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Abstract

This work studies Carlson’s < -relation, where o <y 8 stands for a < 8 and
that for any finite subset Z of 3, there exists an ( <, +, <1 )-embedding h:
Z — o with h|Zﬁa = IdZﬁa~

The key ideas for the study of <; presented here are the introduction of the
class Class(n), the intervals [o, a(+")), the space of functions {z+— z[g(n, «,
Y]] @, €Class(n)} and the relation <™. The main results provide (<, <y,+)-
isomorphism-like properties of the space {z+— z[g(n, a,v)]|a, v € Class(n)},
cofinality properties for <™ and <, the fact that the class Class(n) is k-club
for any non-countable regular ordinal « and the fact that certain subclasses of
Class(n) (the “space of solutions of a condition (o, n(n, «,t) +1)”) are k-club
for any non-countable regular ordinal x bigger than a.

In the last chapter, after the results for Class(n), Class(w) is considered.
This class is k-club for any non-countable regular ordinal s too and it is seen
that its elements constitute the class of ordinals « such that V5 > a.a <1 .
From this fact and the work of Carlson follows that O,, = minClass(w) = |II}-
CAy.

The second part of the last chapter shows that, for Buchholz collapsing
functions ;, Vn € w.9,(Qn12) = Qu( +2 ); this means, particularly, that
IID+| = ¥0(Q2) = Qo( +?) =minClass(2) = Oy as was already shown by Wilken.

The final conjecture is Vn € wVm € [1, w).¥n(Qnim) = Qu( +™ ). In
particular, this would mean Vm € [1, w).|IDy,| = Yo(Qmi1) = Qo +™F1) =
minClass(m + 1) = Oy, +1 and as an easy corollary of this fact it would follow
another proof of the equality O,, = [IT}-CAg|. The general statement Vn € w¥m €
[1,w). Yn(Qntm) = (+™) remains, for n >3, as a conjecture. The author of
this thesis gives a sketch of a proof that in his opinion should be the essential
argument for a proof of the conjecture in case one is able to provide certain
version 9 of the 1); functions satisfying some rather technical conditions.



Abstract

Diese Arbeit befasst sich mit Carlsons <;-Relation, in der a <; 8 bedeutet,
dass o < B und dass fiir jede endliche Teilmenge Z von f eine ( <, <y, + )-
Einbettung h: Z — o mit h|znq =1dzn, existiert.

Die hier gegebenen Hauptideen fiir die Untersuchungen von <; stellen die
Einfithrung der Klasse Class(n), die Intervale [o, a(+™)), den Funktionsraum
{z —z[g(n,a,)]|a, vy €Class(n)} und die Relation <™ dar. Die Hauptergeb-
nisse zeigen dem Leser ( <, <j,+ )-isomorphisme Eigenschaften des Raumes
{z — z[g(n,a,7)]|a, v € Class(n)}, Kofinalitit Eigenschaften fir <™ und <,
sowie die Tatsache, dass die Klasse Class(n) k-club fiir jede nicht abz&hlbare
regulire Ordinalzahl r ist und dass bestimmte Unterklassen von Class(n) -
club fiir jede nicht abzéhlbare regulire Ordinalzahl  grosser als « sind.

Im letzten Kapitel, nach den Ergebnisen fiir Class(n), wird Class(w)
untersucht. Diese Klasse ist auch k-club fiir jede nicht abzéhlbare regulire
Ordinalzahl x und es wird gezeigt, dass deren Elemente die Klasse der Ordi-
nalzahlen « darstellt, die V5 > «a.a <1 [ erfiillen. Aus dieser Ergebnis und
der Arbeit von Carlson folgt, dass O, =minClass(w) = [II} — CAo|.

Der zweite Teil des letzten Kapitels zeigt, dass fiir Buchholz Kollabierungs-
funktionen v;, Vn € w.n(Qni2) = Qu( +2 ) gilt. Insbesondere heisst das
IID+| = 10(Q2) = Qo( +2 ) = minClass(2) = Os, wie es schon bei Wilken gezeigt
wurde.

Die letzte Vermutung ist Vn € wVm € [1, w).¥n(Qntm) = Qu( +™ ).
Das wurde insbesondere bedeuten, dass Vm € [1, w).|IDy,| = ¥o(Qmy1) =
Qo( +™*1 ) = minClass(m + 1) = O,,+1 und als ein einfaches Korollar aus
diesem Ergebnis folgte die Gleichung O,, = [II} — CAq|. Die allgemeine Aus-
sage Vn € wVm € [1, w).Yn(Qnim) = Qu( +™ ) bleibt, fiir n > 3, als eine
Vermutung. Der Author dieser Dissertation skizziert in seiner Arbeit einen
Beweis, der seiner Meinung nach das Hauptargument fiir den Beweis der oben
genannten Vermutung wiire, sollte eine version )] der v; Funktionen geben,
die gewisse technische Voraussetzungen erfiillen.
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Prologue

This work has as purpose the study of the <;-relation. The main motivation to study <; are
the works of T. Carlson and G. Wilken. The first version <; of <; was used by Carlson as a
tool to show Reinhardt’s conjecture: The Strong Mechanistic Thesis is consistent with Epistemic
Arithmetic (see [8]); moreover, Carlson showed a characterization of g in terms of <; (see [9])
and indeed, set up a new approach to ordinal notation systems based on these ideas (see [10]).
<3 is a binary relation in the class of ordinals and in it’s original form, o <; § asserts that the
structure (o, <, +, <1 ) is a Xy-substructure of (8, <, 4+, <1 ) (see Carlson [10] or Wilken [18]).
In this work, for the study of <i, I do not depart from it’s original definition; instead, I use an
equivalent notion that follows from standard theorems of model theory: a <7 f means a < § and
the following assertion: for any finite subset Z of 3, there exists an ( <, + , <1 )-embedding h:
Z — a with h|zna=1Idzna (see definition 1.1). Moreover, o <3 8 stands for a = or a <y 3.

The study of <1, as done here, is then a study of (a sort of) isomorphisms between the finite
subsets of an arbitrary ordinal. Being more specific, there are several interrelated aspects that are
considered along the whole work and whose understanding provide, in the end, a description of
the behavior of <; in the whole class of ordinals: In a rather informal way, these are

0. The functional m: OR — OR U {cc},
m(a) = { max {{ € ORJa < &} if there exists §€ OR such that a < 8 and a &1
’ 00 otherwise, that is, VS €OR.a< = a <1 '
1. The classes (Class(n))ne1,w), Where
Class(n) :={a € OR|I(an,...,a1) EOR™a=a, <1 an_1<1a3<1... <101 <1 @12}
2. The study of <; in intervals of the form [, a(+")), where a € Class(n) and a(+") is
the successor of « in Class(n).
3. For t € [a,a(+")), the space of isomorphisms h that are witnesses of o<1 ¢.
4. For t € [a, a(+")), the space of ordinals v that are solutions of the expression a <11,
where a1 t is seen as a condition (the pair («,t) is seen as a condition) that may
be fulfilled by many ordinals.

The main results will show that the nature of <; is such that, for n € [1,w), we are able to
describe a space of substitutions {z — x[g(n, a, )] | o, v € Class(n)} satisfying many (<, <y,
+ )-isomorphism-like properties (we denote as Ep(x) to the set of epsilon numbers appearing
in the Cantor Normal Form of = and z[g(n, a, )] to ordinal obtained by the substitution of all
the e € Ep(z) by g(n, «, v)(e) in the Cantor Normal Form of z); moreover, for a € Class(n) and
t € [a, a(+™)), this isomorphisms-space allows us to consider {~ € Class(n) | Ep(t) C Dom g(n, «,
YAy <1t[g(n, a, )]}, which is our formalization of the space of ordinals that are solutions of the
condition («,t). It turns out that our isomorphisms-space will provide us with (canonical) witnesses
for a <7t in important cases and that, for the condition («,t), it’s space of solutions is k-club for
any non-countable regular ordinal x bigger than .

With respect to the work of Wilken [18], [19], [20] (our main bibliographic reference), this thesis
develops in a quite different direction: In broad terms, Wilken defines certain (Skolem-hulling-
based) notation systems such that from the form in which an ordinal « is denoted he can read
off m(a)), which Wilken denotes as lh(a) and calls “the <;-reach of «” (see definition 1.5). I do
not embark upon the development of adequate and general enough notation systems having these
characteristics (development that is quite intricate and full of complexities as shown in Wilken’s
work): The point of view taken here is that <; induces k-club classes of ordinals (solutions of
conditions («, t)) and that given one of these classes and through a limit procedure, we can get
the “higher classes” induced by <.



4 ProLOGUE

The phenomena that <; induces k-club classes of ordinals as solutions of <;-conditions occurs
from the first attempts to understand how <; behaves. Chapter 1 is an introductory chapter
showing this: After the basic definitions, conditions {«, t) with ¢ € [, aw) are studied using the
relation <° and it’s cofinality properties. This, the simplest study of <; carried out with a first
version of the general notions introduced in chapter 3, should give the reader a sense of how the
whole work up to chapter 6 proceeds.

In chapter 2, as in [18], we study conditions («, ) with a € Class(1) and ¢ € [, a( +1)) (as a
comment aside, Class(1) = {a € OR | @ <1 a2} turns out to be the class of epsilon numbers). The
techniques to solve the difficulties we encounter here resemble the ones of the first chapter:

- Introduction of the substitutions {x +— z[a:=¢]|a,c € E} ={xr— 2[g(1, a, )] |a,c € E}
and it’s (<, <3, + )-isomorphism-like properties: corollary 2.17.

- The definition of the <!-relation and it’s relation with the space {z+— z[g(1,,¢)] |a,c€E}.

- Cofinality properties for <! (propositions 2.23 and 2.24): For t € [, a( +1)),
a<tt+1l<=a=sup{ye€anClass(l)| Ep(t) CDom(g(1,a, 7)) Av<it[g(l,a,7)]}. A
version of this result appears already in the work of Wilken (see [18], lemmas 3.11 and 3.12).

- The solution of a main problem not occurring with the < -relation: Since for a € E and
tefa,a(+1)) it is NOT always the case that a <1t + 1= a <'t+ 1, the ordinal nt=1n(1, a,t) is
introduced. Then, a major result showing crucial properties of 7t is shown: the covering theorem
(theorem 2.33). The covering theorem has interesting consequences:

e Proof that the minimal <;-witness of a cover A(«, B) is a substitution whenever
A(a,B)Ct<a(+') and a <1t (corollary 2.34).

e Proof of a <y nt+1+<= a<!nt+1 and the subsequent gain of cofinality properties for the
< -relation in Class(1) (corollaries 2.35 and 2.40).

- Hierarchy theorem (theorem 2.45). Here the idea is that, for o € Class(1) and ¢ € [a, a( +1)),
the set G(t) := {y € Class(1) N (o + 1) | Ep(t) C Dom g(n, o, v) A v <1 nt[g(n, o, v)] + 1} can be
generated through a thinning procedure.

- As soon as we know that G(t) is generated through a thinning procedure, it is shown that for
t €[k, k(+1)), G(t) is k-club for each non-countable regular ordinal x (proposition 2.49).

- Proof that Class(2) is k-club for any non-countable regular ordinal s (prop. 2.59).

Just as the study of conditions of the form («a,t) with t € [, @2) leads naturally to the study
of conditions (a,t) with o € Class(1) and ¢ € [, a( +')), we have that the studies carried out in
chapter 2 lead to the study of conditions («,t) with ¢ € [a, a( +?)) and « € Class(2). It is in this
moment that we encounter a big problem that we didn’t really care before: What do the elements
of [, a(+2)) look like?. Previously, while studying, for example, conditions {«,t) with t € [, a2),
t could be simply written as t =a + £ and a+ & was a satisfactory way to “represent ¢ in terms of
”; similarly, while studying conditions («,t) with ¢ € [, a( +1)), t could be “represented in terms
of & by it’s Cantor Normal Form. Now, for ¢ € [, a( +2)), the Cantor Normal Form of ¢ does not
suffice anymore.

The way to describe an arbitrary ¢ € [o, «(+?)) provided here is based on m(t) and the cofinality
properties developed while studying the intervals [§,(+')) (where § € Class(1)). The basic idea
is the following:

If t = «, then “a is the description of t in terms of o”. If ¢ € (o, a( +?)), then t ¢ Class(2) and
we have two possibilities:

- t ¢ Class(1). Then the cantor normal form of ¢ and the description of the epsilon numbers
appearing in such normal form provide the desired description of .
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- t € Class(1). Considering ¢t~ :=sup ({a}U{e€ (a,t) NClass(1) | m(e)[e:=t] > m(t)}) we have
that, by the cofinality properties, ¢~ <t and therefore, provided the description of ¢~, we describe
t as “t is the smallest epsilon number e in (t~,a( +2)) such that m(e)[e:=t] =m(t)".

The description of an ordinal ¢ € [, a( +?)) allow us to think of the pair {«,t) as a condition
that may be fulfilled by ordinals in Class(2); intuitively, given v € Class(2) and
s€[v,7(+?)), v is a solution of the condition (a,t) if and only if:

e The “description of s in terms of 7" is the “same” as “the description of ¢ in terms of «”

e 7y gl S

The reader may notice that the previous lines actually mean that we have some kind of iso-
morphism H: [, a( +2)) — [v,7(+?)) and that, to tell that v € Class(2) is a solution of {(«,t) is
just to tell that v= H(«) <1 H(¢). This idea is important and through the careful development of
it one gets that the collection of those H’s constitutes {x — z[g(2,a, )] |,y € Class(2)}, which
we may call “our class of isomorphisms for Class(2)”.

Let us take a closer look at {z+—— x[g(2,a,v)]| a,y € Class(2)}. This is a class of substitutions
build up from the g(2,a, ) functions. The intuition of how ¢(2,«, ) is defined was given above:
For a, € Class(2) with a <, g(2,a,7):a(+?)NE— v(+2)NE is the function:

eVecENa.g(2,a,v)(e):=e,

* 9(2,a,7)(a) =1,

e For t € (a,a(+?))NE,

9(2, @, 7)(t) = min {e € (9(2, @, 7)(¢7), 7(+7)) N Class(1) m(e) > m Olse Dllle= ),
where ¢t~ :=sup ({a} U{e€ (a,t) N Class(1) | m(e)[e:=t] = m(t)

It takes quite a bit of work to show that the previous notions are well defined, but the idea is
that based on them one can develop:

- Isomorphism-like properties of {z+— z[g(2, a, 7)] | o, v € Class(2)}.

- The relation <2 based on the space {z+— z[g(2, a,7)]| a,~ € Class(2)} and cofinality
properties for <2.

- Covering theorem for Class(2) and it’s consequences.

- Hierarchy theorem for Class(2).

- Canonical sequence for an ordinal a(+2) € Class(2).

- Non-countable regular ordinals and consequences for Class(2).

- Class(3) = {a € Class(2) | <y a( +2)} is k-club for any non-countable regular ordinal k.

Upper classes induced by <3

The reason to give the previous closer view to Class(2) is because the most general form of these
ideas and it’s formalization introduced in chapter 3 (the classes Class(n), the intervals [a, a( +™)),
the space of functions {x+— z[g(n, a, v)] | a, v € Class(n)}, the ordinals n(n, «,t) and I(n, a, t)
and the relation <™) is quite elaborated and it is easier to explain them “with an example” (i.e.,
with Class(2)). Indeed, chapter 3 consists of such ample formalization and the statement of the
generalization of the results obtained in chapter 2 we are striving for: Theorem 3.25 (or it’s more
technical version: Theorem 3.26).

The proof of theorem 3.26 is very very long and it is finished until chapter 6. The reason for
such a big proof is that the propositions stated there are dependent to each other and therefore it
is necessary to show them simultaneously.



6 ProLOGUE

Chapter 4 shows that Class(n) is k-club for any non-countable regular ordinal k. The proof
that Class(n) is closed in & follows without many complications from our induction hypothesis
(in particular, from the cofinality properties for the relation <™~!). To show that Class(n) is
unbounded in x is much more complicated: The idea is that, by induction hypothesis, the space
{zr—z[g(n—1,a,7)]|a,y€Class(n — 1)} is already defined, and therefore, for o € Class(n — 1)
and t € [a, a( +7 1)), the set
G~ 1(t):=={y€Class(n — 1) |Ep(t) CDom g(n — L, a, ) Aa=v<in(n — 1, a, tlgln — 1, a, v)]) + 1}
is well defined. Then one shows, through a generalized hierarchy theorem, that G"~1(t) can be
generated through a thinning procedure; after that, picking a = k as a non-countable regular
ordinal, one gets that G"~(t) is s-club (proposition 2.49). Finally, one shows that for any
r € k N Class(n — 1) and for M"~(r, k) := gn — 1, r, &)[[r, 7( +771 ))], the set

N G"~(s) is k-club and is contained in Class(n) (propositions 4.19 and 4.20). As a
sEM™(r,K)
final commentary, for the proof of the contention N G"~(s) C Class(n) it is used a
seM™~1(r,K)
fundamental sequence for the ordinal r(+"~1) € Class(n — 1) (definition 4.16 and proposition 4.17).

Chapter 5 deals with the construction of the {x — z[g(n, «, 7)] | @, v € Class(n)} space.
The work carried out here is very heavy (if not, sometimes, overwhelming), dealing with a lot of
technical problems that arise while trying to construct the functions g(n, «, ). It also contains
what, in the opinion of the author of this thesis, the cornerstone of these studies is: The extension
theorem (theorem 5.10).

The problem starts as follows: For «, v € Class(n), we would like to obtain g(n, a, ) in an
analogous way as the ¢(2, 8, ¢) functions were sketched before and particularly, we want to be
sure that the equality m(6[g(n, a, v)]) =m(d)[g(n, «, ¥)] holds for any 6 € (a, a( +™)). However,
for example for n > 6 and given «, 7 € Class(n) with a < 7, what should be the value of g(n, «,
) in some 0 € (o, a( +™)) N Class(3)?. When we were working in Class(2) we essentially had the
problem to define the values of ¢(2, a, v) in elements of Class(1) (that is, for « € Class(2), («,
a(+2))Nn U Class(i) = (a,a(+?))NClass(1)), but in general, for n € [1,w), the function g(n,

i€[l,w)
@, v) has to take values in elements of Class(i), for i € [1, n). One way to tackle the problem of
defining g(n,a, ) in all these different kinds of ordinals is the following: Noticing that [a, a(+"))
is a union of intervals of the form [3, 3(+" 1)), one could define g(n,a, ) in “the first one of these
intervals” [or, a(+" 1)) as g(n —1,a,7); then one could try to extend g(n,a,)|q(4n-1) adequately
to the next interval [a(+"~1),a(4+"~1)(+" 1)) and in general, continue this process until one has
defined g(n, a,7) in the whole of [, a(+™)). One should notice that, if this procedure is going to
work, then one needs to guarantee that the extension of some already extended function behaves
well; that is, one needs to work with a space of functions bigger than the space {g(i, 8, ¢)|i € [1,
n) A B, ¢ € Class(7)}, since an extension of some g(i, 8, ) does not necessarily belong to {g(i, 5,

Q)iel,n)A B, €Class(i)}.

The previous paragraph explains intuitively why the extension theorem does not express
directly anything about the g(n, «, 7) functions, but rather makes a more general claim: It
essentially states that, for «, 7 € Class(n) with o < v and an arbitrary strictly increasing func-
tion p: a NE — v N E, we can always extend p to the interval [, a( +™ )) N E such that
the resulting extension ®(n, «, v, p) induces the ( <, <y, + )-embedding H: (o, a +")) —
(v, v( +™)), H(z) := z[®(n, a, v, p)]. The proof of this fact is very long and with many
technicalities, but in the end one gets the following recursive definition of the ®(n,a, v, p) functions:

Base case

For arbitrary a, v € Class(1) with a <~ and p:aNE— yNE a strictly increasing function,
_J e—p(e) if ecankE

(I>(1,a77,p).—{a'_p/ .

Moreover, ®(1,v,a,p):= (®(1,a,v,p)) "L
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Inductive case.
Let n € [2,w). By induction hypothesis ®(m,a’,v’,p’) and ®(m,~’,a’, p’) are already defined for
m < n and for arbitrary, a’, v’ € Class(m) and p": @’ NE — 4’ NE a strictly increasing function.
Now, for any «, v € Class(n) with a« <+ and p:aNE— yNE a strictly increasing function,
O(n,a,y,p):a(+")NE— v(+")NE is given by a (side)-recursion on (a(+")NE, <) as:
O(n,a,v,p)(e):=ple) if ecanE;
(I)(’IL a7, p)(a) =7
te (&, E(+" ) NEAE€a,a(+m))NClass(n —1);
®(n, o, 7, p) (&) :=min{d € (v, 7(+")) N Class(n — 1) | @(n, o, v, p)(§7) <A
m(8)g(n—1,6,7(+"))] > m(&)[®(n— 1, €, +(+7), &(n,a, 7, p)le)]}, where
£eClass(n —1)N(a, (+")) and
¢~ = sup ({a} U{e € Class(n— 1) N (a, a(+")) N [ m(e)g(n - 1,e, )] > m(€)}).
Moreover, ®(n, v, a, p):= (®(n,a,v,p)) "L

It is after the proof of the extension theorem that the function g(n, a, ) is finally defined as
the function ®(n, a, v, Id,). Of course, it still rests to show that the g(n, «, v) functions have
the properties we need. Some of these properties follow directly from the extension theorem, for
instance:

gl. g(n,a, ) is strictly increasing.
g2. VeeanE.g(n,a,v)(e)=c and g(n,a,v)(a)="1.
g3. Vz,y € (o, a(+"))NE.x <y y<= z[g(n,a,v)] <1 ylg(n, a, 7)].
g4. g(n, o, o) =Idg(4)nE-
however, other require still much work, for example:
g5. For § € Class(n) with a <y <9, g(n,a,d)og(n,a,v)=gn,a,d).

g6. Dom g(n,a,y)={e€Ena(+™")|T(n,a,e)NaC v}, where T'(n, a,e) is certain finite set
defined for a € Class(n) and e € a( +").

Indeed, in the way to obtain these theorems one actually shows the more general results

L g(n - 17 bl? b2) © @(TL - 17 ay, b17 @(’I’L, a, Y, p)|a1) = q)(n - 17 a2, b23 é(n7 a, v, p)'ag) © g(n - 13 ay, (12)
(see proposition 5.15).

o Im®(n,a,y,p)={sev(+")NE|T(n,v,s)NyCIlmp} (proposition 5.20).

Chapter 6 has as motivation to see how the cofinality properties look in Class(n). Specifically,
based on {z+—— z[g(n,a,v)]|a,y € Class(n)}, the binary relation <™ is defined as
a<"t i<

1. a€Class(n), t € [a, a( +m)]

2. a<t

3. VB Cgnt.39 € Class(n) Na such that
i. Vo € B.Ep(z) C Dom g(n, a,9)

ii. The function h: B — h[B] defined as h(x) := z[g(n, a;, §)] is an ( <, <1, + , Az.w?)-
isomorphism with h|, =1d,.

Later, in propositions 6.5 and 6.6, it is seen that <" satisfies cofinality properties:

e Forte[a,a(+m)),
a<"t+1<= a=sup{y€anClass(n)| Ep(t) CDom(g(n,a,y)) Ay <it[gn,a,v)]}
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Moreover, through the generalized covering theorem (theorem 6.17), one gets cofinality properties
for <4 in Class(n) through the equivalence oo <1 n(n,a,t) +1<= a <"n(n, «a,t) +1 (which follows
easily from corollary 6.20). Finally, corollaries 6.18 and 6.19 explain how the space {z+— z[g(n,,
)] | e,y € Class(n)} is also a class of canonical witnesses of « <q¢ for ¢ closed under the covering
construction.

After the conclusion, in chapter 6, of the proof of theorem 3.25 (actually, of it’s more technical
version, theorem 3.26), we have plenty of information about the <; relation. Now the idea is
to use all that and link it with known proof theoretic concepts. Chapter 7 introduces Clas(w) :=

N Class(i) and the ordinals O;:=minClass(i), for i € [1,w], and shows that Class(w) (which is &~

i€[1l,w)
club for any non-countable regular ordinal x) consists of those ordinals « satisfying v <1 0o. This
and the work of Carlson (see [10]) mean O, = Core(R;) = [[I}-CAg|. It is also shown here that any

non-countable cardinal belongs to Class(w).

Knowing that O,, = [II{-CAo| and the fact that the (O;);c[1,w) are cofinal in O,, (proposition
7.11) leads easily to the inquiries:

1. Trying to obtain a notation system for the segment [0, O,) based on the work done in the
previous 6 chapters.

2. Trying to tell what the O; ordinals are in terms of known proof theoretic functions.

Inquiry 1, obtaining a notation system for the segment [0, O,,) based on the theorems obtained
up to this point (particularly, based on the “description of ¢ in terms of o” for an ordinal ¢ € [«
a(+™))NClass(n —1) and a € Class(n)), was a task “done” by the author of this thesis that does not
appear in the thesis. The reason is that the notation system obtained in such way was complicated
and in the end, after a meeting with Prof. Buchholz, it was decided not to include that stuff in this
work (in fact, since it was decided to stop working in that direction, the proofs that the obtained
system of notations is indeed a notation system for the segment [0, O,,) were never completed).

It is around inquiry 2 that the rest of chapter 7 develops. The second part of this chapter
introduces Buchholz (¢,)ne. functions (as given in [4]) and ultimately provides a (complete)
proof of the statement Vn € w.1,(Qp12) = Qn( +2) (see corollary 7.44); in particular, this means
[ID1| = 10(Q2) = Qo( +2) = O3 as was already shown by Wilken in [18].

The final conjecture is Vn € w¥Vm € [1,w). ¥n(Qn4m) = Qn(+™). In particular, this would mean
Vm € [1,w).|IDy,| = ¥o(Qmt1) = Q(+" 1) = 0,11 and as an easy corollary of this fact, we would
get another proof of O,, = |IT}-CAg|. The general statement Vn € wVm € [1,w).n(Qnym) = L +™)
remains, however, as a conjecture!: The problem is, for & € [, 4+ m, 2ntm(+1)), to provide suitable
lower and upper bounds for the ordinal m(v,(a)). The author of this thesis gives what he thinks
is an ALMOST complete proof of such an upper bound of m(¢,(a)) (see “lemma 7.46”). But it
turns out that for such proof one requires that some rather technical conditions hold; in particular,
one needs to know already a lower bound for m(v;(3)), where 8 € Q4+, Q+i(+')) A j € [L,
w) Ai€[1,m). This suggests that one needs to provide simultaneously the upper and lower bounds
of m(¢,()) and at the same time ensure that the other conditions are satisfied. The completion
of such a proof will have to be, for reasons of time, a task for a future work.

1. The statement Vn € w¥m € [1, 2].9n(Qp+m) = Qn(+") holds by the theorems proven in this work. So the
actual remaining conjecture is to see that ¥Yn € w.¥n(Qn4m) =Qn(+"") holds for m > 3.



Basic conventions used throughout this work.

We use the standard logical symbols in it’s standard way: A,V ,=— ,<=,V, 3, -, etc.
We use the standard set theoretical symbols in it’s standard form: §,U,N,C,=, €, etc.
By B Cgn A we mean B is a finite subset of A.

h: A— B denotes that h is a functional with domain A and codomain B.

For a functional h: A— B and C' C A, we define h[C]|:={h(z) |z € C}.

For a functional h: A— B, we denote Dom h:= A and Im h:= h[A].

By OR we denote the class of ordinals.

0,1,2,... denote, as usual, the finite ordinals.

w denotes the first infinite ordinal.

Lim denotes the class of limit ordinals.

IP denotes the class of additive principal ordinals.

[E denotes the class of epsilon numbers.

<, 4+, Az.w” denote the usual order, the usual addition and the usual w-base-exponentia-
tion in the ordinals, respectively.

For an ordinal o € OR, &, denotes the a-th epsilon number.

Let A COR be a class of ordinals such that A ().

min A denotes the minimum element of A (with respect to the order <).

max A denotes the maximum element of A (with respect to < and in case such maximum
exists).

In case Ja € OR.A C a, then sup A denotes the minimal upper bound of A with respect to <
(the supremum of A).

Lim(A):={a€OR |a=sup (ANa)}.

By (&i)ie1 C A we mean (;);ey is a sequence of elements of A.

Given an ordinal a@ € OR and a sequence (§;);e; C OR, we say that (&);es is cofinal in «
whenever I COR, VieIVjeli<j=§ <, Vieldjeli<jNng <& andsup{&|iell=a.
By ff—f} « we mean that the sequence (&;);ey is cofinal in «.

Whenever we write & =cng war + ... + w?ra,, we mean that w?ta; + ... + w?ra, is the
cantor normal form of «, that is: o = w4tay + ... + wiay,, ay,...,a, €w\{0}, Ay,..., A, € OR and
A1 >...> A,

Given two ordinals «, 8 € OR with a < 8, we denote:
[a, 8]:={c €OR |a<o < B}
[a,8):={c€OR |a<o< G}
(o, B]:={0c€OR |a<o< S}
(o, B):={c €OR |a<o< S}

Given o € E, we denote by at or by a(+!) to min {e € Ela<e}.

For a set A, |A| denotes the cardinality of A; the only one exception to this convention is
done in chapter 6, where we denote as |ID,| and |TI{-CAy| to the proof theoretic ordinals of the
theories ID,, and II}-CA respectively.
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The lower classes






Chapter 1
Class(0)

1.1 The <j-relation

Our purpose is to study the (binary) relation <; defined by recursion on the ordinals as fol-
lows

Definition 1.1. Let 8 € OR be arbitrary and suppose o’ <1 8’ has already been defined for any
B'€ BNOR and for any o’ € OR. Let o € OR be arbitrary. Then
a<if i< a<pf and VZ Cgn 532 Cgp .3h such that:
(i) h: (Z,+,<,<1)— (Z,+,<,<1) is an isomorphism, that is:
+hiZ—sZisa bijection.
+ For any a1,a2€ Z
° a1+a2€Z<:}h(a1)+h(a2)€Z~
o If a1 +az € Z, then h(ay + az) =h(a1) + h(az).
+ For any aj,a2 € Z,
o a1 <ag<= h(a1) <h(ay).
e a1 <jas<= h(a1)<ih(ay).
(i) h|zna=1d|zna, where Id|zna: ZNa— ZNa is the identity function.

By a <1 8 we mean that o <1 B or o = 3. Moreover, to make our notation simpler, we will
write h|o, =1d|, instead of h|zna =1d|zAq-

Remark 1.2. We will eventually use functions f: Z — Z that are Az.w”-isomorphisms; of
course, by this we mean the analogous situation as the one we had with + above:
For any a € Z,

e wW'CZ = fw)eZ

o If W€ Z, then f(w®) =w/(@.

Some of the most basic properties that <; satisfies are the following

Proposition 1.3. Let a, 3,v€ OR.
a) a<; f={re€ORla1z<B}=]a, f].

b) Let (&)ier COR be a sequence such that ff—gﬂ, Then
[Vie[.aélgi]:wyglﬁ. °

) ai B<iy=a<17.

13
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d) Let (&)ie1 COR be a sequence such that ff—f}ﬁ Then
[Hioel.a7(1&0/\a<&0]:>a5é16. 0

Proof. The proofs of a), b) and c¢) follow direct from definition 1.1. Moreover, d) follows easily
from a). O

We call <; -connectedness (or just connectedness) to the property a) of previous proposi-
tion 1.3; moreover, we call <; -continuity (or just continuity) and <; -transitivity (or just
transitivity) to the properties b) and ¢) (respectively) of the same proposition. We will make use
of the three of them over and over along all our work.

Proposition 1.4. Let a, § € OR with a < 8 and o £1 3. Then there exists v € [a, 8) such that
a) {zeOR|a< 1z} =]a, 7]
b) {zeORla<z,a 12} =[7v+1,00).
¢) Foranyo>~, y<£i0.

Proof. Let k:=min{r € OR|r > a £1r}. Then k< 8. Moreover, since Yo € [a, k).a <1 0, then k
must be a successor (otherwise, by <; -continuity would follow a <1 k). So k=~ + 1 < § for
some v € OR and therefore {x € OR|a <1z} =[a, v]. This shows a).

On the other hand, note that for any o > k, it is not possible that «a <; o (otherwise, by <;-
connectedness, one gets the contradiction a <; k). This proves b).

Finally, observe it is not possible that for some o > v, v <1 o, otherwise, from a <; v <1 0
and < -transitivity follows a <; o, which is contradictory with b) (because o > k=~ +1). g

For an ordinal «, the ordinal ~ referred in previous proposition 1.4 will be very important for
the rest of our work. Because of that we make the following

Definition 1.5. (The maximum <; -reach of an ordinal). Let « € OR. We define
m(a) = max {£ € OR|a <1 €} iff there exists B € OR such that « < 8 and o <1 8
T otherwise, that is, VB € OR.a< = a <1 3 '

Note that when m(a) € OR, then it is the only one v € OR satisfying a <17y and o &1 v+ 1.
Because of this we call m(a) the maximum <, -reach of a.

1.2 Characterization of the ordinals o such that a <;a+1

Up to this moment we do not know whether there are ordinals «, 8 such that o <; 8; how-
ever, in such a case, since a < a + 1 < 3, then by <;-connectedness we would conclude that the
relation a <; a4+ 1 must hold. This shows that the simplest nontrivial case when we can expect
that something of the form a <; £ holds is for 8 = o + 1. Then, for this simplest case, what
should « satisfy?. The answer to this question is the purpose of this subsection.

Proposition 1.6. Let o, 8 € OR, a =¢cnF w™ay + ... + w*ay,, with n > 2 or ay = 2. Moreover,
suppose a < 3. Then a £1 (.

Proof. Case n>2.

Since a < 3, then {w*ay,...,w* a,} Can B, but f3w*a; +... + w*a, = a ¢ «, and so there is
no + -isomorphism h: Z — Z from Z := {w*ay, ..., w*a,, a} Cay B in some Z Cgn @ such that
h|a =1d|a, since any of such isomorphisms should accomplish

h(w*ay + ... +w*ay) = h(w*aq) + ... + h(w*a,) =a ¢ a.
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The same argument works for the case n=1,a; > 2. O

Corollary 1.7. Let a, B€OR. If a <4 8, then a =cnpw? € P C Lim, for some v € OR, vy > 0.

Proof. Direct from previous proposition 1.6. The only left cases are « =0 or a=1 but for those
cases it is very easy to see that o £1 a+ 1, since o+ 1 has a+ 1 elements and « has only « ele-
ments, and so for those cases a <1 8 for any 8> a. O

Proposition 1.8. Ifa=w", n€w, then a £1a+1.

Proof. Not hard. But we will give a more general proof of this fact in the next propositions. [

Corollary 1.9. Let o, B€OR. If a <y B, then a =cnrw? for some v € OR, v > w.

Proof. From previous proposition and previous corollary. (This will be proved in the next three
propositions in a more general way). O

Proposition 1.10. Let « € OR, 1 < a € Lim and let P be the class of additive principal ordi-
nals. Suppose a NP is not cofinal in «. Then M :=max (P Na«) exists.

Proof. Since P is a closed class of ordinals, then sup (PNa)eP Na. So M =sup (PNa). O

Proposition 1.11. Let o, p € OR, 1 < a <y p+ 1, with p € P an additive principal number.
Then:

(i) aNP is confinal in a.

(i) « e Lim P C P, (or equivalently, (ii’) a=w?, for v € Lim.)

Proof. (i). By corollary 1.7 we know « € Lim. Now, suppose a N P is not confinal in «. Then
by previous proposition 1.10, let M :=maxaNP € a.

Then M + p=p, but on the other hand, Vv € a.M + v > . Therefore, for
Z :={M, p} Cgn p + 1 and for any Z C « there is no + -isomorphism h: Z — Z, such that
h|a =1d|a, since any such function would satisfy
h(p) =h(M + p) =h(M) + h(p) = M + h(p) > h(p) (Contradiction!).

Thus NP is confinal in «.

(#3). Clear from (7). O

Corollary 1.12. Let a, B8 € OR such that a <1 3. Then a € LimP.

Proof. From corollary 1.7 we have that a <; 8 implies a € IP. Moreover, from a <; f we know
a<a+1<f and then o<y a+1 by <j-connectedness. Finally, from a<;a+1, a € P and the
previous proposition 1.11, « € Lim IP. g

Proposition 1.13. Let a € OR. The following are equivalent:
a) a<ja+1
b) acLimP
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¢) a=w" for some v € Lim.

d) a=w" and v =cnxrwMa +... + wira, with A, +0.
Proof. The proof of b) <= ¢) <=>d) is a standard fact about ordinals.
a)=b) is previous corollary 1.12.

So let’s prove b) = a).

Let oo € LimP. Take B Cana+ 1. If a¢ B, then I: B— a, I(z):=x is an
(<, <1, + )-isomorphism such that |, = Id,. So suppose B = {ag < ... < a,, = a} for some
natural number n. Let A:= {m(a)la € (BNa)Am(a) <a}. Since o € LimP and A is finite, then
there exists p € (an—1,a) N (max A, «) NP. Let h: B— h[B] C « be the function
h(zx):= { v iffe< @ Tt is clear that hle=1Ida.

p  otherwise
We assure that h is an ( <, <7, + )-isomorphism.
The details are left to the reader. 0

1.3 The ordinals « satisfying a <; t, for some t € [a, aw).

We have seen previously that the “solutions of the <;-inequality”  <;x + 1 are the elements
of LimP. It is natural then to ask himself about the solutions of z <2+ 2 or of x <3 2+ w. In
general, this question can be informally stated as: What are the solutions of x <; 3, where “we
pick 8 as big as we can”. The descriptions of such solutions in a certain way is a main purpose
of this work: we will describe them as certain classes of ordinals obtained by certain thinning
procedure. The rest of this chapter is devoted to our investigations concerning this question for
z € P and S € [z, zw]. We will introduce various concepts that at the first sight may look some-
what artificial; however, these concepts and the way to use them is just “the most basic realiza-
tion” of the general tools and methodology developed from chapter 3 to chapter 6 that will allow
us to understand the <j-relation in the whole class of ordinals.

1.3.1 Class(0)

Definition 1.14. Let Class(0):=P.

Definition 1.15. For a, 5 € OR, let

the only one ordinal o such that a4+ o= iff a<p
—a+ f:=

-1 otherwise

Definition 1.16. Let «a,c € Class(0) with a < c.
We define g(0, «, ¢): aw — cw as:
9(0,a,¢)(x):=z iff r < a.
g(0,a,c)(x):=cn+1iff t € [an,an+a) Nz =a+1 for some l € a.

Moreover, we define g(0,c,a):= g(0,a,c)~ L
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Proposition 1.17. Let «,c € Class(0). Then

1. Dom g(0, v, ¢) =(anc)UlY {telan,an+a) | —an+t<c}.

nell,w)

2. Img(O,a,c):(aﬂc)ﬂUne[l ) {telen,en+c)| —en+t<a}.
3. 9(0,,¢): Dom ¢(0, a, ¢) —> Im g(0, v, ¢) is an (<, 4+ )-isomorphism and g(0, c, ¢)|o=1d,.

Proof. Left to the reader. O

Proposition 1.18. Let o, c € Class(0) and X :=(aNc)UU, ) {telan,an+a) | —an+t<
c}. Then the function H: (a,aw)NX — H|[(a, aw) N X] C (¢, cw), H(z):= g(0,a,¢)(z) is an
(<,<1,4)-isomorphism.

Proof. Let a,c, X and H be as stated. By previous proposition 1.17 follows easily that H is an
(<, + )-isomorphism. Moreover, H is also an <7 -isomorphism because by proposition 1.13 and
<1 -connectedness it follows that Va,b € (a, aw).a £1b and Va,b € (¢, cw).a £1b. O

Definition 1.19. Consider o € Class(0) and t € aw.

{t} iff t<a
We define T(0, «,t) :=
{t,—an+t} iff t€lan,an+«a) for some ne[l,w).

Proposition 1.20. Vo, c € Class(0).Vt € aw.t € Dom(g(0, o, ¢)) <= T(0,a,t) N C ¢

Proof. Direct from definition 1.19 and proposition 1.17. g

Definition 1.21. Let a € Class(0) and t € [a, aw]. By a <"t we mean
1. a<t
2. VB Cgpt.30 € Class(0) N« such that
i (Upep T0,0,t)Na) Co;

it. The function h: B— h[B] defined as h(zx):= ¢g(0, a, §)(x) is an (<, <1, + )-iso-
morphism with h|,=1d,.

As usual, o < Just means a <O ora=t.

Proposition 1.22. Let o € Class(0), (&)icr C o, aw]> B,v. Then

1. a<'f=a<; 8

2. Ifa<B<yNa<y then a <O 8. ( <Y -connectedness)
3. Ifviela<&A §i<—f>ﬁ then a <% . ( <O -continuity)
Proof. Left to the reader. O

Proposition 1.23. (First fundamental cofinality property of <° ).
Let o € Class(0) and t € [a, aw).
Then a <%t +1= a € Lim{ S € Class(0) | T(0,a,t) NaC BA B<19(0,, B)(t)}.
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Proof. Let o, t be as stated.
Suppose a <%t + 1. (*1)

Let v € a be arbitrary and consider B :={v,a,t} Cant+ 1. By (*1) there exists
6y € a N Class(0) such that (U, T(0, a, ) N a) C d, and the function h: B — h[B] C «,
h(z):=g(0,a,6,)(x) is an (<, <y, + )-isomorphism with h|,=Id,. In particular, note:

1. v <dy because v € (U, cp T(0,a, ¢) N ) C 5.

2. 6,=9(0,,6~) () <1 9(0, ¢, 6,)(t) because T(0, o, t) N C d and o <1t <= h(a) <1 h(t).

Since the previous was done for arbitrary v < «, 1 and 2 show that

Vyeadd, e {feClass(0) |y < BAT(0,o,t)Nax C BA B <1 g(0,c, B)(¢)}. Thus
a€Lim{p € Class(0) | T(0,a,t) N C BA B<19(0, 0, B)(t)}. O

Proposition 1.24. (Second fundamental cofinality property of < ).
Let o € Class(0) and t € [, aw).
Then a <%t +1<+=a € Lim{B € Class(0) | T(0,a,t) NaC BA B<19(0,a, B)(1)}.

Proof. Let «, t be as stated.

Suppose « € Lim{f € Class(0) | T(0,a,t) N C BA B<1 9(0,a, 8)(¢)}. (*1)
We prove by induction: Vs € [a,t + 1].a <" s. (*2)

Let s € [a,t+ 1] and suppose Vg€ sN[a,t+1].a<%q. (IH)

Case s=a.

Then clearly (*2) holds.

Case s€ LimN (a, ¢t + 1].
Since by our (IH) Vg€ sN[a,t+1].a<%q, then a <°s follows by <°-continuity.

Suppose s=1+1¢€ (a,t+1].
Let B Capnl+ 1 be arbitrary. Consider A:={a,l}U{m(a) |a € BNaAm(a)<a}. Then the
set quBuA T(0, a, ¢) N« is finite and then, by (*1), there is some § € Class(0) N a such that

(Uycpon T0,0,q)N0) COAG<1 g(0,a,8)(t).  (*3)

Consider the function h: B — h[B] C « defined as h(z) := ¢(0, «, §)(x). From (*3) and
propositions 1.20 we know that h is well defined; moreover, from proposition 1.17 it follows that
his an (<, 4+ )-isomorphism with h|, =1d,. (*4)

Before showing that h is an <;-isomorphism, we do two observations:

Let b € B with b > a. Then a < b <, which, together with o <° [, imply by <°-connected-

by (IH)
ness that a <°b; subsequently, o <1 b. This shows Vb€ B.a<b=a<1b (*5)
Let b€ B with b> «. Then oo < b <t implies
§ = g(0, @, 0)(a) < 9(0, a, 9)(b) < 9(0, a, 0)(t); the latter
g(0,,0) strictly increasing g9(0,c,6) strictly increasing
together with 6 <; ¢(0,«,d)(t) imply by <;-connectedness that
by (*3)
9(0,a,6)(a) =0 <1 g(0,x,6)(b). All this shows Vb€ B.ao <b= 0 <1 g(0, v, 6)(b) (*6).

Now we show that h is an <;-isomorphism. (*7)
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Let a,b€ B with a <b.
Case a<a<b.
Then a <1 b = h(a)=g(0,a,d)(a) <1 9(0,c, d)(b) = h(b).
by proposition 1.18
Casea=a <b.
By (*5) and (*6) we have that o <1b and h(a) = g(0, @, ) () =8 <1 g(0, v, 0)(b) = h(D).
Case a,b< a.
Then a <1 b < a=h(a) <1b=h(b).
by (*4)
Casea<a<b.

e a<3b — a<ia<1b —
by <ji-connectedness and (*5) by proposition 1.17 and by (*6)
a=g(0,a,0)(a) < g(0,a,0)(a)=0<ara<iand<ig(0,a,d)() =

by <i-connectedness

a=g(0,a,d)(a) <1 9(0,a,8) () = A6 <1 9(0, 6)(b)by ity
h(a) = g(0,,6)(a) <1 9(0, , 8)(b) = h(b). b

e a#1b= a1« (because a <; o implies, using (*5), that a <1 b), that is, a € BN« with
m(a) < a. Then, m(a) f )5 =g(0, o, 0) () < 9(0, a, 6)(b), that is,
by (*3

g(0,c,9) is strictly increasing
h(a) =a 7(1 g(ov a, 5)(1)) = h(b)

The previous shows that (*7) holds. In fact, (4*) and (7*) show that (2*) also holds for the
case s =1+ 1C (a,t+ 1] and with this we have concluded the proof of (*2). Hence, the proposi-
tion holds. O

The idea now is that <; and <° have something to do with each other. The relation
between <; and < is very direct (see next proposition 1.25); however, when we introduce
Class(1) (or in general Class(n) for n € [1, n]), the way to relate <; with a relation <! (or in
general <™ for n € [1, n]) will be much harder and will be done through the covering theorems
(theorem 2.33 for Class(1)). So, said in other words, the covering theorem for Class(0) is trivial
and therefore we can prove the next proposition 1.25 without anymore preparations.

Proposition 1.25. Let a € Class(0) and t € [, aw). Then a<’t+1+=a<it+1

Proof.
= ). Clear by the definition of <°.
<—). Suppose a <1t+1. (*1)

Note (*1) and proposition 1.13 imply that « € LimIP (*2).

Case t=a.

Let B Cant + 1 =« + 1 be arbitrary. Since B N « is finite and (2*) holds, then there exists
0 € IP such that BNa C§. This way, note
(Uiep T00, a, t) Na) C BN a C B, and then, by proposition 1.20, the function h: B —
h[B] C a, h(z) := ¢g(0, @, 6)(x) is well defined. Finally, note that from propositions 1.17 and 1.18
it follows that the function h is an ( <, <j,+ )-isomorphism with h|, =1d,.

Case t > a.

Let B Cant+ 1 be arbitrary. Consider
C:=BU{a,l,a+1}U{am,l,am+1l|lan+leBAme[l,n|Al€[0,®)} Cant+ 1. So, by
(*1), there exists k: C — k[C] Ca an (<, <1, + )-isomorphism with k|, =1d,. (*3) Then:

1. a<iat+le=k(a) <i1kla+1)=k(a) + k(1) =k(a) + 1, ie., k(a) € LimP.

proposition 1.13

2. VseCNa.s<a<= s=k(s) <k(w)

3. Vne[l,w)VseCnNlan,an+a). —an+s<a< —an+s=k(—an+s) <k(a)}
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From 1, 2 and 3 follows that ¢ := k(o) € Class(0) N a, ( U;ee 70, o, t) N
@) C d and that the function H: C — H[C]| C o, H(z) := ¢(0, a, §) () is well

propositions 1.17 and 1.20
defined. Moreover, by propositions 1.17 it follows that H is an ( <, + )-isomorphism with H|, =
Id,. (*4)

Now we show that H is also an <;-isomorphism. (*5)

Let a,be C with a <b.

Casea=a AbE€E [an,an + a) for some n € [1,w). Then a<;t+1and a<b<t+1
imply by <;-connectedness that o <y b.
On the other hand, note H(«a)=k(a) <1 k(b)=k(an+(—an+b)) =

by (*3) by?*fi)
k(om)Jrk(foerb):k(a)n+(fom+b):H(oz)nJrH(—oerb)b o
y (*4
H(an)—l—H(—an—l—b)b T4)H(an+(—an+b)):H(b). (*6)
Yy *
Case a,b<a. Then a <1b<=a=H(a) <1 b=H(b).
Casea<a<b. Thena<ibd — a<ia<ib <—
<1-connectedness and <j-transitivity by (*3) and (*6)

a=H(a)=k(a) <1k(a)=H(a)<1k(b)=H(b).
Case a <a <b. Thena<;b = H(a) <1 H(D).

by proposition 1.18
The previous shows that (*5) holds.
Finally, from (*4), (*5) and the fact that B C C we conclude, by proposition A.l in the

appendices section, that the function H|p: B— H|g[B] C o, H |p(x) = ¢(0, a, ) (x) is an
(<,<1,+ )-isomorphism with H |, =1Id,.

All the previous shows that o <%t +1. O

Corollary 1.26. Let a € Class(0) and t € [a, aw). The following are equivalent:
1 a<t+1
2. a<it+1
3. a€Lim{p € Class(0) | T(0,a,t)NaC LA L <1 9(0,x, B)(t)}

Proof. Direct from previous propositions 1.25, 1.23 and 1.24. O

1.3.2 A hierarchy induced by <; and the intervals [w?,w?T?!).

In this subsection we show theorem 1.28 which is our way to link “solutions of the conditions
a <1 t+ 1, with a € Class(0) and t € [, aw)” (what below is defined as the GO(t) sets) with a
thinning procedure (the sets A°(t), also defined below). After that, we will see that, for a =k a
regular non-countable ordinal, the set of “solutions of the condition x <;t+1”is club in k.

Definition 1.27. By recursion on ([w, 00), <), we define A% [w, 00) — Subclasses(OR) in the
following way: Let t € [w, oo) be arbitrary. Let o € Class(0) be such that t € [, aw). Then

(LimClass(0)) N (e + 1) iff t=«
AO(t):={ Lim A°(1+1) i t=1+1
Lim{rEClass(O)ﬁ(a+1)|T(O,a,t)ﬁo¢C7‘€ﬂse{qe(m”‘T(U)aﬁq)macﬂ A%(s)}  iff t€[a,aw)NLim

Lim A%(1+1) iff t=1+1
Lim{TEClaSS(O)ﬁ(aJrl)l7an+t<r€ms€{qe(a,t)\T((J,a,q)macr} A%(s)}  aff {te[an,anJra)mL]m

for some mn € [1,w)

{ (LimClass(0)) N (e +1) iff t=«
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On the other hand, we define G°: [w, co) — Subclasses(OR) as follows: Let t € [w, co) be
arbitrary. Let o € Class(0) and n € [1,w) be such that t € [an,an+«a). Then
GO(t):={B € Class(0) | T(0,,t)NaC B<aNB<g(0,, B)(t) +1}
={B€eClass(0) | —an+t<B<anB<g(0,a,B)(t)+1}
=, by proposition 1.25,
={peClass(0) | —an+t< f<anf<19(0,a, B)(t) +1}.
={p€Class(0) |T(0,a,t) NaC B<aAB<1g(0,a, B)(t)+ 1}

Theorem 1.28. V¢t € [w,0).GO(t) = A%(t).

Proof. We show Vt € [w, 00).G°(t) = A°(¢) by induction on ([w, o), <).
Let ¢ € [w, 00) be arbitrary and consider « € Class(0) and n € [1,w) such that t € [an, an + ).
Suppose Vs € N [w,00).GY(s) = A%(s). (IH)

Caset=o.
Then G°(a) ={B € Class(0) | —a+a< B<anB<19(0,a,8)(a)+1} =
={feClass(0) |a> <1 5+ 1}pr0p05i§On ) 13(Lim Class(0)) N (a+1) = A%a).
Case t=1+1 for some |l € [an,an + a).
Then G(1+1)={B€Class(0) | —an+ (I+1) < B<an <1 9(0,a, B)(1+1)+ 1} o L
{B€eClass(0) | —an+ (I+ 1)< B<aAn coreT
B € Lim{~y € Class(0) [ — Bn+ g(0, v, B)(1+1) <y A7 <19(0, 8,7)(9(0, a0, B)(I+ 1))} } =
{B€Class(0) | —an+ (I+1) < B<aA
B eLim{vy€Class(0) | — fn+ (fn+(—an+1+1)) <vyA
v it (— Bt (Bn+ (—ant1+ 1))} =
{BeClass(0) | —an+ (I+1) << aA
B eLlim{y€Class(0) | —an+ (I+1)<yAy<im+(—an+1+1)}}=
Lim{y€Class(0) | —an+ (I+1)<y<aAy<gym+(—an+l+1)} =
Lim{y € Class(0) | —an+ (I+1)<vy<aAy<19(0,a,7)(+1)} =
Lim{y € Class(0) | —an+I<y<aAy<19(0,a,7)()+1} =
LimGO(l)byTIH)LimAO(Z) =A%+1).

Case a <t € [an,an + a) N Lim.
In order to show GY(t) = A%(t), we make some preparations first. Note
G(t)={B€Class(0) | —an+t< B<an <1 9(0,a,B)(t)+1} =, as in the previous case,
=Lim{y €Class(0) | —an+I<y<aAy<19(0,a,7)(t)}. (*0)

On the other hand, let’s show
VE € Class(0). —an+t< < ani<; 90, a, 7))} = € € mse{qe(a,t) | T(0,0,0) N C £} A%(s)

(*1)

Let € € Class(0) be such that —an+t<&<an€&<19(0,a,7)()} (*2)
Let se {g€(a,t)|T(0,a,¢g) NaeC &} be arbitrary and let m € [1,n] be such that
s € [am,am+ «). Then clearly —am + s <{ <« and
E<Em+(—am+s+1)<én+(—an+t)=g(0,a, v)(t); the latter implies, by (*2) and < -
connectedness, £ <1 ém+(—am+s+1)=(Em+(—am+s))+1=g(0,c,y)(s) + 1. This shows

Ee{yeClass(0) | —am+s<y<aAy<19(0,a,v)(s)+1} = GO(S)b = (IH)AO(s) and since this
y our
was done for arbitrary s € {q € (a,t) | T(0,a,q) N C £}, it follows

e ﬂse{qe(a,t) | T(0,0,q) N A%(s). Hence (*1) holds.
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Now we show {y€Class(0) | —an+I<y<aAv<19(0,0,7)(t)} =
0

{reClass(0)N(a+1) | —an+t<re ﬂse{qe(ayt) |T(0,0,q)NacCr} A%(s)} (*3)

Note from (*1) follows immediately that the contention ” C” of (*3) holds. Let’s see that
the contention ” D" also holds:

Let fe{reClass(0)N(a+1) | —an+t<re()
Then € Class(0) A —an+Il< <« (*4) and
BEMaetgetn 170.apnacsy A7) by (IH) Nuctociot) 1 TO.aanacs) G (8)=

ﬂse{qe(a’t) | T(0,0, )0 C 8} {y € Class(0) |T(0, 0, s) N Cy< aAv<y g9(0, a,v)(s)}

(*5).
This way, for the sequences (d;)ser and (&s)ser defined as
I.:{(O,—an—i—t) iff t>an

0 .
se{qe(ont) | T(O.a,g)nacr} A°(s)} be arbitrary.

0, 8) iff t=an’

5 '_{om—l—s iff t>an

Tl an—1)+s iff t=an
and

| Bn+s iff t>an

gS'{ﬁ(n—l)—ks iff t=an’

we have that, by (*4) and (*5),
Vs e I.T(0,a,05) N C <1 g(0, v, 5)(05) = &5 and

. Bn+(—an+t) iff t>an
gs cof { Bn iff t=an

conclude o> B € Class(0) A —an+t< <1 =¢(0,a, 5)(t), that is,

Be{yeClass(0) | —an+t<y<aAvy<1g(0,a,7)(t)} = GOt). Since this was done for arbi-
trary S € {reClass(0)N(a+1) | —an+t<re) A%(s)}, then " D" of
(*3) also holds.

} = ¢(0, a, B)(t). From all this and using <3 -continuity, we

se{qe(a,t) | T(0,a,q)NaCr}

Finally, it is now very easy to see that G°(t) = A°(¢) holds:

GO(t)b T*O)Lim{’y €Class(0) | —an+t<y<aAy<19(0,a,7)(t)}
y

= Lim{r eClass(0)N(a+1) | —an+t<re()

by?*S)

A%(s)}

s€{q€(a,t) | T(0,a,q)NaxCr}

AO(1). E

Proposition 1.29. Let x be a regular non-countable ordinal. Then Vt € [k, kw).A%(t) is closed
unbounded in K.

Proof. By induction on ([, kw), <). One needs to work a little bit with the usual properties of
closed unbounded classes. O

To finish this chapter, we show that there are ordinals o € Class(0) such that o <; aw.

Proposition 1.30. Let k be a regular non-countable ordinal and o := min Class(0) =w. Then
1. mté[n,nw)/\T(O,n,t)ﬂnCa Ao(t) = {’Y = Class(O) N(k+1) ‘ <1 'yw}'
2. {y€Class(0) | y<1yw} is closed unbounded in k.

Proof. Let k and « be as stated
1.

To Show ¢ rontomiymca A C {7 € ClassO) N (k+1) [y <iqw).  (¥0)
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0(4) — 0(4) —
Let S € ntE[H,nw)/\T(O,H,t)ﬁmCa A%(t) = ntE[H,W)/\T(QH,t)ﬁKCQ Go(t) =
ﬂte[n,w)AT(O’mthCa {7 €Class(0) | T(0,x,t) N Cv< kA v<y 90, Kk, 7)(t) + 1}. Notice
from this follows that Vn € [1,w).T(0,k,kn) Nk Ca< B<cAB<19(0,k, B)(kn) +1=pBn+1;
therefore, since the sequence (n + 1),ep1,w) is cofinal in Sw, we get, by < -continuity, £ >
B <1 Bw. Since this was done for arbitrary € ﬂte[m,nw)/\T(O,m,t)r‘mCa AY(t), then (*0) follows.

To show At) D {y€eClass(0)N(k+1) |y <1 w}- (*1)

mtE[n,nw)/\T(O,n,t)ﬁnCa

Let Be{v€Class(0)N(k+1) | y<1yw}. (*2)

Let t € [k, kw) AT(0, k,t) Nk C a be arbitrary and let n € [1,w) be such that ¢ € [kn, kn + ).
Then T(0,k,t)Nk={—kn+t}Ca<pf<pn+(—krn+t)+1<B(n+1)<pw and then, by (*2)
and <;-connectedness, we get T(0,k, ) Nk C <AL fn+ (—kn+t)+1=9(0,k, 5)(t) + 1,
that is, B € G°(t) = A%(t). Since this was done for arbitrary 8 € {7y € Class(0) N (k+ 1) | v <1 w}
and for arbitrary ¢ € [k, kw) AT(0, k,t) Nk C c, then we have shown that (*1) holds.

Hence, by (*0) and (*1) the theorem holds.

2.
Left to the reader. See proposition 2.59 to get a hint for a proof of this fact. O






Chapter 2
Class(1)

The previous chapter exemplifies the way in which we will be studying the <; relation up to
chapter 6. However, our subsequent work will be based not on the class of additive principal
numbers Class(0) = IP (as done previously), but on the class of epsilon numbers Class(1) := IE.
The reason for this is merely circumstantial: the main ideas used in this work for the study of
the <j relation were discovered by the author of this thesis considering [E as our “base class”
and it has been after the successful development of these ideas up to their most general form
(chapters 3, 4, 5 and 6) that it was clear that one could make the whole treatment of the study
of the <; relation based on IP.21 This chapter contains, then, the original considerations that
eventually lead to the point of view used from chapter 3 ahead.

2.1 The ordinals «a satisfying o <; a + &, for some £ € [1, .

We will first show a theorem and a corollary appearing in [18]. The proof of the theorem we
present here is slightly different than the one given by Wilken. Primarily, let’s state the next
proposition.

Proposition 2.1. (Cofinality properties for the easiest case).

Let « € OR and t € [a,a2). Let 1 €0, ) be such that t=a+1. Then

a<it+1=(a+1)+ 1< there exists a strictly increasing sequence (&;)icr C a NP such that
fi?a and Vie I.1<& <&+

Proof. Direct from corollary 1.26. g

Remark 2.2. Let « € P, t € [a, @2) and | € [0, &) be such that ¢t = « + [. For an additive prin-
cipal number g € P with 8 > [, let’s denote t/a := 8/ to the ordinal 8 + I; that is, t/a:= §/ is
simply the replacement of « by 8 in t = a + [. With this convention we can enunciate previous
proposition 2.1 as:

a<jt+l<=aclim{feP|I<BAB< t/a:=05/}.

2.1. My supervisor, Prof. W.Buchholz, noticed that the ideas used to study the upper classes (chapter 3 to
chapter 6) could be already applied for Class(1); in fact, he provided me a draft where he presented all this in a
very nice way and suggested me to make such changes. Ultimately, I decided to add what is now the first chapter
of this thesis in order to give the reader a sense of how the most general theorems are done (as suggested by my
supervisor) and leave the results about Class(1) as they were, since making changes in them imply the need to
make plenty of changes in the subsequent chapters in order to get a consistent work.

25
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Now we present the theorem of Wilken that we mentioned before.

Theorem 2.3. (Wilken).
Ya € ORVE €[1,a).a <ja+ £ <= a=w? with A=w-s for some s € OR, s+0.
Remark: In the previous line, we are NOT saying that the Cantor Normal Form of A is w® - s.

Proof. We prove the theorem by induction on (OR, <).

Let a € OR and suppose the claim of the theorem holds for any § < a. (IH)
We continue the proof by a side induction on [1, @).
Let € € [1,«) and assume the claim holds for any z € [1, @) N&. (SIH)

Case £ =1. Then the claim holds by proposition 1.13.

Case £ € (1, ) NLim.

= ) Assume a <;a+&. Then a<ja+y for any y €[1, §) by <;-connectedness. Then, by
our side induction hypothesis, for any y € [1, £), @ =w?, where A =wV-s,, for some s, 0. From
this follows that A = sup {w¥ - s,|y € [1, £)} > w®. Now, by Euclid’s division algorithm for ordi-
nals, there exist s, p € OR with p <w¢ such that A=w¢ s+ p. But since p <w® and
¢ € (1, ) N Lim, then there exists 6§ € [1, &) such that w® > p. All this means that

o SIHw5 -ss=w$- s+ p, which implies that w® divides p < w?; therefore p=0 and A=w? - s.
y our

). Assume a =w? with A=w¢- s for some s € OR, s#0. Then, for any y € [1, ), we can
write A = wY - s, for some s, # 0. Then by our SIH we get Vy € [1, {).a <1 a + y. But the
sequence (a+ ¥y)ye(1,¢) is cofinal in a+ &, so by <i-continuity we conclude that o <;a+ €.

Case £€(1, ), E=1+1 for some [ €[1, ).

=) Assume o <j;a+1+ 1. Then by proposition 2.1, there is a strictly increasing sequence
(&)icr C OR such that &?a and Vi € 1.l < & <1 &+ 1. This implies, by our IH, that

Vi€ 1.6 = W i for some s; # 0. Moreover, note that since (&;);cr is strictly increasing, then
the sequence (s;);es has to be also strictly increasing, and therefore o :=sup {s;|i € I } € Lim.

On the other hand, consider o =cnpw®ag + ... + w ™a,,. Then Sm# 0 (because o € Lim) and
so we can write ¢ = w - s for some s € OR, s # 0. From this and the previous paragraph we get

sup{w'-s;liel} _ CUcﬂsup{sﬂié[} _ wwl-a :wwl-w-s :wwl“-s

that a=sup {&liel}=w for
some s 0.

). Assume a=w4 with A=w!T1. s=w!- (ws) for some s+ 0.

Take an arbitrary finite B Cana+1+ 1. Then B={a1 < ... <a, <a+b; <...<a+b,} for
some a;, b;. Without loss of generality (see proposition A.l in the appendices section) we can
assume that {a,=a,bp=10,a+1,b,....,b,} CB.

We want to define an ( <, <j,+ )-isomorphism h: B — h[B] C o with h|, =1Id,. In order to
achieve this, we need to do first the following observation: Let (s;)i;es C [1, ws) be a sequence

such that sy—f)ws (this is possible because ws € Lim). Consider the sequence (7;);ecs, where
co

1

lg. L.
= w* < ¥ (ws) =a. Then y;~——« and by our (IH), Vj € J.7v; <1 v; + 1+ 1. This shows

that o € Lim{y € OR|y<1v+1}. °

On the other hand, let C := {m(a)|a € (BN a) A m(a) < a}. Since C is finite and we know
that @ € Lim{~ € OR|vy <1 v + I}, then 0 # (an—1, @) N (max C, a) N {y € OR|y <1 v+ [}. Take
p € (an—1,a)N (max C,a) N{y€OR|y <1 y+1}. Note that p <1 p+1 by <;-connectedness and
so p € LimIP C P by proposition 1.13.

We define the function h: B— h[B] as
h(ak) :=ay, for any ke [l,n—1],

h(bg) := by, for any k €[1, p],

h(a):= p and

h(ca+by) := p+ by, for any k€ [1, p].
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By the definition of h, it is clear that h|, = Id, and that h: B — h[B] is bijective. Now we
show it is an ( <, <3, + )-isomorphism: The proof that h is an ( <, + )-isomorphism is essentially
the same done within the proof of proposition 1.13 (one has to check just some few more sub-
cases).

So let’s prove that h is an <;-isomorphism. We need to see several cases:

1. Since a = w4 and A =w't! . s =w'- (ws), then by our SIH o <; o+ I. On the other hand,
note that h(a) <1 h(a+1) =h(a)+1 indeed holds, because p e {y€OR|y<1v+1}.

2. By 1. and <; -connectedness, we have that a <; o + by, for any k € [1, p]. But p <3 p+1
and Vk €1, pl.p < p+ b < p+1 imply, by <;-connectedness, that h(a) <1 h(a + bg) = h(a) + by
also holds for any k € [1, p].

3. Let o+ b;, « + bj € (B\{a}) with a + b; < a + b, be arbitrary. Then a + b; £1 o + b; by
corollary 1.7, and because of the same reason h(a+b;) = h(a)+b; £1 h(a) +b; =h(a+b;).

4. Let a;,a; € BN with a; <a; be arbitrary. Then clearly
a; <105 <= h(az) =a;<105= h(aj).

5. Let a; € BNa. If a; <1 «, then a; <1 h(a) holds by <;-connectedness (because a; < p < ).
If a; £1 @, this means m(a;) € C' and therefore m(a;) < p, that is, h(a;) =a; £1 p=h(a).

6. Let a;€ BNa and a+b; € (B\{a}). If a; <1 a+bj, then, using
a; < p+0b; < a < a+ bj, we conclude that h(a;) = a; <1 p+ bj = h(aw + b;) by <4 -con-

because a€P
nectedness. If a; £1 o + bj, then a; £1 a (because, by 2., we already know that o <1 @ + b;; so

a; <1 o would imply a; <; a + bj by < -transitivity). This means m(a;) € C' and therefore
m(a;) < p. Hence h(a;) =a; £1p+b;=h(a+b;).

1., 2., 3., 4., 5. and 6. show that h is also an <j-isomorphism. O

Corollary 2.4. (Wilken). Ya € OR.a<;02<=a€E

Proof. Not hard. Left to the reader. O

Corollary 2.5. Let a € OR, a ¢ E be such that & =cnw wilay + ... + whra,.
a) If n>2 or a; =2, then m(a) =a.

b) If n=1=a; and A1 =cxrw?Pby + ... + wBsbg, then m(a) =+ Bs. (B could be zero).

Proof. a). Suppose n>2 or a; > 2. Then, by proposition 1.13, a £1 a+1; then m(a) =a.
b). Suppose n=1=a; and A; =cNnrwPiby + ... + wBsb,.
Case B;=0. By proposition 1.13, a £ «+ 1; then m(a)=a=a+0=a+ Bs.

