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Ich versichere hiermit ehrenwörtlich, dass die vorgelegte Dissertation von mir
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Mündliche Prüfung am: 24.01.2011



iii

Note

In this thesis, I present the results from my doctoral research, carried out in Munich

from May 2005 to October 2009 under the guidance of Prof. Susanne Renner. The

results from my thesis have contributed to five manuscripts presented in Chapters

2 to 6. I also gave several presentations listed below. Except for Chapters 3 and

6, I generated all data and conducted all analyses myself. Writing and discussion

involved collaboration with Susanne Renner. For Chapter 3, some of the sequences

were generated by M. Barrett. My contributions to the manuscript in Chapter 6

were data analysis, writing and discussion with the co-authors.

Papers

Cusimano, N., Zhang, L.-B. and S.S. Renner. 2008. Reevaluation of

the cox1 group I intron in Araceae and angiosperms indicates a history

dominated by loss rather than horizontal transfer. Molecular Biology and

Evolution 25: 265-276.

Cusimano, N., Barrett, M., Hetterscheid, W.L.A. and S.S. Renner.

2010. A phylogeny of the Areae (Araceae) implies that Typhonium, Sauro-

matum, and the Australian species of Typhonium are distinct clades. Taxon

59(2): 439-447.

Cusimano, N. and S.S. Renner. The handling of missing species in diversifi-

cation rate analyses – with empirical examples illustrating a new approach.

In review at Systematic Biology. (2012: published by Cusimano, N.,

Stadler, T. and S.S. Renner in Systematic Biology : Advance Access

published February 14. DOI: 10.1093/sysbio/sys031.)

Cusimano N. and S.S. Renner. 2010. Slowdowns in diversification rates from

real phylogenies may not be real. In review at The American Naturalist.

(2010: published in Systematic Biology 59(4): 458-464.)

Cusimano, N., Bogner, J., Mayo, S.J., Keating, R.C., Boyce, P.C.,

Wong, S.Y., Hetterscheid, W.L.A., Hesse, M. and J.C. French.



iv

Relationships within the Araceae: Comparison of morphological patterns

with molecular phylogenies. In preparation. (2011: published in American

Journal of Botany 98(4): 654-668.)

Seminars

Cusimano, N. December 6, 2006. Evolution des Pistia clades: Vertikaler oder

horizontaler Transfer des mitochondrialen cox1 Introns? Systematic Botany

Seminar Series – LMU. Munich, Germany.

Cusimano, N. January 16, 2008. Phylogeny and biogeography of the Areae

(Araceae). Systematic Botany Seminar Series – LMU. Munich, Germany.

Cusimano, N. and S.S. Renner. April 10, 2008. Reevaluation of the cox1

intron in Araceae and angiosperms indicates a history dominated by loss

rather than horizontal transfer. Systematics 2008 . Göttingen, Germany.

Cusimano, N. and S.S. Renner. August 11, 2008. Under the weather at

different times: Evolution of the Arum-Typhonium clade in SE Asia and

the Mediterranean area. Invited seminar, Monocots IV Conference. Copen-

hagen, Denmark.

Posters

Cusimano, N. and S.S. Renner. July 2007. Polyploidy, aneuploidy, and

chromosome number evolution of Arum and its allies (Areae, Araceae). The

Origin and Evolution of Biota in Mediterranean Climate Zones - an integra-

tive Vision. Zurich, Switzerland.

Cusimano, N., Mayo, S.J. and J. Bogner. July 2009. Relationships within

the Araceae: Comparison of MorphologicalPatterns with Molecular Phylo-

genies.10th International Aroid Conference, Nancy, France.

Part of my research was funded as follows:

• The three-month research period (Oct – Dec 2005) in the lab of William

Friedman at the University of Colorado at Boulder by a grant from the NSF

http://www.systematics2008.com/
http://www.monocots4.org/
http://www.systbot.unizh.ch/mediterranean/index.htm
http://www.systbot.unizh.ch/mediterranean/index.htm
http://www.systbot.unizh.ch/mediterranean/index.htm
http://www.jardinbotaniquedenancy.eu/Francais/collVivantes.php4


v

Research Coordination Network
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sellschaft



vi



vii

Für Omina.



viii



Contents

Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 General Introduction and Discussion 1

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Introduction to the Study Groups . . . . . . . . . . . . . . . . . . . 4

Araceae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Pistia Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Areae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The cox1 Intron in Flowering Plants . . . . . . . . . . . . . . . . . 16

Background and Previous Analyses . . . . . . . . . . . . . . . . . . 16

Main Conclusions of the Present Work . . . . . . . . . . . . . . . . 19

Subsequent Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Endosperm Development in the Pistia Clade . . . . . . . . . . . . . 26

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Cytogenetics in Araceae and the Areae . . . . . . . . . . . . . . . . 30

Chromosome Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 30

Genome Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 The cox1 Intron in Flowering Plants 37

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



x CONTENTS

2.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 41

Taxon Sampling and Sequencing . . . . . . . . . . . . . . . . . . . . 41

Alignments and Phylogenetic Analyses . . . . . . . . . . . . . . . . 42

Coconversion Tract Analysis . . . . . . . . . . . . . . . . . . . . . . 44

Divergence Time Estimation . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

The cox1 Intron and Exonic Coconversion Tracts in the Arisaema/Pistia

Clade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Cox1 Exonic Coconversion Tracts throughout Angiosperms . . . . . 47

Phylogenetic Analyses of Angiosperm cox1 Exon and Intron Sequences 49

Hierarchical Distribution of cox1 Exonic Coconversion Tracts and

Time Frame of cox1 Intron Loss in the Araceae . . . . . . . 52

The Possible Origin of the cox1 Intron from Fungi and Intron Func-

tionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The cox1 Intron in the Araceae – A Long History of Vertical Inher-

itance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The cox1 Intron in the Angiosperms – Predominant Loss, not Hor-

izontal Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 55

Possible Mechanisms of cox1 Intron Loss . . . . . . . . . . . . . . . 57

Fungi as Donors of the cox1 Intron in Angiosperms . . . . . . . . . 58

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Online Supporting Material . . . . . . . . . . . . . . . . . . . . . . 63

3 Phylogenetics of Typhonium and Sauromatum 75

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 79

Taxon Sampling and Sequencing . . . . . . . . . . . . . . . . . . . . 79

Alignments and Phylogenetic Analyses . . . . . . . . . . . . . . . . 81

Chromosome Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS xi

Chromosome Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chromosome Numbers in Typhonium, Sauromatum, and the Aus-

tralian clade . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Taxonomic Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 89

Key to Sauromatum Species . . . . . . . . . . . . . . . . . . . . . . 91

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Missing Species in Diversification Analyses 99

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 103

Study Systems, Taxon Sampling, and Sequencing . . . . . . . . . . 103

Divergence Time Estimation . . . . . . . . . . . . . . . . . . . . . . 104

Analyses of Diversification and Handling Missing Species . . . . . . 106

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Missing Species and their Handling in Plant Diversification Studies 110

Trees and Divergence Times for the Study Systems . . . . . . . . . 112

Diversification Analysis with Different Methods for Handling Miss-

ing Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Missing species in plant diversification studies . . . . . . . . . . . . 120

Strengths and Weaknesses of Different Methods for Handling Miss-

ing Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Rate Inferences in the two Study Systems . . . . . . . . . . . . . . 122

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Online Supporting Material . . . . . . . . . . . . . . . . . . . . . . 129

5 Slowdowns in Diversification Rates 131

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



xii CONTENTS

5.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Relationships within the Araceae 145

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . 148

Character Matrix and Data Analyses . . . . . . . . . . . . . . . . . 148

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 151

Phylogenetic Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 151

The Molecular Phylogeny in the Context of Morphology, Anatomy

and Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Towards a new formal classification . . . . . . . . . . . . . . . . . . 165

6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Description of the Morphological Characters . . . . . . . . . . . . . 175

Matrix of Morphological Data . . . . . . . . . . . . . . . . . . . . . 187

6.7 Online Supporting Material . . . . . . . . . . . . . . . . . . . . . . 190



List of Figures

1.1 Araceae inflorescences types . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Araceae phylogeny from RFLP data by French et al. (1995) . . . . 8

1.3 Araceae phylogeny from chloroplast data by Cabrera et al. (2008) . 9

1.4 Longitudinally-opened spathes of 16 Typhonium species . . . . . . . 12

1.5 Scheme for the insertion of an intron by the double-strand-break-

repair pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Poster presented at the meeting “The Origin and Evolution of Biota

in Mediterranean Climate Zones - an integrative Vision” 2007 in

Zurich. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Chromosome spreads of Typhonium and Sauromatum species . . . . 34

2.1 Maximum likelihood tree for the Arisaema/Pistia clade . . . . . . . 45

2.2 Coconversion tract types of intron− and intron+ angiosperm cox1

exons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Parsimony tree for 148 angiosperms obtained from cox1 exon se-

quences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Maximum likelihood tree for 106 angiosperms based on mitochon-

drial cox1 intron sequences . . . . . . . . . . . . . . . . . . . . . . . 51

Figure S2.1: Alignment of 179 angiosperm cox1 exon coconversion tracts 68

Figure S2.2: Parsimony phylogram of angiosperm cox1 intron sequences

plus the five most similar fungi cox1 intron sequences . . . . . . . . 72

Figure S2.3: Cox1 exonic tract types plotted on the current phylogeny

of angiosperm orders . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



xiv LIST OF FIGURES

3.1 Maximum likelihood phylogeny of the Areae . . . . . . . . . . . . . 83

3.2 Evolution of selected traits in Sauromatum . . . . . . . . . . . . . . 86

3.3 Longitudinally-opened spathes of the nine species of Sauromatum . 87

4.1 Chronogram for the Areae resulting from a relaxed molecular clock 114

4.2 Results of CorExS analyses . . . . . . . . . . . . . . . . . . . . . . . 116

Figure S1: Maximum likelihood phylogeny for the Areae . . . . . . . . . 130

5.1 Lineage-through-time plots obtained from the complete phylogeny

and the variously pruned subsets of it . . . . . . . . . . . . . . . . . 137

6.1 Araceae phylogeny from Bayesian analysis with morphological char-

acters plotted upon . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Araceae phylogeny obtained from maximum parsimony analysis of

81 morphological characters . . . . . . . . . . . . . . . . . . . . . . 160

Figure S1: Araceae phylogeny from maximum parsimony analysis of

RFLP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Figure S2: Araceae phylogeny from maximum likelihood analysis of the

molecular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of Tables

1.1 Early endosperm development in species of the Pistia clade . . . . . 27

1.2 Embryological characters of species in the Pistia clade . . . . . . . 28

1.3 Chromosome counts of Typhonium and Sauromatum species. . . . . 32

1.4 Genome sizes of Areae species . . . . . . . . . . . . . . . . . . . . . 33

S2.1: Sources and GenBank accession numbers . . . . . . . . . . . . . . . 64

3.1 Sizes of the individual and combined chloroplast and nuclear data

matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Approaches for handling missing species in diversification analyses. 102

4.2 Results of BDL analyses . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Studies of plant diversification rates that have used molecular phy-

logenies combined with diversification modeling . . . . . . . . . . . 110

4.4 Results of BDL analysis of the CorExS-corrected data . . . . . . . . 115

4.5 Results of survival analyses of the CorExS-corrected data . . . . . . 119

4.6 Summary of the results of the three diversification estimation meth-

ods and the two methods for correcting for missing species. . . . . . 121

Table S1: Sources of the fourteen outgroup species and GenBank acces-

sion numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Results from fitting five diversification models to the empirical phy-

logeny and variously pruned subsets of it . . . . . . . . . . . . . . . 135

xv



xvi LIST OF TABLES

5.2 Results from fitting five diversification models to the two simulated

phylogenies and the variously pruned subsets . . . . . . . . . . . . . 139

6.1 GenBank numbers and sources of the sequences of the newly added

Araceae taxa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2 47 clades of Araceae . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Chapter 1
General Introduction and Discussion

1



2 GENERAL INTRODUCTION AND DISCUSSION

1.1 Summary

This thesis addresses five issues concerning the evolution and diversification of

plants, focusing on the family Araceae as a study system: (1) The evolution of

an intron in the cox1 gene, (2) testing the monophyly of the genus Typhonium,

(3) testing the handling of missing species in diversification analyses, presenting

a new approach, (4) the influence of species sampling on the inference of diver-

sification patterns, and (5) the evolution of morphological and anatomical traits,

chromosome numbers, and embryology based on reconstructed phylogenetic rela-

tionships. These issues are investigated in the Araceae as a whole and in several

clades within the family: the Pistia clade, the Areae, and two subclades of Areae,

namely Typhonium and Arum and their relatives. I also studied the evolution of

the cox1 intron throughout the angiosperms and used a published phylogeny of

Momordica to test methods for diversification analyses.

In the first part (Chapter 2), I investigated the history of a widespread, but

not universal, intron in the cox1 gene of Araceae and other angiosperms. Newly

generated sequence data and analyses support vertical inheritance within the Pis-

tia clade, however, I also discovered a clear cox1 intron loss, the first such case

documented in the angiosperms. Based on a relaxed molecular clock, the intron

has been present in the Araceae for at least 70 million years. Analyses of the

cox1 intron sequences and their flanking coconversion tracts in the context of an

angiosperm phylogeny point to a few early gains, followed by numerous losses, con-

tradicting the prevailing interpretation of thousands of horizontal transfer events.

The reconstructed Areae phylogeny clearly reveals that the genus Typhonium is

not monophyletic, but splits instead in three clades. The largest clade includes the

type species, T. trilobatum. The second clade comprises all analyzed Australian

endemics, and the third all former Sauromatum species. In Chapter 3, I focus on

the latter clade, discussing morphology and chromosome numbers, both supporting

the molecular results, and I address the necessary taxonomic changes, namely the

resurrection of the genus Sauromatum and five new combinations. Additionally, I

present an updated key to the Areae genera and a new key for the Sauromatum

species.

Large time-calibrated phylogenies are now readily obtained and are increas-

ingly being used to infer diversification patters. However, inferring rates of di-
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versification is statistically challenging, and the sensitivity of methods when their

underlying assumptions are not met is poorly understood. A major problem in

diversification analysis is incomplete species sampling. Chapter 4 presents a re-

view of plant diversification studies, which revealed that the majority of published

studies is based on species sampling of <60% and that the handling of missing

species is inconsistent. I applied different approaches for inferring diversification

rate changes over time and for the handling of missing species (using two non-

nested subclades of the Areae), and then present a new approach for handling the

missing species. My new approach yielded clearly different results than the “clas-

sical” methods. It involves model-based data augmentation and imputation, and

is therefore statistically preferable. The classical methods only test the incomplete

phylogeny, and additionally are based on the assumption that species sampling is

random. The observation that this might not be the case, led me to explore the

effects of different sampling strategies (random, cutting off whole clades, sampling

deep nodes) in a complete empirical and two simulated phylogenies with constant

diversification rates (Chapter 5). Results revealed that downturns in diversification

rate are inferred with high confidence when deep nodes are oversampled.

In collaboration with other Araceae taxonomists, palynologist and morpholo-

gists, I conducted analyses of a morphological and anatomical data matrix that

comprises 81 characters coded for 109 genera, and of a completed molecular

Araceae data matrix including 113 species representing all genera (Chapter 6).

Most of the relationships found in the resulting phylogeny are well supported

by morphological-anatomical characters. However, relationships of major clades

within the Aroideae subfamily remain unresolved, and the inclusion of Calla in

the Aroideae is contradicted by several morphological characters. On this basis,

47 clades could be described of which 19 are newly discovered, forming the basis

of a new formal classification. In still ongoing projects, I have gathered original

data on the chromosome numbers of some Areae and reviewed the embryology and

early endosperm development of the Pistia clade (Sections 1.4 and 1.5).



4 GENERAL INTRODUCTION AND DISCUSSION

1.2 Introduction to the Study Groups

Araceae

The Araceae, a family in the early-diverging monocot order Alismatales, comprises

about 4000 species in 113 genera (Bogner and Petersen, 2007; Boyce and Wong,

2008, 2009; Wong et al., 2009; Cusimano et al., 2009). Most of the species are

tropical herbs. The oldest fossils attributed to Araceae are 120 my old (Friis et al.,

2004), and it is clear that Araceae have undergone multiple radiations and waves of

extinction (especially in the northern hemisphere) over their long history. Araceae

make up an important part of nearly all perhumid tropical biomes of the Old as well

as of the New World, where the family shows a high diversity in terms of species

numbers and life forms (geophytes, helophytes, (hemi-) epiphytes, free-floating

aquatics). This diversity is also reflected in the wide variety of habitats occupied,

and the ecology and morphology of vegetative and generative structures. Espe-

cially characteristic are the leaves of Araceae with their venation patterns (“You

can identify nearly every genus by a simple fragment of the leaf from the midrib

to the edge”, Josef Bogner, pers. com., Copenhagen Aug 2008). Another strik-

ing feature are the inflorescences, which consist of a fleshy axis, called the spadix

that bears small, mostly highly reduced flowers, arranged in spirals and subtended

by the leaf- or petal-like bract. Flowers can be bisexuell and inflorescences then

looking as in Fig. 1.1A, or unisexuell. In monoecious species the female flowers

are positioned at the base of the spadix and the male flowers above them, usually

separated by a sterile zone (Figs. 1.1B, 1.4, 3.3). The flowers are mostly reduced

to either carpels or stamens. Below the female flowers, between female and male,

or above the male flowers, sterile flowers (pistillodes or staminodes) can be present

in varying combinations, numbers, shapes, colors and sizes (Fig. 1.1C). Above

the flower-bearing, fertile, zone the spadix can be extended in a sterile appendix

(Mayo et al., 1995, 1997).

Araceae morphology is relatively well known, partly because the family received

the attention of some of the best plant morphologists of the 19th and 20th century,

including H. W. Schott, A. Engler, P. van Tieghem, and W. Troll as well as that

of many, aroid “aficionados,” partly because many species are in cultivation and

horticulturally important. Most of today’s Araceae researchers are professionals,
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Figure 1.1: Inflorescences types: A bisexual flowered spadix with a simple undifferentiated

spathe; B unisexual flowered undifferentiated spadix with female flowers in the lower part of the

spadix and male flowers above, and with a spathe divided into a limb (blade) and a convolute

lower tube; C bisexual flowered spadix with pistillodes, staminodes, and a spadix appendix (after

Mayo et al., 1997).

such as Josef Bogner, Peter Boyce, Tom Croat, Simon Mayo, Jin Murata, Marija

Bedalov and Wilbert Hetterscheid. These workers have conducted much field work,

have cultivated specimens and have specialized on subgroups without loosing the

overview over the whole family. The state of Araceae systematics is still best

represented in the book “The genera of Araceae” by Mayo et al. (1997), updated

by Bogner and Petersen (2007). In the last two years six new/resurrected genera

have been published Bakoa and Schottariella belonging to the Schismatoglottidae

(Boyce and Wong, 2008, 2009), and Philonotion (Wong et al., 2009), or will be

published in near future, namely Sauromatum (Cusimano et al., 2009), Lazarum

and Schottariopsis.

French et al. (1995) were the first to test these morphology-based hypotheses

about Araceae evolution and phylogenetics with molecular data from chloroplast

restriction sites involving species from 86 of the genera. The main question they

addressed was the position and relationships of the two clades of free-floating

Araceae, namely the monotypic genus Pistia, the water lettuce, one of the World’s

worst weeds, and the Lemnaceae (duckweeds), at that time treated as their own
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family (Landoltia, Lemna, Spirodela, Wolfia and Wolfiella). Because of their re-

duced habits, these aquatic clades lack taxonomically important characters, and

were therefore difficult to compare and consequently also difficult to place. Lin-

naeus (1754) nevertheless placed the genus Pistia in the Araceae, correctly as it

turned out. Grayum (1990) was among the first to suggest that the Lemnaceae

might be nested within the Araceae family and that these two clades are not closely

related. Their free-floating life form would thus have evolved independently. The

analysis of French et al. (1995, Fig. 1.2) confirmed these hypotheses: Lemna

and Pistia are both nested in the Aroideae, but in distant positions: Pistia was

in a well-supported with 13 highly derived geophytic Aroideae, whereas Lemna

is more early-diverging in the Aroideae. Furthermore, with Acorus as outgroup

(Grayum, 1987; Duvall et al., 1993), French et al. (1995) found the Orontioideae

as the first-diverging clade, followed by four other major clades, the Lasieae, the

Pothoideae, Philodendroideae and Aroideae (as sister to Calla) sensu Grayum

(1990, with minor rearrangements). This first molecular analysis was followed

by several investigations focussing on subclades of the Araceae, i.e., Symplocar-

pus, Thomsonieae, Schismatoglottis, Amorphophallus, Arisaema, Monsteroideae,

Orontioideae, Spathicarpeae, Philodendron, Pistia clade (Wen et al., 1996; Grob

et al., 2002, 2004; Barabé et al., 2004; Jung et al., 2004; Tam et al., 2004; Renner

and Zhang, 2004; Renner et al., 2004; Nie et al., 2006; Gonçalves et al., 2007;

Gauthier et al., 2008; Mansion et al., 2008).

In September 2008, Cabrera et al. published another molecular study involving

a nearly complete genus sampling with 102 of the at that time 108 species (only

species of Anaphyllum, Croatiella, Furtadoa, Asterostigma (= Incarum pavonii),

Theriophonum and Zomicarpa were missing; Fig. 1.3). Their focus was the exact

position of the duckweeds within the Araceae, which was still dubious. Duckweeds

came out as the second-diverging clade in the Araceae, after the also aquatic

Orontioideae-Gymnostachydoideae clade (“proto-aroids”). In addition, the mono-

phyly of the subfamilies Pothoideae, Monsteroideae and Lasioideae was supported.

Monophyly of the subfamily Aroideae requires including Calloideae (Calla) in

Aroideae. Monophyly of some tribes in their current determination (e.g., Colo-

casieae, Monstereae) needs further testing.

Over the past 10 years, Simon Mayo and Josef Bogner have extended and com-

pleted the morphological-anatomical data matrix on which they based their cladis-
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tic analysis in “The Genera of Araceae” (Mayo et al., 1995, 1997). Now it includes

81 characters of all genera except Bakoa, Schottariella, Philonotion, Sauromatum

and Lazarum. I explored the phylogenetic signal in these data. I also reanalyzed

the coded RFLP data of French et al. (1995) and added 11 matK sequences to

the data set of Cabrera et al. (2008) for a now complete genus sampling of 113.

This manuscript is presented as Chapter 6. Most of the five (non-monogeneric)

subfamilies and the 20 (non-monogeneric) tribes are revealed by molecular data

in addition to 19 new clades of different taxonomic levels fitting mostly well with

morphology. We refrain from formal (Latin) names for these new clades that we

discuss. Nevertheless, our informal system forms a basis for a new formal classifi-

cation of the Araceae.

Pistia Clade

Pistia stratiotes and 13 other genera formed a well-supported clade in the RFLP

tree of French et al. (1995, Fig. 1.2). For lack of a formal name, this clade is

currently being referred to as the Pistia clade (Renner and Zhang, 2004). To

investigate the biogeography of the Pistia clade, Renner and Zhang (2004) im-

proved the sampling by including representatives of 16 genera including 36 of the

320 species. From three molecular markers they constructed a phylogeny and

estimated the divergence times constraining it with fossils. Besides the two mono-

typic genera Pistia and Protarum they sampled Colocasieae (Alocasia, Ariopsis,

Colocasia, Remusatia, Steudnera; Gonatanthus has been reduced to the synonymy

of Remusatia), Arisemateae (Arisaema, Pinellia) and the Areae (Arum, Biarum,

Dracunculus, Eminium, Helicodiceros, Theriophonum, Typhonium) sensu Mayo

et al. (1997). The species of the mainly Southeast Asian Pistia clade occur in a

wide range of habitats, including many species in the temperate zone, which is

striking in a family that is otherwise almost restricted to warm and humid cli-

mates: About half of the species of the Areae occur in the Mediterranean region

(see below), and the genera Arisaema, Arum, and Pinellia include dozens of cold-

resistant species that occur in high latitudes or altitudes, for example, Arum in

northern Europe and the Himalayan region. Many Arisaema species in northern

China and in the Himalayas grow at altitudes well above 4000 m. Few of the

Pistia clade species occur in Africa and only four in North America, namely Pistia
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Figure 1.2: Strict parsimony consensus tree generated with PAUP, with number of restriction

site changes at each node, calculated by MacClade. Tribal limits of Grayum (1990) are given only

for the tribes with two or more genera that are monophyletic in the cpDNA tree. Subfamilial

limits are shown for three polyphyletic Grayum (1990) subfamilies. (French et al., 1995; their

Fig. 1)
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1158 American Journal of Botany [Vol. 95

Figure 1.3: Bayesian summary tree from analysis of all regions combined. Numbers above

branches are posterior probabilities. Bars indicate subfamilies recognized by Mayo et al. (1997).

(Cabrera et al., 2008, their Fig. 2).
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and three species of Arisaema. Whereas Pistia itself is a worldwide aquatic weed,

Protarum sechellarum is endemic to the Seychelles Islands.

My paper published in Molecular Biology and Evolution on the mitochondrial

cox1 intron in plants used the Pistia clade as study system to test the hypothesis of

vertical vs. horizontal transfer of the intron (Cusimano et al., 2008, Section 1.3 and

Chapter 2). In this study, as well as in the study of diversification patterns within

the Areae (Chapter 4), I used the Pistia clade to infer divergence time estimates,

because Areae have no fossils, and so I used outgroup fossils for calibration.

Areae

The Areae sensu Mayo et al. (1997), a subclade of the Pistia clade, includes the

name-giving genus of the family, Arum, and and six other genera. Whereas about

one half of the species occur in Southeast Asia (Typhonium s.l. occurs in seasonal

habitats of tropic Australia, Southeast Asia, and India, with one species also in

Africa, and Theriophonum is endemic to India), the other half is centered in the

Mediterranean region, a habitat that is too dry and too cold for most Araceae:

Arum itself ranges from the Himalayan region to the West-Mediterranean, and in

cold temperate Europe it extends to England and Southern Sweden. Dracuncu-

lus vulgaris occurs in scrub, woodland and macchia vegetation, under trees and

shrubs, but also on stony open ground in the middle and eastern Mediterranean;

D. canariensis occurs in forest and scrub vegetation on the Canary Islands; and

Helicodiceros muscivorus occurs on limestone and granit rock crevices near the sea

on Corsica, Sardinia, and the Balearic Islands. Finally, Biarum and Eminium in-

clude the most drought-adapted species in all Araceae, with ranges extending deep

into the dry areas of the Near East (including the Negev desert), North Africa,

and Southern Spain. There are only four other species of Araceae occurring in

the Mediterranean region: the three species of the genus Arisarum and Ambrosina

bassii.

I reconstructed a phylogeny of the Areae from sequences of three different mark-

ers and estimated the divergence times. I sampled species throughout all genera

with a focus on Typhonium species (see below). Two subclades of this phylogeny,

the Mediterranean Arum clade and Typhonium, were used to test different meth-

ods of correcting for missing species in diversification analyses. A review of such
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analyses conducted in plant clades revealed a species sampling of <60% in the ma-

jority of the studies and inconsistencies in the application of the methods (Chapter

4). We tested three widely used methods for assessing diversification patterns over

time together with the standard method for correcting for missing species. Addi-

tionally, I developed a new approach that is based on the assumption that species

sampling is generally not random and that correction for missing species should

be done by data augmentation and imputation. The classic method only tests the

incomplete phylogeny and has the problem that it assumes that species sampling

is random. The observation that this might not be the case led me to explore

the effects of different sampling strategies (random, cutting off whole clades, sam-

pling deep nodes) in a complete empirical phylogeny of the Cucurbitaceae genus

Momordica and two simulated phylogenies, all with constant diversification rates

(Chapter 5). Results revealed that downturns in diversification rate are always

inferred with high confidence when deep nodes are oversampled. This introduces

an important bias in diversification estimates inferred from undersampled phylo-

genies.

Finally, I was interested in investigating relationships and genus circumscrip-

tions in Areae. Recently, two genera have been reduced to the synonymy of Ty-

phonium because of lacking morphological differentiation and intermediate species:

Lazarum, including only one Australian endemic, namely L. mirabile, was trans-

ferred into Typhonium in 1997 (Hay, 1997) and Sauromatum in 2000 (Hetterscheid

and Boyce, 2000). Some Typhonium species had always be seen as close to Sauro-

matum because of morphological similarity (T. brevipilosum, T. giganteum, T.

hirsutum, T. horsefieldii ; Hetterscheid and Boyce, 2000). However, two studies

suggested that Typhonium is might not be monophyletic: In the analysis of French

et al. (1995), Sauromatum and Typhonium do not form a clade and Renner and

Zhang (2004) found that all Areae might be embedded in Typhonium, therefore

making it polyphyletic. Additionally, a restriction fragment analysis of chloroplast

DNA (Sriboonma et al., 1993) and the analysis of a morphological data matrix

(Sriboonma et al., 1994) could not reveal Typhonium as monophyletic and only

failed to recover its polyphyly because outgroup choice was not apropriate. In

Chapter 3, I show that Typhonium is indeed not monophyletic (Fig. 3.1). Instead,

the 52 included species (of a total of 72 Typhonium species) fall into three distinct

clades: The largest clade includes the type species of the genus, Typhonium trilo-
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Typhonium reflexum

Typhonium laoticum Typhonium medusae Typhonium orbifolium

Typhonium penicillatum Typhonium trilobatum

Typhonium pedunculatum

Typhonium varians

Typhonium gallowayi

Typhonium blumei Typhonium circinnatum Typhonium digitatum

Typhonium flagelliforme Typhonium glaucum

Typhonium echinulatum

Typhonium griseum

Figure 1.4: Longitudinally-opened spathes of 16 Typhonium species. Photos by Wilbert Het-

terscheid.
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batum (Figs. 1.4 and 3.1). A second clade is composed of species belonging to the

former genus Sauromatum plus 5 five additional species (Figs. 3.1 and 3.3). A

third clade is composed of all included Australian endemics (Fig. 3.1). I make the

necessary transfers, present an updated key to the Areae genera and a new key for

the Sauromatum species.
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1.3 The cox1 Intron in Flowering Plants

Background and Previous Analyses

Group I introns are spread through the whole organismal diversity. They are found

in bacteria and bacteriophages as well as in eukaryotes, and here in a wide variety

of protists, fungi and plants. They have not yet been found in Archaea and only

in two species of Metazoa, the sea anemone Metridium senile (Actinaria; Beagley

et al., 1996) and the sponge Tetilla (Spirophorida; Rot et al., 2006). Group I in-

trons are not restricted to a specific gene or cell compartment, but instead found

in many different genes of bacterial, mitochondrial and plastidal genomes and the

ribosomal RNA of nuclear genomes. They are lacking in nuclear genes. The same

type of intron can be present in different positions within a gene (Dujon, 1989; Hau-

gen et al., 2005). Group I introns, as well as group II introns, are ribozymes, i.e.,

self-splicing elements that auto-catalyze their excision from the RNA-transcript so

that they do not influence the functionality of the genes they are inserted them-

selves into. The two types of introns are distinguished by their different secondary

structure and the resulting different splicing mechanisms: Group I introns require

an external guanosin as cofactor, in group II introns an adenine residue within the

intron acts as nucleophile (Bhattacharya, 1998; Kelchner, 2002).

A striking feature of most group I introns (as well as of group II introns) is their

mobility. They are able to insert themselves at the DNA level into the homolo-

gous position of an intronless allele by a process called gene conversion or “hom-

ing” (Dujon, 1989). It was first described from genetic crosses of fungi (Jacquier

and Dujon, 1985), green algae (Chlamydomonas, Lemieux and Lee, 1987), T-even

phages (Bell-Pedersen et al., 1989; Quirk et al., 1989) and the slime mold Physarum

polycephalum (Muscarella and Vogt, 1989). These mobile genetic elements contain

an open reading frame (ORF) encoding a site-specific endonuclease that creates

a double-staggered strand-break at the highly specific target site of the intronless

(intron−) gene. The break is then repaired by the double-strand-break-repair path-

way, forming a Holliday junction, which is resolved by using the intron containing

(intron+) allele as template (Fig. 1.5). Because of the nucleolytic degradation of

the cleaved recipient and branch migration, coconversion of exon sequences flank-

ing the intron is common, whereat the exon stretch 3’ to the intron is copied from
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the donor (Bell-Pedersen et al., 1989; Muscarella and Vogt, 1989; Wenzlau et al.,

1989; Belfort and Perlman, 1995, Fig. 1.5).

Exon ExonIntron

Exon endonuclease
RECIPIENT
Gene without

Intron

DONOR
Gene with Intron

nucleolytic degradation

Holliday

junction

Double-strand-break-

repair-pathway
strand invasion

DNA synthesis

Coconversion tract 

Both genes 

with intron

Figure 1.5: Scheme for the insertion of an intron from an intron-containing donor sequence by

the double-strand-break-repair pathway (see text).

Another mechanism is the so-called intron transposition. This refers to the

insertion of an intron deriving from a different site of the same gene or another

gene (Dujon, 1989). Although this phenomenon has not yet been demonstrated

for group I introns in its entirety, it is a plausible explanation for the similarity of

introns found in different genetic locations (Belfort and Perlman, 1995).

The protein encoded by the ORF of the intron sometimes shows a maturase

function in addition to the endonuclease function that is important for the cor-

rect folding and splicing of the transcribed intron (Delahodde et al., 1989; Wenzlau
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et al., 1989; Haugen et al., 2005). The two functions of the proteins encoded by the

ORF have complementary ways of acting: insertion (transposase/endonuclease)

and splicing of the intron (maturase; Delahodde et al., 1989). It is assumed that

the maturase function is newly acquired after an intron has been inserted into a

genome (Belfort, 2003; Haugen et al., 2005). Despite the above-described wide

distribution of introns, they are not thought to be ancient relicts in the genomes.

On the contrary, studies point to let assume a more recent origin for many of

them. Evidence supporting this idea is: (1) the high similarity of intron sequences

in organisms belonging to distantly related taxa, whereas the respective exon se-

quences do not show high similarity (Lang, 1984; Quirk et al., 1989; Nishida and

Sugiyama, 1995; Vaughn et al., 1995; Adams et al., 1998; Cho et al., 1998; Cho and

Palmer, 1999); (2) the similarity between introns in genes in different genome com-

partments (Lonergan and Gray, 1994; Turmel et al., 1995; Haugen et al., 2005);

and (3) the homing and transposition ability of introns (see above). One possible

explanation for those observations is horizontal gene transfer, i.e., a gene transfer

between non-related organisms or different cell compartments.

Michel and Westhof (1990) distinguished 11 subgroups of group I intron based

on comparative sequence analysis. Several of them can be found at different in-

sertion sites of the cytochrome oxidase subunit 1 gene (cox1 ) in the mitochondrial

genome of fungi and green algae. In higher plants, only one type of intron (IB1

type) has been found in the cox1 gene. After the discovery of several group I

introns in the cox1 gene in the liverwort Marchantia polymorpha (Ohta et al.,

1993), Peperomia polybotrya was the first angiosperm for which a group I in-

tron in the cox1 gene has been reported, in a study involving 25 angiosperm

species (Vaughn et al., 1995; Adams et al., 1998). Cho et al. (1998) surveyed

the presence or absence of the intron in the cox1 gene in over 300 land plants

representing the diversity of angiosperms. In 48 of the species they found the

intron, all at the homologous site in the cox1 gene, with a highly similar length

and sequence, but distributed very disjunctly over the organismal phylogeny. The

phylogeny resulting from just the intron sequences turned out to be incongruent

with the organismal one: distantly related taxa grouped together such as Maranta

and Hydrocotyle (Marantaceae/Apiaceae), Heliotropium and Rhamnus (Boragi-

naceae/Rhamnaceae). On the other hand, closely related taxa grouped in very

distant positions such Maranta and Hedychium (Zingiberales), Ilex and Hydro-
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cotyle (Aquifoliaceae/Apiaceae). These observations and also the differences in

coconversion tracts in closely related taxa, led Cho et al. (1998) to infer at least 32

independent gains of the intron. In addition, the lack of intron in early-diverged

species in groups that otherwise include intron+ taxa, supported their hypothe-

sis. Cho and Palmer (1999) investigated the distribution of the cox1 intron at a

finer scale, focusing on the Araceae family. They screened 14 genera and found an

intron in six of them (Philodendron, Zamioculcas, Arisaema, Pistia, Amorphophal-

lus, Xanthosoma). From this they argued for at least three and more likely five

independent horizontal gene transfers and no loss, again based on the distribution

of the intron+ taxa on the organismal phylogeny, the incongruent intron phy-

logeny, and the number of changes in the coconversion tracts. Only for one clade,

Arisaema triphyllum/Pistia stratiotes, did they infer vertical transmission of the

intron because of congruence between intron and organismal phylogenies and the

identical coconversion tract. Cho and Palmer (1999) favored a multiple-gain-of-

the-intron scenario over a multiple-loss scenario mainly for two reasons: Each cell

contains hundreds of mitochondrial genomes. Genes loosing the intron will there-

fore have a low chance of fixing the intron− state because of the homing ability of

all other intron copies still present. Another argument is that genes that lost their

intron should retain the altered coconversion tract like a footprint (Cho et al.,

1998). Palmer et al. (2000, S. 6965)’s final conclusion was, “Given that we have

still sampled only a tiny fraction of the >300,000 species of angiosperms, we are

confident that the intron has been horizontally acquired at least hundreds of times

during angiosperm evolution and probably over 1,000 times. Equally remarkably,

all of these transfers seem to have occurred very recently, in the last 10 million

years or so of angiosperm evolution.” As possible donor they proposed either a set

of closely related fungi or one initial fungus-to-plant transfer followed by numerous

plant-to-plant transfers.

Main Conclusions of the Present Work (Chapter 2)

My paper on the cox1 intron (Cusimano et al., 2008, Chapter 2) tested the hy-

pothesis put forward by Cho and Palmer (1999) of vertical inheritance of the

cox1 intron in the clade including Arisaema triphyllum/Pistia stratiotes, our Pis-

tia clade, and also in general that of horizontal gene transfer of the cox1 intron in
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the angiosperms.

I first analyzed all available angioperm cox1 sequences, resulting in a sampling

of 179 taxa, of which 110 are intron+, and 69 intron− (Chapter 2, Fig. 3). The

resulting maximum likelihood phylogeny of angiosperm cox1 introns, including

those of Araceae, revealed many natural grouping of these taxa up to the family

level (Chapter 2, Fig. 4). The few incongurences between the intron phylogeny

and the angiosperm tree are best explained by low signal in the intron sequences

(sequence similarity among the 110 introns ranges from 91% to identical) and long-

branch attraction among a few taxa with high mitochondrial substitution rates.

Analysis of the 179 coconversion tracts reveals 20 types of tracts (11 of them

only found in single species, all involving silent substitutions; Chapter 2, Figs. 2,

S1). The distribution of these tracts on the angiosperm phylogeny showed that

most of the early-diverging taxa lack the intron. Most of the intron− species

throughout the whole phylogeny have a 0 coconversion tract type. The most

common coconversion tract type among intron+ angiosperms is what we call the

6+T(+A) type (see Chapter 2 for an explanation of this annotation). Another

common tract type is 4+T. The intron phylogeny revealed two well-supported

clades, each having one of the two most common tract types (Chapter 2, Fig.

4). There are several derivative tract types arising from gradual back mutation of

the coconverted nucleotides, a pattern found in several clades, indicating that the

coconversion tracts are not as stable as supposed by Palmer and colleagues.

Next we addressed the hypothesis of vertical transmission of the cox1 intron

in the Pistia clade. To assess the time of the intron gain (or loss) in angiosperms,

we conducted molecular clock dating of the Pistia clade tree and screened it for

intron presence/absence and coconversion tract type (Chapter 2, Fig. 1). The

intron was present in all but two species (Protarum sechellarum, Croat and Dzu

77954 ) of the Pistia clade, all having the same coconversion tract (6+T), except

for the two intron lacking species (0). According to the argumentation of Cho

et al. (1998) and Cho and Palmer (1999), these data point to vertical transmission

of the intron. Consequently, this case represents the first clear loss of the cox1

intron, along with loss of the coconversion tract pattern. In addition, we showed

that the intron must have persisted for at least 70 Myr in this clade contrary to

Cho and Palmer (1999)’s claim that the cox1 intron in angiosperms is young.

We also showed that the number of coconversion tract types found within an
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angiosperm order correlates with the number of species analyzed in that order

(Chapter 2, Fig. S3). This points to the need for of finer scale analyses with

complete taxon sampling.

Lastly we addressed Cho and Palmer’s hypothesis of fungi as donors for the

cox1 intron in plants. While we found high sequence similarity among the 110

angiosperm introns, all known putative homologs from fungi are highly different,

so that none of them can be considered as possible donor (Chapter 2, Fig. S2).

However, sampling in fungi is exceedingly sparse.

Together, these results suggest that the cox1 intron entered angiosperms once

or only a few times, has largely or entirely been transmitted vertically, and has

been lost numerous times, with coconversion tract footprints providing unreliable

signal of former intron presence. For the first time, the intron distribution pattern

was investigated in a densely sampled clade, and time was added to the observed

patterns.

Subsequent Analyses

In August 2008 a new paper addressing the cox1 intron in plants was published

by Palmer and colleagues (Sanchez-Puerta et al., 2008). Sampling was enlarged

to 640 angiosperms, of which 129 possess the intron. Horizontal transfer is again

put forward as the explanation for the apparent discrepancies between the intron

and angiosperm phylogeny and the pattern of intron presence on the angiosperm

tree. Coconversion tracts are again interpreted as reliable footprints of former

intron presence. Horizontal transfers occur mainly within families. Cox1 intron

loss is reported from the genus Plantago based on the presence of intron+ as well as

intron− species having the same coconversion tract except for loss of RNA editing

in the intron+ species, indicating a loss by retroprocessing.

Sanchez-Puerta et al. (2008) hypothesize that 8 of 70 inferred HGT were ac-

companied by reduction in length of the coconversion tract, meaning that cocon-

version tracts do not necessarily look like the one of the donor, clearly reducing

the importance of the tracts as footprints of horizontal transfer.

Surprisingly, (Sanchez-Puerta et al., 2008, p. 1773) again suggest, “Absent

substantially more comprehensive taxon sampling and incorporation of divergence

time estimates, we are unable to estimate with confidence the direction and abso-
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lute timing of cox1 intron transfers. However, with respect to taxonomic rank, all

cox1 intron transfers are relatively recent events.”

Overall, the weight of the evidence clearly points to one or few early gains

of the cox1 intron followed by multiple losses being a more parsimonious expla-

nation than hundreds or thousands of horizontal transfers. Functionality of the

cox1 intron endonuclease and therewith its homing ability has not yet been proven

experimentally. The procedure of intron loss seems much more likely when one

assumes a non-functionality of the endonuclease. Loss may actually be under pos-

itive selection because possessing the intron presents costs for the organism, and

introns can easily be removed just by reverse transcription or genomic deletion. By

contrast, the gain of the intron involves a highly complex procedure, requiring an

isolated piece of the DNA fragment, a vector, a recipient, and a mechanism intro-

ducing this piece of DNA into a mitochondrion. The question how this new state

then spreads to all other mitochondria is difficult to answer, also for the intron

loss scenario, as no investigated angiosperm is heteromorphic for this character.

A loss as well as a gain must therefore be an absolute event, changing the state

in hundreds or thousands of mitochondrial genomes because there exists no stage

in a plant’s life cycle in which mitochondrion number is reduced to one. Further-

more, Goremykin et al. (2009) point in their study of mitochondrial DNA of Vitis

vinifera to long-branch attraction, wrong model selection, limited sequence varia-

tion of plant mitochondrial genes and the analysis of paralogues as likely reasons

for unexpected phylogentic groupings.

Last not least, the only event demonstrated with confidence is the loss of the

intron (Cusimano et al., 2008; Sanchez-Puerta et al., 2008), with the two losses

having happened in different ways.
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1.4 Endosperm Development in the Pistia Clade

The Araceae are relatively well known in overall morphology (see Chapter 1.1).

However, embryological data are sparse (Grayum 1991), and most originate from

investigations made half a century ago, with the microscopic and staining ap-

proaches then available. In addition, investigations have concentrated on a few

groups, with sampling not phylogenetically well spread out, because generic (and

other, deeper) relationships in the family were poorly understood. Therefore,

most of the existing data are rather crude pollen and ovary characters, while the

ontogeny of microspores, megaspores, gametophytes, embryos, endosperm and sur-

rounding tissues have rarely been documented. Investigation of these structures

not only requires sophisticated embedding and microscopic techniques, but ide-

ally also wild-collected material, because cultivated plants can show anomalous

embryogenesis. Complete embryological data are available only for three species:

Peltandra virginica Goldberg (1941), Synandrospadix vermitoxicus Cocucci (1966)

and Theriophonum minutum Parameswaran (1959). The scarse existing embry-

ological data nevertheless show that Araceae are closely related to the Alismat-

iflorae and indicate that the genus Acorus is only distantly related to Araceae

(Grayum, 1987). Whether embryological data also contain phylogenetic signal at

lower taxonomic levels in Araceae is unclear because the current data set is not

adequate to answer this question.

