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A. Summary 

1. Kinetics of the Solvolyses of Fluoro-Substituted Benzhydryl Derivatives: Reference 

Electrofuges for the Development of a Comprehensive Nucleofugality Scale 

A series of meta-fluoro-substituted benzhydryl chlorides, bromides, mesylates, and 

tosylates (1,3,4,5,7)-X were prepared (Scheme 1).  

Scheme 1. Heterolytic cleavage of benzhydryl derivatives and substrates. 
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The solvolysis reactions of these compounds in various solvents were monitored by 

conductometry. First-order rate constants were obtained by fitting the time dependent 

conductances G to the monoexponential function (eq. 1). 

 

G = G∞(1 – e–k1t) + C  (1) 

 

The obtained first-order rate constants k1 (25 °C) were found to follow the correlation 

equation (2) which allowed to determine the electrofugality parameters Ef for these 

destabilized benzhydrylium cations and the nucleofugality parameters Nf and sensitivity 

parameters sf for a series of leaving group-solvent combinations. 

 

lg ks (25 °C) = sf(Nf + Ef)  (2) 
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For that purpose, the first-order rate constants for the solvolyses of fluorinated benzhydryl 

derivatives were combined with a large set of solvolysis rate constants of other benzhydryl 

derivatives and subjected to a least-squares optimization according to equation 3.  

 

∑∆2 = ∑ (lg k1 – lg kcalc)
2 = ∑ (lg k1 – sf(Nf + Ef))

2 (3) 

 

Initially two fixations were made for this optimization. The electrofugality of the 

4,4-dimethoxybenzhydrylium ion (15
+) was set to zero (Ef = 0.0) and the slope for chloride 

in ethanol was set to one (sf = 1.0). Minimization of the deviation between calculated and 

experimental rate constants, i.e., ∑∆2 as defined by equation 3, yielded the electrofugality 

parameters for meta-fluoro substituted benzhydrylium ions and the nucleofuge-specific 

parameters Nf/sf for OTs, OMs, and Br in solvents of high ionizing power (Table 1).  

Table 1. Nucleofugality parameters Nf and sf for leaving groups X in various solvents. 

Nf / sf 

X OTs OMs Br 

TFE 9.73 / 0.94  9.84 / 1.00 a 6.19 / 0.95  

60AN40W 7.97 / 0.82 7.69 / 0.83 5.23 / 0.99 

80E20W 7.44 / 0.80  7.48 / 0.82 4.36 / 0.95  

100M 7.33 / 0.82 –– 4.23 / 0.99  

100E 6.08 / 0.78  5.81 / 0.80 –– 

80A20W 5.99 / 0.83  5.85 / 0.84 –– 

90A10W 5.38 / 0.89  –– –– 

a Solvolysis data not included into the total correlation as only two rate constants were available for this 
leaving-group solvent system.  

 

Thus, eight previously published nucleofugality parameters could be rendered more 

precisely and seven new nucleofugality parameters were obtained. The nucleofugality 

parameters can be used to compare leaving-group abilities directly as shown in Figure 1. 
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Figure 1. Nucleofugality parameters of bromide, tosylate and mesylate in a series of solvents, slope 
parameters sf are given in parentheses.  

As shown in Figure 1, tosylate in TFE is a about 6 orders of magnitude better leaving-group 

than bromide in methanol. Thus, solvolysis reactions of benzhydryl tosylates in TFE will 

proceed approximately 2 × 105 times faster than analogously substituted benzhydryl 

bromides in methanol. 
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2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents. 

A series of p-substituted benzhydryl fluorides (see Scheme 2) were prepared and subjected 

to solvolysis reactions, which were followed conductometrically.  

Scheme 2. Benzhydrylium fluorides employed in this study. 
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The observed first-order rate constants k1 (25 °C) were found to follow the correlation 

equation (2) and the nucleofuge specific parameters Nf and sf for fluoride in different 

aqueous and alcoholic solvents could be determined (Table 2). 

Table 2. Nucleofugality parameters Nf and sf for fluoride in various solvents.  

 Nf sf 

80A20W −2.72 1.07 

80AN20W −2.28 0.93 

100E −2.21 1.07 

60A40W −2.14 0.81 

60AN40W −1.44 0.84 

100M −1.43 0.99 

80E20W −1.20 0.92 

 

The leaving-group abilities of fluoride are comparable to those of 3,5-dinitrobenzoate. 

Alkyl fluorides solvolyze approximately 4 to 5 orders of magnitude more slowly than alkyl 

chlorides, and approximately 5 to 6 orders of magnitude more slowly than alkyl bromides. 

Figure 2 offers an overview of the solvolytic reactivities of halides and 3,5-dinitrobenzoate. 
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Figure 2. Comparison of the solvolysis rates for the reactions of the dimethyl substituted 
benzhydryl derivative tol2CH-X (11-X) with different leaving groups (DNB = 3,5-dinitrobenzoate). 
Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, E = ethanol, W = water. 

The nucleophilicity parameters (N, sN) for fluoride were determined, by generating 

benzhydrylium ions (diarylcarbenium ions) laser-flash photolytically in various alcoholic 

and aqueous solvents in the presence of fluoride ions and monitoring the rate of 

consumption of the benzhydrylium ions by UV-vis spectroscopy. The resulting second-

order rate constants k−1 (20 °C) and the previously published electrophilicity parameters of 

benzhydrylium ions were substituted into the correlation equation (4) and the 

nucleophilicity parameters N and sN for fluoride in various protic solvents could be derived 

(Table 3). 

 

lg k−1 = sN(N+E)  (4) 
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Table 3. Nucleophilicity parameters N and sN for fluoride in various solvents. Mixtures of solvents 
are given as (v/v); solvents: AN = acetonitrile, M = methanol, W = water. 

solvent  N  sN 

90AN10W 12.43 0.58 

100M 11.19 0.63  

98AN2W 10.88  0.83 

80AN20W 10.90  0.61 

60AN40W 9.40  0.65 

10AN90W 8.05  0.64 

100W 7.68  0.65 

 

Fluoride is not only a poorer leaving-group (nucleofuge) than chloride and bromide, but 

also a poorer nucleophile in protic solvents. The nucleophilicity increases in the series F− < 

Cl− < Br− in water, aqueous acetonitrile, and methanol as depicted in Figure 3.  
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Figure 3. Comparison of the nucleophilic reactivities of fluoride and other halide anions in different 
solvents. Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, E = ethanol, 
M = methanol, W = water. 
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3. Can One Predict Changes from SN1 to SN2 Mechanisms? 

Rates and products of the reactions of differently substituted benzhydryl bromides 

((2,6,8,9,10)-Br) with various amines in DMSO (Scheme 3) were studied.  

Scheme 3. Reactions of benzhydryl bromides with amines in DMSO. 
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Plots of kobs (first-order rate constants obtained with a large excess of amines) vs. [amine] 

were linear but did not go through the origin (Figure 4).  
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Figure 4. Plots of kobs (s

−1) of the reactions of different benzhydryl bromides with amines in DMSO 
vs. the concentrations of the amines. (Note the different calibration of the y-axes). 

The observed rate constants were composed from an amine-independent term k1 and an 

amine-dependent term k2[amine] (eq. 5), indicating parallel SN1 and SN2 mechanisms. 

While the first-order rate constants of the SN1 reactions correlate linearly with Hammett’s 

substituent constants Σσ+, the second-order rate constants k2 are only weakly affected by the 

substituents at the aromatic ring and do not correlate significantly with any of Hammett‘s 

substituent constants.  

 

kobs = k1 + k2[amine]  (5) 

 

From the product ratios reported in the last line Table 4, we concluded that the benzhydryl 

amines (N°-NR2) are exclusively formed via the SN2 process, because the ratio ([N°-

NR2]/([N°=O]+[N°-OH])) is almost identical to the ratio k2[amine]/k1. Though the reactions 

of the benzhydrylium ions (2+, 6+, 8+, 9+, 10
+) with piperidine are diffusion-controlled they 

cannot compete with the fast reactions of N°
+
 with DMSO, even at a piperidine 

concentration of 0.2 M.  
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Table 4. Comparison of the ratios k2[amine]/k1 with the product ratio [N°-NR2]/([N°=O]+[N°-OH]) 
in 0.2 M solution of piperidine in DMSO at 20 °C. 

 

Br

 

10-Br 

Br

 

9-Br 

Br

Cl Cl  

8-Br 

k1/s
−1  6.71 × 10−3 5.46 × 10−4 1.36 × 10−4 

k2/M
−1s−1  3.57 × 10−2 1.69 × 10−2 2.33 × 10−2 

k2 [piperidine]/s−1 7.14 × 10−3 3.38× 10−3 4.66× 10−3 

k2 [piperidine]/k1 1.1 6.2 34 

[Ar2CH-NR2]/([Ar2C=O]+[Ar2CH-OH]) 1.2 8.7 37 

 

The formation of the benzophenones (N°=O) and benzhydrols (N°-OH) is explained 

through the intermediacy of the oxysulfonium ions (N°-OS+Me2) which are generated 

through an SN1 process. Because the ratio [N°=O]/[N°-OH] increases with the reaction 

time, we conclude that most of the benzhydrol (N°-OH) is generated by hydrolysis of the 

intermediate oxysulfonium ions (N°-OS+Me2) during aqueous workup.  

Both kinetic measurements and product studies show that in the investigated systems the 

SN1 and SN2 reactions proceed side by side. As the change from SN1 to SN2 mechanisms 

was observed when the lifetimes of the carbocations in the presence of amines (1 M) were 

calculated to be approximately 10−14 s, Jencks’ lifetime criterion was confirmed to be a 

suitable instrument to predict the change from SN1 to SN2 mechanism.  
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4. Leaving Group Dependence of the SN1/SN2 Ratio 

The kinetics of the reactions of the meta-fluoro substituted benzhydryl bromides and 

tosylates depicted in Scheme 4 in DMSO with amines were studied in DMSO in order to 

investigate the influence of the leaving group on the change from SN1 to SN2 mechanism.  

Scheme 4. Benzhydryl derivatives employed in this study; Ef parameters are given in parentheses 
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As in chapter 3, the observed rate constants were composed of an amine-dependent and an 

amine-independent term (eq. 5) and plots of kobs versus the concentrations of the amines 

were linear (Figure 4) but did not go through the origin. As depicted for 7-Br and 7-OTs in 

Figure 5, the benzhydryl tosylates are more reactive in the SN1 process (larger intercept in 

Figure 5b) while the benzhydryl bromides react faster by the SN2 mechanism (larger slopes 

in Figure 5a).  
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Figure 5. Plots of kobs (s−1) of the reactions of 3-fluorobenzhydryl bromide (7-Br; plots 4a) and 
tosylate (7-OTs; plots 4b) with amines in DMSO at 20 °C vs. [amine]. 
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The linear plot of lg k1 for the solvolysis reactions of benzhydryl tosylates with Σσ (Figure 

6a) suggests that all benzhydryl tosylates investigated solvolyze in DMSO without 

nucleophilic solvent participation. The corresponding plot for the benzhydryl bromides 

(Figure 6b) shows a linear correlation for benzhydryl bromides (4-10)-Br in line with a 

nonassisted monomolecular ionization in DMSO. The positive deviation of lg k1 of (1-3)-Br 

from the correlation line is indicative of a nucleophilic assisted ionization process. The 

validity of these arguments is questioned by the low sensitivity parameter for tosylate in 

DMSO (sf = 0.64) which might be considered as indication of a transition state in which the 

carbocationic character is not fully developed.  
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Figure 6. Plot of lg k1 of the solvolysis reactions of the benzhydryl tosylates (5a) and bromides (5b) 
in DMSO vs. Hammett´s substituent constants σ+ (σm for 1,3,4,7-Br); benzhydryl bromides with Σσ+ 
> 0.68 were not used for the correlation. 

 

 

5. Nucleofugality of Bromide in Other Aprotic Solvents  

The ionization reactions (k1) of benzhydryl bromides in aprotic media have been measured 

by trapping the intermediately formed carbocations by amines (Scheme 5).  

Scheme 5. Reversible ionisation of an alkyl halide, followed by fast trapping of the carbocation by 
a nucleophile and SN2 reaction with the nucleophile. 
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Unlike the previously investigated benzhydryl chlorides (Streidl, N.; Mayr, H. Eur. J. Org. 

Chem. 2009, 2498-2506) the benzhydryl bromides (Scheme 6) used for this investigation 

do not react exclusively via an SN1 reaction (k1), but via parallel SN1 and SN2 process.  

Scheme 6. Benzhydryl bromides employed in this study. 

X Y

Br

N°-Br  

 X Y 

9-Br H H 

10-Br Me H 

11-Br Me Me 

12-Br OMe H 

13-Br OMe Me 

14-Br OMe OPh 

15-Br OMe OMe 

 

The observed ionization rate constants k1, for (12-15)-Br, were found to follow the linear 

free-energy relationship of equation 2, which allowed determining the nucleofugality of 

bromide in aprotic solvents which are listed in Table 5. 

Table 5. Nucleofugality parameters determined by the “amine method” using piperidine and 
N-methylpyrrolidine. 

 acetonitrile DMF acetone 

Nf / sf 2.09 / 1.45 1.81 / 1.27 1.08 / 1.39 

 

Figure 7 illustrates that the ionization of 4,4’-dimethoxybenzhydryl bromide (15-Br) in 

different aprotic solvents is 400 to 800 times faster than the ionization of the corresponding 

benzhydryl chloride in the same solvents.  
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Figure 7. Comparison of calculated lg k1 for the ionizations of the dimethoxy substituted 
benzhydryl chloride (15-Cl) and bromide (15-Br) in three different aprotic solvents.  
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B. Introduction 

Nucleophilic displacement reactions at saturated carbon centers are among the first 

reactions that are taught in undergraduate lectures. Major concepts in organic chemistry can 

be illustrated with this simple reaction.  

The nucleophilic displacement reaction has been differentiated into SN1 and SN2 reactions 

by Ingold.1 While in an SN2 reaction bond formation and breaking proceed simultaneously, 

the SN1 reaction proceeds via a stepwise mechanism.  

In most textbooks the SN1 reaction is defined as a reaction where the initial ionization (k1) 

is rate determining and the subsequent reaction of the carbocation with the solvent is faster 

(ksolv > k−1[X
−]). But this simple reaction scheme is only valid for systems where a highly 

reactive carbocation is formed. Mechanistic changes can occur when the lifetime of the 

intermediate carbocation is varied.  

Scheme 1. Simplified solvolysis scheme (ion-pair collapse neglected). 

k1

kSolv

+ Solv
R-X R++ X- R-Solv

k-1

k2 + Solv

+ X-

R-Solv + X-
 

The lifetime of the carbocation depends on its electrophilicity and the nucleophilicity of the 

solvent. Increasing the electrophilicity of the carbocation and nucleophilicity of the solvent 

will lead to a decreased lifetime of the carbocation. According to Jencks and Richard, a 

change of mechanism from SN1 to SN2 is enforced when the lifetime of the generated 

carbocation is shorter than a bond vibration (≈ 10−13s).2-5 In such a case, the solvent or a 

suitable nucleophile may react in an SN2-type reaction (k2) with the substrate. When the 

lifetime of the carbocation is increased, monomolecular reaction will occur (k1 > k2). If the 

reaction with the solvent is faster than ion recombination (ksolv > k−1[X
−]) the ionization step 

will be rate determining. Further increasing of the lifetime can lead to a solvolysis reaction 

with common-ion return (ksolv < k−1[X
−]), SN2C+ reactions (ksolv < k−1[X

−] and k1 > ksolv) and 

finally to the formation of persistent carbocations (k1 > k−1[X
−]; k1 > ksolv).

6 

For the investigation of these mechanistic changes, a series of substituted benzhydrylium 

ions (Scheme 2) has been employed previously.6-10  
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Scheme 2. Benzhydrylium ion used for mechanistic studies. 

X Y  

 

Differently substituted benzhydrylium ions (Table 1) have previously been employed to 

develop the most comprehensive electrophilicity and nucleophilicity scales presently 

available.11-13 Later, benzhydrylium ions have also been employed to construct 

electrofugality and nucleofugality scales that can be used to predict ionization rate 

constants of various substrates.7  

Table 1. Differently substituted benzhydrylium ions employed for the development of 
comprehensive reactivity scales (not all available benzhydrylium ions from the series of reference 
electrophiles 11-13 are depicted).   

N°+ X Y E Ef 

1+ m-F2 m-F2 8.00 a −12.60 

2+ p-CF3 p-CF3 7.92 a - 

3+ m-F2 m-F 7.58 a −10.88 

4+ m-F m-F 6.97 a −9.26 

5+ m-F2 H 6.85 a −9.00 

6+ p-CF3 H 6.81 a - 

7+ m-F H 6.33 a −7.53 

8+ p-Cl p-Cl 5.59 a −6.90 

9+ H H 5.60 a −6.03 

10+ p-Me H 4.50 a −4.63 

11+ p-Me p-Me 3.63 −3.44 

12+ p-OMe H 2.11 −2.09 

13+ p-OMe p-Me 1.48 −1.32 

14+ p-OMe p-OPh 0.61 −0.86 

15+ p-OMe p-OMe 0.00 0.00 

16+ 
MeO O  

−0.83 a 0.61 
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Table 1. (continued) 
N°+  E Ef 

17+ 
OO  

−1.36 1.07 

18+ 
N NF3C CF3

PhPh  

−3.14 1.79 

19+ 
N NF3C CF3

MeMe  

−3.85 3.13 

20+ 
N N

O O  

−5.53 3.03 

21+ NMe2 NMe2 −7.02 4.84 

a
 from unpublished work by J. Ammer and C. Nolte 

 

The advantage of benzhydrylium ions is the possibility to vary their reactivities, by 

different substitutents on the aromatic residue, while the steric environment of the reaction 

center is kept constant.  

One of the most frequently used methods to predict solvolysis rate constants is the 

Winstein-Grunwald equation (eq. 1).14,15  

 

    lg (k/k0) = mY  (1) 

    k0 : rate constant in 80 % aqueous ethanol (80E20W) 

    m : substrate-specific term (m = 1 for tert-butyl chloride) 

    Y :  solvent ionizing power (Y = 0 in 80E20W) 

 

While this correlation provides reliable predictions for the influence of the solvents on the 

rates of ionizations of C-Cl, C-Br, and C-OTs bonds, it does not compare the 

nucleofugalities of different leaving groups. 

In 2004, equation 2 was introduced as a comprehensive approach to quantify ionization 

reactions.21 
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lg k1(25 °C) = sf(Nf + Ef)  (2) 

sf, Nf : nucleofuge-specific parameters 

Ef : electrofuge-specific parameter 

 

In this equation, carbocations are characterized by the electrofugality parameter Ef, while 

the nucleofuge-specific parameters Nf and sf refer to combinations of leaving groups and 

solvents. This equation has been used to quantify 39 reference electrofuges (i.e., 

carbocations) and over 100 solvent leaving-group combinations.7 Reference electrofuges 

that are used in this thesis are depicted in Table 1. Typically, the deviation between 

calculated and measured solvolysis rate constants was less than 10 %, when reference 

electrofuges were used. With the reference electrofuges thus defined (see Table 1) it has 

become possible to characterize the nucleofugality of almost any combination of leaving-

group and solvent. Thus, acceptor-substituted benzhydrylium ions are used to characterize 

the leaving group abilities of good leaving groups (e.g., tosylate), while donor-substituted 

benzhydrylium ions are used for the characterization of poor leaving groups (e.g., fluoride) 

as illustrated by the substrates depicted in Figure 1, all of which solvolyze within a couple 

of minutes and, therefore, can conveniently be measured.  

 

O

F

F

F

S
O

O

3-OTs  

Br

F

7-Br  

Cl

9-Cl  

F

OMe

12-F  

k1 = 1.94 × 10−3 s−1 
k1 = 9.47 × 10−4 s−1 

k1 = 1.72 × 10−3 s−1 
k1 = 7.82 × 10−4 s−1 

k1,calcd. = 1.94 × 10−3 s−1 k1,calcd. = 9.74 × 10−4 s−1 k1,calcd. = 1.73 × 10−3 s−1  k1,calcd. = 9.40 × 10−4 s−1 

τ1/2 = 6 min τ1/2 = 12 min τ1/2 = 7 min 7 τ1/2 = 15 min 

Figure 1. A series of benzhydryl derivatives that were employed in solvolytic studies. Observed 
first-order rate constants, calculated rate constants according to equation 2 and half-lifes of their 
solvolysis in 80 % aqueous ethanol (80E20W) are displayed below each compound. Rate constant 
for Ph2CHCl was taken from Ref. [7]. 
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Initially, m-chloro-substituted benzhydryl derivatives were used for the characterization of 

good leaving-groups (e.g., tosylate). But, they turned out to cause severe skin irritations.9 

Therefore, one goal of this thesis was to replace these substances by m-fluoro-substituted 

benzhydryl derivatives (1,3,4,5,7-X) and to use them for characterizing further solvent-

leaving group combinations.  

In previous investigations, the nucleofugalities of chloride and bromide have been 

determined in a series of solvents.7 However, fluoride was so far not incorporated into the 

nucleofugality scales since the benzhydryl fluorides have not been readily accessible. The 

determination of the nucleofugality of fluoride in different solvents and the comparison 

with its nucleophilicity should, therefore, be attempted.  

An additional goal of this thesis was to use the newly developed benzhydrylium references 

for investigating the change from SN1 to SN2 mechanism and to examine whether the life-

time hypothesis by Richard and Jencks can be used to predict this change.2-5  

As parts of this thesis have been already published, more detailed introductions are given at 

the beginning of each chapter.  

 

References: 

(1) Ingold, C. K. Structure and mechanism in organic chemistry, 2nd ed.; Cornell 

University Press: Ithaca, NY, 1969. 

(2) Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. 

(3) Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. 

(4) Richard, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 1373-1383. 

(5) Richard, J. P.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 1383-1396. 

(6) Mayr, H.; Ofial, A. R. Pure Appl. Chem. 2009, 81, 667-683. 

(7) Streidl, N.; Denegri, B.; Kronja, O.; Mayr, H. Acc. Chem. Res. 2010, 43, 1537-1549. 

(8) Schaller, H. F.; Mayr, H. Angew. Chem. 2008, 120, 4022-4025; Angew. Chem. Int. 

Ed. 2008, 47, 3958-3961. 

(9) Denegri, B.; Streiter, A.; Juric, S.; Ofial, A. R.; Kronja, O.; Mayr, H. Chem. Eur. J. 

2006, 12, 1648-1656. 

(10) Denegri, B.; Ofial, A. R.; Juric, S.; Streiter, A.; Kronja, O.; Mayr, H. Chem. Eur. J. 

2006, 12, 1657-1666. 



B. Introduction 

 19

(11) Mayr, H.; Patz, M. Angew. Chem. Int. Ed. 1994, 33, 938-957. 

(12) Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; 

Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. J. Am. Chem. Soc. 2001, 123, 

9500-9512. 

(13) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66-77. 

(14) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846-854. 

(15) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1956, 78, 2770-2777. 

(16) Kwang-Ting, L.; Hun-Chang, S.; Hung-I, C.; Pao-Feng, C.; Chia-Ruei, H. 

Tetrahedron Lett. 1990, 31, 3611-3614. 

(17) Liu, K.-T.; Chang, L.-W.; Yu, D.-G.; Chen, P.-S.; Fan, J.-T. J. Phys. Org. Chem. 

1997, 10, 879-884. 

(18) Bentley, T. W.; Llewellyn, G. In Prog. Phys. Org. Chem.; John Wiley & Sons, Inc.: 

2007, 121-158. 

(19) Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61-66. 

(20) Winstein, S.; Fainberg, A. H.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146-

4155. 

(21) Denegri, B.; Minegishi, S.; Kronja, O.; Mayr, H. Angew. Chem. 2004, 116, 2353-

2356. 

 

 



1. Kinetics of the Solvolyses of Fluoro-Substituted Benzhydryl Derivatives 

 20

C. Results and Discussion 

1. Kinetics of the Solvolyses of Fluoro-Substituted Benzhydryl 

Derivatives: Reference Electrofuges for the Development of a 

Comprehensive Nucleofugality Scale 

1.1. Introduction 

The stabilization of benzhydryl cations (diarylcarbenium ions)1 can be modified widely by 

variation of substituents in p- and m-position, while the steric shielding of the carbocation 

center is kept constant. For that reason, benzhydrylium ions (N°
+) have not only been used 

to construct the most comprehensive nucleophilicity scale presently available,2 but also for 

the development of a nucleofugality scale.3 In order to compare the leaving group abilities 

of tosylate and bromide in solvents of high ionizing power, we had studied the solvolyses 

of mono- to tetra-(m-chloro) substituted benzhydrylium derivatives.3a,b However, as 

mentioned in a previous report,3a several researchers were suffering from severe skin 

irritations when working in a laboratory where these compounds were used. For that reason 

we had to abandon the m-chloro substituted compounds as references and replace them by 

the corresponding fluoro derivatives 1-X, 3-X, 4-X and 7-X with one to four m-fluoro 

substituents (Scheme 1.1).  

The highly electrophilic benzhydrylium ions generated from these precursors have recently 

been employed to study the fastest bimolecular reactions in the electronic ground state we 

are aware of, i.e., the reaction of 1+ with methanol which proceeds with a reaction time of 

2.6 ps, corresponding to a time in which light propagates less than 1 mm.4 We now report 

on the synthesis and characterization of compounds 1-X, 3-X, 4-X, 5-X, 7-X and the 

kinetics of their solvolysis reactions in order to determine the electrofugality parameters of 

1+,3+,4+,5+ and 7+. 
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Scheme 1.1. Benzhydrylium derivatives employed in this study. 
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1.2. Results and Discussion 

Synthesis of the precursors: The fluoro substituted benzhydrols (3,4,5,7)-OH were 

synthesized by the reactions of the fluorinated phenylmagnesium bromides with fluorinated 

benzaldehydes (Table 1.1) as described in detail in the experimental section. For the 

synthesis of the symmetrical tetrafluoro-substituted benzhydrol 1-OH, 3,5-

difluorophenylmagnesium bromide was combined with 0.5 equivalents of ethyl formate.  

 

Table 1.1. Synthesis of the fluoro-substituted benzhydrols (1-4)-OH. 

Product Grignard reagent Aldehyde reagent 

7-OH PhMgBr (3-FC6H4)CHO 

4-OH (3-FC6H4)MgBr (3-FC6H4)CHO 

5-OH (3,5-F2C6H3)MgBr PhCHO 

3-OH (3,5-F2C6H3)MgBr (3-FC6H4)CHO 

1-OH (3,5-F2C6H3)MgBr 0.5 HC(O)(OEt) 

 

Standard reagents (SOCl2, PBr3) were used to convert the benzhydrols (1,3,4,7)-OH into 

the benzhydryl chlorides (1,3,4,7)-Cl and benzhydryl bromides (1,3,4,5,7)-Br. Attempts to 

convert the benzhydrols (1,3,4,7)-OH to the corresponding tosylates with p-toluenesulfonyl 

chloride/pyridine, p-toluenesulfonyl anhydride/triethylamine, or p-toluenesulfonyl 
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anhydride/ sodium hydride were unsuccessful.5 Therefore, the benzhydryl tosylates 

(1,3,4,7)-OTs were synthesized in accordance to a procedure by Cheeseman and Poller6 by 

treatment of the corresponding benzhydryl bromides (1,3,4,7)-Br with silver tosylate in 

dichloromethane. The benzhydryl mesylates (1-4)-OMs were synthesized in the same 

manner by treatment of the corresponding benzhydryl bromides with silver mesylate. Only 

the tetra-fluorinated benzhydryl mesylate 1-OMs was obtained as a pure solid. The other 

mesylates (3,4,7)-OMs could not be isolated as pure substances and were obtained as 

yellowish oils that could neither be distilled nor brought to crystallization. Nevertheless it 

was possible to investigate their solvolysis reactions by using diluted solutions, in analogy 

to a procedure by Bentley.7 The benzhydryl sulfonates used in this study are sensitive to 

moisture, and great care has to be taken to exclude traces of moisture during synthesis and 

handling of these compounds.  

Kinetics: When compounds (1,3,4,5,7)-X were dissolved in aqueous or alcoholic media, an 

increase of conductivity due to the generation of HX was observed. Because calibration 

experiments showed a linear correlation between conductance (G) and the concentration of 

HX in the concentration range investigated, the observed mono-exponential increase of 

conductance (G) (eq. 1.1) indicated the operation of a first-order rate law.  

 

G = G∞(1 – e–k1t) + C  (1.1) 

 

The first-order rate constants k1 (Table 1.2) were obtained by fitting the time-dependent 

conductances G to the monoexponential function (eq. 1.1). Because all solvolyses studied 

in this work follow first-order rate laws, common-ion return8 (k–1 in Scheme 1.2) obviously 

does not occur, and the k1 values listed in Table 1.2. correspond to the ionization rate 

constants k1 defined in Scheme 1.2. 

 

Scheme 1.2. Simplified solvolysis scheme. 

k1

kSolvOH

+ SolvOH
+ HXR-X R+

+ X- R-OSolv

k-1  
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Table 1.2. Solvolysis rate constants (25 °C) of the benzhydryl derivatives (1-5)-X in different 
solvents.  

Solventa X electrofuge ks/s
–1 

90A10W TsO 7+ 1.16 × 10–2 

  4+ 4.24 × 10–4 

80A20W TsO 7+ 5.59 × 10–2 b 

  4+ 2.42 × 10–3  

  3+ 1.10 × 10–4 

80A20W OMs 7+ 3.87 × 10–2 

  4+ 1.37 × 10–3 

  3+ 5.92 × 10–5 

60A40W Br 7+ 1.47 × 10–3 

50A50W Br 4+ 1.59 × 10–4 

60AN40W OTs 7+ 2.14 b 

  4+ 9.53 × 10–2 

  3+ 4.26 × 10–3 

  1+ 1.45 × 10–4 

60AN40W OMs 4+ 4.82 × 10–2 

  3+ 2.52 × 10–3 

  1+ 8.04 × 10–5 

60AN40W Br 10+ 4.57 b 

  9+ 1.44 × 10–1 b 

  7+ 4.59 × 10–3 

  4+ 1.18 × 10–4 

  5+ 1.59 × 10–4 

60AN40W Cl 7+ 2.67 × 10–4 
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Table 1.2. (continued) 

Solventa X electrofuge ks/s
–1 

100E OTs 7+ 8.22 × 10–2 

  4+ 3.35 × 10–3 

  3+ 1.88 × 10–4 

100E OMs 7+ 4.34 × 10–2 

  4+ 1.70 × 10–3 

  3+ 9.12 × 10–5 

80E20W OTs 4+ 4.07 × 10–2 

  3+ 1.94 × 10–3 

  1+ 8.15 × 10–5 

80E20W OMs 4+ 3.37 × 10–2 

  3+ 1.35 × 10–3 

  1+ 5.27 × 10–5 

80E20W Br 7+ 9.47 × 10–4 

  4+ 2.30 × 10–5 

  5+ 3.98 × 10–5 

100M OTs 7+ 8.33 × 10–1 

  4+ 2.07 × 10–2 

  3+ 1.13 × 10–3 

  1+ 5.51 × 10–5 

100M Br 7+ 5.75 × 10–4 

80M20W Br 4+ 1.90 × 10–4 

100TFE OTs 3+ 7.99 × 10–2 

  1+ 1.73 × 10–3 

100TFE OMs 3+ 9.21 × 10–2 

  1+ 1.78 × 10–3 
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Table 1.2. (continued) 

Solventa X electrofuge ks/s
–1 

100TFE Br 7+ 7.27 × 10–2 

  4+ 1.49 × 10–3 

  5+ 2.36 × 10–3 

  3+ 2.54 × 10–5 

100TFE Cl 7+ 2.10 × 10–2 

  4+ 3.87 × 10–4 

a Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = ethanol, M = 
methanol, TFE = 2,2,2-trifluoroethanol, W = water; b Stopped flow kinetics. 

 

The Eyring and Arrhenius activation energies were determined for 7-Br and 3-OTs in 

80E20W as representative systems (Table 1.3). Both compounds exhibit activation 

parameters which are typical for solvolysis reactions.3a,c,d, 9 

Table 1.3. Activation parameters for the solvolyses of 1-Br and 3-OTs in 80E20W.  

 7-Br 3-OTs 

∆H
‡/kJ mol–1  84.2 ± 0.7  79.8 ± 0.8 

∆S
‡/J mol–1 K–1 –20.2 ± 2.4 –28.9 ± 2.7 

Ea/kJ mol–1  86.6 ± 2.4  82.2 ± 0.8 

lg A  12.2 ± 0.1  11.7 ± 0.1 

 

1.3. Correlation Analysis 

In previous work we have demonstrated that equation 1.2 can be used to correlate 

solvolysis rates of substrates which differ widely in reactivity.3 In this equation, 

carbocations are characterized by the electrofugality parameter Ef, while the nucleofuge-

specific parameters Nf and sf refer to combinations of leaving groups and solvents.  
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lg k1(25 °C) = sf(Nf + Ef)  (1.2) 

sf, Nf : nucleofuge-specific parameters 

Ef : electrofuge-specific parameter 

 

The solvolysis rate constants k1 in Table 1.2 and previously reported solvolysis rate 

constants for benzhydryl derivatives were subjected to a least-squares minimization 

according to equation 1.3, where Ef for (4-MeOC6H4)2CH+ (15
+) was set to 0.00 and sf for 

the leaving group/solvent combination chloride/ethanol was set to 1.00.  

 

∑∆2 = ∑ (lg ks – lg kcalc)
2 = ∑ (lg ks – sf(Nf + Ef))

2 (1.3) 

 

Minimization of the deviation between calculated and experimental rate constants, i.e., ∑∆2 

as defined by equation 1.3, yielded the electrofugality parameters for the benzhydrylium 

ions 1+, 3+, 4+ and 7+ (Table 1.4.)3e and the nucleofuge-specific parameters Nf/sf for OTs, 

OMs, and Br in solvents of high ionizing power (Table 1.5.).  

Table 1.4. Electrofugality (Ef) parameters of fluoro substituted benzhydryl cations. 

benzhydryl cation substituents Ef 

7+ 3-Fluoro –7.53 

4+ 3,3’-Difluoro –9.25 

3+ 3,3’,5-Trifluoro –10.88 

1+ 3,3’,5,5’-Tetrafluoro –12.60 
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Table 1.5. Nucleofugality parameters Nf and sf for leaving groups X in various solvents. 

Nf / sf 

X OTs OMs Br 

TFE 9.73 / 0.94 a 9.84 / 1.00 b 6.19 / 0.95 a 

60AN40W 7.97 / 0.82 7.69 / 0.83 5.23 / 0.99 

80E20W 7.44 / 0.80 a 7.48 / 0.82 4.36 / 0.95 a 

100M 7.33 / 0.82 –– 4.23 / 0.99 a 

100E 6.08 / 0.78 a 5.81 / 0.80 2.93 / 0.93 c 

80A20W 5.99 / 0.83 a 5.85 / 0.84 3.01 / 0.90 c 

90A10W 5.38 / 0.89 a –– 2.29 / 1.01 c 

a These parameters revise previously published values from Ref. [3a]. b Solvolysis data not included into 
the total correlation as only two rate constants were available for this leaving-group solvent system. c from 
Ref. [3e]. 

 

Some of the nucleofuge-specific parameters Nf/sf in Table 1.5 have previously been 

reported. The small deviation of the new parameters, which are based on a larger set of 

experimental data, confirms the solidity of the previously reported set of nucleofugality 

parameters.3a,b 

Figure 1.1 illustrates the high quality of these correlations for benzhydryl bromides (A), 

tosylates (B) and mesylates (C). 



1. Kinetics of the Solvolyses of Fluoro-Substituted Benzhydryl Derivatives 

 28

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

1-OTs 3-OTs 4-OTs 7-OTs

TFE

60AN40W

90A10W

100E

80E20W

100M

80A20W

B

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

Ef

1-OMs 3-OMs 4-OMs

7-OMs

TFE

60AN40W

100
E

80E20W
80A20W

lg
k

1

C

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

3-Br

4-Br

5-Br 7-Br

TFE

80E20W

100M

A
60AN40W

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

1-OTs 3-OTs 4-OTs 7-OTs

TFE

60AN40W

90A10W

100E

80E20W

100M

80A20W

B

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

Ef

1-OMs 3-OMs 4-OMs

7-OMs

TFE

60AN40W

100
E

80E20W
80A20W

lg
k

1

C

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

1-OTs 3-OTs 4-OTs 7-OTs

TFE

60AN40W

90A10W

100E

80E20W

100M

80A20W

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

1-OTs 3-OTs 4-OTs 7-OTs

TFE

60AN40W

90A10W

100E

80E20W

100M

80A20W

B

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

Ef

1-OMs 3-OMs 4-OMs

7-OMs

TFE

60AN40W

100
E

80E20W
80A20W

lg
k

1

C

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

Ef

1-OMs 3-OMs 4-OMs

7-OMs

TFE

60AN40W

100
E

80E20W
80A20W

lg
k

1

-6

-4

-2

0

-14 -12 -10 -8 -6 -4

Ef

1-OMs 3-OMs 4-OMs

7-OMs

TFE

60AN40W

100
E

80E20W
80A20W

lg
k

1

C

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

3-Br

4-Br

5-Br 7-Br

TFE

80E20W

100M

A
60AN40W

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

3-Br

4-Br

5-Br 7-Br

TFE

80E20W

100M

A

-7

-5

-3

-1

1

-14 -12 -10 -8 -6 -4

lg
k

1

Ef

3-Br

4-Br

5-Br 7-Br

TFE

80E20W

100M

A
60AN40W

 
Figure 1.1. Plot of lg ks for the solvolysis reaction of various substituted benzhydryl derivatives vs. 
electrofugality Ef for A bromides, B tosylates, C mesylates. Data points with filling were taken 
from Table 2, data points without filling were taken from previously published data.3a Mixtures of 
solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = ethanol, M = methanol, 
TFE = 2,2,2-trifluorethanol, W = water. 

From the electrofugality parameters in Table 1.4. and the nucleofugality parameters for Cl− 

in MeOH (Nf = 2.95, sf = 0.98)3a and EtOH (Nf = 1.87, sf = 1.00)3a one can calculate the 

methanolysis rate constant for 7-Cl (3.18 × 10–5 s–1) and the ethanolysis rate constant for 7-

Cl (2.14 × 10–6 s–1) which agree nicely with the experimental values of 2.97 × 10–5 s–1 and 

1.74 × 10–6 s–1, respectively, reported by Nishida.10b The closely similar nucleofugalities of 

TsO and MsO in different solvents is in line with the previously reported similar magnitude 

of the leaving-group abilities of these two sulfonate groups.7 The slightly lower 

nucleofugality of mesylate can be explained by the better delocalization of negative charge 

by tosylate. Depending on the solvent, the nucleofugality of bromide is 2.5 to 3.8 orders of 

magnitude smaller. 
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In line with the similar magnitude of Hammett’s σm constants for Cl (0.37) and F (0.34),11 

the m-fluoro-substituted benzhydrylium ions 7+,4+, 3+ and 1+ have similar electrofugalities 

as the corresponding chloro-substituted benzhydrylium ions.3a Remarkable is the almost 

constant increment of –1.7 per m-F substituent on the electrofugality Ef of the 

benzhydrylium ions. In line with this observation, Figure 1.2 shows a linear correlation 

between Ef and ∑σm with a slope of −4.91 which corresponds to Hammett ρ values from –

4.06 to –5.08 for reaction series with 0.77 < sf < 0.99 (Table 1.4). From the three different 

rate constants for the reaction of 5-Br in TFE, 60AN40W and 80E20W an electrofugality of 

Ef = –9.00 was calculated. The almost identical Ef values of the symmetrical (4+) and 

unsymmetrical difluoro-substituted system (5+) also illustrates the additivity of substituent 

effects. This behavior contrasts that of donor substituents, where a leveling effect is 

observed,10e,12 i.e., the second electron-donor group has generally a smaller cation-

stabilizing effect than the first donor group. From the observation that replacement of one 

H by F has a similar effect in the comparison 3+  1+ as in the comparison 9+
 (Ph2CH+)  

7+ one may conclude that nonadditivity of substituent effects in benzhydrylium systems is 

specific for substituents with +M effects.10 The unsymmetrical difluoro-substituted system 

5
+, which exhibits a similar reactivity as the symmetrical difluoro-substituted system 4

+, 

was not included into the series of reference electrofuges. 
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Figure 1.2. Correlation of the electrofugality parameters Ef of benzhydrylium ions (Table 3) with 
Hammett σ constants (from Ref.[11]). 
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1.4. Conclusion 

The solvolyses of the fluoro-substituted benzhydryl bromides, tosylates and mesylates 

(1,3,4,5,7)-X in various aqueous and alcoholic solutions follow first-order kinetics with 

rate-determining ionization and no common-ion return.8 All rate constants follow the 

correlation lg ks = sf(Nf + Ef) (eq. 1.2), which confirms previously reported nucleofugality 

parameters Nf, sf for bromide and tosylate in various solvents and allows to determine 

nucleofugalities for mesylate as well as electrofugalities Ef of the fluoro-substituted 

benzhydrylium ion 1+, 3+, 4+ and 7+. The fluorine effects are roughly additive, and the 

solvolysis rates are retarded by a factor of 18 to 59 per meta-fluorine. Because the Ef values 

of 1
+, 3

+, 4
+ and 7

+ are similar to those of the corresponding chloro-substituted 

benzhydrylium ions (Table 1.4), the fluoro-substituted benzhydryl cations 1+, 3+, 4+ and 7+ 

are suggested to replace the skin irritant chloro-substituted analogues as references in the 

high electrophilicity and low electrofugality range for quantifying weak nucleophiles and 

strong nucleofuges, respectively. 

 

1.5. Experimental Section 

Preparation of the benzhydrols (3,4,5,7)-OH; general procedure: 

In a flame dried, nitrogen-flushed three-necked round-bottom flask, equipped with a reflux 

condenser and two dropping funnels, magnesium, which was activated with a small amount 

(tip of a spatula) of iodine at 67 °C, was suspended in a small amount of THF (distilled 

from Na, benzophenone). A small amount of a solution of the bromobenzene derivative in 

THF was added to the magnesium. The reaction was started by shortly heating to reflux. In 

order to keep the solution at reflux, further bromobenzene solution was added. After 

complete addition of the bromobenzene, the mixture was heated to reflux for 2 min to 

ensure complete reaction. Then the Grignard solution was cooled to 0 °C and a solution of 

the aldehyde in THF was added during 15 min. After stirring at room temperature for at 

least 2 h, the solution was hydrolyzed with a 0.5 M aqueous NH4Cl-solution and extracted 

three times with Et2O. The combined organic phases were washed with water, dried with 

MgSO4, and filtered. Evaporation of the solvent under vacuum gave the crude product. In 

many cases, the benzhydrols were contaminated by the corresponding benzophenones. To 
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remove this by-product, the product mixture was treated with sodium borohydride in 

ethanol for 12 h at ambient temperature. The solution was then hydrolyzed with 0.5 M 

aqueous NH4Cl-solution and extracted with dichloromethane. The solution was dried with 

MgSO4 and filtered. Evaporation of the solvent in vacuo gave the crude benzhydrol, which 

was distilled in vacuo to give the benzhydrol as a colorless oil.  

