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I Einleitung 

Die Hämatologie ist ein wichtiger Bereich der Tiermedizin, da die Untersuchung des Blutes eine 

große Rolle bei der Beurteilung des aktuellen Gesundheitszustandes einzelner Tiere spielt. Sie 

dient dem Erkennen von Krankheiten, da diese in einigen Fällen zu Veränderungen im Blutbild 

führen. Aus diesem Grund ist es wichtig, die Laborwerte des Blutes gesunder Tiere zu kennen und 

die jeweiligen Blutzellen morphologisch differenzieren zu können. Die Anzahl der Leukozyten 

gibt wichtige Hinweise auf die Immunantwort des Körpers. Bakterielle Infektionen beispielsweise 

führen zu einem Anstieg der neutrophilen Granulozyten, eine Erhöhung der eosinophilen 

Granulozyten hingegen ist bei Allergien oder Parasitenbefall zu beobachten. Weiterhin lassen sich 

bei einigen inneren Erkrankungen Veränderungen der Werte bestimmter Serumkomponenten 

nachweisen. Die lichtmikroskopische und elektronenmikroskopische Analyse des Blutes dient der 

Identifizierung und Charakterisierung einzelner Blutzellen und liefert weiterhin Informationen 

über die regenerative Kapazität des Knochenmarks. Das Elektronenmikroskop erlaubt aufgrund 

des hohen Auflösungsvermögens eine genaue Untersuchung der Ultrastruktur der Blutzellen. 

Jede Blutzelle ist mit einem gewissen Enzymspektrum ausgestattet. Durch den Nachweis der 

verschiedenen Enzyme können Stoffwechselvorgänge in der Zelle dargestellt und bestimmte 

Zellen sowie Zellstrukturen (z.B. Granula oder Lysosomen) aufgrund ihrer charakteristischen 

Enzymausstattung identifiziert werden. 

Das Zytoskelett stellt ein dreidimensionales Geflecht aus Filamenten und Mikrotubuli in den 

Blutzellen dar. Es organisiert das Zellinnere und ist für eine Reihe wichtiger Funktionen der Zelle 

von Bedeutung. Jede einzelne Zelle ist mit bestimmten Strukturproteinen ausgestattet, die durch 

markierte Substanzen sichtbar gemacht werden können. Das genaue Verständnis aktiver, 

kortikaler Zytoskelettsysteme könnte einen Beitrag zum Fortschritt der Bekämpfung 

verschiedener Krankheiten, wie Malaria im Fall der Erythrozyten, leisten. Aktive Netzwerke 

könnten zudem als technische Mittel bei der Konstruktion biomimetischer Apparaturen, Sensoren 

oder biomimetischer Strukturen für die Medikamentenverabreichungen dienen. 

Die Blutzellen tragen verschiedene Kohlenhydratstrukturen auf ihrer Oberfläche, die eine 

Vielzahl von Funktionen erfüllen. Im Allgemeinen dienen sie der Kommunikation der Zellen 

untereinander, vermitteln die spezifische Erkennung verschiedenster Strukturen und gewährleisten 

die Regulierung biologischer Prozesse. Darüber hinaus fungieren sie aber auch als 

Anheftungsstrukturen für Mikroorganismen. Die Kohlenhydratreste auf den Zellen können mit 

Hilfe der Lektinhistochemie charakterisiert werden, da diese Zucker bindenden Proteine 

spezifisch an bestimmte Zuckerstrukturen der Zelle binden.  
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Meine Arbeit hat die morphologische Charakterisierung der Blutzellen des Schafes mit modernen 

licht- und elektronenmikroskopischen Methoden zum Ziel. Dabei wird zuerst die allgemeine 

Morphologie der jeweiligen Zellen nach Durchführung verschiedener konventioneller 

Übersichtsfärbungen beschrieben. Als Nächstes erfolgt die Charakterisierung der Zellen anhand 

von substrathistochemischen und verschiedenen enzymhistochemischen Techniken. Unter dem 

Elektronenmikroskop wird die Ultrastruktur der einzelnen Blutzellen analysiert. Weiterhin werden 

die zytoskelettalen Proteine in den Blutzellen der Schafe mit verschiedenen Methoden dargestellt. 

Schließlich wird mit glykohistochemischen Techniken das Bindungsverhalten verschiedner 

Pflanzen-Lektine an bestimmte Kohlenhydratstrukturen der Zellen untersucht.  

 

 



II. Literaturübersicht                     3 

II Literaturübersicht 

1. Allgemeines zum Blut des Schafes 

1.1 Zusammensetzung und Aufgaben des Blutes 

Das Blutvolumen der meisten Haussäugetiere beträgt ca. 6 - 8 % des Körpergewichts (Hees und 

Tschudi, 1990). Hodgetts (1961) beschreibt bei adulten Merinoschafen ein totales Blutvolumen 

von 66,4 ± 5,4 ml/kg Körpergewicht, bei fetalen und neugeborenen Schafen hingegen liegt es laut 

Pipkin und Kirkpatrick (1973) bei 80,8 ± 2,8 ml/kg Körpergewicht. Ein Siebtel des Blutvolumens 

befindet sich beim adulten Schaf in der Milz, in Stresssituationen kann davon ein Teil oder die 

gesamte Menge in die Zirkulation abgegeben werden (Greenwood, 1977). Die Zusammensetzung 

des Blutes weist bei den verschiedenen Haussäugetieren deutliche Unterschiede auf und kann sich 

in den einzelnen Lebensphasen auch ändern. Im Allgemeinen lässt sich das Blut in einen festen 

Anteil, die Blutzellen, und einen flüssigen Anteil, das Blutplasma, unterteilen (Kraft et al., 2005), 

wobei die zellulären Elemente in der elektrolythaltigen Eiweißlösung, dem Plasma, suspendiert 

vorliegen (Hees und Tschudi, 1990). Die zellulären Komponenten betreffend können die roten 

Blutkörperchen (Erythrozyten) von den weißen Blutkörperchen (Leukozyten) und den 

Blutplättchen (Thrombozyten) unterschieden werden (Sinowatz, 2006a). Die weißen Blutzellen 

lassen sich wiederum in die Lymphozyten, die Monozyten und die Granulozyten unterteilen 

(Liebich, 2004). Beim adulten Schaf liegt der Anteil der zellulären Bestandteile am Blutvolumen, 

der Hämatokrit, durchschnittlich bei 35 % (27 - 45 %) (Jain, 1993); (Kramer, 2000). Dieser ist in 

erster Linie von der Konzentration der Erythrozyten abhängig, da jene den Großteil der zellulären 

Blutbestandteile ausmachen (Lösch et al., 2000). Das Blutplasma stellt eine größtenteils aus 

Wasser bestehende Lösung dar (Hees und Tschudi, 1990); (Sinowatz, 2006a) und enthält neben 

den organischen Bestandteilen wie Albumin, Fibrinogen, Globuline, Aminosäuren, 

Kohlenhydrate, Fette, Cholesterin, Harnstoff, Kreatinin, Kreatin und Indikan auch anorganische 

Stoffe wie Natrium, Chloride, Kalium, Kalzium, Magnesium, Bikarbonat, Phosphate, Sulfate, 

Eisen und Jodid und weitere Bestandteile wie Hormone, Enzyme, Antikörper, Gerinnungsfaktoren 

und Komplement (Kraft et al., 2005). Das Plasma von Schafen und Ziegen ist, im Gegensatz zu 

dem von Rindern, aufgrund der Unhabhängigkeit von Futterchromogenen farblos (Kramer, 2000). 

Als Serum wird die Blutflüssigkeit nach Entzug der Gerinnungsproteine bezeichnet (Hees und 

Tschudi, 1990). 

Das Blut übernimmt eine Reihe sehr wichtiger Aufgaben im Körper. Es stellt den wichtigsten 

Funktionsträger des Kreislaufsystems dar (Liebich, 2004). Als erstes zu nennen ist die Funktion 

des Blutes als Transportmedium für Wärme, Nahrungsstoffe, Gase (Sauerstoff, Kohlensäure), 
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Stoffwechselprodukte, Wasser, Proteine, Fette, Hormone, Enzyme, Vitamine und Blutzellen. 

Weiterhin ist es für die Aufrechterhaltung des physikochemischen Gleichgewichts (Homöostase), 

also dem Stoffaustausch zwischen den Organen und den Geweben zuständig, wodurch sowohl die 

Regulation des Wasserhaushalts in den Geweben als auch die Aufrechterhaltung der pH-Wertes 

(Isohydrie) und des osmotischen Druckes (Isotonie) gewährleistet wird (Kraft et al., 2005). An der 

Aufrechthaltung einer konstanten Körpertemperatur (Isothermie) ist das Blut ebenfalls 

maßgeblich beteiligt (Sinowatz, 2006a). Neben diesen lebenswichtigen Funktionen übernimmt 

das Blut auch unspezifische und spezifische Abwehrfunktionen, nämlich die Phagozytose durch 

Granulozyten und Monozyten und die Antikörperbildung durch Lymphozyten bzw. Plasmazellen 

(Kraft et al., 2005). Von großer Wichtigkeit ist weiterhin die Gerinnungsfähigkeit des Blutes bei 

kleineren Gefäßverletzungen (Hees und Tschudi, 1990). 

 

1.2 Hämatopoese 

Die Hämatopoese, die Bildung der Blutzellen, stellt einen komplexen und stark regulierten 

Prozess dar. Sie erfolgt in erster Linie im Knochenmark, bei erhöhtem Bedarf können aber auch 

Milz, Leber und Lymphknoten zur Blutbildung beitragen (Reagan et al., 2008). Das 

hämatopoetische System ist ein äußerst komplex strukturiertes Gewebe, dessen Zellen sich 

anhand ihrer funktionellen und antigenen Eigenschaften grobschematisch in drei Kompartimente 

unterteilen lassen. An der Spitze steht das Stammzellkompartiment mit seinen pluripotenten 

Stammzellen, den Hämozytoblasten (Sinowatz, 2006a). Diese machen lediglich 0,01 % sämtlicher 

Knochenmarkszellen aus (Liebich, 2004), weisen aber eine hohe Regenerationsfähigkeit auf 

(Lösch et al., 2000). Diese mesenchymalen Zellen sind imstande, sämtliche Zelltypen des 

lymphohämatopoetischen Systems hervorzubringen (Jain, 1993), sie werden deshalb auch als 

„colony forming units“ (CFU) bezeichnet (Lösch et al., 2000). Das zweite Kompartiment besteht 

aus den Progenitoren, die aus den pluripotenten Stammzellen hervorgehen. Diese Vorläuferzellen 

sind nur in sehr begrenztem Maße zur Selbsterneuerung fähig und können nur noch bestimmte 

Zellen hervorbringen (Sinowatz, 2006a). Die Progenitoren können in myeloische Vorläuferzellen, 

aus welchen die Erythrozyten, Granulozyten, Monozyten, Makrophagen und Thrombozyten 

entstehen, und lymphatische Vorläuferzellen, welche die B- und T-Lymphozyten und somit auch 

die Plasmazellen hervorbringen, unterteilt werden. Die Vorläuferzellen mit einer determinierten 

Entwicklungslinie werden als CFU-E (CFU-Erythroid), CFU-Meg (CFU-Megacaryocytes), CFU-

GM (CFU-Granulocytes/Monocytes) (Lösch et al., 2000), CFU-Eos (CFU-Eosinophils), CFU-Bas 

(CFU-Basophils) oder als T-und B-Vorläuferzellen bezeichnet (Jain, 1993). Aus den Progenitoren 

gehen also Zellen hervor, die morphologisch bestimmten Zellreihen zugeordnet werden können 

und deren Differenzierung letztendlich zu reifen Zellen führt. Diese Effektorzellen stellen das 
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dritte Kompartiment dar. Sie besitzen nur noch eine begrenzte Lebenszeit und haben die Fähigkeit 

zur Proliferation verloren (Sinowatz, 2006a). Im Blut sind normalerweise nur die Effektorzellen 

vorzufinden (Kraft et al., 2005). 

Die Blutbildung kann im Allgemeinen in eine pränatale und in eine postnatale Phase eingeteilt 

werden (Sinowatz, 2006a). In der pränatalen Phase lassen sich die megaloblastische Periode, die 

sich bereits zwei Wochen nach der Befruchtung extraembryonal im Mesenchym des Dottersacks 

beobachten lässt, die hepatolienale Periode, die sich in der Leber, in der Milz und später auch in 

den Lymphknoten und im Thymus abspielt, und die medulläre Periode, die im roten 

Knochenmark in den späteren Abschnitten der intrauterinen Entwicklung stattfindet, 

unterscheiden. Während der megaloblastischen Periode werden kernhaltige Erythrozyten, die 

Megaloblasten, gebildet (Sinowatz, 2006a). Die in der hepatolienalen und medullären Periode 

gebildeten Erythrozyten sind hingegen immer kernlos (Rüsse, 2008). Die postnatale Blutbildung 

erfolgt vorrangig im hämatoretikulären Gewebe des roten Knochenmarks der Wirbelkörper, der 

Rippen, des Brustbeins, des Darmbeins und der proximalen Enden langer Röhrenknochen, wobei 

die Blutzellbildung in Leber und Milz bei Knochenmarkserkrankungen zeitlebens wieder aktiviert 

werden kann (Liebich, 2004); (Sinowatz, 2006a). Postnatal entstehen Erythrozyten und 

Granulozyten nur noch im roten Knochenmark, wohingegen die Lymphozyten sich hauptsächlich 

in den lymphatischen Organen wie Thymus, Milz und Lymphknoten vermehren (Sinowatz, 

2006a). 

Zytokine spielen eine entscheidende Rolle bei der Hämatopoese, da diese als interzelluläre 

Mediatoren die Teilung, Proliferation, Differenzierung, Mobilität und Aktivität der 

hämatopoetischen Zellen regulieren. Für die Blutzellbildung sind vor allem die Chemokine, 

Wachstumsfaktoren (Hämopoietine), Interleukine (IL) und  koloniestimulierende Faktoren 

(colony stimulating factors, CSF), von Bedeutung (Liebich, 2004).  

 

1.3 Spezielle Hämatologie des Schafes  

Die Blutzusammensetzung unterliegt bei den Haussäugetieren einem ständigen Wechsel, der 

vielseitig bedingt sein kann. Neben speziesspezifischen Ursachen kommen auch rassespezifische 

und geschlechtsspezifische Gründe in Frage (Jain, 1993); (Kraft et al., 2005). Einzelne Individuen 

zeigen häufig ausgeprägte Unterschiede der absoluten Leukozytenzahlen (Greenwood, 1977). Bei 

den verschiedenen Schafrassen existieren teilweise unterschiedliche Hämoglobin-Arten (Kramer, 

2000) sowie unterschiedliche Enzymaktivitäten in den roten Blutkörperchen (Agar et al., 1975b). 

In einer Studie von Egbe-Nwiyi et al. (2000) in Nigeria wurde herausgefunden, dass Böcke im 

Allgemeinen höhere Werte des roten Blutbildes und der Gesamtleukozyten aufweisen als Zibben 
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(Egbe-Nwiyi et al., 2000).  

Auch das Alter der Tiere hat einen entscheidenden Einfluss auf die Blutparameter (Jain, 1993). Im 

Allgemeinen steigen die Erythrozytenzahl, die Hämoglobinkonzentration und der Hämatokrit im 

Laufe der intrauterinen Entwicklung stetig an (Jain, 1993). Diese Werte sind zum Zeitpunkt der 

Geburt sehr hoch (Ullrey et al., 1965a); (Jain, 1993), fallen dann bei Schafen bis zum 14. Tag post 

partum auf ein Minimum ab, um dann wieder zu steigen. Die Erythrozytenzahl erreicht ihr 

Maximum im 3. Monat nach der Geburt. Das mittlere Zellvolumen der Erythrozyten (mean 

corpuscular volume, MCV) und deren mittlerer Hämoglobingehalt (mean corpuscular 

hemoglobin, MCH) sind zum Zeitpunkt der Geburt am höchsten und sinken innerhalb der ersten 

Lebensmonate ab. Die zum Zeitpunkt der Geburt niedrige mittlere Hämoglobinkonzentration aller 

zellulären Bestandteile im Blut (mean corpuscular hemoglobin concentration, MCHC) hingegen 

steigt im Laufe des ersten Lebensjahres an (Ullrey et al., 1965a). Fetale Erythrozyten sind größer 

als jene von adulten Tieren (Greenwood, 1977); (Jain, 1993). Ab dem 60. Tag der Trächtigkeit 

erscheinen neben den großen auch kleinere Erythrozyten, die denen von adulten Schafen ähneln 

(Greenwood, 1977) und nach der Geburt nimmt die Größe der Erythrozyten stetig ab (Jain, 1993). 

In der frühen fetalen Phase sind kernhaltige Erythrozyten vorherrschend, wobei deren Anzahl bis 

zur Geburt hin stark absinkt. Die Retikulozytenzahl ist sowohl in der fetalen Phase als auch im 

Zeitraum um die Geburt erhöht (Jain, 1993) und erreicht beim Schaf in der zweiten Woche post 

partum ein Maximum, was auf die für diesen Zeitraum niedrige Erythrozytenzahl zurückgeführt 

werden kann (Ullrey et al., 1965a). Im Blut gesunder, adulter Schafe sind gewöhnlich keine 

Retikulozyten vorzufinden (Greenwood, 1977). In der frühen fetalen Phase sind entweder keine 

Leukozyten oder nur in sehr geringer Zahl vorhanden. Diese steigt jedoch allgemein im Laufe der 

Trächtigkeit an und erreicht zum Zeitpunkt der Geburt höhere Werte als die von adulten Tieren 

(Jain, 1993). Die absolute Leukozytenzahl verdoppelt sich bei Lämmern in den ersten 12 Stunden 

nach der Geburt (Ullrey et al., 1965b) (Greenwood, 1977); (Taylor, 2000) und fällt in den 

nächsten 12 - 48 Stunden wieder etwas ab. Darauf folgend kann wieder ein Anstieg beobachtet 

werden, der seinen Höhepunkt im 3. Monat post partum erreicht (Ullrey et al., 1965b). Der Anteil 

der neutrophilen Granulozyten an den Gesamtleukozyten beträgt zum Zeitpunkt der Geburt ca. 37 

% und steigt in den folgenden 12 Stunden auf 52 % an (Ullrey et al., 1965b). Bei Schafen 

übersteigt in diesem Zeitraum die Anzahl der neutrophilen Granulozyten die der Lymphozyten 

(Ullrey et al., 1965b); (Jain, 1993), was auf einen Abfall der Lymphozytenzahlen bei 

stressinduzierter Kortikosteroidausschüttung zum Zeitpunkt der Geburt zurückgeführt werden 

kann (Jain, 1993); (Kramer, 2000). Bis zu einem Alter von 12 Monaten nimmt die Zahl der 

neutrophilen Granulozyten tendenziell ab. Der prozentuale Anteil der Lymphozyten an den 

Gesamtleukozyten verhält sich in diesem Zeitraum genau umgekehrt zu dem der neutrophilen 

Granulozyten (Ullrey et al., 1965b). Zwei Wochen nach der Geburt überwiegen bereits die 
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Lymphozyten (Kramer, 2000) und nach ungefähr drei Monaten kann die Lymphozytenzahl bis zu 

70 - 80 % der Gesamtleukozytenzahl ausmachen. Innerhalb weniger Jahre erfolgt dann ein 

langsamer Abfall der Lymphozytenzahl (Kramer, 2000); (Byers und Kramer, 2010). Die Zahl der 

eosinophilen Granulozyten ist bei adulten Tieren im Allgemeinen höher als bei Lämmern 

(Greenwood, 1977); (Jain, 1993), gleiches gilt für basophile Granulozyten (Jain, 1993). Die 

Monozyten hingegen scheinen in ihrer Anzahl durch das Alter nicht wesentlich beeinflusst zu 

werden (Jain, 1993); (Egbe-Nwiyi et al., 2000), ihr Anteil an den Gesamtleukozyten zeigt jedoch 

tendenziell einen ähnlichen Verlauf wie die Lymphozyten (Ullrey et al., 1965b).  

Die Blutwerte von Schafen sind aber auch umweltbedingten Einflüssen unterworfen. So hat eine 

Höhenveränderung beispielsweise Auswirkungen auf die Sauerstoffspannung im Blut, die umso 

niedriger ist, je höher die Lage ist, in der sich das Tier befindet. Auch die Werte des roten 

Blutbildes steigen in höheren Lagen (Jain, 1993); (Kramer, 2000), wobei in diesem Fall eine 

Zunahme der Erythrozytenzahl, des Hämatokrits (Jain, 1993) und der Hämoglobinkonzentration 

zu beobachten ist (Jain, 1993); (Moraga et al., 1996). Zudem sind Schafe in der Lage, 

Hämoglobin mit einer höheren Sauerstoffaffinität zu exprimieren, wenn sie höheren Lagen 

ausgesetzt sind (Moraga et al., 1996). Weiterhin kann mit abfallender Temperatur eine Abnahme 

der Gesamtleukozytenwerte mit einer Neutropenie beobachtet werden (Taylor, 2000). 

Auch saisonale Faktoren haben Auswirkungen auf die Blutparameter (Jain, 1993); (Kramer, 

2000). Vor allem bei Schafen werden hier signifikante Schwankungen in den Werten des roten 

Blutbildes beobachtet. Diese Abweichungen sind wahrscheinlich auf jahreszeitlich bedingte 

Parasiteninfektionen und auf den sich ändernden Ernährungszustand der Tiere zurückzuführen. Im 

späten Winter und im Anfang des Frühlings kann beispielsweise mit steigender Wurmbürde der 

Schafe eine niedrigere Erythrozytenzahl beobachtet werden, wohingegen die Werte der 

Erythrozyten in den futterreichen Sommermonaten wieder deutlich ansteigen (Jain, 1993). Die 

Temperatur beeinflusst insofern die Blutwerte (da Silva et al., 1992); (McManus et al., 2009), 

indem sich bei einem Wert von über 25 °C ein Abfall der Erythrozyten, der Leukozyten, der 

Hämoglobinkonzentration sowie des Hämatokrits zeigt. Diese Veränderungen sind bei 

geschorenen Schafen besonders deutlich zu erkennen. Bei ungeschorenen Schafen hingegen 

überwiegen Veränderungen der eosinophilen und neutrophilen Granulozyten, der Lymphozyten, 

der Monozyten und der Blutglukose (da Silva et al., 1992).  

Weiterhin kann sowohl der Gesundheitszustand, die Fütterung, individuelle Faktoren wie Stress 

und Trächtigkeit als auch die Technik der Blutentnahme und der Bestimmung der Blutparameter 

Einfluss auf die Blutwerte nehmen (Jain, 1993). Bei Aufregung oder Stress ist die 

noradrenalininduzierte, physiologische Leukozytose durch eine Neutrophilie in Verbindung mit 

einer Lymphozytose, einer Monozytose und einer milden Eosinopenie gekennzeichnet. Endogene 
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oder exogene Kortikosteroideinwirkungen haben hingegen eine Neutrophilie, eine Lymphopenie, 

eine Eosinopenie und eine Monozytose zur Folge (Taylor, 2000). Während der Trächtigkeit 

nimmt die Zahl der Leukozyten beim Mutterschaf tendenziell zu, um zum Zeitpunkt des Gebärens 

den Höhepunkt zu erreichen (Ullrey et al., 1965b). Im Zeitraum um die Geburt zeigt sich beim 

Mutterschaf eine deutliche Neutrophilie, eine Lymphopenie und eine milde Eosinopenie, wobei 

sich die Werte in den ersten zwei Wochen post partum wieder normalisieren  (Ullrey et al., 

1965b); (Taylor, 2000). Schafe besitzen ebenso wie andere Wiederkäuer, Schweine, Hühner, 

Ratten und Mäuse ein lymphozytäres Blutbild. Dies bedeutet, dass im Blut mehr als 50 % der 

Leukozyten Lymphozyten darstellen (Lösch et al., 2000). 

Die in der Literatur angegebenen Referenzwerte für das Blut des Schafes unterscheiden sich je 

nach Autor. Die Tabelle II.1 führt die von Kramer (Kramer, 2000) beschriebenen Referenzwerte 

des adulten Schafes auf.  
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Tabelle II.1: Physiologische Blutwerte des adulten Schafes 

 Einheit Spannbreite Mittel 

Rotes Blutbild 

Erythrozyten x106/µl 9 - 15 12 

Hämoglobin g/l 90 - 150 115 

Hämatokrit % 27 - 45 35 

MCV fl 28 - 40 34 

MCH pg 8 - 12 10 

MCHC % 31 - 34 32,5 

Weißes Blutbild 

Leukozyten gesamt x103/µl 4 - 12 8 

Lymphozyten    

Gesamtzahl x103/µl 2 - 9 5 

Prozentualer Anteil % 40 - 75 62 

Neutrophile Granulozyten    

Stabkernige    

Gesamtzahl x103/µl selten  

Prozentualer Anteil % selten  

Segmentkernige    

Gesamtzahl x103/µl 0,7 - 6 2,4 

Prozentualer Anteil % 10 - 50 30 

Eosinophile Granulozyten    

Gesamtzahl x103/µl 0 - 1 0,4 

Prozentualer Anteil % 0 - 10 5 

Basophile Granulozyten    

Gesamtzahl x103/µl 0 - 0,3 0,05 

Prozentualer Anteil % 0 - 3 0,5 

Monozyten    

Gesamtzahl x103/µl 0 - 0,75 0,2 

Prozentualer Anteil % 0 - 6 2,5 

Thrombozyten 

Gesamtzahl x103/µl 250 - 750 400 

Fibrinogen 

Gesamtzahl mg/dl 100 - 500  

Plasmaproteine 

Gesamtzahl g/dl 6,0 - 7,5  

MCV = mean corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean 
corpuscular hemoglobin concentration 
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2. Charakterisierung der einzelnen Blutzellen 

2.1 Erythrozyten 

2.1.1 Allgemeines 

Wie bereits in der Tabelle II.1 ersichtlich, beträgt die Anzahl der Erythrozyten im Blut des 

Schafes ca. 12x106/µl (9 - 15x106/µl) (Jain, 1993); (Kramer, 2000). Innerhalb einer Tierart 

existieren jedoch, bedingt durch Rasse-, Alters- und Geschlechtsunterschiede, erhebliche 

Schwankungen der Erythrozytenzahlen (Hees und Tschudi, 1990), auf die in Kapitel 1.3 bereits 

ausführlich eingegangen wurde. Die Lebensdauer der roten Blutkörperchen beträgt bei adulten 

Schafen im Schnitt 140 - 150 Tage (Kramer, 2000), bei Lämmern mit einem Alter von 3 Monaten 

ca. 46 Tage (Jain, 1993) und steht im direkten Verhältnis zum Stoffwechsel und somit zum 

Körpergewicht der Tiere (Hawkey und Dennet, 1990). Der Hämatokrit gibt den prozentualen 

Anteil der zellulären Bestandteile am Gesamtblutvolumen an. Da die Erythrozyten den Großteil 

der Zellen im Blut ausmachen, wird der Hämatokrit im Wesentlichen von der Erythrozytenzahl 

und -größe bestimmt. Das Verhältnis von Erythrozyten zu Leukozyten beträgt 1000:1 (Lösch et 

al., 2000). 

 

2.1.2 Bildung 

Die roten Blutkörperchen haben, wie alle Blutzellen, eine mesodermale Herkunft (Lösch et al., 

2000). Die Erythropoese dauert ungefähr 7 - 8 Tage (Jain, 1993) und beginnt mit den 

pluripotenten hämatopoetischen Stammzellen im Knochenmark (Liebich, 2004), aus welchen 

durch mitotische Teilungen die erythropoetischen Vorläuferzellen (Proerythroblasten) entstehen. 

Diese frühe Phase der Erythropoese wird durch das Hormon Erythropoietin gesteuert, das bei 

Sauerstoffmangel in der Niere gebildet wird (Liebich, 2004). Die Rate der Neubildung entspricht 

ungefähr der Abbaurate gealterter Erythrozyten (Hawkey und Dennet, 1990); (Lösch et al., 2000). 

Nach der Phase des Proerythroblasten durchlaufen die Zellen die Stadien des Makroblasten, des 

basophilen, des polychromatischen, des orthochromatischen bzw. azidophilen Erythroblasten 

(Normoblasten) und des Retikulozyten (Proerythrozyt), um letztendlich zum reifen Erythrozyten 

zu werden (Liebich, 2004). Eine einzige Vorläuferzelle bringt 16 Erythrozyten hervor (Sinowatz, 

2006a), da vier Mitosen erfolgen (Jain, 1993). Während der Entwicklung zum reifen Erythrozyten 

werden die Zellen immer kleiner und verlieren schließlich Nukleolen und Nukleus. Die einzelnen 

Entwicklungsstadien lassen sich aufgrund der Größe, des Kern-Zytoplasma-Verhältnisses, der 

Kernstruktur und der Anfärbbarkeit des Zytoplasmas differenzieren (Lösch et al., 2000).  

Der Proerythroblast, im Englischen auch als Rubriblast bezeichnet (Jain, 1993), stellt eine junge, 
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runde, basophile Zelle dar. Er hat einen Kern mit scharf begrenzten Nukleolen (Lösch et al., 2000) 

und ist ca. 20 - 25 µm groß. Sehr schnell teilt sich dieser unter Verkleinerung des Zellkernes zum 

Makroblasten. Bereits in dieser Phase der Erythropoese beginnt die Einlagerung von Hämoglobin 

in das Zytoplasma. Der Markroblast differenziert sich nach nochmaliger Teilung zum basophilen  

Erythroblasten (Liebich, 2004), welcher auch als Prorubrizyt bezeichnet wird (Banks, 1981); 

(Jain, 1993) und einen deutlich kleineren, dichteren und basophilen Kern besitzt (Liebich, 2004). 

Die basophilen Erythroblasten ordnen sich in Gruppen um Retikulumzellen an, die als 

„Ammenzellen“ fungieren und das für die Hämoglobinsynthese notwendige Eisen in Form eines 

Transferrin-Eisen-Komplexes liefern (Sinowatz, 2006a). Aus dem basophilen Erythroblasten 

entwickelt sich der polychromatische Erythroblast (Liebich, 2004), welcher auch Rubrizyt 

genannt wird (Banks, 1981); (Jain, 1993). Dieser ist durch einen bereits hohen Anteil an 

azidophilem Hämoglobin bei einer geringen zytoplasmatischen Basophilie gekennzeichnet. Im 

Verlauf kommt es durch weitere Zunahme der Hämoglobinkonzentration und dem Verlust 

basophiler Organellen (Ribosomen oder raues endoplasmatisches Retikulum) zur Entstehung des 

orthochromatischen bzw. azidophilen Erythroblasten (Liebich, 2004), der im Englischen auch 

Metarubrizyt bezeichnet wird (Banks, 1981); (Jain, 1993). Im weiteren Verlauf entwickelt sich 

der Retikulozyt. Nach einer Verdichtung und Schrumpfung des Chromatins folgt eine 

Kernpyknose, der sich die für Säugetiere charakteristische Kernausschleusung (Enukleation) 

anschließt. Die in der Zelle verbliebenen Reste von Organellen, wie Golgi-Vesikel, 

Polyribosomen, Membranen des endoplasmatischen Retikulums oder Mitochondrien, verklumpen 

(Liebich, 2004) und durch die Reste von RNA im Zytoplasma bildet sich ein feines netzartiges 

Gerüst, das dem Retikulozyt seinen Namen gibt (Sinowatz, 2006a). Dieser ist nicht mehr 

teilungsfähig (Lösch et al., 2000) und wandelt sich innerhalb von 24 Stunden nach Verlust der 

verbleibenden Innenstrukturen in den reifen, organellenlosen Erythrozyten um (Liebich, 2004). 

Im Blut adulter Schafe sind gewöhnlich keine oder nur äußerst wenige Retikulozyten zu finden. 

Jeglicher Anstieg der Retikulozyten deutet daher auf eine Stimulation des erythropoetischen 

Systems hin. Bei Lämmern können zum Zeitpunkt der Geburt nur sehr wenige (unter 1 %) 

Retikulozyten im Blut gefunden werden, wogegen eine höhere Zahl (bis zu 9 %) bei einem Alter 

von 2 - 7 Tagen auftreten kann (Jain, 1993). Die Bildung der roten Blutkörperchen wird von sehr 

vielen Faktoren beeinflusst. Neben Erythropoietin spielen Interleukine (IL3, IL9), Prostaglandine 

(PGE1, PGE2, PGI2), GM-CSF, Androgene, Kortikosteroide, Wachstumshormone und Thyroxine 

eine wichtige Rolle bei der Stimulation der Erythropoese (Jain, 1993). 

 

2.1.3 Morphologie 

Bei den Wirbeltieren bestehen bezüglich der Erythrozytenmorphologie beträchtliche 
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Unterschiede. Diejenigen der Säugetiere sind kernlos und im Allgemeinen kleiner als die der 

Vögel und der Reptilien. Neben Ziegen und Hirschen weisen die Schafe die kleinsten 

Erythrozyten auf (Hawkey und Dennet, 1990). Ihr Durchmesser beträgt sowohl bei Lämmern als 

auch bei adulten Tieren im Durchschnitt 4 - 5 µm, wobei auch Zellen mit einer Größe von 3 µm 

bis zu 8 µm vorkommen können (Greenwood, 1977). Die Größe der roten Blutkörperchen steht 

innerhalb einer Familiengruppe im Verhältnis zur Körpergröße (Hawkey und Dennet, 1990); 

(Lösch et al., 2000), sie kann jedoch durch Umweltfaktoren beeinflusst werden. So besitzen 

Schafe in höheren Lagen, bedingt durch den niedrigeren Sauerstoffgehalt der Luft, in der Regel 

kleinere Erythrozyten, wodurch eine größere Oberfläche zur Sauerstoffaufnahme erreicht wird 

(Hawkey und Dennet, 1990). Bei den Haussäugetieren besteht weiterhin eine negative Korrelation 

zwischen Größe und Anzahl der Erythrozyten (Lösch et al., 2000). Eine Anisozytose beschreibt 

eine ungleichmäßige Größenverteilung gewöhnlich gleich großer Zellen (Hees und Tschudi, 

1990); (Reagan et al., 2008) und ist beim Schaf nicht selten zu beobachten (Greenwood, 1977). 

Erythrozyten, deren Größe sich im Normalbereich bewegt, werden als Normozyten bezeichnet, 

kleinere als Mikrozyten und größere als Makrozyten (Banks, 1981); (Hees und Tschudi, 1990). 

Die rote Blutzelle stellt bei den meisten Haussäugetieren eine kernlose, bikonkave, runde Scheibe 

dar (Lösch et al., 2000); (Liebich, 2004). Im gefärbten Blutausstrich lässt sich eine zentrale 

Aufhellung erkennen, an deren Stelle sich der zuvor ausgestoßene Kern befand (Hees und 

Tschudi, 1990). Dies trifft in der Regel auch für ovine Erythrozyten zu, doch können beim Schaf 

teilweise auch unikonkave Zellen auftreten (Jain, 1993). Aufgrund des fehlenden Kernes weisen 

die Erythrozyten der Säuger eine hohe Formflexibilität auf und unterliegen dadurch ständigen 

reversiblen Strukturveränderungen (Liebich, 2004). Für diese Vorgänge ist das Membranskelett 

bedeutend, das sich parallel zur Erythrozytenmembran auf der zytoplasmatischen Seite der Zelle 

befindet (Hees und Tschudi, 1990). Bestimmte Strukturproteine ermöglichen die für die 

Verformung notwendige Flexibilität der Membran (Hees und Tschudi, 1990); (Kolb, 1991). Dies 

ermöglicht den Zellen, selbst kleinste Kapillaren zu passieren (Liebich, 2004), wobei sie in solch 

einer Situation häufig eine so genannte Napfform annehmen (Kramer, 2000). Der halbflüssige, 

fein granulierte und homogene Zellinhalt besteht hauptsächlich aus Wasser. Weiterhin sind vor 

allem der rote Blutfarbstoff Hämoglobin und Enzyme enthalten (Hees und Tschudi, 1990); 

(Sinowatz, 2006a). Zellorganellen sind nicht vorhanden (Sinowatz, 2006a). Die Erythrozyten vom 

Schaf neigen sowohl in vivo als auch in vitro nur in geringem Ausmaß zur Geldrollenbildung 

(Kramer, 2000), die durch Ladungsänderungen an der Zelloberfläche bedingt und durch eine 

lineare, aufeinander gestapelte Anordnung der Zellen gekennzeichnet ist (Reagan et al., 2008). 

Bei Wiederkäuern kann gelegentlich eine basophile Tüpfelung der Erythrozyten, die durch 

verbleibende RNA-Aggregate in der Zelle zustande kommt, beobachtet werden (Reagan et al., 

2008). Diese kann sowohl physiologisch bei jungen Erythrozyten (Jain, 1993) als auch in 
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Verbindung mit einer regenerativen Anämie vorkommen. So genannte Howell-Jolly-Körperchen 

stellen ganze Kernreste dar und können ebenfalls im Zuge einer Anämie auftreten (Reagan et al., 

2008). Eine Variation der sonst runden Zellform wird als Poikilozytose bezeichnet und kann beim 

Schaf gelegentlich beobachtet werden (Reagan et al., 2008). Echinozyten sind Erythrozyten mit 

vielen kleinen, gleichmäßigen, stacheligen Fortsätzen auf der Zelloberfläche und stellen in den 

meisten Fällen in vitro-Artefakte dar (Jain, 1993); (Reagan et al., 2008). Diese Stechapfelform 

entsteht entweder durch zu langsames Trocknen dicker Ausstriche (Kraft et al., 2005) oder durch 

Schrumpfung der Erythrozyten in Folge von Flüssigkeitsaustritt in hypertonen Lösungen (Hees 

und Tschudi, 1990). Bei Schafen können, wenn auch selten, einzelne Drepanozyten, also 

sichelförmige Erythrozyten, gefunden werden (Hees und Tschudi, 1990); (Jain, 1993). Die 

Membran der Erythrozyten besitzt eine glatte Oberfläche. Sie besteht aus zwei elektronendichten 

Schichten, welche durch eine elektronendurchlässige Schicht voneinander getrennt sind. Aus 

biochemischer Sicht setzt sich die Zellmembran aus Proteinen, Lipiden und zu einem geringeren 

Anteil aus Kohlenhydraten zusammen (Jain, 1993). Die Zellmembran sämtlicher Körperzellen, 

also auch die der Erythrozyten, trägt die antigenen Determinanten der jeweiligen Zelle (Hudson et 

al., 1975). Anhand der Struktur und der Eigenschaften der Erythrozytenglykocalix können 

außerdem die Blutgruppen bestimmt werden (Kolb, 1991). 

 

2.1.4 Aufgaben 

Die Hauptfunktion der roten Blutkörperchen besteht im Transport von Sauerstoff mittels 

Oxyhämoglobin von der Lunge zu den Körpergeweben und im Abtransport von Kohlendioxid 

durch Carboxyhämoglobin von den Geweben zur Lunge (Banks, 1981). Die bikonkave Form der 

Erythrozyten gewährleistet ein großes Oberflächen-Volumen-Verhältnis, wodurch ein rascher und 

effizienter Gasaustausch ermöglicht wird. Für die Transportfunktion ist der rote Blutfarbstoff, das 

Hämoglobin, verantwortlich. Dieses besteht aus der sauerstofftragenden, prosthetischen Gruppe 

(Häm) und dem tierartspezifischen Proteinanteil (Globin). Insgesamt können vier 

Sauerstoffmoleküle reversibel gebunden und transportiert werden, weil das komplette 

Hämoglobinprotein aus vier Untereinheiten und demzufolge auch aus vier sauerstofftragenden 

Hämmolekülen mit je zwei α- bzw. β-Polypeptidketten aufgebaut ist (Lösch et al., 2000). 

Hämoglobin ist mit einem Anteil von 95 % an der Trockenmasse des Erythrozyten in sehr hoher 

Konzentration in den roten Blutkörperchen verpackt (Jain, 1993), die Hämoglobinkonzentration 

im Gesamtblut beläuft sich beim Schaf auf 90 - 150 g/l (Kramer, 2000). Die 

Sauerstoffkonzentration im Blut hängt von der Hämoglobinkonzentration und dem Ausmaß der 

Sättigung des Hämoglobins mit Sauerstoff ab. Die Oxyhämoglobinsättigung hingegen wird durch 

die Sauerstoffspannung und die Sauerstoffaffinität des Blutes bestimmt (Moraga et al., 1996). Bei 
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Wiederkäuern existieren allgemein drei Hämoglobin-Arten, nämlich embryonales (HbE), fetales 

(HbF) und adultes (HbA) Hämoglobin (Kramer, 2000), wobei beim Schaf zwei HbE-Typen, ein 

HbF-Typ und bis zu vier HbA-Typen vorkommen (Jain, 1993). Das Schaf besitzt neben der Ziege 

als Besonderheit zudem ein viertes Hämoglobin, das HbC.  HbF ersetzt bereits im Uterus HbE 

(Kramer, 2000). Laut Barker et al. (1980) wird HbF beim Schaf nur vom Tag 30 - 125 der 

Trächtigkeit synthetisiert (Barker et al., 1980). Jain (1993) gibt jedoch an, dass die HbF-

Konzentration zum Zeitpunkt der Geburt mit einem Anteil von 90 - 95 % am höchsten ist und 

dass diese beim Schaf in den ersten 40 - 50 Tagen durch den Ersatz durch HbA sinkt (Jain, 1993). 

Die Erythrozyten des Schafes mit fetalem Hämoglobin sind osmotischen Einflüssen gegenüber 

weniger empfindlich als solche mit adultem Hämoglobin (Jain, 1993). HbC erscheint um den 

Zeitpunkt der Geburt, steigt etwas an, und wird innerhalb der ersten postnatalen Monate durch 

HbA ersetzt (Kramer, 2000). Eine Besonderheit beim Schaf ist die Fähigkeit zur reversiblen 

Umwandlung von HbA zu HbC, die durch Erythropoietin stimuliert wird (Jain, 1993); (Kramer, 

2000). Ein Wandel von HbA zu HbC findet beispielsweise als Antwort auf eine Anämie statt, bei 

der es durch Sauerstoffmangel zur Erythropoietinausschüttung kommt. HbC hat eine höhere 

Affinität zu Sauerstoff und erleichtert zugleich dessen Freisetzung, wodurch die Anwesenheit 

dieses Hämoglobin-Typs bei Gewebshypoxien große Vorteile bietet (Jain, 1993). Nur Schafe mit 

den HbA-Phänotypen A oder AB können HbC exprimieren, das dann etwa 15 - 20 % des 

Gesamthämoglobins ausmacht. Schafe mit dem HbA-Phänotyp B hingegen besitzen kein HbC 

(Kramer, 2000).  

 

2.1.5 Zytochemische Eigenschaften  

Essentiell für das Überleben der Erythrozyten ist Glutathion, das einen wichtigen 

Oxidationsschutz in der Zelle darstellt (Suzuki und Agar, 1983); (Lösch et al., 2000). Die roten 

Blutkörperchen der Schafe können anhand ihrer Kaliumkonzentration in zwei verschiedene 

Gruppen eingeteilt werden (Agar et al., 1975a). Eine Gruppe weist einen hohen Kalium-, aber 

einen niedrigen Natriumgehalt (HK), die andere dagegen einen niedrigen Kalium- und einen 

hohen Natriumgehalt (LK) auf. Die Erythrozyten der Lämmer haben, unabhängig von denen im 

Erwachsenenalter, stets eine hohe Kaliumkonzentration (Greenwood, 1977). Die beiden Gruppen 

zeigen deutliche Unterschiede in manchen Enzymaktivitäten (Agar et al., 1975a). Zudem variieren 

die Aktivitäten der einzelnen Enzyme der Erythrozyten bei den verschiedenen Schafrassen (Agar 

et al., 1975b). Die Erythrozyten der Schafe haben keine Peroxidase-Aktivität, lassen sich nicht mit 

Sudan-Schwarz anfärben und reagieren negativ bei der Periodic-Acid-Schiff-Reaktion (Al Izzi et 

al., 2007). Fey und Kuntze (1970) konnten die α-Naphthyl-Azetat-Esterase und die Naphthol-AS-

Azetat-Esterase auf der Oberfläche von ovinen Erythrozyten nachweisen, nicht jedoch die 
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Naphthol-AS-D-Chlorazetat-Esterase, die saure Phosphatase und die alkalische Phosphatase (Fey 

und Kuntze, 1970). Diallo et al. (1975) hingegen berichten über eine Aktivität der sauren 

Phosphatase in den Erythrozyten der Schafe (Diallo et al., 1975). In den roten Blutkörperchen 

wird, bei Wiederkäuern jedoch in eingeschränktem Maße, 2,3-Biphosphoglycerat (2,3-BPG) 

gebildet (Gattinoni und Samaja, 1979); (Jain, 1993), das die Sauerstoffaffinität des Hämoglobins 

mindert und somit die Sauerstoffabgabe aus der Zelle erhöht (Jain, 1993). Die niedrigere 2,3-BPG 

Konzentration hat demnach Auswirkungen auf die Sauerstoffaffinität der Erythrozyten und auf 

den Säure-Basen-Haushalt im Blut des Schafes (Gattinoni und Samaja, 1979). 

 

2.2 Thrombozyten 

2.2.1 Allgemeines 

Thrombozyten sind die kleinsten Blutelemente und spielen eine wichtige Rolle bei der Hämostase 

(Hawkey und Dennet, 1990); (White, 2007). Die Zahl der Thrombozyten im Blut des Schafes 

beläuft sich auf 250 - 750x103/µl, wobei der Durchschnitt bei 400x103/µl Blut liegt (Kramer, 

2000). Sie unterliegt positiven und negativen Feedbackmechanismen (Jain, 1993) und wird 

nachhaltig von der Milz beeinflusst (Hees und Tschudi, 1990), da diese möglicherweise einen 

Inhibitor der Thrombopoese produziert und alternde oder zerstörte Thrombozyten neben dem 

Knochenmark und der Leber eben auch in der Milz abgebaut werden. Zusätzlich stellt die Milz als 

„splenic pool“ neben dem „non-splenic pool“, der vermutlich von den Lungen, der Leber, dem 

Herz und dem Knochenmark gebildet wird, einen Speicher für Blutplättchen dar. Aus diesen 

Pools können äußerst schnell Thrombozyten mobilisiert werden, wodurch sich die Zahl der 

zirkulierenden Thrombozyten rasch vervielfachen kann. Im Allgemeinen gilt, dass Anzahl und 

Größe der Thrombozyten in umgekehrter Beziehung zueinander stehen. Die Lebensdauer der 

Thrombozyten beträgt bei Schafen ungefähr 9 - 11 Tage (Jain, 1993). Während des 

Alterungsvorgangs werden sie durch Änderungen des Kohlenhydratmusters der Zellmembran von 

Zellen des mononukleären Phagozytosesystems (MPS) in Milz und Leber erkannt, phagozytiert 

und abgebaut (Lösch et al., 2000); (Sinowatz, 2006a). 

 

2.2.2 Bildung 

Die Thrombozyten gehen aus den myeloiden Stammzellen im Knochenmark hervor (Lösch et al., 

2000) und entstehen wahrscheinlich durch Zytoplasmafragmentierung der Megakaryozyten (Jain, 

1993). Der genaue Ablauf der Blutplättchenformation ist jedoch nicht völlig geklärt (Jain, 1993); 

(Leven, 2000). Aus den Stammzellen entstehen zunächst die Megakaryoblasten, die sich über das 
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Stadium der Promegakaryozyten schließlich zu den Megakaryozyten entwickeln (Liebich, 2004). 

Charakteristisch für den Verlauf der Thrombopoese ist eine Zunahme der Zellgröße und der Zahl 

der Nuklei pro Zelle (Banks, 1981). Durch Endomitose (Endoreduplikation), also Karyokinese 

(Kernteilung) ohne nachfolgende Zytokinese (Teilung des Zytoplasmas), besitzen die 

Vorläuferzellen einen polyploiden Kern (Banks, 1981); (Jain, 1993).  

Die Megakaryoblasten sind ungefähr 15 - 50 µm groß (Leven, 2000) und weisen einen runden 

(Banks, 1981), oft gekerbten Kern mit vielen Nukleoli auf (Liebich, 2004), der fast die gesamte 

Zelle einnimmt (Jain, 1993). Das Zytoplasma erscheint aufgrund zahlreicher freier Ribosomen 

basophil und in der peripheren Zone schaumig (Banks, 1981). In diesem frühen Stadium findet 

bereits eine mehrfache Vermehrung des Chromosomensatzes ohne nachfolgende Kernteilung 

statt. Durch eine anschließende Karyokinese entstehen die Promegakaryozyten, die sich durch 

einen stark gelappten, polyploiden Kern auszeichnen (Liebich, 2004). Sie sind mit  50 - 75 µm 

größer als deren Vorläuferzellen. Das Zytoplasma ist reichlicher vorhanden als beim 

Megakaryoblasten (Leven, 2000), enthält zahlreiche Granula und kann auch hier in der Peripherie 

schaumig erscheinen. Durch nochmaliges Teilen der Chromosomen entstehen schließlich die 

Megakaryozyten (Banks, 1981), die auch als Knochenmarkriesenzellen bezeichnet werden 

(Sinowatz, 2006a). Die erst unreifen Reservezellen haben einen stark gekerbten Kern und deren 

Zytoplasma schließt zahlreiche Ribosomen und Granula ein (Banks, 1981). Reife 

Megakaryozyten stellen mit einem Durchmesser von bis zu 100 - 150 µm (Leven, 2000); 

(Liebich, 2004) die größten hämatopoetischen Zellen im Knochenmark dar (Jain, 1993) und sind 

in unmittelbarer Nähe von Gefäßen zu finden (Leven, 2000); (Sinowatz, 2006a). Sie zeichnen sich 

durch einen gelappten Kern mit groben Heterochromatinbereichen (Hees und Tschudi, 1990) und 

ein extrem verbreitertes, eosinophiles Zytoplasma mit zahlreichen azurophilen Granula aus. Das 

Zytoplasma der reifen Megakaryozyten kann in drei Zonen unterteilt werden. In der peripheren 

Zone sind wenige membranbegrenzte Organellen vorhanden, sie enthält jedoch viele 

Mikrofilamente und Glykogenpartikel. Die den größten Zytoplasmaanteil beherbergende, 

intermediäre Zone (Leven, 2000) wird von dem so genannten „demarcation membrane system“ 

(DMS) dominiert (Jain, 1993); (Leven, 2000). Diese auch als „Demarkationsmembranen“ 

bezeichneten, zisternenartigen Einstülpungen der Megakaryozytenoberfläche (Hees und Tschudi, 

1990); (Sinowatz, 2006a) sind aufgrund struktureller und immunologischer Ähnlichkeiten 

vermutlich für die Entwicklung der späteren Plasmamembran der Thrombozyten verantwortlich. 

In dieser Zone sind zudem Lysosomen, Mitochondrien, Ribosomen, Mikrotubuli, Mikrofilamente 

und sich entwickelnde Granula vorzufinden (Leven, 2000). Die perinukleäre Zone enthält neben 

dem Golgi-Apparat freie Ribosomen, raues endoplasmatisches Retikulum (Jain, 1993); (Leven, 

2000) und heranreifende Granula (Jain, 1993). Die reifen Megakaryozyten verlassen das 

Knochenmark und zerfallen beim Übertritt ins Blut und auch in den Pulmonalarterien in die 
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Thrombozyten (Lösch et al., 2000). Die Entstehung der Thrombozyten erfolgt vermutlich 

dadurch, dass sich die Demarkationsmembranen im Zytoplasma mit einem Netz aus Membranen 

des glatten endoplasmatischen Retikulums verbinden, wodurch ein dreidimensionales 

intrazelluläres Raumsystem entsteht. Dieses schließt Zytoplasmaanteile mit azurophilen Granula, 

Vesikeln, Mikrotubuli und Mikrofilamenten ein (Liebich, 2004). Durch die Abschnürung dieser 

Zytoplasmaanteile entstehen schließlich die Blutplättchen (Hees und Tschudi, 1990); (Liebich, 

2004). Der Kern des Megakaryozyten geht zugrunde und wird von Retikulumzellen und 

Makrophagen phagozytiert (Sinowatz, 2006a). Die Thrombopoese dauert ca. 10 - 12 Tage 

(Liebich, 2004); (Sinowatz, 2006a), wobei aus einem Megakaryozyten in ca. 3 - 12 Stunden 2000 

- 8000 Thrombozyten hervorgehen können (Hees und Tschudi, 1990). Sie läuft unter Einfluss 

verschiedener hämatopoetischer Wachstumsfaktoren ab (Lösch et al., 2000) und wird zudem 

durch die Anzahl zirkulierender Blutplättchen im Blut gesteuert (Jain, 1993). Thrombopoietin 

reguliert die Bildung der Megakaryozyten auf drei verschiedene Weisen. Erstens kommt es zu 

einer Stimulation der Stammzellen im Knochenmark, zweitens induziert es zusätzliche 

Endomitosen in unreifen Megakaryozyten und drittens verkürzt es deren Reifungszeit (Jain, 

1993). Neben Thrombopoietin wird die Bildung der Thrombozyten aber auch durch Meg-CSF, 

GM-CSF, G-CSF, IL1, IL3, IL4, IL6 und IL11 stimuliert (Jain, 1993). 

 

2.2.3 Morphologie 

Thrombozyten stellen flache, kernlose Zytoplasmascheibchen mit einer meist unregelmäßigen 

Form dar (Liebich, 2004), weshalb sie von manchen Autoren oft auch als „Blutplättchen“ 

bezeichnet werden (Hawkey und Dennet, 1990); (Hees und Tschudi, 1990); (Liebich, 2004). 

Seitlich betrachtet besitzen ruhende Thrombozyten eine scheibenförmige oder linsenförmige 

Gestalt (Jain, 1993). Ihr Durchmesser beläuft sich auf ca. 2 - 4 µm (Banks, 1981); (Lösch et al., 

2000); (Liebich, 2004) und die Dicke auf ca. 0,5 µm (Hees und Tschudi, 1990), wobei die Schafe 

unter den Haussäugetieren neben Rindern und Pferden die kleinsten Thrombozyten aufweisen 

(Hees und Tschudi, 1990). Bei den Blutplättchen können zwei Zonen unterschieden werden 

(Banks, 1981); (Hees und Tschudi, 1990); (Liebich, 2004); (Sinowatz, 2006a). Das Granulomer, 

auch als Chromomer bezeichnet (Banks, 1981); (Hees und Tschudi, 1990), stellt die innere, dichte 

Zentralzone dar und wird ringartig vom Hyalomer, der durchsichtigen Randzone, umgeben 

(Liebich, 2004); (Sinowatz, 2006a). Das Granulomer erscheint basophil und enthält Granula, 

Mitochondrien (Banks, 1981), wenige Golgi-Zisternen (Hees und Tschudi, 1990), Lysosomen, 

Peroxisomen, Glykogen und bei jungen Thrombozyten wenige Ribosomen (Sinowatz, 2006a). 

Morphologisch können α-Granula von elektronendichten Granula („dense bodies“) und 

Lysosomen unterschieden werden (Lösch et al., 2000); (Reed, 2007); (White, 2007); (Cerecedo et 
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al., 2010). Die zahlreich vorkommenden α-Granula haben eine runde bis ovale Form (White, 

2007), sind etwa 0,2 - 0,3 µm groß und erscheinen azurophil (Liebich, 2004). Die „dense bodies“ 

sind kleiner und in geringerer Zahl als die α-Granula vorhanden (Hartwig, 2007). Sie zeichnen 

sich durch einen intensiv elektronendichten, kugelförmigen Innenkörper aus, der von der 

umgebenden Membran durch einen scheinbar leeren Zwischenraum getrennt wird, weshalb die 

Bezeichnung „bulls eye“ Verwendung findet (White, 2007). Die schnelle Freisetzung endogener 

Thrombozytenstoffe wird durch eine bestimmte Anordnung intrazellulärer Kapillaren, die das 

„open canalicular system“ (OCS) bilden, gewährleistet. Die verzweigten Kanalikuli erstrecken 

sich ausgehend vom Granulomer durch das Hyalomer hindurch bis an die Zelloberfläche (Hees 

und Tschudi, 1990). Die Kanälchen selbst tragen eine Glykokalix, da diese Invaginationen der 

Zellmembran darstellen (Hees und Tschudi, 1990); (Jain, 1993). Bei einer Aktivierung der 

Thrombozyten verschmelzen die Granula im Zellzentrum mit dem OCS und setzen ihre Stoffe 

frei, die daraufhin in den extrazellulären Raum gelangen können (Cerecedo et al., 2010). 

Zwischen Granulomer und Hyalomer befindet sich das „dense tubular system“ (DTS) (Hees und 

Tschudi, 1990), das aus residualen Kanälchen des endoplasmatischen Retikulums besteht (White, 

2007) und nicht mit dem OCS oder der Zelloberfläche in Verbindung steht (Hees und Tschudi, 

1990). Das Hyalomer stellt eine homogen strukturierte Zytoplasmazone dar, in der Vesikel, 

Glykogenpartikel (Banks, 1981), Mikrofilamente, Mikrotubuli (Hees und Tschudi, 1990); 

(Liebich, 2004) und Myosinfilamente enthalten sind (Liebich, 2004). Die Zellmembran der 

Thrombozyten ist in der Regel glatt und kann bei aktivierten Zellen fadenförmige 

Oberflächenprojektionen besitzen. Kleine Eindellungen mit einem Durchmesser von etwa 25 nm 

an der Zelloberfläche entsprechen den Mündungen der bereits erwähnten Kanalikuli (Jain, 1993) 

zur Freisetzung endogener Thrombozytenprodukte (Hees und Tschudi, 1990). 

 

2.2.4 Aufgaben 

Die Thrombozyten spielen eine wichtige Rolle bei der Blutstillung (Banks, 1981); (Hees und 

Tschudi, 1990). An der Hämostase sind vier verschiedene Mechanismen beteiligt, nämlich die 

Vasokonstriktion, die Bildung eines Thrombozytenaggregats (primäre Blutstillung), die 

Blutgerinnung (sekundäre Blutstillung) und die Bildung von Bindegewebe zum endgültigen 

Wundverschluss. Nach einer Verletzung kommt es durch eine initiale Vasokonstriktion zur 

Verringerung des Blutflusses (Lösch et al., 2000), wobei die Blutplättchen aufgrund ihres 

Serotoningehalts wichtige Mediatoren hierfür darstellen (Banks, 1981); (Hees und Tschudi, 

1990); (Jain, 1993); (Sinowatz, 2006a). Sehr rasch folgt eine durch den von-Willebrand-Faktor 

vermittelte Adhäsion der Thrombozyten im Bereich der verletzten Gefäßwand (Lösch et al., 

2000). Auf die Anheftung folgt eine Aktivierung, die eine Formänderung mit 
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Pseudopodienbildung und die Freisetzung von Inhaltsstoffen aus den Granula bewirkt (Banks, 

1981); (Liebich, 2004). Daraufhin kommt es zur Agglutination der Blutplättchen (Sinowatz, 

2006a), wobei die Ausbildung von Fibrinogenbrücken zwischen den Thrombozyten zur 

Entstehung eines Thrombozytenaggregats führt. Eine sich anschließende Bildung von Fibrin 

(Gerinnung) führt zur Vernetzung des Thrombozytenaggregats und zu einer Stabilisierung des 

Thrombozytenpropfes. Durch Kontraktionen bestimmter Zytoskelettfilamente (siehe Kapitel 

5.3.2) kommt es zur Retraktion des Gerinnsels und somit zur weiteren Stabilisierung, zur 

Annäherung der Gefäßwände und schließlich zum Stillstand der Blutung (Lösch et al., 2000). Die 

Thrombozyten setzten ferner bestimmte Wachstumsfaktoren frei, die durch Anregung einer 

Endothelzellproliferation die Reparatur eines Gefäßschadens positiv beeinflussen (Sinowatz, 

2006a). Obwohl die Hämostase die Hauptaufgabe der Thrombozyten darstellt, übernehmen sie 

weitere wichtige Funktionen (Banks, 1981). Sehr wahrscheinlich spielen sie eine Rolle im 

Entzündungsgeschehen. Außerdem binden Thrombozyten Endotoxin, um dieses möglicherweise 

zu entgiften (Jain, 1993). 

 

2.2.5 Zytochemische Eigenschaften 

Die α-Granula weisen einen heterogenen Inhalt (Hees und Tschudi, 1990) mit zahlreichen 

wichtigen Proteinen für die Thrombozytenfunktion auf, darunter von-Willebrand-Faktor, 

Plättchenfaktor 4 und 1, Wachstumsfaktoren, β-Thromboglobulin, Thrombospondin, Fibrinogen 

und Fibronektin. Zudem sind kationische Proteine, ein Thrombozyten-spezifisches basisches 

Protein, Albumin und Katalase vorhanden (Jain, 1993). Die elektronendichten Granula enthalten 

Adenin-Nukleotide (Kolb, 1991); (Jain, 1993), Histamin, Serotonin und Kalzium. In den 

Lysosomen befinden sich saure Hydrolasen wie die saure Phosphatase oder die β-Glucuronidase. 

Das DTS enthält zudem Kalzium, Enzyme für die Prostaglandinsynthese und ein Isoenzym der 

Peroxidase (Jain, 1993). Das Vorkommen dieser Thrombozyten-spezifischen Peroxidase variiert 

jedoch von Spezies zu Spezies. Daimon et al. (1985) konnten diese in ovinen Thrombozyten nicht 

nachweisen (Daimon et al., 1985). Fey und Kuntze (1970) berichten über eine Aktivität der α-

Naphthyl-Azetat-Esterase und der Naphthol-AS-Azetat-Esterase in den Thrombozyten von 

Schafen (Fey und Kuntze, 1970). Lanillo und Cabezas (1981) bestimmten verschiedene 

Markerenzyme der ovinen Thrombozyten. So ist das Vorkommen der β-N-Acetylglucosaminidase 

charakteristisch für die Granula, wogegen die Glucose-6-Phosphatase in den Mikrosomen und die 

Succinat-Dehydrogenase in den Mitochondrien vorkommt (Lanillo und Cabezas, 1981). Die 

Thrombozyten zeigen weiterhin eine positive Periodic-Acid-Schiff-Reaktion (Romeis, 1989). 
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2.3 Lymphozyten  

2.3.1 Allgemeines 

Die Lymphozyten gehören bei den Leukozyten neben den Monozyten zur Untergruppe der 

Agranulozyten (Liebich, 2004). Sie können anhand ihrer Funktion und ihrer Größe in 

verschiedene Gruppen eingeteilt werden, worauf in den folgenden Kapiteln genauer eingegangen 

wird. Aber auch im Bezug auf die Lebenserwartung kann man zwei Gruppen unterscheiden, 

nämlich die langlebigen (T-Zellen und Gedächtniszellen) und kurzlebigen (meist B-Zellen) 

Lymphozyten (Jain, 1993). Die Spanne der Lebensdauer reicht somit von wenigen Stunden bis zu 

Jahren (Banks, 1981); (Hees und Tschudi, 1990). Die Gesamtzahl der Leukozyten im Blut des 

adulten Schafes beträgt 4 - 12x103/µl, im  Mittel 8x103/µl (Greenwood, 1977); (Hees und Tschudi, 

1990); (Kramer, 2000). Davon sind, charakteristisch für ein lymphozytäres Blutbild, über 50 % 

der Leukozyten Lymphozyten (Lösch et al., 2000), bei Schafen nämlich im Schnitt 62 % (40 - 75 

%). Der genaue Anteil der Lymphozyten an der Gesamtleukozytenzahl unterliegt jedoch 

individuellen und altersbedingten Schwankungen (Hees und Tschudi, 1990); (Jain, 1993); 

(Kramer, 2000), auf die in Kapitel 1.3 bereits eingegangen wurde. Die absolute Zahl der 

Lymphozyten beträgt beim Schaf im Mittel 5 x103/µl (2 - 9 x103/µl) (Kramer, 2000), wobei die 

Zahl der beiden Lymphozyten-Subpopulationen, der T- und B-Zellen, im Körper der Säuger etwa 

gleich ist (Lösch et al., 2000). Bei den Schafen stellen knapp über 70 % der Blutlymphozyten T-

Zellen dar. Der Anteil an B-Zellen im Blut liegt bei knapp unter 30 % (Ristau et al., 1985). Der 

Großteil der Lymphozyten befindet sich in Lymphknoten, Thymus, Knochenmark und anderen 

lymphatischen Geweben (Kraft et al., 2005), wogegen nur etwa 2 % im Blut kreisen (Liebich, 

2004). Die Lymphozyten unterliegen einer ständigen Zirkulation zwischen Blut, Lymphbahn, 

Geweben und Organen (Kolb, 1991); (Lösch et al., 2000), die Granulozyten und Monozyten 

hingegen verlassen ihr Zielgewebe nicht mehr (Lösch et al., 2000). 

 

2.3.2 Bildung 

Der Großteil der Lymphozyten wird in lymphatischen Geweben und Organen gebildet (Liebich, 

2004); (Sinowatz, 2006a). Die Neubildung beginnt jedoch, wie bei allen anderen Blutzellen, mit 

der pluripotenten Stammzelle im Knochenmark, dem Hämozytoblasten (Kolb, 1991); (Liebich, 

2004); (Kraft et al., 2005). Aus diesem gehen die pluripotenten lymphatischen Vorläuferzellen 

(Progenitorzellen) hervor (Liebich, 2004); (Kraft et al., 2005), die auf ihrer Zelloberfläche bereits 

eine Determination zur späteren T- oder B-Zelle tragen (Liebich, 2004), jedoch noch keine 

Antigenrezeptoren besitzen (Silbernagl und Despopoulos, 2001). Sie werden auch als 

Immunoblasten (Liebich, 2004), Lymphoblasten (Hees und Tschudi, 1990) oder „große 
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Lymphozyten“ bezeichnet, da diese Progenitorzellen die größten Zellen in der Entwicklung der 

Lymphozyten darstellen (Banks, 1981). Man erkennt den Lymphoblasten mitunter an seinem 

großen, runden Kern mit einem Nukleolus oder mehreren Nukleoli und dem stark basophilen 

Zytoplasma (Banks, 1981); (Hawkey und Dennet, 1990). Die Lymphoblasten differenzieren sich 

unter Größenabnahme zu den lymphozytären Zellen, den B- oder T-Lymphozyten (Banks, 1981); 

(Hees und Tschudi, 1990); (Kraft et al., 2005). Die noch unreifen Lymphozyten verlassen das 

Knochenmark, treten ins Blut über und wandern zu den lymphatischen Organen (Hees und 

Tschudi, 1990); (Liebich, 2004), die in primäre (zentrale) und sekundäre (periphere) lymphatische 

Organe unterteilt werden können (Sinowatz, 2006a). Sowohl der Thymus als auch das Bursa-

Äquivalent der Säuger, nämlich das lymphatische Gewebe des Knochenmarks (Jain, 1993) und 

die Peyerschen Platten des Darms (Lösch et al., 2000), zählen zu den primären lymphatischen 

Organen (Jain, 1993). Die Lymphknoten, die Milz, die Tonsillen und das lymphatische Gewebe in 

den Schleimhäuten des Verdauungstraktes (gut associated lymphoid tissue, GALT), des 

Respirationstraktes (bronchus associated lymphoid tissue, BALT) und des Urogenitaltraktes 

(urinary tract associated lymphoid tissue, UTALT) gehören hingegen zu den sekundären 

lymphatischen Organen (Sinowatz, 2006a). Im Thymus findet die Prägung der T-Lymphozyten 

statt. Die Stammzellen der T-Zellen haben ihren Ursprung zwar, wie bereits erwähnt, im 

Knochenmark, wandern aber schon während der embryonalen Entwicklung in den Thymus und 

reifen dort bis zur Geschlechtsreife der Tiere. Hier werden sie einer positiven Selektion zur 

Antigenerkennung und einer negativen Selektion zur Eliminierung autoreaktiver T-Zellen 

unterzogen. Die Prägung der B-Zellen hingegen findet im Bursa-Äquivalent statt (Lösch et al., 

2000). In der Prägungsphase hat noch kein Antigenkontakt stattgefunden (Sinowatz, 2006a). In 

den sekundären lymphatischen Organen erfolgt schließlich die Entwicklung zu 

immunkompetenten Zellen (Jain, 1993). Im Gegensatz zu anderen Leukozyten sind die kleinen 

Lymphozyten keine Endzellen und können sich bei entsprechender Stimulation wieder zu 

Lymphoblasten dedifferenzieren (Banks, 1981); (Hees und Tschudi, 1990). Sie stehen somit dem 

Immunsystem als langlebige Gedächtniszellen zur Verfügung (Liebich, 2004) wodurch deren 

Anzahl je nach Bedarf schnell erhöht werden kann (Banks, 1981). Das Wissen über jene Faktoren, 

die Produktion, Differenzierung und Vermehrung der Vorläuferzellen der Lymphozyten 

regulieren, ist noch relativ begrenzt. Einen wichtigen Einfluss auf die Lymphopoese nehmen 

jedoch sehr wahrscheinlich Thymushormone, Antigene, Interleukine, Tumornekrosefaktor α, T-

Zell-Wachstumsfaktor β und Interferon α (Jain, 1993). 

 

2.3.3 Morphologie 

Die Lymphozyten der Schafe stellen meist runde bis ovale Zellen mit einem runden bis ovalen 
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Kern (Yamada und Sonoda, 1972b) und einem basophilen Zytoplasmasaum dar (Norris und 

Cham-Berlin, 1929). Charakteristisch für die Lymphozyten ist ein relativ hohes Kern-Zytoplasma-

Verhältnis (Banks, 1981); (Lösch et al., 2000), da der große Zellkern in den meisten Fällen fast 

die gesamte Zelle ausfüllt (Yamada und Sonoda, 1972b). Er liegt zentral (Hawkey und Dennet, 

1990) oder leicht exzentrisch in der Zelle (Norris und Cham-Berlin, 1929) und weist nicht selten 

eine Kerninvagination auf (Yamada und Sonoda, 1972b); (Hees und Tschudi, 1990); (Jain, 1993). 

Bei einzelnen ovinen Lymphozyten besteht der Kern sogar aus zwei Lappen, die durch einen 

dünnen Faden verbunden sind (Greenwood, 1977). Aufgrund der hohen Chromatinkondensation 

zeigt er ein fleckenförmiges Muster (Yamada und Sonoda, 1972b), wobei im Kernzentrum 

helleres und in der Kernperipherie dunkleres Chromatin zu sehen ist. Bis zu zwei Nukleoli können 

im Kern der ovinen Lymphozyten vorkommen (Rudolph und Schnabl, 1981). Im meist schmalen 

Zytoplasma befinden sich einige Mitochondrien, wogegen der Golgi-Apparat nur schlecht 

entwickelt ist und Zentriolen selten vorkommen (Yamada und Sonoda, 1972b). Die Basophilie 

des Zytoplasmas lässt sich jedoch durch eine hohe Dichte an Ribosomen, Polyribosomen und 

rauem endoplasmatischen Retikulum erklären (Jain, 1993); (Liebich, 2004) und variiert mit der 

Aktivität des Lymphozyten (Jain, 1993). Zellen mit einem dunkelblauen Zytoplasma stellen 

reaktive Lymphozyten (Immunozyten) dar. Sie kommen in geringen Zahlen im Blut gesunder 

Tiere vor, treten aber hauptsächlich nach antigener Stimulation auf. Die einer Transformation zur 

Plasmazelle unterliegenden Lymphozyten zeichnen sich durch mehr Zytoplasma, das sich stark 

dunkelblau darstellt und eine perinukleäre klare Zone erkennen lässt, aus. Der runde Kern liegt 

exzentrisch in der Zelle und zeigt sowohl klare Bereiche als auch solche mit 

Chromatinkondensation. Im peripheren Blut werden diese plasmazytoiden Lymphozyten jedoch 

nur selten gefunden  (Reagan et al., 2008). Entgegen ihrer Zuordnung zu den Agranulozyten sind 

bei manchen Lymphozyten der Schafe azurophile Granula im Zytoplasma zu beobachten (Norris 

und Cham-Berlin, 1929); (Yamada und Sonoda, 1972b); (Greenwood, 1977); (Banks, 1981); 

(Kramer, 2000). Diese sind ca. 0,2 - 0,5 µm groß (Yamada und Sonoda, 1972b) und befinden sich 

häufig im Bereich der Kerninvagination (Hees und Tschudi, 1990). Die Oberfläche der 

Lymphozyten ist glatt oder mit kurzen Fortsätzen besetzt (Yamada und Sonoda, 1972b); (Hees 

und Tschudi, 1990); (Jain, 1993); (Tizard, 2000). Zirkulierende Lymphozyten tragen auf der 

Zelloberfläche kurze Mikrovilli, die Aktinbündel enthalten (Burkhardt et al., 2008).  

Die Lymphozyten lassen sich anhand ihrer Größe in verschiedene Gruppen einteilen (Jain, 1993). 

Im Allgemeinen können kleine, mittlere und große Lymphozyten unterschieden werden (Banks, 

1981); (Jain, 1993); (Kramer, 2000); (Steffens, 2000); (Liebich, 2004), manche Autoren hingegen 

differenzieren nur kleine (≤10µm) von großen Lymphozyten (>10 µm) (Hees und Tschudi, 1990); 

(Kolb, 1991); (Lösch et al., 2000); (Kraft et al., 2005); (Sinowatz, 2006a). Der Hauptunterschied 

liegt dabei im Kern-Zytoplasma-Verhältnis, das bei steigender Zellgröße aufgrund des 
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zunehmenden Zytoplasmaanteils kleiner wird (Steffens, 2000). Kleine Lymphozyten haben einen 

Durchmesser von 5 - 10 µm (Banks, 1981); (Liebich, 2004) und weisen ein sehr hohes Kern-

Zytoplasma-Verhältnis auf. Das geklumpte Chromatin färbt sich dunkel an (Jain, 1993) und 

Nukleoli kommen gewöhnlich nicht vor (Steffens, 2000). Die kleinen Lymphozyten stellen den 

größten Anteil der zirkulierenden Lymphozyten im Blut dar (Banks, 1981); (Steffens, 2000); 

(Liebich, 2004); (Sinowatz, 2006a), da zu ihnen sowohl die immunkompetenten T- und B-Zellen 

als auch die noch nicht immunkompetenten Lymphozyten aus dem Knochenmark zählen 

(Sinowatz, 2006a). Mittelgroße Lymphozyten sind ca. 10 - 18 µm groß (Banks, 1981); (Liebich, 

2004). Von einigen jener Autoren, die die Lymphozyten ihrer Größe nach nur in zwei Gruppen 

einteilen, werden sie auch als „große Lymphozyten“ bezeichnet (Hees und Tschudi, 1990); (Kolb, 

1991); (Sinowatz, 2006a). Bei den mittelgroßen Lymphozyten erscheint die Kernstruktur weniger 

dicht und kompakt (Hees und Tschudi, 1990); (Sinowatz, 2006a) und ein bis zwei Nukleoli 

können vorkommen (Steffens, 2000). Wie bereits in Kapitel 2.3.2 erwähnt, stellen die 

Immunoblasten die größten Zellen in der Entwicklung der Lymphozyten dar und werden deshalb 

oft als „große Lymphozyten“ bezeichnet (Banks, 1981). Sie haben einen Durchmesser von bis zu 

25 µm (Liebich, 2004) und zeichnen sich durch einen großen, meist runden Kern mit ein bis zwei 

Nukleoli und ein basophiles Zytoplasma aus (Banks, 1981); (Hawkey und Dennet, 1990). Das 

Chromatin erscheint aufgelockert und leicht getüpfelt (Reagan et al., 2008). Typischerweise treten 

sie im extravaskulären (lymphatischen) Gewebe auf (Banks, 1981); (Steffens, 2000), im Blut sind 

sie normalerweise nicht zu finden (Steffens, 2000). Beim Schaf kommen vor allem kleine und 

mittelgroße Lymphozyten vor, und die Verwechslungsgefahr mit den Monozyten ist weniger 

gegeben als beim Rind (Kramer, 2000). Banks weist zudem darauf hin, dass beim Schaf die 

Einteilung der Lymphozyten anhand ihrer Größe nicht immer leicht ist (Banks, 1981). 

B-Lymphozyten können morphologisch nicht von T-Lymphozyten unterschieden werden (Kolb, 

1991); (Lösch et al., 2000); (Liebich, 2004); (Kraft et al., 2005); (Sinowatz, 2006a), erst 

immunhistochemische Techniken (siehe Kapitel 4) erlauben eine genaue Identifizierung beider 

Zellpopulationen (Hees und Tschudi, 1990); (Sinowatz, 2006a). So können auf der Zellmembran 

der Lymphozyten verschiedene CD-Antigene („cluster of differentiation antigens“) bestimmt 

werden (Sinowatz, 2006a). Außerdem stellen die Immunglobuline auf der Oberfläche der B-

Lymphozyten einen Marker für diese Zellen dar (Djilali und Parodi, 1987). Aber auch Enzyme 

können zur Differenzierung eingesetzt werden (Lösch et al., 2000). So ist eine Aktivität der α-

Naphthyl-Azetat-Esterase beispielsweise nur in den T-Zellen nachzuweisen (Ristau et al., 1985). 

