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Summary 

I 

Summary 
 

During evolution, most genes of the cyanobacterial ancestor of plastids were transferred to the 

nuclear genome of the host cell (endosymbiosis). Consequently, to maintain the physiological 

properties of plastids, new regulatory elements and protein import machineries have evolved. 

For proper assembly of the photosystem II complex, whose core proteins are still plastid 

encoded, several nuclear encoded assembly factors like LPA1, LPA2, LPA3, PAM68 and 

ALB3 are required.  

In Arabidopsis thaliana an albinotic and hence seedling lethal mutant was described in 

previous publications. Thylakoids of terc-1 were devoid of subunits of photosystem II and 

therefore a crucial role for TerC in the biogenesis of thylakoids was suggested. During this 

thesis, the function of TerC during the assembly of photosystem II was characterised in-depth. 

Downregulation of AtTerC transcripts induced by artificial micro RNA (amiR-TerC plants) 

leads predominantly to a reduction of the photosynthetic performance of photosystem II and 

to a decreased accumulation of respective proteins. Protein-protein interaction and co-

localisation experiments reveal that TerC specifically interacts with subunits of photosystem 

II, as well as with photosystem II assembly factors. During the stepwise assembly of 

photosystem II, the insertion of CP43 (Chlorophyll binding protein of 43 kDa) into the CP43 

free complex controls the PSII core monomerisation. The function of TerC is attributed to this 

step based on two dimensional gel analysis and in vivo labelling experiments of plastidic 

proteins. In both experiments a reduced amount of unassembled CP43 protein and a block 

before photosystem II core monomerisation is observed.  

Taken together, a function of TerC in both, the integration of CP43 into the thylakoid 

membrane and the assembly of CP43 into the photosystem II, is proposed in a two step 

model: During the first step, TerC, LPA2 and LPA3 together with ALB3 integrate the 

unfolded form of the CP43 protein into the thylakoid membrane. In a second step, this 

complex consisting of TerC, LPA2, LPA3 and CP43 joins the CP43-free photosystem II 

complex and, mediated by interaction of TerC with photosystem II subunits, LPA1 and 

PAM68 the assembly of monomeric photosystem II is completed. 

 

 

 

 

 



Zusammenfassung 

II 

Zusammenfassung 

 
Im Laufe der Evolution wurde ein Großteil der Gene des cyanobakteriellen Vorläufers der 

Plastiden in das Kerngenom der Wirtszelle integriert (Endosymbiose). Um die Funktionen der 

Proteinkomplexe in den Plastiden aufrecht zu erhalten, mussten neue Regulations- und 

Importmechanismen entwickelt werden. Mehrere kernkodierte Assemblierungsfaktoren, wie 

zum Beispiel LPA1, LPA2, LPA3, PAM68 und ALB3, wurden identifiziert, die für den 

einwandfreien Zusammenbau des Photosystem II-Komplexes notwendig sind.  

In früheren Veröffentlichungen wurde ein albinotische Arabidopsis thalianan-Mutante 

beschrieben, die bei Anzucht auf Erde im Samenstadium letal ist. Die Thylakoidmembranen 

von terc-1 beinhalten keine Kernproteine des Photosystems II und deshalb wird angenommen, 

dass TerC eine entscheidende Funktion beim Zusammenbau des Photosystems II spielt. 

Während dieser Arbeit wurde die Funktion von TerC bei der Assemblierung des 

Photosystems II genau untersucht. Durch die geringere Menge an AtTerC-Transkript in amiR-

TerC-Pflanzen, hervorgerufen durch künstliche Mikro-RNA-Interferenz, wurde die 

Photosyntheseaktivität, vor allem die des Photosystems II, reduziert. Zusätzlich waren alle 

plastidären Proteine verringert. Protein-Protein-Interaktionsstudien und Co-Lokalisierungs-

experimente zeigten eine spezifische Interaktion von TerC mit Untereinheiten des 

Photosystems II und dessen Assemblierungsfaktoren. Während des stufenweisen 

Zusammenbaus des Photosystems II kontrolliert der Einbau von CP43 („chlorophyll binding 

protein“ mit 43 kDa) in den CP43-freien Komplex die Monomerisierung des Photosystem II-

Kernkomplexes. Basierend auf zweidimensionaler Gelanalyse sowie Markierungs-

experimenten plastidärer Proteine wird TerC eine entscheidende Funktion in diesem Schritt 

zugesprochen. Beide Ansätze zeigten eine Verringerung der Menge an freiem CP43 und eine 

Blockade beim Zusammenbau des Photosystems II im letzten Schritt, der Integration von 

CP43.  

Deshalb wird davon ausgegangen, dass TerC sowohl bei der Integration von CP43 in die 

Thylakoidmembran, als auch beim Einbau von CP43 in das Photosystem II eine essentielle 

Rolle spielt, wie es das abschließende Zweistufenmodell aufzeigt: Zunächst inserieren TerC, 

LPA2 und LPA3 zusammen mit ALB3 das ungefaltete CP43 in die Thylakoidmembran. 

Anschließend gliedert sich dieser Komplex, bestehend aus TerC, LPA2, LPA3 und CP43, 

durch Wechselwirkung mit Untereinheiten des Photosystems II an den CP43-freien 

Photosystem II-Komplex an und der Zusammenbau des monomeren Photosystem II-

Komplexes ist abgeschlossen. 
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1. Introduction 

1.1  Photosynthesis 
The planet earth arose about 4.7 billion years ago and about 700 million years later the first 

life on this planet, single cell organisms, appeared. 3.5 billion years ago the non oxygenic 

photosynthesis was established and it took another 1 billion years until earth was surrounded 

by an oxygen containing atmosphere (Great Oxidation Event). During this time the oxygenic 

photosynthesis must have evolved and established [Bekker et al., 2004]. The oxygenic 

photosynthesis is a photochemical mechanism that converts inorganic carbon dioxide into 

organic sugars by light energy delivered from the sun (see equation below) [Campbell, 1997].  

        h*ν 
6 CO2 + 12 H2O  6 O2 + C6H12O6 + 6H2O 

 

In higher plants this photochemical process takes place in organelles called chloroplasts that 

can be found in all green parts of plants, especially in leaves. Chloroplasts contain in total 

three different membrane systems, the outer envelope, the inner envelope and thylakoids 

(Figure 1.1).  

 
Figure 1.1: Structure and components of plant chloroplasts 

Chloroplasts are surrounded by two envelope membranes that separate the plastid stroma from the cytosol of the 
cell. Inside of the chloroplast another membrane system exists, the so called thylakoid. [Figure taken from 
Moore, Clark and Vodopich, 1998] 
 

While the outer envelope contains a lot of aqueous channels formed by proteins which make 

the membrane permeable for metabolites, the inner envelope represents a barrier for these 

molecules and the uptake and release of metabolites there is controlled by special transporters. 

The third membrane system, the thylakoids, is the place where photosynthesis takes place. 

Thylakoids form a compartment that separates the inner space (lumen) from the stroma 

[Lodish et al., 2000].  

Photosynthesis can be divided into two main parts, the so called light reaction and carbon 

fixation. The light reaction takes place in the thylakoid membrane and lumen where electrons 
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are transported over the membrane to generate ATP and redox equivalents. This process starts 

at the photosystem II (PSII), where the absorption of photons by the light harvesting complex 

of PSII (LHCII) leads to an excitation of chlorophyll a molecules in the reaction centers of 

PSII (P680) (Figure 1.2). From these excited P680`s electrons are transferred to the primary 

electron receptor pheophytin a and the generated electron gap is refilled by electrons derived 

from the water splitting complex, where two H2O molecules are split into four protons, O2 and 

four electrons. From the primary receptor electrons are transferred via a stationary 

plastoquinone (QA) to QB which becomes mobile by the uptake of two stromal protons and 

moves to the Cytochrome b6/f complex (Cyt b6/f). Here, the protons are released to the lumen 

and the electrons are further transferred via Cyt b6/f to the final mobile carrier protein 

plastocyanin (PC). PC fills the electron gap at photosystem I. PSI is, like PSII, surrounded by 

light harvesting complexes (LHCI) and also there excitation of chlorophylls in the reaction 

center (P700) and electron transmission takes place in a similar way as described for PSII. The 

electron transfer from PSI leads either to the reduction of NADP+ by a ferredoxin-NADP-

reductase (FNR) via the electron carrier ferredoxin (Fd) (linear electron flow) or electrons are 

reinjected into the electron transport chain to generate a proton gradient across the thylakoid 

membrane (cyclic electron flow). This electrochemical potential is used by a protein complex 

called ATP synthase to generate ATP out of ADP and Pi by releasing protons from the lumen 

into the stroma of chloroplasts [Campbell, 1997]. 

 
Figure 1.2: Scheme of electron transport across the thylakoid membrane [Figure taken from Shoichi, 2010] 

The scheme is showing the structure of thylakoids as a bilayer membrane. Several multi protein complexes are 
localized in this membrane system contributing to electron transfer along the membrane. Electrons are excited to 
a higher electric state by sunlight that is collected by light harvesting complexes located to either photosystem II 
or I. The electrons leaving the PSII reaction center are replaced by new electrons deriving from the water 
splitting complex in the lumen. During transport of electrons along the thylakoid membrane a proton gradient 
across the thylakoid membrane is generated that later drives the plastid ATP synthase to generate ATP by release 
of protons into the stroma. 
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The second part of photosynthesis, the carbon fixation, is located in the stroma of 

chloroplasts. Here, ATP and NADPH, produced during the light reaction, are used in the 

Benson-Calvin cycle to generate a three-carbon phosphate sugar molecule, the so called 

glyceraldehyde-3-phosphate (G3P), by assimilation of CO2 [Campbell, 1997]. During this 

step ATP and NADPH are used in a 3:2 ratio [Allen, 2002]. The linear electron flow delivers 

these two products of the light reaction in another ratio, thus cyclic electron flow is needed to 

adjust ATP:NADPH ratio [Eberhard et al., 2008]. To date, there are at least two different 

pathways of cyclic electron flow known, the NDH-dependent photosystem I cyclic electron 

transport [Shikanai, 2007] and the PGR5-dependent photosystem I cyclic electron transport 

[Munekage et al., 2002; DalCorso et al., 2008]. 

 

1.2  Evolutionary impact on chloroplasts 
In each cell, higher plants contain organelles that fulfill highly specific functions. In present 

days it is widely accepted that mitochondria and chloroplasts derive from α–proteobacteria 

and cyanobacteria, respectively. During evolution more than 90% of the genes previously 

located in the cyanobacterium were transferred to the nucleus of the host cell that is now in 

control of the protein synthesis of the whole cell [Leister, 2003]. This enables the host to 

quickly adjust translation of proteins to changing conditions or special needs. But as now all 

these proteins are synthesised in the cytosol of the cell these proteins must have undergone 

changes in the amino acid sequence. To make sure that the mature protein will be transferred 

to the correct destination within the cell it must contain a signal that enables the cell to guide 

it there. This is achieved by an amino-terminal targeting signal, the so called transit peptide 

that is cleaved of from the precursor protein after post-translational targeting [Jarvis and Soll, 

2002]. The chloroplast genome contains only a few genes compared to their cyanobacterial 

ancestors [Leister, 2003]. But these genes are coding for the information of some of the most 

important proteins in this compartment, like the core proteins of PSI and PSII, the Cyt b6/f 

complex and the ATP-synthase. Therefore, plants must have undergone adaptations to still 

maintain the physiological activity of these multi protein complexes, that are now composed 

of nuclear and plastid encoded proteins. To fulfill the task of stoichiometric expression of the 

subunits and their assembly to multi-protein complexes, new regulatory elements like an 

import machinery and assembly factors must have evolved [Leister, 2003; Ossenbühl et al., 

2004]. 
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 Figure 1.3: Gene transfer during evolution 

Genes of cyanobacterial origin are mainly transferred to the nuclear genome of Arabidopsis thaliana. The 
products of these genes are transported into the chloroplast when functions of proteins did not change. But also 
transport to locations outside of the plastid is possible if the protein gained a new function during evolution. 
[Figure taken from Leister, 2003] 
 

1.3  Protein import into chloroplasts and thylakoids 
Chloroplasts are of prokaryotic origin and are the result of an endosymbiotic event which 

becomes evident by looking at the three different membrane systems of the organelle. 

Thylakoids are of prokaryotic and the outer envelope is of eukaryotic origin, whereas the 

inner envelope is an intermediate product [Gutensohn et al., 2005]. Proteins supposed to be 

imported to chloroplasts mainly contain an amino-terminal transit peptide that guides the 

precursor protein across the two envelopes and is afterwards cleaved of by a stromal 

processing peptidase [Richter and Lamppa, 1998]. Around 10% of the plastid proteins 
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encoded in the nucleus are imported into the plastids without baring a transit peptide 

[Armbruster et al., 2009] The transport across the membranes is mediated by two oligomeric 

protein complexes (Figure 1.4) called Toc complex (translocon at the outer envelope 

membrane of chloroplasts) [Waegemann and Soll, 1991] and Tic complex (translocon at the 

inner envelope membrane of chloroplasts) [Kessler and Blobel, 1996]. At first the precursor 

protein binds to a signal receptor binding protein that guides it to one of the two identified 

receptors of the Toc complex, Toc159 or Toc34 [Hirsch et al., 1994; Kessler et al., 1994; Jelic 

et al., 2003]. The interaction of the precursor with the receptor requires binding and 

hydrolysis of GTP [Schleiff et al., 2002; Becker et al., 2004a]. This is a prerequisite for the 

transfer through the major translocation channel that is formed by β–sheet structures of Toc75 

[Sveshnikova et al., 2000; Baldwin et al., 2006]. Additionally, there are two other proteins 

attached to this complex, Toc 64 and Toc 12, but so far no crucial function in protein import 

could be assigned to them [Sohrt and Soll, 2000; Becker et al., 2004b; Rosenbaum-Hofmann 

and Theg, 2005; Aronsson et al., 2007]. 

 

 
Figure 1.4: Protein import into chloroplasts 

Proteins, that are synthesised in the cytosol and have their destination in the chloroplast, must be transferred 
across the two envelope membranes. Therefore two protein complexes, the Toc and Tic complex, recognise a 
transit peptide attached to the mature protein and guide the precursor protein across the envelope membranes. 
[from Andres et al., 2010] 
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After crossing the first envelope membrane the precursor protein associates with Tic22 in the 

intermembrane space. Tic22 is a soluble protein that is able to interact transiently with the 

inner envelope membrane and might represent the receptor for incoming proteins which 

giudes them to the Tic complex [Kouranov and Schnell, 1997; Kouranov et al., 1998]. Tic20 

and Tic110, both located in the inner envelope, are supposed to transport precursors across 

this membrane. But whether they are forming a heteromeric translocon or constituting an 

import channel by themselves, is not clarified yet [Kouranov et al., 1998; Lübeck et al., 1996; 

Kessler and Blobel, 1996; van Dooren et al., 2008; Vojta et al., 2009]. The proteins Tic32, 

Tic55 and Tic62 are proposed redox regulators of protein import across the inner envelope 

membrane [Caliebe et al., 1997; Küchler et al., 2002; Hörmann et al., 2004; Chigri et al., 

2006; Stengel et al., 2008; Boij et al., 2009], whereas Tic40 contains a stromal chaperon 

binding domain which is interacting with the stromal chaperone Hsp70 and is necessary for 

reintegration of proteins into the inner envelope of chloroplasts [Stahl et al., 1999; Chou et al., 

2003; Chiu and Le, 2008]. 

The transport of proteins into or across the thylakoid membrane is mediated by four 

independent pathways. Two of them, the SRP-dependent pathway and the “spontaneous” 

pathway, are exclusively used to insert proteins into the membrane, whereas the Sec- and the 

Tat-pathway are transporting proteins into the lumen of thylakoids [Gutensohn et al., 2005]. 

The spontaneous insertion is restricted to a specific class of proteins with similar structure and 

membrane topology. The single membrane span is located closely to the amino-terminus of 

the mature protein that is facing towards the lumen of thylakoids. Insertion of these proteins 

into the membrane needs the presence of two hydrophobic domains flanking the hydrophilic 

amino-terminal end of the protein [Michl et al., 1994; Schleiff and Klösgen, 2001]. The non 

C-terminal located domain of these two hydrophobic areas functions as the membrane anchor 

of the mature protein, whereas the other domain closely to the amino end of the protein is 

cleaved off the mature protein and is only needed as a transit peptide [Michl et al., 1999]. All 

proteins following this way of insertion into the thylakoid membrane are synthesised in the 

cytosol of the cell and contain bipartite transit peptides, which mediate both the import into 

chloroplasts via Toc and Tic complexes and the integration into the thylakoid membrane 

[Michl et al., 1999]. Examples for proteins using this way of thylakoid integration are CF0-II, 

a subunit of the plastidic ATPase [Michl et al., 1994] as well as subunits of photosystem II 

(PsbW, PsbX and PsbY) [Lorkovic et al., 1995; Kim et al., 1998; Thompson et al., 1999]. 