 

3-Fluorobenzhydrol (7-OH) was obtained from magnesium (4.06 g, 167 mmol), 

bromobenzene (25.0 g, 159 mmol) in THF (20 mL) and 3-fluorobenzaldehyde (19.7 g, 

159 mmol) in THF (30 mL). The reduction of the additionally generated benzophenone was 

carried out with NaBH4 (1.16 g, 30.7 mmol) in ethanol (50 mL). The crude product was 

distilled under vacuum (123 °C/3.6 ×10−2 mbar) to give a colorless oil (25.6 g, 80 %). 

Spectroscopic data are in agreement with previously published data.13  
1H NMR (400 MHz, CDCl3 ): δ = 2.65 (d, 3

JHH = 3.3 Hz, 1 H, OH), 5.69 (d, 3JHH = 3.0 Hz, 

1 H, CHOH), 6.86-6.95 (m, 1 H, 4-ArH ), 7.02-7.10 (m, 2 H, 2,6-ArH), 7.19-7.31 ppm. (m, 

6 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 75.6 (d, JCF = 1.9 Hz, CHOH), 113.4 (d, 
2
JCF = 22.2 Hz, 2-Ar), 114.3 (d, JCF = 21.2 Hz, 4-Ar), 122.0 (d, JCF = 2.9 Hz, 6-Ar), 126.6 

(s, 2’,6’-Ar), 127.8 (s, 4’-Ar), 128.6 (s, 2 C, 3’,5’-Ar), 129.9 (d, JCF = 8.2 Hz, 5-Ar), 143.3 

(s, 1’-Ar), 146.3 (d, JCF = 6.7 Hz, 1-Ar), 162.9 ppm. (d, 1JCF = 245.9 Hz, 3-Ar);  
19F NMR (282 MHz, CDCl3): δ = −112.7 ppm. (ddd, 3

JFH = 10.3 Hz, 3
JFH = 8.7 Hz, 

4
JFH = 5.7 Hz, 3,3’-F);  

MS (+EI): m/z (%) = 202.1 (28) [M+], 201.1 (15) [M+−H], 183.1 (12) [M−F], 123.0 (43) 

[C7H4FO+], 105.0 (100) [C7H5O
+], 97.0 (11) [C6H6F

+], 96.0 (11) [C6H5F
+], 95.0 (14) 

[C6H4F+], 79.0 (25) [C6H7
+], 78.0 (20) [C6H6

+], 77.0 (23) [C6H5
+];  

HR-MS (+EI) found: 202.0792 calcd. for C13H11FO: 202.0794.  
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3,3’-Difluorobenzhydrol (4-OH) was obtained from magnesium (3.65 g, 150 mmol), 1-

bromo-3-fluorobenzene (25.0 g, 143 mmol) in THF (20 mL) and 3-fluorobenzaldehyde 
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(17.7 g, 143 mmol) in THF (30 mL). The reduction of the additionally generated 

benzophenone was carried out with NaBH4 (1.16 g, 30.7 mmol) in ethanol (50 mL). The 

crude product was distilled (106 °C/5 ×10−3 mbar) in the vacuum to give a colorless oil 

(24.8 g, 79 %).  
1H NMR (300 MHz, CDCl3): δ = 2.89 (d, 3

JHH = 3.5 Hz, 1 H, OH), 5.67 (d, 3
JHH = 3.2 Hz, 

1 H, CHOH), 6.89-6.96 (m, 2 H, 4-ArH), 6.99-7.06 (m, 4 H, ArH), 7.21-7.28 ppm. (m, 2 H, 

ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 75.0 (t, 3

JCF = 1.9 Hz, CHOH), 113.4 (d, 
2
JCF = 22.6 Hz, 2-Ar), 114.7 (d, 2

JCF = 21.2 Hz, 4-Ar), 122.1 (d, JCF = 2.9 Hz, 6-Ar), 130.1 

(d, JCF = 8.2 Hz, 5-Ar), 145.7 (d, JCF = 6.7 Hz, 1-Ar), 162.9 ppm. (d, 1
JCF = 246.5 Hz, 3-

Ar);  
19F NMR (282 MHz, CDCl3): δ = −112.3 ppm. (ddd, 3

JFH = 9.5 Hz, 3
JFH = 8.7 Hz, 

4
JFH = 5.7 Hz, 3-F);  

MS (+EI): m/z (%) = 221.1 (14) [M++H], 220.1 (100) [M+], 219.1(38) [M+−H], 203.1 (15) 

[M+-OH], 202.1 (14) [M+−F+H] 201.1 (39) [M+−F], 183.1 (12), 125.0 (14) [M−C6H4F], 

123.0 (80) [C7H4FO+], 97.0 (15) [C6H6F
+], 96.0 (12) [C6H5F

+], 95.0 (13) [C6H4F
+];  

HR-MS (+EI) found: 220.0697 calcd. for C13H10F2O: 220.0700.  
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3,5-Difluorobenzhydrol (5-OH) was obtained from magnesium (0.79 g, 33 mmol), 1-

bromo-3,5-difluorobenzene (6.0 g, 31 mmol) in THF (10 mL) and benzaldehyde (3.3 g, 

31 mmol) in THF (10 mL). The reduction of the additionally generated benzophenone was 

carried out with NaBH4 (1.1 g, 29 mmol) in ethanol (20 mL). The crude product was 

distilled (170 °C/1.9 ×10−2 mbar) under vacuum to give a colorless oil (4.8 g, 70 %).  
1H NMR (300 MHz, CDCl3): δ = 2.50 (s, 1 H, OH), 5.72 (s, 1 H, CHOH), 6.67 (tt, 

3
JHF = 8.9 Hz, 4JHH = 2.4 Hz 1 H, 4-ArH), 6.85-6.93 (m, 2 H, 2,6-ArH), 7.25-7.38 ppm. (m, 

5 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 75.4 (t, 3

JCF = 2.2 Hz, 1 C, CHOH), 102.7 (t, 
2
JCF = 25.4 Hz, 1 C, 4-Ar), 109.0–109.4 (m, AXX’-system, 2 C, 2,6-Ar), 126.6 (s, 2 C, 
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2’,6’-Ar), 128.2 (s, 1 C, 4’-Ar), 128.8 (s, 2 C, 3’,5’-Ar), 142.7 (s, 1 C, 1’-Ar), 147.7 (d, 

JCF = 8.4 Hz, 2 C, 1-Ar), 163.0 ppm. (dd, 1JCF = 248.5 Hz, 3JCF = 12.6, 2 C, 3,5-Ar);  
19F NMR (282 MHz, CDCl3): −109.5 - −109.4 ppm. (m, 2 F, 3,5-F);  

MS (+ EI): m/z (%) = 220.1 (43) [M+], 219.1 (49) [M+−H], 204.1 (11), 203.1 (9) [M+−OH], 

201.1 (22) [M+−F],141.0 (55) [C7H3F2O], 113.0 (18) [C6H3F2
+], 108.0 (22), 107.0 (36) 

[C7H7O
+], 106.0 (12), 105.0 [C7H5O

+], 97.1 (11) [C6H6F
+], 83.1 (12), 79.0 (55) [C6H7

+], 

78.0 (16) [C6H6
+], 77.0 (50) [C6H5

+], 69.0 (13), 57.1 (16), 51.0 (14) [C4H3
+], 44.0 (16), 43.0 

(11);  

HR-MS (+EI) found: 220.0691 calcd. for C13H10F2O: 220.0700  

Elemental Analysis:  Calculated for C13H10F2O:  C, 70.90; H, 4.58. 

Found:    C, 70.56; H, 4.82. 
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3,3’,5-Trifluorobenzhydrol (3-OH) was obtained from magnesium (3.65 g, 150 mmol), 1-

bromo-3,5-difluorbenzene (27.6 g, 143 mmol) in THF (20 mL) and 3-fluorobenzaldehyde 

(17.7 g, 143 mmol) in THF (30 mL). The reduction of the additionally generated 

benzophenone was carried out with NaBH4 (1.18 g, 31 mmol) in ethanol (50 mL). The 

crude product was distilled  in the vacuum (130 °C/1.7 ×10−2 mbar) to give a colorless oil 

(21.0 g, 62 %). 
1H NMR (300 MHz, CDCl3): δ = 2.88 (s, 1 H, OH), 5.68 (s, 1 H, CHOH), 6.68 (tt, 

3
JHF = 8.9 Hz, 4

JHH = 2.4 Hz 1 H, 4-ArH), 6.81-6.89 (m, 2 H, 2,6-ArH), 6.93-7.09 (m, 3 H, 

ArH), 7.24-7.33 ppm. (m, 1 H, 5’-ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 74.7 (td, 4

JCF = 2.3 Hz, 4
JCF = 2.3 Hz, CHOH), 

103.1 (t, 2
JCF = 25.4 Hz, 1 C, 4-Ar), 109.1–109.4 (m, AXX’-system, 2,6-Ar), 113.5 (d, 

2
JCF = 22.2 Hz, 2’-Ar), 115.1 (d, 2

JCF = 21.2 Hz, 4’-Ar), 122.1 (d, 4
JCF = 3.0 Hz, 6’-Ar), 

130.4 (d, 3
JCF = 8.2 Hz, 5’-Ar), 145.1 (d, 3

JCF = 6.7 Hz, 1’-Ar), 147.0 (t, 3
JCF = 8.4 Hz, 1-

Ar), 163.0 (d, 1
JCF = 246.9 Hz, 3’-Ar), 163.1 ppm. (dd, 1

JCF = 249.1 Hz, 3
JCF = 12.6 Hz, 

3,5-Ar);  
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19F NMR (282 MHz, CDCl3): -109.0 - −108.9 (m, 3,5-F); −111.9 - −112.0 ppm. (m, 3’-F);  

MS (+EI): m/z (%) = 239.1 (5) [M++H], 238.1 (32) [M+], 237.1 (10) [M+−H], 219.0 (19) 

[M+−F], 143.4 (10) [C7H5F2O
+], 141.3 (61) [C7H3F2O

+], 125.2 (16) [C7H6FO+], 124.2 (14), 

123.0 (100) [C7H4FO+], 115.1 (23), 114.1 (18) [C6H4F2
+], 113.1 (14) [C6H3F2

+], 97.0 (31) 

[C6H6F+], 96.0 (31) [C6H5F
+], 95.0 (24) [C6H4F+];  

HR-MS (+EI) found: 238.0597 calcd. for C13H9F3O: 238.0606;  

Elemental Analysis:  Calculated for C13H9F3O:  C, 65.55; H, 3.81. 

Found:    C, 65.25; H, 3.74. 
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3,3’,5,5’-Tetrafluorobenzhydrol (1-OH)  

In a flame dried, nitrogen-flushed three-necked round-bottom flask, equipped with a reflux 

condenser, and two dropping funnels, magnesium (2.64 g, 109 mmol), which was activated 

with a small amount (tip of a spatula) of iodine at 67 °C, was suspended in a small amount 

of THF (distilled from Na, benzophenone). A small amount of a solution of 1-bromo-3,5-

difluorbenzene (20.0 g, 104 mmol) in THF (30 mL) was added to the magnesium. The 

reaction was started by short heating to reflux. In order to keep the solution at reflux further 

bromobenzene solution was added. After complete addition of the bromobenzene the 

mixture was heated to reflux for 2 minutes, to ensure complete reaction. Then the Grignard 

solution was cooled to 0 °C and ethyl formate 3.1 g, 42 mmol) in THF (30 mL) was added 

during 15 min. After stirring at room temperature for at least 2 h, the solution was poured 

on 0.5 M aqueous NH4Cl-solution (150 mL) and extracted with Et2O (3 × 100 mL). The 

combined organic phases were washed with water (100 mL), dried with MgSO4, and 

filtered. Evaporation of the solvent in the vacuum gave the crude product. The crude 

product (9.31 g, 86 %) was obtained as a pale yellowish, low-melting solid. For synthesis 

the purity of the crude product is sufficient enough. The product can be further purified by 

vacuum distillation (103–105 °C/1.0 ×10−3 mbar), but care has to be taken that the product 

does not solidify and clog the condenser.  

Mp: 47-50 °C;  
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1H NMR (300 MHz, CDCl3): δ = 2.84 (br. s, 1 H, OH), 5.68 (s, 1 H, CHOH), 6.72 (tt, 
3JHF = 8.8 Hz, 4JHH = 2.3 Hz, 2 H, 4-H), 6.82-6.89 (m, 4 H, 2,6-H). 13C NMR {1H}(75.5 

MHz, CDCl3): δ = 74.4 (quint., JCF = 2.2 Hz, 1 C, CHOH), 103.5 (t, 2JCF = 25.4 Hz, 2 C, 4-

Ar), 109.2–109.5 (m, AXX’-system, 4 C, 2,6-Ar), 146.5 (t, 3JCF = 8.4 Hz, 2 C, 1-Ar), 163.2 

ppm. (dd, 1JCF = 249.6 Hz, 3JCF = 12.5 Hz, 4 H, 3,5-Ar);  
19F NMR (282 MHz, CDCl3): δ = −108.6 - −108.5 ppm. (m, 4 F, 3,5-F);  

MS (+EI): m/z (%) = 256.0 (44) [M+], 255.1 (6) [M+−H], 237.0 (50) [M+−F], 219.0 (32) 

[M+−2F], 207.0 (13), 206.0 (19), 184.1 (11), 143.0 [C7H5F2O
+] (100), 142.0 (28), 141.0 

(65), 140.0 (10), 127.0 (15), 115.0 (58) [C6H5F2
+], 114.0 (19) [C6H4F2

+], 95.0 (29) 

[C6H4F+], 58.0 (25), 44.0 (16), 43.1 (47), 42.1 (24), 41.1 (16);  

HR-MS (+EI) found: 256.0358 calcd. for (C13H8F4O): 256.0511;  

Elemental Analysis:  Calculated for C13H9F3O:  C, 60.95; H, 3.15. 

Found:    C, 60.68; H, 3.09. 
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Preparation of the benzhydryl chlorides (1,3,4,7)-Cl; general procedure:  

The substituted benzhydrol was dissolved in CH2Cl2 at 0 °C. A solution of SOCl2 in 

CH2Cl2 was added dropwise to the well-stirred solution. After 2 h, the solvent and the 

remaining SOCl2 was evaporated under vacuum. The remaining crude product was distilled 

under vacuum to yield the benzhydryl chloride as a colorless oil. All benzhydryl chlorides 

1-4-Cl were prepared by this method. But only (1-2s)-Cl were used as the higher 

substituted benzhydryl chlorides did not solvolyze fast enough to be measured in a 

reasonable time.  

3-Fluorobenzhydryl chloride (7-Cl) was obtained from thionyl chloride (5.1 mL, 

70 mmol) in dichloromethane (10 mL) and 3-fluorobenzhydrol (7-OH) (10.0 g, 49.5 mmol) 

in dichloromethane (40 mL). The crude product was distilled in the vacuum (165–

170 °C /2.5 ×10-3 mbar) to give a colorless oil (8.9 g, 81 %).   
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1H NMR (400 MHz, CDCl3 ): δ = 6.08 (s, 1 H, CHCl), 6.95-7.00 (m, 1 H, 4-ArH), 7.12-

7.19 (m, 2 H, ArH), 7.27-7.41 ppm. (m, 6 H, ArH);  
13C NMR {1H}(101 MHz, CDCl3): δ = 63.3 (d, 4

JCF = 1.9 Hz, CHCl), 114.9 (d, 
2
JCF = 22.8 Hz, 2-Ar or 4-Ar), 115.1 (d, 2

JCF = 22.2 Hz, 2-Ar or 4-Ar), 123.4 (d, 
4
JCF = 3.0 Hz, 6-Ar), 127.7 (s, 2’,6’,-Ar), 128.3 (s, 4’-Ar), 128.7 (s, 3’,5’-Ar), 130.0 (d, 

3
JCF = 8.2 Hz, 5-Ar), 140.5 (s, 1’-Ar), 143.5 (d, 3

JCF = 7.2 Hz, 1-Ar), 162.7 ppm. (d, 
1
JCF = 246.6 Hz, 3-Ar);  

19F NMR (376 MHz, CDCl3): δ = -112.4– -112.3 ppm. (m, 1 F, 3-F);  

MS (+EI): m/z (%) = 220.0 (3) [M+], 186.1 (18), 185.1 (100) [M+−Cl], 184.1 (11), 183.1 

(31), 165.1 (20);  

HR-MS (+EI) found: 220.0443 calcd. for (C13H10
35ClF): 220.0455;  

Elemental Analysis:  Calculated for C13H10ClF:  C, 70.76; H, 4.57. 

Found:    C, 70.63; H, 4.34. 
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3,3’-Difluorobenzhydryl chloride (4-Cl) was obtained from thionyl chloride (1.4 mL, 

19 mmol) and 3,3’-difluorobenzhydrol (4-OH) (3.00 g, 13.6 mmol) in dichloromethane 

(10 mL). The crude product was distilled in the vacuum (170–174 °C/6.0 ×10−3 mbar) to 

give a colorless oil (2.5 g, 77 %).   
1H NMR (300 MHz, CDCl3 ): δ = 6.05 (s, 1 H, CHCl), 6.97-7.04 (m, 2 H, 4-ArH ), 7.10-

7.18 (m, 4 H, ArH), 7.29-7.36 (m, 2 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 62.4 (t, 4

JCF = 2.0 Hz, CHCl), 114.9 (d, 
2
JCF = 22.9 Hz, 2-Ar), 115.3 (d, 2

JCF = 21.2 Hz, 4-Ar), 123.3 (d, 4
JCF = 3.0 Hz, 6-Ar), 130.2 

(d, 3JCF = 8.3 Hz, 5-Ar), 142.9 (d, 3JCF = 7.2 Hz, 1-Ar), 162.7 (d, 1JCF = 247.1 Hz, 3-Ar);  
19F NMR (282 MHz, CDCl3): δ = -112.0 (m, 3,3’-F);  

MS (+EI): m/z (%) = 238.1 (4) [M+], 204.2 (16), 203.2 (100) [M−Cl-], 202.1 (12), 201.1 

(35), 183.1 (28);  
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Elemental Analysis:  Calculated for C13H9ClF2:  C, 65.42; H, 3.80. 

Found:    C, 65.46; H, 3.68. 
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3,3’,5-Trifluorobenzhydryl chloride (3-Cl) was obtained from thionyl chloride (1.3 mL, 

18 mmol) and 3,3’,5-trifluorobenzhydrol (3-OH) (3.00 g, 12.6 mmol) in dichloromethane 

(10 mL). The crude product was distilled in the vacuum (196–198 °C/1.1 ×10−2 mbar) to 

give a colorless oil (2.3 g, 72 %).   
1H NMR (300 MHz, CDCl3 ): δ = 5.98 (s, 1 H, CHCl), 6.74 (tt, 3JHF = 8.7 Hz, 4JHH = 2.3 Hz 

,1 H, 4-ArH ), 6.89-7.04 (m, 3 H, ArH), 7.08-7.16 (m, 2 H, ArH), 7.28-7.35 ppm. (m, 1 H, 

ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 61.8 (td, 4JCF = 2.3 Hz, 4JCF = 2.1 Hz, CHCl), 103.8 

(t, 2
JCF = 25.3 Hz, 4-Ar), 110.7–111.1 (m, AXX’-system, 2,6-Ar), 114.9 (d, 2

JCF = 23.0 Hz, 

2’-Ar or 4’-Ar), 115.7 (d, 2
JCF = 21.2 Hz, 2’-Ar or 4’-Ar), 123.3 (d, 4

JCF = 3.0 Hz, 6’-Ar), 

130.4 (d, 3
JCF = 8.3 Hz, 5’-Ar), 142.3 (d, 3

JCF = 7.2 Hz, 1’-Ar), 144.2 (t, 3
JCF = 9.0 Hz, 1-

Ar), 162.8 (d, 1
JCF = 247.5 Hz, 3’-Ar), 163.0 ppm. (dd, 1

JCF = 249.4 Hz, 3
JCF = 12.1 Hz, 

3,5-Ar);  
19F-NMR (282 MHz, CDCl3): −108.4 - −108.5 ppm. (m, 3,5-F); −111.6 (m, 3’-F);  

MS (+EI): m/z (%) = 256.1 (3) [M+], 237.2 (4) 222.2 (36), 221.1 (100) [M−Cl−], 219.1 

(34), 201.1 (35);  

Elemental Analysis:  Calculated for C13H8ClF3:  C, 60.84; H, 3.14. 

Found:    C, 60.61; H, 3.16. 
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3,3’,5,5’-Tetrafluorobenzhydryl chloride (1-Cl) was obtained from thionyl chloride 

(1.2 mL, 18 mmol) and 3,3’,5,5’-tetrafluorobenzhydrol (1-OH) (3.00 g, 11.7 mmol) in 
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dichloromethane (10 mL). The crude product was distilled in the vacuum (196–198 °C/5.0 

×10−3 mbar) to give a colorless oil (2.6 g, 82 %).   
1H NMR (300.10 MHz, CDCl3): δ = 5.94 (s, 1 H, CHCl), 6.78 (tt, 3JHF = 8.7 Hz, 
4JHH = 2.3 Hz, 2 H, 4-H), 6.88-6.96 ppm. (m, 4 H, 2,5-H);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 61.2 (quint., JCF = 2.3 Hz, CHBr),104.2 (t, 
2
JCF = 25.3 Hz, 4-Ar), 110.7–111.1 (m, AXX’-system, 2,6,-Ar), 143.5 (t, 3

JCF = 9.1 Hz, 1-

Ar), 163.1 ppm. (dd, 1JCF = 250.6 Hz, 3JCF = 12.8 Hz, 3,5-Ar);  

19F-NMR (282 MHz, CDCl3): −108.1 - −108.0 ppm. (m, 3,5-F);  

MS (+EI): m/z (%) = 274.1 (4) [M+], 240.2 (65.12), 239.2 [M−Cl−], 237.1 (19), 219.1 

(40.3); 

Elemental Analysis:  Calculated for C13H7ClF4:  C, 56.85; H, 2.57. 

Found:    C, 56.75; H,2.53. 
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Method for the preparation of the benzhydryl bromides (1,3,4,5,7)-Br; general procedure: 

In a flame dried, nitrogen-flushed Schlenk flask, equipped with a dropping funnel a 

solution of the substituted benzhydrol in dichloromethane was prepared at 0 °C. 

Phosphorus tribromide in dichloromethane was added to the well stirred solution. After 

addition of PBr3 the cooling bath was removed and the solution was allowed to reach room 

temperature. Stirring was continued for at least three hours; then the solvent and PBr3 were 

evaporated in the vacuum. Distillation under vacuum yielded the benzhydryl bromides as 

colorless oil. 

 

3-Fluorobenzhydryl bromide (7-Br) was obtained from phosphorus tribromide (8.1 g, 

30 mmol), 3-fluorobenzhydrol (7-OH) (5.0 g, 25 mmol) in dichloromethane (35 mL). The 

crude product was distilled in the vacuum (175-180 °C/1.0 ×10−3 mbar) to give a colorless 

oil (5.2 g, 80 %).   
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1H NMR (300 MHz, CDCl3 ): δ = 6.22 (s, 1 H, CHBr), 6.92-6.99 (m, 1 H, 4-ArH ), 7.15-

7.45 ppm. (m, 8 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 54.0 (d, 4

JCF = 2.0 Hz, CHBr), 115.0 (d, 
2
JCF = 21.2 Hz, 4-Ar), 115.6 (d, 2

JCF = 22.9 Hz, 2-Ar), 124.0 (d, 4
JCF = 3.0 Hz, 6-Ar), 128.3 

(s, 2’,4’,6’-Ar), 128.7 (s, 3’,5’-Ar),130.0 (d, 3JCF = 8.3 Hz, 5-Ar), 140.4 (s, 1’-Ar), 143.5 (d, 
3
JCF = 7.3 Hz, 1-Ar), 162.6 ppm. (d, 1JCF = 246.8 Hz, 3-Ar);  

19F NMR (282 MHz, CDCl3): δ = −112.3 - −112.2 ppm. (ddd, 3JFH = 9.6 Hz, 3
JFH = 8.2 Hz, 

4
JFH = 5.6 Hz, 3-F);  

MS (+EI): m/z (%) = 369.2 (26) [2M+−2Br-+H], 368.2 (100) [2M+−2Br-], 308.2 (22), 271.2 

(20), 269.2 (14),  265.2 (55) [M+ + H], 264.1 (10) [M+] ,263.1 (58) [M+- H], 262.2 (11), 

261.2 (30), 259.2 (12);  

Elemental Analysis:  Calculated for C13H10BrF1:  C, 58.89; H, 3.80. 

Found:    C, 58.79; H, 3.81. 
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3,3’-Difluorobenzhydryl bromide (4-Br) was obtained from phosphorus tribromide  

(13.5 g, 49.9 mmol), 3,3’-difluorobenzhydrol (4-OH) (10.0 g, 45.4 mmol) in 

dichloromethane (35 mL).The crude product was distilled in the vacuum (175–

180 °C/1.0×10−3 mbar) to give a colorless oil (9.0 g, 70 %).   
1H NMR (300 MHz, CDCl3 ): δ = 6.18 (s, 1 H, CHBr), 6.96-7.02 (m, 1 H, ArH ), 7.14-7.35 

ppm. (m, 8 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 52.7 (t, 3

JCF = 2.0 Hz, CHBr), 115.3 (d, 
2
JCF = 21.2 Hz, 4-Ar), 115.6 (d, 2

JCF = 22.9 Hz, 2-Ar), 124.0 (d, 4
JCF = 3.0 Hz, 6-Ar), 130.2 

(d, 3
JCF = 8.3 Hz, 5-Ar), 142.9 (d, 4

JCF = 7.2 Hz, 1-Ar), 162.6 ppm. (d, 1
JCF = 247.0 Hz, 3-

Ar);  
19F NMR (282.37 MHz, CDCl3): δ = -112.0 ppm. (ddd, 3

JFH = 9.7 Hz, 3
JFH = 8.5 Hz, 

4
JFH = 5.9 Hz, 3,3’-F);  

MS (+EI): m/z (%) = 281.2 (<1) [M+−H], 204.2 (32), 203.0 (100) [M−Br−], 202.1 (21), 

201.2 (48), 183.2 (40), 123.1 (12) [C7H4FO+], 58.1 (36), 43.1 (66);  



1. Kinetics of the Solvolyses of Fluoro-Substituted Benzhydryl Derivatives 

 40

Elemental Analysis:  Calculated for C13H9BrF2:  C, 55.15; H, 3.20. 

Found:    C, 55.09; H, 3.15. 
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3,5-Difluorbenzhydryl bromide (5-Br) was obtained from phosphorus tribromide  (1.60 g, 

5.9 mmol), 3,5-difluorobenzhydrol (5-OH) (1.00 g, 4.5 mmol) in dichloromethane (5 mL). 

The crude product was distilled in the vacuum (170-175 °C/2.0 ×10−3 mbar) to give a 

colorless oil (0.87 g, 68 %).  
1H NMR (300 MHz, CDCl3 ): δ = 6.14 (s, 1 H, CHBr), 6.70 (tt, 3

JHF = 8.7 Hz, 
4
JHH = 2.3 Hz ,1 H, 4-ArH ), 6.93-7.01 (m, 2 H, ArH), .7.26-7.43 ppm. (m, 5 H, ArH);  

13C NMR {1H}(75.5 MHz, CDCl3): δ = 53.1 (t, 3
JCF = 2.2 Hz, CHBr), 103.5 (t, 

2
JCF = 25.3 Hz, 4-Ar), 111.5-111.8 (m, AXX’-system, 2,6-Ar), 128.3 (s, 2’,6’-Ar), 128.6 (s, 

2 C, 4’-Ar), 128.8 (s, 3’,5’-Ar), 139.9 (s, 1’-Ar), 144.8 (t, 3
JCF = 9.0 Hz, 1-Ar), 162.8 ppm. 

(dd, 1JCF = 249.3 Hz, 3JCF = 12.8 Hz, 2 C, 3,5-Ar);  
19F-NMR (282 MHz, CDCl3): −108.8 - −108.9 ppm. (m, 3,5-F);  

MS (+EI): m/z (%) = 204.1 (29), 203.1 (100) [M+−Br], 202.1 (19), 201.1 (48), 184.1 (10), 

183.1 (53), 141.1 (10) [C7H3F2O
+], 125.2 (11), 123.2 (10), 111.2 (15), 109.2 (10), 105.1 

(24) [C7H5O
+], 97.2 (20), 95.1 (16), 91.2 (14), 85.2 (14), 83.1 (17), 81.1 (18), 77.1 (10) 

[C6H5
+], 71.1 (16), 69.1 (19), 57.1 (25), 55.1 (19), 44.0 (37), 43.1 (20), 41.1 (26);  

Elemental Analysis:  Calculated for C13H9BrF2:  C, 55.15; H, 3.20. 

Found:    C, 54.79; H, 3.16. 
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3,3’,5-Trifluorobenzhydryl bromide (3-Br) was obtained from phosphorus tribromide  

(13.6 g, 50.2 mmol), 3,3’,5-trifluorobenzhydrol (3-OH) (10.0 g, 42.0 mmol) in 

dichloromethane (35 mL). The crude product was distilled in the vacuum (185-188 °C/1.0 

×10−3 mbar) to give a colorless oil (10.1 g, 80 %).  
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1H NMR (300 MHz, CDCl3 ): δ = 6.11 (s, 1 H, CHBr), 6.75 (tt, 3
JHF = 8.7 Hz, 

4
JHH = 2.3 Hz ,1 H, 4-ArH ), 6.92-7.04 (m, 3 H, ArH), 7.12-7.20 (m, 2 H, ArH), 7.28-7.36 

ppm. (m, 1 H, ArH);  
13C NMR {1H}(75.5 MHZ, CDCl3): δ = 51.8 (td, 4

JCF = 2.3 Hz, 4
JCF = 2.1 Hz, CHBr), 

103.8 (t, 2
JCF = 25.3 Hz, 4-Ar), 111.4–111.8 (m, AXX’-system, 2,6-Ar), 115.6 (d, 

2
JCF = 22.3 Hz, 2’-Ar or 4’-Ar), 115.6 (d, 2

JCF = 21.2 Hz, 2’-Ar or 4’-Ar), 123.9 (d, 
4
JCF = 3.0 Hz, 6’-Ar), 130.4 (d, 3

JCF = 8.3 Hz, 5’-Ar), 142.2 (d, 3
JCF = 7.3 Hz, 1’-Ar), 144.2 

(t, 3
JCF = 9.1 Hz, 1-Ar), 162.7 (d, 1

JCF = 247.5 Hz, 3’-Ar), 162.8 ppm. (dd, 1
JCF = 249.7 Hz, 

3
JCF = 12.8 Hz, 3,5-Ar);  

19F-NMR (282 MHz, CDCl3): −108.5 - −108.4 ppm. (m, 3,5-F); -111.6– -111.7 (m, 3’-F);  

MS (+EI): m/z (%) = 302.2 (11) [M+], 222.2 (23), 221.2 (100) [M+−Br], 220.2 (18), 219.1 

(51), 201.1 (50); 

HR-MS (+EI) found: 299.9728 calcd. for C13H8
79BrF3: 299.9761;  

Elemental Analysis:  Calculated for C13H8BrF3:  C, 51.86; H, 2.68. 

Found:    C, 51.76; H, 2.53. 
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3,3’,5,5’-Tetrafluorobenzhydryl bromide (1-Br) was obtained from phosphorus 

tribromide  (3.80 g, 14.0 mmol), 3,3’,5,5’-tetrafluorbenzhydrol (1-OH) (3.00 g, 11.7 mmol) 

in dichloromethane (35 mL). The crude product was distilled in the vacuum (188–

193 °C/1.0 ×10−3 mbar) to give a colorless oil (2.7 g, 73 %). 
1H NMR (300.10 MHz, CDCl3): δ =6.05 (s, 1 H, CHBr), 6.76 (tt, 3JHF = 8.7 Hz, 
4JHH = 2.2 Hz, 2 H, 4-H), 6.90-6.99 ppm. (m, 4 H, 2,5-H);  
13C NMR {1H}(75.5 MHz, CDCl3): δ = 50.9 (quint., JCF = 2.3 Hz, CHBr),104.1 (t, 
2
JCF = 25.2 Hz, 4-Ar), 111.4–111.7 (m, AXX’-system, 2,6,-Ar), 143.5 (t, 3

JCF = 9.0 Hz, 1-

Ar), 162.9 ppm. (dd, 1JCF = 250.0 Hz, 3JCF = 12.7 Hz, 3,5-Ar);  

19F-NMR (282 MHz, CDCl3): −108.2 - −108.1 ppm. (m, 3,5-F);  

MS (+EI): m/z (%) = 320.1 (18) [M+], 303.2 (16), 302.2 (100) [M−F+H+], 240.1 (12), 

239.1 (100), 237.1 (22), 219.1 (34);  
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Elemental Analysis:  Calculated for C13H7BrF4:  C, 48.93; H, 2.21. 

Found:    C, 48.79; H, 2.25. 
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Method for the preparation of the benzhydryl tosylates (1,3,4,7)-OTs; general procedure: 

In a flame dried, nitrogen-flushed, opaque Schlenk flask, a 1.3-fold excess of finely ground 

silver tosylate (2-4 g) was suspended in dichloromethane. The benzhydryl bromide (1.5 to 

4.1 g) was added to the well stirred suspension. After stirring for at least 12 hours, the 

solvent was removed under reduced pressure. The remaining solid was extracted twice at 

room temperature with diethylether (10 mL). The remaining silver salts were filtered off. 

The resulting solution was concentrated by removing part of the diethylether under reduced 

pressure until colorless crystals started to precipitate. The solution was cooled to –34 °C 

and the product was allowed to crystallize over night. The resulting colorless crystals of 

benzhydryl tosylate were filtered, washed with a very small amount of cold ether and dried 

under high vacuum to give the benzhydryl tosylates in mediocre yields. During the 

complete synthesis care has to be taken to exclude traces of water.   

 

3-Fluorobenzhydryl tosylate (7-OTs) was obtained from silver tosylate (4.11 g, 

14.7 mmol), 3-fluorobenzhydryl bromide (7-Br) (3.00 g, 11.3 mmol) in dichloromethane 

(15 mL) yielding in the product as colorless crystals (1.5 g, 37 %).  

Mp: 68.9 - 70.4 °C (decomp.);  
1H NMR (300 MHz, CDCl3 ): δ = 2.37 (s, 3 H, CH3), 6.50 (s, 1 H, CHOTs), 6.88-6.98 (m, 

2 H, 2,4-ArH, TolH ), 6.99-7.04 (m, 1 H, ArH), 7.14-7.29 (m, 8 H, ArH), 7.60-7.64 ppm. 

(m, 2 H, TolH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ =  21.7 (s, CH3), 83.7 (d, 4

JCF = 2.0 Hz, CHOTs), 

114.4 (d, 2
JCF = 22.9 Hz, 2-Ar), 115.4 (d, 2

JCF = 21.2 Hz, 4-Ar), 123.0 (d, 4
JCF = 3.0 Hz, 6-

Ar), 127.4 (s, 2’,6’-Ar), 127.9 (s, TolH), 128.7 (s, 3’,5’-Ar), 128.8 (s, 4’-Ar), 129.6 (s, 

TolH), 130.2 (d, 3
JCF = 8.2 Hz, 5-Ar), 134.1 (s, Tol), 137.8 (s, 1’-Ar), 140.9 (d, 

3
JCF = 7.3 Hz, 1-Ar), 144.7 (s, Tol), 162.8 ppm. (d, 1JCF = 246.9 Hz, 3-Ar);  
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19F NMR (282.38 MHz, CDCl3): δ = −112.3 - −112.2 ppm. (m, 3-F);  

MS (+EI): m/z (%) = 356.2 (0.1) [M+], 201.2 (28) [C13H10FO+], 186.2 (56), 185.2 (100) 

[M+−OTs], 183.1 (36), 165.1 (20), 123.1 (16) [C7H5FO], 105.1 (36), 91.2 (20), 77.1 (12);  

Elemental Analysis:  Calculated for C20H17FO3S:  C, 67.40; H, 4.81; S, 9.00. 

Found:    C, 67.58; H, 5.15; S, 9.21. 
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3,3’-Difluorobenzhydryl tosylate (4-OTs) was obtained from silver tosylate (3.84 g, 

13.8 mmol), 3,3’-difluorobenzhydryl bromid (4-Br) (3.00 g, 10.6 mmol) in 

dichloromethane (15 mL) yielding in the product as colorless crystals (1.4 g, 35 %).  

Mp: 84.6-87.4 °C;  
1H NMR (300 MHz, CDCl3): δ = 2.36 (s, 3 H, CH3), 6.46 (s, 1 H, CHOTs), 6.86-7.00 (m, 

6 H, ArH, TolH ), 7.15-7.30 (m, 4 H, ArH), 7.60-7.63 ppm. (m, 2 H, TolH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ =  21.5 (s, 1 C, CH3), 82.6 (t, 4JCF = 1.9 Hz, CHOTs), 

114.2 (d, 2
JCF = 22.9 Hz, 2 C, 2-Ar), 115.6 (d, 2

JCF = 21.1 Hz, 4-Ar), 122.8 (d, 
4
JCF = 3.0 Hz, 6-Ar),127.8 (s, TolH), 129.6 (s, Tol), 130.2 (d, 4JCF = 8.2 Hz, 5-Ar), 133.6 (s, 

Tol), 140.1(d, 4
JCF = 7.2 Hz, 1-Ar), 145.0 (s, Tol), 162.6 ppm. (d, 1

JCF = 247.4 Hz, 3-Ar); 
19F NMR (282 MHz, CDCl3): δ = −112.0 - −111.9 ppm. (m, 3-F);  

MS (+EI): m/z (%) = 374.1 (0.1) [M+], 219.1 (22) [C13H9F2O
+], 204.0 (45), 203.0 (100) 

[M+-OTs], 201.0 (46), 183.0 (32), 91.0 (10);  

HR-MS (+EI) found: 374.0781 calcd. for (C20H16F2O3
32S): 374.0788;  
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Elemental Analysis:  Calculated for C20H16F2O3S:  C, 64.16; H, 4.31. 

Found:    C, 63.88; H, 4.27. 
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3,3’,5-Trifluorobenzhydryl tosylate (3-OTs) was obtained from silver tosylate (3.61 g, 

12.9 mmol), 3,3’,5-trifluorobenzhydryl bromide (3-Br) (3.00 g, 9.96 mmol) in 

dichloromethane (15 mL) yielding in the product as colorless crystals (1.5 g, 38 %).  

Mp: 95.8-98.4 °C;  
1H NMR (599 MHz, CDCl3): δ = 2.38 (s, 3 H, CH3), 6.41 (s, 1 H, CHOTs), 6.68-6.75 (m, 

3 H, 2,4,6-ArH,), 6.86 (d, 3
JHF = 9.3 Hz, 1 H, ArH), 6.95-6.98 (m, 2 H, ArH), 7.20 (d, 

3
JHH = 8.0 Hz, 2 H, TolH), 7.23-7.26 (m, 1 H, 5’-ArH), 7.64 ppm. (d, 3

JHH = 8.0 Hz, 2 H, 

TolH);  
13C NMR {1H}(150.7 MHz, CDCl3): δ =  21.5 (s, CH3), 81.8 (td, 4

JCF = 2.1 Hz, 
4
JCF = 2.2 Hz, CHOTs), 104.0 (t, 2

JCF = 25.2 Hz, 4-Ar), 110.1–110.3 (m, AXX’-system, 

2,6-Ar), 114.2 (d, 2
JCF = 22.9 Hz, 2’-Ar), 115.9 (d, 2

JCF = 21.1 Hz, 4’-Ar), 122.8 (d, 
4
JCF = 3.1 Hz, 6’-Ar), 127.8 (s, Tol), 129.7 (s, Tol), 130.4 (d, 4

JCF = 8.2 Hz, 5’-Ar), 133.6 

(s, Tol), 139.5 (d, 4JCF = 7.3 Hz, 1’-Ar), 141.6 (t, 4
JCF = 9.0 Hz, 1-Ar), 145.1 (s, Tol), 162.6 

(d, 1JCF = 247.7 Hz, 3’-Ar), 162.9 ppm. (dd, 1JCF = 250.1 Hz, 3JCF = 12.6 Hz, 3,5-Ar);  
19F-NMR (282 MHz, CDCl3): -111.7 - −111.6 (m, 3’-F), −108.3 - −108.2 (m, 3,5-F);  

MS (+EI): m/z (%) = 392.1 (0.1) [M+], 237.1 (29) [C13H8F3O
+], 222.1 (16), 221.1 (100) 

[M+−OTs], 220.0 (16), 219.0 (37), 201.1 (22), 200.2 (18);  
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HR-MS (+EI) found: 392.0688 calcd. for (C20H15F3O3
32S): 392.0694;  

Elemental Analysis:  Calculated for C20H15F3O3S:  C, 61.22; H, 3.85; S, 8.17. 

Found:    C, 61.00; H, 4.02; S, 7.93. 
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3,3’,5,5’-Tetrafluorobenzhydryl tosylate (1-OTs) was obtained from silver tosylate 

(2.40 g, 8.60 mmol), 3,3’,5,5’-tetrafluorobenzhydryl bromide (1-Br) (1.50 g, 4.70 mmol) in 

dichloromethane (15 mL) yielding in the product as colorless crystals (0.43 g, 21 %).  

Mp: 96.1-98.6 °C  
1H NMR (300 MHz, CDCl3): δ = 2.40 (s, 3 H, CH3), 6.36 (s, 1 H, CHOTs), 6.69-6.77 (m, 

6 H, ArH,), 7.21-7.25 (m, TolH), 7.63-7.67 ppm. (m, 2 H, TolH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ =  21.6 (s, CH3), 81.0 (quint., 4JCF = 2.3 Hz, CHOTs), 

104.4 (t, 2
JCF = 25.2 Hz, 4-Ar), 110.0–110.4 (m, AXX’-system, 2,6-Ar), 127.9 (s, Tol), 

129.7 (s, Tol), 133.3 (s, Tol), 140.9 (t, 4
JCF = 9.0 Hz, 1-Ar), 145.4 (s, Tol), 163.0 ppm. (dd, 

1
JCF = 250.6 Hz, 3JCF = 12.6 Hz,  3,5-Ar);  

19F-NMR (282.38 MHz, CDCl3): −108.0 - −107.9 ppm. (m, 3,5-F);  

MS (+EI): m/z (%) = 410.1 (0.4) [M+], 255.1 (36) [C13H7F4O
+], 240.1 (12), 239.0 (100) 

[M+−OTs], 238.0 (14), 219.0 (29);  

HR-MS (+EI) found: 410.0577 calc. (C20H14F4O3
32S): 410.0600  

Elemental Analysis:  Calculated for C20H14F4O3S:  C, 58.53; H, 3.44. 

