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I

AABBSSTTRRAACCTT  

Small molecule glycosylation in plants is crucial for the biosynthesis of secondary metabolites 

and the regulation of the activity of several signaling molecules and defense compounds. One 

hundred and twenty-two different UDP-dependent glycosyltransferases (UGTs) catalyzing 

these conjugations exist in the model plant Arabidopsis thaliana. Despite major advances in 

plant biology due to genome annotations and ‘omics’ approaches, the vast majority are still 

uncharacterized enzymes without known specific substrates and physiological roles. In this 

project, the role of UGTs in plant stress response was investigated focusing on top stress 

responsive candidate genes. Transcriptional responsiveness of all UGT members of 

Arabidopsis was analyzed using publicly available expression data of plants exposed to 

several abiotic and biotic stress cues. A clear clustering of stress-dependent inductions was 

observed highlighting several highly responsive UGT genes with yet unknown function. The 

two top-ranking stress-induced and previously uncharacterized glucosyltransferases 

UGT76B1 and UGT87A2 were selected for further functional characterization. Both are 

broadly up-regulated by abiotic as well as biotic cues, suggesting an important stress related 

role. Using a reverse genetics approach (knockout and overexpression lines) metabolic and 

phenotypic changes correlating with the expression of the corresponding UGT gene were 

analyzed. 

In the case of UGT87A2, plants with altered UGT expression did not reveal any obvious 

phenotypes even when several stress cues were applied. Non-targeted FT-ICR-MS analyses in 

the negative mode of two knockout lines did not reveal significant metabolic changes, 

whereas independent overexpression lines showed several m/z peaks indicating up-regulated 

metabolites. Further characterization of these compounds led to the identification of a new 

metabolite in Arabidopsis, ascorbic acid 2-O-ß-glucoside. Together with the upregulation of 

other putative compounds, the results suggest potential roles for UGT87A2 in ascorbic acid 

homeostasis or cell wall biosynthesis. 

UGT76B1 was identified as a novel player in plant defense affecting the antagonistic salicylic 

acid and jasmonate-dependent signaling pathways. Loss of the UGT76B1 function led to 

enhanced resistance to hemibiotrophic pathogens and accelerated senescence. This was 

accompanied by constitutively elevated SA levels and SA-related marker gene expression and 

repression of JA-dependent marker genes. The overexpression caused the opposite 

phenotypes. UGT76B1 therefore attenuates SA-dependent plant defense in the absence of 

infection, promotes JA response and suppresses the onset of senescence. Non-targeted 

metabolomic analyses of ugt76b1 knockout and UGT76B1-OE lines using ultra-high 
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resolution Fourier-transform ion cyclotron mass spectrometry led to an unprecedented ab 

initio substrate identification. In vitro assays employing the recombinant enzyme confirmed 

isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as the UGT76B1 substrate. The findings 

indicate a novel link of amino acid-related molecules to plant pathogen defense pathways via 

small-molecule glucosylation. 

Together these findings emphasize the importance of plant secondary metabolite UGTs in 

plant defense mechanisms and provide a foundation for a detailed understanding of their role 

in plant stress response. Further, the results presented highlight the great potential of using 

high resolution metabolomic analysis for non-targeted screening plant mutants to identify new 

metabolites and reveal novel gene functions without any other prior knowledge. 
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11..  IINNTTRROODDUUCCTTIIOONN  

11..11..  PPLLAANNTT  SSEECCOONNDDAARRYY  MMEETTAABBOOLLIITTEE  GGLLYYCCOOSSYYLLTTRRAANNSSFFEERRAASSEESS  

1.1.1. General overview and importance 

Approximately two-thirds of the carbon in the biosphere exists as carbohydrate (Sinnot, 1990) 

and the transfer of glucose is quantitatively the most important biotransformation on earth 

(Campbell et al., 1997). Glycosyltransferases, which catalyze the transfer of a sugar residue 

from an activated donor to an acceptor molecule, are found in all living organisms. Since 

plants, in contrast to animals, are sessile organisms and cannot move away from adverse 

environmental conditions they need to adapt themselves to environmental stresses. Therefore 

they have evolved distinct mechanisms by which tolerance against these stresses can be 

achieved, including a huge range of small molecule compounds active in defense and 

signaling. Plant secondary metabolite glycosyltransferases (UGTs) play an important role in 

this adaptation (Figure 1), as glycosylation changes the stability, solubility and biological 

activity of such small molecules and creates a high diversity of different kinds of plant 

metabolites. They are crucial for the biosynthesis of secondary metabolites and the regulation 

of the activity of several signaling molecules and defense compounds and they also play a 

significant role in the detoxification and compartmentation of endogenous compounds and 

xenobiotics (Jones and Vogt, 2001). The huge diversity of plant secondary metabolites is 

especially attractive for human exploitation. Several pharmaceuticals and food additives are 

based on plant chemical structures because of the antimicrobial, antioxidative and 

anticancerigenic nature of several of these natural compounds. The use of recombinant 

glycosyltransferases could also have interesting industrial applications, providing a unique 

toolbox for the specific design of modified natural products. Finally, UGTs are suitable 

candidates to improve food or crop quality and a better understanding of their in vivo function 

could have interesting prospects for plant metabolic engineering. Despite major advances in 

plant biology due to genome annotations and omics approaches, only a few plant UGT 

functions could be deciphered to date. The vast majority are still orphan enzymes without 

known specific substrates and physiological roles, thus providing a high, still unexplored 

potential. 

The following sections of this chapter will give a more detailed introduction on all important 

aspects regarding plant secondary metabolite glycosyltransferases mentioned in this short 

overview. 
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Figure 1. Functional importance of plant glycosyltransferases. 

UGTs catalyze the transfer of a sugar residue from an activated donor to small organic 
metabolites. This glycosylation changes the stability, solubility and biological activity of such 
molecules, being crucial for the biosynthesis of secondary metabolites, the regulation of 
several small molecule compounds active in defense and signaling as well as for the 
detoxification and compartmentation of endogenous compounds and xenobiotics. UGT 
substrates are ubiquitous and have diverse functions or activities. Their glycosylation has 
several consequences at single cell level and for the whole plant. 
*The GT-B fold UGT structure model (Lairson et al., 2008) was reprinted, with permission, 
from the Annual Review of Biochemistry, Volume 77 ©2008 by Annual Reviews 
(www.annualreviews.org) 

1.1.2. Classification 

According to the International Union of Biochemistry and Molecular Biology (IUBMB) 

nomenclature, glycosyltransferases (GTs) belong to class EC 2.4.x.y. (Campbell et al., 1997). 

But there are several limitations applying this classification on GTs, as for most of these 

enzymes biological functions are still unknown and many of them are known to have broad 

substrate specificities. Therefore they are characterized into different families according to 

their degree of primary sequence identity (Campbell et al., 1997; Coutinho et al., 2003). To 
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date there are 92 glycosyltransferase families listed in the Carbohydrate-Active Enzyme 

(CAZy) database [(Cantarel et al., 2009), http://afmb.cnrs-mrs.fr/CAZY/]. This study focuses 

on family 1 GTs, and among these enzymes on those, which utilize a uridine diphosphate 

(UDP) activated sugar as donor in the glycosylation reaction, and are therefore referred to as 

UDP-dependent glycosyltransferases or UGTs (Mackenzie et al., 1997; Lim and Bowles, 

2004). 122 different UGTs exist in the model plant Arabidopsis thaliana, which are classified 

in 14 different phylogenetic groups (Li et al., 2001; Ross et al., 2001). A UGT nomenclature 

was developed based on divergent evolution (Mackenzie et al., 1997). Enzymes which show 

more than 40% amino acid identity are grouped within the same family designed by a 

number, plant UGTs belong to families 71-100. Each family is further divided into different 

subfamilies, each of them comprising UGTs with 60% or more sequence identity described by 

a letter which is followed by an Arabic number assigning each single gene (Figure 2). A 

second nomenclature exists which is based on secondary and tertiary structure of GTs and 

their mechanism of catalysis (Coutinho et al., 2003). In this work the UGT nomenclature 

based on Mackenzie et al. (1997) was used. 

 

 

Figure 2. UGT superfamily 
nomenclature based on divergent 
evolution. 

The scheme shows the current 
system used for UGT nomenclature 
based on divergent evolution 
(Mackenzie et al., 1997) 
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1.1.3. Sequence homology 

Plant glycosyltransferases in general show only little sequence similarity (Vogt and Jones, 

2000). However, their amino-terminal regions are more variable than the carboxy-terminal 

regions, which supports the suggestion that this domain might be involved in the recognition 

and binding of the diverse aglycon substrates. The carboxy-terminal region in contrast shows 

more sequence homology and was thought to be involved in binding the nucleotide sugar 

substrate (Lim et al., 2003). This assumption could later be confirmed by analysis of the 

crystal structure (Li et al., 2007) and site directed mutagenesis (Osmani et al., 2008). A highly 

conserved sequence was found in the C-terminal region of UGTs involved in secondary plant 

metabolism called Plant Secondary Product Glycosyltransferase (PSPG)-Box (Hughes, 1994). 

This 44 amino acid long box contains an N-terminal extension compared to the originally 

proposed consensus sequence for UDP-glycosyltransferases (Mackenzie et al., 1997). 

Database searches for sequence similarity with the PSPG motif led to the identification of 

more than 100 different plant GTs. In the Arabidopsis GT family 1, most of the GTs are 

UGTs, carrying the C-terminal consensus sequence except for three GTs. UGT80A2, 

UGT81A1 and UGT81B1 have incorporated additional residues in their PSPG motif and 

therefore show higher similarity to non-plant UGT sequences. They are more conserved and 

catalyze housekeeping functions. The UGT families containing the PSPG motif are less stable 

than the ones without it, since PSPG containing UGTs are putatively involved in secondary 

metabolism and thus subjected to recruitment for novel functions (Paquette et al., 2003). 

1.1.4. Reactions catalyzed by UGTs and substrate specificity 

Glycosyltransferases catalyze the transfer of a sugar residue from a donor molecule to an 

acceptor molecule by the formation of a glycosidic bond. They are generally perceived as 

unidirectional catalysts, but GTs which catalyze the reverse reaction producing the NDP-

sugar, have also been characterized (Miller et al., 1999; Zhang et al., 2006; Modolo et al., 

2007). Most of the sugar-transferring enzymes need an activated carbohydrate molecule as 

cosubstrate. This activation can be via a free phosphate, a lipid phosphate or a nucleoside 

phosphate (Charnock et al., 2001). NDP (Nucleosidediphosphate)-glycosyltransferases (NDP-

GT) [EC 2.4.x.y.] catalyze the transfer of a sugar moiety from an activated 

nucleosidediphosphate to an aglycon. Nucleotide sugar-dependent glycosyltransferases are 

often also referred to as Leloir enzymes. Luis F. Leloir was awarded the Nobel Prize in 

chemistry in 1970 for discovering the first sugar nucleotide and for his enormous 
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contributions to our understanding of glycoside biosynthesis and sugar metabolism. UDP-

glucose is the most commonly used nucleotidic sugar in plants (Ross et al., 2001). But plant 

UGTs also recognize other sugars or derivatives including UDP-galactose (Miller et al., 

1999), UDP-xylose (Martin et al., 1999a), UDP-rhamnose (Jones et al., 2003; Frydman et al., 

2004), UDP-arabinose (Yonekura-Sakakibara et al., 2008) and UDP-glucuronic acid (Sawada 

et al., 2005). UDP-glucuronic acid is the most common sugar derivative donor used by the 

mammalian UGTs (Ross et al., 2001). In general, UGTs show very high specificity for the 

sugar donor (Sawada et al., 2005; Shao et al., 2005; Yonekura-Sakakibara et al., 2007; 

Osmani et al., 2008).  

The acceptor molecule can be a protein (glycoprotein), a lipid (glycolipid), a sugar (oligo-, 

polysaccharide) or small organic molecules. UGTs can transfer a sugar moiety to O- (OH- or 

COOH-), N-, S- or C atoms of the acceptor molecule, but hydroxylated forms are the most 

common ones (Jones and Vogt, 2001). Additionally, a broad range of different carbohydrate 

moieties can be transferred to one acceptor molecule leading to mono-, di-, triglycosides, etc., 

or bis-glycosides, which leads to a broad spectrum of possible glycosidic structures for a 

given aglycon. 

Considering the huge number of different glycosides found in plants, high specificity would 

indicate the requirement for many more UGTs than actually identified (Lim and Bowles, 

2004). As observed by in vitro glycosylation tests, most UGTs are indeed regiospecific rather 

than substrate-specific. Broad substrate specificity is a general characteristic of enzymes 

involved in ultimate steps of the biosynthesis of natural products, such as UGTs, P450s 

(Chapple, 1998) and methyltransferases (Frick and Kutchan, 1999). It confers plants a certain 

degree of flexibility and enables them to respond to rapidly changing environmental 

conditions or evolutionary tendencies (Vogt and Jones, 2000). Low substrate specificity could 

lead to problems with respect to undesired side reactions like inactivation of plant hormones. 

The UGT activity should therefore be under a tight control. This regulation is proposed to 

involve transcriptional control (Tohge et al., 2005), and incorporation of the UGTs as part of 

metabolons (Jorgensen et al., 2005; Nielsen et al., 2008). Both mechanisms could contribute 

to regulate the available set of UGTs in a spatial and temporal manner. 

1.1.5. Reaction mechanism  

According to the mechanism of the catalytic reaction, which is generally conserved within a 

CAZy family, GTs were divided into two classes (Figure 3). The catalysis can lead either to 

an inversion or to the retention of the anomeric configuration of the sugar donor. In retaining 
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GTs (α-group), the stereochemistry of the glycosidic bond is identical with the one of the 

sugar donor (α→α), whereas inverting GTs (β-group) create a glycosidic bond with opposite 

stereochemistry to that of the sugar donor (α→β) (Coutinho et al., 2003). 

 

 

 

Figure 3. Reactions catalyzed by glycosyltransferases. 

Glycosyltransferases catalyze the transfer of a glycosyl group with either inversion or retention 
of the anomeric stereochemistry with respect to the donor sugar. Plant secondary metabolite 
GTs (UGTs) are inverting enzymes. 

1.1.6. Functions of plant secondary metabolite glycosyltransferases  

1.1.6.1. Glycosylation of secondary metabolites 

Plants are capable of synthesizing several thousands of different low molecular weight 

compounds or so called “secondary metabolites”. These are organic compounds that are not 

directly involved in the normal growth, development, or reproduction of organisms and that 

are not absolutely required for the survival of the organism. The extremely high diversity of 

secondary metabolites found to date might be necessary for the plants to be able to respond to 

a continuously changing environment to which they are exposed due to their sedentary life 

style (Bowles et al., 2006). 

Each plant family, genus, and species produces a characteristic mix of secondary metabolites 

which can therefore sometimes also be a useful taxonomic tool. Glycosylation is a prominent 

modification reaction and is often the last step in the biosynthesis of natural compounds. 

Other modifications which contribute to the high variety and complexity of plant secondary 

metabolites are carboxylation, methylation and hydroxylation (Jones and Vogt, 2001). 

Glycosides of a huge group of secondary metabolites such as phenolics, terpenoids, alkaloids 

(e.g. betalains), thiohydroximates (glucosinolate precursors), cyanohydrins (cyanogenic 
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glycoside precursors) and steroids could be identified (Vogt and Jones, 2000). Flavonoids, for 

example, are a huge and diverse group of plant natural products which often exist in 

glycosylated forms. Approximately 9000 different flavonoids have already been reported 

from plant sources (Williams and Grayer, 2004). In addition to their UV-protective function, 

evidence suggests that flavonoids are also involved in plant development such as for example 

pollen fertility in petunia and maize (Mo et al., 1992) or auxin transport (Peer and Murphy, 

2007). Among the flavonoids, anthocyanins, the glucosides of anthocyanidins, are the major 

flower pigments in higher plants. They are water-soluble and may appear red, purple, or blue 

according to the vacuolar pH (Mol et al., 1998). 1-O-sinapoylglucose, a compound derived 

from the phenylpropanoid pathway (in members of the Brassicaceae family), is an 

intermediate in the synthesis of sinapoylmalate, a putative ultraviolet protectant in foliar 

tissue (Bowles et al., 2006). Glucosinolates, which are found almost exclusively in the 

Brassicaceae family, are compounds derived from glucose and an amino acid. They are stored 

in the plant vacuole, upon tissue damage they come in contact with enzymes which convert 

them to compounds responsible for the bitter or sharp taste of many common foods. In 

addition to their roles in plant defense against herbivores they have also been shown to have 

fungicidal and bactericidal as well as cancer chemoprotective attributes (Fahey et al., 2001). 

These are only few examples of the huge array of glycosidic secondary metabolites 

synthesized by plants. 

Glycosylation not only plays an important role in the biosynthesis of secondary metabolites, it 

also alters the physical and chemical properties of the small acceptor molecules and their 

movement within the cell. The covalent bonding of sugar residues to the nucleophilic parts of 

organic molecules leads to reduced reactivity, toxicity and/or higher stability of the acceptor 

molecules or converts them into more stable storage forms (Jones and Vogt, 2001). The 

addition of sugar moieties to small hydrophobic molecules also increases the polarity and 

thereby the water solubility of the resulting compound. This inhibits the free diffusion through 

lipidic membranes thereby influencing cellular compartmentation and regulating the local 

concentration of metabolites (Lim and Bowles, 2004). Aromatic compounds such as for 

example vanillin are stored as a bitter glycoside in the vacuole and released through the action 

of endogenous glycosidases during the ripening process (Prince and Gunson, 1994). 

Glycosylation of cyanogenic compounds avoids their spontaneous hydrolysis which releases 

toxic hydrogen cyanide (Poulton, 1988; Jones et al., 1999). Saponins are terpene glucosides 

with antifungal properties. Removal of their sugar residues results in loss of bioactivity 
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(Osbourn, 2003). Another example is the reduced toxicity of the glycosylated form of the 

alkaloid solanidin from Solanum tuberosom (Moehs et al., 1997). 

Glycosylation usually leads to stabilization and inactivation, but cases are known, where 

addition of the sugar residue also leads to activated conjugates which are highly energetic 

compounds and biosynthetic intermediates. This has primarily been demonstrated with 1-O-

sinapoylglucose, a high-energy glucose ester, which is used as an activated sinapate donor in 

the synthesis of sinapoylmalate and sinapoylcholine in the Brassicaceae family (Bowles et al., 

2006). 

In addition to sugar conjugation, hydrolysis is another important and complementary part of 

glycoside metabolism (Warzecha et al., 1999; Cicek et al., 2000). The hydrolysis of the 

glycosides by beta-glucosidases leads to the fast delivery of the (usually active) aglycon. 

1.1.6.2. Regulation of plant hormones 

Control of hormone homeostasis is crucial to enable rapid adaptation of plants to continuously 

changing external environments. Therefore, a wide range of mechanisms, including 

glycosylation, have evolved to precisely control the levels and compartmentation of different 

active hormones in plant cells and tissues. 

Depending on the individual hormone, glycosylation can be either reversible (most hormone 

glycosides) or irreversible [e.g. 7-N- and 9-N-glucosilation of cytokinins (Hou et al., 2004)] 

and glycoside conjugates have bioactivities different from the free forms of the hormones. 

Glycosylation of plant hormones or their precursors is an important issue in the regulation of 

related defense pathways. All classical hormones with the exception of ethylene occur as 

glycosides in planta (Bowles et al., 2006). Many other mechanisms regulating hormone 

activity exist and also other conjugation forms including for example amides or fatty acid 

esters. 

The first glycosyltransferase glucosylating the plant hormone indole acetic acid (IAA) was 

cloned from maize (Szerszen et al., 1994). Later UGT84B1, showing high IAA glucosylating 

activity, was isolated from Arabidopsis (Jackson et al., 2001). 

Glycosylation of cytokinins involves O-glucosylation, O-xylosylation, and N-glucosylation 

(Mok and Mok, 2001). Zeatin is the most common cytokinin, its glucosides are transport and 

storage forms which are protected from enzymatic digestion. Zeatin glycosylating enzymes 

have been identified from several plant species (Martin et al., 1999a, b; Mok et al., 2000; 

Martin et al., 2001). UGT76C1 and UGT76C2 from Arabidopsis are able to form N- and O-
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glucoside conjugates in vitro. UGT76C1 function towards cytokinins in vivo was confirmed 

in transgenic plants with constitutive overexpression (Hou et al., 2004). 

Abscisic acid glucose ester is the most abundant conjugate of the plant hormone abscisic acid 

(ABA), but several other glycosides of ABA have been identified in many plant species 

(Nambara and Marion-Poll, 2005). The Arabidopsis thaliana genome contains eight 

sequences coding for UGTs able to glycosylate abscicic acid. One of them, UGT71B6, 

showed enantioselective glucosylation only towards the naturally occurring cis-S-(+)-ABA in 

vitro (Lim et al., 2005). The same protein was also shown to be able to glucosylate a wide 

range of ABA analogues in vitro (Priest et al., 2005). 

Several brassinosteroid glycosides have also been identified in plants (Fujioka and Yokota, 

2003; Bajguz, 2007). The only glycosyltransferase able to glycosylate brassinosteroids was 

found in Arabidopsis thaliana (Poppenberger et al., 2005). UGT73C5 catalyzes 23-O-

glucosylation of the brassinosteroid brassinolide and its biosynthetic precursor castasterone. 

Studies using overexpression and knockout lines confirmed that UGT73C5 is involved in 

brassinolide glucosylation in planta. Interestingly the same gene has been shown to be able to 

glycosylate a fungal toxin (Poppenberger et al., 2003), which suggests that UGT73C5 may 

play a dual role in the plant glycosylating endogenous and exogenous acceptors. 

Salicylic as well as jasmonic acid are two other important plant hormones, the activity of 

which seems to be regulated by conjugation. As both are key players in plant defense 

reactions, they will be further described in the next section. 

1.1.6.3. Involvement in plant defense and detoxification of endogenous and 

exogenous compounds 

Plants have to defend themselves continuously against a host of different unfavorable 

environmental conditions. These can be abiotic stress cues such as drought, heat, cold or 

oxidative stress as well as biotic stress factors such as herbivore attack, bacterial or fungal 

infections. Several UGTs are highly inducible by both abiotic as well as biotic stress factors 

(Mazel and Levine, 2002; Langlois-Meurinne et al., 2005; Meissner et al., 2008), indicating 

an important stress related function. 

Accordingly, changed expression of candidate UGT genes led to an altered defense response 

in several cases. Langlois-Meurinne et al. (2005), for example, reported two ugt knockout 

mutants with decreased resistance towards the hemibiotrophic pathogen Pseudomonas 

syringae. Scopoletin is a phytoalexin that accumulates in abundance during the hypersensitive 

response to block the spreading of tobacco mosaic virus; it is known to be glycosylated in 



PLANT SECONDARY METABOLITE GLYCOSYLTRANSFERASES                                                                                  .   

 
10 

tobacco through the UGT TOGT. Downregulation of TOGT led to increased oxidative stress, 

whereas overexpression in plants resulted in precocious lesion formation during the 

hypersensitive response to tobacco mosaic virus (Chong et al., 2002; Gachon et al., 2004). 

Overexpression of UGT74F2 led to increased susceptibility to the hemibiotrophic pathogen 

Pseudomonas syringae, caused by reduced salicylic acid and its glucoside levels (Song et al., 

2008). 

Salicylic acid (2-O-hydroxybenzoic acid) is an important signal molecule in plant 

development and defense. Two glucosylated forms have been identified in plant species: the 

glucose ester and the 2-O-glucoside (reviewed in Vlot et al. (2009)). Both the conjugated and 

the free form are increased upon pathogen infection. An in vitro screening of several 

recombinant UGTs from Arabidopsis revealed two proteins which were active against 

salicylic acid (SA) and benzoic acid (Lim et al., 2002). UGT74F1 formed only SA 2-O-β-D-

glucose (SAG), while UGT74F2 forms both SAG and the SA glucose ester (SGE). Using 

mutant Arabidopsis plants it could be shown that changes in the activity of either UGT74F1 

or UGT74F2 can have a dramatic effect on the in vivo metabolism of exogenously supplied 

SA (Dean and Delaney, 2008). 

Jasmonic acid is another important plant hormone involved in plant defense against 

herbivores (wounding) and necrotrophic pathogens (Wasternack, 2007). One Arabidopsis GT 

(UGT74D1) recognized JA in vitro, but it also showed significant activity towards other 

substrates (Song, 2005). Additionally, a jasmonic acid glucoside was found to accumulate in 

wounded leaf extracts of Arabidopsis thaliana (Glauser et al., 2010). This further supports the 

importance of plant UGTs in hormone regulation and plant pathogen interactions. 

As already mentioned in section 1.1.6.1, glycosides can also serve as storage forms of for 

example toxic antimicrobial compounds or insect repellents which can be rapidly delivered by 

the plant in case of pathogen attack (Chong et al., 2002). Plants are not only able to 

glycosylate their own endogenous compounds but also a broad range of foreign compounds 

originating from other organisms or man-made chemicals, known as xenobiotics 

(Pflugmacher and Sandermann, 1998; Jones and Vogt, 2001). After inactivation and 

solubilization through glycosylation, toxic compounds are stored and accumulated in the 

vacuole and apoplastic space with a low turnover rate (Bowles et al., 2006).  

Invading pests and pathogens use a wide repertoire of mechanisms in their struggle to 

overcome plant defenses, including the production and secretion of toxins into the cells of the 

plant being invaded (Jones and Dangl, 2006). Glycosylation is a crucial defense mechanism 

of plants to protect themselves against the huge range of toxic compounds released by their 
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attackers. The relatively low substrate specificity of UGTs is an important point in order to 

offer a flexible repertoire of defenses against rapidly evolving invading mechanisms. Several 

publications showed clear evidence that several fungal toxins can be modified and inactivated 

in planta (Karlovsky, 1999; Pedras et al., 2001). Sinapis alba for example is able to 

hydroxylate and glycosylate destructin B, a toxin produced by Alternaria brassicae, and 

simultaneously activate the production of phytoalexins which makes the plant species 

resistant to the blackspot fungus (Pedras et al., 2001). Plant pathogenic fungi of the genus 

Fusarium cause agriculturally important diseases of small grain cereals and maize. It 

produces trichothecene deoxynivalenol (DON), a harmful mycotoxin, if present in food or 

feed products. UGT73C5 from Arabidopsis thaliana has been shown to recognize and 

detoxify this fungal toxin (Poppenberger et al., 2003). The recombinant UGT catalyzed the 

formation of DON-3-O-glucoside in yeast cells and, when overexpressed in transgenic 

Arabidopsis, conferred enhanced tolerance to DON. 

Extensive literature is also available on the ability of plants to detoxify non-natural chemical 

compounds in their environments. Screens of recombinant UGT activities revealed several 

exogenous chemical compounds which were shown to be glycosylated by plant UGTs 

(Taguchi et al., 2001; Hefner et al., 2002; Messner et al., 2003), and partial purification of 

UGT activities towards several xenobiotics has also been described (Brazier et al., 2002, 

2003; Lao et al., 2003; Loutre et al., 2003). Finally, the conjugating activity of one enzyme, 

UGT72B1, towards 3,4-dichloroaniline could also be confirmed in vivo using a reverse 

genetics approach (Brazier-Hicks and Edwards, 2005). 

In addition to their functions during plant pathogen interactions and detoxification, resistance 

towards several abiotic stressors is also influenced by UGT expression. Ectopic 

overexpression of UGT74E2 for example, led to improved survival during drought and salt 

stress in Arabidopsis through its activity toward the auxin indole-3-butyric acid (Tognetti et 

al., 2010). Loss-of-function mutations in UGT73B1, UGT73B2, or UGT73B3 (tandemly 

clustered flavonoid UGTs) enhanced plant resistance to oxidative stress (Lim et al., 2006). 

Loss of UGT71C1 function in Arabidopsis led to increased tolerance to methyl viologen, also 

indicating a role in oxidative stress response (Lim 2008). 



PLANT SECONDARY METABOLITE GLYCOSYLTRANSFERASES                                                                                  .   

 
12 

1.1.7. Potential applications of plant glycosyltransferases 

1.1.7.1. Industrial applications 

By stabilizing and solubilizing compounds and improving the pharmacological properties of 

drug molecules, such as absorption, distribution, metabolism as well as excretion (ADME 

properties), glycosylation has important implementation in the pharmaceutical as well as in 

the food industry (Weymouth-Wilson, 1997; Ahmed et al., 2006). Ascorbic acid-2-O-α-

glucoside (AA-2G), for example, is widely used in both the pharmaceutical and the food 

industry as a stable antioxidant additive compared to its free form which is rapidly oxidized 

(Mandai et al., 1992). Pure chemical synthesis of complex sugar-containing natural products 

is still a difficult and costly task. Stepwise chemical glycosylation involves long synthetic 

schemes and appropriate blocking reagents to protect other reactive sites on the molecule 

which must be removed afterwards. The use of UGTs for direct glycosylation of natural 

compounds is therefore an attractive and simple alternative. Especially their ability to accept a 

wide range of acceptors and to glycosylate them in a regioselective manner makes them 

attractive candidates for industrial use in addition to their in planta function. 

Additionally, the stereoselectivity of GTs is a valuable attribute which has been exploited in 

the chiral separation of (+)-ABA from (±)-ABA using a whole-cell biocatalysis system (Lim 

et al., 2005). The ability of some UGTs to catalyze both glycosylation and deglycosylation 

reactions (Zhang et al., 2006; Modolo et al., 2007) can also have interesting applications for 

the synthesis of activated sugars. 

1.1.7.2. Plant metabolic engineering 

In addition to their applications in the field of biocatalysis, a deeper understanding of plant 

UGT functions can be of great interest for metabolic engineering of crop plants. The ability of 

UGTs to conjugate toxic xenobiotics such as herbicides or human drugs in addition makes 

them suitable targets for phytoremediation purposes. Enzymes involved in mechanisms that 

help the plant to protect itself against abiotic and biotic stress factors could be targets for 

genetic engineering to improve plant tolerance to unfavorable conditions and product yield. 

Several UGT-encoding genes could as well be suitable candidates to be inserted into a variety 

of plants with the aim of improving food or crop quality. Dhurrin for example is a tyrosine-

derived cyanogenic glucoside from Sorghum bicolor which confers resistance to the flea 

beetle Phyllotreta nemorum, a natural pest of several members of the crucifer group. Inserting 
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the entire pathway for dhurrin biosynthesis (CYP79A1, CYP71E1 and UGT85B1) from 

Sorghum bicolor into Arabidopsis thaliana led to increased Phyllotreta resistance (Tattersall 

et al., 2001). Further work demonstrated that dhurrin accumulation could be achieved with 

only marginal inadvertent effects on plant morphology, free amino acid pools, transcriptome, 

and metabolome (Kristensen et al., 2005). Insertion of the glycosyltransferase from Sorghum 

was essential, as none of the UGTs from A. thaliana was capable of converting the aglycon p-

hydroxymandelonitrile into the corresponding cyanogenic glucoside in planta. 

1.1.8. Approaches to UGT identification and functional analysis 

Although the annotation of an encoded enzyme e.g. as a UGT most probably denotes its 

activity as a transferase of an activated sugar to small-molecule acceptors, this knowledge 

does not provide a clue towards its native substrate(s), not to mention its in vivo function. 

Considerable advances in plant biology already led to the elucidation of several UGT 

functions (1.1.6), but the vast majority of UGT isoforms still remain ‘orphan’ enzymes. 

The first plant UGT-encoding gene was unexpectedly identified by Nobel laureate Barbara 

McClintock who discovered the genetic instability of transposons in maize. She studied the 

dark pigmentation of maize grains conferred by the mutation of Bronze1, which later turned 

out to encode a flavonoid UGT (Dooner and Nelson, 1977). The corresponding gene was 

cloned through the transposon tag from maize (Fedoroff et al., 1984). 

As a more systematic approach, the direct purification and characterization of proteins was 

the only method available in the ´premolecular´ age to characterize and differentiate 

individual GTs. Purification has been achieved by a combination of anion exchange, 

hydrophobic interaction, and dye ligand chromatography (Vogt and Jones, 2000). Once the 

proteins are purified, their enzyme activities toward glycosylation of specific substrates can 

be investigated and the corresponding genes can be cloned by the derived nucleotide 

sequences from the amino acids. An example of a successful isolation and partial protein 

sequencing using the classical biochemical methods is the 1,2 rhamnosyltransferase, a key 

enzyme in the biosynthesis of the bitter flavonoids of citrus (Frydman et al., 2004). 