The second pathway that is inserting proteins exclusively into the thylakoid membrane is the 

SRP-dependent pathway. It is the major way to insert polytopic membrane proteins. The main 
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substrate of this pathway is LHCP, the apoprotein of all LHCBs, and this import mechanism 

is also the best understood one [Gutensohn et al., 2005]. Four stromal factors are needed for 

proper thylakoid insertion of LHCP, cpSRP54 [Franklin and Hoffman, 1993; Li et al., 1995], 

cpSRP43 [Schuenemann et al., 1998], cpFtsY [Kogata et al., 1999] and LTD [Ouyang et al., 

20011]. The cpSRP54 shows homology to the 54 kDa subunit of the cytosolic signal 

recognition particle and to its bacterial counterpart Ffh. The cpFtsY is homolog to FtsY, a 

bacterial SRP-receptor protein. In contrast to these two proteins no homolog in bacteria to 

cpSRP43 of Arabidopsis thaliana is known [Gutensohn et al., 2005]. The fourth stromal 

factor, LTD, was recently discovered to be located mostly in the stroma of chloroplasts, but 

also to be slightly attached to the inner envelope. It is binding to the LHCP after transport 

through the Tic-complex [Ouyang et al., 20011]. In addition to these four stromal factors 

ALB3, a thylakoid integral protein, is needed for protein insertion. ALB3 is highly 

homologous to the bacterial YidC and the mitochondrial Oxa1p proteins [Moore et al., 2000]. 

Additionally to these protein factors the SRP-dependent pathway requires energy delivered by 

hydrolysis of GTP and a proton gradient across the thylakoid membrane [Jaru-Ampornpan et 

al., 2007]. 

 

 
Figure 1.5: Protein import of nuclear encoded proteins into the thylakoid membrane of chloroplasts 

Once nuclear encoded proteins reach the stroma of chloroplasts they undergo two possible ways of further 
processing. If the destination of the imported protein is in the stroma, the transit peptide is cleaved off by stromal 
peptidases. Proteins with their destination in the thylakoid membrane or lumen can be imported by four different 
pathways, the SRP-dependent, the ΔpH/Tat-dependent and the Sec-dependent pathways or by spontaneous 
insertion. [Figure taken from Schünemann, 2007] 
 

The other two protein transport pathways, the Sec-dependent and the ΔpH/Tat-dependent 

pathways, are mainly translocating hydrophilic proteins in the thylakoid lumen [Di Cola et al., 
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2005]. These proteins contain two transit peptide signals, one for the envelopes and another 

for crossing the thylakoids. The second transit signal is cleaved at the luminal side by a 

thylakoidal processing peptidase (TPP). Although for both pathways bipartite transit peptide 

signals are necessary, the amino acid sequence needed for the transport across the thylakoid 

membrane is conserved among proteins using the same pathway, but differs between proteins 

using either the Sec-dependent or the ΔpH/Tat-dependent pathway [Robinson et al., 1994].  

The Sec-dependent pathway is highly similar to the main secretory pathway in bacteria. The 

energy for the protein transport derives from hydrolysis of ATP and the three components, 

SecA, SecE and SecY show significant homology to their bacterial counterparts [Gutensohn 

et al., 2005]. SecA is located in the stroma and might act as a signal recognition particle 

[Yuan et al., 1994; Berghöfer et al., 1995] with an ATPase activity [Liu et al., 2010]. The 

translocation pore is supposed to be formed by the two membrane bound proteins SecE 

[Schuenemann et al., 1999] and SecY [Laidler et al., 1995; Bergöfer and Klösgen, 1996]. 

Substrates for the Sec-dependent pathway are plastocyanin, PsaF and PsbO [Hulford et al., 

1994; Karnauchov et al., 1994; Robinson et al., 1994; Yuan and Cline, 1994]. 

In contrast to the Sec-dependent protein import the ΔpH/Tat-dependent pathway requires 

neither energy supplied by triphosphates [Cline et al., 1992] nor soluble factors that recognise 

the precursor protein in the stroma of chloroplasts [Mould et al., 1991]. In higher plants, the 

energy for protein import into the lumen is supplied by a pH-gradient across the thylakoid 

membrane [Braun et al., 2007], which is not true for the green algae Chlamydomonas 

reinhardtii and so still controversially discussed [Finazzi et al., 2003]. The driving force for 

protein translocation gave rise to the first part of the name of this protein transport pathway. 

The second part of the name derives from two conserved arginine residues in the respective 

signal peptide (twin arginine translocation = Tat) [Chadock et al., 1995]. What is unique 

about the ΔpH/Tat-dependent pathway in comparison to the other three types of protein 

import is the ability to translocate mature proteins or fully folded protein domains across the 

thylakoid membrane [Marques et al., 2004]. The translocase complex itself consists of three 

protein subunits, TatA (Tha4), TatB (HCF106) and TatC (cpTatC) [Settles et al., 1997; 

Walker et al., 1999; Motohashi et al., 2001]. It is assumed that in the presence of a proton 

gradient and the substrate bound to the TatB-TatC-complex TatA transiently joins this 

aggregate and forms the pore by which proteins are imported [Mori and Cline, 2002; Jakob et 

al., 2009]. Examples for proteins imported via the ΔpH/Tat-dependent pathway are the 16 and 

23 kDa proteins of the OEC [Klösgen et al., 1992; Mould et al., 1991] and the Rieske Fe/S 

protein of Cytochrome b6/f complex [Molik et al., 2001]. 
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1.4  Photosystem II – structure  and assembly 
Plant photosystem II is a multi protein-pigment complex located in thylakoid membrane of 

chloroplasts that works as a light driven water:plastochinone oxidoreductase. The 

physiological active form is a dimer formed by two PSII monomers [Nelson and Yocum, 

2006]. The reaction center of photosystem II contains the two proteins D1 and D2 with its 

chromophores (six chlorophylls including the P680), two pheophytines and the plastochinones 

QA and QB. The protein CP47 is closely attached to the D2 protein and CP43 is in close 

proximity to D1. The lumenal part of D1 and CP43 is stabilising the proteins of the oxygen 

evolving complex. CP43 and CP47 are also binding chlorophylls that contribute to energy 

transfer in PSII and additionally seven β-carotenes necessary for photoprotection [Biesiadka, 

2004]. Additionally, several small protein subunits with different functions like assembly, 

dimer stabilisation and binding of chlorophylls and carotenoids are also constituting the 

photosystem II [Ferreira, 2004]. 

Using pulse labelling experiments and native protein complex isolation, five assembly steps 

of PSII formation could be identified. The first step is the integration of the D1 precursor 

protein into a receptor complex consisting of D2, PsbE and F, both subunits of Cyt b559 

complex, and PsbI, by that forming the photosystem II reaction center complex (PSII-RC) 

[Tsiotis et al., 1999; Komenda et al., 2004]. The second step in PSII biogenesis is the insertion 

of CP47 into the PSII-RC complex [Rokka et al., 2005]. The proper assembly of the so called 

CP47-RC is necessary as in this state precursor D1 protein is processed, the precursor is 

cleaved off and the mature D1 is finally present in PSII [Armbruster et al., 2010]. During the 

next two steps of PSII assembly in total four low molecular weight subunits (lmw) are 

integrated. At first the insertion of three plastid encoded proteins, PsbH, M and TC, occurs by 

which the CP47-RC is stabilised [Rokka et al., 2005]. In the following step the first nuclear 

encoded protein, PsbR, is integrated [Rokka et al., 2005]. This membrane integral protein is 

mostly orientated towards the lumen and might play a role in anchoring OEC proteins to 

photosystem II [Barber et al., 1997]. In the fifth PSII assembly step the last major protein, 

CP43, is integrated [Rokka et al., 2005]. Directly after the insertion of CP43 another lmw, 

PsbK, complements the PSII core monomer. This monomer is able to bind PsbO, the first 

subunit of oxygen evolving complex. So far it is not fully understood whether PsbW, another 

low molecular weight subunit, binds to photosystem II during its dimerisation [Thidholm et 

al., 2002] or afterwards to provide binding of LHCII to PSII complexes [Rokka et al., 2005]. 

More in the periphery of PSII, PsbZ is located that, together with the lumenal protein 
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AtFKBP20, allows binding of LHCII-trimers to PSII to form PSII-supercomplexes [Swiatek 

et al., 2001; Lima et al., 2006].  

 

 

 
Figure 1.6: Assembly steps of PSII subunits 

Incorporation of radioactively labelled subunits into photosystem II was used to determine intermediate states in 
the order of PSII aggregation. In total four intermediate states were found until in a final fifth step a photosystem 
II monomer is assembled. After monomer formation a PSII dimer aggregates that binds light harvesting 
complexes to form up PSII-LHCII-supercomplexes, the photosynthetic active form of photosystem II [from 
Rokka et al., 2005] 
 

For the first assembly step, the integration of D1, additional factors are necessary that are not 

strucural subunits of PSII. The Arabidopsis mutant hcf136 shows an albinotic phenotype and 

only trace amounts of D1 protein are detectable whereas the other core proteins are 

completely missing. Instead of the mature D1 protein an increase in the precursor of the D1 

protein can be observed as its integration into the receptor complex is not possible [Meurer et 

al., 1998; Komenda et al., 2008]. An increase of precursor D1 protein can be detected in 

pam68 where either the maturation of D1 is disturbed or the stability of CP47-RC complex 

that mediates D1 maturation is impaired [Armbruster et al., 2010]. A similar phenotype can be 

observed in lpa1 plants. LPA1 might act as a chaperone in the thylakoid membrane together 

with AtCyp38 and is necessary for proper D1 folding and integration into the receptor 

complex [Peng et al., 2006; Sirpiö et al., 2008]. Both proteins, PAM68 and LPA1, are 

interacting in vitro with ALB3, an assembly factor that was previously shown to play a role in 

the SRP-dependent pathway for integration of LHCPs into thylakoid membrane [Bellafiore et 
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al., 2002]. In Chlamydomonas it was observed that the homolog of ALB3, ALB3.1, is 

necessary for the integration of D1 protein into functional PSII as precursor ALB3.1 and D1 

are interacting although it is not affecting the integration into the thylakoid membrane 

[Ossenbühl et al., 2004]. 

Two additional assembly factors, LPA2 and LPA3, that are interacting with each other are 

supposed to contribute to the integration of CP43, as they are also interacting with the PSII 

core protein. The loss of LPA2 and LPA3 leads to a decrease in CP43 protein and the double 

mutant lpa2/lpa3 is completely lacking CP43 [Ma et al., 2007; Cai et al., 2010]. 

 

1.5 Variegated mutants in Arabidopsis thaliana 
Per definition, variegated mutants contain “patches of different colours in its vegetative parts” 

[Kirk and Tilney-Basset, 1978]. Typically, parts of the plant that used to be green include 

white or yellow sectors. Cells of the green areas are developed normally whereas the plastids 

of the abnormal coloured sectors are deficient in chlorophylls and/or carotenoids and appear 

to be stressed by photooxidation or be blocked in the biogenesis of chloroplasts [Yu et al., 

2007].  

 
Figure 1.7: Characteristic variegated mutants of Arabidopsis thaliana 

Variegated mutants contain white or yellow sectors within normal developed green tissue. Here, two typical 
mutants, immutants (im) (a) and variegated2 (var2) (b) are shown representatively [from Yu et al., 2007]. 
 

Via ethyl methane sulphonate (EMS) and X-ray mutagenesis of A. thaliana, several hundred 

lines showing a variegated phenotype arose, but only a very few genes have been identified 

whose mutations are responsible for the abnormal leaf colouration. The following table lists 

all mutants with a variegated phenotype of Arabidopsis thaliana characterised so far [Yu et 

al., 2007].  
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Table 1.1: Summary of identified variegation mutants in Arabidopsis thaliana 

        mutant          function            author 

immutant (im)         plastid terminal oxidase                 Aluru et al., 2007 
variegated1 (var1)        D1 turnover             Zaltsman et al. 2005 
variegated2 (var2)        D1 turnover            Bailey et al. 2002 
variegated3 (var3)        carotenoid biosynthesis                    Næsted et al., 2004 
chloroplast mutator (chm)           control of mitochondrial genome        Abdelnoor et al. 2003 
lovastatin-resistant111 (lvr111)  isoprenoid biosynthesis           Estévez et al., 2001 
pale cress (pac)               plastid mRNA processing          Meurer et al., 1998 
white cotyledons (wco)              16S rRNA maturation          Yamamoto et al., 2000 
thylakoid formation1 (thf1)       thylakoid biogenesis           Wang et al., 2004 
atase2 deficient (atd2)              purine synthesis             vd Graaff et al., 2004 
albomaculans (am)        unknown              Röbbelen, 1968 
 

Variegation in Arabidopsis thaliana is caused by defects in several nuclear encoded proteins 

that are localised preferably in the chloroplast, but also in mitochondria (Table 1.1). As all 

plants listed in Table 1.1 are homozygous for the mutated allele, it is still not clarified why the 

defect caused by the mutation is not visible in all cells of the plant. It is suggested that in each 

plant cell there is a threshold in the protein amount or activity that has to be underscored for 

the variegation phenotype to appear [Yu et al., 2007]. 

 

1.6 Previous work on the gene At5g12130 

Based on a database screen for putative plastid located transmembrane proteins with more 

than five transmembrane domains the gene At5g12130 was identified. In his diploma thesis, 

König [2005] confirmed the predicted plastid localisation of the protein via transformation of 

protoplasts from Nicotiana tabacum with a vector coding for a GFP fusion protein. The 

fluorescence of the GFP was localised in chloroplasts, but the exact localisation to either 

envelope membranes or thylakoid membrane could not be clarified. Further database analyses 

revealed that the highly hydrophobic protein consists of 384 amino acids with a molecular 

weight of 41 kDa and contains up to eight transmembrane domains. At5g12130 is a single-

copy gene with no paralogs in Arabidopsis thaliana. Orthologs of the gene could be found in 

other plants like rice and maize, in green algae, in cyanobacteria and in archea. Sequence 

homologies revealed a TerC domain in the protein that is described to function in tellurium 

resistance in Escherichia coli [Burian et al., 2000]]. Knock-out mutants are seedling lethal, so 

only heterozygous plants could be propagated, and terc mutants showed an albino phenotype 

when grown on MS medium. 

During his diploma thesis in 2007, Strissel observed that mutants grown under a very low 

light intensity (4 µEm-2s-1) turned slightly green in the cotyledon stage. The biogenesis of 
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plant pigments seemed not to be affected, because chlorophyll a and b, as well as most of the 

carotenoids, could be detected in these mutant plants via HPLC-analysis. Another 

fluorescence microscopy study of a GFP-fusion protein suggested localisation of TerC in the 

thylakoid membrane. Analyses of the photosynthetic protein complexes by mass spectrometry 

and immunodetection with specific antibodies revealed the presence of thylakoid protein 

complexes like photosystem I with its light harvesting complexes and LHCBII, as well as 

extrinsic subunits of PSII. In contrast, proteins of the PSII core complex could never be 

detected, suggesting a role of At5g12130 in PSII core complex assembly. 

Data published in 2008 by Kwon and Cho confirmed the data derived from the two diploma 

theses. Loss of TerC leads to a pigment defective mutant showing an albino phenotype grown 

on MS medium under normal light conditions. They also propose that the biosynthetic 

pathways of chlorophyll and carotenoid biosynthesis are not affected, because precursors of 

chlorophyll can be found in mutant plants and they also observed the pale green phenotype 

under dim light. Electron microscopy pictures of albino mutants kept in the dark showed the 

presence of prolamellar bodies, as in wild type; however, a disorganisation of the pro 

thylakoid membranes was observed. This suggests a defect in the biogenesis of chloroplast 

due to the loss of TerC protein. Altered plastid gene expression in terc seems not to be the 

reason for the strong effect caused by the loss of this protein as mRNA of psbA can still be 

detected by Northern Blot analysis although the D1 protein cannot be found by 

immunodetection anymore. In conclusion their results the authors suggest two possible 

functions for TerC. One possibility is that TerC represents a component of one of the 

translocation pathways of the thylakoid membrane and assists insertion or translocation of 

proteins into or across the thylakoid membrane. Another option would be a function in the 

biogenesis of the thylakoid membrane, due to the abnormal prothylakoid membrane structure 

in terc observed in ultrastructure pictures of etioplasts [Kwon and Cho, 2008]. 

