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Abstract

A primary feature of a computer program is its quantitative performance characteris-
tics: the amount of resources such as time, memory, and power the program needs to
perform its task. Concrete resource bounds for specific hardware have many important
applications in software development but their manual determination is tedious and
error-prone.

This dissertation studies the problem of automatically determining concrete worst-
case bounds on the quantitative resource consumption of functional programs.

Traditionally, automatic resource analyses are based on recurrence relations. The
difficulty of both extracting and solving recurrence relations has led to the development
of type-based resource analyses that are compositional, modular, and formally verifiable.
However, existing automatic analyses based on amortization or sized types can only
compute bounds that are linear in the sizes of the arguments of a function.

This work presents a novel type system that derives polynomial resource bounds
from first-order functional programs. As pioneered by Hofmann and Jost for linear
bounds, it relies on the potential method of amortized analysis. Types are annotated
with multivariate resource polynomials, a rich class of functions that generalize non-
negative linear combinations of binomial coefficients. The main theorem states that
type derivations establish resource bounds that are sound with respect to the resource-
consumption of programs which is formalized by a big-step operational semantics.

Simple local type rules allow for an efficient inference algorithm for the type annota-
tions which relies on linear constraint solving only. This gives rise to an analysis system
that is fully automatic if a maximal degree of the bounding polynomials is given. The
analysis is generic in the resource of interest and can derive bounds on time and space
usage. The bounds are naturally closed under composition and eventually summarized
in closed, easily understood formulas.

The practicability of this automatic amortized analysis is verified with a publicly
available implementation and a reproducible experimental evaluation. The experiments
with a wide range of examples from functional programming show that the inference of
the bounds only takes a couple of seconds in most cases. The derived heap-space and
evaluation-step bounds are compared with the measured worst-case behavior of the
programs. Most bounds are asymptotically tight, and the constant factors are close or
even identical to the optimal ones.
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For the first time we are able to automatically and precisely analyze the resource
consumption of involved programs such as quick sort for lists of lists, longest common
subsequence via dynamic programming, and multiplication of a list of matrices with
different, fitting dimensions.
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Zusammenfassung

Eine der wichtigsten Eigenschaften eines Programms ist sein Ressourcenverbrauch,
die Menge an Ressourcen wie Zeit, Speicher und Energie, die das Programm bei seiner
Ausführung benötigt. Konkrete Ressourcenschranken für individuelle Hardware haben
wichtige Anwendungen in der Softwareentwicklung. Die manuelle Bestimmung solcher
Schranken ist jedoch aufwendig und fehleranfällig.

Diese Dissertation behandelt die automatische Bestimmung konkreter Schranken
an den Ressourcenverbrauch von funktionalen Programmen.

Traditionell basieren automatische Methoden zur Ermittlung des Ressourcenver-
brauchs auf Rekurrenzgleichungen. Die technischen Schwierigkeiten beim Ermitteln
und Lösen von Rekurrenzgleichungen haben zur Entwicklung von typbasierten Metho-
den zur Ressourcenanalyse geführt, die formal verifizierbar sind sowie über ein hohes
Maß an Kompositionalität und Modularität verfügen. Bestehende Ansätze, die auf Amor-
tisierung oder Sized Types basieren, können jedoch lediglich Schranken berechnen, die
linear in der Größe der Funktionsargumente sind.

Diese Arbeit präsentiert ein neuartiges Typsystem, das polynomielle Ressourcen-
schranken für erststufige funktionale Programme herleitet. Wie ein von Hofmann und
Jost vorgeschlagenes System für lineare Schranken, beruht es auf der Potentialmethode
und amortisierter Analyse. Typen werden mit multivariaten Ressourcenpolynomen
annotiert, einer Klasse von Funktionen, die nichtnegative Linearkombinationen von
Binomialkoeffizienten verallgemeinern. Der Hauptsatz der Arbeit besagt, dass Typher-
leitungen Schranken beweisen, die korrekt sind im Bezug auf den Ressourcenverbrauch,
der durch eine operationale Semantik formalisiert ist.

Einfache, lokale Typregeln eröffnen die Möglichkeit eines effizienten Inferenzalgo-
rithmus für die Typannotationen , der ausschließlich auf linearer Optimierung beruht.
Dies führt zu einer Analysemethode, die vollkommen automatisch ist, falls der Grad
der Polynome beschränkt ist. Die Analyse kann mit zahlreichen Ressourcenmetriken
parametrisiert werden und ermittelt beispielsweise Schranken an den Zeit- und Spei-
cherverbrauch. Die Schranken sind abgeschlossen unter Komposition und werden am
Ende der Analyse in geschlossenen, leicht zu verstehenden Formeln zusammengefasst.

Eine frei verfügbare Implementierung und eine reproduzierbare experimentelle
Auswertung belegen die Praxistauglichkeit dieser automatischen amortisierten Analyse.
Die Experimente mit einer Vielzahl von funktionalen Programmen zeigen, dass die
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Berechnung der Schranken in vielen Fällen nur wenige Sekunden dauert. Die hergeleit-
eten Schranken an den dynamischen Speicher und die Anzahl der Auswertungsschritte
wurden mit dem gemessenen maximalen Ressourcenverbrauch der Programme ver-
glichen. Die meisten Schranken sind asymptotisch exakt und die konstanten Faktoren
liegen dicht an den optimalen Faktoren oder entsprechen diesen sogar.

Zum ersten Mal sind wir in der Lage komplexe Programme vollständig automatisch
zu analysieren: Die Analyse liefert beispielsweise präzise Schranken für Quicksort
für Listen von Listen, für die Berechnung der längsten gemeinsamen Teilfolge mit
dynamischer Programmierung und für die Multiplikation einer Liste von Matrizen mit
unterschiedlichen Dimensionen.
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Hofstadter’s Law: It always takes longer than you
expect, even when you take into account
Hofstadter’s Law.

DOUGLAS HOFSTADTER

Gödel, Escher, Bach: an Eternal Golden Braid
(1979)Preface

Writing a doctoral dissertation differs in several ways from writing research papers for
conferences and journals. For one thing, your work is not aimed at a specific audi-
ence such as the attendees of a particular conference. For another thing, you do not
directly compete with other papers and you have an unlimited number of pages at your
command. As a result, you enjoy unusual liberties.

My intention is to use these liberties in this dissertation to make my work more
accessible to non-experts. At the same time, I try to keep the text short and concise. If
you are a researcher, you shall be able to quickly get an inkling of the basic ideas and
concepts to decide if they are relevant for your own work. If you are a student, you shall
find enough explanations to fully understand the technical details.

In any case, I hope to convey some of the excitement and pleasure I had during the
work on my thesis.

Content and Structure

My dissertation deals with the problem of automatic quantitative resource analysis:
Given a program P ; automatically compute a bound on the resource consumption of P
as a function of the sizes of its inputs.

A resource can be every quantity that is consumed by a program during its execution
by a computer. This includes time, memory, and power, but also more specific quantities
such as data exchange over a network or the number calls to a particular system function.

Automatic quantitative analysis of algorithms is a non-trivial problem which has
been the subject of extensive research. In this work, I follow a line of research that is
known as automatic amortized resource analysis. In a nutshell, I present an analysis that
automatically computes polynomial resource bounds for first-order functional programs.

The main concepts I use are functional programming, type systems, big-step opera-
tional semantics, linear programming, and basic mathematics. If you are not familiar
with these concepts or if you struggle with some of the imperfect explanations in my
thesis then you find excellent guidance in the books Types and Programming Languages
[Pie02], Concrete Mathematics [GKP94], and Introduction to Linear Optimization [BT97].

