
Analysis of methods for extraction of

programs from non-constructive proofs

Trifon Trifonov

Dissertation

an der Fakultät für Mathematik, Informatik, Statistik

der Ludwig�Maximilians�Universität

München

vorgelegt von

Trifon Trifonov

18 August 2011

Trifon Trifonov

Analysis of methods for extraction of
programs from non-constructive proofs

Dissertation an der Fakultät für
Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

1. Berichterstatter: Prof. Dr. Helmut Schwichtenberg
2. Berichterstatter: Prof. Dr. Wilfried Buchholz
3. Prüfer: Prof. László Erd®s, Ph.D.
4. Prüfer: Prof. Dr. Otto Forster
Ersatzprüfer: Prof. Dr. Franz Merkl
Externer Gutachter: Prof. Dr. Thierry Coquand

Vorgelegt im 18 August 2011
Tag der Disputation: 15 Februar 2012

ii

Abstract

Proofs in constructive logic correspond to functional programs in a direct and natural
way. Computational content can also be found in proofs which use non-constructive
principles, but more advanced techniques are required to interpret such proofs. Var-
ious methods have been developed to harvest programs from derivations in classical
logic and experiments have yielded surprising and counterintuitive, yet correct and
e�cient algorithms. Nevertheless, the use of non-constructive arguments generally
leads to an indirect backtracking computation, which is slower and more di�cult to
understand as compared to a program extracted from a constructive proof.
Constructive proofs can be transformed into programs in an unambiguous manner

by projecting only their computational components. However, for proofs in classical
logic there seems to be no canonical de�nition of their computational meaning, since
every extraction method introduces speci�c computational infrastructure to support
non-constructive reasoning. Applying several techniques to the same proof can result
in di�erent correct programs, however the relation between them with respect to
e�ciency, size and readability has not been thoroughly explored.
The �rst part of the present work compares two computational interpretations of

non-constructive proofs: re�ned A-translation [BBS02] and Gödel's functional �Di-
alectica� interpretation [Göd58]. An arithmetical system is de�ned in which both
techniques can be applied to the same proof object. The behaviour of the extraction
methods is evaluated in the light of several case studies, and the resulting programs
are compared. It is argued that the two interpretations correspond to speci�c back-
tracking schemes and that programs obtained via re�ned A-translation tend to be
simpler, faster and more readable than programs obtained via Gödel's interpretation.
The second part of the thesis introduces three layers of optimisation of Gödel's

interpretation to produce faster and more readable programs. First, it is shown that
syntactic repetition of subterms can be reduced by using let-constructions instead of
meta substitutions. The practical e�ects of the modi�cation are nearly linear size of
extracted terms and improved e�ciency, achieved by avoiding repeated evaluations
of equal terms. The second improvement is an extension of previous work [Ber05,
Her07b], which allows declaring syntactically computational parts of the proof as
computationally irrelevant. It is shown that Gödel's interpretation admits a wide
variety of such annotations, which can be used to remove redundant parameters,
possibly improving the e�ciency of the program. An additional feature is the ability
to embed Kreisel's modi�ed realisability, and thus the re�nedA-translation, inside the
extended Dialectica interpretation. Finally, a special case of induction is identi�ed,
for which a more e�cient recursive extracted term can be de�ned. It is shown the
outcome of case distinctions can be memoised by a boolean �ag, which can result in
exponential improvement of the average time complexity of the extracted program.

iii

Zusammenfassung

Beweise in der konstruktiver Logik entsprechen funktionalen Programmen auf eine
direkte und natürliche Art. Rechnerischer Inhalt kann auch in Beweisen gefunden
werden, die nicht-konstruktiven Prinzipen anwenden, allerdings verlangen die Be-
weise fortgeschrittenere Techniken um interpretiert werden zu können. Verschiedene
Verfahren wurden entwickelt, um Programme aus Beweisen in der klassischen Logik
zu ermitteln und Experimente haben manchmal überraschende und nicht eingängige,
jedoch korrekte und e�ziente Algorithmen ergeben. Dennoch führt die Verwendung
von nicht-konstruktiven Argumenten generell zu einer indirekten rückverfolgenden
Berechnung, die langsamer und schwieriger nachzuvollziehen ist, im Vergleich zu ei-
nem Program, das von einem konstruktiven Beweis extrahiert ist.

Konstruktive Beweise lassen sich auf eindeutige Weise allein durch die Projekti-
on ihrer rechnerischen Komponenten in Programmen umwandeln. Doch für Beweise
in der klassischen Logik scheint es keine kanonische De�nition ihrer rechnerischen
Bedeutung zu geben, weil jede Extraktionsmethode eine spezi�sche rechnerische In-
frastruktur erzeugt, um eine nicht-konstruktive Argumentation zu unterstützen. Die
Anwendung verschiedener Techniken auf den gleichen Beweis kann zu verschiedenen
korrekten Programmen führen, wobei ihre Beziehung zueinander hinsichtlich E�zi-
enz, Gröÿe und Lesbarkeit nicht gründlich erforscht ist.

Der erste Teil der vorliegenden Arbeit vergleicht zwei rechnerische Interpretatio-
nen von nicht-konstruktiven Beweisen: verfeinerte A-Übersetzung [BBS02] und Gö-
dels funktionale �Dialectica� Interpretation [Göd58]. Ein arithmetisches System wird
de�niert, in dem beide Techniken auf dem gleichen Beweisobjekt angewendet werden
können. Das Verhalten der Extraktionsmethoden wird am Beispiel mehrerer Fallstu-
dien ausgewertet, in denen die resultierenden Programme analysiert und verglichen
werden. Dabei wird argumentiert, dass die beiden Interpretationen bestimmten Im-
plementierungen vom Rücksetzverfahren entsprechen und dass die über die verfeiner-
te A-Übersetzung erhaltenen Programme in der Regel einfacher, schneller und besser
lesbar sind als Programme, die man durch Gödels Interpretation erhält.

Im zweiten Teil der Arbeit werden drei Optimierungsvarianten von Gödels Interpre-
tation vorgestellt, um schnellere und besser lesbare Programme herzustellen. Erstens
wird gezeigt, dass syntaktische Wiederholung von Teiltermen mit der Anwendung
von let-Konstruktionen statt Meta-Substitutionen reduziert werden kann. Die prak-
tischen Auswirkungen dieser Änderung sind fast linearer Gröÿe und eine verbesserte
E�zienz von extrahierten Terme durch Vermeidung von wiederholten Auswertungen
der gleichen Bedingungen. Die zweite Verbesserung liegt in der Erweiterung von Er-
gebnissen in [Ber05, Her07b], die es ermöglichen, syntaktisch rechnerische Beweisteile
als irrelevant oder rechnerisch einheitlich zu deklarieren. Weitergehend wird themati-
siert, dass Gödels Interpretation über eine Vielzahl solcher Anmerkungen verfügt, die

v

zur Entfernung von redundanten Parametern genutzt werden können, ggf. zur Verbes-
serung der Programme�zienz. Eine weitere Besonderheit ist die Fähigkeit, Kreisels
modi�zierte Realisierbarkeit Interpretation und damit die verfeinerte A-Übersetzung
in der erweiterten Dialectica Interpretation einzubinden. Abschlieÿend wird ein Spe-
zialfall der Induktion ermittelt, für welches ein e�zienter rekursiv extrahierter Term
de�niert werden kann. Es wird gezeigt, dass ein Ergebnis der Fallunterscheidungen in
einen booleschen Flag memoisiert werden kann, was zu einer exponentiellen Verbes-
serung der durchschnittlichen Zeitkomplexität des extrahierten Programms führen
kann.

vi

Acknowledgements

There are many people whose support made this work possible.
First of all, I would like to thank my supervisor Prof. Dr. Helmut Schwichtenberg,

who welcomed me into the Munich logic group and greatly in�uenced my scienti�c
development. With his noteworthy scienti�c rigour he provided me with irreplaceable
guidance in the world of proof theory, which helped me to �nd and follow my own
direction of research. I thank him for introducing me to the proof assistantMinlog:
the formal re�ection of his view on mathematical logic and constructive mathematics.
I am grateful for his patience and understanding, which were very important to me.
I am very indebted to my friends and colleagues in the Munich logic group for their

helpful advice, encouragement, suggestions and fruitful discussions on various math-
ematical and non-mathematical topics: Prof. Dr. Wilfried Buchholz, Basil Karadaís,
Bogomil Kovachev, Diana Raµiu, Freiric Barrál, Josef Berger, Luca Chiarabini, Simon
Huber, Stefan Schimanski. Many of the ideas were born during invaluable scienti�c
discussions with colleagues with whom I had the pleasure of working with closely:
Mircea-Dan Hernest, Monika Seisenberger, Paulo Oliva, Stefan Hetzl, Ulrich Berger.
I am very grateful for their help.
For the �nancial support of my scienti�c work I gratefully acknowledge three di�er-

ent projects: MATHLOGAPS (MEST-CT-2004-504029), a Marie Curie Early Stage
Training Site, which is responsible for attracting many young people to mathematical
logic; the Bulgarian National Science Fund project DO 02-102/23.04.2009; and the
European Social Fund project BG051PO001-3.3.04/28.08.2009.
My interest in mathematical logic and its applications was ignited by my teach-

ers in the Faculty of Mathematics and Informatics at So�a University �St. Kliment
Ohridski�. I would speci�cally like to thank Prof. Dr. Magdalina Todorova for in-
troducing me to theoretical computer science; Prof. Dr. Ivan Soskov, who advised
me to apply for the MATHLOGAPS scholarship; and Prof. Dr. Tinko Tinchev for
his enormous work and enthusiasm in providing �nancial support to me and many
other Bulgarian students. I would also like to thank my colleagues in the chairs of
Computer Informatics and Mathematical Logic, and the Laboratory for Interactive
Multimedia at the So�a University for their overall support. I thank my friend Kalin
Georgiev, with whom I shared many moments of excitement and disappointment and
who encouraged me for the last ten years.
Finally, I would like to thank my family for their patience and support. I am

grateful to my parents who have always stimulated my scienti�c development; to my
sister for her constant reassurance and support and to my loving wife Diana, who
gave me the greatest gift: our wonderful daughter Darina.

vii

CONTENTS

Introduction 1

1 Systems of Arithmetic 5

1.1 General notions . 5
1.1.1 Inductive de�nitions . 6
1.1.2 Variables and substitutions . 7

1.2 Arithmetical notions . 10
1.2.1 Term reduction and normalization 11
1.2.2 Removing empty computational content 13

1.3 Logical systems . 14
1.3.1 Formulas . 15
1.3.2 Proofs . 17

1.4 System embeddings . 21

2 Program extraction from proofs 27

2.1 Modi�ed realisability . 27
2.1.1 De�nition . 28
2.1.2 Soundness . 30

2.2 Re�ned A-translation . 32
2.3 Gödel's �Dialectica� interpretation . 38

2.3.1 De�nition . 39
2.3.2 Soundness . 42

3 Case studies for program extraction 49

3.1 Stolzenberg's example . 49
3.1.1 Proof formalisation . 50
3.1.2 Extraction via re�ned A-translation 51
3.1.3 Extraction via the Dialectica interpretation 54
3.1.4 Comparison . 56

ix

Contents

3.2 Integer root . 57
3.2.1 Proof formalisation . 58
3.2.2 Extraction via re�ned A-translation 58
3.2.3 Extraction via the Dialectica interpretation 59

3.3 In�nite Pigeonhole Principle . 61
3.3.1 Proof formalisation . 61
3.3.2 Extraction via re�ned A-translation 64
3.3.3 Extraction via the Dialectica interpretation 67
3.3.4 Comparison . 71

3.4 Comparative analysis of the extracted programs 76
3.4.1 Backtracking via re�ned A-translation 77
3.4.2 Backtracking via the Dialectica interpretation 78
3.4.3 Computational ine�ciencies of the Dialectica interpretation . 79

4 Quasi-linear Dialectica interpretation 81

4.1 Examples of recomputation . 81
4.2 Towards avoiding syntactic repetition 83
4.3 De�nition contexts . 85
4.4 Some syntactic notions . 87
4.5 Quasi-linear extraction . 89
4.6 Soundness of the quasi-linear Dialectica interpretation 92
4.7 Program simpli�cation via a�ne reductions 101
4.8 Case studies revisited . 104

4.8.1 Stolzenberg's example . 104
4.8.2 In�nite Pigeonhole Principle 106

5 Dialectica interpretation with �ne computational control 109

5.1 Examples of redundant computation 110
5.2 Notions of uniformity for the quasi-linear Dialectica interpretation . . 116
5.3 Uniform annotations . 118
5.4 Soundness of uniform annotations . 123
5.5 Properties of uniform annotations . 129

5.5.1 Separating computational content 129
5.5.2 Modeling modi�ed realisability 132

5.6 Case studies revisited . 135
5.6.1 Integer root . 135
5.6.2 In�nite Pigeonhole Principle 136

6 Dialectica interpretation with marked counterexamples 139

6.1 A special case of recursion . 139

x

Contents

6.2 Counterexample marking . 141
6.3 Soundness of counterexample marking 144
6.4 In�nite Pigeonhole Principle revisited 148

Conclusion 153

Index 157

List of Figures 161

Bibliography 163

xi

INTRODUCTION

A vast research area in computer science is dedicated to establishing various proper-
ties of programs. While there are a lot of practical techniques in the realm of software
engineering to test that a given program behaves as expected and uncover possible
�aws, formal approaches to program correctness give mathematical guarantees that
intensional features of a program translate to extensional characteristics. Some prop-
erties, such as type correctness or �nite-state system soundness, are decidable and
can be automatically a�rmed for a given program. However, in many cases there is
a need to establish the validity of an undecidable property, and in order to achieve
this non-trivial evidence about the behaviour of the program needs to be presented.
Such additional information can vary from annotations and hints on program compo-
nents aiding logical inference to a complete and thorough mathematical proof. One
of the most important features of a formal proof is that its validity can be veri�ed
objectively, systematically independently and e�ciently. Thus, if we provide enough
reasoning that a property holds for a given program, so that the soundness of the
provided arguments is decidable, then the validity of the property can be automat-
ically checked. The representation of the formal proof then acts as an unforgeable
certi�cate that the property holds for the presented program. This concept is known
as proof-carrying code [NL96].
The conventional method for obtaining certi�ed code can be summarised as follows:

1. write a program P expressed in a formal language L,
2. write a speci�cation A of a desired property in a logical system S extending L,
3. write a proof M of A(P) in S.

Then the pair 〈P,M〉 is proof-carrying code. The �rst step is usually taken for
granted, as an already written program P is observed. The second step can be
more involved, but in practical situations usually a limited class of properties A
is considered, usually referring to security or termination. The third step is most
involved, as the proof M is not trivial to produce and, depending on the property
A, can be exponentially larger than the proof M . An additional di�culty may be

1

Introduction

presented from the program P itself, if it is written in a style, which complicates
the proof of its correctness. This problem can be mitigated by careful choice of the
language L and by allowing changes to the program P in order to simplify the proof
M . An instance of the latter approach is to use an annotated programming language
L, which allows to insert minimal annotations in P , such thatM can be automatically
produced. A program, which is able to generate proof-carrying machine code from
annotated source code is known as a certifying compiler.
The exciting discovery of the relation between constructive proofs and functional

programs, which became known as the Curry-Howard isomorphism, has presented
another possibility for producing proof-carrying code. A constructive proof C of a
Π0

2 statement ∀x∃y B(x, y) can be viewed as a computation of a function f , such
that ∀xB(x, f(x)). In C there are two di�erent kinds of computations interleaved:
the computation of the value f(x) and the computation of the validity of B(x, f(x)).
Thus, when the proof C is instantiated with a value for x, it can be evaluated to obtain
both a value y = f(x) and a proof that B(x, y) holds. Simple as it is, this approach is
not optimal, as usually the correctness of the program is checked only once, instead
of recomputing its validity for every supplied input x. This can be improved by
applying Kreisel's modi�ed realisability interpretation which splits the proof C into
two distinct parts: the computational component (a program P) and the logical
component (a proof M of its correctness). Thus we are able to automatically and
e�ciently obtain proof-carrying code from C, for the rather comprehensive property
A := ∀xB(x, P (x)). This approach is commonly known as program extraction.
The feasibility of obtaining proof-carrying code for practical use is a topic of ongo-

ing research [mob]. Currently, producing a program certi�ed for more comprehensive
properties, such as its complete functional speci�cation, is not considered scalable.
However, the problem is still important, as it can be used to create a fully certi�ed
library of commonly used and relatively small algorithms. In this case, program
extraction might represent a viable alternative to the conventional methods for pro-
ducing certi�ed code.
The most di�cult step in program extraction is to provide a constructive proof of

the functional speci�cation of the desired program. One possibility for simplifying
this process is to allow the use of non-constructive reasoning. As it is well-known, Π0

2

statements are equiderivable classically and constructively. Consequently, we should
be able to obtain a correct program from a classical proof, which might be simpler
and shorter than its constructive counterpart. However, what is not clear is whether
the obtained program would be as readable and as e�cient. Terms extracted from
constructive proofs are essentially computational projections, hence they are shorter
than the proof and moreover, we are able to control computational complexity by
restricting used induction principles [BNS00, OW05]. If we have a proof, which is
essentially a classical formulation of a constructive argument, we might still have a

2

chance to recover the original construction. However, when there is non-trivial use
of classical logic, the computational meaning of the proof is obscured and it is not as
straightforward to reason about behaviour and e�ciency of the underlying algorithm.
There exist a number of methods for obtaining programs re�ecting the compu-

tational sense of non-constructive proofs. Even though they are based on di�erent
ideas for interpreting indirect reasoning, they have a common feature: additional
computational infrastructure for supporting proof by contradiction is introduced.
The following table summarises some of the currently available methods and the
machinery that each of them employs.

Gri�n's realisability [Gri90]
control operatorsPAC [BB93]

Krivine's realisability [Kri04]
λµ-calculus [Par92] µ operator

(re�ned) A-translation[Fri78, Dra80, Mur91, BBS02] continuation passing style
Gödel's interpretation [Göd58] counterexample collection

Methods for extraction from non-constructive proofs

Most of the methods are concerned with obtaining some witness, claimed to ex-
ist by a given proof. However, there is no extensive research on how do the pro-
grams extracted via each of these methods relate with each other and what is the
overhead introduced by the speci�c computational tools for modelling classical rea-
soning. One of the few such analyses known to the author has been carried out in
[Mak06], where programs extracted from data-predicative proofs [Lei01] have been
shown to have polynomial-time complexity under call-by-value and call-by-name re-
duction strategies. In the present work we compare two methods for extraction from
non-constructive proofs: the re�ned A-translation and Gödel's Dialectica interpreta-
tion and show how the latter can be improved.
Chapter 1 de�nes three systems of arithmetic with �nite types, which will be used

to express functional programs and prove properties about them in a natural deduc-
tion style. The smallest of these systems is Negative Arithmetic, which is a negative
formulation of Peano Arithmetic that admits classical reasoning and is used as a
common ground for the application of the two extraction methods. A variant of this
system is the Minimal Arithmetic, in which falsity is deliberately not de�ned using
arithmetic means but taken as an uninterpreted predicate symbol. Finally, extending
the language by adding a strong existential quanti�er yields Heyting Arithmetic, in
which constructive properties can be stated and proved.
Chapter 2 presents formal de�nitions of several proof interpretations and proves

their soundness. Kreisel's modi�ed realisability interpretation is used as the basis

3

Introduction

for the re�ned A-translation method, which translates proofs in Minimal Arithmetic
into Heyting Arithmetic in order to extract their computational meaning. Gödel's
Dialectica interpretation is de�ned in a natural deduction setting and acts on proofs
in Negative Arithmetic, which can be obtained from Minimal Arithmetic by instan-
tiating the abstract falsity with the arithmetic one.
Chapter 3 applies the methods to three case studies for non-constructive proofs:

Stolzenberg's binary tape example, integer root of a unbounded function and the
In�nite Pigeonhole Principle. The resulting programs are compared and analysed
in terms of behaviour and time complexity. The analysis shows that the Dialec-
tica interpretation can introduce signi�cant computational overhead in comparison
with re�ned A-translation. Several possibilities for improvement of counterexample
collection are identi�ed and addressed in the following chapters.
Chapter 4 reformulates the Dialectica interpretation in a way, such that common

extracted subterms can be evaluated only once via a let-expression. This interpreta-
tion variant produces programs, which are of near linear size compared to the proof.
The extracted terms are also more e�cient since reevaluation of common subexpres-
sions is avoided.
Chapter 5 extends the arithmetical system with uniform annotations that allow

removing computations, which are irrelevant for the �nal result of the program. It
is also demonstrated that by allowing a �ne level of control of the computational
meaning of the proofs, we are able to express the modi�ed realisability interpretation
within the Dialectica interpretation.
Chapter 6 identi�es a special case of the induction principle, which is used in the

considered case studies. The computational meaning of such a scheme can be given
an alternative de�nition: an early aborting recursion, implemented via boolean �ags
expressing the validity of the current counterexample candidate. It is shown that this
extension of the interpretation improves the average time complexity of the program
extracted from the In�nite Pigeonhole Principle, thus making it asymptotically as
e�cient as its counterpart obtained via re�ned A-translation.

4

CHAPTER

ONE

SYSTEMS OF ARITHMETIC

In the present chapter we will de�ne the basic logical notions, which will be used
throughout the text. Our goal is to describe a system capturing both constructive
and classical logic, built on top of an arithmetic with higher �nite types. The arith-
metical objects of the system will be considered as functional programs, while the
logical objects will be the proofs, reasoning about such programs. A program ex-
traction method will be considered as a meta-transformation Θ living outside the
system, which translates a valid (possibly non-constructive) proofM of a certain for-
mula A into a functional term tΘ coupled with a valid proofMΘ of a formula AΘ(tΘ),
certifying that tΘ is a �witness� possessing the properties described in A. The trans-
formation Θ is traditionally called an interpretation, its domain is the interpreted

subsystem and its range is the verifying subsystem.

An important requirement for this approach is that both the extracted program
tΘ and the certi�cate for its correctness MΘ inhabit the same system as the original
proofM . Consequently, even though that Θ and its general correctness are described
on a meta-level, its input and output can still be formally implemented and veri�ed
in the same base system. This guarantees a certain level of safety: if we do not trust
a certain meta-implementation of Θ, we can always verify the validity of its output
by checking the extracted program tΘ against the correctness certi�cate MΘ via the
same means, which we used to establish the correctness of the input proof M .

1.1 General notions

In this section we will de�ne some general notions, which will be used throughout
the text.

5

1 Systems of Arithmetic

1.1.1 Inductive de�nitions

We start by stating some general facts about de�nitions by induction.

De�nition 1.1 (Monotone mappings). A mapping F over sets is monotone if when-
ever X ⊆ Y , we have F (X) ⊆ F (Y).

De�nition 1.2 (Inductively de�ned sets). Let F be a monotone mapping over sets.
The set X is inductively de�ned by F if X is the least �xed point of F , i.e., the
least set with respect to the inclusion relation ⊆, such that F (X) = X. The unique
existence of X is guaranteed by Knaster�Tarski's theorem.

Very often we will work in an extended setting, where we de�ne a �nite number of
syntactic objects by induction simultaneously.

De�nition 1.3 (Simultaneous induction). Let X = X1 × X2 × . . . × Xn. If X is
inductively de�ned by F , then we say that X1, X2, . . . Xn are de�ned by F through
simultaneous induction.

For simultaneous inductive de�nitions we will usually de�ne the monotone F ex-
tensionally using a conjunction of properties (inductive clauses) P of the form

�if x0 is in T and −→x1 are in X1 and . . . and −→xn are in Xn then f(~x) is a
member of the i-th component of F (~X)�

for some i ∈ {1, . . . , n}, some set of external objects T and some mapping f of
appropriate arity, where −→xj are vectors of meta-variables. Intuitively, f is a rule
specifying how to construct an object in Xi from a number if previously constructed
objects in ~X. Also, for convenience we can think that all argument positions over
which f is constant are omitted from its signature. It can be seen that the above
form of inductive clauses guarantees the monotonicity of F . Indeed, any element of
F (
−→
X) must be constructed via a clause P , whose premises are monotone with respect

to all Xj.
We will exclusively work with non-empty countable sets of �nitely representable

syntactic objects. Thus we can �x the set of natural numbers as the universe in
which these syntactic objects are encoded. Unless stated otherwise, we assume that
newly de�ned objects do not have the same representation as any of the previously
de�ned ones. We will mostly use inductive de�nitions to de�ne syntactic objects and
transformations over them. It is thus convenient to view the functions f appearing in
the clauses P as syntactic constructors and will require them to satisfy the following
�constructor� conditions:

• f(−→x) > max(−→x) for all −→x

6

1.1 General notions

• −→x1 6= −→x2 implies f(−→x1) 6= f(−→x2) for all −→xi , i.e., f is injective;
• all considered f have disjoint ranges.

The conditions above guarantee that every inductive step generates intensional ob-
jects with fresh and unique representations. In particular, for every syntactic object
there can be identi�ed a unique inductive clause and a corresponding constructor f ,
which generated it.
Next, we will de�ne transformations on syntactic objects by �induction on the

de�nition� of their domain.

De�nition 1.4 (Induction on the de�nition). Let X1, . . . , Xn be mutually disjoint
sets de�ned inductively using a set of clauses of the form P . Let O =

⋃n
i=1Xi, let

Y be an arbitrary parameter set, an let Z be an arbitrary result set. We say that
the mapping φ : O × Y → Z is de�ned by induction on the de�nition of

−→
X if there

are mappings φi : Xi × Y → Z for i ∈ {1, . . . , n} such that φ =
⋃n
i=1 φi and whose

graphs Gi are de�ned through simultaneous induction by a set of clauses obtained
by replacing every clause P by the clause PΦ,Ψ as follows:

�if x0 is in T and
−−−−−−−−−−−→
(x1,Ψ(x0, y), z1) are in G1 and . . . and

−−−−−−−−−−−→
(xn,Ψ(x0, y), zn)

are in Gn then (f(~x), y,Φ(x0, y, ~z)) is a member of the i-th component of
F (~G)�,

where Φ,Ψ are clause-speci�c mappings and y is a meta-variable ranging over Y .

Intuitively, Φ is a rule, specifying how to construct the result of the function φi
when applied to a complex object f(~x) by using the values of φi on the components
~x, which were used to construct the object. The parameter set Y allows us to de�ne
binary functions by induction on one of the arguments, and the mapping Ψ is used to
specify for which instances of the other argument do we use the induction hypothesis.
Unless de�ned otherwise, by default we assume that Y is trivial (a singleton set) and
that for each clause Φ := f . Note that if nothing else is speci�ed, the resulting
mappings φi are exactly the identity mappings on Xi.
The constructor conditions for f guarantee that the mappings φi are correctly de-

�ned and with disjoint domains, which implies that φ is a correctly de�ned mapping.

1.1.2 Variables and substitutions

Variables and substitutions will be ground concepts in our syntactic de�nitions and in
this section we will present some general de�nitions to unify their treatment. Below
we will assume that we have a �xed set of inductive clauses, de�ning simultaneously
some family of (disjoint) sets of objects X1, . . . , Xn. We denote the set of all objects
O :=

⋃n
i=1Xi. All mappings will be de�ned by induction on the de�nition of ~X.

7

1 Systems of Arithmetic

We will adopt the convention that there will be a preliminarily �xed countable set
of variables V , which will be used in the generation of the set of syntactic objects O.

De�nition 1.5 (Variable clause). An inductive clause is called a variable clause if
it constructs an object from a variable. Formally, we require that the parameter set
is exactly the set of variables, i.e., T = V , and f depends only on the parameter x0.

De�nition 1.6 (Variable-binding clause). An inductive clause is called a variable-

binding clause if it includes a variable in the construction of the object. Formally,
we require that T = V and f does not depend only on x0.

De�nition 1.7 (Free variables). The mapping FV : O → P(V) is de�ned by taking

• Φ1(x0, ~z) := {x0} for every variable clause,
• Φ2(x0, ~z) :=

⋃
~z \ {x0} for every variable-binding clause,

• Φ3(x0, ~z) :=
⋃
~z for every other clause.

FV(x) is the set of free variables of x.

De�nition 1.8 (Bound variables). The mapping BV : O → P(V) is de�ned by
taking

• Φ1(x0, ~z) :=
⋃
~z ∪ {x0} for every variable-binding clause,

• Φ2(x0, ~z) :=
⋃
~z for every other clause.

BV(x) is the set of bound variables of x.

De�nition 1.9 (Closed objects). We say that an object x is closed if FV(x) = ∅.

We will extend the de�nition of free and bound variables to sets of object using
the following notation:

FV[X] :=
⋃
x∈X

FV(x), BV[X] :=
⋃
x∈X

BV(x).

De�nition 1.10 (Substitution). A substitution is a partial mapping σ : V 99K O.
In case dom(σ) is �nite, we will denote σ by [x1, . . . , xn := σ(x1), . . . , σ(xn)], where
dom(σ) = {x1, . . . , xn}.

De�nition 1.11 (Substitution application). Let σ be a substitution. We de�ne
restricted substitution application as a binary mapping Σ : O → P(V) → O, where
the second argument is meant to be a set of bound variables that the substitution
should ignore. Σ is de�ned by induction on the de�nition of O with the mapping

8

1.1 General notions

Ψ(x0, y) := y ∪ {x0} for every variable-binding clause, which is used to update the
set of bound variables, and the mapping

Φ(x0, y, ~z) :=

{
σ(x0), if x0 ∈ dom(σ) \ y,
f(x0, ~z), otherwise,

for every variable clause, which actually applies the substitution. The (full) substi-

tution application of σ to x will be denoted as xσ, and is de�ned as xσ := Σ(x, ∅).

De�nition 1.12 (Capture-free substitution). We call the substitution application
xσ capture-free if none of the objects substituted for free variables in x by σ have a
free variable, which is bound in x. Formally, we require that BV(x) ∩ FV(σ(y)) = ∅
for all y ∈ FV(x) ∩ dom(σ).

De�nition 1.13 (Variable renaming). We call the substitution υ a variable renaming

if ran(υ) ⊆ V .

De�nition 1.14 (Renaming of bound/free variables). Let υ be a variable renaming.
We de�ne a variation of the substitution application, which we call renaming of bound

variables. The mapping Υ : O → P(V)→ O is de�ned by induction on the de�nition
of O with the mapping Ψ(x0, y) := y∪{x0} for every variable-binding clause and the
mapping

Φ(x0, y, ~z) :=

{
f(σ(x0), ~z), if x0 ∈ dom(σ) ∩ y,
f(x0, ~z), otherwise,

for every variable and variable-binding clause. We will use x]υ to denote Υ(x, ∅).
For any υ we call x]υ a variant of x. It is easy to see that �is a variant of� is an
equivalence relation (traditionally also called α-equivalence).
If we change the condition in Φ to �if x0 ∈ dom(σ) \ y�, then we obtain a mapping,

which we call renaming of free variables.

It is well-known that capture-free substitution applications exhibit nice preserva-
tion properties, which are not generally true if we allow variable capturing.

Proposition 1.15. Let σ be a substitution, x be an object and let xσ be capture-free.

1. FV(xσ) =
⋃
y∈FV(x)∩dom(σ) FV(σ(y)) ∪

(
FV(x) \ dom(σ)

)
,

2. BV(xσ) =
⋃
y∈FV(x)∩dom(σ) BV(σ(y)) ∪ BV(x),

3. If x′ is a variant of x, such that x′σ is capture-free, then x′σ is a variant of xσ.

It is clear that for every syntactic object x and substitution σ we can �nd a variant
x′ of x, such that x′σ is capture-free. Moreover, object variants are indiscernible with
respect to capture-free substitution applications. Thus, unless stated otherwise, we
will assume that we always silently take appropriate variants of objects, such that
substitution applications are capture-free.

9

1 Systems of Arithmetic

1.2 Arithmetical notions

We will base our logical systems on an arithmetic of higher �nite types, with primitive
recursion, which is also the basis for Gödel's well-known system T [Göd58]. We start
by de�ning base and �nite types by simultaneous induction.

De�nition 1.16 (Finite types). Base types are

• α, denoting a �nite type variable from a �xed countable list of type variables;
• B, denoting the type of booleans ;
• N, denoting the type of natural numbers ;
• L(ρ), denoting a type of lists, where ρ is the base type of the list elements.

Finite types are

• µ, where µ is a base type;
• ρ⇒ σ, denoting an arrow type, where ρ and σ are �nite types;
• ρ× σ, denoting a product type, where ρ and σ are �nite types.

Note that we allow lists to have elements only of base type. In what follows only
�nite types will be considered, so the word ��nite� will be omitted. The complexity
of �nite types is measured by their degree.

De�nition 1.17 (Type degree). Let τ be a type without free type variables. We
de�ne its degree by induction as follows:

• deg(µ) := 0 for µ a base type,
• deg(ρ⇒ σ) := max(deg(ρ) + 1, deg(σ)),
• deg(ρ× σ) := max(deg(ρ), deg(σ)).

Next, we will de�ne the terms in our system. Every term t will have a unique type
τ explicitly associated with it. This is commonly known as �Church style� typing. In
the setting of Section 1.1.2 term variables and constants will have the set of types as
external parameters and terms will be de�ned simultaneously with their typing. We
will use the typing notations tρ and t : ρ.

De�nition 1.18 (Terms). Terms are

• xρ, denoting a typed object variable chosen from a �xed list of object variables;
• (sρ⇒σtρ)σ, denoting an application of the function s to an argument t;
• (λxρ tσ)ρ⇒σ, denoting a binding abstraction of the variable x from the term t;
• Pairρ⇒σ⇒ρ×σρ,σ , denoting a pair constructor ;
• ttB, denoting the boolean constant for truth;
• ffB, denoting the boolean constant for falsity ;

10

1.2 Arithmetical notions

• 0N, denoting the natural constant for zero;
• SN⇒N, denoting the constant function for successor ;
• (nilρ)

L(ρ), denoting the empty list constant for lists of type ρ;1

• (:: ρ)ρ⇒L(ρ)⇒L(ρ), denoting the constructor function for lists of type ρ1;
• Split

τ
ρ,σ : ρ× σ ⇒ (ρ⇒ σ ⇒ τ)⇒ τ , denoting the pair splitting for type τ ;

• Casesτ : B⇒ τ ⇒ τ ⇒ τ , denoting the if-then-else constant for type τ ;
• Rτ

N : N ⇒ τ ⇒ (N ⇒ τ ⇒ τ) ⇒ τ , denoting the recursor for natural numbers

for type τ ;
• Rτ

L(ρ) : L(ρ) ⇒ τ ⇒ (ρ ⇒ L(ρ) ⇒ τ ⇒ τ) ⇒ τ , denoting the recursor for lists

of type ρ for type τ .

We will use the following shortcut notations for the pairing and projection operations:

〈s, t〉 := Pair s t, tx := Split t (λxλy x),

〈r, s, t〉 := 〈r, 〈s, t〉〉 , ty := Split t (λxλy y).

The notions of free and bound variables and substitutions from Section 1.1.2 are
naturally applicable to terms and types. In addition, note that a type substitution
naturally extends to terms. Indeed, if we consider the type components of the terms
as �variables� and the type substitution as a �variable renaming�, then the type
substitution applied to a term t would be �renaming of the free variables� of t.
All �nite types are inhabited, i.e., there is a closed term tρ for each type ρ.

De�nition 1.19 (Canonical inhabitant). For each closed �nite type ρ we de�ne a
closed term of type ρ, called the canonical inhabitant of ρ and denoted as �ρ.

�B := ff, �N := 0, �L(ρ) := nilρ,

�ρ⇒σ := λx ρ�σ, �ρ×σ := 〈�ρ,�σ〉 .

1.2.1 Term reduction and normalization

The operational semantics of the term system are inductively de�ned via the following
reduction rules.

De�nition 1.20 (Term reductions).

(λx s)t 7→ s [x := t] , RN 0 s t 7→ s,

Split 〈s, t〉 f 7→ f s t, RN (Sn) s t 7→ t n (RN n s t),

Cases tt s t 7→ s, RL(ρ) nil s t 7→ s,

Cases ff s t 7→ t, RL(ρ) (n :: l) s t 7→ t n l (RL(ρ) l s t),

(λx sx) 7→ s, if s not an abstraction and x /∈ FV(s),

1For readability we will usually skip the subscript ρ for the constant nil and the constructor (::).

11

1 Systems of Arithmetic

and if s 7→ s′, then

sr 7→ s′r, rs 7→ rs′, λx s 7→ λx s′.

From the de�nition it is immediate that the reduction 7→ is type-preserving. Some-
times for convenience we will use a �let� notation for a β-redex and �pair� abstraction:

let x := t in s := (λx s)t,

λ〈x, y〉 t := λz
(
let x := zx in let y := zy in t

)
.

De�nition 1.21 (Multiple-step reduction). We say that a term s reduces in multiple
steps to t, denoted as s

∗7→ t, if

1. s ≡ t, or
2. s 7→ r

∗7→ t for some term r.

De�nition 1.22 (Set of reducts). The set of reducts of a term s is de�ned as

Reds :=
{
t : s

∗7→ t
}
.

De�nition 1.23 (Normal form). We say that a term s is in normal form if it is
irreducible, i.e., Reds = {s}.

De�nition 1.24 (Strongly normalizing). We say that a term s is strongly normal-
izing if Reds is �nite.

The proofs of strong normalization and con�uence of 7→ can be found in [SW10].

Theorem 1.25 (Strong normalization). Every term is strongly normalizing.

Theorem 1.26 (Con�uence). If r
∗7→ s1 and r

∗7→ s2, then there is a term t, such

that s1
∗7→ t and s2

∗7→ t.

Corollary 1.27. Every term has a unique normal form.

Remark 1.28. The reduction relation 7→ considered here is by far not an optimal one.
For example, it does not capture any simpli�cations or permutative conversions like:

〈rx, ry〉 7→ r,

Cases b tt ff 7→ b,

(Cases b r s)t 7→ Cases b (rt) (st),

〈Cases b r1 s2,Cases b r2 s2〉 7→ Cases b 〈r1, r2〉 〈s1, s2〉 .

12

1.2 Arithmetical notions

Additionally, in some cases it is useful to consider η-expansions instead of η-reductions
by regarding the η-long normal form of terms (cf. [BES98, BES03]). In general, for
practical considerations the reduction relation can be weakened so that we obtain less
and larger term equivalence classes. For example, the above mentioned improvements
to the reduction relation are implemented in the interactive proof assistantMinlog.
However, for our theoretical needs the stronger reduction relation from De�nition
1.20 will be su�cient.

1.2.2 Removing empty computational content

During the presentation we will encounter cases in which we would like to denote
lack of computational information. For this we will use a special singleton (unit)
base type, denoted as I, which will contain a single constant, denoted as εI. Since our
term system has no side e�ects, we will not be interested in computations involving
terms of I. We will de�ne reductions, which remove all possible uses of the type I and
terms of this type.

De�nition 1.29 (I-reduction).

ρ× I
I7→ ρ, ρ⇒ I

I7→ I,

I× ρ I7→ ρ, I⇒ ρ
I7→ ρ,

For presentational convenience we assume that these type reductions are always
implicitly executed when forming a product type or an arrow type involving I. As a
result, we will never be able to construct a complex type containing I. A side e�ect
from this convention is that the operations × and ⇒ do not behave as syntactic
constructors any more, because they can produce types smaller than their operands.
For this reason, when we are given a type ρ, we will not be able to determine if
it is a result of a construction involving I or not. Consequently, when we argue by
induction on the de�nition of ρ we will inevitably skip all construction steps involving
I. However, in our setting this will pose no problems, as these skipped constructions
will be in fact computationally irrelevant.

The implicit removal of the type I causes some awkward e�ects on term construc-
tion. For example, sItρ, tρsI, tρx are now valid term constructions for any type ρ. We
avoid such anomalies by de�ning another reduction acting on the term level.

De�nition 1.30 (ε-reduction).

sI ε7→ ε,

13

1 Systems of Arithmetic

for s a variable or one of PairI,I, Split
I
ρ,σ,CasesI,RI

N,RI
L(ρ),

sρε
ε7→ sρ, λxI sρ

ε7→ sρ,

εsρ
ε7→ ε, λxρ ε

ε7→ ε,

Pairρ,I
ε7→ λxρ x, Split

τ
ρ,I

ε7→ λxρ λfρ⇒τ fx,

PairI,ρ
ε7→ λxρ x, Split

τ
I,ρ

ε7→ λxρ λfρ⇒τ fx.

As before, we assume that the reduction
ε7→ is implicitly executed when constructing

a term involving I. It is easy to see that we cannot construct a complex term involving
ε. Moreover, ε is the only term of type I that can be constructed. With

ε7→ we
restore the parity between terms and their types, so that whenever a complex type
construction collapses because it involves I, on the term level we also ignore the
corresponding construction step involving ε.

Remark 1.31. For completeness, we could also postulate

L(I)
I7→ N, nilI

ε7→ 0,

Rτ
L(I)

ε7→ Rτ
N, :: I

ε7→ S.

However, for the sake of clarity, we will never make use of the list type with I as a
parameter.

Remark 1.32. The currently presented approach for removing computationally irrel-
evant terms cleans eagerly on each construction step. This technique is employed
also in [Sch08, SW10]. An alternative approach for removing computationally irrel-
evant terms and types is to use I and ε explicitly during extraction and to have an
additional cleaning step, which performs all possible reductions simultaneously on
the extracted term and its type. An example of this method is the erase function
of [Mak06]. The author believes that the approach chosen here possesses some ad-
vantages over its alternative: it is much cleaner notationally and is more memory
e�cient when implemented.

1.3 Logical systems

In this section we will will start the de�nition of three systems HAω (Heyting Arith-
metic with �nite types) and its negative fragments MAω (Minimal Arithmetic) and
NAω (Negative Arithmetic). The system HAω is essentially the same as in [Tro73].
The systems MAω and NAω will obey to the same logical rules as HAω, but their
language will be restricted to negative formulas only. The di�erence between the two
systems will be in the de�nition of falsity and negation, which will result in systems
of di�erent strength.

14

1.3 Logical systems

1.3.1 Formulas

We start by de�ning the formula language of the three systems NAω, MAω and HAω.

De�nition 1.33 (Formulas). Formulas of NAω are

• at(tB), denoting a decidable atomic formula, where tB is an arbitrary boolean
term;
• A→ B, denoting an implication from A to B;
• ∀xρA, denoting universal quanti�cation of A over the variable x with ρ 6= I.

The formulas of MAω are obtained by adding to NAω the clause

• ⊥, a predicate variable used for denoting falsity.

The formulas of HAω are obtained by adding to NAω the clauses

• A ∧B, denoting a conjunction of A and B;
• ∃xρA, denoting existential quanti�cation of A over the variable x with ρ 6= I.

We will denote the quanti�er-free fragments of the systems NAω, MAω and HAω as
NAω

0 , MAω
0 and HAω

0 respectively. The atomic fragments of NAω and HAω coincide
and we will denote the resulting system as NAω

at.

The notions of free and bound variables and substitutions from Section 1.1.2 are
transferable to formulas. In addition, term and type substitutions can also be ex-
tended to formulas if we consider the term parameter in the atomic formula as �a
variable� and the corresponding substitutions as �variable renamings�.
In formulas of MAω we have an additional kind of variable: the predicate variable
⊥. We reserve the notations FV and BV for free and bound term variables. We will
call a MAω formula ⊥-free if it does not contain ⊥. In fact, ⊥-free formulas of MAω

are exactly the formulas of NAω. We also have a corresponding notion of formula

substitution, which substitutes a formula for the predicate variable ⊥. As usual,
we assume that all considered formula substitutions are capture-free with respect to
variables bound by universal quanti�ers.
For technical convenience, we extend the de�nition of universal quanti�cation to I

as follows:

∀xIA
I7→ A.

The de�nition is sound, as due to the
ε7→ reduction, A cannot contain the variable x

freely.
The at(·) construction is intended to embed boolean terms into the logical world.

In this way the logical systems contain all predicates expressible in Gödel's system T .

15

1 Systems of Arithmetic

These are exactly the predicates, which can be proved total by trans�nite induction
up to ε0 [Kre51, Kre52, AF98].
The following notion of subformula is due to Gentzen.

De�nition 1.34 (Subformula). For a formula C we de�ne the notions of a negative,
positive and strictly positive subformula.

• C is a positive and strictly positive subformula of itself;
• C is a negative/positive/strictly positive formula of A ∧B if C is a
negative/positive/strictly positive subformula of A or B;
• C is a negative/positive formula of A → B if C is a negative/positive sub-
formula of A or a positive/negative subformula of B. C is a strictly positive
subformula of A→ B, if C is a strictly positive subformula of B;
• C is a negative/positive/strictly positive formula of ∀xρA or ∃xρA if C is a
negative/positive/strictly positive of A [x := t] for some term tρ.

Falsity in minimal logic systems is traditionally a symbol without any logical mean-
ing attached to it [Joh37, Pra71, TS00]. In MAω this ultimate generality is expressed
by de�ning ⊥ to be a predicate variable, a placeholder for an arbitrary formula. We
can use ⊥ to de�ne negation in MAω and then employ it to de�ne negative versions
of the connectives of HAω.

De�nition 1.35 (Negative connectives in MAω). The negative connectives in MAω

are

• ¬A := A→ ⊥, denoting negation of A;
• A ∧̃B := ¬(A→ B → ⊥), denoting weak conjunction of A and B;
• ∃̃xρA := ¬(∀x¬A), denoting weak existential quanti�cation of A on x.

The systems HAω and NAω are meant to describe intuitionistic and classical arith-
metic with �nite types. In these systems we would like a notion of falsity F, which
validates the schemata:

ex falso quodlibet : F→ A for any HAω formula A,

stability : ((A→ F)→ F)→ A for any NAω formula A.

Since our system is entirely based on decidable atomic formulas, it seems natural
to de�ne falsity using the underlying arithmetic. We can then translate the negative
connectives of MAω to NAω.

De�nition 1.36 (Arithmetical falsity and truth). The arithmetical falsity in NAω

is de�ned as F := at(ff) and the arithmetical truth in NAω is de�ned as T := at(tt).
The negative connectives in NAω are obtained from the corresponding negative con-
nectives of MAω by substituting F for ⊥.

16

1.3 Logical systems

In the next section we will show that the arithmetical falsity indeed satis�es the
above axiom schemata in NAω and HAω.
Using at(·), we can de�ne equality at the base types by de�ning appropriate

boolean programs. We extend this equality extensionally to higher types.

De�nition 1.37 (Arithmetical equality). For every closed type τ we de�ne an equal-

ity predicate inductively as follows:

(x
µ
= y) := at(Eqµxy), for µ a base type, where

EqB := λxB λyB Casesx y (Cases y ff tt),

EqN := λxNRN⇒B
N x

(
λyNRB

N y tt(λyN
0 λq

B ff)
)(

λxN
0 λp

N⇒B λyNRB
N y ff(λyN

0 λq
B py0)

)
,

EqL(ρ) := λxL(ρ)RL(ρ)⇒B
L(ρ) x

(
λyL(ρ)RB

L(ρ) y tt (λyρh λy
L(ρ)
t λqB ff)

)(
λxρh λx

L(ρ)
t λpL(ρ)⇒B λyL(ρ)RB

L(ρ) y ff(λyρh λy
L(ρ)
t λqB Cases(Eqρxhyh)(pyt)ff)

)
,

(x
ρ×σ
= y) := (xx

ρ
= yx) ∧̃(xy

σ
= yy),

(x
ρ⇒σ
= y) := ∀zρ (xz

σ
= yz).

We need to express a notion of evaluational equality, or equality up to normal
form. However, we prefer to keep term evaluation as an arithmetical concept and
not transfer it to the logical world. In order to avoid adding reduction axioms to the
logical system, we extend the notion of syntactic equality of formulas, by postulating
that two atomic formulas are considered the same if their terms reduce to the same
normal form. As already noted in Section 1.2.1, terms are strongly normalizing, so
the de�nition is legal. Thus, throughout the text three di�erent notions of term
equaility will be used:

• t1 ≡ t2, denoting syntactical equality, i.e., that t1 and t2 are syntactically the
same,
• t1

r
= t2, denoting evaluational equality, i.e., that t1 and t2 have the same normal

form,
• t1 = t2, denoting logical equality, i.e., that t1 and t2 are provably equal in a
given system of arithmetic.

1.3.2 Proofs

We will conclude the exposition of the systems MAω, NAω and HAω by de�ning
the valid derivations in them. We will work in a natural deduction setting and the
derivations will use a λ-syntax similar to that of terms in order to stress the Curry-
Howard correspondence. These proof terms will be built from a countable set of

17

1 Systems of Arithmetic

assumption variables and will be typed by the formulas they prove. We will de�ne
proof terms and their �typing� by simultaneous induction.