 

1.7 Aims of the thesis 
In this thesis the exact location and function of TerC in Arabidopsis thaliana is characterised. 

This is achieved by reverse genetics analysis of AtTerC knock-out lines and of amiR-TerC 

lines where the transcript of AtTerC is down-regulated. These lines are characterised at the 

physiological and biochemical level. 

The role of TerC in photosystem II assembly is analysed in more detailed experiments by 

identification of putative interaction partners. Furthermore, with the use of GFP-tagged TerC 
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lines the localisation during PSII assembly is studied. In a final step the obtained data are 

combined to construct a model of TerC function in Arabidopsis thaliana. 
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2. Materials and methods 

2.1 Database analyses and prediction programs 
For online sequence analyses and predictions the following homepages and programs were 

used: 

 NCBI   (http://www.ncbi.nlm.nih.gov/) 
 TAIR   (http://www.arabidopsis.org) 
 TargetP   (http://www.cbs.dtu.dk/services/TargetP/) 
 Aramemnon  (http://aramemnon.botanik.uni-koeln.de/) 
 ATTED   (http://atted.jp/) 
 SIGNAL Salk  (http://signal.salk.edu/cgi-bin/tdna express). 

 

For sequence analyses and alignments the Vector NTI software (Invitrogen) was used. For in-

house mass spectrometry analyses a database on chloroplast membrane and soluble proteins 

[Dr. Bernd Müller], as well as other databases of chloroplast sub fractions [Kleffmann et al.,                                

2004; Zybailov et al., 2008], were applied. 

 

2.2 Plant material and growth conditions 
Two T-DNA knock out lines for the gene At5g12130 were available. The mutant terc-1 

(SALK_014739) was identified in the SALK collection [Alonso et al., 2003], containing an 

insertion in the second intron of the gene. The second mutant line terc-2 (GABI-Kat 844D10) 

contains a T-DNA insertion in the third exon. Both lines were identified by searching the 

insertion flanking database SIGNAL (http://signal.salk.edu/cgi-bin/tdna express). As controls 

for the measurements of photosynthetic parameters (Paragraph 2.6), mutants with defects in 

either the performance of photosystem II (psbo1-2) or in the performance of photosystem I 

(psad1-1) were cultivated. The psbo1-2 plants behaved exactly like psbo1-1 [Murakami et al., 

2005], thus a defect in PSII can be presumed. 

 
Table 2.1: Arabidopsis thaliana mutants cultivated for analyses 

 name of the mutant  AGI accession number  described by  

         terc-1         At5g12130     Kwon and Cho, 2008 
         terc-2         At5g12130     Kwon and Cho, 2008 
           psad1-1        At4g02770     Ihnatowicz et al., 2004 
         psbo1         At5g66570     this thesis (Appendix 1/2) 
 

For equal germination and vernalisation seeds were incubated for two days at 4°C in the dark. 

After sterilization with chlorine gas [Clough and Bent, 1998], Arabidopsis thaliana wild type 

plants (ecotype Col-0) and terc-1 were grown on 1xMS medium supplemented with 1% 
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sucrose under 4 µEm-2s-1 illumination with a day-night cycle of 16:8 h. Plants on soil were 

grown in a growth chamber under controlled conditions (PFD: 100µEm-2s-1; 16:8 h light-dark 

cycle). Fertilisation with “Osmocote Plus” (Scotts Deutschland GmbH) was performed 

according to manufacturer’s instructions.  

 

2.3 Complementation of terc-1 with a GFP-tag 
The coding sequence of AtTerC was cloned into the plant expression vector pB7FWG2 (Plant 

Systems Biology, VIB-Ghent University, Belgium) [Karimi et al., 2002] providing BASTA® 

resistance under the control of a single Cauliflower Mosaic Virus 35S promotor using the 

Gateway system (Invitrogen) and as the entry vector pDonor201 (Invitrogen). By this, the 

TerC protein was fused to the N-terminal part of the green fluorescence protein (GFP) from 

the hydrozoans jellyfish Aequorea victoria [Tsien, 1998]. To check the correctness of the 

sequence, the right orientation and the reading frame, the construct was analysed at an in-

house sequencing service (http://www.genetik.biologie.uni-muenchen.de/sequencing). The 

plasmid pBW7FWG2-TerC was transformed into electro competent Agrobacterium 

tumefaciens (strain GV3108) cells and successfully transformed bacteria were selected on 

YEB medium (beef extract 0.5 g, yeast extract 0.1 g, peptone 0.5 g, sucrose 0.5 g, 

MgSO4*7H2O 30.0 mg, distilled water 100.0 ml and agar 2.0 g) containing 100 µg/ml 

rifampicin, 25 µg/ml gentamicin and 100 µg/ml spectinomycin. Heterozygous terc-1 plants 

were transformed by the floral dipping technique [Clough and Bent, 1998] and BASTA® 

resistant plants were screened for GFP fluorescence in chloroplasts with the Axio Imager 

fluorescence microscope with integrated ApoTome (Zeiss). Homozygous mutants, terc-1TerC-

GFP, were identified by PCR as later described in paragraph 2.5 and the presence of TerC-GFP 

was confirmed by probing with a specific GFP antibody as described in 2.9. 

 

2.4 Generation of amiRNA lines 
The generation of amiR-TerC lines was performed according to Mallory et al. (2004). The 

interference sequence was cloned into the plant expression vector pGWB2 [Nakagawa et al., 

2007] and plant transformation was performed as described above. The ready to use 

constructs were kindly provided by the group of Prof. Dr. Ingo Flügge from the University of 

Cologne. If not described otherwise, for all studies performed with the amiR-TerC plants the 

T2 generation was used. 
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2.5 Nucleic acid analysis 
Genomic DNA was isolated by grinding fresh plant leave material in isolation buffer (200 

mM Tris-HCL [pH 7.5], 250 mM NaCl, 25 mM EDTA and 0.5% SDS) at RT followed by 

isopropanol precipitation. Mutant plants were analysed by polymerase chain reaction (PCR) 

using gene-specific (At5g12130-F and At5g12130-R) and T-DNA-specific primers (SALK-

LB and GK-LB) (Table 2.5). The following PCR program was applied using a Thermal 

Cycler (MJ Mini, Biorad): 

 5 min   95°C 
 30 sec   95°C 
 30 sec    55°C       40 cycles 
 1 min    70°C 
 10 min  70°C 

 

The PCR products were separated on a 1% agarose gel containing TAE buffer (0.04 M Tris-

HCl [pH 8.0], 1 mM EDTA [pH 8.0] and 0.1% acetic acid) and visualised after EtBr staining 

under UV light (BioDoc Analyze, Biometra). 

Total RNA was extracted from grinded Arabidopsis leafs by TRIzol reagent (Invitrogen). 

First strand synthesis was performed using the SuperScriptTM III Reverse Transcriptase 

according to manufacturer´s instructions (Invitrogen, Karlsruhe, Germany). The level of gene 

expression was quantified via real-time PCR (iQ5™ Multi Colour Real-Time PCR Detection 

System, Biorad) using specific primers for AtTerc (real-time-At5g12130-F2 and real-time-

At5g12130-R2) (Table 2.5) and for normalisation the primers on the “housekeeping” gene 

Ubiquitin (real-time-Ubiquitin-F and real-time-Ubiquitin-R) (Table 2.5) and iQ SYBR Green 

Supermix (Biorad) as suggest in the user´s manual with the following program: 

 

 5 min   95°C 
 20 sec   95°C 
 20 sec    55°C       35 cycles 
 30 sec   72°C 
 1 min       70°C 

 

The iQ5™ Optical System Software (Bio-Rad) calculated to level of gene expression and the 

standard deviation according to the following equation [Pfaffl, 2001]: 

 

                                               (E target) ΔCt, target (calibrator- test) 
                                             Ratio = 
                                             (E ref) ΔCt, ref (calibrator- test) 



Materials and Methods 
 

18 
 

The amplification efficiencies of the gene of interest and the control gene Ubiquitin are 

indicated as Etarget and Eref. 

 

2.6 Chlorophyll fluorescence measurements 
To measure the in vivo chlorophyll a fluorescence in single leaves, the Dual-PAM 100 (Walz 

GmbH) system was used according to Pesaresi et al. (2009). For standard PSII measurements 

dark adapted leaves were exposed to a single red light pulse (5.000 µEm-2s-1, 800 ms) and 

maximum fluorescence (FM) was determined, as well as the ground fluorescence, with 

measuring light illumination (F0). The functionality of PSII (FV/FM) was calculated by the 

equation FV/FM = (FM - F0)/FM. After a 10 min exposure to actinic red light (50 µEm-2s-1) a 

second saturation light pulse was applied to measure the maximum fluorescence under 

illumination (FM´) and the steady state fluorescence (FS). The values for the effective PSII 

quantum yield (ФII) and photochemical quenching (qP) were calculated according to the 

following equations [Maxwell and Johnson, 2000]: 

 

ФII = (FM´ - FS)/ FM´ 
qP = (FM´ - FS)/ (FM´ - F0) 

 

In vivo Chl a fluorescence of whole plants was recorded using an imaging chlorophyll 

fluorometer (Walz Imaging PAM, Walz GmbH) by exposing dark-adapted plants to a pulsed, 

blue measuring beam (1 Hz, intensity 4; F0) and a saturating light flash (intensity 4) to obtain 

FV/FM and to actinic light (50 µEm-2s-1) for 10 min to determine ФII as described before. 

PSI activity was monitored using the Dual-PAM 100 according to Klughammer and Schreiber 

(1994). For maximum oxidation of PSI, a far red light illumination was applied to a single 

leaf followed by a saturation pulse (5.000 µEm-2s-1 for 800 ms) to determine Pm (maximum 

P700
+ absorption). Subsequently, actinic light was switched on and every three minutes 

saturation pulses were applied to determine Pm´, the maximum P700
+ absorption under 

illumination. The photochemical quantum yield of PSI, Y(I), defined as the fraction of total 

P700 that is reduced in a given state and is not limited by the acceptor side, was calculated as: 

Y(I) = 1 - Y(ND) - Y(NA), where Y(ND) represents the fraction of total P700 that is oxidised 

in a given state (as a measure of donor side limitation), and Y(NA) is the fraction of total P700 

that is not oxidised by a saturation pulse in a given state, calculated as (Pm - Pm’)/Pm, which 

provides a measure of acceptor side limitation. 
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2.7 Total protein preparation and SDS-PAGE 
Total proteins were isolated from four week old Arabidopsis leaves. Plant material was 

homogenised in isolation buffer (0.1 M Tris [pH8.0], 50 mM EDTA [pH8.0], 0.25 M NaCl, 1 

mM DTT and 0.7% SDS), heated up to 65°C and centrifuged at 15.000 g for 10 min. Prior to 

electrophoresis, 5x SDS-loading buffer (0.225 M Tris-HCl [pH6.8], 50% glycerol, 5% SDS, 

0.05% bromophenol blue and 0.25 M DDT) was added to the samples, that were loaded on an 

acryl amide Tris-Tricine SDS-PAGE gel containing 10% or 12% acryl amide and separated 

according to Schaegger and Jagow (1987). Gels were run at a constant current of 20 mA 

(anode buffer: 0.2 M Tris-HCl [pH 8.9]; cathode buffer: 0.1 M Tris-HCl [pH 8.9], 0.1 M 

Tricine [pH 8.9], 0.1% SDS and 1 mM EDTA). Afterwards, gels were either stained with 

Coomassie staining solution (1.8 g Coomassie R250, 50% methanol and 7% acetic acid) 

followed by a destaining step (40% methanol and 7% acetic acid) until the background of the 

gels was clear or used for Western analyses (Paragraph 2.9).  

 

2.8 Blue Native PAGE and 2D SDS-PAGE 
Leaves from four week old plants were homogenised in ice cold buffer 1 (0.4 M sorbitol and 

0.1 M Tricine-KOH [pH 7.8]) and filtered through two layers of Miracloth (Calbiochem). 

Intact chloroplasts were collected by centrifugation at 2.000 g for 10 min at 4°C (Ja-25.50 

rotor [Beckmann]), resuspended and lysed in ice cold buffer 2 (20 mM HEPES-KOH [pH 

7.5], 10 mM EDTA) for 20 min on ice. Thylakoids were obtained by centrifugation at 12,000 

g for 10 min at 4°C and resuspended in TMK (10 mM Tris-HCL [pH 6.8], 10 mM MgCl2 and 

20 mM KCL). The chlorophyll concentration was measured after acetone precipitation of 

proteins [Porra, 2002] at different wavelengths (A750, A664 and A646). For the first dimension 

of the Blue Native PAGE analysis, proteins equivalent to 50 µg chlorophyll a+b were washed 

with TMK and solubilised in 750 mM ε-aminocaproic acid, 50 mM Bis-Tris [pH 7.0], 5 mM 

EDTA [pH 7.0], 50 mM NaCl and 1.0% β-DM for 20 min on ice. After precipitation of non 

soluble material at 19,000 g for 15 min at 4°C the supernatant was supplemented with 5% 

Coomassie-blue G250 in 750 mM ε-aminocaproic acid and the samples were loaded onto BN 

gel (4-12% acryl amide gels, containing 0.5 M ε-aminocaproic acid, 50 mM Bis-Tris [pH 7.0] 

and 10% glycerol). Overnight electrophoresis was carried out at 4°C (voltage 60 V) with 

cathode running buffer (50 mM Tricine, 15 mM Bis-Tris [pH 7.0] and 0.02% Coomassie 

G250) and anode running buffer (50 mM Bis-Tris [pH 7.0]). When the Coomassie front 

reached half of the gel length the blue cathode buffer was exchanged against a colourless one 
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and the voltage was increased to 300 V. Gel stripes of the first dimension were either blotted 

on PVDF membrane (Paragraph 2.9) or solubilised in denaturing buffer (0.125 M Tris-HCl 

[pH 6.8], 4% SDS and 1mM DTT). For protein separation under denaturing conditions one 

stripe of the blue native gel was incubated for 20 min in SDS loading buffer at room 

temperature and afterwards placed on top of a Tris-Tricine SDS-Gel (Paragraph 2.7). 

 

2.9 Immunoblot analyses 
Protein transfer from the acryl amide gel to a PVDF membrane (Millipore, Germany) was 

performed by use of a semi-dry blotting apparatus [Kyshe-Anderson, 1984] with constant 

current corresponding to 1 mAcm-2 according to Martin et al. (2003). 

 
Table 2.2: List of primary antibodies used for immunoblot analyses 
      name of antibody        target protein           supplier 

 α-D1    PsbA     Agrisera (Sweden) 
 α-D2    PsbD     Agrisera (Sweden) 
 α-CP43   PsbC     Agrisera (Sweden) 
 α-CP47   PsbB     Agrisera (Sweden) 
 α-PsbO   PsbO     Agrisera (Sweden) 
 α-PsbP   PsbP     Agrisera (Sweden) 
 α-PsbQ   PsbQ     Agrisera (Sweden) 
 α-PsbS   PsbS     Agrisera (Sweden) 
 α-LHCB1   LHCB1    Agrisera (Sweden) 
 α-LHCB2   LHCB2    Agrisera (Sweden) 
 α-LHCB3   LHCB3    Agrisera (Sweden) 
 α-LHCB4   LHCB4    Agrisera (Sweden) 
 α-LHCB6   LHCB6    Agrisera (Sweden) 
 α-PsaB   PsaB     Agrisera (Sweden) 
 α-PsaC   PsaC     Agrisera (Sweden) 
 α-PsaD   PsaD     Agrisera (Sweden) 
 α-PsaE   PsaE     Agrisera (Sweden) 
 α-PsaG   PsaG     Agrisera (Sweden) 
 α-PsaK   PsaK     Agrisera (Sweden) 
 α-PsaL   PsaL     Agrisera (Sweden) 
 α-LHCA2   LHCA2    Agrisera (Sweden) 
 α-LHCA3   LHCA3    Agrisera (Sweden) 
 α-LHCA4   LHCA4    Agrisera (Sweden) 
 α-LPA1   LPA1    Peng et al., 2006 
 α-LPA2   LPA2    Ma et al., 2007 
 α-ALB3   ALB3    Gerdes et al., 2006 
 α-ALB4   ALB4    Gerdes et al., 2006 
 α-PAM68   PAM68    Armbruster et al., 2010 
 α-PetB   Cyt b6    Agrisera (Sweden) 
 α-POR   POR C    Agrisera (Sweden) 
 α-RbcL   large subunit of RubisCO Agrisera (Sweden) 
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 α-Actin   Actin     Dianova (Germany) 
 α-GFP   eGFP     Invitrogen (Germany) 
 

Successful transfer of proteins from the gel to the PVDF membrane was proved by treating 

the membrane with a staining solution (0.02% Coomassie R250 and 50% methanol) for 5 min 

followed by a destaining step with 50% methanol until the background of the membrane was 

colourless. 