But the purification and characterization of proteins directly from plants is a difficult task and 

the progress on their identification and characterization is relatively slow. Often the proteins 

are of low abundance, and purification to homogeneity is difficult to achieve. Accordingly, 

much data was obtained with partially purified enzymes which could lead to erroneous 

assumptions on substrate specificities due to contamination with other enzymes. Additionally, 

UGTs are generally labile, which further renders their purification difficult (Chapple, 1998). 
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The development of genomics and bioinformatics greatly facilitated the identification of plant 

GTs. The PSPG-box consensus sequence provided a good starting point for searching new 

putative glycosyltransferases from databases and characterizing the new enzymes through 

expression in heterologous systems. Furthermore, based on the conserved amino acid 

sequence of GTs, degenerate primers could be designed in order to clone new putative 

enzyme candidates. This technique led to the identification of several GTs from different 

plant sources (Ford et al., 1998; Moraga et al., 2004; Masada et al., 2009). Whole genome 

sequencing of the model plant Arabidopsis thaliana (The-Arabidopsis-Genome-Initiative, 

2000) finally identified a very large UGT superfamily and opened new opportunities for 

phylogenetic analysis of higher plant UGTs (Li et al., 2001), as well as a basis for a further 

better understanding of structure-function relationships. Additionally, the huge abundance of 

publicly available microarray expression data provides a vast amount of information that has 

been exploited only sparsely to date. Extensive analysis of gene (co-) expression and stress 

inducibility might lead towards novel hypotheses regarding biochemical and biological 

functions of UGTs, as already shown in other cases (Ehlting et al., 2008). New assumptions 

on potential functions can then be addressed by experimental approaches. 

The identification of in vitro substrate specificity of an enzyme alone does not give a clear 

conclusion about the true biological function of this particular enzyme. Several aspects have 

to be considered which could influence substrate specificity in the in vivo system and broad 

substrate specificity in vitro does not necessarily mean the enzyme accepts the same range of 

substrates in planta. Regulation of gene expression, substrate availability and possible 

involvement in multienzymatic complexes may have a drastic influence on enzyme activity in 

vivo (Winkel-Shirley, 1999; Jones and Vogt, 2001; Ross et al., 2001). Competition between 

different enzymes for the same substrate may also play an important role in planta (Bowles et 

al., 2005). Therefore, the use of loss-of-function mutants and overexpression lines is a 

common and important tool for functional gene analysis. Phenotypic analyses of metabolite 

pool perturbation can be analyzed by up- and downregulation of gene expression in transgenic 

plants. Approaches are also necessary which integrate available in vitro data with the 

corresponding metabolite and transcript profiles (Achnine et al., 2005; Tohge et al., 2005). 

Integration of metabolite profiling with independent evidence, in particular of transcriptional 

co-expression and comparative genomics, has strongly facilitated the elucidation of metabolic 

pathways and assignment of enzymatic activities (Hirai et al., 2005; Yonekura-Sakakibara et 

al., 2008; Matsuda et al., 2009; Ohta et al., 2010). The fast development of improved 

techniques for high-throughput metabolomic analysis greatly increases the potential for rapid 
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and large scale non-targeted screening of similarities and dissimilarities in plant mutant 

populations and will hopefully help us to gain new insights into the precise biological roles of 

plant secondary product glycosyltransferases. 
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11..22..  AAIIMM  OOFF  TTHHIISS  WWOORRKK  

 

The goal of this work was to further our understanding of the role of plant secondary 

metabolism glycosyltransferases in plant responses to environmental stresses. 

As a starting point, a study of publicly available microarray-based expression data of UGT 

stress responses should reveal the distribution of stress inducibility throughout the whole UGT 

family of Arabidopsis thaliana and point out highly stress responsive genes as a criterion to 

select them as candidate genes for further functional analysis. 

Molecular genetic approaches (loss-of function mutants, ectopic overexpression, and 

expression patterns) and phenotypic characterization (including abiotic and biotic challenges) 

were combined with non-targeted metabolome analyses employing ultra-high resolution FT-

ICR mass spectrometry. This strategy aimed at obtaining information on the affected pathway 

and physiological function and at possibly identifying in vivo substrate(s) without any other 

prior knowledge apart from the broad stress inducibility of the candidate UGT genes. 
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22..  UUGGTT  SSTTRREESSSS  IINNDDUUCCTTIIOONN  AANNAALLYYSSIISS  AANNDD  SSEELLEECCTTIIOONN  OOFF  

CCAANNDDIIDDAATTEE  GGEENNEESS    

 

In order to analyze the distribution of transcriptional responses to exogenous stresses within 

the Arabidopsis thaliana UGT genes and to select highly responsive candidate genes for 

further functional analysis, public expression data of plants exposed to several abiotic and 

biotic stress cues were examined. 120 UGT genes with corresponding AGI locus identifiers 

were extracted from the CAZy database. 119 of them were found to be represented on the 

ATH1 microarray represented by a total of 112 different probe sets. 105 UGT genes are 

represented by gene-specific probes, while seven hybridize to two highly related genes each. 

Normalized expression data from Columbia wild-type leaves or seedlings were retrieved from 

the BAR database (bbc.botany.utoronto.ca; Toufighi et al. 2005). 

A large group of UGT genes was induced in one or several experiments, but stress 

responsiveness was not equally distributed across the genes analyzed. In both abiotic and 

biotic stress experiments a clear clustering of stress-dependent induction was observed 

(Figure 4A; Methods). Forty percent of all analyzed UGT representing probe sets accounted 

for 75% of the significant stress dependent upregulations. Individual members of almost all 

phylogenetic groups (Ross et al., 2001) evolved towards stress inducibility (Figure 4B). Some 

clustering of stress responsiveness could be observed for Group D which is thought to be 

involved in stress responses caused by exposure to pathogens, hydrogen peroxide and 

salicylic acid (Langlois-Meurinne et al., 2005). 

Most of the top-ranking genes induced by abiotic stress cues also appear among the top 

pathogen induced candidates. It is known that abiotic and biotic stresses regulate different but 

overlapping sets of genes. Reactive oxygen species for example play an important role at the 

point of convergence between abiotic and biotic stress response pathways (Fujita et al., 2006). 

A further example is a cis element involved in rapid wound response which was also found in 

several genes as well by both abiotic and biotic stress cues (Walley et al., 2007), indicating a 

general overlap between genes induced by biotic as well as abiotic stress cues. Consistently, 

most of the UGTs highly responsive to oxidative stress and wounding are also found among 

the top pathogen-responsive genes. 

Some of the UGTs which turned out to be broadly stress-responsive were already known to be 

functionally related to plant stress responses. UGT76E12 and UGT71B8 for example are both 

able to glycosylate quercetin, an important antioxidative compound in plants, in vitro (Lim et 
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al., 2004). UGT73B3 and UGT73B5 seem to be important for plant defense response as 

shown by the decreased resistance to Pseudomonas infection in the corresponding knockout 

mutants (Langlois-Meurinne et al., 2005). UGT74F2 glycosylates salicylic acid, one of the 

most important defense related hormones in planta (Dean and Delaney, 2008; Song et al., 

2008). UGT84B1 showed high activity towards the auxin indole-3-acetic acid in vitro 

(Jackson et al., 2001) and when constitutively overexpressed in planta, UGT84B1 was shown 

to be able to disturb IAA homeostasis (Jackson et al., 2002). Other UGTs, listed among the 

top 20 stress-induced candidates were shown to glycosylate other plant hormones in vitro 

(UGT73C1/2 and UGT85A1: cytokinins (Hou et al., 2004); UGT71B6: ABA (Lim et al., 

2005)). It is not surprising that genes related to hormone metabolism show strong responses to 

both biotic and abiotic challenge, as plant hormones are known to play important roles in 

responses towards both pathogen challenge as well as resistance to environmental stresses. 

Several genes show neither strong biotic nor abiotic induction (Figure 4A). Genes belonging 

to this group might have housekeeping functions or might be developmentally regulated 

rather than stress-dependent. In this cluster, for example, members of the subgroups UGT80 

and UGT81 can be found which show higher sequence similarity to non plant UGTs and code 

for housekeeping genes involved in plant lipid biosynthesis (Paquette et al., 2003). Another 

example is UGT74C1 which is proposed to be involved in developmentally regulated rather 

than stress-induced glucosinolate biosynthesis (Petersen et al., 2002; Gachon et al., 2005). 

The functions of most UGTs which are highly responsive to abiotic and biotic stress cues still 

remain unknown. 

As shown in Figure 4, UGT76B1 and UGT87A2 are the two top stress-induced candidates. 

Both genes are broadly responsive to biotrophic and necrotrophic pathogens as well as to 

several abiotic stress cues such as UV-B, wounding, oxidative and osmotic stress. However, 

nothing was known about their function or any involvement in plant stress response. A 

functional characterization of these interesting candidates using a genetic approach will be 

described in this work. 
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Figure 4. Stress responsive expression of 
UGTs in A. thaliana leaves and seedlings 
based on Affymetrix ATH1 microarray 
data. 

A) The distribution of maximal inductions to 
abiotic and biotic stress factors among all UGT 
members is shown. More than twofold 
inductions are indicated in red. Genes are 
sorted from highest to lowest abiotic and biotic 
stress inducibility using mutual ranking. 
Candidate genes selected for further analysis 
(UGT76B1 and UGT87A2), are highlighted by 
a red arrow. UGT87A1, a close homolog of 
UGT87A2 (see section 4.1.8) is marked with a 
blue arrow. A1: Osmotic; A2: Salt; A3: UV-B; 
A4: Oxidative; A5: Wounding; A6: Drought; 
A7: Cold; A8: Heat; B1: P. syringae pv. 
tomato DC3000 (vir); B2: P. syringae pv. 
phaseolicula (avir); B3: Phytophtora infestans; 
B4: Botrytis cinerea; B5: P. syringae pv. 
maculicola ES4326 (vir); B6: Erysiphe orontii. 
B) Relative number of inductions (> 2-fold), 
per member of the different phylogenetic UGT 
groups (Ross et al., 2001). 
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33..  UUGGTT7766BB11  CCOONNJJUUGGAATTEESS  IISSOOLLEEUUCCIICC  AACCIIDD  AANNDD  SSUUPPPPRREESSSSEESS  

PPLLAANNTT  DDEEFFEENNSSEE  AANNDD  SSEENNEESSCCEENNCCEE  

 

Plants, as sessile organisms, had to evolve elaborate mechanisms to cope with environmental 

stresses and to organize defense or tolerance. These measures involve a complex 

reprogramming of plant cells, which relies on major changes in gene expression, protein 

modification and a range of different compounds active in defense and signaling. Several 

small-molecule hormones such as salicylic acid (SA), jasmonic acid (JA), ethylene, and 

abscisic acid play crucial roles in regulating responses of plants to both biotic and abiotic 

stresses. Their signaling pathways interact with each other in synergistic as well as 

antagonistic manners enabling the plant to fine-tune its response to the stressor(s) encountered 

(Jones and Dangl, 2006; Spoel et al., 2007; Koornneef and Pieterse, 2008). Mostly, SA- and 

JA-mediated signaling pathways are triggered when plants have to defend themselves against 

pathogens. Whereas biotrophic pathogens (bacteria, fungi, viruses) are mostly combated by 

the SA pathway and might be hampered by the activation of the JA response, the opposite 

prioritization of defense signaling is mobilized to battle necrotrophic pathogens (bacteria, 

fungi) and herbivores. 

Constitutive production of signaling molecules and the concomitant expression of defense 

genes is energetically costly and reallocation of resources towards defense seems to decrease 

plant overall fitness (Heil and Baldwin, 2002; Lorrain et al., 2003). Therefore, plants need a 

tight control of the defense response and its suppression in the absence of pathogen attack or 

other stresses (Heidel et al., 2004; Bolton, 2009). 

Arabidopsis genetics has defined a plethora of genes involved in both SA and JA signaling 

and their interplay. A number of mutants resulted in enhanced susceptibility to biotrophic 

pathogens and suppression of SA responses thereby defining crucial steps in SA signaling. 

These include components of the MAP kinase signaling pathway like ERD1, MPK3 and 

MPK6, genes related to SA biosynthesis (ICS1/SID2, PAD4, and EDS1), central downstream 

regulators of SA signaling like NPR1, as well as WRKY and TGA transcription factors. 

Induction of these transcription factors eventually leads to the activation of SA-responsive 

genes, including PR genes, which are involved in defense responses. Similarly, mutations in 

e.g. JAR1, COI1, and JIN1 defining different steps in JA signaling negatively affect the JA 

pathway (Kazan and Manners, 2008). Resistance towards necrotrophic pathogens is reduced 

in the corresponding mutants concomitant with the abolished induction of marker genes like 



                                                                                                                                                                                                        . 

 
22 

the defensin PDF1.2. In contrast, several gain-of-resistance Arabidopsis mutants show 

constitutive defense responses in the absence of (biotrophic) pathogen attack, such as mlo, 

mpk4, wrky, acd, lsd, hrl1, hlm1, or dnd affecting pathogen perception and response or 

leading to primed defense (Greenberg et al., 1994; Petersen et al., 2000; Devadas et al., 2002; 

Balague et al., 2003; Lorrain et al., 2003; Consonni et al., 2006; Journot-Catalino et al., 2006; 

Genger et al., 2008). Other interesting classes of mutants with enhanced resistance affecting 

various steps in signal transduction are cpr mutants, named after the CONSTITUTIVE 

ACTIVATION OF PR genes and several suppressors of npr1 mutants, such as ssi and sni. 

These mutants are usually characterized by transcriptional activation of PR genes and 

constitutive accumulation of SA (Bowling et al., 1994; Li et al., 1999; Shah et al., 1999; Gou 

et al., 2009). In addition, several of the mutants resistant to biotrophic pathogens exhibit 

retarded growth and/or accelerated senescence. Notably, developmental senescence is at least 

in part controlled by an SA-dependent pathway (Buchanan-Wollaston et al., 2005). 

It has been shown that some of the genes mentioned above exert opposite effects on the SA 

and JA pathways. These genes include MPK4, WRKY transcription factors, and NPR1, which 

activate SA, but suppress JA responses. Thus, they are integral to the SA-JA cross talk 

(Koornneef and Pieterse, 2008; Vlot et al., 2009). 

The previously uncharacterized glucosyltransferase UGT76B1 was selected in the first part of 

this work as the top stress-induced isoform of the 122-member UGT gene family (Figure 4). It 

was broadly up-regulated by both abiotic and biotic cues such as UV-B irradiation, osmotic, 

oxidative, drought or wounding stresses as well as in response to both biotrophic and 

necrotrophic pathogens. Furthermore, it was one of only three UGT genes (with UGT72B1, 

UGT75B1) that were induced by both SA and JA (methyl jasmonate) application. Since the 

UGT76B subfamily only contains this unique member, UGT76B1 may have an important and 

specific role in plant stress responses. In the following study, a genetic approach combined 

with non-targeted metabolome analysis was used to study whether UGT76B1 had any 

function in plant stress responses. 

 

The results presented show that UGT76B1 is a novel player in the SA-JA signaling pathways 

and their crosstalk. Independent ugt76b1 knockout lines exhibited enhanced resistance 

towards Pseudomonas syringae infections, yet progressed earlier into senescence. In contrast, 

UGT76B1 overexpression resulted in the opposite phenotypes. Using a non-targeted 

metabolomic approach based on ultra-high resolution Fourier-transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS) and by combining information from knockout 
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and overexpression lines, we could pinpoint isoleucic acid as an endogenous substrate of 

UGT76B1. Collectively, these findings and additional expression studies indicate that 

UGT76B1 is a novel player in SA- and JA-mediated responses. It acts as a negative regulator 

of SA-dependent plant defense in the absence of pathogens, promotes the JA response, and 

negatively influences the onset of senescence. Potential roles of the UGT76B1 substrate and 

amino acid derivative isoleucic acid in relation to models of the SA and JA signaling 

pathways are discussed. 
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33..11..  RREESSUULLTTSS  

3.1.1. Isolation and characterization of ugt76b1 single knockout mutants 

The availability of several independent loss-of-function mutants is an important experimental 

tool to explore new gene related processes. Publicly accessible seed collections (NASC, 

INRA and GABI) were screened for available T-DNA insertion lines. Two independent loss 

of function mutants SAIL_1171A11 and GT_5_11976 in two different genetic backgrounds 

(Col-0, Ler) were obtained from the NASC stock center (Scholl et al., 2000). Both lines were 

verified by PCR genotyping and sequencing further confirmed the position of the insertion. 

Also, a 3:1 segregation, using the respective resistance markers, was verified after 

backcrossing indicating that the mutation was inherited as a single locus in both cases. 

RT-PCR analysis using gene specific primers confirmed the lack of UGT76B1 transcripts in 

both lines (Figure 5B). Homozygous, single insertion lines from SAIL_1171A11 and 

GT_5_11976 were named as ugt76b1-1 and ugt76b1-2 knockout mutants respectively. 

 

Figure 5. Molecular characterization of ugt76b1 knockout lines. 

(A) Position of the insertions within UGT76B1 (At3g11340). (B) RT-PCR analysis of 
UGT76B1 transcript levels in ugt76b1-2 (GT_5_111742) and ugt76b1-1 (SAIL_1171A11) 
compared to their corresponding wild-type lines. TUBULIN9 (At4g20890) transcript levels 
were assessed as a control. 
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3.1.2. Production and characterization of UGT76B1 overexpression lines 

Arabidopsis lines overexpressing UGT76B1 under the control of CaMV 35S-derived 

constitutive promoters were generated and characterized as described in 5.2.1.6. For seven 

independent and homozygous single insertion lines per each vector (pB2GW7 and 

pAlligator2) a RT-qPCR was used on leaf material to identify lines showing a successful 

overexpression in the T2 generation. From three lines each, which showed a significantly 

higher transcript amount compared to the wild type, only two maintained the overexpression 

in the next generation (T3), see Figure 6. From these, one single insertion line from each 

construct was selected for further experiments, named UGT76B1-OE-7 (pB2GW7) and 

UGT76B1-A-5 (pAlligator2). 

 

Figure 6. Molecular characterization of UGT76B1 overexpression lines. 

RT-qPCR of UGT76B1 overexpression lines in two subsequent generations (T2 and T3). Lines 
UGT76B1-OE-7, -14, -17, and -19 are based on the binary vector pB2GW7, whereas 
pAlligator2 was used for generating UGT76B1-A-5, -7, and -17 (5.2.1.6). Plant material of the 
T3 generation was used for subsequent experimental analyses. 

3.1.3. UGT76B1 expression affects onset of senescence 

UGT76B1 overexpression and ugt76b1 knockout lines were examined for morphological or 

developmental phenotypes associated with a change in UGT76B1 expression. All genotypes 

germinated at the same time. No obvious morphological differences were found in lines with 

altered UGT76B1 expression compared to the wild type except for a tendency for smaller 

rosettes of the ugt76b1 knockout lines and for enlarged rosettes in the case of the UGT76B1 

overexpression lines (Figure 7). 
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Figure 7. Growth phenotype of ugt76b1 knockout mutants and UGT76B1-OE-7 
overexpression line. 

(A) Phenotype of 5-week-old ugt76b1-1 and UGT76B1-OE-7 plants compared to Col-0. (B) 
and (C) growth phenotypes of four-week-old ugt76b1-1 and ugt76b1-2 compared to their 
wild-type background (Col-0 and Ler, respectively). 
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In addition, mutant and overexpression lines showed a clearly altered, opposite onset of 

developmental and dark-induced senescence. The knockout plants developed yellowing of 

leaves six weeks after germination, while the wild type did not yet show any signs of 

senescence (Figure 8). After nine weeks the loss-of-function mutant was completely 

senescent. At this stage, the wild type only started to show first signs of yellowing in most 

leaves and displayed increased anthocyanin accumulation, both hallmarks of early leaf 

senescence. In contrast, the overexpression line still showed mostly dark green leaves and 

nearly no signs of yellowing, although anthocyanins started to accumulate (Figure 8). No 

difference in the onset of flowering could be observed between wild-type and mutant lines 

(data not shown). This indicated that the earlier (knockout) or later (overexpression) 

appearance of leaf yellowing might be caused by an altered onset of the developmentally 

induced senescence program rather than by a generally accelerated or decelerated 

developmental program, respectively. 

The same visible differences were found analyzing dark-induced senescence in detached 

leaves (see Methods 5.2.1.8). After five days ugt76b1-1 showed clear yellowing, the wild type 

also seemed to start yellowing but much less pronounced, whereas the leaves of the 

overexpression line were still fully green (Figure 8). The second knockout line ugt76b1-2 

showed the same senescence-related phenotypes (Figure 9). 
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Figure 8. Senescence phenotypes of UGT76B1 knockout and overexpression lines. 

(A) Natural senescence in 6 ½-week-old Col-0 and ugt76b1-1 mutant plants. 
(B) Natural senescence in 9-week-old Col-0, ugt76b1-1 and UGT76B1-OE-7 plants. 
(C) Relative quantification of senescence associated marker genes SAG13 and SAG12 in wild-
type and ugt76b1-1 and UGT76B1-OE-7 plants. Transcript levels were normalized by the 
endogenous content of Ubiquitin 5 and S16 transcript and expressed relative to the levels 
quantified for Col plants. Arithmetic means and standard errors of the probes from two 
individual experiments each including three independent replicates were calculated after log10-
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transformation of normalized data. Stars indicate significance of the difference to the wild-type 
line: ** p-value < 0.01. 
(D) Dark induced senescence in Col-0, ugt76b1-1 and UGT76B1-OE-7 plants. Excised leaves 
from 5-week-old-plants were kept in water and dark for 5 days. 

 

In order to confirm that the leaf yellowing of ugt76b1-1 was due to an accelerated onset of 

developmentally induced senescence two markers genes were monitored. SAG13 (encoding a 

short-chain alcohol dehydrogenase) was induced during early during senescence whereas 

SAG12 (encoding a cysteine protease) was specifically activated during the later stages of 

developmentally controlled senescence, when the leaves started to show clearly visible 

yellowing (Weaver et al., 1998). RNA from seven-week-old plants (leaves 7-9) was used to 

monitor marker-gene expression by RT-qPCR. Both senescence marker genes SAG12 and 

SAG13 showed a clear induction in ugt76b1-1 knockout plants compared to the wild type, 

whereas expression was much lower or nearly undetectable (for SAG12) in UGT76B1-OE-7 

(Figure 8C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Early senescence of the second knockout line ugt76b1-2 compared to Ler 
(wild-type background). 

(A) Natural senescence in 5-week-old plants. 
(B) Dark induced senescence in 3-week-old plants. 
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3.1.4. UGT76B1 overexpression and loss-of-function alter pathogen 

susceptibility in an opposite manner 

To analyze the influence of changing UGT76B1 expression on plant defense towards biotic 

stressors, plants with altered UGT76B1 expression were analyzed for their susceptibility to 

biotrophic pathogens. To this end five-week-old plants were inoculated with different 

concentrations of avirulent Pseudomonas syringae. 30 h after inoculating leaves with 107 cfu 

ml-1 Col-0 wild-type leaves showed a strong hypersensitive response while the knockout plant 

did not show any visible symptoms (Figure 10 right). Using a lower inoculum (5 106 cfu 

ml-1), inoculated Col-0 wild-type leaves did not show visible symptoms after 30 h whereas 

UGT76B1 overexpression lines showed strong hypersensitive response (Figure 10 left). 

 

Figure 10. Pathogen susceptibility of UGT76B1 knockout and overexpression lines. 

Inoculated leaves 30 h after inoculation with Ps-avir. Plants 5-week-old. 

 

To check whether the observed phenotypes of UGT76B1 knockout and overexpression lines 

after infection were due to decreased/increased bacterial growth and consequent 

hypersensitive response, the bacterial growth was measured in mutant and wild-type plants at 

different time points after bacterial inoculation. Whole leaves of ugt76b1-1, UGT76B1-OE-7 

and Col-0 were inoculated with 5 105 cfu ml-1 Pseudomonas syringae D3000 AvrRpt2 (Ps-

avir). The bacteria showed the typical proliferation of Ps-avir in Col-0 30 h and 78 h after 

inoculation. In the knockout plant, nearly no bacterial growth was observed pointing to a 

significantly reduced susceptibility, whereas in the overexpression line the bacterial 

population strongly increased indicating a reduced resistance (Figure 11). Similar results were 

obtained with the virulent Pseudomonas syringae DC3000 (Ps-vir). The ugt76b1 knockout 

mutant showed a strongly reduced bacterial growth, whereas bacterial susceptibility was 

increased in the overexpression line (Figure 11). In both cases, after infection with virulent 

ugt76b1-1Col-0 UGT76B1-OE-7

Inoculum 5 106 cfu ml-1 Inoculum 107 cfu ml-1

Col-0
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and avirulent Pseudomonas strains, UGT76B1 expression negatively correlated with plant 

resistance. 

 

Figure 11. Bacterial growth of 
avirulent and virulent 
Pseudomonas syringae in 
Arabidopsis leaves of wild-type, 
ugt76b1-1 and UGT76B1-OE-7 
plants. 

Leaves were infiltrated with an 
inoculum of 5 105 cfu ml-1 of Ps-
avir (upper graph) and Ps-vir (lower 
graph). Bacteria (cfu cm-2) were 
quantified 30 h and 78 h after 
inoculation. The graph represents 
the mean and SD of three replicates. 
The experiment was repeated with 
similar result. 
 

 

 

 

 

 

 

Pathogen resistance due to loss of UGT76B1 could be confirmed by visual analysis of the 

second knockout line ugt76b1-2 30 h after inoculation with Ps-avir (Figure 12). 

 

 

Figure 12. Pathogen resistance of ugt76b1-2 
compared to Ler (wild-type background).  

Pictures were taken 30 h after infiltration with 5 106 
cfu ml-1 Ps-avir. 
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3.1.5. Defense marker gene expression is constitutively altered in UGT76B1-

OE-7 and ugt76b1-1 lines 

As gain-of-resistance mutants may show constitutively enhanced transcript levels of defense-

response genes, the expression of several defense marker genes was analyzed in UGT76B1-

OE-7 and ugt76b1-1 lines using relative quantification by RT-qPCR. PAD4 and EDS1 act 

upstream from SA biosynthesis, but are also induced by SA (Rusterucci et al., 2001). PR1 is a 

pathogen and SA responsive gene, which is a well established marker gene for the defense 

responses of Arabidopsis against Pseudomonas (Uknes et al., 1992). SAG13 is an early 

senescence marker, which is also induced by several stress factors and SA (Weaver et al., 

1998). WRKY70 encodes a transcription factor and is an important regulator in the interplay of 

SA- and JA-related plant defense responses (Li et al., 2004). PDF1.2 and VSP2 are marker 

genes frequently used to monitor JA and ethylene responses (Pieterse et al., 2009), whereas 

LOX2 involved in JA biosynthesis is activated by a positive feedback loop (Bell et al., 1995; 

Sasaki et al., 2001). 

Changing UGT76B1 expression had a strong effect on the transcript level of these defense-

related genes (Figure 13). PR1, PAD4, EDS1, WRKY70 and SAG13 were induced in leaves of 

five-week-old untreated ugt76b1-1 knockout plants compared to the wild type. In contrast, 

JA-responsive genes PDF1.2 and VSP2 as well as LOX2 were down-regulated. UGT76B1-

OE-7 showed the opposite regulation for all measured genes. PR1, PAD4, EDS1, WRKY70 

and SAG13 were downregulated, whereas VSP2 and LOX2 were upregulated. The 

upregulation of PDF1.2 in UGT76B1-OE-7 was more variable in different experiments. 

 

 

 

 

 

 



                      UGT76B1 CONJUGATES ISOLEUCIC ACID AND SUPPRESSES PLANT DEFENSE AND SENESCENCE 

 
33

 

Figure 13. Defense marker gene expression in ugt76b1-1 and UGT76B1-OE-7 plants 
(before pathogen infection). 

Gene expression of PR1, EDS1, PAD4, WRKY70, SAG13, PDF1.2, VSP2 and LOX2 in 
5-week-old ugt76b1-1 and UGT76B1-OE-7 measured by RT-qPCR. Expression levels were 
normalized to UBIQUITIN5 and S16 genes. Values are relative to Col-0 wild type expression. 
Arithmetic mean and standard error for log10-transformed data of two individual experiments 
each consisting of three independent replicates were calculated using ANOVA. Stars indicate 
significance of the difference to the wild-type line: ** p-value < 0.01, * p-value < 0.05. 
The dashed, horizontal lines indicate twofold change. 

 

To exclude an age-dependent effect on defense gene expression (Kus et al., 2002), PR1 and 

SAG13 were also analyzed in younger, three-week-old plants. Both genes showed a similar, 

opposite regulation in young knockout and overexpression lines (Figure 14). 

 

 

Figure 14. Relative quantification of PR1 
expression at early time point. 

Graph shows of relative PR1 expression in three-
week-old ugt76b1-1 and UGT76B1-OE-7 plants. 
Transcript levels were normalized by the endogenous 
content of UBQ5 and S16 transcript and expressed 
relative to the levels quantified for Col-0 plants (see 
5.2.4.7). 
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In order to test whether the overexpression line was able to induce defense genes after 

pathogen challenge, thereby indicating that it has the potential to perform a functional signal 

transduction pathway, transcription of PR1 and SAG13 was analyzed in wild-type, mutant and 

transgenic plants after bacterial inoculation (Figure 15). In wild-type plants PR1 and SAG13 

were induced 24 h after infection with Ps-avir to similar levels as those constitutively 

expressed in the ugt76b1 loss-of function mutant. In the overexpression line, expression of 

both PR1 and SAG13 reached similar levels as in wild-type plants 24 h after pathogen 

challenge. Thus, the general ability to perceive and respond to the pathogen was not altered in 

UGT76B1-OE-7. 

 

Figure 15. Defense marker gene expression in ugt76b1-1 and UGT76B1-OE-7 plants after 
pathogen infection. 

Transcript levels of PR1 and SAG13 in five-week-old wild-type plants 24 h after infection 
(5 105 cfu ml-1 Ps-avir) measured by RT-qPCR. Values are relative to expression 24 h after 
mock treatment and log10 transformed. Graph represents the mean and SD of three replicates. 
The dashed, horizontal lines indicate twofold change. 

3.1.6. Endogenous levels of free SA and SAG are elevated in ugt76b1 

EDS1 and PAD4 are essential regulators of basal resistance and are known to control the 

accumulation of the signaling molecule salicylic acid (Zhou et al., 1998; Rusterucci et al., 

2001). In addition, several gain-of-resistance mutants with transcriptional activation of PR 

genes are known to have increased levels of SA and SAG (Silva et al., 1999; Balague et al., 

2003; Gou et al., 2009). It was therefore assessed whether the high level of defense gene 

expression in ugt76b1-1 plants correlated with higher endogenous SA levels (Figure 16). 

Indeed, ugt76b1-1 showed a considerably higher basal level of SA and also a higher level of 
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SAG than detected in wild-type plants in the absence of any inducer. In contrast, the 

overexpression line contained an amount of free SA that was similar to that in wild-type 

plants showing even a tendency for repression, but curiously also higher levels of the SA 

conjugate. The SA ester level did not significantly change in overexpression lines, but was 

slightly increased in the knockout mutant (Figure 16). 

 

Figure 16. Salicylic acid (SA) and conjugated SA levels in five-week-old seedlings of the 
wild type, ugt76b1-1 and UGT76B1-OE-7.  

Values represent the means and standard deviations obtained from five replicates. Stars 
indicate significance of the difference to the wild-type line: ** p-value < 0.01. The experiment 
was repeated with similar results. 

3.1.7. UGT76B1 is induced early after pathogen infection  

In order to determine at which time point after pathogen infection UGT76B1 transcription was 

activated, the time course of UGT76B1 expression after pathogen infection compared to other 

defense marker genes known to be induced at early or late phases during the defense response 

was analyzed. Figure 17 shows the time course of UGT76B1, SAG13, WRKY70, EDS1, PAD4 

and PR1 expression during the incompatible interaction of wild-type plants with Ps-avir. PR1 

as well as SAG13 were highly induced 24 h after pathogen inoculation. UGT76B1 as well as 

WRKY70, EDS1 and PAD4 clearly preceded the upregulation of PR1 and SAG13. 
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Figure 17. RT-qPCR expression profiles of UGT76B1, WRKY70, EDS1 and PAD4 after 
infection with avirulent Pseudomonas syringae. 

