference of the
calculated magnetic anisotropy energy obtained via the combined SOC+Breit- and the
SOC-only approaches, the contribution due to the Breit interaction can be separated.
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For the Fe(001) monolayer this gives a dominant contribution of ∆EBreit = −0.159 meV
over ∆Esoc = 0.096 meV. Calculating the classical dipolar shape anisotropy ∆Edd via
Eq. (2.180) results in −0.169 meV which agrees very well with the quantum mechanical
∆EBreit.

7.2.2 AnBn Multilayers

As further examples of the presented approach the multilayer systems FenPdn, FenPtn,
ConPdn and ConPtn with identical fcc(001) geometries are considered. The special case
n = 1 corresponds to the ordered L10 phase, i.e. CuAu structure with a = 2.69 Å and
c = 7.20 Å. In the case of FePd an out-of-plane anisotropy energy ∆E of 0.19 meV
per unit cell is obtained. Performing calculations without the Breit interaction allows
a decomposition of ∆E into ∆Esoc = 0.23 meV and ∆EBreit = −0.04 meV for n = 1.
The resulting ∆Esoc value of 0.23 meV for ordered FePd is in reasonable agreement with
previous ab initio calculations as for instance done by Staunton et al. [52] (and references
therein) who obtained 0.34 meV for ∆Esoc.

The top left panel of Fig. 7.4 shows the variation of ∆E of FenPdn as function of
n and its decomposition into ∆Esoc and ∆EBreit. In addition also ∆Edd calculated via
the standard classical dipole-dipole approximation is presented. One can see that the
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dipole-dipole approximation (dd) (crosses).



130 Chapter 7. Ab initio Calculations of the Magnetic Shape Anisotropy

oscillations in ∆E are caused by strong variations in ∆Esoc while ∆EBreit is linearly
dependent on n preferring an in-plane direction of the magnetisation. Moreover, ∆EBreit

agrees again very well with ∆Edd.
In the top right panel of Fig. 7.4 corresponding results for the anisotropy energy con-

tributions of FenPtn are shown. While the variation of the SOC induced anisotropy with
the number of layers n is quite different from FenPdn, the behaviour for the contribution
related to the Breit interaction is very much the same. The main reason for this finding
is that the magnetic moments of the Fe layers in FenPdn and FenPtn are nearly the same.
This situation is very similar to ConPdn and ConPtn: While the SOC induced anisotropy
is quite different, the Breit-related part is nearly the same as can be seen from the bot-
tom row of Fig. 7.4. Thus, one finds for the investigated multilayer systems that ∆Esh

determined in the ab initio and classical way gives identical results.

7.2.3 Fen Multilayers on Au(001)

As a last example the 2D system Fen multilayers deposited on a Au(001) surface have been
investigated. This system has been studied already theoretically by Szunyogh et al. [113]
who treated ∆Esh classically and found a change of the magnetic easy axis direction
from out-of-plane to in-plane occurring for n > 3. In order to keep the calculational
effort within acceptable limits the Au(001) surface was simulated by a corresponding slab
geometry consisting of seven layers Au with the number of Fe layers n ≤ 15.

Fig. 7.5 shows the anisotropy energy ∆E as function of n together with the contribu-
tions ∆Esoc and ∆EBreit. As for the FenPdn and ConPtn multilayers ∆Esoc is positive for
all n favouring an out-of-plane anisotropy contribution. Here ∆Esoc is almost constant for
n > 5 while the in-plane favouring ∆EBreit rises again with increasing n. As before, one
finds a good agreement between ab initio ∆EBreit and its classical magnetostatic approxi-
mation ∆Edd, respectively. The results for ∆Esoc and classical dipole-dipole contribution
∆Edd reproduce the findings of Szunyogh et al. [113], i.e. an out-of-plane magnetisation
for n ≤ 3 and an in-plane magnetisation for n ≥ 4.
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Figure 7.5: Magnetic anisotropy energies for Fen multilayers deposited on a Au(001) slab as
function of n: total anisotropy energy ∆E (squares) and its decomposition into magneto-
crystalline part ∆Esoc (circles) and Breit part ∆EBreit (diamonds) which is compared to
the classical dipole-dipole approximation ∆Edd (crosses).
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7.3 Summary and Conclusions