One of the most controversial arguments in embryology is that of early en-

dosperm development. Generally, three types of endosperm development have

been distinguished: an ab initio cellular development, a free-nuclear development,

and a helobial endosperm development. The latter is poorly defined; (Grayum,

1991) described helobial endosperm as follows: “unequal division of the primary

endosperm nucleus results in a smaller chalazal chamber that becomes haustorial,

and cell division in the micropylar chamber is ab initio free- nuclear.” The fate of

the chalazal domain is not clearly defined.

Friedman and co-workers have analyzed endosperm development and double

fertilization in numerous studies, focusing especially on Ginkgo, Ephedra (Gne-

tales), basal angiosperms, basal monocots, and basal eudicots. Their work on

endosperm development in basal angiosperms (Floyd and Friedman, 2000) re-

vealed six different patterns of early endosperm development (one of free- nuclear
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Table 1.1: Available data for early endosperm development in the seven investigated species of

the Pistia clade. For references see text.

Species 1st division Chalazal domain Micropylar

Type Modus Division Ploidie domain Development

Pistia cellular ? none hypertrophied cellular ab initio

stratiotes cellular

Ariopsis cellular micropylar none hypertrophied nuclear helobial

peltata (first 3)

Arisaema nuclear ? nuclear hypertrophied? nuclear free nuclear

triphyllum

Arisaema cellular ? none hypertrophied cellular ab initio

wallichianum cellular

Arum cellular ? none 2457n cellular ab initio

maculatum cellular

Theriophonum cellular chalazal none hypertrophied cellular ab initio

minutum cellular

Typhonium cellular micropylar none hypertrophied? cellular ab initio

trilobatum cellular

development, two of ab initio cellular development, and three of helobial devel-

opment). These patterns result from different combinations of the modi of the

first cell division (free-nuclear, ab initio cellular) and the following development of

the micropylar domain (free-nuclear, ab initio cellular), and the chalazal domain

(free-nuclear, ab initio cellular, none). In the Pistia clade all six patterns can be

observed (Table 1.1). In this clade, embryological data are available for Ariopsis

peltata (Govinde Gowda, 1980), Arisaema triphyllum (Gow, 1908; Pickett, 1915),

Arisaema wallichianum (Maheshwari and Khanna, 1956), Arum maculatum (Er-

brich, 1965; Jacobson-Paley, 1920), Pistia stratiotes (Shadowsky, 1931), Typho-

nium trilobatum (Banerji, 1947), and Theriophonum minutum (Parameswaran,

1959). Table 1.2 summarizes the up to date known embryological features of these

species. No embryologic studies have focused on Biarum, Eminium, Dracunculus,

and Helicodiceros (which together include 32 species).
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Table 1.2: Embryological characters of species in the Pistia clade. Shaded: Areae; lightgrey:

characters with advanced states in the Pistia clade.
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1.5 Cytogenetics in Araceae and the Areae

Chromosome Numbers

Chromosome numbers of over 700 Araceae species representing all genera have been

reported (Petersen, 1989, 1993; Bogner and Petersen, 2007). These are mainly

counts of isolated species (for references see Petersen, 1989). Only a few stud-

ies have focused on the cytology of natural clades: Anthurium (Sheffer and Croat,

1983; Sheffer and Kamemoto, 1976) or Arum (Bedalov and Küpfer, 2006). In terms

of chromosome morphology, it seems that larger chromosomes with more distally

positioned centromeres are derived from smaller metacentric ones (Petersen 1993).

But this conclusion has to be considered preliminary because of the very fragmen-

tary sampling over the whole family. No analysis regarding chromosomes has been

carried out in molecular-phylogenetic framework.

Larsen (1969) and Marchant (1973) argued for an Araceae base number of x =

7, while Petersen (1989) hypothesized a base number of x = 14, because 2n = 28 is

especially widespread in the family. If ancient polyploidization is as important in

the angiosperms as it appears (Soltis and Soltis, 1999), perhaps x = 7 or an even

lower number is the more likely hypothesis, with all other numbers derived through

polyploidization and descending (chromosome number reduction), and ascending

dysploid series (chromosome number increase).

Chromosome number changes are mostly seen in genera with a high species

number, raising the question if this is a consequence of diversification or if changes

in chromosome numbers contributed to rapid reproductive isolation, for example,

of polyploid offspring from diploid parents.

When plotting the known chromosome numbers onto a phylogeny of the Areae

and their outgroups, the following pattern becomes apparent (Fig. 1 on Poster in

Fig. 1.6): Most Areae investigated to date have x = 14, and this is also true of

most outgroups except for Pinellia and a few species of Arisaema (x = 13). Genera

of Areae that do not have x = 14 are Biarum, Sauromatum, and Theriophonum.

In Biarum, x = 13 seems to be the ancestral base chromosome number, but there

Figure 1.6 (facing page): Poster presented at the meeting “The Origin and Evolution of Biota

in Mediterranean Climate Zones - an integrative Vision” 2007 in Zurich.
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burnin=4750, 99 % credible set contains 10362 trees, Ronquist & Huelsenbecek, 2003)
- Dating analysis implemented in multidivtime (Bayesian dating method of Thorne & Kishino, 2002)

Fig. 1: Maximum likelihood phylogram of 89 Areae and 14 outgroup taxa with diploid chromosome numbers plotted next to species names. Support values at branches are maximum
likelihood bootstrap percentages and posterior probabilities (ML/PP > 85 %). The karyogram is of Typhonium tubispathum, this is the third record of 2n = 10 in Araceae. Orange:
taxa with chromosome numbers based on x = 13; Red: taxa with chromosome numbers based on x = 14; Purple: hypothesized chromosome reduction events; Blue: hypothesized
polyploidization events; Yellow circles: age in million years (SD in all cases < 8 Ma).

Biarum bovei
Biarum straussii
Eminium heterophyllum JZZ 4

Biarum kotschyi
Eminium heterophyllum
Biarum carduchorum

Biarum dispar SBL 564
Biarum tenuifolium

Biarum davisii
Biarum davisii ssp. davisii

Biarum pyramii
Biarum ditschianum
Biarum ditschianum MJ

Arum cyrenaicum
Arum sp.nov. I 21 05 M.N.
Arum purpureospathum
Arum maculatum
Arum balansanum

Arum nigrum
Arum pictum
Arum pictum 273

Arum hygrophilum
Arum creticum
Arum italicum

Arum italicum WL
Arum sp.nov. 24219
Arum sp.nov. 26940

Arum korolkowii
Arum dioscoridis 15038

Arum rupicola
Arum concinnatum

Arum dioscoridis
Arum orientale

Dracunculus vulgaris
Dracunculus canariensis

Helicodiceros muscivorus
Eminium sp.n.JJMZ 67
Eminium spiculatum

Typhonium diversifolium
Typhonium goaligongense

Typhonium horsfieldii
Typhonium larsenii
Typhonium goaligongenseKUN

Typhonium venosum
Typhonium brevipes

Typhonium tentaculatum
Typhonium hirsutum

Typhonium giganteum
Theriophonum infaustum

Theriophonum dalzelii
Typhonium wilbertii

Typhonium angustilobum
Typhonium eliosurum
Typhonium brownii

Typhonium flagelliforme
Typhonium digitatum
Typhonium roxburghii

Typhonium bachmaense
Typhonium trilobatum

Typhonium saraburiense?
Typhonium adnatum

Typhonium blumei
Typhonium circinnatum

Typhonium subglobosum
Typhonium violifolium1
Typhonium cordifolium

Typhonium violifolium2
Typhonium sp.n. H.AR.532

Typhonium sp.n. H.AR.555
Typhonium gallowayi

Typhonium griseum
Typhonium orbifolium

Typhonium pedunculatum
Typhonium reflexum

Typhonium lineare
Typhonium huense

Typhonium echinulatum
Typhonium glaucum

Typhonium tubispathum
Typhonium varians

Typhonium filiforme1
Typhonium filiforme2

Typhonium baoshanenseKUN
Typhonium jingpingense
Typhonium jingpingenseKUN

Typhonium gracile
Typhonium sp.n. H.AR.543

Typhonium albidinervum
Arisaema speciosum

Pinellia ternata
Alocasia gageana

Colocasia gigantea
Alocasia cucullata

Ariopsis peltata
Steudnera discolor

Remusatia vivipara
Protarum sechellarum

Arisarum vulgare
Peltandra virginica

Typhonodorum lindleyanum
Caladium bicolor
Xanthosoma sagittifolium

ML
PP

96
24

74
22/26
26

26
56

56
56

28
28

28
28
84

84

28
28

84
28

28
28

28
56

52
26
26

26

52
16

16

> 110
160

16
26/52

18/36,40

10/12?

8?

10

10
10

10

28
78

28
28

28
28/84

56
28/56

28
56

112
112

30
26

Areae
Bas

ic

Chromoso
me

Numbers
Ploidy L

ev
els

Mec
han

ism
s

100

100

87

100

100

88

87

88 100

100

100

89

100

94

100
100

100
98

100

89
100

98

100

100

97

100

10096

100

99

100

100

100

100

100

100

100

89

100

100

98
100

100
96
99

100

98
100 100

100

97

100

100

87

98
92100

100

100

94

100

100
100

9999

100

100

100

100
100

100

100

100
100

89

99
98
95100

100

100

99

100

96

100

98 100

99 100

62

59

47

Species name  !  Diploid chromosome number 

0.01

T
yp

ho
ni

um
co

re
co

re
 A

re
ae

M
ED

IT
ER

RA
NE

AN
SE

 A
SI

A

Sauromatum
(S ASIA)

Theriophonum (INDIA)

unplaced

AUSTRALIAN Typhonium

A
ru

m
, D

ra
cu

nc
ul

us
,

 E
m

in
iu

m
, H

el
ic

od
ic

er
os

B
ia

ru
m

x = 12

x = 14

x = 13

x =  8
x =  5, 8

x =   9

x = 13

x = 13

x = 11

x =   5

2x
2x, 8x
2x

2x, 4x, 6x

2x, 4x

2x
20x, 22x, 32x

2x, 8x
2x, 4x
2x, 4x

Polyploidization
Aneuploidization

Polyploidization (auto!,allo!)
at least 6 x independently in
core Areae (<!)
Only in           three different
ploidy levels

Polyploidization

Reduction

Reduction with following
multiple rounds of
autopolyploidization?
Fragmentation of genome?

Polyploidization
Aneuploidization

Reduction
(fusion, translocation?)

Arum

?

Discussion
The most common basic chromosome numbers in the Areae
are x = 13 and x = 14. The frequency of polyploids points to
numerous hybridization or autopolyploidization events. An-
euploidization and subsequent polyploidization events (or vi-
ce versa), or other complex chromosome rearrangements, seem
to have played an important role only in the evolution of Bia-
rum and the core Typhonium. In all Areae, 2n = 10 is so
far only found in the ca. 47 Ma old core Typhonium, which
is embedded among taxa with higher chromosome numbers.
This reduction of chromosome number and the negative cor-
relation between chromosome number and size (Fig. 2) point
to chromosome fusion and translocation events.

Fig. 2: Minimal and maximal chromosome sizes from chro-
mosome counts of 19 Areae, plotted over their chromoso-
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Introduction
The Areae clade (Fig. 1) includes about 150 species in the ge-
nera Arum, Biarum, Dracunculus, Eminium, Helicodiceros,
Theriophonum and Typhonium. They range from Australia
over South East Asia to the Mediterranean region and ha-
ve been introduced to (sub-) tropical Africa. Chromosome
numbers are available for 40% of the species and range from
2n = 160 to 2n = 10, the lowest chromosome number found
in Araceae. We collected data from the literature and analy-
zed them on a new chloroplast phylogeny that includes 89
Areae from all seven genera. We also estimated the ages of
the clades.

Ludwig-Maximilians-Universität München

Natalie Cusimano & Susanne S. Renner Munich University (LMU), Germany, cusimano@lrz.uni-muenchen.de

Polyploidy, aneuploidy, and chromosome number
evolution of Arum and its allies (Areae, Araceae)



32 GENERAL INTRODUCTION AND DISCUSSION

Table 1.3: Unpublished chromosome counts of Typhonium and Sauromatum species.

Species Chromosome No. 2n =

Typhonium saraburiense? 18

tubispathum 10

pedunculatum 8, 10*

sp. nov.(H.AR.555) 10, 12*

filiforme 12 (+1B*)

orbifolium/violifolium? 22

varians 10

Sauromatum horsfieldii 26

hirsutum 26

are also species with x = 12 and x = 11, and one species, B. dispar, with 2n =

74 (n = x = 37), indicating more complex changes than just multiplications of

the entire genome. In Sauromatum (x = 13), as well as in Arum (x = 14),

all chromosome number changes represent polyploidization events, leading up to

a hexaploid level (Arum italicum with 2n = 84). Theriophonum finally has a

constant number of 2n = 16. Apparently, speciation in these genera is associated

with polyploidy and/or dysploidy (e.g., switches from x = 14 to x = 13 or perhaps

vice versa), both of which may have occurred repeatedly.

While some Australian Typhonium species have 2n = 160 (Briggs in Evans,

1962), one of the highest numbers reported for the family, others have 2n = 10,

the lowest chromosome number known in Araceae (Wang et al., 2002: Typhonium

jingpingense; Zhi-Ling et al., 2007: Typhonium baoshanense). My own counts for

additional Typhonium s.str. species (Table 1.3, Fig. 1.7) have revealed further

cases of 2n = 10 and other low numbers (2n = 8, 12, needing confirmation).

Overall, Typhonium s.str. exhibits base chromosome numbers of x = 4∗, 5, 6∗, 8,

9, 11, and 13.

Genome Size

Genome size is an important cytological parameter, also referred to as C-value,

where C stands for constant, as genome sizes have been found to be constant

∗chromosome numbers in need of further confirmation
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Table 1.4: Genome sizes of Areae species from Plant DNA C-values database; Chr.No. =

Chromosome number; Est. Meth. = Estimation methods: Fe = Feulgen microdensitometry, FC:

PI = flow cytometry using propidium iodide.

Species Chr.No. 2n = Est. Meth. 1C (pg) Reference

Biarum tenuifolium 22, 26 FC:PI 3,10 Zonneveld et al., 2005

Dracunculus canariensis 28 FC:PI 3,89 Zonneveld et al., 2005

Dracunculus vulgaris 28 Fe 6,83 Bennett, 1972

Arum maculatum 56 Fe 10,93 Bennett and Smith, 1976

Typhonium flagelliforme 16 Fe 5,17 Ghosh et al., 2001

Typhonium trilobatum 40 Fe 6,59 Ghosh et al., 2001

within species but highly variable between species. C-values in angiosperms span

a huge range: from 0.10 pg in Fragaria viridis (Antonius and Ahokas, 1996),

0.16 pg in Arabidopsis thaliana (Bennett et al., 2003), and 63 Mbp in Genlisea

margaretae (Greilhuber et al., 2006) to 127.4 pg in Fritillaria assyriaca (1pg DNA

= 0,965x109 base pairs; Bennett and Smith, 1976), which represents a 1200-fold

difference. Genome size does not directly correlate with organismal complexity (C-

value paradox). The differences in genome size are mostly due to changes in the

proportion of non-coding and repetitive DNA (both via downsizing and uploading).

Physiological and ecological parameters, such as habitat, temperature, humidity,

sexual system, pollination, or latitudinal range, may correlate with genome size

at the intra- and interspecific level, but there is no widely accepted hypothesis

explaining the observed striking differences. Large genomes may impose ecological

and evolutionary constraints, for example, because cell division takes longer, and

this might explain why genera with large genomes are underrepresented in extreme

habitats (Knight et al., 2005; Leitch et al., 2007).

The Plant C-values Database of Royal Botanical Gardens Kew (http://data.

kew.org/cvalues/homepage.html; Bennett and Leitch, 2005) includes 73 records

for Araceae representing 30% of the family’s genera and some 2% of its species.

There are six reports for Areae (Table 1.4). The data do not suggest a correlation

of genome size and chromosome number.
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Figure 1.7: Chromosome spreads of A, B: Typhonium tubispathum 2n = 10; C: Typhonium

orbifolium / violifolium 2n = 22; D: Typhonium filiforme 2n = 12; E: Typhonium saraburiense

2n = 18; F: Typhonium varians 2n = 10; G: Sauromatum horsfieldii 2n = 26; H: Sauromatum

hirsutum 2n = 26.
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2.1 Abstract

The origin and modes of transmission of introns remain matters of much debate.

Previous studies of the group I intron in the angiosperm cox1 gene inferred fre-

quent angiosperm-to-angiosperm horizontal transmission of the intron from appar-

ent incongruence between intron phylogenies and angiosperm phylogenies, patchy

distribution of the intron among angiosperms, and differences between cox1 ex-

onic coconversion tracts (the first 22 nucleotides downstream of where the intron

inserted). We analyzed the cox1 gene in 179 angiosperms, 110 of them containing

the intron (intron+) and 69 lacking it (intron−). Our taxon sampling in Araceae is

especially dense to test hypotheses about vertical and horizontal intron transmis-

sion put forward by Cho and Palmer (1999, Multiple acquisitions via horizontal

transfer of a group I intron in the mitochondrial coxl gene during evolution of the

Araceae family. Mol. Biol. Evol. 16:1155-1165). Maximum likelihood trees of

Araceae cox1 introns, and also of all angiosperm cox1 introns, are largely congru-

ent with known phylogenetic relationships in these taxa. The exceptions can be

explained by low signal in the intron and long-branch attraction among a few taxa

with high mitochondrial substitution rates. Analysis of the 179 coconversion tracts

reveals 20 types of tracts (11 of them only found in single species, all involving

silent substitutions). The distribution of these tracts on the angiosperm phylogeny

shows a common ancestral type, characterizing most intron+ and some intron− an-

giosperms, and several derivative tract types arising from gradual back mutation of

the coconverted nucleotides. Molecular clock dating of small intron+ and intron−

sister clades suggests that coconversion tracts have persisted for 70 million years

in Araceae, whose cox1 sequences evolve comparatively slowly. Sequence similar-

ity among the 110 introns ranges from 91% to identical, while putative homologs

from fungi are highly different, but sampling in fungi is still sparse. Together, these

results suggest that the cox1 intron entered angiosperms once, has since largely

or entirely been transmitted vertically, and has been lost numerous times, with

coconversion tract footprints providing unreliable signal of former intron presence.
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2.2 Introduction

Most mitochondrial introns are self-splicing ribozymes that act as mobile genetic

elements (Goddard and Burt, 1999; Chevalier and Stoddard, 2001; Haugen et al.,

2005), with mobility depending on enzymes that the introns themselves encode. In

group I introns, these enzymes belong to the LAGLI-DADG family and function as

homing endonuclease, maturase, or both (Delahodde et al., 1989; Wenzlau et al.,

1989; Belfort, 2003). Phylogenetic analyses suggest that group I introns in fungi,

sponges, algae, and land plants have sometimes been transmitted horizontally

(Lang, 1984; Lambowitz, 1989; Nishida and Sugiyama, 1995; Vaughn et al., 1995;

Adams et al., 1998; Cho et al., 1998a,b; Cho and Palmer, 1999; Rot et al., 2006). A

group I intron in the cytochrome c oxidase subunit I (cox1 ) gene is thought to have

been transmitted horizontally as many as a 1,000 times among the 13,500 genera

and 300,000 species of extant angiosperms (Cho et al., 1998b). This extrapolation

was based on a survey of the cox1 intron’s distribution among 335 genera of land

plants in which the authors inferred 32 separate cases of intron acquisition to

account for the intron’s presence in 48 of 281 species from 278 genera of flowering

plants.

Horizontal transmission of introns has been inferred from three kinds of evi-

dence (Cho et al., 1998b). First, strong incongruence between an intron phylogeny

and that of angiosperms suggests independent gains rather than vertical transmis-

sion. Secondly, patchy distribution of an intron on an angiosperm phylogeny and

especially the nesting of intron-containing (intron+) species within large clades of

intron-less (intron−) species point to horizontal acquisition. Thirdly, coconver-

sion tract analysis can provide information on whether a particular site gained or

lost an intron (Bell-Pedersen et al., 1989; Adams et al., 1998; Cho and Palmer,

1999). Coconversion tracts are short stretches of flanking exon sequence that are

converted to the donor DNA sequence. This is because group I introns transfer

by way of a recombination/repair process initiated by a staggered double-strand

break catalyzed by the intron’s homing endonuclease at a target site in the re-

cipient (Szostak et al., 1983; Lambowitz and Belfort, 1993; Belfort and Perlman,

1995). The cleaved DNA strands of the recipient DNA are partially degraded, cre-

ating a gap that is filled in using the donor DNA as the template. If the flanking

exon stretches in the donor and recipient differ, then coconversion will create a
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“footprint” that can stay even after the intron itself is lost again (Cho and Palmer,

1999).

Much trust has been placed in coconversion tracts as historical evidence of in-

tron presence. For example, an investigation of the evolutionary history of the cox1

intron in the Araceae (Cho and Palmer, 1999) relied on the exonic coconversion

tracts in the intron+ species, coupled with the absence of any deletion footprints

in the intron− species, to infer three to five intron gains via horizontal transfers.

Reliance on the coconversion tracts here overrode the implication of a parsimony

reconstruction, which would have been consistent with a vertical transmission his-

tory in Araceae, with one gain, followed by two losses (Cho and Palmer, 1999).

Cho and Palmer (1999) also noticed that Arisaema triphyllum and Pistia stratiotes

had identical coconversion tracts and grouped together in the intron phylogeny,

suggesting that these two introns might be vertically inherited.

To test the hypotheses of Cho and Palmer (1999), namely that the cox1 intron

has been transferred horizontally in much of the Araceae family, but vertically in

the Arisaema/Pistia clade, we analyzed the cox1 gene in a dense sample of rel-

evant Araceae, using available multi-gene phylogenetic frameworks (Renner and

Zhang, 2004, this study). Surprisingly, with the larger taxon sample employed

here, the distribution of the cox1 intron in Araceae is more parsimoniously ex-

plained by ancestral presence, followed by independent losses, than by horizontal

gene transfers.

Araceae are an early-branching lineage of flowering plants, and we therefore

decided to investigate the distribution of the cox1 intron among early and more

recent lineages of angiosperms based on all angiosperm cox1 sequences available

in GenBank (plus new sequences generated in the course of this study). Com-

parison of the much larger intron phylogeny with the angiosperm phylogeny, the

great sequence similarity among angiosperm cox1 introns, the clustered distribu-

tion of exonic coconversion tract types, and hierarchical patterns of decay in the

coconversion tracts suggest ancestral presence of the cox1 intron, followed by nu-

merous losses. This implies that the signal in coconversion tracts (the “footprint”)

is less reliable than previously thought. To infer a temporal framework for cox1

intron turnover and the loss of coconversion tracts, we estimated maximal times

over which the intron could have been gained or lost in Araceae, using angiosperm

clade ages as a proxy for intron maximal ages. We also evaluate the hypothesis of
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Seif et al. (2005) that the cox1 intron in angiosperms originated in a fungus close

to Rhizopus oryzae.

2.3 Materials and Methods

Taxon Sampling and Sequencing

Taxa selected for this study with their sources and herbarium vouchers (where

applicable) are listed in supplementary table S2.1, which includes 179 angiosperms,

110 of them intron+ and 69 intron−. To deduce the evolutionary history of the cox1

intron in the Arisaema/Pistia clade, we relied on two chloroplast loci (the trnL

intron and adjacent spacer before the trnF gene and the rpl20-5-rps12 intergenic

spacer) and one mitochondrial locus (parts of exons b and c of nad1 and the

complete intron between them). We included 30 species of Araceae, many available

from Renner and Zhang (2004). Newly generated sequences were produced with

the same primers and PCR conditions as used in that study. The cox1 exon

and intron (where present) were sequenced for 36 Araceae, and in all, this study

includes 56 newly generated sequences (36 cox1 genes and 20 of other loci).

Total DNAs of silica-dried material were extracted with the NucleoSpin plant

kit according to the manufacturer’s protocol (Macherey-Nagel, Düren, Germany),

and the complete cox1 gene was directly amplified with the primer pair 82F

(5’ GGAGTGATGGGCACAT GCTTCT 3’) and cox1 1.6KR int (5’ AAGGCTG-

GAGGGCTTTGT AC 3’). Polymerase chain reactions (PCR) were performed

with 10 mM primers in 25-µl reactions using BioTherm DNA polymerase (Genecraft,

Lüdinghausen, Germany). The initial step of 5 min at 95 ◦C was followed by 35

cycles of 95 ◦C for 30 s for DNA denaturation, 60 ◦C for 60 s for primer annealing,

and 72 ◦C for 2 min and 40 s for primer extension. PCR products were controlled

by electrophoresis on an ethidiumbromide-stained 1% agarose gel with a 1 Kb

Plus DNA ladder (Invitrogen, Karlsruhe, Germany). The amplified fragment was

ca. 2340 nt long for intron+, and about 1500 nt long for intron− taxa. Products

were purified and quantified electrophoretically using Lambda DNA as standard.

If multiple bands were detected, an additional electrophoresis was performed to

excise and analyze them separately. Sequencing relied on Big Dye Terminator

kits (Applied Biosystems, Warrington, UK) and the following primers (in different
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combinations depending on the length of the sequences obtained, varying from 400

to 1000 nt): 42F (5’ GGATCTTCTCCA CTAACCACAAA 3’),

82F (see above), 657R (5’ GCGGGATCAGAAAAGGTTGTA 3’),

IP53 (5’ GGAGCAGTTGATTTAGC 3’), I589R (5’ GGTAGTCGATGCTTCATAGC

3’), I361F (5’ GTATTAAAATGCGATCAGGTGC 3’), I557F (5’ AGGATTCTTTGAT-

GCTGAGGG 3’), I942R (5’ GGATGAATAGAAGAAAGGT 3’), Int1.2KF (5’

AGCATGGCTAGCTTTCCTAGA 3’), 855F (5’ TGGATTTCTTGTTTGGGCT-

CAT 3’), IP56 (5’ GAGCAATGTCTAGCC C 3’), 1150F (5’ TCTATGGGAGC-

CGTTTTTGC 3’) and cox1.6KR (see above). The cycle sequencing products were

cleaned by Sephadex G-50 Superfine gel filtration (Amersham, Uppsala, Sweden)

on MultiScreen TM-HV membrane plates (Millipore, Bedford, USA) according to

the manufacturers’ protocols to remove unincorporated nucleotides. Fragments

were separated on an ABI 3100 Avant capillary sequencer, assembled and edited

using the software Sequencher (Gene Codes, Ann Arbor, MI, USA), and BLAST-

searched in GenBank.

Alignments and Phylogenetic Analyses

Alignments were generated manually in MacClade (Maddison and Maddison, 1992)

and adjusted by eye; all have been submitted to TreeBase. Amplification of

the cox1 exon of Theriophonum dalzellii failed, and the missing sequence for

this species was coded with question marks. We analyzed four data matrices.

The first comprised the four chloroplast and mitochondrial loci sequenced for the

Arisaema/Pistia clade. The second consisted of 149 angiosperm cox1 exon se-

quences including 11 newly sequenced Araceae species and 12 Araceae from Cho

et al. (1998b). The third consisted of 106 angiosperm cox1 intron sequences of

which 38 were Araceae. The fourth matrix comprised the coconversion tracts

of 179 angiosperms, 110 of them intron+ and 69 intron−. To assess the phylo-

genetic signal in the cox1 gene and introns, we used the molecular phylogeny of

angiosperms published by Qiu et al. (2005), the angiosperm phylogenetics database

of Stevens et al. (2001 onwards onwards, version 8, June 2007), and an unpub-

lished phylogeny of Araceae provided by S. Mayo (Royal Botanic Gardens Kew,

personal communication, Feb. 2007).

DNA indels or missing data in the cox1 intron and exon were excluded from
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phylogenetic analyses. Phylogenetic inference relied on maximum likelihood searches

(ML) as implemented in RAxML-VI-HPC version 2.2.3 (Stamatakis, 2006). Bayesian

analysis relied on MrBayes version 3.1.2 (Ronquist and Huelsenbeck, 2003). The

best-fitting model for the combined chloroplast and mitochondrial data (4682 char-

acters, excluding the intron and 22 bp coconversion tract of the cox1 gene) identi-

fied by Modeltest version 3.7 (Posada and Crandall, 1998) was the GTR + I + Γ

model whether by hierarchical likelihood ratio testing or the Akaike Information

Criterion. We therefore used this model in Bayesian analyses, while maximum

likelihood analyses relied on the GTR + Γ model, this being the only model im-

plemented in RAxML. The best-fitting model for the cox1 intron matrix was the

TvM + I + Γ model (5 substitution types). As the number of substitution types in

MrBayes can only be set to 1, 2 or 6, we used the GTR + I + Γ model. Bayesian

runs were started from independent random starting trees and repeated at least

twice. Markov chain Monte Carlo (mcmc) runs extended for 1 million generations,

with trees sampled every 100 generations. We used a flat Dirichlet prior for the

relative nucleotide frequencies and rate parameters, a discrete uniform prior for

topologies, and an exponential distribution (mean 1.0) for the gamma-shape pa-

rameter and all branch lengths. Convergence was assessed in several ways: by

checking that final likelihoods and majority rule topologies in different runs were

similar; that the standard deviations (SD) of split frequencies were <0.01; that the

log probabilities of the data given the parameter values fluctuated within narrow

limits; that the convergence diagnostic (the potential scale reduction factor given

by MrBayes) approached 1; and by examining the plot provided by MrBayes of

the generation number versus the log probability of the data. Trees saved prior

to convergence were discarded as burn-in (2000-5000 trees) and a consensus tree

was constructed from the remaining trees. Bootstrapping under ML used 1000

replicates performed in RAxML, with the initial rearrangement settings and the

number of categories tested following the manual. Resulting bootstrap values as

well as Bayesian posterior probabilities were plotted on the ML tree using the APE

package (Paradis et al., 2004) in R (R Developmental Core Team, 2006).

The cox1 exon data were analyzed under parsimony in PAUP version 4.0b10

(Swofford, 2002). Searches were heuristic, using 100 random taxon addition repli-

cates, tree-bisection-reconnection (TBR) swapping, with the ’multiple trees’ and

the ’steepest descent’ options in effect. Starting trees were obtained by stepwise
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addition; the trees in memory were limited to 100.

Coconversion Tract Analysis

Coconversion tracts, i.e., the first 22 nucleotides downstream of the intron inser-

tion site, in 179 angiosperms were compared with the exonic tract of an intron−

Araceae, namely Orontium aquaticum, following Cho and Palmer (1999). For con-

venience, the O. aquaticum tract type is henceforth referred to as the unaltered,

or 0, tract type, without this implying that it is an ancestral condition. The re-

maining tracts were categorized relative to the O. aquaticum type according to

the number of alterations present in their 3rd to 18th position (whether 1, 2, 3, ...,

6 differences, all in the 3rd position, and all silent), presence or absence of a T in

the 20th position (silent: C > U RNA editing), and presence or absence of an A in

the 21st position (silent). A coconversion tract that comprises six nucleotide differ-

ences compared with Orontium aquaticum, a T in position 20 and an A in position

21 is thus referred to as “6+T+A”. Similarly, “4+T” refers to a coconversion tract

with 4 substitutions and an T in position 20.

Divergence Time Estimation

For divergence time estimation, we relied on the combined chloroplast and mi-

tochondrial data (4682 nt for 30 taxa) and the Bayesian relaxed clock approach

implemented in multidivtime (Thorne et al., 1998; Thorne and Kishino, 2002).

After calculating substitution model parameters for the DNA data under the F84

+ Γ model (with five rate categories) on the ML topology obtained from the com-

bined data, rooted on Xanthosoma sagittifolium and Caladium bicolor, we used

Thorne’s estbranches program to estimate branch lengths and their variance, given

the specified evolutionary tree and model parameters. The a priori expected num-

ber of time units between the root and the tips was set to 0.9, with a standard

deviation of 0.5; the prior on the mean root rate was set to 0.0128, by dividing

the median distance from the ingroup root to the tips by the time unit. Thorne’s

manual recommends that the prior for brown mean (and its standard deviation)

be set at values that, when multiplied by the approximate time from the root to

the present, yield a value between 1 and 2, and we therefore set brown-mean to
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4@A';6$%&4%B,&!&C'D@)8&,Figure 2.1: A. Maximum likelihood tree for the Arisaema/Pistia clade based on chloroplast and

mitochondrial sequences (4360 bp) analyzed under a GTR + I + Γ model. Values above branches

indicate a posterior probability >90, values below branches maximum likelihood bootstrap value

>75. Numbered nodes (black) refer to the following minimal (Mi) or maximal (Ma) constraints

based on fossils and a geological event: (1) Peltandreae, Mi = 60 MY; (2) Seychelles archipelago,

Ma = 85 MY; (3) Colocasieae, Mi = 45 MY. Coconversion tract types (see Fig. 2.2A) of the

respective taxa are given on the right. Three inferred intron loss events are marked by a circle-

enclosed hyphen. B. Chronogram for the Arisaema/Pistia clade obtained under a Bayesian

relaxed clock applied to the same data and constrained as shown in 2.1A. Nodes 1-5 are discussed

in the text, the grey bars indicate standard deviations around estimates.
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1.11. The Markov chain length was 1 million cycles, sampled every 100th cycle

and with a burn-in of 100,000 cycles; analyses were repeated at least twice.

To obtain absolute times from genetic distances, we used the following con-

straints: (1) Peltandreae are first known from 60 million year (MY)-old leaves

from Europe, Kazakhstan, North Dakota, and Tennessee (Wilde et al., 2005).

This provides a minimal age of 60 MY for node 1 in Fig. 2.1A. (2) Protarum

sechellarum is endemic to the Seychelles, and the age of this archipelago (Braith-

waite, 1984) thus provides a maximal age of 85 MY for node 2. (3) Middle Eocene

leaf impressions (Caladiosoma messelense; Wilde et al., 2005) that closely match

modern Colocasieae provide a minimal age of 45 MY for node 3 in Fig. 2.1A. (4)

The oldest fossils of Araceae are 110-120 MY old (Friis et al., 2004), and therefore

120 MY was used as a maximal age for the root node. The earliest angiosperms

fossils are 141-132 MY old (Hughes, 1994).

2.4 Results

The cox1 Intron and Exonic Coconversion Tracts in the

Arisaema/Pistia Clade

The distribution of the cox1 intron in the Arisaema/Pistia clade is shown in Fig.

2.1A (including the relevant outgroups). As predicted by the hypothesis of Cho

and Palmer (1999) that the intron might be vertically inherited in this clade, most

species are intron+ and have the same coconversion tract. This tract, namely the

6+T type, comprises six nucleotide differences compared to intron− species and a

T in position 20.

The cox1 intron is lacking in Typhonodorum lindleyanum and Peltandra vir-

ginica, which form a clade, in Protarum sechellarum, and in the Vietnamese species

Croat and Dzu 77954. For genera with more than one species, we checked at least

one additional congeneric for the intron and the coconversion tract, and they all

showed the same pattern, (figs. 2.3, 2.4). Of the intron− species, three have unal-

tered coconversion tracts, while Croat and Dzu 77954 has an A, instead of a C, at

position 21 of its tract (Fig. 2.1A), which may be circumstantial evidence that it

once had an intron in its cox1 gene (below). Of the outgroups, C. bicolor has the

3+A tract type, and X. sagittifolium and X. mafaffa the 1+A type (figs. 2.1A,
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2.2A, and supplementary Fig. S1).

Cox1 Exonic Coconversion Tracts throughout Angiosperms

Analysis of all available angiosperm cox1 sequences (GenBank, 1 March 2007),

revealed 20 coconversion tract types of which 11 are only found in single species.

Figure 2.2A summarizes the tract types of the 110 intron+ and the 69 intron−

cox1 sequences. Overall, 112 tracts are of the +T type (101 in intron+ cox1 genes,

11 in intron− genes) and 19 are of the +A type (17 intron+, 2 intron−). In 15,

the A occurs together with the T, while in four cases, all in the Araceae, the A

occurs without the T (one of them in an intron− species and three in intron+

species, see Fig. 2.2A and Fig. 2.3). Depending on the intron− angiosperm

used for comparison, the C > T transversion in position 20 will be counted as

part of the coconversion tract or not. Thus, comparison with Zea mays results

in an apparent coconversion tract with six differences (Cho et al., 1998b), while

comparison with O. aquaticum suggests a coconversion tract with seven differences

(Cho and Palmer, 1999, this study).

Of the intron+ angiosperms, the majority (60%) has the 6+T tract type (34

of these are Araceae), while 9% (10 species) have the 6+T+A tract type (Fig.

2.2B). In other words, more than two thirds of the intron+ angiosperms have

all six third positions available in the coconversion tract changed (compared to

intron− species). Five species (Breynia nivosa, Hevea brasiliensis, Justicia ameri-

cana, Pilea fontana, Plantago coronopus) are of the X-types, which appear to have

undergone a back mutation in the middle of a 6+T coconversion tract (Fig. 2.2A).

Sixteen are of the 4+T type, four of the 3+T type, and the remaining ones belong

to rare types, such as 1+A. Two of the 110 intron+ angiosperms (Coffea arabica,

Rhamnus sp.) exhibit no differences in their coconversion tract.

Of the intron− angiosperms, 78% have unaltered tracts like O. aquaticum (Fig.

2.2B) while 22% (15) show differences in their coconversion tract, i.e., have a dele-

tion footprint. Of the footprints, one is of the 6+T type, one of the 4+T type, seven

have only the T in tract position 20, and four have single substitutions in different

positions. Two species (Canella winterana, Crossosoma bigelovii) have coconver-

sion tracts that apparently underwent back mutations from 6+T and 6+T+A type

tracts, and three are of the X∗ types (Fig. 2.2A), that is, have a G instead of an
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Int 5' - Exon - 3'   --> 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Coconver-

sion site 

type

Number 

of 

species

% species 

without 

intron

Orontium aquaticum - C A T C C A G A G G T G T A T A T T C C C A T T C T G C C 0 54 78,3

Euptelea polyandra - C A T C C A G A A G T G T A T A T T C C C A T T C T G C C X 1 1,4

Amborella trichopoda - C A T C C A G A G G T T T A T A T T C C C A T T C T G C C X 1 1,4

Zea mays - C A T C C A G A G G T G T A T A T T C T C A T T C T G C C   +T 7 10,1

Croat & Dzu 77954 - C A T C C A G A G G T G T A T A T T C C A A T T C T G C C   +A 1 1,4

Canella winterana - C A T C C A G A G G T C T A T A T T C T C A T T C T G C C X*+T 1 1,4

Crossosoma bigelovii - C A T C C G A A G G T C T A T A T T C T A A T T C T G C C X*+T+A 1 1,4

Plantago sericea - C A C C C T G A A G T C T A T A T T C T C A T T C T G C C X*+T 1 1,4

67

Proteins

% species 

with intron

Rhamnus cathartica + C A T C C A G A G G T G T A T A T T C C C A T T C T G C C 0 2 1,8

Barringtonia asiatica + C A C C C A G A G G T G T A T A T T C C C A T T C T G C C 1 2 1,8

Xanthosoma mafaffa + C A C C C A G A G G T G T A T A T T C C A A T T C T G C C 1+A 2 1,8

Saranthe sp. + C A C C C T G A G G T G T A T A T T C C C A T T C T G C C 2 1 0,9

Philodendron hederaceum + C A C C C T G A A G T G T A T A T T C C C A T T C T G C C 3 2 1,8

Caladium bicolor + C A C C C T G A A G T G T A T A T T C C A A T T C T G C C 3+A 1 0,9

Plantago cynops + C A C C C T G A A G T G T A T A T T C T C A T T C T G C C 3+T 4 3,6

Plantago coronopus + C A C C C A G A A G T T T A T A T T C T C A T T C T G C C X+T 1 0,9

Heliotropium arborescens + C A C C C T G A A G T T T A T A T T C T C A T T C T G C C 4+T 16 14,5

Justicia americana + C A T C C T G A A G T T T A C A T C C T A A T T C T G C C X+T+A 1 0,9

Hevea brasiliensis + C A C C C T G A A G T T T A C A T T C T A A T T C T G C C 5+T+A 3 2,7

Cucumis sativus + C A C C C T G A A G T T T A C A T C C T A A T T C T G C C 6+T+A 10 9,1

Amorphophallus rivieri + C A C C C T G A A G T T T A C A T C C T C A T T C T G C C 6+T 67 60,9

112
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Cusimano cox1 - Figure 2Figure 2.2: Coconversion tract types of intron− and intron+ angiosperm cox1 exons. A. Top

panel: Patterns of substitutions in the 22 nt downstream from the 3’ end of the intron insertion

site in 10 species selected to represent the tract types found in 69 intron− species. Bottom panel:

Tract in 13 species selected to represent the tract types found in 110 intron+ species. Most

common patterns are given a specific name; the others are labeled as X. An asterisk following

the X denotes substitutions in the third position that are different from the common nucleotides.

Protein translation is given below the top panel. B. Histogram of the number of intron+ and

intron− possessing a certain type of coconversion tract. Only the five commonest types are

explicitly shown (0, 0+T, 4+T, 6+T, 6+T+A).
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A or a T in tract position 6 and/or a C instead of a G or a T in tract position

12. So far, Plantago is the only genus with both intron− and intron+ species, and

it also shows particularly variable coconversion tracts (Fig. 2.2A, supplementary

Fig. S1).

Phylogenetic Analyses of Angiosperm cox1 Exon and Intron

Sequences

The hypothesis that the cox1 intron in angiosperms was gained by multiple lateral

transfers predicts incongruence between the angiosperm phylogeny and the intron

phylogeny. By contrast, congruence among angiosperm and intron phylogenies

points to vertical inheritance. We therefore performed phylogenetic analyses of

cox1 exons and introns and compared them with angiosperm relationships inferred

from larger data sets (Stevens, 2001 onwards; Qiu et al., 2005).

A phylogeny based on cox1 exon sequences (149 angiosperm species, 1288 char-

acters, excluding the 22 nt of the coconversion tract), rooted on Amborella, is

shown in Fig. 2.3. It recovers the monocots, core eudicos, and ordinal relation-

ships in agreement with angiosperm phylogenies based on other data (Stevens,

2001 onwards; Qiu et al., 2005). Generic groupings within more densely sampled

families such as Araceae (23 cox1 sequences) agree with relationships obtained

in larger data sets. For example, Orontium places as the first-diverging Araceae,

followed by Anthurium and Zamioculcas. Dieffenbachia and Zantedeschia, as well

as Spathiphyllum and Scindapus form sister pairs. The Arisaema/Pistia clade

and its relatives also group together. All this fits with a molecular phylogeny of

Araceae (S. Mayo, Royal Botanic Gardens Kew, personal communication, Feb.

2007). The earliest-diverging angiosperm lineages containing the cox1 intron are

the Magnoliales (Asiminia, Knema, Myristica) and Piperales (Peperomia).