Found:    C, 58.31; H, 3.26. 
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Method for the preparation of the benzhydrylmesylates (3,4,7)-OMs: 

As described in the main article, it was not possible to isolate the benzhydryl mesylates 

3,4,7-OMs as pure products. For the investigation of their solvolysis reaction diluted 

reaction mixtures were used. To obtain these mixtures, 0.45 M solutions of the 

corresponding benzhydryl bromide 3,4,7-Br in dichloromethane were treated with 1.3 

equivalents of silver mesylate. After 12 h, the solution was filtered and diluted to give an 

approximately 0.2 M solution of the benzhydryl mesylate. The solutions were used 

immediately for the kinetic experiments.   

 

3,3’,5,5’-Tetrafluorobenzhydryl mesylate (1-OMs) was obtained from silver mesylate 

(0.83 g, 4.1 mmol) and 3,3’,5,5’-Tetrafluorobenzhydryl bromide (1-Br) (1.0 g, 3.2 mmol) 

in dichloromethane (10 mL) yielding in the product as colorless crystals (0.8 g, 77 %). 

Mp: 59.3-61.4 °C;  
1H NMR (300 MHz, CDCl3): δ = 2.94 (s, 3 H, CH3), 6.55 (s, 1 H, CHOMs), 6.78-6.86 (m, 

2 H, 4,4’-ArH), 6.88-6.95 ppm. (m, 4 H, ArH);  
13C NMR {1H}(75.5 MHz, CDCl3): δ =  39.3 (s, CH3), 80.7 (quint., 4

JCF = 2.3 Hz, 1 C, 

CHOMs), 104.8 (t, 2
JCF = 25.2 Hz, 4-Ar), 110.1–110.5 (m, AXX’-system, 2 C, 2,6-Ar), 

141.2 (t, 4
JCF = 8.8 Hz, 1-Ar), 163.3 ppm. (dd, 1

JCF = 250.6 Hz, 3
JCF = 12.6 Hz, 4 C, 3,5-

Ar);  
19F-NMR (282 MHz, CDCl3): −107.4 - −107.3 ppm. (m, 3,5-F);  

MS (+EI): m/z (%) = 334.0 (15) [M+], 293.2 (20), 256.0 (19), 256.0 (19), 255.1 (98) 

[C13H7F4O
+], 240.1 (20), 239.0 (100) [M+ - OTs], 238.0 (44) 237.0 (69), 220.0 (16), 219.0 

(83), 149.0 (62), 141.0 (38), 127.1 (11), 113.0 (13) [C6H3F2
+];  

HR-MS (+EI) found: 334.0273 calcd. for (C14H10F4O3
32S): 334.0287  

Elemental Analysis:  Calculated for C14H10F4O3S:  C, 50.30; H, 3.02; S, 9.59. 

Found:    C, 50.40; H, 3.13; S, 9.72. 
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1.6. Kinetics 

Hydrolysis or alcoholysis of the benzhydryl derivatives (1,3,4,5,7)-X with X = Cl, Br, 

OMs, OTs led to the formation of the benzhydrols ((1,3,4,5,7)-OH) or benzhydryl ethers 

((1,3,4,5,7)-OR) along with the strong acids HX. The generation of HX resulted in an 

increase of conductivity. Calibration experiments for two representative systems showed 

that the initial concentration of benzhydryl bromide or tosylate correlates linearly with the 

final conductance, in agreement with previous results. Therefore, the solvolysis rate 

constants can be determined reliably by conductometry. Most reactions were monitored 

with a conventional conductometer (conductometers: Radiometer Analytical CDM 230 or 

Tacussel CD 810, Pt electrode: WTW LTA 1/NS). The temperature of the solutions during 

all kinetic studies was kept constant at 25.0 °C (± 0.1 °C) by using a circulating bath 

thermostat. For each measurement aliquots of 0.25 mL of a 0.2 M solution of the substrate 

in dichloromethane were injected to 30 mL of the solvolysis medium. Fast solvolysis 

reactions, e.g., solvolysis of 7-OTs in 80 % aqueous acetone, have been measured in a 

stopped-flow conductometer (Hi-Tech Scientific SF-61 DX2, platinum electrodes, cell 

volume: 21 µL, cell constant 4.24 cm–1, minimum dead time 2.2 ms) by mixing one 

equivalent of the benzhydryl derivative in acetone or acetonitrile with 10 equivalents of 

aqueous acetone or acetonitrile to give solvent mixtures of the desired composition. After 

injection of the benzhydrylium derivative into the solvolyzing medium an increase of 

conductance was observed, which was recorded at certain time intervals resulting in about 

3000 data points for each measurement. The first-order rate constants k1 (s
–1) were obtained 

by least squares fitting of the conductance data to a single-exponential equation G = G∞(1-

e−k1t) + C. Each rate constant was typically averaged from at least three kinetic runs. In 

some cases when the solvolysis reaction was very slow only two kinetic runs were 

recorded. All solvolyses were performed at 25 °C. The following solvents were 

commercially available with a sufficient quality for the kinetic experiments: Acetone 

(Acros 99.8 %), acetonitrile (extra dry < 50 ppm), methanol (Acros 99.8 %). Dry ethanol 

was obtained by distillation of commercially available absolute ethanol from 

sodium/diethyl phtalate. Dry 2,2,2-trifluorethanol was obtained by distillation of 

commercially available 2,2,2-trifluorethanol (Apollo Scientific) from Drierite©. As 2,2,2-

trifluoroethanol is quite expensive it was recycled by distilling the 2,2,2-trifluorethanol 
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with an rotary evaporator and then returning the solvent to the distillation from Drierite©. 

This procedure might have caused the bigger deviation in the individual rate constants of 

these measurements. Doubly destilled water [Impendance 18.2 Ω] was prepared with a 

Milli-Q Plus machine from Millipore.  

Calibration experiments showed a linear correlation between the initial concentration of the 

benzhydryl derivatives 7-OTs, 9-Br and the conductance at the end of the reaction within 

the investigated concentration range (Figure 1.3).  
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Figure 1.3. Initial concentration of benzhydryl tosylate 7-OTs and 9-Br (Ph2CHBr) vs. conductance 
at t∞ in 100E and 50A50W respectively. After the addition of a portion of 7-OTs or 9-Br, the next 
conductivity value was taken when the conductivity remained constant for a least 100 s and 200 s 
respectively. 
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Table 1.6. Individual rate constants for the solvolysis reactions of (1,3,4,5,7)-X.  

solventa benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

90A10W 7-OTs 1.22 ×10−2 1.16 ×10−2 

  1.17 ×10−2  

  1.17 ×10−2  

  1.13 ×10−2  

  1.14 ×10−2  

  1.14 ×10−2  

 4-OTs 4.47 ×10−4 4.24 ×10−4 

  4.17 ×10−4  

  4.08 ×10−4  

80A20W 7-OTs 5.43 ×10−2 5.59 ×10−2 b 

  5.75 ×10−2  

 4-OTs 2.38 ×10−3 2.42 ×10−3 

  2.45 ×10−3  

  2.43 ×10−3  

 3-OTs 1.11 ×10−4 1.10 ×10−4 

  1.10 ×10−4  

80A20W 7-OMs 3.94 ×10−2 3.87 ×10−2 

  3.68 ×10−2  

  3.82 ×10−2  

  4.03 ×10−2  

 4-OMs 1.38 ×10−3 1.37 ×10−3 

  1.37 ×10−3  

  1.35 ×10−3  

  1.36 ×10−3  

 3-OMs 5.88 ×10−5 5.92 ×10−5 

  5.96 ×10−5  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

60A40W 7-Br 1.51 ×10−3 1.47 ×10−3 

  1.45 ×10−3  

  1.48 ×10−3  

  1.45 ×10−3  

50A50A 4-Br 1.55 ×10−4 1.59 ×10−4 

  1.60 ×10−4  

  1.60 ×10−4  

60AN40W 7-OTs 2.14 2.14 b 

 4-OTs 9.52 ×10−2 9.53 ×10−2 

  9.95 ×10−2  

  9.37 ×10−2  

  9.29 ×10−2  

 3-OTs 4.35 ×10−3 4.26 ×10−3 

  4.30 ×10−3  

  4.24 ×10−3  

  4.16 ×10−3  

 1-OTs 1.43 ×10−4 1.45 ×10−4 

  1.47 ×10−4  

  1.47 ×10−4  

60AN40W 4-OMs 4.68 ×10−2 4.82 ×10−2 

  5.12 ×10−2  

  4.73 ×10−2  

  4.77 ×10−2  

 3-OMs 2.53 ×10−3 2.52 ×10−3 

  2.45 ×10−3  

  2.57 ×10−3  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

60AN40W 1-OMs 7.89 ×10−5 8.04 ×10−5 

  8.45 ×10−5  

  7.79 ×10−5  

60AN40W 10-Br 4.59 4.57  

  4.55  

 9-Br 1.40 ×10−1 1.44 ×10−1  

  1.48 ×10−1  

 7-Br 4.39 ×10−3 4.59 ×10−3 

  4.78 ×10−3  

  4.61 ×10−3  

 4-Br 1.22 ×10−4 1.18 ×10−4 

  1.16 ×10−4  

  1.16 ×10−4  

 5-Br 1.60 ×10−4 1.59 ×10−4 

  1.58 ×10−4  

60AN40W 7-Cl 2.67 ×10−4 2.67 ×10−4 

  2.66 ×10−4  

100E 7-OTs 7.60 ×10−2 8.22 ×10−2 

  7.60 ×10−2  

  8.75 ×10−2  

  8.05 ×10−2  

  8.75 ×10−2  

  8.57 ×10−2  

 4-OTs 3.24 ×10−3 3.35 ×10−3 

  3.28 ×10−3  

  3.48 ×10−3  

  3.38 ×10−3  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

100E 3-OTs 1.96 ×10−4 1.88 ×10−4 

  1.82 ×10−4  

  1.84 ×10−4  

100E 7-OMs 4.45 ×10−2 4.34 ×10−2 

  4.17 ×10−2  

  4.17 ×10−2  

  4.59 ×10−2  

 4-OMs 1.63 ×10−3 1.70 ×10−3 

  1.76 ×10−3  

  1.62 ×10−3  

  1.80 ×10−3  

 3-OMs 9.70 ×10−5 9.12 ×10−5 

  8.63 ×10−5  

  9.04 ×10−5  

80E20W 4-OTs 3.97 ×10−2 4.07 ×10−2 

  3.97 ×10−2  

  4.09 ×10−2  

  4.08 ×10−2  

 3-OTs 1.96 ×10−3 1.94 ×10−3 

  1.99 ×10−3  

  1.87 ×10−3  

 1-OTs 7.84 ×10−5 8.15 ×10−5 

  8.07 ×10−5  

  7.88 ×10−5  

  8.47 ×10−5  

  8.49 ×10−5  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

80E20W 4-OMs 3.49 ×10−2 3.37 ×10−2 

  3.33 ×10−2  

  3.36 ×10−2  

  3.29 ×10−2  

 3-OMs 1.39 ×10−3 1.35 ×10−3 

  1.38 ×10−3  

  1.33 ×10−3  

  1.31 ×10−3  

 1-OMs 5.24 ×10−5 5.27 ×10−5 

  5.31 ×10−5  

80E20W 7-Br 9.84 ×10−4 9.47 ×10−4 

  9.45 ×10−4  

  9.16 ×10−4  

  9.44 ×10−4  

 4-Br 2.29 ×10−5 2.30 ×10−5 

  2.32 ×10−5  

 5-Br 3.98 ×10−5 3.98 ×10−5 

  3.98 ×10−5  

100M 7-OTs 7.40 ×10−1 8.33 ×10−1 

  7.78 ×10−1  

  9.81 ×10−1  

 4-OTs 2.11 ×10−2 2.07 ×10−2 

  2.01 ×10−2  

  2.09 ×10−2  

  2.07 ×10−2  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

100M 3-OTs 1.12 ×10−3 1.13 ×10−3 

  1.09 ×10−3  

  1.18 ×10−3  

 1-OTs 5.42 ×10−5 5.51 ×10−5 

  5.59 ×10−5  

100M 7-Br 5.76 ×10−4 5.75 ×10−4 

  5.75 ×10−4  

  5.77 ×10−4  

  5.73 ×10−4  

80M20W 4-Br 1.89 ×10−4 1.90 ×10−4 

  1.92 ×10−4  

100TFE 3-OTs 7.07 ×10−2 7.99 ×10−2 

  8.40 ×10−2  

  8.90 ×10−2  

  7.61 ×10−2  

 1-OTs 1.78 ×10−3 1.73 ×10−3 

  1.69 ×10−3  

  1.76 ×10−3  

  1.69 ×10−3  

100TFE 3-OMs 9.58 ×10−2 9.21 ×10−2 

  8.28 ×10−2  

  9.12 ×10−2  

  9.85 ×10−2  

 1-OMs 1.69 ×10−3 1.78 ×10−3 

  1.91 ×10−3  

  1.76 ×10−3  
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Table 1.6. (continued) 

solvent[a] benzhydrylium  

derivative 

k1 (individual)/ 

s−1 

k1 (average)/s−1 

100TFE 7-Br 7.55 ×10−2 7.27 ×10−2 

  7.77 ×10−2  

  6.49 ×10−2  

 4-Br 1.52 ×10−3 1.49 ×10−3 

  1.53 ×10−3  

  1.48 ×10−3  

  1.43 ×10−3  

 5-Br 2.58 ×10−3 2.36 ×10−3 

  2.20 ×10−3  

  2.31 ×10−3  

 3-Br 2.66 ×10−5 2.54 ×10−5 

  2.41 ×10−5  

100TFE 7-Cl 2.17 ×10−2 2.10 ×10−2 

  2.18 ×10−2  

  2.02 ×10−2  

  2.01 ×10−2  

 4-Cl 3.76 ×10−4 3.87 ×10−4 

  3.81 ×10−4  

  4.05 ×10−4  

a Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = ethanol, M = 
methanol, TFE = 2,2,2-trifluoroethanol, W = water. b Stopped flow kinetics. 

 

The Eyring and Arrhenius parameters were determined by measuring the solvolysis rate 

constants ks of 7-Br and 3-OTs in 80E20W at different temperatures. Plots of ln ks vs. 1/T 

(T in K) yielded the activation energy Ea as slope/R and lg A as intercept × lg e. Plots of ln 

(ks/T) vs. 1/T (T in K) yielded the activation enthalpy ∆H
‡ as −slope/R and ∆S

‡ as 

(intercept−ln(kB/h))/R. 
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Table 1.7. Rate constants ks for the solvolysis of 1-Br and 3-OTs in 80E20W at different 
temperatures. 

T/°C ks/s
–1 (7-Br) T/°C ks/s

–1 (3-OTs) 

3.0 6.10 × 10−5 2.1 1.29 × 10−4 

15.0 2.85 × 10−4 15.0 6.43 × 10−4 

20.0 5.45 × 10−4 20.0 1.16 × 10−3 

25.0 9.47 × 10−4 25.0 1.94 × 10−3 

28.7 1.56 × 10−3 30.0 3.67 × 10−3 

38.3 4.33 × 10−3 38.2 8.32 × 10−3 

Table 1.8. Activation parameters for the solvolyses of 1-Br and 3-OTs in 80E20W.  

 7-Br 3-OTs 

∆H
‡/kJ mol–1  84.2 ± 0.7  79.8 ± 0.8 

∆S
‡/J mol–1 K–1 –20.2 ± 2.4 –28.9 ± 2.7 

Ea/kJ mol–1  86.6 ± 2.4  82.2 ± 0.8 

lg A  12.2 ± 0.1  11.7 ± 0.1 
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Figure 1.3. Eyring (a) and Arrhenius (b) plot for 7-Br in 80E20W. 
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Figure 1.4. Eyring (a) and Arrhenius (b) plot for 3-OTs in 80E20W. 
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2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents 

2.1. Introduction 

Fluorine has so far only been found in 30 natural products (status 2004),1-3 while the other 

halides have been detected in several thousand molecules synthesized by nature. On the 

other hand, fluoro-substituted compounds have become highly important in medicinal and 

agricultural chemistry, 4-6 and 20-25 % of the drugs in the pharmaceutical pipeline contain 

at least one fluorine atom.5 Since the van der Waals radius of fluorine (1.47 Å) is between 

that of oxygen (1.52 Å) and hydrogen (1.20 Å), incorporation of fluorine into a biologically 

active substances strongly affects the electronic properties without large changes of its 

structure. Bioavailability, lipophilicity, blood brain barrier permeability, and metabolic 

stability of a pharmaceutically active molecule can, therefore, be customized by 

incorporation of fluorine. However, incorporation of fluorine into complex organic 

molecules is often a challenging task for the synthetic chemist.7-10 Nucleophilic 

substitutions with [18F]-fluoride are the key steps in various syntheses of 

radiopharmaceuticals used in positron emission tomography (PET).11-15 Though the low 

reactivity of the C-F bond has already been recognized by Ingold16 and Hughes17, only few 

quantitative data on the leaving group abilities18-24 and the nucleophilic reactivities of 

fluoride are available.25,26 In recent years, the Kronja group and the Mayr group have 

introduced a novel approach to analyze leaving group abilities in solvolysis reactions.27-33 

By using benzhydrylium ions (Introduction Table 1, Tabel 2.1) of variable stabilization as 

reference electrofuges, it became possible to compare nucleofugalities of anions and neutral 

leaving groups in different solvents over a wide range of reactivity. For the correlation of 

the solvolysis rate constants k1 (s−1) equation 2.1 was employed, where carbocations are 

characterized by the electrofugality parameter Ef, and combinations of leaving groups and 

solvents are characterized by the nucleofuge-specific parameters Nf and sf .  

 

lg k1 (25 °C) = sf(Nf + Ef)  (2.1) 

sf, Nf : nucleofuge-specific parameters 

Ef : electrofuge-specific parameter.  
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So far fluoride was not incorporated into these scales which presently include parameters 

for more than 100 leaving group/solvent pairs. In this thesis, an efficient synthesis of a 

series of substituted benzhydryl fluorides 11-15-F, the rate constants (k1) for their 

solvolyses in various solvents, and the rates (k-1) of the reactions of fluoride ions with 

benzhydrylium ions (Table 2.1, Scheme 2.1) in a variety of solvents are reported.  

Scheme 2.1. Ionization of benzhydryl fluorides  

F
H

R2

R1

k1

k-1

R2

R1

+ F

9-15-F 9+-15+
 

Table 2.1. Benzhydrylium ions employed in this study. 

 Electrophile/Electrofuge R1 R2 Ef E 

9+ H H −6.03 5.90 

11+ Me Me −3.44 3.63 

12+ OMe H −2.09 2.11 

13+ OMe Me −1.23 1.48 

14+ OMe OPh −0.86 0.61 

15+ 

R1 R2  

OMe OMe 0.00 0.00 

16+ 

       MeO O  

  0.61 −0.83 

17+ 

OO  

  1.07 −1.36 

18+ 
N NF3C CF3

PhPh  

  1.79 −3.14 

19+ 
N NF3C CF3

MeMe  

  3.13 −3.85 

20+ 
N N

O O  

  3.03 −5.53 

21+  NMe2 NMe2 4.84 −7.02 
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2.2. Results  

Synthesis of Benzhydryl Fluorides  

While Swain et al. used anhydrous hydrofluoric acid for the preparation of trityl fluoride 

and the parent benzhydryl fluoride (9-F) from the corresponding alcohols,24 Ando avoided 

the use of hydrofluoric acid by treating benzhydryl bromide with silver fluoride dispersed 

on calcium fluoride (Scheme 2.2).34 Following this procedure, the symmetrical benzhydryl 

fluorides 11-F and 15-F were synthesized, isolated, and characterized. The liquid 11-F was 

purified by distillation under high vacuum, and 15-F was recrystallized from 

dichloromethane/diethyl ether. The other benzhydryl fluorides were not isolated because 

they decomposed during distillation and did not crystallize readily. They were synthesized 

in acetonitrile solution (0.2 M) and used for kinetic investigations without prior evaporation 

of the solvent. In general, great care has to be taken to exclude traces of water and acid 

during synthesis and handling of these compounds, since traces of acid lead to autocatalytic 

decomposition of the benzhydryl fluorides.20   

Scheme 2.2. Synthesis of benzhydryl fluorides 11-15-F. The substitution patterns defined by 11-15 
are analogous to those shown for the benzhydrylium ions in Table 2.1. 

F

R1 R2

Br

R1 R2

AgF / CaF2

MeCN

9-15-F9-15-Br  

 

Kinetics of Benzhydryl Fluoride Solvolyses 

When compounds 11-15-F were dissolved in aqueous or alcoholic media, an increase of 

conductance was observed. As the solvolyses (Scheme 2.3) of alkyl fluorides are prone to 

autocatalysis,20 amines were added to trap the protons and to deprotonate the released 

hydrofluoric acid quantitatively, thus ensuring a linear dependence of the conductance on 

the reaction progress. Calibration experiments, i.e., stepwise addition of the rapidly 

solvolyzing benzhydryl fluoride 14-F to a solution of 80E20W containing 0.08 M 

piperidine, showed a linear correlation between the initial concentration of the benzhydryl 

fluoride 14-F and the conductance at the end of the reaction within the investigated 

concentration range (see experimental section). As a consequence, monoexponential 
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increases of the conductance (G) were observed during the solvolysis reaction and the first-

order rate constants k1 (Table 2.2) were obtained by fitting the time dependent conductance 

G to the monoexponential function (eq. 2.2).  

G = G∞(1 − e−k1t) + C  (2.2) 

 

The majority of ionization rate constants (k1) were determined at least at two different 

concentrations of piperidine (0.08 M to 0.16 M, see Experimental Section); for one system 

(solvolysis of 14-F in 60AN40W) 2,6-lutidine was additionally used as additive for the 

determination of k1. In all cases the rate constants varied only within the typical 

experimental error margin (0-7 %).  

Scheme 2.3. Simplified solvolysis scheme for SN1 reactions. 

k1

ksolv

+ SolvOH
+ HXR-X R + X R-OSolv

k-1

kamine

+ XR-NHR2

 NHR2

NHR2
+ XR-NR2 + H2NR2  

 

The observation of first-order kinetics, and the fact that the observed first-order rate 

constants are independent of the nature and concentration of the added amines (Figure 2.1) 

indicates that the observed first-order rate constants equal k1. If common-ion return would 

occur (k−1 [X−] ≈ ksolv), an increase of the piperidine concentration would lead to an 

increase of the overall rate because trapping of the carbocation by the amine (kamine) would 

suppress the ion recombination. The second-order rate law for an SN2 reaction requires a 

linear increase of kobs with the concentration of the amine, which can be excluded from the 

data shown in Figure 2.1. 
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Figure 2.1. Observed rate constants k1/s
−1 for the solvolysis of 13-F in 60AN40 at various 

concentrations of amine (▲for triethylamine, ■ for 2,6-lutidine, ● for piperidine). 

 

Table 2.2. Solvolysis rate constants (25 °C) of the benzhydryl fluorides 11-15-F in different 
solvents.  

solvent a Ar2CHF k1/s
−1 

90A10W 15-F 9.26 × 10−5 

80A20W 15-F 1.20 × 10−3 

 14-F 1.43 × 10−4 

80AN20W 15-F 7.90 × 10−3 

 14-F 1.11 × 10−3 

 13-F 4.85 × 10−4 

100E 15-F b 4.26 × 10−3 

 14-F 5.63 × 10−4 

 13-F 1.63 × 10−4 

60A40W 14-F 3.55 × 10−3 

 13-F  1.87 × 10−3 

 12-F 3.80 × 10−4 

 11-F 3.28 × 10−5 

100M 15-F 3.92 × 10−2 

 14-F 5.49 × 10−3 

 13-F 1.99 × 10−3 

 12-F 3.43 × 10−4 
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Table 2.2. (continued) 
solvent a Ar2CHF k1/s

−1 

80E20W 15-F 7.77 × 10−2 

 14-F 1.42 × 10−2 

 13-F 4.34 × 10−3 

 12-F 7.82 × 10−4 

 11-F 5.75 × 10−5 

   9-F c 2.75 × 10−7  

60AN40W 15-F 8.35 × 10−2 

 14-F 9.28 × 10−3 

 13-F d 4.66 × 10−3 

 12-F 1.02 × 10−3 

 11-F 9.99 × 10−5 

a Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = ethanol, M = 
methanol, W = water. b Eyring activation parameters: ∆H‡ = 62.5 kJ mol–1, ∆S‡ = −81.0 J mol–1 K–1. c rate 
constant was determined by Swain et al.24 d Eyring activation parameters: ∆H‡ = 64.1 kJ mol–1, ∆S‡ = 
−74.7 J mol–1 K–1 

 

Plots of lg k1 for the solvolyses of 11-15-F in various solvents vs. the electrofugality 

parameters Ef of the benzhydrylium ions are linear (Figure 2.2), indicating the applicability 

of equation 2.1. From these correlations, one can extract the nucleofugality parameters, Nf 

as the negative intercepts on the abscissa (Ef axis) and the sf parameters as the slopes of the 

correlation lines (Table 2.3).  
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Figure 2.2. Plots of lg k1 for the solvolysis reactions of various benzhydryl fluorides vs. the 
electrofugalities Ef. The correlation lines for 80E20W and 100M are shown in the Experimental 
Section. Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = 
ethanol, M=methanol, W = water. 

The calculated rate constant k1,calcd= 2.23 × 10−7 s−1 for the solvolysis of 9-F calculated from 

equation 2.1 using the nucleofugality parameters for fluoride in 80E20W (Table 2.3) and 

the electrofugality parameter for the unsubstituted benzhydryl cation (Ef = −6.03)31 is in 

excellent agreement with the previously reported experimental rate constant of 

2.75 × 10-7 s−1,24 which demonstrates the power of equation 2.1 and the practicability of 

these parameters.  
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Table 2.3. Nucleofugality parameters Nf and sf for the fluoride in various solvents. 

 Nf sf 

80A20W −2.72 1.07 

80AN20W −2.28 0.93 

100E −2.21 1.07 

60A40W −2.14 0.81 

60AN40W −1.44 0.84 

100M −1.43 0.99 

80E20W −1.20 0.92 

 

Nucleophilicity of Fluoride Anions in Various Solvents 

It is well known that nucleophilicity is not simply the reverse of nucleofugality31 and, 

therefore, the nucleophilic reactivity of the fluoride anion has been determined separately. 

Previously, the nucleophilicity parameters N and sN of chloride and bromide in various 

solvents were determined35 by measuring the rate constants k−1 (M
−1 s−1) of their reactions 

with benzhydrylium ions and correlation of the data by equation 2.3.  

 

lg k−1 (20 °C) = sN(N + E)  (2.3) 

sN, N: nucleophile-specific parameters 

E: electrophile-specific parameter. 

 

Now laser-flash photolysis and stopped-flow techniques are used to characterize the 

nucleophilic reactivity of fluoride ions by measuring the rates of its reactions with 

benzhydryl cations 11
+-21

+ in a series of solvents. 

The benzhydryltriphenylphosphonium tetrafluoroborates 11-17-PPh3, which were 

employed as precursors for the laser-flash photolytic generation of benzhydryl cations, 

were prepared by treating corresponding benzhydrols with equimolar amounts of 

triphenylphosphane and aqueous tetrafluoroboric acid, followed by heating to 140-

180 °C.36 The benzhydryltributylphosphonium tetrafluoroborates 18-PBu3 and 19-PBu3 

were prepared in acetonitrile solution by adding tributylphosphane to the corresponding 

benzhydrylium tetrafluoroborates 18
+, 19

+ until complete decolorization was achieved. The 
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stabilized benzhydrylium tetrafluoroborates 18
+-21

+ were prepared as previously 

described.37 

Scheme 2.4. Precursors for the laser-flash photolytic generation of 11+-19+. The substituents X and 
Y are defined in Table 2.1. 

PPh3

X Y

N°-PPh3

BF4 PBu3

X Y

BF4

N°-PBu3  

The choice of suitable sources of fluoride anions is not trivial. Unlike tetrabutylammonium 

chloride and bromide, which was used in the previous study,35 anhydrous 

tetrabutylammonium fluoride is prone to elimination and is only stable for several hours at 

room temperature.38 Therefore, the commercially available tetrabutylammonium fluoride 

trihydrate was used, which did not allow us to characterize fluoride in anhydrous solvents. 

For the kinetic investigations in methanol, water, and 10AN90W potassium and cesium 

fluoride were used, which were sufficiently soluble in these solvents. Methanol was the 

only anhydrous solvent, where both potassium fluoride and cesium fluoride could be used 

as fluoride source. In other anhydrous solvents, such as acetonitrile, the solubility of alkali 

fluorides is too low for kinetic studies. Tetrabutylammonium fluoride trihydrate was 

exclusively used as fluoride source for the investigations in the aqueous solvent mixtures 

(98AN2W, 90AN20W, 80AN20W, 60AN40W, 80E20W) because a phase separation was 

observed when trying to dissolve potassium fluoride in these mixtures.  

The benzhydrylium ions 11
+-19

+ were generated in these solvents by irradiation of 11-17-

PPh3 or 18,19-PBu3 with a 7 ns laser pulse from the fourth harmonic of a Nd/YAG Laser 

(266 nm).36,39 In the absence of added nucleophiles, typically monoexponential decays of 

the absorbances of 11
+
-19

+
 were observed. Fitting to the monoexponential equation At = A0 

e−kobst + C provided the first-order rate constants for the reactions of 11+-19+ with the solvent 

(ksolv), which are listed in Table 2.4. When the carbocations were generated in the presence 

of added fluoride, the observed rate constants increased linearly with the concentration of 

fluoride (Figure 2.3). As expressed by equation 2.4, the observed pseudo-first-order rate 

constants kobs are the sum of a second-order term for the reactions of the carbocations with 

halide ions (k−1 in Scheme 2.3) and a first-order term for the reactions of the carbocations 

with the solvents (ksolv). 



2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents 

 69

 

kobs = k−1 [F
–] + ksolv  (2.4) 

 

Plots of kobs vs. the fluoride concentrations resulted in linear correlations according to 

equation 2.4 as exemplified in Figure 2.3. The second-order rate constants k−1 for the 

reactions with fluoride listed in Table 2.4 were obtained from the slopes of these plots. The 

intercepts correspond to the background reactions with the solvent (ksolv) which were also 

determined independently (Table 2.4). Table 2.19 in the Experimental Section demonstrates 

the good agreement of the experimental data with the values calculated from equation 2.3 

using the previously published N1 and sN parameters of the solvents.40  
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Figure 2.3. Decay of the absorption of (15+) in methanol, observed at 500 nm in the presence of 0.3 
M CsF. Plot of kobs against [Nu] = [KF] (○) or [CsF] (●) in the inset.  
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Table 2.4. Rate constants for the reactions of benzhydrylium ions 11+-21+ with fluoride (k−1/M
−1s−1) 

and pure solvent (ksolv/s
−1). Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, M = 

methanol, W = water.  

Ar2CH+ Solvent Rxn. with F−  

k−1/M
−1 s−1 

Rxn. with solvent  

ksolv/s
−1 

17+ 90AN10W 2.89 × 106 7.05 × 103 

16+  6.03 × 106 2.12 × 104 

15+  1.85 × 107 6.78 × 104 

17+ 100M 1.56 × 106 7.39 × 105 

16+  4.12 × 106 2.44 × 106 

15+  1.14 × 107 9.91 × 106 a 

14+  b
 1.97 × 107 

21+ 98AN2W 1.97 × 103 c 

20+  2.95 × 104 c 

19+  4.17 × 105 c 

18+  2.31 × 106 c 

17+  1.12 × 108  c 

16+  1.40 × 108 c 

15+  2.69 × 108 c 

12+  2.40 × 109  3.85 × 105 

11+  8.63 × 109 6.18 × 106 

17+ 80AN20W 6.72 × 105 9.38 × 103 

16+  1.72 × 106 3.08 × 104 

15+  5.10 × 106 9.49 × 104 

14+  9.76 × 106 2.52 × 105 

17+ 60AN40W 1.66 × 105 1.14 × 104 

16+  3.94 × 105 3.16 × 104 

15+  1.82 × 106 9.61 × 104 

14+  4.36 × 106 2.81 × 105 

13+  9.04 × 106 1.03 × 106 

11+  2.0 × 108 3.35 × 107 
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Table 2.4. (continued) 

Ar2CH+ Solvent Rxn. with F−  

k-1/M
−1 s−1 

Rxn. with solvent  

ksolv/s
−1 

15+ 10AN90W 1.37 × 105 1.40 × 105 d 

14+  3.28 × 105 3.15 × 105 

13+  1.20 × 106 1.04 × 106 d 

15+ 100W 1.09 × 105 1.79 × 105 e 

13+  1.02 × 106 1.02 × 106 e 

16+ 80E20W 3.83 × 106 4.87 × 105 

15+  1.06 × 107 1.66 × 106 

a Previously ksolv = 8.4 × 106
 s

−1 has been reported Ref. [41]. b The rate constant k−1 could not be determined 
because the slope in the plot of [F−] versus kobs was too small. c ksolv  was not determined as the expected 
rate constant is below the measuring range of the laser-flash instrument and determination from the 
intercept of the plots kobs vs. [F−] is too imprecise as k−1/ksolv > 1000. d Previously ksolv = 9.55 × 104

 s
−1 for 

(15+) and ksolv = 7.99 × 105
 s

−1 for (13+) in 10AN90W have been reported in Ref. [40]. e Previously ksolv = 
1.0 × 105

 s
−1 for (15+) and ksolv = 7.8 × 105 s−1 for (13+) in 100W have been reported in Ref. [42].  

 

As the fluoride anion is a weak base, it had to be ensured that fluoride and not hydroxide 

was the acting nucleophile in aqueous solvents. For the reaction of the bisanisyl carbenium 

ion (15
+) with fluoride in water, fluoride concentrations ranging from 0.06 M to 0.91 M 

were used. From pKb for fluoride in water (10.9), one calculates concentrations of 

hydroxide from 0.87 × 10−6 M to 3.4× 10−6 M. With equation 2.3 and the published 

nucleophilicity parameter for hydroxide in water (N = 10.47, sN = 0.61)43 hypothetical 

pseudo-first-order rate constants k1Ψ (OH–) = 2.12 to 8.25 s−1 can be calculated for the 

reaction of 15
+ with hydroxide at the above-mentioned concentrations of fluoride. As 

shown in the Experimental Section, rate constants kobs of 1.79 × 105 s−1 to 2.72 × 105 s−1 

were observed for the reaction of the bisanisyl carbenium ion (15
+) with fluoride. 

Therefore, the nucleophilic reactivity of the hydroxide anion can be neglected for the 

evaluation of the kinetic experiments.  

Further evidence that fluoride, and not hydroxide, was the active nucleophile was obtained 

by a 1H-NMR spectroscopic product analysis. A solution of 4,4’-dimethylbenzhydryl 

chloride (11-Cl) in deuterated acetonitrile was combined with a solution of 

tetrabutylammonium fluoride trihydrate in aqueous acetonitrile to yield a solution of 0.15 M 

4,4-dimethylbenzhydryl chloride (11-Cl) and 0.54 M tetrabutylammonium fluoride in 60 % 
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aqueous acetonitrile (60AN40W). In line with a calculated solvolysis rate constant of k1 ≈ 

2.42 s−1 at 25 °C,44 11-Cl was not observable in a 1H-NMR spectrum taken immediately 

after mixing the two solutions. As depicted in Figure 2.4, the characteristic doublet at δ = 

6.46 (d, 1 H, 3JHF = 46.0 Hz, CHF) for 11-F and singlet at δ = 5.69 indicated a product ratio 

of 2.39/1 (11-F/11-OH). As the benzhydryl fluoride 11-F will solvolyze with a half-life of 

1.9 h under these conditions (Table 2.2), the observed 4,4’-dimethylbenzhydrol (11-OH) 

cannot arise from hydrolysis of 11-F, and the observed product ratio reflects the relative 

reactivities of the benzhydryl cation 11
+ toward F− and H2O (OH− negligible as discussed 

above). This ratio shall be compared with the ratio of the absolute rate constants for the 

reaction of 11+ with F− and H2O. The second-order rate  constant for the reaction of 11+ 

with fluoride in 60AN40W has been determined (k−1 = 2.0 × 108 M
 −1 s−1)45. The rate 

constant for the reaction of 11
+ with 60 % aqueous acetonitrile is 3.35 × 107 s−1 (see Table 

2.4). According to the 1H-NMR spectrum 70 % of 11-Cl (c0 = 0.15 M) are converted into 

the benzhydryl fluoride 11-F. Thus, the average concentration of fluoride during the 

reaction is 0.49 M (eq. 2.5).  

 

M49.0
2

]M15.070.0[
M54.0

2
]CHFAr[

]F[]F[ 2
0 =

×
−=−= −−
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 (2.5) 

 

Multiplication of the second order rate constant (k−1) for the reaction of 11
+ with [F−]average 

yields the pseudo-first-order rate constant for the reaction of 11
+ with F−, which is divided 

by ksolv to yield an expected product ratio of 2.96/1 (eq. 2.6), in fair agreement with the 

product ratio observed by 1H-NMR (2.39).  
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A more accurate comparison of the kinetic results with the 1H-NMR product analysis is 

provided in the Experimental Section.  
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Figure 2.4. 1H-NMR-spectra (200 MHz) recorded for product analysis; A 11-Cl in deuterated 
acetonitrile; B spectrum recorded 5 minutes after combining 11-Cl with 3.5 equivalents of 
tetrabutylammonium fluoride trihydrate in 60AN40W (deuterated solvents); C 11-OH in 60AN40W 
(deuterated solvents); D 11-F in deuterated acetonitrile. 

When plotting lg k−1 for the reactions of F− with benzhydryl cations against the 

electrophilicities E of the corresponding benzhydryl cations, linear correlations according 

to equation 2.3 were obtained (Figure 2.5). In 98AN2W solution, absolute rate constants for 

the reactions of fluoride with a wide variety of benzhydrylium ions were determined. The 

rate constants for the reactions of 20
+ and 21

+ with fluoride determined by the stopped-flow 

method,37 lie on the same graph as the rate constants for the reactions of 11
+-19

+ which 

were determined by the laser-flash photolysis technique, demonstrating the consistency of 

the results obtained by the different methods (Figure 2.5). The linear correlation for the rate 

constants for 17+-21+ bends down as k−1 exceeds 108 M−1 s−1 due to the proximity of the 

diffusion limit. An analogous behavior was observed for numerous other nucleophiles.46  
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Figure 2.5. Plot of lg k−1 for the reactions of benzhydrylium ions with fluoride ions versus their 
electrophilicity parameters E. Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, 
M = methanol, W = water. Two data points for 80E20W were superimposed by data points in 
methanol (100M). 

Only a narrow range of carbocations could be investigated in solvent mixtures containing a 

higher percentage of water or alcohols. The reactions of fluoride with the more stabilized 

benzhydrylium ions (E < −2) do not proceed quantitatively, and the fast reversible reactions 

with F− have to compete with the slower but irreversible reactions with water giving rise to 

kinetics which are difficult to evaluate. On the other hand, the reactions of fluoride with the 

less stabilized benzhydrylium ions (E > 2) are difficult to follow, because for highly 

electrophilic carbocations the major fraction of kobs (eq. 2.4) is due to the reaction of the 

benzhydrylium ion with the solvent. As shown for the example of methanol in Figure 2.6 

the rate constants for the reactions of benzhydrylium ions (14-17)+ with the solvents are 

more sensitive toward variation of the electrophiles than those of the reactions of 

benzhydrylium ions (14-17)+ with fluoride (fluoride has lower sN parameter in eq. 2.3, see 

below), with the consequence that the accurate determination of the small contribution of 

the k−1[F
−] term becomes difficult.  
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Figure 2.6. Plot of lg k-1 (♦) and lg ksolv (■) for the reactions of benzhydrylium ions (14-17)+ with 
fluoride ions and methanol versus their electrophilicity parameters E.  

Another limitation of the laser-flash photolytic technique is the recombination of the 

benzhydrylium ions with the phosphine photo-leaving group. For that reason, rate constants 

kobs < 105 M−1 s−1 in 100W and in 10AN90W could not be determined.  

Plots of the second-order rate constants k−1 for the reactions of benzhydrylium ions (13-

21)+ with fluoride (Table 2.4) against the electrophilicity parameters E of the 

benzhydrylium ions were linear (Figure 2.5) and yielded the sN parameters and the 

nucleophilicity parameters N of fluoride in methanol and aqueous solvents (Table 2.5). 

Rate constants kobs > 1 × 108 M−1 s−1 were not used for the correlations as these reactions 

approach the diffusion limit (see above). 

Table 2.5. Nucleophilicity parameters N and sN for fluoride in various solvents. Mixtures of 
solvents are given as (v/v); solvents: AN = acetonitrile, M = methanol, W = water. 

Solvent  N  sN 

90AN10W 12.27 0.59 

80AN20W 11.40  0.59 

100M 11.31 0.63  

98AN2W 10.88  0.83 

60AN40W 9.75  0.63 

10AN90W 8.05  0.64 

100W 7.68  0.65 
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2.3. Discussion  

With the nucleofugality parameters (Nf, sf) listed in Table 2.3, it now becomes possible to 

directly compare the leaving group abilities of fluoride and other common leaving groups 

in different solvents. As sf ≈ 1, a general overview can be derived directly from the Nf 

parameters, some of which are compared in Table 2.6. Depending on the solvent, fluoride 

is a slightly weaker or better leaving group than 3,5-dinitrobenzoate (Nf = −2.05; sf = 1.09 

in 100E).31  

Table 2.6. Comparison of the nucleofugalities Nf of important leaving groups in different solvents 
and solvolysis half lives of Ph2CHX in 80E20W at 25 °C.  