The Breit interaction has been incorporated within relativistic SDFT band structure cal-
culations for magnetic multilayer systems. This development gives access to an ab initio
calculation of the magnetic shape anisotropy energy using a coherent approach that ac-
counts simultaneously for spin-orbit coupling and the Breit interaction within electronic
structure calculations. First applications of this new approach to multilayer systems as
well as two-dimensional surface systems were presented. Taking the difference of the
calculated magnetic anisotropy energy obtained via the combined SOC+Breit- and the
SOC-only approaches, the contribution due to the Breit interaction can be separated. For
all systems investigated so far it has been found that the resulting Breit contribution, that
corresponds to the magnetic shape anisotropy energy, is very close to the classical result
based on the magnetic dipole-dipole interaction. This result obviously justifies the use
of the conventional classical approach for the shape anisotropy used so far. In particular
the conventional scheme seems to reproduce the quantum mechanical result not only in
a qualitative but in general also quantitatively in a satisfying way. Obviously, only for
rather short interatomic distances one has to be aware of possibly pronounced deviations
between the classical and quantum mechanical approaches.
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Chapter 8

Résumé

The main focus of the present work has been the ab initio theoretical investigation of the
magnetic properties of various two-dimensional Fe and Co based nanostructures deposited
on the Pt(111) surface. The study has been concentrated on systematic trends in the
spin and orbital magnetic moments, interatomic exchange interactions and the magnetic
anisotropy energy. It further addresses the influence of the Pt(111) substrate in comparison
to Au(111) or Ir(111) surfaces as well as the relation of the magnetic properties between
finite atomic clusters and nanometre sized islands or full monolayers. Here, also the role
of alloy formation between Fe and Co in monolayers and submonolayer islands has been
analysed in detail. Moreover, a novel ab initio approach to the calculation of the magnetic
shape anisotropy has been presented revealing the Breit interaction as its true source.

For the relativistic calculations of the corresponding electronic structure the versatile
Korringa-Kohn-Rostoker multiple scattering formalism within the framework of relativistic
spin-density functional theory has been used. The alloys were described within the mean
field picture of the coherent potential approximation. All calculations were performed with
the Munich SPR-KKR and TB-KKR program packages which were modified or extended
as necessary.

Summarising the results for the Fe1−xCox alloy monolayer on Pt(111) it was found
that the spin magnetic moments show a linear dependence on the composition x being
qualitatively different when compared to the corresponding standard bulk alloy. The spin
magnetic moments of Fe (2.9 µB) and Co (1.9 µB) are larger than in standard bulk bcc
Fe (2.1 µB) and hcp Co (1.5 µB), respectively, which can be mainly ascribed to the large
lattice constant of the underlying Pt substrate. The Pt substrate atoms that interface
the Fe1−xCox alloy monolayer have considerable induced magnetic moments reaching up
to 0.2 µB . This induced substrate magnetisation also contributes significantly to the
magnetic anisotropy energy which together with the orbital magnetic moments exhibits a
more complicated dependence on the alloy composition. Here, an important result is the
maximum in µorb and ∆Esoc for x = 0.3 caused by the Fermi level crossing of spin-orbit
coupled 3d-states of Fe and Co. This maximum also remains close to x = 0.3 in the cases
of Fe1−xCox/Au(111) or free-standing Fe1−xCox.

These results for Fe1−xCox/Pt(111) are also transferable to compact submonolayer
Fe1−xCox islands on Pt(111). Here, the average spin and orbital magnetic moments per
Fe or Co atom are very close to the monolayer values up to an island size of about 20 atoms.
For even smaller atomic clusters, however, a strong increase in µspin and especially µorb is
observed due to the increasing ratio between low-coordinated edge atoms and monolayer-
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like atoms in the island centre. Looking at the magnetic moments of individual atomic sites
the magnetic profiles for Fe and Co islands show that µspin (µorb) differs only noticeably
from the monolayer value for the two (three) outermost atomic shells. In contrast to the
magnetic moments, the magnetic anisotropy energy being a more sensitive quantity does
not converge as quickly to the corresponding monolayer results. It has been demonstrated
how the MAE can be manipulated, either by alloying or via formation of one-dimensional
interfaces. In analogy to full alloy monolayers the Fe1−xCox alloy islands show a 100%
increased out-of-plane anisotropy around x = 0.25 when compared to pure Fe and Co
islands of same size. Sharp lateral interfaces between Fe, Co and Pt can also strongly
influence the MAE, however, in a much less predictable way. Here, finite size effects of
the interfacing species are of crucial importance and can cause tremendous changes in the
anisotropy of adjoined atoms.