De�nition 1.38 (Proof terms). The proof terms of NAω are

• uA, denoting an assumption u of a formula A;
• AxT : T, denoting the truth axiom, which gives the semantics of at(·);
• (λuAMB)A→B, denoting the implication introduction rule discharging the as-
sumption u from the proof M ;
• (MA→BNA)B, denoting the implication elimination binary rule;
• (λxρMA)∀x

ρ A, denoting the universal introduction rule binding the variable x.
This rule is subjected to the usual variable condition that x /∈ FV[FA(M)];
• (M∀xρ Atρ)A[x:=t], denoting the universal elimination rule;
• Cb,A : ∀bB (A [b := tt]→ A [b := ff]→ A), denoting the boolean case distinction

axiom for the formula A;
• Indn,AN : ∀nN (A [n := 0] → ∀nN (A → A [n := Sn]) → A), denoting the natural

number induction axiom for the formula A;
• Indl,AL(ρ) : ∀lL(ρ) (A [l := nil] → ∀xρ ∀lL(ρ) (A → A [l := x :: l]) → A), denoting the
list induction axiom for the formula A.

The proof terms of MAω are obtained by adding the clause

• ⊥+ : F→ ⊥, denoting the ⊥ introduction axiom.

The proof terms of HAω are obtained by adding the clauses

• ∧+
A,B : A→ B → A ∧B, denoting the conjunction introduction axiom scheme;

• ∧−A,B,C : A ∧ B → (A → B → C) → C, denoting the conjunction elimination

axiom scheme for the formula C;
• ∃+

x,A : ∀xρ (A→ ∃xρA), denoting the existential introduction axiom scheme;
• ∃ −x,A,C : ∃xρA → ∀xρ (A → C) → C, denoting the existential elimination

axiom scheme for the formula C. The scheme is subjected to the usual variable
condition that x /∈ FV(C).

Similarly to formulas, we extend the syntactic equality of proofs to identify terms
participating in universal elimination rule instances if they have a common normal
form. We also extend the reduction

ε7→ to the proof rules involving universal formulas
as follows:

(λxI MA)∀x
I A ε7→MA,

(M∀xI AεI)A[x:=ε] ε7→MA.

Sometimes it will be more convenient to use rules instead of the axiom schemes
de�ned above. We will make use of some abbreviations, which de�ne the introduction
and elimination rules corresponding to some of the axiom schemes.

18

1.3 Logical systems

•
〈
MA, NB

〉A∧B
:= ∧+MN , denoting the conjunction introduction rule;

• (MA∧Bx)A := ∧−M(λuλv u), denoting the left conjunction elimination rule;
• (MA∧By)B := ∧−M(λuλv v), denoting the right conjunction elimination rule;
•
〈
tρ,MA

〉∃xρ A
:= ∃+tM , denoting the existential introduction rule.

The rest of the rules will be used with the usual syntax.

• ∃ −M∃xρ A(λxρ λuANC), denoting the existential elimination rule for the for-
mula C discharging the assumption u and binding the variable x in the proof
term N ;
• CbBMA[b:=tt]NA[b:=ff], denoting the boolean case distinction rule for the formula
A;
• IndNn

NMA[n:=0](λnN λuANA[n:=Sn]), denoting the natural number induction rule
for the formula A, discharging the induction hypothesis u and binding the
variable n in the proof term N ;
• IndL(ρ)l

L(ρ)MA[l:=nil](λxρ λlL(ρ) λuANA[l:=x :: l]), denoting the list induction rule
for the formula A, discharging the induction hypothesis u and binding the
variables x and l in the proof term N .

The rules above are de�nable using the corresponding axioms, however, the con-
verse is also true; the axiom schemes are de�nable in terms of the rules. Thus, we will
use axioms and rules interchangeably when we argue on induction on the de�nition
of a proof term, choosing whichever is most convenient.
In proof terms we have three types of variables: term (object) variables, assumption

variables and (only in MAω) the predicate variable ⊥. We reserve the notations FV

and BV for free and bound term variables and will use the notations FA and BA for
free and bound assumption variables. We will call a proof in MAω ⊥-free if all its
formulas are ⊥-free. Similarly to formulas, ⊥-free proofs in MAω are exactly the
proofs in NAω.
Proof terms can be subjected to four kinds of substitutions: type, term, formula

and proof substitutions. The application of all four kinds of substitutions is speci�ed
below.
Applying a type substitution to a proof term means applying it to:

• all formulas appearing in the proof term,
• the types of all terms appearing in universal elimination rule instances,
• the types of all variables bound by a universal introduction rule instance

Applying a term substitution to a proof term means applying it to:

• all formulas appearing in the proof term,
• all terms appearing in universal elimination rule instances.

19

1 Systems of Arithmetic

Applying a formula substitution to a proof term means applying it to all formulas
appearing in the proof term.
Applying a proof substitution is naturally de�ned for proofs using the general

scheme described in Section 1.1.2.

Remark 1.39. In order to prove correctness of formula substitutions, we would need
to show that the axiom ⊥+ preserves its validity under substitutions of the kind
[⊥ := A] for an arbitrary formula A. We postpone this task for the next section.

Reductions can be de�ned for proof terms similarly to term reductions.

De�nition 1.40 (Proof reductions [Pra71, Lei75]).

(λuM)N 7→ M [u := N] , (∧−M(λuλv N))T 7→ ∧−M(λuλv NT), (∗)
(λxM)t 7→ M [x := t] , (∃ −M(λxλuN))T 7→ ∃ −M(λxλuNT), (∗)
IndN 0M N 7→ M, IndN (Sn)M N 7→ N n (RN nM N),

IndL(ρ) nilM N 7→ M, IndL(ρ) (n :: l)M N 7→ N n l (RL(ρ) l M N),

C ttM N 7→ M, (C bM N)T 7→ C b (MT) (NT)

C ff M N 7→ N, ∧
∃
−(C bM N) 7→ C b (∧∃

−M) (∧∃
−N)

∧−(∧+M N)P 7→ P M N ∧
∃
−(∧−M(λuλv N)) 7→ ∧−M(λuλv ∧∃

−N),

∃ −(∃+tM)N 7→ N tM ∧
∃
−(∃ −M(λxλuN)) 7→ ∃ −M(λxλu∧∃

−N),

∧−M(λuλv T) 7→ T, (∗) ∃ −M(λxλuT) 7→ T, (∗)

where ∧∃
− stands for ∧− or ∃ −, and (∗) denotes the condition u, v /∈ FA(T), x /∈ FV(T),

with T standing for either an object or a proof term; and if M 7→M ′, then

MN 7→M ′N, NM 7→ NM ′, λuM 7→ λuM ′, λxM 7→ λxM ′.

Multiple-step reduction, set of reducts and normal form are de�ned as in Section
1.2.1. It is easy to establish that if MA 7→ NB, then A

r
= B, FV(N) ⊆ FV(M) and

FA(N) ⊆ FA(M). It is well-known that HAω is strongly normalizing.

Theorem 1.41 (Strong normalization for HAω [Pra71, Lei75]). For every proof term
MA, there is a proof term MA

0 , such that M
∗7→M0 and M0 is in normal form.

As remarked in [Lei75], a simpler version of the argument applies to the subsystems
NAω and MAω.

Theorem 1.42 (Subformula property [Pra71]). Let MA be a proof term in normal

form and let FA(M) =
{
uCii
}
. Then all formulas appearing in M are subformulas of

the conclusion A or of some of the assumptions Ci.

20

1.4 System embeddings

The three considered systems di�er only in their formula language, and not in the
derivation axioms and rules. Consequently, we can talk about derivability of formulas
without explicitly specifying a system, as it will be determined by the language used
in the formulas involved in the proof term. Moreover, the two theorems above imply
that a proof term M , for which the conclusion and the assumptions are formulas in
NAω can be carried out entirely in NAω when normalized. Therefore, the system
which proves a certain formula will be entirely determined by the language of the
conclusion and the assumptions.

De�nition 1.43 (Derivability). We say that a formula A is derivable from assump-

tions Γ = {Ci} if there is a proof term MA, such that FA(M) =
{
uCii
}
and denote

FA(M) ` M : A or omitting proof terms Γ ` A. In case the proof M is closed, i.e.,
FA(M) = ∅, we say that a formula A is derivable and denote `M : A or just A.

The fact that the notion of derivability is uniform across systems does not mean
that the systems prove the same theorems. In particular, since the language of NAω is
more restricted than the language of HAω, there are some theorem schemata involving
an arbitrary formula A, which are valid if A ranges over NAω, but are invalid if we
allow A to range over HAω. An example of this phenomenon is the stability principle
described above.

1.4 System embeddings

In this section we will demonstrate how the systems MAω, NAω and HAω are em-
beddable in each other. We will start by proving some underlying principles, which
should hold in any intuitionistic or classical arithmetical system.

Theorem 1.44 (Ex falso quodlibet). ` F→ A for any formula A in NAω, MAω, or

HAω.

Proof. The table below shows how to construct a proof efqF→A
A by induction on the

formula A. We assume that by induction hypothesis we have MF→B and NF→C .

A efqA
at(t) λu FC t uAxT

⊥ ⊥+

B → C λu FvBNu

∀xρB λu FλxρMu

B ∧ C λu F 〈Mu,Nu〉
∃xρB λu F 〈�ρ,M〉

21

1 Systems of Arithmetic

Remark 1.45. The theorem above is not the �real� ex falso quodlibet principle for
MAω, because not F, but ⊥ is the legitimate falsity for that system. As is to be
expected, the ex falso quodlibet principle with ⊥ for falsity does not hold in the
minimal system MAω, because there is no way to prove ⊥ → F. However, the
theorem shows that the axiom ⊥+ preserves its validity under arbitrary formula
substitutions.

Theorem 1.46 (Stability). ` ((A→ F)→ F)→ A for any formula A in NAω.

Proof. The table below shows how to construct a proof stab¬¬A→AA by induction on
the formula A. We assume that by induction hypothesis we have M¬¬B→B and
N¬¬C→C .

A stabA
at(t) C t (λu ¬¬TAxT) (λu ¬¬Fu(λv Fv))

B → C λu ¬¬(B→C)λx BN
(
λv ¬Cu

(
λw B→Cv(wx)

))
∀xρB λu ¬¬∀xBλx ρM

(
λv ¬Bu

(
λw ∀xBv(wx)

))

Remark 1.47. The stability principle is not valid for MAω: ((⊥ → F) → F) → ⊥ is
not provable, since ⊥ → F is not. Stability is also clearly not valid for HAω, because
it does not hold at ∃xB.

Theorem 1.48 (Case distinction on terms). For any formula A,

` ∀b
(
(at(b)→ A [b := tt])→ ((at(b)→ F)→ A [b := ff])→ A

)
.

Proof. We de�ne the proof CDb,A by case distinction as follows:

CDb,A := λb C b (λuT→A[b:=tt] λv uAxT)
(
λuλv(F→F)→⊥ v(λwF w)

)
.

De�nition 1.49 (System embedding). An embedding of a system A into a system
B is a mapping Ω acting on formulas, such that

1. for every formula A ∈ A we have a formula Ω(A) ∈ B, such that FV(A) =

FV(Ω(A)) and BV(A) = BV(Ω(A));
2. Γ ` A exactly when Ω(Γ) ` Ω(A).

If instead 2. we have

2'. Γ ` A implies Ω(Γ) ` Ω(A),

we call Ω a weak embedding.
A is called (weakly) embeddable in B if there is a (weak) embedding of A into B.

22

1.4 System embeddings

From the de�nition of the systems we immediately obtain some trivial embeddings.

Proposition 1.50. The identity mapping embeds NAω into HAω and MAω; NAω
at

into NAω
0 ; and NAω

0 into HAω
0 .

In fact, we will show that the systems NAω
at, NAω

0 and HAω
0 possess the same logical

strength by closing the loop with an embedding of HAω
0 into NAω

at.

Lemma 1.51. There are closed terms T→, T∧ : B⇒ B⇒ B such that

1. ` at(T→xy)↔ (at(x)→ at(y)).
2. ` at(T∧xy)↔ (at(x) ∧ at(y)).

Proof. De�ne T→ := λxλy Casesx y tt and T∧ := λxλy Casesx y ff. The following
proof terms prove the two equivalences:

P→l := C x (λuT→at(y) uAxT) (λuF→at(y) AxT),

P→r := C x (λuat(y)λv Tu) (λuT λvF efqat(y)v),

P∧l := C x (λuT∧at(y) uy) (λuF∧at(y) ux),

P∧r := C x (λuat(y) 〈AxT, u〉) (λuF
〈
u, efqat(y)u

〉
).

Corollary 1.52. There is a closed term T¬ : B⇒ B such that ` at(T¬x)↔ (at(x)→
F).

Proof. De�ne T¬ := λx (T→ xff).

De�nition 1.53 (Atomic translation). For every formula C in HAω
0 we de�ne the

term Cat (the atomic translation of C) as follows:

(at(t))at := t,

(A→ B)at := T→(Aat)(Bat),

(A ∧B)at := T∧(A
at)(Bat).

Proposition 1.54. HAω
0 is embeddable in NAω

at.

Proof. We de�ne the mapping Ω(A) := at(Aat) for any formula A in HAω
0 . We prove

that Ω is an embedding by induction on A. The atomic case is trivial and the other
two cases are handled by Lemma 1.51.

Corollary 1.55 (Case distinction on decidable formulas). ` (D → A) → ((D →
F)→ A)→ A for an arbitrary formula A and for any D ∈ HAω

0 .

Proof. Follows from Theorem 1.48 and Lemma 1.51 using CDb,A(Dat) for b a fresh
boolean variable, not appearing freely in A. We will denote the corresponding proof
term as CDD,A.

23

1 Systems of Arithmetic

The identity embedding of NAω into HAω is very convenient. However, it is not as
useful for embedding NAω into MAω. The reason is that we have di�erent notions
of falsity (and hence negation) in NAω and MAω. An honest embedding would
translate the arithmetical falsity F from NAω into a formula, which is equivalent to
⊥, the falsity in MAω. This can be achieved via the double negation translation
[Tro73].

De�nition 1.56 (Double negation translation). We de�ne the double negation trans-
lation (·)¬¬ as follows:

(at(t))¬¬ := (at(t)→ ⊥)→ ⊥,
(A→ B)¬¬ := A¬¬ → B¬¬,

(∀xA)¬¬ := ∀xA¬¬.

Clearly F¬¬ = (F→ ⊥)→ ⊥ is provably equivalent to ⊥ via the the axiom ⊥+.

Remark 1.57. We would obtain a simpler translation by postulating F¬¬ := ⊥, as
in the original Gödel-Gentzen negative translation. However, in our case it does not
introduce a substantial simpli�cation, so we prefer a uniform treatment of all atomic
formulas.

Lemma 1.58. ` A¬¬ [⊥ := F]↔ A.

Proof. Induction on A. The implication and universal quanti�cation cases are trivial,
so we need to prove the claim only for atomic formulas, i.e., ` ((at(t)→ F)→ F)↔
at(t). The direction �←� is proved by λu at(t)λv ¬at(t)vu and the direction �→� is
proved by stabat(t).

Proposition 1.59. (·)¬¬ is an embedding of NAω into MAω.

Proof. First we prove that from any proof of Γ ` A we can construct a proof of Γ¬¬ `
A¬¬ by induction on the proof term in NAω. Implication and universal introduction
and elimination rules translate to themselves, because (·)¬¬ goes through implications
and universal quanti�ers. The induction axioms Cb,A, Indn,AN and Indl,AL(ρ) translate

to Cb,A¬¬ , Indn,A
¬¬

N and Indl,A
¬¬

L(ρ) respectively. Finally, the axiom AxT translates to
λu T→⊥(uAxT).
In order to show the converse, assume that Γ¬¬ ` A¬¬. Substituting [⊥ := F] and

applying Lemma 1.58 we obtain Γ ` A.

Proposition 1.60. MAω is weakly embeddable into NAω.

Proof. De�ne Ω(A) := A [⊥ := F]. It is clear that for every proof term MA we can
obtain the proof (M [⊥ := F])Ω(A).

24

1.4 System embeddings

De�nition 1.61 (Weakening translation). We de�ne the weakening translation (·)w

of formulas HAω to formulas in NAω as follows:

(at(t))w := at(t),

(A→ B)w := Aw → Bw,

(∀xA)w := ∀xAw

(A ∧B)w := Aw ∧̃Bw

(∃xA)w := ∃̃xAw.

Proposition 1.62. (·)w is a weak embedding of HAω into NAω.

Proof. Let A be a formula in HAω and assume that we have a proof term MA. We
argue by induction on M and we need to consider only the axioms of HAω, which
are not present in NAω. The table below summarizes how a proof dw is constructed
for the weak translation each of the axioms dD.

d : D dw

∧+
A,B λu A

w
λv B

w
λw Aw→Bw→Fwuv

∧−A,B,C λu A
w ∧̃Bw

λv A
w→Bw→Cw

stabCw(λw ¬C
w
u(λzA

w

0 λzB
w

1 w(vz0z1)))

∃+
x,A λxλu A

w
λv ∀x¬A

w
vxu

∃ −x,A,C λu ∃̃xA
w
λv ∀x (Aw→Cw)stabCw(λw ¬C

w
u(λxλz A

w
w(vxz)))

In the text we will use the weak translation for notational convenience, as well as
the proof terms (∧+

A,B)w, (∧−A,B,C)w, (∃+
x,A)w and (∃ −x,A,C)w.

It is important to note that the weak connectives ∧̃ and ∃̃ should be used with cau-
tion, as their careless application can introduce an unnecessary number of negations
in the resulting formula, which will inevitably lead to complications in the proofs.
We will thus de�ne special shortcut notations for repeated use of ∧̃ and ∃̃ as follows:

A ∧̃B ∧̃C := ¬(A→ B → C → ⊥),

∃̃x, y A := ¬∀x ∀y (¬A),

∃̃x (A ∧̃B) := ¬∀x (A→ B → ⊥).

25

CHAPTER

TWO

PROGRAM EXTRACTION FROM PROOFS

In this chapter three methods for extraction of programs from proofs will be pre-
sented. The �rst of them is modi�ed realisability [Kre59], which is a formalisation of
the Curry-Howard correspondence, transforming constructive proofs into functional
programs. The next method, re�ned A-translation [BBS02] is based on modi�ed
realisability and extracts programs from proofs in minimal logic. The chapter will
conclude with Gödel's Dialectica interpretation, which is able to extract higher-order
programs from classical proofs.

2.1 Modi�ed realisability

The �rst notion of realisability was developed by Kleene [Kle45] with the aim to
provide a computational model of the Brower-Heyting-Kolmogorov interpretation of
constructive logic. In this interpretation formulas in HAω can be viewed as problems,
which require a solution in the following manner:

• atomic formulas at(t) do not require a solution, they state facts;
• an implication A → B requires a function, which maps every solution of A to
a solution of B;
• a conjunction A ∧B requires a pair of solutions for A and B respectively;
• a universal formula ∀xA requires a function, which maps every possible value
v of the variable x to a solution of A [x := v];
• an existential formula ∃xA requires a pair of solutions: a value v for x and a
solution of A [x := v].

Note that the existential quanti�er plays a central role: a formula without any
existential quanti�ers cannot require solutions. A constructive proof of a formula A

27

2 Program extraction from proofs

should achieve two goals simultaneously: construct a solution for A and prove that
the solution is correct.
The realisability interpretation formalises the above inductive de�nition via a re-

alisability predicate � a relation between computations and formulas, which de�nes
when a given computation solves a certain formula. Kleene suggested to use program
codes to denote computations and even though this was a correct model of construc-
tive logic [Nel47], it turned out to be an incomplete one [Ros53]. A better approach
was suggested later by Kreisel [Kre59]: computations should be modelled as (typed)
λ-terms. This variant was called �modi�ed realisability� and became popular for
extracting programs from constructive proofs.

2.1.1 De�nition

We will de�ne the following components of the modi�ed realisability interpretation:

1. τ ◦(A) � the type of the required solutions of the formula A;
2. t r A � the realisability predicate relating a formula A and a term tτ

◦(A);
3. [[M]]◦ � the extracted term from a proof term M .

De�nition 2.1 (Realisability computational type). For every formula A in HAω we
de�ne its computational type τ ◦(A) inductively as follows:

τ ◦(at(t)) := I,

τ ◦(B → C) := τ ◦(B)⇒ τ ◦(C),

τ ◦(B ∧ C) := τ ◦(B)× τ ◦(C),

τ ◦(∀xρB) := ρ⇒ τ ◦(B),

τ ◦(∃xρB) := ρ× τ ◦(B).

If τ ◦(A) 6= I, we call A computationally relevant. If τ ◦(A) = I, we call A computa-

tionally irrelevant.

Proposition 2.2. Let A be a formula in HAω. Then A is computationally relevant

i� there is a strictly positive occurrence of an existential formula in A.

Proof. Induction on the de�nition of A.
Case at(t). Clear.
Case B → C. By de�nition, τ ◦(B → C) 6= I exactly when τ ◦(C) 6= I. On

the other hand, an existential formula occurs strictly positively in B → C exactly
when it occurs strictly positively in C and we �nish the proof by using the induction
hypothesis.
Case B∧C. By de�nition, τ ◦(B∧C) = I exactly when τ ◦(B) = τ ◦(C) = I. On the

other hand, an existential formula occurs strictly positively in B ∧C exactly when it

28

2.1 Modi�ed realisability

occurs strictly positively in B or in C and we �nish the proof by using the induction
hypothesis.

Case ∀xB. By de�nition, τ ◦(∀xB) 6= I exactly when τ ◦(B) 6= I and we �nish the
proof by using the induction hypothesis.

Case ∃xB. Clear, because by de�nition, τ ◦(∃xB) cannot collapse to I.

Proposition 2.2 implies that all formulas in NAω are computationally irrelevant,
which shows that modi�ed realisability is non-trivially applicable only for construc-
tive proofs.

De�nition 2.3 (Realisability predicate). We de�ne inductively the value of the
realisability predicate at a formula A in HAω and a term t : τ ◦(A), to be read �A is

realised by t�, as follows:

ε r at(t) := at(t),

t r (B → C) := ∀xτ◦(B) (x r B → tx r C), for a fresh variable x,

t r (B ∧ C) := (tx r B) ∧̃(ty r C),

t r (∀xρB) := ∀x (tx r B),

t r (∃xρB) := tx r B [x := ty].

The following proposition is easily proved by induction on A.

Proposition 2.4. For every formula A in HAω and term t:

1. τ ◦(A [x := t]) = τ ◦(A);

2. FV(t r A) ⊆ FV(A) ∪ FV(t).

3. t r A is a formula in NAω;

In fact, all formulas in NAω are invariant with respect to realisability.

Proposition 2.5 (NAω realisability invariance). ε r A = A for every formula A in

NAω.

Proof. Induction on A.

Case at(t). By de�nition.

Case B → C. ε r (B → C) = ∀xI (x r B → εx r C) = B → C by induction
hypothesis and the I convention.

Case ∀xB. ε r (∀xB) = ∀x (εx r B) = ∀xB by induction hypothesis and the I

convention.

29

2 Program extraction from proofs

2.1.2 Soundness

In this section we will prove soundness of the modi�ed realisability interpretation.

Theorem 2.6 (Soundness of modi�ed realisability). Let PA be a proof term in HAω

with assumptions FA(P) = {ui : Ci}i≥1. Let us have a set of fresh variables X =

{xi : τ ◦(Ci)} and a set of fresh assumption variables V = {vi : (xi r Ci)}, each one

uniquely associated with each of the assumption variables ui. Then there is a term

[[P]]◦ : τ ◦(A) and a proof term P : [[P]]◦ r A, such that FA(P) ⊆ V and FV([[P]]◦) ⊆
FV(P) ⊆ FV(P) ∪X.

Proof. We de�ne [[P]]◦ and P by induction on the proof term P .
Case AxT. Set [[P]]◦ := ε and P := AxT.
Case uC1

1 . Set [[P]]◦ := x1 and P := v1.
Case λuB0 M

C . By induction hypothesis we have a proof term M : [[M]]◦ r C

with assumptions vi for i ≥ 0. Set [[P]]◦ := λx0 [[M]]◦ and P := λx0 λv0M . The
universal introduction in P is correct, because x0 appears only in the assumption v0.
The variable conditions are satis�ed, because FA(P) = FA(M) \ {v0} and FV(P) =

FA(M) \ {x0}.
Case MB→ANB. By induction hypothesis we have proof terms N : [[N]]◦ r B and

M : ∀xτ◦(B) (x r B → [[M]]◦x r A) with FA(M) ∪ FA(N) ⊆ V . Set [[P]]◦ := [[M]]◦[[N]]◦

and P := M [[N]]◦N . The variable conditions are satis�ed, because FA(P) = FA(M)∪
FA(N) and FV(P) = FV(M) ∪ FV(N) (since FV(N) ⊇ FV([[N]]◦)).
Case λxρMB. By induction hypothesis we have a proof term M : [[M]]◦ r B.

Set [[P]]◦ := λx [[M]]◦ and P := λxM . The universal introduction in P is correct,
because it is correct in P and by induction hypothesis FA(M) ⊆ V and FV[V] ⊆
FV[FA(M)] ∪X. The variable conditions are satis�ed, because FA(P) = FA(M) and
FV(P) = FV(M) \ {x}.
Case M∀xBt. By induction hypothesis we have a proof term M : ∀x ([[M]]◦x r B).

Set [[P]]◦ := [[M]]◦t and P := Mt. The variable conditions are satis�ed, because
FA(P) = FA(M) and FV(P) = FV(M) ∪ FV(t) ⊆ FV(P) ∪X.
Case ∧+

B,C . We de�ne [[P]]◦ := Pairτ◦(B),τ◦(C) and

P := λxB λvB λxC λvC λu
(xB r B)→(xC r C)→FuvBvC ,

where xφ : τ ◦(φ) and vφ : (xφ r φ) for φ ∈ {B,C}.
Case ∧−B,C,D. We de�ne [[P]]◦ := λx Split

τ◦(D)
τ◦(B),τ◦(C) 〈xx, xy〉1. Let us denote G :=

B ∧ C and H := B → C → D. Then we can de�ne

P := λxG λvG λxH λvH (∧−)wvG
(
λvB λvC vH(xGx)vB(xGy)vC

)
,

1If we had admitted the η-expansion x 7→ 〈xx, xy〉 and had considered η-long normal forms, then

we could have de�ned [[P]]◦ := Split
τ◦(D)
τ◦(B),τ◦(C)

30

2.1 Modi�ed realisability

where xφ : τ ◦(φ) and vφ : (xφ r φ) for φ ∈ {B,C,G,H}, since by de�nition

(xG r G) = (xGx r B → xGy r C → F)→ F,

(xH r H) = ∀xB (xB r B → ∀xC (xC r C → xHxBxC r D)).

Case ∃+
xρ,B. We de�ne [[P]]◦ := Pairρ,τ◦(B). Since by de�nition (Pairx xB) r ∃xB =

xB r B, we can directly de�ne P := λxλxB λvB vB, where xB : τ ◦(B) and vB :

xB r B.

Case ∃ −xρ,B,C . We de�ne [[P]]◦ := λx Split
τ◦(C)
ρ,τ◦(B) 〈xx, xy〉. Let us denote G := ∃xB

and H := ∀x (B → C). Then we can de�ne

P := λxG λvG λxH λvH vH(xGx)(xGy)vG,

where xφ : τ ◦(φ) and vφ : (xφ r φ) for φ ∈ {B,C,G,H}, since by de�nition

(xG r G) = (xGy) r B [x := xGx],

(xH r H) = ∀x ∀xB (xB r B → xHxxB r C).

Case Cb,C . We de�ne [[P]]◦ := Casesτ
◦(C) and

P := λb λxtt λvtt λxff λvff Cb,Cases bxttxff r Cbvttvff ,

where xi : τ ◦(C) and vi : (xi r C [b := i]) for i ∈ {tt,ff}.
Case Indn,CN . We de�ne [[P]]◦ := Rτ◦(C)

N . Let us denote C0 := C [n := 0] and
CS := ∀n (C → C [n := Sn]). Then we can de�ne

P := λnλx0 λv0 λxS λvS Indn,RNnx0xS r C
N nv0(λn vSn(RNnx0xS))),

where xi : τ ◦(Ci) and vi : (xi r Ci) for i ∈ {0, S}, since by de�nition

(xS r CS) = ∀n∀xτ◦(C)
n (xn r C → xSnxn r C [n := Sn]).

Case Indl,CL(ρ). We de�ne [[P]]◦ := Rτ◦(C)
L(ρ) . Let us denote Cnil := C [l := nil] and

C:: := ∀x ∀x (C → C [l := x :: l]). Then we can de�ne

P := λnλxnil λvnil λx:: λv:: Ind
l,RL(ρ)lxnilx:: r C

L(ρ) lvnil(λxλl v::xl(RL(ρ)lxnilx::))),

where xi : τ ◦(Ci) and vi : (xi r Ci) for i ∈ {nil, ::}, since by de�nition

(x:: r C::) = ∀x ∀l ∀xτ
◦(C)
l (xl r C → x::xlxl r C [l := x :: l]).

31

2 Program extraction from proofs

Corollary 2.7 (Program extraction via modi�ed realisability). Let A be a formula

in NAω and let HAω ` ∀xρ ∃yσ A. Then there is a term tρ⇒σ : τ ◦(A), such that

` ∀xρA [y := tx].

Proof. By de�nition and Proposition 2.5 we have

τ ◦(∀x∃y A) = ρ⇒ σ,

t r (∀x∃y A) = ∀x (tx r ∃y A) = ∀x (ε r A [y := tx]) = ∀xρA [y := tx] .

Assuming that we have a proof P of ∀x ∃y A, by Theorem 2.6 we obtain t := [[P]]◦

and FV(t) ⊆ FV(P) ⊆ FV(P).

2.2 Re�ned A-translation

Modi�ed realisability is a complete and satisfactory method to obtain correct pro-
grams from constructive proofs. The realisability translation is quite straightforward,
because by design constructive programs contain explicit witness constructions. How-
ever, classical principles are utilised to provide indirect proofs, it is not very easy to
obtain a program, which in some way re�ects the computational content of a certain
proof.
A proof of weak completeness of intuitionistic arithmetic [Kre62] implies that Π0

2

formulas that are provable in classical logic are also provable in intuitionistic logic. As
a consequence, for every provably total recursive function we should be able to �nd
a program which computes it. One way to obtain such a program is to apply Gödel's
functional interpretation, which is discussed in the next section, to Π0

2 formulas.
However, Friedman [Fri78] and Dragalin [Dra80] independently suggested an easier
way to prove the equiderivability of Π0

2 formulas in classical and intuitionistic logic.
This results gives rise to a method for obtaining a program from a non-constructive
totality proof. A variant of the method could be summarised in the following three
steps:

1. Start with a proof of a formula ∀x ∃y at(r) in classical logic and convert it to
a proof of falsity (i.e., a proof from contradiction) in minimal logic via some
negative embedding.

2. Since falsity plays no special role in minimal logic, we can soundly substitute
any formula for it. We choose to substitute falsity with the formula ∃y at(r).
As a result we obtain a proof of ∀x∃y at(r), which is now constructive. This
step is usually referred to as �A-translation�.

3. We conclude by applying modi�ed realisability to the translated proof in order
to obtain a program r, for which ∀x at(t [y := rx]).

32

2.2 Re�ned A-translation

A formal statement of the method in our setting is captured by the following

Theorem 2.8 (A-translation). Let ` ∀xρ ∃̃yσ B, where B is a formula in HAω
0 with

FV(B) ⊆ {x, y}. Then there is a closed term tρ⇒σ such that ` ∀xB [y := tx].

Proof. Let A be a �xed formula. We de�ne the A-translation of an arbitrary formula
H as HA := H¬¬ [⊥ := A]. Let b := Bat, C := (∃̃y at(b))A. By the embedding
properties of (·)at and (·)¬¬, we have a proof M of the formula

C = (∀y (at(b)→ F)→ F)¬¬ [⊥ := A]

= ∀y
(
((at(b)→ A)→ A)→ (F→ A)→ A)

)
→ (F→ A)→ A.

Now let A := ∃y at(b). We de�ne a proof term P∀xA as follows:

P := λxM
(
λy λu (at(b)→A)→AλvF→A u(∃+

y,Ay)
)

(efqA),

where ∃+
y,A : ∀y (at(b) → A). Finally, using Corollary 2.7 we extract the term t :=

[[P]]◦ such that ` ∀x at(b [y := tx]), which by the embedding properties of (·)at implies
` ∀xB [y := tx].

Remark 2.9. The original A-translation [Fri78, Dra80, Lei85] consisted of translating
every atomic formula B to B ∨A. In our context ∨ is not a base connective, so such
a translation would amount to replacing every atomic formula at(r) for example with
(at(r))A := ∃b

(
(b = tt→ at(r)) ∧ (b = ff → A)

)
. It is easy to see that (at(r))A is in

fact equivalent to the syntactically simpler translation (at(r))A = (at(r)→ A)→ A.

The rather direct approach presented above has two major disadvantages. The
�rst one is the restriction to Π0

2 formulas only. This problem was addressed by
Leivant, where the result is generalised to a wider syntactic class of internally iso-

lating formulas [Lei85]. However, the second drawback still remains: the translation
does not allow control over the computational content. In particular, the (·)¬¬ trans-
lation arti�cially pushes computational content in all atomic formulas, even where
it is not really required. For modi�ed realisability we could discard whole lemmas
as computationally irrelevant, but now every A-translated proof has computational
content. Consequently, we obtain an overcomplicated high order program, in which
many values are computed only to be discarded on a later step.
Clearly, such a situation is not desirable from a practical point of view. This

problem was treated by Buchholz, Berger and Schwichtenberg in [BBS02], where
they suggested an optimisation, which became known as the re�ned A-translation.
The idea presents a viewpoint shift: instead of blindly (and ine�ciently) embedding
classical proofs in minimal logic, we can attempt to �nd a suitable proof directly in
minimal logic that can be translated to a constructive existence proof of the desired

33

2 Program extraction from proofs

formula. In particular, let us assume that we would like to �nd a witness for a
derivable formula ~D → ∃̃y G in NAω, i.e., a term t such that ~D → G [y := t]. In
order to do this, we can search for suitable intermediate formulas ~D′ and G′ in MAω

for which

(1) we can �nd a proof M ′ of ~D′ → ∀y (G′ → ⊥)→ ⊥, and
(2) we can translate M ′ to a proof M of ~D → ∀y (G→ ⊥)→ ⊥.

Since ~D,G ∈ NAω, in (2) there are only two occurrences of ⊥, and thus from the
proof M [⊥ := ∃y G] we can obtain a proof of ~D → ∃y G, already in HAω.
By Theorem 2.8 we are sure that for the Π0

2 case there is at least one solution to
(1) and (2), namely taking D′i := (Di)

¬¬ and G′ := G¬¬; we can obtain the proof
M ′ as in (1) from the original NAω proof of ~D → ∃̃y G via the properties of the
(·)¬¬ translation (Proposition 1.59) and M as in (2) is obtained via Lemma 1.58 by
substituting [⊥ := F] in ~D′ and G′. In order to obtain simpler extracted terms t, our
goal is to �nd ~D′ and G′ satisfying (1) and (2) such that M is as direct as possible.
The paper [BBS02] gives no algorithm to automatically �nd solutions to (1) and (2)

above; instead, it describes classes of formulas D′ and G′ for which (2) is obtained
automatically from (1). The method suggests to consider formulas ~D′ and G′ for
which D′i [⊥ := F] = Di and G′ [⊥ := F] = G, where D′i is a de�nite formula and G′

is a goal formula. If we manage to prove (1) for such formulas, we can immediately
generate a proof as in (2) and hence extract a witness.
We will present the re�ned A-translation technique below. For notational con-

venience, we extend the de�nition of realisability computational type to MAω by
de�ning τ ◦(⊥) := α⊥, for α⊥ a �xed type variable. Let us de�ne

R := {A ∈ MAω : τ ◦(A) 6= I} , the class of computationally relevant formulas,

I := {A ∈ MAω : τ ◦(A) = I} , the class of computationally irrelevant formulas.

De�nition 2.10 (De�nite and goal formulas [SW10]). We de�ne the classes D of
de�nite formulas and G of goal formulas in MAω by simultaneous induction.

1. ⊥, at(t) ∈ D ∩ G.

Let D ∈ D and G ∈ G, then

2. D → G ∈ G, if D ∈ MAω
0 ∪R or G ∈ I;

3. G→ D ∈ D, if G ∈ I or D ∈ R;
4. ∀xG ∈ G, if G ∈ I;
5. ∀xD ∈ D.

Remark 2.11. Note that the de�nition above implies that every ⊥-free formula is
both de�nite and goal. This was not the case in the original de�nition in [BBS02],
which had the weaker clause

34

2.2 Re�ned A-translation

2'. D → G ∈ G, if D ∈ MAω
0 ∪R.

This clause was revised in [SW10].

In the following, let us denote AF := A [⊥ := F].

Lemma 2.12 ([BBS02, SW10]). Let D ∈ D and G ∈ G. Then the following formulas
are provable in MAω:

(i) DF → D,
(ii) G→ (GF → ⊥)→ ⊥,
(iii) ((DF → F)→ ⊥)→ D for D ∈ R,
(iv) G→ GF for G ∈ I,

Proof. We will prove the claims (i)�(iv) by simultaneous induction on the de�nition
of the formula involved.
Case ⊥. (i) is proved by ⊥+, (ii) and (iii) are trivial and (iv) does not apply.
Case at(r). In this case DF = D and GF = G, hence (i), (ii) and (iv) are trivial

and (iii) does not apply.
For the inductive steps, assume that by induction hypothesis we have proofs M∗

with ∗ among (i)�(iv).
Case D → G. Only (ii) and (iv) apply. For (iv) we can use the induction hypoth-

esis, because D → G ∈ I exactly when G ∈ I:

P(iv) := λuD→G λvD
F

M(iv)(u(M(i)v)).

In order to prove (ii), we consider subcases on clause 2.
Subcase D ∈ MAω

0 . By Corollary 1.55, we can use case distinction on DF ∈ NAω
0

to prove (ii). We thus de�ne:

P(ii) := λuD→G λv(DF→GF)→⊥ CDDF ,⊥ (λwD
F P+

(ii)(M(i)w))P−(ii), where

P+
(ii) := λwDM(ii) (uw) (λzG

F

v(λaD
F

z)),

P−(ii) := λwD
F→F v(λzD

F

efqGF (wz)).

Subcase D ∈ R. We can use the induction hypothesis for (iii). We thus de�ne

P(ii) := λuD→G λv(DF→GF)→⊥P+
(ii)(M(iii)P−(ii)), with P

±
(ii) de�ned as above.

Subcase G ∈ I. Then D → G ∈ I and we can reuse the proof for (iv). We thus
de�ne

P(ii) := λuD→G λv(DF→GF)→⊥ v(P(iv)u).

35

2 Program extraction from proofs

Case G→ D. Only (i) and (iii) apply. For (iii) we can use the induction hypothesis,
because G→ D ∈ R exactly when D ∈ R. We de�ne

P(iii) := λu((GF→DF)→F)→⊥ λvGM(iii)(λw
DF→FM(ii)v(λzG

F

u(λaG
F→DF w(az))))

In order to prove (i), we consider subcases on clause 3.
Subcase G ∈ I. We can use the induction hypothesis for (iv). We thus de�ne

P(i) := λuG
F→DF λvGM(i)(u(M(iv)v)).

Subcase D ∈ R. We can use the induction hypothesis for (iii). We thus de�ne

P(i) := λuG
F→DF P(iii)(λv

(GF→DF)→F⊥+(vu)).

Case ∀xG for G ∈ I. Only (ii) and (iv) apply. We can use the induction hypothesis
for (iv) and de�ne:

P(iv) := λu∀xG λxM(iv),

P(ii) := λu∀xG λv∀xG
F→⊥ v(P(iv)u).

Case ∀xD. Only (i) and (iii) apply. We can use the induction hypothesis for (iii),
because ∀xD ∈ R exactly when D ∈ R. We thus de�ne:

P(i) := λu∀xD λxM(i)(ux),

P(iii) := λu((∀xDF)→F)→⊥ λxM(iii)(λv
DF→F u(λw∀xD

F

v(wx))).

Theorem 2.13 (Re�ned A-translation [BBS02]). Let D ∈ D and G ∈ G be such that

` D → ∃̃y G. Then ` DF → ∃y GF .

Proof. Let M ′ be a proof of D → ∃̃y G. Then, using Lemma 2.12, we can �nd a
proof of DF → ∀y (GF → ⊥)→ ⊥:

M := λuD
F

λv∀y (GF→⊥) M ′(P(i)u)(λy λwGP(ii) w (vy)).

Finally, λuD
F
M
[
⊥ := ∃y GF

]
u∃+

y,GF
proves DF → ∃y GF .

Although the Theorem is already general enough, in practice we will often use an
equivalent but more convenient formulation, which is in fact the original statement
of the theorem.

Corollary 2.14 ([BBS02]). Let ~D ∈ D and ~G ∈ G be such that ` ~D → ∃̃~y ~G. Then
` ~D

F
→ ∃~y ~G

F
.

36

2.2 Re�ned A-translation

Proof. Similarly to above, we �nd a proof of ~DF → ∀~y (~GF → ⊥)→ ⊥:

M := λ~u
~D
F

λv∀~y (~G
F→⊥) M ′(

−−−→
P(i)ui)(λ~y λ~w

~GN1), where

N⊥i :=

v~y~z, if i >
∣∣∣~G∣∣∣ ,

PGi→(GFi →⊥)→⊥
(ii) wi(λz

GFi
i Ni+1), otherwise.

Then we de�ne a proof P of ~D
F
→ ∃~y ~G

F
as follows:

P := λ~u
~DF

M
[
⊥ := ∃~y ~GF

]
~u (λ~y λ~v

~GF P~y), where

Px := ∃+

x, ~GF
x 〈~v〉 ,

Px,~y := ∃+

x,∃~y ~GF
xP~y.

Modi�ed realisability and the translation from Theorem 2.13 are implemented in
the proof assistant Minlog. In Chapter 3 we will analyse some case studies for
extraction via re�ned A-translation.

Let us return to the original problem, stated earlier in the section: given a proof
of C := ~D → ∃̃y G in NAω, we would like to �nd a witness t for y. Theorem 2.13
guarantees that if we search among the de�nite formulas ~D′ and goal formulas G′,
for which (∗) Di ↔ (D′i)

F and G↔ (G′)F , and we are able to carry out a proof M ′

of C ′ := ~D′ → ∃̃y G′ in MAω, then we will automatically obtain a witness for y. One
heuristic technique for �nding such a proof is the following. Start from D′i := Di and
G′ := G and attempt to prove C ′. This will not always be successful: for example,
the proof can get �stuck� on a goal ⊥ → at(r), which we cannot prove in minimal
logic. In case this occurs, we can trace the occurrence of at(r) back to one of D′i or G

′.
If r is ff, we can convert this occurrence of F to ⊥ while aiming to continue the proof.
In case r is not syntactically equal to ff, we can selectively apply the (·)¬¬ translation
only to the troublesome at(r). Then ⊥ → ¬¬at(r) will be trivially provable and (∗)
will be preserved, since Stability holds for NAω. In this way we e�ectively obtain
a partial application of (·)¬¬, which is �ne tuned for the speci�c case, so that ⊥ is
introduced only when it is needed in the proof. Naturally, the described steps do not
constitute a formal algorithm; instead, they rely on the experience and skill of the
person proving the desired formula.

It turns out that programs extracted via (re�ned) A-translation adhere to the
continuation passing style [DF92]. This was �rst noticed by Murthy [Mur91] and
later discussed also in [Mak06, Rat10]. The underlying reason is that a classical
proof of existence corresponds to a minimal logic proof of �weak existence� ∃̃xA,
which derives a contradiction from the assumption ∀x (A → ⊥), by regarding ⊥ an
abstract predicate symbol. The corresponding program will have the type

37

2 Program extraction from proofs

HAω + stab ` ∃xρA

negative translation

��

Gri�n's realisability // λ-C-term

CPS translation

��

MAω ` ∃̃xρA

A-translation

��

Kreisel's realisability // CPS style λ-term

Murthy's continuation

��

HAω ` ∃xρA
Kreisel's realisability // λ-term of type ρ

Figure 2.1: Relations between A-translation and CPS

τ ◦(∃̃xρA) = τ ◦(∀xρ (A→ ⊥)→ ⊥) = (ρ⇒ α⊥)⇒ α⊥,

where α⊥ is to be substituted with the type of the �nal witness to be computed. The
parameter ρ⇒ α⊥ can be viewed as a continuation, i.e., a function determining how
to proceed in case we are given a value of type ρ. The advantage of continuations
is that they can be used several times, thus e�ectively memorising a certain state
of the program so that it can be restored later at any time, in the way this is done
by Felleisen's control operators [FF89]. On the other hand, Gri�n [Gri90] showed
that the control operators can be used to extend the Curry-Howard correspondence
to classical proofs by interpreting the stability axiom as a control operator. Finally,
Murthy closed the loop by explicitly de�ning the continuation, to which a program
in CPS style needs to be applied, so that the outcome is exactly a witness for ∃xA.
The described correspondences are summarised in Figure 2.1.

2.3 Gödel's �Dialectica� interpretation

Gödel's functional interpretation [Göd58] occupied his interest and research for some
thirty years since its �rst presentation in a 1941 lecture. During this time he continued
reformulating and improving it, reportedly being never completely satis�ed with the
result [AF98]. Gödel's main motivation was to prove consistency of HA using only

38

2.3 Gödel's �Dialectica� interpretation

�nitary means. As he perceived Heyting's notion of an intuitionistic proof as too
abstract, he reduced the logic to a quanti�er-free fragment enriched with functionals
of �nite type. Gödel de�nes the D-translation of a �rst-order formula A(~z) to a
Σ0

2 formula AD(~z) := ∃~x∀~y AD(~x, ~y, ~z), where AD is quanti�er-free and ~x, ~y, ~z are
tuples of variables ranging over functionals of �nite type. Then the following become
equivalent:

1. A(~z) is provable in HA

2. AD(~z) is provable in HAω

3. There is a tuple of terms ~t, such that AD(~t, ~y, ~z) is provable in HAω
0 .

A feature of the interpretation, already noted in [Göd58], is its ability to interpret
Peano Arithmetic when combined with Gödel's negative translation. Thus every
proof in classical arithmetic can be associated with a functional of �nite type, which
can be referred to as the computational content of the proof. One justi�cation for
such viewpoint is the case of Π0

2 formulas, for which Gödel's negative translation and
the D-translation commute. Consequently, Π2

0 formulas are equiderivable in Peano
and Heyting arithmetic and the functionals obtained from the proof are of type degree
1, i.e., computable functions over base types providing witnesses for the existential
quanti�ers.
Gödel's original interpretation was analysed and extended by many authors, in-

cluding (but not limited to) Kreisel, Schoen�eld, Howard, Diller and Nahm, Troelstra,
Avigad, Feferman, Kohlenbach, Ferreira, Schwichtenberg. In our presentation we will
refer primarily to [Tro73], where the interpretation is extended to HAω. An interpre-
tation of NAω is automatically obtained by restricting the language of formulas. A
main presentational di�erence from [Tro73] is in the use of natural deduction proof
system as opposed to a Hilbert-style system, in which the Dialectica interpretation
is usually formulated. Earlier natural deduction formulations of the interpretation
were studied by Jørgensen [Jø01] and Hernest [Her07b]. We will follow closely the
presentation in [Sch08].

2.3.1 De�nition

We translate each formula A ∈ HAω to a quanti�er-free formula |A|xy ∈ NAω
0 , con-

necting a realising variable x : τ+(A) and a challenging variable y : τ−(A). We refer
to the types τ+(A) and τ−(A) as positive and negative computational types of A.
The Dialectica interpretation starts from a proof M and produces a witnessing term
t, not containing the challenging variable y freely, together with a verifying proof of
∀y |A|ty.

39

2 Program extraction from proofs

De�nition 2.15 (Dialectica computational types). Let A ∈ HAω. We de�ne the
positive and negative computational types of A as follows:

A τ+(A) τ−(A)

at(t) I I

B → C (τ+(B)⇒ τ+(C)) × (τ+(B)⇒ τ−(C)⇒ τ−(B)) τ+(B)× τ−(C)

B ∧ C τ+(B) × τ+(C) τ−(B)× τ−(C)

∀xρB ρ⇒ τ+(B) ρ× τ−(B)

∃xρB ρ × τ+(B) τ−(B)

We will use the following vocabulary:

A a witness a challenge
requires if τ+(A) 6= I if τ−(A) 6= I

does not require if τ+(A) = I if τ−(A) = I

Proposition 2.16. Let A be a formula in HAω. Then

A requires a
witness

challenge
i� it has a

positive

negative
existential subformula or

a
negative

positive
universal subformula.

Proof. We prove the claim by simultaneous induction on the formula A.
Case at(t). A requires neither challenges nor witnesses, so the claim is trivial.
Case B → C. By the de�nition of τ±(A) we see that

A requires a
witness
challenge

i� C requires a
witness
challenge

or B requires a
challenge
witness

(by IH) i� C has a
positive
negative

or

B has a
negative
positive

existential subformula or

C has a
negative
positive

or

B has a
positive
negative

universal subformula

(by de�nition) i� A has a
positive
negative

existential subformula

A has a
negative
positive

universal subformula.