B1 Bs
Case By 0. Since by hypothesis a ¢ E and a =w® bit...+w™ebs

therefore Bs+ 1< a > B;. *)

On the other hand, let §; be such that Bs+ d;= B; for any i € [1,s]. Then
Ay =cnE wBs 0y + L wBs -1 4 wBsh, = wBs . (Wb + ... + wl-th, g+ bs); moreover,
Ay %wBS‘H - D for any D € OR (because of the uniqueness of the Cantor Normal Form: if
Ay = wB*tl . D for some D € OR, then for D =cnr wP'di + ... + wP*d one gets
Al =cnpwBet TPy 4 wBs 1 Drq,  which is different than
wBby 4 ...+ wBeib, ) + wBsb, because B, + 1 + Dy > B,). The previous and (*) imply, by
theorem 2.3, that @ <y a+ Bs and « ¢1a+ Bs+ 1. Hence m(a) = a+ Bs. O

€ P, then Bs<a>1 and

2.2 <; in the intervals [e4,e+41)
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Our interest now is to describe the solutions of x <; 8 for 8 > x2. The first thing to note is
that, in case we are able to find some ordinal z such that z <; 8 for some 8 > x2, then by < -
connectedness x <1 x2, and therefore, by corollary 2.4, x € E. This shows that the solutions of
the inequalities we are now interested, in case they exist, have to be epsilon numbers. Because
of this, we define Class(1) := IE and we aim at the description of epsilon numbers x such that
they satisfy something of the form z <; 3, with 8 € [z,2T) and 2T :=min {e € E | e > 2 }; since
we restrict 8 € [z, zT), we will informally say that we are studying the relation <; in the inter-
vals [eq, Ex41)-

2.2.1 Substitutions

In our previous work, whenever we asserted that for certain ordinals «, £ with & € «, it holds
a <1 a+ & we provided, for every B Cgpa+ &, an (<, <j, + )-isomorphism h: B— h[B] C «
such that h|, = Id,. The important aspect we want to stress is that the isomorphism we con-
structed had the following peculiarity: we looked for an “adequate” p € «, we defined h(a) := p
(we can always counsider that o € B by proposition A.l in the appendices section), h(a) := a for
any a € BNa, and for any o+ 1 € B, we defined h(a+1):= p+1. So h just “substituted a by p
and leave the rest as it was”. This suggests to study these kind of substitutions as witnesses of
the <j-relation; in particular, this will play an essential role for our study of <; in the intervals

[ey:Eq+1).

Definition 2.6. For x € OR, let Ep(z) be the (finite) set of epsilon numbers appearing in the
Cantor Normal Form of x, that is,

{z} if ek
Ep(z):=< Ep(L1)U...UEp(L,) if ®¢BEAx=cnrLili+...+LploA(n22VI122)
Ep(L) if mgéE/\xZCNFwL

Definition 2.7. Let a, e € E and x € OR. We define the substitution of o by e in the Cantor
Normal Form of x (and we denote it as x[a:=¢€]) as:

x if teEnx+a
e if r=a

aloa:=e]:= Lifa:=e]li+ ...+ LyJa:=e]l, if x¢EAx=cnrLili+... + LplpA(n22V 11 22)
whle=el if xgéIE/\mZCNFwL

As the reader can see, the substitution z[a:=e] makes sense for any a,e € E and x € OR. We
will require later the conditions = € o™ and Ep(z) N« C e in order to guarantee that z]a:= ¢] is
a Cantor Normal Form already: the one obtained by simply exchanging in the Cantor Normal
Form of x the epsilon number « by the epsilon number e.

Proposition 2.8. Let a,e€E.
a) Ep(x) is finite for any x € OR.
b) 0<z[a:=e¢] for any x € OR\{0}.

¢) zla:=e]=z for any z €a.

Proof. Easy. O
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Proposition 2.9. Let a,e €E and q,s € a™. Suppose that Ep(q) Na CeDEp(s)Na. Then
g<s<=qla:=¢] <s[a:=¢].

Proof. Not hard. O

Proposition 2.10. Let a,e €E and s €a™.

1. If Ep(s)Na Ce then sla:=¢] €et, Ep(sla:=e])Ne=Ep(s) Na and the ordinal s[a:= €]
is already in Cantor Normal Form.

2. Ep(s)NaCe<= Ep(w®)NaCe.
3. If Ep(s)Na Ce then w[a:=e] = wsl*=el.
4. If s=cnp Ara1 + ...+ Aman, then Ep(s)NaCe<( U1<i<m Ep(4;)Na)Ce.

X

Proof. Not hard. O

Proposition 2.11. Let a,e €E and q,s € at. Suppose Ep(q)Na CeDEp(s)Na. Then
a) Ep(¢+s)NacCe and (¢+ s)[a:=e¢]=qla:=¢] + s[a:=¢€].

b) Ep(¢-s)NCe and (¢-s)[a:=e]=qla:=¢] s[a:=¢€].

sla:=e]le:=a]l=s

If s=a+c for some a,c € OR, then Ep(c)NaCe.

If s=a-b for some a,be OR, then Ep(b)NaCe.

)
)
d)

)

e

Proof. Not hard. g

Definition 2.12. For a,e € E we define M(a,e):={q€a™|Ep(q)NaCe}.
We can summarize our previous results in the following two corollaries:

Corollary 2.13. Let a,e€E. Then:

1. M(a,e) is closed under the operations + -, Ax.w®.

x

2. M(a,e)N[a,at) is closed under the operations +,-, A\z.w®.

Proof. Left to the reader. O

Corollary 2.14. Let a,e €E. Then

fiM(a,e)— f[M(a,e)]C OR

1. The function
q +——qla=¢]

is an (<,+,-,  \z.w")-isomorphism.

hila,a™)yNM(a,e) —s [e,eT)
q r—rqla=¢€]

are (<,+,-, \z.w®)-isomorphisms with h~ ! =k.

2. If e<a then M(e,a)N[e,et)=le,e) and the functions
k:le,et) — [a,at) N M(a,e)

and
q +r—qle:=q]

Proof.
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1.

Proposition 2.9 guarantees that f preserves the relation < (this, subsequently, implies that f is
injective, and therefore f: M(«, e) — f[M(«, €)] is a bijection). Moreover, propositions 2.10
and 2.11 guarantee that f preserves the operations Ax.w®, 4+, - too. Finally, since by corollary
2.13 M(«,e) is (+,-, Az.w”)-closed, then we do not have to worry about f preserving the

(+, -, Az.w®)-closure of it’s domain M («, e) (that is, f is an (<, +, -, Az.w®)-isomorphism in
the usual sense).

2.

Left to the reader. g

Corollary 2.15. Let a,e €E and BC M(«,e). Then the function h: B— h[B],
h(z):=z[a:=€] is an (<, 4+, -, Az.w®)- isomorphism.

Proof. By previous corollary 2.14, we already know that h preserves <, 4 ,- and Az.w”. More-
over, the fact that h preserves < implies that h is an injection, and therefore h is a bijection
from it’s domain to it’s image. So it only remains to show that h preserves the ( + , -, Az.w®)-
closure of B. This is not hard: Let 3, € B. Let’s denote as S0~ to any of S+, 8- or w?.
Suppose S0y € B. Then S0~ =4 for some 6 € B. Then h(8)0h(vy)=h(B0vy)=h(d) € h[B].
Suppose h(B)0h(y) € h[B]. Then Bla:=e]0v[a:=e] = h(B)Th(y) = h(5) = §[a:= €] for some
d € BC M(a,e). (*). On the other hand, since 3,y € M(a,e), then 0y € M(a,e) and
Bla = e]Oy[a:=¢€] = (BOy)[a:=€]. (**). From (*) and (**) follow (S07)[a:= €] = d[a:= €],
and since the function x — x[a:=¢] is a bijection in M (a,e), then SOy =6 € B. O

2.2.1.1 Substitutions and <; in intervals (e,,&~41).

The next two results are the main reason why we are caring so much about our substitutions
r— xla:=e€l.

Proposition 2.16. Let a,e €E and A:= (a,at) N M(«a, €). Then A is closed under the opera-
tions +,-, Ar.w” and m.

Proof. Left to the reader. O

Corollary 2.17. Let a,e €E and A:=(a,a™) N M(a,€). Then

h: A— h[A] C (e, eT)

1. The function
q— qla:=¢€]

is an (<,+,,  \z.w® m)- isomorphism.
2. If a<e then A= (a,a™) and then the function
h: (a,at) — h[(a,a™)] C (e, e™)

) < S Ar.w® m)- i hism.
N is an (<,4+,-, \x.w* m)- isomorphism

Proof. Clearly 2. follows from 1.
We prove 1. Let g € A be arbitrary.

=afa:=¢] < qla:=¢] < e, This shows that h[A] C (e, e™).

a<gq = e
proposition 2.9 proposition 2.10

On the other hand, proposition 2.9 guarantees that h preserves the relation < . Moreover,
propositions 2.10 and 2.11 guarantee that h preserves the operations Az.w”,+,- too.
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Now we prove that h preserves m too.

Since q € (a,a™), then g¢ E. Then we have the following cases:

Case ¢ =¢nF Bib1 + ... + Bpb, with n > 2V by > 2. Then m(q) = g by corollary 2.5. On the
other hand qla:=e] =cnr Bi[a:=€]b1 +... + Byla:=elb, with n > 2V by > 2; so, by corollary 2.5,
m(gla:=e]) =qla:=e]=m(q)[a:=¢€].

Case ¢ =cnrw? with B =cnrwP; + ... +wP=1b, 1 +w?b,. Then m(q) = q + Z by corol-
lary 2.5; moreover, Ep(Z) N« C e by the proof of previous proposition 2.16. ().

On the other hand ¢[o := e] =cnr wBle=el with Bla:= €] =cnF while=elp, 4 4 Zle=elp

thus m(gla:=e)) qla:=e]+ Z[a:=¢€] (g+ 2)|[a:=e€e]=m(q)|a:=

coroll;ry 2.5 by (*) and pr:position 2.11

el.
All the previous shows that h preserves m.

Finally, since by proposition 2.16 A is (+, -, Ax.w®, m)-closed, then we do not have to worry
about h preserving the (+,-, Az.w®, m)-closure of it’s domain A (that is, h is an
(<,+,, Az.w”, m)-isomorphism in the usual sense). O

Remark 2.18. The function h: A — h[A] of previous corollary 2.17 is an < -isomorphism too:
For any 3, v € A, the ordinals m(f), m(y) € A (because by proposition 2.16 A is m-closed) and
we have that 8 <1y — B<ysm(p) =

<1-connectedness corollary 2.17

h(B) <h(y) <h(m(B))=m(h(B))_ <= h(B)<ih(7).

<1-connectedness

2.2.2 The relation <'.

With the purpose of extending our understanding between the substitutions x — [o := €]
and the <j-relation, we introduce the following

Definition 2.19. For o, 3€ OR, a <! 8 means a < B and YZ Cgy B3Z Cgana3dh such that
(1) h:(Z,<,<1,+,\zw%)— (Z, <,<1,4+,Ax.w") is an isomorphism.
(1) h|zna=1d|zna, where Id|zna: Z Na— Z N« is the identity function.

By a <! 8 we mean that a <1 3 or a= 3. We abbreviate h|zno=1d|zna as hlo=1d|4.

Proposition 2.20. Let o, 8,7€ OR and (&)ie;r COR. Then

1. a<!B=a < B

2. Ifa<B<yAa<t y then a <! B. ( <!'-connectedness)
3. If Viel.a él&/\ff—gﬂ then a <! 8. ( <! -continuity)
CO:

Proof. 1. follows direct from the definition of <!. The proofs of <!-connectedness and
<! -continuity are as easy as the proofs of <;-connectedness and <;-continuity. O

Now we show that the <!-relation is closely related with the substitutions x +— z[a := e].
We first make the following
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Definition 2.21. Let g € OR with g=c~r L1gq1+ ... + Lngn. Let
SCNF(q) = {qulv (XS] ann} U {25:1quz|J S {17 ceey ’Il}} U

{Ali€[1,n] ALi#EALi=cnpw™i} Soxr(Ai).

Proposition 2.22. Let a € E be an arbitrary epsilon number.

1. Lett€[a,at) and B(t):=Scnr(t) U{Lj|Lqg€ Scnr(t) N\LEP Age[L,w)AjE{L,....,q}}.
Note t € B(t) Cant+1.
Then any h: B(t) — h[B(t)] Ca that is an (<, <1,+,Az.w®) isomorphism with h|,=1d, satis-
fies h(a) eENa and Vs € B(t).Ep(s)Na C h(a) Ah(s) = s[a:=h(a)].

2. Let t € (o, a™) and suppose a <'t. Let B Cgy t. Then there exists v € E N « such that
Vs € B.Ep(s)Na C~y and the function h: B— h|B] Ca, s— s[a:=1] is an
(<,<1,+, Az.w®) isomorphism with h|,=1d,.

Proof. We prove 2. first.
Suppose t € (a,a™), a <!t and B Cgpt. Consider the set C:= UseButah)nfa.aty B(S) Chnt,

where B(s) is the set defined in 1. Now, since o <'¢, then there exists an (<, <7, +, A\z.w®)-iso-
morphism H:C — H[C] C a with H |, =1d,. Note that a € B(a) C C and therefore, by 1.,
H(a) eENa. Let v:= H(a).

Let’s show that Vs € B.Ep(s) N C v. Let s€ B. If s€ BN a, then s = H(s) < H(a) = v
because the relation < is preserved by H and so Ep(s)Na C H(a) =~. If s € BN [a,t), then
s€ B(s) CC and then, by 1., Ep(s)Na C H(a)=1.

Finally, to show that the function h: B — h[B], h(s) := sla:=7] is an ( <, <1, + , Az.w?)
isomorphism with h|, =Id, it is enough to show that h = H|p (since H|p: B— H|p[B] C o is
already an (<, <71,+, Az.w?®) isomorphism with (H|g)|o =1d, by proposition A.1 in the appen-
dices). Solet s€ B. If s <a, then s <y =H(a) and so h(s) =s[a:=v]=s=H|p(s). If s > q,
then s € B(s) and then by 1. we have that H|p(s) = H(s) =s[a:= H(a)]=s[a:=~v]=h(s).

We prove 1.

Let t € [, @), B(t) and h as in our hypothesis. Then h(a) = h(w®) = w™®. So h(a) € E.
Moreover, from the definition of B(t) and using that h preserves the < relation, it follows that
Vs € B(t).Ep(s)Na C B(t) and VI € Ep(s) Na.l =h(l) < h(a); that is,

Vs e B(t).Ep(s) Na C h(a).

We now show Vs € B(t).h(s) = s[a:= h(«)] by induction on the set B(t) (with the usual order
< on the ordinals):

Let s € B with s =cnpw?taq + ... + wla,.

Suppose Yy € sN B(t).h(y) = y[a:= h(a)]. (IH).

If u > 2, then by TH h(w?ia;) = wtai[a:= h(a)], ...,h(wAHa,) = wAta,[a := h(a)] and there-
fore h(s) = h(wtar) + ... + h(wAa,) = whai[a:= h(a)] + ... + wra,[a:= h(a)] =
(whag +... +whea,)[a:=h(a)] = sla:= h(a)].

If u=1 and a1 >2, then by IH h(w?(a; — 1)) =w(a; — 1)[a:= h(a)] and
h(w) =wAta:= h(a)]. Then h(s) =h(w*(a; — 1)) + h(w??) =

=w(a; — 1)[a:=h(a)] + wha:=h(a)] =wai[a:= h(a)] = s[a:= h(a)].

If u=1 and a1 =1 (that is, s =cn~F wAl) we have two subcases:

e A; <s. Then by TH h(A;) = Ai[a:=h(a)] and so h(s) = w"(A) = Arle=h(a)] =

=wha:=h(a)] = sla:=h(a)].

o Ay =s. Then s€E. If s<a, then h(s) =s=s[a:=h(a)] because h|o=1d,. If s>, then

s=a (because a < s<t<a™). So h(s)=h(a)=aa:=h(a)] = sla:= h(a)]. O

2.2.2.1 Cofinality properties of <1.

What are the ordinals « such that o <!+ 1?. Well, one can prove the following:
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Exercise 2.1. Ya€OR.a<!a+1<= acLimE.
Exercise 2.2. Va € OR.a € LimE=V¢ € (0,a).a<ta+&.

The consideration of the previous exercises revels two very important properties of the rela-
tion <! which we prove now:

Proposition 2.23. (First fundamental cofinality property of <! ). Let a € E and suppose
a<'s for some s € (a,a™). Then for any t € [a, s) there exists a sequence (c¢)eex CaNE such
that Ep(t) N C e, ce—a and c¢ <itla:=cg].

CO

Proof. Let a € E and suppose o <! s for some s € (a,a™). Let t € [, s). We define
M :=max (Ep(t) N«). Let § € [M + 1, a) be arbitrary.

Consider the set
Bs:= Sonr(t) U{Lj|Lg € Sexr() NLEP Age[l,w)Aje{l,...;q}}U{d} Cant+1<s. By
hypothesis, there exists an (<, <y, 4+, Az.w”) isomorphism hs: Bs — h[Bs] C a with
h§|a=1ds. Moreover, by proposition 2.22, hs(a) €E, Ep(t) N C hs(a) and
d = hs(9) < hs(a) <1 hs(t) = t[a := hs(a)]. Therefore, the set P(t) := {hs(a)[0 € [M +1,a)} C «
is confinal in « and it satisfies Ve € P(t).Ep(t) N C ¢ A ¢ <1 t[a:=¢]. From this follows the claim
of this proposition. O

The next result is a more general version of lemma 3.11 appearing in [18]. It’s proof uses the
main argument used in Wilken’s proof. There is, however, one point that we want to stress
(something that may be overlooked by the reader): For a class of ordinals ) # X C OR, we have
defined Lim(X) := {& € OR|sup (X N ) = a}; that is, in general, Lim(X) ¢ X. This notion is
very important in the whole of our work (and particularly, in the next proposition).

Proposition 2.24. (Second fundamental cofinality property of <)
Let a €F and t € [a,a™). Assume a € Lim{y €E|Ep(t)NaCyAvy < tla:=7]}.
Then Vs € [a, t+1].a<!s.

Proof. Let a €E, t € [a,a™) and assume o € Lim{y € E|Ep(¢t) Na CyA vy < tla:=17]}.

We prove by induction: Vs € [o,t + 1].a <! s.

For s =« it is clear the claim holds. So, from now on, suppose s> a.

Case s € Lim N [a, t + 1]. Our induction hypothesis is a <! 3 for all 3 € [a, t + 1] N's. Thus
a <'s by <'-continuity.

Suppose s =1+ 1€ [a,t+ 1]. Our induction hypothesis is a <!1. (IH)

Let B Cgns=1+ 1. Without loss of generality, suppose «, ! € B and write B =X UY where
X:=Bna,Y:=BN[a,l], Y:={y1,...,ymla=1n <y2<...<ym=1}.

Note [ € [a, t] C [o, at) > ¢ implies that Ve € Ep(l) U Ep(t).e < «; moreover, since Ep(l) UEp(t)
is finite and aw € Lim{~y € E|Ep(t) Nax C y Ay <1 t[a:= 7]}, then actually
o€ Lim{y €E|(Ep(l) UBp(t) na C Ay <itla=alk. (%),

But for any v € E such that (Ep(I) U Ep(¢)) N C v we have v < l[a := 7] < t[a := 7]; there-
fore, by <;-connectedness and (*) we conclude o € Lim{y € E|Ep(l) N C y Ay <1 l[a:= 7]}

Let p:=max Uie{l,...,m} (Ep(y;) N) and consider the set
M:={yeanElp<yDXA~vy<ila:=7]}. Let C:={m(a)|la € (BNa)Am(a) < a}. Since
C Cap « and by our previous observations M is confinal in «, then (maxC', ) N M + ().

Let v:=min (M N(maxC,a)) € M. We define the function h: B— h[B] C o as
h(z):=z[a:=~] for all z € B.

Let’s see that h is an (<, <1,+, Ax.w”)-isomorphism.
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That h preserves is an ( <, +, Az.w®)-isomorphism follows directly from the fact that

XU Uie{1 om) (Ep(y;) Na) C 7y and corollary 2.15.

Let’s see that h also preserves <.

e First observe that by IH o <! and so o < I; subsequently, by <; -connectedness it fol-
lows o <7 y; for any y; € Y. So we need to show h(a) <1 h(y;) for any y; € Y. But this is
easy because h(a) =~ <1l[a:= ] by the way we took ~, and since
Vy, € Y.h(a) <h(y) <h(l)=la:=7], then y; € Y.h(a) <1 h(y;) by <i-connectedness.

e Clearly z1 < z2<= h(z1) =21 <1 22=h(z2) for any z1,22€ X.

e ForzeX and y; €Y, 2 <y yi= h(x) =2 <1 h(y;) by <i-connectedness (because
x=h(z) <h(y;) <y; for any i €{1,...,m}).

e ForxeX,and y; €Y, x ;{1 Yi=— ;(1 « (otherwise, using the fact that we know o <1 y;
for all i € {1,...,m}, we would have z <; y; by <;-transitivity). So m(z) € C and then
z <m(z) << h(y;); therefore h(z) =z <1 h(y;).

o Fory,y;€YN(a,ab), yi<iyj<=yi<y;< m(yi)comﬁz.w

h(y:) = yila:= 7] <yjla=]=h(y;) <m(yi)[a:= 7] =m(yilo:=]) = m(h(y:)) <=

h(yi) <1 h(y;)-
All the previous cases show that h preserves <j too and from all our work we have that h is
indeed an (<,=,<1,+,\z.w?)-isomorphism. This shows o <!l +1. O

2.3 Covering theorem

From the definition of <! it is very easy to see that o <! 3= a <; 8. But, what about the
implication o <! B <= « <1 7. From exercise 2.1 (or by use of the first fundamental cofinality
property of <!) it follows that this implication does not hold in general. The motivation for the
whole of this section is the study of such implication: The main result is lemma 2.30 (covering
lemma), which has two important corollaries: The proof of the minimality of the substitutions as
witnesses of o <3 8 for S which are closed under the cover construction and the solution to the
question when a <! B<=a < f.

We introduce the following definitions as a preparation for the covering lemma.

Definition 2.25. The following functions will be used in the main lemma of this section. For
an ordinal t =cnpw Tty + ... +wTrt,, we define the ordinals
dq — 0 iff q¢ P
Qm  iff g=w? with Q =cxrw¥lgr+ .. +wmqy, 7
wt:=w'l, and
nt:=max {t, 7t + dnt}.

T

Proposition 2.26. Let a,t,s € OR. Then
1. 7(t+ 1) =nt; moreover, if t =cnp whty + ... +w™t,, then drt <T) <wD =nt.
2. Suppose t <s. Then mt < 7s, wt+ dnt < ws+ dmws and therefore nt < ns.
3. Iftza €k then a2 < nt
4. w(wt) =mt, w(nt + dnt) =7t and so n(nt) =nt

Proof. Left to the reader. O
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Proposition 2.27. (Properties of nt and <y ). Let « €E and t € (a,at). Then

1. t¢ P =>m(t) =t; moreover, t € P = m(t) = nt + dnt = max {¢, nt + dnt } = nt.
Particularly, m(t) < nt.

‘ < o ) max{m(u)lu€(a,s|} iff s>a2
2. Yu € (a, t].m(u) < nt. Therefore, Vs € [, at).ns {a2 iff s<a2’
3. a<jt<=a<int

4. If L €a,t], then nl < nt

5. It indeed happens that m(t) < nt.

Proof. Left to the reader. O

Definition 2.28. For any L€ P, let
{wwvlv1+wv2v2+4..+ng‘j lge [1’ t], je [17 'Ug]} U L=w? ¢ EA

’Lf t V.
Z=CNF D j_ 4w

wvlvl+wv2v2+‘..+w‘/g-j . j'l)j
F(L):={ +Vglgellt],j €1, vg]}

(L} if LeEU{l}
Now, for any 6 € OR with § =cnw Lili + ... + Lyl let
C1(0):= Uy, g5 F(Li) and
Co(6):={Lijlie[1,n],j€[1,L]} U{S/_,Li;|j €[1,n]}.

Finally, for any 0 € OR with § =cnF Lil1 + ... + Lply,, we define (by recursion on
(OR, <)) the set C(0) as
C(6):=C1(H)U Uaecl(a) Ca(a)UCy(d) U UVey(é) C(V), where
Y (8):={V;j|3L;¢ E.L;=w? A Z =cxF Z;(i)l wV”vZ-j} (observe Y C4).

Proposition 2.29. Let 6 € OR. Then Vpe C(§).C(p) C C(9).

Proof. By induction on the ordinals one shows Vé € OR.Vp € C(9).C(p) C C(6). It is necessary
to check the ways how p may be in C(d). The details are left to the reader. O

We prove now the covering lemma.

Lemma 2.30. (Cowver for one ordinal). Let o € E and § € at with § =cnp L1li + ... + Lyly. Let
D(a,8):=C(0)U{a,a2}. Then

i. C(6) is a finite set.

. ® {6,L111,...,Lnln}CC(5)Cmax{5—|—1,L1—|—d(L1)—|—1}:max{5,L1+d(L1)}—|—1:775—|—1
o Ifd>a thennd € D(a,0) Cmax{0+1,L1+d(L1)+1}=max{0,L1+d(L1)} +1=nd+1

iii. Suppose 6 € [, at) and h: D(a,§) — h[D(«,d)] is an (<, <1, + )-isomorphism such that
hla=1da. Then h(a) €E and Yz € D(a,9).(Ep(z) Na) C h(a) Az[a:=h(a)] < h(z).

Proof.
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1.
By induction on §. Suppose Vr <. C(r) is finite. (TH1)
COIICO)| +IC1 )]+ Uney sy CRI+U, e Clo)l <
‘ ULiQE F(L;)|+| UReY(é) C(R)|+| Ugecl(g) Ca(o)] <
h+l+ ...+l + Z?’:l J + ZLigé]E |F(LZ)‘ + ZREY(&) ‘C(R)l + | Ugecl((s) CQ(U)| <w,
where the last inequality holds because:
(1). For any V €Y (0), V <4, and so C(V) is finite by our (IH1); moreover, the set

Y () ={Vi;|13L; ¢ E.L; = w? AN Z =cnr Zz(i)l wv"jvij} is finite too, since there are only a finite
number of L;’s, and for each one of the L; ¢ E with L; = w?Z and Z =cnw Z;@l wv”vij, there are
only a finite number of V;. Thus 37, 5 |C(R)| <w.

(2). For any L; ¢ E, it is easy to see that F(L;) is finite too; moreover, as we already said,
there are only a finite number of L;’s. So |C1(d)] < ZL,-gJE |F(L;)| <w.

(3). Cy(0) is finite for any o € C1(9) (exactly by the same reason why Cy(d) is finite) and
C4(9) is finite too (as argued in previous subcase (2)); therefore | Uaecl(é) Cs(0)]| < w.

e We show that {d, Lil1,..., Lpl, } CC(6) Cmax {d +1, L1 +d(L1)+1}.

Clearly {8, Lyly, ..., Lul, } € C(5).

Let’s prove by induction V§.C(6) Cmax{d+1, L1 +d(L1)+1}.

Suppose Vr <46.C(r) Cmax {r+ 1,7(r) +d(n(r)) + 1}. (TH2)

Clearly {Lijlie{1,...,n},je{l,. . L}y U{SIL;|je{1,...,n}} C+1. (ii1*)

Now, take V € Y (4). By definition it means there exist 7, j € w, where L; ¢ E is an additive
principal number in the Cantor normal form of 4, L; = wZ, Z =CNF Z;@l wv”'vij and V =V;;.
Observe that d(w(V)) < 7(V) <V < L; (V < L; < ¢ holds because equality would imply L; € E
and we know that is not the case), and since L; € P, then 7(V) 4+ d(7(V)) < L;. So both
(V) +d(n(V))+1,V+1<L; <Ly <0 <J+ 1. Since the previous holds for any V €Y, then
c(V) ) max{V +1,7(V)+d(n(V))+1} Cd+1. (ii2*)

UReY(a) URey(a

C
by our (IH2)
We now check what happens with Ci(0) = UL&E F(L;). By definition, for any L; ¢ E with
L;=w? and Z =cnr Zz.(i)l wVi,;
F(Li) = {w®"tonte et t0™05 g e (1 4(0)}, j € {1,y vig 1 U
{we vt Bk b0 0 Ly e 01 40}, G € {1, vigt )

Clearly {wwVilviﬁ»wvﬂvﬁJﬂ--+ing'j|g e{l,...,t())},j€41,..., ’Uig}} C
L;+1<L;+1<6+1. (ii3%*)
On the other hand for any g€ {1,...,¢(:) — 1}, 7 €{1,...,vig },

Vily, Vizg. Vig . s Vily, Vizy,. Vig. ; Vily, Vizg., Vig. ;
w i tw 2v0+. L w J 4+ Vz‘g < wv Vi1tw 2viz+...fw I 4+ v vi1tw 2viat... fw J

w
wwv“vi1+wvi2w:2+-..+wvig'j2 < wwv“vzzl-l—wvizvi2+-..+wvig'jw — wwvilvil+wvi2vi2+.--+wvi9'j+1 <
. : g 2 : Vi(e(i)—
wwvllvzl+wvl2vi2+-n+WngUz’g+1gwvalvi1+va2vi2+-u+W ) 1)1Ji(t(71)_1)+1<
Vily, Vioy, Vi(t(i)—1)y. . Vit(i)y,. .
oot it Uit TG = [ < Ly <O <5+ 1 (iid*)

) ) Vig
For the case g=1t(i),j €{1,...,vig}, e e Y Vig<Li+Vig=L;+d(L;) <
Li2<Li_1<Li+d(Li)+1 ifi>2

-
Litd(Ly)<Li+d(Li)+1 ifi=1" (ii5*)
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So, by (ii3*), (ii4*) and (ii5*), we conclude C1(§) Cmax{d+1, L1 +d(L1)+ 1}. (ii6%*)

We now show that Uaecl(a) Co(0) Cmax {0+ 1, Ly +d(Ly) + 1} too. By the same argument
used in (iil*), VB € U, cc, (s Cy(0).6<max{c|c€ 01(6)}b (§6*)max {6,L1+d(Ly)}.
y (ii

Hence U, ¢, Cy(o) Cmax{0+1, L1 +d(Ly)+1}. (ii7*)

From (iil*), (ii2*), (ii6*) and (ii7*) we conclude C(d) Cmax {0+ 1, L1 +d(L1) +1}.

e Suppose § > a.

Then D(«,d) Cmax {6+ 1,L;+d(L1)+ 1} =max{d, L1 + d(L1)} + 1 holds because a2 < max
{8, L1+ d(L1)} by proposition 2.26.

Let’s prove that nd € D(a, d). If 6§ = nd, then (we just proved that) né =0 € C(d) C D(«, 9).
So suppose § # nd = max {J, 76 + dmd}. If § € [o, a2), then nd = a2 € D(«, 0). Suppose § > a2.
Consider § =¢nr L1l + ... + Lply,. Note I3 =1, (otherwise md +dnd < L1+ L1 =112 < L1l; <6 and
then we would have that 6 = 70); moreover, Ly ¢ E (otherwise L1 = o and then § < a2). This
way, L1 € P\E and L; =cnr w? for some Z € OR, where Z =cnr wiry + ... + w®er, for some
ordinals R; € OR and r; € [1,w). Therefore, nd =76 +dnd =L+ R, € F(L;) CC(6) C D(, ).

i
Suppose ¢ € [a, at) and h: D(«, §) — h[D(a, d)] is an ( <, <1, + )-isomorphism with |, = Id,.
Notice from a <3 2 follows h(a) <1 h(a)2, which is equivalent to h(a) € E.

We now prove the claim Vz € D(«, d).Ep(z) Na C h(a) A z[a:= h(a)] < h(z) by induction on
the well order (D(«,d), <).

Let z € D(a,d). Our induction hypothesis is

VyexznND(a,d).Ep(y) NaCh(a)Ayla:=h(a)] <h(y). (IH)

If © =cnp Tit1 + ... + Tontin, with m > 2, then z € C'(0) and then by our (IH) and prop. 2.29
we have that Ep(T;) Na C h(a) and h(T;) = Ti[a:= h(a)] for all i € {1,...,m}; therefore
Ep(z)NaCh(a) and h(z)=h(T)t1+ ... + h(Tm)tm >
Ti[a:=h(@)|t1+ ... + Tnfa:= h(a)|ty, = za:= h(a)].

If © =cnr Tit1 with ¢ > 2 then, z = a2 or € C(§). In any case, proceeding similarly as in
the previous case, Ep(z) N C h(a) and h(z) > z[a:= h(a)).

So suppose x =¢cnr 11

If Ty €E then Ty =« or Ty € aNE (because © < max {5, L1 + d(L1)} + 1 < a™). If Ty = a,
then Ep(z) Na=0C h(a) €E and h(xz) =h(a) =z[a:=h(a)]. If T1 € aNE, then = h(z) < h(a),
and so Ep(z) N C h(«); moreover h(z) =z =z[a:= h(a)].

So suppose T ¢ E. Then T =w?, with Z =cnrwr + ... + wr,. Notice that since
Vie{l, .., k}.Ri € D(a, 0) N Ry < Z <T1 = w, then by (IH) U, Ep(Ri) N a C h(a) and
therefore Ep(Z) Na C h(e). Thus Ep(z) N C h(cx). So it only rest to show that the inequality
holds. For the case T1 < a, we have h(z) = x = [ := h(«)]. So the interesting case is a < T} =

w? ¢ E.
We have the sets of inequalities (I0) and (I1):

w?>Ry>Ry>...> Ry; (10)
wiiry >whi(r; — 1) >wfh3>wh2>wfi > Ry

whiry + wfery > wlfery > wWh2(rg — 1), > w23 > w22 > W2 > Ry (I1)
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witiry + wlerg 4+ 4 wltkrg > witkr, > wRT(rk —1)...> w3 > whk9 > Wwhtk > Ry,

On the other hand, from the inequalities
R R R
Ri<w "< P <win
Ry <w®™Mmite™ oo ywiiritwin
Rk_l < wwR1T1+WR27”2+-..+ka_27”k_2+ka_1 <. < wwR1r1+wR2T2+"'+ka_2Tk—2+ka_1Tk—1
Rk < (A)WR1T1+WR2T2+-~+WRI67lrk—l-"ka
and theorem 2.3 we get the inequalities (I2):
Ry Ry Ry, . Ry
2 w r1+...+w rk) lf Rlzw“’

Ri=a<w” (because a < T =w

Wl <1 WL + R < W + W < My = w1 w2 if Ri< WL
W2 ) ™2 4 Ry Qw4 M2 < (W2 = w2

W18 ) w8 4 Ry w8 4 w8 < w8y = (w181 ¢

whi(r—1) <1wwR1(r171) + R < wle(hfl) +wwR1(r171) < wle(rlfl)w :wle(rlfl)Jrl <

Ry Ry Ry Ry Ry Ry Ry
w T1 <1ww Tl_’_ngww T1+R1<Ww r1+ww r1<ww le:ww 7‘1+1<
wlip 42 <1 WwR1T1+wR2 + Ry < wwR1r1+wR2+l <

—

whir fwf22 <1wwR1r1+wR22 + RQ < wwR1r1+wR22+1 <...<

E & E & E & &

wBir +wh2ry <1 wwR1r1+wR2r2 + RQ g wlerlerR?errl g

Ry Ro Rp—1 Ry Ro Ry _q Ry Ro Ry 1
ww r1tw 2rot.. 4w <1ww ritw 2ro4... 4w + kal g ww rit+w 2rot... 4w +1 <
wwR1r1+wR27‘2+...+ka*12 < wwR1r1+wR2r2+..4+ka*12 + erfl < wlerlerRerJr...+ka*12+1 < <
wwnl'r1+wR2r2+...+wR‘C’lTk,1 < wwR1T1+wR2r2+“.+wR"‘*1rk,1 + Rk 1 < wwR1r1+wR2r2+4..erRk’l’rkflﬁ*l g
Wl v B2rg g o h <1wwR1T1+uR2r2+...+ka5 T RL< we B ro B2 By <
W r w2y ot <1wwR1r1+wR2T2+...+ka2 T Re< e TR R <. < if Ry 0

Ry, Ry, R, Ry, Rg,. Ry,
wo e g ey, ot oM oty B2 0,2

R R Ry
w® rptwf2ryt. 0k 1Tk—1+wwR1r1+wR2T2+...+ka wR1T1+wR2Tz+...+ka

=w
wwR17‘1+wR27‘2+...+ka n wwR1T1+wR2r2+...+ka2 _ wwR17‘1+wR2r2+...+ka2
- if Rx=0

Wttt e 24 w2 +wwR17‘1+wR2’r‘2+...+ka3 — ool f2ry b 4ol
= .

R R Ry, — R R Ry, R R R
o e 2ry 4 poR l(rkfl)_"_ww Irptw2rgt oy 0Pl +of2ryt 4o k”v:wz—i-d(wz)

Therefore, from (I1) and (I2) we get the inequalities:
Vie{l,...k—1}Vjie{l,...,r}.

hwe e Bt gy o e tinbe et o) L (Ry); (J1)

Remark: In (J1), the case i =1, j=11is h(w‘*’Rl) <1 h(w‘*’Rl) + h(R;) and it holds for two dif-
ferent reasons: If Ry =w*"", then R; = a (because o < # <max {8, L1 + d(L;)} + 1 < o) and so
h(a)= h(w“Rl) =" " h(R1) = h(«)2 holds because we know a <3 a2. If
Ry <w®™, then h(w*™) <y h(w*"™") + h(R1) holds because w*" <3 w*™" + Ry.

Moreover, from (I1) and (I2) we get the inequalities and equations (J3):
For 1< 5 <rg,

h(wle,nl_,_szrQ_,_m+ka,j) < h(wwR1r1+uR2r2+“.+ka~.7') +h(Ry), if R,#0
(Observe here we use: w? + d(w?) € Domh)

h

(w =

h(wlerl +wR27’2+...+ka) + h(wwR1r1+wR2r2+A.‘+ka2) — h(wwR17’1+wR2r2+.‘.+ka2)
( w
(

Ry, _
wR1r1+wR2r2+...+w k 17”]@71)+h(wwR1T1+wR2T2+...+ka) h(wwR1r1+wR2r2+‘..+ka)

if Rpy=0
R R R R R R R R R
17‘1+w 2r2+...+w kZ) + h(ww 1r1+u 27‘2+‘..+w k3) h(ww 1'r1+w 2T2+‘..+L/J 1‘73)7

h(w

R R Ry R R R, R R R
h(w® 17'1+w 27'2+...+w k I(T'kil))#—h(ww 1r1+w 27'2+...+w krk):h(ww 17'1+w 27'2+...+w krk)
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Now, from (Jl) and theorem 2.3 we get
Forie{l,....k— 1}

R 1, h(R;) . : .
h(w® 1”+ AW By =@t TS ric 1) for some S(r1, ..., i1, §) # 0.

On the other hand, from w*t < w2, < w1 it follows
h(w® 1) < hw?) < ... < h(w“’Rl”)7 which gives us, using the equality in the previous para-
graph, w* MIIS() LW TS@) oo @S- o @ TVS(m) g implies
S(1) < S(2) < ... < S(r1), which subsequently implies 71 < S(r1). Now, notice the following
inductive argument: For any j € {1, ..., 72}, h(wlerl) = ") < h(w“’RI”“’sz) =

"D (r1,5); this way, WHED S (1)) < W2 S (1, §) and h(Ry) > h(Ry) (by (10)). Thus S(ry, j) >
w” (R"‘Hh(Rl)S(rl) (otherwise WPV S(r)) > WS (1, 5)) and therefore it exists g(r1, j) € OR
such that S(ry, j) = w MEITMEVS(r) 4 g(ry, j). Then h(w® 'ty = w" P8 =
"R w BB S (1) 4 q(r1, ) WS (r) + W D g(re, )

Moreover, observe the chain of
inequalities f(w® " "T1H ™) < p(w@ M THe™2) << p(we 9™ ) implies g(ry, 7o) = ro. But for
any j € {1, .., r3}, h(w et o petinteraresi) w" "VS(rirad) - and so
WMEDS (1) 4+ W B2 (1, o) < WMBS (1, 179, 5); since h(R3) < h(Rs) < h(Ry), then S(ri, 9, j) >
w ™ MB)HR(BR) G () = h(B)+h(F2) o (1) 1y) and so it exists ¢(r1,79, j) € OR such that

S(ry, ro, j) = w MEFAENGR) 4 BB g po) 4 g(ry, 79, j). Then
h(wlerlerR?TerwRSj) = wwh(Rs)S(TlvT’%j) = w”h(Rl)S(Tl)+Wh(R2)q(T1’T2)+wh(R3)q(”’T2’j). Moreover, the
chain of inequalities f(w® " TiHe 2ratw ) o p e inteirateiny oo p (ettiniter bwliing)
implies g(r1,re,r3) > r3. Inductively, we obtain

h(wwR1r1+...+wR’“*1m_1) _ wwh’<R1>S(r1)+wh’(R2)q(r1,r2)+...+wh(Rk*1)q(r1,A..,rk_1) with

S(r1) =71, q(ri,m2) =12, q(r1,m2,73) 273,00, q(T1, o0y Th—1) 2 Th—1.

For the case Ry +# 0, doing once more the previous procedure with the equalities

h(w® it Awte. I =wv }L(Rk)s(”’ »Te=17) we obtain:

h(w® wRIp 4 +kark):w WHED S () w2 (Tl,T2)+ AW g (ry,. ) with
S(r1) =211, q(ri,r2) 2712, q(r1,72,73) 273,00, q(11, .0 7k) 2713 therefore
R(we it ety 5 e R Y (F*L**)

For the case R; =0 the additions in (J3) imply:

Ry R, R h(R1) h(R2) h(Ry 1)
h(ww ritw 2ret. fw ) >wv S(r1)+w q(r1,r2)+...+w

q(ri,...,rp—1)+1

h(Rp—1)

h(wwR1r1+wR2r2+...+ka2) > wwh(Rl)S(Tl)-‘rwh(R?)q(rl,r2)+...+w q(ri,e.,re—1)+2

h(wwR1T1+wR2T2+---JrUJRka) > wwh(Rl)S(ﬁ)+wh(R2)q(T1,Tz)+~--+wh(Rk’l)q(ﬁw,mq)-&-rk

and therefore h(w‘*’Rl’“*'““’Rk”‘) > " 4t Dot oty (*F*2%*)

Finally, to conclude, in any case Ry # 0 or R =0, from (**1**) and (**2**) we have
h(w) = (W7) = h(w® ey 5 o Tr T M

le[a::h(a)] Rola:=h(a)] Rpla:=h(a)] &

IH
ro+...+w T :wZ[a::h(a)] :wz[a = h(a)] — x[a — h(a)].

r14+w

This finishes the proof of this lemma. O

2.3.1 Cover of a finite set B.

Now we extend the construction of the covering for a finite set.
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Definition 2.31. (Cover of a finite set). Let a €E and B Cgna™. We define
A(a,B):=BU U D(«,d), where D(a,d) is the set defined in previous lemma 2.30.
seBN[a,a™)

Proposition 2.32. Let « €E and B Cana™. If BN[a,at)=0, then A(a, B)=B C«.
If BN[a,at)#0, then for t:=max B, A(a, B) Cannt+1Cat. In any case, A(a, B) is finite.

Proof. That BN[a,a’)=0 implies A(a, B)= B C « is clear.
Suppose BN [a, a™) # 0 and let ¢ := max B. Let § € BN [a, a™) be arbitrary. If § = a, then
D(a,d)={a,a2} - nt+1. If § >, then § <t and so

by proposition 2.26, claim 3.
D(a,9) C nd+1 < nt+1l<at.
by prop. 2.26 claim 3, and by prop. 2.29 by proposition 2.27 claim 4
Finally, A(a, B) is finite because it is finite union of finite sets. O

Theorem 2.33. (Covering theorem). Let « € E and B Cgayn o™ be such that B N [a, a™) # 0.
Consider FB := {h: A(a, B) — h[A(a, B)] C alh is an ( <, <y, + )-isomorphism with h|, = Id,}.
Then for any h € FB the ordinal h(a)) € aNE and

a) Yz € A(a, B).Ep(z) N C h(a) Azja:=h(a)] < h(z).

b) If a <y max A(a, B), then the function H: A(a, B) — H[A(«a, B)], H(z): = z[a: = h(«)]
is an (<,<1,+,  \x.w”)-isomorphism with H |, =1d,.

Proof. Let a and B as stated. Let h € FB.
First note that o, a2 € A(a, B) (because B N [a, at) # 0) and since a <; a2, then
h(a) <1 h(a)2. This implies that h(a) € E.

Now we show a).

Let z € A(a, B).

If z <a, then x =h(z) < h(a) because h is an < -isomorphism such that h|, =1id,. Therefore
Ep(z)NaCh(a) and x =z[a:=h(a)].

If = a, then clearly Ep(z) Na C h(a) and z[a:= h(a)] = h(x).

Case x> a. Then z € D(a,x) C A(a, B) and h|p(a,z): D(a,x) — h[D(a, )] C v is an
(<, <1, + )-isomorphism with h|p(a,z)la = Ida by proposition A.1 in the appendices section.
Therefore, by lemma 2.30, Ep(z) Na C h|p(a,z)(@) = h(a) and z[a:=h(a)] <h|p(a,s) () = h(z).

The previous shows a).

We show b).

Suppose « <1 max A(a, B).

By a) we know Vz € A(a, B).Ep(x) Na C h(a); so, by corollary 2.15, the function H is an
(<,4+, , Az.w?)- isomorphism. Moreover, it is also clear that H|, = Id,. So we just need to
prove that H preserves the relation <; too. Let A(a, B)Na={ay,...,an} and
Ao, B)N[a,at)={a=by,...,bp}. Then:

e Note a <1 max A(a, B) and <; -connectedness imply that o <1 b; for any b; # a. So we
need to show H(a) <y H(b;) for any b; # a. But by a) we know H(b;) = b;[ec:= h(a)] < h(b;);
moreover, we know h(a) = H(a) < H(b;) and h(a) <i h(b;) for any b; # . Thus by < -connect-
edness, H(a) <1 H(b;) for any b, + a.

o ;<1 aj<:>ai=H(ai) <3 H(aj) =aj.

o a;<ia<= H(a;) =a;=h(a;) <1 H(a) =h(a) because h is an <;isomorphism.

o If a; <1bj, then H(a;)=a; <1 H(b;) <a<b; by <;-connectedness.

o If H(a;) <1 H(bj), then H(a;) <1 H(a) by <i-connectedness. But
h(a;) = H(a;) <1 H(a) = h(a) <= a; <1 « (because h is an < isomorphism) and since a <1 b,
then a; <1 b; follows by <;-transitivity.

e For bi#a%b]‘, bi<1bj H(bl) <1H(bj).

=
corollary 2.17
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The previous shows b). O

2.3.1.1 Consequences of the covering theorem.

Consider a finite set of ordinals L Cgn, OR and FL C {k|k: L — OR} a class of functionals.
Then FL is well ordered under the lexicographic order <pr jex ; that is, for h, & € FL,
h <pLlex k: <= Ty € L.h(y) # k(y) and for m :=min {z € L|h(x) # k(x)} it holds h(m) < k(m).
Moreover, in case FL # (), we can consider min (FL), the minimum element in FL with respect
to <pr,lex- The next corollary uses this concepts.

Corollary 2.34. Let « €E and € («a,a™) be with a <1 8. Suppose B Cgy 3 is such that
A(a, B) C 8. Consider

FB:={h: A(a, B) — h[A(a, B)] Ca|h is an (<, <;,+)-isomorphism with h|,=1d,}. Then
w:=min (FB) exists, u(a) € aNE and p is the substitution ©+— z[a:= p(a)].

Proof. Since o <1 8 and A(a, B) Cin 8, then FB # ) and so p:= min FB exists. Now, by pre-
vious theorem 2.33, pu(«) € EN « and the function H: A(a, B) — H[A(«, B)], H(z): = z[a: =
u(a)] is well defined and satisfies the following two things: H € FB and Vx € A(«, B).H(z)
w(z). Thus, from the minimality of the function p, it follows H = p.

OMNn

The following is the main result that relates <; with <.

Corollary 2.35. Let « €E and t€ [a,at). Thena<int+1l<=a<int+1.

Proof. The implication <) is already known.
Let’s show = ).

Let BCanmt+1. If BCa, then I: B— B, I(z):=z is an (<, <1, +, Az.w*)- isomorphism
with I'|,=1Id,. So suppose BN [a,at)+#0. Let [:=max B > «. Proposition 2.32 guarantees that
A(a,B)Cannl+1;but ni. < ot =, 267]157 so A(a, B) Cannl + 1 < nt + 1. Moreover, since

prop. 2.27 prop. 2.
by hypothesis o <3 nt + 1, then there exists h: A(a, B) — h[A(a, B)] Ca an (<, <y, + )-isomor-
phism with h|, =1Id,. Therefore, by theorem 2.33, the function H: A(a, B) — H[A(a, B)] C «
defined as H(x):=z[a:=h(a)] is an (<, <1, +, Az.w”)-isomorphism with H|, =1Id,. Then, by
proposition A.1 in the appendices section, H|g: B— H|g[B] is an ( <, <1, + , Az.w")-isomor-
phism with H|p|o, =1d,. a

Corollary 2.36. VacE.a<;at <= a<la™

Proof. Easy. Left to the reader. O

Corollary 2.37. VacE.a<;at <
ac{BeE|Vte B, B (ce)ecx CENBEP(E)N B CeeAee <it[B:=c¢] /\cgﬁﬁ}.

Proof. Not hard. Left to the reader. O
We want to conclude this section with a characterization of the case o <!t + 1 for ordinals

a€F and t € [, a™). For this (and also for our work on the next section), it will be convenient
to prove following
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Proposition 2.38. Let o, 3,t € OR such that o, B€E and t € [, ™) AEp(t) Nae C B. Then
a) (Ep(wt)Na)U (Ep(dnt) Na) U(Ep(nt) Ne) C B
b) m(tla:= pB]) = (mt)[a:= 5]

) dr(tla:= p]) = (dnt)[o:= f]

) m(tla:=B]) + dr(tfo:= B]) = (nt + drt) [ := ]

) n(tla:=pB]) = (nt)la:= 5.

Proof. Not hard. Left to the reader. O

o

U

e

Note 2.39. Because of the previous proposition, whenever we have such hypothesis, we will
simply write 7t[a:= ], dnt[a:= (] and nt[a:= f] to the ordinals 7(t[a := S]), dr(t[a:= []) and
n(tla:= B]) respectively.

Corollary 2.40. Let « €E and t € [a,a™). The following are equivalent
a) a<lt+1
b) aceLim{{ €E|Ep(t)NaC AL < tla:=E]}
c) a<int+1
)

d) a<int+1

Proof. Let a €E, te [a,a™).
a) <= b) holds because of propositions 2.24 and 2.23.
¢) <= d) is corollary 2.35.
¢) = a) holds because of <!-connectedness, and so c) = b) (because a) <= b)).
So it suffices to prove b) = c).

Suppose a € Lim{€ € E|Ep(t) Na C { A€ < tla:=E]}. Let (¢;)jes CaNE be a sequence such
that Ep(t) N C cj e and Vj € J.c; <y ta:=c;]. Note Vj € J.t[a:=c;] € (¢;,c]), and then, by
proposition 2.27 claim 4., Vj € J.c; <1 n(tla:= ¢j]) = (nt)[a := ¢j]), where the last equality holds
because, by proposition 2.38, Ep(nt) N« C ¢; and n(t[o:= ¢;]) = (nt)[a:= ¢;]) for any j € J. So,
summarizing, (¢j);e; C a N E is a sequence of epsilon numbers such that for nt € [a, a™),
Ep(nt)Na C cj o and Vj € J.E 3 ¢; <1 (nt)[a:= ¢j]; therefore, by proposition 2.24, o <* nt +
1. 0

Corollary 2.41. Let a €E.
a) VeeanNE.m(e) €le,et)= Tt € la,at).nt=t Am(e) =tla:=¢€].

b) Suppose m(«) € [, at). Then
Vie[a,m(a))t=nt= {6 cEna|Ep(t)NaC I Am(d) =t[a:=0d]} is confinal in o.

Proof. Let a €E.

a). Let e € « N E and suppose m(e) € [e, eT). Then n(m(e)) # m(e) (otherwise by proposition
2.27 claim 4, e <y n(m(e)) = m(e) + 1 which is impossible); but by definition n(m(e)) =

max {m(e), w(m(e)) +dm(m(e))} =m(e), thus n(m(e)) =m(e). This way, for t:=m(e)le:=a],

nt=n(m(e)le:= a})proposion 2'3877(m(e))[e :=a]=m(e)[e:=a] =t and clearly m(e) =t[a:=¢€].
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b). Suppose m(a) € [, a(+')) and let t € [, m()) be such that ¢t = nt.
Take v € a arbitrary.
First note that o < nt + 1 < m(«), implies, by <; -connectedness, o <1 nt + 1. Subsequently,
by previous corollary 2.40, a € Lim{{ € E|Ep(t)Na CEANE < tla:=E]} =
Lim{¢ € E[Ep(nt) Na C €A €< ()= €]},
Let e:=min (v, o] N{{ €E|Ep(nt) Nae C EAE <y () [a:= €]} Then

v <e<; (n)|a:= € = ntla := e]. We assure e £1 ntla := €] + 1. Suppose the oppo-
proposition 2.38

site e <y nt[a:=e] + 1. Then by previous corollary 2.40,
ecLim{{ €eEEp(tla:=¢])Ne CENE tla:=¢€][e:=¢]} =
Lim{¢ € E[Ep(t) Na C EAE <y tfa:= €]} = proposition 210
Lim{€ € E[Ep(nt) Na C £A € < () a:= €]},
The latter implies that there exist some ordinal ¢ <e with
ve(y,alN{E eEIEp(nt) N C &N E <y (nt)|a:= €]}. But this is impossible since by defini-
tion e=min (v, o] N{{ €E[Ep(nt) N C EANE <y (nt)[a:= €]} Contradiction.
Thus e £1 nt[a:=e¢]+ 1. Thus m(e) =ntla:=e].
Our previous work has provided, given an arbitrary ordinal v € «, an ordinal e € E such that
v<ecEAEp(t)NaCeAm(e)=ntla:=e]=t[a:=e]. Hence, we have shown that
{0€eEnalEp(t)NaCdAm(d)=tja:=70]} is confinal in a. O

2.4 A hierarchy induced by <; and the intervals [e, 1)

In this section we will provide our theorem linking “the solutions of the <j-inequality = <t
with ¢ € [z, 2T)” with a hierarchy of ordinals obtained by a thinning procedure.

For the main theorem, we will need the following

Lemma 2.42. Let a,t € OR, a €E and t € (o, ™) N Lim. Then there exists a sequence (1;);er
with (IU{0}) € OR, (IU{0}) < « such that
(1) For allj€1I, 1, € (a,a™), ljfgnf and (1) er is strictly monotonous increasing.
(2) For any feENaU{a} with Ep(t)Na C B, VjeIn B.Ep(l;) Na C B; moreover, the
sequence (Ijla:=B])jernp is cofinal in tja:= f].
(3) Ve (Enauf{a})Vjelnp.
o nlila:= B] < ntja:=F]
o nlila:= p] < ntla:= ] if t >t + dnt.

Proof. Let o and t be as stated. Below we give only the sequence. The proof that such
sequence satisfies what is stated, is long and boring and it is left to the reader.

Consider t =cnp wty + ... + wTrt, and T} =cnF leql + ...+ wQ""qm. Suppose that for any
a € (a,a™)NLimN¢ we have been able to define a sequence (I});e;- satisfying what the theorem
state with respect to a.

Then we have cases:

So t=w™it; and Ti =cnrw®iqr + ... + wW9mgn,.
If ;=1 then ¢t =w™".
If Q,=0,then m>2 and Q; >« (otherwise t <) and t =w’1 = W gt e
Let [j:= @@ ot te(am=1) 5 with j e I:=w\{0}.
If @+#0. Then w9 <wTr =t. Moreover, we assure w@™ < wl*=¢. This is because
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w@m =Tt implies T} <w™ =w®" < T} and then a =T, (since T} € [a, a™)); moreover,
since T1 =¢cNF leql +... —|—o.1qum, then m=1, ¢y =1 and Q1 =a. That is, we have the
t =w® =« which is contradictory because from the beginning we picked t € (o, «™). The
previous showed w@m < w™t.

If Q. <a, then m>2 (otherwise t = w1 =Wt ¢ o).

If @, is a successor ordinal.

Let I, ::wa1q1+_”+wQ(m—1)q(m_1)+me(qm,1)+me—lj with j € I:=w\{0}.
If Q,, is a limit ordinal.

Lot 1= ot Daonntomlan =D’ iy i e 1.2 ,0\{0).

If Qn=a. Since Ty =cnrw®@iqr+... + w9y, € [, at), then m =1 and so
t=wh =@ la =yt
Let 1;:=w* (@ =D+ with j e I:=Q,\{0} =a\{0}.

If Q> a. Then w¥®m € (a, ™) NLim and moreover, we already know w®m < Wt =1t.
Then by our induction hypothesis applied to w@m there exists a sequence (&)jer
with TU {0} € OR and T U {0} < «, such that (1), (2), and (3) hold with respect to the
sequence (&;);cr and w@m,

Q1 Qm—1) Qum(gm — D
Let lj::ww qt..tw am -1 Fw ™ (am =1 +E& Loy jel.

Case t1 > 2.
If T1 =qQ, then tl = wo‘tl.
Let l;:=w™(t; — 1)+ j with j € [:=T1\{0} =a\{0}.
If Ty > a, then t =wTit; > w™ € (o, a™); so by our induction hypothesis applied to w’
there exists a sequence (&;);jer with TU{0} € OR and I U{0} < «, such that (1), (2), and
(3) hold with respect to the sequence (;);er and w?.
Let [j:=w™(t; — 1)+ &; with j€ L.
Case n > 2.
So t=wht; +wlto+ ... +wnt,, Ti=cnrw®@qr + ... +wW9mq,, and Ty > T), #+0 (because ¢ € Lim).
Then w’ < t.

If T, <a.
Let 1;:=wht; + w2ty + ... +wT("*1)t(n,1) +wTn(t, — 1)+ j with j € I :=wT\{0}. So clearly
Tu{0}<a.

If T,,= a. Then the argument is almost the same as in the previous subcase:
Let I;:=wht; + w2ty + ...+ wln(t, — 1)+ j with j € I :=T,\{0} =a\{0}.

If T, > a. Then w’" € (o, a™) N Lim and moreover, we already know w’» < w™t <t.
Then by our induction hypothesis applied to w’* there exists a sequence (£;);jer
with TU{0} € OR and T U {0} < «, such that (1), (2), and (3) hold with respect to the

sequence (&;)jer and w’n.
Let ;:=wht;+ ...+ wTn(t, — 1)+ &; with j€ 1. O

The following will be also needed in the main theorem of this section (theorem 2.45).

Proposition 2.43. Let 3¢ OR.3<!32+1+= BcLimE

Proof. Not hard. Left to the reader. O

Definition 2.44. Let A:[e,,, 00) — Subclases(OR) be defined recursively as:

Forl+1¢€le,, ),

A(D) if 1<+ dnl
A(l+1):=

LimA(l) otherwise
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For t € [g,,00) NLim,

(LimE)N(M,a+1) iff tela,a2]
A(t);: Lim{r <a|M <re;.n, A} iff t>mttdrtAte(a2,at)

Lim{r <a|M <re€;cgn, Ale;)} iff  t<mt+drtAte (a2, at)

where o € E is such that t € [a, a™); (Ij);jer is obtained by lemma 2.42 applied to t and o;
(ej)jes s obtained by lemma 2.42 applied to wt and «; and M =
{max(Ep(t)ﬂa) if Ep(t)Na#£0 ]
0 otherwise
On the other hand, we define G: [e,, 00) — Subclases(OR) in the following way: Consider
t € [ew,00) and a €E such that t € [, ™). Let

G(t):={B€OR|Ep(t)NacC f<a and B <! (nt [a::ﬁ]—l—l}th = s
={BeE[Ep(t)nac f<a and <" (nt)]o:= ]+ 1} =
_ (BEE[Ep()Nac B<a and B<: (nt)loi=F] +1}.

proposition 2.38 and corollary 2.35

Theorem 2.45.
1. Vt € [ew,00).G(t) C LimE
2. Vt € ey, 0).G(t) = A(t)

Proof.

1.

First observe the following. Let t € [e,,, 00) and « € E such that ¢ € [, a™) and take

BEG(t); so <t (nt)[a:= B] + 1. Since by proposition 2.26 a2 < nt, then

B< B2< (nt)[a:=B] and so <! B2+ 1 by <'-connectedness. So 3 € LimE by proposition 2.43.

2.
We first prove the following easy case: Let a € [g,,,00) NE. Consider t € [a, @2]. Then
7t + drt = a2 and so it =max {t,a2} = 2. Then
G(t) = {B € E[Ep() Na C B<ah f< ntfai= ]+ 1} =
={BeE[Ep(t)nacf<an < a2a:=p]+1} =
={BeE|f<! B2+ 1} N (max (Ep(t) Na),a+ 1)prOp:2 43LimEﬂ (max (Ep(t) Na),a+1).
On the other hand, we prove by induction that for ¢ € [a, a2],
A(t) = LimE N (max (Ep(t) N «), a + 1). For t € Lim it is clear. So suppose t =1+ 1 is a suc-
cessor. Then I <l+1<a2=nl+dnl, and so A(t)=A(l+1)=A()=
LimE N (max (Ep(t) N «), o + 1), where the last equality holds because of the induction
hypothesis.

Hence we have shown that G(t) = A(t) = LimE N (max (Ep(¢) N a), a4+ 1) for all ¢ € [a, a2],
with « € [g,,00) NE.

Now we proceed to prove that G(t) = A(t) for arbitrary ¢ € [e,,, 00). We proceed by induction
on the class [ey, 00).

So let t € [e,,,00] and a € E be such that ¢ € [, a™).

Suppose VI € [e,,,00) Nt.A(l) = G(1). (IH)
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Successor case.
Suppose t=1+1.

Subcase [ <7l +dnl. Then n(l+1)=max{l+1,7(I+1)+dr(l+ 1)} =, proposition 2.26,
=max {{+ 1,7l + dnl} =7l + dnl = max {I, 7l + dnl} = nl.
Thus G(t)=G(+1)={B€E|Ep(l+1)Nac BABL (n(l+1))[a:=B]+1} =
={B€E[Ep()NaC BAB< (n)[a:=B]+1}=G()=A(l) = A(l+1) = A(t).

Subcase | > 7l + dml.

Let’'s see G(t) =G(I+1) CA(l+1)=A(1).

Take 8 € G(t); so a > B < (n(l + 1))[a:= B] + 1 and (n(l + 1))[a:= ] € [B, BT). So, by
proposition 2.23, there is a sequence (¢¢)¢ex, such that cc €E, cg;)ﬂ <a,
Ep((n(l+1))[a:=p]) N B Cee and ce <y (nl +1))[a:= B][5:=ce = (n(l +1))[a:=ce =
(Ml 4 1)[a:=ce] = (nl) [ := ce] + 1 where the last two equalities hold because
Ep(n(l+ 1)) na=Ep((n(l + 1))[a:= F]) N B C c¢ (and then (Ep(l) N o) U (Ep(nl) Na) C ce)
and because n(l+1)=max{l+ 1,7(I+1)+dr(l+ 1)} =, by proposition 2.26,

=max{l+ 1,7l +dnl}=1+1=nl+1.

Now, by proposition 2.38, (nl)[a:= c¢] = n(l[or:= cg]) so we have c¢g <1 n(l[a:= ¢¢]) + 1; more-
over, this holds iff, by corollary 2.35, ce <! n(l[a:=c¢]) + 1= (nl)[:=c¢]) + 1. This way, we have
actually shown that c¢g € G(I) for all £ € X; therefore § € Lim G(Z)I?ILim Al)=A(l+1) = A(®).
This shows G(t) C A(t).

Let’s see G(t) =G(I+1)DA(l+1) = A(1).

Let B € A(t) = A(l+ 1) = LimA(l)bﬁHLimG(l). Then there exists a sequence (c¢)eex, with
ce € G(1) and cgﬁﬁ; ie., for all £ € X it also holds Ep(l)Na Cce <, ce €E and
ce<! (n)[a:=cel +1=(nl+1)[a:=cel=(nl +1)[a:= B][B:=ce]. Tt is easy to see that
(Ep(l + 1) Nna) U (Ep(nl + 1) Na) C B and that the last equality hold; the reason to introduce
them is the following: from all the previous we have S €E, (nl+1)[a:= 8] €[8, 87), 05?6 <aq,

Vé e X.ce e EANEP((nl + 1)[a:= B]) N B C ce and ce <1 (9l + 1)[av := B][B := c¢]. Therefore,
applying proposition 2.24, S <= (gl +1)[a:=p]+1=(n(l+1))[a:= ]+ 1=n((l+1)[a:= p]) +
1, where the last equalities hold because of proposition 2.38. From this, and corollary 2.35 we
get B<n((I+1)[a:=6])+1=(n(l+1))[a:=B]+1. So we have shown S€G(l+1)=G(t).

Limit case.
Suppose t € Lim. Moreover, since we have already proved what happens for ¢ € [«, a2], then
suppose t € (a2, a™).

Subcase t > 7t + dt.

To show G(t) C A(t).

Let € G(t). So a> B <! (nt)[a:= B] + 1 = tla:= B] + 1. Then by proposition 2.23 there
exists a sequence (c¢)¢ex such that Ep(t) Na=Ep(tla:= B]) N B Cce (so cg > 1), ce— 5 and
ce <1 tla:= B)[B:= ce] = to:=ce]. cof

On the other hand, by lemma 2.42 we know that for the sequence (l;);er, it holds:
-Tu{0}<a
- (jla:=ce]) jerne, is cofinal in t[ar:= c¢] and
- For any je€INce, nljla:=ce < ntla:=ce.
Therefore, for any £ € X and for any j €I Nce, a>ce <ljlai=ce +1<nljla:=ce +1<
ntlo := c¢] = t{a := c¢], which implies, by <; -connectedness, Vj € I Nce, ce <1 nljla:=ce] + L.
Then, by corollary 2.35 we obtain Vj € I Nce, ce <! nljla:=ce] + 1.

The previous shows ce—2 B, and  Ep(t) n « C ce €

ﬂjEIﬂQ G(l)) = mjeIﬂQ A(ly). Thus BeLim{r <alM<re, ., Al)}=A().
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To show G(t) D A(t).

Let € A(t) = Lim{r < a|M <r € (,c;q, A(l;)}. Since we know [; <t for any j € I, then
A(l;) =G(l;) for any j € INr by induction hypothesis. This way
p € Lim{r < a|M <7r € (,c;n, G(;)}, which means there exists a sequence (c¢)eex, such
that a > cg;)ﬂ and Ep(t)Na Cce e ﬂje[ﬂq G(lj); ie., VjeTINece ce < ljlai=ce + 1.

This way, for any £ € X and any j € I Ncg, ce <'[jla:=c¢] by <'-connectedness (because from
a <l; < nlj follows ce < ljlor:= ce] < mljlo:=ce] < mljloc:= cel +1). But by lemma 2.42, (Ij[a:=
cel)jernee is cofinal in t[a:= c¢]; therefore V€ € X .ce <! tla:=c¢] by <'-continuity.  (*)

On the other hand, V¢ € X.ce € E (because c¢ € G(ll)bycl LimE), and since

Ep(t)NacC cg—f>5, then Ep(t) NaC B€E. So tla:= ] €3, ) and

Ep(t)Na=Ep(tja:= F]) N B. From all this and the fact that (*) implies

VEe X.ce < tlai=cel =tla:= ][ :=c¢], we conclude

B € Lim{y € E|Ep(t[a := B]) N 8 C v A v <1 tla := B][B := 7]} This implies, by proposition
2.24, B < tla:= ]+ 1=ntla:= F]+1 and subsequently, by corollary 2.35, 8 <! nt[a:= 8] + 1.
So BeG(t).

All the previous shows G(t) = A(t) for the subcase t > wt + dnt.
Subcase t <t + dt.