Weiterhin können T-Lymphozyten mit autologen Erythrozyten spontan Rosetten bilden 

(Outteridge, 1985); (Djilali und Parodi, 1987), was durch die Interaktion des Glykoproteins CD2 

der T-Zellen und der CD2-Liganden der ovinen Erythrozyten zustande kommt (Kusui und 

Takasaki, 1998). Bei den Schafen stellt außerdem das Lektin Peanut Agglutinin (PNA) einen 
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Marker für die T-Lymphozyten dar (Fahey, 1980); (Outteridge, 1985); (Djilali et al., 1987); 

(Djilali und Parodi, 1987). 

 

2.3.4 Aufgaben 

Das Immunsystem setzt sich aus zwei vernetzten Funktionseinheiten, dem angeborenen 

(unspezifischen) und dem erworbenen (spezifischem) Immunsystem, zusammen. Zum 

angeborenen Abwehrsystem zählen neben Zellen (Granulozyten, Monozyten und Makrophagen) 

auch lösliche Faktoren (Akute-Phase-Proteine, Komplement- und Interferonsystem). Die zum 

erworbenen Abwehrsystem zählenden Lymphozyten bekämpfen jene Erreger, welche die 

Mechanismen der unspezifischen Abwehr durchbrochen haben (Lösch et al., 2000). Die 

Lymphozyten können bezüglich ihrer immunologischen Funktion in zwei verschiedene Gruppen 

unterteilt werden. Die T-Zellen sind für die zellgebundene Immunantwort verantwortlich (Kolb, 

1991); (Jain, 1993); (Lösch et al., 2000); (Liebich, 2004); (Kraft et al., 2005) und zerstören vor 

allem intrazelluläre Agenzien („endogene Antigene“) (Tizard, 2000). Die B-Lymphozyten 

hingegen sind für die humorale Immunreaktion zuständig (Kolb, 1991); (Jain, 1993); (Lösch et 

al., 2000); (Liebich, 2004); (Kraft et al., 2005) und machen mit Hilfe der von ihnen produzierten 

Antikörper vorrangig im Extrazellulärraum vorkommende Eindringlinge („exogene Antigene“) 

unschädlich (Tizard, 2000).    

T-Lymphozyten erkennen anhand ihres spezifischen T-Zell-Rezeptors bestimmte Antigene, die 

durch Antigen präsentierende Zellen (APC) dargeboten werden (Vicente-Manzanares et al., 

2002). Als Reaktion auf die antigene Stimulation erhalten die T-Zellen ihre Immunkompetenz und 

wandeln sich zu Effektorzellen um (Liebich, 2004). Es können hier verschiedene funktionelle 

Untergruppen unterschieden werden (Liebich, 2004); (Sinowatz, 2006a), nämlich die T-

Helferzellen, die zytotoxischen T-Zellen und die T-Suppressorzellen (Banks, 1981); (Sinowatz, 

2006a). Die T-Helferzellen regulieren und fördern im Allgemeinen die Immunantwort (Tizard, 

2000). Sie stimulieren unter anderem die Proliferation der B-Zellen und deren Differenzierung zu 

Antikörper produzierenden Plasmazellen (Sinowatz, 2006a), unterstützen die Antwort der 

zytotoxischen T-Zellen (Lösch et al., 2000); (Tizard, 2000) und sind an der Aktivierung von 

Makrophagen maßgeblich beteiligt (Lösch et al., 2000). Die zytotoxischen T-Zellen hingegen sind 

in der Lage, bestimmte Zielzellen, für die sie spezifische Antigene besitzen, abzutöten (Sinowatz, 

2006a). Der genaue Mechanismus ist weitgehend unbekannt, könnte aber durchaus die 

Degranulation der für diese T-Zellpopulation charakteristischen lysosomalen Granula 

einschließen (Jain, 1993). Eine äußerst wichtige Aufgabe ist die Beseitigung virusinfizierter 

Zellen. Dabei wird die infizierte Zelle nach Bindung an die T-Zelle durch gebildetes Perforin 
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abgetötet (Lösch et al., 2000). T-Suppressorzellen haben die Aufgabe, überschießende 

Immunreaktionen zu unterdrücken (Sinowatz, 2006a).  

Reife B-Zellen tragen an ihrer Oberfläche spezifische Rezeptoren für Antigene, die 

Immunglobuline (Naessens, 1997); (Tizard, 2000); (Silbernagl und Despopoulos, 2001); (Liebich, 

2004). Nach Kontamination mit Fremdproteinen, Viren oder Toxinen bildet sich ein Antigen-

Antikörper-Komplex, der in die B-Zelle eingeschleust wird (Liebich, 2004). Die humorale 

Immunantwort mit Aktivierung der B-Zellen setzt jedoch noch die Interaktion mit den bereits 

erwähnten T-Helferzellen voraus (Tizard, 2000); (Sinowatz, 2006a). Die B-Zellen präsentieren 

nach Internalisierung und Aufarbeitung des Antigen-Antikörper-Komplexes den T-Helferzellen 

das Antigen (Silbernagl und Despopoulos, 2001). Die aktivierten T-Helferzellen beeinflussen 

daraufhin in peripher-lymphatischen Organen die Transformation von B-Zellen zu 

Lymphoblasten, die sich wiederum zu Immunglobulin produzierenden Plasmazellen 

differenzieren (Liebich, 2004). Diese stellen die eigentlichen Effektorzellen dar (Lösch et al., 

2000). Die gebildeten Antikörper gelangen ins Gewebe und Blut und machen dort die Antigene 

durch Bildung von Antigen-Antikörper-Komplexen unschädlich, die daraufhin von 

phagozytierenden Zellen abgebaut werden (Sinowatz, 2006a). Plasmazellen produzieren pro 

Sekunde bis zu 10000 Antikörpermoleküle mit identischer Antigenspezifität (Tizard, 2000). Bei 

höher entwickelten Tieren gibt es strukturell und funktionell verschiedene Immunglobuline (Ig). 

IgM stellt den Antikörper der Erstantwort dar, wogegen IgG meist nach wiederholten 

Antigenkontakten gebildet wird. IgA kommt nur lokal auf Schleimhäuten vor und IgE spielt eine 

Rolle bei allergischen Prozessen (Lösch et al., 2000) und parasitären Infektionen (Shaw et al., 

2009).  

Neben den Effektorzellen werden nach antigener Stimulation zusätzlich hochspezifische und 

langlebige T- und B-Gedächtniszellen gebildet, die das immunologische Gedächtnis bilden 

(Lösch et al., 2000) und somit für eine beschleunigte und effektivere Immunantwort nach einem 

erneuten Antigenkontakt sorgen (Tizard, 2000). Bei den B-Gedächtniszellen handelt es sich sehr 

wahrscheinlich um teilungsfähige Vorstufen der Plasmazellen (Lösch et al., 2000).  

 

2.3.5 Zytochemische Eigenschaften 

Reife T-Lymphozyten zeigen im Gegensatz zu den B-Lymphozyten eine Aktivität der sauren 

Phosphatase und der β-Glucuronidase (Jain, 1993). In den T-Zellen kommt zudem die α-

Naphthyl-Azetat-Esterase vor, die sich im Gegensatz zu derjenigen der Monozyten nicht durch 

Natrium-Fluorid hemmen lässt (Jain, 1993); (Bienzle, 2000); (Raskin und Valenciano, 2000). 

Diese Tatsache ist durch eine unterschiedliche Lokalisation der Enzyme zu erklären. Die α-
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Naphthyl-Azetat-Esterase der Lymphozyten ist meist in intrazellulären Organellen lokalisiert, 

wogegen sich diejenige der Monozyten vorwiegend an der Plasmamembran befindet (Raskin und 

Valenciano, 2000). Fey und Kuntze (1970) berichten weiterhin über eine schwache Aktivität der 

Naphthol-AS-Azetat-Esterase in ovinen Lymphozyten (Fey und Kuntze, 1970). Eine Periodic-

Acid-Schiff-Reaktion verläuft bei Lymphozyten der Schafe nur teilweise positiv (Jain, 1970); 

(Raskin und Valenciano, 2000); (Al Izzi et al., 2007), da nicht immer Glykogen in den Zellen 

enthalten ist (Stobbe, 1970). Laut Hermansky et al. (1970) lässt sie sich bei weniger als 10 % der 

ovinen Lymphozyten beobachten (Hermansky et al., 1970). Die Lymphozyten weisen weder eine 

Peroxidase- (Jain, 1967); (Schnabl, 1976); (Jain, 1993); (Raskin und Valenciano, 2000); (Al Izzi 

et al., 2007) noch eine Chlorazetat-Esterase- oder eine alkalische Phosphatase-Aktivität auf 

(Schnabl, 1976); (Jain, 1993). Auch eine Anfärbung mit Sudan-Schwarz ist nicht möglich 

(Schnabl, 1976); (Jain, 1993); (Al Izzi et al., 2007).  

 

2.4 Monozyten 

2.4.1 Allgemeines 

Die Monozyten zählen neben den Lymphozyten zu den Agranulozyten (Kolb, 1991); (Liebich, 

2004). Mit einer Zahl von 0,2x103/µl (0 - 0,75x103/µl) machen sie beim Schaf im Schnitt nur 2,5 

% (0 - 6 %) der zirkulierenden Leukozyten im Blut aus (Jain, 1993); (Kramer, 2000). Generell 

häufen sich Monozyten bei Entzündungen oder Gewebsschädigungen an. Als chemotaktische 

Faktoren dienen hier unter anderem bakterielle Substanzen, Komplementfaktoren, lösliche 

Substanzen der T-Lymphozyten (Lymphokine), neutrophile Granulozyten und Tumorzellen (Jain, 

1993). Die intravaskuläre Aufenthaltszeit der Monozyten beträgt im Allgemeinen ca. 6 - 12 

Stunden (Kraft et al., 2005). Nach dem Austritt aus der Blutbahn verlassen sie ihr Zielgewebe 

nicht mehr (Lösch et al., 2000), wobei ihre Lebensdauer im interstitiellen Bindegewebe etwa 60 - 

90 Tage beträgt (Liebich, 2004). 

 

2.4.2 Bildung 

Die Entwicklung der Monozyten beginnt, wie bei allen Blutzellen, mit dem Hämozytoblasten 

(Liebich, 2004) und den daraus entstehenden, unipotenten Vorläuferzellen (Kolb, 1991). Über die 

Stadien des Monoblasten und des Promonozyten entwickelt sich schließlich der Monozyt. Es 

erscheint möglich, dass frühe Entwicklungsstadien der Monozyten gemeinsame 

Differenzierungsstufen mit den neutrophilen Granulozyten durchlaufen (Liebich, 2004). Die 

Zellen der Monozytopoese nehmen mit zunehmender Reifung an Größe ab, das Zytoplasma färbt 
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sich basophil und der Kern bildet eine Einbuchtung (Hees und Tschudi, 1990). Zudem treten im 

Laufe der Entwicklung kleine azurophile Granula auf und das Chromatin lockert sich allmählich 

auf (Liebich, 2004).  

Der Monoblast stellt die erste, morphologisch identifizierbare Vorstufe der Monozyten dar. Dieser 

zeigt einen leicht gewundenen, runden Kern mit mehreren Nukleoli sowie einem wellenförmigen 

oder eingebuchteten Umriss. Das Zytoplasma stellt sich mäßig basophil dar (Jain, 1993). Der 

Promonozyt ist 15 - 20 µm groß (Hees und Tschudi, 1990) und besitzt einen deutlicher 

gewundenen Kern mit einer leichten Einbuchtung (Jain, 1993). Das Kern-Zytoplasma-Verhältnis 

ist in diesem Stadium größer als beim Monozyten (Bienzle, 2000), wobei das Zytoplasma einige 

Vakuolen (Jain, 1993) und kleine azurophile Granula enthalten kann (Liebich, 2004). Bei dem 

Übertritt vom Knochenmark in den Blutkreislauf sind die Monozyten noch relativ unreife Zellen. 

Erst nach der Auswanderung in das Bindegewebe erreichen sie ihre volle Reife (Hees und 

Tschudi, 1990) und wandeln sich zu Makrophagen um (Jain, 1993); (Steffens, 2000); (Thrall und 

Weiser, 2004); (Sinowatz, 2006a). Die Monozyten sind folglich keine Endstufen ihrer 

Differenzierungsreihe (Sinowatz, 2006a). Aus Monozyten können sich zudem Mastzellen und 

teilweise auch Fibroblasten, Fettzellen, glatte Muskelzellen und Osteoblasten entwickeln. Auch 

eine Entwicklung von Megakaryozyten aus Monozyten wird vermutet (Kolb, 1991). Aus der 

Fusion mehrerer Monozyten entstehen Osteoklasten (Hees und Tschudi, 1990). Die Bildung der 

Monozyten wird hauptsächlich durch IL3, IL11 GM-CSF und M-CSF stimuliert. Das von den 

Makrophagen gebildete PGE2 hingegen hemmt die Monozytopoese (Jain, 1993). 

 

2.4.3 Morphologie 

Die Monozyten stellen meist unregelmäßig geformte Zellen dar (Yamada und Sonoda, 1972b) 

und sind bei Schafen ca. 12 - 18 µm groß (Greenwood, 1977). Sie sind somit die größten reifen 

Leukozyten im Blut (Jain, 1993); (Steffens, 2000); (Liebich, 2004); (Sinowatz, 2006a). Der große 

Zellkern liegt meist exzentrisch in der Zelle (Norris und Cham-Berlin, 1929) und zeichnet sich 

durch eine ausgeprägte Pleomorphie aus (Jain, 1993). Seine Gestalt kann rund, oval, nieren-, 

bohnen-, linsen- (Hees und Tschudi, 1990) oder hufeisenförmig sein (Norris und Cham-Berlin, 

1929); (Yamada und Sonoda, 1972b); (Greenwood, 1977); (Steffens, 2000). Bei den Schafen 

kann teilweise auch eine deutliche Lobulierung auftreten (Norris und Cham-Berlin, 1929); 

(Yamada und Sonoda, 1972b); (Banks, 1981). Das Chromatin weist typischerweise ein diffuses, 

gestreiftes, geflecht- (Jain, 1993) oder netzartiges Muster auf (Bienzle, 2000) und ist in der Regel 

heller als das der Lymphozyten (Norris und Cham-Berlin, 1929); (Banks, 1981). Kleine Nukleoli 

können vorkommen (Bienzle, 2000). Der Kern des Monozyten kann zeitweise dem des frühen 
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stabkernigen neutrophilen Granulozyten oder dem des späten Metamyelozyten ähnlich sehen. 

Durch die ungleiche Anfärbung des Zytoplasmas (Jain, 1993), den unterschiedlichen Durchmesser 

(Thrall und Weiser, 2004) und das verschiedenartige Chromatinmuster (Bienzle, 2000) können 

die Zellen aber leicht voneinander unterschieden werden (Jain, 1993); (Bienzle, 2000); (Thrall 

und Weiser, 2004). Das Kern-Zytoplasma-Verhältnis der Monozyten ist in der Regel relativ klein 

(Lösch et al., 2000). Das breite Zytoplasma färbt sich typischerweise basophil-milchglasartig und 

enthält häufig unterschiedlich große Vakuolen. Nicht selten scheint auch im Zellkern eine 

Vakuole enthalten zu sein (Jain, 1993). Im Zytoplasma der Monozyten können gelegentlich 

azurophile Granula (Norris und Cham-Berlin, 1929); (Ullrey et al., 1965b); (Jain, 1993); (Bienzle, 

2000), die primäre Lysosomen darstellen, vorkommen (Hees und Tschudi, 1990); (Liebich, 2004). 

Diese sind 0,2 - 0,6 µm groß (Kolb, 1991), haben eine runde bis ovale Gestalt und sind von einer 

Membran umgeben (Yamada und Sonoda, 1972b). Beim Schaf sind die Granula nur selten zu 

finden (Greenwood, 1977); (Banks, 1981). Norris und Cham-Berlin (1929) konnten diese jedoch 

mit der Giemsa-Färbung nach verlängerter Färbezeit identifizieren (Norris und Cham-Berlin, 

1929). Auch Yamada und Sonoda (1972) gelang ein Nachweis dieser Granula beim Schaf mittels 

elektronenmikroskopischer Untersuchungen (Yamada und Sonoda, 1972b). Das Zytoplasma 

enthält weiterhin Ribosomen, Polysomen, Mitochondrien, raues endoplasmatisches Retikulum 

und einen Golgi-Apparat, der sich oftmals im Bereich einer Kerneinbuchtung befindet (Yamada 

und Sonoda, 1972b). Nicht selten enthalten die Monozyten phagozytiertes Material (Kolb, 1991). 

Die Oberfläche der Monozyten trägt viele pseudopodienartige Projektionen von unterschiedlicher 

Größe (Yamada und Sonoda, 1972b). Aufgrund der hohen Bewegungs- und Phagozytosefähigkeit 

(Bienzle, 2000) ist die Oberfläche der Zelle ausgiebig gerafft (Jain, 1993); (Bienzle, 2000), 

weshalb unter dem Elektronenmikroskop deutliche Falten und Furchen zu sehen sind (Jain, 1993). 

 

2.4.4 Aufgaben 

Wie bereits in Kapitel 2.4.2 erwähnt, erlangen die Monozyten erst nach Auswanderung ins 

Bindegewebe ihre volle Reife (Hees und Tschudi, 1990). Sie nehmen an Größe zu und wandeln 

sich zu Makrophagen um (Kolb, 1991), die zusammen mit den Vorläuferzellen im Knochenmark, 

den Promonozyten und den Monozyten das mononukleäre Phagozytensystem (MPS) bilden. Die 

Makrophagen halten sich als ortsfeste oder freie Zellen (Jain, 1993) in Lebersinusoiden als 

Kupffer-Sternzellen, in Lungenalveolen als Alveolarmakrophagen, in Körperhöhlen als 

Peritonealmakrophagen, im Bindegewebe als Histiozyten oder in lymphatischen Organen als 

Sinusendothelzellen auf und erfüllen dort organspezifische Aufgaben (Liebich, 2004). Die 

Monozyten nehmen im Allgemeinen wichtige Funktionen in der unspezifischen Abwehr wahr und 

beteiligen sich am Entzündungsgeschehen (Thrall und Weiser, 2004). So weist eine Monozytose 
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in der Regel auf eine subakute oder chronische Entzündung hin (Jain, 1993). Als mononukleäre 

Fresszellen sind sie in der Lage, Bakterien, Hefen, Protozoen, beschädigte Zellen und 

Zelltrümmer zu phagozytieren (Thrall und Weiser, 2004). Die Bakterien werden wahrscheinlich, 

ähnlich dem Mechanismus der neutrophilen Granulozyten (siehe Kapitel 2.5.4), durch 

Sauerstoffmetaboliten, Peroxidase, Lysozym, ein spezifisches basisches Protein (Monocytin) und 

proteolytische Enzyme abgetötet. Die von aktivierten Makrophagen freigesetzten 

Sauerstoffmetaboliten weisen zudem zytotoxische Effekte auf Tumorzellen und virusinfizierte 

Zellen auf. Weiterhin trägt sezerniertes Interferon zur Abwehr viraler Infektionen bei. Die 

kationischen Proteine der Monozyten hingegen besitzen eine fungizide Wirkung (Jain, 1993). Die 

Monozyten übernehmen darüber hinaus immunregulatorische Funktionen, indem sie den T-

Lymphozyten die verarbeiteten Antigene präsentieren (Thrall und Weiser, 2004) und somit als 

Zellen der unspezifischen Abwehr auf das spezifische Abwehrsystem einwirken (Lösch et al., 

2000). Außerdem sind sie sowohl an dem Abbau alternder Erythrozyten in der Milz (Liebich, 

2004) und der damit verbundenen Eisenwiederverwertung als auch an der pathologischen 

Zerstörung der roten Blutkörperchen beteiligt (Thrall und Weiser, 2004). Durch verschiedene 

Gerinnungsfaktoren beeinflussen sie die Koagulation und durch den Plasminogenaktivator die 

Fibrinolyse (Jain, 1993).  

 

2.4.5 Zytochemische Eigenschaften 

Charakteristisch für die Monozyten ist das Vorkommen von unspezifischen Esterasen (Jain, 

1993); (Bienzle, 2000); (Olivier et al., 2001), die diffus im Zytoplasma verteilt sind (Jain, 1993); 

(Bienzle, 2000). Eine Enzymaktivität der α-Naphthyl-Azetat-Esterase lässt sich jedoch besonders 

gut an der Plasmamembran beobachten (Raskin und Valenciano, 2000). Die unspezifischen 

Esterasen der Monozyten können aufgrund dieser Lokalisation, wie bereits in Kapitel 2.3.5 

erwähnt, durch Natrium-Fluorid gehemmt werden (Jain, 1993); (Bienzle, 2000); (Raskin und 

Valenciano, 2000). In den Granula sind unter anderem die saure Phosphatase und Lysozym 

vorhanden (Jain, 1993). Die Peroxidase kann bei den Monozyten der Schafe sowohl leicht positiv 

als auch negativ sein (Schnabl, 1976); (Al Izzi et al., 2007), wogegen Makrophagen generell 

Peroxidase-negativ sind (Jain, 1993). Die β-Glucuronidase ist laut Bienzle (2000) bei den 

Monozyten meist negativ oder nur schwach positiv (Bienzle, 2000) und die alkalische 

Phosphatase fehlt (Schnabl, 1976); (Jain, 1993); (Bienzle, 2000). Auch die Chlorazetat-Esterase 

ist üblicherweise nicht vorhanden, wobei bei Schafen teilweise von einer leichten Enzymaktivität 

berichtet wird (Bienzle, 2000); (Raskin und Valenciano, 2000). Die Färbung mit Sudan-Schwarz 

und die Periodic-Acid-Schiff-Reaktion gelingen bei den Monozyten des Schafes nur teilweise (Al 

Izzi et al., 2007). 
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2.5 Neutrophile Granulozyten 

2.5.1 Allgemeines 

Die neutrophilen Granulozyten gehören in der Gruppe der Leukozyten neben den basophilen und 

eosinophilen Granulozyten zur Untergruppe der Granulozyten (Liebich, 2004). Die Unterteilung 

der Granulozyten erfolgt anhand der unterschiedlichen Anfärbbarkeit ihrer Granula (Hees und 

Tschudi, 1990); (Kolb, 1991); (Sinowatz, 2006a). Bei den neutrophilen Granulozyten sind die 

Granula sowohl mit basischen als auch mit sauren Farbstoffen nur sehr schwach färbbar. Die 

Granula der eosinophilen Granulozyten hingegen lassen sich mit sauren Farbstoffen und die der 

basophilen Granulozyten mit basischen Farbstoffen anfärben (Kolb, 1991).  

Der neutrophile Granulozyt kommt unter den Granulozyten sowohl im Knochenmark als auch im 

Blut am häufigsten vor (Banks, 1981); (Hees und Tschudi, 1990). Bei adulten Schafen beträgt die 

Anzahl an reifen Zellen im Blut 0,7 - 6x103/µl, im Schnitt 2,4x103/µl. (Jain, 1993); (Kramer, 

2000). Die neutrophilen Granulozyten machen bei den Schafen im Schnitt 30 % (10 - 50 %) der 

Gesamtleukozyten aus (Greenwood, 1977); (Kramer, 2000). In den ersten Lebenswochen sind sie 

die vorherrschende Leukozytenart (siehe Kapitel 1.3), nach ca. zwei Wochen werden jedoch die 

Lymphozyten zur dominierenden Gruppe (Kramer, 2000). Die neutrophilen Granulozyten 

verlassen relativ rasch die Zirkulation und treten in verschiedene Gewebe oder Körperhöhlen 

über. Im Blut überleben sie ca. 7 - 14 Stunden, in den Geweben hingegen 2 - 3 Tage. Nach dem 

Verlassen des Blutgefäßsystems kehren sie nicht wieder in die Zirkulation zurück (Jain, 1993). 

 

2.5.2 Bildung 

Die Granulozyten haben eine gemeinsame Stammform im Knochenmark, den Myeloblasten (Hees 

und Tschudi, 1990); (Liebich, 2004); (Sinowatz, 2006a), aus dem 16 Granulozyten hervorgehen 

können (Kolb, 1991). Der Myeloblast entsteht nach mehrfachen mitotischen Teilungen aus den 

bereits aufgeführten, pluripotenten Stammzellen des Knochenmarks (Liebich, 2004) und 

entwickelt sich über die Stadien des Promyelozyten, des Myelozyten, des Metamyelozyten und 

des stabkernigen Granulozyten zum reifen Granulozyten (Sinowatz, 2006a).  

Myeloblasten sind mit einem Durchmesser von 15 - 20 µm relativ große Zellen (Banks, 1981). Sie 

besitzen einen großen, runden Kern mit wenig Heterochromatin (Liebich, 2004) und zwei oder 

mehreren Nukleoli (Banks, 1981); (Reagan et al., 2008). Das Zytoplasma erscheint durch das 

Vorkommen von Ribosomen, Polyribosomen und endoplasmatischem Retikulum stark basophil. 

Bei der Weiterentwicklung zum Promyelozyten kommt es zur Ausbildung azurophiler Granula. 

Promyelozyten sind mit 18 - 25 µm die größten Zellen im Verlauf der Granulopoese. Der Kern 
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enthält viel Euchromatin und im Zytoplasma sind viele Mitochondrien, Golgi-Felder, Ribosomen, 

Polyribosomen und endoplasmatisches Retikulum vorzufinden (Liebich, 2004). Trotz der 

azurophilen Regionen ist das Zytoplasma auch hier größtenteils basophil (Banks, 1981). Die 0,25 

- 0,5 µm großen Granula entwickeln sich innerhalb einer Woche zu spezifischen Granula 

(Liebich, 2004). Der Promyelozyt wird zum Myelozyt, sobald die Identifizierung der spezifischen 

Granula anhand der Färbungseigenschaften, der Form und der Größe möglich ist (Banks, 1981). 

Folglich kann zwischen neutrophilen, basophilen und eosinophilen Myelozyten unterschieden 

werden (Liebich, 2004). Der Myelozyt ist 12 - 16 µm groß (Kraft et al., 2005). Der eher ovale als 

runde Kern (Banks, 1981) weist eine leichte Einbuchtung und zunehmend gröberes Chromatin auf 

(Kraft et al., 2005). Nukleoli sind nicht vorhanden (Jain, 1993). Das anfangs basophile 

Zytoplasma wird durch den Verlust von Ribosomen zunehmend azidophil (Sinowatz, 2006a). Die 

Metamyelozyten, oft auch als jugendliche Granulozyten bezeichnet (Kraft et al., 2005), entstehen 

durch letzte mitotische Teilungen aus dem Myelozyten (Liebich, 2004). Die Entwicklung zeichnet 

sich durch eine Verkleinerung des Zellkernes aus (Sinowatz, 2006a), wobei dieser eine 

Nierengestalt annimmt (Hees und Tschudi, 1990); (Jain, 1993); (Sinowatz, 2006a) und das 

Chromatin nochmals gröber wird. Die Metamyelozyten sind 10 - 15 µm groß (Kraft et al., 2005). 

Das Zytoplasma ist leicht azidophil und enthält zahlreiche spezifische Granula (Banks, 1981). Aus 

ihnen gehen nach einer Reifedauer von etwa einer Woche die neutrophilen, basophilen oder 

eosinophilen Granulozyten hervor (Liebich, 2004). Der Kern des stabkernigen Granulozyten ist 

hufeisenförmig gekrümmt (Hees und Tschudi, 1990); (Thrall und Weiser, 2004); (Sinowatz, 

2006a). Die Segmentform erhält der Kern durch mehrere Einschnürungen, wodurch getrennte 

Kernbruchstücke entstehen (Kolb, 1991). Die neutrophilen Granulozyten verbleiben in der Regel 

bis zu ihrer vollkommenen Ausreifung zur segmentkernigen Form im Knochenmark (Sinowatz, 

2006a). Der stabkernige Granulozyt kann jedoch in geringer Zahl im Blut vorkommen, die 

Metamyelozyten sind im Blut normalerweise nicht zu finden (Thrall und Weiser, 2004). Im 

Knochenmark existieren drei verschiedene Granulozytenkompartimente. Der Proliferationspool 

enthält Myeloblasten, Promyelozyten und Myelozyten. Metamyelozyten und unreife 

Granulozyten bilden den Reifungspool. Im Speicherungspool hingegen befinden sich 

hauptsächlich reife neutrophile Granulozyten (Jain, 1993), wobei eine von der Anzahl 

differenzierter Granulozyten abhängige, negative Rückkopplung deren Abgabe aus dem 

Knochenmark ins Blut steuert (Liebich, 2004). Das Schaf weist neben Rind und Ziege eine 

kleinere Knochenmarksreserve als andere Säuger auf. Dort kommen nur halb so viele 

Granulozyten vor wie im Blut, was sich in der frühen Phase einer Antwort auf Entzündungen an 

einer Neutropenie im Blut zeigt (Kramer, 2000). Die Bildung der neutrophilen Granulozyten wird 

vor allem durch IL3, GM-CSF und G-CSF reguliert (Jain, 1993). 
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2.5.3 Morphologie 

Der neutrophile Granulozyt hat bei den Schafen eine runde bis ovale Form (Yamada und Sonoda, 

1970b); (Rudolph und Schnabl, 1981) und ist ca. 12 - 14 µm groß (Norris und Cham-Berlin, 

1929). Je nach Morphologie des Zellkernes lassen sich, wie bereits in Kapitel 2.5.2 erwähnt, 

verschiedene Reifungsstufen unterscheiden. Unreife (stabkernige) neutrophile Granulozyten 

besitzen einen unsegmentierten Kern, der oft hufeisenförmigen gebogen ist. Das Chromatin ist 

weniger geklumpt als beim reifen Granulozyten (Jain, 1993). Reife Granulozyten sind an ihrem 

segmentierten Kern erkennbar (Smith, 2000); (Steffens, 2000); (Liebich, 2004), dessen einzelne 

Segmente oft durch schmale Chromatinbrücken miteinander verbunden sind (Yamada und 

Sonoda, 1970b); (Sinowatz, 2006a). Aufgrund dieser Kernmorphologie werden sie oft auch als 

polymorphkernige Leukozyten (polymorph nuclear leukocyte, PMN) (Banks, 1981); (Hees und 

Tschudi, 1990); (Kolb, 1991) oder segmentkernige Granulozyten bezeichnet. Anhand der 

Ausprägung der Kernsegmentierung kann auf das Alter der Zelle geschlossen werden. Das 

Vorhandensein von mehr als fünf Segmenten wird als Hypersegmentierung bezeichnet und stellt 

ein Zeichen für eine Überalterung der Zelle dar (Hees und Tschudi, 1990). Innerhalb des Kernes 

sind, je nach Chromatinkondensation, zwei unterschiedlich elektronendichte Bereiche zu sehen. 

Die hellere Region befindet sich im Kernzentrum und wird von der dunkleren Region, die an die 

Kernmembran grenzt, umgeben (Yamada und Sonoda, 1970b). Die stark basophile Anfärbung der 

Kernsegmente entsteht durch die dichten Heterochromatinbereiche (Hees und Tschudi, 1990). 

Nukleoli sind meist nicht vorhanden (Yamada und Sonoda, 1970b); (Smith, 2000); (Steffens, 

2000). Bei verschiedenen Spezies kann an den Kernen der neutrophilen Granulozyten weiblicher 

Tiere ein ca. 1,5 µm dicker, trommelschlegelartiger Anhang („drum-stick“), der den verklumpten 

Teil des zweiten X-Chromosoms darstellt, gefunden werden (Hees und Tschudi, 1990); (Smith, 

2000). Im Zytoplasma kommen typischerweise zahlreiche neutrophile Granula vor (Yamada und 

Sonoda, 1970b); (Banks, 1981); (Smith, 2000); (Sinowatz, 2006a), die, wie bereits in Kapitel 

2.5.1 erwähnt, eine gewisse färberische Neutralität zeigen (Hees und Tschudi, 1990). Die Granula 

stellen Lysosomen dar (Banks, 1981) und werden vom Golgi-Apparat gebildet (Jain, 1993). Je 

nach Inhalt können primäre (azurophile) und sekundäre (spezifische) Granula unterschieden 

werden (Hees und Tschudi, 1990), deren Namensgebung in Bezug zu deren zeitlicher 

Erscheinung im Verlauf der Granulopoese steht (siehe Kapitel 2.5.2) (Jain, 1993). Primäre 

Granula bilden sich im Stadium des Promyelozyten, sekundäre Granula erst im Stadium des 

Myelozyten aus (Rausch und Moore, 1975); (Jain, 1993). Bei Wiederkäuern kommen als 

Besonderheit auch die so genannten „großen Granula“ vor (Baggiolini et al., 1985); (Styrt, 1989); 

(Kramer, 2000), die zeitlich gesehen zwischen den primären und den sekundären Granula 

auftreten (Baggiolini et al., 1985). Die primären Granula sind bei den Haussäugern ungefähr 0,5 

µm groß, haben eine runde bis längliche Gestalt (Steffens, 2000) und können weniger stark 
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angefärbt werden als die sekundären Granula (Steffens, 2000). Laut Jain (1993) lassen sie sich 

aufgrund ihres reduzierten Gehalts an Glykosaminoglykanen (Mukopolysacchariden) mit 

routinemäßigen Blut-Färbemethoden gar nicht darstellen (Jain, 1993). Die sekundären Granula 

sind kleiner und elektronendichter als die primären Granula, kommen aber häufiger vor (Steffens, 

2000). In reifen Zellen ist das Verhältnis von primären zu sekundären Granula ungefähr 1:2 (Jain, 

1993). In fortgeschrittenen Reifungsstadien weisen die sekundären Granula eine scharf kontuierte 

Membran auf, ihr Inhalt ist grob und dunkel (Baggiolini et al., 1985). Die „großen Granula“ 

stellen die größten Granula dar, haben eine runde Gestalt und einen blassen und einheitlichen 

Inhalt. Bei den Wiederkäuern scheinen sie im Allgemeinen die vorherrschende Granula-Art zu 

sein (Baggiolini et al., 1985), beim Schaf sind sie jedoch nur selten zu finden (Buchta, 1990); 

(Kramer, 2000). Das Zytoplasma der neutrophilen Granulozyten enthält weiterhin 

Glykogenpartikel (Rudolph und Schnabl, 1981); (Steffens, 2000), freie Ribosomen, Polysomen, 

phagozytische Vakuolen, wenige Mitochondrien, einen Golgi-Apparat und vereinzelte Zisternen 

des endoplasmatischen Retikulums (Yamada und Sonoda, 1970b). Ein schmaler, organellfreier 

Zytoplasmarand in der Zellperipherie beherbergt außerdem zytoskelettale Elemente wie 

Mikrofilamente und Mikrotubuli (Smith, 2000). Die Oberfläche der neutrophilen Granulozyten ist 

gewöhnlich glatt (Yamada und Sonoda, 1970b). Sie trägt jedoch einige kurze Mikrovilli, die 

höchstwahrscheinlich für die Adhäsion am Gefäßendothel von Bedeutung sind. Bei der Migration 

von der Zirkulation in den extravasalen Raum nehmen die neutrophilen Granulozyten eine 

länglichere Form an und bilden lange Pseudopodien aus, um ihrer Funktion als bewegliche 

Phagozyten nachzugehen (Steffens, 2000).  

 

2.5.4 Aufgaben 

Die neutrophilen Granulozyten stellen eine der zellulären Hauptkomponenten des angeborenen 

Immunsystems dar (Tung et al., 2009) und bilden die erste Abwehr gegen eindringende 

Organismen (Jain, 1993); (Thelen et al., 1993); (Smith, 2000). Die Aufgaben dabei sind 

unspezifisch (Liebich, 2004). Ihre Hauptfunktion stellt die Phagozytose von verschiedenen 

Partikeln, Bakterien oder anderen Mikroorganismen (Banks, 1981) mit deren anschließendem 

Abbau durch lysosomale Enzyme (Sinowatz, 2006a) oder deren Tötung mittels reaktiver 

Sauerstoffspezies dar (Buchta, 1990). Diese Aktivität zeigt sich vor allem bei einer akuten lokalen 

Entzündung (Banks, 1981), wobei Schafe in diesem Falle generell eine beachtliche Reaktion der 

neutrophilen Granulozyten aufweisen (Greenwood, 1977). Die neutrophilen Granulozyten sind 

amöboid beweglich (Hees und Tschudi, 1990); (Sinowatz, 2006a) und können auf bestimmte 

Reize hin, z.B. Bakterien und deren Zerfallsprodukte, kleine Blutgefäße durchwandern und ins 

umliegende Gewebe austreten (Sinowatz, 2006a). Sie werden im Falle einer Infektion schnell 
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rekrutiert und reagieren mit der eben erwähnten Phagozytose des schädlichen Agens, Freisetzung 

von Enzymen und Proteinen und dem Respiratory Burst (Woldehiwet et al., 2003); (Farinacci et 

al., 2008); (Johnson et al., 2009); (Tung et al., 2009). Für eine effiziente Phagozytose ist jedoch 

eine vorherige Bindung von Immunglobulinen oder Komplementfaktoren an die zu entfernenden 

Partikel (Opsonisierung) bedeutend (Lösch et al., 2000). Der Respiratory Burst spielt eine 

Hauptrolle bei der Bekämpfung mikrobieller Infektionen (Whist et al., 2002). Dabei führt die 

Aktivierung der Nicotinamid-Adenin-Dinukleotid-Phosphat (NADPH)-Oxidase (Thelen et al., 

1993); (Lösch et al., 2000); (Tung et al., 2009), der Superoxid-Dismutase oder der 

Myeloperoxidase (Lösch et al., 2000) zur Produktion reaktiver Sauerstoffspezies (reactive oxygen 

species, ROS) (Tung et al., 2009) aus molekularem Sauerstoff (Lösch et al., 2000). In 

unstimulierten Zellen sind diese Enzyme inaktiv (Farinacci et al., 2008). Gebildete Oxid-Anionen 

(O2
-), Wasserstoffperoxid (H2O2) und Hypochlorit (OCl-) töten die Mikroorganismen durch 

Oxidation ab (Lösch et al., 2000). Die phagozytische und oxidative Funktion kann durch 

Chemolumineszenz nachgewiesen werden (Woldehiwet et al., 2003); (Johnson et al., 2009), da 

aktive Zellen Licht abgeben. Der Respiratory Burst ist bei Lämmern weniger ausgeprägt als bei 

adulten Schafen. Erst im Alter von ca. drei Monaten erreicht das Lamm nahezu gleiche Werte wie 

das Muttertier. Daraus lässt sich schließen, dass die neutrophilen Granulozyten von Lämmern in 

den ersten zwei Monaten wahrscheinlich weniger zur Abwehr von pathogenen Mirkoorganismen 

befähigt sind (Johnson et al., 2009). Im Vergleich zu Mensch und Rind ist die oxidative Reaktion 

der neutrophilen Granulozyten des Schafes jedoch viel geringer, was darauf hinweisen könnte, 

dass die Hauptantwort der neutrophilen Granulozyten bei dieser Spezies Sauerstoff-unabhängig ist 

(Buchta, 1990). Die neutrophilen Granulozyten fungieren weiterhin auch als sekretorische Zellen, 

da sie bei Kontakt mit phagozytosefähigem Material auch in der Lage sind, ihre Granula nach 

außen abzugeben, um dieses extrazellulär zu verdauen (Sinowatz, 2006a). Oft werden auch 

zelluläre Bestandteile in die Auflösungsprozesse miteinbezogen, was dann zur Eiterbildung führt 

(Liebich, 2004).  

 

2.5.5 Zytochemische Eigenschaften 

Die neutrophilen Granulozyten zeichnen sich durch eine äußerst umfangreiche Enzymausstattung 

aus (Rausch und Moore, 1975). Die primären Granula enthalten Peroxidase (Myeloperoxidase) 

(Rausch und Moore, 1975); (Buchta, 1990); (Jain, 1993); (Raskin und Valenciano, 2000); (Smith, 

2000), β-Glucuronidase (Rausch und Moore, 1975); (Buchta, 1990); (Jain, 1993) und saure 

Phosphatase (Jain, 1993); (Raskin und Valenciano, 2000). Die Myeloperoxidase (MPO) stellt den 

einzigen zuverlässigen Marker für die primären Granula dar (Jain, 1993), wobei ihre Aktivität im 

Stadium des Promyelozyten beginnt (Raskin und Valenciano, 2000); (Al Izzi et al., 2007). Die 
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primären Granula enthalten weiterhin Polypeptide, die gegenüber Bakterien, Pilzen und manchen 

behüllten Viren eine starke antimikrobielle Aktivität aufweisen (Liebich, 2004). Die sekundären 

Granula sind im Gegensatz zu den primären Granula Peroxidase-negativ (Styrt, 1989); (Buchta, 

1990); (Smith, 2000), enthalten jedoch unter anderem die alkalische Phosphatase (Jain, 1993); 

(Raskin und Valenciano, 2000); (Smith, 2000); (Steffens, 2000); (Liebich, 2004) und die 

NADPH-Oxidase (Smith, 2000); (Liebich, 2004). Für die sekundären Granula stellt Laktoferrin 

einen geeigneten Marker dar. Dieses wirkt generell bakteriostatisch, indem es das für das 

Bakterienwachstum notwendige Eisen bindet. Teilweise wirkt es jedoch auch bakterizid (Jain, 

1993). Weiterhin kommt in den sekundären Granula Cobalophilin vor, welches das für die DNA-

Replikation der Bakterien benötigte Vitamin-B 12 bindet (Sinowatz, 2006a). Die primären und 

sekundären Granula zeichnen sich weiterhin durch eine Aktivität der Chlorazetat-Esterase aus. 

(Raskin und Valenciano, 2000). Laut Bienzle (2000) besitzen die neutrophilen Granulozyten der 

Schafe im Gegensatz zu den Monozyten keine unspezifischen Esterasen (Bienzle, 2000). Eine 

Aktivität der α-Naphthyl-Azetat-Esterase in ovinen neutrophilen Granulozyten wird jedoch in der 

Literatur mehrfach beschrieben (Schnabl, 1976); (Osbaldiston und Sullivan, 1978); (Ristau et al., 

1985). Fey und Kunze (1970) berichten außerdem über eine Aktivität der Naphthol-AS-Azetat-

Esterase beim Schaf (Fey und Kuntze, 1970). Den neutrophilen Granulozyten der Schafe fehlt laut 

Rausch und Moore (1975) sowie Kramer (2000), Lysozym (Rausch und Moore, 1975); (Kramer, 

2000). Buchta (1990) hingegen konnte geringe Lysozymkonzentrationen in den primären und 

sekundären Granula des Schafes nachweisen (Buchta, 1990). Weiterhin zeigen die neutrophilen 

Granulozyten der Schafe eine positive Periodic-Acid-Schiff-Reaktion (Schnabl, 1976); (Al Izzi et 

al., 2007) und lassen sich mit Sudan-Schwarz anfärben (Raskin und Valenciano, 2000).  

Zusammengefasst enthalten die Granula der neutrophilen Granulozyten trotz speziesbedingter 

Unterschiede viele hydrolytische Enzyme und antibakterielle Substanzen, die für das Abtöten 

phagozytierter Mikroorganismen nötig sind (Jain, 1993). Die neutrophilen Granulozyten der 

Schafe weisen insgesamt weniger Granulakomponenten auf als die der Rinder und der Menschen, 

was darauf hinweisen könnte, dass deren neutrophile Granulozyten eine etwas andere Rolle bei 

der Bekämpfung bakterieller Infektionen spielen (Buchta, 1990). 

 

2.6 Eosinophile Granulozyten 

2.6.1 Allgemeines 

Die eosinophilen Granulozyten gehören, wie bereits erwähnt, in der Gruppe der Leukozyten zur 

Untergruppe der Granulozyten (Liebich, 2004). Im Blut der Schafe sind im Schnitt 5 % (0 - 10 %) 

der weißen Blutkörperchen eosinophile Granulozyten, wobei deren absolute Zahl durchschnittlich 
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0,4x103/µl (0 - 1x103/µl) beträgt (Jain, 1993); (Kramer, 2000). Die Anzahl der zirkulierenden 

eosinophilen Granulozyten wird durch das adrenokortikotrope Hormon (Liebich, 2004) und durch 

Kortikosteroide vermindert (Banks, 1981); (Liebich, 2004). Nach Verlassen des Knochenmarks 

wandern sie nach einer sehr kurzen intravasalen Verweildauer von ca. 30 Minuten in das Gewebe 

aus und überleben dort ungefähr 12 Tage. Normalerweise kehren sie nicht wieder in die 

Zirkulation zurück (Lösch et al., 2000).  

 

2.6.2 Bildung 

Die eosinophilen Granulozyten gehen, wie alle Granulozyten, aus dem Myeloblasten im 

Knochenmark hervor. Über die Stadien des Promyelozyten, des eosinophilen Myelozyten des 

eosinophilen Metamyelozyten und des stabkernigen eosinophilen Granulozyten entwickelt sich 

der reife eosinophile Granulozyt (Liebich, 2004). Die gemeinsamen Charakteristika der 

granulozytären Vorläuferzellen wurden bereits in Kapitel 2.5.2 beschrieben.  

Die erste morphologisch identifizierbare Vorläuferzelle des eosinophilen Granulozyten ist der 

Promyelozyt. Dieser enthält bereits viele große azurophile Granula, wodurch er sich leicht von 

dem neutrophilen Promyelozyten mit seinen feinen Granula unterscheiden lässt (Jain, 1993). 

Azurophile Granula sind als unreif, eosinophile Granula als reif zu betrachten. Ab dem Stadium 

des Myelozyten werden azurophile Granula sehr wahrscheinlich nicht mehr gebildet und demnach 

durch die folgenden Zellteilungen eliminiert (Kolb, 1991). Bei dem eosinophilen Myelozyten ist 

die Peroxidase sowohl in den Granula als auch im rauen endoplasmatischen Retikulum sowie im 

Golgi-Apparat nachweisbar. Ab dem Stadium des Metamyelozyten befindet sich diese nur noch in 

den Granula (Kolb, 1991); (Young, 2000). Im Knochenmark kommt bei den meisten 

Haussäugetieren nur eine geringe Reserve an eosinophilen Granulozyten vor (Jain, 1993). Die 

Bildung der eosinophilen Granulozyten dauert ca. 2 - 6 Tage (Jain, 1993); (Young, 2000), 2 Tage 

später treten sie in die Zirkulation über (Jain, 1993). Sie wird von verschiedenen Faktoren 

aktivierter T-Lymphozyten und Makrophagen reguliert. Im Wesentlichen sind dies IL3, IL5, GM-

CSF, EO-CSF und EO-GSF (Jain, 1993). 

 

2.6.3 Morphologie 

Die eosinophilen Granulozyten der Schafe haben eine runde bis ovale Form (Yamada und 

Sonoda, 1970a) und sind meist etwas größer als die neutrophilen Granulozyten (Norris und 

Cham-Berlin, 1929); (Rudolph und Schnabl, 1981). Bei den Haussäugetieren sind sie im 

Allgemeinen ca. 12 - 14 µm (Banks, 1981); (Liebich, 2004), teilweise sogar bis zu 20 µm groß 
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(Hees und Tschudi, 1990). Der Kern besteht beim Schaf oft aus zwei bis vier Lappen (Yamada 

und Sonoda, 1970a). Er weist regelmäßig eine Brillen- oder Hantelform auf (Hees und Tschudi, 

1990), nicht selten ist er beim Schaf aber auch segmentiert (Norris und Cham-Berlin, 1929). 

Innerhalb des Kernes sind, je nach Chromatinkondensation, zwei unterschiedlich elektronendichte 

Bereiche zu sehen. Die hellere Region befindet sich im Kernzentrum und wird von der dunkleren 

Region, die an die Kernmembran grenzt, umgeben (Yamada und Sonoda, 1970a). 

Heterochromatin kommt reichlich vor und in der Regel sind ein bis zwei Nukleoli vorhanden 

(Hees und Tschudi, 1990). Das Zytoplasma färbt sich basophil (Norris und Cham-Berlin, 1929) 

und enthält zahlreiche eosinophile (azidophile) Granula (Liebich, 2004), die das Zytoplasma meist 

gänzlich ausfüllen und teilweise sogar den Kern bedecken (Banks, 1981). Die Granula stellen 

primäre Lysosomen dar (Liebich, 2004) und werden vom Golgi-Apparat gebildet (Steffens, 2000). 

Mit sauren Farbstoffen wie Eosin stellen sie sich orangerot bis rot dar (Hees und Tschudi, 1990), 

wobei sich diese charakteristische Färbung aus ihrem Gehalt an argininreichen, stark basischen 

Proteinen wie dem „major basic protein“ (MBP) oder dem „eosinophil cationic protein“ (ECP) 

ergibt (Jain, 1993). Bei den Schafen zeichnen sich die eosinophilen Granula teilweise durch eine 

außergewöhnlich starke Elektronendichte aus, variieren in Form und Größe und sind von einer 

Membran umgeben. Anhand von Abweichungen bezüglich der Innenstruktur unterscheiden 

Yamada und Sonoda (1970) beim Schaf sechs verschiedene Granula-Typen. Typ 1 ist rund, ca. 

0,6 µm groß und enthält homogenes, elektronendichtes Material. Typ 2 ist oval bis spindelförmig 

und durchschnittlich 1,1 µm lang und 0,3 µm breit. Er besteht aus ein bis mehreren, äußerst 

elektronendichten „Mittelplatten“ und einer diese umgebende Grundsubstanz (Yamada und 

Sonoda, 1970a). Diese kristalline Ultrastruktur, die teilweise schon unter dem Lichtmikroskop als 

dunkler Einschluss erkennbar wird, stellt eine Besonderheit bei den eosinophilen Granula des 

Schafes dar (Kramer, 2000). Typ 3 ist in der Regel rund, im Schnitt 0,7 µm groß und enthält 

lamellenartige, konzentrisch angeordnete Strukturen, die diesem Granula-Typ das Aussehen eines 

Haarballes verleiht. Typ 4 ist rund oder oval und besteht aus feinen netzartigen Strukturen 

innerhalb einer homogenen Grundsubstanz. Typ 5 ist rund und beinhaltet runde, elektronendichte, 

homogene Gebilde. Typ 6 ist ebenfalls rund oder oval und besteht gleichzeitig aus allen inneren 

Strukturen, die bei Typ 2 - 5 beschrieben wurden. Typ 2 kommt am häufigsten vor, gefolgt von 

Typ 3 und 6. (Yamada und Sonoda, 1970a). Das spärlich ausgebildete Zytoplasma der 

eosinophilen Granulozyten (Kramer, 2000) enthält weiterhin glattes und raues endoplasmatisches 

Retikulum, wenige Mitochondrien, freie Ribosomen, Polysomen, einen Golgi-Apparat (Yamada 

und Sonoda, 1970a); (Rudolph und Schnabl, 1981) und Glykogenpartikel (Rudolph und Schnabl, 

1981). Die dünne Zellmembran der eosinophilen Granulozyten ist generell glatt und bildet bei 

manchen Zellen Pseudopodien aus (Yamada und Sonoda, 1970a). Spärlich ausgebildete 

Mikrovilli werden erst unter dem Elektronenmikroskop erkennbar (Young, 2000).  
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2.6.4 Aufgaben 

Die genaue Funktion der eosinophilen Granulozyten ist bis zum jetzigen Zeitpunkt noch nicht 

vollständig geklärt (Banks, 1981); (Jain, 1993); (Thrall und Weiser, 2004), sie erfüllen aber 

wichtige Aufgaben in der Parasitenabwehr und der Regulierung allergischer und entzündlicher 

Vorgänge (Hees und Tschudi, 1990); (Jain, 1993); (Sansome et al., 2007). Dabei kann ihre 

Wirkung für den Wirt sowohl nützlich als auch schädigend sein (Costa et al., 1997). Ihre 

Hauptfunktion besteht wahrscheinlich in der Beseitigung von Antigen-Antikörper-Komplexen 

(Banks, 1981); (Liebich, 2004); (Sinowatz, 2006a).  

Die eosinophilen Granulozyten werden durch die Freisetzung bestimmter Mediatoren aus 

Gewebs-Mastzellen (Liebich, 2004), basophilen Granulozyten (Jain, 1993), T-Lymphozyten und 

Monozyten aktiviert (Gleich et al., 1993); (Young, 2000). Nach einer kurz andauernden 

Bluteosinophilie wandern sie in die betroffenen Gewebe oder Organe aus (Kraft et al., 2005). Die 

regulierende Funktion der eosinophilen Granulozyten im Allergiegeschehen ergibt sich aus 

mehreren Tatsachen. Neben der Phagozytose von Immunkomplexen und Mastzell-Granula üben 

sie durch Abgabe von Prostaglandinen (PGE1, PGE2) und Zink einen hemmenden Einfluss auf die 

Freisetzung von Histamin, Serotonin und dem Plättchen aktivierenden Faktor (PAF) aus den 

Mastzellen aus. Die Histaminase und die Phospholipase C inaktivieren freies Histamin bzw. PAF. 

Weiterhin wird durch bestimmte Faktoren die Neubildung von Histamin in den Mastzellen 

unterbunden. Durch diese antihistaminischen und antiinflammatorischen Eigenschaften der 

eosinophilen Granulozyten kann auch auf die Regulation eines akuten Entzündungsgeschehens 

geschlossen werden. Darüber hinaus beherbergen die eosinophilen Granula Substanzen, welche 

die ödeminduzierenden Eigenschaften von Serotonin und Bradykinin hemmen (Jain, 1993). 

Obwohl die eosinophilen Granulozyten zur Phagozytose befähigt sind, müssen sie ihre 

bevorzugten Ziele (z.B. Parasiten) wegen deren Größe auf eine andere Weise unschädlich machen 

(Young, 2000). So sezernieren sie ihre Inhaltsstoffe nach außen ins Gewebe (Lösch et al., 2000), 

meist direkt auf das angegriffene Objekt (Young, 2000). Das MBP scheint gegen Parasiten, 

darunter vor allem gegen Würmer, wirksam zu sein (Gleich et al., 1993); (Jain, 1993); (Young, 

2000); (Sinowatz, 2006a ), indem es erst an die Parasitenmembran bindet und diese anschließend 

beschädigt (Thrall und Weiser, 2004). Zudem weist es auch eine zytotoxische Wirkung gegenüber 

Protozoen und Bakterien auf (Gleich et al., 1993); (Young, 2000). Ein Peroxidase-H2O2-

Halogenid-Komplex bildet toxische Sauerstoffmetaboliten, die an der Bekämpfung von Parasiten, 

Bakterien, Mykoplasmen, Pilzen, Protozoen, Viren und Tumorzellen beteiligt sind (Young, 2000). 

Das ECP ist ebenfalls giftig für Würmer, Protozoen und Bakterien (Gleich et al., 1993); (Young, 

2000). Sowohl das MBP als auch das ECP sowie die eosinophile Peroxidase weisen jedoch auch 

eine Toxizität gegenüber manchen Säugerzellen auf, wobei sie vor allem bei den Zellen des 
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respiratorischen Epithels bemerkenswerten Schaden hervorrufen können. Zudem ist das MBP in 

der Lage, eine bronchiale Hyperreagibilität zu induzieren (Gleich et al., 1993). Weiterhin 

produzieren eosinophile Granulozyten Leukotriene (LTC4 und LTD4), die einen Bronchospasmus 

auslösen können (Jain, 1993). Diese Eigenschaften lassen vermuten, dass die eosinophilen 

Granulozyten die wichtigsten Mediatoren bei bronchialem Asthma sind (Gleich et al., 1993). 

Vermutlich sind die eosinophilen Granulozyten zudem an der Koagulation und der Fibrinolyse 

durch Aktivierung von Faktor XII bzw. Plasminogen beteiligt (Jain, 1993). Schließlich können sie 

andere Immunreaktionen einschließlich der Antwort der T-Lymphozyten beeinflussen und als 

Antigen präsentierende Zellen fungieren (Costa et al., 1997). 

 

2.6.5 Zytochemische Eigenschaften 

Die eosinophilen Granula enthalten eine Reihe verschiedener Substanzen (Jain, 1993). Im 

Internum der Granula befindet sich das „major basic protein“ (MBP) (Gleich et al., 1993); (Jain, 

1993); (Costa et al., 1997); (Young, 2000); (Sinowatz, 2006a), Zink und die Phospholipase C 

(Jain, 1993). Das Externum der Granula beinhaltet die eosinophile Peroxidase (EPO) (Gleich et 

al., 1993); (Jain, 1993); (Costa et al., 1997); (Raskin und Valenciano, 2000); (Steffens, 2000); 

(Young, 2000); (Sinowatz, 2006a), die beim Schaf eine stärkere Aktivität als die Myeloperoxidase 

der neutrophilen Granulozyten aufweist (Jain, 1967) und sich sowohl strukturell als auch 

biochemisch von dieser unterscheidet (Raskin und Valenciano, 2000). Die Granulamatrix schließt 

zusätzlich die saure Phosphatase (Jain, 1993); (Young, 2000), hydrolytische lysosomale Enzyme 

(Jain, 1993), das „eosinophil cationic protein“ (ECP) und das „eosinophil-derived neurotoxin“ 

(EDN) ein (Gleich et al., 1993); (Costa et al., 1997); (Young, 2000). Darüber hinaus enthalten die 

Granula unter anderem Cathepsin D und die ß-Glucuronidase (Young, 2000). Die alkalische 

Phosphatase kann bei den eosinophilen Granulozyten der Schafe sowohl positiv (Fey und Kuntze, 

1970) als auch negativ sein (Atwal und McFarland, 1967); (Jain, 1968); (Jain, 1970); (Schnabl, 

1976). Bei Wiederkäuern können teilweise unspezifische Esterasen in den eosinophilen 

Granulozyten vorkommen (Raskin und Valenciano, 2000). So wird beim Schaf sowohl von einer 

Aktivität der α-Naphthyl-Azetat-Esterase (Fey und Kuntze, 1970); (Schnabl, 1976) als auch der 

Naphthol-AS-Azetat-Esterase berichtet (Fey und Kuntze, 1970). Andere Autoren hingegen 

konnten unspezifische Esterasen bei den eosinophilen Granulozyten der Schafe nicht nachweisen 

(Jain, 1970); (Osbaldiston und Sullivan, 1978). Die eosinophilen Granulozyten weisen generell 

keine Aktivität der Chlorazetat-Esterase auf (Stobbe, 1970); (Raskin und Valenciano, 2000). Beim 

Schaf lassen sie sich mit Sudan-Schwarz anfärben und zeigen eine positive Periodic-Acid-Schiff-

Reaktion (Schnabl, 1976); (Al Izzi et al., 2007). Außerdem produzieren sie weitere Enzyme, 

darunter auch die Kollagenase, die Histaminase und die NADPH-Oxidase. Den eosinophilen 
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Granulozyten fehlen im Übrigen Lysozym, Laktoferrin und Phagozytin, die eine bakterizide 

Wirkung aufweisen (Young, 2000). 

 

2.7 Basophile Granulozyten 

2.7.1 Allgemeines 

Auch die basophilen Granulozyten gehören in der Gruppe der Leukozyten zur Untergruppe der 

Granulozyten (Liebich, 2004). Aufgrund ähnlicher morphologischer und funktioneller 

Eigenschaften werden sie oft mit den Gewebsmastzellen gleichgestellt (Jain, 1993). Im Blut der 

Säugetiere kommen sie nur sehr selten vor (Hees und Tschudi, 1990); (Liebich, 2004) und werden 

im Differentialblutbild häufig nicht gefunden (Thrall und Weiser, 2004). Beim Schaf machen sie 

mit einer Anzahl von 0,05x103/µl (0 - 0,3x103/µl) durchschnittlich nur 0,5 % (0 - 3 %) der 

gesamten Leukozyten aus (Jain, 1993); (Kramer, 2000). Eine Basophilie ist häufig im 

Zusammenhang mit einer Eosinophilie zu sehen, da bestimmte Substanzen der basophilen 

Granulozyten, wie beispielsweise Histamin, chemotaktisch auf eosinophile Granulozyten wirken 

und ein funktionelles Zusammenspiel beider Granulozyten-Arten angenommen wird (Jain, 1993). 

Die genaue Identifizierung der basophilen Granulozyten kann sich als schwierig erweisen, wenn 

die Probennahme und die Fixierung der Blutausstriche nicht optimal sind (Steffens, 2000). Um sie 

gezielt im Blut nachzuweisen, ist beispielsweise die Färbung mit Toluidinblau sinnvoll (Jain, 

1993). Die Lebensdauer der basophilen Granulozyten beträgt im Blut in der Regel 6 - 12 Stunden, 

nach Auswanderung ins Gewebe überleben sie dort ungefähr 12 - 14 Tage (Kraft et al., 2005). 

 

2.7.2 Bildung 

Die basophilen Granulozyten werden wahrscheinlich in ähnlicher Weise wie die neutrophilen und 

die eosinophilen Granulozyten über mehrere Zwischenstufen im Knochenmark gebildet (Jain, 

1993). Aus der pluripotenten Stammzelle, die allen Blutzellen gemeinsamen ist, geht die 

myeloische Vorläuferzelle hervor (Kraft et al., 2005). Diese entwickelt sich über die Stadien des 

Myeloblasten, des Promyelozyten, des basophilen Myelozyten, des basophilen Metamyelozyten 

und des stabkernigen basophilen Granulozyten letztendlich zum reifen basophilen Granulozyten 

(Liebich, 2004). Die Entwicklung im Knochenmark dauert in der Regel mindestens 2,5 Tage und 

ist meist vollständig abgeschlossen, bevor die Zellen ins Blut abgegeben werden (Scott und 

Stockham, 2000). Die Produktion, die Differenzierung und das Wachstum der basophilen 

Granulozyten werden vor allem durch IL3, IL5 und GM-CSF gesteuert. Diese 

„Basophilopoietine“ werden von aktivierten T-Lymphozyten gebildet (Jain, 1993). 
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2.7.3 Morphologie 

Die basophilen Granulozyten erscheinen im Blutausstrich oft polyedrisch (Greenwood, 1977) und 

stellen bei den Haussäugern mit einem Durchmesser von 8 - 10 µm die kleinsten Granulozyten 

dar (Steffens, 2000). Der Zellkern besteht meist aus zwei oder drei (Yamada und Sonoda, 1972a); 

(Greenwood, 1977); (Hees und Tschudi, 1990); (Jain, 1993), manchmal aber auch aus bis zu fünf 

Segmenten (Rudolph und Schnabl, 1981); (Rothwell et al., 1994), die beim Schaf eine eckige 

Form aufweisen (Greenwood, 1977). Der Kern zeichnet sich durch eine beträchtliche Menge an 

Heterochromatin aus und Nukleoli können vorkommen (Steffens, 2000). Das Zytoplasma enthält 

zahlreiche basophile Granula (Yamada und Sonoda, 1972a), die eine runde bis ovale Gestalt 

aufweisen und von einer deutlichen Membran umgeben werden. Beim Schaf sind sie laut Yamada 

und Sonoda (1972) durchschnittlich 0,67 µm groß (Yamada und Sonoda, 1972a), Rudolph und 

Schnabl (1981) hingegen beschreiben beim Schaf eine Größe von bis zu 1,5 µm (Rudolph und 

Schnabl, 1981). Anhand ihrer Elektronendichte und ihrer inneren Struktur unterscheiden Yamada 

und Sonoda (1972) drei verschiedene Granula-Typen. Typ A zeichnet sich durch eine dichte, 

homogene Struktur aus. Typ B hingegen weist einen dichten, grob granulären Inhalt und Typ C 

einen weniger dichten, fein granulären Inhalt mit einer netzartigen Innenstruktur auf. Typ A 

kommt seltener vor als Typ B oder Typ C (Yamada und Sonoda, 1972a). Die basophilen Granula 

färben sich im Blutausstrich in der Regel dunkler an als der Kern (Banks, 1981) und überlagern 

diesen häufig (Banks, 1981); (Kramer, 2000). Sie sind wasserlöslich (Yamada und Sonoda, 

1972a); (Jain, 1993); (Steffens, 2000) und verschwinden daher oft in unfixierten Blutausstrichen. 

In schwach fixierten Ausstrichen können sie schmutzig (Jain, 1993) oder teilweise vakuolisiert 

erscheinen (Jain, 1993); (Steffens, 2000), manchmal aber auch in der Anzahl vermindert sein 

(Jain, 1993); (Rothwell et al., 1994). Die für basophile Granulozyten und Mastzellen 

charakteristische Metachromasie (Banks, 1981); (Hees und Tschudi, 1990); (Jain, 1993); (Costa et 

al., 1997) beschreibt die Fähigkeit, durch basische Farbstoffe in einen anderen Farbton angefärbt 

zu werden, als dem der angebotenen Färbelösung (Pschyrembel, 2002) und resultiert aus einem 

hohen Gehalt an sulfatierten Glykosaminoglykanen (Jain, 1993); (Scott und Stockham, 2000). 

Das Zytoplasma enthält weiterhin Ribosomen, Polyribosomen, Glykogenpartikel, Mikrotubuli, 

Aktinfilamente, Intermediärfilamente (Steffens, 2000), Mitochondrien, endoplasmatisches 

Retikulum (Yamada und Sonoda, 1972a); (Steffens, 2000) und einen dürftig entwickelten Golgi-

Apparat, in dessen Nähe ein oder zwei Zentriolen vorkommen können (Yamada und Sonoda, 

1972a). Die dünne Zytoplasmamembran (Yamada und Sonoda, 1972a) ist scharf umrissen und 

trägt zahlreiche Falten und Mikrovilli (Jain, 1993); (Steffens, 2000). 
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2.7.4 Aufgaben 

Über die funktionelle Bedeutung der basophilen Granulozyten ist bis jetzt noch wenig bekannt 

(Banks, 1981); (Hees und Tschudi, 1990); (Thrall und Weiser, 2004). Sie zeigen nur eine sehr 

geringe Beweglichkeit und Phagozytosefähigkeit (Hees und Tschudi, 1990). Es ist jedoch 

bewiesen, dass sie für allergische und entzündliche Prozesse bestimmte Mediatoren wie Histamin, 

Heparin oder Leukotriene freisetzen (Hees und Tschudi, 1990), wenn spezifische Antigene und 

Immunglobulin E (IgE) an bestimmte Rezeptoren auf der Plasmamembran der basophilen 

Granulozyten binden. Eine Aktivierung der Zelle mit Freisetzung des Granulainhalts kann aber 

auch durch verschiedene biologische Stimuli (z. B. Produkte der Komplement-Aktivierung, 

Zytokine) oder chemische Substanzen (z. B. Insektengifte, Kalzium-Ionophore) hervorgerufen 

werden (Costa et al., 1997). Eine der wichtigsten Aufgaben der basophilen Granulozyten ist das 

Auslösen einer sofortigen Hypersensitivitätsreaktion bei allergischen Prozessen (Jain, 1993). 

Diese Reaktion wird durch die Interaktion von gebundenem, antigenspezifischem IgE auf der 

Oberfläche der basophilen Granulozyten und/oder Mastzellen mit bestimmten multivalenten 

Antigenen ausgelöst. Die physiologischen Effekte sind auf die mediatorbedingten Reaktionen der 

Zielzellen, beispielsweise des Gefäßendothels, der glatten Muskulatur, der Drüsen oder der 

Leukozyten zurückzuführen (Costa et al., 1997). Das aus den Granula freigesetzte Histamin wirkt 

gefäßerweiternd (Kraft et al., 2005) und führt durch Erhöhung der Gefäßpermeabilität (Jain, 

1993); (Scott und Stockham, 2000) zu einem Flüssigkeitsaustritt aus den Gefäßen (Kraft et al., 

2005). Die basophilen Granulozyten beeinflussen zudem Koagulation und Fibrinolyse (Jain, 

1993). So hemmt Heparin die Blutgerinnung (Kolb, 1991); (Scott und Stockham, 2000); (Liebich, 

2004) und hat demzufolge eine gewisse Schutzwirkung gegen die disseminierte intravasale 

Gerinnung (Kraft et al., 2005). Aber auch die Bereitstellung von Leukotrienen stellt eine wichtige 

Aufgabe der basophilen Granulozyten dar. Diese fungieren bereits in sehr geringen 

Konzentrationen als Mediatoren bei Entzündungsprozessen (Sinowatz, 2006a). Da die basophilen 

Granulozyten weiterhin das „major basic protein“ (MBP) enthalten (Scott und Stockham, 2000), 

wird ihnen auch eine Wirkung gegen Ektoparasiten (z.B. Zecken) zugeschrieben (Costa et al., 

1997). Den basophilen Granulozyten und den Mastzellen ist der Gehalt an Heparin und Histamin 

(Liebich, 2004) sowie die IgE-Rezeptoren auf der Plasmamembran gemeinsam (Jain, 1993); 

(Costa et al., 1997); (Marone et al., 1997). Eine weitere Besonderheit beider Zellarten ist die 

Fähigkeit, ihre Granula nach der Degranulation zu resynthetisieren (Jain, 1993). Nicht umsonst 

werden die basophilen Granulozyten deshalb auch oft als „Blutmastzellen“ bezeichnet (Hees und 

Tschudi, 1990); (Sinowatz, 2006a). Es gibt aber keinen Beweis dafür, dass basophile 

Granulozyten ins Gewebe auswandern und sich dort zu Gewebsmastzellen transformieren (Thrall 

und Weiser, 2004). Außerdem sind die basophilen Granulozyten im Gegensatz zu den Mastzellen 

Peroxidase-negativ (Jain, 1993). 
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2.7.5 Zytochemische Eigenschaften 

Der Inhalt der basophilen Granula variiert ja nach Spezies (Jain, 1993). In der Regel enthalten sie 

Histamin, Heparin (Banks, 1981); (Hees und Tschudi, 1990); (Kolb, 1991); (Jain, 1993); 

(Steffens, 2000); (Liebich, 2004); (Thrall und Weiser, 2004); (Kraft et al., 2005); (Sinowatz, 

2006a), Proteoglykane (Costa et al., 1997) und das MBP (Gleich et al., 1993); (Costa et al., 1997); 

(Scott und Stockham, 2000). Außerdem weisen sie β-Glucuronidase, Elastase (Costa et al., 1997); 

(Scott und Stockham, 2000) und Cathepsin auf (Scott und Stockham, 2000). Die alkalische 

Phosphatase ist in den Granula nur teilweise vorhanden (Jain, 1993). Aktivierte Zellen 

produzieren neben den inflammatorischen Metaboliten der Arachidonsäure (Costa et al., 1997), 

wie Thromboxan A2 oder Leukotriene, auch PAF (Jain, 1993). Die basophilen Granulozyten der 

Schafe besitzen keine Peroxidase (Jain, 1993); (Raskin und Valenciano, 2000); (Al Izzi et al., 

2007). Auch die saure Phosphatase, saure Hydrolasen (Jain, 1993) und die bei den Mastzellen 

vorkommende Tryptase fehlt ihnen. Eine Aktivität der Chlorazetat-Esterase ist in der Regel 

ebenso nicht nachweisbar (Jain, 1993); (Scott und Stockham, 2000). Die basophilen Granulozyten 

der Schafe lassen sich mit Sudan-Schwarz anfärben und zeigen eine positive Periodic-Acid-

Schiff-Reaktion (Al Izzi et al., 2007), die jedoch nicht glykogenbedingt ist (Stobbe, 1970).  

  

3. Enzymhistochemie 

3.1 Definition und Anwendung 

Die Enzymhistochemie dient der exakten Lokalisation von Enzymen in Zellen und Geweben 

(Sinowatz, 2006b). Enzyme stellen ubiquitär verbreitete, katalytisch wirksame Proteine dar, 

welche die chemische Reaktionen im Stoffwechselgeschehen der Zellen und Gewebe ermöglichen 

(Romeis, 2010). Enzymhistochemische Methoden haben demnach das Ziel, Stoffwechselvorgänge 

in der Zelle darzustellen und bestimmte Zellstrukturen aufgrund ihrer charakteristischen 

Enzymausstattung zu identifizieren (Sinowatz, 2006b).  

 

3.2 Technik 

Enzyme können durch verschiedene Methoden nachgewiesen werden, wobei die häufigste 

Technik der Nachweis der enzymatischen Aktivität darstellt. Bei dieser Methode wird im 

Allgemeinen ein wasserlösliches Substrat angeboten, aus dem durch die Enzymreaktion ein oder 

mehrere wasserunlösliche Produkte entstehen. Diese werden anschließend sichtbar gemacht 

(Romeis, 2010), indem eines der Spaltprodukte durch Zufügen eines weiteren Reagenz in einen 
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unlöslichen Komplex übergeführt wird. Dieser zeigt sich als Niederschlag am Ort der 

Enzymaktivität und kann unter dem Licht- oder Elektronenmikroskop betrachtet werden  

(Sinowatz, 2006b). Die simultane Azokupplungsreaktion stellt eine wichtige 

Präzipitationsmethode zum Nachweis der enzymatischen Aktivität dar. Sie umfasst zwei Schritte: 

auf die Umsetzung eines Substrats (Naphthol-, Naphtylamin-, Indoxyl- oder Indolylamin-

Derivate) durch das entsprechende Enzym (primäre Reaktion) folgt die Präzipitationsreaktion 

durch Zugabe eines Diazoniumsalzes oder hexazotierten Pararosanilins. Diese reagieren mit dem 

primären Reaktionsprodukt und es entsteht ein unlöslicher Azofarbstoff (sekundäre Reaktion) 

(Lojda et al., 1979). Die Farbe des entstandenen Farbkomplexes ist abhängig von der Art des 

eingesetzten Salzes. Fast Blue führt zu einer blauen, Fast Red hingegen zu einer roten Färbung. 

Bei Verwendung hexazotierten Pararosanilins anstatt eines Salzes entsteht ebenfalls ein rotes 

Reaktionsprodukt (Romeis, 1989). Neben den Präzipitationsreaktionen gibt es viele weitere 

Methoden zum Nachweis von Enzymen, beispielsweise sukzessive Azokupplungsreaktionen 

(Lojda et al., 1979), Synthesereaktionen und Substratfilmverfahren (Lojda et al., 1979); 

(Sinowatz, 2006b). Darüber hinaus kann man die antigenen Eigenschaften des Enzymproteins 

(Immunhistochemie) nachweisen, die die zelluläre Lokalisation anzeigen, jedoch keinen 

Rückschluss auf die Aktivität des Enzyms zulassen. Zudem kann die spezifische Bindung von 

markierten Hemmsubstanzen oder anderen Substraten nachgewiesen werden (Romeis, 2010). Die 

Vorbehandlung des Präparates hat einen bedeutenden Einfluss auf den Nachweis eines Enzyms 

(Sinowatz, 2006b); (Romeis, 2010). Es sollten möglichst immer frische Proben verwendet 

werden, eine Fixierung kann zu einer Inaktivierung der Enzymaktivität führen (Romeis, 2010). 

Aus dem großen Spektrum der enzymhistochemischen Nachweismethoden sollen nun kurz jene 

Techniken dargestellt werden, die auch in meiner Arbeit angewendet werden. 

 

3.2.1 Phosphatasen 

Phosphatasen gehören zur Gruppe der Hydrolasen, wobei die saure und die alkalische 

Phosphatase im Speziellen zu den Hydrolasen der Phosphomonoester gehören: Monoester der o-

Phosphorsäure + H2O ↔ Alkohol + Orthophosphat (Lojda et al., 1979).  

Die saure Phosphatase kommt in erythroiden Vorläuferzellen, Megakaryozyten, Thrombozyten, 

Lymphozyten, Plasmazellen, Monozyten und Granulozyten vor, wobei bei den Erythrozyten und 

den Leukozyten verschiedene, für die jeweiligen Zellen charakteristische, Isoenzyme existieren 

(Raskin und Valenciano, 2000). Ihr Nachweis dient vor allem der Darstellung des lysosomalen 

Apparates (Romeis, 1989). Das pH-Optimum für die Enzymaktivität liegt in der Regel zwischen 4 

und 5 (Lojda et al., 1979). Die häufigste Nachweismethode für die saure Phosphatase stellt das 
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Azokupplungsverfahren dar (Romeis, 1989), wobei als Substrat unter anderem Naphthol-AS-BI-

Phosphat zum Einsatz kommen kann (Lojda et al., 1979); (Romeis, 1989). Die alkalische 

Phosphatase dient als Marker der neutrophilen Granulozyten (Romeis, 1989). Das pH-Optimum 

für die Enzymaktivität liegt generell im stark alkalischem Bereich (Lojda et al., 1979); (Romeis, 

1989), beim Schaf im Speziellen bei pH 9,0 - 9,2 (Rausch und Moore, 1975). Das Enzym wird 

durch verschiedene Ionen (Mg2+, Mn2+, Zn2+, Co2+) aktiviert (Lojda et al., 1979), wobei bei 

Schafen vor allem Mg2+ für die maximale Aktivität benötigt wird (Rausch und Moore, 1975).  

Phosphat- und Arsenatanionen hingegen inhibieren die Enzymaktivität (Lojda et al., 1979). Die 

Methode der Wahl für den Enzymnachweis stellt das Azokupplungsverfahren dar (Romeis, 1989).  

 

3.2.2 Peroxidasen 

Peroxidasen stellen Hämproteine dar und katalysieren die Oxidation verschiedener Substanzen in 

Anwesenheit von Wasserstoffperoxid, das dabei zu Wasser reduziert wird (Romeis, 1989): 

Donator + H2O2 → oxidierter Donator + 2 H2O (Lojda et al., 1979). Sie dienen als Marker für 

neutrophile und eosinophile Granulozyten sowie Monozyten (Raskin und Valenciano, 2000). Die 

Peroxidase der neutrophilen Granulozyten und der Monozyten wird als Myeloperoxidase (MPO) 

bezeichnet, jene der eosinophilen Granulozyten als eosinophile Peroxidase (EPO) (Daimon et al., 

1985). Für den Nachweis der Enzyme sollten möglichst immer frische Präparate verwendet 

werden, da die MPO äußerst empfindlich ist und die Enzymaktivität mit der Zeit nachlässt 

(Raskin und Valenciano, 2000). Die am meisten angewendete Technik zum Nachweis der 

Peroxidasen ist die Diaminobenzidinmethode nach Graham und Karnovsky (1966), bei der 

Diaminobenzidin oxidiert wird (Romeis, 1989). Benzidingemische zeichnen sich im Allgemeinen 

durch ihre hohe Sensitivität zum Enzymnachweis aus, sie stellen jedoch potente Karzinogene dar 

(Raskin und Valenciano, 2000).  