Transcript levels were quantified at the indicated time points after inoculation with Ps-avir 
(closed circles) and mock (10 mM MgCl2; open circles) treatment. The transcript level 
(relative expression) was normalized to the transcript abundance of UBIQUITIN5 and S16 
genes (see Methods 5.2.4.7). Values correspond to the mean and SD of triplicates. The 
experiment was repeated with similar results. 

3.1.8. UGT76B1 expression does not alter jasmonic acid perception 

Marker gene expression analysis showed that UGT76B1 had a positive effect on the 

expression of JA responsive genes. Several mutants affected in JA signaling  such as jar1 

(Staswick et al., 1992), jin1 (Berger et al., 1996), and coi1 (Feys et al., 1994) showed reduced 

sensitivity to JA, tested by MeJA inhibition of primary root elongation. It was therefore 

Time post inoculation [h]

0

2000

4000

6000

8000

10000

12000

14000

0

10000

20000

30000

40000

50000

60000

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50

SAG13

PR1

UGT76B1
R

el
at

iv
e 

tra
ns

cr
ip

tl
ev

el
vs

un
tre

at
ed 0

20
40
60
80

100
120
140
160
180 WRKY70

PR1

0

10

20

30

40

50

60

70 EDS1

0

50

100

150

200

250 PAD4

0 10 20 30 40 50

Time post inoculation [h]

0

2000

4000

6000

8000

10000

12000

14000

0

2000

4000

6000

8000

10000

12000

14000

0

10000

20000

30000

40000

50000

60000

0

10000

20000

30000

40000

50000

60000

0

1000

2000

3000

4000

5000

6000

7000

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 500 10 20 30 40 50

SAG13

PR1

UGT76B1
R

el
at

iv
e 

tra
ns

cr
ip

tl
ev

el
vs

un
tre

at
ed 0

20
40
60
80

100
120
140
160
180

0
20
40
60
80

100
120
140
160
180 WRKY70

PR1

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70 EDS1

0

50

100

150

200

250

0

50

100

150

200

250 PAD4

0 10 20 30 40 500 10 20 30 40 50



                      UGT76B1 CONJUGATES ISOLEUCIC ACID AND SUPPRESSES PLANT DEFENSE AND SENESCENCE 

 
37

interesting to test whether ugt76b1 mutants and UGT76B1 overexpression lines also showed 

an altered sensitivity to JA. As shown in Figure 18 this was not the case. UGT76B1-OE-7 and 

ugt76b1-1 showed the same inhibition of primary root growth on plates containing 50 µM 

MeJA (the JA methyl ester), indicating a functional JA signaling pathway. 

 

Figure 18. ugt76b1-1 knockout and UGT76B1-OE-7 plants showed inhibition of root 
growth on MeJA-containing medium similar to wild-type plants. 

Pictures were taken after 10 days growth on plates containing 50 μM MeJA. 

3.1.9. Spatial expression pattern of UGT76B1 

To analyze the expression of UGT76B1 in different plant organs and at different 

developmental stages, transgenic lines carrying a UGT76B1pro:GUS-GFP transgene were 

produced by Agrobacterium-mediated transformation. Two segregating, independent single 

insertion lines, UGT76B1pro:GUS-GFP-2 and UGT76B1pro:GUS-GFP-12 were selected for 

further analysis. Plants of different developmental stages (8 d, 17 d, 28 d and 36 d) showed 

consistent GUS activity among two independent transgenic lines (see 5.2.6 for details). 

UGT76B1 was expressed all over the roots except in root tips (Figure 19D). Stronger 

expression was found in young roots and in lateral roots (Figure 19A). Optical cross sections 

of a lateral root by confocal laser scanning microscopy recording GFP fluorescence of the 

same promoter:GUS-GFP lines mainly revealed UGT76B1 expression in the root cortex and 

endodermis (Figure 19E). GUS staining of aerial plant parts showed UGT76B1 expression in 

very young leaves (Figure 19B), hydathodes (Figure 19C and F), sepals and style (Figure 

19H). Expression in mature leaves of young plants (17 d) was patchy (Figure 19F). In older 

four-week-old plants, expression in leaves was reduced (Figure 19G). GUS staining also 
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showed induction of UGT76B1 expression after Pseudomonas inoculation and wounding 

(Figure 19I and J). 

 

 

Figure 19. Localization of UGT76B1 expression using UGT76B1pro:GUS-GFP lines.  

Transgenic plants harboring UGT76B1pro:GUS-GFP constructs were stained for GUS activity 
in different developmental stages (A-D, F-J) or examined for GFP fluorescence by confocal 
microscopy (E) (see 5.2.6). Results were consistent among at least two independent transgenic 
lines. Bars = 1 mm (A, F), 0.1mm (B-D), 30 µm (E), 0.5 cm (G, I, J), and 0.5 mm (H). 
(A-D) 8-day-old seedling with leaf primordia (B), leaf hydathodes (C), and root tip (D).  
(E) Roots from one-week-old seedlings grown on agar plates. Cell walls were counterstained 
with propidium iodide. (F) 17-day-old plant. (G) 28-day-old plant. (H) Inflorescence of 36-
day-old plant. (A,B,F,G) UGT76B1pro:GUS-GFP-12.(C,D,E,H) UGT76B1pro:GUS-GFP-2. 
(I) Two leaves of five-week-old plants 8 h after mock treatment (left) and after inoculation 
with Ps-avir (right).  
(J) Two leaves before (left) and 6 h after (right) mechanical wounding using a forceps.  
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3.1.10. Non-targeted metabolome analysis reveals correlation between isoleucic 

acid glucoside formation and UGT76B1 expression 

Since there was neither an indication of the UGT76B1 substrate nor the affected metabolic 

pathway, a completely non-targeted strategy was embarked to obtain such information. An 

ultrahigh-resolution 12 Tesla FT-ICR mass spectrometer run in the negative ionizing mode 

was employed to compare the metabolic profile of UGT76B1 overexpression lines and 

ugt76b1 mutants with their respective wild type. Root material from plants grown in 

hydroponic culture (see Figure 20) was used as a starting material for metabolite extraction, 

because UGT76B1 was mainly expressed in roots and showed only lower expression in leaves 

under unstressed conditions. 

 

Figure 20. Expression of UGT76B1 in roots of seedlings grown in 
hydroponic culture. 

Seedlings from UGT76B1pro:GFP-GUS fusion lines were stained for GUS 
activity after 2 weeks growth in hydroponic cultures (see 5.2.1.5). 
 

 

 

A stringent, combinatorial screening for metabolite changes was performed across the two 

independent knockout lines in two different wild-type backgrounds (Col-0 and Ler) and both 

independent overexpression lines. By setting a stringent p-value (< 0.01) and by filtering for 

metabolites, which showed consistent and opposite regulation in knockout and overexpression 

plants, two metabolites were found, the accumulation of which was significantly and 

positively correlated with UGT76B1 expression. Both m/z peaks were repressed in the 

knockout and induced in the overexpression lines (Figure 21A; Methods). In addition, both 

peaks were significantly enhanced as compared to the wild type in leaf material of the 

UGT76B1 overexpression lines, although with an overall lower intensity than in roots (Figure 

22). Due to the high accuracy in m/z determination, an exact molecular formula could be 

assigned for both (Figure 21A). 
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Figure 21. Non-targeted metabolome analysis of UGT76B1 overexpression and ugt76b1 
knockout lines. 

(A) Metabolic changes found in roots of two independent knockout lines and two independent 
overexpression lines compared to the respective wild type. Means and standard deviation of 
three independent biological replicates with two technical replicates each are displayed. m/z 
279 was nearly undetectable and undetectable in ugt76b1-2 and ugt76b1-1, respectively. 
Therefore, a default value for the ugt76b1-1 peak was used for calculating the relative intensity 
(Methods). Stars indicate significance of the difference to the wild type: ** p-value < 0.01. 
The predicted molecular formulae are indicated. The experiment was independently repeated 
with similar results.  
(B) Fragmentation pattern of m/z 293. The loss of m/z 162 confirmed the presence of a 
glucosidic moiety. Other major peaks at m/z 207 and 250 could be unequivocally excluded as 
m/z 293-derived fragments; they were originating from electrical noise and from an N-
containing contaminant, respectively. In contrast, m/z 161 was in agreement with a radical 
anion of deprotonated glucose, which was directly produced from m/z 293. 
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(C) Further in-cell fragmentation led to the elimination of CH2O2 (formic acid), which 
restricted the nature of the aglycon to α-hydroxy carboxylic acid isomers. 
(D) Six possible isomeric molecular structures of the aglycon C6H12O3. 

 

Using a Strata NH2 column a partial concentration and cleaning of the extracts was achieved 

enabling fragmentation studies. Loss of a fragment with m/z 162 confirmed that the molecule 

with m/z 293 was a glucoside (Figure 21B). No glucoside loss could be observed upon 

fragmentation of the second peak (m/z 279). Loss of the glucosidic moiety from m/z 293 led 

to a smaller compound with m/z 131. The molecular formula of this residual aglycon was 

C6H12O3. Further in-cell fragmentation led to the loss of a formic acid (m/z 46) moiety and 

the formation of a second fragment m/z 85. According to a previous study this behavior 

confirmed that the aglycon of m/z 293 was an α-hydroxy carboxylic acid with a free 

β-hydrogen (Bandu et al., 2006). Thus, six possible structures could be suggested for the 

aglycon m/z 131 (Figure 21C). Structures A, C, D, and F could be excluded, because the 

fragmentation of the corresponding standard compounds gave rise to further fragments, which 

had not been detected after fragmentation of the unknown aglycon from the plant extract (m/z 

131) (Figure 23). Both compounds B and E gave the same fragmentation pattern as the 

unknown plant peak and therefore constituted possible candidate structures of the aglycon. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Detection of m/z 293.124 and m/z 279.108 in leaves of Col-0 and 
UGT76B1-OE-7 plants. 

Both peaks were also significantly increased in leaf material of 4-week-old UGT76B1-OE-7 
plants. Col-0: (grey line); UGT76B1-OE-7 (black line). 
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Figure 23. Fragmentation patterns of the unknown aglycon (derived from m/z 293) from 
the plant extract and of putative C6H12O3 isomers. 
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The precursor ion is underlined and its position indicated by an arrow. Generated fragments 
are encircled to distinguish them from noise peaks. The obtained fragmentation patterns of 
compound A and F corresponded to published data (http://www.massbank.jp/). Only structures 
B and E showed the same fragmentation pattern as the unknown aglycon from the plant extract 
(G) and were therefore selected for in vitro glucosylation studies. 
(A-F) Fragmentation of six C6H12O3 isomeric reference compounds as indicated. 
(G, H) Fragmentation of the plant extract-derived aglycon. The region below m/z = 85 is 
enlarged in (H) to visualize the absence of fragments observed in experiments with some of 
the isomeric reference compounds. 

3.1.11. In vitro activity of recombinant UGT76B1 towards isoleucic acid 

In order to further elucidate the structure of the UGT76B1 substrate, compounds B and E 

were tested as potential substrates of recombinant UGT76B1 in vitro. As shown in Figure 

24C, UGT76B1 glucosylated isoleucic acid (compound B, 2-hydroxy-3-methylpentanoic 

acid), whereas it showed no activity towards 2-ethyl-2-hydroxybutyric acid (compound E, see 

Figure 25). Thus, isoleucic acid turned out to be a substrate of UGT76B1, which was in 

accordance with the observation of plant extracts derived from ugt76b1 knockout and 

UGT76B1-OE lines. As high levels of SA conjugates were found in the UGT76B1 

overexpression line, the activity of the recombinant protein was also tested towards SA. 

Formation of SAG could indeed be observed, although only a minor peak compared to the 

substrate SA was detected (Figure 24F). However, this SA-glucosylating ability of UGT76B1 

may only relate to the enhanced SA glucosides found in the ectopic overexpression line, but it 

does not reflect the endogenous role of UGT76B1, since the ugt76b1-1 knockout showed 

even enhanced SA glucoside levels (Figure 16). 
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Figure 24. In vitro activity assay of UGT76B1.  

Activity of recombinant UGT76B1 was tested towards (A-C) isoleucic acid (2-hydroxy-3-
methylpentanoic acid, compound B) and (D-F) salicylic acid. The reactions were analyzed by 
mass spectrometry (Methods). The m/z values of the corresponding substrates and products are 
indicated. The experiment was independently repeated with similar results. 
(A, D) Mass spectra of enzyme reactions without substrate. 
(B, E) Mass spectra of enzyme reactions without enzyme. 
(C, F) Mass spectra of complete reactions. 
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Figure 25. In vitro activity assay of 
UGT76B1 towards 2-ethyl-2-
hydroxybutyric acid. 

Activity of recombinant UGT76B1 
was tested towards 2-ethyl-2-
hydroxybutyric acid (compound E) 
(Methods). The arrow indicates the 
expected mass for a potential product, 
which was not found here in contrast to 
Figure 24C. 
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33..22..  DDIISSCCUUSSSSIIOONN  

Plant secondary metabolite glycosyltransferases constitute a large enzyme family. They are 

presumed to be involved in the biosynthesis, homeostasis and regulation of the activity of 

numerous small molecular compounds in plants. However, enzyme-substrate relations and 

physiological roles of individual isoforms remain mostly obscure. In order to extend the 

knowledge on UGTs, publicly available databases were used to identify top-ranking stress 

induced UGT candidates, which might have important and yet unknown functions in plant 

responses to biotic and abiotic stresses. UGT76B1, the top-ranking isoform among stress-

responsive UGTs, is present as a single isoform in its subclass [Figure 4; (Ross et al., 2001)]. 

Analysis of related Brassicaceae genomes revealed a highly conserved, single copy homolog 

(M. Das and G. Haberer, personal communication). These features suggested a unique and 

important function in plant stress responses. 

3.2.1. Non-targeted metabolomics approach leads to identification of the 

UGT76B1 substrate 

Despite major advances in plant biology due to genome annotations and omics approaches, a 

majority of gene products are still orphan enzymes without specific substrates and 

physiological roles (Fridman and Pichersky, 2005; Saito et al., 2008; Hanson et al., 2010). 

Although the annotation of an encoded enzyme e.g. as a UGT most probably denotes its 

activity as a transferase of an activated sugar to small-molecule acceptors, this knowledge 

does not provide a clue towards its native substrate(s), not to mention its in vivo function. In 

the case of UGTs, even sequence homology to already known isoforms does not allow to 

deduce substrate classes (Vogt and Jones, 2000; Bowles et al., 2006). Nevertheless, 

integration of metabolite profiling with independent evidence, in particular of transcriptional 

co-expression and comparative genomics, has strongly facilitated the elucidation of metabolic 

pathways and assignment of enzymatic activities (Hirai et al., 2005; Yonekura-Sakakibara et 

al., 2008; Matsuda et al., 2009; Ohta et al., 2010). In the case of the broadly stress-inducible 

UGT76B1 gene co-expression analyses did not indicate an assignment which could hint 

towards a class of potential substrates. Thus, the use of a non-targeted approach employing 

ultra-high resolution FT-ICR mass spectrometry was aimed to obtain information on the 

affected pathway or substrate without any other prior knowledge. Non-targeted FT-ICR MS 

data are well suited to identify and differentiate metabolic patterns from distinct situations 

based on multivariate analyses (Ohta et al., 2010). In contrast to this approach, here a pairwise 
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comparison of m/z values from crude extracts of UGT76B1 overexpression, ugt76b1 loss-of-

function, and wild-type lines was performed. Only two peaks fulfilled the criteria being both 

underrepresented in two independent knockout lines (in different accessions as background) 

and upregulated in two overexpression lines (Figure 21). Thus, this combinatorial approach 

allowed to pinpoint informative molecules from the non-targeted metabolome analyses. Since 

further fragmentation of these m/z peaks indicated that one of them was a glucoside, it was 

highly suggestive that it indicated the in planta product of UGT76B1. Eventually, enzymatic 

tests using the recombinant enzyme proved its ability to glucosylate the predicted aglycon in 

vitro and thereby established isoleucic acid as the UGT76B1 substrate. 

3.2.2. UGT76B1 affects SA-JA crosstalk and is affected by perturbations of the 

SA and JA pathways 

SA and JA defense signaling pathways are known to interact in a partially antagonistic 

manner (Kloek et al., 2001; Spoel et al., 2003; Koornneef and Pieterse, 2008). Both UGT76B1 

overexpression and loss-of-function led to a disturbed equilibrium between these two 

pathways suggesting a role in SA-JA crosstalk. The complete loss of UGT76B1 function led 

to constitutive enhancement of the SA-dependent defense and repression of the JA pathway, 

whereas UGT76B1 overexpression led to the opposite effects (Figure 13 and Figure 26). 

Accordingly, knockout plants were more resistant to Pseudomonas infection, whereas 

UGT76B1 overexpression rendered plants highly susceptible. On the other hand, UGT76B1 

expression was induced after Pseudomonas infection in the same time frame as the SA-

dependent marker genes PAD4, EDS1 and WRKY70 and prior to SAG13 and PR1 (Figure 17 

and Figure 26). These apparently contradicting findings indicated that UGT76B1 might play 

an important role in suppressing the SA response in unchallenged conditions, while being 

required to attenuate it after pathogen attack. Controlled suppression of defense responses is 

important to avoid deleterious consequences and significant costs for the plant (for details see 

page 21). Consistent with its role in promoting the JA pathway UGT76B1 was induced after 

wounding (Figure 19). The constitutive expression of UGT76B1 found in hydathodes and 

young tissues could be involved in local enhancement of the JA pathway providing protection 

against herbivores or necrotrophs at these more vulnerable sites (Hugouvieux et al., 1998; 

Sprague et al., 2007). 
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Figure 26. Proposed model of the involvement of UGT76B1 as a novel mediator in SA- 
and JA-dependent regulation of defense responses and senescence.  

The scheme shows two pathways regulating defense against (hemi-) biotrophic and 
necrotrophic pathogens and senescence. UGT76B1 induces the JA response and represses the 
SA dependent pathway having a negative influence on the resistance to P. syringae and the 
onset of senescence. Only those signal transduction components, which are relevant to the 
discussed role of UGT76B1, are shown. Signaling molecules (bold), important transformations 
(open arrowhead), positive effect (closed arrowhead), negative effects (⊥) and important 
genes are indicated. 

 

The induction or repression of UGT76B1 expression of several mutants, which affect the SA 

pathway in unstressed conditions, provided additional evidence to correlate the 

glucosyltransferase with defense pathways in agreement with its SA-suppressive function 

(Figure 27). Profiling of UGT76B1 expression in Arabidopsis mutants cpr5, mkk1 mkk2 and 

mpk4 revealed that the gene was highly induced in these plants, which displayed 

constitutively enhanced SA-dependent defenses (Bowling et al., 1997; Brodersen et al., 2006; 

Pitzschke et al., 2009). In contrast, UGT76B1 expression was suppressed in mutants such as 

eds1, sid2 (eds16) and pad4 (Glazebrook et al., 1996; Feys et al., 2001; Wildermuth et al., 

2001), which were impaired in SA-dependent responses (Zimmermann et al., 2005). 
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Figure 27. UGT76B1 expression in several mutant backgrounds. 

Picture was adapted from Genevestigator (Zimmermann et al., 2005). Relative expression is 
indicated in log2-scale. Experiment IDs of the related experiments are available at 
https://www.genevestigator.com. 

 

Collectively, the observations and these data propose UGT76B1 as a novel player in the SA-

JA crosstalk acting as a negative modulator and attenuator of the SA response, while it 

positively affects the JA-dependent pathway. However, the general stress perception and 

SA/JA signal transduction pathways seemed to be functional independent of UGT76B1 

expression. This was demonstrated by the full inducibility of PR1 after pathogen infection in 

UGT76B1-OE-7 or by the root growth inhibition upon methyl jasmonate treatment in 

ugt76b1-1 (Figure 15 and Figure 18). 

3.2.3. Integration of UGT76B1 in SA-JA crosstalk 

The integral role of UGT76B1 in SA-JA crosstalk is further emphasized by the fact that it is 

the only UGT gene, except for UGT72B1 and UGT75B1, which is induced by both methyl 

jasmonate and SA application. Therefore, links with two important players in the SA- and JA-

response were examined. 

NPR1 is an important central player mediating the SA response and suppressing JA-

dependent reactions (Cao et al., 1997; Glazebrook, 2005; Koornneef and Pieterse, 2008; Vlot 

et al., 2009). Upon an SA stimulus oligomeric NPR1 is reduced in the cytosol and the 

released monomers are targeted to the nucleus, where they invoke SA-dependent downstream 

transcription in concert with TGA transcription factors. Spoel et al. (2003) provided evidence 

for a separate cytosolic function of NPR1 in repressing JA signaling. Transcriptional analyses 
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in npr1-3, in which nuclear targeting of NPR1 is abolished, while its cytosolic function to 

repress the JA response is retained, showed that UGT76B1 induction is – at least in part – 

dependent on the nuclear function of NPR1 (Wang et al., 2006). In addition, Blanco et al. 

(2009) demonstrated that UGT76B1 could be at least partially induced by SA in an NPR1-

independent manner in the npr1-1 mutant, in which both NPR1 functions were abolished. On 

the other hand, npr1-1 vs. wild type expression analyses indicated an activation of UGT76B1 

in the npr1 loss-of-function mutant (Figure 27). This finding would corroborate an NPR1-

independent and even SA-independent upregulation of UGT76B1. Furthermore, since npr1-1 

is hampered in its ability to suppress the JA pathway in an SA-dependent manner, UGT76B1 

might be linked to the cytosolic function of NPR1 in SA-JA crosstalk (Figure 26). 

The transcription factor WRKY70 has important functions in integrating signals from the 

antagonistic JA and SA pathways. It acts as a negative regulator of JA-responsive genes and 

as a positive regulator of SA-induced genes and resistance to Pseudomonas (Li et al., 2004; 

Glazebrook, 2005; Ülker et al., 2007). UGT76B1 deregulation in this work correlated with 

WRKY70 transcription in accordance with WRKY70´s role in SA-JA crosstalk. Therefore, 

UGT76B1 could affect SA-JA crosstalk through WRKY70. The early and parallel 

upregulation of both UGT76B1 and WRKY70 after Pseudomonas infection would then relate 

to an attenuating function of UGT76B1 on WRKY70 expression (Figure 17 and Figure 26). In 

this respect it should be noted that the role of WRKY70 in modulating SA-JA responses is not 

absolutely certain. Antisense suppression gave inconsistent results regarding changes in JA-

responsive gene expression (Li et al., 2004; Ren et al., 2008). It was also unclear, whether 

WRKY70 expression led to changes in free SA (Wang et al., 2006). Wang et al. (2006) 

suggested that WRKY70 acts both as a negative regulator of SA biosynthesis and as a 

positive stimulus of SA signaling. In this work, the ugt76b1 knockout showed enhanced 

WRKY70 expression, which was positively correlated with both SA biosynthesis and SA 

signaling. Therefore, UGT76B1 might overrule the effects of WRKY70 or it might act 

independently of WRKY70 (Figure 26). 

At the metabolic level UGT76B1-OE lines exhibited enhanced SA glucose conjugate levels 

(Figure 16). This finding clearly demonstrated that an enhanced amount of SA conjugates did 

not relate to pathogen resistance. With respect to the role of UGT76B1 in the SA pathway, the 

increase in SA glucosides might be only a side-effect of the ectopic overexpression and the 

ability of UGT76B1 to conjugate SA. Alternatively, UGT76B1 could repress the hydrolysis 

or degradation of SA glucosides and thereby lead to its accumulation (Figure 26). 
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3.2.4. UGT76B1 impacts on plant senescence  

The onset of leaf senescence is influenced by various internal and environmental signals, such 

as stress and nutrient supply that are integrated with plant age. Unfavorable environmental 

factors can prematurely induce the senescence program (Lim et al., 2007). In addition to 

external stimuli, internal factors influence plant aging, as mutants with constitutive expression 

of defense responses frequently also show an accelerated onset of senescence (Yoshida et al., 

2002; Barth et al., 2004; Consonni et al., 2006). Conversely, older plants showed enhanced 

pathogen resistance (Kus et al., 2002). These observations can be related to a considerable 

overlap between genes involved in defense and senescence signaling (Weaver et al., 1998; 

Quirino et al., 1999; Miao and Zentgraf, 2007). Some genes involved in the senescence 

process even seem to be directly regulated by SA (Quirino et al., 1999). Induction of SAG12 

during leaf senescence for example depends on the presence of SA (Morris et al., 2000). 

Similarly WRKY53, an important positive regulator at the early stage of leaf senescence, is 

induced by SA (Miao and Zentgraf, 2007). Furthermore, the early onset of senescence 

observed in the mlo mutant was shown to be due to increased SA levels (Consonni et al., 

2006), whereas an SA-deficient nahG line showed delayed developmental senescence 

(Buchanan-Wollaston et al., 2005). 

In line with the above, constitutive expression of defense related genes and increased SA 

accumulation could lead to the early onset of senescence in ugt76b1 mutants. This conclusion 

is corroborated by the opposite findings in UGT76B1-OE-7. Supposedly, the SA pathway is 

involved mainly in developmentally triggered, but not in dark-induced senescence 

(Buchanan-Wollaston et al., 2005; van der Graaff et al., 2006). Since alteration in UGT76B1 

expression affected both types of senescence in this study, the discussed impact of UGT76B1 

on the equilibrium between the SA and JA signaling pathways seems to play a role not only in 

developmental but also in dark-induced senescence. A possible link between these two types 

of senescence is that H2O2 and SA have been shown to induce each other forming a feed-

forward loop (Shirasu et al., 1997; Mateo et al., 2006; Vlot et al., 2009). H2O2 is an important 

reactive oxygen species (ROS) in plants and ROS-associated genes seem to play important 

roles in both developmental and dark-induced senescence (Navabpour et al., 2003; Guo and 

Crawford, 2005; Zimmermann and Zentgraf, 2005). 

WRK70 is known as a negative regulator of senescence (Ülker et al., 2007), which contradicts 

our observation in ugt76b1 knockout and UGT76B1 overexpression lines where induced or 

repressed WRKY70 expression correlated with an early or delayed onset of senescence, 

respectively. Therefore the observed senescence phenotype in ugt76b1 mutants appears to 
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overrule the negative regulation by WRKY70 (Figure 26). Alternatively, upregulation of 

WRKY70 in ugt76b1 could be a downstream countermeasure to the early onset of senescence 

observed in this mutant with the opposite effect in the UGT76B1 overexpression line. 

3.2.5. Potential implications of isoleucic acid glucosylation in defense responses 

The UGT76B1-dependent formation of isoleucic acid (ILA) glucoside negatively correlated 

with pathogen resistance and onset of senescence. Neither ILA nor its glucoside had been 

described before in Arabidopsis. However, ILA has been characterized in humans as the 

reduced form of 2-keto-3-methylvaleric acid, a degradation product of the branched-chain 

amino acid isoleucine (Mamer and Reimer, 1992; Podebrad et al., 1997). A genetic defect in 

the further oxidation of this product led to its accumulation along with other degradation 

products and the amino acids themselves in the maple sirup urine disease (Mamer and 

Reimer, 1992).  

A correlation analysis based on microarray data at ATTED-II (Obayashi et al., 2009) 

provided additional evidence for a relationship of the Arabidopsis-derived ILA to amino acid 

metabolism. UGT76B1 expression was linked to LIPOAMIDE DEHYDROGENASE 2 (see 

Figure 28), a gene encoding a component of the branched-chain keto acid dehydrogenase 

complex, which catalyzes the oxidative decarboxylation of α-keto acid derivatives of Val, Leu 

or Ile (Binder et al., 2007). In addition, amino acid measurements of ugt76b1-1 and 

UGT76B1-OE-7 showed a significant disturbance of amino acid concentrations. Branched 

chain amino acids were increased in ugt76b1-1. One hour after wounding (induction of Ja-Ile 

conjugation) Ile, Val and Leu were increased in the knockout and reduced in the 

overexpression lines (Supplemental Figure 1). These results could be in accordance with 

reduced/increased glycosylation of a branched chain amino acid precursor. However, one 

should be aware that changes in amino acid levels could also be due to the differential onset 

of senescence in these lines. Concentrations of Ile, Leu, GABA, Tyr and Arg for example are 

known to increase during onset of leaf senescence (Diaz et al., 2005). 
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Figure 28. Network between genes correlated with UGT76B1 hint to a relation of 
UGT76B1 with branched chain amino acid degradation pathways.  

The top ten genes coregulated with UGT76B1 (http://atted.jp/) were analyzed by the Gene 
Networks tool at www.virtualplant.org (Obayashi et al., 2009). At3g17240 (LIPOAMIDE 
DEHYDROGENASE 2, LPD2) is a gene encoding a component of the multienzyme α-keto 
acid dehydrogenase complex, which catalyzes the oxidative decarboxylation of the branched-
chain α-keto acids derived from Val, Leu, and Ile. 

 

The second compound with m/z 279 (C11H20O8) found to be correlated with UGT76B1 

expression in our non-targeted metabolomics approach differed from the ILA-glucoside peak 

(m/z 293, C12H22O8) by one CH2 moiety. Therefore, it could represent the corresponding 

glucosylated compound derived from Val metabolism, although fragmentation did not yield 

cleavage of a glucose residue. Amino acid-derived molecules have also been related to 

Arabidopsis defense reactions by the involvement of two aminotransferases ALD1 and 

AGD2, which supposedly catalyze an amino transfer in opposite directions acting on an 

unknown α-keto acid/ α-amino acid couple (Song et al., 2004). The authors found that agd2 
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mutants were more resistant to Pseudomonas syringae infection, while ald1 plant showed 

increased susceptibility. 

Plant hormones are known to be regulated by conjugation with amino acids. In particular, Ile 

is known to be conjugated to JA forming JA-Ile, the main bioactive form of the hormone 

(Staswick and Tiryaki, 2004; Fonseca et al., 2009). SA can be also conjugated to amino acids 

(reviewed in Vlot et al., 2009) and overexpression of GH3.5, an enzyme potentially involved 

in this conjugation led to enhanced pathogen resistance and SA accumulation (Park et al., 

2007). 

Although the existence of several SA and JA amino acid conjugates is known, the direct 

involvement of amino acids in defense has been shown only in case of JA-isoleucine, which is 

the major bioactive form of jasmonate (Staswick and Tiryaki, 2004; Fonseca et al., 2009). 

In the case of UGT76B1 it can be speculated that glucosylation of a degradation product or 

biosynthetic precursor of Ile could impact on the amino acid-hormone conjugation via a yet 

unknown mechanism and thereby influence defense responses. 

Additionally, UGT76B1 could be involved in the synthesis of protective plant compounds. 

The biosynthesis of branched chain amino acids, for example, is known to be connected to the 

biosynthesis of aliphatic glucosinolates (Binder et al., 2007; Knill et al., 2008). If UGT76B1 

was involved in wounding response (see induction after wounding Figure 19J) and defense 

towards chewing insects (JA defense response), glucosylation of the proposed amino acid 

precursors could also be a point of regulation for glucosinolate biosynthesis. Glucosinolate 

biosynthesis is known to be induced by wounding and insect attack. 

Alternatively, ILA, its glucoside or its glucoside formation could be involved in another 

indirect way influencing SA and/or JA signaling. Thus, future research has to shed new light 

on the relationship between plant defense pathways, amino acid-derived metabolites and 

small-molecule glucosylation. 
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44..  TTOOWWAARRDDSS  AA  FFUUNNCCTTIIOONN  OOFF  SSTTRREESSSS  IINNDDUUCCIIBBLLEE  UUGGTT8877AA22  

 

UGT87A2 was selected for further characterization because of its strong responsiveness to 

several biotic and abiotic cues, which suggested an important stress related role (Figure 4). 

The transcript was induced at least twofold in nearly all infection experiments, but also by 

several abiotic cues, i.e. as osmotic stress, UV-B irradiation, salt, oxidative stress and 

wounding. However, no involvement in any metabolic pathway or stress-related function was 

known. 

The UGT87 family comprises only two members, UGT87A1 and UGT87A2. Only UGT87A2 

was highly stress responsive whereas UGT87A1 did not respond to any treatment (Figure 4). 

A genetic approach and non-targeted metabolome analysis should give hints about putative 

roles of UGT87A2 in plant defense reactions. Analysis of transgenic plants harboring 

promoter-reporter gene fusions revealed specific expression of UGT87A2 in hydathodes and 

root tips of young seedlings. Older plants also showed strong expression in anthers and 

filaments, older sepals, stigmata, tips of the siliques and silique internodes. Further, UGT87A2 

was strongly induced in all senescent organs and after treatment with an SA analog. 