 DNB a F Cl Br 

80A20W −2.34 −2.73 2.03 3.01 

EtOH −2.05 −2.21 1.82 2.93 

80E20W −1.43 −1.20 3.24 4.36 

τ1/2 
b 164 d c 29 d 6 min 23 s 

a 3,5-dinitrobenzoate b Solvolysis half life of Ph2CHX (9-X) in 80 % aqueous ethanol (80E20W) at 25 °C 
c calculated by equation 1  

 

Replacing fluoride by chloride accelerates the solvolysis reactions by approximately by 4-5 

orders of magnitude, while replacing fluoride by bromide results in an acceleration of 

approximately 5-6 orders of magnitude. Thus the unsubstituted benzhydryl fluoride will 

solvolyze in 80E20W with a half-life of a month, whereas the half-life is 6 minutes for 

benzhydryl chloride, 23 seconds for benzhydryl bromide and only 50 milliseconds for the 

parent benzhydryl tosylate (not shown in Table 2.6). These findings are in agreement with 

previous results by Swain and Scott who reported chloride/fluoride ratios of 106 and 105 for 

the couples trityl chloride/trityl fluoride (85 % aq. acetone) and tert-butyl chloride/tert-

butyl fluoride (80 % aq. ethanol).18 The poor nucleofugality of F− is commonly accounted 

to the high C-F bond energy. Table 2.7 shows a further reason: The activation entropies of 

benzhydryl fluorides are considerably more negative than those of benzhydryl chlorides 

and bromides. Thus, entries 1-3 show that in 60 % aqueous acetonitrile, ∆S‡ becomes more 

negative in the series Ar2CHBr to Ar2CHCl and Ar2CHF. The same trend, more negative 

entropy of activation for R-Cl than for R-Br has also been observed in the tert-butyl series 

(entries 4 and 5). The higher degree of solvent orientation needed for the solvation of 
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fluoride ions is in line with the relative hydration energies for halide ions (-∆Hh°), which 

increase from I−  (294 kJ mol−1), Br− (335 kJ mol−1), Cl− (366 kJ mol−1) to F− (502 kJ 

mol−1).25 

Table 2.7. Activation parameters for the solvolyses of benzhydryl and tert-butyl halides in different 
solvents. 

substrate solventc ∆H‡/ 

kJ mol–1 

∆S‡/ 

J mol–1 K–1 

Ar2CHF (13-F) 60AN40W 64.2 -74.5 

(3-FC6H4)PhCH-Cl (7-Cl)a 60AN40W 83.0 −34.6 

(3-FC6H4)PhCH-Br (7-Br)a 60AN40W 86.5 0.69 

t-butyl chlorideb 80A20W 90.3 −51.6 

t-butyl bromideb 80A20W 85.1 −35.0 

a This work b Data from Ref. [47] c Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = 
acetonitrile, E = ethanol, W = water 

 

As illustrated for the dimethyl substituted benzhydryl derivatives tol2CH-X (11-X) in 

Figure 2.7, the leaving group abilities increase significantly in the series F− ≈ DNB << Cl− 

< Br−, but the exact ranking depends on the solvent.  
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Figure 2.7. Comparison of the solvolysis rates for the reactions of the dimethyl substituted 
benzhydryl derivative tol2CH-X (11-X) with different leaving groups (DNB = 3,5-dinitrobenzoate). 
Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, E = ethanol, W = water. 

As previously reported for several other leaving groups,31,48 the sensitivity parameters sf of 

fluoride decrease slightly with increasing water content of the solvents. Since the 

carbocation character is not fully developed in most of the benzhydryl fluoride solvolyses 

investigated in this work (see below), the trend in sf might be explained by a smaller degree 

of charge separation in the transition states in solvents with a high percentage of water. As 

analogous trends in of sf are also observed in solvolyses of benzhydryl chlorides and 

bromides, where the ion combination is diffusion-limited, i.e., where the transition states 

correspond to the carbocations, other factors must contribute.31  

Fluoride is not only a poorer nucleofuge than the other halide ions, but also a poorer 

nucleophile in protic solvents. As shown in Figure 2.8, nucleophilicity increases in the 

series F− < Cl− < Br− in water, aqueous acetonitrile, and methanol.49 A strong reduction of 

the nucleophilic reactivity of fluoride ions by water molecules has also been observed in 

SN2 reactions.25 
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Figure 2.8. Comparison of the nucleophilic reactivities of fluoride with other halide anions in 
different solvents. Mixtures of solvents are given as (v/v); solvents: AN = acetonitrile, 
M = methanol, W = water. 

The low nucleophilicity of fluoride in protic solvents compared to chloride and bromide 

accounts for the fact that common-ion return is rarely encountered in SN1 reactions of alkyl 

fluorides. As a result, deviations from the first-order rate law, due to reversible ionization 

towards the end of the kinetic experiments, have not been observed in any of the 

benzhydryl fluoride solvolyses described above.  

A quantitative rationalization for this observation is given in Figure 2.9, where the first-

order rate constants of the reactions of various benzhydrylium cations with water in 60 % 

aqueous acetonitrile are compared with the corresponding pseudo-first-order rate constants 

with fluoride (i.e., k−1[F
−]) at different concentrations of fluoride. One can see that at 

substrate concentrations which are typical for solvolysis experiments (1.7 mM), the reaction 

with F− is approximately 102 times slower than the reaction with the solvent. Only when 

high concentrations of fluoride are employed, the reaction with F− is faster than the reaction 

with water as demonstrated for the solvolysis of bis p-tolylmethyl chloride [11-Cl] in a 

0.54 M solution of nBu4N
+ F− in 60AN40W (Figure 2.4).  

  



2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents 

 80

0

2

4

6

8

-2 -1 0 1 2

15+16+ 13+14+17+

(1.0) k-1

ksolv (60AN40W)

(1.7 × 10-3) k-1

E

lg k1Ψ

0

2

4

6

8

-2 -1 0 1 2

15+16+ 13+14+17+

(1.0) k-1

ksolv (60AN40W)

(1.7 × 10-3) k-1

EE

lg k1Ψ

 

Figure 2.9. Plot of lg k1Ψ for the reactions of benzhydrylium ions with aqueous acetonitrile 
60AN40W (ksolv) and with fluoride ([F−] × k-1) at fluoride concentrations of 1.0 M (upper graph) and 
at [F–] = 1.7 mM (lower graph) versus their electrophilicity parameters (E). 

 

2.4. Conclusion 

The rate constants for the forward and backward reactions of benzhydryl fluoride ionization 

can be combined to construct quantitative energy profiles for the solvolysis reactions 

(Figure 2.10), which differ significantly from those previously derived for benzhydryl 

chlorides and bromides.  
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Figure 2.10. Free energy profiles (kJ mol-1) for the solyolyses of differently substituted 
benzhydrylfluorides in 80AN20W at 25 °C (20 °C for the reactions of 9+,11+,15+ and 17+ with 
nucleophiles). a calculated by equation 2.1. b direct measurement. c calculated by equation 2.3. 

While SN1 solvolyses of benzhydryl chlorides and bromides which are commonly 

investigated at room temperature (i.e., 0.1 s < τ1/2 < 1 d) have carbocation-like transition 

states (i.e., barrier-free combinations of R+ with Cl− or Br−), solvolysis reactions of 

benzhydryl fluorides, which proceed with similar rates, typically do not have carbocation-

like transition states. As shown in Figure 2.10, the solvolysis of 11-F, for which a 

solvolysis half-life of approximately 1 day can be calculated, still yields a carbocation 

which does not undergo barrier-free recombination with the fluoride ion in aqueous 

acetonitrile. For the more rapidly ionizing substrates 15-F (τ1/2 = 88 s) and 17-F (τ1/2 calcd = 9 

s) the energy sink for the resulting carbocations is much deeper, and one can extrapolate 

that similar situations should be encountered for other alkyl halides with comparable 

ionization rates. One can, therefore conclude that only alkyl fluorides which give much less 

stabilized carbocations, i.e., substrates RF which require heating to solvolyze within 

reasonable time periods will ionize via carbocation-like transition states.  
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2.5. Experimental Section  

Silver carbonate 

Silver carbonate was prepared according to a literature procedure by combining diluted 

aqueous solutions of silver nitrate with potassium bicarbonate.50  

Ando’s fluorination agent
34

 

The reagent for the fluorination reaction was prepared according to the literature procedure 

by Ando.34 Therefore, silver carbonate (10 g, 36 mmol) was mixed with calcium fluoride 

(40 g, 0.51 mol) and grinded thoroughly. The mixture was transferred to a Teflon round 

bottom flask equipped with a Teflon stirring bar, and 40 mL of water were added. Then 

conc. HF (3.0 mL, 73 mmol) was slowly added to the stirred suspension, using a plastic 

syringe equipped with a Teflon tube. The suspension was stirred for 30 min, followed by 

evaporation of the water and drying for several hours using high vacuum (1.3 × 10−3 mbar) 

at 40-50 °C. The fluorination agent (49 g, 98 %) was obtained as slightly yellowish free 

flowing granular powder (Ando reported a colorless powder). The reagent can be stored in 

an opaque flask under air and can be used for at least a month, storage in an argon filled 

glove box is recommended. The concentration of active fluorination agent (AgF) is 1.5 

mmol/g in the resulting fluorination reagent.    

 

Benzhydryl bromides  

The benzhydryl bromides have been used previously but some were only partially 

characterized.51-56  

Table 2.8. Benzhydryl bromides employed in this study 

 Benzhydryl bromide R1 R2 Ef E 

11-Br Me Me −3.44 3.63 

12-Br OMe H −2.09 2.11 

13-Br OMe Me −1.23 1.48 

14-Br OMe OPh −0.86 0.61 

15-Br 

R1 R2

Br

 

OMe OMe 0.00 0.00 
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Benzhydryl bromide synthesis was performed by refluxing the corresponding benzhydrols 

with 10 equivalents of acetyl bromide for 15 minutes, followed by evaporation under 

vacuum. The remaining residue is crystallized in a mixture of dichloromethane and n-

pentane (≈1:10). Sometimes good results were also obtained with only 5 equivalents of 

acetyl bromide. Usually, better results were achieved with the high excess of acetyl 

bromide, which often yielded crystalline material after evaporation of the acetyl bromide 

and acetic anhydride.  

 

11-Br was obtained from 4,4’-dimethylbenzhydrol (3.99 g, 18.8 mmol) and acetyl bromide 

(23.1 g, 188 mmol). The product was isolated as colorless crystals (4.15 g, 80 %). 1H-

NMR-spectra are in agreement with literature data. Unlike in Ref [52] the compound could 

be crystallized.  
1H–NMR (300 MHz, CDCl3): δ = 2.35 (s, 6 H, Me), 6.28 (s, 1 H, CHBr), 7.13–7.16 (m, 

4 H, ArH), 7.34–7.37 (m, 4 H, ArH). 
13C–NMR (75 MHz, CDCl3): δ = 21.2 (Me), 55.9 (CHBr), 128.5 (Ar), 129.3 (Ar), 138.0 

(Ar), 138.5 (Ar). 

MS (+EI): m/z (%) = 195.2 (100) [M+−Br]. 

m.p.: 48.0 °C - 48.6 °C 

Elemental Analysis:  Calculated for C15H15Br:  C, 65.47; H, 5.49. 

Found:    C, 65.70; H, 5.55. 

 

12-Br was obtained from 4-methoxybenzhydrol (2.25 g, 10.5 mmol) and acetyl bromide 

(12.9 g, 105 mmol). The product was isolated as colorless crystals (2.17 g, 74 %). This 

compound has been reported previously.53,54 1H-NMR-spectra are in agreement with 

literature data.57 
1H–NMR (300 MHz, CDCl3): δ = 3.79 (s, 3 H, OMe), 6.30 (s, 1 H, CHBr), 6.84-6.87 (m, 

2 H, ArH), 7.25-7.38 (m, 5 H, ArH), 7.45-7.48 (m, 2H, ArH). 
13C–NMR (75 MHz, CDCl3): δ = 55.47 (OMe), 55.8 (CHBr), 114.1 (Ar), 128.1 (Ar), 128.5 

(Ar), 128.6 (Ar), 129.9 (Ar), 133.5 (Ar), 141.4 (Ar), 159.5 (Ar). 

MS (+EI): m/z (%) = 197.2 (100) [M+−Br]. 

m.p.: 49.5 °C - 50.9 °C 



2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents 

 84

13-Br was obtained from 4-methoxy-4’methylbenzhydrol (2.33 g, 10.2 mmol) and acetyl 

bromide (13.0 g, 102 mmol). The product was isolated as colorless crystals (2.03 g, 69 %).  
1H–NMR (300 MHz, CDCl3): δ = 2.35 (s, 3 H, Me), 3.81 (s, 3 H, OMe), 6.30 (s, 1 H, 

CHBr), 6.85-6.88 (m, 2 H, ArH), 7.14-7.16 (m, 2 H, ArH), 7.35-7.40 (m, 4 H, ArH). 
13C–NMR (75 MHz, CDCl3): δ = 21.2 (Me), 55.5 (OMe), 56.0 (CHBr), 114.0 (Ar), 128.4 

(Ar), 129.3 (Ar), 129.8 (Ar), 133.7 (Ar), 138.0 (Ar), 138.5 (Ar), 159.4 (Ar). 

MS (+EI): m/z (%) = 211.2 (100) [M+−Br]. 

m.p.: 39.1 °C - 40.2 °C 

 

14-Br was obtained from 4-methoxy-4’phenoxybenzhydrol (1.98 g, 6.46 mmol) and acetyl 

bromide (7.95 g, 64.7 mmol). The product was isolated as slightly pink crystals (2.03 g, 

67 %). 
1H–NMR (300 MHz, CDCl3): δ = 3.81 (s, 3 H, OMe), 6.32 (s, 1 H, CHBr), 6.86-7.11 (m, 

7 H, ArH), 7.33-7.44 (m, 6 H, ArH). 
13C–NMR (75 MHz, CDCl3): δ = 55.5 (OMe), 55.5 (CHBr), 114.0 (Ar), 118.4 (Ar), 119.4 

(Ar), 123.8 (Ar), 129.8 (Ar), 129.9 (Ar), 130.0 (Ar), 133.5 (Ar), 136.1 (Ar), 156.8 (Ar), 

157.3 (Ar), 159.5 (Ar). 

MS (+EI): m/z (%) = 289.3 (100) [M+−Br]. 

m.p.: 61.3 °C - 62.0 °C 

 

15-Br was obtained from 4,4’-dimethoxy benzhydrol (1.31 g, 5.36 mmol) and acetyl 

bromide (6.61 g, 53.8 mmol). The product was isolated as slightly pink crystals (1.27 g, 

77 %). 1H-NMR-spectra are in agreement with literature data.56  
1H–NMR (400 MHz, CDCl3): δ = 3.80 (s, 6 H, OMe), 6.32 (s, 1 H, CHBr), 6.85-6.87 (m, 

4 H, ArH), 7.37-7.39 (m, 4 H, ArH). 
13C–NMR (100 MHz, CDCl3): δ = 55.5 (OMe), 56.1 (CHBr), 113.9 (Ar), 129.8 (Ar), 133.7 

(1’,Ar), 159.3 (Ar). 

MS (+EI): m/z (%) = 227.2 (100) [M+−Br]. 

m.p.: 72.8 °C - 73.9 °C 

Elemental Analysis:  Calculated for C15H15BrO2:  C, 58.65; H, 4.92. 

Found:    C, 58.67; H, 4.90. 
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Preparation of benzhydryl fluorides 11-F and 15-F 

As stated above benzhydryl fluorides 11-F and 15-F could be isolated. The other 

benzhydryl fluorides were not isolated and used directly in solution for the solvolytic 

investigations.  

 

11-F 

4,4’-Dimethylbenzhydryl fluoride 

In a flame-dried Schlenk flask, 4.85 g (containing 7.28 mmol AgF) of the fluorination agent 

was suspended in 12 mL of acetonitrile. 4,4’-Dimethylbenzhydryl bromide (5b) (1.00 g, 

3.63 mmol) was dissolved in 5 mL of acetonitrile and added dropwise at 0 °C. After stirring 

for 30 min, the solution was filtered and the solvent was removed under reduced pressure at 

room temperature. The crude product was distilled in the vacuum (bp. 

160 °C/5.0 × 10−3 mbar) to give a colorless oil (0.61 g, 78 %). 
1H-NMR (400 MHz, CD3CN): δ = 2.33 (s, 6 H, Me), 6.47 (d, 1 H, 2

JHF = 44.0 Hz, CHF), 

7.19-7.26 (m, 8 H, ArH). 
13C-NMR (100 MHz, CD3CN): δ = 21.2 (Me), 95.2 (d, 1

JCF = 170.0 Hz, CHF), 127.2 (d, 
3
JCF = 6.0 Hz), 130.1 (3-Ar), 138.5 (d, 2JCF = 22.1 Hz), 139.3 (d, 5JCF = 2.0 Hz). 

19F NMR (282 MHz, CD3CN): δ = -166.2 (d, 2JFH = 45.2 Hz, CHF). 

MS (+ EI): m/z (%) = 214.3 (42) [M+], 199.2 (100) [C14H12F
+]. 

Elemental Analysis:  Calculated for C15H15F:  C, 84.08; H, 7.06. 

Found:    C, 84.27; H, 6.78. 

 

15-F  

4,4’-Dimethoxybenzhydryl fluoride 

In a flame-dried Schlenk flask, 3.91 g (containing 5.86 mmol AgF) of the fluorination agent 

was suspended in 5 mL of acetonitrile. 4,4’-Dimethoxybenzhydryl bromide (S5) (1.5 g, 

4.88 mmol) was dissolved in 10 mL of acetonitrile and added dropwise at 0 °C. After 

stirring for 30 min, the solution was filtered and the solvent was removed under reduced 

pressure at room temperature. The crude product was recrystallized from 

dichloromethane/n-pentane to give slightly pink crystals (0.60 g, 50 %). The product was 

stored under Argon at −35 °C.  
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1H-NMR (400 MHz, CD3CN): δ = 3.78 (s, 6 H, OMe), 6.45 (d, 1 H, 2
JHF = 48.0 Hz, CHF), 

6.92-6.95 (m, 4 H, ArH), 7.26-7.30 (m, 4 H, ArH). 
13C-NMR (100 MHz, CD3CN): δ = 56.0 (OMe), 94.9 (d, 1

JCF = 169.0 Hz, CHF), 114.8 

(Ar), 128.9 (d, 3JCF = 6.0 Hz), 133.4 (d, 2JCF = 23.0 Hz), 160.7 (d, 5JCF = 2.0 Hz). 

MS (+ EI): m/z (%) = 246.1 (0.1) [M+], 228.1 (38) [C15H16O2
+], 227.1 (100) [M+−F]. 

HRMS (+EI) Calcd. for C15H15FO2: 246.1056; Found: 246.1045. 

Tm= 65.8 °C - 66.5 °C 

 

Procedure for the synthesis of stock solutions of the benzhydryl fluorides (12-14)-F for 

kinetic measurements. 

In a flame-dried Schlenk flask, 1.00 g (containing 1.5 mmol AgF) of the fluorinating agent 

was suspended in 3 mL of acetonitrile. The corresponding benzhydryl bromide (1.0 mmol) 

was dissolved in 2 mL of acetonitrile and added to the stirred suspension at 0 °C. After 

30 min the solution was filtered. 1H-NMR spectra that were recorded from the resulting 

solution after evaporation of acetonitrile in deuterated acetonitrile showed the characteristic 

doublet for CHF. The clear solution is used directly for solvolytic measurements and can be 

used for approximately 2 days. 

 

Kinetics of Solvolysis Reactions  

Solvolysis rate constants of benzhydryl derivatives (Tables 2.2 and 2.9) were monitored by 

conventional conductometry. Freshly prepared solvents (30 mL) were thermostated (±0.1 

°C) at the given temperature for 5 min prior to adding the substrate. Typically 0.25 mL of a 

0.2 M stock solution of the substrate in acetonitrile was injected into the solvent. After 

injection of the benzhydrylium derivative into the solvolyzing medium, an increase of 

conductance was observed, which was recorded at certain time intervals resulting in about 

3000 data points for each measurement. The first-order rate constants k1 (s
–1) were obtained 

by least squares fitting of the conductance data to a single-exponential equation G = G∞(1-

e-k1t) + C. Each rate constant was typically averaged from at least three kinetic runs. Only in 

two cases (15-F in 90A10W and 11-F in 80E20W) measurements were only performed 

once as these reactions were very slow. All solvolyses were performed at 25 °C. The 

following solvents were commercially available and were used as received: Acetone 
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(99.8 %), acetonitrile (extra dry, water content < 50 ppm), methanol (99.8 %). Dry ethanol 

was obtained by distillation of commercially available absolute ethanol from 

sodium/diethyl phthalate. Doubly distilled water [Impendance 18.2 Ω] was prepared with a 

water purification system.  

Calibration experiments were performed by stepwise addition of 50 µL portions of a 0.2 M 

solution of 14-F in acetonitrile to 30 mL of 80E20W containing 0.08 M piperidine. After 

the addition of a portion of 14-F the conductance after at least 200 s (half-life of 14-F in 

80E20W 49 s) was recorded before the next portion of 14-F was added. Plots of the 

conductance against the initial concentration of added benzhydryl fluoride 14-F were linear 

(Figure 2.11). Therefore, the solvolytic rate constants can be determined reliably by time-

dependent conductance measurements.  
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Figure 2.11. Conductance at t∞ vs. concentration benzhydryl fluoride 14-F in 80E20W. After the 
addition of a portion of 14-F, the next conductance value was taken when the conductance remained 
constant.  
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Table 2.9. Individual rate constants for the solvolysis reactions of benzhydryl fluorides 11-15-F.  

solvent a benzhydryl  

fluoride 

[amine]/M b 
k1 (individual)/[s−1] k1 (average)/[s−1] 

90A10W 15-F [pip] = 0.08 9.26 × 10−5 9.26 × 10−5 

80A20W 15-F [pip] = 0.08 1.24 × 10−3 1.20 × 10−3 

  [pip] = 0.08 1.18 × 10−3  

  [pip] = 0.16 1.17 × 10−3  

 14-F [pip] = 0.08 1.47 × 10−4 1.43 × 10−4 

  [pip] = 0.08 1.40 × 10−4  

  [pip] = 0.16 1.41 × 10-4  

80AN20W 15-F [pip] = 0.08 7.51 × 10−3 7.90 × 10−3 

  [pip] = 0.08 8.09 × 10-3  

  [pip] = 0.16 8.10 × 10−3  

 14-F [pip] = 0.08 1.17 × 10−3 1.11 × 10−3 

  [pip] = 0.08 1.11 × 10−3  

  [pip] = 0.16 1.06 × 10−3  

 13-F [pip] = 0.08 5.05 × 10−4 4.85 × 10−4 

  [pip] = 0.16 4.66 × 10−4  

  [pip] = 0.16 4.83 × 10−4  

100E 15-F [pip] = 0.08 4.37 × 10−3 4.26× 10−3 

  [pip] = 0.12 4.27 × 10−3  

  [pip] = 0.16 4.13 × 10−3  

 14-F [pip] = 0.08 5.89 × 10−4 5.63 × 10−4 

  [pip] = 0.08 5.39 × 10−4  

  [pip] = 0.16 5.89 × 10−4  

  [pip] = 0.16 5.34 × 10−4  
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Table 2.9. (continued)  

solvent a benzhydryl  

fluoride 

[amine]/M b 
k1 (individual)/[s−1] k1 (average)/[s−1] 

100E 13-F [pip] = 0.08 1.66 × 10−4 1.63 × 10−4 

  [pip] = 0.08 1.63 × 10−4  

  [lut] = 0.09 1.64 × 10−4  

  [pip] = 0.16 1.57 × 10−4  

60A40W 14-F [pip] = 0.08 3.55 × 10−3 3.55 × 10−3 

  [pip] = 0.08 3.65 × 10−3  

  [pip] = 0.08 3.66 × 10−3  

  [pip] = 0.12 3.55 × 10−3  

  [pip] = 0.16 3.35 × 10−3  

 13-F [pip] = 0.08 1.89 × 10−3 1.87 × 10−3 

  [pip] = 0.08 1.81 × 10−3  

  [pip] = 0.08 1.93 × 10−3  

  [pip] = 0.16 1.85 × 10−3  

 12-F [pip] = 0.08 3.84 × 10−4 3.80 × 10−4 

  [pip] = 0.08 3.84 × 10−4  

  [pip] = 0.12 3.71 × 10−4  

 11-F [pip] = 0.08 3.39 × 10−5 3.28 × 10−5 

  [pip] = 0.08 3.12 × 10−5  

  [pip] = 0.08 3.32 × 10−5  

100M 15-F [pip] = 0.08 3.95 × 10−2 3.92 × 10−2 

  [pip] = 0.08 3.91 × 10−2  

  [pip] = 0.08 3.87 × 10−2  

  [pip] = 0.08 3.91 × 10−2  

  [pip] = 0.08 3.95 × 10−2  

 14-F [pip] = 0.08 5.71 × 10−3 5.49 × 10−3 

  [pip] = 0.12 5.47 × 10−3  

  [pip] = 0.12 5.30 × 10−3  
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Table 2.9. (continued)  

solvent a benzhydryl  

fluoride 

[amine]/M b 
k1 (individual)/[s−1] k1 (average)/[s−1] 

100M 13-F [pip] = 0.08 2.15 × 10−3 1.99 × 10−3 

  [pip] = 0.08 2.07 × 10−3  

  [pip] = 0.16 1.88 × 10−3  

  [pip] = 0.20 1.88 × 10−3  

 12-F [pip] = 0.08 3.52 × 10−4 3.43 × 10−4 

  [pip] = 0.08 3.45 × 10−4  

  [pip] = 0.16 3.30 × 10−4  

80E20W 15-F [pip] = 0.08 7.81 × 10−2 7.77 × 10−2 

  [pip] = 0.08 7.71 × 10−2  

  [pip] = 0.08 7.60 × 10-2  

  [pip] = 0.08 7.98 × 10−2  

 14-F [pip] = 0.08 1.40 × 10−2 1.42 × 10−2 

  [pip] = 0.16 1.40 × 10−2  

  [pip] = 0.16 1.46 × 10−2  

 13-F [pip] = 0.08 4.37 × 10−3 4.34 × 10−3 

  [pip] = 0.16 4.33 × 10−3  

  [pip] = 0.16 4.31 × 10−3  

 12-F [pip] = 0.08 8.04 × 10−4 7.82 × 10−4 

  [pip] = 0.08 7.91 × 10−4  

  [pip] = 0.16 7.50 × 10−4  

 11-F [pip] = 0.08 5.75 × 10−5 5.75 × 10−5 

60AN40W 15-F [pip] = 0.08 8.28 × 10−2 8.35 × 10−2 

  [pip] = 0.08 8.50 × 10−2  

  [pip] = 0.08 8.58 × 10−2  

  [pip] = 0.08 8.02 × 10−2  
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Table 2.9. (continued)  

solvent a benzhydryl  

fluoride 

[amine]/M b 
k1 (individual)/[s−1] k1 (average)/[s−1] 

60AN40W 14-F [pip] = 0.08 9.49 × 10−3 9.28 × 10−3 

  [pip] = 0.11 9.00 × 10−3  

  [lut] = 0.12 9.62 × 10−3  

  [pip] = 0.16 9.01 × 10−3  

 13-F [pip] = 0.08 c 4.81 × 10−3 4.66 × 10−3  

  [pip] = 0.08 c 4.70 × 10−3  

  [pip] = 0.16 c 4.47 × 10−3  

  [pip] = 0.11  4.66 × 10−3  

  [pip] = 0.19 4.41 × 10−3  

  [pip] = 0.21 4.54 × 10−3  

  [pip] = 0.33 4.01 × 10−3  

  [pip] = 0.41 4.12 × 10−3  

  [lut] = 0.09 4.54 × 10−3  

  [lut] = 0.15 4.71 × 10−3  

  [lut] = 0.23 4.41 × 10−3  

  [NEt3] = 0.08 4.41 × 10−3  

  [NEt3] = 0.11 4.66 × 10−3  

  [NEt3] = 0.15 4.71 × 10−3  

 12-F [pip] = 0.08 9.40 × 10−4 1.02 × 10−3 

  [pip] = 0.08 9.37 × 10−4  

  [pip] = 0.08 1.14 × 10−3  

  [pip] = 0.08 1.04 × 10−3  
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Table 2.9. (continued)  

solvent a benzhydryl  

fluoride 

[amine]/M b 
k1 (individual)/[s−1] k1 (average)/[s−1] 

 11-F [pip] = 0.08 9.48 × 10−5 9.99 × 10−5 

  [pip] = 0.08 1.03 × 10−4  

  [pip] = 0.08 1.02 × 10−4  

  [pip] = 0.08 9.79 × 10−5  

  [pip] = 0.08 9.79 × 10−5  

  [pip] = 0.08 9.59 × 10−5  

  [pip] = 0.16 1.05 × 10−4  

a Mixtures of solvents are given as (v/v); solvents: A = acetone, AN = acetonitrile, E = ethanol, 
M = methanol, W = water. b pip = piperidine, lut = 2,6-lutidine c only entries 1-3 were used for the 
calculation of the average k1 for 13-F in 60AN40W the other rate constants were used in Figure 2.1.  
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Figure 2.12. Plot of lg k1 for the solvolysis reactions of various benzhydryl fluorides vs. 
electrofugalities Ef (systems not depicted in Figure 2.2): in 80E20W (v/v) and 100M. E= ethanol, 
M= methanol, W= water. 
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Determination of the Eyring and Arrhenius activation parameters 

 

Table 2.10. Rate constants k1 of the solvolysis reaction of various benzhydryl halides in 100E, and 
60AN40W at different temperatures. 

T/°C k1/s
−1 15-F 

in 100E 

T/°C k1/s
−1 13-F  

in 60AN40W 

40.6 1.45 × 10−2 40.0 1.64 × 10−2 

31.6 7.14 × 10−3 25.0 4.66 × 10−3 

25.0 4.26 × 10−3 16.1 2.04 × 10−3 

13.8 1.47 × 10−3 8.1 8.97 × 10−4 

5.2 6.12 × 10−4   

    

 7-Cl  

in 60AN40W 

 7-Br  

in 60AN40W 

66.0 1.78 × 10−2 35.0 1.50 × 10−2 

56.0 7.31 × 10−3 25.0 4.59 × 10−3 

45.0 2.46 × 10−3 16.1 1.60 × 10−3 

35.0 9.14 × 10−4 6.4 4.24 × 10−4 

25.0 2.67 × 10−4   

 

Table 2.11. Activation parameters for the solvolyses of various benzhydryl halides in 100E and 
60AN40W.  

 

15-F 

in 100E 

13-F 

in 60AN40W 

7-Cl 

in 60AN40W 

7-Br  

in 60AN40W 

∆H‡/kJ mol–1 62.5 ± 1.0 64.2 ± 0.7 83.0 ± 1.2 86.5 ± 1.0 

∆S‡/J mol–1 K–1 −81.0 ± 3.3 −74.5 ± 2.4 −34.6 ± 3.9 0.68 ± 3.3 

Ea/kJ mol–1 65.0 ± 1.0 66.6 ± 0.7 85.6 ± 1.2 89.0 ± 1.0 

lg A 8.99 ± 0.17 9.33 ± 0.12 11.4 ± 0.20 13.3 ± 0.17 
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Figure 2.13. Eyring (a) and Arrhenius (b) plot for 15-F in 100E. 
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Figure 2.14. Eyring (a) and Arrhenius (b) plot for 13-F in 60AN40W. 
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Figure 2.15. Eyring (a) and Arrhenius (b) plot for 7-Cl in 60AN40W. 
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Figure 2.16. Eyring (a) and Arrhenius (b) plot for 7-Br in 60AN40W. 
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Determination of the Nucleophilicity of Fluoride and ksolv 

 

Kinetic method 

Solvents and fluoride sources: 

Potassium fluoride of p.a. grade, cesium fluoride (99.9 %) and tetrabutylammonium 

fluoride trihydrate (98 %) were used as fluoride sources for the kinetic experiments.  

Acetonitrile (extra dry, water content < 50 ppm), methanol (99.8 %) were used without 

further purification for laser-flash experiments. Dry ethanol was obtained by distillation of 

commercially available absolute ethanol from sodium/diethyl phthalate. Doubly distilled 

water [Impedance 18.2 Ω] was prepared with a water purification system.  

 

Laser-flash experiments:  

The measurements were performed in a room with 20 ± 1 °C, regulated by a clima control 

unit. Samples were stored sufficiently long in this room to exhibit a temperature of 20 ± 

1 °C. The benzhydryl cations 11+-19+ were generated by irradiating solutions (A266 nm ≈ 0.1-

1.0) of the precursor salts 11-17-PPh3 or 18,19-PBu3 with a 7-ns laser pulse (7 ns pulse 

width, 266 nm, 40-60 mJ/pulse). The benzhydryl cations 11
+
-17

+ were generated from the 

triphenylphosphonium salts 11-17-PPh3. For the photogeneration of 18
+
,19

+, stock 

solutions of the tributylphosphonium salts 18,19-PBu3 in acetonitrile were prepared by 

mixing the appropriate amounts of benzhydrylium tetrafluoroborates 11+-17+-BF4
− and 

tributylphosphine. The system was equipped with a fluorescence flow cell which allowed 

complete replacing of the sample volume between subsequent laser pulses. Kinetics were 

measured by following the UV-vis absorbance decay of the benzhydrylium cations at their 

absorbance maxima. Averaged data obtained from ≥ 48 individual runs were used for 

further evaluations. First-order rate constants (kobs) were calculated by least-squares fitting 

of the absorbance data to a single exponential function At = A0 e
(–kobst) + C. The second-order 

rate constants (k-1) were obtained using the slopes of the linear plots of kobs against the 

nucleophile concentration ([F−]). First-order rate constants (ksolv) were obtained from 

independent measurements with laser-photolytic generated benzhydrylium ions in the 

absence of fluoride.  
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Stopped-flow experiments: 

The kinetics of the reactions of F− with 20
+ and 21

+ were determined by the stopped-flow 

method using the isolated benzhydrylium tetrafluoroborates as described previously.37 The 

decay of their absorbance was monitored by UV-vis spectroscopy at their absorption 

maxima. Pseudo-first-order rate constants kobs were obtained from at least six runs at each 

fluoride concentration. The absorbance-time curves were fitted to the single exponential 

function, At = A0 e(–kobst) + C to yield the rate constants kobs (s–1). The second-order rate 

constants k-1 (M
−1 s−1) for the reactions of 20+ and 21+ with fluoride were obtained from the 

slopes of plots of kobs versus the fluoride concentrations. 

 

Product study: 

For product analysis 4,4’-dimethylbenzhydryl chloride (11-Cl; 25 mg 0.11 mmol) was 

dissolved in 0.2 mL of deuterated acetonitrile and transferred to a NMR-tube. Possible 

reaction pathways are shown in Scheme 2.4 Then tetrabutylammonium fluoride trihydrate 

(120 mg, 0.39 mmol) in a mixture of 0.22 mL deuterated acetonitrile and 0.28 mL D2O was 

added rapidly, and the NMR tube was shaken intensively to ensure fast mixing. 

Immediately afterwards an NMR-spectrum was recorded.  

As stated in chapter 2.2 a more precise mathematical treatment of the kinetic results and the 
1H-NMR experiment is provided here. According to the calculated rate constant of k1 = 

2.42 s−1, tol2CHCl will ionize almost instantly in 60AN40W yielding the benzhydrylium 

ion 11+. The rate constants for the reaction of 11+ with 60 % aqueous acetonitrile (ksolv) and 

fluoride in acetonitrile (k−1) have been determined (see below).  

Scheme 2.4. Possible reaction pathways for the reaction of (4-MeC6H4)2CHCl (11-Cl) in 

60 % aqueous acetonitrile containing fluoride. 

Cl

+ Cl

F OH

k-1 ksolv

60AN40W

[F-]=0.54 M

11+11-Cl

11-F 11-OH  
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According to Huisgen,58 the competition constant can be calculated by equation 2.7.  

)]OH[]OHlog([]OHlog[
)]F[]Flog([]Flog[

0202

00

e

e

−−−

−−−
=

−−

11

11
χ  (2.7) 

 

From the initial concentration of 11-Cl (tol2CHCl) and the product ratios from the 1H-NMR 

spectra recorded after mixing a solution of 11-Cl in acetonitrile with an aqueous solution of 

tetrabutylammonium fluoride trihydrate the final concentrations ([11-F]e and [11-OH]e of 

11-F and 11-OH were calculated.  

 

36.3
36.2

]-[]-[ ×= ie Cl11F11  = 0.11 M 

36.3
00.1

]-[]-[ ×= ie Cl11OH11  = 4.6 × 10−2 M 

 

Thus, a competition constant of χ = 108 is calculated from the product analysis by NMR 

experiment. This value is similar to that calculated from the rate constants given in Table 

2.4 (eq. 2.8).   

133
2.22/1035.3

100.2
]OH/[ 7

8

2

1 =
×

×
== −

solvk

k
χ  (2.8) 

 

Kinetics of the reactions of benzhydrylium ions with solvents: 

 

Table 2.10. Rate constants ksolv for the reaction of various benzhydrylium ions with pure solvents. 

90AN10W 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

17+ 4.15 × 10−5 523 7.05 × 103 a 

16+ 4.15 × 10−5 513 2.12 × 104 

15+ 4.67 × 10−5 500 6.78 × 104 b 

a A value of 7.11 × 102 was reported in Ref. [59] b A value of 9.87 × 104 was reported in Ref. [59] 
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Table 2.10. Rate constants ksolv for the reaction of various benzhydrylium ions with pure solvents. 

100M 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

17+ 9.39 × 10−6 528 7.39 × 105 

16+ 2.32 × 10−5 513 2.44 × 106 

14+ 9.72 × 10−6 509 1.97 × 107 

98AN2W 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

12+ 4.52 × 10−5 455 3.85 × 105 

11+ 2.38 × 10−5 464 6.18 × 106 

80AN20W 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

17+ 2.03 × 10−5 523 9.38 × 103 

16+ 2.20 × 10−5 513 3.08 × 104 

15+ 2.24 × 10−5 500 9.49 × 104 b 

14+ 2.19 × 10−5 500 2.52 × 105 

60AN40W 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

17+ 4.60 × 10−5 523 1.14 × 104 

16+ 2.26 × 10−5 513 3.16 × 104 

15+ 6.02 × 10−5 500 9.61 × 104 

14+ 2.51 × 10−5 500 2.81 × 105 

13+ 5.03 × 10−5 478 1.03 × 106 

11+ 1.46 × 10−4 464 3.35 × 107 

80E20W 

 [N°-PPh3]/M λ/nm ksolv/s
−1 

16+ 2.41 × 10−5 513 4.87 × 105 

15+ 4.78 × 10−5 500 1.66 × 106 c 

b A value of 9.82 × 104 was reported in Ref. [59] c A value of 1.51 × 106 was reported in Ref. [59] 
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Kinetics of the reactions of benzhydrylium ions with fluoride: 

Table 2.11. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
90AN10W. 

[17-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 523 nm k−1/M
−1 s−1 

4.15 × 10−5 3.10 × 10−2 7.54 × 104 2.89 × 106 

 6.66 × 10−2 1.44 × 105  

 8.95 × 10−2 2.46 × 105  

 1.03 × 10−1 2.71 × 105  

 1.33 × 10−1 3.63 × 105  
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 = 0.9834

k obs = 2.89 × 10
6
 [F

–
] – 2.50 × 10

4

  

[16-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 513 nm k−1/M
−1 s−1 

4.15 × 10−5 4.21 × 10−2 2.64 × 105 6.03 × 106 

 5.76 × 10−2 3.32 × 105  

 8.53 × 10−2 5.03 × 105  

 1.13 × 10−1 6.86 × 105  

    

    

    

    

    

   

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

0 0.02 0.04 0.06 0.08 0.1 0.12

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9956

k obs = 6.03 × 10
6
 [F

–
] – 2.52 × 10

3

  

[15-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1/M
−1 s−1 

4.67 × 10−5 2.46 × 10−2 4.65 × 105 1.85 × 107 

 5.52 × 10−2 9.51 × 105  

 7.29 × 10−2 1.32 × 106  

 1.07 × 10−1 1.87 × 106  

 1.26 × 10−1 2.38 × 106  

    

    

    

    

   

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9919

k obs = 1.85 × 10
7
 [F

–
] – 3.41 × 10

4
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Table 2.12. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
100M. 