 

3.2.3 β-Glucuronidase 

Die β-Glucuronidase zählt zu den sauren Hydrolasen und katalysiert folgende Reaktion: β-

Glucuronid + H2O ↔ Glucuronat + Aglykon (Lojda et al., 1979). Sie kommt in Thrombozyten 

(Jain, 1993), Lymphozyten, Monozyten und Granulozyten vor (Raskin und Valenciano, 2000), 

wobei sie in den Lysosomen, im endoplasmatischen Retikulum (Lojda et al., 1979) und in den 

Mikrosomen lokalisiert ist. Das pH-Optimum für die Enzymaktivität liegt zwischen 4,4 und 5,4 

(Lorbacher et al., 1967). Die Methode der Wahl zum Enzymnachweis stellt die simultane 

Azokupplungsreaktion nach Hayashi et al. (1964) dar. Als Substrat dient hierbei Naphthol AS-BI 
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β-Glucuronid, das eine sehr hohe Hydrolyserate aufweist und eine äußerst genaue Lokalisierung 

der Enzymaktivität ermöglicht (Lojda et al., 1979).  

 

3.2.4 Esterasen 

Esterasen lassen sich generell in unspezifische und spezifische Esterasen einteilen (Raskin und 

Valenciano, 2000). Stobbe (1970) definiert die unspezifischen Esterasen als solche Enzyme, die 

bei den Substraten α-Naphthyl-Azetat und Naphthol-AS-Azetat eine Esterase-Aktivität aufweisen 

(Stobbe, 1970). Zu den spezifischen Esterasen zählt unter anderem die Chlorazetat-Esterase. Die 

beiden Gruppen der Esterasen können biochemisch durch Separation ihrer Isoenzyme mittels 

Gelelektrophorese unterschieden werden (Raskin und Valenciano, 2000), zudem sind die 

spezifischen Esterasen resistent gegenüber eine Hemmung durch Natrium-Fluorid (Romeis, 

1989); (Raskin und Valenciano, 2000). 

Die unspezifischen Esterasen zählen zu den Carboxylester-Hydrolasen (Lojda et al., 1979) und 

sind im endoplasmatischen Retikulum, in den Lysosomen, in den Mitochondrien und im 

Hyaloplasma lokalisiert (Lojda et al., 1979). In der Regel zeigen Erythrozyten, Thrombozyten, 

(Fey und Kuntze, 1970), T-Lymphozyten (Jain, 1993), Monozyten und Granulozyten eine 

Enzymaktivität (Raskin und Valenciano, 2000). Der Name „unspezifische Esterasen“ beruht auf 

der Tatsache, dass sie eine hohe Bandbreite ihrer Substratspezifität aufweisen und ihre Aktivität in 

unterschiedlichen pH-Bereichen nachzuweisen ist (Raskin und Valenciano, 2000). Das pH-

Optimum der meisten unspezifischen Esterasen liegt zwischen 5,0 und 8,0 (Lojda et al., 1979). 

Ristau et al. (1985) verwendeten zum Nachweis der α-Naphthyl-Azetat-Esterase einen pH-Wert 

von 5,8 (Ristau et al., 1985), Osbaldiston und Sullivan (1978) erzielten beim Schaf mit einem pH-

Wert zwischen 6,0 und 6,5 das beste Färbeergebnis (Osbaldiston und Sullivan, 1978). Zum 

Enzymnachweis werden meist Azokupplungsreaktionen durchgeführt, wobei die angewendeten 

Substrate Ester von einfachen oder substituierten Naphtholen oder Indoxylen darstellen, die auch 

von Cholinesterasen oder manchen Peptidasen hydrolysiert werden können (Lojda et al., 1979). 

Die Chlorazetat-Esterase ist äußerst substratspezifisch (Stobbe, 1970) und stellt einen Marker für 

die neutrophilen Granulozyten und deren Vorläuferzellen dar (Romeis, 1989). Sie liefert 

spezifischere Ergebnisse als die Peroxidase, weist jedoch eine geringere Sensitivität auf (Raskin 

und Valenciano, 2000). Der Enzymnachweis erfolgt vor allem mittels Azokupplungsverfahren 

(Romeis, 1989), wobei die Reaktion vermutlich durch das Zusammenwirken mehrerer Enzyme, 

wie beispielsweise Chymotrypsin und Elastase, zustande kommt. Diese hydrolysieren Ester, die 

mit dem Substrat Naphthol-AS-D-Chlorazetat verbunden sind (Raskin und Valenciano, 2000). 

Osbaldiston und Sullivan (1978) erzielten bei einem pH-Wert zwischen 5,5 bis 6,5 das beste 
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Färbeergebnis (Osbaldiston und Sullivan, 1978). 

 

3.3 Enzymausstattung der ovinen Blutzellen  

Auf die zytochemischen Eigenschaften der Blutzellen wurde bereits bei der Charakterisierung der 

einzelnen Zellen in dieser Arbeit eingegangen. In diesem Kapitel erfolgt deshalb lediglich eine 

tabellarische Zusammenfassung (vgl. Tab. II.2) der enzymatischen Ausstattung der Blutzellen des 

Schafes im Hinblick auf die Phosphatasen, die Peroxidase, die β-Glucuronidase und die Esterasen. 

Dabei wurden verschiedene Quellen berücksichtigt (Atwal und McFarland, 1967); (Jain, 1967); 

(Gajanna und Nair, 1968); (Jain, 1968); (Fey und Kuntze, 1970); (Jain, 1970); (Diallo et al., 

1975); (Rausch und Moore, 1975); (Schnabl, 1976); (Osbaldiston und Sullivan, 1978); (Daimon et 

al., 1985); (Ristau et al., 1985); (Styrt, 1989); (Buchta, 1990); (Gleich et al., 1993); (Jain, 1993); 

(Bienzle, 2000); (Raskin und Valenciano, 2000); (Scott und Stockham, 2000); (Smith, 2000); 

(Steffens, 2000); (Young, 2000); (Olivier et al., 2001); (Sinowatz, 2006a); (Al Izzi et al., 2007).  

Tabelle II.2: Enzymatische Ausstattung der Blutzellen des Schafes  

 AP SP POX βG CAE NSE 

Erythrozyten - -/x -  - x 

Thrombozyten - x - x - x 

Lymphozyten - x - x - -/x 

Monozyten - x -/x x -/x x 

Neutrophile Granulozyten x x x x x -/x 

Eosinophile Granulozyten -/x x x x - -/x 

Basophile Granulozyten  - - x -  

AP = Alkalische Phosphatase, SP = Saure Phosphatase, POX = Peroxidase, βG = β-
Glucuronidase, CAE = Chlorazetat-Esterase, NSE = unspezifische Esterasen, x = Enzymaktivität 
nachgewiesen, - = Enzymaktivität nicht nachgewiesen, Grün = in Literatur speziell zum Schaf, 
Blau = in Literatur generell zu den Haussäugetieren 

 

4. Immunhistochemie 

4.1 Definition und Anwendung 

Die Immunhistochemie dient dem Nachweis von Oberflächenantigenen, zytoplasmatischen 

Antigenen und Kernantigenen mit Hilfe von Antikörpern (Freund, 2008), sie basiert also auf 

Antigen-Antikörper-Reaktionen (Kolb, 1991); (Welsch und Sobotta, 2003). Antikörper gehören, 

wie bereits in Kapitel 2.3.4 erwähnt, zum humoralen Immunsystem und schützen den Körper vor 

fremden Substanzen. Antigene hingegen sind Proteine, Glykoproteine, Lipoproteine oder 
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Polysaccharide, die vom Immunsystem erkannt werden. Das Epitop, auch als antigene 

Determinante bezeichnet, stellt den Bereich des Antigens dar, an den der Antikörper spezifisch 

bindet. Auf einem Antigen kommen meist viele verschiedene Epitope vor, wodurch die Bindung 

unterschiedlicher Antikörper möglich wird (Romeis, 2010). Immunhistochemische 

Färbemethoden spielen sowohl in der biologisch-medizinischen Forschung als auch in der 

histopathologischen und zytopathologischen Diagnostik eine große Rolle (Denk, 1989).  

 

4.2 Technik 

Die Immunhistochemie beruht im Allgemeinen darauf, dass eine Probe mit dem nachzuweisenden 

Antigen mit einer Lösung inkubiert wird, die einen spezifischen Antikörper gegen das gesuchte 

Antigen enthält (Welsch und Sobotta, 2003). Es kann grundsätzlich zwischen der direkten und der 

indirekten Methode unterschieden werden (Denk, 1989); (Kolb, 1991); (Sinowatz, 2006b). Bei 

der direkten Methode wird der spezifische Antikörper direkt auf das Präparat aufgebracht und 

bindet an das spezifische Antigen. Bei der indirekten Methode wird die Empfindlichkeit des 

immunzytochemischen Nachweises erhöht, indem zunächst ein spezifischer, unmarkierter 

Antikörper gegen das gesuchte Antigen auf den Ausstrich aufgetragen wird. Nach Abspülen des 

Präparats folgt die Zugabe von markierten Antikörpern, die gegen die zuerst aufgetragenen 

Antikörper gerichtet sind. Diese Anti-Antikörper stammen aus dem Serum einer anderen Tierart 

(Sinowatz, 2006b). Die höhere Empfindlichkeit ist dadurch bedingt, dass jeder Antikörper des 

ersten Säugers mehrere Anti-Antikörper binden kann (Kolb, 1991). Die Antikörper können auf 

verschiedene Weise markiert werden, um die Bindung des Antigens nachzuweisen. Die 

Immunfluoreszenz beschreibt die Kopplung der Antikörper an Fluoreszenzfarbstoffe 

(Fluorochrome), wie beispielsweise FITC (Fluoreszeinisothiocyanat) oder TRITC 

(Tetramethylrhodaminisothiocyanat), die bei Licht einer bestimmten Wellenlänge gelb-grün bzw. 

rot fluoreszieren (Denk, 1989). Die Fluoreszenzfärbung hat den Nachteil, dass die Präparate 

relativ schnell ausbleichen (Denk, 1989); (Freund, 2008) und zur Darstellung ein 

Fluoreszenzmikroskop notwendig ist. Die Antikörper können weiterhin durch verschiedene 

Enzyme (immunenzymatische Methode) oder kolloidale Goldpartikel (Immuno-Gold-Reaktion) 

markiert werden (Denk, 1989). Die Avidin-Biotin-Technik ist ein häufig angewendetes 

Verfahren, das im Vergleich zu anderen immunhistochemischen Methoden ein stärkeres Signal 

liefert (Romeis, 2010). Dabei nutzt man die hohe Bindungsaffinität des Hühnereiweiß-

Glykoproteins Avidin zum Vitamin Biotin. Anstelle des Avidins kann ebenso das aus 

Streptomyces Avidinii stammende Protein Streptavidin eingesetzt werden. Es werden biotinylierte 

Antikörper verwendet, wobei bei der direkten Methode der primäre Antikörper, bei der indirekten 

Methode hingegen der sekundäre Antikörper biotinyliert ist (Denk, 1989); (Romeis, 2010). 
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Avidin oder Streptavidin bilden mit einem biotinylierten Marker einen Komplex, wobei maximal 

drei Biotinmoleküle an ein Avidin- bzw. Streptavidinmolekül gebunden werden können und die 

vielen markierten Biotinmoleküle durch Avidin- bzw. Streptavidinmoleküle zusammengehalten 

werden. Dieser ABC (Avidin-biotin-complex) wird nach der Antikörperinkubation auf das 

Präparat gegeben und bindet an den biotinylierten Antikörper. Streptavidin wird in der 

Anwendung bevorzugt, da es sich durch eine höhere Sensitivität auszeichnet und eine geringere 

unspezifische Hintergrundmarkierung verursacht. Da es im Gegensatz zu Avidin nicht 

glykosyliert ist, reagiert es nicht mit Lektinen oder anderen Kohlenhydrat bindenden Proteinen im 

Präparat (Romeis, 2010). Die Spezifität der Antikörper und die Stabilität der nachzuweisenden 

antigenen Komponenten sind wesentliche Voraussetzungen für die Qualität der Untersuchung 

(Denk, 1989). Die Präparate sollten innerhalb von 24 Stunden verarbeitet werden, um intakte 

Oberflächenstrukturen zu bewahren (Freund, 2008). Die spezifischen Antikörper werden durch 

Immunisierung eines Tieres (z.B. Kaninchen, Schaf, Maus, Huhn) gewonnen (Sinowatz, 2006b). 

Generell kann zwischen polyklonalen und monoklonalen Antikörpern unterschieden werden. Die 

polyklonalen Antikörper sind gegen unterschiedliche Determinanten des Antigens gerichtet und 

führen deshalb durch Kreuzreaktionen teilweise zu falsch-positiven Ergebnissen, die 

Empfindlichkeit ist jedoch sehr hoch. Die monoklonalen Antikörper hingegen richten sich nur 

gegen ein Epitop des Antigens und sind somit sehr spezifisch. Der Nachteil hingegen besteht in 

der geringeren Sensitivität und Stabilität. Bei schlechter Antigenerhaltung, wie beispielsweise 

nach routinemäßiger Fixation, können sich falsch-negative Ergebnisse ergeben (Denk, 1989). 

 

4.3 Immunhämatologische Differenzierung von Lymphozyten 

Die B- und T-Lymphozyten und deren Untergruppen können im Allgemeinen anhand ihrer 

Zelloberfläche, ihrer Funktion und bestimmter Enzymaktivitäten unterteilt werden (Jain, 1993). 

Die Immunhämatologie befasst sich mit antigenen Strukturen auf den Blutzellen und Krankheiten 

des Blutes, die aus Antigen-Antikörper-Reaktionen resultieren. Sie ist von großer Bedeutung für 

Bluttransfusionen und Organtransplantationen und wichtig für die Untersuchung der Rolle des 

Immunsystems bei verschiedenen Krankheiten. Die antigenen Strukturen auf den Leukozyten 

können in Histokompatibilitäts-, Blutgruppen- und Leukozyten-spezifische Antigene unterteilt 

werden (Jain, 1993). In diesem Kapitel wird jedoch nur auf die Strukturen der Zelloberfläche zur 

Unterscheidung der Lymphozyten eingegangen. 

Die Oberfläche der Lymphozyten ist, je nach Lymphozytenart, mit dem B-Zell-Rezeptor (BCR) 

oder T-Zell-Rezeptor (TCR) besetzt, die beide zur Klasse der Immunglobulin-Superfamilie 

gehören. Der BCR kann im Gegensatz zum TCR auch ein Antigen binden, wenn er sich in 

löslicher Form (als Antikörper) in Körperflüssigkeiten befindet. Sowohl die einzelnen B-Zellen 
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als auch die einzelnen T-Zellen tragen zahlreiche identische BCRs bzw. TCRs, weshalb ein 

Lymphozyt immer nur ein einziges Antigen erkennen und binden kann (Tizard, 2000). Die auf der 

Oberfläche der B-Lymphozyten vorkommenden Immunglobuline (Ig) (Ey, 1973b); (Outteridge, 

1985); (Jain, 1993); (Naessens, 1997); (Liebich, 2004) repräsentieren den BCR (Ey, 1973b); 

(Tizard, 2000). Ey (1973) beschreibt beim Schaf sowohl IgM als auch zu einem geringeren Teil 

IgG auf der Oberfläche von Lymphozyten (Ey, 1973a); (Ey, 1973b), Naessens (1997) hingegen 

konnte bei Schafen ausschließlich IgM auf der Membran der B-Lymphozyten nachweisen 

(Naessens, 1997). Der TCR stellt ein Heterodimer mit hochvariablen αβ- oder γδ-Ketten dar 

(Evans et al., 1994); (Liebich, 2004). Bei den meisten Haussäugern tragen die T-Lymphozyten 

einen TCR aus αβ-Ketten (Lösch et al., 2000), bei Schafen hingegen kommen auch T-Zellen mit 

einen TCR aus γδ-Ketten vor (Hein und Mackay, 1991); (Lösch et al., 2000). γδ-T-Zellen weisen 

weder CD2 noch CD4 oder CD8 auf (Evans et al., 1994); (Tizard, 2000). Der Großteil dieser 

Lymphozytenpopulation trägt jedoch das Oberflächenmolekül T19 (Hein und Mackay, 1991); 

(Evans et al., 1994); (Pillai et al., 2007), lediglich 1 - 3 % der γδ-T-Zellen fehlt dieses Molekül 

(Hein und Mackay, 1991). T19 wird speziell beim Schaf auch als „ovine workshop cluster 1“ 

(OvWC1) bezeichnet. WC-Antigene stellen im Allgemeinen Oberflächenmoleküle dar, zu denen 

weder beim Mensch noch bei der Maus ein Homolog identifiziert werden konnte (Tizard, 2000). 

Die Zahl der αβ-T-Zellen und der γδ-T-Zellen im Blut variiert mit dem Alter der Schafe (Hein 

und Mackay, 1991); (Tizard, 2000). Während der ersten beiden Lebenswochen nimmt die Zahl 

der γδ-T-Zellen rasch zu (Hein und Mackay, 1991) bis diese bis zu 60 % des T-Zell-Pools 

ausmachen. Mit zunehmenden Alter nimmt deren Zahl wieder ab, bis sie mit einem Alter von 5 

Jahren nur noch  5 % der T-Zellpopulation ausmachen (Tizard, 2000). Bei adulten Wiederkäuern 

sind somit die αβ-T-Zellen vorherrschend  (Hein und Mackay, 1991). Der Grund für das 

vermehrte Vorkommen der γδ-T-Zellen bei den großen Haussäugern nach der Geburt scheint die 

Sicherstellung einer frühen zellvermittelten Immunantwort zu sein, da deren Immunglobuline die 

Plazenta nicht durchqueren und die γδ-T-Zellen unter den T-Zellen am stärksten reagieren und 

zudem zytotoxische Wirkungen aufweisen (Tizard, 2000).  

Die Untergruppen der B- und T- Zellen werden meist anhand spezifischer Zellmembranantigene, 

nämlich den bereits erwähnten CD-Antigenen (siehe Kapitel 2.3.3) unterschieden (Jain, 1993). 

Die Entwicklung monoklonaler Antikörper revolutionierte die Art der Untersuchung des 

Immunsystems (Mackay, 1988). Deren Einsatz ermöglicht die genaue Charakterisierung der 

einzelnen Oberflächenmoleküle und somit die Differenzierung der verschiedenen Lymphozyten-

Subpopulationen (Hein und Mackay, 1991). So exprimieren T-Helferzellen CD4, zytotoxische T-

Zellen hingegen CD8 (Davis und Hamilton, 1998); (Tizard, 2000); (Thrall und Weiser, 2004); 

(Sinowatz, 2006a). Mackay (1988) berichtet über dreizehn verschiedene Leukozytenmoleküle 

beim Schaf (Mackay, 1988). Die Tabelle II.3 zeigt eine Zusammenfassung seiner Ergebnisse. 
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Tabelle II.3: Leukozytenmoleküle des Schafes  

Leukozytenmolekül Vorkommen 

CD1 (T6) Thymozyten, dendritische Zellen, manche B-Zellen 

CD2 T-Zellen 

CD3 (T3) T-Zellen 

CD4 (T4) 60 % der T-Zellen, Thymozyten 

CD5 (T1) T-Zellen, Thymozyten, manche B-Zellen 

CD8 (T8) 30 % der T-Zellen, Thymozyten 

CD44 (Pgp-1) Lymphozyten, Thymozyten, Makrophagen, Granulozyten 

CD45 (LCA) alle Leukozyten 

B5-5 T-Zellen, reife B-Zellen, Thymozyten 

LCAp220 B-Zellen 

T11TS  T-Zellen (Ligand für CD2) 

T19 10 - 30 % der T-Zellen (CD4-, CD8-) 

T80 T-Zellen 

Pgp-1 = phagocyte glycoprotein-1, LCA = leukocyte common antigen, T11TS = T11 target 
structure 

Im Jahre 1993 wurden vierzehn ovine CD-Antigene bei den Leukozyten identifiziert, nämlich 

neben den von Mackay (1988) bereits beschriebenen CD1, CD2, CD4, CD5, CD8, CD44 und 

CD45 zusätzlich CD6 (T12) bei T-Zellen und Thymozyten, CD25 bei aktivierten T-Zellen, 

CD11a, CD11b, CD11c, CD18 und CD45R. Weiterhin wurden sechs WC-Antigene, nämlich 

neben WC1 auch WC2 bei T-Zellen, WC3 und WC4 bei B-Zellen und dendritischen Zellen, WC6 

und WC9 beschrieben (Hopkins et al., 1993). T-Lymphozyten tragen auf ihrer Zelloberfläche 

gewöhnlich das Theta-Antigen (Thy-1) (Banks, 1981), dessen Vorkommen jedoch bei den 

verschiedenen Spezies variiert (Davis und Hamilton, 1998); (Tizard, 2000). Zudem dient CD3 als 

Marker für alle T-Zellen, da der TCR immer mit dem so genannten CD3-Komplex assoziiert ist 

(Tizard, 2000). 

 

5. Zytoskelett 

5.1 Aufbau des Zytoskeletts 

Das Zytoskelett stellt ein dreidimensionales Geflecht aus Filamenten und Mikrotubuli in 

eukaryotischen Zellen dar (Pschyrembel, 2002). Es organisiert das Zellinnere und teilt es in 

verschiedene Domänen auf. Den Großteil bildet eine Matrix im gesamten Zytoplasma. Die zweite 

Region stellt das auf der Innenseite der Plasmamembran lokalisierte Membranskelett dar. 

Schließlich befinden sich zytoskelettale Elemente in der perinukleären Region (Georgatos und 

Marchesi, 1985). Das Zytoskelett setzt sich aus drei Hauptkomponenten zusammen, nämlich den 
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Aktinfilamenten (Mikrofilamenten), den Intermediärfilamenten und den Mikrotubuli (Pruss et al., 

1981); (Fuchs und Weber, 1994); (Xu et al., 2009). Diese werden wiederum von drei 

verschiedenen Proteinfamilien gebildet (Alberts et al., 2004); (Khismatullin, 2009). Aber auch das 

an Bewegungsprozessen vieler Zellen beteiligte Myosin kann dem Zytoskelett zugeordnet werden 

(Welsch und Sobotta, 2003). 

Das Aktinfilamentsystem kommt in allen eukaryotischen Zellen vor (Vicente-Manzanares et al., 

2002). Aktin ist Bestandteil der Muskelfasern und der Mikrofilamente des Zytoskeletts 

(Pschyrembel, 2002) und macht in nicht-muskulären Zellen ca. 10 % des zytoplasmatischen 

Proteingehalts aus (Richelme et al., 1996). In der Zelle liegen das Monomer G-Aktin (globuläres 

Aktin) und das Polymer F-Aktin (filamentäres Aktin) im Gleichgewicht (Pschyrembel, 2002). Die 

Aktinfilamente haben einen Durchmesser von 5 - 9 nm und werden durch zwei helikal 

umeinander gewundene Protofilamente gebildet. Sie treten als flexible Gebilde in Erscheinung, 

die sich zu linearen Bündeln oder flächigen Netzen organisieren (Alberts et al., 2004). Die 

Filamente sind charakterisiert durch eine molekulare Polarität mit einem schnell wachsenden 

Plus-Ende und einem langsam wachsenden Minus-Ende (Khismatullin, 2009). Obwohl diese 

Filamente überall in der Zelle verteilt sind, erreichen sie ihre höchste Dichte in der Zellperipherie 

direkt unter der Plasmamembran (Alberts et al., 2004) und bilden dort das kortikale Zytoskelett 

(Khismatullin, 2009). Es existiert eine große Anzahl Aktin bindender Proteine (ABP), die mit den 

Aktinfilamenten interagieren. Zu den ABPs zählen Proteine zur Sequestration von G-Aktin und 

Kappenproteine zur Regulation der Aktinpolymerisation, Fragmentierungsproteine sowie Aktin 

quervernetzende Proteine (Richelme et al., 1996). Manche Proteine verbinden jedoch auch Aktin 

mit anderen Zellstrukturen. Sowohl Ezrin, Radixin und Moesin (ERM-Familie) als auch Talin 

verankern Aktin an der Zellmembran (Richelme et al., 1996); (Fox, 2001). Connectin hingegen 

interagiert gleichzeitig mit Mikrofilamenten der Zelle und Laminin der extrazellulären Matrix 

(Richelme et al., 1996). 

Die Intermediärfilamente werden durch eine Vielfalt gewebsspezifischer Proteine gebildet 

(Oshima, 2007). Diese weisen teilweise nur eine 20 %ige Sequenzhomologie auf (Fuchs und 

Weber, 1994), haben aber alle ein gemeinsames antigenes Epitop (Pruss et al., 1981); (Oshima, 

2007). Die lang gestreckten, faserförmigen Bausteine bestehen aus drei Abschnitten, nämlich dem 

amino-teminalen Ende (Kopf), der α-helikal gewundenen, zentralen Domäne und dem carboxyl-

terminalem Ende (Schwanz) (Khismatullin, 2009). Zwei solcher Monomere winden sich parallel 

und α-helikal zu einem Dimer und bilden somit eine Doppelwendel („coiled-coil“) (Fuchs und 

Weber, 1994). Ein Tetramer entsteht wiederum durch die Kopf-zu-Schwanz Anordnung zweier 

solcher Dimere (Khismatullin, 2009) und stellt den Grundbaustein der Protofilamente dar, wobei 

zwei seitlich aneinander gelagerte Protofilamente eine Protofibrille formen. Ein ganzes 
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Intermediärfilament besteht schließlich aus meist vier umeinander gewundenen Protofibrillen und 

weist einen Durchmesser von ca. 10 nm auf (Fuchs und Weber, 1994). Die Intermediärfilamente 

formen ein dreidimensionales Netzwerk innerhalb der Zelle (Khismatullin, 2009). Sie sind sowohl 

mit der Kern- als auch mit der Plasmamembran verbunden (Fuchs und Weber, 1994); (Brown et 

al., 2001) und dehnen sich über das ganze Zytoplasma aus (Alberts et al., 2004). Zudem bilden die 

Intermediärfilamente die Kernlamina (Aebi et al., 1986); (Fuchs und Weber, 1994); (Alberts et al., 

2004); (Oshima, 2007) und kommen gehäuft in der perinukleären Region vor (Lehto et al., 1978); 

(Georgatos und Marchesi, 1985). So genannte Intermediärfilament assoziierte Proteine (IFAP) 

spielen sowohl beim Aufbau und der Aufrechterhaltung der Netzwerke als auch bei dynamischen 

Umstrukturierungen bei Wachstum und Differenzierung eine wichtige Rolle (Fuchs und Weber, 

1994). Es können verschiedene Klassen der Intermediärfilamentproteine unterschieden werden. 

Die Klassen I und II werden durch die in Epithelien und Haaren vorkommenden sauren und 

basischen Keratine gebildet. Klasse III schließt die homopolymeren Proteine Vimentin, Desmin, 

saures Gliafaserprotein und Peripherin ein (Oshima, 2007). Vimentin stellt darunter den 

häufigsten Baustein dar (Fuchs und Weber, 1994), da es in allen Zellen mesenchymalen 

Ursprungs, also auch in Blutzellen, vorkommt (Lazarides, 1980). Klasse IV besteht aus 

Neurofilamentproteinen, α-Internexin, Nestin, Synemin und  Syncoilin und Klasse V aus den die 

Kernlamina bildenden Laminen A, B1, B2, und C (Oshima, 2007).  

Mikrotubuli finden sich nahezu in allen Zellen vor (Moll, 2006). Sie bestehen aus Tubulin, wobei 

eine Tubulin-Untereinheit eines Protofilaments aus den zwei kugelförmigen Proteinen α-Tubulin 

und β-Tubulin besteht. Diese werden durch nicht-kovalente Bindungen fest zusammengehalten 

(Alberts et al., 2004) und bilden somit ein Heterodimer (Vicente-Manzanares und Sanchez-

Madrid, 2004); (Khismatullin, 2009). Die Mikrotubuli stehen im Gleichgewicht mit den im 

Zytoplasma vorliegenden, globulären Tubulin-Untereinheiten (Welsch und Sobotta, 2003). Sie 

stellen relativ starre, lange Hohlzylinder (Alberts et al., 2004) mit einem Innendurchmesser von 

14 nm und einem Außendurchmesser von 25 nm dar (Khismatullin, 2009). Sie werden von 

dreizehn parallel angeordneten Protofilamenten gebildet. Die Mikrotubuli entspringen dem 

Mikrotubuli organisierenden Zentrum (microtubule-organising center, MOC), das auch als 

Zentrosom bezeichnet wird (Alberts et al., 2004); (Khismatullin, 2009). Dieses befindet sich im 

Zytoplasma in Kernnähe (Frankel, 1976); (Osborn et al., 1978); (Khismatullin, 2009) und besteht 

aus einer Matrix, die ein Zentriolenpaar enthält (Welsch und Sobotta, 2003). Ein sehr wichtiger 

Baustein des MOC ist γ-Tubulin, dem eine wichtige Rolle bei der Entstehung neuer 

Tubulinpolymere zugeschrieben wird (Vicente-Manzanares et al., 2002). Die Mikrotubuli stellen 

dynamische, polarisierte Strukturen mit Plus- und Minus-Enden dar (Hartwig, 2007), wobei die 

Polymerisierung an den vom Zentrosom weg weisenden Plus-Enden stattfindet (Khismatullin, 

2009). Sie durchspannen das Zytoplasma oft über die gesamte Distanz zwischen Kern und 
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Plasmamembran (Osborn et al., 1978); (Weber und Osborn, 1981), wobei sie neben den 

Intermediärfilamenten in der perinukleären Region vermehrt vorkommen (Georgatos und 

Marchesi, 1985). So genannte Mikrotubuli assoziierte Proteine (MAP) interagieren mit den 

Mikrotubuli und übernehmen wichtige Aufgaben bei deren Polymerisation, Quervernetzung und 

Stabilisierung. Die Motorproteine der Kinesin- und Dynein-Superfamilie stellen weitere 

regulatorische Proteine dar, die an dem intrazellulären Transport von Vesikeln und Organellen 

entlang der Mikrotubuli und an der Spindelformation beteiligt sind (Vicente-Manzanares et al., 

2002). Sie vermitteln zudem äußerst starke Interaktionen zwischen Mikrotubuli und 

Intermediärfilamenten (Khismatullin, 2009). Bei migrierenden B-Lymphozyten kann diese 

Wechselbeziehung durch eine koordinierte Bewegung des Zentrosoms und des 

Vimentinnetzwerkes veranschaulicht werden  (Sumoza-Toledo und Santos-Argumedo, 2004).  

 

5.2 Funktionen des Zytoskeletts 

Das Zytoskelett verleiht eukaryotischen Zellen bestimmte räumliche und mechanische 

Eigenschaften zur Selbstorganisation und zur Kontaktaufnahme mit der Umwelt (Alberts et al., 

2004). Die einzelnen Komponenten des Zytoskeletts erfüllen durch ihren speziellen Aufbau und 

ihre jeweilige Anordnung charakteristische Funktionen.  

Die Aktinfilamente sorgen durch die Stabilisierung der Plasmamembran für die Aufrechterhaltung 

der äußeren Zellform (Alberts et al., 2004), ermöglichen aber auch eine passive Zelldeformation 

und die aktive Fortbewegung der Zelle. Des weiteren wird ihnen eine Rolle bei der Exozytose, der 

Signaltransduktion (Richelme et al., 1996) und der Phagozytose zugeschrieben (Ryder et al., 

1982). Für die mechanische Stabilität der Zelle und den Widerstand gegen Scherkräfte sorgen vor 

allem die Intermediärfilamente (Alberts et al., 2004). Diese sind im Gegensatz zu den anderen 

Komponenten des Zytoskeletts äußerst stabil, da der Großteil der Filamente in vollständig 

polymerisiertem Zustand in der Zelle vorliegt, vorausgesetzt diese befindet sich in der Interphase 

und nicht in Mitose (Khismatullin, 2009). Die Intermediärfilamente sorgen weiterhin für die 

Verankerung des Zellkernes im Zytoplasma (Lehto et al., 1978); (Lazarides, 1980), wobei vor 

allem Vimentin eng mit dem Zellkern assoziiert ist (Lazarides, 1980). Die Lamine der Kernhülle 

leisten sowohl strukturelle als auch regulatorische Funktionen (Oshima, 2007). Sie bilden durch 

Ummantelung der Innenfläche der Kernmembran (Alberts et al., 2004) einen Schutz für die DNA 

(Aebi et al., 1986) und leisten vermutlich einen Beitrag zur Chromatinorganisation bzw. DNA-

Replikation (Fuchs und Weber, 1994). Da die Mikrotubuli ausgeprägten dynamischen 

Veränderungen unterliegen, tragen sie vermutlich nicht wesentlich zur Aufrechterhaltung der 

Zellform bei (Khismatullin, 2009). Eine Ausnahme bildet hier die Mikrotubuliwendel, die für die 

diskoidale Gestalt der Thrombozyten verantwortlich ist (Gresele und Falcinelli, 2005); (Hartwig, 
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2007). Die mögliche Variation der Mikrotubuluslänge ist jedoch für die Organisierung der Lage 

von Zellorganellen bei Modifikationen der Zellform, wie im Falle von Migrationsprozessen 

(Khismatullin, 2009), Wachstum oder Teilung, von großer Bedeutung (Alberts et al., 2004). Die 

Mikrotubuli regulieren, wie bereits in Kapitel 5.1 erwähnt, intrazelluläre Transportprozesse wie 

den von Phagosomen, Granula oder Vesikeln (Ryder et al., 1982). Dabei stellen die Motorproteine 

der Kinesin- und Dynein-Superfamilie wichtige regulatorische Proteine dar. Kinesine bewegen 

die „Fracht“ zum Plus-Ende, Dyneine zum Minus-Ende (Welsch und Sobotta, 2003). Während 

der Mitose verschwinden die zytoplasmatischen Mikrotubuli (Brinkley et al., 1975), ordnen sich 

zur bipolaren Mitosespindel um, ziehen die Chromatiden auseinander und sorgen für die 

Trennung der sich teilenden Zellen (Alberts et al., 2004).  

 

5.3 Zytoskelett der Blutzellen 

5.3.1 Erythrozyten 

Das Zytoskelett der Erythrozyten besteht aus Spektrin, Aktin und weiteren Proteinen (Calvert et 

al., 1979). Mehrere Spektrinmoleküle bilden mit kurzen Aktinfilamenten ein flaches Netzwerk 

(Bennett, 1990), das submembranös lokalisiert ist und über bestimmte Adaptorproteine mit 

Bestandteilen der Plasmamembran verknüpft ist (Jöns, 2001). Beispiele für solche Proteine sind 

Adduktin (Sinard et al., 1994); (Li und Bennett, 1996), Ankyrin (Bennett und Stenbuck, 1979); 

(Shen et al., 1986); (Bennett, 1990) und Protein 4.1 (Bennett, 1990). Spektrin stellt ein 

stabförmiges Molekül dar, das als Tetramer eine Länge von bis zu 200 nm erreichen kann 

(Bennett, 1990). Die Aktinfilamente hingegen bestehen durchschnittlich nur aus 12 - 14 β-

Aktinmonomeren und sind mit einer Länge von ca. 33 - 37 nm relativ kurz (Bennett, 1990). An 

einen dieser „Aktin-Knoten“ binden ungefähr sechs Spektrinfilamente über das Protein 4.1 (Gov, 

2007). Die Struktur und die Länge der Aktinfilamente werden durch Aktin bindende Proteine 

(ABP) kontrolliert. Tropomyosin stabilisiert die Filamente (Bennett, 1990); (Fowler, 1996) und 

schützt diese vor Scherkräften und Aktin depolymerisierenden Proteinen (Bennett, 1990). Am 

schnell wachsenden Ende der Filamente sitzt Adduktin als Kappe, es bindet darüber hinaus aber 

auch an seitliche Anteile der Aktinfilamente zu deren Bündelung. Am langsam wachsenden Ende 

befindet sich das Tropomyosin bindende Tropomodulin. Beide Kappenproteine verhindern 

sowohl die Elongation als auch die Depolymerisation der Aktinfilamente und sorgen somit für die 

Erhaltung der Filamentlänge (Fowler, 1996). Die ausgereiften Erythrozyten besitzen weder 

Mikrotubuli (Moll, 2006) noch Intermediärfilamente. Vimentin kommt gewöhnlich in sich 

entwickelnden Erythroblasten vor, geht aber nach Ausstoßung des Kernes verloren (Georgatos 

und Marchesi, 1985). Die Hauptfunktion des erythrozytären Zytoskeletts stellt die Unterstützung 
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der Membranstruktur dar, wodurch eine lange Lebensdauer der roten Blutkörperchen 

gewährleistet wird (Bennett, 1990). Die spezifischen Interaktionen zwischen Zytoskelett und 

Membranbestandteilen verleihen den Erythrozyten eine hohe Elastizität und Flexibilität bei 

gleichzeitiger starker Rigidität, wodurch hohen Scherbelastungen in der Zirkulation standgehalten 

werden kann (Jöns, 2001).  

 

5.3.2 Thrombozyten 

Das Zytoskelett der Thrombozyten teilt sich im Allgemeinen in ein spektrinbasiertes 

Membranskelett, ein das Zytoplasma ausfüllendes Aktinnetzwerk und eine am Zellrand 

verlaufende Mikrotubuliwendel auf (Fox, 2001); (Hartwig, 2007).  

Das Membranskelett der Thrombozyten besteht, wie bei den Erythrozyten, aus Spektrinsträngen, 

die sowohl miteinander als auch mit Aktinfilamenten verbunden sind. Aktin stellt das am 

häufigsten vorkommende Protein der Blutplättchen dar. In unstimulierten Thrombozyten liegt es 

zu 35 - 40 % polymerisiert vor, in stimulierten hingegen zu  60 - 80 % (Boyles et al., 1985). 

Obwohl über den genauen Aufbau des Membranskeletts und dessen Verbindung mit der 

Plasmamembran bei den Thrombozyten weniger bekannt ist als bei den Erythrozyten, können 

einzelne Unterschiede festgehalten werden. Die Aktinfilamente der Thrombozyten sind im 

Gegensatz zu den kurzen Aktinoligomeren der Erythrozyten relativ lang. Weiterhin fehlt den 

Thrombozyten das Kappenprotein Tropomodulin. Ein Teil der Minus-Enden wird stattdessen vom 

Arp2/3-Komplex bedeckt, ein beträchtlicher Anteil trägt beim ruhenden Thrombozyten jedoch 

kein Kappenprotein (Hartwig, 2007). Der Arp2/3-Komplex ist außerdem bei der Querverbindung 

der Aktinfilamente und bei der Aktinneubildung von Bedeutung (Fox, 2001); (Hartwig, 2007). 

Adduktin sitzt als Kappenprotein an den schnell wachsenden Enden der Aktinfilamente und sorgt 

außerdem für die Verbindung von Aktinfilamenten mit dem spektrinbasierten Membranskelett 

(Hartwig, 2007).  

Der Großteil der Aktinfilamente kommt bei den Thrombozyten im Zytoplasma vor (White, 2007). 

Bei unstimulierten Zellen sind die Filamente an verschiedenen Stellen durch eine Vielzahl Aktin 

querverbindender Proteine zusammengeschaltet und bilden somit ein mechanisch starres 

Netzwerk im Zytoplasma (Fox, 2001); (Hartwig, 2007). Filamin, Talin und die ERM-Familie 

verbinden die Aktinfilamente mit Proteinen der Zellmembran (Fox, 2001). Das zytoplasmatische 

Aktinnetzwerk fungiert in der ruhenden Zelle als Matrix, die der räumlichen Organisation der 

Zellorganellen und anderer struktureller Komponenten dient (White, 2007). Das mit den 

Aktinfilamenten interagierende Myosin (Hartwig, 2007) stellt ein langes, asymmetrisches 

Molekül mit einer bipolaren Filamentstruktur dar (Cerecedo et al., 2002). In den Thrombozyten 
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kommen nicht-muskuläres Myosin IIA und IIB vor, wobei achtundzwanzig dieser Moleküle 

Filamente mit einer Länge von ca. 300 nm bilden. Durch Bindung an Aktin kann das 

Motorprotein die kontraktile Kraft auf die Aktinfilamente ausüben, wobei es zu einem Gleiten der 

Filamente in eine Richtung kommt (Hartwig, 2007). Diese Aktin-Myosin-Interaktionen befähigen 

die Thrombozyten zur Änderung der Zellform, zur Kontraktion des hämostatischen Pfropfens und 

zur Blutgerinnselretraktion. Weiterhin tragen sie zur Zentralisation der Granula aktivierter 

Thrombozyten bei, da das Aktomyosinnetzwerk die Mikrotubuliwendel zusammenzieht (White, 

2007). In kernhaltigen Zellen erfolgen Exozytosevorgänge gewöhnlich durch Fusion der 

Membranen einzelner oder verschmolzener Granula mit der Plasmamembran, die Thrombozyten 

hingegen verfügen zudem über einen modifizierten Sekretionsvorgang (Flaumenhaft et al., 2005). 

In Folge einer ausreichend starken Stimulation kommt es mit Hilfe von kontraktilen Kräften des 

Aktomyosinskeletts nach Zentralisation der Granula (White, 2007) zur Ausschleusung deren 

Inhalts über das OCS vom Zellzentrum ausgehend (Flaumenhaft et al., 2005); (Hartwig, 2007); 

(White, 2007). Die Granulasekretion wird zusätzlich durch das dichte, zytoplasmatische 

Aktinnetzwerk reguliert (Flaumenhaft et al., 2005); (Cerecedo et al., 2010), da eine Wanderung 

der Granula in die Zellperipherie weitgehend verhindert (Hartwig, 2007) und folglich eine 

inadäquate Freisetzung thrombogener Substanzen aus den Blutplättchen vermieden wird. Eine 

weitere Steuerung der Sekretion gewährleistet eine Umhüllung der Granula mit F-Aktin, die 

möglicherweise Membranfusionen zu verhindern vermag  (Flaumenhaft et al., 2005).  

Tubulin kommt bei ruhenden Thrombozyten vor allem in der polymerisierten Form vor (White, 

2007). Die Mikrotubuli erscheinen in Form einer Wendel (Hartwig, 2007); (White, 2007) mit 

einer Länge von ca. 100 µm (Hartwig, 2007). Diese verläuft im Zytoplasma entlang des größten 

Zellumfangs unterhalb der Zellmembran (White, 2007) und ist für die Aufrechterhaltung der 

diskoidalen Form der Blutplättchen verantwortlich (Nachmias, 1980); (Schwer et al., 2001); 

(Cerecedo et al., 2002); (Hartwig, 2007); (White, 2007). Im aktivierten Zustand liegt die 

Mikrotubuliwendel, wie bereits erwähnt, im Zellzentrum zusammengedrängt oder fragmentiert 

vor. Thrombozyten exprimieren neben α-Tubulin vier verschiedene β-Tubuline (Hartwig, 2007). 

Das am häufigsten vorkommende β1-Tubulin (Schwer et al., 2001); (Gresele und Falcinelli, 

2005); (Hartwig, 2007) wird speziell von Thrombozyten und reifen Megakaryozyten exprimiert 

und ist von großer Wichtigkeit für Funktion, Synthese und Struktur der Blutplättchen (Schwer et 

al., 2001). Durch Kälteeinwirkung kann es zu einem Abbau der die Wendel bildenden 

Mikrotubuli  (Hartwig, 2007); (White, 2007) und somit zu einem Verlust der scheibenförmigen 

Gestalt der Thrombozyten kommen (White, 2007).  
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5.3.3 Leukozyten 

Das Zytoskelett der Leukozyten besteht aus Aktinfilamenten, Myosin, Intermediärfilamenten und 

Mikrotubuli (Strukov et al., 1983); (Vicente-Manzanares et al., 2002). Die verschiedenen 

zytoskelettalen Elemente beeinflussen maßgeblich wichtige Funktionen der Leukozyten im 

Abwehrgeschehen wie Motilität (Strukov et al., 1983), Extravasion, Antigenerkennung, 

Zellaktivierung (Vicente-Manzanares und Sanchez-Madrid, 2004), Bindung und Phagozytose 

verschiedener Substanzen, Degranulation sowie Fusion der Granula mit der phagozytischen 

Vakuole (Strukov et al., 1983). 

Bei der Migration ermöglicht das Zytoskelett die Anpassung der Zellform an äußere 

Gegebenheiten (Richelme et al., 1996). Der Vorgang des Gefäßaustritts zirkulierender 

Leukozyten setzt eine vorherige Aktivierung der Zelle mit einer Aktinpolymerisation im 

peripheren Zellbereich voraus, die eine Verformbarkeit der Zelle ermöglicht (Khismatullin, 2009). 

Dadurch kommt es zu einer für die aktive Migration notwendige Polarisierung der Zelle 

(Sanchez-Madrid und del Pozo, 1999); (Brown et al., 2001); (Khismatullin, 2009) mit Ausbildung 

eines Lamellipodiums am vorderen und eines Uropodiums am hinteren Teil der Zelle 

(Khismatullin, 2009). Im Lamellipodium befindet sich ein Aktinnetzwerk mit definierter 

Architektur parallel zur Migrationsrichtung, wobei in der vordersten Region die 

Aktinpolymerisation stattfindet und die Plus-Enden der wachsenden Filamente nach außen 

gerichtet sind (Vicente-Manzanares et al., 2002). Das Uropodium enthält Aktinfilamente, 

Mikrotubuli, das MOC, Vimentinfilamente, ERM-Proteine, das Verknüpfungsprotein Plektin 

(Burkhardt et al., 2008), Myosin II (Sanchez-Madrid und del Pozo, 1999) und andere bei der 

Migration nicht benötigte Moleküle (Vicente-Manzanares und Sanchez-Madrid, 2004). Filopodia 

sind weitere Strukturen, die bei beweglichen Zellen auftreten. Sie stellen lange und dünne 

Zellfortsätze dar, die aus Aktinfilamenten bestehen (Vicente-Manzanares et al., 2002). Die 

Leukozyten exprimieren mehrere Isoformen des Motorproteins Myosin, die für die Motilität der 

Zelle von Bedeutung sind (Richelme et al., 1996). Das zweiköpfige Myosin II kann zwei 

Aktinfilamente binden und diese vom Minus-Ende zum Plus-Ende bewegen, wodurch eine 

Bewegung des einen Filaments gegen das andere zustande kommt (Vicente-Manzanares et al., 

2002). Einköpfiges Myosin I trägt ebenfalls zur Beweglichkeit bei, indem es sowohl an Aktin als 

auch an die Membran bindet (Richelme et al., 1996). Die tatsächliche Leukozytenbewegung ist 

amöboid (Burkhardt et al., 2008) und erfolgt durch Extensionen der Lamellipodia und Filopodia 

gefolgt von Retraktionen des Uropodiums (Sanchez-Madrid und del Pozo, 1999). Die im 

Uropodium durch Kontraktionen erzeugte Kraft bewegt den Großteil des Zytoplasmas nach vorne 

(Burkhardt et al., 2008). Das wichtigste Intermediärfilamentprotein der Leukozyten stellt 

Vimentin dar (Vicente-Manzanares und Sanchez-Madrid, 2004); (Khismatullin, 2009). Aufgrund 
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der extremen Formveränderungen der Leukozyten während der Migration brauchen diese Zellen 

ein dynamisches Zytoskelett. Die Dynamik des Vimentinnetzwerkes kommt durch eine enge 

Interaktion der Vimentinfilamente mit Mikrofilamenten und Mikrotubuli zustande (Khismatullin, 

2009). Die Verformbarkeit zirkulierender Lymphozyten wird erst durch den Abbau des 

Vimentinnetzwerkes während der Zellpolarisation ermöglicht (Brown et al., 2001), die Rigidität 

der Zellen basiert demnach hauptsächlich auf den Vimentinfilamenten (Brown et al., 2001); 

(Sumoza-Toledo und Santos-Argumedo, 2004); (Vicente-Manzanares und Sanchez-Madrid, 

2004). Die Fähigkeit zur Phagozytose beruht auf einem kontraktilen System aus Aktin und 

Myosin (Ryder et al., 1982), wobei die Myosinisoformen Ic, II, V, VII und IX an dem Vorgang 

beteiligt sind. Myosin VII reguliert zu Beginn die Adhäsion an das Zielobjekt. Durch 

Aktinpolymerisation und hauptsächlicher Mitwirkung von Myosin II bildet die phagozytierende 

Zelle aktingestützte Ausstülpungen zur Umfassung und Ingestion des Fremdpartikels. Dadurch 

kommt es zur Entstehung eines Phagosoms (Vicente-Manzanares und Sanchez-Madrid, 2004), das 

hauptsächlich durch Mikrofilamente, aber auch durch Mikrotubuli stabilisiert wird (Ryder et al., 

1982); (Xu et al., 2009). Die Auflösung des Aktinnetzwerkes führt vermutlich zur Translokation 

von Lysosomen und deren Fusion mit dem Phagosom, wodurch es zur Eliminierung des 

Pathogens kommt (Vicente-Manzanares et al., 2002). Bei der Degranulation sind die Mikrotubuli 

maßgeblich beteiligt. Die Granula und Vesikel sind entlang der Mikrotubuli ausgerichtet und um 

die Phagosomen herum sind die Mikrotubuli konzentriert. Es wird angenommen, dass die 

Mikrotubuli als Art Leitschienen in der Zelle fungieren. Dadurch könnten entweder die im 

Zellzentrum befindlichen Granula entlang der Mikrotubuli zu der peripher gelegenen 

phagozytischen Vakuole oder die phagozytische Vakuole in das granulareiche Zentrum der Zelle 

gelangen (Ryder et al., 1982). Bei den neutrophilen Granulozyten wird angenommen, dass 

aufgrund einer engen Assoziation von Aktin und den Granula deren Transport zur 

Plasmamembran und somit deren Exozytose reguliert bzw. limitiert wird, wodurch die 

Freisetzung destruktiver Enzyme bei unstimulierten Zellen verhindert wird (Jog et al., 2007). Bei 

den T-Lymphozyten spielt das Aktinfilamentsystem eine bedeutende Rolle bei der Zellaktivierung 

(Vicente-Manzanares et al., 2002); (Burkhardt et al., 2008). Im Verlauf der Antigenerkennung 

reguliert es die molekulare Reorganisation der T-Zell-Oberfläche, wodurch ein Kontakt zwischen 

Lymphozyt und Antigen präsentierender Zelle hergestellt werden kann (Vicente-Manzanares et 

al., 2002). Neben Mikrofilamenten tragen aber auch Mikrotubuli zur Bildung dieser 

„immunologischen Synapse“ zwischen beiden Zellen bei. Polymerisiertes Aktin dient als Gerüst 

für die Entstehung und Stabilisierung des Signalkomplexes, die Mikrotubuli sind vermutlich für 

die Aufrechterhaltung des initialen Kontaktes zuständig (Vicente-Manzanares et al., 2002).  
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6.   Glykohistochemie 

6.1 Definition des Begriffes „Lektin“  

Der Begriff „Lektin“ wurde 1954 von Boyd und Shapleigh eingeführt und entstammt dem 

lateinischen Wort „legere“ für auswählen. Der Terminus umfasste zu diesem Zeitpunkt 

Substanzen aus bestimmten Pflanzen mit der Fähigkeit, Erythrozyten zu agglutinieren und die 

sich somit wie Antikörper verhalten. Zudem wurde zu dieser Zeit herausgefunden, dass es sich bei 

den Lektinen um blutgruppenspezifische Präzipitine handelt (Boyd und Shapleigh, 1954). Bald 

wurden lektinähnliche Substanzen aber nicht nur in Pflanzen, sondern auch in Bakterien, Pilzen 

und Tieren nachgewiesen und somit definierten Goldstein et al. (1980) den Begriff „Lektin“ neu 

und bezeichneten ein Lektin als ein Zucker bindendes Protein oder Glykoprotein nicht-

immunogenen Ursprungs, das Zellen pflanzlichen oder tierischen Ursprungs agglutiniert und/oder 

Glykokonjugate präzipitiert. Aus dieser Definition geht hervor, dass Lektine mindestens zwei 

Bindungsstellen für Zucker besitzen, die Zuckerspezifität im Allgemeinen durch das die 

Agglutination hemmende Mono- oder Oligosaccharid bestimmt wird und andere Zucker bindende 

Proteine wie Enzyme, Transportproteine, Hormone oder Toxine (Ricin oder Abrin) von den 

Lektinen zu unterscheiden sind (Goldstein et al., 1980). Diese Definition wurde von manchen 

Wissenschaftlern bemängelt, da sie die agglutinierende Wirkung besonders hervorhebt. Die 

Definition der Lektine sollte nach deren Meinung eher auf den physikochemischen Eigenschaften 

der Lektine, also der Interaktion mit Kohlenhydraten, basieren. Außerdem werden mit dieser 

Definition solche Lektine ausgeschlossen, die nur eine Bindungsstelle besitzen und/oder die 

toxische oder hormonähnliche Eigenschaften aufweisen, wie im Falle von Ricin oder Abrin. 

Folglich sollten drei Punkte bei der Definition beachtet werden: Erstens besitzen die Lektine 

mindestens eine Zuckerbindungsstelle, wobei die Interaktion mit den Kohlenhydraten durch 

bestimmte Zucker gehemmt werden kann. Zweitens stehen die Lektine in keinem Zusammenhang 

mit einer Immunantwort und haben eine andere Struktur als Immunglobuline. Drittens weisen sie 

keine enzymatische Aktivität an den gebundenen Zuckern auf (Kocourek und Horejsi, 1981). 

Eine aktuelle Definition von Gabius et al. im Jahre 2011 bezeichnet Lektine als Kohlenhydrat 

bindende Proteine, die keine enzymatische Aktivität an ihrem Liganden aufweisen und von 

Antikörpern und Sensor- bzw. Transportproteinen für freie Mono- und Oligosaccharide zu 

unterscheiden sind. Besitzen die Lektine eine Aktivität in Agglutinationsversuchen, werden sie 

auch als Agglutinine (Proteine mit der Fähigkeit, Zellen zu agglutinieren), Hämagglutinine 

(Proteine mit der Fähigkeit, Erythrozyten zu agglutinieren) oder Phytohämagglutinine (Proteine 

aus Pflanzen mit der Fähigkeit, Erythrozyten zu agglutinieren) bezeichnet (Gabius et al., 2011). 
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6.2 Einteilung, Struktur und Bindungseigenschaften der Pflanzen-Lektine 

Die Kategorisierung der Pflanzen-Lektine erfolgt gewöhnlich anhand ihrer so genannten 

nominalen Zuckerspezifität. Diese Klassifizierung beruht auf den Ergebnissen von 

Agglutinationsversuchen mit dem Einsatz von Hemmzuckern (Monosacchariden) und gilt daher 

als sehr stark vereinfacht (Roth, 2011). Die Tabelle II.4 zeigt eine Einteilung ausgewählter 

Pflanzen-Lektine anhand ihrer Zuckerspezifität mit Aufführung ihrer botanischen Herkunft unter 

Berücksichtigung verschiedener Angaben in der Literatur (Goldstein und Poretz, 1986); (Rüdiger 

und Gabius, 2001); (Gabius et al., 2004); (Wu et al., 2008); (Rüdiger und Gabius, 2009); (Lohr et 

al., 2010); (Gabius, 2011); (Gabius et al., 2011); (Habermann et al., 2011). 

Tabelle II.4: Einteilung ausgewählter Pflanzen-Lektine anhand ihrer Zuckerspezifität 

Kategorie Botanische Herkunft des Lektins 
Abk. des 
Lektins 

Glukose/Mannose bindende 
Lektine 

 

Concanavalia ensiformis (Schwertbohne) 

Lens culinaris (Speiselinse) 

Pisum sativum (Erbse) 

Vicia faba (Saubohne) 

ConA 

LCA 

PSA 

VFA 

Galaktose bindende Lektine 

 

Arachis hypogaea (Peanut/Erdnuss) 

Ricinus communis (Rizinusbohne) 

Viscum album (Mistel) 

PNA 

RCA 

VAA 

N-Acetyl-Galaktosamin 
bindende Lektine 

Dolichos biflorus (Afrik. Pferdebohne) 

Griffonia simplicifolia I (Afrik. Schwarzbohne) 

Sophora japonica (Chin. Schnurbaum) 

DBA 

GSL-I 

SJA 

Galaktose und N-Acetyl-
Galaktosamin bindende Lektine 

Glycine max (Soybean/Sojabohne) 

Sambucus nigra (Schwarzer Holunder) 

SBA 

SNA 

N-Acetyl-Glukosamin und N-
Acetyl-Neuraminsäure 
bindende Lektine 

Triticum vulgare (Wheat Germ/Weizen) WGA 

L-Fukose bindende Lektine Ulex europaeus I (Stechginster) UEA-I 

Oligosaccharid bindende 
Lektine* 

Maackia amurensis I (Asiat. Gelbholz) 

Phaseolus vulgaris (Gartenbohne) 

MAA-I 

PHA-E/-L 

* keine Monosaccharide als Liganden bekannt 

Vor allem die Struktur der Lektine aus den Hülsenfrüchtlern (Leguminosen) ist gut erforscht 

(Rüdiger, 1998). Diese Lektine weisen trotz einer beachtlichen Homologie in ihrer Sequenz eine 

auffällig variierende Zuckerspezifität bei den verschiedenen Pflanzenspezies auf (Rüdiger, 1998); 
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(Rüdiger und Gabius, 2001). In einer einzelnen Pflanze können außerdem Lektine mit 

verschiedener Zuckerspezifität gefunden werden (Lis und Sharon, 1986). Lektine von der 

gleichen Pflanze mit unterschiedlicher Zuckerspezifität haben jedoch im Allgemeinen einen 

geringeren Verwandtschaftsgrad als solche aus verschiedenen Pflanzen mit gleicher 

Zuckerspezifität. Ihrer chemischen Natur nach handelt es sich bei den meisten Lektinen um 

Glykoproteine mit einem Kohlenhydratanteil von 2 - 50 %, ConA und WGA hingegen enthalten 

keine Zucker (Rüdiger, 1982). Der Kohlenhydratanteil der Glykoprotein-Lektine ist folglich nicht 

für deren biologische Aktivität erforderlich (Lis und Sharon, 1986). Ihre Struktur betreffend 

können Einketten- von Zweiketten-Lektinen unterschieden werden. Die Einketten-Lektine ConA 

oder PHA bestehen aus vier nahezu gleichartigen Untereinheiten. Die Zweiketten-Lektine PSA 

oder VFA hingegen setzen sich aus unterschiedlichen Untereinheiten zusammen, nämlich einer 

kleineren α- und einer größeren β-Kette, die sich paarweise zu tetrameren Molekülen 

zusammenschließen (Rüdiger, 1981). Interessanterweise lassen sich zwischen manchen Ein- und 

Zweiketten-Lektinen übereinstimmende Sequenzen nachweisen (Lis und Sharon, 1986). Van 

Damme et al. (2008) teilen die Lektine anhand ihrer Gesamtstruktur in verschiedene Gruppen ein. 

Die am häufigsten vorkommenden Hololektine bestehen ausschließlich aus Zucker bindenden 

Domänen, wohingegen Chimerolektine zusammengesetzte Proteine darstellen und zusätzlich eine 

weitere Domäne enthalten, die von der Lektindomäne unabhängig ist. Besitzt ein Hololektin nur 

eine Zucker bindende Domäne, wird es als Merolektin bezeichnet. Superlektine stellen 

Hololektine mit zwei verschiedenen Zucker bindenden Domänen dar (Van Damme et al., 2008). 

Viele Pflanzen-Lektine interagieren mit spezifischen Monosacchariden (Van Damme et al., 2008), 

wobei sie in den meisten Fällen an terminale Glykosylgruppen von Kohlenhydraten binden. 

Manche Lektine interagieren aber auch mit internen Zuckerresten. Die Stellung der 

Hydroxylgruppe an den C3- und C4-Atomen im Pyranosering der jeweiligen Zucker ist für die 

spezifische Lektinbindung von Bedeutung. Mannose/Glukose spezifische Lektine interagieren 

nicht mit Galaktose und umgekehrt, N-Acetyl-Glukosamin bindende Lektine nicht mit N-Acetyl-

Galaktosamin. Mannose und Glukose werden von den gleichen Lektinen gebunden, da 

Veränderungen am C2-Atom von vielen Lektinen toleriert werden (Goldstein und Poretz, 1986). 

Die Affinität für Monosaccharide ist aber im Gegensatz zur derjenigen für komplexe 

Kohlenhydrate häufig viel geringer. Besonderes Augenmerk gilt der Tatsache, dass die Pflanzen-

Lektine, abgesehen von einigen Ausnahmen, bevorzugt an Mono- oder Oligosaccharideinheiten 

komplexer N-Glykane binden (Van Damme et al., 2008). Die Wechselwirkung zwischen Lektin 

und Zucker erfolgt über nicht-kovalente Bindungen (Slifkin und Doyle, 1990) und ist im 

Vergleich zu Antigen-Antikörper-Interaktionen weitaus schwächer. Die Lektine können aber auch 

mit unpolaren Verbindungen, die keinen Zuckeranteil besitzen, mittels hydrophober 

Wechselwirkungen interagieren (Roth, 2011). ConA beispielsweise bindet, wenn auch nur 
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schwach, an das Pflanzenhormon β-Indolessigsäure oder Tryptophan (Rüdiger, 1998). Außerdem 

ist eine Bindung an anionische Gruppen über elektrostatische Wechselwirkungen möglich (Roth, 

2011).  

 

6.3 Lektinhistochemie: Definition, Technik und Anwendung 

Die Lektinhistochemie dient der spezifischen Lokalisation von Kohlenhydratstrukturen in Zellen 

und Geweben mittels Lektinen (Brooks et al., 1997), die durch verschiedene Marker wie 

fluoreszierende Moleküle (z.B. FITC) oder Enzyme (z.B. alkalische Phosphatase) mikroskopisch 

sichtbar gemacht werden kann. Die Protokolle sind ähnlich wie bei den immunhistochemischen 

Methoden (siehe Kapitel 4.2), anstelle eines Primärantikörpers kommt es hier jedoch zum Einsatz 

eines spezifischen Lektins. Häufige Anwendung finden biotinylierte Lektine, die mit Avidin oder 

Streptavidin, welche wiederum mit einem Marker (z.B. Streptavidin-FITC) versehen sind, 

interagieren. Mit Hilfe der sogenannten Avidin-Biotin-Komplex-Methode (ABC) sind sehr 

sensitive Zuckernachweise möglich. Der Komplex besteht aus Avidin bzw. Streptavidin und 

markiertem Biotin. Drei der vier Bindungsstellen von Avidin bzw. Streptavidin für Biotin sind 

besetzt, eine Bindungsstelle bleibt frei für die Bindung eines biotinylierten Lektins. Zur Kontrolle 

sollte stets eine Vorinkubation mit einem spezifischen Hemmzucker erfolgen. Dies sollte bei der 

nachfolgenden Inkubation mit dem Lektin seine Bindungsstellen vollständig hemmen oder 

zumindest deutlich abschwächen (Romeis, 2010). Die Lektine binden, wie bereits erwähnt, 

spezifisch an bestimmte Mono-, Di- oder Polysaccharide (Khan et al., 2002). Sie können aber 

nicht nur verschiedene Zucker, sondern häufig auch α- und β- Anomere oder Oligosaccharide mit 

verschiedener Kettenlänge voneinander unterscheiden (Rüdiger, 1981). Aufgrund dieser 

Eigenschaften dienen sie als wichtiges Werkzeug bei der Erkennung, Isolierung und 

Charakterisierung von Glykokonjugaten (v.a. Glykoproteinen) sowie bei der histochemischen 

Charakterisierung von verschiedenen Zellen und Geweben  (Sharon und Lis, 2004). Die 

Lektinhistochemie wird häufig für die Untersuchung von Kohlenhydraten auf Zelloberflächen 

eingesetzt, wobei vor allem Veränderungen der Zuckerstrukturen im Zuge physiologischer oder 

pathologischer Prozesse, die von Zelldifferenzierung bis Krebs reichen, analysiert werden (Sharon 

und Lis, 2004).  

 

6.4 Anwendung der Pflanzen-Lektine in der Forschung 

Die Lektine sind aufgrund ihrer Zuckerspezifität, ihrer großen Stabilität und da sie ohne negative 

Auswirkungen auf ihre Aktivität markiert werden können, in der Forschung zu einem wichtigen 

Hilfsmittel geworden. Neben dem Einsatz der Lektine in der Lektinhistochemie (siehe Kapitel 
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6.3), finden einige Pflanzen-Lektine Anwendung in verschiedensten Bereichen (Rüdiger und 

Gabius, 2009). Die Blutgruppenspezifität der Lektine war vor allem in den Anfängen der 

Lektinforschung von großem Interesse (Franz, 1990). Neben mono- und polyklonalen 

Antikörpern können hier beim Menschen beispielsweise die Lektine aus Dolichos biflorus (Anti-

A1), Helix pomatia (Anti-A) (Franz, 1990), Vicia cracca (Anti-A), Griffonia simplicifolia (Anti-

B) oder Vicia graminea (Anti-N) als Marker für die Bestimmung der Blutgruppen eingesetzt 

werden (Khan et al., 2002). Die Anwendung der Lektine zur routinemäßigen 

Blutgruppenbestimmung hat sich jedoch nicht etabliert (Rüdiger, 1981). Großes Interesse gilt der 

Tatsache, dass manche Lektine die Mitose von Lymphozyten stimulieren können, wobei vor allem 

T-Zellen, teilweise aber auch B-Zellen betroffen sind (Rüdiger und Gabius, 2009). Beispiele für 

solch mitogen wirkenden Lektine sind ConA (Djilali et al., 1987); (Franz, 1990), PHA-L, LCA 

und VAA (Gabius et al., 2004). Diese Eigenschaft nutzte man zur genaueren Untersuchung des 

Immunsystems von Mensch und Tier (Rüdiger, 1982). Sowohl die mitogene Aktivität als auch die 

lektinvermittelte Freisetzung von Mediatoren, wie proinflammatorischer Zytokine, weisen auf ein 

therapeutisches Potential der Pflanzen-Lektine hin (Rüdiger und Gabius, 2009). Weiterhin werden 

Lektine unter anderem in der Zellbiologie, der Biochemie (Rüdiger und Gabius, 2009), der 

Medizin (Alroy et al., 1984); (Rüdiger und Gabius, 2009), der Histopathologie (Walker, 1985), 

der mikrobiellen Forschung (Slifkin und Doyle, 1990), der Krebsforschung (Aub et al., 1963); 

(Aub et al., 1965); (Lis und Sharon, 1986); (Franz, 1990); (Rüdiger und Gabius, 2001); (Sharon 

und Lis, 2004) oder auch zur Abwehr von Insekten eingesetzt (Murdock et al., 1990); (Zhu et al., 

1996); (Zhu-Salzman et al., 1998); (Rüdiger und Gabius, 2001). Seit neuestem finden Lektine 

auch Anwendung in der Chip-Technologie (Lektin-Mikroarrays) (Tateno et al., 2009). Durch die 

Kombination verschiedener Lektine in einem Versuch kann ein glykanbasierter, molekularer 

Fingerabdruck der einzelnen Zellen erstellt werden (Lohr et al., 2010). Der Lektin-Mikroarray ist 

bei der Qualitätskontrolle verschiedener Glykoprotein-Produkte (z.B. Antikörper-Medikamente) 

von Nutzen (Tateno et al., 2009). 

 

6.5 Zuckerstrukturen auf ovinen Blutzellen 

Die Zellmembran wird durch eine Lipiddoppelschicht aus Phospholipiden, Cholesterin und 

Glykolipiden gebildet, wobei die hydrophoben Anteile einander zugekehrt sind und die 

hydrophilen Anteile in die Extrazellulärflüssigkeit bzw. in das Zytosol ragen. Die Oberfläche der 

Zelle wird weitgehend von der Glykokalix bedeckt, die durch die Zuckeranteile der in der 

Zellmembran eingelagerten Glykoproteine und Glykolipide gebildet wird (Silbernagl und 

Despopoulos, 2001). Die Hauptzucker der Zellmembranen sind Galaktose, Mannose, Glukose, 

Fukose, Galaktosamin, Glukosamin und Sialinsäuren. Die Sialinsäuren befinden sich vor allem an 
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den Enden der Zuckerketten und sind folglich für die negative Ladung der Zelloberflächen bei den 

Eukaryoten verantwortlich (Djilali et al., 1987). Durch Unterschiede in den Verknüpfungen der 

Zucker, den anomerischen Positionen (α oder β), den Ringgrößen (Furanose oder Pyranose) oder 

durch die Ausbildung von Kettenverzweigungen zeichnet sich die Struktur der Kohlenhydrate 

durch eine starke Vielseitigkeit mit einer großen Kodierungskapazität aus. Dies wird als Zucker-

Code bezeichnet (Gabius, 2008). Die bestimmte Strukturinformation, die sich aus der räumlichen 

Gestalt der baumartig verzweigten Oligosaccharidketten ergibt, kann durch spezifische Lektine 

erkannt werden (Lindhorst, 2000). Da die Zuckerketten insgesamt wesentliche Bauelemente 

verschiedenster Zellbestandteile darstellen, werden diesen fundamentale Funktionen 

zugeschrieben (Rüdiger und Gabius, 2001). Die biologische Rolle der Oligosaccharideinheiten 

von Glykoproteinen ist äußerst vielfältig. Häufig vermitteln sie die spezifische Erkennung 

bestimmter Strukturen und gewährleisten eine Regulierung biologischer Prozesse (Varki, 1993). 

Bei den Schafen wurden vor allem die Kohlenhydrate der Erythrozytenmembran genauer 

erforscht. Glykoproteine stellen einen Hauptbestandteil der Erythrozytenoberfläche dar. Der 

Monosaccharidgehalt der Erythrozyten des Schafes liegt bei 8,36 mg/100 mg Protein. Obwohl 

Schafe, Rinder und Pferde qualitativ die gleichen Monosaccharide aufweisen, kann ein deutlicher 

Unterschied in Bezug auf den Anteil der einzelnen Zucker beobachtet werden (Hudson et al., 

1975). Die Erythrozyten der Schafe tragen vor allem Galaktose und Sialinsäuren. Es kommen 

aber auch N-Acetyl-Galaktosamin, N-Acetyl-Glukosamin (Hudson et al., 1975); (Fletcher et al., 

1978) und zu einem geringen Anteil Glukose, Mannose und Fukose vor (Hudson et al., 1975). 

Kusui und Takasaki (1998) berichten von einer nur äußerst geringen Fukosekonzentration auf der 

Erythrozytenmembran der Schafe (Kusui und Takasaki, 1998). Hamaguchi und Cleve (1972) 

konnten Sialinsäuren auf der Erythrozytenmembran von Schafen ebenfalls nachweisen 

(Hamaguchi und Cleve, 1972). Die Sialinsäuren N-Acetyl-Neuraminsäure und N-Glykol-

Neuraminsäure treten dort in einem Verhältnis von 1 : 2,7 auf (Kusui und Takasaki, 1998). Die 

Membran der ovinen Thrombozyten besteht in etwa zu 49 % aus Proteinen, zu 47 % aus Lipiden 

und zu 3,4 % aus Kohlenhydraten und ist reich an Sialinsäuren, Cholesterol und Phospholipiden 

(Lanillo und Cabezas, 1981). Die aus amorphen Material bestehende Glykokalix ist bei den 

Thrombozyten der Haussäuger gut ausgebildet und mit einer Stärke von 150 - 200 nm (Jain, 

1993) dicker als bei den anderen Blutzellen (White, 2007). Im Vergleich zu Schwein und Mensch 

ist der Kohlenhydratanteil der Thrombozytenmembran beim Schaf jedoch insgesamt geringer 

(Lanillo und Cabezas, 1981).  

 

6.6 Lektinbindungsstellen auf ovinen Blutzellen 

Über Lektinbindungsstellen auf ovinen Blutzellen liegen erst wenige Befunde vor. So konnte 
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gezeigt werden, dass die Erythrozyten und die Lymphozyten der Schafe genetisch determinierte 

ConA-Rezeptoren auf ihrer Membran tragen (Schmid und Cwik, 1974); (Schmid und Buschmann, 

1985). Weiterhin bindet PHA an die ovinen Erythrozyten (Hamaguchi und Cleve, 1972); 

(Schmid, 1973); (Leca et al., 1985), genauer gesagt an den CD2 Rezeptor der roten 

Blutkörperchen (Leca et al., 1985). Die Bindung ist jedoch schwächer als bei Menschen und 

Schweinen (Hamaguchi und Cleve, 1972). PNA stellt beim Schaf einen Marker für die T-

Lymphozyten dar (Fahey, 1980); (Outteridge, 1985); (Ristau et al., 1985); (Djilali et al., 1987); 

(Djilali und Parodi, 1987). Djilali und Parodi (1987) fanden heraus, dass die peripheren 

Lymphozyten im Blut von Schafen, die PNA binden, keine Immunglobuline auf der 

Zelloberfläche besitzen und folglich die T-Zellen repräsentieren müssen (Djilali und Parodi, 

1987). Weiterhin beschreiben Ristau et al. (1985) SJA als einen Marker für die ovinen T-Zellen 

(Ristau et al, 1985). Die Membran der B- und T-Lymphozyten der Schafe bindet weiterhin PHA. 

Bei Lämmern ist dies ausgeprägter als bei adulten Tieren (Outteridge, 1985). Außerdem wurde 

eine Bindung von WGA an B- und T-Lymphozyten der Schafe nachgewiesen, nicht aber von 

DBA und UEA-I (Djilali et al., 1987).  

 

7. Blutgruppen beim Schaf 

7.1 Allgemeines zu den Blutgruppen 

Unter Blutgruppen versteht man erbliche, strukturelle Eigenschaften von Blutbestandteilen, die 

sich aufgrund einer genetischen Vielgestaltigkeit bei verschiedenen Individuen bzw. Gruppen 

unterscheiden und mittels spezifischer Antikörper nachgewiesen werden können (Pschyrembel, 

2002). Die Blutgruppen sind im Allgemeinen durch Antigene auf der Erythrozytenoberfläche 

charakterisiert (Lösch et al., 2000); (Penedo, 2000). Die antigenen Determinanten stellen vor 

allem Phospholipide, Glykolipide und Glykoproteine dar (Pschyrembel, 2002), wobei die 

serologische Spezifität durch deren Kohlenhydratanteil bestimmt wird. Die verschiedenen, 

speziesspezifischen Antigene können verschiedenen Blutgruppensystemen zugeordnet werden. 

Dabei werden solche Blutgruppenantigene zu einem System zusammengefasst, die von den 

Allelen eines Genes oder eng verknüpften Genen kodiert werden. Die Antigene aller 

Blutgruppensysteme sind auf jedem einzelnen Erythrozyten vorhanden. Manche 

Blutgruppenantigene sind auch auf Thrombozyten, Leukozyten oder in Geweben zu finden, 

jedoch in weitaus geringerer Konzentration (Jain, 1993). Ein Beispiel hierfür ist das R-Antigen, 

das in den 70er Jahren neben den Erythrozyten auch auf Lymphozyten von Schafen nachgewiesen 

wurde (Schmid und Cwik, 1975). Bestimmte Blutgruppensubstanzen können auch in löslicher 

Form in verschiedenen Körperflüssigkeiten wie dem Blutplasma, dem Speichel oder der Milch 
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nachgewiesen werden. Beim Schaf sind dies die R- und O-Antigene (Rasmusen, 1962); (Jain, 

1993), auf die in Kapitel 7.3 noch genauer eingegangen wird.  

Bezüglich der Vererbung der Blutgruppen ist die Anwesenheit eines Antigens generell dominant 

gegenüber seiner Abwesenheit und kodominant zu anderen Allelen des Gens  (Miller, 1976). Es 

gibt jedoch Ausnahmen. Das O-Allel bei Schafen ist beispielsweise rezessiv gegenüber dem R-

Allel, das R-Allel hingegen vererbt sich dominant (Stormont, 1951). Außerdem existiert beim 

Schaf als Besonderheit ein epistatisches Gen (Suppressor-Gen i) über dem R-O-Lokus (Rendel et 

al., 1954), auf das ebenso in Kapitel 7.3 näher eingegangen wird. Eine epistatische Wirkung 

dieses Gens auf den C-Lokus ist ebenfalls nicht auszuschließen (Schmid und Buschmann, 1985). 