Non-targeted metabolome analysis of plants having altered glycosyltransferase expression did 

not reveal significant metabolic changes in two independent loss-of-function mutants, 

whereas independent overexpression lines showed several m/z peaks indicating up-regulated 

metabolites. Further characterization of these compounds led to the identification of a new 

metabolite, ascorbic acid 2-O-ß-glucoside, in Arabidopsis. Together with the upregulation of 

other putative compounds, the results suggest potential roles for UGT87A2 in ascorbic acid 

homeostasis or cell wall biosynthesis. 
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44..11..  RREESSUULLTTSS  

4.1.1. Isolation and characterization of ugt87a2 single knockout mutants  

Two independent loss of function mutants GABI_686D07 and SALK_124038 were obtained 

as important experimental tool for UGT87A2. Insertion lines were verified by PCR 

genotyping and sequencing further confirmed the position of the insertion (Figure 29). Loss of 

the corresponding transcript was verified by RT-PCR. Lines from GABI_686D07 and 

SALK_124038 were named as ugt87a2-1 and ugt87a2-2 knockout mutants respectively. 

Figure 29. Molecular characterization of ugt87a2 knockout lines. 

(A) Position of the insertions within UGT87A2 (At2g30140). (B) RT-PCR analysis of 
UGT87A2 transcript levels in ugt87a2-1 (GABI_686D07) and ugt87a2-2 (SALK_124038) 
compared to their corresponding wild-type lines. TUBULIN9 (At4g20890) transcript levels 
were assessed as a control. 

4.1.2. Production and characterization of UGT87A2 overexpression lines 

In addition to the loss-of-function mutants, Arabidopsis lines expressing UGT87A2 under the 

control of CAMV 35S-derived constitutive promoter were generated and characterized as 

described in 5.2.1.6. For seven independent and homozygous single insertion lines per each 
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vector (pB2GW7 and pAlligator2) a RT-qPCR was used on leaf material to identify lines 

showing a successful overexpression in the T2 generation. From three lines each, which 

showed a significantly higher transcript amount compared to the wild type, only two 

maintained the overexpression in the next generation (T3, see Figure 30). These were selected 

for further experiments, named UGT87A2-OE-19 and UGT87A2-OE-6. 

 

Figure 30. Molecular characterization of UGT87A2 overexpression lines. 

RT-qPCR of UGT87A2 overexpression lines in two subsequent generations (T2 and T3). Plant 
material of the T3 generation was used for subsequent experimental analyses. Lines 
UGT87A2-OE-6/10/16/19 are based on the binary vector pB2GW7, whereas pAlligator2 was 
used for generating UGT87A2-A-7/15 (5.2.1.6). 

4.1.3. Cellular localization of UGT87A2 expression and induction 

To analyze the expression of UGT87A2 in different plant organs and at different 

developmental stages, transgenic lines carrying an UGT87A2pro:GUS-GFP transgene were 

produced by Agrobacterium-mediated transformation. Two segregating, independent single 

insertion lines, UGT87A2pro:GUS-GFP-18 and UGT87A2pro:GUS-GFP-4 were selected for 

further analysis. Plants of different developmental stages (8d, 17d, and 36d) were analyzed, 

showing consistent GUS activity among two independent transgenic lines. 

Specific expression of UGT87A2 was found in hydathodes (Figure 31A, B) and root tips (A1). 

In older plants, a strong expression was found in anthers and filament, older petals and sepals, 

stigmata, tips of the siliques and silique internodes (Figure 31C). Expression was also found 

in stomata and surrounding cells in the upper part of the hypocotyl (A2). Further, UGT87A2 

seems to be strongly induced in senescent organs such as cotyledons of older plants (Figure 

31B) and older petals (Figure 31C) and also senescent leaves as shown in the BAR database 
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(bbc.botany.utoronto.ca). A strong induction was observed in leaves 24 h after 

benzothiadiazole (BTH) treatment (Figure 31D, E). 

 

 

Figure 31. Cellular localization of UGT87A2 expression using UGT87A2pro:GUS-GFP 
lines. 

Transgenic UGT87A2pro:GUS-GFP-18 lines were stained for GUS activity in different 
developmental stages. 
(A) 7-day-old seedling; (B) 17-day-old plant; (C) 28-day-old inflorescence and flowers; (D) 
before and (E) 24 h after BTH treatment. 
Bars = 1 mm (A-C), 0.5 cm (D,E), 0.5 mm (A1), 20 µm (A2). 

 

A strong induction of UGT87A2 expression was also found in roots of plants grown on plates 

containing half Murashige and Skoog (MS) medium compared to growth on soil (Figure 32 

vs. Figure 31A and B, 5.2.1.4). In order to get more detail about UGT87A2 expression in 

roots, one-week-old seedlings of transgenic lines carrying the UGT87A2pro:GUS-GFP fusion 

were analyzed with a confocal laser scanning microscope. Seedlings were grown on agar 

plates and stained with propidiumiodide to label the cell walls. 

 

Figure 32. Seedling of UGT87A2pro:GUS-GFP lines grown 
on MS plates. 

10-day old seedling grown on MS plates, stained according to 
5.2.6. Picture shows strong induction of UGT87A2 expression 
in roots of UGT87A2pro:GUS-GFP-18 compared to Figure 31A, 
B. 
 

 

Optical root cross sections showed expression of UGT87A2 mainly in the root cortex and 

pericycle (Figure 33A). Expression in the root tip seemed to be localized mainly in the root 

cap (Figure 33B) and lateral root primordia (Figure 33C, D). 
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Figure 33. CLSM using UGT87A2pro:GUS-GFP lines. 

Figure shows root sections from one-week-old seedlings grown on agar plates. Cell walls were 
counterstained with propidium iodide. (A) root cross section, arrows indicate pericycle (lower) 
and cortex (upper); (B) cross section of a main root tip; (C) forming lateral root; (D) cross 
section of (C). (A, B) UGT87A2pro:GUS-GFP-18, (C, D) UGT87A2pro:GUS-GFP-4. 
Bars = 25µm. 

4.1.4. Towards putative substrates of UGT87A2 using non-targeted mass 

spectrometry 

No obvious morphological differences were found in lines with altered UGT87A2 expression 

compared to the wild type. Several stress conditions were applied to search for an influence of 

UGT87A2 expression with regard to stress tolerance. The selection of the stressors was based 

on induction analysis using the BAR database (bbc.botany.utoronto.ca). No difference could 

be found in susceptibility towards biotic stressors such as Ps-vir (Supplemental Figure 2), nor 

towards abiotic stress cues such as UV-B treatment, osmotic and salt stress (Supplemental 

Figure 3). Since there was also neither an indication of the UGT87A2 substrate nor the 

affected metabolic pathway, plants having altered UGT87A2 expression were subjected to a 

non-targeted metabolomics approach to get more information about the impact of a loss or 

gain of UGT87A2 function on plant metabolism. A 12 Tesla FT-ICR mass spectrometer run in 

the negative ionization mode was employed to compare the metabolic profile of 

UGT87A2-OE and ugt87a2 mutant lines with their genetic background Col-0. 

Leaf material of four-week-old plants was used as starting material. As UGT87A2 was 

strongly inducible by BTH treatment (Figure 32 D, E), ugt87a2 plants and Col-0 were treated 

with BTH (BIONTM, 0.254 mg/ml) 48 h before harvesting. For analysis of the overexpression 

lines vs. wild type, plants without prior treatment were used as starting material for metabolite 

extraction. Several metabolites were found to be upregulated in both overexpression lines 
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UGT87A2-OE-6 and UGT87A2-OE-19 (Figure 34), whereas no significant metabolic changes 

could be found consistently in the two independent knockout lines (Supplemental Table 4). 

 

 

Figure 34. Metabolic changes found in UGT87A2 overexpression lines (p-value < 0.01). 

Means and standard deviation of three independent biological replicates, two technical 
replicates each are displayed. Peaks with m/z 339 and m/z 355 were not detectable in Col-0 
(see Supplemental Table 3). 

 

Due to the high accuracy in m/z determination, an exact molecular formula could be assigned 

to most peaks (Table 1). No distinct molecular formula could be assigned to m/z 775. Due to 

its high molecular mass several possible elemental compositions fitting the measured m/z 

ratio existed. Searching for possible molecular structures based on the identified formulas, 

half of the peaks could be attributed to putative compounds (Table 1). 

No possible compound could be found for the two sulfur containing peaks m/z 339 and m/z 

355. The ion m/z 237 (C8H14O8) might be 2-keto-3-deoxy-D-manno-octulosonic acid (KDO), 

a glycosyl residue of the pectic polysaccharide rhamnogalacturonan II (RG-II) present in plant 

cell walls and undoubtedly also in Arabidopsis (Zablackis et al., 1995; Seveno et al., 2010). 

Anion m/z 267 (C9H16O9) fits several possible molecular structures, but none of them has 

been described in Arabidopsis yet. KDN (2-keto-3-deoxy-D-glycero-D-galactonononic acid), 

for example, is a sialic acid that occurs widely among vertebrates and bacteria, but is thought 

to be absent in plants (Zeleny et al., 2006). Although mannosylglycerate (a thermoprotectant 

found in thermophilic bacteria), another putative candidate with m/z 267, exists in A. thaliana 

1

10

100

337.0776 339.1118 355.1068 237.0616 267.0722 775.1858

m/z (negative mode)

R
el

at
iv

e 
pe

ak
in

te
ns

ity
[8

7A
2-

O
E

lin
e

vs
. w

t]

87A2-OE-6  vs. Col-0

87A2-OE-19 vs. Col-0

1

10

100

337.0776 339.1118 355.1068 237.0616 267.0722 775.1858

m/z (negative mode)

R
el

at
iv

e 
pe

ak
in

te
ns

ity
[8

7A
2-

O
E

lin
e

vs
. w

t]

87A2-OE-6  vs. Col-0

87A2-OE-19 vs. Col-0



                                                                                               TOWARDS A FUNCTION OF STRESS INDUCIBLE UGT87A2 

 
61

according to Masstrix (5.2.7.1.4), this could not be confirmed by any other database or 

publication.  

 

Table 1. Molecular formulas and putative compounds induced in UGT87A2 overexpression lines.  

The last column shows the molecular formula of the resulting fragment after glucoside fragmentation 
if observed (n.a.: not analyzed; n.d.: not detected). The ion m/z 337 was selected for further 
identification. 

m/z 
[M-H] 

Predicted 
molecular 

formula [M] 
Putative compound 

Glucose fragmentation 
(-C6H10O5) 

 

337.0776 C12H18O11 ascorbic acid-glucoside? C6H8O6 
339.1119 C13H24O8S ? C7H14O3S 
355.1069 C13H24O9S ? n.a. 

237.0616 C8H14O8 
KDO (polysaccharide; 
biosynthesis cell wall) n.d. 

267.0722 C9H16O9 mannosylglycerate, KDN? n.d. 
775.1857 n.i. - n.a. 

4.1.5. Unknown compound with m/z 337 is identified as an ascorbic acid 

glucoside 

As the main focus was to get hints on diagnostic metabolic changes or even on putative 

UGT87A2 substrates, UGT87A2-induced peaks were analyzed primarily for glucosides. 

Fragmentation of glucosidic structures can lead to both, heterolytic or homolytic cleavage 

yielding the aglycon fragment ion [Y0]- and the radical aglycon ion [Y0-H]-, respectively. The 

expected mass losses are 162 and 163 for a heterolytic and homolytic glucoside cleavage, 

respectively. Fragmentation studies revealed that two of the UGT87A2-induced peaks (m/z 

337 and m/z 339) were glucosides and therefore putative substrates of UGT87A2. The ion m/z 

337 showed mainly heterolytic, but also homolytic cleavage of a glucose moiety (Figure 35a), 

whereas for m/z 339 only glucoside elimination (heterolytic cleavage) could be observed 

(Supplemental Figure 4). 

Whereas no compound could be found with the molecular formula C13H24O8S (m/z 339), 

C12H18O11 (m/z 337) was identified as putative ascorbic acid glucoside. As m/z 339.111 was 

also undetectable in the wild-type line, the peak with m/z 337.077 was selected for further 

identification. 

Ascorbic acid-2-O-α-glucoside (AA-2GTM) is the only stereoisomer which is commercially 

available, widely used in cosmetics, by the pharmaceutical industry and as a food additive 
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(Yamamoto et al., 1990a; Yamamoto et al., 1990b; Mandai et al., 1992). Naturally occurring 

stereoisomers of AA-2G, 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-2βG) and 6-O-β-D-

glucopyranosyl-L-ascorbic acid have been identified in Lycium barbarum fruit and 

Cucurbitaceae, respectively (Toyoda-Ono et al., 2004; Hancock et al., 2008). No ascorbic acid 

glucoside has been described in Arabidopsis thaliana yet. Fragmentation analysis of the peak 

originating from the plant extract compared to the commercial standard AA-2GTM 

(Hayashibara Biochemical Laboratories, Japan) should give hints on the structure of the 

unknown compound. As shown in Figure 35, the m/z 337 ion from the UGT87A2-OE-19 

plant extract showed similar fragmentation pattern as AA-2GTM. Further, fragmentation of the 

ascorbic acid aglycon verified the loss of the first fragment (C2H4O2) from the ascorbic acid 

part of the molecule (Figure 35c, Figure 36). 

The results presented confirmed that m/z 337 was an ascorbic glucoside, but at this point the 

stereochemistry of the molecule remained unknown. Ascorbic acid-2-O-α-glucoside (AA-

2GTM) is only a commercial conjugate, which has not been described from natural sources yet. 

Additionally, both heterolytic and homolytic glucoside cleavage could be observed for the 

unknown m/z 337, whereas AA-2G only showed homolytic cleavage. Both strongly suggest 

that the plant compound with m/z 337 was not the α-glucoside. Instead, 2-O-β-D-

glucopyranosyl-L-ascorbic acid (AA-2βG) is a naturally occurring stereoisomer and 

putatively also identical with the unknown compound found in Arabidopsis plants. 
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Figure 35. Identification of m/z 377 as an ascorbic acid glucoside. 

Fragmentation patterns of (a) m/z 337 from the plant extract (UGT87A2-OE-19), (b) AA-2GTM 
and (c) ascorbic acid. Collision energy: 15eV. Loss of 163 Da confirms homolytic glucoside 
cleavage, whereas loss of 60 Da (C2H4O2) originates from the ascorbic acid part of the 
molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Fragmentation pathway of ascorbic acid 2-O-α-glucoside (AA-2GTM). 
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4.1.6. Confirmation of induction of ascorbic acid-2-O-β-glucoside in 

UGT87A2-OE-19 using HPLC analysis 

To get further information on the stereochemistry of the unknown plant compound with m/z 

337, a new approach using HPLC analysis was used. Tai and Gohda (2007) established a 

convenient method to separate the α-glucoside and β-glucoside conjugates of ascorbic acid 

using hydrophilic interaction chromatography. As AA-2βG is not commercially available, 

Lycium barbarum fruit extract, known to contain huge amounts of AA-2βG (Tai and Gohda, 

2007), was used as a natural standard for HPLC analysis.  

As shown in Figure 37 (A-C), the 2-O-β-D-glucopyranosyl-L-ascorbic acid peak from Lycium 

was comigrating with a minor HPLC peak, which was enhanced in the UGT87A2 

overexpression line (see also Supplemental Figure 7). Exact comigration of the unknown peak 

with AA-2βG was confirmed by a UGT87A2-OE-19 plant extract spiked with Lycium fruit 

extract (Figure 37D). The corresponding peak from UGT87A2-OE-19 was collected and the 

corresponding m/z 337 confirmed via FT-ICR-MS (Figure 37E). 
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Figure 37. HPLC chromatograms 
indicating the presence and induction of 
AA-2ßG (red arrow). 

(A) Lycium barbarum plant extract. 
(B) wild-type plant extract (Col-0). 
(C) UGT87A2-OE-19 plant extract. 
(D) (C) spiked with a small amount of (A) to 
confirm coelution of both peaks. 
(E) FT-ICR-MS signal m/z 337, detected in 
the collected peak. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.7. Analysis of the in vitro activity of recombinant UGT87A2 towards 

ascorbic acid 

To test whether UGT87A2 was able to glycosylate ascorbic acid in vitro, the activity of the 

recombinant enzyme was tested towards this putative substrate. As shown in Figure 38, no 

glucoside formation could be observed after incubating the enzyme for one hour in the 

presence of ascorbic acid (5.2.5.2). Even after 3 hours of incubation no product formation 

could be observed (results not shown). Nothing is known about substrate specificity of 

UGT87A2, therefore no positive control reaction could be performed to check, if the 

recombinant protein showed any activity. Although glycosylation of ascorbic acid could not 
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be confirmed, due to the lack of a positive control, it can not be excluded as a putative 

substrate. 

 

Figure 38. In vitro activity assay of UGT87A2 towards ascorbic acid. 

Reactions were analyzed by mass spectrometry (5.2.5.2). The m/z values of the corresponding 
substrate and product are m/z 175 and m/z 337 respectively. The experiment was 
independently repeated with similar results. 

4.1.8. UGT87A1 is a close homolog of UGT87A2 

Although several metabolites were found to be induced in UGT87A2-OE lines, no significant 

metabolic changes could be found in the ugt87a2 knockout lines. A possible explanation for 

that could be the existence of a redundant gene with a similar function which would 

compensate the loss of UGT87A2 in the knockout lines. UGT87A2 indeed has a close 

homolog, namely UGT87A1 (Ross et al., 2001), which shows 76% protein identity (see 

Supplemental Figure 5). 

Co-expression analysis of UGT87A1 using ATTED (http://atted.jp/) shows the highest mutual 

rank co-expression score with a putative ascorbate oxidase (Supplemental Figure 6). 

UGT87A1 shows only low expression, but is expressed in similar tissues compared to its 

homolog UGT87A2 (Figure 39). As shown in Figure 4, UGT87A1 was also not inducible by 

any biotic or abiotic stress factor which could point out a fundamental physiological function, 

whereas the highly responsive UGT87A2 seemed to function specifically during stress 

response. 
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Figure 39. Expression profiles of UGT87A2 and 
UGT87A1. 

(https://www.genevestigator.com) 

 

 

 

 

 

 

 

 

 

 

 

4.1.9. Generation of ugt87a2 amiRUGT87A1 by amiRNA technology 

To test our hypothesis that UGT87A1 and UGT87A2 have redundant functions, a further 

approach generating a double knockout-knockdown was started. The fact that both genes are 

linked close to each other on chromosome 2 did not allow to generate a double mutant by 

crossing two single knockouts. The amiRNA technology is an effective tool for specific gene 

silencing especially when two closely linked genes or several related target genes need to be 

silenced. It exploits endogenous miRNA precursors to generate small RNAs that direct gene 

silencing in plants (Schwab et al., 2006). Here the amiRNA technology was used to 

downregulate UGT87A1 in ugt87a2 mutant background. ugt87A2-1 lines were transformed 

with an amiR-UGT87A1 construct to generate ugt87A2-1 amiRUGT87A1 lines (see 5.2.4.8.2). 

The artificial microRNA designer WMD2 was used for selection of an appropriate target site. 

It delivers several amiRNA candidates based on different criteria such as sequence specificity, 

complementarity and other principles for amiRNA (Schwab et al., 2006). Two different amiR 

constructs (amiR-1 and amiR-13), targeting different regions in UGT87A1 mRNA, were used 

for plant transformation. Both showed no off-targets and are located in mRNA regions with a 

somewhat open conformation as predicted by the RNAfold web server (Figure 40). amiR-1 

was located closer to the 5´ end, whereas amiR-13 targeted a region closer to the 3´ end of the 

mRNA. 

UGT87A2      UGT87A1
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Figure 40. Selection of amiRNAs targeting UGT87A1. 

(A) Selected amiRNAs. 
(B) Position of the selected amiRNA candidates in UGT87A1 mRNA sequence. The dot 
bracked notation shows the conformation of the estimated secondary structure with amiRNA 
location. Unpaired bases are represented by dots, a base pair between base x and y is 
represented by a '(' at position x and a ')' at position y. The RNAfold server 
(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) from the Vienna RNA Websuite (Gruber et al., 
2008) was used for secondary structure prediction. 

 

Cloning of the amiRNAs and plant transformation were performed as described in 5.2.4.8.1. 

Molecular analysis of amiRNA plants was performed by RT-qPCR in primary transformants 

(T1 generation). Selected transformants which showed successful UGT87A1 downregulation 

were selected for further characterization in the T2 generation. As shown in Figure 41A, both 

amiRNA constructs led to downregulation of UGT87A1, although amiR-1 showed a much 

stronger effect. ugt87a2 amiR-87A1-1 lines showed 73-92% reduction of UGT87A1 

expression compared to the wild-type plant, except one line (amiR-1-5), which surprisingly 

showed a high induction of UGT87A1. In contrast, only 24-66% reduction could be observed 
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in the ugt87a2 amiR-87A1-13 lines (Figure 41A). Seven lines were selected for a second 

molecular analysis in the T2 generation, all of them showed successful inheritance of the 

amiRNA functionality (Figure 41B). 

 

Figure 41. Molecular characterization of ugt87a2-1 amiR-UGT87A1 lines. 

RT-qPCR of ugt87a2 amiR-UGT87A1 lines was performed in two subsequent generations (T1 
and T2) after transformation. Lines selected for further analysis are marked with a red box. 
Plant material of the T2 generation was used for subsequent experimental analyses. 

 

Two lines, ugt87a2 amiR-UGT87A1-1-6 and ugt87a2 amiR-UGT87A1-1-9 were selected for 

further analysis. A metabolome analysis (as described in 5.2.7.1, one experiment) of these 

lines [harvested 48 h after BTH treatment (BIONTM, 0.254 mg/ml)] revealed no significant 

changes compared to the wild-type in any of the masses that were induced by UGT87A2 

overexpression (see Supplemental Table 5). Data from one single experiment indeed showed 
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several m/z peaks with significant difference compared to the wild type. These could give 

hints at additional pathways affected by UGT87A2 and UGT87A1 expression, although 

measurements have to be confirmed by an independent experiment. 
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44..22..  DDIISSCCUUSSSSIIOONN  

4.2.1. Ascorbic acid 2-O-ß-glucoside is a new compound identified in A. 

thaliana which is induced in UGT87A2 overexpression lines 

L-ascorbic acid (vitamin C) is a primary antioxidant in both animals and plants and serves as 

an important reactant in hydroxylation and other redox reactions. Mammals have to ingest L-

ascorbic acid (AA) with their diet as they lost the capability of its synthesis. AA deficiency 

causes the common scurvy disease. Plants provide the major source of dietary vitamin C. In 

plants ascorbate plays an important role in developmental processes such as flowering, 

senescence and morphogenesis (Barth et al., 2006; Olmos et al., 2006) and in the regulation of 

cell signaling (Pignocchi and Foyer, 2003) as well as in transcription and/or stabilization of 

specific mRNAs (Arrigoni and De Tullio, 2002). It is also involved in defense reactions 

against biotic (Barth et al., 2004; Pavet et al., 2005; Goggin et al., 2010) and abiotic stresses 

such as high temperature (Larkindale et al., 2005), ozone (Conklin and Barth, 2004), high 

light (Müller-Moulé, 2008) and serves as a cofactor in the synthesis of plant hormones 

(Arrigoni and De Tullio, 2002). No viable mutant has been found so far that is totally devoid 

of ascorbate (Smirnoff et al., 2001), which further underlines the importance of this small 

molecule. Therefore, research towards a better understanding of its biosynthesis and 

metabolism is of huge interest and may have potential applications in enhancing 

environmental stress tolerance in plants as well as in elevating the nutritional value of food 

(Hemavathi et al., 2010; Wang et al., 2010). 

Due to its protective and antioxidant capacity, ascorbate is widely used as an additive in the 

pharmaceutical, cosmetic, and food industry. However, AA is intrinsically unstable and 

several attempts have been made modifying its structure in order to increase stability. 

Glycosylation is known to change the stability and solubility of molecules and plays an 

important role in the compartmentation of small molecules. Among several AA conjugates, 

ascorbic acid-2-O-α-glucoside (AA-2G) is the most widely used in industry (Yamamoto et al., 

1990a; Yamamoto et al., 1990b; Mandai et al., 1992). AA-2G is synthesized from AA and α-

glucans by regioselective transglycosylation with cyclodextrin glucanotransferase from 

Bacillus stearothermophillus (Aga et al., 1991). It is highly stable, but after oral 

administration it is rapidly hydrolyzed to generate the active AA (Nakamura and Oku, 2009). 

Naturally occurring stereoisomers of AA-2G, 2-O-β-D-glucopyranosyl-L-ascorbic acid (AA-

2βG) and 6-O-β-D-glucopyranosyl-L-ascorbic acid (AA-6βG) have been identified in Lycium 

fruit and Cucurbitaceae, respectively (Toyoda-Ono et al., 2004; Hancock et al., 2008). The 
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latter authors showed that only AA-6βG had a strong reducing activity towards 

dichlorophenolindophenol (DCPIP). DCPIP reduction by AA requires both the C2 and C3 

hydroxyl groups (Rao et al., 1987). In contrast to AA-6βG, AA-2GTM was also completely 

resistant to oxidation by either H2O2 or ascorbate oxidase. Oxidation by both, H2O2 or 

ascorbate oxidase, needs a free hydroxyl group at the C2 position of the ascorbic acid 

molecule (Isbell and Frush, 1979; Casella et al., 1999). 

By performing a non-targeted metabolome analysis a compound in Arabidopsis thaliana leaf 

extract was identified the molecular formula of which was identical to an ascorbic acid 

glucoside. Mass spectrometric fragmentation studies and HPLC analyses revealed it to be 

AA-2βG. Overexpression of UGT87A2, a highly stress inducible glycosyltransferase, led to 

up-regulation of this compound among few other metabolites. The induction of 

ascorbic acid 2-O-β-glucoside in planta through overexpression of a UGT-gene highly 

suggests that AA-2βG is an endogenous compound of Arabidopsis thaliana and does not stem 

from exogenous contamination. No ascorbic acid glucoside conjugate had been identified so 

far in Arabidopsis and results indicate a new step of ascorbic acid metabolism and regulation 

in this model plant species. 

Concentration and redox status of the AA pool in plants is tightly controlled, but despite huge 

research efforts progress towards understanding the underlying mechanisms, the responsible 

control mechanisms for AA biosynthesis and degradation remain still largely unknown 

(Wolucka and Van Montagu, 2007; Linster and Clarke, 2008). Considerable uncertainties 

remain concerning the genetic and biochemical controls of pathway flux (Hancock and Viola, 

2005) as well as the control of AA distribution at the whole plant level. AA-2βG could serve 

as stable storage and even transport form of AA, without an antioxidant capacity, which could 

easily be activated after β-glucosidase treatment. AA conjugation could be part of the still 

unknown mechanisms controlling the AA pool and its redox status. 

In Lycium plants AA-2ßG was only found in fruits and detected in neither leaf nor root. The 

content in fresh fruit was about 0.2-0.3%, which is comparable to the ascorbic acid content of 

fresh lemons (Toyoda-Ono et al., 2004). Nothing was known about a possible role of ascorbic 

acid glycosylation in Lycium species. In Cucurbitaceae, AA-2ßG was found mainly in the 

phloem. Hancock et al. (2008) postulated that AA conjugates may play a role in phloem 

loading of AA in members of this family and other symplastic loaders.  
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4.2.2. UGT87A2 has putative functions in ascorbic acid homeostasis or in cell 

wall biosynthesis 

Overexpression of UGT87A2 led to induction of several m/z peaks in the non-targeted 

metabolome analysis. Two of the UGT87A2-induced mass peaks could be identified as 

glucosides in leaves, which indicated putative in planta substrates of UGT87A2. One of them 

(m/z 339) could not be detected in the wild-type line. The CAMV 35S promoter used for 

construction of the overexpression lines leads to ubiquitous expression in all tissues. The 

overexpressed protein therefore comes in contact with new compounds in tissues where it is 

not expressed under natural conditions and hence can lead to unspecific glucosylation events. 

Glucosides which appear in overexpression lines but cannot be detected in the wild type are 

putatively produced through unspecific glucosylation events, although one has to keep in 

mind that the compound could also be below the detection limit of the MS instrument. 

The second peak, induced in UGT87A2 overexpression lines, but also detectable in the wild 

type, was identified as ascorbic acid 2-O-β-glucoside. Although glucosylation of ascorbic acid 

(AA) could not be confirmed with recombinant UGT87A2, due to the lack of a positive 

control to check the activity of the recombinant protein, AA cannot be excluded as a putative 

substrate. No obvious phenotype could be detected in plants with increased ascorbic acid 

conjugates. A tight regulation of AA levels exists in plants (Smirnoff et al., 2001). Thus, 

although conjugation of AA is enhanced in UGT87A2 overexpression lines, no substantial 

changes in free AA levels could be detected in these lines as shown by HPLC analysis 

(Supplemental Figure 7). This might also be the reason why UGT87A2 overexpressors did not 

show obvious phenotypes. 

According to several studies, low AA causes premature senescence (Barth et al., 2004; 

Conklin and Barth, 2004). Induction of UGT87A2 in senescing leaves [4.1.3 and BAR 

(bbc.botany.utoronto.ca)] would increase AA glucosylation and could lead to the export of 

conjugated AA from senescing into younger tissues. 

UGT87A2 is constitutively expressed in root tips (Figure 31 and Figure 33). The same was 

observed for VTC2 (Müller-Moulé, 2008), an enzyme catalyzing the first step in AA 

biosynthesis. It could be assumed that part of the ascorbic acid synthesized was converted 

directly into a stable storage or transport form through glucosylation. Further, cell 

proliferation in the quiescent center is also thought to be linked to AA levels and the redox 

status (Jiang and Feldman, 2005). At this point it would be interesting to have a deeper look at 

the root morphology to find putative different root phenotypes. 
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Concentration and redox status of the AA pool is tightly controlled and variable across 

different tissues. As an example, the AA pool in root tissue, with 30% dehydroascorbic acid 

(DHA) is more oxidized (Cordoba-Pedregosa et al., 2003) than in most aerial parts which 

contain about 10% DHA (Noctor, 2006). It would be worthwhile to analyze the amount of 

AA-2βG in root tissue - increased levels of conjugated AA would hint to a new mechanism 

controlling free AA levels and the cell redox status. The use of leaf tissue homogenates for 

the analysis could be the reason for the low amount of AA-2βG detected (Figure 37). AA 

conjugates found in Cucurbitaceae for example could only be detected in exudates of aerial 

parts, but were undetectable in whole tissue homogenates. 

Among the other compounds induced through UGT87A2, m/z 237, most probably represents 

KDO, a glycosyl residue of the pectic polysaccharide rhamnogalacturonan II (RG-II) present 

in primary cell walls of several plants including Arabidopsis (Zablackis et al., 1995; Seveno et 

al., 2010). This is supported by the fact that no glucoside loss could be observed for m/z 237 

(Table 1). 

Plant cell walls are an extracellular matrix surrounding the cell protoplast, composed of a 

highly integrated and structurally complex network of polysaccharides, including cellulose, 

hemicelluloses and pectin (Cosgrove, 2005). In addition to their functions in plant growth and 

development, plant cell walls also play an important role in plant response to environmental 

cues and are a storage site of many biologically active signaling molecules. Cell walls are the 

first plant barriers against pathogen invasion and sensing their integrity is one mechanism by 

which plants may detect pathogen attack. Breakdown products of plant cell walls for example 

function as potent elicitors of plant-defense responses. Accordingly, several plant cell wall 

mutants show altered pathogen resistance [reviewed in Hématy (2009)]. 

Although KDO is not a direct product of UGT87A2, its induction in UGT87A2 overexpression 

lines could hint to a putative role of UGT87A2 in cell wall biosynthesis and/or further support 

its role in ascorbic acid homeostasis. AA and RG-II both share a common biosynthetic 

precursor, GDP-D-mannose (Wheeler et al., 1998; Smirnoff et al., 2001). The connection 

between ascorbic acid and cell wall biosynthesis due to their common precursor has been 

shown in several cases (see Figure 42). E.g. the depletion of GDP-mannose through a 

mutation in CYTOKINESIS DEFECTIVE 1, an enzyme catalyzing the production of GDP-

mannose, led to changes in cell wall composition (Lukowitz et al., 2001). Additionally, a 

weak mutation in the same gene (GDP-mannose pyrophosphorylase) led to deficiency in 

ascorbic acid production in the vtc1 mutant (Conklin et al., 1999). Gilbert et al. (2009) made 

similar observations in tomato plants that were RNAi-silenced for GDP-D-mannose 3,5-
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epimerase (GME), an enzyme that produces GDP-L-galactose from GDP-D-mannose. Its 

downregulation in tomato led to loss of fruit firmness and increase of rhamnogalacturonan 

labeling in addition to reduced AA biosynthesis, further underlining the intersection between 

L-ascorbate and cell wall polysaccharide biosynthesis. 