Afterwards membranes were probed with specific antibodies raised against several subunits of 

PSI, PSII, Cyt b6/f and other plastid proteins according to standard protocols [Sambrook et al., 

1989].  
 

 

Table 2.3: List of secondary antibodies used for immunoblot analyses 
       name of antibody       target protein           supplier 

 α-rabbit   IgG     Sigma-Aldrich (Germany) 
 α-chicken   IgY     Sigma-Aldrich (Germany) 
 α-mouse   IgG     abCAM (UK) 
 

Signals were detected by enhanced chemo luminescence (ECL kit, Amersham Bioscience) 

using an ECL reader (Fusion FX7, Peqlab) and the Fusion software (Peqlab). The 

quantification of the signals was performed by the amount of pixels using Photoshop (Adobe). 

 

2.10 In vivo labelling of Arabidopsis thaliana proteins (pulse-chase labelling) 
Leaves from two to three week old plants were cut with a razorblade and infiltrated with 

TMK buffer containing 20 µg/ml cycloheximide to block nuclear protein synthesis and 0.2% 

Tween20. After 30 min of pre incubation [35S]-methionine was added to the reaction (1 mCi 

final concentration) and the leaves were again infiltrated. Labelling of newly synthesised 

plastid proteins occurred under illumination with 150 µEm-2s-1 at RT for 20 min (pulse). Plant 

material was either used for protein analysis as described in paragraphs 2.7 and 2.8 or 

subjected to a treatment with 10 mM cold methionine (chase) prior to electrophoresis. Protein 

gels were dried and radioactive signals were quantified using a phosphoimager (Typhoon, GE 

Healthcare) and the IMAGE Quant program (Molecular Dynamics, version 1.2). 

 

2.11 Sucrose gradient centrifugation 
Thylakoids from four week old WT and terc-1Terc-GFP plants were isolated as described in 2.8. 

After washing with 5 mM EDTA [pH7.8], the thylakoids were diluted with water to a final 
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concentration of 1 mg/ml and solubilized with a final concentration of 0.5% dodecyl-β-D-

maltoside (Sigma) for 20 min on ice. The non-solubilized membranes were pelleted by 

centrifugation at 19,000 g for 20 min at 4°C and one milliliter was loaded on top of a sucrose 

gradient. The sucrose gradients were prepared by freezing 10 ml of 0.4 M sucrose, 20 mM 

Tricine-NaOH pH7.5, 0.06% β-DM at -80°C for two hours and thawing the solution at 4°C. 

The gradients were ultra centrifuged at 39,000 rpm (SW40 swing-out rotor) for 21 h at 4°C 

(Optima MAX-XP, Beckman Coulter). In total 14 fractions were obtained from one gradient. 

After normalising the fractions to the chlorophyll concentrations of fraction 13 (PSI), all 

fractions were separated on a 12% Tris-Tricine SDS-gel (Paragraph 2.7). 

 

2.12 Split Ubiquitin assay 
To analyse putative protein-protein interactions of TerC with other plastid proteins, the coding 

sequence of AtTerC was cloned into pAMBV4 vector and used as a bait protein fused to the 

C-terminal part of Ubiquitin (Cub) in the Split Ubiquitin assay.  

 
Table 2.4: List of 22 proteins analysed in split ubiquitin interaction studies in Saccharomyces serviciae 
 

AGI accession number        name of protein            used vector 

 At5g12130    TerC     pAMBV4  
 AtCg00020    D1 (PsbA)    pADSL 
 AtCg00680    CP47 (PsbB)   pADSL 
 AtCg00280    CP43 (PsbC)   pADSL 
 AtCg00270    D2 (PsbD)    pADSL 
 AtCg00580    PsbE     pADSL 
 AtCg00710    PsbH     pADSL 
 At5g66570    PsbO     pADSL 
 AtCg00350    PsaA     pADSL 
 AtCg0340    PsaB     pADSL 
 AtCg00720    PetB     pADSL 
 AtCg00150    AtpI     pADSL 
 At1g10960    Fd     pADSL 
 At1g02910    LPA1    pADSL 
 At5g51545    LPA2    pADSL 
 At5g23120    HCF136    pADSL 
 At4g19100    PAM68    pADSL 
 At2g28800    ALB3    pADSL 
 At1g24490    ALB4    pADSL 
 At2g45770    cpFtsY    pADSL 
 At4g14870    cpSecE    pADSL 
 At2g18710    cpSecY    pADSL 
 
The sequence coding for TerC was cloned into pAMBV4 used as bait in the study. All other sequences were 
cloned into pADSL and acted as the prey. 
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For interaction studies the coding sequences of several mature thylakoid proteins were cloned 

in the vector pADSL as prey proteins fused to the modified N-terminal part of Ubiquitin 

(NubG), which is not able to interact with Cub due to an exchange of an amino acid. Both 

Cub and NubG are only able to reassemble Ubiquitin if they are fused to proteins that are 

interacting with each other thus bringing Cub and NubG in close proximity. As a negative 

control the plasmid pAlg5-NubG, which encodes the ER membrane protein Alg5 fused to 

NubG, was used for co-transformation. Because NubI, which encodes the WT Nub, and Cub 

reassemble spontaneously to reconstitute Ubiquitin, Alg5, that is not interacting with any 

plastid protein, fused to NubI was used as a positive control. The interaction studies were 

performed in the lab of Prof. Dr. Danja Schünemann at the University of Bochum using the 

Dual-Membrane kit (Dualsystems Biotech AG) according to manufacturer´s instruction as 

described by Pasch et al. (2005). 

 

2.13 Topology studies of TerC 
Thylakoids from four week old WT and terc-1TerC-GFP plants were isolated as described in 

paragraph 2.8. For salt treatments according to Karnauchov et al. (1997) the thylakoids were 

resuspended in 50 mM HEPES/KOH pH 7.5 at a chlorophyll concentration of 0.5 mg/ml and 

treated with either 2 M NaCl, 0.1 M Na2CO3, 2 M NaSCN, 0.1 M NaOH and as a control no 

salt for 30 min on ice. Soluble and membrane bound proteins were separated by centrifugation 

at 10,000 g for 10 min at 4°C, both fractions were separated on 12% Tris-Tricine SDS-gels 

and proteins were detected by Western analysis using specific antibodies (Paragraph 2.7). 

For thermolysin treatment, the thylakoids were isolated as described in paragraph 1.8 without 

adding protease inhibitors and finally resuspended in HM-buffer (10 mM HEPES-KOH [pH 

8.0] and 5mM MgCl2) at a concentration of 50 µg chlorophyll/ml. Thermolysin was added to 

a final concentration of 50 µg/ml and the thylakoids were incubated for 30 min on ice. The 

reaction was stopped by adding EDTA [pH 8.0] to final concentration of 20 mM. The 

thylakoids were pelleted by centrifugation at 15,000 g for 10 min at 4°C, resuspended in 100 

µl homogenisation buffer and solubilised by adding SDS to a concentration of 2% [Peng et 

al., 2006]. After pelleting insoluble material, proteins were loaded on a 12% Tris-Tricine 

SDS-gel according to equal amounts of chlorophyll (1.5 µg chl) and investigated by 

immunoblot analysis (Paragraph 2.7). 
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2.14 Electron microscopy 
Seeds of wild type and terc-1 plants were sent to the lab of PD Dr. Stefan Geimer at the 

University in Bayreuth. 1-week-old plants were taken for transmisssion electron microscopy 

and fixed with 2% glutaraldehyde in 50 mM phosphate buffer, pH 7.4, overnight at 4°C. 

Samples were postfixed in 1% osmium tetroxide for 8 h on ice, dehydrated in a graduated 

acetone series, including a step with 1% uranylacetate (in 50% acetone, 2 h), embedded in 

Spurr's resin, and polymerized at 50°C for ∼72 h. Ultrathin sections (60 to 70 nm) were cut 

with a diamond knife (Micro Star, USA) on a Leica Ultracut UCT microtome (Leica 

Microsystems, Austria) and mounted on pioloform-coated copper grids. The sections were 

stained with lead citrate and uranyl acetate and viewed with a Zeiss EM 109 transmission 

electron microscope (Carl Zeiss, Germany) at 80 kV. Micrographs were taken using SO-163 

EM film (Kodak, USA).  

For scanning electron microscopy, released pollen grains were mounted on stubs and sputter-

coated with gold particles (S150A, UK). Specimens were examined with a scanning electron 

microscope (XL 30 ESEM; Philips, The Netherlands) at an accelerating voltage of 15 kV.  

 

2.15 Isolation of protoplasts and fluorescence microscopy 
Leaves of four-week-old terc-1TerC-GFP plants were cut into thin strips with a new razor blade 

and incubated with call wall lysis buffer (20 mM KCl, 10 mM MES pH 5.7, 10 mM CaCl2, 

0.5 M mannitol, 0.1% BSA, 0.1 g/ml macerozyme (Duchefa) and 0.1 g/ml cellulase 

(Duchefa)) in the dark for three hours. The isolated protoplasts were collected by 

centrifugation with 50 g for 5 min and afterwards washed with washing buffer (20 mM KCl, 

10 mM MES pH 5.7, 10 mM CaCl2 and 0.5 M mannitol). Protoplasts were analysed using a 

Axio Imager fluorescence microscope with integrated ApoTome (Zeiss). The X-Cite Series 

120 fluorescence lamp (EXFO) was used to excite the GFP fluorescence at a range of 

wavelength from 505 to 530 nm and the autofluorescence of the chlorophyll at 670 to 750 nm. 

 

2.16 Oligonucleotides 
Primers used for genotyping, RT-PCR, real-time analyses and cloning were ordered from 

Metabion (Germany). The following table shows the sequences of the primers in 5´- 

3´orientation.  

 

 



Materials and Methods 
 

25 
 

 

Table 2.5: List of all primers used for PCR in 5´to 3´ orientation 
name of primer    sequence 5´- 3´ 

At5g12130-F1       CAGTTATCCACCACGGAATTCTCC 
At5g12130-R1         TTGCTCCAATATGTAGCTGCAAGA 
Salk-LB        GTCCGCAATGTGTTATTAAGTTGTC 
GK-LB            ATATTGACCATCATACTCATT 
real-time-At5g12130-F2 TCTTCATCAGTAGATAGTGG 
real-time-At5g12130-R2 TATTCTGATACATGAGTGGC 
real-time-Ubiquitin-F      GGAAAAAGGTCTGACCGACA 
real-time- Ubiquitin R      CTGTTCACGGAACCCAAT TC 
At5g12130-att-B1      GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGC 
At5g12130-att-B1      GGGACCAGCACTTTGTACAAGAAAGCTGGGTGGCTGTCG 
SU- terc-F1       GCTCTAGAAAAAATGAGCTTAGCTTCAGTTATCCACC 
SU- terc -F2                   GCTCTAGAAAAAATGCTTGCTTCAGCTGCCAATCGTCGT 
SU- terc -R             GCCCATGGCTGTCGCTGGATTTGTTTGTTAG 
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3. Results 

3.1 Phenotype of terc-1  
Two full knock-out T-DNA insertion lines for the gene At5g12130, terc-1 (SALK_014739) 

and terc-2 (GABI-Kat 844D10), could be identified [Strissel, 2007; Kwon and Cho, 2008] 

showing the same phenotype under all investigated growth conditions. Grown on soil, both 

lines are seedlings lethal or die after the cotyledon stage (data not shown). Mutants, that were 

cultivated on MS-medium supplemented with 1% sucrose in a growth chamber with 100 

µEm-2s-1 or 40 µEm-2s-1 illumination, showed a full albinotic phenotype [Strissel, 2007; Kwon 

and Cho, 2008]. Only when grown under 4 µEm-2s-1 illumination, the cotyledons of wild type 

plants as well as the cotyledons of the mutants turned green (Figure 3.1).  

Figure 3.1: Growth phenotype of a 1-week-old wild type plant and a terc-1 mutant 

Both lines were cultivated on MS-medium under controlled conditions in a growth chamber with 4 µEm-2s-1 
illumination under a long day light cycle. 
 

Growth of both wild type and terc-1 plants was arrested in the cotyledon stage under this light 

condition and did not develop true leaves. The cotyledons of terc-1 were much paler and 

smaller compared to wild type. 

Cotyledons of both, wild type and terc-1, were analysed by transmission electron microscopy 

(TEM). The mesophyll cells of both lines contained intact chloroplasts, but the structure of 

the thylakoid membrane differed markedly between wild type and mutant plants (Figure 3.2). 

While thylakoids of wild type plants contained both, grana and stroma lamellae, the thylakoid 

membrane of terc-1 consisted only of stroma lamellae. 
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Figure 3.2: Transmission electron microscopy (TEM) picture of wild type and terc-1 mesophyll cells 

Cells of both lines contain intact chloroplasts. The structure of the thylakoid membrane differs between wild type 
and terc-1. Wild type thylakoids contain both grana and stroma lamellae, whereas terc-1 thylakoid membranes 
consist exclusively of stroma lamellae. The stroma lamellae contain PSI and ATPase complexes and in the grana 
lamellae the PSII complexes are located. 
 

3.2 Phenotype of amiR-TerC  
Since knock-out mutants of AtTerC are not viable on soil or on MS-medium, knock-down 

lines of AtTerC were generated. Therefore, a short complementary sequence of AtTerC was 

cloned into the plant expression vector pGWB2 under the control of the 35SCaMV promotor 

and transformed into 15 wild type plants. All 34 hygromycin resistant transformants (amiR-

TerC) showed a variegated leaf phenotype in the T1 generation and were able to grow photo-

autotrophically on soil (Figure 3.3). As all independently transformed plants showed the 

same phenotype, it can be excluded that the variegated phenotype resulted from a T-DNA 

insertion within the reading frame of an unknown gene. 

 

 
Figure 3.3: Growth phenotype of 3-week-old wild type and amiR-TerC (T2) plants 

Plants were grown under controlled conditions in a growth chamber with 100 µEm-2s-1 illumination under a long 
day light cycle (16/8 h light/dark). 
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To evaluate the degree of down regulation by the artificial micro RNA construct, amiR-TerC 

lines were analysed regarding the transcript level of AtTerC. For that, real-time PCR analyses 

on cDNA derived from wild type and amiR-TerC plants were performed. The transcript level 

of AtTerC was down-regulated to less than 10% in the T2 generation of amiR-TerC compared 

to wild type (Figure 3.4). 

Figure 3.4: Transcript analyses of AtTerC in wild type and amiR-TerC plants 

Real-time PCR analyses revealed the relative transcript level of AtTerC. In the T2 generation of amiR-TerC the 
amount of transcript is reduced to less than 10% compared to wild type (A). In the T3 generation the transcript 
level of AtTerC in variegated leaves (amiR-TerC (T3) var+) was about 20% compared to wild type whereas the 
transcript levels were only reduced to around 30% in non variegated leaf tissue (amiR-TerC (T3) var-) (B). 
 

However, an increase of AtTerC transcript levels in the T3 generation of amiR-TerC 

compared to plants of the T2 generation was observed. 

 

To investigate the effect of light intensity on the growth of amiR-TerC (T2), plants were 

grown for one week under 100 µEm-2s-1 illumination in a growth chamber under controlled 

conditions. Afterwards plants were separated and further cultivated under high light (HL: 

1000 µEm-2s-1), moderate light (ML: 100 µEm-2s-1) or low light (LL: 5 µEm-2s-1) for another 

16 days. After the first week, during which all plants were grown under 100 µEm-2s-1, a slight 

reduction in plant growth was observed for the amiR-TerC plants compared to wild type 

plants (Figure 3.5). 
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Figure 3.5: Growth phenotype of wild type and amiR-TerC (T2) plants 

Plants were first grown under controlled conditions in a growth chamber with 100 µEm-2s-1 illumination for one 
week. Afterwards plants were either illuminated with 1000 µEm-2s-1 (HL), 100 µEm-2s-1 (ML) or 5 µEm-2s-1 
(LL). 
 