Case B ∧ C. By the de�nition of τ±(A) we see that

40

2.3 Gödel's �Dialectica� interpretation

A requires a
witness
challenge

i� B requires a
witness
challenge

or C requires a
witness
challenge

(by IH) i� B or C has a
positive
negative

existential subformula or

B or C has a
negative
positive

universal subformula

(by de�nition) i� A has a
positive
negative

existential subformula or

A has a
negative
positive

universal subformula.

Case ∀xB. By de�nition A is universal and always requires a challenge. On the
other hand A requires a witness i� B requires a challenge and since positive existential
subformulas and negative universal subformulas in A and B coincide, we have proved
the claim.

Case ∃xB. By de�nition A is existential and always requires a witness. On
the other hand A requires a challenge i� B requires a challenge and since positive
universal subformulas and negative existential subformulas in A and B coincide, we
have proved the claim.

De�nition 2.17 (Dialectica translation). Let A ∈ HAω and let r : τ+(A) and
s : τ−(A). We de�ne the Dialectica translation |A|rs as follows:

|at(t)|εε := at(t),

|B → C|rs := |B|sxry(sx)(sy) → |C|
rx(sx)
sy ,

|B ∧ C|rs := |B|rxsx ∧̃ |C|
ry
sy ,

|∀xρB|rs := |B [x := sx]|r(sx)sy ,

|∃xρB|rs := |B [x := rx]|rys .

We call r a witness for A and s a challenge for A.

The following proposition is easily proved by induction on A.

Proposition 2.18. For every formula A in HAω and terms r, s:

1. τ±(A [x := r]) = τ±(A),

2. FV(|A|rs) ⊆ FV(A) ∪ FV(r) ∪ FV(s)

3. |A|rs is a formula in NAω
0 .

4. |A|εε = A for every formula A in NAω
0 .

41

2 Program extraction from proofs

2.3.2 Soundness

Oliva suggested an intuition for Dialectica as a game of two players: Eloise, playing
the positive side (∃) and Abelard, playing the negative side (∀) [Oli08]. The formula
A can be viewed as the game being played, and τ+(A) and τ−(A) specify the valid
moves. Eloise plays the �rst move: a realiser x, which is challenged by Abelard's
move y. The decidable translation |A|xy determines whether Eloise wins or not by
looking at the outcome of the games de�ned by the subformulas of A and submoves
obtained by combining x and y. Therefore, even if A seems to be only a one move
game, actually the players have to think as many moves ahead, as the formula depth
is.
Now assume that A has a proof M . Then the soundness theorem for the interpre-

tation provides Eloise with a winning strategy � a move t which beats all possible
moves of Abelard. The underlying idea is that the proof M is a recipe for winning a
game A by looking only at a �nite number of subgames being played. Since deter-
mining the winner of every such game can be computed, Eloise can prepare for all
possible subgame moves of Abelard in advance, even though he has the advantage of
seeing her move by playing second.

Lemma 2.19 (Dialectica case distinction). Let C be a formula, let x : τ+(C) be a
variable and let t1, t2 : τ−(C) be terms. Then there is a term t such that ` |C|xt →
|C|xti for i = 1, 2.

Proof. We de�ne a counterexample combinator, whose intuitive purpose is to select
a counterexample for a speci�c formula among two terms by case distinction on the
decidable Dialectica translation of the formula C. We de�ne2:

t1
C,x
./ t2 :=

{
t1, if t1 ≡ t2,

Cases(|C|xt1)
att2t1, otherwise,

where (·)at denotes the atomic translation from De�nition 1.53.
Let Di := |C|xti . We need to construct proofs terms Qi : |C|x

t1
C,x
./ t2

→ Di for

i = 1, 2. We use case distinction on the decidable Dialectica translation D1 via
Theorem 1.48. Also, by Proposition 1.54 we have proof terms K : at(Dat

1)→ D1 and
L : D1 → at(Dat

1). Hence, we can de�ne:

Qi := λuDi u, for i = 1, 2, if t1 ≡ t2, or otherwise,

Q1 := CDb,F1D
at
1 (λuat(Dat

1) λvD2 Ku)(λuat(Dat
1)→F λwD1 w),

Q2 := CDb,F2D
at
1 (λuat(Dat

1) λvD2 v)(λuat(Dat
1)→F λwD1 efqD2

(u(Lw))),

2The special case of t1 ≡ t2 is de�ned separately only for e�ciency reasons, i.e., avoiding the case

distinction when it is obviously redundant.

42

2.3 Gödel's �Dialectica� interpretation

where Fi := |C|xCases b t2 t1
→ Di.

Remark 2.20. Whenever x is clear from the context, we will write
C
./ instead of

C,x
./ .

Theorem 2.21 (Soundness of the Dialectica interpretation). Let A ∈ HAω be a

formula and let PA be a proof term with assumptions among {ui : Ci}i≥1. Let us

have fresh witnessing variables X = {xi : τ+(Ci)}, each one associated uniquely with

an assumption variable ui and let yA : τ−(A) be a fresh challenging variable associated

uniquely with the formula A. Then there are terms [[P]]−i : τ−(Ci) and [[P]]+ : τ+(A)

and a proof P : |A|[[P]]+

yA
, such that

1. FA(P) ⊆
{
vi : |Ci|xi[[P]]−i

}
, where each vi is associated with the corresponding ui,

2. FV([[P]]−i),FV(P) ⊆ FV(P) ∪X ∪ {yA},
3. FV([[P]]+) ⊆ FV(P) ∪ {xi}.

Proof. The proof proceeds by induction on the proof term P .
Case uA1 . Set [[P]]−1 := yA, [[P]]+ := x1 and P := v1. The variable conditions are

obviously satis�ed.
Case λuB0 M

C . By induction hypothesis we have a proof term M : |C|[[M]]+

yC
with

assumptions w0 : |B|x0
[[M]]−0

and wi : |Ci|xi[[M]]−i
for i ≥ 1. Since by de�nition

|A|[[P]]+

yA
= |B|yAx

[[P]]+y(yAx)(yAy)
→ |C|[[P]]+x(yAx)

yAy
,

we will use the substitution ξ := [x0 := yAx] [yC := yAy] and de�ne

[[P]]+ :=
〈
λx0 [[M]]+, λx0 λyC [[M]]−0

〉
,

[[P]]−i := [[M]]−i ξ, for i ≥ 1,

P := (λw0M)ξ, with vi := wiξ.

The variable conditions are satis�ed, because FV([[P]]−i) = FV([[M]]−i)∪{yA}\{x0, yC}
and FV([[P]]+) = FV([[M]]+) ∪ FV([[M]]−0) \ {x0, yC}.
Case MC→A

1 MC
2 . Let us denote B := C → A. By induction hypothesis we have

proof terms

M1 : |C|[[M1]]+

yB
with assumptions w′i : |Ci|xi[[M1]]−i

and

M2 : |B|[[M2]]+

yC
with assumptions w′′i : |Ci|xi[[M2]]−i

.

Note that by de�nition

|B|[[M1]]+

yB
= |C|yBx

[[M1]]+y(yBx)(yBy)
→ |A|[[M1]]+x(yBx)

yBy
.

43

2 Program extraction from proofs

We will thus use the substitutions

ξ1 :=
[
yB :=

〈
[[M2]]+, yA

〉]
for M1,

ξ2 :=
[
yC := [[M1]]+y[[M2]]+yA

]
for M2.

However, for every shared assumption variable ui ∈ FA(M1) ∩ FA(M2) we have two
candidates for counterexamples: [[Mj]]

−
i ξj for j = 1, 2. We need to construct [[P]]−i

such that |Ci|xi[[P]]−i
implies both |Ci|xi[[Mj]]

−
i ξj

. We apply Lemma 2.19 and de�ne:

[[P]]+ := [[M1]]+x[[M2]]+,

[[P]]−i := [[M1]]−i ξ1
Ci
./ [[M2]]−i ξ2.

In order to unify treatment of all assumption variables, we assume that [[Mj]]
−
i :=

[[M3−j]]
−
i whenever ui ∈ FA(M3−j) \ FA(Mj). By Lemma 2.19 we have proof terms

Q(j)
i : |Ci|xi[[P]]−i

→ |Ci|xi[[Mj]]
−
i ξj

and using them we de�ne:

P := P1P2, where Pj := M jξj~ηj with ηj,i :=
[
w

(j)
i := Q(j)

i vi

]
.

The variable conditions are satis�ed, because FV([[P]]+) ⊆ FV([[M1]]+)∪FV([[M2]]+)

and FV([[P]]−i) ⊆ {yA} ∪ (FV([[M1]]−i) \ {yB}) ∪ (FV([[M2]]−i) \ {yC}).
Case λxρMB. By induction hypothesis we have a proof of M : |B|[[M]]+

yB
with

assumptions wi : |Ci|xi[[M]]−i
. Since by de�nition

|A|[[P]]+

yA
= |B [x := yAx]|[[P]]+(yAx)

yAy
,

we can substitute ξ := [x := yAx] [yB := yAy]. Thus we de�ne [[P]]+ := λx [[M]]+,
[[P]]−i := [[M]]−i ξ and P := Mξ with vi := wiξ. The variable conditions are satis�ed,
because FV([[P]]+) := FV([[M]]+) \ {x} and FV([[P]]−i) := FV([[M]]−i) ∪ {yA} \ {x, yB}.
Case M∀xBt. Let C := ∀xB. By induction hypothesis we have a proof M of

|C|[[M]]+

yC
= |B [x := yCx]|[[M]]+(yCx)

yCy

with assumptions wi : |Ci|xi[[M]]−i
. Since A = B [x := t], we can use ξ := [yC := 〈t, yA〉].

We thus de�ne [[P]]+ := [[M]]+t, [[P]]−i := [[M]]−i ξ and P := Mξ with vi := wiξ.
The variable conditions are satis�ed, because FV([[P]]+) = FV([[M]]+) ∪ FV(t) and
FV([[P]]−i) = FV([[M]]−i) ∪ FV(t) ∪ {yA} \ {yC}.
Case AxT. De�ne [[AxT]]+ := ε, AxT := AxT.

Because of the relatively complex interpretation of implication, we introduce a
technical simpli�cation for the rest of the axioms by treating the corresponding

44

2.3 Gödel's �Dialectica� interpretation

rules instead. We will illustrate with an example that we do not lose general-
ity in this way. Suppose that we have an instance of the induction rule P :=

Indn,AN nM
A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2) and [[P]]+, [[P]]−i , P are already de�ned. We con-

sider the proof Q := λnλu1 λu2P , whereMj := uj for j = 1, 2 with uj fresh assump-

tion variables. Thus, we can postulate [[Indn,AN]]
+

:= [[Q]]+ and then Indn,AN := Q.
Case Cb,A bMA[b:=tt]

tt M
A[b:=ff]
ff . By induction hypothesis we have proofs

M j : |A [b := j]|[[Mj]]
+

yA
with assumptions wji : |Ci|xi[[Mj]]

−
i

for j = ff, tt.

Let us de�ne [[P]]+ := Cases b [[Mtt]]
+[[Mff]]+ and [[P]]−i := Cases b [[Mtt]]

−
i [[Mff]]−i . Then

we can de�ne P := C b (λ~w′M tt) (λ~w′′Mff)~v, because vi [b := j] and wji have equal
formulas. The variable conditions are satis�ed, because FV([[P]]+) = FV([[M]]+) ∪
FV([[N]]+) ∪ {b} and FV([[P]]−i) = FV([[M]]−i) ∪ FV([[N]]−i) ∪ {b}.
Case Indn,AN nM

A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2). By induction hypothesis we have proofs

M1 : |A [n := 0]|[[M1]]+

yA
with assumptions w′i : |Ci|xi[[M1]]−i

for i ≥ 1 and

M2 : |A [n := Sn]|[[M2]]+

yA
with assumptions w′′0 : |A|x0

[[M2]]−0
and w′′i : |Ci|xi[[M2]]−i

for i ≥ 1.

As before, for the sake of uni�ed treatment let us de�ne [[Mj]]
−
i := [[M3−j]]

−
i if

ui ∈ FV(M3−j) \ FV(Mj) for i ≥ 1. We de�ne

[[P]]+ := Rτ+(A)
N n [[M1]]+(λnλx0 [[M2]]+),

[[P]]−i := Rτ−(A)⇒τ−(Ci)
N n (λyA [[M1]]−i)

(
λnλp λyA (p[[M2]]−0

Ci
./ [[M2]]−i)ξ

)
yA,

where ξ :=
[
x0 := [[P]]+

]
. We will de�ne a proof Q of the formula B := ∀yA (~D →

|A|[[P]]+

yA
), where Di := |Ci|xi[[P]]−i

. Then we will be able to set P := QyA~v.
First, we note that by de�nition:

B [n := 0] = ∀yA
(−−−−−→
|Ci|xi[[M1]]−i

→ |A [n := 0]|[[M1]]+

yA

)
, which is proved by M1, and

B [n := Sn] = ∀yA
(−−−→
|Ci|xitiξ → |A [n := Sn]|[[M2]]+ξ

yA

)
,

where ti := t′i
Ci
./ t′′i with t′i := [[P]]−i

[
yA := [[M2]]−0

]
and t′′i := [[M2]]−i . We notice that

B [n := Sn] can be proved by M2ξ if we are able to prove all its assumptions w′′i ξ.
By Lemma 2.19 we have proofs Q(j)

i : |Ci|xitiξ → |Ci|
xi

t
(j)
i ξ

. Now w′′i : |Ci|xit′′i for i ≥ 1,

while w′′0ξ : |A|[[P]]+

[[M2]]−0 ξ
can be obtained from B with yA instantiated as [[M2]]−0 ξ. But

then Di

[
yA := [[M2]]−0 ξ

]
are equal exactly to |Ci|xit′iξ. We are ready to de�ne Q by

induction as follows:

45

2 Program extraction from proofs

Q := Indn,BN n (λyA λ~w
′M1)(λnλpB λyA λ~v (λ~w′′M2)ξ(p[[M2]]−0

−−→
Q′ivi)

−−→
Q′′i vi).

The variable conditions hold because FV([[P]]+) ⊆ FV([[M1]]+)∪FV([[M2]]+)\{x0}∪
{n} and FV([[P]]−i) ⊆ FV([[M1]]−i) ∪ FV([[M2]]−i \ {x0} ∪ {n}.
Case Indl,AL(ρ) l M

A[l:=nil]
1 (λxλl λuA0 M

A[l:=x :: l]
2). This case is very similar to the pre-

vious one. By induction hypothesis we have proofs

M1 : |A [l := nil]|[[M1]]+

yA
with assumptions w′i : |Ci|xi[[M1]]−i

for i ≥ 1 and

M2 : |A [l := x :: l]|[[M2]]+

yA
with assumptions w′′0 : |A|x0

[[M2]]−0
and w′′i : |Ci|xi[[M2]]−i

for i ≥ 1.

We de�ne

[[P]]+ := Rτ+(A)
L(ρ) l [[M1]]+(λxλl λx0 [[M2]]+),

[[P]]−i := Rτ−(A)⇒τ−(Ci)
L(ρ) l (λyA [[M1]]−i)

(
λxλl λp λyA (p[[M2]]−0

Ci
./ [[M2]]−i)ξ

)
yA,

where ξ :=
[
x0 := [[P]]+

]
. We adopt the de�nitions of Di, ti, t

(j)
i and Q(j)

i from the

previous case and, as before, de�ne a proof Q of the formula B := ∀yA (~D → |A|[[P]]+

yA
):

Q := Indl,BL(ρ) l (λyA λ~w
′M1)(λxλl λpB λyA λ~v (λ~w′′M2)ξ(p[[M2]]−0

−−→
Q′ivi)

−−→
Q′′i vi).

Finally, P := QyA~v. The variable conditions hold as in the previous case.

Case
〈
MB

1 ,M
C
2

〉
. We adopt the notations from the case of implication elimination.

Note that since by de�nition

|A|[[P]]+

yA
= |B|[[M1]]+

yAx
∧̃ |C|[[M2]]+

yAy
,

we will use the substitutions ξ1 := [yB := yAx] and ξ2 := [yC := yAy]. Thus we de�ne

[[P]]+ :=
〈
[[M1]]+, [[M2]]+

〉
and [[P]]−i := [[M1]]−i ξ1

Ci
./ [[M2]]−i ξ2. By Lemma 2.19 we have

proofs Q(j)
i : |Ci|xi[[P]]−i

→ |Ci|xi[[Mj]]
−
i ξj

. Hence, we can de�ne

P := λu|B|
[[M1]]

+

yAx →|C|[[M2]]
+

yAy →F u
(
(λ~w′M1)ξ1

−−→
Q′ivi

) (
(λ~w′′M2)ξ2

−−→
Q′′i vi

)
.

The variable conditions hold, because FV([[P]]+) = FV([[M1]]+) ∪ FV([[M2]]+) and
FV([[P]]−i) := FV([[M1]]−i) ∪ FV([[M2]]−i) \ {yB, yC} ∪ {yA}.
Case MA∧Bx. Set C := A ∧B. By induction hypothesis we have a proof M of

|C|[[M]]+

yC
= |A|[[M]]+x

yCx
∧̃ |B|[[M]]+y

yCy

from assumptions wi : |Ci|xi[[M]]−i
. We set ξ := [yC := 〈yA, yB〉] and de�ne

46

2.3 Gödel's �Dialectica� interpretation

[[P]]+ := [[M]]+x, [[P]]−i := [[M]]−i ξ, P := Mξ(λuλv u),

where vi := wiξ.
Case MB∧Ay. Similarly to the previous case, so we de�ne

[[P]]+ := [[M]]+y, [[P]]−i := [[M]]−i ξ, P := Mξ(λuλv v),

where ξ := [yB∧A := 〈yB, yA〉].
Case

〈
t,MB[x:=t]

〉
. By induction hypothesis we have a proof M : |B [x := t]|[[M]]+

yB

from assumptions wi : |Ci|xi[[M]]−i
. By de�nition

|A|[[P]]+

yA
=
∣∣B [x := [[P]]+x

]∣∣[[P]]+y

yA
,

hence we de�ne [[P]]+ :=
〈
t, [[M]]+

〉
, [[P]]−i := [[M]]−i and P := M with vi := wi.

The variable conditions hold since FV([[P]]+) = FV(t) ∪ FV([[M]]+) and FV([[P]]−i) =

FV([[M]]−i).
Case ∃ −x,C,AM∃xC

1 (λxλuC0 M
A
2). We set B := ∃xC. By induction hypothesis we

have proofs

M1 : |B|[[M1]]+

yB
with assumptions w′i : |Ci|xi[[M1]]−i

for i ≥ 1 and

M2 : |A|[[M2]]+

yA
with assumptions w′′0 : |C|x0

[[M2]]−0
and w′′i : |Ci|xi[[M2]]−i

for i ≥ 1.

By de�nition we have

|B|[[M1]]+

yB
=
∣∣C [x := [[M1]]+x

]∣∣[[M1]]+y

yB
.

We use the substitutions ξ2 :=
[
x := [[M1]]+x

] [
x0 := [[M1]]+y

]
, ξ1 :=

[
yB := [[M2]]−0 ξ2

]
and de�ne

[[P]]+ := [[M1]]+y,

[[P]]−i := [[M1]]−i ξ1
Ci
./ [[M2]]−i ξ2.

By Lemma 2.19 we have proofs Q(j)
i : |Ci|xi[[P]]−i

→ |Ci|xi[[Mj]]
−ξj

. Hence, we can de�ne
the proof

P := (λ~w′′M2)ξ2((λ~w′M1)ξ1

−−→
Q′ivi)

−−→
Q′′i vi.

The variable conditions are satis�ed because FV([[P]]−i) = FV([[M1]]−i)∪FV([[M2]]−i)\
{x, x0, yB} and FV([[P]]+) = FV([[M1]]+).

47

2 Program extraction from proofs

Corollary 2.22 (Dialectica extraction). Let ` ∀xρ ∃̃yσ A, where A ∈ NAω
0 . Then

there is a term t : ρ⇒ σ, such that ` ∀xA [y := tx].

Proof. Let us denote B := ∀x ∃̃y A and let P be a proof of B. By de�nition

τ+(B) = ρ⇒ ((σ ⇒ I)⇒ I)× ((σ ⇒ I)⇒ I⇒ σ × I) = ρ⇒ σ,

τ−(B) = ρ× (σ ⇒ I)× I = ρ,

|B|tx =
∣∣∣∃̃xA∣∣∣tx

ε
= ¬ |∀y ¬A|εtx = ¬ |¬A [y := tx]|εtx

= ¬¬ |A [y := tx]|εε = ¬¬A [y := tx] .

Finally, by Theorem 2.21 we have t := [[P]]+ and a closed proof P : A [y := tx].

48

CHAPTER

THREE

CASE STUDIES FOR PROGRAM EXTRACTION

In this chapter we will present a collection of case studies for program extraction
from proofs in classical logic. Every case study will be analysed both with re�ned
A-translation and the Dialectica interpretation and the resulting programs will be
compared. These case studies will serve as basis and motivation for the optimised
variants of the Dialectica interpretation, which will be presented in the following
chapters.
Every example in this chapter starts with informal presentation of the theorem

proved. Then we continue with formalising the case study and writing a proof term,
modularised into suitable lemmas. Since our main goal is to compare the behaviour
of re�ned A-translation and the Dialectica interpretation, we have to formalise the
case studies in a manner, which is treatable by both techniques. We thus choose to
work in MAω and more speci�cally with formulas of the shape required by re�ned A-
translation (cf. Theorem 2.13). The Dialectica interpretation works with every HAω

proof and in this sense is more general. We will thus translate the MAω proof used
for re�ned A-translation to an NAω proof by substituting [⊥ := F]. Hence, we will
apply Dialectica to morally the same proof, hoping to achieve an honest comparison
of the two methods.

3.1 Stolzenberg's example

We will start with a simple example, which makes non-trivial use of classical logic.
This case study is attributed to G. Stolzenberg and has been popularised by Coquand
[Coq95]. It has become a standard simple test for methods for extraction from
classical proof and has been treated by many authors (cf. [Mur91, BBS97, Urb00,
Sei03, Mak06, Rat10]). We will start with an informal proof of Stolzenberg's example,
which we will then formalise in MAω.

49

3 Case studies for program extraction

Lemma 3.1 (Stolzenberg). Every in�nite boolean sequence has an element which
occurs in�nitely often.

Proof. Assume that neither tt nor ff occur in�nitely often. Then there are indices
ntt and nff , starting from which respectively tt and ff do not appear. However, this
situation is impossible, because the index max(ntt, nff) is a counterexample to one of
the assumptions, depending which element appears at this index.

Corollary 3.2. In every in�nite boolean sequence there are at least two occurrences

of the same element.

Proof. By Lemma 3.1, we know that there is an element occurring in�nitely often.
Take its �rst two occurrences.

Remark 3.3. The last corollary can be easily proved by a pigeonhole principle argu-
ment by looking at the �rst three elements; two of them must be equal. As noted
by Coquand in [Coq95], the point of the example is to show that attempting to
�nd a witness from this classical proof produces an asymmetric program. This is
surprising, because the classical proof can be expressed completely symmetrically
in an appropriate system (e.g. classical sequent calculus), but when we attempt to
view the proof as expressing some calculation we are forced to make a choice, which
breaks the symmetry. This choice has di�erent expressions with the di�erent meth-
ods: direction in which to permute the cut ([Urb00]), the use of negative translation
([Sei03, Rat10]) or order of existential elimination ([Mak06]).

3.1.1 Proof formalisation

We will formalise the proofs of Lemma 3.1 and Corollary 3.2 above in MAω, so that
we can apply both methods on the same proof.
We will use BS := N ⇒ B as the type of in�nite boolean sequences. We assume

that we have de�nitions of the functions maxN⇒N⇒N, <N⇒N⇒B and ≤N⇒N⇒B. For
brevity we will write n < m and n ≤ m, instead of at(<nm) and at(≤nm) and mtn
instead of maxmn.
Lemma 3.1 can be stated formally as

∀fBS ∃̃bB∀nN ∃̃kNn ≤ k ∧̃ fk = b.

A proof of the lemma can be de�ned as:

L := λf λu u tt(λnN
tt λvtt uff(λnN

ff λvff CB(f(ntt t nff))LttLff),

where

50

3.1 Stolzenberg's example

u : ∀b ∃̃n∀k (n ≤ k → fk = b→ ⊥),

vb : ∀k (nb ≤ k → fk = b→ ⊥), for b ∈ {tt,ff} ,
Lb : f(ntt t nff) = b→ ⊥, for b ∈ {tt,ff} ,
Lb := vb(ntt t nff)Lmax,b, for b ∈ {tt,ff} ,

Lmax,b : ∀ntt ∀nff (nb ≤ ntt t nff), for b ∈ {tt,ff} ,
CB : ∀b

(
(b = tt→ ⊥)→ (b = ff → ⊥)→ ⊥

)
CB := λb C bMtt Mff ,

Mb :
(
(b = tt→ ⊥)→ (b = ff → ⊥)→ ⊥

)
, for b ∈ {tt,ff} ,

Mb := λwb,tt λwb,ff wb,bAxT, for b ∈ {tt,ff} ,
wb1,b2 : b1 = b2 → ⊥, for b1, b2 ∈ {tt,ff} .

Corollary 3.2 is expressed by the formula

∀fBS ∃̃k1, k2(k1 < k2 ∧̃ fk1 = fk2).

The corollary is proved by

M := λf λv Lf(λb λww0 (λk1 λu
0≤k1
1 λzfk1=b

1

w(Sk1)(λk2 λu
Sk1≤k2
2 λzfk2=b

2 vk1k2(M<v2)(M=z1z2)))),

where

v : ∀k1 ∀k2 (k1 < k2 → fk1 = fk2 → ⊥),

w : ∀n ∃̃k (n ≤ k ∧̃ fk = b),

M< : Sk1 ≤ k2 → k1 < k2,

M= : fk1 = b→ fk2 = b→ fk1 = fk2.

Note that we have omitted the de�nitions of Lmax,b,M< and M=, because they will
be irrelevant for extraction.
We are ready to apply the extraction methods from Chapter 2. For this �rst and

simplest example we will carry out the extraction more rigorously and for subsequent
examples we will just present the �nal result.

3.1.2 Extraction via re�ned A-translation

Let G1 := k1 < k2, G2 := fk1 = fk2 and Ã := ∃̃k1, k2 (G1 ∧̃G2). Clearly G1 and
G2 are goal formulas in the sense of De�nition 2.10. Let us �x a fresh variable fBS.

51

3 Case studies for program extraction

Following Corollary 2.14, we translate the proof Mf to the proof

P ′ := λvÃMf(λk1 λk2 λw
k1<k2
1 λwfk1=fk2

2 Q1w1(λzk1<k21 Q2w2(λzfk1=fk2
2 vk1k2z1z2))),

Qi := λai λbi biai, for i = 1, 2, where

a1 : k1 < k2, b1 : k1 < k2 → ⊥,
a2 : fk1 = fk2, b2 : fk1 = fk2 → ⊥.

Finally, we need to extract from the proof of A := ∃k1 ∃k2 (G1 ∧G2), which is given
by

P := λf P ′ [⊥ := A] (λk1 λk2 λw
k1<k2
1 λwfk1=fk2

2 ∃+
k1
k1(∃+

k2
k2 〈w1, w2〉)).

Before we start the extraction, for clarity, let us denote R := τ ◦(A) = N × N.
This type will have a special meaning, because it is the result type, i.e., the type of
the witness, which we want to extract. Since we substitute [⊥ := A], this type will
appear in every part of the extracted program. To simplify notation, below we will
not write the substitution explicitly when we de�ne the extracted terms below, i.e.,
we will write just [[M]]◦ instead of [[M [⊥ := A]]]◦.

We start the extraction process bottom-up from the lemma L:

[[Mtt]]
◦ ≡ λxR λyR x, [[Mff]]◦ ≡ λxR λyR y,

[[CB]]◦ ≡ λbCasesR⇒R⇒R b [[Mtt]]
◦[[Mff]]◦

r
= CasesR,

[[L]]◦ ≡ λf λg g tt(λnN
tt λh

N⇒R
tt g ff(λnN

ff λh
N⇒R
ff Cases(fm)(httm)(hffm))),

m := ntt t nff ,

g : B⇒ (N⇒ (N⇒ R)⇒ R)⇒ R.

Above we used the fact that the normal forms of CasesR and [[CB]]◦ coincide. We
continue with the proofs M,P ′ and �nally P :

[[M]]◦ ≡ λgN⇒N⇒R [[L]]◦(λb λhN⇒(N⇒R)⇒R h0(λk1 h(Sk1)(λk2 gk1k2))),

[[P ′]]◦ ≡ λgN⇒N⇒R [[M]]◦ f (λk1 λk2 gk1k2)
r
= λg [[M]]◦ f g

r
= [[M]]◦ f,

[[P]]◦ ≡ λf [[M]]◦ f(λk1 λk2 (λm1 λm2 〈m1,m2〉)k1((λm2m2)k2))
r
= λf [[M]]◦ f(λk1 λk2 〈k1, k2〉).

Having in mind Murthy's results relating A-translation and the continuation pass-
ing style, we can think of the functions of type τ ⇒ R as continuations. This can
help to explain the behaviour of the extracted program above by proceeding in order
of increase of deg(τ).

52

3.1 Stolzenberg's example

The continuations hb in [[L]]◦ can be viewed as instructions how to continue, in case
we provide it with an occurrence of b after the index nb. The body of [[L]]◦ makes a case
distinction on the value of fm and invokes the appropriate continuation for the index
m := ntttnff . On the other hand, the continuation h in [[M]]◦ expects a number n and
a continuation of the type of hb, so that hb gives a result when invoked at any k ≥ n

with fk = b. The continuation h is used in [[M]]◦ two times: for 0 in order to obtain
some index k1 of b and then for Sk1 to obtain another index k2 > k1 of b. Finally, the
crucial operation of [[L]]◦ is determined by the continuation parameter g. It describes
how to proceed in case there is a boolean b, for which we can continue in�nitely
often, i.e., for any number n and a continuation of the type hb we can produce a
result. In fact, this is the same as providing g with a continuation parameter of the
type of h. [[L]]◦ invokes g twice for each boolean, which corresponds to the classical
case distinction �some boolean must appear in�nitely often�. Intuitively, g collects
requests for �nding occurrences of the respective boolean. Since the sequence consists
only of booleans, one of those requests can always be answered, depending on the
sequence f .
The program [[M]]◦ makes two sequential requests by invoking the continuation h

twice. Hence, if the �rst two values in the sequence are equal, then the program
will output the indices 〈0, 1〉. However, when the �rst two values are di�erent, then
backtracking will occur. Moreover, the behaviour of the program will be asymmetric,
since the invocations of g are not parallel, but nested within each other. Thus if the
sequence starts with tt,ff, b, then the program will return the indices 〈0, 2〉 or 〈1, 2〉,
depending on the value of b. Similarly, if the sequence starts with ff, tt, tt, the indices
returned will be 〈1, 2〉. However, if the sequence starts with ff, tt,ff, b. Then, the
returned indices will not be 〈0, 2〉, but 〈1, 3〉 or 〈2, 3〉, depending on the value of b.
The reason is that the �rst occurrence of ff is �forgotten�, since it is stored inside the
continuation for the case of tt. Therefore, the program will never return indices of ff,
which di�er by more than 1, since an occurrence of tt will erase all previously stored
occurrences of ff. The particular behaviour of the program can be demonstrated best
by the normal form of [[P]]◦:

[[P]]◦
r
= λf Cases (f0) (Cases (f1) 〈0, 1〉 〈(Cases (f2) 0 1), 2〉)

(Cases (f1) (Cases (f2) 〈1, 2〉 〈(Cases (f3) 1 2), 3〉)).

The same behaviour is noticed in [Urb00, Mak06, Rat10]. In all these cases it is
exactly the sequentiality in which the cases of tt and ff are treated which is responsible
for the asymmetry.

53

3 Case studies for program extraction

3.1.3 Extraction via the Dialectica interpretation

We will extract from the proofM [⊥ := F]. To simplify notation, we will not explicitly
mention the substitution. Also, for clarity we will index the negative computational
content with assumption variables instead of numbers.

We start extraction from the lemma L:

P [[P]]+ • [[P]]−•
Lb ε vb ntt t nff

L1 :=CB(f(ntt t nff))LttLff ε vb ntt t nff

L2 :=λnff λvff L1 λnff ntt t nff vtt ntt t nff

L3 :=λntt λvtt uff L2 λntt xu ff [[L2]]+ u
〈

ff, [[L2]]+
〉

L4 :=u ttL3 ε u

〈
tt, [[L3]]+

〉
u
./〈

ff, λnff (xu tt [[L3]]+) t nff

〉
L :=λf λuL4 λf λxu [[L4]]−u

We only need to calculate the case distinction
u
./ :∣∣∣∀b ∃̃n∀k (n ≤ k → fk = b→ F)
∣∣∣xu
〈tt,[[L3]]+〉

=

=
∣∣∣∃̃n ∀k (n ≤ k → fk = tt→ F)

∣∣∣xutt

[[L3]]+

=
∣∣∀k (([[L3]]+m) ≤ k → fk = tt→ F)

∣∣ε
m
, where m := xutt[[L3]]+

= ([[L3]]+m) ≤ m→ fm = tt→ F,

[[L4]]−u ≡ Cases (([[L3]]+m) ≤ m→ fm 6= tt)at 〈ff, λnff m t nff〉
〈

tt, [[L3]]+
〉
.

We are ready to extract from the proof M :

P [[P]]+ • [[P]]−•
M1 := vk1k2(M<u2)(M=z1z2) ε v 〈k1, k2〉
M2 :=λk2 λu2 λz2M1 ε v 〈k1, k2〉
M3 :=λk1 λu1 λz1w(Sk1)M2 ε v 〈k1, xw(Sk1)〉

w Sk1

M4 :=w 0M3 ε v 〈xw0, xw(S(xw0))〉
w 0

w
./ S(xw0)

M5 :=λb λwM4 λb λxw [[M4]]−w v [[M4]]−v
M :=λf λv LfM5 λf [[M4]]−v

[
xw := [[L]]+f [[M5]]+y

]
The case distinction

w
./ is unfolded as follows:

54

3.1 Stolzenberg's example

∣∣∣∀n ∃̃k (n ≤ k ∧̃ fk = b)
∣∣∣xw
0

=
∣∣∣∃̃k (0 ≤ k ∧̃ fk = b)

∣∣∣xw0

ε

= 0 ≤ (xw0)→ f(xw0) = b→ F,

[[M4]]−w ≡ Cases(f(xw0) 6= b)at
(
xw(S(xw0))

)
(xw0).

In order to understand the behaviour of the extracted program, we need to remem-
ber that positive computational content provides witnesses for the respective formula
and negative computational content computes challenges for these witnesses. Thus
the functions [[L2]]+ and [[L3]]+ are given a number n and compute an index ≥ n at
which respectively ff and tt appear. Both functions operate under the assumption w
that there is a maximal index for every boolean. Thus [[L2]]+ uses the index ntt after
which tt is not supposed to appear, according to the assumption utt. On the other
hand [[L3]]+ queries to the witness xw of w at ff to �nd an index n after which ff is
not supposed to appear. However, xw expects an additional parameter: a function
which when given n provides a challenge for an index larger than n where ff does not
appear, i.e., a function given an index larger than n where ff does appear. Clearly,
[[L2]]+ is exactly such a function. Note that [[L3]]+ plays the symmetric role when
w is queried at tt. On the other hand, the negative contents of both proofs L2 and
L3 constitute exactly of the arguments used to compute the positive content. The
reason is that the correctness of the positive computational content depends on the
validity of the assumptions and hence the arguments to the witnesses of the assump-
tions are also the possible counterexamples for them. Finally, the lemma L proves
arrives at a contradiction with the assumption u by using it twice. Thus it produces
a two possible challenges for it and by direct case distinction on the translation of
the formula of u determines which one is correct. The correct challenge for u is the
correct witness for the whole lemma.

We now turn our attention to the main program [[M]]+. The pair of indices, which
is the �nal witness, is also a challenge for the false assumption v that there are no two
equal values in the sequence f . The terms [[M3]]−v and [[M4]]−v construct the witnesses
for k2 and k1 respectively, by utilizing the witness xw for the assumption w coming
from the lemma L: there is an occurrence of a boolean b after any index n. However,
since w is invoked twice (once for each witness from the pair), the correct challenge
for it needs to be determined by a case distinction on the translation of the formula of
w. Let us recall that [[L]]+ expected as a parameter a function that provides an index
after which b should not appear. This is precisely the challenge for w, so [[M5]]+ is
a natural choice for the parameter of [[L]]+. Finally, [[M]]+ invokes [[L]]+ to construct
the witness for w, which is then used to compute the �nal witness. In short, the
interaction between the programs [[M]]+ and [[L]]+ consists of mutual feedback, since
the challenges in M are witnesses for L and vice versa.

The normal form of the program [[M]]+ is quite long, so we rather display a shorter

55

3 Case studies for program extraction

term, which can be proved to be extensionally equal to [[M]]+:

[[M]]+
BS⇒N×N

= λf let h1 := λnCases (fn) 0 (Sn) in

let h2 := λnCases (fn) (Sn) 0 in

let n1 := h2(h10) in

let n2 := h1n1 in

let h := λn Cases (f(n1 t n2)) (n t (h1n)) (n1 t n) in

〈h0, h(S(h0))〉 .

The term above has been obtained by manual simpli�cations of the normal form of
[[M]]+ by introducing appropriate let de�nitions and applying the following reduc-
tions:

max 0n 7→ n, n1 ≤ maxn1n2 7→ tt,

maxn 0 7→ n, n2 ≤ maxn1n2 7→ tt,

maxnn 7→ n, n ≤ n 7→ tt,

b = tt 7→ b, (¬¬at(b))at 7→ b,

3.1.4 Comparison

The programs [[P]]◦ and [[M]]+, extracted respectively with re�ned A-translation and
the Dialectica interpretation, are quite di�erent, even though obtained from the same
proof M . What is surprising is that they happen to be extensionally equal, i.e., pro-
duce equal witnesses on equal sequences. In fact, the returned pair of indices depends
only on the �rst four elements in the sequence. The behaviour of the programs is
summarised in Table 3.1.

f [[P]]◦f

ff,ff, . . . 〈0, 1〉
tt, tt, . . . 〈0, 1〉
tt,ff,ff, . . . 〈1, 2〉
ff, tt, tt, . . . 〈1, 2〉
tt,ff, tt, . . . 〈0, 2〉
ff, tt,ff, tt . . . 〈1, 3〉
ff, tt,ff,ff . . . 〈2, 3〉

Table 3.1: Witnesses produced by programs extracted from Stolzenberg's example

56

3.2 Integer root

The asymmetry of the results can be traced back to the proof of L by using the
assumption u �rst for tt and then for ff. E�ectively, the value tt obtains a �higher
priority�: in both programs the functions computing indices of ff are always invoked
from functions computing indices of tt.

Both programs re�ect the use of classical logic by some form of backtracking.
Generally, the backtracking is triggered by invoking a functional parameter with two
di�erent values: tt and ff. However, in [[P]]◦ the functional parameters are contin-
uations, in the sense that the invocations are always tail-recursive (cf. [Rat10]).
This is not the case in [[M]]+, where functional parameters compute challenge can-
didates whose validity controls the backtracking process. Both programs use similar
case distinctions with quite di�erent origins: while in [[L]]◦ the only case distinction
comes from the proof of CB, in both [[L]]+ and [[M]]+, the case distinction is the
quanti�er-free translation of the formula proved by L.

Stolzenberg's example is not parametrised by a number, hence theoretically both
programs have constant time complexity. However, it is easy to see that [[M]]+ is not
only larger, but also less e�cient. The reason is that the subterms of ground type
m and xw0 are repeated several times throughout the programs [[L]]+ and [[M]]+ and
will be hence redundantly evaluated to the same number more than once under any
reduction strategy. The problem can be partially remedied by using a let construct
in the case distinction operator

u
./ , but will not be solved completely; xw0 will still

be repeated in the term [[M4]]−w . The next case studies will help to outline the nature
of this ine�ciency and how it can be solved.

3.2 Integer root

One possible application of methods for extraction from classical proofs is to obtain a
valid program from a non-constructive proof of existence, which is presumably easier
to provide than an explicit (constructive) proof. Stolzenberg's example demonstrated
how programs obtained from a proof that makes non-trivial use of classical logic,
are not necessarily optimal. The present example will investigate the behaviour
of programs extracted from classical proofs, which are essentially constructive, i.e.,
prove contradiction from a false assumption without using it more than once.

We will use the �integer root� example, presented in [BS95, Ber95] and later treated
also in [Mak06]. The example can be stated as follows.

Proposition 3.4. Let f : N ⇒ N be an unbounded function, i.e., there exists a

function g : N ⇒ N, such that ∀n (f(gn) > n). Then for every m ≥ f0 there is an

n, such that fn ≤ m < f(n+ 1).

57

3 Case studies for program extraction

Proof. We assume that there is no such n, i.e., ∀n (fn ≤ m → f(n + 1) ≤ m). By
induction we can prove that ∀n (fn ≤ m), and by setting n := gm we arrive at a
contradiction.

3.2.1 Proof formalisation

Let us denote the type of sequences of natural numbers as NS := N ⇒ N. The
existence of an integer root can be formalised as follows:

∀fNS ∀gNS ∀mN (∀nN (f(gn) > n)→ ¬(f0 > m)→ ∃̃nN (¬(fn > m) ∧̃ f(Sn) > m)).

The proof of Proposition 3.4 can be expressed by the following proof term:

M := λf λg λmλu ∀n (f(gn)>n)λv ¬(f0<m)λw∀n (¬(fn>m)→¬(f(Sn)>m))

Indn,¬(fn>m) (gm) v w (um).

The formalisation is particularly simple, because we have chosen to use only the
relation > and de�ned ≤ as its negation. Moreover, a constructive proof of this
statement would be much more involved, as it would require an additional lemma
[BS95].

3.2.2 Extraction via re�ned A-translation

This example has already been treated in [BS95] with re�ned A-translation. M

proves a formula of the form D1 → D2 → ∃̃n (G1 ∧̃G2), where D1 := ∀n (f(gn) > n)

and D2 := ¬(f0 > m) are de�nite formulas, while G1 := ¬(fn > m) and G2 :=

f(Sn) > m are goal formulas.
By Corollary 2.14, we need to extract from the translated proof

P := λu
DF1
1 λu

DF2
2 P ′ [⊥ := ∃n (G1 ∧G2)]u1u2(λnλv

GF1
1 λv

GF2
2 ∃+n 〈v1, v2〉), where

P ′ := λu
DF1
1 λu

DF2
2 λv∀n (~GF→⊥) Mfgm(Q′1u1)(Q′2u2)

(λnλwG1
1 λwG2

2 Q′′1w1(λzG
F
1 Q′′2w2(vnz)),

Q′1 := λuD1
1 u1,

Q′2 := λu
DF2
2 λvf0>m

2 ⊥+(u2v2),

Q′′1 := CDfn>m,⊥,

Q′′2 := λwG2
2 λvG2→⊥

2 v2w2.

To simplify notation, in the following we will not explicitly denote the substitution
[⊥ := ∃n (G1 ∧G2)] in the proofs below.

58

3.2 Integer root

[[Q′1]]
◦ ≡ ε, [[Q′2]]

◦ ≡ �N ≡ 0, [[Q′′2]]
◦ ≡ λk k,

[[Q′′1]]
◦ ≡ CasesN⇒N⇒N(fn > m)(λxλy x)(λxλy y)

r
= CasesN(fn > m)

[[Mfgm]]◦
r
= RN

N(gm),

[[P ′]]◦ ≡ λhN⇒NRN(gm)0(λnλpCases(fn > m)p(hn)),

[[P]]◦ ≡ [[P ′]]◦(λnn)
r
= RN(gm)0(λnλpCases(fn > m)pn),

The program P is already in normal form. It performs a linear search for a number
n with fn ≤ m starting from gm down to 0 and returns the �rst one found.

3.2.3 Extraction via the Dialectica interpretation

Let M1 := Indn,¬(fn>m) (gm) v w(um). As above, we will not explicitly denote the
substitution [⊥ := F]. Then

[[M]]+ ≡ λf λg λm
〈
[[M1]]−u , [[M1]]−w

〉
≡ λf λg λm

〈
m,RN(gm) �N (λnλp (p

w
./ n))

〉
, where

p
w
./ n ≡ Cases

(
T→(fp ≤ m)(m ≥ f(Sp))

)
np.

The program [[M]]+ is very similar to [[P]]◦, however, there are two prominent
di�erences. First of all, the Dialectica interpretation extracts more information from
the proof. Apart from the program [[M1]]−w , which computes the counterexample
for w, and hence the witness for ∃̃n , we also extract the term [[M1]]−u , which is a
counterexample for the assumption u, stating that g bounds f at every n. The
underlying reason is that classically we can read Proposition 3.4 as �For a function
f if some number m ≥ f0 has no integer root, then f is bounded by some number
M �. Then from the Dialectica interpretation of the proof we can see that m is a
witness for M , which, in fact, does not depend on g. We could obtain the same
witness by re�ned A-translation, but we would need to rearrange the formalisation
ofM and then the translated proof P would be completely di�erent. In contrast, via
the Dialectica interpretation we obtain both witnesses, even if we are only interested
in one of them.

The second di�erence between the two programs [[M]]+ and [[P]]◦ lies in the recursive
processes generated by them. While in [[P]]◦ the recursion starts from gm and stops
unfolding as soon as an integer root is found, in [[M]]+ the case distinction involves
the variable p, which corresponds to a recursive call. Hence, the recursion in [[M]]+

always unfolds to 0 and then the search starts from 0 up towards gm. Once an
integer root k is found, then every subsequent case distinction for n > k will always

59

3 Case studies for program extraction

evaluate to ff and k will be the �nally computed witness. However, all these case
distinctions for n ∈ (k; gm] will be redundant, because they will recon�rm, what
is already known: that k is the witness. Thus [[M]]+ and [[P]]◦ return the smallest

and the largest integer root of f in the interval [0; gm], respectively. Moreover, the
two programs have the same worst time complexity O(gm). However, [[M]]+ can be
noticeably slower on average, since it will perform always exactly gm steps, while
[[P]]◦ will only perform gm − k number of steps, where k is the largest integer root
of f , which is smaller than gm. Hence, if g produces a good approximation of an
integer root on average, the program [[P]]◦ will have better average time complexity.
There are two easy solutions, which can improve the program [[M]]+. The �rst one

is to use the case distinction operator with reversed arguments:

n
w
./ p ≡ Cases

(
T→(fn ≤ m)(m ≥ f(Sn))

)
pn.

This change is sound, because in Theorem 2.21 the order of arguments is not impor-
tant. It is easy to see that in this way the program becomes almost the same as [[P]]◦,
the only di�erence being that we still perform two comparisons instead of one. The
modi�ed program will now return the largest integer root.
The other solution is to introduce a boolean �ag, which �remembers� that a coun-

terexample is found and avoids further case distinctions. The altered program will
look as follows:

[[M1]]−w ≡ R
N×B
N (gm) 〈0,ff〉(λnλp (Cases(py)p

(Cases
(
T→(f(px) ≤ m)(m ≥ f(S(px)))

)
〈n,ff〉 〈px, tt〉)))

Note that p is now a pair
〈
nN, bB

〉
, where if b is tt, then n has been already veri�ed to

be a witness. The program will retain its original behaviour computing the smallest
integer root, but it will skip the unnecessary case distinctions involving n, by reducing
them to verifying the value of the boolean �ag b. This change can also be proved
to be sound, but the proof is more involved, as it requires an additional statement
about the soundness of the �ag b.
The �rst solution seems easier and more natural, but we will later demonstrate

that it does not improve the e�ciency in more general cases, in particular, when the
induction formula is not quanti�er-free. However, we will see that in cases where
the induction formula requires witnesses but does not require challenges, the second
solution still applies.

60

3.3 In�nite Pigeonhole Principle

3.3 In�nite Pigeonhole Principle

The third example which we will consider is an extension of the Pigeonhole Principle,
known as the In�nite Pigeonhole Principle:

Theorem 3.5 (In�nite Pigeonhole Principle). In every in�nite sequence of �nitely

many colours, there is a colour which occurs in�nitely often.

Proof. Induction on the number of colours. For 0 and 1 colours we have nothing
to prove. Assume that we have an in�nite sequence of n + 1 colours and consider
cases on the statement �The colour n appears in�nitely often.� In case of a positive
answer the claim is proved. Assume that the colour n occurs only a �nite number of
times, then there is an index k after which the sequence does not contain the colour
n. Hence the subsequence starting at k contains n colours only and by induction
hypothesis there must be a colour in it, which occurs in�nitely often.

The proof presented above is clearly non-constructive as it contains an undecid-
able case distinction on whether a certain colour occurs in�nitely often. The In�nite
Pigeonhole Principle can be viewed as a special case of the In�nite Ramsey Theo-
rem. The constructive meaning of both principles has been investigated by several
authors, including Veldman and Bezem [VB93], Coquand [Coq94], Tao [Tao07], Gas-
par and Kohlenbach [GK10]. There is an important di�erence between previous work
and the present analysis of the principle. In order to obtain the representation of
the whole in�nite subsequence of the same colour, a limited form of the classical
Axiom of Choice is required, which is known as the Axiom of Dependent Choice.
The computational meaning of this axiom is Spector's bar recursion [Spe62] and
constructivisations of the In�nite Pigeonhole Principle contain some similar form of
recursion. Here we analyse a simpler case, in which the in�nitely many occurrences
of some colour c are rephrased as arbitrarily high occurrences, i.e., for every number
n there is an index m ≥ n of the colour c. This formulation avoids the use of choice
principles and allows us to concentrate on the computational contribution of pure
classical logic. The results in this section are based on joint work with Diana Ratiu
and are published as [RT09].