Finally, although it is not clear in which of both processes UGT87A2 is directly involved, 

induction of ascorbic acid 2-O-β-glucoside and a cell wall component in the overexpression 

lines hint to a putative role of UGT87A2 in ascorbic acid homeostasis or in cell wall 

biosynthesis due to their common biosynthetic precursor GDP-D-mannose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. L-ascorbic acid biosynthesis in plants. 

4.2.3. Downregulation of UGT87A1 using artificial microRNA technology 

No significant metabolic changes were found consistently in two independent ugt87a2 

knockout mutants. One reason could be the existence of redundant genes that compensate for 

the loss of UGT87A2. A putative candidate gene is the highly homologous UGT87A1. 

Artificial amiRNA technology was used to downregulate UGT87A1 in an ugt87a2 mutant 

background using two different amiRNAs. Both amiR-1 and amiR-13 led to UGT87A1 

downregulation, but one of them (amiRUGT87A1-1) with much higher efficiency (Figure 41). 

Several factors are known to influence amiRNA efficiency such as accessibility of the 

complement amiRNA site, absolute hybridization energy, position of the complementary 

mRNA region, difficulties reducing steady-state target RNA levels because of negative 
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feedback regulation. In the case of UGT87A1, the plant seemed to tolerate a strong reduction 

(up to 90%) of UGT87A1 at the transcriptional level as seen in the case of amiR-1. Therefore 

factors affecting the hybridization of the amiRNA might be the reasons for the low efficiency 

of amiR-13. As shown in Fig 40B, the mRNA target site of amiR-13 shows a slightly closer 

secondary conformation (3 unpaired bases) than the one of amiR-1 (9 unpaired bases). The 

amiR-13 target site is also located in a loop region. Both could lead to a lower accessibility to 

the mRNA, thereby reducing the silencing efficiency. Additionally, amiR-13 has a slightly 

higher hybridization energy (-34.5 kcal/mol) than the optimum (between -35 and -38 

kcal/mole). Additionally, although no evidence exists that the position of the target site in the 

target transcript influences the effectiveness, target sites in most endogenous miRNA targets 

are found towards the 3' end of the coding regions. amiR-13 is located closer to the 5´ end of 

the mRNA, which could in part also reduce its efficiency. 

 

Downregulation of UGT87A1 in ugt87a2-1 background had no effect on any of the masses 

that were induced by UGT87A2 overexpression. Therefore no further information on the 

involvement of UGT87A2 in ascorbic acid homeostasis or cell wall biosynthesis could be 

concluded from these results. Certainly, the real substrate could have been missed in the 

metabolic analysis and the observed metabolic inductions could be only an indirect effect of 

ectopic UGT87A2 overexpression. Here a change in the metabolite approach such as 

measurements covering a broader mass range, using positive ionization mode, or using a 

different metabolite extraction procedure could give additional hints. But the observed 

metabolic influences of UGT87A2 in the overexpression lines strongly suggest an 

involvement in ascorbic acid homeostasis or in cell wall biosynthesis. Further analyses are 

needed to confirm such a role of UGT87A2. For example analysis of cell wall composition, 

ascorbic acid 2-O-β-glucoside measurements in different plant organs and further stress 

exposure analysis of knockout and overexpression lines. 
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55..  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  

55..11..  MMAATTEERRIIAALLSS  

5.1.1. Plant materials  

Insertion lines and wild-type plants used in this study were Arabidopsis thaliana ecotype 

Col-0, except ugt76b1-GT5 which was ecotype Ler. Insertional mutant lines for UGT76B1 

and UGT87A2 (Table 2) were identified by screening the publicly accessible SIGnAL T-DNA 

Express database of the SALK Institute (http://signal.salk.edu/cgi-bin/tdnaexpress. Mutant 

candidates were retrieved from various sources; the SALK (Alonso et al., 2003), the GABI-

Kat (Rosso et al., 2003), the JIC SM (Tissier et al., 1999) and the SAIL collections (Sessions 

et al., 2002). Seeds were purchased from the Nottingham Arabidopsis Stock Center (NASC) 

or from the Arabidopsis Biological Resource Center (ABRC, Ohio State University, USA, 

http://www.biosci.ohio-state.edu/pcmb/Facilities/abrc/abrchome.htm). GABI lines were 

purchased from GABI-Kat (MPI, Köln, Germany). 

 

Table 2. UGT insertion mutants. 

AGI code Line  Name Ecotype Resistance 

At2g30140 GABI_686D07 ugt87a2-1 Col-0 Sulfadiazine 

At2g30140 SALK_124038 ugt87a2-2 Col-0 Kanamycin 

At3g11340 SAIL_1171A11 ugt76b1-1 Col-0 BastaTM 

At3g11340 GT_5_11976 ugt76b1-2 Ler Kanamycin 
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5.1.2. Bacterial strains 

Table 3. Bacterial strains. 

Species Strain 

DH-5α 
Escherichia coli 

BL21 (DE3) pLys 

pv tomato DC3000, Abbreviation: Ps-vir 
Pseudomonas syringae  

pv tomato DC3000 (avrRpt2), Abbreviation: Ps-avir 

Agrobacterium tumefaciens GV3101 (pMP90) 

 

5.1.3. Vectors 

Table 4. Vectors. 

Name Application Source Reference 

pENTR1A 
GatewayTM 

cloning 

Invitrogen, 

Germany 
 

pRS300 amiRNA cloning 
Rebecca Schwab, 

Germany 

http://wmd3.weigelworld.org/ 

(Schwab et al., 2006) 

pBGWFS7 

GatewayTM 

cloning, binary 

vector 

Gent University, 

Belgium 
(Karimi et al., 2002) 

pB2GW7 

GatewayTM 

cloning, binary 

vector 

Gent University, 

Belgium 
(Karimi et al., 2002) 

pAlligator2 

GatewayTM 

cloning, binary 

vector 

Francois Parcy, 

France 
(Bensmihen et al., 2004) 

pDEST15 

GatewayTM 

 cloning, binary 

vector 

Invitrogen, 

Germany 
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5.1.3.1. Antibiotics 

Table 5. Antibiotic stock and working solutions. 

 Source Stock solution 

(mg/ ml) 

Working concentration 

(µg/ ml) 

Ampicillin 
Roche, Mannheim 

(Germany) 
100 100 

Rifampicin 
Sigma, Deisenhofen 

(Germany) 

10 

(in methanol) 

25 (for Pst DC3000) 

100 (for Agrobacterium) 

Kanamycin 
Sigma, Deisenhofen 

(Germany) 
50 50 

Gentamicin 
Roche, Mannheim 

(Germany) 
50 25 

Spectinomycin 
Sigma, Deisenhofen 

(Germany) 
10 50-100 

 

All stock solutions were dissolved in water except rifampicin which was dissolved in 

methanol and kept at -20°C. 

5.1.4. Medium and solutions 

½ MS (Murashige & Skoog):   

 2.2 g/l Murashige & Skoog Medium including 

vitamins 

(Sigma. Germany) 

 1-1.5% (w/v) sucrose 

 pH 5.7-5.8 adjusted with KOH 

for solid medium: 0.25–5% (w/v) Gelrite (Duchefa. The Netherlands) 
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LB (Luria-Bertani):   

 2.5 g/l  LB broth high salt 

 600 µl 5N NaOH 

for solid medium: 15 g/l Difco Agar 

 

 

KB (Kings B):   

 20 g/l Tryptone (Difco) 

 1.5 g/l K2HPO4 

 1.5 g/l MgSO4 

 10 ml/l Glycerin 

 pH 7 Adjusted with HCl/NaOH 

for solid medium: 15 g/l  Agar 

 

RB (rich LB medium):   

 10 g/l Tryptone (Difco) 

 5 g/l Yeast extract (Difco) 

 5 g/l NaCl 

 2 ml/l 1N NaOH 

 

SOC (Super Optimal broth with Catabolic repressor): 

 20 g/l Trypton 

 10 mM NaCl 

 2.5 mM KCl 

 10 mM MgCl2 

 10 mM MgSO4 

 20 mM Glucose 

 pH 7 Adjusted with NaOH 

 

All media were autoclaved for 10 min at 120°C and kept at 4°C. 
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5.1.5. Primer 

Table 6. Primer used for the characterization of transgenic lines (5.2.1.6). 

Name Sequence 

AtTUB9 f gtaccttgaagcttgctaatccta 

AtTUB9 r gttctggacgttcatcatctgttc 

76B1_ORF_r gtctgattatgggaatgcagatta 

76B1_f620 aagatccaagatcaggggataag 

SAIL_L ttcataaccaatctcgatacac 

Ds5-2mod cgttttgtatatcccgtttccgt 

87A2_F-20 aaatcacacacttcacaagaaac 

87A2_R1670 ttgaaacaataaaacctctttga 

87A2_r810 tctcgaatggttcttccaatct 

LBa1 mod ggttcacgtagtgggccatc 

GABI_LB1 ccaaagatggacccccacccac 

 

Table 7. Primer used for the production of overexpression lines and recombinant UGT 
expression vectors using GatewayTM recombination. 

Name Sequence 

76B1_ORF_GW_f ggggacaagtttgtacaaaaaagcaggctacacaatggagactagagaaacaaaacca 

76B1_ORF_GW_r ggggaccactttgtacaagaaagctgggtctgattatgggaatgcagatta 

87A2_ORF_GW_f   ggggacaagtttgtacaaaaaagcaggcttaacaatggatccaaatgaatctcca 

87A2_ORF_GW_r  ggggaccactttgtacaagaaagctgggttgaaacaataaaacctctttgagc 

 

Table 8. Primer used for the production of UGTpro:GUS-GFP constructs using GatewayTM 
recombination. 

Name Sequence 

UGT76B1pro_GW_f   ggggacaagtttgtacaaaaaagcaggctcggttaaacataaaccatgt   

UGT76B1pro_GW_r  ggggaccactttgtacaagaaagctgggtgtctccatttttgttgtgaat  

UGT87A2 pro_GW_f  ggggacaagtttgtacaaaaaagca ggctagaaaacatgcaaaagcaat 

UGT87A2 pro_GW_r ggggaccactttgtacaagaaagctgggtggatccataggttgtttctt 

 

 



MATERIALS                                                                                                                                                                                 .  

 
82 

Table 9. Primer sequences used for RT-qPCR (5.2.4.7). 

Gene Accession number Name Sequence Citation 

AtUBQ5 f ggtgctaagaagaggaagaat 
UBQ5 At3g62250 

AtUBQ5 r ctccttcttctggtaaacgt 

 

 

S16qRT_f tttacgccatccgtcagagtat 
S16 At5g18380, 

At2g09990 S16qRT_r tctggtaacgagaacgagcac 

 

 

UGT76B1_f tggaagatcggattgcatt 
UGT76B1 At3g11340 

UGT76B1_r ccttcatgggcataatcctc 

 

 

PR1_f397 gtgccaaagtgaggtgtaacaa 
PR1 At2g14610 

PR1_r495 cgtgtgtatgcatgatcacatc 

 

 

Pdf1.2a _f197 ccaagtgggacatggtcag 
PDF1.2 At5g44420 

Pdf1.2a _r 292 acttgtgtgctgggaagaca 
(Kumar et al., 2009) 

VSP2_f1037 ttggcaatatcggagatcaat 
VSP2 At5g24770 

VSP2_r1136 gggacaatgcgatgaagatag 

 

 

SAG13_f607 ttgcccacccattgttaaa 
SAG13 At2g29350 

SAG13_r707 gattcatggctcctttggtt 

 

 

SAG12_f1154 aatgatgagcaagcactgatg 
SAG12 At5g45890 

SAG12_r1253 cgtagtgcactctccagtgaa 

 

 

LOX2_f2794 tgcacgccaaagtcttgtca 
LOX2 At3g45140 

LOX2_r2931 tcagccaacccccttttga 
(Delker et al., 2007) 

WRKY70_f1084 ggaagaagacaatcctcatcgt 
WRKY70 At3g56400 

WRKY70_r1187 cgttttcccattgacgtaact 

 

 

EDS1_f1704 cgaagacacagggccgta 
EDS1 At3g48090 

EDS1_r1893 aagcatgatccgcactcg 
(Straus et al., 2010) 

PAD4_f1725 ggttctgttcgtctgatgttt 
PAD4 At3g52430 

PAD4_r1766 gttcctcggtgttttgagtt 
(García et al., 2010) 

UGT87A2_f gaatgagttgttgatagggagaga 
UGT87A2 At2g30140 

UGT87A2_r tcctcgactgatttcactaaggt 

 

 

UGT87A1_f1064 gttttgtgtcatgcggctata 
UGT87A1 At2g30150 

UGT87A1_r1142 cagaaactgatcccaaaaaaca 
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Table 10. Primer used for UGT87A1-amiRNA cloning (5.2.4.8.2) 

Name Sequence 

amiRNA-I_87A1_1  gattgacacaaaacacgtagccg tctctcttttgtattcc 

amiRNA-II_87A1_1 gacggctacgtgttttgtgtcaatcaaagagaatcaatga 

amiRNA-III_87A1_1 gacagctacgtgttatgtgtctatcacaggtcgtgatatg 

amiRNA_IV_87A1_1 gatagacacataacacgtagctg tctacatatatattcct 

amiRNA_I_87A1_13 gatatgatgtaagtatgggcggt tctctcttttgtattcc 

amiRNA_II_87A1_13 gaaccgcccatacttacatcatatcaaagagaatcaatga 

amiRNA_III_87A1_13 gaaacgcccatactaacatcatatcacaggtcgtgatatg 

amiRNA_IV_87A1_13 gatatgatgttagtatgggcgtt tctacatatatattcct 

 

All primers were obtained from Thermo Electron (Ulm, Germany). Stock solutions were 

prepared at 200 µM and stored at -20°C. 

 

 

 

 



METHODS                                                                                                                                                                                    . 

 
84 

55..22..  MMEETTHHOODDSS  

5.2.1. Plant methods 

5.2.1.1. Growth conditions 

For infection experiments and RT-qPCR analysis plants were grown on soil under a 14 h light 

cycle at 45 µmol m2 s-1 of light intensity at 18°C in the dark and 20°C in the light and 75% 

relative humidity. For metabolic analysis and plant transformation, plants where grown in soil 

(for analysis of leaf material) or in hydroponic culture (for analysis of root material) at a 12 h 

light cycle, 120 µmol m2 s-1 light intensity, 20°C and 75% relative humidity.  

For UV-B treatment, plants were grown on soil under an 11 h light cycle at 200 μmol m-2 s-1 

light intensity at 18°C in the dark and 23°C in the light and 60% relative humidity. UV-B 

treatment was started 1 week after germination with approx. 13 kJ/day. 

5.2.1.2. Plant growth on soil 

For plant breeding, soil (Floraton 1, Floragard) was mixed with silica sand in a ratio of 5:1 

and poured in 6-well plant pots. Soil was wetted with water, seeds where placed with a 

toothpick on wet soil and stratified for 2 days at 4°C (to synchronize germination) before 

transfer into the plant chamber. 

5.2.1.3. Seed surface sterilization 

For surface sterilization, seeds were placed in a clean bench on filter paper and submerged in 

70% ethanol. Seeds were allowed to dry in the clean bench until complete dryness and the 

process was repeated a second time. 

5.2.1.4. Sterile culture on solid medium 

For growth under sterile conditions, seeds were surface sterilized and placed on squared Petri 

dishes (120 mm x 120 mm x 17 mm Greiner bio-one Germany) containing 50 ml 0.5 x MS 

medium (1.5% sucrose, 0.5% (w/v) Gelrite). Plates were wrapped with parafilm and kept for 

2 days at 4°C for stratification before being transferred into a growth chamber in a vertical 

orientation.  
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5.2.1.5. Hydroponic culture  

For analysis of root material seeds where surface sterilized and grown on plates with ½ MS 

medium (1% sucrose, 0.25% Gelrite). Seedlings were transplanted after 7 days in a floating 

hydroponic system (Battke et al., 2003) and grown for 10 days in Vitro Vent boxes containing 

the same medium as described before except with Gelrite. Each box contained 9 plants, 300 

ml medium and 250 ml polypropylene (PP) granulate as the floating material. 

5.2.1.6. Production and/or characterization of transgenic lines 

After obtaining the T-DNA insertion lines (see 5.1.1 for more information) the position of the 

T-DNA insert was confirmed by PCR and DNA sequencing. Primers used were 

76B1_ORF_r / Sail_L and 76B1_f_620 / Ds5-2mod for SAIL_1171A11 and GT_5_11976 

lines and 87A2_r810 / GABI_LB1 and 87A2_r810 / LBa1mod for GABI_686D07 and 

SALK_ 124038 insertion lines respectively (see Table 6). Lines were then backcrossed once 

with their respective parental wild-type line and self-pollinated. Homozygous plants were 

identified by PCR, by amplification of the mutant allele using the same primers used for PCR 

and sequencing and by the absence of amplification of the wild-type allele using gene specific 

primers 76B1_f_620 and 76B1_ORF_r for UGT76B1 and 87A2_F-20 and 87A2_R1670 for 

UGT87A2 (see Table 6). Lack of the functional transcript in both knockout lines was 

confirmed by RT-PCR using the same gene specific primers. 

Overexpression lines were produced by Agrobacterium-mediated transformation (see 5.2.2.3) 

using two different plasmid constructs pB2GW7 and pAlligator2 carrying the ORF coupled to 

a CaMV 35S-derived promoter (Clough and Bent, 1998; Karimi et al., 2002; Bensmihen et 

al., 2004). The primers used for UGT amplification and cloning using GatewayTM (Invitrogen, 

Germany) recombination are shown in Table 7. After selection of transformants, segregation 

analysis was used for identification of single insertion lines in the T2 generation. Selection 

was carried out either by a visible marker using seed coat specifically expressed GFP 

(pAlligator2) or by resistance to the herbicide BastaTM (pB2GW7).  Seven independent and 

homozygous single insertion lines were selected for each vector for further molecular 

characterization. 
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5.2.1.7. Backcrossing, seed harvesting and storage 

 

The aim of backcrossing is to to get rid of other unwanted T-DNA-induced mutations in the 

knockout mutants. 

For backcrossing, plants were grown under long light conditions until mature flowers were 

present. Two to three inflorescences were chosen and all the flowers that were too young (too 

small), the ones that already showed white petals (opening flowers will tend to have started 

self-fertilization) as well as all other plant parts in the immediate vicinity were removed to 

create a free work environment. To prepare the recipient flower (ovary), all the flower parts 

except the pistil were removed carefully without touching the stigma or style (it is easily 

damaged). The pollen was obtained from mature flowers from the donor plant. Suitable 

anthers from a mature flower were dabbed onto the stigma of the emasculated plant. This step 

was repeated at least twice to ensure proper pollination. When the cross was successful, 

obvious elongation became visible after 1-2 days to generate a silique. Each pollinated 

inflorescence was labeled accordingly, ovaries were allowed to develop, and seeds were 

harvested once siliques were dry. If several crosses were done in a row, forceps were cleaned 

by dipping them in 95% ethanol (v/v) followed by rinsing with distilled water. 

Harvested seeds were transferred to seed packets and allowed to dry for one week in a 

desiccator before being stored at room temperature. 

5.2.1.8. Dark-induced senescence 

Excised leaves from five-week-old plants grown under short day photoperiodic conditions 

were floated with the abaxial side up in a petri dish with deionized water and kept for five 

days in the dark at room temperature (Oh et al., 1996). 

5.2.1.9. Plant wounding experiment 

For gene induction analysis and amino acid determination after wounding, leaves were 

crushed two times across the mid-rip with a hemostat (Koo et al., 2009). For amino acid 

determination, wounded leaves were harvested 1 h after wounding and immediately frozen in 

liquid nitrogen. 
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5.2.2. Microbiological methods 

5.2.2.1. Preparation of competent cells 

5.2.2.1.1. Competent E. coli 

A single colony of bacteria was inoculated into 2.5 ml of Rich Broth medium (RB) and 

cultivated overnight at 37°C and 250 rpm. The culture was then subcultured in 250 ml RB 

medium containing 20 mM MgSO4 and grown until an OD590 of 0.4 to 0.6. 

The suspension was centrifuged at 5000 rpm for 5 min at 4°C. The supernatant was discarded 

and the bacterial pellet resuspended carefully in 100 ml of ice-cold TFB1 and kept on ice for 

5 min. The bacterial suspension was then centrifuged again and the new pellet was 

resuspended gently in 10 ml cold TFB2. After 15-60 min incubation on ice, 100 µl were 

aliquoted in ice-cold Eppendorf tubes, immediately frozen in liquid nitrogen and stored at 

-80°C. The expected transformation efficiency should be around 106 cfu/μg plasmid DNA. 

 

TFB1: 30 mM KOAc (potassium acetate) 

 100 mM RbCl 

 10 mM CaCl2 

 50 mM MnCl2 

 15% glycerol 

 pH adjusted to 5.8 with acetic acid 

 

TFB2: 10 mM MOPS 

 75 mM CaCl2 

 10 mM RbCl 

 15% glycerol 

 pH Adjusted to 6.5 with KOH 

 

Both solutions were filter sterilized using 0.45 µm filter (Millipore Germany) and aliquoted 

(50 µl) for single use. 
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5.2.2.1.2. Competent Agrobacterium tumefaciens 

300 ml LB medium containing appropriate antibiotics were inoculated with 2 ml preculture 

(overnight, from single colony) and grown at 28°C until OD600 0.5-0.7. After 30 min cooling 

on ice, the culture was centrifuged at 4°C and 400 rpm for 20 min. After complete removal of 

the media, the pellet was resuspended in 125 ml ice cold water and incubated on ice for 30 

min. The resuspension and centrifugation procedure was repeated with a subsequent 

incubation on ice for 60 min. After a last centrifugation, the bacterial pellet was resuspendet 

in 3 ml of ice-cold glycerol (15%), aliquoted in 50 µl portions, immediately frozen in liquid 

nitrogen and stored at -80°C. 

5.2.2.2. Transformation of competent cells 

5.2.2.2.1. Heat shock transformation of E. coli 

Fifty µl competent E. coli cells were thawed on ice, mixed with approximately 100 ng 

plasmid DNA and incubated for 15 min on ice. Incorporation of the plasmid DNA was 

achieved by a 40 sec heat shock at 42°C (water bath) after which cells were incubated on ice 

for 5 minutes. After addition of 1 ml LB medium without antibiotics, cells were incubated 1 h 

at 37°C in order to allow expression of the antibiotic resistance. Cells were then centrifuged 

and plated on selective LB medium. 

5.2.2.2.2. Electroporation of competent Agrobacterium tumefaciens cells 

For plant transformation, plasmid DNA was transformed to Agrobacterium tumefaciens strain 

GV3101 containing an appropriate helper Ti plasmid (pMP90) by electroporation. For this 

purpose, the plasmid DNA was precipitated, washed and dissolved in water (low 

concentration of TE or ½ Quiagen elution buffer also works). Fifty µl electrocompetent cells 

were thawed on ice and mixed with approximately 20 ng of plasmid DNA (in not more than 1 

µl Volume). The mixture was then transferred to a dry, pre-chilled 0.1 cm electroporation 

cuvette. The electroporation was carried out as recommended for E. coli by the 

electroporator’s manufacturer with slight modifications: 
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Capacitance 25 µF 

Voltage 1.25 kV 

Resistance 400 Ω 

 

After pulsing the time constant should be larger than 9.1 (optimal would be 9.4 to 9.6) to give 

a relevant number of transformants. A control without plasmid DNA was always done in 

parallel. Immediately after the pulse, 1 ml of SOC medium (without antibiotics) was added to 

the cuvette, gently resuspended and transferred to a 15 ml culture tube. The cuvette was 

washed with another 1 ml SOC and cells were then incubated at room temperature for 60-90 

min with gentle agitation. After collecting the cells by gently centrifuging at 5000 rpm for 2-3 

min, a part of the supernatant was discarded and the cells were resuspended by gentle 

pipetting in the remaining supernatant. 1/4 of total cells were spread onto an LB agar plate 

with appropriate antibiotic selection (Rifampicin and Gentamicin for agrobacteria and 

appropriate antibiotic for T-DNA vector) and incubated at 28°C for 2 to 3 days. 

5.2.2.3. Agrobacterium tumefaciens mediated plant transformation  

The floral dip procedure (Clough and Bent, 1998) was used for transformation of Arabidopsis 

thaliana. Arabidopsis plants were grown in a long day light period (16 h, 22°C) in big pots to 

flowering stage (fertilized). Primary formed bolts were cut to induce the formation of several 

secondary bolts. Siliques and open flowers were also eliminated before transformation to 

increase the transformation rate. A single colony of Agrobacterium tumefaciens strain 

GV3101 carrying the construct of interest was used for a 2 ml preculture (overnight, 28°C, 

220 rpm). On the next day the agrobacteria were diluted 1:300 in 300 ml LB and appropriate 

antibiotics (Rifampicin and Gentamicin for agrobacteria and an appropriate antibiotic for the 

T-DNA vector) and grown overnight (170 rpm) until stationary phase (OD600 1.5-1.6). Cells 

were harvested by 10 min centrifugation at 4°C and 5500g and the pellet was resuspended in 

1 ml infiltration medium and diluted in the same medium to a final OD600 of approximately 

0.8. 

The suspension was then transferred to a beaker and plant inflorescences were dipped for 

several seconds into it. Care was taken to avoid contact of leaves and soil with the bacterial 

suspension. Dipped plants were allowed to dry, covered with a transparent plastic bag to 

maintain humidity and kept in a low light location for one day. Plants were then returned to 

the growth chamber, fertilized and grown until seed harvest. 
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Infiltration medium:  5% sucrose 

 0.05% Silwet L-77 

 

The first generation of seeds (T0) was collected and transformants were selected either by 

GFP fluorescence of the seeds (pAlligator2) before sawing or BastaTM (pB2GW7 or 

pBGWFS7) resistance one week after sowing on soil. 

5.2.2.4. Bacterial infection and determination of bacterial growth in plants 

Bacteria were streaked out from a –80°C glycerol stock onto a plate of King’s medium with 

appropriate antibiotics and grown for 1 or 2 days at 28°C. Bacteria from the fresh streak were 

then transferred to a liquid King's B culture with appropriate antibiotics and grown overnight 

with shaking at 28°C. When they reached mid to late log phase growth (OD600=0.6 to 1.0), 

bacteria were diluted to the desired concentration with 10 mM MgCl2 for plant inoculation 

(OD600=0.2 corresponds to approximately 108 cfu ml-1). Plants were grown as described in 

5.2.1.1 and covered with a plastic dome 14 h before inoculation to maintain humidity and 

induce opening of the stomata. Whole leaves of 5- to 6-week-old plants were infiltrated (from 

the abaxial side) using a 1-ml syringe without a needle. Complete infiltration could be 

visualized by apparent water-soaking of the leaf. 4 leaves were infiltrated from each plant. 

Inoculated plants were covered for one more day to maintain high humidity. Leaf discs from 

control treated and infected plants were harvested at 0 d, 1 d and 3 d after infiltration. 2 leaf 

discs were cut out per each leaf using a 1.5 ml Eppendorf tube. The bacterial growth was 

assessed as described by Katagiri et al. (2002) without leaf sterilization. For each time point 

three samples were prepared by pooling six leaf discs from 3 different treated plants. 

5.2.3. Nucleic acid isolation 

5.2.3.1. CTAB DNA mini preparation from plant tissue 

For quick preparation of genomic DNA (e.g. for genotyping) a small, young plant leaf was 

squeezed with small pistil (e.g. flamed blue tip) in a 1.5 ml Eppendorf tube. After addition of 

250 µl 2x CTAB buffer, the tube was vortexed briefly and placed in a 65°C water bath for at 

least 10 min (up to two hours). 200 µl of chloroform-isoamylalcohol (24:1) were than added, 

the tube vortexed vigorously and thoroughly and subsequently centrifuged at full speed for 2 
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min in a table-top centrifuge. The upper aqueous phase was transferred (care was taken not to 

touch the interface) into a new Eppendorf tube containing 1 µl of 1% linear polyacrylamide. 

For DNA precipitation, 3 volumes of absolute Ethanol p.a were added. The tube was mixed 

and left at -20°C for 20 min or longer for precipitation of the DNA. This step was followed by 

a 10 min centrifugation at 4°C and full speed in a table-top centrifuge. The DNA pellet was 

then washed once with 70% Ethanol p.a., allowed to dry on the bench or using a Speed-Vac 

and dissolved in 100 µl TE buffer. One µl was used for subsequent analyses (e.g. PCR). 

 

2x CTAB Buffer 1.4 M NaCl 

 100 mM Tris-HCl. pH 8.0 

 2% (w/v) CTAB 

 20 mM EDTA. pH 8.0 

 1% (w/v) polyvinylpyrrolidone 

Mr 40.000 (Sigma PVP-40 or P-0930) 

 

5.2.3.2. Plasmid DNA preparation 

Plasmid DNA from E. coli was isolated using the QIAprep Spin Miniprep Kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. This procedure is based on 

alkaline lysis of bacterial cells followed by adsorption of the DNA onto a silica membrane in 

the presence of high salt-binding conditions. Up to 20 µg of high copy plasmid DNA could be 

obtained from 1 to 5 ml overnight cultures of bacteria in LB medium. 

For isolation of plasmid DNA of Agrobacterium, the same procedure was used, but 5 

independent DNA preps were prepared and eluted in 50 µl total volume to enhance plasmid 

yield. 

5.2.3.3. RNA extraction 

5.2.3.3.1. Isolation of total RNA for RT-PCR 

Total RNA extraction for RT-PCR was performed using a protocol suitable to isolate high 

quality RNA from a wide range of tissues without the use of toxic and expensive chemicals 

(Chang S, 1993). Plant material was disrupted with a dismembrator under liquid nitrogen. 500 
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µl CTAB buffer (prewarmed to 65°C) was added to 50-100 mg ground tissue and samples 

were homogenized by quick vortexing. Total RNA was extracted with an equal volume of 

chloroform:isoamyl alcohol and phase separation was achieved by centrifugation, 5 minutes 

at 10.000 rpm. The extraction was repeated once to increase RNA purity. The supernatant was 

then transferred to an Eppendorf tube and total RNA precipitated overnight at 4°C by addition 

of 1/4 volume of 10 M Lithium chloride. The RNA was then harvested by 20 min 

centrifugation at 14 000 rpm and 4° C and the pellet resuspended in 500 µl of SSTE buffer 

and dissolved at room temperature for 2 h with agitation. After another extraction with 500 µl 

chloroform/isoamylalcohol (24:1), the supernatant was transferred to a fresh Eppendorf tube 

and precipitated with 1/10 volume of 3 M Sodium-Acetate (NaOAc, pH 5.2) and 1 volume of 

isopropanol for 20 min at -20°C. RNA was then collected again by centrifugation and washed 

with 70% Ethanol. After drying for 5 min at 37°C, the pellet was resuspended in 500 µl TM 

buffer. Any traces of DNA were removed by addition of 1 µl DNase and incubation at 37° C 

for 15 min. DNAse was then extracted with 500 µl chloroform/isoamylalcohol (24:1) and 

RNA precipitated by addition of 1/10 Volume of 3 M Sodium-Acetate (pH 5.2) and 1 volume 

of isopropanol and incubation for 30 min at -20° C. After centrifugation and washing with 

75% ethanol as mentioned above, the pellet was allowed to dry and resuspended in 20 µl 

DEPC-treated sterile water. 

Quality and concentration of the RNA samples were assessed by measuring the absorption at 

260 nm in a spectrophotometer and RNA integrity was analyzed in a 1% agarose gel 

electrophoresis (5.2.3.4 and 5.2.4.2). 

 

All buffers and solutions were prepared with DEPC treated sterile water and RNase free tubes 

and tips were used for all procedures. 