After switching the plants to LL and ML conditions, this difference in plant size stayed for the 

following 16 days and the variegated leaf phenotype in amiR-TerC persisted. After the first 

day of high light treatment, leaves of wild type plants obtained a purple colouration due to 

anthocyanine production, indicating a stress reaction. This effect could not be observed in 

amiR-TerC plants. In contrast to the maintenance of leaf variegation under low light and 

moderate light conditions, the leaf variegation phenotype decreased under HL after 11 days. 

After another 5 days, only the midribs of the amiR-TerC leaves were paler compared to those 

of wild type plants.  

As mentioned above, the amiR-TerC plants grown under LL and ML stayed smaller compared 

to wild type plants until the end of the 16 days of light treatment. Interestingly, the amiR-TerC 
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plants under high light were slightly bigger than wild type plants and flowering started earlier 

in the amiR-TerC plants. 

Additionally, wild type and amiR-TerC plants were grown under different light-dark cycles. 

Plants that grew under a 16/8 h light/dark rhythm (long day) showed a stronger increase in 

biomass production for all lines (WT, amiR-TerC (T3) and amiR-TerC (T4)) compared to 

12/12 h and 8/16 h light/dark. After reducing the light period to 12 h the size of wild type 

plants was only slightly reduced, whereas the size of the amiR-TerC plants was drastically 

decreased. This effect was even more pronounced under short day conditions (8/16 h 

light/dark cycle) (Figure 3.6). 

 
Figure 3.6: Growth phenotype of 3-week-old wild type, amiR-TerC (T3) and amiR-TerC (T4) plants 

Plants were grown under controlled conditions in a growth chamber with 100 µEm-2s-1 illumination under 
different light/dark cycles. 
 

Similar to the effect on the expression level of AtTerC, where an increase of AtTerC 

expression in the amiR-TerC plants could be observed from one generation to the next 

(Figure 3.4), the decrease in biomass production was also declined. In addition, in plants of 

the T2 generation, where the expression of AtTerC is reduced most strongly, every leaf of a 

mature plant showed the variegated phenotype (Figure 3.3), whereas plants of the T3 

generation produced some leaves that were indistinguishable from wild type leaves. T4 

generation plants produced 50% variegated and non variegated leaves (Figure 3.6). Another 
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effect observed between the different generations of amiR-TerC plants was the better growth 

performance of the T4 generation compared to the T3. After shortening light period, the size 

of the amiR-TerC (T3) plants was reduced drastically compared to wild type plants whereas 

growth deficiency in the T4 generation was less severe. 

The increasing AtTerC transcript levels, the higher biomass production from one generation to 

the other and the decrease of white sectors in the leaves suggest a silencing of the artificial 

micro RNA interference in subsequent generations. Transcript analyses from the levels of 

AtTerC-mRNA in the variegated and non variegated leaf tissue of the T3 generation plants 

(Figure 3.4), suggest that a transcript level of about 25% compared to wild type constitutes a 

threshold that, if fallen below, causes the leaf variegation phenotype in amiR-TerC plants. 

 

3.3 Complementation of the mutation 
Since knock out lines of AtTerC are not able to grow photoautotrophically, heterozygous terc-

1 plants as well as wild type plants were used for transformation with a plant expression 

vector bearing the coding sequence of AtTerC N-terminal fused to GFP under the control of a 

35SCaMV promotor (pBW7FWG2-TerC). Basta® resistant plants were screened by PCR to 

identify complemented lines that were homozygous for terc-1 and contained the GFP coding 

sequence fused to TerC (Figure 3.7). 

 
 
Figure 3.7: PCR analyses of plants transformed with pBW7FWG2-TerC 

Wild type and terc-1 plants transformed with pBW7FWG2-TerC were analysed by PCR. The homozygosity of 
terc-1 was confirmed using gene specific and T-DNA specific primers. The presence of the transformed 
construct was confirmed using a GFP specific primer. 
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To verify that TerC-GFP is complementing the terc-1 mutation on transcript level, real-time 

PCR analyses were performed to measure the amount of AtTerC transcript in terc-1TerC-GFP 

and in WTTerC-GFP. The transformation of wild type plants with pBW7FWG2-TerC lead to a 

20 fold accumulation of AtTerC compared to non-transformed wild type plants. The terc-

1TerC-GFP plants showed  double the amount of AtTerC transcript as the wild type (Figure 3.8). 

 

 
Figure 3.8: Transcript analyses of AtTerC in wild type, terc-1TerC-GFP and WTTerC-GFP plants 

Real-time PCR analyses revealed the relative transcript level of AtTerC. In terc-1TerC-GFP plants the amount of 
transcript was twice as high as in wild type. The WTTerC-GFP plants revealed a 20 fold overexpression of AtTerC 
compared to wild type plants. 
 

Regarding the visual phenotype, the WTTerC-GFP plants did not show any difference in growth 

or colouration compared to wild type. In contrast, the terc-1TerC-GFP plants had a variegated 

phenotype similar to the one of amiR-TerC plants (Figures 3.3 and 3.9), and were able to 

grow photoautotrophically. 
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Figure 3.9: Growth phenotype of 3-week-old wild type, terc-1TerC-GFP and WTTerC-GFP plants 

Plants were grown under controlled conditions in a growth chamber with 100 µEm-2s-1 illumination under a long 
day light/dark cycle. 
 

To verify the expected thylakoid membrane localisation of the TerC-GFP fusion protein, 

protoplasts were isolated from leaves of terc-1TerC-GFP and WTTerC-GFP plants. In both cases, a 

GFP specific signal could be detected in the chloroplasts of the isolated protoplasts (Figure 

3.10).  

 

 
Figure 3.10: Fluorescence images of terc-1TerC-GFP protoplasts 

Intact protoplasts (A) were analyzed with an Axio Imager fluorescence microscope. The autofluorescence of 
chlorophyll is shown in red (B) and the GFP fluorescence in green (C). The merged picture (D) indicates the 
overlap of both signals. In this figure only protoplasts isolated from terc-1TerC-GFP are shown. The analysis of 
protoplasts from WTTerC-GFP revealed the same results. 
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The merged signals of the GFP fluorescence and the autofluorescence of chlorophyll in the 

isolated chloroplasts (Figure 3.10) verified the expected localization of the fusion protein in 

the thylakoid membrane. 

 

3.4 Topology studies on the TerC protein  
TerC is predicted to be an integral membrane protein with up to 8 transmembrane domains 

(Aramemnon: http://aramemnon.botanik.uni-koeln.de/). Due to its high hydrophobicity, it was 

not possible to generate a functional antibody. Thus, the TerC-GFP fusion protein was used 

for topology studies. To clarify whether the fusion protein behaves as an integral membrane 

protein, salt treatment experiments with isolated thylakoids from terc-1TerC-GFP were 

performed using 2M NaCl, 0.1 M Na2CO3, 2M NaSCN, 0.1 M NaOH or no salt. 

 

 
Figure 3.11: Salt treatment of isolated thylakoids from terc-1TerC-GFP 

The GFP-antibody was used to localise the TerC-GFP fusion protein in either the pellet (p) or the supernatent (s) 
after salt treatment. Antibodies agains Lhcb2 (membrane integral protein) and PsaD (membrane extrinsic 
protein) were used as controls. 
 

Regardless of the salt treatment, the GFP specific signal always derived from the pellet 

fraction, indicating a very strong association of TerC with the thylakoid membrane (Figure 

3.11). The same result was obtained for Lhcb2 which is known to be a membrane spanning 

protein. In contrast to Lhcb2 and TerC, the PsaD protein could be partially washed off the 

membrane with NaSCN, a chaotropic salt, and completely with alcalic NaOH, indicating that 

it is located more peripheral in the thylakoid membrane. 

In the TerC-GFP fusion protein, the GFP-tag is fused to the C-terminus of TerC. This 

constellation allowed the investigation of the membrane orientation of the GFP-tag. By 

adding thermolysin to intact thylakoids of terc-1TerC-GFP plants, the orientation of the C-
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terminal part of TerC could be determined as it is either digested by thermolysin facing the 

stroma or protected by the thylakoid membrane if facing the lumen. 

 
Figure 3.12: Thermolysin treatment of intact thylakoids of terc-1TerC-GFP 

The GFP-antibody was used to detect the C-terminal part of the TerC-GFP fusion protein. As controls, the 
lumenal protein PsbO and the stroma exposed extrinsic protein PsaD were analysed. 
 

As expected, no GFP signal was detectable in the wild type sample. Both, terc-1TerC-GFP and 

WTTerC-GFP samples showed a GFP signal only in the non thermolysin-treated samples 

(Figure 3.12). The presence of PsbO in the thermolysin-treated samples indicated that 

thermolysin was not able to cross the intact lipid bilayer leading to a partial digestion of PsbO. 

The accessable stromal part of PsaD was digested completely by thermolysin leading to shift 

in the protein size. Alltogether, these findings suggest a stromal orientation of the GFP at the 

C-terminus of TerC. 

 

3.5 Photosynthetic performance  
The photosynthetic parameters of amiR-TerC, terc-1TerC-GFP and WTTerC-GFP plants were 

determined using the Dual-PAM 100 and compared to values of wild type plants. In the knock 

down-line amiR-TerC the maximum quantum yield (FV/FM), the effective quantum yield (ФII) 

and the non photochemical quenching (NPQ) were reduced compared to wild type, whereas 

the reduced state of the primary electron receptor (QA), measured on 1-qP, was not 

significantly changed (Table 3.1). These results suggest a defect in the electron flow through 

PSII in amiR-TerC. The defect in the FV/FM could be complemented by expressing TerC-GFP 

in terc-1 mutant plants under the control of the 35SCaMV promotor (terc-1TerC-GFP), but the 

ФII stayed decreased and the fraction of reduced QA (1-qP) was about twice as high in terc-

1TerC-GFP compared to wild type plants (Table 3.1).  
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Table 3.1: Parameters of chlorophyll a fluorescence obtained from wild type, amiR-TerC, terc-1TerC-GFP and 
WTTerC-GFP plants 
 
      Parameter  wild type  amiR-TerC  terc-1TerC-GFP WTTerC-GFP 

            FV/FM         0.82 ± 0.03  0.70 ± 0.08  0.81 ± 0.01  0.81 ± 0.01  
              ФII         0.78 ± 0.04  0.52 ± 0.08  0.66 ± 0.03  0.74 ± 0.01 
     1-qP         0.07 ± 0.02  0.09 ± 0.03  0.15 ± 0.02  0.07 ± 0.01 
             NPQ           0.18 ± 0.03  0.08 ± 0.03  0.13 ± 0.03  0.17 ± 0.03 
For each genotype the mean values and standard deviation of 5 plants are shown. Actinic light intensity was 70 
µEm-2s-1. For plants transformed with the pBW7FWG2-TerC construct, the data of one individual transformed 
line are listed. (FV/FM: maximum quantum yield of PSII; ФII: effective quantum yield of PSII; 1-qP: excitation 
pressure on PSII; NPQ: non photochemical quenching) 
 

Supporting evidences were optained using an Imaging PAM where the chlorophyll a 

fluorescence can be meassured in vivo across a whole plants leaf surface. The amiR-TerC 

plants showed a moderatly reduced FV/FM and ФII in the green sectors of the leaves (Figure 

3.13 (A)). The white leaf sectors showed a stronger reduction in these values. Vice versa, the 

ground flourescence (F0) was increased in amiR-TerC plants. These observations are in 

accordance with the graphs recorded by the Dual-PAM 100. The value for F0 was increased in 

amiR-TerC compared to wild type and  additionally some characteristic features of the wild 

type graph were missing in the knock-down line. After switching on the actinic light a strong 

increase in chlorophyll fluorescence could be observed that was quickly reduced with two 

short intermediate rises in chlorophyll a fluorescence. The first intermediate rise derived from 

limitations downstream of PSI due to the light dependent regulation of the FNR (ferredoxin 

NADP oxidoreductase) [Ilik et al., 2006]. The second intermediate rise is coming from a delay 

due to light  activation of FTR (ferredoxin:thioredoxin reductase), a key enzyme of the Calvin 

cycle [Lindahl et al., 2009]. These two intermediate increses in fluorescence were absent in 

amiR-TerC and instead a drop of the fluorescence below the F0 level was observed. The 

increase in F0 fluorescence could be resored after switching off the actinic light for 5 min 

(Figure 3.13 (B)).  

In contrast to the amiR-TerC plants, terc-1TerC-GFP and WTTerC-GFP did not show any difference  

compared to wild type plants regarding the in vivo chlorophyll measurement using the 

Imaging PAM (Figure 3.13 (C)). This supports the suggestion above, that in terc-1 the TerC-

GFP fusion protein is fully complementing the defect in FV/FM. 
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Figure 3.13: Photosynthetic performance of wild type, amiR-TerC, terc-1TerC-GFP and WTTerC-GFP 

In vivo chlorophyll a fluorescence measurement of WT, amiR-TerC, terc-1TerC-GFP and WTTerC-GFP were 
performed using the imaging PAM (A and C) ((FV/FM: maximum quantum yield of PSII; ФII: effective quantum, 
yield of PSII and F0: ground fluorescence) or the fluorescence of WT and amiR-TerC was recorded with the 
Dual-PAM 100 (B). 
 

The previous measurements mainly focused on the PSII activity. Further spectroscopic 

analyses were performed to investigate the photosynthetic parameters of PSI. The maximum 

absorption value of P700
+ (Pm) from the fully reduced to the fully oxidized state and the 

change of P700 absorption under steady state fluorescence (Pm`) in amiR-TerC were reduced 

by 50% compared to wild type, indicating a decreased amount of PSI present in the mutants 

(Figure 3.14). The photochemical quantum yield of PSI (Y(I)) and the electron transport rate 

around PSI (ETR(I)) were only slightly reduced in amiR-TerC.  

The increase of about 50% in the donor side limitation in amiR-TerC compared to wild type 

and the not altered value for the acceptor side limitation in these two genotypes further 

suggests a defect upstream of PSI in the knock-down mutant (Figure 3.14). 
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Figure 3.14: Parameters of PSI photosynthetic performance in wild type and mutant plants 

P700
+ absorption measurements of photosynthetic parameters from PSI were performed on wild type (Col-0 and 

Noessen), amiR-TerC, psbo1 [this thesis] and psad1-1 [Ihnatowicz et al., 2004] plants. Mean values and standard 
deviation for five plants each genotype are presented. Pm, the maximal change of the P700 signal upon 
quantitative transformation of P700 from the fully reduced to the fully oxidized state; Y(I), the photochemical 
quantum yield of PSI; ETR (I), the electron transport rate around PSI; Y(ND), the fraction of overall P700 that is 
oxidized in a given state (provides a measure of PSI donor side limitation); Y(NA), the fraction of overall P700 
that cannot be oxidized by a saturation pulse in a given state (provides a measure of PSI acceptor side 
limitation). 
 

3.6 Protein profile of terc-1 and amiR-TerC plants 
As the knock-out of the AtTerC gene led to albinotic mutants which were only able to produce 

green cotyledons under very low light intensities (Figure 3.1). The presence of chloroplast 

localized proteins localized in the chloroplasts was investigated via immunodetection. 

Therefore, total protein extracts of both wild type and terc-1 plants were separated on Tris-

Tricine SDS gels, blotted on PVDF membranes and probed with specific antibodies against 
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subunits of PSI, PSII, LHCI, LHCII and the Cytochrome b6/f complex, as well as proteins 

involved in PSII assembly, the POR protein, ferredoxin and the large subunit of the RubisCO. 

The protein loading was adjusted on the basis of equal amounts of Actin (Figure 3.15). 

 

 
Figure 3.15: Protein content of wild type and terc-1 plants 

Total protein extracts of wild type and terc-1 were separated via Tris-Tricine SDS-PAGE and afterwards 
immunoblot analyses were performed. Specific antibodies against proteins of the PSII (A), the Lhcb (B), 
assembly factors of PSII (C), the PSI (D), the Lhca (E) and miscellaneous proteins (F) were used for protein 
detection. 
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The detection of subunits of the photosystem II revealed that the four core proteins, D1, D2, 

CP43 and CP47, as well as PsbH were completely absent in terc-1 plants. In contrast, the 

three proteins PsbO, PsbP and PsbQ which are located in the lumen and build up the water 

splitting complex were present in the knock-out mutant, although the protein amount was 

decreased compared to wild type plants. The additional bands on the Westerns against CP43 

and PsbP derived from unspecific binding of the respective antibody (Figure 3.15 (A)). 