I describe novel results in Chapters 3, 5, 6, and 7. In Chapters 1, 2, 4, and 9, I explain
and summarize the results and relate them to existing research.
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Chapter 1 introduces in detail the area of research. It formulates the problem of
(quantitative) resource analysis. It describes applications of resource analysis, diffi-
culties of manual analysis, and the need of automatic methods. I also discuss the
theoretical limitations of automatic resource analysis systems and the problems you
face in designing them. Finally, I give a high-level description of the contents of this
dissertation and informally explain the achievements of my work.

Chapter 2 introduces amortized resource analysis and outlines the technical contri-
butions of this thesis. I first explain the idea of manual amortized analysis and show
how it can be automated to statically predict the resource consumption of programs. I
then informally present the main innovation of my work, the first automatic amortized
analysis that derives polynomial resource bounds. Finally, I summarize the technical
contributions of this thesis.

Chapter 3 presents Resource Aware ML (RAML), a first-order fragment of the func-
tional programming language SML. RAML programs are the objects that I study in my
dissertation. I define their syntax and state the reasons behind my design decisions.
To reason about resource consumption of RAML programs, I introduce a big-step op-
erational semantics that formalizes terminating and non-terminating evaluations. It
is parametric in the resource of interest and can measure every quantity whose usage
in a single evaluation step can be bounded by a constant. I use it later to prove the
soundness of the analysis system.

Chapters 4, 5, and 6 formally describe automatic amortized resource analysis sys-
tems. I present them in form of three type systems for RAML. In Chapter 4, I recapitulate
the automatic amortized analysis introduced by Hofmann and Jost. This system is able
to derive linear resource bounds. Thereafter, Chapter 5 and Chapter 6 describe my main
contributions, that is, automatic amortized resource analyses that compute polynomial
resource bounds. More precisely, Chapter 5 presents a type system that is able to derive
resource bounds that are sums of univariate polynomials, functions such as 3+5n2+m.
Chapter 6 contains a type system that also computes multivariate polynomial resource
bounds as, for instance, 10n2 +5nm.

The two polynomial type systems extend the respective preceding type system.
However, Chapter 5 does not depend on Chapter 4. Similarly, Chapter 6 does not depend
on Chapter 4 and Chapter 5. In fact, I included Chapters 4 and 5 for didactic reasons
only. Each chapter is devoted to a different purpose. Chapter 4 explains the general
idea of automatic amortized analysis. Chapter 5 shows how you can use automatic
amortized analysis to derive super-linear bounds. Finally, Chapter 6 describes how
amortized analysis can take into account relations between different parts of the input.
So if you are familiar with linear amortized analysis then you can skip Chapter 4 and
start with Chapter 5. Similarly, if you are an expert in the field, you can skip Chapter 4
and Chapter 5, and directly read Chapter 6.

Chapter 7 presents the experimental evaluation of the analysis system. Klaus Aehlig
and I jointly implemented the multivariate analysis system from Chapter 6 using the
programming language Haskell and the Glasgow Haskell Compiler. I briefly describe
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the implementation, report the running times of the analysis on standard desktop
computers, and compare the computed bounds with the measured worst-case behavior
of several example programs.

In Chapter 8, I give an overview of existing approaches to automatic resource analysis
and relate my work to similar research.

Finally, Chapter 9 summarizes the results and states possible future research direc-
tions.

Acknowledgments

This work results from countless insightful discussions that I had with my bright and
inspiring colleagues from LMU and TU Munich.

Martin Hofmann was an unerring source for sorting out the good ideas from the, say,
not so good ideas. He always pushed for simpler and more general solutions, especially
at times in which I was prematurely satisfied with my work. I profited greatly from
his broad knowledge and his ability to quickly understand, narrow down, and solve
problems.

Klaus Aehlig coauthored the paper on multivariate amortized resource analysis
[HAH11] and also influenced my earlier work. He proved theorems and wrote Haskell
code in a high-level way that seems to be reserved for genuine mathematicians. Max
Jakob set up the server for the presentation of the prototype implementation on the
web.

Helmut Seidl supported me constantly with advice and valuable suggestions. I am
profoundly indebted to Robert Grabowski who shared a noisy office with me for several
years. Ulrich Schöpp patiently answered my frequent questions on type theory, category
theory, and functional programming.

I was lucky enough to be able to discuss my work with Andreas Abel, Nick Benton,
Lennart Beringer, Andreas Gaiser, Jan Johannsen, Steffen Jost, Andrew Kennedy, Martin
Lange, Markus Latte, Luke Ong, Dulma Rodriguez, Zhong Shao, and many others.

I thank you all.

Funding Acknowledgment

I wrote this dissertation as a scholar of the DFG Graduiertenkolleg 1480 (PUMA).

ix





We often are faced with several algorithms for
the same problem, and we must decide which is
best. This leads us to the extremely interesting
and all-important field of algorithmic analysis:
Given an algorithm, we want to determine its
performance characteristics.

DONALD KNUTH

The Art of Computer Programming Vol. 1 (1968)1
Introduction

The analysis of the quantitative resource behavior of algorithms and programs is a
classic domain of computer science. In Section 1.1, I explain the term and the reasons
why it is an important problem in software development.

The identification of a problem and the desire to solve it automatically with a com-
puter usually goes hand in hand in computer science. Quantitative resource analysis is
not an exception. In Section 1.2, I describe why automatic methods for quantitative re-
source analysis are desirable and investigate the theoretical possibilities and limitations
of automatic resource analyses of programs. Finally, I give a survey of the research on
automatic resource analysis.

In Section 1.3, I state the goals of my research and outline the contents of my
dissertation. I then describe the achievements of my work in a non-technical way.

1.1 Quantitative Resource Analysis

The (quantitative) analysis of algorithms has been described in a great number of
textbooks and is studied by most computer-science students in undergraduate courses.
According to the popular textbook Introduction to Algorithms [CSRL01] “analyzing an
algorithm has come to mean predicting the resources that the algorithm requires”.

The need of quantitative analysis of algorithms naturally arises when you program a
computer.

• You have to compare the efficiency of different algorithms for the same problem
to decide which one you should implement.

• You have to take into account the complexity of algorithms to design efficient
programs.

1



2 Chapter 1. Introduction

• You have to find bottlenecks in a present software system to improve its perfor-
mance.

Sometimes we want to determine the behavior of an algorithm in the average-case
with respect to some distribution over the input. Most often—like in this work—we
are however interested in the worst-case behavior of algorithms. The reason is that a
worst-case bound guaranties a certain resource consumption for every input.

Quantitative analysis is a non-trivial problem. It may require sophisticated math-
ematics and is often challenging even for experts. The result of the analysis has to be
summarized in closed expressions, which usually involve the sizes of the inputs.

Asymptotic Behavior

The analysis of an algorithm is only meaningful with respect to a machine model that
describes how algorithms are executed. Many papers and textbooks, like Introduction
to Algorithms, use informal machine models to abstract from implementation details
and to make the analysis “as machine-independent as possible” [CSRL01]. The analyses
then usually focus on the asymptotic resource behavior of algorithms.

To give an impression of such an analysis, I sketch the determination of the asymp-
totic worst-case behavior of the classic insertion sort algorithm as described in In-
troduction to Algorithms. In this book, Insertion sort is specified in pseudo code as
follows.