The findings for small Fe, Co and Ni clusters on Ir(111), Pt(111) and Au(111) show
that the spin and orbital magnetic moments of Fe and Co clusters on Ir(111), Pt(111) as
well as Au(111) decrease monotonously with increasing cluster size but they remain always
enhanced when compared to the corresponding complete monolayers or bulk systems. For
Ni clusters this is also true for Pt(111) and Au(111) while the magnetic moments of
small Ni clusters on Ir(111) behave in a nonuniform way. In general the atomic magnetic
moments depend strongly on coordination and they decrease with increasing number of
neighbouring atoms. This decay is much faster for µorb than for µspin. Ir and Pt surface
atoms that are nearest neighbours to cluster atoms show an appreciable induced spin
polarisation between 0.05-0.15 µB . The corresponding Au atoms are only weakly polarised
and their tiny magnetic moments couple antiferromagnetically to the magnetic moments
at cluster atoms. The exchange coupling among the cluster atoms is very strong for Fe
and Co on all three substrates exceeding the values of standard bulk bcc Fe and hcp
Co. Ni clusters show a much weaker exchange coupling which can be ascribed to their
smaller magnetic moments. The strong exchange coupling in Fe and Co clusters leads to
ferromagnetically ordered particles at room temperature which can consist of only 20-30
atoms.

Moreover, it has been demonstrated that ab initio magnetic torque calculations enable
to monitor the impact of SOC on magnetic interactions within finite nanostructures in a
very detailed way revealing subtle anisotropic effects. The detailed analysis of these results
within an extended Heisenberg Hamiltonian gives further insight and identifies the role of
various contributions as well as the limitations of such models. For Fe2 and Co2 on Pt(111)
the Dzyaloshinski-Moriya interaction was found to be pronounced owing primarily to the
SOC of the substrate leading to non-collinear magnetic configurations for the dimers in
spite of a strong ferromagnetic coupling and out-of-plane MAE. These SOC induced effects
can be quite profound in more complex systems where for example magnetic atoms are
separated by non-magnetic spacers having large SOC as this allows the isotropic exchange
to become comparable in size with the DM couplings. In particular one can infer from
these findings that the magnetic structure around the edges of magnetic nanoparticles is
likely to be significantly affected by these interactions.

Finally, the Breit interaction has been incorporated within fully relativistic band struc-
ture calculations for magnetic multilayer systems. This development gives access to an ab
initio calculation of the magnetic shape anisotropy energy using a coherent approach that
accounts simultaneously for spin-orbit coupling and the Breit interaction within electronic
band structure calculations. First applications of this new approach to multilayer systems
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as well as two-dimensional surface system Fen/Au(001) were presented. For all systems
investigated so far it has been found that the resulting Breit contribution, that corresponds
to the magnetic shape anisotropy energy, is very close to the classical result calculated on
the basis of the magnetic dipole-dipole interaction. This result obviously justifies the use
of the conventional classical approach for the shape anisotropy used so far. In particular
the conventional scheme seems to reproduce the quantum mechanical result not only in
a qualitative but in general also quantitatively in a satisfying way. Only for rather short
interatomic distances one has to be aware of possibly pronounced deviations between the
classical and quantum mechanical approaches.
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Appendix A

Magnetic Anisotropy Energy of
Ptn/Co/Pt(111)