[17-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 523 nm k−1/M

−1 s−1 

6.04 × 10−5 7.63 × 10−2 8.06 × 105 1.56 × 106 

 1.47 × 10−1 9.81 × 105  

 2.59 × 10−1 1.15 × 106  

 3.37 × 10−1 1.21 × 106  

 5.79 × 10−1 1.61 × 106  

 8.93 × 10−1 2.12 × 106  

    

    

    

   

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

0 0.2 0.4 0.6 0.8 1

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9965

k obs = 1.56 × 10
6
 [F

–
] + 7.16 × 10

5

  

[16-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 513 nm k−1/M

−1 s−1 

6.56 × 10−5 6.55 × 10−2 2.48 × 106 4.12 × 106 

 1.28 × 10−1 2.75 × 106  

 2.26 × 10−1 3.24 × 106  

 3.76 × 10−1 3.79 × 106  

 6.15 × 10−1 4.70 × 106  

 7.19 × 10−1 5.25 × 106  

    

    

    

   

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 0.2 0.4 0.6 0.8

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9977

k obs = 4.12 × 10
6
 [F

–
] + 2.24 × 10

6

  

[15-PPh3] / 
M 

[K+F–]/M (■) kobs/s
−1 λ = 500 nm k−1/M

−1 s−1 

3.87 × 10−5 1.12 × 10−1 1.11 × 107 1.14 × 107 

 1.48 × 10−1 1.17 × 107  

 2.52 × 10−1 1.31 × 107  

 3.17 × 10−1 1.36 × 107  

 4.74 × 10−1 1.58 × 107  

 7.09 × 10−1 1.77 × 107  

    

[15-PPh3] / 
M 

[Cs+F–]/M (▲) kobs/s
−1  

1.93 × 10−5 3.09 × 10−2 9.61 × 106  

 7.63 × 10−2 1.05 × 107  

 1.15 × 10−1 1.14 × 107  

 2.84 × 10−1 1.38 × 107  

 2.95 × 10−1 1.35 × 107  

 5.02 × 10−1 1.49 × 107 

 
 

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

0 0.2 0.4 0.6 0.8

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.966

k obs = 1.14 × 10
7
 [F

–
] + 9.91 × 10

6
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Table 2.13. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
98AN2W 

[21+]/M [Bu4N
+F– × 3 H2O] M kobs/s

−1 λ = 613 nm k−1/M
−1 s−1 

2.23 × 10−5 3.09 × 10−4 2.67 1.97 × 103 a 

 9.28 × 10−4 4.01  

 1.24 × 10−3 4.56  

 1.55 × 10−3 5.10  

    

    

    

    

    

   

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

0 0.0005 0.001 0.0015 0.002

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9966

k obs = 1.97 × 10
3
 [F

–
] + 2.11 × 10

0

  

[20+]/M [Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 620 nm k−1/M
−1 s−1 

3.58 × 10−5 1.10 × 10−3 4.76 × 101 2.95 × 104 a 

 6.28 × 10−4 4.07 × 101  

 1.57 × 10−3 6.96 × 101  

 2.04 × 10−3 7.59 × 101  

 2.51 × 10−3 9.60 × 101  

    

    

    

    

   

0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9696

k obs = 2.95 × 10
4
 [F

–
] + 1.96 × 10

1

  

[19-PBu3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 586 nm k−1/M
−1 s−1 

2.73 × 10−5 3.16 × 10−3 2.27 × 103 4.17 × 105 

 5.21 × 10−3 2.47 × 103  

 9.02 × 10−3 4.84 × 103  

 1.45 × 10−2 6.40 × 103  

 1.72 × 10−2 8.12 × 103  

    

    

    

    

   

0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

6.0E+03

7.0E+03

8.0E+03

9.0E+03

0 0.005 0.01 0.015 0.02

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9782

k obs = 4.17 × 10
5
 [F

–
] + 7.24 × 10

2

  
a Kinetics of the reactions of 21+ and 20+ with F– in 98AN2W were determined UV/vis-spectroscopically 
by rapid mixing of equal amounts of a solution of Bu4N

+F– × 3 H2O in aqueous AN (water content adjusted 
to obtain 96AN4W) and a solution of 1 in 100AN using the stopped-flow method. 
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Table 2.13. (continued) 

[18-PBu3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 592 nm k−1/M
−1 s−1 

2.06 × 10−5 2.36 × 10−3 1.54 × 104 2.31 × 106 

 6.09 × 10−3 2.32 × 104  

 8.80 × 10−3 2.84 × 104  

 1.32 × 10−2 3.52 × 104  

 1.66 × 10−2 5.06 × 104  

    

    

    

    

   

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

0 0.005 0.01 0.015 0.02

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9575

k obs = 2.31 × 10
6
 [F

–
] + 8.79 × 10

3

  

[17-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 523 nm k−1/M
−1 s−1 

2.18 × 10−5 4.40 × 10−3 7.63 × 105 1.12 × 108 

 1.15 × 10−2 1.65 × 106  

 1.71 × 10−2 2.44 × 106  

 2.10 × 10−2 2.64 × 106  

 2.71 × 10−2 3.53 × 106  

 3.73 × 10−2 4.46 × 106  

    

    

    

   

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

5.0E+06

0 0.01 0.02 0.03 0.04

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9921

k obs = 1.12 × 10
8
 [F

–
] + 3.60 × 10

5

  

[16-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 513 nm k-1/M
−1 s−1 

2.25 × 10−5 1.22 × 10−2 2.60 × 106 1.40 × 108 

 2.22 × 10−2 4.03 × 106  

 3.05 × 10−2 5.27 × 106  

 6.35 × 10−2 9.91 × 106  

 9.08 × 10−2 1.36 × 107  

    

    

    

    

   

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

0 0.02 0.04 0.06 0.08 0.1

[F
– 

] / M

k
ob

s  /
 s

-1

R
2
 = 0.9998

k obs = 1.40 × 10
8
 [F

– 
] + 9.58 × 10

5
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Table 2.13. (continued) 

[15-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1/M
−1 s−1 

2.78 × 10−5 8.04 × 10−3 4.50 × 106 2.69 × 108 

 1.92 × 10−2 7.25 × 106  

 4.29 × 10−2 1.43 × 107  

 8.51 × 10−2 2.51 × 107  

    

    

    

    

    

   

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

0 0.02 0.04 0.06 0.08 0.1

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9991

k obs = 2.69 × 10
8
 [F

–
] + 2.34 × 10

6

  

[12-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 455 nm k−1/M
−1 s−1 

4.52 × 10−5 2.76 × 10−3 9.03 × 106 2.40 × 109 

 5.16 × 10−3 1.47 × 107  

 6.85 × 10−3 1.83 × 107  

 9.19 × 10−3 2.40 × 107  

 2.12 × 10−2 5.30 × 107  

    

    

    

    

   

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

0 0.005 0.01 0.015 0.02 0.025

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9999

k obs = 2.40 × 10
9
 [F

–
] + 2.19 × 10

6

  

[11-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 464 nm k−1/M
−1 s−1 

2.38 × 10−5 9.50 × 10−4 1.89 × 107 8.63 × 109 

 1.90 × 10−3 2.97 × 107  

 2.79 × 10−3 3.01 × 107  

 3.80 × 10−3 4.56 × 107  

 5.24 × 10−3 5.60 × 107  

    

    

    

    

   

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

0 0.001 0.002 0.003 0.004 0.005 0.006

[F
– 

] / M

k
ob

s  /
 s

-1

R
2
 = 0.9619

k obs = 8.63 × 10
9
 [F

– 
] + 1.07 × 10

7
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Table 2.14. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
80AN20W 

[17-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 523 nm k−1/M
−1 s−1 

2.03 × 10−5 3.55 × 10−2 3.06 × 104 6.72× 105 

 7.28 × 10−2 5.01 × 104  

 1.12 × 10−1 7.31 × 104  

 1.62 × 10−1 1.09 × 105  

 1.92 × 10−1 1.36 × 105  

    

    

    

    

   

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

0 0.05 0.1 0.15 0.2 0.25

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9909

k obs = 6.72 × 10
5
 [F

–
] + 2.72 × 10

3

  

[16-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 513 nm k−1/M
−1 s−1 

2.20 × 10−5 1.81 × 10−2 6.24 × 104 1.72 × 106 

 4.62 × 10−2 1.01 × 105  

 6.30 × 10−2 1.26 × 105  

 9.89 × 10−2 2.01 × 105  

    

    

    

    

    

   

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

0 0.02 0.04 0.06 0.08 0.1 0.12

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9868

k obs = 1.72 × 10
6
 [F

–
] + 2.54 × 10

4

  

[15-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1 / M
−1 s−1 

2.24 × 10−5 4.45 × 10−2 3.03 × 105 5.10 × 106 

 7.39 × 10−2 4.76 × 105  

 1.05 × 10−1 5.82 × 105  

 1.52 × 10−1 8.63 × 105  

    

    

    

    

    

   

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

0 0.05 0.1 0.15 0.2

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9911

k obs = 5.10 × 10
6
 [F

–
] + 7.75 × 10

4
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Table 2.14. (continued) 

[14-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1 / M
−1 s−1 

2.19 × 10−5 1.95 × 10−2 4.54 × 105 9.76 × 106 

 4.22 × 10−2 6.36 × 105  

 7.24 × 10−2 9.89 × 105  

 1.05 × 10−1 1.26 × 106  

    

    

    

    

    

   

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 0.02 0.04 0.06 0.08 0.1 0.12

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9951

k obs = 9.76 × 10
6
 [F

–
] + 2.53 × 10

5

  

 

Table 2.15. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
60AN40W 

[17-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 523 nm k−1/M
−1 s−1 

4.60 × 10−5 4.32 × 10−2 1.87 × 104 1.66 × 105 

 8.67 × 10−2 2.47 × 104  

 1.64 × 10−1 3.58 × 104  

 2.15 × 10−1 4.42 × 104  

 2.68 × 10−1 5.72 × 104  

    

    

    

    

   

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

7.0E+04

0 0.05 0.1 0.15 0.2 0.25 0.3

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9859

k obs = 1.66 × 10
5
 [F

–
] + 1.03 × 10

4
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Table 2.15. (continued) 

[16-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 513 nm k−1/M
−1 s−1 

2.26 × 10−5 3.38 × 10−2 4.52 × 104 3.94 × 105 

 6.01 × 10−2 5.44 × 104  

 1.17 × 10−1 7.20 × 104  

 1.84 × 10−1 9.95 × 104  

 2.26 × 10−1 1.23 × 105  

    

    

    

   
0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

0 0.05 0.1 0.15 0.2 0.25

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.99

k obs = 3.94 × 10
5
 [F

–
] + 2.98 × 10

4

 
 

     

[15-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1/M
−1 s−1 

6.02 × 10−5 3.62 × 10−2 1.43 × 105 1.82 × 106 

 6.38 × 10−2 1.79 × 105  

 1.19 × 10−1 2.76 × 105  

 1.90 × 10−1 3.96 × 105  

 2.64 × 10−1 5.58 × 105  

    

    

    

    

   

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

0 0.05 0.1 0.15 0.2 0.25 0.3

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9949

k obs = 1.82 × 10
6
 [F

–
] + 6.59 × 10

4

  

[14-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1/M
−1 s−1 

2.51 × 10−5 3.05 × 10−2 3.80 × 105 4.36 × 106 

 7.23 × 10−2 5.68 × 105  

 1.23 × 10−1 7.60 × 105  

 1.77 × 10−1 9.78 × 105  

 2.07 × 10−1 1.18 × 106  

    

    

    

    

   

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 0.05 0.1 0.15 0.2 0.25

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9921

k obs = 4.36 × 10
6
 [F

–
] + 2.41 × 10

5
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Table 2.15. (continued) 

[13-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 478 nm k−1/M
−1 s−1 

5.03 × 10−5 3.44 × 10−2 1.05 × 106 9.04 × 106 

 5.71 × 10−2 1.64 × 106  

 1.28 × 10−1 1.76 × 106  

 1.93 × 10−1 2.70 × 106  

 2.27 × 10−1 3.24 × 106  

 2.85 × 10−1 3.25 × 106  

    

    

    

   

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

0 0.05 0.1 0.15 0.2 0.25 0.3

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9307

k obs = 9.04 × 10
6
 [F

–
] + 8.79 × 10

5

  

[11-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 464 nm k−1/M
−1 s−1 

1.39 × 10−4 1.71 × 10−3 3.43 × 107 (2.0 × 108)a 

 3.68 × 10−3 3.48 × 107  

 4.92 × 10−3 3.40 × 107  

 6.71 × 10−3 3.51 × 107  

 8.03 × 10−3 3.45 × 107  

 9.28 × 10−3 3.58 × 107  

 1.14 × 10−2 3.49 × 107  

 1.24 × 10−2 3.68 × 107  

 1.51 × 10−2 3.70 × 107  

   

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

0 0.005 0.01 0.015 0.02

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.6712

k obs = 2.01 × 10
8
 [F

–
] + 3.36 × 10

7

  
a This value has to be considered approximate due to the low slope of the kobs vs. [F–] plot. 
 

Table 2.16. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
10AN90W. 

[15-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 500 nm k−1/M

−1 s−1 

5.99 × 10−5 1.12 × 10−1 1.55 × 105 1.37 × 105 

 1.91 × 10−1 1.65 × 105  

 2.76 × 10−1 1.79 × 105  

 4.61 × 10−1 2.05 × 105  

 7.23 × 10−1 2.38 × 105  

    

    

    

    

   

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

0 0.2 0.4 0.6 0.8

[F
–
] / M

k
ob

s  /
 s

-1

R
2
 = 0.9987

k obs = 1.37 × 10
5
 [F

–
] + 1.40 × 10

5

  

 



2. Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents 

 111 

Table 2.16. (continued) 

[14-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 500 nm k−1/M

−1 s−1 

6.08 × 10−5 9.51 × 10−2 3.38 × 105 3.28 × 105 

 1.55 × 10−1 3.74 × 105  

 2.93 × 10−1 4.13 × 105  

 4.83 × 10−1 4.72 × 105  

 6.98 × 10−1 5.43 × 105  

    

    

    

    

   

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05
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0 0.2 0.4 0.6 0.8

[F
–
] / M

k
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s  /
 s

-1

R
2
 = 0.9944

k obs = 3.28 × 10
5
 [F

–
] + 3.15 × 10

5

  

[13-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 478 nm k−1/M

−1 s−1 

5.73 × 10−5 1.11 × 10−1 1.18 × 106 1.20 × 106 

 1.24 × 10−1 1.18 × 106  

 4.40 × 10−1 1.58 × 106  

 6.10 × 10−1 1.76 × 106  

 8.37 × 10−1 2.05 × 106  
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6
 [F

–
] + 1.04 × 10

6

  

 

Table 2.17. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
100W. 

[15-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 500 nm k−1/M

−1 s−1 

8.34 × 10−5 5.65 × 10−2 1.84 × 105 1.09 × 105 

 1.82 × 10−1 2.04 × 105  

 5.30 × 10−1 2.32 × 105  

 9.08 × 10−1 2.80 × 105  
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Table 2.17. (continued) 

[13-PPh3] / 
M 

[K+F–]/M kobs/s
−1 λ = 478 nm k−1/M

−1 s−1 

5.97 × 10−5 1.12 × 10−1 1.13 × 106 1.02 × 106 

 1.73 × 10−1 1.20 × 106  

 3.30 × 10−1 1.36 × 106  

 4.29 × 10−1 1.48 × 106  

 5.70 × 10−1 1.56 × 106  

 8.71 × 10−1 1.92 × 106  
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2
 = 0.9948

k obs = 1.02 × 10
6
 [F

–
] + 1.02 × 10

6

  

The solubility of 14-PPh3 in 100W was insufficient for the photogeneration of the carbocation 14+. 
 

Table 2.18. Rate constants kobs for the reaction of various benzhydrylium ions with fluoride in 
80E20W. 

[16-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 513 nm k−1/M
−1 s−1 

2.41 × 10−5 2.78 × 10−2 5.47 × 105 3.83 × 106 

 3.02 × 10−2 4.97 × 105  

 4.95 × 10−2 6.96 × 105  

 5.29 × 10−2 6.23 × 105  

 6.97 × 10−2 7.33 × 105  

 1.06 × 10−1 8.11 × 105  

 1.42 × 10−1 9.86 × 105  
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–
] / M

k
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R
2
 = 0.9387

k obs = 3.83 × 10
6
 [F

–
] + 4.37 × 10

5

  

[15-PPh3] / 
M 

[Bu4N
+F– × 3 H2O]/M kobs/s

−1 λ = 500 nm k−1/M
−1 s−1 

4.78 × 10−5 2.44 × 10−2 2.11 × 106 1.06 × 107 

 5.47 × 10−2 2.63 × 106  

 1.04 × 10−1 2.98 × 106  

 1.38 × 10−1 3.19 × 106  

 1.69 × 10−1 3.95 × 106  

 1.74 × 10−1 3.94 × 106  

 2.16 × 10−1 4.06 × 106  
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R
2
 = 0.949

k obs = 1.06 × 10
7
 [F

–
] + 1.93 × 10

6
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Comparison of ksolv and ksolv calcd.: 

Table 2.19. Comparison of experimental rate constants for the reactions of 13+-17+ with the solvent 
(ksolv) and calculated rate constants ksolv calcd. calculated using equation 2.3.  

Ar2CH+ Solvent N / sN 
a
 ksolv/s

−1 ksolv calcd./s
−1 ksolv/ksolv calcd. 

17+ 90AN10W 4.56 / 0.94 7.05 × 103 1.02 × 103 6.92 

16+   2.12 × 104 5.75 × 103 3.68 

15+   6.78 × 104 1.93 × 104 3.51 

17+ 100M 7.54 / 0.92 7.39 × 105 4.85 × 105 1.52 

16+   2.44 × 106 2.64 × 106 0.92 

15+   8.4 × 106 b 8.65 × 106 0.97 

14+   1.97 × 107 3.15 × 107 0.63 

17+ 80AN20W 5.02 / 0.89 9.38 × 103 1.81 × 103 5.19 

16+   3.08 × 104 9.32 × 103 3.30 

15+   9.49 × 104 2.94 × 104 3.23 

14+   2.52 × 105 1.02 × 105 2.46 

17+ 60AN40W   1.14 × 104 1.97 × 103 c 5.79 

16+   3.16 × 104 1.03 × 104 c 3.06 

15+   9.61 × 104 3.30 × 104 c 2.92 

14+   2.81 × 105 1.17 × 105 c 2.41 

13+   1.03 × 106 7.08 × 105 c 1.45 
a Nucleophilicity parameters for the calculation of ksolv calcd. were taken from Ref.. [59] b Rate constants for 
reaction with solvent taken from Ref. [41] c Nucleophilicity parameters for 60AN40 are not available. The 
nucleophilicity parameters in 67AN33W (5.05/0.90) from Ref. [59] were used instead for the calculation of 
ksolv/kcalcd.. 
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1
H-NMR and 

13
C-NMR spectra:  

11-F 

FF
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3. Can One Predict Changes from SN1 to SN2 Mechanisms? 

 

Most kinetic measurements (e.g., determination of nucleophilicity of amines in DMSO) 

were performed by Dr. Thanh Binh Phan. The GC product studies, the kinetic of the 

reaction of 8-Br in DMSO in the presence of n-PrNH2 and the determination of activation 

parameters were performed by the author of this thesis.  

3.1. Introduction  

Nucleophilic displacement reactions at C(sp3) centers1 proceed either with simultaneous 

breaking and forming of the involved bonds (SN2 or ANDN)2 or via a mechanism where 

breaking of the old bond precedes formation of the new bond (SN1 or DN+AN).1 The 

borderline between these two mechanisms has been the subject of considerable controversy. 

In contrast to Ingold who considered SN1 and SN2 as discrete processes,1b it has been 

suggested that a clear-cut distinction between these two mechanisms is impossible because 

there is a gradual transformation of an SN2 into an SN1 mechanism as the transition state 

develops more carbocation character.3-6 Winstein’s concept of different types of ion-pairs4 

was extended by Sneen who suggested that the entire SN1-SN2 mechanistic spectrum could 

be fitted into a simple scheme involving ion-pair intermediates.5 Schleyer and Bentley 

criticized this concept and suggested that there is a gradation of mechanism between the 

SN1 and SN2 extremes with varying degrees of nucleophilic participation by the solvents.6,7 

The intermediates in the borderline region were considered as “nucleophilically solvated 

ion pairs”6 which look like the transition states of SN2 reactions but are energy minima not 

maxima. They coined the term “SN2 intermediate” mechanism.6 Support for the operation 

of concurrent SN1 and SN2 reactions in the borderline cases came from kinetic 

investigations of nucleophilic substitutions under nonsolvolytic conditions, i.e., under 

conditions where the concentration of the nucleophile could be varied.8 Nucleophilic 

displacement reactions of benzhydryl thiocyanates with labelled *SCN– in acetonitrile and 

acetone,9 of benzhydryl chlorides with labeled Cl– and Br– and of benzhydryl bromide with 

Br–, Cl–, and N3
– as well as with amines followed the rate law 3.1 with a nucleophile-

independent term k1 and a nucleophile-dependent term k2.
10,11 
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−d[R-X]/dt = [R-X] (k1 + k2[Nu]) (3.1) 

 

Yoh and Fujio et al. studied the kinetics of the reactions of benzyl halides and tosylates 

with amines.12,13 While acceptor-substituted benzyl derivatives reacted exclusively by the 

SN2 mechanism, donor-substituted benzyl derivatives, such as p-methoxybenzyl bromide, 

followed the rate law of equation 3.1. This observation was considered “convincing 

evidence for the occurrence of simultaneous SN1 and SN2 mechanisms”.14a,b Concurrent 

stepwise and concerted substitutions have also been reported by Amyes and Richard for the 

reactions of azide ions with 4-methoxybenzyl derivatives in trifluoroethanol/water 

mixtures.14c Analogous rate laws have been observed by Katritzky for alkyl and benzyl 

group transfers from N-alkyl and N-benzyl pyridinium ions to various nucleophiles.15 

Because of the manifold of examples which demonstrate the duality of the two mechanisms 

the question arises whether the change from one to the other mechanism can be predicted.  

Jencks and Richard based the differentiation of the mechanistic alternatives on the lifetimes 

of the potential intermediates.16 It has been argued that nucleophilic aliphatic substitutions 

generally occur by the stepwise SN1 mechanism when the intermediate carbocations exist in 

energy wells for at least the time of a bond vibration (≈ 10−13s) and that the change to the 

SN2 mechanism is “enforced” when the energy well for the intermediate disappears. 

Convincing support for this hypothesis has been derived from the selectivities of 

carbocations (kazide/kROH) which were solvolytically generated in alcoholic solutions of ionic 

azides.16c,d,17  

We have reported that the rates of reactions of carbocations with nucleophiles can be 

calculated by equation 3.2, where E is a carbocation-specific electrophilicity parameter, and 

s and N are nucleophile-specific parameters.18-20  

 

lgk20 °C = sN(E+N)  (3.2) 

 

While the confidence limit of equation 3.2 is generally a factor of 10-100 in the presently 

covered reactivity range of forty orders of magnitude, the predictive power of equation 3.2 

is much better for reactions of benzhydrylium ions (factor 2-3), because benzhydrylium 
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ions have been used as reference electrophiles for deriving the nucleophile-specific 

parameters sN and N. Whether equation 3.2 can be used to predict the change from SN1 to 

SN2 mechanism on the basis of the lifetime hypothesis by Jencks and Richard was 

investigated. For that purpose, rates and products of the reactions of benzhydryl bromides 

(2,6,8,9,10)-Br with amines in DMSO were investigated, which yield benzhydryl amines 

(2,6,8,9,10)-NR2, benzophenones (2,6,8,9,10)=O, and benzhydrols (2,6,8,9,10)-OH.   

Scheme 3.1 shows that for each of the products N°-NR2, N°=O and N°-OH formation via 

the SN1 process (k1) or the SN2 process (k2 and k1′) has to be considered. In the following, it 

will be shown that the pathways k1′ and kN can be excluded.  

 

Scheme 3.1. Reactions of Benzhydryl Bromides with Amines in DMSO. 
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3.2. Experimental Section 

Conductimetric Measurements of Nucleophilic Substitutions.  

Dissolution of the benzhydryl bromides (2,6,8,9,10)-Br in DMSO or in solutions of amines 

in DMSO led to an increase of conductivity due to the generation of HBr, which reacted 

with excess amine to give the hydrobromide salt. The rates of these reactions were followed 

by conductometry (conductometers: Tacussel CD 810 or Radiometer Analytical CDM 230, 
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Pt electrode: WTW LTA 1/NS), while the temperature of the solutions was kept constant 

(20.0 ± 0.1 °C) by using a circulating bath thermostat. The correlation between 

conductance and the concentration of liberated HBr was determined by injecting 0.25 mL 

portions of 0.11 M acetonitrile solutions of the rapidly ionizing benzhydryl bromide 10-Br 

into 30.0 mL of a 0.34 M solution of piperidine in DMSO. After the conductivity had 

reached a constant value (typically 300 s), another portion of benzhydryl bromide was 

added. As depicted in the inset of Figure 1, the conductivity increased linearly with the 

concentration of released HBr, even at higher concentrations than used for the kinetic 

experiments. 
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Figure 3.1. Exponential increase of conductivity during the reaction of 4-methylbenzhydryl 
bromide 10-Br with 0.2 M piperidine in DMSO. Calibration in the inset: Conductivity at t∞ is 
proportional to the concentration of substrate. 

Photometric Measurements of the Reactions of the Benzhydrylium 

Tetrafluoroborates with Amines  

The rates of the reactions of benzhydrylium tetrafluoroborates with amines were studied in 

DMSO solutions. All amines were used as free bases. As the reactions of the colored 

benzhydrylium ions with amines gave rise to colorless products, the reactions could be 

followed by employing UV-Vis spectroscopy at the absorption maxima of the 

benzhydrylium ions. The rates were determined by using a Hi-Tech SF-61DX2 stopped-

flow spectrophotometer system (controlled by Hi-Tech KinetAsyst2 software). Amine 

concentrations at least 10 times higher than the benzhydrylium ion concentrations were 

usually employed, resulting in pseudo-first-order kinetics with an exponential decay of the 
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concentrations of the benzhydrylium ions Ar2CH+ (N°
+). First-order rate constants kobs (s

–1) 

were obtained by least-squares fitting of the absorbance data (averaged from at least five 

kinetic runs at each amine concentration) to the single-exponential equation 3.3. 

dA/dt = A0 e
(–kobst) + C  (3.3) 

 

Laser-Flash Photolysis.  

Laser-flash photolysis methods were employed for determinating the rates of the reactions 

of Ar2CH+ (N°
+) with DMSO in acetonitrile. For that purpose, benzhydrylium cations were 

generated by irradiation of Ar2CHCl (N°-Cl) in DMSO/acetonitrile with a Continuum 

PL9010 Nd:YAG laser-flash apparatus (λ=266 nm; power/puls of ca. 50 mJ) in a quartz 

cell. The rate constants were determined by observing the time dependent decay of the UV-

vis absorptions of the benzhydryl cations. The pseudo-first-order rate constants were 

obtained by fitting the decay of the UV-vis absorptions to the exponential function 3.3. 

Product Studies. 

Product studies were carried out for several representative systems to examine the ratios of 

the products formed during the reaction of benzhydryl bromides ((2,6,8,9,10)-Br) solution 

0.2 M of amines in DMSO. For that purpose, 0.2 M solutions of the amine in DMSO were 

combined with 0.1 equivalent of benzhydryl bromide (2,6,8,9,10)-Br. After 24 h, the 

reaction mixtures were quenched with water and extracted with diethyl ether. After 

evaporation, the residue was diluted with acetone containing a defined amount of 

hexadecane (internal standard, ≈ 1 × 10−3 M). Aliquots of the solutions were analyzed with 

a Thermo Focus gas chromatograph equipped with a FID detector for the determination of 

the absolute concentrations. In addition, GC/MS analysis with an Agilent 6890 gas 

chromatograph with an Agilent 5973 mass selective detector was performed for identifying 

the individual peaks. For the calculation of the absolute product concentrations, the 

products were synthesized individually, and GC-calibrations were carried out to obtain the 

relative molecular response factor (RMR). 
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3.3. Results and Discussion 

Kinetics of the Nucleophilic Substitutions in DMSO:  

When solutions of the benzhydryl bromides (2,6,8,9,10)-Br in DMSO were treated with a 

high excess of amines (>10 equiv), the amine concentrations remained almost constant 

during the reactions, and the increase of conductivity followed the exponential function 3.4, 

as illustrated in Figure 3.1.  

 

dG/dt = Gmax[1−e(−kobst)]+C (3.4) 

 

Plots of kobs versus the concentrations of the amines were linear (Figure 3.2) but did not go 

through the origin. As expressed by equation 3.5, the observed rate constants kobs (see 

Experimental Section and supporting information of “Phan, T. B.; Nolte, C.; Kobayashi, S.; 

Ofial, A. R.; Mayr, H. J. Am. Chem. Soc. 2009, 131, 11392-11401”) can be regarded as the 

sum of an amine independent term k1 and an amine-dependent term k2[amine], which are 

collected in Table 3.1.  

 

kobs = k1 + k2[amine]  (3.5) 

 

The second-order rate constants k2 can easily be assigned to the SN2 reactions of the amines 

with the benzhydryl bromides. The amine-independent term k1, which equals the directly 

measured solvolysis rate constant in DMSO in the absence of a nucleophilic amine, reflects 

either the rate of the SN1-type process (k1, Scheme 3.1), the rate of an SN2 reaction with 

DMSO as the nucleophile (k1’, Scheme 3.1) or a combination of both processes.  
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Table 3.1. Rate Constants (at 20° C) for the solvolyses of the benzhydryl bromides in DMSO (s−1) 
and for their reactions with amines in DMSO (M−1s−1). 

nucleophiles 10-Br 9-Br 8-Br 6-Br 2-Br 

DMSO (k1) 6.71 × 10−3 5.45 × 10−4 1.36 × 10−4 1.25 × 10−5 2.76 × 10−6 

DABCO (k2) 1.92 × 10−1 5.45 × 10−2 a a a 

piperidine (k2) 3.57 × 10−2 1.69 × 10−2 2.33 × 10−2 9.36 × 10−3 6.66 × 10−3 

morpholine (k2) 2.16 × 10−2 7.30 × 10−3 9.51 × 10−3 3.29 × 10−3 2.17 × 10−3 

ethanolamine (k2) 
a
 1.54 × 10−3 2.37 × 10−3 1.13 × 10−3 1.25 × 10−3 

1-aminopropan-2-ol (k2) 4.93 × 10−3 1.45 × 10−3 2.23 × 10−3 8.92 × 10−4 7.96 × 10−4 

n-PrNH2 (k2) 3.98 × 10−3 1.33 × 10−3 2.19 × 10−3 1.13 × 10−3 1.17 × 10−3 

benzylamine (k2) 1.90 × 10−3 6.72 × 10−4 1.35 × 10−3 6.30 × 10−4 5.50 × 10−4 

diethanolamine (k2) 
a 6.37 × 10−4 7.46 × 10−4 2.55 × 10−4 1.19 × 10−4 

2-amino-butan-1-ol (k2) 
b b 3.13 × 10−4 1.77 × 10−4 a 

a Not determined. b The kobs was independent of the amine concentration see Figure 3.2  
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Figure 3.2. Plots of kobs (s−1) of the reactions of different benzhydryl bromides with amines in 
DMSO vs. the concentrations of the amines. (Note the different calibration of the various y-axes). 
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Figure 3.2. (continued)  

Comparison of the rate constants k1 in the first line of Table 3.1 with previously published 

solvolysis rates in alcohols21 shows that the solvolysis rates in DMSO are comparable to 

those in pure ethanol but considerably smaller than in ethanol-water mixtures and 2,2,2-

trifluoroethanol. Creary et al. published kinetic data for the solvolysis of adamantyl 

mesylates and 3-aryl-3-hydroxy-β-lactams.22 These and our data indicate that DMSO is a 

solvent with a relatively high ionizing power. The horizontal lines in Table 3.1 show that 
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variation of the substituents of the benzhydryl bromides from 10-Br to 2-Br affects the 

second order rate constants k2 for the reactions with amines by less than a factor of 10. 

Accordingly, plots of lg k2 versus ∑σ (Figure 3.3) or any other of Hammett’s substituent 

constants (eg. σ+)23 (Figure 3.3) illustrate that variation of the para-substituents in the 

benzhydrylium bromides has only a marginal effect on the rate constants of the SN2 

reactions, indicating transition states A#, where only little positive charge is developed at 

the benzhydryl center.  

C

ArAr

H

BrN

R

H

R'

δ-δ+
A#

#

 

Because of the small dependence of the second-order rate constants on the nature of the 

substituents, the poor correlations in Figure 3.3 are not surprising, particularly because 

substituent effects in diarylmethyl compounds have been reported not to be additive.24 The 

poor correlation in Figure 3.3 also is in line with previous findings by Baker,25 Jencks26 and 

Bordwell27 that nucleophilic substitutions at substituted benzyl chlorides do not follow 

simple Hammett correlations.  
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Figure 3.3. Plot of lg k2 of the reactions of the benzhydryl bromides (2,6,8,9,10)-Br with amines vs. 
Hammett´s substituent constants σ.16 

On the other hand, the SN2 reactions of substituted arylethyl bromides show a continuous 

increase of the ρ value as the electron-donating ability of the substituents is increased, 

indicating a continuous change of the transition state from very tight for acceptor-
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substituted systems to loose transition states with more positive charge on the benzylic 

carbon for the SN2 reactions of the p-methoxy-substituted systems.12 

In contrast to the behavior of the second-order rate constants in Figure 3.3, the first-order 

rate constants k1 (first line of Table 3.1) strongly depend on the para-substituents. From the 

plot of lg k1 versus Σσ+, one derives a Hammett reaction constant of ρ = −2.94 (Figure 3.4).  
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Figure 3.4. Plot of lg k1 of the solvolysis reactions of the benzhydryl bromides (2,6,8,9,10)-Br in 
DMSO vs. Hammett´s substituent constants σ+ 23 (k1 for 2-Br not used for the correlation, see text). 

The magnitude of the reaction constant ρ suggests that the amine-independent term k1 

corresponds to the ionization step of an SN1 reaction and not to an SN2-type attack of 

DMSO at the benzhydryl bromides. The bis-trifluoromethyl-substituted compound 2-Br 

deviates from this correlation, however, and reacts approximately 16 times faster than 

extrapolated from the linear lg k1 versus Σσ+ correlation; it will be discussed later that this 

deviation may be due to an SN2-type reaction of 2-Br with DMSO. 

The 4,4′-dimethyl-substituted benzhydryl bromide (11-Br) reacted so fast that analogous 

experiments, as described in Figure 3.2, could not be performed. From the Hammett 

correlation 

given in Figure 3.4, one can extrapolate a first-order solvolysis rate constant of 0.045 s−1 for 

the 4,4′-dimethyl-substituted benzhydryl bromide (11-Br).  

Reaction Products  
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As summarized in Table 3.2, the reactions of benzhydryl bromides (2,6,8,9,10)-Br with 0.2 

M amines in DMSO give the benzhydryl amines N°-NR2, accompanied by the 

benzophenones N°=O and the diarylmethanols N°-OH. 

The exclusive formation of the benzhydryl amines (2,6)-NR2 in the reaction of 2-Br and 6-

Br with morpholine, piperidine, and n-propylamine is in line with the kinetics described in 

Figure 3.2: The amine-independent terms are negligible in comparison to the amine-

dependent terms. Therefore, at amine concentrations of 0.2 M SN2 reactions with amines 

take place almost exclusively.  

Analogously, the predominant formation of amine 8-NR2 by reaction of 8-Br with 

piperidine can be explained by the high SN2 reactivity of the amine at a concentration of 0.2 

M. In the reactions with the less nucleophilic morpholine, the amounts of benzhydrol 8-OH 

and benzophenone 8=O rise. Unfortunately, it was not possible to measure the product ratio 

obtained by the reaction of 8-Br with n-propylamine because the GC signals of the 

benzhydrol and the amine overlapped. In the reactions of 9-Br with these amines, 

considerable amounts of benzophenone 9=O and benzhydrol 9-OH were generated along 

with the benzhydryl amines 9-NR2, and their quantities increase with decreasing 

nucleophilicities of the amines.  

In the reaction of the monomethyl-substituted benzhydryl bromide 10-Br, an even larger 

amount of diarylmethanol 10-OH and benzophenone 10=O was found, while less of the 

benzhydryl amine 10-NR2 was formed. As with the other substrates, the yield of the amine 

10-NR2 decreased in the series piperidine > morpholine > n-propylamine. While it was not 

possible to distinguish between diarylmethanol 10-OH and benzophenone 10=O by our GC 

analysis because both compounds had the same retention times, the GC-MS spectra showed 

that benzophenone 10=O is the major products. Because the relative molar response (RMR) 

constant was nearly the same for the benzophenone 10=O and the benzhydrol 10-OH 

(experiment with pure compounds), their sum could be determined. 

As illustrated in Scheme 3.1, the benzophenones N°=O as well as the benzhydrols N°-OH 

are formed through the intermediacy of the oxysulfonium ions N°-OS+Me2. In accordance 

with previous reports on the mechanism of the Kornblum oxidation,28 we assume that 

deprotonation of the oxysulfonium ion N°-OS+Me2 at a methyl group yields a sulfur ylide, 

which undergoes a proton shift and cleavage of the O-S bond to yield the benzophenone 
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N°=O (Scheme 3.2). In line with this mechanism, benzhydrol N°-OH was not oxidized 

when treated with equimolar amounts of 2,6-lutidine and 2,6-lutidine hydrobromide under 

the conditions of the solvolysis reactions. The formation of oxysulfonium ions from alkyl 

halides22 and their subsequent reactions with bases have been studied NMR 

spectroscopically by other groups.29,30 

Scheme 3.2. Reaction mechanism for the generation of the benzophenone N°=O from the 
intermediately formed oxysulfonium ion N°-OS+Me2. 
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Table 3.2. Products of the reactions of the benzhydryl bromides (2,6,8,9,10)-Br (c = 0.02 M) with 
amines (10 equiv) in DMSO (20 °C). 

N°-Br amine [N°-OH] [N°=O] [N°-NR2] [N°-NR2]/ 

([N°=O]+[N°-OH] 

2-Br piperidine 0 0 only  

 morpholine 0 0 only  

 n-propylamine 0 0 only  

6-Br piperidine 0 0 only  

 morpholine 0 0 only  

 n-propylamine 0 0 only  

8-Br piperidine 0.6 1.5 77.0 36.9 

 morpholine 2.0 2.6 50.5 11.0 

 n-propylamine Alcohol cannot be separated from amine by GC 

9-Br piperidine 0.6 7.4 69.9 8.7 

 morpholine 2.7 16.1 69.8 3.7 

 n-propylamine 16.6 26.7 48.4 1.1 

10-Br piperidine 35.4 a  41.8 1.2 

 morpholine 49.8 a  27.1 0.5 

 n-propylamine 80.5 a  14.6 0.2 

a As the ketone 10=O and the alcohol 10-OH cannot be separated on the GC (see text), the yield refers to 
the sum of both compounds. 
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Benzhydrol 9-OH and benzophenone 9=O were formed exclusively when benzhydryl 

bromide 9-Br (0.02 M) was dissolved in a 0.2 M solution of the weakly nucleophilic 2,6-

lutidine in DMSO. Figure 3.5 illustrates that the ratio [9-OH]/[9=O] obtained after aqueous 

workup of the solvolysis products from 9-Br increases with reaction time. From the 

observation that the increase of this ratio continues after complete consumption of 9-Br, 

one can derive that a precursor of 9=O (e.g., the oxysulfonium ion 9-OS+Me2) accumulates 

in the reaction mixture before it is slowly converted into benzophenone 9=O.  

When the mixture obtained from 9-Br (0.02 M) and 0.2 M 2,6-lutidine in DMSO was 

worked up with methanol, the benzophenone 9=O was accompanied by benzhydryl methyl 

ether, which may be formed by nucleophilic attack of methanol at the oxysulfonium ion 

N°-OS+Me2. Nucleophilic attack of impurities of water, amine, or methanol at the sulfur 

atom of 9-OS+Me2 may account for the small amount of benzhydrol 9-OH (6.7 %) obtained 

under these conditions. The ratio [9=O]/([9-OH] + [9-OMe]) was similar to the ratio 

[9=O]/[9-OH] observed after aqueous workup at comparable reaction times (■ in Figure 

3.5). 
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Figure 3.5. Plot of the ratios of [9=O]/[9-OH] vs. time for the reaction of benzhydryl bromide 9-Br 
with 0.2 M 2,6-lutidine in DMSO after aqueous workup. Square indicates the workup with 
methanol (ratio equals [9=O]/([9-OH] + [9-OMe])). 

Differentiation of SN1 and SN2 Processes  

For each of the products N°-NR2, N°=O and N°-OH drawn in Scheme 3.1, formation 

through an SN1 (k1) or SN2 (k2 and k1′) process has to be considered. With the data 

presented so far, it is possible to eliminate some of these reaction pathways. If the 
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benzhydryl amines N°-NR2 would be formed by an SN1 reaction via the carbenium ions 

N°
+, which are subsequently trapped by the amines, an amine-independent rate law would 

result because the formation of the benzhydryl cations N°+ would be rate determining. 

Pathway kN of Scheme 3.1 can, therefore, be eliminated. This conclusion is confirmed by 

the comparison of the kinetic data with the product ratios in Table 3.3. For the reactions of 

different benzhydryl bromides N°-Br with piperidine, morpholine, and n-propylamine, the 

product ratios ([N°-NR2]/([N°=O]+[N°-OH])), are almost equal to the ratios k2/k1 

multiplied with the amine concentration (k2[amine]/k1).  

Table 3.3. Comparison of rate constant ratios with the product ratios for the reactions of benzhydryl 
bromides N°-Br with 0.2 M piperidine, morpholine, and n-propylamine in DMSO at 20 °C. 

 10-Br 9-Br 8-Br 6-Br 

k1/s
−1 6.71 × 10−3 5.45 × 10−4 1.36 × 10−4 1.25 × 10−5 

reaction with piperidine 

k2/M
−1 s−1 3.57 × 10−2 1.69 × 10−2 2.33 × 10−2 9.36 × 10−3 

0.2×k2/k1 1.1 6.2 34 149.8 

[N°-NR2]/([N°=O]+[N°-OH]) 1.2 8.7 37 only 6-NR2 

reaction with morpholine 

k2/M
−1 s−1 2.16 × 10−2 7.30 × 10−3 9.51 × 10−3 3.29 × 10−3 

0.2×k2/k1 0.64 2.7 14 263 

[N°-NR2]/([N°=O]+[N°-OH]) 0.54 3.7 11 only 6-NR2 

reaction with n-propylamine 

k2/M
−1 s−1 3.98 × 10−3 1.33 × 10−3 2.19 × 10−3 1.13 × 10−3 

0.2×k2/k1 0.12 0.49 3.2 18 

[N°-NR2]/([N°=O]+[N°-OH]) 0.18 1.1 - only 6-NR2 

 

If the amines N°-NR2 would be formed via the pathway kN in addition to the SN2 pathway 

k2, a higher percentage of the amines N°-NR2 would be expected. We will demonstrate later 

that the trapping of the benzhydrylium ions N°
+ by the solvent DMSO is so fast that the 

pathway kN cannot compete with ksolv at amine concentrations of 0.2 M. Formal kinetics do 

not allow differentiation between pathways k1 and k1′ for the formation of N°=O and N°-

OH; that is, the oxysulfonium ion N°-OS+Me2 may be formed via either an SN1 (k1) or an 

SN2 process (k1′) with the solvent DMSO. The linear Hammett plot for lg k1 (i.e., kobs in 
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pure DMSO) with a slope of −2.94 (Figure 3.4) indicates the operation of the SN1 pathway 

for most systems. If the SN2 pathway indicated by k1′ would be operating, a similar 

reactivity pattern as shown in Figure 3.3 would be expected for the different benzhydryl 

bromides. The significant deviation of 2-Br from the linear Hammett correlation in Figure 

3.4 may be indicative of an SN2 participation in the reaction of this acceptor-substituted 

benzhydryl bromide with DMSO (k1′, nucleophilic solvent participation). Further support 

for this interpretation will be given below.  

Temperature Effect on Rate Constants 

When the kinetics of the reaction of 8-Br with morpholine in DMSO were studied at 

variable temperature and evaluated as described above, the rate constants summarized in 

Table 3.4 were obtained. Raising the temperature from 20 to 50 °C increased the first-order 

rate constant k1 by a factor of 11, while the second-order rate constant k2 increased only by 

a factor of 4. In accordance with the previous discussion, the stronger increase of k1 

compared with k2 resulted in a decrease of the yield of the amine N°-NR2 (Table 3.4). The 

ratios of the products [N°-NR2]/([N°=O] + [N°-OH]) and the ratios of the rate constants 

k2[amine]/k1 again agreed within experimental error (Table 3.4), indicating that also, at 

elevated temperatures, amines N°-NR2 are produced through the SN2 pathway (k2) while 

N°=O and N°-OH are formed via the SN1 route (k1). 

Table 3.4. Comparison of the rate constants and product ratios for the reaction of benzhydryl 
bromide 8-Br (0.02 M) with morpholine (0.2 M) at different Temperatures in DMSO. 