Insertion-Sort(A) cost times
for j ← 2 to length[A] c1 n

do key ← A[j] c2 n −1
(*Insert A[j]*) c3 n −1
i ← j - 1 c4 n −1
while i > 0 and A[i] > key c5

∑n
j=2 t j

do A[i+1] ← A[i] c6
∑n

j=2( j −1)

i ← i - 1 c7
∑n

j=2( j −1)

A[i+1] ← key c8 n −1

Like in the textbook, we assume a machine that consumes a constant amount of re-
sources ci in line i of the preceding code. If A is an array of length n then the last column
states the number of times each line is executed in the worst-case, that is, when the
array is in reverse sorted order. We use the identity

∑n
j=1 j = n(n+1)

2 to summarize the
worst-case resource consumption T (n) of Insertion−Sort(A) as

T (n) = c1n + (c2 + c4 + c8)(n −1)+ c5

(
n(n −1)

2
−1

)
+ (c6 + c7)

n(n −1)

2

=
(c5 + c6 + c7

2

)
n2 +

(
c1 + c2 + c4 + c5 − c6 − c7

2
+ c8

)
n − (c2 + c4 + c5 + c8)

The values of the constants ci depend on both the resource of interest and the actual
implementation in a computer. For the running-time of the algorithm we assume that



1.1. Quantitative Resource Analysis 3

ci > 0 for i 6= 3 (comments do not influence the running-time and thus c3 = 0). Then the
quadratic term in the formula is dominating. We therefore say that Insertion−Sort has a
quadratic running-time and write T (n) =O(n2).

Precise Bounds

An abstract, informal machine model may be favorable to convey algorithmic ideas
and to analyze asymptotic behavior. However, it can lead to subtle problems and to
disagreements on how to account for certain operations in the analysis. In some cases it
is clearly problematic:

• It is sometimes hard to compare algorithms that have the same asymptotic be-
havior.

• You can not directly determine a concrete number that bounds the resource
consumption for a given input.

• The asymptotic behavior is not meaningful if you are interested in small inputs.

To rigorously argue about the number of steps that an algorithm needs, you have
to define a formal machine model and to implement algorithms in a programming
language whose commands correspond to concrete steps of the formal machine.

Donald Knuth follows this approach in his seminal book The Art of Computer Pro-
gramming [Knu97]. He formulates algorithms in a machine language for the MIX
architecture and plays close attention to concrete and best possible values of constants
in the analyses. Knuth implements insertion sort as follows.

START ENT1 2-N 1 S1. Loop on j. j ← 2.
2H LDA INPUT+N,1 N-1 S2. Set up i, K, R.

ENT2 N-1,1 N-1 i ← j-1.
3H CMPA INPUT,2 B+N-1-A S3. Compare K : Ki.

JGE 5F B+N-1-A To S5 if K ≥ Ki.
4H LDX INPUT,2 B S4. Move Ri, decrease i.

STX INPUT+1,2 B Ri+1 ← Ri.
DEC2 1 B i ← i-1.
J2P 3B B To S4 if i > 0.

5H STA INPUT+1,2 N-1 S5. R into Ri+1.
INC1 1 N-1
J1NP 2B N-1 2 ≤ j ≤ N.

The locations INPUT+1 through INPUT+N are the array to be sorted. The first column
contains the MIX program and the third column contains comments. In the second
column you find the number of times each instruction is executed, where N is the size
of the input, A is the number of times i decreases to zero in step S4, and B is the number
of moves. The running time of the program on the MIX machine is 9B +10N −3A−9
units. A thorough analysis shows that A = N −1 and B = N 2−N

2 in the worst-case.



4 Chapter 1. Introduction

Software Development

In The Art of Computer Programming, Knuth derives precise bounds on the worst-case
number of execution steps of programs for the MIX architecture mainly to explain and
understand the implemented algorithms. For different reasons, such bounds are of
growing interest in software development.

For many practical applications it is insufficient to determine the asymptotic be-
havior of program only. You rather need concrete upper bounds for specific hardware
to safely predict the resource consumption for a specific input or to compare two pro-
grams with the same asymptotic behavior. That is to say, you have to determine closed
functions in the sizes of the inputs of the program that bound the number of clock cycles
or memory cells on a given system—bounds as developed for insertion sort for the MIX
architecture.

Concrete worst-case bounds are particularly useful in the development of embedded
systems and hard real-time systems. In the former, you want to use hardware that is just
good enough to accomplish a task in order to produce a large number of units at lowest
possible cost. In the latter, you need to guarantee specific worst-case running times to
ensure the safety of the system.

Another area of application of concrete bounds is cloud and grid computing. In
the cloud, a program is often simply terminated if it exceeds the resources—such as
memory and computing time—that a client reserved for it in advance. Consequently,
clients can save time and money by knowing a non-asymptotic bound on the resource
consumption of the program. On the other side, the operator of the cloud could use
resource bounds for better load balancing and scheduling.

1.2 Automatic Computation of Bounds

Even for basic programs, a manual analysis of the specific (non-asymptotic) resource
cost of a program is cumbersome, error-prone, and time consuming. Not everyone
commands the mathematical ease of Knuth and even he would run out of steam if he
had to do these calculations over and over again while going through the debugging
loops of program development. In short, derivation of precise bounds by hand appears
to be unfeasible in practice in all but the simplest cases.

As a result, automatic methods for static resource analysis are highly desirable and
have been the subject of extensive research. Of course, one can not expect the full
automation of a manual analysis that involves creativity and sophisticated mathematics.
But in most resource analyses in software development the greater part of the complexity
arises from the glut of detail and the program size rather than from conceptual difficulty.

In recent years, the resource analysis community made great advances in the devel-
opment of automatic computation and formal verification of resource bounds. Never-
theless, the automation of resource analysis entails inherent theoretical limitations.
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Limits of Automatic Methods

Assume we have formally defined what programs are, how they are executed by a
machine, and what the resource consumption during their execution is. We are now
interested in the following problem. Given a program P , compute a function of the sizes
of P ’s inputs that bounds the resource consumption of P .

If you work on methods that compute the resource consumption of programs then
you need means to measure the quality of such methods. The first question that you
have to explore is how precise a concrete (non-asymptotic) bound on the resource
consumption, as a function of the sizes of the inputs, can be in general.

Sometimes it is already hard to even describe a resource bound that exactly de-
scribes the worst-case resource behavior of a program for inputs of size n. Consider
for example the well-known algorithm Sieve of Eratosthenes. It takes a list of integers
[2,3,...,n] as input and computes a list of primes that is included in this list. The time
consumption of this algorithm depends on the number of primes in the list. Since there
is an asymptotically tight upper bound on this number (namely O( n

logn )) it is possible to
give an asymmetrically tight upper on the time consumption of the algorithm (namely
O(n(logn)(loglogn))). But in order to give an exact description of the worst-case time
consumption as a function of the length of the input, it seems to be hard to do so without
using a term like “the number of primes less or equal to n”. Such a description is unsat-
isfying in two ways. First, it is maybe not meaningful to a user and, second, the actual
resource consumption for a given input of length n is not immediately computable.

This example shows that it seems that we have to be satisfied with automatic com-
puted bounds that only asymptotically match the worst-case resource behavior. For the
Sieve of Eratosthenes it is however the case that an asymptotically tight bound on its
resource behavior relies on deep results on the density of the primes. So it seems to be
hopeless that it could be automatically computed from the code of the program.

That is why we can not even expect an automatic method to compute asymptotically
tight upper bounds on the worst-case resource behavior in general. This leads to the
question what we expect of automatically generated resource bounds.