A phylogeny based on cox1 intron sequences (106 species, 967 characters, ex-

cluding 173 gapped positions) and rooted on Myristiaceae (Magnoliales) is shown

in Fig. 2.4. Except for ten species that form a basal grade (Erethia, Bursera,

Lepionurus, Melia, Croton, Jasminum, Musella, Musa), four large clades are ap-

parent (labeled A-D in Fig. 2.4): Clade A includes all Araceae plus the two

Peperomia species (probably reflecting long branch attraction). Within clade A,

species with a 6+T coconversion tract cluster together. Clade B includes the re-
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Ajuga reptans
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Thunbergia erecta
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Brexia madagascariensis
Barringtonia asiatica

Glycine max
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Acalypha sp. Qiu95079
Breynia nivosa

Linum sp. Qiu 96175
Malpighia glabra
Viola sp. Qiu95018
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Hura crepitans

Hevea brasiliensis
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Bursera sp. Qiu 94206
Melia toosendan
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Hovenia dulcis
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Cucumis sativus
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Amorphophallus konjac
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Xanthosoma mafaffa

Croat & Dzu 77954
Xanthosoma sagittifolium

Caladium bicolor
Arisaema triphyllum

Arum italicum
Biarum davisii
Typhonium hirsutum

Remusatia vivipara
Steudnera colocasiifolia

Protarum sechellarum
Pistia stratiotes

Pinellia ternata
Philodendron hederaceum var. oxycardium

Scindapsus aureus
Spathiphyllum wallisii

Dieffenbachia sp. Qiu 96007
Zantedeschia aethiopica

Zamioculcas zamiifolia
Anthurium scherzerianum

Orontium aquaticum
Austrobaileya scandens

Cabomba caroliniana
Cabomba sp. Palmer 688

Euryale sp. Palmer 790
Victoria cf. amazonica

Nymphaea odorata
Nuphar sp. Palmer 689

Aristolochia elegans
Asarum canadense

Peperomia cubensis
Piper bicolor

Saururus chinensis
Lactoris fernandeziana

Cinnamomum verum
Laurus nobilis

Akebia quinata
Euptelea polyandra

Pseudofumaria lutea
Grevillea robusta

Clematis sp. Qiu 95085
Ranunculus carolinianus

Platanus occidentalis
Ranunculus sp. Qiu 95024

Liriodendron tulipifera
Nelumbo nucifera
Tetracentron sinense

Trochodendron aralioides
Knema latericia
Myristica fragrans

Asimina triloba
Polyalthia suberosa

Eupomatia laurina
Chloranthus spicatus
Sarcandra grandifolia

Magnolia grandiflora
Drimys winteri

Ceratophyllum demersum
Illicium lanceolatum
Kadsura japonica
Schisandra henryi

Schisandra sphenanthera
Trimenia sp. CCWD 2000
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Figure 2.3: Parsimony tree for 148 angiosperms obtained from cox1 exon sequences (1288

characters, 244 parsimony informative), rooted with Amborella trichopoda, intron absence (blue)

and presence (red), coconversion tract types as well as plant orders are plotted. Orders with a

vertical line before their name were recovered as monophyletic.
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Peperomia polybotrya
Peperomia cubensis

Caladium bicolor
Xanthosoma saggitifolium

Xanthosoma mafaffa
Philodendron hederaceum var. oxycardium

Zamioculcas zamiifolia
Amorphophallus konjac
Steudnera discolor
Steudnera colocasiifolia

Colocasia esculenta
Steudnera griffithii

Remusatia vivipara
Steudnera henryana

Steudnera kerryi
Ariopsis peltata

Pinellia cordata
Pinellia ternata

Typhonium venosum
Typhonium hirsutum
Eminium spiculatum

Theriophonum infaustum
Biarum tenuifolium

Dracunculus vulgaris
Helicodiceros muscivorus
Dracunculus canariensis
Biarum davisii

Arum italicum
Arum concinnatum

Pistia stratiotes
Arum dioscoridis

Arisaema speciosum
Arisaema triphyllum

Arisaema tortuosum
Typhonium giganteum

Alocasia cucullata
Colocasia gigantea
Alocasia gageana

Typhonium albidinervum
Typhonium trilobatum

Shorea talura
Viola sp. Qiu95018

Hydrocotyle rotundifolia
Ctenanthe setosa

Maranta leuconeura
Maranta bicolor

Saranthe sp. Kress 96 5737
Monotagma laxum

Catalpa fargesii
Rehmannia glutinosa

Celsia arturus
Scrophularia nodosa

Ajuga reptans
Physostegia virginiana

Clerodendrum trichotomum
Scutellaria mociniana

Lamium sp. Qiu 95019
Paulownia tomentosa

Ixora sp. Qiu95051
Coffea arabica

Hoya lanceolata
Nerium oleander
Catharanthus roseus

Strychnos spinosa
Sesamum indicum

Acalypha sp. Qiu95079
Cucumis sativus

Siphonochilus decorus
Linum sp. Qiu 96175

Thunbergia erecta
Barleria prionitis

Justicia americana
Sanchezia nobilis

Breynia nivosa
Euphorbia milii

Hedychium coronarium
Brexia madagascariensis

Drymonia serrulata
Nematanthus hirsutus

Callitriche heterophylla
Digitalis purpurea

Veronica catenata
Hebe subalpina

Pilea fontana
Pyrola secunda
Symplocos paniculata

Ilex sp. Qiu 94038
Barringtonia asiatica

Rhamnus cathartica
Hovenia dulcis

Calceolaria sp. IUGH
Hura crepitans

Heliotropium arborescens
Hevea brasiliensis

Diospyros virginiana
Malpighia glabra

Musa nana
Musella lasiocarpa

Jasminum polyanthum
Croton sp. Qiu 94027

Melia toosendan
Lepionurus sylvestris

Bursera sp. Qiu 94206
Ehretia anacua

Myristica fragrans
Knema latericia
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interest discussed in the text.
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maining monocots as well as all eudicots. Clade C includes species with a 4+T

coconversion tract, except for Rhamnus (no substitution in its coconversion tract)

and Barringtonia (coconversion tract with 1 substitution). The closest relatives

of clade C (not statistically supported) also have 4+T tracts or 5+T+A tracts.

Clade D, finally, unites 22 species with mainly 6+T (one with 6+T+A) cocon-

version tracts, again with two exceptions: Coffea (no substitution in its coconver-

sion tract), Saranthe (2 substitutions). Natural groups recovered within clade D

are Lamiales (all Lamiaceae and Scrophulariaceae, amongst others), Gentianales

and Zingiberales. Members of nine families form well-supported clades, namely

Acanthaceae, Araceae, Gesneriaceae, Marantaceae, Musaceae, Piperaceae, Plan-

taginaceae, Rhamnaceae, and Scrophulariaceae.

Sequence similarity among the 110 cox1 introns of the angiosperms ranges from

91% to identical (GenBank maximal identities with BLAST values of zero in each

case), while the genetically closest non-angiosperms cox1 introns (all in fungi) differ

greatly from each other and from angiosperms (supplementary Fig. S2 and below,

The Possible Origin of the cox1 Intron from Fungi and Intron Functionality).

Araceae appear to have especially low cox1 intron mutation rates, judging from

mean branch lengths of 0.012 (± 0.004) in clade A (excluding the fast-mutating

and phylogenetically misplaced Peperomia, above), compared to 0.038 (± 0.013)

in clade B (Fig. 2.4).

Hierarchical Distribution of cox1 Exonic Coconversion Tracts

and Time Frame of cox1 Intron Loss in the Araceae

When plotting Araceae exonic tract types on an Araceae phylogeny (S. Mayo,

personal communication, Feb. 2007) short tract types are found in derived posi-

tions, long tract types in basal positions. For example, Xanthosoma with a short

coconversion tract of 1+A in both species sequenced is derived relative to Amor-

phophallus (6+T). Similarly, Philodendron hederaceum var. oxycardium, with a

short coconversion tract (3 substitutions; Fig. 2.2A), is derived relative to Za-

mioculcas with 6+T.

A relaxed molecular clock applied to the 4360-nt matrix of combined chloroplast

and mitochondrial data (cox1 exon, trnL intron and spacer, rpl20-rps12 intergenic

spacer, and nad1 b/c exon and intron) yielded an age of 111 (SD 91-131) MY for
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the stem of the intron− Typhonodorum lindleyanum/Peltandra virginica clade and

of 70 (SD 60-91) MY for the divergence between these two species (Fig. 2.1B,

nodes 1 and 2). The divergence of the intron− Vietnamese species Croat and Dzu

77954 from Remusatia vivipara is estimated as having occurred 49 (SD 30-67) MY

ago (Fig. 2.1B, node 3). The fourth intron− species, Protarum sechellarum, is not

securely placed by our data (Fig. 2.1A), but may have diverged from the remaining

Arisaema/Pistia clade at about 73 (SD 60-82) MY ago (Fig. 2.1B, node 4).

The Possible Origin of the cox1 Intron from Fungi and In-

tron Functionality

Vaughn et al. (1995) who first reported on the cox1 intron in angiosperms assumed

that its endonuclease was functional because of the presence of two LAGLI-DADG

motifs (Belfort and Perlman, 1995). Experimental confirmation of homing ability

is still lacking. Blasting of the hypothetical protein from Arum concinnatum (306

residues) yielded a BLAST value of 5 x e−120 (71% identical, 83% positives) with

ORF 305 of the rice mould Rhizopus oryzae (a basal fungal lineage, formerly placed

in Zycomycetes, family Mucoraceae), 3 x e−103 (63% identical, 78% positives) with

an “unknown” region (fide GenBank) in the Oyster mushroom Pleurotus ostreatus

(Agaricomycetes, Basidiomycota), 8 x e−75 (48% identical, 64% positives) with

ORF 318 of Monoblepharella sp. (Chytridiomycota, Monoblepharidaceae), and

of 3 x e−67 (46% identical, 63% positives) with the cox1 aI4 intronic protein of

Saccharomyces cerevisiae (Ascomycota, Saccharomycetaceae), which encodes site-

specific DNA endonuclease and RNA maturase activities (Wenzlau et al., 1989).

The putative cox1 intron endonucleases of angiosperms have sequence similarities

of 98% (Philodendron oxycardium) to 86% (Peperomia grisoargentea) with that of

Arum concinnatum, and the entire cox1 intron sequence of A. concinnatum has

sequence similarities of 77% with Rhizopus, 71% with Pleurotus and Cryptococcus

(both Basidiomycota), and 66% with Monoblepharella (supplementary Fig. S2).
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2.5 Discussion

The cox1 Intron in the Araceae – A Long History of Vertical

Inheritance

Considering first the distribution of the cox1 intron on a phylogeny of the Arisaema/Pistia

clade, sampled for all its genera (Renner and Zhang, 2004), it is parsimoniously

explained by vertical inheritance as suggested by Cho and Palmer (1999). All

intron+ species in this clade have the same 6+T coconversion tract type. An in-

tron loss occurred in Croat and Dzu 77954, which is embedded among intron+

relatives and has a coconversion tract with a single substitution (an A in position

21). Two further losses apparently occurred in Protarum seychellarum and in

the common ancestor of the outgroup species Typhonodorum and Peltandra (Fig.

2.1A). Judging from the fossil-constrained relaxed molecular clock, the cox1 in-

tron has persisted in the genomes of the Arisaema/Pistia clade for at least 80 MY

(Fig. 2.1B, node 5). If it is ancestral in the Araceae, not just the Arisaema/Pistia

clade, as suggested by the intron’s phylogenetic signal, which matches the Araceae

family tree (Results), it may have persisted for 110 MY (oldest Araceae fossils,

110-120 MY; Friis et al., 2004). The timing of at least one intron loss can also be

inferred. The stem lineage of the intron− Typhonodorum/Peltandra clade, which

comprises just three species, is between 110 and 70 MY old (Results). Its sister

clade consists of a similarly species-poor group (Ambrosina, with one species, Aro-

phyton with three species, and Arisarum also with three species) that appears to

have the intron (NC, unpublished data for Arisarum vulgare). Intron loss in the

Typhonodorum/Peltandra clade could have occurred some 70 MY ago, with the

coconversion tracts found in Typhonodorum and Peltandra persisting since then.

The Araceae have four exonic coconversion tract types, 6+T, 3+T, 3, or 1+A

(Fig. 2.2A). Based on a small taxon sample, a tract with seven substitutions (6+T)

appeared synapomorphic for the Arisaema/Pistia clade (Cho and Palmer, 1999),

but when all angiosperm coconversion tracts are compared to the same reference

Araceae, O. aquaticum, as used in Cho and Palmer (1999), it is clear that the 6+T

type is the predominant cox1 exonic coconversion tract of intron+ angiosperms

(figs. 2.2-2.4). It also appears that the cox1 exonic coconversion tracts in Araceae

may be hierarchically nested, with species having 3 or 1 difference(s) in their tracts
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phylogenetically more derived than species with 6 differences. Such a pattern might

be expected if the 6+T-type coconversion tract arose when the cox1 intron first

inserted itself into some ancestral Araceae (or angiosperm; see below) and was

then passed on vertically, occasionally undergoing back mutation (which would

lead to “shorter” coconversion tracts, viz. 6+T > 5+T > 4+T > 3+T, etc., Fig.

2.2A).

Based on the data available now, Araceae exonic coconversion tracts are less

static than thought previously (Cho et al., 1998b; Cho and Palmer, 1999; Palmer

et al., 2000), when it was argued that, “Regardless of how closely related they

are, any two taxa whose coconversion tracts differ probably acquired their introns

separately. For example, Amorphophallus and Xanthosoma are sister taxa with

85% bootstrap support, and thus are inferred to have received their introns by

vertical transmission according to all parsimony models of intron distribution (Fig.

2.2B-E). However, because their coconversion tracts differ, and substantially so

(Fig. 5 [compare our figs. 2.2A and 2.4]), we conclude that they most likely

acquired their introns by two separate, and recent, horizontal transfers. By the

same logic, we conclude that Philodendron and Zamioculcas, which cluster weakly

in the shortest angiosperm tree (Fig. 2.2A), also acquired their introns separately

(Fig. 6).” (p. 1161: Cho and Palmer, 1999).

The cox1 Intron in the Angiosperms – Predominant Loss,

not Horizontal Transfer

The hypothesis of multiple gains of the angiosperm cox1 intron via horizontal gene

transfer (Cho et al., 1998b; Cho and Palmer, 1999; Palmer et al., 2000; Richardson

and Palmer, 2007) was based on relatively small taxon samples, making it appear

that, “Given that we have still sampled only a tiny fraction of the >300,000 species

of angiosperms, we are confident that the intron has been horizontally acquired

at least hundreds of times during angiosperm evolution and probably over 1,000

times. Equally remarkably, all of these transfers seem to have occurred very re-

cently, in the last 10 million years or so of angiosperm evolution.” (p. 6965: Palmer

et al., 2000). Evidence for independent gains came mostly from phylogenetic in-

congruence between intron and angiosperm phylogenies, patchy distribution of the

intron, and analyses of exonic coconversion tracts, similar to the arguments used
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in the case of Araceae (Cho and Palmer, 1999).

Considering the argument from phylogenetic incongruence between cox1 intron

and angiosperm phylogenies, the current data suggest a different interpretation.

The three pairs of angiosperm genera (Ilex/Hydrocotyle, Symplocus/Diospyros, and

Maranta/Hedychium) for which Cho et al.’s (1998b) data showed strong disagree-

ment between the intron and the angiosperm phylogeny are not recovered with the

current larger taxon sample (Fig. 2.4). And although the intron phylogeny con-

tains many phylogenetically incorrect groups, it recovers an even larger number of

correct clades at the species, genus, family, and even ordinal level (Fig. 2.4). The

odd groupings found by Cho et al. (1998b) and in the current intron phylogeny

(Fig. 2.4) are probably due to low sequence variability of the cox1 intron leading

to random groupings, and to a few taxa with higher mutation rates, causing long-

branch-attraction. Regarding the coconversion tracts previously seen as evidence

for or against a vertical or horizontal intron history, renewed analysis leads to the

different conclusion. Several of the family-level clades recovered in the cox1 intron

tree (Fig. 2.4) include species that differ in their coconversion tracts (as shown in

the figure). This is the case in Araceae, Marantaceae, Acanthaceae, and Rham-

naceae. The simplest explanation of this is that in each case the intron is inherited

vertically, with the exonic tracts decaying stochastically over time. Conversely, in

the densely sampled order Lamiales (Fig. 2.4), 6+T and 4+T coconversion tracts

sort by family, and such slow exonic tract decay also predominates in the generally

slowly evolving Araceae (at least in terms of their cox1 sequences), which continue

to pass on an ancient exonic tract. Taxa with high mitochondrial mutation rates,

on the other hand, also undergo rapid changes in their coconversion tracts, as seen

in Plantago (Cho et al., 1998a, 2004, our supplementary Fig. S1). There is also a

slight positive correlation between a clade’s species sampling density and its tract

type diversity (supplementary Fig. S3).

The only finding suggestive of horizontal cox1 intron transfer is a clade of phy-

logenetically unrelated taxa in the intron phylogeny that comprises many species

with a 4+T tract type (clade C in Fig. 2.4; the clade also includes a few other

tract types). We compared the cox1 sequences of these taxa and found that they

share four synapomorphic changes in loops L3 and L5 of the intron’s predicted sec-

ondary structure (Vaughn et al., 1995). These substitutions, which do not seem

to correlate with other changes in the intron or its coconversion tract, explain the
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high bootstrap support of the 4+T clade (three non-homoplastic changes will lead

to a bootstrap support of 95%; Felsenstein, 1985). The level of support for the

4+T clade is thus in fact not very high. A second observation arguing against

horizontal transfer is that the subgroups inside the 4+T clade are monophyletic at

family level (Rhamnaceae, Plantaginaceae, Gesneriaceae) or even the ordinal level

(Lamiales). Vertical inheritance of the 4+T tract type, and insufficient phyloge-

netic signal in the cox1 intron to recover relationships at hierarchical levels above

the order, thus remain the simplest explanation for all groupings in Fig. 2.4.

Together these results suggest that differences in cox1 coconversion tracts do

not necessarily imply independent horizontal gene transfer and that phylogenetic

evidence fits with a vertical history of the intron in angiosperms or at least fails

to contradict it with statistical support. A largely vertical history also fits with

the similar length of the intron across all angiosperms, its position at the same

site in the cox1 gene, and its generally high nucleotide similarity. Had there

been thousands of horizontal transfers of the intron (perhaps over the past 10

million years; Palmer et al., 2000) the intron phylogeny would hardly recover as

many natural groups as it does nor would one expect all angiosperm introns to

be essentially equally distant from the closest fungal cox1 intron (supplementary

Fig. S2). The “high frequency angiosperm-to-angiosperm horizontal transfer”

hypothesis for the cox1 gene (Richardson and Palmer, 2007) also faces the difficulty

of the still unknown transferring agent, although this is not a strong argument

against lateral transfer.

Possible Mechanisms of cox1 Intron Loss

One of the reasons why Cho et al. (1998b) preferred a hypothesis of multiple intron

gains over multiple losses was that each plant cell contains thousands of mitochon-

drial genomes. Mitochondrial genes that have lost an intron should therefore

suffer an onslaught of homing introns coming from other genomes in the same cell

as long as the introns’ homing endonucleases are intact. However, there are so

far no experimental data showing that the ORF-encoded protein in angiosperms

cox1 introns functions as endonuclease. Conceivably, the angiosperm cox1 intron

ORF long ago lost its endonuclease function and now acts only as maturase for

the splicing process (Delahodde et al., 1989; Wenzlau et al., 1989; Haugen et al.,
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2005). If this were the case, intron reinsertion by homing would not longer be

possible.

Molecular mechanisms for intron loss are either recombination between an

intron+ an intron− gene or recombination between the genomic copy of an intron+

gene and a reverse transcribed copy of spliced mRNAs (Dujon, 1989; Roy and

Gilbert, 2005; Roy and Penny, 2007); another mechanism is genomic deletion as

in the intron presence-absence polymorphism in Drosophila (Llopart et al., 2002).

The cox1 intron is always gained or lost in one step, because it is self-splicing and

can only function if the entire intron is inserted. For the angiosperms, we assume

that the intron is lost by gene conversion (i.e., by one of the above two recom-

bination mechanisms). That the distribution of the most common coconversion

tract types is so biased, with most intron− angiosperms having the 0 tract type

(Fig. 2.1A, top panel), most intron+ angiosperms the 6+T tract (Fig. 2.1A, bot-

tom panel), suggests that one reflects an event during intron insertion, the other

an event correlated with intron loss. (It is also possible that the original intron

donor and the first angiosperm recipient had identical cox1 tracts and there was

no coconversion. The 6+T tract would then simply be an ancestral angiosperm

cox1 sequence and the 0 type would be the “footprint” of intron loss.) In the

long run, selection on the host should favor intron loss. We suggest that the cox1

coconversion tract is usually lost during the intron excision process, which would

explain the similar coconversion tract in most intron− angiosperms. A stage in the

angiosperm life cycle at which such loss might logically occur is during megaspore

or zygote formation, where number of mitochondria is reduced and changes in

the mitochondrial genome could spread more easily. (Only maternal mitochondria

closest to the egg cell become part of the zygote.)

Fungi as Donors of the cox1 Intron in Angiosperms

Regarding the possible donor of the angiosperm and/or Araceae cox1 intron, the

current hypothesis is that it came from a fungus (Vaughn et al., 1995; Adams

et al., 1998; Cho et al., 1998b; Seif et al., 2005). This idea is based on two observa-

tions. First, the cox1 intron is the only group I intron in vascular plant mtDNAs,

while in fungi, group I introns in the cox1 gene are common. Second, most an-

giosperms have symbiotic interactions with fungi, providing a conceivable way of
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intron transfer from a fungus to an angiosperm. A recent study that analyzed

fungi group I introns with ORFs, including eight in the cox1 gene, found a cox1

intron in Rhizopus oryzae (cox1 -i1-ORF 305) that was similar to the cox1 intron

of angiosperms (Seif et al., 2005), leading to the suggestion that the angiosperm

cox1 intron “originated in a zygomycete close to Rhizopus.” Renewed BLAST

searching of angiosperm cox1 introns (28 August 2007) still yields the widespread

mould R. oryzae and the Oyster mushroom Pleurotus ostreatus as the closest rel-

atives outside of angiosperms (supporting material Fig. S2). However, sampling

in the fungi is extremely sparse and sequence homology low.

Regardless of how many times and from which fungus the cox1 intron entered

the angiosperms, such entry was hardly a straightforward process because of dif-

ferences in the genetic code used by fungi and angiosperms (Fox, 1987). For intron

homing to function, the encoded endonuclease must be translated, and differences

in codes may cause difficulties in translation. Further difficulties are the exis-

tence of C > U RNA editing in plant but not fungal mitochondria (Gray, 1996)

and differences in promoter sequences recognized by the fungal and plant mito-

chondrial transcriptional apparatus (Tracy and Stern, 1995). Nevertheless, there

is indirect evidence that angiosperm-to-fungus intron transfer can occur (Nishida

and Sugiyama, 1995). The cox1 introns of other spermatophytes, e.g., Marchantia

polymorpha (Ohta et al., 1993), are more distant from angiosperm cox1 introns

than are fungal cox1 introns.

2.6 Conclusion

For Araceae, the fit between the cox1 intron and the Araceae phylogeny, and the

highly conserved coconversion tracts together suggest vertical intron inheritance

over 110 MY, with several independent losses within Araceae. Current data for all

angiosperms likewise point to a history dominated by vertical intron inheritance

followed by repeated intron loss. The alternative hypothesis of numerous hori-

zontal acquisitions has difficulties explaining the observed congruence between the

intron and the angiosperm phylogeny as well as the evidence from the 20 cocon-

version tract types found across angiosperms. Coconversion tracts can no longer

be regarded as static footprints. Instead their analysis in a phylogenetic frame-

work provides evidence of their gradual decay and loss, most likely at the excision
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stage and by RT-mRNA-mediated coconversion. The hypothesis that fungi are

the source of the angiosperm cox1 intron fits with current data, but sampling in

fungi is still extremely sparse, and specific donor lineages can therefore not yet be

named.
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Supplementary Table S2.1: Sources and GenBank accession numbers of newly generated

sequences as well as sequences downloaded from GenBank.

Species Source TrnL intron TrnL-trnF 

spacer 

Rpl20-rps12 

spacer 

Nad1 b/c 

intron 

Cox1 

exon 

Cox1 

intron 

Pistia clade        

 Alocasia cucullata (Lour.) G. Don MO acc. 751658 AY248983 AY248945 AY248908 AY243116 EF517193 EF517193 

 Alocasia gageana Engl. & K. 

Krause 

MO acc. 78364 AY248984 AY248946 AY248909  EF517194 EF517194 

 Ariopsis peltata J. Graham J. Murata s.n. 16 

Oct 2001 

AY248985 AY248947 AY248910 AY243120 EF517198 EF517198 

 Arisaema speciosum (Wall.) Mart. W. Hetterscheid 

s.n. Jul 2002  

AY248995 AY248957 AY248920 AY243115 EF517176 EF517176 

 Arisaema tortuosum (Wall.) Schott Anaimudi 20/5  AY248995 AY248957 AY248920 AY243115 EF517177 EF517177 

 Arisaema triphyllum (L.) Torr. Cho and Palmer 

1999 

    AY009454 AY009454 

 Arum concinnatum Schott B. W. Magrys s.n., 

15. Mar. 02 

AY248997 AY248959 AY248922 AY243121 EF517179 EF517179 

 Arum dioscoridis Sibth. & Sm. B. W. Magrys s.n., 

15. Mar. 02 

AY248997 AY248959 AY248922 AY243121 EF517180 EF517180 

 Arum italicum Mill. BG Mainz, 

20 Jul 2001 

AY248997 AY248959 AY248922 AY243121 EF517181 EF517181 

 Biarum davisii Turrill MO acc. 78231 AY248998 AY248960 AY248923 AY243122 EF517182 EF517182 

 Biarum tenuifolium (L.) Schott BG Bonn 16014 AY248999 AY248961 AY248924  EF517183 EF517183 

 Colocasia esculenta (L.) Schott Bogner, 18.Jul. 

2001, BG Munich 

    EF517196 EF517196 

 Colocasia gigantea (Blume) Hook. 

zf. 

T. Croat & Dzu 

78014 (MO) 

AY249000 AY248962 AY248925 AY243117 EF517195 EF517195 

 Dracunculus canariensis Kunth BG Bonn 13049 AY249001 AY248963 AY248926 AY243123 EF517184 EF517184 

 Dracunculus vulgaris Schott T. Croat 78286 

(MO) 

AY249002 AY248964 AY248927  EF517185 EF517185 

 Eminium spiculatum (Blume) Schott BG Bonn 15031 AY249003 AY248965 AY248928 AY243124 EF517186 EF517186 

 Helicodiceros muscivorus (L. f.) 

Engl. 

MO acc. 71821 AY249004 AY248966 AY248929 AY243125 EF517187 EF517187 

 Pinellia cordata N. E. Brown J. McClements 

s.n., 30 Jul 2001 

AY249005 AY248967 AY248930 AY243111 EF517175 EF517175 

 Pinellia ternata (Thunb.) Breit. J. McClements 

s.n., 30 Jul 2001 

AY249006 AY248968 AY248931 AY243112 EF517178 EF517178 

 Pistia stratiotes L. J. Bogner, 18 Jul 

2001, BG Munich 

AY249007 AY248969 AY248932 AY243126 EF517204 EF517204 

 Protarum sechellarum Engl.  J. Bogner 2545 

(M) 

AY249008 AY248970 AY248933 AY243127 EF517203 no intron 

 Remusatia vivipara (Lodd.) Schott MO acc. 69705b AY249009 AY248971 AY248934 AY243118 EF517197 EF517197 

 Croat & Dzu 77954 T. Croat & Dzu 

77954 (MO) 

AY249010 AY248972 AY248935 AY243119 EF517201 no intron 

 Steudnera colocasiifolia K. Koch J. Bogner 1891 

(M) 

EF517218 EF517213 EF517223 EF517172 EF517208 EF517208 

 Steudnera discolor  Bull J. Bogner 1582 

(M) 

EF517216 EF517211 EF517221 EF517170 EF517199 EF517199 

 Steudnera grifithii (Schott) Hook f. J. Bogner 2588 

(M) 

EF517219 EF517214 EF517224 EF517173 EF517210 EF517210 

 Steudnera henryana Engl. J. Bogner 2619 

(M) 

EF517217 EF517212 EF517222 EF517171 EF517200 EF517200 

 Steudnera kerrii Gagnep. J. Bogner 2291 

(M) 

EF517220 EF517215 EF517225 EF517174 EF517209 EF517209 

 Theriophonum dalzelii Schott J. Murata s.n., 21 

Aug 2002 

AY249011 AY248973 AY248936 AY243128   

 Theriophonum infaustum N.E.Br. P. Bruggemann, 

PB 099, Apr. 05 

    EF517202 EF517202 

 Typhonium albidinervum Tang & Li J. Murata 1 AY249012 AY248974 AY248937 AY243129 EF517192 EF517192 

 Typhonium giganteum Engl. J. W. Waddick 

s.n., 20 Aug. 2001 

AY249013 AY248975 AY248938 AY243130 EF517189 EF517189 

 Typhonium hirsutum (S. Y. Hu) 

Murata & Mayo 

W. Hetterscheid 

H.AR 036 

AY249014 AY248976 AY248939  EF517190 EF517190 

 Typhonium trilobatum (L.) Schott J. Murata 5 AY249016 AY248978 AY248941 AY243131 EF517188 EF517188 

 Typhonium venosum (Dryand. ex 

Aiton) Hett. & P.C.Boyce 

J. Bogner s.n. (M), 

27. Jun. 02 

    EF517191 EF517191 

Araceae outgroups        

 Caladium bicolor (Aiton) Vent. T. Croat 60868 

(MO) 

AY249018 AY248980 AY248943 AY243134 EF517207 EF517207 

 Peltandra virginica Raf. J. Bogner 2119 

(M) 

AY249017 AY248979 AY248942 AY243132 AJ007550 no intron 

 Typhonodorum lindleyanum Schott J. Bogner s.n.  (M) AY249019 AY248981  incomplete EF517205 no intron 

 Xanthosoma sagittifolium (L.) 

Schott & Endl.  

MO acc. 850652b AY249020 AY248982 AY248944 AY243133 EF517206 EF517206 

 Xanthosoma mafaffa Schott  Cho and Palmer 

1999 

    AJ223807 AJ223807 

 Amorphophallus rivieri Durieu ex 

Riviere 

Cho and Palmer 

1999 

    AJ007548 AJ007548 
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Supplementary Table S2.1 continued

 Anthurium scherzerianum Schott Cho and Palmer 

1999 

    AJ007551 no intron 

 Dieffenbachia sp. Cho and Palmer 

1999 

    AJ007548 no intron 

 Orontium aquaticum L. Cho and Palmer 

1999 

    AJ007551 no intron 

 Philodendron hederaceum var. 

oxycardium Schott 

Cho and Palmer 

1999 

    AJ223438 AJ223438 

 Scindapsus aureus Engl. Cho and Palmer 

1999 

    AJ007552 no intron 

 Spathiphyllum wallisii Hort. Cho and Palmer 

1999 

    AJ007553 no intron 

 Zamioculcas zammiifolia Engl. Cho and Palmer 

1999 

    AJ007547 AJ007547 

 Zantedeschia aethiopica (L.) 

Spreng.. 

Cho and Palmer 

1999 

    AJ007555 no intron 

Other Angiosperms        

Escalloniaceae Brexia madagascariensis Cho et al., 1998     AJ223413 AJ223413 

Burseraceae Bursera sp. Cho et al., 1998     AJ223412 AJ223412 

Bignoniaceae Catalpa fargesii Cho et al., 1998     AJ223411 AJ223411 

Apocynaceae Catharanthus roseus Cho et al., 1999     AJ223423 AJ223423 

Lamiaceae Clerodendrum trichotomum Cho et al., 1998     AJ223414 AJ223414 

Cucurbitaceae Cucumis sativus Cho et al., 1998     AJ223416 AJ223416 

Scrophulariaceae Digitalis purpurea Cho et al., 1998     AJ223415 AJ223415 

Ebenaceae Diospyros virginiana Cho et al., 1998     AJ223417 AJ223417 

Euphorbiaceae Euphorbia milii Cho et al., 1998     AJ223418 AJ223418 

Scrophulariaceae Hebe subalpina Cho et al., 1998     AJ223419 AJ223419 

Boraginaceae Heliotropium arborescens Cho et al., 1998     AJ223425 AJ223425 

Euphorbiaceae Hevea brasiliensis Cho et al., 1998     AJ223436 AJ223436 

Apiaceae Hydrocotyle rotundifolia Cho et al., 1998     AJ223424 AJ223424 

Aquifoliaceae Ilex sp. Cho et al., 1998     AJ223429 AJ223429 

Myristicaceae Knema latericia Cho et al., 1998     AJ223430 AJ223430 

Lamiaceae Lamium sp. Cho et al., 1998     AJ223428 AJ223428 

Opiliaceae Lepionurus sylvestris Cho et al., 1998     AJ223439 AJ223439 

Malpighiaceae Malpighia glabra Cho et al., 1998     AJ223433 AJ223433 

Meliaceae Melia toosendan Cho et al., 1998     AJ223420 AJ223420 

Myristicaceae Myristica fragrans Cho et al., 1998     AJ223434 AJ223434 

Apocynaceae Nerium oleander Cho et al., 1998     AJ223421 AJ223421 

Rhamnaceae Rhamnus cathartica Cho et al., 1998     AJ223422 AJ223422 

Acanthaceae Sanchezia nobilis Cho et al., 1998     AJ223437 AJ223437 

Symplocaceae Symplocos paniculata Cho et al., 1998     AJ223435 AJ223435 

Scrophulariaceae Veronica catenata Cho et al., 1998     AJ223427 AJ223427 

Euphorbiaceae Acalypha sp. Qiu95079      AJ247597 AJ247597 

Poaceae Aegilops columnaris      ACU46764 no intron 

Lamiaceae Ajuga reptans      AJ247595 AJ247595 

Lardizabalaceae Akebia quinata      AY009429 no intron 

Amborellaceae Amborella trichopoda      AF193953 no intron 

Aristolochiaceae Aristolochia elegans      AY009431 no intron 

Aristolochiaceae Asarum canadense      AY009432 no intron 

Annonaceae Asimina triloba      AY009433 no intron 

Austrobaileyaceae Austrobaileya scandens      AF193954 no intron 

Acanthceae Barleria prionitis      AJ247601 AJ247601 

Lecythidaceae Barringtonia asiatica      AJ247581 AJ247581 

Betulaceae Betula papyrifera      U77620 no intron 

Capparaceae Breynia nivosa      AJ247605 AJ247605 

Cabombaceae Cabomba caroliniana      AY009435 no intron 

Cabombaceae Cabomba sp. Palmer 688      AF193949 no intron 

Scrophulariaceae Calceolaria sp. IUGH      AJ247585 AJ247585 

Callitrichaceae Callitriche heterophylla      AJ247577 AJ247577 

Canellaceae Canella winterana      AY009437 no intron 
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Scrophulariaceae Celsia arturus      AJ247590 AJ247590 

Ceratophyllaceae Ceratophyllum demersum      AF193945 no intron 

Arecaceae Chamaerops humilis      U77621 no intron 

Chloranthaceae Chloranthus spicatus      AY009439 no intron 

Lauraceae Cinnamomum verum      AY009440 no intron 

Ranunuculaceae Clematis sp. Qiu 95085      AF193960 no intron 

Rubiaceae Coffea arabica      AJ247586 AJ247586 

Crossosomataceae Crossosoma bigelovii      DQ317034 no intron 

Euphorbiaceae Croton sp. Qiu 94027      AJ247608 AJ247608 

Marantaceae Ctenanthe setosa      AY673019 AY673019 

Dioscoreaceae Dioscorea mexicana      AY009442 no intron 

Winteraceae Drimys winteri      AY009443 no intron 

Gesneriaceae Drymonia serrulata      AJ247579 AJ247579 

Boraginaceae Ehretia anacua      AJ247606 AJ247606 

Eupomatiaceae Eupomatia laurina      AY009444 no intron 

Eupteleaceae Euptelea polyandra      AF193963 no intron 

Nymphaeaceae Euryale sp. Palmer 790      AF193947 no intron 

Fabaceae Glycine max      M16884 no intron 

Proteaceae Grevillea robusta      AY009449 no intron 

Zingiberaceae Hedychium coronarium      AJ223426 AJ223426 

Rhamnaceae Hovenia dulcis      AJ247583 AJ247583 

Asclepiadaceae Hoya lanceolata      AJ247588 AJ247588 

Euphorbiaceae Hura crepitans      AJ247584 AJ247584 

Illiciaceae Illicium lanceolatum      AY009445 no intron 

Rubiaceae Ixora sp. Qiu95051      AJ247587 AJ247587 

Oleaceae Jasminum polyanthum      AJ247607 AJ247607 

Acanthaceae Justicia americana      AJ247602 AJ247602 

Schisandraceae Kadsura japonica      AF193952 no intron 

Lactoridaceae Lactoris fernandeziana      AY009446 no intron 

Lauraceae Laurus nobilis      AF193956 no intron 

Linaceae Linum sp. Qiu 96175      AJ247604 AJ247604 

Magnoliaceae Liriodendron tulipifera      AF193959 no intron 

Magnoliaceae Magnolia grandiflora      AF020568 no intron 

Marantaceae Maranta bicolor      AY673024 AY673024 

Marantaceae Maranta leuconeura      AJ223432 AJ223432 

Marantaceae Monotagma laxum      AY673026 AY673026 

Zingiberaceae Musa nana      AJ247609 AJ247609 

Zingiberaceae Musella lasiocarpa      AY673040 AY673040 

Nelumbonaceae Nelumbo nucifera      AF193950 no intron 

Gesneriaceae Nematanthus hirsutus      AJ247578 AJ247578 

Nympheaceae Nuphar sp. Palmer 689      AF193948 no intron 

Nympheaceae Nymphaea odorata      AF020570 no intron 

Poaceae Oryza sativa      X15990 no intron 

Scrophulariaceae Paulownia tomentosa      AJ247592 AJ247592 

Piperaceae Peperomia cubensis      AF029782 AF029783 

Piperaceae Peperomia polybotrya      X87335 X87336 

Arecaceae Phoenix dactylifera      AY166800 no intron 

Lamiaceae Physostegia virginiana      AJ247594 AJ247594 

Urticaceae Pilea fontana      AJ247580 AJ247580 

Piperaceae Piper bicolor      AY009448 no intron 

Platanaceae Platanus occidentalis      DQ317031 no intron 

Annonaceae Polyalthia suberosa      AF193957 no intron 

Fumariaceae Pseudofumaria lutea      AY009441 no intron 

Ericaceae Pyrola secunda      AJ247582 AJ247582 
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Ranunculaceae Ranunculus carolinianus      AY009451 no intron 

Ranunculaceae Ranunculus sp. Qiu 95024      DQ317030 no intron 

Scrophulariaceae Rehmannia glutinosa      AJ247589 AJ247589 

Arecaceae Sabal palmetto      U77624 no intron 

Caprifoliaceae Sambucus canadensis      AF193965 no intron 

Marantaceae Saranthe sp. Kress 96-5737      AY673030 AY673030 

Chloranthaceae Sarcandra grandifolia      AF193958 no intron 

Piperaceae Saururus chinensis      AY009452 no intron 

Schisandraceae Schisandra henryi      AY009453 no intron 

Schisandraceae Schisandra sphenanthera      AF193951 no intron 

Scrophulariaceae Scrophularia nodosa      AJ247591 AJ247591 

Lamiaceae Scutellaria mociniana      AJ247593 AJ247593 

Pedaliaceae Sesamum indicum      AJ247598 AJ247598 

Dipterocarpaceae Shorea talura      AJ247599 AJ247599 

Zingiberaceae Siphonochilus decorus      AY673043 AY673043 

Solanaceae Solanum lycopersicum      X54738 no intron 

Solanaceae Solanum tuberosum      X83206 no intron 

Poaceae Sorghum bicolor      M14454 no intron 

Loganiaceae Strychnos spinosa      AJ247596 AJ247596 

Tetracentraceae Tetracentron sinense      AY009455 no intron 

Acanthceae Thunbergia erecta      AJ247603 AJ247603 

Monimiaceae Trimenia sp. CCWD-2000      AY009456 no intron 

Poaceae Triticum aestivum      Y00417 no intron 

Poaceae Triticum aestivum x Triticum 

timopheevi 

     X56186 no intron 

Trochodendraceae Trochodendron aralioides      AF020581 no intron 

Nympheaceae Victoria cf. amazonica      AF193946 no intron 

Fabaceae Vigna radiata      AF338446 no intron 

Violaceae Viola sp. Qiu95018      AJ247600 AJ247600 

Poaceae Zea mays      X02660 no intron 

 Fungi         

Basidiomycota Cryptococcus neoformans        AY560609 

Mono-

blepharidaceae 
Monoblepharella sp.        AY182007 

Basidiomycota Pleurotus ostreatus        EF204913 

Mucoraceae Rhizopus oryzae       AY863212 

Ascomycota Saccharomyces cerevisiae        S76641 
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Supplementary Figure S2.1: Alignment of 179 angiosperm cox1 exon coconversion tracts.

The marked differences refer to the reference sequence Orontium aquaticum (Cho and Palmer

1999). The first two nucleotides are the last two of the intron (if present), and nucleotides 3 to

24 are the coconversion tract.

1 10 20 29

 Orontium aquaticum - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Protarum sechellarum, Cusi. et al., 2007 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Typhonodorum lindleyanum, Cusi. et al., 2007- - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Dieffenbachia sp. Qiu 96007 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Peltandra virginica - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Anthurium scherzerianum - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Scindapsus aureus - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Spathiphyllum wallisii - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Zantedeschia aethiopica - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Magnolia grandiflora - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Nymphaea odorata - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Ceratophyllum demersum - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Victoria cf. amazonica - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Euryale sp. Palmer 790 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Nuphar sp. Palmer 689 - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Cabomba sp. Palmer 688 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Nelumbo nucifera - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Schisandra sphenanthera - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Kadsura japonica - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Austrobaileya scandens - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Laurus nobilis - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Polyalthia suberosa - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Sarcandra grandifolia - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Liriodendron tulipifera - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Clematis sp. Qiu 95085 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Vigna radiata - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Akebia quinata - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Asarum canadense - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Cabomba caroliniana - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Chloranthus spicatus - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Cinnamomum verum - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Pseudofumaria lutea - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Dioscorea mexicana - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Drimys winteri - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Eupomatia laurina - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Illicium lanceolatum - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Lactoris fernandeziana - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Piper bicolor - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Grevillea robusta - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Schisandra henryi - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Tetracentron sinense - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Trimenia sp. CCWD-2000 - - c a t c c a g a g g t g t a t a t t c c c a t t c c g

 Phoenix dactylifera - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Ranunculus sp. Qiu 95024 - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Platanus occidentalis - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Glycine max - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Sabal palmetto - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Solanum lycopersicum - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Solanum tuberosum - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Trochodendron aralioides - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Ranunculus carolinianus - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Saururus chinensis - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Betula papyrifera - - c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Chamaerops humilis - - c a t c c a g a g g t g t a t a t t c c c a t t c t g
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 Croat & Dzu 77954, Cusi. et al., 2007 - - c a t c c a g a g g t g t a t a t t c c a a t t c t g

 Aristolochia elegans - - c a c c c a g a g g t g t a t a t t c c c a t t c t g

 Euptelea polyandra - - c a t c c a g a a g t g t a t a t t c c c a t t c t g

 Amborella trichopoda - - c a t c c a g a g g t t t a t a t t c c c a t t c c g

 Aegilops columnaris - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Sambucus canadensis - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Sorghum bicolor - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Zea mays - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Oryza sativa - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Triticum aestivum x Triticum timopheevi - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Triticum aestivum - - c a t c c a g a g g t g t a t a t t c t c a t t c t g

 Canella winterana - - c a t c c a g a g g t c t a t a t t c t c a t t c t g

 Crossosoma bigelovii - - c a t c c g a a g g t c t a t a t t c t a a t t c t g

 Plantago sericea Cho et al., 1998b - - c a c c c t g a a g t c t a t a t t c t c a t t c t g

 Asimina triloba - - c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Rhamnus cathartica a g c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Coffea arabica a g c a t c c a g a g g t g t a t a t t c c c a t t c t g

 Xanthosoma mafaffa a g c a c c c a g a g g t g t a t a t t c c a a t t c t g

 Xanthosoma sagittifolium, Cusi. et al., 2007 a g c a c c c a g a g g t g t a t a t t c c a a t t c t g

 Barringtonia asiatica a g c a c c c a g a g g t g t a t a t t c c c a t t c t g

 Saranthe sp. Kress 96-5737 a g c a c c c t g a g g t g t a t a t t c c c a t t c t g

 Peperomia cubensis Cho et al., 1998b a g c a c c c t g a a g t g t a t a t t c c c a t t c t g

 Philodendron hederaceum var. oxycardium a g c a c c c t g a a g t g t a t a t t c c c a t t c t g

 Caladium bicolor, Cusi. et al., 2007 a g c a c c c t g a a g t g t a t a t t c c a a t t c t g

 Peperomia polybotrya Cho et al., 1998b a g c a c c c t g a a g t g t a t a t t c t c a t t c t g

 Plantago cynops Cho et al., 1998b - g c a c c c t g a a g t g t a t a t t c t c a t t c t g

 Plantago lanceolata Cho et al., 1998b - g c a c c c t g a a g t g t a t a t t c t c a t t c t g

 Plantago atrata Cho et al., 1998b - g c a c c c t g a a g t g t a t a t t c t c a t t c t g

 Plantago coronopus Cho et al., 1998b - g c a c c c a g a a g t t t a t a t t c t c a t t c t g

 Symplocos paniculata a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Callitriche heterophylla a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Nematanthus hirsutus a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Drymonia serrulata a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Pyrola secunda a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Hovenia dulcis a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Hura crepitans a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Calceolaria sp. IUGH a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Pilea fontana a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Brexia madagascariensis a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Digitalis purpurea a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Hebe subalpina a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Heliotropium arborescens a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Hedychium coronarium a g c a c c c t g a a g t t t a t a t t c t c a t Y c t g

 Veronica catenata a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Ilex sp. Qiu 94038 a g c a c c c t g a a g t t t a t a t t c t c a t t c t g

 Justicia americana a g c a t c c t g a a g t t t a c a t c c t a a t t c t g

 Euphorbia milii a g c a c c c t g a a g t t t a c a t t c t a a t t c t g

 Breynia nivosa a g c a c c c t g a a g t t t a c a t t c t a a t t c t g

 Hevea brasiliensis a g c a c c c t g a a g t t t a c a t t c t a a t t c t g

 Malpighia glabra a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Sanchezia nobilis a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Acalypha sp. Qiu95079 a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Ajuga reptans a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Barleria prionitis a g c a c c c t g a a g t t t a c a t c c t a a t t c t g
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 Sesamum indicum a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Thunbergia erecta a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Musa nana a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Musella lasiocarpa a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Cucumis sativus a g c a c c c t g a a g t t t a c a t c c t a a t t c t g

 Zamioculcas zamiifolia a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Amorphophallus rivieri a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arisaema triphyllum a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Catalpa fargesii a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Bursera sp. 'Qiu 94206' a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Clerodendrum trichotomum a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Diospyros virginiana a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Melia toosendan a g c a c c c t g a a g t t t a c a t c c t c a t t c t a

 Nerium oleander a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Catharanthus roseus a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Hydrocotyle rotundifolia a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Lamium sp. Qiu 95019 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Knema latericia a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Maranta leuconeura a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Myristica fragrans a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Lepionurus sylvestris a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Ixora sp. Qiu95051 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Hoya lanceolata a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Rehmannia glutinosa a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Celsia arturus a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Scrophularia nodosa a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Paulownia tomentosa a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Scutellaria mociniana a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Physostegia virginiana a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Strychnos spinosa a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Shorea talura a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Viola sp. Qiu95018 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Linum sp. Qiu 96175 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Ehretia anacua a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Jasminum polyanthum a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Croton sp. Qiu 94027 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Ctenanthe setosa a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Maranta bicolor a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Monotagma laxum a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Siphonochilus decorus a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arisaema speciosum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arisaema tortuosum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Pinellia cordata, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Pinellia ternata, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arum concinnatum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arum dioscoridis, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Arum italicum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Biarum davisii, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Biarum tenuifolium, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Dracunculus canariensis, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Dracunculus vulgaris, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Eminium spiculatum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Helicodiceros muscivorus, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Theriophonum infaustum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g
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Supplementary Figure S2.1 continued

1 10 20 29

 Typhonium venosum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Thyphonium hirsutum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Typhonium giganteum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Typhonium albidinervum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Typhonium trilobatum, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Alocasia cucullata, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Alocasia gaganea, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t g t g

 Colocasia gigantea, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Colocasia esculenta, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Remusatia vivipara, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Steudnera discolor, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Steudnera griffithii, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Steudnera henryana, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Steudnera kerii, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Steudnera colocasiifolia, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Pistia stratiotes, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g

 Ariopsis peltata, Cusi. et al., 2007 a g c a c c c t g a a g t t t a c a t c c t c a t t c t g
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Supplementary Figure S2.2: Parsimony phylogram of angiosperm cox1 intron sequences plus

the five most similar fungi cox1 intron sequences obtained from a GenBank BLAST search on

August 28, 2007. Numbers on branches are branch lengths.
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Supplementary Figure S2.3: Cox1 exonic tract types plotted on the current phylogeny of

angiosperm orders (Stevens 2001 onwards, version 8, June 2007). To the right of each order, the

number of species sequenced for cox1 and the coconversion tract types found in them. Grey:

Orders not yet investigated for the cox1 intron. Black: Orders investigated for the cox1 intron.