In order to demonstrate the effect of a vertical Co/Pt interface on the magnetic anisotropy
energy the system Ptn/Co/Pt(111) has been investigated with a varying number n of Pt
capping layers. As one can see in Fig. A.1 ∆Esoc depends strongly and in an oscillatory way
on n with a maximum out-of-plane MAE of 1.58 meV for n = 2. For n = ∞, i.e. for a Co
monolayer sandwiched between two semi-infinite (111) oriented Pt crystals a ∆Esoc value of
1.11 meV is obtained. Fig. A.2 shows how the Bloch spectral function A(k) of the minority
spin states evolves for the in-plane and out-of-plane orientation of the magnetisation when
considering a free-standing Co monolayer (∆Esoc = −2.88 meV), Co/Pt(111) (∆Esoc =
0.40 meV) and Pt(111)/Co/Pt(111) (∆Esoc = 1.11 meV), respectively. In conjunction
with the results for the Pt decorated Co islands on Pt(111) presented in section 6.2 this
clearly shows the high sensitivity of the MAE with respect to atomic coordination.

0 1 2 3 4 5 6
n in Pt

n
/Co/Pt(111)
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)
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Figure A.1: ∆Esoc for a Co monolayer deposited on Pt(111) as function of the number of
Pt capping layers.
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Figure A.2: Bloch spectral function along the high symmetry lines Γ̄-K̄-M̄-Γ̄ of the two-
dimensional Brillouin zone for the minority spin states of a free-standing Co monolayer
(top), Pt(111) deposited Co monolayer (middle) and a Co monolayer sandwiched between
two semi-infinite Pt crystals (bottom). The left and right column shows the band structure
for out-of-plane and in-plane magnetisation, respectively.



Appendix B

Breit Interaction

B.1 Evaluation of the Retardation Term

The retardation part of the Breit interaction is given by:

Hret(r1, r2) =
1

r12
[α1 ·α2 − (α1 · e12) (α2 · e12)] (B.1)

= HretA(r1, r2) +HretB(r1, r2) . (B.2)

As one can see the first term is just one half of the magnetic term and can thus be treated
the same way. With help of the relations

r12YL(r̂12) = 4π
∑

L1

(−1)ℓ1−1〈YL | YL1 | YL2〉rℓ11 rℓ22 YL1(r̂1)YL2(r̂2) (B.3)

= r1YL(r̂1)− r2YL(r̂2) (B.4)

1

r212
YL(r̂12) =





4π
∑

L1
〈YL | YL1 | YL2〉

r
ℓ1−1
2

r
ℓ1+1
1

YL1(r̂1)YL2(r̂2) for r1 > r2

−4π
∑

L1
〈YL | YL1 | YL2〉

r
ℓ2−1
1

r
ℓ2+1
2

YL1(r̂1)YL2(r̂2) for r1 < r2 ,
(B.5)

with the combined index L = (ℓ,m) and with GLL1L2 = 〈YL | YL1 | YL2〉. Thus, one can
also rewrite the second term of Hret in terms of complex spherical harmonics:

HretB (r1, r2) = − 1

r12

(α1 · r12)
r12

· (α2 · r12)
r12

(B.6)

= −(4π)2

3

∑

m̃m̃′

(−1)m̃+m̃′

αm̃,1αm̃′,2

×
∑

L1

GLL1L2


r

ℓ1−1
<

rℓ1>

∑

L′
1

GL′
1L

′L1
YL′

1
(r̂>)YL2(r̂<)

− rℓ1<

rℓ1+1
>

∑

L′′
2

GL′′
2L

′L2
YL1(r̂>)YL′′

2
(r̂<)


 , (B.7)
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with the restrictions:

ℓ2 = ℓ1 − 1 and m2 = −m−m1

L = (1,−m̃) and L′ = (1,−m̃′)

ℓ1 = ℓ2 + 1 = ℓ+2 and ℓ2 = ℓ1 − 1 = ℓ−1 .