Undecidability

The rule of thumb in automatic resource analysis is: if you have nothing but a minimal
requirement on the quality of bounds then the computation of the bounds is already
impossible in general. I illustrate this with two examples.

A first minimal requirement on computed resource bounds would be to demand
that they should be a polynomial if the worst-case resource behavior of the program
is polynomially bounded. Every algorithm that would compute such bounds, could
also be used to decide if a given program runs in polynomial time. But as the following
reduction from the halting problem shows, the latter problem is undecidable. The input
program f is transformed to f ′ such that f ′ first deletes its input and then behaves like
f . It is then the case that f ′ runs in polynomial time (in fact in constant time) if and
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only if f terminates on the empty input.
A second minimal requirement on computed bounds would be to demand that they

should bound the resource usage of a program for a given input with a finite number if
the resource usage for that input is finite. But every algorithm that would compute such
bounds on the running time of programs would directly solve the halting problem. So it
is an undecidable problem to compute such bounds.

Valuation of Resource Analyses

Even though the problem is undecidable, we can still develop algorithms that compute
resource bounds. However, the best we can achieve are algorithms that are not complete.
This means that they may terminate for some input programs without providing bounds.

The means of measurement of the quality of automatic resource analyses are the
following.

• Range: Which programs can be successfully analyzed?

• Precision: How close are the bounds to optimal ones?

• Efficiency: How long does it take to compute bounds?

• Verifiability: How easy is it to check whether a computed bound is sound?

The main challenge in automatic resource analysis is to develop analysis methods
that provide good bounds for as many programs as possible. Theoretically it is even
achievable to find a method that works for nearly all programs that appear in practice.
An analogy are the non-measurable functions in physics: it is well-known that many
functions over the real numbers are not measurable (i.e., do not have a Lebesgue
integral). In practice, however, non-measurable functions hardly ever appear in physical
calculations.

Tour d’Horizon

The state of the art in automatic resource analysis relies on various techniques of
program analysis. On the one hand there is the large field of worst-case execution
time (WCET) analysis, which is mainly focused on the run-time analysis of sequential
code without loops taking into account low-level features like hardware caches and
instruction pipelines [WEE+08].

On the other hand there is an active research community that employs type systems
and abstract interpretation to analyze loops, recursion and data structures. My work
falls within this area of research, which I sketch in this small tour d’horizon. Please refer
to Chapter 8 for a detailed comparison of my work with existing techniques.

Classic methods for automatic or semi-automatic resource analysis are based on
recurrence relations or recurrences. It seems to have been common knowledge since
the earliest days of algorithmic analysis that the resource consumption of recursive
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programs can be naturally described by such recurrence relations [Knu97]. The worst-
case time consumption T (n) of an implementation of insertion sort might for instance
be described by the following recurrence where c0,c1 and c2 are constants.

T (0) = c0

T (n) = c1 + c2(n −1)+T (n −1)

As early as 1975, Wegbreit [Weg75] proposed an automatic analysis that consists of
two phases. First, derive the recurrence relations from the program. Second, compute
closed forms for recurrence relations that can be easily understood and further pro-
cessed. Wegbreit implemented this analysis idea for LISP programs but notes that it
“can only handle simple programs” [Weg75]. The most complicated examples that he
provides are a reverse function for lists and a union function for sets represented by
lists. Nevertheless, Wegbreit’s technique remained predominant in automatic resource
analysis for the next 25 years [Ram79, Coh82, Mét88, HC88, ZZ89, Ros89, FSZ91, DL93,
Ben01, Gro01, BPZZ05, AAGP08, AGM11]. Benzinger [Ben01] notices in 2001:

“Automated complexity analysis is a perennial yet surprisingly disregarded
aspect of static program analysis. The seminal contribution to this area was
Wegbreit’s METRIC system, which even today still represents the state-of-
the-art in many aspects.”

In consideration of the substantial work on Wegbreit’s method, it might be surprising
that comparatively little progress in the area was made. There are two reasons.

1. It is a hard problem to compute recurrence relations from a program.

2. It is a hard problem to find closed forms for recurrence relations.

In general, it is already difficult to manually determine closed forms for recurrence
relations. Admittedly, there exist powerful tools such as the well-known master method
[CSRL01] and its generalizations [AB98, Rou01, EP08]. But these methods only deter-
mine asymptotic bounds and ignore base cases and constant factors. Additionally, the
master theorem only applies to divide-and-conquer recurrences with one variable.

More fundamental approaches for solving recurrence relations build on sophisti-
cated analytic methods such as generating functions [GKP94, FS09].

Such methods are the basis of solvers for automatically computing closed forms of
recurrences that are implemented in computer algebra systems such as Mathematica
and Maple. However, they have limitations that make them less suitable for solving
recurrence relations that originate from programs. For instance, RSolve—the built-in
solver of Mathematica—does not support functions of multiple variables [Ben01].

Obtaining the recurrence relations from a program in the first place is anything but
straightforward, even for simple functional programs. One of the difficulties is that you
need to infer size relations between different program variables. This is an undecidable
problem that is sometimes as difficult as the resource analysis itself. For instance it is
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already non-trivial to infer that a reverse function for lists produces a list of the same
length as the input. That is why many modern automatic resource analyses are still
restricted to simple programs like functions with primitive recursion [Ben01, Ben04].

Recently there has been a lot of progress in both deriving and solving recurrence
relations, especially with techniques that only approximate closed forms with upper
bounds [Ben01, Gro01, Ben04, AAG+07, AAGP08, AGM11]. However, insertion sort is
still at the frontier of the class of programs this technique can handle [Ben01, AGM11]
while slightly more involved programs like quick sort for lists of lists still seem to be
beyond its scope.

The intrinsic problems with the classic methods for automatic resource analysis
caused a renewed research interest in novel approaches to the problem in recent years.

A successful method to estimate time bounds for C++ procedures with loops and
recursion was recently developed by Gulwani et al. [GMC09, GG08] in the SPEED project.
They annotate programs with counters and use automatic invariant discovery between
their values using off-the-shelf program analysis tools which are based on abstract
interpretation. A recent innovation for non-recursive programs is the combination of
disjunctive invariant generation via abstract interpretation with proof rules that employ
SMT-solvers [GZ10].

Another approach is the use of sized types [HPS96, HP99, CK01, Vas08] which pro-
vide a general framework to represent the size of the data in its type.

Most closely related to the work I present in my dissertation is the work on automatic
amortized analysis [HH10a, HH10b, HJ03, HJ06, HR09, JLH+09, JHLH10]. While having
appealing features (see Section 2.2 for an informal introduction) these analyses are
restricted to linear resource bounds and can thus not infer a time bound for a program
like insertion sort.

1.3 Resource-Aware Programming

The aim of my research is to understand, formally describe, and predict the complexity
of computations to simplify the development of reliable software systems. In this
dissertation, I present the first automatic amortized analysis that computes polynomial
resource bounds.

The techniques I present provide foundations for designing and implementing
full-featured programming languages that enable software engineers to work with
quantitative resource bounds in the same way they work with usual type information.
Like types, resource bounds should be inferred in most cases. But if the inference fails it
should be simple and natural to enrich parts of programs with resource information
and to formally reason about soundness in a flexible way.

My work rests upon great achievements in the research on programming languages,
program analysis, and linear optimization. The tools I use include amortized complexity
analysis, linear type systems, operational semantics, and LP solving.
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This Dissertation

In this work, I present Resource Aware ML (RAML), a programming language that sup-
ports automatic computation and verification of resource bounds without sacrificing
natural and succinct programming. RAML is a first-order ML-like language that fea-
tures integers, lists, binary trees, and recursion. The language is small enough to keep
proofs and definitions readable but expressive enough to hint at the treatment of other
language features.