 

CTAB RNA Extraction buffer 2% CTAB 

 2% PVP-40 

 100 mM Tris/HCl pH 8.0 

 25 mM EDTA 

 2 M  NaCl 

 0.5 g/l Spermidine 

added just before use: 2% beta-mercaptoethanol 
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SSTE Buffer 1 M NaCl 

 0.5% SDS 

 10 mM Tris/HCl pH 8.0 

 1 mM EDTA 

 

 

TM Buffer  40 mM  Tris/HCl pH 7.5 

 6 mM MgCl2 

 

5.2.3.3.2. Isolation of total RNA using Qiagen RNeasy Plant Mini Kit 

For RT-qPCR experiments, total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany). Plant material was disrupted with a dismembrator and 30-100 mg were 

used for RNA extraction according to the manufacturer’s instructions. DNAse treatment was 

performed on the column as recommended. 

5.2.3.4. Determination of nucleic acids concentration 

DNA and RNA concentrations were determined measuring the absorption at 260 nm and 

280 nm using the Nanodrop ND-1000 spectrophotometer (Kisker-biotech, Germany). Water 

or buffer was used to zero the spectrophotometer and a volume of 1.5 µl was used for each 

measurement. The A260/A280 ratio was used to assess the purity of total DNA or RNA and to 

detect the presence of protein, phenolics or other contaminants that absorb at or near 280nm. 

A ratio of approximately 1.8 or 2.0 is generally accepted for pure DNA and RNA, 

respectively. The A260/230 ratio is a second purity measure, which should commonly be in the 

range of 2.0-2.2. An appreciably lower ratio may indicate the presence of contaminants 

absorbing at 230 nm. 
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5.2.4. Molecular biology methods 

5.2.4.1. PCR (Polymerase Chain Reaction) 

Polymerase chain reaction (PCR) is a method that allows exponential amplification of short 

DNA sequences within a longer double stranded DNA molecule in vitro. This is achieved 

through repeated cycles of denaturation (melting double stranded DNA) at high temperature, 

primer annealing (temperature depends on the primer sequence) and elongation (72°C, 

polymerase adds dNTPs from 5’ to 3’, reading the template from 3’ to 5’ end). The annealing 

temperature depends on the length and base pair composition of the primers used for 

amplification and is one of the most important parameters that needs adjustment in the PCR 

reaction. Moreover, the flexibility of this parameter allows optimization of the reaction in the 

presence of variable amounts of other ingredients (especially template DNA). 
 

The PCR mix was prepared as followed: 

1 μl genomic DNA (CTAB preparation) or 

20 ng plasmid DNA 

Template DNA 

2 μl 10X reaction buffer 

0.2 μl 20 mM dNTPs 

1 μl 10 μM forward primer 

1 μl 10 μM reverse primer 

0.1 μl (5 U/ μl) Taq polymerase 

 (Agrobiogen, 6805-P) 

to an end volume of 20 μl Sterile ddH2O 
 

PCR reaction was performed in an automated Multicycler PTC-200 (Biozym, Germany) as 

followed: 

95°C 2 min 1 cycle 

95°C (denaturation) 30 sec  

X°C (annealing) 30 sec 30-40 cycles 

72°C (extension) 1 min/1kb  

72°C   5 min 1 cycle 

Cool down to 4°C ∞  
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Resulting PCR products were separated and visualized on agarose gel (5.2.4.2). 

5.2.4.2. Separation and visualization of nucleic acids on agarose gel 

electrophoresis 

Nucleic acids were separated on 0.5-2% (depending on their size) agarose gels (in 1x TAE 

buffer) containing 0.5 μg/ml ethidium bromide. Samples were mixed with 5X DNA loading 

buffer and separated on the gel in parallel to an appropriate standard size marker. Gels were 

run at 5-10 V/cm for up to 1 h. DNA fragments were visualized under UV light and recorded 

with Bio-Rad Gel Doc 2000 (Bio-Rad, Munich, Germany). 

 

Loading buffer 36% Glycerin 

 1x TAE 

 2.5 mg/ml Orange G  

 in ddH2O 

 

5.2.4.3. Purification of PCR product and DNA gel extraction 

Before sequencing, DNA fragments were purified from primers, nucleotides, polymerase and 

salts from previous enzymatic reactions. Purification was performed with the QIAquick® 

PCR Purification Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions. 

 

To purify target DNA fragments from unspecific fragments out of standard or low melting 

agarose (e.g. after restriction), the corresponding DNA bands were cut out of the gel with a 

scalpel and transferred into a sterile Eppendorf tube. The isolation procedure was performed 

with the Qiaquick® Gel Extraction Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s manual. 

5.2.4.4. DNA sequencing 

PCR-amplified sequences from T-DNA insertion lines or plasmid DNA from cloned vectors 

were purified as described in methods 5.2.3.2 and 5.2.4.3, prepared according to the 

manufacturer’s instructions and processed by Eurofins MWG GmbH (Ebersberg, Germany). 
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5.2.4.5. Digestion by restriction endonucleases and ligation 

Restriction digests were performed with restriction enzymes from New England Biolabs 

(Frankfurt am Main, Germany), using the appropriate buffer and temperature as 

recommended by the manufacturer. Digest contained about 0.5 μg plasmid DNA or PCR 

products, 1X reaction buffer and approx. 5 units of restriction endonuclease(s); ddH2O was 

added to a final volume of 20 μl. The mixture was incubated at 37°C for about 2-4 h in a 

thermoblock or waterbath. Afterwards the enzymes were deactivated for 10 min at 65°C and 

fragment sizes were checked by agarose gel electrophoresis. For cloning the digestion mix 

was directly loaded on an agarose gel electrophoresis (5.2.4.2) without prior enzyme 

inactivation and purified as described in 5.2.4.3. 

Ligation of restricted DNA fragments was performed using T4 ligase (Fermentas 5 U/µl) 

overnight at 16°C followed by enzyme inactivation for 10 min at 65°C. The optimal molar 

ratio for the ligation reaction is 3:1 (insert:vector). 

5.2.4.6. Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

To confirm lack of the corresponding transcript in the knockout lines and to quantify 

transcript amounts of several marker genes, RNA was prepared as described above and used 

for cDNA synthesis. 0.5-1 µg of total RNA was reverse transcribed using the SuperScript II 

First Strand synthesis system of the reverse transcription-PCR kit (Invitrogen) according to 

the manufacturer’s instructions. For each sample a negative RT reaction without enzyme 

(-RT) was prepared to check afterwards for contaminations with genomic DNA. 
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Reactions were prepared as follows: 

1 μg total RNA 

1X 5X first-strand-synthesis buffer (Invitrogen, Germany) 

1 mM dNTP Mix (MBI Fermentas, Germany) 

0.01 M DTT 

40 units RNase Inhibitor (MBI Fermentas, Germany) 

0.34 µl oligo (dT)15  (Promega), 0.5µg/µl 

to a final volume of 20 μL DEPC-treated water 

 

After 10 min incubation at room temperature, 1 μl Reverse transcriptase Superscript II 

(diluted 1:1 in 1X first-strand synthesis buffer, 67 U; Invitrogen, Germany) was added to the 

positive reactions (+RT). 

 

The cDNA was then synthesized as follows in a Multicycler PTC-200 (Biozym, Germany): 

42°C 30 min 

50°C 40 min 

95°C 5 min 

cool down to 4°C ∞ 

 

A PCR reaction with TUBULIN primers (Table 6) was then performed in a Multicycler PTC-

200 (Biozym, Germany) using 1 µl cDNA to make sure that the RT-PCR was successful and 

to check the –RT control for contamination with genomic DNA. Polymerized fragments were 

then separated and visualized on agarose gel (5.2.4.2). A successful RNA isolation and cDNA 

synthesis yielded a positive band for the +RT reaction and no band in the negative control 

(-RT). 

5.2.4.7. Quantitative real time polymerase chain reaction (qRT-PCR) 

Plant material of the indicated organ and age was collected. Total RNA was isolated as 

described in 5.2.3.3.2; cDNA prepared as described in 5.2.4.7 and diluted 1:15 with HPLC 

grade water (Merck). 

Gene-specific primer pairs were designed using the Primer Express 3.0 software, trying to get 

intron spanning primers and an approximate amplicon of 150 bp. Primer pairs are listed in 
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Table 9. All primer pairs were checked for amplification specificity and an efficiency superior 

to 80% using a serial cDNA dilution. Real time quantification was performed using a 7500 

real time PCR system (Applied Biosystems, Germany). 

 

Individual PCR reaction mixtures contained the following: 

4 µl diluted cDNA 

0.5 µl 10 µM forward primer 

0.5 µl 10 µM reverse primer 

5 µl HPLC water 

10 µl 2 X Sybr Green Mastermix (Thermo Scientific) 

 

And the RT-qPCR program used was: 

95°C 15 min 1 cycle for enzyme activation 

95°C  15 sec 

55°C  35 sec 

72°C  45 sec 

 

40 cycles 

95°C   15 sec 

60°C 1 min 

95°C 15 sec 

 

1 cycle,  dissociation stage 

 

The amount of target gene was normalized over the abundance of the constitutive UBQ5 

(At3g62250) and S16 (At5g18380, At2g09990) genes. The stability of the reference genes 

was tested and normalization was performed using GeNorm (Vandesompele et al., 2002). 

For molecular analysis of the overexpression lines one biological and two technical (PCR) 

replicates were performed and the results confirmed in the subsequent generation. In all other 

experiments three biological replicates of each sample and two technical (PCR) replicates 

were performed.  

For RT-qPCR of infected material, plants were infected as described in 5.2.2.4. Three 

biological replicates were analyzed; each consisting of six individually infected leaves. Plant 

material was harvested before infection and mock treatments (time point 0) and at the 

indicated time points after treatment. Each experiment was repeated with similar results. 

For marker gene analysis on uninfected material and senescent leaves, methods for paired or 

grouped data were applied for statistical analysis, namely the paired t-test and repeated-
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measurements ANOVA (linear mixed-effects models), in order to check for interplate 

variation (each replicate was measured on a different qPCR plate). Two-way ANOVA was 

used to join results from two independent analyses (three replicates each). First a model with 

interaction was fitted. If the interaction effect was significant, one-way ANOVAs were 

performed for the single experiments; otherwise a two-way ANOVA without interaction 

effect was fitted. All analyses (p-value, arithmetic mean) were performed on log10-

transformed data as recommended in literature (Rieu and Powers, 2009). For all calculations, 

the R software with the nlme package was used (Pinheiro et al., 2009; R-Development-Core-

Team, 2009). 

 

5.2.4.8. Molecular cloning of artificial microRNA using the GatewayTM 

recombination technology 

5.2.4.8.1. Design of artificial micro RNAs 

For cloning of UGT87A1 microRNAs, amiRNA candidate sequences were designed with the 

artificial microRNA designer WMD2 (Ossowski et al., 2008), 

http://wmd2.weigelworld.org/cgi-bin/mirnatools.pl), using default settings and the AGI 

At2g30150 to target UGT87A1. To check the mRNA conformation of the target region, a 

publicly accessible RNAfold web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) was 

used to predict the secondary structure of UGT87A1 mRNA. 

Two amiRNA sequences were designed to specifically silence UGT87A1 targeting different 

regions of the target gene. No potential off targets were reported by the WMD2 program for 

the two selected amiRNAs. Selection of correct target sides was based on several selection 

criteria as described in the protocol. Further, amiRNA targets were selected preferentially, the 

target region of which laid in a somewhat open secondary structure conformation to facilitate 

the access of the miRNA to its target sequence. 

5.2.4.8.2. Cloning of amiRNA 

Artificial microRNAs were cloned according to the protocol available at 

http://wmd2.weigelworld.org/cgi-bin/mirnatools.pl (Schwab et al., 2006). 

The plasmid pRS300 (courtesy of Regina Schwab, MPI Tübingen), containing the miR319a 

precursor in pBSK (cloned via SmaI site), was used as a template for the following PCRs. The 
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artificial microRNA designer WMD2 delivered 4 specific oligonucleotide sequences (I to IV, 

Table 10) for each selected miRNA which were used to clone the artificial microRNA into the 

endogenous miR319a precursor by site-directed mutagenesis. Additionally two more 

oligonucleotides A and B were used for cloning. They were based on the template plasmid 

sequence and located outside of the multiple cloning site of pBSK to generate bigger PCR 

products. The amiRNA containing precursor was generated by overlapping PCR using the 

iProof High-Fidelity Taq polymerase (Bio-Rad) and 1x Iproof HF buffer. A first round 

amplified fragments (a) to (c) which are listed in Table 11. These were subsequently fused in 

PCR (d). PCRs were performed as described in the cloning protocol for Arabidopsis 

downloaded from the microRNA designer WMD2 website. For more details see Schwab et al. 

(2006). 

 

Table 11. PCR reactions performed for amiRNA cloning. 

 

 

 

 

 

 

 

PCR fragments were purified as described in 5.2.4.3. and eluted in 15 µl double distilled 

water. AmiRNA precursor fragments were cloned into GatewayTM vector pENTR1A using 

restriction enzymes EcoRI and NotI and transformed into E. coli DH5α. Transformed cells 

were selected on kanamycin and insertion of the fragment confirmed by plasmid preparation 

and restriction analysis (EcoRI/NotI). The integrity of the insert was confirmed by sequencing 

according to 5.2.4.4 using primer pENTattL2rev (Eurofins).  

The new vector carrying the insert was then used for GatewayTM recombination (LR reaction) 

according to the manufactures instructions to transfer the insert into the final destination 

vector (pAlligator). Using heat shock, the new plasmid was again used to transform E. coli, 

amplified, purified, and the recombination confirmed using restriction analysis with EcoRI. 

As destination vectors such as pAlligator are binary vectors, the new plasmid could directly 

be used to transform Agrobacterium tumefaciens (5.2.2.2.2), which was then used for plant 

transformation using the floral dip method (5.2.2.3). To get ugt87a2 and ugt87a1 double 

knockouts, the amiRNA constructs were transformed into ugt87a2-1 lines. 

PCR forward oligo reverse oligo template 

(a) A IV pRS300 

(b) III II pRS300 

(c) I B pRS300 

(d) A B (a) + (b) + (c) 
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5.2.5. Protein methods 

5.2.5.1. GST tagged protein expression and purification 

The open reading frame of the corresponding UGT was amplified using the same primers as 

for the construction of the over-expression lines (Table 7). The glutathione-S-transferase 

(GST)–UGT expression plasmid was constructed using the pDEST15 expression vector and 

transformed into E. coli strain BL21 (DE3). Bacteria were grown in 100 ml at 37°C to an 

OD600 of 0.4, cooled on ice and induced with 0,5 mM IPTG (Isopropyl β-D-1-

thiogalactopyranoside, stock solution 0,1M). After 6 h growth at 30°C (alternatively they can 

be grown at 20°C overnight), cells were pelleted and the recombinant protein was affinity-

purified using glutathione-coupled sepharose beads according to the manufacturer’s 

instructions (GE Healthcare). The eluted fusion proteins were concentrated by membrane 

filtration (Amicon Ultra-4; Millipore) and supplemented with 20% glycerol for storage at 

-20°C (Messner et al., 2003). 

5.2.5.2. In vitro analysis of the recombinant protein 

To analyze the UGT enzyme activity assay mixtures contained 0.1 M Tris–HCl (pH 7.5), 5 

mM UDP-glucose, 0.5 mM aglycon and about 1 µg GST-UGT fusion protein in a final 

volume of 50 µl. After incubation for 1 hour at 30°C the reaction was stopped by addition of 

200 µl methanol and cleared by centrifugation (15,000 g, 2 min). Reactions were diluted 1:50 

in 70% methanol and analyzed on an API4000 mass spectrometer using direct injection into 

the electrospray source at a flow rate of 30 µl min-1. 150 scans were accumulated for each 

measurement in dual ion monitoring mode, which was adjusted to monitor ions at nominal 

m/z ratios of the substrate and expected product with a mass range of ± 5 Da. 

5.2.6. Histochemical localization of gene expression 

Genomic fragments upstream of the start codon were amplified from genomic DNA 

(accession Columbia) by PCR using the following primer pairs; UGT76B1pro_GW_f and 

UGT76B1pro_GW_r for UGT76B1 and UGT87A2pro_GW_f and UGT87A2pro_GW_r for 

UGT87A2. Fragments were introduced into vector pBGWFS7 (Invitrogen) using GatewayTM 

recombination. The resulting UGT promoter:GUS-GFP fusion, was then transformed into 

Col-O Arabidopsis plants using floral dip transformation (Clough and Bent, 1998). After 
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selection of transformants, segregation analysis was used for the identification of single 

insertion lines in the T2 generation. Two independent segregating lines were selected for each 

gene for further analysis. Transgenic lines were selected on the basis of BastaTM resistance. 

Histochemical analysis of the GUS reporter gene was performed at different developmental 

stages according to a protocol described by Lagarde et al. (1996), using 1 mM 

hexacyanoferrat II/III. After staining, plant material was rinsed several times in 70% ethanol 

at 80ºC, until complete destaining of chlorophyll. 

To gain more detailed information about UGT expression in roots, the same UGTpro:GUS-

GFP fusion lines were analyzed with a Confocal Laser Scanning microscope (LSM 510 

Axiovert 100 M; Carl Zeiss, Jena). For cell wall staining, 1-week-old seedlings grown on 

vertically orientated plates were immerged in 50 µg ml-1 propidium iodide (PI, Sigma, 

Germany, cat. no. P4170, in water) for 30 min, washed twice with double-distilled water and 

observed thereafter. Stainings were performed on two independent single insertion lines 

showing consistent results. 

5.2.7. Metabolic analysis 

5.2.7.1. Non-targeted metabolome analysis using FT-ICR-MS 

A wide range of analytical methods—mainly based on mass spectrometry—have been 

developed recently to separate, detect and identify the host of small molecules present in 

biological samples. The high-capacity Fourier Transform Ion Cyclotron Mass Spectrometry 

(FT-ICR-MS) is suitable for rapid and non-targeted screening of similarities and 

dissimilarities in large collections of biological samples such as plant mutant populations. 

Separation of the metabolites can be achieved solely by its ultra-high mass resolution. 

Additionally, the high mass accuracy of the instrument enables us to achieve a good 

separation of the metabolites present in complex mixtures through direct injection and to 

calculate possible elemental compositions of each ion and its precursor molecule. 

5.2.7.1.1. Metabolite extraction 

A 12 Tesla FT-ICR-MS was used to compare the metabolic profile of UGT mutant and 

overexpression lines with their respective wild type. Different extraction methods and 

measuring conditions (e.g. extract dilution and ion accumulation) were compared. 

Considering reproducibility, optimal peak intensities and possible reduction of matrix effects 
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(mutual interference of ions present in the mass spectrometer), 6 replicates (3 biological 

replicates and 2 technical replicates each) were performed for each genotype. 

Frozen root tissue was individually grounded using a dismembrator. Metabolite extraction 

was performed as described previously (Weckwerth et al., 2004) with slight modifications 

(Figure 43). Forty four µg ml-1 loganin and 3 µg ml-1 nitrophenol were added to the extraction 

buffer (methanol/chloroform/water 2.5:1:1 v/v/v) as internal standards. Two ml of a single 

phase solvent mixture of methanol/chloroform/water 2.5:1:1 v/v/v (kept at -20°C) was added 

to 100 mg plant material and mixed at 4°C for 30 min. After centrifugation (10 min, 

14.000 rpm, 4°C) 1 ml of the supernatant (supernatant A) was transferred into a fresh 

Eppendorf tube and the remaining pellet was extracted in a second step with 1 ml 

methanol/chloroform 1:1 v/v (kept at 4°C). After a second centrifugation round, 500 µl 

supernatant (supernatant B) were mixed with supernatant A. The chloroform phase was then 

separated from the water/methanol phase by adding 250 µl of HPLC grade water (4°C, 

Merck). The aqueous phase was divided into several 200 µl aliquots and dried completely 

using a SpeedVac. 

 

 

Figure 43. Metabolite extraction procedure for metabolome analysis. 
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5.2.7.1.2. FT-ICR-MS measurements 

For FT-ICR-MS analysis one dried aliquot of each sample was redissolved in 70% methanol 

and diluted 1:25 or 1:50 for roots and leaf material, respectively, in 70% methanol containing 

35 pmol ml-1 di-alanin. High-resolution mass spectra were acquired on a Bruker APEX Qe 

Fourier transform ion cyclotron resonance mass spectrometer FT-ICR-MS (Brukers, Bremen, 

Germany) equipped with a 12 Tesla superconducting magnet and an APOLLO II Electrospray 

ionization source. Measurements were performed in the negative ionization mode. Samples 

were introduced into the electrospray source at a flow rate of 120 µl/h with a nebulizer gas 

pressure of 20 psi and a drying gas pressure of 15 psi (at 200°C). Spectra were externally 

calibrated based on arginine cluster ions (10 ppm). The spectra were acquired with a time 

domain of 1 MW over a mass range between 147 and 2000 amu. Three hundred scans were 

accumulated for each spectrum. Internal mass calibration was performed using the internal 

standards (nitrophenol, loganin, dialanin) in addition to endogenous plant metabolites with 

calibration accuracy smaller than 0.01 ppm. For detailed information on compounds and 

masses used for calibration see Table 12. Internal standards were also used to detect variation 

in the extraction procedure, matrix effects and variation in the ionization efficiency in the 

Electrospray source. Mass lists were calibrated using the Data Analysis program (Bruker, 

Germany) and exported to ascii files. The signal to noise ratio for mass list extraction was set 

to 2. Mass list matrices for statistical analysis were produced using a custom-made program 

with a window width of 4 ppm (M. Frommberger, Helmholtz Zentrum München). 
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Table 12. Mass list used for internal mass calibration of each measurement. 

Compound Formula [M-H] m/z [M-H] 

Nitrophenol C6H4NO3- 138.019664 

Dialanin C6H11N2O3- 159.07752 

Glucose C6H11O6- 179.056114 

SA-Glucoside C13H15O8- 299.077244 

Dialanin Clusterion C12H23N4O6- 319.162308 

Ascorbic acid glucoside C12H17O11- 337.077639 

Sucrose C12H21O11- 341.108939 

1-O-Sinapoyl-beta-D-glucose C17H21O10- 385.114024 

Loganin C17H25O10- 389.145324 

Glucoraphanin C12H22NO10S3- 436.041135 

Neoglucobrassicin C17H21N2O10S2- 477.064308 

Glucobrassicin C16H19N2O9S2- 447.053743 

Kaempferol di-rhamnoside C27H29O14- 577.156284 

Kaempferol glucoside-rhamnoside C27H29O15- 593.151199 

Kaempferol di-glucoside-rhamnoside C33H39O20- 755.204024 

5.2.7.1.3. Reproducibility and statistical analysis 

As a general reproducibility check, the intensity of the internal standards and the sum of total 

peak intensities was monitored to detect variation in the ionization efficiency (in addition to 

internal standards). Measurements with more than 20% deviation from the mean of total 

intensities among one experiment were repeated. Detailed reproducibility check and statistical 

analysis was performed in R (R-Development-Core-Team, 2009). The R script for statistical 

analysis was written by Theresa Faus-Kessler (Helmholtz Zentrum München). First, masses 

which were detected in only two or less out of 6 measurements in both genotypes were 

deleted. Remaining zero values were replaced by 200,000 counts, the value considered as 

detection limit. Figures 43-45 show examples of statistical analysis performed in R. Pairwise 

xy-plots and a Pearson correlation analysis of all peak intensities (excluding missing values) 

were used to check extract reproducibility (correlation r² > 0.9). As shown by the single plots 

in Figure 45, high reproducibility between measurements could be achieved. As expected, 

technical replicates show higher extract reproducibilities than biological replicates. Principal 

component analysis (Figure 46) also shows no separation between different genotypes when 
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observing the first and the second principal components. This is not surprising as only few 

metabolites were found to be significantly different (in the Wilcoxon test, see results section 

3.1.10); instead it shows a high reproducibility among the different extracts. However, a clear 

separation could be observed in some cases by plotting principal component 2 and 3, the third 

component might account for the significant metabolite changes found. 

A two sample Wilcoxon rank sum test was performed for each mass separately to detect 

significant peak intensity differences between wild-type and mutant plants. Significance level 

was set to 1%. The Wilcoxon test can be used as an alternative to the paired Student's t-test 

when the population cannot be assumed to be normally distributed. However, a T-Test was 

performed in parallel (see Supplemental Table 1). Experiments were repeated twice to filter 

for reproducible metabolite variations. Mass matrices from indepent experiments were joined 

setting a mass precision of three decimal places. 

Figure 44. Pairwise xy-plots of Col-0 and ugt76b1-1 extract measurements. 

Comparison of peak intensities between two extracts. G1-G6: ugt76b1-1. C1-C6: Col-0. 
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Figure 45. Pairwise correlation analysis between extracts.  

Pearson correlation excluded zero values is used for reproducibility analysis.  
G1-G6: ugt76b1-1, G1 vs. G2, G3 vs. G4 and G5 vs. G6 are technical replicates.  
C1-C6: Col-0, C1 vs. C2, C3 vs. C4 and C5 vs. C6 are technical replicates. 
(A) Correlations between technical and biological replicates show good extract reproducibility. 
(B) Matrix of Pearson correlations between all extracts. Correlation between technical 
replicates is marked in red; correlation between biological replicates is shown in black and 
bold. 
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Figure 46. Principal component analysis of ugt76b1-1 and Col-0 metabolome analyses. 

Figure shows biplots from principal component analysis including observations and variables. 

5.2.7.1.4. Molecular formula generation and compound identification 

Putative molecular formulas were generated using the Data Analysis program (Bruker, 

Germany) or Masstrix (http://metabolomics.helmholtz-muenchen.de/masstrix2/run.cgi? 

TASK=LIST) and confirmed if possible by the 12C/13C peak ratios. Putative compounds were 

identified using several databases such as: 

- PMN (http://plantcyc.org/) 

- KEGG (http://www.genome.jp/kegg/ligand.html) 

- ChemSpider (http://www.chemspider.com/) 

- ChemIDplus Advanced (http://chem.sis.nlm.nih.gov/chemidplus/) 

- ChEBI (http://www.ebi.ac.uk/chebi/advancedSearchFT.do) 

- KNApSAcK (http://prime.psc.riken.jp/?action=metabolites_index) 

5.2.7.1.5. Fragmentation studies 

For fragmentation studies, the plant extract was partially cleaned and concentrated using a 

Strata NH2 column (3 ml, Phenomenex). Dried extracts were redissolved in 90% acetonitrile 

and loaded on the column (preconditioned with acetonitrile). Elution was performed with 

decreasing acetonitrile concentrations in 20% steps. Glucosides were accumulated in the 

fraction eluted with 20% acetonitrile. This fraction was SpeedVac dried and redissolved in 

70% methanol for further analysis. Standards were dissolved in 70% methanol and diluted to 
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50 ppm for fragmentation. For MS/MS fragmentation studies, the targeted ions were trapped 

in a first hexapole for 200 ms prior to their mass selection inside a quadrupole mass filter. 

Once isolated, the targeted ions were then accelerated and were let to collide with argon 

atoms inside a second hexapole which served as a collision cell. The second hexapole had a 

relatively high pressure of 5 x 10-3 mbar. As a result of the collisions between the accelerated 

isolated ions and argon atoms in the second hexapole, product ions were produced and they 

were forwarded to the ICR cell via a couple of accelerating and decelerating lenses. The ion 

accumulation time inside the collision cell was 500 ms. 

For those targeted ions with m/z < 200 amu, no quadrupole MS/MS fragmentation was done. 

Instead, the ions were forwarded as normal to the ICR cell and then they were isolated inside 

the cell by applying a frequency sweep to eject all ions except for those that should be 

selected for further fragmentation events. Once isolated inside the ICR cell, the targeted ions 

can then be excited in the radial plane which is perpendicular to the magnetic field lines by 

applying an on-resonance radial single shot excitation pulse with a duration of 400 µs and a 

power of 4.5 Vp-p. A pulsed valve opens at the same time for 5 ms to inject argon atoms 

inside the ICR cell for collisional induced dissociation experiments. The produced fragment 

ions are then allowed to thermalize inside the cell before accelerating them in the radial plane 

for detection. 

A suitable database to search for fragmentation patterns of several compounds is the High 

Resolution Mass Spectral Database MassBank (http://www.massbank.jp/QuickSearch.html). 

5.2.7.2. HPLC analysis  

5.2.7.2.1. Ascorbic acid and conjugates 

Ascorbic acid and its glucoside contents in plants were analyzed by a similar method as 

described previously (Tai and Gohda, 2007). 

100 mg ground plant material was extracted with 1 ml extraction buffer for 30 min at 4°C. 

The extract was then centrifuged for 10 min at 14.000 rpm and 4°C. The supernatant was 

filtered through a 0.45 µm filter to avoid clogging of the HPLC column. 

For HPLC analysis the extract was diluted 1:3 with dilution buffer and again centrifuged. 25 

µg/ml Ascorbic acid, 50 µg/ml Ascorbic acid-2-O-α-glucoside (Hayashibara Biochemical 

Laboratories, Inc., Okayama, Japan) and Goji berries (Lycium Barbarum L) were used as 
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standards. For spiking experiments, Lycium extract was added to UGT87A2-OE-19 plant 

extract at a final dilution of 1:30.  

 

HPLC conditions (HILIC): 

Column: Inertsil Diol (4.6 i.d. ×250 mm, 5 μm, GL Sciences) 

Precolumn: LUNA Hilic (4 x 3.0 mm, Phenomenex) 

Mobile phase: Isocratic 86:14 (v/v) (Acetonitrile: 66.7 mM Ammonium acetate) 

Flow rate: 0.7 ml/min 

Detection: UV 260 nm 

 

Extraction buffer: 30:70 (v/v) Acetonitrile:water 

 200 mg/ml DTT 

 

Dilution buffer: 86:14 (v/v) Acetonitrile:66.7 mM Ammonium acetate 

 50 mg/ml DTT 

 

For semi-quantification of ascorbic acid (Supplemental Figure 7) a slightly modified mobile 

phase was used, for earlier elution of ascorbic acid: 

Isocratic 85:15 (v/v) (Acetonitrile: 66.7 mM Ammonium acetate) 

5.2.7.2.2. Salicylic acid and conjugates 

Rosette leaves from four to six individual five-week-old plants (snap-frozen in liquid nitrogen 

and stored at -80°C) were pooled and used for metabolite extraction. Approximately 200 mg 

ground plant material was extracted with 3.5 ml of a 1 + 2 mixture of methanol and 2% (v/v) 

formic acid containing 25 µl o-Anisic acid (500 µg/ ml) as an internal standard. The extract 

was split into three aliquots of 3 ml, 1 ml and 2 ml for separate determination of free SA, SA 

glucosides, and SA esters, respectively. For determination of the SA conjugates, the extract 

was digested overnight with β-glucosidase (Roth, Karsruhe, Germany, cat. no. 7512.2) or with 

esterase (Sigma, Germany, cat. no. E2884). SA from undigested and digested samples was 

extracted under acidic conditions using reversed-phase sorbent cartridges (Oasis HLB 1cc, 

Waters, cat. no. WAT094225), recovered under basic conditions, and subsequently analyzed 

via HPLC. Quantification was based on SA fluorescence (excitation 305 nm/ emission 400 

nm) with o-anisic acid added as an internal standard during metabolite extraction and 
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authentic SA standards. Thus, the content in free SA, in free SA plus glucose-conjugated SA, 

and in free SA plus esterified SA could be acquired. 

5.2.7.3. Data mining of public expression data 

A complete collection of 122 UGT genes from Arabidopsis thaliana was extracted via the 

CAZY database (www.cazy.org). No AGI locus was associated with two pseudogenes listed 

(UGT85A6P and UGT90A3P); UGT89B1 (At1g73880) was not represented on the Affymetrix 

array which has been used for the expression analyses compiled in Figure 4. Among the 

residual 119 probe sets, 105 targeted individual members specifically, whereas seven did not 

discriminate two highly homologous isoforms each. Normalized microarray data for all 119 

probe sets comprising abiotic and biotic (without elicitors) stressors applied to Col-0 wild-

type seedling were downloaded from the BAR database (bbc.botany.utoronto.ca). 