Except for PsaK and ferredoxin (Fd), all other analysed proteins could be detected in terc-1 

plants. This result shows that terc-1 is able to synthesize LHCII (Figure 3.15 (B)), PSI 

(Figure 3.15 (D)) and LHCI (Figure 3.15 (E)) as well as assembly factors of PSII (Figure 

3.15 (C)) and other proteins (Figure 3.15 (F)). However, the protein complex that is most 

drastically affected by the knock-out of AtTerC is the photosystem II. 

To confirm the observations made in the knock-out mutant terc-1 the same analyses were 

performed with the knock-down line amiR-TerC (Figure 3.16). The interpretation was mainly 

focused on the subunits of photosystem II, as the previous results suggested a major defect in 

the protein composition of this complex. The main difference of amiR-TerC and terc-1 was 

the presence of the core proteins of PSII in amiR-TerC (Figure 3.16 (A)). Although the 

amount of the tested proteins was still decreased compared to wild type plants, the effect of 

AtTerC down-regulation was not as strong as the complete knock-out of the gene. As the 

protein amount of wild type and amiR-TerC samples was adjusted to the same amount of 

chlorophyll a+b, the signals derived from immunodetection were quantified and calculated on 

the basis of Actin (100%) in wild type and amiR-TerC samples (Figure 3.16 (G)). 

Interestingly, after this recalculation most of the analysed proteins, especially the subunits of 

PSI, LHCI, LHCII and the miscellaneous proteins, showed a decrease in their amount of 

around 30% compared to the wild type signal. In total, three proteins, D2, ALB4 and LPA1, 

were identified to be up-regulated in amiR-TerC plants. As the main focus was on the 

subunits of PSII, it was interesting to see, that the amounts of D1 (88%) and the CP47 (79%) 

were only slightly decreased, whereas the amount of CP43  in amiR-TerC plants was severely 

decreased to only 45% compared to wild type level. 
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Figure 3.16: Protein content of wild type and amiR-TerC plants 

Total protein extracts of wild type and amiR-TerC were separated via Tris-Tricine SDS-PAGE and afterwards 
immunoblot analyses were performed. Specific antibodies against proteins of the PSII (A), of the Lhcb (B), 
known to be assembly factors of PSII (C), of the PSI (D), of the Lhca (E) and miscellaneous proteins (F) were 
used for protein detection. Signals from A to F were quantified and adjusted to equal levels of Actin in wild type 
and amiR-TerC samples (100%)  (G). 
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3.7 Blue native gel analysis of amiR-TerC 
A decrease in the yield of photosystem II, the complete absence of PSII core proteins in terc-1 

and a reduction of these proteins in amiR-TerC led us to study the composition of 

photosynthetic complexes in the knock-down line. To investigate these complexes, blue 

native PAGE and second dimension gels under denaturing conditions were performed (Figure 

3.17 (A)). The trimeric LHCII (V), the monomeric PSII (III), the dimeric PSII (II) and the 

PSII-supercomplexes were slightly reduced in amiR-TerC. In contrast to these complexes, the 

amount of the CP43-PSII complex was enriched in amiR-TerC plants compared to wild type 

after solubilisation of thylakoids with 1% β-DM. This severe difference between wild type 

and amiR-TerC became evident in the Coomassie stained denatured second dimension gel 

(Figure 3.17 (B)), too.  

 

 
Figure 3.17: Blue native gel analysis and denaturing second dimension PAGE 

Protein complexes in the thylakoid membrane were solubilized with 1% β-DM and separated under native 
conditions (A). Thylakoid protein complexes are indicated as I (PSII-supercomplexes), II (monomeric PSI and 
dimeric PSII), III (monomeric PSII), IV (CP43-PSII), V (trimeric LHCII) and VI (unassembled proteins). Gel 
slices from the first dimension were separated under denaturing conditions in a Tris-Tricine PAGE (B). 
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In the wild type gel, the spots representing CP47 (IV) and CP43 (III) showed equal intensities. 

In the amiR-TerC gel, the intensity of the CP43 (III) spot was decreased drastically compared 

to the CP47 (IV) spot. As a consequence, all spots derived from PSII proteins from the 

monomeric PSII (III) to the high molecular weight PSII-supercomplexes (I) were reduced. In 

the amiR-TerC gel the amount of unassembled CP43 was additionally decreased compared to 

the wild type gel (Figure 3.17 (B)). 

To verify this observation, second dimension gels of wild type and amiR-TerC were blotted 

onto PVDF membranes and immunodetection analyses of the D2, CP43, CP47, Lhcb2 and 

PsaB proteins using specific antibodies was performed (Figure 3.18). In amiR-TerC plants, an 

accumulation of unassembled D2 protein compared to D2 integrated in PSII complexes was 

observed. Additionally, the PSII-supercomplexes were only hardly detectable in the knock-

down lines, whereas in wild type plants several signals representing the D2 protein in high 

molecular weight complexes were detectable. The reduction of PSII-supercomplexes in amiR-

TerC plants was confirmed by immunodetection of Lhcb2, CP47 and CP43. In contrast to the 

increase of unassembled D2 in amiR-TerC plants compared to wild type, the amount of 

unassembled CP43 was reduced compared to the assembled protein. For the PsaB protein, 

only a slight reduction in the supercomplex region of PSI was observed. 

Figure 3.18: Western analysis of 2D Tris-Tricine gels from Blue-Native PAGE 

Gel stripes of the Blue native PAGE were run on a 12% Tris-Tricine SDS-Gel under denaturing conditions. For 
immunological detection of subunits of the PSII, the LHCII and the PSI, specific antibodies raised against D2, 
CP43 and CP47 for the photosystem II, Lhcb2 for the LHCII complex and PsaB as a subunit of photosystem I 
were probed on the PVDF membranes after blotting of the gels. 
 

Additionally, a Blue-Native PAGE was performed with thylakoids isolated from terc-1TerC-GFP 

plants. The first dimension did not show any difference compared to the wild type (Figure 
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3.18). To analyze, whether the TerC-GFP fusion protein co-migrates with any major thylakoid 

complexes, immunodetection analyses with the respective antibodies and a GFP specific 

antibody were performed. The signal derived from the TerC-GFP fusion protein co-migrated 

with the CP43-PSII, the monomeric and dimeric PSII and the PSII-supercomplexes, 

indicating a co-localization with photosystem II. The most abundant signal of TerC-GFP was 

observed in the region of monomeric PSII, the assembly step where the integration of CP43 

into photosystem II occurs. Interestingly, in terc-1TerC-GFP plants the fraction of unassembled 

CP43 protein was not at all detectable. 

  

3.8 Sucrose gradient analysis of terc-1TerC-GFP 

Because the data derived from the spectroscopic measurements with the Dual- and imaging 

PAM indicated fully functional PSII complexes in terc-1TerC-GFP (Figure 3.13 (C) and Table 

3.1), thylakoids from wild type and terc-1TerC-GFP plants were isolated and solubilized with 

0.5% β-DM and used for additional co-migration experiments. The protein complexes were 

separated on a sucrose gradient by ultra centrifugation (Figure 3.19 (A)). After centrifugation, 

the gradient was divided into 14 fractions which were separated on a Tris-Tricine SDS-PAGE 

and afterwards blotted on a PVDF membrane. Staining of the membrane with Coomassie blue 

revealed no changes in protein distribution (Figure 3.19 (B)).  

Both wild type and terc-1TerC-GFP gradients contained three green bands (Figure 3.19 (A)), 

which represented LHCII, PSII and PSI from top to bottom. This was confirmed by 

immunodetection with specific antibodies against subunits of these protein complexes. The 

PsaB protein, representing a subunit of photosystem I, was mainly detectable in the fractions 

13 and 14 and only to a minor extent in fraction 12. This result confirmed the location of 

photosystem I in the bottom region of the sucrose gradient. The D2 protein, a subunit of the 

PSII reaction center, could be found in fractions 8 to 12, indicating that the middle bands of 

the sucrose gradients consisted mainly of PSII complexes. Another subunit of the PSII, the 

CP43 protein, was detected in the same fractions like the D2 protein. Interestingly, CP43 was 

also detectable in fractions 4 to 7. This finding indicates the presence of unassembled CP43 

protein in both wild type and terc-1TerC-GFP plants. The light harvesting complex of 

photosystem II, represented by the Lhcb2 protein, was detectable in fraction 3 to 10 with the 

highest concentration of the protein in fractions 8 and 9. This observation suggested that the 

upper green band of the sucrose gradients contained preferentially Lhcb proteins. 
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Figure 3.19: Sucrose gradient analysis of wild type and terc-1TerC-GFP thylakoids solubilized with β-DM 
followed by separation via Tris-Tricine SDS-PAGE 
 

Isolated thylakoid protein complexes were separated by ultra centrifugation (A). Afterwards, the gradients were 
partitioned into 14 fractions and separated via Tris-Tricine SDS-PAGE followed by blotting onto PVDF 
membrane and staining with coomassie blue (B). 
 

To investigate the localization of the TerC-GFP fusion protein, PVDF membranes with wild 

type and terc-1TerC-GFP proteins were probed with an antibody that specifically recognized the 

GFP protein. While there was no detectable signal on the wild type membrane, a 

chemiluminescence signal corresponding to the TerC-GFP fusion protein was found in the 

samples from terc-1TerC-GFP plants. The GFP signal overlapped with the CP43 signal as it 

could be found in fractions 5 to 12 like the CP43 protein. This observation suggests a co-

localization of TerC-GFP and CP43 in the respective sucrose gradient. 
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Figure 3.20: Fractionation of sucrose gradient samples of wild type and terc-1TerC-GFP 

The 14 fractions of the sucrose gradients were separated on a 12% Tris-Tricine SDS-PAGE followed by blotting 
onto PVDF membrane. The localization of CP43, D2, Lhcb2, PsaB and the TerC-GFP fusion protein was 
performed by immunodetection with specific antibodies raised against these proteins. 
 

3.9 Protein-protein interaction studies using the Split Ubiquitin system 
As the previous experiments revealed an involvement of TerC in either the assembly of 

photosystem II or the integration of subunits of PSII into the thylakoid membrane, a yeast 

Split Ubiquitin study for integral membrane proteins was performed to identify putative 

interaction partners of TerC. Various proteins were considered for direct interaction studies, 

like proteins of PSII, known assembly factors of PSII, proteins involved in transport of 

proteins into or across the thylakoid membrane and proteins of other complexes in the 

thylakoid membrane like PSI, Cytochrome b6/f complex, the ATPase and the electron 

transporter ferredoxin. The coding sequence of AtTerC was cloned into the vector pAMBV4 

and by this fused to the C-terminus of Ubiquitin acting as a bait protein. The putative 

interactors were cloned into the vector pADSL fused to the modified N-terminus of Ubiquitin 

(NubG) acting as prey proteins. After co-transformation of the yeast strain DSY-1 with 

different combinations of bait and prey constructs, the ability of the yeast cells to grow on 

selective medium indicates a successful interaction of bait and prey proteins. 
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 Figure 3.21: Protein-protein interaction study between TerC and several plastid proteins 

Co-transformed DSY-1 yeast cells were grown on either permissive (-LT) or non-permissive medium (-LTH). 
On permissive medium all co-transformed yeast cells were growing except of the negative control with Alg5. On 
non-permissive medium only the strains containing interacting proteins were able to grow. TerC fused to the C-
terminus of Ubiquitin was used as bait and proteins of the PSII, assembly factors of PSII, import factors and 
some miscellaneous proteins were used as preys. 
 

According to the results of the Split Ubiquitin assay (Figure 3.21), TerC interacted with 

PsbA, PsbC, PsbD and PsbH, subunits of photosystem II, but not with PsbB, PsbE and PsbO. 

An interaction could also be confirmed for the assembly factors LPA1, LPA2, PAM68, ALB3 

and ALB4, but not for HCF136. An interaction with factors involved in protein import 

(cpFtsY, cpSecE and cpSecY), subunits of photosystem I (PsaA and PsaB), AtpI (a subunit of 

the ATPase) and ferredoxin could not be observed. The only putative interaction partner of 

TerC that is not related to the PSII or its assembly was PetB, a subunit of the Cytochrome b6/f 

complex. 

 

3.10 In vivo synthesis of chloroplast proteins 
To investigate the biosynthesis, insertion ability and stability of plastid encoded thylakoid 

proteins, pulse-chase experiments on wild type, terc-1 and amiR-TerC plants were performed. 
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The pale green plants of terc-1 together with wild type plants were harvested from MS plates 

after one week of illumination with 4 µEm-2s-1 and incubated with radioactively labeled 

methionine for 20 min. The presence of newly synthesized radioactively labeled proteins was 

investigated after SDS-PAGE and scanning a phosphoscreen after two days of exposure to the 

dried gel. In the wild type sample all prominent bands like PsaA/B, CF1α/β, CP43, CP47, D1 

and D2 were detectable after labeling, whereas in terc-1 the bands representing the core 

subunits of PSII, D1, D2, CP43 and CP47, were missing, although the other bands were 

present. The only protein related to the PSII core complex, that was present in terc-1, was the 

precursor of the D1 protein (pD1) (Figure 3.22). 

 

 
Figure 3.22: In vivo synthesis (pulse) of plastid encoded proteins from the thylakoid membrane 

Radioactive labeling (pulse) of one week old WT and terc-1 plants in the presence of cyclohexamide for 20 min 
was performed. After the pulse thylakoid membranes were isolated and the proteins were separated by Tris-
Tricine SDS-PAGE and visualized autoradiographically. 
 

To verify the result obtained from the [35S]-methionine radioactive protein labeling of terc-1 

and to see a less drastic effect, the labeling of plastid proteins was also performed in the 



Results 
 

49 
 

amiR-TerC plants. This labeling revealed a decrease of labeled CP43 protein in amiR-TerC to 

about 80% of the wild type level, whereas the other proteins related to photosynthesis were 

present in almost double the amount as in wild type (Figure 3.23 (A)).  

To exclude a function of TerC in the stability of photosystem II, one hour of chase with cold 

methionine followed the 20 min pulse. Again, a reduction in the amount of radioactively 

labeled CP43 could be observed in amiR-TerC, whereas the other proteins were synthesized 

in an at least equal amount as in wild type (Figure 3.23 (B)). The chase with cold methionine 

revealed no faster degradation of proteins in amiR-TerC than in wild type, indicating that 

TerC is not involved in the stability of photosystem II. 

 

Figure 3.23: In vivo synthesis (pulse) and degradation (chase) of plastid encoded proteins of the thylakoid 
membrane 
 

Radioactive labeling (pulse) of three week old WT and amiR-TerC plants in the presence of cyclohexamide for 
20 min (A and B) followed by a chase with cold methionine for one hour (B) was performed. After pulse and 
chase thylakoid membranes were isolated and the proteins were separated by Tris-Tricine SDS-PAGE and 
visualized autoradiographically. 
 

Due to the reduced amount of CP43 after the pulse labeling (Figure 3.23 (B)), the assembly 

of the PSII complex was analysed by blue native PAGE with radioactively labeled thylakoid 

proteins from wild type and amiR-TerC. Therefore, thylakoids were solubilized with 1% β-

DM after pulse and chase and separated under non denaturing conditions. Afterwards, gel 

stripes of the first dimension were separated under denaturing conditions on a Tris-Tricine 
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SDS-PAGE. The dried gels were exposed to a phosphoscreen for two day and visualized 

using a phosphoimager. The most striking difference in the second dimension of the pulse 

labeled thylakoids was the reduction of CP43 in amiR-TerC (Figure 3.24 (A). Already the 

unassembled CP43 in fraction VI was strongly affected. In fraction I (PSII-supercomplexes), 

fraction II (PSII dimer) and fraction III (PSII monomer) the amount of CP43 was reduced. 

This indicates a reduction in the overall assembly of PSII, however D1 and D2 behaved 

different. The amount of D1/D2 in fraction VI (unassembled proteins), in the PSII-RC in 

fraction V, in the CP47-RC (IV) and in fraction III, the PSII core monomer, was not reduced. 

Thus, only the newly synthesized PSII complexes were affected in the knock-down mutant, 

whereas the turnover of photo-damaged PSII seems not to be impaired. 