 

7.2 Technik 

Die Technik der Blutgruppenbestimmung variiert bei den verschiedenen Spezies. Im Allgemeinen 

finden Hämolyse-, Agglutinations- und Antiglobulintests Anwendung. Bei Schafen stellt der 

Hämolysetest die Methode der Wahl dar (Jain, 1993); (Penedo, 2000), da deren Erythrozyten in 

der Regel nicht zur Agglutination neigen (Jain, 1993). Bei dem Hämolysetest wird ein 

Blutgruppenreagenz (Antiserum) mit Erythrozyten vom Schaf und Komplementfaktoren 

vermischt und nach einiger Zeit der Hämolysegrad (0 - 4) bestimmt. Bei negativer Reaktion 

bleiben die Erythrozyten intakt, bei vollständiger Hämolyse (Grad 4) sind keine Erythrozyten 

mehr erkennbar und die Reaktionsflüssigkeit stellt sich klar und rötlich dar. Als Quelle von 

Komplementfaktoren wird vorrangig das Serum von Kaninchen verwendet (Penedo, 2000). Da 

die Erythrozyten der Kaninchen im Gegensatz zu denjenigen der Schafe kein Forssmann-Antigen 

besitzen und somit das Serum der Kaninchen natürlich vorkommende Antikörper gegen dieses 

Antigen aufweist, müssen diese Antikörper vor dem Einsatz des Serums durch Zugabe von 

Erythrozyten der zu untersuchenden Spezies absorbiert werden (Stormont, 1982); (Penedo, 2000). 

Die Antigene des D-Systems der Schafe werden als Besonderheit mit dem Agglutinationstest 

ermittelt. Dieser ist im Allgemeinen wie der Hämolysetest aufgebaut, es wird jedoch kein 

Komplement hinzu gegeben (Penedo, 2000). Das originale D-Reagenz vermag D-positive 

Erythrozyten bei Abwesenheit von Komplement zu agglutinieren, bei Anwesenheit von 

Kaninchen-Komplement führt es jedoch zur Hämolyse dieser Zellen (Rasmusen, 1962). Die 

Testsera (Antisera) zur Differenzierung der Blutgruppen erhält man durch Isoimmunisierung, bei 

der Blut von einem Individuum auf ein anderes, gruppendifferentes Tier der gleichen Art 

übertragen wird. Da die Antikörperbildung nach der Erstimmunisierung meist unzureichend ist, 

wird eine Reimmunisierung (Boosterung) nach mindestens drei Monaten notwendig (Schmid, 

1971). Neben diesen vom Schaf stammenden Isoantikörpern können aber auch Heteroantikörper 

aus anderen Tieren zur Herstellung von Testsera eingesetzt werden (Tucker, 1971). Mit speziell 
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bei der Blutgruppenerforschung der Rinder angewendeten Normal- und Isoimmunsera können 

aufgrund einer Homologie mancher Blutgruppensysteme von Rindern und Schafen teilweise auch 

die Blutgruppen der Schafe untersucht werden. Nguyen (1972) ermittelte zwölf bovine Testsera, 

deren Antikörper den Nachweis von zehn ovinen Blutgruppenfaktoren erlauben (Nguyen, 1972).  

 

7.3 Blutgruppensysteme der Schafe 

Laut Rasmusen (1962), Tucker (1971), Nguyen (1972), Nguyen und Ruffet (1975), Marai et al. 

(1992) und Penedo (2000) existieren beim Schaf sieben Blutgruppensysteme, nämlich das A-, B-, 

C-, D-, M-, R-, und X-System (Rasmusen, 1962); (Tucker, 1971); (Nguyen, 1972); (Nguyen und 

Ruffet, 1975); (Marai et al., 1992); (Penedo, 2000). Jedes Blutgruppensystem weist eine 

unterschiedliche Anzahl an Blutgruppenfaktoren auf, Penedo (2000) beschreibt beim Schaf 

insgesamt zweiundzwanzig Faktoren (Penedo, 2000). Aufgrund einer Homologie mancher 

Blutgruppensysteme bei Schafen und Rindern ist deren Blutgruppennomenklatur sehr ähnlich 

(Nguyen, 1972). Jedes einzelne System wird mit einem großen Buchstaben und die einzelnen 

Faktoren in dem jeweiligen System mit einem kleinen Buchstaben bezeichnet (Penedo, 2000). 

Trotz der gleichen Namensgebung mittels Buchstaben sind die Antigene bei den verschiedenen 

Tierarten nicht gleich (Jain, 1993). Die Tabelle II.5 führt eine Zusammenfassung der 

verschiedenen Blutgruppensysteme der Schafe mit den dazugehörigen Blutgruppenfaktoren, der 

Zahl der Allele und der Zahl der Phänogruppen aus den verschiedenen Angaben in der Literatur 

(Rasmusen, 1962); (Tucker, 1971); (Nguyen, 1972); (Nguyen und Ruffet, 1975); (Schmid und 

Buschmann, 1985); (Marai et al., 1992); (Penedo, 2000) auf. 

Tabelle II.5: Blutgruppensysteme der Schafe  

System Faktoren Zahl der Allele Zahl der Phänogruppen 

A-System a, b 3 4 

B-System a, b, c, d, e, f, g, h, i > 50 117 

C-System a, b 4 3 

D-System a, b 2 2 

M-System a, b, c 4 6 

R-System (R-O) R, O 2 3 

X-System (X-Z) X, Z 2 3 

 

Das B-, C-, M- und R-System der Schafe scheint je homolog zu dem B-, C-, S- bzw. J-System der 

Rinder zu sein (Rasmusen, 1962); (Nguyen, 1972). Die B- und C-Systeme sind sehr komplex und 

variabel, da diese viele Allele umfassen (Nguyen, 1972); (Penedo, 2000). Das B-System stellt 

jedoch das komplexeste aller Systeme dar (Nguyen und Ruffet, 1975). Schmid und Buschmann 
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(1985) konnten im B-System der Schafe hundertsiebzehn verschiedene Phänogruppen als 

charakteristische Erbeinheiten nachweisen, die unter der Kontrolle von über fünfzig 

verschiedenen Allelen stehen (Schmid und Buschmann, 1985). Als Phänogruppen werden 

unteilbare, geschlossen vererbte Kombinationen der Blutgruppenfaktoren bezeichnet (Schmid, 

1971). Bei den Schafen sind die Gene, welche die Antigene des C-Systems kontrollieren, sehr 

wahrscheinlich mit dem I Lokus, auf den bei dem R-O-System näher eingegangen wird, eng 

verknüpft. Auch mit dem Tr Lokus, der für die Kontrolle des Aminosäurentransports der 

Erythrozyten eine Rolle spielt, besteht für diese Gene eine enge Verbindung. Es kann somit 

angenommen werden, dass sich die Gene der Tr, I und C Loki auf dem selben Chromosom 

befinden (Nguyen, 1985).  

Das natürlich am häufigsten vorkommende Blutgruppensystem der Schafe ist das R-O-System 

(Greenwood, 1977). Die löslichen R- und O-Antigene werden in den Geweben produziert und in 

das Blutplasma abgegeben, um schließlich von den Erythrozyten in der Zirkulation aufgenommen 

zu werden. Im Serum der Schafe befinden sich natürlich vorkommende R- oder O-Antikörper 

(Alloantikörper), jedoch nur in niedriger Konzentration (Jain, 1993). Das R-O-System wird im 

Gegensatz zu den „immunologischen Blutgruppensystemen“ aufgrund des Vorkommens dieser 

natürlichen Antikörper auch als „natürliches Blutgruppensystem“ bezeichnet (Tucker, 1971); 

(Marai et al., 1992). Zellen der R-Gruppe werden durch Anti-R Serum lysiert, solche der O-

Gruppe durch Anti-O Serum. Zellen, die hingegen keiner Lyse durch diese Antisera unterliegen, 

werden der i-Gruppe zugeordnet. Anti-R tritt im Serum der Schafe mit Blutgruppe O auf. Aber 

auch bei manchen Schafen mit der Blutgruppe i kommt Anti-R vor. Anti-O hingegen ist bei 

Schafen der Blutgruppe i sehr selten vorzufinden (Greenwood, 1977). Das Gen für die R-Gruppe 

ist dominant gegenüber dem Gen für die O-Gruppe (Rendel et al., 1954); (Greenwood, 1977); 

(Penedo, 2000), die Blutgruppe O ist somit rezessiv gegenüber der Blutgruppe R (Stormont, 

1951). Daraus ergibt sich, dass heterozygote Individuen (R/O) serologisch nicht von homozygoten 

Tieren der R-Gruppe (R/R) unterscheidbar sind (Greenwood, 1977). Die Exprimierung sowohl 

des R- als auch des O-Antigens wird, wie bereits in Kapitel 7.1 erwähnt, bei den Schafen durch 

das Gen I kontrolliert (Penedo, 2000). Schafe mit dem Genotyp i/i (homozygot rezessiv) besitzen 

weder R- noch O-Antigene (Rendel et al., 1964); (Nguyen, 1985); (Penedo, 2000).  Das 

Suppressor-Gen i ist epistatisch gegenüber den R- und O-Genen und verhindert sehr 

wahrscheinlich die Sekretion von R- und O-Antigenen in das Serum (Rendel et al., 1954). Nur bei 

Vorhandensein des I-Allels, das dominant gegenüber dem rezessiven Suppressor-Gen i ist, sind 

R- oder O-Antigene im Plasma und auf den Blutzellen zu finden (Rendel et al., 1954). Die 

Erythrozyten von neugeborenen Schafen besitzen weder R- noch O-Substanzen (Rendel et al., 

1954); (Rasmusen, 1962); (Greenwood, 1977), im Serum können sie jedoch durch Inhibitionstests 

nachgewiesen werden (Rasmusen, 1962). Das R-Antigen erscheint durchschnittlich 16,4, das O-
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Antigen erst ca. 28,4 Tage nach der Geburt auf den roten Blutkörperchen (Rasmusen, 1962). 

 

7.4 Bedeutung der Blutgruppenbestimmung beim Schaf 

Die Blutgruppen spielen eine wesentliche Rolle als Marker für die Vererbung bestimmter 

biochemischer und physiologischer Merkmale (Marai et al., 1992); (Jain, 1993). Das M-System 

hat Einfluss auf den Kaliumgehalt der Erythrozyten beim Schaf, da Mb vermutlich den aktiven 

Kaliumtransport in die Zelle hemmt (Schmid und Buschmann, 1985); (Penedo, 2000). Zellen mit 

hoher Kaliumkonzentration (HK) sind demnach immer Mb-negativ (Penedo, 2000), solche mit 

niedriger Kaliumkonzentration (LK) immer Mb-positiv (Schmid und Buschmann, 1985); (Penedo, 

2000). LK-Zellen können entweder heterozygot oder homozygot sein. Da homozygote Lämmer 

(Mb x Mb) mit niedriger Kaliumkonzentration eine höhere Überlebenschance haben als 

heterozygote Lämmer, kann dem Polymorphismus im M-System der Schafe eine erhebliche 

wirtschaftliche Bedeutung zugeschrieben werden (Schmid und Buschmann, 1985). Weiterhin 

spielt der Nachweis einer durch Blutgruppen markierbaren Mono- bzw. Heterozygotie eine 

bedeutende Rolle, da Lämmer, die in mindestens einem der sieben Blutgruppensysteme 

heterozygot sind, ein höheres Gewicht beim Absetzen aufweisen als homozygote Tiere. Zudem 

scheint ein Zusammenhang zwischen einer Heterozygotie und der erwünschten Ausbildung der 

Lämmer zum Fleischtyp zu bestehen (Stansfield et al., 1964). Beim Schaf steht das C-System, wie 

bereits in Kapitel 7.3 erwähnt, in direktem Zusammenhang mit dem Aminosäurentransport der 

roten Blutkörperchen. Erythrozyten mit einem ungestörten Transport sind entweder Cb-positiv 

oder Cb-negativ, solche mit einem fehlerhaften Transport sind jedoch nie Cb-negativ (Tucker et 

al., 1980). Durch Störung des Cysteintransports kommt es zu einem Abfall der 

Glutathionkonzentration in der Zelle, was eine verminderte Überlebenszeit der Erythrozyten zur 

Folge hat (Schmid und Buschmann, 1985). Die Erythrozyten der Schafe mit dem O-Antigen 

produzieren die alkalische Phosphatase B, wohingegen solche mit dem R-Antigen die alkalische 

Phosphatase A in das Serum freisetzten (Rendel et al., 1964). Dies ist ein Beispiel für die 

Kopplung einer für den Stoffwechsel wichtigen Enzymaktivität und einem Blutgruppenmerkmal, 

wodurch sich möglicherweise Wege zur Leistungsverbesserung in der landwirtschaftlichen 

Nutztierhaltung ergeben können (Schmid und Buschmann, 1985). Zudem existiert ein 

nennenswerter Einfluss der Blutgruppen-Genotypen auf die genetischen Merkmale der Wolle wie 

Faserlänge, Faserdurchmesser, Stapellänge oder Kräuselung. Das Wissen über die Beziehung 

zwischen der Blutgruppe und den für die Wollqualität- und quantität verantwortlichen 

Charakteristiken ist für die Wollproduktion von großem Nutzen  (Marai et al., 1992).  

Da jedes einzelne Schaf, abgesehen von eineiigen Zwillingen, über seine eigene, 
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individualspezifische Blutgruppenstruktur verfügt, stellt die Blutgruppenformel die zuverlässigste 

Identitätssicherung dar und ist in ihrer Bedeutung mit dem Fingerabdruck des Menschen 

vergleichbar. Die Blutgruppenuntersuchung erweist sich außerdem als ein äußerst sicheres 

Verfahren zum Nachweis der Abstammung eines Schafes und kommt neben der 

Abstammungskontrolle von Zuchttieren auch nach künstlichen Besamungen für die Klärung 

strittiger Abkommen zum Einsatz. Bei Lämmern kann bereits in den ersten Tagen nach der 

Geburt die Vaterschaft oder Mutterschaft bestätigt oder ausgeschlossen werden, da die Mehrzahl 

der Blutgruppenfaktoren nicht rezessiv sondern dominant vererbt werden und somit ein Lamm nur 

solche Blutgruppen besitzen kann, die bei einem oder beiden Elternteilen nachweisbar sind 

(Schmid und Buschmann, 1985). Fehlt mindestens eine Blutgruppe in Mutter und Vater, kann die 

Elternschaft ausgeschlossen werden (Bouw, 1977).  

Weiterhin kann die Blutgruppenbestimmung der Voraussage der zu erwartenden Fruchtbarkeit 

weiblicher Tiere aus verschiedengeschlechtlichen Mehrlingsgeburten dienen. Durch eine 

Ausbildung von Blutgefäßanastomosen der Mehrlinge während der Fetalzeit kommt es zu einem 

Austausch von Blutstammzellen, wodurch derartige Chimärenzwillige zeitlebens zwei 

verschiedene Blutzellpopulationen (Blutzellchimärismus) mit unterschiedlicher Antigenstruktur 

ausbilden, die blutgruppenserologisch nachgewiesen werden können. Bei 

verschiedengeschlechtlichen Zwillingen ist der weibliche Zwillingspartner aufgrund einer 

Verkümmerung des Müller´schen Gangsystems steril, Zwicken sind beim Schaf jedoch im 

Gegensatz zu Rindern sehr selten (Schmid und Buschmann, 1985). Nach Einschätzung von 

Stormont et al. (1953) kommt es bei ca. 5 % der Schafszwillinge zu einer plazentären Anastomose 

der Blutgefäße, wobei Schafe mit dem sogenannten Freemartin-Syndrom in weit weniger als 0,8 

% auftreten (Stormont et al., 1953). 

Die Bedeutung der Blutgruppen bei der Bluttransfusion hat bei den Tieren einen geringeren 

Stellenwert als beim Menschen (Bouw, 1977). Angesichts der vielen verschiedenen 

Kombinationsmöglichkeiten der Blutgruppenfaktoren ist es sehr unwahrscheinlich, einen 

gruppengleichen Spender zu finden. Außerdem ist bei den Haustieren im Gegensatz zu den 

Menschen eine Gruppenungleichheit des Blutes nicht mit einer Unverträglichkeit gleichzusetzen 

(Schmid und Buschmann, 1985). Bei Schafen kann aufgrund der Blutgruppenvielfalt eine 

erstmalige Bluttransfusion in der Regel ohne vorherige Tests durchgeführt werden. Bei einer 

zweiten Transfusion sollten jedoch Kreuzproben erfolgen, bei denen sowohl das Serum des 

Empfängers auf Antikörper gegen die Erythrozyten des Spenders als auch das Serum des 

Spenders auf Antikörper gegen die Erythrozyten des Empfängers getestet werden (Penedo, 2000).
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III Material und Methoden 

1. Untersuchungsmaterial 

Für meine Arbeit wurde Blut von insgesamt vierzig Schafen verwendet. Die Blutproben stammen 

von fünfunddreißig weiblichen und fünf männlichen Tieren unterschiedlichen Alters (vgl. Tab. 

III.1). Die Schafe wurden von der Klinik für Gynäkologie der Tierärztlichen Fakultät der LMU 

München gehalten. Die Blutentnahme erfolgte aus der Vena jugularis mit Hilfe eines sterilem 

Vakutainer Systems der Firma Synlab.vet Augsburg. Von jedem Tier wurden 4 ml Blut in zwei 

verschiedenen EDTA-Röhrchen gesammelt. Die Firma Synlab.vet Augsburg erstellte von allen 

Tieren ein kleines Blutbild und ein Differentialblutbild.  

Von jedem Schaf wurden ungefähr fünfzig Blutausstriche auf SuperFrost® Objektträgern 

angefertigt. Ein Teil der Blutausstriche wurde für bestimmte Untersuchungen 10 Minuten in 

Methanol (Merck, Darmstadt) fixiert. Die Aufbewahrung der Blutausstriche erfolgte nach 

Lufttrocknung in lichtdicht abgeschlossenen Kassetten bei Kühlschranktemperatur. Für die 

elektronenmikroskopischen Untersuchungen wurde Serum-Blut entnommen und schnellstmöglich 

zentrifugiert. Für die enzymhistochemischen Untersuchungen wurde frisch entnommenes Blut 

von zehn Tieren ohne Zugabe eines Antikoagulans direkt nach der Blutentnahme auf SuperFrost® 

Objektträger ausgestrichen und die Färbungen innerhalb von 48 Stunden durchgeführt. Die 

Tabelle III.1 zeigt eine Zusammenstellung der untersuchten Schafe mit Angaben zu Rasse, Alter 

und Geschlecht. 
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Tabelle III.1: Übersicht über die für die Doktorarbeit herangezogenen Schafe 

Identifikation Nummer Rasse Alter Geschlecht 
64 blau 1 Weißes Bergschaf 4 Jahre weiblich 

14 weiß 2 Weißes Bergschaf 6 Jahre weiblich 

61 weiß 3 Weißes Bergschaf 5 Jahre weiblich 

9 weiß 4 Weißes Bergschaf 5 Jahre weiblich 

80 blau 5 Weißes Bergschaf 3,5 Jahre weiblich 

95 blau 6 Weißes Bergschaf 3 Jahre weiblich 

109 blau 7 Brillenschaf 2 Jahre weiblich 

81 blau 8 Brillenschaf 3,5 Jahre weiblich 

72 blau 9 Weißes Bergschaf 3,5 Jahre weiblich 

91 blau 10 Weißes Bergschaf 3 Jahre weiblich 

111 blau 11 Weißes Bergschaf 3 Jahre weiblich 

16 blau 12 Weißes Bergschaf 6 Jahre weiblich 

97 blau 13 Weißes Bergschaf 3 Jahre weiblich 

87 blau 14 Weißes Bergschaf 3 Jahre weiblich 

54 weiß 15 Weißes Bergschaf 6 Jahre weiblich 

19 weiß 16 Weißes Bergschaf 3 Jahre weiblich 

131 blau 17 Brillenschaf 3 Jahre weiblich 

88 blau 18 Weißes Bergschaf 3 Jahre weiblich 

21 weiß 19 Weißes Bergschaf 3 Jahre weiblich 

120 blau 20 Weißes Bergschaf 1 Jahr weiblich 

143 blau 21 Weißes Bergschaf 1 Jahr weiblich 

125 blau 22 Weißes Bergschaf 1 Jahr weiblich 

119 blau 23 Weißes Bergschaf 1,5 Jahre weiblich 

121 blau 24 Weißes Bergschaf 1,5 Jahre weiblich 

126 blau 25 Weißes Bergschaf 1 Jahr weiblich 

960 rot 26 Weißes Bergschaf 7 Jahre männlich 

30 blau 27 Weißes Bergschaf 5 Jahre männlich 

77 gelb 28 Weißes Bergschaf 6 Jahre männlich 

33 weiß 29 Weißes Bergschaf 5 Jahre männlich 

76702 30 Weißes Bergschaf 4 Jahre männlich 

143 blau 31 Weißes Bergschaf 2 Jahre weiblich 

50 weiß 32 Weißes Bergschaf 2 Jahre weiblich 

9 weiß 33 Weißes Bergschaf 5 Jahre weiblich 

2 weiß 34 Weißes Bergschaf 6 Jahre weiblich 

154 blau 35 Weißes Bergschaf 1 Jahr weiblich 

47 weiß 36 Weißes Bergschaf 1,5 Jahre weiblich 

155 blau 37 Weißes Bergschaf 1 Jahr weiblich 

29 weiß 38 Weißes Bergschaf 3 Jahre weiblich 

49 weiß 39 Weißes Bergschaf 2 Jahre weiblich 

89 blau 40 Weißes Bergschaf 3,5 Jahre weiblich 
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2. Lichtmikroskopie 

2.1 Übersichtsfärbungen 

Die Blutausstriche wurden für eine exakte Differenzierung der einzelnen Zelltypen sechs 

verschiedenen lichtmikroskopischen Übersichtsfärbungen unterzogen.  

 

2.1.1 Diff-Quick-Färbung  

Bei dieser Färbung handelt es sich um eine Schnellfärbemethode, die aus drei gebrauchsfertig 

gelieferten Reagenzien (Labor+Technik, Berlin) besteht. Sie setzt sich aus einer Fixierlösung, 

einem Xanthen-Farbstoff (Färbelösung 1) und einem Thiazin-Farbstoff (Färbelösung 2) 

zusammen und dient in erster Linie der raschen Differenzierung der einzelnen Leukozyten. 

Durchführung der Färbung: 

1. Ausstriche für 5 Sekunden in die Fixierlösung tauchen und abtropfen lassen. 

2. Ausstriche für 5 Sekunden in die Färbelösung 1 tauchen und abtropfen lassen. 

3. Ausstriche für 5 Sekunden in die Färbelösung 2 tauchen und abtropfen lassen.  

4. Ausstriche mit demineralisiertem Wasser spülen. 

5. Ausstriche abtropfen und lufttrocknen lassen. 

6. Ausstriche mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Die Zellkerne der Lymphozyten, der Monozyten und der Granulozyten sind dunkelblau bis 

dunkelviolett gefärbt. Die Granula der neutrophilen Granulozyten färben sich rosa bis violett, die 

der eosinophilen Granulozyten orange bis rot und die der basophilen Granulozyten dunkelviolett 

bis schwarz. Das Zytoplasma nimmt bei den Lymphozyten eine hellviolette, bei den Monozyten 

eher eine hellblaue Farbe an. Die Erythrozyten stellen sich rot und die Thrombozyten violett dar.  

 

2.1.2 Giemsa-Färbung 

Die Giemsa-Färbung stellt eine einfache Differentialfärbemethode für zytologische Präparate dar. 

Die Färbelösung enthält die Farbstoffe Azur A und Azur B, Methylenblau und Eosin. Die 

basischen Farbstoffe bilden mit dem Eosin Salze, nämlich Azur-A-Eosinat, Azur-B-Eosinat und 

Methylenblau-Eosinat, die den Romynowsky-Giemsa-Effekt, also die typische rötlich-violette 
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Anfärbung des Zellkernchromatins, bewirken. Zur optimalen Lösung der Farbstoffe kommt 

Methanol als Lösungsmittel und Glyzerin als Stabilisator zum Einsatz (Romeis, 2010). Zur 

Färbung werden gebrauchsfertige, konzentrierte Stammlösungen verwendet. Die Färbelösung 

sollte vor der Verwendung möglichst filtriert werden, da Verunreinigungen den Färbevorgang 

durch Auskristallisation und somit Niederschlagsbildung auf den Präparaten stören (Stobbe, 

1970).  

Herstellung der Färbelösung: 

Die konzentrierte Giemsa-Stammlösung (Merck, Darmstadt) wird im Verhältnis von 1:20 mit 

destilliertem Wasser verdünnt. 

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Einstellen der Objektträger in verdünnte Giemsa-Lösung für 30 - 45 Minuten. 

3. Abgießen der Färbelösung und Spülen mit demineralisiertem Wasser. 

4. Abtropfen und lufttrocknen lassen. 

5. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Einwandfrei gefärbte Ausstriche sollten eine rosa Färbung aufweisen (Stobbe, 1970). Ein zu hoher 

pH-Wert bei der Färbung führt zu einem Blaustich, ein zu niedriger zu einem Rotstich (Romeis, 

2010). Die Zellkerne nehmen bei optimalem pH-Wert eine rot-violette Farbe an (Romanowsky-

Giemsa-Effekt). Die Granula der neutrophilen Granulozyten erscheinen rötlich-violett, die der 

eosinophilen Granulozyten rötlich-braun und die der basophilen Granulozyten blau. Das 

Zytoplasma der Lymphozyten und der Monozyten stellt sich blau dar und schließt bei manchen 

Zellen feine Azurkörnchen ein. Die Erythrozyten färben sich blassrötlich (bei steigendem pH-

Wert bläulich) und die Thrombozyten blau mit violettem Innenkörper (Romeis, 1989).  

 

2.1.3 Färbung nach May-Grünwald 

Die Färbetechnik nach May-Grünwald stellt ebenfalls eine einfache Differentialfärbung mit 

eosinsaurem Methylenblau dar. Der basische Farbstoff Methylenblau bildet mit Eosin ein Salz, 

das Methylenblau-Eosinat. Zur Herstellung der Färbelösung wird Methanol angewendet, da 

Methylenblau und Methyleneosinat schlecht wasserlöslich sind. Eine kommerziell erhältliche 

Farbstofflösung standardisiert die Ergebnisse und ist generell vorzuziehen (Romeis, 2010). Bei 
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älteren Ausstrichen ist eine vorherige Fixierung ratsam (Romeis, 1989). 

Durchführung der Färbung: 

1. May-Grünwald-Lösung (Merck, Darmstadt) auf Objektträger tropfen und 3 - 5 Minuten färben. 

2. Verdünnen der Farbstofflösung durch Auftropfen der gleichen Menge an destilliertem Wasser 

und weitere 5 - 10 Minuten färben (erst hier findet die eigentliche Anfärbung statt). 

3. Abgießen der Färbelösung und Spülen mit demineralisiertem Wasser. 

4. Abtropfen und lufttrocknen lassen. 

5. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken.  

Färbeergebnis: 

Die Zellkerne färben sich mit dieser Methode blau-violett. Das Zytoplasma von Lymphozyten und 

Monozyten nimmt eine blaue Farbe an, wobei Azurkörnchen enthalten sein können. Die Granula 

der neutrophilen Granulozyten färben sich hellviolett bis rötlich, die der eosinophilen 

Granulozyten ziegelrot und die der basophilen Granulozyten kräftig blau-violett. Die Erythrozyten 

nehmen eine rötliche Farbe an und die Thrombozyten erscheinen violett (Romeis, 2010). 

 

2.1.4 Panoptische Färbung nach Pappenheim 

Diese Färbetechnik stellt eine Kombination der Giemsa- mit der May-Grünwald-Färbung dar und 

ist eine sehr wichtige Färbung in der Zytodiagnostik. Die basische Komponente stellt 

Methylenblau, die saure Komponente Eosin dar.  

Herstellung der Färbelösungen: 

Die May-Grünwald-Stammlösung (Merck, Darmstadt) wird im Verhältnis von 1:2, die Giemsa-

Stammlösung (Merck, Darmstadt) im Verhältnis von 1:10 mit destilliertem Wasser verdünnt. 

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Ausstriche mit May-Grünwald-Gebrauchslösung überschichten und 5 - 8  Minuten färben. 

3. Abgießen der Färbelösung. 

4. Ausstriche mit Giemsa-Gebrauchslösung überschichten und 10 Minuten färben. 

5. Spülen mit demineralisiertem Wasser. 
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6. Abtropfen und lufttrocknen lassen. 

7. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Die Zellkerne nehmen mit dieser Methode eine rötlich-violette bis blaue Farbe an. Das 

Zytoplasma der Lymphozyten erscheint hellblau, das der Monozyten eher grau-blau (Romeis, 

2010) und das der neutrophilen Granulozyten zartrosa (Stobbe, 1970). Lymphozyten und 

Monozyten können zudem Azurkörnchen enthalten (Romeis, 1989). Die Granula der neutrophilen 

Granulozyten färben sich hellviolett, die der eosinophilen Granulozyten ziegelrot bis orange und 

die der basophilen Granulozyten dunkelviolett. Die roten Blutkörperchen erscheinen rosa 

(Romeis, 2010). Die Thrombozyten zeigen sich bläulich mit rötlichen Granula (Stobbe, 1970). 

 

2.1.5 Sirius Red-Färbung 

Durch diese Färbung können gezielt eosinophile Granulozyten dargestellt werden. Die 

eosinophilen Granula färben sich intensiv rot an. 

Herstellung der Färbelösung: 

500 mg Sirius Red (Reactifs Ral, Martillac) werden in 45 ml bidestilliertem Wasser und 50 ml 

Ethanol absolut (Merck, Darmstadt) gelöst. Anschließend werden 1 ml 1 %ige NaOH-Lösung und 

4 ml 20 %ige NaCl-Lösung hinzu gegeben. Die Lösung wird vor Verwendung filtriert. Sie ist bei 

Raumtemperatur ungefähr zwei Monate haltbar. 

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Einstellen in saures Hämalaun nach Mayer für 10 Minuten. 

3. Spülen für 15 Minuten in fließendem Leitungswasser („Bläuen“). 

4. Einstellen in Sirius-Red-Färbelösung für 60 Minuten. 

5. Kurzes Spülen mit demineralisiertem Wasser. 

6. Abtropfen und lufttrocknen lassen. 

7. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Die Granula der neutrophilen Granulozyten färben sich in einem zarten Rot an, diejenigen der 
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eosinophilen Granulozyten in einem kräftigen, intensiven Rot. Das Zytoplasma der Lymphozyten 

und Monozyten stellt sich grau-blau dar. Die Zellkerne sind blau gefärbt.  

 

2.1.6 Toluidinblau-Färbung nach Undritz 

Diese Färbung dient der gezielten Darstellung basophiler Granulozyten (Freund, 2008), die durch 

den Mukopolysaccharidgehalt ihrer Spezialgranula metachromatische Eigenschaften besitzen und 

sich somit deutlich von den eosinophilen und neutrophilen Granulozyten unterscheiden (Stobbe, 

1970). Die metachromatische Granulation findet bei saurem pH-Wert statt, nicht jedoch bei 

neutraler Umgebung (Raskin und Valenciano, 2000); (Scott und Stockham, 2000). Eine 

metachromatische Färbung bezeichnet generell die Färbung einer Struktur in einen anderen 

Farbton als den der Farbstofflösung, wobei besonders Thiazinfarbstoffe zur Darstellung der 

Metachromasie geeignet sind (Parwaresch und Lennert, 1969). Saure Schleimsubstanzen färben 

sich mit dem blauen Farbstoff Toluidinblau O somit nicht blau (orthochromatisch), sondern rot-

violett (metachromatisch) an (Romeis, 2010).  

Herstellung der Färbelösung: 

1g Toluidinblau (Roth, Karlsruhe) werden in 100 ml Methanol (Merck, Darmstadt) gelöst. Die 

Lösung ist unbegrenzt haltbar (Stobbe, 1970); (Freund, 2008). 

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Ausstriche 5 Minuten in PBS-Puffer (pH 7,4 - 7,6) waschen. 

3. Einstellen in Toluidinblau-Färbelösung für 15 Minuten. 

4. Kurzes Spülen mit demineralisiertem Wasser. 

5. Abtropfen und lufttrocknen lassen. 

6. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Aufgrund der Reaktion von Toluidinblau mit den sauren Mukopolysacchariden entsteht ein 

metachromatischer Komplex (Raskin und Valenciano, 2000). Die Granula der basophilen 

Granulozyten nehmen dadurch eine leuchtend rot-violette Farbe an, alle anderen Zellen stellen 

sich grau-blau dar (Stobbe, 1970).   
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2.2 Substrathistochemische Färbungen 

2.2.1 Periodic-Acid-Schiff-Reaktion (PAS-Reaktion) 

Die PAS-Reaktion stellt eine weit verbreitete Spezialfärbung zum Nachweis von Kohlenhydraten 

bzw. kohlenhydrathaltigen Strukturen und Substanzen dar (Romeis, 2010). Bei dieser Technik 

werden freie Hydroxylgruppen benachbarter C-Atome von Polysacchariden mittels Perjodsäure 

durch Spaltung der C-C-Bindung zu Aldehyden oxidiert, die mit dem Schiffschen Reagenz 

(fuchsinschwefelige Säure) sichtbar gemacht werden (Stobbe, 1970); (Sinowatz, 2006b). Durch 

Reaktion der Aldehyde mit dem Sulfit des Schiffschen Reagens wird Fuchsin frei, das zu einer 

roten Anfärbung führt (Romeis, 2010). Diese Reaktion dient somit dem Nachweis von 

Polysacchariden (Glykogen), Glykoproteinen ohne Carboxyl- und Sulfatgruppen, neutralen 

Glykoproteinen und zum Teil sauren Mukopolysacchariden, die reich an Hydroxylgruppen sind 

(Romeis, 2010).  

Herstellung der 0,5 %igen wässrigen Perjodsäure-Lösung (immer frisch ansetzen):  

1g Perjodsäure (Merck, Darmstadt) werden in  200 ml destilliertem Wasser gelöst. 

Herstellung des Sulfit/SO2-Wassers (immer frisch ansetzen):  

30 ml 1 N Salzsäure-Lösung (Roth, Karlsruhe) werden mit 30 ml 10 %iger Natriumdisulfit-

Lösung und 600 ml Leitungswasser vermischt. 

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Einstellen in 0,5 %ige wässrige Perjodsäure-Lösung unter Lichtabschluss für 5 Minuten. 

3. Spülen mit Leitungswasser. 

4. Einstellen in Schiffsches Reagenz (Roth, Karlsruhe) unter Lichtabschluss für 15 Minuten. 

5. Zweimaliges Spülen in Sulfit/SO2-Wasser für je 2 Minuten. 

6. Spülen mit Leitungswasser. 

7. Kernfärbung durch Einstellen in saures Hämalaun nach Mayer für 5 Minuten. 

8. Spülen in fließendem Leitungswasser („Bläuen“) für 5 Minuten. 

9. Abtropfen und lufttrocknen lassen. 

10. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 
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Färbeergebnis: 

Strukturen mit einer PAS-postiven Reaktion nehmen eine rosa bis violette Farbe an (Romeis, 

1989), wobei das Reaktionsprodukt eine fokale, diffuse oder granuläre Erscheinung aufweisen 

kann (Raskin und Valenciano, 2000). Die Zellkerne färben sich blau an (Romeis, 2010).              

                                                                                                 

2.2.2 Alcianblau-Färbung            

Diese Färbung wird ebenfalls zum Nachweis von Kohlenhydraten verwendet und kann gut mit der 

PAS-Reaktion kombiniert werden. Alcianblau 8 GX ist ein wasserlöslicher Phthalocyanin-

Farbstoff und dient der selektiven Färbung von Mukosubstanzen, wobei zwischen sauren 

Mukopolysacchariden mit Carboxyl- oder Sulfatgruppen unterschieden werden kann. 

Carboxylgruppenreiche Mukosubstanzen werden bei einem pH-Wert von 2,5 nachgewiesen, 

sulfatierte Muzine hingegen bei einem pH-Wert von 1,0. Ein Vergleich beider Methoden ist stets 

sinnvoll (Romeis, 2010). 

Herstellung der Alcianblau-Färbelösungen: 

• Alcianblau-Färbelösung pH 2,5: 5 g Alcianblau 8 GX Certistain® (Merck, Darmstadt)  

werden unter Rühren in 500 ml einer 3 %igen Essigsäure-Lösung gelöst.  

• Alcianblau-Färbelösung pH 1,0: 5 g Alcianblau 8 GX Certistain® (Merck, Darmstadt) 

werden in 500 ml 0,1 N Salzsäure (Roth, Karlsruhe)  gelöst. 

Herstellung der Kernechtrotlösung: 

5g Aluminiumsulfat (Merck, Darmstadt) werden in 100 ml destilliertem Wasser gelöst. Nach 

Erhitzen der Lösung werden 0,1 g Kernechtrot Certistain® (Merck, Darmstadt) bis zur Lösung 

des Farbstoffes eingerührt. Nach Erkalten wird die Lösung zuletzt filtriert.    

Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Einstellen in Alcianblau-Lösung für 5 Minuten.              

3. Spülen in fließendem Leitungswasser für 3 Minuten.                                      

4. Kurzes Spülen mit demineralisiertem Wasser. 

5. Einstellen in Kernechtrot-Lösung für 10 Minuten. 

6. Spülen in fließendem Leitungswasser für 3 Minuten. 
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7. Kurzes Spülen mit demineralisiertem Wasser. 

8. Abtropfen und lufttrocknen lassen. 

9. Objektträger mit Eukitt® (Sigma, Steinheim) eindecken. 

Färbeergebnis: 

Saure und sulfatierte Mukosubstzanzen färben sich leuchtend blau an. Die Zellkerne werden 

durch Alcianblau nicht angefärbt, die Gegenfärbung mit Kernechtrot färbt diese rosa und den 

Hintergrund zartrosa (Romeis, 1989).  

 

2.3 Enzymhistochemische Färbungen 

Insgesamt wurden sieben Enzymfärbungen bei Blutausstrichen von je fünf weiblichen und fünf 

männlichen Tieren durchgeführt. Als Ausgangsmaterial wurden frische, native Blutausstriche 

verwendet. Es wurden keine Antikoagulantien (z.B. EDTA) eingesetzt, da diese zu einer 

deutlichen Abschwächung mancher Enzymaktivitäten führen können. Das Blut wurde deshalb 

direkt nach der Entnahme aus der Vena jugularis auf die Objektträger aufgetropft und 

ausgestrichen. Die Präparate wurden in den ersten 48 Stunden nach der Blutabnahme bearbeitet. 

 

2.3.1 Nachweis der sauren Phosphatase 

Die saure Phosphatase katalysiert die Hydrolyse von Phosphomonoestern bei niedrigem pH-Wert. 

Bei der hier angewendeten Azokupplungsreaktion wird aus Naphthol AS-OL Phosphorsäure 

Naphthol-AS-BI freigesetzt, das mit Pararosanilin zu einem in der Zelle ausfallenden Azofarbstoff 

gekuppelt wird. 

Herstellung der Färbelösung: 

Zuerst werden 2 ml Naphthol AS-OL Phosphorsäure (Merck, Darmstadt) und 0,8 g Natriumazetat 

(Merck, Darmstadt) nacheinander in 60 ml destilliertem Wasser gelöst. Dann werden 5 Tropfen 

Pararosanilin-HCl-Lösung (2N) (Merck, Darmstadt) mit 5 Tropfen Nitrit-Lösung (Merck, 

Darmstadt) in einem kleinen Reagenzglas gemischt und nach 1 Minute dem ersten Ansatz hinzu 

gegeben. Diese Färbemischung wird vor Verwendung in eine Färbeküvette filtriert. Die 

Färbelösung ist zwar maximal 3,5 Stunden stabil, die Färbung sollte jedoch innerhalb der ersten 

15 Minuten nach der Herstellung erfolgen.   
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Durchführung der Färbung: 

1. Fixieren der Blutausstriche in Leucognost® Fixiergemisch (Merck, Darmstadt) für 1 - 3 

Minuten. 

2. Abspülen mit destilliertem Wasser. 

3. Einstellen in frisch angesetzte Färbelösung für 2,5 Stunden unter Lichtabschluss. 

4. Abspülen mit destilliertem Wasser. 

5. Einstellen in saures Hämalaun nach Mayer für 15 Minuten. 

6. Spülen in fließendem Leitungswasser („Bläuen“) für 2 Minuten. 

7. Ausstriche lufttrocknen lassen. 

8. Eindecken mit Aquatex® (Merck, Darmstadt). 

An Stellen der Enzymaktivität zeigt sich ein rotes bzw. rot-braunes Reaktionsprodukt. Die 

Zellkerne stellen sich blau dar. 

 

2.3.2 Nachweis der alkalischen Phosphatase 

Die alkalische Phosphatase katalysiert die Hydrolyse von Phosphomonoestern bei hohem pH-

Wert. Bei dieser Azokupplungsreaktion wird aus 1-Naphthylphosphat 1-Naphthol freigesetzt, das 

mit dem Diazoniumsalz an Stellen der Enzymaktivität ein unlösliches Produkt bildet. 

Herstellung der Färbelösung: 

Lösung A wird hergestellt, indem 1,1 g Tris(hydroxymethyl)-aminomethan (Merck, Darmstadt) in 

100 ml destilliertem Wasser gelöst werden. Durch Mischen von 15 ml 1-Naphthylphosphat-

Natriumsalz (Merck, Darmstadt) und 15 ml der Lösung A in einer Färbeküvette entsteht Lösung 

B. Lösung C entsteht durch Mischen von 68 mg Variamin®-Blausalz B (Merck, Darmstadt) und 

45 ml der Lösung A. Danach wird 2 Minuten kräftig geschüttelt und die Reagenzlösung C in die 

Färbeküvette zu Lösung B filtriert. Beide Lösungen werden zuletzt gut gemischt. Die Färbelösung 

ist maximal 1,5 Stunden stabil. 

Durchführung der Färbung: 

1. Fixieren der Blutausstriche in Leucognost® Fixiergemisch (Merck, Darmstadt) für 1 - 3 

Minuten. 

2. Abspülen mit destilliertem Wasser. 
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3. Ausstriche lufttrocknen lassen. 

4. Einstellen in frisch angesetzte Färbelösung für 10 - 15 Minuten. 

5. Abspülen mit destilliertem Wasser. 

6. Ausstriche lufttrocknen lassen. 

7. Einstellen in saures Hämalaun nach Mayer für 5 Minuten. 

8. Spülen in fließendem Leitungswasser („Bläuen“) für 2 Minuten. 

9. Ausstriche lufttrocknen lassen. 

10. Eindecken mit Aquatex® (Merck, Darmstadt). 

Das Reaktionsprodukt zeigt sich als brauner Niederschlag in der Zelle. Die Zellkerne stellen sich 

blau dar. 

 

2.3.3 Nachweis der Peroxidase 

Diese Katalase überträgt Wasserstoff von einem Donator auf Wasserstoffperoxid. Als Donator 

wird hier, anstatt dem gewöhnlich eingesetzten, karzinogenen Benzidin, 4-Chlor-1-naphthol 

verwendet. Dieses wird durch Oxidation in einen unlöslichen Farbstoff umgewandelt. 

Herstellung der Färbelösung: 

Zunächst werden 15 ml 4-Chlor-1-naphthol (Merck, Darmstadt) in 15 ml Ethanol (Merck, 

Darmstadt) gelöst und dies in eine Färbeküvette gegeben. Unter Umrühren werden 45 ml 

destilliertes Wasser, 10 Tropfen Tris(hydroxymethyl-aminomethan)-HCl-Puffer (Merck, 

Darmstadt) und 2 Tropfen Wasserstoffperoxid-Lösung (Merck, Darmstadt) nacheinander hinzu 

gegeben. Die Reagenzlösung ist farblos und ungefähr 3 Stunden stabil. 

Durchführung der Färbung: 

1. Fixieren der Blutausstriche in Leucognost® Fixiergemisch (Merck, Darmstadt) für 1 Minute. 

2. Spülen in fließendem Leitungswasser für 10 Sekunden. 

3. Einstellen in frisch angesetzte Färbelösung für 10 Minuten. 

4. Abspülen mit destilliertem Wasser für 10 Sekunden. 

5. Ausstriche lufttrocknen lassen. 

6. Einstellen in saures Hämalaun nach Mayer für 2 Minuten. 



III. Material und Methoden                       84 

7. Spülen in fließendem Leitungswasser („Bläuen“) für 3 - 5 Minuten. 

8. Ausstriche lufttrocknen lassen. 

9. Eindecken mit Aquatex® (Merck, Darmstadt).  

Orte der Enzymaktivität stellen sich schwarz-braun dar. Die Zellkerne sind blau gefärbt. 

 

2.3.4 Nachweis der β-Glucuronidase 

Bei der hier angewendeten Azokupplungsreaktion wird durch die β-Glucuronidase, die zu den 

sauren Hydrolasen zählt, das Substrat Naphthol AS-BI β-Glucuronid zu Naphthol abgebaut, das 

wiederum durch Bindung an hexazotiertes Pararosanilin ein rotes, unlösliches Reaktionsprodukt 

entstehen lässt. 

Herstellung der Färbelösung: 

Zuerst werden 19 ml einer 0,2 M Natriumazetat-Lösung mit 1 ml hexazotiertem Pararosanilin in 

einem Kolben gemischt und mit 1 N NaOH (Roth, Karlsruhe) und 0,1 N HCl (Roth, Karlsruhe) 

auf einen pH-Wert von 5,0 eingestellt. Dann werden 4 mg Naphthol AS-BI β-Glucuronid (Sigma, 

Steinheim) in 0,5 ml N,N-Dimethylformamid (Merck, Darmstadt) gelöst und diese Lösung der 

Inkubationslösung beigefügt. Zuletzt erfolgt eine Filtration der Färbelösung in einen 

Erlenmeyerkolben.  

Durchführung der Färbung: 

1. Betropfen der Ausstriche mit frisch angesetzter Färbelösung.  

2. Inkubation in Feuchtkammer bei 37°C für 3 Stunden. 

3. Abspülen mit destilliertem Wasser.  

4. Einstellen in saures Hämalaun nach Mayer für 8 Minuten. 

5. Spülen in fließendem Leitungswasser („Bläuen“) für 15 Minuten. 

6. Ausstriche lufttrocknen lassen. 

7. Eindecken mit Aquatex® (Merck, Darmstadt). 

Stellen der Enzymaktivität färben sich rot an. Die Zellkerne nehmen eine blaue Farbe an.          
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2.3.5 Nachweis der α-Naphthyl-Azetat-Esterase nach Löffler  

Bei dieser Azokupplungsreaktion bildet das aus 2-Naphthyl-Azetat hydrolytisch abgespaltene 

Naphthol mit dem Diazoniumsalz einen unlöslichen Azofarbstoff am Ort der Enzymaktivität. 

Herstellung der Färbelösung: 

20 mg 2-Naphthyl-Azetat (Sigma, Steinheim) werden als erstes in einem Kolben in 0,4 ml Aceton 

(Merck, Darmstadt) gelöst. Hierbei ist es wichtig, dass das 2-Naphthyl-Acetat in das Aceton 

gegeben wird und nicht umgekehrt. Als nächstes werden 80 ml 0,1 M Phosphatpuffer in die 

Lösung gegeben und kräftig gerührt bis die Trübung verschwindet. Dann werden 100 mg Fast 

Blue BB Salt hemi (2 mg/ml) (Sigma, Steinheim) hinzu gegeben und geschüttelt. Zuletzt erfolgt 

die Filtration in eine Färbeküvette.  

Durchführung der Färbung: 

1. Fixation der Blutausstriche in Formoldampf (Formaldehyd 37 %) (Roth, Karlsruhe) für 4 

Minuten. 

2. Einstellen in frisch angesetzte Färbelösung für 30 Minuten. 

3. Abspülen mit fließendem Leitungswasser.  

4. Einstellen in saures Hämalaun nach Mayer für 8 Minuten. 

5. Spülen in fließendem Leitungswasser („Bläuen“) für 15 Minuten. 

6. Ausstriche lufttrocknen lassen. 

7. Eindecken mit Aquatex® (Merck, Darmstadt). 

An Stellen der Enzymaktivität bildet sich ein blauer, fein granulärer Niederschlag. Die Zellkerne 

färben sich blau. 

 

2.3.6 Nachweis der Naphthol-AS-Azetat-Esterase nach Löffler   

Bei folgender Azokupplungsreaktion wird aus Naphthol-AS-Azetat Naphthol freigesetzt, das mit 

dem Diazoniumsalz an Stellen der Enzymaktivität ein unlösliches Farbstoffpräzipitat bildet. 

Herstellung der Färbelösung: 

Zuerst werden 8 mg Naphthol-AS-Azetat (Applichem, Darmstadt) in 1 ml Aceton (Merck, 

Darmstadt) gelöst. Dieses wird dann unter starkem Schütteln tropfenweise zu 80 ml 0,1 M 

Phosphatpuffer zugegeben. Dann folgt die Zugabe von 100 mg Fast Blue BB Salt hemi (2 mg/ml) 
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(Sigma, Steinheim) und zuletzt die Filtration in eine Färbeküvette. 

Durchführung der Färbung: 

1. Fixation der Blutausstriche in Formoldampf (Formaldehyd 37 %) (Roth, Karlsruhe) für 4 

Minuten. 

2. Einstellen in frisch angesetzte Färbelösung für 70 Minuten. 

3. Abspülen mit fließendem Leitungswasser.  

4. Einstellen in saures Hämalaun nach Mayer für 8 Minuten. 

5. Spülen in fließendem Leitungswasser („Bläuen“) für 15 Minuten. 

6. Ausstriche lufttrocknen lassen. 

7. Eindecken mit Aquatex® (Merck, Darmstadt). 

An Stellen der Enzymaktivität bildet sich ein blauer, fein granulärer Niederschlag. Die Zellkerne 

färben sich blau. 

 

2.3.7 Nachweis der Naphthol-AS-D-Chlorazetat-Esterase   

Bei dieser Azokupplungsreaktion wird aus Naphthol-AS-D-Chlorazetat Naphthol freigesetzt, das 

mit dem Diazoniumsalz an Stellen der Enzymaktivität zu einem unlöslichen Azofarbstoff 

gekuppelt wird. 

Herstellung der Inkubationslösung: 

24 mg Naphthol-AS-D-Chlorazetat (Applichem, Darmstadt) werden als erstes in 4 ml N,N-

Dimethylformamid (Merck, Darmstadt) gelöst. Dann werden 80 mg Fast Blue BB Salt hemi (2 

mg/ml) (Sigma, Steinheim) in 100 ml 0,1 M Phosphatpuffer gelöst. Zuletzt werden Lösungen 

gemischt und in eine Färbeküvette filtriert. 

Durchführung der Färbung: 

1. Fixation der Blutausstriche in kaltem (4°C), 10 % igem Methanol-Formol für 30 Sekunden. 

2. Einstellen in frisch angesetzte Färbelösung für 30 Minuten. 

3. Abspülen mit fließendem Leitungswasser.  

4. Einstellen in saures Hämalaun nach Mayer für 8 Minuten. 

5. Spülen in fließendem Leitungswasser („Bläuen“) für 15 Minuten. 
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6. Ausstriche lufttrocknen lassen. 

7. Eindecken mit Aquatex® (Merck, Darmstadt). 

An Stellen der Enzymaktivität bildet sich ein blauer, fein granulärer Niederschlag. Die Zellkerne 

färben sich blau an. 

 

3. Elektronenmikroskopie 

Die elektronenmikroskopischen Untersuchungen wurden mit Blutproben von insgesamt sechs 

Schafen, davon drei weibliche Tiere im Alter von 1, 2 und 3 Jahren und drei männliche Tiere im 

Alter von 4, 5 und 6 Jahren, durchgeführt. Die Proben wurden folgendermaßen bearbeitet:  

Zuerst wurde das Serum-Blut 20 Minuten bei 2000 U/Min zentrifugiert, wodurch drei Schichten 

entstanden. Die obere Schicht wurde vom Plasma gebildet, die mittlere von Leukozyten und 

Thrombozyten und die untere von Erythrozyten. Nach Abpipettieren des überstehenden Plasmas 

folgte die Isolierung der mittleren Schicht und deren „Sortierung“ auf einer Petrischale. Nach 

Auftragung des gleichen Volumens an Karnovsky-Gebrauchslösung auf die Zellschicht folgte bei 

4°C für eine Stunde die Fixierung der Proben, wodurch eine Verfestigung der Schicht resultierte. 

Das entstandene Zellpellet wurde als Nächstes in 0,1 M Natriumcacodylat-Puffer (pH 7,2) gespült 

und über Nacht nochmals in Karnovsky-Lösung eingebracht. Am nächsten Tag wurde das Pellet 

in 1 mm3 große Blöcke geschnitten und in Natriumcacodylat-Puffer (pH 7,2) dreimal gewaschen. 

Anschließend wurden die Proben mit 1 %igem Osmiumtetroxid und 1,5 %igem 

Kaliumferrocyanid in 0,1 M Natriumcacodylat-Puffer für 2 Stunden bei 4°C kontrastiert und dann 

erneut dreimal für je 20 Minuten mit 0,1 M Natriumcacodylat-Puffer gewaschen. Darauf folgte 

die Entwässerung in einer aufsteigenden Alkoholreihe, und zwar in 30 %igem und in 50 %igem 

Ethanol für je 20 Minuten, dann in 70 %igem, in 90 %igem und dreimal in absolutem Ethanol 

(Merck, Darmstadt) für je 30 Minuten. Daraufhin fand die schrittweise Einbettung in Epon statt, 

nämlich zuerst zweimal je 15 Minuten in Propylenoxid (Merck, Darmstadt), dann 1 Stunde in 

Propylenoxid-Polyembed-Gemisch 2:1, danach über Nacht in Propylenoxid-Polyembed-Gemisch 

1:1 und zuletzt am folgenden Tag 1 Stunde in reines Polyembed auf dem Schüttler. Als Letztes 

wurden die Proben in Flacheinbettungsformen aus Silikon gleichmäßig verteilt, mit Polyembed 

bedeckt und bei 60°C für 24 - 36 Stunden polymerisiert. An einem Ultramikrotom (Ultracut E, 

Firma Reichert-Jung, Wien) wurden dann 1 µm dicke Semidünnschnitte für die erste Übersicht 

erstellt und nach Richardson (Romeis, 2010) gefärbt. Für diese Färbung wurde erst 1 %iges 

Methylenblau (Merck, Darmstadt) mit 1 %igem Borax (Dinatriumtetraborat-decahydrat) (Serva, 

Heidelberg) 1:1 gemischt und dieses darauf 1:1 mit 1 % igem Azur II (Merck, Darmstadt) 
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vermischt. Darauf folgte die Anfertigung von 40 - 60 nm dicken Ultradünnschnitten von 

ausgewählten Blöcken. Diese wurden auf Kupfer-Grids (150 Mesh) aufgezogen und mit 

gesättigtem Uranylazetat (Agar Scientific, Stansted) für 20 Minuten und einer Bleizitrat-Lösung 

nach Reynolds (Reynolds, 1963) für 5 Minuten nachkontrastiert. Zuletzt wurden die Grids auf 

Filterpapier getrocknet. 

 

4. Fluoreszenzmikroskopie 

4.1 Untersuchungen des Zytoskeletts oviner Blutzellen 

Für die Untersuchungen des Zytoskeletts der ovinen Blutzellen wurden unfixierte Blutausstriche 

von fünf weiblichen und fünf männlichen Schafen verwendet. Der Nachweis von Aktin erfolgte 

durch das aus dem Pilz Amanita phalloides stammende Toxin Phalloidin. Dieses bindet und 

stabilisiert mit hoher Affinität F-Aktin, ohne mit G-Aktin zu interagieren (Richelme et al., 1996). 

Der an das Phalloidin gekoppelte Fluoreszenzfarbstoff Tetramethylrhodaminisothiocyanat 

(TRITC) macht die Bindung von F-Aktin durch rote Fluoreszenz sichtbar. Myosin, Vimentin, 

Zytokeratin und Tubulin hingegen wurden durch indirekte immunhistochemische Methoden mit  

unmarkierten Primärantikörpern und Fluoreszeinisothiocyanat (FITC)-markierten 

Sekundärantikörpern nachgewiesen. Die Antikörperbindung wird durch eine grüne Fluoreszenz 

sichtbar. Als Positivkontrollen dienten Blutausstriche von Pferd, Rind, Strauß oder Kaninchen. 

Als Negativkontrollen kamen bei Myosin, Tubulin, Vimentin und Zytokeratin solche Ausstriche 

zum Einsatz, auf die nur der fluoreszierende Sekundärantikörper aufgetragen wurde, nicht jedoch 

der Primärantikörper. Da die Fluoreszenzfarbstoffe sehr lichtempfindlich sind, wurden die 

Schritte ab der Inkubation mit Phalloidin-TRITC oder den FITC-markierten Sekundärantikörpern 

in einem abgedunkelten Raum durchgeführt. Das Gegenfärben der Blutausstriche mit einer DAPI 

(4’,6-Diamidin-2’-phenylindol-dihydrochlorid)-Lösung diente der Identifikation der Zellkerne im 

Fluoreszenzmikroskop. Die Aufbewahrung der Objektträger erfolgte in lichtgeschützten 

Behältnissen bei 7°C im Kühlschrank. Die Tabelle III.2 zeigt die in dieser Arbeit untersuchten 

Zytoskelettproteine mit Angaben zu Konzentration und Herkunft der hierfür verwendeten 

Agenzien.  
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Tabelle III.2: In dieser Arbeit untersuchte Zytoskelettproteine 

 F-Aktin bindendes 
Agens 

Konz Herkunft    

Aktin 

Phalloidin-TRITC  
(500µg/ml DMSO)   
(Sigma-Aldrich, 
Steinheim) 

1:500 

1 
µg/ml 

Amanita 
phalloides 

   

 Primär-AK Konz Herkunft Sekundär-AK Konz Herkunft 

Myosin 

Rabbit polyclonal to 
non-muscle myosin 
IIA (Abcam, 
Cambridge) 

1:500 

2 
µg/ml 

Kan 

Fluoreszin anti-
rabbit IgG 
(Vector, 
Burlingame) 

1:300 Zg 

Vimentin 

Monoclonal mouse 
anti-vimentin clone 
vim 3B4 (Dako, 
Glostrup) 

1:500 Ms 

Polyclonal 
rabbit anti-
mouse immun-
globulins/FITC 
(Dako, 
Glostrup) 

1:20 Kan 

Zytokeratin 
Pancytoceratin plus 
(Biocarta, 
Hamburg) 

1:100 Ms 

Polyclonal 
rabbit anti-
mouse immun-
globulins/FITC 
(Dako, 
Glostrup) 

1:20 Kan 

Tubulin 

Mouse monoclonal 
(DM1A+ DM1B) to 
tubulin (Abcam, 
Cambridge) 

2 
µg/ml 

Ms 

Polyclonal 
rabbit anti-
mouse immun-
globulins/FITC 
(Dako, 
Glostrup) 

1:20 Kan 

Konz = Konzentration, DMSO = Dimethylsulfoxid, AK = Antikörper, Kan = Kaninchen, Zg = 
Ziege, Ms = Maus 

 

4.1.1 Nachweis von Aktin durch Phalloidin-TRITC 

Durchführung der Färbung: 

1. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten.  

2. Ausstriche mit Dako Protein Block Serum Free (Dako, Hamburg) zur Reduktion der  

Hintergrundfärbung bedecken.  

3. Inkubation in Feuchtkammer bei Raumtemperatur für 10 Minuten. 

4. Abgießen des Dako Protein Block Serum Free. 

5. 100 µl des in Antikörper-Diluent (Dako, Hamburg) gelösten Phalloidin-TRITC in einer 

Konzentration von 1:500 auf die Objektträger aufpipettieren. 

6. Inkubation in abgedunkelter Feuchtkammer bei Raumtemperatur für 45 Minuten.  
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7. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

8. Gegenfärben und Eindecken der Objektträger mit Vectashield® Mounting Medium for 

Fluorencence with DAPI (Vector, Burlingame) und Verschließen der Deckgläser mit 

handelsüblichem Nagellack (Klarlack). 

 

4.1.2 Immunhistochemischer Nachweis von Myosin, Vimentin, Zytokeratin und 

Tubulin 

Durchführung der Färbung: 

1. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten.  

2. Ausstriche mit Dako Protein Block Serum Free (Dako, Hamburg) zur Reduktion der   

Hintergrundfärbung bedecken.  

3. Inkubation in Feuchtkammer bei Raumtemperatur für 10 Minuten. 

4. Abgießen des Dako Protein Block Serum Free. 

5. 100 µl des in Antikörper-Diluent (Dako, Hamburg) gelösten Primärantikörpers in der 

jeweiligen Konzentration (siehe Tabelle III.2) auf die Objektträger aufpipettieren. 

6. Inkubation in Feuchtkammer im Kühlschrank bei 4 - 6°C über Nacht. 

7. Am nächsten Tag dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 

5 Minuten 

8. 100 µl des in PBS-Puffer (pH 7,4 - 7,6) gelösten, FITC-markierten Sekundärantikörpers in der 

jeweiligen Konzentration (siehe Tabelle III.2) auf die Ausstriche aufbringen.  

9. Inkubation in abgedunkelter Feuchtkammer bei Raumtemperatur für 30 Minuten. 

10. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

11. Gegenfärben und Eindecken der Objektträger mit Vectashield® Mounting Medium for 

Fluorencence with DAPI (Vector, Burlingame) und Verschließen der Deckgläser mit 

handelsüblichem Nagellack (Klarlack). 
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4.2 Glykohistochemie 

Für die glykohistochemischen Untersuchungen wurden hauptsächlich FITC-gekoppelte Pflanzen-

Lektine verwendet. Für manche Zuckernachweise kamen auch biotinylierte Pflanzen-Lektine zum 

Einsatz. Durch Zugabe von Hemmzuckern wurde zudem in Kontrolluntersuchungen die Spezifität 

der Bindung deutlich positiv reagierender FITC-markierter Pflanzen-Lektine untersucht. Darüber 

hinaus wurde durch Vorbehandlung mit Neuraminidase das Bindungsverhalten der negativ oder 

nur schwach positiv reagierenden FITC-markierten Pflanzen-Lektine analysiert. Da der 

Fluoreszenzfarbstoff FITC sehr lichtempfindlich ist, wurden die Schritte ab dessen Verwendung 

in einem abgedunkelten Raum durchgeführt. Das Gegenfärben der Blutausstriche mit einer DAPI 

(4’,6-Diamidin-2’-phenylindol-dihydrochlorid)-Lösung diente der Identifikation der Zellkerne im 

Fluoreszenzmikroskop. Die Aufbewahrung der Objektträger erfolgte in lichtgeschützten 

Behältnissen bei 7°C im Kühlschrank.  

 

4.2.1 FITC-markierte Pflanzen-Lektine 

Insgesamt wurden vierzehn FITC-gekoppelte Pflanzen-Lektine (Vector, Burlingame) verwendet. 

Pro Lektin wurden jeweils vierzehn Blutausstriche auf die Bindungsfähigkeit der Lektine 

untersucht. Als Positivkontrollen wurden Blutausstriche von Rindern, deren 

Lektinbindungseigenschaften bekannt sind, verwendet. Um die Eigenfluoreszenz der Blutzellen 

beurteilen zu können, wurden zudem Negativkontrollen angefertigt, bei denen kein Lektin 

aufgetragen, sondern nur die Kernfärbung durchgeführt wurde. Die in dieser Arbeit 

herangezogenen FITC-gekoppelten Pflanzen-Lektine sind mit ihrer jeweiligen Herkunft und 

Zuckerspezifität in Tabelle III.3 aufgelistet. 
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Tabelle III.3: In dieser Arbeit verwendete FITC-markierte Pflanzen-Lektine 

 Abk Herkunft 
Spezifität 
für Mono-
saccharide 

Potente Oligosaccharide 

Concanavalin  
Agglutinin 

ConA 
Concanavalia 
ensiformis 
(Schwertbohne) 

Man/Glc1 GlcNAcβ2Manα6(GlcNAcβ2Manα3)
Manβ4GlcNac1  

Lens culinaris 
Agglutinin 

LCA Lens culinaris 
(Speiselinse) 

Man/Glc1 Bindung an N-Glykane wird durch 
Core-Fucosylierung verstärkt1    

Pisum sativum 
Agglutinin 

PSA Pisum sativum 
(Erbse) 

Man/Glc2 Bindung an N-Glykane wird durch 
Core-Fucosylierung verstärkt2    

Peanut 
Agglutinin 

PNA Arachis hypogea 
(Erdnuss) 

Gal2 Galβ3GalNAcα/β2 

Ricinus 
communis 
Agglutinin 

RCA 
Ricinus 
communis  
(Rizinusbohne) 

Gal3                 
Galβ4GlcNAcβ2Manα6(Galβ4GlcN
Acβ2Manα3)Manβ4GlcNAc4  

Wheat germ 
Agglutinin 

WGA 
Triticum vulgare 
(Weizen) 

GlcNAc/ 
NeuNAc5 

(GlcNAcβ4)n, 
(Manβ4)GlcNAcβ4GlcNAc(1,N-
Asn); Geclusterte sialysierte Tn/Tn-
Antigene in Muzinen; O-
GlcNAcetylierung von Proteinen5  

Wheat germ 
Agglutinin 
succinyliert 

WGAs 
Triticum vulgare 
(Weizen) 

GlcNAc a 

Dolichos 
biflorus 
Agglutinin 

DBA 
Dolichos biflorus 
(Afrikanische 
Pferdebohne) 

GalNAc6 GalNAcα3GalNAcα3Galβ4Galβ4Glc
6  

Soybean 
Agglutinin 

SBA Glycine max 
(Sojabohne) 

Gal4, 
GalNAc5 

GalNAcα3Gal(β6Glc);  Sialidase-
vorbehandelte submaxillare Muzine5    

Griffonia 
simplicifolia I 
Agglutinin 

GSL-I 

Griffonia 
simplicifolia 
(Afrikanische 
Schwarzbohne) 

GalNAc1 
GalNAcα3Gal, 
GalNAcα3GalNAcβ3Galα4Galβ4Glc
1 

Sophora 
japonica 
Agglutinin 

SJA 

Sophora 
japonica 
(Chinesischer 
Schnurbaum) 

GalNAc1 GalNAcβ6Gal; Galβ3GalNAc1    

Ulex 
europaeus I 
Agglutinin 

UEA-I 
Ulex europaeus 
(Stechginster) 

Fuc1 Fucα2Galβ4GlcNAcB6R1   

Phaseolus 
vulgaris 
Agglutinin E 

PHA-
E 

Phaseolus 
vulgaris 
(Gartenbohne) 

b2,6 
geteilte, komplexe N-Glykane: 
Galβ4GlcNAcβ2Manα6(GlcNAcβ2M
anα3)(GlcNAcβ4)Manβ4GlcNAc2,5 

Phaseolus 
vulgaris  
Agglutinin L 

PHA-
L 

Phaseolus 
vulgaris 
(Gartenbohne) 

b2,6 
“tetraantennary” und “triantennary” 
N-Glykane mit β6-Verzweigung2,5 

Abk = Abkürzung, Man = Mannose, Glc = Glukose, Gal = Galaktose, GlcNAc = N-Acetyl-
Glukosamin, NeuNAc = N-Acetyl-Neuraminsäure, GalNAc = N-Acetyl-Galaktosamin, Fuc = Fukose, 
a = Die Succinylierung von WGA führt in Folge einer negativen Ladung von WGAs bei 
physiologischem pH-Wert zu einer reduzierten Bindung an N-Acetyl-Neuraminsäure (Monsigny et al., 
1980), b = keine Spezifität für Monosaccharide bekannt, 1(Rüdiger und Gabius, 2009), 2(Gabius et al., 
2011), 3(Goldstein und Poretz, 1986), 4(Rüdiger und Gabius, 2001), 5(Habermann et al., 2011), 
6(Gabius, 2011) 
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Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

3. 100 µl des in PBS-Puffer gelösten FITC-gekoppelten Lektins in einer Konzentration von 10 

µg/ml auf die Objektträger mittels einer Pipette auftragen. 

4. Inkubation in abgedunkelter Feuchtkammer bei Raumtemperatur für 60 Minuten. 

5. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 - 8 Minuten. 

6. Gegenfärben und Eindecken der Objektträger mit Vectashield® Mounting Medium for 

Fluorencence with DAPI (Vector, Burlingame) und Verschließen der Deckgläser mit 

handelsüblichem Nagellack (Klarlack). 

 

4.2.2 Inhibition mit Hemmzuckern 

Bei den stark positiv reagierenden FITC-gekoppelten Pflanzen-Lektinen ConA, LCA, PSA, WGA 

und WGAs wurde untersucht, ob sich die Lektinbindung mittels des für sie spezifischen 

Kohlenhydrats vermindern oder hemmen lässt. Dafür wurde das jeweilige Lektin vor dem 

Auftragen auf den Ausstrich mit dem entsprechenden Hemmzucker 30 bzw. 60 Minuten lang 

vorinkubiert. Die Inhibitoren wurden hierfür in einer bestimmten Konzentration (siehe Tab. III.4) 

zu den in PBS-Puffer gelösten Lektinen dazugegeben. Dieses Lektin-Hemmstoff-Gemisch wurde 

nach der Inkubationszeit auf je zwei Ausstriche aufgetragen. Das weitere Vorgehen entsprach 

demjenigen, welches in Kapitel 4.2.1 beschrieben wurde, anstelle des reinen Lektins wurde jedoch 

das Lektin-Hemmstoff-Gemisch aufgetragen. Als Positivkontrollen dienten Blutausstriche vom 

Rind, als Negativkontrollen hingegen Blutsausstriche, auf die das Lektin ohne Hemmstoff 

aufgetragen wurde. Die Tabelle III.4 führt die verwendeten Lektine mit den dazugehörigen 

Hemmstoffen, deren Konzentration und die Inkubationszeit auf.  

Tabelle III.4: In dieser Arbeit verwendete Hemmzucker 

Lektin Hemmzucker Konzentration Zeit 

ConA Methyl-α-Mannopyranoside (E-Y Labs, San Mateo, USA) 84,8 mg/ml 60 Min 

LCA Methyl-α-Mannopyranoside (E-Y Labs, San Mateo, USA) 84,8 mg/ml 60 Min 

PSA Methyl-α-Mannopyranoside (E-Y Labs, San Mateo, USA) 84,8 mg/ml 60 Min 

WGA Chitin-Hydrolysat (Vektor, Burlingame, USA) 1:4 30 Min 

WGAs Chitin-Hydrolysat (Vektor, Burlingame, USA) 1:4 30 Min 
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4.2.3 Vorbehandlung mit Neuraminidase 

Die negativen (PNA, RCA, DBA und SBA) und nur schwach positiven (SJA und UEA-I) FITC-

gekoppelten Pflanzen-Lektine wurden auf die Neuraminidase-Spezifität hin untersucht. Es kamen 

je drei Blutausstriche zum Einsatz. Das Enzym Neuraminidase spaltet im Allgemeinen die 

endständigen Sialinsäuren, die N- bzw. O-substituierte Derivate der Neuraminsäure darstellen, 

von verschiedenen Glykoproteinen ab, wodurch deren Zuckermoleküle zugängig werden. Durch 

diese Methode kann demnach herausgefunden werden, ob nach vorheriger Behandlung des 

Blutausstriches mit dem Enzym vorher negative Lektine nun binden oder schwach positive 

Lektine nun besser binden können. Die für diese Untersuchung verwendete Neuraminidase 

stammt aus Vibrio cholerae (Sigma-Aldrich, Steinheim) und spaltet bevorzugt α(2→3) 

Verbindungen der Sialinsäure, aber auch α(2→6) und α(2→8) Verbindungen. Für die 

Wirksamkeit des Enzyms werden eine Temperatur von 37°C, ein pH-Wert von 5,0 und 

Kalziumionen benötigt. Die folgende Methode wurde unter Zuhilfenahme von menschlichen 

Blutproben zunächst etabliert und daraufhin beim Schaf angewendet. Als Positivkontrollen 

dienten Blutausstriche vom Mensch, als Negativkontrollen Blutsausstriche, auf die das Lektin 

ohne vorherige Neuraminidase-Behandlung aufgetragen wurde. 

Herstellung der Gebrauchslösung: 

Zunächst erfolgt die Herstellung eines Natriumazetat-Kalziumchlorid-Puffers (pH 5,0), indem 8,2 

g Natriumazetat (Merck, Darmstadt) in 1 l demineralisiertem Wasser gelöst werden und 

anschließend 0,294 g Kalziumchlorid (Merck, Darmstadt) hinzu gegeben werden. Die Einstellung 

auf einen pH-Wert von 5,0 erfolgt mit 1 M HCl (Roth, Karlsruhe). Zu 1 ml der Pufferlösung 

werden 3 µl der Neuraminidase-Lösung von Vibrio cholerae (Sigma-Aldrich, Steinheim) 

gegeben, was 0,02 Einheiten entspricht. Die Temperatur des Puffers muss vor Zugabe des Enzyms 

37°C betragen, darf jedoch 40°C nicht überschreiten. 

Versuchsdurchführung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Dreimaliges Waschen der Ausstriche in Natriumazetat-Puffer (pH 5,5) für jeweils 5 Minuten. 

3. 200 µl der verdünnten Neuraminidase-Lösung in einer Konzentration von 0,02 U/ml auf die 

Objektträger mittels einer Pipette auftragen. 

4. Inkubation in abgedunkelter Feuchtkammer bei 37°C für 60 Minuten. 

5. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

6. 100 µl des in PBS-Puffer gelösten FITC-gekoppelten Lektins in einer Konzentration von 10 



III. Material und Methoden                       95 

µg/ml auf die Objektträger mittels einer Pipette auftragen. 

7. Inkubation in abgedunkelter Feuchtkammer bei Raumtemperatur für 60 Minuten. 

8. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 - 8 Minuten. 

9. Gegenfärben und Eindecken der Objektträger mit Vectashield® Mounting Medium for 

Fluorencence with DAPI (Vector, Burlingame) und Verschließen der Deckgläser mit 

handelsüblichem Nagellack (Klarlack).  

 

4.2.4 Biotinylierte Pflanzen-Lektine 

Mittels der Streptavidin-Biotin-Methode wurde die Bindung der biotinylierten Lektine MAA-I 

(Biozol, Eching), SNA (Biozol, Eching) und VAA (Lehrstuhl für Physiologische Chemie der 

Tierärztlichen Fakultät, München) nachgewiesen. Bei dieser Methode ist das Lektin, das an seine 

spezifische Kohlenhydratstruktur bindet, an das Vitamin Biotin gekoppelt. Gibt man einen 

Streptavidin-FITC-Komplex (Dako, Hamburg) zu dem mit einem biotinylierten Lektin 

inkubierten Ausstrich, bindet das von Streptomyces Avidinii stammende Protein Streptavidin mit 

hoher Affinität an das Biotinmolekül. Die Bindungsstelle des Lektins wird durch FITC sichtbar 

gemacht. Pro Lektin wurden je zehn Blutausstriche untersucht. Als Positivkontrollen wurden auch 

hier Blutausstriche vom Rind herangezogen. Als Negativkontrollen dienten Ausstriche, auf die 

nur Streptavidin/FITC, nicht jedoch das biotinylierte Lektin aufgetragen wurde. Die in dieser 

Arbeit verwendeten biotinylierten Pflanzen-Lektine sind mit ihrer jeweiligen Herkunft und 

Zuckerspezifität in Tabelle III.5 aufgelistet. 

Tabelle III.5: In dieser Arbeit verwendete biotinylierte Pflanzen-Lektine 

 Abk Herkunft 
Spezifität für 
Mono-
saccharide 

Potente Oligosaccharide 

Maackia 
amurensis 
Agglutinin I  

MAA-I 
Maackia amurensis 
(Asiatisches 
Gelbholz) 

a1  
NeuNAcα3Galβ4GlcNAc/Glc          
3`-Sulfatierung wird toleriert1    

Sambucus 
nigra 
Agglutinin 

SNA 
Sambucus nigra 
(Schwarzer 
Holunder) 

Gal/GalNAc1,2 
NeuNAcα6Gal/GalNAc   
Geclustertes Tn-Antigen       
9`O-Acetylierung wird toleriert1,2      

Viscum 
album 
Agglutinin 

VAA 
Viscum album 
(Mistel) 

Gal2,3 
Galβ2(3)Gal; Galα3(4)Gal; 
Fucα2Gal; Galβ3(4)GlcNAc 
ohne/mit α2,6-Sialisierung2,3    

Abkürzung = Abkürzung, NeuNAc = N-Acetyl-Neuraminsäure, Gal = Galaktose, GlcNAc = N-
Acetyl-Glukosamin, GalNAc = N-Acetyl-Galaktosamin, Fuc = Fukose, a = keine Spezifität für 
Monosaccharide bekannt, 1(Gabius et al., 2011), 2(Gabius, 2011), 3(Habermann et al., 2011) 
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Durchführung der Färbung: 

1. Ausstriche 10 Minuten in Methanol (Merck, Darmstadt) fixieren und lufttrocknen lassen. 

2. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

3. Ausstriche mit Dako Protein Block Serum Free (Dako, Hamburg) zur Reduktion der 

Hintergrundfärbung bedecken. 

4. Inkubation in Feuchtkammer bei Raumtemperatur für 10 Minuten. 

5. Abschütten des Dako Protein Block Serum Free. 

6. 100 µl des in PBS-Puffer gelösten biotinylierten Lektins in einer Konzentration von 10 µg/ml 

(MAA-I und SNA) bzw. 2 µg/ml (VAA) auf die Objektträger mittels einer Pipette auftragen. 

7. Inkubation in Feuchtkammer bei Raumtemperatur für 60 Minuten. 

8. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 Minuten. 

9. 100 µl des in PBS-Puffer (pH 7,4 - 7,6) verdünnten Streptavidin/FITC (Dako, Hamburg) in 

einer Konzentration von 1:500 auf die Objektträger mittels einer Pipette auftragen. 