For a number of treatments two or more time points had been deposited. In cases, where both 

up- and downregulations had been recorded, the difference between the total number of 

significant inductions (> 1.5 fold) and repressions (< 0.67) was calculated. A specific gene 

was assigned induced when inductions were present in at least two time points and the 

number of inductions exceeded repressions in at least two consecutive time points. In cases, 

where the number of inductions equalled repressions, genes were nevertheless assigned 

induced, if clear induction kinetics had been observed. In cases of only two experimental time 

points, induction in one instance was sufficient as long no repression had been observed in the 

second time point. For final classification, the maximal induction among different time points 

was selected for each treatment. The total number of significant stress inductions was 

separately indicated for abiotic and biotic stress cues and a mutual rank [MR = (rank abiotic x 

rank biotic)0.5, (Obayashi et al., 2009)] for both biotic and abiotic stress inductions was 

calculated for each UGT isoform to sort genes from highest to lowest combined stress 

inducibility. 

 

 

 

 

 

 

 

 



                                                                                                                                                                                                        . 

 
112 

 



                                                                                                                                                                                REFERENCES  

 
113

66..  RREEFFEERREENNCCEESS  

Achnine, L., Huhman, D.V., Farag, M.A., Sumner, L.W., Blount, J.W., and Dixon, R.A. 

(2005). Genomics-based selection and functional characterization of triterpene 

glycosyltransferases from the model legume Medicago truncatula. Plant J 41: 875-

887. 

Aga, H., Yoneyama, M., Sakai, S., and Yamamoto, I. (1991). Synthesis of 2-O-α-

glucopyranosyl L-ascorbic acid by cyclomaltodextrin glucanotransferase from 

Bacillus stearothermophilus. Agric Biol Chem 55: 1751-1756. 

Ahmed, A., Peters, N.R., Fitzgerald, M.K., Watson, J.A., Jr., Hoffmann, F.M., and 

Thorson, J.S. (2006). Colchicine glycorandomization influences cytotoxicity and 

mechanism of action. J Am Chem Soc 128: 14224-14225. 

Arrigoni, O., and De Tullio, M.C. (2002). Ascorbic acid: much more than just an 

antioxidant. Biochim Biophys Acta General Subjects 1569: 1-9. 

Bajguz, A. (2007). Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45: 95-

107. 

Balague, C., Lin, B., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., 

Pelletier, G., Gaymard, F., and Roby, D. (2003). HLM1, an essential signaling 

component in the hypersensitive response, is a member of the cyclic nucleotide-gated 

channel ion channel family. Plant Cell 15: 365-379. 

Bandu, M.L., Grubbs, T., Kater, M., and Desaire, H. (2006). Collision induced 

dissociation of alpha hydroxy acids: Evidence of an ion-neutral complex intermediate. 

Int J Mass Spectrom 251: 40-46. 

Barth, C., De Tullio, M., and Conklin, P.L. (2006). The role of ascorbic acid in the control 

of flowering time and the onset of senescence. J Exp Bot 57: 1657-1665. 

Barth, C., Moeder, W., Klessig, D.F., and Conklin, P.L. (2004). The timing of senescence 

and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant 

vitamin c-1. Plant Physiol 134: 1784-1792. 

Battke, F., Schramel, P., and Ernst, D. (2003). A novel method for in vitro culture of 

plants: Cultivation of barley in a floating hydroponic system. Plant Mol Biol Rep 21: 

405-409. 

Bell, E., Creelman, R.A., and Mullet, J.E. (1995). A chloroplast lipoxygenase is required 

for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci 

USA 92: 8675-8679. 



____________________________________________________________________________________________________ 

 
114 

Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J., and Parcy, F. (2004). Analysis 

of an activated ABI5 allele using a new selection method for transgenic Arabidopsis 

seeds. FEBS Lett 561: 127-131. 

Berger, S., Bell, E., and Mullet, J.E. (1996). Two Methyl Jasmonate-Insensitive Mutants 

Show Altered Expression of AtVsp in Response to Methyl Jasmonate and Wounding. 

Plant Physiol 111: 525-531. 

Binder, S., Knill, T., and Schuster, J. (2007). Branched-chain amino acid metabolism in 

higher plants. Physiol Plant 129: 68-78. 

Blanco, F., Salinas, P., Cecchini, N.M., Jordana, X., Van Hummelen, P., Alvarez, M.E., 

and Holuigue, L. (2009). Early genomic responses to salicylic acid in Arabidopsis. 

Plant Mol Biol 70: 79-102. 

Bolton, M.D. (2009). Primary metabolism and plant defense--fuel for the fire. Mol Plant 

Microbe Interact 22: 487-497. 

Bowles, D., Isayenkova, J., Lim, E.K., and Poppenberger, B. (2005). Glycosyltransferases: 

managers of small molecules. Curr Opin Plant Biol 8: 254-263. 

Bowles, D., Lim, E.K., Poppenberger, B., and Vaistij, F.E. (2006). Glycosyltransferases of 

lipophilic small molecules. Ann Rev Plant Biol 57: 567-597. 

Bowling, S.A., Clarke, J.D., Liu, Y., Klessig, D.F., and Dong, X. (1997). The cpr5 mutant 

of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. 

Plant Cell 9: 1573-1584. 

Bowling, S.A., Guo, A., Cao, H., Gordon, A.S., Klessig, D.F., and Dong, X. (1994). A 

mutation in Arabidopsis that leads to constitutive expression of systemic acquired 

resistance. Plant Cell 6: 1845-1857. 

Brazier-Hicks, M., and Edwards, R. (2005). Functional importance of the family 1 

glucosyltransferase UGT72B1 in the metabolism of xenobiotics in Arabidopsis 

thaliana. Plant J 42: 556-566. 

Brazier, M., Cole, D.J., and Edwards, R. (2002). O-Glucosyltransferase activities toward 

phenolic natural products and xenobiotics in wheat and herbicide-resistant and 

herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59: 149-

156. 

Brazier, M., Cole, D.J., and Edwards, R. (2003). Partial purification and characterisation of 

a 2,4,5-trichlorophenol detoxifying O-glucosyltransferase from wheat. Phytochemistry 

64: 419-424. 



                                                                                                                                                                                REFERENCES  

 
115

Brodersen, P., Petersen, M., Bjorn Nielsen, H., Zhu, S., Newman, M.A., Shokat, K.M., 

Rietz, S., Parker, J., and Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates 

salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. 

Plant J 47: 532-546. 

Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, 

J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., and Leaver, C.J. (2005). Comparative 

transcriptome analysis reveals significant differences in gene expression and 

signalling pathways between developmental and dark/starvation-induced senescence 

in Arabidopsis. Plant J 42: 567-585. 

Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1997). A classification of 

nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence 

similarities. Biochem J 326 ( Pt 3): 929-939. 

Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, 

B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource 

for Glycogenomics. Nucleic Acids Res 37: D233-D238. 

Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis 

NPR1 gene that controls systemic acquired resistance encodes a novel protein 

containing ankyrin repeats. Cell 88: 57-63. 

Casella, L., Monzani, E., Santagostini, L., de Gioia, L., Gullotti, M., Fantucci, P., 

Beringhelli, T., and Marchesini, A. (1999). Inhibitor binding studies on ascorbate 

oxidase. Coord Chem Rev 186: 619-628. 

Chang S, P.J., Cairney J (1993). A simple and efficient method for isolating RNA from pine 

trees. Plant Mol Biol Rep 11: 113-116. 

Chapple, C. (1998). Molecular-Genetic Analysis of Plant Cytochrome P450-Dependent 

Monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49: 311-343. 

Charnock, S.J., Henrissat, B., and Davies, G.J. (2001). Three-dimensional structures of 

UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. 

Plant Physiol 125: 527-531. 

Chong, J., Baltz, R., Schmitt, C., Beffa, R., Fritig, B., and Saindrenan, P. (2002). 

Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid 

glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative 

stress, and weakens virus resistance. Plant Cell 14: 1093-1107. 

Cicek, M., Blanchard, D., Bevan, D.R., and Esen, A. (2000). The aglycone specificity-

determining sites are different in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one 



____________________________________________________________________________________________________ 

 
116 

(DIMBOA)-glucosidase (maize beta-glucosidase) and dhurrinase (sorghum beta-

glucosidase). J Biol Chem 275: 20002-20011. 

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-

mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. 

Conklin, P.L., and Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in 

the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell and 

Environ 27: 959-970. 

Conklin, P.L., Norris, S.R., Wheeler, G.L., Williams, E.H., Smirnoff, N., and Last, R.L. 

(1999). Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin 

C) biosynthesis. Proc Natl Acad Sci USA 96: 4198-4203. 

Consonni, C., Humphry, M.E., Hartmann, H.A., Livaja, M., Durner, J., Westphal, L., 

Vogel, J., Lipka, V., Kemmerling, B., Schulze-Lefert, P., Somerville, S.C., and 

Panstruga, R. (2006). Conserved requirement for a plant host cell protein in powdery 

mildew pathogenesis. Nat Genet 38: 716-720. 

Cordoba-Pedregosa, M.D., Cordoba, F., Villalba, J.M., and Gonzalez-Reyes, J.A. (2003). 

Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and 

ascorbate-related enzyme activities in onion roots. Plant Physiol 131: 697-706. 

Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat Rev Mol Cell Biol 6: 850-861. 

Coutinho, P.M., Deleury, E., Davies, G.J., and Henrissat, B. (2003). An evolving 

hierarchical family classification for glycosyltransferases. J Mol Biol 328: 307-317. 

Dean, J.V., and Delaney, S.P. (2008). Metabolism of salicylic acid in wild-type, ugt74f1 and 

ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant 132: 417-

425. 

Devadas, S.K., Enyedi, A., and Raina, R. (2002). The Arabidopsis hrl1 mutation reveals 

novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell 

death and defence against pathogens. Plant J 30: 467-480. 

Diaz, C., Purdy, S., Christ, A., Morot-Gaudry, J.F., Wingler, A., and Masclaux-

Daubresse, C.L. (2005). Characterization of markers to determine the extent and 

variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant 

Physiol 138: 898-908. 

Dooner, H.K., and Nelson, O.E. (1977). Controlling element-induced alterations in 

UDPglucose:flavonoid glucosyltransferase, the enzyme specified by the bronze locus 

in maize. Proc Natl Acad Sci USA 74: 5623-5627. 



                                                                                                                                                                                REFERENCES  

 
117

Ehlting, J., Sauveplane, V., Olry, A., Ginglinger, J.F., Provart, N.J., and Werck-

Reichhart, D. (2008). An extensive (co-)expression analysis tool for the cytochrome 

P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8: 47. 

Fahey, J.W., Zalcmann, A.T., and Talalay, P. (2001). The chemical diversity and 

distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 

5-51. 

Fedoroff, N.V., Furtek, D.B., and Nelson, O.E. (1984). Cloning of the bronze locus in 

maize by a simple and generalizable procedure using the transposable controlling 

element Activator (Ac). Proc Natl Acad Sci USA 81: 3825-3829. 

Feys, B., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis Mutants 

Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to 

Methyl Jasmonate, and Resistant to a Bacterial Pathogen. Plant Cell 6: 751-759. 

Feys, B.J., Moisan, L.J., Newman, M.A., and Parker, J.E. (2001). Direct interaction 

between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. 

EMBO J 20: 5400-5411. 

Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., 

Wasternack, C., and Solano, R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the 

endogenous bioactive jasmonate. Nat Chem Biol 5: 344-350. 

Ford, C.M., Boss, P.K., and Hoj, P.B. (1998). Cloning and characterization of Vitis vinifera 

UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded 

by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in 

vivo. J Biol Chem 273: 9224-9233. 

Frick, S., and Kutchan, T.M. (1999). Molecular cloning and functional expression of O-

methyltransferases common to isoquinoline alkaloid and phenylpropanoid 

biosynthesis. Plant J 17: 329-339. 

Fridman, E., and Pichersky, E. (2005). Metabolomics, genomics, proteomics, and the 

identification of enzymes and their substrates and products. Curr Opin Plant Biol 8: 

242-248. 

Frydman, A., Weisshaus, O., Bar-Peled, M., Huhman, D.V., Sumner, L.W., Marin, F.R., 

Lewinsohn, E., Fluhr, R., Gressel, J., and Eyal, Y. (2004). Citrus fruit bitter flavors: 

isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 

rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of 

citrus. Plant J 40: 88-100. 



____________________________________________________________________________________________________ 

 
118 

Fujioka, S., and Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Ann 

Rev Plant Biol 54: 137-164. 

Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, 

K., and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a 

current view from the points of convergence in the stress signaling networks. Curr 

Opin Plant Biol 9: 436-442. 

Gachon, C., Baltz, R., and Saindrenan, P. (2004). Over-expression of a scopoletin 

glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during 

the hypersensitive response to tobacco mosaic virus but does not affect virus 

resistance. Plant Mol Biol 54: 137-146. 

Gachon, C.M.M., Langlois-Meurinne, M., and Saindrenan, P. (2005). Plant secondary 

metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 

10: 542-549. 

Genger, R.K., Jurkowski, G.I., McDowell, J.M., Lu, H., Jung, H.W., Greenberg, J.T., 

and Bent, A.F. (2008). Signaling pathways that regulate the enhanced disease 

resistance of Arabidopsis "defense, no death" mutants. Mol Plant Microbe Interact 21: 

1285-1296. 

Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., 

Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., 

Fernie, A.R., Lahaye, M., Rothan, C., and Baldet, P. (2009). GDP-D-mannose 3,5-

epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic 

cell-wall biosynthesis in tomato. Plant J 60: 499-508. 

Glauser, G., Boccard, J., Rudaz, S., and Wolfender, J.L. (2010). Mass Spectrometry-based 

Metabolomics Oriented by Correlation Analysis for Wound-induced Molecule 

Discovery: Identification of a Novel Jasmonate Glucoside. Phytochem Anal 21: 95-

101. 

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and 

necrotrophic pathogens. Ann Rev Phytopathol 43: 205-227. 

Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants 

with enhanced disease susceptibility by direct screening. Genetics 143: 973-982. 

Goggin, F.L., Avila, C.A., and Lorence, A. (2010). Vitamin C content in plants is modified 

by insects and influences susceptibility to herbivory. Bioessays 32: 777-790. 



                                                                                                                                                                                REFERENCES  

 
119

Gou, M., Su, N., Zheng, J., Huai, J., Wu, G., Zhao, J., He, J., Tang, D., Yang, S., and 

Wang, G. (2009). An F-box gene, CPR30, functions as a negative regulator of the 

defense response in Arabidopsis. Plant J 60: 757-770. 

Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death 

in plants: a pathogen-triggered response activated coordinately with multiple defense 

functions. Cell 77: 551-563. 

Gruber, A.R., Lorenz, R., Bernhart, S.H., Neubock, R., and Hofacker, I.L. (2008). The 

Vienna RNA websuite. Nucleic Acids Res 36: W70-74. 

Hancock, R.D., and Viola, R. (2005). Biosynthesis and catabolism of L-ascorbic acid in 

plants. Crit Rev Plant Sci 24: 167-188. 

Hancock, R.D., Chudek, J.A., Walker, P.G., Pont, S.D., and Viola, R. (2008). Ascorbic 

acid conjugates isolated from the phloem of Cucurbitaceae. Phytochemistry 69: 1850-

1858. 

Hanson, A.D., Pribat, A., Waller, J.C., and de Crecy-Lagard, V. (2010). 'Unknown' 

proteins and 'orphan' enzymes: the missing half of the engineering parts list - and how 

to find it. Biochem J 425: 1-11. 

Hefner, T., Arend, J., Warzecha, H., Siems, K., and Stockigt, J. (2002). Arbutin synthase, 

a novel member of the NRD1beta glycosyltransferase family, is a unique 

multifunctional enzyme converting various natural products and xenobiotics. Bioorg 

Med Chem 10: 1731-1741. 

Heidel, A.J., Clarke, J.D., Antonovics, J., and Dong, X.N. (2004). Fitness costs of 

mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. 

Genetics 168: 2197-2206. 

Heil, M., and Baldwin, I.T. (2002). Fitness costs of induced resistance: emerging 

experimental support for a slippery concept. Trends Plant Sci 7: 61-67. 

Hematy, K., Cherk, C., and Somerville, S. (2009). Host-pathogen warfare at the plant cell 

wall. Curr Op Plant Biol 12: 406-413. 

Hemavathi, Upadhyaya, C.P., Akula, N., Young, K.E., Chun, S.C., Kim, D.H., and Park, 

S.W. (2010). Enhanced ascorbic acid accumulation in transgenic potato confers 

tolerance to various abiotic stresses. Biotechnol Lett 32: 321-330. 

Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., 

Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., 

Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J., and Saito, K. (2005). 



____________________________________________________________________________________________________ 

 
120 

Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by 

integration of metabolomics and transcriptomics. J Biol Chem 280: 25590-25595. 

Hou, B., Lim, E.K., Higgins, G.S., and Bowles, D.J. (2004). N-glucosylation of cytokinins 

by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279: 47822-47832. 

Hughes J, H.M. (1994). Multiple secondary plant product UDP-glucose glucosyltransferase 

genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA sequ 5: 41-

49. 

Hugouvieux, V., Barber, C.E., and Daniels, M.J. (1998). Entry of Xanthomonas campestris 

pv. campestris into hydathodes of Arabidopsis thaliana leaves: A system for studying 

early infection events in bacterial pathogenesis. Mol Plant Microbe Interact 11: 537-

543. 

Isbell, H.S., and Frush, H.L. (1979). Oxidation of L-ascorbic acid by hydrogen peroxide: 

preparation of L-threonic acid. Carbohydr Res 72: 301-304. 

Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G., and Bowles, 

D.J. (2002). Over-expression of an Arabidopsis gene encoding a glucosyltransferase 

of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J 32: 

573-583. 

Jackson, R.G., Lim, E.K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, 

D.A., and Bowles, D.J. (2001). Identification and biochemical characterization of an 

Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276: 4350-4356. 

Jiang, K., and Feldman, L.J. (2005). Regulation of root apical meristem development. Annu 

Rev Cell Dev Biol 21: 485-509. 

Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444: 323-329. 

Jones, P., and Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: 

tranquilizers and stimulant controllers. Planta 213: 164-174. 

Jones, P., Messner, B., Nakajima, J., Schäffner, A.R., and Saito, K. (2003). UGT73C6 and 

UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in 

Arabidopsis thaliana. J Biol Chem 278: 43910-43918. 

Jones, P.R., Moller, B.L., and Hoj, P.B. (1999). The UDP-glucose : p-

hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis 

of the cyanogenic glucoside dhurrin in Sorghum bicolor - Isolation, cloning, 

heterologous expression, and substrate specificity. J Biol Chem 274: 35483-35491. 



                                                                                                                                                                                REFERENCES  

 
121

Jorgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, 

M., Bak, S., and Moller, B.L. (2005). Metabolon formation and metabolic channeling 

in the biosynthesis of plant natural products. Curr Opin Plant Biol 8: 280-291. 

Journot-Catalino, N., Somssich, I.E., Roby, D., and Kroj, T. (2006). The transcription 

factors WRKY11 and WRKY17 act as negative regulators of basal resistance in 

Arabidopsis thaliana. Plant Cell 18: 3289-3302. 

Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY((TM)) vectors for 

Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193-195. 

Karlovsky, P. (1999). Biological detoxification of fungal toxins and its use in plant breeding, 

feed and food production. Nat Toxins 7: 1-23. 

Katagiri, F., Thilmony, R., and He, S. (2002). The Arabidopsis thaliana–Pseudomonas 

syringae interaction. In The Arabidopsis Book, C.R. Somerville, Meyerowitz, E. M. 

Rockville, M.D.: Am Soc Plant Biol ed, pp. 1–35. 

Kazan, K., and Manners, J.M. (2008). Jasmonate signaling: toward an integrated view. 

Plant Physiol 146: 1459-1468. 

Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., and 

Kunkel, B.N. (2001). Resistance to Pseudomonas syringae conferred by an 

Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two 

distinct mechanisms. Plant J 26: 509-522. 

Knill, T., Schuster, J., Reichelt, M., Gershenzon, J., and Binder, S. (2008). Arabidopsis 

branched-chain aminotransferase 3 functions in both amino acid and glucosinolate 

biosynthesis. Plant Physiol 146: 1028-1039. 

Koo, A.J., Gao, X., Jones, A.D., and Howe, G.A. (2009). A rapid wound signal activates the 

systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59: 974-986. 

Koornneef, A., and Pieterse, C.M. (2008). Cross talk in defense signaling. Plant Physiol 

146: 839-844. 

Kristensen, C., Morant, M., Olsen, C.E., Ekstrom, C.T., Galbraith, D.W., Moller, B.L., 

and Bak, S. (2005). Metabolic engineering of dhurrin in transgenic Arabidopsis plants 

with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl 

Acad Sci USA 102: 1779-1784. 

Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K. (2002). Age-related resistance in 

Arabidopsis is a developmentally regulated defense response to Pseudomonas 

syringae. Plant Cell 14: 479-490. 



____________________________________________________________________________________________________ 

 
122 

Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., and 

Grignon, C. (1996). Tissue-specific expression of Arabidopsis AKT1 gene is 

consistent with a role in K+ nutrition. Plant J 9: 195-203. 

Lairson, L.L., Henrissat, B., Davies, G.J., and Withers, S.G. (2008). Glycosyltransferases: 

structures, functions, and mechanisms. Annu Rev Biochem 77: 521-555. 

Langlois-Meurinne, M., Gachon, C.M.M., and Saindrenan, P. (2005). Pathogen-

responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is 

necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant 

Physiol 139: 1890-1901. 

Lao, S.H., Loutre, C., Brazier, M., Coleman, J.O., Cole, D.J., Edwards, R., and 

Theodoulou, F.L. (2003). 3,4-Dichloroaniline is detoxified and exported via different 

pathways in Arabidopsis and soybean. Phytochemistry 63: 653-661. 

Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of 

Arabidopsis mutants implicate multiple signaling pathways in the acquisition of 

thermotolerance. Plant Physiol 138: 882-897. 

Li, J., Brader, G., and Palva, E.T. (2004). The WRKY70 transcription factor: a node of 

convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. 

Plant Cell 16: 319-331. 

Li, L., Modolo, L.V., Escamilla-Trevino, L.L., Achnine, L., Dixon, R.A., and Wang, X. 

(2007). Crystal structure of Medicago truncatula UGT85H2--insights into the 

structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 

370: 951-963. 

Li, X., Zhang, Y., Clarke, J.D., Li, Y., and Dong, X. (1999). Identification and cloning of a 

negative regulator of systemic acquired resistance, SNI1, through a screen for 

suppressors of npr1-1. Cell 98: 329-339. 

Li, Y., Baldauf, S., Lim, E.K., and Bowles, D.J. (2001). Phylogenetic analysis of the UDP-

glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276: 4338-

4343. 

Lim, E.K., and Bowles, D.J. (2004). A class of plant glycosyltransferases involved in 

cellular homeostasis. EMBO J 23: 2915-2922. 

Lim, E.K., Ashford, D.A., Hou, B.K., Jackson, R.G., and Bowles, D.J. (2004). Arabidopsis 

glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of 

diverse quercetin glucosides. Biotechnol Bioeng 87: 623-631. 



                                                                                                                                                                                REFERENCES  

 
123

Lim, E.K., Doucet, C.J., Hou, B., Jackson, R.G., Abrams, S.R., and Bowles, D.J. (2005). 

Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron-

Asym 16: 143-147. 

Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J., and Bowles, 

D.J. (2002). The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-

hydroxybenzoic acid, and other benzoates. J Biol Chem 277: 586-592. 

Lim, E.K., Baldauf, S., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Jackson, R.G., 

Taguchi, G., Ross, J., and Bowles, D.J. (2003). Evolution of substrate recognition 

across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13: 

139-145. 

Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu Rev Plant Biol 58: 

115-136. 

Linster, C.L., and Clarke, S.G. (2008). L-Ascorbate biosynthesis in higher plants: the role 

of VTC2. Trends Plant Sci 13: 567-573. 

Lorrain, S., Vailleau, F., Balaque, C., and Roby, D. (2003). Lesion mimic mutants: keys 

for deciphering cell death and defense pathways in plants? Trends Plant Sci 8: 263-

271. 

Loutre, C., Dixon, D.P., Brazier, M., Slater, M., Cole, D.J., and Edwards, R. (2003). 

Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism 

of the persistent pollutant 3,4-dichloroaniline. Plant J 34: 485-493. 

Lukowitz, W., Nickle, T.C., Meinke, D.W., Last, R.L., Conklin, P.L., and Somerville, 

C.R. (2001). Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate 

guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose 

biosynthesis. Proc Natl Acad Sci USA 98: 2262-2267. 

Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Belanger, A., 

Fournel-Gigleux, S., Green, M., Hum, D.W., Iyanagi, T., Lancet, D., Louisot, P., 

Magdalou, J., Chowdhury, J.R., Ritter, J.K., Schachter, H., Tephly, T.R., Tipton, 

K.F., and Nebert, D.W. (1997). The UDP glycosyltransferase gene superfamily: 

recommended nomenclature update based on evolutionary divergence. 

Pharmacogenetics 7: 255-269. 

Mamer, O.A., and Reimer, M.L. (1992). On the mechanisms of the formation of L-

alloisoleucine and the 2-hydroxy-3-methylvaleric acid stereoisomers from L-

isoleucine in maple syrup urine disease patients and in normal humans. J Biol Chem 

267: 22141-22147. 



____________________________________________________________________________________________________ 

 
124 

Mandai, T., Yoneyama, M., Sakai, S., Muto, N., and Yamamoto, I. (1992). The crystal 

structure and physicochemical properties of L-ascorbic acid 2-glucoside. Carbohydr 

Res 232: 197-205. 

Martin, R.C., Mok, M.C., and Mok, D.W. (1999a). A gene encoding the cytokinin enzyme 

zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol 120: 553-558. 

Martin, R.C., Mok, M.C., and Mok, D.W. (1999b). Isolation of a cytokinin gene, ZOG1, 

encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci 

USA 96: 284-289. 

Martin, R.C., Mok, M.C., Habben, J.E., and Mok, D.W. (2001). A maize cytokinin gene 

encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98: 

5922-5926. 

Masada, S., Terasaka, K., Oguchi, Y., Okazaki, S., Mizushima, T., and Mizukami, H. 

(2009). Functional and Structural Characterization of a Flavonoid Glucoside 1,6-

Glucosyltransferase from Catharanthus roseus. Plant Cell Physiol 50: 1401-1415. 

Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K., and 

Saito, K. (2009). MS/MS spectral tag-based annotation of non-targeted profile of 

plant secondary metabolites. Plant J 57: 555-577. 

Mazel, A., and Levine, A. (2002). Induction of glucosyltransferase transcription and activity 

during superoxide-dependent cell death in Arabidopsis plants. Plant Physiol Biochem 

40: 133-140. 

Meissner, D., Albert, A., Bottcher, C., Strack, D., and Milkowski, C. (2008). The role of 

UDP-glucose : hydroxycinnamate glucosyltransferases in phenylpropanoid 

metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228: 

663-674. 

Messner, B., Thulke, O., and Schäffner, A.R. (2003). Arabidopsis glucosyltransferases with 

activities toward both endogenous and xenobiotic substrates. Planta 217: 138-146. 

Miller, K.D., Guyon, V., Evans, J.N., Shuttleworth, W.A., and Taylor, L.P. (1999). 

Purification, cloning, and heterologous expression of a catalytically efficient flavonol 

3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J 

Biol Chem 274: 34011-34019. 

Mo, Y., Nagel, C., and Taylor, L.P. (1992). Biochemical complementation of chalcone 

synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci 

USA 89: 7213-7217. 



                                                                                                                                                                                REFERENCES  

 
125

Modolo, L.V., Blount, J.W., Achnine, L., Naoumkina, M.A., Wang, X.Q., and Dixon, 

R.A. (2007). A functional genomics approach to (iso)flavonoid glycosylation in the 

model legume Medicago truncatula. Plant Mol Biol 64: 499-518. 

Moehs, C.P., Allen, P.V., Friedman, M., and Belknap, W.R. (1997). Cloning and 

expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11: 

227-236. 

Mok, D.W.S., and Mok, M.C. (2001). Cytokinin metabolism and action. Annual Review of 

Plant Physiol Plant Mol Biol 52: 89-118. 

Mok, D.W.S., Martin, R.C., Shan, X., and Mok, M.C. (2000). Genes encoding zeatin O-

glycosyltransferases. Plant Growth Regul 32: 285-287. 

Mol, J., Grotewold, E., and Koes, R. (1998). How genes paint flowers and seeds. Trends 

Plant Sci 3: 212-217. 

Moraga, A., Nohales, P., Perez, J., and Gomez-Gomez, L. (2004). Glucosylation of the 

saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus 

stigmas. Planta 219: 955-966. 

Morris, K., Mackerness, S.A.H., Page, T., John, C.F., Murphy, A.M., Carr, J.P., and 

Buchanan-Wollaston, V. (2000). Salicylic acid has a role in regulating gene 

expression during leaf senescence. Plant J 23: 677-685. 

Müller-Moulé, P. (2008). An expression analysis of the ascorbate biosynthesis enzyme 

VTC2. Plant Mol Biol 68: 31-41. 

Nakamura, S., and Oku, T. (2009). Bioavailability of 2-O-alpha-D-glucopyranosyl-L-

ascorbic acid as ascorbic acid in healthy humans. Nutrition 25: 686-691. 

Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Ann 

Rev Plant Biol 56: 165-185. 

Nielsen, K.A., Tattersall, D.B., Jones, P.R., and Moller, B.L. (2008). Metabolon formation 

in dhurrin biosynthesis. Phytochemistry 69: 88-98. 

Noctor, G. (2006). Metabolic signalling in defence and stress: the central roles of soluble 

redox couples. Plant Cell Environ 29: 409-425. 

Obayashi, T., Hayashi, S., Saeki, M., Ohta, H., and Kinoshita, K. (2009). ATTED-II 

provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37: D987-

991. 

Oh, S.A., Lee, S.Y., Chung, I.K., Lee, C.H., and Nam, H.G. (1996). A senescence-

associated gene of Arabidopsis thaliana is distinctively regulated during natural and 

artificially induced leaf senescence. Plant Mol Biol 30: 739-754. 



____________________________________________________________________________________________________ 

 
126 

Ohta, D., Kanaya, S., and Suzuki, H. (2010). Application of Fourier-transform ion 

cyclotron resonance mass spectrometry to metabolic profiling and metabolite 

identification. Curr Opin Biotechnol 21: 35-44. 

Olmos, E., Kiddle, G., Pellny, T.K., Kumar, S., and Foyer, C.H. (2006). Modulation of 

plant morphology, root architecture, and cell structure by low vitamin C in 

Arabidopsis thaliana. J Exp Bot 57: 1645-1655. 

Osbourn, A.E. (2003). Saponins in cereals. Phytochemistry 62: 1-4. 

Osmani, S.A., Bak, S., Imberty, A., Olsen, C.E., and Moller, B.L. (2008). Catalytic key 

amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, 

UGT94B1: molecular modeling substantiated by site-specific mutagenesis and 

biochemical analyses. Plant Physiol 148: 1295-1308. 

Ossowski, S., Schwab, R., and Weigel, D. (2008). Gene silencing in plants using artificial 

microRNAs and other small RNAs. Plant J 53: 674-690. 

Paquette, S., Moller, B.L., and Bak, S. (2003). On the origin of family 1 plant 

glycosyltransferases. Phytochemistry 62: 399-413. 

Park, J.E., Park, J.Y., Kim, Y.S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.Y., Kim, J., 

Lee, Y.H., and Park, C.M. (2007). GH3-mediated auxin homeostasis links growth 

regulation with stress adaptation response in Arabidopsis. J Biol Chem 282: 10036-

10046. 

Pavet, V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M.E., and 

Foyer, C.H. (2005). Ascorbic acid deficiency activates cell death and disease 

resistance responses in Arabidopsis. Plant Physiol 139: 1291-1303. 

Pedras, M.S.C., Zaharia, I.L., Gai, Y., Zhou, Y., and Ward, D.E. (2001). In planta 

sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell 

death and overcoming the fungal invader. Proc Natl Acad Sci USA 98: 747-752. 

Peer, W.A. and Murphy, A.S. (2007). Flavonoids and auxin transport: modulators or 

regulators? Trends Plant Sci. 12: 556-563. 

Petersen, B.L., Chen, S., Hansen, C.H., Olsen, C.E., and Halkier, B.A. (2002). 

Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 

214: 562-571. 

Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., 

Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., 

Martienssen, R., Mattsson, O., Jensen, A.B., and Mundy, J. (2000). Arabidopsis 

map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111-1120. 