 The chase with cold methionine following the pulse labeling showed the ability of amiR-

TerC to assemble complete photosystem II complexes, although the speed of assembly is 

slowed down (Figure 3.24 (B)). While after the 20 min of pulse in amiR-TerC there were 

almost no radioactively labeled PSII-supercomplexes visible compared to wild type, these 

high molecular complexes became more prominent after one hour of chase, during which 

almost all labeled proteins were assembled into the high molecular complexes. Thus, the 

overall amount of unassembled radioactively labeled proteins in fraction VI was reduced and 

the PSII dimer and the PSII-supercomplexes were labeled stronger.  
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Figure 3.24: In vivo synthesis (pulse) and degradation (chase) of plastid encoded proteins from the 
thylakoid membrane separated first on blue native PAGE followed by a denaturing Tris-Tricine SDS-
PAGE 
 

Radioactive labeling (pulse) of three week old WT and amiR-TerC plants in the presence of cyclohexamide for 
20 min (A) followed by a chase with cold methionine for one hour (B) was performed. After pulse and chase 
thylakoid membranes were isolated and the proteins were separated first in a blue native gel followed by Tris-
Tricine-SDS-PAGE and visualized autoradiographically. 
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4. Discussion 

4.1 Complete knock-out of AtTerC leads to lethality due to a loss of 

 photosystem II 
For terc knock-out mutants, an albinotic phenotype on soil was observed previously [König, 

2005; Strissel, 2007; Kwon and Cho, 2008]. Therefore, terc mutant lines were not viable 

beyond the seedling stage. The albinotic phenotype of terc could not be rescued on MS 

medium supplemented with sucrose and it was not caused by a defect in chlorophyll 

biogenesis, as terc-1 plants grown under very low light intensities (4 µEm-2s-1) turned slightly 

green in the cotyledon stage [Strissel, 2007; Kwon and Cho, 2008]. Further, Kwon and Cho 

(2008) could exclude a defect in the plastid transcription in terc plants, as they were able to 

detect e.g. the mRNA of psbA via Northern Blot analyses, whereas the D1 protein was never 

detected in terc-1 [Strissel, 2007; Kwon and Cho, 2008].  

Transmission electron microscopy (TEM) analyses revealed the presence of thylakoid 

membranes in chloroplasts of terc-1 mutant plants grown under dim light conditions (Figure 

3.2). But interestingly, only the formation of stroma lamellae was found in these chloroplasts. 

It is well known that PSI complexes and the ATP-synthase are located in the stroma lamellae, 

whereas PSII is functionally present in the grana lamellae. This membrane structure, 

consisting of stacked thylakoid membranes, is completely absent in terc-1 plants suggesting 

that mainly photosystem II might be affected by the functional loss of AtTerC.  

In agreement with the suggested defect in PSII observed by transmission electron microscopy 

(TEM), terc-1 plants were devoid of the core proteins of PSII, D1, D2, CP43 and CP47, and 

the low molecular weight subunit PsbH involved in early PSII assembly (Figure 3.15). In 

contrast to the observations for the PSII core proteins, some lumenal proteins of PSII, PsbO, 

PsbP and PsbQ, as well as assembly factors of PSII and subunits of other thylakoid localized 

protein complexes, like LHCII, PSI, LHCI and the Cytochrome b6/f were present in the 

knock-out mutant. These results suggest an involvement of TerC in the assembly of 

photosystem II.  

Compared to other mutants that are defective in PSII assembly, e.g. hcf136 [Meurer et al., 

1998] that is able to generate pale green leaves when grown on MS medium supplemented 

with sucrose under moderate light conditions (20 µEm-2s-1), terc-1 shows a more severe 

phenotype. The only known mutant affected in PSII assembly with a severe phenotype similar 

to terc-1, is the alb3 mutant. ALB3 is not only involved in the integration of D1 into the PSII 

core complex but also necessary for the import of LHCII proteins into the thylakoid 
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membrane [Bellafiore et al., 2002; Ossenbühl et al., 2004]. The difference in the phenotypic 

between terc-1 and other known mutants involved in PSII assembly, like lpa1 [Peng et al., 

2006], lpa2 [Ma et al., 2007], lpa3 [Cai et al., 2010], pam68 [Armbruster et al., 2010] and 

hcf136 [Meurer et al., 1998] suggests that TerC bears multiple functions during thylakoid 

biogenesis. One might speculate that TerC is not only involved in PSII assembly, but also in 

the assembly of other thylakoid complexes. An additional function of TerC could be a role the 

assembly of the Cytochrome b6/f complex. The amount of PetB protein was severely reduced 

in both, the terc-1 knock-out mutants (Figure 3.15) and in the amiR-TerC plants (Figure 

3.16). Additionally, a protein-protein interaction of TerC with PetB was confirmed by in vitro 

Split Ubiquitin analyses (Figure 3.21). However, the following discussion will focus mainly 

on the impact of TerC during the assembly of photosystem II in Arabidopsis thaliana. 

 

4.2  Down-regulation of AtTerC leads to a leaf variegated phenotype and a 

reduction of thylakoid proteins 
Since terc-1 revealed a severe phenotype, an artificial micro RNA line was produced to be 

able to perform biochemical analyses. The amiR-TerC plants were generated by 

transformation of wild type plants (Col-0) with the plasmid pGWB2-TerC. The generated 

amiR-TerC plants were able to grow photoautotrophically on soil, but showed a variegated 

leaf phenotype with white sectors embedded in the green leaf tissue (Figure 3.3). The 

successful down-regulation of AtTerC was confirmed by real-time PCR analysis. The 

transcript level of AtTerC was reduced in the T2 generation of amiR-TerC plants to less than 

10% of the wild type level (Figure 3.4 (A)). In the T3 generation of amiR-TerC plants, most 

of the leaves still displayed the variegated phenotype, but some leaves resembled wild type 

leaves (Figure 3.6). Therefore, the transcript level of AtTerC was also analysed in the T3 

generation of amiR-TerC plants. Both variegated and non variegated leaves showed a 

decrease in AtTerC transcript compared to wild type (Figure 3.4 (B)). In the variegated leaves 

(var+) the transcript level of AtTerC was reduced to around 20% and in the non variegated 

leaves (var-) the transcript level was down to around 30%. These different transcription levels 

of AtTerC suggest a threshold level of around 25% that, if fallen below, leads to the 

variegated leaves or to leaves that resemble those of wild type plants. The diminished effect 

of the artificial micro RNA from the T2 to the T3 generation of amiR-TerC plants suggests 

that an endogenous silencing mechanism is acting on the amiRNA effect. 

The amiR-TerC plants were analysed with respect to their protein content like the terc-1 

plants (Figure 3.15). All investigated proteins were detectable in amiR-TerC plants, 
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indicating that all protein complexes (PSI, PSII, LHCI, LHCII and the Cytochrome b6/f 

complex), as well as the PSII assembly factors, were present in the knock-down mutants 

(Figure 3.16 (A to F)). The specific signals derived from the immunoblot analyses were 

quantified and adjusted to equal amounts of Actin in both wild type and amiR-TerC samples. 

The quantification revealed that protein levels, especially those of the PSI, LHCI and LHCII, 

were down-regulated to 60-70% in amiR-TerC plants compared to wild type (Figure 3.16 

(G)). Interestingly, D2, ALB3 and LPA1, were up-regulated to around 125% in the knock-

down mutant. In contrast to that, the amount of D1 (88%) and CP47 (80%) was slightly above 

the average value of 60-70% and only two analysed proteins were reduced below the average 

value in amiR-TerC being CP43 (45%) and PetB (50%). This reduction in the amount of 

CP43 and PetB is a hint for the involvement of TerC in the assembly of CP43 into the 

photosystem II and maybe also in the assembly of the Cytochrome b6/f complex. 

 

4.3 Photosynthetic performance of PSII is affected in amiR-TerC plants 
Because of the lack of the photosystem II core proteins in terc-1 and the severe reduction of 

CP43 in amiR-TerC, spectroscopic measurements addressing the intactness and efficiency of 

PSI and PSII were performed. 

The amiR-TerC plants showed a severe increase in ground fluorescence (F0) (Figure 3.13 (A 

and B)) and a decrease in the maximum quantum yield of PSII (FV/FM) and in the effective 

quantum yield of PSII (ФII) (Table 3.1; Figure 3.13 (A and B)). These observations resemble 

spectroscopic data from mutants that are affected in photosystem II assembly and/or 

stoichiometry like hcf136 [Meurer et al., 1998], lpa1 [Peng et al., 2006], lpa2 [Ma et al., 

2007], lpa3 [Cai et al., 2010] and pam68 [Armbruster et al., 2010]. After rise of chlorophyll a 

fluorescence due to actinic light exposure, when recording fluorescence curves for FV/FM and 

ФII determination a drop of the fluorescence below the F0 level was observed for the amiR-

TerC plants (Figure 3.13 (B)). Additionally, two intermediate rises in chlorophyll a 

fluorescence, that occur in wild type plants during the relaxation of the initial chlorophyll a 

fluorescence as a consequence of limitations within photosystem I and the calvin cycle, were 

not detectable in amiR-TerC plants. These are specific characteristics of mutants with a 

reduced PSII/PSI ratio and can be explained by the higher activity of PSI relative to PSII 

[Armbruster et al., 2010]. The decrease of the effective quantum yield of PSII (ФII) suggestes 

an additional defect in the electron transport chain downstream of PSII either at the position 

of PSI [Ihnatowicz et al., 2004] or the Cytochrome b6/f complex [Meierhoff et a., 2003].  



Discussion 
 

54 
 

As the immunoblot analyses of amiR-TerC plants revealed a decrease in the amount of PSI 

proteins to about 60-70% compared to wild type plants (Figure 3.16 (G)), further 

spectroscopic measurements regarding the functionallity of photosystem I were performed on 

amiR-TerC plants and compared to wild type, psbo1-2, a mutant defective in PSII [this thesis 

(Appendix 1/2)] and psad1-1, a mutant defective in PSI, [Ihnatowicz et al., 2004]. The Pm 

value, representing the maximum absorption of P700
+ (transition from a fully reduced to a fully 

oxidized state), and the Pm´ value (the absorption of P700
+ during illumination) were reduced 

to around 60% in amiR-TerC plants compared to its corresponding wild type (Col-0) (Figure 

3.14). This correlated with the reduced PSI protein amounts that were already observed in 

previous analyses (Figure 3.16 (G)) demonstrating that the reduced activity of PSI in amiR-

TerC plants is not directly caused by the down-regulation of AtTerC transcript. This 

assumption is supported by the measured efficiency of PSI shown by the photochemical 

quantum yield of PSI (Y(I)) and the electron transfer rate around PSI (ETR) which were both 

only slightly decreased compared to wild type. A proof for the proper functionality of PSI in 

amiR-TerC plants was obtained by measurements on the donor side (Y(ND)) and acceptor 

side limitation (Y(NA)) of photosystem I. While in psad1 a severe decrease in the donor side 

limitation and a strong increase in the acceptor side limitation compared to wild type plants 

could be observed, the amiR-TerC plants behaved exactly like psbo1. Both, amiR-TerC and 

psbo1, showed an increase in the donor side limitation compared to their corresponding wild 

type backgrounds. The acceptor side limitation remained unaltered in wild type, amiR-TerC 

and psbo1 plants. This proves the intactness of photosystem I and a defect upstream of this 

protein complex in amiR-TerC plants, located in the photosystem II and/or the Cytochrome 

b6/f complex.  

In addition, the plants stably expressing the TerC-GFP fusion protein, terc-1TerC-GFP and 

WTTerC-GFP, were spectroscopically analysed to investigate the functionality of the 

photosynthetic complexes in both genotypes (Table 3.1). The WTTerC-GFP plants behaved 

exactly like wild type plants which showed that the GFP-tag does not affect the fluorescence 

recorded by the Dual PAM100. In terc-1TerC-GFP plants the functionality of the photosystem II 

seemed to be restored. The expressed fusion protein TerC-GFP could complement the defect 

in the PSII of terc-1 knock-out mutants as the maximum quantum yield of PSII (FV/FM) 

showed the same value as wild type plants. The non photochemical quenching (NPQ) in terc-

1TerC-GFP plants resembled the wild type value, too. However, the TerC-GFP fusion protein 

could not complement all defects of the terc-1 knock-out mutant as the effective quantum 

yield of PSII (ФII) was decreased and the excitation pressure on PSII represented by the value 
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1-qP was increased in terc-1TerC-GFP plants compared to wild type. This increased excitation 

pressure might be due to the involvement of TerC in the dimerisation of the Cytochrome b6/f 

complex (Figure 3.24 (A)).  

Altogether, the terc-1TerC-GFP lines seem suitable for colocalisation experiments with respect to 

TerC and CP43. If the GFP-tag abolishes other functions of TerC remains to be determined, 

especially an involvement of TerC in the assembly process of the Cyt b6/f complex has to be 

addressed in future studies (Figure 3.9). 

 

4.4 Leaf variegation is not caused by oxidative stress in amiR-TerC plants 
The amiR-TerC plants clearly showed a leaf variegated phenotype as they displayed white 

sectors within the normal green leaf tissue (Figure 3.3). From other leaf variegated mutants 

(Table 1.1) it is known that the transcription of plastid or mitochondrial encoded genes is 

disturbed or that in most of these mutants, an increase of oxidative stress in the leaf tissue is 

observed [Yu et al., 2007]. Since the level of leaf variegation in oxidative stress affected 

mutants, like in im [Aluru et al., 2007], var1 [Zaltsman et al. 2005], var2 [Bailey et al. 2002] 

and var3 [Næsted et al., 2004], increased after high light treatment [Yu et al., 2007], amiR-

TerC plants were also grown under high light (1000 µEm-2s-1). Additionally, low light 

conditions (5 µEm-2s-1) were applied to investigate the level of leaf variegation (Figure 3.5). 

The growth of amiR-TerC plants under high light revealed an opposite effect as observed for 

other variegated mutants. Instead of an increase in the level of leaf variegation, the leaves of 

amiR-TerC plants turned completely green after 16 days of high light treatment. Only the 

midribs of the amiR-TerC leaves stayed paler compared to wild type plants. This indicates, 

that in contrast to other variegated mutants [Aluru et al., 2007; Zaltsman et al. 2005; Bailey et 

al. 2002; Næsted et al., 2004] amiR-TerC plants can cope better with high irradiance and do 

not accumulate higher amounts of reactive oxygen species (ROS) which leads to an enhanced 

bleaching of the leaves. Another proof that the leaf variegated phenotype in amiR-TerC plants 

is not caused by ROS can also be found upon high light treatment of these plants. Upon the 

first day of high light treatment, the leaves of wild type plants produced a purple colouration 

which is indicative of an enhanced anthocyanine production to prevent oxidative damage in 

the leaf tissue. In contrast, leaves of amiR-TerC plants did not show an altered leaf 

colouration which indicates that the oxidative stress in amiR-TerC is not as high as in wild 

type plants.  

If one would expect an increase of leaf variegation under high light, one would also expect a 

decrease of leaf variegation under low light. However, for amiR-TerC plants this was not the 
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case. The amiR-TerC plants maintained their leaf variegation phenotype even under 

prolonged light treatment. 

Since increased light intensities did not enhance the leaf variegation and prolonged low light 

treatment did not attenuate this effect, plants were cultivated under different day/night cycles 

to investigate the effect of the light period on the growth of amiR-TerC plants (Figure 3.6). 

The reduction of the light period to 12 h or even 8 h had no effect on the leaf variegation in 

amiR-TerC plants of the T3 and T4 generation. The plants maintained their leaf variegation, 

but instead the biomass production of the plants was severely affected. By reducing the light 

period to either 12 h or 8 h the plant size of the amiR-TerC mutants decreased drastically. 

These observations together with the loss of leaf variegation under high light treatment are in 

accordance with the defects in the photosynthetic performance of amiR-TerC plants. It seems 

as if amiR-TerC plants grown under 16 h of light with an illumination of 100 µEm-2s-1 do not 

produce enough metabolites during the day to supply the entire plant. A shortening of the 

light period even enhances the deficiency in metabolite supply leading to a severe decrease in 

plant biomass production. This deficiency could be complemented by increasing the light 

intensity to 1000 µEm-2s-1.  

Referring to results from Kwon and Cho (2008), who ruled out a defect on the transcript level 

for terc, and the observation, that the leaf variegated phenotype in amiR-TerC plants is not 

caused by high oxidative stress, another mechanism is operating in amiR-TerC plants. This 

mechanism causing the variegated phenotype was elucidated by decreasing the transcript level 

of AtTerC to less than approximately 25% via artificial micro RNA interference. Some 

mesophyll cells seem to express TerC above this threshold level and thus turn green. Other 

mesophyll cells seem to express TerC below this threshold level and thus turn white leading 

to a leaf variegated phenotype. 

  

4.5 Putative protein interaction partners of TerC 
Due to the absence of PSII core proteins in terc-1, the reduced photosynthetic performance of 

PSII in amiR-TerC plants and the different amounts of PSII core proteins, interaction studies 

of the TerC protein with PSII core proteins were performed.  