Write ¢ =cne wlit + ... + wint, and T1 =cnk w@q1 + ... + w9™g,,. Note Qn < T1 and then
wlm < T (otherwise T3 = @, < w@m < Ty and then Ty = Q,, € E; from this and the fact that
t € (a2, a™) follows that T} = «, but then ¢ < w® + a = a2, which is contradictory with our
supposition t € (a2, a™)). The previous also shows T > . This way, the inequalities
t < wt+dnt =wh + Qp and Q,, < T1 imply that ¢ looks like t =cnp W™t + wts... + Wity
with wts... + wTrt, < Qm, and T} > o

Lets show now G(t) C A(t).
Let B € G(t). So Ep(t)Nac < (nt)[a:=p]+1 and a > B € E. Then, by proposition 2.23,
there is a sequence (c¢)eex, such that c¢¢ € E, cg—f)ﬁ, Ep(nt) Na=Ep(ntja:= B]) N B C c¢, and

ce <1 ntla:= BB :=cel = ntlai=ce] = nt[a:i=ce].

We now need to remember how the sequence (e;);cs is defined. Consider the ordinal w®@m.
If Qm>a,let (a;);ex, with K <a be the sequence obtained by lemma 2.42 applied to w®.
If0# Qm<alet K:=w?\{0} and a;:= j for any j € K. Then

Q(m-1)

w;l +.tw +qm —
q ‘Z(m 1) q

1j, with j € S:=w\{0} iff Q=0
€. =
J

Q(m—l)

wa1q1+m+w q(m,lﬁme(qul)Jra]-

, with j € S:= K iff Q0
As we know, (e;)jes is cofinal in w”*=nt. Besides, since V¢ € X .Ep(nt) N C cg, then
V¢ € X.Ep(mt) Na C cg; this way, for any { € X,

- for any j € SnNce, Ep(ej) Na C ce and

- (ejla=ce])jesne, is cofinal in w''[or:=cg].
Moreover, notice Vj € S.ne; < nt =nnt; so Vj € SNecenejlo:=ce] < nutfo:=cel.

From all our previous work we obtain: V&€ X.Vj € SNce.ce < nejla:=ce + 1< nrtfa:=cgl,
which implies, by <1 -connectedness, V¢ € X.Vj € S N ce.ce <1 nejlo:= ¢g] + 1, which in turn is
equivalent (by corollary 2.35) to V€ € X.Vj € SNece.ce <! nejla:=ce] + 1. Finally, since
cg—f)ﬂ D Ep(t) N « and Ep(t) N « is a finite set, then there exists y C X such that

co
(CE)EG(X\y)?ﬂ and V€ € (X \y).Vj € SNce.Ep(t) NaCee < nejlai=ce] + 1.

The previous paragraph shows V¢ € X\y.M < ¢¢ € Njesnee G(ej ) = Njesnee Ale;) and
(CE)EG(X\ny)B; Le., it shows B €Lim{r<a|M <re(,cqq, Ale;)}=A(t).
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To show G(t) D A(t).

Let g€ A(t)=Lim{r <a|M <re); 4q, A(ej)}I?{Lim{r SalM <re();cgn, Glej)}. Then
there exists a sequence (c¢)eex such that a > ce <! nejla:=cg + 1 for all j € SNece and M <
c,g;) B. Of course, the last inequality means Ep(t) N« C ¢¢, which implies Ep(mt) Na C ce.

Now, noting that Vj € S Nce.ce < ejlai=ce] <ejlai=cel + 1 < mejla:=ce] + 1, we obtain by

<! -connectedness c¢ <! ejla:= ¢¢] for all j € SN ce. But the fact that V&€ € X.Ep(rt) Na C ¢
implies (by lemma 2.42) that the sequence (e;la := c¢])jesne, is cofinal in mt[a:= c¢] for any & €
X, and so we conclude V¢ € X.ce <! mt{a:=c¢] by <'-continuity.

From the work done in the previous paragraph follows immediately that
V& € X.ce <1 mt[o:= c¢]; but wt[a := cg] <1 wt[o:= ¢¢] + dmtla := c¢] by theorem 2.3; thus by
<7 transitivity we conclude V€ € X .ce <1 mt[a:= cg] + dmt[a:= cg] = (wt + dmt)[o:= c¢] = nt[o:=
ce], where the last two equalities hold by proposition 2.38. Finally applying proposition 2.24 to
VE € X.ce <1 mtla:=c¢¢] and to M < cfﬁﬁ, and using the fact that V¢ € X.ce < a, we con-

clude Ep(t) N C 8 < a and B <1 nt[a:= 8] + 1. Observe the latter is equivalent (by corollary
2.35) to B < nt[a:= ]+ 1. Thus B € G(L). O

2.4.1 Uncountable regular ordinals and the A(t) sets

Up to this moment we have shown that the sets A(t) consists of the ordinals that are “solu-
tions of certain <; -inequalities of the form z <; ¢ with ¢ € [z, zT)”, but we still do not know
whether these solutions indeed exist. We address this problem now: our purpose is to study
closer the A(t) sets and, very specifically, by the introduction of an uncountable regular ordinal
K, show that for ¢ € [k, k™), the A(t) sets have to have elements.

In the following we will use the next two propositions.
Proposition 2.46. Let k be an uncountable regular ordinal and let X be a class of ordinals that

are club in k. Then Lim X is club in k.

Proof. Known result about club classes. O

Proposition 2.47. Let k be an uncountable regular ordinal and let (X;)i<1 be a sequence of
classes of ordinals that are club in k.

o If |I|<k, then [\ X; is club in k.

i<I
o Suppose I =k. Then {{<k|&€() Xi} is club in k.
i<€
Proof. Known result about club classes. O

Proposition 2.48. Let x be an uncountable reqular ordinal. Then Vt € [k, kT), A(t) is club in
K.

Proof. We prove the claim by induction on the interval [s, xT).
Case t =k.
Then A(t) = (LimE) N (0, x4+ 1) is club in & because E is club in x and by proposition 2.46.

Our induction hypothesis is Vs <t.A(s) is club in &. (IH)
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Caset=1+1€[k,kT).
AQ) if 1<l + dnl
Then A(t) = A(l + 1) = { ; this way, by our IH and proposition 2.46,

. . . LimA(l) otherwise
A(t) is club in & in any case.

Case t € [k, kT) N Lim.

Let (I;)jer be the sequence obtained by the application of lemma 2.42 to ¢t and x and
(e;)jes the sequence obtained by the application of lemma 2.42 to 7t and . Moreover, in case
Ep(t)Na#0, let M:=maxEp(t) Ne; in case Ep(t) Na =0, let M :=0. Then by definition

(LimE)N(M,xk+1) iff telk,r2]
A(t) = Lim{r<r|M <re,cn, Al;)} iff t>mt+dntAte (k2,kT)

Lim{r<w|M <re();cgn, Ale;)} iff t<mt+dntAte (52, k7)

and we have some subcases:

If ¢t € [k, k2], then A(t) = (LimE) N (M, k+ 1) is club in k because E is club in x and because
of proposition 2.46.

Subcase t > 7t +dnt At € (k2,KT).

Note it is enough to show that ¥ := {r < k|M < r € A(l;)} is club in & because

jeinr
knowing this we conclude LimY is club in x by proposition 2.46. In order to see that Y is club
A(ly)  iffiel
in x, we define for any i € K, X;:= "“" . Since by lemma 2.42, [; <t for any j € I,
Al iffigl

then by our IH we have that X is club in x for any ¢ € k; consequently, by proposition 2.47, the
set
X:={{<r|€N; ¢ Xi} is clubin k.

We now show Y Nk=X\(M+1).

"D Let r€ X\(M +1). Then M +1<r<randre(),_, XiC\;cin, Xi= Niern, Al)-
This shows r €Y N k.

"C”. LetreY Nk Then M <r<rand re(,c;n, AU =Nicrnr Xi=Niern, XiNX1=

= ﬂie]mr Xim ﬂiE(T\I) Xz: ﬂi<r X7, So TEX\(M+ 1)

Hence, since Y Nk = X\(M + 1) and X is club in &, then Y = { YneUis} I REY g also

YNk otherwise
club in x.

Subcase t <t +dmt At € (K2, k7).
It is enough to show that Z := {r < k|M <7 € (,c¢n, A(e;)} is club in £ because of the

. . Ale)) iffieS
same reasons of the previous subcase. For any ¢ € k, let W, := . Since by lemma
Aley) iffig s

242, e; <7t <t for any j €S, then by our IH we have that WW; is club in « for any i € x; conse-
quently, by proposition 2.47, the set W:={{ <k| € ﬂi<£ W;} is club in &.

We show ZNk=W\(M +1).

"o Let r € W\(M + 1). ThenM+1§r<nandr€ﬂi<rWiCﬂ
N;csnr Alei). From this we conclude r € ZN k.

"c". Letre€ZNk. Then M <r <rand r€,cqn, Al€i) = Nicsnr Wi= Nicgnr Wi
W=
=Micsnr Wi Nicisy Wi=Nic, Wi Sor € WA(M +1).

Wi =

ieSNr

Therefore, since Z Nk =W\(M + 1) and W is club in &, then Z = { ZnwUik} iff ez

ZNk otherwise
club in &. ]
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Consider an epsilon number « € E, t € [a, ™) and a non-countable regular ordinal x > a.
The “solutions to the <; -inequality x <i nt[a := z] + 1 in interval [0, x]” are the same as
the “solutions to the < -inequality x <i nt[a := k][k := ] + 1 in interval [0, ]”, which are, of

course, the elements of the set G(t[a := &]) =  A(t[a := k]). This way, proposition 2.48
theorem 2.45

shows us that such solutions are indeed many: G(t[ov := £]) is club in k. So our hierarchy
A(l)ie [k, x+) captures all these solutions (in interval [0, k]) and such solutions do exist. Now we
just want to make explicit that we get a similar result for arbitrary “ <; -inequality = <; t[a :=
x]”.

Proposition 2.49. Let k be an uncountable regular ordinal and a € EN k.
Then for any t € [a2,a™), there are y EENk and s € [y2,v") such that
EN(k+1) iff t=a2
{BEE |Ept)NaC B<kABL ta:=8]}=
[77“3}0“56[7275) A(llv:=r]) iff te(a2,a™)

and the set {B€E |Ep(t)NaC B< kA B < tla:= S} is club in k.

Proof. Let k and « € ENk be as stated. Take t € [a2,a™) and consider
v:=min{e € ENk |Ep(t)Na Ce} (v exists because Ep(t) N C < k). Then tla:= ] € [y2,7T)
and C:={B€E |Ep(t)NaC B<KA B tla:=0]}=

={B€E |Ep(tla:=1)NyCA<rAB< tla:=9][v:=B]}.

We have two cases:

e Case tla:=~v]=~v2. Then C=EnN(k+1) is (clearly) club in .
e Case tla:=1] € (72,7T). Let s:=min {z € [v2, t{a:=1]] | m(z) = t[a:= 7]} (of course s exists
because m(tja:=7]) = t[a:=4]). Let Z:=max (Ep(s)N~). We show that

C=[v.sln N Al¢lyv:i=s)=[v.sl0n N G(E[yv:=x]). (o)
§€[72,s) £€[v2,s)
“C” Take f€C. Then 8> v (because Ep(t) Na C §) and
Ep(tla:=v])NnyCBeEN(k+1)A B < tla:=~][y:= 5] *)
On the other hand, let £ € [y2, s) be arbitrary. Then Ep(n¢ 4+ 1) N v C v < 3, and then, using

that né+1 = max {m(a) |a € (o, &]} + 1 < ta:= 7] we get
proposition 2.27

B<L(mE+ D)]y:=p]<tla:=7][y:=p]. This, (*) and <;-connectedness imply that
B (mE+1D)y:=pBl=ntly:=pl+ 1.

Our previous work has shown that 8> v and that
Be{ecEEp({)NyCe<k and ey né[y:=¢€]+1} =

{e € E|lEp({[y:=k]) Nk Ce< kK and e <1 (n€]y:=k])[k:=¢] + 1}theor;l 245A(§[7 = k]).
Since this was done for arbitrary £ € [72, s), we have shown S € [y,x]N ) A({ v:=K|).
£€[2,9)
“>” Take Be[y,klN [ A({[y:=k]). Then for any £ € [72,s)
£€[2,5)
Ep(¢{[v:=a])Na=Ep({) Ny=Ep({[y:=k]) N C B <k and
By (nély:=k])[k:= Bl + 1=n[y:= Bl +1=n[y:=a][a:= ] + 1. (**)

Subcase s € Lim. Since by (**) we have that V[72, s).8 <1 n¢[v:= 5] + 1, then by <; -con-
nectedness V¢ € [v2, s).5 <1 &[]y := B]; but (¢[y:= ﬂ])[,\/g,s)‘—f) s[y := p], thus, by <;-continuity,
B <y 8|y := 4. (***). On the other hand, the inequalities s[y:= 8] < tla:=7][y:= f] <

m(s)[y:=p] = m(s[y:= f]) imply, by <;-connectedness, that s[y:= f] <1 t[a:=7][y:=
corollary 2.17

B]; from this, (***) and < -transitivity we conclude 8 <;t[a:=4][y:= 8] =t[a:= []. Hence 5 €
C.
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Subcase s =141 for some | € OR. Then t[a:= ] > s=m(s) > t{a:= 7], that is,
Il +1=s=tla:=+]. On the other hand, | < nl = max {m(a) |a € (a, ]} <m(s) =s,s0 nl =1
and from all this we conclude t{a:=+] =s=nl+ 1. But by hypothesis € A(l[y:=&]), then
B<uinlly:=kllk:= Bl +1=mnlly:=pl+ 1=l +1)[y:= 8] =s[y:= ] =tla:=][y:= 4]
Hence g€C.

The previous concludes the proof of (o).

Finally, since |[72,s)|<|s| <k then () A({[y:=k]) is club in & (by proposition 2.47) and
£€[y2,9)
therefore C = [v,k]N [ A({[y:=k]) is club in & too. O
by (°) g€lr2,9)

2.4.2 Epsilon numbers a satisfying a <; a™. Class(2).

We comment on this subsection after the next

Corollary 2.50. Let k be an uncountable reqular ordinal. Then

a) k<'rkt

b) ke Alt)

te(k,xt)

Proof.
a).
By proposition 2.48, for any ¢ € [k, k¥), A(t) is club in x. This means there exist a sequence
(ce)eex such that ce € A(t) and Ce . But by theorem 2.45, A(t) =G(t) =

{BE€EEp(t)Nr C B<K€eE and B< nt[r:= ]+ 1} which implies V¢ € X .ce < nt[k:=c¢]. Now,
from all this and proposition 2.24 we obtain k£ <! nt+ 1. The previous shows that

Vt € [k, kT).x <! nt + 1, and since the sequence (1t + 1),<;< .+ is cofinal in kT, then x <* s by
<!-continuity.

b).
k <! kT is equivalent to k € (] A(t) by next proposition 2.51. d
te(k,kT)

We had seen previously that for & € E and t € [o, a™) arbitrary, the “solutions of the < -
inequality  <; t[a := z] in interval [0, x]” can always be given in terms of our hierarchy
A(1)e[x,+)- But we can tell even more: Consider B:=min {3 € E| <, 87} (previous corollary
2.50 guarantees the existence of B). Then corollaries 2.41 and 2.52 provide the big picture of
what happens in BNE (indeed, they provide the following characterization of B):

I. For any ordinal « € BNE, m(«) € [, at) and therefore m(a) = s[B:= a] for some
s€[B,BT) with s=ns.

II. For every s=mns € [B, B"), there are cofinal many ordinals in B with m(a)=s[B:=a].
III. B is the only one ordinal such that I and II hold.

This way, for « € BNE (note B < k by previous corollary 2.50) we have:
e Case m(a)=a2. Then a € E\A(m(a)[a:=k]);

e Case a2<m(a)AIse[a2,m(a)).ns+1>2m(a). Let
z:=min{s € [a2,m(«)) | ns+1>=m(«)}. Then nz+1=m(a) (otherwise the inequalities
a<z<m(a)<nz+1z2m(a)+1 would imply, by <;-connectedness and proposition 2.27, that
a <3m(a)+ 1, which is contradictory). Therefore o € A(nz[a:= k])\A((nz + 1)[a:=k]) =
A(nzloc=r])\A(m(a)[a:= k).
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o Case a2<m(a)AVse€ [a2,m(a)).ns+1<m(a). Then
A

acl N Alsla:=r)\A(m()a:=r)).

s€la2,m(a))

So our theorems explain us quite well what happens in the segment [0, B), but what about
ordinals bigger that B?. Corollary 2.50 showed us, for the first time, that the class of ordinals
Class(2) := {a € E | a <1 at} is nonempty. We now focus our attention on those ordinals.
Our goals are propositions 2.58 and 2.59 which relate Class(2) with our hierarchies
(A(t))iein,nt), for £ an uncountable regular ordinal.

Proposition 2.51. Va e OR.a<jat <= a<lat <= ac Nicla,ary A

Proof. Let a € OR. We already know a <; at <= a <'at. We now
show a<tat+=ac€ ﬂte[a o) A(t).

= ).

Suppose a <'a™. Let t € [a,a™). Then a <! ntla:=a]+1=nt+1 by <'-connectedness. So
a€G(t)={Be€ORIEp(t)NaC f<aA B <! gtla:=p]+ l}theor§n ) 45A(t). Since this holds for
an arbitrary ¢ € [a, a™), we have then actually shown «a € ﬂte[a o) A(t).

).

Suppose a € ﬂte[%(ﬁ) G(t). Then for any t € [a, a™), a <! ntja:=

t€fa,at) A(t)theore:m 2.45
a]+1=mnt+1, and since (7t +1),<;<qo+ is cofinal in o™, then a <! a™ by <!-continuity. O

Corollary 2.52. Let p be an epsilon number such that p <1 p™. Then
Vie[p, pT)t=nt={ae€ pNE|Ep(t)NpCaAm(a)=t[p:=a]} is confinal in p.

Proof. Not hard. Left to the reader. O

Proposition 2.53. Let o, B€E, t € (a,a™)NLim, 8 <« and Ep(t)Na CS.

Let (1;)jer be obtained by lemma 2.42 applied to t and . Since Ep(t) N C B and

t € (o, a™) N Lim, then tlo:= ] € (B, 1) N Lim. Then (Il := B])jern(p+1) is the sequence
obtained by lemma 2.42 applied to tfa:= B] and B.

Proof. Long and boring. Left to the reader. O

Proposition 2.54. Let ACOR>«. Then Lim(A)N(a+1)=Lim(AN(a+1))

Proof. " C”. Let r € Lim(A) N (a+1). Then there exist a sequence (¢;);e; C A such that
c;—f)r <. Then (¢;)ier C (a+1). All this means (¢;)ier CAN(a+1) and ci<—f>r, ie.,
CO: CO:
reLim(AN(a+1)).
">". Let r € Lim(AN (a«+1)). Then there exist a sequence (¢;);er C AN (a+ 1) such that
CiT; note that since (¢;);er C (w4 1), then r <a. So r € Lim(A) N (a+1). O

The next proposition is (much) easier to prove using theorem 2.45 and the properties we
already know about the substitutions ¢t — ¢[8:= «]. The reader can do that as an easy exercise.
We provide here our original proof.

Proposition 2.55. Let B€R, a € EN B and t €[B, BT) be such that Ep(t)N 3 Ca.
So t[B:=a] €[a,a™). Then A(t)N(a+1)=A(t[3:=q]).
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Proof. Let 8 and a € EN 3 be as stated. We will prove by induction on [, 87) the statement
Vte[B, BT).Ep(t)NBCa= A(t)N(a+1)=A(t[3:=q]).

Let t €83, 8%). Our induction hypothesis is
Vre[B,8)NtEp(rynBCca= A(r)N(a+1)=A(r[3:=a]) (IH)

Suppose Ep(t) N 8 C o. Let M :=max (Ep(t) N ).

Case t € [3, 32] NLim. Then A(¢) = (LimE)N (M, 8+1) and so
Ay N (a+1) = (LimE) N (M, 8+ 1) N (e + 1) = (LimE) N (M, o + 1) = A(t[S := a]), where the
last equality is because t[3:=a] € [a, a2] N Lim.

Caset=I1+1¢€[B,3T). Then clearly Ep(l)N 3 C a and so

[ ADN(a+1) iff 1 < 7l + dnl
A(H—l)ﬂ(a—i—l)—{ (LimA(l))N(a+1)  otherwise
(AN (a+1) iff 1 < 7l + dnl
prop.2.54 | Lim(A(l)N(a+1)) otherwise

=, by our IH and because of proposition 2.54,

:{ A(l[B:=a)) ift [[B:=a]<n(l[f:=a])+dn(l[f:=a])
(Lim A({[f:=q])) otherwise

— A([8:= a] +1) = A((1+ D)[8:= a]) = A(t[8:=a]).

Case t € (82, 1) NLim. Let (I,);jer be obtained by lemma 2.42 applied to ¢ and j3; more-
over, let (e;);es be obtained by lemma 2.42 applied to 7t and 3.

Subcase t > 7t + dt.
A)N(a+1)=Lim{r <M <re ﬂje]ﬂr AlHHN(a+1)
= Lim({r < B|M <r €

prop. 2.54
jernr A} N (a + 1)) = Lim{r < a|M <r €
ﬂje[ﬂr A(lj)}:

=Lim{r<a|M <re),c;n, (Al)N(a+ 1))}5{

=Lim{r <a|M <re(;c;n, Al[B:=a])} =

=Lim{r<a|M<re mge(m (@t 1))n A(lj[ﬁzz a))}=AE[8:=al),
where the last equality holds by proposition 2.53 and because Ep(t) N 8 C o implies
Ep(nt+dnt)N B C o and so t > wt + drt <= t[f:= o] > (nt + dnt)[f:=a] =
m(t[B:=al) +dr(t[8:= o).

Subcase t < 7t + dnt.
A)N(a+1)=Lim{r <M <re ﬂjeSﬂr Ale))P)N(a+1)
=Lim({r < BIM <7 €

Njesnr Ale)}= e
=Lim{r <a|M <re);cq5n, (Ale;) N(a+1))}=

=Lim{r <a|M <re;cgn, Alej[B:=0l)} =

=Lim{r<a|M<re ﬂjG(Sﬁ (@t 1))N L Alej[B:=al])} = A(t[3:=q]),
where the last equality holds by proposition 2.53 (more precisely, since (e;),es approximates
nt € [8, A1), then (e;[f := a])gn(a+1) approximates (nt)[f:= a] = n(t[3 := o]) € [a, a™T))), and
because t < 7t + dnt <= t[f:= o] < (7t +dnt)[f:= o] =7 (t[f:= o) + dn (t[ B := a]). O

prop.:2.54
Alej)} N(a+ 1)) =Lim{r < a|M <r €

Proposition 2.56. Let S €E and a € EN B. Consider the set of ordinals
M(B.0)={q€ B*[Ep() NS Ca}. Then M,epy ) AW)=(a+ D0,y mmsan AD-

Proof. Not hard. Left to the reader. Il
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Proposition 2.57. Let B€E, a€EN S and M(B,a)={q€ BH|Ep(¢)NBCa}. Then
a) Vye mteM(,B,a)m[ﬁ,Bﬂ At).y = a.

b) ﬂtE[a,aJr) At)=(a+1)N mteM(B,a)ﬂ[ﬁ,ﬁ*) A(t); moreover, if ﬂte[a,a+) A(t)# 0 then
Nicfa,ar) AlB) ={a}-

Proof. Not hard. Left to the reader. O

Proposition 2.58. Let Kk € E be an uncountable reqular ordinal and a e EN k.
Suppose v € ﬂteM(&a)n[mnﬂ A(t). Then v <tyt.

Proof. Let ag:=kK, any1:= K"

Observe Ve e E{an|n€w} C [k, k) N M(k,e). This way, since v € ﬂteM(m,a)m[n,w) A(t), then
v € A(an) = G(an) = {B € E|Ep(a,) Nk C B< kA B < nay[k := B] + 1} for any n € w. Therefore
for any n € w, v <! nay[k:=~] +1 and since v < an[k:=7] < nay[k:= 7] + 1, then we conclude by
<! -connectedness Vn € w.y <! ay[k := 7)]. But the sequence (a,[k := 7¥])new is confinal in v,
therefore by <!-continuity, v <! ~+. O

Proposition 2.59. Let k € OR be an uncountable regular ordinal and o € kN [ey, 0] NE. Then

2 ﬂteM(n,a)m[m,,ﬁ) A(t) is club in k.

ii. Class(2):={a€E |a<iat} is club in &.

Proof.
7.
Take x € OR as stated and o € k N [y, o0] NE. Then, directly from corollary 2.14, the function
fiM(k,0)N[k,kT)— [o,0T)
t— t[k:=o0]
This way, |M(k,0) N[k, x1)|=|[o,0T)| <k. (1)

isan ( <,+4+,-, Az.w”®)-isomorphism and therefore a bijection.

On the other hand, by proposition 2.48, for all t € M (k,0) N[k, xT), A(t) is club in k. (2)

From (1), (2) and proposition 2.47, we conclude () A(t) is club in k.

teM(k,0)N[k,xT)

Direct from previous proposition 2.58 and 1. O
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The upper classes






Chapter 3
Upper classes of ordinals induced by <4

3.0.3 Class(n)

We want to generalize the results of previous chapter. Our main guide of how to do this is
the following: Departing from E = Class(1), we have been able to obtain ordinals o € Class(1)
such that o <3 a™, where o™ =min {3 € Class(1)|a < 8}, and we have called Class(2) to the col-
lection of such ordinals. The idea is to iterate this process.

Definition 3.1. We define by recursion on w

Class(1) :=E;

Class(n+1) :={a € OR|a € Class(n) A a(+") € Class(n) Aa <y a( +™)},

where for a € Class(n) we define a( +™ ) := min {§ € Class(n)la < 8} #ff {B € Class(n)la<f}#0

9] otherwise

and we make the conventions co ¢ OR and Vy € OR.y < 00

7

In the upper definition of ( +" ), which we can call “the successor functional of Class(n)”, we
needed to consider the case when, for a € Class(n), such “successor of « in Class(n)” may not
exist. We want to tell the reader that this is just a merely formal necessity: one of our purposes
is to show that such successor always exists and that Class(n) “behaves like the class E” in the
sense of being a closed unbounded class of ordinals. This is one of the important results we want
to generalize, although it’s proof will take some effort.

Let’s see now some basic properties of the elements of Class(n).

Proposition 3.2.
1. Vn,i€[l,w).i <n=>Class(n) C Class()

2. For any n€[l,w) and any o € Class(n) define recursively on [0,n —1]
Qn =0 Oy (kg 1) i= Ok 4n (k1)

Then Vi€ [1,n].c; € Class(i) and a =, <1 Qn—1<1... <102 <101 <1 Q@12.

3. For any n € [l,w) and any o € Class(n) consider the sequence defined in 2.
If o <412+ 1 then a € Lim Class(n).

4. Vn € [2,w).Class(n) C Lim Class(n — 1).

5. VYn,me[l,w)Va.(m <nAa€Class(n)) = a € Class(m) Aa(+™) < a(+").

Proof. 1, 2 and 5 are left to the reader.

3.

Let p € a be arbitrary. Define B, := {p} U {a;, ai2|n € {1, ..., n}}. Since o <1 @12 + 1 and
B, Cgin @12+ 1, then there exists an (<, <y, + )-isomorphism h,: B, — h[B,] C a with

hpla = Ids. Note this implies the following facts in the following order (the order is important
since the later facts use the previous to assert their conclusion):

o7
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(1) Vie[l,nl.a; <1 a;2<= hy(a;) <ihp(a)2. So hy(e;) € E=Class(1).
(27) Vi e [2, n].ai <10 < hp(ai) <1 hp(al).
So by (1’) and <;-connectedness Vi € [2,n].h,(c;) € Class(2).
(3") Vie[3,n].a; <iao<= hy() <ihplas).
So by (1’) and (2’) and <;-connectedness Vi € [3,n — 1].h,(«;) € Class(3).
. (inductively)
(') an<ian—1<= hy(an) <ihy(an_1).
So by (1’), (2’),.., (n-1’) and <;-connectedness h,(ax) € Class(n).

The previous shows that the set (remember that a, = )
A:={hy(a)lpeaNhy, B,— aisan ( <, <y, + )-iso such that h,|, = Ids} C Class(n) con-
tains for any p € o an element h,(a) = h,(ay) € Class(n); moreover, since p < a =, implies
p="h,(p) <hplan)=h,(a) <a, then A is confinal in «. Hence a € Lim Class(n).

4.
We proceed by induction on [2,w).

Take n € [2,w).

Suppose VI € nN[2,w).Class(l) C Lim Class(l —1). (cIH)

If Class(n) =) then we are done. So suppose Class(n) # () and take « € Class(n). By defini-
tion this means o€ Class(n — 1) 3 a(+""1) and a <j;a(+"71). (*3)

Casen—1=1.
Then by (*3), the inequality a < a2 +1 < a(+!) and <;-connectedness we get o <1 a2 + 1.
Then by corollary 2.40, o € Lim E = Lim Class(1).

Casen—1>2.
By (*3) we know «a € Class(n — 1). Then, by 2., the on [0, n — 2] recursively defined sequence

of ordinals By, —1:= 0, Br_1—(kt1):= Ba-1-k( +" 1~ FFD) satisfies
Brn-1<1Pn_2<1...<1P2<1p1<1 /12 and Vi € [1, n— 1]61 S Class(i). (*4)
Let v:=a(+""1) e Class(n — 1).
We show now by a side induction that Yu € [2,n —1]. 85—y < 7. (F*3%*)

Let ue[2,n—1].

Suppose for leun(2,n—1].8,—1 < 7. (SIH)

Since v € Class(n — 1), then by (3*) (in case u = 2), by our SIH (in case u > 2) and 1. we
have that £, _(,—1) <7 € Class(n — (u — 1)), that is, v € {e € Class(n — (u — 1))|Bn—(u—1) <1 €}
But fn—w=fn—(u-1)(+""")=min {e € Class(n — u)| Bp—(u—1) < e}. From all this follows
Br—u< 7. (*5)

On the other hand, our cIH applied to v € Class(n — (u — 1)) implies v € Lim Class(n — u);
however, since 3, _, = min {e € Class(n — u)|3,,—(u—1) < e}, then 3, _, ¢ Lim Class(n —u). From
this and (*5) follows f,,_, <. This shows (**3**).

From the fact that v € E, (**3**) and (*4) we have
= fn-1<1Bn-2<1...<1B2<1P1<1512< 124+ 1 <y=a(+"""); moreover, from this, (*3)
and <;- connectedness we obtain 3, _1 <1 $12+ 1. This way, by 3., it follows that
a=f,_1€LimClass(n — 1) as we needed to show. O

Proposition 3.3. Let j € [2,w) and c € Class(j). Then for any d € [1, j) there exists a sequence

(ce)eex C Class(d) such that 05<—f> c.

Proof. Left to the reader. O
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Corollary 3.4. For any n € [1,w) and any a € Class(n) define by recursion on [0, n — 1] the
ordinals oy, :=a, an,(kﬂ)::an,k(—&—"_(kﬂ) ). Then

a) a=ay,€CClass(n).

b) Vje[l,n—1].a; € Class(j)\Class(j +1).

C) =0y <{10p_1 <1an_2<1an_3<1...<1a2<1a1<1a12<a(+”).
)

d) Vje[l,n—1]l.m(aj) =ai2.

Proof. Left to the reader. O

Proposition 3.5.

1. Vje[l,w)¥(a1,...,a;) EOR.a; <1aj_1<1... <1a1 <1a12=>a; € Class(j)

2. Vj €[l,w)Va € OR.a € Class(j) <= (a1, ...,a;) EORV.a=a;<1aj-1 <1...<1a2<a; <a;2
Proof.
1.

By induction on [1,w).
For j=1 it is clear.

Suppose for j € [1,w) the claim holds, that is
V(al, ...,aj) € ORj.aj <1a0;-1<1...<101 <1 a2— a; € Class(j). (IH)

We show that the claim holds for j+ 1.

Let (ai,...,a;+1) € ORIT! be such that aj41<1a;<1...<1a1<1a:2. *)
By our (IH) follows a; € Class(j) and therefore, Vs €1, j].a; € Class(s). (**)
Now, observe the following argument:
aj+1 < 20541 < a; and then a;j11 <1 a;+12 by (*) and < -connectedness;
because aj;1<a; EECP
that is, aj4+1 € E = Class(1). But then, aj11 < ajyi( +* ) < a; and then

because aj1<a;€EE
aj+1<1aj+1(+') by (*) and <;-connectedness; that is, a; € Class(2). But then

aj1 < ajr1( +%) < aj and then ajyq1 <1 aj41( 4% ) by (*) and < -con-
because a;1<a;€Class(2)
nectedness; that is, a;1 € Class(3). Inductively, we get a1 € Class(j),

aj1 < aj1( +) < a; and then, by (*) and <; -connectedness,
because a;1<a;€Class(j)

aj+1<1aj+1(+7); that is, aj+q € Class(j + 1).

2.
Left to the reader. O

Proposition 3.6. Vk €[1,w).Va, f € OR.a<; 8 € Class(k) = a € Class(k + 1).

Proof.

By induction on [1,w).

Let k=1 and «, 5 € OR be such that @ <; § € Class(1). Then a <3 @2 by <;-connectedness
(because a < @2 < f3), which, as we know, means a € E. This way o < a( +!) < 3, and then, by
<1 -connectedness again, a <j o +1), that is, o € Class(2).

Suppose the claim holds for k € [1,w). (IH)
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Let o, 8 € OR be such that oo <3 8 € Class(k + 1). Then S € Class(k) by proposition 3.2. So
a <1 B € Class(k), and our (IH) implies o € Class(k + 1). But then a < a( +**1) < 3, which
implies by <;-connectedness that o <1 +**1). Thus a € Class(k + 2). O

Proposition 3.7. Let i €[1l,w) and o € Class(i). Then
1. Vze[Lii)m(a(+ =) (+772)(+7) =a(+ ) (+72) (7)) (+77 1) (+1)2.
2.Vt (a, e+ (+77) () (+1)2)m(t) Sal+ 71 (7). (+2)(+1)2.

Proof. Left to the reader. O

3.0.4 More general substitutions

For our subsequent work we need to introduce a more general notion of substitutions than
the one used in previous chapter.

Definition 3.8. Let x € OR and f: Domf C E — E a strictly increasing function such that
Ep(z) C Domf. We define x[f], the “simultaneous substitution of all the epsilon numbers Ep(x)
of the Cantor Normal Form of x by the values of f on them”, as

f(zx) if €k

2?21 Ti[flti if x¢E and z=cnr Z?:l Tit; and (t122Vn>=2)
zlf]=

w?ll if ©¢E and x=w? for some Z € OR

x if x<ep

Moreover, for Ep(x) ={e1> ... >er} and a set Y :={o1> ... > o,} CE of epsilon numbers,
we may also write x[Ep(x) :=Y] instead of x[h], where h: Ep(x) — Y is the function h(e;):= o;.

Definition 3.9. Let S COR and f1, fo: S —> OR. We will denote as usual:
° f1<f2 = VeeS.fl(e)gfg(e).
o fi<fri<= fi<fonTeeS. fi(e)< fale).

Now we enunciate the properties about these kind of substitutions that are of our interest.

Proposition 3.10. Let z, y € OR. Let f: S CE — E be a strictly increasing function with
Ep(z) UEp(y) CS. Then

1. yeP<=y[f] eP.
2. x<y<=z[f]<ylf]
3. yeE<= y[f]€E and y e P\E < y[f] e P\E

Proof. Left to the reader. O
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Proposition 3.11. Let f:Domf CE— E be a strictly increasing function.
Let A:={x € OR|Ep(z) CDomf}. Then the assignation p: A— OR defined as p(x):=z[f] is a
function with respect to the equality in the ordinals, that is, Vo,y € A.x=y= o(z) = p(y).

Proof. Left to the reader. O

Proposition 3.12. Let x € OR and f: S CE— E be a strictly increasing function, where
Ep(z)CS. Then

1. z[f] is already in Cantor Normal Form.

2. Ep(alf]) = f[Ep(x)] Cm .

3. It exists f~h:Imf — S, f~1 is strictly increasing and (z[f])[f~ Y ==.
4. Let a €E. Then z € [a,a(+')) = aeSAz[fl€[f(a), f(a)(+)).

Proof. Left to the reader. O

Proposition 3.13. Let f,g: S CE— E be strictly increasing functions.
Let D:={ec S|f(e) <g(e)}. Then

1. f<g<=VxeOR.Ep(x)CS= z[f] <z[g])-
2. f<g=Vaxe€OR.(Ep(z) CSAEp(z) ND+0)= z[f] <z[g]).

Proof. Left to the reader. O

Proposition 3.14. Let x, y € OR. Let f: S CE — E be a strictly increasing function with
Ep(z)UEp(y) C S. Then

1. Ep(z+ y)UEp(w*)UEp(z-y)C S
2. (z+y)[fl=a[f]+ylf]

3. w*| f] ——a
4. (@-y)[f1==[f]-y[f]
Proof. Left to the reader. O

Proposition 3.15. Let g: SCE — Z CE and f: Z CE — E be strictly increasing functions.
Then fog:SCE—E is strictly increasing and for any t € OR with Ep(t) C S, t[f o g| =t[g][f]

Proof. Left to the reader. O

3.1 The main theorem.

Now we introduce certain notions that are necessary to enunciate the main theorem.
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Definition 3.16. For k€ [l,w), a € Class(k) and t € [a, a( +%)), the ordinal
n(k,a,t) is defined as

a(+ETD (72 ()2 il tefon (T () (+)2)
n(k,a,t):=

max {m(e)le € (a, t]} iff  t>a(+FT)(+HET2) () ()2

Our next proposition 3.17 shows that n(k, a,t) is well defined.

Proposition 3.17. Let k€ [1,w), a€ Class(k), t € (o, a( +*)) and
P:={re(a,t]m(r)>t}. Then
(0). P is finite; more specifically 1< |P|<k+1.
(1). max {m(e)|le € P} exists and max{m(e)le € P} =max{m(e)|e € (a,t]}.
(2). n(k,a,t) is well defined.
(8). nlk,a,t) =m(t) >t.

Proof. Counsider i, a and t as stated.

(0)

Clearly t € P. So |P| > 1. We prove the other inequality by contradiction. Suppose |P| >k + 2.
Then there exist £ 4+ 1 ordinals Fy, E1, ..., Ex_1, Ex, € P such that Fp, < B _1< ... < F1 < Ey <t
that is, VI € [0,k].Fr < ... < B} < ... < Eg <t <m(E;), and therefore, by <;-connectedness, we get:

a. Eg<i1 Fy+1<t, that is, Ege Lim P C P.
b. E1<2E; < Ey<t<m(FE1); then, by <;-connectedness E; <;2E}, that is, E; € E.
C. a<Ek<1Ek,1<1...<1E1<1E12<E0<t<a(+k)

This way, from c. and proposition 3.5 follows Ej, € Class(k) N (a, a( +%)). Contradiction.

Therefore |P| <k+1.

(1)
Since by (0) P # 0 is finite, then {m(e)le € P} is finite too and thus p := max {m(e)le € P}
exists. Then:

(I). w=m(t)>t because t € P (and because m () > § for any ordinal).
(II). Since P C (a, t], then p € {m(e)|e € (a,t]}.

On the other hand, let e € («, t] be arbitrary. If m(e) < t, then m(e) < p because of (I). If
m(e) >t, then e € P and then m(e) < p. This shows that Ve € («, t].m(e) < p and since by (I1)
we {m(e)le € (a,t]}, we have shown p=max{m(e)le € (a,t]}.

(2)
If t € o, a +F71)(+F=2)..(+2)(+')2], then it is clear that n(k, , t) is well defined. So sup-
pose t € (a( +F 1) (+F=2)(+2)(+1)2,a( +*)). By (1) max {m(e)|e € P} exists and

max {m(e)|e € P} =max {m(e)|e e (a,t}}b A n(k,a,t). That is, n(k, a,t) exists.
y definition

(3)
For ¢t > a( +F71)...(+2)( +')2 the assertion is clear. For ¢t < a( +*71)...(4+2)(+!)2, we get by
proposition 3.7, t <m(t) <a( +F 1) (+F72)..(+2)(+1)2=n(k, a,t). O

Remark 3.18. The ordinal (i, a, t) is meant to play in Class(i) the analogous role that the
ordinal nt played in Class(1) =E. Particularly, for i=1,a € Class(1)=E and t € [a, a( +1)),
n(1, a,t) =

proposition 2.27
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Proposition 3.19. Vi€ [1,w)Va € Class(i)Vt € [a, a( +7)).n(i, o, t) € (a, a +9)).

Proof. Left to the reader. O

Definition 3.20. Let i€ [1,w), a € Class(i) and t € [a,a( +%)). We define
it {a(+”)(+”)--.(+2)(+1)2 iff tela,a(+ 1) (+72).(+2)(+1)2]
i,a,t):= .

min {r € (o, t] | m(r)=n(i,a,t)} ff t>a(+71)(+72).(+7)(+1)2

Proposition 3.21. Let i€ [1,w), a € Class(i) and t € (a( + 1) (+72)..(+2)(+1)2, a( +1)).
Then

1o, at)>al+71) . (+1)2
2. n(i,a,l(i,a,t)) =max {m(e)le € (o, (i, a, )]} =m(l(i, , 1)) = n(i, a,t).

Proof. Left to the reader. O

Remark 3.22. With respect to definition 3.20, consider the case i = 1. Let t € (a2, a™) and
suppose (1, a,t) € (a,t). The inequalities I(1, «,t) <t <nt=m(l(1,,t)) and the fact that
I(1, , t) ¢ E imply, by theorem 2.3 and corollary 2.4, that IP 5 (1, a, t) A m(I(1, o, t)) < (1, v,
t)2. Therefore P> 1(1, a,t) <t <m(l(1, o, t)) <l(1, ,t)2, which subsequently implies (by consid-
ering the cantor normal form of t) that 7t =1(1, o, t). From this we conclude:

a2 iff sefa,a2]
For any s€ [o,at), l(1,a,8)=¢ ms iff s€(a2,a")Al(l,a,5)<s

s iff se(a2,am)Al(1,a,8)%s

Definition 3.23. Let i€ [l,w), a€Class(i), t € [a,a(+") and j € [1,i]. We define A(j,t) as the
only one ordinal § satisfying § € Class(j) and t € [5,5(+7)) in case such ordinal exists, and — oo
otherwise.

Remark 3.24. For i € [1,w), o € Class(i), t € [a, a( +*)) and j € [1, 1], (i.e., all the conditions
above) A(j,t) will always be an ordinal. Again, the reason to give the definition this way is just
because the existence of A(j,t) is not completely obvious (we will see that later).

We can now present the theorem stating the generalization of the main results we have up to
now.

Theorem 3.25. For any n € [l,w),
(1). Class(n) is k-club for any non-countable regqular ordinal k.

There exist a binary relational <™ C Class(n) x OR such that:

For a,c€ Class(n) and any t € a(+") there exist

- A finite set T(n,a,t) CENa(+"),

- A strictly increasing function g(n,«,c): Dom g(n,a,c) CENa(+")—EnNc(+™)
such that:

(2) The function H: (Dom g(n,a,c))N(a,a(+™)) — (c,e(+™)), H(e):=e[g(n, a,c)] is
an (<,+,, <1, Az, (+1), (+2),.... (£ 1)) isomorphism.
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(8) The relation <" satisfies <" -connectedness, <" -continuity and is such that
(tela,a(+")|Na<"t) = a < t.

(4) (First fundamental cofinality property of <™ ).
Iftefa,al +")) Aa <™t + 1, then there exists a sequence (c¢)eex C o N Class(n) such that
Ce—ra, VEe X T(n,a,t)NaCee and ce <1 t[g(n, a,ce)].

CO

(5). (Second fundamental cofinality property of <™ ).

Suppose t € [, a(+™)) A € Lim{y € Class(n)|T(n,a,t) Na Cy Ay <y t[g(n, o, v)]}. Then
(5.1) Vs €, t+ 1].a<™s, and therefore
(52) a<it+1

(6). t€la,a(+™)Aa<in(n,a,t)+1)= a<"n(n,a,t)+1.

Theorem 3.25 states the general result we are striving for. But the proof of theorem 3.25 is a
very long journey: we need to overcome many technical difficulties not stated in it; because of
that, we restate it in a more technical way: theorem 3.26. It is exactly the statement of theorem
3.26 that we will be proving along this and the next 3 chapters.

Theorem 3.26. For any n € [1,w)
(0). Class(n) is k-club for any non-countable regular ordinal k.

(1). For any « € Class(n) the functions

e S(n,a):Class(n —1)N(a,a( +™)) — Subsets(Class(n — 1) N (v, v(+™)))
S(n,a)(d):={ee€Class(n —1)N(a,a(+"))NJd | m(e)[g(n —1,e,0)] =m(d)}

e f(n,a):Class(n —1)N(a,a(+™)) — Subsets(OR)
{{5} iff S(n,a)(8)=0

fln,a)(s)U{d} iff S(n,a)(8)#0As:=sup (S(n,a)(d))
are well defined and are such that
(1.1) If S(n,a)(6) £ 0 then sup (S(n,a)(d)) € S(n,a)(d) C Class(n — 1) N4.
(1.2) ¥6 € Class(n — 1) N (a, a(+™)).6 € f(n,a)(d) C (a,a( +™)) N Class(n — 1)
and f(n,a)(d) is finite.
(1.8) Vg e[l,w).¥o € (a,a( +™)) NClass(n —1). If f(n,a)(c)={o1>...>04} for some
01,...,04€ OR then
(1.8.1) o1=0,
(1.3.2) ¢22=Vje{l,...,q—1}.m(o;) <m(oj11)[g(n—1,0511,0;)] and
(1.3.3) og=min{e € (a, 04 NClass(n — 1) | m(e)[g(n —1,e,04)] =m(oq)}-
(1.8.4) m(o) =m(o1) <m(o2)[g(n —1,09,0)] <...<m(oy)[g(n —1,04,0)].
(1.8.5) og=min{e € (a,a(+"))NClass(n —1) | e<ogsAm(e)[g(n—1,e,04)] =m(og)}
=min{e € (a,a(+"))NClass(n —1) | e<osAm(e)[gin—1,e,04)]=m(oq)}
(1.3.6) For any j €{1,...,q — 1},
oj=min{e € (a,a(+"))NClass(n — 1) |
oii1<e <o Am(egln—1,e,0;)] > mlo;)}
=min{e € (a,a(+"))NClass(n —1) |
gir1<e<ojAmle)lg(n—1,e,0;)]=m(c;)}
Note: S(1,a) =0= f(1,a). These functions are interesting for n > 2.

fn,a)(8):=

(2).
(2.1) For any a € Class(n) and any t € a(+" ) consider the set T'(n,«,t) defined as:

T(n,a,t):= UEeEp(t) T(n,o,E) if t¢E;
T(n,a,t):={t} if teEn(a+1);
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T(n,a,t):=U,;e, O3,1), if te(a,a(+™))NE,
where for E € (o, a( +™))NE:

we define E1:=A1,m(E)), E2:=A(2,E1), ..., En:=A(n, Ep_1),
(note a =FE, <..E3< Es< Eq) and

00,E):= U flk+1,A(k+1,0)(8) UEp(m(6)) U{A(k+1,5)};

Ol+1,E):= U  flk+1,A(k+1,6))(0) UEp(m(8)) U{A(k+1,6)};
seW (L,k,E)
k=1,...,.n—1

W(l,k,E):=(a,a(+"))NO(, E)N (Class(k)\Class(k +1)).

Then T(n,a,t) CENa(+™) is such that:

(2.1.1) Ep(t) CT(n,a,t) and T(n,a,t) is finite.
(2.1.2) T(n,a,t+1)=T(n,a,t)
(2.1.3) a(+" 1) (+"72).(+2)(

+2)(+)2<t=T(n,a,n(n,a,t))NacT(n,a,t)Na
(2:1:4) a(+"7H)(+772).(+2)(

_l’_
+2<t=T(n,a,l(n,a,t)) CT(n,a,t)
(2.2) For any a,c € Class(n) there exist a function
g(n,a,c):Dom g(n,a,c) CENa(+") — ENc(+") such that
(2.2.1) g(n, @, ¢)|cnan(Dom g(n,a,c)) and g(n,a, ) are the identity functions in their
respective domain.
(2.2.2) g(n,a, c) is strictly increasing.
(2.2.3) Vtea(+").T(n,a,t)Na C c<= Ep(t) C Dom g(n, o, c)
(2.2.4) ¥t € a(+").Ep(t) C Dom g(n,a,c) = T(n,c, tlg(n,a,c)]) Ne=T(n,a,t) N
(2.2.5) For any t € [a,a(+")) with Ep(t) C Dom g(n,,c), Ep(n(n, a,t)) C Dom g(n, a, c)
and n(n, o, t)[g(n, o, c)] =n(n, c, tlg(n, o, c)]).

By (2.2.2), g(n, a, ¢) is bijective in its image. Let’s denote g~1(n, a, c) to the inverse func-
tion of g(n,a,c).

(2.3) For (2.53.1), (2.3.2) and (2.3.3) we suppose ¢ < «. Then
(2.3.1) Dom g(n,c,a)=Enc(+")
(232) g(n,a,c):gfl(n,c,a)
(2.5.3) g(n,a,c)[Dom g(n,a,c)]=ENc(+")

(2.4) g(n,a,c) has the following homomorphism-like properties:
(2.4.1) g(n,a,c)(a)=c
(2.4.2) For any i€ [1,n] and any e € (Dom g(n, o, ¢)) N o, a(+™)),
e € Class(i) <= g(n, a, c)(e) € Class(i)
(2.4.3) The function e—s e[g(n, «,c)] with domain (Dom g(n,a,¢)) N (o, a(+™)) is
an (<,+,, <1, Az.w® (+1),(+2),...,(+"71)) isomorphism
(2.4.4) Ye € (Dom g(n, o, c)) N (e, a( +™)).m(g(n, o, c)(e)) =m(e)[g(n, a,c)].
(2.4.5) Suppose n>2. Then
Vi€ [2,n].
Ve € Class() n (Dom g(n, o, ¢)) N e, a( +™)).
VE € (e,e(+"))NClass(i — 1).
fl,e)(E)={E1>...> E;} —
F(in g, @, €)(€)) (g 0, ) (E)) = {9, @, ) (Br) > .. > g, @, ¢) (B}
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(2.4.6) Suppose n>=2. Then
Vi€ [2,n].Vs € Class(i — 1) N[, a( +™)).
g(n’aac)(/\(ivs)):)‘(ivg(nvo‘7c)(s))

(2.5) For (2.5.1), (2.5.2) and (2.5.3) we suppose ¢ < «.Then for all d € Class(n) N |[c, o,
(2.5.1) Dom g(n,a,c) C Dom g(n, a, d)
(2.5.2) g(n,a,d)[Dom g(n,a,c)] C Dom g(n,d, c)
(2.5.3) g(n,a,c)=g(n,d,c)o g(n,a,d)|pom g(n,a,c) and therefore
g (n,a,d)og  n,d,c)=g n,a,c):ENc(+") — Dom g(n, a,c).

(3). There exists a binary relational <™ C Class(n) x OR satisfying <™ -connectedness and
<" -continuity such that Vo € Class(n).Vt € [a, a( +™)].a <"t = a <1 t; moreover:

(4) (First fundamental cofinality property of <™ ).
Let o € Class(n) and t € [a, a( +™)) be arbitrary. If a <™t + 1, then there exists a sequence
(ce)eex CanClass(n) such that ce—ra, VEe X T(n,a,t)NaCee and ce <it[g(n, a,ce)).

coO

(5). (Second fundamental cofinality property of <™ ).

Let a € Class(n) and t € [, o +™)).

Suppose « € Lim{~ € Class(n)|T(n,a,t)Na CyAvy<itlg(n,a,v)]}. Then
(5.1) Vs €a,t+1]l.a<™s, and therefore
(52) ait+1

(6). For a €Class(n) and t € [a,a(+")), a<in(n,a,t)+1=a<"n(n,a,t)+1

The proof of the previous theorem 3.26 will be carried out by induction on ([1, w), < ), and
one proves simultaneously (0), (1), (2), (3), (4), (5) and (6). Indeed, such proof is now our cur-
rent goal.

3.1.1 The case n =1 of theorem 3.26

Proposition 3.27. Theorem 3.26 holds for n=1.

Proof.
(0).

E is k-club for any non-countable regular ordinal &.

(1).
Let o € E = Class(1). We define S(1, @) :=0 and f(1, a):= 0. Then clearly S(1, ) and f(1, @)
satisfy the properties stated.

(2).
(2.1)
Let a, c € E = Class(1) with ¢ < a. Let t € a( +'). Note T(1, o, ¢) = Ep(t) C E is well defined
and clearly (2.1.1) and (2.1.2) hold. Now, suppose t > 2. Since
(1, a,t) = pt =max {t, 7t + dnt}, then (2.1.3) holds. Finally, by remark 3.22,
I(1,a,t) € {a2,nt,t} and therefore (2.1.4) holds too.
(2.2)
Let a;,c € E=Class(1). Consider Dom g(1, @, ¢):=(ENcNa)U{a} and
g(1,a,¢):Dom g(1,a,¢) — ENe(+1) be the function defined as
e — e iff eecENcna
ar— ¢
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Then it is easy to see that g(1, «, ¢) satisfies (2.2.1), (2.2.2) and (2.2.3). Besides, ¢(1, «, ¢)
also satisfies (2.2.4): Take t € o™ with Ep(¢) C Dom g(1,a,c)=(ENcNa)U{a}. Then
Ep(t)NaCcand t[g(1, o, c)] =t[a:=c] and therefore

T(1, ¢, tfg(l,a,0)]) Ne=T(1, ¢, tla:=c]) Ne=Ep(tla:=c]) Nec = Ep(t)Na=T(1, a,
proposition 2.10

t). Finally, we show that g(1, a, ¢) satisfies (2.2.5): Take t € a® with Ep(¢) C Dom g¢(1, «, ¢).

Then Ep(t) Na Cc and so Ep(n(1,a,t))Na =  Ep(nt)Na C ¢, which means
remark 3.1 proposition 2.38
a

8

Ep(n(1,a,t)) CDom g(1, «, c). Moreover, n(1,a,t)[g(1, a,c)]= (nt)[a:= ¢ = s
n(tla:=d)=n(L, e tlac=d) = (L, e, tlg(1, @, ). T

(2.3)
Considering «a, ¢ € E and ¢(1, a, ¢) as in (2.2) with the extra assumption ¢ < « it is immediate
that (2.3.1), (2.3.2) and (2.3.3) hold.

(2.4)
Given «, ¢ € E and g¢(1, a, ¢) as in (2.2), it is clear that (2.4.1), (2.4.2), (2.4.5) and (2.4.6)
hold. Moreover, (2.4.3) and (2.4.4) are corollary 2.17 and remark 2.18.

(2.5)
Take a, d, ¢ € E with ¢ < d < a. Then Dom ¢g(1,a,¢) = (ENncna)U{a} C(ENndnNna)u{a}l=
Dom g(1, @, d), that is, (2.5.1) holds. Moreover,

)
9(1,a,d)[Dom g(1, a, ¢)] = {g(1, e, d)(e) e € (ENcna) U{a}} = (ENcna)U{d} C
(Enend)uU{d} =Dom g(1, d, ¢), i.e, (2.5.2) holds. Let’s show that (2.5.3) also holds: For
eg('l’—d?c)c:g(l,a,c)(e) iff e=«
e€Domg(l,a,c)=(Encna)U{a}, e — , that is,
9(1,,d) .
eg(»ﬁc)e:g(l,a,c)(e) iff e«

g(1,a,¢)=g(1,d,c)og(1,,d)|pom g(n,a,c); finally, direct from the previous equality follows that
g Yn,a,c)=g7 (n,a,d)o g (n,d,c) because g(1,a,c), g(1,d,c) and g(1, @, d)|pom g(n,a,c) are
invertible functions, and since by (2.3.2) ¢~ (1, a,¢)=g(1, ¢, a), then

g (1, a,c)=g(1,c,a): (ENnanc)U{c}=Enct — (ENnanc)U{a}=Dom g(1,a,c).

(3).
Of course, the relation <! worked in the first chapters satisfies
Va € Class(1).Vt € [a, a +1)].a <!t = o <; t and moreover:

(4) holds because of proposition 2.23;
(5) holds too because of proposition 2.24;

(6) holds because of corollary 2.35. d

Working on case n > 1 of theorem 3.26

It is in this moment that the hard work starts. As we have already said, we prove theorem
3.26 by induction on [1, w), and since we have already seen that it holds for n =1, then for the
next 3 Chapters (that is, until we complete the whole proof of theorem 3.26) we consider a fixed
n € [2, w) and our induction hypothesis is that theorem 3.26 holds for any i € [1, n). We name
GenThmIH to this induction hypothesis.






Chapter 4
Clause (0) of theorem 3.26

We want to show that clause (0) of theorem 3.26 holds. In order to do this, our first goal is
to provide a generalized version of the hierarchy theorem done for the intervals [e, e441). We
first prove certain propositions that will be necessary later.

Proposition 4.1. Let i€ [1,n—1]. Let k be an uncountable regular ordinal. Then k € Class(i).

Proof. Take i, k as stated. Let p be an uncountable regular ordinal, p > k (p exists because the
class of regular ordinals is unbounded in the class of ordinals). Since Class(i) N« is bounded in p
and Class(4) is club in p by GenThmIH, then sup (Class(i) N x) € Class(i). But Class(i) N & is
unbounded in k (by GenThmIH) and therefore sup (Class(i) N k) = k. These two observations
prove k=sup (Class(i) N k) € Class(4). O

Proposition 4.2. For any i € [1,n], Class(n) is closed.

Proof. For i <n —1 the claim is clear by GenThmIH. So suppose i =n.
Let « € Lim Class(n). Then there exists a sequence (cg)eex C Class(n) N« with Cg—r So

(ce)eex C Class(n — 1) and since by (0) of GenThmIH Class(n — 1) is club in any non-countable
regular ordinal s, then o € Class(n — 1).

Now we want to show that V¢t € (a,a( +"71)).a<it. (*)

Let t € (o, a( +™)). Since T'(n — 1, a, t) is finite and e a, then we can assume without
loss of generality that V¢ € X.T(n —1,a,t) Nav C c¢. This Wayfofor all £ € X, the ordinal
tlgln — 1, «, ce)] € (cgy, ce( +"7' )) and since by hypothesis ¢ € Class(n), (ie.,
ce <ice(+m71)), then ce <it[g(n —1,,c¢)] by <i-connectedness. This shows
Ve X.ce<itlg(n —1,a,ce)l.

From our work in the previous paragraph follows that
a € Lim{y e Class(n — 1)|[T(n — 1L, o, t) Na Cy Ay <1 t[g(n — 1, a, 7)])}, and therefore, by use
of GenThmIH (5) (Second fundamental cofinality property of <"~1), follows a <1 t.

The previous shows (*).

Finally, for the sequence (d¢)ec(a,a(+n)) defined as d¢:= &, it follows from (*) that
o <qdg <—f> a(+"~1); therefore, by <;-continuity, a <ja(+""1), that is, a € Class(n). O

Remark 4.3. Consider i € [1,n], a € Class(i) and t € [, a( +)). Let j €[1,4]. Then A(j, e) was
defined as the only one ordinal § satisfying § € Class(j) Ae € [, 6( +7)) or — oo in case such
ordinal does not exist. We want to show that A(j, e) is indeed an ordinal:

Let U:=(e+1)NClass(j). Then 8 €U # 0 because j < implies
Class(z) C Class(j) by proposition 3.2. Let u:=sup U. Then, by previous proposition 4.2,
u € Class(j) N (e +1). Moreover, e € [u,u(+7)). This shows that A(e, j) =u € OR.
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Proposition 4.4. Let k < n and 8 € Class(k). Then B <1 B( +F 1) .(+2)(+1 )2+ 1 <=
BLEB(+F1).(+2)(+1)2+ 1« S € Lim(Class(k)).

Proof. Let k <n and § € Class(k).

Note B<1 B(+* 1) (+2)(+1)2+ 1= B<FB(+F71)...(+2)(+1)2+ 1 holds because
n(k, B, BO+F=1).(+1)2) = B( +F71)...( +' )2 and because of (3) and (6) of GenThmIH.
Moreover, 3 < B(+F~1)...(+')2+ 1= B € Lim(Class(k)) holds because of (4) of GenThmIH.

It only remains to show that B <*B(+F~1)...(+')2+1<«= B € Lim(Class(k)). Take
B € Lim(Class(k)). Then there is a sequence (c¢)eex C Class(k) with Ce—? B. Now, by
(2.1.1) of GenThmIH, T'(k, 8, B(+*~1)...(+1)2) is finite, and so T'(k, 3, B(+F~1)...(+1)2)n B
is finite too. This way, there is a subsequence (d;);jec.s of (c¢)¢ex such that
VieJT(k, B, B(+*~1)...(+1)2)Nn B Cd; and dj‘—f)ﬂ.

From the previous paragraph we get that Vj € J.T(k, 8, B(+*~1)...(+1)2) N B C d;, dj<—f>ﬁ
CO:!

€ .J.d; < (+F1).L(+ =
and Vj€J djby prop;s}tion 3‘2dj( - )2by (2.4.3) and (2.4.1) of GenThmIH

=(B(+*"1)...(+1)2)[g(k, B,d;)]. That is, we have shown
B € Lim{y € Class(k)|T(k, B, B(+F~1)...(+1)2)NnBCyA

y<1 (B(+F71).(+1)2)[g(k, B,7)]}. Therefore, by (5) of
GenThmIH, we conclude 3 <FA(+F~1)...(+1)2+1. O

Definition 4.5. Let i €[1,n), a € Class(i) and t € (o, a( +*)). For any ordinal r € OR, let
S(i, 1) = {q € (o, Ui, 1)) | T(i, @, ) N Cr).

Remark 4.6. With respect to our previous definition, note S(i, «,r,t) C (i, «, t) < t. Moreover,
since ¢ € [1,n), then by (2.2.3) of GenThmIH,
r € Class(i) = S(i,a,r,t) ={q € (a, (i, a,t)) | Ep(q) C (Dom g(i,a, 7))}

4.1 The Generalized Hierarchy Theorem

Now we are ready to define a hierarchy of sets A" ~1(t) which generalizes the hierarchy of the
sets A(t) worked in the first part of this thesis.

Definition 4.7. Let C"~1: OR — Class(n — 1) be the counting functional of Class(n — 1), (by
GenThmlIH follows Class(n — 1) is a closed unbounded class of ordinals) and for j € OR, let’s
write C’;Lil for C"=1(54).

We define by recursion on the interval [03717 00) the functional
A1 [C" 1, 00) — Subclasses(OR) as:
Forte[Ch™ ! 00), let € Class(n — 1) be such that t € [a, a(+71)).

LetM:{maX(T(”_lvO‘vt)mo‘) il T(n=1,0,0)Na#0
-0 otherwise
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Caset=1+1.

A=) iff I1<n(n—-1,a,l)
A1 +1) =

Lim A"~1(l)  otherwise; that is, |=n(n —1,a,l)
Case t € Lim.

(Lim Class(n — 1)) N (M,a+1)  iff tea,a(+"72)(+"73)...(+2)(+1)2]
ArL(t) =
Lim{r<a|M <re Nsesm—1,a,m1) A"=Y(s)}  otherwise

On the other hand, we define the functional G"~':[C ™! 00) —» Subclasses(OR) in the
following way:
Fort€[C™ ! 00), let a € Class(n — 1) be such that t € [a,( +7~1)) and let
Gri(t):={BeClass(n —1)|T(n—1,a,t) NaCB<aAB<" I n(n—1,a,t)g(n—1,a, B)] + 1}
=, by GenThmIH (3) and (6),
={feClass(n—1)|[T(n—1,a,t)NaC B<anf<in(n—1,a,t)g(n—1,a, 8)] +1}.

Remark 4.8. Notice that G"~1(¢) is well defined because for 3 € Class(n — 1) satisfying
T(n—1,a,t)NacC B, (2.2.3) and (2.2.4) of GenThmIH imply T(n — 1, a, n(n — 1,0, t)) Nx C 5
therefore, again by (2.2.3) of GenThmIH, Ep(n(n — 1, «,t)) C Dom(g(n — 1, «, 8)).

Proposition 4.9. Let a € Class(n — 1) N[C" !, 00). Then
Vt € [o, a( +772)...(+1)2].A""1(t) = (Lim Class(n — 1)) N (max (T'(n — 1, a,t) Nax),a+ 1)

Proof. Left to the reader. O

Theorem 4.10. Vt € [C ™! 00).G"~1(t) = A"~ 1(t)

Proof. We proceed by induction on the class [C" ™!, c0).
Let t € [C!, 00) and a € Class(n — 1) be with t € [a, a +7~1)).
Suppose Vs € [C" 7 00)Nt.G*1(s) = A" (s). (cIH)

Case t € [a, a(+"72)(+"73)..(+2)(+1)2].
Then n(n —1,a,t) =a(+""2)(+"3)...(+?)(+!)2 and so
G l(t)={B€eClass(n —1)|T(n—1,a,t)NaC B<aA
B n(n—1La,t)gn—1,a,8)+1} =
={peClass(n—1)|T(n—1,a,t)NaC < aA
B a(+"72)(+770 ) (H2)(+1)2[g(n — Lo, B)] +1} =
={peClass(n—1)|T(n—1,a,t) NaC <A
BB+ (#7)(+1)2+ 1) =

= (Lim Class(n — 1)) N (max (T'(n — 1, a,t) Na), e+ 1) =
proposition 4.4

= AmH(t).

by proposition 4.9

The previous shows the theorem holds in interval [a, a( +772)( +"73)...( +2)( +!)2]. So,
from now on, we suppose t € (a(+""2)(+"73)...(+2)(+")2, a(+™71)). (A0)
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Successor subcase. Suppose t =35+ 1 for some s € [a(+"72)(+"73)...(+2)(+1)2,1).

First note
n(n,a,s+1)=max {m(e)le € (o, s+ 1]} = max {max {m(e)le € (o, s]},m(s+1)=s+1} =
{max{ma.x{m(e)ee(a,s]},s—f—l} iff s=a(+7"1)(+72)(+2)(+1)2

max {max {m(e)|e € (o, s]},s+1} iff s>a(+" 1) (+"72).(+2)(+1)2
{max{a(—l—"1)(+"2).”(+2)(+1)2,s+1} H s=a(+m ) (4772 (42)(+1)2

max{n(n—1,a,s),s+1} iff s>a(+"’1)(+"’2)...(+2)(+1)2
{max{n(n—l,a,s),s-l—l} iff  s=a(+n 1) (47 72) . (42)(+1)2

- max {n(n—1,a,s),s+1} iff s>a(+2"H(+""2). (+2)(+1)2
=max{n(n—1,a,s),s+1}. (A1)

Subsubcase s <n(n —1,a,s).
Then, using (A1), n(n —1,a,s+1)=n(n—1,a, s). Therefore,
G Y t)=G"(s+1)={B€eClass(n— 1)|T(n—1,a,s+1)NaC B<aA
/8 gn—l 7’](71 - 1,0&,5+ 1)[g(n_ 170(, /8)] + 1}:
= {BeClass(n—1)|T(n—1,a,8)NaC f<aN
by (2.1.2) of GenThmIH
B gn—l 77(” - Lav S)[Q(n - ]-7 «, 6)] + 1} =

—(m—1 — An—l — An—l 1).
G (S)by cIH (S)because s<n(n—1,a,s) (S + )
Subsubcase s=n(n—1,a,s).
So, from (Al), n(n—1,a,s+1)=s+1=nn—1,a,s)+1. (A2).
To show G™~1(t) C A"~ 1(¢). (A3)
Let 3€G""1(t)=G""1(s+1). Then B€Class(n —1), T(n—1,a,5+1)NaC B<a and
6 gnil 77(” - 13 a, s+ 1)[9(” - ]-7 «, ﬂ)} + 1b az)(n(n - ]-a a, S) + 1)[9(” - 17 «, 6)] + ]-; from
¥y

this and (4) of GenThmIH follows the existence of a sequence
(ce)eex CClass(n—1)N B, Ce— B such that for all £ € X,

Tn—1,8,(n(n—1,a,s)+1)[g(n —1,c, B)]) NS Cce and

ce<i(n(n—1,a,8) +1)[g(n—1,a, B)|g[(n—1, 8, cc)]. (A4)

On the other hand, for any (€ X, ¢ DT(n—1,8,(n(n—1,a,s)+1)[g(n—1,a,B)]) N B=
T(n - 17 67 (8+ 1)[9(’”‘ - 17 &, 6)]) n ﬁby (2.2.4) o?GenThmIHT(n - 1a a, s+ 1) Na=
Tn—1,a,nn—1,a,s)+1)Na. (A5)

Now, note that for any £ € X, by (A5) and (2.2.3) of GenThmIH, we have that
Ep(n(n—1,a,s)+1) CDom(g(n —1,a,c¢)). Then
(n(n_La?S)"’_l)[g _1ﬂa76)][9(n_175705)]:

(n
(n(n =1, )+ Dign =1, B,ce) o g(n — 1, a, 6)]by (2.5.3) of GenThmIH
( )=

-1 1 -1 -1 -1 1 =
(n(n=L,0,5) +D[gn—L o, cl=nn—La,s)gln — L +1 =
n(n—1,C§,s[g(n—1,oz,65)])—|—l. (A6)
Done the previous work, from (A4), (A5) (and (2.1.2) of GenThmIH) and (A6) follows
VEeXT(n—1,a,s)NaCece<anc<inn—1,a,s[gin —1,a,c)]) + 1 and therefore, by
(6) of GenThmIH, V€€ X.T(n —1,a,s) Na Cee<aMnce <" tnn—1,a,s[gln —1,a,c)]) + 1.