10. Inkubation in abgedunkelter Feuchtkammer bei Raumtemperatur für 30 Minuten. 

11. Dreimaliges Waschen der Ausstriche in PBS-Puffer (pH 7,4 - 7,6) für jeweils 5 - 8 Minuten. 

12. Gegenfärben und Eindecken der Objektträger mit Vectashield® Mounting Medium for 

Fluorencence with DAPI (Vector, Burlingame) und Verschließen der Deckgläser mit 

handelsüblichem Nagellack (Klarlack).  

 

5. Auswertung 

Die Auswertung der Präparate mit den Übersichtsfärbungen, den substrathistochemischen 

Färbungen und den enzymhistochemischen Färbungen erfolgte unter dem Lichtmikroskop 

Aristoplan der Firma Leitz (Leitz, Wetzlar). Die Fotos wurden mit einer Canon-Powershot A 95 

Digitalkamera aufgenommen. 

Die Beurteilung und die photographische Dokumentation der elektronenmikroskopischen Proben 

erfolgten unter dem Transmissionselektronenmikroskop Zeiss EM 902 (Zeiss, Oberkochen). 

Die Blutausstriche, die den Fluoreszenzfarbstoff FITC oder TRITC enthalten, wurden unter dem 

Fluoreszenzmikroskop Dialux 20 der Firma Leitz (Leitz, Wetzlar) ausgewertet. Die 

dazugehörigen Fotos wurden mit der Kamera Progress®CF cool aufgenommen. 
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IV Ergebnisse 

1. Blutbild der verwendeten Schafe 

Von allen Schafen wurden von der Firma Synlab.vet Augsburg ein kleines Blutbild und ein 

Differentialblutbild erstellt. In den Tabellen IV.1 und IV.2 sind die Blutwerte der einzelnen Tiere 

aufgelistet. Die Referenzbereiche sind jeweils in Klammern angegeben. 
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Tabelle IV.1: Kleines Blutbild der verwendeten Schafe 

Sf Leu    
x103/µl   

(4,2–6,2) 

Ery  
x106/µl 

(6,5-11,3) 

Hb     
g/l 

(87-128) 

Hkt       
%      

(30-38) 

MCV 
fl 

(34-46) 

MCH 
pg 

(13-14) 

MCHC       
% 

(29-34) 

Thr 
x103/µl     

(280-650) 

1 4,6 11,44 125 36 31,6 10,9 34,6 282 
2 5,4 9,88 106 34 34,8 10,7 30,8 255 
3 5,4 9,88 125 33 33,5 12,7 37,8 245 
4 4,7 12,12 147 38 30,9 12,0 38,9 214 
5 5,7 11,99 139 36 30,0 11,6 38,6 201 
6 5,6 11,92 134 36 29,8 11,2 37,7 211 
7 8,1 11,37 138 31 26,9 12,1 45,1 120 
8 4,0 11,84 133 34 29,0 11,2 38,8 161 
9 5,3 10,31 118 31 29,7 11,4 38,6 236 

10 6,0 11,89 126 35 29,6 10,6 35,8 130 
11 6,3 13,9 148 n.b. n.b. n.b. n.b. 186 
12 6,2 11,24 121 31 27,7 10,8 38,9 239 
13 6,1 10,91 121 31 28,0 11,1 39,7 153 
14 6,8 12,63 134 34 27,0 10,6 39,3 171 
15 3,9 12,47 135 36 29,2 10,8 37,1 174 
16 6,2 11,13 121 34 30,9 10,9 35,2 180 
17 5,7 13,15 145 39 29,7 11,0 37,2 247 
18 4,8 11,94 134 35 29,0 11,2 38,7 162 
19 7,1 10,96 132 31 28,6 12,0 42,0 158 
20 8,6 10,19 120 35 34,0 11,8 34,7 119 
21 8,8 11,43 133 n.b. n.b. n.b. n.b. 302 
22 3,4 10,53 150 43 35,4 12,5 35,2 290 
23 6,0 10,51 119 30 28,1 11,3 40,3 224 
24 8,7 10,76 128 n.b. n.b. n.b. n.b. 206 
25 10,1 11,58 138 37 29,0 10,9 37,5 284 
26 6,6 9,84 118 45 45,9 12,0 26,1 351 
27 3,5 10,53 151 42 35,3 12,6 35,6 278 
28 7,1 7,62 105 n.b. n.b. n.b. n.b. 311 
29 8,3 9,85 127 30 29,9 12,9 43,1 120 
30 7,2 11,89 148 33 25,8 11,7 45,3 180 
31 6,9 9,62 117 27 27,1 11,6 42,7 194 
32 5,6 9,86 122 28 27,0 11,6 43,1 251 
33 4,6 11,07 149 40 32,6 12,2 37,3 185 
34 3,4 9,97 130 37 34,5 12,0 34,8 147 
35 8,6 11,46 124 32 27,3 10,6 38,8 231 
36 10,7 10,78 113 29 26,4 10,2 38,8 171 
37 7,4 10,69 126 28 25,6 11,4 44,5 109 
38 8,2 9,73 114 27 26,8 11,2 41,9 305 
39 9,0 7,42 99    27 34,1 12,4 36,4 433 
40 7,1 11,70 141 38 29,9 11,1 37,1 269 
Sf = Schaf, Leu = Leukozyten, Ery = Erythrozyten, Hb = Hämoglobin, Hkt = Hämatokrit, MCV = 
mean corpuscular volume, MCH = mean corpuscular hemoglobin, MCHC = mean corpuscular 
hemoglobin concentration, Thr = Thrombozyten, n.b. = nicht bestimmt 
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Tabelle IV.2: Differentialblutbild der verwendeten Schafe 

Sf Neu 
% 

(20-45) 

Neu 
x103/

µl  

(0,7-4) 

St  
%   

(0-2) 

St 
x103/

µl  

(<200) 

Ly 
%  

(40-65) 

Ly 
x103/

µl 

(2-4) 

M  
% 

(2-6) 

Mo 
x103/

µl 

(0-0,7) 

Eos
% 

(1-10) 

Eos 
x103/

µl 

(0,1-1) 

Bas
% 

(0-3) 

Bas 
x103/

µl 

(0-0,3) 

1 37 1,70 0 0 60 2,76 1 0,05 1 0,05 1 0,05 
2 50 2,70 0 0 39 2,11 2 0,11 8 0,43 0 0 
3 51 2,75 0 0 42 2,27 2 0,11 5 0,27 0 0 
4 50 2,35 0 0 42 1,97 1 0,05 7 0,33 0 0 
5 45 2,57 0 0 49 2,79 3 0,17 4 0,23 0 0 
6 30 1,68 0 0 63 3,53 1 0,06 6 0,34 0 0 
7 44 3,56 0 0 51 4,13 2 0,16 3 0,24 0 0 
8 52 2,08 0 0 42 1,68 1 0,04 5 0,20 0 0 
9 40 2,12 0 0 55 2,92 3 0,16 2 0,11 0 0 

10 33 1,98 0 0 61 3,66 2 0,12 4 0,24 1 0,06 
11 39 2,46 0 0 57 3,59 1 0,06 2 0,13 0 0 
12 39 2,42 0 0 48 2,98 2 0,12 10 0,62 1 0,06 
13 31 1,89 0 0 59 3,60 5 0,31 4 0,24 0 0 
14 44 2,99 0 0 50 3,40 2 0,14 3 0,20 0 0 
15 38 1,48 0 0 55 2,15 2 0,08 6 0,23 0 0 
16 48 2,98 0 0 43 2,67 2 0,12 7 0,43 0 0 
17 43 1,45 0 0 49 2,79 2 0,11 5 0,29 0 0 
18 33 1,58 0 0 60 2,88 1 0,05 6 0,29 0 0 
19 45 3,20 0 0 49 3,48 2 0,14 4 0,28 0 0 
20 35 3,01 0 0 57 4,90 2 0,17 5 0,43 1 0,09 
21 28 2,46 0 0 64 5,63 1 0,09 6 0,53 1 0,09 
22 56 1,90 0 0 40 1,36 1 0,03 4 0,14 0 0 
23 43 2,58 0 0 52 3,12 4 0,24 2 0,12 0 0 
24 35 3,05 0 0 59 5,13 2 0,17 3 0,26 0 0 
25 30 3,03 0 0 65 6,57 1 0,10 4 0,40 0 0 
26 35 2,31 0 0 53 3,50 1 0,07 12 0,79 0 0 
27 60 2,10 0 0 36 1,26 0 0 4 0,14 0 0 
28 50 3,55 0 0 40 2,84 1 0,07 9 0,64 0 0 
29 60 4,98 0 0 36 2,99 1 0,08 3 0,25 0 0 
30 50 3,60 0 0 46 3,31 1 0,07 3 0,22 0 0 
31 41 2,83 0 0 49 3,38 4 0,28 6 0,41 0 0 
32 50 2,80 0 0 40 2,24 2 0,11 8 0,45 0 0 
33 42 1,93 0 0 52 2,39 1 0,05 5 0,23 0 0 
34 46 1,56 0 0 44 1,50 2 0,07 8 0,27 0 0 
35 n.b. 1,81 n.b. 0 n.b. 6,45 n.b. 0,34 n.b. 0 n.b. 0 
36 35 3,75 0 0 61 6,53 2 0,21 2 0,21 0 0 
37 45 3,33 0 0 50 3,70 2 0,15 3 0,22 0 0 
38 47 3,85 0 0 45 3,69 3 0,25 5 0,41 0 0 
39 49 4,41 0 0 41 3,69 2 0,18 8 0,72 0 0 
40 30 2,13 0 0 66 4,69 2 0,14 2 0,14 0 0 

Sf = Schaf, Neu = Neutrophile Granulozyten, St = Stabkernige Leukozyten, Ly = Lymphozyten, 
Mo = Monozyten, Eos = Eosinophile Granulozyten, Bas = Basophile Granulozyten, n.b. = nicht 
bestimmt 
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Zur Feststellung eines Alterseinflusses auf die Blutparameter wurden die Schafe in drei 

verschiedene Altersgruppen eingeteilt. Zur 1. Gruppe gehören Tiere, die jünger als 2 Jahre sind. 

Die Schafe der 2. Gruppe sind 2 - 4 und diejenigen der 3. Gruppe 5 - 7 Jahre alt. Zudem wurde 

eine mögliche Auswirkung des Geschlechts auf die Blutwerte berücksichtigt. 

Der durchschnittliche Leukozytenwert der Schafe unter 2 Jahren ist mit 8,03x103/µl weitaus höher 

als derjenige der 5 - 7 jährigen Schafe mit 5,37x103/µl. Bei den Schafen der 2. Gruppe errechnet 

sich ein Wert von 5,55x103/µl. Die Leukozytenzahlen scheinen demnach mit zunehmendem Alter 

zu sinken. Zudem zeigen die Böcke im Schnitt etwas höhere Werte des weißen Blutbildes als die 

Zibben. Das rote Blutbild betreffend lässt sich bei den untersuchten Tieren kein deutlicher 

Unterschied in Abhängigkeit vom Alter feststellen. Die Hämoglobinkonzentration, der 

Hämatokrit, das mittlere Zellvolumen des einzelnen Erythrozyten (MCV), der Hämoglobingehalt 

des einzelnen Erythrozyten (MCH) und die Hämoglobinkonzentration aller zellulären 

Bestandteile im Blut (MCHC) weisen bei den männlichen Tieren jedoch durchschnittlich höhere 

Werte auf als bei den weiblichen Tieren. Bei der Zahl der Thrombozyten ist hier keine 

Beeinflussung durch das Alter oder das Geschlecht ersichtlich. Der Anteil der neutrophilen 

Granulozyten an den Gesamtleukozyten liegt bei den jungen Tieren der 1. Gruppe mit 38,38 % 

unter denen der 2. Gruppe (41,55 %) und der 3. Gruppe (47,36 %). Mit steigendem Alter nimmt 

also der Anteil an neutrophilen Granulozyten bei den untersuchten Schafen etwas zu. Bei den 

Lymphozyten ist es genau umgekehrt. Deren Wert ist bei den Tieren unter 2 Jahren mit 56 % 

deutlich höher als bei den Tieren der 3. Gruppe, bei denen sie nur 44,27 % der Gesamtleukozyten 

ausmachen. Die Tiere der 2. Gruppe liegen mit einem Wert von 51,75 % zwischen der 1. und der 

3. Gruppe. Der Anteil der Lymphozyten sinkt folglich mit steigendem Alter bei den untersuchten 

Schafen. Bei den Böcken ist ein geringfügiges Überwiegen der neutrophilen Granulozyten 

gegenüber den Lymphozyten festzustellen, bei den Zibben liegen umgekehrte Verhältnisse vor. 

Die Monozyten zeigen weder einen wesentlichen altersabhängigen Verlauf noch eine 

Beeinflussung durch das Geschlecht. Die eosinophilen Granulozyten hingegen lassen bei den 

älteren Tieren mit 7 % einen deutlich höheren Anteil an den Gesamtleukozyten als bei den 

jüngeren Tieren mit 4,35 % erkennen. Der Wert der Tiere der 2. Gruppe liegt zwischen den 

beiden genannten. Die eosinophilen Granulozyten nehmen bei den untersuchten Schafen 

demzufolge mit steigendem Alter anteilig zu. Basophile Granulozyten wurden lediglich bei vier 

Tieren gefunden, wobei in diesen Fällen deren Anteil am weißen Blutbild unter 0,1 % beträgt. 
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2. Lichtmikroskopische Untersuchungen 

2.1 Übersichtsfärbungen 

Die Blutausstriche der Schafe wurden, wie bereits erwähnt, für eine exakte Differenzierung der 

einzelnen Zellen sechs verschiedenen Übersichtsfärbungen unterzogen. Zur Bestimmung der 

Größe der einzelnen Blutzellen wurde aus je fünfzig Zellen ein Durchschnittswert errechnet. 

 

2.1.1 Erythrozyten 

Die Erythrozyten der Schafe stellen sich als rundliche, kernlose Zellen mit einem homogenen 

Inhalt und einer meist glatten Zellmembran dar. Ihre Größe variiert stark und liegt bei den 

untersuchten Tieren zwischen 3,8 und 6,1 µm. Der durchschnittliche Durchmesser beläuft sich auf 

4,4 µm. In vielen Ausstrichen kann eine Anisozytose (vgl. Abb. IV-4), in manchen auch eine 

Poikilozytose beobachtet werden. Der Großteil der Erythrozyten zeigt eine zentrale Aufhellung 

des Zytoplasmas (vgl. Abb. IV-1), die durch die meist bikonkave Scheibenform mit einer 

Eindellung in der Mitte bedingt ist. Da jedoch beim Schaf auch unikonkave Erythrozyten 

vorkommen, ist die zentrale Aufhellung nicht immer zu sehen. In sehr seltenen Fällen zeigen die 

Erythrozyten eine Stechapfelform, die durch kleine Ausläufer der Zelloberfläche bedingt ist und 

meist einen Artefakt darstellen dürfte. Die roten Blutkörperchen werden in diesem Fall als 

Echinozyten bezeichnet. Lediglich bei einzelnen Präparaten kann die so genannte 

Geldrollenbildung der Erythrozyten beobachtet werden, die beim Schaf nur in geringem Ausmaß 

physiologisch vorkommt. Bei keinem der untersuchten Tiere können eine basophile Tüpfelung 

oder Howell-Jolly-Körperchen gefunden werden. Die Anfärbung der Erythrozyten mit den 

verschiedenen Methoden ist in Tabelle IV.3 zusammengefasst. 

Tabelle IV.3: Übersichtsfärbungen der Erythrozyten 

 Zytoplasma 

Diff-Quick braun-rot 

Giemsa grau-blau  

May-Grünwald hellrot 

Pappenheim rosa bis hellrot 

Sirius Red grau-blau bis hellrosa 

Toluidinblau grau-blau bis hellgrau 
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2.1.2 Thrombozyten 

Die Thrombozyten stellen ebenfalls sehr kleine, kernlose Zellen dar. Ihre Form ist meist 

unregelmäßig, nicht selten lässt sich jedoch eine runde bis ovale Gestalt erkennen. Ihr 

Durchmesser reicht von 1,4 - 3,0 µm, durchschnittlich liegt er bei 2,1 µm. In manchen Färbungen 

kann deutlich eine dunkle, granuläre Zentralzone (Granulomer) von einer durchsichtigen 

Randzone (Hyalomer) unterschieden werden (vgl. Abb. IV-2) Bei einzelnen Zellen können 

fadenförmige, zytoplasmatische Projektionen beobachtet werden (vgl. Abb. IV-1, IV-14). Häufig 

liegen die Blutplättchen in Gruppen zusammen gelagert im Blutausstrich (vgl. Abb. IV-1, IV-2), 

manchmal sind sie aber auch einzeln verstreut und/oder mit einem neutrophilen Granulozyten 

assoziiert. Die Anfärbung der Thrombozyten ist in Tabelle IV.4 zusammengefasst. 

Tabelle IV.4: Übersichtsfärbungen der Thrombozyten 

 Zytoplasma 

Diff-Quick violett 

Giemsa Hyalomer hellblau, Granulomer violett 

May-Grünwald violett 

Pappenheim Hyalomer hellblau, Granulomer violett 

Sirius Red grau-blau bis hellgrau 

Toluidinblau grau-blau 

 

 

 

 

Abbildung IV-1: Thrombozyten,  Diff-Quick-
Färbung (Schaf, m, 5 Jahre)  

Die Thrombozyten (1) liegen im 
Blutausstrich zusammen gelagert und weisen 
vereinzelt fadenförmige Projektionen (2) auf. 
Bei den Erythrozyten (3) ist in den meisten 
Fällen eine zentrale Aufhellung (4) zu sehen. 
SB = 10 µm 

 
Abbildung IV-2: Thrombozyten, Giemsa-
Färbung (Schaf, w, 3 Jahre) 

Bei den Thrombozyten (1) kann deutlich 
zwischen dem hellblauen Hyalomer (2) und 
dem violetten Granulomer (3) unterschieden   
werden. 
4 = Erythrozyt, SB = 10 µm 
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2.1.3 Lymphozyten 

Da das Schaf ein lymphozytäres Blutbild aufweist, sind die Lymphozyten in jedem Ausstrich 

zahlreich vorhanden. Sie treten als runde (vgl. Abb. IV-4) bis ovale Zellen (vgl. Abb. IV-5) mit 

meist glatter Oberfläche in Erscheinung. Die Größe der Lymphozyten variiert stark. Ihre 

Durchschnittsgröße beläuft sich auf 10,8 µm, wobei Größen von 8 - 13,1 µm vorkommen. 24 % 

sind kleiner als 10 µm, 32 % liegen zwischen 10 und 11 µm, 28 % zwischen 11 und 12 µm und 16 

% sind größer als 12 µm. Bei dem Großteil der Lymphozyten füllt der Kern die Zelle bis auf einen 

mehr oder weniger schmalen Zytoplasmasaum fast vollständig aus (vgl. Abb. IV-3). Je größer die 

Lymphozyten werden, desto mehr Zytoplasma ist vorhanden und desto kleiner wird das Kern-

Zytoplasma-Verhältnis. Der Kern erscheint meist dunkel und kompakt (vgl. Abb. IV-3) und lässt 

bei manchen Zellen ein fleckenförmiges Muster erkennen. Er weist eine runde bis ovale Form auf 

und liegt entweder zentral (vgl. Abb. IV-4) oder exzentrisch in der Zelle (vgl. Abb. IV-3, IV-6). 

Bei manchen Zellen, vor allem bei den etwas größeren Lymphozyten, kann eine Einkerbung des 

Kernes an einer Seite (Kerninvagination) beobachtet werden (vgl. Abb. IV-6). Das Zytoplasma 

stellt sich meist klar, homogen und basophil (vgl. Abb. IV-4, IV-6) dar. In manchen Lymphozyten 

können im Zytoplasmasaum jedoch kleine, runde bis stabförmige Azurgranula vorkommen (vgl. 

Abb. IV-5, IV-6), die sich vor allem bei der Giemsa- und der May-Grünwald-Färbung deutlich 

darstellen. Gelegentlich sind Lymphozyten mit einem dunkelblauen Zytoplasma, das sie als 

reaktive Zellen ausweist, zu finden (vgl. Abb. IV-7). Seltener können Lymphozyten mit einem tief 

dunkelblauen, von Vakuolen durchsetzten Zytoplasma und einem exzentrisch liegenden Kern 

identifiziert werden. Wahrscheinlich handelt es sich hierbei um plasmazytoide Lymphozyten (vgl. 

Abb. IV-8). Die Anfärbungen von Zellkern, Zytoplasma und Granula der Lymphozyten mit den 

verschiedenen Methoden ist in Tabelle IV.5 zusammengefasst. 

Tabelle IV.5: Übersichtsfärbungen der Lymphozyten 

 Zellkern Zytoplasma Granula 

Diff-Quick dunkelviolett hellviolett - 

Giemsa rot-violett blau rot-violett 

May-Grünwald rot-violett bis blau-violett blau bis hellviolett dunkelviolett 

Pappenheim blau-violett bis blau blau rot-violett 

Sirius Red blau grau-blau - 

Toluidinblau blau-violett hellviolett rot-violett 
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Abbildung IV-3: Lymphozyt, Diff-Quick-
Färbung (Schaf, w, 1 Jahr) 

Der Kern (2) des Lymphozyten (1) liegt 
exzentrisch in der Zelle und erscheint dunkel 
und kompakt. Er füllt die Zelle bis auf einen 
schmalen Zytoplasmasaum (3) fast 
vollständig aus. 
4 = Thrombozyten, 5 = Erythrozyt,              
SB = 10 µm 

 
Abbildung IV-4: Lymphozyt, Giemsa-
Färbung (Schaf, w, 3,5 Jahre) 

Der Lymphozyt (1) weist eine runde Gestalt 
auf, wobei der Kern (2) weitgehend zentral in 
der Zelle liegt. Das Zytoplasma (3) stellt sich 
leicht basophil dar. Bei den Erythrozyten (4) 
kann eine Anisozytose beobachtet werden. 
SB = 10 µm 

 

 

 

 

Abbildung IV-5: Lymphozyt, May-
Grünwald-Färbung (Schaf, w, 3 Jahre) 

Dieser Lymphozyt (1) weist eine ovale 
Gestalt auf. In dessen Zytoplasma (3) sind 
rundliche Granula (4) zu erkennen, die 
teilweise über dem Kern (2) liegen. 
5 = Thrombozyt, 6 = Erythrozyt, 
SB = 10 µm 

 
Abbildung IV-6: Lymphozyt, Pappenheim-
Färbung (Schaf, w, 1,5 Jahre) 

Der Kern (2) des Lymphozyten (1) liegt 
exzentrisch in der Zelle und zeigt eine 
Invagination (kleiner Pfeil), in deren Bereich 
im basophilen Zytoplasma (3) einige, sehr 
feine Granula (4) zu sehen sind. 
5 = Thrombozyten, 6= Erythrozyt, 
SB = 10 µm 
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Abbildung IV-7: Reaktiver Lymphozyt, 
Giemsa-Färbung (Schaf, w, 3 Jahre) 

Der Kern (2) des reaktiven Lymphozyten (1) 
ist von einem tiefblauen Zytoplasmasaum (3) 
umgeben. 
4 = Thrombozyt, 5 = Erythrozyt, 
SB = 10 µm 

 
Abbildung IV-8: Reaktiver Lymphozyt, Diff-
Quick-Färbung (Schaf, m, 7 Jahre) 

Der Kern (2) dieses reaktiven Lymphozyten 
(1) ist rund und liegt exzentrisch in der Zelle. 
Das dunkelblaue Zytoplasma (3) ist von 
zahlreichen Vakuolen (4) durchsetzt. 
Möglicherweise handelt es sich hierbei um 
einen plasmazytoiden Lymphozyten. 
5 = Erythrozyt, SB = 10 µm 

 

 

2.1.4 Monozyten 

Die Monozyten sind mit einem Durchmesser von 14,2 µm die größten Zellen im Blut der Schafe. 

Ihre Größe reicht bei den untersuchten Tieren von 11,6 - 17,5 µm. Die äußere Form ist in der 

Regel unregelmäßig, nicht selten aber auch rund oder oval. Der große Kern liegt meist exzentrisch 

in der Zelle (vgl. Abb. IV-9) und zeichnet sich durch eine stark ausgeprägte Polymorphie aus. Der 

Kern kann rund, oval, bohnenförmig, hufeisenförmig (vgl. Abb. IV-10), teilweise aber auch 

gelappt (vgl. Abb. IV-11) sein. Das im Vergleich zu den Lymphozyten hellere Chromatin 

erscheint aufgelockert (vgl. Abb. IV-10) und lässt ein geflecht- oder netzartiges Muster erkennen. 

Das reichlich vorhandene, oft basophil erscheinende Zytoplasma (vgl. Abb. IV-9, IV-11) ist mit 

einer teils wabigen Struktur nicht immer homogen und enthält bei einigen Monozyten mehrere, 

unterschiedlich große Vakuolen, die sich vorwiegend in der Nähe des Zellkernes befinden (vgl. 

Abb. IV-9, IV-11, IV-12). Teilweise scheinen auch im Zellkern Vakuolen enthalten zu sein (vgl. 

Abb. IV-12). In keinem der lichtmikroskopisch untersuchten Ausstriche können bei den 

Monozyten Azurgranula gefunden werden. Die Anfärbungen von Zellkern, Zytoplasma und 

Granula der Monozyten mit den verschiedenen Methoden ist in Tabelle IV.6 zusammengefasst. 
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Tabelle IV.6: Übersichtsfärbungen der Monozyten 

 Zellkern Zytoplasma Granula 

Diff-Quick dunkelviolett hellblau bis hellviolett - 

Giemsa rot-violett blau bis hellviolett - 

May-Grünwald rot-violett bis blau-violett blau - 

Pappenheim rot-violett bis blau-violett blau bis grau-blau - 

Sirius Red blau grau-blau - 

Toluidinblau blau-violett hellviolett - 

 

 

 

 

Abbildung IV-9: Monozyt, Diff-Quick-
Färbung (Schaf, m, 7 Jahre) 

Im reichlich vorhandenen, basophilen 
Zytoplasma (3) des Monozyten (1) sind 
einige, unterschiedlich große Vakuolen (4) in 
direkter Nähe zum exzentrisch liegenden 
Zellkern (2) zu erkennen. 
5 = Thrombozyt, 6= Erythrozyt, 
SB = 10 µm 

 
Abbildung IV-10: Monozyt und Lymphozyt, 
Giemsa-Färbung (Schaf, w, 3 Jahre) 

Der große, hufeisenförmige Kern (2) des 
Monozyten (1) erscheint im Gegensatz zu 
dem Kern (5) des Lymphozyten (4) heller und 
weist eine aufgelockerte Struktur auf.  
3 = Zytoplasma des Monozyten, 
6 = Zytoplasma des Lymphozyten, 
7 = Erythrozyt, SB = 10 µm 
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Abbildung IV-11: Monozyt, Giemsa-Färbung 
(Schaf, w, 6 Jahre) 

Der Zellkern (2) dieses Monozyten (1) ist 
gelappt. Das basophile Zytoplasma (3) enthält 
mehrere Vakuolen (4). 
5 = Thrombozyten, 6= Erythrozyt, 
SB = 10 µm 

 
Abbildung IV-12: Monozyt, Pappenheim-
Färbung (Schaf, w, 1 Jahr) 

Bei diesem Monozyten (1) scheint sogar der 
Zellkern (2) neben dem Zytoplasma (3) 
Vakuolen (4) zu enthalten. 
5 = Erythrozyt, SB = 10 µm 

 

 

2.1.5 Neutrophile Granulozyten 

Auch die neutrophilen Granulozyten sind in jedem Präparat in großer Anzahl zu finden. Sie 

messen im Durchschnitt 12,5 µm, wobei Größen von 10,9 - 14 µm vorkommen. Sie weisen eine 

runde bis ovale Form auf und besitzen eine glatte Oberfläche. Je nach Morphologie des Zellkernes 

lassen sich verschiedene Reifungsformen unterscheiden, nämlich die unreifen, stabkernigen von 

den reifen, segmentkernigen Granulozyten. Die in den Ausstrichen sehr selten vorkommenden, 

stabkernigen Granulozyten besitzen einen länglichen, unsegmentierten, meist stark gebogenen 

Kern (vgl. Abb. IV-15). Der Kern der überwiegend auftretenden, segmentkernigen Granulozyten 

ist in mehrere, unterschiedlich große Abschnitte unterteilt (vgl. Abb. IV-13, IV-16) und zudem oft 

mehrfach gewunden und verschlungen. Bei manchen Zellen sind zwischen den Segmenten kleine, 

dünne Chromatinfäden erkennbar, welche die einzelnen Kernabschnitte miteinander verbinden 

(vgl. Abb. IV-13, IV-16). In vielen Kernbereichen erscheint das Chromatin verdichtet bzw. 

geklumpt (vgl. Abb. IV-15), wobei in direkter Umgebung hellere Bereiche beobachtet werden 

können. Ein so genannter „drum-stick“ kann in keinem der untersuchten Präparate bei den Kernen 

der neutrophilen Granulozyten weiblicher Tiere sicher identifiziert werden. Das Zytoplasma ist 

reichlich vorhanden (vgl. Abb. IV-13) und sowohl bei den stabkernigen als auch bei den 

segmentkernigen Granulozyten sind dort sehr feine Granula zu erkennen (vgl. Abb. IV-13, IV-14, 

IV-15, IV-16, IV-17). Sie kommen zahlreich vor, sind diffus in der Zelle verteilt und können 

teilweise auch den Zellkern überlagern (vgl. Abb. IV-17). Je nach Färbung können die 

neutrophilen Granula mehr oder weniger deutlich identifiziert werden. Am besten gelingt deren 
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Darstellung mit der May-Grünwald-Färbung (vgl. Abb. IV-17). Bei der Diff-Quick- (vgl. Abb. 

IV-13, IV-14) und der Pappenheim-Färbung (vgl. Abb. IV-16) lassen sich diese jedoch auch gut 

erkennen. Die Anfärbungen von Zellkern, Zytoplasma und Granula der neutrophilen 

Granulozyten mit den verschiedenen Methoden ist in Tabelle IV.7 zusammengefasst. 

Tabelle IV.7: Übersichtsfärbungen der neutrophilen Granulozyten 

 Zellkern Zytoplasma Granula 

Diff-Quick dunkelviolett weiß-grau rosa bis violett 

Giemsa rot-violett weiß-grau rosa bis violett 

May-Grünwald blau-violett weiß-grau rötlich bis violett 

Pappenheim blau-violett zartes rosa hellrot 

Sirius Red blau rosa rot 

Toluidinblau blau-violett grau-blau zartes blau 

 

 

 

 

Abbildung IV-13: Neutrophiler Granulozyt, 
Diff-Quick-Färbung (Schaf, w, 1 Jahr) 

Der Kern (2) des neutrophilen Granulozyten 
(1) ist segmentiert, wobei ein dünner 
Chromatinfaden (kleiner Pfeil) zwischen zwei 
Segmenten zu sehen ist. Das reichlich 
vorhandene Zytoplasma (3) enthält 
zahlreiche, violette Granula (4). 
5 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-14: Neutrophiler Granulozyt, 
Diff-Quick-Färbung (Schaf, m, 6 Jahre) 

Der Zellkern (2) des neutrophilen 
Granulozyten (1) wirkt dicht und kompakt. 
Die Granula (4) im Zytoplasma (3) sind hier 
etwas deutlicher zu erkennen. Die 
Thrombozyten (5) tragen teilweise 
fadenförmige Zellausläufer (kleine Pfeile). 
6 = Erythrozyt, SB = 10 µm 
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Abbildung IV-15: Neutrophiler Granulozyt, 
Giemsa-Färbung (Schaf, w, 3,5 Jahre) 

Dieser neutrophile Granulozyt (1) weist einen 
unsegmentierten, stabförmigen Kern (2) auf. 
Das Chromatin wirkt teilweise verdichtet 
bzw. geklumpt. Im Zytoplasma (3) sind die 
Granula (4) nur undeutlich zu erkennen. 
5 = Thrombozyten, 6 = Erythrozyt, 
SB = 10 µm 

 
Abbildung IV-16: Neutrophiler Granulozyt, 
Pappenheim-Färbung (Schaf, w, 1,5 Jahre) 

Der Kern (2) des neutrophilen Granulozyten 
(1) ist stark segmentiert. Ein dünner 
Chromatinfaden (kleiner Pfeil) durchspannt 
das Zytoplasma (3) und verbindet zwei 
Kernsegmente. Die feinen Granula (4) stellen 
sich hellrot dar. 
5 = Thrombozyten, 6 = Erythrozyt, 
SB = 10 µm 

 

 

Abbildung IV-17: Neutrophiler Granulozyt, 
May-Grünwald-Färbung (Schaf, w, 6 Jahre) 

Die Granula (4) im Zytoplasma (3) des 
neutrophilen Granulozyten (1) lassen sich bei 
dieser Färbung besonders deutlich erkennen 
und überlagern teilweise sogar den Zellkern 
(2). 
5 = Thrombozyt, 6 = Erythrozyt, 
SB = 10 µm 
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2.1.6 Eosinophile Granulozyten 

Die eosinophilen Granulozyten kommen seltener vor als die neutrophilen Granulozyten, können 

aber in jedem Blutausstrich gefunden werden. Sie stellen sich ebenso als runde (vgl. Abb. IV-21) 

bis ovale Zellen mit einer glatten Oberfläche dar, sind jedoch mit einem Durchmesser von 

durchschnittlich 13,5 µm größer als die neutrophilen Granulozyten der Schafe. Die Größe der 

Zellen reicht bei den untersuchten Schafen von 12 - 15 µm. Nicht selten zeigen sie einen 

gelappten Kern (vgl. Abb. IV-20) mit Brillen- oder Hantelform, häufig erscheint er aber auch 

gewunden, segmentiert oder polymorph. Die Kernabschnitte der eosinophilen Granulozyten 

wirken im Vergleich zu den länglichen und schmalen Segmenten der neutrophilen Granulozyten 

rundlicher bzw. kugeliger (vgl. Abb. IV-20). Das Chromatin erscheint teilweise geklumpt und ist 

dunkel gefärbt (vgl. Abb. IV-18).  Die relativ großen, rot gefärbten, runden bis ovalen Granula 

(vgl. Abb. IV-18, IV-19. IV-20, IV-21) füllen das basophil erscheinende Zytoplasma (vgl. Abb. 

IV-18, IV-19) bis auf wenige periphere Bereiche meist gänzlich aus und bedecken sehr oft den 

Kern (vgl. Abb. IV-19, IV-20, IV-21). Die Anfärbungen von Zellkern, Zytoplasma und Granula 

der eosinophilen Granulozyten mit den verschiedenen Methoden ist in Tabelle IV.8 

zusammengefasst. 

Tabelle IV.8: Übersichtsfärbungen der eosinophilen Granulozyten 

 Zellkern Zytoplasma Granula 

Diff-Quick dunkelviolett weiß-grau bis hellviolett rot-orange 

Giemsa rot-violett weiß-grau bis hellblau hellrot-orange 

May-Grünwald blau-violett weiß-grau bis hellblau dunkelrot 

Pappenheim blau weiß-grau bis hellblau rot 

Sirius Red blau weiß-grau bis hellblau rot 

Toluidinblau blau grau-blau hellgrau 
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Abbildung IV-18: Eosinophiler Granulozyt 
und Lymphozyt, Diff-Quick-Färbung (Schaf, 
w, 1 Jahr) 

Der Kern (2) des eosinophilen Granulozyten 
(1) erscheint dunkel und kompakt. Das leicht 
basophile Zytoplasma (3) enthält zahlreiche 
rote Granula (4). 
5 = Lymphozyt, 6 = Thrombozyten,               
7 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-19: Eosinophiler Granulozyt, 
May-Grünwald-Färbung (Schaf, w, 6 Jahre) 

Die Granula (4) des eosinophilen 
Granulozyten (1) sind größer als die 
neutrophilen Granula und überlagern zum 
Teil den Zellkern (2). Granulafreie Regionen 
lassen die Basophilie des Zytoplasmas (3) 
erkennen. 
5 = Erythrozyt, SB = 10 µm 

 

 

 

 

Abbildung IV-20: Eosinophiler Granulozyt, 
Pappenheim-Färbung (Schaf, w, 1,5 Jahre) 

Dieser eosinophile Granulozyt (1) besitzt 
einen gelappten Kern (2) mit rundlichen bzw. 
kugeligen Segmenten, die teilweise von den 
eosinophilen Granula (3) bedeckt werden.       
4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-21: Eosinophiler Granulozyt, 
Sirius Red-Färbung (Schaf, w, 5 Jahre) 

Die Gestalt des eosinophilen Granulozyten 
(1) ist rund. Die Granula (3) stellen sich bei 
dieser Färbung in einem sehr kräftigen Rot 
dar und bedecken teilweise den Zellkern (2). 
4 = Erythrozyt, SB = 10 µm 

 

 

2.1.7 Basophile Granulozyten 

Aufgrund des geringen Vorkommens der basophilen Granulozyten im Blut der Schafe können 

diese nur bei sehr wenigen Ausstrichen identifiziert werden. Lediglich bei der May-Grünwald- 
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(vgl. Abb. IV-22) und der Toluidinblau-Färbung (vgl. Abb. IV-23) sind einzelne Zellen zu 

beobachten. Auch sie präsentieren sich als runde bis ovale Zellen und sind mit einem 

Durchmesser von durchschnittlich 10,6 µm die kleinsten Granulozyten. Bei den wenigen 

gefundenen basophilen Granulozyten kann der Kern nicht deutlich vom Zytoplasma abgegrenzt 

werden. Im Zytoplasma sind zahlreiche, dunkle, intensiv gefärbte Granula verteilt (vgl. Abb. IV-

22, IV-23). Bei der Toluidinblau-Färbung ist eine deutliche Metachromasie der basophilen 

Granula zu sehen, da diese sich violett anstatt blau anfärben (vgl. Abb. IV-23). Die Granula haben 

eine runde Form und bedecken zum Teil den Zellkern (vgl. Abb. IV-22, IV-23). Die Anfärbungen 

von Zellkern, Zytoplasma und Granula der basophilen Granulozyten sind in Tabelle IV.9 

zusammengefasst. 

Tabelle IV.9: Übersichtsfärbungen der basophilen Granulozyten 

 Zellkern Zytoplasma Granula 

Diff-Quick - - - 

Giemsa - - - 

May-Grünwald blau blau dunkelblau-violett 

Pappenheim - - - 

Sirius Red - - - 

Toluidinblau blau blau dunkelviolett 

 

 

 

 

Abbildung IV-22: Basophiler Granulozyt, 
May-Grünwald-Färbung (Schaf, w, 1 Jahr) 

Der basophile Granulozyt (1) ist der kleinste 
unter den Granulozyten. Die basophilen 
Granula (2) färben sich dunkelblau-violett an. 
3 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-23: Basophiler Granulozyt, 
Toluidinblau-Färbung (Schaf, w, 6 Jahre) 

Die Granula (2) des basophilen Granulozyten 
(1) färben sich metachromatisch (violett) an.  
3 = Thrombozyt, 4 = Erythrozyt, SB = 10 µm 
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2.2 Substrathistochemische Färbungen 

Die Blutausstriche der Schafe wurden zwei verschiedenen lichtmikroskopischen Methoden, der  

Periodic-Acid-Schiff (PAS)-Reaktion und der Alcianblau-Färbung, zum Nachweis von 

Kohlenhydraten unterzogen. Die Anfärbung mit Alcianblau erfolgte bei zwei verschiedenen pH-

Werten, nämlich bei pH 1,0 und pH 2,5. Sowohl für die PAS-Reaktion als auch für die 

Alcianblau-Färbung wurde eine Tabelle mit einer Zusammenfassung der Ergebnisse erstellt. 

Dabei wurde zwischen keiner Reaktion (0), einer fraglichen Reaktion ((+)), einer schwach 

positiven (+), einer deutlich positiven (++) und einer stark positiven (+++) Reaktion 

unterschieden. Zusätzlich wurden die Farbe des Reaktionsprodukts, dessen Lokalisation und die 

Farbe des Zellkernes aufgeführt. Basophile Granulozyten wurden in keinem der untersuchten 

Präparate gefunden. 

 

2.2.1 Periodic-Acid-Schiff-Reaktion 

Eine deutlich positive PAS-Reaktion ist nur bei den neutrophilen und eosinophilen Granulozyten 

zu beobachten. Die Thrombozyten zeigen entweder keinen oder nur ein sehr schwachen 

Reaktionsausfall, der zu einer rosafarbenen Anfärbung der Zelle führt (vgl. Abb. IV-26). Die 

Lymphozyten reagieren überwiegend negativ. Im Falle einer positiven Reaktion lässt sich jedoch 

eine leichte, diffuse, rosafarbene Anfärbung des Zytoplasmas erkennen (vgl. Abb. IV-24). Bei den 

neutrophilen Granulozyten kann bei allen Zellen eine stark positive PAS-Reaktion beobachtet 

werden. In den meisten Zellen kommt es zu einer diffusen, rosafarbenen Anfärbung des ganzen 

Zytoplasmas, in dem zudem mehrere, grobe, pinkfarbene Reaktionsprodukte verschiedener Größe 

ungleichmäßig verteilt sind. Zusätzlich ist eine granuläre Reaktion zu beobachten (vgl. Abb. IV-

25, IV-26). Die eosinophilen Granulozyten zeigen im Gegensatz zu den neutrophilen eine weitaus 

schwächere PAS-Reaktion. Das Zytoplasma färbt sich intergranulär meist nur in einem zarten 

Rosa an, die bei den neutrophilen Granulozyten beobachteten, fokalen, kräftig pinkfarbenen 

Reaktionsprodukte stellen sich deutlich schwächer dar und die eosinophilen Granula zeigen keine 

Reaktion (vgl. Abb. IV-27). Die Erythrozyten (vgl. Abb. IV-24) und Monozyten reagieren 

negativ, deren Zytoplasma stellt sich hellgrau bzw. grau-blau dar. Die Ergebnisse der Periodic-

Acid-Schiff-Reaktion bei den verschiedenen Zellen sind in Tabelle IV.10 zusammengefasst. 
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Tabelle IV.10: Periodic-Acid-Schiff-Reaktion 

 Reaktion Anfärbung Lokalisation 
Farbe 
Zellkern 

Erythrozyten 0 - - - 

Thrombozyten 0 - + rosa diffus - 

Lymphozyten 0 - + rosa  diffus blau-violett 

Monozyten 0 - - blau-violett 

Neutrophile Granulozyten +++ rosa bis pink diffus/fokal/granulär blau-violett 

Eosinophile Granulozyten 0 - ++ rosa bis pink intergranulär/fokal blau-violett 

Basophile Granulozyten - - - - 

 

 

 

 

Abbildung IV-24: Lymphozyt, PAS-Reaktion 
(Schaf, w, 6 Jahre) 

Im Zytoplasma (3) des Lymphozyten (1) lässt 
sich eine leichte, homogene, rosafarbene 
Anfärbung erkennen. Die Erythrozyten (4) 
zeigen keine Reaktion. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-25: Neutrophiler Granulozyt, 
PAS-Reaktion (Schaf, w, 1 Jahr) 

Bei dem neutrophilen Granulozyten (1) zeigt 
sich eine homogene, rosafarbene Anfärbung 
des Zytoplasmas (3), welches zudem grobe, 
pinkfarbene Reaktionsprodukte (4) enthält. 
5 = Erythrozyt, SB = 10 µm 
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Abbildung IV-26: Neutrophiler Granulozyt, 
PAS-Reaktion (Schaf, w, 3 Jahre) 

Im Zytoplasma (3) dieses neutrophilen 
Granulozyten (1) lässt sich neben mehreren, 
rundlichen Reaktionsprodukten (4) eine feine 
Granulation (5) erkennen. Der Thrombozyt 
(6) reagiert in Form einer rosafarbenen 
Anfärbung nur leicht positiv. 
2 = Zellkern, 7 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-27: Eosinophiler Granulozyt, 
PAS-Reaktion (Schaf, w, 1 Jahr) 

Der eosinophile Granulozyt (1)  zeigt eine 
diffuse, intergranuläre Anfärbung. Zudem 
sind mehrere, rundliche Reaktionsprodukte 
(3) ungleichmäßig in der Zelle verteilt. Die 
eosinophilen Granula reagieren negativ. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 

 

2.2.2 Alcianblau-Färbung 

Bei einem pH-Wert von 1,0 kann nur bei den Thrombozyten eine deutliche Anfärbung mit 

Alcianblau beobachtet werden (vgl. Abb. IV-28). Alle anderen myeloischen und lymphatischen 

Zellen reagieren negativ und stellen sich weiß bis gräulich dar.  

Bei einem pH-Wert von 2,5 zeigen nur die Thrombozyten und die neutrophilen Granulozyten eine 

eindeutige Anfärbung mit Alcianblau. Die Thrombozyten lassen stets eine starke, diffuse, türkis-

blaue Färbung erkennen (vgl. Abb. IV-29, IV-30). Die neutrophilen Granulozyten reagieren mit 

einem granulären Muster ebenfalls immer stark positiv (vgl. Abb. IV-30). Bei den eosinophilen 

Granulozyten kann selten eine positive Reaktion durch eine intergranuläre, diffuse Anfärbung 

zwischen den ungefärbten, weißen Granula vermutet werden. In den meisten Fällen reagieren sie 

jedoch negativ (vgl. Abb. IV-31). Die Erythrozyten, die Lymphozyten (vgl. Abb. IV-29) und die 

Monozyten lassen sich auch bei einem pH-Wert von 2,5 nicht mit Alcianblau anfärben, das 

Zytoplasma erscheint hier ebenfalls weiß bis gräulich. Die Ergebnisse der Alcianblau-Färbung bei 

den verschiedenen Zellen sind in Tabelle IV.11 zusammengefasst. 
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Tabelle IV.11: Alcianblau-Färbung pH 2,5 

 Reaktion Anfärbung Lokalisation 
Farbe 
Zellkern 

Erythrozyten 0 - - - 

Thrombozyten +++ türkis-blau diffus - 

Lymphozyten 0  - - - 

Monozyten 0 - - rosa-rot 

Neutrophile Granulozyten +++ türkis-blau granulär rosa-rot 

Eosinophile Granulozyten 0 - (+) bläulich intergranulär rosa-rot 

Basophile Granulozyten - - - - 

 

 

 

 

Abbildung IV-28: Thrombozyten und 
Lymphozyt, Alcianblau-Färbung pH 1,0 
(Schaf, w, 3 Jahre) 

Die Thrombozyten (1) lassen sich bei einem 
pH-Wert von 1,0 mit Alcianblau anfärben. 
Der Lymphozyt (2) reagiert negativ. 
SB = 10 µm 

 
Abbildung IV-29: Thrombozyten und 
Lymphozyt, Alcianblau-Färbung pH 2,5 
(Schaf, w, 3 Jahre) 

Die Thrombozyten (1) stellen sich blau dar. 
Der Lymphozyt (2) zeigt auch bei einem pH-
Wert von 2,5 keine Anfärbung. 
SB = 10 µm 
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Abbildung IV-30: Neutrophiler Granulozyt 
und Thrombozyt, Alcianblau-Färbung pH 2,5 
(Schaf, w, 3 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) ist eine granuläre, türkis-
blaue Anfärbung zu sehen. Der Thrombozyt 
(4) stellt sich ebenfalls blau dar. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-31: Eosinophile Granulozyten, 
Alcianblau-Färbung pH 2,5 (Schaf, w, 6 
Jahre) 

Weder das Zytoplasma noch die Granula der 
eosinophilen Granulozyten zeigen eine 
Anfärbung mit Alcianblau. 
SB = 10 µm 

 

 

2.3 Enzymhistochemische Färbungen 

Es wurden jeweils zehn frische Blutausstriche hinsichtlich der verschiedenen Enzymaktivitäten 

untersucht. Für jedes Enzym wurde eine Tabelle mit einer Zusammenfassung der Enzymaktivität 

erstellt. Dabei wurde zwischen keiner Reaktion (0), einer fraglichen Reaktion ((+)), einer schwach 

positiven (+), einer deutlich positiven (++) und einer stark positiven (+++) Reaktion 

unterschieden. Zusätzlich wurden die Farbe des Reaktionsprodukts und die Lokalisation der 

Enzymaktivität berücksichtigt. Basophile Granulozyten wurden in keinem der untersuchten 

Präparate gefunden. 

 

2.3.1 Nachweis der sauren Phosphatase 

Eine Aktivität der sauren Phosphatase kann eindeutig in den Lymphozyten, den Monozyten, den 

neutrophilen und den eosinophilen Granulozyten nachgewiesen werden, jedoch reagieren nicht 

alle Zellen positiv und die Intensität der positiven Reaktion variiert teilweise stark. Die 

Lymphozyten weisen meist eine mittlere bis starke Enzymaktivität auf, sind jedoch auch oft 

negativ. Die positive Reaktion ist durch ein bis mehrere, kräftig rote Reaktionsprodukte im 

Zytoplasma gekennzeichnet, die entweder verteilt im gesamten Zytoplasma vorliegen oder sich 

zusammen gelagert in einem bestimmten Bereich der Zelle befinden (vgl. Abb. IV-32). Bei den 
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Monozyten fällt die Reaktion etwas schwächer und uneinheitlicher aus als bei den Lymphozyten, 

jedoch weisen alle Zellen eine Enzymaktivität auf. Sie zeigen zumeist eine diffuse, rote 

Anfärbung im Bereich der Kerninvagination (vgl. Abb. IV-33), teilweise in Verbindung mit einer 

leichten Granulation. Bei den Granulozyten ist die Aktivität der sauren Phosphatase durch 

granuläre Reaktionsprodukte in der Zelle gekennzeichnet, wobei sich bei beiden Zellarten stets 

nur ein Teil der Granula anfärbt. Die neutrophilen Granulozyten reagieren größtenteils nur 

schwach positiv, oft auch negativ. Zumeist sind nur wenige, rot gefärbte Granula im Zytoplasma 

erkennbar (vgl. Abb. IV-34). In seltenen Fällen stellen sich jedoch auch ganze Abschnitte der 

Zelle rot dar, wodurch eine strukturelle Zuordnung der Anfärbung unmöglich wird. Die 

eosinophilen Granulozyten reagieren meist stärker als die neutrophilen Granulozyten. Bei ihnen 

färbt sich ein größerer Teil der Granula in einem kräftigen Rot an (vgl. Abb. IV-35). Es kann kein 

eosinophiler Granulozyt ohne eine Enzymaktivität gefunden werden. Bei den Erythrozyten (vgl. 

Abb. IV-32) und den Thrombozyten (vgl. Abb. IV-34) kann keine Aktivität der sauren 

Phosphatase nachgewiesen werden. Die Ergebnisse der Enzymaktivität bei den jeweiligen Zellen 

sind in Tabelle IV.12 zusammengefasst. 

Tabelle IV.12: Nachweis der sauren Phosphatase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - +++ rot fokal/granulär 

Monozyten + - +++ rot diffus/granulär 

Neutrophile Granulozyten 0 - +++ rot granulär 

Eosinophile Granulozyten ++ - +++ rot granulär 

Basophile Granulozyten - - - 
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Abbildung IV-32: Lymphozyt, Saure 
Phosphatase (Schaf, w, 1,5 Jahre) 

Im Zytoplasma (3) des Lymphozyten (1) 
sind kräftig rote, rundliche 
Reaktionsprodukte (4) zu beobachten. Die 
Erythrozyten (5) zeigen keine Reaktion. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-33: Monozyt, Saure 
Phosphatase (Schaf, w, 1,5 Jahre) 

Im Zytoplasma (3) des Monozyten (1) zeigt 
sich vor allem im Bereich der 
Kerninvagination ein diffuser 
Farbstoffniederschlag (4). 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

 

 

Abbildung IV-34: Neutrophiler Granulozyt, 
Saure Phosphatase (Schaf, w, 1 Jahr) 

Dieser neutrophile Granulozyt (1) zeigt eine 
schwache bis deutliche Enzymaktivität in 
Form einzelner, roter Reaktionsprodukte (4) 
im Zytoplasma (3). Die Thrombozyten (5) 
reagieren negativ. 
2 = Zellkern, 6 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-35: Eosinophiler Granulozyt, 
Saure Phosphatase (Schaf, w, 1,5 Jahre) 

Bei dem eosinophilen Granulozyten (1) 
kommt es zu einer deutlichen granulären 
Reaktion (4) im Zytoplasma (3). Es färben 
sich jedoch nicht alle Granula an. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

2.3.2 Nachweis der alkalischen Phosphatase 

Die alkalische Phosphatase kann nur bei den neutrophilen Granulozyten nachgewiesen werden. 

Der Großteil dieser Zellen zeigt eine Enzymaktivität, jedoch nicht alle. Zudem variiert die 

Intensität der Anfärbung bei den positiv reagierenden Zellen stark. Es kann jedoch kein Einfluss 
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des Reifegrades der Zelle, der sich aus der Segmentierung des Kernes ableiten lässt, auf die 

Reaktionsstärke vermerkt werden. Ein positiver Reaktionsausfall stellt sich sehr häufig als eine 

ungleichmäßig starke, braune Färbung des Zytoplasmas dar, die ein mehr oder weniger deutliches, 

granuläres Muster erkennen lässt (vgl. Abb. IV-36, IV-37). Bei manchen Zellen kommt es zu 

einer die ganze Zelle ausfüllenden, starken Anfärbung, die teilweise sogar den Kern überdeckt 

und mehrere dunkelbraune Reaktionsprodukte erkennen lässt. Bei anderen Zellen wiederum sind 

mehrere braune Farbinseln im Zytoplasma (vgl. Abb. IV-37) oder eine sehr feine Granulation zu 

beobachten. Erythrozyten (vgl. Abb. IV-36), Thrombozyten, Lymphozyten, Monozyten (vgl. Abb. 

IV-39) und eosinophile Granulozyten (vgl. Abb. IV-38) reagieren negativ. Die Ergebnisse der 

Enzymaktivität bei den jeweiligen Zellen sind in Tabelle IV.13 zusammengefasst. 

Tabelle IV.13: Nachweis der alkalischen Phosphatase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - - 

Monozyten 0 - - 

Neutrophile Granulozyten 0 - +++ braun diffus/granulär 

Eosinophile Granulozyten 0 - - 

Basophile Granulozyten - - - 

 

 

 

 

Abbildung IV-36: Neutrophiler Granulozyt, 
Alkalische Phosphatase (Schaf, m, 5 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) ist ein brauner, deutlich 
granulärer Reaktionsausfall (4) zu 
beobachten. Die Erythrozyten (5) zeigen 
keine Enzymaktivität. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-37: Neutrophiler Granulozyt, 
Alkalische Phosphatase (Schaf, m, 5 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) lassen sich neben einem 
granulären Muster mehrere, dunkle 
Farbinseln (4) erkennen.  
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 
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Abbildung IV-38: Eosinophiler Granulozyt, 
Alkalische Phosphatase (Schaf, m, 7 Jahre) 

Die Granula (3) des eosinophilen 
Granulozyten (1) zeigen keine Aktivität der 
alkalischen Phosphatase. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-39: Monozyt, Alkalische 
Phosphatase (Schaf, w, 1,5 Jahre) 

Bei dem Monozyten (1) kann keine 
Enzymaktivität festgestellt werden. 
2 = Zellkern, 3 = Zytoplasma,                         
4 = Erythrozyt, SB = 10 µm 

 

 

2.3.3 Nachweis der Peroxidase 

Eine Aktivität der Peroxidase kann in nahezu allen neutrophilen und eosinophilen Granulozyten, 

wenn auch in leicht unterschiedlicher Intensität, beobachtet werden. In diesen Zellen zeigt sich 

ausschließlich eine granuläre Reaktion, die sich über die ganze Zelle erstreckt und teilweise sogar 

den Kern bedeckt (vgl. Abb. IV-40, IV-41, IV-42). Bei den neutrophilen Granulozyten ist 

erkennbar, dass sich nicht alle Granula anfärben (vgl. Abb. IV-40). Bei den eosinophilen 

Granulozyten präsentiert sich der Reaktionsausfall stärker und gröber als bei den neutrophilen 

Granulozyten (vgl. Abb. IV-41). Bei zwei Monozyten der zehn Blutausstriche ist eine Aktivität 

der Peroxidase in Form eines sehr feinen, staubartigen Niederschlags in der Zelle erkennbar (vgl. 

Abb. IV-43). Erythrozyten (vgl. Abb. IV-40), Thrombozyten und Lymphozyten (vgl. Abb. IV-42) 

reagieren stets negativ. Die Ergebnisse der Enzymaktivität bei den jeweiligen Zellen sind in 

Tabelle IV.14 zusammengefasst. 
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Tabelle IV.14: Nachweis der Peroxidase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - - 

Monozyten 0 - + braun fein granulär 

Neutrophile Granulozyten ++ - +++ braun-schwarz granulär 

Eosinophile Granulozyten +++ braun-schwarz granulär 

Basophile Granulozyten - - - 

 

 

 

 

 

Abbildung IV-40: Neutrophiler Granulozyt, 
Peroxidase (Schaf, m, 5 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) sind braun-schwarz gefärbte 
Granula (4) erkennbar, die zum Teil den 
Zellkern (2) überlagern. Die Erythrozyten (5) 
reagieren negativ. 
SB = 10 µm 

 
Abbildung IV-41: Eosinophiler Granulozyt, 
Peroxidase (Schaf, m, 5 Jahre) 

Die Granula (3) des eosinophilen 
Granulozyten (1) zeigen eine starke 
Peroxidase-Reaktion und bedecken ebenso 
teilweise den Zellkern (2). 
4 = Erythrozyt, SB = 10 µm 

 

 

 

 



IV. Ergebnisse                      123 

 

 

 

Abbildung IV-42: Eosinophiler Granulozyt 
und Lymphozyt, Peroxidase (Schaf, w, 1 
Jahr) 

Der Lymphozyt (4) zeigt im Gegensatz zu 
den Granula (3) des eosinophilen 
Granulozyten (1) keine Enzymaktivität. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-43: Monozyt, Peroxidase 
(Schaf, m, 4 Jahre) 

Im Zytoplasma (3) des Monozyten (1) sind 
sehr feine, braune, punktförmige 
Reaktionsprodukte (4) zu sehen. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

2.3.4 Nachweis der β-Glucuronidase 

Eine Aktivität der β-Glucuronidase kann in Lymphozyten, Monozyten, neutrophilen und 

eosinophilen Granulozyten nachgewiesen werden, jedoch reagieren nicht alle Zellen positiv. Der 

Großteil der Lymphozyten zeichnet sich durch eine überwiegend stark positive Reaktion aus. 

Diese ist durch Vorhandensein ein bis mehrerer, feiner bis grober, meist kräftig roter 

Reaktionsprodukte im Zytoplasma gekennzeichnet (vgl. Abb. IV-44). Diese liegen entweder 

verteilt im gesamten Zytoplasmasaum vor oder befinden sich zusammen gelagert an einem 

Zellpol. Dabei kann nicht selten eine Anfärbung der zytoplasmatischen Granula vermutet werden. 

Teilweise ist auch eine leicht diffuse Reaktion im Zytoplasma zu sehen. Es werden aber auch 

Lymphozyten ohne Anfärbung gefunden (vgl. Abb. IV-49). Bei den Monozyten lässt sich 

vorwiegend eine schwach bis deutlich positive, diffuse Anfärbung der Zelle beobachten. Nicht 

selten ist jedoch auch eine granuläre Reaktion, vorwiegend im Bereich einer Kerninvagination, 

erkennbar (vgl. Abb. IV-45). Nur sehr wenige Monozyten zeigen keine Anfärbung. Die 

neutrophilen Granulozyten weisen größtenteils eine nur schwache, manchmal aber auch keine 

Enzymaktivität auf. Meistens lässt sich lediglich eine schwache, diffuse Reaktion des 

Zytoplasmas erkennen (vgl. Abb. IV-46). Bei manchen Zellen kommt es jedoch zusätzlich zu 

einer Anfärbung eines Teils der Granula in unterschiedlicher Intensität (vgl. Abb. IV-47). Nur 

selten zeigt sich eine starke, rote Anfärbung der gesamten Zelle, so dass eine strukturelle 

Zuordnung der Reaktion unmöglich wird. Die eosinophilen Granulozyten zeigen ein ähnliches 

Muster der Enzymaktivität wie die neutrophilen Granulozyten, die Reaktion ist jedoch in den 
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meisten Fällen stärker (vgl. Abb. IV-48, IV-49). Erythrozyten (vgl. Abb. IV-44) und 

Thrombozyten reagieren negativ. Die Ergebnisse der Enzymaktivität bei den jeweiligen Zellen 

sind in Tabelle IV.15 zusammengefasst. 

Tabelle IV.15: Nachweis der β-Glucuronidase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - +++ rot fokal/granulär/diffus 

Monozyten 0 - +++ rot fokal/granulär/diffus 

Neutrophile Granulozyten 0 - +++ rot diffus/granulär 

Eosinophile Granulozyten 0 - +++ rot diffus/granulär 

Basophile Granulozyten - - - 

 

 

 

 

Abbildung IV-44: Lymphozyt, β-
Glucuronidase (Schaf, w, 2 Jahre) 

Im Zytoplasma (3) des Lymphozyten (1) sind 
mehrere, kräftig rote Reaktionsprodukte (4) 
zu sehen. Die Erythrozyten (5) reagieren 
negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-45: Monozyt, β-Glucuronidase 
(Schaf, w, 2 Jahre) 

Das Zytoplasma (3) des Monozyten (1) zeigt 
eine starke granuläre Reaktion (4) im Bereich 
der Kerninvagination. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 
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Abbildung IV-46: Neutrophiler Granulozyt, 
β-Glucuronidase (Schaf, w, 1,5 Jahre) 

Der neutrophile Granulozyt (1) lässt eine 
schwache, diffuse Anfärbung des 
Zytoplasmas (3) erkennen. Die neutrophilen 
Granula zeigen keine Reaktion. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-47: Neutrophiler Granulozyt, 
β-Glucuronidase (Schaf, w, 2 Jahre) 

Dieser neutrophile Granulozyt (1) hingegen 
zeigt eine starke Enzymaktivität in Form 
einer Anfärbung des Zytoplasmas (3), in dem 
zudem eine granuläre Reaktion (4) erkennbar 
ist. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

 

 

Abbildung IV-48: Eosinophiler Granulozyt, 
β-Glucuronidase (Schaf, w, 2 Jahre) 

Im Zytoplasma (3) des eosinophilen 
Granulozyten (1) ist eine schwache, diffuse 
Anfärbung zu sehen. Die eosinophilen 
Granula (4) reagieren negativ. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-49: Eosinophiler Granulozyt 
und Lymphozyt, β-Glucuronidase (Schaf, w, 
2 Jahre) 

Das Zytoplasma (3) dieses eosinophilen 
Granulozyten (1) hingegen zeigt eine starke, 
diffuse Anfärbung. Zusätzlich scheinen einige 
Granula positiv zu reagieren. Lymphozyt (4) 
ohne nachweisbare Enzymaktivität. 
2 = Zellkern, SB = 10 µm 
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2.3.5 Nachweis der α-Naphthyl-Azetat-Esterase  

Eine Aktivität der α-Naphthyl-Azetat-Esterase kann nur bei den Lymphozyten und den 

Monozyten eindeutig nachgewiesen werden, jedoch reagieren nicht alle Zellen positiv. Die 

Lymphozyten zeigen überwiegend eine deutlich positive Reaktion, die sich durch eine diffuse, 

körnige Anfärbung des Zytoplasmas auszeichnet (vgl. Abb. IV-51). Bei manchen Zellen sind 

zudem ein oder mehrere grobe, dunkelblaue Punkte erkennbar, die entweder im gesamten 

Zytoplasmasaum verteilt sind oder an einer Kernbucht zusammen gelagert vorliegen (vgl. Abb. 

IV-50). In fast allen Monozyten lässt sich eine positive Reaktion beobachten, die von einer relativ 

gleichmäßigen, diffusen, körnigen, blauen Anfärbung des gesamten Zytoplasmas bis hin zu 

blauen Farbniederschlägen an mehreren Stellen im Bereich der Plasmamembran reicht (vgl. Abb. 

IV-52). Die neutrophilen Granulozyten reagieren größtenteils negativ (vgl. Abb. IV-54), bei 

machen Zellen jedoch kann ein feiner granulärer Niederschlag beobachtet werden (vgl. Abb. IV-

53). Bei den eosinophilen Granulozyten färben sich manche Granula bläulich (positive Reaktion) 

anstatt bräunlich (negative Reaktion) an (vgl. Abb. IV-55). Der Nachweis einer Enzymaktivität 

bei den Granulozyten ist als nicht ganz sicher zu betrachten. Die Erythrozyten (vgl. Abb. IV-50, 

IV-51) und Thrombozyten (vgl. Abb. IV-51) zeigen keine Reaktion. Die Ergebnisse der 

Enzymaktivität bei den jeweiligen Zellen sind in Tabelle IV.16 zusammengefasst. 

Tabelle IV.16: Nachweis der α-Naphthyl-Azetat-Esterase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - ++ blau diffus/fokal 

Monozyten 0 - ++ blau diffus/fokal 

Neutrophile Granulozyten 0 - (+) blau granulär 

Eosinophile Granulozyten 0 - (+) blau granulär 

Basophile Granulozyten - - - 
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Abbildung IV-50: Lymphozyt, α-Naphthyl-
Azetat-Esterase pH 7,0 (Schaf, w, 2 Jahre) 

Im Zytoplasmasaum (3) des Lymphozyten (1) 
sind dunkelblaue, rundliche 
Reaktionsprodukte (4) zu sehen. Die 
Erythrozyten (5) zeigen keine Reaktion. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-51: Lymphozyt, α-Naphthyl-
Azetat-Esterase pH 7,0 (Schaf, w, 3,5 Jahre) 

Das gesamte Zytoplasma (3) dieses 
Lymphozyten (1) zeigt eine diffuse, körnige 
Anfärbung. Die Thrombozyten (4) und die 
Erythrozyten (5) reagieren negativ. 
2 = Zellkern, SB = 10 µm 

 

 

 

 

Abbildung IV-52: Monozyt, α-Naphthyl-
Azetat-Esterase pH 7,0 (Schaf, w, 3,5 Jahre) 

Neben einer diffusen, körnigen Anfärbung 
des gesamten Zytoplasmas (3) lassen sich bei 
dem Monozyten (1) mehrere 
Farbstoffniederschläge im Bereich der 
Plasmamembran (4) erkennen. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-53: Neutrophiler Granulozyt, 
α-Naphthyl-Azetat-Esterase pH 7,0 (Schaf, w, 
2 Jahre) 

Im Zytoplasma (3) dieses neutrophilen 
Granulozyten (1) kann ein feiner, granulärer 
Niederschlag beobachtet werden. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm
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Abbildung IV-54: Neutrophiler Granulozyt, 
α-Naphthyl-Azetat-Esterase pH 7,0 (Schaf, w, 
2 Jahre) 

Bei diesem neutrophilen Granulozyten (1) 
hingegen zeigt sich keine granuläre Reaktion 
im Zytoplasma (3). 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-55: Eosinophiler Granulozyt, 
α-Naphthyl-Azetat-Esterase pH 7,0 (Schaf, w, 
2 Jahre) 

Manche Granula des eosinophilen 
Granulozyten (1) scheinen sich bläulich 
(positive Reaktion) anstatt bräunlich 
(negative Reaktion) anzufärben. 
2 = Zellkern, 3 = Zytoplasma, 
4 = Erythrozyt, SB = 10 µm 

 

 

2.3.6 Nachweis der Naphthol-AS-Azetat-Esterase  

Die Aktivität der Naphthol-AS-Azetat-Esterase präsentiert sich im Gegensatz zu derjenigen der α-

Naphthyl-Azetat-Esterase etwas stärker. Sie kann beim Schaf bei allen Zellarten des Blutes 

nachgewiesen werden, wobei in einer Zelllinie jedoch nicht alle Zellen positiv reagieren. Eine 

deutlich positive Enzymaktivität zeigen nahezu alle Erythrozyten durch meist mehrere, zarte bis 

grobe, blaue Reaktionsprodukte, die ungleichmäßig in der Zelle verteilt sind (vgl. Abb. IV-56, IV-

57, IV-58, IV-59, IV-60, IV-61). Nicht selten lässt sich jedoch eine vorwiegend periphere 

Lokalisation dieser Reaktionsprodukte erkennen (vgl. Abb. IV-59). Bei einzelnen Thrombozyten 

kann ebenso ein blauer Farbniederschlag in der Zelle beobachtet werden (vgl. Abb. IV-59). Eine 

größtenteils deutlich positive Enzymaktivität der Lymphozyten reicht von einer blauen Anfärbung 

des gesamten Zytoplasmas (vgl. Abb. IV-57) bis zu mehreren, ungleichmäßig im Zytoplasma 

verteilten, blauen Reaktionsprodukten (vgl. Abb. IV-56, IV-57). Die positive Reaktion der 

Monozyten zeigt sich ebenfalls in Form einer gleichmäßigen, blauen Anfärbung des Zytoplasmas, 

die sich jedoch häufig im Bereich der Plasmamembran zu einem dunkleren Kranz verdichtet. 

Einzelne fokale Reaktionsprodukte sind zusätzlich zu erkennen (vgl. Abb. IV-58). Bei den 

neutrophilen Granulozyten lässt sich eindeutig ein granuläres Reaktionsmuster erkennen (vgl. 

Abb. IV-59, IV-60). Bei den eosinophilen Granulozyten hingegen kann eine Anfärbung einzelner 

Granula nur vermutet werden (vgl. Abb. IV-61). Die Ergebnisse der Enzymaktivität bei den 
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jeweiligen Zellen sind in Tabelle IV.17 zusammengefasst. 

Tabelle IV.17: Nachweis der Naphthol-AS-Azetat-Esterase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - ++ blau diffus 

Thrombozyten 0 - + blau diffus 

Lymphozyten 0 - ++ blau diffus/fokal 

Monozyten 0 - ++ blau diffus/fokal 

Neutrophile Granulozyten 0 - ++ blau granulär 

Eosinophile Granulozyten 0 - (+) blau granulär 

Basophile Granulozyten - - - 

 

 

 

 

Abbildung IV-56: Lymphozyt, Naphthol-AS-
Azetat-Esterase pH 7,0 (Schaf, w, 1,5 Jahre)       

Im Zytoplasma (3) des Lymphozyten (1) sind 
mehrere zarte, runde Reaktionsprodukte (4) 
zu erkennen. Auch die Erythrozyten (5) 
zeigen ungleichmäßig in der Zelle verteilte 
Farbniederschläge (6). 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-57: Lymphozyt, Naphthol-AS-
Azetat-Esterase pH 7,0 (Schaf, w, 1,5 Jahre) 

Die rundlichen Reaktionsprodukte (4) sind im 
gesamten, blau gefärbten Zytoplasmasaum 
(3) des Lymphozyten (1) verteilt. 
Erythrozyten (5) mit punktförmigen 
Farbniederschlägen (6). 
2 = Zellkern, SB = 10 µm 
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Abbildung IV-58: Monozyt, Naphthol-AS-
Azetat-Esterase pH 7,0 (Schaf, w, 1,5 Jahre) 

Die diffuse, blaue Anfärbung des gesamten 
Zytoplasmas (3) des Monozyten (1) 
verdichtet sich im Bereich der 
Plasmamembran zu einem dunklen Kranz (5). 
Zudem sind einige, rundliche 
Reaktionsprodukte (4) in der gesamten Zelle 
zu erkennen. Erythrozyten (6) mit 
punktförmigen Farbniederschlägen (7). 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-59: Neutrophiler Granulozyt 
und Thrombozyten, Naphthol-AS-Azetat-
Esterase pH 7,0 (Schaf, w, 1,5 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) ist ein granulärer 
Niederschlag (4) zu sehen. Bei den 
Thrombozyten (5) können punktförmige 
Reaktionsprodukte (6) beobachtet werden. 
Erythrozyten (7) mit meist peripheren, 
punktartigen Farbniederschlägen (8). 
2 = Zellkern, SB = 10 µm  

 

 

 

 

Abbildung IV-60: Neutrophiler Granulozyt, 
Naphthol-AS-Azetat-Esterase pH 7,0 (Schaf, 
w, 1,5 Jahre) 

Bei diesem neutrophilen Granulozyten (1) 
zeigt sich die granuläre Reaktion (4) im 
Zytoplasma (3) ebenfalls deutlich. 
Erythrozyten (5) mit punktförmigen 
Farbstoffniederschlägen (6). 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-61: Eosinophiler Granulozyt, 
Naphthol-AS-Azetat-Esterase pH 7,0 (Schaf, 
w, 1,5 Jahre) 

Manche Granula (3) des eosinophilen 
Granulozyten (1) scheinen sich bläulich 
(positive Reaktion) anstatt bräunlich 
(negative Reaktion) anzufärben. Erythrozyten 
(4) mit punktförmigen Reaktionsprodukten 
(5). 
2 = Zellkern, SB = 10 µm 
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2.3.7 Nachweis der Naphthol-AS-D-Chlorazetat-Esterase  

Der Nachweis der Naphthol-AS-D-Chlorazetat-Esterase erfolgt bei pH-Wert 7,0. Eine 

Enzymaktivität kann nur bei den neutrophilen Granulozyten beobachtet werden. Es reagieren 

nahezu alle Zellen positiv, wenn auch in unterschiedlicher Intensität. Die Enzymaktivität 

präsentiert sich als eine homogene, blaue Anfärbung des gesamten Zytoplasmas in Verbindung 

mit einem granulären Farbniederschlag (vgl. Abb. IV-62, IV-63). Bei einem pH-Wert von 5,5 

reagieren die neutrophilen Granulozyten negativ (vgl. Abb. IV-64). Alle anderen Zellen zeigen 

keine Reaktion. Die Ergebnisse der Enzymaktivität bei den jeweiligen Zellen sind in Tabelle 

IV.18 zusammengefasst. 

Tabelle IV.18: Nachweis der Naphthol-AS-D-Chlorazetat-Esterase 

 Reaktion Farbe Lokalisation 

Erythrozyten 0 - - 

Thrombozyten 0 - - 

Lymphozyten 0 - - 

Monozyten 0 - - 

Neutrophile Granulozyten + - +++ blau diffus/granulär  

Eosinophile Granulozyten 0 - - 

Basophile Granulozyten - - - 

 

 

 

 

Abbildung IV-62: Neutrophiler Granulozyt, 
Naphthol-AS-D-Chlorazetat-Esterase pH 7,0 
(Bock, 6 Jahre) 

Neben einer homogenen, blauen Anfärbung 
des Zytoplasmas (3) des neutrophilen 
Granulozyten (1) zeigt sich ein granulärer 
Farbniederschlag (4). Die Erythrozyten (5) 
zeigen keine Enzymaktivität. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-63: Neutrophiler Granulozyt, 
Naphthol-AS-D-Chlorazetat-Esterase pH 7,0 
(Bock, 6 Jahre) 

Bei diesem neutrophilen Granulozyten (1) ist 
die granuläre Reaktion (4) im Zytoplasma (3) 
noch etwas deutlicher zu erkennen. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 
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Abbildung IV-64: Neutrophiler Granulozyt, 
Naphthol-AS-D-Chlorazetat-Esterase pH 5,5 
(Schaf, w, 1 Jahr) 

Bei einem pH-Wert von 5,5 lässt sich bei dem 
neutrophilen Granulozyten (1) keine 
Enzymaktivität nachweisen. 
2 = Erythrozyt, SB = 10 µm 

 

 

3. Elektronenmikroskopische Untersuchungen 

3.1 Erythrozyten 

Die Anschnitte der roten Blutkörperchen der Schafe zeigen im Elektronenmikroskop große 

Unterschiede in ihrer Form und Größe. Sie besitzen eine glatte Zellmembran, die keine 

Ausstülpungen oder Mikrovilli ausbildet. Das mäßig elektronendichte Zytoplasma, das mit dem 

relativ elektronendichten Hämoglobin ausgefüllt ist, stellt sich homogen und fein granuliert dar 

(vgl. Abb. IV-66, IV-67, IV-68, IV-69, IV-70, IV-72, IV-73). 

 

3.2 Thrombozyten 

Die Thrombozyten weisen unterschiedliche Formen auf. Es können runde, ovale und 

stäbchenförmige Blutplättchen beobachtet werden. Sie sind meist 1 - 2 µm groß. Die 

Zellmembran ist in der Regel glatt und stellt sich bei einigen Thrombozyten deutlich dar. Ein 

Zellkern fehlt. Eine homogene Zytoplasmazone (Hyalomer) umgibt das granulareiche 

Zellzentrum (Granulomer). Manche Granula befinden sich jedoch auch in direkter Nähe zur 

Zellmembran. Morphologisch können zwei verschiedene Granula-Typen unterschieden werden 

(vgl. Abb. IV-65). Die α-Granula haben eine runde bis ovale Form und zeigen einen relativ 

homogenen und elektronendichten Inhalt (vgl. Abb. IV-65, IV-67). Sie werden von einer 

Membran umgeben und sind ca. 0,3 - 0,4 µm groß. Die so genannten „dense bodies“ sind in den 
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meisten Fällen 0,2 - 0,3 µm groß und kommen in einer geringeren Anzahl vor. Sie weisen eine 

klar definierte Membran auf und besitzen einen exzentrisch gelegenen, äußerst elektronendichten, 

runden Innenkörper, der von der Membran durch einen elektronendurchlässigen Zwischenraum 

getrennt wird (vgl. Abb. IV-65). Bei manchen Zellen sind im Zytoplasma auch Vesikel (vgl. Abb. 