One method to investigate protein-protein interactions of membrane bound proteins is the 

Split Ubiquitin assay. The TerC protein fused to the C-terminus of Ubiquitin acted as a bait 

protein in yeast cells that were co-transformed with vectors coding for the proteins of interest 

fused to the N-terminus of Ubiquitin and thus acting as prey proteins. The growth of yeast 

cells on non-permissive medium indicated an interaction of the two proteins expressed in the 
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cells. Upon interaction of the two proteins the C- and N-terminal halves of Ubiquitin are 

assembled and can be cleaved off by a protease leading to the induction of a reporter gene. 

The TerC protein interacted specifically with subunits of the photosystem II, especially with 

the core proteins D1 (PsbA), D2 (PsbD), CP43 (PsbC) and additionally with PsbH (Figure 

3.21). No interaction could be confirmed with CP47 (PsbB) and other subunits of PSII. 

Furthermore, the tested PSII assembly factors, LPA1, LPA2, PAM68, ALB3 and ALB4, but 

not HCF136, showed an interaction with TerC. There was no interaction with proteins of 

other protein complexes observed in this assay, except for an interaction with PetB. A similar 

complex interaction pattern was observed in studies of other PSII assembly factors. For ALB3 

interactions with various thylakoid proteins like D1, D2, CP43, PsaA and CF0III, a subunit of 

the ATPase, were shown, indicating an important role of ALB3 in the assembly of several 

protein complexes in the thylakoid membrane [Pasch et al., 2005]. Also PAM68 exhibited 

interactions with various subunits and assembly factors of PSII [Armbruster et al., 2010]. The 

LPA protein family, on the other hand, showed only interactions with specific subunits of the 

photosystem II. For the LPA1 protein an explicit interaction with the D1 protein was observed 

[Peng et al., 2006] and LPA2 and LPA3 interacted specifically with CP43, ALB3 and with 

each other [Ma et al., 2007; Cai et al., 2010]. Based on the results of the interaction assays, an 

involvement of TerC in the assembly of PSII and/or the integration of PSII subunits into the 

thylakoid membrane is suggested. 

As it was not possible to create a functional antibody against TerC due to its high 

hydrophobicity [http://aramemnon.botanik.uni-koeln.de/], WTTerC-GFP and terc-1TerC-GFP, both 

expressing the TerC-GFP fusion protein, were generated to perform immunological analyses 

of TerC-FDP. The terc-1TerC-GFP plants showed a leaf variegated phenotype like the amiR-

TerC plants, although they showed a two-fold expression of the AtTerC-GFP transcript 

compared to the AtTerC expression in wild type (Figure 3.8). To analyse the topology and 

functionality of the TerC-GFP fusion protein, thylakoids of terc-1TerC-GFP plants were isolated 

and treated with different salt solutions. The TerC-GFP fusion protein behaved as an integral 

membrane protein in terc-1TerC-GFP as it could not be washed off the membrane with neither 

chaotropic nor alcalic salts (Figure 3.11). The digestion of proteins in the thylakoid 

membrane of wild type, terc-1TerC-GFP and WTTerC-GFP with thermolysin, a metalloprotease that 

is not able to cross lipid bilayers, reveals that the C-terminus of TerC-GFP is facing the 

stroma side of the thylakoids because the GFP-tag was digested upon thermolysin treatment 

(Figure 3.12). Although the TerC-GFP fusion protein behaved as expected and it is able to 

complement the maximum quantum yield defect of PSII in terc-1, terc-1TerC-GFP still showed 
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the leave variegated phenotype. This could be due to the GFP-tag fused to the C-terminus of 

TerC preventing the protein to fulfil its additional functions. 

As the TerC-GFP fusion protein behaved as an integral membrane protein and the stable 

transformed terc-1TerC-GFP plants complemented the defect of the photosystem II, these plants 

were used for Blue native PAGE and sucrose gradient fractionation to investigate the 

localisation of the TerC-GFP fusion protein in more details. The first dimension of the Blue 

native PAGE with thylakoids isolated from terc-1TerC-GFP plants did not show any major 

differences compared to wild type. This indicates that in the green sectors of terc-1TerC-GFP 

leaves, the composition of the photosynthetic complexes is similar to the one of the wild type. 

The immunodetection analyses conducted on second dimension gels revealed a co-

localisation of TerC-GFP with all PSII assembly states, the PSII reaction center, the CP43-

PSII, the PSII monomer and dimer and the PSII-supercomplexes. The most intense GFP 

signal was detected in the fraction of CP43-PSII and the monomeric form of PSII. The co-

localisation of TerC with these complexes is a prerequisite for the proposed role of TerC in 

the assembly of CP43 into photosystem II. 

In accordance with the observations from the native gel analyses, similar observations derived 

from sucrose gradient fractionation. The gradients loaded with solubilised thylakoids from 

wild type and terc-1TerC-GFP plants did not differ after ultracentrifugation. The Coomassie 

staining of the 14 fractions showed the same distribution pattern and protein amounts in both 

wild type and terc-1TerC-GFP plants. The immunodetection against CP43, D2, Lhcb2 and PsaB 

revealed no major difference in the distribution of those proteins in wild type and terc-1TerC-

GFP. The signal derived from the TerC-GFP fusion protein overlapped perfectly with the signal 

derived from CP43. This confirms a co-localisation of TerC-GFP with CP43. The distribution 

of D2 was slightly different compared to CP43, however D2 and TerC-GFP did not co-

localise.  

Based on these observations, one can conclude that TerC-GFP and CP43 are interacting and 

TerC-GFP might be necessary to integrate CP43 into the thylakoid membrane and 

photosystem II. 

 

4.6 Integration of CP43 into the thylakoid membrane is impaired in terc-1 and 

 amiR-TerC plants 
So far, the results show that the loss or reduction of the TerC protein leads to a severe defect 

in photosystem II which indicates a putative function of TerC in the assembly of PSII or the 

integration of its subunits into the thylakoid membrane. To further clarify an involvement of 
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TerC in these processes, Blue native PAGE analyses and second dimension SDS PAGE were 

performed with wild type and amiR-TerC plants. Under native conditions, an accumulation of 

the CP43-PSII complex (IV) in amiR-TerC could be observed, whereas all other protein 

complexes seemed to be slightly reduced in the knock-down mutant (Figure 3.17 (A)). This 

observation was never made before in mutants affected in PSII assembly [Pasch et al., 2005; 

Peng et al., 2006; Ma et al., 2007; Cai et al., 2010; Armbruster et al., 2010]. The specific 

accumulation of the CP43-PSII complex is another hint for a putative role of TerC in the 

integration of CP43 into photosystem II. To separate the single subunits of the different PSII 

assembly states [Rokka et al., 2005], the protein complexes were separated under denaturing 

conditions. The protein composition in wild type and amiR-TerC revealed some drastic 

differences between the two genotypes (Figure 3.17 (B)). The first difference between wild 

type and amiR-TerC was the reduced amount of unassembled CP43 protein in amiR-TerC 

(VI). The second major difference was the altered stoichiometries of the CP43-PSII complex 

(IV) and the monomeric PSII complex (III). In wild type, the D1, D2 and CP47 proteins 

revealed similar amounts in both complexes. The amiR-TerC lines showed a different 

distribution of these three proteins. For all three proteins the amount in the CP43-PSII 

complex (IV) was increased compared to the monomeric PSII complex (III). This indicates a 

block in the assembly of PSII in the step during which the CP43 protein is integrated into the 

CP43-PSII complex. This block led to an accumulation of this complex under steady state 

conditions in amiR-TerC plants. 

A role of TerC in the assembly of CP43 into the PSII monomer is supported by the different 

amounts of the PSII core proteins detected in amiR-TerC plants (Figure 3.16). The assembly 

of PSII occurs in five steps. At first, a precomplex consisting of the D2 protein and the 

Cytochrome b559 complex appears in the thylakoid membrane. The precursor form of the D1 

protein is then integrated into the precomplex forming the PSII reaction center. The next step 

is the integration of CP47 into the PSII reaction center representing the CP43-PSII complex, 

the first stable complex of PSII that can be detected via Blue native PAGE analysis. After 

processing of the D1 precursor and the integration of some low molecular weight subunits, the 

final PSII core protein, CP43, is incorporated resulting in the monomeric PSII complex 

[Rokka et al., 2005]. Regarding a block in the assembly of CP43, all previous complexes 

should accumulate under steady state conditions in amiR-TerC comparable to the 

accumulation of the CP43-PSII complex. Therefore, a “gradient” in the amount of the PSII 

core proteins following their assembly steps is proposed. Indeed, after quantification of the 

four PSII core proteins this “gradient” was determined (Figure 3.16 (G)). D2, the first core 
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protein which is present in PSII assembly was up-regulated to 125% compared to wild type. 

The next proteins that are integrated during PSII assembly are D1 and CP47 with 88% and 

79% respectively, compared to wild type. The final of the four proteins that is assembled into 

the PSII is CP43. This protein showed the strongest reduction in amiR-TerC with only 45% 

protein amount compared to wild type. 

Taken together the assembly of PSII is impaired in amiR-TerC. However, it has to be clarified 

whether TerC is needed for proper assembly of CP43 into the photosystem II and/or is 

involved in the integration of CP43 into the thylakoid membrane. To discriminate between 

these two possibilities, pulse/chase experiments with wild type, terc-1 and amiR-TerC plants 

were performed. After [35S]-methionine labelling of thylakoid proteins in wild type and terc-1 

plants, a dramatic decrease in newly synthesised proteins was observed in terc-1 (Figure 

3.22). Regarding the core proteins of PSII, only the precursor form of D1 and/or D2 could be 

identified in terc-1. The other proteins were missing completely as it was expected from the 

steady state protein measurement (Figure 3.15). The [35S]-methionine labelling of thylakoid 

proteins in wild type and amiR-TerC plants did not show such a severe difference (Figure 

3.23 (A)). Both samples were loaded according to 10 µg of chlorophyll, but almost all 

proteins, especially the D1 protein, were overexpressed in amiR-TerC. The only protein that 

was less abundant in amiR-TerC plants compared to wild type was the CP43 protein. To 

analyse, if the decrease of CP43 protein in amiR-TerC plants is due to an impaired integration 

of the protein into the thylakoids or due to stability problems, the 20 min pulse with 

radioactively labelled methionine was followed by one hour of chase with cold methionine 

(Figure 3.23 (B)). Again, after 20 min labelling a reduction in the amount of newly 

synthesised CP43 was observed in amiR-TerC compared to the wild type. But once CP43 was 

integrated into the thylakoid membranes, it was as stable in the mutant as it was in the wild 

type plants. This excludes the possibility, that TerC is involved in stabilising the PSII 

complex and proves that in amiR-TerC plants the integration of CP43 into the thylakoid 

membrane is disturbed. 

To verify the suggested function of TerC in integrating CP43 into the thylakoid membrane 

and by this into the photosystem II, newly synthesised and radioactively labelled thylakoid 

proteins were isolated in their native complexes followed by a separation of the respective 

subunits according to their molecular weight (Figure 3.24 (A)). Again, like in the steady state 

(Figure 3.17), a strong reduction in the amount of unassembled CP43 protein (VI) in the 

amiR-TerC sample compared to the wild type was observed. Due to the reduced amount of 

unassembled protein, which general could be assembled into the high molecular protein 
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complexes, the amount of newly synthesised CP43 proteins was constantly less abundant in 

amiR-TerC complexes compared to the wild type complexes. The integration of CP43 into the 

PSII-supercomplexes was almost not detectable in amiR-TerC plants. The PsaA/B proteins of 

PSI and subunits of the ATPase were present in equal amounts in wild type and amiR-TerC. 

Only the amount of newly synthesised CP47 seemed to be reduced in amiR-TerC plants. The 

equal amounts of radioactively labelled D1/D2 protein in amiR-TerC and wild type plants 

most likely derived from the high turnover rate of D1 due to photodamage. In addition to the 

reduction of the CP43 and CP47 proteins, the formation of the dimeric Cytochrome b6/f 

complex seemed to be disturbed in amiR-TerC. The subunits of the monomeric Cytochrome 

b6/f complex were present in almost equal amounts in wild type and in amiR-TerC plants. 

While in wild type thylakoids most radioactively labelled proteins of these subunits could be 

detected in the dimeric Cytochrome b6/f complex, amiR-TerC thylakoids retained most of the 

radioactively labelled subunits of the Cytochrome b6/f complex in the monomeric form. 

After the pulse labelling step, leaves of amiR-TerC and wild type plants were incubated with 

cold methionine (Figure 3.24 (B)). Once proteins were synthesised in amiR-TerC plants, they 

were properly integrated into the thylakoid membrane and their stability was not affected. The 

integration of newly synthesised CP43 into the high molecular weight complexes was slowed 

down in amiR-TerC plants due to the reduction of unassembled CP43 protein. 

 

4.7 Model for the function of TerC in Arabidopsis thaliana 
From the results gained during this work, an important role of TerC during the integration of 

CP43 into the thylakoid membrane and into the photosystem II is proposed. As terc-1 is 

albinotic and seedling lethal and the mutants are completely devoid of the four PSII core 

proteins D1, D2, CP43 and CP47, a function of TerC related to PSII assembly is proposed. 

This hypothesis is strengthened by the photosynthetic performance of amiR-TerC plants 

which shows a clear defect in photosystem II, but a functionally active photosystem I. 

Additionally, Blue native PAGE and second dimension gels of radioactively labelled and non 

labelled proteins reveal a reduction of unassembled CP43 protein and a block during the 

integration of this CP43 protein into the PSII monomer. The following model suggests a 

function of TerC during the integration of CP43 into the thylakoid membrane and its 

assembly into photosystem II. Additionally, the putative protein-protein interactions of TerC 

with other proteins localised in the thylakoid membrane are considered (Figure 4.1). The 

model suggests a two step mechanism. During the first step, TerC, LPA2 and LPA3 together 

with the ALB3 protein are integrating the unfolded form of the CP43 protein into the 
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thylakoid membrane. In a second step, the complex consisting of TerC, LPA2, LPA3 and 

CP43 joins the CP43-PSII complex and mediated by interaction of TerC with D1, D2, PsbH 

and the PSII assembly factors LPA1 and PAM68 the formation of the monomeric PSII 

complex is completed. 

 
Figure 4.1: Model for TerC activity on the insertion of CP43 into the thylakoid membrane and the 
photosystem II 
 

The TerC protein is supposed to act in a two step process of CP43 integration. In the first step the integration of 
CP43 into the thylakoid membrane occurs, followed by the integration of CP43 into the CP43-PSII complex. 
The photosynthetic proteins are displayed in green colour and the PSII assembly factors are indicated in blue. 
 

Most probably, the insertion of CP43 into the thylakoid membrane occurs co-translationally, 

like the insertion of D1. For D1 it was shown that thylakoid bound ribosomes interact 

cpSecY, a subunit of a thylakoid translocation complex [Zhang et al., 2001]. Maybe TerC is 

the corresponding docking station for CP43 like cpSecY for D1. 

Another function of TerC could be the formation of the dimeric Cytochrome b6/f complex. 

Some preliminary results like the interaction of TerC with PetB were obtained during this 

study. However, more detailed analyses are needed to shed light on this aspect of TerC 

functionallity. 
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Appendix 1 

 

 
Figure Appendix 1: Identification of the mutant psbo1-2 

The transposon mutant psbo1-2 contains an acds-transposon at position 25 in the first exon of the gene. Exons 
are numbered and shown as white boxes. Introns, as well as 5´and 3´UTR, are shown as a black line. The psbo1-
2 allel was found in the Riken line RATM12-1816-1_G. The acds-transposon insertion is not drawn in scale (A). 
The acds-transposon insertion effects the steady state level of PsbO1 RNA. In total 2 µg of RNA of both, 
Noessen and psbo1-2, was isolated and transcribed into cDNA. PCR with cDNA specific primers (Table 
Appendix 2) was performed and a strong decrease in the PsbO1 transcript was observed. But the acds-
transposon insertion did not lead to a complete knock out of the gene At5g66570. 
 

 

Appendix 2 
 

Table Appendix 1: List of all primers used for screening for psbo1-2 plants and RT-PCR to determine the 
transcript level of PsbO1 in these mutants 
 
name of primer    sequence 5´- 3´ 

At5g66570-F    tgttgttgaagatcaattggaca 
At5g66570-R    tgaatcgaagattacagaattgga 
RATM-Ds5-2a    tccgttccgttttcgttttttac 
PsbO1-cDNA-F     AAGTTCTCACCTCCGATCGAC 
PsbO1-cDNA-R    CAGTGTTCTTCACGTTCTCCT 
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