This shows that (ce)eex CG"H(s) = A"~!(s), and since cg— 3, then we have that
by our cIH cof

BeLim A"~ 1(s)=A(s+1)=A(t). This proves (A3).

We now show G™~1(t) D A"~ 1(¢). (B1)
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Let e An~1(t)=A""1(s+1) :LimA"_l(s)b = IHLimG"_l(s). So there is a sequence
y our ¢

(ce)eex CG™1(s) such that Cg—> B. So for all € X,
T(n—1,a,8)NaCce€Class(n—1)N S Ca and
ce<""Inin—1,0,8)g(n—1,a,ce)]+1=(n(n—1,a,s) + 1)[g(n —1,a,c¢)].  (B2)

We will argue similarly as in the proof of (A3). Let £, € X. Then
Tn—1,a,n(n—1,a,s)+ ) Na=Tn—-1,a,nn—1,a,s))Na=T(n—1,a,s) Na Cc,< B,
soT(n —1,a,s) Na C B and the ordinal (n(n —1,a,s)+ 1)[g(n —1,a, B)] €[B, B(+"71)) is
well defined. Now, for any €€ X, T(n—1,58,(n(n—1,a,s)+ Dgn —1,a,8))NS=
Tn—1,a,(n(n—1,a,5)+1)Na=Tn—-1,a,s+1)Na=T(n—1,a,s) NaCc, and so the
ordinal (n(n — 1, a, s) + 1)[g(n — 1, a, B)][g(n — 1, B, c¢)] € [ce, ce( +771)) is well defined too;
moreover, using this and (2.5.3) of GenThmIH, we get
(n(n—1,a,5)+1)[g(n—1,, B)|[g(n -1, B, CE)] =
(nn—1,a,s)+1)[g(n — 1, B,ce) ogln — 1, a, B)] = (n(n — 1, a, s) + 1)[g(n — 1, v, ¢¢)]. But
from this and (B2) we get
VEGX.T(nf1,0[,(77(7171,0[,5)‘{“1)[‘9(7171,0[,5)])06CC§<6/\
ce <1 (n(n— 1, a, 8) + Dig(n — 1, a, o)l = (n(n — 1, o, 8) + Dig(n — 1, a, A)llgln — 1, 5, o)l
note these previous two lines and the fact that Ce > B means
B elim{yeClass(n—1)|T(n—1,8,(n(n—1,a,s)+1)[g(n—1,a, B))NBC YA

v<i(nn =1, a,s) + Dlgn -1, «, B)l[gn — 1, 3, ce)]}. Thus,
from all of the above and using (5.1) of GenThmIH, we conclude
Tn—1,a,s)NaCf<an

B (n—La,s) + Dlgln -1, B)]+1 = n(n—1a,s+1)[g(n—1a,8)]+1=
by (A2)

(B3) shows 3€ G"~1(t). Hence we have shown G"~! (t) D A"~ 1(¢).

All the previous work shows that for ¢ a successor ordinal the theorem holds. Now we have
to see what happens when ¢ is a limit ordinal.

Subcase t € Lim. We remind the reader that, by (A0), we also know that
te(a(+" ) (+" ) () (+1)2,a(+" 7).

To show G™~1(t) C A™~1(¢). (B4)

Let B€G" (). SoT(n—1,a,t)NacC B n(n—1,a,t)[g(n—1,a, 8)]+1 and
a> f €Class(n —1). Then, by (4) of GenThmIH there exists a sequence
(ce)eex CClass(n—1)N B, Cg‘;)ﬁ such that for all £ € X

Tn—-1,8,nn—1,a,t))[g(n—1,a,B8)]) N B Cce and
ce <1 Tl(n -1, aat)[g<n -1, a, ﬂ)]g[(n -1, B’CS)]' (B5)

On the other hand, since T'(n — 1, o, t) Nae C B, T'(n — 1, a, t) is finite (by (2.1.1) of Gen-
ThmIH) and cg—f}ﬁ, then T'(n — 1, a, t) N« is also finite and therefore we can assume without

loss of generality that Vé € X.T(n —1,a,t) N Cce. (B6)

Now, notice for any £ € X,
Tn—1,a,n(n—1,a,t) Na - T(n—1,a,t)NacC ce and therefore, by (B6)
by (2.1.3) of GenThmIH
and (2.2.3) of GenThmIH,
Ep(n(n—1,a,t)) C Dom(g(n —1,a,ce)). This way,
7’](”— 17a,t)[g(n— laavﬂ)”g(n_ 15 ﬂacﬁ)] =

—1,a,t)[g(n—1 1 —
n(n=1a,0)g(n—1,5,ce)o gln ’a’ﬁ)](zas) of GenThmIH

)
nn—1,c,t)[g(n —1,a,ce¢)]. From this, (B5) and (B6) we obtain
VEeXT(n—1,a,t)NaCee<aA
C§ g1 T](TL - 17avt)[g(n - 17 «, C&)] = 77(” - 17 a,l(n - 17 a,t))[g(n - 1a Oé,CE)]- (Cl)
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Let’s see now that V& € X.ce € N Ar—1(s). (C2)

s€S(n—1,a,ce,t)

Let £ € X be arbitrary. Take s € S(n — 1, @, c¢, t). Then s € (o, l(n — 1, v, t)) and then, by
the definition of I(n — 1, a, t), it follows that n(n — 1, a, s) <n(n — 1, a, I(n — 1, a, t)). On the
other hand, since T(n — 1, a, s) N C ¢c¢ then T(n — 1, a, n(n — 1, @, 8)) N C ¢ce (by (2.1.3) of
GenThmIH); moreover, we know T'(n —1,a,t) Nav C ¢g, so by (2.1.4) of GenThmIH,
Tn—1,0,l(n—1,0,t)) N Cce.

From the previous paragraph follows that, for any £ € X, the ordinals
nn —1,a,s)gln — 1, a,c)l, l(n — 1, a,t)[g(n — 1, a, ce)] € (ce, ce(+771)) C B < o are well
defined and that ce <n(n — 1, a, s)[g(n — 1, o, ce)] + 1 <l(n — 1, o, t)[g(n — 1, @, ¢¢)]. This last
inequalities imply, by (C1) and <;-connectedness, that

< -1, a, -1,a, 1 =
et n(n @ S)[g(n @ Cg)] * by (2.2.5) of GenThmIH

nn—1,ce, slg(n —1,a,¢¢)]) + 1, and then (by (6) of GenThmIH)
<n—1 _1a ) _17 ) 1 = _17 ) _17 ) 1.
e < aln = Leeslgn—Lascd) 1o = Lasslgtn—Lase] +
The previous shows that for all { € X and all s€ S(n—1,a,c¢,t),
ce € G"(s) E{A"_l(s)7 that is, we have shown (C2). From (C2) and the fact that c§<—f>ﬂ
we conclude that 8 € Lim{r <a|M <r¢€ N A"~1(s)} = A"~ 1(t). This shows (B4).
seS(n—1,a,r,t)
Now we show G™~1(t) D A"~ 1(¢). (C3)
Let Be A" 1(t)=Lim{r<a|M<re N An=1(s)} =
se€eS(n—1,a,r,t) clH
=Lim{r<a|lM<re N G"~1(s)}. Then there is a sequence
seS(n—1,a,r,t)
(ce)eex such that M < cg—f)ﬂ and VE e X.ce € N G Y(s). (Cc4)
co seS(n—1,a,ce,t)
Note that since V¢ € X.ce € N G"1(s) C Class(n — 1) and (c¢)eex is cofinal in f3,
seS(n—1,a,ce,t)
then, by proposition 4.2, g € Class(n —1).

Now, for any £ € X, we know max (T'(n — 1, a,t) N ) = M < c¢ < j3; therefore, by (2.2.3) and
(2.1.4) of GenThmIH, we have hat t[g(n — 1, a, B)],l(n — 1, a,t)[g(n — 1, , B)] € (B, B(+"71))
and t[g(n — 1, a,ce)],l(n— 1, a,t)[g(n — 1, a, ce)] € (ce, ce(+™ 1)) are well defined. (C5)

Our next aim is to show that V€ € X.ce <11(n—1,a,t)[g(n — 1, o, c¢)]. (Ce6)

Let £ € X be arbitrary. First note that, since ¢ € Lim, then [(n — 1, a,t) € Lim (because
Iln—1,a,t)=t€limori(n —1,a,t) <lln —1,a,t) + 1 <t <m(t) =m(l(n — 1, a, t)); the
latter case implies I(n — 1, o, t) <1 l(n — 1, , t) + 1 by <;-connectedness and so I(n — 1, a, t) €
P) and then {(n —1, o, t)[g(n — 1, a, c¢)] € Lim (simply because I(n — 1, a,t)[g(n —1, o, c¢)] is the
result of substituting epsilon numbers by other epsilon numbers in the cantor normal form of

I(n—1,a,t)). Now, let ¢ € (c¢,l(n — 1, a, t -1, a, C , ")) b
(n =1 a,8)). Now, let g € (ce, (n — Lo, Dlg(n = Laseg)) o (g, ce(+") be

arbitrary. Then by (2.3.1) of GenThmIH, Ep(¢q) C Dom(g(n — 1, ce, o)) and then
- ]-7 ) € ’ ! - ]-7 ) t - ]-a ) - 17 ’ =
dlon—Lce.a)] e (- Laytlgn - Lascellgln - L))
= (a,l(n—1,,t)). This shows
by (2.3.2) of GenThmIH
“1,¢,a)] el —1,¢6,0)) N (el (n—1,0,t —
dlgln—1,cc.0)| em(gn—Lea) nadn—Lat) o=

(Dom(g(n —1,a,¢e))) N (a,l(n—1,a,t)) = 46S(n —1,,¢¢,t), and so by (C4),

ce € G"1(qlg(n — 1, c¢,a)]). Finally, observe the latter implies that

< lg(n—1 -1 -1 1 =
Cex 77(” 7aaQ[g(n 7c§?a)])[g(n 704705)]—1— (2.2.5) of GenThmIH

= 77(” - 17 C¢, q[g(n - la C¢, a)][g(n - 13 G, CE)]) +1= 77(” - 1a C¢, q) + 17 which subse-
quently implies, (using c¢ < ¢ < n(n —1,c¢, ) and <4 -connectedness) that ce <1 g.
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Last paragraph proves that, for £ € X, the sequence (dy)qcy defined as d;:= ¢ and
Y = (ce, l(n — 1, o, t)[g(n — 1, «, c¢)]), satisfies Vg € Y.ce <1 ¢; but this and the fact that
dq;f) Iln—1,a,t)g(n — 1, a, ce)] (we already showed I(n — 1, o, t)[g(n — 1, o, ¢¢)] € Lim) imply
ce<1lin—1,a,t)[g(n — 1, a, c¢)] by <y -continuity. Since the previous was done for arbitrary
&€ X, we conclude V€ € X.ce <1l(n—1,a,t)[g(n —1,a, ce)]. This proves (C6).

We continue with the proof of (C3).
Let £ € X. Using (C6) we get
C¢ <1l(n - 17 a, t)[g(’l’b - 17 04705)} gl 77(” - 17655 l(n - 1a a, t)[g(?’l - 1; «, 05)]) =

by (2.5.3) of GenThmIH
=n(n— lvcE’Z(n -1 a,t)[g(n—1, ﬂvcﬁ) og(n—1,a,8)])=
=n(n—1cel(n—1a,t)gn—1a,B)]gn—1,8,c)]) =
by (2.2.5) of GenThmIH
= 77(" -1, ﬁ7l(n -1, a,t)[g(n -1, a, 5)})[9('” -1, Ba CE)];
therefore, by < -transitivity, ce <1 n(n — 1, 8, l(n — 1, a, t)[g(n — 1, «, B)]))[g(n — 1, B, c¢)].
But since this was done for arbitrary £ € X, we have proved
VeeX.ce<an(n—1,8,l(n—1,0a,t)[gn—1,a, B)])[g(n — 1, B, c¢)]. (C7)

Finally, from (C7), the fact that Ce—2 B and (5) of GenThmIH follow that
<n71 _17 7l _17 at _]-7 ’ 1 =
ﬂ 77(774 B (n @ )[g(n @ B)])+ by (2.2.5) of GenThmIH
:n(nilvavl(ni1705515))[.9(77’7laaaﬂ)]+1 -
by proposition 3.21
=n(n —1,a,t)[g(n — 1, a, B)] + 1. This and (C5) show that 8 € G"~1(t). But the previous

we have done for arbitrary 3 € A"~1(t), so we have proved A"~ 1(¢t) C G"(t), i.e., we have
proved (C3). O

4.2 Uncountable regular ordinals and the A" ~!(t) sets

Proposition 4.11. Let k be an uncountable regular ordinal (k € Class(n — 1) by proposition
4.1). Then Vte [k, k(+"1)), A"L(t) is club in k.

Proof. We prove the claim by induction on the interval [k, x( +"71)).

Case t=k.
Then T(n—1,k, )Nk = = 0. So
definition of T'(n—1,k,K)
A"~1(t) = (Lim Class(n — 1)) N ( — 00, £ + 1) = Lim Class(n — 1) is club in x because
Class(n — 1) is club in & (by GenThmIH (0)) and because of proposition 2.46.

Our induction hypothesis is
Vs €[k, k(+""1))Nt.A"~1(s) is club in &. (IH)

Case t=1+1€[k,k(+"71)).

A1 if l<n(n—-1,k,1
Then A"~ 1(t) = A"~ Y + 1) = © g ); this way, by our (IH) and
LimA™ ~1(l) otherwise
proposition 2.46, A" ~1(t) is club in k.

Case t € [k, x(+™"1)) N Lim.
By definition
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Mo max (T'(n—1,k,t)Nk) il Thm—-1,kNKk*0
B S otherwise

and
(Lim Class(n — 1)) N (M, k + 1) iff telm,m(+"72).(+2)(+1)2]
A=) =

Lim{r <r|M <7 €\ 501,00 A"~1(s)}  otherwise

If t€r, k(+"72)...(+2)(+1)2], then
A"~1(t) = (Lim Class(n — 1)) N (M, k + 1) is club in & because of exactly the same reasons as
in the case t =k.

So from now on we suppose t € (k(+"72)...(+2)(+1)2, x(+"71)).

First we make the following four observations:

- It is enough to show that V := {r < k|M < r € ﬂseS(n—l,n,r,t) A"=1(s)} is club in &
because, knowing this, we conclude LimY = A" ~1(t) is club in x by proposition 2.46. Moreover,
note that as a consequence of theorem 4.10, Vz € Dom A" ~1.A"~1(2) C Class(n — 1) and there-
fore
Y={reClass(n—-1)N(k+1)|M<re ﬂses(rk1 rot) Ar1(s)}. (0*)

- For r € Class(n — 1) Nk,
g€ (s, in—1,,1)) |Ep(g) ¢ (Im g(n — 1,7, H))}by (2.3.2) of GenThmIH

{g€(k,l(n—1,k,1)) |[Ep(q) C (Domg(n —1,k,7))} =

by remark 4.6
S(n—1,k,7,t) C lln—1,k,t) < t. (1%*)
by remark 4.6 by remark 4.6

- By (1*) and our (IH), Vr € Class(n — 1) NxVs € S(n —1,k,7,t), A" 71(s) is club in k.  (2*)
- Let r € Class(n — 1) N k. By (0) of GenThmIH, Class(n — 1) is club in x and consequently
r(+"~1) € Class(n — 1) N x; moreover, by proposition 4.1, x € Class(n — 1) and subsequently,
r<r(+""1) <k <k(+""1). Consider the function P.: r( +""1) — k( +7~!) defined as
P.(z):=z[g(n —1,r,K)]. P-is well defined because of (2.3.1) of GenThmIH. We now show that
S(n—1,k,7r,t) CIm P,. This is easy: Take ¢ € S(n—1,k,r,t). Then, by (1%),
Ep(q) C Dom(g(n — 1, k, 7)) and therefore g[g(n — 1, &, r)] is well defined; but then, by (2.3.3)
and (2.3.2) of GenThmIH, ¢[g(n — 1, k,7)]€r(+""1) and ¢=qlg(n — 1, K, 7)][g(n — 1,7, k)] =
P.(qlg(n — 1, K, 7)]). This shows S(n — 1, k, r, t) C Im P, as we assured. Finally, since P, is a
strictly increasing function (so it is injective), then
IS(n—1,k,r,t)|<[Im P.| = |r(+"1)] < K. (3%)

because k is a cardinal

After the previous observations, we continue with the proof of the theorem, that is, as
already said in (0*), we want to show that Y is club in k.

‘We show first that Y is k-closed.
Let (1{)ierr CY Nk be such that [I'] <k and r,’<—f> p for some p < k. To show that peY.

Since Y C Class(n — 1) and by (0) of GenThmIH Class(n — 1) is club in &, then
pe Class(n —1). Now consider s€ S(n—1,k, p,t)=
{de (k,l(n—1,k,1t) C (5, k(+""1)) |T(n —1,k,d) N K C p}. Since by (2.1.1) of GenThmIH
T(n —1, k,s) Nk is finite and r1<—> p, then there exists a subsequence (r;);cr of the sequence

(r{)ier, such that i P, VZEIT( —1,k,8)NKk Cr;and |I| < |I'| < k; that is,

Viel.seSn—1,k, 7“1, t). This and the fact that (r;);e; C Y means Vi € I.r; € A"~ 1(s). But
by (2*) A"~ 1(s) is club in &, so p=sup {r;|i € [} € A"~ 1(s). Our previous work shows that, for
arbitrary s € S(n —1,k, p,t), p€ A"~ 1(s), ie., p€ Necsm1.mp0) A"~1(s). From this it follows
that peY. Hence Y is x-closed.
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Now our aim is to to prove that Y is unbounded in k. (b0)
We do first the following:

Let R:=Class(n —1)N«x and B,:= A"~1(s) for any r € R.

seS(n—1,k,r,t)
Let’s show first that V§ € Lim RN k.
Proof of (bl):

Let ¢ Lim RN k.

rERNE B, = B¢. (b1)

We show (bl) contention " C”.

Let €M, cpne Br=rerne (Nacsm_1.rmn A"~1(s)) be arbitrary. This means
Vre RNEVseS(n—1,k,r,t).xe A" 1(s). (b2).

On the other hand, let z € S(n — 1, k, £,t) be arbitrary. By definition of S(n — 1, , &,t), this
means z € (k,l(n —1,k,t)) and T(n — 1,k,2) Nk C & But T'(n — 1, k,d) Nk is a finite set (by
(2.1.1) of GenThmIH), so, since £ € Lim R, there exists r € R such that T'(n —1,K,2) Nk Cr <&.
This means z € S(n — 1,x,7,t), and then, by (b2), z € A" ~1(z). Note the previous shows
Vze Sn —1,k, & t)a e A" 1(2), ie, z € A"~Y(s) = Be. Finally, since this
was done for arbitrary x € [ B, C Be.

s€S(n—1,r,€,t)

B,, then we have actually shown that ()

reRNE reRNE

Now we show (bl) contention " > .

Let z € Bf: msES(nfl,m,f,t
VseS(n—1,k,& t).x€ A 1(s). (b4)

) A"~1(s) be arbitrary. This means

On the other hand, let » € RN £ be arbitrary. Take z € S(n — 1, k, r, t). By definition, this
means z € (k,l(n —1,k,t)) and T'(n — 1, k, z) Nk Cr. But since r < &, this implies that actually
z€8(n—1,k,§&,t), which, together with (b4), implies # € A" ~1(z). Note we have shown
Vze Sn —1,k,7,t)a € A" 1(2), ie, z € ﬂzES(n—l,m,r,t) A"~Y(z) = B,; moreover, we have

shown this for arbitrary » € RN &, i.e., we have shown z € ) B,. Finally, since this was

reRN§
done for arbitrary x € Bg, we have shown (1, . Br D Be.

This concludes the proof of (b1).
Now we show that X :={re R|M <r € B, } is unbounded in k. (c0).
By (2*), (3*) and proposition 2.47 we have that for any r € R, B, is club in k. (c1)

Let 0 € k be arbitrary. Moreover, let a:=min R. We define by recursion the function
mw— R as:
r(0):=min{s€xNB, |§ <s>M}. Note r(0) exists because of (c1).
Suppose we have defined r(l) € R = Class(n — 1) Nk, for | € w. (rIH)
Note that |R N r(1)] < r(l)b (<IH)/-€, and then, by (cl) and proposition 2.47 it follows that
y (T

(N B:isclubin k. So we define r(I+1):=min{sexn (| B, |r()<s}.
ze RNr(l) ze RNr(l)

Consider p:=sup{r(l) |lew}.

First note that, by construction, (r(l));e. is a strictly increasing sequence of ordinals in R
(because any By is club in x and B, C Class(n — 1)) and so p € Class(n — 1) N (Lim R). Moreover,
since k is an uncountable regular ordinal and r: w — K, then p < k. Summarizing all these
observations: p € RN (Lim R) (c2)

Now we show M <pAd<p€B,. (c3)
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That 6 < p> M is clear from the definition of the function r. Now, let v € RN p be arbitrary.
Then there exists [ € w such that r(I) > . Now, by the definition of our function r,
r(l+1)e ()  B.; but this implies that the sequence (7(s))sefi+1,w) C By, and since
z€RNr(l)
p=sup{r(s) |s€[l+1,w)} and B, is club in &, then p € B,. Finally, since this was done for

arbitrary v € RN p, then we have actually shown that pe ) B,. This con-

,Y =
~ERNp by (b1l) and (c2)

cludes the proof of (c3).

Finally, observe that (¢2) and (¢3) have actually shown that Vd e kdpe R.O<pe X C RC k.

Therefore (c0) holds. But Xb ?)*)Y Nk CY. SoY is unbounded in . This has proven (b0). O
¥

Proposition 4.12.

VaeClass(n —1).a<ja(+" <= a<"la(+" )= aec N APL().

t€la,a(+m 1))

Proof. Let a € Class(n —1).

To show a<""ta(+" )= ac ﬂte[a,a(—&-"*l)) A=), (a)

Suppose a <" La(+"71). Let t € [, a( +" 1)) be arbitrary.
Then a <"~ tn(n—1,a,t)[gln — 1, a,a)] + 1=n(n —1,a,t) + 1 by <"~!-connectedness. So
ae{BeClass(n—1)|T(n—1,a,t)NaC B<aAB<" " Inn—1,a,t)[g(n—1,a,B)]+1} =
Gni(t) = A"~ Y(t). Since this holds for an arbitrary ¢t € [a, a( +"~! )), we have

theorem 4.10
shown € N A"~1(t). This shows (a).

t€la,a(+m 1)

To show a <" ta(+" 1)«=ac Nicimain—1) ArL(t). (b)

n—1 — n—1
tela,a(+7~1)) A (t)theor;m 1o mte[a,a(+"_1)) G™~1(t). Then for any
tefa,a(+" 1)), a<" tnn—-1,a,t)[g(n —1,a,a)] + 1 =n(n — 1, a, t) + 1; thus, by (3) of
GenThmIH (that is, by <"~ !-continuity), a <" !a(+"~!). This shows (b).

Suppose a €

To show a<ja(+"" 1) =a<""la(+"71). (c)

Suppose a <1 a( +"~"1). Then for any t € [, a( +"71)), n(n — 1, a,t)) + 1 € (o, a( +"71))
and so, by <; -connectedness, o« <1 n(n — 1, «, t)) + 1. Subsequently, by (6) of GenThmIH,
a<" " 'n(n—1,a,t)) + 1. The previous shows that Vt € [, a( +""1)).a <" tn(n —1,a,t)) + 1,
and since the sequence {n(n —1,a,t)) + 1|t € [, o( +™))} is confinal in a( +"~1), then by (3)
of GenThmIH (that is, <"~!-continuity), a <"~ 'a(+"~1). This shows (c).

Finally, a <ja(+"" 1) <=a <" ta(+""1) clearly holds by (3) of GenThmIH. O

Corollary 4.13. Let k be an uncountable regular ordinal (k € Class(n — 1) by proposition 4.1).
Then

a) k<""tr(+""1) and therefore k € Class(n).
b) ke ﬂse[n,n(+"*1)) An=1(s).

Proof. Left to the reader. O

Corollary 4.14.
1. Class(n)#0
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2. For any o € Class(n), a(+") < oo; that is, a( +") is an ordinal.

Proof. Left to the reader. O

Lemma 4.15. Let k€[l,n), q € Class(k), t=n(k, q,t) € [q, q( +¥)) and ¢ <1t + 1. Then there
is a sequence (&;);es C Class(k) such that §j<—f>q and such that for all j € J, T(k, q,t) N g C¢;

and m(&;) =t[g(k, q, ;)]

Proof. Let k, ¢ and ¢ as stated. Then by (6) and (4) of GenThmIH, there exists a sequence
(li)ier € ¢nClass(k), l»;)q such that for all i € I,

T(k7Qat)qul and m(l)>t[g(k7Q7lz)] (*)

We have now two cases:
(a). For some subsequence (I4)aep C (li)ier it occurs Vd € D.m(lg) =t[g(k, q,1a)].
Then (l4)dep is the sequence we are looking for.

(b). For every subsequence (l4)aep C (Ii)icr 3d € D.m(lg) £ t[g(k, q,l4)]-

Choose an arbitrary e < ¢ and let
l:=min {r € ¢N Class(k)| T'(k, ¢, t) N g Cr >e Am(r) > t[g(k, g, r)]}. Observe | exists because
of (b) and (*). Then
e<l<itlg(k,q,Dl+1=n(k,q,t)[g(k, ¢, D]+ 1=

= k,l, tlg(k, q,l 1, which implies, by (6 d (4) of
o 228y st 55y ot Gt 1 1190k @, D) 4+ 1. which implies, by (6) and (4) o

GenThmIH, the existence of a sequence (sy)ucu, su<—>l such that for all ue€ U,

T(k,q,n(k,q,t))Nq = (k,l,n(k q,t)[g(k, q,1)]) N1

by (2.2.3) and (2.2.4) of GenThmIH 5l k1 tla(k I Al 1%
by (2.2.3) and (2.2.5) of GenThmIH Tk, 1k, 1 tlg(k, g, DI) N1 C s (1%)

and
su<1n(k, 1, t[g(k, q,D)])]g(k,1, su)

n(k, q,t)[g(k, q,D)][g(k,
n(k,q,t)[g(k, q,s.)] =

(2.2.3) and (2. 2 5) of GenThmIH

]
)] n(k,q,t [ (k7 L Su) © g(k? 4 Z)]by (2.5.3) o?GenThmIH
[ ( 14,8 )] (2%)

Now, note that (1*) and (2*) assert Yu € U.T(k, q,n(k, q,t)) N q C sy Am(sy) 2 t[g(k, q, Su)]-
Therefore, since 5u<—>l there is some a € U such that e < s, <,

T(k,q,t)NqCsq and m(sq) 2t[g(k, ¢, sa)]; moreover, by the definition of I,
m(sq) # tlg(k, q, s4)] and then m(s,) = t[g(k, ¢, sa)]. We define &, := s,. Then, the sequence
(&c)eeq is the sequence we are looking for. O

4.3 Canonical sequence of an ordinal e( +*)

Reminder: For e € E, we denote by (wg(e))rew to the recursively defined sequence
wole):=e+1, wry1(e) = wr(e),

We want now to define, for e € Class(i), a (canonical) sequence cofinal in e( +%).
Definition 4.16. (Canonical sequence of an ordinal e( +%))

For i€ [l,n), e € Class(i), and k € [1,w) we define the set Xy(i, e) and the ordinals xx(i, €)
and vi(i, e) simultaneously by recursion on ([1,n),<) as follows:
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Let i=1, e Class(1) and k€ [1,w). Let it be

Xi(1,e):={wk(e)},

(1, e) :=wi(e) =min Xg(1,e) and

(L e) i=m(zy(1, €)) = m(wi(e)) = m(wi(e)) + dm(wi(e)) = wr(e) + d(wr(e)) = n(wr(e)) =
= n(n(wk(e))) =n((1,e)) =n(L e, (l,e)).

properties of n

Suppose i + 1€ [2,n) and that for i € [1,n), Xi(i, E), (i, E) and v;(i, E) have already been
defined for arbitrary E € Class(i) and k € [1,w).

Let e€ Class(i+1) and k € [1,w). We define
Xp(i+1,e):={re(e,e(+*1))NClass(i) | m(r) = v(i,7)},
zp(i+1,e):=min Xy(i+1,e) and ' '
Yeli+1,e):=m(xi(i+1,e)) € (xr(i+ 1, e),zn(i+1,e)(+)) C (e, e(+1T1)).

For e € Class(i), we call ((i,e))keqi,w) the canonical sequence of e(+).

To assure that our previous definition 4.16 is correct we need to show that min Xj(i, e)
exists. This is one of the reasons for our next

Proposition 4.17. Vi€ [1,n)Ve € Class(3).

For any k €[1,w), Xi(i,e)#0 and therefore min Xi(i,e) exists.
2. (50 ))sein € (ere(+))

3. Vjel,w).y,(i,e)=n(i, e, v;(i,e))

4. (v5(is€))jen,w) and cofinal in e(+").

5

Ifi=1, then Vz€[l,w).T(i,e,v.(i,e)) ={A(1,7:(1,e)) =e}.
Case i 2 2. Then for any z € [1,w),
-m(x,(i,e))=m(zr.(i — 1,2,0i,e))) = ... =m(x,(2,2,(3, ...x,(1 — 1, z.(i,€))...)));
-T(i,e,v:(i,e))={0o1>02>...>0;_1>0;=¢€}, where
o1:= A1, 7:(3, e))),

~

02::/\( aVz(Z 6) yees

Oifl:—)\( 772(1.76))7

0;:=A(t,v:(i,e)) =¢;
- Moreover,

(i) =0i—1,2,(1 — 1, 2,(i,€)) = 0i—2, ., @4(2,2,(3, ...k, (i — 1, 2.(i,€))...)) =01
and

09 = )\(2,01), 03 = /\(3,02)7 ey 05 = /\(Z7 0i—1)70i+1 :)\(Z + 1, 01’)-
6. Vje[l,w)Vae(T(i,e,v;(i,e))\{e}).m(a)=;(i,e)
7. Va € Class(i).Vj € [1,w).0 =T (i,e,vj(i,e)) Ne CaAvy;(i,e)g(i,e, )] =~;(i, a)

Proof. We prove simultaneously 1, 2, 3, 4, 5, 6 and 7 by induction on [1,n).
Case =1 and e € Class(1).

It follows immediately from definition 4.16 (and the equalities explicitly given there) that 1,
2 and 3 hold. Moreover, it is also clear that 4. holds.
Now, let j € [1,w) be arbitrary. Then, by the definition (see statement of theorem 3.26),

T(1, ¢, %01 ) = Upenpioyre 700 e B) = Bp(35(1, €)) = fe = A(L, 7(1, €))}. So 5. holds.
Moreover, by the equality T'(1,e,v;(1,e)) ={e} it is clear that 6. holds too.
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Finally, let o € Class(1) and j € [1,w) be arbitrary. Then by 5. § =T'(i, e, v;(i,e)) Ne C c.
Moreover, by definition of v;(1, e) and the usual properties of the substitution z — zfe := a],
we have v;(1,¢e)[g(1, e, )] =,(1,e)[e:=a] =~;(1,a), that is, 7. holds.

Let i+ 1 € [2,n) and suppose the claim holds for i. (IH)
Let e € Class(i +1).

To show that 1. holds.
Let k€ [1,w).
Since e( +T1) € Class(i + 1) C Class(i), then by our (IH),
(i, e( 1), v(i, e( +F1))) = (i, e( +771)) € (e( +7F1), e( +4F1)(+%)); from this, the fact
that e( +i71) <ye(+i*1)(+%) and <;-connectedness follows
e(+ 1Y) <in(i, e(+F1), (i, e(+:1))) + 1. Thus, by lemma 4.15, there is a sequence
(&;)jes C Class(i) such that §j<§>e( +¢*1) and such that for all j € J,

T(iye(+40), w(i, e(+741)))Ne(+7F1) C & and

m(E) = (i e+ Nlgle(+7E), = wliE).

From the previous follows that
Xi(i+1,e)={re(e,e(+T1))NClass(i) | m(r) = vx(i,r)} # 0. Hence 1. holds.

2. holds.

This is clear from the definition of (7;(i 4 1, €))je,w) (the fact that Xy (i 4 1, e) # () implies
that (vj(i+1,€));je[1,w) is well defined).

To show that [yi(i+1,€))xe1,.) satisfies 3.

Let k€ [1,w).
Since z(i+1,¢€) € (e,e(+T1)) N Class(i), then zx(i+1,e) = e(+") and so
m(zp(i+1,e)) Ze(+9)(+71)..(+1)2. (1%)

On the other hand, for any ¢ € (e, zx(i + 1, ¢)) proposition 3.6 implies

t) < zp(i+ 1, e) < m(ag(i + 1, e)). Moreover, notice for any ¢ € [xi(i + 1, e), m(xk(i + 1, e))],
t) # m(xr(i+1,€)): Assume the opposite. Then the inequalities

(i +1,e) <t <m(ze(i + 1, €)) <m(zp(i + 1,€)) + 1 < m(t) imply by <; -connectedness that
zp(i+1,e) <st<ym(ag(i+1,e)) + 1 and then, by < -transitivity,

k(i +1,e) <ym(xp(i+1,e)) + 1. Contradiction. Hence, from all this we conclude

3 3

(
(

vt e (e,m(zr(i+1,e))].m(t) <m(zk(i+1,e)). (2%)
Finally,
ni+1,e,w(i+1e)=ni+1e map(i+1, 6)))by?1*)

=max {m(f) | B (e,m(zk(i+1,e))]} =

) . by (2%)
=m(zk(i+1,e))=v(i+1,e).
Thus 3. holds.

To show 4., that is, (yx(i +1,€))re[1,w) is cofinal in e(+'1).

First note that since e(+*T1)(+171)...(+2)(+1)2+ 1€ (e(+"F1),e(+iT1)(+%)), then
e(+ ) <pe(+)(+ ) () (+)2+1=
(i, e( + 1) e( +F1)(+71).(+2)(+1)2) + 1 by <; -connectedness; then, by (6) and (4)
of GenThmIH, there exist a sequence of elements in Class(i) that is cofinal in e( +**1). So, to
show that (ve(i+1,€))rep,w) is cofinal in e(+T1) it is enough
to show Vo € (e, e(+71)) N Class(i).3s € [1,w).7s(i + 1,e) > 0. (b1)
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To show (bl).
Let o € Class(i) N (e, e( +°t1)). Then by (1.3), (1.3.1), (1.3.5), (1.3.6) and (1.3.4) of Gen-

ThmIH f(i+1,e)(0)={o=01>...> 04} for some g€ [1,w), (c0)

where

oq=min{d € (e, oy] N Class(i) | m(d)[g(i,d, 0q)] =m(coy)}, (c1)
Vie[l,q—1].o,=min{d € (0741,01 N Class(i) | m(d)[g(¢,d, c1)] =m(o1)} (c2)

and

m(o) =m(a1) <m(02)[g(i, 02, 0)] <m(3)[g(i, 03,0)] < ... Sm(ag)[g(i, 04, 0)]. (c3)

On the other hand, by (IH) (v;(i, 0¢))je1,w) is cofinal in oq( +°), so there exists z € [1, w)
such that 7,(i,04) € (m(oy), oq(+%)). (c4)
But by (cl),
Vd € (e, 04 N Class(i).m(d)[g(i,d, 04)] <m(oq) < 7.(i,04), particularly,
Vd € (e, o4) N Class(i).m(d)[g(¢, d, 04)] < (i, 04). From this and using (2.3.2) of GenThmIH
and (7) of our (IH), we get
Vd € (e, 04 N Class(i).
mld) =m(d)lg(i,d,0,)| 9100 D) < (i 0n)lgCiop ] = nlid) (%)

Now let [ € [1, ¢ — 1] and d € (0741, 07] N Class(i). By (c2), m(d)[g(i, d, o1)] < m(oy); this
inequality, (c0) and (2.5.3) and (2.3.1) of GenThmIH imply,
m(d)[g(i,d, o)l =m(d)[g(i,d, n)l[g(i, 01, 0)] <m(o1)[g(i, 01, 0)] <

< m(o i, Ogy O < (2, o i, Og, O = .(i, o). From
e (09)lg(i, oq )]usmg s’ (i, 0g)lg(i, oq )](7) of e 1)) (i, o)
3
(4,

this, by (2.3.2) and (2 5.3) of GenThmIH,

m(d) =m(d)[g(i, d, 0)][g(i, o, d)] < 7:(i, 0)[g(3, o, d)](7) e (IH)’yZ(i, d). The previous shows

Vie[l,q—1]Vde (O’H_l, o)l NClass(i).m(d) < v.(i,d). (**)
From (*) and (**) follows Vd € (e, o] N Class(i).m(d) < v,(i,d), and therefore

Vd e (e,o0]NClass(i).d <min X (i +1,e) =z.(i+1,e) <m(z,(i +1,e)) =v.(i + 1,¢€).
This shows (bl). Hence 4. holds.

To show that (yx(i+1,€))re(1,w) satisfies 5.

First note that for arbitrary k, j € [1,w) and ¢ € Class(j + 1)

gk(j—kl,c) =min {r € (c,c(+7T1))NClass(j) | m(r) =vi(j,7)}. (Jo)
m(zk(j+1,¢)=m(j,z:(7 +1,¢)) =m(xi(d, 2-(j + 1, ¢))); (J1)
xe(j+1, c)eClass( i)\Class(j +1); (J2) ‘

(i +1c)=m(ze(j+1,¢) € (xp(j +1,0),21(j +1,¢)(+7)); (J3)
AGsm(ze(i+1,¢)) =Ad, w(i+1,¢)) =2k(j + 1,¢). (J4)

Let z € [1,w).

We show now
v(i+1,e)=m(x.(i+1,e))=m(z.(i,z.(i+1,e)))=...=
=m(z,(2,2,(3,...2.(i,z,(1 + 1,€))...))) (J5)
This is easy:
i+ L) =mla(i+Le) = m(eiai+10) =
=m(z,(i—1 xz( T, (Z+176))))by?J1)""by?J1)
=m(z,(2,2,(3,...x.(1,z,(i+ 1,€))...))).
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This shows (J5).

Let’s abbreviate
o1:=M1,v,(i+1,¢e)),
02:= A (2,7:(i+1,€)),...,
0i:= M1, v.(i+1,¢e)),
0i+1::>‘(i+1772(i+176))' (dl)

To show 0,41 =c¢€,
z(i+1,e)=052.(i,2,(i+1,€)) =0i—1, .0, ®2(2, (3, ...2.(i, 2, (i + 1,€))...)) =01 and

02 = /\(2, 01), 03 = )\(3, 02), vy 05 = /\(’L, 01‘—1), Oi4+1= )\(Z +1, Oi). (J6)

First let’s see 0,41 =¢. (J6.1)

Note 7.(i+1,e) € (x.(i+1,e),z.(i+1,e)(+%)) C (e,e(+""1)). Then, since
By (J3) By (J0)

(e,e(+T1)) N Class(i) =0, we get 0,41 =A(i+1,7,(i +1,e)) =e. So (J6.1) holds.

Now let’s show z,(i +1,€) =04, ...,2:(2,2,(3,...x.(1, (i + 1,¢€))...)) = 01. (Je.2)
This is also easy:
-/L'z(l + 17 6) = )‘(Za fYZ(Z + 17 e)) = 04,

by (J4)
z.vz.]-? :)‘_17 Z‘az‘lv :)\‘—1,2‘1, =0;-1,
i na i 1,6)), = M= Ll L), = A= 12l 1,e)) =00
(2,223 (i (i 4+ 1,0)).)) = AL m(2a(2, 22(3, oz (i 2a(i 4 1,€))..)))) =
P Bl i 4L D)), = ML (a2, 2.3l 1,0 ), =

=A1,7.(i+1,e))=o01.
So (J6.2) holds.

Let’s see that 03 =A(2,01),03=XA(3,02),...,0i=A(i,0i—-1),0i41=A(i + 1, 0;). (Je.3)
Note for any k € [1, ]

— k+1 . . _
(J6.2) and (JGJ)%(k +1, 0k+1)by%0)(0k+1a og+1(+*T1)) N Class(k), so A(k+ 1, 0r) = 0 +1-

So (J6.3) holds.

o
kby

Hence (J6) holds because of the proofs of (J6.1), (J6.2), (J6.3).
To show T(i+1,e,v.(i+1,e)) ={o1>02>...>0,_1> 0,11} (J7)

S' z ) 1, - 5 th
ince 7,(i + e)by 5) and (JG)m(ol) en

T(i+1,e,7.(i+1,e)=T>G+1,e,m(01)) = Udcrp(m(ory T+ l,e,d)
T+ 1,e,d)

Ep(m(01))=?(17017m(01))

UdET(l,ol,m(ol)) Ude{o1} T(Z + 1, €, d) = T(Z + 1, €, 01) = UkEw O(k‘,

by our (IH)
01)7
where by definition
Ei=X(1 =o01,E2=A2,FE) = o EBiv1=A0+1L,E;) = o d
1 ( ’m(ol)) 01,02 ( 5 1)by (dl)OQa s L1 (Z+ ) (dl)o 41 a1

by
O, 00:= U flh+1,M(k+1,6))(8) UEp(m(6)) U{A(k+1,0)};
6eW(0,k,01)
k=1,..i
W(0,k,01):=(e,e(+TN)N{E1>E2>E3>...> E; 1 =e} N (Class(k)\Class(k + 1));
O(l+1,01):= U Fk+1,X(k+1,0))(0) UEp(m(8)) U{A(k+1,8)};
0eW(l,k,o01)
k=1,

W(l,k,01):=(e,e( +T1))NO(l, 01) N (Class(k)\Class(k + 1)).
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But note for any k€ [1,1],
W(O, k, 01) = {Ok}7
Ak 41, 0k) =0k41,
flk+1,MEk+1,0k))(0k) = f(k-i-l ok+1)(0k):{0k},
Ep(m(ox)) = Ep(m(o1)) = {o1}.

by (J5) and (J6)
Therefore f(k 4+ 1, A(k + 1, o))(or) U Ep(m(og)) U {\(k + 1, or)} = {0k, 01, 0k+1}. This way
0(0,01) ={01 > 02203 > ... 2 0,41 = e}, and moreover, exactly because of the same reasoning,
View.O(l+1,01)={01>02>03>...20;41=e}. Thus, we conclude
T+ 1,e,7.(i+1,e)) ={0o1 >02>03>... 2 0,41 = e}. Finally, we just make the reader aware
that actually o1 > 02 > 03 > ... > 0,41 holds because of (J6) and (J2). So we have shown (J7).
This concludes the proof of 5.

To show that (yx(i+1,€))ref1,w) satisfies 6.

From 5. we get T'(i,e,v.(i,e))\{e} ={o1>02>...> 0,1} with m(0;_1) =... =m(01).

To show (V(i+1,€))re,w) satisfies 7.

Let a € Class(i+ 1) and z € [1,w).
Let 01, ...,0;41 as in 5. (that is, for k€ [1,7+ 1], ox:= A(k, 7:(i + 1,¢€))). By 5., we know that
Ti+1,e,7v.(i+1,e))={o1>02>...>0;_1>0i+1=e}. So T(i+1,e,v.(i+1,e)) Ne=0. Now,

for any ke [l,i+1], T(i+1,e,0k) C T(i+1,e,7v.(i+1,¢e)), which means
definition of T'(i+1,e,0k)

Vkel,i+ 110 =T3G+ 1, e, o) N e C a. The latter expression implies, by (2.2.3) of Gen-
ThmIH that VE € [1,i+ 1].Ep(ox) C Dom[g(i + 1, e, a)]. So for k € [1,i+ 1], let ug:= ox[g(¢ + 1,
e,a)l.

We will need the following observations (K1), (K2), (K3) and (W):

Since by 5. we know VEk € [1,i].0p+1=A(k + 1, 01), then by (2.4.6) of GenThmIH, this implies
Vk e [17 i]'uk+1 = Ok+1[g(i +1e, Ol)] = /\(k +1, Ok[g(i +1e, Oé)]) = A(k+ 1, Uk). (Kl)

Note Olb_5 7,(2,02) € X,(2, 02) := {r € (02, 02( +2)) N Class(1) | m(r) = v.(1,r)}. This implies
m(o1) = 7z(1, 01). (K2)

Moreover, observe that
0, <10;-1<1...<101 <1’}/Z(Z-|—1 €>:m( ) ( ) (1 Ol)by de?nltlon
Vje[l,i.0; £1m(w.(01)) + 1 imply, by (2.4. 3) of GenThmIH, that
u; <1 ... <puy <y m(wz(01))[g(i +1, e, a)] m((wz(01))[g(i + 1, e, a)]) =

m(w.(01)) and

by (2.4.4) of GenThmIH
= m(w:(u1))
and

Vi €L o (mlws(on) + Dlgli+ Le,a)l, = ((ws(on))gli+1e,a)) +1

=m(w,(u1))+1.

From this follows Vj € [1,4].m(u;) = m(w,(u1)) v2(1,uq). (K3)

by definition

Now we show that Vj € [1,4).u;j=2.(j +1,u;41) (W)
We prove (W) by a (side)induction on ([1,4], <).

Let j € [1,4].
Suppose Vi € jN[1,iluy=2.(1+ 1, u41). (WIH)
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Note m(uj)b (:K " ~v2(1, u 1)if jz}zm(uj,l)by (@IH)m(xz(j, u;)) = 72(J, uj). This shows that, in
any case, m(u;) =v:(j,u;) (M1).
This way7
uj by (M ){T €I+ 1,uy), \(J+1,uj)(+I 1)) N Class(j)|m(r) =~.(4,7)} =
=X.(j+1,2(J+1,uj)) :Kl)Xz(j +1,u;41). Moreover, since
é(h —&I—Hl 0j+1)(05) = {o J}b (245)ﬁenThmIHf(j + 1, ujs1)(uj) = {u;}, then by (1.3.5) of Gen-
m )

wj=min{s € (ujt1,uj+1(+71))NClass(j) | s <u; Am(s)[g(j,s,u;)] =m(uj)}=
= min s € (141,171 (+9 1)1 Chass(5) |5 g Ams) g3 5,u)], =, 9+0,)) =
, since by (IH) 7., applied to j <4, uj, s € Class(j), we get T(j,uj, v-(j,u;)) Nuj=0Cs,
=min {s € (ujr1, uj41(+71)) N Class(j) | s <uyAm(s) =205, u;)[9(d, uj, 5)]}
=, by (IH) 7. applied to j<1i, uj, s € Class(j) and z € [1,w),
=min {s € (uj41,uj+1(+7 1)) N Class(j) | s<u; Am(s) =7.(j4,8)} =
=min {s € (ujr1, uj+1(+771)) N Class(j) [m(s) =725, 5)} =
=min X.(j+1,u;41) = 2207 + 1, u541).
This shows that (W) holds.

Finally,
v(i+1,e)gli+1,e,)]=m(z.(i+1,e))[g(i+1,e, a)]b:am(oi)[g(i +1,e,a)]=
— (o9l + Le )] =mlu), = m(r(i+1,u41)) =
=m(z,(i+1,a))=70G+1,a).

Since this last equality was done for arbitrary o € Class(z' +1) and z € [1.w), then 7. holds. O

Remark 4.18. For i € [1,n) and e € Class(4), it is not hard to see that the sequences
(xr(i,€))reqt,w) and (Vk(i,€))ke,w) are strictly increasing.

Moreover, for any k € [1,w), n(i, e, zx(i,e)) =m(xk(i,e)). This equality holds because
xi(i,e) <m(zk(i,e)), implies

m(z(i,e)) <n(i, e, wi(i,e)) <nli, e, m(zi(i, e)) = m(z(i,e)).
by 3. of previous proposition 4.17

4.4 Class(n) is k-club

Proposition 4.19. Let k be an uncountable reqular ordinal and r € Class(n — 1) N k arbitrary.
Let M"~Y(r,k):={q€[r,k(+"" 1)) |T(n—1,5,¢)NK Cr}. Then An—Y(s) C

sEM™1(r,k
Class(n). © )

Proof. Let o ¢ ﬂseM"ﬂ(r,ﬁ) An=1(s)
Consider (7j(n—1,k))je[1,w), the canonical sequence of r(+""1) € Class(n —1). Then
Vi€ l,w).vj(n—1,k) € M"Y(r, k). Therefore for any j € [1,w),
ae A" (yj(n—1, /{))theor;l , 1OG”’I(’yj(n —1,K)).
z{BeClass(n—l) |T(n—1,k,vj(n—1,k)NKC LKA
B <n—1 77(” - Lk, Wj(n -1, ’i))[g(n - Lk, ﬁ)] + 1}'
The previous means, for any j € [1,w),
ag<n! nn—1,x, Vj(n —Le)g(n—1,k,a)|+1= ’Vj(n —Lk)lgln—1,K,a)])+1=
=v;(n — 1, a) + 1. But, by previous proposition 4.17, (v;(n — 1, @)),e1,w) is cofinal in
a(+""1); therefore, by <"~ !-continuity follows a <" a(+""1). Hence a € Class(n). O
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Proposition 4.20. Let k be an uncountable reqular ordinal. Then Class(n) is club in k.

Proof. We already know that Class(n) is closed in k. So we only need to show that Class(n) is
unbounded in k.

Let B ek.
Since we know Class(n — 1) is club in &, take r,r(+"~1) € Class(n — 1) N K # 0.

Consider M"~Y(r,k):={q€[r,s(+" 1)) | T(n—1,k,¢)NKCr}.

Consider R:[r,r(+""1)) — R[r(+" 1) C [, s(+""1)), R(t):=t[g(n — 1,7,K)]. Then R is
a bijection. We assure that R[[r,r(+""1))]=M""1(r, k). (a)

To show R[[r,r(+"~ 1)) C M"~1(r, k). (al)

Take t € [r,7(+""1)). Then by (2.3.1) of GenThmIH, Ep(t) € Dom(g(n — 1,7, %)) and then,
by (2.2.4) of GenThmIH, T'(n — 1, k,t[g(n — 1,7, k)]) Nk =T(n —1,r,t) Nr C r. Moreover, it is
clear also from GenThmIH that t[g(n — 1,7, )] € [k, k(+""1)). This shows that
R(t) =tlg(n — 1,7, k)] € M"~(r, t), and since this was done for ¢ € r( +"~!) arbitrary, then
(al) holds.

To show R[[r,r(+"1))] D> M"~(r, k). (a2)

Let s€ M"~1(r, k). By (2.2.3) of GenThmIH we have that
M= Yr, k) = {t € [k, k( +"71))|Ep(t) C Dom g(n — 1, s, r)}. Therefore, easily from Gen-
ThmIH we get that s[g(n —1,x,7)]€[r,r(+"~1)). But then
R _17 ) = _17 y —1, s =

(Sl =1 ) = slgtn— L llgln—Tr)] =

s€R[[r,r(+""1))], and since this was done for arbitrary s € M™~1(r, k), then (a2) holds.

s. This shows that

(al) and (a2) show (a).

By (a) and (2.3.2) of GenThmIH, the function H:= R~ M"~Y(r x)— [r,r(+"71)),
H(s):=s[g(n—1,k,r)] is a bijection. (b)

On the other hand, since r € Class(n —1) CE C [w, 00) (because n —1 > 1), then there exists
d € OR such that N5 = |r|. Then Ny < 7 < Ns41 < k. But Ns1q is a regular uncountable ordinal
(because it is a successor cardinal), and then, by (0) of GenThmIH, Class(n — 1) is club in N5 1.
Hence, Ns <r <r(+""1) <Ns;11 <k and subsequently

[, (4" (4 ) =Ir| <. (c)

Finally, from (c), (b), proposition 4.11 and proposition 2.47 follows that the set
nsGM”_l(r " A"~1(s) is club in k. So there exists v € nsEM"_l(r.n) An~1(s), with v > 3. But
by previous proposition 4.19, v € Class(n). Since the previous was done for an arbitrary S € k,
then we have shown that Class(n) is unbounded in . O



Chapter 5
Clauses (1) and (2) of theorem 3.26

5.1 Clause (1) of theorem 3.26

The reason of Clause (1) of theorem 3.26 is the following: For «, ¢ € Class(j), we would like
to have a function g(j, «, ¢) as stated in (2) of theorem 3.26. However, to prove the existence of
such a function is not easy, and it turns out that, for 7 € [1, j) and e € Class(i), we can use the
functions m and f(i, e) to provide a “local description” of the elements in an interval |c,
a(+7))NE, and later, based on these ideas, prove the existence of ¢(j,a,c).

Proposition 5.1. For any a € Class(n), the functions
e S(n,a):Class(n —1)N (o, a(+")) — Subsets(Class(n — 1) N (a, a( +7)))
S(n,a)(d):={eeClass(n — 1) N (a,a( +™)) N6 | m(e)[g(n —1,e,0)] =m(d)}
e f(n,a):Class(n—1)N(a,a(+™)) — Subsets(OR)
{6} iff S(n,a)(6)=0
fn, a)(8):=

fln,a)(s)U{d} iff S(n,a)(8)#0As:=sup(S(n,a)(d))

are well defined and satisfy (1.1), (1.2), (1.8.1), (1.8.2) and (1.3.8) of theorem 3.26, that is,
(1.1) If S(n,a)(6) £ 0 then sup (S(n,a)(d)) € S(n,a)(d) C Class(n — 1) N 4.
(1.2) ¥ € Class(n — 1) N (e, a( +™)).6 € f(n,a)(d) C (o, a(+™)) N Class(n — 1)
and f(n,a)(d) is finite.
(1.3) Vg€ [l,w).Vo € (a,a(+"))NClass(n — 1). If f(n,a)(o) ={o1>...> 04} for some
o1,...,04€ OR then
(1.3.1) o1 =0,
(1.8.2) ¢22=Vje{l,...,qg—1}.m(o;) <m(oj1)[g(n—1,0541,0;)]
(1.8.8) og=min{e € (a, 04 NClass(n — 1) | m(e)[g(n —1,e,04)] =m(oq)}

Proof. Let a € Class(n) be arbitrary.

Clearly S(n,a) is well defined. (The fact that f(n,a) is well defined follows from (1.1)).

We prove (1.1).
Let § € Class(n — 1) N (o, a( +™)).

We assure Lim S(n,a)(0) C S(n, a)(9). (**S)

Let’s use (**S) to prove (1.1) and after that we prove (**S). Suppose S(n, «)(d) # 0. Let
A =sup (S(n,a)(d)). If Ae€LimS(n, 0‘)(5)(*%)5(”’ a)(6), then A € S(n,a)(0) C Class(n —1)NJ.

If A ¢ Lim S(n, «)(d), then 3s € AVl € [s,A).l ¢ S(n, a)(d); but since A =sup S(n, «)(d), then
A€ S(n,a)(d), that is, A=max S(n,a)(d) € S(n,a)(d) C Class(n — 1) N 4.

87
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We show now (**S).

If Lim S(n, «)(§) =0, then clearly Lim S(n, a)(d) C S(n, «)(d), so suppose Lim S(n, a)(d) # 0.
Let p € Lim S(n,a)(d). Since S(n,a)(d) C Class(n — 1), then by (0) of our GenThmIH,
€ Class(n —1). Let (e;)ier CS(n,a)(d) such that e;— p. We assure
3i € Lm(e:)[gn — Loew, p] <m(p). (74S) “

Suppose the opposite: Vi€ I.m(e;)[g(n —1,e;, p)] >m(u). Since e p and
T(n—1,p,m(p)) is finite, we can assume without loss of generality that
Vie L T(n—1, u,m(p)) N uCe;, that is, by (2.2.3) of our GenThmIH, that
Vi € I.Ep(m(p)) € Dom g(n — 1, p, e;). Then, by applying g(n — 1, u, €;) to both sides of the
inequality m(e;)[g(n — 1, e;, 1)] >m(u) we get
Vi € I.m(e;) = m(e)[g(n — 1, e, p)][g(n — 1, p, €;)] > m(u)[g(n — 1, p, e;)]. This and the fact
that e H imply, by (5) of GenThmIH, that u<;m(p)+ 1. Contradiction. Thus (***S) holds.

Now, by (***S) let ig € I such that m(u) > m(e;,)[g(n — 1, €4, pt)]. From this inequality follows
m()lg(n -1, 1)) > m(eso)[g(n — 1, caor )] [g(n ~ 1, 1, 6)] =

m(eio)[g(n -1, p, 5) ° g(n — 1, €y M)] = m<eio)[g( — 1, e, 5)] > ( ) where the last
inequality holds simply because e;, € S(n,a)(d). This shows m(,u)[ (n—1, u,8)] =m(d). Finally,
we need to show that p < d. Since by definition S(n, @)(d) C 4, then p % 4. So it only rest to
show that p = §. Suppose p = 4. Since Ci = 0, Vi€ I.m(e;)[g(n — 1, e;,0)] = m(J) (because

(e:)ier CS(n,a)(d)) and T'(n — 1,5, m(d)) is ﬁmte then there is a subsequence (e;);ec.s of (e;:)ier
such that (ej);es is cofinal in =4 and such that Vi € J.T'(n — 1,6, m(d)) N é C e; (once more,
this last condition means by (2.2.3) of GenThmIH, that Vi € J.Ep(m(é)) CDom g(n — 1,6, ej));
therefore, using now (2.3.2) of GenThmIH,
Vj e Jml(e;) =m(ej)g(n — 1, ej,0)][g(n — 1,0, e;)] = m(d)[g(n — 1, d, e;)], and then, by (5) of
GenThmlIH, follows § <3 m(d) + 1. Contradiction. So u= 0.

All the previous shows (**S).

Remark: Observe that (1.1) implies that f(n,«) is well defined (by recursion).

We prove now (1.2).

Let ¢ € Class(n — 1) N (o, a( +")).

We proceed by induction on Class(n — 1) N (a, a(+")).
If § =a(+""1), then clearly § € f(n, a)(d) = {a(+""1)} C Class(n — 1) N (o, a( +"~1)) and
f(n,)(9) is finite.

Suppose e € f(n,a)(e) C Class(n — 1) N (o, a( +"~1)) and f(n,a)(e) is finite for
any e € Class(n — 1) N (o, a(+™))N4J. (cIH)

Then Class(n — 1) N (o, a(+2)) D f(n,a)(0)={6} > or
Class(n — 1) N (a, a( +2)) D f(n, a)(8) = f(n, a)(sup S(n, a)(8)) U {8} > §; this way, in any
case and using our cIH, § € f(n,«)(d) C Class(n — 1) N (o, a( +2)) and f(n,a)(d) is finite.

Now we prove (1.3).
We proceed by induction on [1,w) and show (1.3.1), (1.3.2) and (1.3.3) simultaneously.

Suppose g=1.

So let o € (o, a( +™)) N Class(n — 1) such that f(n, a)(o) ={o1}. Then o1 =0 by (1.
o (1.3.1) holds. On the other hand, (1.3.2) clearly holds. Finally, observe f(n, a)(c) = {o}
means S(n, a)(oc) = {e € Class(n — 1) N (o, a( +™)) No | m(e)[g(n — 1, e, 0)] = m(o)}
therefore (1.3.3) holds.

Now suppose (1.3.1),
), (

(1.3.2) and (1.3.3) hold for m€[1,w). (ccIH)
Lets show (1.3.1), (1.3.2)

and (1.3.3) for g=m+1>2.
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Let 0 € (a, a( +™)) N Class(n — 1) and assume f(n,a)(c)={01>... > om+1} for some
01y -0y Om41 € OR. So f(n, a)(o) ={c} U f(n, a)(s), with s =sup (S(n, @)(c)) < o (where this
last inequality is due to (1.1)). This means f(n, a)(s) = {02 > ... > om+1} and since by ccIH,
(1.3.1), (1.3.2) and (1.3.3) hold for f(n,a)(s), we have
o9=5<0€ f(n,a)(c)={o1>...>0ms1}. So 0 =01 and we have shown (1.3.1).

Let’s show (1.3.2).
Since by ccIH (1.3.2) holds for f(n, a)(s) = {s =02 > ... > opmy1}, then we just need to see
that m(o) <m(s)[g(n —1,s,0)]; but this is clear, since by (1.1), s € S(n, a)(o).

We prove (1.3.3).
By ccIH, oy=min{e € (a, 0, NClass(n — 1) | m(e)[g(n —1,e,04)] =m(oy)}

This concludes the proof of the whole proposition. O

Corollary 5.2. Let a€ Class(n), o € (a,a(+")) NClass(n —1), g€ [l,w) and
fn,a)(o)={o1>...>04}. Then (1.3.4), (1.3.5) and (1.3.6) of theorem 3.26 hold, that is:

(1.8.4). m(o)=m(o1) <m(o2)[g(n—1,092,0)] <...<m(og)[g(n —1,04,0)].
(1.8.5). Fory:=o0y,
v=min{e€ (a,a(+"))NClass(n —1) | e<yAm(e)[g(n—1,e,v)] =m(v)}
=min{e€ (a,a(+"))NClass(n—1) | e<yAm(e)[g(n —1,e,7)]=
(1.8.6). For any j€{1,...,q—1},
oj=min{e € (a,a(+"))NClass(n —1)|o;j+1<e<o;Am(e)[g(n —1,e,0,)] =m(c;)}
=min {e € (a,a(+"))NClass(n — 1)|oj1<e<o;Am(e)[g(n—1,e,0;)]=

Proof.

(1.3.4).

We prove this claim in the form Vi € [1, ¢ — 1].m(0;)[g(n — 1,04, 0)] < m(oi11)[9(n — 1, 0441, 0)].
Case i = 1. Then m(o) = m(o1)[g(n — 1, 01, 0)] < m(o2)[g(n — 1, o9, )] holds by previous

proposition 5.1 and because g(n — 1,0, 0) is the identity function (by (2.2.1) of GenThmIH).
Caseie(1,q—1].
Since by proposition 5.1, m(o;) <m(oi+1)[g(n —1,0;41,0;)], then

m(ol)[g(n -1,04, J)] < m(0i+1)[9(n — 1,041, 01)][9(’)1 —1,04, J)] =

m(oit1)[g(n—1,05,0)0g(n—1,0i41,0:)] =m(ci+1)[g(n — 1, 0,41, 0)], where the last

equality holds by (2.5.3) of GenThmIH.

(1.3.5).
Easy. The proof is essentially the same that we carry out for (1.3.6).

(1.3.6).
Let je[l,q—1).

Let’s show o; =min {e € (a, a(+")) N Class(n — 1)|o;41 <e<o; Am(e)[g(n —1,e,0;)] > m(c;)}.
Let X;:={e€ (0j41,0;]NClass(n —1)|m(e)[g(n —1,e,0;)] =m(c;)}.
Clearly o; € X; and we need to show o;=min X;. For this, it is enough to show
Vee (0j41,0;5).c¢ X;. This easy: Observe X;N (0j41,05) C S(n,a)(o;)=
{e€(a,a(+"))NClass(n—1)No; | m(e)[g(n —1,e,0;)] >m(c;)}. Since by definition
oj+1=sup S(n,a)(o;), then for any c€ (0;41,0;), c¢ S(n,a)(o;) and therefore
Vee (O’j+1, O'j).c¢ Xj.

Thus 0; =min X .

Let’s show o; =min {e € (a, a(+")) N Class(n — 1)|o; 41 <e<o; Am(e)lg(n —1,e,0;)]=m(c;)}.
Let Y;:={e € (6j41,0;] N Class(n — 1)|m(e)[g(n — 1, e, 0;)] =m(o;)}. Clearly o; € Y; and since
Y; C X, then 0;=min X; <minY; <o0;. So o;=minYj. O
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Concluding, by previous proposition 5.1 and corollary 5.2, clause (1) of theorem 3.26 holds.

5.2 The T'(n,a,t) sets and Clause (2.1) of theorem 3.26

Remark 5.3. For k € [1,n], a € Class(k) and t € a( +*), the set T'(k,a,t) CENa(+F) is induc-
tively defined by the clauses
a) Ep(t)cT(k,a,t)
b) £€T(k,a,t)N (a,a(+*))NE=Ep(m(£)) C T(k,a,t)
c) le[LE)AEeT(k,a,t)N (a,a+%))N(Class(l)\Class(I+ 1)) = A(I+1,&) € T(k, a, t)
) t (+%))

(
d) le[l,k)nEeT(k,a,t)N(a, N (Class(1)\Class(l + 1)) =
(k

FU+LMIH1,9)(6) C Tk, a,1)

Proposition 5.4. Let k€ [1,n], a € Class(k).
1. Vtea(+F)WVseT(k,a,t).T(k,a,s)CT(k, a,t).
2. Vl€[1,k].Ve€[a,a(+*))NClass(l).Vt € [e,e( +')).T(,e,t) CT(k,a,t)
3. Ve[l klVte[a,a(+). T, at)=T(k,a,t)

Proof. Left to the reader. O

Proposition 5.5. Let o€ Class(n) and t € a(+"). Then T'(n,a,t) is finite.

Proof. If ¢t < «, then T(n,a,t) =Ep(t) is clearly finite. So suppose t € (o, a(+™)). Since for the
case t ¢ E, T'(n, o, t) = UEeEp(t) T(n, a, E) and Ep(t) is finite, then it is enough to show that

for any E € (a,a( +™))NE, T(n,«, E) is finite.

So let E € (o, a( +™)) NE. The set T'(n, , E') can be thought as the tree with root E, and
such that for any node £ € T'(n, a, E') with £ € (o, a(+™)) N Class(l)\Class(l + 1) and
l€[1,n—1], the children of £ are the elements of the finite set
Ep(m(§) U{AI+ 1, U f(I+ 1, A1 + 1, £))(§) that “have not been generated previously”.
We formalize this idea in what follows.

Let Fy,..., F5,: OR — Subsets(OR) be the functions

Fi(x):=10,

For i € [2,n], Fi(z):= { 0 iff ¢ Class(i — 1)\Class()

{A(i,x)} otherwise ’
|0 otherwise
Fr(@):= { Ep(m(z))  iff m(z) 00’
. 0 iff x ¢ Class(i — 1) N (Fi(z), Fy(z)(+*))
F 2 Foii(z):= ’ .
or 1€ [2,n], Fa+i(e) { (i, Fi(z))(x) otherwise
Moreover, we define the sets W; (with ¢ € w) recursively on w as
Wy:={E};
Wigi:= Ueer Rj(e), where R; is defined on W; (by recursion on (W;, <)) as

Rj(e) = ( Uie[l,Qn] Fl(e))\( Ude[O,j] WaU UsEeﬂWj RJ(S))

To show Vi e w.W; CT(n,a, E). (wl)
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We proceed by induction on w.
Clearly Wo={E}CT(n,a,E).