I formalize the resource consumption of the evaluation of RAML programs in a real-
istic and parametric way that allows for both, different hardware architectures and a
wide range of resource metrics. To this end, I define a big-step operational semantics
that is parametrized with resource metrics that can be directly related to the compiled
assembly code for a specific system architecture [JLH+09]. The semantics formalizes
the resource consumption of both terminating and non-terminating computations.

I develop elaborated resource-parametric type systems whose type judgments es-
tablish concrete worst-case bounds in terms of closed, easily understood polynomials.
The type systems allows for an efficient and completely automatic inference algorithm,
which is based on linear programming. As any type systems, they are naturally composi-
tional and lend themselves to the smooth integration of components whose implemen-
tation is not available. Moreover, type derivations can be seen as certificates and can be
automatically translated into formalized proofs in program logic [BHMS04].

I prove the non-trivial soundness of the derived resource bounds with respect to the
formalized resource-consumption of programs by the operational semantics. The proof
is technically involved but relies on standard techniques from program analysis and
type systems.

I verify the practicability of the approach with a publicly available implementa-
tion and a reproducible experimental evaluation. Experiments show that the analysis
works for realistic examples and that the constant factors in the computed bounds are
reasonably precise and even match the measured worst-case running times of many
functions.

To the best of my knowledge, the proposed technique is the first that allows the fully
automatic computation of evaluation-step bounds for involved programs such as quick
sort for lists of lists, the computation of the length of the longest common subsequence
via dynamic programming, and the multiplication of a list of matrices with matching
but possibly different dimensions.

Achievements

Resource Aware ML enables a natural programming style and it can be used without
understanding the built-in automatic resource analysis. Additionally, the amortized
method provides an intuition that guides programmers in writing code that can be
analyzed.

To give you a concrete idea of the analysis from a users’ point of view, I demonstrate
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the resource analysis of the sorting algorithm insertion sort in RAML. Insertion sort can
be implemented like in a textbook on functional programming as follows.

insert: (int,L(int)) → L(int)

insert (x,l) = match l with | nil → [x]
| y::ys → if x <= y then x::y::ys

else y::insert(x,ys);
isort : L(int) → L(int)

isort l = match l with | nil → nil
| x::xs → insert(x, isort xs);

At the press of a button, the prototype implementation produces the following output.
The computation takes less than 0.04 seconds on my laptop1.

The number of evaluation steps consumed by insert is at most:
12.0*n + 5.0

where n is the length of the second component of the input

The number of evaluation steps consumed by isort is at most:
6.0*n^2 + 6.0*n + 3.0

where n is the length of the input

We manually identified worst-case inputs for insertion sort (namely reversely ordered
lists) and compared the measured running time with the computed bound. The results
show that RAML computes a tight evaluation-step bound for insertion sort. To the
best of my knowledge, no other paper reported an automatically computed bound for
insertion sort that exactly matches its measured run-time cost.

It is possible to link the resource metric to a compiler and to specific system archi-
tectures [JLH+09] to bound the number of clock cycles on that architecture. In this way,
a programmer can compare the performance guaranties for different implementations
and different systems in a couple of seconds while developing a program.

As any automatic method for resource bound computation, the technique we devel-
oped for RAML has limitations. The computed bounds are polynomials and the user
has to provide a maximal degree of the bounding polynomials. The larger the maximal
degree is, the larger is the search space of the bounds. The result of a successful analysis
does however not depend on the maximal degree.

It is technically convenient to work with polynomials since they are closed un-
der composition, multiplication and addition. Furthermore, polynomially bounded
functions are considered to be the class of efficient computation by many computer
scientists.

In the following, I summarize the features of my analysis technique by applying the
means of measurement of the quality of automatic resource analyses from Section 1.2.

1A 2010 MacBook Air with a 2.13 GHz Intel Core 2 Duo.
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Range Our method is restricted to polynomial bounds and there is still a large number
of polynomially bounded programs that cannot be analyzed in our system. An
example is the sorting algorithm bubble sort, which is often implemented such
that the function is recursively called if the input list is not sorted already. Further-
more, the bounds are functions of sizes of inductive data structures such as lists
and trees but not functions of integer or floating-point inputs.

It is not easy to abstractly characterize the class of programs that can be analyzed
because the analysis does not impose any syntactic restrictions on RAML pro-
grams. For instance, it is entirely possible to compute a resource bound for a
non-terminating program if its resource consumption is polynomial with respect
to a given resource (e.g. heap space).

However, the experiments with the prototype indicate that the analysis scales
well for larger programs that are written in a programming style that is usually
used by functional programmers. Our method performs particularly well on
programs with nested data structures, non-structural recursion, and composed
functions. For instance, RAML computes a evaluation-step bound for a program
that takes a tree of matrices (lists of lists) with matching but arbitrary many
dimensions and multiplies the matrices in breadth-first order using a functional
queue implemented with two lists.

Precision An automatic analysis can of course not always achieve the same accuracy as
a careful manual analysis. Since RAML computes polynomial bounds, it can not
infer an asymptotically tight evaluation-step bound for a function such as merge
sort. It has an asymptotic worst-case running time of O(n logn) but the analysis
computes a quadratic bound.

RAML infers however asymptotically tight bounds for most examples with a
polynomial worst-case behavior that we implemented. We manually identified
worst-case inputs of several sizes for some of the examples and compared the
measured resource consumptions to the computed bounds. Our experiments
show that the constant factors in the bounds are surprisingly precise and even
exactly match measured resource consumption for many programs, including
quick sort and insertion sort for lists of lists.

Efficiency The inference of the resource bounds is performed in two steps. First, RAML
computes a set of linear constraints from the program text. Second, the con-
straints are solved by an off-the-shelf LP solver. The number of linear constraints
grows exponentially in both the size of the program and the maximal degree of
the bounds that the analyzer is trying to find.

In practice, the analysis works fast and efficient. If the maximal degree is low then
you can compute bounds for programs with several hundred lines of code in a
few seconds. Even for more complicated examples that require a higher maximal
degree the analysis is reasonably efficient. For example, the computation of the
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evaluation-step bound for the breadth-first traversal with matrix multiplication
has about 80 lines of code, requires a maximal degree of 5, and runs in 35 seconds
on a 2010 MacBook Air with a 2.13 GHz Intel Core 2 Duo.

One reason for the efficiency of the analysis is that the linear constraints that the
type system admits have a very simple form. It is similar to LPs that are derived
from network flow problems. Such network problems can be solved by LP solvers
extremely fast without using floating point arithmetic. In fact, the computation of
the constraints takes often longer than the actual constraint solving2.

Note that we focused on soundness rather than efficiency in our Haskell prototype
implementation. There is a lot of room for improvement by writing more efficient
code, reducing the number of constraints, better integrating the LP solver, and
using a commercial, industrial-strength LP solver.

Verifiability A great advantage of the type-based approach is that our analysis not
only computes a worst-case resource bound but also a type derivation for that
bound. This type derivation can be seen as a proof for the bound that can be
easily checked.

A type derivation of a bound can be automatically translated into formalized
proofs in program logic [BHMS04]. These proofs can be shipped with the program
to certify its resource consumption.

In general, our automatic analysis copes gracefully with failure. Our type-based ap-
proach enables the seamless integration of manually analyzed portions of code by
expressing the derived bounds in our resource-parametric types. This enables the man-
ual improvement of automatically generated bounds and the automatic analysis of code
that uses the manually analyzed parts.