Font styles: regular: only intron- species found, italics: intron− and intron+ species found; bold

face: only intron+ species found.
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Chapter 3
A phylogeny of the Areae (Araceae)

implies that Typhonium, Sauromatum,

and the Australian species of Typhonium

are distinct clades

Cusimano, N., Barrett, M., Hetterscheid, W. L. A. and S. S. Renner.
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3.1 Abstract

With in excess of 70 species, the Southeast Asian/Australian genus Typhonium is

the largest genus of the Areae, a tribe that includes up to nine smaller genera, of

which Sauromatum and Lazarum have recently been reduced to the synonymy of

Typhonium. To test circumscriptions and relationships of Typhonium to the other

Areae, we useed chloroplast and nuclear DNA sequences (4319 aligned nucleotides)

for 86 of their 153 species, including representatives of all relevant genera. In the

resulting phylogeny, Typhonium species fall into three well-supported clades: the

first comprises most Typhonium species, including the type, T. trilobatum; the

second clade consists of the type of Sauromatum, S. guttatum and other species

formerly placed in that genus; the third includes only Australian endemics. Each of

the remaining six genera of Areae are monophyletic. Sauromatum and Typhonium

are not sister groups, requiring the recognition of Sauromatum. The Australian

clade also needs to be ranked as a genus to achieve similar levels of morphological,

geographic, and genetic distinctness among the genera of Areae. However, since

only ten of the 16 described Australian endemics currently placed in Typhonium

have so far been sequenced, not including the type of the name of the Australian

genus Lazarum, we refrain from applying this name to the Australian clade. Among

the nomenclatural and taxonomic results of this study are a key to the nine species

of Sauromatum, and five new combinations. We also report two new chromosome

counts and discuss the implications of the molecular phylogeny for the evolution

of Sauromatum karyotypes.

Key Words

Areae, chromosome numbers, Lazarum, molecular phylogenetics

3.2 Introduction

The tribe Areae (Araceae) in its current circumscription comprises seven genera

(Hay, 1997; Mayo et al., 1997; Hetterscheid and Boyce, 2000) and at least 153

species (including 14 awaiting description). The Areae range from Australia to

Europe, with one species in Africa, and a center of diversity in SE Asia, another
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in the Mediterranean region and the Near East. Two genera, the SE Asian Sauro-

matum and the Australian Lazarum, have recently been sunk into Typhonium, the

largest genus of the tribe. The monophyly of this broadly circumscribed Typho-

nium, however, appears doubtful. An early DNA restriction fragment analysis that

included eight species of Typhonium (five of these now belonging to Sauromatum)

and representatives of two other Areae genera found Typhonium paraphyletic (Sri-

boonma et al., 1993). A concurrent morphological cladistic analysis of 36 species

of Typhonium (including six here shown to belong in Sauromatum) and one Arum

species yielded the same result (Sriboonma et al., 1994). That Typhonium and

Sauromatum might be distinct clades was suggested by the family wide restriction

fragment analysis of French et al. (1995) in which the single species of Typhonium

and Sauromatum included did not form a clade, but instead a grade with Therio-

phonum falling in between (Lazarum was not included). A more recent chloroplast

phylogeny for Areae that included five species of Typhonium (three of these here

shown to belong in Sauromatum), and numerous other Areae, yielded the same re-

sult (Renner and Zhang, 2004). None of these molecular studies, however, sampled

a sufficient number of species to properly test the monophyly of Typhonium.

The genus Sauromatum was erected by Heinrich Willem Schott (1832) to ac-

commodate S. guttatum (Ait.) Schott and S. pedatum (Link & Otto) Schott (Arum

pedatum Link & Otto), two obviously related entities from the understory of mon-

soon forests in India. Kunth (1841) transferred Arum venosum Dryand ex Ait.,

a species described from a cultivated specimen, to Sauromatum (this species is

now considered conspecific with S. guttatum and S. pedatum). Shortly thereafter,

Miquel (1855, 1864) added S. pulchrum from Sumatra and S. horsfieldii from

Central Java. The last was transferred to Typhonium by van Steenis (1948) who

considered it to be the same as T. fallax N.E. Br. and T. pedatum Engl. Another

species moved between Sauromatum and Typhonium is T. brevipes (Hooker, 1893)

from Sikkim in the southern Himalayas (Brown, 1903). Of these doubtfully as-

signed species, two are widely cultivated, Sauromatum venosum, the commercial

curiosity marketed as the “voodoo lily”, and S. giganteum, in spite of the vile scent

they produce at peak flowering.

The most important characters used by Schott (1832) to distinguish his Sauro-

matum from Typhonium were the connate spathe tube, ovaries with two (rather

than one) ovules, scattered staminodes and a short peduncle in Sauromatum. In
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addition, Schott noted that Sauromatum produced leaves after flowering, whereas

Typhonium produced them before or during flowering. The later discovery of in-

termediate forms, however, diluted these generic differences. Thus, partly fused

spathe tubes are found in S. hirsutum (see below) and a fused spathe base, but

leaves occurring during flowering, in S. brevipes, resulting in the above described

transfers (e.g., Brown, 1903; van Steenis, 1948; Hetterscheid and Boyce, 2000). The

problem of generic assignments was exacerbated by incompletely known species.

For example, a fruiting specimen of T. hirsutum was discovered in 1958 in dry ev-

ergreen forest in Chiang Mai (Thailand) at an altitude of 1130 m and described as

Arisaema hirsutum by Hu (1968). Some 30 years later, Murata and Mayo (1991)

realized that a flowering specimen represented the same species; however, they

thought it better placed in Typhonium, with “some interesting resemblances to its

neighboring genus Sauromatum,” such as a spathe tube fused for up to one quarter

of its length and an inflorescence intermediate between T. giganteum and S. veno-

sum. A fuller understanding of many species of Typhonium and Sauromatum was

only achieved once they were brought into cultivation (Hetterscheid et al., 2001).

Nevertheless, the apparently impossible morphological separation of Sauromatum

and Typhonium caused Hetterscheid and Boyce (2000) to sink Sauromatum into

Typhonium.

The other genus whose relationship to Typhonium has been difficult to as-

sess from morphology alone is Lazarum. This is a monotypic entity based on

an Australian species discovered on Melville Island near Darwin (Northern Terri-

tory), in 1984 (Hay, 1992). Lazarum mirabile resembles Sauromatum, Typhonium,

and Biarum. It differs from these genera in its connate spathe tube with two

chambers divided by an annular septum. After the discovery of another species

from Darwin, T. praetermissum, with spathe tube characters intermediate be-

tween Lazarum mirabile and “typical” Typhonium, L. mirabile was transferred to

Typhonium (Hay, 1997).

Here we test the monophyly and relationships of Typhonium based on a dense

species sampling consisting of 86 species of Areae selected to represent all geo-

graphically and morphologically distinct groups of Typhonium and its relatives;

we specifically included most of the species ever placed in Sauromatum. It turns

out that the Typhonium in its broad circumscription is a polyphyletic group com-

posed of three distinct clades. We present the phylogenetic results and formalize



3.3. MATERIALS AND METHODS 79

some of the nomenclatural changes required by our findings. We also report new

chromosome numbers and discuss the implications of the molecular phylogeny for

the evolution of Sauromatum karyotypes. Finally, we present a key to the species

of our redefined Sauromatum.

3.3 Materials and Methods

Taxon Sampling and Sequencing

We sampled 86 of the 153 species of Areae. The Areae comprise Arum with 29

species (Boyce, 1993, 2006; Lobin et al., 2007), Biarum with 21 (Boyce, 2008),

Dracunculus with two (Mayo et al., 1997), Eminium with nine (Mayo et al., 1997;

Bogner and Boyce, 2008), Helicodiceros with one (Mayo et al., 1997), Therio-

phonum with five (Sivadasan and Nicolson, 1982; Mayo et al., 1997), Typhonium

s.l. with 72 species (Hay, 1993; Sriboonma et al., 1994; Hay and Taylor, 1996; Hay,

1997; Sookchaloem and Murata, 1997; Hetterscheid and Boyce, 2000; Hetterscheid

and Nguyen, 2001; Hetterscheid et al., 2001; Murata et al., 2002; Wang et al., 2002;

Hetterscheid and Galloway, 2006; Dao et al., 2007; Nguyen, 2008), however, this

number includes species here shown to belong in Sauromatum or the Australian

clade), and at least 14 as yet undescribed species belonging to various of these

genera. For this study, we included 52 species of Typhonium s.l., 18 of Arum,

9 of Biarum, 2 each of Eminium, andTheriophonum, both Dracunculus species,

and the single species of Helicodiceros. Several species of Typhonium are repre-

sented by two or three accessions. As outgroups, we used two species of Arisaema

based on the chloroplast phylogeny of Renner and Zhang (2004). This totals to 88

species, represented by 98 accessions. All species with their sources and herbarium

vouchers (where applicable) are shown in the Appendix.

To deduce phylogenetic relationships, we relied on a nuclear locus, the phy-

tochrome C gene (PhyC ), and two chloroplast loci, the rpl20-rps12 intergenic

spacer and the tRNALys gene (trnK ), which contains a group I intron that encodes

the maturase K (matK ) open reading frame. Total DNA from silica-dried leaves

was extracted with the NucleoSpin plant kit according to the manufacturer’s pro-

tocol (Macherey-Nagel, Düren, Germany). Sequencing of the circa 2300 nucleotide

(nt)-long trnK marker, amplified in one piece with the primer pair trnK -3914F
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(dicot) – trnK -16R (Johnson and Soltis, 1994), was problematic. Consequently,

we designed new internal primers and amplified the section in two pieces: trnK -

3914F – trnK -RM and trnK -FM – trnK -16R. Primer sequences are as follows:

trnK -RM 5’-AAGATGTTGATCGTAAATAAGAGG-3’ and

trnK -FM 5’-GTTTTGCTGTCATTATGGAAATTCC-3’.

PhyC was also amplified in two pieces with the newly designed primers: A20F –

750R and 430F – AR: A20F: 5’-CACTCAATCCTACAAACTGGC-3’,

750R: 5’-AAGATCCATAACATTTGGTGATTGT-3’,

430F: 5’-CTCGTGATGTCTGTCACAATAAG-3’ and

AR: 5’-GAATAGCATCCATTTCAACATC-3’.

The rpl20 – rps12 intergenic spacer was amplified using the primers and PCR

conditions described in Renner and Zhang (2004).

Polymerase chain reactions (PCR) were performed with 10 µM primers in 25-

µl reactions, using BioTherm DNA polymerase (Genecraft, Lüdinghausen, Ger-

many). The initial step of 5 min at 95 ◦C was followed by 35 cycles of 95 ◦C for 30

s for DNA denaturation, 60 ◦C for 60 s for primer annealing, and 72 ◦C for 2 min

and 40 s for primer extension. PCR products were controlled by electrophoresis on

an ethidium bromide-stained 1% agarose gel with the Lambda DNA size marker.

PCR products were controlled by electrophoresis on an ethidium bromide-stained

1% agarose gel with the Lambda DNA size marker. PCR products were purified

using either Promega Wizard R©SV Gel and PCR Clean-Up System or Agencourt

AMPure R©PCR purification kit and quantified electrophoretically, using Lambda

DNA as standard. If multiple bands were detected, an additional electrophore-

sis was performed to excise and analyze them separately. Sequencing relied on

Big Dye Terminator kits (Applied Biosystems, Warrington, UK) and the ampli-

fication primers. The cycle sequencing products were cleaned by Sephadex G-50

Superfine gel filtration (Amersham, Uppsala, Sweden) on MultiScreen TM-HV

membrane plates (Millipore, Bedford, USA) according to the manufacturers’ pro-

tocols to remove unincorporated nucleotides. Fragments were separated on an

ABI 3100 Avant capillary sequencer, assembled and edited using the software Se-

quencher (Gene Codes, Ann Arbor, MI, USA), and BLAST-searched in GenBank.

Sequences are deposited in GenBank (for accession numbers see Appendix).
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Alignments and Phylogenetic Analyses

Alignments (Table 1) were generated in MacClade (Maddison and Maddison, 1992)

and continuously adjusted manually. The three data partitions were first analyzed

separately, and in the absence of statistically supported topological contradictions

(>80%), they were then combined.

Phylogenetic inference of the combined data (4319 aligned nucleotides) relied on

maximum likelihood (ML) as implemented in the RAxML BlackBox (Stamatakis

et al., 2008, http://phylobench.vital-it.ch/raxml-bb/) and on Bayesian analysis as

implemented in MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and

Huelsenbeck, 2003). Bootstrapping under ML used 1000 replicates performed in

RAxML. All searches relied on the GTR + Γ model, with model parameters esti-

mated during runs. (RAxML uses the GTRCAT approximation of the GTR + Γ

model, with the gamma shape parameter having 25 rate categories.)

Bayesian runs were started from independent random starting trees and re-

peated four times. Markov chain Monte Carlo (mcmc) runs extended for 2 million

generations, with trees sampled every 2000th generations (resulting in 1001 trees

for each run). We used a flat Dirichlet prior for the relative nucleotide frequencies

and rate parameters, a discrete uniform prior for topologies, and an exponential

distribution (mean 10) for the γ-shape parameter and all branch lengths. Conver-

gence was assessed by checking that (1) final likelihoods and majority rule topolo-

gies among runs were similar; (2) the standard deviations (SD) of split frequencies

were < 0.01; (3) the convergence diagnostic (the potential scale reduction factor

given by MrBayes) approached 1; and (4) by examining the plot provided by Mr-

Bayes of the generation number versus the log probability of the data. TRACER

(Rambaut and Drummond, 2007) was used to assess whether runs had reached

convergence. Trees saved prior to convergence were discarded as burn-in (100

trees) and a consensus tree constructed from the remaining 3604 trees.

Chromosome Counts

Chromosome numbers were obtained for S. tentaculatum (living plant number

H.AR.042) and S. hirsutum (H.AR.036) from individuals cultivated by the third

author in the botanical garden of Wageningen. Offspring of the two species are

now (2009) in cultivation at the Munich Botanical Garden. Each count is based
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on ten to 15 nuclei from one individual. To obtain good-quality chromosomal

spreads, root tip meristems were collected in the morning, pretreated for 3-5 hours

with colchicine at 4 ◦C, fixed with ethanol- acetic acid (3:1), and stored at −20 ◦C

until use. For basic karyotype assessment, hydrolyzed meristems were stained with

Schiff”s reagent, squashed under a cover slip, analyzed under a light microscope,

and documented using a digital image capture system.

3.4 Results

Phylogeny

The combined sequence matrix (4319 characters, 98 accessions, Table 3.1) yielded

a well-supported Areae clade in which all genera with more than one species were

monophyletic, except for Typhonium, which split into three well-supported clades

(Fig. 3.1). The largest of these, sister to the remaining genera, contains 31 of

the 52 sampled species of Typhonium, including the type T. trilobatum. The sec-

ond “Typhonium” clade includes only Australian endemics (Fig. 3.1); we refer

to this clade as the Australian clade. Within the Australian clade, there are two

statistically supported subclades, one containing T. alismifolium, T. wilbertii and

T. angustilobium (the latter not monophyletic), one containing T. nudibaccatum,

T. praetermissum and the undescribed species T. sp. Kununurra, T. sp. Prince

Regent and T. sp. Morgan River. The phylogenetic positions of other Australian

taxa are not well resolved. The next branching clade is Theriophonum, followed

by the third “Typhonium” clade, which includes all species at one time placed in,

or morphologically similar to, Sauromatum (Fig. 3.1). Within Sauromatum, there

Table 3.1: Sizes of the individual and combined chloroplast and nuclear data matrices.

 Aligned nucleotides Accessions  
DNA locus Total  Excluded Included Total Ingroup Outgroup 

trnK 2719 169 2550 94 92 2 

rpl20-rps12 872 122 750 58 56 2 

phyC 1192 173 1019 51 49 2 

Combined data 4319 98 96 2 
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are three statistically supported subclades, one of S. hirsutum and S. tentacula-

tum, one of S. brevipes and S. venosum, and one comprising S. diversifolium, S.

gaoligongense, and S. horsfieldii. The sister relationship between the latter two

is also well supported. The entire Sauromatum clade is sister to a well-supported

clade of the remaining five genera of Areae, which are centered in the Mediter-

ranean region.

Chromosome Numbers

For Sauromatum, we obtained new counts of 2n = 26 for S. hirsutum and S.

tentaculatum. Together with the other counts available for the genus (Fig. 3.2

and Discussion), a base number of x = 13 can be inferred, under the assumption

that higher numbers in the genus are tetraploid or octoploid.

3.5 Discussion

Phylogeny

This study elucidates the phylogenetic relationships among Typhonium based on

nuclear and chloroplast sequence data obtained for 86 of the 153 species of Areae.

The results show that Typhonium splits into three clades that are not closely

related. Fortunately, the type species, Typhonium trilobatum (L.) Schott, falls

into the largest clade, so that only a small number of names need to be transferred

to achieve monophyletic genera (see Taxonomic Conclusions).

The Australian species all fall in a clade (Fig. 3.1) except for T. flagelliforme,

which is not endemic to Australia but also occurs in India and Southeast Asia

(T. blumei and T. roxburghii are introduced to Australia). The arrival of T.

flagelliforme in Australia appears to be quite recent, whereas the Australian clade

is a more ancient lineage that has diversified within Australia. This clade will

Figure 3.1 (facing page): Maximum likelihood phylogeny for 96 accessions representing 86

species of the nine genera of Areae based on nuclear and chloroplast sequences (4319 aligned

nucleotides). Values above branches refer to posterior probabilities from Bayesian inference (2

Mio. generations), those below branches to bootstrap support (percentages of 1000 replicates)

under maximum likelihood.
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need to be accorded genus rank to achieve a balanced classification of Areae, and

if Lazarum mirabile A. Hay (Typhonium mirabile (A. Hay) A. Hay) turns out to

belong to this clade, Lazarum will become the correct name for this ninth genus of

Areae. A revised morphological definition of Lazarum will be necessary, because

the characters initially used to define Lazarum (Hay, 1997), viz., the connate

spathe base, marcescent spathe (meaning that the withered spathe persists on

the plant), annular septum at the spathe constriction, and shoot architecture are

shared in only three species, T. mirabile, T. praetermissum, and T. taylori (Hay,

1997). An undescribed species with some of these characters is T. (Lazarum) sp.

Kununurra, which however lacks the annular septum. T. praetermissum and T. sp.

Kununurra are deeply nested within the Australian clade (Fig. 3.1), suggesting

that these characters evolved independently within the Australian clade, rather

than indicating a relationship with other genera, such as Sauromatum, as initially

suggested by (Hay, 1992). Another six Australian species currently placed in

Typhonium, viz. T. cochleare A. Hay, T. johnsonianum A. Hay & S. M. Taylor,

T. jonesii A. Hay, T. mirabile A. Hay, T. taylorii A. Hay, and T. weipanum A.

Hay, remain to be sequenced.

Within the Australian clade, species with marcescent spathe bases were recov-

ered as a monophyletic group with strong statistical support (T. sp. Kununurra,

T. praetermissum, T. nudibaccatum, T. sp. Prince Regent, T. sp. Morgan River).

This clade is nearly equivalent to the “nudibaccati group” of Hay (1993), with the

inclusion of several species discovered since that publication (Hay, 1997). The ex-

panded “nudibaccati group” is restricted to the Kimberley region of West Australia

and the northern part of the Northern Territory. The remainder of the Australian

species falls into several groups showing geographic structuring, with variable levels

of support. A strongly supported clade containing T. angustilobium, T. wilbertii

and T. alismifolium appears restricted to tropical Queensland. Specimens from

the Northern Territory previously assigned to T. angustilobium requires molecular

confirmation of its identity, but could not be sampled for this study. Collections

from central arid Australia attributed to T. alismifolium in Hay (1993) belong to

an undescribed species.

T. peltandroides and T. aff. liliifolium are sister taxa in Fig. 3.1, but without

strong support. Both species occur in the Kimberley region of Western Australia

and are may be related to T. liliifolium s.str. from the Northern Territory because
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96

Figure 3.2: Evolution of selected traits in Sauromatum as inferred on the relevant part of the

Areae phylogeny shown in Figure 3.1. The position of S. brevipilosum (grey) is inferred from

morphology.

all three species share entire leaves with dense venation. Typhonium eliosurum, T.

browni and T. aff. brownii also form a clade in Fig. 3.1, albeit without support.

These species are distributed along the east coast of Australia and share laterally

elongated rather than depressed-globose corms as present in most other Australian

taxa.

The newly revealed Sauromatum clade includes six species that were at one

time placed in, or thought similar to, Sauromatum. Only S. diversifolium and S.

tentaculatum where never before compared to Sauromatum, but their morphology

fits the genus well (below). Additionally, both species have a chromosome num-

ber based on x = 13, which appears to be the base number of Sauromatum, a

characteristic of the genus first reported here.

Sauromatum can be separated from all other Areae genera by a combination

of four characters (Fig. 3.2; Fig. 3.3 shows the inflorescences of all nine species

of Sauromatum): Sauromatum has (1) pedatisect leaves; (2) a spathe tube with

fused margins, (3) clavate lower staminodes; and (4) upper staminodes that are

differently shaped from the lower ones and/or longitudinal ridges on the spadix

between the lower staminodes and the stamens. The ridges on the spadix may
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Sauromatum tentaculatum Sauromatum giganteumSauromatum horsfieldii

Sauromatum venosum Sauromatum hirsutum Sauromatum brevipilosumSauromatum diversifolium

Sauromatum brevipes
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Figure 3.3: Longitudinally-opened spathes of the nine species of Sauromatum (A-I) and of

T. flagelliforme (J), showing the different types of staminodes. Photos A-C, E-F, and H-J by

W. Hetterscheid from plants cultivated in his greenhouse; photo D by H. Li, Kunming Institute

of Botany; photo E by Arno Clement; photo G by B.O. Schlumpberger, Systematic Botany,

University of Munich.

represent vestigial staminode bases, as is visible in S. giganteum (Fig. 3.3C). When

the last two characters apply and a species has pedatisect leaves and/or a fused

spathe tube, then it belongs in Sauromatum. On these morphological grounds, we

here also transfer T. brevipilosum (as yet unsequenced) to Sauromatum. Two other

species that Sriboonma et al. (1994) revealed as closely related to the investigated

Sauromatum species are T. omeiense H. Li and T. alpinum C.Y. Wu ex H. Li, Y.

Shiao & S.L. Tseng. However, these names will be synonymized with, respectively,

S. horsfieldii and S. diversifolium in a forthcoming treatment for the Flora of China

(of which WH is a coauthor).

As here circumscribed, Sauromatum has 5-13 foliate pedatisect leaves, except

for S. giganteum and some forms of S. diversifolium, which have simple leaves. S.

brevipes, S. brevipilosum, S. hirsutum, S. gaoligongense and S. venosum have a a

spathe tube with fused margins. This character is never found within Typhonium

(s.str.) but occurs in its sister clade (Fig. 3.1), namely in Biarum, Eminium

jaegeri, T. mirabile, T. taylori, T. praetermissum, and the undescribed T. sp.
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Kununurra. The only Typhonium s.str. species that has two types of staminodes

is T. flagelliforme (Fig. 3.3J), but here, the lower ones are not clavate, nor are

the leaves pedatisect or the spathe tube fused.

The phylogenetic relationships found here (Figs. 3.1, 3.2) suggest that the

fused spathe tube has evolved three times independently in Sauromatum (once

in S. hirsutum/S. brevipilosum, once in S. venosum/S. brevipes, and once in S.

gaoligongense). In contrast, the clavate-shaped lower staminodes seem to have

evolved once, along with the distinct upper staminodes (Fig. 3.3A, B), later re-

duced to varying extents (Fig. 3.3C-I). If S. brevipilosum is indeed the sister of

S. hirsutum (Fig. 3.2), the complete loss of the upper staminodes happened once,

their reduction twice (in S. venosum/S. brevipes and S. diversifolium). The pe-

datisect leaves seem to be the plesiomorphic condition in the genus that has been

lost twice (S. giganteum and S. diversifolium).

Chromosome Numbers in Typhonium, Sauromatum, and

the Australian clade

In Sauromatum chromosome numbers are available for S. horsfieldii (2n = 26), S.

diversifolium, S. giganteum (2n = 52), S. venosum (2n = 26, 52, 104; Petersen,

1989; Bogner and Petersen, 2007), and S. gaoligongense (2n = 26; Li Heng, Kun-

ming Institute of Botany, pers. comm. on 20 July 2009). Hence, including our

new counts for S. hirsutum and S. tentaculatum of 2n = 26, the base chromosome

number of Sauromatum is x = 13. From these counts, the two most widespread

species, S. giganteum (Afghanistan to China) and S. venosum (Afghanistan to

China, Africa) appear to be tetraploid, and S. venosum appears to comprise also

diploid and octoploid forms. The five remaining, more narrowly distributed species

all have 2n = 26, viz. S. tentaculatum (Thailand), S. gaoligongense (S China), S.

hirsutum (Thailand) and S. horsfieldii (Indonesia, Thailand, S China, Myanmar).

The switch to polyploidy appears to have happened three times, but chromosome

numbers are still lacking for two species (S. brevipilosum and S. brevipes).

In Typhonium, by contrast, chromosome numbers are extremely variable: the

early-diverging T. flagelliforme has 2n = 16, while other species have x = 5, 7, 8,

9, 10 or 13 and most probably also x = 4, 6, 11 (N. Cusimano, unpublished data).

Diploid chromosome numbers range from 2n = 8 to 2n = 78. Aneuploidization
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and subsequent polyploidization events (or vice versa), or other complex chromo-

some rearrangements, seem to have played an important role in the evolution of

the Typhonium, leading to the existing variety of chromosome numbers. The dras-

tic reduction of chromosome number could have happened through chromosome

fusion, translocations of chromosome parts and/or loss of DNA.

For the Australian clade, only two chromosome numbers have been reported,

both extremely high: T. eliosurum (2n > 100) and T. brownii (2n = 160; Briggs

in Evans, 1961). Along with an undescribed species from New South Wales, these

species may belong to a polyploid complex.

Taxonomic Conclusions

Our results show that the broadly circumscribed Typhonium of Hetterscheid and

Boyce (2000) is polyphyletic and comprises three distinct clades, which should be

recognized at generic rank to achieve a balanced classification of the Areae. The

Asian and Malesian species form a clade (Typhonium s.str.) that is sister to the

other genera of Areae. The Australian species of Typhonium so far sequenced

form a distinct clade. Theriophonum, from southern India, diverges next, followed

by Sauromatum, now composed of nine species, and sister to a clade including

the Mediterranean genera of Areae (Arum, Biarum, Dracunculus, Eminium, Heli-

codiceros). The genus Sauromatum can be circumscribed not only genetically, but

also morphologically as we have shown here. Application of the name Lazarum

for the Australian clade (Fig. 3.1) awaits the sequencing of the type species of

this generic name. At this stage, therefore, Typhonium s.str. and the Australian

clade are not defined morphologically, but on our molecular evidence are clearly

distinct.

In the following, we resurrect the genus Sauromatum, make the necessary five

new combinations, and present a key to the nine species of Sauromatum. De-

tailed descriptions of all species and up-to-date information on their geographic

distribution are available elsewhere (Sriboonma & al., 1994; Wang and Li, 1999;

Hetterscheid & Boyce, 2000; Hetterscheid & al., 2001).



90CHAPTER 3. PHYLOGENETICS OF TYPHONIUM AND SAUROMATUM

Sauromatum Schott in H.W. Schott et Endlicher, Melet. Bot.: 17. 1832 –

Lectotype (designated by D. Nicolson in Taxon 16: 518. 1967): S. guttatum

Schott (Arum guttatum Wallich 1831, non Salisbury 1796).

Sauromatum brevipes (Hook.f.) N.E. Brown in Gard. Chron. 3, 34(2):

93. 1903 ≡ Typhonium brevipes Hook.f. in Fl. Brit. India 6: 511. 1893 –

Syntypes: Darjeeling, 7500 ft., Clarke 26708 (K); Jore Pokri, 7600 ft., Gammie

s.n. (K).

Sauromatum gaoligongense Z.L. Wang & H. Li in Acta Bot. Yunnan,

suppl. 11: 61. 1999 ≡ Typhonium gaoligongense (Z.L. Wang & H. Li) Hett.

& P.C. Boyce in Aroideana 23: 51. 2000 – Holotype: China, Yunnan prov.,

Baoshan Xianm, Li Heng & G. Ruckert 11309A (KUN).

Sauromatum horsfieldii Miq. in Fl. Ned. Ind. 3: 196. 1855 ≡ Typhonium

horsfieldii (Miq.) Steenis in Bull. Jard. Bot. Buitenzorg Ser. 3(17): 403. 1948 –

Holotype: Java, Oenagaran, Horsefield s.n. (K). [For full synonymy see Sriboonma

et al., 1994.]

Sauromatum venosum (Dryand. ex Aiton) Kunth in Enum. Pl. 3:

28. 1841 ≡ Arum venosum Dryand. ex Aiton in Hort. Kew. 3: 315. 1789

≡ Desmesia venosum (Dryand. ex Aiton) Raf. in Fl. Tellur. 3: 63. 1837 ≡
Sauromatum guttatum (Ait.) Schott var. venosum (Ait.) Engl. in Pflanzenr.

IV23F (Heft 73): 125. 1920 ≡ Typhonium venosum (Dryand. ex Aiton) Hett.

& P.C. Boyce in Aroideana 23: 51. 2000 – Holotype: Plant of unknown origin

introduced into cultivation at Kew by William Malcom in 1774 (BM). [For full

synonymy see Hetterscheid and Boyce (2000).]

Sauromatum brevipilosum (Hett. & M. Sizemore) Cusimano & Hett.,

comb. nov. ≡ Typhonium brevipilosum Hett. & M. Sizemore in Aroideana

23: 52. 2000 – Holotype: Indonesia, Sumatera, West Sumatera, near Aeksah, Het-

terscheid H.AR.097-T (orig. coll. Sizemore s.n.) flowered in cult. in Leiden Bot.

Gard., 29 Nov 1999 (L, spirit coll.).

Sauromatum diversifolium (Wall. ex Schott) Cusimano & Hett.,

comb. nov. ≡ Typhonium diversifolium Wall. in Wallich’s Numer. List n. 8933.

1949, nom. nud, ex Schott in Aroideae 13: 20. 1855 ≡ Heterostalis diversifolia

Schott in Oesterr. Bot. Wochenbl. 7: 267. 1857 – Holotype: Nepal, Wallich’s
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Numer. List. no. 8933a in 1821 (K). [For full synonymy see Sriboonma et al., 1994.]

Sauromatum hirsutum (S.Y. Hu) Cusimano & Hett., comb. nov. ≡
Arisaema hirsutum S.Y. Hu in Dansk Bot. Ark. 23(4): 454. 1968 ≡ Typhonium

hirsutum (S.Y.Hu) J. Murata & Mayo in Kew Bull. 46(1): 129. 1991 –

Holotype: Thailand, Payap 3939 (C).

Sauromatum giganteum (Engl.) Cusimano & Hett. comb. nov. ≡
Typhonium giganteum Engl. in Bot. Jahrb. Syst. 4: 66. 1883 – Holotype: China,

Beijing, Skatschkow s.n. (LE). [For full synonymy see Sriboonma et al., 1994.]

Sauromatum tentaculatum (Hett.) Cusimano & Hett., comb. nov.

Basionym: Typhonium tentaculatum Hett. in Aroideana 24: 49. 2001 – Holo-

type: Thailand SW 37, Kanchanaburi, Sangklaburi Distr., Lai Wo Subdistr.,

Toong Yai Wildlife Reserve, Ban Saneh Pawng, West side of Paneh limestone

mountain, 300m Hetterscheid H.AR.042-T (orig. coll. J. F. Maxwell 93-647), flow-

ered in cult. in the Leiden Bot. Gard. 9. Apr 1997 (BKF, spirit coll.).

Key to Sauromatum Species

1 Two types of staminodes, upper clearly of different shape or reduced compared to

the lower ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

- Only one type of staminodes, upper sterile part longitudinally grooved and rough-

ened with projections or processes, or naked . . . . . . . . . . . . . . . . . . . . . . . 5

2 Spathe tube fused; 3-5 bulbils in the lower part of the petiole

S. gaoligongense

- Spathe tube convolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Lower staminodes clearly clavate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

- Lower staminodes clavate/spathulate, clavate part anvil shaped or dorso-ventrally

flattened, dark purple; upper staminodes narrowly spindle shaped, whitish

S. tentaculatum

4 Leaves simple, ovate, cordate to hastate; upper staminodes smaller than the lower

ones, subulate or occasionally absent . . . . . . . . . . . . . . . . . . . S. giganteum

- Leaves pedatisect; upper staminodes filiform, gradually shorter towards the male

zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. horsfieldii

5(1) Spathe tube free; leaf blade simple and ovate-lanceolate, cuneate to hastate
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3-5 lobed or 5-9 foliate pedatisect; upper sterile part of the spadix naked or with

apiculate projections . . . . . . . . . . . . . . . . . . . . . . . . . . . S. diversifolium

- Spathe tube fused, at least basal part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Petiole and leaf blade with hairs; upper sterile part of the spadix axis completely

naked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

- Petiole and leaf blade without hairs, upper sterile part of the spadix axis rough,

shaggy or with minute processes (highly reduced staminodes) . . . . . . . . . . 8

7 Hairs distinct and long; also outside surface of spathe covered with hairs

S. hirsutum

- Hairs short (ca. 0.5 mm); outside surface of spathe smooth . S. brevipilosum

8 Leaflets oblong-lanceolate, apex acuminate; inflorescence up to 40 cm long; spathe

tube dark purple inside, spathe blade inside maculate . . . . . . . . S. venosum

- Leaflets linear-lanceolate, apex long acuminate; lower clavate staminodes white,

upper minute processes purple; inflorescence max. 7.5 cm long; spathe tube inside

greenish to white, spathe blade inside not maculate, dull purple basally and pink

above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. brevipes
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Appendix

Voucher information for studied species. GenBank numbers are given for the three

markers sequenced, trnK, PhyC and rpl20-rps12 ; an n-dash denotes a missing

marker.

Outgroups: Arisaema speciosum (Wall.) Mart., Hetterscheid H.AR.294 (L, spirit coll.), EU886502,
EU886470, AY279168; Arisaema tortuosum (Wall.) Schott, Anaimudi 20/5, EU886577, EU886469,
AY248920; Arum L.: A. balansanum R. Mill, V. Haller & M. Koenen 1*91*TR H*K (BONN),
EU886512, –, EU886624; A. concinnatum Schott, B.W. Magrys s.n., cult. 15. Mar. 02,
EU886516, –, GU255991; A. creticum Boiss. & Heldr., Tillich 4881 (M), EU886504, –, EU886595;
A. cyrenaicum Hruby, LY-0-BONN-6425 (BG Bonn), EU886515, –, EU886623; A. dioscoridis
Sibth. & Sm., B. W. Magrys s.n., cult. 15. Mar. 02, EU886505, –, GU255992; A. hygrophilum
Boiss., CY-0-BONN-6427 (BG Bonn), EU886509, EU886471, EU886620; A. italicum Mill., BG
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Mainz, cult. 20 Jul 2001, EU886517, EU886472, AY248922; A. korolkowii Regel, S. Volz 20 (M),
EU886589, –, EU886598; A. maculatum L., Cusimano06–3 (M), EU886506, –, EU886593; A.
megobrebi Lobin, M. Neumann & al. 24219 (BONN), EU886513, –, EU886625; A. nigrum Schott,
Cusimano06–1 (M), EU886507, EU886473, EU886597; A. orientale Bieb., A. Groeger 06/1845w,
EU886510, –, EU886621; A. pictum L. f., xx-0-BONN-273 (BG Bonn), EU886518, –, EU886596;
A. purpureospathum Boyce, Tuber from E. Walton, 15 Apr 2002, EU886508, –, EU886594; A.
rupicola Boiss., J. Bogner 1790 (M), EU886519, –, EU886592; A. sp. nov., M. Neumann I 21 05
M.N., EU886514, –, EU886622; A. sp. nov., W. Lobin 26940 (BONN), EU886511, –, EU886626;
Biarum Schott: B. bovei Blume, T.F. Hewer H7951 (M), EU886529, –, EU886601; B. cardu-
chorum (Schott) Engl., M. Jaeger JLMS-60 (BG Giessen), EU886521, EU886478, EU886618;
B. davisii Turrill, MO living acc. 78231, EU886525, EU886479, AY248923; B. dispar (Schott)
Talavera, M. Jaeger SBL 564 (BG Giessen), EU886522, –, EU886619; B. ditschianum Bogner &
Boyce, BG Bonn 4695, rec., EU886526, EU886477, EU886600; B. kotschyi (Schott) B. Mathew
ex H. Riedl, TR-0-BONN-8431 (BG Bonn), EU886527, –, EU886599; B. pyramii (Schott) Engler,
J. Mayr s.n. (BG Gies- sen), EU886523, –, EU886617; B. straussii Engler, M. Jaeger JZZ-54
(BG Giessen), EU886524, –, EU886615; B. tenuifolium (L.) Schott, ES-0-BONN-16014 (BG
Bonn), EU886528, –, AY248924; Dracunculus P. Miller: D. canariensis Kunth, ES-0-BONN-
13049 (BG Bonn), EU886531, EU886475, AY248926; D. vulgaris Schott, T. Croat 78286 (MO),
EU886532, EU886476, AY248927; Eminium (Blume) Schott: E. jaegeri Bogner & P.C. Boyce,
M. Jaeger JJMZ-67a (M), EU886520, –, EU886616; E. spiculatum (Blume) Schott, M. Neumann
27/96 (BONN), EU886530, EU886474, AY248928; Helicodiceros Schott: H. muscivorus (L. f.)
Engl., MO living acc. 71821, EU886533, EU886480, AY248929; Sauromatum Schott: S. bre-
vipes (Hook. f.) N.E. Brown, J. McClements cult., EU886539, EU886484, EU886608; S. diversi-
folium (Wall.) Cusimano & Hett., Hetterscheid H.AR.484 (L, spirit coll.), EU886540, EU886482,
EU886605; S. gaoligongense Wang & H. Li, Chen YM 024 (KUN), EU886590, EU886487, –; S. gi-
ganteum (Engl.) Cusimano & Hett., J.W. Waddick cult., 20 Aug. 2001, EU886536, EU886490,
AY248938; S. hirsutum (S.Y. Hu) Cusimano & Hett., Hetterscheid H.AR.036 (L, spirit coll.),
EU886542, EU886489, AY248939; S. horsfieldii Miq., J. Murata 3 (TI), EU886541, EU886483,
EU886604; S. tentaculatum (Hett.) Cusimano & Hett., Hetterscheid H.AR.042 (L, spirit coll.),
EU886543, EU886488, EU886612; S. venosum (Dryand. ex Ait.) Kunth, J. Bogner s.n. (M), 27.
Jun. 02, EU886544, EU886481, EU886603; Theriophonum Blume: T. dalzelii Schott, J. Mu-
rata s.n., 21 Aug. 2002, –, –, AY248936; T. dalzelii, P. Bruggemann PB 168, cult., EU886534,
EU886486, –; T. infaustum N.E. Br., P. Bruggemann PB 099, cult., EU886535, EU886485,
EU886602; Typhonium Schott: T. adnatum Hett. & Sookchaloem, A. Galloway AGA-1095-17,
EU886547, –, –; T. albidinervum C.Z. Tang & H. Li, J. Murata 1 (TI), EU886548, EU886497,
AY248937; T. bachmaense Nguyen Van Dzu & Hett., Nguyen Van Dzu 185 (HN), EU886549, –,
–; T. baoshanense Z.L. Dao & H. Li, Chen YM 017 (KUN), EU886591, –, EU886629; T. blumei
Nicolson & Sivadasan, G. Hausner 5 (M), EU886553, –, –; T. circinnatum Hett. & J. Mood,
Hetterscheid H.AR.258 (L, spirit coll.), EU886551, –, –; T. corrugatum sp. nov, Bogner 2962
(M), GU255984, –, –; T. digitatum Hett. & Sookchaloem, Hetterscheid H.AR.215 (L, spirit coll.),
EU886552, –, –; T. echinulatum Hett. & Sookchaloem, Hetterscheid H.AR.225 (L, spirit coll.),
EU886554, EU886499, –; T. filiforme Ridl., Hetterscheid H.AR.128 (L, spirit coll.), EU886555, –,
–; T. flagelliforme (Lodd.) Blume, SE Asia, Hetterscheid H.AR.028 (L, spirit coll.), EU886556,
–, –; T. flagelliforme (Lodd.) Blume, Cape York, QLD, Australia, Baume 1 (CNS), –, GU255955,
–; T. flagelliforme (Lodd.) Blume, Michel CR 2016 (DNA), GU255983, –, –; T. gallowayi Hett.
& Sookchaloem, A. Galloway AGA-0516-01, EU886558, –, –; T. glaucum Hett. & Sookchaloem,
Hetterscheid H.AR.535 (L, spirit coll.), EU886559, –, –; T. gracile (Roxb.) Schott, J. Murata
2 (TI), EU886563, EU886495, –; T. griseum Hett. & Sookchaloem, Hetterscheid H.AR.044
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(L, spirit coll.), EU886561, –, –; T. huense V.D. Nguyen & Croat, Hetterscheid H.AR.178
(L, spirit coll.), EU886557, –, –; T. jingpingense Z.L. Wang, H. Li & F.H. Bian, Chen YM
023 (KUN), EU886564, EU886498, EU886614; T. lineare Hett. & V.D. Nguyen, Hetterscheid
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coll.), EU886574, –, –; T. varians Hett. & Sookchaloem, Hetterscheid H.AR.560 (L, spirit
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3957 (PERTH), GU255981, GU255968, –; T. nudibaccatum A. Hay (ovate), R.L. Barrett 3957
(PERTH), –, GU255969, GU255990; T. peltandroides A. Hay, M.D. Barrett & R.L. Barrett,
M.D. Barrett 599 (PERTH), GU255973, GU255958, GU255986; T. praetermissum A. Hay, Hay
s.n. 16.10.1996 (NSW), GU255982, GU255970, –; T. russell -smithii A. Hay, I. Cowie 104311
(DNA), GU255985, –, –; T. sp. aff. brownii Schott, B. Gray 9276 (CNS), GU255971, GU255956,
–; T. sp. aff. brownii Schott, A. Ford 4782 (CNS), GU255972, GU255957, –; T. sp. aff. liliifolium
sp. Theda, M.D. Barrett & R.L. Barrett MDB 1504 (PERTH), –, GU255959, GU255987; T. sp.
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(L, spirit coll.), EU886545, –, EU886610.
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4.1 Abstract

Chronograms from molecular dating are increasingly being used to infer rates of

diversification and their change over time. A major limitation in such analyses

is incomplete species sampling because estimators of diversification rates assume

the complete sampling of all extant species. A review of plant diversification stud-

ies shows that most are based on incomplete phylogenies and that the handling

of missing species is highly inconsistent. Here we use two non-nested clades of

Araceae with a species sampling of 57% (Typhonium) and 48% (Arum clade) to

study different approaches for handling missing species and to illustrate a new

approach, CorExS, which involves simulating missing splits under an exponential

model, including information about their ages where available. Specifically, we ap-

ply the γ statistic and MCCR test, birth-death-likelihood analysis with the ∆AICrc

test, survival analysis, and CorExS correction, and evaluate the advantages and

disadvantages of each method. A weakness of the MCCR and ∆AICrc test is that

simulating trees and randomly pruning them to the sample size (the number of

species sequenced out of all those comprising the clade) does not create a proper

null distribution because species sequenced for phylogenies generally are not sam-

pled randomly. The CorExS approach has the advantages of not requiring detailed

phylogenetic knowledge about the placements of missing species and of creating

a proper null distribution, which has the effect of reducing type I error. Addi-

tionally, it provides information about the impact of missing data on parameter

estimation. It does, however, require an a priori diversification rate, the minimal

value of which is constrained by the clade age and extant species number. For the

Typhonium and Arum examples, the CorExS method yielded different inferences

than obtained with the MCCR test and BDL analysis.