Take i + 1 € w and suppose W; CT'(n,«a, E). (cIH)

Then W4, = Rie) C F; c T(n,a,
en Wiyl Ueew i(e) UEGW UJ€ [1,2n] (e )by (cIH) and the definition of T'(n,o, E) (n,a

To show ., WiDT(n,a, E). (w2)

We proceed by induction on the definition of T'(n, a, E).

- Clearly Ep(E) ={E}=WoC U, c, Wi

- Let £ € U,c, Win (o, a( +™)) NE; that is, for some i € [1,w) £ € WiN (o, a(+")) NE. Then
m(€) < oo and Ep(m(€)) = Frs1(€)  Ri(&) U (U0 Wo U U, cenm, Bils)) ©

(Usepo,q W) UWit1 CUse, Ws-

- Take [ €[1l,n)AE€( Uiau W) N (a,a( +™)) N (Class(l)\Class(l+1)); so

EeW;N(a,a(+"))N for some i € [1,w) and then

{)‘(l +1, f)} = Fl+1<§) c Rz(g) U ( U5€[o’i] Ws U Useng i(s Uée[o i ) U W1+1 C
U(SEw Ws.

-Take L€ [1,n) A€ (U, Wi) N (o, a( +")) N (Class(l)\Class(l + 1)). Then, just as in the
previous case, it follows f(I+1,8)(&) = f(I+1, Fi1+1(£))(§) = Frut141(8) C U, Ws.

The previous show that J,.,, Wi is closed under clauses a), b), ¢) and d) of the inductive

definition of T'(n, o, E). So T(n a,E)c .., W;and we have shown (w2).

1EW

Concluding, from (wl) and (w2) we get that J.

1EW

W;=T(n,a, E). (w3)

Done the previous, for e, 8€T(n,«a, E), we define the binary relation < as
e < B if and only if for some i € w, e € W; A 8 € R;(e). Moreover, let T be the transitive clo-
sure of <. Note that C is irreflexive and transitive. From now on, we work on the tree (T'(n, a,
E),C).

It is very easy to see (by induction on w), that Vi € wVe € W,.|W;| <w > |R;(e)|; in particular,
it follows that (T'(n,a, E), C ) is finitely branching. So, by Konigs lemma, to see that T'(n, a, E)
is finite, it suffices to show that every branch B of (T'(n,«a, E),C) is finite. (w4)

To show (w4).

Let B be an arbitrary branch of (T'(n,«, E),C ). Clearly E € BN (a, a( +™)) (because E is
the root of our tree) and so we define, £ := min (BN (a, a( +"))) (minimum with respect to the
usual order < in the ordinals). Moreover, by the very definition of , it follows that
& € W;\Wi4, for some i € w. Let B(§) := Bn Y W;. Note that £ € B implies that
BE)CT(ma6),  (wb)
because £ € T'(n,a, &) and T(n, «, ) is closed under the operations F1, ..., Fa,.

JEli+1,w)

Let p:=An—1,8)€T(n,a,&)NClass(n — 1) N[, a(+™)).
Clearly € €[, u(+"~1)).  (w6)

We have two cases:

Case p=a.

Then ¢ € (o, a( +"71)) and therefore T'(n — 1, «, £)b = 54T(n, a, €). But by Gen-
y proposition 5.

ThmIH T'(n — 1, «, §) is finite. So B() is finite, and subsequently, B is finite.

Case > o
Let C:={ocecu(+" Doe[p,u(+" 1) =0ceTn—1,u,m(u)UT(n—1,u, &)} We wil
need to show that T'(n, o, §) CC. (wT)
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In order to see that (w7) holds, we prove that C is closed under clauses a), b), ¢) and d) of
the inductive definition of T'(n, a, &).
- Clearly Ep(&§) ={&{YcT(n—1, p,m(p))UT(n—1, u,§), and so Ep(§) C C.
- Suppose 0 € C' N (a,a( +")) NE. We want to show that Ep(m(c)) C C.
Case 0 ¢ [u, u( +"~1)). Then o0 < p and then, by proposition 3.6, m(cs) < p. Therefore
Ep(m(o)) C pr and so Ep(m(c)) C C.
Case o € [p, u(+"71)). Then 0 € T(n — 1, p, m(p)) UT(n — 1, u, ) NE. Now, if o = p, then
clearly Ep(m(c)) CT(n—1, p,m(p)) CT(n—1, u,m(p))UT(n—1, u, §) and so Ep(m(s)) C C.
However, if o # p, then 0 € (T(n — 1, u,m(p)) UT(n — 1, u, £)) N (u, p( +"~1)) which imply, by
the definitions of T'(n — 1, p, m(u)) and T'(n — 1, u, £), that
Ep(m(o))CT(n—1, p,m(p)UT(n—1, u, §); subsequently Ep(m(o)) C C too.
- Suppose [ € [1,n) Ao e CN(a,a(+"))N(Class(l)\Class(l+1)). To show A(I+1,0)€eC.
Case o ¢ [, u(+"~1)). Then o < p and then A\(I+1,0) < p. So A(l+1,0)€C.
Case o € [p, u(+"71)). Ifl=n—1,theno=pand NI+ 1,0)=a < u;so NI+ 1,0) € C. If
l#n—1,thenle€([l,n—1)and o € (u, u(+"" 1)) N (T(n — 1, p,m(p)) UT(n — 1, u, £)). Note
this means, by the definitions of T'(n — 1, u, m(u)) and T'(n — 1, u, &), that
Al+1,0)e(T(n—1,p,m(p))UT(n—1, p,§)); subsequently, A(I+1,0) € C.
- Suppose [ € [1,n) Ao e CN(a,a(+"))N(Class(l)\Class(l +1)).
To show f(I+1,A(l4+1,0))(0)CC.
Case o ¢ [, u( +71)). Then o < p and then f(I + 1, (I +1,0))(0) C o + 1 < pu. Therefore
Fi+ 1,001 1,0))(0) CC.
Case o € [, p(+"1)). f I=n — 1, then 0 = p and p=max f(I + 1, \(l + 1, 0))(0); therefore
fA+1L,M1+1,0))(0)CC. If l%n—l then l€[1,n—1) and
o€ (p, u(+" NN (T(n—1, u,m(u))UT(n—1, u,&)). Then, by the definitions of
T(n=1, p, m()) and T(n— 1, g, £),
f+1,X(1+1,0))(0)C ( ( —1,u,m(u))UT(n—1,,u,§)); subsequently,
fU+1,X(1+1,0))(0) €

The previous shows that C' is closed under clauses a), b), ¢) and d) of the inductive defini-
tion of T'(n,a, &). Therefore (w7) holds.

Done the previous work, note
(al). B(&§)N]0,«] contains at most 1 element, because of (w5) and because every
BeT(n,a,&)N[0,a] is a leaf of T'(n,«, §).

(a2). (B(&)N(a, u)) =0, because < & =min (BN (a,a(+"))).
(a3). T(n, o, E)N[p, u(+"" 1)) CT(n—1, u,m(p))UT(n—1, u, &), because of (w7).

This way, B(£) = (B(£) N[0, a]) U(B(§) N (e, w) U(BE) N [p, u(+"1)))
(B(E)N[0,a]) U(T(n, o, &) N[, p(+"7 1)))b )

n 7(

(
(B)N[0,a])UT(n —1, u, m(u)) UT(n — 1, p, §). But by (al) and GenThmIH, the sets
B()N[0,a], T(n—1, u,m(p)) and T'(n — 1, p, 5) are finite. So B(¢) is finite, and therefore B is
finite. Finally, since this was shown for an arbitrary branch B of (T'(n, a, E), C ), then we have
shown (w4). O

C
by (a2) and (w5)

Proposition 5.6. Let k€ [1,n], a € Class(k) and t € (a, a( +*)).
Then Vs € [1,k].\(s,t) € T'(k,a,t) N ]a, a +F)).

Proof. Left to the reader. O

Proposition 5.7. Let k€ [l,n], a € Class(k) and t € (a, a( +¥)).
o Ift¢LimP, then T'(k,a,m(t))=T(k,a,t)
o Ifte(LimP)\E, then T'(k,a,m(t)) CT(k,,t)
o IfteRE, then T(k,a,m(t))=T(k,a,t)



5.2 THE T(n,a,t) SETs AND CLAUSE (2.1) OF THEOREM 3.26 93

Proof. Left to the reader. O

Proposition 5.8. Let k€ [1,n], a € Class(n) and t € [a( +F~1)(+F72)..(+2)(+1)2, a +F)).
Then

1. Uk, a,t) et \E=l(k, a, t) =mt.

2. 1(k,a,t) €4 NE —> Uk, o, £) € (AL, 1), .o A(k — 1,8)}.

Proof. Let a,t as stated.
1.
Suppose I(k, a, t) € t\E. Then I(k, o, t) <t <m(t) =m(l(k, a, t)) < Ik, a,t)2.
by corollary 2.4
(1%) y y
This implies, by theorem 2.3, I(k, «,t) € P. (2%)
Now, note it is impossible that I(k, «, t) < 7t, otherwise I(k, a, t)2 < 7t < t, which con-

because mt€P
tradicts (1*). So 7wt <I(k, a, t). Moreover, nt £ I(k, a, t), otherwise, since I(k, «, t) € P by (2%),
then we would have ¢ <I(k, a,t), which contradicts (1*). Thus nt=1(k, a, ).

2.

Suppose I(k, a, t) € t N E. Then there is j € [1, k) such that I(k, «, t) € Class(j)\Class(j + 1).
Consider e:= A(j,t). Since both I(k, a,t), e € Class(j) satisfy e <t > 1(k, a,t), then e > (k, o, t).
Now, suppose e > l(k, a, t). Then we have I(k, a,t) <e <t <m(t) =m(l(k, «,t)) which implies,
by proposition 3.6, I(k, a, t) € Class(j + 1). Contradiction. So e ¥ I(k, «, t). All the previous
shows e=1(k, o, t). O

Proposition 5.9. Let o € Class(n) and t € a(+"). Then (2.1.1), (2.1.2), (2.1.3) and (2.1.4) of
theorem 3.26 hold, that is:

(2.1.1) Ep(t) CT(n,a,t) and T(n,a,t) is finite.

(2.1.2) T(n,a,t+1)=T(n,a,t).

(2.1.8) a(+" 1) (+772) . (+2)(+1)2<t=T(n,a,n(n,a,t)) Na C T(n,a,t)Na.

(2.1.4) a(+" ") (+"2). () (+)2<t=T(n,a,l(n,a,t)) CT(n,a,t).

Proof.
(2.1.1)
Clear from remark 5.3 and proposition 5.5.

(2.1.2)
Note T'(n,a,t+ 1) and T'(n, «,t) are (both) the closure of Ep(t + 1) = Ep(¢) under clauses b), c)
and d) of remark 5.3; therefore T'(n,a,t+ 1) =T(n,a,t).

We show first (2.1.4)
Suppose t = a(+" 1) (+772) . (+2)(+1)2. If t=a(+""1)...(+1)2, then
I(n,a,t)=a(+""1)...(+1)2=t and clearly T'(n,a,l(n,a,t)) CT(n,a,t).

So suppose t > o +" 1) (+"72). . (+2)(+1)2.

If I(n,a,t)=t, then clearly T'(n,a,l(n,a,t)) CT(n,a,t).

So assume [(n,a,t) <t.

Case l(n,a,t) ¢ E.

Then, by proposition 5.8, I(n, o, t) = wt. But Ep(wt) C Ep(¢) and then, from the definition of
T(n, a, t), it follows that T'(n, «, t) is closed under clauses a), b), ¢) and d) of the definition of
T(n,o,l(n,a,t)). Thus T(n,a,l(n,a,t) CT(n,a,t).

Case l(n,a,t) €E.
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Then, by proposition 5.8, I(n, a, t) = A(j, t) for some j € [1, n). This and proposition 5.6
imply that I(n, «, t) € T'(n, «, t), which, subsequently, implies T'(n, «, l(n, a, t)) C T(n, o, t) by
proposition 5.4.

(2.1.3)
Suppose t > a(+" ") (+772)(+2)(+1)2. f t=a(+""1)...(+1)2, then
n(n,a,t) =1n,a,t)=a( +""1)..(+')2 =t and clearly T'(n, o, n(n, a,t)) Na C T(n,a,t) Na

So suppose t > a( +"71)(+772)...(+2)(+')2. Then T(n,a, n(n,a,t)) =
by proposition 3.21

T(n,a,m(l(n,a,t))) - T(n,a,l(n,a,t)); thus
by proposition 5.7
T(n, a, n(n, a, t)) Na C T(n, a, l(n, a, t)) N« C T(n, a, t) N a as we wanted to
by previous (2.1.4
show. o @14 g

5.3 Clause (2.2) of theorem 3.26

5.3.1 The Extension theorem

It is now time to provide the functions g(n, a, ¢). This is a task that takes considerable
effort, and in fact, in our way to achieve this, we provide what is maybe the most important the-
orem in this thesis: the extension theorem.

Theorem 5.10. (Extension theorem)

VjVeVoVp.

if j€[l,n]ANe,c€Class(j) ANe<oAp:eNE— o NEAp is a strictly increasing function, then
there exists a unique F:e(+7)NE — pleNE|U([o,0(+7))NE) such that

1. F is strictly increasing

2. F(e)=0

3. Flere=p

4. The function Hp: (e,e(+7)) — Hp[(e,e(+7))] C (o,0(+7)), t——t[F] is an

(<,+,-, <1, \x.w") isomorphism.

Vie[l,j].Ve€[e,e(+7))NE.e € Class(i) <= F(e) € Class(i).

6. Hris also an (+1),(+2),...,(+7~1) isomorphism.

7. If § =2, then Vi€ [2, j].Ve € Class(i) N [e,e(+7)).VE € (e,e(+%)) N Class(i — 1).
[, e)(E)={E1>...> Eq} <= [(i, F(e))(F(E)) ={F(E1) >...> F(Eq)}

8. If =2, then Vi€ [2, j].Vs € Class(i — 1) N[e,e(+7)).F(A\(i,s)) = ( F(s))

N

Proof. We proceed by induction on [1,n].

Base case j=1. Let ¢,0 € Class(1) Ae <o Ap:e NE — o NE A p strictly increasing.

We define F:e(+')NE — ple]U ([o,0(+1))NE) as F|.:=p, F(¢):=0.

Then clearly F satisfies 1, 2, 3, 5, 6, 7 and 8, and it is the only one function with domain
e(+1) NE satisfying 3 and 2. So it only rests to prove 4.

So consider the function Hg: (e,e(+1)) — (o,0(+1)), Hr(t) :=t[F].

Then Hp has such codomain and preserves < , 4+ , -, Az.w” according to the theorems we
know about general substitutions (propositions 3.12, 3.10 and 3.14).

So we only need to show that Hp preserves the <; relation:

Let a,b€ (s,e(+1)).

Then a, b ¢ E. Moreover, by propositions 3.12 and 3.10, a[F], b[F] € (F(¢), F(¢)( +')), and
therefore a[F], b[F| ¢ E either. (*1)
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We now show a <1 b = a[F] <1 b[F]. Suppose a <1 b. Then b < a2 (otherwise a <; a2 and
then a € E, which is contradictory with (*1)). So let £ € [1, &2) be such that b=a+ & So we

have a <1 b=a+ &, and this holds if and only if (by theorem 2.3) @ = w“ B for some S € (1,

a). This implies, by proposition 3.14, CL[ ] = (,«Jw£ B[F] = w‘”g[ -(81FD) with B[F] € (1,
a[F]), and therefore, by theorem 2.3 again, a[F] <ia[F]+ {[F] = (a+ &)[F] =b[F].

We now show a[F] <3 b[F] = a <1 b. Suppose a[F] <1 b[F|. Then b[F] < a[F]2 (otherwise
a[F] <1 a[F]2 and then a[F] € E, which is contradictory with (*1)). So let § € [1, a[F']2) be such
that b[F] = a[F] + § (note this equality and the fact that Ep(b) C Dom F' implies Ep(§) C Im F).
So we have a[F] <1 b[F]|=a[F]+ 4§, and this holds if and only if, by theorem 2.3,

.
CL[F] = w" "7 for some ~ € (1,a[F)) (again, note this equality and the fact that
Ep(a) € Dom F implies Ep(vy) C Im F'). This way, by proposition 3.12, a4 = CL[F] [F_l] =

wwéﬁ[F_l] = wwé[F_ OIET) with v[F~1] € (1, a[F][F~Y) = (1, a), and therefore, once

more by theorem 2.3, a <1 a+6[F Y =a[F|[F~ Y+ 0[F~ Y = (a[F]+0)[F Y| =b[F][F~]=b.
The previous shows the theorem holds for j=1.
Now, let j € (1,n] and suppose the theorem holds for any m € [1, j). (IH)

Let e,0 € Class(j) Ae <o Ap:eNE — o NE A p strictly increasing. We first show the fol-
lowing

Claim1:
For any E € [¢,e(+7))NClass(j — 1) there exists a unique pair (Fg, Ug) such that
i. Ug€Class(j—1)N[o,0(+7))
ii. Fg: E(+771)NE— Ug(+?~!)NE is an strictly increasing function
iii. FE(E) =0 and FE(E) = UE
iv. Fglene=p
v. The function Rp,: (g, E(+771)) — Rp,l(e, E(+77 )] C (o, Up(+771)), t —> t[Fg] is
n(<,+,:,<1,\x.w?®) isomorphism.
vi. Vie[l,jl.Ve€ e, E(+77 1)) NE.e € Class(i) <= Fg(e) € Class(i).
vil. Rp,isan (+%),...,(+771) isomorphism
viii. If j>2 then
Vi €[2,j].Ve € Class(i)N[e, E(+771)).Vs € (e,e(+*))NE(+7~1)NClass(i — 1).
fi,e)(s)={s1>...>sr} <= f(i, F(e))(Fr(s)) ={Fg(s1) >...> Fr(sk)}
ix. If j>2, then Vi € [2, j].¥s € Class(i — 1) N[, E(+7~1)).Fg(\(i,5)) = A\(i, Fr(s))

We warn the reader that the proof of Claiml is very long and it will require that we prove
twelve assertions.

We proceed by a Side Induction on the well order ([e,e(+7)) N Class(j —1),<).

Case E=c€[e,e(+7))NClass(j —1). Let Ug:=0. Our (IH) implies the existence of a func-
tion Fg such that 1, 2, 3, 4, 5, 6, 7 and 8 hold with respect to E, Ug € Class(j — 1); therefore i,
ii, iii, iv, v, vi, vii, viii and ix hold for the pair (Fg, Ug). Now, suppose (Gg, VE) is another pair
such that i, ii, iii, iv, v, vi, vii, viii and ix hold. Then, by iii, Ve =Gg(E) =0 = Fg(F)=Ug, and
Gep:E(+771)NE — Ug(+7~')NE is a function satisfying 1, 2, 3, 4, 5, 6, 7 and 8 with respect
to E,Ug € Class(j — 1); thus, since by our (IH) there is only one such a function, Gg = Fg.

Let’s prove now the general case of Claiml. Let F € (g,e( +7 )) N Class(j — 1) and suppose
Claim1 holds for [e,e(+7))NClass(j — 1) N E. (SIH)
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Consider A:=[e,e(+7))NClass(j —1)NE and G:= [Jg 4 Fs.
Assertion0: G: ENE— o(+7)NE is a function.

Proof of Assertion0:

Notice G € OR x OR is a binary relation with Dom G = {a € OR|3b.(a, b) € G} =
Ugea Dom Fs=Jg. 4 S(+/7')NE)=ENE. Moreover, Range G = {b € OR|3a.(a,b) € G} =
Ugea Range Fs = Ugey Fs[Dom Fs] = Uge s Fs[S(+ 1) NE] C Ugey Us(+71)NEC
o(+7)NE.

The previous paragraph shows that G is a binary relation with G: ENE — o(+7)NE. Let’s
see now that G is a function. Note we just need to show that for any a, b € A, F, and F; are
compatible, that is, for any « € Dom F, N Dom F;,, F,(z) = Fp(x).

So let a,b € A, and x € Dom F, N Dom F;, be arbitrary. If a =b then F, = F}, because by our
(SIH), the pair (F,, U,) is unique. So without loss of generality, suppose a < b. Notice then the
following:

el. a(+/71)<band so a(+'71)eb(+7/71)NE=Dom F,.

02. Fy(a), Fy(a(+771))eClass(j —1)NIm Fy, C Class(j — 1) N o, o( +7)).

o3. Fy(a(+/71))=Fy(a)(+/ 7).

od. Vgea(+'")NE.Fy(q) eENFyla(+7 1)) =EN (Fy(a)(+/1)). This holds because
Vz € b( +7"1)NE.E > Fy(z) = 2[Fy] = Hp,(z), because of 3. and because Hp, is an < -iso-
morphism.

5. By o4, Fy|,1i-1yqg a( +771) NE — Fy(a)( +7 7" ) NE; moreover, it is clear this func-
tion is strictly increasing.

6. Iply1i-1yne(e) =0 and Fyl,4i-1yqg(a) = Fi(a)

7. Fb|a(+jfl)mE\smﬂ<:=Fb|smE:p

8. Because of our (SIH),

Vi€ [1, jlVe € [, a( 4771 )) N E.e € Class(i) <= Fy|,(1s-1)n(e) € Class(i) and the function
RFbla(+j—1>n]E: (e;a(+771)) — RFb‘a(Jrj—l)mE[(e? a(+ =) C (o, Fy(a)(+771)),
t— t[Fylo(1i-1yam] 18 an (<, 4, -, <1, Az.w”, (+1),..., (+771)) isomorphism.
¢9. If j >2, then
Vi€ [2, j].Ve € Class(i) N [e,a( +771)).Vs € (e,e(+)) Na(+7~1) N Class(i — 1).
fl,e)(s)={s1>...> sk} <= f(i, Fp(e))(Fp(s)) ={Fp(s1) > ... > Fp(s)}

010. If j>2.Vie[2,4].Vs € Class(i — 1) N[e,a( +771)).Fy(A(i, s)) = A(i, Fy(s))

So, for a € [e,e( +7)) N Class(j — 1) and due to o1, 82, @3, ¢4, o5, 6, 7, 3, 09 and 10, the
pairs (Fy, Us) and (Fp|q(4i-1)ng; Fy(a)) are two witnesses of i, ii, ii, iv, v, vi, vii, viii and ix of
Claim1. Therefore, since by our (SIH) such pairs are unique, Fy, = Fp|y(4i-1)qg and U, = Fy(a).
From these equalities follows immediately that F;, and F} are compatible.

Hence G: ENE — o(+7)NE is a function. This proves Assertion0.

Assertionl: For any a € A=[e,e(+7))NClass(j — 1) N E there exists
y € Class(j — 1) N[0, o(+7)) such that G|,i-1)qp: a( +771) NE — y N E satisfies i, i, iii,
iv, v, vi, vii, viii and ix.

Proof of Assertionl:
For a€ A, G|yyi-1ynp=Fa and y = U,( +771): so by our (SIH), F, satisfies i, ii, iii, iv, v, vi,
vii, viii and ix. This proves Assertionl.

Consider now the following: Let ¢ := o (+7). By Assertion0 and Assertionl follows
G:ENE — ¢NEis a strictly increasing function and since E € Class(j — 1) 3 ¢ and E < ¢,
then by our (IH) there exists a unique extension ©: E( +7"1)NE — ¢o( +771)NE of G such
that 1, 2, 3, 4, 5, 6, 7 and 8 hold with respect to E and ¢.

This way, for f(j,e)(E)={E=E\>FE,...> E,}, we define
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€ otherwise ’
Q:={s€e(o,0(+7))NClass(j —1)|G(J1) <sAm(s)[g(j —1,s,¢)] =m(E)[O]} and
p:=min Q.

Of course, for p to make sense, we need to see that @ # ). Let’s see this. Since
e<m(E)O]+1<n(j—1,0,mE)O]) +1< p(+771) < m(yp), then, by <; -connectedness
and (6) of GenThmIH we get » </~ n(j — 1, ¢, m(E)[O]) + 1; but this implies, by <’/~!-con-
nectedness (that is, by (3) of GenThmIH) ¢ </~! m(E)[©] + 1. Therefore, by (4) of Gen-
ThmIH , there exists a sequence (¢;);er C Class(j — 1) N ¢ such that
Vie ILT(j — 1, o, m(E)[B]) N ¢ C v, piy and ¢; <1 m(E)[O][g(j — 1, ¢, ¢;)]. Since the
latter relations means Vi € I.m(E)[O][g(j — 1, ©, vi)] <m(pi), then, using (2.3.2) of GenThmIH,
we conclude Vi € I.T(j — 1,0, m(E)[B]) Ny C vi, pi—r ¢ and m(E)[O] <m(pi)[g(j — 1, @i, ©)].

i >
Jl::{ Ey if ¢g>2

From the previous line follows the existence of some ig € I such that ¢;,€ Q. So Q # 0.

As a final remark before our next assertion, we remind the reader that we know that
E=min{e€ (¢,e(+7))NClass(j — 1)|J1<e< EAm(e)g(j — 1,e, E)] > m(E)} by (1.3.6) of
GenThmIH (for the case j <n —1) and by corollary 5.2 (for the case j=n).

Assertion2: Let a € Class(j — 1), a < E and b € (0, ¢) N Class(j — 1) be arbitrary and sup-
pose Glanm:a NE — bNE. Let ®:a(+7"1)NE — b(+771) NE be the only one extension of
Glang satisfying 1, 2, 3, 4, 5, 6, 7 and 8 with respect to a and b and which is obtained by our
(IH) applied to a, b and G|sng. Then g(j —1,b,9)0o®=0o0g(j—1,a,FE).

Proof of Assertion2:

Let Pi:=g(j —1,b,9)0® and P;:=0og(j—1,a,E). Then
Py, Pya(+77 1) NE — p(+771)NE are functions satisfying:

1*. Py and P, are strictly increasing (they are composition of strictly increasing functions);

2. Pi(a)=g(j —1,b,9)(®(a)) =g(j — L,b, p)(b) = ¢ =O(E) =O(y(j — 1, a, E)(a)) = Ps(a);

3%, Ye€anB.Pi(e) = g(j — 1,b, 0)(B(e)) = g(j — 1, b, 9)(G(e)) = G(¢) and
VecaNE.Pye)=0(g(j — 1,a,E)( )) =0O(e) =G(e); that is, Pi|ang = GlanE= PslanE

1. Hpy (a,0(+91)) — Hp[(a, (49~ )] C (9, 0(+5 1)), £+ t[Py] is an
(<,+,,<1, \x.w®) isomorphism. This is because for t € (a,a(+771)),
tlP]) =tlg(j — 1,0, ) o @] =t[®][g(j — 1, b, )], that is, Hp, = Hy(j_1,4,4) © He and since
Hg and Hyj_1,4) are (<,+,-, <1, Ar.w®) isomorphisms, then Hp, is (<, +,-, <1, Az.w”) iso-
morphism.

Analogously, Hp,: (a,a(+771)) — Hp,[(a,a(+771))] C (¢, o(+771)), t— t[P] is an
(<,4,,<1, \z.w") isomorphism, because Hp, = HooHy(j_1,4,5)

5% Vie[l,j—1].Ve€[a,a(+771)) NE.e € Class(i) <= Pi(e) € Class(i) > Pa(e).

6*. Hp, and Hp, are also (+'), ..., (4+77?) isomorphisms, because Hp, = Hy(;_1,p,0) © Ho
and Hp,= Hgo Hy(j_1,q,e) and because Hyj_1,4), Ho, Ho and Hyj_1,4,¢) are
(+1),...,(+772) isomorphisms.

T*. Vi€ [2,5—1].Vs € Class(i) N[a,a( +771)).VZ € (s,s(+")) N Class(i — 1).

F6,5)(Z) = {24 > . > Za} = (i, (5)(B(Z)) = {B(Z1) > .. > B(Za)} =
Fir g —1,b, ) (@(5) (90— 1,b, 9)(@(2))) =

{9(7 —1,b,0)(2(Z1)) >...> g(j — 1,b, 0)(2(Z4)) } <=

F(i Pi() (PU(Z) = {PA(Z0) > ... > Pi(Za)}.

Analogously7 f( )( ) {Z1>...>Zd}<:>f(i,PQ(S))(PQ(Z)):{PQ(Zl)>...>P2(Zd)}.

8*%. Vie[2,j—1].Vse€Class(i — 1) N[a,a( +771)).

Pi(Ai,8)) =9(7 — 1,0, 0)(R(A(i,5))) = 9(j — 1,0, 0)(A(i, B(5))) = A2, 9(4 — 1, b, ©)(D(5))) =
A(i, Pi(s)).

Analogously Py(\(Z,8)) = A(4, Pa(s)).

Now, according to our IH applied to a € Class(j — 1) 3 ¢ and G|anr: a NE — ¢ NE, there is
exactly one extension of Gl,ng to a( +771)NE — ¢( +771) N E satisfying 1%, 2%, 3*, 4% 5%
6%, 7* and 8*. Thus P, = P>.

So we have shown Assertion2.
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Assertion3.
Let a € (e,e(+7))NENClass(j — 1) with f(j,¢)(a)={a=a1>az>...>a,}. We define
Tala) = G(az) if m>2
S otherwise ’
Ki(a):={e € (0, 0(+7)) N Class(j — 1)|J2(a) < e < G(a) Am(e)[g(j — 1, e, G(a))] = m(G(a))},
and
Ks(a):={e€(o,0(+7))NClass(j —1)|Jo(a) <eAm(e)[g(j — 1, e, )] Zm(a)g(j — 1,a, E)][O]}.
Then G(a)=min K1(a) = min Ks(a).

Proof of Assertion3:

Since f(j,e)(a)={a=a1>a2>...>an}, then f(j,G(€))(G(a))
{G(a)=G(a1) > G(az) > ... > G(am)}. (A0*).
Therefore, G(a) = min Kj(a) holds because of (1.3.6) of GenThmIH (for the case j < n — 1)
and because of corollary 5.2 (for the case j=mn).

Assertionl

On the other hand, using Assertion2 with a, b:=G(a) and
®: = Glyqi-yre ol 1) NE — G(a)(+771 ) NE (the only one extension of G|ynE satis-
fying 1, 2, 3, 4, 5, 6, 7 and 8 with respect to a and G(a) and which is obtained by our (IH)
applied to a, G(a) and G|,nE), we obtain the equality
9(j —1,G(a), p) o Glyyi-1yn=00g(j — 1,a, E). (A1%*). This will be used below.

Now let’s see that G(a) € K2(a). By (A0*) we know Js(a) < G(a). Moreover, note
m(G(a))lg(j —1,G(a), )], =

— (@) (Gl ylaC— L Gl )] =
—m(a)lg(j~ 1. G( ) )0 Glur-yosl,_ =
=m(a)[Oog(j—1,a,E)=m(a)[g(j —1,a, E)]|[©]. This shows G(a) € Ka(a).

Now, to prove that G(a) min Ko(a) it suffices to show that =3¢ € G(a) N K (t).
Suppose 3¢ € G(a) N K5(t). Then Ja(a) < £ < G(a) and

m(§)[g(i —1,& )l Z2mla)g(j —1,a, E)][O] =[O0 g(j —1,a, E)].  (A3¥).

But m(§)[g(j —1,&, )l =m(¢ )[ (j—=1,G(a),p)og(i —1,§ G(a))]=

=m(&)[g(j —1,¢,G(a)llg(j —1,G(a), ¢)] and

©oyg(j—1,a, E)b (AI*)g(j - 1 G(a), p) © G|qy(4i-1)ng; thus, from this equalities and (A3*)
we get

m(&)[g(j —1,§,G(a))llg(i —1,G(a), p)] = m(a)g(j — 1,G(a), ) 0 Gla(ri—1)ne] =
m(@)[Glari-nnellg(l —1,Gla), 0)] = m(G(a))lg(s —1,Gla), )]

But this means m(§)[g(j — 1, &, G(a))] = m(G(a)), that is, £ € G(a) N Ki(a). Contradiction.
Hence =3¢ € G(a) N K3(t), and therefore G(a) =min Ks(a).

This concludes the proof of Assertion3.
Assertiond: Va€ A=[e,e(+7))NClass(j — 1) N E.G(a) <

Proof of Assertion4:

We proceed by induction on (A4, <).

Take a € A and suppose Vb€ ANa.G(b) < p. (IHAssertion4)

If a < Jy, then G(a) < G(J1) < p. So suppose a € (J1, F)NClass(j —1).
Take f(j,e)={a=a1>...>an}. Then, by Assertion3, G(a)=min Ks(a), (A4%*)
where

Gl(as if m>2

Jala) = { GEE)):O' otherwise ’
Kala) = {e € (0,0(+7)) N Class(j — )| a(a) < e Am(e) g(j — L, e, 9)] > m(a)lg(j — 1, a, B)][E]}.
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Let ®:a(+"1)NE — p(+7~1)NE be the only one extension of G|, satisfying 1, 2, 3, 4,
5, 6, 7 and 8 with respect to a and p and which is obtained by our (IH) applied to a, p and
G|aﬂE~

We assure m(a)[®] <m(p). (A5%*)
Suppose the opposite, that m(a)[®] = m(p). Then
m(a)[®] =m(p) <
m(a)lg(j —1,p,0) 0@l =m(a)[®][g(j —1,p, )] Zm(p)[g(j — L, p.p)].  (A6%).

But m(p)[g(j — 1, p, ¢)] > m(E)[©] and g(j —1,p,)0® =

by definition of p by Assertion2
Oog(j—1,a,E), so these observations and (A6*) imply that
m(a)lg(j —1,a, E)|[O] =m(a)[©0 g(j —1,a, E)] = m(E)[O]. (AT*)

On the other hand, since a € (J1, E) N Class(j — 1) and
E=min{e€ (c,e(+7))NClass(j —1)|J1<e<EAm(e)[g(j — 1,e, E)] =m(E)}, then
m(a)[g(j — 1, a, E)] < m(E), and so m(a)[g(j — 1, a, E)][O] < m(E)[O]. This is a clear contra-
diction with (A7*). Therefore (A5*) holds.

To show that n(j — 1, p, m(a)[®]) =m(a)[P]. (A8%*)

Let vy :=maxEp(m(a)), vo:=wv1(+') and for
kel,j—2], vgr1:=A(k+1,vg). Then vj_1=a<vj_2<... <ve <1 <m(a) <w,
Vie[l, j —1].v; € Class(i) and Vi € [1, j — 1].m(v;) < m(a); this implies
D(vj_1) = p < D(vj_2) < ... < P(v2) < (v1) < m(a)[P] < P(wo), Vi € [1, j — 1].®(v;) € Class(s)
and Vi €[1, j — 1].v;# a = m(P(v;)) = m(v;)[P] < m(a)[P].

Let € € (p,m(a)[®]]. If £€{P(vj_1),..., P(v1)}, then m(§) < m(a)[P]. Moreover, if
§ ¢ {®(vj_1), ..., ®(v1)}, then there exist some [ € [1, j — 1] such that § € (®(v;), ®(vi-1)));
note this implies ¢ ¢ Class(l) and therefore m(&) < ®(v(—1)) (since m(§) = ®(v—1)) would imply
& € Class(l)). Now we have two cases: Case [ > 2. Then
m(§) < ®(vi-1))) < m(vg—1))[P] < m(a)[®]. Casel=1. If £ ¢ P, then m(§) = £ < m(a)[®]. If
¢ € P, then ¢ =cnr w! for some R, m(a) =cnr w'y1 + ... + w¥iy; for some Y;, yi and so
m(a)[®] =cnrw Py + ...+ w®ly, If R <Y;[®], then
m(€) =& +df <wl+wlt <P <WM®ly 4 WYy —m(a)[®]. If R=Y;[®], then
¢ = w"1[®]; but this and the facts that m(w"") = W + dw’* < m(a) and d(W"®) = (dw¥)[®]
(the latter holds because for Y; =cnp w1t Fw ka qi,V1 — K, and so (dw?1)[®] = K4[®] =

o™t k) = ok SRR i Y0 imply that

m(€) = & +de =" 4+ dMI = WN[P] + (dw)[@] = (W1 + dw) [@] <m(a) [@].
The previous shows V& € (p, m ( )[@]].m (&) < m(a)[®]. So n(j —1, p, m(a)[®]) = m(a)[®P] and
(A8*) holds.

We continue with the proof of Assertion4. From (A8*) and (A5*) we have that
n(i =1, p,m(a)[®]) + 1=m(a)[®]+ 1< m(p); then, by <;-connectedness
p<in(j—1,p,m(a)[®])+ 1 which, by (6) of GenThmIH, implies
p<I7t (5 =1, p,m(a)[®]) + 1 = m(a)[®] + 1. Hence, by use of (4) of GenThmIH we obtain a
sequence (p;);er C pN Class(j — 1) such that pi—p and Vi€ I.m(p:;)[g(5 — 1, pi, p)] = m(a)[P];

this implies ¥i € Lm(p)la(j — 1, pi, pllo(i — 1 pr )] = m(@)[®llgG— L, p )] (A%,
But note that for any i € I, m(pi)[g(j 1, pi, )] = mlp)lg(d — 1, pi, p)llg(G — 1, p, ¢)] and
m(a)[®][g(j =1, p, ©)] =m(a)[g(j — 1, p, ¢) o<1>] =  m(a)®og(j—1a E)=

by Assertion2
m(a)[g(j —1,a, E)][©]; this way, (A9*) can be restated as: there is a sequence
(pi)ier C pNClass(j — 1) such that pi—rp and

vie Lm(pi)lg(i =1, pi, )] Zm(a)lg(j —1,a, E)][O]. (A10%).
Finally, since € € A N a and for the case f(j,¢e)(a) ={a=a1>... > an} with m > 2 it also
holds as € ANa, then by our (IHAssertion4), Ja(a) < p. This and (AlO*) imply that the set
pN Ks(a) is confinal in p. Therefore, since by (A4*), G(a)=min Ks(a), then
G(a) € pN Ks(a). Hence G(a) < p
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This proves Assertion4.
Assertion5: G: ENE— pNE

Proof of Assertion5:

Case E ¢ Lim(Class(j — 1)).

Then -Vl € [e, E) N Class(j — 1)3r € Class(j — 1) N E.l <r and so [:=max [e, E) N Class(j — 1)
exists. This way, I(+/7')=F and G=J4. 4 Fs=F. From this and our (SIH) we get that
(E;, Uy) is such that U € [0, 0( +7)) N Class(j — 1) and Fi: ENE — U)(+/"1)NEC pNE,
where U;(+771)NE C pNE holds because p > G(l)=Fy(I)=U, and so Uj(+771) < p.

by Assertion4
Case F € Lim(Class(j — 1)).
Let e€ ENE. Since F € Lim(Class(j — 1)), then there exists
a€ EN(Class(j—1)) such that e <a. Since we already know that G is increasing, then
Ge)<G(a)<p
This concludes the proof of Assertion5.

We continue with the proof of Claiml. Let Ug:= p and Fg: E(+7")NE — Ug(+"1)NE
be the only one function that is extension of the function G: ENE — Ug NE which is obtained
by our (IH) applied to E,Ug € Class(j — 1), E < Ug and G. According to our (IH), Fg satisfies
1,2, 3,4, 5, 6, 7 and 8 with respect to E € Class(j — 1) and Ug € Class(j — 1). (B1%*)

Assertion6: m(FE)[Fg]=m(p) =m(Fg(E))

Proof of Assertion6:

The right hand side equality is clear, because Fg(F)= p. So we only need to prove left hand
side equality.

First we show m(E)[Fg] # m(p). Suppose m(E)[Fg] >m(p).

Then m(E)[g(j — 1, p, ¢) o Fe] =m(E)[Fg][9(j — 1, p, )] > m(p)[9(j — 1, p, ¢)], but since by
Assertion2 g(j —1,p,p) 0o Fp=0o0g(j—1,E,E)=0, then m(E)[©] >m(p)[g(j — 1, p, ¢)]. Con-
tradiction, because by definition p=min Q € Q.

To show that n(j — 1, p, m(E)[Fg]) =m(E)[Fg]. (B2%*)

The proof is essentially the same as the proof of (A8%*):
Let vy :=maxEp(m(FE)), vo:=v1(+') and for
kell,j—2], vgr1:=A(k+1,v;). Then v;_1=E<v;_2<...<va< v <m(E) <y,
Vie([l,j—1].v; € Class(i) and Vi € [1, j — 1].m(v;) <m(E); this implies
Fr(vj—1)=p< Fr(vj_2) <...< Fg(vi) <m(E)[FEg|] < Fe(v),
Viel,j—1].Fg(v;) € Class(i) and

Let £ € (p, m(E)[Fgl]. If £€{Fr(vj-1),..., Fe(v1)}, then m(&) <m(E)[Fg]. Moreover, if
E¢{Fe(vj_1),..., Fg(v1)}, then there exist some [ € [1, j — 1] such that
¢ € (Fp(u), Fe(vq—1))); this implies § ¢ Class(l) and therefore m(§) < Fg(vi—1)) (since

(&) = Fe(v(—1)) would imply & € Class(l)). Now we have two cases: Case [ > 2. Then

m(&) < FE(v(l 1)) <m(vi—1)[Fe] <m(E)[Fg]. Case l=1. If {¢ P, then
m(€) = & <m(EB)[Fg]. If £ €P, then ¢ =cnr w! for some R, m(E) =cxr w91 + ... + w¥iy, for
some Y;, yi and so m(E)[Fg] :(;pryl[FE]yl +... —|—le[FE]yl. If R<Y1[Fg], then
m(€) = € + dé <wh + Wl < W FEl < NFEly, 4 GVIFEly, — m(E)[Fg). If R =Y;[Fg], then
¢ = wY1[Fg]; this and the facts that m(w"?) = WY + dw" < m(E) and d(w 1 Fe)) = (dw¥)[Fg]
imply that m(&) = ¢ + d¢ = wVFEl p qu¥ilFel = (WY1 4 dw¥)[F] < m(E)[Fg).

The previous shows V¢ € (p, m(E)[Fg|.m(&) < m(E)[Fg], from which follows
n(j =1, p,m(E)[Fg]) =m(E)[Fg|. Hence (B2*) holds.

S
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Now we show m(E)[Fg] £ m(p). Suppose m(E)[Fg] <m(p). This implies, using (B2*),
<1 -connectedness and (6) of GenThmlIH, that p </~! m(E)[Fg] + 1. But then, by (4) of

GenThmlIH, there exists a sequence (p;);er C Class(j — 1) N p such that
Vie I.T(j — 1, p, m(E)[Fg]) N p C pi, pic—pand pi < m(E)[Fellg(j — 1, p, pi)] < m(ps).
Hence, there exists ig € I such that p;, > G(J1). Let ¢:= p;,. Note then that
m(E)[Fallg(j — 1, p, )] < m() implies
m(E)[Fg] = m(E)[FEllg(7 — 1, p, ¥)]9(G — L. ¥, p)] < m(¥)[g(j — 1, ¥, p)], which subse-
quently implies
m(E)[Fellg(j — 1, p, @) <m(P)[g(j = 1, ¥, p)llg(G = 1, p, 9)] = m(¥)[g(j — 1, ¥, ¢)]. But
since by Assertion2 g(j —1,p,9)0o Fg=0o0g(j — 1, E, F) =0, then the previous is
m(E)[©] < m(¥)[g(j — 1, ¥, ¢)]. This shows ¢ € Q@ N p. Contradiction because p = min Q.
Thus m(E)[Fg] £ m(p).

Hence, from m(E)[Fg] # m(p) and m(E)[Fg] £ m(p) we conclude m(E)[Fg]=m(p).

This proves Assertion6.

Assertion7: (Fg,Ug) satisfies i, ii, iii, iv, vi and ix of Claiml.

Proof of AssertionT:

i*. Ug€Class(j —1)No,o(+7))

ii*. Fp: E(+771)NE — Ug(+7 1) NE is strictly increasing (because of (B1%)).

ili*. Fp(e)=G(e) =0 and Fg(F)=Ug (this last equality holds because of (B1*)).

iv¥. FE |sr‘|]E - G|sﬂ]E =P

vi*, Vi € [1, j].Ve € [e, E(+771)) NE.e € Class(i) <= Fg(e) € Class(i). It is easy to see this
holds: Let i €[1,j] and e€ e, E(+771))NE.

Case e € [, E)NE. Then e € Class(i) < G(e) € Class(i) <= Fg(e) € Class(i).
Case e€ [E,E(+771))NE. Then e € Class(i) <= e € Class(i) Ai € [1,j — 1]
Fg(e) € Class(i).

ix*. If j > 2, then Vi € [2, j].Vs € Class(i — 1) N [e, E( +771)).Fr(A(i, 8)) = A(i, Fr(s)). It is
easy to see this holds: Suppose j >2 and let i € [2, j] and s € Class(i — 1) N [e, E(+771)) be arbi-
trary.

Case s€[¢, E)NE. Then A(i,s) € e, E)NE and
Fp(A(i, s)) = G(A(i,5)) = A(i, G(s)) = A4, Fia(s))-
Case s€ [E,E(+771))NE. Then Fg(A(i,s)) = A(i, Fs(s)) because of (B1*).

The previous proves Assertion?7.

—
by (B1%)

Assertion8: (F,Ug) satisfies v of Claiml.

Proof of Assertion8:

v¥*. We assure the function Rp,: (¢, E(+77)) — Rp,(e, E(+771))] C (o, Up(+771)),
t—t[Fg]isan (<,+,-, <1, Az.w”) isomorphism.

Note Rp, preserves <,+,-,A\r.w® because Fg: E(+771)NE — Ug(+7~!)NE is an strictly
increasing function and because of the general properties we know about substitutions (proposi-
tions 3.12, 3.10 and 3.14). So we only have to see that Rp, preserves <; too: Let z, y € (e,
E(+771)) with z <y.

First, we assure r <; y<= <1 y< EVE<Lz<1y. (B3*).

The reason of (B3*) is that  <; y with < E < y is impossible: Assume x <; y Az < E < y.
Then z € Class(j) by proposition 3.6. But this is a contradiction, because
z€(e, BE(+771))C(e,e(+7)) and (g,e(+7)) NClass(j) =0. Therefore (B3*) holds.

Now, suppose x <1 y. By (B3*) we have three cases:

Case x <1 y < E. Then there exists a € Class(j — 1) N [e, E) such that z, y € (¢, a( +771));
moreover, by Assertionl, the function G|,(ys-1)ng = FE|q(45-1)qg is such that
RFE\aHj—lmE: (e,a(+771)) — RFE\aHj—l)mE[(ga a(+71))], te— t{FE|a(+i-1)nE] is an
(<,+,, <1, Ar.w?) isomorphism. So z[Fg|q(yi-1)qg] <1 Y[FE|o+i-1)nEl <= 2[FE] <1 y[FE].
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Case E<x<1y. Then z,y€ (E,E(+771)), and since by (B1*) the function
Hpy: (B, E(+771)) — Hp [(E, B(+771))], t—> t[Fg] isan ( <, +, -, <1, Az.w") isomor-
phism, then x[Fg| <1 y[Fg|.

Case E=x<;y. Then E<y<m(E), and then

by Assertion6

Suppose = £1y. We have four cases:

Case © < y < E. Then there exists a € Class(j — 1) N [, E) such that z, y € (¢, a( +771));
moreover, by Assertionl, the function G|,(ys-1)ng = FE|q(45-1)qE is such that

Fil,i-1)ns (e, a(+9- 1))—>RFE‘ i 1)NE[(E a(+7=1))], t—t[Fply(4i-1)ngl is an
(<,+,, <1, Az.w?) isomorphism. So z[Fg|q(ti-1)ng] 1 YIFE|a(+i-1)nEl <= 2[FE] £1 y[FE].

Case E<x <y. Then z,y € (E,E(+771)), and since by (B1*) the function
Hpy: (B, E(+771)) — Hp [(E, B(+771))], t—> t[Fg] isan ( <, +, -, <1, Az.w") isomor-
phism, then x[Fg| £1 y[FEg|.

Case v < E <y. Then z[Fg| < E[Fg| = Fr(E) = p < y[Fgl; that is, z[Fg] € (o, p) C (o,0(+7))
and y[Fg|] € [p, p(+771)). So z[Fg| ¢ Class(j) and from all this, just as in the proof of (B3*), it
follows x[Fg| <1 y[FE.

Case E =z < y. This means E < m(E) < y, and then Fg(E) = E[Fg] < m(E)[Fg| < y[Fg].
But by Assertion6 m(E)[Fg]=m(Fg(FE)), so the previous inequality is
Fg(FE)=E|[Fg]<m(Fg(E)) < y[Fg], which means z[Fg| <1 y[FE].

This proves Assertion8.

Assertion9: (Fg,Ug) satisfies vii of Claim]1.
vii*. The function Rp,: (e, E(+771)) — Rpy[(e, E(+7 1)) C (o, Ur(+771)),
t—— t[Fg]isan (+!),...,(+771) isomorphism.

Proof of Assertion9:

Let i€ [l,j —1] and e € [e, E(+771)) N Class(i) such that e( +%) € (e, E(+771)). We have
some cases:
Case e(+') € (¢, E). Then there exists a € Class(j — 1) N (¢, E) such that
e(+')€a(+771)NE and then

(e(+NIFEl = (e(+)Clas-1nl, = (€lClars-nel) (+1) = (elFe)(+1).
Case e(+') € (E, E(+/71)). Then (6(+i))[FE]by B (e[FE)(+")-
Case e(+')=FE. Then i=j — 1, because E € Class(j — 1) implies

VI e [l,j—2].E € Lim Class(l). But we know E=e(+7~!) implies
m(E)=E(+772)(+773)...(+2)(+"')2 and then, since the function

O:E(+7"1)NE — ¢(+771)NE is an extension of G that satisfies 1, 2, 3, 4, 5, 6, 7 and 8
with respect to E and ¢, we have

m(B)[0] = (B(+72)(+7-9)...(+2)(+1)2)[6] = (B[O])(+72)(+7=3)...(+2)(+1)2 =
() (73 () (+1)2. (B4*).

On the other hand, we know
E:min{se(&E(—&—f))ﬂClass(j—1)|J1<8<E/\m(s)[g(j—1,s,E)]>m(E)}:

=min{se€(e,e(+7))NClass(j —1)|[J1i<s<EA

m(s)[g(j — 1,5, B)] > E(+772)(+7%)...(+2)(+1)2}.

But §:= Ji(+77") € (J1, E] N Class(j — 1) is such that m(8) =d(+/~2)(+/7%)...(+%)(+')2
and m(0)[g(j — 1,0, E)] = ((+/ ") (+7%)..(+*)(+1)2)[9(j — 1,0, E)] =
(8lg(j — 1,6, )])(+ A7) () ()2 =EB(+72)(+7?)..(+2)(+1)2. From this
follows E=0=J1(+771) and J; =e. (B5%*)

Now, by definition,



5.3 CLAUSE (2.2) OF THEOREM 3.26 103

Q={s€(o,0(+7))NClass(j — 1)|G(J1) <sAm(s)[g(j —1,s,0)] = m(E)[@]}by B
={s€(o,0(+7))NClass(j — 1)|G(J1) <sA ‘ .
o om(s)[g( = 1,8, 0)] = o(H ) (7). (F2)(+)2)
But £:=G(J1)(+7 1) € (G(J1),0(+7))NClass(j — 1) is such that
() = E(+-2)(+973)...(+2)(+1)2 and
()9~ 1, 9)] = (6(+2)(+-2)..(+2)(+1)2)[gf ~ 1,&, )] =
(€9 = L& @D+ 72)(+72)(+2)(+1)2=o(+772)(+7 7 )..(+?)(+1)2. From this
follows G(J1)(+/ 1) =¢=min Q= p. (B6*)

Finally, from (B5*) and (B6*) we have that
e(+I~)[Fg]=Ji(+7 1 )[FE] =E[Fg|=p=G(N)(+'~1)=, because Fg extends G,
=Fp(J)(+77 1) = (N[Fe)(+7 1) = (e[FED(+ 7).

All our previous work shows Assertion9.

Assertion10: (Fg,Ug) satisfies viii of Claim1, that is:

viii*. If j>2, then
Vi€ [2,j].Vee Class(i)N[e, E(+771)).Vs € (e,e(+*))NE(+771)NClass(i — 1).
f,e)(s)={s1>...> s} < f(i, Fg(e))(Fr(s)) ={Fg(s1) >...> Fg(sk) }.

Proof of Assertionl0:
Suppose j =2, i€2,j], e€Class(i)N[e, E(+771)) and s € (e, e(+?)) N Class(i — 1).

(10a). Case s€ e, F).
Then e < E and there exists a € [¢, €] N Class(j — 1) such that s € (e, e( +%)) Na(+/"1)NE.
This way, f(i,e)(s)={s1>...> sk}

because of Assertionl

F(, Glari-1ne(@)(Glai-1ne(s) ={Gla+i-1)nE(s1) > .. > Glo(i-1)nE(sK) }

because Fg|g=G

f, Fr(e)(Fg(s))={Fg(s1)>...> Fg(sk)}.

(10b). Case s€ (E,E(+771)).
Then F < e and because of (B1*),
fl,e)(s)={s1>...> sk} < f(i, Fe(e))(Fr(s)) ={Fr(s1) >...> Fg(sk)}.

(10c). Case s=FE.
Then i=j,e=c and f(j,e)(E)={E=E1>...>E,}.
Fg

So we need to show f(j,Fr(e))(Fe(E))={Fr(E1)>...> Fg(E,)}, ie.,
1(5,0)(0) = {Fe(Ex) > .. > Fa(E,)}. (BT*)

Subcase g =1, i.e., f(j,e)(E)={F}.

We assure that S(j,0)(p)=0.

Suppose the opposite.

Let Z € S(j,0)(p) = {5 € (¢,0(+~1)) N Class(j — 1) " p | m(s)[g(j — 1,5, p)] > m(p)}. Then
m(Z)[g(j —1,Z, )| =m(Z)[g(j — 1, p.p)og(i — 1. Z, p)|=m(2)[9(j — 1. Z, p)][9(j — L. p, ¥)] >
m(p)[g(j—1, p,¢)] =m(E)[O]. This shows that

zepn{se(o.o(+)NClass(j = Dim(s)lg(i - L) >mEOY =

p{s€(o,0(+7))NClass(j — |G(J1) <s Am(s)[g(j — 1, 5, 9)] >m(E)[O]} = pN Q.
This is a contradiction to the fact that p=min Q. Therefore S(j,0)(p)=0.
Finally, notice S(j,0)(p) =0 means, by definition of the function f(j,0), that
f(g,0)(p)={p}={Fr(E)}. This shows (B7*) for the case ¢=1.

Subcase g > 2.
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Note f(j,e)(E)={E=E1>...>E;}={E}U f(j,e)(E2), where by definition of S(j,e) and

of f(j,e), Ea=supS(j,e)(E)€ (e, FE) and f(j,e)(E2)={E2>...> Eg}. (B8*)

Then, by previous case (10a), we have that f(j, Fr(e))(Fr(E2)) = f(5,G(€))(G(E2)) =
f(j,O')(G(EQ)):{G(E2)>...>G(Eq)}:{FE.(E2)>...>FE(EQ)}. . (B9*)

But by definition f(j, o)(p) = { J{LZ% U f(j,o)(supS(j,0)(p)) l()f}t‘hig‘],i’sz)(p) #0 , this way,
by (B9*) follows that to prove (B7*) it is enough to prove G(E3) =sup S(j,0)(p)- (B10%*)

Proof of (B10*):

By (B8%*), Ex=sup S(j,e)(E)={s€(o,0(+771))NClass(j — 1) NE|m(s)[g(j — 1,5, E)] = m(E)}.
So m(E) <m(Es)[g(j — 1, E2, E)], which implies
m(E)[O] <m(E2)[g(j —1, Bz, B)|[0] =m(E5)[©0g(j —1, By, E)] =

by Assertion2

m(Es)[g(j —1,G(E2), ) ° Glp,+i-1)ns] =
m(Es)[G | py(45-1)nellg(d — 1, G(Ea), ¢)] =
m(G(E2))[g(j —1,G(E2), ¢)]. (B11%)

On the other hand, p=min @ with

Q= {s€(.0(+)NClass( ~ DIGU) <s Aml)lgli — L, ) Zm(B)OL} =
={s€(o,0(+7))NClass(j — 1)|G(E2) <s Am(s)[g(j — 1,5, )] > m(E)[O]}.
So clearly p> G(Es).
We assure m(G(E2))[g9(j — 1, G(E»), p)] =m(p).
Suppose the opposite, that m(G(E2))[g(j — 1, G(E2), p)] <m(p). Then
m(G(E2))[g(j —1,G(E2), 9)] =m(G(E2))[g(j =1, p, p) 0 g(j — 1, G(E2), p)] =
=m(G(E2)[9(j —1,G(E2), p)llg(j =1, p, )] <
<m(p)lg(i =1, p, )] =m(Fe(E))[g(j —1,p, @)l =
:m(E)[g(.] - 17 P Qp) OFE]by Assjrtlon 9
=m(E)[©0g(j—1,E, E)]=m(E)[O].
But this is a contradiction with (B11*). So m(G(Es))[g(j — 1, G(E2), p)] = m(p) and from all

this work we conclude that
G(Es)€S(j,0)(p)={s€(o,0(4+771))NClass(j —1)Np |

m(s)[g(j — 1,5, p)] Z2m(p)}. (B12%)
Now, we will show that =37 € (G(Es), p).Z € S(j,0)(p). (B13*)
Suppose the opposite. Let Z € (G(E2), p).Z € S(j,0)(p).
Then G(FE2) < Z and m(Z)[g(j — 1, Z, p)] = m(p), which implies
m(2)[g(j =1, 2, )] =m(Z)[g(7 =1, p,¢)09(i = 1. Z, p)| =
—m(2)g(j 1. Z.p)llg(G — 1. p. 0)) > m(p)[g(j — L. p. 9] > m(E)[6].

But then Z € @ N p. Contradiction because p=min Q. Hence (B13*) holds.

Finally, from (B12*) and B(13*) follows G(FE3) =sup S(j,0)(p), i.e., we have proven (B10*).
This concludes the proof of Assertionl0.

We continue with the proof of Claiml. Up to know we have shown that the pair (Fg, Ug)
defined in (B1*) satisfies i, ii, iii, iv, v, vi, vii, viii and ix of Claiml. So it only remains to prove
that such pair is unique.

Assertion11: Suppose that (Fg, Ug) is a pair such that Ug € Class(j — 1) N [o, o( +771))
and Fi: E(+771)NE — Ug(+7~1)NE is an extension of p: e NE — o NE such that i, i, iii,
iv, v, vi, vii, viii, and ix of Claim1 hold. Then Fg = Fg and Ug = Ug.
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Proof of Assertionll:

Let a € A=[e,e(47)) N Class(j — 1) N E be arbitrary. Then the pair (Ffgl,1i-1), Fe(a)) is
such that Fg|,i-1):a( +771)NE — Fi(a)(+771 ) NE is an extension of p:e NE — o NE
such that i, ii, iii, iv, v, vi, vii, viii and ix of Claiml hold with respect to a. Therefore, by our
Side Induction Hypothesis Fg|,1i-1) = Fo = G|,45-1) and Fg(a) = U, = Fu(a) = G(a). Note
that since this was done for arbitrary a € A, it follows Fg|g=G = Fg|g.

From the previous paragraph (and the fact that Ff is an extension of p:e NE — o NE such
that i, ii, iii, iv, v, vi, vii, viii and ix of Claim1 hold) follows that the function
Fi: E(+77"')NE — Ug( +771 ) N E is an extension of G: ENE — FL(E)NE=UpNE
which satisfies 1, 2, 3, 4, 5, 6, 7 and 8 with respect to E and Uf (of course
E,Ug € Class(j — 1)); so, by our (IH), Fg is the only one extension of G: ENE — U NE
such that 1, 2, 3, 4, 5, 6, 7 and 8 hold with respect to E and Up. (B14%*)

We now want to show that Fp(E) € Q. (B15%*)
Counsider f(j,e)(E)={E=E1>Ey>...>E,}.
Then f(7,0)(FEE)) = 1, Fh(e)) (FL(E)) = {FE(B) > FE(E) > > FR(E)}Y | =

={Fg(E1) > G(F2) > ... > G(E,)}, which implies, because of (1.3.6) of
GenThmIH (for the case j <n —1) and because of corollary 5.2 (for the case j=n), that
FL(E)=min{s € (o,0(+7))NClass(j —1) | G(J1) <s< FE(E) A
m(s)[g(j — 1,5, Fp(E))] >2m(Fg(E))}. (B16*)

On the other hand, note

m(Fp(E))[g(i =1, FE(E), 9)l = m(E)[Fgllg(j = 1, Fu(E), ¢)] =
m( )[ (J -1 FE(E) SO) ° Fé‘] by (B14*) an:d Assertion2
_m(B)@og(j~1,B,E)=m(E)O].  (B17%)

This way, by (B16*) and (B17*) we have that
Fh(E) € Q = {s € (7, 0(+9)) N Class(j — DIG(J1) < s Am(s)g(j — 1, 5, ©)] > m(E)[]}, that
is, (B15*) holds.

Now we show Vs € (o,0(+7))NClass(j —1).s < Fp(E) = s¢ Q. (B18%*)
Suppose s € (o,0(+7))NClass(j — 1) N Fp(E). If s < G(J;) then clearly s ¢ Q. So suppose
G(J1) <s. Then by (B16*) m(s)[g(j — 1, s, Fg(E))] <m(Fg(E)), and so
m(s)[g(j — 1,5, )l =m(s)[g(j — 1, FE(E), )0 g(j — 1,5, Fp(E))| =
=m(s)[g(j — 1,5, Fp(E ))][?(j — 1, Fg(E), )] <

<m(FL(E)lali - LFK(E). ¢) = m(E)e].

This way, s ¢ Q = {s € (¢, 0(+7)) N Class(j — 1)|G(J1) <s Am(s)[g(j — 1, s, p)] = m(E)[O]}.
This shows (B18*).

Finally, from (B15*) and (B18*) follows Ug = Fg(F) = min Q = p=Ug. Note this means, by
(B14*) and the definition of Fg, that Ff and Fg are two extensions of G: ENE — pNE such
that 1, 2, 3,4, 5, 6, 7 and 8 hold with respect to F and p; therefore, by our (IH), F= Fg.

This concludes the proof of Assertionll.

This concludes the proof of Claiml.

Now we continue with the proof of the theorem.

Consider D:=[e,e(+7))NClass(j — 1) and F:= |J Fg, where for
. EE€D
Ecle,e(+?))NClass(j — 1), (Fg,Ug) is the pair obtained by Claiml.

Claim2. F:e(+7)NE— o(+7)NE is a function
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Proof of Claim2:

Notice F'C OR x OR is a binary relation with
Dom F = {a € OR[3b.(a,b) € F} = Upcp Dom Fs = Uyp E(+71)NE)=¢(+/)NE.
Moreover, Range F' = {b € OR|3a.(a, b) € F} = e p Range Fp C (Ugep Us(+71) NE) C
o(+7)NE.

The previous shows F is a binary relation such that F: e( +7 ) NE — o( +7 ) N E. Let’s see
now that F' is a function. We just need to show that for any a,b € D, F, and F} are compatible,
that is, for any = € Dom F,, NDom Fy, Fy(x) = Fp(x).

Let a,b€ D and x € Dom F, N Dom F} be arbitrary. If a =5 then F, = F} because by Claiml
the pair (F,, U,) is unique. So without loss of generality, suppose a < b. Notice then the fol-
lowing:

O1. a(+7~!')<band so a(+77!)€b(+7~')NE=Dom F,.

02. Fy(a), Fy(a(+771)) €Class(j — 1) NIm F, C Class(j — 1) N[o,0(+7)).

03. Fy(a(+771)) = Fy(a)(+771).

04. Vg€ a( +771 ) NE.Fy(q) € EN Fy(a( +771)) =E N (Fy(a)( +771)). This holds by O3.,
because Vo € b(+7 1) NE.E 5 Fy(x) = z[F}) = Hp,(z) and because Hp, is an < -isomorphism.

05. By 4., Fy|q4i-1)nm: al #7771 ) NE— Fy(a)(+7/ 1) NE; moreover, it is clear this func-
tion is strictly increasing.

06. Fola(yi—1)ne(€) =0 and Fylqi-1)ng(a) = Fi(a)

O7. Fyla4i-1)nElenE= Fylene=Dp

(8. Because of Claiml,

Vi€ 1, jlVe € [, a( 4771 )) N E.e € Class(i) <= Fy|,(1s-1)nr(e) € Class(i) and the function
RFb|a(+j—1mE: (6, a( +j_1 )) — RFb\a(+j—1)nE[<ev a( +j_1 ))] - (U’ Fb<a)( +j_1 ))a
t— t[Fy|q(1i-1yqm] 18 an (<, 4, -, <1, Az.w®, (+1),..., (+771)) isomorphism.

9. If j > 2, then
Vi€ [2, j].Ve € Class(i)N[e,a(+771)).Vs € (e,e(+%)) Na(+7~1)NClass(i — 1).

f,e)(s)={s1>...> sk} < f(i, Fp(e))(Fp(s)) ={Fp(s1) >... > Fp(s)}

010. If j>2Vie[2,4].Vs€Class(i — 1) N[e,a( +771)).Fp(A (i, 8)) = A(i, Fy(s))

So, for a € [g,e(+7)) N Class(j — 1) and due to 01, 02, 03, 04, 05, 06, 7, 08, 19 and [J10,
the pairs (Fy, Ua) and (Fy|y1i-1)ng, Fb(a)) are two witnesses of i, ii, ii, iv, v, vi, vii, viii and ix
of Claim1; therefore, by the uniqueness of such pairs, F, = Fy|,(4i-1)ng and U, = Fy(a). From
these equalities follows that F,, and F} are compatible.

Hence F:e(+7)NE — o(+7)NE is a function.

This concludes the proof of Claim2.

We will make use of the following observation later:
Vece(+/)NE.3aeClass(j —1)Ne(+7).eca(+771). (C1%)
Note (C1*) holds because Class(j — 1) is confinal in (47 ) € Class(j).

Claim3. F:e(+/)NE— o(+7)NE satisfies 1, 2, 3, 4, 5, 6, 7 and 8.

Proof of Claim3:

1*. F is strictly increasing. This is easy: For any e,l €¢(+7)NE, by (C1*) there exists
a € Class(j — 1) such that e,l €a(+7"1)NE. So e <l<= F(e)=Fy(e) < Fy(l) = F(b).

2%, F(e)=F:(e)=0.

3*. F|5ﬂ]E:Fe|eﬂ]E:p~

4*. The function Hp: (e,e(+7)) — Hp|[(e,e(+7))] C(o,0(+7)), t— t[F] is an
(<,4+,, <1, Az.w?) isomorphism. The proof of this fact is not hard: We know that Hp pre-
serves (<, 4+,+, Az.w?) by propositions 3.12, 3.10 and 3.14. So we only have to see that Hp pre-
serves the <; relation too. Let o,y € (¢,e(+7)). Then, by (C1*), there exists
a € Class(j — 1) such that e,l € (g,a(+771)). So x <1 y <= z[F] =z[F,] <1y[F.] =z[F).
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5% Viel, jl.Ve€[e,e(+7))NE.c € Class(i) <= F(e) € Class(i). The proof is easy:
Let i €1, 4], e€[e,e(+7))NE. By (C1*), let a € Class(j — 1) such that
e€le,a(+771))NE. Then e € Class(i) <= F(e) = F,(e) € Class(i).
6*. Hpis also an (+1),(+2),...,(+771) isomorphism. Proof: Let i € [1,j — 1] and
e € (g,e(+7)) N Class(i). Then e( +°) € (¢,e( +7)) and by (C1*) there exists a € Class(j — 1)
such that e(+%) € (g,a(+771)). This way, F(e(+%))=Fa(e(+%)) = Fa(e)(+))=F(e)(+)).
7. If 7 >2, then
Vi € [2, j].Ve € Class(i) N [e,e(+7)).VE € (e,e(+%)) N Class(i — 1).
fli,e)(E)={Er>..> Eq} <= [(i, F(e))(F(E)) = {F(E1) >... > F(Eq)}.
Proof: Suppose j > 2, i € [2, j], e € Class(i) N [e,e( +7)) and E € (e, e( +*)) N Class(i — 1).
Then, by (C1*), there exists a € Class(j — 1) such that e < F € a(+771)); that is, we have that
Ee(e,e(+"))Na(+7~1)NClass(i —1). Then
fl,e)(E)y={E1>...> Ep} <> f(i, Fo(e))(Fu(E)) ={Fu(E1) >...> Fy(Ey) } &=
= i FO)P(E) = (F(Ey) > .. > F(B,)}.
8% If j>2, then Vi€ [2,j].Vse€Class(i —1)Ne,e(+7)).F(A(i,s)) = A3, F(s)).
Proof: Suppose j =2, i€ (2, j] and s € Class(i — 1) N [e,e(+7)). Then, by (C1*), there exists
a € Class(j — 1) such that A(i,s) <s€e,a(+771)). Then
F(A(i, 5)) = Fa(A(i, 5)) = A0, Fals)) = A4, F(s))-
This proves Claim3.