Functional Programming

There are several reasons why I decided to analyze functional rather than imperative or
object-oriented programs. For one thing, I favour functional programming languages
because they inspire programmers to strive for elegance and beauty. For another thing,
I find it beneficial to study my analysis method on purely functional programs first
because I can focus on the actual resource analysis without dealing with the notorious
pitfalls of the imperative world:

• The resource consumption of RAML functions depends only on their arguments
rather than on the global program state.

• Data structures such as lists and trees are guaranteed to be acyclic.

2We use the fantastic open-source LP-solver CLP from the COIN-OR project.
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• RAML programs are well-typed and can’t go wrong at run time if they have enough
resources.

I have often been criticized for analyzing functional programs and a critical reader might
raise the following objection:

“Functional programming might be great in theory but it is too slow and
not used in practice—especially not in embedded system and real-time
systems, which require exact control of resources.”

It is true that the majority of program code is written in object-oriented and imperative
languages. It is also true that some problems such as maintaining large hash tables
should be solved in an imperative style for performance reasons. That is why I find it
important to develop automatic resource analysis for imperative languages. However,
many new concepts have been studied carefully for functional languages first before
they have been transferred to imperative programs. Examples are static type systems
and type inference, polymorphism, and function closures.

Moreover, functional programming languages are more and more used in practice.
A popular example is Microsoft’s F# on the .NET platform.

In safety-critical embedded systems, functional programming has a long and suc-
cessful history. The synchronous data-flow language Lustre was introduced in 1987
[CPHP87] and is now the core of Scade, a commercial software suit for the development
of safety-critical embedded software. Scade is used by many well-known companies,
including Airbus, Eurocopter, and Siemens3. Examples of modern functional languages
for embedded systems are Lucid Synchrone [Pou06] and Hume [HM03].

The developers of Hume integrated a linear automatic amortized analysis into a
compiler for Hume [HDF+06]. It has been successfully used in concrete embedded
system to compute memory and clock-cycle bounds for 32 MHz Renesas M32C/85U
embedded micro-controllers [JLH+09]. Also note that many embedded systems are
developed by using graphical modeling tools that generate C code [KSLB03]. I think that
resource analyses are best integrated in these high-level modeling tools and that my
approach could be of interest there [CCM+03].

3See http://www.esterel-technologies.com

http://www.esterel-technologies.com
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Informal Account

In this chapter, I introduce the idea of automatic amortized analysis and informally
present the main contributions of my work.

First, Section 2.1 presents amortized analysis with the potential method, a technique
for quantitative analysis that has been introduced by Tarjan [Tar85] to manually analyze
the efficiency of data structures and algorithms.

By presenting illustrative examples, I then show in Section 2.2 how this technique
can be automated to statically analyze programs. I follow the chronological order
of the development of this automatic amortized resource analysis. That is, I move
from the analysis of programs with linear resource consumption [HJ03], to programs
with univariate polynomial resource consumption [HH10b, HH10a], to programs with
multivariate polynomial resource consumption [HAH11].

The extension of automatic amortized resource analysis from linear to (univari-
ate and multivariate) polynomial bounds is the main contribution of my dissertation.
Section 2.3 summarizes the main novel ideas and concepts that I contribute.

2.1 Manual Amortized Analysis

For a given data structure we are often interested in the cost of a sequence of operations
whose costs vary depending on the state of the data structure. To analyze such a
sequence of operations, Sleator and Tarjan [Tar85] proposed amortized analysis with
the potential method.

The concept of potential is inspired by the notion of potential energy in physics. The
idea is to define a potential functionΦ(D) that maps data structures D to non-negative
numbers. Operations that change the data structure can then cause a gain or loss of
potential. The amortized cost A(op(D)) of an operation op(D) is defined as the sum of
its actual cost K (op(D)) and the (possibly negative) difference of the potentials before

15
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and after its evaluation:

A(op(D)) = K (op(D))+Φ(op(D))−Φ(D)

The sum of the amortized costs taken over a sequence of operations plus the potential
of the initial data structure then furnishes an upper bound on the actual cost of that
sequence.

Φ(D0)+ ∑
1≤i≤n

A(op(Di)) = Φ(D0)+ ∑
1≤i≤n

K (op(Di))+Φ(Di )−Φ(Di−1)

= Φ(Dn)+ ∑
1≤i≤n

K (op(Di)) ≥ ∑
1≤i≤n

K (op(Di))

Tarjan [Tar85] describes the advantages of amortized analysis as follows.

“A worst-case analysis, in which we sum the worst-case times of the indi-
vidual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an
average-case analysis may be inaccurate, since the probabilistic assump-
tions needed to carry out the analysis may be false. In such a situation, an
amortized analysis, in which we average the running time per operation
over a (worst-case) sequence of operations, can yield an answer that is both
realistic and robust.”

A standard example [Oka98] that demonstrates the benefits of the amortized method
is the analysis of a functional queue. A queue is a first-in-first-out data structure with
the operations enqueue and dequeue. The operation enqueue(a) adds a new element
a to the queue. The operation dequeue() removes the oldest element from the queue. A
queue is often implemented with two lists Lin and Lout that act as stacks. To enqueue a
new element in the queue, you simply attach it to the beginning of Lin. To dequeue an
element from the queue, you detach the first element from Lout . If Lout is empty then
you transfer the elements from Lin to Lout , thereby reversing the order of the elements.

The problem is now to determine the number of list (or stack) operations (attach
and detach) that are needed to perform a sequence of enqueue and dequeue operations.
The difficulty is that the cost of dequeue is not constant but depends on the state of the
data structure.

To ease the analysis, we introduce a potential Φ(Lin,Lout) = 2 · |Lin| that is defined
as twice the length of the list Lin. The amortized cost of enqueue is then A(enqueue)
= 3—one to pay for the attachment to Lin and two to pay the increase of potential. The
amortized cost of dequeue is A(dequeue) = 1. To see why, we consider two cases. If Lout

is not empty then we just detach the first element of Lout and the potential is unchanged.
So the amortized cost is simply the actual cost 1 in this case. If Lout is empty then we
have to move the elements in Lin to Lout . The actual cost is then 2 · |Lin|. Because Lin

is empty thereafter, 2 · |Lin| is exactly the decrease of potential that is caused by the
move. And since we finally have to detach the first element of Lout , the amortized cost is
A(dequeue) = (2 · |Lin|+1)+0−2 · |Lin| = 1.
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Following the potential method, we now have to sum up the initial potential and the
amortized costs of operations. That is why our analysis shows that the number of list
operations performed in a sequence of m enqueue and n dequeue operations is less
than 3 ·m +n +2 ·k if k is the initial length of Lin.

2.2 Automatic Amortized Analysis

In the following I apply the potential method of amortized analysis to statically analyze
functional programs. In a nutshell, the idea is as follows. Look upon a program as
a graph in which the edges are the atomic steps performed by the program and the
vertices are the program points between the atomic steps.

We now label each program point with a potential function, a mapping from ma-
chine states to numbers. Our goal is to find a labeling that covers the resource costs of
all possible evaluations of the program; that is, to find potential functions such that for
every possible evaluation, the potential at a program point suffices to cover the cost of
the next transition and the potential at the succeeding program point.

In this approach, the amortized costs of the transitions are always less or equal
to zero. The initial potential is therefore already an upper bound on the resource
consumption of the program.