Key Words

Diversification rates, missing-species-problem, γ statistic, survival analysis, birth-

death likelihood analysis, model fitting, tree simulation



4.2. INTRODUCTION 101

4.2 Introduction

Large time-calibrated phylogenies are now readily obtained and are increasingly

being used to infer diversification patters (Hey, 1992; Nee et al., 1992; Sanderson

and Bharathan, 1993; Sanderson and Donoghue, 1994; Harvey et al., 1994; Paradis,

1997; Baldwin and Sanderson, 1998; Paradis, 1998; Magallón and Sanderson, 2001;

Nee, 2006; Rabosky, 2006b; Rabosky et al., 2007; McPeek, 2008; Phillimore and

Price, 2008). However, inferring rates of diversification is statistically challenging,

and the sensitivity of methods when their underlying assumptions are not met

is poorly understood. A major problem in diversification analysis is incomplete

species sampling (Pybus and Harvey, 2000, this study). This is a common problem

when clades are species-rich and access to samples is problematic and costly. Sev-

eral methods have been proposed that attempt to correct for the bias introduced

by incomplete sampling of a clade’s species (Table 4.1). Some of them attempt

the correction before the analysis; others attempt correction after the analysis

(Nakagawa and Freckleton, 2008, for a review of methods for handling missing

data). Of the methods that try to correct for missing (not sequenced) species

before the analysis, survival analysis (SA; Paradis, 1997) adds them as censored

events. Alternatively, missing species have been added halfway along the branch

where they are thought to belong (Barraclough and Vogler, 2002) or to the stem

of their clade (Purvis et al., 1995). Another approach is to add missing species

to random locations within their clade, using an MCMC tree chain (Day et al.,

2008, the legend of figure S1 in this study is misleading; T. Barraclough, Imperial

College, personal communication, 18 Aug. 2009). All these a priori corrections

require knowledge about the relationships of the missing species; censoring more-

over requires knowing the missing species’ minimum ages. This greatly limits the

application of these methods. Another problem is that these approaches do not

quantify (statistically) the impact of the missing data on parameter estimation.

Approaches that correct for missing species after the analysis, that is, after

diversification models have been fit to the topology/branching times, involve the

creation of a null distribution. Thus, one carries out numerous simulations of trees

under the Yule model, with the number of tips corresponding to the complete

number of species in the focal clade. Trees are then randomly pruned to the sample

size (the number of species actually sequenced) and, like the empirical data, tested
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Table 4.1: Approaches for handling missing species in diversification analyses.

 

Approach Comments Reference 

Adding missing species to a phylogeny 
where they are thought to belong 
• half way along the branch  

 
• randomly along the branches of the clade 

where they are thought to belong, using a 
Bayesian MCMC chain of trees 

 

• Requires knowledge of species’ relationships 
 
• Not statistical (only 1 complete tree) 

 
• Creates a pseudoreplication problem because species will be 

distributed in proportion to nodes’ (and branches’) presence in 
the respective part of the Bayesian trees  

 

 
 
Barraclough & Vogler 
(2002)  
Day et al. (2008) 

Adding missing species as censoring events 
in survival analyses 

• Requires estimate of species’ minimum ages 
• Not statistical (only 1 complete tree) 

 

Paradis (1997, 1998) 

Simulating phylogenies with the true number 
of species and then pruning them to the size 
of the sample phylogeny to create a null 
distribution under a constant-rates model 
 

• Requires diversification rate 
• Valid distribution as long as the sequenced species are a 

random sample of the clade's total species 
• Does not take into account knowledge about likely ages of 

missing species 
• Combines method of testing for rate-constancy with correction 

for incomplete species sampling 

 

Pybus & Harvey 
(2000); Rabosky 
(2006a) 

Adding missing species as simulated 
splitting times under an exponential (or 
other) model (CorExS) 

• Requires diversification rate and model to estimate the splitting 
time distribution 

• Creates a statistically valid distribution of missing splits  
• Does not depend on information about the ages or 

relationships of the missing species 
• Can take into account information about the age of missing 

species if available 

 

This study 

 

for rate constancy, using either the Monte Carlo constant-rates (MCCR) test for

the γ statistic (Pybus and Harvey, 2000) or the, henceforth, ∆AICrc test in birth-

death likelihood analysis (BDL; Rabosky, 2006a). An assumption underlying this

approach is that the missing species represent a random sample.

Here, we first assess the magnitude of the missing species problem based on

a review of all plant studies that have used statistical methods for inferring di-

versification rates from molecular trees. We tabulated species sampling density,

handling of missing species, and which parameters were inferred under which mod-

els. It turned out that more than half of the plant clades had <60% of their species

sampled, down to as little as 3.2%. We then apply the most commonly used ap-

proaches for handling missing species to two closely related plant clades with a

similarly incomplete species sampling (48 and 57%). The investigated clades be-

long to the Araceae family and occur in the Mediterranean basin and Southeast

Asia, regions with different geological histories and present day climates, which

was the reason we suspected different diversification patterns. We also introduce

a new method for handling missing species, which involves simulations of missing

splits under an exponential model, essentially using model-based data augmenta-

tion and multiple imputation (Nakagawa and Freckleton, 2008). The new method

makes use of information that may be available about the likely ages of the missing
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species, but does not require knowledge about their precise placement. Its main

advantage, however, is that it provides information (i.e., statistical parameters)

regarding the impact of missing data on parameter estimation, which none of the

other methods do.

While the focus of this study is the handling of missing species in diversification

analysis, a comparison of relevant methods is only possible in conjunction with

the inference of diversification itself. We thus apply the three most widely used

approaches for diversification modeling, namely the γ statistic, SA, and BDL,

together with the above mentioned methods of handling missing species, namely

tree simulation and pruning, and our new method, the simulation of missing splits.

4.3 Materials and Methods

Study Systems, Taxon Sampling, and Sequencing

The Areae comprise 153 species in nine genera (Cusimano et al., in review) and

are a tribe of the phylogenetically well-understood Araceae (4000 species in 113

genera, Bogner and Petersen, 2007, Cusimano et al., submitted). All Areae are

geophytes with a seasonal life cycle. Within Areae, our focal groups are Typhonium

with 54 species and the Arum clade with 64 species in five genera (Arum, Biarum,

Dracunculus, Eminium, Helicodiceros). Typhonium occurs in the Southeast Asian

mainland tropics and subtropics, the Arum clade in the Mediterranean basin and

the Near East, a few species also occur in cold temperate regions of the Himalayas

and in Northern Europe. For the Arum clade, we sampled 31 of 64 species (48%);

we lack 14 species of Arum, 12 of Biarum and 7 of Eminium. For Typhonium, we

sampled 31 of its 54 species (57%). Outgroup choice was based on Renner and

Zhang (2004) and influenced by the need to include taxa with a fossil record for

calibration of genetic distances. Online supporting material (OSM) Table S1 lists

14 outgroup taxa with their herbarium vouchers (where applicable) and Genbank

numbers; information about all other sequenced species is provided in Cusimano

et al. (in review).

We sequenced a nuclear locus, the phytochrome C gene (PhyC ), and two chloro-

plast loci, the rpl20-rps12 intergenic spacer and the tRNALys gene (trnK ), which

contains a group I intron that encodes the maturase K (matK ) open reading frame.



104 CHAPTER 4. MISSING SPECIES IN DIVERSIFICATION ANALYSES

Total DNA extraction, amplification, and sequencing followed the procedure de-

scribed in Cusimano et al. (in review). Alignments were generated in MacClade

(Maddison and Maddison, 1992) and continuously adjusted by eye. The chloro-

plast and nuclear data partitions were first analyzed separately, and in the absence

of statistically supported (>80%) topological contradictions, they were then com-

bined.

Phylogenetic inference relied on maximum likelihood (ML) and ML bootstrap-

ping as implemented in the RAxML BlackBox (Stamatakis et al., 2008) and on

Bayesian analysis as implemented in MrBayes 3.1.2 (Ronquist and Huelsenbeck,

2003). The GTR + Γ + I model was used for all analyses, with model parameters

estimated directly during runs. Markov chain Monte Carlo (mcmc) runs extended

for at least 1 million generations, with trees sampled every 100th generations. Con-

vergence was assessed as recommended in the MrBayes manual, and trees saved

prior to convergence were discarded as burn-in (1000 trees). Bootstrap support

and Bayesian posterior probabilities were plotted on the ML tree using the APE

package (Paradis et al., 2004) in R (R Developmental Core Team, 2006).

Divergence Time Estimation

We carried out two sets of Bayesian relaxed clock calculations; one relied on mul-

tidivtime (Thorne et al., 1998; Thorne and Kishino, 2002), the other on BEAST

(Drummond et al., 2006; Drummond and Rambaut, 2007) , the main difference

being that the first approach assumes rate autocorrelation, while the second does

not. With 14 additional outgroups, the matrix comprised 4349 nt and 92 species,

from which we calculated a ML tree, rooted on Xanthosoma sagittifolium and

Caladium bicolor. This became the input topology used for multidivtime. Time

estimation (but not the input tree topology) relied on the chloroplast data matrix

of 3333 nt for 92 species because the PhyC data were incomplete for the outgroups.

Multidivtime dating used LAGOPUS (Heibl and Cusimano, 2008), an R pack-

age that checks the input data for consistency, automates the assignment of con-

straints to nodes, and connects the executables of the mentioned software pack-

ages in a pipeline. Model parameters for the 92-taxon-3333 nucleotides matrix

were estimated in baseml, and branch lengths and their variance then calculated

in estbranches, all under the F84 + Γ model (the only model implemented in mul-
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tidivtime). Based on outgroup fossils (above), the prior on the mean time unit

between root and tips (rttm) was set to 120 or 90 Myr (above), with an equally

large standard deviation. The priors on the substitution rate at the root were set

to 0.00021 or 0.00028 substitutions per site and million years obtained by dividing

the mean distance between the root and the tips in the estbranches phylogram

by rttm. The prior for the Brownian motion parameter (ν), which controls the

magnitude of autocorrelation along the descending branches of the tree, was set to

0.01 (nearly strict clock), 0.1, or 1 (highly relaxed clock), with standard deviations

of the same sizes. This had nearly no effect on the node ages, indicating that the

signal in the data overwrote these priors; for the final run ν was set to 1. The

Markov chain length was 1 million generations, sampled every 100th generation

and with a burn-in of 100,000 generations; analyses were repeated several times to

explore the effects of different priors as described.

BEAST dating was carried out with version 1.4.8. Analyses used a speciation

model that followed a Yule tree prior, with rate variation across branches uncor-

related and log-normally distributed; the substitution model used was the same

as in the remaining analyses, GTR + Γ + I. Four groups were constrained to be

monophyletic, the Peltandreae, the Pistia clade, the clade of Colocasia and Alo-

casia, and the Areae. MCMC chains were run for 1 million generations (burnin

10%), with parameters sampled every 1000th generation. Results from individual

runs were combined and effective sample sizes were then well above 100. BEAST

accommodates calibration uncertainty by applying a prior probability distribu-

tion (defined in terms of means and standard deviations) on the age of nodes to

which calibration fossils are assigned. We chose normal distributions for all fos-

sil constraints (below), which places less prior probability on a relatively narrow

time frame than do exponential or lognormal distributions. Dating runs used the

same constraints as described in Renner and Zhang (2004) and Cusimano et al.

(2008). The root node constraint of maximally 120 Ma based on the oldest fossils

of Araceae (Friis, 1985; Friis et al., 2004) is likely too old, given that the tribe

Areae is nested high up in the Araceae family tree (Cabrera et al., 2008). To test

the effects of the root constraint, we also ran analyses in which the root node age

was constrained to maximally 90 Myr.
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Analyses of Diversification and Handling Missing Species

Missing species in plant diversification studies

To assess whether missing (i.e., not sequenced) species are a common problem

in plant diversification studies and to compare how they have been handled, we

compiled diversification studies in vascular plants over the past 15 years. We

tabulated total species, sampling density, inferred ages, whether stem or crown

groups had been used, results of different estimators, such as Kendall (1949) and

Moran (1951) or maximum-likelihood estimators, diversification and/or speciation

rates, the extinction fraction used, and whether the γ statistic with the MCCR

test, survival analysis (SA), and/or BDL analysis had been used. In a few cases

we recalculated rates after consultation with the authors of the studies.

Comparison of methods in an empirical study system

The two focal clades, Typhonium and the Arum clade, are not nested and have

approximately similar numbers of species (54 and 64, respectively) of which we

sampled 48 and 57% (above, Study Systems, Taxon Sampling, and Sequencing).

Diversification analyses relied on the ultrametric tree obtained under the Bayesian

autocorrelated-rates relaxed clock model (above). Lineage-through-time (LTT)

plots depict the logarithmic number of lineages ancestral to contemporary species

over time. In the next sections we first describe the three methods used for di-

versification analysis (carried out separately for each of the focal clades), then the

methods used to correct for missing species.

γ statistic

The γ statistic (Pybus and Harvey, 2000) tests for departure from a constant-rates

pure-birth model. For completely sampled phylogenies, Pybus and Harvey (2000)

found that γ = −1.645 (+1.645) represents the critical value of the constant rates

test. Values below this cut-off reject the pure birth model (γ = 0). We relied

on the implementation of this statistic (gamStat) in the Laser 2.2 package for R

(Rabosky, 2006a).
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Birth-death likelihood analysis (BDL)

We also applied five likelihood models implemented in the fitdAICrc function

in Laser, namely two constant-rate models of diversification (a pure-birth model

with constant speciation rate and a birth-death model with constant speciation

and extinction rates) and three variable-rate models (logistic density dependence,

exponential density dependence, and a two-rates variant of the pure-birth model

with a rate shift at a certain time point). The best model is judged with the

∆AICrc statistic using differences in the Akaike Information Criterion between

the best-fitting rate-constant and rate-variable model. Additionally, we checked

for Type I errors in the inference of rate upswings using the criteria proposed by

Rabosky (2006b).

Survival analysis

To conduct SA we used the diversi.time function of the APE package 2.2 (Par-

adis, 1997; Paradis et al., 2004). Three survival models are fit to the data to detect

significant departures from a constant-rates (CR) model of diversification (model

A). Model B assumes a gradually changing diversification rate and model C an

abrupt change in rate at some breakpoint time in the past. None of the three

models incorporates extinction. Since the CR model is nested in both variable-

rate models, it can be compared with each in a likelihood ratio test, while the

non-nested models B and C cannot strictly be evaluated against each other. Best-

fitting breakpoint times (Tc) for model C were assessed with an adaptation of the

diversi.time function written by the first author (batch.dt); breakpoint times

that gave the highest likelihood score were preferred.

Correction for missing species by tree simulation and pruning

All the above methods are sensitive to incomplete species sampling. To correct

for this bias, the γ statistic as well as the BDL analysis rely on repeated (1000

replicates) simulation of trees under the Yule model with the number of tips corre-

sponding to the total species of the focal clades, here 54 and 64. The speciation and

extinction rates used for tree simulation was obtained by the best-fitting constant-

rates model to our data (Table 4.2). Simulated trees were then randomly pruned

to the sample sizes, here 31 and 31. This yields null distribution of γ values against
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which the empirical γ value is compared with the Laser function mccrTest (MCCR

test, Pybus and Harvey, 2000). In BDL analysis, the five diversification models

are fit to the thousands of pruned trees and the resulting AIC values compared

to that of the empirical tree with the Laser function fitdAICrc.batch (∆AICrc

test, Rabosky, 2006a). Widely used programs for tree simulation, such as Phyl-O-

Gen (Rambaut, 2002), have been found to introduce particular biases that concern

splits near the present (Hartmann et al., 2008, Results and Discussion). Here

we rely on Phyl-O-Gen and Cass (Gernhard, 2008), and additionally two functions

implemented in Laser, birthdeathSim for the BLD analyses and mccrTest for the

MCCR analysis.

Table 4.2: Results of BDL analyses. Models: YULE: constant-rate pure birth model; BD:

constant-rates birth-death model; DDL: logistic density dependent model; DDX: exponential dd

model; Yule2rates: pure birth model with a shift in diversification rate at a certain time point,

Tc. r = net diversification rate (r1 before, r2 after a breakpoint time Tc); a = extinction fraction;

Tc = time of rate shift in Myr; k = carrying capacity parameter; x = rate change parameter;

LH = Log-Likelihood; AIC = Akaike information criterion; ∆AIC = difference in AIC values

from the best rate-constant model; in bold the value used for the statistic. The last two columns

show the p values resulting from the ∆AICrc test statistic, which evaluated the scores of the

empirical data against null distributions obtained from tree simulations (n = 1000) under the

Yule model with the estimated diversification rate r (bold), using the simulation programs Cass,

Phyl-O-Gen, and Laser. ***significant at the 99% level; **significant at 95%.

YULE BD DDL DDX Yule2rates !AICrc

Typhonium clade p =

r 0.0383 0.0383 0.111 0.399 r1 = 0.131 Phylo-O-Gen 0.012**

a =0 k = 32.900 xp = 0.838 r2 = 0.029 Laser 0.001***

Tc = 32.384 Cass 0***

LH -48.983 -48.983 -42.180 -43.542 -43.428

AIC 99.965 101.965 88.36 91.085 92.856

!AIC 11.606 13.606 0 2.725 4.496

Arum clade

r 0.058 0.058 0.122 0.198 r1 = 0.098 Phylo-O-Gen 0.236

a = 0 k = 37.728 xp = 0.453 r2 = 0.0406 Laser 0.355

Tc = 14.657 Cass 0.106

LH -36.843 -36.843 -33.903 -35.162 -34.118

AIC 75.686 77.686 71.807 74.323 74.235

!AIC 3.879 5.879 0 2,517 2.429

Program for 

tree simulation
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The CorExS approach for simulating missing species

This new method involves the repeated simulation of missing branching times

under an exponential model and their addition to the empirical data, yielding nu-

merous completed data sets. We refer to this approach as CorExS, which stands

for “correcting for missing splits by combining exponentially simulated splits with

empirical splits.” Splitting times (t) were generated from the exponential distribu-

tion P = e−mt, where P is the cumulative probability density of a split occurring

t time units in the past (where the present t = 0), and m is the net diversification

rate per unit of time. For each missing split, we chose a random number for P

from a 0,1 uniform distribution and calculated the time for that splitting event as

t = −ln(P )/m. We generated 23 values of P for Typhonium and 33 for the Arum

clade, corresponding to the number of missing taxa in each clade. Thus, the sim-

ulated additional splitting times (t) for each clade were exponentially distributed

with average age 1/m. Simulations were repeated a 1000 times to obtain a dis-

tribution of missing splits, and the γ statistic, SA, and BDL analysis were then

applied to the numerous completed data sets (many 1000 since we also used differ-

ent tree simulation programs; above). Fitted model parameters, likelihoods, and

AIC values were compared with a Wilcoxon signed-rank test (a non-parametric

statistical hypothesis test for the case of two related samples or repeated measure-

ments on a single sample); nested survival models were compared with a likelihood

ratio test.

Diversification rates

For comparability with other plant diversification studies (above, Missing species

in plant diversification studies) we also calculated diversification rates using the

Kendall (1949) and Moran (1951) estimators, and a ML estimator (Sanderson and

Donoghue, 1994). None of these consider extinction. It is possible, however, to

include extinction by introducing a constant extinction-to-speciation ratio κ (Ma-

gallón and Sanderson, 2001; Ricklefs, 2006, for equations see footnotes of Table

4.3). Magallón and Sanderson (2001) used κ = 0 and κ = 0.9, which they consid-

ered an upper limit. However, Linder (2008) using a broad range of angiosperm

clades found that a higher value for κ (namely 0.999) fit much better. We there-

fore tried both, κ = 0.9 and κ = 0.999. Using this approach, we calculated the
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mean speciation rate λ (in species/Myr) under a constant-rates birth-death model

(CR-BD).

4.4 Results

Missing Species and their Handling in Plant Diversification

Studies

Table 4.3∗ summarizes the main parameters of 23 studies (including the present

one) that have investigated diversification patterns in 34 plant clades. Two stud-

ies involved meta-analyses (Magallón and Sanderson, 2001; Linder, 2008). Early

studies typically report diversification rates under the Yule model, whereas more

recent (post-2003) studies have inferred rate changes with the help of the γ statistic

and/or SA. Clade ages range from 0.76 and 96 Myr, and clade size from 5 to 4418

∗Footnotes for Table 4.3:
1 Kendall (1949) and Moran (1951): Diversification rate D = Nt−N0

B , where B is the summed

duration of all branches, N0 the number of species at time 0, and Nt the number of species at

time t (Yule model).
2 Kendall’s estimator for the variance (Kend. var.) for D: var(D) = D2

2(eDT−1)
3 Maximum-likelihood estimator of diversification rates (Stanley, 1979; Sanderson and Donoghue,

1994): If Nt = N0e
D(t−t0) under the pure-birth, or Yule model, then D = ln(Nt−N0)

t−t0
. The number

of species at t0 is 1 if the calculation begins at the stem, but 2 if the calculation uses only the

crown group.
4 Method-of-moments estimator (mom) of diversification rates (Rohatgi, 1976). Assuming some

extinction-to-speciation ratio κ (or ε in the notation of Magallón and Sanderson, 2001), one can

calculate the diversification rate of the stem or the crown group (Magallón and Sanderson, 2001,

equation 6, equation 7; Ricklefs 2006, equation 4)

Table 4.3 (facing page): Studies of plant diversification rates that have used molecular phylo-

genies combined with diversification modeling. Abbreviations stand for: K & M = Kendall (1949)

and Moran (1951) estimators for diversification rates; ML = maximum-likelihood estimator for

diversification rates; κ = extinction/speciation ratio; D = diversification rate (species/Myr); λ =

speciation rate (species/Ma); SA = survival analysis; dec. = decrease in diversification rate; inc.

= increase in diversification rate; BDL = dirth-death likelihood analysis; M = models involved.

Results from the present paper in bold. An asterisk marks significant results tested with the

Monte Carlo constant-rates test (MCCR).*
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Year Studied Group

Spp. sampled /  

total spp.

% of spp. 

sampled

Age in Myr / 

time interval Group K & M1 ML3 ! D "

# statistic 

+MCCR SA BDL Authors

1998 Hawaiian 

silversword 

alliance 

(Compositae)

11 / 28 39% 5.2 ± 0.8 crown 

+ Kend. 

var.2

0 0.56 ± 0.17 Baldwin & 

Sanderson

2001 average of 50 

angiosperm 

clades

crown and 

stem mom4 0

0.09                    

(0 - 0.33)

 Magallón & 

Sanderson

mom4 0.9

0.0767               

(0 - 0.27)

(Table 1)

2001 Gentianella 

Australia

32 / 256 12.5% 3 + 0 1.73 von Hagen & 

Kadereit

Gentianella s.str. 202 / 256 79% 3 + 0 1.77

Gentianella S 

America

2x85 / 256                 

(2 dispersal 

events)

33.2% 3 + 0 1.48

Gentianella S 

America 

(Gentianaceae)

170 / 256                   

(1 dispersal 

event)

66.4% 1.06 - 3 + 0 3.21/1.71

2002 Gaertnera 

(Rubiaceae)

28 / 68 41.2% 5.89-5.07 crown, but not 

N/2

+ 0 0.72 - 0.83 

(corrected: 

0.6-0.65)

Malcomber

54 stem + 0.085

    SE Asian clade 9 / 16 56.3% 4.1 ± 0.17 stem + 0.65 - 0.71

    Sri Lanka clade 4 / 5 80% 4.1 ± 0.17 stem + 0.37 - 0.41

2003 Ehrharta 

(Poaceae)

27 / 37 73% 9.82 + 0 0.12 - 0.39 Verboom et al.

9.82-8.74 (time of radiation) + 0 0.87 - 4.18

2003 Hookeriales 

(Bryophytes)

71 / 743 9.6% rel. age 0.5 A Shaw et al.

Hypnales 

(Bryophytes)

141 / 4418 3.2% rel. age 0.5 C dec.

2003 Halenia 

(Gentianaceae)

22 / 39  56.4% 11.18 stem 0 9.25 

(missing spp. 

added in 

phylogeny)

2003 African 

Restionaceae

20 / 350 5.7% 65 +2.6* +MCCR Linder et al.

65-20 +2*

24 / 146 16.4% 60 -0.64 +MCCR

65-20 -0.83

2004 Primula sect. 

Auricula 

(Primulaceae)

25 / 25 100% 2.4 crown 

    Western clade 15 / 15 100% 1.8 -4* B/C dec.

    Eastern clade 10 / 10 100% 2 -3.3* B/C dec.

Globularia 

(Globulariaceae)

22 / 23 95.6% 7.6 -0.31 A

Gentiana sect. 

Ciminalis 

(Gentianaceae)

7 / 7 100% 0.76 -1.94* B dec.

2005 Bursera 

(Burseraceae)

65 / 84 77.4% 70 D for over-

lapping 10 

Myr intervals; 

! for 60-34, 34-

15, 15-1.5 Myr

+ 0 0.02 - 0.15 for 3 time 

intervals:                  

0.27 / +1.91*/ -

2.92*

5 M Becerra

2006 Agave s.l. 

(Agavaceae)

26 / 208 12.5% 10 crown,  but 

not N/2

+ Kend. 

var.1
0 0.32 ± 0.08 -4.40* +MCCR Good-Avila et 

al. 

- / 208 + 0 0.51 ± 0.06

Yucca - / 50 14.1 + 0.27 ± 0.03
(Agavaceae) - / 50 18.3 + 0.21 ± 0.02

2006 Lupinus 

(Fabaceae)

81 / 81 100% 1.42 ± 0.29 

/1.93 ± 0.35 

crown + 2.5 - 3.72/                 

1.93 - 2.78

Hughes & 

Eastwood

2006 Pinus (Pinaceae) 83 / 111 74.8% 128 ± 4 crown -1.52 +MCCR Eckert & Hall 

2008 Angiosperms mom4
0.999

2.842 

± 0.73

Linder

2008 Burmanniaceae 41 / 92 44.6% 96 ± 3.3 -6.51* +MCCR B dec. Merckx et al.

2008 Yucca 

(Agavaceae)

34 / 34 100% 6.41 crown + 0 0.33 ± 0.06 -3.23* +MCCR Smith et al. 

Agave sensu 

latissimus

33 / 240 13.7% 9.52 + 0 -4.56* +MCCR

2008 Acer 

(Sapindaceae)

66 / 124(156) 53.2(42.3)% 60 A, B dec. Renner et al. 

2008 Psoraleeae 

(Fabaceae)

47 / 51 94% 5.8 crown 6 M Egan & 

Crandall

2009 Nigella 

(Ranunculaceae)

19 / 20  95% rel. age B/C inc. Bittkau & 

Comes

2009 Proteaceae  4.6% 91.4 stem + 0 0.066 Saquet et al.

crown + 0 0.074 (Table S2)

stem mom4 0.9 0.046

crown mom4 0.9 0.056

2009 Impatiens 

(Balsaminaceae)

113/1000 11.3% 22.5 ± 5.6 crown -6.27* Janssens et al.

2009 Mirabelieae/ 

Bossiaeeae 

(Fabaceae)

~350/700 50% 52 - 55 crown -2.04*+MCCR? 5 M Crisp & Cook

Arum clade 

(Araceae)

31 / 64 48.4% 40 ± 8 crown + 0 0.124 B/C dec. 5 M

(Araceae) + 0 0.085

mom4 0.9 0.04 0.35

mom4 0.999 0.001 0.75

Typhonium 31 / 54  57.4% 48 ± 8 crown + 0 0.07 -3.28* B/C dec. 5 M

(Araceae) + 0 0.07 +MCCR

mom4 0.9 0.03 0.26
mom4

0.999 5x10-5 0.53

(corrected: 0.84, 

pers. com., von 

Hagen, 23 May 08)

Cusimano & 

Renner

SW Australian 

Restionaceae

Kadereit et al.

81 / 1757 (all 

genera)

0.03/rel. time unit

0.21 ± 0.001

-2.08 +MCCR

von Hagen & 

Kadereit
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species. Twenty studies sampled <60% of the extant species in their focal clade,

nine sampled less than 20%, and one sampled 3.2% (Table 4.3). Fifteen analyses

employed the γ statistic, SA, or BLD. Inconsistencies in the application of diversi-

fication estimators (Malcomber, 2002; von Hagen and Kadereit, 2003; Good-Avila

et al., 2006) and in the handling of the missing species problem (Shaw et al., 2003;

Merckx et al., 2008; Renner et al., 2008; Smith et al., 2008) are apparent from

Table 4.3 and are taken up in the Discussion.

Twelve studies (including the present) estimated diversification rates only with

estimators that assume no extinction, five studies (additionally) considered extinc-

tion. For the Arum clade, the Moran/Kendall estimators yield 0.124 species/Myr,

the ML estimator 0.085 species/Myr; for Typhonium, both estimators yield 0.07

species/Myr (Table 4.3, bottom). To estimate their diversification rates under the

assumption of extinction, we explored extinction-speciation ratios κ of 0.9 or 0.999

(Materials and Methods: Diversification Rates). With κ = 0.9, the specia-

tion rates were 0.31 species/Myr for the Typhonium clade and 0.46 species/Myr for

the Arum clade (Table 4.3, bottom). With κ = 0.999, speciation rates were about

twice as high (0.53 and 0.75 species/Myr). Corresponding diversification rates

were extremely low (Table 4.3, bottom). The net diversification rates we obtained

for the Typhonium clade fit with those estimated by Magallón and Sanderson

(2001) for the Arales (including 2480 species of Araceae and Lemnaceae in the

classification then accepted), namely 0.07 or 0.05 (with κ = 0 or κ = 0.9). The

diversification rate of the Arum clade is nearly twice as high and thus lies above

the average angiosperm rate inferred by Magallón and Sanderson (2001).

Trees and Divergence Times for the Study Systems

The combined matrix (4341 characters from nuclear and chloroplast sequences, 76

ingroup and two outgroup taxa) yielded a well-supported Areae clade with for the

most part monophyletic genera. Typhonium in the traditional wide sense, however,

is polyphyletic (Online Supporting Material (OSM) Fig. S1). The taxonomic

changes necessary to render Typhonium monophyletic are made in Cusimano et

al. (in review), and in the present study we always refer to the Typhonium clade

s.str., which contains 31 species of Typhonium, including the type species (OSM

Fig. S1). The Mediterranean Arum clade also includes 31 species, which belong
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to the genera Arum, Biarum, Dracunculus, Eminium and Helicodiceros. Both our

focal clades, Arum and Typhonium, have high bootstrap support (OSM Fig. S1).

Figure 4.1 shows the chronogram obtained under a relaxed-clock model with

correlated rates applied to the concatenated chloroplast data (with extended out-

group sampling). Age estimates were robust to different priors for the time units

between root and tips and for the Brownian motion parameter, as well as to dif-

ferent root node constraints (Material and Methods, Divergence time estima-

tion). The Typhonium crown group dates to the Early/Middle Eocene boundary

(48 ± 8 Ma), the stem group age is 59 ± 7 Myr. The Arum clade crown group

dates to 40 ± 8 Ma, the stem group to 43 ± 8 Myr (Fig. 4.1). Individual genera

within the Arum clade mostly arose in the Oligocene and Miocene (20 – 25 Ma).

Denser species sampling of these genera (21 spp. versus our 9 spp.) also yielded

crown group ages of 20 Myr (Mansion et al., 2008). A relaxed clock model with

uncorrelated rates gave similar results (data not shown).

Diversification Analysis with Different Methods for Han-

dling Missing Species

Simulations of missing branching times with CorExS

The CorExS simulations require an appropriate value for m, the net diversification

rate per unit of time. The obvious initial value to use for m is a clade’s inferred net

diversification rate, here from the Moran/Kendall estimator, 0.07 and 0.124. When

many of the resulting branching times exceeded the focal clades’ stem ages, we tried

slightly higher values for m, namely 0.1, 0.15, 0.2 and 0.25 for the Typhonium clade

and 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 for the Arum clade. For each of these values of

m, we ran 1000 simulations. Based on the results, we chose a diversification rate of

m = 0.15 to simulate the 23 missing splits of Typhonium, which adds them over the

entire age range of the clade (Fig. 4.2B). A few simulations still added branching

times that were older than the crown group of Typhonium, but the possibility that

some missing species indeed diverged early on cannot be excluded, especially given

the large difference between stem and crown group ages (Fig. 4.1). For the Arum

clade, we have better information about the ages of the missing splits: Genera are

smaller and all were sampled. Branching times before 25 Ma should therefore all

be represented (Fig. 4.1). A diversification rate of m = 0.45 added the missing
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Figure 4.1: Chronogram for the Areae resulting from a relaxed molecular clock applied to

the concatenated chloroplast data (3333 nt). Squares indicate constrained nodes (light blue:

minimum age constraint; orange: maximum age constraint; Material and Methods). Ages

(with standard deviations as bars) are shown for nodes important to the discussion.
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branching times in a plausible way (Fig. 4.2E), i.e., most of them after 20 Ma and

only occasionally one or two species before then. The LTT plots of the CorExS-

corrected data for Typhonium and the Arum clade are shown in Figs. 4.2B and

4.2E.

Table 4.4: Results of BDL analysis of the CorExS-corrected data sets of the two focal clades. A

summary of the AIC, ∆AICrc values and the model parameters are given as mean and standard

deviation (SD). For Typhonium, only the 940 of the 1000 CorExS replicates that yielded a

breakpoint time Tc > 30 Myr are considered for the summary, and all 1000 replicates for the

Arum clade yielding all breakpoint times Tc < 10 Myr. The five models being compared were:

YULE: constant-rate pure birth model; BD: constant-rates birth-death model; DDL: logistic

density dependent (dd) model; DDX: exponential dd model, and Yule2rates (Y2r): pure birth

model with a shift in diversification rate a certain time point, Tc. Model parameters: r = net

diversification rate (r1 before, r2 after a breakpoint time Tc); a = extinction fraction; Tc = time

of rate shift in Myr; k = carrying capacity parameter; x = rate change parameter.

YULE r BD r a DDX r x DDL r k Y2r r1 Tc r2 !AICrc

Typhonium clade n = 940

m = 0.15 Mean 83.15 0.057 85.13 0.056 0.02 82.87 0.144 0.29 84.18 0.070 33,530 81.57 0.132 32.37 0.051 1.61

Tc > 30 SD 3.41 0.002 3.44 0.002 0.06 2.42 0.026 0.07 2.67 0.006 193,086 2.95 0.005 0.11 0.002 0.85

Arum clade n = 1000

m = 0.45 Mean -0.66 0.11 -6.64 0.052 0.73 -3.03 0.036 -0.36 1.35 0.109 1,085,238 -7.80 0.08 3.34 0.21 1.17

Tc < 10 SD 2.70 0.002 5.36 0.007 0.073 4.26 0.008 0.08 2.70 0.002 38,463 6.27 0.01 1.65 0.09 1.80

γ statistic

The γ values for the empirical data were −3.28 for Typhonium and −2.08 for

the Arum clade. For the MCCR test, tree simulations in Phyl-O-Gen and Cass

were carried out with a diversification rate of 0.0383 species/Myr for Typhonium,

and 0.058 species/Myr for the Arum clade (Table 4.2). Judged against these null

distributions, the γ value of Typhonium was significantly negative (critical values:

−2.13 to −2.78), rejecting a constant diversification rate. The confidence level

(CL) was 95%, when using the tree simulation of the mccrTest function and rose

to 99% when using the simulations obtained from Phyl-O-Gen and Cass. For the

Arum clade, the γ value of −2.08 was not significantly negative (critical values:

−2.26 to −2.62), a constant diversification rate could therefore not be rejected.

The CorExS-corrected data sets instead yielded a mean γ of −0.62 ± 0.53 for the

Typhonium clade, implying that splits were more or less evenly distributed across
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the tree. For the Arum clade, they yielded a mean γ of 2.67 ± 0.45, which is

above the critical value of completely sampled phylogenies (γ = 1.645), implying

that splits are concentrated towards the present, thus an increase in diversification

rate.

BDL analyses

The results of the birth-death likelihood analyses of the empirical data are summa-

rized in Table 4.2. A model of logistic density dependence (DDL) fit the Typhonium

branching times best; the difference between this model and the best constant-

rate model was ∆AICrc = 11.606 (Table 4.2). In the ∆AICrc test, the confi-

dence level for the DDL model being better than the null hypothesis (Yule model)

was 99% when compared to the null distributions from Laser (birthdeathSim)

and Cass, and 95% CL when compared to a null distribution from Phyl-O-Gen

(Table 4.2). Also for the Arum clade, the DDL model fit the data best (Table

4.2), but the ∆AICrc of 3.879 was not statistically different from any of the three

null distributions (Table 4.2). Cass simulations again gave better p values. For

the Arum clade, this meant that results were nearly significant at a 90% CL. In

BDL analyses of the CorExS-corrected Typhonium data, the mean values from the

1000 replicates indicated that the Yule model, with a mean diversification rate of

Figure 4.2 (facing page): Results of CorExS analyses of the Typhonium clade (A-C) and the

Arum clade (D-E). B, E: LTT plots of the simulated branching times added to the empirical

data (orange, green) and LTT plots of only the empirical data (blue, red), dotted lines and boxes

indicate inferred breakpoint times or time ranges; A1-A3, D1-D3: Results of survival analyses;

C1-C3, F1-F3: Results of BDL analyses. A1, D1: Boxplots summarizing the likelihood values

under models A, B, and C fitted to the data. A2 and D2 depict the p values of the likelihood

ratio tests (LRT) between models A and B (pAB), and A and C (pAC), and the parameters for

models B (alpha, beta) and C (delta1, delta2); C1, F1: Boxplots summarizing the AIC values of

the 5 models fitted to the data; C2 and F2 depict the parameters for the best-fitting constant-

rates and variable-rates models (r = diversification rate (r1 before, r2 after a breakpoint time

Tc); a = extinction fraction); A3, C3, D3, F3: Histograms depicting the frequency of inferred

breakpoint times under model C (survival analysis, A3, D3) and under the Yule2rate model

(BDL analysis, C3, F3). Boxplots: black line: median; notches: 95% confidence interval of the

median; boxes: upper and lower quartile, including 50% of the data; whiskers: minimum and

maximum of the data, provided that their length does not exceed 1.5x the interquartile range;

open dots: outliers.
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0.057± 0.002 species per Myr, was the best constant-rate model (Table 4.4). The

best variable-rates model and overall best-fitting model was the Yule2rates model

(Fig. 4.2C1, Table 4.4), with an abrupt rate change at 32.3 Ma (Fig. 4.2C3) in

940 of the 1000 replicates. The rate change involved a downturn from a mean

rate r1 = 0.13± 0.005 species/Myr to a rate r2 = 0.05± 0.002 species/Myr (Fig.

4.2C2, Table 4.4). A Wilcoxon signed-rank test (CL = 99%) showed that the AIC

value of the Yule2rates model (81.57 ± 2.95) was significantly lower than that of

the Yule model (83.15± 3.41).

In BDL analyses of the CorExS-corrected Arum clade data, the best constant-

rates model was the birth-death model with a mean diversification rate of 0.05±
0.007 species/Myr and a mean extinction fraction of a = 0.73± 0.073. The overall

best-fitting model was again the Yule2rates model, but with an increase in rate at

breakpoint times <10 Ma and mean rates of r1 = 0.08 and r2 = 0.21 (Fig. 4.2F2,

F3, Table 4.4). A Wilcoxon signed-rank test (CL = 99%) showed that the AIC

value of the Yule2rates model (−7.8±6.27) was lower than that of the birth-death

model (−6.64± 5.36). However, the ∆AICrc (Table 4.4: 1.17 ± 1.8) is below the

significance cut-off found in simulations (Rabosky, 2006b; in our case with c. 60

species it is about 5), meaning that the birth-death model could not be rejected.

Survival analyses

SA analysis requires complete data sets and was therefore only carried out for

the CorExS-corrected data. For Typhonium, the mean likelihoods of model A

(constant-rates pure-birth; −200.9 ± 1.9) and model B (gradual change in diver-

sification; −200.4 ± 1.6; Fig. 4.2A1, Table 4.5) were not significantly different.

Model C (rate change at a breakpoint; −195.8± 1.6) was significantly better than

model A, judged by a likelihood ratio test (Fig. 4.2A1, A2, Table 4.5), and also

than model B, judged by a Wilcoxon signed-rank test. Nearly all replicates (992

of 1000) yielded a breakpoint time of 32.38 Ma (Fig. 4.2B, 2A3). The rate de-

creases from 0.067± 0.018 to 0.058± 0.037 (Fig. 4.2A2, Table 4.4; in SA, data are

read from the present to the past; Paradis, 1997). In SA analyses of the CorExS-

corrected Arum clade, model C again fit the data best (−192.5 ± 3.1; likelihood

ratio test against model A (−197.2±1.5), Wilcoxon signed-rank test against model

B (−194.3±2.9); 99% CL; Fig. 4.2D1, D2, Table 4.5), with the most likely break-
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Table 4.5: Results of survival analyses of the CorExS-corrected data sets for the two focal

clades. A summary of the likelihood values and the model parameters are given as mean and

standard deviation (SD). For Typhonium, only the 992 of the 1000 CorExS replicates that yielded

a breakpoint time Tc < 30 Myr are considered for the summary, and for the Arum clade, 937

of the 1000 CorExS replicates that yielded a breakpoint time Tc < 10 Myr. The three models

being compared were a constant-rate model (A), a constant rate change model (B), and a model

with a rate change at a breakpoint time (C). Model parameters: alpha and beta of model B;

rates delta1 and delta2 of model C. pAB and pAC are the p values resulting from the likelihood

ratio test between models A and B, and models A and C.