IV-65), Mitochondrien und Glykogenpartikel zu sehen.  
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Abbildung IV-65: Ultrastruktur von Thrombozyten (Schaf, w, 3 Jahre) 

Bei den Thrombozyten (1) kann die periphere Randzone, das Hyalomer (2), von der 
granulareichen Zentralzone, dem Granulomer, unterschieden werden. Die α-Granula (3) sind 
meist rund und relativ elektronendicht. Die dense bodies (4) sind von einer deutlichen Membran 
umgeben. Ein runder, elektronendichter Innenkörper liegt in einer elektronendurchlässigen 
Matrix. Weiterhin können Vesikel (5) gefunden werden. Die Zellmembran (6) ist glatt. 

SB = 2 µm 
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3.3 Lymphozyten 

Die Lymphozyten stellen sich als runde (vgl. Abb. IV-66) bis ovale Zellen (vgl. Abb. IV-67) von 

unterschiedlicher Größe dar. Die Zellmembran ist in der Regel glatt (vgl. Abb. IV-67) und trägt 

bei manchen Zellen unterschiedlich lange Zytoplasmaausläufer (Pseudopodien) (vgl. Abb. IV-

66). Der große Kern weist oft eine runde bis ovale Form auf und liegt entweder zentral oder 

exzentrisch (vgl. Abb. IV-67) in der Zelle. Bei manchen Lymphozyten weist er unterschiedlich 

tiefe Einziehungen auf. Das zentral gelegene, locker gepackte, wenig elektronendichte 

Euchromatin kann deutlich von dem peripher gelegenen, dicht gepackten, elektronendichten 

Heterochromatin unterschieden werden (vgl. Abb. IV-66, IV-67). Bei den meisten Lymphozyten 

füllt der Kern die Zelle bis auf einen schmalen Zytoplasmasaum fast vollständig aus (vgl. Abb. 

IV-66),  woraus sich ein hohes Kern-Zytoplasma-Verhältnis ergibt. Bei größeren Lymphozyten ist 

deutlich mehr Zytoplasma vorhanden und das Kern-Zytoplasma-Verhältnis ist kleiner. Im 

insgesamt organellenarmen Zytoplasma befinden sich Mitochondrien (vgl. Abb. IV-66, IV-67), 

teilweise sind auch kleine Vesikel zu erkennen (vgl. Abb. IV-67). Ein Golgi-Apparat ist nur 

äußerst selten zu beobachten. Bei einigen Lymphozyten kommen rundliche, elektronendichte 

Granula im Zytoplasma vor (vgl. Abb. IV-66). Diese sind ca. 0,2 µm groß und befinden sich 

entweder im Bereich einer Kerninvagination oder liegen verstreut im Zytoplasmasaum vor. 
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Abbildung IV-66: Ultrastruktur von Lymphozyten und Erythrozyten (Schaf, m, 5 Jahre) 

Die Lymphozyten (1) weisen eine rundliche Form auf. Im Zellkern (2) lässt sich das zentrale, 
locker gepackte Euchromatin (3) von dem peripheren, dicht gepackten Heterochromatin (4) 
unterscheiden. Der Kern füllt die Zelle bis  auf einen nur relativ schmalen Zytoplasmarand (5) fast 
vollständig aus. Das Zytoplasma enthält einige Mitochondrien (6). In manchen Zellen sind auch 
kleine Granula (7) zu erkennen. Die Zellmembran ist glatt und trägt viele kleine, fingerförmige 
Ausstülpungen (8). Die Erythrozyten (9) sind unregelmäßig geformt und mäßig elektronendicht. 

SB = 5 µm 
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Abbildung IV-67: Ultrastruktur eines Lymphozyten, eines Thrombozyten und mehrerer 
Erythrozyten (Schaf, w, 1 Jahr) 

Dieser Lymphozyt (1) weist eine ovale Form auf. Der Zellkern (2) liegt leicht exzentrisch in der 
Zelle und zeichnet sich durch ein zentral gelegenes, helleres Euchromatin (3) und ein peripher 
gelegenes, dunkles Heterochromatin (4) aus. Das Zytoplasma (5) stellt sich fein granuliert dar und 
enthält mehrere Mitochondrien (6) und kleine Vesikel (7). Die Zellmembran (8) ist glatt und 
scharf kontuiert. Thrombozyt (9) mit homogenen α-Granula (10).  

11 = Erythrozyten 
SB = 2,5 µm 
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3.4 Monozyten 

Die Monozyten sind die größten Zellen im Blut der Schafe. Sie haben meist eine unregelmäßige 

(vgl. Abb. IV-68), nicht selten aber eine runde (vgl. Abb. IV-69) bis ovale Form. Die Oberfläche 

ist oft gerafft und weist deutliche Falten und Furchen auf. Die Zellmembran ist glatt und trägt bei 

dem Großteil der Zellen unterschiedlich große, fingerförmige Projektionen (Pseudopodien) (vgl. 

Abb. IV-68, IV-69). Der große Zellkern liegt zentral oder exzentrisch (vgl. Abb. IV-69) in der 

Zelle und zeichnet sich durch eine äußerst variable Gestalt aus. Oft ist er oval, hufeisenförmig 

(vgl. Abb. IV-68) oder auch gelappt. Das zentral gelegene, hellere Euchromatin wird von dem 

dunkleren Heterochromatin umgeben (vgl. Abb. IV-68, IV-69). Ein bis zwei Nukleoli können 

gefunden werden (vgl. Abb. IV-69). Das reichlich vorhandene Zytoplasma der Monozyten lässt 

mehr Organellen erkennen als das der Lymphozyten. Es enthält einen Golgi-Apparat (vgl. Abb. 

IV-68), Zisternen des endoplasmatischen Retikulums (vgl. Abb. IV-69), Mitochondrien und viele 

kleine Vesikel (vgl. Abb. IV-68, IV-69).  
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Abbildung IV-68: Ultrastruktur eines Monozyten, zweier Lymphozyten und mehrerer 
Erythrozyten (Schaf, w, 2 Jahre) 

Der Monozyt (1) weist eine unregelmäßige Form auf. Der Zellkern (2) hat eine hufeisenförmige 
Gestalt. Das hellere Euchromatin (3) wird vom dunkleren Heterochromatin (4) umgeben. Das 
Zytoplasma (5) ist reichlich vorhanden und beinhaltet den Golgi-Apparat (6) im Bereich der 
Kerninvagination, Mitochondrien (7) und einige kleine Vesikel (8). Die Zelloberfläche ist gerafft 
und weist viele Falten und Einbuchtungen sowie Pseudopodien (9) auf.  

10 = Lymphozyten 
11 = Erythrozyten 
SB = 3 µm 
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Abbildung IV-69: Ultrastruktur eines Monozyten, eines Lymphozyten und eines Erythrozyten 
(Schaf, m, 4 Jahre) 

Dieser Monozyt (1) weist eine annähernd runde Form auf. Im exzentrisch liegenden Zellkern (2) 
lässt sich das hellere Euchromatin (3) vom dunkleren Heterochromatin (4) unterscheiden. 
Außerdem sind bei dieser Schnittführung zwei Nukleoli (5) zu sehen. Das Zytoplasma (6) ist 
reichlich vorhanden und beinhaltet im Vergleich zum Lymphozyten (11) mehr Zellorganellen. 
Neben Zisternen des endoplasmatischen Retikulums (7) sind Mitochondrien (8) und einige 
Vesikel (9) zu sehen. Die Zelloberfläche ist gerafft und lässt deutliche Falten und Furchen 
erkennen. An einigen Stellen sind pseudopodienartige Projektionen (10) ausgebildet. 

12 = Erythrozyt 
SB = 2,5 µm 
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3.5 Neutrophile Granulozyten 

Die neutrophilen Granulozyten treten im Blut als runde bis ovale (vgl. Abb. IV-70) Zellen auf. 

Die Zellmembran ist in der Regel glatt und trägt unterschiedlich stark ausgebildete Pseudopodien 

(vgl. Abb. IV-70, IV-71). Der Zellkern weist unterschiedlich elektronendichte Bereiche auf, 

wobei das hellere Euchromatin von dem dunkleren Heterochromatin umgeben wird (vgl. Abb. IV-

70, IV-71). In den meisten Zellen überwiegt das Heterochromatin (vgl. Abb. IV-71). Die reifen, 

segmentkernigen neutrophilen Granulozyten besitzen einen aus mehreren, unterschiedlich großen 

Anschnitten bestehenden Kern. Die einzelnen Kernsegmente sind nicht selten durch 

Chromatinbrücken miteinander verbunden. Das Zytoplasma enthält zahlreiche Granula mit einer 

großen Variationsbreite, was Form, Größe, Elektronendichte und Struktur betrifft (vgl. Abb. IV- 

71). Die primären Granula haben eine längliche Gestalt und sind ca. 0,4 - 0,5 µm lang. Die 

häufiger vorkommenden, sekundären Granula hingegen weisen eine runde Form auf und sind mit 

einer Größe von ca. 0,2 - 0,3 µm kleiner als die primären Granula. Teilweise erscheinen sie 

außerdem elektronendichter als die primären Granula (vgl. Abb. IV-71). Weiterhin enthält das 

Zytoplasma unterschiedlich große Vakuolen und Vesikel (vgl. Abb. IV-70, IV-71), wenige 

Mitochondrien, einen Golgi-Apparat, Zisternen des endoplasmatisches Retikulums (vgl. Abb. IV- 

70) und Glykogenpartikel (vgl. Abb. IV-71). 
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Abbildung IV-70: Ultrastruktur eines neutrophilen Granulozyten, eines Lymphozyten, eines 
Thrombozyten und mehrerer Erythrozyten (Schaf, w, 3 Jahre) 

Der neutrophile Granulozyt (1) hat eine ovale Gestalt. Der Zellkern zeigt an einer Stelle eine 
deutliche Einschnürung (2) und lässt das locker gepackte Euchromatin (3) vom dicht gepackten 
Heterochromatin (4) unterscheiden. Das Zytoplasma enthält zahlreiche Zellorganellen. Neben 
dem Golgi-Apparat (5) sind Vakuolen (6), Mitochondrien (7), viele kleine Vesikel (8) und 
Zisternen des endoplasmatischen Retikulums (9) zu sehen. Die Zelloberfläche bildet 
unterschiedlich große Pseudopodien (10) aus. 

11 = Lymphozyt 
12 = Thrombozyt 
13 = Erythrozyten 
SB = 2 µm 
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Abbildung IV-71: Ultrastruktur eines neutrophilen Granulozyten (Schaf, m, 6 Jahre) 

Der Kern des neutrophilen Granulozyten ist von einer definierten Membran (1) umgeben und 
unterteilt sich in das zentral gelegene Euchromatin (2) und das peripher gelegene, dominierende 
Heterochromatin (3). Im Zytoplasma sind zahlreiche Granula zu sehen. Die primären Granula (4) 
weisen eine längliche Gestalt auf und sind ca. 0,4 - 0,5 µm lang. Die spezifischen Granula (5) sind 
mit einer Größe von etwa 0,2 - 0,3 µm kleiner als die primären Granula und haben eine runde 
Form. Manche erscheinen besonders elektronendicht. Im Zytoplasma kommen weiterhin einige 
Glykogenpartikel (6) und zahlreiche Vesikel (7) vor. Die Zellmembran bildet pseudopodienartige 
Ausstülpungen (8) aus. 

SB = 0,5 µm 
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3.6 Eosinophile Granulozyten 

Die eosinophilen Granulozyten stellen die größten Granulozyten dar und haben eine runde bis 

ovale Gestalt. Die Zellmembran ist glatt und bildet unterschiedlich große Pseudopodien aus (vgl. 

Abb. IV-72, IV-73). Der Zellkern ist gelappt oder segmentiert (vgl. Abb. IV-72, IV-73). In ihm 

lässt sich ebenfalls das zentrale, helle Euchromatin vom peripheren, dunklen Heterochromatin 

deutlich unterscheiden (vgl. Abb. IV-72, IV-73). Im Zytoplasma kommen zahlreiche Granula mit 

unterschiedlicher Größe, Form und Struktur vor (vgl. Abb. IV-72, IV-73). Ihr Durchmesser liegt 

in den meisten Fällen zwischen 0,4 und 1,1 µm (vgl. Abb. IV-73). Die Form reicht von rund über 

oval bis spindelförmig. Der Inhalt der Granula erscheint meist kristallin mit äußerst 

elektronendichten, lamellären Einschlüssen, die in eine homogene Matrix eingebettet sind. 

Seltener werden Granula mit einem homogenen Inhalt gefunden (vgl. Abb. IV-73). Bei manchen 

Granula ist eine deutliche Membran zu sehen. Das Zytoplasma enthält weiterhin einen Golgi-

Apparat (vgl. Abb. IV-72), Zisternen des endoplasmatischen Retikulums (vgl. Abb. IV-72), 

Mitochondrien und zahlreiche Vesikel (vgl. Abb. IV-72). 
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Abbildung IV-72: Ultrastruktur eines eosinophilen Granulozyten und mehrerer Erythrozyten 
(Schaf, w, 3 Jahre) 

Der Zellkern (2) des eosinophilen Granulozyten (1) ist segmentiert. Es kann das hellere, zentrale 
Euchromatin (3) vom dunkleren, peripheren Heterochromatin (4) unterschieden werden. Im 
Zytoplasma sind große, elektronendichte Granula (5) mit kristallinen Innenstrukturen verteilt. 
Außerdem sind ein Golgi-Apparat (6) im Zellzentrum, Zisternen des endoplasmatischen 
Retikulums (7) und zahlreiche kleine Vesikel (8) zu sehen. Die Zellmembran ist glatt und trägt 
unterschiedlich große Pseudopodien (9).  

10 = Erythrozyten 
SB = 2 µm 
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Abbildung IV-73: Ultrastruktur eines eosinophilen Granulozyten und eines Erythrozyten (Schaf, 
m, 6 Jahre) 

Der Zellkern (2) des eosinophilen Granulozyten (1) ist segmentiert und lässt hellere Euchromatin- 
(3) von dunkleren Heterochromatinbereichen (4) unterscheiden. Im Zytoplasma (5) befinden sich 
zahlreiche Granula mit unterschiedlicher Größe, Form und Struktur. Die Größe reicht von ca. 0,4 
bis 1,1 µm. Die meisten Granula weisen eine kristalline Ultrastruktur auf und besitzen 
stäbchenförmige Einschlüsse, die in einer homogenen Grundsubstanz liegen (6). Selten kommen 
auch Granula mit einer homogenen Innenstruktur vor (7). Die Zellmembran trägt viele 
zytoplasmatische Projektionen (8). 

9 = Erythrozyt 
SB = 2 µm 
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3.7 Basophile Granulozyten 

Aufgrund des geringen Vorkommens der basophilen Granulozyten im Blut der Schafe konnte 

keine dieser Zellen unter dem Elektronenmikroskop sicher identifiziert werden. 

 

4. Fluoreszenzmikroskopische Untersuchungen 

4.1 Untersuchungen des Zytoskeletts oviner Blutzellen 

Es wurden je zehn Blutausstriche auf die Bindung von Phalloidin an F-Aktin bzw. von 

verschiedenen Antikörpern an Myosin, Vimentin, Zytokeratin und Tubulin untersucht. Für jedes 

zytoskelettale Element wurde eine Tabelle mit einer Zusammenfassung der Phalloidin- bzw. 

Antikörperbindung an die einzelnen Blutzellen erstellt. Dabei wurde zwischen keiner Reaktion 

(0), einer schwach positiven (+), einer deutlich positiven (++) und einer stark positiven (+++) 

Reaktion unterschieden. Unter „Stärke der Reaktion“ ist der prozentuale Anteil der Tiere 

aufgelistet, bei dem diese Bindungsstärke auftrat. Unter „Anteil der positiven Präparate“ steht der 

prozentuale Anteil der Ausstriche, die den Antikörper gebunden haben. Da manche Präparate 

aufgrund schlechter Qualität nicht auswertbar waren, ergab sich eine unterschiedliche Anzahl an 

Gesamtausstrichen. Auch Zellen mit fehlender Antikörperbindung konnten identifiziert werden, 

da sich mit Hilfe der DAPI-Kernfärbung die Kerne leuchtend blau anfärbten. Basophile 

Granulozyten konnten in keinem der untersuchten Ausstriche identifiziert werden.  

 

4.1.1 Nachweis von Aktin 

Eine starke Bindung von Phalloidin-TRITC an filamentöses Aktin (F-Aktin) kann an alle Zellen 

mit Ausnahme der Erythrozyten festgestellt werden. Die roten Blutkörperchen reagieren nur 

schwach und weisen eine homogene Anfärbung auf (vgl. Abb. IV-75). Die Thrombozyten zeigen 

stets eine starke Reaktion in der gesamten Zelle. Sowohl der kortikale Bereich als auch das 

Zellzentrum färben sich stark an, wobei im Zytoplasma teilweise ein retikuläres Muster erkannt 

werden kann (vgl. Abb. IV-74, IV-76, IV-77). Bei den Lymphozyten zeigt sich eine annähernd 

homogene Anfärbung des Zytoplasmas. Im Bereich der Plasmamembran lässt sich eine deutliche, 

ringartige Verdichtung in Verbindung mit einer stärkeren Fluoreszenz beobachten (vgl. Abb. IV-

74). Das Zytoplasma der Monozyten hingegen weist ein wabenartiges Muster der Anfärbung auf 

(vgl. Abb. IV-75). Eine stärkere Farbintensität in der submembranösen Region ist hier nicht so 

ausgeprägt wie bei den Lymphozyten. Die Bindung von Phalloidin-TRITC an F-Aktin der 

neutrophilen (vgl. Abb. IV-76) und eosinophilen Granulozyten (vgl. Abb. IV-77) zeigt sich in 
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Form einer starken Fluoreszenz im Zytoplasma, die ebenfalls teilweise ein retikuläres Muster 

erkennen lässt und sich in der Zellperipherie verdichtet. In Tabelle IV.19 sind die Ergebnisse der 

Bindung von Phalloidin-TRITC an F-Aktin bei den jeweiligen Zellen aufgeführt. 

Tabelle IV.19: Bindung von Phalloidin-TRITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten 20 % 80 % 0 % 0 % 80 % 

Thrombozyten 0 % 0 % 0 % 100 % 100 % 

Lymphozyten 0 % 0 % 0 % 100 % 100 % 

Monozyten 0 % 0 % 0 % 100 % 100 % 

Neutrophile Granulozyten 0 % 0 % 0 % 100 % 100 % 

Eosinophile Granulozyten 0 % 0 % 0 % 100 % 100 % 

Basophile Granulozyten - - - - - 

 

 

 

 

Abbildung IV-74: Lymphozyt und 
Thrombozyt, Phalloidin-TRITC (Schaf, w, 1 
Jahr) 

Der Lymphozyt (1) zeigt neben einer 
schwachen Anfärbung des Zytoplasmas (3) 
eine starke Fluoreszenz im Bereich der 
Plasmamembran (4). Der Thrombozyt (5) 
weist ein retikuläres Anfärbungsmuster auf. 
2= Zellkern, 6 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-75: Monozyt, Phalloidin-
TRITC (Schaf, w, 2 Jahre) 

Im gesamten Zytoplasma (3) des Monozyten 
(1) lässt sich eine Fluoreszenz mit einem 
wabenartigen Muster erkennen. Die 
Erythrozyten (4) zeigen nur eine leichte, 
homogene Anfärbung. 
2 = Zellkern, SB = 10 µm 
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Abbildung IV-76: Neutrophiler Granulozyt 
und Thrombozyten, Phalloidin-TRITC 
(Schaf, w, 3 Jahre) 

Im Zytoplasma (3) des neutrophilen 
Granulozyten (1) ist eine netzartige 
Anfärbung zu sehen. Die Thrombozyten (4) 
färben sich intensiv an, wobei bei einer Zelle 
ein fluoreszierender, fingerförmiger 
Ausläufer (5) zu beobachten ist. 
2 = Zellkern, 6 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-77: Eosinophiler Granulozyt 
und Thrombozyten, Phalloidin-TRITC 
(Schaf, w, 6 Jahre) 

Das Zytoplasma (3) des eosinophilen 
Granulozyten (1) zeigt eine starke Reaktion 
mit einem netzartigen Muster. Im Bereich der 
Plasmamembran ist eine Zone mit stärkerer 
Fluoreszenz erkennbar (4). Die Erythrozyten 
(6) zeigen eine homogene Anfärbung. 
2 = Zellkern, 5 = Thrombozyt , SB = 10 µm 

 

 

 

 

Abbildung IV-78: Eosinophiler Granulozyt 
und Thrombozyten, Phalloidin-TRITC 
(Schaf, w, 3 Jahre) 

Bei diesem eosinophilen Granulozyten (1) ist 
eine äußerst intensive Fluoreszenz im 
Zytoplasma (3) zu sehen.  
2 = Zellkern, 4 = Thrombozyten,                  
5= Erythrozyt, SB = 10 µm 

 
Abbildung IV-79: Neutrophiler Granulozyt, 
eosinophiler Granulozyt und Thrombozyten, 
Phalloidin-TRITC (Schaf, w, 2 Jahre) 

Sowohl der neutrophile Granulozyt (1) als 
auch der eosinophile Granulozyt (2) zeigen 
eine weniger deutliche Fluoreszenz in ihrem 
Zytoplasma. 
3 = Thrombozyten, SB = 10 µm 
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4.1.2 Nachweis von Myosin 

Bei dem immunhistochemischen Nachweis von Myosin lässt sich eine größtenteils starke 

Fluoreszenz aller Zellen mit Ausnahme der Erythrozyten beobachten. Bei den Thrombozyten färbt 

sich die Zellperipherie im Gegensatz zum Zellzentrum meist stärker an (vgl. Abb. IV-80, IV-84, 

IV-85). Die Lymphozyten (vgl. Abb. IV-81) und die Monozyten (vgl. Abb. IV-82) zeigen 

gleichmäßig über das Zytoplasma verteilte, punktförmige Anfärbungen. Bei den neutrophilen 

(vgl. Abb. IV-83) und eosinophilen Granulozyten (vgl. Abb. IV-84, IV-85) färbt sich, wie bei den 

Thrombozyten, das granulareiche Zellzentrum deutlich schwächer an als die Zellperipherie, in der 

deutlich ein punktförmiges Reaktionsmuster beobachtet werden kann. In Tabelle IV.20 sind die 

Ergebnisse der Bindung von Rabbit polyclonal to non-muscle myosin IIA an Myosin IIA 

(„Myosin IIA-Antikörpern“) bei den jeweiligen Zellen aufgeführt. 

Tabelle IV.20: Bindung der Myosin IIA-Antikörper 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten 100 % 0 % 0 % 0 % 0 % 

Thrombozyten 0 % 20 % 0 % 80 % 100 % 

Lymphozyten 0 % 0 % 20 % 80 % 100 % 

Monozyten 0 % 0 % 11,1 % 88,9 % 100 % 

Neutrophile Granulozyten 0 % 10 % 10 % 80 % 100 % 

Eosinophile Granulozyten 0 % 0 % 22,2 % 77,8 % 100 % 

Basophile Granulozyten - - - - - 
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Abbildung IV-80: Thrombozyten, Myosin 
IIA-Antikörper (Schaf, m, 5 Jahre) 

Die Thrombozyten (1) liegen zusammen 
gelagert im Blutausstrich vor und zeigen eine 
stärkere Fluoreszenz der Zellperipherie (2) im 
Vergleich zum Zellzentrum (3). 
SB = 10 µm 

 
Abbildung IV-81: Lymphozyt, Myosin IIA-
Antikörper (Schaf, m, 4 Jahre) 

Bei diesem Lymphozyten (1) lässt sich eine 
granuläre Fluoreszenz im Zytoplasmasaum 
(3) erkennen. Die Erythrozyten (4) reagieren 
negativ. 
2 = Zellkern, SB = 10 µm 

 

 

Abbildung IV-82: Monozyt, Myosin IIA-
Antikörper (Schaf, w, 1 Jahr) 

Im Zytoplasma (3) des Monozyten (1)  ist 
eine starke Fluoreszenz mit einem körnigen 
Muster zu erkennen. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-83: Neutrophiler Granulozyt, 
Myosin IIA-Antikörper (Schaf, m, 7 Jahre) 

Auch das Zytoplasma (3) des neutrophilen 
Granulozyten (1) zeigt ein überwiegend 
körniges Muster der Anfärbung. Im Bereich 
der Plasmamembran sind Zonen mit einer 
erhöhten Fluoreszenzintensität (4) zu sehen. 
2 = Zellkern, SB = 10 µm 
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Abbildung IV-84: Eosinophiler Granulozyt 
und Thrombozyten, Myosin IIA-Antikörper 
(Schaf, w, 1 Jahr) 

Bei diesem eosinophilen Granulozyten (1) 
färbt sich das granulareiche Zytoplasma (3) 
weniger stark an als die Zellperipherie (4). 
2 = Zellkern, 5 = Thrombozyten,                 
SB = 10 µm 

 
Abbildung IV-85: Eosinophile Granulozyten 
und Thrombozyten, Myosin IIA-Antikörper 
(Schaf, m, 7 Jahre) 

Das Zytoplasma (3) der beiden eosinophilen 
Granulozyten (1) ist auch hier in peripheren 
Bereichen (4) deutlicher angefärbt als im 
Zellzentrum. 
2 = Zellkerne, 5 = Thrombozyten,                    
6 = Erythrozyt, SB = 10 µm 

 

 

4.1.3 Nachweis von Vimentin 

Eine Bindung des Antikörpers an das Intermediärfilament aus Vimentin kann bei den 

mononukleären Zellen, also den Lymphozyten und den Monozyten, sowie den neutrophilen und 

eosinophilen Granulozyten nachgewiesen werden, die stets eine starke Reaktion zeigen. Die 

Erythrozyten (vgl. Abb. IV-88) und die Thrombozyten hingegen reagieren beim 

immunhistochemischen Nachweis von Vimentin negativ. Bei den positiven Blutzellen zeigt sich 

oft ein mehr oder weniger netzartiges Muster, das sich meist über die ganze Zelle erstreckt (vgl. 

Abb. IV-86, IV-89). Bei den filamentförmigen Strukturen kann zum Teil deren Verlauf von der 

Plasmamembran bis hin zum Kern verfolgt werden (vgl. Abb. IV-88, IV-90), wobei sich vor 

allem bei den neutrophilen und den eosinophilen Granulozyten in der perinukleären Region nicht 

selten eine Verdichtung des Netzwerkes beobachten lässt (vgl. Abb. IV-88, IV-91). Besonders bei 

den Lymphozyten und den neutrophilen Granulozyten lässt sich, je nach Ebene, ein deutlicher 

Längs- und/oder Querverlauf der Filamente erkennen (vgl. Abb. IV-86, IV-89). Je nach Ebene 

wird der Zellkern mehr oder weniger durch die fadenförmigen Anfärbungen maskiert (vgl. Abb. 

IV-86, IV-89). Neben den filamentären Strukturen treten aber auch punktförmige Anfärbungen 

vor allen in peripheren Zytoplasmabereichen der verschiedenen Zellen in Erscheinung (vgl. Abb. 

IV-87, IV-88). In Tabelle IV.21 sind die Ergebnisse der Bindung von Monoclonal mouse anti-

vimentin clone vim 3B4 („Vimentin-Antikörpern“) an Vimentin bei den jeweiligen Zellen 
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aufgeführt. 

Tabelle IV.21:  Bindung der Vimentin-Antikörper 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  
Erythrozyten 100 % 0 % 0 % 0 % 0 % 
Thrombozyten 100 % 0 % 0 % 0 % 0 % 
Lymphozyten 0 % 0 % 0 % 100 % 100 % 
Monozyten 0 % 0 % 0 % 100 % 100 % 
Neutrophile Granulozyten 0 % 0 % 0 % 100 % 100 % 
Eosinophile Granulozyten 0 % 0 % 0 % 100 % 100 % 
Basophile Granulozyten - - - - - 
 

 

 

 

Abbildung IV-86: Lymphozyt, Vimentin-
Antikörper (Schaf, w, 1 Jahr) 

Bei diesem Lymphozyten (1) lässt sich der 
Verlauf der filamentförmigen Strukturen (3) 
deutlich erkennen. Diese lassen einen 
grobmaschigen Käfig entstehen und 
überlagern in dieser Ebene den Kern (2). 
SB = 10 µm 

 
Abbildung IV-87: Monozyt, Vimentin-
Antikörper (Schaf, m, 7 Jahre) 

Der Monozyt (1) zeigt in dieser Ebene vor 
allem in peripheren Bereichen des 
Zytoplasmas (3) viele punktförmige 
Anfärbungen (4). Der Zellkern (2) bleibt 
ausgespart. 
SB = 10 µm 
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Abbildung IV-88: Neutrophiler Granulozyt, 
Vimentin-Antikörper (Schaf, m, 5 Jahre) 

Bei diesem neutrophilen Granulozyten (1) ist 
im Zytoplasma (3) neben punktförmigen 
Anfärbungen eine fadenförmige Struktur (4), 
die vom Kern (2) bis zur Membran reicht, zu 
sehen. In der perinukleären Region (5) zeigt 
sich eine erhöhte Intensität der Fluoreszenz. 
Die Erythrozyten (6) reagieren negativ. 
SB = 10 µm 

 
Abbildung IV-89: Neutrophiler Granulozyt, 
Vimentin-Antikörper (Schaf, w, 1 Jahr) 

In dieser Ebene lässt sich bei dem 
neutrophilen Granulozyten (1) eine deutliche, 
relativ dichte, filamentförmige Fluoreszenz 
im Zytoplasma (3) erkennen. Es bildet sich 
eine Art grobmaschiges Netzwerk, das den 
Zellkern (2) maskiert. 
SB = 10 µm 

 

 

 

 

Abbildung IV-90: Eosinophiler Granulozyt 
und Lymphozyt, Vimentin-Antikörper (Schaf, 
w, 1 Jahr) 

Im Zytoplasma (3) des eosinophilen 
Granulozyten (1) sind fadenförmige 
Strukturen (4) zu sehen, deren Verlauf 
zwischen Zellkern (2) und Zellmembran zum 
Teil verfolgt werden kann. Der Lymphozyt 
(5) zeigt in dieser Ebene eine Fluoreszenz in 
der Zellperipherie (7), der Kern (6) bleibt 
unmaskiert. 
SB = 10 µm 

 
Abbildung IV-91: Eosinophiler Granulozyt, 
Vimentin-Antikörper (Schaf, w, 1 Jahr) 

Bei diesem eosinophilen Granulozyten (1) ist 
ein feines Netzwerk im gesamten Zytoplasma 
(3) erkennbar. In der perinukleären Region 
kann eine Verdichtung dieses Netzwerkes (4) 
beobachtet werden. Der Zellkern (2) wird in 
dieser Ebene nicht maskiert. 
SB = 10 µm 
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4.1.4 Nachweis von Zytokeratin 

Bei keinem der untersuchten Ausstriche kann eine positive Reaktion beim immunhistochemischen 

Nachweis von Zytokeratin beobachtet werden. Parallel angefertigte Positivkontrollen des Blutes 

von Pferd, Rind, Strauß und Kaninchen reagieren ebenso negativ. 

 

4.1.5 Nachweis von Tubulin  

Bei keinem der untersuchten Ausstriche fällt der immunhistochemische Nachweis von Tubulin 

positiv aus. Parallel angefertigte Positivkontrollen des Blutes von Strauß und Kaninchen zeigen 

eine Bindung der Tubulin-Antikörper vor allem an die Thrombozyten und vereinzelt auch an die 

Leukozyten. 

 

4.2 Glykohistochemische Untersuchungen 

Bei den FITC-markierten Pflanzen-Lektinen wurden je vierzehn, bei den biotinylierten Pflanzen-

Lektinen je zehn Blutausstriche auf die Bindung der verschiedenen Lektine untersucht. Für jedes 

Lektin wurde eine Tabelle mit einer Zusammenfassung der Bindung an die einzelnen Blutzellen 

erstellt. Dabei wurde zwischen keiner Reaktion (0), einer schwach positiven (+), einer deutlich 

positiven (++) und einer stark positiven (+++) Reaktion unterschieden. Bei der Auswertung 

wurden pro Objektträger je zehn Blutzellen einzeln bewertet und anschließend ein Mittelwert der 

häufigsten Reaktion gebildet. Unter „Stärke der Reaktion“ ist der prozentuale Anteil der Tiere 

aufgelistet, bei dem diese Bindungsstärke aufgetreten ist. Unter „Anteil der positiven Präparate“ 

steht der prozentuale Anteil der Ausstriche, die das Lektin gebunden haben. Da manche Präparate 

aufgrund schlechter Qualität nicht auswertbar waren, ergab sich eine unterschiedliche Anzahl an 

Gesamtausstrichen. Auch Zellen mit fehlender Lektinbindung konnten identifiziert werden, da 

sich mit Hilfe der DAPI-Kernfärbung die Kerne leuchtend blau anfärbten. Aufgrund ihrer 

Eigenfluoreszenz waren die Erythrozyten auch ohne Lektinbindung deutlich zu erkennen. Die 

Thrombozyten wurden dagegen nur bei Bindung des Lektins sichtbar.  

 

4.2.1 Glukose/Mannose-spezifische Lektine 

4.2.1.1 Bindung von Concanavalia ensiformis Agglutinin (ConA-FITC) 

Bei allen Ausstrichen kann eine deutliche bis starke Bindung von ConA-FITC an die Membran 

der Erythrozyten beobachtet werden (vgl. Abb. IV-92, IV-93, IV-94, IV-95, IV-96, IV-97) . Das 
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Zytoplasma reagiert überwiegend negativ, bei einigen Zellen aber auch leicht bis deutlich positiv 

(vgl. Abb. IV-95). Das Granulomer der Thrombozyten lässt stets eine deutliche bis starke 

Fluoreszenz erkennen, das Hyalomer und die Membran sind stets negativ (vgl. Abb. IV-92). Die 

Lymphozyten (vgl. Abb. IV-92, IV-93) zeigen bei allen Tieren, die Monozyten (vgl. Abb. IV-95) 

bei weniger als der Hälfte der Tiere eine Reaktion der zytoplasmatischen Granula in 

unterschiedlicher Intensität. Zudem kann bei einigen Lymphozyten (vgl. Abb. IV-92, IV-93) und 

Monozyten (vgl. Abb. IV-95) eine schwache bis deutliche Fluoreszenz der Membran beobachtet 

werden. Das Zytoplasma zeigt bei den Lymphozyten keine Reaktion, bei den Monozyten 

hingegen kann meist eine starke, diffuse, teilweise körnige Fluoreszenz beobachtet werden (vgl. 

Abb. IV-94, IV-95). Die Membran der neutrophilen und eosinophilen Granulozyten reagiert bei 

ungefähr der Hälfte der Zellen positiv. Bei den neutrophilen Granulozyten kann stets eine starke 

Rektion der Granula erkannt werden, das Zytoplasma scheint stets negativ zu sein (vgl. Abb. IV-

96, IV-97). Die eosinophilen Granulozyten hingegen zeigen lediglich eine Fluoreszenz des 

Zytoplasmas ohne Reaktion der eosinophilen Granula (vgl. Abb. IV-97). In der Tabelle IV.22 sind 

die Ergebnisse der ConA-Bindung zusammengefasst. 
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Tabelle IV.22: Einzelauswertung Lektine: ConA-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 0 % 0 % 28,6 % 71,4 % 100 % 

 - Zytoplasma 57,1 % 35,7 % 7,2 % 0 % 42,9 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 0 % 21,4 % 78,6 % 100 % 

Lymphozyten      

 - Membran 28,6 % 50 % 21,4 % 0 % 71,4 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 14,3 % 35,7 % 50 % 100 % 

Monozyten      

 - Membran 50 % 41,7 % 8,3 % 0 % 50 % 

 - Zytoplasma 0 % 8,3 % 16,7 % 75 % 100 % 

 - Granula 58,3 % 16,7 % 16,7 % 8,3 % 41,7 % 

Neutrophile Granulozyten      

 - Membran 50 % 50 % 0 % 0 % 50 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 0 % 100 % 100 % 

Eosinophile Granulozyten      

 - Membran 41,7 % 50 % 8,3 % 0 % 58,3 % 

 - Zytoplasma 8,3 % 75 % 16,7 % 0 % 91,7 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-92: Lymphozyt und 
Thrombozyten, ConA-FITC (Schaf, m, 6 
Jahre) 

Bei dem Lymphozyten (1) ist eine 
Fluoreszenz der zytoplasmatischen Granula 
(3) und der Zellmembran (4) zu sehen. Die 
Thrombozyten (5) zeigen eine positive 
Reaktion des Granulomers und die 
Erythrozyten (6) der Membran. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-93: Lymphozyt, ConA-FITC 
(Schaf, m, 6 Jahre) 

Auch bei diesem Lymphozyten (1) lässt sich 
eine Fluoreszenz der Granula (4) und der 
Membran (5) erkennen. Die Membran (7) der 
Erythrozyten (6) reagiert stark positiv. 
2 = Zellkern, 3 = Zytoplasma, SB = 10 µm 

 

 

 

 

Abbildung IV-94: Monozyt, ConA-FITC 
(Schaf, w, 3,5 Jahre) 

Bei dem Monozyten (1) lässt sich eine 
diffuse, granuläre Fluoreszenz im Zytoplasma 
(3) feststellen. Die Erythrozyten (4) zeigen 
eine deutliche Bindung des Lektins an ihre 
Zellmembran. 
2 = Zellkern, 4 = Erythrozyt,  SB = 10 µm 

 
Abbildung IV-95: Monozyt, ConA-FITC 
(Schaf, w, 5 Jahre) 

Dieser Monozyt (1) zeigt neben einer 
diffusen Fluoreszenz des Zytoplasmas (3) 
eine starke Reaktion seiner Granula (4) und 
eine schwache Reaktion der Membran (5). 
Bei den Erythrozyten (6) kann eine positive 
Reaktion sowohl im Zytoplasma (7) als auch 
an der Membran (8) erkannt werden. 
2 = Zellkern, SB = 10 µm 
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Abbildung IV-96: Neutrophiler Granulozyt, 
ConA-FITC (Schaf, m, 6 Jahre) 

Die zytoplasmatischen Granula (3) des 
neutrophilen Granulozyten (1) reagieren stark 
positiv.  
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-97: Eosinophiler und 
neutrophiler Granulozyt, ConA-FITC (Schaf, 
w, 2 Jahre) 

Das Zytoplasma (3) des eosinophilen 
Granulozyten (1) färbt sich nur schwach an. 
Bei dem neutrophilen Granulozyten (4) kann 
deutlich eine granuläre Reaktion (6) 
beobachtet werden.  
2 = Zellkern eosinophiler Granulozyt, 
5 = Zellkern neutrophiler Granulozyt, 
7 = Erythrozyt, SB = 10 µm 

 

 

4.2.1.2 Bindung von Lens culinaris Agglutinin (LCA-FITC) 

In allen Präparaten kann eine positive Reaktion der Erythrozytenmembran mit LCA (vgl. Abb. 

IV-98, IV-99, IV-100, IV-101) festgestellt werden, das Zytoplasma hingegen reagiert bei mehr als 

der Hälfte der Zellen negativ. In einem Großteil der Ausstriche lässt sich eine starke Bindung von 

LCA an die Granula der Thrombozyten beobachten, Membran und Hyalomer reagieren stets 

negativ (vgl. Abb. IV-98, IV-101). Bei fast allen Tieren zeigt sich eine schwache bis starke 

Fluoreszenz der Membran und der Granula von Lymphozyten und Monozyten, das Zytoplasma 

reagiert jedoch nur in wenigen Fällen positiv (vgl. Abb. IV-98, IV-99). Bei den neutrophilen 

Granulozyten kann eine deutliche bis starke Bindung von LCA an die Granula nachgewiesen 

werden. Die Membran färbt sich nur in wenigen Fällen an und das Zytoplasma zeigt keine 

Reaktion (vgl. Abb. IV-100). Die Granula der eosinophilen Granulozyten sind stets negativ, die 

Membran und das Zytoplasma zeigen hingegen bei ca. zwei Drittel der Ausstriche eine schwach 

bis deutlich positive Reaktion (vgl. Abb. IV-101). In der Tabelle IV.23 sind die Ergebnisse der 

LCA-Bindung zusammengefasst. 
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Tabelle IV.23: Einzelauswertung Lektine: LCA-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 0 % 0 % 23,1 % 76,9 % 100 % 

 - Zytoplasma 53,8 % 46,2 % 0 % 0 %  46,2 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 0 % 38,5 % 61,5 % 100 % 

Lymphozyten      

 - Membran 0 % 61,5 % 30,8 % 7,7 % 100 % 

 - Zytoplasma 92,3 % 7,7 % 0 % 0 % 7,7 % 

 - Granula 7,7 % 0 % 38,5 % 53,8 % 92,3 % 

Monozyten      

 - Membran 7,7 % 61,5 % 30,8 % 0 % 92,3 % 

 - Zytoplasma 69,2 % 30,8 % 0 % 0 % 30,8 % 

 - Granula 0 % 0 % 38,5 % 61,5 % 100 % 

Neutrophile Granulozyten      

 - Membran 76,9 % 23,1 % 0 % 0 % 23,1 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 30,8 % 69,2 % 100 % 

Eosinophile Granulozyten      

 - Membran 23,1 % 61,5 % 15,4 % 0 % 76,9 % 

 - Zytoplasma 30,8 % 46,1 % 23,1 % 0 % 69,2 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-98: Lymphozyt und 
Thrombozyt, LCA-FITC (Schaf, w, 1 Jahr) 

Bei dem Lymphozyten (1) ist sowohl eine 
Fluoreszenz der Granula (4) im Zytoplasma 
(3) als auch der Zellmembran (5) zu sehen. 
Die Thrombozyten (6) zeigen eine Bindung 
von LCA an das Granulomer. Bei manchen 
Erythrozyten (7) reagieren sowohl das 
Zytoplasma (8) als auch die Membran (9) 
positiv. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-99: Monozyt, LCA-FITC 
(Schaf, w, 5 Jahre) 

Der Monozyt (1) zeigt eine leichte, diffuse, 
körnige Fluoreszenz im Zytoplasma (3), die 
teilweise den Zellkern (2) bedeckt. Zusätzlich 
kann eine starke, fokale Reaktion (4) im 
Zytoplasma beobachtet werden. Die 
Membran (5) reagiert nur schwach positiv. 
Auch die Erythrozytenmembran (6) zeigt nur 
eine schwache Fluoreszenz. 
SB = 10 µm 

 

 

 

 
Abbildung IV-100: Neutrophiler Granulozyt, 
LCA-FITC (Schaf, w, 1 Jahr) 

Die zytoplasmatischen Granula (3) des 
neutrophilen Granulozyten (1) reagieren stark 
positiv und überlagern zum Teil den Zellkern 
(2). Erythrozyten (4) mit positiv reagierender 
Zellmembran. 
SB = 10 µm 

 Abbildung IV-101: Eosinophiler Granulozyt, 
LCA-FITC (Schaf, w, 6 Jahre) 

Das Zytoplasma (3) und die Zellmembran (4) 
des eosinophilen Granulozyten (1) zeigen 
eine schwache Bindung von LCA. 
Erythrozyten (5) mit positivem Zytoplasma 
(6) und positiver Membran (7). Thrombozyt 
(8) mit positiven Granula. 
2 = Zellkern, SB = 10 µm 
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4.2.1.3 Bindung von Pisum sativum Agglutinin (PSA-FITC) 

Bei allen Ausstrichen kann eine Bindung von PSA an die Erythrozytenmembran (vgl. Abb. IV-

102, IV-103, IV-104, IV-105) beobachtet werden, wobei der Großteil der Zellen stark positiv 

reagiert. Das Zytoplasma ist in den meisten Fällen negativ. Die Granula der Thrombozyten sind 

entweder schwach oder deutlich positiv, die Membran und das Hyalomer zeigen keine Reaktion 

(vgl. Abb. IV-104). Eine Anfärbung der Membran und des Zytoplasmas der Lymphozyten gelingt 

bei dem Großteil der Zellen nicht. Bei jedem Ausstrich kommen jedoch Zellen vor, deren Granula 

unterschiedlich stark, von schwach bis stark positiv, reagieren (vgl. Abb. IV-102). Die Monozyten 

lassen keine Bindung von PSA an Membran oder Granula erkennen, das Zytoplasma hingegen 

reagiert immer positiv (vgl. Abb. IV-103). Die neutrophilen Granulozyten zeigen stets eine 

deutlich bis stark positive Bindung des Lektins an ihre Granula. Membran und Zytoplasma 

hingegen scheinen stets negativ zu sein (vgl. Abb. IV-104). Die eosinophilen Granulozyten färben 

sich mit PSA nicht an (vgl. Abb. IV-105). In der Tabelle IV.24 sind die Ergebnisse der PSA-

Bindung zusammengefasst. 
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Tabelle IV.24: Einzelauswertung Lektine: PSA-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 0 % 14,3 % 14,3 % 71,4 % 100 % 

 - Zytoplasma 78,6 % 21,4 % 0 % 0 % 21,4 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 45,5 % 54,5% 0 % 100 % 

Lymphozyten      

 - Membran 71,4 % 21,4 % 7,2 % 0 % 28,6 % 

 - Zytoplasma 92,9 % 7,1 % 0 % 0 % 7,1 % 

 - Granula 0 % 14,3 % 57,1 % 28,6 % 100 % 

Monozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 0 % 42,9 % 42,9 % 14,2 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Neutrophile Granulozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 50 % 50 % 100 % 

Eosinophile Granulozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-102: Lymphozyt, PSA-FITC 
(Schaf, m, 6 Jahre) 

Bei dem Lymphozyten (1) ist sowohl eine 
starke fokale Fluoreszenz (4) im Zytoplasma 
(3) als auch eine leichte Reaktion der 
Zellmembran (5) zu erkennen. Bei den 
Erythrozyten (6) reagiert die Membran nur 
schwach positiv. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-103: Monozyt, PSA-FITC 
(Schaf, w, 2 Jahre) 

Der Monozyt (1) zeigt eine leichte, diffuse, 
körnige Fluoreszenz im Zytoplasma (3), die 
teilweise den Zellkern bedeckt (2). Die 
Membran der Erythrozyten (4) reagiert 
deutlich positiv. 
SB = 10 µm 

 

 

 

 

Abbildung IV-104: Neutrophiler Granulozyt, 
PSA-FITC (Schaf, w, 6 Jahre) 

Die Granula (3) des neutrophilen 
Granulozyten (1) reagieren stark positiv und 
überlagern teilweise den Zellkern (2). Die 
Erythrozyten (4) zeigen eine stark positiv 
reagierende Zellmembran, die Thrombozyten 
(5) schwach positiv reagierende Granula. 
SB = 10 µm 

 
Abbildung IV-105: Eosinophiler Granulozyt, 
PSA-FITC (Schaf, w, 5 Jahre) 

Der eosinophile Granulozyt (1) lässt keine 
Bindung von PSA im Zytoplasma (3) oder an 
der Membran erkennen. Erythrozyten (4) mit 
positivem Zytoplasma (5) und positiver 
Membran (6).  
2 = Zellkern, SB = 10 µm 
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4.2.2 Galaktose-spezifische Lektine 

4.2.2.1 Bindung von Peanut Agglutinin (PNA-FITC) 

Bei keinem der Blutausstriche ist eine Bindung von PNA an die ovinen Blutzellen zu erkennen. 

 

 

 

Abbildung IV-106: Eosinophiler Granulozyt, 
PNA-FITC (Schaf, w, 2 Jahre) 

Die Granula (3) des eosinophilen 
Granulozyten (1) lassen sich zwar erkennen, 
zeigen aber keine Fluoreszenz. Die 
Erythrozyten (4) reagieren ebenfalls negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-107: Lymphozyt, PNA-FITC 
(Schaf, w, 2 Jahre) 

Weder die Membran noch das Zytoplasma 
des Lymphozyten (1) binden PNA. Die 
Erythrozyten (3) sind deutlich zu erkennen, 
zeigen aber keine Fluoreszenz. 
2 = Zellkern, SB = 10 µm 

 

 

4.2.2.2 Bindung von Ricinus communis Agglutinin (RCA-FITC) 

Bei keinem der Blutausstriche lässt sich eine Bindung von RCA an die ovinen Blutzellen 

beobachten. 

 

4.2.2.3 Bindung von Viscum album Agglutinin (VAA-Biotin) 

Bei keinem der Blutausstriche kann eine Bindung von VAA an die ovinen Blutzellen festgestellt 

werden.  
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Abbildung IV-108: Lymphozyt, VAA-Biotin 
(Schaf, w, 6 Jahre) 

Sowohl der Lymphozyt (1) als auch die 
Erythrozyten (4) reagieren negativ. 
2 = Zellkern, 3 = Zytoplasma, SB = 10 µm 

 
Abbildung IV-109: Neutrophiler Granulozyt, 
VAA-Biotin (Schaf, w, 6 Jahre) 

Auch der neutrophile Granulozyt (1) zeigt 
keine Fluoreszenz im Zytoplasma (3). 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 

 

4.2.3 N-Acetyl-Glukosamin-spezifische Lektine 

4.2.3.1 Bindung von Wheat germ Agglutinin (WGA-FITC) 

Die Membran der Erythrozyten weist bei allen Ausstrichen eine positive Reaktion auf, die 

Intensität variiert jedoch von schwach bis zu stark positiv (vgl. Abb. IV-110, IV-111, IV-112, IV-

113). Das Zytoplasma zeigt nur bei einem Viertel der roten Blutkörperchen eine schwache 

Fluoreszenz (vgl. Abb. IV-110). Die Granula der Thrombozyten lassen stets eine positive 

Reaktion erkennen, Membran und Hyalomer sind stets negativ (vgl. Abb. IV-110, IV-112, IV-

113). Bei den Lymphozyten färben sich die Zellmembran und bei dem Großteil der Zellen die 

Granula an, das Zytoplasma scheint stets negativ zu sein (vgl. Abb. IV-110). Die Monozyten 

hingegen zeigen in allen Fällen eine diffuse, granuläre Reaktion im Zytoplasma und bei dem 

überwiegenden Anteil der Zellen eine Bindung von WGA an die Zellmembran (vgl. Abb. IV-

111). Die Beurteilung einer Reaktion der gelegentlich vorkommenden, zytoplasmatischen Granula 

ist durch die meist intensive Anfärbung im Zytoplasma kaum möglich. Bei den neutrophilen 

Granulozyten lässt sich stets eine stark positive Reaktion der Granula feststellen, aber auch die 

Membran weist in über der Hälfte der Fälle eine leichte bis deutliche Fluoreszenz auf (vgl. Abb. 

IV-112). Das Zytoplasma hingegen ist stets negativ. Bei den eosinophilen Granulozyten kann eine 

leichte bis deutliche Bindung von WGA an die Membran und das Zytoplasma festgestellt werden, 

nicht aber an die Granula (vgl. Abb. IV-113). In der Tabelle IV.25 sind die Ergebnisse der WGA-

Bindung zusammengefasst. 
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Tabelle IV.25: Einzelauswertung Lektine: WGA-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 0 % 16,7 % 58,3 % 25 % 100 % 

 - Zytoplasma 75 % 25 % 0 % 0 % 25 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 16,7 % 33,3 % 50 % 100 % 

Lymphozyten      

 - Membran 0 % 16,7 % 66,6 % 16,7 % 100 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 25 % 25 % 33,3 % 16,7 % 75 % 

Monozyten      

 - Membran 16,7 % 50 % 33,3 % 0 % 83,3 % 

 - Zytoplasma 0 % 0 % 50 % 50 % 100 % 

 - Granula - - - - - 

Neutrophile Granulozyten      

 - Membran 41,7 % 33,3 % 25 % 0 % 58,3 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 0 % 100 % 100 % 

Eosinophile Granulozyten      

 - Membran 0 %  33,3  % 66, 7 % 0 %  100 % 

 - Zytoplasma 0 % 58,3 % 41,7 % 0 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-110: Lymphozyt und 
Thrombozyt, WGA-FITC (Schaf, w, 6 Jahre) 

Der Lymphozyt (1) zeigt eine positive 
Reaktion der Membran (3). Der Thrombozyt 
(4) weist eine Fluoreszenz im Granulomer 
auf. Bei den Erythrozyten (5) reagiert sowohl 
das Zytoplasma (6) als auch die Membran (7) 
positiv. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-111: Monozyt, WGA-FITC 
(Schaf, w, 5 Jahre) 

Bei dem Monozyten (1) lässt sich eine starke, 
diffuse, granuläre Fluoreszenz im Zytoplasma 
(3) und eine Bindung von WGA an die 
Zellmembran (4) erkennen. Die Membran der 
Erythrozyten (5) reagiert deutlich positiv. 
2 = Zellkern, SB = 10 µm 

 

 

 

 

Abbildung IV-112: Neutrophiler Granulozyt 
und Thrombozyten, WGA-FITC (Schaf, w, 
1,5 Jahre) 

Die Granula (3) des neutrophilen 
Granulozyten (1) reagieren stark positiv und 
überlagern teilweise den Zellkern (2). Zudem 
zeigt die Membran (4) eine deutliche 
Fluoreszenz. Thrombozyten (5) mit schwach 
positiven Granula.  
6 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-113: Eosinophiler Granulozyt 
und Thrombozyten, WGA-FITC (Schaf, w, 6 
Jahre) 

Der eosinophile Granulozyt (1) zeigt neben 
einer diffusen Fluoreszenz im Zytoplasma (3) 
eine schwache Reaktion der Membran (4). 
Thrombozyten (5) mit positiven Granula, 
Erythrozyten (6) mit positiver Membran. 
2 = Zellkern, SB = 10 µm 
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4.2.3.2 Bindung von succinyliertem Wheat germ Agglutinin (WGAs-FITC) 

WGAs zeigt bei fast allen Präparaten eine schwache bis starke Bindung an die Membran der 

Erythrozyten (vgl. Abb. IV-114, IV-115, IV-116, IV-117), das Zytoplasma hingegen färbt sich 

nur bei der Hälfte der Zellen schwach an (vgl. Abb. IV-114). Das Granulomer der Thrombozyten 

reagiert stets deutlich bis stark positiv, Membran und Hyalomer sind negativ (vgl. Abb. IV-114, 

IV-117). Bei den mononukleären Zellen, also den Lymphozyten und den Monozyten, kann zu 100 

% eine Bindung von WGAs an die Membran festgestellt werden (vgl. Abb. IV-114, IV-115). Bei 

der Hälfte der Lymphozyten ist eine meist stark positive Reaktion der Granula zu sehen, das 

Zytoplasma färbt sich in den meisten Fällen nicht an (vgl. Abb. IV-114). Das Zytoplasma der 

Monozyten hingegen weist stets eine relativ starke, diffuse oder körnige Fluoreszenz auf, wodurch 

die Beurteilung einer Reaktion der zytoplasmatischen Granula kaum möglich ist (vgl. Abb. IV-

115). Die neutrophilen Granulozyten zeigen zum Großteil eine Fluoreszenz der Membran und in 

allen Fällen eine stark positive Bindung von WGAs an die Granula (vgl. Abb. IV-116). Die 

Granula der eosinophilen Granulozyten reagieren jedoch augenscheinlich allesamt negativ, 

wogegen im Zytoplasma stets eine Fluoreszenz festgestellt werden kann. Zudem reagiert die 

Membran überwiegend positiv (vgl. Abb. IV-117). In der Tabelle IV.26 sind die Ergebnisse der 

WGAs-Bindung zusammengefasst. 
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Tabelle IV.26: Einzelauswertung Lektine: WGAs-FITC  

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 10 % 20 % 40 % 30 % 90 % 

 - Zytoplasma 50 % 50 % 0 % 0 % 50 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 0 % 60 % 40 % 100 % 

Lymphozyten      

 - Membran 0 % 10 % 60 % 30 % 100 % 

 - Zytoplasma 80 % 20 % 0 % 0 % 20 % 

 - Granula 50 % 0 % 10 % 40 % 50 % 

Monozyten      

 - Membran 0 % 57,1 % 42,9 % 0 % 100 % 

 - Zytoplasma 0 % 0 % 28,6 % 71,4 % 100 % 

 - Granula - - - - - 

Neutrophile Granulozyten      

 - Membran 20 % 50 % 30 % 0 % 80 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 0 % 100 % 100 % 

Eosinophile Granulozyten      

 - Membran 30 % 0 % 60 % 10 % 70 % 

 - Zytoplasma 0 % 40 % 30 % 30 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-114: Lymphozyt und 
Thrombozyten, WGAs-FITC (Schaf, w, 6 
Jahre) 

Die Membran (4) des Lymphozyten (1) 
reagiert stark positiv, das Zytoplasma (3) ist 
negativ. Die Thrombozyten (5) weisen eine 
Fluoreszenz im Granulomer auf. Bei den 
Erythrozyten (6) reagieren sowohl das 
Zytoplasma (7) als auch die Membran (8) 
positiv. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-115: Monozyt, WGAs-FITC 
(Schaf, w, 5 Jahre) 

Bei dem Monozyten (1) zeigt sich eine starke, 
diffuse, körnige Fluoreszenz im Zytoplasma 
(3), die im Bereich der Kerninvagination 
besonders ausgeprägt ist. Eine Bindung von 
WGAs an die Zellmembran (4) kann 
ebenfalls beobachtet werden. Die Membran 
der Erythrozyten (5) reagiert deutlich positiv. 
2 = Zellkern, SB = 10 µm 

 

 

 

 

Abbildung IV-116: Neutrophiler Granulozyt, 
WGAs-FITC (Schaf, w, 1,5 Jahre) 

Die Granula (3) des neutrophilen 
Granulozyten (1) reagieren stark positiv, das 
Zytoplasma scheint negativ zu sein. Zudem 
lässt sich an der Membran (4) eine deutlich 
positive Reaktion erkennen. Die Erythrozyten 
(5) reagieren negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-117: Eosinophiler Granulozyt, 
WGAs-FITC (Schaf, w, 2 Jahre) 

Der eosinophile Granulozyt (1) zeigt eine 
diffuse Fluoreszenz im Zytoplasma (3), eine 
Reaktion der Granula lässt sich nicht 
erkennen. Weiterhin ist eine Bindung von 
WGAs an die Membran (4) zu sehen. 
2 = Zellkern, 5 = Thrombozyten,                    
6 = Erythrozyt, SB = 10 µm 
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4.2.4 N-Acetyl-Galaktosamin-spezifische Lektine 

4.2.4.1 Bindung von Griffonia simplicifolia I Agglutinin (GSL-I-FITC) 

Bei dem Großteil der Ausstriche kann eine Bindung von GSL-I weder an die Membran noch an 

das Zytoplasma der Erythrozyten festgestellt werden (vgl. Abb. IV-119, IV-120, IV-121). Eine 

schwach positive Reaktion der Erythrozytenmembran lässt sich jedoch selten beobachten (vgl. 

Abb. IV-118). Die Thrombozyten hingegen zeigen stets eine stark positive Reaktion im 

Granulomer, die Membran und das Hyalomer sind stets negativ (vgl. Abb. IV-118, IV-119, IV-

121). Die Membran der Lymphozyten reagiert zu 100 % stark positiv und das Zytoplasma zeigt 

stets eine Fluoreszenz. Eine Reaktion der zytoplasmatischen Granula kann jedoch nicht 

beobachtet werden (vgl. Abb. IV-118). Auch die Monozyten lassen meist eine deutliche Bindung 

von GSL-I an die Membran erkennen. Im Zytoplasma ist stets eine schwache bis deutliche, 

diffuse oder körnige Fluoreszenz zu sehen, eine Reaktion der Granula kann jedoch nicht 

beobachtet werden (vgl. Abb. IV-119). Bei den neutrophilen Granulozyten ist immer eine starke 

Fluoreszenz der Granula festzustellen, an der Membran und im Zytoplasma ist keine Reaktion zu 

erkennen (vgl. Abb. IV-120). Die eosinophilen Granulozyten zeigen eine starke Fluoreszenz der 

Membran und eine meist deutlich positive Reaktion des Zytoplasmas. An die Granula wird 

offenbar kein GSL-I gebunden (vgl. Abb. IV-121). In der Tabelle IV.27 sind die Ergebnisse der 

GSL-I-Bindung zusammengefasst. 
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Tabelle IV.27: Einzelauswertung Lektine: GSL-I-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 88,9 % 11,1 % 0 % 0 % 11,1 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 0 % 0 % 100 % 100 % 

Lymphozyten      

 - Membran 0 % 0 % 0 % 100 % 100 % 

 - Zytoplasma 0 % 0 % 77,8 % 22,2 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Monozyten      

 - Membran 12,5 % 0 % 62,5 % 25 % 87,5 % 

 - Zytoplasma 0 % 37,5 % 62,5 % 0 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Neutrophile Granulozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 0 % 100 % 100 % 

Eosinophile Granulozyten      

 - Membran 0 % 0 % 0 % 100 % 100 % 

 - Zytoplasma 0 % 37,5 % 62,5 % 0 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-118: Lymphozyt und 
Thrombozyt, GSL-I-FITC (Schaf, w, 6 Jahre) 

Bei dem Lymphozyten (1) ist eine 
Fluoreszenz im Zytoplasma (3) und eine 
starke Reaktion der Membran (4) zu 
erkennen. Der Thrombozyt (5) zeigt eine 
starke Anfärbung im Granulomer. Bei den 
Erythrozyten (6) ist eine nur schwache 
Bindung von GSL-I an die Membran zu 
sehen. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-119: Monozyt und 
Thrombozyten , GSL-I-FITC (Schaf, w, 6 
Jahre) 

Der Monozyt (1) zeigt eine diffuse, körnige 
Reaktion im Zytoplasma (3) und eine 
Anfärbung der Membran (4). Die  
Thrombozyten (5) lassen positiv reagierende 
Granula erkennen. Die Erythrozyten (6) 
reagieren negativ. 
2 = Zellkern, SB = 10 µm 

 

 

 

 

Abbildung IV-120: Neutrophiler Granulozyt, 
GSL-I-FITC (Schaf, w, 2 Jahre) 

Der neutrophile Granulozyt (1) zeigt eine 
starke Bindung von GSL-I an die 
zytoplasmatischen Granula (3). Membran und 
Zytoplasma scheinen sich nicht anzufärben. 
Die Erythrozyten (4) reagieren negativ.  
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-121: Eosinophiler Granulozyt 
und Thrombozyten, GSL-I-FITC (Schaf, w, 2 
Jahre) 

Das Zytoplasma (3) und die Zellmembran (4) 
des eosinophilen Granulozyten (1) zeigen 
eine deutlich bzw. stark positive Reaktion. 
Die Thrombozyten (5) lassen eine Anfärbung 
der Granula erkennen. 
2 = Zellkern, 6 = Erythrozyt, SB = 10 µm 
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4.2.4.2 Bindung von Dolichos biflorus Agglutinin (DBA-FITC) 

Bei keinem der Blutausstriche kann eine Bindung von DBA an die ovinen Blutzellen festgestellt 

werden. 

 

4.2.4.3 Bindung von Sophora japonica Agglutinin (SJA-FITC) 

In keinem der Präparate kann eine Bindung von SJA an Erythrozyten, Thrombozyten, 

Lymphozyten, Monozyten (vgl. Abb. IV-123) oder neutrophile Granulozyten festgestellt werden. 

Bei 40 % der Ausstriche zeigen die Granula der eosinophilen Granulozyten eine leichte bis 

deutlich positive Reaktion (vgl. Abb. IV-122).  

 

 

 

Abbildung IV-122: Eosinophiler Granulozyt, 
SJA-FITC (Schaf, w, 2 Jahre) 

Die Granula (3) des eosinophilen 
Granulozyten (1) reagieren positiv. Die 
Erythrozyten (4) zeigen keine Reaktion. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-123: Monozyt, SJA-FITC 
(Schaf, w, 5 Jahre) 

Weder das Zytoplasma (3) noch die Membran 
des Monozyten (1) reagieren positiv. Die 
Erythrozyten (4) lassen sich ebenfalls nicht 
anfärben. 
2 = Zellkern, SB = 10 µm 

 

 

4.2.5 Galaktose- und N-Acetyl-Galaktosamin- spezifische Lektine 

4.2.5.1 Bindung von Soybean Agglutinin (SBA-FITC) 

Bei keinem der Blutausstriche ist eine Bindung von SBA an die ovinen Blutzellen zu beobachten. 

 

4.2.5.2 Bindung von Sambucus nigra Agglutinin (SNA-Biotin) 

Bei keinem der Ausstriche kann eine Bindung von SNA an die ovinen Blutzellen beobachtet 

werden. 
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4.2.6 L-Fukose-spezifische Lektine 

4.2.6.1 Bindung von Ulex europaeus I Agglutinin (UEA-I-FITC) 

Auch bei UEA-I kann bei keinem Blutausstrich eine Bindung an Erythrozyten, Thrombozyten, 

Lymphozyten, Monozyten oder neutrophile Granulozyten nachgewiesen werden. Alle Präparate 

zeigen jedoch eine Reaktion der eosinophilen Granula (vgl. Abb. IV-124), die von leicht (70 %) 

bis deutlich (30 %) reicht.  

 

Abbildung IV-124: Eosinophiler Granulozyt 
und Lymphozyt, UEA-I-FITC (Schaf, w, 1 
Jahr) 

Die Granula (3) des eosinophilen 
Granulozyten (1) reagieren deutlich positiv. 
Der Lymphozyt (4) und die Erythrozyten (5) 
zeigen keine Reaktion. 
2 = Zellkern, SB = 10 µm 

 

 

4.2.7 Für komplexe Kohlenhydratstrukturen spezifische Lektine 

4.2.7.1 Bindung von Phaseolus vulgaris E Agglutinin (PHA-E-FITC) 

Eine Bindung von PHA-E kann nur an die Granula der neutrophilen Granulozyten (vgl. Abb. IV-

125) festgestellt werden. Die Erythrozyten, Thrombozyten, Lymphozyten, Monozyten und 

eosinophilen Granulozyten (vgl. Abb. IV-126) lassen sich nicht anfärben. Alle neutrophilen 

Granula reagieren positiv, wobei die Intensität von schwach (18,2 %) bis deutlich (81,8 %) positiv 

reicht.  
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Abbildung IV-125: Neutrophiler Granulozyt, 
PHA-E-FITC (Schaf, m, 7 Jahre) 

Die Granula (3) des neutrophilen 
Granulozyten (1) zeigen eine deutlich 
positive Reaktion. Die Erythrozyten (4) 
reagieren negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-126: Eosinophiler Granulozyt, 
PHA-E-FITC (Schaf, w, 6 Jahre) 

Der eosinophile Granulozyt (1) reagiert 
negativ. Die Granula im Zytoplasma (3) sind 
erkennbar, zeigen aber keine Fluoreszenz. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 

 

4.2.7.2 Bindung von Phaseolus vulgaris L Agglutinin (PHA-L-FITC) 

In keinem der Ausstriche kann eine Bindung von PHA-L an die Membran oder das Zytoplasma 

der Erythrozyten festgestellt werden (vgl. Abb. IV-127, IV-128). Die Thrombozyten hingegen 

zeigen meist eine deutlich positive Reaktion im Granulomer, die Membran und das Hyalomer sind 

stets negativ. Bei allen Lymphozyten (vgl. Abb. IV-127) und Monozyten ist eine Anfärbung der 

Zellmembran zu erkennen, die Intensität ist jedoch meist nur schwach. Sowohl bei den 

Lymphozyten als auch bei den Monozyten lässt sich bei einigen Zellen eine positive Reaktion des 

Zytoplasmas beobachten, wobei sich die zytoplasmatischen Granula offenbar nicht anfärben. Die 

neutrophilen Granulozyten weisen stets eine schwach bis deutlich positive Reaktion der Granula 

auf, aber auch die Membran lässt sich bei manchen Zellen schwach anfärben. Das Zytoplasma 

hingegen ist stets negativ. Bei den eosinophilen Granulozyten verhält sich das Bindungsverhalten 

von PHA-L genau umgekehrt. Die eosinophilen Granula sind stets negativ. Dafür weisen sowohl 

Membran als auch Zytoplasma in allen Fällen eine schwache bis deutliche Reaktion auf (vgl. Abb. 

IV-128). In der Tabelle IV.28 sind die Ergebnisse der PHA-L-Bindung zusammengefasst. 

 

 

 



V. Ergebnisse                      178 

Tabelle IV.28: Einzelauswertung Lektine: PHA-L-FITC 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

Thrombozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 0 % 25 % 75 % 0 % 100 % 

Lymphozyten      

 - Membran 0 % 75 % 25 % 0 % 100 % 

 - Zytoplasma 75 % 25 % 0 % 0 % 25 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Monozyten      

 - Membran 0 % 100 % 0 % 0 % 100 % 

 - Zytoplasma 50 % 25 % 25 % 0 % 50 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Neutrophile Granulozyten      

 - Membran 75 % 25 % 0 % 0 % 25 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 75 % 25 % 0 % 100 % 

Eosinophile Granulozyten      

 - Membran 0 % 50 % 50 % 0 % 100 % 

 - Zytoplasma 0 % 75 % 25 % 0 % 100 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-127: Lymphozyt, PHA-L-
FITC (Schaf, m, 5 Jahre) 

Die Membran (4) des Lymphozyten (1) 
reagiert positiv, das Zytoplasma (3) hingegen 
negativ. Die Erythrozyten (5) zeigen keine 
Reaktion. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-128: Eosinophiler Granulozyt, 
PHA-L-FITC (Schaf, m, 6 Jahre) 

Bei dem eosinophilen Granulozyten (1) 
reagieren Zytoplasma (3) und Membran (4) 
positiv. Die Granula färben sich nicht an. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

4.2.7.3 Bindung von Maackia amurensis I Agglutinin (MAA-I-Biotin) 

In keinem der untersuchten Präparate kann eine Bindung von MAA-I an die Membran oder das 

Zytoplasma der Erythrozyten beobachtet werden (vgl. Abb. IV-129, IV-130, IV-131, IV-132). Die 

Thrombozyten hingegen zeigen stets eine positive Reaktion, die ausschließlich die Membran 

betrifft. Hyalomer und Granulomer reagieren negativ (vgl. Abb. IV-132). Alle Lymphozyten und 

Monozyten zeigen eine schwache bis deutliche Fluoreszenz der Membran (vgl. Abb. IV-129, IV-

130), das Zytoplasma lässt sich nur bei einem Teil der Monozyten anfärben (vgl. Abb. IV-130). 

Eine Fluoreszenz der zytoplasmatischen Granula ist in keinem der untersuchten Ausstriche bei 

den Lymphozyten und Monozyten zu beobachten. Bei den neutrophilen Granulozyten färben sich 

die Granula stets deutlich bis stark an (vgl. Abb. IV-131). Bei manchen Zellen ist auch eine 

Bindung des Lektins an die Membran zu sehen. Die eosinophilen Granulozyten hingegen zeigen 

eine positive Reaktion des Zytoplasmas und der Membran, die Granula scheinen stets negativ zu 

sein (vgl. Abb. IV-132). In der Tabelle IV.29 sind die Ergebnisse der MAA-I-Bindung 

zusammengefasst. 
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Tabelle IV.29: Einzelauswertung Lektine: MAA-I-Biotin 

 

 
Stärke der Reaktion 

Anteil der 
positiven 
Präparate 

 0 + ++ +++  

Erythrozyten      

 - Membran 100 % 0 % 0 % 0 % 0 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

Thrombozyten      

 - Membran 0 % 40 % 60 % 0 % 100 % 

 - Hyalomer 100 % 0 % 0 % 0 % 0 % 

 - Granulomer 100 % 0 % 0 % 0 % 0 % 

Lymphozyten      

 - Membran 0 % 20 % 80 % 0 % 100 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Monozyten      

 - Membran 0 % 62,5 % 37,5 % 0 % 100 % 

 - Zytoplasma 75 % 25 % 0 % 0 % 25 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Neutrophile Granulozyten      

 - Membran 80 % 20 % 0 % 0 % 20 % 

 - Zytoplasma 100 % 0 % 0 % 0 % 0 % 

 - Granula 0 % 0 % 40 % 60 % 100 % 

Eosinophile Granulozyten      

 - Membran 10 % 60 % 30 % 0 % 90 % 

 - Zytoplasma 70 % 30 % 0 % 0 % 30 % 

 - Granula 100 % 0 % 0 % 0 % 0 % 

Basophile Granulozyten      

 - Membran - - - - - 

 - Zytoplasma - - - - - 

 - Granula - - - - - 
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Abbildung IV-129: Lymphozyt, MAA-I-
Biotin (Schaf, w, 5 Jahre) 

Bei dem Lymphozyten (1) ist eine 
Fluoreszenz der Zellmembran (3) zu 
erkennen. Die Erythrozyten (4) reagieren 
negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-130: Monozyt, MAA-I-Biotin 
(Schaf, w, 2 Jahre) 

Der Monozyt (1) zeigt eine positive Reaktion 
der Zellmembran (4). Das Zytoplasma (3) 
reagiert negativ. 
2 = Zellkern, 5 = Erythrozyt, SB = 10 µm 

 

 

 

 

Abbildung IV-131: Neutrophiler Granulozyt, 
MAA-I-Biotin (Schaf, w, 1,5 Jahre) 

Der neutrophile Granulozyt (1) reagiert 
deutlich positiv, wobei ein granuläres Muster 
im Zytoplasma (3) erkennbar ist. 
2 = Zellkern, 4 = Erythrozyt, SB = 10 µm 

 
Abbildung IV-132: Eosinophiler Granulozyt 
und Thrombozyten, MAA-I-Biotin (Schaf, w, 
2 Jahre) 

Das Zytoplasma (3) und die Zellmembran (4) 
des eosinophilen Granulozyten (1) zeigen 
eine Bindung von MAA-I. Bei den 
Thrombozyten (5) ist eine Fluoreszenz der 
Zellmembran zu sehen. 
2 = Zellkern, 6 = Erythrozyt , SB = 10 µm 
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4.2.8 Ergebnisse der Zuckerhemmung 

Bei den FITC-markierten Pflanzen-Lektinen ConA, PSA, LCA, WGA und WGAs wurde die 

Bindungsfähigkeit nach Vorinkubation mit dem jeweiligen Hemmzucker erneut untersucht.  

Bei allen Ausstrichen unterbleibt nach der Vorbehandlung eine Bindung der Lektine an die 

verschiedenen Strukturen der Zellen. Die beschriebenen Lektinbindungen können daher als 

spezifisch angesehen werden.  

 

4.2.9 Ergebnisse der Vorbehandlung mit Neuraminidase 

Bei den FITC-markierten Pflanzen-Lektinen wurden die negativen Lektine PNA, RCA, DBA und 

SBA sowie die nur schwach positiven Lektine SJA und UEA-I auf die Neuraminidase-Spezifität 

hin untersucht. Es sollte herausgefunden werden, ob die Bindungsstellen dieser Lektine durch 

Sialinsäuren maskiert werden und nach vorheriger Behandlung des Blutausstriches mit 

Neuraminidase zugänglich werden.  

Bei einem Vergleich der vorbehandelten Präparate mit den nach dem normalen Protokoll 

gefärbten Blutausstrichen kann vor allem bei PNA (vgl. Abb. IV-133, IV-134, IV-135), aber auch 

bei RCA (vgl. Abb. IV-136) sowie SJA eine Veränderung der Bindungseigenschaften beobachtet 

werden. PNA zeigt nach Vorbehandlung mit Neuraminidase eine Bindung an die Membran der 

Erythrozyten (vgl. Abb. IV-134, IV-135), der Thrombozyten (vgl. Abb. IV-133), der 

Lymphozyten (vgl. Abb. IV-133), der Monozyten (vgl. Abb. IV-135), der neutrophilen 

Granulozyten (vgl. Abb. IV-134) und der eosinophilen Granulozyten. Die Lymphozyten und 

Monozyten lassen zum Teil auch eine Fluoreszenz im Zytoplasma erkennen (vgl. Abb. IV-133, 

IV-135). Die neutrophilen Granula reagieren bei allen Zellen nun positiv (vgl. Abb. IV-134). Bei 

den Erythrozyten und den Lymphozyten ist jedoch auffallend, dass sich nicht alle Zellen anfärben 

lassen. RCA lässt nach Abspaltung der endständigen Sialinsäuren eine positive Reaktion der 

Membran der Lymphozyten, der Monozyten, der neutrophilen Granulozyten und der eosinophilen 

Granulozyten erkennen. Bei den neutrophilen Granulozyten kommt es nun außerdem zu einer 

Anfärbung der Granula (vgl. Abb. IV-136). Bei SJA zeigt sich nach der Neuraminidase-

Vorbehandlung eine sehr schwache Fluoreszenz der Lymphozytenmembran. Außerdem ist bei 

den neutrophilen Granulozyten nun eine Reaktion der Granula zu sehen. Die eosinophilen 

Granulozyten lassen keine verstärkte Bindung feststellen. Monozyten konnten nicht identifiziert 

werden. 