A programmer should not be bothered with the clutter of the potential functions in
her programs. That would reduce her productivity and would make the code harder to
read. Instead, the potential functions should be inferred completely automatically by
the computer.

To make such an automatic amortized analysis feasible, it is necessary to restrict the
choice of potential functions. The more potential functions we allow, the more accurate
and wide-ranging is the analysis. However, there is a trade-off between the diversity of
potential functions and the efficiency of the analysis.

2.2.1 Linear Potential

The first automatic amortized analysis was introduced by Hofmann and Jost [HJ03] to
analyze the heap-space consumption of first-order functional programs. They fixed
potential functions to be linear in the size of the data in the memory.

The potential at a program point is defined by a static annotation of the reachable
data at that point. More precisely, inductive data structures are statically annotated
with non-negative rational numbers q to define non-negative potentials Φ(n) = q ·n
as a function of the size n of the data. Then a sound, albeit incomplete, type-based
analysis of the program text statically verifies that the potential is sufficient to pay for all
operations that are performed on this data structure during any possible evaluation of
the program.

This idea is best explained by example. Consider the function attach that takes
an integer and a list of integers and returns a list of pairs of integers such that the
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first argument is attached to every element of the list. For instance, the expression
attach(1,[1,2,3,4]) evaluates to [(1,1),(1,2),(1,3),(1,4)]. The function can be implemented
as follows.

attach(x,l) = match l with | nil → nil
| y::ys → (x,y)::(attach (x,ys))

Suppose that we need three memory cells to create a list cell of the resulting list—two
cells for the pair of integers and one cell for the pointer to the next list element. The
heap-space usage of an execution of attach(x,`) is then 3n memory cells if n is the length
of `.

To infer an upper bound on the heap-space usage of the function, we annotate the
type of attach with a priori unknown resource annotations s, s′, q and p that range over
non-negative rational numbers.

attach : (int,Lq (int))−−−→s/s′ Lp (int, int)

The intuitive meaning of the resulting typing is as follows: to evaluate attach(x,`) one
needs q memory cells per element in the list ` and s additional memory cells. After the
evaluation there are s′ memory cells and p cells per element of the returned list left.
We say that the list ` has potential Φ(`, q) = q · |`| and that the list `′ = attach(x,`) has
potentialΦ(`′, p) = p · |`′|.

A static type analysis of the program code then derives linear constraints on the
resource annotations. In the case of attach, the constraints would essentially state that
q ≥ 3+p and s ≥ s′. Every valid instantiation of the resource annotations must satisfy
these constraints. For instance, the following typing of attach is valid.

attach : (int,L(3)(int))−−−→0/0 L(0)(int, int)

It states that the heap-space consumption of the function is less than the initial potential
3·n if n is the length of the input list and thus furnishes a tight upper bound. The function
attach can also be typed as follows.

attach : (int,L(5)(int))−−−→6/6 L(2)(int, int)

This typing could be used for an inner occurrence of attach to type an expression like
f(attach(z,ys)) if the evaluation of f (`) would consume 6+2 · |`| heap cells.

The use of linear potential functions relieves one of the burden of having to manipu-
late symbolic expressions during the analysis by a priori fixing their format. This gives
rise to a particularly efficient inference algorithm for the type annotations. It works like
a standard type inference in which simple linear constraints are collected as each type
rule is applied.

The constraints are solved with a linear-programming solver (LP solver) to obtain
the best possible typing for the program. The function type that is needed to minimize
the initial potential depends on the context in which the function is applied.
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Automatic amortized analysis can be used with generic resource metrics [JLH+09].
As a result it can derive bounds on every quantity whose consumption in an atomic step
is bounded by a constant. An important example is time consumption. Consider for
instance the function filter:(int,L(int)) → L(int) that removes the multiples of a given
integer from a list of integers.

filter(p,l) = match l with | nil → nil
| x::xs → let xs’ = filter(p,xs) in

if x mod p == 0 then xs’ else x::xs’

Suppose that the evaluation of the expression filter(p,`) takes at most 16 · |`|+3 atomic
steps. Then the following typing expresses a tight upper bound.

filter : (int,L(16)(int))−−−→3/0 L(0)(int)

As in the case of heap-space consumption, we can infer these potential annotations by
solving the linear constraints that are produced by our type inference algorithm.

Since amortized analysis takes into account the interaction between the steps of a
computation, it obtains tighter bounds than a mere addition of the worst case resource
bounds of the individual steps. Generally, the constants in the bounds are very precise
and often match exactly the worst-case behavior of the functions. Thanks to efficient,
off-the-shelf LP solvers, the analysis takes only a few seconds, even on larger programs.

Hofmann and Jost’s technique has been successfully applied to object-oriented
programs [HJ06, HR09], to generic resource metrics [JLH+09, Cam09], to polymorphic
and higher-order programs [JHLH10], and to Java-like bytecode by means of separation
logic [Atk10]. The main limitation shared by these analysis systems is their restriction to
linear resource bounds to enable efficient inference using linear constraint solving.

Chapter 4 formally describes linear automatic amortized analysis for first-order
monomorphic functional programs.

2.2.2 Univariate Polynomial Potential

Linear amortized analysis is appealing because it offers a good trade-off between effi-
ciency and range of the analysis. It can analyze many linear functions that appear in
programming and the computation of the bounds takes only a view seconds on usual
computers.

However, its limitation to linear bounds hampers its applicability in practice. Despite
some efforts [SvKvE07], the problem of extending automatic amortized analysis to super-
linear bounds remained open for several years.

A challenge in the extension to super-linear potential is to identify a set of functions
that is both simple enough to allow for an efficient manipulation and expressive enough
to constitute accurate bounds. A key point is the adaption of potential functions if
the size of a data structure changes. How can we for instance transform a potential
function f to a potential function f ′ such that f ′(n) = f (n −1)? Such transformations
are constantly needed in pattern matches and data construction. Thus they should be
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very easy to compute but should not cause any loss of potential to ensure the precision
of the bounds.

Recently, we were able to develop an automatic amortized analysis that efficiently
computes (univariate) polynomial resource bounds for functional programs at compile
time [HH10b, HH10a]. The main innovation is the use of potential functions of the form

∑
1≤i≤k

qi

(
n

i

)
with qi ≥ 0

They are attached to inductive data structures via type annotations of the form ~q =
(q1, . . . , qk ) with qi ∈ Q+

0 . For instance, the typing `:L(3,2,1)(int), defines the potential

Φ(`, (3,2,1)) = 3|`| +2
(|`|

2

)+1
(|`|

3

)
. One intuition for these numbers is as follows: The

annotation ~q assigns the potential q1 to every element of the list, the potential q2 to
every element of every proper suffix of the list, q3 to the elements of the suffixes of the
suffixes, etc.

To achieve a highly efficient computation of valid polynomial potential annotations
we designed a type system that emits linear constraints only. In this way, we build on
the tried-and-tested technique of the linear analysis system and can use fast LP solvers
to compute the bounds.

In a nutshell, our approach is as follows. We start from an as yet unknown potential-
function of the form

∑
p j (n j ) with polynomials p j of a given maximal degree k and

n j referring to the sizes of the parameters. We then derive linear constraints on the
coefficients of the p j by type-checking the program. Recall that the polynomials p(n)
of degree k are represented as sums

∑
0≤i≤k qi

(n
i

)
with qi ≥ 0. Compared with the

traditional representation
∑

qi ·ni , qi ≥ 0, the use of binomial coefficients has the
following advantages.