Table 5

A B C alpha beta delta1 delta2 pAB pAC

Typhonium clade n = 992

m = 0.15 Mean -200.9 -200.4 -195.8 0.060 1.096 0.058 0.067 0.454 0.002

Tc > 30 Myr SD 1.9 1.6 1.6 0.004 0.095 0.037 0.018 0.280 0.001

Arum clade n = 937

 m = 0.45 Mean -197.2 -194.3 -192.5 0.135 0.805 0.196 0.105 0.051 0.007

Tc < 10 Myr SD 1.5 2.9 3.1 0.008 0.053 0.158 0.009 0.107 0.012

LH values for model Parameters (B) Parameters (C) LH ratio test

point times <10 Ma for 937 of the 1000 replicates (Fig. 4.2E, D3). The rate

increases from 0.105± 0.009 to 0.196± 0.158 (Fig. 4.2D2, Table 4.5).

4.5 Discussion

In the present study, we first assessed the missing species problem in plant diversifi-

cation studies and how it has been handled, and then used two similarly incomplete

phylogenies to compare how the handling of missing species impacts inferences

about diversification. Because they are the most widely used approaches, we ap-

plied the γ statistic, birth-death likelihood (BDL) analysis, and survival analysis

(SA) in combination with “their” correction methods (MCCR and ∆AICrc test).

Finally, we explored our new approach for handling missing species, the CorExS

method. Table 4.6 summarizes how the different methods of simulating trees and

handling missing species impacted results.
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Missing species in plant diversification studies

Incomplete phylogenies are commonly used to infer diversification rates (Table

4.3), and the γ statistic with the MCCR test is the most commonly used method

to correct for missing species. Studies using SA usually had complete species

sampling (as assumed by the method; Paradis, 1997). Two studies, however, ap-

plied SA to incomplete species sets (3.2/9.6% and 44.6%) without adding missing

species (Shaw et al., 2003; Merckx et al., 2008). The same studies also used tree

simulations and random pruning to obtain a null distribution under rate-constancy

for visual comparison of the empirical LTT plots with simulated trees. Resulting

inferences about diversification in these poorly sampled clades are doubtful. One

study applied SA analysis with only 53% of the clade’s species sampled, but used

censoring events in batches to correct for missing species (Renner et al., 2008). In

plants, BDL analysis (with the ∆AICrc test) has only been applied twice, prior to

this study (Becerra, 2005; Egan and Crandall, 2008). Two studies (Linder et al.,

2003; Becerra, 2005) tried to infer diversification at different time intervals in the

past, not using any correction methods, based on the rationale that up to a certain

time all nodes are sampled. But even when deep nodes are all included, clade ages

within specific time intervals will not all be the same.

Strengths and Weaknesses of Different Methods for Han-

dling Missing Species

The γ statistic and BDL analysis both try to correct for missing splits (nodes,

divergence events, or loosely “species” although this is not strictly correct) by cre-

ating null distributions under a model of rate-constancy to which the empirical

data are then compared. This means that diversification estimation/model-fitting

is done on the incomplete phylogeny and that results are evaluated afterwards by

comparison with the simulated null distributions. The new approach presented

here is based on the assumption that analyzing complete data sets is the best way

for inferring diversification rate changes, and the general agreement among statis-

ticians that model-based data augmentation and multiple imputation is the best

way of dealing with missing data (Nakagawa and Freckleton, 2008). If instead

of augmenting the data based on a model, one adds missing species “by hand”

(e.g., Purvis et al., 1995; Barraclough and Vogler, 2002) this has three undesirable
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Table 4.6: Summary of the results of the three diversification estimation methods and the two

methods for correcting for missing species.

Table 6 
 Typhonium Arum clade 

 Tree 

simulation 

CorExS-corrected data Tree 

simulation 

CorExS-corrected data 

! statistic Decreasing 
diversification 

Constant diversification 
(Yule) 

Constant 
diversification 
(Yule) 

Increasing diversification 

BDL Decreasing 
diversification 
(DDL) 

Abrupt rate change at 32 Ma Constant 
diversification 
(Yule) 

Constant diversification 
with background extinction 

SA — Abrupt rate change at 32 Ma — Abrupt rate change at 
<10Ma 

 

effects: It is subjective; one risks adding bias to the data if species sampling is ex-

tremely low and many non-sequenced species have to be added; the approach only

works with sufficient knowledge of species relationships. In one of our focal clades

(Typhonium), this precluded adding missing species by hand or even randomly to

subclades (following Day et al., 2008).

The CorExS approach overcomes these problems. Missing data are added

beforehand to create completed data sets, but with the major difference that miss-

ing splits are added, not minimum ages as required in SA nor species to specific

branches. The missing splits are simulated under an exponential model and this

procedure is repeated a 1000 times (yielding objectivity). The completed batches

of data sets (consisting of the empirical splits plus the added ones) can then be

analyzed with any of the available methods for diversification estimation, which

will yield mean values and a standard deviations. An important advantage is that

the missing splits are drawn from an exponential random distribution, which does

not assume that missing splits have an even chance of falling anywhere along the

clade, but instead fits what we know about diversification. (Of course, missing

splits could also be generated under some other model.) If information about the

ages of the missing splits is available, the CorExS approach allows including it

(age information will influence the a priori diversification rate m).

Each of the approaches for assessing diversification rate changes and of handling

missing splits has disadvantages (Table 4.1): The γ statistic gives a direction of

rate change, but does not consider extinction. It is biased towards more negative

values as clade size increases or clade age decreases (Phillimore and Price, 2008). It
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may also be biased towards negative values if molecular clocks underestimate deep

branches (Revell et al., 2005). However, the major drawback of null distributions

of the type used in the γ statistic (and in BDL analysis) is that they assume that

species in molecular phylogenies are sampled at random, which is rarely if ever the

case (Pybus and Harvey, 2000, Cusimano and Renner, in review). Furthermore,

these null distributions do not incorporate knowledge about the likely ages and

distribution of missing splits. In the end, only the diversification pattern of the

available incomplete phylogeny is tested, which is inferior to model-based data

augmentation and multiple imputation (Nakagawa and Freckleton, 2008).

Simulation of trees itself also requires more mathematical analysis than hith-

erto realized (Hartmann et al., 2008). Problems introduced by tree simulation

have to do with, among other things, how pending edges (tip branch lengths) are

treated and whether simulations stop at the nth + 1 tree and are then pruned to

n tips (general sampling approach, as in Cass, Hartmann et al., 2008) or if they

stop exactly when trees have reached n tips (simple sampling approach). When

we tested model significance with null distributions obtained from three tree sim-

ulation programs (Phylo-O-Gen, Laser, Cass) we indeed found clear differences

(Table 4.2). Although Hartman et al. (in review) state that for simulating trees

under the Yule model the simple sampling approach may be sufficient, our analyses

showed that Cass simulations always provided higher confidence levels than those

obtained with Phyl-O-Gen or Laser (Results, Table 4.2).

A weakness of the CorExS approach is the need for an a priori value for the

diversification rate m. In practice, the empirical data, namely clade age and

species number, will determine the initial values of m, and LTT plots resulting

from different values for m can then be used to chose a value that is biologically

plausible, which can be a strength of the approach.

Rate Inferences in the two Study Systems

That the handling of missing species strongly impacts diversification rate inference

is clear from the results obtained for the focal clades, which had a species sam-

pling of 57 and 48% (Table 4.6): Analyses of the empirical Typhonium data with

the γ statistic and BDL analysis, in combination with null distributions from dif-

ferent tree simulation approaches (Table 4.6), yielded a gradual downturn in the
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diversification rate. Analyses of the CorExS-corrected data with the γ statistic

instead could not reject constant diversification, and SA and BDL analysis of the

CorExS-corrected data yielded an abrupt rate decrease at around 32 Ma (Model

C, Yule2rates). Results from the γ statistic and the other two methods do not con-

tradict each other because the γ statistic cannot reveal abrupt rate changes. For

the Arum clade, the γ statistic and the BDL analyses of the empirical data could

not reject a constant-rate model, while analysis of the CorExS-corrected data with

the methods not incorporating extinction suggested a rate upswing (constant: γ

>1.645, abrupt: Model C). The BDL analysis of the CorExS-corrected data in-

stead yielded the birth-death model as the best fit. These results are again not

contradictory because the γ statistic does not consider extinction, and SA does not

disentangle speciation and extinction rates; these methods are therefore unable to

link an upswing of the LTT plot to constant background extinction. Analysis of

the 1000 completed CorExS data sets always yielded a single best model, and the

Wilcoxon test was always significant. In all cases, the likelihood or AIC values of

one model were lower that those of all competing models, meaning that although

we obtained a “cloud” of LTT plots results unambiguously pointed to a single

model of diversification.

These results illustrate the sensitivity of diversification modeling towards in-

complete data and the way they are handled. Even the dependence of the CorExS

method on an a priori diversification rate m, indirectly highlights a drawback

of the a posteriori methods of handling missing species: All diversification mod-

eling depends on the parameters of the simulations that are done to obtain the

null distributions (and even the tree simulation algorithm will have an effect on

significance levels, as shown by our comparison of Phyl-O-Gen, Laser, and Cass

simulations).

4.6 Conclusions

The growing field of evolutionary diversification studies requires robust methods

and their consistent application. Here, we present a new approach of handling

a major problem of such studies, the handling of missing species. The CorExS

method reduces the type I error rate because it makes the test of the γ statistic

more conservative. Where something is known about the ages of the missing
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species, it moreover offers the possibility of adding this information to the available

data in an objective way by repeated simulations under an exponential model.

When applying the CorExS approach to two Araceae clades, results differed from

those obtained with the other methods of handling missing species, suggesting

that great caution is warranted in interpreting diversification patters inferred from

incomplete data sets.

The R functions batch.dt and CorExS, with the corresponding plotting func-

tions, are available from the first author on request.
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4.8 Online Supporting Material

Table S1: Sources of the fourteen outgroup species and GenBank accession numbers of newly

generated sequences as well as sequences downloaded from GenBank.

 

Species Voucher trnK PhyC rpl20-rps12 

Alocasia cucullata (Lour.) G. Don MO acc. 751658 EU886579 - AY248908 

Alocasia gageana Engl. & K. Krause MO acc. 78364 EU886580 - AY248909 

Alocasia navicularis (Blume) Hook. T. Croat & V. D. Nguyen 78014 
(MO) 

EU886581 - AY248925 

Ariopsis peltata J. Graham J. Murata s.n. 16 Oct 2001 EU886587 - AY248910 

Arisarum vulgare Targ.Toz. BG Bonn 11472 EU886582 - EU886630 

Caladium bicolor (Aiton) Vent. T. Croat 60868 (MO) EU886501 - AY248943 

Peltandra virginica Raf. J. Bogner 2119 (M) EU886583 - AY248942 

Pinellia ternata (Thunb.) Breit. J. McClements s.n., 30 Jul 2001 EU886503 - AY248931 

Pistia stratiotes L. J. Bogner, 18 Jul 2001, BG 
Munich 

EU886585 - AY248932 

Protarum sechellarum Engl. J. Bogner 2545 (M) EU886588 - AY248933 

Remusatia vivipara (Lodd.) Schott MO acc. 69705b EU886584 - AY248934 

Steudnera discolor  Bull J. Bogner 1582 (M) EU886586 - EF517221 

Typhonodorum lindleyanum Schott J. Bogner s.n.  (M) EU886578 - EU886627 

Xanthosoma sagittifolium (L.) Schott & 
Endl. 

MO acc. 850652b EU886500 - AY248944 
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Figure S1:. Maximum likelihood phylogeny for the Areae obtained from combined chloroplast

and nuclear data (4341 nt) analyzed under the GTR + I + Γ model of substitution. Values above

branches refer to posterior probabilities from Bayesian inference (Material and Methods),

those below branches to bootstrap support under maximum likelihood (1000 replicates).
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5.1 Abstract

Studies of diversification patterns often find a slowing in lineage accumulation

towards the present. This seemingly pervasive pattern of rate downturns has

been taken as evidence for adaptive radiations, density-dependent regulation, and

metacommunity species interactions. The significance of rate changes is evalu-

ated with statistical tests that rely on null distributions, which assume that any

non-sequenced (“missing”) species are a random sample of the included species.

However, sampling in phylogenies is generally not random but instead oversamples

deep nodes. We studied the bias this introduces by experimentally pruning a com-

plete empirical phylogeny and two simulated ones, and then applying γ statistic

and fitting birth-death likelihood models with the standard tests for rate changes.

Results show that oversampling deep nodes biases inferences towards downturns

with high statistical confidence. The magnitude of the effect is such that it throws

doubt on strong generalizations about rate downturns across major clades of ani-

mals and plants.

Key Words

Biodiversity patterns, density dependence, diversification rate, macroevolution,

rates changes, species richness

5.2 Introduction

Numerous recent studies have used chronograms from molecular dating to in-

fer diversification patterns, that is, the distribution of cladogenetic events across

a tree (e.g., McPeek and Brown, 2007; Weir and Schluter, 2007; Linder, 2008;

Phillimore and Price, 2008, 2009). In animal clades as diverse as birds, reptiles,

beetles, and fishes, such studies have often revealed apparent slowing in lineage

accumulation towards the present (Nee et al., 1992; Zink and Slowinski, 1995;

Lovette and Bermingham, 1999; Price et al., 2000; Harmon et al., 2003; Rüber

and Zardoya, 2005; Kozak et al., 2006; McKenna and Farrell, 2006; Weir, 2006;

Phillimore and Price, 2008; Rabosky and Lovette, 2008a,b). A predominant pat-

tern of rate slowdowns was also found in an analysis of 245 phylogenies (182
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of them time-calibrated), including 39 angiosperm phylogenies (20 of them cali-

brated, McPeek, 2008). Other plant phylogenies (not included in McPeek, 2008)

also exhibited slowing diversification rates (Kadereit et al., 2004; Good-Avila et al.,

2006; Merckx et al., 2008; Smith et al., 2008, summarized in Cusimano and Renner,

in review). This seemingly pervasive pattern of diversification downturns across

major groups of animals and plants has been taken as evidence for adaptive radia-

tions (Harmon et al., 2003; Weir, 2006), density- (diversity-) dependent regulation

(Weir, 2006; Phillimore and Price, 2008, 2009; Rabosky and Lovette, 2008a,b), and

metacommunity species interactions (McPeek, 2008).

The significance of rate downturns typically is evaluated with the γ statistic

and the Monte Carlo constant-rates test (MCCR test; Pybus and Harvey, 2000)

or with AIC scores in birth-death likelihood analyses (Rabosky, 2006a,b). To

create the probability distribution of the null hypothesis, both statistics simulate

phylogenies for the complete number of species in the focal clade. If the molecular

phylogeny for the focal clade is incomplete, the simulated tree sets are then pruned

to number of species actually sequenced. These null distributions are based on the

assumption that the species in a tree represent a random sample of all species in a

clade. Overdispersed sampling will raise the type I error of the MCCR test, whilst

underdispersed sampling will raise the type II error (Pybus and Harvey, 2000).

Random sampling is a critical assumption because incompletely sampled clades

may be typical in molecular phylogenetics. For example, of the 245 phylogenies

analyzed by McPeek (2008), 44% did not include all species of the studied clades.

This non-random sampling probably arises because systematists try to strike a

balance between the expense of time and funds on sequencing and the return

in terms of insights into relationships. Such insights can often be gained from

sparse sampling as long as each morphologically or geographically defined group is

represented. The resulting overrepresentation of deep nodes relative to tip nodes,

however, leads to overdispersion and hence an increased type I error when inferring

diversification processes from trees. Here we quantify the magnitude of the bias

introduced by phylogenetically informed sampling (i.e., overrepresentation of deep

nodes). Our experiments involve a fully sampled real phylogeny that was pruned in

different ways to determine how overrepresentation of deep nodes influences birth-

death likelihood analyses and the γ statistic. To better quantify the magnitude of

any bias, we conducted additional analyses using simulated data.
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5.3 Material and Methods

We used a chronogram of the Cucurbitaceae genus Momordica that includes 58 of

clade’s 59 species and a crown group age of 31 ± 5 Myr (Schaefer and Renner,

2010). We treat this phylogeny as complete. To test the effect of different sampling

strategies we reduced the complete data set in the following ways: We randomly

pruned the chronogram to 80, 60, and 40% of the species, with each pruning

performed 10 times. Additionally, we pruned the chronogram manually in two

ways: First, we took out entire clades, yielding chronograms with 66 and 54%

of the original species number. Next, we left one or two representatives of every

major lineage, yielding trees with 44 and 30% of the species, but all deep nodes

represented.

All together this yielded one complete and 34 pruned chronograms for which the

corresponding branching times were analyzed with the γ statistic and the MCCR

test (Pybus and Harvey, 2000) as well as birth-death likelihood analysis (BDL),

both implemented in Laser 2.2 (Rabosky, 2006a). The γ statistic tests if splitting

events across the phylogeny are evenly distributed or accumulated towards the

root or the tips of the phylogeny. In the BDL analysis, five models were fitted to

the 35 data sets, two constant-rate models of diversification (a pure-birth (Yule)

model with constant speciation rate; a birth-death model with constant speciation

and extinction rates) and three variable-rate models (logistic density dependence

model (DDL); exponential density dependence model (DDX); a two-rates variant

of the pure-birth model with a rate shift at a certain time point (Yule-2-rates)).

The ∆AICrc is calculated for every data set as the difference in AIC scores of the

best-fit rate-constant and the best-fit rate-variable model.

To obtain a null distribution of AIC scores, we simulated 1000 trees for each

of the 35 data sets independently, with the number of tips corresponding to the

complete number of species (58) under a pure-birth model with a diversification

rate obtained by fitting the Yule model to the respective data set. The simulated

trees were then pruned (if necessary) to the real number of species occurring in the

variously pruned experimental data sets. Fitting each of the five diversification

models to every simulated tree yielded a null distribution of AIC scores under

the null model against which to compare the scores obtained with the respective

“true” phylogeny. Tree simulations were carried out in Cass (Gernhard, 2008;
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Hartmann et al., 2008). To obtain a null distribution of γ values against which to

test the empirical (and experimental tree) γ values, we used the MCCR test (cf.

Introduction).

Additionally, we simulated two trees under the Yule model with a diversification

rate of 0.5, 60 and 150 tips, and slightly positive γ values (γ = 0.076 and γ =

0.07, respectively). These trees were also pruned 10 times to 80, 60, and 40% of

their original species numbers. To test for the effect of oversampling deep nodes,

we again conducted manual pruning, leaving 75, 65, 55 and 45% of the species.

All resulting trees were analyzed with the γ statistic and the MCCR test (1000

replicates), as these are the most widely applied methods for diversification rate

inference.

5.4 Results

Table 5.1 shows that the best model for the complete Momordica phylogeny is the

Yule-2-rates model, with a rate decrease at 2 Ma. However, a simple Yule model

could not be rejected, nor did the γ statistic reject a constant-rates model. The

diversification rate is 0.08 species per million years (sp./Myr), and an LTT plot

for Momordica is shown in Fig. 5.1, together with plots for the 34 pruned trees.

When 20% of the species were pruned at random (leaving 80% in the tree), the

Yule model could still not be rejected in six cases (Table 5.1); the diversification

rates became lower than they had been in the complete phylogeny (0.071-0.075

sp./Myr). In four other cases, the DDL, DDX, or Yule-2-rates models were pre-

ferred with a 90% confidence level (CL; Table 5.1).

Pruning 40% of the species from the tree at random had nearly the same

Table 5.1 (facing page): Results from fitting five diversification models to the complete

phylogeny and variously pruned subsets of it (Materials and Methods). The headers refer to the

following models: Best RC = best rate-constant model; r1 = net diversification rate; Best RV

= best rate-variable model; xp/k/r2 refer to the parameters associated with the DDX, DDL,

and yule-2-rate models; xp = rate change parameter in the DDX model, k refers to the carrying

capacity parameter in the DDL model, and r2 is the second net diversification rate after the

breakpoint time st (in million years) in the Yule-2-rates model; st = break-point in the Yule-2-

rates model; ∆AICrc is the difference between the best-fitting rate-variable and the best-fitting

rate-constant model; cr. value = the critical value of the MCCR test.
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Figure 5.1: Lineage-through-time plots obtained from the complete phylogeny and the variously

pruned subsets of it (Table 5.1)

effects (Table 5.1), but diversification rates under the Yule model became even

lower (0.063-0.068 sp./Myr). Of the variable-rate models, DDL usually became

the best fitting model, in one case even with 99.9% CL (Table 5.1).

When 60% of the species were pruned from the phylogeny at random, the Yule

model became the preferred model (Table 5.1), with rates ranging from 0.051 to

0.064 sp./Myr. The DDL and the DDX model each were preferred once (90% CL).

In 27% of the randomly pruned phylogenies, the γ statistic suggested a significant

accumulation of nodes in the early part of the tree, hence a diversification rate

downturn, with p values ranging from 0.01 to 0.09. In all others the constant-rate

model could not be rejected.

Cutting-off entire clades from the phylogeny (with 60 or 54% of the species

left) resulted in the Yule model becoming the preferred model in BDL analysis,

with diversification rates of 0.079 and 0.064 sp./Myr. The constant-rate model

was preferred by the γ statistic.

Cutting-off sister species near the tips and thus oversampling deep nodes, re-
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sulted in DDL becoming the preferred model, irrespective of whether 44 or 30%

of deep nodes where left in the tree (Table 5.1). Confidence levels in both cases

were 99.9%. The extreme downturns are also seen in the LTT plots in Fig. 5.1.

The obtained diversification rates (0.17 and 0.24 sp./Myr) and carrying capacity

(k = 26.25 and 17.36) differ strongly from those obtained when fitting the DDL

model to the complete phylogeny (0.11 sp./Myr and k = 116). Oversampling deep

nodes thus gives starkly different results from randomly pruned phylogenies or

phylogenies missing entire clades (for which the Yule model could be rejected with

confidence only in one case). The γ statistic also inferred rate downturns with

high confidence (Table 5.1).

For the simulated phylogenies of initially 60 species, random pruning resulted

in inferred downturns in seven cases and in inferred constant diversification in

the remaining 23 (Table 5.2). Downturns are inferred with higher confidence, the

more severely pruned a phylogeny (20% pruned: CL = 90%, 40% pruned: CL =

95/99%; 60% pruned: CL = 95/99%). For the simulated phylogenies of initially

150 species, a downturn was inferred in only one case (CL = 95%; Table 5.2). For

phylogenies oversampling deep nodes, irrespective of their initial species number,

those with only 75% of the species never rejected the constant rate model, whereas

those sampling 65, 55, and 45% of the species all inferred a downturn with high

statistical support (Table 5.2). The γ values of all but two pruned phylogenies

were negative, in contrast to the initial phylogeny (γ = 0.076, Table 5.2).

5.5 Discussion

These experiments reveal a strong and consistent effect of phylogenetically in-

formed taxon sampling on the diversification patterns likely to be inferred. Trees

in which deep nodes are oversampled will bias results towards rate slowdowns, that

is, density-dependent diversification. Simulations suggest that this pattern may

be independent of the initial γ value and the size of the original tree, and that it

occurs in trees with a species sampling <70%. Even for trees with random species

sampling, the true model (i.e., the one fitting the full 58 species of Momordica)

could be inferred only in 63% (BDL) or 73% (γ statistic) of the cases for the em-

pirical and simulated smaller phylogenies. For the remaining 37 or 23% of trees,

a diversification slowdown was inferred. Random pruning of the 150-species phy-
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! value cr. value p value ! value cr. value p value

Complete phylogeny 0.08 - 0.53 0.07 - 0.53

Pruned randomly to 80% -0.46 -1.63 0.39 -0.55 -2.33 0.61

-0.37 -2.32 0.68 -0.93 -1.59 0.18

0.64 -1.66 0.83 -0.20 -2.34 0.83

-0.47 -1.73 0.36 -0.32 -2.08 0.65

-0.55 -1.61 0.33 -1.17 -1.79 0.17

-0.86 -1.09 0.08 -0.46 -1.70 0.41

-0.40 -0.94 0.17 -0.81 -1.77 0.27

0.19 -1.30 0.53 -0.19 -2.10 0.65

-1.14 -1.34 0.08 -1.09 -1.52 0.14

-0.05 -1.77 0.57 -0.51 -2.13 0.55

Pruned randomly to 60% -2.33 -1.62 0.01 -1.20 -2.65 0.55

-0.56 -2.37 0.74 -1.92 -1.86 0.04

-1.71 -1.49 0.03 -1.08 -2.60 0.59

-0.45 -2.57 0.73 -1.17 -3.18 0.78

-0.92 -2.09 0.39 -0.92 -2.21 0.48

-1.26 -2.33 0.35 -0.98 -2.29 0.46

-0.02 -1.42 0.48 -1.64 -2.56 0.34

-0.78 -1.64 0.29 -0.65 -2.57 0.72

-1.91 -2.59 0.20 -1.05 -2.76 0.67

-1.72 -2.67 0.33 -0.90 -2.75 0.72

Pruned randomly to 40% -2.17 -1.91 0.03 -1.01 -4.03 0.98

-2.92 -1.66 0.00 -0.96 -2.78 0.75

-0.92 -1.91 0.40 -1.47 -3.22 0.72

-2.07 -1.59 0.01 -1.37 -3.28 0.80

-0.84 -2.26 0.57 -1.80 -3.26 0.61

-1.96 -2.53 0.17 -2.20 -3.14 0.36

-1.78 -2.57 0.26 -0.92 -3.30 0.94

-1.24 -2.91 0.68 -1.21 -2.06 0.31

-1.56 -2.17 0.21 -1.51 -3.71 0.89

-1.43 -2.29 0.28 -0.79 -3.41 0.95

Deep nodes sampled 75% -1.37 -1.91 0.14 -1.58 -2.59 0.31

65% -2.60 -2.23 0.02 -2.51 -2.74 0.09

55% -4.00 -2.58 0.00 -2.94 -2.02 0.00

45% -3.73 -0.68 0.00 -3.68 -2.28 0.00

60 species 150 species

Table 5.2: Results from fitting five diversification models to the two simulated phylogenies

(under the Yule model with a diversification rate of 0.5 and 60 and 150 tips) and the variously

pruned subsets. Oversampling of deep nodes was simulated by manual pruning, leaving 75, 65,

55 and 45% of the total species in the trees. Resulting trees were analyzed with the γ statistic

and the MCCR test (1000 replicates); cr. value = the critical value of the MCCR test.



140 CHAPTER 5. SLOWDOWNS IN DIVERSIFICATION RATES

logeny did not result in a bias towards rate downturns (a downturn was inferred

only once); however, a rate upswing was never inferred.

The magnitude of the downturn bias in smaller phylogenies (Tables 1, 2) is such

that it throws doubt on strong generalizations about diversification slowdowns

across major clades of animals and plants. A compounding effect may be the

sensitivity of γ towards clade size and age demonstrated by Phillimore and Price

(2008, 2009). Clades larger than 50 species and younger than 20 Myr tend to show

more negative γ values (i.e., stronger slowdowns) than do smaller or older clades.

For the Momordica data set, with its 58 species and c. 35 Myr age, this should

not have been a major problem. However, γ is also biased towards negative values

if molecular clocks underestimate deep branches (Revell et al., 2005), a problem

of unknown magnitude. Another concern is that oversampling deep nodes also

impacts phylogenetic tree imbalance (Heath et al., 2008). Using a range of tree

imbalance measures, studies have found that published phylogenies reconstructed

from empirical data are more imbalanced than predicted under the equal-rates

Markov model (Heath et al., 2008). Randomized pruning of 50% of the species (in

real trees), as well as removal of just the terminal branches, increases imbalance for

nodes of a given size. This, in turn, may mislead analyses using tree shape. It will

be important to be aware of all these biases as phylogenies are being increasingly

used to study large-scale patterns of diversification.

Here we have focused not on effects of tree imbalance, but instead on the effects

of oversampling deep nodes in incompletely sampled phylogenies. All methods that

attempt to correct for missing species in diversification analyses assume that the

distribution of missing species is random with respect to phylogenetic topology and

clade age (Pybus and Harvey, 2000; Rabosky, 2006a). An additional problem may

be that trees are simulated under assumed diversification rates obtained from the

incompletely sampled phylogenies, which underestimate the true rate as shown

here. Our results, which show that real trees, with the corrections for missing

species by standard tree simulation and pruning (MCCR test), still lead to the

wrong diversification models being inferred with confidence, stress the importance

of correcting for missing species in ways that will reduce type I error. This may

be possible if the missing splits (node ages) are instead simulated numerous times

under an exponential distribution and then added to the available ones, permitting

calculation of confidence levels (Cusimano and Renner, in review). This would lead



5.6. REFERENCES 141

to more conservative inferences of diversification rates or other parameters from

incomplete phylogenies.

Of course, this paper highlights only one problematic aspect of inferring diver-

sification rates from empirical phylogenies, and the bias quantified here may only

affect phylogenies that sample <80% of a clade’s extant species. Nevertheless,

incomplete data sets may be the rule rather than the exception, and being aware

of the biases introduced by incomplete sampling is therefore important.

Acknowledgement

For discussion and comments on the manuscript we thank Robert E. Ricklefs and
Albert B. Phillimore. Supported by DFG grant RE 603/7-1.

5.6 References

Gernhard, T. 2008. Cass: A Python tool for analyzing and manipulating phy-
logenetic trees. http://www-m9.ma.tum.de/twiki/bin/view/Allgemeines/
TanjaGernhard .

Good-Avila, S. V., V. Souza, B. S. Gaut, and L. E. Eguiarte. 2006. Timing and rate
of speciation in Agave (Agavaceae). Proc. Natl. Acad. Sci. USA 103:9124–9129.

Harmon, L. J., J. A. Schulte, A. Larson, and J. B. Losos. 2003. Tempo and mode
of evolutionary radiation in Iguanian lizards. Science 301:961–964.

Hartmann, K., T. Stadler, and D. Wong. 2008. Sampling trees from evolutionary
models. Syst. Biol. in review.

Heath, T. A., D. J. Zwickl, J. Kim, and D. M. Hillis. 2008. Taxon Sampling Affects
Inferences of Macroevolutionary Processes from Phylogenetic Trees. Syst. Biol.
57:160–166.

Kadereit, J. W., E. M. Griebeler, and H. P. Comes. 2004. Quaternary diversifi-
cation in European alpine plants: pattern and process. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 359:265–274.

Kozak, K. H., D. W. Weisrock, and A. Larson. 2006. Rapid lineage accumulation in
a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern
North American woodland salamanders (Plethodontidae: Plethodon). Proc. R.
Soc. Lond. B Biol. Sci. 273:539–546.

http://www-m9.ma.tum.de/twiki/bin/view/Allgemeines/TanjaGernhard
http://www-m9.ma.tum.de/twiki/bin/view/Allgemeines/TanjaGernhard


142 CHAPTER 5. SLOWDOWNS IN DIVERSIFICATION RATES

Linder, H. P. 2008. Plant species radiation: where, when, why? Philos. Trans. R.
Soc. Lond. B Biol. Sci. 363:3097–3105.

Lovette, I. J. and E. Bermingham. 1999. Explosive speciation in the New World
Dendroica warblers. Proc. R. Soc. Lond. B Biol. Sci. 266:1629–1636.

McKenna, D. D. and B. D. Farrell. 2006. Tropical forests are both evolution-
ary cradles and museums of leaf beetle diversity. Proc. Natl. Acad. Sci. USA
103:10947–10951.

McPeek, M. A. 2008. The Ecological Dynamics of Clade Diversification and Com-
munity Assembly. Am. Nat.. 172:E270–E284.

McPeek, M. A. and J. M. Brown. 2007. Clade age and not diversification rate
explains species richness among animal taxa. Am. Nat. 169:E97–E106.

Merckx, V., L. W. Chatrou, B. Lemaire, M. N. Sainge, S. Huysmans, and E. F.
Smets. 2008. Diversification of myco-heterotrophic angiosperms: Evidence from
Burmanniaceae. BMC Evol. Biol. 8:178–193.

Nee, S., A. O. Mooers, and P. H. Harvey. 1992. Tempo and mode of evolution
revealed from molecular phylogenies. Proc. Natl. Acad. Sci. USA 89:8322–8326.

Phillimore, A. B. and T. D. Price. 2008. Density-dependent cladogenesis in birds.
PLoS. Biol. 6:483–489.

Phillimore, A. B. and T. D. Price. 2009. Ecological influences on the temporal
pattern of speciation. Pages 140–156 in Speciation and Patterns of Diversity
(R. Butlin, J. Bridle, and D. Schluter, eds.). Cambridge University Press, Cam-
bridge.

Price, T. D., I. J. Lovette, E. Bermingham, H. Gibbs, and A. Richman. 2000. The
imprint of history on communities of North American and Asian warblers. Am.
Nat. 156:354–367.

Pybus, O. G. and P. H. Harvey. 2000. Testing macro-evolutionary models using in-
complete molecular phylogenies. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 267:2267–
2272.

Rabosky, D. L. 2006a. LASER: a maximum likelihood toolkit for inferring temporal
shifts in diversification rates. Evol. Bioinform. Online 2:257–260.

Rabosky, D. L. 2006b. Likelihood methods for detecting temporal shifts in diver-
sification rates. Evolution 60:1152–1164.

Rabosky, D. L. and I. J. Lovette. 2008a. Density-dependent diversification in North
American wood warblers. Proc. R. Soc. Lond. B Biol. Sci. published online.



5.6. REFERENCES 143

Rabosky, D. L. and I. J. Lovette. 2008b. Explosive evolutionary radiations: De-
creasing speciation or increasing extinction through time? Evolution 62:1866–
1875.

Revell, L. J., L. J. Harmon, and R. E. Glor. 2005. Underparameterized model of
sequence evolution leads to bias in the estimation of diversification rates from
molecular phylogenies. Syst. Biol. 54:973–983.
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6.1 Abstract

The first family-wide molecular phylogeny of the Araceae, a family of about 4000

species and 113 genera, became available in 1995 (89 genera; 488 characters),

followed by a cladistic analysis of morphological and anatomical data by Mayo

et al. (1997, 106 genera, 63 characters). A 2008 phylogeny included 102 genera

(including the five genera of Lemnoideae) that were sequenced for 5188 aligned

nucleotides of chloroplast DNA. Here we add species from 11 genera for a matrix

of 4156 aligned nucleotides. We also analyze 81 morphological characters in the

context of the molecular phylogeny, using an extended version of the morphological

and anatomical data. The resulting Bayesian phylogeny is well resolved, and most

of the 47 larger clades also have morphological synapomorphies and ecological

or geographic cohesion. Of the 47 clades, 19 new ones are provisionally named

here. Relationships at higher taxonomic level are well resolved, while those in the

relatively derived Aroideae subfamily remain poorly supported, with the position

of Calla presenting the most glaring problem. Its placement in Aroideae conflicts

with the distribution of morphological, anatomical and palynological characters.

These results provide a firm basis for a new classification of the family, which we

present here.

6.2 Introduction

The classification of the Araceae has long been an active area of research and

its recent history has been summarized in various publications (Nicolson, 1987;

Grayum, 1990; Mayo et al., 1997; Keating, 2002; Croat, 2004; Bogner and Pe-

tersen, 2007; Cabrera et al., 2008). The monograph by Mayo, Bogner and Boyce

(1997: The Genera of Araceae - GoA) covers the morphology of most of the cur-

rently recognized genera except the Lemnoideae, and is the most complete generic

treatment since A. Engler’s classification (1876), and his monographs for deCan-

dolle’s Monographiae Phanerogamarum (1879) and the series Das Pflanzenreich

(Engler, 1905-1920). To provide the framework for the classification presented in

the 1997 GoA book a maximum parsimony cladistic analysis using a matrix of 63

morphological and anatomical characters for 106 genera assembled from literature

and the examination of living and herbarium material during the preparation of
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generic descriptions was undertaken, the first maximum parsimony study based

on morpho-anatomical data. It was motivated by the pioneering work of Grayum

(1984, 1990, 1992), who made a very wide-ranging revision of the taxonomic liter-

ature of the family, and conducted a comprehensive SEM pollen study, providing

the basis for a classification, which he produced using informal cladistic method-

ology. This GoA study was carried out in parallel, but independently of that of

French et al. (1995), who were the first authors to publish a computer-generated

cladistic analysis of Araceae genera based on a molecular matrix. Both these

cladistic analyses were first made public at the International Symposium Mono-

cotyledons: Systematics and Evolution held at the Royal Botanic Gardens, Kew in

1993 (Rudall et al., 1995) and led to discussions about the possibility of a combined

analysis. This was realised in Chapter 21 of GoA (Mayo et al., 1997) presenting

the classification adopted by combining results from the molecular (French et al.,

1995) and the morpho-anatomical analyses. Although the latter analysis was also

presented orally at a symposium of the Tokyo International Botanical Congress in

1993, it was never published in full.

Since the first study of French et al. in 1995, as in other families of An-

giosperms, molecular data have been mainly used for phylogenetic studies and

the basis for significant changes (Barabé et al., 2002; Renner et al., 2004; Renner

and Zhang, 2004; Rothwell et al., 2004; Tam et al., 2004; Gonçalves et al., 2007;

Cabrera et al., 2008; Gauthier et al., 2008). The most comprehensive analysis to

date regarding the whole family has been provided by Cabrera et al. (2008), and

effectively settled the long-standing question of the relationships of the duckweeds

(the former Lemnaceae, now Araceae subfamily Lemnoideae). These data and

that of French et al. (1995) got recently available. Additionally, over the years,

the morpho-anatomical data set of the GoA has been expanded to 81 characters,

sampled for nearly all of the 109 genera. This led us to redo a analysis based on a

comparison and combination of these expanded and new morphological/anatomical

and molecular data sets, to get, more than ten years after the publication of the

GoA, a step towards a new formal classification. We therefore augmented the plas-

tid DNA sequence data of Cabrera et al. (2008) with data from genera previously

missing, resulting in a complete genus sampling of Araceae and (re-) analysed the

three data sets separately. The main discussion concentrates on the well-supported

molecular phylogeny in combination with the expanded morphological-anatomical
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data set: With this combination of data we found 47 clades, which are strongly

supported by molecular data and/or well characterised morphologically, what rein-

forces proposals made by Cabrera et al. (2008) regarding the family classification.

19 of these clades are newly presented here, yet considered as informal taxonomic

groups. All early diverging subfamilies and the relationships among them are

well-supported. Also the subclades within the Aroideae subfamily are all well-

supported. However, relationships among the Aroideae subclades are still not

resolved. The only case, in which molecular and morphological data contradict, is

the position of Calla within the Aroideae.

6.3 Material and Methods

Character Matrix and Data Analyses

During the preparation of the genus descriptions for GoA, the morphology and

anatomy of the stem, leaf, inflorescence, fruits, and seeds were re-examined using

existing taxonomic literature supplemented by observations made from specimens

in the herbaria and living collections of the Royal Botanic Gardens Kew, and the

Munich Botanical Garden. The morphological and anatomical characters used

here are mostly documented by Mayo et al. (1997), Grayum (1984, 1990, 1992),

and Keating (2002), together with the literature cited in those works. We have

added data sets for the lemnoid genera (Lemna, Spirodela, Landoltia, Wolffia,

Wolffiella from Landolt, 1986, 1998 and Landolt and Kandler, 1987), and more

recently published genera not included in GoA. The morphological and anatomical

characters comprising the matrix presented here are described in Appendix 1.

Where no references are given, GoA (Mayo et al., 1997) is our primary information

source. The resulting matrix consists of 81 characters for 109 genera of Araceae and

one outgroup taxon, Acorus. In the original matrix, polymorphic characters were

coded as ambiguities, but for the present analysis, where possible, we inferred an

ancestral character state (IAS) for polymorphic characters, because this has been

found to yield more reliable results in analyses of higher-level-taxa (Simmons,

2001, and references therein). The IAS matrix is presented in Appendix 2; for

downloadable versions of both matrices see http://scratchpad.cate-araceae.

org/).

http://scratchpad.cate-araceae.org/
http://scratchpad.cate-araceae.org/
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Table 6.1: GenBank numbers and sources of the sequences of the newly added Araceae taxa.

Species matK rbcL tRNA-LEU

trnL-F spacer, 

tRNA-PHE Authors

Anaphyllum new - - - this paper

Asterostigma cubense EF173531 - EF173566 - Gonçalves et al., 2007

Bakoa lucens GQ220894 - - GQ220962 Wong et al., unpublished

Croatiella inegrifolia EF173538 - EF173573 - Gonçalves et al., 2007

Furtadoa new - - - this paper

Incarum pavonii EF173548 - - - Gonçalves et al., 2007

Philonotion americanum GQ220908 - - GQ220978 Wong et al., unpublished

Schottariella sarikeense GQ220912 - - GQ221009 Wong et al., unpublished

Theriophonum dalzelii EU886534 -  AY249011 AY248973 Cusimano&Renner, 2009; Renner&Zhang, 2004

Typhonium brownii EU886538 - - - Cusimano&Renner, 2009

Typhonium hirsutum AY249014 AY248976 Renner&Zhang, 2004

Typhonium horsfieldii EU193593 EU193202 Mansion et al., 2008

Zomicarpa steigeriana EU542592 - - - Batista et al., DS

Parsimony analyses of the morphological data set in PAUP version 4.0 (Swof-

ford, 2002) used heuristic searches, TBR swapping without the steepest descent

option. Ten random taxon addition replicates were used when the number of most

parsimonious trees was limited, otherwise, when no limit was reached, searching

was halted at 10,000 trees and these were branch-swapped to exhaustion. Only for

this analysis, multiple states were chosen to be variable and gaps were treated as

new states. Differing combinations of weightings and deletions of both taxa and

characters were applied in the analyses, but in the final ones presented here all 81

characters were used without weighting. For bootstrap analysis we ran 1000 repli-

cates with the same settings as used in the tree searching analysis with MaxTrees

set to 100 and with only one random taxon addition replicate.

The chloroplast restriction site data matrix of French et al. (1995) included 89

genera and 488 characters with Acorus as outgroup (see Appendix 3; for down-

loadable version see http://scratchpad.cate-araceae.org/). Parsimony and

bootstrap analyses were conducted in the same way described above.

The sequences of the five chloroplast markers of Cabrera et al. (2008; rbcL,

matK, partial trnK intron, partial tRNA-Leu gene, trnL–trnF spacer and partial

tRNA-Phe gene), including 102 Araceae genera and seven outgroup taxa, were

obtained from GenBank (for GenBank Numbers see Cabrera et al., 2008: Ap-

pendix 1). We downloaded the matrix from TreeBase and completed it by adding

sequences from the six accepted genera not then included (Anaphyllum, Croat-

iella, Furtadoa, Theriophonum, Zomicarpa, and Asterostigma; the included Aster-

ostigma species being now classified as Incarum pavonii), two recently published

http://scratchpad.cate-araceae.org/
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genera, Bakoa and Schottariella (Boyce and Wong, 2008, 2009), and three other

genera that will be resurrected or published in the near future: Philonotion (Wong

and Boyce, 2010), Sauromatum, and an Australian genus composed of species pre-

viously assigned to Typhonium (most probably Lazarum, Cusimano et al., 2010),

resulting in a total of 113 genera (Table 6.1). We also added a second sample of

Calla as a check, and used Hedyosmum (Chloranthaceae) as outgroup. Table 6.1

shows the sources of the sequences added for the additional species. Sequences of

two different species (Typhonium horsfieldii, T. hirsutum) have been combined to

represent the genus Sauromatum. Several sequences were available in Genbank,

and the new sequences were generated according to the methods described in Cabr-

era et al. (2008), and deposited in GenBank (Accessions No. xxx to xxx, Table

6.1).

Data were analysed under maximum likelihood (ML) with RAxML (Stamatakis

et al., 2008) and with a Bayesian approach using BEAST (Drummond et al., 2006;

Drummond and Rambaut, 2007). Gap coding was not used because methods based

on ML models could not then have been applied. In ML analysis we chose the

GTRCAT + I + Γ model implemented in RAxML for calculation of the best tree

and bootstrap analysis; bootstrap values were obtained by running 1000 replicates.

In the Bayesian analysis base frequencies were estimated, number of Gamma cat-

egories was set to four, proportion of invariable sites was estimated, the mean

substitution rate was not fixed and the Yule model was chosen as model for spe-

ciation. Prior to the analysis we only constrained two monophyletic groups: the

ingroup with all species except for Hedyosmum, and the nine species of the Areae.

The posterior probabilities were obtained from 7700 trees by running 19,250,000

generations and sampling every 2500th (after running 1,925,000 generations as

pre-burnin).