3.3.1 Proof formalisation

In the following we will denote the type of sequences of natural numbers as NS. We
will denote the maximum of two numbers a and b as a t b. The statement of the
In�nite Pigeonhole Principle can be formalised as:

∀rN ∀fNS (∀nN (fn < r)→ ∃̃qN ∀nN ∃̃mN (n ≤ m ∧̃ fm = q)).

61

3 Case studies for program extraction

Unfortunately, the formula above cannot be proved by induction on r in MAω,
which we need in order to apply re�ned A-translation. The reason is that we need to
derive ⊥ using the premise ∀n (fn < r), which does not involve ⊥. Thus we consider
a slightly stronger formulation, in which the atom in the premise is double negated:

∀rN ∀fNS (∀nN (¬¬fn < r)→ ∃̃qN ∀nN ∃̃mN (n ≤ m ∧̃ fm = q)).

Note that after substituting [⊥ := F], the two formulas become equivalent, and thus
their witnesses coincide.
Let us elaborate on the proof of the In�nite Pigeonhole Principle formulated as

above. We proceed by induction on r. For the base case we prove ⊥ by using the
premise with ⊥+, as fn < 0 is in fact F. For the step case we assume the induction
hypothesis and then assume that f is coloured with r+ 1 colours and also that there
is no colour which appears in�nitely often. We apply the latter assumption to the
last colour r to obtain an index n after which it does not appear. Then we use
the induction hypothesis on the sequence f ′ = λn′ f(n t n′), which is equal to the
sequence f with the �rst n elements overwritten by the colour fn. We can prove
that f ′ is a sequence of r colours and thus it has a colour q appearing in�nitely often.
But then the colour q should also appear in�nitely often in the original sequence f ,
which leads to a contradiction.
The formal proof is given below:

L := λr Ind r L0 (λr λpLS), where

L0 := λf λu∀n (¬¬fn<0) λv u0⊥+,

LS := λf λu1 λu2 u2r(λn1 λv1 p(λn2 f(n1 t n2))K1K2),

K1 := λn2 λz
¬f(n1tn2)<r u1(n1 t n2)(λaf(n1tn2)<Sr L<az(v1(n1 t n2)Lt)),

K2 := λq λw u2q(λn2 λv2wn2(λmλan2≤m v2(n1 tm)(L≤a))),

u1 : ∀n (¬¬fn < Sr),

u2 : ∀q ∃̃n∀m (n ≤ m→ fm = q → ⊥),

vi : ∀m (ni ≤ m→ fm = q → ⊥) for i = 1,2,

w : ∀n ∃̃m (n ≤ m ∧̃ f(n1 tm) = q),

Lt : n1 ≤ n1 t n2,

L< : f(n1 t n2) < Sr → ¬(f(n1 t n2) < r)→ ¬¬(f(n1 t n2) = r),

L≤ : n2 ≤ m→ n2 ≤ n1 tm.

In order to analyse the computational meaning of the In�nite Pigeonhole Principle,
we will consider a Π0

2 corollary, which we refer to as the Unbounded Pigeonhole
Principle.

62

3.3 In�nite Pigeonhole Principle

Corollary 3.6 (Unbounded Pigeonhole Principle). In every in�nite sequence of

�nitely many colours, there are at least n + 1 occurrences of the same color for

any given n.

Formally, we will show that the following statement holds:

∀rN ∀fNS
(
∀nN (¬¬fn < r)→ ∀nN ∃̃lL(N)

(
|l| = Sn ∧̃Decr(l, n) ∧̃ Same(l, n)

))
,where

Decr(l, n) := ∀k (k < n→ lSk < lk),

Same(l, n) := ∀k (k < n→ flk = flSk).

Decr(l, n) states that a list l of length n+1 is strictly decreasing, which is a technically
convenient way to state that it consists of di�erent numbers. Same(l, n) states that
l contains indices of the same colour in f .
Although the claim can be proved by an explicit construction, we can easily derive

its classical version by applying the In�nite Pigeonhole Principle: since there is a
colour, which occurs in�nitely often, we can just take its �rst n occurrences.
We will prove the Unbounded Pigeonhole Principle in two steps. First, we use

induction on n and the In�nite Pigeonhole Principle to show that

∀rN ∀fNS
(
∀nN (¬¬fn < r)→ ∀nN ∃̃qN, lL(N)

(
|l| = Sn ∧̃Decr(l, n) ∧̃Col(q, l, n)

))
,

where Col(q, l, n) := ∀k (k < Sn→ flk = q).

Then, since we are not interested in the colour q, but only in the list l, we will show
that

∀q
(
Col(q, l, n)→ Same(l, n)

)
.

Combining these two steps will prove the claim. The formal proof is presented below:

M := λr λf λz∀n (¬¬fn<r) λnλv Lrfz

(λq λwM1(λl λv
|l|=Sn
0 λv

Decr(l,n)
1 λv

Col(q,l,n)
2 vlv0v1(M2qv2))), where

v : ∀l (|l| = Sn→ Decr(l, n)→ Same(l, n)→ ⊥),

w : ∀n ∃̃m (n ≤ m→ fm = q),

M1 := IndnM0 (λnλpMS),

p : ∃̃l
(
|l| = Sn ∧̃Decr(l, n) ∧̃Col(q, l, n)

)
,

M0 := λu0w0
(
λmλw0≤m

1 λwfm=q
2 u0(m:)AxT(λk efq)(λk w2)

)
,

MS := λuSn p
(
λl Ind l efq

(
λxλl λp′ λv

|l|=Sn
0 λv

Decr(x :: l,n)
1 λv

Col(q,x :: l,n)
2

w(Sx)(λmλwSx≤m
1 λwfm=q

2 uSn(m ::x :: l)v0M
′
SM

′′
S)
))
,

63

3 Case studies for program extraction

ui : ∀l
(
|l| = Si→ Decr(l, i)→ Col(q, l, i)→ ⊥

)
,

M ′
S := λk Ind k (λz0<SkMS≤w1) (λk λpk v1k),

M ′′
S := λk Ind k (λz0<Sk w2) (λk λpk v2k),

MS≤ : Sx ≤ m→ x < m,

M2 := λq λuCol(q,l,n) λk λzk<nM=(uk(M<z))(u(Sk)z),

M= : lk = q → lSk = q → lk = lSk,

M< : k < n→ k < Sn.

Note that only the main Ind in M1 is a true use of induction, the other three do
not ever use the induction hypothesis and are essentially only case distinctions.

3.3.2 Extraction via re�ned A-translation

We will apply Corollary 2.14 with D := ∀n (¬¬fn < r) and G1 := |l| = Sn, G2 :=

Decr(l, n), G3 := Same(l, n). We will extract from the translated proof

P := λr λf λnλuD
F

M
[
⊥ := ∃l ~G

]
Mrf(Qu)n(λl λvG1

1 λvG2
2 λvG3

3 ∃+l 〈v1, 〈v2, v3〉〉),

Q := λuD
F

λnλvfn<r→⊥ CDfn<r,⊥v(λwfn<r→F⊥+(unw)).

Note that GF
i = Gi for all i = 1, 2, 3, thus the translation only involves the formula

D. As before, the substitution
[
⊥ := ∃l ~G

]
will be implicit. We start the extraction

with L, which is the proof of the In�nite Pigeonhole Principle. For clarity, we will
denote the type of the �nal result (i.e., l) by R. For gNS we will also use the notation
gdn := λk g(n t k).

[[L<]]◦ ≡ Cases(f(n1 t n2) < r),

[[K1]]◦ ≡ λn2 λz
R FC(n1 t n2)

(
Cases(f(n1 t n2) < r)z

(
SE(n1 t n2)

))
,

[[K2]]◦ ≡ λq λIS IMS q(λn2 λSE ISn2(SEdn2)),

[[L0]]◦ ≡ λf λFCλIMS FC 0 �R,

[[LS]]◦ ≡ λf λFCλIMS IMSr(λn1 λSE p(fdn1)[[K1]]◦[[K2]]◦),

[[L]]◦ ≡ λrRN r [[L0]]◦(λr λp [[LS]]◦),

[[M0]]◦ ≡ λML IS 0(λmML(m:)),

[[MS]]◦ ≡ λML p(λlRL(N) l �R (λxλl λp′ IS (Sx)(λmML(m ::x :: l)))),

[[M]]◦ ≡ λr λf λFCλnλML [[L]]◦rfFC
(
λq λISRN n[[M0]]◦(λnλp [[MS]]◦)ML

)
,

[[Q]]◦ ≡ λnλzR Cases (fn < r) z�R,

[[P]]◦ ≡ λr λf λn [[M]]◦rf [[Q]]◦n(λl l).

64

3.3 In�nite Pigeonhole Principle

where the used function abbreviations are derived from their corresponding formulas,
as displayed in Table 3.2.

Formula Speci�cation Input Output

∀n (¬¬fn < r) FC n,R R
Finitely Coloured

∀m (n ≤ m→ ¬(fm = q)) SE m R
Sequence Extension

∀n ∃̃m (n ≤ m ∧̃ fm = q) IS n, SE R
In�nite Sequence

∀q ∃̃n∀m (n ≤ m→ ¬(fm = q)) IMS q, IS R
In�nite Monochromatic
Sequence

∀l
(
|l| = Sn→ Decr(l, n) ML l R

→ ¬Same(l, n)
)

Monochromatic List

Table 3.2: A-Translation computational types

The program [[P]]◦ follows closely the modular structure of the proof. However,
strictly speaking it is not modular, because the type R appearing in [[L]]◦ is external to
the In�nite Pigeonhole Principle and depends on Corollary 3.6 from which we extract.
If we wanted to extract from a di�erent proof using the In�nite Pigeonhole Principle,
then [[L]]◦ would appear in the same shape, but the type R would be di�erent. One
solution to preserve modularity involves extending the modi�ed realisability inter-
pretation to predicate variables in the style of Berger's negative realisability [Ber95].
Then we would be able to extract a program involving a type variable R, i.e., a
polymorphic program which can be reused across di�erent corollaries of the In�nite
Pigeonhole Principle.
In order to understand the behaviour of the program, let us �rst explain the role of

the function variables in Table 3.2. All of them are continuations and always return
a �nal result of type R.

• FC is presented an index n and a candidate for the �nal result, which is valid
if the colour of f at n is below r, i.e., it doesn't violate the assumption that f
contains no more than r colours;
• SE returns a �nal result when presented with an index m, which is an extension
of the monochromatic sequence of colour q, i.e., an index after n, at which the
colour q is expected to occur;
• IS is expected to be able to extend any sequence of a colour q, i.e., when
presented with an index n it should compute an index m ≥ n of the colour q
and use its second parameter SE to obtain the �nal result;

65

3 Case studies for program extraction

• IMS is provided with a monochromatic sequence in terms of a colour q and a
continuation IS and is expected to apply IS to a suitable argument of the type
of SE so that it produces the �nal result;
• ML is given a list l of length n + 1 of di�erent indices of the same colour and
should produce the �nal result. Clearly, when n equals to the input parameter
to the whole program, then ML should be the identity function.

The program [[L]]◦ recurses on r and is provided with three additional parameters:
the sequence f and the continuations FC and IMS. The case of r = 0 is impossible,
so we provide an arbitrary witness �R to the continuation FC. In the case of r + 1

colours, the program attempts to provide IMS with an in�nite sequence of colour
r. Whenever there is a request to �nd an index after n1 of colour r, the program
assumes that the colour r does not occur after n1 and initiates a recursive call for
f , where the �rst n1 colours are overwritten by fn1. The programs [[K1]]◦ and [[K2]]◦

take the role of FC and IMS respectively. [[K1]]◦ is a modi�cation of the continuation
FC by considering the question �is the colour at index n1 t n2 smaller than r�. If the
answer is �yes�, then the assumption that the colour r does not appear after n1 has
not failed and we return the given result candidate z. However, if the answer is �no�,
by the assumption that there are r + 1 colours the colour at the index n1 t n2 must
be r, hence it is provided to the continuation SE. The program [[K2]]◦ corresponds
to the case when the recursive call obtains a sequence of colour q provided by the
continuation IS. The sequence is fed back to the parameter IMS with the modi�cation
that any obtained SE is modi�ed to take only indices larger than n2.
The program [[M]]◦ expects continuations FC and ML; the former is directly passed

to [[L]]◦, while the latter is used to accumulate the �nal result. The continuation
parameter IMS of [[L]]◦ is de�ned by recursion on n. In the case of n = 0 the
continuation IS for 0 is used to �nd the �rst indexm of the colour q, and the singleton
listm: is provided as a witness to the continuation ML. In case we need a list of length
n+2, we �rst recursively construct a list of length n+1. This list has to be of the form
x :: l; the nil case is discarded by producing an arbitrary result �R. The continuation
IS is used for x+1 to produce an indexm of colour q that is strictly larger than x; it is
then put in front of the already obtained list and plugged back into the continuation
ML. Finally, the program [[P]]◦ combines everything together by instantiating FC

with the correctness guard [[Q]]◦ and ML with the identity continuation.
In order to understand the operational semantics of the obtained program, we

should note that both recursions on r and n unfold immediately and the actual
computation is carried out during the folding process, from the base case up. This
has the e�ect that for every colour q < r a recursion on n is started, each of them
calculating a list of n+ 1 indices of the corresponding colour. The program performs
a �step forwards� only when SE receives some index m of colour q; in this case IS is

66

3.3 In�nite Pigeonhole Principle

invoked, asking for the index after m+1. On the other hand, an incorrect index for a
colour q triggers a �step backwards� and the same index is used as a candidate for the
higher colour q + 1. Since the sequence is �nitely coloured, eventually the index will
be valid for some colour less than r and the search will continue. The process ends
when some list reaches length n, and it is returned as the �nal result. However, there
is one important pitfall: the program IS, called after each �step forwards�, restarts
[[L]]◦ from the base case. This invokes fresh recursions for all colours less than q,
while the partially accumulated lists for these colours are lost. As a result, [[P]]◦ need
not necessarily �nd the �rst n occurrences of constant colour; it returns a list of the
smallest possible indices of a colour q, between which no colour larger than q appears.

3.3.3 Extraction via the Dialectica interpretation

In addition to the already used notation gdn := λk g(n t k), we will also employ
gen := λk (n t gk). The substitution [⊥ := F] is implicitly applied to all considered
proofs. The extracted programs [[L]]+ and [[M]]+ are de�ned in Tables 3.3 and 3.4,
respectively.
First, let us consider the program [[L]]+. A central role in the program is being

played by sequence-extending functions of type N⇒ N, which when given an index n
attempt to provide an index m ≥ n at which some given colour q occurs. Such func-
tions are xw, [[L2]]+, and λn1 [[L3]]−v1 . When such a function is paired with a colour,
like in [[K2]]−u2 , we obtain the expected computational content of the In�nite Pigeon-
hole Principle: a way to construct an in�nite monochromatic sequence. However, in
order to obtain this pair, we need to provide a more complicated parameter: a chal-

lenging function of type N ⇒ (N ⇒ N) ⇒ N. Such function receives as parameters
an in�nite monochromatic sequence and attempts to �nd an index n′ at which the
sequence-extending function fails. Examples of such functions are xu2 and [[K2]]+.
Finally, the program [[L]]+ returns a pair, the �rst component of which is a challenge
for u2, i.e., a candidate for an in�nite monochromatic sequence, while the second one
is a challenge for the assumption that f contains only colours smaller than r, i.e. a
single index at which the colour is ≥ r.
The program [[L]]+ functions by performing backtracking on the statement �the

colour r appears in�nitely often�. This is achieved by the case distinction in [[L4]]−u2 .
The recursively returned challenge xp(fdn1)y[[K2]]+ for the assumption ∀n (¬¬fn <
r) is used to �nd an index at which the colour is not less than r. Since we also
assume that the largest colour is r, then a correct counterexample would provide an
index of the colour r. Thus it is used to construct the sequence-extending function
λn1 [[L3]]−v1 . Then the function xu2 is invoked on r and the constructed sequence-
extending function to compute a challenge n1ξ for that function. The case distinction
in [[L4]]−u2 determines whether this is a valid counterexample. In case it is not, then

67

3 Case studies for program extraction

an in�nite monochromatic sequence of colour r has been found, for which xu2 cannot
build a counterexample. Otherwise, we take the in�nite monochromatic sequence,
which we have from the recursive call. However, the sequence-extending function is
modi�ed to always return indices after the computed counterexample n1ξ, since the
sequence-extending function for r could not extend the sequence past this index.
Now let us turn to the program [[M]]+. There are a number of challenges being

computed and we will review each of them. [[M4]]+ describes a pair of indices, which
challenge the formulas Decr(l, n) and Col(q, l, n) respectively. The computation of
these counterexamples is recursive and is e�ectively a linear search through a given list
l. Examples of such challenging functions are [[M5]]+, [[M7]]+, and xSn. On the other
hand, the role of the program [[M2]]+ is to convert a challenge of Same(q, l, n) into a
challenge of Col(l, n). The latter is needed for the parameter xv of the main program
[[M]]+, which computes challenges for Decr(l, n) and Same(l, n). The monochromatic
list of length n+ 1, which is computed recursively by [[M1]]+, is in fact the challenge
for the assumptions u0 and uSn. In order for the program [[L]]+ to provide a colour
q and a sequence-extending function xw, there needs to be a challenging function
to be passed as a parameter. Such a function is computed recursively by [[M8]]+ by
searching for a counterexample for the provided sequence-extending function xw by
testing it on the constructed list. The test is performed by the case distinction in
[[M1]]−w , which selects the largest index (i.e., earliest appearing in the list) at which the
sequence-extending function fails. This challenge achieves the backtracking e�ect: if
the counterexample is valid, then [[L]]+ needs to take a �step backwards� and attempt
a di�erent colour; if the counterexample is invalid, then [[L]]+ has constructed a correct
sequence-extending function. Finally, the program [[M]]+ provides a pair of outputs:
the expected list and a challenge for the assumption that f is �nitely coloured, as
returned by [[L]]+.
The behaviour of the obtained program is as follows: [[L]]+ constructs a series of

candidates for an in�nite monochromatic sequence and each of them is being used by
[[M]]+ to construct a list of length n+1. The largest failure index in this list is returned
as a counterexample to the currently considered sequence-extending function and is
used to construct a sequence-extending function for a higher colour. Since the whole
list needs to be constructed before a counterexample is computed, the search for a
correct sequence-extending function is quite ine�ective. In the next subsection we
will show that this property of [[M]]+ is the cause for an exponential average time
complexity of the program.

68

3.3 In�nite Pigeonhole Principle

P
[[P

]]+
•

[[P
]]− •

K
1

ε
u

1
,v

1
n

1
t
n

2

L
1

:=
λ
m
λ
a
v 2

(n
1
t
m

)(
L
≤
a
)

ε
v 2

n
1
t
m

L
2

:=
λ
n

2
λ
v 2
w
n

2
L

1
λ
n

2
(n

1
t
x
w
n

2
)
≡
x
w
en

1
w

n
2

K
2

:=
λ
q
λ
w
u

2
qL

2
λ
q
λ
x
w
x
u
2
q(
x
w
en

1
)

u
2

〈q
,x

w
en

1
〉

L
3

:=
p(
f
dn

1
)K

1
K

2
ε

u
1
,v

1
n

1
t
x
p
(f
dn

1
)y

[[K
2
]]+

u
2

〈 x
p
(f
dn

1
)x

[[K
2
]]+
x,

(x p(f
dn

1
)x

[[K
2
]]+
y) en

1

〉
p

〈 fdn
1
,[
[K

2
]]+
〉

L
4

:=
u

2
r(
λ
n

1
λ
v 1
L

3
)

ε
u

1
[[L

3
]]− u

1
ξ

u
2

〈 r,λ
n

1
[[L

3
]]− v

1

〉 u 2 ./[
[L

3
]]− u

2
ξ

p
[[L

3
]]− p
ξ

ξ
:=
[n 1:

=
x
u
2
r(
λ
n

1
[[L

3
]]− v

1
)]

L
S

:=
λ
f
λ
u

1
λ
u

2
L

4
λ
f
λ
x
u
2

〈 [[L
4
]]− u

2
,[
[L

4
]]− u

1

〉
p

[[L
4
]]− p

L
0

λ
f
λ
x
u
2
�

N
×

(N
⇒

N
)×

N

L
λ
r
R

N
r[

[L
0
]]+

(λ
r
λ
x
p

[[L
S
]]+

)

∣ ∣ ∣∀q∃̃
n
∀m

(n
≤
m
→

f
m

=
q
→

F
)∣ ∣ ∣x

u
2

〈r
,λ
n
1

[[L
3
]]− v

1
〉

=
∣ ∣ ∣∃̃n∀

m
(n
≤
m
→

f
m

=
r
→

F
)∣ ∣ ∣x

u
2
r

λ
n
1

[[L
3
]]− v

1

=
|∀
m

(n
1
ξ
≤
m
→

f
m

=
r
→

F
)|ε [[L

3
]]− v

1
ξ

=
n

1
ξ
≤
m
→

f
m
6=
r,

w
he
re
m

:=
[[L

3
]]− v

1
ξ,

he
nc
e

[[L
4
]]− u

2
≡

C
as

es
(T
→

(n
1
ξ
≤
m

)(
f
m
6=
r)

)[[
L

3
]]− u

2
ξ
〈 r,λ

n
1

[[L
3
]]− v

1

〉 .
T
ab
le
3.
3:

E
xt
ra
ct
ed

pr
og
ra
m

fr
om

th
e
In
�n

it
e
P
ig
eo
nh

ol
e
P
ri
nc
ip
le
by

th
e
D
ia
le
ct
ic
a
in
te
rp
re
ta
ti
on

69

3 Case studies for program extraction

P
[[P

]]+
•

[[P
]]− •

M
(i

)
S

ε
v i

R
N
k

�
N

(λ
k
λ
p
p
v
i ./
k
)

M
3

:=
λ
m
λ
w

1
λ
w

2
u

S
n
(m

::
x
::
l)
v 0
M
′ S
M
′′ S

ε
u

S
n

m
::
x
::
l

v 1
[[M

′ S
]]− v

1
[k

:=
x

S
n
(m

::
x
::
l)
x]

v 2
[[M

′′ S
]]− v

2
[k

:=
x

S
n
(m

::
x
::
l)
y]

M
4

:=
λ
v 0
λ
v 1
λ
v 2
w

(S
x

)M
3

〈 [[M
3
]]− v

1
,[
[M

3
]]− v

2

〉 [m
:=

x
w

(S
x

)]
u

S
n

x
w

(S
x

)
::
x
::
l

w
S
x

M
5

:=
λ
lI

nd
le

fq
(λ
x
λ
lλ
p′
M

4
)

λ
lR

L
(N

)
l

�
(λ
x
λ
lλ
x
p
′
[[M

4
]]+

)
u

S
n
R

L
(N

)
l

�
(λ
x
λ
lλ
x
p
′
[[M

4
]]− u

S
n
)

w
R

L
(N

)
l

�
(λ
x
λ
lλ
x
p
′
S
x

)

M
S

:=
λ
u

S
n
pM

5
λ
x

S
n

[[M
5
]]− u

S
n

[l:=
x
p
[[M

5
]]+
]

w
[[M

5
]]− w

[l:=
x
p
[[M

5
]]+
]

p
[[M

5
]]+

M
6

:=
λ
m
λ
w

1
λ
w

2
u

0
(m

:)
A

xT
(λ
k

ef
q)

(λ
k
w

2
)

ε
u

0
m
:

M
0

:=
λ
u

0
w

0M
6

λ
x

0
x
w

0:
w

0

M
1

:=
In

d
n
M

0
(λ
n
λ
p
M

S
)

R
N
n

[[M
0
]]+

(λ
n
λ
x
p

[[M
S
]]+

)
w

R
n

0
(λ
n
λ
p
p
w ./

[[M
S
]]− w

)

M
2

λ
q
λ
k
k
u ./

S
k

M
7

:=
λ
lλ
v 0
λ
v 1
λ
v 2
v
lv

0
v 1

(M
2
qv

2
)

λ
l
〈 x vlx

,[
[M

2
]]+
q(
x
v
ly

)〉
v

l

M
8

:=
λ
q
λ
w
M

1
M

7
λ
q
λ
x
w

[[M
1
]]− w

v
[[M

1
]]+

[[M
7
]]+

M
:=
λ
r
λ
f
λ
z
λ
n
λ
v
L
rf
zM

8
λ
r
λ
f
〈 λnλ

x
v

[[M
8
]]− v

[q,x
w

:=
[[L

]]+
rf
x[

[M
8
]]+
] ,λn

λ
x
v

[[L
]]+
rf
y[

[M
8
]]+
〉

[[M
′ S
]]− v

1
≡
R
k

0
(λ
k
λ
p

C
as

es
(T
→

(p
<
n

)(
l′ S
p
<
l′ p

))
k
p)
,
w
he
re
l′

:=
x
::
l

[[M
′′ S
]]− v

2
≡
R
k

0
(λ
k
λ
p

C
as

es
(T
→

(p
<

S
n

)(
f
l′ p

=
q)

)k
p)
,
w
he
re
l′

:=
x
::
l

[[M
2
]]+
≡
λ
q
λ
k

C
as

es
(T
→

(p
<

S
n

)(
f
l k

=
q)

)(
S
k
)k
,

[[M
1
]]− w
≡
R
n

0
(λnλ

x
p

C
as

es
(T
→

(n
≤
m

)(
f
m

=
q)

)[[
M

S
]]− w
n
) ,w

he
re
n

:=
x
p
[[M

5
]]+
,m

:=
x
w
n
.

T
ab
le
3.
4:

E
xt
ra
ct
ed

pr
og
ra
m

fr
om

th
e
U
nb

ou
nd

ed
P
ig
eo
nh

ol
e
P
ri
nc
ip
le
by

th
e
D
ia
le
ct
ic
a
in
te
rp
re
ta
ti
on

70

3.3 In�nite Pigeonhole Principle

3.3.4 Comparison

In the present subsection we will compare the programs [[P]]◦ and [[M]]+ in terms of
their readability, time complexity and semantics.

The �rst obvious di�erence between the two programs is that [[M]]+ program is
visibly longer and more complicated than its counterpart. One reason for this is the
use of substitutions, which noticeably increase the size of the extracted terms. The
Dialectica case distinctions also contribute to this problem, as they mention the �rst
candidate counterexample twice: when checked for validity and when returned as
a result. However, there is a di�erent source of complexity: [[M]]+ also requires an
additional parameter xv and returns an additional result when compared to [[P]]◦.
The phenomenon where the Dialectica extracted programs compute more informa-
tion than their re�ned A-translation equivalents was already shown in Section 3.2.
This is not necessarily a drawback, especially if it does not increase the asymptotic
complexity of the program. The additional parameter xv seems more concerning,
as it would mean that [[M]]+ would require more input than [[P]]◦ in order to com-
pute the answer. However, a careful tracing of the parameter xv throughout the
program reveals that this parameter is never applied and evaluated. Indeed, xv is
used by [[M7]]+, which instantiates the parameters x0 and xSn in the recursive pro-
gram [[M1]]+. During the recursive call xSn is modi�ed to [[M5]]+, but remains a
λ-abstraction. Finally, in the base case of the recursion x0 is not used at all, which
e�ectively discards the accumulated and complicated functional parameter without
executing it even once. Therefore, this parameter only obstructs the readability of
[[M]]+ without a�ecting its semantics.

A more careful look shows that the redundant parameters re�ect the negative
computational content of the formulas Decr(l, n), Same(l, n) and Col(q, l, n) and is
generated by the quanti�ers ∀k . In fact, all these quanti�ers are bounded by n, so the
three statements are decidable and can be replaced by atomic formulas, e�ectively
removing their computational content. If we modify the proof accordingly, we would
extract a program in which the redundant parameter and all terms involving it will
be omitted.

In order to estimate time complexity, we need to �x a reduction strategy for terms.
We prefer to use a lazy evaluation strategy over a strict evaluation strategy. One
reason for this choice is the way terms of the form Rn s (λnλp t) are evaluated in
case p /∈ FV(t). With a strict evaluation strategy n recursion steps will be always
performed, but with a lazy strategy we would have only one step, so the recursion
will e�ectively act as a case distinction. If we insisted on strict evaluation strategy,
we would need to have a case distinction axiom scheme of the form ∀n (A(0) →
∀nA(Sn)→ A(n)) and a corresponding conditional computational construct.

There is another redundancy in the extraction of [[L]]+: the term [[L4]]+p , which is

71

3 Case studies for program extraction

the negative content of the induction hypothesis, never appears in the �nal program.
The reason is that there is no open assumption in the inductive proof [[L]]+, which
would require a recursively de�ned counterexample. This phenomenon was noticed
also by Hernest and Oliva [HO08], where they suggest a �ner variant of induction,
in which only assumptions which require no challenges are used.
In order to calculate the asymptotic worst time complexity of the programs, we will

estimate the number of reductions of expressions involving the recursion operators as
a numeric function of the input parameters r and n. The reason is that the recursive
reductions are the only ones which directly depend on numeric input parameters, and
the total number of reductions in a given execution of the program would be of the
same order. We will assume that the functional parameters f and xv have constant
complexity. We will also assume that the operations max, < and = on natural
numbers are basic and will not include their evaluation in the total count, since
in practice such arithmetic operations are usually implemented by the underlying
hardware. In both programs we will give an upper bound on the number of recursion
expansions for a given number of colours r, which we will denote as p(r).
For the average time complexity calculation we will estimate the number of steps

performed by the programs on uniformly distributed random coloured sequences f .
The number of recursive reductions is not a good approximation anymore, because
depending on the input sequence some recursions can terminate earlier. We will
thus base our estimation on the operational semantics of the programs, which were
analysed in Subsections 3.3.2 and 3.3.3.

Worst time complexity of [[P]]◦. Applying [[P]]◦ to r+ 1 colours would invoke the
parameter IMS with the colour r, which will start a recursion on n. In every step of
this recursion [[MS]]◦ would be evaluated, leading to a single reduction of RL(N) and
applying the functional parameter IS to a su�cient number of arguments, leading
to a step of the main recursion. Since the argument [[K2]]◦ has essentially the same
behaviour as IMS, we can conclude that

p(0) = 1, p(r + 1) ≤ (p(r) + 1) · n,

which implies that the worst time complexity of [[P]]◦ is O(nr).

Worst time complexity of [[M]]+. As already noted above, the programs [[M5]]+

and [[M7]]+ are never reduced, so we can omit them from the analysis. Applying [[M]]+

to a su�cient number of arguments would induce lead to a pair of computations. The
right component invokes [[L]]+ directly and in the left component every use of q or
xw would invoke [[L]]+ because of the substitution η. In [[M4]]−uSn

we can see that xw
is invoked once for every recursive step of [[M1]]+. Thus we obtain n+ 1 invocations

72

3.3 In�nite Pigeonhole Principle

of [[L]]+ from [[M]]+ for any given number n. Now let consider [[L]]+ being applied to
r + 1 colours and [[M8]]+, which corresponds to the parameter xu2 . Let us denote by
]t the number of invocations of the function xp in the term t. Because of ξ, every
reference to n1 is in fact an application of xu2 , i.e., [[M8]]+, which invokes a recursive
process on n, such which evaluates xw on every step a total of three times: twice by
the case distinction and one more time in [[M4]]−uSn

. By analysing the programs we
obtain the following inequalities:

][[LS]]+ =][[L4]]−u1 +][[L4]]−u2 ,

][[L4]]−u1 = 1,

][[L4]]−u2 ≤ 3(][[L4]]−u1) +][[L3]]−u2ξ,

][[L3]]−u2ξ ≤ 3n+ 1,

hence][[LS]]+ ≤ 3n+ 4.

Additionally, since xp is invoked to fdn1, every further reference to f in the recursion
will result in a calculation of n1, which is equivalent to 3n recursive calls. f is used
once on each recursive step in the case distinction [[L4]]−u2 . Therefore, the number of
recursive reductions for a given value of r can be estimated as:

p(0) = n+ 1, p(r + 1) ≤ (3nr + 3n+ 4)p(r) + 1,

hence the worst time complexity of [[M]]+ is O(r!(3n)r). Note that when viewed as a
function on n with r �xed, this is the same as O(nr). However, if n is kept constant
and r varies, [[M]]+ can be seen as having strictly worse time complexity than [[P]]◦.

Average time complexity of [[P]]◦. Due to the relation between A-translation and
CPS, the program [[P]]◦ is tail-recursive. The actual calculation of the resulting list
happens during the folding process of involved recursions, since the continuations
FC and ML are applied to concrete values only in the base cases. In Section 3.3.2
we discussed that when [[P]]◦ is executed for given r and n, there are r recursive
processes unfolded, one for each colour. Every one of them is a recursion on n, which
attempts to construct a list of indices of the respective colour. Moreover, if one of
the processes for colour q fails, it is stopped and provides a possible index for the
higher colour q + 1. On the other hand, in order to calculate a next index for colour
q + 1, fresh recursion processes are started for all colours up to q and if all of them
fail at a certain index i, then the colour fi cannot be ≤ q, so it is used as a candidate
for a next index of q + 1. Hence, a list of indices of a colour q can be returned only
if between the lowest and the highest of these indices there are only colours ≤ q.
Therefore, the program [[P]]◦ exhibits an asymmetric behaviour by returning only
lists of the above kind, which we will refer to as undisturbed.

73

3 Case studies for program extraction

The number of steps executed by [[P]]◦ on a given sequence closely follows the
largest index in the returned list, because on every recursive call of [[M]]◦, the pa-
rameter IS is called with the successor of the last computed index. Also, the �d�
guarantees that all following indices will be greater or equal. Having this in mind,
we can show that we clearly reach the exponential upper bound. Indeed, consider
the following family of initial segments:

ln,0 := nil ln,q+1 := ln,q, q, ln,q, q, . . .︸ ︷︷ ︸
n−1

, ln,q

It is easy to see that |ln,r| = nr−1. The lists ln,r have the property that they contain
no undisturbed subsequence of length n of any color. Note also that appending even
a single element to ln,q will break this property, thus such lists are also maximal.
Therefore, when run on any in�nite sequence starting with ln,r, the program [[P]]◦

executes nr recursion steps and the last returned index is nr − 1.
However, the behaviour of [[P]]◦ on a random uniformly distributed sequence is

much better. Since all lists of indices of the largest colour r − 1 are trivially undis-
turbed, such a list is the most probable result. Any colour would appear with a
rate 1/r, i.e., every r indices, hence an undisturbed list of colour r − 1 and length
n would be found on average after checking nr indices. Undisturbed lists of lower
colour would be found sooner; in general, the average highest index of an undisturbed
list of some colour q is ≤ n(q + 1). Considering every new index can cost on average
r/2 recursion folds or unfolds, hence the average time complexity of [[P]]◦ can be
estimated at O(nr2).

Remark 3.7. In [RT09], we stated average time complexity of O(nr) under the as-
sumption that considering every index takes a constant amount of time. However, it
seems more realistic to assert that indices of higher colour are processed slower, since
they require more term reductions. Nevertheless, the program undoubtedly behaves
linearly on n as soon as r is �xed.

Average time complexity of [[M]]+. As noted earlier, [[M]]+ starts r recursive
processes on n, similarly to [[P]]◦. One di�erence is that some of the processes are
executed more than once, because of repeated subterms in the extracted program,
and this leads to worse performance for a �xed n and varying r. As is the case with
[[P]]◦, indices that fail for a given colour q are candidates for the next colour q + 1.
However, the major di�erence is in the way this �failure index� is calculated. In
[[K1]]◦, if a failure index for q is found it is immediately passed to the continuation
SE, which is building the list for colour q+ 1. However, [[M8]]+ �nds the failure index
by a recursive search on n using the provided sequence-extending function xw. In
other words, it constructs the whole list with a �xed function in order to �nd a failure

74

3.3 In�nite Pigeonhole Principle

index. Moreover, in every step there is a case distinction, which leads to a call to xw
and triggers a recursive call for the lower colour. Therefore, [[M]]+ does not perform
much better in the average case than in the worst case and hence its average time
complexity is still as before O(r!(3n)r).

A reasonable question is how can the average time complexity of [[M]]+ can be
improved at least to the polynomial complexity of [[P]]◦. From the comparison it is
clear that the culprit is in the ine�cient computation of the failure index. In fact,
the optimisation mentioned in Subsection 3.2.3 is a solution: we can raise a �ag as
soon as we have found the �rst failure index and we will not need to redundantly
compute the whole list. With this modi�cation, [[P]]◦ would actually produce the
same results as [[M]]+ and will achieve lower complexity. In the next chapters, we
will demonstrate how this optimisation can be de�ned generally.

For the sake of comparison, it is interesting to consider a straightforward accumula-
tive algorithm, which computes a witness for a variant1 of the Unbounded Pigeonhole
Principle:

L0 := R r nil (λk λp 〈0, nil〉 :: p),
ST := λLRLnil(λxλl λp λi λy Cases(i = 0)(y :: l)(p(i− 1)y)),

P0 := λL 0 ::Lf0y,

PS := λk λp λg let q := f(Sk) in

let m, l := Lq in

let l′ := Sk :: l in

let L′ := STLq 〈Sm, l′〉 in
Cases(m = n)l(pL′),

P := λr λf λnR(nr + r + 1)P0PSL0.

The program P uses the fact that by the �nite Pigeonhole Principle n + 1 occur-
rences of the same colour must appear within the �rst (n + 1)r + 1 indices of the
sequence. The list L : L(N × L(N)) accumulates a list of indices of each colour l,
together with its length m. The indices are considered in decreasing order and for
every index k we put it in front of the list of colour fk. We check if the resulting
list l′ has reached length n + 1 and if so, we return it; otherwise we store l′ and its
length in the accumulator L using the program ST.

In the worst case P would perform nr + r + 1 recursive steps and in each of these
steps one of the lists would be examined. Taking into account that accessing a list
of index q requires at most r steps, the worst time complexity of P is O(nr2). Since
for a uniformly distributed random sequence O(nr) recursive steps would still be

1For technical reasons the obtained list of indices is increasing rather than decreasing.

75

3 Case studies for program extraction

required, the average time complexity is again O(nr2).

It is important to note that the average time complexity of [[P]]◦ is the same
as the worst (and average) time complexity of P . This is quite surprising, as the
asymmetric backtracking algorithm resulting from the use of classical logic is clearly
more ine�cient than the direct symmetric algorithm P . Still, it turns out that the
program [[P]]◦ is as e�cient as P in the average case. From a practical point of
view, the bad worst case complexity may be a reasonable price to pay for obtaining
a correct program from an indirect proof.

3.4 Comparative analysis of the extracted programs

We can make a number observations about the case studies presented in this chapter.
First of all, the obtained extracted functional programs are of high type degree, which
depends on the complexity of the involved formulas. Even if the conclusion formula
is simple, as is the case of the Unbounded Pigeonhole Principle, the type degree of
the extracted term depends on the complexity of the In�nite Pigeonhole Principle,
which is used as a lemma. Since non-trivial use of classical logic involves formulas
of complexity higher than Π0

2, we can expect that programs extracted from non-
constructive proofs are generally of higher type and thus harder to comprehend than
programs extracted from direct constructive proofs.

Another notable feature of the obtained programs is the use of backtracking. Al-
though obscured by the operational semantics of the functional programs, with both
considered methods we can trace the use of classical logic in the proof to some form of
branching, which guides the computation process in one direction or another. More-
over, these directions are usually opposite: either the exploration continues down the
computation tree (a �step forwards�), or some partial result is returned to a previous
branching point, which can now continue in a di�erent direction (a �step backwards�).
Even in the Integer Root example we can view the linear search as a very special
case of backtracking, where a �step forwards� continues the search, while a �step
backwards� outputs the result.

In the In�nite Pigeonhole Principle case study there is a clear modular structure
of the proof, which one of the simplest non-trivial uses of classical logic. We set
to prove a Π0

2 statement as a corollary of a more complicated principle, which is
only valid classically. Nevertheless, the proof of the corollary, except for the proof
of the classical lemma, is essentially constructive and direct. Naturally, in a more
advanced case one could have several classical principles intertwined with essentially
constructive arguments. However, generally we could �nd instances of the interaction
between a classical case distinction and a constructive use of it as in the In�nite
Pigeonhole Principle case study.

76

3.4 Comparative analysis of the extracted programs

Both considered methods re�ect the modular structure of the proof in a certain
sense. The common feature of both extracted programs is that the part of the
extracted program corresponding to the non-constructive proof L is a backtracking
scheme that de�nes under what condition a �step forwards� or �step backwards�
occurs. However, the computation performed on a �step forwards�, as well as the
value of the branching condition during the computation process depend on the
corollary proof M . In a certain sense, the programs [[L]]◦ and [[L]]+ can be viewed
as an �engine�, which is being guided by a �driver�, whose role is played by the
programs [[P]]◦ and [[M]]+, respectively, in order to produce concrete results. The
programs extracted with the two considered methods are qualitatively di�erent and
their speci�cs can be seen exactly in the interaction between the two aforementioned
components of the extracted programs, namely how the �driver� can interact with
the �engine� and how the �engine� reacts to the �driver's� input. In the following, we
will attempt to identify such general features of the two methods by observing their
behaviour on the examples in the present chapter.

3.4.1 Backtracking via re�ned A-translation

The re�ned A-translation transforms a proof by substituting ⊥ with the formula
claiming constructive existence of the �nal witness, in the extracted program the
computational type of ⊥ can be interpreted as the type of this �nal witness, i.e.,
the result type. Thus, the translated version of the same non-constructive lemma
in the subproof results into programs, which have the same term structure, but are
annotated with di�erent result types depending on the conclusion formula. Therefore,
we can view such �engines� as polymorphic or generic, speci�c instances of which are
being used by the �driver�. The result type speci�es one of the forms of interaction
between the two components of the extracted program, which allows the �driver� to
inject the type of the required witness into the generic �engine�.
Programs extracted via re�ned A-translation are tail-recursive and adhere to the

continuation passing style. The name �continuation� traditionally refers to a function
that returns the �nal result depending on certain parameters and thus correspond to
negative formulas in the proof. For example, the negative formulation of weak exis-
tence as ∃̃xA := ¬∀x¬A can be viewed as a function, which takes a continuation,
corresponding to the false assumption ∀x¬A. Continuations are the mechanism,
which is used for interaction between the �engine� and the �driver� in programs ob-
tained via re�ned A-translation. The �driver� provides appropriate continuations,
specifying how the �engine� should continue once it reaches a certain state. On the
other hand, when the �engine� invokes a continuation with a certain computed result,
it essentially provides the �driver� with feedback, which can be used for deciding how
to continue, in particular it can be collected as a part of the �nal result. An example

77

3 Case studies for program extraction

of such interaction is the continuation IMS from Subsection 3.3.2. Whenever IMS

is being invoked with a colour q and a continuation IS, the �engine� signals that it
attempts to construct a sequence of colour q as speci�ed by the continuation IS. The
�driver� responds by invoking a recursive process on n which attempts to collect all
found indices of colour q in a list.
Generally speaking, in re�ned A-translation the backtracking is implemented by

nesting two (or more) di�erent calls f~s and f~t of the same continuation f within one
another. The outer call corresponds to a �step forwards�, and the inner call appears
inside a continuation parameter passed to the outer call, as follows: f . . . (λ~x f~t)
Thus a �step backwards� is performed by calling the provided continuation parameter,
which corresponds to immediate transfer of the program �ow to the alternative branch
of the computation. This is only possible, because the result type can appear in the
�engine� program, hence it can directly pass the currently computed result to a
continuation de�ned by the �driver�. In Subsection 3.3.2 this interaction is exhibited
by using a failed index for colour q as a candidate for colour q+1, while in Subsection
3.2.2 this corresponds to aborting the search immediately once an integer root is
found.

3.4.2 Backtracking via the Dialectica interpretation

The Dialectica interpretation allows for extraction of concrete programs from a non-
constructive proof of a formula of an arbitrary complexity. Unlike the case with
re�ned A-translation, here both the �engine� and the �driver� are terms of closed
type and an �engine� can be reused with di�erent �drivers� without any instantiation.
Thus one can argue that the Dialectica interpretation is in a sense more modular than
the re�ned A-translation.
It is interesting to compare the branching points in programs generated by the two

di�erent methods. With re�ned A-translation the case distinctions generally emerge
from a case analysis on a negated formula in the original MAω proof in or from the
translation regarding de�nite and goal formulas. On the other hand, in the Dialectica
interpretation repeated use of the same assumptions (i.e., contractions) are the clear
source of case distinction. This has an interesting e�ect in the case of the In�nite
Pigeonhole Principle case study: the case distinctions in [[P]]◦ are generated from the
antecedent of the lemma (i.e., the sequence is �nitely coloured), while in [[M]]+ the
case distinction comes from the Dialectica interpretation of the consequent of the
lemma.
The Dialectica extracted program can refer only to the types in its formula and

hence values and functions constructed from these types can be the only means of
interaction between an �engine� and a �driver�. The dual meaning of Dialectica pro-
grams as computation of realisers and challenges enables the communication between

78

3.4 Comparative analysis of the extracted programs

two components of a program. Thus, in order for the �engine� to produce a realiser, it
requires a challenging function from the �driver�, attempting to produce counterex-
amples to candidates for realisers. Such counterexample candidates in fact guide
the backtracking process, because they can be plugged into the decidable Dialectica
translation and their validity can be directly veri�ed. An invalid counterexample
informs the �engine� that it is moving in the right direction and it makes a �step
forwards�. On the contrary, a valid counterexample from the �driver� is a sign that
the engine needs to take a �step backwards� and attempt another branch. An ex-
ample of such interaction can be seen in the Dialectica interpretation of induction,
where challenges are computed by recursion, where on each step there is a choice
between a new challenge (a �step forwards�) and a recursively computed challenge
(a �step backwards�). An instance of this example is the program [[L4]]−u2 in Table
3.3, which can be interpreted as follows: in case the �driver� managed to show that
the candidate sequence-extending function fails for r, then the �engine� continues the
recursive search for a sequence-extending function for a lower colour; otherwise, if the
�driver� did not �nd a suitable counterexample, then the provided sequence-extending
function works and is returned as a result.
As already noted for the Integer root example, this mechanism has a major draw-

back, namely that during the recursive computation of a counterexample candidate,
all possibilities are checked, where in fact only the �rst valid counterexample could
be su�cient. If it happens that the case distinction itself invokes recursion in the
�engine�, as in the computation of [[M1]]−w in Table 3.4, the resulting program can
have an exponential slowdown, as shown in Subsection 3.3.3. This problem does not
occur in the re�ned A-translation, because the interaction between the �driver� and
the �engine� is much more direct: as soon as some counterexample is found, it is
immediately passed to the other party by the appropriate continuation, instead of
blindly continuing the search.

3.4.3 Computational ine�ciencies of the Dialectica

interpretation

All the case studies presented in this chapter con�rm that programs extracted via
the Dialectica interpretation are outperformed by their counterparts extracted via
re�ned A-translation. A natural questions is can these drawbacks be remedied in a
general way, so that the Dialectica extracted programs become at least as good as
their alternatives.
We can summarise the ine�ciencies in the extracted programs in three major

categories:

79

3 Case studies for program extraction

1. Substitution can lead to subterm repetition and recomputation, producing un-
necessarily larger and slower programs,

2. Dialectica programs can require super�uous parameters or produce super�uous
results,

3. Recursive counterexample search examines all possibilities, even if redundant.

The following chapters present general solutions to the problems outlined above.
Chapter 4 de�nes a variant of the Dialectica interpretation that allows to establish
an almost linear bound on the size of the extracted term by eliminating unnecessary
substitutions. Chapter 5 explains how unnecessary parameters and results can be
omitted from the extracted terms by employing uniform annotations, as introduced
by Berger [Ber05] and adapted to Dialectica by Hernest [Her07a, Her07b]. We extend
the uniform annotations for the Dialectica interpretation to allow the �nest level of
computational control. Finally, Chapter 6 identi�es the cases, in which redundant
recursive calls can appear and demonstrates how they can be avoided through the
use of counterexample markings.

80

CHAPTER

FOUR

QUASI-LINEAR DIALECTICA INTERPRETATION

An easily noticeable defect of programs extracted via the Dialectica interpretation
is the repetition of equal subterms. In the Soundness Theorem 2.21 the cause can
be easily traced back to an asymmetry in the treatment of elimination rules for the
conclusion and for the assumptions. While for positive content an elimination rule
corresponds to application to a term t, for negative content we substitute a challenge
variable with a pair of the form 〈t, y〉. Naturally, the challenge variable could have
multiple appearances and this can lead to multiplication of the substituted terms.
This fact certainly impacts the length and the readability of the extracted term.
However, it can have also consequences for the complexity of the obtained program,
because equal subterms may be redundantly evaluated.
In this chapter we will present a syntactic reformulation of the Dialectica interpre-

tation, which allows for extraction of terms in which syntactic repetition of subterms
is avoided as much as possible. As a result the size of extracted terms will depend
almost linearly on the size of the proof. This optimisation will naturally lead to com-
plexity improvements in certain cases. Most of the results presented in this chapter
have been published in [Tri10b].