Claim4. The function F:e(+7)NE— o(+7)NE is the only one function satisfying 1, 2, 3,
4,5,6, 7 and 8.

Proof of Claim4.

Suppose F":e(+7)NE— o(+7)NE is a function satisfying 1, 2, 3, 4, 5, 6, 7 and 8.
Let e € e( +7 ) NE. Then, by (C1*), there exists a € Class(j — 1) such that e € a( +/71) N E.
Then note that the pair (F’|,(yi-1)ng, F'(a)) is such that F’(a) € Class(j — 1) N[0, o(+771)),
F'lysi-nyam:a( +771)NE— F'(a)(+7 7' ) NE is an strictly increasing function such that i, ii,
iii, iv, v, vi, vii, viii and ix of Claiml hold with respect to a and F’(a) and p. Therefore, by
Claiml, F'|,(1i-1)qg = Fa and F'(a) = U, and so F'(e) = F'|,yi-1nr(e) = Fu(e) = F'(e). Since
this was shown for an arbitrary e € e(+7)NE, it follows F'=F.

So the theorem holds because of Claiml, Claim2, Claim3 and Claim4. O

5.3.2 The functions g(n,a,c)

Definition 5.11. Let o, c € Class(n) with a <c. We define the function

g(n,a,c):a(+")NE — ¢(+™)NE as the only one function obtained by the application of the-
orem 5.10 to n, «, ¢ and the identity function Id:aNE — ¢NE, Id(e) :=e. Moreover, since
g(n, a, ¢) is injective, (because it is strictly increasing) we define g(n, ¢, @) as the inverse func-
tion of g(n,a,c), i.e., g(n,c,a): =g~ (n,a,c).

Remark 5.12. For any k € [1,n] and any «, ¢ € Class(k) with « < ¢, by previous definition 5.11
and by GenThmIH, we have that g(k,a,c):a(+*)NE— aNEU([c,c(+%)) NE) satisfy

1. g(k,a,c) is strictly increasing.
2. glk,a,c)(a)=c.
3. g(k,a,c)|lane=1dqa, where Id,: aNE — ¢cNE, Id,(e):=e.
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4. The fanction Hy(e,aey: (s a(+4)) — Hy(rasol(, al +8))] € (e, e( +4)), s tlg(h, @, )
isan (<,4+,-,<1,Az.w") isomorphism.

5. Vi€ [l,k].Ve € [a,a(+%))NE.e € Class(i) <= g(k, a, c)(e) € Class(i).
6. Hgyk,a,c) is also an (+1), (4+2),...,(+7~!) isomorphism.

7. If k> 2, then Vi € [2, k].Ve € Class(i) N[, a( +%)).VE € (e, e(+%)) N Class(i — 1).
F(i,e)(E)={Br > ... > By} =
fli, gk, a,c)(€))(g(k, a, c)(E)) ={g(k, v, c)(E1) > ... > g(k, v, ¢) (Eq) }-
8. If k>2, then Vi € [2, k].Vs € Class(i — 1) N [a, a( +F)).
g(k,a,c)(A(i, ) = A(i, g(k, a, c)(s))-

But by theorem 5.10 there exist only one such function. Therefore g(k, a, ¢) is the only one
extension of the identity Id,: a NE — ¢ N E, Id,(e) := e in interval [o, a( +*)) N E provided by
theorem 5.10. Besides, g(n,c, @) is the inverse of g(n,a,c).

5.4 The functions ®(j,e,0, p)

Notation 5.13. Let j € [1, n] and ¢, o € Class(j) be with e < 0. Let pe NE— o NE be a
strictly increasing function. We will denote as ®(j,e,0,p) to the function
®(j,e,0,p):e(+)NE— pleNEJU ([o,0(+7))NE) obtained by theorem 5.10 applied to j,c, 0
and p.

Remark 5.14. By the proof of theorem 5.10, for j € [1, n], the function ®(j, ¢, o, p) is defined
in the following recursive way:

Case j =1¢€ [1,n].
For arbitrary ¢, 0 € Class(1) with e <o and p:e NE— 0 NE a strictly increasing function,
(1 s,a,p):z{er(e) iff ecenkE

E— 0
o(1,0,e,p):=(®(1,e,0,p)) "

b

Case j+1€[1,n].
By induction hypothesis ®(j,&’,¢’,p’) and ®(j,0’,&’, p’) are already defined for arbitrary
¢’,o’ € Class(j) with e’ <o’ and p":e'NE — ¢'NE a strictly increasing function.

Now, for any €, 0 € Class(j + 1) with e <o and p:e NE — 0 NE a strictly increasing function,
®(j+1,e,0,p):e(+T)NE — o(+/T1)NE is given by a (side)-recursion on the well order
(e(+T1)NE, <) as:

®(j+1,e,0,p)(e):=p(e) if and only if eceNE;
D(j+1,e,0,p)(e):=0;
®( )t

j+1e0,p)e): <I>(J,§ (j+1,e,0,p)(£),2(j+1,¢,0,p)l¢)(e) if and only if
€(&6,E(+7))NENEE e, e(+7F1)) N Class(j);
O(j+1,e,0,p)(&) —m1n{5€(J,J(—H“))OClass(j) | ®(j+1,e,0,p)(J) <A
m(0)[g(7, 0, o(+71))] = m(&)[@(4, & o(+7F1), @(j + 1, e, 0, p)le)]}
where ¢ € Class(j) N (g,e(+71Y), f(7+1,6)(&)={E=&>...> &} and

J_l& k2
] e otherwise °
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Proposition 5.15. Let j € [1,n] and ¢, 0 € Class(j) be with e < 0. Let p:e NE — o NE be
strictly increasing. Suppose a1, az € [0, e( +7 )] N Class(j — 1) and by, by € Class(j — 1) are such
that

o a;<az<b;<by,
o O(j,e,0,p)|a;;a1NE—b1NE and
o O(j,e,0,p)|aa2NE—byNE

Then
g(] - 1ab17b2) O(I)(j - 1,&1,1)1, (I)(j,E,O',p”al) :(I)(] - 1,&2,1)2, @(j,5,07p)|a2) Og(j - 1,0,1,0,2)

Proof. Let j,e,0,p,a1,a2,b1 and b as stated. Let
P:=g(j—1 bl,bg)oq)(j —1,a1,b1,®(j,e,0,p)|s,) and
Py:=®(j —1,ag,ba, @ (],E,O’,p)‘,m) og(j—1,a1,az2). Then
P, Pyar(+7 1) NE— ba( +771) NE are functions satisfying:
1*. P, and P, are strictly increasing (they are composition of strictly increasing functions);
2%, Pl(a’l) = g(.] —1,b1, b2)(q)(.7 —1,a1,b1, CI)(j7g7 U’p)|a1)(a1)) = g(j —1,by, 62)(b1> =by=
(I)(j — 1, ag, ba, ‘I)(j,€, 0,p)|a2)(a2) = (I)(.] — 1, a2, by, (I)(.j7570-7p)‘a2)(g(j -1, a4, a2)(a'1)) =
Py(ay);
3*. VeearNE.Pi(e)=g(j —1,b1,02)(P(j — 1,a1,b1,P(4,e,0,p)|a,) (e ))
g(j—1,b1,b2)(¢’(j,€,0’,p)|a1(€>):(I)(j7570',p)|a1( ) (.7 &,0 p)( ) an
Ve € ay QEPQ(e):(I)(J - 17a23627¢(j7570’p)|a2)( (.7 -1 a17a2)( )):
:(I)(j_17a27b2:(I)(j75707p)|a2)(6):(I)<j7570ap)|a2( ) (.7 &,0 p)( ) That is,
P1|a1ﬂE:(b(j’570'7p)‘a1:P2‘a1mE'
4*. lei (al,a1(+j71)) — le[(al,a1(+j71))] C (bg,bg( +j71)), tl—)t[Pl] is an
(<,+,,<1, \x.w?) isomorphism. This is because for t € (a1,a;(+771)),
tH®(j —1,a1,b1,9(j,2,0,p)|a,)] € (b1,b1(+771)) and then
tP(j —1,a1,b1,9(j,¢,0,p)[a)][g(j — 1, b1,b2)] € (b, bao( +7~1)); but
t[Pl] [ (] -1 blabZ) Oq)(] - lvalabla (I)(j7570ap)|a1)] =
t[(I)(j —1,a1,by, @(j,s,a,p)|a1)][g(j - 1vb1,b2)]v that is,
Hp, = Hgi-1b1,bs) © Ho(j—1,a1,61,8(j,c,0,p)]a,) a0d since He(j—1,a1,b1,8(j,2,0,p)]a,) a0d
Hy(—1,p,,b,) are (<, +, -, <1, Ar.w®) isomorphisms, then Hp, is (<, +,-, <1, Az.w") isomor-
phism.
Analogously, Hp,: (a1,a1(+771)) — Hp,[(a1,a1(+771))] C (ba, ba( +771)), t—>t[P)] is an
(<,4,,<1, \z.w*) isomorphism, because Hp,= Ho(j—1,a5,bs, ®(j,2,0,0)|ay) o Hy(i—1,a1,a2)
5*. Vie[l,j—1].Ve€lar,a1(+771)) NE.e € Class(i) <= Pi(e) € Class(i) 2 Pa(e).
6*. Hp, and Hp, are also (+'),...,(+772) isomorphisms, because
Hp, = Hg(j—1,b1,52) © Ho(j—1,a1,61,9(j.c,0,9))ay)s HP2 = Ho(j-1,02,52,9(5,2.0.0)]ay) © Hg(i—1,a1,02)>
and Ho(j—1,6:,b2)s Ho(j—1,01,61,8(j,2,0,0) a)s HO (G~ 1,02,b2, 25 ,0,p) ;) 3D Hy(j—1,a1,02) AT
(4+1),...,(+772) isomorphisms.
7. Vi€ [2,j—1].Vs € Class(i) N[ar, a1(+771)).VZ € (s, s(+'71)) N Class(i — 1).
f@,8)(Z2)={Z1>...> Z} =
f(i’ (I)(J =1, a4, b17 (b(jagagvp)‘m)(s))((b(j =1, a4, b17 (D(j,f;‘, U7p)|a1)(Z)) =
{P(j—1,a1,b1,P(j,e,0,D)|a)(Z1) > ... >P(j —1,a1,b1,D(j,e,0,p)|a,)(Zd)} =
F(i,9(5 —1,bq,b9)(P(5 — l,al,bl,@(j,e,a,p)|al)(s)))(g(j—l,bl,b2)(<1>(j—1,al,b1,<I>(j,e,a,p)|al)(Z))):
{9(5 = 1,b1,62)(®(5 — 1,01, b1, 2(J, €,0,P)[0,)(Za)) > ... > g(§ — 1,01, 02)(P(J — 1,01, b1, 2(5,6,0,D)a,)(Za) }
<
16, Pis) (PU(Z) = {Pi(Z0) > .. > Pi(Za)}.
Analogously, f(i,s)(Z2)={Z1>...> Zg} < f(i, Pa(s))(P2(Z)) ={Pa(Z1) > ... > Po(Z4) }
8*. Vi€ [2,j—1].¥Vs€Class(i — 1) N[ar, a1 (+771)).
Pl()‘(lvs)) = g(] - 17b1’b2)(®(j - 1,a17b17@(j,g,o,p)|a1)()\(i7s))) =
g(.j —1,by, b2)()‘(27 (I)(J —1,a1,b1, CI)(j,E, U>p)|a1)(s))) =
)‘(Za g(.] =1, b1, bQ)((I)(j —1,a1,b1, (I)(j7€a O',p)|a1)($))) :)‘(7'7 Pl(s))
Analogously Vi € [2, j — 1].Vs € Class(i — 1) N [a1, a1(+771)). Pa(A(i, 5)) = A(4, Pa(s)).
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Now, by theorem 5.10, applied to j — 1, a1, by € Class(j — 1) with a; < by and
®(j, €, 0, D)oy a1 N E — by N E, there is exactly one extension of ®(j, €, o, p)ls, to
ar(+ ") NE — bo( +77 1) NE satisfying 1%, 2%, 3%, 4%, 5% 6* 7* and 8*. Thus P, = P. O

Proposition 5.16. Let j € [1,n] and €, a3, 0 € Class(j) be with e <az<o.
Then g(j,e,0)=g(j,a2,0) 0 g(j, €, az).

Proof. Let Id:eNE— 0 NE be the identity function. Consider
Pr:=g(j,e,0), Py:=g(j,a2,0)0g(j,e,a2). Then Py, Po:e(+7)NE — o(+7)NE are functions
satisfying:

1*. Py and P, are strictly increasing (they are composition of strictly increasing functions);
2%, Pl(g) = g(.jv g, U)(E) =0= g(j7 a2, U)(GQ) = g(jv az, U)(g(jv g, ag)(€)) = PQ(@l);
3*. VeeeNE.Pi(e)=yg(j,e,0)(e) =e=g(j,az,0)(e) = g(j,a2,0)(g9(j, €, az)(e)) = Py(e).
That iS, P1|EQ]E:Id:P2‘Eﬂ]E.
4*. We know Hp,: (e,e(+7)) — Hp,[(g,e(+7))] C (o,0(+7)), t —> t[P1] is an
(<,+,,<1,\z.w") isomorphism.
On the other hand, Hp,: (g,e(+7)) — Hp,[(c,e(+7))] C (o,0(+7)) is also an
(<,+,,<1,\z.w%) isomorphism. This is the case because for t € (¢,e(+7)),
g(j,e>a2)] € (a2, a2( +7)) and then g(f, e, a2)][g(j, a2,0)] € (7, 0(+7)); but
t[PQ] = t[Q(]) az, U) © g(]a €, aQ)} = t[g(.]7 g, a2)][g(.]7 az, U)]? that is,
Hp, = Hy(j a5,0) © Hy(jc,a,) and since Hy(j o o,y and Hy(j o, 0y are (<, +, -, <1, Az.w®) iso-
morphisms, then Hp, is (<,+,-, <1, Az.w®) isomorphism.
5%. Vie[l,j].Ve€le,e(+7)) NE.e € Class(i) <= Py(e) € Class(i) 2 Pa(e).
6*. Hp, and Hp, are also (+'),...,(+7~1) isomorphisms, because
le = Hg(j_reyg), and sz = Hg(jyaz’g) (o] Hg(j,s,a2)7 and we know Hg(j,gyo), Hg(j,&@) and
Hy(j as,0) are (+1),...,(+771) isomorphisms.
T*. Vi€ [2,7].Vs € Class(i) N[e,e(+7)).VZ € (s,s(+")) N Class(i — 1).
f@,8)(2)={Z1>...> Z;} =
f(iv g(j7 g, a2)(8))(g(j, € a’Q)(Z)) = {g(j7 € CL?)(Zl) > > g(j7 &, a2)(Zd)} —
f(i,9(5,a2,0)(9(5,¢,a2)(s)))(9(d, az, 0)(9(4, ¢, a2)(2))) =
{95, a2,0)(9(j,€,a2)(Z1)) > ... > g(j, a2,0)(9(j, €, a2)(Zg))} <=
F(, Po(8))(Pa(2)) ={Pa(Z1) > ... > Ps(Zy) }.
On the other hand, we know
f@,8)(2)={Z1>...> Z4}
f(iv g(j’ &, 0)(5))(9(]7 &, U)(Z)) = {g(j7 € U)(Zl) >z g(j7 &, 0)(Zd)} —
1, Pi())(Pr(2)) = {P(Z1) > ... > Pi(Za)}.
8*. Vi€ [2,5].Vs€Class(i — 1) N[e,e(+7)).
Py(A(i,8)) = g(j,a2,0)09(j,&,a2)(A(i,s)) =
9(j,0,a2)(A(i, 9(j,e,a2)(s))) =i, g(j,0,a2)(9(j,€,a2)(s))) = A(i, Pa(s)).
On the other hand, we know Pi(A(i,8)) =g(j,e,0)(A(4,)) =i, 9(j,e,0)(s)) = A%, Pi(s)).

Hence, by theorem 5.10 applied to j, €, 0 € Class(j) with ¢ <o and Id: e NE — o NE, there
is exactly one extension of Id to e( +7 ) NE — o( +7 ) N E satisfying 1%, 2%, 3*, 4% 5% 6* 7*
and 8* Thus P1 :PZ. O

Proposition 5.17. Let j €[1,n] and €,a,0 € Class(j).
Suppose e € (Dom g(j,e,0)) N (Dom g(j,¢,a)) and g(j,,a)(e) € (Domg(j,a,0)).
Then g(j,e,0)(e) =(9(j,a,0)0g(j,&,a))(e).

Proof. Take j,e,a and o as stated. Moreover, let e € (Dom ¢(j,e,0)) N (Dom g(j,¢,a)) be such
that g(j,e,a)(e) € (Dom g(j,a,0)).
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Case € <o.
Subcase € < a < 0. Then the result holds by proposition 5.16.

Subcase a < e <o. Then

9(j.€,0)(e) = (9(,e,0)09(j,a,))(g(s, €, a)(e))

by definition of g(j,a,c) y proposition 5.16

9(j,a,0)(g(4,e,a)(e))=(9(j,a,0)09(j,e,a))(e). So the claim also holds in this case.

Subcase ¢ <o <a. Then

si.co)e), = aliao)(elo.a)eleo)e) =
(

9(j,a,0)((9(j,0,a)09(j,c,0))(e)) = 9(j.a,0)(g(j,e,a)(e)) =
by proposition 5.16
(9(j,a,0)0g(j,e,a))(e). Thus the claim holds in this case too.

Case o <e.

Subcase o <a<e.

By proposition 5.16 we have that g(j,o,e)=g¢(j,a,¢)0g(j,0,a); therefore:
Dom g~1(j, )  Dom g~ (j,a €),
gil(jaa’s)[Domgil(jvgvg)} CImg(j,U,a):Domg’l(j,o,a) and
Vs€Domg~'(j,0,e).97'(j,0,e)(s)=(97'(j,o,a) 097" (j,a,e))(s).
Note the latter is Vs € Dom g(j,e,0).9(j,e,0)(s)=g(j,a,0)0g(j,e,a)(s), which in
particular means g(j,e,0)(e)=(g(j,a,0)0g(j,e,a))(e). So the claim holds for this case.

Subcase a <o <e.

By proposition 5.16 we know that ¢(j, a,e) = g(j,0,¢) o g(j, a, o) and therefore (analogous
as in subcase o0 <a<¢),
Dom g(j,e,a) CDom g(j,¢,0),
9(j,e,0)[Domg(j,e,a)] CDom g(j,0,a) and

VSEDomg(j,s,a).g(j,E,a)(S) :g(j707a)og(j7570)(8) (*)
This way,
9(j,€,0))(e) = 9(j,a,0)((9(j,0,a)09(j,€,0))(e))

by:(*)
9(j,a,0)(g(j,e,a)(e))=(g(j,a,0)0g(j,e,a))(e). Thus the claim holds for this case.

by definition of ¢(j,a,o)

Subcase 0 < ¢ < a.
By proposition 5.16 we know that g(j,0,a)=g(j,e,a)0 g(j,o,e). Thus, in the same way we
have done before,
Dom ¢(j,a,0) CDom g(j,a,¢),
9(j,a,e)[Dom g(j,a,c)] CDom g(j,e,0) and
gs €Domyg(j,a,0).9(j,a,0)(s)=g(j.e.0) 0 9(j,a,e)(s) (**)
0

9(3,5,0)(e)by et ot g(j,aﬁ)(g(y,e,a) 09(37a,e))(g(m,a)(e))by?*)

9(j,a,0)(g(j,e,a)(e)=(g(j,a,0)0g(j,e,a))(e). Thus the claim holds in this case too. O

Proposition 5.18. Let j € [1,n] and €, 0 € Class(j) be with e <o. Let p:e NE— o NE be a
strictly increasing function.
Then, for any t€e(+7), ®(j,e,0,p)[T(j,e, )] =T(j,0,t[2(j,e,0,p))).

Proof. In order to facilitate our notation, let’s abbreviate ®(j, ¢, o, p) as ®. Take ¢t € e( +7 ).
Let C:={e€OR|®(e) €T (j,0,t[P)])}.
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To show T'(j,¢e,t) C C. (1*)

To obtain (1*) we show that C' is closed under clauses a), b), ¢) and d) of the definition of
T(j,e,t) (see remark 5.3).

- Note ®[Ep(t)] = Ep(t[®]) C T(j, o, t[®]) by clause a) of the definition of T'(j, o, t[®]). So
Ep(t)cC.
- Suppose £ € C N (g,e( +7)) NE. Then ®(&) € T(4, o, t[®]). But by theorem 5.10, we know
that ®(¢) € (o,0(+7))NE, so, by clause b) of the definition of T'(j, o, t[®]), we have that
T(j, o, t}0)) > Ep(m(®()), = Ep(m(€)@)) = [Ep(m(£))). Thus Ep(m(¢))  C.
- Suppose £ € CN (e,e(+7)) N (Class(l)\Class(l + 1)) for some [ € [1, j). Then
®(&) €T(4,0,t[®P]); moreover, by theorem 5.10, we know that
®(€) € (0,0(+7))N(Class(l)\Class(l +1)). Therefore, by clause c) of the definition of
T(j,0,t[®]), DA +1, f))theor;1 5‘10)\(1 +1,0(8)eT(j,0,t[®]). Thus AN(I+1,¢) eC.
- Suppose £ € C N (g,e( +7)) N (Class(l)\Class(l + 1)) for some [ € [1, j). Then, just as in the
previous case, ®(£) € T(j,0,t[®]) N (o,0(+7)) N (Class(l)\Class(l + 1)) and then, by clause d) of

the definition of T'(j, 0, #[®]), T(j, o, t{F) > fFU+LAU+ L SE))(2(E) =
y 3. O eorem 9.

FU+L OO+ L), = @[F(I+1 M+ 1,6))(€))- Therefore
FA+1,M1+1,6)(¢) cC.

The previous concludes the proof of (1*).
Note (1*) actually proves that ®[T'(j,¢,t)] CT(j,0,t[P]. (2*)

So it only remains to show ®[T'(j,¢,t)] D T(j,0,t[®]). (3%)

To prove (3*) we show that ®[T'(j, e, t)] is closed under clauses a), b), ¢) and d) of the defi-
nition of T'(j,0,t[®]).

- Ep(t[®]) = ®[Ep(t)] C @[T (j,¢,t)], since Ep(t) CT(j,¢,t).
- Suppose £ € @[T (j,¢, t)] N(o,0(+7))NE. Then, by theorem 5.10, £ = ®(e) for some
e€T(j,e,t)N(e,e(+?)) NE. So, by clause b) of T'(j, €, t) definition, Ep(m(e)) C T'(4, €, t).
Thus Ep(m(£)) =Ep(m(®(e))), = Ep(m(e)[®]) =2[Ep(m(e))] C 2[T(j,¢,1)]

N

theorem 5.10
- Suppose £ € ®[T(4, ¢, t) ( o(+7)) N (Class(l)\Class(l + 1)) for some [ € [1, j). Then, by
theorem 5.10, £ = ®(e) for some e € T(j,e,t) N (g,e(+7)) N (Class(l)\Class(l + 1)). So, by clause
c) of the definition of T'(j,e,t), A(l+1,e) € T(j,¢e,t) and therefore
AU+, =A1+1,2(e)) = 5.10<I>()\(Z +1,e)€®@T(j,¢,t)].
- Suppose £ € ®[T(j,e,t)] N (o, o(+7)) N (Class(l )\Class(l + 1)) for some [ € [1, j). Then, by
theorem 5.10, £ = ®(e) for some e € T'(j,¢,t) N (e,e(+7)) N (Class(l)\Class(l + 1)). This way, by
clause d) of the definition of T'(j,¢,t), T(j,e,t) D f(I+1,A(I+1,¢€))(e); this implies
QT (j,e,t)] D@fI+1,A(1+1,¢e))(e)] = f(l+1 D(A(l+1,e)))(2(e))

by 7. of theorem 5.10

= FU+LAI+1,2(e)))(@(e) = f(I+ 1AL +1,6))(E)-

by 8. of theorem 5.10

The previous shows (3*). O

Proposition 5.19. Let j €[1,n] and e,0 € Class(j) be with e < o.
Then, for anytee(+7), T(j,e,t)Ne=T(j,0,t[g(j,e,0)])Nao.

Proof. Consider j, ,0 and t as stated.

To show T'(j,e,t)NeCT(j,0,tg(j,e,0)])No. (1%)
Let e€T(j,e,t)Ne. Then e=g(j,e,0)(e) < g(j,e,0)(e) =0 and
c=9(j,e 0)(e) < T(j,0,t9(j; €, 0)]) No. This shows e € T(j, 0, t[g(j, €, 0)]) N
18

y proposition 5.
o, and since this was done for arbitrary e € T(j,e,¢) Ne, then we have shown (1%*).
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To show T'(j,e,t)Ne DT (j,0,t[lg(j,e,0)])No. (2%)

Let e€T(j,0,t[g(j,&,0)]) No. Then, by proposition 5.18, there exists d € T'(j,e,t) with
g(j,e,0)(d)=e; but d # e, otherwise g(j,e,0)(d) 20. So T(j,e,t)Ne>d=g(j,e,0)(d) =e.
This shows e € T(j, &, t) N e, and since this was done for arbitrary e € T(j, o, t[g(j, €, 0)]) N o,
then we have shown (2%). O

Proposition 5.20. Vj,e,0,p.
ifjel,n]Ne,c€Class(j)Ae<oAp:eNE— o NEA p is a strictly increasing function, then
Im®(j,e,0,p)=L(j,e,0,p), where L(j,e,0,p):={s€a(+/)NE|T(j,0,5)No CImp}.

Proof. By induction on ([1,n], <).
Case j=1.
Take €,0 € Class(1), e <o and p:eNE— o NE a strictly increasing function.

Then ®(1,¢,0,p):e(+)NE— pleNE]U ([o,0(+1))NE) is the function
p(e) iff ecenE

®(l,e,0,p)(e):= and Vs€o(+)NE.T(1,0,s)={s}. (1*)
o iff e=e¢
Therefore Im ®(1,¢, 0, p) ={®(1,¢,0,p)(e) |e€e(+) ﬂE}byﬁ*){p(e) lecenE}u{c}=
{s€eo(+")NE |selmp}U{c}={scao(+')NE| {s}CImp}U{a}byi*)

{s€o(+)NE|T(1,0,s) CImp} U{J}byﬁ*>{s eo(+Y)NE|T(1,0,5)NoCImp}=L(1,¢,0,p).

This proves the proposition for the case j=1.

So let j € (1,n].
Suppose the assertion of the theorem holds for any i € [1,n] N j. (IH).

Take ¢, 0 € Class(j) with e <o and p:eNE — o0 NE a strictly increasing function. Let
®(j,e,0,p):e(+7)NE — ple NE] U ([0, o( +7 )) N E) be the function obtained by theorem
5.10 applied to j,e,0 and p.

To show Im ®(j,e,0,p) C L(j,e,0,p). (D0)

Let s € Im ®(j, €, 0, p) be arbitrary. Then there is e € ¢(+7 ) N E with ®(j, ¢, o, p)(e) = s.
Now take any Z € T(j,0,s)No. By proposition 5.18 there is £ €T(j,¢,e) such that
®(j, e, 0, p)(E) = Z. This means ®(j, e, 0, p)(E) =Z <o = d(j, ¢, 0, p)(¢), which, by the-
orem 5.10 implies F <e. But ®(j, ¢, 0, p)|lcng = p by theorem 5.10, so p(E)=®(j,e,0,p)(F) =
Z. This shows that Z € Im p, and since this was done for arbitrary Z € T(j,0,s) No, it follows
T(j,0,s8) No CIm p. Moreover, since this was done for arbitrary s € Im ®(j, ¢, o, p), then we
have shown (DO).

TO Show ¢(j7570-7p)3L(j’€’0-7p)'
We show VS € L(j,e,0,p).S €Ilm®(j,e,0,p). (E0)
by a side induction on the well order (L(j,¢,0,p), <).

Let S€ L(j,e,0,p)={s€a(+9)NE|T(j,0,s)No CImp} and
suppose Ve € SN L(j,e,0,p).e€Im®(j,e,0,p). (SIH)

Case S <o.
Then {S}:T(j,U,S):T(j,O',S)ﬂUCImpCIm(D(j,F),O',p), that iS, SEIm(b(j,ﬁ,O',p)-

Case S =o.
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Then ®(j,¢,0,p)(e)=0. So S€Im®(j,e,0,p).
Case S € (o,0(+7)).
Subcase S € Class(i)\Class(i 4 1) for some i € [1, 5 —2].

Let ¢:=A(j —1,59)€[o,0(+7))NClass(j —1). Note S€(q,q(+'71))C[o,0(+7)) and

qeT(j,o,q) - T(j, 0, S), which implies T'(j, 0, q) N o C T(j, 0, S) N o C Im p;
by proposition 5.4

that is, ¢ € SN L(j, ¢, o, p). This way, by our (SIH), ¢ € Im ®(j, ¢, 0, p). Let r:=®~1(j, ¢, o,
p)(q). Note ®(j,e,0,p)|r:rNE— ¢NE and then, by our (IH) applied to j — 1,7, ¢ and ®(j,¢,
o,D)|r, we have that In®(j — 1,7, q,®(j,e,0,p)|,)=L(j —1,7,q,9(j,e,0,p)|.). Therefore

Im®(j,¢e,0 (ad—1 =
(]7 ’ ,p)|7(+3 )by definition of ®(j,e,0,p)

Im(I)(j - 17T7 qv(D(j,Evgap”T) :L(] - ].,’I", q,(I)(j,E,U,p)|r) =
{€eq(+"NEIT(j—1,q,§)NgCP(j,e,0,p)l}.

Because of these equalities, to show that S € Im ®(j, €, 0, p)|,(yi-1) C Im @(j, €, o, p) it is
enough to show that T(j —1,¢,S)NgCIm ®(j,e,0,p)| (E1)

We prove (E1):
Let ecT(j—1,¢,58)Ng. Then

eeT(j—1,q,¢€) C T —1,q,95) C T(j,0,S); this and proposition 5.4
by proposition 5.4 by proposition 5.4

imply T(j,0,e) CT(j,0,S5), and therefore T(j,o,e)No CT(j,0,5)No CImp. Moreover, since
e< q< S, we have that e€ SN L(j,e,0,p). Thus, using our (SIH),
e€qNIm®(j,e,0,p)=Im®(j,e,0,p)|. Since this was done for arbitrary
e€T(j—1,q,5)Nq, then we have shown (E1).

So (E0) holds for this subcase.

Subcase S € Class(j — 1).

Subsubcase S ¢ Lim(Class(j —1)).
Then there exists p€ SN[o,o(+7))NClass(j — 1) with u(+771)=S5.
Moreover, m(S)=S(+772)(+772)...(+?)(+')2, which implies

i — {S} iff u=o . _ .
(3, 0)(8) = {{S:S1>,u=52>53>..‘>5'd} for some d € [2,w)  otherwise ’ sou € SNT(j,0,8)

From this follows T'(j,0, 1) CT(j,0,5) and so T(j,0, p)No CT(j,0,5)No CImP(j,¢e,0,p).

All this means p € SNL(j,e,0,p), which by our (SIH) implies u € Im ®(j,e,0, p). This way, let

z:=(®"1(j,e,0,p)(1). Then note that

S=u(+)=0(e,0p)E(H ) = 8,0, )((+71) €I (.0, )
Subsubcase S € Lim(Class(j —1)). (E2)

Let p/:=maxT(j,0,5) NSNClass(j —1) >0 and p:= p/(+771) (< )5' Note p is well
by (E2

defined because we know that T'(j, o, S) is finite (by GenThmIH for the case j € [1,n — 1], and
by proposition 5.5 for the case j=n). But the fact that u' €T (j,0,5), implies that

T(j,o, ) NoCT(j,o,5) No CImd(j, e, o, p), which, together with the fact that u’ < S,
means u' € SNL(j,e,0,p). Subsequently, by our (SIH),

p €Im®(j,e,0,p). Let r’:=®"1(j,e,0,p)(p’) and r:=7r'(+7-1). Note

5= (B¢, 0, p)(r)(+-1) =B(j,2, 0, p)(r'(+11)) =

D(j,e,0,p)(r)elm®P(j,e,0,p). (E3)

On the other hand, by 2. of proposition 5.4,
TG - 1,8, mS)NnScCT(j,o,m(S) NS = T(j,o,S5) NS C p, and then by our

by proposition 5.7

(IH), Ep(m(S)) CIm ®(5 — 1, p, S, Identity: uNE — SN E)b = . 12Im g(j —1, 1, 5). So
- i vy remark 5.
m(9)[g(i =1, S, wle€(ppn(+71). (B4
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Assertion0. Let D:={6€OR|0 < p=6€T(j,0,m(S)) and
62p=0eT(G—1,u,m(9)g(j-1,5,w]}
Then T(j,0,m(S)[g(j —1,5,n)]) € D.

Proof of Assertion0:

We will show that D is closed under clauses a), b), ¢) and d) of the inductive definition of
T(]ﬂ g, m(S)[g(] - 17 Sa M)])
- Let e Ep(m(S)[g(j — 1,5, )]) be arbitrary. If e < p, then
GET(j_1»N7m(5)[g(j_1757/1‘)])m:u’ = T(j—l,S,m( ))OS C T(jvav

by proposition 5.19 by prop. 5.4
m(S)); that is, e € D in this case. If e > u, then clearly e € T(j — 1, u, m(S)[g(j — 1, S, p)]); so
e € D in this case too. Since the previous was done for arbitrary e € Ep(m(S)[g(j — 1, S, p)]),
then we have shown Ep(m(5)[g(j — 1,5, u)]) C D.
- Take £ € DN (o,0(+7))NE.

If £€<p,then £€T(j,0,m(S)) (because £ € D) and m(§) < u (otherwise & < p < m(§) would
imply £ € Class(j), which is impossible). This way, Ep(m(§)) C p and Ep(m(&)) CT(j, 0, m(S5)).
Thus Ep(m(£)) C D in this case.

If €2 p, then £€T(5—1, u,m(S)[g(j — 1,5, u)]) (because £ € D). Let e € Ep(m(€)) be arbi-
trary. If e< p, then e T(j — 1, u,m(S)[g(j — 1,5, pw)]) N p =

by proposition 5.19
T(j—-1,5m(S)NS c T(j,o,m(9)); that is, e€ D. If e > p, then simply
by prop. 5.4
eeT(j—1,u,m(S)g(j—1,5, )], that is, e € D too. The previous shows Ep(m(§)) C D.

- Take £ € DN (0,0(+7))N(Class(l)\Class(l + 1)) for some [ €[1, 5).
If £€<p,then E€T(j,0,m(S)) and p>&>A(1+1,£) €T (j,0,m(S)). So AM(I+1,£) e D.
If €2 p,then E€T(j—1, p,m(S)[g(5 —1,5, w)]) C pu(+7~1) and we have two subcases:
Ifi=j5—1,then {=pand A\(I4+1,8)=c€ unT(j,0,m(S)); that is, \(+1,£) € D.
If 1#j—1, then £ € (p, p(+771)) and so p <A +1,8) €T (5 — 1, u,m(S)[g(j — 1, S, w)]);
that is, A(I+ 1, &) € D in this case too.
- Take £ € DN (0,0(+7))N(Class(l)\Class(l + 1)) for some [ €[1, 5).
If £€<p,then £E€T(j,0,m(S)) andso u>E+1D f(I+1,AX1+1,8))(&) CT(j,0,m(S)).
This shows f(I4+1,A\(I+1,£))(§) C D in this case.
If €2 p,then E€T(j—1, p,m(S)[g(5 —1,5, p)]) C p(+7~1) and we have two subcases:
If I£j—1, then £ € (u, pu( +j*1)) (Class(1)\Class(l 4 1)). This way,
FA+1LAI+1,6)(6) TG =1, p,m(S)[g(j — 1,5, p)]) and
Vee fl+1,A(14+1,8))(9). e>)\(l—|—1 &)= . Therefore FA+1L,A1+1,6))(& CD.
If i=5—1, then £=p and A(l+ 1, ) = 0. Moreover, note
W = sup S(j, o) () = sup {e € Class(j — 1) N (7, o( +9)) N | mle)lg(j — 1, e, p)] = m(p)}:
therefore, f(I+1,A(14+1,£))(§) = f(j o)(p)={p}rU f(g,0)(u) (E5). Now, let
e € f(j,0)(u) be arbitrary. If e > p, then e = K eT(j—1, u,m(S)[g(j — 1, S, n)]); that is,

y (E5)
ec€D. If e<pu,thene € , ! C T(j,o,S = T(j, 0, m(S));
K by (EB)f(] U)(M )because n'eT(j,o,S) (J ? )by proposition 5.7 (J 7 ( ))
that is, e € D too.

This concludes the proof of Assertion0.

Now, consider the following:
T(j.0,m($)[g(G — 1.5, ) No c T(j.0,m(8))No CImp and

because o < p and AssertionQ

Ep(m(S)[g(j — 1, S, p)]) C S; this means Ep(m(S)[g(j — 1, S, w)]) € SN L(j, &, o, p), and
therefore by our (SIH), Ep(m(S)[g(j — 1,5, p)]) CIm ®(j,¢e, 0, p). (E6)

This way, we define:

t:=m(S)[g(5 — 1,8, W][®"(j,e,0,p)| € (r,r(+/71)) and

Z:=min{e€ (e,e(+7))NClass(j — 1)|r<eAm(e) 2 t[g(j —1,7,¢e)]}.
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Claiml. 0 # {e € (e,e(+7))NClass(j — 1)|r <eAm(e) = t[g(j — 1,7, ¢)]} and therefore Z is
well defined.

Proof of Claim1:

Since t[g(j — 1,7, e(+7))] € (e(+7),e(+ )(+J 1Y), then
n(j—1,e(+7),tlg(j — Lir,e(+7))]) <e(+7)(+771) <m(e( +7)); this way, by < -connect-
edness e <y n(j — 1,e(+7),t[g(j — 1,7, e(+7))]) + 1. From this, (6) of GenThmIH and <; -con-
nectedness we get that ¢ </ =1 t[g(j — 1,7, e( +7))] + 1, which in turn implies, by (4) of Gen-
ThmIH, the existence of a sequence (;);er C Class(j — 1) Ne(+7) such that §; — e(+7),
Vie I.T(j—1,0;,t[g(5—1,7,e(+7))]) N C &; and cof

m(6) > tlg(j = Lr e(+9)llgli = Le(+).0)] = tlg(j — 1,7, 8)]. So for some i € I,
proposition 5.

Sie{e€(e,e(+7))NClass(j — 1)|r<eAm(e) >t[g(j —1,7,¢€)]} +0.
This shows Claim1.

Assertionl. Z € Lim Class(j — 1)

Proof of Assertionl:
Since S € Lim Class(j — 1), then m(S) > S(+772)...(+!)2+ 1. This way,
m(Z) > tlg(i-1,7,2)=m(S)[g(i - 1,5, w][®'(j,e, 0. p)g(f —1,7,Z2)] >

by definition )
(S(+72)(+1)24+ D[g(j — 1,8, w[@ (j,e,0,p)][9(i — 1.7, Z)] =
((+772) ()24 [ (e, 0, p)][9(j — 1,7, Z)] =
(r(+772).(F)2+ D[g(G— 1,7, 2)]|=Z(+72)...(+1)2+ 1.
But m(Z) > Z(+772)...(+)2 + 1 implies, by proposition 3.2, that Z € Lim Class(j —1).
This proves Assertionl.

Assertion2. (Ve'e (r,Z)NClass(j —1).®(j,e,0,p)(e') <S)=Veec ZNE.®(j,c,0,p)(e) <S.

Proof of Assertion2:
Suppose Ve’ € (r, Z)NClass(j —1).®(j,¢,0,p)(e’) < S. (As0*)
Let e € ZNE be arbitrary. If e<r, then ®(j,¢,0,p)(e) < P(j,e,0,p)(r)=pu<S. So suppose
e€(r,Z)NE. Then r<A(j—1,e)<e<A(j—1,e)(+71) € Z. Therefore
) by Assertionl
D(j,e,0,p)(e) <®(j,e,0,p)ANJ—Le)(+71)) <

by (As0*) '
This proves Assertion2.

Assertion3. Vee ZNE.®(j,e,0,p)(e) e SNE

Proof of Assertion3:
By Assertion2, it is enough to show that Ve’ € (r, Z) N Class(j — 1).®(j,¢,0,p)(e’) < S. We
show the latter by contradiction:

Suppose e’ € (r, Z) N Class(j — 1).®(j,e,0,p)(e') = S. (Asl¥*)

Let e:=min{e’ € (r,Z)NClass(j — 1) | ®(j,¢,0,

p)(e’) = S}. Note that e € (r, Z) and
Z=min{d€ (g,e(+7))NClass(j — 1) |[r <dAm(d) >t

[g(j - 1,7‘,d)]} lmply

m(e )<t[g(j 1,7,e)]. Therefore:

m( .] g,0 p)( )) ( [@(]76,0‘ p)]<t[ (]_1 r e)][ (]7570',]))]:

tlg(j 1’7“,6)][ (j—1,e,®(j,e,0,p)(e), (j,¢,0 p)\ )| =

t[®(j—1,e,®(j,¢,0 p)( ), (I)(j,&‘,CT p)le)og(j —1,7,e)] =, by proposition 5.15,

tlg(j -1, u,¢(j7570,p)(6))0‘1>(j—1 rop,®(j e, 0 p)lr)]:

He(j— 1,7, 1, ®(j,¢,0,p)|)][g(F — 1, 1, (JaEaU p)(e))]=

m(S)[g(]_l S://L) [ (j76707p)][q>( 1 T 1, ( €,0,p )|'r)][ (.]_17#7@(.7.7570-71))(6))}:
m(S)[g(j — 1,5, w]lg (J’—lw,‘f’(j,&a,p)( ))]:

m(S)[g(j—1,5,2(j,e,0,p)(e))]- (As2¥)
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Now, note
S, € 0 8(0:0)@ 2.0, p)(e) = (4 € (0.0(+)N Class(j ~ 1) N2 2,0 p)e)|
m(d)[g(j —1.d,®(j, e, 0,p)(e ))] >m(2(j,e,0,p)(e)};
therefore, by definition of f(j,0)(®(j,e,0,p)(e)),
f(G,0)(@(4,e,0,p)(e)) ={D(j,e,0,p)(€)>d2>...>d,}, for some u € [2,w) and where
dy=sup S(j,0)(®(j,€,0,p)(¢))) z S. (As3%)
But by theorem 5.10, peenuse SESUIR( 7))
fl,e)e)={e>ea..>e;} <=
flg,0)(®(4, ¢, 0, p)e)) = {<I>(j7la, o, p)le) > (4, e, 0, p)(e2)... > P(j,e,0,p)(ex)}. Soxz=u
and there are ey, ..., e, € (g,e( 47 )) N Class(j — 1) Ne such that Vi € [2, u].®(j, e, o, p)(e;) = d;.
Finally, note that ®(j,e,0,p)(e2) =d2 > S and
ea<e=min{e’ € (r,Z)NClass(j —1) | ®(j,e,0,p)(e’) =S}, imply that ea <r; so
S<de=9(j,e,0,p)(e2) <P(j,e,0,p)(r)=p<S. Contradiction.

Hence (Asl*) does not hold and we have shown Assertion3.
Claim2. m(Z)=tlg(j — 1,7, 2)]

Proof of Claim2:

Clearly m(Z) > t[g(j — 1,r,Z)]. We assure m(Z) #t[g(j —1,r,Z)]. (Fo)
Assume m(Z) > t[g(j — 1,7, Z)]. (F1)
We asswe 7(j — 1, Z,tlg(j — L, 2)) #tlg(G — 1, 2). (F2)

Assume the negation of (F2). So there exists [ € (Z,t[g(j —1,r, Z)] with
m()=n(j—-1,Z,tlg(j—1,7,2)]) >t[g(j —1,r,Z)]; but by Assert10n3
( €,0,p)|z: ZNE— SNE, so:

m(®(j—1,2,5,9(j,e,0,p)|2)(1) =

m(1)[® (]*1 z S#P(j,e,mp)\z)b

tlg(j —1,r, Z)][@(] -1,7,58,9(j,e,0,p)lz)] =, by prop. 515 and g(j — 1, Z,r) =g *(j — 1, r,
Z),

tlg(j—1,7,2)]g(j - 17#75)0‘1’0 rop, @, e,0,p)r)og(i—1,2Z,7)]=

tlg(G—1,7m,2)g(G -1, Z,r ]<I>(J*1 w,®(j,e,0,p))]g(i =1, 1, S)] =

te(G — 1,7, 1, 2(j,e,0,p))]g(J — 1, u,S)}f

m( )[ (.7_1) HU)H 1(ja€aa?p)][q)(j_1arau7¢)(ja€a0-7p)|7")][g(j_1a,u75)]:
m(9)[g(G =15, wllg(G =1, 9)]=m(S)  (F3);

(I)(jf]-aZaSaq) j,E,U,p)|Z)(l): [(I)(j*1,Z,S,®(j,€,0,p)|z)} <
tlg(i—1,r, 2)|[®(j —1,2,5,2(j,&,0,p)|z)] = m(S)  (F4).

equalities in (F3)

Note (F3) and (F4) lead us to the <-inequalities
S< q)(j -1,Z, Sa (D(.77 €, 0, p)‘Z)(l) < m(S) < m(S) +1< m((b(] -1,Z, Sa (I)(.]a €,0, p)|Z)(l))a
which together with the <;-inequalities
S<im(S)and ®(j —1,Z2,5,2(j,e,0,p)|z) ) <am(®(j —1,Z,5,®(j,e,0,p)|z)()) and the
use of <j-connectedness and <;-transitivity imply that S <; m(S)+ 1. Contradiction.

Therefore (F2) holds.
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Now, from (F2) follows n(j — 1, Z, t[g(j — 1,r, Z)]) = t[g(j — 1, r, Z)], which subsequently
implies, by (F1) and <; -connectedness, Z <1 n(j — 1, Z, t[g(j — 1,7, Z)]) + 1; by this and (6)
and (4) of GenThmIH we get a sequence (&;);c; C ZNClass(j — 1) such that §¢<—f> Z,
T(j—1,Z,tg(j—1,r,Z))NZC& and & <1tlg(j — 1,7, 2)][g(j — 1, Z, &)]. Therefore, there
exists ip € I such that r <&, < Z and
&ip <1 t[g(j—l,r,Z)][g(j 1,7, &) =tlg(j —1,7,&,)] <m(&,). But this implies that
&,€Zn{e€ (e,e(+?))NClass(j — 1)r < e Am(e) = t[g(j — 1, r, e)]} which is impossible,
because Z =min {e € (g,e(+7))NClass(j — 1)|r <eAm(e) >t[g(j —1,7,¢)]}. Contradiction.

Thus (F0) holds and this concludes the proof of Claim2.

Claim3. If S(j,0)(S)# 0 then sup S(j,0)(S) €Im®(j,e,0,p) and
o71(j,e,0,p)(sup S(4,0)(5)) € S(j, €)(2).

Proof of Claim3:

Suppose S(j, 0)(S) # 0. Then sup S(j, 0)(S) € S(4, 0)(S), f(j,0)(S)={S1> S2>...> S4}
for some d>2 and S =sup S(j,0)(S5). But S.€T(j,0,5), so
T(j,0,5)NoCT(j,o,S)No Clmp. Thus So€ SNL(j,¢e,0,p), which by our (SIH) implies
sup S(j,0)(S)=52€Im®(j,¢e,0,p). (HO).

On the other hand, let Z:=®~1(j,e,0, p)(S2). By theorem 5.10,
f(4,e)(Za)={Za> Zs...> Zy/} is such that

[, 0)(S2) = f(4, 0) (@4, €, 0, p)(Z2)) = {®(j, €, 0, p)(Z2) > ... > ®(j, €, 7, p)(Zar)}. From
this follows that d=d’, Vi € [2 d] Z;<r'<r and VZE [2 d.®(j,e,0,p)(Z;) = S < fh. (H1)

Now we show Zs € S(j,e)(Z)={e€ (e,e(+7))NClass(j —1)NZ|m(e)g(j —1,e,Z) =m(Z)}.
By (H1) we know Z> <r < Z and Zs € (g,e( +7)) N Class(j — 1); so we only need to show that
m(Z2)[9(j — 1,22, 2)] > m(Z). (H4)

Proof of (H4):

m(Z2)[g(j — 1, Z2, m)][®(j,e,0,p)][9(j — 1, 1, 5)] =

m(ZQ)[g(]_l Z2a )][(I)(j—l,r,u,fl)(j,g,a,pﬂ )Hg( -1 :LL?S)]

m(Z3)[®(j— 1,7, 1, ®(j,e,0,p)|»)0g(j—1, Za,7)][9(j — 1, u,S)] =, by proposition 5.15,
m(Zz)[g(j—LSz, )0<I>(j—1,Z2,Sz, (4,8,0,p)|2.)ll9(J —LM,S)]

m(ZQ)[(D(j - 1,Z2752,‘I’(j,8,0,p)|Z2)][ ( -1 SQ7M Hg(.] - 1a ,u,S)] =
m(Zg)[fI)(j,E,o,p)][g(j - 17827 ,u)][g(j - 1> M?S)]

m(S2)[g(j — 1,52 w)][g(j — 1, p, 5)]pmposi§0n .

m(52)[g(j — 1,52, 5)] > m(S).

because Sz€sup S(j,0)(S)
So, from the previous inequalities,
m(Z2)[g(j — 1, Z2,7)][®(j,e,0,p)] 2m(S)[g(j — 1,5, n)], and then
m(Z2)[g(5 — 1, Za, 7)) =m(S)[g(j — 1,5, w)][®@ 1(j,e,0,p)] =t; this implies
mM(22)[9(5 =1, Z2, )| =m(Z2)[9(j = 1, Z2,7)l9(G = L,m, Z)| 2 tlg(5 ~ L., Z)] = m(Z).
So (H4) holds, and thus Zs € 5(j,¢)(Z). Y
All the previous shows that Claim3 holds.

Claimd. If S(j,¢)(Z)+ 0 then ®(j,e,0,p)(supS(j,£)(S)) € S(4,0)(S).

Proof of Claim4:

Suppose 0+ S(j,€)(Z)={e€ (e,e(+7))NClass(j —1)NZ|m(e)g(j — 1,e,Z) =m(Z)}. Let
E:=supS(j,e)(Z) € 5(j,€)(2).
Som(E)g(j—1,E,Z)=2m(Z)=t[g(j —1,7,Z)] and E< Z. (G1)

We assure E <. (G2)
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Assume the opposite, that F >r. (G3)

Note Ep(t[g(j — 1,7, Z)]) C1 i—1,r,7) =
ote Ep(t[g(j —1,7,Z)]) CImg(j —1,r )by(IH)

{€Z(+H-)NE|T(j —1,Z,¢)NZ CImIdentity: rNE — ZNE} =
{E€eZ(+"Y)NE|T(j —1,Z,£)NZ Cr}; therefore
T(j—-1,Z,tlg(y—1,r, Z)])OZCT C E, and again by our (IH), this means

Ep(tlg(j —1,7,2)]) Clmg(j — 1, E Z) Domyg(j—1,Z,E). (G4)

Now, (G1) and (G4) imply:
m(E)=m(E)[g(j =1, E, Z)|[g(j —1,Z,E)] >
tlgG-Lr,2)lg(G-1.2Z,E)] = i[g(j—1r E)]. (G5)

proposition 5.17

This way, from (G1), (G3) and (G5) we have that
EeZn{ee(e,e(+7))NClass(j — 1)|r < e Ame) > tlg(j — 1, r, e)]}, which is impossible,
since Z=min {e € (¢,e(+7))NClass(j — 1)|[r <eAm(e) >t[g(j — 1,7,e)]}. Contradiction.

So (G3) does not hold, that is, (G2) holds.

With the help of (G1) and (G2) we do now the following:
m(E)lg(G =1L E,nllgG -1, 2)] = m(E)g(j -1, E 2Z)] >tg(j — 1,7, Z)], which
imp]ies proposition 5.17
m(E)[g(j — 1, E,r)] >t; this in turn implies
m(E)[g(.] - 17 Ea T)Hq)(]7€7aap)][g(] - 17 M, S)] 2
te(,e,0,p)llg(j — L, 9)]=m(S).  (G6)

But

( )[ ( 17E3T)H(I)(j7€70-ap)ng(j71,/“”75)]:
m(E)[g(j -1, E,r)][®(G —1,7,1,2(j,e,0,p)|)[g(j —1, 1, 8)|=
m(E)[®(j—1,7,pn,®(j,¢,0, p)l )Og(j—17E7T)][g(j—1,u75)}pmposi§0n5l5
m(E)[ (]717(1)(]36 g p)(E) )oq)(jil E,<I>(j,s,a,p)(E),@(j,s,a,p)|E)][g(jfl,u,S)]z
m(E)[®(j—1,E,2(j,¢,0,p)(E),®(j,¢,0,p)|p)llg(i—1,2(j,c,0,p)(E), mllg(d — 1, 1, S)] =
m(®(j,e,0,p)(E)]g(j—1,2(j,¢,0, p)(E)»M)][g(j—1,u,S)}pmposijom517
m(®(j,e,0,p)(E)[g(j—1,2(j,e,0,p)(E),S)] (G7)

Notice (G6) and (G7) together show m(®(j,e,0,p

and since by (G2) E <r, then ®(j,e,0,p)(E) <<D(j €

®(j,e,0,p)(E)e{e€(e,e(+7))NClass(j — 1) N S|m(e)g(j —
The previous concludes the proof of Claim4.

JENg(G —1,2(5,¢,0,p)(E), S)]| =m(S),
,o0,p)(r)=p<S. Therefore
Le, Z)>zm(Z)}=5(j,0)(S).

Claim5. S(j,0)(S)#0 <= S(j,e)(Z) # 0. Moreover, if S(j,e)(Z)=+ ) then
®(j,e,0,p)(sup S(j,€)(2)) =sup S(j,0)(5).

Proof of Claimb:
S(j,0)(S)#£0<S(j,e)(Z)+0 is now very easy to prove:
5(7,0)(8) #0 4= sub §(7.0)(5) € §(,0)(S)_—> &~ (supS(7,)($)) €57, 2)(%) 40

S(7.)(2) #0 = sup 5(1,2)(2) € 8. )(2)_— (supS(j,)(2)) € S(7.0)(8) 0.

Let’s show S(j,¢)(Z) # 0= ®(j,e,0,p)(sup S(j,&)(Z)) =sup S(j,0)(S).
Suppose S(j,¢)(Z)#0. Then S(j,0)(S)=£0 as we just proved. Now, by Claim3
0-1(j,2,0,p)(sup S(j,0)()) € S(j.)(Z) and so
®~(j,e,0,p)(sup S(j,0)(S)) <sup S(j,€)(Z) € S(j,e)(Z); this implies
SG.0)) <000 eSO, 9(D). (G
On the other hand, by Claim4, ®(j,e,0,p)(sup S(j,€)(Z)) € S(j,o)(S), which implies
®(j,e,0,p)(sup S(] e)(Z))<supS(j,0)(S). From thls last inequality and (G8) we get
sup (3, 0)($) = 0(j. 0,2, p)(sup S/, £)(2)).
This concludes the proof of Claim5.

(s
z)
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Claim6. ®(j,e,0,p)(Z2)=S.

Proof of Claim6:
Consider f(j,0)(S)={S=51>S52>...>54}. By Claim5 (in case d > 2),
71(j,e,0,p)(S2) =sup §(j,€)(Z), so

fG,e)2)={Z}U f(j,e)(® (j,¢, 0, p)(Sg))ClaimS:nd (Hl){Z =271>Zy>...> Zg}, where by

definition Zo = ®~1(j, ¢, o, p)(S2) and, as shown in (H1), it holds f(j,¢&)(Z2) ={Z2> ... > Z}

and Vi€ [2,d].®(j,¢,0,p)(Z;) = S;. (No)
Let
J2_:{SzzsupS(j,cr)(S) it d=22 (< 5(4,0)(9)#0)
’ o otherwise
and
Jl'{ Zy =supS(j,Z) iff d=2 (<= S(j,e)(Z)+0)
) € otherwise ’
Note Jo < p' < i, J; <’ <r and by (NO), J1=®71(j,¢,0,p)(J2). (N2)
Besides, by the proof of theorem 5.10, ®(j,&,0,p)(Z) =min @, where
p:=0(+7) and

Q:={¢€(0,0(+))NClass(j —1) | ©(j,e,0,p)|z(]1) <EA
) m(g)[g(jflaga@)]>m(Z)[(I)(j71323‘)07@(].7570717”2)]}:
{€e(o,0(+7))NClass(j —1) [ Ja<EA

by (N2 m(g)[g(j -L¢, 90)] 2 m(Z)[(I’(J -1,7Z, ¢, @(j,&,o‘,p”z)}}.

Now, observe the following:

m(S)g(j—1,5, )] =m(9)[g(j — 1,5, w]lg(j —1, . 9)lg(i — 1.5, ¢)] =
m($)[g(G 1S, wllg(i— 1.5, ¥) o g(i — L, SN o 7
m(S)ol 1.5, wllol~ Lol =
m(S)lg(j — 1,8, w[®~'(j,e,0,p)][®(j,e,0,p)llg(i — 1, u, )] =
m(S)[g(.]_LSv/J)H 1(.]_1’T7l'l‘7 (.] g,0, p)‘?‘)][ (.7 17T7M7¢(j7530-7p)|r)“g(j_17”7@)}:
m(S)[g(]fl,S,,u)][ (j7177ﬁ7“7 (.] €7O—ap)‘7")][g(‘771 H, QP)OCP(]‘*177'7[1‘7@(.77570-717)‘7)}:
=, by proposition 5.15,
m( )[g(.] - 175’7U)H (]_ 1,T7H7®(j75,0'7p)‘7‘)][q>(j —1,Z,g0,¢(j,€,0’,p)|z)og(j _1’T7Z)}:
m( )[g(.] - l,S,,LL)HCI) 1(j_ 1,T7#7(D(j7€,0—7p)‘r)][g(j_ 17T7Z)][<I>(] - 17Z7(p7q)(j767gvp)‘2)} =
m( )[ (.7 _1757,[1/)] o~ 1(ja€707p)][g(j_ 1,7",Z)Hq)(] _1aZa§07q)(jaE7J7p)‘Z)]:
tlo(G =17, 2)[®( =1, Z,¢,2(j,e,0.p)|2)] = |
m(Z)[@(j—1,Z,¢,2(j,e,0,p)|2)]. (N3)

Notice from (N3) and the fact that J» < .S follows S € Q. (N4)

Now let’s see that S =min Q.

Take z € (J2,5). Then m(z)[g(j —1,2,5)] <m(S) (because in case S(j,0)(S)+0,

Jy=sup S(j,0)(S) =sup {e € (o, a(—&—f ))NClass(j —1)NS|m(e)g(j —1,e,5) =m(S)}). Note
()[9(j — 1,2, )] <m(S) implies

(1‘)[ ( -1 xv(p)] = m(:t)[g(j—l,x,S)][g(j—1,S,<p)]<

prOpOblthIl 5.17

m(S)[g(J -1,5, w)]by(:NB)m(Z)[@(j -1,Z, 9, (I)(j,ff, Oap)|Z)]'
Soz¢ Q. (N5)

m
m

Finally, from (N4) and (N5) we conclude S=min Q =®(j,e,0,p)(Z).
This concludes the proof of Claime6.

All our previous work shows that S €Im ®(j,¢,0,p), i.e.,, we have shown (EO0).



5.5 CLAUSE (2.2) OF THEOREM 3.26 121

This concludes the proof of the whole proposition. O

5.5 Clause (2.2) of theorem 3.26

Corollary 5.21. Clauses (2.2), (2.2.1), (2.2.2), (2.2.3) and (2.2.4) of theorem 3.26 also hold
for n, that is,
(2.2) For any a, c € Class(n) there exist a function

g(n,a,c):Dom g(n,a,c) CENa(+") — ENc(+") such that

(2.2.1) g(n, @, ¢)|cnan(Dom g(n,a,c)) and g(n,a, a) are the identity functions in their

respective domain.

(2.2.2) g(n,a,c) is strictly increasing.

(2.2.3) Vt€ a(+™).T(n,a,t)Na Cc<= Ep(t) C Dom g(n, a,c)

(2.2.4) Vt€ a(+").Ep(t) CDom g(n, o, c) = T'(n,c,t[g(n,a,c)])Ne=T(n,a,t) N«

Proof. Let a,c € Class(n). Definition 5.11 gives us a function
g(n,a,c):Dom g(n,a,c) CENa(+") — ENc(+") such that g(n,a, c¢)lcnan(om g(n,a,c)) is the
identity.
On the other hand, note that I:ENa(+") — ENa(+"), Id(e) =e is such that
1. Id is strictly increasing.
2. ld(a) =au.
3. Id|ana =1d,, where Idy: aNE — o NE, Id,(e) :=e.
4. The function Hig: (o, a(+")) — Hia[(a, a(+™))] C (o, (+7)), t— ¢[Id] is an
(<,+,,<1,A\z.w") isomorphism.
Vi€ [l,k].Ve € [, a( +F)) NE.e € Class(i) <= Id(e) € Class(i).
6. Hiq is also an (+1),(+2),...,(+7~1) isomorphism.
7. If k>2, then Vi € 2, k].Ve € Class(i) N [a, a +%)).VE € (e, e( +*)) N Class(i — 1).
fi,e)(E)={Ey>...>E;} <= f(i,Id(e))(Id(E)) ={Id(E1) >... > Id(E,)}.
8. If k>2, then Vi € [2,k].Vs € Class(i — 1) N [a, a( +F)).
Id(A(7,8)) = (i, Id(s)).

The previous shows that Id is the only one function obtained by the application of theorem 5.10
to n, a, o and the identity function Id,: « NE — o N E, Id,(e) = e; since by definition such
function is g(n, «, @), then we have that Id = g(n, a, a).

o

All the previous shows that (2.2) and (2.2.1) hold. Moreover, by theorem 5.10 we know that
g(n, a, ¢) is strictly increasing, that is, (2.2.2) holds too. So it only remains to show (2.2.3),
(2.2.4) and (2.2.5).

Proof of (2.2.3):

Case a<c.
Let t € a( +™). Then T(n, a,t) Naw C a C ¢ and Ep(t) C a( +" ) NE = Dom g(n, «, ¢). So
(2.2.3) holds in this case.

Case a > c.
Let Id.: ¢cNE — ¢NE be the identity Id.(e) :=e.
Let t € a( +™) be arbitrary.
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We show that T'(n,a,t) Na Cc= Ep(t) C Dom g(n, a, c). (1*)
Suppose T'(n,a,t) Na C c. Consider e € Ep(t). Then
T(n,a,e)Na C T(n,a,t)NaCImld, and then, by proposition 5.20,

by 1. of proposition 5.4
e € Im g(n, ¢, &) = Dom g(n, «, ¢). Since this was done for arbitrary e € Ep(t), then we have
shown that Ep(t) C Dom g(n, a, ¢). This proves (1*).

We show that T'(n, o, t) N C c<= Ep(¢) C Dom g(n, «, c). (2%)

Suppose Ep(t) C Dom g(n, «,c¢) =Im g(n,c,«). Then, by proposition 5.20,
Ep(t)Cc{s€a(+")NE|T(n,a,s)NaCImId.}; therefore
Tn,a,t)Na=( T(n,a,s)Na= (T(n,a,s)Na)=CImId. Cc So (2%)

Us Ep(t
holds. <Ep)

s€Ep(t)

This concludes the proof of (2.2.3).
Proof of (2.2.4):
Let t € a(+™) be arbitrary and suppose Ep(t) C Dom g(n, a, ¢).

Case a<c.
Then T'(n,c,t[g(n,a,c)])Ne=T(n,a,t) Na by proposition 5.19.

Case a>c.
Since Ep(t) C Dom g(n, a, ¢), then consider ¢[g(n, a,c)] € ¢(+™). Then
T(n,a,t)Na=T(n,a,tlg(n,a,c)llg(n, ¢, a)]) Na = T(n,c t[g(n,a,c)])Ne.
by proposition 5.19

Since the previous was done for t € a( +" ) arbitrary, then we have shown (2.2.4). O

Proposition 5.22. Let k € [1,n], a € Class(k) and t € (a(+F~1)(++=2)...(+1)2, a( +*)]. Sup-
pose s € (a,t] is such that t <m(s). Then l(k,a,t) <s.

Proof. Let k, o and ¢ be as stated. Let s € («, t] be such that t < m(s). We proceed by contra-
diction: Suppose s <lI(k,a,t). *)
Then s <i(k, o, t) <t <m(s) <max {m(e)le € (o, t]} = n(k, a,t) =m(l(k, o, t)) and therefore, by
<3 -connectedness,s <1 l(k, «, t) <1 n(k, a, t), which subsequently implies, by <; -transitivity,
s<in(k,a,t). Som(s)=nlk,a,t) =m(s), ie, m(s)=n(k,a,t). This shows that
sel(k,a,t)n{eec(a,t] |m(e) =n(k,a,t)} which is impossible, since
I(k,a,t)=min{e € (o, t] [m(e) =n(k,a,t)}. Contradiction.

Thus s £ I(k, a,t), that is, l(k, a,t) < s. O

Proposition 5.23. Let k € [1,n], a,c € Class(k) and t € [a, o +*)] be with Ep(t) C Dom g(k, a
c). Then Ep(l(k, o, t)) CDom g(k, a,c) and I(k, o, t)[g(k, a, )| = (K, ¢, t[g(k, o, €)])

Proof. Consider k, «,c and t as stated.

Since Ep(t) C Dom g(k, «, ¢), then, by (2.2.3) of GenThmIH (for the case k € [1,n)) and by
(2.2.3) of corollary 5.21 (for k=n), we have that T'(n,«,t)Na Cc. But

T(n,a,l(n,a,t)) Na C T(n, a,t) N« C c. So, again by both (2.2.3) of GenThmIH and
by prop. 5.9

(2.2.3) of corollary 5.21, Ep(l(k, a,t)) C Dom g(k, a, ¢).

So it only remains to show the equality I(k, o, t)[g(k, a, ¢)] = U(k, ¢, t[g(k, a, ¢)]). We have
several cases:
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Case t € [o, (7~ 1)(+F72)..(+ )(2 +1)2].

Then t[g(k, o, c)] € [e, c(+F 1) (+F72 ). (+2)(+1)2] (1%)
and l(k7a7t)[ (k,a C)]_a(+k 1)( b2 (+ )(+1)2[ (k’a7c]:
alg(k,a, ) (+F)(HF72) (F2)(H1)2=c(+F ) (HF72)(+2)(+) =

l(k,c,tlg(k,a,c)]).
Case t € (o +F 1) (+F=2)..(+2)(+1)2, a +7)].

Subcase l(k, o, t) =t.
We proceed by contradiction. Suppose I(k, «, t[g(k, «, ¢)]) # l(k, «, t)[g(k, o, ¢)] = t[g(k, , ¢)].
Then I(k, a,t[g(k, a,c)]) <t[g(k,a,c)] and we have some subcases

-1k, atlg(k, 0, 0)) £ E. Then wtlg(k, o)) =nltlglh,acl) =

I(k,a,tlg(k,a,c)]) <tlg(k,a,c)], which implies 7t <t (2%).

On the other hand, (7t + dnt)[g(k, «, )| =nt[g(k, a,c)] + dnt[g(k,a,c)] =

m(tlg(k, a,)]) +d(xtlg(k, a, c)]) = m(l(k, o, t[g(k, v, 0)])) Zm(t[g(k, o, €)]) = m(t)[g(k, v, €)];
from these last inequalities we conclude m(nt) = nt + dnt > m(t). But this, (2*) and
proposition 5.22 imply I(k, «,t) < wt < t. Contradiction.