DBA, SBA und UEA-I weisen auch nach der Vorbehandlung mit Neuraminidase keine 

Veränderungen der Bindungseigenschaften auf.  
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Abbildung IV-133: Lymphozyt und 
Thrombozyten, PNA-FITC nach 
Neuraminidase-Vorbehandlung (Schaf, w, 1 
Jahr) 

Der Lymphozyt (1) zeigt eine deutliche 
Bindung des Lektins an die Membran (4). 
Das Zytoplasma (3) scheint sich ebenfalls 
anzufärben. Bei den Thrombozyten (5) ist 
eine positive Reaktion der Membran zu 
sehen. Die Erythrozyten (6) reagieren 
negativ. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-134: Neutrophiler Granulozyt, 
PNA-FITC nach Neuraminidase-
Vorbehandlung (Schaf, w, 1 Jahr) 

Bei dem neutrophilen Granulozyten (1) ist 
sowohl eine Reaktion der Granula (3) als 
auch der Membran (4) zu erkennen. Die 
Erythrozyten (5) zeigen nur eine sehr 
schwache Fluoreszenz der Membran. 
2 = Zellkern, SB = 10 µm 

 

 

 

 

Abbildung IV-135: Monozyt, PNA-FITC 
nach Neuraminidase-Vorbehandlung (Schaf, 
w, 1 Jahr) 

Das Zytoplasma (3) und die Membran (4) des 
Monozyten (1) lassen sich nach der 
Neuraminidase-Vorbehandlung mit PNA 
anfärben. Die Membran der Erythrozyten (5) 
reagiert bei einzelnen Zellen positiv. 
2 = Zellkern, SB = 10 µm 

 
Abbildung IV-136: Neutrophiler Granulozyt, 
RCA-FITC nach Neuraminidase-
Vorbehandlung (Schaf, w, 3,5 Jahre) 

Der neutrophile Granulozyt (1) reagiert 
positiv und lässt ein granuläres Muster im 
Zytoplasma (3) erkennen. Die Erythrozyten 
(4) lassen sich nicht anfärben. 
2 = Zellkern, SB = 10 µm 
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V Diskussion 

Ziel dieser Arbeit war es, die zytologischen und histochemischen Eigenschaften der Blutzellen 

des Schafes mit modernen Techniken näher zu untersuchen. Die Ultrastruktur der Blutzellen 

wurde mit Hilfe von Transmissionselektronenmikroskopie im Detail analysiert. Weiterhin wurden 

durch substrathistochemische und enzymhistochemische Verfahren die Zellen genauer 

charakterisiert. Zytoskelettale Elemente der jeweiligen Zellen wurden mittels Phalloidin im Falle 

der Aktinfilamente und mit Antikörpern im Falle der Intermediärfilamente und der Mikrotubuli 

nachgewiesen. Außerdem diente die Lektinhistochemie mit dem Einsatz von Lektinen zur 

Charakterisierung der Zuckerstrukturen in und auf den ovinen Blutzellen. 

 

1. Blutproben 

Für die Untersuchungen dieser Arbeit wurde das Blut von insgesamt vierzig Schafen verwendet. 

Zur Auswertung der Blutergebnisse wurde zum einen zwischen Tieren verschiedenen Alters und 

zum anderen zwischen männlichen und weiblichen Tieren unterschieden. Im Bezug auf das Alter 

wurden drei Gruppen erstellt: Tiere der 1. Gruppe waren jünger als 2 Jahre, Tiere der 2. Gruppe 2 

- 4 und Tiere der 3. Gruppe 5 - 7 Jahre alt. 

Bei der Auswertung der Ergebnisse der Blutuntersuchung war auffallend, dass die Schafe unter 2 

Jahren eine höhere Leukozytenzahl aufweisen als die älteren Tiere. Die Beobachtung, dass 

jüngere Tiere im Allgemeinen höhere Leukozytenwerte haben, deckt sich mit jener mehrerer 

Autoren (Jain, 1993); (Egbe-Nwiyi et al., 2000); (Taylor, 2000). Die erhöhten Werte dienen laut  

Egbe-Nwiyi et al. (2000) der Verstärkung der Immunabwehr bei jungen Tieren, können aber auch 

durch eine erhöhte Stressanfälligkeit beim Handling hervorgerufen werden (Egbe-Nwiyi et al., 

2000). Zu dem Ergebnis, dass männliche Schafe im Allgemeinen höhere Werte des weißen und 

des roten Blutbildes als weibliche Tiere aufweisen, kamen auch Egbe-Nwiyi et al. (Egbe-Nwiyi et 

al., 2000). Das für Schafe charakteristische, lymphozytäre Blutbild (Lösch et al., 2000) konnte vor 

allem bei den Tieren der 1. und 2. Altersgruppe beobachtet werden. Hier zeigte sich, dass über 50 

% der Gesamtleukozyten Lymphozyten darstellen. Die Zahl der Lymphozyten überstieg die der 

neutrophilen Granulozyten, was ein neutrophiles Granulozyten-Lymphozyten-Verhältnis von 

weniger als 1 ergab. Diese Beobachtung stimmt mit den Befunden von Jain (Jain, 1993) überein. 

Bei einem Vergleich des Anteils der neutrophilen Granulozyten und der Lymphozyten an den 

Gesamtleukozyten der drei Altersgruppen war festzustellen, dass mit steigendem Alter die 

neutrophilen Granulozyten zunehmen und die Lymphozyten abnehmen. Auch Jain (1993) sowie 

Byers und Kramer (2010) sind der Ansicht, dass die Anzahl der Lymphozyten mit zunehmenden 
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Alter langsam absinkt (Jain, 1993); (Byers und Kramer, 2010). Jain (1993) gibt jedoch an, dass 

die Zahl der neutrophilen Granulozyten im Wesentlichen unverändert bleibt. Das Verhältnis von 

neutrophilen Granulozyten zu Lymphozyten nimmt nach Jain (1993) mit steigendem Alter zu 

(Jain, 1993). Die Anzahl der Monozyten wurde bei den untersuchten Tieren nicht durch das Alter 

beeinflusst, was mit verschiedenen Angaben in der Literatur übereinstimmt (Jain, 1993); (Egbe-

Nwiyi et al., 2000). Bei den eosinophilen Granulozyten war ein Anstieg ihrer relativen Zahl mit 

fortschreitendem Alter der Tiere zu beobachten. Der Befund, dass die Zahl der eosinophilen 

Granulozyten bei adulten Schafen höher ist als bei jungen Tieren, steht im Einklang mit den 

Beobachtungen von Greenwood (Greenwood, 1977) und ist laut Jain (1993) durch eine erhöhte 

immunologische Abwehrleistung im Zuge wiederholter Exposition gegenüber Parasiten zu 

erklären (Jain, 1993). 

 

2. Lichtmikroskopie 

2.1 Übersichtsfärbungen 

Für eine exakte Differenzierung der einzelnen Zelltypen wurden die Blutausstriche der Diff-

Quick-, der Giemsa-, der May-Grünwald-, der Pappenheim-, der Sirius-Red- und der 

Toluidinblau-Färbung unterzogen und unter dem Lichtmikroskop analysiert. Der Großteil der 

Färbelösungen enthält sowohl einen sauren als auch einen basischen Farbstoff. Eosin dient meist 

als saure Komponente, wohingegen Methylenblau, Azur A oder B als basische Bestandteile 

häufig Anwendung finden. Bei der Sirius-Red-Färbung kommt nur ein saurer Farbstoff (Sirius 

Red), bei der Toluidinblau-Färbung nur eine basische Komponente (Toluidinblau O) zum Einsatz. 

Saure Farbstoffe bilden in wässriger Umgebung negativ geladene Ionen, die wiederum zu einer 

rötlichen Färbung basischer (positiv geladener) Zellbestandteile führen. Die gefärbten Strukturen 

werden als azidophil bezeichnet. Umgekehrt verhält es sich bei den basischen Farbstoffen. Diese 

bilden Ionen mit positiver Ladung, wodurch es zu einer bläulichen Färbung von sauren (negativ 

geladenen) Zellteilen kommt. Die gefärbten Strukturen werden als basophil bezeichnet (Romeis, 

2010).  

Die Erythrozyten waren in jedem der untersuchten Ausstriche zahlreich vorhanden. Sie sind 

gemäß Literaturangaben die häufigsten Zellen im Blut der Schafe (Kramer, 2000). Unter dem 

Lichtmikroskop stellten sie sich als kleine, rundliche, kernlose Zellen mit einem homogenen 

Zellinhalt und einer glatten Zellmembran dar. Somit entsprechen sie den Angaben für die roten 

Blutkörperchen der Haussäuger in der Literatur (Lösch et al., 2000); (Liebich, 2004). Die Schafe 

weisen gemäß Hawkey und Dennet (1990) unter den Säugetieren mitunter die kleinsten 



V. Diskussion                      186 

Erythrozyten auf (Hawkey und Dennet, 1990). Die Zellgröße variierte bei den untersuchten Tieren 

und lag zwischen 3,8 und 6,1 µm. Diese ungleichmäßige Größe einer bestimmten Zellart im Blut 

wird als Anisozytose bezeichnet (Hees und Tschudi, 1990); (Reagan et al., 2008) und ist auch laut 

Greenwood (1977) beim Schaf regelmäßig zu beobachten (Greenwood, 1977). Das Fehlen eines 

Kernes bei den roten Blutkörperchen wird auch in der Literatur beschrieben und ist 

charakteristisch für die Erythrozyten der Säuger (Hawkey und Dennet, 1990). Bei dem Großteil 

der ovinen Erythrozyten konnte in den Ausstrichen eine zentrale Aufhellung des Zytoplasmas 

beobachtet werden. An dieser Stelle befand sich laut Hees und Tschudi (1990) der zuvor 

ausgestoßene Kern (Hees und Tschudi, 1990), weshalb sich die rote Blutzelle gemäß Lösch et al. 

(2000) sowie Liebich (2004) im Allgemeinen als eine bikonkave Scheibe darstellt (Lösch et al., 

2000); (Liebich, 2004). Die Aufhellung im Zellzentrum war aber bei den untersuchten Schafen 

nicht immer zu sehen. Diese Beobachtung lässt sich dadurch erklären, dass beim Schaf auch 

unikonkave Erythrozyten vorkommen können (Jain, 1993). Bei manchen Blutausstrichen konnte 

ich eine Variation der sonst runden Zellform beobachten, die als Poikilozytose bezeichnet wird 

(Reagan et al., 2008). Äußerst selten zeigten die Erythrozyten eine Stechapfelform, die durch 

Ausbildung kleiner, gleichmäßiger, stacheliger Ausläufer der Zelloberfläche bedingt ist. Die roten 

Blutkörperchen werden dann als Echinozyten bezeichnet und stellen in den meisten Fällen 

Artefakte dar (Jain, 1993); (Reagan et al., 2008). Diese Stechapfelform entsteht laut 

Literaturangaben entweder durch zu langsames Trocknen dicker Ausstriche (Kraft et al., 2005) 

oder wenn die Erythrozyten in hypertonen Lösungen durch Austritt von Flüssigkeit schrumpfen 

(Hees und Tschudi, 1990). Nur äußerst selten konnte ich in den Ausstrichen eine so genannte 

Geldrollenbildung der Erythrozyten beobachten, die gemäß Reagan et al. (Reagan et al., 2008) 

durch eine aufeinander gestapelte Anordnung der Zellen gekennzeichnet ist. Diese Beobachtung 

steht im Einklang mit dem Befund von Kramer (2000), wonach diese Formation der roten 

Blutkörperchen beim Schaf nur in geringem Ausmaß vorkommt (Kramer, 2000). In keinem der 

ovinen Erythrozyten waren eine basophile Tüpfelung oder Howell-Jolly-Körperchen zu sehen. Da 

Retikulozyten im Blut adulter Tiere laut Jain (1993) gewöhnlich nicht vorkommen (Jain, 1993), 

konnten diese Vorstufen der Erythrozyten in den Blutausstrichen der Schafe nicht gefunden 

werden.  

Die Thrombozyten kamen ebenfalls in jedem Blutausstrich zahlreich vor und lagen entweder in 

Gruppen zusammen gelagert vor oder waren einzeln verstreut. Manchmal waren auch ein oder 

zwei Thrombozyten mit einem neutrophilen Granulozyten assoziiert. Diese Formation wird der 

Literatur nach als „platelet satellitism“ bezeichnet (Hees und Tschudi, 1990); (Jain, 1993). Die 

Thrombozyten der Schafe traten unter dem Lichtmikroskop als kleine, kernlose Zellen mit einer 

unregelmäßigen Form in Erscheinung. Aufgrund dieser Morphologie werden sie von manchen 

Autoren auch oft als „Blutplättchen“ bezeichnet (Hawkey und Dennet, 1990); (Liebich, 2004). 
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Die Schafe weisen laut Hees und Tschudi (1990) unter den Haussäugetieren mitunter die kleinsten 

Thrombozyten auf (Hees und Tschudi, 1990). Der Durchmesser lag bei den untersuchten Tieren 

zwischen 1,4 und 3 µm. Bei den meisten Färbungen stellten sich die Thrombozyten homogen dar. 

Bei der Giemsa- und der Pappenheim-Färbung hingegen konnte deutlich eine dunkle, granuläre 

Zentralzone von einer hellen, durchsichtigen Randzone differenziert werden. Eine Unterscheidung 

des zentral gelegenen Granulomers und des peripher gelegenen Hyalomers wird auch mehrfach in 

der Literatur beschrieben und trifft auch auf die Thrombozyten der anderen Haussäuger zu 

(Banks, 1981); (Hees und Tschudi, 1990); (Liebich, 2004). Bei einzelnen Zellen waren an der 

Zelloberfläche fadenförmige Projektionen zu sehen, die laut Jain (1993) und Reagan et al. (2008) 

im Rahmen einer Aktivierung auftreten (Jain, 1993); (Reagan et al., 2008). 

Die Lymphozyten konnten in jedem der angefertigten Ausstriche in großer Zahl gefunden werden. 

Dies liegt daran, dass das Schaf gemäß Literaturangaben ein lymphozytäres Blutbild aufweist, bei 

dem in der Regel über 50 % der Leukozyten Lymphozyten darstellen (Lösch et al., 2000). Die 

Lymphozyten der untersuchten Schafe wiesen unter dem Lichtmikroskop eine runde bis ovale 

Gestalt auf und besaßen eine glatte Oberfläche. Yamada und Sonoda (Yamada und Sonoda, 

1972b) berichten über eine gleiche äußere Form der ovinen Lymphozyten. Der Zellkern erschien 

in den Blutausstrichen dunkel und kompakt und ließ häufig ein fleckenförmiges Muster erkennen, 

was laut Yamada und Sonoda (1972) auf eine hohe Chromatinkondensation zurückzuführen ist 

(Yamada und Sonoda, 1972b). In den von mir untersuchten Ausstrichen lag der Kern entweder 

zentral oder exzentrisch in der Zelle. Norris und Cham-Berlin (1929) hingegen beschreiben eine 

stets exzentrische Lage des Zellkernes bei den Lymphozyten der Schafe (Norris und Cham-Berlin, 

1929). Gemäß den Angaben von Yamada und Sonoda (Yamada und Sonoda, 1972b) hatte der 

Zellkern in der Regel eine runde bis ovale Form und zeichnete sich bei manchen Zellen durch eine 

Kerninvagination aus. Weiterhin war auffallend, dass bei den meisten Lymphozyten der große 

Kern die Zelle bis auf einen schmalen Zytoplasmasaum fast vollständig ausfüllt. Diese 

Beobachtung stimmt mit den Angaben in der Literatur überein, wonach sich die Lymphozyten im 

Allgemeinen durch ein relativ hohes Kern-Zytoplasma-Verhältnis auszeichnen (Banks, 1981); 

(Lösch et al., 2000). Es fiel jedoch auf, dass bei Zunahme der Lymphozytengröße mehr 

Zytoplasma vorhanden ist und das Kern-Zytoplasma-Verhältnis somit kleiner wird. Diese 

Beobachtung deckt sich mit den Befunden von Steffens (Steffens, 2000). Das Zytoplasma der 

ovinen Lymphozyten erschien unter dem Lichtmikroskop meist klar und homogen. Bei einigen 

Lymphozyten waren jedoch, entgegen ihrer Zuordnung zu den Agranulozyten, kleine, runde bis 

stabförmige Azurgranula im Zytoplasma zu sehen, die auch in früheren Untersuchungen anderer 

Autoren bereits beschrieben wurden (Norris und Cham-Berlin, 1929); (Yamada und Sonoda, 

1972b); (Greenwood, 1977); (Banks, 1981); (Kramer, 2000). Die Granula befanden sich entweder 

im Bereich der Kerninvagination oder waren über das ganze Zytoplasma verteilt. Vor allem bei 
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der Giemsa und der May-Grünwald-Färbung stellten sich diese Granula deutlich dar. Ihre genaue 

Bedeutung bleibt laut Kramer (2000) noch zu klären (Kramer, 2000). Das Zytoplasma stellte sich 

unter dem Lichtmikroskop meist in einem blauen Farbton dar. Diese Basophilie ist laut Angaben 

in der Literatur auf eine hohe Dichte an Ribosomen, Polyribosomen und rauem 

endoplasmatischen Retikulum zurückzuführen (Jain, 1993); (Liebich, 2004) und variiert mit der 

Aktivität der Lymphozyten (Jain, 1993). Einzelne ovine Lymphozyten zeigten ein auffällig 

dunkelblaues Zytoplasma, das sie als reaktive Lymphozyten ausweist. Diese Immunozyten treten 

laut Reagan et al. (2008) sowohl physiologisch in geringer Zahl als auch nach antigener 

Stimulation im Blut der Säuger auf (Reagan et al., 2008). Gelegentlich konnten auch 

Lymphozyten mit einem tief dunkelblauen, von Vakuolen durchsetzten Zytoplasma und einem 

exzentrisch liegenden, runden Kern identifiziert werden. Wahrscheinlich handelt es sich hierbei 

um die von Reagan et al. (2008) beschriebenen plasmazytoiden Lymphozyten, die einer 

Transformation zur Plasmazelle unterliegen (Reagan et al., 2008). Die Größe der untersuchten 

Lymphozyten der Schafe variierte teilweise stark, wobei die Durchschnittsgröße aller gemessenen 

Zellen bei 10,8 µm lag. Die Lymphozyten können, je nach Autor, im Bezug auf ihre Größe in 

zwei bzw. drei verschiedene Gruppen eingeteilt werden. Demnach kann zwischen kleinen (≤ 10 

µm) und großen (>10 µm) (Hees und Tschudi, 1990) oder zwischen kleinen (≤ 10 µm), mittleren 

(10 - 18 µm) und großen (≤ 25 µm) Lymphozyten (Liebich, 2004) unterschieden werden. Wie 

Banks (Banks, 1981) bereits anmerkte, gestaltete sich beim Schaf die Einteilung der Lymphozyten 

anhand ihrer Größe jedoch nicht immer leicht. In den Blutausstrichen konnte ich vor allem kleine 

und mittelgroße Lymphozyten finden, was mit den Beobachtungen von Kramer (Kramer, 2000) 

und Steffens (Steffens, 2000) übereinstimmt. Die großen Lymphozyten befinden sich laut Steffens 

(2000) normalerweise nur in lymphatischen Geweben und sind im Blut nur in sehr geringer Zahl 

vorhanden (Steffens, 2000). Eine Unterteilung in B- und T-Lymphozyten war unter dem 

Lichtmikroskop nicht möglich. Dies deckt sich mit den Angaben in der Literatur, dass erst 

enzymhistochemische (Ristau et al., 1985), lektinhistochemische (Outteridge, 1985); (Djilali und 

Parodi, 1987) oder immunhistochemische Untersuchungen  (Hees und Tschudi, 1990); (Sinowatz, 

2006a) deren Differenzierung erlauben. 

Die Monozyten waren in den Blutausstrichen nicht so häufig zu finden wie die bisher 

beschriebenen Zellen. Sie stellten jedoch, in Übereinstimmung mit den Angaben in der Literatur 

(Jain, 1993); (Steffens, 2000); (Liebich, 2004) generell die größten Zellen im Blut der Schafe dar. 

Ihre Größe reichte bei den untersuchten Tieren von 11,6 bis 17,5 µm. Die äußere Gestalt der 

Monozyten war meist unregelmäßig, teilweise aber auch rundlich bis oval. Der Zellkern zeichnete 

sich durch eine starke Vielgestaltigkeit aus, von der auch andere Autoren berichten (Norris und 

Cham-Berlin, 1929); (Jain, 1993). Häufig erschien er rund, oval, bohnenförmig, hufeisenförmig 

oder gelappt. Eine hufeisenförmige Gestalt oder eine Lappung des Zellkernes oviner Monozyten 
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wird auch von Norris und Cham-Berlin (Norris und Cham-Berlin, 1929) sowie Yamada und 

Sonoda (Yamada und Sonoda, 1972b) beschrieben. Der Kern lag, in Übereinstimmung mit den 

Befunden von Norris und Cham-Berlin (Norris und Cham-Berlin, 1929) meist exzentrisch in der 

Zelle, manchmal war er aber auch zentral lokalisiert. Das Chromatin erschien, im Einklang mit 

den Ergebnissen von Norris und Cham-Berlin (Norris und Cham-Berlin, 1929), im Gegensatz zu 

dem des Lymphozyten heller und ließ, gemäß Bienzle (Bienzle, 2000), ein netzartiges Muster 

erkennen. Durch diese Charakteristika des Kernes war eine Differenzierung der Monozyten von 

den Lymphozyten für mich leicht möglich. Die Verwechslungsgefahr der Lymphozyten mit den 

Monozyten ist auch laut Kramer (2000) beim Schaf weniger gegeben als beim Rind (Kramer, 

2000). Das Zytoplasma der untersuchten Monozyten war reichlich vorhanden. Dies deckt sich mit 

den Angaben in der Literatur, wonach die Monozyten viel Zytoplasma aufweisen (Norris und 

Cham-Berlin, 1929) und sich somit im Allgemeinen ein relativ niedriges Kern-Zytoplasma-

Verhältnis ergibt (Lösch et al., 2000). Weiterhin stellte sich das Zytoplasma, gemäß den 

Beobachtungen von Jain (Jain, 1993), basophil dar und erschien aufgrund einer teils wabigen 

Struktur nicht immer homogen. Bei einigen Monozyten der Schafe waren im Zytoplasma 

unterschiedlich große Vakuolen zu sehen, die sich meist in unmittelbarer Nähe zum Zellkern 

befanden und auch von anderen Autoren beschrieben werden (Jain, 1993); (Kramer, 2000). Bei 

keiner Färbung konnten bei den Monozyten der Schafe azurophile Granula im Zytoplasma 

identifiziert werden. Dies liegt vermutlich daran, dass diese nach Angaben in der Literatur beim 

Schaf nur sehr selten vorkommen (Greenwood, 1977); (Banks, 1981). Norris und Cham-Berlin 

(1929) konnten jedoch einige Granula in ovinen Monozyten mit der Giemsa-Färbung nach 

verlängerter Färbezeit identifizieren (Norris und Cham-Berlin, 1929). 

Die neutrophilen Granulozyten waren in jedem Präparat zahlreich vorhanden. Beim Schaf machen 

sie laut Literaturangaben im Schnitt 30 % der Gesamtleukozyten aus (Greenwood, 1977); 

(Kramer, 2000). Unter dem Lichtmikroskop zeichneten sie sich durch eine runde bis ovale Gestalt 

aus und besaßen eine glatte Oberfläche. Auch Yamada und Sonoda (Yamada und Sonoda, 1970b) 

berichten über eine derartige Erscheinungsform der neutrophilen Granulozyten der Schafe. Die 

Größe der Zellen lag bei den untersuchten Tieren zwischen 10,9 und 14 µm. Bezüglich der 

Morphologie des Zellkernes konnten in den Ausstrichen stabkernige von segmentkernigen 

neutrophilen Granulozyten unterschieden werden. Die stabkernigen waren im Gegensatz zu den 

segmentkernigen Granulozyten in den Präparaten nur vereinzelt zu finden. Dies deckt sich mit den 

Beobachtungen von Kramer (2000), wonach die stabkernigen  Granulozyten im Blut der Schafe 

generell nur selten vorkommen (Kramer, 2000). Die Anzahl der stabkernigen Granulozyten ist 

zum Beispiel bei Entzündungen erhöht, wobei diese Veränderung im Differentialblutbild als 

Linksverschiebung bezeichnet wird (Smith, 2000). Gemäß den Beobachtungen von Jain (Jain, 

1993) war der Kern des stabkernigen Granulozyten unsegmentiert, länglich und meist stark 
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gebogen. Der segmentkernige Granulozyt hingegen besaß einen aus mehreren Abschnitten 

bestehenden Kern. Die Anzahl der Kernsegmente variierte bei den untersuchten Zellen. Laut Hees 

und Tschudi (1990) nimmt die Segmentierung mit dem Alter der Zelle zu, wobei das Auftreten 

von mehr als fünf Segmenten als Hypersegmentierung bezeichnet wird und auf eine Überalterung 

der Zelle schließen lässt (Hees und Tschudi, 1990). Das Chromatin der neutrophilen Granulozyten 

erschien unter den Lichtmikroskop meist verdichtet oder geklumpt. Diese dichten 

Heterochromatinbereiche führen laut Hees und Tschudi (1990) zu einer stark basophilen 

Anfärbung des Zellkernes (Hees und Tschudi, 1990), was ich auch in meinen Proben feststellen 

konnte. Zwischen den einzelnen Kensegmenten waren nicht selten dünne Chromatinfäden zu 

sehen, die auch von Yamada und Sonoda (Yamada und Sonoda, 1970b) beobachtet wurden. Bei 

keinem der neutrophilen Granulozyten weiblicher Tiere konnte ich einen so genannten „drum-

stick“ finden, der laut Angaben in der Literatur den verklumpten Teil des zweiten X-Chromosoms 

darstellt (Hees und Tschudi, 1990); (Smith, 2000). Gemäß den Beobachtungen von Yamada und 

Sonoda (Yamada und Sonoda, 1970b) war das Zytoplasma bei den neutrophilen Granulozyten der 

Schafe reichlich vorhanden und enthielt zahlreiche Granula. Dabei war auffallend, dass sich diese 

sowohl durch saure als auch durch basische Farbstoffe meist nur schwach anfärben. Auch Hees 

und Tschudi (1990) berichten über eine gewisse färberische Neutralität der neutrophilen Granula 

(Hees und Tschudi, 1990). Mit der Diff-Quick-, der Pappenheim- und vor allem mit der May-

Grünwald-Färbung gelang deren Darstellung am deutlichsten. Eine Differenzierung der 

verschiedenen Granula-Typen war jedoch ohne weiterführende Untersuchungen unter dem 

Lichtmikroskop nicht möglich. Enzymhistochemische Untersuchungen können deren 

Unterscheidung erlauben, da die Peroxidase beispielsweise nur in den primären Granula 

vorhanden ist (Smith, 2000). 

Die eosinophilen Granulozyten waren in den Blutausstrichen wesentlich seltener vertreten als die 

neutrophilen Granulozyten. Sie machen laut Kramer (2000) im Schnitt nur 5 % der Leukozyten 

im Blut der Schafe aus (Kramer, 2000). Sie konnten aber in jedem Ausstrich gefunden werden. 

Sie zeigten, gemäß den Angaben von Yamada und Sonoda (Yamada und Sonoda, 1970a), eine 

runde bis ovale Gestalt und besaßen eine glatte Oberfläche. Die Zellen waren bei den 

untersuchten Tieren  12 - 15 µm groß und somit, wie in der Literatur beschrieben (Norris und 

Cham-Berlin, 1929); (Rudolph und Schnabl, 1981), in der Regel größer als die ovinen 

neutrophilen Granulozyten. Der Kern war meist gelappt, was mit den Beobachtungen von Norris 

und Cham-Berlin (Norris und Cham-Berlin, 1929) sowie Yamada und Sonoda (Yamada und 

Sonoda, 1970a) übereinstimmt. Nicht selten wies er die von Hees und Tschudi (Hees und 

Tschudi, 1990) beschriebene, charakteristische Brillen- oder Hantelform auf. Häufig war er aber 

auch segmentiert, was auch Norris und Cham-Berlin (Norris und Cham-Berlin, 1929) beim Schaf 

feststellten. Die Kernabschnitte der eosinophilen Granulozyten wirkten unter dem Lichtmikroskop 
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insgesamt kugeliger als diejenigen der neutrophilen Granulozyten. Das Chromatin erschien auch 

hier verdichtet und teilweise geklumpt. Dies liegt vermutlich daran, dass der Zellkern der 

eosinophilen Granulozyten laut Angaben in der Literatur im Allgemeinen reichlich 

Heterochromatin enthält (Hees und Tschudi, 1990). Das Zytoplasma beinhaltete große, runde bis 

ovale Granula, die auch von Yamada und Sonoda (Yamada und Sonoda, 1970a) beim Schaf 

identifiziert wurden. Gemäß den Beobachtungen von Banks (Banks, 1981) füllten die 

eosinophilen Granula die Zelle fast vollständig aus und maskierten teilweise sogar den Kern. Mit 

sauren Farbstoffen zeigten sie eine orangerote bis rote Anfärbung. Diese charakteristische 

Färbung der eosinophilen Granula der Schafe ist auch bei den anderen Haussäugern zu 

beobachten (Hees und Tschudi, 1990) und ergibt sich laut Jain (1993) aus deren Gehalt an stark 

basischen Proteinen, wie dem MBP (major basic protein) oder dem ECP (eosinophil cationic 

protein) (Jain, 1993). Eine Differenzierung der eosinophilen Granulozyten von den neutrophilen 

Granulozyten war deshalb relativ leicht möglich. Manche granulafreien Randbereiche ließen eine 

basophile Färbung des Zytoplasmas erkennen, die auch von anderen Autoren beschrieben wird 

(Norris und Cham-Berlin, 1929); (Kramer, 2000). 

Die basophilen Granulozyten konnten nur in sehr wenigen Ausstrichen gefunden werden. Laut 

Kramer (2000) kommen sie mit einem Anteil von durchschnittlich 0,5 % an den 

Gesamtleukozyten nur selten im Blut der Schafe vor (Kramer, 2000). Nur bei der May-Grünwald- 

und der Toluidinblau-Färbung wurden einzelne Zellen identifiziert. In den Blutausstrichen 

erschienen sie als runde bis ovale Zellen. Die in der Literatur beschriebene, eckige Gestalt der 

Zellen (Greenwood, 1977) konnte in meinen Proben nicht beobachtet werden. Mit einer Größe 

von durchschnittlich 10,6 µm stellten sie die kleinsten Granulozyten dar, was mit den Befunden 

von Liebich (Liebich, 2004) im Einklang steht. Der Zellkern konnte bei den wenigen gefundenen 

Zellen nicht vom Zytoplasma differenziert werden. Laut Literatur besteht er meist aus zwei oder 

drei Segmenten (Yamada und Sonoda, 1972a); (Greenwood, 1977), die eine eckige Form 

aufweisen (Greenwood, 1977) und reich an Heterochromatin sind (Steffens, 2000). Aber auch 

Norris und Cham-Berlin (1929) hatten Schwierigkeiten bei der Charakterisierung des Zellkernes 

bei den ovinen basophilen Granulozyten (Norris und Cham-Berlin, 1929). In den basophilen 

Granulozyten der Schafe waren jedoch ungleichmäßig verteilte, intensiv gefärbte Granula zu 

sehen. Laut Angaben in der Literatur sind die basophilen Granula üblicherweise wasserlöslich 

(Yamada und Sonoda, 1972a); (Jain, 1993); (Steffens, 2000) und lösen sich daher oft in 

unfixierten Blutausstrichen auf (Jain, 1993). Die für die basophilen Granulozyten 

charakteristische Metachromasie (Banks, 1981); (Hees und Tschudi, 1990); (Jain, 1993); (Costa et 

al., 1997) konnte ich vor allem bei der Toluidinblau-Färbung beobachten, wobei sich die Granula 

in einem intensiven Violett anfärbten. Dies stimmt mit den Beobachtungen von Scott und 

Stockham (2000) sowie Raskin und Valenciano (2000) überein, wonach die Darstellung der 
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metachromatischen Färbung durch Toluidinblau bei niedrigem pH-Wert erfolgen kann (Raskin 

und Valenciano, 2000); (Scott und Stockham, 2000) und sich die metachromatischen Granula 

violett anfärben (Raskin und Valenciano, 2000). Die metachromatische Färbung bezeichnet laut 

Parwaresch und Lennert (1969) die Färbung einer Struktur in einen anderen Farbton als den der 

Farbstofflösung und ist im Allgemeinen durch eine irreversible Veränderung im 

Absorptionsspektrum eines organischen, basischen Farbstoffes unter Einfluss bestimmter 

Substanzen (Chromotrope) bedingt (Parwaresch und Lennert, 1969). Laut Romeis (2010) kommt 

zu einer Verschiebung des Maximums im Absorptionsspektrum zu kürzeren Wellenlängen, 

wodurch im Präparat eine Farbverschiebung zum langwelligen Spektrum hin beobachtet werden 

kann (Romeis, 2010). Die metachromatische Färbung der basophilen Granula kommt durch deren 

hohen Gehalt an sulfatierten Glykosaminoglykanen (Heparin, Chondroitinsulfat, Dermatansulfat) 

zustande (Jain, 1993); (Scott und Stockham, 2000). Laut Freund (2008) entsteht sie vor allem 

durch die im Heparin veresterete Schwefelsäure (Freund, 2008).  

Bei den lichtmikroskopischen Übersichtsfärbungen konnten keine Unterschiede in der 

Morphologie der Blutzellen in Abhängigkeit von Alter oder Geschlecht festgestellt werden.  

 

2.2 Substrathistochemische Färbungen 

Die Blutausstriche wurden zur Untersuchung von Kohlenhydraten bzw. kohlenhydrathaltigen 

Strukturen sowohl der Periodic-Acid-Schiff (PAS)-Reaktion als auch der Alcianblau-Färbung bei 

zwei verschiedenen pH-Werten unterzogen. Die PAS-Reaktion dient im Allgemeinen dem 

Nachweis von Polysacchariden (Glykogen) und Glykoproteinen. Die Alcianblau-Färbung wird 

zur selektiven Färbung von Mukosubstanzen eingesetzt, wobei zwischen sauren 

Mukopolysacchariden mit Carboxyl- oder Sulfatgruppen unterschieden werden kann. 

Carboxylierte Mukosubstanzen werden bei einem pH von 2,5 nachgewiesen. Die sauren Mucine 

sind bei diesem pH-Wert durch die Sulfatestergruppen und/oder Carboxylgruppen der Uronsäuren 

negativ geladen und binden an den positiv geladenen (kationischen) Farbstoff Alcianblau 8 GX. 

Sulfatierte Mukosubstanzen hingegen werden bei einem pH von 1,0 nachgewiesen, da bei der 

Senkung des pH-Wertes die Dissoziation der Carboxylgruppen unterdrückt wird und nur noch die 

Sulfatgruppen negative Ladungen für die Färbung beisteuern (Romeis, 2010). 

Die Erythrozyten der untersuchten Schafe zeigten bei der PAS-Reaktion keine Anfärbung und 

ließen sich weder bei einem pH-Wert von 1,0 noch bei einem pH-Wert von 2,5 mit Alcianblau 

anfärben. Dies deckt sich mit den Beobachtungen von Al Izzi et al. (2007), wonach die 

Erythrozyten der Schafe kein PAS-positives Material besitzen (Al Izzi et al., 2007). Das 

Ausbleiben einer Anfärbung mit Alcianblau bei beiden pH-Werten lässt vermuten, dass die 
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Erythrozyten der Schafe weder carboxylierte noch sulfatierte Mukosubstzanzen in größerer 

Menge aufweisen. 

Die Thrombozyten zeigten bei der PAS-Reaktion entweder keinen oder nur einen schwachen 

Reaktionsausfall. Nach Angaben in der Literatur ist jedoch in den Blutplättchen der Säuger im 

Allgemeinen Glykogen nachzuweisen (Banks, 1981); (Hees und Tschudi, 1990); (White, 2007). 

Der Befund von Romeis (1989), dass die PAS-Reaktion bei den Thrombozyten generell positiv 

verläuft (Romeis, 1989), konnte jedoch durch meine Untersuchungen nicht bestätigt werden. Bei 

der Alcianblau-Färbung ließen sich die Thrombozyten der Schafe sowohl bei einem pH-Wert von 

1,0 als auch bei einem pH-Wert von 2,5 anfärben. Die Intensität der Anfärbung war bei einem 

pH-Wert von 2,5 nur unwesentlich deutlicher. Daraus lässt sich schließen, dass die Thrombozyten 

der Schafe reich an carboxylierten und sulfatierten Mukosubstanzen sind. Bei den Thrombozyten 

der Menschen sind saure Mukopolysaccharide ein wesentlicher Bestandteil der Glykokalix 

(Nurden, 2007).  

Die Lymphozyten der untersuchten Schafe reagierten bei der PAS-Reaktion überwiegend negativ. 

Nur bei einzelnen Zellen konnte eine positive Reaktion, die zu einer diffusen, rosafarbenen bis 

hellvioletten Anfärbung des Zytoplasmas führte, beobachtet werden. Dies deckt sich mit den 

Ergebnissen von Jain (1970) und Al Izzi et al. (2007), nach denen die PAS-Reaktion bei den 

Lymphozyten der Schafe sowohl negativ als auch positiv ausfallen kann (Jain, 1970); (Al Izzi et 

al., 2007). Eine negative Reaktion kann laut Stobbe (1970) häufig bei Lymphozyten beobachtet 

werden, da nicht immer Glykogen in den Zellen enthalten ist (Stobbe, 1970). Auch Schnabl und 

Rudolph (1981) konnten anhand elektronenmikroskopischer Untersuchungen nur bei einzelnen 

Lymphozyten der Schafe Glykogen nachweisen (Rudolph und Schnabl, 1981). Nach Angaben 

von Hermansky et al. (1970) ist eine positive PAS-Reaktion bei weniger als 10 % der 

Lymphozyten des Schafes zu beobachten (Hermansky et al., 1970). Die Befunde von Jain (1970), 

dass sich eine positive Reaktion durch eine diffuse Anfärbung im Zytoplasma auszeichnet (Jain, 

1970), stimmt mit meinem Ergebnis überein. Laut Hermansky et al. (1970) und Al Izzi et al. 

(2007) kann eine positive PAS-Reaktion aber auch zu einer Anfärbung der feinen Granula im 

Zytoplasma führen (Hermansky et al., 1970); (Al Izzi et al., 2007). Dies konnte anhand meiner 

Untersuchungen jedoch nicht bestätigt werden. Bei der Alcianblau-Färbung ließen sich die 

Lymphozyten weder bei einem pH-Wert von 1,0 noch bei einem pH-Wert von 2,5 anfärben. 

Aufgrund dieser Ergebnisse ist das Vorhandensein von sulfatierten und carboxylierten Muzinen in 

größeren Mengen in den Lymphozyten der Schafe als eher unwahrscheinlich zu betrachten.  

Die Monozyten der Schafe zeigten eine negative PAS-Reaktion und ließen sich bei keinem der 

beiden pH-Werte mit Alcianblau anfärben. Nach Angaben von Al Izzi et al. (2007) gelingt die 

PAS-Reaktion bei den ovinen Monozyten nur teilweise und zeigt sich im Falle einer positiven 
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Reaktion durch eine Anfärbung der Granula im Zytoplasma (Al Izzi et al., 2007). Wie bereits bei 

den Lymphozyten aufgeführt, kann die ausbleibende Anfärbung mit Alcianblau bei beiden pH-

Werten zu der Annahme führen, dass die Monozyten der Schafe weder carboxylierte noch 

sulfatierte Mukosubstzanzen in größerer Menge aufweisen. 

Die neutrophilen Granulozyten der untersuchten Schafe zeigten allesamt eine positive PAS-

Reaktion, was mit den Befunden von Schnabl (Schnabl, 1976) und Al Izzi et al. (Al Izzi et al., 

2007) übereinstimmt. Im Zytoplasma vorhandenes Glykogen konnten auch Rudolph und Schnabl 

(1981) anhand elektronenmikroskopischer Untersuchungen bei den neutrophilen Granulozyten der 

Schafe nachweisen (Rudolph und Schnabl, 1981). Bei den meisten Zellen konnte ich im gesamten 

Zytoplasma eine diffuse, rosafarbige Anfärbung beobachten. Außerdem enthielt es mehrere, 

ungleichmäßig verteilte, grobe, rot-violette bis pinkfarbige Reaktionsprodukte verschiedener 

Größe. Zusätzlich war eine leichte granuläre Reaktion zu beobachten. Laut Steffens (2000) 

werden die primären Granula der neutrophilen Granulozyten insgesamt weniger stark angefärbt 

als die sekundären Granula (Steffens, 2000), was möglicherweise auf deren geringen Gehalt an 

Glykosaminoglykanen (Jain, 1993) zurückzuführen ist. Im Verlauf der Granulopoese nimmt laut 

Stobbe (1970) die Intensität der PAS-Reaktion vom Stadium des Promyelozyten bis zum reifen 

neutrophilen Granulozyten zu (Stobbe, 1970). Die Anfärbung der neutrophilen Granulozyten mit 

Alcianblau gelang bei den Schafen nur bei einem pH-Wert von 2,5, jedoch nicht bei einem pH-

Wert von 1,0. Bei einem pH-Wert von 2,5 zeigte sich bei allen Zellen eine starke Anfärbung mit 

einem deutlich granulären Muster. Die neutrophilen Granula der Schafe sind demnach vermutlich 

reich an carboxylierten Mukosubstanzen. Sulfatierte Muzine scheinen nicht in größerer Menge 

vorhanden zu sein. 

Bei den eosinophilen Granulozyten der untersuchten Schafe konnte ebenso PAS-positives 

Material gefunden werden. Auch Schnabl (Schnabl, 1976) und Al Izzi et al. (Al Izzi et al., 2007) 

kamen zu diesem Ergebnis. Darüber hinaus konnten Rudolph und Schnabl (1981) bei den ovinen 

eosinophilen Granulozyten mittels elektronenmikroskopischer Untersuchungen Glykogen im 

Zytoplasma darstellen (Rudolph und Schnabl, 1981). Die positive PAS-Reaktion der eosinophilen 

Granulozyten fiel in meinen Versuchen im Vergleich zu derjenigen der neutrophilen 

Granulozyten deutlich schwächer aus. Meine Beobachtung, dass sich das Zytoplasma der 

eosinophilen Granulozyten lediglich intergranulär in einem zarten Rosa anfärbte, deckt sich mit 

den Angaben von Wislocki et al. (Wislocki et al., 1949), Stobbe (Stobbe, 1970) und Schnabl 

(Schnabl, 1976). Die bei den neutrophilen Granulozyten im Zytoplasma beobachteten fokalen, 

kräftig pinkfarbigen Reaktionsprodukte stellten sich bei den eosinophilen Granulozyten deutlich 

schwächer dar. Entsprechend den Ergebnissen von Al Izzi et al. (Al Izzi et al., 2007) reagierten 

die eosinophilen Granula der Schafe negativ. Eine Anfärbung der eosinophilen Granulozyten mit 
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Alcianblau konnte in meinen Untersuchungen gewöhnlich nicht beobachtet werden, bei einem 

pH-Wert von 2,5 konnte eine positive Reaktion bei einzelnen Zellen durch eine intergranuläre, 

diffuse Anfärbung zwischen den ungefärbten, weißen Granula nur vermutet werden. Die 

eosinophilen Granulozyten der Schafe weisen dem zu Folge vermutlich keine sulfatierten 

Mukosubstanzen in größerer Menge auf. Das Vorkommen von carboxylierten Muzinen in 

größeren Mengen ist fraglich.  

Bei den substrathistochemischen Untersuchungen konnten keine Unterschiede in Abhängigkeit 

von Alter oder Geschlecht festgestellt werden. 

 

2.3 Enzymhistochemische Färbungen 

Für die Beurteilung der enzymatischen Ausstattung der einzelnen Blutzellen wurden die 

Ausstriche verschiedenen enzymhistochemischen Färbungen unterzogen. Es wurden die saure 

Phosphatase, die alkalische Phosphatase, die Peroxidase, die β-Glucuronidase, die α-Naphthyl-

Azetat-Esterase, die Naphthol-AS-Azetat-Esterase und die Naphthol-AS-D-Chlorazetat-Esterase 

untersucht und die Blutausstriche unter dem Lichtmikroskop ausgewertet. Bei den meisten 

Enzymnachweisen wurden Azokupplungsreaktionen eingesetzt, bei denen auf die Umsetzung 

eines Substrats durch das entsprechende Enzym (primäre Reaktion) die Präzipitationsreaktion 

durch Zugabe eines Diazoniumsalzes oder hexazotierten Pararosanilins folgt. Diese Stoffe 

reagieren mit dem primären Reaktionsprodukt und es entsteht ein unlöslicher Azofarbstoff 

(sekundäre Reaktion). Bei dem Nachweis der Peroxidase hingegen wird das Substrat durch 

Oxidation in einen unlöslichen Farbstoff übergeführt (Lojda et al., 1979). 

Die Erythrozyten wiesen in meinen Untersuchungen lediglich eine Aktivität der Naphthol-AS-

Azetat-Esterase auf. Eine Enzymaktivität zeigten nahezu alle Erythrozyten durch ungleichmäßig 

in der Zelle verteilte blaue, punktförmige Reaktionsprodukte. Auch Fey und Kunze (1970) 

konnten eine positive Reaktion der Naphthol-AS-Azetat-Esterase auf der Oberfläche von ovinen 

Erythrozyten nachweisen (Fey und Kuntze, 1970). Sie stellten jedoch auch eine Aktivität der α-

Naphthyl-Azetat-Esterase mittels Azokupplungsreaktion bei einem pH-Wert von 8,3 fest, die ich 

in meinen Untersuchungen nicht beobachten konnte. Die Erythrozyten der Schafe zeigten, wie in 

der Literatur beschrieben, keine Aktivität der der alkalischen Phosphatase (Gajanna und Nair, 

1968); (Fey und Kuntze, 1970), der Peroxidase (Fey und Kuntze, 1970); (Al Izzi et al., 2007) und 

der Naphthol-AS-D-Chlorazetat-Esterase (Fey und Kuntze, 1970). Diallo et al. (1975) konnten 

eine Aktivität der sauren Phosphatase in ovinen Erythrozyten mit verschiedenen Substraten bei 

pH 5,0 und pH 5,7 nachweisen, was auf die Anwesenheit von zwei Isoenzymen mit 

unterschiedlichen molekularen Eigenschaften schließen lässt (Diallo et al., 1975). Bei Fey und 



V. Diskussion                      196 

Kunze (1970) verlief der Nachweis der sauren Erythrozyten-Phosphatase der Schafe mittels 

Azokupplungsreaktion bei einem pH-Wert von 6,5 negativ (Fey und Kuntze, 1970). Auch ich 

konnte histochemisch keine Aktivität der sauren Phosphatase nachweisen. 

Auch die Thrombozyten der untersuchten Schafe zeigten lediglich eine schwache Aktivität der 

Naphthol-AS-Azetat-Esterase. Fey und Kunze (1970) hingegen berichten zusätzlich von einer 

Aktivität der α-Naphthyl-Azetat-Esterase bei ovinen Thrombozyten (Fey und Kuntze, 1970). Die 

Thrombozyten weisen laut Jain (1993) bei den Haustieren meist die saure Phosphatase, ein 

Thrombozyten-spezifisches Isoenzym der Peroxidase und die β-Glucuronidase auf (Jain, 1993). In 

meinen Untersuchungen ließ sich jedoch keine Aktivität dieser Enzyme in den ovinen Blutzellen 

nachweisen. Das Vorkommen der Thrombozyten-spezifischen Peroxidase variiert laut Daimon et 

al. (1985) bei den verschiedenen Spezies (Daimon et al., 1985). Sowohl Jain (1967) als auch Fey 

und Kunze (1970) sowie Daimon et al. (1985) konnten die Peroxidase in ovinen Thrombozyten 

nicht nachweisen (Jain, 1967); (Fey und Kuntze, 1970); (Daimon et al., 1985). Bei Daimon et al. 

(1985) verlief der Nachweis bei Affen und Hunden mit der gleichen Technik jedoch positiv 

(Daimon et al., 1985). Die Thrombozyten der Schafe zeigten in meinen Untersuchungen keine 

Aktivität der alkalischen Phosphatase und der Naphthol-AS-D-Chlorazetat-Esterase. Dies deckt 

sich mit den Ergebnissen von Fey und Kunze (Fey und Kuntze, 1970). 

Bei den Lymphozyten der untersuchten Schafe konnte eine Aktivität der sauren Phosphatase, der 

β-Glucuronidase, der α-Naphthyl-Azetat-Esterase und der Naphthol-AS-Azetat-Esterase 

beobachtet werden. Es reagierten jedoch nicht alle Lymphozyten positiv. Die Aktivität der sauren 

Phosphatase war durch kräftig rote Reaktionsprodukte im Zytoplasma gekennzeichnet, die sich 

entweder zusammen gelagert in einem bestimmten Bereich der Zelle befanden oder im gesamten 

Zytoplasmasaum verteilt waren. Sowohl Fey und Kunze (1970) als auch Jain (1970) sowie 

Schnabl (1976) berichten ebenso über eine Aktivität der sauren Phosphatase in ovinen 

Lymphozyten (Fey und Kuntze, 1970); (Jain, 1970); (Schnabl, 1976). Meine Ergebnisse decken 

sich mit den Befunden von Jain (1970), wonach es zu einer Anfärbung der zytoplasmatischen 

Granula kommt (Jain, 1970), und mit denjenigen von Raskin und Valenciano (2000), welche die 

Aktivität der sauren Phosphatase in den Lymphozyten im Allgemeinen als eine fokale oder 

punktförmige Reaktion beschreiben (Raskin und Valenciano, 2000). Die saure Phosphatase ist 

laut Literaturangaben nur in reifen T-Zellen, nicht aber in B-Zellen vorhanden (Banks, 1981); 

(Jain, 1993). Dies erklärt, warum sich nicht alle Zellen anfärbten. Der Großteil der Lymphozyten 

zeichnete sich durch eine meist starke Aktivität der β-Glucuronidase aus. Laut Healy (1982) ist 

bei Schafen die Enzymaktivität der β-Glucuronidase in den mononukleären Zellen sogar stärker 

als in den Granulozyten (Healy, 1982). Die Enzymaktivität war bei den untersuchten Schafen 

durch das Vorhandensein kräftig roter, punktförmiger Reaktionsprodukte im Zytoplasma 
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gekennzeichnet. Dabei konnte nicht selten eine Anfärbung der zytoplasmatischen Granula 

vermutet werden. Dies steht im Einklang mit den Beobachtungen von Raskin und Valenciano 

(2000), wonach die Lymphozyten bei einer Aktivität der β-Glucuronidase eine fokale oder 

deutlich granuläre Reaktion aufweisen (Raskin und Valenciano, 2000). Bei manchen Zellen war 

aber auch eine leicht diffuse Reaktion im Zytoplasma zu sehen. Zu ähnlichen Ergebnissen kamen 

auch Machin et al. (1980), die in den Lymphozyten der Menschen neben einem granulären 

zusätzlich ein schwaches, agranuläres Reaktionsprodukt erkennen konnten (Machin et al., 1980). 

In den gefärbten Ausstrichen wurden aber auch Lymphozyten ohne β-Glucuronidase-Aktivität 

gefunden. Dies liegt vermutlich daran, dass laut Jain (1993) nur die reifen T-Zellen, nicht aber die 

B-Zellen eine Aktivität der β-Glucuronidase aufweisen (Jain, 1993). Die Aktivität der α-

Naphthyl-Azetat-Esterase zeigte sich in den ovinen Lymphozyten durch eine diffuse, körnige 

Anfärbung des Zytoplasmas. Bei manchen Zellen waren außerdem grobe, punktförmige 

Reaktionsprodukte erkennbar. Sowohl Fey und Kunze (1970) als auch Schnabl (1976) sowie 

Osbaldiston und Sullivan (1978) konnten ebenso einen Nachweis der α-Naphthyl-Azetat-Esterase 

in den Lymphozyten der Schafe erbringen (Fey und Kuntze, 1970); (Schnabl, 1976); (Osbaldiston 

und Sullivan, 1978). Die α-Naphthyl-Azetat-Esterase der Lymphozyten lässt sich der Literatur 

nach, im Gegensatz zu derjenigen der Monozyten, nicht durch Natrium-Fluorid hemmen. Dies 

liegt an einer unterschiedlichen Lokalisation der jeweiligen Enzyme in der Zelle. Diejenige der 

Lymphozyten befindet sich laut Raskin und Valenciano (2000) vorwiegend in intrazellulären 

Organellen, so dass sich eine Aktivität meist durch eine lokale Färbung innerhalb der Zelle 

präsentiert (Raskin und Valenciano, 2000). In den Blutausstrichen wurden jedoch auch 

Lymphozyten ohne Anfärbung gefunden. Auch Schnabl (1976) stellte nur bei 58 % der kleinen 

Lymphozyten eine Enzymaktivität fest (Schnabl, 1976). Dies liegt daran, dass die α-Naphthyl-

Azetat-Esterase bei den Schafen nur in den T-Zellen, nicht aber in den B-Zellen vorkommt 

(Ristau et al., 1985); (Jain, 1993). Auch die Aktivität der Naphthol-AS-Azetat-Esterase der 

Lymphozyten präsentierte sich entweder in Form einer Anfärbung des gesamten Zytoplasmas 

oder war durch mehrere ungleichmäßig im Zytoplasma verteilte Reaktionsprodukte 

gekennzeichnet. Fey und Kuntze (1970) berichten gleichfalls über eine Aktivität der Naphthol-

AS-Azetat-Esterase bei den Lymphozyten der Schafe (Fey und Kuntze, 1970). Jain (1970) 

hingegen konnte den histochemischen Nachweis von unspezifischen Esterasen in ovinen 

Lymphozyten nicht erbringen (Jain, 1970). Die Lymphozyten der untersuchten Schafe zeigten, 

wie in der Literatur beschrieben, keine Aktivität der alkalischen Phosphatase (Jain, 1968); (Fey 

und Kuntze, 1970); (Jain, 1970); (Schnabl, 1976), der Peroxidase (Jain, 1967); (Fey und Kuntze, 

1970); (Jain, 1970); (Schnabl, 1976); (Al Izzi et al., 2007) oder der Naphthol-AS-D-Chlorazetat-

Esterase (Fey und Kuntze, 1970); (Schnabl, 1976). 

Die Monozyten der untersuchten Tiere zeigten eine Aktivität der sauren Phosphatase, der 
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Peroxidase, der β-Glucuronidase, der α-Naphthyl-Azetat-Esterase und der Naphthol-AS-Azetat-

Esterase. Die Aktivität der sauren Phosphatase war im Vergleich zu den Lymphozyten bei den 

meisten Monozyten etwas schwächer. Es war jedoch bei allen Monozyten eine Enzymaktivität 

festzustellen, die sich durch eine diffuse Anfärbung im Bereich der Kerninvagination, teilweise in 

Verbindung mit einer leichten Granulation, zeigte. Dies stimmt sowohl mit den Befunden von 

Raskin und Valenciano (2000), wonach das Reaktionsprodukt der sauren Phosphatase ein diffuses 

Muster aufweist (Raskin und Valenciano, 2000), als auch mit denjenigen von Jain (1970 und 

1993), nach dem die saure Phosphatase bei den Monozyten in den Granula lokalisiert ist, überein 

(Jain, 1970); (Jain, 1993). Eine Peroxidase-Aktivität konnte bei einzelnen Monozyten der 

untersuchten Tiere in Form eines sehr feinen Niederschlags in der Zelle beobachtet werden. Auch 

Schnabl (1976) sowie Al Izzi et al. (2007) stellten fest, dass die Peroxidase bei den ovinen 

Monozyten sowohl leicht positiv als auch negativ sein kann (Schnabl, 1976); (Al Izzi et al., 2007). 

Schnabl (1976) beobachtete bei 2 - 3 % der Monozyten äußerst feine („staubartige“), gefärbte 

Granula (Schnabl, 1976). Jain (1967 und 1970) konnte eine Aktivität der Peroxidase in ovinen 

Monozyten jedoch nicht nachweisen (Jain, 1967); (Jain, 1970), was sehr wahrscheinlich 

methodisch bedingt sein dürfte. Die Aktivität der β-Glucuronidase zeigte sich bei den Monozyten 

der untersuchten Tiere vorwiegend durch eine diffuse Anfärbung der Zelle. Nicht selten war 

jedoch auch eine granuläre Reaktion, vorwiegend im Bereich einer Kerninvagination, erkennbar. 

Nur sehr wenige Monozyten zeigten keine Anfärbung. Diese Beobachtungen widersprechen dem 

Befund von Bienzle (2000), wonach die β-Glucuronidase bei den Monozyten der Haussäuger 

meist negativ oder nur schwach positiv sein sollte (Bienzle, 2000). Machin et al. (1980) sowie 

Raskin und Valenciano (2000) geben jedoch gleichfalls an, dass eine Aktivität der β-

Glucuronidase häufig zu einer diffusen, zytoplasmatischen Anfärbung führt (Machin et al., 1980); 

(Raskin und Valenciano, 2000). Das Vorkommen von unspezifischen Esterasen ist laut 

Literaturangaben für die Monozyten charakteristisch (Jain, 1993); (Bienzle, 2000); (Olivier et al., 

2001). Eine Aktivität der α-Naphthyl-Azetat-Esterase war bei fast allen Monozyten der Schafe zu 

beobachten. Auch Osbaldiston und Sullivan (1978) sowie Ristau et al. (1985) konnten eine 

Enzymaktivität bei ovinen Monozyten nachweisen (Osbaldiston und Sullivan, 1978); (Ristau et 

al., 1985). Die positive Reaktion reichte in meinen Untersuchungen von einer diffusen, körnigen 

Anfärbung des gesamten Zytoplasmas bis hin zu mehreren Farbniederschlägen an verschiedenen 

Stellen im Bereich der Plasmamembran. Auch die Aktivität der Naphthol-AS-Azetat-Esterase 

zeigte sich in Form einer gleichmäßigen Anfärbung des Zytoplasmas, die sich jedoch häufig im 

Bereich der Plasmamembran zu einem dunkleren Kranz verdichtete. Diese Beobachtungen 

stimmen mit den Befunden von Jain (1993) und Bienzle (2000) überein, wonach die 

unspezifischen Esterasen diffus im Zytoplasma der Monozyten verteilt sind (Jain, 1993); (Bienzle, 

2000). Außerdem geben Raskin und Valenciano (2000) gleichfalls an, dass sich eine Aktivität der 
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α-Naphthyl-Azetat-Esterase oft besonders gut an der Plasmamembran beobachten lässt. Die α-

Naphthyl-Azetat-Esterase der Monozyten kann, wie bereits erwähnt, aufgrund dieser Lokalisation 

durch Natrium-Fluorid gehemmt werden (Raskin und Valenciano, 2000). Bei den von mir 

untersuchten Monozyten konnte ich histochemisch, wie in der Literatur beschrieben, keine 

Aktivität der alkalischen Phosphatase nachweisen (Jain, 1968); (Jain, 1970); (Schnabl, 1976). 

Auch der Nachweis der Naphthol-AS-D-Chlorazetat-Esterase verlief negativ. Die Befunde von 

Bienzle (2000) sowie Raskin und Valenciano (2000), nach denen bei Schafen gelegentlich eine 

leichte Chlorazetat-Esterase-Aktivität in den Monozyten zu beobachten ist (Bienzle, 2000); 

(Raskin und Valenciano, 2000), konnten in meinen Untersuchungen nicht bestätigt werden. Bei 

Schnabl (1976) verlief der Nachweis mit der Methode nach Löffler (1966) ebenso negativ 

(Schnabl, 1976). 

Bei den neutrophilen Granulozyten der Schafe konnte eine Aktivität der sauren Phosphatase, der 

alkalischen Phosphatase, der Peroxidase, der β-Glucuronidase, der Naphthol-AS-Azetat-Esterase 

und der Naphthol-AS-D-Chlorazetat-Esterase nachgewiesen werden. Das Vorkommen der α-

Naphthyl-Azetat-Esterase gilt als fraglich. Die Aktivität der sauren Phosphatase war bei den 

neutrophilen Granulozyten der untersuchten Tiere relativ schwach und durch eine granuläre 

Reaktion in der Zelle gekennzeichnet. Meist zeigte nur ein Teil der Granula eine Enzymaktivität. 

Diese Beobachtung deckt sich mit den Befunden von Fey und Kunze (1970), wonach die Aktivität 

der sauren Phosphatase in den neutrophilen Granulozyten der Schafe nur schwach ist (Fey und 

Kuntze, 1970) und mit denjenigen von Jain (1993) sowie Raskin und Valenciano (2000), nach 

denen die saure Phosphatase nur in den primären, nicht aber den sekundären Granula lokalisiert 

ist (Jain, 1993); (Raskin und Valenciano, 2000). In den Blutausstrichen waren auch neutrophile 

Granulozyten ohne saure Phosphatase-Aktivität zu finden, was auch Jain (Jain, 1970) bei den 

Schafen feststellte. Die alkalische Phosphatase dient als Marker für die neutrophilen Granulozyten 

(Romeis, 1989). Deren Enzymaktivität in ovinen Zellen wird in der Literatur häufig beschrieben 

(Atwal und McFarland, 1967); (Jain, 1968); (Fey und Kuntze, 1970); (Jain, 1970); (Rausch und 

Moore, 1975). Bei den von mir untersuchten Zellen präsentierte sich die positive Reaktion als eine 

diffuse Färbung in der Zelle, die teilweise ein granuläres Muster erkennen ließ. Dies steht im 

Einklang mit den Beobachtungen von einigen Autoren, nach denen die alkalische Phosphatase in 

der Regel in den sekundären Granula der neutrophilen Granulozyten lokalisiert ist (Jain, 1993); 

(Raskin und Valenciano, 2000); (Smith, 2000); (Steffens, 2000); (Liebich, 2004). Bei manchen 

neutrophilen Granulozyten wurden neben einer granulären Reaktion aber auch dunkle Farbinseln 

im Zytoplasma beobachtet, die vermutlich den von Jain (1968) beschriebenen, geklumpten 

Granula entsprechen (Jain, 1968). Die Intensität der Anfärbung variierte bei den untersuchten 

Zellen stark. Es konnte jedoch kein Einfluss des Reifegrades der Zelle, der sich aus der 

Segmentierung des Kernes folgern lässt, auf die Reaktionsstärke vermerkt werden. Weiterhin war 
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nicht bei allen neutrophilen Granulozyten eine Enzymaktivität zu sehen. Jain (Jain, 1968); (Jain, 

1970) kam zu dem gleichen Ergebnis. Eine Aktivität der Myeloperoxidase führte bei den 

neutrophilen Granulozyten der Schafe zu einem granulären Muster, wobei sich aber nicht alle 

Granula anfärbten. Es reagierten jedoch alle Zellen positiv. Auch eine Peroxidase-Aktivität bei 

ovinen neutrophilen Granulozyten wird in der Literatur häufig beschrieben (Jain, 1967); (Fey und 

Kuntze, 1970); (Jain, 1970); (Rausch und Moore, 1975); (Schnabl, 1976); (Al Izzi et al., 2007). 

Die von mir beobachtete, granuläre Reaktion rührt daher, dass sich die Peroxidase der 

neutrophilen Granulozyten laut Angaben in der Literatur in den primären Granula befindet 

(Rausch und Moore, 1975); (Jain, 1993); (Raskin und Valenciano, 2000); (Smith, 2000). Buchta 

(1990) erbrachte den Nachweis der Peroxidase in den primären Granula speziell beim Schaf 

(Buchta, 1990). Die Aktivität der β-Glucuronidase war bei den neutrophilen Granulozyten der 

untersuchten Tiere nur relativ schwach. In den meisten Fällen konnte lediglich eine diffuse 

Reaktion im Zytoplasma beobachtet werden, manchmal war jedoch zusätzlich eine granuläre 

Reaktion zu sehen. Diese Beobachtungen decken sich mit den Befunden in der Literatur, wonach 

die Granulozyten im Vergleich zu den mononukleären Zellen insgesamt eine niedrigere β-

Glucuronidase-Aktivität aufweisen (Healy, 1982) und eine positive Reaktion zu einer relativ 

schwachen, diffusen, zytoplasmatischen Anfärbung führt (Lorbacher et al., 1967); (Machin et al., 

1980); (Raskin und Valenciano, 2000). Die diffuse Anfärbung im Zytoplasma könnte laut 

Lorbacher et al. (1967) auf einer mikrosomalen Aktivität der β-Glucuronidase beruhen. De Devu 

(1963) konnte nämlich, zusätzlich zu einer lysosomalen Aktivität, eine geringe Enzymaktivität in 

den Mikrosomen der Leberzellen von Mäusen nachweisen (Lorbacher et al., 1967). Die von mir 

beobachtete, granuläre Reaktion lässt sich dadurch erklären, dass die β-Glucuronidase laut 

Literaturangaben in den primären Granula lokalisiert ist (Rausch und Moore, 1975); (Jain, 1993). 

Buchta (1990) stellte eine Aktivität der β-Glucuronidase in den primären Granula speziell beim 

Schaf fest (Buchta, 1990). Laut Bienzle (2000) weisen die neutrophilen Granulozyten der Schafe 

im Gegensatz zu den Monozyten keine unspezifischen Esterasen auf (Bienzle, 2000). In meinen 

Untersuchungen konnte ich jedoch eine Aktivität der Naphthol-AS-Azetat-Esterase in Form eines 

granulären Reaktionsproduktes erkennen. Auch Fey und Kunze (1970) berichten über eine 

Enzymaktivität in ovinen neutrophilen Granulozyten (Fey und Kuntze, 1970). Jain (1970) 

beobachtete bei dem Nachweis der unspezifischen Esterasen in den neutrophilen Granulozyten 

der Schafe ebenfalls eine granuläre Reaktion (Jain, 1970). Eine Aktivität der α-Naphthyl-Azetat-

Esterase in den neutrophilen Granulozyten der untersuchten Tiere ist als unsicher zu betrachten, 

da bei manchen Zellen ein feiner, granulärer Niederschlag nur vermutet werden konnte. Sowohl 

Schnabl (1976) als auch Osbaldiston und Sullivan (1978) sowie Ristau et al. (1985) konnten 

jedoch mit pH-Werten zwischen 5,8 und 7,0 eine Aktivität der α-Naphthyl-Azetat-Esterase in 

ovinen neutrophilen Granulozyten nachweisen (Schnabl, 1976); (Osbaldiston und Sullivan, 1978); 
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(Ristau et al., 1985). Die Chlorazetat-Esterase dient als Marker für die neutrophilen Granulozyten 

und deren Vorläuferzellen (Romeis, 1989). In den von mir untersuchten Ausstrichen reagierten 

bei einem pH-Wert von 7,0 nahezu alle neutrophilen Granulozyten positiv. Die Enzymaktivität 

präsentierte sich als eine homogene Anfärbung des gesamten Zytoplasmas in Verbindung mit 

einem granulären Farbniederschlag. Die granuläre Reaktion rührt daher, dass sich die primären 

und sekundären Granula laut Angaben in der Literatur durch eine mäßige bis starke Aktivität der 

Chlorazetat-Esterase auszeichnen (Raskin und Valenciano, 2000). Auch Fey und Kunze (1970) 

sowie Schnabl (1976) konnten eine Chlorazetat-Esterase-Aktivität in den neutrophilen 

Granulozyten der Schafe nachweisen (Fey und Kuntze, 1970); (Schnabl, 1976). 

Bei den eosinophilen Granulozyten der Schafe konnte eine Aktivität der sauren Phosphatase, der 

Peroxidase und der β-Glucuronidase nachgewiesen werden. Das Vorkommen der unspezifischen 

Esterasen ist als fraglich zu betrachten. Die positive Reaktion der sauren Phosphatase zeigte sich 

durch eine granuläre Reaktion, die bei allen eosinophilen Granulozyten zu beobachten war und 

insgesamt stärker als bei den neutrophilen Granulozyten ausfiel. Auch Fey und Kunze (1970), 

Jain (1970) sowie Schnabl (1976) berichten über eine Aktivität der sauren Phosphatase in ovinen 

eosinophilen Granulozyten (Fey und Kuntze, 1970); (Jain, 1970); (Schnabl, 1976). Das von mir 

beobachtete, granuläre Muster der Enzymaktivität lässt sich durch die Lokalisation der sauren 

Phosphatase in den eosinophilen Granula erklären (Jain, 1993); (Young, 2000). Auch die 

Peroxidase-Aktivität war bei den eosinophilen Granulozyten stärker als bei den neutrophilen 

Granulozyten und präsentierte sich als granulärer Reaktionsausfall. Diese Beobachtung deckt sich 

sowohl mit dem Befund von Jain (1967 und 1970), wonach die Peroxidase der eosinophilen 

Granulozyten beim Schaf eine stärkere Aktivität als die Myeloperoxidase der neutrophilen 

Granulozyten aufweist (Jain, 1967); (Jain, 1970), als auch mit den Befunden von verschiedenen 

Autoren, nach denen die eosinophile Peroxidase im Allgemeinen in den Granula lokalisiert ist 

(Gleich et al., 1993); (Jain, 1993); (Costa et al., 1997); (Raskin und Valenciano, 2000); (Steffens, 

2000); (Young, 2000); (Sinowatz, 2006a). Der Nachweis einer Peroxidase-Aktivität bei den 

eosinophilen Granulozyten der Schafe wurde weiterhin von Al Izzi et al. (Al Izzi et al., 2007) 

erbracht. Die positive Reaktion der ß-Glucuronidase präsentierte sich in Form einer diffusen 

Reaktion im Zytoplasma der eosinophilen Granulozyten, die im Vergleich zu den neutrophilen 

Granulozyten meist stärker ausfiel. Auch Lorbacher et al. (1967) und Marshall et al. (1988) 

beobachteten bei humanen eosinophilen Granulozyten eine stärkere Intensität der Anfärbung 

verglichen mit den neutrophilen Granulozyten (Lorbacher et al., 1967); (Marshall et al., 1988). 

Bei einigen Zellen war zusätzlich eine Anfärbung mancher Granula zu sehen, die durch die 

Lokalisation der ß-Glucuronidase in den eosinophilen Granula zu erklären ist (Young, 2000). Der 

histochemische Nachweis einer Aktivität der unspezifischen Esterasen konnte in meinen 

Untersuchungen nicht eindeutig erbracht werden. Es konnte lediglich vermutet werden, dass 
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manche Granula eine positive Reaktion aufweisen. Laut Raskin und Valenciano (2000) können 

bei Wiederkäuern jedoch unspezifische Esterasen in den eosinophilen Granulozyten vorkommen 

(Raskin und Valenciano, 2000). Sowohl Fey und Kunze (1970) als auch Schnabl (1976) stellten 

beim Schaf eine Aktivität der α-Naphthyl-Azetat-Esterase in den eosinophilen Granulozyten fest 

(Fey und Kuntze, 1970); (Schnabl, 1976). Jain (1970) sowie Osbaldiston und Sullivan (1978) 

konnten diese hingegen nicht nachweisen (Jain, 1970); (Osbaldiston und Sullivan, 1978). Fey und 

Kuntze (1970) berichten zudem über eine schwache Aktivität der Naphthol-AS-Azetat-Esterase 

beim Schaf (Fey und Kuntze, 1970). Laut Raskin und Valenciano (2000) weisen die eosinophilen 

Granulozyten der Haussäuger im Zytoplasma die alkalische Phosphatase auf (Raskin und 

Valenciano, 2000). In meinen Untersuchungen konnte ich jedoch keine Aktivität der alkalischen 

Phosphatase in den eosinophilen Granulozyten der Schafe beobachten. Bei Atwal und McFarland 

(1967), mit einer Modifikation der Metallsalzmethode nach Gomori, bei Jain (1968 und 1970), 

mit der Technik nach Kaplow (1955), und bei Schnabl (1976), mit der Methode nach Löffler 

(1966), verlief der Nachweis der alkalischen Phosphatase der eosinophilen Granulozyten der 

Schafe ebenso negativ (Atwal und McFarland, 1967); (Jain, 1968); (Jain, 1970); (Schnabl, 1976). 

Die eosinophilen Granulozyten zeigten, wie in der Literatur beschrieben (Fey und Kuntze, 1970); 

(Stobbe, 1970); (Schnabl, 1976); (Raskin und Valenciano, 2000), keine Aktivität der Chlorazetat-

Esterase.  

Bei den enzymhistochemischen Untersuchungen waren keinerlei Alters- oder 

Geschlechtsunterschiede zu vermerken. 

 

3. Elektronenmikroskopie 

Die Erythrozyten des Schafes stellten sich unter dem Elektronenmikroskop als unregelmäßig 

geformte, kernlose Zellen mit einer glatten Membran dar. Nur selten wiesen sie eine runde oder 

bikonkave Scheibenform auf und die Unterschiede in der Form waren wesentlich stärker 

ausgeprägt als bei anderen Haussäugetieren. Das Zytoplasma zeigte sich homogen und relativ 

elektronendicht und besaß weder Zellkern noch Zellorganellen, da diese am Ende der 

Erythropoese ausgestoßen werden (Hees und Tschudi, 1990); (Kolb, 1991). Die allgemeine 

Morphologie der ovinen Erythrozyten entspricht somit den Angaben in der Literatur für die 

Erythrozyten der Haussäuger (Hawkey und Dennet, 1990); (Kolb, 1991); (Jain, 1993); (Lösch et 

al., 2000); (Liebich, 2004). Das Zytoplasma besteht laut Literaturangaben zum größten Teil aus 

Hämoglobin, das ca. 95 % der Trockensubstanz der Erythrozyten ausmacht (Jain, 1993); (Liebich, 

2004). Die von mir unter dem Elektronenmikroskop beobachtete, relativ elektronendichte Struktur 

der roten Blutkörperchen ist durch den hohen Eisengehalt des Hämoglobins bedingt (Kolb, 1991).  
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Die Thrombozyten der untersuchten Schafe traten unter dem Elektronenmikroskop als rundliche, 

ovale oder stäbchenförmige Zellen mit einer glatten Zellmembran in Erscheinung. Seitlich 

betrachtet konnte eine scheibenförmige oder linsenförmige Gestalt erkannt werden. Ein Zellkern 

fehlte. Diese morphologischen Charakteristika gelten laut Jain (1993) und Liebich (2004) auch für 

andere Haussäuger (Jain, 1993); (Liebich, 2004). Die Größe der Thrombozyten beläuft sich laut 

Literaturangaben bei den Säugern auf ca. 2 - 4 µm (Banks, 1981); (Lösch et al., 2000); (Liebich, 

2004), wobei bei den Schafen mitunter die kleinsten Thrombozyten auftreten (Hees und Tschudi, 

1990). Der Durchmesser lag in meinen Untersuchungen in der Regel zwischen 1 und 2 µm. 

Innerhalb der Zelle konnte ich bei den ovinen Thrombozyten zwei Zonen unterscheiden. Das 

dichte, granulareiche Zellzentrum wurde mehr oder weniger deutlich von einer homogenen 

Zytoplasmazone ringartig umgeben. Diese beiden Zonen, nämlich das zentrale Granulomer und 

das periphere Hyalomer, wurden auch bei den anderen Haussäugern von einigen Autoren 

differenziert (Banks, 1981); (Hees und Tschudi, 1990); (Liebich, 2004). Manche Granula lagen 

bei den ovinen Thrombozyten jedoch auch direkt neben der Plasmamembran. Morphologisch 

konnte ich zwei verschiedene Granula-Typen unterscheiden, die auch in früheren Untersuchungen 

anderer Autoren bereits beschrieben wurden (Lösch et al., 2000); (Reed, 2007); (White, 2007); 

(Cerecedo et al., 2010). Wie beim Menschen (White, 2007) besaßen die runden bis ovalen α-

Granula auch beim Schaf einen relativ homogenen und elektronendichten Inhalt und wurden von 

einer Membran umgeben. Die α-Granula sind laut Liebich (2004) bei den Haussäugetieren im 

Allgemeinen 0,2 - 0,3 µm groß (Liebich, 2004). Der Durchmesser der α-Granula war in meinen 

Untersuchungen mit 0,3 - 0,4 µm etwas größer. Die so genannten „dense bodies“ waren, wie beim 

Menschen (Hartwig, 2007), kleiner als die α-Granula und kamen in einer geringeren Anzahl vor. 

Der Durchmesser der „dense bodies“ lag in den meisten Fällen zwischen 0,2 und 0,3 µm. Sie 

waren von einer klar definierten Membran umgeben und besaßen einen exzentrisch gelegenen, 

äußerst elektronendichten, runden Innenkörper, der von der Membran durch einen 

elektronendurchlässigen Zwischenraum getrennt wurde. Beim Menschen wird dieser Granula-Typ 

aufgrund dieser Ultrastruktur auch als „bulls eye“ bezeichnet (White, 2007). Im Zytoplasma 

waren weiterhin Vesikel, Mitochondrien und wenige Glykogenpartikel zu sehen, die auch von 

anderen Autoren beschrieben wurden (Banks, 1981); (Hees und Tschudi, 1990); (Sinowatz, 

2006a). 