4.1 Examples of recomputation

Syntactic repetition of the same term does not always imply its reevaluation. For
example, let us consider the term Cases ((St)2 > 0) s t. Even though t appears twice
in the term, the condition will always evaluated to tt, so the alternative branch will
never be evaluated. This situation is usually referred to as �dead code�. Another
example can be given with the term (λy λz Sy)t t. Under a strict evaluation strategy
t will be evaluated twice, however, a lazy evaluation strategy would evaluate only the
�rst occurrence of t which is used to instantiate y. However, the subterm t will be

81

4 Quasi-linear Dialectica interpretation

reevaluated under any reduction strategy in the term (λxλy x+ y)t t, even though it
has the same normal form as (λxx+ x)t, in which there is no reevaluation.

Naturally, evaluating equal subterms multiple times would result in slower com-
putation as opposed to evaluating the subterm just once and reusing the value. The
following example shows that substitution on the extraction level could lead to a pro-
gram with exponential time complexity, even if the underlying process is polynomial.

Example 4.1. Let us prove the totality of the function x, y 7→ 2x(x+ y), i.e.,

∀x∀y ∃̃z (z = 2x(x+ y)).

A simple and essentially constructive proof goes by induction on x, taking z := y for
the base case. For the step case our induction hypothesis is ∀y ∃̃z

(
z = 2x(x+ y)

)
,

so we �x y0 and look for a z0 = 2x+1(x + y0 + 1). We use the induction hypothesis
on y0 + 1 to �nd a z and then take z0 := z + z. The formal proof of the statement is
given below:

M := λx IndN x (λy λu0 u0 y AxT) (λxλp λy λuSx p(Sy)(λz λv uSx(z + z)(L=v))) ,

ui : ∀z (z = 2i(i+ y)→ ⊥),

v : z = 2x(x+ Sy),

L= : z = 2x(x+ Sy)→ z + z = 2Sx(Sx+ y).

With re�ned A-translation we can directly apply Theorem 2.13 to the proof

P := Mxy [⊥ := ∃z (z = 2x(x+ y))]∃+,

and we obtain

[[P]]◦ ≡ RN x (λy λhN⇒N hy) (λxλp λy λhN⇒N p(Sy)(λz h(z + z)))y(λz z).

[[P]]◦ acts by accumulating the result in the continuation h. Once the recursion
bottom is reached, the folding process starts and performs x additions in order to
compute the �nal result. The time complexity of the process is clearly O(x), regard-
less whether the evaluation strategy is strict or lazy.

On the other hand, when we use Dialectica interpretation on the proofM [⊥ := F],
we obtain

[[M]]+ ≡ λxRN x (λy y)(λxλxp λy xp(Sy) + xp(Sy)).

The program [[M]]+ generates a tree-recursive process, which leads to a number of
additions which is exponential on x. Thus the time complexity of the program

82

4.2 Towards avoiding syntactic repetition

is O(2x) and this behaviour is not a�ected by the choice of evaluation strategy.
Clearly, the cause for the exponential behaviour is the repeated appearance of the
term xp(Sy). This repetition comes from the interpretation of the subproof L1L2

where L1 := p(Sy) and L2 := λz λv uSx(z + z)(L=v). Since [[L1]]+ ≡ xp(Sy) and
[[L2]]−uSx

≡ z + z, by Theorem 2.21 we obtain

[[L1L2]]−uSx
≡ [[L2]]−uSx

[
z := [[L1]]+

]
≡ xp(Sy) + xp(Sy).

We see that the duplication is caused by the substitution of the challenge variable
z which has two occurrences. If instead substitution we would have used a let-
construction, we would have obtained the program

λxRN x (λy y)(λxλxp λy let z := xp(Sy) in z + z),

which is of linear complexity both under strict and lazy evaluation strategy, where
for the latter memoisation of evaluated arguments as in the programming language
Haskell is assumed.

Generally, repeated subterms may or may not occur in an extracted program de-
pending on two factors: the proof and the extraction method. Our goal will not be
to eliminate subterm repetition altogether, but only these repeated instances which
are generated by the Dialectica interpretation. We assume the input proof to be
external and we do not try to optimise it, but rather re�ect its modular structure as
close as possible in the extracted term. In Example 4.1 the repetition of subterms
is de�nitely generated by the interpretation rather than the proof, since in the proof
M the only repeated term is the variable z, and the substitution which causes the
tree recursion is a part of the extraction method. If, on the other hand, in the proof
M we had redundantly used the induction hypothesis twice in the following manner:

. . . p(Sy)
(
λz1 λv1 p(Sy)(λz2 λv2 uSx(z1 + z2)(L′=v1v2))

)
. . . ,

then the source of repetition would already be the proof and we should not expect
that such repetition is removed by the extraction method. Recomputations also
occur in the examples in Sections 3.1 and 3.3; in the latter recomputations lead to
an exponential Dialectica program of higher exponent than its re�ned A-translation
counterpart in case n is �xed and r varies.

4.2 Towards avoiding syntactic repetition

When inspecting Theorem 2.21 we can notice that substitution is only needed to
construct the negative extracted terms, while for the positive ones substitution is

83

4 Quasi-linear Dialectica interpretation

never used. In particular, the Dialectica interpretation treats positive witnesses very
similarly to the modi�ed realisability interpretation. Witnesses are built �outwards�
by application or abstraction of previous witnessing terms without the necessity to
use substitution. In contrast, challenges grow �inwards� by substituting the previous
challenge variable by a term containing a new challenge variable. For introduction
rules such substitution is mostly harmless since they are of the form [y := y′x] and
[y := y′y]. Although such substitutions could still lead to a non-constant increase
in term size, they could not have a signi�cant impact on asymptotic time complex-
ity. On the other hand, in elimination rules challenge variables are substituted with
previously computed witnesses or challenges, which could be arbitrarily complex.
Moreover, this situation is not speci�c to the natural deduction treatment; substi-
tution in the negative content is used to prove the soundness also in [Tro73], for
example for the axiom Q2, corresponding to ∀ -elimination.

The problem is even worse for the interpretation of induction. Let us recall the
extracted terms for a proof by natural induction Indn,AN nM

A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2):

[[P]]+ := Rτ+(A)
N n [[M1]]+(λnλx0 [[M2]]+),

[[P]]−i := Rτ−(A)⇒τ−(Ci)
N n (λyA [[M1]]−i)

(
λnλp λyA (p[[M2]]−0

Ci
./ [[M2]]−i)ξ

)
yA,

where ξ :=
[
x0 := [[P]]+

]
. Note that the witnessing variable x0, corresponding to

the positive content of the induction hypothesis, is substituted with the recursively
computed positive witness [[P]]+. Therefore, multiple nested recursions on n may be
generated for every open assumption variable used in the inductive proof.

One solution to this problem would be to use let-constructions of the form let x :=

s in t, instead of substitutions t [x := s]. The two alternatives have the same normal
form, but the former is generally shorter and stores explicitly the information that
multiple occurrences of the same term are related. This simple trick reduces the
repetitions, but unfortunately does not eliminate them completely. The reason lies
in the dual nature of the Dialectica interpretation: the same proof is used to generate
two kinds of computational content: positive and negative. Let us consider the case
of a proof by universal quanti�er elimination Mt. Using a let-construction we have
[[Mt]]+ ≡ [[M]]+t and [[Mt]]−i ≡ let y := 〈t, y′〉 in [[M]]−. Nevertheless, when the open
assumptions are eventually eliminated, we will obtain a program which will contain
as subterms [[Mt]]+ and all [[Mt]]−i and therefore will still have n + 1 occurrences of
t, if n is the number of open assumptions in the proof M . Therefore, in order to
eliminate all repetitions caused by the extraction, we would need to compute both
positive and negative computational content simultaneously, so that we can abstract
the common subterms with a single let-construction. Consequently, the Dialectica
computational types needs to be syntactically reformulated so that we are able to

84

4.3 De�nition contexts

combine positive and negative computational content emerging from the same proof.
In the next sections we will expand on this idea, which will result in a size bound on

the extracted terms, which is almost linear on the size of the input proof. A similar
complexity result was already obtained by Hernest and Kohlenbach in [HK05]. One
major presentational di�erence between the current exposition and the results in
[HK05] is the use of a natural deduction system and λ-calculus versus Hilbert-style
equational logic with Schön�nkel style combinators Σ and Π. On page 229 the authors
comment:

Smaller terms can be extracted if we use a simpli�cation provided by the
de�nitional equation of Σ. The size of the extracted terms becomes linear
in the size of the proof at input. Nevertheless the use of extra Σ's brings
an increase in type complexity. This can be avoided by using a more
economical representation of the realizing tuples by means of pointers to
parts which are shared by all members of a tuple.

While the idea for sharing common subterms across all extracted components is
conceptually the same as what is being proposed in this thesis, the authors of [HK05]
consider such a representation to be implicit and related to the internal representation
of the term. On the other hand, we will display concrete λ-terms, which satisfy a
roughly linear bound regardless of their internal representation, while the sharing is
being made explicit. The downside of this approach is that because of the technical
subtleties in dealing with the package of positive and negative witnesses, we do not
obtain a strictly linear bound like in [HK05], but a bound which is �almost� linear
for practical applications.

4.3 De�nition contexts

We will factor out common subterms by using a de�nition context � a term contain-
ing a single occurrence of a hole [], which can be instantiated with any other term.
In order to de�ne this notion, let us reserve a type variable � and an object variable
of this type [] : �, which we will call a hole.

De�nition 4.2 (De�nition context). A de�nition context E is a term built by the
following rules:

E ::= []� | (Eρ⇒σtρ)σ | (λxρEσ)ρ⇒σ,

where � does not appear in the type in any subterm of t.
A term context is an arbitrary term with exactly one occurrence of a hole []. Thus

any de�nition context is a term context with certain syntactic restrictions on the
position where the hole occurs.

85

4 Quasi-linear Dialectica interpretation

For an arbitrary term context Eρ and term tσ, we de�ne the term E[t] (pronounced
�t in the context E,�') as E [� := σ] [[] := t], where, contrary to our usual convention,
the free variables of t are allowed to be bound by abstractions in E.

Proposition 4.3. Let E1 and E2 be de�nition (term) contexts. Then E1[E2] is a

de�nition (term) context.

Proof. For the case of de�nition contexts we use induction on the de�nition of E1.
The case E1 ≡ [] is trivial. Assume E1 ≡ E3t. Then, by induction hypothesis E3[E2]

is a de�nition context, and hence so is E3[E2]t ≡ E1[E2]. Similarly, for E1 ≡ λxρE3,
by induction hypothesis λxρE3[E2] ≡ E1[E2].
The case of term contexts is trivial, since E1[E2] will still contain a single occurrence

of [].

Corollary 4.4. If E is a de�nition context, x is a variable and t is an arbitrary

term, then let x := t in E is also a de�nition context.

Any de�nition context E has the type ~ρ ⇒ � for some list of types ~ρ. A key
property of the de�nition contexts is that they correspond to substitutions in a
certain way. Indeed, if we have a substitution Ξ := [~x := ~s], then we can de�ne the
context E := let ~x := ~s in [] and for every term t we will have E[t]

r
= tΞ. The

reverse correspondence is given by the following property.

Proposition 4.5 (Context property). For every de�nition context E : ~ρ⇒ � and a

list of di�erent variables yi : ρi there is a substitution Ξ, such that (E~y)[t]
r
= tΞ for

any term t.

Proof. Induction on the de�nition of E.
Case E = []. Take Ξ to be the identity substitution.
Case E = E ′s. By induction we have Ξ′ such that (E ′y0~y)[t]

r
= tΞ′ for any t. For

Ξ := Ξ′ [y0 := s] we obtain the desired property.
Case E = λxρ1 E ′. By induction we have Ξ′ such that (E ′y2 . . . yn)[t]

r
= tΞ′ for any

t. Take Ξ := Ξ′ [x := y1]. Then we will have(
(λxE ′)y1y2 . . . yn

)
[t] ≡

(
(λxE ′[t])y1y2 . . . yn

) r
=
(
E ′[t]y2 . . . yn

)
[x := y1]

r
= tΞ.

The context property implies that under special circumstances we can permute
contexts over application.

Corollary 4.6. For every de�nition context E : ~ρ ⇒ �, variables yi : ρi and terms

tσ⇒τ and sσ, such that FV(t) ∩ BV(E) = ∅ we have E[ts]
r
= λ~y

(
tE~y[s]

)
.

86

4.4 Some syntactic notions

Proof. Take the substitution Ξ from Proposition 4.5. By the variable condition for t
we have tΞ ≡ t. Then we obtain

E[ts]
r
= λ~y E~y[ts]

r
= λ~y (ts)Ξ ≡ λ~y t(sΞ)

r
= λ~y t(E~y[s]).

A de�nition context will be used to hold all common subterms of the extracted
computational content, and the hole will be instantiated with a tuple of context-
dependent terms speci�cally corresponding to positive and negative computational
content. In order to keep terms as small as possible, we will delay hole substitution
until the last possible moment. The pairing operation 〈·, ·〉 will allow us to bundle
together an arbitrary number of di�erently typed terms. We will introduce the
following notation to easily access components of such tuples:

tρ . 0 := t, if ρ is not a product,

tρ×σ . 0 := tx,

tρ×σ . (i+ 1) := ty . i.

4.4 Some syntactic notions

We will use the following notions of size of terms, formulas and proof.

De�nition 4.7 (Term size). For a term t its size dte is de�ned inductively:

• dCe := 1 if C is a variable, a constructor or a recursion constant.
• dλx te := dtxe := dtye := dte+ 1

• dste := d〈s, t〉e := dse+ dte+ 1

De�nition 4.8 (Formula size). For a formula A its size dAe is de�ned inductively:

• dat(t)e := dte
• dA→ Be := dAe+ dBe+ 1

• d∀xAe := d∃xAe := dAe+ 1

Consequently, d¬Ae = dAe+ 2, d∃̃xAe = dAe+ 5.

De�nition 4.9 (Proof size). For a proof M its size dMe is de�ned inductively:

• duAe := dAe if u is an axiom instance or an assumption variable
• dλuAMe := dMe+ dAe
• dλxρMe := dMe+ 1

• dMNe := dMe+ dNe+ 1

• dMte := dMe+ dte+ 1

87

4 Quasi-linear Dialectica interpretation

Remark 4.10. Note that the de�nition of size for assumption variables depends on
the size of the formula they assume, but the size of object variables is de�ned to be
constant. The reason for this asymmetry is that type annotations for terms can be
actually implicit (�Curry style�), since types can be decidably inferred in the con-
sidered term system. Conversely, inference is not decidable for formula annotations
for proofs in NAω. Hence, for practical reasons we do not account for types in the
de�nition of term size.

De�nition 4.11 (Maximal sequent length). For a proof M we de�ne its maximal
sequent length ddMee as

ddMee := max
N≤M
dFA(N)e,

where N ≤M is the subproof relation.

Extracted tuples will usually be of the form
〈
[[M]]+, . . . , [[M]]−u , . . .

〉
for some proof

M . We will denote t . u for u an assumption variable instead of a numerical index,
in order to access the respective negative content [[M]]−u from the tuple t in a more
convenient manner. In order to unify positive and negative content, the de�nition
of the Dialectica computational types needs to be slightly revised so that we use
uncurried function types instead of curried ones. The reason for this convention is
practical: while both the partial and the full application of an uncurried function to
a variable increase the term size with a constant, full application of a curried function
needs a variable for each parameter. We will rede�ne the computational types of the
Dialectica interpretation so that they are normal with respect to the reduction rules

ρ⇒ σ ⇒ τ ρ× σ ⇒ τ,

(ρ⇒ σ)× (ρ⇒ τ) ρ⇒ (σ × τ).
()

However, this would mean that during extraction we might need to apply a function
of type ρ× σ ⇒ τ to a value of type ρ. We will use the following notation for such a
partial application and its dual partial abstraction

fρ⇒τ ◦ tρ := ft

fρ×σ⇒τ ◦ tρ := λxσ f 〈t, x〉 , where x is a fresh variable,

λ◦xρ tσ⇒τ := λyρ×σ let x := yx in t(yy).

Finally, we extend the projection operations x and y to functions as follows:

fρ⇒σ×τx:= λxρ fxx, fρ⇒σ×τy := λxρ fxy.

The following property can be easily checked.

88

4.5 Quasi-linear extraction

Proposition 4.12.

1. dCases bste = dbe+ dse+ dte+ 4

2. dlet x := s in te = d(λx t)se = dse+ dte+ 2

3. dE[t]e = dEe+ dte − 1

4. dt . ie ≤ dte+ i+ 1

5. dfρ×σ⇒τ ◦ tρe ≤ dfe+ dte+ 4

6. dλ◦xρ tσ⇒τe ≤ dte+ 6

7. dfρ⇒σ×τxe = dfρ⇒σ×τye = dfe+ 4

4.5 Quasi-linear extraction

In this section we will revise the de�nitions of positive and negative computational
types, as well as the de�nition of the Dialectica translation. The purely syntactical
changes will aid de�ning a recomputation-free variant of the interpretation. However,
unlike Theorem 2.21, we will work in NAω instead of HAω. This choice aims to avoid
the overcomplicated bureaucratic treatment of pairs of extracted terms arising from
the interpretation of the introduction rules for conjunction and strong existence.

De�nition 4.13 (Quasi-linear computational types). For a formula A ∈ NAω we will
rede�ne the positive and negative computational types and denote the new variants
as σ+(A) and σ−(A). We will also denote σ∗(A) := σ−(A)⇒ σ+(A). We de�ne:

σ+(at(b)) := I, σ−(at(b)) := I,

σ+(A→ B) := σ+(B)× σ−(A), σ−(A→ B) := σ∗(A)× σ−(B)

σ+(∀xρA) := σ+(A), σ−(∀xρA) := ρ× σ−(A),

The relation with the original de�nition of computational types can be established
up to the reduction relation ().

Proposition 4.14. For every NAω formula C,

τ−(C) ∗ σ−(C), τ+(C) ∗ σ∗(C).

Proof. Induction on the formula C.
Case at(t). Trivial.
Case A→ B.

τ+(A→ B) = (τ+(A)⇒ τ+(B))× (τ+(A)⇒ τ−(B)⇒ τ−(A))

 ∗
(
σ∗(A)⇒ σ∗(B))× (σ∗(A)⇒ σ−(B)⇒ σ−(A))

)

89

4 Quasi-linear Dialectica interpretation

 ∗
(
σ∗(A)⇒ σ−(B)⇒ σ+(B))× (σ∗(A)⇒ σ−(B)⇒ σ−(A))

)
 ∗

(
σ∗(A)× σ−(B)⇒ σ+(B))× (σ∗(A)× σ−(B)⇒ σ−(A))

)
 (σ∗(A)× σ−(B))⇒ (σ+(B)× σ−(A))

= σ−(A→ B)⇒ σ+(A→ B) = σ∗(A→ B),

τ−(A→ B) =
(
τ+(A)× τ−(B)

)
 ∗

(
σ∗(A)× σ−(B)

)
= σ−(A→ B).

Case ∀xρA.

τ+(∀xA) = ρ⇒ τ+(A) ∗ ρ⇒ σ∗(A)

= ρ⇒ σ−(A)⇒ σ+(A)

 ρ× σ−(A)⇒ σ+(A)

= σ−(∀xA)⇒ σ+(∀xA) = σ∗(∀xA),

τ−(∀xA) = ρ× τ−(A) ∗ ρ× σ−(A) = σ−(∀xA).

Next, we will de�ne bidirectional term transformations corresponding to the syn-
tactic changes in the computational type.

De�nition 4.15 (Quasi-linear transformations). Let C be an arbitrary NAω formula.
By simultaneous induction on the formula A, we will de�ne transformations (·)↑±
and (·)↓±, which transform terms of the respective computational types, as shown on
Figure 4.1.

σ∗(C)

+

σ−(C)

−

τ+(C)

+

JJ

τ−(C)

−

JJ

Figure 4.1: Transformations between the Dialectica computational types

For C = at(r), we de�ne εl± := ε.

For C = A→ B, we de�ne

t↑+ := λxσ
−(C)

〈
(tx(xx)↓+)↑+(xy), (ty(xx)↓+(xy)↓−)↑−

〉
,

t↓+ :=
〈
λyτ

+(A) ((t ◦ y↑+)x)↓+, λyτ
+(A) ((t ◦ y↑+)y)↓−

〉
,

tl− :=
〈
(tx)l+, (ty)l−

〉
.

90

4.5 Quasi-linear extraction

For C = ∀xρA, we de�ne

t↑+ := λyσ
−(C) (t(yx))↑+(yy),

t↓+ := λxρ (t ◦ x)↓+,

tl− :=
〈
tx, (ty)l−

〉
.

It is not hard to see that the two transformations are dual.

Lemma 4.16. Let A be a formula in NAω. Then

1. for any terms r : τ+(A) and s : τ−(A) we have (r↑+)↓+
r
= r and (s↑−)↓−

r
= s,

2. for any terms r : σ∗(A) and s : σ−(A) we have (r↓+)↑+
r
= r and (s↓−)↑−

r
= s.

Proof. A syntactic exercise by induction on the de�nition.

We also need to adjust the de�nition of the Dialectica translation accordingly.

De�nition 4.17 (Quasi-linear Dialectica translation). Let C be a formula in NAω.
For r : σ∗(C), s : σ−(C) we de�ne (|C|)rs as follows:

(|at(b)|)εε := at(b),

(|A→ B|)rs := (|A|)sxrsy → (|B|)(r◦sx)x
sy ,

(|∀xA|)rs := (|A [x := sx] |)r◦sxsy .

The relation between the original Dialectica interpretation and the quasi-linear
variant is established by the following

Proposition 4.18. Let C be a formula in NAω. Then for any terms r : τ+(C) and

s : τ−(C), the formulas |C|rs and (|C|)r↑+
s↑− coincide.

Proof. Induction on the formula C.
Case at(r). Trivial.
Case A→ B. First, we note that by de�nition

s↑−x
r
= (sx)↑+,

s↑−y
r
= (sy)↑−,

r↑+s↑−y ≡ (ry(s↑−x)↓+(s↑−y)↓−)↑−

r
= (ry((sx)↑+)↓+((sy)↑−)↓−)↑−

(by Lemma 4.16)
r
= (ry(sx)(sy))↑−,

(r↑+ ◦ s↑−x)x ≡ λzσ
−(B) r↑+

〈
(sx)↑+, z

〉
x

r
= λzσ

−(B) (rx((sx)↑+)↓+)↑+z

91

4 Quasi-linear Dialectica interpretation

(by Lemma 4.16)
r
= (rx(sx))↑+.

Then by induction hypothesis we obtain

(|A→ B|)r↑+s↑− = (|A|)s↑−xr↑+s↑−y → (|B|)(r↑+◦s↑−x)x
s↑−y

= (|A|)(sx)↑+

(ry(sx)(sy))↑− → (|B|)(rx(sx))↑+

(sy)↑−

= |A|sxry(sx)(sy) → |B|
rx(sx)
sy = |A→ B|rs .

Case ∀xA. First, we note that by de�nition

s↑−x
r
= sx,

s↑−y
r
= (sy)↑−,

r↑+ ◦ (s↑−y)
r
= λzσ

−(A) r↑+
〈
(sy)↑−, z

〉
r
= λzσ

−(A) (r(sx))↑+z
r
= (r(sx))↑+.

Then by induction hypothesis we obtain

(|∀xA|)r↑+s↑− = (|A
[
x := s↑−x

]
|)r↑+◦s↑−ys↑−y

= (|A [x := sx] |)(r(sx))↑+

(sy)↑−

= |A [x := sx]|r(sx)sy = |∀xA|rs .

Corollary 4.19. Let C be a formula in NAω. Then for any terms r : σ∗(C), s :

σ−(C), the formulas (|C|)rs and |C|
r↓+

s↓− coincide.

Proof. Follows immediately from Proposition 4.18 and Lemma 4.16.

4.6 Soundness of the quasi-linear Dialectica

interpretation

The soundness theorem for the new variant of the interpretation will follow a pattern
similar to Theorem 2.21 and will be proved by induction on a proof M : A with free
assumption variables ui : Ci. On every inductive step we will de�ne:

1. a de�nition context [[M]] : σ−(A)⇒ �,
2. a context-dependent positive witnessing term [[M]]+ : σ+(A),
3. context-dependent negative witnessing terms [[M]]−i : σ−(Ci).

92

4.6 Soundness of the quasi-linear Dialectica interpretation

The �nal extracted term will be obtained by placing the context-dependent terms
inside the context:

{|M |} := [[M]][
〈
[[M]]+, . . . , [[M]]−i , . . .

〉
].

Individual components placed in the context will be referred to as follows:

{|M |}+ := [[M]][[[M]]+], {|M |}−i := [[M]][[[M]]−i].

Using the . operation we can restore the individual parts of {|M |}:

Proposition 4.20. λy ({|M |}y . 0)
r
= {|M |}+, λy ({|M |}y . i) r

= {|M |}−i for y : σ−(A).

Proof. By Proposition 4.5 we have a substitution Ξ, such that for all terms t we have
([[M]]y)[t]

r
= tΞ. Then we have

λy {|M |}y . i ≡ λy
(
([[M]]y)[

〈
[[M]]+, . . . , [[M]]−i , . . .

〉
]
)
. i

r
= λy

(〈
[[M]]+, . . . , [[M]]−i , . . .

〉
Ξ
)
. i

≡ λy
(〈

[[M]]+, . . . , [[M]]−i , . . .
〉
. i
)
Ξ

r
= λy

(
[[M]]−i Ξ

) r
= λy

(
{|M |}−i y

) r
= {|M |}−i .

As with the original Dialectica interpretation, for every binary rule instance we
will need to make a case distinction on the translation for every assumption variable
shared between the two branches of the proof. It is easy to show that the case
distinction can be implemented with a term, which has linear size on the assumption
formula. We will �rst show that there is a term TC , which plays the role of ((|C|)rs)at,
but its size depends linearly on the size of the formula C. Note that this linear bound
does not hold directly for ((|C|)rs)at. The reason is that even though equal subterms in
extracted terms are avoided, no such claim is being made for the translation formulas.
Therefore, (|C|)rs su�ers from term repetition and this will be directly transferred to
its atomic translation.

Lemma 4.21. There is a constant K, such that for every formula C there is a term
TC : σ∗(C)⇒ σ−(C)⇒ B such that:

1. (|C|)rs ↔ at(TCrs)

2. dTCe ≤ KdCe

Proof. We de�ne TC by induction on the formula C.
Case at(t). Set TC := t.
Case A→ B. De�ne

TC := λr λs T→
(
TA(sx)(rsy)

)(
TB((r ◦ sx)x)(sy)

)
.

93

4 Quasi-linear Dialectica interpretation

Since at(T→xy) ↔ (at(x) → at(y)), we can use the de�nition of the translation
to show the correctness of TC . Moreover, we have dT→e = 8 and thus dTCe ≤
dTAe+ dTBe+ 32.
Case ∀xA. De�ne

TC := λr λs let x := sx in TA(r(sx))(sy), and we have

dTCe ≤ dTAe+ 14.

It is straightforward to check the correctness of TC .

A drawback of the original Dialectica interpretation is that if the assumption vari-
able has n occurrences, a case distinction for the same formula can be repeated n−1

times in the extracted term. Thus it is more e�cient that for every proof P we put
the extracted terms in a de�nition context D : � containing the de�nitions of T→
and all TC , such that u : C is an assumption variable of M . It is clear that dDe
is bounded by the sum of the size of all assumption formulas, which by De�nition
4.9 is de�nitely not greater than dMe. In order to keep the presentation simpler, in
the following we will not be explicit about the context D; we will just assume that
it is the outermost context of the �nal extracted term and that we have access to
variables dC instantiated with TC in D.

Lemma 4.22 (Linear Dialectica case distinction). Let C be a formula, let x : σ∗(C)

be a variable and let t1, t2 : σ−(C) be terms. Let D be a de�nition context associating
a variable dC with the term TC from Lemma 4.21. Then there is a term t such that

1. ` (|C|)xD[t] → (|C|)xti for i = 1, 2,
2. dte ≤ dt1e+ dt2e+K, where K is a constant independent of the formula C.

Proof. Similarly to Lemma 2.19 we de�ne

t1
C,x
./ t2 :=

{
t1, if t1 ≡ t2,

let y := t1 in Cases (dCxy)t2y, otherwise.

Assuming that by Lemma 4.21 we have proof terms K : at(TCxt1) → (|C|)xt1 and
L : (|C|)xt1 → at(TCxt1), we can de�ne the proof terms Qi : (|C|)x

D[t1
C,x
./ t2]

→ (|C|)xti

exactly as in Lemma 2.19. Moreover, dt1
C,x
./ t2e ≤ dt1e+ dt2e+ 12.

Theorem 4.23 (Soundness of quasi-linear Dialectica interpretation). Let A ∈ NAω

be a formula and let PA be a proof term with assumptions among {ui : Ci}i≥1. Let us

have fresh witnessing variables X = {xi : σ∗(Ci)}, each one associated uniquely with

an assumption variable ui and let yA : σ−(A) be a fresh challenging variable associated

94

4.6 Soundness of the quasi-linear Dialectica interpretation

uniquely with the formula A. Then there is a term {|P|} and a proof P : (|A|){|P|}
+

yA ,

such that

1. FA(P) ⊆
{
vi : (|Ci|)xi{|P|}−i yA

}
, where each vi is associated with the corresponding

ui,

2. FV({|P|}) ⊆ FV(P) ∪X,

3. d{|P|}e ≤ K(dPeddPee2) for a �xed constant K, not depending on P.

Proof. We prove the theorem by induction on P .
Case uA1 . Set [[P]] := λyA [], [[P]]+ := x1yA, [[P]]−1 := yA. Then {|P|}+ ≡ λyA x1yA

r
=

x1 and {|P|}−i yA
r
= yA, thus we can set P := v1. The variable conditions are obviously

satis�ed and d{|P|}e ≤ 6.

Case λuB0 M
C . By induction hypothesis we have a proof term M : (|C|){|M |}

+

yC with
assumptions w0 : (|B|)x0{|M |}−0 yC and wi : (|Ci|)xi{|M |}−i yC for i ≥ 1. De�ne

[[P]] := λ◦x0 [[M]],

[[P]]+ :=
〈
[[M]]+, [[M]]−0

〉
,

[[P]]−i := [[M]]−i .

The variable conditions is satis�ed, since FV({|P|}) = FV({|M |}) \ {x0}. We will use
the substitution ξ := [x0 := yAx] [yC := yAy]. Since

(|B → C|){|P|}
+

〈x0,yC〉 = (|B|)x0{|P|}+〈x0,yC〉y → (|C|)λyC {|P|}
+〈x0,yC〉x

yC

= (|B|)x0{|M |}−0 yC → (|C|)λyC {|M |}
+yC

yC
, and

(|Ci|)xi{|P|}−i 〈x0,yC〉 = (|Ci|)xi{|M |}−i yC ,

we can set P := (λw0M)ξ, with vi := wiξ. We can also see that d{|P|}e ≤ d{|M |}e+9.
Case MC→A

1 MC
2 . Let us denote B := C → A. By induction hypothesis we have

proofs

M1 : (|B|){|M1|}+
yB

with assumptions w′i : (|Ci|)xi{|M1|}−i yB
and

M2 : (|C|){|M2|}+
yC

with assumptions w′′i : (|Ci|)xi{|M2|}−i yC
.

We will use the substitutions

ξ1 :=
[
yB :=

〈
{|M2|}+, yA

〉]
for M1,

ξ2 :=
[
yC := {|M1|}+ 〈{|M2|}+, yA

〉
y
]

for M2.

By unfolding the de�nition of the translation we obtain:

95

4 Quasi-linear Dialectica interpretation

M1ξ1 : (|C|){|M2|}+

{|M1|}+〈{|M2|}+,yA〉y → (|A|)({|M1|}+◦{|M2|}+)x
yA

with w′iξ1 : (|Ci|)xi{|M1|}−i 〈{|M2|}+,yA〉,

M2ξ2 : (|C|){|M2|}+

{|M1|}+〈{|M2|}+,yA〉y with w
′′
i ξ2 : (|Ci|)xi{|M2|}−i ({|M1|}+〈{|M2|}+,yA〉y).

For f and z fresh variables we de�ne

[[P]] := let f := {|M2|} in [[M1]] ◦ (fx)[let z := [[M1]]+ in []],

[[P]]+ := zx,

[[P]]−i := [[M1]]−i
Ci
./ f(zy) . i

Using Proposition 4.20 we obtain

{|P|}+ r
= [[M1]] ◦ {|M2|}+[[[M1]]+x]

r
= ({|M1|}+ ◦ {|M2|}+)x,

{|P|}−i yA
r
= [[M1]]

〈
{|M2|}+, yA

〉
[[[M1]]−i

Ci
./ {|M2|}−i ([[M1]]+y)].

Let us de�ne t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+y) and E := [[M1]]
〈
{|M2|}+, yA

〉
so that

the term {|P|}−i yA can be written as E[t1
Ci
./ t2]. As before, we assume that [[Mj]]

−
i :=

[[M3−j]]
−
i whenever ui ∈ FA(M3−j) \ FA(Mj). By Lemma 4.22 we have proof terms

Q(j)
i : (|Ci|)xi

t1
i
./ t2
→ (|Ci|)xitj for j = 1, 2. By Proposition 4.5 we have a substitution Ξ,

which is such that E[t]
r
= tΞ. Thus we obtain Q(j)

i Ξ : (|Ci|)xi
E[t1

i
./ t2]
→ (|Ci|)xiE[tj]

. On

the other hand

E[t1] ≡ [[M1]]
〈
{|M2|}+, yA

〉
[[[M1]]−i]

r
= {|M1|}−i

〈
{|M2|}+, yA

〉
,

E[t2] ≡ [[M1]]
〈
{|M2|}+, yA

〉
[{|M2|}−i ([[M1]]+y)]

r
= {|M2|}−i [[M1]]

〈
{|M2|}+, yA

〉
[[[M1]]+y]

r
= {|M2|}−i ({|M1|}+ 〈{|M2|}+, yA

〉
y),

where for the last equality we used Proposition 4.20 and Corollary 4.6, assuming that
the set BV([[M1]]) consists of fresh variables and thus has an empty intersection with
FV({|M2|}−i). Then we can de�ne as in Theorem 2.21

P := P1P2, where Pj := M jξj~ηj with ηj,i =
[
w

(j)
i := Q(j)

i Ξvi

]
.

The variable condition is obviously satis�ed as FV({|P|}) ⊆ FV({|M1|})∪FV({|M2|}).
The size of the extracted terms is calculated as follows:

d[[P]]e ≤ d{|M2|}e+ d[[M1]]e+ d[[M1]]+e+ 9,

d[[P]]+e ≤ 2,

dt1
Ci
./ t2e ≤ dt1e+ dt2e+ 12,

96

4.6 Soundness of the quasi-linear Dialectica interpretation

d[[P]]−i e ≤ d[[M1]]−i e+ i+ 17 ≤ d[[M1]]−i e+ ddPee+ 17,

hence

d{|P|}e ≤ d{|M1|}e+ d{|M2|}e+ ddPee2 + 17ddPee+ 23,

because the number of free assumptions Ci in the proof P is bounded by ddPee.

Case λxρMB. By induction hypothesis we have a proof of M : (|B|){|M |}
+

yB with
assumptions wi : (|Ci|)xi{|M |}−i yB . De�ne

[[P]] := λ◦x [[M]], [[P]]+ := [[M]]+, [[P]]−i := [[M]]−i .

Since A = ∀xB, we can substitute ξ := [x := yAx] [yB := yAy]. Since by de�nition

(|∀xB|){|P|}
+

〈x,yB〉 = (|B|){|P|}
+◦x

yB
= (|B|)λyB {|M |}

+yB
yB

, and

(|Ci|)xi{|P|}−i 〈x,yB〉 = (|Ci|)xi{|M |}−i yB ,

we can de�ne P := Mξ with vi := wiξ. The variable condition still holds since
FV({|P|}) := FV({|M |}) \ {x}. Moreover, {|P|} = {|M |}+ 8.

Case M∀xρBtρ. Let C := ∀xB. By induction hypothesis we have a proof

M : (|∀xB|){|M |}
+

yC
with wi : (|Ci|)xi{|M |}−i yC ,

which, after applying the substitution ξ := [yC := 〈t, yA〉] and unfolding the de�nition
becomes

Mξ : (|A|){|M |}
+◦t

yA
with wiξ : (|Ci|)xi{|M |}−i 〈t,yA〉.

Then it becomes clear that we can de�ne

[[P]] := [[M]] ◦ t, [[P]]+ := [[M]]+,

P := Mξ with vi := wiξ, [[P]]−i := [[M]]−i .

The variable condition holds since FV({|P|}) = FV({|M |})∪ FV(t). Finally, d{|P|}e ≤
d{|M |}e+ dte+ 4.

Case AxT. Trivial as in Theorem 2.21.

Case Cb,A bMA[b:=tt]
tt M

A[b:=ff]
ff . By induction hypothesis we have proofs

M j : (|A [b := j] |){|Mj |}+
yA

with assumptions w(j)
i : (|Ci|)xi{|Mj |}−i yA

for j = ff, tt.

97

4 Quasi-linear Dialectica interpretation

Let us de�ne

[[P]] := λyA [[Mtt]]yA[[[Mff]]yA],

[[P]]+ := Cases b [[Mtt]]
+ [[Mff]]+,

[[P]]− := Cases b [[Mtt]]
−
i [[Mff]]−i .

Assuming that the bound variables of [[Mtt]] and [[Mff]] are unique, using Proposition
4.5 we can show that {|P|} [b := j]

r
= {|Mj|} for j = tt,ff. Then, as in Theorem 2.21

we can de�ne P := C b (λ~w′M tt) (λ~w′′Mff)~v. The variable conditions are satis�ed,
because FV({|P|}) = FV({|M |})∪FV({|N |})∪{b}. We also have d{|P|}e ≤ d{|Mtt|}e+

d{|Mff |}e+ 5ddPee+ 9.

Case Indn,AN nM
A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2). By induction hypothesis we have proofs

M1 : (|A [n := 0] |){|M1|}+
yA

with assumptions w′i : (|Ci|)xi{|M1|}−i yA
for i ≥ 1 and

M2 : (|A [n := Sn] |){|M2|}+
yA

with assumptions w′′0 : (|A|)x0{|M2|}−0 yA
and

w′′i : (|Ci|)xi{|M2|}−i yA
for i ≥ 1.

As before, for the sake of uni�ed treatment let us de�ne [[Mj]]
−
i := [[M3−j]]

−
i if

ui ∈ FV(M3−j) \ FV(Mj) for i ≥ 1. Take a fresh variable z and consider the terms

[[L]] := RN n {|M1|}
(
λnλp let x0 := px in [[M2]][let z := p[[M2]]−0 in []]

)
,

[[L]]+ := [[M2]]+,

[[L]]−i := [[M2]]−i
Ci
./ (z . i).

It seems like {|L|} is the needed extracted term, but there is a subtle problem: [[L]]

is a term context, but is not a de�nition context! Fortunately, this can be repaired
by taking a fresh variable a and de�ning:

[[P]] := λyA let a := {|L|}yA in [],

[[P]]+ := ax,

[[P]]−i := a . i.

Thus {|P|}+ r
= {|L|}x and {|P|}−i yA

r
= {|L|}yA . i. By unfolding the de�nition and

applying Corollary 4.6 and Proposition 4.20 to [[M2]] we obtain

{|L|} [n := 0]
r
= {|M1|} (∗)

{|L|} [n := Sn] x
r
= let x0 := {|L|}x in {|M2|}+,

{|L|} [n := Sn] yA . i
r
= let x0 := {|L|}x in {|M2|}−i yA

Ci
./ {|L|}({|M2|}−0 yA) . i.

98

4.6 Soundness of the quasi-linear Dialectica interpretation

Following the argument in Theorem 2.21, we will de�ne a proof Q of the formula
B := ∀yA (~D → (|A|){|P|}

+

yA), where Di := (|Ci|)xi{|P|}−i yA . Then we will be able to set

P := QyA~v. By de�nition

B [n := 0] = ∀yA
(−−−−−−−−→

(|Ci|)xi{|M1|}−i yA
→ (|A [n := 0] |){|M1|}+

yA

)
, which is proved by M1,

B [n := Sn] = ∀yA
(−−−−→

(|Ci|)xitiξ → (|A [n := Sn] |){|M2|}+ξ
yA

)
, where

ξ :=
[
x0 := {|P|}+], ti := t′i

Ci
./ t′′i with t

′
i := {|M2|}−i yA, t′′i := {|L|}({|M2|}−0 yA) . i. By

Lemma 2.19 we have proofs Q(j)
i : (|Ci|)xitiξ → (|Ci|)xi

t
(j)
i ξ

and Q is de�ned by induction

in a similar fashion as in Theorem 2.21:

Q := Indn,BN n (λyA λ~w
′M1)(λnλpB λyA λ~v (λ~w′′M2)ξ(p{|M2|}−0

−−→
Q′ivi)

−−→
Q′′i vi).

The variable conditions hold because FV({|P|}) ⊆ FV({|M1|})∪FV({|M2|}) \ {x0}∪
{n} For the size of the extracted terms we obtain:

d[[L]]+e = d[[M2]]+e
d[[L]]−e ≤ d[[M2]]−i e+ i+ 14 ≤ d[[M2]]−i e+ ddPee+ 14

d[[L]]e ≤ d{|M1|}e+ d[[M2]]−0 e+ d[[M2]]e+ 15,

hence d{|L|}e ≤ d{|M1|}e+ d{|M2|}e+ ddPee2 + 15ddPee+ 14,

d[[P]]e ≤ d{|L|}e+ 6,

d[[P]]+e ≤ 2,

d[[P]]−i e ≤ i+ 2 ≤ ddPee+ 2

hence d{|P|}e ≤ d{|M1|}e+ d{|M2|}e+ 2ddPee2 + 18ddPee+ 22.

Case Indl,AL(ρ) l M
A[l:=nil]
1 (λxλl λuA0 M

A[l:=x :: l]
2). This case is very similar to the pre-

vious one. By induction hypothesis we have proofs

M1 : (|A [l := nil] |){|M1|}+
yA

with assumptions w′i : (|Ci|)xi{|M1|}−i yA
for i ≥ 1 and

M2 : (|A [l := x :: l] |){|M2|}+
yA

with assumptions w′′0 : (|A|)x0{|M2|}−0 yA
and

w′′i : (|Ci|)xi{|M2|}−i yA
for i ≥ 1.

Let us de�ne

[[L]] := RL(ρ) l {|M1|}
(
λxλl λp let x0 := px in [[M2]][let z := p[[M2]]−0 in []]

)
,

[[L]]+ := [[M2]]+, [[L]]−i := [[M2]]−i
Ci
./ (z . i),

99

4 Quasi-linear Dialectica interpretation

[[P]] := λyA let a := {|L|}yA in [],

[[P]]+ := ax, [[P]]−i := a . i.

We adopt the de�nitions of Di, ti, t
(j)
i and Q(j)

i from the previous case and, as before,

set P := QyA~v, where the proof Q of the formula B := ∀yA (~D → (|A|){|P|}
+

yA) is
de�ned as

Q := Indl,BL(ρ) l (λyA λ~w
′M1)(λxλl λpB λyA λ~v (λ~w′′M2)ξ(p{|M2|}−0

−−→
Q′ivi)

−−→
Q′′i vi).

The variable conditions and the size bounds hold as in the previous case.

Remark 4.24. Formally, the bound we have obtained in Theorem 4.23 is not linear,
as it depends quadratically on the measure ddPee, which in the worst case could be
equal to dPe. However, as dPe increases, ddPee grows much slower, and hence for
practical cases, the size of extracted terms can be considered as �almost� linear in
the size of the proof.
The quadratic dependency on the parameter ddPee is caused by the technical sub-

tleties related to �unpacking� the terms {|P|} using the selectors {|P|} . i. In case we
work in a term language equipped with means for constructing polymorphic arrays
of the type of {|P|}, for which the components can be randomly accessed in constant
time, we can improve the size bound to O(dPeddPee). The overhead ddPee cannot be
completely avoided if we insist on working in a convenient natural deduction settings,
where the assumptions appear as separate entities. In any case, the construction of
such a language goes beyond the scope of the current work, which aims to stay the-
oretically as close as possible to a purely functional language in the spirit of Gödel's
system T .

Remark 4.25. The size bound O(dPe + ddPee2), which was claimed in [Tri10b], was
incorrectly calculated. In the worst case the term size increases by ddPee2 on every

inductive step, and since the induction steps are linear in the size of the proof, the
correct estimation is O(dPeddPee2).

Remark 4.26. A worst case scenario for Theorem 4.23 can be constructed as follows.
Let A and B be arbitrary atomic formulas. Let u0 : ∀xA, u2n+1 : ∀xA→ ∀y B and
u2n+2 : ∀y B → ∀xA be assumption variables. We de�ne the sequence of proofs Pn
such that P2n : ∀xA and P2n+1 : ∀y B as follows:

P0 := u0, Pn+1 := un+1Pn.

Let dun+1e = K and du0e = L for �xed constants K and L, depending on the sizes of
the formulas A and B. Then dPne := n(K+1)+L and hence is O(n). The extracted
terms from the proofs Pn are de�ned as in Theorem 4.23:

100

4.7 Program simpli�cation via a�ne reductions

[[P0]] ≡ λy0 [],

[[P0]]+ ≡ x0y0,

[[P0]]−u0 ≡ y0,

[[Pn+1]] ≡ let fn := {|Pn|} in let yn+1 := fnx in let zn := xn+1yn+1 in [],

[[Pn+1]]+ ≡ znx,

[[Pn+1]]−a ≡

{
yn+1, if a = n+ 1,

fn(zny) . a, otherwise.

Their size is calculated as follows:

d{|P0|}e = 6,

d[[Pn+1]]e = d{|Pn|}e+ 12,

d[[Pn+1]]+e = 2,

d[[Pn+1]]−a e =

{
1, if a = n+ 1,

a+ 6, otherwise,

d{|Pn+1|}e = d{|Pn|}e+
n(n+ 1)

2
+ 6n+ 22, hence

d{|Pn|}e =
(n− 1)n(2n− 1)

12
+ 13

n(n− 1)

24
+ 22n+ 6, which is O(n3).

Corollary 4.27 (Quasi-linear Dialectica extraction). Let P : C be a closed proof in

NAω. Then there is a closed term {|P|}+ : σ∗(C), such that d{|P|}+e ≤ K(dPeddPee2),

and a proof P : ∀yτ−(C) |C|({|P|}
+)↓+

y .

Proof. Follows from Theorem 4.23 and Corollary 4.19. Note that we cannot claim
the quasi-linear bound on the projected term ({|P|}+)↓+, since its size depends expo-
nentially on the size of the conclusion formula C.

Remark 4.28. The usual characterisation theorem for the original Dialectica interpre-
tation states that in an extension of HAω for any formula C we are able to prove its
equivalence to the formula ∃x ∀y |C|xy . Since Proposition 4.18 states syntactic equal-

ity of the formulas |C|xy and (|C|)x↑+
y↑− , the de�ned term mapping immediately gives us a

characterisation theorem for the quasi-linear variant of the Dialectica interpretation.

4.7 Program simpli�cation via a�ne reductions

Let us revisit Example 4.1 from Section 4.1. Applying directly the results from
Theorem 4.23, we obtain the term

101

4 Quasi-linear Dialectica interpretation

R := λy6 let x := y6 in λy7 let f1 := s in f1y7, where

s := RN x t0 (λxλp let xp := p in t1),

t0 := λy0 let y := y0 in let y1 := y in y1,

t1 := λy2 let f0 := (λy3 let z := y3 in let y4 := z + z in y4) in

let y := y2 in let y5 := y + 1 in let z0 := xpy5 in f0z0.

This �rst attempt seems discouraging, because the term R is de�nitely larger than
[[P]]+ from Example 4.1. However, the time complexity of R can be shown to be now
linear.

One idea for simpli�cation of R is to normalise it. However, the normal form of R is
exactly [[P]]+, which is of exponential time complexity. To improve the readability of
the quasi-linear programs, and in particular of R, another strategy for simpli�cation
needs to be chosen.

We will consider a subset of the term reduction relation, which does not increase the
size of involved terms. This reduction follows Grishin's idea of logics with weakening
but no contraction [Gri74, Gri81], and we refer to it as a�ne, borrowing the name
for such logic as suggested by Girard. In the following, we will denote the number of
free occurrences of the variable x in the term t as #x(t).

De�nition 4.29 (A�ne term reductions). We de�ne the a�ne term reduction rela-
tion

a7→ inductively as follows:

(λx s)t
a7→ s [x := t] , if #x(t) ≤ 1

Split 〈s, t〉 f a7→ f s t,

Cases tt s t
a7→ s, RN 0 s t

a7→ s,

Cases ff s t
a7→ t, RL(ρ) nil s t

a7→ s,

and if s
a7→ s′, then

sr
a7→ s′r, rs

a7→ rs′, λx s
a7→ λx s′.