- Uk, a,t[g(k,a,c)]) €E. Then, by proposition 5.8, for some r € [1, k),

A, t)[g(k, a,0)]=A(r, tlgk,a,c)]) = Uk, a,t[glk,a,c)]) <tlg(k,a,c)], which implies
At <t (3%). prop: 2.8

On the other hand, m(t)[g(k, a, c)] =m(t[g(k, a,c)]) <m(l(k, a,t[g(k,a,c)])) =
m(A(r,tlg(k, a,c)])) =mA(r, t)[g(k, a, c)]) =m(A(r,t))[g(k, a, )] and therefore

m(t) <m(A(r,t)). This, (3*) and proposition 5.22 imply I(k, o, t) < A(r,t) <t. Contradiction.

Hence, from the previous we conclude I(k, o, t[g(k, a, ¢)]) = l(k, a, t)[g(k, a, ¢)] for the sub-
case l(k,a,t) =t.

Subcase l(k, o, t) € t\E.

Then I(k, a,t) = 7t <t and m(wt) =7t + dwt = m(t). (4%)
by proposition 5.8

Note these inequalities imply 7t[g(k, o, ¢)] <t[g(k, a, )] and

m(ntlg(k, a,c)]) =m(nt)[g(k, a, )] = (xt +dnt)[g(k, a, c)] = m(t)[g(k, a,c)]; i.e.,

l(n, e, tlg(k, o, o)) <mt[g(k, a, c)]. (5%)

Now, suppose l(n,c,t[g(k, a,c)]) <nt[g(k, o, c)]. (6*)

Then l(n,c,t[g(k,a,c)]) e ENt[g(k, a,c)], which, by proposition 5.8, implies
l(n,c,tlglk,a,c)])=A(r,tlglk,a,c)]) =A(r,t)[g(k, o, ¢)] for some 7 € [1, k). (7*)
So, m(t)[g(lm «, C)} :m(t[g(k, a, C)]) <m(l(n,c t[ (k,a, C)]))by?7*)m()\(7', t)[g(k7 a, C)] =

m(A(r, t))[g(k, a, ¢)]; observe this means, m(t) < m(A(r, t)). From this and proposition 5.22
we
conclude I(k, a,t) < A(r,t) <mt, which is contradictory with (4%*).
Hence (6*) does not hold, which, by (5*), means
l(n,c,t[g(k,a,c)}):mf[g(k,a,c)]b o )l(k,a,t)[g(k,a,c)].
y *

Subcase l(k, a,t) €t NE.

Then, by proposition 5.8, I(n, ¢, t) = A(r, t) < t for some r € [1, k). (8*). Note this
implies  m(t[g(k, o, c)]) =m(t)[g(k, o, )] <m(l(n, c,t))[g(k, a, )| =m(A(r, 1)) [g(k, o, c)] =

m(A(r,t)[g(k, a,c)]) =m(A(r, t[g(k, o, c)])) and

A, tlgk, a,0)])=A(r,t)[g(k, a,c)] <t[g(k,a,c)]. So, from all this follows

1k, e, gk, 0)) <A tlg(kase)]). (9%)

Suppose 1(k, & tlg(k, o, ) < A Hlg(k,a,))).  (10%)

Then, by proposition 5.8, (10*) and the fact that A(r, t[g(k, a, ¢)]) < wt[g(k, @, ¢), we have
that Ik, c,t[gk,a,c)])=A(s,t[g(k,a,c)]) for some s € [r+1,k). This way, we obtain

m()‘(s7 t))[g(k7 a, C)] = m()‘(s7 t)[g(k7 a, c)]) = m()‘(sv t[g(kv Q, C)])) = m(l(kv ¢, t[g(k7 Q, C)])) >
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m(t[g(k, a,c)]) =m(t)[g(k, a, c)], which imply m(A(s,t)) =m(t). From this and proposition
5.22 we conclude I(s, a,t) < )\( t) < A(r,t) which contradicts (8*).

because s>r-+

Thus (10*) doesn’t hold, which, together with (9*) means
l(kv ¢, t[g(ka a, C)D = /\(Ta t[g(k, a, C)]) = )‘(Tv t)[g(kv «, C)] = l(kv Q, t) [g(k’ a, C)] O

Corollary 5.24. Clause (2.2.5) of theorem 3.26 also hold for n; that is, given «, ¢ € Class(n),
(2.2.5) For any t € [a,a(+")) with Ep(t) CDom g(n,«,c), Ep(n(n,a,t)) CDom g(n, a,c)
and n(n, o, t)[g(n, a, o)) =n(n,c,t[g(n, a,c)]).

Proof. Let a,c e Class(n) and ¢ € [o, a( +™)).
Suppose Ep(t) C Dom g(n, a,c). (3*%)

Case t € [a,a +" 1) (+"71)..(+1)2].

Then n(n,a,t) =a(+""1)(+""2)...(+)2 and
T(n,a,n(n,a,t))={a,a(+"7 1), . ,a(+""1)(+"72)...(+!)}. Therefore
T(n,a,n(n,a,t)) Na=0Cc, which, by (2.2.3) of previous corollary 5.21, implies
Ep(n(n,a,t)) C Dom g(n, a,c).

On the other hand, since ¢ € [, a( +" BY(4+771)...(+1)2), then
tlg(n, a, ) € e, c(+"~H)(+"71)..(+1)2). (4%)
This way, n(n,a,t)[g(n,a,c)]= Eoz(—&—" D(4+"72).(+H)2)[g(n, o, )] =

c(+" ) (+"72).(4+1)2 by (4*)77 n,c,tlg(n, o, c)]).

The previous shows that (2.2.5) holds for the case t € [, a( +"~1)(+"71)...(+1)2].

Case te (a(+""H)(+" H)..(+1)2,a(+m)).

Then T'(n,a, n(n,a,t)) Na=T(n,a,m(l(n,a,t))) N C
by proposition 5.7
T(n, a,lin, a, t)) N« C T, a,t) N« C c¢. So, from the pre-
by prop. 5.9 by (3*) and (2.2.3) of corollary 5.21

vious and (2.2.3) of corollary 5.21 again, we conclude Ep(n(n, a,t)) UEp(l(n, «, t)) C Dom g(n,
a, ¢). This way, note n(n, o, t)[g(n, a, )] = m(l(n, a, t))[g(n, a, )] = m(l(n, a, t)[g(n, o,

C =
)] )by proposition 5.23

m(l(n; ¢, tlg(n, a,c)])) = n(n, ¢, t{g(n, o, c)). m

5.6 Clauses (2.3), (2.4) and (2.5) of theorem 3.26

Corollary 5.25. Clauses (2.3.1), (2.3.2) and (2.3.3) of theorem 3.26 also hold for n; that is,
given a, ¢ € Class(n) with c< a,

(2.8.1) Dom g(n,c,a)=ENc(+")

(2.3.2) g(n,a,c) =g 1(n,c,a)

(2.5.3) g(n,a,c)[Dom g(n,a,c)]=Enc(+")

Proof. Direct from the definition of g(n,c,«) and g(n,«,c). O

Corollary 5.26. Clauses (2.4.1), (2.4.2), (2.4.8), (2.4.4), (2.4.5) and (2.4.6) of theorem 3.26
also hold for n; that is, given «,c € Class(n),
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(2.4.1) g(n,a,c)(a)=c
(2.4.2) For any i € [1,n] and any e € (Dom g(n, a,c)) N o, a( +™)),
e € Class(i) <= g(n,a, c)(e) € Class(i)
(2.4.83) The function e—s e[g(n, a,c)] with domain (Dom g(n,a,c)) N (o, a(+")) is
an (<, 4+, , <1, \r.w® (+1), (+2),...,(+" 1)) isomorphism
(2.4.4) Ve € (Dom g(n, @, ¢)) N (@, a( +7)).m(g(n, @, ¢)(€)) = m(e)[g(n, @, )]
(2.4.5) Suppose n>2. Then
Vie[2,n].
Ve € Class(7) N (Dom gln,a,c))Nla, al(+m)).
VE € (e,e(+"))NClass(i — 1).
f@,e)(E)={E1>...> E;} —
1 g(n, 0, €)(€)) (g 0, )(E)) = gy 0, ) (Er) > .. > g(m, o, €) (B}
(2.4.6) Suppose n>2. Then
Vi€ [2,n].Vs e Class(i — 1) N [a, a +7)).
g(n,a,c)(A(i,8)) = A7, g(n, a, c)(s))

Proof. Direct from theorem 5.10 and the definitions of g(n,c,«) and g(n,«,c). O

Corollary 5.27. Clauses (2.5.1), (2.5.2) and (2.5.3) of theorem 3.26 also hold for n; that is,
given «a, ¢ € Class(n) with c< v, then for all d € Class(n)N[c, o,
(2.5.1) Dom g(n, o, c) C Dom g(n, a,d)
(2.5.2) g(n,a,d)[Dom g(n,a,c)] C Dom g(n,d, c)
(2.5.3) g(n,a,c)=g(n,d,c)o g(n,a,d)|pom g(n,a,c) and therefore
gt (n,a,d)og (n,d,c)=g Yn,a,c):ENc(+") — Dom g(n, a,c).

Proof. Consider ¢, d, « € Class(n) as stated. By proposition 5.16 and the definitions of g(n, «,
¢) and of g(n,c, ), follow g=1(n,a,d)og=t(n,d,c)=g(n,d,a)o g(n,c,d) =

=g(n,c,a)=g '(n,a,c):ENc(+") — Dom g(n, o, c). But this implies

g(n, a, c) = g(n,d, c) o g(n, @, d)|pom g(n,a,c), 9(1n, a, d)[Dom g(n, a, ¢)] C Dom g(n, d, c¢) and
Dom g(n, a, ¢) C Dom g(n, a,d). Hence (2.5.3), (2.5.2) and (2.5.1) hold. O






Chapter 6
Clauses (3),(4),(5),(6) of theorem 3.26

6.1 The <"-relation

Definition 6.1. Let a € Class(n), t € [a, a +™)]. By ao <™t we mean
1. a<t
2. VB Cgnt.30 € Class(n) N« such that

i. (U T(nh,a,2))Nacs
zEB

ii. The function h: B — h[B] defined as h(z):= z[g(n, a, )] is an (<, <1, +, Az.w®)-iso-
morphism with h|,=1d,.

As usual, a <™t just means a <"t or a=t

Proposition 6.2. Let o€ Class(n) and (c¢)eer C o, a( +7)] 2 c.

1. Letbe|a,c. If a<™c then a <"b. ( <™-connectedness)
2. Suppose V{ €l.a<"ce and ce—c. Then aa<"c. ( <™ -continuity)
cof
Proof.

1.
Assume «, b, ¢ as stated in our proposition.
If b = « then clearly oo <™ b. So suppose a < b < ¢ < o +™ ). Let B Cgn b be arbitrary. Then

B Cfin ¢ and then, since a <" ¢, there exists ¢ € Class(n) N« such that (|J T'(n, o, z)) N C 6

and such that the function h: B— h[B], x+— z[g(n,«,d)] is an Teh

(<, <1,+, Ax.w")-isomorphism with h|, = Id,. Since the previous was done for arbitrary
B Can b, we have actually shown that o <™b.

2.

Assume «;, (c¢)eer, ¢ are as stated in our proposition.

Let B Cgyn ¢ be arbitrary. Since B is finite and c§<—f> ¢, then there exists ¢ € I such that
co

B C#ince. From this and the fact that o <™ c¢ we conclude that there exists § € Class(n) N« such
that (|J T(n,a,x))Na C o and such that the function h: B— h[B], x+— x[g(n,a, )] is an

rEB
(<, <1,+, Az.w")-isomorphism with h|, = Id,. Since the previous was done for arbitrary
B Cgn ¢, we have shown that a <"c. O
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Remark 6.3. (3) of theorem 3.26 holds for n, that is, the binary relation <™ C Class(n) x OR
given in definition 6.1 satisfies <™-connectedness and <" -continuity (by proposition 6.2). More-
over, it is clear from the definition of <™ that Vo € Class(n).Vt € [, a( +™)].a <"t = a <1 t.

Remark 6.4. <"-transitivity does not make sense in general.

6.2 Clauses (4) and (5) of theorem 3.26

Proposition 6.5. (First cofinality property of <™ ). (4) of theorem 3.26 holds for n. Explic-
itly:

Let « € Class(n) and s € (a, a +™ )] be such that o <™ s. Then, for any t € [a, s) there is a
sequence (c¢)eex C aNClass(n) such that T(n,a,t) Na C e, cff—f> a and ce <1t[g(n, o, ce)].

Proof. Let a € Class(n), s € (a,a( +™)] and suppose o <™ s.

Take t € [«, s). Moreover, take vy € a arbitrary.

Consider the set B, :={v, a,t} Cant + 1 < s. By hypothesis there exists d§, € Class(n) N «
such that ( |J T(n,a,x))Na Cdy and the function h: By — h[B,], hy(z):=z[g(n, a,d,)] Ca

r€EB

isan (<,<y, —ij , Az.w®)-isomorphism with k|, =1Id,. Therefore, since v <« <it, then
v = hy(7) < hy(a) <1 hy(t) = t{g(n, «, 64)]; besides, hy(a) = a[g(n, a, §,)] = 6, € Class(n).
Hence, by defining ¢y := h,(a) for any v € «, we have that the sequence (c¢,),eq satisfies all
what is stated. g

Proposition 6.6. (Second cofinality property of <™ ). (5) of theorem 3.26 holds for n. Explic-
itly:

Let ae€ Class(n) and t € [, a( +™)) be arbitrary.

Suppose o € Lim{~y € Class(n)|T(n,a,t) Na Cy Ay <it[gn,a,v)]}. Then Vs €la,t+1].a<"s
and therefore a <1t + 1.

Proof. Let a € Class(n), t € [a, a( +™)) and assume
a € Lim{vy € Class(n)|T'(n, o, t) Na Cy Ay <1 t[g(n, o, ¥)]}

We prove by induction on ([, ¢+ 1], <) that Vs € [a, t + 1].a <" s.

For s =« it is clear. So, from now on, suppose s > a.
Case s € Lim N [a, t + 1]. Our induction hypothesis is oo <™ § for all 8 € [o,t 4+ 1] N's. Thus
a<"s by <"-continuity.

Suppose s=1+1¢€ [a,t+1].
Our induction hypothesis is o <™. (IH)

Let B Cgns=1+ 1. Without loss of generality, suppose «, ! € B and write B=X UY where
X:=BNna,Y:=BN[a,l], Y:={y1, ..., Ymla=y1 < y2<...<ym=1}.
Note | € [, t] C [or, a( +™)) o t. Moreover, since T(n,a,l)UT(n, a,t) is finite and
a € Lim{~y € Class(n)|T'(n,a,t) Naa C y Ay <1 t[g(n, «, v)]}, then actually
a € Lim{~ € Class(n)|(T'(n, o, ) UT(n, a, t)) Ne Ty Ay <y tlg(n, a, ¥)]}- (*). But for
any v € Class(n) such that (T'(n,a,l) UT(n,a,t)) Do C v we have
vy<l[g(n,a,v)] <tlg(n, a,v)]; therefore, by <;-connectedness and (*) we conclude
a € Lim{y € Class(n)|T(n,a, ) Na Cy Ay <1l g(n, a, v)]}.
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Let p:=max Uie{1 o) (T'(n,a, y;) Na) and consider the set
M :={yeanClass(n)lp<~v>XA~vy<1!gn, a,v)]}. By our previous observations M is
confinal in a. Let X' := {z € X |z ¢; a}. Then for any x € X’ there exists v, € M such that
x £1 v, (otherwise, by <;-continuity = <; ). Let 7 := max ({7z|z € X'} U {min M }). Clearly
yeM.

We define the function h: B — h[B] C «a as h(x) := z[g(n, a, )] for all € B (particularly
note that h(a) =+). Let’s see that h is an (<, <y, +, Az.w?®)-isomorphism.

That h preserves <, 4+ and Az.w” follows directly from the fact that
XU Uie{1 om) (Ep(y:) N) C v and the theorems we know about substitutions.

Since h|, = Id,, then clearly h preserves <; in B N «; moreover, from the properties of the
function g(n, a, ), we know h preserves <; in BN («a, a( +")) too. Therefore it only remains
to see that h preserves < in the cases of the form a <y y; or x <1 y; for y; €Y. Let’s see this:

e By (IH) o <"1 and so a <3 [; subsequently, by <; -connectedness it follows « <i y; for
any y; €Y. So we need to show h(a) <y h(y;) for any y; €Y. But this is easy because
h(a)=~v<11[g(n, a,~)] by the way we took +, and since
Vy; € Y.h(a) <h(y:) <h(l)=1[g(n,a,)], then by <;-connectedness Vy; €Y .h(a) <1 h(y;).

e Suppose z € X and y; €Y satisfy x <1 y;. Then h(z) =z <1 h(y;) by <;-connectedness
(because x =h(x) < h(y;) <y; for any i € {1,...,m}).

e Suppose z € X and y; € Y satisfy  £; y;. Then x %, « (otherwise, using the fact that we
know a <q y; for all i € {1,..., m}, we would have z <y y; by < -transitivity). So z € X’
and then z %1 7, <7 < h(y;); therefore h(z) =z <1 h(y;).

All the previous cases show that h preserves <; too and from all our work we have that A is
indeed an (<, <1,+,Az.w®)-isomorphism. This shows a <"1 +1

Our precedent work shows Vs € [a, t + 1].ac <™ s, which clearly implies v <1t + 1. O

6.3 Clause (6) of theorem 3.26

6.3.1 Generalized covering of a finite set.

Definition 6.7. Let i € [1,n], a € Class(i), B Can a( +%). In the following, we use the defini-
tions of T(i,a,x) and of D(«,d) (see lemma 2.50 and definition 2.28).
Let it be
Q:=BU { T(i,a,z),
xEB
W:=QU U {6(4+771) s €+ (H772)en (1), (77 1) (+772)- (1) 28,
¢eQnClass(j)N[a,a(+1))
jel2.i]
and
Z:=Wu D(y,m(x))U
YEEAZEWNEN (o, a(+%)) Am(2) € (7,7(+1))
U U D(v,x)
vYEEAZEWN (a,a(+9)N (7,7 (+1))
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We define the set A(i,«, B) as A(i,a,B):=ZU{y2|vy€ENZ}.

Moreover, for an ordinal 8 € a(+"), we will write A(i,«, B) instead of A(i,a,{B8}).

Proposition 6.8. Let i€ [1,n], a € Class(i).
1.Vt ta € o, a(+9)).t <to= n(i,a,t1) <n(i,a,ts).
2. Vte[a,a(+)).nli,a,n(i,a,t)=n(i,a,t).

Proof.
1.
Let t1,t2 € [, a( 7)) be such that t; <ta.

Case to <o +771)...(+1)2.
Then (i, t1) =a(+71)..(+1)2=n(i,a, t2).

Case t; <a(+71)...(+1)2< to.
Then (i, o, t1) =a(+71)..(+1)2<ta < n(i, a,ta).

Case a +71)...(+1)2 <ty < to.
Then 7(i, a, t2) =max {m(e) | e € (o, to]} > max {m(e) | e € (o, t1]} = (i, o, t1).

2.
Let ¢ € [a, a( +%)) be arbitrary.

Case t € [a,a( +'71)...(+1)2].
Then n(i, o, t) =a(+'"1)..(+1)2=n(i, o, a(+71)...(+1)2) = n(i, o, n(i, o, 1))

Case t€ (a(+"71)...(+1)2,a(+")).

To show that Vs € (o, n(i, a, t)].m(s) <n(i, a,t). (*)

Proof of (*):

Let s € (a, n(i, a,t)] be arbitrary.

Case s € (a,t]. Then m(s) <max{m(e)|e€ (a,t]} =n(i,a,t).

Case s € (t,n(i,a,t)]. We proceed by contradiction. Suppose 1(i, a, t) < m(s). (**).
Then note I(i, a, t) <t < s < n(i, a,t) =m((i, a,t)) <m(l(i, o, t)) + 1 < m(s), which implies,
by <i-connectedness, I(i,a,t) <1s<1m(l(i,a,t)) + 1, and then by <;-transitivity
I(i,0,t) <tm(l(i, o, t)) + 1. Contradiction. Thus (**) does not hold, i.e., m(s) < n(i, a, t).

This concludes the proof of (*).

Finally, since t € (a( +*71)...(+1)2, a( +*)), then n(i, o, t) € (a( +71)...(+1)2,a( +%)) and

y (%)

) €
therefore n(i, a, n(i, @, t)) = max {m(s) |5€(a,n(i,a,t)]} 17(@ a, t). O

Proposition 6.9. Letic[1,n], a€ Class(i) and t € a(+*). Then Vs € T(i,a,t).s <n(i,a,t).

Proof. If t =q, then T(i,a,t) = {a} Ca( +71)(+72)...( +1)2=n(i, a,t). So from now on,
suppose t € (a, a( +*)).

Let C:={z€a(+") |2 <n(i,a,t)}. Then C is closed under clauses a), b), ¢) and d) of the
definition of T'(i, «,t). The details of the proof are left to the reader. O

Proposition 6.10. Let i € [1,n], a € Class(i), B Can a( +%). Then, using the same notation as
in previous definition 6.7, the following holds:

i. A(i,a, B) is finite.
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ii. QCA(i,a, B) Ca(+"); moreover, BN|a,a(+"))# 0= a € Q C A(i,a, B).
iii. Ve € A(l,a,B) e ecE=zecW.

iv. Suppose BN [a,a(+"))#0. Let t:=max B. Then a € A(i,a, B) Cann(i,a,t) +1<a(+*).
Proof. Along this proof, we use the same notation as in definition 6.7.

i

Q is finite because B is finite and because every T(i, «, ) is finite; therefore W is finite too.
This way, Z is finite too, because W is finite and because by lemma 2.30, the sets D(vy, m(x))
and D(~,x) are finite. Finally, A(i, a, B) is finite since it has, at most, twice the number of ele-
ments of Z.

ii.

Clearly @ C A(i, o, B); moreover, if BN [a, a( +")) # 0, then take for z € BN [a, a( +')), we
have that o € T'(i, o, 7) C Q C A(i, o, B). So it only remains to show that A(i, o, B) C a( +%).
Let’s do this: Q C a(+") because B C a( +*) and because of the definition of

T(i,a,x); this implies that W C a( +*), because for £ € a( +*) N Class(r) with

r<i, E(+")(+"71)..(+1)2 < a +). Consequently, Z C a( +°) because W C a( +*) and
because of lemma 2.30. Concluding: A(i, o, B) C a( +*) because all of the previous and because
a(+*) is an additive principal number.

ii.

Take z € A(i,a, BYNE. Then x € A(i, o, B)\{62|d € ZNE}. Now, if € W then we are done,
so suppose for some v €E and y € W N (a, a +1)),

z€(D(y,m(y)) Aye WNEN (o, o +)) Am(y) € (v, 7(+1)) (al*) or
x€D(v,y) AyeW N (e, a(+))N (. y(+1)). (a2¥)

By the definition of the sets D(f3, d), (see lemma 2.30 and definition 2.28), for the cases (al*)
and (a2*), it holds

{v.z} CD(v,m(y)) NE=Ep(m(y)) and {v,2} C D(v,y) NE =Ep(y) respectively. (0%).
Let’s consider the cases (al*) and (a2*) more carefully:

Case (al*).

We now see the ways in which y e W.

Subcase y € {&(4+771), ..., E(+7 1) (+772)...(+1)}, for some £ € QN Class(j) N [a, a( +7)) with
j €2,1). Then m(y) = &(+~1)(+72)...(+1)2; thus Ep(m(y)) = {£(+/ 71 )(+/72)...(+")}
and by (0*) we have z=~y=&(+771)(+772)...(+1) e W,

Subcase y € Q.

If y € B, then {v,x}b % )Ep(m(y)) CcT@,a,y)CW.
y (0%
If yeT(i,a,s) for some s € B, then {y,z} C Ep(m(y))CcT(,o,y) C T(,a,s)C
1174 by (0%) by prop. 5.4

Case (a2*).
We see again the ways in which y € W.
Subcase y = &(+771)(+772)...(+)2, for some £ € Q N Class(j) N [a, o +°)) with j € [2,1).
Then Ep(y) ={&(+7~1)(+772)...(+")} and thus, by (0%), z=y=&(+ ") (+772)...(+ ) eW.
Subcase y € Q.
Then y € B (because the sets T'(i,a, s) CE). So {z, A/}b %O*)Ep(y) CT(i,a,y) CW.
¥

iv.

By ii. it is clear that o € A(i, , B); moreover, we already know 7(i, o, t) + 1 < a +") and that
A(i,a, B) is finite. So we only have to show that A(i,«, B) C (i, ,t) + 1. Let’s do this:
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Note by proposition 6.9,

Q Cmax {{t + 1} U {n@i, o, z) + 1|z € B}} = n(i, a, t) + 1.
using proposition 6.8 and t<n(i,a,t)
(a3%).

On the other hand, for j € [2,4] and ¢ € @ N Class(j) N[, a +%)) arbitrary, we have that, by
(a3%), £ <n(i,a,t); therefore n(i,a,§) < ni,a,nli,ont) = ni,a,t). (ad*).
by prop. 6.8 by prop. 6.8

So {&(+771), o €(H T (1), 6 )+ cm() + 1<, o, ) +1 < (i, o t) + 1
by (ad*
From our work in this paragraph follows W C n(i, o, t) + 1. (a5*). v (o)

Now we show that Z C n(i,a,t)+ 1.

Consider D(v, m(x)), with yEEAz € WNEN (a, a( +°)) Am(x) € (7, v(+*)). Note this
means z < v < m(z) and therefore it is not possible that m(vy) > m(z), otherwise the inequalities
<y <m(zr) <m(xz)+1<m(y) imply, by <;-connectedness and < -transitivity, z <y m(z)+1
which is contradictory. Thus <y <m(y) <m(z) <y(+h) (a6*).

On the other hand, since x € W, then = < n(i, o, t) and then by proposition 6.8,
z) < i, a, ) < i, a, n(i, a, t)) = n(i, a, t) (a7*); but then, again by proposition

n(i, a, n(i’ «, x)) =1(

< .
n(i, a, w(m(x))) <
n

i, a, ) < n(i, a, t) which together with the inequalities
n(i,a,m(z)) yields
(z)

because w(m(z))<m

(m(
m(m(x))) < ni,a,t). (a8%*).

Finally, by lemma 2.30, D(vy,m(z)) C max {m(x), 7(m(z)) +dr(m(x))} +1=

{ max {m(z), m(r(m(x)))} +1 iff w(m(z))¢E <
max {m(z), v2} + 1 iff m(m(z)) €E by (a6*) and because m(7y)>~2
max {m(z), m(r(m(x)))} +1 iff w(m(z))¢E
{ m(e) +1 i a(m(@)eE
max {m(z), m(r(m(x)))} +1 < n(i,a,t)+ 1.

by (a7*) and (a8%)

Now the final case: consider D(v,z) with yEEAz € WNEN (a, af +%)) Az € (v, y(+1)).
Since z € W, then mz < x < n(i, o, t); from these inequalities and using proposition 6.8, we get

m(éf)<77(ivaa$)<77(i70<777(i70¢7t))Zn(iaayt) (bl*)
m(rz) <ni, o, mx) <, a,n(i, o, t) =n(i,a,t). (b2%*)

Finally, by lemma 2.30,
D(v,z) Cmax {z, 7z +dnx}+ 1=, using that 7z € E <= mx =1,
{ max {m(z), m(rz)}+1 iff wxg¢E

max {m(z),v2} +1 if wz€E
{max{m(m),m(ﬁm)}+l iff mzg¢E

} <, using m(v) >2v and mzx € E <= 7z =,

< n(i, o, t) +1.
max {m(z), m(rz)}+1 if wz€E by (bl*) and (b2*)

The previous shows Z C n(i,a,t) + 1.

To show A(i, o, B) C (i, o, t) + 1.

It only remains to show that {7v2|vy€EN Z} C n(i, a,t) + 1. Solet vy € EN Z. Since we
already know that Z C (i, o, t) + 1, then v < 7(¢, o, t); but this implies, by proposition 6.8, that

(i, o, v) <n(i,a,n(i,a,t) =n(,a,t). (00*). Now, if v < «, then clearly
y2<a2<a(+71)..(+1)2< n(i,a,t). So suppose a <. Then
2 < m(y) < n(i,a,y) < nlisest).

because v€E by proposition 3.17 by (00%*)
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Hence A(i, o, B) Cn(i, o, t) + 1. O

Proposition 6.11. Let i€ [1,n], a € Class(i), B Cana(+°).
Ifye A(i,a, B), then T(i,a,y) C A(i, o, B).

Proof. Along this proof, we use the same notation as in definition 6.7.
Take y € A(i, o, B).
Case y€E.

Subcase 1.1. y € Q.
If ye B, then T'(i,cr,y) CA(i,a,B). If y¢ B then ye |J T(i, @, x), that is, y € T(4, v, xo)

reB
for some o€ B. Thus T(i, o, y) C T(i,o, o) CA(4, o, B).
by proposition 5.4
Subcase 1.2.
yeW\Q = U {E(4+771)s e () (7 72) (1), E(H ) (+772).(4+1 )2} Then,
EEQﬁClags(j)
£€la,a(+))
jE€[2:4]

y=E(+" ) (+772)...(+771) for some j€[2,i], [ €1, j) and
¢eQnClass(j)Nla,a(+)). Som(y)=&(+771)(+772)...(+')2 and then
T(i,a,y) = {6(+771), o €(H7 1) (H1), (771 ()2 U T (4, o, €) - A(i, o, B).
easy by Subcase 1.1
Finally, we make the reader aware that 1.1 and 1.2 are the only possible subcases because by
proposition 6.10 4., A(i, a, B)\W has no epsilon numbers.

Case y ¢ E.
Note that in this case m(y) =y Vm(y) =y + dry.

Subcase 2.1. y € Q. Then y € B because (Q\B) CE; so T(i,a,y) C Q C A(i,a, B).

Subcase 2.2. y € W\Q. Then y=&(+7 1) (+772)...(+')2 for some j € [2,i] and
£eQnClass(j)Nla,a( +)). So
T(i, y)cazsy{ﬁ( +IT) L E(H T (), () (D)2 U T f)by Subgase ) 1A(i,o¢,B).

Subcase 2.3. y€ Z\W.

Subsubcase y € U D(v,m(x)).
vYEEAZEWNEN (e, a(+9))Am(@) € (v,7(+1) 4
Then y € D(v, m(xo)) for some v€E and 2o € WNEN (o, a( +")) with

m(zo) € (7, v( +1)). First note that since v € D(vy, m(x9)) NE C A(i, o, B) N E C w,
by prop. 6.10

then by the subcases 1.1 and 1.2, T'(«,4,7v) C A(i, @, B). (1*)
Now, in case y =+2, then T'(i,o,y) = T(i,a,y) C A(i,a,B). In case y # 72, then, by the
easy by (1%*)

definition of the set D(vy, m(xo)), v is a cantor normal form constructed only using epsilon num-
bers appearing in Ep(m(zo)), and therefore
T(,a,y)= U T@,a,e)C U T(i,a,e)=T(i,,m(xg)) -

e€Ep(y) e€Ep(m(zo)) by proposition 5.7

T(i,, o) C A(i,a, B)

because zo€W and subcases 1.1. and 1.2
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Subsubcase y € U D(v,z).
YEEAZEWN(ar,a(+9))N (7, v(+1)) ]
Then y € D(~, zo) for some v € E and zo € W N (o, a( +)) N (7, v(+1)) (note x¢ ¢ E because
2o € (v, v(+1))). But v € D(v,20) NEC A(i, 0, B)NE C W, which implies, by the sub-
cases 1.1 and 1.2, T'(«a,4,v) C A(4, o, B). (2%). by prop. 6-10
Finally, we have two cases: If y=~2, then T'(¢, o, y) = T (4, 'y)b %*)A(i, a, B). If y+£~2,
¥

easy
then by definition of D(7,xg), ¥ is a cantor normal form constructed only using epsilon numbers
in Ep(zo); this way, T(i,a,y)= U T(@,a,e)C U T(,a,e)=
e€Ep(y) e€Ep(zo)

T(i,,xzq) C A(i,a, B).
because £o€W \E and subcases 2.1. and 2.2

Subcase 2.4. y € A(i,a, B)\Z. Then y =2 for some y€ENZ. Then

T(is ey y) = T(i, ;) C A(i,a, B). B
easy by subcases 1.1 and 1.2

Proposition 6.12. Leti€[1,n], a € Class(i), B Cana(+"). Then
a) BCA(i,a, B)

b) VyeA(i,a, B)N (a, a +1)).
If y € E then Ep(m(y)) C A(i,«, B);
Ify¢ E then Ep(m(y)) CEp(y) CA(i, o, B).
Proof. In the following proof, we will use the same notation of definition 6.7.
a). Clear.
b). Take y € A(i,a, B) N (v, a +1)).
Case y € E.
Then y € T(i, «, y) and then Ep(m(y)) C T(,a,y) C  Ai,a,B).
by definition of T'(7,c,y) prop. 6.11
Case y¢ E.
Then m(y) =y Vm(y) =7y +dry. So Ep(m(y)) CEp(y) CT(i,a,y) C A(i,a,B). O

prop. 6.11

Proposition 6.13. Let i€ [1,n], a € Class(i), B Cana(+?).
Ify€la,a(+')NE and x € A(i, o, B) N (v, 7(+')), then D(vy,z) C A(i,a, B).

Proof. Along this proof, we use the same notation as in definition 6.7.

Take i, o and B as stated. Let v € [a,a(+%))NE and = € A(i, o, B)N (v, v(+')). Then
2 ¢ E and this leaves us the following alternatives:

-x€BCW. Then D(v,z) C Z=A(i,a, B) by the definition of Z.

r=&(H TN (+772).(+1)2, where
{E(+771), L 67D (H772) (1), E(+77 ) (+772)..(+1)2} c W for some
€€ QnClass(j)Nla,a( +)) with j€[2,i]. Then y=&(+771)(+772)...(+!) and
D(v,z)={&(+ 1) (F1), &(+ 1) ()2} CW CAGG, @, B).

-z €D(6,m(y)) for some SEEAye WNEN (o, a( +%)) Am(y) € (§,6(+1)). If 2 =652, then
v=20 and D(v,x)={v,~v2}={0,02} C D(d,m(y)) C A(i,, B). In case x # §2, then
x € C(m(y)) (x+3J because x ¢ E) and then:

e Cla) € Clnly)C DG m(»)C A, B (0%)

prop
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e By the definition of C(m(y)), z is just a cantor normal form constructed only using epsilon
numbers appearing in Ep(m(y)). This means v € Ep(z) CEp(m(y)) <C  A(i, a, B); note this
prop. 6.12

actually means that v € Z, since A(i,a, B)=ZU{p2|peENZ}. Theréfo.re, by the definition of
A(i,a,B), {7,7(2)} CA@, a, B). (1%)
Finally, from (0*) and (1*) we conclude D(~v,z)={v,y2}UC(z) C A(i,a, B).

-2 €D(5,y) for some SEEAy €W N (a, a +¥)) N (F,5(+1)). Then arguing exactly as in
the previous case we get D(v,x) C A(i, a, B).

-x=~2for y€ ZNE. Then D(v,z)={vy,v2} C ZU{~y2} CA(i,a, B). O

Proposition 6.14. Let it be k,i€[1,n], k<14, a € Class(i) and
y € [, a(+%)) N Class(k). Suppose A Cany(+*) and B Can o +%) are two finite sets such that
ACA(i,a,B). Then A(k,y,A)CA(i,a, B).

Proof. Using the same notation as in definition 6.7, A(i,«a, B)=ZU{y2|vy€ENZ}, where
Q=BU | T(,a,x),
zeB

W=QU U {60771 ST (72 ) (1), 677 (7 72) ()23,
£eQnClass(j)N[a,a(+"))
JE[2,d]
and
Z=Wu U D(y,m(x))U
YEEAZEWNEN (v, cx(+%)) Am(w) € (v, v(+1))
U U D(v,x)

YERAZEW N (a,a(+1))N (v, 7(+1))

Similarly, A(k,y, A):=ZoU{~2|v€EN Zs}, where we define

Q=AU U T(k,y,x),

€A
Wyi=QaU U {E(+H 1), €(H 1) (1), 6(H ) (772 (+1)2)
£€Q2NClass(§)N[y,y(+"))
JE[2,k]
and
Zoi=W>U U D(y,m(x))U
YEEATeW2NEN(y,y(+F)) Am(z)e(v,7(+1))
U U D(v,x)

YEEAZEW2N (y,y(+5))N(v,v(+1))

First note Q2= AU |J T(k, y, x) C AU U T, a,z) C A, a, B).
(1*) €A clause 2 of prop. 5.4 €A prop. 6.11
Now we show that Wo C A(i, o, B). (2%)

Let g € Wy be arbitrary.

If 8€ Qo, then by (1*) we know 8 € A(i,«, B). So suppose 8 € W2\ Q2. Then
Be{&(+7 1) E(HT7 I (H72) (1), &(+77 1) (+772)+(+1)2} for some
€€ Q2N Class(j) N [y, y( +%)) and some j € [2, k]. This way, by (1*) and clause iii of propo-
sition 6.10, we have that £ € W and subsequently we need to consider two subcases:

Subcase £ € Q. Then Be{&(+771), ..., E(+7 1) (+1), &(+7 1) (+1)2} CW CA(i, o, B).
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Subcase £ ¢ Q. Then £ € {p(+'71), ..., p(+ ") (+172)-(+1), p(+ 1) (+172)---(+1)2} for
some p € QN Class(l) N[a,a(+")) and some [ € [2,i], and therefore
BELE(H771), s €771 (7 72) (1), E(+7 1) (772 ) (+1)2} ©
{p(+171) e p(H (! 72) e (1) p(+ ) (+172) - (+1) 2 CW C A(i a, B).

The previous shows that, in any case, 8 € A(i, a, B) and since we proved this for arbitrary
B € W, then we have shown (2%*).

To show Zs C A(i, a, B). (3%)

First note that for v,z € OR, if yEEAxz € WoNEN (y, y(+%)) Am(z) € (v, v(+')), then by
(2*) and clause iii of proposition 6.10, y EEAxz € WNEN (a, a( +°)) Am(z) € (v, y( +)).
From this follows U D(y,m(x))CZCA(i,a, B). (4%)

YEEATEW2NEN(y,y(+F)) Am(z) € (7,7 (+1))

On the other hand, for any v,z € OR, if yEEAx € Wan (y, y(+%)) N (7, y(+')), then using
(2*) we have that v € [o, a( +!))NEAz € A(i, o, B)N (7, v(+!)) and then, by proposition 6.13,
we have that D(vy,z) C A(i,«, B). From this follows

D(v,z) CA(i,a, B) (5*).
YEEAZEW2N(y,y(+5))N (7, v(+1)

Hence, (2%), (4*%) and (5*) prove (3*).

Concluding the proof of our theorem: A(k,y, A)=Z2U{~2|vy€EN Z2}b % :
y (3%
A(i,a,B)U{y2 A(i,a,B)NE =
(’L’ @ ) {'Y | 7€ (Z, “ ) }by clause i of prop. 6.10

A(l,a, BYU{72|yeWNE} CA@i,a, B)U{y2|y€ ZNE} CA(%,, B). O

Proposition 6.15. Let i€ [1,n] and «, B € Class(i).
a) V6 € OR.C(6§)NE C Dom g(i, o, B) = C([g(%, e, B)]) ={z[g(i, e, B)] | z€ C(d)}.
b) VyeENVS €[y, v(+)).D(v,0) NE C Dom g(i, o, B) =
D(1lg(i, e, B)], 6lg(i, v, B)]) = {2[g(i, ., B)] | 2 € D(v,0)}.

Proof. In this proof we use the same notation as in definition 2.28.

Let i, a, B be as stated.

a)
By induction on (OR, <) we will show
¥ € OR.C(6) NE C Dom g(i, @, ) —> C(dlg(i, a B)) = {=lg(i, 0, DIz €C0} (%)

Take § € OR with C'(§) NE C Dom g(i, , 3).
Assume (*) holds for any o € 6. (IH)

Consider 6 =gnF L1l + ... + Liplp,.

Note 6[g(i, o, B)] =cnr L1 [ (i,0, B)li+ ... + Linlg(i, @, Bl (0*) and therefore

Y (8) = {Vij|3Lr ¢ E. Ly =w? A Z =cn Fz“’” w ki } =
Y(8lg(i, o, B)) = (Vs BLelg(i, o, B)) ¢ E-Lilg i, @, B)] =w? A Z' =cp 515, iy} =
{Vislg(i, o, B)]|3Lk ¢ E.L =w? A Z =cx Fz"“) wWiny; } =
{(Vig(i,a, B)] [V €Y (0)}. (1)

From the fact that Y (§) C d, our (IH) and (1*) we get
UV’EY(&[g(i,Oz,B)]) C(V/> = UVeY((i) C(V g(Zv a, /8)]) = UVEY(6) {Z[g(l, a, /6)] |Z € C(V)} -
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={zl9(i, @, B)] [z €Uy ey CV)} = (a¥)

On the other hand, for any Ly, Lk¢ E<= Li[g(i, o, B)] ¢ E; (2%)
moreover, in case Ly ¢ E and Ly =w ZNZ =cn th(k) V’”’vkj,
F(Ly) = {we M oate 2ot +0 5 g 2 (1 #(k)), j € [1, vis] U
{ w kL +w VR0 4w Vs j +Vks‘8 c [1,25(]{?)},] c [17Uk's}}
<:> \%. i 3 Vi i 3 A%, i 3
F(Lilg(i,a, B)]) = {we™™ " Vo talr e Dlowar 4 Melt® 2515 2 1 4(k)], j € [1, v} U
{wka1w<w=ﬁ>lm+...+w R Vg, s B)]ls € [1, 4R, J € (1, vedl} =
={zlg(i,a,B)] [z € F(Lk)}. (3*%)

From (0*), (2*) and (3*) we get
Cl((s[g(iva>ﬁ)]) ULk[g (i,a,B)]¢E ( [ (7’ 04,6)]): ULkgéE {Z[g(i’aaﬂ)] |Z€F(L/€)}:

={2l9(i, @, D)l [z2€Up, o5 F(Li)} ={2[g(i; 0, B)] | 2 € C1(9)}- (b¥).

Moreover, from (0*) we also get _

Ca(0lg(is a0, B)]) ={Lklg(i, v, B)ljlk € [1,ml], j € [L ]} U{E1 o1 Lilg (i, , B)]i]j € [1,m]} =
={zlg(i, , B)l|z € {Lijlk € [1,m], j € [1, ]} U{Z} = Lli |7 € [1, m]}} =
={zlg(i,a, B)]|z € Co(9)}- (c*)

On the other hand,

UUEC1( Slg(i,a, B)]) 2 ( ) byTb*) Ugecl(&) 02(U[g(i,06, B)])same reasonig as in (c*)
= Uo’ECl(é) {2[9(2707 ﬂ)] |Z S CQ(O’)} =
= {Z[g(lvaa ﬁ)] | UUECl((S) FAS CQ(O’)} (d*)

Finally, to conclude our proof, from (b*), (d*), (c¢*) and (a*)
C(d[g(i,a, B)]) =
C1(0]g(i, @, B)]) U Ugecl([s[g(i)a ) Ca(o) U Co(0]g(i, o, B)]) U UVeY(é[g(i,a,ﬁ)]) cv)=
{zlg(i, 0, B)] | 2 € C1(6)} U{z[g(i, a, B)] | U ey 7 € Cal0)} U{2lg(i, o, B)]|2 € Ca(6) } U
{Z[g(i, «, ﬂ)] |Z € UVeY(&) C(V)} =

1002008012 € U U € ) UEHO U Uyerioy OO} = (ot B =

b)

Let vy€E, 6 €[vy,v(+')) and suppose D(~,5) NEE C Dom g(i, «, 3). Then
Yg(i,a, B €E, d[g(i, v, B)] € [v]g(i, a, B)],V[g(i, , B)](+')) and

D(y[g(i, v, B)],6[g(i, v, B)]) ={"[9(i, o, B)], v[9(i, e, B)12} UC (0]g(i, v, B)]) =

{zlg(i,a, B)] | 2 € {7, 72 UC(8)} = {z[9(i, a, B)] | D(7,6)}. e O

6.3.2 Generalized covering lemma.

Lemma 6.16. (Generalized covering lemma).
ViVaVBYh.
Ifie[l,n]AaeCClass(i) A B Cana(+*) ABN[a,a +%))#0, then
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if
e h:A(i,a,B)— h[A(i,a, B)] Ca is a function that is an (<,+ )-isomorphism,
*  h|aGa,B)n(a,a(+i) @8 an <y -isomorphism onto h[A(i,a, B) N (o, +%))] C v,

e a<ja(+ )< <o+ () <ia(+HH(+) 2=
h(@) <y h(a(+771)) <q oo <y h(@( 1) (41)) <y h(a( 4 1)...(+1)2), and

o hlo>Id,
then:

1. V€ [1,i].Vo € A(i,a, B)N Class(l) N [, a( +%)).h(c) € Class(l) N c.
In particular, h(a) € Class(i) Na;

2. Ve e Ai,a,B).T(i,a,x) Na Ch(a) Ax[g(i, a, h(a))] < h(x).
Proof. By induction on [1,n].

Let i € [1,n].
Suppose the claim holds for any I €[1, 7). (IH)

Let « € Class(i), B Cgp o +%) with BN [a, a( +%)) # 0 and h: A(i, o, B) — h[A(i, o, B)] C«x
be a function accomplishing the hypothesis of the lemma.

1.
Let [ €[1,i] and o € A(i, , B) N Class(l) N [, a( +%)) be arbitrary. With the abbreviations
r(o,l):=o0,

r(o,l—1):=o(+71),
r(o,l—2):=c(+ 1) (+172),

r(0,2):=o(+ ) (+72).(+2),
r(o, ) =o(+ 1) (+ 7). (#2)(+),
we have that 0 <3 (0, i — 1) <y r(o, i — 2) <1 ... <1 r(o, 1) <1 r(o, 1)2 and therefore
h(o) <1 h(r(o,i—1)) <y h(r(o,i—2)) <1... <1 h(r(o,1)) <1 h(r(o,1)2) = h(r(o, 1))2. From this
and proposition 3.5, we have h(o) € Class(l) Na.

2.
We first show Vo € A(i,a, B).T(i,,z) Nev C h(w). (B1)

Let x € A(i,a, B). Take y € T(i,a, z) N« arbitrary. Then by proposition 6.11,

y€A(i, o, B)Nv and so y < h(y) < h(a). Since this was done for arbitrary
By hypothesis Ida <h|a

yeT(i,a,z)Na, then T(i,,z) Nov C h(a).
This proves (B1).

Now we show by a (side)induction on (A(%,a, B), <), that

Ve e A(i, o, B).x[g(i,a, h(a))] <h(x). (B2)
Let y € A(i, o, B) and suppose Yz € A(i, o, B) Ny.x[g(i, a, h(a))] < h(x). (SIH)
Case y < a. Then clearly y[g(i, o, h(a))] =y < h(y)

By hypothesis Ida <h|q

Case y=«. Then clearly y[g(i, a, h(a))] = h(a) = h(y).
Case y > .

- Subcase y ¢ P.
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Then y=cnF way + ... + wima,, with m >2 or aq > 2.
Now, because of our definition of A(¢, «, B), we can apply h to the subterms of y as follows:

If m>2, then h(y) =h(war) +... + h(w?ma,,) >
(SIH)

> whta(g(i, o, b)) + .+ wAmang(i, a, ha))] =
= (whay +... +wma,,) [g9(i, o, h(a))] = y[g(i, a, h())].
h

If m=1 and a; >2, then h(y) = h(w?la;) =h(w Al)al > whg(i,a,
(S1H)

(
= (wAlal)[g(iv a, h(a))] = y[g(i> Q, h(a))]

- Subcase y € P\E.
Then y =w? with Z =cnrwfr) +... + w0, y=w? >Ry > ... > Ry and y € (3, B(+1)) for
some 3 €N [a, a( +%)) NENy. Then, by proposition 6.13, D(3, y) C A(i, a, B) and therefore,
carrying out the same procedure as in clause ii7 of lemma 2.30 with y, Z, Ry, ...R; and 8 we
Ry Ry, h(Ry) h(Ry,)
get: h(y) = h(w?) =h(w® 1T W Ty 5 @I A WEEETR (g g
WPBDp B N (Ajwlﬁ[g(i,aJL(oc))]rlJr“_jLka[g(i»Ocyh(or))],nlC

by our (SIH)

= (WWR1T1+"'+w ) g, o, h(@))] = ylg (i, v, h(@))] (B4)
Thus, from (B3) and (B4) follow h(y) = y[g(i, o, h(a))].

- Subcase y €E.

Then y € Class(k)\Class(k + 1), for some k € [1,i — 1] (because y € (a,a( +*))) and therefore
y€ (8, B(+FT1)) for B:=A(k+1,9y) € [, a( +V)) N A(i,a, B)NClass(k+1)Ny.

Note that by 1., h(f) € Class(k + 1); besides, by our (SIH), h(8) > B[g(i, o, h(a))]. Moreover,
we also now f[g(i, «, h(a))] € Class(k + 1). (B5)

From (B5) we get some cases:

Subsubcase h(8) > B[g(i, o, h(a))].
Then B[g(i,a, h(a))](+F+1) <h(B). So
ylg(i, a, h(a)] < Blg(i, ., (@) (+71) <h(B) < h(y).

Subsubcase h(8) = S[g(i, o, h(w))].

Subsubsubcase h(y)
Then y[g(i, o, h(a))]

Subsubsubcase h(y) < Blg(i, a, h(a ))](—|—k+1)
(B

Then B[g(i, e, h(a))] = h(B) < h(y) <h(B)(+"*)=Blg ( ch())](+51), which means
h(y) € Class(k)\Class(k + 1) and so m(h(y)) € (h(y), h(y)(+ )) (B6)

Now, consider f(k+ 1, 8)(y) ={y=vy1>... > y,} C Class(k) N (B, B( +F+1)) C (a, a( +1)).
Then h(8) < h(yq) <... <h(y2) <h(y), h(yq), ..., h(y2), h(y)byEZJClass(k) and

by our (SIH) h(yz) = ya[g(i, o, h(e))]. (BT)

> Blg(i, a, h(a))](+4+1).
< Blg(i, o, h(a)](+1) <h(y)

On the other hand, from the properties of the function g(i a, h(a)), it follow
F(E+1, Blg (s o, (@) (ylg (i o h(a))]) = {m1lg (i, a, h(@))] > .. > yqlg(is o, h(a))]} - (B8)

and so

=min {s € (S (i,;,h(a)), [g(i,la h(a))](+5+1)) N Class(k)|

We now show that h(y) > y[g(i, a, h(a))] by contradiction. (B10).



140 Crauses (3),(4),(5),(6) oF THEOREM 3.26

Assume the opposite h(y) < y[g(i, o, h())]. (*¥**)

Then by (B7) ya[g(i, a, h(a))] < h(y2) < h(y) < ylg(i, @, h(«))], which implies by (B6) and
(B9) that m(h(y))[g(k, ( ) ylg(i, o h(@))] < m(ylgli, o, ha)) (B11).

Now, let P:=Ep(m(y[g(i,, h(a))])) Can y[g(i, o, h(a))](+*) and let’s abbreviate
Int := [y[g(i, o, ()], ylg(i, o, h(a))](+F)) and Int® = (y[g(i, o, h(e))], ylg(i, @, A(@)](+7)).

Note PNInt# 0 (and remember k < 7). (C1)
On the other hand, by clause b) of proposition 6.12, Ep(m(y)) C A(i, «, B) and then, by
proposition 6.14, A(k, y, Ep(m(y))) C A(4, a, B) C Dom g¢(i, a, h(a)), hat is, we can apply

v (B1) bt
(

the transformation x+— z[g(7, a, h(«))] on the elements of A(k,y,Ep(m(y))) without problems.

We assure A(k, y[g(i, o, h(a))], P) = {z[g(i, o, h(a))] | z € A(k, y, Ep(m(y)))} (C2)

Proof of C2:
By definition
Ak, ylg(i,a, h(a))],P)=T2U{~y2|y€ENTs}, where

T:=Pu U T(k,ylg(i,a, h(a))], z),
zepP . . . ) .
Yi:=TU U {671, () (72 ) (1) E(H 1) (72 (+1)2)
£eYNClass(j)NInt
JE[2,k]
and
Ty:="1U U D(y,m(z))U
yeEAzeYT1NE
z€(ylg(i,a,h(a))],ylg(ia,h(a)](+5))
m(z)€(v,v(+))
U U D(y, )
~YEEAzEeYT1NE
ze(y[g(i,a,h(a))],ylg(d,a,h(a)](+5))
ze(y,v(+1)
and

Ak, y,Ep(m(y))) =Q2U{+2]vy€ENQy}, where
Q:=Ep(m(y)u U T(k,y,2),

z€Ep(m(y)) ‘ ) , i j
Q= QU U LE(HT71), ey 67N 72) (1), E(H ) (+972)(+1)2)
£€QnClass(j)N[y,y(+*))
J€[2,K]
and
Qo= U U D(y,m(z))U
YyEEAZEQNE

z€(y,y(+%))
m(z)€(y,v(+1))

u U D(y, )
YyEEAZEQINE

z€(y,y(+*))
w€(v,7(+)

First note that P={z[g(i,«

()] |z€Ep(m(y)}  (C3),
because m(y[g(i, a, h(a))]) )

( [9(i, @, h(@))].

Now we show that Y ={z[g(i,a, h(a))] | z€Q}. (Cq)
Observe
T=PUU T(k,ylg(i,a,h(a))],z) =

U Tk oot b)), =

={zlg(i, @, h(@))] | z € Ep(m(y))} U U T(k,ylg(i,a, h(a))], z) =

rEP
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= {zlg(i, @, h())] | z € Ep(m(y))
T(
ze{z[g(i,o,h())] | z€EP(m(y))}
= {zlg(i, @, h())] | z € Ep(m(y))
U Tk ylg(i, @ h(@))]; 2[g(i, a, h(@))])

z€Ep(m(y)) by prop. 5.18

={zlg(i,a, (@)l |z€Ep(m(y)}U U {lgli,a h(a))][1eT(k,y,2)} =

: z€Ep(m(y))
={z[g(i,a, h())] | z€Q}.
This shows (C4).
To show that Ty ={z[g(,a, h(a))] | z€ N }. (C5)

Because of (C4), (C5) holds in case we show the following equality (C5’):
U {0 D7) (1), (777 (+1)2) =

£eYNClass(j)

£elnt

JE[2,K]

{zlg(i,a,h(a))] | z € U {6(+771), 0 877 (1), 6+ ) (7 72)(+1)2)
£eQnClass(j)
€€y, y(+)
J€(2,K]

So let’s prove (C5’).

Let § be an ordinal in the set in the left hand side of equality (C ’) Then there exist
j€[2,k], 1€, ) and £ € YN Class(j) NInt such that 6 =&(+7 1) (+772)...(+77!) or
§=&(+H71)(+972)...(+1)2. Then, by (C4), £ = 2[g(i, a, h(a))] for some z € Q; moreover,
by the properties of the substitution  — x[g(i, a, h(a))], z € [y, y( +F)) N Class(j). This way,
0=E(+77H)(+72). () =2[g(i, a, A(@))(+77 1) (+7 7 2)---(+J =

=(2(+77 1) (+72) (77 1) g (i, a, h(a))] or
S=E(+H ) (+72)(+)2=2[g(i, o, ()] (+I 1) (+772)...(+1)2=

=(z( 1) (+72)...(+1)2)[g(i, a, h(a))]. From all this follows that § belongs to the set in
the right hand side of equality (C5’).

Now, let z[g(i, @, h(a))] be an ordinal in the set in the right hand side of equality (C5’).
Then there exist j € [2,k], [ €[1,7) and ¢ € QN Class(5) N[y, y(+*)) such that
<lglizar b)) = (p(+ ) (+2).(+ 1) lg(i.0 hlo))] =

= (¢lg(i, a, h(a)))(+7~ )(+J 2)ec(H771) o
2lg(i, 0, h@))] = (p(+7~) (+972)...(+1)2)[g(i, o, h(e))] =
= (plg(i, a, h(@)D( +771)(+772)...( +')2. From these equalities (and the
fact that by (C4) and the properties or g(, o, h(a) we know ¢[g(i, o, h(a))] € T NInt N Class(j))
follow that 0 belongs to the set in the left hand side of equality (C5’).
The previous shows (C5’) and subsequently, (C5) holds.

We now show Yo ={z[g(i, a, h(a))] | z € Qa}. (C6.1)
Because of (C5), to show (C6) it is enough to show the following two equalities:

(C6.2). U D(y,m(x))={z[g(i,a, h(a))] | z € U D(~y,m(z))}:
yEEAzEYTNE yEEAzEQNE
z€lnt® ze(y,y(+5))
m(z)€(v,y(+)) m(z)€(v,y(+))
and
(C6.3). U D(vy,z)={z[g(i,a,h(a))] [z € U D(v,x)}.
YEEAZEY, YyEEATEQ,
z €Int® we(y’y(Jfk))
ze(v,v(+1) z€(v,v(+1)

Let’s prove (C6.2).

First notice that, for any [ € Y1 and v €E, if [ € (v, y(+')), then v € Ep(l); then, by proposi-
tions 6.10 and 6.12 b) v€Ep(l) C Ak, ylg(i, o, h(ar))], P)NE C Ty. (c7)
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Now we prove (C6.2) as follows:

U D(y,m(z)) = U D(y,m(z)) =
~veEAzZEYTINE by (C7) ~yEENYT1AzE€YNE by (C5)
z€Int® z €Int®
m(z)€(y,v(+")) m(z)e(v,v(+"))

D(~,m(x))=, by properties of the functions * A ,
YEEN{=[g(i, ()] | €01} v alg(i, hla), o)
w€{2lg(i,a,h(@))] | 2€Q1}NE
z€Int®
m(@) € (y,v(+"))

U D(plg(i, o, h(@))], m(2)[g(i, @, h(a))]) =
pE€ENQ, y prop. 6.15
zeQ1NE
z€(y,y(+"))
m(z)€(p,p(+"))

U {llg(i,a,h(a))] [L€ D(p,m(2))} =
peENQ
z€Q1NE
z€(y,y(+%))
m(z)€(p,p(+1))

{Ug(i, a,h())] |1 € U D(p,m(z))} =, by analogous argument as in (C7),
pEENQIAZzE€QINE
z€(y,y(+%))
m(z)€(p,p(+1))

{U[g(i,a, h(a))] |l € U D(p,m(z2))}.
pEENzEQNE
z€(y,y(+"))
m(z)€(p,p(+1))

Thus (C6.2) holds.
Now we prove (C6.3).

As we did with (C6.2),

U Dlvaz) = U D(y,z) =
YyEEAZET by (CT7) ~EENT1AZET, by (C5)
z €Int® z €Int°
ze(v,7(+h) ze(v,7(+)
. . x—>x[g(i, a, h(a))]
U D(v,z) =, by properties of the functions . )
VEEN{=lg(i,arh(a))] | 2€01} z— z[g(i, h(a), )]
wei{z[g(i,a,h(a))] | z€}
z€Int®

ze(v,v(+1)

U D(p[g(i,a,h(a))]7z[g(i,a7h(a))])b =
pEENQ y prop. 6.15
z€M
z2€(y,y(
z€(p,p(

)
)

%
L

U {llg(i,a,h(a))] |l€D(p,2)} =
peENQ
z€Q
z€(y,y(+"))
z€(p,p(+1))
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{Ug(i,a,h(@))] |1 € U D(p,z)} =, by analogous argument as in (C7),
pEENQIAZEQ,
z€(y,u(+M)
z€(p,p(+1)

{llgli,a,h(a))]le U D(p,2)}.
pEENZEQ,

z€(y,y(+"))
z€(p,p(+1)
Thus (C6.3) holds.

(C5), (C6.2) and (C6.3) prove that (C6.1) holds.

Finally,
Ak, slglia,h@)], P) = TsU {02y €EATa) =
{2lg(i,a,h(@))] | € Q}uU{y2|yeEN{z[g(i, h( D z€Q}}=
{z[g(i,a, h(a))] | z€Q2} U {z[g(i, o, h( ))}2|z€EﬂQQ}—
{z[g(i,a,h(a))] | € A(k, y, Ep(m(y)))}, that is, (C2) holds.

This concludes the proof of (C2).
After having proved (C2), we continue with the proof of the lemma.

Consider the function

¢ Ak, ylg(i, o, h(@))], P) — ¢[A(k, ylg(i, o, h(e))], P)] € h(y)( +%) < ylg(i, o, h(a))]
defined as ¢(z[g(i, o, h(a))]) := h(2).

We assure

a) Glyla(i.a.h(e))] = 1dly[g(i,a.h(a))]-

b) ¢ is an (<, + )- isomorphism;

¢) ylg(i, o, hia 2)]<1Z/[ g9(i, o, h(a %)]( +h) <. <1y[9(l o, h(a))lﬁ-k De(+H1)2=

40ly(i 1) <. <1 60l 0. M1 1) +112)
. d) qﬁ;estrlcted to A(k, y[ (z a, h(a))], P) N (y[g(i, a, h(a))], y[g(i, a, h(a))](+F)) is an < -
isomorphism.

a)

Let 2z’ € A(k, y[g(i, a, h(a))], P) Nylg(i, a, h(a))]. By (C2) and using that the substitution
r—x[g(i, a, h(a))] for Ep( ) C Dom g(4, v, h(cx)) preserves inequalities, it follows that
z'=zlg(i,a h(a))] for some z € A(i,a, B)Ny. Then
B(:19(G, e h(@))]) = h

(2) = z[g(i,a,h(a))]. This shows a).
by SIH

b)

To show ¢ is an < -isomorphism.

Let ¢/, e’ € Ak, y[g(i, o, h(c))], P). By (C2), ¢'=¢[g(i,a, h())], e’ =¢[g(i, o, h())]
for some c¢,e € A(i,a, B). Then:
clg(i,a, h(a))]|=c <e'=e[g(i,a,h(a))]| <= c<e =

h is <-isomorphism

hic)=o¢(c") < ¢(e')=h(e). So ¢ is < -isomorphism.

To show ¢ is an + -isomorphism.

Let ¢/, ¢’ € A(k, ylg(i, o, h(@))], P). By (C2), ¢'=clg(i, a, h@))), ¢’ = elg(i, a, h(a))]
for some c,e € A(i,a, B).

Suppose ¢’ + e’ € Ak, y[g(i, a, h())], P). Then there exists d’ € A(k, y[g(i, o, h(«))], P) such
that ¢/ + ¢’ =d’; but by C2, d’ = d[g(i, o, h(a))] for some d € A(i, o, B) too, so this equality is
actually c[g(%, o, h(a))] +e[g(i, o, h(e))] = d[g (3, o, h(a))] which holds if and only if
c+e=deA(i,a, B). Then, since h is an + -isomorphism,
¢(¢) + d(e') = h(c) + h(e) = h(d) = ¢(d') € Im¢.
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The previous paragraph has shown the following two things:
1b. ¢/ +e' € A(k, y[g(i, o, h(a))], P) = ¢(c) + ¢(e’) € Im¢.
2b. ¢+’ € Ak, ylg(i, o, h(a))], P) = 6(c)) + é(e)) = 6(c’ +¢').
So, to be able to assure that ¢ is an + -isomorphism, it only remains to show that
3b. ¢/ +e’' € Ak, ylg(i,a, h(a))], P) < ¢(c') + ¢(e’) € Im.

Let’s show that 3b. indeed holds:

Suppose ¢(c’) + ¢(e’) €Ime. Then there exists d’ € A(k, y[g(i, @, h(a))], P) such that
o(c)+ p(e') = ¢(d"). Now, by (C2), d'=d[g(i,a, h(a))] for some
d € Ak, y, Ep(m(y))) C A(i, a, B). (C8) Because of all this, we can rewrite the
equality ¢(c’) + ¢(e’) = ¢(d’) as

h(e) + h(e) = o(clg(i, o, h(a ))]) + ¢(elg(i, o, h(a))]) = ¢(d[g(i; @, h(@))]) = h(d). This shows
that that h(c) + h(e) = ( ) €Im h, and since h isan + 1somorph1sm then

¢ + e = d. Finally, from this last equality we have that ¢’ 4+ e’ = ¢[g(i, a, h())] + elg(i, a,

ha))] = dg(i, o, h(a))] € A(k, ylg(i, a, h(a))], P). This shows 3b.; moreover, this
by (C8) and (C2)

concludes the proof that ¢ is an + -isomorphism.

’I?his is very easy to prove:
ylg(i, o, h(a))] <1ylg(i, o, h(a))(+5 1) <
y<iy(+1) <1 <1y(+k D)o (+ )2<:>
h(y) <ih(y(+51) <1 <1 A(y(+F71)0(4+1)2) =
P(ylg(i, o, h(a)]) <1... <1 @(ylg(is o, h(a)J(+771)..(+1)2).

d)

Let ', ¢/ C A(k, y[g(i, o, h(a))], P) N (y[g(i, o, h())]
Using the same argument as in a) we have that ¢ = ¢[g(1,
some ¢, e € A(i, o, B) N (a, a( 7). (D1)

Now, c[g(i,a, h(a))] <1€[g(i, o, h(a))]| <= c <1 e <=
o(c) = olclg(i, o, h(@))]) = h(c) <1 h(e) = d(elg(i, a, h(a))]) = é(e’), where the first * <=7
holds because of (D1) and because the substitution xz+— x[g(i, a, h(«))] is an <; -isomorphism
in A(i,a, B) N (a, a(+%)); and where the second “ <= " holds because h is an <; -isomorphism
in A(i,a, B)N (a,a(+")) too. This shows d).

w<1ylg(i, o, (@) (+HF 1) (+1)2=

, ylg(i, h(a))}( +%)) be arbitrary.
a, h(a))] and e’ = ¢[g(i, o, h(a))] for

Now, using our (IH) applied to k < i, y[ (i,
with P [ylg(i, a, h(e))], ylg(i, o, h(a))](+F)) # 0 a
¢ Ak, ylg(i, a, h(a))], P) — o[A(k, y[g(i, a, h(a ))LP)] ylg(i, a, h(a))] satisfying a), b),
c¢) and d), we get that for any r € A(k, y[ (i,a, h())], P),
rlg(h. ylg(i,or. ()] h(y))] = rla(k. ylg(i, . b)), d(ylg, o, h(@))])] < 6(r). (D2).

; h(a))] € Class(k), P Cen ylg(i, o, h(a))](+*)

We now make the following observation: Since
y,m(y) € Ai,a, B)N (a,a( +%)), y <ym(y) and the function
h: A(i, a, B) N (o, a( +%)) — h[A(i, o, B) N (a, a +*))] C « is an < -isomorphism, then
h(y) <1 h(m(y)); note this last <;-inequality means h(m(y)) <m(h(y)). (D3)

. Towv from (B11) we have m(h(y))[g(k; h(y), ylg(i, o, h(a))])] < m(y[g(i, &, h(a))]), which
implies

m(h(y)) <m(ylg(i, o, h(a))g(k, ylg(i, o, h(a))], h(y))] .

P(m(ylg(i, a, h(@))])) = ¢(m(y)[g(i, a, h(e))]) = h(m(y))

b

m(h(y)) Contradiction.

:‘ < <
= Gm g

This shows (***) can not hold. Hence h(y) = y[g(i, o, h(a))] as we needed to show.

This concludes the whole proof of our lemma. O
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6.3.3 Consequences of the covering lemma.

6.3.3.1 Generalized covering theorem

Theorem 6.17. (Generalized covering theorem). Let i € [1,n], o € Class(i) and A Cana(+°) be
such that AN [a, a(+%))# 0. Suppose h: A(i, o, A) — h[A(i, o, A)] Ca is an ( <, <1, + )-iso-
morphism with h|,=1d,. Then

a) h(a) € anClass(i) and Ve € A(i, o, A).T(i, o, 2) Nae C ().

b) Suppose B C A(i,, A), BN o, a +)) #+ 0 is such that « <y max B. Then the function
Hp: B— Hp|B] Can o, Hp(z) :=z[g(i, a, h(a))] is an (<, <1, +, Az.w")-isomorphism
with Hpo=1d,.