T/°C 20 35 50 

k1/s
−1 1.36 × 10−4 3.85 × 10−4 1.45 × 10−3 

k2/M
−1s−1 9.51 × 10−3 2.10 × 10−2 4.20 × 10−2 

[8-NR2]/M 1.01 × 10−2 1.07 × 10−2 8.52 × 10−3 

[8=O]/M 5.26 × 10−4 1.27 × 10−3 1.83 × 10−3 

[8-OH]/M 3.95 × 10−4 2.26 × 10−4 2.33 × 10−4 

[8-NR2]/([8=O] + [8-OH]) 11 7.2 4.1 

0.2k2/k1 14 11 5.8 

 

Eyring and Arrhenius plots of high quality (R2 = 0.9998, see experimental part) were 

obtained for the second-order rate constants k2, from which the activation parameters listed 

in Table 3.5 were obtained. The highly negative activation entropy (−159 J mol−1 K−1) is in 
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agreement with previous reports on alkylations of amines.31 Because of the small 

contribution of the first-order term k1 to the overall rate constant, the rate constants k1 are 

less precise, and the resulting Eyring and Arrhenius plots are of lower quality (R2 = 0.990). 

The calculated activation entropy (−117 J mol−1 K−1) is slightly more negative than 

typically observed for SN1 reactions in alcoholic and aqueous solutions.32  

Table 3.5. Eyring and Arrhenius activation parameters for the reaction of the benzhydryl bromide 
8-Br with morpholine in DMSO. 

 for k1 for k2 

∆H
‡/kJ mol−1  59.4 ± 6.1 36.5 ± 0.6 

∆S
‡/J mol−1 K−1 −116.7 ± 19.8 −159.0 ± 1.8 

Ea/kJ mol−1 62.0 ± 6.1 39.0 ± 0.5 

lg A 7.2 ± 1.0 5.0 ± 0.1 

 

Nucleophilicity Parameters N and sN for Amines in DMSO  

While N and sN parameters for numerous amines have previously been determined in 

aqueous33, acetonitrile34 and in methanolic solution,35 only few amines have so far been 

characterized in DMSO.36 Because amine nucleophilicities in DMSO will be needed for the 

mechanistic analysis below, we have now determined N and sN values for the amines which 

were used in this investigation in DMSO. For that purpose, the rates of reactions of amino-

substituted benzhydrylium ions with amines in DMSO (Scheme 3.3) were measured under 

pseudo-first-order conditions (excess of amine) using the photometric method described 

previously.18-20 Comparison of the rate constants listed in Table 6 with those reported in 

acetonitrile34 and water33 shows that the amines react roughly 4-10 times faster in 

acetonitrile and 100 times faster in DMSO than in water due to the weaker solvation in the 

nonprotic solvents.  
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Scheme 3.3. Reactions of amines with benzhydrylium tetrafluoroborates in DMSO. 
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Plots (Figure 3.6) of the second-order rate constants given in Table 3.6 versus the 

electrophilicity parameters E of the benzhydrylium ions were linear as required by equation 

3.2, and yielded the N and sN parameters for amines in DMSO which are given in Table 

3.6. 
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Table 3.6. Second-order rate constants for the reactions of amino-substituted benzhydrylium ions 
with amines in DMSO at 20 °C. 

Amine, N (s) Ar2CH+  kN/M–1 s–1
 

2-Amino-butan-1-ol (ind)2CH+ 6.08 × 103 

14.39 (0.67) (jul)2CH+ 2.23 × 103 

  (lil)2CH+ 8.33 × 102 

Benzylamine (thq)2CH+ 3.91 × 104 

15.28 (0.63) (jul)2CH+ 6.60 × 103 

  (lil)2CH+ 2.51 × 103 

1-Amino-propan-2-ol (ind)2CH+ 2.27 × 104 

15.47 (0.65) (jul)2CH+ 9.31 × 103 

  (lil)2CH+ 3.29 × 103 

Diethanolamine (ind)2CH+ 4.83 × 104 

15.51 (0.70) (jul)2CH+ 1.74 × 103 

  (lil)2CH+ 6.19 × 103 

2-Amino-ethanol (ind)2CH+ 2.87 × 104 

16.07 (0.61) (jul)2CH+ 1.19 × 104 

  (lil)2CH+ 4.71 × 103 
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Figure 3.6. Plot of the rate constants kN for the reactions of amines with benzhydrylium ions 
(DMSO, 20 °C) vs. their electrophilicity parameters E (E =−10.04 for (lil)2CH+, −9.45 for 
(jul)2CH+, −8.76 for (ind)2CH+, and −8.22 for (thq)2CH+; from ref [14]). 
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Solvent Nucleophilicity of DMSO.  

Dimethyl sulfoxide may react with electrophiles either at sulfur or at oxygen.37 The 

formation of benzophenones and benzhydrols reported above indicates that the 

benzhydrylium ions (N°
+) employed in this work react at oxygen to yield the oxysulfonium 

ions N°-OS+Me2 (Scheme 3.4).  

Scheme 3.4. Laser-flash photolytic generation of benzhydrylium ions in MeCN/DMSO mixtures. 
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The rates of these reactions were determined by laser-flash photolysis of solutions of 

benzhydryl chlorides (N°-Cl) in MeCN/DMSO mixtures and UV-vis spectrometric 

monitoring of the decay of the resulting benzhydrylium ions in the presence of variable 

concentrations of DMSO. Plots of the observed rate constants versus the concentrations of 

DMSO (Figure 3.7) give rise to the second-order rate constants of the reactions (Table 3.7). 
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Figure 3.7. Plot of kobs of the reactions of the benzhydrylium ions N°+ with DMSO in MeCN vs. 
[DMSO]. 
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Table 3.7. Second-order rate constants for the reactions of benzhydrylium ions (N°+) with DMSO 
(O-Attack) in acetonitrile. 

N°+ X Y E 
a
 k2 /M

−1s−1
 

15+ OMe OMe 0.00 1.69 × 107 

14+ OMe OPh 0.61 5.00 × 107 

12+ OMe H 2.11 6.13 × 108 

(PhO,Me)+ b OPh Me 2.16 7.04 × 108 

(PhO,H)+ b OPh H 2.90 8.60 × 108 

11+ Me Me 3.63 2.63 × 109 

10+ Me H 4.59 3.50 × 109 

(F,H)+ b F H 5.60 4.78 × 109 

9+ H H 5.90 3.34 × 109 

8+ Cl Cl 6.02 4.79 × 109 

a Empirical electrophilicity parameter from Ref. [18] 

b 
PhO PhO F

(PhO,Me)+ (PhO,H)+ (F,H)+  
 

Figure 3.8 shows that the rate constants (Table 3.7) for the reactions of DMSO with 

benzhydrylium ions increase with the electrophilicity parameters of the benzhydrylium ions 

and become diffusion-controlled at E > 4. For that reason, all benzhydrylium ions N°
+ 

generated in DMSO from benzhydryl bromides (2,6,8,9,10)-Br of Table 3.1 are 

immediately trapped by the solvent DMSO. 
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Figure 3.8. Plot of lg k (second-order rate constants/M−1 s−1) for the reactions of DMSO with the 
benzhydrylium ions N°+ in MeCN at 20 °C vs. their electrophilicity parameters E. 
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It can thus be explained that trapping of (2,6,8,9,10)+ by amines (kN, Scheme 1) does not 

occur despite the higher nucleophilicity of the amines. From the linear left part of Figure 

3.8 (k2 < 8 × 108 M−1 s−1), one can derive the nucleophilicity parameters N = 9.75 and sN = 

0.74 for the O-reactivity of DMSO, showing that DMSO is considerably more nucleophilic 

than water and ordinary alcohols.38,39 With the assumption that the change of solvent 

polarity in MeCN/DMSO mixtures of different compositions does not affect the rate 

constants significantly, one can multiply the rate constants in Table 3.7 with 14.1 M, that is, 

the concentration of DMSO in 100 % DMSO to obtain the first-order rate constants of the 

decay in 100 % DMSO. From the plot of the first-order rate constants versus E, one derives 

the solvent nucleophilicity N1 = 11.3 for DMSO (N1 = N + (lg 14.1)/sN).40 Measurements of 

the nucleophilic reactivity of DMSO in neat DMSO are not possible with our equipment 

because the laser radiation at 266 nm, which is needed for the photoionization of the 

benzhydryl chlorides, is absorbed by DMSO.  

 

Calculation of Hypothetical Lifetimes of Benzhydrylium Ions in DMSO Solution in 

the Presence of Amines 

The N and sN parameters of the amines (Table 3.6 and from previously published 

data33,36,41) and N1 of DMSO (Figure 3.8) can now be combined with the electrophilicity 

parameters E of the benzhydrylium ions to calculate rate constants for the reactions of 

benzhydrylium ions with these nucleophiles by equation 3.2. Many of the resulting rate 

constants exceed the diffusion limit. In these cases, the values 1/k (s), which are listed in 

Table 3.8, have to be considered as hypothetical lifetimes.  
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Table 3.8. Calculated lifetimes τ (1/k /s) of benzhydrylium ions in DMSO and in 1 M Solutions of 
various amines in DMSO. 

 10+ 9+ 8+ 6+ 2+ 

Nucleophiles (N/s) (E = 4.50) a (E = 5.60) a (E = 5.59) a (E = 6.81)a (E = 7.92)a 

DMSO (N1 = 11.30/0.74) b 2 × 10−12 3 × 10−13 3 × 10−13 4 × 10−14 6 ×10−15 

2-amino-butan-1-ol (14.39/0.67) c 2 × 10−13 4 × 10−14 4 × 10−14 6 × 10−15 1 × 10−15 

benzylamine (15.59/0.63) c 1 × 10−13 3 × 10−14 3 × 10−14 4 × 10−15 8 × 10−16 

1-amino-propan-2-ol (15.47/0.65) c 1 × 10−13 2 × 10−14 2 × 10−14 3 × 10−15 6 × 10−16 

diethanolamine (15.51/0.70) c 1 × 10−14 2 × 10−15 2 × 10−15 2 × 10−16 4 × 10−17 

n-propylamine (15.70/0.64) d 1 × 10−13 2 × 10−14 2 × 10−14 4 × 10−15 8 × 10−16 

ethanolamine (16.07/0.61) c 3 × 10−13 6 × 10−14 6 × 10−14 1 × 10−14 2 × 10−15 

morpholine (16.96/0.67) d 4 × 10−15 8 × 10−16 8 × 10−16 1 × 10−16 2 × 10−17 

piperidine (17.19/0.71) d 3 × 10−16 7 × 10−17 7 × 10−17 9 × 10−18 1 × 10−18 

DABCO (18.80/0.70) e  4 × 10−17 8 × 10−18 8 × 10−18 1 × 10−18 2 × 10−19 

a
 E values taken from unpublished work by J. Ammer and C.Nolte b N1 from calculation of first-order rate 

constant with DMSO in DMSO (see text). c From Table 3.6 d N and sN parameters were taken from Ref. 
[36] N and sN parameters in acetonitrile from Ref. [41].  

 

The upper diagram of Figure 3.2 shows that, at a concentration of [morpholine] = 0.3 M, the 

observed pseudo-first-order rate constant is two times the magnitude of the intercept (kobs ≈ 

2k1); that is, at this concentration, the reaction of the methylsubstituted benzhydryl bromide 

(10-Br) with morpholine follows the SN1 and the SN2 mechanisms to equal extent. The 

calculated lifetime of 4 × 10−15 s for the reaction of the benzhydrylium ion 10+ with 

morpholine (Table 3.8) is shorter than a bond vibration (≈ 10−13 s). According to Jencks and 

Richard, this relationship implies that the SN2 mechanism will be enforced; that is, the 

benzhydrylium ion 10
+ cannot exist in an encounter complex with morpholine. From the 

relationship k2 (morpholine) ≈ 3k1 (Table 3.1), one can derive that nucleophilic assistance 

for breaking the C-Br bond ( SN2) is very weak and ionization (k1) may also occur in the 

absence of a morpholine molecule. Only at morpholine concentrations > 0.3 M the SN2 

process will override the SN1 process. If ionization occurs in the absence of a morpholine 

molecule (SN1), the intermediate p-methylsubstituted benzhydrylium ion (10
+) is rapidly 

trapped by the solvent DMSO (lifetime ≈ 2 × 10−12 s), and the diffusion-controlled reaction 

with morpholine cannot compete. 
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Piperidine (k2 ≈ 5k1) and DABCO (k2 ≈ 28k1) are stronger nucleophiles and, therefore, 

provide a stronger nucleophilic assistance for breaking the C-Br bond of 10-Br. As shown 

in Figure 3.2, now the SN2 process overrides the SN1 process already at low amine 

concentrations, and the calculated lifetimes of 4 × 10−16 and 5 × 10−17 s are in line with 

Jencks’ enforced concerted mechanism. Lifetimes τ > 10−14 s are calculated for the p-

methylbenzhydrylium ion 10
+ in 1 M solutions of the other amines, and Figure 3.2 shows 

that, in the reactions with benzylamine, 1-aminopropan-2-ol, and n-propylamine, the SN1 

mechanism generally dominates.  

For the unsubstituted benzhydrylium ion 9+, 9-times shorter lifetimes are calculated; as a 

consequence, the SN2 reactions gain more weight. Morpholine (k2 ≈ 13k1), piperidine 

(k2 ≈ 31k1), and DABCO (k2 ≈ 100k1) prefer the SN2 mechanism already at low amine 

concentrations (> 0.08-0.01 M), in accord with calculated lifetimes of τ < 10−15 s. No SN2 

contribution was found for the reaction of 9-Br with 2-aminobutan-1-ol (τ = 4 × 10−14 s). 

For the reactions of 9-Br with diethanolamine (τ = 2 × 10-15 s), ethanolamine (τ = 6 × 10−14 

s), benzylamine (τ = 3 × 10−14 s), 1-aminopropan-2-ol (τ = 2 × 10−14 s), and n-propylamine 

(τ = 2 × 10−14 s), lifetimes similar to the vibrational limit are calculated, and the SN2 

reactions overrated the SN1 process only at high amine concentrations as the lifetimes were 

calculated for molar solutions with an amine concentration of 1 M.  

Despite calculated lifetimes for the dichloro-substituted benzhydrylium ion 8
+ which 

closely resemble those of the parent compound 9+, Figure 3.2 shows that almost all amines 

prefer the SN2 process at concentrations > 0.2 M. Only 2-aminobutan-1-ol (τ = 4 × 10−14 s) 

allows the SN1 mechanism to dominate at amine concentrations < 0.4 M. In agreement with 

calculated lifetimes τ < 5 × 10−15 s, all reactions of amines with the CF3-substituted 

benzhydryl bromides 6-Br and 2-Br studied in this work preferentially follow the SN2 

process, and the intercepts of the correlations in Figure 3.2 are negligible compared with 

the pseudo-first-order rate constants kobs in the presence of amines. The very short lifetimes 

estimated for 6
+ and 2

+ in DMSO suggest that the first-order rate constants for the 

solvolyses of 6-Br and 2-Br in DMSO may not be due to SN1 reactions with formation of 

the carbocations 6
+ and 2

+ because the direct nucleophilic attack of DMSO at these 

benzhydryl bromides should be enforced. The positive deviation of 2-Br from the 

correlation of lg k1 versus Σσ+ in Figure 3.4 is in line with a significant nucleophilic solvent 
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participation by DMSO (k1′, SN2). The fact that the first-order rate constant for 6-Br 

matches the correlation with σ+ in Figure 3.4 implies that in this case nucleophilic solvent 

participation by DMSO cannot be large. 

 

 

3.4. Conclusion 

In their seminal 1984 paper,16d Richard and Jencks concluded that a reaction can proceed 

concurrently through stepwise, monomolecular and concerted, bimolecular reaction 

mechanisms 

when the intermediate has a long lifetime in the solvent, but no lifetime when it is in 

contact with an added nucleophilic agent. This situation has now been found when 

benzhydryl bromides N°-Br were treated with amines in DMSO. In several cases, first-

order rate constants k1 (s
−1) for the formation of the carbocations are of similar magnitude 

as the second-order rate constants k2 (M
−1 s−1) for the concerted SN2 reactions of the 

benzhydryl bromides with amines. For that reason, carbocations with short lifetimes were 

generated when amine molecules were not present in the vicinity, while in the same 

solution, concerted SN2 reactions were enforced when amine molecules were present. The 

relationship ([amine]k2)/k1 = [N°-NR2]/(([N°=O] +[N°-OH])) implies that the benzhydryl 

amines Ar2CHNRR′ are formed exclusively through the SN2 process and not through 

trapping of the intermediate carbocations by amines. As calculated from the nucleophilicity 

parameters N1 and sN of DMSO, the intermediate benzhydrylium ions Ar2CH+ (N°
+), 

formed by the SN1 process, are quantitatively trapped by DMSO to give the 

benzhydryloxysulfonium ions N°-OS+Me2, the precursors of the benzhydryl alcohols N°-

OH and the benzophenones N°=O. Because the change from SN1 to SN2 mechanisms was 

observed when the lifetimes of the carbocations in the presence of amines (1 M) were 

calculated to be approximately 10−14 s by equation (3.2), the E, N, and sN parameters proved 

to be suitable for predicting the preferred mechanism of the nucleophilic substitutions of 

benzhydryl bromides. So far, our analysis, based on Jencks’ lifetime criterion, did not 

include the role of the leaving groups. One can expect, however, that the SN1/SN2 ratio for a 

certain substrate R-X will also depend on the leaving group and will increase with 
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increasing nucleofugality of X. Further investigations will be presented in the following 

chapter. 

 

3.5. Experimental Section, Practical Part 

Only experiments conducted by the author of this thesis will be presented in this section. 

For the other experiments refer to the supporting information of Ref. [42]  

 

Reactions of Benzhydryl Bromides with Amines in DMSO 

Method 

The reactions of the benzhydryl bromides (N°-Br) with amines in DMSO were followed by 

conductometry (conductometers: Radiometer Analytical CDM 230 or Tacussel CD 810, Pt 

electrode: WTW LTA 1/NS). The temperature of the solutions during all kinetic studies 

was kept constant (± 0.1 °C) by using a circulating bath thermostats. 

A calibration was performed to test the dependance of the conductance on the concentration 

of liberated HBr. For this purpose, 0.25 mL of a 0.11 M solution of the rapidly reacting 

benzhydryl bromide 10-Br in acetonitrile was injected to a 0.34 M solution of piperidine in 

DMSO. After the conductivity had increased to a constant value another portion of the 

benzhydryl bromide 10-Br was added. As shown in Figure 3.9, the conductivity depended 

linearly on the concentration of added 10-Br, i. e., released HBr. 
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Figure 3.9. Initial concentration of the benzhydryl bromide [10-Br] vs. conductance at t∞. After the 
addition of a portion of 10-Br, the next conductivity value was taken when the conductivity 
remained constant for at least 300 s.  

The first-order rate constants kobs (s–1) were obtained by least squares fitting of the 

increasing conductance to a single-exponential equation (3.4)  
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dGrel/dt = Gmax[1−e(–kobst)] + C  (3.4) 

 

Second-order rate constants k2 (M
–1 s–1) were obtained from the slopes of linear plots of kobs 

vs. the concentrations of the amines [Nu]. 

 

4,4´-Dichlorobenzhydryl bromide (8-Br) 

20 °C, in DMSO, conductometry 

 

Table 3.9. Individual rate constants for the reaction [8-Br] in DMSO in the presence of 
n-propylamine. 

Nu [8-Br]o/M [Nu]/M kobs/s
–1 k2/M

 –1 s–1 

n-propylamine 3.42 × 10–4 0.00 1.36 × 10–4 2.19 × 10–3 

 5.93 × 10–5 3.20 × 10–1 1.01 × 10–3  

 5.51 × 10–5 6.10 × 10–1 1.63 × 10–3  

 7.21 × 10–5 1.09 2.72 × 10–3  

 7.18 × 10–5 1.36 3.30 × 10–3  

 7.10 × 10–5 1.52 3.42 × 10–3  

k
o

b
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Figure 3.9. kobs vs. [n-propylamine] correlations for the reactions of n-propylamine with 8-Br in 
DMSO. 

Temperature Dependent Kinetics of the Reaction of 4,4’-Dichlorobenzhydryl Bromide 

(8-Br) with Morpholine (in DMSO, conductometry) 

Kinetics 

For the measurements with [morpholine] = 0 mol L–1 an excess of at least 5 equiv 2,6-

lutidine was added in order to quench released HBr and avoid autocatalysis. The rates of 
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the investigated solvolysis reactions wererefound to be independent of the concentration of 

2,6-lutidine. For the measurements at 50 °C the k1 is the intercept of the plot [morpholine] 

vs. kobs 

Table 3.10. Individual rate constants for the reaction [8-Br] in DMSO in the presence of 
morpholine at various temperatures. 

T/°C [8-Br]o/M [morpholine]/M kobs/s
–1 k2/M

 –1 s–1 

20 3.42 × 10–4  0.00 1.36 × 10–4 a 9.50 × 10–3 

 4.85 × 10–4  4.60 × 10–2 5.60 × 10–4 a  

 4.81 × 10–4  9.03 × 10–2 1.00 × 10–3 a  

 4.86 × 10–4  1.36 × 10–1 1.42 × 10–3 a  

     

35 2.76 × 10–4 0.00  3.02 × 10–4  2.10 × 10–2 

 2.70 × 10–4 1.65 × 10–1 3.69 × 10–3   

 2.90 × 10–4 3.46 × 10–2  1.18 × 10–3   

 2.85 × 10–4 8.03 × 10–2 2.18 × 10–3   

 2.84 × 10–4 2.16 × 10–1 5.02 × 10–3   

     

50 2.83 × 10–4 5.98 × 10–3 1.60 × 10–3  4.20 × 10–2 

 2.67 × 10–4 1.06 × 10–2 1.87 × 10–3   

 2.74 × 10–4 1.51 × 10–2 2.22 × 10–3   

 2.73 × 10–4 5.47 × 10–2 1.25 × 10–3   

 2.89 × 10–4 6.37 × 10–2 4.26 × 10–3   

 2.88 × 10–4 1.18 × 10–1 6.56 × 10–3   

 2.49 × 10–4 3.58 × 10–1 1.64 × 10–2   

a taken from the data from Ref. [42] 
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Figure 3.10. kobs vs. [morpholine] correlations for the reactions of morpholine with 8-Br in DMSO 
at various temperatures. 

Determination of the Eyring and Arrhenius activation parameters 

Eyring and Arrhenius plots for the rate constants k1 and k2 of the solvolysis of 

4,4’-dichlorobenzhydryl bromide in DMSO (k1) and the reaction with morpholine (k2); both 

rate constants were derived from the linear fit of kobs vs. [morpholine]. 

Table 3.11. First- and second-order rate constants for the reaction of 8-Br in DMSO with 
morpholine at various temperatures.  

T/ C k1/s
–1 k2/M

–1s–1 

20 1.36 × 10–4 9.50 × 10–3 

35 3.85 × 10–4 2.10 × 10–2 

50 1.45 × 10–3 4.20 × 10–2 

 

The Eyring and Arrhenius parameters were determined by plotting of ln k vs. 1/T (T in K) 

resulting in the activation energies Ea as slope/R and lg A as intercepts × lg e. Plots of ln 

(k/T) vs. 1/T (T in K) yielded the activation enthalpies ∆H
‡ as −slope/R and activation 

entropies ∆S
‡ as (intercept − ln(kB/h))/R. 
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Figure 3.10. Eyring plot for k1. 
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Figure 3.11. Arrhenius plot for k1. 
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Figure 3.12. Eyring plot for k1. 
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Figure 3.13. Arrhenius plot for k2. 

 

Table 3.12. Eyring and Arrhenius activation parameters for the rate constants k1 and k2 of the 
solvolysis of 4,4’-dichlorobenzhydryl bromide (8-Br) in DMSO (k1) and the reaction with 
morpholine (k2). 

 for k1 
 for k2 

∆H
‡/kJ mol–1 59.4 ± 6.1 36.5 ± 0.6 

∆S
‡/J mol–1 K–1 –116.7 ± 19.8 –159.0 ± 1.8 

Ea/kJ mol–1 62.0 ± 6.1 39.0 ± 0.5 

lg A 7.2 ± 1.0 5.0 ± 0.1 

 

Product study 

Synthesis of Compounds for GC Calibrations 

General Procedure A (GP A): A solution of the amine (20 equiv) in DMSO (10 mL) was 

mixed with the benzhydryl bromide (1 equiv.). The solution was stirred at room 

temperature for 12 h, then poured on water (100 mL) and extracted with Et2O (3 × 50 mL). 

The combined organic phases were washed with water (25 mL) and dried with MgSO4. 

Evaporation of the solvent in the vacuum gave the crude product which was purified as 

described below. 

General Procedure B (GP B): A solution of the benzhydryl bromide in CH3CN (10 mL) 

was prepared. After addition of amine (2.5 equiv), the solution was stirred at room 

temperature for 12 h, then poured on water (100 mL) and extracted with Et2O (3 × 50 mL). 

The combined organic phases were washed with water (25 mL) and dried with MgSO4. 
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Evaporation of the solvent in the vacuum gave the crude product which was purified as 

described below. 

 

(4,4’-Dichlorobenzhydryl)-propyl-amine (GP A) was obtained from 4,4’-

dichlorobenzhydryl bromide (3.0 g, 9.5 mmol) and n-propylamine (11.2 g, 189 mmol). The 

crude product was distilled in the vacuum (127-137 °C/1 × 10–3 mbar): colorless oil (1.6 g, 

57 %).  
1H NMR (300 MHz, CDCl3): δ = 7.30 (d, J = 8.7 Hz, 4 H, ArH), 7.24 (d, J = 8.7 Hz, 4 H, 

ArH), 4.74 (s, 1 H, CHN), 2.49 (t, J = 6.9 Hz, 2 H), 1.51 (sext, J = 7.2 Hz, 2 H), 1.47 (br s, 

1 H, NH), 0.90 (t, J = 7.2 Hz, 3 H);  
13C NMR (75.5 MHz, CDCl3): δ = 142.5, 132.8, 128.7, 128.5, 66.3, 50.0, 23.3, 11.8;  

MS (EI): m/z = 295, 293, 235; HR-MS (EI):  

Calcd m/z for C16H17
35Cl2N: 293.0740, Found: 293.0732. 

 

N-(4,4’-Dichlorobenzhydryl)-piperidine (GP A) was obtained from 4,4’-

dichlorobenzhydryl bromide (3.5 g, 11 mmol) and piperidine (18.9 g, 221 mmol) after 

purification of the crude product by crystallization from methanol: colorless crystals (3.0 g, 

85 %).  
1H NMR (300 MHz, CDCl3): δ = 7.28 (d, J = 8.5 Hz, 4 H, ArH), 7.21 (d, J = 8.6 Hz, 4 H, 

ArH), 4.18 (s, 1 H), 2.26-2.25 (m, 4 H), 1.57–1.50 (m, 4 H), 1.44–1.38 (m, 2 H);  
13C NMR (75.5 MHz, CDCl3): δ = 141.2, 132.5, 129.2, 128.6, 75.1, 52.9, 26.2, 24.5.  

MS (EI): m/z = 321, 319, 235;  

HR-MS (EI): Calcd. m/z for: C18H19
35Cl2N: 319.0895, Found: 319.0885. 

 

N-(4,4’-Dichlorbenzhydryl)-morpholine (GP A) was obtained from 4,4’-

dichlorobenzhydryl bromide (2.5 g, 7.9 mmol) and morpholine (13.8 g, 158 mmol) after 

purification of the crude product by crystallization from methanol: colorless crystals (2.17 

g, 85 %).  
1H NMR (300 MHz, CDCl3): δ 7.32 (d, J = 8.4 Hz, 4 H, ArH), 7.24 (d, J = 8.7 Hz, 4 H, 

ArH), 4.16 (s, 1 H), 3.71–3.68 (m, 4 H), 2.36–2.33 (m, 4 H);  
13C NMR (75.5 MHz, CDCl3): δ = 140.4, 133.0, 129.1, 128.9, 77.1, 67.1, 52.5;  
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MS (EI): m/z = 322, 323;  

HR-MS (EI): Calcd m/z for for C17H17
35Cl2NO: 321.0687, Found: 321.0680. 

 

N-Benzhydryl-propyl-amine (GP B) was obtained from benzhydryl bromide (3.0 g, 12 

mmol) and n-propylamine (1.8 g, 30 mmol). The crude product was distilled in the vacuum 

(150-152 °C/2.1 × 10–2 mbar): colorless oil (1.85 g, 68 %).  
1H NMR (300 MHz, CDCl3): δ = 7.39 (d, J = 7.4 Hz, 4 H), 7.27 (t, J = 7.2 Hz, 4 H), 7.17 (t, 

J = 7.0 Hz, 2 H), 4.80 (s, 1 H), 2.53 (t, J = 7.0 Hz, 2 H), 1.52 (sext, J = 7.3 Hz, 2 H), 1.46 

(br s, 1 H, NH), 0.90 (s, J = 7.2 Hz, 3 H);  
13C NMR (75.5 MHZ, CDCl3): δ = 144.4, 128.4, 127.2, 126.8, 67.5, 50.2, 23.3, 11.8;  

MS (EI): m/z = 225, 196; HR-MS (EI): Calcd m/z for C16H19N: 225.1518, Found: 

225.1504. 

 

N-Benzhydryl-piperidine (GP B) was obtained from benzhydryl bromide (2.5 g, 10 

mmol) and piperidine (2.2 g, 26 mmol) after purification of the crude product by 

crystallization from methanol: colorless crystals (1.6 g, 64 %).  
1H NMR (300 MHz, CDCl3): δ = 7.39 (d, JHH = 7.3 Hz, 4 H), 7.23 (t, J = 7.3 Hz, 4 H), 7.13 

(t, J = 7.2 Hz, 2 H), 4.22 (s, 1 H), 2.35–2.28 (m, 4 H), 1.59-1.51 (m, 4 H), 1.45–1.37 (m, 2 

H);  
13C NMR (75.5 MHz, CDCl3): δ = 143.2, 128.3, 128.0, 126.6, 76.7, 53.1, 26.3, 24.7;  

MS (EI): m/z = 252, 251, 174,167;  

HR-MS (EI): Calcd m/z for C18H21N: 251.1674, Found: 251.1663. 

 

N-Benzhydryl-morpholine (GP B) was obtained from benzhydryl bromide (2.0 g, 8.1 

mmol) and morpholine (1.8 g, 21 mmol) after purification of the crude product by 

crystallization from methanol: colorless crystals (1.6 g, 78 %).  
1H NMR (300 MHz, CDCl3): δ ==7.41 (d, J = 7.2 Hz, 4 H), 7.24 (t, J = 7.2 Hz, 4 H), 7.14 

(t, J = 7.3 Hz, 2 H), 4.80 (s, 1 H), 3.70–3.67 (m, 4 H), 2.38–2.35 ppm (m, 4 H);  
13C NMR (75.5 MHz, CDCl3): δ = 142.3, 128.5, 127.9, 126.9, 76.6, 67.1, 52.6 ppm;  

MS (EI): m/z = 254, 253, 176, 167;  

HR-MS (EI): Calcd m/z for C16H19N: 253.1467, Found: 253.1461. 
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N-(4-Methylbenzhydryl)-propyl-amine (GP B) was obtained from 4-methylbenzhydryl 

bromide (1.5 g (5.7 mmol) and n-propylamine (0.85 g, 14 mmol) after purification of the 

crude product by chromatography (silica gel, 10/1 → 5/1 n-pentane/ethyl acetate, v/v): 

colorless oil (0.70 g, 51 %).  
1H NMR (300 MHz, CDCl3): δ = 7.38 (d, J = 7.4 Hz, 2 H), 7.28-7.14 (m, 5 H), 7.08 (d, J = 

7.8 Hz, 2 H), 4.77 (s, 1 H), 2.53 (t, J = 7.2 Hz, 2 H), 2.28 (s, 3 H, CH3), 1.52 (sext, J = 7.2 

Hz, 2 H), 1.46 (s, 1 H, NH), 0.90 (t, J = 7.2 Hz, 3 H);  
13C NMR (75.5 MHz, CDCl3): δ = 144.7, 141.6, 136.5 , 129.2, 128.5, 127.3, 127.2, 126.8, 

67.3, 50.3, 23.4, 21.1, 11.9;  

MS (EI): m/z = 240, 239, 181;  

HR-MS (EI): Calcd. m/z for C17H21N: 239.1674, Found: 239.1670. 

 

N-(4-Methylbenzhydryl)-piperidine (GP B) was obtained from 4-methylbenzhydryl 

bromide (1.5 g, 5.7 mmol) and piperidine (1.2 g, 14 mmol) after purification of the crude 

product by chromatography (silica gel, 15/1 n-pentane/ethyl acetate, v/v): colorless oil 

(0.79 g, 52 %).  
1H NMR (300 MHz, CDCl3): δ = 7.46 (d, J = 7.5 Hz, 2 H), 7.36–7.18 (m, 5 H), 7.13 (d, J = 

7.8 Hz, 2 H), 4.26 (s, 1 H), 2.38 (br t, 4 H), 2.34 (br s, 3 H), 1.66–1.59 (m, 4 H), 1.52-1.45 

ppm (m, 2 H);  
13C NMR (75.5 MHz, CDCl3): δ 143.5, 140.2, 136.1, 129.0, 128.3, 127.9, 126.5, 76.4, 53.1, 

26.3, 24.7, 21.0 ppm;  

MS (EI): m/z = 266, 265, 181;  

HR-MS (EI): Calcd. m/z for C19H23N: 265.1831, Found: 265.1828. 

 

N-(4-Methylbenzhydryl)-morpholine (GP B) was obtained from 4-methylbenzhydryl 

bromide (1.5 g, 5.7 mmol) and morpholine (1.3 g, 15 mmol) after purification of the crude 

product by chromatography (silica gel, 20/1 n-pentane/ethyl acetate, v/v): colorless oil (1.1 

g, 72 %).  
1H NMR (300 MHz, CDCl3): δ = 7.41 (d, J = 7.5 Hz, 2 H), 7.40–7.12 (m, 5 H), 7.07 (d, J = 

7.8 Hz, 2 H), 4.15 (s, 1 H), 3.69 (br t, J = 4.6 Hz, 4 H), 2.37 (br t, J = 4.2 Hz, 4 H), 2.26 

ppm (s, 3 H);  
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13C NMR (75.5 MHz, CDCl3): δ = 142.5, 139.3, 136.5, 129.2, 128.5, 127.8, 127.8, 126.9, 

76.4, 67.1, 52.6, 21.0 ppm. 

 

Benzhydryl Methyl Ether was synthesized in analogy to a procedure by Olah and 

Welch.43 Benzhydrol (10 g) was dissolved in methanol (120 mL). After addition of a 

catalytic amount of trifluoromethansulfonic acid (approximately 0.5 mL) the mixture was 

heated to reflux for 2.5 h. Then the solvent was removed under reduced pressure. The 

resulting oil was poured on water (100 mL) and a spatula tip of K2CO3 was added. The 

mixture was extracted with 1/1 n-pentane/diethylether (3 × 50 mL). The combined organic 

phases were dried over MgSO4. Evaporation of the solvent gave the crude product as a 

colorless oil. For purification the product was distilled from sodium in the vacuum (83-84 

°C/1 × 10–3 mbar) to give a colorless oil (7.8 g, 72 %). 1H NMR (300 MHz, CDCl3): δ = 

7.34-7.16 (m, 10 H, ArH), 5.20 (s, 1 H, CHOMe), 3.33 (s, 3 H, Me);  
13C NMR (75.5 MHz, CDCl3): δ = 142.0, 128.3, 126.8, 127.3, 85.3, 56.8;  

MS (EI): m/z = 199, 198 [M+], 167;  

HR-MS (EI): Calcd. m/z for C14H14O: 198.1045, Found: 198.1056. 
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Method 

The product studies were carried out for several representative systems to examine the 

ratios of the products formed during the reactions of benzhydryl bromides (1-X-Y) with 0.2 

M solutions of amines in DMSO. 

The concentrations of the components in the reaction mixtures were determined by GC 

with a flame ionization detector (FID) using n-hexadecane (C16) as an internal standard. 

The ratio of the peak area of a compound (ACpd) to the peak area of a given standard (AStd), 

is not equal to the ratio of the molar amount of the compound [Cpd] to the molar amount of 

the standard [Std]. Therefore, the specific sensitivity of the FID for different molecules was 

accounted for by defining relative molecular response (RMR) factors (eq. 3.7) for each of 

the possible products which were synthesized independently. 

 

Std

Cpd

A

A
RMR

Std

Cpd
=

][
][

  (3.7) 

 

The retention times (tR in min) and the RMR values for each product with respect to 

hexadecane (C16 = Std) were determined from the peak areas in chromatograms with 

known [Cpd] and [Std] (eq. 3.8).  

 

Cpd

Std

AStd

ACpd
RMR

][
][

=   (3.8) 

 

Thus, the product concentrations tabulated were calculated according to equation 3.6 in 

which ACpd and AStd are the peak areas of the compound and the standard C16, respectively, 

and [Std] is the known concentration of the internal standard C16. 
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Standardization  

As defined in equation 3.8 the relative molecular response (RMR) factors of benzophenone, 

benzhydrol, and several representative benzhydryl amines was determined by GC with 

respect to n-hexadecane (C16) used as an internal standard. 

 

Table 3.13. Determination of the relative molecular response factors (RMR) for 10-OH, 10=O and 
10=NR2.  

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.46 × 10−3 18252107  5.20  

4-methylbenzhydrol 6.21 × 10−3 59502760 1.31 9.84 1.29 a 

      

C16 1.46 × 10−3 17548737    

4-methylbenzhydrol 1.24 × 10−2 116746533 1.28   

      

C16 1.46 × 10−3 17516347    

4-methylbenzhydrol  1.86 × 10−2 173877367 1.29   

      

C16 1.46 × 10−3 17991280    

4-methylbenzophenone  5.72 × 10−3 55033793 1.28 9.96 1.29 a 

      

C16 1.46 × 10−3 18125710    

4-methylbenzophenone  1.14 × 10−2 110819800 1.29   

      

C16 1.46 × 10−3 17433973    

4-methylbenzophenone  1.72 × 10−2 159565800 1.29   

C16 1.46 × 10−3 18392697  5.22  

N-(4-methylbenzhydryl)morpholine  1.85 × 10−3 22421527 1.04 13.1 1.07 

      

a In the case of 4-methylbenzophenone (10=O) and 4-methylbenzhydrol (10-OH) the retention time and 
RMR value were almost identical. 
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Table 3.13. (continued)  

 c/mol L–1 average A RMR tR/min average RMR 

C16 1.46 × 10−3 17689997    

N-(4-methylbenzhydryl)morpholine 7.41 × 10−3 82840557 1.09   

      

C16 1.46 × 10−3 17577083    

N-(4-methylbenzhydryl)morpholine 1.48 × 10−2 159630267 1.12   

      

C16 1.46 × 10−3 17779833    

N-(4-methylbenzhydryl)morpholine 3.70 × 10−3 44007437 1.03   

C16 1.46 × 10−3 18424133  5.22  

N-(4-methylbenzhydryl)-propyl-amine 2.69 × 10−3 33041727 1.03 10.14 1.07 

      

C16 1.46 × 10−3 17794760    

N-(4-methylbenzhydryl)-propyl-amine 5.38 × 10−3 61645867 1.07   

      

C16 1.46 × 10−3 18698703    

N-(4-methylbenzhydryl)-propyl-amine 1.08 × 10−2 127503300 1.08   

      

C16 1.46 × 10−3 18647680    

N-(4-methylbenzhydryl)-propyl-amine 1.61 × 10−2 185498700 1.11   
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Table 3.13. (continued) 

 c/mol L–1 average A RMR tR/min average RMR 

C16 1.46 × 10−3 17841197  5.22  

N-(4-methylbenzhydryl)piperidine 1.78 × 10−3 22589587 0.96 12.24 1.06 

      

C16 1.46 × 10−3 18263093    

N-(4-methylbenzhydryl)piperidine 3.70 × 10−3 40523610 1.15   

      

C16 1.46 × 10−3 18352357    

N-(4-methylbenzhydryl)piperidine 7.41 × 10−3 88217353 1.06   

      

C16 1.46 × 10−3 17164033    

N-(4-methylbenzhydryl)piperidine 1.48 × 10−2 165438033 1.06   

 

Table 3.14. Determination of the relative molecular response factors (RMR) for 9-OH, 9=O and 
9=NR2. 

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.08 × 10−3 12616997  5.18  

benzhydrol 5.13 × 10−4 5118717 1.17 8.34 1.17 

benzophenone 2.36 × 10−3 21475193 1.28 7.98 1.34 

N-benzhydrylpiperidine 1.35 × 10−3 18003217 0.88 11.12 0.90 

      

C16  1.08 × 10−3 12787997    

benzhydrol 1.03 × 10−3 10627827 1.14   

benzophenone 5.90 × 10−4 5126065 1.36   

N-benzhydrylpiperidine 4.51 × 10−4 5675417 0.94   
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Table 3.14. (continued) 

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.08 × 10−3 13296300    

benzhydrol 1.54 × 10−3 16139817 1.17   

benzophenone 1.18 × 10−3 10621647 1.37   

N-benzhydrylpiperidine 9.02 × 10−4 12755333 0.87   

      

C16  1.08 × 10−3 13162683    

benzhydrol 2.56 × 10−4 2615610 1.19   

benzophenone 1.89 × 10−3 17007627 1.35   

C16  1.09 × 10−3 12668245  5.18  

N-benzhydryl-propyl-amine 7.55 × 10−3 76862430 1.14 9.12 1.11 

      

C16  1.09 × 10−3 13187900    

N-benzhydryl-propyl-amine 1.13 × 10−2 117953400 1.16   

      

C16  1.09 × 10−3 13471903    

N-benzhydryl-propyl-amine 5.66 × 10−3 63520567 1.10   

      

C16  1.09 × 10−3 13104907    

N-benzhydryl-propyl-amine 1.89 × 10−3 22196133 1.02   

C16  1.09 × 10−3 13028710  5.18  

N-benzhydrylmorpholine 1.47 × 10−3 16938615 1.04 12.00 1.04 

      

C16 1.09 × 10−3 13394560    

N-benzhydrylmorpholine 2.21 × 10−3 25147613 1.08   
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Table 3.14. (continued) 

 c/mol L–1 average A RMR tR/min average RMR 

C16 1.09 × 10−3 12996903    

N-benzhydrylmorpholine 1.10 × 10−3 13195633 1.00   

      

C16 1.09 × 10−3 13028693    

N-benzhydrylmorpholine 5.15 × 10−3 59620750 1.03   

C16  1.16 × 10−3 14734243  5.22  

benzhydryl methyl ether 4.64 × 10−3 59440763 0.99 6.94 1.02 

      

C16  1.16 × 10−3 15104223    

benzhydryl methyl ether 9.27 × 10−3 119391333 1.01   

      

C16  1.16 × 10−3 14696190    

benzhydryl methyl ether 1.39 × 10−2 172305233 1.02   

      

C16  1.16 × 10−3 15661193    

benzhydryl methyl ether 1.85 × 10−2 239973200 1.04   

 

Table 3.15. Determination of the relative molecular response factors (RMR) for 8-OH, 8=O and 
8=NR2. 