The re�exive and transitive closure is denoted as usual
a∗7→.

Proposition 4.30. Let r
a7→ s. Then

1. dse < dre,
2. #x(s) ≤ #x(r).

Proof. Straightforward veri�cation by induction on the de�nition of the
a7→ relation.

102

4.7 Program simpli�cation via a�ne reductions

The reduction relation
a7→ is clearly strongly normalising as a subrelation of 7→. To

prove its con�uence, it su�ces to prove that it is locally con�uent [BN98]. First, we
prove a technical lemma.

Lemma 4.31. If r
a7→ r′ and #x(r) = 1, then r [x := p]

a∗7→ r′ [x := p] for any term p;

Proof. Induction on the de�nition of
a7→. If the base redex does not contain the

variable x, then the claim is trivial. Otherwise, we need to consider only the case
(λz s)t

a7→ s [z := t] with #z(s) ≤ 1, as in all the other cases r′ is a subterm of r or
an application built from subterms of r and then the claim follows trivially by the
de�nition of

a7→. Since #x(r) = 1, we have that either x ∈ FV(s), or x ∈ FV(t).
Case x ∈ FV(s). Since the substitution (λz s) [x := p] is capture-free, we can

assume that z /∈ FV(p). Thus #z(s) = #z(s [x := p]). Then

(λz s [x := p])t
a7→ s [x := p] [z := t] ≡ s [z := t] [x := p] .

Case x ∈ FV(t). We have

(λz s)t [x := p]
a7→ s [z := t [x := p]] ≡ s [z := t] [x := p] .

Theorem 4.32 (Local con�uence of a�ne reductions). Let r
a7→ s1 and r

a7→ s2.

Then there is a term r′, such that s1
a∗7→ t and s2

a∗7→ r′.

Proof. It is only su�cient to consider pairs of redexes, which might interfere with
each other, i.e., which cannot be independently reduced in parallel. Therefore, we
can restrict ourselves to the case when r

a7→ s1 is in one of the forms described in the
base case of the de�nition of the reduction relation

a7→. In most of these forms s1 is
a subterm of r and the local con�uence holds trivially.
Case Split 〈s, t〉 f a7→ f s t. The only possibility for the reduct s2 is Split 〈s′, t′〉 f ′,

where ∗′ is a reduct of ∗ for exactly one of the terms s, t or f and is equal to ∗ for
the other terms. In this case, r′ := f ′s′t′.
Case (λx s)t

a7→ s [x := t]. Let us denote by s′ and t′ some arbitrary reducts of s
and t, respectively.
Subcase s2 ≡ (λx s)t′. We set r′ := s [x := t′]. By induction on the term s we can

prove that if x ∈ FV(s), then s [x := t]
a7→ s [x := t′], which is su�cient to claim that

s1
a∗7→ r′.
Subcase s2 ≡ (λx s′)t. By Proposition 4.30, #x(s

′) ≤ 1. Therefore, we can perform
the reduction in s2 and set r′ := s′ [x := t]. Finally, by Lemma 4.31 we have that
s1

a7→ r′ if x ∈ FV(s), or s1 ≡ r′ otherwise.

We can simplify R by considering its a�ne normal form. Thus we obtain

t0
a
= λy y, t1

a
= λy (λz z + z)(xp(y + 1)), hence

103

4 Quasi-linear Dialectica interpretation

R
a
= R′ := λxRx (λy y) (λxλp λy (λz z + z)(p(y + 1))) .

Now R′xy still reduces to 2x(x + y) in a number of steps depending linearly on x,
as opposed to its exponentially behaving counterpart [[P]]+ obtained by applying the
original Dialectica interpretation.

4.8 Case studies revisited

In this section we subject the case studies from Chapter 3 to the new variant of the
interpretation and compare the new extracted programs with the previous ones.

4.8.1 Stolzenberg's example

Table 4.1 shows the extraction process following Theorem 4.23 with some a�ne
reductions executed. The �nal program {|M |} with all a�ne reductions executed
is shown below.

{|M |} a
= λf



let h := λ〈b, xw〉


let g := λk1

(
let kS := Sk1 in

〈kS, 〈k1, xwkS〉〉

)
in

let k0 := 0 in

let z := xwk0 in
〈
k0

w
./ gzx, gzy

〉
 in

let xu := hx in

let htt := λntt

(
let hff := λnff 〈ntt t nff , ntt t nff〉 in
let sff := 〈ff, hffx〉 in 〈hff(xusff)y, sff〉

)
in

let stt := 〈tt, httx〉 in h(stt
u
./ htt(xustt)y)y


The obtained program is noticeably smaller than its counterpart from Section 3.1.3.

Note that there are still repeated non-trivial subterms: ntt t nff . The reason is that
these terms are also repeated in the proof, namely in the lemmas Ltt and Lff .
The removal of some repetitions de�nitely leads to improvement, most noticeably

in the Dialectica case distinctions
u
./ and

w
./ . However, the performance gain from

avoiding repetitions is only noticeable when base types are involved, since terms
of type of non-zero degree are not reduced until applied to a su�cient number of
arguments. Thus the let constructions involving htt, hff , h and g improve readability,
but not evaluation speed.

104

4.8 Case studies revisited

P
[[P

]]
[[P

]]+
•

[[P
]]− •

L
b

le
t
k
b

:=
n

tt
t
n

ff
in

[]
ε

v b
k
b

L
1

:=
C
B

(f
(n

tt
t
n

ff
))

[[L
tt

]][
[[L

ff
]]]

ε
v b

k
b

L
2

:=
λ
n

ff
λ
v ff
L

1
λ
n

ff
[[L

1
]]

k
ff

v t
t

k
tt

L
3

:=
λ
n

tt
λ
v t

t
u

ff
L

2

λ
n

tt
le
t
h

ff
:=
{|L

2
|}
in

le
t
s ff

:=
〈ff
,h

ff
x〉

in

le
t
z ff

:=
x
u
s ff

in
[]

h
ff
z ff
y

u
s ff

L
4

:=
u

tt
L

3

le
t
h

tt
:=
{|L

3
|}
in

le
t
s t

t
:=
〈t

t,
h

tt
x〉

in

le
t
z t

t
:=

x
u
s t

t
in

[]
ε

u
s t

t
u ./
h

tt
z t

ty

L
:=
λ
f
λ
u
L

4
λ
y
le
t
f

:=
y
x
in

le
t
x
u

:=
y
y
in

[[L
4
]]

[[L
4
]]− u

M
1

:=
v
k

1
k

2
(M

<
u

2
)(
M

=
z 1
z 2

)
le
t
k

1
2

:=
〈k

1
,k

2
〉
in

[]
ε

v
k

1
2

M
2

:=
λ
k

2
λ
u

2
λ
z 2
M

1
λ
k

2
[[M

1
]]

ε
v

k
1
2

M
3

:=
λ
k

1
λ
u

1
λ
z 1
w

(S
k

1
)M

2

λ
k

1
le
t
f

:=
{|M

2
|}
in

le
t
k

S
:=

S
k

1
in

le
t
m

:=
x
w
k

S
in

[]
ε

v w
f
m k
S

M
4

:=
w

0
M

3

le
t
g

:=
{|M

3
|}
in

le
t
k

0
:=

0
in

le
t
z

:=
x
w
k

0
in

[]
ε

v w

g
zx

k
0
w ./
g
zy

M
5

:=
λ
b
λ
w
M

4
λ
s
le
t
b

:=
sx

in

le
t
x
w

:=
sy

in
[[M

4
]]

[[M
4
]]− w

v
[[M

4
]]− v

M
:=
λ
f
λ
v
L
f
M

5
λ
f
le
t
h

:=
{|M

5
|}
in

[[L
]]
〈f
,h
x〉

[l
e
t
s

:=
[[L

]]+
in

[]
]

h
sy

T
ab
le
4.
1:

Q
ua
si
-l
in
ea
r
ex
tr
ac
ti
on

fr
om

St
ol
ze
nb

er
g'
s
ex
am

pl
e

105

4 Quasi-linear Dialectica interpretation

4.8.2 In�nite Pigeonhole Principle

Applying the results from Theorem 4.23 on hand can become cumbersome when the
complexity of the proof increases. This can be seen in the extraction from the In�nite
Pigeonhole Principle case study, which is carried out thoroughly in Tables 4.2 and
4.3. Even though the obtained program is noticeably smaller, the extraction process
itself is more complicated, because of the many variables involved. We postpone the
unfolding of the program {|M |} until the end of next chapter, where the unnecessary
computations will be removed and the whole program will be more readable.
Let us estimate the worst time complexity of {|M |} in a similar fashion to Section

3.3.4. Applying {|M |} to 0 colours invokes {|L|} once with appropriate arguments
and produce a pair of results 〈q, xw〉. Then xw is used to construct a list of length n
and to compute a counterexample index, both of which are done simultaneously in
n steps.
Now let us assume that {|M |} executes {|L|} for r+ 1 colours. We will estimate the

number of recursive reductions, which lead to recursion with r colours. The recursive
call to xp occurs in {|L3|}, which is being invoked by g3. On the other hand, g3

appears twice: applied to z6 to compute z7 and as a function in z5, which is used
an argument of xu2 . The �rst occurrence of g3 leads to one recursive call when z7

needs to be reduced, but the second one depends on the number of invocations of the
parameter xw in {|M8|}, which is essentially the value of xu2 . We should note that
xu2 is invoked two di�erent times with z5: once to compute z6 and once to calculate
the case distinction in [[L4]]−u2 . When we trace the use of xw in {|M8|}, we have a
similar situation, namely that xw is used twice for every number n: once to calculate
the next index in the list z4 by applying z3 to the previous one and once in the case
distinction

w
./ .

In total we have 4n recursive reductions at each recursive step for r, hence the
worst time complexity of {|M |} becomes O((4n)r). Although the complexity is still
exponential, it is a clear improvement from the factorial worst and average time
complexity O(r!(3n)r), which was established in Section 3.3.4. By the same reasoning
as before, the average time complexity is not better than the worst case, since all
case distinctions are always evaluated and hence the recursions are fully executed.
We will revisit the In�nite Pigeonhole Principle example in Chapter 6, where we will
show how the average time complexity can be improved.

106

4.8 Case studies revisited

P
[[P

]]
[[P

]]+
•

[[P
]]− •

K
1

λ
n

2
[]

ε
u

1
,v

1
n

1
t
n

2

L
1

:=
λ
m
λ
a
v 2

(n
1
t
m

)(
L
≤
a
)

λ
m

[]
ε

v 2
n

1
t
m

L
2

:=
λ
n

2
λ
v 2
w
n

2
L

1
λ
n

2
le
t
z 1

:=
{|L

1
|}
in

le
t
m

2
:=

x
w
n

2
in

[]
z 1
m

2
w

n
2

K
2

:=
λ
q
λ
w
u

2
qL

2
λ
〈q
,x

w
〉l
e
t
z 2

:=
〈 q,{|

L
2
|}+
〉 in

[]
x
u
2
z 2

u
2

z 2
L

3
:=
p(
f
dn

1
)K

1
K

2
le
t
g 1

:=
{|K

1
|}
in

le
t
g 2

:=
{|K

2
|}
in

le
t
z 3

:=
〈f
dn

1
,g

2
x〉

in

le
t
z 4

:=
x
p
z 3

in
[]

ε
u

1
,v

1

u
2 p

g 1
(z

4
y)
.
•

g 2
(z

4
x)
y

z 3

L
4

:=
u

2
r(
λ
n

1
λ
v 1
L

3
)

le
t
g 3

:=
λ
n

1
{|L

3
|}
in

le
t
z 5

:=
〈r
,g

3
.
v 1
〉
in

le
t
z 6

:=
x
u
2
z 5

in

le
t
z 7

:=
g 3
z 6

in
[]

ε
u

1
,p u
2

z 7
.
•

z 5
u
2 ./
(z

7
.
u

2
)

L
S

:=
λ
f
λ
u

1
λ
u

2
L

4
λ
y
le
t
f

:=
y
x
in

le
t
x
u
2

:=
y
y
in

[[L
4
]]

〈 [[L
4
]]− u

2
,[
[L

4
]]− u

1

〉
p

[[L
4
]]− p

L
0

λ
y 0

[]
�

N
×

(N
⇒

N
)×

N

L
λ
〈r
,y
〉R

N
r{
|L

0
|}(
λ
r
λ
x
p
{|L

S
|})
y

T
ab
le
4.
2:

Q
ua
si
-l
in
ea
r
ex
tr
ac
ti
on

fr
om

th
e
In
�n

it
e
P
ig
eo
nh

ol
e
P
ri
nc
ip
le

107

4 Quasi-linear Dialectica interpretation

P
[[P

]]
[[P

]]+
•

[[P
]]− •

M
(i

)
S

λ
k
R

N
k

�
N

(λ
k
λ
p

[]
)

ε
v i

p
v
i ./
k

M
3

:=
λ
m
λ
w

1
λ
w

2
u

S
n
(m

::
x
::
l)
v 0
M
′ S
M
′′ S

λ
m
le
t
z 1

:=
m
::
x
::
l
in

le
t
z 2

:=
x
u

S
n
z 1

in

le
t
h
i

:=
{|M

(i
)

S
|}z

2
in

[]

ε
u

S
n

v i

z 1 h
i

M
4

:=
λ
v 0
λ
v 1
λ
v 2
w

(S
x

)M
3

le
t
z 3

:=
S
x
in

le
t
z 4

:=
{|M

3
|}(
x
w
z 3

)
in

[]
〈z

4
.
v 1
,

z 4
.
v 2
〉

u
S
n

w
z 4
.
u

S
n

z 3
M

5
:=
λ
lI

nd
le

fq
(λ
x
λ
lλ
p′
M

4
)

λ
ll
e
t
z 5

:=
R

L
(N

)l
�

(λ
x
λ
lλ
x
p
′
{|M

4
|})

in
[]

z 5
x

u
S
n
,w

z 5
.
•

M
S

:=
λ
u

S
n
pM

5
λ
x

S
n
le
t
h

4
:=
{|M

5
|}
in

le
t
h

5
:=

h
4
x
in

le
t
z 6

:=
h

4
(x

p
h

5
)
in

[]

z 6
.
u

S
n

w p
z 6
.
w

h
5

M
6

:=
λ
m
λ
w

1
λ
w

2
u

0
(m

:)
A

xT
(λ
k

ef
q)

(λ
k
w

2
)

λ
m

[]
ε

u
0

m
:

M
0

:=
λ
u

0
w

0M
6

λ
x

0
le
t
z 7

:=
0
in

le
t
z 8

:=
{|M

6
|}(
x
w
z 7

)
in

[]
z 8

w
z 7

M
1

:=
In

d
n
M

0
(λ
n
λ
p
M

S
)

λ
y
le
t
z 9

:=
R

N
n
{|M

0
|}(λn

λ
p
le
t
x
p

:=
px

in

[[M
S
]][
〈 [[M

S
]]+
,p
h

5
y
w ./

[[M
S
]]− w

〉]) yi
n

[]

z 9
x

w
z 9
y

M
2

λ
〈q
,k
〉l
e
t
k
′
:=

S
k
in

[]
k
u ./
k
′

M
7

:=
λ
lλ
v 0
λ
v 1
λ
v 2
v
lv

0
v 1

(M
2
qv

2
)

λ
ll
e
t
z 1

0
:=

x
v
l
in

le
t
z 1

1
:=
{|M

2
|}
〈q
,z

1
0
y〉

in
[]

〈z
1
0
x,
z 1

1
〉

v
l

M
8

:=
λ
q
λ
w
M

1
M

7
λ
〈q
,x

w
〉l
e
t
z 1

2
:=
{|M

7
|}
in

[[M
1
]](
z 1

2
x)

[l
e
t
z 1

3
:=

[[M
1
]]+

in
[]
]

[[M
1
]]− w

v
z 1

2
yz

1
3

M
:=
λ
r
λ
f
λ
z
λ
n
λ
v
L
rf
zM

8
λ
〈r
,f
,n
,x

v
〉l
e
t
z 1

4
:=
{|M

8
|}
in

le
t
z 1

5
:=
{|L
|}
〈r
,f
,z

1
4
x〉

in
[]

〈z
1
5
y,
z 1

4
y(
z 1

5
x)
〉

T
ab
le
4.
3:

Q
ua
si
-l
in
ea
r
ex
tr
ac
ti
on

fr
om

U
nb

ou
nd

ed
P
ig
eo
nh

ol
e
P
ri
nc
ip
le

108

CHAPTER

FIVE

DIALECTICA INTERPRETATION WITH FINE

COMPUTATIONAL CONTROL

Computational interpretations, such as modi�ed realisability or Dialectica, aim at
extracting the maximal amount of algorithmic information from a proof, regardless
if this information is required or redundant. One example of such an irrelevant
computation is a function, which produces the same result when applied to every
possible value of its argument type. Finding such semantical dependencies in general
is not an easy task, however a simple syntactic criterion for detecting some of these
redundancies is to search for parts of the program which have super�uous parameters,
i.e., terms of the form λx r with x /∈ FV(r). If such a function is applied to any other
term t, then the result of evaluating t will be lost, so t is redundant subterm and its
evaluation is unnecessary.
In [Ber05] Berger showed that in modi�ed realisability such redundancies in the

extracted program can appear due to introductions of ∀x , such that the variable
x appears only in terms which are not used in a computational manner. Non-
computational variants of quanti�ers with only logical meaning, i.e., computation-

ally uniform quanti�ers, were shown to be interpretable and their use in the proofs
leads to discarding redundant parameters in the extracted programs. A concrete
example in [Ber05] of a proof of totality of the list reversal function demonstrated
that removal of redundant parameters can decrease time complexity of the extracted
program under strict evaluation.
Following this idea, Hernest transferred the concept of uniform quanti�ers to the

Dialectica interpretation [Her07a, Her07b]. Because the Dialectica interpretation ex-
tracts more computational information than modi�ed realisability, the need for using
uniform quanti�ers becomes even stronger. In particular, they can be used to avoid
redundant case distinctions. On the other hand, the use of uniform quanti�ers can
lead to an undecidable translation, which imposes additional restrictions. However,

109

5 Dialectica interpretation with �ne computational control

a recent joint work by Hernest and the author showed that the dual nature of the Di-
alectica interpretation allows for two independent sorts of computational uniformities
for the universal quanti�er [HT10]. This result was further extended to implication,
allowing for a vast variety of combinations and a very �ne level of computational
control [Tri09].

In this chapter a �ne computational version of the quasi-linear interpretation will
be presented. It will be shown how the uniform quanti�ers can be used to optimise the
extracted programs from Chapter 3. Moreover, the �ner uniform connectives allow
modelling modi�ed realisability inside the Dialectica interpretation in a similar way
as suggested by Hernest and Oliva in [HO08]. The results in the present chapter are
mainly based on [Tri09], but are adjusted to the interpretation from Chapter 4, which
allows for a more systematic treatment of the uniform annotations of implication.

5.1 Examples of redundant computation

The main motivation for introducing the uniform quanti�ers was to remove redun-
dant parameters in programs extracted via modi�ed realisability. This need can be
illustrated by the following simple example, which is an adaptation of an example
given by Monika Seisenberger.

Example 5.1. Let us consider the simple statement that the square of every even
number must be divisible by four. Formally,

A := ∀n∀m
(
n = 2m→ ∃k (n2 = 4k)

)
There are two essentially di�erent constructive proofs of this statement, namely

M1 := λnλmλun=2m
〈
m2, L1

〉
,

M2 := λnλmλun=2m
〈
n2/4, L2

〉
,

where L1 and L2 are the necessary equality lemmas and a/b denotes integer division.
Applying modi�ed realisability we obtain the following two programs

[[M1]]◦ ≡ λnλmm2,

[[M2]]◦ ≡ λnλm (n2/4).

Obviously, both programs have a redundant parameter: n in [[M1]]◦ and m in [[M2]]◦.
This super�uity may not seem very harmful if we consider the statement out of
context. However, the situation is more di�erent when the proofs Mi are used as
lemmas in a larger proof. Then the corresponding programs [[Mi]]

◦ will be applied to

110

5.1 Examples of redundant computation

some terms tn and tm computing n and its half m respectively, while in fact only one
of them is needed depending on which of the proofs was used.
The reason for this phenomenon is that the parameters n and m are connected by

the equality n = 2m and thus the value of one of them is determined by the value
of the other. One way to �x the redundancy is to omit one of the parameters by
rephrasing the statement, for example as

B := ∀n
(
2(n/2) = n→ ∃k (n2 = 4k)

)
.

However, this approach is not desirable for at least two reasons:

1. the modi�cation needs to be done by hand,
2. the modi�cation induces a respective possibly non-trivial change in the proofs

which use the statement as a lemma.

Instead, we would like to have an instrument, which allows to insert annotations in
the statement in a way to denote lack of computational meaning. This can be done by
using a uniform quanti�er ∀U . We impose the restriction that the proof λxM : ∀UxA

is valid only if x does not appear in M computationally, i.e., x /∈ FV([[M]]◦). Then
we have two possibilities for annotating the formula A:

A1 := ∀Un∀m
(
n = 2m→ ∃k (n2 = 4k)

)
,

A2 := ∀n∀Um
(
n = 2m→ ∃k (n2 = 4k)

)
.

Mi is a valid proof for Ai, but not for A3−i. Moreover, the proof Mi of the origi-
nal statement A determines uniquely a �maximal� annotation Ai, which removes all
possible redundancies, without removing additional content.
Note that A can be equivalently formulated as

C := ∀n
(
∃m (n = 2m)→ ∃k (n2 = 4k)

)
.

This form of the statement has two similar proofs

N1 := λnλv∃m (n=2m) ∃ −v(λmλun=2m
〈
m2, K1

〉
),

N2 := λnλv∃m (n=2m) ∃ −v(λmλun=2m
〈
n2/4, K2

〉
),

from which we can extract the programs

[[N1]]◦ = λnλm (λxλf fx)m(λm
〈
m2, K1

〉
),

[[N2]]◦ = λnλm (λxλf fx)m(λm
〈
n2/4, K2

〉
)).

It is easy to see that [[Mi]]
◦ are the normal forms of the programs [[Ni]]

◦ and thus the

111

5 Dialectica interpretation with �ne computational control

latter su�er from the same de�ciencies as the former. In order to repair the problem
for [[N2]]◦, we would need to use the uniform version of the existential quanti�er ∃U .
Similarly to its universal counterpart, it signi�es computational irrelevance of the
claimed witness. The respective restriction is on the elimination rule, which allows
elimination ∃ −M∃UxA(λxλuAN) only if x is not used computationally in N , i.e.,
x /∈ FV([[N]]◦).

A natural question to consider is whether such optimisations are possible when
extracting from proofs which use non-constructive principles. Berger already showed
in his paper [Ber05] how uniform quanti�ers can improve programs obtained from
a proof from contradiction. This was possible, because the extraction method was
re�ned A-translation, which is essentially based on modi�ed realisability. The �rst
adaptation of the uniform quanti�ers to the Dialectica interpretation was given by
Hernest [Her07b] and was called �Light Dialectica interpretation�. Hernest noticed
that there is a substantial di�erence in the uniformity restrictions, compared to the
simpler case of modi�ed realisability. Dialectica collects not one, but two orthogonal
pieces of computational information � witnesses and counterexamples, where the
witnesses are functions taking counterexample candidates as parameters. The main
problem arises from the requirement for a quanti�er-free Dialectica translation |A|xy .
Consider an assumption ∀UxA with ∀Ux denoting a uniform universal quanti�er.

Its Dialectica translation is
∣∣∀UxA

∣∣r
u

:= ∀x |A|ru, which means that the witness r:

(+) does not depend on x, but
(−) needs to be valid for all possible values for x

However, if the assumption ∀UxA is used more than once, then we will not be
able to decide which of the extracted counterexamples for u should be used for r.
On the other hand, it might turn out that r solves the formula without using any

counterexamples of A. In this case we could convert all positively occurring universal
quanti�ers in A to uniform and we will be able to produce a more e�cient program,
which does not produce any counterexamples for A at all, and hence requires no case
distinctions. The described situation leads to the following restriction, de�ned by
Hernest in [Her07b], which is unique to the Dialectica interpretation:

If an assumption A is used more than once and requires counterexamples,
its formula cannot contain the universal uniform quanti�er ∀U .

Because of the dual nature of the Dialectica interpretation, it turns out that more
re�ned variants of the uniform quanti�ers can be considered. Hernest and the au-
thor observed that the conditions (+) and (−) above can be imposed separately and
independently for each quanti�er occurrence. This gives rise to four di�erent sorts of
universal quanti�ers, considered in [HT10]: one fully computational, one fully uni-
form, and two semi-uniform quanti�ers: only positively and only negatively uniform,

112

5.1 Examples of redundant computation

respectively. The idea for the semi-uniform quanti�ers was inspired by the following
motivating example due to Paulo Oliva.

Example 5.2. Consider a predicate P on natural numbers and the statement that
if P holds for in�nitely many natural numbers, then P holds for numbers which are
arbitrarily apart. Formally,

∀x ∃̃y (y > x ∧̃P (y))→ ∀d ∃̃n1, n2 (n2 > n1 + d ∧̃P (n1) ∧̃P (n2)).

A proof of the statement needs to use the assumption twice, once for an arbitrary x,
say 0, to obtain n1 and then once more for x := n1 + d to obtain n2:

M := λuλdλv u0 (λn1 λw
n1>0
1 λz

P (n1)
2

u(n1 + d)(λn2 λw
n2>n1+d
2 λz

P (n2)
2 vn1n2w2z1z2)), where

u : ∀x ∃̃y (y > x ∧̃P (y)),

v : ∀n1 ∀n2 (n2 > n1 + d→ P (n1)→ P (n2)→ F).

The program extracted from M using the quasi-linear Dialectica interpretation is

{|M |} a
= λf λd let x1 := 0 in let n1 := fx1 in

let x2 := n1 + d in let n2 := fx2 in
〈
〈n1, n2〉 , x1

u
./ x2

〉
, where

x1
u
./ x2 ≡ Cases (n1 > x1 ∧ (|P (n1)|)εε)at x2 x1.

The term {|M |} contains simultaneously positive and negative information about
the proof: on one hand, it computes the witnesses for ∃̃n1, n2 and on the other it
computes a single counterexample for ∀x , using a case distinction on the Dialectica
translation of the predicate P .
In case M is a part of a larger proof, similarly to the In�nite Pigeonhole Principle

in Section 3.3, then we could need the counterexample index for x in order to obtain
a backtracking e�ect. However, it might happen that M is used in a context, where
only the positive witness pair 〈n1, n2〉 is needed. Then computing the case distinction
x1

u
./ x2 is redundant and might be computationally expensive, depending on the form

of P . Moreover, if P is an undecidable predicate, then we will not be able to interpret
the statement, which should not be the case if we want to obtain only the positive
witnesses, which do not depend on the form of P .
The most obvious idea to separate only the positive half of {|M |} is to disable the

computational content of x by marking ∀Ux . However, this would mean that y does
not computationally on x, i.e., it is a constant. This is clearly impossible, as there is
no natural number larger than every natural number (including itself). Even though
that there is no violation of the uniformity constraints,M would be unusable as there
would be no way to prove its premise.

113

5 Dialectica interpretation with �ne computational control

The example demonstrates the dual nature of Dialectica witnesses. On one hand,
x is a parameter of the function f (positive meaning), and on the other, it might be a
counterexample to the correctness of the function f (negative meaning). In this case
we would like to discard the negative meaning of x while keeping its positive meaning.
This can be achieved by introducing two independent uniformities, as suggested in
[HT10], each corresponding to separately requiring one of (+) and (−) above. The
solution to this example is to require only (−) and not (+), i.e., to use a negatively
uniform, yet positively computational quanti�er. Then we would obtain the following
program:

λf λd let n1 := f0 in let n2 := f(n1 + d) in 〈n1, n2〉 .

It is worth noting that by discarding the counterexample for x in the example
above, we e�ectively obtain the same content, which we would have obtained by
applying modi�ed realisability to a constructive formulation of the proof:

M ′ := λuλd∃ −(u0)(λn1 λw1 λz2 ∃ −(u(n1 + d))(λn2 λw2 λz2 〈n1, n2, w2, z1, z2〉).

We should also note that the semi-uniform quanti�er is only meaningful if the positive
computational content of the quanti�ed formula is non-trivial, otherwise it would not
make sense to take special care to preserve the anyway void positive dependency of
the quanti�ed variable.

An interesting question to consider is whether we can use the Dialectica interpre-
tation to mimic the behaviour of modi�ed realisability on negatively formulated but
essentially constructive proofs, by applying the new semi-uniform annotations. It
turns out that the annotations on the uniform quanti�ers are not su�cient, as can
be demonstrated by an example, similar to Example 5.2.

Example 5.3. Let Q(n,m) be a binary predicate on N and consider the formula

∀m (∃̃nQ(n,m)→ ∃̃nQ(n, Sm))→ ∃̃nQ(n, 0)→ ∃̃nQ(n, 2).

The obvious proof of this statement uses the premise twice:

M := λu∀m (∃̃nQ(n,m)→∃̃nQ(n,Sm)) λv
∃̃nQ(n,0)
0 u1(u0v0).

The extracted program is presented below:

{|M |} a
= λfN⇒N⇒N λn0

 let m0 := 0 in let n1 := fm0n0 in

let m1 := 1 in let n2 := fm1n1 in〈
n2, 〈m0, n0〉

u
./ 〈m1, n1〉

〉


114

5.1 Examples of redundant computation

We are faced with the same situation as in Example 5.2: the program {|M |} computes
a complicated counterexample, which might not be needed. However, in this case the
negative content of the assumption u is formed by two components: a counterexample
for m and a counterexample for n such that Q(n,m). An attempt to mark both
quanti�ers ∀n and ∃̃m as computationally irrelevant would reduce the function f to
a constant, implying that in fact ∃̃n∀mQ(n,m), which clearly reduces the generality
of the formula. Hence, we should aim at applying a �ner uniform annotation.
Since ∃̃nQ(n,m) = ¬∀n¬Q(n,m) and ¬Q(n,m) does not require witnesses, the

semi-uniform quanti�er has the same e�ect as the ordinary fully uniform quanti�er
for n. On the other hand, a semi-uniform annotation only for ∀m is not su�cient,
because the negative computational content of u would still be non-trivial, due to the
presence of positive content of the antecedent. Moreover, the situation is actually
worse: the application of the semi-uniform annotation to ∀n is not sound anymore,
as it would introduce a universal quanti�er in the Dialectica translation of u, while
still requiring challenges, thus making it impossible to perform a case distinction over
it.
The only solution seems to involve de�ning uniform annotations on implication

that control the quantity of negative computational content being generated by its
antecedent and by its consequent. In this case we would like to discard the negative
computational contribution of the antecedent ∃̃nQ(n,m), i.e., the generated coun-
terexample for n, while keeping its positive computational contribution so that the
function f remains binary, depending on both m and n. Thus, by applying re�ned
uniform annotations to both the universal quanti�er and the implication we obtain
the simpli�ed content

λfN⇒N⇒N λn0 f1(f0n0).

In fact, this is the pure positive content of the proof M , which would be obtained
by applying modi�ed realisability to the constructive alternative:

M ′ := λu∀m (∃nQ(n,m)→∃nQ(n,Sm)) λv
∃nQ(n,0)
0 u1(u0v0).

Note that due to the duality of computational content in the Dialectica interpre-
tation, we might also need to discard the negative contribution of the consequent of
the implication. This can be seen if the example above is reformulated as follows:

∀m (∀n¬Q(n, Sm)→ ∀n¬Q(n,m))→ ∃̃nQ(n, 0)→ ∃̃nQ(n, 2).

The di�erence here is that when using the premise, the dependency between the
negative contents is what matters computationally. We are faced with the same
problem as above. In order to resolve it, we need to keep the positive contribution

115

5 Dialectica interpretation with �ne computational control

of the negative content of ∀n¬Q(n,m), but to disable its negative meaning, so that
no counterexample is extracted.
A similar example can be constructed, where we need to combine both types of

semi-uniform application in order to achieve the desired e�ect.

In the following sections we will de�ne and examine in more detail the uniform an-
notations that allow for very �ne computational control over the extracted programs.
We will also demonstrate how the new annotations will be su�cient for modelling
modi�ed realisability in the context of the Dialectica interpretation.
There are other approaches for restricting the computational content in the Dialec-

tica interpretation and in particular for simulating modi�ed realisability by extracting
only positive computational content. Oliva has shown that substructural logics, such
as linear logic, present a suitable framework for unifying various functional inter-
pretations [Oli08]. Expanding on the idea, Oliva and Hernest showed that di�erent
interpretations of the linear modalities can soundly coexist within the same proof,
roughly corresponding to local decisions whether to discard certain parts of its com-
putational content [HO08]. Thus a hybrid interpretation is obtained, one extreme of
which is the original Dialectica interpretation, and the other is modi�ed realisability.
Later in the chapter we will discuss some relations between the di�erent approaches
for controlling computational content.

5.2 Notions of uniformity for the quasi-linear

Dialectica interpretation

The uniform annotations of Hernest [Her07b, Her07a] as well as their re�nements
[HT10, Tri09] were presented in terms of the original Dialectica interpretation. A
simple intuitive explanation behind the idea for semi-uniform quanti�ers can be given
using the positive and negative computational types τ+(A) and τ−(A). Every uniform
�ag corresponds to removing a component of the computational type: an argument

type in the case of a positively uniform �ag or a factor of a product type in the case
of a negatively uniform one. The �ne uniform annotations for the original Dialectica
interpretation and the respective discarded type components are displayed in Figure
5.1, using the notation from [Tri09].
In the case of the quasi-linear Dialectica interpretation presented in Chapter 4,

the duality between computational types is made extremely explicit. Namely, the
negative computational type σ−(A) is directly used as the (only) parameter to the
common de�nition context of type σ−(A) ⇒ �. As a result, the achieved factoring
of types, which is favourable for controlling the size of the extracted term, has a
restrictive e�ect on uniform annotations. Since we use a de�nition context to merge

116

5.2 Notions of uniformity for the quasi-linear Dialectica interpretation

τ+(∀xA) = ρ︸︷︷︸
+

∀

⇒ τ+(A) τ−(∀xA) = ρ︸︷︷︸
−
∀

× τ−(A)

τ+(A→ B) = (τ+(A)︸ ︷︷ ︸
#−→

⇒ τ+(B))× (τ+(A)︸ ︷︷ ︸
±−→

⇒ τ−(B)︸ ︷︷ ︸
=−→

⇒ τ−(A))

τ−(A→ B) = τ+(A)︸ ︷︷ ︸
−→
+

× τ−(B)︸ ︷︷ ︸
−→
−

Figure 5.1: Uniformity annotations for the original Dialectica interpretation

common parameters, their separate roles in the computational content cannot be so
easily discerned, as opposed to the original variant of the interpretation. Therefore,
we have less possibilities for expressing computational uniformities.

Due to the tight connection between positive and negative content in the quasi-
linear variant of the interpretation, if we disable the negative computational meaning
of a component in σ−(A), we automatically disable also its positive computational
meaning in σ∗(A) = σ−(A)⇒ σ+(A). In fact, we disable the respective component in
the whole de�nition context of type σ−(A)⇒ �. In the case of A = ∀xρB, discarding
ρ from σ−(A) corresponds exactly to the full uniform quanti�er considered by Hernest
[Her07b]. If A = B → C, we can similarly discard σ∗(B) from σ−(A), which can
be seen as a fully uniform implication, similar to the one de�ned by Ratiu and
Schwichtenberg for modi�ed realisability [RS09]. Hence, fully uniform connectives
have a very natural and easy representation in the new variant of the interpretation.

The situation with semi-uniform annotations is more complicated. When positive
and negative extracted terms are de�ned simultaneously, it does not seem possible
to consider the positive and negative contributions of a certain component indepen-
dently of each other. However, in Section 4.1 we showed that semi-uniform quanti�ers
are very meaningful in certain cases, even when the quasi-linear variant of the in-
terpretation is being used. In order to clarify the role of semi-uniform annotations,
let us consider the three possible uniform annotations on the universal quanti�er,
speci�ed in Table 5.1.

+

∀ positively uniform (|
+

∀xA|)rs = (|A [x := sx] |)rsy
−
∀ negatively uniform (|

−
∀xA|)rs = ∀x (|A|)r◦xs

±
∀ fully uniform (|

±
∀xA|)rs = ∀x (|A|)rs

Table 5.1: Uniform annotations for ∀xA

117

5 Dialectica interpretation with �ne computational control

+

∀ would be used in case we would like to remove the computational dependency
of x on the positive content r of A, but still allow to specify a counterexample of it,
namely sx. However, when interpreting an

+

∀ -introduction in the general case where
we have open assumptions Ci, the computed challenges {|M |}−i can still depend on
x. Since the positive content of

+

∀xA and the negative content of the assumptions
are computed simultaneously by {|M |}, the fact that the component {|M |}+ does not
contain x is of little importance. Indeed, a challenge for x needs to be anyway applied
to the common context [[M]] in order to compute {|M |}−i , which depend on x, even
if [[M]]+ does not. By this argument, it is obvious that in the setting of common
contexts positive uniformity plays no special role and thus will be not be considered.
We should note that in the original interpretation the positively uniform �ags also
have a minor cleaning e�ect and are thus termed �weak� in [Tri09]. In the quasi-linear
variant of the interpretation the cleaning e�ect of these �weak� �ags is subsumed by
the use of common de�nition contexts and thus they become redundant.

The fully uniform quanti�er
±
∀ can be used when the variable x has neither pos-

itive nor negative meaning. As explained above, this can be achieved by de�ning
σ−(

±
∀xA) := σ−(A) and thus discarding x both as a parameter in the shared de�-

nition context, and as a constructed counterexample when
±
∀xA is being used as an

assumption.

Example 5.2 explains a case in which we need a negatively uniform quanti�er
−
∀ .

However, in order to interpret it, we need to loosen the connection between its two
uses: as a type of an extracted counterexample, and as a argument type in the
de�nition context. We would like to be able to disable the former, while keeping the
latter. This can be done by introducing a semi-negative computational type σ_(A),
which collects the components discarded by the negative uniform �ags in σ−(A). The
de�nition context will still use σ−(A), but the �asterisk� type σ∗(A) will be extended
to depend on an additional parameter of type σ_(A), which will keep the positive use
of the discarded components. On the other hand, the extracted context-dependent
counterexample programs [[M]]−i will be of the fully negative computational type
σ−(Ci), which takes into account components discarded by any uniform �ags.

5.3 Uniform annotations

We consider a system NAω, which extends the formula language of NAω by allowing
di�erent variants of the connectives ∀ and → obtained by annotating them with
uniformity �ags. We consider two uniform variants of the universal quanti�er:

−
∀ ,
±
∀

and �ve uniform variants of the implication
−−−→, −−−→, − −−−→, ±−−→, ± −−−→. We will use

•∀ and
•−→ to denote a connective with some arbitrary (including empty) annotation.

118

5.3 Uniform annotations

De�nition 5.4 (Pure variant). For every formula A in NAω we de�ne its pure variant
A• ∈ NAω by deleting all uniform annotations in A. Formally,

(at(t))• := at(t),

(A
•−→ B)• := A• → B•,

(
•∀xB)• := ∀xA•.

First, let us de�ne how the computational types are changed in the presence of
uniformity �ags. The negative type σ−(A) will be a�ected by all uniformity �ags. We
will introduce the semi-negative computational type, which will collect dependencies
for the positive type σ+(A). The positive computational type will need to be modi�ed
accordingly in the case of implication.

De�nition 5.5. Let A a formula in NAω. We de�ne the negative σ−(A), semi-
negative σ_(A) and positive computational types of A by simultaneous induction.
We also de�ne σ^(A) := σ_(A) ⇒ σ+(A) and extend the de�nition of σ∗(A) :=

σ−(A)⇒ σ^(A).

A σ−(A) σ_(A) σ+(A)

at(t) I I I

∀xρB ρ× σ−(B) σ_(B) σ+(B)
−
∀xρB σ−(B) ρ× σ_(B)
±
∀xρB σ−(B) σ_(B)

B → C σ∗(B)× σ−(C) I σ^(C)× σ−(B)

B
−−−→ C σ−(C) σ∗(B)

B
−−−→ C σ∗(B) σ−(C)

B
− −−−→ C I σ∗(B)× σ−(C)

B
±−−→ C σ−(C) I

B
± −−−→ C I σ−(C)

Note that by altering the de�nition of σ∗(A) we departed from our goal in Chapter
4 not to use curried functions. However, this change is necessary, as the de�nition of
computational types in Section 4.5 depended on a full duality between the positive
and negative computational types. The use of semi-uniform �ags destroys this duality
and consequently we need to express two di�erent kinds of dependencies, which is
re�ected in the de�nition of σ∗(A). Even with this division of dependencies the quasi-
linear bound will still hold, as we e�ectively introduce only one new parameter of
type σ_(A), regardless of the depth of the formula. It is easy to see that De�nition
5.5 is indeed an extension of De�nition 4.13, as shown by the following proposition.

119

5 Dialectica interpretation with �ne computational control

Proposition 5.6. For A ∈ NAω we have σ_(A) = I and hence σ^(A) = σ+(A).

Proof. Induction on the de�nition of A.

Since σ∗(A) now has two parameters, we sometimes will need to partially apply to
a function of type σ∗(A) to a component of its second parameter σ^(A). Hence, we
introduce a second kind of partial application, de�ned as follows:

fρ⇒σ⇒τ◦◦t := λxρ (fx ◦ t), where x is a fresh variable.

We are now ready to de�ne the Dialectica translation on NAω.

De�nition 5.7. For A ∈ NAω, terms r : σ∗(A) and s : σ_(A) we extend the
Dialectica translation (|A|)rs as follows:

A (|A|)rs
at(t) at(t)

∀xρB (|B [x := sx] |)r◦sxsy
−
∀xρB ∀x (|B|)r◦◦xs
±
∀xρB ∀x (|B|)rs
B → C (|B|)sxrsy → (|C|)(r◦sx)x

sy

B
−−−→ C ∀x

(
(|B|)xrsxy → (|C|)(r◦◦x)x

s

)
B

−−−→ C ∀x
(
(|B|)srsxy → (|C|)rsxx

)
B
− −−−→ C ∀x

(
(|B|)xxrxy → (|C|)(r◦xx)x

xy
)

B
±−−→ C ∀x

(
(|B|)xrsy → (|C|)rxs

)
B
± −−−→ C ∀x

(
(|B|)xxr(xy)y → (|C|)rxxy

)
Proofs in NAω have the same structure as proofs of NAω where the only di�erence

is in the formula language being used. All annotated variants of a given connec-
tive are introduced and eliminated via the same rules as their original unannotated
counterpart. Note that we require that the connectives in the induction axioms
C, IndN, IndL(ρ) remain unannotated, however they can be now instantiated with any
formula A ∈ NAω.
In order to prove soundness of uniform annotations, we need to impose appro-

priate restrictions regarding the annotated connectives. There will be two types of
restrictions:

1. decidability conditions for Dialectica translations on which a case distinction
is needed, and

2. variable conditions for extracted terms on introduction rules.

The �rst set of conditions can be imposed solely on the syntactic form of assumptions.

120

5.3 Uniform annotations

De�nition 5.8 (Partially uniform formula). A formula C ∈ NAω is partially uniform
if C 6= C• and σ−(C) 6= I. Note that a formula is not partially uniform when it is
has no uniform annotations (C ∈ NAω) or when it has enough uniform annotations
to not require challenges (σ−(C) = I).

De�nition 5.9. A proof P in NAω is uniformly interpretable if for every needed case

distinction
u:C
./ , the formula C has no uniform annotations. Formally, we require that

for every subproof M of P :

1. when M = M1M2, every shared assumption uC ∈ FA(M1) ∩ FA(M2) is not
partially uniform;

2. when M = Indn,AN nM1 (λnλu0M2) or M = Indl,AL(ρ) l M1 (λxλl λu0M2), every
step assumption uC ∈ FA(M2) is not partially uniform.

The second set of uniformity conditions depends on the notion of extracted terms
in proofs in NAω. Hence, we will �rst extend the de�nition of extracted terms to the
annotations by de�ning the following three components:

1. a de�nition context [[M]] : σ−(A)⇒ �
2. a context-dependent positive witnessing term [[M]]+ : σ^(A)

3. context-dependent negative witnessing terms [[M]]−i : σ−(Ci)

In order to ensure correctness of the construction
u
./ , we need to require that

the proof M is uniformly interpretable. The de�nition of the extracted terms is
summarised in Table 5.2. As in Theorem 4.23, we assume that PA is a proof term in
NAω with assumptions among {ui : Ci}i≥1 and that we have fresh witnessing variables
X = {xi : σ∗(Ci)}, each one associated uniquely with an assumption variable ui.

De�nition 5.10 (Uniformity restrictions). Let P be a uniformly interpretable proof
in NAω. P is computationally correct if every introduction of an annotated connective
satis�es the following restrictions

rule �ags restriction

λxM
−
∀ x /∈

⋃
FV({|M |}−i y)

±
∀ x /∈FV({|M |})

λu0M
−−−→ x0 /∈

⋃
FV({|M |}−i y)

−−−→ y /∈
⋃

FV({|M |}−i y)
− −−−→ x0, y /∈

⋃
FV({|M |}−i y)

±−−→ x0 /∈FV({|M |})
± −−−→ x0 /∈FV({|M |})

y /∈
⋃

FV({|M |}−i y)

For all restrictions above we consider the normal forms of the extracted terms.

121

5 Dialectica interpretation with �ne computational control

P
�a
gs

[[P
]]

[[P
]]+

[[P
]]− i

λ
x
ρ
M

∀
λ
◦ x

[[M
]]

[[M
]]+

[[M
]]− i

− ∀
[[M

]]
λ
◦ x

[[M
]]+

[[M
]]− i

± ∀
[[M

]]
[[M

]]+
[[M

]]− i

M
t

∀
[[M

]]
◦
t

[[M
]]+

[[M
]]− i

− ∀
[[M

]]
[[M

]]+
◦
t

[[M
]]− i

± ∀
[[M

]]
[[M

]]+
[[M

]]− i

λ
u

0
M

→
λ
◦ x

0
[[M

]]
〈 [[M

]]+
,[
[M

]]− 0

〉
[[M

]]− i
− −−
→

[[M
]]

λ
x

0

〈 [[M
]]+
,[
[M

]]− 0

〉
[[M

]]− i
−

−−
→

λ
x

0
le
t
f

:=
{|M
|}
in

[]
λ
y
〈f
y
x,
f
y
.

0〉
(f

�
)
.
i

−
−

−−
→

le
t
f

:=
λ
◦ x

0
{|M
|}
in

[]
λ
y
〈f
y
x,
f
y
.

0〉
(f

�
)
.
i

± −−
→

[[M
]]

〈 [[M
]]+
,[
[M

]]− 0

〉
[[M

]]− i
±
−

−−
→

le
t
f

:=
{|M
|}
in

[]
λ
y
〈f
y
x,
f
y
.

0〉
(f

�
)
.
i

M
1
M

2
→

le
t
f

:=
{|M

2
|}
in

[[M
1
]]
◦

(f
x)

[l
e
t
z

:=
[[M

1
]]+

in
[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

− −−
→

le
t
f

:=
{|M

2
|}
in

[[M
1
]][
le
t
z

:=
[[M

1
]]+

(f
x)

in
[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

−
−−
→

λ
y
le
t
f

:=
{|M

2
|}
in

[[M
1
]](
f
x)

[l
e
t
z

:=
[[M

1
]]+
y
in

[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

−
−

−−
→

λ
y
le
t
f

:=
{|M

2
|}
in

[[M
1
]][
le
t
z

:=
[[M

1
]]+
〈f
x,
y
〉
in

[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

± −−
→

le
t
f

:=
{|M

2
|}
in

[[M
1
]][
le
t
z

:=
[[M

1
]]+

in
[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

±
−

−−
→

λ
y
le
t
f

:=
{|M

2
|}
in

[[M
1
]][
le
t
z

:=
[[M

1
]]+
y
in

[]
]

zx
[[M

1
]]− i

i ./
f

(z
y)
.
i

T
ab
le
5.
2:

E
xt
ra
ct
ed

te
rm

s
in

N
A
ω

122

5.4 Soundness of uniform annotations

5.4 Soundness of uniform annotations

Below we present the soundness theorem of the quasi-linear Dialectica interpretation
for the system NAω. The only notable di�erence from Theorem 4.23 is that we
consider computationally correct proofs only. We should note that every proof in
NAω is computationally correct for trivial reasons. Proposition 5.6 guarantees that
the present formulation of soundness is indeed an extension of Theorem 4.23.

Theorem 5.11 (Soundness of uniform annotations). Let A ∈ NAω be a formula and

let PA be a computationally correct proof term with assumptions among {ui : Ci}i≥1.