Proof. Let i €[1,n], @, A and h be as stated.

a)

Direct from lemma 6.16.

b)
Suppose B is as stated. We know that
BCA(i,a,A) c{z€al(+")|T(i,a,z) Na C h(a)} = {z € a(+?) | Ep(x) C Dom ¢(i, a,

corollary 5.21
h(a))}; therefore, from the properties of ¢(i,a, h(a)) we know that Hg|,=1d, and Hp is an
(<, 4+, Az.w®)-isomorphism; moreover, we also know that HB|BA(a,a(+)) Preserves <j. *)

Now we show that Hp is, in whole B, an < -isomorphism. Let =, y € B and without loss of
generality, suppose x < y.

Case 1. y<a. z<1y = Hp(z)=x<1y=Hp(y).

because h|o=Idq

Case 2. y=a. £<1y = Hp(xr)=x=h(zr) <1h(y) =h(a) = Hp(a) = Hp(y).

because h is <i-iso
Case 3. a<z. t<1¥y b{ﬁ Hp(z) <1 Hp(y).
y

Case 4. a =x. By hypothesis a <; max B, and therefore, by <;-connectedness, o <1 y. But
h:A(i,a, A) — h[A(n,i, A)] is an (<, +, <1 )-iso and B C A(i,a, A), so h(a) <1 h(y). (**)

On the other hand, by lemma 6.16, Hp(a) = h(«) < Hp(y) < h(y); from this, (**) and < -
connectedness follow Hp(x)= Hp(a) <1 Hp(y). So Hp preserves <; in this case too.

Case 5. x <a <y. Then

r<1y — r<ia<yiy —
because xr<a<y, a<imax B and by <ji-connectedness by case 2 and case 4
Hgp(x) <1 Hp(a) <1 Hp(y) = Hp(z) <1 Hp(y). O

Direction =—=. By <;-transitivity
Direction <=. Because x<a<y<= Hp(z)<Hp(a)<Hp(y)
and by <j-connectedness and case 4

6.3.3.2 Minimal isomorphisms of the covering

Reminder: For a finite set of ordinals L Cg, OR and FL C {k|k: L — OR} a class of func-
tionals, FIL is well ordered under the lexicographic order <y iex ; that is, for h, k € FL,
h <rLlex k: <= Ty € L.h(y) # k(y) and for m :=min {z € L|h(z) # k(x)} it holds h(m) < k(m).
Moreover, in case FL # (), we can consider min (FL), the minimum element in FL with respect
to <pr lex- The next corollary uses this concepts.
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Corollary 6.18. Let i € [1,n] and a € Class(i)\Class(i + 1). Consider a finite set A Cgan m(a)
with AN [a,a( +%)) #0. Then max A(i,a, A) <m(a).

Moreover, if h: A(i, oy, A) — h[A(i, a, A)] Ca is an ( <, <y, + )-isomorphism with h|q = Id,,
then the function H: A(i, o, A) — H[A(i, o, A)] Ca, H(z):=2z[g(i, o, h())] is well defined and
it is an (<,<3,+)-isomorphism with H|,=1d,.

Proof. Note max A(i, «, A) < n(i, ,max A) < (i, o, m(a)) = m(a). The rest of the
proposition 6.10 easy
claim follows directly from the previous inequality and theorem 6.17. |

Corollary 6.19. Let i € [1,n], a € Class(i) and B € (o, a( +%)) be such that o <1 8. Suppose
A Cgin B is such that AN[a,a(+"))#0 and A(i,a, A) C B. Consider

FA(i, o, A) :i={h: A(i,a, A) — h[A({, a, A)] Ca|h is an (<, <y, + )-isomorphism with h|, =1d,}.
Then p:=min (FA(i,a, A)) exists, pu(a) € anClass(i), Vo € A(i, o, A).T (3,0, ) N C p(a) and
W is the substitution x— x[g(i, o, p(a))].

Proof. Let i,a, A, 8 be as stated.
First note that, since o <max A(i, a, A) < 8, then, by <;-connectedness,
a<;max A(i, o, A). (1%*)
On the other hand, since a <1 8 and A(i,«, A) Cap 8, then FA(i,a, A) £ 0 and
w:=min (FA(i,a, A)) exists. Now, by (1*) and previous theorem 6.17, it follows that
u(a) € anClass(i);
Ve e A(i,a, A).T(i,o,2) Na C p(a); and
the function Ha(;,a,4) € FA(i,a, A) (2%),
where Ha(i,a,4): A(i, o, A) — H[A(i, «, A)] is defined as Ha (i, 4)(7) :=2[g(i, a, p())].
Finally, by lemma 6.16, Vo € A(i, o, A). Ha(i,a,4) (%) = 2[g(i, a, p(a))] < p(x); therefore, by
(2*) and the minimality of y in FA(i, o, A) it follows Ha (i o, 4) = - O

Corollary 6.20. (6) of theorem 3.26 holds for n, that is:
For any a € Class(n) and any t € [a, a(+™)), a<in(n,a,t)+ 1= a<"n(n,a,t)+1

Proof. Let o € Class(n) and ¢ € [, o +™)) and assume « <1 n(n,a,t) + 1.
Clearly a < n(n, o, t)+1. (1%)

Now, take B Cgn n(n, a,t) + 1 arbitrary and A:={a}UB. Then ANa,a(+"))#0,

A Csin n(n, a, t) + 1 and by proposition 6.10, A(n, a, A) Cgn n(n, a, t) + 1. Then all the condi-
tions of corollary 6.19 are fulfilled by n, a, 8:=n(n,a,t)+ 1 and A and therefore, for
= min {h: A(n, a, A) — h[A(n, o, A)] Ca|his an ( <, <y, + )-isomorphism with h|, =1d,} we
have that 6 := p(a) € Class(n) Na, Ve € A(n, o, A).T(n,a,2) Nae C O A p(z) = 2[g(n, a,d)]. Since
the previous was done for arbitrary B, it follows easily:
VB Cginn(n, a,t) 4+ 1.36 € Class(n) N a.
eVre BT (n,a,z)NaCd
e h: B— h[B], h(z):=z[g(n,a,d)] is an (<, <1, 4+, Ax.w*)-isomorphism

with h|e=1d4. (2%)

Finally, from (1*) and (2*) and according to definition 6.1, we conclude a <" n(n, a, t) +
1. O
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Chapter 7
Class(w) and the ordinals O;.

Now that we have finally finished the proof of theorem 3.26, we have a lot of results that give
us a pretty good understanding of the < relation: At our disposal are not only the assertions
of theorem 3.26, but all the many results obtained on the way of the proof of such theorem. The
first thing we want to do now is to introduce a new class of ordinals induced by <; and show
that this class is the last (or “thinnest”) class induced by the <; -relation: We have arrived to
the point where we can partition the whole class of ordinals in the classes of ordinals having “the
same <p-reach up to a replacement” (see proposition 7.6).7-1

7.1 Class(w).

Definition 7.1.
Class(w) := ﬂne[l ) Class(n).
For any a € Class(w), let a(+*):=min {3 € Class(w) |a< 8}

Remark 7.2. Consider an arbitrary non-countable regular ordinal k. Since we know that for
any n € [1, w) Class(n) is k-club, then Class(w) is also k-club (by proposition 2.47). Therefore,
for any « € Class(w), a(+*) is well defined.

Our current goal now is to characterize Class(w). Corollary 7.5. provides such characteriza-
tion.

Proposition 7.3. Va € Class(w).« <1 a(+%)
Proof. Let a € Class(w). For any i € [1,w), let &:=a(+"). Let &:=sup{&, |n€l,w)}.

To show Vn € [1,w).€ € Class(n). (%)

Let n € [1,w).

Now, for any i € w, let 7; := &,4;. Then Vi € w.7; € Class(n) and since Class(n) is a closed
class we have that £ =sup {7; |i €w} € Class(n).

This shows (1%).

To show a(+¥) <€ € Class(w). (2%)
From (1*) it is clear that o < £ € Class(w). Thus a(+%) <.
This shows (2%).

7.1. The expression “the same < -reach up to a replacement” was suggested to me by Basil Karadais while I
was explaining this theorem in one of our weekly meetings and I used to say “the same abstract <j-reach”.

149
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Now we show that Vn € [1,w).a0 <1 &,. (3%)

Let n € [1,w).

Since a € Class(w), then o € Class(n + 1) and therefore oo <y a(+") =&,
This shows (3*).

Finally, note that (3*) and <; -continuity imply that o <; &; therefore, using (2*) and < -
connectedness we conclude o <7 a( +%). O

Proposition 7.4. Va € Class(w).m(a) = oo.

Proof. We first show Vf € Class(w).a < §= a <1 8 by induction on (Class(w), <). (0*)
Let 8 € Class(w).
Suppose Vv € fNClass(w).a<v= a<17. (IH)

Assume > a. Then we have the following cases:
a) B=a. Then clearly a <5 S.

b) a < f ¢ Lim(Class(w)). Then f = ~( +% ) for some v € [a, B) N Class(w). Then

a <1y <1 Y(+¥). So a<1y(+¥) = by <i-transitivity.
by (IH) by proposition 7.3

c) a < f € Lim(Class(w)). Then there exists a sequence (7;);er C [a, §) N Class(w) such that
v;— B, and since Vi € [.a <1 74, then a <3 8 by <7 -continuity.
cof by (IH)

The previous concludes the proof of (0%).
Now we show that m(a) = o0, that is, we show Vy € OR.a<v= a <1 7.

Let v > a. Then, since Class(w) is x-club for any non-countable regular ordinal x, then there
exists [ € Class(w) such that o <y < . From this, (0*) and <;-connectedness we get a <1y. O

Corollary 7.5. Class(w)={a € OR | m(a)=00}.

Proof. Class(w) C {6 €OR|m(J) =00}, so it only remains
7.4

by prop.
to show that {§ € OR | m(d) = oo} C Class(w). (0%)
Let o« € {6 € OR | m(d) = o0} be arbitrary. *
To show Vn € [1,w).« € Class(n). (1%)

We carry out the proof of (1*) by induction on ([1,w), < ). Let n€[1,w).

Suppose « € Class(n). (IH)

Case n=1. Then a < a2 and so, by (*), & <1 a2. Thus a € Class(1).

Case n =1+ 1 for some [ € [1,w). Since by our (IH) o € Class(l), then a( +') is defined and
a<a(+"). Then, by (*), a < a( +"), that is, a € Class(l + 1) = Class(n).

The previous concludes the proof of (1*).

Concluding, by (1*), a € ﬂne[l ) Class(n) = Class(w), and since this was done for arbitrary
a€{6€OR |m(§) =oc}, then (0*) holds. O

To finish this section, we prove the following two results
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Proposition 7.6. Let ~ be the following binary relation on the ordinals:

a~f i<
m(a)=o0=m()

a¢EDBAM(a)=a+IAm(B)=L+1 for someleanf.
{a, B} C Class(n)\Class(n+ 1) AT (n,a,m(a)) Na C B Am(a)[g(n, a, B)] =m(B) for some n€ [1l,w)

Then ~ is an equivalence relation.

Proof. Not hard. g

Proposition 7.7. Every non-countable cardinal belongs to Class(w).

Proof. We show Va € OR.ae > 1= R, € Class(w) by induction on (OR, <).

Let « € OR with o> 1.
Suppose Vo € ORNa.o > 1= R, € Class(w). (IH)

First note that N,4; is a regular non-countable ordinal and therefore, by remark 7.2
Class(w) is closed unbounded in Rq1. (*0)

Case a= f+1 for some g € OR.

Then Ng; is a regular non-countable ordinal and then
Ro=Ng11 = sup(Class(w)NNgt1) % )Class(w)ﬁN5+1+1.
by (*0

remark 7.2

Case a € Lim.
Then, by our (IH), {X, |0 €[1,a)} C Class(w) and therefore
R, =sup{R, |c€[l,a)} % )Class(w)ﬂNaH. O
by (*0

7.2 The ordinals O;.

Having available the classes Class(n), for n € [1,w], we define
Definition 7.8. For any i€ [1,w], let O;:=min Class(3).

A first observation relative to the ordinals O; is

Proposition 7.9. For any i € [1,w], O; is countable.

Proof. ¥y is regular. Thus for any i € [1,w], Class(?) is club in X;. So O; =minClass(i) <X;. O

7.2.1 O, is the core of R,
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Consider the structure R;:= (ORD, 0,4+, <, <y ). Carlson defines in [10] an isominimal sub-
structure of R; as a finite substructure of R; which is minimal in the pointwise ordering of the
collection of all finite substructures of R; which are isomorphic to it; moreover, he defines the
core of Ry as the set of ordinals which occur in some isominimal substructure of R;. From our
previous work and the work of Carlson follows that O, is the core of R;. We state now this
result as

Corollary 7.10. O, is the core of R;.

Proof. O, = min {a € OR |m(a) =00} = Coreof Ry = |[II{-CAy|. O
corollary 7.5. see [10] see [10]

Corollary 7.11. (O0;)ie1,u) is strictly increasing and cofinal in O, = ITI}-CAy)|.

Proof. It is easy to see that (O;)ic1,.) is strictly increasing and that (O;)ic1,.) C O.. More-
over, using the same argument used in proposition 7.3, it follows sup {O; |i € [1, w)} € Class(w).
From all this we get sup{O; |i € [1,w)} <O, <sup{O0; |i€[l,w)}, that is,

sup{0; |i€[l,w)} =0, = ITT1-CAy|. O

corollary 7.10

Remark 7.12. As a final comment on this section, we want to stress the following observation
made by Prof. Buchholz: How many non-countable regular ordinals do we need to use for the
proof of the existence of the ordinals O;?.

To answer this question, let’s convey to denote 1(+%):= O; for any i € [1,w].

Consider p € {1} U {non-countable regular ordinals}. A careful reading of the proof of the-
orem 3.26 shows the following:

1. To show the existence of p(+?2) we just use one non-countable regular ordinal x1 > p,
k1 € Class(1), together with it’s “Class(1)-successor” k1( +*) € Class(1). Indeed, using the
interval [r1, k1(+')) one shows that Class(2) is #1-club (and that x; € Class(2) too).

2. For the proof of the existence of p( +2), in a similar way as in the previous case, we use
the pair k1, k1( +2) € Class(2) and show that Class(3) is ki-club and that 7 € Class(3).
However, for the existence of x1(+2), as we just mentioned in 1, we need to use another
non-countable regular ordinal ke > k1, ko € Class(1). So, actually, for the existence of
p(+3) we have used the existence of at least two non-countable regular ordinals x; and
Ko satisfying p < k1 < Ka.

3. Inductively, for i € [1,w), to show the existence of p(+‘*1) one shows that Class(i + 1) is
ki-club (and that k1 € Class(i + 1)) using the pair k1, k1( 4+ ) € Class(i), where for the
proof of the existence of x1(+*) we need (i — 1)-non-countable regular ordinals

Ko< K3 <...<k; bigger than k1. That is, in total, for the existence of p(+*!) we have used
i-non-countable regular ordinals k1, ..., k; satisfying p < k1 < kg <... < kK.

4. The proof of the existence of p( +“) only requires the ordinals {; | j € [1,w)}, since just

using these ordinals it follows that k1 € () Class(n)= Class(w).
i€[1,w)

Summarizing, our proof of the existence of the O; ordinals (with i € [1, w]) requires the exis-
tence of at least w many non-countable regular ordinals ;.

7.3 The v, functions and the ordinals ,(€2,1.,)
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For n € [1, w), consider the theory ID,, of n-iterated inductive definitions and it’s proof theo-
retic ordinal |ID,,|. In this section, for Buchhoz ,, functions, we show that
Vn € w.n(Qni2) = Qu( +2) (corollary 7.44), which in particular means [ID;| = O,. Moreover,
an incomplete but (in the opinion of the author of this thesis) plausible proof of the statement
Vn € wvVm € [1,w). Yn(Qntm) <Qp(+™) (which in particular would mean
Vn € [1,w).]ID,| < Op41) is also presented.

First let’s remind the reader of the following induction principle that will be used several
times later.

Theorem 7.13. (Induction principle for monotone inductive definitions). Let U be a non-empty
set. Let P(U) be the power set of U and T': P(U) — P(U) be a monotone operator. Let Ir be
the least fized point of T'. Then for any X CU, if T(X NIr) C X, then Ip C X.

Proof. Not hard. See [14]. O

7.3.1 Buchhoz 1, functions (with v € [0, w])

Now we introduce Buchholz v, functions (as given in [4]) and present several known proper-
ties of them necessary for our purposes.

1 iff v=0
Definition 7.14. For v€[0,w], let €, :{

N, otherwise

Convention 7.15. It will be useful for later to make the following convention:
For any i € [1,w], let Qo(+?):= O; = min Class(i).

Definition 7.16. By recursion on OR, the functions ¢, and C,, (for any u € [0,w]) are simulta-
neously defined in the following way: Suppose that C,(§) and 1, (€) are defined for all £ < a and
for all u € [0,w].

Then, for any v € [0, w], Yy :=min {y € OR |y ¢ Cy(a)}, where the set Cy(a) is inductively
defined by the following clauses:

(C1). Q,CCy(a)
(C2). 0,6 Cy(a)= 0+ Cy(c)
(C3). ne|0,w] Ao eanCyla)NCh(c)= po € Cyp(a)

Theorem 7.17. Yv € [0,w).¢o(eq,+1) = [IDy|

Proof. See [4]. O

Proposition 7.18.

a) 1h,0="1,,.

b) Y,aeP.

¢) Qy <Y< Qyya.
)

d) « < ﬁ:> C’U(a) C CU(/B) and 1/11;04 < wvﬁ
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6) ’yEC’U(a)/\'y:CNpL111+...+Lklk<:>{Ll,...,Lk}CCv(a)
f) §0€C(a)= {+0€Cy(a)

) E+0€Cy(a)=0d€Cya)

)

If ap< a and [, @) NCy(ag) =0, then Cylag) = Cy(ar)

g
h

Proof. See [4]. O

Proposition 7.19.
a) If a< B and a € Cy(a), then Yy < 1,0
b) If o =1p8 and a € Co(a) A B € Cy(B), then a=bAa=p.
¢) If ©u<yePNCia), then JudE e Cu (&) Nan Cia).y =€
d) If U<y eCila)nEeCy(E), then E€anCia)

Proof. See [4]. O

Proposition 7.20.
a) Cy(a)NQyi1 =1y,

[ min{yeP |a<~} if ae Cyla)
b) Yu(a+1)= { ey otherwise '

¢) If « €Lim, then Yo =sup{& | E<an&eCy(é)}.

Proof. See [4]. O

Proposition 7.21.

a) a<eg= a € Cola) A oo =w®.

b) a<eq,+1Av# 0= a€Cy(a)Ahya=wPte
¢) Cyla) Ceqy -
)

d EQ 418 = Cv(EQw_;,_l) = CU(O().

Proof. See [4]. 0

Proposition 7.22.
a) (=3E € Cu(§)Na, B)) = Cy(B) C Cy(a).
b) (e Cu(é)Na, B)) <= ya < ,p.
¢) a€BNCLL) = Yy < ,p.

Proof. Not hard. O

Proposition 7.23. Vm e w.VE € Q1.0 <m.E € Cp (&) = Cn(&) N [Qp(+1), Qpt1) = 0.

Proof. Let m € [1,w). We prove V€ € Q,,41.¥n <m.€ € Cp(€) = Cr(6) N [ +1), Q1) =0
by induction on (11, <).
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Let €€ Q.
Suppose V3 € €N Dy 1.¥n <m.d € Cp(8) = Cn(8) N[Qp(+1), Qint1) =0. (IH)

Let n € [0, m] and suppose & € C,,(€). Let X := {8 € OR | B ¢ [Qm( +'), Qni1)}. Now we
show that X is closed under the clauses of the inductive definition of C,,(&).

e (), C X clearly.

1 : 1
e Suppose p,d € X. Then p—|—6{ < (1) p, 0 <Qn(+7)

> Qs it 3xe{p,0}.2>Qn11
e Suppose p=14(d) for 6 € ENX NC,(J) for some g € [0,w]. Then we have some cases:
+ g=2m+1. Then ¢,(0) 2 Qg > Qpt, Le, peX.
+ g<m. Then ¥4(0) < Qg1 < U <Un(+1), ie, pe X.
+ ¢ =m. Then we have § € £ N C,,(d) and so, by our (IH), Cp,(8) N [Qm( +1), Qmi1) = 05
this together with the fact § € £ € Qy,, 11 implies 6 < Q,,(+1). (*)
Finally, (*) and proposition 7.21 yield ),,(9) :wm”‘sb <(*)Qm( +1). So p=1vm(d) € X.
y

From the previous follows Cp(§) C X, that is, the theorem holds. O

.Sop+oeX.

Proposition 7.24.
1. VYmewVEE [Qm(+1), Yni1)Vn<m.E ¢ Ch(€).
2. V€€ [0, M).§ ¢ Co().

Proof.
1.
Let me[l,w), €€

}Qm(Jrl )y Qm+1) and n<m. Then & € C,(€) imply
£eCn(E)N[n(+)

, Qmr1) = (). Contradiction. So & ¢ Cp(€).

proposition 7.23

2.
Direct from 1 and the fact that Qo(+')=¢o. O

7.3.2 The type of an ordinal «a.

The following definition will play a major role later.

Definition 7.25. Let Q € Class(w). For a < Q we define tp(a, ), the type of a in terms of ,

w 00 iff a€ Class(w)
tp(a, Q) :=1 m(a)[g(n,a,Q)] iff a€Class(n)\Class(n+1) for some ne€[l,w)
Q+gq iff m(a)=a+ q for some g€ [0, )

Now we will work on certain results concerning tp(a, ) and limit procedures that will be
necessary.

Proposition 7.26. Let n€[1,w), a € Class(n)\Class(n + 1) and
te(a(+" ). (+1)2,a(+™)). Then

1. Vs€ (a,l(n,a,t)).nn,a,s) <l(n,a,t)
2. If l(n,a,t) € Lim, then l(n,a,t)=sup{n(n,a,s) |s€(a,l(n,a,t))}
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Proof. Let w,a and t be as stated.

1.
Take s € (o, l(n, a,t)) arbitrary. If s <a(+"71)...(+!)2, then it is easy to see that n(n,a,s) =
a(+" ) (+1)2 < I(n,a,t). So assume s> a(+""1)...(+1)2.
because t>a(+"~1)...(+1)2
To show I(n,a,t) £ n(n,a,s). (1%)

Assume the opposite. Since 7(n, a, s) = max {m(e) | e € («, s]}, then there exists e € (a, 3]
such that e < s <l(n,a,t) < m(e); these inequalities together with the fact that
m(l(n, a, t)) = n(n, a, t) imply, by <; -connectedness, that e <y I(n, a, t) <1 n(n, a, t) and

therefore, by < -transitivity e <1 n(n, a, t), that is, m(e) > n(n, «, t). (*). But then
m(e) < nn,a,e) < nn,a,t) < m(e), that is m(e) = n(n, «, t). From our pre-
always holds because e<t by (*)

vious work follows e € (o, l(n, a,t)) N{B € (a,t] |m(B) =n(n,a,t)}. Contradiction because

I(n, o, t) =min{B € (a, t] | m(B) =n(n, . t)}.
Thus (1*) holds, that is, n(n, a, s) <l(n,a,t).

2.
Note Vs € (o, l(n, a,t)).s <n(n,a,s) <n(n,a,s)+1 < l(n,a,t), therefore
by 1.
I(n,a,t)=sup (a,l(n,a,t)) <sup{n(n,a,s) |s€(a,l(n,a,t)} <l(n,a,t), ie.,
I(n, o, t) =sup {n(n,a,s) | s € (o, l(n,a,t))} o

Proposition 7.27. Let n € [1,w) and a € Class(n)\Class(n+1). Then
1. YVt € (a,m(a)].m(t) <m(a
2. Vte (a,m(a)].n(n,a,t) <m(a).
3. n(n,a,m(a)) =m(a)

Proof. Let n and « be as stated.

1.

Take t € (o, m(a)]. Assume m(t) >m(«). Then the inequalities o <t < m(a) < m(a) + 1< m(t)
imply, by <;-connectedness, that o <1t <y m(«) + 1, which subsequently implies, by < -conti-
nuity, that a <; m(a)+ 1. Contradiction. Thus m(t) < m(«).

2.

Take t € (o, m(a)]. Then:
If te(a,a(+""1)...(+1)2], then n(n,a,t)=a(+""1)...(+)2<m(a).
If t€(a(+""1)...(+1)2, m(a)], then n(n,a,t)=max {m(e

=
m no
B
=
=3
<N
=
£

3.

m(a) < n(n,a,m(a)) < m(a). So n(n,a,m(a))=m(a). O
by 2.

Convention 7.28. Consider n € [1, w) and « € Class(n) N O,4+1. We want to be able to take
fn+ 1, AM(n+1,a))(«) as we have done in previous chapters. So we just extend in the natural
way the definitions of A(n+1,-) and f(n+1,-). We convey:

e A\Nn+1,a):=0,
e S(n+1,0): Class(n) N Op41— Subsets(Class(n) N Opt1)
S(n+1,0)(a):={ee€Class(n) NOpt1Na | m(e)[g(n,e,a)] =m(a)}
e f(n+1,0):Class(n) N O, 41— Subsets(OR)
{a} it S(n+1,0)(a)=0
f(n+1,0)(a):=
fin+1,0)(s)Uf{a} T Sn+1,0)(a)#0As:=sup(S(n+1,0)(x))
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Proposition 7.29. For any n € [1, w), propositions 5.1 and corollary 5.2 hold for S(n + 1, 0)
and f(n+1,0) too.

Proof. Clear. The proofs of propositions 5.1 and corollary 5.2 hold for these cases too. g

Proposition 7.30. Let n € [1,w) and o € (Lim Class (n))\Class(n+ 1). Consider

R -2 iff fn+1,A(n+1,0))={a=01>...>0,}Aq>2
B(a)'_{)\(nJrl,a) iff frt+LA+1,a))={a=01} ! - Then

1 An(n, a,s) [s € (a,l(n,a,m(a)))} ={m(d)[g(n, 5, a)] | § € (B(a), @) N Class(n)}
2. l(n,a,m(a)) € Lim=I(n,a,m(a)) =sup {m(d)[g(n,d,a)] | d € (B(a),a) NClass(n)}.
3. Suppose l(n, o, m(«)) ¢ Lim. Then l(n, a, m(a)) =~y + 1 for some v € [o, a( +™)) such
that

3.1. m(a)=n(n,a,l(n,a,m(a))) =m(l(n,a,m(a)))=y+1=I(n,a,m(x))

3.2. n(n,a,v)="2y

3.3. y=sup {m(d)[g(n,d,a)] | € (B(a),a)NClass(n)} =

—max {m(3)[g(n,d, )] | & € (B(a), a) N Class(n)}.

Proof. Let a and §(a) be as stated. To simplify our notation, in the subsequent we write
instead of B(«).

1.

Let e € (a,l(n,a,m(a))) be arbitrary. Then

a<e<n(n,a,e)<n(n,a,e)+1 < l(n, a,m(a)) <
because m(a)>a(+""1)...(+1)2 and by proposition 7.26

m(l(n, a,m(a))) = m(«), which implies by <;-connectedness, that

by prop. 3.21
a<i1n(n,a,e)+1. So, by lemma 4.15, there is a sequence (p;);ep C Class(n) with

VjeD.T(n,a,n(n,ae)Nac p; Am(p;)=n(n,a,e)lg(n,a, p;)] and pj<—f> a. Let kg€ D be
such that px, > 5. Then n(n, a, e) = m(pw,)[g(n, pr,, @)] € {m(8)[g(n, d, )] |§ € (B, ) N Class(n)}.
This shows

{n(n,a,s) [s€(a,l(n,a,m(a)))} C{m(d)[g(n,d,a)] |§ € (B, a)N Class(n)}. (1%)

To show {n(n,a,s) |s€ (a,l(n,a,m(a)))} D {m(d)[gn,d,a)] | (B,a)N Class(n)}. (2%)

Let g€ {m(d)[g(n,d,a)] | € (B,a)NClass(n)}, that is g=m(p)[g(n, p, @)] for some
p € (B,a)NClass(n). By proposition 7.29 5.2, m(p)[g(n, p, a)] <m(«). *)

We assure [(n, o, m(a)) £ m(p)[g(n, p, a)]. (3%)
A the opposies e T (o) & m(s)otms ). Then (s, (gt sl =
m(a), and subsequently m(p) =n(n. p.m (p))=77(n p,m(p)lg(n, p, @)]lg(n, o, p)})

n(n, a, m(p)lg(n, p, a)])[g(n, @, p)] =m(a)lg(n, a; p)], that is, m(p)[g(n, p, @)
is contradictory with (*). Thus (3*) holds.

m(a), which

Finally, from (3%) we have I(n, o, m(a)) > ¢=m(p)[g(n, p, @)} =n(n, p,m(p))[g(n, p, )] =
n(n,a,m(p)[g(n, p,a)]), which means
q = n(n, a, m(p)[g(n, p, a)]) € {n(n, a, s) |s € (a, I(n, o, m(«)))}. Since this was done for
arbitrary g € {m(d)[g(n,d,a)] |0 € (B(a),a) NClass(n)}, then we have shown (2*).

So the claim holds because of (1*) and (2*).

2.

I(n,a, m(a))prop.:T%sup{n(n, a,s)|s€(a,lin,a,m(a)))}=
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byzl'sup {m(d)[g(n,d,a)] |8 € (B(a),a) NClass(n)}.

3.
Suppose {(n,a, m(a)) ¢ Lim and let v € OR be such that I(n,a, m(a)) =~ + 1. Clearly
vEla(+" ) (+1), a(+")).

3.1.
Direct from propositions 3.21 and 7.27.

3.2.
Since I(n, a, m(a)) = a( +"71)-( +1)2, then v > a( +" 71 )---( +1)2. From this follows that
n(n, a,vy) =max {m(e)le € (o, 7]} (a). But max {m(e)|e € (a, ¥]} # 7, otherwise, for some

e€ (a,v], we had a<e<y<vy+1=m(a) <m(e), which implies m(«) =m(e) and therefore
I(n,a,m(a)) <e< vy <7+ 1. Contradiction with our assumption [(n, o, m(«)) = v + 1. Hence
max {m(e)le € (a, ¥]} # 7, that is, (using (a)), n(n, a, 7) < 7. From this and the fact that it
always hods v < n(n, a, ), we get n(n,a,y) =+ as we wanted.

3.3.
Direct from 1. and 3.2. O

Proposition 7.31. Let n € [1,w) and a € Class(n)\Class(n + 1) be arbitrary. Consider

I -2 iff f(n+1,A(n+1,a)={a=0c1>...>04tANq>2
Bla) _{,\(n+1,a) iff fn+1LA(n+1,0)={a=01} and
'Y::{ s_u;l) {m(d)[g(n,d,a)] |6 € (B(a), a) NClass(n)} Z‘th(zri){._;lénCIass(n) . Then
a( +"7 ) (+1)2 iff a¢ Lim(Class(n))
a) m(a) =< n(n,a,”) iff a€Lim(Class(n)) Al(n,a, m(a)) € Lim
y+1 iff a€Lim(Class(n)) Al(n,a,m(a)) ¢ Lim
b) For any € Class(w) with Q> «,
Q(+" 1) (+1)2 iff a¢ Lim(Class(n))
tp(a, Q) =1 n(n,Q, v[g(n,a,Q)]) iff a€Lim(Class(n)) Al(n,a,m(a)) € Lim
Y[g(n,a, Q)] +1 iff a€Lim(Class(n)) Al(n,a,m(a)) ¢ Lim

Proof. Let n€[l,w) and « be as stated.

a)

If o ¢ Lim(Class(n)), then (we already know) m(a) = a( +"71)---(+1)2. If a € Lim(Class(n)),
then we have two cases:

- l(n,a,m(a)) € Lim. Then, m(a) =n(n,a,l(n, o, m(a))) = 73077(n,a,'y).
proposition 7.
- l(n,a,m(a)) ¢ Lim. Then m(a) =n(n, o, l(n,a, m(a))) = v+ 1.
proposition 7.30
b)
Direct from a). n

Proposition 7.32. Let n € [1,w), Q € Class(w), a € [1,) and v € {0} U (o N Class(n + 1)) be
arbitrary. Suppose p € [Q, Q(+")) is such that Y6 € (v, a).tp(d,Q) < p. Then

a) a¢ Class(n+1).

b) If T(n,Q, p)NQ Ca, then

Q(+" 1) (+Y)2 iff a¢ Lim(Class(n))
tp(a, Q) << nin,Q,p) iff o€ Lim(Class(n)) Al(n, a,m(a)) € Lim
p+1 iff « € Lim(Class(n)) Al(n, a, m(a)) ¢ Lim
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Proof. Let n, €}, o and v be as stated.

Suppose p € [Q, Q(+")) is such that Vé € (v, a).tp(d, Q) < p. (a0%*)
a)
To show a ¢ Class(n+1). (a1%*)

Assume the opposite, assume that « € Class(n + 1). (a2%*)

Consider the canonical sequence (vx(n,Q2))re(1,0) of Q(+") as given in definition 4.16. Since
by proposition 4.17 (vi(n, Q))re,w) C (2, Q(+")) and yx(n, e)? Q(+"), then let i € w be
such that v;(n, Q) > p. (a3%*)

On the other hand, note (a2*) implies a@ <3 v;(n, &) + 1; subsequently, by proposition 4.17

and lemma 4.15, there exists of a sequence (;);es C Class(n) Na (a4*) such that
VjeJT(n, o, v(n,o)NacCd;,
b —ra and v € Jan55) = nns )lglnsa b)) = n8) €@y (+7). (a5%)

By (a4*) and (a5*), let jo € J be such that §,, € (v, a). (a6%).
Note 9, (6 )Class(n)\Class(n +1). This way,

by (a5*

tp(dj,, Q) = m(4; 8ioy D] = 7iln, 4, , 0oy = i(n, Q . Contra-
p( Jor ) m( Jo)[g(na Jo? )]by (a5*)fy (n ]U)[g(n Jo )}prop‘ 4.177 (n )by (>a:3*)p ontra

diction with (a0*).
Thus (al*) holds.

b)
Suppose T'(n,Q2, p)NQC a. (*b1)

Let’s see that tp(«, Q) is bounded as stated in the claim of the theorem.

Suppose a ¢ Lim(Class(n)). Then Vu € [1,w).a € Class(u) = u < n. This clearly implies that
tp(e, Q) <Q(+" 1) (+1)2.

So let’s suppose from now on that « € Lim(Class(n)). (0)
. . ) [ o2 iff f(n+LA(n+1l,a)={a=0c1>...>0q}Nqg=2
Consider the ordinals f(«):= { Mnt1,0) i fintla(il o) ={aco] and

~v:=sup{m(d)[g(n,d,a)] | € (B(a), ) NClass(n)}.

Note (8(«), @) C (v, ) and so by (a0*) we obtain
Vv € (B(a), a) N Class(n).m(d)[g(n, §, a)]lg(n, a, Q)] = m(§)[g(n, §, N)] = tp(d, Q) < p; from
this and (*bl) we get Vé € (5(a), ) N Class(n).m(d)[g(n,d, a)] < p[g(n, 2, &)]. Thus
v < plg(n, 2, «)] and then
Ygln,a, Q)] < plg(n, 2, a)llg(n, @, Q)] = p. Therefore:
n(n,Q9lg(n, 0, Q)]) < n(n,Q, p); (1) and

by prop. 6.8
Y[gn,a, Q)] +1< p+1. (2)

Finally, by (0), (1), (2) and previous proposition 7.31, we conclude
tp(OL Q): n(nagar)/[g(naa79)])gn(nagap) lf l(n?a7m(a))€le
’ Y[g(n,a, Q)] +1<p+1 if i(n,o,m(e)) ¢ Lim

7.3.3 O, > |ID;]|

Our goal in this subsection is proposition 7.35, whose corollary is O2 > |ID4| (corollary 7.36).
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Proposition 7.33. Vn cw.Va € Q1 1(+1).VE € Cpla).Ep(€)\{Q |i =1} C na.

Proof. Let n € w and a € ,,41 be arbitrary. Let X := {8 € OR |Ep(8)\{ |i>1} C Ypa}. We
proceed by induction on the inductive definition of C,(«); in fact, we will use the version of the
induction principle given by theorem 7.13.

1. Q, C X holds because Q,, = ¥,,0 < ¥,a.

2. Suppose £,5 € X NCp(«). Then clearly
Ep(€+6)\{ [ > 1} C (Ep(€)\ {2 | > 1}) U(Ep(6)\{ |3 1}) C thua. So £+ € X.

3. Suppose £ =,0 for some 6 € aNX NCp(a) NCy(6) and some u € [0, w].
+ Case u =n+1. Since § € @ € Ly 1(+1) C Qurr( +1), then & = ¥, = Wt and
rop. 7.21
therefore Ep(&)\{Q [i>1} =Ep(O)\{Q [i>1} C  tna. rer

because d€ X
+ Case u < n. Then £ = ¥, 0 < Yo <e Yna. So Ep(€) C ¥a and

. because d €anNC,(a) and prop. 7.22
particularly ¢ € X.

From 1, 2 and 3 and theorem 7.13 we conclude Cy,(a) C X, that is, the theorem holds. O

Lemma 7.34.

Vn€wVa € Qi1 Qnr1(+1)).

Yny10 < Qua(+1) A

V¢ € Cn(a) N (Qny iy 1)t0(C, Lot 1) < n(Png10) = (1, Qg 1, Yrpra).

Proof. Let n €w. We now proceed by induction on ([Q+1, Qnr1(+1)), <).

Let o € [Qni1, Qnpr(+1)).

Assume

VBe [Qn+1v Qn+1( +1 )) Na.

Y418 < Qnyr(+1) A

VC S Cn(ﬁ) N (Qna Qn-}—l)-tp(ga Qn-‘rl) < 77(¢n+15)~ (IH)
First note ¢, 10 = wWhite < (41). (a0%*)

prop. 7.21

On the other hand, let X :={£ € OR | £ € (U, Q1) = tp(§, Qnt1) < N(Yn+1)}. Now we
show that Co(ar) C X; for this purpose, we will use the induction principle given by theorem
7.13.

1. Q, C X clearly.

2. Suppose £,0 € X NCy(a).
Suppose €+ 6 € (2, 2n41). Then it is easy to see that

tp(0, ny1) <N(Yns10) iff {+6=4¢
tp(§+§,Qn+1): Qn+1<Qn+12<n(¢n+1a) iff §<§+5>5 . Thus £+5€X
tp(&, Qny1) <N(Vni10) iff §+0=¢

3. Suppose & = 1,0 for some § € X N C, () NCy(d) Nev and some w € [0, w].

Suppose £ € (Qn, Qusr).  (0%).
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Then u=n and we have £ = 1,,0 for some § € X N C,, () N Cr(6) N . (1%).

+ Case 6 <, 41. Then, by (1*) and prop. 7.24, § € Q,,(+'). Therefore
f = %5 = WQH-HS C (Qm Qn( +1 )) and then tp(& Qn-‘rl) < Qn-i-l2 < 77(1l)n+1a)~ Thus

prop. 7.21 by (0*)
£ € X in this case.

+ Case § = Qn-‘rl- Then § = 9,0 = Qn( +1 ) and then tp(ﬁ, Qn-l—l) = tp(Qn( +1 )7 Qn-l—l) =

Qni12< W1t nen Oyt = Y10 < N(Yp11c). Thus € € X in this case.
by prop. 7.21

+ Case § > Q,41. Then 0 % )(Qn_H, a) C [Qns1, Qos1(+1)) and then, by our (IH) applied

to §, we get
Un 10 <Quya(+1) A
V¢ € Cn(8) N (Qny Qi 1) tP(C, Qg 1) < N(¥0n110) < Qupa(+1). (2%)

To show tp(&, Qp+1) =tp(Vnd, Qpny1) < N(Yn410). (b1%*)
First note that, since 9,0 = Cp(§) N Qp41, then Cp(8) N (Qny Qng1) = (s Y10). (3%).

Moreover, Ep(7(tn+16)) N Q11 CEp(¢y118) N Q1 =Ep(w+1H0) N, 1 C
Ep(0)NQpy1  C 0. This, (0%), (2*) and (3*) imply, by proposition 7.32,
7

prop. 7.33
E=1n0 <Qp(+?) and
Q112 iff 9,0 ¢ Lim(Class(1))
tp(Ynd, Qny1) < ¢ n(0(Yn410)) T ,d € Lim(Class(1)) Al(1, ¥,0, m(1),d)) € Lim }z
N(Yn410)+1 i 4,0 € Lim(Class(1)) Al(1, ¢nd, m(1,d)) € Lim
Qpi12 iff 1,0 ¢ Lim(Class(1))
= N(¢n+10) iff 0 € Lim(Class(1)) Al(1, m(wné)) € Lim } <
by prop226 | Ly 18 41 iff 4,0 € Lim(Class(1)) A ( d,m(¢pd)) € Lim
<N(Ynt16) +1. (b2%)

But for any z € [y 41, Qpi1( +1)) NP, n(z) < min {y € P |y > x}. From this observation we
have that

0)+1<min{yelP o0>x =
N(¥n+19) {y€P ¥ }because §ECH(6)==6€C11(5)
and by prop.7.20

(Yn41(0+1)) <Ynpra<n(Pnira). (b3%)
(b2*) and (b3*) show that (b1*) holds. Thus, £ € X in this case too.

Finally, from 1, 2 and 3 and the induction principle given by theorem 7.13, we conclude that
Cp(a) C X. This and (a0*) prove that the whole theorem holds. O

Proposition 7.35. Let n€w. Then for any a € [Qni1, Lnr1(+1)), Yna < Qn(+2).
Proof. Let a € [Qy,41, Qui1(+1)).

From the equality 9, a = 2OCn(o¢) N2, +1 and previous lemma 7.34 we get
prop. 7.
VE € (U, V) tp(€, Qni1) < N(Wni1a). This implies that ¥,(a) < Q,( +2 ), but since by
lemma 7.32 9, () ¢ Class(2), then 9, (a) < Q,(+2). O

Corollary 7.36. Vn € w.1,(Qy2) < Qu(+2). In particular 1(Q2) = [ID1| < O.

Proof. Let n € w. Consider the sequence (&;);c., defined recursively as
Co:= Q1+ 1, &1 i=wb. Then Vi €w.& € Cpn(&) N [Qna1, Qnr1(+1)) and therefore, by pre-
Easy

vious proposition 7.35, Vi € w.1,(&;) < Q,(+?). From this and the fact that
7/)71(51) ;f) wn(Qn-i-l( +1 )) = ¢n(Qn+2) we conclude wn(Qn+2) < Qn( +2 ) O
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7.3.4 O, <|ID;]|

Because of certain technical problems working with the previously introduced version of the
psi functions, in this section we will work with another variant of them that we will denote as

(wrlz)ne[(),w}

Definition 7.37. By recursion on OR, the functions 1} and CL (for any u € [0,w]) are simulta-
neously defined in the following way: Suppose that CL(€) and ¥k(€) are defined for all € < a and
for all uwe0,w].

Then, for any v € [0, w], Yo :=min {7 € OR |y ¢ Ci(a)}, where the set Ci(a) is inductively
defined by the following clauses:

(C1). {Q |vE[0,w]} CCyla)

(C2). Q,CCla)

(C3). 7,0 cCla)NE=wH6= £ Cl(a)

(C4). n€l0,w]AocanCi(a)NCL(o) = Yo e Cia)

Definition 7.38. Forne[0,w], let GL:={a € OR |ac Cl(a)}.
Proposition 7.39. Let v €[0,w] and a, B,7,&,5 € OR. Then
a) a<f= Cl(a)CCy(B) and Poa <pyf3
b) pya C Cy(a).

c) Q, <1/)va<QU+1

)

)

d) YulanGy] C y(a)

e) YiaeE.

f) BEEAY[aNG]C = Ci(a)NQyi1C B

9) ¥us(a)=Cy(a) N Qi1

h) yeCH a)Ay=w'+d= 0,5 € Cl(a)

i) ¥ <Quy1(+") = 7€ Cy(@) <= Ep(7) N Q11 C ¢y(a)
) C
)

§) Ci(a) is closed under + and \x.w®.
k) If ap < and [og, ) NCl(ag) =0, then Cp(ap) = Ci(a)
Proof. Proof as in Buchholz notes [5]. O

Proposition 7.40. Let v €[0,w] and o, 3 € OR with a < 8. Then
a) ¥u(a)=min{E€E |lanG.] C &}

b) a € Lim = v¥}(a) =sup i[a] =sup ¥ilangG,]

c Nla, B)=0= CL(B)=Ci(a).

d Nle, B) # 0 <= o < o,

e aeﬂﬁC(ﬂ):>¢va<wvﬁ.

Proof. Proof as in Buchholz notes [5]. O

)
) 9
Y
)
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Proposition 7.41. Let v € [0,w] and o, B,7v, & <Qy11(+1). Then
a) yrtaeGli— vyeg!
b) v €EN (R, Yi(a)) = v=1y(€) with Ecang,
¢) yHuwl<a<y+wl T AaeGl= Ep(B)NQy11 Cl(y+w?)
d) y+wltl e Gl = y+wPn e G} for all ncw.
e) ytwleGinpelimAée (v+wh) NG —= Fo < B.E<y+wT €G]

Proof. Proof as in [5]. O

The following is the main lemma of this subsection. The proof carried out here uses several
ideas appearing in Buchholz notes [5].

Lemma 7.42.
Vn € wVaVWVB.a=v+wl Aa €GN Qi1 (F)ABE[Qnit, U1 (+1)) =
Ep(B8) NQu41 C YpaAhha <y Yho+ Blg(1, Qnp1, Yha)]

Proof. Let n € w. By induction on (OR, <) we prove:
YavVAVB.a=y+wl Aa € GLABE Qi1 Qnii(+1)) =

Ep(8) N Q41 C Yna A Ypa <t Yna+ Blg(1, Qns1, Yaa)] (*)

Let o € OR.

Suppose (*) holds for any o’ < a. (IH)

Suppose a = y+w? for some v, € OR and that a € G} and B € [Qni1, Quy1(+1)). (s1)
Note Ep(3) N Q11 C ¥ia follows from clause ¢) of proposition 7.41. (s2). So we only

have to see that ¢no <1 e+ Blg(1, g1, Yha)].
We have certain subcases:

Subcase 8 =,,11.
Easy: Since ia € E, then yia <i via+ via=via+Qi1[g(l, Uy, Yia)].

Subcase B=1+1.

Consider the sequence (,)mew defined as oy, := y+w!(m+1). Then

ozm<—f> @ (ul); moreover, a = y+w!*! € G} implies, by clause d) of proposition 7.41,
co

Vm €w.am €GLNa. (u2). Therefore

Pia sup {Yié €€ Ginal =sup {Yi(am) |mewl. (a0)

clause b) of prop. 7.40

On the other hand, note [ > Q,,4+1 and then, by (u2) and our (IH)
Vm € w-wrlL(am) € w%(am) <1 '(/}}L(am) + l[g(1> Qn+17 ’(/}rlL(am))] (a4)

Now, from ¥La € E and (a4) we get
Vm € w.
Pnlam) <1 Pnlam) + Ug(1, Quy1, Yalam))] = (Waa + g1, Qurr, Yra))[g(1, Yra, Pnlam))];
which implies, by (a0) and our cofinality properties for Class(1) (see proposition 2.40),
wrll(a) gl wvlLa + l[g(lv QnJrla %1@)] +1=
Yra + (I 4+ D]g(1, Quir, ¥vha)] = vha + Blg(l, Qni1, Yia)]. Thus the theorem holds in this
subcase.
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Subcase 8 € (Qpt1, Lpr1(+')) N Lim.

Since y4w” € G} and 0 € yv+wP N GL, then clause e) of proposition 7.41 implies that the set

{0 < B|y+w?€G,}#0. Moreover, for 6 :=sup {o < B |y+w” €G}}, (c1)

clause e) of proposition 7.41 implies § ¢ {0 < B |~v+w® € G}, from which follows the exis-

tence of an increasing sequence (0;);e; C d such that O'i‘—f> § and Vi € I.y4wi € Q}L. (c2)
To show ha = Pk (y+w?) =sup {¥h(y+w) |i€T}. (c3)

The right hand side equality in (c3) clearly follows from (c2). So let’s prove the left hand
side equality. If § = 3 then (c3) clearly holds. So suppose § < 3. Let & € [y+w?, v+w?). Then it
is not possible that & € G}, otherwise, by clause e) of proposition 7.41, there exists p < 3 such
that
yHw? < € < y+w? € GL. This implies § < p € {0 < B|v+w? € GL}. Contradiction with (cl).
The previous shows that [y4+w?®, y+w?) NG} =0 which implies, by clause ¢) of proposition 7.40,
Cr(y+w?) = Ch(y+w?) and therefore
Pn(y4+w®) = Cp(yF+w®) N Q1= Ci(7F+w?) N Q1 = Yn(7+w”) = ¢pa. Thus (c3) holds.

Now, let’s see that 3p € [Q, 11, B).7+w? € CL(y+w?). (fo)

Since 0 € G} N (y+w?) and y+w? € G}, then, by clause e) of proposition 7.41, there exists
some
¢ < B such that y+wé € CL(y+w?). If € > Q41 then (f0) holds. So suppose & < Q,41. Then,
using prop. 7.39, we get v € C}(y4+w®) C CL(y4+w?+1) 3 Q, 1 1; therefore, since CL(y+w?+1) is
closed under + by prop. 7.39, y+wSn+1 € O (y4wn+1).

Thus (f0) holds.

Because of (f0), we can assume without loss of generality that Vi € I.o; > Q1. (f1).
Now, from (f1) and our (IH) applied to v+w? € G Na for any i € I, we conclude that

Vi € ILpn(y+w™) <1 ¢n(yF+w”) + oilg(L, Qnsr, Ya(v+w))]. (f2)

On the other hand, since Vi € I.o; € Ch(y+w?) C Ci(a) 2 BAo; <I < B <
using prop. 7.39

Q11(+1), then for any i € I, (Ep(o;) N Qpa1) U (Ep(B) NQyuit) 1 : fC Yra and so the
clause i) of prop. 7.39

substitutions o;[g(1, i1, Yia)] and Blg(1, Qni1, Yia)] are well defined and are such that
ailg(1, Qnt1, Yna)] € [Ynar, (na)(+1)) 3 Blg(1, Qs 1, Yna)].

To show sup {oi[g(1, Uy 1, Y] [i € I} = Blg(1, 1, Yaa)]. (f4)

Since Vi € I.0; < 3, then Vi € I.o;[g(1, 11, Yia)] < Blg(1, L1, wia)]; therefore
&:=sup {oi[g(1, Qn+1, Yna)] |1 € 1} < Blg(1, Qns1, Pna)]. (f5)

Now we show that & ¢ B[g(1, Qni1, Yia)]. (f6)

Suppose that &€ < B[g(1, 11, ¥La)]. Then we have
Vie[.aiéﬂg(l,w%a,QnH)]<B. (£7).

On the other hand, by proposition 2.10, Ep(¢[g(1, i, Q1)) N Qi1 =Ep(é) NYta C Yla;
therefore, by clause i) of proposition 7.39, £[g(1, ¥ia, Q,41)] € Cl(a). This, the fact that

y : € Cl(y+w?) = C}(a) and the right hand side inequality of (f7) imply by the defi-
from h) of prop.7.39

nition of C}() that y4w9t¥reil ¢ Cl(a) N (y4w?) = CL(e) N a. From the latter and

proposition 7.40 we get zbi(’y—l—wg[g(l’w%“ﬂ"“)]) <Pra. (£8). But from (f8) and (c3) it fol-
lows the existence of some k € I such that

. . 1 .
YL (yFwos) > l(yFwsle ¥ne Cnialy > Vi (y+w*).  Contradiction.

by (f7) and the monotonicity of 3
Thus ¢ £ B[g(1, Qny1, ¥ia)]. This concludes the proof of (f6).



7.3 THE %, FUNCTIONS AND THE ORDINALS %, (4 m) 165

(f6) and (f5) show that (f4) holds.
Finally, we can show that ¥ha <i ¥ha+ B[g(1, Qni1, Yia)]. (f9)

Since (0;)ies is increasing, then for any i, k € I with i <k, o; € C}(y+w) C CL(y+w) 3 oy,
and therefore by clause i) of proposition 7.39, Ep(c;) N Q41 C ¥i(y+w) D Ep(ox) N Qnat;
because of this, the substitutions o;[g(1, Qn 11, ¥h(y+w))] and ox[g(1, Qni1, Yi(y+w*))] are
well defined and are such that 1} (y+w) < ¥k (y+w) + a:i[g(1, Qnr1, i (vFw))] <
Ur (yFwo) 4+ ox[g(1, Qni1, Yi(y+w))]. From the previous, (f2) and <; -connectedness we
conclude that
VkelNielnk.

P (VW) <1 Yn(vFw*) + 0ilg (1, g1, Y (y+w))] =
(Ve +0ilg(L, Qnsr, Ype)DIg(L, nar, Yp(y+w™))]. (s1)

Finally, from (gl) and our cofinality properties for Class(1) (see proposition 2.40) we get
Vi € Lypta <y ra + oi[g(1, Quy1, Yna)] + 1. Note this and (f4) imply, by <; -continuity, that
Yra <y bla+ Blg(1,Q, 41, Yhia)]. This shows (f9).

(f9) and (f3) show that the theorem holds also for this subcase. O

Reminder: For an arbitrary e € E, the sequence (wi(e))rew was defined in previous chapters

as: wole)i=e+ 1, wiy1(e) — wwile)

Corollary 7.43.
1. Vn € w. Pk (Qni1(+1)) € Class(2).
2. W ewpl(Qia(+1)) > 2u(+2).

Proof.
1
Let n € w. Let’s abbreviate p:= ¥} (Q,y1(+1)).

Since p € E, consider the sequence (wg(p))kew-
To show Vk € w.p <y wi(p) + 1. (1%)

Let k € w be arbitrary.
Let s € w be also arbitrary. Then
S Qn
Wiets(Shn+1) € Gn N Quya( +' ) A Wi s(Qng1) € [Qngr, Qura( +1)) and

easy
therefore, by previous lemma 7.42,

Un(@rts+1(Qns1) <1 U@kt st1(Qns1)) + Wras(Qni)[9(1, Qngr, Yn(wrtst1(Qny1)))]; this
and the fact that

wie(n+1)[9(1, Qs 1, Y (Wrrs41(Qms1)))] <

U@kt s+1(Qns1)) + Wrts(Qnr1)[9(1, Qngr, Ya(Wits41(Qng1)))] imply by < -connectedness
that 1 (wWets+1(nt1)) <1 Wk(Qns1)[9(1, Qns1, Yi(Wrts+1(Qnt1)))]- Since the previous holds
for any s € w, we have shown:

Vs € W (Wit s+1(Qn+1)) <10k Qnr1)[9(L Dot Y (Whts+1(Qnr1)))] =

easy

wr(p)[g(L, p, Lng )] [9(L, g1, Y (Wit 541(Qng1)))] =
we(P)[9(1L, p, n(Wrts41(Dnt1)))]- (2%)

Wrts+1(Qnt1) = W
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Concluding, note that the sequence (J,)se., defined as §5:= ¥} (wpts+1(Qny1)) is such that
(6s) C pNE, 55<—f> Pr(Qni1(+1)) = p and, by (2%), Vs € w.ds < wi(p)[g(1, p, Is)]. Therefore,

by our cofinality properties in Class(1) (see proposition 2.40), p < wk(p) + 1. Since this was done
for an arbitrary k € w, then we have shown (1*).

Finally, from (1*) and the fact that the sequence (wx(p) + 1)xeew is cofinal in p( +1), we get
by <i-continuity that p<; p(+!). Thus p € Class(2).

2
Let n € w. Since Q,, < Y (Qni1(+1)) € Class(2), then
by prop. 7.39 by 1.
Q0(+2) = min {€ € Class(D)[€ > 0} < Y2 1( +1)). =

Corollary 7.44. Vn € w.9,(Qn12) =Qn(+2). In particular |ID1| = 1o(Qs) = 0.

Proof. Let n€w. Then

Qn(+2) > wn(Qn+2):wn(Qn+l(+l )) >¢}L(Qn+1(+l)) 2 Qn( +2)-
corollary 7.36 . corollary 7.43

Thus wn(Qn+2) :Qn( +2)' O

7.4 Conjecture involving |ID,,| and the ordinals O,, 1

Motivated by corollaries 7.10, 7.11 and 7.44, I conjecture that

Vn € w¥m € [1,w). Yn(Qntm) = (+™). In particular this would mean

Vn € [1, w).0p 11 = |ID,| and as an easy consequence O,, = [II}-CAg|. Once more, the reader is
warned that the assertion Vn € wVm € [1, w).¢n(Qn1+m) = Qu( +™ ) is a conjecture: There are
many technical difficulties that one needs to overcome in order to achieve such a goal (for
example one might need to consider different versions of the ), functions). The best result in
such direction that I have is the next “lemma” whose “proof” assumes the validity of some results
which have NOT been justified. I dare to include this “result” because my impression is that, if
not exactly as it is stated, a variation of it should work.

The following are the NOT proven assumptions used in next lemma 7.46.

Let n€w and k€ [1,w) and 7 € [y, Qi k( +1)).

W™ is an ordinal in [Q,4, Qnix(+1)) depending on r (and possibly on k) such that:
1. Vr € [Qniks Unar(+1)) 01 (WT) € Class(k — 1).

2. Vr, 8 € [ Qnik, Ynan(+1))r <s= Wr<Ws.

3. V8 € Cr(8) N [Qnsr Yok 1)) AW < 4y, WOHL

4. V6 e Cn(é) n [Qn—i-kz Qn+k( +1! ))T(k, Qn+1, ’17(]{?, Qn+1, ’(/J»,H_l(W[s))) N Qn+1 C Pnd.

Remark 7.45. Note that if we define W7 := Q7 . then 2 clearly holds. Moreover, for the 1)}
functions holds: V6 € C}(0).4p 4 ;W < apt ., WOFL. This is because
§E€CHO) N[k, Ungu(+1)) =€ Ch  (WITH N WO —
W3 € Cry1(WOH) = ¢hp WO <y WOTL,
So assumptions 2 and 3 do not look so hard.

Assumption 1 looks more problematic, however, one should note that assumption 1 essen-
tially tell us that we “need to understand first the ordinals v, 11(r) for r € [Qnik, Qnir( +1))%
in particular “from our induction hypothesis” we should know that
{0 1a(W7) [7 € [k, dngn(+1))} C Class(k — 1).
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Assumption 4 is quite technical (and annoying). It is this condition the reason why one
might need to consider a different version of the %, functions such that this assumption holds.
But this is actually something not new: In order to prove corollary 7.43, we used the functions
Yy (instead of the functions v,) and we just mentioned that the reason for that were certain
technical problems we had. Well, to be more precise, the problem is that clause i) of proposition
7.39 does not hold with the ), functions; this causes serious problems because clause i) of
proposition 7.39 is used in the proofs of clauses ¢), d) and e) of proposition 7.41 and in the proof
of lemma 7.42.

Because of the previous observations, assumption 4 seems to be the general form of a diffi-
culty we had earlier.

Lemma 7.46.

Vk € [l,w).VnewNa € Qnik, Quir(+)).

Unp1 (W) < Q1 (+7) A

Vf € Cn(a) N (Qm Qn+1).tp(§, Qn+1) < 77(797 Qn+17 zanrl(VVO())'

Proof. (The steps that are NOT justified appear emphasized).

Let A:={(k,n,a) |ke[l,w)AncewAa€[Qnik, Unir(+1))} Let <4 be the lexicograph-
ical order of A induced by the usual order in the ordinals. Then (A, <4 ) is a well order. We
prove the theorem by induction on (A, <4).

Let (k,n,«) € A and suppose
V(k',n',aye A(k',n' o)) <4 (k,n,a) =
g1 (W) < Qi (+4) A

VEI € On’(a/) N (Qn’a Qn/+1).tp(§/, Qn/+1) < 77(1% Qn’+1a %’H(Wal)) (IH)
To show 9, +1(W®) < Qpy1(+F). (a0)
Case k=1. Then a € [Q, 11,2, 11(+1)); so
1/)n+1(Wa) < Qn+1(+1):Qn+l(+k)' (al)
By assumption W<y, 41(+1)
Case k > 2. Let y9 € (W*, Qu41( +')) be such that ¥,41(W?) < ¢n11(70) (a2) (o

exists because by assumption W < Q,,y1(+1)). Since (k—1,n+1,7) € A and (k—1,n+
1,70) <a (k,n, ), then, from our (IH) applied to (k—1,n+1,70), we have that

Vg a(W0) < Qo +771) A

V€ € Cns1(70) N (Qnt1, Qut2) tp(E; Q) < (k= 1, Doy, Yrp2(WP)) < Qupo( +471); now,
since Q,41( +*¥) =min {¢ € OR | Q41 < ( AtP(C, Qnaa) = Qnia( +F71)}, then the previous
means Cy,41(70) N (g1, nto) € Qi1 (+F) and therefore

7/)n+1(Wa)byfa2)¢n+1(’Yo) =sup (Cn+1(70) N (Qnt1, Lnt2)) < Qupr(+5). (a3).

(al) and (a3) show that (a0) holds.

To show V¢ € Cn(a) N (2, Qn+1)'tp(£7 Qn-i-l) < U(k, Qni1, Yrp1(W)). (b1)

Let X :={8€OR | B € (Qp, Qnt1) = tp(B, Qn11) < n(k, Qpt1, Yrt1(W*))}. For the proof
of (bl) we proceed by induction on the inductive definition of C,(«); in fact, we will use the
version of the induction principle given by theorem 7.13.

1. Clearly ©, C X.

2. Suppose £,6 € X NCp(a).
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Suppose €+ 6 € (2, 2n11). Then it is easy to see that
tp(8, Q1) <n(k, Qny1, Y1 (W) i {+6=46
(E+0, Qi) =4 Qi1 < Qs 120k, Qusr, Y1 (W) iff E<E+5>6.

tp(&, Qnt1) <Nk, L1, Yo (W) it E+0=¢
So&+deX.

3. Suppose & = ,,0 for some § € N X NCp(a)NC,(6) and some u € [0, w].

Suppose & € (L, Qpy1)- (b2)
Then u=mn and we have £ = 1,0 with 6 € aN X N Cy(a) NCp(9). (b3)
Case 6 <Qy,(+"'). Then 4 ? )O and we have & = 1,0 =w 9 € (Q,, Q,(+')). This implies
by (b2
tp(€, nt1) < Qurr(+)2<n(k, Qg Yrp 1 (W), (b4)

Case 6 >, (+'). Then, § % )Cn(é) N[Qn(+1), @) C Qyyr(+1); this implies, the existence
by (b3
of some m € [1, k] such that 6 € [ m, Qnem(+1)). (b5)

Now, note (b5) means (m, n, §) € A; moreover, since m € [1, k] and & f )04 then we have
by (b3
that (m,n,d) < (k,n,a). Therefore, from our (IH) applied to (m,n,d) we get
Un 1 (W) <Quia(+™) A
V7 € C(8) N (D, Qg 1)-40(7, Q1) <0(m, D1, Yot (W) < Qpr (+7). (b6)

Subcase m < k.
By (6) and proposition 7.32, ¢,,(0) ¢ Class(m + 1). Thus

D(n(8), 1) < Bur(+7) < Qo (45 1) <k, Qo s (W),

Subcase m=k.

Then (b3) and (b5) assert 6§ € aNX NCr(a) NCr(8) N [Qrtt, Lngr(+1)) (c1)
and (b6) is actually
Y1 (W) < Qya(+F) A
V7 € Co(8) N (D, Qg 1)-t0 (7, Q1) <0k, Lt 1, Yy 1 (W0)). (c2)

Since by assumption T(k, Qp41, n(k, Qpy1, '¢n+1(W‘S))) N Qp41 C Yyd, then
tp(1/)n5, Qn+1) <

Qo (HE1)(+1)2 if 1,0 ¢ LimClass(k)
<q 0k, Qo1 0k, Qg 1, Y1 (W) if 9nd € Lim(Class(k)) ALk, o, m(¢nd)) € Lim
(ks Qur1, Yrr1 (W) +1 if ¢ € Lim(Class(k)) Al(k, a, m(ynd)) ¢ Lim

n(k7 Qn-‘rla wn"rl(Wé)) + 1

(§)¢n+1(W6+1) (*S**)%H(W“) < 77(’% Qn—&-la wn+l(Wa))

(**) By our assumption Vr € [Qnik, Qntr( +1)).¥n+1(WT) € Class(k — 1) we have
that 1, 1(W?°) € Class(k — 1). Then n(k, Q, 11, ¥n1(W?)) + 1 is smaller than the next ordinal
in Class(k — 1) which is less or equal than v, 4 1(W?®+!) by our assumptions
V8 € Cn(8) PntiWo < Y iWott and Vr € [Qnik, Qnir( +1 ) Pni1(WT) €
Class(k —1).

(***) By our assumption Vr,s € [Qnir, Qnik(+1)).r <s=— W"<W*. O

Proposition 7.47. Vn € w.Vm € [1,w).Va € [Qntm, Lnpm( +1)) Pna < Qp(+mF1).

Proof. It follows from previous lemma 7.46 in a similar way as proposition 7.35. O
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Corollary 7.48. Vn € w¥m € [1, w).n(Qntm) < Qu( +™). In particular [IDp,| = Yo(Qm+1) <
Onm.

Proof. Let n €w.
Case m =1, then it is a known fact that 1,(Qn11) = Qn(+1).
Case m > 2. The claim follows from previous proposition 7.47 in a similar way as corollary

7.36. 0

Corollary 7.49. O, > |I1{-CAy|.

Proof. O, =sup{0; |icw} > sup {90(Qm41) |1 € w}=10o(Q) =|1-CAg|l. O

by previous corollary 7.48






Appendix A

Restriction of isomorphisms

Proposition A.1. Let (C, RC f¢, ¢), (Q, R9 fQ, q) be structures of a language L. Suppose

(B, RB, fB, b)c (C, R, f€, ¢), that is, B C C, R® = R® N B™ for any n-ary relation RC,
fB= fC\B for any function f€ and any distinguished element b of B is a distinguished element
of C.
Suppose h: (C, RC fFC, ¢)— (h[C], Rh[c], fh[c],m) c (@, RO, f9,q) is an isomorphism.
Then h|g: (B,RZ, f2,b)—s (h[B],Rh[B], FMBLR(®)) is an isomorphism.

Proof. For any ai,...,a, € B and any relation R® we have

RB(ay,...,an) <= R (a1, ..., a,) <= RM(h(ay), ..., h(a,)) <= RMEI(h|p(ar), ..., h|B(an)).
Clearly b € B is a distinguished element iff h(b) =h|p(b) € h[B] is a distinguished element.
Let’s see that the operations behave also correctly (of course the problem is with the closure

of such operations):
Let ay,...,a, € B. Suppose f€(ay,...,a,) = fB(ai,...,a,) € B. Then

fh[C](h(a1)7 LX) h’(an)) € h[C} and fh[C](h(al)’ ceey h(an)) = h’(fc(ala seey a’n)) = h(fB(ah ceey an))
Clearly h(a1),..., h(ay) € h[B] C h[C] and so from the previous equalities we have

FPER B(ar), oo b B(an)) = [N (R(ar), ..., h(an)) = h(fP(ar, .. an)) € H[B].
Now suppose f"1Bl(h|p(ai1),..., h|B(an)) € h[B]. Then there exists a € B C C such that

h(a)= f"PI(h|p(ar), ..., h|B(an)). (A)

On the other hand, fMCl(h(ay), ..., h(an)) = B (h|s(a1), ..., h|s(an)) € h[B] C h[C]; then
fa, ..., an)) € C and h(f(ay, ... )) = fMn(ar), ... han)) = fPPUR[5(a1), .\ Blp(an)).
From this and (A) we have found that h(f(ay,...,a,)) = h(a) and therefore, since h is bijective,

fCay,...,an)=ac€ B. O
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