Eq. (B.7) can be rewritten as:

HretB (r1, r2) = −(4π)2

3

∑

m̃m̃′

(−1)m̃+m̃′

αm̃,1αm̃′,2

×
∑

L1L2

YL1(r̂>)YL2(r̂<)

[
rℓ2<

rℓ2+1
>
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rℓ1+1
>

G1

]
, (B.8)

with G1 = GLL1L
−
1
GL2L′L−

1
and G2 = GLL+

2 L2
GL1L′L+

2
. Inserting Eq. (B.8) into Eq. (7.3)

leads to

HretB (r1)

= − 1

π
Im Tr
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B.2 Relativistic Total Energy

Defining the particle and particle current densities via

n(r) =
∑

k

φ†kφk

j(r) = c
∑

k

φ†kαφk ,

the total energy E of a system is given within relativistic density functional theory via [14]:

E = Ts + Eext + EC
H + ET

H + Exc

Ts =
∑

k

∫
d3r φ†k

[
−i~cα ·∇+ βmc2

]
φk

Eext =

∫
d3r

[
n(r)Vext(r) +

e

c
j(r)Aext(r)

]

EC
H =

e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|

ET
H = −e

2

2c

∫
d3r

∫
d3r′

j(r)j(r′)

|r − r′| .

Here, the total energy is split into its kinetic (Ts), external (Eext), charge-Hartree (EC
H),

current-Hartree (ET
H) and exchange correlation part (Exc). This implies a decomposition

of the scalar and vector potentials in the corresponding Kohn-Sham-Dirac equation

[
−i~cα ·∇+ (β − 1)mc2 + Vs + eα ·As

]
︸ ︷︷ ︸

HD

ψk = ǫkψk ,

into the terms

Vs(r) = Vext(r) + VH(r) + Vxc(r)

VH(r) = e2
∫
d3r′

n(r′)

|r − r′|

Vxc(r) =
δExc[n, j ]

δn(r)

As(r) = Aext(r) +AH(r) +Axc(r)

AH(r) = −e
c

∫
d3r′

j(r′)

|r − r′|

Axc(r) =
c

e

δExc[n, j ]

δj(r)
,

with the scalar external (Vext), charge-Hartree (VH), exchange correlation (Vxc) potentials
as well as the external (Aext), current Hartree (AH) and exchange correlation (Axc) vector
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potentials. Using the Dirac Hamiltonian HD the kinetic energy term (Ts) may be expressed
in terms of the single particle energies ǫk:

Ts =
∑

k

∫
d3rφ†k

[
−i~cα ·∇+ βmc2

]
φk

=
∑

k

∫
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]
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=
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e
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This allows to write the total energy as:
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with the double counting correction for the current Hartree term ∆Edc
α·A.
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Computational Details

The calculations for the investigated surface and cluster systems were done within the
framework of spin density functional theory using the local spin density approximation
(LSDA) with the parametrisation given by Vosko, Wilk and Nusair for the exchange and
correlation potential [15]. The electronic structure has been determined in a fully relativis-
tic way on the basis of the Dirac equation for spin-polarised potentials which was solved
using the Korringa-Kohn-Rostoker (KKR) multiple scattering formalism. The calculations
for surface deposited clusters consist of two steps. First the host surface is calculated self-
consistently with the tight-binding version of the KKR method using layers of empty sites
to represent the vacuum region. This step is then followed by treating the deposited clus-
ters as a perturbation to the clean surface with the Green’s function for the new system
being obtained by solving the corresponding Dyson equation. In all calculations the cluster
atoms were assumed to occupy ideal lattice sites in the first vacuum layer and no effects
of structure relaxation were included. All presented results are converged with respect to
k-point integration. For the surface Brillouin zones a regular k-mesh of 100 × 100 points
was used which corresponds to 1717 k-points in the irreducible part of the Brillouin zone.
The effective potentials were treated within the atomic sphere approximation (ASA). For
the multipole expansion of the Green’s function an angular momentum cutoff of ℓmax = 2
was used. For selected surface and cluster systems calculations with ℓmax = 3 were also
performed which showed that this causes an increase of the local spin moments by 3-5%
and an increase of the local orbital moments by 3-10%. This indicates that the systematic
trends in the spin and orbital magnetic moments are well described by ℓmax = 2. The
restriction to ℓmax = 2 leads however to a limited accuracy in the presented MAE values.
Therefore, the presented MAE results contain a systematic error and are strictly spoken
not directly comparable with experimental data. Nevertheless, it could be shown that in
many cases this approach is capable of reproducing systematic trends as well as achieving
a reasonable quantitative agreement with values found in experiment.
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