Let us have fresh witnessing variables X = {xi : σ∗(Ci)}, each one associated uniquely
with an assumption variable ui and let yA : σ−(A) be a fresh challenging variable

associated uniquely with the formula A. Then there is a term {|P|} and a proof

P : (|A|){|P|}
+

pA , such that

1. FA(P) ⊆
{
vi : (|Ci|)xi{|P|}−i yA

}
,

2. FV({|P|}) ⊆ FV(P) ∪X,

3. d{|P|}e ≤ K(dPeddPee2) for a �xed constant K, not depending on P,

Proof. First, we note that the de�nitions of the Dialectica translation (|A|)rs and
the extracted terms {|P|} for the unannotated connectives coincide with the ones
considered in Section 4.5. Hence, it is su�cient to only consider the introduction
and elimination rules for the uniform annotated connectives; the rest of the cases are
proved exactly as in Theorem 4.23.
Case λxρMB :

•∀xρB. By induction hypothesis we have a proof of M : (|B|){|M |}
+

yB

with assumptions wi : (|Ci|)xi{|M |}−i yB . We can substitute ξ := [yB := yA] and then

de�ne P := λxMξ with vi := wiξ. We will show that the de�nition of P is correct
for each of the uniform annotations.
Subcase

−
∀ . By de�nition we have {|P|}−i ≡ {|M |}

−
i and

(|
−
∀xB|){|P|}

+

yA
= ∀x (|B|){|P|}

+◦◦x
yA

= ∀x (|B|)λyB [[P]]yB [[[P]]+◦x]
yA

= ∀x (|B|){|M |}
+

yA
.

The uniformity condition guarantees that x /∈ FV(vi), so the universal introduction
in P is correct and the free variable condition for {|P|} is satis�ed. Also, d{|P|}e ≤
d{|M |}e+ 6.
Subcase

±
∀ . By de�nition {|P|} ≡ {|M |}, hence

(|
±
∀xB|){|P|}

+

yA
= ∀x (|B|){|P|}

+

pA
= ∀x (|B|){|M |}

+

pA
.

The uniformity condition guarantees that x /∈ FV({|M |}), hence x /∈ FV(vi) and the
universal introduction in P is correct. The free variable condition and the size bounds
trivially hold.

123

5 Dialectica interpretation with �ne computational control

Case M
•∀xρBtρ. Let C :=

•∀xB. By induction hypothesis we have M : (|C|){|M |}
+

yC

with assumptions wi : (|Ci|)xi{|M |}−i yC . We can substitute ξ := [yB := yA] and then

de�ne P := Mξt with vi := wiξ. We will show that the de�nition of P is correct for
each of the uniform annotations.

Subcase
−
∀ . By de�nition we have {|P|}−i ≡ {|M |}

−
i and

(|
−
∀xB|){|M |}

+

yA
= ∀x (|B|){|M |}

+◦◦x
yA

= ∀x (|B|)λyB [[M]]yB [[[M]]+◦x]
yA

.

The free variable condition is satis�ed since FV({|P|}) = FV({|M |}) ∪ FV(t) and we
also have d{|P|}e ≤ d{|M |}e+ dte+ 4.

Subcase
±
∀ . By de�nition {|P|} ≡ {|M |}, hence

(|
±
∀xB|){|M |}

+

yA
= ∀x (|B|){|M |}

+

pA
= ∀x (|B|){|P|}

+

pA
.

The free variable condition and the size bounds trivially hold.

Case λuB0 M
C : B

•−→ C. By induction hypothesis we have a proof term M :

(|C|){|M |}
+

yC with assumptions w0 : (|B|)x0{|M |}−0 yC and wi : (|Ci|)xi{|M |}−i yC for i ≥ 1.

Subcase
−−−→. By de�nition we have {|P|}−i ≡ {|M |}

−
i for i ≥ 1 and

(|B −−−→ C|){|P|}
+

yA
= ∀x0

(
(|B|)x0{|P|}+yAx0y → (|C|)({|P|}+◦◦x0)x

yA

)
= ∀x0

(
(|B|)x{|P|}+yAx0y → (|C|)λyC [[P]]yC [[[P]]+x0]x

yA

)
= ∀x0

(
(|B|)x{|M |}−0 yA → (|C|){|M |}

+

yA

)
.

We can substitute ξ := [yA := yC] and then de�ne P := λx0 (λw0M)ξ with vi := wiξ.
The uniformity condition guarantees that the universal introduction in P is correct
and that FV({|P|}) ⊆ FV({|M |}) \ {x0}. Also, d{|P|}e ≤ d{|M |}e+ 2.

Subcase
−−−→. By de�nition we have

{|P|}−i yA
r
= let x0 := yA in let yC := � in {|M |}yC . i

(by Proposition 4.20)
r
= let x0 := yA in let yC := � in {|M |}−i yC

(since yC /∈ FV({|M |}−i yC)
r
= {|M |}−i yCξ, and

(|B −−−→ C|){|P|}
+

yA
= ∀x

(
(|B|)yA{|P|}+yAxy → (|C|){|P|}

+yAx
x

)
= ∀x

(
(|B|)yA{|M |}−0 xξ → (|C|)λyC {|M |}

+yCξ
x

)
,

where ξ := [x0 := yA]. Hence, we de�ne P := λyC (λw0M)ξ with vi := wiξ. The
uniformity condition guarantees that the universal introduction in P is correct. The
free variable condition holds since FV({|P|}) ⊆ FV({|M |}) \ {x0}. Also,

124

5.4 Soundness of uniform annotations

d[[P]]+e ≤ ddPee+ 10, d[[P]]−i e ≤ ddPee+ 4,

d[[P]]e ≤ d{|M |}e+ 4, hence

d{|P|}e ≤ d{|M |}e+ ddPee2 + 5ddPee+ 13,

assuming that d�e = 1, since we can introduce constants for canonical inhabitants.
Subcase

− −−−→. By de�nition we have

{|P|}−i ε
r
= let x0 := � in let yC := � in {|M |}yC . i

(by Proposition 4.20)
r
= let x0 := � in let yC := � in {|M |}−i yC

(since x0, yC /∈ FV({|M |}−i yC)
r
= {|M |}−i yC , and

(|B − −−−→ C|){|P|}
+

yA
= ∀x

(
(|B|)xx{|P|}+xy → (|C|)({|P|}+◦xx)x

x

)
= ∀x

(
(|B|)xx{|M |}−0 yCξ → (|C|){|M |}

+ξ
xy

)
,

where ξ := [x0 := xx] [yC := xy]. Hence, we de�ne P := λx (λw0M)ξ with vi := wiξ.
The uniformity condition guarantees that the universal introduction in P is correct.
The free variable condition holds since FV({|P|}) ⊆ FV({|M |}) \ {x0}. Also,

d[[P]]+e ≤ ddPee+ 10, d[[P]]−i e ≤ ddPee+ 4,

d[[P]]e ≤ d{|M |}e+ 9, hence

d{|P|}e ≤ d{|M |}e+ ddPee2 + 5ddPee+ 18.

Subcase
±−−→. By de�nition we have {|P|}+x

r
= {|M |}+, {|P|}+y

r
= {|M |}−0 and

{|P|}−i = {|M |}−i for i ≥ 1, hence

(|B ±−−→ C|){|P|}
+

yA
= ∀x

(
(|B|)x{|P|}+yAy → (|C|){|P|}

+x
yA

)
= ∀x

(
(|B|)x{|M |}−0 yA → (|C|){|M |}

+

yA

)
.

We can substitute ξ := [yC := yA] and de�ne P := λx0 (λw0M)ξ with vi := wiξ. The
uniformity condition guarantees that the universal introduction in P is correct, and
the free variable condition and the size bounds trivially hold.
Subcase

± −−−→. By de�nition we have

{|P|}−i ε
r
= let yC := � in {|M |}yC . i

(by Proposition 4.20)
r
= let yC := � in {|M |}−i yC

(since yC /∈ FV({|M |}−i yC)
r
= {|M |}−i yC , and

(|B ± −−−→ C|){|P|}
+

yA
= ∀x

(
(|B|)xx{|P|}+(xy)y → (|C|){|P|}

+x
xy

)
= ∀x

(
(|B|)xx{|M |}−0 (xy) → (|C|){|M |}

+

xy

)
,

125

5 Dialectica interpretation with �ne computational control

We can substitute ξ := [x0 := xx] [yC := xy] and de�ne P := λx (λw0M)ξ with
vi := wiξ. The uniformity condition guarantees that the universal introduction in P
is correct and that the free variable condition holds. Also,

d[[P]]+e ≤ ddPee+ 10, d[[P]]−i e ≤ ddPee+ 4,

d[[P]]e ≤ d{|M |}e+ 3, hence

d{|P|}e ≤ d{|M |}e+ ddPee2 + 5ddPee+ 12.

Case MC
•−→A

1 MC
2 . Let us de�ne B := C

•−→ A. By induction hypothesis we have

M1 : (|B|){|M1|}+
yB

with assumptions w′i : (|Ci|)xi{|M1|}−i yB
and

M2 : (|C|){|M2|}+
yC

with assumptions w′′i : (|Ci|)xi{|M2|}−i yC
.

Regardless of the uniform annotation, {|P|}−i yA will always have the form E[t1
Ci
./ t2].

Since the proof P is unformly interpretable, the formula Ci is not partially uniform,
which guarantees that we can still soundly apply Lemma 4.22. Following the proof
of Theorem 4.23, let us assume that by Lemma 4.22 we have proof terms Q(j)

i :

(|Ci|)xi
t1

i
./ t2
→ (|Ci|)xitj for j = 1, 2. By Proposition 4.5 we have a substitution Ξ, which

is such that E[t] = tΞ. Thus we obtain Q(j)
i Ξ : (|Ci|)xi

E[t1
i
./ t2]
→ (|Ci|)xiE[tj]

. Finally, we

de�ne ηj,i :=
[
w

(j)
i := Q(j)

i Ξvi

]
. We will make use of those notations during the proof

of each of the subcases. The free variable condition and the size bounds will hold as
in Theorem 4.23, so we will focus only on validity.

Subcase
−−−→. By de�nition and Proposition 4.20 we have

(|C −−−→ A|){|M1|}+
yB

= ∀x
(
(|C|)x{|M1|}+yBxy

→ (|A|)({|M1|}+◦◦x)x
yB

)
= ∀x

(
(|C|)x{|M1|}+yBxy

→ (|A|)λyB [[M1]]yB [[[M1]]+x]x
yB

)
,

{|P|}+ r
= [[M1]][[[M1]]+{|M2|}+x]

r
= {|M1|}+{|M2|}+x,

{|P|}−i yA
r
= E[t1

Ci
./ t2], where

E := [[M1]]yA, t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+{|M2|}+y),

E[t1]
r
= {|M1|}−i yA,

E[t2]
r
= {|M2|}−i ({|M1|}+yA{|M2|}+y).

We will thus use the substitutions

ξ1 := [yB := yA] for M1,

ξ2 :=
[
yC := {|M1|}+yA{|M2|}+y

]
for M2,

126

5.4 Soundness of uniform annotations

and de�ne

P := P1{|M2|}+P2, where Pj := M jξj~ηj for j = 1, 2.

Subcase
−−−→. By de�nition and Proposition 4.20 we have

(|C −−−→ A|){|M1|}+
yB

= ∀x
(
(|C|)yB{|M1|}+yBxy

→ (|A|){|M1|}+yBx
x

)
{|P|}+ r

= λyA [[M1]]{|M2|}+[[[M1]]+yAx]
r
= {|M1|}+{|M2|}+x,

{|P|}−i yA
r
= E[t1

Ci
./ t2], where

E := [[M1]]{|M2|}+, t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+yAy),

E[t1]
r
= {|M1|}−i {|M2|}+,

E[t2]
r
= {|M2|}−i ({|M1|}+{|M2|}+yAy).

We will thus use the substitutions

ξ1 :=
[
yB := {|M2|}+] for M1,

ξ2 :=
[
yC := {|M1|}+{|M2|}+yAy

]
for M2,

and de�ne

P := P1yAP2, where Pj := M jξj~ηj for j = 1, 2.

Subcase
− −−−→. By de�nition and Proposition 4.20 we have

(|C − −−−→ A|){|M1|}+
yB

= ∀x
(
(|C|)xx{|M1|}+xy → (|A|)({|M1|}+◦xx)x

xy

)
,

{|P|}+ r
= λyA [[M1]][[[M1]]+

〈
{|M2|}+, yA

〉
x]

r
= ({|M1|}+ ◦ {|M2|}+)x,

{|P|}−i yA
r
= E[t1

Ci
./ t2], where

E := [[M1]], t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+
〈
{|M2|}+, yA

〉
y),

E[t1]
r
= {|M1|}−i ,

E[t2]
r
= {|M2|}−i ({|M1|}+ 〈{|M2|}+, yA

〉
y).

We will thus use the substitutions

ξ1 := [] for M1,

ξ2 :=
[
yC := {|M1|}+ 〈{|M2|}+, yA

〉
y
]

for M2,

and de�ne

127

5 Dialectica interpretation with �ne computational control

P := P1

〈
{|M2|}+, yA

〉
P2, where Pj := M jξj~ηj for j = 1, 2.

Subcase
±−−→. By de�nition and Proposition 4.20 we have

(|C ±−−→ A|){|M1|}+
yB

= ∀x
(
(|C|)x{|M1|}+yBy

→ (|A|){|M1|}+x
yB

)
,

{|P|}+ r
= [[M1]][[[M1]]+x]

r
= {|M1|}+x,

{|P|}−i yA
r
= E[t1

Ci
./ t2], where

E := [[M1]]yA, t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+y),

E[t1]
r
= {|M1|}−i yA,

E[t2]
r
= {|M2|}−i ({|M1|}+yAy).

We will thus use the substitutions

ξ1 := [yB := yA] for M1,

ξ2 :=
[
yC := {|M1|}+yAy

]
for M2,

and de�ne

P := P1{|M2|}+P2, where Pj := M jξj~ηj for j = 1, 2.

Subcase
± −−−→. By de�nition and Proposition 4.20 we have

(|C ± −−−→ A|){|M1|}+
yB

= ∀x
(
(|C|)xx{|M1|}+(xy)y → (|A|){|M1|}+x

xy

)
,

{|P|}+ r
= λyA [[M1]][[[M1]]+yAx]

r
= {|M1|}+x,

{|P|}−i yA
r
= E[t1

Ci
./ t2], where

E := [[M1]], t1 := [[M1]]−i , t2 := {|M2|}−i ([[M1]]+yAy),

E[t1]
r
= {|M1|}−i ,

E[t2]
r
= {|M2|}−i ({|M1|}+yAy).

We will thus use the substitutions

ξ1 := [] for M1,

ξ2 :=
[
yC := {|M1|}+yAy

]
for M2,

and de�ne

P := P1

〈
{|M2|}+, yA

〉
P2, where Pj := M jξj~ηj for j = 1, 2.

128

5.5 Properties of uniform annotations

5.5 Properties of uniform annotations

5.5.1 Separating computational content

The uniform �ags can be used as switches to control computational content on a
very �ne level. By appropriate use of the semi-uniform negative annotations we
can completely discard positive content of a given formula, while fully preserving its
negative content and vice versa.

De�nition 5.12 (Content-discarding translations). Let A be a formula in NAω. We
de�ne the NAω formulas A⊕ and A	, which fully discard the positive and negative
computational meanings of A respectively, while preserving the opposite content.

(at(t))⊕ := at(t) (∀z B)⊕ := ∀z B⊕ (B → C)⊕ := B	 → C⊕

(at(t))	 := at(t) (∀z B)	 :=
−
∀z B	 (B → C)	 := B

− −−−→ C

Intuitively, in A	 we use semi-uniform �ags to inductively discard only negative
content and then apply this annotation for implication premises in A⊕.

Proposition 5.13. Let A be a formula in NAω. Then

1. σ+(A⊕) = σ−(A) = I

2. σ−(A⊕) = σ−(A)

3. σ∗(A) = σ∗(A)

Proof. Simultaneous induction on A. Let us consider only the implication case.

σ+((B → C)⊕) = σ^(C⊕)× σ−(B) = I× I = I,

σ−((B → C)) = σ−(B
− −−−→ C) = I,

σ−((B → C)⊕) = σ∗(B)× σ−(C⊕) = σ∗(B)× σ−(C) = σ−(B → C),

σ∗((B → C)) = σ−(B
− −−−→ C)⇒ σ_(B

− −−−→ C)⇒ σ+(B
− −−−→ C)

= I⇒ (σ∗(B)× σ−(C))⇒ (σ^(C)× σ−(B))

= σ−(B → C)⇒ σ+(B → C) = σ∗(B → C).

In the last line we used that by Proposition 5.6 σ^(C) = σ+(C) since C ∈ NAω.

Remark 5.14. Note that the de�nitions of (B → C)⊕ and (B → C)	 are not sym-
metric. An obvious question is �Why not de�ne (B → C)	 := B⊕ → C	?� Then we
would obviously still have σ−(B⊕ → C) = I. However,

σ∗(B⊕ → C) = σ−(B⊕ → C)⇒ σ_(B⊕ → C)⇒ σ+(B⊕ → C)

= I⇒ I⇒ σ+(C)× σ−(B) = σ+(B → C),

129

5 Dialectica interpretation with �ne computational control

which is in general not the same as σ∗(B → C). In other words, we would have
discarded the positive contribution of the negative content of the implication, thus
failing to fully preserve the positive content of B → C.

An important consequence of using uniform �ags in the Dialectica interpretation
is that the verifying system is not anymore the quanti�er-free fragment NAω

0 , but the
full NAω. In other words, the Dialectica translations of NAω formulas have a non-
trivial Dialectica translation. The reason for this phenomenon is that the e�ect of
removing positive or negative content is achieved by �pushing� the content from the
formula to its translation. The Dialectica translation of a formula with no uniform
annotations is always quanti�er-free and hence void of any computational meaning.
However, the translation of a NAω formula might itself have nonempty positive or
negative computational type. Thus by applying the interpretation a second time
we should be able to partially recover the removed content. We will show that
discarded negative content can be fully recovered by a second application of the
interpretation. However, for positive content we will not be able to syntactically
obtain a witness for A from a witness of (|A⊕|)y. We will show a weaker statement
that from a computationally correct proof of A⊕ we can extract a witness for the
original formula A.

Theorem 5.15. Let A be a formula in NAω. Then

1. (|A	|)xε ↔ ∀y (|A|)xy
2. σ−((|A⊕|)εy) = σ+((|A	|)xε) = I,

3. σ−((|A	|)xε) = σ−(A),

4. (|(|A	|)xε |)εy = (|A|)xy

Proof. Induction on the de�nition of A.
Case at(t). Trivial.
Case ∀z B. By de�nition

(|(∀z B)	|)xε = (|
−
∀z B	|)xε = ∀z (|B	|)x◦zε

(by induction hypothesis) ↔ ∀z ∀y′ (|B|)x◦zy′ ↔ ∀y (|B [z := yx] |)x◦yxyy

= ∀y (|∀z B|)xy ,
σ−((|(∀z B)⊕|)εy) = σ−((|∀z B⊕|)εy) = σ−((|B⊕ [z := yx] |)εyy) = I,

σ+((|A	|)xε) = σ+(∀z (|B	|)x◦zε) = I,

σ−((|(∀z B)	|)xε) = σ−(∀z (|B	|)x◦zε) = ρ× σ−((|B	|)x◦zε)

(by induction hypothesis) = ρ× σ−(B) = σ−(∀z B),

(|(|(∀z B)	|)xε |)εy = (|∀z (|B	|)x◦zε |)εy
= (|(|B	 [z := yx] |)x◦yxε |)εyy

130

5.5 Properties of uniform annotations

(by induction hypothesis) = (|B [z := yx] |)x◦yxyy = (|∀z B|)xy .

Case B → C. By de�nition

(|(B → C)	|)xε = (|B − −−−→ C|)xε = ∀y
(
(|B|)yxxyy → (|C|)(x◦yx)x

yy

)
= ∀y (|B → C|)xy ,

σ−((|(B → C)⊕|)εy) = σ−((|B	|)yxε → (|C⊕|)εyy)
= σ∗((|B	|)yxε)× σ−((|C⊕|)εyy) = I× I = I,

σ+((|(B → C)	|)xε) = σ+(∀y (|B → C|)xy) = σ+((|B → C|)xy) = I,

σ−((|(B → C)	|)xε) = σ−(∀y (|B → C|)xy) = (σ∗(B)× σ−(C))× I = σ−(B → C),

(|(|(B → C)	|)xε |)εy = (|∀y (|B → C|)xy |)εy = (|(|B → C|)xy |)εε = (|B → C|)xy .

Note that none of the claims about (B → C)	 required the induction hypothesis.

In order to show that we can recover positive content as well, we will need to prove
a more general statement allowing open assumptions.

Lemma 5.16. Let P be a proof of (|A⊕|)εyA with assumptions among
{
ui : (|C	i |)xiε

}
i≥1

for a set of fresh witnessing variables X = {xi : σ∗(Ci)}, each one associated uniquely
with an assumption variable ui and a fresh challenge variable yA : σ−(A) associated

uniquely with the formula A. Then there is a term {|P⊕|} and a proof P⊕ : (|A|){|P
⊕|}+

yA

in NAω
0 , such that

1. FA(P⊕) ⊆
{
vi : (|Ci|)xi{|P⊕|}−i yA

}
,

2. FV({|P⊕|}) ⊆ FV(P) ∪X \ {yA},

Proof. Induction on the de�nition of A⊕.
Case at(t). We apply the Dialectica interpretation to the proof P and by The-

orem 4.23 obtain the terms {|P|} and a proof P of at(t) with assumptions vi :

(|(|C	i |)xiε |)ε{|P|}−i ε, which by Theorem 5.15 are in fact vi : (|Ci|)xi{|P|}−i . We thus set

{|P⊕|} := {|P|} and P⊕ := P . The variable condition is trivially satis�ed.
Case ∀xB⊕. Let us consider the proof M := P [yA := 〈x, yB〉] of (|∀xB⊕|)ε〈x,yB〉 =

(|B⊕|)εyB . We can apply the induction hypothesis to M and obtain a term {|M⊕|}
and a proof M⊕ of (|B|){|M

⊕|}+
yB . We thus set [[P⊕]] := λ◦x [[M⊕]], [[P⊕]]

+
:= [[M⊕]]

+,
[[P⊕]]

−
i = [[M⊕]]

−
i . The variable condition is satis�ed, since by induction hypothesis

yB /∈ {|M⊕|}. Since by de�nition (|∀xB|){|P
⊕|}+

〈x,yB〉 = (|B|){|M
⊕|}+

yB , we can set P⊕ :=

M⊕ [x := yAx] [yB := yAy].
Case B	 → C⊕. By de�nition (|B	 → C⊕|)εyA = (|B	|)yAxε → (|C⊕|)εyAy. We apply

the induction hypothesis to the proof M := P [yA := 〈x0, yC〉]u0 with u0 : (|B	|)x0ε a

fresh assumption variable. We obtain a term {|M⊕|} and a proof M⊕ of (|C|){|M
⊕|}+

yC

with assumptions v0 : (|B|)x0{|M⊕|}−0 yC and vi : (|Ci|)xi{|M⊕|}−i yC for i ≥ 1. We set [[P⊕]] :=

131

5 Dialectica interpretation with �ne computational control

λ◦x0 [[M⊕]], [[P⊕]]
+

:=
〈
[[M⊕]]

+
, [[M⊕]]

−
0

〉
, [[P⊕]]

−
i := [[M⊕]]

−
i for i ≥ 1. The variable

condition is satis�ed, since by induction hypothesis yC /∈ {|M⊕|}. Finally, we de�ne
P⊕ := (λv0M⊕) [x0 := yAx] [yC := yAy], which is a proof of (|B → C|){|P

⊕|}+
yA .

Lemma 5.16 is su�cient to show that we can recover the positive content discarded
in provable formulas A⊕.

Theorem 5.17. Let A be a formula in NAω and let P be a computationally correct

proof of A⊕. Let y : σ−(A) be a fresh challenging variable. Then there is a term t

such that y /∈ FV(t) and (|A|)ty is provable in NAω
0 .

Proof. By Theorem 5.11 we obtain a proof P : (|A⊕|)εy. By Lemma 5.16 we can set

t := {|P⊕|}, since y /∈ FV({|P⊕|}) and we have a proof P⊕ of (|A|){|P
⊕|}

y in NAω
0 .

5.5.2 Modeling modi�ed realisability

The semi-uniform �ags allow us to completely switch o� the negative computational
meaning of formulas while fully preserving their positive content. Next, we will
demonstrate that via a di�erent translation involving the semi-uniform annotations
we can disable the negative computational content of formulas in such a way that
their positive meaning is the same as with modi�ed realisability. By this we will be
e�ectively able to simulate modi�ed realisability within the Dialectica interpretation.
The modi�ed realisability is de�ned in the larger system HAω, hence we will com-

bine semi-uniform �ags with the weak translation from Section 1.4.

De�nition 5.18. Let A be a formula in HAω. We de�ne its realisability translation

A◦ as follows:

(at(t))◦ := at(t),

(B → C)◦ := B◦
−−−→ C◦,

(∀xB)◦ :=
−
∀xB◦,

(B ∧ C)◦ := B◦ ∧̃C◦,
(∃xB)◦ := ∃̃xB◦.

Proposition 5.19. Let A be a formula in HAω. Then σ−(A◦) = I and hence

σ∗(A◦) = σ^(A◦).

Proof. Induction on the de�nition of A.

σ−((at(t))◦) = σ−(at(t)) = I,

σ−((B → C)◦) = σ−(B◦
−−−→ C◦) = σ−(C◦) = I,

132

5.5 Properties of uniform annotations

σ−((∀xB)◦) = σ−(
−
∀xB◦) = σ−(B◦) = I,

σ−((B ∧ C)◦) = σ−((B◦ → C◦ → F)→ F) = σ∗(B◦ → C◦ → F) = I, since

σ+(B◦ → C◦ → F) = (σ−(C◦)× σ^(F))× σ−(B◦) = (I× I)× I = I,

σ−((∃xB)◦) = σ−(∃̃xB◦) = σ∗(∀x¬B◦) = I, since

σ+(∀x¬B◦) = σ+(¬B◦) = σ^(F)× σ−(B◦) = I× I = I.

We will observe that the types σ^(A◦) and τ ◦(A) are isomorphic. We will de�ne
a two-way term translation (·)l◦ transforming terms between the two types. Before
presenting the de�nition, let us establish some useful relations for the types σ^(A◦).

Proposition 5.20. Let B,C be formulas in HAω. Then

1. σ^((B → C)◦) = σ^(B◦)⇒ σ^(C◦),

2. σ^((∀xB)◦) = ρ× σ_(B◦)⇒ σ+(B◦),

3. σ^((B ∧ C)◦) = σ^(B◦)× σ^(C◦),

4. σ^((∃xB)◦) = ρ× σ^(B◦).

Proof. By unfolding the de�nitions, we verify that

σ^((B → C)◦) = σ_(B◦
−−−→ C◦)⇒ σ+(B◦

−−−→ C◦)

= σ∗(B◦)⇒ σ^(C◦)× σ−(B◦)

= σ^(B◦)→ σ^(C◦),

σ^((∀xB)◦) = σ_(
−
∀xB◦)⇒ σ+(

−
∀xB◦) = ρ× σ_(B◦)⇒ σ+(B◦),

σ^((B ∧ C)◦) = σ+((B◦ → C◦ → F)→ F) = σ−(B◦ → C◦ → F)

= σ^(B◦)× σ^(C◦),

σ^((∃xB)◦) = σ+(¬∀x¬B◦) = σ−(∀x¬B◦)
= ρ× σ−(¬B◦) = ρ× σ^(B◦).

De�nition 5.21 (Realisability transformations). Let A be a formula in HAω. By
simultaneous induction on A we de�ne transformations (·)l◦, which transform terms
of the respective computational types, as shown on Figure 5.2.

A t↑◦ t↓◦

at(r) ε ε

B → C λx (tx↓◦)↑◦ λx (tx↑◦)↓◦

∀xB λx (t ◦ x)↑◦ λ◦x (tx)↓◦

B ∧ C
〈
(tx)↑◦, (ty)↑◦

〉 〈
(tx)↓◦, (ty)↓◦

〉
∃xB

〈
tx, (ty)↑◦

〉 〈
tx, (ty)↓◦

〉
It is not hard to see that the two transformations are dual.

133

5 Dialectica interpretation with �ne computational control

τ ◦(A)

◦

σ^(A◦)

◦

JJ

Figure 5.2: Realisability transformations

Lemma 5.22. Let A be a formula in HAω. Then for any terms r : σ^(C◦) and
s : τ ◦(C) we have (r↑◦)↓◦

r
= r and (s↓◦)↑◦

r
= s.

Proof. A syntactic exercise by induction on the de�nition.

Theorem 5.23. Let A be a formula in HAω and let t : τ ◦(A). Then (|A◦|)t↑◦ε ↔ t r A.

Proof. Induction on the de�nition of the formula A.
Case at(r). Trivial.
Case B → C. By de�nition we have

(|(B → C)◦|)t↑◦ε = (|B◦ −−−→ C◦|)t↑◦ε = ∀x ((|B◦|)xε → (|C◦|)t↑◦xε)

↔ ∀z ((|B◦|)z↑◦ε → (|C◦|)(tz)↑◦

ε)↔ ∀z (z r B → tz r C) = t r (B → C).

Case ∀xB. By de�nition we have

(|(∀xB)◦|)t↑◦ε = (|
−
∀xB◦|)t↑◦ε = ∀x (|B◦|)t↑◦◦xε

= ∀x (|B◦|)(tx)↑◦

ε ↔ ∀x (tx r B) = t r ∀xB.

Case B ∧ C. By de�nition we have

(|(B ∧ C)◦|)t↑◦ε = (|(B◦ → C◦ → F)→ F|)t↑◦ε = ¬(|B◦ → C◦ → F|)εt↑◦
= (|B◦|)t↑◦xε ∧̃(|C◦|)t↑◦yε ↔ (tx r B) ∧̃(ty r C)↔ t r B ∧ C.

Case ∃xB. By de�nition we have

(|(∃xB)◦|)t↑◦ε = (|∃̃xB◦|)t↑◦ε = ¬(|∀x¬B◦|)εt↑◦ = ¬(|¬B◦
[
x := t↑◦x

]
|)εt↑◦y

= ¬¬(|B◦ [x := tx] |)(ty)↑◦
ε ↔ ty r B [x := tx] = t r ∃xB.

Remark 5.24. The de�nition of the translation (·)◦ is possible in the context of the
original Dialectica interpretation, using an appropriate variant of the uniform anno-
tations. If we had not insisted on removing redundant computations via the quasi-
linear variant of the interpretation, then we would have obtained a more direct result,

134

5.6 Case studies revisited

namely that τ+(A◦) = τ ◦(A) and |A|tε = t r A instead of isomorphism and equiva-
lence, respectively.

Remark 5.25. In the Dialectica interpretation we can still recover the original uni-
form quanti�ers for modi�ed realisability, as de�ned by Berger. Namely, we can
de�ne (∀UxB)

◦
:=

±
∀xB◦ and (∃UxB)

◦
:= ¬

±
∀x¬B◦. Moreover, we can also de�ne a

uniform implication, as the one proposed by Ratiu and Schwichtenberg in [RS09], by

postulating that (B
U−→ C)

◦
:= B◦

±−−→ C◦.

5.6 Case studies revisited

In this section we will revisit two of the case studies and will demonstrate how we can
use uniform quanti�ers to remove redundant parameters and simplify the extracted
programs.

5.6.1 Integer root

The integer root example was formalised as follows:

∀fNS ∀gNS ∀mN (∀nN (f(gn) > n)→ ¬(f0 > m)→ ∃̃nN (¬(fn > m) ∧̃ f(Sn) > m)),

M := λf λg λmλu ∀n (f(gn)>n)λv ¬(f0<m)λw∀n (¬(fn>m)→¬(f(Sn)>m))

Indn,¬(fn>m) (gm) v w (um)

As noted in Section 3.2, the Dialectica interpretation extracts more information
than modi�ed realisability for the integer root example. Namely, apart from a witness
for ∃̃n , a counterexample for ∀n was also extracted. If we would like to omit the
counterexample from the extracted term, we would need to signify that ∀n has no
computational meaning. This can be achieved by using the annotated variant

−
∀n :

∀fNS ∀gNS ∀mN (
−
∀nN (f(gn) > n)→ ¬(f0 > m)→ ∃̃nN (¬(fn > m) ∧̃ f(Sn) > m))

The proof M of the statement will be computationally correct, as the assumption
u :

−
∀nN f(gn) > n participates only in universal elimination, which is subject to no

uniformity restrictions. Note that we can equivalently use the full uniform quanti�er
±
∀n , as the quanti�ed formula f(gn) > n has no positive content, hence the positive
contribution of n does not matter.
The (very unlikely) alternative is to preserve only the counterexample and discard

the witness. This e�ect can also be achieved, but we need to use the semi-uniform

existential quanti�er
−

∃̃n := ¬
−
∀n¬. However, here we have to be more careful, be-

cause the assumption w :
−
∀n (¬(fn > m)→ ¬(f(Sn) > m)) can no longer be directly

135

5 Dialectica interpretation with �ne computational control

used as the induction step, as the induction axiom does not involve any uniform
annotations! This obstacle can be easily overcome by replacing w with the proof
λnwn : ∀n (¬(fn > m)→ ¬(f(Sn) > m)), which redundantly eliminates n and rein-
troduces it computationally. The uniform restrictions are satis�ed, since w partici-
pates only in universal elimination. Note that w has no computational content, so
the induction axiom also has no content anymore. In particular, the only parameter,
which is used computationally is m. Thus, we can also use uniform quanti�ers

±
∀f

and
±
∀g as follows:

±
∀fNS ±∀gNS ∀mN (∀nN (f(gn) > n)→ ¬(f0 > m)→

−

∃̃nN (¬(fn > m) ∧̃ f(Sn) > m))

Now the extracted content will be trivial: λmm. Note that in order to soundly
introduce an annotation, we needed to change the proof. This could be avoided, if
we introduce uniform variants of the induction axioms, which use uniform quanti�ers
only and can be used with formulas with no computational content.

5.6.2 In�nite Pigeonhole Principle

In Section 3.3, we noted that the obtained term {|M |} for the In�nite Pigeonhole Prin-
ciple contained redundant parameters, which unnecessarily polluted the extracted
program with computations, which would never be executed. We can now use ap-
propriate uniform annotations to discard these computations and reduce the pro-
gram. We already tracked the source of the redundancies in the formulas Decr(l, n),
Same(l, n) and Col(q, l, n). Let us instead de�ne:

Decr(l, n) :=
−
∀k (k < n→ lSk < lk),

Same(l, n) :=
−
∀k (k < n→ flk = flSk),

Col(q, l, n) :=
−
∀k (k < Sn→ flk = q).

As in the previous example, we could have also equivalently used
±
∀k , since the

formula kernels have no computational content. The uniform quanti�ers cause the
assumptions v1 and v2 in the proofs M and MS to require no challenges. Thus the
universal introductions in M ′

S and M ′′
S are computationally correct and these proofs

have no longer any computational meaning. A similar e�ect can be seen in the proof
M2, where the assumption u : Col(q, l, n) has no computational meaning and thus
the universal introduction of k is computationally correct.
The extraction from the Unbounded Pigeonhole Principle after applying the uni-

form annotations is displayed in Table 5.3. The optimisations from Chapters 4 and
5 �nally allow us to display the full program {|M |} on a single page in Figure 5.3.

136

5.6 Case studies revisited

P
[[P

]]
[[P

]]+
•

[[P
]]− •

M
(i

)
S

λ
k

[]
ε

M
3

:=
λ
m
λ
w

1
λ
w

2
u

S
n
(m

::
x
::
l)
v 0
M
′ S
M
′′ S

λ
m
le
t
z 1

:=
m
::
x
::
l
in

[]
ε

u
S
n

z 1
M

4
:=
λ
v 0
λ
v 1
λ
v 2
w

(S
x

)M
3

le
t
z 3

:=
S
x
in

le
t
z 4

:=
{|M

3
|}(
x
w
z 3

)
in

[]
ε

u
S
n

w
z 4 z 3

M
5

:=
λ
lI

nd
le

fq
(λ
x
λ
lλ
p′
M

4
)

λ
ll
e
t
z 5

:=
R

L
(N

)l
�

(λ
x
λ
lλ
x
p
′
{|M

4
|})

in
[]

ε
u

S
n
,w

z 5
.
•

M
S

:=
λ
u

S
n
pM

5
λ
x

S
n
le
t
z 6

:=
{|M

5
|}x

p
in

[]
z 6
.
u

S
n

w
z 6
.
w

M
6

:=
λ
m
λ
w

1
λ
w

2
u

0
(m

:)
A

xT
(λ
k

ef
q)

(λ
k
w

2
)

λ
m

[]
ε

u
0

m
:

M
0

:=
λ
u

0
w

0M
6

le
t
z 7

:=
0
in

le
t
z 8

:=
{|M

6
|}(
x
w
z 7

)
in

[]
z 8

w
z 7

M
1

:=
In

d
n
M

0
(λ
n
λ
p
M

S
)

le
t
z 9

:=
R

N
n
{|M

0
|}(λn

λ
p
le
t
x
p

:=
px

in

[[M
S
]][
〈 [[M

S
]]+
,p
y
w ./

[[M
S
]]− w

〉]) in
[]

z 9
x

w
z 9
y

M
2

λ
〈q
,k
〉[

]
ε

M
7

:=
λ
lλ
v 0
λ
v 1
λ
v 2
v
lv

0
v 1

(M
2
qv

2
)

λ
l[

]
ε

v
l

M
8

:=
λ
q
λ
w
M

1
M

7
λ
〈q
,x

w
〉l
e
t
z 1

2
:=
{|M

7
|}
in

[[M
1
]][
le
t
z 1

3
:=

[[M
1
]]+

in
[]
]

[[M
1
]]− w

v
z 1

2
z 1

3

M
:=
λ
r
λ
f
λ
z
λ
n
λ
v
L
rf
zM

8
λ
〈r
,f
,n
〉l
e
t
z 1

4
:=
{|M

8
|}
in

le
t
z 1

5
:=
{|L
|}
〈r
,f
,z

1
4
x〉

in
[]

〈z
1
5
y,
z 1

4
y(
z 1

5
x)
〉

T
ab
le
5.
3:

Q
ua
si
-l
in
ea
r
ex
tr
ac
ti
on

fr
om

U
nb

ou
nd

ed
P
ig
eo
nh

ol
e
P
ri
nc
ip
le
w
it
h
un

if
or
m

an
no
ta
ti
on
s

137

5 Dialectica interpretation with �ne computational control

λ
〈r
,f
,n
〉

  le
t
z 1

4
:=

λ
〈q
,x

w
〉

        le
t
z 8

:=
λ
n
λ
p

      le
t
l

:=
px

in

le
t
z 5

:=

 R
l

�
(λ
x
λ
lλ
x
p
′

le
t
z 3

:=
S
x
in

〈x
w
z 3
::
x
::
l,
z 3
〉)

  in
〈 z 5
x,
py

w ./
z 5
y〉

      in

le
t
z 9

:=
R
n
〈x

w
0:
,0
〉z

8
in
〈z

9
y,
z 9
x〉

        in

le
t
z 1

5
:=

             R
r

(λ
〈f
,x

u
2
〉�

)(λ
r
λ
x
p
λ
〈f
,x

u
2
〉

le
t
g 3

:=
λ
n

1

   le
t
g 1

:=
λ
n

2
〈n

1
t
n

2
,n

1
t
n

2
〉
in

le
t
g 2

:=
λ
〈q
,x

w
〉
(le

t
z 2

:=
〈q
,λ
n

2
n

1
t
x
w
n

2
〉
in

〈x
u
2
z 2
,z

2
〉

) in

le
t
z 4

:=
x
p
〈f
dn

1
,g

2
x〉

in
〈g

1
(z

4
y)
x,
g 1

(z
4
y)
y,
g 2

(z
4
x)
y〉

   in
le
t
z 5

:=
〈r
,g

3
x〉

in

le
t
z 7

:=
g 3

(x
u
2
z 5

)
in
〈 z 5

u
2 ./
z 7
y,
z 7
x〉)

〈f
,z

1
4
x〉

             in

〈z
1
5
y,
z 1

4
y(
z 1

5
x)
〉

  
w
he
re

n
1
w ./
n

2
a =
le
t
m

:=
x
w
n

1
in

C
as

es
(T
→

(n
1
≤
m

)(
f
m

=
q)

)
n

2
n

1
,

〈q
1
,h

1
〉
u
2 ./
〈q

2
,h

2
〉
a =
le
t
n

:=
x
u
2
〈q

1
,h

1
〉
in

le
t
m

:=
h

1
n
in

C
as

es
(T
→

(n
≤
m

)(
f
m
6=
q 1

))
〈q

2
,h

2
〉
〈q

1
,h

1
〉.

F
ig
ur
e
5.
3:

Si
m
pl
i�
ed

pr
og
ra
m

ex
tr
ac
te
d
fr
om

th
e
U
nb

ou
nd

ed
P
ig
eo
nh

ol
e
P
ri
nc
ip
le

138

CHAPTER

SIX

DIALECTICA INTERPRETATION WITH MARKED

COUNTEREXAMPLES

A speci�c feature of the Dialectica interpretation which allows to embed classical
logic into a quanti�er-free constructive system is the extraction of counterexamples.
In NAω proving ∃̃xA amounts to using the assumption ∀x¬A to derive a contra-
diction. The non-trivial utilisation of classical logic occurs where this assumption is
used more than once. In the extracted term this corresponds to a decision between
several counterexamples y of the formula A by checking the validity of its quanti�er-
free translation |A|xy . An extreme example of this phenomenon is the interpretation
of induction, which corresponds to using the induction hypothesis an unbounded
number of times. This is re�ected by a case distinction on every recursive step in the
recursively de�ned programs for computing counterexamples for open assumptions.
However, there is a special case of the induction scheme in which a case analysis
on every step is redundant and, moreover, can lead to an unnecessary increase of
complexity.

In this chapter we identify the instances of induction in which redundant computa-
tions occur and propose a general solution to mitigate the ine�ciency by introducing
�ags, which determine counterexample validity. We prove that the approach is sound
and demonstrate its e�ectiveness on the In�nite Pigeonhole Principle case study. The
results in this chapter have been published in [Tri10a].

6.1 A special case of recursion

Let P := Indn,AN nM
A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2) be a proof by induction from assump-

tions ui : Ci. Consider the case where A requires no challenges, i.e., τ−(A) = I. For
the sake of simplicity, let us assume that we have only one open assumption u : C

139

6 Dialectica interpretation with marked counterexamples

and let us omit indices where possible. The soundness Theorem 2.21 for the original
Dialectica interpretation leads to the following two programs:

[[P]]+ ≡ RN n [[M1]]+ (λnλx0 [[M2]]+)

[[P]]− ≡ RN n [[M1]]−
(
λnλp ([[M2]]−ξ)

C
./ p
)
, for ξ :=

[
x0 := [[P]]+

]
.

Clearly, the computation of [[P]]− is not optimal, because for every occurrence of x0

in [[M2]]−, the recursive process for [[P]]+ is invoked. To avoid this redundancy, we
can apply Theorem 4.23 to obtain the following program:

{|P|} ≡ RN n {|M1|}
(
λnλp let x0 := px in [[M2]][

〈
[[M2]]+, [[M2]]−

C
./ py

〉
]
)
.

Combining positive and negative content in a single computation is already an im-
provement, because we need only one linear recursive process, as opposed to two
nested recursions in the program [[P]]− above. As a result, a program of lower worst
time complexity is obtained.

However, in this special case we can optimise even further. For a �xed n, {|P|}− can
be seen as performing a linear search for a counterexample for C among the n candi-
dates in the list Ln := ({|M1|}−, ({|M2|}−ξ′ [n := k])k<n−1), where ξ′ :=

[
x0 := {|P|}+].

Formally,

(|C|)x{|P|}− ↔
∧
k<n

(|C|)xLnk and ∃K < n
(
{|P|}− = LnK

)
.

This situation already occurred in the Integer Root example (Section 3.2) and in
the In�nite Pigeonhole Principle (Section 3.3), where the recursive computation of
counterexamples corresponded to a linear search. However, as noted before, there is
an important factor determining which of the counterexamples will be chosen. The
de�nition of ./ is asymmetric in the sense that it performs the case distinction on
the Dialectica translation for one of its operands only:

t1
C,x
./ t2 := let y := t1 in Cases (TCxy)t2y.

In particular, if t1 is returned as a result of the case distinction, then we already
have the implicit knowledge that t1 is indeed a valid counterexample. However, if
t2 is returned, we only know that t1 is not a valid counterexample, but we have no
information whatsoever about the validity of t2.

In its current form {|P|}− will always return the last valid counterexample in the
list Ln, i.e., such a K that ∀k > K (|C|)xLnk . As already remarked by Troelstra in the
foreword of Gödel's original paper [Göd58], a priori there is no particular reason why

140

6.2 Counterexample marking

we should prefer one counterexample to another. We can exploit this fact so that we
choose such a counterexample, which can be computed most e�ciently.

An ad-hoc idea would be to prefer the �rst valid counterexample from Ln, i.e.,
to �nd K such that ∀k < K (|C|)xLnk . We can easily achieve this by simply reversing

the operands of ./ in the de�nition of {|P|}−. Unfortunately, this trivial change
will not improve the e�ciency of the extracted program, because the recursion will
still perform n steps, computing all elements from the list Ln and performing n− 1

case distinctions. In order to remove redundant computation, it is clearly su�cient
to terminate the recursion as soon as we �nd the �rst index K for which ¬(|C|)xLnK .
Although this will not change the worst time complexity of the program, it might
improve its average time complexity when the expected value of K is lower than
O(n).

Such an earlier terminating search could be implemented by adding a boolean �ag
b, which speci�es whether a counterexample is already found. This can be done in
the following fashion:

{|P|} := RN n 〈{|M1|},ff〉
(
λnλp λb let x0 := px in [[M2]][

〈
[[M2]]+, [[M2]]−

b,C
n py

〉
]
)
,

where t1
b,C
n t2 := Cases b 〈t1, tt〉

(
Cases(TCxt1)〈t2,ff〉〈t1, tt〉

)
.

Note that the assumption σ−(A) = I is important, otherwise p would be a func-
tion, applied to the negative content [[M2]]−0 on each recursive step. In the general
case a choice would be made among two new counterexample candidates: [[M2]]−u
and p[[M2]]−0 y, both depending on the variable n. Therefore, the information that a
counterexample is found on an earlier step could not be used for early termination
of the recursion. On the other hand, in the special case described above we choose
among one new candidate [[M2]]−, which depends on the current value of n, and the
previous counterexample py.

In the following sections this trick will be generalised so that it can be soundly
integrated into the quasi-linear Dialectica interpretation from Chapter 4.

6.2 Counterexample marking

As discussed above, the programs extracted via the original Dialectica interpretation
do not take advantage of the information about the validity of a counterexample.
The case distinction construction t1

u
./ t2 forces a choice between two candidate coun-

terexamples t1 and t2 for the assumption u : C. This choice is made by a direct
check of the decidable Dialectica translation of the formula C instantiated with one

141

6 Dialectica interpretation with marked counterexamples

of the terms ti. What is not taken into account is that if the check con�rms that the
chosen candidate is indeed a counterexample, all further computation of witnesses
and counterexamples for C is pointless. In a certain sense, this can be viewed as
avoiding both

1. recomputation � the validity check of the counterexample is repeated if we
have more than two occurrences of the assumption C,

2. redundant computation � all further counterexamples and witnesses computed
are not needed for a sound veri�cation proof.

It is important to note that the de�nition context approach from Chapter 4 seems
inapplicable for avoiding such kind of recomputation. The reason is the underlying
di�erence between repeated subterms and the recomputation considered here. Term
duplication can be detected during the extraction process and using a shared context
is one possible method to avoid it. However, the counterexample decision occurs
during the evaluation of the program and, depending on the input parameters, re-
computation might or might not occur. Attempting to use a shared context would
imply precomputation of all possible case distinctions, which could be much worse
than recomputing only one case distinction.
We will thus follow a di�erent idea. As was already hinted in Section 6.1, an

additional marker will be attached to each extracted counterexample, carrying infor-
mation about its validity. The type of booleans B will be used as a type for markers.
New variants ρ+(A) and ρ−(A) of the computational types will be de�ned to accom-
modate the marker type by introducing a new marked computational type, de�ned as
ρ((A) := B× ρ−(A). The corresponding reformulation of the Dialectica translation
will be denoted as (||C||)xy .
For clarity, t I m := 〈m, t〉 will denote that t : ρ−(A) is marked by m. Conse-

quently, when we write t I m
r
= s, we will mean that m

r
= sx and t

r
= sy. The

markers have the following intended meaning:

• t I tt � we have no information yet about the validity of (||Ci||)xit ,
• t I ff � we have checked that ¬(||Ci||)xit ,

Remark 6.1. In this presentation we reduce the three markers suggested in [Tri10a]
to two. We have removed the marker signifying that t is an arbitrarily chosen coun-
terexample and its validity need not be checked. The reason is that this marker
complicates the interpretation, while its optimisational e�ect is negligible.

We are ready to incorporate the marker type in the Dialectica negative computa-
tional types as follows.