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.13 × 10− 13573363  5.18  

4,4’-dichlorobenzhydrol 1.23 × 10−3 9333182 1.59 14.38 1.52 

4,4’-dichlorobenzophenone 2.49 × 10−3 19730167 1.52 12.68 1.45 
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Table 3.15. (continued) 

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.13 × 10−3 13929460    

4,4’-dichlorobenzhydrol 2.47 × 10−3 20626030 1.48   

4,4’-dichlorobenzophenone 4.99 × 10−3 42420953 1.45   

      

C16  1.13 × 10−3 13556390    

4,4’-dichlorobenzhydrol 4.94 × 10−3 40377470 1.47   

4,4’-dichlorobenzophenone 1.25 × 10−3 10769563 1.39   

      

C16  1.13 × 10−3 12544883    

4,4’-dichlorobenzhydrol 9.88 × 10−3 74436677 1.48   

4,4’-dichlorobenzophenone 4.99 × 10−3 39232363 1.42   

      

C16  1.13 × 10−3 13118177    

4,4’-dichlorobenzhydrol 7.41 × 10−3 55738440 1.55   

4,4’-dichlorobenzophenone 9.98 × 10−3 78744740 1.48   

      

C16  1.13 × 10−3 12947747    

4,4’-dichlorobenzhydrol 4.94 × 10−3 37237693 1.52   

4,4’-dichlorobenzophenone 7.48 × 10−3 59802570 1.44   

C16  1.08 × 10−3 12483880  5.18  

N-(4,4’-dichlorobenzhydryl)morpholine 1.34 × 10−3 13539817 0.94 17.14 0.96 

      

C16  1.08 × 10−3 13943160    

N-(4,4’-dichlorobenzhydryl)morpholine 1.78 × 10−3 19422840 0.99   
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Table 3.15. (continued) 

 c/mol L–1 average A RMR tR/min average RMR 

C16  1.08 × 10−3 12387687    

N-(4,4’-dichlorobenzhydryl)morpholine 1.51 × 10−3 15393007 0.90   

      

C16  1.08 × 10−3 13861360    

N-(4,4’-dichlorobenzhydryl)morpholine 8.91 × 10−4 9667222 1.00   

C16  9.30 × 10−4 13933403  5.20  

N-(4,4’-dichlorobenzhydryl)-propylamine 7.44 × 10−3 79286523 1.41 14.48 1.41 

      

C16  9.30 × 10−4 13766470    

N-(4,4’-dichlorobenzhydryl)-propylamine 1.12 × 10−2 113108667 1.46   

      

C16  9.30 × 10−4 13741350    

N-(4,4’-dichlorobenzhydryl)-propylamine 3.72 × 10−3 40173987 1.37   

C16  1.16 × 10−3 14842043  5.18  

N-(4,4’-dichlorobenzhydryl)piperidine 6.09 × 10−3 70046967 1.11 16.52 1.14 

      

C16  1.16 × 10−3 17969947    

N-(4,4’-dichlorobenzhydryl)piperidine 2.03 × 10−3 28178667 1.12   

      

C16  1.16 × 10−3 15486927    

N-(4,4’-dichlorobenzhydryl)piperidine 4.06 × 10−3 48926543 1.11   

      

C16  1.16 × 10−3 14583050    

N-(4,4’-dichlorobenzhydryl)piperidine 3.05 × 10−3 31454863 1.22   
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Analysis of Product Mixtures 

A 0.2 M solution of the particular amine in DMSO (25 mL) was prepared in a volumetric 

flask and kept at 20 °C. Then this solution was added to the particular benzhydryl bromide 

(0.5 mmol) and stirred for 24 h. After addition of water (50 mL) the solution was extracted 

with Et2O (3 × 50 mL). The combined organic phases were dried (MgSO4). After 

evaporation of the solvent the remaining oil was dissolved in acetone (ca. 20 mL) and 

transferred into a 25 mL-volumetric flask. Then a defined amount of an acetone stock 

solution containing the hexadecane standard (C16) was added, to give a C16 concentration 

of about 1 mM. The volumetric flask was then filled up to 25 mL with acetone, and aliquots 

were subjected to GC analysis (tR = retention time; peak areas are the average of 3 separate 

GC runs for each sample). Concentrations of N°-OH, N°=O and N°=NR2 were calculated 

by using equation 3.6 and refer to the known concentration of the standard (C16). 

Table 3.16. Product analysis for the reaction of 10-Br in the presence of 0.2 M of amine.  

Br 0.2 M amine
DMSO

20°C

N
R R'

10-NR2

O

10=O

OH

+ +

10-Br 10-OH  

RR’NH compound tR/min peak area A RMR c/mol L–1 [10-NR2] 

/([10=O]+[10-OH]) 

piperidine C16  5.20 14371033  1.16 × 10–3  

 10-OH + 10=O 9.84/9.96 67721127 1.29 7.08 × 10–3  

 10-NR2 12.56 97602543 1.07 8.46 × 10–3  

      1.19 

morpholine C16  5.20 14378403  1.11 × 10–3  

 10-OH + 10=O 9.84/9.96 99732157 1.29 9.96 × 10–3  

 10-NR2 13.32 65561753 1.07 5.43 × 10–3  

      0.54 

n-PrNH2 C16  5.20 13121633  1.05 × 10–3  

 10-OH + 10=O 9.84/9.96 156201167 1.29 1.61 × 10–2  

 10-NR2 10.32 34093090 1.07 2.92 × 10–3  

      0.18 
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Table 3.17. Product analysis for the reaction of 9-Br in the presence of 0.2 M of amine.  

Br 0.2 M amine
DMSO

20°C

N
R R'

9-NR2

O

9=O

OH

+ +

9-Br 9-OH  

RR’NH compound tR/min peak area A RMR c/mol L–1 [9-NR2] 

/([9=O]+[9-OH]) 

piperidine C16  5.20 14843277  1.16 × 10–3  

 9-OH 8.34 1263792 1.17 1.16 × 10–4  

 9=O 7.98 14133813 1.34 1.49 × 10–3  

 9-NR2 11.6 198575867 0.90 1.40 × 10–2  

      8.71 

morpholine C16  5.20 13262553  1.04 × 10–3  

 9-OH 8.34 5840434 1.17 5.34 × 10–4  

 9=O 7.98 30709390 1.34 3.22 × 10–3  

 9-NR2 12.48 172224433 1.04 1.40 × 10–2  

      3.72 

n-PrNH2 C16  5.20 13528813  1.04 × 10–3  

 9-OH 8.34 36709970 1.17 3.32 × 10–3  

 9=O 7.98 51315043 1.34 5.33 × 10–3  

 9-NR2 9.12 113360600 1.11 9.67 × 10–3  

      1.12 
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Table 3.18. Product analysis for the reaction of 9-Br in the presence of 0.2 M 2,6-Lutidine. 

Br 0.2 M 2,6-lutidine
DMSO

20°C

O

9=O

OH

+

9-Br 9-OH  

rxn time/min compound tR/min peak area A RMR c/mol L–1 [9=O]/[9-OH] 

60 C16  5.20 13253270  1.13 × 10–3  

 9=O 7.98 37614477 1.34 4.24 × 10–3  

 9-OH 8.34 112488067 1.17 1.11 × 10–2 0.38 

120 C16  5.20 12744147  1.13 × 10–3  

 9=O 7.98 74312043 1.34 8.71 × 10–3  

 9-OH 8.34 77821767 1.17 7.95 × 10–3 1.10 

180 C16  5.20 13204473  1.13 × 10–3  

 9=O 7.98 92219953 1.34 1.04 × 10–2  

 9-OH 8.34 63360827 1.17 6.25 × 10–3 1.67 

300 C16  5.20 13204473  1.13 × 10–3  

 9=O 7.98 92219953 1.34 1.26 × 10–2  

 9-OH 8.34 63360827 1.17 3.75 × 10–3 3.36 

360 C16  5.20 13204473  1.13 × 10–3  

 9=O 7.98 92219953 1.34 1.09 × 10–2  

 9-OH 8.34 63360827 1.17 2.76 × 10–3 3.95 

 

In order to prove the intermediacy of the oxysulfonium ion N°-OS+Me2, the reaction of 9-

Br in DMSO containing 0.2 M 2,6-Lutidin was quenched with methanol after 6.5 h. Thus, 

100 mL methanol were added and after stirring for 24 h the solution was worked-up as 

described above. 
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Table 3.18. (continued) 

rxn time/min compound tR/min peak area A RMR c/mol L–1 [9=O]/ 

([9-OH]+[ 9-OMe]) 

390 C16  5.20 13253270  1.13 × 10–3  

 9=O 7.98 37614477 1.34 1.85 × 10–2  

 9-OH 8.34 112488067 1.17 1.64 × 10–3  

 9-OMe 6.42 29892213 1.02 4.27 × 10–3 3.13 

 

Table 3.19. Product analysis for the reaction of 8-Br in the presence of 0.2 M of amine. 

Cl

Br 0.2 M amine
DMSO

Cl

N
R R'

8-NR2

Cl

O

8=O

Cl

OH

+ +
Cl Cl Cl Cl

8-Br 8-OH  

RR’NH T/°C compound tR/min peak area A RMR c/mol L–1 [8-NR2] 

/([8=O]+[8-OH]) 

piperidine 20 C16  5.20 14845483  1.16 × 10–3  

  8-OH 14.38 1001725 1.52 1.19 × 10–4  

  8=O 12.68 2615282 1.45 2.98 × 10–4  

  8-NR2 16.52 172146633 1.14 1.54 × 10–2  

       36.7 

        

morpholine 20 C16  5.20 12987620  1.04 × 10–3  

  8-OH 14.38 3263352 1.52 3.95 × 10–4  

  8=O 12.68 4546383 1.45 5.26 × 10–4  

  8-NR2 17.62 132638233 0.96 1.01 × 10–2  

       11.0 

        

 35 C16  5.20 12923807  1.13 × 10–3  

  8-OH 14.38 1700768 1.52 2.26 × 10–4  

  8=O 12.68 9956992 1.45 1.27 × 10–3  

  8-NR2 17.62 126759467 0.96 1.07 × 10–2  

       7.13 
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Table 3.19. (continued) 

RR’NH T/°C compound tR/min peak area A RMR c/mol L–1 [8-NR2] 

/([8=O]+[8-OH]) 

 50 C16  5.20 13748827  1.13 × 10–3  

  8-OH 14.38 1862981 1.52 2.33 × 10–4  

  8=O 12.68 15290797 1.45 1.83 × 10–3  

  8-NR2 17.62 107793400 0.96 8.52 × 10–3  

       4.13 
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4. Leaving Group Dependence of the SN1/SN2 Ratio 

4.1. Introduction  

In the preceding chapter the change from SN1 to SN2 mechanism has only been investigated 

for benzhydryl bromides. In this chapter, the methodology of the previous chapter will be 

used to investigate the change from SN1 to SN2 mechanism for the meta-fluorinated 

benzhydryl bromides (1,3,4,7)-Br and tosylates (1,3,4,7)-OTs introduced in Chapter 1. 

Scheme 4.1. Benzhydryl derivatives employed in this study; Ef parameters are given in parentheses.  
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According to the sum of σ parameters1 and Ef parameters,2 the tetrakis(meta-fluoro)-

substituted benzhydrylium ion (1+) is more electron-deficient than the bis-(trifluoromethyl)-

substituted cation 2+ used in chapter 3, whereas 3+, 4+ and 7+ are less stabilized than 8+
 but 

better stabilized than 2
+.  

 

4.2. Results and Discussion 

As described for several benzhydryl bromides in the preceding chapter, dissolution of 

compounds (1,3,4,7)-X (X = Br or OTs) in solutions of amines in DMSO led to a 

monoexponential increase of the conductance due to the generation of HBr or HOTs, which 

reacted with excess amine to give the corresponding ammonium salts. The rates of these 

reactions can be followed by conductometry (conductometers: Tacussel CD 810 or 
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Radiometer Analytical CDM 230, Pt electrode: WTW LTA 1/NS). The temperature of the 

solutions was kept constant (20.0 ± 0.1 °C) by using a circulating bath thermostat. 

Fitting the time-dependent increase of conductance to the exponential function 4.1 yielded 

the observed rate constants kobs  

 

dG/dt = Gmax[1 − e(−kobst)] + C  (4.1) 

 

As in the examples described in Chapter 3, plots of kobs versus the concentrations of the 

amines were linear (Figure 4.1) and almost went through the origin indicating that the SN1 

mechanism is neglible when amines are present. However, very small ionization rate 

constants (k1) for the reactions of benzhydryl bromides have also been measured in the 

absence of nucleophilic amines. In order to prevent autocatalysis by generated HBr the 

rates of these reactions have been measured in the presence of 20 eq. of 2,6-lutidine. As 

expressed by equation 4.2, the observed rate constants kobs can be regarded as the sum of a 

very small amine-independent term k1 and an amine-dependent term k2[amine], which are 

summarized in Table 4.1 and 4.2.  

 

kobs = k1 + k2[amine]  (4.2) 
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Figure 4.1. Plots of kobs (s−1) of the reactions of different benzhydryl bromides with amines in 
DMSO at 20 °C vs. the concentrations of the amines.  
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Figure 4.1. (continued) 

 

Table 4.1. Rate constants (at 20° C) for the solvolyses of the benzhydryl bromides in DMSO (s−1) 
and for their reactions with amines in DMSO (M−1s−1). 

N°-Br DMSO (k1)
 a DABCO (k2) piperidine (k2) morpholine (k2) n-PrNH2 (k2) 

1-Br 9.62 × 10−7 2.69 × 10−3 4.24 × 10−3 1.12 × 10−3 - 

2-Br b 2.76 × 10-6 - 6.66 × 10-3 2.17 × 10−3 1.17 × 10−3 

3-Br 2.84 × 10−6 5.33 × 10−3 5.34 × 10−3 1.79 × 10−3 8.99 × 10−4 

4-Br 5.92 × 10−6 9.23 × 10−3 6.85 × 10−3 2.57 × 10−3 9.40 × 10−4 

6-Br b 1.25 × 10−5 - 9.36 × 10−3 3.29 × 10−3 1.13 × 10−3 

7-Br 3.37 × 10−5 1.87 × 10−2 1.02 × 10−2 4.18 × 10−3 1.25 × 10−3 

8-Br b 1.36 × 10-4  2.33 × 10−2 9.51 × 10−3 2.19 × 10−3 

9-Br b 5.45 × 10-4 5.45 × 10−2 1.69 × 10−2 7.30 × 10−3 1.33 × 10−3 

10-Br b 6.71 × 10−3 1.92 × 10−1 3.57 × 10−2 2.16 × 10−2 3.98 × 10−3 

a determined independently in the presence of 20 eq. of 2,6-lutidine 
b data taken from Chapter 3 

 

First-order rate constants (k1) from this and the preceding chapter were used for the 

Hammett plot in Figure 4.2.  
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Figure 4.2. Plot of lg k1 of the solvolysis reactions of the benzhydryl bromides in DMSO vs. 
Hammett´s substituent constants σ+ (σm for 1,3,4,7-Br)1; benzhydryl bromides with a Σσ > 0.68 were 
not used for the correlation.  

The first-order rate constants (k1) for the solvolyses of the monofluoro 7-Br and the 

difluoro substituted compound 4-Br in DMSO fit nicely on the correlation line of the first-

order rate constants of (10,9,8,5)-Br in DMSO reported in chapter 3, yielding an almost 

unchanged ρ parameter of −3.01 (−2.94 when the rate constants of 7-Br and 4-Br are 

excluded). Therefore, it can be assumed that the rate constants k1 for 7-Br and 4-Br in 

DMSO also refer to the ionization step. More importantly, a result from the preceding 

chapter is confirmed. The rate constants of 3-Br and 1-Br deviate upward from the 

correlation line. The tetrakis(meta-fluoro)-substituted benzhydryl bromide 1-Br reacts 

approximately 20 times faster than expected for an SN1 reaction (Figure 4.3).  
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Figure 4.3. Rate constants k1 of the solvolysis reactions of benzhydryl bromides 1-4-Br in DMSO 
(at 20 °C) (in green) compared with calculated rate constants (in red) derived from the Hammett 
plot (Figure 4.2) k1 = 10(−3.01σ + −3.21). 
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Thus, the SN2-type reaction with DMSO, previously encountered for the reaction of 2-Br 

(Chapter 3), is obviously a general behavior of acceptor substituted benzhydryl bromides. 

Since the lifetimes for the carbocations generated from 3-Br and 1-Br are expected to be 

considerably shorter than 1 × 10−14 s, this observation is also in line with the previously 

stated lifetime argument. 

The amine-dependent rate constants k2 for the reactions of (1,3,4,7)-Br were included in the 

Hammett plot from the preceding chapter (Figure 3.3). The resulting Hammett plot (Figure 

4.4) shows an almost unchanged situation. The rate constants k2 decrease only by factors of 

8 to 71 when going from the mono methyl-substituted benzhydryl bromide 10-Br to the 

tetrafluoro-substituted compound 1-Br (Table 4.1), whereas the rate constant for the amine 

independent first order rate constant k1 decreases by a factor of 6975 (Table 4.1, Figure 

4.2). 
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Figure 4.4. Plot of lg k2 of the reactions of the benzhydryl bromides with amines in DMSO at 20 °C 
vs. Hammett´s substituent constants σ.1 ● for DABCO ▲ for piperidine ■ for morpholine ♦ for 
n-propylamine. 

When only the rate constants for the fluorinated benzhydryl bromides are considered, a 

good linear Hammett correlation is obtained with ρ ranging from −0.21 to −0.81 (Figure 

4.5). Probably, the high quality of this correlation is due to the fact the only meta 

substituents are considered which operate exclusively by the inductive effect.  
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Figure 4.5. Plot of lg k2 of the reactions of the  benzhydryl bromides with amines in DMSO at 
20 °C vs. Hammett´s substituent constants σ.1 (Data from the preceding chapter was excluded) ● for 
DABCO (ρ = −0.81σ − 1.46) ▲ for piperidine (ρ = −0.37σ − 1.89) ■ for morpholine (ρ = −0.55σ − 
2.20) ♦ for n-propylamine (ρ = −0.21σ − 2.85). 

As depicted in Figure 4.5, the most negative reaction constant (ρ = −0.81) is observed for 

the highly nucleophilic DABCO and the smallest sensitivity (ρ = −0.21) is observed for n-

propylamine with the lowest nucleophilicity in this series. As stated in Chapter 3, these 

values suggest that the SN2 reactions proceed via transition states where little positive 

charge is developed at the benzhydryl center. In order to investigate the influence of the 

leaving group on the SN1/SN2 ratio, the reactions of benzhydryl tosylates (7,4,3,1)-OTs 

with amines in DMSO were investigated using the same methodology. As for the 

benzhydryl bromides, plots of the observed rate constants (kobs) versus the concentration of 

amine were linear according to equation 4.2 (Figure 4.6).  
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Figure 4.6. Plots of kobs (s−1) of the reactions of different benzhydryl tosylates with amines in 
DMSO at 20 °C vs. the concentrations of the amines.  

Amine-independent rate constants k1 and amine-dependent rate constants k2 are 

summarized in Table 4.2. 

 



4. Leaving Group Dependence of the SN1/SN2 Ratio 

 178 

Table 4.2. Rate constants (at 20° C) for the solvolyses of the benzhydryl tosylates in DMSO (s−1) 
and for their reactions with amines in DMSO (M−1s−1). 

nucleophiles 7-OTs 4-OTs 3-OTs 1-OTs 

DMSO (k1) 1.23 × 10−2 6.87 × 10−4 5.85 × 10−5 6.76 × 10−6 

DABCO (k2) 8.90 × 10−3 2.22 × 10−3 4.31 × 10−4 1.11 × 10−4 

piperidine (k2) - 7.97 × 10−4 3.38 × 10−4 1.13 × 10−4 

morpholine (k2) - 3.77 × 10−4 1.62 × 10−4 5.80 × 10−5 

n-PrNH2 (k2) - 6.26 × 10−5 8.48 × 10−5 5.77 × 10−5 

 

As shown in Figure 4.6 and in Table 4.2, the solvolysis reactions (k1) of the benzhydryl 

tosylates (7,4,3,1)-OTs are 7 to 366 times faster in DMSO than the solvolyses of 

benzhydryl bromides (7,4,3,1)-Br. The small ratio of 7 between the solvolysis rate 

constants k1 for bromide and tosylate is observed for the tetrafluoro-substituted benzhydryl 

derivatives 1-X. This small ratio can be explained by a direct nucleophilic attack of DMSO 

(SN2 reaction with DMSO) on the benzhydryl bromides (1,2,3)-Br, which is not observed 

for the benzhydryl tosylates (7,4,3,1)-OTs despite the highly destabilized character of the 

corresponding carbocations.  

A Hammett plot of the solvolysis rate constants k1 for the benzhydryl tosylates (7,4,3,1)-

OTs (Figure 4.7) showed a linear correlation with a slope of ρ = −3.19. A similar value of 

the reaction constant (ρ = −3.01) has been found for the solvolyses of benzhydryl bromides 

which ionize without nucleophilic assistance by DMSO (Figure 4.2). Therefore, the first-

order rate constants k1 for the reaction of benzhydryl tosylates 1-4-OTs may be assigned to 

ionization processes without nucleophilic assistance from the solvent DMSO. However, 

this conclusion is questioned by the observation that the ratio kROH/kDMSO for benzhydryl 

tosylates decreases noticeably with decreasing electrofugality of the benzhydrylium ions 

(see below).  
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Figure 4.7. Plot of lg k1 for the solvolysis reactions of (7,4,3,1)-OTs in DMSO at 20 °C vs. 
Hammett´s substituent constants σm.1  

Since the amine-independent rate constants k1 for benzhydryl bromides with Ef ≥ −9.26 and 

for all benzhydryl tosylates investigated correspond to the ionization reaction, they can be 

employed to derive nucleofugality parameters Nf and sf for bromide and tosylate in neat 

DMSO.2 Plots of lg k1 versus the electrofugality parameters Ef resulted in linear correlations 

according to equation 4.3 (Figure 4.8).  

 

lg k1 = sf(Nf+Ef)  (4.3) 
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Figure 4.8. Plot of lg k1 for the solvolysis of various substituted benzhydryl bromides and tosylates 
in DMSO at 20 °C vs. electrofugality Ef. 

From these correlations, one can extract the nucleofugality parameters Nf as the negative 

intercepts on the abscissa (Ef axis) and the sf parameters as the slopes of the correlation 

lines (Table 4.3). Due to the SN2 type reaction of electron-poor benzhydryl bromides, rate 
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constants k1 < 3×10−5 s−1
, for the ionization of benzhydryl bromides, were excluded from 

the correlation line and the calculation of nucleofugality parameters of bromide in DMSO.  

Table 4.3. Nucleofugality parameters Nf and sf for bromide and tosylate at 20 °C in DMSO. 
Parameters for chloride at 25 °C taken from Ref. [3] 

X Nf / sf  

OTs  4.45 / 0.64 

Br 1.84 / 0.78 

Cl  0.35 / 1.30 

 

These nucleofugality parameters allow a direct comparison of the leaving group abilities of 

chloride, bromide and tosylate in DMSO. The slope parameters sN for OTs and Br are 

lower than their slope parameters in most protic solvents, with the consequence that the 

reactivity ratio kROH/kDMSO of benzhydryl tosylates decreases with decreasing 

electrofugality of the benzhydrylium ions as illustrated for the solvolyses of benzhydrylium 

tosylates in DMSO, EtOH, and MeOH in Figure 4.9. Obviously, destabilization of the 

benzhydrylium ions by electron acceptor substituents affects the solvation by DMSO more 

than the solvation by alcohols, but the nature of this solvation-nucleophilic solvent 

participation or nucleophilic solvation is not clear.4 The decreasing kOTs/kBr ratio with 

decreasing electrofugality of the benzhydrylium ions (Figure 4.9) furthermore shows that 

nucleophilic solvent participation in DMSO is much more important in solvolyses of 

benzhydryl bromides than of benzhydryl tosylates.  

 

-7

-6

-5

-4

-3

-2

-1

0

-14 -12 -10 -8 -6

MeOH

EtOH

DMSO

1+ 3+ 4+ 7+

lg
k

1

Ef

-7

-6

-5

-4

-3

-2

-1

0

-14 -12 -10 -8 -6

MeOH

EtOH

DMSO

1+ 3+ 4+ 7+

lg
k

1

Ef  



4. Leaving Group Dependence of the SN1/SN2 Ratio 

 181 

Figure 4.9. Plot of lg k1 for the solvolysis of benzhydryl tosylates (1,3,4,7)-OTs in methanol, 
ethanol at 25 °C and DMSO at 20 °C vs. electrofugality Ef. 

Like in protic solvents, tosylate is also the best leaving group in DMSO. Thus, the 

benzhydryl tosylate 7-OTs solvolyses in DMSO at 20 °C with a half-life of 56 s, the half-

life for 7-Br is 6 h (derived from measured rate constants), and for the benzhydryl chloride 

7-Cl a half-life of 47 years at 25 °C is calculated from the nucleofugality parameters 

presented in Table 4.3.  

The amine-dependent second-order rate constants k2 (Table 4.2) show that the reactions of 

benzhydryl tosylates (7,4,3,1)-OTs with nucleophilic amines are 2 to 37 times slower than 

the corresponding reactions with benzhydryl bromides, showing that the relative leaving 

group abilities of TsO− and Br− are opposite in SN1 and SN2 reactions. Hammett plots of the 

amine-dependent second-order rate constant k2 vs. Σσ (Figure 4.10) resulted in linear 

correlations and yielded reaction constants ρ ranging from −1.89 to −0.05. The most 

negative reaction constant ρ was observed for the reactions with DABCO and a reaction 

constant ρ of almost zero was observed for the reactions with n-propylamine. While the 

dependence of the reaction constants ρ on the nature of the amines show exactly the same 

trends in Figure 4.10 and 4.5, the absolute value of ρ is more than two times larger for 

reactions of DABCO with benzhydryl tosylates than with benzhydryl bromides.  
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Figure 4.10. Plot of lg k2 of the reactions of the benzhydryl tosylates with amines vs. Hammett´s 
substituent constants σ.1 (Data from the preceding chapter was excluded) ● for DABCO ▲ for 
piperidine ■ for morpholine ♦ for n-propylamine.  
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Reaction constants ρ ≈ 0 for the reactions of benzhydryl bromides and tosylates with n-

propylamine (Figures 4.5 and 4.10) show that in these series the charge density at the 

benzhydryl carbon is not charged from reactants to the transition state. The negative 

reaction constants for the reaction with DABCO indicate a more carbocationic transition 

state, i.e., a stronger imbalance between bond formation and bond breaking for the reaction 

with DABCO.5 The observation that the reactions with more nucleophilic DABCO have 

more negative reaction constants is surprising because Tsuno et al. observed the opposite 

trend when investigating the reactions of benzyl tosylates with substituted N,N-dimethyl-

anilines.6 In their investigations the SN2 reactions of donor substituted (and thus more 

nucleophilic) N,N-dimethylanilines were only weakly affected by substituents on the benzyl 

tosylate, while the SN2 reactions of acceptor substituted N,N-dimethylanilines were highly 

influenced by the benzyl substitution pattern.    

 

4.3. Conclusion and Outlook 

Though the order of nucleofugalities OTs > Br > Cl in ionization processes is the same in 

DMSO as in most protic solvents, there are significant differences of the relative 

reactivities in these three solvents as illustrated for the parent benzhydryl derivatives 9-X in 

Figure 4.11. In TFE, the unsubstituted benzhydryl bromide (9-Br) solvolyses approximately 

equally fast as the benzhydryl chloride. The kBr/kCl ratio increases to a factor of 15 to 45 in 

aqueous ethanol, ethanol and aqueous acetone and adopts a value of 1.3 × 104 in DMSO. 
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Figure 4.11. Comparison of calculated lg k1 for the solvolyses reactions of benzhydryl derivatives 
in a series of solvents.  

On the other hand, the almost constant kOTs/kBr ratio (2.1 × 103 to 4.9 × 102) in all protic 

solvents shown in Figure 4.10 shrinks to a value of 1.7 × 102 in DMSO. As illustrated in 

Figure 4.12, the solvolysis rate constants correlate well with the solvent ionizing power 

YxBnBr of protic solvents derived from secondary benzyl bromides.3,7 As kOTs/kBr is smaller 

in DMSO and kBr/kCl is larger in DMSO than in protic solvents it its not possible to define a 

YxBnBr value which holds for different leaving groups.  
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Figure 4.12 Plot of lg k1 for the reactions of the benzhydryl derivatives Ph2CHX (9-X) vs. the 
solvent ionizing power YxBnBr.

6 Data point without filling are calculated solvolysis rate constants 
according to equation 4.3. Data points with filling are measured rate constants taken from Ref. [2]. 
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A moderate correlation is also achieved, when lg k1 is plotted vs. the empirical solvent 

polarity parameter ET
N (Figure 4.11).8 Comparable observations where reported by Dvorko 

et al., for the heterolysis of tert-butyl chloride in a series of solvents.9,10  
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Figure 4.11 Plot of lg k1 for the reactions of the benzhydryl derivatives (Ph2CHX) vs. the solvent 
polarity parameter  ET

N. Data point without filling are calculated solvolysis rate constants according 
to equation 4.3. Data points with filling are measured rate constants taken from Ref. [2]. 

Unequivocal evidence for nucleophilic solvent participation was so far only observed for 

the solvolyses of the acceptor substituted benzhydryl bromides (3-Br, 2-Br and 1-Br) in 

DMSO. In all other solvents under investigation, nucleophilic solvent participation was not 

observed, possibly because the narrow reactivity range experimentally accessible.  

The second order rate constants k2 are 2 to 37 times larger for benzhydryl bromides than for 

benzhydryl tosylates (Table 4.4).  
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Table 4.4. Comparison of second-order rate constants (k2/M
−1s−1) for the reaction of benzhydryl 

bromides and tosylates in DMSO with various amines.  

N°-X amine k2 (X=Br) k2 (X=OTs) k2 (X=Br)/k2 (X=OTs) 

DABCO 1.87 × 10−2 8.90 × 10−3 2.1 

piperidine 1.02 × 10−2 - - 

morpholine 4.18 × 10−3 - - 
7-X 

n-PrNH2 1.25 × 10−3 - - 

DABCO 9.23 × 10−3 2.22 × 10−3 4.2 

piperidine 6.85 × 10−3 7.97 × 10−4 8.6 

morpholine 2.57 × 10−3 3.77 × 10−4 6.8 
4-X 

n-PrNH2 9.40 × 10−4 6.26 × 10−5 15.0 

DABCO 5.33 × 10−3 4.31 × 10−4 12.4 

piperidine 5.34 × 10−3 3.38 × 10−4 15.8 

morpholine 1.79 × 10−3 1.62 × 10−4 11.0 
3-X 

n-PrNH2 8.99 × 10−4 8.48 × 10−5 10.6 

DABCO 2.69 × 10−3 1.11 × 10−4 24.2 

piperidine 4.24 × 10−3 1.13 × 10−4 37.5 

morpholine 1.12 × 10−3 5.80 × 10−5 19.3 
1-X 

n-PrNH2 - 5.77 × 10−5 - 

 

The analysis by Hoz et al. offers a possible explanation for this decrease. According to G2-

calculations the barriers for the identity SN2 reactions,11 increased significantly when going 

from right to left in the periodic table, e.g., from halides to chalcogenides (Scheme 4.2).  

Scheme 4.2. SN2 identity reaction investigated by Hoz et al. and calculated intrinsic barrier heights 
G2(+). 

X + Me X X+Me X

G2(+) = 55.2 kJ /mol for X = Cl

G2(+) = 45.2 kJ /mol for X = Br

G2(+) = 81.6 kJ /mol for X = OMe

G2(+) = 91.6 kJ /mol for X = SMe  

 

The surprisingly low reactivities of tosylates in SN2 reactions may, therefore, be due to the 

higher intrinsic barrier for chalcogenide exchange reactions than for halide exchange 
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reactions (Scheme 4.2).11 Previously equation 4.4 has been successfully employed to 

calculate rate constants for SN2 reactions.12 In this correlation, nucleophiles are 

characterized by the nucleophilicity parameter N and the sensitivity parameter sN while 

electrophiles are characterized by the electrophilicity parameter E and the sensitivity 

parameter sE. Equation 4.4 is an extension of the 1994 Patz equation,13 and N and sN are the 

nucleophile-specific parameters, which have previously been derived from reactions with 

benzhydrylium ions.  

 

lg k = sE sN (E+N)  (4.4) 

 
When plotting (lg k2)/sN for the reactions of benzhydryl bromides or tosylates against the 

nucleophilicity parameters of amines moderate correlations were obtained (Figure 4.12). 

Because of the relatively small reactivity range covered by Figure 4.12 it is hard to decide 

whether equation 4.4 is suitable to predict second-order rate constants for these reactions. 

Similar experiments with benzyl halides are currently under investigation and might help to 

clarify this situation. 
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Figure 4.12. Plot of (lg k2)/sN for the reactions of the benzhydryl derivatives (Ph2CHX) in DMSO 
with amines vs. the nucleophilicity parameter N of the amine; amine (N / sN): DABCO 
(18.80 / 0.70), piperidine (17.19 / 0.71), morpholine (16.96 / 0.67), ethanolamine (16.07 / 0.61), 1-
aminopropan-2-ol (15.47 / 0.65), n-PrNH2 (15.70 / 0.64), benzylamine (15.28 / 0.65), 
diethanolamine (15.51 / 0.70), 2-aminobutan-1-ol (14.39 / 0.67).   

 

 

4.4. Experimental section 

Method 

The methodology described in chapter 3 was analogously used to determine first-order rate 

constants kobs for the reactions of benzhydryl bromides and tosylates in DMSO. Amine-

independent rate constants (k1) were determined in the presence of 20 eq. 2,6-lutidine.  
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3-Fluorbenzhydryl bromide (7-Br) 

20 °C, in DMSO, conductometry 

Table 4.5. Individual rate constants for the reaction of 7-Br in DMSO in the presence of various 
amines 

Nu [7-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.76 × 10–3 0.00 3.37 × 10–4 1.87 × 10–2 

 2.77 × 10–3 0.06 1.27 × 10–3  

 3.00 × 10–3 0.14 2.78 × 10–3  

 3.45 × 10–3 0.19 3.98 × 10–3  

 3.16 × 10–3 0.43 8.13 × 10–3 

k
o
b

s

[DABCO ]

y = 1.87E-02x + 1.76E-04

R
2
 = 9.98E-01

0.0E+00

5.0E-03

1.0E-02

0.0 0.2 0.4

 

 

piperidine 2.76 × 10–3 0.00 3.37 × 10–4 1.02 × 10–2 

 2.76 × 10–3 0.11 1.72 × 10–4  

 2.72 × 10–3 0.19 2.60 × 10–4  

 2.77 × 10–3 0.28 4.22 × 10–4  

 2.75 × 10–3 0.40 5.34 × 10–4 

k
o

b
s

[piperidine ]

y = 1.02E-02x + 1.69E-04

R
2
 = 9.94E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

0.0 0.2 0.4

 

 

morpholine 2.76 × 10–3 0.00 3.37 × 10–4 4.18 × 10–3 

 2.87 × 10–3 0.09 4.38 × 10–4  

 2.89 × 10–3 0.16 7.65 × 10–4  

 2.81 × 10–3 0.27 1.20 × 10–3  

 2.70 × 10–3 0.39 1.68 × 10–3 
y = 4.18E-03x + 5.88E-05

R
2
 = 9.98E-01

0.0E+00

1.0E-03

2.0E-03

0.0 0.2 0.4

k
o

b
s

[morpholine ]  
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Table 4.5. (continued) 

Nu [7-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

n-PrNH2 2.76 × 10–3 0.00 3.37 × 10–4 1.25 × 10–3 

 2.87 × 10–3 0.11 1.72 × 10–4  

 2.85 × 10–3 0.17 2.60 × 10–4  

 2.80 × 10–3 0.31 4.22 × 10–4  

 2.86 × 10–3 0.40 5.34 × 10–4  

    

k
o

b
s

[n-PrNH2 ]

y = 1.25E-03x + 3.75E-05

R
2
 = 9.99E-01

0.0E+00

2.0E-04

4.0E-04

6.0E-04

0.0 0.2 0.4

  

 

3,3’-Difluorbenzhydryl bromide (4-Br) 

20 °C, in DMSO, conductometry 

Table 4.6. Individual rate constants for the reaction of 4-Br in DMSO in the presence of various 
amines 

Nu [4-Br]o M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.96 × 10–3 0.00 5.92 × 10–6 9.23 × 10–3 

 2.45 × 10–3 0.05 5.38 × 10–4  

 2.82 × 10–3 0.12 1.20 × 10–3  

 3.07 × 10–3 0.19 1.90 × 10–3  

 2.84 × 10–3 0.30 2.76 × 10–3 
y = 9.23E-03x + 6.65E-05

R
2
 = 9.96E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

0.0 0.2 0.4

k
o
b

s

[DABCO ]  

 

piperidine 2.96 × 10–3 0.00 5.92 × 10–6 6.85 × 10–3 

 2.98 × 10–3 0.12 8.83 × 10–4  

 2.98 × 10–3 0.18 1.33 × 10–3  

 2.88 × 10–3 0.29 2.03 × 10–3  

 2.87 × 10–3 0.44 3.05 × 10–3 
y = 6.85E-03x + 6.46E-05

R
2
 = 9.98E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

0.0 0.2 0.4 0.6

k
o

b
s

[piperidine ]  

 

morpholine 2.96 × 10–3 0.00 5.92 × 10–6 2.57 × 10–3 

 3.06 × 10–3 0.08 2.11 × 10–4  

 2.95 × 10–3 0.15 4.33 × 10–4  

 2.95 × 10–3 0.23 5.83 × 10–4  

 2.74 × 10–3 0.36 9.51 × 10–4 
y = 2.57E-03x + 1.34E-05

R
2
 = 9.98E-01

0.0E+00

5.0E-04

1.0E-03

0.0 0.2 0.4

k
o

b
s

[morpholine ]  
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Table 4.6. (continued) 

Nu [4-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

n-PrNH2 2.96 × 10–3 0.00 5.92 × 10–6 9.40 × 10–4 

 2.55 × 10–3 0.15 1.60 × 10–4  

 2.84 × 10–3 0.30 2.88 × 10–4  

 2.88 × 10–3 0.54 5.19 × 10–4 
y = 9.40E-04x + 9.18E-06

R
2
 = 1.00E+00

0.0E+00

2.0E-04

4.0E-04

6.0E-04

0.0 0.2 0.4 0.6

k
o

b
s

[n-PrNH2 ]  

 

 

 

3,3’,5-Trifluorbenzhydryl bromide (3-Br) 

20 °C, in DMSO, conductometry 

Table 4.7. Individual rate constants for the reaction of 3-Br in DMSO in the presence of various 
amines 

Nu [3-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.43 × 10–3 0.00 2.84 × 10–6 5.33 × 10–3 

 2.34 × 10–3 0.05 2.97 × 10–4  

 2.64 × 10–3 0.08 4.35 × 10–4  

 2.44 × 10–3 0.11 5.84 × 10–4  

 2.28 × 10–3 0.19 1.03 × 10–3 
y = 5.33E-03x + 1.51E-05

R
2
 = 9.99E-01

0.0E+00

4.0E-04

8.0E-04

1.2E-03

0.0 0.1 0.2

k
o

b
s

[DABCO ]  

 

piperidine 2.43 × 10–3 0.00 2.84 × 10–6 5.34 × 10–3 

 2.39 × 10–3 0.04 2.61 × 10–4  

 2.47 × 10–3 0.08 4.23 × 10–4  

 2.68 × 10–3 0.12 6.65 × 10–4  

 2.33 × 10–3 0.14 7.76 × 10–3  

 2.51 × 10–3 0.21 1.15 × 10–3 

y = 5.34E-03x + 2.62E-05

R
2
 = 9.98E-01

0.0E+00

4.0E-04

8.0E-04

1.2E-03

0.0 0.1 0.2 0.3

k
o

b
s

[piperidine ]   

morpholine 2.96 × 10–3 0.00 2.84 × 10–6 1.79 × 10–3 

 2.64 × 10–3 0.07 1.35 × 10–4  

 2.63 × 10–3 0.11 1.95 × 10–4  

 2.96 × 10–3 0.18 3.29 × 10–4  

 2.74 × 10–3 0.25 4.53 × 10–4 

y = 1.79E-03x + 6.15E-06

R
2
 = 1.00E+00

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

0.0 0.1 0.2 0.3

k
o

b
s
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Table 4.7. (continued) 

Nu [3-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

n-PrNH2 2.96 × 10–3 0.00 2.84 × 10–6 8.99 × 10–4 

 2.67 × 10–3 0.05 4.76 × 10–5  

 2.62 × 10–3 0.15 1.49 × 10–4  

 2.66 × 10–3 0.21 1.86 × 10–4 
y = 8.99E-04x + 4.19E-06

R
2
 = 9.90E-01

0.0E+00

1.0E-04

2.0E-04

0.0 0.1 0.2 0.3

k
o

b
s

[n-PrNH2 ]  

 

 

3,3’,5,5’-Tetrafluorbenzhydryl bromide (1-Br) 

20 °C, in DMSO, conductometry 

Table 4.8. Individual rate constants for the reaction of 1-Br in DMSO in the presence of various 
amines 

Nu [1-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.23 × 10–3 0.00  9.62 × 10–7 * 2.69 × 10–3 

 2.42 × 10–3 0.10 3.26 × 10–4  

 2.65 × 10–3 0.16 4.79 × 10–4  

 2.93 × 10–3 0.23 6.78 × 10–4  

 1.39 × 10–3 0.33 9.17 × 10–4  

 2.51 × 10–3 0.37 1.01 × 10–3 

y = 2.69E-03x + 3.56E-05

R
2
 = 9.94E-01

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

0.0 0.1 0.2 0.3 0.4

k
o

b
s

[DABCO ]  
 

piperidine 2.43 × 10–3 0.00 2.84 × 10–6 * 4.24 × 10–3 

 2.71 × 10–3 0.08 3.25 × 10–4  

 2.80 × 10–3 0.28 1.17 × 10–3   

 2.61 × 10–3 0.43 1.82 × 10–3 
y = 4.24E-03x + 6.20E-07

R
2
 = 1.00E+00

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

0.0 0.2 0.4 0.6

k
o
b

s

[piperidine ]  
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Table 4.8. (continued) 

Nu [1-Br]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

morpholine 2.23 × 10–3 0.00  9.62 × 10–7 * 1.12 × 10–3 

 1.39 × 10–3 0.19 2.33 × 10–4  

 1.45 × 10–3 0.25 3.01 × 10–4  

 1.64 × 10–3 0.34 4.06 × 10–4  

 1.51 × 10–3 0.53 6.02 × 10–4 y = 1.12E-03x + 1.12E-05

R
2
 = 9.98E-01

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

0.0 0.2 0.4 0.6

k
o
b

s

[morpholine ]

 

 

* reaction was only followed for about 0.4 half-times (2.6 × 105 s = 3 d).  
 