Die Lymphozyten der untersuchten Schafe erschienen unter dem Elektronenmikroskop als runde 

bis ovale Zellen. Die Zellmembran war glatt und trug bei manchen Zellen unterschiedlich lange 

Zytoplasmaausläufer. Der Zellkern wies eine runde bis ovale Gestalt auf und lag entweder zentral 

oder exzentrisch in der Zelle. Innerhalb des Zellkernes konnte ich deutlich das zentral gelegene, 

locker gepackte, wenig elektronendichte Euchromatin von dem peripher gelegenen, dicht 

gepackten, elektronendichten Heterochromatin unterscheiden. Yamada und Sonoda (Yamada und 
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Sonoda, 1972b) kamen bei elektronenmikroskopischen Untersuchungen der ovinen Lymphozyten 

zu ähnlichen Ergebnissen. Im Zytoplasma der Lymphozyten waren, wie auch von Liebich 

(Liebich, 2004) beschrieben, nur wenige Organellen zu finden. Es waren aber einige 

Mitochondrien und kleine Vesikel zu sehen. Ein Golgi-Apparat zeigte sich in den Proben nur 

äußerst selten. Gleiche Beobachtungen bezüglich der Zellorganellen in ovinen Lymphozyten 

machten auch Yamada und Sonoda (Yamada und Sonoda, 1972b). Gemäß den Angaben in der 

Literatur (Yamada und Sonoda, 1972b); (Greenwood, 1977); (Banks, 1981); (Kramer, 2000) 

konnte ich bei manchen Lymphozyten der untersuchten Schafe elektronendichte Granula im 

Zytoplasma beobachten. Diese hatten eine runde Gestalt und waren ca. 0,2 µm groß. Yamada und 

Sonoda (1972) geben einen Durchmesser von 0,2 - 0,5 µm an (Yamada und Sonoda, 1972b). Die 

Zellgröße der ovinen Lymphozyten variierte teilweise stark. Bei den Haussäugern wird, je nach 

Autor, zwischen kleinen und großen Lymphozyten (Hees und Tschudi, 1990); (Kolb, 1991); 

(Lösch et al., 2000); (Kraft et al., 2005) bzw. zwischen kleinen, mittleren und großen 

Lymphozyten (Banks, 1981); (Jain, 1993); (Kramer, 2000); (Steffens, 2000); (Liebich, 2004) 

unterschieden. Wie Banks (Banks, 1981) bereits anmerkte, gestaltete sich jedoch die Einteilung 

der ovinen Lymphozyten anhand ihrer Größe unter dem Elektronenmikroskop nicht immer leicht. 

Eine Differenzierung von B- und T-Lymphozyten war anhand der Ultrastruktur nicht möglich. 

Die Monozyten der Schafe waren, wie auch bei den anderen Haussäugern (Jain, 1993); (Steffens, 

2000); (Liebich, 2004), die größten reifen Leukozyten im Blut und zeigten unter dem 

Elektronenmikroskop eine meist unregelmäßige Gestalt. Entgegen den Ergebnissen von Yamada 

und Sonoda (Yamada und Sonoda, 1972b) konnten von mir aber auch Monozyten mit einer 

annähernd runden bis ovalen Gestalt gefunden werden. Der Zellkern lag meist exzentrisch in der 

Zelle, wobei diese Lokalisation wohl charakteristisch für die Monozyten der Haussäuger ist (Hees 

und Tschudi, 1990); (Kolb, 1991); (Steffens, 2000) und auch schon beim Schaf beschrieben 

wurde (Norris und Cham-Berlin, 1929). Der große Kern zeichnete sich, wie auch von Jain (Jain, 

1993) beschrieben, durch eine äußerst variable Gestalt aus. Oft war er hufeisenförmig gebogen, 

was mit den Befunden mehrerer Autoren (Norris und Cham-Berlin, 1929); (Yamada und Sonoda, 

1972b); (Greenwood, 1977) übereinstimmt. Wie bei den Lymphozyten konnte ich auch im Kern 

der Monozyten das hellere Euchromatin, das von dem dunkleren Heterochromatin umgeben wird, 

eindeutig identifizieren. Gelegentlich konnte ich im Zellkern, wie von Bienzle (Bienzle, 2000) 

beschrieben, Nukleoli finden. Das Zytoplasma war reichlich vorhanden, wobei auch Lösch et al. 

(2000) für die Monozyten der Haussäuger ein kleines Kern-Zytoplasma-Verhältnis angeben 

(Lösch et al., 2000). Das Zytoplasma enthielt mehr Organellen als das der Lymphozyten und ließ 

in den Proben einen Golgi-Apparat, Zisternen des endoplasmatischen Retikulums, Mitochondrien 

und viele kleine Vesikel erkennen. Ähnliche Beobachtungen machten auch Yamada und Sonoda 

(Yamada und Sonoda, 1972b) bei elektronenmikroskopischen Untersuchungen oviner 
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Monozyten. Entgegen den Ergebnissen von einigen Autoren (Norris und Cham-Berlin, 1929); 

(Ullrey et al., 1965b); (Yamada und Sonoda, 1972b); (Jain, 1993); (Bienzle, 2000), die über das 

Vorkommen von zytoplasmatischen Granula bei den Monozyten berichten, konnte ich in keinem 

der Ultradünnschnitte Granula im Zytoplasma der Monozyten finden. Auch Greenwood (1977) 

und Banks (1981) berichten von einem seltenen Auftreten dieser Granula beim Schaf 

(Greenwood, 1977); (Banks, 1981). Die Zellmembran trug bei dem Großteil der Zellen 

unterschiedlich große, fingerförmige Projektionen, die auch von Yamada und Sonoda (Yamada 

und Sonoda, 1972b) beschrieben wurden. Diese Pseudopodien sind laut Hees und Tschudi (1990) 

ein Zeichen für den aktivierten Zustand der Zelle (Hees und Tschudi, 1990). 

Die neutrophilen Granulozyten der Schafe traten unter dem Elektronenmikroskop als runde bis 

ovale Zellen in Erscheinung. Die Zellmembran war in der Regel glatt und trug unterschiedlich 

stark ausgebildete Pseudopodien, die frei von Zellorganellen waren. Auch Yamada und Sonoda 

(Yamada und Sonoda, 1970b) sowie Rudolph und Schnabl (Rudolph und Schnabl, 1981) kamen 

bei elektronenmikroskopischen Untersuchungen der ovinen neutrophilen Granulozyten zu 

ähnlichen Ergebnissen. Die reifen neutrophilen Granulozyten besaßen, wie in der Literatur 

beschrieben (Smith, 2000); (Steffens, 2000); (Liebich, 2004), einen segmentierten Kern, der im 

elektronenmikroskopischen Bild in Form von mehreren getrennten Chromatinbereichen in 

Erscheinung trat. Dies ist durch die äußerst geringe Dicke des Ultradünnschnitts bedingt. Gemäß 

den Befunden von Yamada und Sonoda (Yamada und Sonoda, 1970b) waren die einzelnen 

Kernsegmente teilweise durch schmale Chromatinbrücken miteinander verbunden. Die übliche 

Einteilung des Zellkernes in das hellere Euchromatin, das von dem dunkleren Heterochromatin 

umgeben wird (Yamada und Sonoda, 1970b); (Steffens, 2000), war auch bei den neutrophilen 

Granulozyten der Schafe deutlich zu erkennen. Laut Steffens (2000) dominiert bei gesunden 

Tieren das elektronendichte Heterochromatin, wogegen bei manchen Infektionen eine Zunahme 

des zentralen Euchromatinbereiches zu sehen ist (Steffens, 2000). Auch in meinen Proben konnte 

in den meisten Fällen ein Überwiegen des Heterochromatins beobachtet werden. Im Zytoplasma 

waren, je nach Schnitt, zahlreiche Granula mit einer großen Variationsbreite, was Form, Größe 

und Elektronendichte betrifft, zu sehen. Diese Beobachtung stimmt mit den Befunden von 

Rudolph und Schnabl (Rudolph und Schnabl, 1981) überein. Eine Unterscheidung der Granula-

Typen war elektronenmikroskopisch zwar möglich, für eine exakte Differenzierung wären jedoch 

enzymhistochemische Untersuchungen auf ultrastrukturellem Niveau sinnvoll, da die primären 

Granula, wie bereits beschrieben, im Gegensatz zu den sekundären Granula Peroxidase-positiv 

sind (Buchta, 1990); (Smith, 2000). Die primären Granula hatten in meinen Proben eine längliche 

Gestalt und waren ungefähr 0,4 - 0,5 µm groß. Die sekundären Granula hingegen hatten eine 

runde Gestalt. Außerdem erschienen sie elektronendichter als die primären Granula und waren mit 

einer Größe von 0,2 - 0,3 µm kleiner als diese. Im Bezug auf die Morphologie und die Größe der 
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Granula stimmen meine Beobachtungen mit den Befunden von Steffens (Steffens, 2000) 

weitgehend überein. Weiterhin konnte ich beobachten, dass die sekundären Granula häufiger 

auftreten als die primären Granula. Dies deckt sich mit den Befunden von Jain (1993), wonach bei 

den Haussäugern in reifen neutrophilen Granulozyten das Verhältnis von primären zu sekundären 

Granula etwa 1:2 beträgt (Jain, 1993). Die nach Literaturangaben bei den Wiederkäuern 

vorkommenden, „großen Granula“ (Baggiolini et al., 1985); (Styrt, 1989); (Kramer, 2000) konnte 

ich in keiner der untersuchten Proben identifizieren. Auch laut Buchta (1990) und Kramer (2000) 

sind diese beim Schaf nur sehr selten zu finden (Buchta, 1990); (Kramer, 2000). Neben den 

Granula waren im Zytoplasma, gemäß den Angaben von Yamada und Sonoda (Yamada und 

Sonoda, 1970b), unterschiedlich große Vakuolen und Vesikel, wenige Mitochondrien, ein Golgi-

Apparat sowie Zisternen des endoplasmatisches Retikulums zu sehen. Weiterhin konnten in 

manchen Zellen Glykogenpartikel identifiziert werden, über deren Vorkommen in der Literatur 

ebenfalls berichtet wird (Rudolph und Schnabl, 1981); (Steffens, 2000). Unreife (stabkernige) 

neutrophile Granulozyten konnten unter dem Elektronenmikroskop in meinen Proben nicht 

gefunden werden. Dies steht im Einklang mit dem Befund von Sinowatz (2006), wonach die 

Granulozyten in der Regel bis zu ihrer vollkommenen Ausreifung im Knochenmark verbleiben 

und somit unreife Granulozyten in der Zirkulation nur selten vorkommen (Sinowatz, 2006a).  

Auch die eosinophilen Granulozyten stellten sich unter dem Elektronenmikroskop als runde bis 

ovale Zellen dar. Die Zellmembran war glatt und trug unterschiedlich große Pseudopodien. Der 

Zellkern war gelappt oder auch segmentiert. Je nach Chromatinkondensation konnte das zentrale, 

helle Euchromatin vom peripheren, dunklen Heterochromatin deutlich unterschieden werden. 

Diese Befunde entsprechen den Ergebnissen elektronenmikroskopischer Untersuchungen von 

Yamada und Sonoda (Yamada und Sonoda, 1970a), bei denen sie die Ultrastruktur von 

eosinophilen Granulozyten der Schafe genauer analysierten. Gemäß den Angaben in der Literatur 

(Yamada und Sonoda, 1970a); (Rudolph und Schnabl, 1981) kommen im Zytoplasma der 

eosinophilen Granulozyten der Schafe zahlreiche Granula von unterschiedlicher Größe, Form und 

Struktur vor. Ihr Durchmesser lag in meinen Untersuchungen in den meisten Fällen zwischen 0,4 

und 1,1 µm. Yamada und Sonoda (Yamada und Sonoda, 1970a) berichten über ähnliche 

Größenverhältnisse bei den eosinophilen Granula der Schafe. Rudolph und Schnabl (1981) 

hingegen beschreiben beim Schaf eine Größe von bis zu 1,5 µm (Rudolph und Schnabl, 1981). 

Die Form der Granula reichte, gemäß Yamada und Sonoda (Yamada und Sonoda, 1970a), von 

rund über oval bis spindelförmig. Yamada und Sonoda (1970) differenzieren bei den ovinen 

eosinophilen Granulozyten anhand der Innenstruktur sechs verschiedene Granula-Typen (Yamada 

und Sonoda, 1970a). Bei dem Großteil der von mir untersuchten Granula erschien der Inhalt 

kristallin, wobei ein bis zwei, äußerst elektronendichte, lamelläre Einschlüsse in einer homogenen 

Matrix lagen. Dieser Granula-Typ entspricht sehr wahrscheinlich dem von Yamada und Sonoda 
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(1970) beschriebenen Typ 2, der elektronendichte „Mittelplatten“ enthält und von ihnen am 

häufigsten gefunden wurde (Yamada und Sonoda, 1970a). Laut Kramer (2000) stellt diese 

kristalline Struktur, die teilweise schon unter dem Lichtmikroskop als dunkler Einschluss 

erkennbar wird, eine Besonderheit der eosinophilen Granula des Schafes dar (Kramer, 2000). 

Seltener konnte ich in meinen Proben Granula mit einem homogenen Inhalt finden. Dieser 

Granula-Typ repräsentiert vermutlich den von Yamada und Sonoda (1970) beschriebenen Typ 1, 

der homogenes Material enthält und nur selten vorkommt (Yamada und Sonoda, 1970a). Bei 

manchen Granula konnte ich eine deutliche Membran erkennen, die auch von Yamada und 

Sonoda (Yamada und Sonoda, 1970a) identifiziert wurde. Im Zytoplasma waren weiterhin ein 

Golgi-Apparat, Zisternen des endoplasmatischen Retikulums, Mitochondrien und zahlreiche 

Vesikel zu sehen. Sowohl Yamada und Sonoda (Yamada und Sonoda, 1970a) als auch Rudolph 

und Schnabl (Rudolph und Schnabl, 1981) berichten über ähnliche Zellorganellen in den 

eosinophilen Granulozyten der Schafe. 

Obwohl eine große Zahl von Ultradünnschnitten in meiner Arbeit elektronenmikroskopisch 

untersucht wurde, konnte kein basophiler Granulozyt sicher identifiziert werden. Dies liegt daran, 

dass die basophilen Granulozyten beim Schaf nur durchschnittlich 0,5 % (0 - 3 %) der gesamten 

Leukozyten ausmachen (Jain, 1993); (Kramer, 2000). 

Bei den elektronenmikroskopischen Untersuchungen konnten keine Unterschiede in der 

Ultrastruktur der Blutzellen in Abhängigkeit von Alter oder Geschlecht festgestellt werden. 

 

4. Fluoreszenzmikroskopie 

4.1 Untersuchungen des Zytoskeletts oviner Blutzellen 

Das Zytoskelett der ovinen Blutzellen wurde mit zwei verschiedenen Techniken untersucht. Der 

Nachweis von F-Aktin erfolgte durch das Tetramethylrhodaminisothiocyanat (TRITC)-markierte 

Toxin Phalloidin. Myosin, Vimentin, Tubulin und Zytokeratin hingegen wurden durch indirekte 

immunhistochemische Methoden nachgewiesen, wobei die Sekundärantikörper mit 

Fluoreszeinisothiocyanat (FITC) markiert waren. Zur besseren Identifizierung der einzelnen 

Blutzellen unter dem Fluoreszenzmikroskop wurde eine DAPI-Kernfärbung durchgeführt.  

Die Erythrozyten der Schafe zeigten nur eine Bindung von Phalloidin-TRITC. Dabei war nur eine 

schwache, homogene Anfärbung der Zellen zu erkennen. Das Zytoskelett der Erythrozyten 

besteht laut Angaben in der Literatur aus Spektrin, Aktin und weiteren Proteinen (Calvert et al., 

1979). Mehrere Spektrinmoleküle bilden mit kurzen Aktinfilamenten ein flaches Netzwerk 

(Bennett, 1990), das submembranös lokalisiert ist und über bestimmte Adaptorproteine mit der 
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Plasmamembran verknüpft ist (Jöns, 2001). Die eher schwache Fluoreszenz lässt sich 

wahrscheinlich dadurch erklären, dass die Aktinfilamente der Erythrozyten durchschnittlich aus 

nur 12 - 14 β-Aktinmonomeren bestehen und mit einer Länge von ungefähr 33 - 37 nm relativ 

kurz sind. Das Spektrinmolekül hingegen kann eine Länge von bis zu 200 nm erreichen (Bennett, 

1990). Gov (2007) beschreibt die Aktinfilamente der Erythrozyten als „Aktin-Knoten“, wobei 

ungefähr sechs Spektrinfilamente mit ihren Enden an einen dieser Knoten binden (Gov, 2007). 

Reife Erythrozyten besitzen laut Moll (2006) keine Mikrotubuli (Moll, 2006). 

Intermediärfilamente kommen in reifen Erythrozyten ebenso nicht vor. Vimentin kann noch in 

Erythroblasten nachgewiesen werden, geht aber nach Ausstoßung des Kernes während der 

Erythropoese verloren (Georgatos und Marchesi, 1985). 

Das Zytoskelett der Thrombozyten besteht der Literatur nach aus einem Membranskelett aus 

Spektrin- und Aktinfilamenten (Boyles et al., 1985), einem zytoplasmatischen Aktinnetzwerk und 

einer am Zellrand verlaufenden Mikrotubuliwendel (Fox, 2001); (Hartwig, 2007). Aber auch das 

Motorprotein Myosin ist Bestandteil des thrombozytären Zytoskeletts (Cerecedo et al., 2002); 

(Liebich, 2004). In meinen Untersuchungen war eine meist starke Bindung von Phalloidin-TRITC 

und den Myosin IIA-Antikörpern an die ovinen Thrombozyten zu beobachten. Immunreaktives 

Tubulin konnte ich hingegen nicht nachweisen. Bei der Bindung von Phalloidin-TRITC zeigte 

sich stets eine starke Reaktion im kortikalen Bereich sowie im Zellzentrum. Das Zytoplasma der 

ovinen Blutplättchen färbte sich ebenfalls stark an. Dies liegt sehr wahrscheinlich daran, dass der 

Großteil der Aktinfilamente bei den Thrombozyten laut White (2007) im Zytoplasma der Zelle 

vorkommt (White, 2007). Es konnte häufig ein retikuläres Muster beobachtet werden, was durch 

die zelluläre Architektur der Aktinfilamente bedingt ist: Bei ruhenden Thrombozyten sind die 

Aktinfilamente laut Literaturangaben an verschiedenen Stellen durch Aktin querverbindende 

Proteine verknüpft und bilden somit ein starres Netzwerk im Zytoplasma der Zelle (Fox, 2001); 

(Hartwig, 2007). Aktin stellt laut Boyles et al. (1985) bei den Blutplättchen das am häufigsten 

vorkommende Protein dar und liegt bei inaktiven Zellen zu 35 - 40 %, bei aktiven Zellen zu 60 - 

80 % polymerisiert vor (Boyles et al., 1985). Dies erklärt die starke Anfärbung, da Phalloidin-

TRITC nur an polymerisiertes bzw. filamentäres Aktin (F-Aktin), und nicht an die globulären 

Untereinheiten (G-Aktin) bindet (Richelme et al., 1996). Darüber hinaus sind die Aktinfilamente 

der Thrombozyten, laut Hartwig (2007), im Gegensatz zu den kurzen Aktinoligomeren der 

Erythrozyten relativ lang (Hartwig, 2007). Die Myosin IIA-Antikörper zeigten ebenfalls eine 

starke Immunfärbung in den ovinen Thrombozyten, wobei sich die Zellperipherie stärker anfärbte 

als das Zellzentrum. Die Thrombozyten weisen laut Angaben in der Literatur nicht-muskuläres 

Myosin IIA und IIB auf, wobei achtundzwanzig Myosinmoleküle in den Blutplättchen Filamente 

mit einer Länge von bis zu 300 nm bilden. Die Motorproteine interagieren mit den polarisierten 

Aktinfilamenten (Hartwig, 2007), weshalb häufig von einem „Aktomyosinnetzwerk“ gesprochen 
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wird (White, 2007). Durch dieses Zusammenspiel kann auf die Aktinfilamente eine kontraktile 

Kraft, die für eine Vielzahl von Funktionen der Thrombozyten bedeutend ist, ausgeübt werden 

(Hartwig, 2007).  

Die Leukozyten (Lymphozyten, Monozyten und Granulozyten) der untersuchten Schafe zeigten 

eine meist starke Bindung von Phalloidin-TRITC, den Myosin IIA-Antikörpern und den 

Vimentin-Antikörpern. Immunreaktives Tubulin konnte ich bei den ovinen Leukozyten nicht 

nachweisen. Die Leukozyten weisen laut Angaben in der Literatur ein Zytoskelett aus 

Aktinfilamenten, Intermediärfilamenten, Mikrotubuli (Strukov et al., 1983); (Vicente-Manzanares 

et al., 2002) und Myosin auf (Strukov et al., 1983); (Richelme et al., 1996); (Vicente-Manzanares 

et al., 2002). Die Aktinfilamente der Leukozyten bilden, wie auch bei den Erythrozyten und 

Thrombozyten, das Membranzytoskelett und ermöglichen unter anderem die aktive Fortbewegung 

der Zelle. Das wichtigste Intermediärfilamentprotein der Leukozyten stellt Vimentin dar (Vicente-

Manzanares und Sanchez-Madrid, 2004); (Khismatullin, 2009), das für die Rigidität der Zellen 

verantwortlich ist (Brown et al., 2001); (Sumoza-Toledo und Santos-Argumedo, 2004); (Vicente-

Manzanares und Sanchez-Madrid, 2004). Die Leukozyten exprimieren mehrere Isoformen des 

Motorproteins Myosin (Richelme et al., 1996), darunter auch Myosin II (Richelme et al., 1996); 

(Vicente-Manzanares et al., 2002); (Vicente-Manzanares und Sanchez-Madrid, 2004). Bei den 

Lymphozyten und den Monozyten führte die Bindung von Phalloidin-TRITC zu einer 

Fluoreszenz im gesamten Zytoplasma, wobei bei den Lymphozyten ein homogenes, bei den 

Monozyten hingegen ein wabenartiges Anfärbungsmuster zu sehen war. Im Bereich der 

Plasmamembran konnte vor allem bei den Lymphozyten eine ringartige Verdichtung in 

Verbindung mit einer stärkeren Fluoreszenz beobachtet werden. Dies liegt wahrscheinlich daran, 

dass die Aktinfilamente bei den eukaryotischen Zellen im Allgemeinen ihre höchste Dichte in der 

Zellperipherie direkt unter der Plasmamembran erreichen (Alberts et al., 2004). Dem 

Aktinfilamentsystem der T-Lymphozyten wird laut Angaben in der Literatur eine bedeutende 

Rolle bei der Zellaktivierung zugeschrieben (Vicente-Manzanares et al., 2002); (Burkhardt et al., 

2008). Immunreaktives Myosin IIA präsentierte sich in den mononukleären Zellen durch ein 

körniges Muster im Zytoplasma, wobei zahlreiche fluoreszierende Punkte gleichmäßig in der 

Zelle verteilt waren. Dieses Muster spricht für ein globuläres Auftreten von Myosin in den ovinen 

Lymphozyten und Monozyten. Bei immunreaktivem Vimentin hingegen konnte ich ein 

netzartiges Muster, das sich über die gesamte Zelle erstreckte und teilweise den Kern bedeckte, 

beobachten. Vor allem bei den Lymphozyten war ein deutlicher Verlauf der Filamente zu 

erkennen, die einen grobmaschigen Käfig im Zytoplasma entstehen ließen. Teilweise waren aber 

auch punktförmige Anfärbungen im Zytoplasma zu sehen, die vermutlich längs getroffenen 

Filamenten entsprachen. Die Verformbarkeit zirkulierender Lymphozyten wird laut Brown et al. 

(2001) erst durch den Abbau dieses Vimentinnetzwerkes während der Zellpolarisation ermöglicht 
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(Brown et al., 2001). Bei den neutrophilen und eosinophilen Granulozyten führte die Bindung von 

Phalloidin-TRITC zu einer starken Fluoreszenz im Zytoplasma, die ebenfalls teilweise ein 

retikuläres Muster erkennen ließ und sich in der Zellperipherie verdichtete. Wie bei den 

Lymphozyten und den Monozyten bereits erwähnt, erreichen die Aktinfilamente trotz Verteilung 

in der gesamten Zelle ihre höchste Dichte direkt unter der Plasmamembran (Alberts et al., 2004), 

um dort das kortikale Zytoskelett zu bilden (Khismatullin, 2009). Bei den neutrophilen 

Granulozyten besteht laut Jog et al. (2000) eine Assoziation der Aktinfilamente mit den 

neutrophilen Granula, die ich in meinen Proben jedoch nicht beobachten konnte. Durch diese 

Verbindung wird der Transport der Granula zur Plasmamembran und somit deren Exozytose 

reguliert bzw. limitiert. Dies verhindert die  Freisetzung der Enzyme bei unstimulierten Zellen 

(Jog et al., 2007). Wie bei den Lymphozyten und den Monozyten zeigte immunreaktives Myosin 

IIA auch bei den Granulozyten ein körniges Muster im Zytoplasma, wobei sich das granulareiche 

Zellzentrum deutlich schwächer anfärbte als die Zellperipherie. Myosin IIA scheint folglich auch 

in den Granulozyten globulär vorzuliegen. Immunreaktives Vimentin zeigte auch bei den 

Granulozyten, je nach Filamentverlauf, ein netzartiges oder körniges Muster im Zytoplasma. Ein 

grobmaschiges Netzwerk schien auch hier das Zytoplasma auszufüllen. Der Verlauf einzelner 

Filamente konnte teilweise von der Plasmamembran bis hin zum Kern verfolgt werden. Dies 

deckt sich mit den Angaben in der Literatur, wonach die Intermediärfilamente sowohl mit der 

Kern- als auch mit der Plasmamembran verbunden sind (Fuchs und Weber, 1994); (Brown et al., 

2001). In der perinukleären Region war häufig eine Verdichtung des Netzwerkes zu sehen. Diese 

Beobachtung steht im Einklang mit den Befunden von Lehto et al. (1978) sowie Georgatos und 

Marchesi (1985), nach denen die Intermediärfilamente gehäuft in der perinukleären Region 

vorkommen (Lehto et al., 1978); (Georgatos und Marchesi, 1985) und für die Verankerung des 

Zellkernes im Zytoplasma sorgen (Lehto et al., 1978). Laut Lazarides (1980) ist vor allem 

Vimentin eng mit dem Zellkern assoziiert (Lazarides, 1980). 

Keratinfilamente kommen laut Lazarides (1980) bevorzugt in epithelialen Zellen vor (Lazarides, 

1980). In meinen Untersuchungen konnte ich keine Bindung der Pancytokeratin-Antikörper an die 

verschiedenen Blutzellen des Schafes nachweisen.                 

Bei keinem der untersuchten Blutausstriche war eine positive Reaktion beim 

immunhistochemischen Nachweis von Tubulin zu beobachten. Parallel angefertigte 

Positivkontrollen der Blutzellen von Strauß und Kaninchen zeigten jedoch bei diesen Spezies eine 

positive Reaktion der Thrombozyten und vereinzelt auch der Leukozyten. Laut Angaben in der 

Literatur finden sich die Mikrotubuli in nahezu allen Zellen vor (Moll, 2006). Sie unterliegen 

ausgeprägten dynamischen Veränderungen (Khismatullin, 2009) und stehen mit den im 

Zytoplasma vorliegenden, globulären Tubulin-Untereinheiten im Gleichgewicht (Welsch und 
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Sobotta, 2003). Sie entspringen dem Mikrotubuli organisierenden Zentrum (microtubule-

organising center, MOC) (Frankel, 1976); (Osborn et al., 1978); (Weber und Osborn, 1981); 

(Alberts et al., 2004) und durchspannen das Zytoplasma oft über die gesamte Distanz zwischen 

Kern und Plasmamembran (Osborn et al., 1978); (Weber und Osborn, 1981). Wie die 

Intermediärfilamente kommen sie in der perinukleären Region vermehrt vor (Georgatos und 

Marchesi, 1985). Bei nicht aktivierten Thrombozyten liegt Tubulin vor allem in der 

polymerisierten Form vor (White, 2007). Die Mikrotubuli erscheinen hier in Form einer Wendel 

(Hartwig, 2007); (White, 2007), die im Zytoplasma entlang des größten Zellumfangs unterhalb 

der Zellmembran verläuft (White, 2007) und für die Aufrechterhaltung der diskoidalen Form der 

Blutplättchen sorgt (Nachmias, 1980); (Schwer et al., 2001); (Cerecedo et al., 2002); (Hartwig, 

2007); (White, 2007). Möglicherweise ist der negative Nachweis von Tubulin bei den Blutzellen 

der Schafe methodisch bedingt. Der verwendete Antikörper ist nicht spezifisch für das Schaf und 

reagiert bevorzugt mit Zellen von Mensch, Maus und Ratte und, je nach Sequenzhomologie, mit 

Zellen von Huhn, Gerbil, Meerschweinchen, Rind und Schwein. Weiterhin könnte die fehlende 

Fixierung den negativen Nachweis der Mikrotubuli beeinflussen, da diese äußerst empfindliche 

Strukturen darstellen und schon bei geringen Änderungen des Zellmilieus in ihre Untereinheiten 

zerfallen (Sauermost, 1991). Bei den Thrombozyten kann eine Kälteeinwirkung zum Abbau der 

die Wendel bildenden Mikrotubuli führen (Hartwig, 2007); (White, 2007). Laut White (2007) 

könnte diese jedoch durch Taxol stabilisiert werden (White, 2007).  

Bei den Untersuchungen des Zytoskeletts oviner Blutzellen konnten keine Unterschiede in 

Abhängigkeit von Alter oder Geschlecht festgestellt werden. 

 

4.2 Glykohistochemische Untersuchungen 

Für die glykohistochemischen Untersuchungen der ovinen Blutzellen wurden siebzehn Pflanzen-

Lektine verwendet. Die Lektine ConA, LCA, PSA, PNA, RCA, WGA, WGAs, GSL-I, DBA, 

SBA, SJA, UEA-I, PHA-L und PHA-E waren zur Darstellung der Lektinbindung an den 

Fluoreszenzfarbstoff FITC gekoppelt. Die Bindung der biotinylierten Lektine VAA, SNA und 

MAA-I wurde mittels der Streptavidin-Biotin-Methode nachgewiesen. Zur besseren 

Identifizierung der einzelnen Blutzellen unter dem Fluoreszenzmikroskop wurde eine DAPI-

Kernfärbung durchgeführt. In der Literatur existieren zum jetzigen Zeitpunkt kaum Angaben über 

das Bindungsverhalten von Lektinen an die verschiedenen Blutzellen der Schafe. Lediglich bei 

ovinen Erythrozyten und Lymphozyten wurden bisher lektinhistochemische Untersuchungen 

durchgeführt. Über das Bindungsverhalten verschiedener Lektine an humane oder bovine 

Blutzellen sind unterschiedliche Angaben in der Literatur zu finden (Sumner und Howell, 1936); 

(Emerson und Kornfeld, 1976); (Newman und Uhlenbruck, 1977); (Pearson et al., 1979); (Reisner 
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et al., 1979); (Lee et al., 1987); (Eguchi et al., 1989). Ein Vergleich dieser Befunde mit den 

Ergebnissen der lektinhistochemischen Untersuchungen der ovinen Blutzellen gestaltet sich 

jedoch schwierig, da in der Verteilung der Lektinrezeptoren auf den Zelloberflächen der 

verschiedenen Spezies deutliche Unterschiede bestehen (Djilali et al., 1987). Obwohl Schafe, 

Rinder und Pferde beispielsweise qualitativ die gleichen Monosaccharide auf der 

Erythrozytenmembran aufweisen, ist der Anteil der einzelnen Zucker sehr unterschiedlich 

(Hudson et al., 1975). 

Die Erythrozyten der untersuchten Schafe reagierten mit ConA, LCA, PSA, WGA und WGAs  

positiv. Diese FITC-markierten Lektine zeigten sowohl eine Bindung an die Membran als auch an 

das Zytoplasma der roten Blutkörperchen. Die Reaktion mit der Membran war meist deutlich bis 

stark positiv, das Zytoplasma hingegen zeigte in der Regel nur eine schwache Anfärbung. GSL-I 

ließ nur bei wenigen Erythrozyten eine schwache Bindung an die Membran erkennen. PNA, RCA, 

VAA, SNA, DBA, SBA, SJA, UEA-I, PHA-E, PHA-L und MAA-I reagierten negativ. Die 

positive Reaktion von ConA mit der Erythrozytenmembran deckt sich mit dem Befund von 

Schmid und Cwik (1974), wonach die Membran der ovinen Erythrozyten genetisch determinierte 

ConA-Rezeptoren trägt (Schmid und Cwik, 1974). In der Literatur wird mehrfach von einer 

Reaktion von PHA mit der Erythrozytenmembran der Schafe berichtet (Hamaguchi und Cleve, 

1972); (Schmid, 1973); (Leca et al., 1985), in meinen Untersuchungen zeigten die roten 

Blutkörperchen jedoch keine Anfärbung mit PHA-E oder PHA-L. Diese Divergenz könnte 

möglicherweise durch verschiedene Techniken der Fixierung und der Färbung bedingt sein. Die 

Ergebnisse der glykohistochemischen Untersuchungen lassen darauf schließen, dass die 

Glykokalix der ovinen Erythrozyten einen großen Anteil an Glukose-, Mannose- N-Acetyl-

Glukosamin- und N-Acetyl-Neuraminsäure-haltigen Zuckerstrukturen enthält. Diese Beobachtung 

deckt sich mit den Befunden von Hudson et al. (1975), die unter anderem über das Vorhandensein 

von Glukose, Mannose, N-Acetyl-Glukosamin und Sialinsäuren auf der Erythrozytenmembran 

der Schafe berichten (Hudson et al., 1975). Auch Hamaguchi und Cleve (1972) sowie Fletcher et 

al. (1978) konnten Sialinsäuren auf der Erythrozytenmembran von Schafen nachweisen 

(Hamaguchi und Cleve, 1972); (Fletcher et al., 1978). N-Acetyl-Galaktosamin-Reste scheinen auf 

den ovinen Erythrozyten kaum in größeren Mengen vorhanden zu sein. Galaktose- und Fukose-

Reste sowie durch PHA-E, PHA-L und MAA-I nachzuweisende, komplexe 

Kohlenhydratstrukturen konnten in meinen Untersuchungen auf der Oberfläche der Erythrozyten 

nicht nachgewiesen werden. Damit konnten die von Hudson et al. (1975), Fletcher et al. (1978) 

sowie Kusui und Takasaki (1998) erhobenen Befunde, wonach die ovinen Erythrozyten Galaktose 

und N-Acetyl-Galaktosamin in großen Mengen besitzen (Hudson et al., 1975); (Fletcher et al., 

1978); (Kusui und Takasaki, 1998), nur teilweise bestätigt werden. Kusui und Takasaki (1998) 

berichten jedoch von einer nur äußerst geringen Fukosekonzentration auf der 
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Erythrozytenmembran der Schafe (Kusui und Takasaki, 1998), was das Ausbleiben der Bindung 

von UEA-I in meinen Untersuchungen erklären könnte. Nach der Vorbehandlung mit 

Neuraminidase zeigten die ovinen Erythrozyten eine Bindung von PNA an die Plasmamembran. 

Dies lässt darauf schließen, dass bestimmte Galaktose-Reste auf der ovinen Erythrozytenmembran 

von Sialinsäuren (z.B. N-Acetyl-Neuraminsäure) maskiert werden. Zu dem Ergebnis, dass eine 

Reaktion von PNA mit den roten Blutkörperchen erst nach Abspaltung der Sialinsäuren möglich 

ist, kamen auch Newman und Uhlenbruck (1977) bei humanen Erythrozyten (Newman und 

Uhlenbruck, 1977). 

Die Thrombozyten der Schafe zeigten vor allem im Bereich des Granulomers eine Bindung 

verschiedener Lektine. ConA, LCA, WGA, WGAs und GSL-I reagierten meist deutlich bis stark 

positiv. Bei PSA und PHA-L war die Bindung an das Granulomer etwas schwächer. MAA-I 

hingegen führte als einziges Lektin zu einer Anfärbung der Thrombozytenmembran. PNA, RCA, 

VAA, SNA, DBA, SBA, SJA, UEA-I und PHA-E reagierten negativ. Diese Ergebnisse deuten 

glykochemisch auf das Vorhandensein von Glukose-, Mannose-, N-Acetyl-Glukosamin-, N-

Acetyl-Neuraminsäure- und N-Acetyl-Galaktosamin-Resten im Granulomer der ovinen 

Thrombozyten hin. Durch PHA-L nachzuweisende, komplexe Kohlenhydratstrukturen scheinen 

im Granulomer, durch MAA-I nachzuweisende, komplexe Kohlenhydratstrukturen auf der 

Membran der Thrombozyten vorzukommen. Galaktose- und Fukose-Reste ließen sich nicht 

nachweisen. Die Glykokalix der Thrombozyten ist mit einer Stärke von 150 - 200 nm (Jain, 1993) 

dicker als bei den anderen Blutzellen (White, 2007). Lanillo und Cabezas (1981) merken jedoch 

an, dass der Kohlenhydratanteil der ovinen Thrombozytenmembran im Vergleich zu Schwein und 

Mensch wohl insgesamt geringer sei. Der von Lanillo und Cabezas (1981) erhobene Befund, 

wonach die Thrombozytenmembran der Schafe reich an Sialinsäuren ist (Lanillo und Cabezas, 

1981), konnte vorerst nicht bestätigt werden. Wie bei den Erythrozyten konnte jedoch auch bei 

den ovinen Thrombozyten nach der Vorbehandlung mit Neuraminidase eine Bindung des 

Galaktose-spezifischen Lektins PNA an die Membran beobachtet werden. Dies deutet darauf hin, 

dass bestimmte Galaktose-Reste auf der ovinen Thrombozytenmembran von Sialinsäuren 

maskiert werden. Es scheint jedoch eine andere Sialinsäure als die durch WGA nachzuweisende 

N-Acetyl-Neuraminsäure die PNA-Bindungsstelle zu maskieren (z.B. N-Glykol-Neuraminsäure).  

Bei den Lymphozyten der untersuchten Schafe konnte eine positive Reaktion mit ConA,  LCA, 

PSA, WGA, WGAs, GSL-I, PHA-L und MAA-I festgestellt werden, wobei stets eine Anfärbung 

der Membran zu beobachten war. Bei ConA, LCA, PSA, WGA und WGAs färbten sich außerdem 

die zytoplasmatischen Granula an. Bei LCA, PSA, WGAs, GSL-I und PHA-L konnte ich bei 

manchen Zellen eine Reaktion im Zytoplasma beobachten. PNA, RCA, VAA, SNA, DBA, SBA, 

SJA, UEA-I und PHA-E zeigten keine Bindung. Die lektinhistochemischen Ergebnisse der 
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vorliegenden Untersuchungen lassen darauf schließen, dass die Membran der Lymphozyten neben 

Glukose-, Mannose- N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure- und N-Acetyl-

Galaktosamin-Resten auch durch PHA-L und MAA-I nachzuweisende, komplexe 

Kohlenhydratstrukturen besitzt. Galaktose- und Fukose-Reste konnten nicht nachgewiesen 

werden. Die zytoplasmatischen Granula scheinen reich an Glukose, Mannose, N-Acetyl-

Glukosamin und N-Acetyl-Neuraminsäure zu sein. Die positive Reaktion von ConA mit der 

Membran der Lymphozyten steht im Einklang mit den Befunden von Schmid und Cwik (1974), 

wonach die ovine Lymphozytenmembran genetisch determinierte ConA-Rezeptoren trägt 

(Schmid und Cwik, 1974). In Bezug auf WGA, DBA und UEA-I decken sich meine Ergebnisse 

mit denjenigen von Djilali et al. (1987), da sie ebenfalls über eine Bindung von WGA an ovine B- 

und T-Zellen und über eine fehlende Bindung von DBA und UEA-I an die Lymphozyten der 

Schafe berichten (Djilali et al., 1987). Bezüglich PHA-L stimmen meine Beobachtungen mit dem 

Befund von Outteridge (1985) überein, wonach die Lymphozytenmembran der Schafe PHA 

bindet (Outteridge, 1985). Entgegen den Ergebnissen dieser Arbeit wird in der Literatur häufig 

über eine Bindung von PNA an die Lymphozyten der Schafe berichtet, wobei PNA einen Marker 

für die T-Zellen darstellt (Fahey, 1980); (Outteridge, 1985); (Ristau et al., 1985); (Djilali et al., 

1987); (Djilali und Parodi, 1987). Djilali und Parodi (1987) fanden nämlich heraus, dass die 

peripheren Lymphozyten im Blut von Schafen, die PNA binden, keine Immunglobuline auf der 

Zelloberfläche besitzen und folglich die T-Zellen repräsentieren müssen (Djilali und Parodi, 

1987). Ristau et al. (1985) beschreiben zudem SJA als einen Marker für die ovinen T-Zellen 

(Ristau et al., 1985). Nach einer Neuraminidase-Vorbehandlung zeigten sowohl PNA als auch 

RCA sowie SJA eine positive Reaktion der Lymphozytenmembran. Aufgrund dieser Ergebnisse 

kann angenommen werden, dass bestimmte Galaktose- und N-Acetyl-Galaktosamin-Reste bei den 

Lymphozyten der Schafe zumindest teilweise von Sialinsäuren (z.B. N-Acetyl-Neuraminsäure) 

maskiert werden. Bei PNA war jedoch auffallend, dass sich nicht alle Lymphozyten nach 

Abspaltung der Sialinsäuren anfärben lassen. Dies liegt vermutlich daran, dass, wie bereits 

erwähnt, nur die T-Zellen PNA binden. Zu ähnlichen Ergebnissen kamen auch Reisner el al. 

(1979), die bei Untersuchungen an humanen T-Lymphozyten feststellten, dass unreife T-

Lymphozyten mit PNA immer positiv reagieren, wohingegen reife T-Zellen nur sehr selten eine 

Bindung des Lektins zeigen. Erst nach einer Vorbehandlung mit Neuraminidase ließ sich bei den 

reifen T-Zellen eine positive Reaktion beobachten. Der Lektinrezeptor wird folglich beim 

Menschen im Laufe der Zelldifferenzierung von Sialinsäuren maskiert. Dieses Wissen kann bei 

der Unterscheidung der akuten Leukämie, bei der unreife T-Zellen vorherrschen, von der 

chronischen Leukämie, bei der vor allem reife T-Lymphozyten vorkommen, von Nutzen sein. 

Weiterhin könnte der PNA-Rezeptor als Zielstruktur bestimmter Medikamente bei der 

Behandlung der akuten Leukämie herangezogen werden. Die Arzneimittel würden nur auf den 
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Zielzellen wirken (Reisner et al., 1979).  

Die Monozyten der untersuchten Schafe zeigten eine Bindung von ConA, LCA, WGA, WGAs, 

GSL-I, PHA-L und MAA-I an die Membran und das Zytoplasma. Bei ConA und LCA konnte 

zudem eine Reaktion der zytoplasmatischen Granula beobachtet werden. PSA führte lediglich zu 

einer Anfärbung im Zytoplasma. Die Lektine PNA, RCA, VAA, SNA, DBA, SBA, SJA, UEA-I 

und PHA-E reagierten negativ. Das Ergebnis der lektinhistochemischen Untersuchungen deutet 

auf das Vorkommen von Glukose-, Mannose-, N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure- 

und N-Acetyl-Galaktosamin-Resten und bestimmter komplexer Kohlenhydratstrukturen sowohl 

auf der Zelloberfläche als auch im Zytoplasma der Monozyten der Schafe hin. Die Granula 

scheinen reich an Glukose- und Mannose-Resten zu sein. Galaktose- und Fukose-Reste konnten 

nicht nachgewiesen werden. Die Galaktose-spezifischen Lektine PNA und RCA zeigten jedoch 

nach einer Vorbehandlung mit Neuraminidase eine Anfärbung von Membran und Zytoplasma. 

Daraus läst sich folgern, dass einige Galaktose-Reste der ovinen Monozyten von Sialinsäuren 

(z.B. N-Acetyl-Neuraminsäure) maskiert werden.  

Bei den neutrophilen Granulozyten reagierten die Lektine ConA, LCA, PSA, WGA, WGAs, 

GSL-I, PHA-E, PHA-L und MAA-I positiv. Bei all diesen Lektinen war eine Bindung an die 

neutrophilen Granula festzustellen. ConA, LCA, WGA, WGAs, PHA-L und MAA-I führten 

zusätzlich zu einer Anfärbung der Membran. Die Lektine PNA, RCA, VAA, SNA, DBA, SBA, 

SJA und UEA-I reagierten negativ. Aufgrund dieses Bindungsverhaltens kann auf das 

Vorhandensein von Glukose-, Mannose- N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure-, N-

Acetyl-Galaktosamin-Resten und bestimmten komplexen Kohlenhydratstrukturen in den 

neutrophilen Granula geschlossen werden. Die Membran der neutrophilen Granulozyten scheint 

reich an Glukose, Mannose, N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure und bestimmten 

komplexen Kohlenhydratstrukturen zu sein. Galaktose- und Fukose-Reste konnten in den 

neutrophilen Granulozyten nicht nachgewiesen werden. Nach einer Neuraminidase-

Vorbehandlung zeigte sich jedoch bei den Galaktose-spezifischen Lektinen PNA und RCA eine 

Anfärbung von Membran und Granula. Auch das N-Acetyl-Galaktosamin-spezifische Lektin SJA 

ließ nach Abspaltung der Sialinsäuren eine Bindung an die neutrophilen Granula erkennen. Diese 

Ergebnisse deuten darauf hin, dass bestimmte Galaktose-Reste der Membran sowie einige 

Galaktose- und N-Acetyl-Galaktosamin-Reste der neutrophilen Granula von Sialinsäuren (z.B. N-

Acetyl-Neuraminsäure) maskiert werden. In der Literatur sind keine Angaben über 

lektinhistochemische Untersuchungen der neutrophilen Granulozyten vom Schaf zu finden. Beim 

Menschen weisen die primären Granula der neutrophilen Granulozyten Bindungsstellen für ConA 

auf (Eguchi et al., 1989). 

Die eosinophilen Granulozyten der Schafe reagierten mit ConA, LCA, WGA, WGAs, GSL-I, 
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SJA, UEA-I, PHA-L und MAA-I positiv. Bei den meisten Lektinen war eine Fluoreszenz der 

Membran und des Zytoplasmas zu beobachten. Lediglich SJA und UEA-I zeigten eine schwache 

bis deutliche Bindung an die eosinophilen Granula. PSA, PNA, RCA, VAA, SNA, DBA, SBA 

und PHA-E reagierten negativ. Die Ergebnisse dieser Untersuchungen lassen darauf schließen, 

dass die Glykokalix und das Zytoplasma der eosinophilen Granulozyten einen großen Anteil an 

Glukose-, Mannose-, N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure- und N-Acetyl-

Galaktosamin-haltigen Zuckerstrukturen sowie bestimmte komplexe Kohlenhydratstrukturen 

beinhaltet. Die eosinophilen Granula scheinen lediglich N-Acetyl-Galaktosamin- und Fukose-

Reste in größeren Mengen zu besitzen. Galaktose konnte nicht nachgewiesen werden. Bei PNA 

und RCA konnte allerdings nach Vorbehandlung mit Neuraminidase eine Anfärbung der 

Membran der eosinophilen Granulozyten beobachtet werden, wodurch eine Maskierung 

bestimmter Galaktose-Reste durch Sialinsäuren (z.B. N-Acetyl-Neuraminsäure) vermutet werden 

kann. In der Literatur sind keine Angaben zum Bindungsverhalten von Lektinen bei den 

eosinophilen Granulozyten der Schafe zu finden. Beim Menschen wurde anhand von 

elektronenmikroskopischen Untersuchungen durch Markierung der Lektine mit Goldpartikeln 

herausgefunden, dass SBA und DBA stark an die eosinophilen Granula binden. Dies lässt 

vermuten, dass die Granula der eosinophilen Granulozyten beim Menschen N-Acetyl-

Galaktosamin-Reste in größeren Mengen aufweisen (Eguchi et al., 1989). Dieser Befund konnte 

bei den Schafen nicht erhoben werden. 

Bei der Interpretation der Ergebnisse der lektinhistochemischen Untersuchungen müssen einige 

Punkte berücksichtigt werden. Zuerst muss festgehalten werden, dass es sich bei den Ergebnissen 

bezüglich der Bindungsstärke um eine semiquantitative Beurteilung handelt. Weiterhin ist zu 

beachten, dass die Bindungseigenschaften der Lektine durch eine Reihe von Faktoren beeinflusst 

werden können. Die Struktur der Lektine unterliegt physikochemischen Einflüssen. So kann eine 

Variation des pH-Wertes oder der Temperatur die Zuckerbindung maßgeblich beeinflussen. Eine 

Erhitzung der Lektin-Lösung kann beispielsweise zu einer Änderung der Tertiärstruktur und somit 

zu einer Modifikation des Bindungsverhaltens der Lektine führen. Aber auch die von der 

Isolierung und Aufreinigung abhängige Qualität der Lektine bleibt zu berücksichtigen. Bei einer 

fehlerhaften Charge können die Lektine bereits an Zuckerstrukturen gebunden sein mit der Folge 

einer mangelhaften Bindung des Lektins an das Präparat. Vor allem bei Lektinen, die für 

bestimmte Blutzellen charakteristisch sind, sollte dies in Betracht gezogen werden. Die Einteilung 

der Lektine anhand ihrer so genannten nominalen Zuckerspezifität in die verschiedenen Gruppen 

beruht auf den Ergebnissen von Agglutinationsversuchen mit dem Einsatz von Hemmzuckern 

(Monosacchariden) und gilt deshalb laut Roth (2011) als zu stark vereinfacht (Roth, 2011). 

Lektine aus einer Gruppe, wie z.B. die N-Acetyl-Galaktosamin-spezifischen Lektine GSL-I und 

DBA, können verschiedene Ergebnisse liefern, da bei der Gruppeneinteilung die Spezifität 
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bezüglich der anomeren Position nicht berücksichtigt wurde. Die Affinität der Lektine für 

Monosaccharide ist zudem im Gegensatz zu derjenigen für komplexe Kohlenhydrate viel geringer 

(Van Damme et al., 2008). Außerdem ist für viele Lektine die exakte Spezifität noch nicht genau 

bekannt. Weiterhin muss berücksichtigt werden, dass einige Lektine verschiedene Kohlenhydrate 

binden können, jedoch mit unterschiedlicher Affinität. Bei einer positiven Reaktion kann somit 

entweder der Zucker vorherrschend sein, an den das Lektin primär bindet, oder ein für das Lektin 

weniger spezifischer Zucker, der jedoch in großen Mengen vorkommt. Schließlich muss beachtet 

werden, dass die Lektine auch mit unpolaren Verbindungen, die keinen Zuckeranteil besitzen, 

mittels hydrophober Wechselwirkungen interagieren können. Außerdem ist eine Bindung an 

anionische Gruppen über elektrostatische Wechselwirkungen möglich (Roth, 2011). Die in dieser 

Dissertationsarbeit durchgeführten lektinhistochemischen Untersuchungen erfolgten unter 

standardisierten Bedingungen nach einem bestimmten Protokoll. Eine Divergenz in den von mir 

erhobenen Befunden und den in der Literatur beschriebenen Ergebnissen können auf 

verschiedenen Fixierungs- und Färbemethoden beruhen.  

Bei den glykohistochemischen Untersuchungen konnten keine Unterschiede in der Lektinbindung 

der Blutzellen in Abhängigkeit von Alter oder Geschlecht festgestellt werden. 
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VI Zusammenfassung 

In der vorliegenden Arbeit wurde die Morphologie der Blutzellen des Schafes mit 

lichtmikroskopischen Übersichtsfärbungen sowie modernen elektronenmikroskopischen und 

histochemischen Methoden untersucht. Dabei wurden besonders die Enzymausstattung und das 

Zytoskelett der ovinen Blutzellen näher charakterisiert und die Zuckerstrukturen der Blutzellen 

mit glykohistochemischen Techniken untersucht. Für diese Untersuchungen wurden Blutproben 

von insgesamt vierzig Schafen unterschiedlichen Alters und Geschlechts verwendet. 

Für die lichtmikroskopischen Untersuchungen wurden konventionelle Übersichtsfärbungen (Diff-

Quick-, Giemsa-, May-Grünwald-, Pappenheim-, Sirius-Red- und Toluidinblau-Färbung) 

angewendet und ihre Eignung für die Darstellung der ovinen Blutzellen verglichen. Dabei wurde 

deutlich, dass die Giemsa- und die Pappenheim-Färbung besonders gut zur Darstellung der 

Thrombozyten geeignet ist, da bei diesen Färbungen eine klare Differenzierung von Granulomer 

und Hyalomer möglich war. Bei den Lymphozyten waren die zytoplasmatischen Granula vor 

allem bei der Giemsa- und der May-Grünwald-Färbung gut zu erkennen, wohingegen sich die 

feinen neutrophilen Granula nur bei der May-Grünwald-Färbung besonders deutlich zeigten. Die 

Identifizierung der basophilen Granulozyten gelang am besten mit der May-Grünwald- und der 

Toluidinblau-Färbung. Daraus ergibt sich, dass vor allem die Giemsa- und die May-Grünwald-

Färbung für die Darstellung der ovinen Blutzellen geeignet sind. 

Bei den substrathistochemischen Untersuchungen wurde die Periodic-Acid-Schiff-Reaktion zum 

Nachweis von Polysacchariden (Glykogen) und Glykoproteinen in den ovinen Blutzellen 

eingesetzt. Weiterhin wurden die Blutausstriche der Alcianblau-Färbung bei zwei verschiedenen 

pH-Werten unterzogen. Bei einem pH-Wert von 1,0 werden carboxylierte Muzine, bei einem pH-

Wert von 2,5 hingegen sulfatierte Mukosubstanzen nachgewiesen. Eine deutlich positive 

Periodic-Acid-Schiff-Reaktion konnte nur bei den ovinen Granulozyten beobachtet werden. Die 

Thrombozyten und Lymphozyten reagierten nur schwach positiv. Eine Anfärbung der Blutzellen 

mit Alcianblau bei einem pH-Wert von 1,0 gelang nur bei den Thrombozyten. Bei einem pH-Wert 

von 2,5 ließen sich hingegen sowohl die Thrombozyten als auch die neutrophilen Granulozyten 

und selten auch die eosinophilen Granulozyten anfärben. 

In der Enzymhistochemie wurde die Aktivität der sauren Phosphatase, der alkalischen 

Phosphatase, der Peroxidase, der β-Glucuronidase, der α-Naphthyl-Azetat-Esterase, der Naphthol-

AS-Azetat-Esterase und der Naphthol-AS-D-Chlorazetat-Esterase bei den verschiedenen 

Blutzellen untersucht. Dabei waren die saure Phosphatase und die β-Glucuronidase sowohl in den 

Lymphozyten und den Monozyten als auch in den neutrophilen und eosinophilen Granulozyten 

nachzuweisen. Eine Aktivität der alkalischen Phosphatase und der Naphthol-AS-D-Chlorazetat-
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Esterase konnte nur in den neutrophilen Granulozyten beobachtet werden. Die Peroxidase ließ 

sich in den neutrophilen und eosinophilen Granulozyten nachweisen, einzelne Monozyten 

reagierten jedoch ebenso positiv. Die α-Naphthyl-Azetat-Esterase zeigte nur bei den 

Lymphozyten und den Monozyten eine eindeutig positive Reaktion, wogegen bei der Naphthol-

AS-Azetat-Esterase in allen Blutzellen eine Aktivität erkennbar war. 

Unter dem Elektronenmikroskop konnten charakteristische Besonderheiten der ovinen Blutzellen 

festgestellt werden. So waren bei den sehr kleinen (1 - 2 µm) Thrombozyten der Schafe deutlich 

die 0,2 - 0,3 µm großen „dense bodies“ von den 0,3 - 0,4 µm großen α-Granula, die bei allen 

Haussäugern vorkommen, zu unterscheiden. Bei einigen Lymphozyten konnten elektronendichte 

Granula mit einer Größe von etwa 0,2 µm im Zytoplasma identifiziert werden. Bei den 

Monozyten hingegen waren keine zytoplasmatischen Granula vorhanden. Im Zytoplasma der 

neutrophilen Granulozyten konnten die länglichen, primären Granula mit einer Größe von 0,4 - 

0,5 µm von den häufiger vorkommenden, runden, sekundären Granula mit einer Größe von 0,2 -

0,3 µm differenziert werden. Die für die Wiederkäuer charakteristischen, so genannten „großen 

Granula“ konnten nicht identifiziert werden. Die Granula der eosinophilen Granulozyten waren 

mit einem Durchmesser von 0,4 - 1,1 µm in der Regel größer als die neutrophilen Granula. Es 

dominierten kristalline Granula, deren lamelläre Einschlüsse in eine homogene Matrix eingebettet 

waren. Nur selten wurden Granula mit einem homogenen Inhalt gefunden. 

Zur Darstellung des Zytoskeletts oviner Blutzellen wurden Phalloidin zum Nachweis von F-Aktin 

sowie verschiedene Antikörper zum Nachweis von Myosin IIA, Vimentin, Tubulin und 

Zytokeratin eingesetzt. Dabei war F-Aktin als einziges zytoskelettale Element in allen ovinen 

Blutzellen nachzuweisen. Das mit den Aktinfilamenten interagierende Myosin IIA konnte in allen 

Zellen mit Ausnahme der Erythrozyten nachgewiesen werden und scheint in den Leukozyten vor 

allem in globulärer Form vorzuliegen. Eine Darstellung des aus Vimentin bestehenden 

Netzwerkes gelang bei allen Leukozyten (Lymphozyten, Monozyten und Granulozyten), wobei 

der Verlauf der einzelnen Intermediärfilamente besonders gut zu erkennen war. Weder Tubulin 

noch Zytokeratin konnten in den Blutzellen des Schafes immunhistochemisch nachgewiesen 

werden. 

In der Glykohistochemie wurden die ovinen Blutzellen auf das Bindungsverhalten der FITC-

markierten Pflanzen-Lektine ConA, LCA, PSA, PNA, RCA, WGA, WGAs, GSL-I, DBA, SBA, 

SJA, UEA-I, PHA-L und PHA-E sowie der biotinylierten Pflanzen-Lektine MAA-I, SNA und 

VAA untersucht. Die Verteilung der Lektinbindungsstellen sowie die Stärke der positiven 

Reaktion waren bei den einzelnen Blutzellen sehr unterschiedlich, wobei oft ein charakteristisches 

Bindungsmuster erkannt werden konnte. Dabei wurde deutlich, dass die neutrophilen und die 

eosinophilen Granulozyten die häufigsten positiven Reaktionen mit den verschiedenen Lektinen 
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aufweisen. Die stets positiven Bindungsreaktionen der ovinen Blutzellen bei Inkubation mit 

ConA, LCA, WGA, WGAs, und GSL-I lassen auf ein regelmäßiges Vorkommen von Mannose-, 

Glukose-, N-Acetyl-Glukosamin-, N-Acetyl-Neuraminsäure und N-Acetyl-Galaktosamin-Resten 

schließen. Nach einer Vorbehandlung der Blutausstriche mit Neuraminidase stellte sich heraus, 

dass vor allem die PNA-Bindungsstellen aller Blutzellen sowie die RCA-Bindungsstellen der 

Leukozyten von Sialinsäuren maskiert werden und möglicherweise deshalb der Nachweis von 

Galaktose-Resten negativ verlief.  

Obwohl im Blutbild deutliche Unterschiede sowohl bei den Tieren der verschiedenen 

Altersgruppen als auch zwischen männlichen und weiblichen Tieren beobachtet wurden, waren 

bei allen lichtmikroskopischen, elektronenmikroskopischen und fluoreszenzmikroskopischen 

Untersuchungen keinerlei Unterschiede in der Morphologie und der Histochemie der Blutzellen 

zu erkennen. 
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VII Summary 

Ultrastructural and histochemical studies of ovine blood cells 

This thesis deals with morphology of ovine blood cells using conventional light microscopic 

staining techniques as well as advanced electron microscopic and histochemical techniques. In 

this study, the localization of marker enzymes and components of the cytoskeleton of ovine blood 

cells were thoroughly analyzed. Furthermore, carbohydrate residues of the blood cells were 

investigated using a panel of FITC- and biotin-labeled lectins. In order to obtain representative 

results, blood samples of forty sheep of different age and sex were analyzed within the course of 

this study. Light microscopic, electron microscopic and fluorescence microscopic studies showed 

no morphological or histochemical differences between young and adult or male and female 

animals. 

For light microscopy, conventional stainings (Diff-Quick-, Giemsa-, May-Grünwald-, 

Pappenheim-, Sirius-Red- und Toluidineblue-staining) were used and the results of the different 

methods compared. Staining with Giemsa and Pappenheim appeared especially well suited for 

visualization of thrombocytes because they allowed a clear distinction between granulomer and 

hyalomer. Regarding the lymphocytes, cytoplasmatic granules could be best recognized using 

Giemsa- and May-Grünwald-staining. The small neutrophilic granules stained most clearly using 

May-Grünwald-staining. Demonstration of basophilic granulocytes was best archieved using 

May-Grünwald and Toluidineblue-staining. In conclusion Giemsa- and May-Grünwald-staining 

were particularly suitable for differential staining of ovine blood cells. 

In substrate-histochemical studies, periodic-acid-schiff-reaction (PAS-reaction) was used for 

demonstration of polysaccharides and glycoproteins. Furthermore blood smears were stained with 

Alcianblue using two different pH-values. Carboxylated mucins are detected at pH 1,0 and 

sulphated mucosubstances at pH 2,5. A distinct PAS-reaction was only seen in granulocytes while 

thrombocytes and lymphocytes only showed weak reactions. At pH 1,0 the thrombocytes were 

exclusively stained with Alcianblue. At pH 2,5 thrombocytes as well as neutrophilic and 

eosinophilic granulocytes showed some staining. 

In the enzyme-histochemical studies, activity of acid phosphatase, alkaline phosphatase, 

peroxidase, β-glucuronidase, α-naphthyl-acetate-esterase, naphthol-AS-acetate-esterase and 

naphthol-AS-D-chloracetate-esterase was examined. Acid phosphatase and β-glucuronidase were 

histochemically detected in lymphocytes, monocytes, neutrophilic and eosinophilic granulocytes. 

Activity of alkaline phosphatase and naphthol-AS-D-chloracetate-esterase was exclusively shown 

in neutrophilic granulocytes. Peroxidase showed strong activity in both neutrophilic and 
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eosinophilic granulocytes whereas single monocytes displayed low intensity of staining. α-

naphthyl-acetate-esterase activity was demonstrated in lymphocytes and monocytes and naphthol-

AS-acetate-esterase was the only enzyme that was found in all ovine blood cells. 

At the ultrastructural level some special features of ovine blood cells could be determined. The 

ovine thrombocytes showed a small size of about 1 - 2 µm and displayed dinstict dense bodies 

with a size of 0,2 - 0,3 µm, that could be easily distinguished from the α-granules with a size of 

0,3 - 0,4 µm, that are found in the thrombocytes of all domestic mammals. Electrondense granules 

with a size of about 0,2 µm could be recognized within the cytoplasm of lymphocytes whereas 

monocytes showed no cytoplasmatic granules. Within the cytoplasm of neutrophilic granulocytes, 

elongated, primary granules with a size of 0,4 - 0,5 µm could be differentiated from more 

abundant, roundish, secondary granules with a size of 0,2 - 0,3 µm. The so called „large 

granules”, which seem to be characteristic for ruminants, were not detected in my electron 

microscopic examinations of ovine neutrophilic granulocytes. The granules of eosinophilic 

granulocytes were usually bigger than neutrophilic granules measuring about 0,4 - 1,1 µm. 

Granules showing a crystalline ultrastructure were dominant. Their lamellar inclusions seemed to 

be embedded in a homogenous matrix. Granules containing a homogenous content were rarely 

seen. 

For evaluation of the cytoskeleton, phalloidin was applied for detection of actin and several 

antibodies were used for demonstration of myosin IIA, vimentin, tubulin and cytokeratin in ovine 

blood cells. Thereby actin was the only component of the cytoskeleton existing in all examined 

blood cells. Myosin IIA, that interacts with actin filaments, was detected in all cells except 

erythrocytes. Immuno-cytochemical demonstration of the vimentin network was archieved in all 

leukocytes and the orientation of filaments was clearly visible. Neither tubulin nor cytokeratin 

could be detected immuno-histochemically in ovine blood cells. 

For glyco-histochemical studies, FITC-linked plant-lectins ConA, LCA, PSA, PNA, RCA, WGA, 

WGAs, GSL-I, DBA, SBA, SJA, UEA-I, PHA-L and PHA-E as well as biotinylated plant-lectins 

MAA-I, SNA und VAA were used. A distinct pattern of lectin binding sites was observed in the 

different blood cells: Neutrophilic and eosinophilic granulocytes displayed positive staining 

reactions with many different lectins. In fact ConA, LCA, WGA, WGAs and GSL-I invariably 

showed positive staining reactions indicating a regular occurence of mannose, glucose, N-acetyl-

glucosamine, N-acetyl-neuraminic acid und N-acetyl-galactosamine conjugates in ovine blood 

cells. After pretreatment with neuraminidase it could be clearly demonstrated that particular 

binding sites of PNA of all blood cells and some binding sites of RCA of leukocytes were masked 

by sialic acids. 
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VIII Verzeichnis der Gebrauchslösungen 

1. Lichtmikroskopie 

1.1 Übersichtsfärbungen 

Giemsa-Färbelösung 

Giemsa-Stammlösung1        1 ml 

Aqua dest.                    20 ml  

 

Sirius Red-Färbung 

Saures Hämalaun nach Mayer 

Hämatoxylin1         1 g  

Aqua dest.         1000 ml  

Natriumiodat1         200 mg  

Aluminiumkaliumsulfat-Dodecahydrat, Kalialaun1    50 g  

Chloralhydrat1            50 g  

Zitronensäure kristallin 1       1 g  

Nach Lösen von Hämatoxylin in Aqua dest. erfolgt unter Schütteln die Lösung von Natriumiodat 
und Kalialaun. Das blau-violette Gemisch schlägt nach Zugabe von Chloralhydrat und 
Zitronensäure zu einer rot-violetten Farbe um. Die Färbelösung ist über lange Zeit stabil und 
sollte vor Gebrauch filtriert werden.  

1 %ige NaOH-Lösung 

Natriumhydroxid (NaOH)1             1 g  

Aqua dest.         100 ml 

20 %ige NaCl-Lösung  

Natriumchlorid (NaCl)1           1 g  

Aqua dest.         100 ml 

Sirius Red-Färbelösung 

Sirius Red6         500 mg  

Aqua bidest.         45 ml 

Ethanol absolut1          50 ml 

1 %ige NaOH-Lösung        1 ml  

20 % ige NaCl-Lösung       4 ml  
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Toluidinblau-Färbung 

PBS-Puffer pH 7,4- 7,6 

Natriumchlorid (NaCl)1       42,5 g 

Di-Natriumhydrogenphosphat-Dihydrat (Na2HPO42H2O)1   6,35 g 

Natrium-Dihydrogenphosophat-Monohydrat (NaH2PO4H2O)1  1,95 g 

Aqua demin.         ad 5 l 

Die genaue Einstellung des pH-Wertes erfolgt mit 1 N NaOH7 und 0,1 N HCl7. 

Toluidinblau-Färbelösung 

Toluidinblau7         1 g  

Methanol1          100 ml 

 

1.2 Substrathistochemische Färbungen 

Periodic-Acid-Schiff-Reaktion 

0,5 %ige wässrige Perjodsäure-Lösung (immer frisch ansetzen) 

Perjodsäure1         1 g  

Aqua dest.         200 ml 

10 %ige Natriumdisulfit-Lösung (immer frisch ansetzen) 

Natriumdisulfit1        3 g  

Aqua dest.         30 ml 

Sulfit-Wasser (SO2-Wasser) (immer frisch ansetzen) 

1 N HCl7         30 ml  

10 %ige Natriumdisulfit-Lösung      30 ml 

Aqua demin.         600 ml 

 

Alcianblau-Färbung 

3 %ige Essigsäure-Lösung 

Essigsäure 100 %1         15 ml  

Aqua dest.          485 ml 

Alcianblau-Lösung pH 2,5 

Alcianblau 8 GX Certistain®1        5 g 

3 %ige Essigsäure-Lösung       500 ml 

Alcianblau-Lösung pH 1,0 

Alcianblau 8 GX Certistain®1        5 g 

0,1 N HCl7          500 ml   
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Kernechtrot-Färbelösung 

Kernechtrot Certistain®1         0,1 g   

Aluminiumsulfat1        5 g  

Aqua dest.         100 ml 

Nach Lösen des Aluminiumsulfats in Aqua dest. erfolgt eine Erhitzung der Lösung und die 
Zugabe von Kernechtrot. Anschließend Lösung erkalten lassen und filtrieren. 

 

1.3 Enzymhistochemische Färbungen 

PBS-Puffer pH 7,4- 7,6 (siehe Toluidinblau-Färbung) 

 

Saures Hämalaun nach Mayer (siehe Sirius-Red-Färbung)  

 

Saure Phosphatase-Färbelösung (Set1) 

Naphthol AS-OL Phosphorsäure1      2 ml 

Natriumazetat1         0,8 g 

Aqua dest.         60 ml 

Pararosanilin-HCl-Lösung (2N)1      5 Tropfen 

Nitrit-Lösung1         5 Tropfen 

 

Alkalische Phosphatase-Färbung (Set1) 

Lösung A 

Tris(hydroxymethyl)-aminomethan1      1,1 g 

Aqua dest.         100 ml 

Lösung B 

1-Naphthylphosphat-Natriumsalz1      15 ml 

Lösung A         15 ml 

Lösung C 

Variamin®-Blausalz B1       68 mg 

Lösung A         45 ml 

Die Färbelösung entsteht, indem Lösung C in Lösung B filtriert wird. 

 

Peroxidase-Färbelösung (Set1) 

4-Chlor-1-naphthol1        15 ml 

Ethanol1         15 ml 
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Aqua dest.         45 ml 

Tris(hydroxymethyl-aminomethan)-HCl-Puffer1    10 Tropfen 

Wasserstoffperoxid-Lösung1       2 Tropfen 

 

β-Glucuronidase Färbung 

0,2 M Natriumazetat-Lösung 

Natriumazetat, wasserfrei1       1,312 g 

Aqua dest.         80 ml 

Hexazonium-p-Rosanilin-Lösung 

   Lösung A 

Pararosanilin Chlorid Certistain®1      200 mg 

Aqua dest.         4 ml 

Salzsäure 37 %7        1 ml 

Die Salzsäure wird erst nach Lösen des Pararosanilins in Aqua dest. hinzu gegeben.  

   Lösung B (4 %ige Natriumnitrit-Lösung) 

Natriumnitrit1         400 mg 

Aqua dest.         10 ml 

   Lösung C (Gebrauchslösung) 

Lösung A         2 ml 

Lösung B         2 ml 

Die Vermischung von Lösung A und B sollte unmittelbar vor der Verwendung stattfinden. Es 
stellt sich rasch eine gelbe Färbung der Gebrauchslösung ein. 

Färbelösung 

0,2 M Natriumazetat-Lösung       19 ml 

Lösung C         1 ml 

Naphthol AS-BI β-Glucuronid4      4 mg 

N,N-Dimethylformamid1       0,5 ml 

Nach Vermischung der 0,2 M Natriumazetat-Lösung mit Lösung C erfolgt mit 1 N NaOH7 und 
0,1 N HCl7 eine Einstellung auf einen pH-Wert von 5,0. Nach Lösen von Naphthol AS-BI β-
Glucuronid in N,N-Dimethylformamid wird diese Lösung der Inkubationslösung beigefügt.  

 

0,1 M Phosphatpuffer (pH 7,0) 

Lösung A 

Na2HPO42H2O
1        8,9 g  

Aqua dest.         500 ml 
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Lösung B 

NaH2PO4H2O
1         6,9 g 

Aqua dest.         500 ml 

Es folgt eine Titration beider Lösungen bis ein pH-Wert von 7,0 erreicht ist. 

 

α-Naphthyl-Azetat-Esterase-Färbelösung 

2-Naphthyl-Azetat4        20 mg 

Aceton1         0,4 ml 

0,1 M Phosphatpuffer (pH 7,0)      80 ml 

Fast Blue BB Salt hemi (2 mg/ml)4      100 mg 

 

Naphthol-AS-Azetat-Esterase-Färbelösung 

Naphthol-AS-Azetat5        8 mg 

Aceton1         1 ml 

0,1 M Phosphatpuffer (pH 7,0)      80 ml 

Fast Blue BB Salt hemi (2 mg/ml)4      100 mg 

 

Naphthol-AS-D-Chlorazetat-Esterase-Färbung 

10 % iges Methanol-Formol 

Methanol1         90 ml 

Formaldehyd 37 %7        10 ml 

Färbelösung 

Naphthol-AS-D-Chlorazetat5       24 mg 

N,N-Dimethylformamid1       4 ml 

0,1 M Phosphatpuffer (pH 7,0)      80 ml 

Fast Blue BB Salt hemi (2 mg/ml)4      100 mg 

 

 

2. Elektronenmikroskopie 

Natriumcacodylat-Puffer 

Lösung A 

Natriumcacodylat2        8,56 g  

Aqua dest.         ad 200 ml 
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Lösung B         0,2 M HCl1   

0,2 M Natriumcacodylat-Puffer pH 7,2 

Lösung A         50 ml 

Lösung B         ca. 4,2 ml 

Aqua dest.         ad 100 ml 

Die Lösung B wird hinzu gegeben bis ein pH von 7,2 erreicht ist. 

0,1 M Natriumcacodylat -Puffer pH 7,2 

0,2 M Natriumcacodylat-Puffer      50 ml 

Aqua dest.         50 ml 

 

Fixierungslösung nach Karnovsky 

10 %ige Paraformaldehyd-Lösung 

Paraformaldehyd9        10 g 

Aqua dest.         ad 100 ml 

0,1 M NaOH7          max. 6 Tropfen 

Nach der Lösung des Paraformaldehyds bei 60 - 70°C auf dem Magnetrührer erfolgt die Zugabe 
von 0,1 M NaOH. Die Lösung ist bei 4°C ungefähr 1 - 2 Monate haltbar. 

Karnovsky-Stammlösung 

10 %ige Paraformaldehyd-Lösung      20 ml 

0,2 M Natriumcacodylat-Puffer      50 ml 

Kalziumchlorid, wasserfrei8       0,05 g  

Karnovsky-Gebrauchslösung 

Karnovsky-Stammlösung       10 ml 

2,5 %iges Glutaraldehyd9       1037 ml  

 

Kontrastierungslösung 

2 %ige Osmiumtetroxid-Stammlösung 

4 %iges Osmiumtetroxid2       2 ml  

0,1 M Natriumcacodylat-Puffer      2 ml 

3 %ige Kaliumferrocyanid-Stammlösung 

Kaliumferrocyanid3        0,3 g   

0,1 M Natriumcacodylat-Puffer       10 ml  

Die Lösung ist nach Herstellung erst am nächsten Tag brauchbar. 
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1 %iges Osmiumtetroxid und 1,5 %iges Kaliumferrocyanid in 0,1 M Natriumcacodylat-
Puffer 

2 %ige Osmiumtetroxid-Stammlösung     4 ml 

3 %ige Kaliumferrocyanid-Stammlösung     4 ml 

 

Polyembed 

Poly/bed 8122         16 ml   

DDSA2          10 ml   

NMA2          9 ml 

DMP-302         0,3 - 0,5 ml 

 

Färbung nach Richardson  

1 %iges Methylenblau 

Methylenblau1         1 g  

Aqua dest.         100 ml 

1 %iges Borax 

Dinatriumtetraborat-decahydrat 8      1 g 

Aqua dest.         100 ml 

1 %iges Methylenblau und 1 %iges Borax werden 1:1 gemischt und dieses Gemisch daraufhin 1:1 
mit 1 %igem Azur II1 vermischt. 

 

Bleizitrat-Lösung nach Reynolds 

Natriumzitrat Stock 

Natriumzitrat3         35,7 g 

Aqua dest.         ad 100 ml 

Bleinitrat Stock 

Bleinitrat3         33, 1 g 

Aqua dest.         ad 100 ml 

Bleizitrat-Lösung 

Aqua dest.         16 ml 

Natriumzitrat Stock        3 ml 

Bleinitrat Stock        2 ml 

1 M NaOH7         4 ml  

Aqua dest.          ad 100 ml 

Die Lösung ist bei 4°C ungefähr 3 Monate haltbar. 
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3. Fluoreszenzmikroskopie 

3.1 Immunhistochemie 

PBS-Puffer pH 7,4 - 7,6 (siehe Toluidinblau-Färbung) 

 

3.2 Glykohistochemie 

PBS-Puffer pH 7,4 - 7,6 (siehe Toluidinblau-Färbung) 

 

Vorbehandlung mit Neuraminidase 

Puffer 1: Natriumazetat-Puffer pH 5,5 

Natriumazetat, wasserfrei1       13,6 g  

Aqua demin.         1 l 

Die Einstellung des pH-Wertes erfolgt mit 10 %iger Essigsäure7. 

Puffer 2: Natriumazetat-Kalziumchlorid-Puffer pH 5,0 

Natriumazetat, wasserfrei1       8,2 g 

Aqua demin.         1 l 

Kalziumchlorid1        0,294 g  

Die Einstellung des pH-Wertes erfolgt mit 1 M HCl7 bei 37 °C auf der Wärmeplatte. 

Gebrauchsfertige Neuraminidase-Lösung 

Neuraminidase-Lösung von Vibrio cholerae4     3 µl 

Puffer 2         1 ml  

Die Temperatur muss immer über 37°C betragen, darf 40°C jedoch nicht überschreiten.  
     

 

 

 

1 Merck, Darmstadt 

2 Polysciences Inc, Warrington, USA 

3 Sigma-Aldrich, Deisenhofen 

4 Sigma-Aldrich, Steinheim 

5 Applichem, Darmstadt 

6 Reactifs Ral, Martillac 

7 Roth, Karlsruhe 

8  Serva, Heidelberg 
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