Evaluation

The names of suprageneric groups used in this paper refer to taxa recognized

by Bogner and Petersen (2007), unless specifically referenced to other published

classifications or synopses (e.g., Mayo et al., 1997; Keating, 2002, 2004). When

discussing other groups, especially clades emerging from the present analyses which

have posterior probability values greater than 0.97 (Fig. 6.1) and do not correspond
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precisely to previously recognized taxa, we use the numbers and informal names

given in Table 6.2. The three phylogenies resulting from the three data matrices

(morphological, restriction site and sequence data) were described according to the

classifications mentioned above and compared with each other, with the original

phylogenies presented by French et al. (1995) and Cabrera et al. (2008). Finally,

to compare the information of the morphological characters with the results from

molecular data analysis we mapped morphological characters onto the sequence

data phylogeny.

6.4 Results and Discussion

Phylogenetic Analyses

Morphological Data

The analysis of the morphological data matrix of 109 taxa and 81 characters re-

sulted in a 90% majority rule consensus tree based on the first 10,000 most parsimo-

nious trees (Table 6.2). The phylogeny placed the duckweeds (Lemnoideae) as the

first diverging clade of the Araceae. Somewhat surprisingly, Calla is placed as sister

to the Lemnoideae. The Orontioideae was recovered as a clade, but Gymnostachys

did not cluster with it to form the Proto-Araceae clade detected by French et al.

(1995), and recognized by GoA. The analysis failed to reveal a number of currently

accepted groupings (following Bogner and Petersen, 2007) such as 1) Pothoideae

(Anthurium and Potheae; 2) Monsteroideae – Spathiphylleae are separated from

the other genera of Monsteroideae; 3) Areae and 4) Caladieae. The tree also ex-

presses some old higher groupings, which were recognized in earlier, pre-molecular

classifications, such as the association of the Thomsonieae and Nephthytideae (En-

gler, 1920), Cryptocoryneae with Ambrosina, Arisarum, Arisaema, Pinellia and

the Areae (Bogner and Nicolson, 1991), and the clustering of the genera of the

Caladieae and Colocasieae (Engler, 1920). Stylochaeton does not cluster with the

Zamioculcadeae, reflecting their very different morphology.
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Restriction Site Data

We reanalysed the chloroplast restriction site data of French et al. (1995) adding a

bootstrap analysis that was not previously available. From the resulting 2047 most

parsimonious trees a 90% Majority Rule consensus tree was computed. This phy-

logeny (OSM Fig. S1) does not differ substantially from the original published one.

Bootstrap support is high for the True Araceae, and for many lower clades (unless

otherwise indicated taxa follow Bogner and Petersen (2007): Monsteroideae, La-

sioideae, Cryptocoryneae, Schismatoglottideae, Caladieae (sensu Keating, 2002),

Thomsonieae, Arophyteae, the Pistia clade (Renner and Zhang, 2004), Areae,

Stylochaeton + Zamioculcadoideae, Philodendron + Homalomeneae, Culcasieae,

Spathicarpeae (sensu Gonçalves, 2002; Gonçalves et al., 2007), Nephthytideae,

Aglaonemateae) whereas the remaining backbone has no support at all. The only

difference is that Pothos and Anthurium are not sister to the Monsteroideae, but

form one clade in a trichotomy with Monsteroideae and the rest of the Araceae.

The next branching clade is the Lasioideae followed by Calla. As in the original

tree (French et al., 1995), Zamioculcadoideae are embedded within the Aroideae,

making the latter paraphyletic. Lemna is also embedded within the Aroideae, but

in a position distant from Pistia. As in the molecular sequence data, (see below)

Alocasia does not group with the other genera of the Colocasieae (sensu Bogner

and Petersen, 2007) .

Sequence Data

The matrix of the four combined chloroplast markers consisted of 115 taxa and

4156 aligned characters. Major indels were excluded in all markers except for rbcL

(1391 nt) for analysis, especially in the trnL–trnF genes and spacer, which were

highly variable. Alignment length before and after gap exclusion were: 1122 / 537

nt (tRNA-LEU ), 728 / 458 nt (trnL-F spacer, tRNA-Phe), 1965 / 1770 nt (trnK ).

Nevertheless, several indels were not excluded as they include a high number of

informative characters. Analyses of the molecular data yielded similar topologies

for the ML and the Bayesian approaches. However, whereas the ML analysis failed

to resolve the backbone of the phylogeny (Fig. S2), in the Bayesian approach it is

well resolved and well-supported. For this reason we chose the Bayesian tree (Fig.

6.1) for discussion and character mapping. We used only Hedyosmum as outgroup
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Table 6.2: Taxonomical accepted and new (bold) names of the 47 clades with the numbering

used for Fig. 6.1. For each clade is indicated if posterior probability obtained from the Bayesian

analysis is < 0.97.
 

Clade 
No. 

Group name Genera included 
PP 
> 0.97 

1 Orontioideae (Bogner & Petersen, 2007) Lysichiton, Orontium, Symplocarpus yes 

2 Lemnoideae (Keating, 2002) Landoltia, Lemna, Spirodela, Wolffia, Wolffiella yes 

3 Potheae (Bogner & Petersen, 2007) Pedicellarum, Pothoidium, Pothos yes 

4 
Heteropsis clade (Tam et al., 2004; 
Cabrera et al. 2008) 

Alloschemone, Heteropsis, Rhodospatha, 

Stenospermation  

yes 

5 Spathiphylleae (Bogner & Petersen, 2007) Holochlamys, Spathiphyllum yes 

6 
Rhaphidophora clade (Tam et al., 2004; 
Cabrera et al., 2008) 

Amydrium, Anadendrum, Epipremnum, Monstera, 
Rhaphidophora, Scindapsus  

yes 

7 Lasioideae (Bogner & Petersen, 2007) 
Anaphyllopsis, Anaphyllum, Cyrtosperma, 
Dracontioides, Dracontium, Lasia, Lasimorpha, 
Podolasia, Pycnospatha, Urospatha,   

yes 

8 
Zamioculcadoideae ( Bogner & Petersen, 
2007) 

Gonatopus, Zamioculcas 
yes 

9 Aglaonemateae (Bogner & Petersen, 2007) Aglaodorum, Aglaonema yes 

10 
 

Nephthytideae (Bogner & Petersen, 2007) Anchomanes, Nephthytis, Pseudohydrosme 
yes 

11 Culcasieae (Bogner & Petersen, 2007) Cercestis, Culcasia yes 

12 Philodendron clade Furtadoa, Homalomena, Philodendron yes 

13 
Spathicarpeae (Gonçalves, 2002,;  
Gonçalves et al., 2007) 

Asterostigma, Bognera, Croatiella, Dieffenbachia, 
Gearum, Gorgonidium, Incarum, Mangonia, 

Spathantheum, Spathicarpa, Synandrospadix, 
Taccarum 

yes 

14 Cryptocoryneae (Bogner & Petersen, 2007) Cryptocoryne, Lagenandra yes 

15 
Schismatoglottideae (Bogner & Petersen, 
2007; Boyce & Wong, 2008) 

Aridarum, Bakoa, Bucephalandra, Phymatarum, 
Piptospatha, Schismatoglottis, Schottariella 

yes 

16 Thomsonieae (Bogner & Petersen, 2007) Amorphophallus, Pseudodracontium yes 

17 Caladieae (Keating, 2002) 
Caladium, Chlorospatha, Filarum, Hapaline, 
Jasarum, Scaphispatha, Syngonium, Ulearum, 

Xanthosoma, Zomicarpa, Zomicarpella 

yes 

18 Arisareae (Keating, 2002) Ambrosina, Arisarum  yes 

19 Arophyteae (Bogner & Petersen, 2007) Arophyton, Carlephyton, Colletogyne yes 

20 Peltandreae (Bogner & Petersen, 2007) Peltandra, Typhonodorum no 

21 Colocasia clade Ariopsis, Colocasia, Remusatia, Steudnera yes 

22 Areae (Bogner & Petersen, 2007) 
Arum, Biarum, Dracunculus, Eminium, 
Helicodiceros, Lazarum, Sauromatum, 

Theriophonum, Typhonium 

yes 

23 
Proto-Araceae (Mayo, Bogner & Boyce, 
1997) 

Gymnostachys, Lysichiton, Orontium, 
Symplocarpus 

yes 

24 Pothoideae (Bogner & Petersen, 2007) Anthurium, Pedicellarum, Pothoidium, Pothos yes 

25 Monsteroideae (Bogner & Petersen, 2007) Clades 4, 5 , 6 yes 

26 Stylochaeton clade Stylochaeton, Gonatopus, Zamioculcas yes 

27 Anchomanes clade Clades 9, 10 yes 

28 Homalomena clade Clades 11, 12 yes 

29 Rheophytes clade Philonotion, clades 14, 15 yes 

30 Typhonodorum clade Clades 19, 20 yes 

31 Alocasia clade Alocasia, Arisaema, Pinellia, clade 22 yes 

32 Bisexual climbers clade  Clades 24, 25 yes 

33 Zantedeschia clade Zantedeschia,  Clades 13, 27, 28  yes 

34 Colletogyne clade Clades 18, 30 yes 

35 Pistia clade (Renner & Zhang, 2004) Pistia, Protarum, clades 21, 31 yes 

36 Amorphophallus clade Clades 16, 17 yes 
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37 Ambrosina clade Clades 34, 35 yes 

38 Spadix appendix clade Clades 36, 37 yes 

39 Calla clade Calla, clade 38 no 

40 Philonotion clade Calla, clades 29, 39 yes 

41 Montrichardia clade Anubias, Montrichardia, clades 33, 40  no 

42 Aroideae clade  Callopsis, clade 41 yes 

43 
Unisexual flowers clade (Mayo, Bogner & 
Boyce, 1997) 

Clades 26, 42 no 

44 Podolasia clade Clades 7, 43 yes 

45 True Araceae clade Clades 32, 44 yes 

46 Spirodela clade Clades 2, 45 yes 

47 Araceae Clades 23, 46 yes 

Monogeneric clades   

 Anthurium   

 Stylochaeton   

 Calla   

 Callopsis   

 Montrichardia   

 Anubias   

 Zantedeschia   

 Philonotion   

 Protarum   

 Pistia   

 Alocasia   

 Pinellia   

 Arisaema    

because inclusion of the other outgroup taxa made no difference. The second

accession for Calla was used to confirm the veracity of the original sequence, and

its position in the tree. The two Calla accessions form a well-supported clade.

Our Bayesian summary tree, contrary to that of Cabrera et al. (2008) has a

strong support for the backbone, and resolves the polytomy of the Lasioideae, Sty-

lochaeton, Zamioculcadoideae, and Aroideae could be resolved to some extent: the

first diverging clade is the Lasioideae (clade 7) followed by the Stylochaeton clade

(clade 26), which is sister to the Aroideae (clade 42), although with low support

(PP = 0.87), agreeing with the results of French et al. (1995) and supported by

morphology (see below: The molceular phylogeny in the context of morphology,

anatomy and ecology). In most of the other major features it is similar to that

of Cabrera et al. (2008). Relationships between the subfamilies are well resolved.

Within the Aroideae, the relationships between the major clades (Callopsis, Anu-

bias, the Zantedeschia clade (clade 33), Montrichardia, and the Philonotion clade
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(40); see Table 6.2 and Fig. 6.1 for clade/taxon circumscriptions) is still poor,

clearly visible as very short branch length in the ML tree (Fig. S2). Within the

Zantedeschia clade only the lower level clades are well-supported whereas the back-

bone is not. However, resolution within the Spadix Appendix clade (clade 38) is

high. All the formerly missing, new and recently described taxa group with their

hypothesized relatives based on morphology. As in the result of Cabrera et al.

(2008), Calla falls well within the Aroideae clade, sister to the well-supported

Spadix Appendix clade (clade 38, see further discussion below). In the Bayesian

analysis with BEAST this grouping (Calla clade 39) has no significant support,

but an additional analysis conducted with MrBayes supports this clade with a

posterior probability of 1 (data not shown). Unlike the parsimony tree of Cabrera

et al. (2008), our maximum parsimony analysis of the matrix (strict consensus of

1718 MP trees, data not shown) places Calla in the same position as the Bayesian

analyses.

The Molecular Phylogeny in the Context of Morphology,

Anatomy and Ecology

The most robust phylogeny was obtained from the Bayesian analysis of the molec-

ular data set, based on the large number of characters (4156 nt) and a model-based

method of analysis. We therefore favour this over the phylogenies from the other

two data sets because the latter are much smaller (81 and 488 characters, respec-

tively), could be analysed only with maximum parsimony, and have low statistical

support. It is a common phenomenon that many characters that are of high impor-

tance for describing clades at lower taxonomic levels, become homoplasious when

working at a higher taxonomic level. The number of morpho-anatomical charac-

Figure 6.1 (facing page): Phylogeny obtained from Bayesian analysis of a molecular data

set of 115 species and 4156 nucleotides from four chloroplast markers based on Cabrera et al.

(2008); posterior probabilities are mean heights of 7700 trees from 19,250,000 generations; 19

morphological/anatomical characters are mapped by coloring branches or tips, or by plotting

squares behind every taxon label with color coded-states (see legend; numbers in brackets are

character numbers with the respective character state as used in Appendix 1); the dashed line

highlights the position of Calla; numbers at nodes refer to the 47 clades defined below; grey

boxes on the right: major clades of different taxonomic levels posterior probability > 0.97.
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stamen connective thickened laterally, at apex, ± glandular (49-1)
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ters is rather low from a statistical point of view, and together with the relatively

high level of homoplasy, accounts for the appearance of implausible groupings and

low statistical support. The Bayesian phylogeny revealed 47 clades of different

taxonomical levels for the Araceae (Fig. 6.1, Table 6.2). Of these, 19 clades are

reported here for the first time and named informally. In the following we re-

vealed 19 (out of the 81) characters describing morphology, anatomy or ecological

preferences of the species that support the majority of the 47 clades, even those

without support. These taxonomically relevant characters, discussed below and

shown in Fig. 6.1, are: Occurrence and/or type of synandria (50), laticifers (18),

collenchyma (67), trichosclerids (3), leaf spongy aerenchyma (64), stamen con-

nective (49), staminodes (58), presence/absence of sporopollenin (75), endothecial

thickenings (16), perigone (2) and resin canals (17), pollen aperture (8), exine sur-

face (12), habit (33, 35), sexuality (1), flowering sequence (46), shoot architecture

(6), and spadix appendix (45). Several others, non mapped characters, also sup-

port the phylogeny and are discussed below, whereas a high number do not and

seem to result from independent, convergent evolution. In the following, numbers

in brackets correspond to the clade numbers as described in Table 6.2.

Clades of Higher Taxonomic Level

The well-supported backbone of the molecular phylogeny defines four major clades

(43-46) of high taxonomic level. Two are newly reported here, the Spirodela clade

(46) and the Podolasia clade (44), two have been circumscribed before, the True

Araceae (clade 45) and the Unisexual Flowers clade (43). These latter two clades

are are also supported by morphological characters (see below). The Spirodela

clade (46) includes all Araceae except for the Proto Araceae (clade 23). The

Spirodela clade (46) includes the Lemnoideae as sister to the True Araceae (clade

45). That there does not exist any morphological character defining this group

might be due to the extreme differentiation of the Lemnoideae because of their

adaptation to an aquatic life form (see below). The True Araceae (clade 45) is

characterized morphologically by shoot architecture (char. 6-1), namely the reit-

eration (continuation shoot) of the sympodial unit in mature stems arising in the

axil of the penultimate foliage leaf (euphyll; Engler, 1877; translated by Ray and

Renner, 1990). Only in the specialized climbing genera of Potheae, in Heteropsis,
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in the Schismatoglottis Calyptrata Group and the Homalomena bellula complex

is a different pattern observed within the True Araceae (char. 6-3). It remains

to be investigated whether the predominant architectural model is adaptive and

mediated some key evolutionary advantage. The Podolasia clade includes the La-

sioideae as sister to the Unisexual flowers clade. This sister relationship between

the two clades is not supported well by molecular data (see above), but from a

morphological point of view, because the Unisexual Flowers clade (43) includes

all species with unisexual flowers (char. 1-1). It corresponds to the Aroideae of

GoA, which includes Stylochaeton, Zamioculcas and Gonatopus. Calla is the only

member of the clade without this character.

Early Diverging Clades

The Proto-Araceae (clade 23) has no morphological support but is consistently

found in all the molecular analyses (French et al., 1995; Tam et al., 2004; Cabr-

era et al., 2008). The morphology of Gymnostachys is quite unlike that of any

other genus. This might be due to the long time the lineages diverged from each

other, leading to morphologically highly divergent taxa. The duckweeds (clade 2,

Lemnoideae) are also morphologically very distinct from all other Araceae, apart

from the reduction in habit shared with Pistia associated with the free-floating life

form (char. 35-2), which is highlighted further by the fossil genus Limnobiophyllum

(Stockey et al., 1997; Rothwell et al., 2004; Bogner, 2009). Apart from the highly

reduced structure, the Lemnoideae are supported by a chromosome base number

of x = 10 (char. 57-5) and ulcerate pollen (char. 8-7). The evolution of the

genera of the Lemnoideae has been thought to follow a logical sequence according

to the following morphological reduction series: in Spirodela and Landoltia the

fronds have veins and many roots, a prophyll is present, the inflorescence has a

spathe and is situated at the side of the leaf sheath arising from the plant’s growth

point, the anther has two thecae; in Lemna the fronds have veins but only a single

root, there is no prophyll but the inflorescence is similar to those of Spirodela and

Landoltia; in Wolffiella the fronds lack both veins and roots, there is no prophyll,

the inflorescence is situated on the upper side of the flat frond in a cavity, there is

no spathe and the anthers have only a single theca; Wolffia differs from Wolffiella

only in having globular to ellipsoid fronds. Our phylogeny (Figure 6.1) places
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Spirodela, the species with the most ancestral phenotype, as sister to the other

Lemnoid genera and groups Wolffiella and Wolffia as a well-supported subclade

(Wolffioideae of Les et al., 2002; Wolffieae of Bogner and Petersen, 2007). How-

ever, the exact branching pattern between Lemna and Landoltia is not clear in our

results; in the Bayesian analysis they are sister taxa but without support, and in

the ML analysis (also unsupported) Lemna branches first, followed by Landoltia

and the Wolffieae. The molecular data presented by Les et al. (2002) based on

a comprehensive sampling of Lemnoid species also did not reveal the position of

Landoltia. Only after adding morphological data to the analysis did it came out

well-supported as sister to Lemna, Wolffia and Wolffiella. So it seems clear that

there was evolution from more complex to the more reduced forms, perhaps twice,

once leading to Lemna and once to the forms of Wolffia and Wolffiella.

The first-diverging clades within the True Araceae clade are the Pothoideae

(clade 24) and Monsteroideae (clade 25), forming a robust monophyletic group

called here the Bisexual climbers clade (32). Climbing habit is not a constant

character within the clade – virtually all species in Spathiphylleae (clade 5) are

terrestrial or helophytes, Stenospermation includes mainly perching epiphytes and

most Anthurium are not climbers. Nevertheless, the climbing habit is predomi-

nant in twelve of the sixteen genera. The only other climbing genera are unisexual-

flowered and occur in the Homalomena clade (Philodendron, Culcasia, Cercestis in

clade 28), Caladieae (Syngonium in clade 17), and some species of Schismatoglot-

tidae (clade 15). Furthermore, many Alocasia and Asian Homalomena species are

functionally climbers extending the “rhizome” through the leaf litter layer for some

considerable distance.

Within the Pothoideae (clade 24), Anthurium is differentiated from the Potheae

(clade 3) by chromosome number (basic number x = 15 vs. x = 12; char. 57)

and pollen aperture (forate vs. monosulcate; char. 8). Within the Monsteroideae

(clade 25), the Heteropsis clade (clade 4) has a basic chromosome number of x = 14

(char. 57-2), whereas its sister clade, consisting of the Spathiphylleae (clade 5) and

the Rhaphidophora clade (clade 6) and not supported by molecular data, has a ba-

sic number of x = 15. Although embedded, the Spathiphylleae differs from all other

Monsteroideae by their combination of clustered trichosclereid structure (Keating,

2002), perigoniate flowers, and especially the polyplicate-multiaperturate rather

than zona-aperturate pollen (Tarasevich, 1989; Hesse et al., 2000), perhaps as
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adaptation to their terrestrial (except S. solomonense), usually helophytic habit.

Tam et al. (2004) that studied a much larger sample of species from the Mon-

steroideae with molecular methods, also found the Spathiphylleae embedded in

the rest of the Monsteroideae and Rhaphidophora to be paraphyletic. However,

support in their phylogeny is generally low.

The Lasioideae clade (7) is composed of tropical bisexual-flowered plants, which

are mostly helophytes (char. 35-1); dryland species are found only in the genera

Dracontium and Pycnospatha. Morpho-anatomical synapomorphies of this group

are the basipetal flowering succession (char.46-1), a unique pollen aperture struc-

ture (Hesse, 2002), and a base chromosome number of x = 13 (char. 57-1). La-

sioideae are also notable for the common occurrence of prickles on the petiole,

peduncle, and main leaf veins (underside of leaf blade, char. 30-1) and deeply

sagittate leaves in which the central vein of each basal lobe runs into the apex.

This group has been extensively studied by Hay (1986, 1988); Hay and Mabberly

(1991); Hay (1992).

Unisexual Flowers Clade

Clade 42 (Aroideae clade) is supported by the presence of both unisexual and

aperigoniate flowers (char. 2-1), Calla again exccepted. Aperigoniate flowers

also occur in few bisexual-flowered taxa, which must be the result of indepen-

dent derivation: Pycnospatha is the only member of the Lasioideae (clade 7) with

aperigoniate flowers; within the Monsteroideae (clade 25) the perigon may have

been lost twice (in clades 4 and 6). Hesse (2006a,c) has discussed in some de-

tail the significance of the switch to unisexual aperigoniate flowers in relation to

important pollen characters. In clade 42 (again excepting Calla) pollen grains

are always omniaperturate (= inaperturate), have a thick, spongy endexine and

a highly reduced ektexine with either a very thin sporopollenin lamella or a non-

sporopollenin outer exine layer (Hesse, 2006b). All genera diverging before clade

42 have aperturate pollen with a well-developed tectate-columellate sporopollenin

Figure 6.2 (facing page): 90% majority rule consensus tree of 10000 most parsimonious trees

obtained from maximum parsimony analysis of the morphological data matrix (81 char.) Values

above nodes indicate bootstrap support values (1000 replicates).
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ektexine and a thin endexine (Hesse, 2006b). Hesse also noted a correlation with

anatomical characters possibly connected with chemical defence such as the pres-

ence of laticifers and biforines (char. 81-1). Clade 42 includes nearly all genera

with laticifers, either simple articulated (char. 18-1) or anastomosing (char. 18-2).

Exceptions are the presence of simple laticifers in Orontium, in the Proto-Araceae

and their absence in Cryptocoryne, Culcasia, Gearum, Lagenandra, Mangonia,

Pistia, Pseudohydrosme, and Spathantheum. Calla has simple laticifers. Biforines

are found almost exclusively in clade (42) but patchily so, and not in Calla; out-

side clade 42 they are present only in Stylochaeton. Taken together these changes

in morpho-anatomical character patterns seem to imply a major adaptive shift in

the evolution of the family.

The sister group position of the Stylochaeton clade (clade 26) supports this

with the intermediate condition of unisexual but perigoniate flowers. Stylochaeton

combines unisexual with perigoniate flowers, but differs from its sister group the

Zamioculcadeae (clade 8) in its omniaperturate pollen and much thinner, undif-

ferentiated sporopollenin extexine (Hesse et al., 2001), the latter character also

differentiating Stylochaeton from clade 42. Callopsis emerges as an isolated genus

(as in previously published analyses, e.g., GoA) but with a robust sister-relation to

the Montrichardia clade (clade 41) comprising all other Aroideae. Weber (2004)

has observed a unique cuticle-like layer in the pollen wall of Callopsis.

The Zantedeschia clade (33), Anubias, Montrichardia and the Rheophytes

clade (29) together correspond quite well to the distribution of smooth pollen

(char. 12-1) suggesting that this pollen type evolved from the predominantly

reticulate pattern at around the same time as the shift from bisexual to unisex-

ual flowers. In the clades distal to the Rheophytes, spinose pollen becomes much

more frequent (Hesse, 2006b). The Zantedeschia clade includes many of the gen-

era assigned to subfamily Philodendroideae by Keating (2002, 2004). There are

no obvious morpho-anatomical synapomorphies, but Zantedeschia is here brought

into a more consistent relationship, although still essentially part of a polytomy

because of lack of support in the spine of this clade. A notable subclade is the

Homalomena clade (clade 28), which combines the Culcasieae (clade 11) and the

Philodendron clade (12). Although supported only by the MrBayes analysis of our

molecular sequence data (not shown), clade 28 is supported by anatomical char-

acters observed by French (1985a, 1987a,b), including the occurrence of sclerotic
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hypodermis and resin canals in the roots and absence of endothecial thickenings in

the anthers. The recent molecular phylogeny of Philodendron by Gauthier et al.

(2008) has confirmed the very close relationship between this genus and neotropical

Homalomena species.

The Spathicarpeae (clade 13) have been thoroughly studied by Gonçalves

(2002, Gonçalves et al., 2007). This provided strong molecular support for the

inclusion of Bognera and Dieffenbachia (former Dieffenbachieae), which are veg-

etatively distinct from the other genera of the tribe. Synandria (char. 50-1 or

-2) have evidently evolved in the Spathicarpeae independently of those in Anu-

bias and in clades 17 (Caladieae) and 37 (Ambrosina clade). Chromosome base

number x = 17 (char. 57-8) supports clade 13 uniformly, occurring also in the

Zamioculcadoideae (clade 8), Anubias, Montrichardia and Philodendron.

The Rheophytes clade (29), corresponding closely to subfamily Schismatoglotti-

doideae of Keating (2002, 2004), includes the newly resurrected genus Philonotion

following Boyce and Wong (2009), who are researching the phylogeny and sys-

tematics of this clade. Clade 29 has emerged consistently in molecular analyses

(Cabrera et al., 2008; French et al., 1995) and includes a high concentration of

rheophytes and aquatics (char. 35-3 or -4).

The Spadix Appendix clade (38) corresponds to subfamily Aroideae of Keating

(2002, 2004) and is composed of the Amorphophallus clade (36) and the Ambrosina

clade (37). Sterile terminal appendices (osmophores, Vogel, 1963; char. 45-1 or -2)

are common in this clade, although many genera (14 out of 37) lack this character.

Elsewhere sterile appendices are found in several genera of Schismatoglottideae

(clade 15, Aridarum, Bakoa, Bucephalandra, Schismatoglottis, Phymatarum) and

in a few Homalomena species. The Spadix Appendix clade also includes most

genera with spinose pollen (char. 12-2; see also remarks by Hesse, 2006c), although

there are other patterns present. The spinose pollen of the Lemnoideae must have

arisen independently.

Four well-supported subclades make up the Spadix Appendix clade at a lower

level: the Thomsonieae (clade 16), the expanded Caladieae sensu Keating (2002;

2004; clade 17), the Colletogyne clade (34), which includes the Arisareae (clade

18), Arophyteae (clade 19) and the Peltandreae (clade 20), and the Pistia clade

(35) of Renner and Zhang (2004). Synandria, i.e., the androecium fused into a

single structure, are common in these clades, predominating in clades 17, 19, 20,
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Protarum, Pistia, clade 21 and Alocasia. Nearly all Arisaema species have at

least partially fused stamens, whereas Pinellia and the Areae (clade 22) have free

stamens; this result would be interesting to investigate with floral developmental

studies. Similarly, anastomosing laticifers (char. 18-2) are present throughout

the Caladieae (clade 17), the Colocasia clade (clade 21, except Ariopsis), and

in Protarum and Alocasia, suggesting the possibility of a secondary derivation of

simple laticifers in the Areae (clade 14), Pinellia and Arisaema.

The distinctive patterns of occurrence of petiole collenchyma tissue in the fam-

ily, reported and discussed by Keating (2000, 2002, 2004) and Gonçalves et al.

(2004), fit the Bayesian tree quite well, confirming their phylogenetic significance.

The distribution of types B, Bi and Sb (Keating, 2000, his Table 3) suggests that

the replacement of sclerenchymatous mechanical tissue by collenchyma, at least

in the central portion of the petiole, occurred in conjunction with the appearance

of the unisexual-flowered aroids, and later specialized into a single type (Sv, in

the petiole, char. 67-4). In the independent report by Gonçalves et al. (2004)

the collenchyma types are characterized as philodendroid (= types B, Bi, Sb) or

colocasioid (= type Sv). Colocasioid collenchyma is characteristic of the Spadix

Appendix clade (38), but also occurs in Cryptocoryneae (clade 14) while philo-

dendroid collenchyma predominates in the Schismatoglottideae (clade 15).

Adaptation to Water-Associated Habitats

As previously noted by Cabrera et al. (2008), water-associated life forms of var-

ious kinds occur throughout the phylogeny of the Araceae in all major clades,

even in the the Areae (clade 22, Typhonium flagelliforme). Individual aquatic

or helophytic genera are often found embedded in otherwise non-aquatic clades,

such as Jasarum (Caladieae, clade 17), Aglaodorum (clade 9), some species of

Dieffenbachia (Spathicarpeae, clade 13), Homalomena in the Philodendron clade

(12), Peltandra and Typhonodorum in the Colletogyne clade (34), and Pistia in

the Pistia clade (35). Even in the Bisexual climbers clade (32) which is domi-

nated by hemi-epiphytes and epiphytes, the Spathiphylleae (clade 5) stand out

as a largely helophytic group. There are also several instances of genera that are

both helophytic and rather isolated, failing to group consistently in most analyses

hitherto: Anubias, Montrichardia and Calla. Clades, which are entirely or mostly
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aquatic are the Orontioideae (clade 1), the Lemnoideae (clade 2), the Lasioideae

(clade 7) and the Rheophytes (clade 29). It seems likely that a major theme in

the phylogeny of the Araceae has been a repeated evolution to and from aquatic

life forms, either to become more extreme aquatics or towards dry land geophytes

and epiphytism of various kinds.

Towards a New Formal Classification

For the first time, analyses of a molecular sequence dataset with complete genus

sampling of the Araceae is presented. The comprehensive morphological-anatomical

data set and the re-analysis of the plastid restriction site data of French et al. (1995)

have provided an opportunity to compare phylogenies arising from these data sets.

The clades which are both well characterized morphologically, and strongly sup-

ported by molecular data, are highlighted by correlating the Bayesian phylogeny

(Fig. 6.1) with “critical” morphological characters that have always been consid-

ered as taxonomically important, together with some new ones.

Using this approach we have defined 47 clades (Table 6.2) that could be consid-

ered as elements of a new formal classification. The majority has been described

earlier, e.g., all subfamilies except for the Aroideae as circumscribed lastly by

Bogner and Petersen (2007, Calla is included and Stylochaeton not) and lower

taxonomic entities. 19 clades are circumcribed here for the first time (Table 6.2,

Fig. 6.1) that are of higher taxonomic level in the bisexual taxa, and subdivide

the Unisexual Flowers clade in major clades. Cabrera et al. (2008) gave a very

detailed and complete discussion of the results of their keynote phylogenetic study,

the implications for a revised classification, and probable evolutionary pathways

of the Araceae, especially in relation to aquatic adaptation. Our re-analysis of an

augmented version of their DNA sequence data set and the correlation of morpho-

logical characters supports most of their taxonomic proposals. Our results differs

from theirs in the relative positions of the Stylochaeton clade (clade 26), and the

Lasioideae (clade 7, Fig. 6.1): The Lasioideae are sister to the Unisexual Flow-

ers clade (clade 43) including clade 26 as the sister of the Aroideae clade (clade

42). The Unisexual Flowers clade has no support but occurs in all analyses and is

more parsimonious from an evolutionary point of view because then all taxa with

unisexual aperigoniate flowers form a single clade (when excluding Calla).
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Except for the morphologically well-supported Unisexual Flowers clade, only

three other clades have no statistical support, but appear in all molecular analyses:

the Peltandreae (clade 20) that have been revealed in further molecular studies

as monophyletic (Renner and Zhang, 2004; Cusimano et al., 2008) and are also

supported by morphology; the Montrichardia clade (clade 41) and Calla clade

(clade 39). The latter two consequently have no support at all. Further molecular

studies are needed to test if the Montrichardia clade is a natural entity in its

present circumscription. That Calla is included and even nested high up in the

Unisexual Flowers clade (clade 43) as sister to the Spadix Appendix clade (38) is

in our opinion highly dubious due to several reasons:

Each of the three phylogenies places this genus in a different position. That

based on morpho-anatomical data places Calla as the sister group of the duck-

weed genera; that from the restriction site data of French et al. (1995, Fig. S1)

places it as sister to the unisexual-flowered clade (i.e., subfamily Aroideae sensu

Mayo et al., 1997); and the phylogenies based on molecular sequence data (max-

imum parsimony, ML and Bayesian inference) place it within the Aroideae (Fig.

6.1). This lack of agreement between the three data sets regarding Calla is striking

given that all the data sources used reflect, directly or indirectly, different sampling

of the genomic diversity. Although the result from the Bayesian analysis of the

molecular sequence data set is by far the most robust, its placing of Calla strongly

jars with morphological character patterns that offer the possibility for ecologi-

cal insights into the evolution of the unisexual-flowered aperigoniate Araceae (see

Hesse, 2006b,a,c). Since this now appears to be the key event in aroid evolu-

tion, this is a problem that merits further study. The most important characters

involved appear to be as follows. 1) Calla has aperturate (bicolpate) pollen, a

massive tectate sporopollenin ektexine, thin endexine, and bisexual flowers. This

character combination contradicts the otherwise almost uniform occurrence within

the Aroideae clade (42) of omniaperturate (= inaperturate) pollen, highly reduced

or absent sporopollenin ektexine structure, thickened endexine and unisexual flow-

ers. As proposed by Hesse (2006a,c) it is likely that these characters are linked to

a major evolutionary shift in floral ecology in which the transition from bisexual

to unisexual flowers played a significant role, and led to the major crown radia-

tion of the aroids – more than 65% of the family’s genera belong to this clade.

Accepting the inclusion of Calla within the Aroideae clade as sister to the Spadix
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Appendix clade (38), requires bisexual flowers, aperturate pollen and a massive

tectate sporopollenin ektexine to have re-evolved from unisexual-flowered, omnia-

perturate, sporopollenin-less ancestors. Although sporopollenin occurs in the exine

of a few genera in the Aroideae clade, e.g., in the spines of Remusatia and Zomi-

carpella, it is in a form quite different from the tectate ectexine of bisexual-flowered

genera. 2) The pattern of collenchyma distribution (Keating, 2000, 2002) argues

against the placement of Calla in the Aroideae, since collenchyma is absent in

the genus, whereas the unisexual clade is characterized by possession of type B,

Bi, Sb or Sv collenchyma. The position of Calla next to the Lemnoideae in the

morpho-anatomical tree (Fig. 3) is also anomalous given striking phenotypic dif-

ferences such as the creeping (not free-floating) habit, smooth (not ribbed) testa,

and dicolpate rather than ulcerate pollen. In our opinion, the morpho-anatomy of

Calla suggests a position probably in the “transition zone” between the bisexual

taxa and unisexual clades like the Stylochaeton clade (26). Resolving the position

of Calla has now become an important issue for Araceae systematics.

The present study is the most comprehensive yet presented as regards different

classes of data and is a step towards a new formal classification. A few important

outstanding questions remain. Most of the major clades are well-supported, as well

as their relationships among each other. It seems very likely that Callopsis, Anu-

bias, Montrichardia, Calla, Alocasia, Protarum and Pistia are rather isolated and

would best be treated as monogeneric higher taxa. It has so far proved impossible

with molecular markers to clarify the branching pattern of Protarum, Pistia, and

the rest of the Pistia clade. The relationship of Arisaema, Pinellia, and the Areae

(clade 22) are another unresolved problem that emerged in earlier molecular analy-

ses (Renner et al., 2004; Renner and Zhang, 2004) and is confirmed here. Contrary

to recent classifications (Keating, 2004; Bogner and Petersen, 2007) Arisaema and

Pinellia do not cluster into a unique clade by molecular data.

In addition to establishing a consistent position for Calla, the main focus of

further analyses dealing with the classification of Araceae genera should be on the

relationships of clades within the Aroideae. Analyses of phylogenetic relationships

within clades at a finer taxonomic scale may reveal further genera or suppress oth-

ers, but given the generally high level of agreement between the earliest molecular

analysis (French et al., 1995) and the one presented here, based largely on Cabrera

et al. (2008), it would be surprising if new work contradicted the general cladis-
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tic patterns of aroid phylogeny as now understood; new work with whole genome

analyses is nevertheless to be eagerly awaited.

A more likely source of phylogenetic novelty is the discovery of new aroid fos-

sils. In recent years this has become an active and exciting field, yielding a number

of remarkable finds with important implications not only for Araceae but for the

evolution of Monocots as a whole (e.g., Smith and Stockey, 2003; Friis et al., 2004;

Bogner et al., 2005; Stockey et al., 2007; Herrera et al., 2008). The importance of

fossils further emphasizes the need for greater activity in the comparative study

and classification of phenotypic character data of extant species, in order to be able

to analyse the phylogenetic position of fossils with greater sophistication. Particu-

larly important character fields are leaf venation, seed structure and pollen struc-

ture. While the latter two areas have received important studies in recent years

(e.g., Grayum, 1992; Seubert, 1993; Hesse, 2002; Tillich, 2003; Hesse, 2006b,a,c),

comparative leaf venation has generally been neglected since the monograph by

Ertl (1932).

The morpho-anatomical matrix presented here (Appendices 1, 2) is a com-

pilation from many different sources but expresses only very approximately the

structural variability of the family. The spectrum of character variability and the

character analyses employed are likely to change considerably with new research.

New initiatives on the Internet have brought about the possibility to collectively

build a more complete database, with entries fully documented to specimens and

images and fully credited to every contributor. We hope that the compilation and

electronic publication of such mega-matrix resources will increasingly become a

major focus for collaborative taxonomic work and thus provide a more compre-

hensive foundation for understanding the phylogeny and evolution of the aroids.

Here, we have collected different kinds of these available up-to-date data, ex-

tended and analysed them with the newest methods. Although there are still

unresolved questions, we got several new insights into Araceae phylogeny based on

the most recent and complete data available and formed a basis for a new formal

classification for the family.



6.5. REFERENCES 169

6.5 References

Andrade, I. M. and S. J. Mayo. 1998. Dynamic Shoot Morphology in Monstera
adansonii Schott var. klotzschiana (Schott) Madison (Araceae). Kew Bulletin
53(2): 399-417. 53:399–417.

Andrade, I. M. and S. J. Mayo. 2000. Dynamic shoot morphology in root-climbing
Araceae: Philodendron rudgeanum Schott and Ph. fragrantissimum (Hook.)
G.Don. Feddes Repertorium 111:295–314.
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Bogner, J. and E. G. Gonçalves. 2005. Two new species of Xanthosoma (Araceae)
from South America and notes on the tribe Caladieae. Willdenowia 35:333–344.

Bogner, J. and M. Hesse. 2005. Zamioculcadoideae, a new subfamily of Araceae.
Aroideana 28:3–20.

Bogner, J., G. L. Hoffman, and K. R. Aulenback. 2005. A fossilized aroid in-
fructescence, Albertarum pueri gen. nov. et sp. nov. of Late Cretaceous (Late
Campanian) age from the Horseshoe Canyon Formation of southern Alberta,
Canada. Can. J. Bot. 83:591–598.

Bogner, J., K. R. Johnson, Z. Kvacek, and G. R. Upchurch Jr. 2007. New fossil
leaves of Araceae from the Late Cretaceous and Paleogene of western North
America. Zitteliana A47:133–147.

Bogner, J. and D. H. Nicolson. 1991. A revised classification of Araceae with
dichotomous keys. Willdenowia 21:35–50.

Bogner, J. and G. Petersen. 2007. The chromsome numbers of the aroid genera.
Aroideana 30:82–90.

Boyce, P. C. and S. Y. Wong. 2008. Studies on Schismatoglottidae (Araceae) of
Borneo VII: Schottarum and Bakoa, two new genera from Sarawak, Malaysian
Bornea. Botanical Studies 49:393–404.

Boyce, P. C. and S. Y. Wong. 2009. Schottariella mirifica P.C. Boyce & S.Y.
Wong: a new name for Schottarum sarikeense (Araceae: Schismatoglottideae).
Botanical Studies 50:269–271.



170 CHAPTER 6. RELATIONSHIPS WITHIN THE ARACEAE

Cabrera, L. I., G. A. Salazar, M. W. Chase, S. J. Mayo, J. Bogner, and P. Davila.
2008. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred
from coding and noncoding plastid DNA. Am. J. Bot. 95:1153–1165.

Croat, T. 2004. History and current status of systematic research with Araceae.
http://www.aroid.org/literature/croat/croat_araceae_history04.pdf
.

Cusimano, N., M. Barrett, W. L. A. Hetterscheid, and S. S. Renner. 2010. A
phylogeny of the Areae (Araceae) implies that Typhonium, Sauromatum, and
Lazarum are distinct clades. Taxon 59:439–447.

Cusimano, N., L.-B. Zhang, and S. S. Renner. 2008. Reevaluation of the cox1
group I intron in Araceae and angiosperms indicates a history dominated by
loss rather than horizontal transfer. Mol. Biol. Evol. 25:265–276.

Drummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed
phylogenetics and dating with confidence. PLoS. Biol. 4:e88.

Drummond, A. J. and A. Rambaut. 2007. Bayesian evolutionary analysis by sam-
pling trees. BMC Evol. Biol. 7:214.

Engler, A. 1876. Vergleichende Untersuchungen über die morphologischen Verhält-
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6.6 Appendices

Appendix 1: Description of the Morphological Characters

1. Flower sexuality: bisexual < 0 >; unisexual < 1 >

Flower sexuality is normally unambiguous. However in certain genera such as Calla, the

uppermost flowers of the spadix are unisexual in behaviour although bisexual in structure.

2. Perigon: present < 0 >; absent < 1 >

In some genera the perigon can be inconspicuous, e.g., Anadendrum.
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3. Trichosclereids: absent < 0 >; present not in bundles, ± large < 1 >; present in bundles,

± small < 2 >

Trichosclereids are found sporadically in Pothos (Keating, 2002). In some genera of the

Monsteroideae (e.g. Amydrium), the trichosclereids are not necessarily present in all

organs (check Keating).

4. Spathe structure: spathe bract-like, unspecialized, ± inconspicuous < 0 >; spathe

modified for attraction and display or specialized in some other way < 1 >; spathe absent

< 2 >

The spathe is almost always well developed and functions as an integral part of the inflo-

rescence. However in Gymnostachys and Orontium the structure homologous to a spathe

is the simple bract that subtends the spadix, while in Pothoidium many spadices entirely

lack a spathe or homologous structure.

5. Inflorescence stipe and peduncle: major internode of the inflorescence is the stipe

situated between spadix and spathe < 0 >; major internode of the inflorescence is the

peduncle situated between spathe and next leaf below < 1 >

The long stipe (character state 0) is most clearly seen in Orontium and Lysichiton.

6. Shoot architecture: continuation shoot in last leaf axil before spathe < 0 >; continua-

tion shoot in axil of penultimate leaf before spathe < 1 >; culm type inflorescence with

cauline bracts apart from spathe (Gymnostachys) < 2 >; monopodial scandent structure

< 3 >

Engler (1877) made the first comparative survey of shoot architecture in Araceae, later

further developed by (Ray, 1986, 1987c,b,a, 1988, 1990) and Andrade and Mayo (1998,

2000). The monopodial shoot structure (character state 3) is found only in climbing

hemi-epiphytes and is probably a derived condition specialized for that ecological niche.

7. Phyllotaxy: distichous < 0 >; spiral < 1 >

8. Pollen aperture : monosulcate < 0 >; extended monosulcate < 1 >; zonate < 2 >;

diaperturate < 3 >; forate < 4 >; inaperturate < 5 >; monosulcoidate < 6 >; ulcerate

< 7 >

The analysis of characters 8 to 12 is based primarily on the work of Grayum (1984, 1992),

Hesse et al. (2001); Hesse (2006b) and Bogner and Hesse (2005).

9. Pollen units: monads < 0 >; tetrads < 1 >; dyads < 2 >

Tetrad pollen was thought previously to be a good diagnostic character to separate Xan-

thosoma from Caladium (Mayo and Bogner, 1988), but more recent studies have shown

that this is not the case (Gonçalves et al., 2007).