3-Fluorbenzhydryl tosylate (7-OTs) 

20 °C, in DMSO, conductometry 

Table 4.9. Rate constants for the reaction of 7-OTs in DMSO in the presence of various amines 

Nu [7-OTs]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 1.74 × 10–3 0.00 1.23 × 10–2 8.90 × 10–3 

 1.62 × 10–3 0.09 1.37 × 10–2  

 1.65 × 10–3 0.33 1.55 × 10–2  

 1.62 × 10–3 0.47 1.67 × 10–2 k
o

b
s

[DABCO ]

y = 8.90E-03x + 1.26E-02

R
2
 = 9.86E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

0.0 0.2 0.4 0.6

 

 

piperidine 1.74 × 10–3 0.00 1.23 × 10–2 - 

 1.58 × 10–3 0.21 1.21 × 10–2  

 1.65 × 10–3 0.27 1.19 × 10–2 

y = -1.28E-03x + 1.23E-02

R
2
 = 9.06E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

0.0 0.2 0.4

k
o
b

s

[piperidine ]  

 

morpholine 1.74 × 10–3 0.00 1.23 × 10–2 - 

 2.36 × 10–3 0.03 1.20 × 10–2  

 2.37 × 10–3 0.05 1.23 × 10–2  

 2.36 × 10–3 0.09 1.26 × 10–2  

 2.27 × 10–3 0.21 1.23 × 10–2  

 2.21 × 10–3 0.39 1.24 × 10–2 

y = 4.76E-04x + 1.23E-02

R
2
 = 1.14E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

0.0 0.2 0.4

k
o

b
s

[morpholine ]  
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3,3’-Difluorbenzhydryl tosylate (4-OTs) 

20 °C, in DMSO, conductometry 

Table 4.10. Individual rate constants for the reaction of 4-OTs in DMSO in the presence of various 
amines 

Nu [4-OTs]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.54 × 10–3 0.00 6.87 × 10–4 2.22 × 10–3 

 2.67 × 10–3 0.03 7.78 × 10–4  

 2.92 × 10–3 0.14 1.02 × 10–3  

 3.06 × 10–3 0.31 1.41 × 10–3  

 2.69 × 10–3 0.45 1.72 × 10–3  

 2.82 × 10–3 0.61 2.04 × 10–3 

y = 2.22E-03x + 7.08E-04

R
2
 = 9.99E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

0.0 0.2 0.4 0.6 0.8
k

o
b

s
[DABCO ]  

 

piperidine 2.54 × 10–3 0.00 6.87 × 10–4 7.97 × 10–4 

 2.46 × 10–3 0.08 7.67 × 10–4  

 2.01 × 10–3 0.14 8.29 × 10–4  

 1.90 × 10–3 0.20 8.50 × 10–4  

 1.92 × 10–3 0.39 1.02 × 10–3  

 1.92 × 10–3 0.61 1.18 × 10–3 

y = 7.97E-04x + 7.01E-04

R
2
 = 9.96E-01

0.0E+00

4.0E-04

8.0E-04

1.2E-03

0.0 0.2 0.4 0.6 0.8

k
o

b
s

[piperidine ]  
 

morpholine 2.54 × 10–3 0.00 6.87 × 10–4 3.77 × 10–4 

 2.92 × 10–3 0.10 7.42 × 10–4  

 2.13 × 10–3 0.23 7.92 × 10–4  

 3.01 × 10–3 0.54 8.91 × 10–4  

 3.05 × 10–3 0.72 9.67 × 10–4  

 2.84 × 10–3 1.07 1.10 × 10–4 

y = 3.77E-04x + 6.97E-04

R
2
 = 9.97E-01

0.0E+00

4.0E-04

8.0E-04

1.2E-03

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k
o
b
s

[morpholine ]  
 

n-PrNH2 2.54 × 10–3 0.00 6.87 × 10–4 6.26 × 10–5 

 2.00 × 10–3 0.41 7.13 × 10–4  

 1.97 × 10–3 0.77 7.42 × 10–4  

 2.02 × 10–3 1.11 7.54 × 10–4 k
o

b
s

[n-PrNH2 ]

y = 6.26E-05x + 6.88E-04

R
2
 = 9.85E-01

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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3,3’,5-Trifluorbenzhydryl tosylate (3-OTs) 

20 °C, in DMSO, conductometry 

Table 4.11. Individual rate constants for the reaction of 3-OTs in DMSO in the presence of various 
amines 

Nu [3-OTs]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.16 × 10–3 0.00 5.85 × 10–5 4.31 × 10–4 

 2.67 × 10–3 0.14 1.27 × 10–4  

 2.92 × 10–3 0.30 1.98 × 10–4  

 3.00 × 10–3 0.45 2.51 × 10–4 

k
o

b
s

[DABCO ]

y = 4.31E-04x + 6.30E-05

R
2
 = 9.96E-01

0.0E+00

1.0E-04

2.0E-04

3.0E-04

0.0 0.2 0.4 0.6

 

 

piperidine 2.16 × 10–3 0.00 5.85 × 10–5 3.38 × 10–4 

 2.75 × 10–3 0.23 1.42 × 10–4  

 2.34 × 10–3 0.32 167 × 10–4  

 2.45 × 10–3 0.56 2.48 × 10–4 

k
o

b
s

[piperidine ]

y = 3.38E-04x + 6.06E-05

R
2
 = 9.99E-01

0.0E+00

1.0E-04

2.0E-04

3.0E-04

0.0 0.2 0.4 0.6

 

 

morpholine 2.16 × 10–3 0.00 5.85 × 10–5 1.62 × 10–4 

 2.68 × 10–3 0.19 9.20 × 10–5  

 2.36× 10–3 0.33 1.13 × 10–4  

 2.62 × 10–3 0.57 1.52 × 10–4 

k
o
b

s

[morpholine ]

y = 1.62E-04x + 5.98E-05

R
2
 = 9.99E-01

0.0E+00

1.0E-04

2.0E-04

0.0 0.2 0.4 0.6

 

 

n-PrNH2 2.16 × 10–3 0.00 5.85 × 10–5 8.48 × 10–5 

 2.72 × 10–3 0.39 9.30 × 10–5  

 2.55 × 10–3 0.60 1.09 × 1––4 

k
o

b
s

[n-PrNH2 ]

y = 8.48E-05x + 5.88E-05

R
2
 = 9.99E-01

0.0E+00

5.0E-05

1.0E-04

1.5E-04

0.0 0.2 0.4 0.6
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3,3’,5,5’-Tetrafluorbenzhydryl tosylate (1-OTs) 

20 °C, in DMSO, conductometry  

Table 4.12. Rate constants for the reaction of 1-OTs in DMSO in the presence of various amines 

Nu [1-OTs]o/M [Nu]/M kobs/s
–1 kobs vs. [Nu] correlation k2/M

–1 s–1 

DABCO 2.36 × 10–3 0.00 6.76 × 10–6 1.11 × 10–4 

 2.02 × 10–3 0.25 3.29 × 10–5  

 1.80 × 10–3 0.47 5.64 × 10–5  

 2.16 × 10–3 0.62 7.72 × 10–5 k
o

b
s

[DABCO ]

y = 1.11E-04x + 6.01E-06

R
2
 = 9.97E-01

0.0E+00

5.0E-05

1.0E-04

0.0 0.2 0.4 0.6 0.8

 

 

piperidine 2.36 × 10–3 0.00 6.76 × 10–6 1.13 × 10–4 

 1.99 × 10–3 0.20 3.20 × 10–5  

 1.9662 × 10–3 0.70 8.65 × 10–5 

k
o

b
s

[piperidine ]

y = 1.13E-04x + 7.92E-06

R
2
 = 9.99E-01

0.0E+00

5.0E-05

1.0E-04

0.0 0.2 0.4 0.6 0.8

 

 

morpholine 2.36 × 10–3 0.00 6.76 × 10–6 5.80 × 10–5 

 2.27 × 10–3 0.38 3.12 × 10–5  

 4.17× 10–3 0.56 4.17 × 10–5  

 5.49 × 10–3 0.84 5.49 × 10–5 
y = 5.80E-05x + 7.80E-06

R
2
 = 9.95E-01

0.0E+00

2.0E-05

4.0E-05

6.0E-05

0.0 0.2 0.4 0.6 0.8 1.0

k
o

b
s

[morpholine ]

 

 

n-PrNH2 2.36 × 10–3 0.00 6.76 × 10–6 5.77 × 10–5 

 1.79 × 10–3 0.29 2.46 × 10–5  

 1.83 × 10–3 0.71 4.97 × 10–5  

 1.86 × 10–3 0.85 5.49 × 10–5 

[n-PrNH2 ]

y = 5.77E-05x + 7.47E-06

R
2
 = 9.96E-01

0.0E+00

2.0E-05

4.0E-05

6.0E-05

0.0 0.2 0.4 0.6 0.8 1.0

k
o

b
s
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5. Nucleofugality of Bromide in Other Aprotic Solvents  

5.1. Introduction 

In the absence of nucleophilic trapping agents potential ionization reactions of alkyl halides 

may occur reversibly and no gross reaction is observable. If the intermediately formed 

carbocation is trapped by an appropriate nucleophile, the rate of the ionization step can be 

measured. Typically, in protic solvents the solvent itself will react as nucleophile with the 

carbocation.  

Scheme 5.1. SN1 and SN2 reaction pathway for the reaction of an alkyl halide. 

R X R + X
+Nu

R Nu + X
k1

k-1
kNu

+Nu k2

R Nu + X  

 

If trapping is slow, i.e., if k−1[X
−] > kNu[Nu], common ion return will occur and the overall 

reaction rate constant, which is typically determined by conductometric or titrimetric 

measurements, does not reflect the ionization rate constant k1. As the concentration of X− 

increases during the course of the reaction, common ion return causes a deviation from the 

monoexponential rate law (eq. 5.1, for conductometric measurements) and the derivation of 

k1 from the kinetic data becomes difficult. 

 

G = G∞(1 – e–k1t) + C  (5.1) 

 

To overcome these problems, a method to suppress common ion return by amines in protic 

solvents was previously developed.1 This method was extended to the determination of 

heterolysis rate constants of benzhydryl chlorides in aprotic solvents.2 So far this method 

was used to determine the nucleofugality parameters (Nf and sf in eq. 5.2) of chloride in 

aprotic solvents and to derive electrofugality parameters of tritylium ions.3   

 

lg k1(25 °C) = sf(Nf + Ef) (5.2) 
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In the following, the application of this method on the reactions of benzhydryl bromides in 

various aprotic solvents will be reported.  

5.2. Results and Discussion 

A series of donor-substituted benzhydryl bromides (9-15)-Br were employed in this study. 

As presented in chapter 2, these benzhydryl bromides can easily be prepared from the 

corresponding benzhydrols by refluxing in neat acetyl bromide.  

Scheme 5.2. Benzhydryl bromides employed in this study. 

N° X Y 

15 OMe OMe 

14 OMe OPh 

13 OMe Me 

12 OMe H 

11 Me Me 

10 Me H 

9 H H 

X Y

Br

N°-Br  

 

When benzhydryl bromides (9-15)-Br (Scheme 5.2) were dissolved in aprotic solvents in 

the presence of at least 10 eq. piperidine or N-methylpyrrolidine, a monoexponential 

increase of conductance according to equation 5.1 was observed, which allowed us to 

determine the first-order rate constants. Plots of the observed rate constants (kobs) against 

the amine concentrations showed a linear increase of kobs with [amine] at low 

concentrations of amine. At higher amine concentrations, the correlation lines bend 

downward and a maximum rate constant (kmax) is reached (Figure 5.1). When the amine 

concentration is further increased, the rate constant (kobs) decreases. This decrease can be 

explained by a decrease of solvent polarity at high concentrations of amine.  
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Figure 5.1. Plot of kobs for the reaction of 12-Br in acetonitrile in the presence of piperidine (■) and 
N-methylpyrrolidine (□) vs. [amine]. 

According to previous reports,1-4 the maximum rate constants measured in aqueous or 

alcoholic solvents (Table 5.1) reflect the ionization rate constants (k1) defined in scheme 

5.1. In the following we will report on the reactions of benzhydryl bromides with amines in 

aprotic solvents.  

Table 5.1. Observed maximum rate constants kmax/s
–1 in various aprotic solvents using piperidine 

and N-methylpyrrolidine as trapping agents.  

 MeCN DMF acetone 

 piperidine 

N-methyl-

pyrrolidine piperidine 

N-methyl-

pyrrolidine piperidine 

N-methyl-

pyrrolidine 

15-Br     3.00 × 101 1.42 × 101 

14-Br 6.27 × 101 5.22 × 101 1.76 × 101 1.30 × 101 2.44 1.24 

13-Br 1.22 × 101 1.07 × 101 3.70 2.62 4.17 × 10−1 2.00 × 10−1 

12-Br 1.03 1.14 4.62 × 10−1 3.55 × 10−1   

11-Br 1.08 × 10−1 2.13 × 10−2 6.09 × 10−2 1.67 × 10−2 1.09 × 10−2 1.76 × 10−3 

10-Br 3.21 × 10−2 6.96 × 10−3 2.35 × 10−2 2.37 × 10−3 4.30 × 10−3 3.13 × 10−4 

  9-Br 1.21 × 10−3 1.18 × 10−3 1.04 × 10−2 4.37 × 10−4 2.07 × 10−3  

 

In Figures 5.2-5.4 the maximum rate constants lg kmax for the reactions of (9-15)-Br in the 

presence of a high excess of piperidine or N-methylpyrrolidine were plotted against the 

electrofugalities Ef of the corresponding benzhydrylium ions.  
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Figure 5.2. Plot of lg kmax at 25 °C for the ionization of benzhydryl bromides in the presence of 
piperidine (■) and N-methylpyrrolidine (□) in acetonitrile vs. the electrofugality parameter Ef. 
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Figure 5.3. Plot of lg kmax at 25 °C for the ionization of benzhydryl bromides in the presence of 
piperidine (■) and N-methylpyrrolidine (□) in DMF vs. the electrofugality parameter Ef. 
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Figure 5.4. Plot of lg kmax at 25 °C for the ionization of benzhydryl bromides in the presence of 
piperidine (■) and N-methylpyrrolidine (□) in acetone vs. the electrofugality parameter Ef. 

As expected from the analogous experiments with benzhydryl chlorides, the maximum rate 

constants kmax were nearly identical for the reactions of (12-15)-Br (Ef ≥ −2.09) with 

piperidine and N-methylpyrrolidine. However, the maximum rate constants of the less 

reactive (9-11)-Br (Ef < −2.09) with piperidine were significantly larger than the maximum 

rate constants obtained with N-methylpyrrolidine. Obviously, the maximum rate constants 

kmax become only independent of the type of amine additive, when the stabilized 

benzhydrylium ions 12
+-15

+ (Ef ≥ −2.09) are formed. Presumably, the deactivated 

benzhydryl bromides (9-11)-Br (Ef < −2.09) react via a blend of SN1 and SN2 pathways 

with the amine. This interpretation is supported by the variable concentrations of piperidine 

that are needed to reach the maximum rate constants. As shown in Table 5.2, the less donor 

substituted benzhydryl bromides (9-11)-Br require significantly higher concentrations of 

piperidine to reach the maximum rate constant.  
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Table 5.2. Concentration of piperidine/M needed to reach kmax for the ionization reaction of 
benzhydryl bromides in a series of aprotic solvents. 

N°-Br [piperidine]  

in MeCN/M 

[piperidine]  

in DMF/M 

[piperidine] in 

acetone/M 

  9-Br 1.63 4.26 5.89 

10-Br 1.61 2.89 4.31 

11-Br 1.63-2.14 a 3.95 3.71 

12-Br 1.07 2.23 - 

13-Br 0.83 1.44 1.51 

14-Br 0.90 1.44 2.22 

15-Br - - 2.60 

a
 observed rate constants differ in this concentration range only by 1 %, see Table 5.7 

 

Therefore, reactions which gave significantly different maximum rate constants with 

different amines, i.e., reactions with kmax ≤ 0.2 s−1 were not used for the determination of 

the nucleofugality parameters Nf and sf of bromide in a series of aprotic solvents (Figure 

5.5).  
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Figure 5.5. Plots of lg kmax at 25 °C for the ionization of benzhydryl bromides in the presence of 
piperidine (●,▲,■) and N-methylpyrrolidine (○,∆,□) in various solvents vs. the electrofugality 
parameter Ef. 

On the other hand, reactions with a (kmax ≥ 0.2 s−1) can be expected to react via SN1 

mechanism, and plots of kmax against the electrofugality parameter Ef resulted in linear 

correlations in agreement with equation 5.2. From these correlations, one can extract the 
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nucleofugality parameters Nf as the negative intercepts on the abscissa (Ef axis) and the sf 

parameters as the slopes of the correlation lines (Table 5.3). In previous investigations in 

protic1,3 and aprotic solvents2 piperidine was used as the standard nucleophile to react with 

the benzhydrylium ions formed by ionization of benzhydryl chlorides. Other amines were 

also used in some experiments to demonstrate that the maximum rate constant is almost 

independent of the type of amine. The maximum rate constant (kmax) for the ionization of 

chloro-bis(4-methoxyphenyl)methane (15-Cl) in neat acetonitrile obtained with piperidine 

differed by a factor of 1.6 from the maximum rate constant obtained with pyridine.2 In 

90 % aqueous acetone (90A10W) maximum rate constants for chloro-bis-(4-

methoxyphenyl)methane (15-Cl) obtained with piperidine differed by factors of 1.4 to 1.8 

from the rate constants obtained with other nucleophilic amines.1 In case of the benzhydryl 

bromides (12-15)-Br (Ef ≥ −2.09) investigated in this work the maximum rate constants 

kmax obtained with piperidine and N-methylpyrrolidine differed by factors of 0.9 to 2.1. 

Therefore, it is suggested that the maximum rate constants presented in Table 5.1 

correspond to the rates of ionization of benzhydryl bromides (Ef ≥ −2.09) and can be used 

to determine nucleofugality parameters (Table 5.3) of bromide in these solvents.  

Table 5.3. Nucleofugality parameters of bromide in aprotic solvents determined by the “amine 
method” using piperidine and N-methylpyrrolidine.a 

Nf / sf acetonitrile DMF acetone 

piperidine 2.09 / 1.45 1.81 / 1.27 1.08 / 1.39 

N-methylpyrrolidine 2.12 / 1.34 1.71 / 1.26 0.86 / 1.38 
a Ideally Nf and sf should not depend on the nature of the trapping amine. 

 

For the less donor substituted benzhydryl bromides (Ef < −2.09) the maximum rate 

constants observed with piperidine are approximately one order of magnitude larger than 

the maximum rate constants determined with N-methylpyrrolidine. Presumably, the 

ionization of the benzhydryl bromide followed by rapid trapping of the benzhydrylium ion 

by the amine is not the predominant reaction mechanism; instead piperidine reacts via an 

SN2 reaction. Now, the question arises why reactivity maxima are reached at certain 

concentrations of amines, i.e., why an increase of the concentration of piperidine does not 

result in an acceleration of the reaction when the concentration of piperidine exceeds 1 mol 

L−1. In the preceding chapters it was demonstrated that in DMSO the two reaction 
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mechanisms (SN1 and SN2) can be clearly separated. Thus, the reaction of the monomethyl 

substituted benzhydryl bromide 10-Br in DMSO was employed to investigate the second-

order rate constants k2 at high amine concentrations of piperidine. As depicted in Figure 5.6 

we have studied these reactions also at higher concentrations of piperidine and found that 

the observed rate constants kobs for the reaction of 10-Br with piperidine in DMSO at high 

amine concentrations ([piperidine] ≥ 1.09 M) deviate from the linear correlation observed at 

low amine concentrations.  
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Figure 5.6. Plot of kobs for the reaction of 10-Br in DMSO in the presence of piperidine and vs. 
[piperidine]. 

As a concentration of [piperidine] = 2 M corresponds to 19.8 vol.% piperidine in DMSO, 

one can assume that in this concentration range variation of [amine] causes a significant 

change of solvent polarity and thus inhibits a further acceleration of the SN2 reaction.  

Assuming that variations of [amine] at concentrations below 1 M (10 vol.% piperidine) 

have neglible effects on solvent polarity (as demonstrated by the linear correlations in 

Figure 3.2 on p. 123), second-order rate constants for the SN2 reactions in different solvents 

can be derived from plots of kobs vs. [piperidine] in this concentration range (Figure 5.7, 

Table 5.4). 
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Figure 5.7. Plot of kobs for the reaction of 9-Br in acetonitrile in the presence of piperidine vs. the 
concentration of piperidine (for other plots see Experimental Section). 

Table 5.4. Observed second order rate constants for the reactions of benzhydryl bromides with 
piperidine in different solvents.  

k2/s
−1 M−1 9-Br 10-Br 11-Br 

DMSO a 1.69 × 10−2 3.57 × 10−2 - 

MeCN 6.14 × 10−3 1.75 × 10−2 7.34 × 10−2 

DMF 5.00 × 10−3 9.79 × 10−3 2.63 × 10−2 

acetone 8.22 × 10−4 1.69 × 10−3 4.31 × 10−3 

a
 DMSO data is taken from Chapter 3. 

 

When these second-order rate constants were plotted against Hammett’s σ-values, reaction 

constants ρ = −3.17 to −2.12 (−1.91 for DMSO) were obtained (Figure 5.8). In contrast to 

the results in Chapter 3 (Figure 3.3), linear correlations were obtained. This is probably an 

effect of using only donor substituents (methyl). 

 

-3.5

-2.5

-1.5

-0.5

-0.4 -0.2 0.0
Σσ

lg
k

2

9-Br10-Br11-Br

DMSO

MeCN

DMF

acetone

-3.5

-2.5

-1.5

-0.5

-0.4 -0.2 0.0
Σσ

lg
k

2

9-Br10-Br11-Br

-3.5

-2.5

-1.5

-0.5

-0.4 -0.2 0.0
Σσ

lg
k

2

9-Br10-Br11-Br

DMSO

MeCN

DMF

acetone

 
Figure 5.8. Plot of lg k2 for the reactions of the benzhydryl bromides with piperidine in DMSO ; lg 
k2 = −1.91σ − 1.77 (▲), acetonitrile; lg k2 = −3.17σ − 2.24 (●), DMF; lg k2 = −2.12σ − 2.32 (■) and 
acetone; lg k2 = −2.12σ − 3.10 (♦) vs. Hammett´s substituent constants σ.5  
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At a first glance these reaction constants ρ seem to be considerably more negative than 

those for the SN2 reactions investigated in Chapter 4 (−0.81 to −0.21). However, when 

looking at the two data points for the SN2 reaction of 10-Br and 9-Br with piperidine in 

DMSO a reactivity ratio of 12, corresponding to a slope of ρ = −1.91 (Figure 5.8 and 4.4) is 

observed. Thus, donor substituents appear to accelerate the SN2 reactions significantly 

while acceptor substituents have only a weak decelerating effect. Tsuno et. al observed a 

similar behavior for the reaction of substituted 1-arylethyl bromides with pyridine.6 In their 

work, donor substituents strongly accelerate the SN2 reaction, while acceptor substituents 

show only a weak influence on the reaction rate. This resulted in concave Hammett plots. 

Tsuno explained this behavior by a change from a loose cationic transition state for the 

reaction of donor-substituted, to a tight transition state for the reaction of acceptor-

substituted 1-arylethyl bromides. Therefore, the SN2 reactivity for acceptor substituted 

systems is higher than one could expect from the extrapolation of Hamett correlation.  

 

5.3. Conclusion and Outlook  

The straightforward determination of ionization rates of benzhydryl chlorides by trapping 

the intermediate carbocations by amines cannot easily be employed for measuring the 

ionization rates of benzhydryl bromides in solvents of low nucleophilicity (acetonitrile, 

DMF, acetone). As bromide is a significantly better nucleofuge than chloride in these 

solvents, conveniently measurable ionization rates can only be achieved with less donor 

substituted benzhydrylium bromides (Figure 5.9), i.e., systems which tend to react via SN2 

process (Richard Jencks life-time argument).  
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Figure 5.9. Plot of lg k1 for the solvolysis of various substituted benzhydryl chlorides (at 25 °C), 
bromides and tosylates in DMSO at 20 °C vs. electrofugality Ef. 
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Nevertheless, for some benzhydryl bromides, ionization rates (first-order rate constants) 

could be determined, and Figure 5.10 shows that in dipolar aprotic solvents bromide is a 

400-800 times better nucleofuge than chloride. 

− 1

1

lg
k

1

3

X = Br X = Cl

acetonitrile

DMF

acetone

0

2

− 2

4

MeO OMe

X
25°C

Ionization

15-X

− 1

1

lg
k

1

3

X = Br X = Cl

acetonitrile

DMF

acetone

0

2

− 2

4

MeO OMe

X
25°C

Ionization

15-X

 
Figure 5.10. Comparison of calculated lg k1 for the ionizations of the dimethoxy substituted 
benzhydryl chloride (15-Cl) and bromide (15-Br) in three different aprotic solvents. All rate 
constants were determined by the “amine method” using piperidine.  

This ratio is considerably higher than in many aqueous and alcoholic solvents where alkyl 

bromides typically ionize about one order of magnitude faster than alkyl chlorides. The 

high kBr/kCl ratio in dipolar aprotic solvents combined with the observation that both classes 

of compounds ionize with almost equal rates in trifluoroethanol illustrate that hydrogen 

bonding plays a much greater role for the ionization of chlorides than of bromides.  

 

 

5.4. Experimental Section 

When benzhydryl bromides (9-15)-Br were dissolved in aprotic media in the presence of 

piperidine or N-methylpyrrolidine, an increase of conductance was observed. A calibration 

experiment, i.e., stepwise addition of the rapidly ionizing benzhydryl bromide 12-Br to 

acetonitrile containing 0.5 M N-methylpyrrolidine, showed a linear correlation between the 

initial concentration of the benzhydryl bromide 12-Br and the conductance at the end of the 

reaction within the investigated concentration range. Consequently, monoexponential 

increases of the conductance (G) were observed during the solvolysis reaction and the first-
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order rate constants k1 (Table 2) were obtained by fitting the time dependent conductance G 

to the monoexponential function (eq. 5.1). 
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Figure 5.11. Conductance at t∞ vs. concentration of 12-Br in acetonitrile at 25 °C. After the 
addition of a portion of 12-Br, the next conductance value was taken when the conductance 
remained constant. 

Maximum rate constants kmax were obtained by plotting the observed rate constants kobs 

against the amine concentrations (Tables 5.4-5.21). Maximum rate constants were typically 

observed at an amine concentration of 1.0 M. The temperature of the solutions during all 

kinetic studies was kept constant at 25.0 °C (± 0.1 °C) by using a circulating bath 

thermostat. Slow reactions (kobs < 1.1 × 10−1) were monitored with a conventional 

conductometer (conductometers: Radiometer Analytical CDM 230 or Tacussel CD 810, Pt 

electrode: WTW LTA 1/NS). The final concentrations of benzhydryl bromides were around 

2.5 - 3.0 × 10−3 
M. Fast ionization reactions, were measured with a stopped-flow 

conductometer (Hi-Tech Scientific SF-61 DX2, platinum electrodes, cell volume: 21 µL, 

cell constant 4.24 cm–1, minimum dead time 2.2 ms) Final concentrations of benzhydryl 

bromide were 5.0 - 7.0 × 10−3 M for the stopped flow measurements. After injection of the 

benzhydryl derivative into the ionizing medium, an increase of conductance was observed, 

that was recorded at certain time intervals resulting in about 3000 data points for each 

measurement. The first-order rate constants k1 (s
–1) were obtained by least squares fitting of 

the conductance data to the single-exponential equation (5.3).  
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Table 5.5. Individual observed rate constants at 25 °C for the reaction of 9-Br in acetonitrile in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

9-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.33 2.73 × 10−3 

0.62 4.91 × 10−3 

1.06 7.25 × 10−3 

1.60 9.30 × 10−3 

1.63 9.50 × 10−3 

2.16 1.14 × 10−2 

2.44 1.20 × 10−2 

3.74 1.21 × 10−3 

5.20 1.16 × 10−3 

[N-methylpyrrolidine]/M kobs/s
−1 

0.78 8.38 × 10−4 

1.02 8.96 × 10−4 

1.71 1.12 × 10−3 

1.94 1.18 × 10−3 

2.77 1.14 × 10−3 

y = 6.14E-03x + 8.57E-04

R
2
 = 9.91E-01

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.4E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine]

kobs

y = 6.14E-03x + 8.57E-04

R
2
 = 9.91E-01

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

1.4E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine][amine]

kobskobs
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Table 5.6. Individual observed rate constants at 25 °C for the reaction of 10-Br in acetonitrile in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

10-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.26 6.79 × 10−3 

0.53 1.24 × 10−2 

0.83 1.79 × 10−2 

1.10 2.16 × 10−2 

1.20 2.36 × 10−2 

1.61 2.89 × 10−2 

2.86 3.21 × 10−2 

4.37 3.04 × 10−2 

[N-methylpyrrolidine]/M kobs/s
−1 

0.56 3.98 × 10−3 

0.89 4.80 × 10−3 

1.45 6.16 × 10−3 

2.06 6.96 × 10−3 

2.63 6.25 × 10−3 

y = 1.77E-02x + 2.61E-03

R
2
 = 9.92E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0.0 1.0 2.0 3.0 4.0 5.0

[amine]

kobs

y = 1.77E-02x + 2.61E-03

R
2
 = 9.92E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0.0 1.0 2.0 3.0 4.0 5.0

[amine][amine]

kobskobs

 

 

Table 5.7. Individual observed rate constants at 25 °C for the reaction of 11-Br in acetonitrile in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

11-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.13 2.26 × 10−2 

0.24 3.08 × 10−2 

0.44 4.70 × 10−2 

0.77 7.25 × 10−2 

1.16 9.72 × 10−2 

1.63 1.07 × 10−1 

2.14 1.08 × 10−1 

[N-methylpyrrolidine]/M kobs/s
−1 

0.30 1.32 × 10−2 

0.70 1.70 × 10−2 

1.20 1.97 × 10−2 

1.60 2.13 × 10−2 

2.00 2.13 × 10−2 

y = 7.34E-02x + 1.40E-02

R
2
 = 9.97E-01

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

0.0 0.5 1.0 1.5 2.0 2.5

[amine]

kobs

y = 7.34E-02x + 1.40E-02

R
2
 = 9.97E-01

0.0E+00

2.0E-02
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8.0E-02

1.0E-01

1.2E-01
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Table 5.8. Individual observed rate constants at 25 °C for the reaction of 12-Br in acetonitrile in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

12-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.07 7.10 × 10−1 

0.09 7.55 × 10−1 

0.13 8.14 × 10−1 

0.26 8.94 × 10−1 

0.37 9.64 × 10−1 

0.87 1.03 

1.07 1.03 

2.44 1.02 

3.07 9.60 × 10–1 

[N-methylpyrrolidine]/M kobs/s
−1 

0.19 8.06 × 10−1 

0.43 1.00 

0.59 1.07 

1.03 1.12 

1.45 1.14 

2.22 1.10 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0

[amine]

kobs
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0.2

0.4

0.6
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0.0 1.0 2.0 3.0 4.0

[amine][amine]

kobskobs
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Table 5.9. Individual observed rate constants at 25 °C for the reaction of 13-Br in acetonitrile in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

13-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.05 7.66 

0.13 9.03 

0.26 9.68 

0.83 1.22 × 101 

1.53 1.22 × 101 

1.95 1.18 × 101 

[N-methylpyrrolidine]/M kobs/s
−1 

0.19 7.91 

0.43 9.77 

0.59 1.03 × 101 

1.03 1.06 × 101 

1.45 1.07 × 101 

2.22 9.56 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 0.5 1.0 1.5 2.0 2.5

[amine]

kobs
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2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 0.5 1.0 1.5 2.0 2.5

[amine][amine]

kobskobs

 

 

Table 5.10. Individual observed rate constants at 25 °C for the reaction of 14-Br in acetonitrile in 
the presence of piperidine (■) and N-methylpyrrolidine (□). 

14-Br in acetonitrile 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.08 4.36 × 101 

0.23 5.15 × 101 

0.57 5.89 × 101 

0.90 6.27 × 101 

1.24 6.15 × 101 

1.67 5.98 × 101 

2.12 5.65 × 101 

[N-methylpyrrolidine]/M kobs/s
-1 

0.19 4.19 × 101 

0.43 4.95 × 101 

0.59 5.12 × 101 

1.03 5.12 × 101 

1.45 5.22 × 101 

2.22 5.19 × 101 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.0 0.5 1.0 1.5 2.0 2.5

[amine]

kobs

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.0 0.5 1.0 1.5 2.0 2.5

[amine][amine]

kobskobs
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Table 5.11. Individual observed rate constants at 25 °C for the reaction of 9-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

9-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.36 2.31 × 10−3 

0.60 3.68 × 10−3 

0.93 5.20 × 10−3 

1.16 6.37 × 10−3 

1.52 7.40 × 10−3 

2.50 9.66 × 10−3 

4.26 1.04 × 10−2 

4.92 9.96 × 10−3 

[N-methylpyrrolidine]/M kobs/s
−1 

0.42 3.39 × 10−4 

0.92 3.39 × 10−4 

1.48 4.16 × 10−4 

2.30 4.37 × 10−4 

3.68 3.47 × 10−4 

[amine]

kobs

y = 5.00E-03x + 5.88E-04

R
2
 = 9.99E-01

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine][amine]

kobskobs

y = 5.00E-03x + 5.88E-04

R
2
 = 9.99E-01

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0
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Table 5.12. Individual observed rate constants at 25 °C for the reaction of 10-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

10-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.31 5.12 × 10−3 

0.61 8.96 × 10−3 

0.94 1.19 × 10−2 

1.27 1.46 × 10−2 

1.55 1.65 × 10−2 

1.82 1.81 × 10−2 

2.15 2.05 × 10−2 

2.89 2.35 × 10−2 

3.26 2.33 × 10−2 

4.89 1.53 × 10−2 

[N-methylpyrrolidine]/M kobs/s
−1 

0.54 1.86 × 10−3 

0.85 2.03 × 10−3 

1.31 2.30 × 10−3 

1.97 2.37 × 10−3 

2.27 2.27 × 10−3 

y = 9.79E-03x + 2.47E-03

R
2
 = 9.90E-01

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0
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y = 9.79E-03x + 2.47E-03

R
2
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Table 5.13. Individual observed rate constants at 25 °C for the reaction of 11-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

11-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.36 2.33 × 10−2 

0.56 2.90 × 10−2 

0.81 3.68 × 10−2 

1.18 4.49 × 10−2 

1.97 5.36 × 10−2 

2.66 5.81 × 10−2 

3.95 6.09 × 10−2 

5.31 5.26 × 10−2 

[N-methylpyrrolidine]/M kobs/s
−1 

0.50 1.45 × 10−2 

0.86 1.58 × 10−2 

1.16 1.66 × 10−2 

1.62 1.67 × 10−2 

2.32 1.62 × 10−2 

4.03 1.28 × 10−2 

y = 2.63E-02x + 1.43E-02

R2 = 9.94E-01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine]

kobs

y = 2.63E-02x + 1.43E-02

R2 = 9.94E-01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine][amine]

kobskobs

 

 

 

Table 5.14. Individual observed rate constants at 25 °C for the reaction of 12-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

12-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.45 3.29 × 10−1 

0.60 3.69 × 10−1 

0.98 4.24 × 10−1 

1.44 4.56 × 10−1 

2.23 4.62 × 10−1 

2.54 4.38 × 10−1 

[N-methylpyrrolidine]/M kobs/s
−1 

0.16 2.84 × 10−1 

0.45 3.33 × 10−1 

0.74 3.55 × 10−1 

1.46 3.46 × 10−1 

1.84 3.20 × 10−1 
 

0.0
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Table 5.15. Individual observed rate constants at 25 °C for the reaction of 13-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

13-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.45 3.01 

0.60 3.18 

0.98 3.48 

1.44 3.70 

2.23 3.62 

2.54 3.46 

[N-methylpyrrolidine]/M kobs/s
−1 

0.16 2.10 

0.45 2.51 

0.74 2.62 

1.46 2.49 

1.84 2.2 
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Table 5.16. Individual observed rate constants at 25 °C for the reaction of 14-Br in DMF in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

14-Br in DMF 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.18 1.19 × 101 

0.45 1.44 × 101 

0.60 1.53 × 101 

0.98 1.67 × 101 

1.44 1.76 × 101 

2.23 1.74 × 101 

2.54 1.66 × 101 

[N-methylpyrrolidine]/M kobs/s
−1 

0.16 1.06 × 101 

0.45 1.27 × 101 

0.74 1.30 × 101 

1.46 1.23 × 101 

1.84 1.15 × 101 
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Table 5.17. Individual observed rate constants at 25 °C for the reaction of 9-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 
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9-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.34 2.26 × 10−4 

0.63 4.37 × 10−4 

0.75 5.74 × 10−4 

1.15 8.87 × 10−4 

2.53 1.47 × 10−4 

3.60 1.87 × 10−4 

4.47 2.01 × 10−4 

5.89 2.07 × 10−4 

  [amine]

kobs

y = 8.22E-04x - 5.92E-05

R
2
 = 9.96E-01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0.0 1.0 2.0 3.0 4.0 5.0

[amine][amine]

kobskobs

y = 8.22E-04x - 5.92E-05

R
2
 = 9.96E-01

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0.0 1.0 2.0 3.0 4.0 5.0

 

 

Table 5.18. Individual observed rate constants at 25 °C for the reaction of 10-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

10-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.25 4.17 × 10−4 

0.53 8.84 × 10−4 

0.77 1.34 × 10−3 

1.24 2.07 × 10−3 

1.55 2.64 × 10−3 

1.88 3.19 × 10−3 

2.81 4.00 × 10−3 

3.34 4.28 × 10−3 

4.31 4.30 × 10−3 

[N-methylpyrrolidine]/M kobs/s
−1 

0.59 1.93 × 10−4 

0.80 2.31 × 10−4 

1.44 2.90 × 10−4 

1.82 3.13 × 10−4 

2.54 2.98 × 10−4 

[amine]

kobs
y = 1.69E-03x + 3.74E-06

R
2
 = 9.99E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

0.0 1.0 2.0 3.0 4.0 5.0

[amine][amine]

kobskobs
y = 1.69E-03x + 3.74E-06

R
2
 = 9.99E-01

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

0.0 1.0 2.0 3.0 4.0 5.0

 

 

 

Table 5.19. Individual observed rate constants at 25 °C for the reaction of 11-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 
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11-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.34 1.66 × 10−3 

0.60 2.83 × 10−3 

0.86 4.01 × 10−3 

1.24 5.55 × 10−3 

1.69 7.66 × 10−3 

1.99 8.33 × 10−3 

2.42 9.61 × 10−3 

3.71 1.09 × 10−2 

4.77 1.08 × 10−2 

[N-methylpyrrolidine]/M kobs/s
−1 

0.86 1.32 × 10−3 

1.07 1.32 × 10−3 

1.43 1.74 × 10−3 

1.95 1.76 × 10−3 

3.01 1.64 × 10−3 

3.94 1.32 × 10−3 

y = 4.31E-03x + 2.35E-04

R
2
 = 1.00E+00

0.0E+00

5.0E-03

1.0E-02

1.5E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine]

kobs

y = 4.31E-03x + 2.35E-04

R
2
 = 1.00E+00

0.0E+00

5.0E-03

1.0E-02

1.5E-02

0.0 1.0 2.0 3.0 4.0 5.0 6.0

[amine][amine]

kobskobs
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Table 5.20. Individual observed rate constants at 25 °C for the reaction of 13-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

13-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.08 6.86 × 10−2 

0.18 1.15 × 10−1 

0.57 2.44 × 10−1 

1.40 3.99 × 10−1 

1.45 4.23 × 10−1 

1.51 4.17 × 10−1 

2.60 3.56 × 10−1 

3.52 2.98 × 10−1 

[N-methylpyrrolidine]/M kobs/s
−1 

0.13 6.56 × 10−2 

0.39 1.31 × 10−1 

0.83 1.85 × 10−1 

1.53 2.00 × 10−1 

2.19 1.79 × 10−1 

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

0.0 1.0 2.0 3.0 4.0

[amine]

kobs

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

0.0 1.0 2.0 3.0 4.0

[amine][amine]

kobskobs

 

 

Table 5.21. Individual observed rate constants at 25 °C for the reaction of 14-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

14-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.28 8.52 × 10−1 

0.59 1.32 

1.03 1.77 

1.45 2.12 

2.22 2.44 

2.67 2.26 

[N-methylpyrrolidine]/M kobs/s
−1 

0.13 4.16 × 10−1 

0.39 8.42 × 10−1 

0.83 1.10 

1.53 1.24 

2.19 1.13 

0.0E+00

1.0E+00

2.0E+00

3.0E+00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[amine]

kobs

0.0E+00

1.0E+00

2.0E+00

3.0E+00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

[amine][amine]

kobskobs
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Table 5.22. Individual observed rate constants at 25 °C for the reaction of 15-Br in acetone in the 
presence of piperidine (■) and N-methylpyrrolidine (□). 

15-Br in acetone 

[piperidine]/M kobs/s
−1 kobs vs. [amine] correlation 

0.08 6.40 

0.18 9.50 

0.34 1.38 × 101 

0.57 1.85 × 101 

0.86 2.26 × 101 

1.40 2.71 × 101 

1.51 2.81 × 101 

2.60 3.00 × 101 

3.52 2.88 × 101 

[N-methylpyrrolidine]/M kobs/s
−1 

0.13 5.55 

0.39 9.69 

0.83 1.30 × 101 

1.53 1.42 × 101 

2.19 1.31 × 101 

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

3.0E+01

3.5E+01

0.0 1.0 2.0 3.0 4.0

[amine]

kobs

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

3.0E+01

3.5E+01

0.0 1.0 2.0 3.0 4.0

[amine][amine]

kobskobs
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