                                                                                                                                                                                REFERENCES  

 
127

Pflugmacher, S., and Sandermann, H. (1998). Taxonomic distribution of plant 

glucosyltransferases acting on xenobiotics. Phytochemistry 49: 507-511. 

Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking 

by small-molecule hormones in plant immunity. Nat Chem Biol 5: 308-316. 

Pignocchi, C., and Foyer, C.H. (2003). Apoplastic ascorbate metabolism and its role in the 

regulation of cell signalling. Curr Opin Plant Biol 6: 379-389. 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and team., t.R.C. (2009). nlme: Linear and 

Nonlinear Mixed Effects Models. R package version 3.1-94. 

Pitzschke, A., Djamei, A., Bitton, F., and Hirt, H. (2009). A major role of the MEKK1-

MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2: 120-137. 

Podebrad, F., Heil, M., Leib, S., Geier, B., Beck, T., Mosandl, A., Sewell, A.C., and 

Bohles, H. (1997). Analytical approach in diagnosis of inherited metabolic diseases: 

Maple syrup urine disease (MSUD) - Simultaneous analysis of metabolites in urine by 

enantioselective multidimensional capillary gas chromatography mass spectrometry 

(enantio-MDGC-MS). Hrc-J High Res Chrom 20: 355-362. 

Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, 

R., Kuchler, K., Glossl, J., Luschnig, C., and Adam, G. (2003). Detoxification of 

the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from 

Arabidopsis thaliana. J Biol Chem 278: 47905-47914. 

Poppenberger, B., Fujioka, S., Soeno, K., George, G.L., Vaistij, F.E., Hiranuma, S., Seto, 

H., Takatsuto, S., Adam, G., Yoshida, S., and Bowles, D. (2005). The UGT73C5 of 

Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci USA 102: 

15253-15258. 

Poulton, J.E. (1988). Localization and catabolism of cyanogenic glycosides. Ciba Found 

Symp 140: 67-91. 

Priest, D.M., Jackson, R.G., Ashford, D.A., Abrams, S.R., and Bowles, D.J. (2005). The 

use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a 

UDP-glycosyltransferase of Arabidopsis thaliana. FEBS Lett 579: 4454-4458. 

Prince, R.C., and Gunson, D.E. (1994). Just plain vanilla? Trends Biochem Sci 19: 521. 

Quirino, B.F., Normanly, J., and Amasino, R.M. (1999). Diverse range of gene activity 

during Arabidopsis thaliana leaf senescence includes pathogen-independent induction 

of defense-related genes. Plant Mol Biol 40: 267-278. 



____________________________________________________________________________________________________ 

 
128 

R-Development-Core-Team. (2009). R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-

project.org. 

Rao, T.S., Kale, N.R., and Dalvi, S.P. (1987). Kinetics and mechanism of the oxidation of 

L-ascorbic acid by 2,6-dichlorophenol-indophenol in aqueous solution. React Kinet 

Catal Lett 34: 179-184. 

Ren, C.M., Zhu, Q., Gao, B.D., Ke, S.Y., Yu, W.C., Xie, D.X., and Peng, W. (2008). 

Transcription factor WRKY70 displays important but no indispensable roles in 

jasmonate and salicylic acid signaling. J Integr Plant Biol 50: 630-637. 

Rieu, I., and Powers, S.J. (2009). Real-Time Quantitative RT-PCR: Design, Calculations, 

and Statistics. Plant Cell 21: 1031-1033. 

Ross, J., Li, Y., Lim, E., and Bowles, D.J. (2001). Higher plant glycosyltransferases. 

Genome Biol 2: REVIEWS3004. 

Rusterucci, C., Aviv, D.H., Holt, B.F., Dangl, J.L., and Parker, J.E. (2001). The disease 

resistance signaling components EDS1 and PAD4 are essential regulators of the cell 

death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13: 2211-2224. 

Saito, K., Hirai, M.Y., and Yonekura-Sakakibara, K. (2008). Decoding genes with 

coexpression networks and metabolomics - 'majority report by precogs'. Trends Plant 

Sci 13: 36-43. 

Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., 

Kuwata, C., Tsugane, T., Masuda, T., Shimada, H., Takamiya, K., Ohta, H., and 

Tabata, S. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis 

by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with 

other phytohormone signaling pathways. DNA Res 8: 153-161. 

Sawada, S., Suzuki, H., Ichimaida, F., Yamaguchi, M., Iwashita, T., Fukui, Y., Hemmi, 

H., Nishino, T., and Nakayama, T. (2005). UDP-glucuronic acid : anthocyanin 

glucuronosyltransferase from red daisy (Bellis perennis) flowers - Enzymology and 

phylogenetics of a novel glucuronosyltransferase involved in flower pigment 

biosynthesis. J Biol Chem 280: 899-906. 

Scholl, R.L., May, S.T., and Ware, D.H. (2000). Seed and molecular resources for 

Arabidopsis. Plant Physiol 124: 1477-1480. 

Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly 

specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-

1133. 



                                                                                                                                                                                REFERENCES  

 
129

Seveno, M., Seveno-Carpentier, E., Voxeur, A., Menu-Bouaouiche, L., Rihouey, C., 

Delmas, F., Chevalier, C., Driouich, A., and Lerouge, P. (2010). Characterization 

of a putative 3-deoxy-d-manno-2-octulosonic acid (Kdo) transferase gene from 

Arabidopsis thaliana. Glycobiology 20: 617-628. 

Shah, J., Kachroo, P., and Klessig, D.F. (1999). The Arabidopsis ssi1 mutation restores 

pathogenesis-related gene expression in npr1 plants and renders defensin gene 

expression salicylic acid dependent. Plant Cell 11: 191-206. 

Shao, H., He, X.Z., Achnine, L., Blount, J.W., Dixon, R.A., and Wang, X.Q. (2005). 

Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from 

Medicago truncatula. Plant Cell 17: 3141-3154. 

Silva, H., Yoshioka, K., Dooner, H.K., and Klessig, D.F. (1999). Characterization of a new 

Arabidopsis mutant exhibiting enhanced disease resistance. Mol Plant Microbe 

Interact 12: 1053-1063. 

Sinnot, M.L. (1990). Catalytic Mechanisms of Enzymic Glycosyl Transfer. Chem Rev 90: 

1171-1202. 

Smirnoff, N., Conklin, P.L., and Loewus, F.A. (2001). BIOSYNTHESIS OF ASCORBIC 

ACID IN PLANTS: A Renaissance. Ann Rev Plant Physiol Plant Mol Biol 52: 437-

467. 

Song, J.T. (2005). Biochemical characterization of an Arabidopsis glucosyltransferase with 

high activity toward jasmonic acid. J Plant Biol 48: 422-428. 

Song, J.T., Lu, H., and Greenberg, J.T. (2004). Divergent roles in Arabidopsis thaliana 

development and defense of two homologous genes, aberrant growth and death2 and 

AGD2-LIKE DEFENSE RESPONSE PROTEIN1, encoding novel aminotransferases. 

Plant Cell 16: 353-366. 

Song, J.T., Koo, Y.J., Seo, H.S., Kim, M.C., Choi, Y.D., and Kim, J.H. (2008). 

Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to 

increased susceptibility to Pseudomonas syringae. Phytochemistry 69: 1128-1134. 

Spoel, S.H., Johnson, J.S., and Dong, X. (2007). Regulation of tradeoffs between plant 

defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104: 

18842-18847. 

Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, 

M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, 

X.N., and Pieterse, C.M.J. (2003). NPR1 modulates cross-talk between salicylate- 



____________________________________________________________________________________________________ 

 
130 

and jasmonate-dependent defense pathways through a novel function in the cytosol. 

Plant Cell 15: 760-770. 

Sprague, S.J., Watt, M., Kirkegaard, J.A., and Howlett, B.J. (2007). Pathways of infection 

of Brassica napus roots by Leptosphaeria maculans. New Phytol 176: 211-222. 

Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an 

enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117-2127. 

Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root 

growth and induction of a leaf protein are decreased in an Arabidopsis thaliana 

mutant. Proc Natl Acad Sci USA 89: 6837-6840. 

Szerszen, J.B., Szczyglowski, K., and Bandurski, R.S. (1994). iaglu, a gene from Zea mays 

involved in conjugation of growth hormone indole-3-acetic acid. Science 265: 1699-

1701. 

Taguchi, G., Yazawa, T., Hayashida, N., and Okazaki, M. (2001). Molecular cloning and 

heterologous expression of novel glucosyltransferases from tobacco cultured cells that 

have broad substrate specificity and are induced by salicylic acid and auxin. Eur J 

Biochem 268: 4086-4094. 

Tai, A., and Gohda, E. (2007). Determination of ascorbic acid and its related compounds in 

foods and beverages by hydrophilic interaction liquid chromatography. J Chromatogr 

B Analyt Technol Biomed Life Sci 853: 214-220. 

Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Hoj, P.B., 

and Møller, B.L. (2001). Resistance to an herbivore through engineered cyanogenic 

glucoside synthesis. Science 293: 1826-1828. 

The-Arabidopsis-Genome-Initiative. (2000). Analysis of the genome sequence of the 

flowering plant Arabidopsis thaliana. Nature 408: 796-815. 

Tognetti, V.B., Van Aken, O., Morreel, K., Vandenbroucke, K., van de Cotte, B., De 

Clercq, I., Chiwocha, S., Fenske, R., Prinsen, E., Boerjan, W., Genty, B., Stubbs, 

K.A., Inze, D., and Van Breusegem, F. (2010). Perturbation of Indole-3-Butyric 

Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis 

Architecture and Water Stress Tolerance. Plant Cell 22: 2660-2679 

Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, 

E., Takahashi, H., Goodenowe, D.B., Kitayama, M., Noji, M., Yamazaki, M., and 

Saito, K. (2005). Functional genomics by integrated analysis of metabolome and 

transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. 

Plant J 42: 218-235. 



                                                                                                                                                                                REFERENCES  

 
131

Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The Botany Array 

Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J 43: 153-

163. 

Toyoda-Ono, Y., Maeda, M., Nakao, M., Yoshimura, M., Sugiura-Tomimori, N., and 

Fukami, H. (2004). 2-O-(beta-D-glucopyranosyl)ascorbic acid, a novel ascorbic acid 

analogue isolated from Lycium fruit. J Agr Food Chem 52: 2092-2096. 

Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, 

D., Slusarenko, A., Ward, E., and Ryals, J. (1992). Acquired resistance in 

Arabidopsis. Plant Cell 4: 645-656. 

Ülker, B., Shahid Mukhtar, M., and Somssich, I.E. (2007). The WRKY70 transcription 

factor of Arabidopsis influences both the plant senescence and defense signaling 

pathways. Planta 226: 125-137. 

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and 

Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data 

by geometric averaging of multiple internal control genes. Genome Biol 3: 

RESEARCH0034. 

Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic Acid, a multifaceted 

hormone to combat disease. Annu Rev Phytopathol 47: 177-206. 

Vogt, T., and Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: 

characterization of a supergene family. Trends Plant Sci 5: 380-386. 

Walley, J.W., Coughlan, S., Hudson, M.E., Covington, M.F., Kaspi, R., Banu, G., 

Harmer, S.L., and Dehesh, K. (2007). Mechanical stress induces biotic and abiotic 

stress responses via a novel cis-element. PLoS Genet 3: 1800-1812. 

Wang, D., Amornsiripanitch, N., and Dong, X. (2006). A genomic approach to identify 

regulatory nodes in the transcriptional network of systemic acquired resistance in 

plants. PLoS Pathog 2: e123. 

Wang, Z., Xiao, Y., Chen, W., Tang, K., and Zhang, L. (2010). Increased vitamin C 

content accompanied by an enhanced recycling pathway confers oxidative stress 

tolerance in Arabidopsis. J Integr Plant Biol 52: 400-409. 

Warzecha, H., Obitz, P., and Stockigt, J. (1999). Purification, partial amino acid sequence 

and structure of the product of raucaffricine-O-beta-D-glucosidase from plant cell 

cultures of Rauwolfia serpentina. Phytochemistry 50: 1099-1109. 

Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and 

action in plant stress response, growth and development. Ann Bot 100: 681-697. 



____________________________________________________________________________________________________ 

 
132 

Weaver, L.M., Gan, S., Quirino, B., and Amasino, R.M. (1998). A comparison of the 

expression patterns of several senescence-associated genes in response to stress and 

hormone treatment. Plant Mol Biol 37: 455-469. 

Weckwerth, W., Wenzel, K., and Fiehn, O. (2004). Process for the integrated extraction 

identification, and quantification of metabolites, proteins and RNA to reveal their co-

regulation in biochemical networks. Proteomics 4: 78-83. 

Weymouth-Wilson, A.C. (1997). The role of carbohydrates in biologically active natural 

products. Nat Prod Rep 14: 99-110. 

Wheeler, G.L., Jones, M.A., and Smirnoff, N. (1998). The biosynthetic pathway of vitamin 

C in higher plants. Nature 393: 365-369. 

Wildermuth, M.C., Dewdney, J., Wu, G., and Ausubel, F.M. (2001). Isochorismate 

synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-

565. 

Williams, C.A., and Grayer, R.J. (2004). Anthocyanins and other flavonoids. Nat Prod Rep 

21: 539-573. 

Winkel-Shirley, B. (1999). Evidence for enzyme complexes in the phenylpropanoid and 

flavonoid pathways. Physiol Plant 107: 142-149. 

Wolucka, B.A., and Van Montagu, M. (2007). The VTC2 cycle and the de novo 

biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68: 2602-

2613. 

Yamamoto, I., Muto, N., Nagata, E., Nakamura, T., and Suzuki, Y. (1990a). Formation of 

a stable L-ascorbic acid alpha-glucoside by mammalian alpha-glucosidase-catalyzed 

transglucosylation. Biochim Biophys Acta 1035: 44-50. 

Yamamoto, I., Muto, N., Murakami, K., Suga, S., and Yamaguchi, H. (1990b). L-ascorbic 

acid alpha-glucoside formed by regioselective transglucosylation with rat intestinal 

and rice seed alpha-glucosidases: its improved stability and structure determination. 

Chem Pharm Bull (Tokyo) 38: 3020-3023. 

Yonekura-Sakakibara, K., Tohge, T., Niida, R., and Saito, K. (2007). Identification of a 

flavonol 7-O-rhamnosyltransferase gene determining flavonoid pattern in Arabidopsis 

by transcriptome coexpression analysis and reverse genetics. J Biol Chem 282: 14932-

14941. 

Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., 

Niida, R., Watanabe-Takahashi, A., Inoue, E., and Saito, K. (2008). 



                                                                                                                                                                                REFERENCES  

 
133

Comprehensive flavonol profiling and transcriptome coexpression analysis leading to 

decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20: 2160-2176. 

Zablackis, E., Huang, J., Muller, B., Darvill, A.G., and Albersheim, P. (1995). 

Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant 

Physiol 107: 1129-1138. 

Zeleny, R., Kolarich, D., Strasser, R., and Altmann, F. (2006). Sialic acid concentrations 

in plants are in the range of inadvertent contamination. Planta 224: 222-227. 

Zhang, C.S., Griffith, B.R., Fu, Q., Albermann, C., Fu, X., Lee, I.K., Li, L.J., and 

Thorson, J.S. (2006). Exploiting the reversibility of natural product 

glycosyltransferase-catalyzed reactions. Science 313: 1291-1294. 

Zhou, N., Tootle, T.L., Tsui, F., Klessig, D.F., and Glazebrook, J. (1998). PAD4 functions 

upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 

10: 1021-1030. 

Zimmermann, P., Hennig, L., and Gruissem, W. (2005). Gene-expression analysis and 

network discovery using Genevestigator. Trends Plant Sci 10: 407-409. 

 



____________________________________________________________________________________________________ 

 
134 



                                                                                                                                                    SUPPLEMENTAL MATERIAL 

 
135

77..  SSUUPPPPLLEEMMEENNTTAALL  MMAATTEERRIIAALL  

77..11..  SSUUPPPPLLEEMMEENNTTAALL  FFIIGGUURREESS  

 

Supplemental Figure 1. Amino acid determination in ugt76b1-1 and UGT76B1-OE-7 
compared to wild type. 

Amino acid concentrations were determined in leaves of 4-week-old seedlings (A) before and 
(B) 1 h after mechanical wounding (see methods 3.2.1.9). Stars indicate significance of the 
difference to the wild-type line: ** p-value < 0.01. Measurement (A) was repeated and stars 
indicate significance detected in both independent experiments. Each measurement includes 8-
10 biological replicates. The analysis has been performed by Mohamed Hajirezaei, IPK 
Gatersleben. 
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Supplemental Figure 2. Susceptibility of UGT87A2-OE-19 and ugt87a2-1 lines to Ps-vir. 

5-week-old plants were inoculated with 2 106 cfu/ml Ps-vir. Pictures were taken 1 week after 
inoculation. 

 

Supplemental Figure 3. Susceptibility of UGT87A2-OE and ugt87a2-1 lines to abiotic 
stress cues. 

(A) 50 mM NaCl (since germination). A slight tendency for a higher susceptibility could be 
observed in ugt87a2-1, but the results were not clearly reproducible. (B) 200 µM Mannitol 
(since germination). (C) UV-B irradiation (par/UV= 200 μmol m-2 s-1 / ca. 13 kJ/day, for 
details see 5.2.1.1). 
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Supplemental Figure 4. Fragmentation of signal peak m/z 339 revealing a glucoside. 

As it was not possible to completely isolate m/z 339.111 from other peaks with same nominal 
mass, a wild-type extract was fragmented in parallel to assure that m/z 177 originates from m/z 
339.111, which is missing in Col-0. 
(A) Isolated peaks with nominal mass 339 at 0 eV. (B) Fragmentation pattern of m/z 339 in 
Col-0 (upper) and 87A2-OE-19 (lower panel). 
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Supplemental Figure 5. Alignment between UGT87A2 (query) and UGT87A1 proteins. 

The protein alignment was performed at the TAIR website (http://www.arabidopsis.org/) using 
the BLASTP tool. 
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Supplemental Figure 6. Gene co-expression network for UGT87A1 (At2g30150). 

Co-expression analysis was performed using the ATTED co-expression tool (http://atted.jp/). 
Co-regulated gene relationships are based on co-expressed genes deduced from microarray 
data (tissue, light, abiotic and biotic stress treatment). Coexpressed gene networks are drawn 
based on rank of correlation (mutual rank). Solid edges (lines) indicate gene coexpression and 
the edge thickness indicates the strength of coexpression. Octagon-shaped nodes indicate 
transcription factor genes whereas circular nodes indicate other types of genes. Common 
KEGG pathways in the network are denoted by color-coded dots in the nodes (red dot: genes 
involved in the Carotenoid biosynthesis). 
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Supplemental Figure 7. Semi-quantification of ascorbic acid in UGT87A2-OE-19 plants  

compared to Col-0. 

No significant changes in ascorbic acid levels could be found in leaves of UGT87A2-OE-19 
compared to Col-0 (3 independent biological replicates). The red arrow 
indicates ascorbic acid-2-β-O-glucoside.
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77..22..  SSUUPPPPLLEEMMEENNTTAALL  TTAABBLLEESS  

The following tables contain the mass lists from the non-targeted metabolome analyses. 

Significant metabolic changes between genotypes (p-Value < 0.01) in one experiment are 

shaded in grey. Significant metabolic changes confirmed in two experiments are marked in 

red. Zero values were replaced by 200,000 counts, the value considered as detection limit (see 

5.2.7.1.3). Fold changes were calculated based on the geometrical means. 

 

Supplemental Table 1. UGT76B1-OE vs. Col-0 

Mass 

[M-H] 

T-Test 

p-value 

Wilcoxon 

p-value 
Median Col 

Median 

UGT76B1-OE-7 

Median 

UGT76B1-A-5 

Fold 

UGT76B1-OE-7 

vs. Col 

Fold 

UGT76B1-A-5 

vs. Col 

207.0874 0.0039 0.0022 2,137,078 1,354,049 1,749,048 0.68 0.72 

251.0773 0.0151 0.0022 2,224,915 16,622,036 3,233,089 7.65 1.57 

281.0878 0.0250 0.0022 1,527,539 6,814,391 2,082,229 5.03 1.32 

293.1242 0.0002 0.0022 2,505,041 4,592,730 3,361,901 1.82 1.41 

295.1035 0.0112 0.0022 1,599,354 3,876,759 2,021,751 2.65 1.32 

297.1530 0.0001 0.0022 9,310,235 5,117,946 6,059,604 0.58 0.62 

298.1564 0.0002 0.0022 1,634,768 860,435 905,080 0.56 0.60 

311.1686 0.0000 0.0022 36,586,575 20,617,144 22,206,309 0.53 0.55 

312.1720 0.0001 0.0022 6,666,521 3,624,586 4,163,797 0.54 0.58 

313.1644 0.0003 0.0022 1,532,364 782,753 1,014,305 0.51 0.63 

325.1843 0.0003 0.0022 37,517,272 19,788,586 22,815,373 0.52 0.54 

326.1877 0.0006 0.0022 7,303,073 3,916,662 4,393,425 0.52 0.53 

327.1800 0.0006 0.0022 1,573,238 861,840 855,056 0.55 0.56 

339.1999 0.0003 0.0022 23,903,668 13,137,773 13,798,422 0.52 0.53 

340.2033 0.0003 0.0022 4,784,186 2,631,103 2,957,518 0.52 0.52 

341.1090 0.0040 0.0022 54,017,935 65,885,463 75,421,375 1.26 1.38 

342.1123 0.0059 0.0022 7,151,042 8,459,972 9,992,938 1.25 1.40 

343.1132 0.0020 0.0022 1,137,585 1,457,750 1,632,715 1.35 1.43 

439.0857 0.0036 0.0022 24,118,582 30,438,915 29,310,920 1.32 1.35 

449.1088* 0.0055 0.0022 605,658 942,410 1,453,330 2.21 2.54 

577.2248 0.0151 0.0022 1,797,648 2,176,620 2,547,759 1.25 1.60 

341.2066 0.0000 0.0028 475,338 200,000 200,000 0.40 0.40 

327.1909 0.0001 0.0037 660,800 200,000 200,000 0.31 0.40 

212.0692 0.0147 0.0043 2,948,633 3,199,604 3,398,717 1.09 1.21 

327.0932 0.0297 0.0043 608,500 2,853,973 783,494 5.54 1.28 

404.1279 0.0073 0.0043 1,914,790 3,024,427 4,162,284 1.47 1.93 

440.0891 0.0132 0.0043 3,395,797 4,191,977 3,839,883 1.31 1.28 

476.0939 0.0208 0.0043 10,175,445 7,353,656 3,383,776 0.76 0.33 

476.1087 0.0193 0.0043 504,787,080 394,463,410 178,148,830 0.76 0.32 

477.0933 0.0225 0.0043 3,131,851 3,507,189 4,478,494 1.20 1.43 

477.1065 0.0142 0.0043 14,190,837 10,489,377 5,243,986 0.75 0.35 

502.1969 0.0048 0.0043 9,794,490 11,629,523 11,593,365 1.19 1.21 

431.0949 0.0117 0.0043 200,000 755,404 739,065 2.53 2.59 

238.0650 0.0054 0.0048 282,326 663,126 609,456 2.35 2.10 

341.1957 0.0305 0.0050 1,036,192 594,293 710,729 0.41 0.48 

337.1842 0.0006 0.0062 495,914 200,000 200,000 0.40 0.51 

494.0670 0.0047 0.0072 709,169 482,959 200,000 0.55 0.30 

313.1755 0.0153 0.0078 553,790 405,564 200,000 0.61 0.47 

168.0244 0.0184 0.0078 302,167 568,481 514,167 2.07 1.74 
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477.0109 0.0319 0.0078 513,286 1,103,920 1,138,665 2.69 2.76 

476.1376 0.0445 0.0081 2,093,027 1,818,486 925,146 0.40 0.25 

188.9080 0.0026 0.0087 5,765,344 6,206,770 6,306,183 1.06 1.08 

216.9190 0.0197 0.0087 471,396 684,786 725,643 1.33 1.78 

279.1086 0.0074 0.0087 860,206 1,673,344 1,143,820 2.09 1.32 

293.1065 0.0091 0.0087 799,444 616,722 510,341 0.81 0.64 

341.0913 0.0057 0.0087 2,388,921 3,326,931 3,091,418 1.50 1.28 

476.0791 0.0376 0.0087 5,238,027 4,203,578 2,270,039 0.79 0.33 

476.1307 0.0228 0.0087 2,495,492 2,008,498 813,531 0.76 0.35 

477.1120 0.0197 0.0087 86,926,324 68,468,768 30,798,673 0.77 0.33 

478.1044 0.0196 0.0087 67,488,092 52,863,877 23,904,959 0.77 0.33 

479.1078 0.0201 0.0087 11,789,626 9,463,520 4,053,349 0.78 0.34 

480.1002 0.0292 0.0087 3,284,084 2,651,511 2,225,478 0.78 0.61 

481.2037 0.0115 0.0087 3,624,495 3,254,611 2,535,342 0.89 0.69 

501.1936 0.0044 0.0087 50,856,386 59,904,727 62,118,300 1.18 1.24 

597.3490 0.0201 0.0087 1,076,719 1,232,479 1,363,499 1.17 1.32 

197.0292 0.0049 0.0096 435,090 200,000 200,000 0.51 0.51 

438.0857 0.0043 0.0096 627,933 200,000 200,000 0.37 0.37 

161.9153 0.0018 0.0101 401,680 200,000 200,000 0.48 0.60 

162.6737 0.0050 0.0115 613,875 200,000 200,000 0.43 0.48 

478.1167 0.0476 0.0124 4,634,394 3,680,195 200,000 0.76 0.04 

311.0984 0.0068 0.0124 288,945 1,742,720 472,234 6.38 1.74 

212.0656 0.0131 0.0152 529,381 653,464 688,773 1.31 1.56 

212.0721 0.0097 0.0152 5,358,939 5,711,210 6,081,503 1.07 1.14 

212.0788 0.0470 0.0152 1,815,698 2,440,394 2,581,393 1.45 1.53 

262.0569 0.0307 0.0152 4,201,266 3,610,288 3,099,455 0.92 0.78 

272.9571 0.0078 0.0152 463,539 626,844 588,103 1.31 1.28 

341.1014 0.0097 0.0152 1,262,567 1,495,200 1,470,269 1.19 1.21 

399.1660 0.0196 0.0152 1,204,928 1,910,274 1,868,144 1.79 1.36 

440.0797 0.0166 0.0152 1,321,036 1,440,759 1,841,434 1.12 1.45 

448.0774 0.0545 0.0152 16,478,124 15,379,200 3,244,544 0.89 0.19 

451.0703 0.1294 0.0152 1,031,568 816,326 653,822 0.82 0.49 

464.2217 0.0189 0.0152 723,548 863,178 874,956 1.30 1.17 

467.1880 0.0143 0.0152 1,051,073 884,212 717,922 0.88 0.68 

488.1621 0.0093 0.0152 3,689,619 5,284,168 6,500,822 1.38 1.49 

503.1974 0.1757 0.0152 1,279,180 1,548,551 1,688,941 1.65 1.69 

462.1069 0.0145 0.0167 1,516,661 200,000 200,000 0.34 0.18 

389.2181 0.0118 0.0181 200,000 695,364 533,287 2.44 2.03 

833.5179 0.0172 0.0181 200,000 506,292 513,357 1.86 2.05 

436.0860 0.0355 0.0194 746,985 661,333 200,000 0.61 0.38 

465.0922 0.0610 0.0194 2,648,359 2,322,756 200,000 0.90 0.08 

466.0846 0.0285 0.0194 748,684 593,553 200,000 0.82 0.28 

482.2071 0.0338 0.0194 919,861 737,587 200,000 0.58 0.32 

578.2280 0.0241 0.0194 345,389 660,832 784,367 2.02 2.15 

899.2931 0.0348 0.0194 344,528 535,053 525,876 1.94 1.68 

 

Only one experiment was performed for both UGT76B1-OE lines vs. Col-0. m/z peaks 

marked in green were also found to be significantly changed in ugt76b1 lines. 
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* m/z 449.1087 was induced in both UGT76B1 overexpression and knockout lines and was 

therefore not selected for further analyses. 
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Supplemental Table 5. ugt87a2 amiRUGT87A1 vs. Col-0 

Mass 

[M-H] 

T-Test 

p-value 

Wilcoxon 

p-value 

Median 

Col 
Median 1-6 Median 1-9 

Fold 

1-6 vs. Col 

Fold 

1-9 vs. Col 
216.0514 0.0006 0.0022 9,184,419 14,606,289 13,570,108 1.68 1.54 

242.0783 0.0055 0.0022 7,291,606 10,964,897 10,323,495 1.59 1.49 

304.9827 0.0019 0.0022 7,127,051 12,064,406 11,422,034 1.60 1.49 

339.1086 0.0033 0.0022 72,862,896 125,218,190 86,975,717 1.68 1.22 

340.1119 0.0100 0.0022 12,126,151 22,406,738 14,369,227 1.66 1.20 

347.1249 0.0019 0.0022 12,163,438 23,487,905 18,255,391 1.82 1.61 

384.0569 0.1780 0.0022 5,460,407 8,407,334 8,585,912 2.49 2.57 

419.0919 0.0039 0.0022 44,622,887 96,331,562 76,878,484 2.01 1.63 

469.2079 0.0007 0.0022 15,578,909 29,488,759 21,430,811 1.85 1.41 

475.1722 0.0028 0.0022 5,968,430 12,475,272 9,273,734 1.71 1.56 

300.0806 0.0103 0.0043 9,029,864 15,426,607 14,045,980 1.72 1.52 

333.1456 0.0011 0.0043 6,445,065 12,515,770 12,469,358 1.94 1.91 

385.1505 0.0079 0.0043 15,972,869 25,449,897 25,181,612 1.57 1.61 

645.2567 0.1502 0.0043 12,208,052 23,039,101 23,072,604 3.71 3.31 

646.2604 0.0121 0.0043 200,000 10,532,398 7,459,360 16.48 12.89 

245.0429 0.0150 0.0087 40,293,539 55,046,890 53,099,777 1.41 1.44 

263.0772 0.0033 0.0087 7,263,416 10,704,461 10,935,037 1.47 1.40 

299.0771 0.0075 0.0087 63,070,658 97,196,865 101,445,640 1.60 1.54 

306.1194 0.0038 0.0087 11,841,960 24,894,301 26,709,404 2.20 2.06 

329.1143 0.1723 0.0087 7,163,900 11,024,393 11,008,718 2.76 2.73 

375.1198 0.0193 0.0087 10,112,683 15,127,773 14,979,269 1.50 1.54 

427.1974 0.0087 0.0087 15,315,015 24,556,303 24,439,599 1.64 1.78 

437.0482 0.2276 0.0087 9,475,198 7,639,671 6,604,723 0.25 0.72 

469.0988 0.2070 0.0087 6,171,167 10,259,008 7,292,394 2.63 2.15 

686.0825 0.0089 0.0087 11,616,454 23,388,793 29,072,914 1.51 1.91 

339.2020 0.0052 0.0096 200,000 4,691,846 5,013,472 12.55 32.73 

223.0976 0.0081 0.0152 7,786,061 15,600,601 11,540,383 1.70 1.48 

259.0224 0.0285 0.0152 31,653,146 50,557,759 43,396,627 1.50 1.39 

333.0592 0.0197 0.0152 88,774,497 135,171,910 109,200,850 1.46 1.34 

414.0501 0.0202 0.0152 7,366,142 12,312,983 13,073,333 1.43 1.50 

420.0953 0.0075 0.0152 7,237,649 19,083,433 13,072,465 2.31 1.69 

425.0835 0.0028 0.0152 6,566,180 10,550,257 9,963,986 1.41 1.50 

617.2619 0.0076 0.0152 15,869,774 39,527,738 24,470,021 2.10 1.53 

633.2567 0.0035 0.0161 200,000 6,544,986 5,125,128 18.28 15.34 

431.1712 0.0127 0.0167 5,468,737 200,000 200,000 0.06 0.15 

471.2237 0.0131 0.0167 200,000 6,838,391 5,917,093 6.62 16.71 

483.1542 0.0147 0.0167 200,000 5,299,669 4,882,710 5.81 14.57 

283.0548 0.0464 0.0194 2,398,493 7,037,141 7,599,885 5.99 8.01 

557.1878 0.1052 0.0200 4,999,175 8,539,473 6,180,224 4.80 3.50 

 

Only one experiment was performed for analysis of ugt87a2 amiRUGT87A1 vs. Col-0. 
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