De�nition 6.2 (Marked computational types). For a formula A in NAω we rede�ne
the positive and negative computational types denoting the new variants as ρ+(A)

142

6.2 Counterexample marking

and ρ−(A). We will also denote ρ∗(A) := ρ−(A)⇒ ρ+(A) and ρ((A) := B× ρ−(A).
We de�ne:

ρ+(at(b)) := ε, ρ−(at(b)) := ε,

ρ+(B → C) := ρ+(C)× ρ((B), ρ−(B → C) := ρ∗(B)× ρ−(C)

ρ+(∀xσ B) := ρ+(B), ρ−(∀xσ B) := σ × ρ−(B).

The change in the positive type in the implication case of the translation leads to
a slight adjustment to the Dialectica translation:

De�nition 6.3 (Dialectica translation with markers). Let A be a formula in NAω

and let r : ρ∗(A) and s : ρ−(A) be terms. We de�ne the Dialectica translation of A
with counterexample marking as follows, where the di�erence from the de�nition of
the quasi-linear translation is emphasized by a box below:

(||at(t)||)εε := at(t),

(||B → C||)rs := (||B||)sxrsy y → (||C||)(r◦sx)x
sy ,

(||∀xB||)rs := (||B [x := sx] ||)r◦sxsy .

The de�nition above declares the marker irrelevant for the logical validity of the
Dialectica translation of a given formula. Therefore, if we de�ne marker-erasing
mappings as shown on Figure 6.1, we will obtain exactly the interpretation (|A|)rs.

ρ+(C)

+I

ρ−(C)

−I

σ+(C)

J+

JJ

σ−(C)

J−

JJ

Figure 6.1: Transformations between marked and unmarked Dialectica types

De�nition 6.4 (Marker-erasing transformations). Let A be a formula in NAω. By
induction on the formula A, we de�ne marker-erasing transformations (·)±I and (·)J±

transforming terms of type ρ±(A) to terms of type σ±(A) and vice versa as shown in
Figure 6.1.

A t+I t−I

at(r) ε ε

B → C
〈
(tx)+I, (tyy)−I

〉 〈
λy (txyJ−)

+I
, (ty)−I

〉
∀xB t+I

〈
tx, (ty)−I

〉

143

6 Dialectica interpretation with marked counterexamples

A tJ+ tJ−

at(r) ε ε

B → C
〈
(tx)J+, (ty)J− I tt

〉 〈
λy (txy−I)

J+
, (ty)J−

〉
∀xB tJ+

〈
tx, (ty)J−

〉
Lemma 6.5. Let A be a formula in NAω. Then for any terms r : σ+(A) and s : σ−(A)

we have (r+I)
J+ r

= r and (s−I)
J− r

= s.

Proof. A syntactic exercise by induction on the de�nition. Note that for r : ρ+(A)

and s : ρ−(A) the dual equalities (rJ+)
+I r

= r and (sJ−)
−I r

= s do not hold since a
deleted marker cannot be restored.

Proposition 6.6. Let A be a formula in NAω. Then for any terms r : ρ∗(A) and

s : ρ−(A) we have (||A||)rs =(|A|)λy (ryJ−)
+I

s−I .

Proof. Induction on A.
Case at(t). Trivial.
Case B → C. By de�nition and Lemma 6.5:

(|B → C|)λy (ryJ−)
+I

s−I = (|B|)s−Ix
(r(s−I)J−)

+I
y
→ (|C|)λz (r(〈s−Ix,z〉)J−)

+I
x

s−Iy

= (|B|)λy (sxyJ−)
+I

(rs)+Iy
→ (|C|)λz (r〈sx,zJ−〉x)+I

(sy)−I

= (|B|)λy (sxyJ−)
+I

(rsyy)−I → (|C|)λz ((r◦sx)xzJ−)
+I

(sy)−I

(by induction hypothesis) = (||B||)sxrsyy → (||C||)(r◦sx)x
sy = (||B → C||)rs.

Case ∀xB. By de�nition and Lemma 6.5:

(|∀xB|)λy (ryJ−)
+I

s−I = (|B
[
x := s−Ix

]
|)λz (r(〈s−Ix,z〉)J−)

+I

s−Iy

= (|B [x := sx] |)λz (r〈sx,zJ−〉)+I

(sy)−I

= (|B [x := sx] |)λz ((r◦sx)zJ−)
+I

(sy)−I

(by induction hypothesis) = (||B [x := sx] ||)r◦sxsy = (||∀xB||)rs.

6.3 Soundness of counterexample marking

As could be expected, the essential use of counterexample markers comes in the
de�nition of case distinction terms. In order to use the information carried by the

144

6.3 Soundness of counterexample marking

marker, we need to have additional assumptions, which re�ect the semantics of the
marker as given in Section 6.2. Thus a marker ff has to imply a false Dialectica
translation and the marker tt carries a neutral meaning, thus its presence has to
equate the case distinction terms to those de�ned in Lemma 4.22.

Lemma 6.7. There is a constant K, such that for every formula C there is a term
TC : ρ∗(C)⇒ ρ−(C)⇒ B such that:

1. (||C||)rs ↔ at(TCrs)

2. dTCe ≤ KdCe

Proof. Similar to Lemma 4.21, but adjusted for the new marker-discarding interpre-
tation. The only di�erence comes in the case where C := A→ B:

TC := λr λs T→
(
TA(sx)(rsy y)

)(
TB((r ◦ sx)x)(sy)

)
.

Lemma 6.8 (Dialectica case disctinction with markers). Let C be a formula in NAω

and let x : ρ∗(C) be a variable. Let D be a de�nition context associating a variable
dC with the term TC de�ned in Lemma 6.7. Then there is a term TC./ : ρ((C) ⇒
ρ((C)⇒ ρ((C) with FV(TC./) ⊆ FV(C) ∪ {x}, such that for t1, t2 : ρ((C) from the
assumptions u(i) : (||C||)xsi → at(mi) we can prove

Ai : (||C||)xs → (||C||)xsi ,
B : (||C||)xs → at(m),

where ti := si I mi and s I m
r
= t := D[TC./ t1t2] and dTC./ e is constant, not

depending on the size of the formula C.

Proof. Using T→ from Lemma 1.51, let us de�ne

TC./ := λy1 λy2 let s1 := y1x in let m1 := y1y in

let s2 := y2x in let m2 := y2y in

Casesm1

(
Cases

(
T→m2(dCxs1))

)
y2(s1 I ff)

)
y1.

We will de�ne proofs

Q(i)
m1(,m2) : ~F → Ai, for i = 1, 2,

Qm1(,m2) : ~F → B, where Fj := (||C||)xsi → at(mi)

for all possible values of the markers m1 and m2. Then we will be able to de�ne

Q(i) := Cm1 (Cm2Q(i)
tt,ttQ

(i)
tt,ff

)
Q(i)

ff u′ u′′ for i = 0, 1, 2.

145

6 Dialectica interpretation with marked counterexamples

We note that by de�nition

t [m1 := ff]
r
= t1, and t [m1 := tt] [m2 := ff]

r
= t2, hence we can de�ne

Qff := λu′ λu′′ u′, Qtt,ff := λu′ λu′′ u′′,

Q′ff := λu′ λu′′ λuu, Q′′tt,ff := λu′ λu′′ λuu.

For the rest of the cases we use the fact that the premise of A3−i [mi := ff] implies
(||C||)xsi , which contradicts the assumption u(i) [mi := ff]. Hence, we de�ne

Q′′ff , := λu′ λu′′ λu efq(u′u),

Q′tt,ff := λu′ λu′′ λu efq(u′′u).

We are left only with the case where m1 = m2 = tt. Note that

TC./ (s1 I tt)(s2 I tt)
r
= Cases (TCxs1) (s2 I tt) (s1 I ff), hence

Ai [m1,m2 := tt] = (||C||)xCases (TCxs1) s2 s1
→ (||C||)xsi ,

B [m1,m2 := tt] = (||C||)xCases (TCxs1) s2 s1
→ at(TCxs1).

Let Di := (||C||)xsi . Let us assume that we have proof terms K : at(TCxs1) → (||C||)xs1
and L : (||C||)xs1 → at(TCxs1). Similarly to Lemma 2.19 and Lemma 4.22, we de�ne

Q′tt,tt := λu′ λu′′ CDb,H1(TCxs1)(λuat(TCxs1) λvD2 Ku)(λuat(TCxs1)→F λwD1 w),

Q′′tt,tt := λu′ λu′′ CDb,H2(TCxs1)(λuat(TCxs1) λvD2 v)(λuat(TCxs1)→F λwD1 efqD2
(u(Lw))),

for Hi := (||C||)xCases b s2 s1
→ Di.

Finally, we set

Qtt,tt := λu′ λu′′ CDb,H0(TCxs1)(λuat(TCxs1) λvD2 AxT)(λuat(TCxs1)→F λwD1 u(Lw)),

for H0 := (||C||)xCases b s2 s1
→ at(b).

We are ready to prove soundness of marked counterexamples. The proof will
be a modi�cation of the proof of Theorem 4.23. The only change will be in the
treatment of challenges, where context-dependent marked negative witnessing terms
[[M]]−i : ρ((Ci) will be extracted.

Theorem 6.9 (Soundness of counterexample marking). Let A ∈ NAω be a formula

and let PA be a proof term with assumptions among {ui : Ci}i≥1. Let us have fresh

witnessing variables X = {xi : ρ∗(Ci)}, each one associated uniquely with an as-

sumption variable ui and let yA : ρ−(A) be a fresh challenging variable associated

uniquely with the formula A. Then there is a term {|P|} and proofs P : (||A||){|P|}
+

yA and

146

6.3 Soundness of counterexample marking

P i : (||Ci||)xisi → at(mi), where si I mi
r
= {|P|}−i yA and

1. FA(P) ⊆
{
vi : (||Ci||)xisi

}
and FA(P i) = ∅,

2. FV({|P|}) ⊆ FV(P) ∪X,

3. d{|P|}e ≤ K(dPeddPee2) for a �xed constant K, not depending on P.

Proof. Case uA1 . We set as before [[P]] := λyA [], [[P]]+ := x1yA and set [[P]]−1 := yA I
tt. Then {|P|}+ r

= λyA x1yA
r
= x1 and {|P|}−i yA

r
= yA I tt, and as before we can

de�ne P := v1. On the other hand, m1
r
= tt, hence P1 := λv AxT. The size bounds

and the variable condition also hold as in Theorem 4.23.
Case λuB0 M

C . The extracted terms from Theorem 4.23 are still applicable. P is

de�ned as before and P i := M iξ for i ≥ 1 with ξ := [x0 := yAx] [yC := yAy].
Case MC→A

1 MC
2 . Let us denote B := C → A. The extracted terms are de�ned

almost as in Theorem 4.23, with the slight change that before applying {|M2|}−i to
{|M2|}+y, the marker needs to be discarded. The change is emphasized by a box
below:

[[P]]−i := [[M1]]−i
Ci
./ f(zy y) . i

The case distinction is altered to use the appropriate term from Lemma 6.8:

t1
ui
./ t2 :=

{
t1, if t1 ≡ t2,

TCi
./
t1t2, otherwise.

The proof P is de�ned using Q′i and Q′′i as before, and P i := Qi(M1,iξ1)(M2,iξ2)

with ξ1,2 de�ned as in Theorem 4.23.
Cases λxρMB and M∀xρBtρ. The proof of the same case in Theorem 4.23 still

applies, because in both cases we neither remove nor introduce assumptions. In both
cases P i := M iξ.
Case Cb,A bMA[b:=tt]

tt M
A[b:=ff]
ff . We de�ne the extracted terms exactly as in Theorem

4.23 and set P i := C bM tt Mff .
Case Indn,AN nM

A[n:=0]
1 (λnλuA0 M

A[n:=Sn]
2). By induction hypothesis we have proofs

M1,i : (||Ci||)xisi → at(mi) for i ≥ 1,

M2,0 : (||A||)x0r0 → at(n0) and

M2,i : (||Ci||)xiri → at(ni) for i ≥ 1,

where si I mi
r
= {|M1|}−i yA and rj I nj

r
= {|M2|}−j yA for i ≥ 1 and j ≥ 0.

Extracted terms are de�ned almost as before, but using the modi�ed case distinc-
tion ./ according to Lemma 6.8 and discarding the marker of the negative content

147

6 Dialectica interpretation with marked counterexamples

of the induction hypothesis, as shown below:

[[L]] := RN n {|M1|}
(
λnλp let x0 := px in [[M2]][let z := p([[M2]]−0 y) in []]

)
.

Let us denote ti I pi
r
= {|P|}−i yA. By de�nition we have

(ti I pi) [n := 0]
r
= si I mi,

(ti I pi) [n := Sn]
r
= let x0 := {|P|}+

in (ri I ni)
ui
./ ({|P|}−i r0)

r
= let x0 := {|P|}+

in (ri I ni)
ui
./ (let yA := r0 in (ti I pi)).

We will de�ne proofs P̃i of

∀yA
(

(||Ci||)xiti → at(pi)
)
,

because then we can set P i := P̃iyA. We use the proofs Qi from Lemma 6.8 and
de�ne P̃i by induction as follows:

P̃i := IndN n (λyAM1,i)
(
λnλp λyAQi (M2,iξ)

(
p(r0ξ)

))
,

where ξ :=
[
x0 := {|P|}+].

Case Indl,AL(ρ) l M
A[l:=nil]
1 (λxλl λuA0 M

A[l:=x :: l]
2). We adopt all the de�nitions from the

previous case and set

P̃i := IndL(ρ) l (λyAM1,i)
(
λxλl λp λyAQi (M2,iξ)

(
p(r0ξ)

))
.

Corollary 6.10 (Extraction with marked counterexamples). Let P : C be a closed

proof in NAω. There is a closed term {|P|}+ : ρ∗(C) with d{|P|}+e ≤ K(dPeddPee2),

and a proof

P : ∀yρ−(C) |C|(λz ({|P|}+zJ−)
+I

)↓+

(y−I)↓−
.

Proof. Follows from Corollary 4.27, Proposition 6.6 and Theorem 6.9.

6.4 In�nite Pigeonhole Principle revisited

As already visible by the proof of Theorem 6.9, the counterexample marks do not
increase the size of the extracted program signi�cantly. In the case of the In�nite
Pigeonhole Principle, we obtain the program shown in Figure 6.2. The challenges
of four di�erent assumptions are annotated with tt markers. They are discarded at

148

6.4 In�nite Pigeonhole Principle revisited

some point by y projection, as shown by a box. We should note that from the four
markers only two are relevant. These are the markers for w and for u2, since they are
the only assumptions over which a case distinction is needed. It is clear that every
counterexample marker can be introduced independently for each assumption. Thus,
we can mark only assumptions which participate in a case distinction. In this case
study, the markers introduced in g1 correspond to the assumptions u1 and v1 and are
redundant.
Let us reason about the average time complexity of the program in 6.2 following

the argument in Section 4.8.2. The major bene�t from the counterexample marker
comes in the case distinction

w
./ . As already discussed, in the worst case, the number

of invocations of xw in z14 would be 2n for every �xed r. However, because of the
marker-aware de�nition of

w
./ , the function xw will not be called if we have already

found a counterexample n, such that n ≤ m and fm 6= q. Assuming an uniformly
distributed random sequence f , we will �nd a counterexample with probability r−1

r
.

At �rst, this does not seem as a worthy improvement, since xw is called anyway in
z5x to construct the list. However, here a lazy strategy of evaluation is assumed,
and since px will no longer be needed after a counterexample is found, z14y will
be evaluated only after z15 has been already computed. Hence xw will actually be
invoked n times only after z14x has been correctly computed.
The extracted program with counterexample markers now behaves very similarly

to the program obtained via re�ned A-translation in Section 3.3.2. For every colour
q < r the program calculates a sequence-extending function hq, such that hqn ≥ n

and f(hqn) = q. The function hq+1 is constructed by taking the counterexample index
for the function hq by computing xu2 〈q, hq〉, as is done in z7. The counterexample
index is obtained by z14x, i.e., by recursion on n, which terminates as soon as a
counterexample is found. Thus, similarly to the program in 3.3.2, we have r recursions
on n, one for each colour and we return undisturbed lists of indices, i.e., indices of
colour q, between which there are only colours ≤ q. With highest probability we will
obtain indices of the largest colour r−1, which will execute n recursive calls in order
to obtain n occurrences of r−1. Each of these recursive calls will compute an index of
the colour r−1, which will be on average n indices after the last found occurrence of
this colour. After the found counterexample is marked and because of the maximum
operation in the function g1, a new index (a �step forwards�) is considered only in z3,
which is computed in a recursive step of z14. Thus the number of considered indices
closely follows the number of recursion steps executed by the program. Moreover,
when an index of colour q is considered, q− 1 recursion folds need to be carried out,
since this index is a counterexample for all colours less than q. This is achieved by
the function g2. Hence, the consideration of every new index costs on average r/2
recursive steps. In total, we obtain that in the average case we have O(nr2) recursive
steps in order to compute a list of n indices of colour r − 1. Since lists of lower

149

6 Dialectica interpretation with marked counterexamples

colours will be found even earlier, we can conclude that the average time complexity
of the program is now O(nr2). In fact, the program is now extensionally equal to
the program [[P]]◦, obtained via re�ned A-translation in Section 3.3.2, and both of
the programs perform in the average case as good as the direct algorithm, given in
Section 3.3.4.

150

6.4 In�nite Pigeonhole Principle revisited

λ
〈r
,f
,n
〉

  le
t
z 1

4
:=

λ
〈q
,x

w
〉

        le
t
z 8

:=
λ
n
λ
p

      le
t
l

:=
px

in

le
t
z 5

:=

 R
l

�
(λ
x
λ
lλ
x
p
′

le
t
z 3

:=
S
x
in

〈x
w
z 3
::
x
::
l
I

tt
,z

3
I

tt
〉)

  in
〈 z 5
x,
py

w ./
z 5
y〉

      in

le
t
z 9

:=
R
n
〈x

w
0:
I

tt
,0
I

tt
〉z

8
in
〈z

9
y,
z 9
x〉

        in

le
t
z 1

5
:=

             R
r

(λ
〈f
,x

u
2
〉�

)(λ
r
λ
x
p
λ
〈f
,x

u
2
〉

le
t
g 3

:=
λ
n

1

   le
t
g 1

:=
λ
n

2
〈(
n

1
t
n

2
)
I

tt
,(
n

1
t
n

2
)
I

tt
〉
in

le
t
g 2

:=
λ
〈q
,x

w
〉
(le

t
z 2

:=
〈q
,λ
n

2
n

1
t
x
w
n

2
〉
in

〈x
u
2
z 2
,z

2
I

tt
〉

) in

le
t
z 4

:=
x
p
〈f
dn

1
,g

2
x〉

in
〈g

1
(z

4
y)
x,
g 1

(z
4
y)
y,
g 2

(z
4
x)
y〉

   in
le
t
z 5

:=
〈r
,g

3
x〉

in

le
t
z 7

:=
g 3

(x
u
2
z 5

)
in
〈 (z

5
I

tt
)
u
2 ./
z 7
y,
z 7
x〉)

〈f
,z

1
4
x〉

             in

〈z
1
5
y,
z 1

4
y(
z 1

5
x
y

)〉

  
w
he
re

(n
1
I
m

1
)
w ./

(n
2
I
m

2
)
≡

C
as

es
m

1
(C

as
es
m

2
le
t
m

:=
x
w
n

1
in

C
as

es
(T
→

(n
1
≤
m

)(
f
m

=
q)

)
(n

2
I
m

2
)

(n
1
I

ff
))

(n
1
I
m

1
),

(〈
q 1
,h

1
〉I

m
1
)
u
2 ./
(〈
q 2
,h

2
〉I

m
2
)
≡

C
as

es
m

1
(C

as
es
m

2
le
t
n

:=
x
u
2
〈q

1
,h

1
〉
in

le
t
m

:=
h

1
n
in

C
as

es
(T
→

(n
≤
m

)(
f
m
6=
q 1

))
,(
〈q

2
,h

2
〉I

m
2
)

(〈
q 1
,h

1
〉I

ff
))

(〈
q 1
,h

1
〉I

m
1
)

F
ig
ur
e
6.
2:

P
ro
gr
am

ex
tr
ac
te
d
fr
om

th
e
U
nb

ou
nd

ed
P
ig
eo
nh

ol
e
P
ri
nc
ip
le
w
it
h
co
un
te
re
xa
m
pl
e
m
ar
ki
ng
s

151

CONCLUSION

In this thesis we followed an empirical approach for comparing two di�erent meth-
ods for obtaining functional programs from proofs in classical logic: the re�ned A-
translation and Gödel's Dialectica interpretation. We expressed non-constructive
proofs in an arithmetical system with higher types equipped with a restricted nega-
tive language for formulas. This choice made it possible to achieve a fair comparison
by applying both interpretations to the same proof term.

Three case studies were selected to examine the behaviour of the two extraction
methods. Stolzenberg's binary tape was chosen as a minimal example involving
non-trivial use of classical reasoning. The obtained programs demonstrated that the
two interpretations re�ect the indirect reasoning by backtracking, which, however, is
driven by di�erent means: continuations and counterexamples. Both programs ex-
hibited an asymmetry, which was discussed by many authors [Coq95, Mur91, BBS97,
Urb00, Sei03, Mak06, Rat10] and is traced to the use of classical logic. The program
obtained via the Dialectica interpretation was already unmanageable for such a sim-
ple example, which showed that there is de�nitely room for improvement.

The second example of �nding an integer root of an unbounded function was chosen
as an instance of the minimum principle, which is a convenient non-constructive
tool for selecting witnesses from a non-empty well-ordered set. It demonstrated how
programs extracted via the two methods are not necessarily extensionally equal, since
in the Dialectica interpretation we have a freedom of choice in the case distinction
operator. Moreover, there are di�erent situations in which one of the choices is more
e�cient than the other. Our proposal is that instead of giving an a priori preference
to one of the counterexample candidates, it is more suitable to introduce a boolean
�ag, which chooses the more e�cient candidate during the evaluation of the program.

The last and most complex considered example is the Unbounded Pigeonhole Prin-
ciple, derived as a simple inductive corollary of the In�nite Pigeonhole Principle.
This case study was important, because it clearly separated the non-constructive ar-
gument from its constructive application. Both proof components involved induction
and thus had a non-trivial computational meaning, making it possible to estimate

153

Conclusion

their speci�c contribution to the complexity of the program. The extracted terms
demonstrated a magni�cation of the asymmetry observed in Stolzenberg's example.
The colours were considered in priority order, which made it possible to construct ex-
treme counterexamples on which the number of evaluation steps is exponential in the
number of colours. This is contrasted to the polynomial time complexity of a direct
algorithm. However, the program obtained via re�ned A-translation showed a very
interesting feature: on average, the number of performed steps is of the same poly-
nomial order as the direct program! This result could advocate the practical value
of extracting from non-constructive proofs: if we are willing to sacri�ce worst-case
complexity, we can obtain a program of the same average behaviour from a classical
proof, which is easier to de�ne than its constructive counterpart. Moreover, if we
consider NP-hard problems, for which no polynomial algorithms are known, then we
can only bene�t from having a simpler proof, since we have no reasonable hope for a
better performance if we used a constructive proof instead.
In the In�nite Pigeonhole Principle case study, the di�erence in readability and

e�ciency between the terms extracted with the two methods is most striking. The
encouraging results yielded via re�ned A-translation naturally pose the question: can
the same be achieved via the Dialectica interpretation? This question is answered
positively throughout the rest of the text by gradual re�nement of the interpretation
aimed at obtaining better extracted terms.
The most obvious drawback of the Dialectica interpretation are the bloated pro-

grams, which are obtained by a direct application of the soundness theorem. Already
Hernest and Kohlenbach noticed that special care needs to be taken about extracted
terms in order to control their size [HK05]. The unreadable programs are not such a
problem when the interpretation is used for manual �proof mining�, since an expert
would naturally simplify the terms by performing suitable sound ad-hoc reductions.
However, when the method is applied completely automatically, it becomes vital to
have means for systematic simpli�cations of the extracted term.
We noticed that the main reason for the large size of the programs is due to the use

of substitution on the meta level, which leads to repetition of equal expressions in the
term and also raises an issue of e�ciency. The underlying cause for this repetition is
the dual nature of Dialectica, in which every component of the proof has a positive
and a negative re�ection: as a witness and as a challenge. The proposed variant of the
interpretation adjusted its syntactic representation, so that the common expressions
are bound by a single context, in which positive and negative computational content
is computed simultaneously. This mechanical factorisation is not necessarily re�ected
during evaluation � if we factor out an expression of non-ground type, we might need
to reevaluate it when it is used simultaneously as a witness and as a challenge. This is
unavoidable, as it constitutes an important part of the backtracking process, which is
the computational footprint of the use of classical logic. In such cases the factorisation

154

only reduces the size of the extracted term without having a positive or a negative
e�ect on complexity. We can observe the bene�cial e�ect of the reformulation only
for the case of terms of ground type, which are reduced to a value only once before
being used further.
The factorisation in extracted terms is in some sense overzealous, since it attempts

to capture all possible sources of repetition. This calls for additional cleaning of the
program to make it more readable. By executing only a�ne reductions we guarantee
that the terms can only shrink, while the advantage of factorisation is preserved.
The obtained bound on the size of the programs was not completely linear, and

this was due to our aim to express the terms completely in the simple language of the
system. The overhead signi�ed by the square of the maximal sequent length is caused
by the need to pack and unpack positive and negative computations. We should be
able to regain the linear bound if we extend the term language to include a form of
pointers, which have constant access time, so that we do not need repeated projections
to access di�erent components. Nevertheless, even with the current formulation, the
overhead is not that large: even for the most complex case study of the In�nite
Pigeonhole Principle, the maximal sequent length equals to 6, which is quite small
compared to the size of the whole proof. Naturally, extreme examples can always
be built, such that the maximal sequent length is of the same order as the size of
the proof. However, in the author's opinion, this overhead should not be of serious
concern for practical use.
Another class of redundancies that can appear in an extracted term are irrelevant

computations. When we consider proof interpretations separating the computational
and logical components from the proof based on a syntactic criterion, it is possible
that purely logical parameters are treated as computational. The uniform annota-
tions present an additional syntax allowing for a �ner separation based not only on
the shape of the formula involved, but also on the speci�c use of the component
in the proof. Being a dual extension of modi�ed realisability, the possibilities for
uniform annotations in the Dialectica interpretation are strictly larger than the orig-
inal uniform quanti�ers, suggested by Berger in [Ber05]. Although the theoretically
possible uniform annotations for Dialectica are quite many (cf. [Tri09]), in this work
we have restricted ourselves to those combinations which have some de�nite appli-
cation. Hernest's �rst adaptation of Berger's uniform universal quanti�er [Her07b]
is completely su�cient for our case studies, but the examples in Chapter 5 demon-
strate several cases in which other uniform annotations can be used. Our choice of
considered combinations was motivated by the ability to express the modi�ed realis-
ability interpretation extended with Berger's uniform quanti�ers using the Dialectica
interpretation for the system NAω.
An important topic for future research would be an algorithm for automatically

inserting a maximal amount of uniform annotations, so that the proof remains com-

155

Conclusion

putationally correct. Thus we will be able to automatically remove all redundant
computations without the need to structurally modify the proof. It is clear that
such a procedure must exist, since the proof is a �nite object. A similar algorithm
for modi�ed realisability was already demonstrated by Ratiu and Schwichtenberg in
[RS09]. An adaptation of the algorithm would probably be applicable to the more
complicated system NAω.
As was the case of common term factorisation, uniform annotations also have a two-

fold advantage. On one side, they remove terms, which are not needed to compute
the �nal result. However, they do not necessarily remove only unreachable code;
as demonstrated by Berger in [Ber05], we can remove slow computations, which are
irrelevant and thus improve the worst time complexity of the program. It is important
to note that the time complexity will only be improved when using an eager evaluation
strategy: a lazy strategy would never evaluate irrelevant code. Nevertheless, such
subterms would still exist in the program and removing them will be bene�cial for the
space complexity when we use call-by-name evaluation. The case studies considered
here took advantage only of the cleaning aspect; the time complexity was not altered
by the removal of irrelevant computations. An interesting topic of future research
would be to compare the cleaning performed by a maximal uniform annotation of
a proof with a purely computer-scienti�c approach of removing irrelevant function
parameters, such as the work by Alpuente et al. [AEL02].
The results presented in the �nal chapter of the thesis allow for reducing the aver-

age time complexity of the program extracted from the In�nite Pigeonhole Principle
from exponential to polynomial. However, this e�ect would not be as strong if coun-
terexample marking was not applied in the context of the quasi-linear Dialectica
interpretation. The reason is that if every step of the recursive computation of coun-
terexamples was invoking a recursive computation of witnesses, as this is done in the
original interpretation, then the otherwise linear process would turn into quadratic.
The optimisations of the Dialectica extraction process, which were presented in the

last three chapters, will be implemented in the interactive proof assistant Minlog

and would make it possible to extract shorter and more e�cient programs. The prac-
tical bene�t from these results would pave the way to considering more complicated
case studies for extraction from non-constructive proofs. Possible examples would
include classical proofs of existence, �nding witnesses for which is NP-hard, such as
Ramsey's theorem.

156

INDEX

A-translation, 33
re�ned, 36

arithmetic
equality (Eq), 17
falsity (F), 16
Heyting (HAω), 14
minimal (MAω), 14
negative (NAω), 14
truth (T), 16

binary tape example, see Stolzenberg's
example

canonical inhabitant (�), 11
case distinction

boolean (Cb,A), 18
Dialectica (t1

C,x
./ t2), 42

linear, 94
with markers, 145

on decidable formulas (CDD,A), 23
on terms (CDb,A), 22

computational type
full
marked (ρ∗(A)), 142
quasi-linear (σ∗(A)), 89

marked (ρ((A)), 142
modi�ed realisability (τ ◦(A)), 28
negative
Dialectica (τ−(A)), 39
marked (ρ−(A)), 142

quasi-linear (σ−(A)), 89
positive
Dialectica (τ+(A)), 39
marked (ρ+(A)), 142
quasi-linear (σ+(A)), 89

semi-negative (σ_(A)), 118, 119
semi-positive (σ^(A)), 119

con�uence, 12
of a�ne reductions, 103

context
de�nition (E), 85
extracted ([[P]]), 92
hole ([]), 85
term, 85

continuation-passing style, 38
counterexample, 42, 60, 67, 78, 140

marker (t I m), 142, 148

Dialectica interpretation, 38

case distinction (t1
C,x
./ t2), 42

challenge, 40
computational type
negative (τ−(A)), 39
positive (τ+(A)), 39

extracted term
negative ([[P]]−i), 43
positive ([[P]]+), 43

program extraction, 47
soundness theorem, 43

157

Index

translation (|A|rs), 41
quasi-linear ((|A|)rs), 91
with markers ((||A||)rs), 143

witness, 40

equality
arithmetical (Eq), 17
evaluational (

r
=), 17

logical (=), 17
syntactical (≡), 17

ex falso quodlibet, 16, 21
extracted term

context ([[P]]), 92
modi�ed realisability ([[P]]◦), 30
negative
Dialectica ([[P]]−i), 43
quasi-linear ({|P|}−i), 92, 123, 146

positive
Dialectica ([[P]]+), 43
quasi-linear ({|P|}+), 92, 123, 146

quasi-linear ({|P|}), 92, 123, 146

formula, 15
⊥-free, 15
closed, 8
computationally irrelevant, 28, 40
computationally relevant, 28, 40
de�nite, 34
derivable, 21
goal, 34
partially uniform, 121
size of (d·e), 87
subformula, 16

Gödel's functional interpretation, see

Dialectica interpretation

induction
on the de�nition, 7
simultaneous, 6

inductive clause, 6

variable, 8
variable-binding, 8

inductively de�ned sets, 6
integer root example, 57, 135

let-construction, 84
let-construction, 12

maximal sequent length, 88
modi�ed realisability, 27

computational type (τ ◦(A)), 28
extracted term ([[P]]◦), 30
predicate (t r A), 29
program extraction, 31
soundness theorem, 30
translation ((·)◦), 132

monotone mappings, 6

negative connectives (¬, ∧̃, ∃̃), 16
normal form, 12

partial abstraction (λ◦), 88
partial application (◦), 88
partial application (◦◦), 120
pigeonhole principle

in�nite, 61, 106, 136, 148
unbounded, 62, 106, 139, 152

program extraction
Dialectica interpretation, 47
modi�ed realisability, 31
quasi-linear, 101
with marked counterexamples, 148

proof, 18
computationally correct, 121
size of (d·e), 87
uniformly interpretable, 121

quasi-linear
computational type
full (σ∗(A)), 89
negative (σ−(A)), 89
positive (σ+(A)), 89

158

Index

extracted term
full ({|P|}), 92, 123, 146
negative ({|P|}−i), 92, 123, 146
positive ({|P|}+), 92, 123, 146

program extraction, 101
soundness theorem, 94
translation ((|A|)rs), 91, 120

reduction
a�ne (

a7→), 102
ε- (

ε7→), 13

I- (
I7→), 13

multiple-step (
∗7→), 12

proof (7→), 20
set of reducts (Red), 12
term (7→), 11
type (), 88

semi-uniform quanti�er, 115
size (d·e), 87
soundness theorem

counterexample marking, 146
Dialectica interpretation, 43
modi�ed realisability, 30
quasi-linear interpretation, 94
uniform annotations, 123

stability, 16, 22
Stolzenberg's example, 49, 104
strong normalization, 12, 20
strongly normalizing, 12
subformula property, 20
substitution, 8

application, 8
capture-free, 9
variable renaming, 9

system embedding, 22

T→, 23
TC , 93
term, 10

closed, 8

proof, 18
size of (d·e), 87

transformation
marker-erasing ((·)±I, (·)J±), 143
quasi-linear ((·)↑±, (·)↓±), 90
realisability ((·)l◦), 133

translation
atomic ((·)at), 23
content-discarding ((·)⊕, (·)), 129
Dialectica (|A|rs), 41
quasi-linear ((|A|)rs), 91
with markers ((||A||)rs), 143

double negation ((·)¬¬), 24
modi�ed realisability ((·)◦), 132
pure variant ((·)•), 118
quasi-linear ((|A|)rs), 120
weakening ((·)w), 25

type, 10
base, 10
closed, 8
degree (deg), 10
�nite, 10
marker, 142
result, 52

undisturbed sequence, 73
uniform annotations, 116, 123, 139
uniform quanti�er (∀U , ∃U), 111
uniformity restrictions, 121

variable
assumption, 18
bound (BV, BA), 8
free (FV, FA), 8
renaming of, 9

159

LIST OF FIGURES

2.1 Relations between A-translation and CPS 38

4.1 Transformations between the Dialectica computational types 90

5.1 Uniformity annotations for the original Dialectica interpretation . . . 117
5.2 Realisability transformations . 134
5.3 Simpli�ed program extracted from the Unbounded Pigeonhole Princi-

ple . 138

6.1 Transformations between marked and unmarked Dialectica types . . . 143
6.2 Program extracted from the Unbounded Pigeonhole Principle with

counterexample markings . 151

161

BIBLIOGRAPHY

[AEL02] M. Alpuente, S. Escobar, and S. Lucas. Removing redundant arguments of
functions. Algebraic Methodology and Software Technology, pages 241�242,
2002.

[AF98] J. Avigad and S. Feferman. Gödel's functional (`Dialectica') interpretation.
In Samuel Buss, editor, Handbook of Proof Theory, volume 137 of Studies in
Logic and the Foundations of Mathematics, pages 337�405. Elsevier, 1998.

[BB93] Franco Barbanera and Stefano Berardi. Extracting constructive content
from classical logic via control-like reductions. In Marc Bezem and Jan Friso
Groote, editors, TLCA, volume 664 of Lecture Notes in Computer Science,
pages 45�59. Springer, 1993.

[BBS97] F. Barbanera, S. Berardi, and M. Schivalocchi. Classical programming-
with-proofs in λSymPA : An analysis of non-con�uence. Lecture notes in com-

puter science, pages 365�390, 1997.

[BBS02] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Re�ned
program extraction form classical proofs. Ann. Pure Appl. Logic, 114(1�
3):3�25, 2002.

[Ber95] Ulrich Berger. Programs from classical proofs. In Proceedings of the 2nd

Gauss Symposium: Munich, Germany, August 2-7, 1993. Mathematics and

theoretical physics, page 187. Walter De Gruyter Inc, 1995.

[Ber05] Ulrich Berger. Uniform Heyting Arithmetic. Ann. Pure Appl. Logic, 133(1�
3):125�148, 2005.

[BES98] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalisation
by evaluation. In Bernhard Möller and J. V. Tucker, editors, Prospects for
Hardware Foundations, volume 1546 of Lecture Notes in Computer Science,
pages 117�137. Springer, 1998.

163

Bibliography

[BES03] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Term rewriting
for normalization by evaluation. Inf. Comput., 183(1):19�42, 2003.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998.

[BNS00] Stephen J. Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg.
Higher type recursion, rami�cation and polynomial time. Ann. Pure Appl.

Logic, 104(1�3):17�30, 2000.

[BS95] Ulrich Berger and Helmut Schwichtenberg. Program extraction from clas-
sical proofs. In D. Leivant, editor, Logic and Computational Complexity

International Workshop LCC'94, volume 960 of Lectures Notes in Com-

puter Science, pages 177�194. Springer-Verlag, 1995.

[Coq94] Thierry Coquand. An analysis of ramsey's theorem. Information and Com-

putation, 110(2):297�304, 1994.

[Coq95] Thierry Coquand. A semantics of evidence for classical arithmetic. Journal
of Symbolic Logic, 60(1):325�337, 1995.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control: A study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361�391, 1992.

[Dra80] A. Dragalin. New kinds of realisability and the Markov rule. Dokl. Akad.
Nauk. SSSR, 251:534�537, 1980. in Russian.

[FF89] Matthias Felleisen and Daniel P. Friedman. A syntactic theory of sequential
state. Theor. Comput. Sci., 69(3):243�287, 1989.

[Fri78] Harvey Friedman. Classically and intuitionistically provably recursive func-
tions. Lecture Notes in Mathematics, 669:21�27, 1978.

[GK10] Jaime Gaspar and Ulrich Kohlenbach. On tao's "�nitary" in�nite pigeon-
hole principle. Journal of Symbolic Logic, 75(1):355�371, 2010.

[Göd58] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des �niten
Standpunktes. Dialectica, 12:280�287, 1958.

[Gri74] V. N. Grishin. A nonstandard logic and its application to set theory. Studies
in Formalized Languages and Nonclassical Logics, pages 135�171, 1974. In
Russian.

164

Bibliography

[Gri81] V. N. Grishin. Predicate and set-theoretic calculi based on logic with-
out contraction rules. Izvestiya Akademii Nauk SSSR Seriya Matematich-

eskaya, 45(1):47�68, 1981. In Russian.

[Gri90] Timothy Gri�n. A formulae-as-types notion of control. In POPL, pages
47�58, 1990.

[Her07a] Mircea-Dan Hernest. Light dialectica program extraction from a classical
�bonacci proof. Electr. Notes Theor. Comput. Sci., 171(3):43�53, 2007.

[Her07b] Mircea-Dan Hernest. Optimized programs from (non-constructive) proofs

by the light (monotone) Dialectica interpretation. PhD thesis, Ecole Poly-
technique, 2007.

[HK05] Mircea-Dan Hernest and Ulrich Kohlenbach. A complexity analysis of func-
tional interpretations. Theor. Comput. Sci., 338(1�3):200�246, 2005.

[HO08] Mircea-Dan Hernest and Paulo Oliva. Hybrid functional interpretations. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors,
CiE, volume 5028 of Lecture Notes in Computer Science, pages 251�260.
Springer, 2008.

[HT10] Mircea-Dan Hernest and Trifon Trifonov. Light dialectica revisited. Annals
of Pure and Applied Logic, 161(11):1313�1430, August 2010.

[Joh37] I. Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formal-
ismus. Compositio Mathematia, 4:119�136, 1937.

[Jø01] Klaus Frovin Jørgensen. Finite type arithmetic. Master's thesis, University
of Roskilde, 2001.

[Kle45] Stephen C Kleene. On the interpretation of intuitionistic number theory.
The Journal of Symbolic Logic, 10(4):109�124, December 1945.

[Kre51] Georg Kreisel. On the interpretation of non-�nitist proofs, part i. Journal
of Symbolic Logic, 16:241�267, 1951.

[Kre52] Georg Kreisel. On the interpretation of non-�nitist proofs, part ii. Journal
of Symbolic Logic, 17:43�58, 1952.

[Kre59] G. Kreisel. Interpretation of analysis by means of constructive functionals
of �nite types. In A. Heyting, editor, Constructivity in Mathematics, pages
101�128. North-Holland Publishing Company, 1959.

165

Bibliography

[Kre62] G. Kreisel. On weak completeness of intuitionistic predicate logic. The

Journal of Symbolic Logic, 27(2):139�158, 1962.

[Kri04] Jean-Louis Krivine. Realizability in classical logic. Panoramas et synthèses,

Société Mathématique de France, 2004.

[Lei75] Daniel Leivant. Strong normalization for arithmetic. In A. Dold and B. Eck-
mann, editors, ISILC Proof Theory Symposion, volume 500 of Lecture Notes
in Mathematics, pages 182�197. Springer Berlin / Heidelberg, 1975.

[Lei85] Daniel Leivant. Syntactic translations and provably recursive functions.
Journal of Symbolic Logic, 50(3):682�688, 1985.

[Lei01] D. Leivant. Termination proofs and complexity certi�cation. In Theoretical

aspects of computer software, pages 183�200. Springer, 2001.

[Mak06] Yevgeniy Makarov. Practical program extraction from classical proofs. PhD
thesis, Indiana University, September 2006.

[mob] Mobius project � mobility, ubiquity and security: Enabling proof-carrying
code for java on mobile devices. http://mobius.inria.fr/.

[Mur91] Chetan R. Murthy. Classical proofs as programs: How, what, and why.
In J. Paul Myers Jr. and Michael J. O'Donnell, editors, Constructivity in

Computer Science, volume 613 of Lecture Notes in Computer Science, pages
71�88. Springer, 1991.

[Nel47] D. Nelson. Recursive functions and intuitionistic number theory. Transac-
tions of the American Mathematical Society, 61(2):307�368, 1947.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-time
checking. In OSDI, pages 229�243, 1996.

[Oli08] P. Oliva. An analysis of Gödel's Dialectica interpretation via linear logic.
Dialectica, 62(2):269�290, 2008.

[OW05] G.E. Ostrin and S.S. Wainer. Elementary arithmetic. Annals of Pure and

Applied Logic, 133(1�3):275�292, 2005.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical nat-
ural deduction. In Andrei Voronkov, editor, LPAR, volume 624 of Lecture
Notes in Computer Science, pages 190�201. Springer, 1992.

[Pra71] Dag Prawitz. Ideas and results of proof-theory. In J. E. Fenstad, editor,
Proceeding of the Second Scandinavian logic symposium, pages 235�307,
Amsterdam, 1971. North-Holland Pub. Co.

166

Bibliography

[Rat10] Diana Ratiu. Re�nement of Programs Extracted from Classical Proofs. PhD
thesis, Ludwig-Maximilian Universität � München, 2010. In progress.

[Ros53] G.F. Rose. Propositional calculus and realizability. Transactions of the

American Mathematical Society, 75(1):1�19, 1953.

[RS09] Diana Ratiu and Helmut Schwichtenberg. Decorating proofs. To ap-
pear in Mints Festschrift, draft at: http://www.math.lmu.de/~schwicht/
papers/mints09/deco20090728.pdf, 2009.

[RT09] Diana Ratiu and Trifon Trifonov. Exploring the computational content
of the in�nite pigeonhole principle. Draft at http://www.math.lmu.de/

~trifonov/papers/iph.pdf, 2009. To appear in Proceedings of CiE 2008,
Journal of Logic and Computation.

[Sch08] Helmut Schwichtenberg. Dialectica interpretation of well-founded induc-
tion. Mathematical Logic Quarterly, 54(3):229�239, 2008.

[Sei03] Monika Seisenberger. On the Constructive Content of Proofs. PhD thesis,
Ludwig-Maximilian Universität � München, 2003.

[Spe62] Cli�ord Spector. Provably recursive functionals of analysis: a consistency
proof of analysis by an ex- tension of principles in current intuitionistic
mathematics. In F. D. E. Dekker, editor, Recursive Function Theory: Proc.

Symposia in Pure Mathematics, volume 5, pages 1�27, Providence, Rhode
Island, 1962. American Mathematical Society.

[SW10] Helmut Schwichtenberg and Stanley Wainer. Proof and computations. To
appear, 2010.

[Tao07] Terence Tao. Soft analysis, hard analysis, and the �nite convergence prin-
ciple. http://terrytao.wordpress.com/2007/05/23/soft-analysis-

hard-analysis-and-the-finite-convergence-principle/, May 2007.

[Tri09] Trifon Trifonov. Dialectica interpretation with �ne computational con-
trol. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle, editors,
Mathematical Theory and Computational Practice, volume 5635 of LNCS,
pages 467�477. Springer Berlin/Heidelberg, 2009. Proceedings of 5th Con-
ference on Computability in Europe, CiE 2009, Heidelberg, Germany, July
19-24, 2009.

[Tri10a] Trifon Trifonov. Dialectica interpretation with marked counterexamples.
In Ste�en van Bakel, Stefano Berardi, and Ulrich Berger, editors, CL&C

167

http://www.math.lmu.de/~schwicht/papers/mints09/deco20090728.pdf
http://www.math.lmu.de/~schwicht/papers/mints09/deco20090728.pdf
http://www.math.lmu.de/~trifonov/papers/iph.pdf
http://www.math.lmu.de/~trifonov/papers/iph.pdf
http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/
http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-the-finite-convergence-principle/

2010, pages 86�98. MFCS & CSL, 2010. Workshop in Honour of Helmut
Schwichenberg.

[Tri10b] Trifon Trifonov. Quasi-linear dialectica extraction. In Fernando Fer-
reira, Benedikt Löwe, Elvira Mayordomo, and Luís Mendes Gomes, editors,
CiE, volume 6158 of Lecture Notes in Computer Science, pages 417�426.
Springer, 2010.

[Tro73] A. S. Troelstra.Metamathematical Investigation of Intuitionistic Arithmetic

and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag,
1973.

[TS00] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Num-
ber 43 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, 2000.

[Urb00] Christian Urban. Classical Logic and Computation. PhD thesis, University
of Cambridge, October 2000.

[VB93] Wim Veldman and Marc Bezem. Ramsey's theorem and the pigeonhole
principle in intuitionistic mathematics. Journal of the Londn Mathematical

Society, s2�47(2):193�211, April 1993.

168

	Introduction
	1 Systems of Arithmetic
	1.1 General notions
	1.1.1 Inductive definitions
	1.1.2 Variables and substitutions

	1.2 Arithmetical notions
	1.2.1 Term reduction and normalization
	1.2.2 Removing empty computational content

	1.3 Logical systems
	1.3.1 Formulas
	1.3.2 Proofs

	1.4 System embeddings

	2 Program extraction from proofs
	2.1 Modified realisability
	2.1.1 Definition
	2.1.2 Soundness

	2.2 Refined A-translation
	2.3 Gödel's ``Dialectica'' interpretation
	2.3.1 Definition
	2.3.2 Soundness

	3 Case studies for program extraction
	3.1 Stolzenberg's example
	3.1.1 Proof formalisation
	3.1.2 Extraction via refined A-translation
	3.1.3 Extraction via the Dialectica interpretation
	3.1.4 Comparison

	3.2 Integer root
	3.2.1 Proof formalisation
	3.2.2 Extraction via refined A-translation
	3.2.3 Extraction via the Dialectica interpretation

	3.3 Infinite Pigeonhole Principle
	3.3.1 Proof formalisation
	3.3.2 Extraction via refined A-translation
	3.3.3 Extraction via the Dialectica interpretation
	3.3.4 Comparison

	3.4 Comparative analysis of the extracted programs
	3.4.1 Backtracking via refined A-translation
	3.4.2 Backtracking via the Dialectica interpretation
	3.4.3 Computational inefficiencies of the Dialectica interpretation

	4 Quasi-linear Dialectica interpretation
	4.1 Examples of recomputation
	4.2 Towards avoiding syntactic repetition
	4.3 Definition contexts
	4.4 Some syntactic notions
	4.5 Quasi-linear extraction
	4.6 Soundness of the quasi-linear Dialectica interpretation
	4.7 Program simplification via affine reductions
	4.8 Case studies revisited
	4.8.1 Stolzenberg's example
	4.8.2 Infinite Pigeonhole Principle

	5 Dialectica interpretation with fine computational control
	5.1 Examples of redundant computation
	5.2 Notions of uniformity for the quasi-linear Dialectica interpretation
	5.3 Uniform annotations
	5.4 Soundness of uniform annotations
	5.5 Properties of uniform annotations
	5.5.1 Separating computational content
	5.5.2 Modeling modified realisability

	5.6 Case studies revisited
	5.6.1 Integer root
	5.6.2 Infinite Pigeonhole Principle

	6 Dialectica interpretation with marked counterexamples
	6.1 A special case of recursion
	6.2 Counterexample marking
	6.3 Soundness of counterexample marking
	6.4 Infinite Pigeonhole Principle revisited

	Conclusion
	Index
	List of Figures
	Bibliography