10. Pollen shape: ellipsoid < 0 >; hamburger-shaped < 1 >; globose < 2 >
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11. Mean pollen size: small 10-24 µm. < 0 >; medium 25-49 µm. < 1 >; large 50-99 µm.

< 2 >; very large 100-199 µm. < 3 >

12. Pollen exine surface: reticulate or other < 0 >; smooth < 1 >; spinose < 2 >; striate

< 3 >

We have included within the character state “reticulate or other” (0) a range of other

types named by Grayum (1992).

13. Petiole geniculum: absent < 0 >; present < 1 >

The geniculum is a pulvinus at the apex of the petiole which in some genera (e.g. Bognera,

some species of Philodendron) is only clearly visible in living plants.

14. Pollen starch: absent < 0 >; present < 1 >

This analysis is based on the survey by Grayum (1992) and additional observations by

Hesse (pers. comm.).

15. Sclerotic hypodermis in roots: absent < 0 >; present < 1 >

This analysis is based on the survey by (French, 1987a).

16. Endothecial thickenings: present < 0 >; absent < 1 >

This analysis is based on the survey by French (1985a,b, 1986).

17. Resin canals in roots: absent < 0 >; present < 1 >

This analysis is based on the survey by French (1987b).

18. Laticifers: absent or only scattered cells < 0 >; present, simple, articulated < 1 >;

present, anastomosing < 2 >

This analysis is based on the surveys by French (1988) and especially (Keating, 2002).

19. Latex s bodies: absent < 0 >; present < 1 >

The analysis and data for Characters 19 to 22 are based on the survey made by Fox &

French (1988), which covered only the genera with abundant milky latex of the family

Colocasioideae (as recognized by Bogner and Nicolson, 1991).

20. Latex rubber (r) particles: absent < 0 >; present < 1 >

21. Latex y bodies: absent < 0 >; present < 1 >

22. Latex r bodies: absent < 0 >; present < 1 >

23. Primary leaf venation – midrib: midrib of primary veins ± absent with veins arcuate

from the base < 0 >; midrib of primary veins well developed, i.e. pinnate veins in anterior

division < 1 >

The midrib is normally formed from the fusion of the proximal portions of the major

(primary) veins of the anterior division of the leaf blade. In their distal portions these
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veins diverge successively from the midrib in a pinnate pattern and are then referred to as

primary lateral veins. The midrib, as defined here, refers only to the compound structure

created by the proximal fusion of the primary veins. In some genera (e.g. Filarum,

Ulearum) there is no basal connation of the primary veins and we therefore score this as

the absence of a midrib, despite the presence of a single central primary vein nevertheless.

Likewise, those genera with pedately divided leaves (e.g. Dracunculus) are scored as

lacking a midrib (state 0) since the primary veins are the central veins of each leaflet.

This analysis must be regarded as provisional, because apart from the study by Ertl

(1932) there is little data on the ontogenesis of leaf venation in the Araceae. An improved

classification of venation patterns in the future would, incidentally, facilitate the taxonomic

interpretation of leaf fossils (Wilde et al., 2005; Bogner et al., 2007).

24. Primary leaf venation – basal ribs: basal ribs of primary veins absent < 0 >; basal

ribs of primary veins very well developed, i.e., ± tripartite primary development < 1 >;

basal ribs of primary veins distinct but short, i.e. as found in hastate, sagittate, pedate,

trilobed and radiate primary vein patterns < 2 >

Basal ribs are defined here as exactly analogous to the midrib, but formed by the fusion

of primary veins of the posterior divisions (see GoA page 8, fig. 6). Basal ribs occur

only in leaves which have posterior divisions and are particularly well-developed in the

Lasioideae, where in some species of Cyrtosperma they may be more strongly developed

than the midrib (e.g. GoA page 139, plate 26).

25. Primary leaf venation – blade: distinct blade not differentiated, leaf ± linear < 0 >;

distinct blade differentiated < 1 >; distinct blade not differentiated, leaf and shoot fused

into a thallus-like body called a frond < 2 >

Clear differentiation of petiole and leaf blade is near-universal in Araceae, except Gym-

nostachys, and some species of Biarum. In the Lemnaceae we interpret the pouch region

of the frond of the genera Lemna, Landoltia and Spirodela as homologous with a petiole

and sheath, in contrast to Wolffia and Wolffiella in which the leaf and stem structures

are conceived to be congenitally or rather, as a highly reduced neotenic form without such

differentiation.

26. Primary leaf venation – marginal venation of anterior division or ultimate leaf

lobes: ± no sympodial marginal or inframarginal vein, primary veins usually fusing only

near apex < 0 >; sympodial marginal vein formed of ± all primary veins, no sympodial

inframarginal vein < 1 >; sympodial inframarginal vein formed by majority of primary

veins, lowermost primary veins forming non-sympodial marginal veins < 2 >

This analysis is based on a reading of Ertl (1932) from which a transformation series can be

conceptualized beginning with a Hydrocleys-like pattern in which the primary veins diverge

at the petiole insertion and curve around to join together at or very near the leaf apex.

In the Araceae this pattern is found in Anthurium sect. Digitinervium and is approached

in Pistia and Ambrosina. In most Araceae the primary lateral veins join together at the
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margin into a sympodial marginal vein (e.g. Philodendron, Schismatoglottis, Heteropsis).

Sometimes a sympodial submarginal collective vein is also formed (e.g. GoA, pages 104

– 107, plates 8i to 8iv) apparently by fusion of the distal portions of some or nearly

all the primary lateral veins. In these cases the marginal vein is formed by the distal

portion of more basal primary lateral veins. Some genera (e.g. Peltandra, Typhonodorum)

characteristically have a series of marginal and submarginal veins running parallel to each

other near the margin (GoA, page 248, plate 84A, B)

27. Marginal form of leaf : margin not lobed individually around primary veins < 0 >;

margin lobed pinnately in the anterior division < 1 >; margin lobed pedately or radiately

< 2 >; margin lobed both pinnately and pedately (dracontioid) < 3 >; margin lobed

trifidly including deeply sagittate < 4 >; margin bi- to tri- to quadripinnate < 5 >

The patterns of leaf lobing are among the most striking characters of Araceae, but ex-

planations of the relationships between these patterns are still ad hoc and require more

thorough morphogenetic studies. There is a close link between the differentiation of ma-

jor veins and the appearance of leaf lobes or segments, but the degree of marginal lobing

may vary considerably among taxa with essentially similar primary vein patterns (e.g.

Philodendron subgen. Meconostigma, Mayo, 1991). Dracontioid leaves (state 3) are the

result of subdivision of leaves in which the posterior and anterior divisions are approxi-

mately equally well-developed. Pedate leaves represent the condition of subdivision of the

posterior divisions with the anterior division remaining entire (e.g. Philodendron goeldii).

In some pinnately lobed and pinnatisect leaves the lobing of posterior divisions is only

weakly or not at all developed (e.g. Anaphyllum, Zamioculcas, Gorgonidium).

28. Fine venation: secondaries and tertiaries forming mostly cross veins to primaries < 0 >;

secondaries and tertiaries parallel to primaries, joined by cross veins only < 1 >; secon-

daries and tertiaries ± parallel to primaries, often forming interprimary sympodial veins,

cross connections often reticulated < 2 >; secondaries and tertiaries mostly reticulating

freely, forming interprimary sympodial veins < 3 >; absent, only primary veins present

< 4 >

The type of fine leaf venation has been used since Engler (1876) as a subfamily character

within the Araceae. Subsequent work by (Ertl, 1932) suggested that these differences

were less distinct than had been thought and recent molecular phylogenetic studies have

suggested that this character is useful only at lower taxonomic categories. Engler’s subfam-

ilies Philodendroideae and Colocasioideae Engler (1920) were characterized respectively

by parallel-pinnate venation (secondaries and tertiaries parallel to pinnately organized

primary lateral veins; GoA, page 311, Venation types F) and colocasioid venation (GoA,

page 311, Venation types E). However, subsequent phylogenetic studies have shown that

parallel-pinnate and reticulate venation may both occur within a single tribal clade (e.g.

Spathicarpeae sensu Gonçalves et al., 2007) and the two tribes characterized by colocasioid

venation, the Caladieae and the Colocasieae, are found in widely separate subclades of

the subfamily Aroideae (Cabrera et al., 2008). We have therefore avoided the older anal-
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ysis terms into “reticulate”, “philodendroid” and “colocasioid” and instead attempted

a description of each state in terms of the mutual relationships of primary, secondary

and tertiary lateral veins. This classification vein patterns remains provisional and needs

further studies to place on a firmer footing.

29. Leaf fenestration: fenestration by necrosis between primary veins absent < 0 >; fenes-

tration by necrosis between primary veins present < 1 >

The best-known examples of leaf fenestration occur in Monstera and some other genera

of the tribe Monstereae. While normally understood as the occurrence of perforations in

an otherwise simple leaf, we have followed previous authors (e.g., Grayum, 1984, 1990) in

interpreting the pinnatisect and dracontioid leaves of some other genera (Rhaphidophora,

Epipremnum, Dracontium, Dracontioides, Anchomanes) as the result of necrotic fenes-

tration (programmed cell death) of an entire leaf blade rather than differential marginal

growth. No comparative study of programmed cell death has yet been made in Araceae

but an interesting recent report in Monstera is that of Gunawardena et al. (2005).

30. Prickles on stem or petiole: absent < 0 >; present < 1 >

31. Stem producing erect shoots with bulbils: absent < 0 >; present < 1 >

This character is only present in the genera Remusatia and Gonatanthus, the latter genus

being now a synonym of the former.

32. Stem type – thickening: not condensed and strongly thickened < 0 >; condensed,

strongly thickened but not depressed-globose < 1 >; condensed, strongly thickened into

depressed-globose tuber (corm) < 2 >; stem reduced to a minute button, or indistinguish-

able from the thalloid structure < 3 >

Stem morphology, like leaf venation, is another character field in need of a more analyt-

ical understanding of homologies to substitute the present rather intuitive expression of

character states. Anatomical and morphogenetic studies are needed to provide the basis

for this desired improvement in understanding. The analysis presented here (characters

32 and 33) focuses on separating stem thickening for nutrient storage from the habit,

suggesting these may not be completely independent characters.

33. Stem type – habit: subaerial, creeping to erect < 0 >; ± erect at least distally, aerial

< 1 >; entirely subterranean < 2 >; aerial and climbing < includinghemiepiphytes ><

3 >; aerial and truly epiphytic < 4 >

Subterranean stems tend to be thickened for nutrient storage, i.e. correlation with charac-

ter 33 but this is not always the case; for example in some Stylochaeton and Gearum the

roots seem to have such a role, being often very thick and fleshy and the stem relatively

slender despite the geophytic habit. Epiphytes and hemiepiphytes tend to have elongated

and relatively slender green stems, but Remusatia, with a subglobose tuberous stem is

frequently found as an epiphyte. Many other such examples exist which make the inde-

pendence of stem storage thickening and habit at least a reasonable working hypothesis.
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34. Peltate leaves; absent < 0 >; present < 1 >

35. Aquatic habit: not aquatic< 0 >; helophytes< 1 >; floating aquatics< 2 >; submerged

aquatics < 3 >; rheophytes < 4 >

We use “not aquatic” in preference to “terrestrial” because the latter state would epiphytic

and hemi-epiphytic taxa, and this habit difference is dealt with in character 33.

36. Petiole ligule: petiole sheath not long-ligulate apically < 0 >; petiole sheath long-

ligulate apically < 1 >

This character is common to several genera of the Schismatoglottideae but also occurs in

Calla.

37. Infravaginal squamules: absent < 0 >; present < 1 >

Infravaginal squamules are similar to colleters, epidermal structures that appear to have

a secretory function in the early development of the shoot and later may become stiff and

even prickle-like in certain species of Philodendron subgen. Meconostigma. In the Araceae

they occur only in the Cryptocoryneae and Philodendron.

38. Spathe behaviour: no differentiation in persistence, entire spathe persistent or with-

ering slowly without distinctive abscission < 0 >; tube or lower half persistent, blade

marcescent or caducous < 1 >; no differentiation, entire spathe soon deciduous or marces-

cent with distinct basal abscission < 2 >

Some unisexual-flowered genera show a marked differentiation of persistence and colour

between spathe tube and blade in which the paler (often white) blade, along with the asso-

ciated portion of the spadix, speedily withers, decomposes or just falls off following a rapid

absicission. Prior to the results of French et al. (1995) and GoA (1997) this was considered

characteristic of the subfamily Colocasioideae, but it is also typical of the Schismatoglot-

tideae. In Piptospatha, the spathe is sub-globose but exhibits rapid post-floral abscission

in most species, thus demonstrating that this character is not necessarily correlated with

the presence of the spathe constriction characteristic of many genera e.g., Xanthosoma,

Colocasia. Spathe which fall soon after flowering are typical of the tribe Monstereae. Eco-

logically there must be a connection between spathe behaviour and the mode of protection

of the developing seeds, but this has been little studied since Madison (1979). In Mon-

stereae for example, the spathe does not protect the developing fruits within the spadix as

in e.g., Philodendron). Instead the flowers are full of trichosclereidswhich protects them

from herbivores.

39. Spathe shape: fully expanded, often reflexed < 0 >; boat- shaped, ± convolute basally

or not < 1 >; convolute basally into distinct tube with distinctly different, ± expanded

blade < 2 >

The presence of strong shape differentiation between tube and blade is found only in

unisexual-flowered genera, the canonical example being Arum itself. This character is of-

ten accompanied by the presence of a more (e.g. Xanthosoma) or less (many Philodendron
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species) strongly marked constriction between the two portions of the spathe. In Arisaema

the spathe tube tends to be cylindric without a constriction despite an often remarkable

differentiation of the blade (e.g. A. griffithii). Within the unisexual genera there are many

in which spathe shapes are much simpler, e.g. the boat-shaped spathes of Anchomanes.

As with other features of spathe and spadix morphology, biological understanding requires

further knowledge about floral ecology, pollination and dispersal.

40. Spadix-spathe fusion – chambers: spathe and spadix not forming 2 distinct chambers

by fusion < 0 >; spathe and spadix forming 2 distinct chambers by partial fusion < 1 >

State 1 describes a more complete separation of tube and blade by the presence of partial

septum with only a narrow passage allowing the movement of pollinators.

41. Spadix-spathe fusion – internal flap: spathe without internal flap covering and adnate

to spadix apex < 0 >; spathe with internal flap covering and adnate to spadix apex < 1 >

This character (state 1) is unique to the Cryptocoryneae.

42. Spathe margins: margins free or connate only at extreme base < 0 >; connate for dis-

tinct distance < 1 >

Connate spathe tubes are probably only synapomorphic for the genera of the Cryptoco-

ryneae.

43. Spadix-spathe fusion – dorsal fusion: spadix dorsally free of spathe < 0 >; spadix

female zone dorsally adnate to spathe < 1 >; spadix entirely dorsally adnate to spathe

< 2 >

Completely adnate spadices (2) occur in Spathicarpa and Spathantheum.

44. Spadix zonation: no zonation < 0 >; male and female zones only < 1 >; female, sterile,

male zones < 2 >; female, male, sterile zones < 3 >; female, sterile, male, sterile zones

< 4 >

The zonation is to be thought of as extending from base to apex in the above schema.

All bisexual-flowered genera are counted as “no zonation” (0), and this character is thus

partly dependent on flower sexuality (character 1).

45. Spadix appendix: appendix absent or inconspicuous < 0 >; appendix a conspicuous

and well developed organ, staminodial < 1 >; appendix a conspicuous and well developed

organ, smooth to corrugated < 2 >

46. Basipetal flowering: flowering sequence of spadix not basipetal < 0 >; flowering se-

quence of spadix basipetal < 1 >

This character is only known in subfamily Lasioideae.

47. Female zone length: composed of more than 1 flower < 0 >; composed of only 1 flower

< 1 >
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In Pistia and Ambrosina the female zone consists of only a solitary gynoecium. In Aris-

arum, there may be as few as two.

48. Stamen thecae horns: thecae not horned < 0 >; thecae horned < 1 >

This very interesting character occurs in the tribes Cryptocoryneae and Schismatoglot-

tideae, but not in Schismatoglottis and Piptospatha.

49. Stamen connective: not strongly thickened < 0 >; strongly thickened laterally, at apex,

and ± glandular < 1 >

Thick stamen connectives are found in many unisexual-flowered genera, a typical example

being Philodendron. Based on the study of osmophores by Vogel (1963) we have assumed

that in these genera the stamen connectives generate floral odours.

50. Stamen connation: stamens free < 0 >; connate by filaments < 1 >; entirely connate

(including connectives) < 2 >

Connation of the stamens of the floral unit is mostly found in unisexual-flowered genera,

although in Lasimorpha (subfamily Lasioideae) the filaments are more-or-less connate.

In genera with thickened stamen connectives (character 49) connation of the stamens

creates a large mass of osmophoric glandular tissue within each male flower (e.g. Anubias,

Xanthosoma).

51. Anther dehiscence: dehiscing by longitudinal slits < 0 >; dehiscing by oblique pore-like

slits < 1 >; dehiscing by apical pores < 2 >

The manner in which the anthers dehisce and present the pollen varies widely. In many

unisexual-flowered genera the pollen is extruded in strings from pore-like anther stomia.

Pollen presentation modes may be correlated with other inflorescence attributes such as

secretion sticky substances such as resins (Grayum, 1990).

52. Staminodes in female zone: absent < 0 >; present < 1 >

The presence of staminodes in the female flower is characteristic of the tribe Spathicarpeae

(including Dieffenbachia as reformulated by Gonçalves et al., 2007), the Peltandreae,

Protarum, most Homalomena and Furtadoa. Little is known of the function of these

organs, except in Dieffenbachia where they serve as food for pollinating beetles (Young,

1986).

53. Ovary locules: two to three < 0 >; unilocular < 1 >; more than three < 2 >

Unilocular ovaries in Araceae are regarded as pseudomonomerous (Eyde et al., 1967) and

usually provide anatomical evidence of derivation from multilocular ancestors. Ovaries

with high numbers of locules are found in some genera of Spathicarpeae and especially in

Philodendron, although in the latter case there are species with as few as 2 or 3 locules

(Mayo, 1989). High locule number may be a derived feature linked to parasitism of ovules

and seeds by chalcid wasps (Gibernau et al., 2002).
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54. Ovule type: anatropous or hemianatropous< 0 >; campylotropous< 1 >; hemiorthotropous

< 2 >; strictly orthotropous < 3 >

55. Endosperm: copious, embryo relatively small < 0 >; sparse to absent, embryo relatively

large < 1 >

Important sources of information on endosperm characters in Araceae are Seubert (1993)

and Tillich (2003).

56. Placentation: axile or on strongly intrusive placentae < 0 >; apical < 1 >; parietal,

septa very reduced < 2 >; basal, basal-parietal or basal-axile < 3 >; basal and apical

< 4 >

Placental characters are normally observed using low-power microscopy or even hand

lenses fom herbarium or living specimens but the analysis of this character would benefit

from more detailed comparative anatomical studies.

57. Chromosome base number: x = 12 < 0 >; x = 13 < 1 >; x = 7 < 2 >; x = 11 < 3 >;

x = 21 < 4 >; x = 10 < 5 >; x = 15 < 6 >; x = 8 < 7 >; x = 17 < 8 >; x = 18 < 9 >

Bogner and Petersen (2007) have reviewed this character recently and added a number

of important new counts. This paper includes the most recent synopsis of the family

classification based on GoA but including the Lemnacae as subfamily Lemnoideae.

58. Staminodes: staminodes in interfertile zones absent, prismatic or fungiform < 0 >;

staminodes in interfertile zones hair-like, subulate, bristle-like or clavate-elongated < 1 >

Character state (1) occurs almost exclusively in the tribe Areae.

59. Style: styles not laterally thickened or extended < 0 >; styles laterally thickened or ex-

tended into ”mantle” and contiguous < 1 >

Laterally extended or thickened styles (state 1) are characteristic of the genera Xantho-

soma and Chlorospatha in tribe Caladieae and the absence of this character state has

been used to distinguish Caladium from these genera Madison (1981); Mayo and Bogner

(1988); Bogner and Gonçalves (2005); Mayo and Bogner (1988)

60. Ovule number: 3 or more per locule < 0 >; 1-2 per locule < 1 >

61. Perigon-tepal connation: tepals free or partly free < 0 >; perigon a single unit < 1 >

62. Perigon-tepal apex: unthickened < 0 >; thickened < 1 >

63. Male flowers: no pistillode present < 0 >; pistillode or vestige, e.g., stigmatoids, present

< 1 >

Pistillodes in male flowers are characteristic of tribes Spathicarpeae, Stylochaetoneae and

subfamily Zamioculcadoideae.
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Characters 64 – 69 are from the comprehensive monograph of Araceae vegetative anatomy

by Keating (2002).

64. Leaf TS spongy aerenchyma: compact tissue or cell-sized air spaces type 1, type 1a

< 0 >; intercellular spaces 2-3 times cell diameters, type 2 < 1 >; intercellular spaces large

with uniseriate partitions, type 3 < 2 >; intercellular spaces with multiseriate partitions,

type 4 < 3 >

65. Leaf TS collenchyma: banded, type B < 0 >; banded, interrupted, type Bi < 1 >;

strands irregular, often flattened, type Sb < 2 >; strands as phloem caps, type Svc < 3 >;

strands discrete, usually circular, type Sv < 4 >; absent < 5 >

66. Leaf TS vascular bundles: broad, phloem strands semi-circular, type 1 < 0 >; narrow,

phloem strands elliptical, type 2 < 1 >; small, xylem a wide cell or lacuna, type 3 < 2 >

67. Petiole TS collenchyma: banded, type B < 0 >; banded interrupted, type Bi < 1 >

irregular flattened strands, not aligned with vascular bundles, type Sb < 2 >; bundle

caps, type Svc < 3 >; strands aligned with vascular bundles, type Sv < 4 >; ensheathing

vascular bundles < 5 >; absent < 6 >

68. Petiole TS ground tissue: cells compact in centre < 0 >; cells loosely packed (cell-

sized cavities), type 1 and 2 < 1 >; uniseriate partitions separating cavities, type 3 < 2 >;

multiseriate partitions separating cavities, type 4 < 3 >

69. Petiole TS vascular bundles: large, type 1 < 0 >; medium-sized, type 2 < 1 >; small,

with dominant single xylem element, type 3 < 2 >

Characters 70 – 74 are from Tillich (2003):

70. Cotyledon type: haustorial < 0 >; storage < 1 >

71. Cotyledon shape: compact < 0 >; hypophyll widened, blade-like < 1 >

72. First leaf : cataphyll < 0 >; eophyll < 1 >

73. hypocotyl presence: present < 0 >; absent < 1 >

74. Primary root presence: present < 0 >; absent < 1 >

75. Sporopollenin: present < 0 >; absent < 1 >

This character is based on the studies of Hesse

Characters 76 – 79 focus on the differentiation of the Lemnoid genera from the rest of the

family, based on (Landolt, 1998):

76. Roots: present < 0 >; absent < 1 >
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77. Root branching: present < 0 >; absent < 1 >

78. Leaf veins: present < 0 >; absent < 1 >

79. Anther thecae: tetrasporangiate < 0 >; disporangiate < 1 >

80. Raphides: absent < 0 >; present < 1 >

All Araceae (including the Lemnoideae) have raphides, but not Acorus.

81. Biforines: absent < 0 >; present < 1 >

This character is based on information from Keating (2002), who found that biforines are

only observed in unisexual-flowered genera.
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Appendix 2: Matrix of morphological data with codes as described above.

Codes for polymorphisms : a = (01); b = (12); c = (89); d = (012); e = (02); f =

(04); g = (24); h = (26); i = (0123).
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Acorus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

Aglaodorum 1 1 0 1 1 1 1 5 0 0 2 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0

Aglaonema 1 1 0 1 1 1 1 5 0 0 2 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0

Alloschemone 0 1 1 1 1 1 0 2 0 0 1 0 1 ? ? ? ? 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Alocasia 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 2 0 0 1 0 1 2 1 2 0 2 0 0 0 1 b 0 0 0 0 1 2 0 0 0 0

Ambrosina 1 1 0 1 1 1 1 5 0 0 1 3 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 3 0 0 0 2 2 0 0 0 0 0 2 1 0 1 1

Amorphophallus 1 1 0 1 1 1 1 5 0 0 b i 0 1 0 0 0 1 0 0 0 0 1 1 1 2 3 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 0

Amydrium 0 1 0 1 1 1 ? 2 0 1 1 0 1 a 0 0 0 0 0 0 0 0 1 0 1 1 0 3 1 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Anadendrum 0 0 0 1 1 1 0 5 0 2 0 0 1 ? 0 0 0 0 0 0 0 0 1 0 1 1 0 3 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Anaphyllopsis 0 0 0 1 1 1 1 0 0 0 1 0 0 ? 0 0 0 0 0 0 0 0 1 1 1 2 3 3 1 0 0 2 2 0 0 0 0 0 1 0 0 0 0

Anaphyllum 0 0 0 1 1 1 1 0 0 0 1 0 1 ? 0 0 0 0 0 0 0 0 1 1 1 b 3 3 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0

Anchomanes 1 1 0 1 1 1 1 5 0 0 2 1 1 1 0 0 0 1 0 0 0 0 1 1 1 2 0 3 1 1 0 1 2 0 0 0 0 0 1 0 0 0 0

Anthurium 0 0 0 1 1 1 1 4 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Anubias 1 1 0 1 1 1 1 5 0 2 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Aridarum 1 1 0 1 1 1 0 5 0 0 0 1 0 ? 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 4 1 0 1 b 0 0 0 0

Ariopsis 1 1 0 1 1 1 1 5 0 2 0 2 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 2 0 0 0 2 0 1 0 0 0 0 1 0 0 0 1

Arisaema 1 1 0 1 1 1 1 5 0 2 0 2 0 1 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Arisarum 1 1 0 1 1 1 1 5 0 0 1 3 0 1 0 0 0 1 0 0 0 0 1 0 1 2 0 3 0 0 0 1 2 0 0 0 0 0 2 0 0 1 1

Arophyton 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 1 0 0 0 0 0 0 1 2 0 2 0 0 0 0 g 0 0 0 0 a 2 0 0 0 0

Arum 1 1 0 1 1 1 1 5 0 2 1 2 0 0 0 0 0 1 0 0 0 0 1 2 1 2 0 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Asterostigma 1 1 0 1 1 1 1 5 0 0 1 a 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Biarum 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 1 0 0 0 0 1 0 1 2 0 3 0 0 0 2 2 0 0 0 0 0 2 0 0 a 0

Bognera 1 1 0 1 1 1 1 5 0 0 2 0 1 ? ? 0 ? 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Bucephalandra 1 1 0 1 1 1 1 5 0 0 1 1 0 ? 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 4 1 0 1 1 0 0 0 0

Caladium 1 1 0 1 1 1 1 5 0 2 1 1 0 1 0 0 0 2 1 1 0 0 1 2 1 2 0 2 0 0 0 2 2 1 0 0 0 1 2 0 0 0 0

Calla 0 1 0 1 1 1 0 3 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Callopsis 1 1 0 1 1 1 1 5 0 2 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1

Carlephyton 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 1 0 0 0 0 0 0 1 2 0 2 0 0 0 2 2 0 0 0 0 1 0 0 0 0 1

Cercestis 1 1 0 1 1 1 1 5 0 0 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 3 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0

Chlorospatha 1 1 0 1 1 1 1 5 1 2 1 a 0 0 0 0 0 2 1 1 0 0 1 2 1 2 0 2 0 0 0 1 1 0 0 0 0 1 2 0 0 0 0

Colletogyne 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 1 0 0 0 0 0 0 1 2 0 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 1

Colocasia 1 1 0 1 1 1 1 5 0 0 1 e 0 1 0 0 0 2 0 0 1 1 1 2 1 2 0 2 0 0 0 1 b 1 0 0 0 1 2 0 0 0 0

Croatiella 1 1 0 1 1 1 1 5 0 0 1 1 0 ? ? ? ? ? ? ? ? ? 1 2 1 2 0 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 1

Cryptocoryne 1 1 0 1 1 1 1 5 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 2 1 1 1 0

Culcasia 1 1 0 1 1 1 0 5 0 2 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 3 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Cyrtosperma 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 4 3 0 1 0 1 2 0 1 0 0 0 1 0 0 0 0

Dieffenbachia 1 1 0 1 1 1 1 5 0 0 2 a 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 a 0 0 0 2 0 0 0 1

Dracontioides 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 4 3 1 0 0 0 2 0 1 0 0 0 2 0 0 0 0

Dracontium 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 2 3 3 1 0 0 2 2 0 0 0 0 0 1 0 0 0 0

Dracunculus 1 1 0 1 1 1 1 5 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Eminium 1 1 0 1 1 1 1 5 0 2 1 2 0 1 ? 0 ? 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 a 0

Epipremnum 0 1 1 1 1 1 0 2 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Filarum 1 1 0 1 1 1 1 5 0 2 0 2 0 ? ? 0 ? 2 0 0 0 0 0 0 1 2 0 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 1

Furtadoa 1 1 0 1 1 1 1 5 0 0 0 1 0 ? 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 4 0 0 0 1 0 0 0 0

Gearum 1 1 0 1 1 1 1 5 0 0 2 a 0 ? ? 0 ? 0 0 0 0 0 1 2 1 2 1 3 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0

Gonatopus 1 0 0 1 1 1 1 1 0 0 2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 5 3 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0

Gorgonidium 1 1 0 1 1 1 1 5 0 0 1 0 0 ? 0 0 0 1 0 0 0 0 1 0 1 1 1 3 0 0 0 2 2 0 0 0 0 1 1 0 0 0 0

Gymnostachys 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0

Hapaline 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 2 1 1 0 0 1 2 1 2 0 3 0 0 0 2 2 0 0 0 0 1 2 0 0 0 1

Helicodiceros 1 1 0 1 1 1 1 5 0 2 1 2 0 ? 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Heteropsis 0 1 0 1 1 3 0 2 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 2 0 3 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Holochlamys 0 0 2 1 1 1 0 5 0 0 1 3 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Homalomena 1 1 0 1 1 1 1 5 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Incarum 1 1 0 1 1 1 1 5 0 0 1 0 0 ? ? ? ? ? ? ? ? ? 1 0 1 1 1 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 1

Jasarum 1 1 0 1 1 1 1 5 0 0 1 0 0 1 ? 0 ? 2 1 1 0 0 1 0 1 2 0 2 0 0 0 0 2 0 3 0 0 1 2 0 0 0 1

Lagenandra 1 1 0 1 1 1 1 5 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 2 1 1 1 0

Lasia 0 0 0 1 1 1 1 0 0 0 1 0 1 ? 0 0 0 0 0 0 0 0 1 2 1 2 2 3 0 1 0 0 1 0 1 0 0 2 1 0 0 0 0

Lasimorpha 0 0 0 1 1 1 1 0 0 0 0 0 1 ? ? ? ? 0 0 0 0 0 1 1 1 b 4 3 0 1 0 1 2 0 1 0 0 0 1 0 0 0 0

Lysichiton 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 1 0 0 0 0

Mangonia 1 1 0 1 1 1 1 5 0 0 1 0 0 ? ? 0 ? 0 0 0 0 0 1 0 1 0 0 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Monstera 0 1 1 1 1 1 0 2 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Montrichardia 1 1 0 1 1 1 1 5 0 2 2 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 3 0 a 0 0 2 0 1 0 0 2 2 0 0 0 0

Nephthytis 1 1 0 1 1 1 1 5 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 2 4 3 0 a 0 1 2 0 0 0 0 0 0 0 0 0 0

Orontium 0 0 0 0 0 0 ? 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 0 0 0

Pedicellarum 0 0 0 1 1 3 0 0 0 0 0 0 1 ? ? ? ? 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Peltandra 1 1 0 1 1 1 1 5 0 0 1 b 0 1 0 0 0 1 0 0 0 0 1 2 1 2 0 1 0 0 0 0 2 0 1 0 0 1 2 0 0 0 0

Philodendron 1 1 0 1 1 1 1 5 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 a 0 1 0 2 0 0 0 0

Phymatarum 1 1 0 1 1 1 1 5 0 0 0 1 0 ? 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 4 1 0 1 1 0 0 0 0

Pinellia 1 1 0 1 1 1 1 5 0 2 1 e 0 1 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 1 0 0 1

Piptospatha 1 1 0 1 1 1 1 5 0 0 a 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 4 1 0 1 1 0 0 0 0

Pistia 1 1 0 1 1 1 1 5 0 0 1 3 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 1 0 2 0 0 0 2 1 0 1 1

Podolasia 0 0 0 1 1 1 1 0 0 0 0 0 1 ? 0 0 0 0 0 0 0 0 0 1 1 0 4 3 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0

Pothoidium 0 0 0 1 1 3 0 0 0 0 1 0 1 ? 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Pothos 0 0 0 1 1 3 0 0 0 0 0 0 1 ? 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

Protarum 1 1 0 1 1 1 1 5 0 0 0 0 0 ? ? 0 ? 2 0 0 0 0 0 2 1 2 2 2 0 0 0 2 2 0 0 0 0 1 2 0 0 0 0

Pseudodracontium 1 1 0 1 1 1 1 5 0 0 1 3 0 1 0 0 0 1 0 0 0 0 1 1 1 2 3 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 0

Pseudohydrosme 1 1 0 1 1 1 1 5 0 0 3 1 0 1 ? 0 ? 0 0 0 0 0 1 1 1 2 0 3 1 1 0 2 2 0 0 0 0 0 2 0 0 0 0

Pycnospatha 0 1 0 1 1 1 1 0 0 0 1 0 0 ? ? 0 ? 0 0 0 0 0 1 1 1 1 3 3 1 0 0 2 2 0 0 0 0 0 1 0 0 0 0

Remusatia 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 2 0 0 1 1 1 2 1 2 0 2 0 0 1 2 4 1 0 0 0 1 2 0 0 0 0

Rhaphidophora 0 1 1 1 1 1 0 1 0 0 1 0 1 ? 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Rhodospatha 0 1 1 1 1 1 0 2 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0

Sauromatum 1 1 0 1 1 1 1 5 0 2 1 2 0 1 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 1 0

Scaphispatha 1 1 0 1 1 1 1 5 0 2 1 0 0 ? ? 0 ? 2 ? ? ? ? 1 0 1 2 0 2 0 0 0 2 2 1 0 0 0 1 1 0 0 0 0

Schismatoglottis 1 1 0 1 1 1 1 5 0 0 0 1 0 a 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 f a 0 1 2 0 0 0 0

Scindapsus 0 1 1 1 1 1 0 2 0 1 1 0 1 a 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 3 0 0 0 0 2 1 0 0 0 0
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Appendix 2 continued

Acorus
Aglaodorum
Aglaonema
Alloschemone
Alocasia
Ambrosina
Amorphophallus
Amydrium
Anadendrum
Anaphyllopsis
Anaphyllum
Anchomanes
Anthurium
Anubias
Aridarum
Ariopsis
Arisaema
Arisarum
Arophyton
Arum
Asterostigma
Biarum
Bognera
Bucephalandra
Caladium
Calla
Callopsis
Carlephyton
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Chlorospatha
Colletogyne
Colocasia
Croatiella
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Culcasia
Cyrtosperma
Dieffenbachia
Dracontioides
Dracontium
Dracunculus
Eminium
Epipremnum
Filarum
Furtadoa
Gearum
Gonatopus
Gorgonidium
Gymnostachys
Hapaline
Helicodiceros
Heteropsis
Holochlamys
Homalomena
Incarum
Jasarum
Lagenandra
Lasia
Lasimorpha
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Nephthytis
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Peltandra
Philodendron
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Pinellia
Piptospatha
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Podolasia
Pothoidium
Pothos
Protarum
Pseudodracontium
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Rhaphidophora
Rhodospatha
Sauromatum
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44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

0 0 0 ! 0 0 0 0 ! 0 3 0 1 0 ! 0 0 0 0 ! 2 5 0 6 2 0 0 0 1 0 0 0 0 0 0 0 0 !

1 0 0 0 0 1 0 2 1 0 0 1 2 a 0 0 1 ! ! 0 e 2 1 2 2 1 ? ? ? ? ? 1 0 0 0 0 1 1

1 0 0 0 0 1 0 2 0 1 0 1 3 a 0 0 0 ! ! 1 d 2 1 2 2 b 1 ! 0 1 1 1 0 0 0 0 1 1

0 0 0 ! 0 0 0 0 ! 1 0 ? 3 2 ! 0 1 ! ! ! 1 0 1 6 1 0 ? ? ? ? ? 0 0 0 0 0 1 0

4 1 0 0 0 1 2 1 0 1 0 0 3 2 0 0 0 ! ! 0 d q b 4 3 2 0 0 0 0 0 1 0 0 0 0 1 1

4 0 0 1 0 0 2 0 0 1 3 0 3 3 0 0 0 ! ! 0 0 4 1 4 3 1 ? ? ? ? ? 1 0 0 0 0 1 0

3 1 0 0 0 0 1 2 0 0 0 1 3 b 0 0 1 ! ! 0 0 4 1 4 2 2 1 ! 0 1 1 1 0 0 0 0 1 0

0 0 0 ! 0 0 0 0 ! 1 0 0 3 6 ! 0 1 ! ! ! 1 0 1 o 0 a ? ? ? ? ? 0 0 0 0 0 1 0
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4 2 0 0 0 0 0 1 0 1 3 0 3 2 1 0 1 ! ! 0 b 4 1 4 2 a ? ? ? ? ? 1 0 0 0 0 1 0
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2 0 0 0 0 1 2 2 1 0 3 1 3 8 0 0 1 ! ! 0 e 0 1 0 2 1 1 ! 0 1 1 1 0 0 0 0 1 1
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2 2 0 0 0 1 2 1 0 1 0 1 3 b 0 0 1 ! ! 0 b 4 1 4 j 1 1 ! 0 1 1 1 0 0 0 0 1 1
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0 0 1 ! 0 0 0 0 ! 1 0 0 3 1 ! 0 1 ! ! ! m 0 0 6 3 1 ? ? ? ? ? 0 0 0 0 0 1 0

2 0 0 0 0 1 2 1 0 1 j 0 j 2 0 0 0 ! ! 0 e 4 1 4 2 b ? ? ? ? ? 0 0 0 0 0 1 0

0 0 0 ! 0 0 0 0 ! 0 0 0 0 6 ! 0 0 ! ! ! a 5 a o 0 0 ? ? ? ? ? 0 0 0 0 0 1 0

0 0 0 ! 0 0 0 0 ! 0 0 0 0 2 ! 0 0 ! ! ! a 0 0 6 1 0 ? ? ? ? ? 0 0 0 0 0 1 0

4 2 0 0 0 0 0 1 0 1 3 0 3 1 1 0 0 ! ! 0 a 4 b 4 0 2 0 1 1 0 0 1 0 0 0 0 1 ?

1 0 0 0 0 1 2 1 0 1 0 0 3 2 0 0 0 ! ! 0 0 4 2 1 2 2 ? ? ? ? ? 1 0 0 0 0 1 1

4 1 0 0 0 0 0 2 a 1 0 0 2 1 0 0 0 ! ! 0 k 0 b 0 j 1 0 1 1 0 0 1 0 0 0 0 1 1

0 0 0 ! 0 0 0 0 ! 1 0 0 3 6 ! 0 1 ! ! ! 0 0 a o e a 0 0 0 0 0 0 0 0 0 0 1 0
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Spathantheum 1 1 0 1 1 1 1 5 0 0 2 1 0 1 0 0 0 0 0 0 0 0 1 2 1 1 0 3 0 0 0 2 2 0 0 0 0 0 1 0 0 0 1
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Syngonium 1 1 0 1 1 1 1 5 0 0 1 d 0 1 0 0 0 2 1 1 0 0 1 2 1 2 0 2 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0

Taccarum 1 1 0 1 1 1 1 5 0 0 2 e 0 1 0 0 0 1 0 0 0 0 1 1 1 1 3 3 0 0 0 2 2 0 0 0 0 1 2 0 0 0 0

Theriophonum 1 1 0 1 1 1 1 5 0 2 1 e 0 1 ? 0 ? 1 0 0 0 0 1 0 1 2 0 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Typhonium 1 1 0 1 1 1 1 5 0 2 1 e 0 1 0 0 0 1 0 0 0 0 0 2 1 2 2 3 0 0 0 2 2 0 0 0 0 0 2 0 0 0 0

Typhonodorum 1 1 0 1 1 1 1 5 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 2 1 2 0 1 0 0 0 0 2 0 1 0 0 1 2 0 0 0 0

Ulearum 1 1 0 1 1 1 1 5 0 2 1 2 0 ? ? 0 ? 2 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Urospatha 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 4 3 0 0 0 1 2 0 1 0 0 0 1 0 0 0 0

Xanthosoma 1 1 0 1 1 1 1 5 a 0 1 0 0 1 0 0 0 2 1 1 0 0 1 2 1 2 0 2 0 0 0 b b 0 0 0 0 1 2 0 0 0 0

Zamioculcas 1 0 0 1 1 1 1 1 0 0 2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 3 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0
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4 1 0 0 0 1 2 1 1 1 3 1 3 2 0 0 1 ! ! 0 2 4 2 4 2 2 1 ! 0 a a 1 0 0 0 0 1 1

4 2 0 0 0 0 0 2 0 1 0 1 3 4 0 0 1 ! ! 0 0 4 b q 0 1 ? ? ? ? ? 1 0 0 0 0 1 0

0 0 1 ! 0 0 0 1 ! 0 0 0 0 1 ! 0 0 0 1 ! e 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0

2 0 0 0 0 1 2 1 0 0 0 0 0 1 0 1 0 ! ! 0 b 4 a 4 j b 0 1 1 1 0 1 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0 1 3 8 0 0 1 0 1 1 0 0 0 0 0 1 ? ? ? ? ? 0 0 0 0 0 1 0

1 0 0 0 0 1 0 2 a 0 0 0 0 7 0 0 0 ! ! 0 2 1 2 1 2 2 0 0 1 0 0 1 0 0 0 0 1 1

3 2 0 0 0 0 0 2 0 1 0 0 3 5 0 0 0 ! ! 0 1 4 b 4 b 2 0 0 1 0 0 0 0 0 0 0 1 1

3 2 0 0 0 0 0 2 0 1 0 0 3 1 0 0 0 ! ! 0 a 4 1 4 0 b ? ? ? ? ? 0 0 0 0 0 1 1

0 0 0 ! 0 0 0 0 ! 0 0 1 3 3 ! 0 1 0 0 ! ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 !

0 0 0 ! 0 0 0 0 ! 0 a 0 0 6 ! 0 0 0 0 ! ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 !

0 0 0 ! 0 0 0 0 ! 0 0 0 0 ? ! 0 0 0 0 ! ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 !

! ! ! ! 0 0 0 0 ! 1 0 0 3 5 ! 0 a ! ! ! 2 5 ? 6 ! ! 0 0 1 1 1 0 0 1 0 0 1 0

! ! ! ! 0 0 0 0 ! 1 0 0 3 5 ! 0 1 ! ! ! 2 5 ? 6 ! ! 0 0 1 1 1 0 0 1 0 0 1 0

! ! ! ! 0 0 0 0 ! 1 0 0 3 5 ! 0 1 ! ! ! ? 5 ? 6 ! ! 0 0 1 1 1 0 0 1 0 0 ? ?

! ! ! ! 0 0 0 0 ! 1 3 0 3 5 ! 0 1 ! ! ! 2 5 ? 6 ! ! ? ? ? ? ? 0 1 ! 1 1 1 0

! ! ! ! 0 0 0 0 ! 1 3 0 3 5 ! 0 1 ! ! ! 2 5 ? 6 ! ! ? ? ? ? ? 0 1 ! 1 1 1 0
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6.7 Online Supporting Material

Supplementary Figure S1: 90% majority rule consensus tree of 10000 most

parsimonious trees obtained from maximum parsimony analysis of the chloroplast

restriction site data of French et al. (1995; 488 char.) with bootstrap values ob-

tained from 1000 replicates indicated above nodes.



Supplementary Figure S2: Maximum likelihood phylogeny of 115 species

obtained with RAxML from combined chloroplast data (4156 nt) with bootstrap

values obtained from 1000 replicates indicated above nodes.
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Hanna Weiss-Schneeweiss möchte ich für die viele Zeit danken, die sie sich genom-

men hat, um mich in ihrem Labor in die Methode der Fluoreszenz in situ

Hybridisierung einzuarbeiten und um bei Fragen zur Theorie von Chromo-

somenevolution zu helfen.



6.7. ONLINE SUPPORTING MATERIAL 195

Wilbert Hetterscheid danke ich, weil er mir bereitwillig Blatt-, aber auch Lebend-

material von allen Arten seiner umfangreichen Typhonium-Sammlung zur
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