1. Some naturally arising resource bounds such as
∑

1≤i≤n i cannot be expressed as
a polynomial with non-negative coefficients in the traditional representation. On
the other hand it is true that

(n
2

)=∑
1≤i≤n i .

2. It is the largest class C of non-negative, monotone polynomials such that p ∈C

implies f (n) = p(n +1)−p(n) ∈C (see Chapter 5). All three properties are clearly
desirable. The latter one, in particular, expresses that the “spill” arising upon
shortening a list by one falls itself into C .

3. The identity
∑

1≤i≤k qi
(n+1

i

)= q1 +∑
1≤i≤k−1 qi+1

(n
i

)+∑
1≤i≤k qi

(n
i

)
gives rise to a

local typing rule for pattern matches which naturally allows the typing of both
recursive calls and other calls to subordinate functions.

4. The linear constraints arising from the type inference have a very simple form
due to the above equation. In particular, each constraint involves at most three
variables without any multiplicative factors and is thus of the form x1+x2−x3 ≥ q .
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A key notion in the polynomial system is the additive shiftC of a type annotation which
is defined throughC(q1, . . . , qk ) = (q1 +q2, . . . , qk−1 +qk , qk ) to reflect the identity from
item 3. It is for instance present in the typing tail : L~q (int)−−−−→0/q1 LC(~q)(int) of the function
tail that removes the first element from a list.

The idea behind the additive shift is that the potential resulting from the contraction
xs:LC(~q)(int) of a list (x::xs):L~q (int) (usually in a pattern match) is used for three purposes:
i) to pay the constant costs after and before the recursive calls (using q1), ii) to fund calls
to auxiliary functions (using (q2, . . . , qn)), and iii) to pay for the recursive calls (using
(q1, . . . , qn)).

To see how the polynomial potential annotations are used to compute polynomial
resource bounds, consider the function pairs that computes the two-element subsets of
a given set (representing sets as tuples or lists).

pairs l = match l with | nil → nil
| x::xs → append(attach(x,xs),pairs xs)

append(l1,l2) = match l1 with | nil → l2
| x::xs → x::append(xs,l2)

The expression pairs([1,2,3]) evaluates for example to [(1,2),(1,3),(2,3)]. The function
append consumes 3 memory cells for every element in the first argument. Similar to
attach we can compute a tight resource bound for append by inferring the type

append : (L(3)(int, int),L(0)(int, int))−−−→0/0 L(0)(int, int) .

The evaluation of the expression pairs(`) consumes six memory cells per element of
every suffix of `. The type that our system infers for pairs is

pairs : L(0,6)(int)−−−→0/0 L(0)(int, int) .

It states that a list ` in an expression pairs(`) has the potentialΦ(`, (0,6)) = 0 · |`|+6 ·(|`|2

)
and thus furnishes a tight upper bound on the heap-space usage.

To type the function’s body, the additive shift assigns the type xs:L(0+6,6)(int) to the
variable xs in the pattern match. The potential is shared between the two occurrences
of xs in the following expression by using xs:L(6,0)(int) to pay for append and attach (ii)
and using xs:L(0,6)(int) to pay for the recursive call to pairs (iii); the constant costs (i) are
zero in this example.

To compute the bound, we start with an annotation of the list types with resource
variables as before.

pairs l = match l(q1,q2) with | nil → nil
| x::(xs(p1,p2)) → append(attach(x,xs(r1,r2)),pairs xs(s1,s2))

The constraints that our type system computes include q2≥p2 and q1+q2≥p1 (additive
shift); p1=r1+s1 and p2=r2+s2 (sharing between two variables); r1≥6 (pay for non-
recursive function calls); q1=s1, q2=s2 (pay for the recursive call). This system is solvable
by q2 = s2 = p1 = p2 = r1 = 6 and q1 = s1 = r2 = 0.
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For an example of a polynomial evaluation-step bound, consider the function
eratos:L(int)→L(int) that implements the sieve of Eratosthenes. It successively calls
the function filter to delete multiples of the first element from the input list. If eratos
is called with a list of the form [2,3, . . . ,n] then it computes the list of primes p with
2 ≤ p ≤ n.

eratos l = match l with | nil → nil
| x::xs → x::eratos(filter(x,xs))

Recall the worst-case number of atomic steps that filter(x) needs is 16 · |x|+3. This exact
bound is reflected in the typing filter: (int,L(16)(int))−−−→3/0 L(0)(int).

In an evaluation of eratos(`), the function filter is called once for every sublist of
the input list ` in the worst case. The calls of filter thus need 16

(n
2

)+3n atomic steps
in the worst-case. This is for example the case if ` is a list of pairwise distinct primes.
Additionally to the cost caused by filter, eratos needs 3 steps if the list is empty and 9
steps for each element in the input list. Thus, the total worst-case number of atomic
steps the function needs, is 16

(n
2

)+12n +3 if n is the size of the input list.
To bound on the number of atomic steps needed by eratos, our analysis system

automatically computes the following type.

eratos : L(12,16)(int)−−−→3/0 L(0)(int)

Since the typing assigns the initial potential 16
(n

2

)+12n +3 to a function argument of
size n, the analysis computes a tight evaluation-step bound for eratos.

Univariate polynomial amortize analysis is presented in Chapter 5 in detail.

2.2.3 Multivariate Potential

The univariate polynomial analysis [HH10b, HH10a] works for many functions that
admit a worst-case resource consumption that can be expressed by sums of univariate
polynomials like n2 +m2. However, many functions with multiple arguments that
appear in practice have multivariate cost characteristics like m·n. Moreover, if data from
different sources are interlinked in a program then multivariate bounds like (m +n)2

arise even if all functions have a univariate resource behavior. In these cases, the analysis
fails, or the bounds are hugely over-approximated by 3m2 +3n2. The reason is that the
potential is attached to a single data structure and does not take into account relations
between different data structures.

To overcome these drawbacks, we developed an automatic type-based amortized
analysis for multivariate polynomial resource bounds [HAH11]. We faced two main
challenges in the development of the analysis.

1. The identification of multivariate polynomials that accurately describe the re-
source cost of typical examples. It is necessary that they are closed under natural
operations to be suitable for local typing rules. Moreover, they must handle an
unbounded number of arguments to accurately cope with nested data structures.
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2. The smooth integration of the inference of size relations and resource bounds
to deal with the interactions of different functions while keeping the analysis
technically feasible in practice.

To address challenge one, we defined multivariate resource polynomials that are a
generalization of the resource polynomials that are used in the univariate system (see
Chapter 6). These polynomials are used as global polynomial potential functions which
depend on the sizes of several parts of the input. Consequently, types are annotated
with one global resource annotation in contrast to the local list annotations of the linear
and univariate systems.

To address challenge two, we introduced local type rules that emit only simple linear
constraints and are remarkably modest considering the variety of relations between
different parts of the data that are taken into account.

The shape of the global potential annotations depends on the type of the respective
data structures. The annotations take into account a wide range of connections between
different parts of the data and are syntactically given by an inductively-defined index
system. To give a flavor of the basic ideas, I informally introduce this global potential in
this section for pairs of integer lists.

The initial potential of a function with arguments that are single integer lists can
be expressed as a vector (q0, q1, . . . , qk ) that defines a potential-function of the form∑

0≤i≤k qi
(n

i

)
. Note that the constant potential q0 is already included in these global

potential annotations. With this notation the types of the functions pairs and eratos
from the previous subsection can be written as follows.

pairs : (L(int), (0,0,6)) → (L(int), (0,0,0))

eratos : (L(int), (3,12,16)) → (L(int), (0,0,0))

To represent mixed terms of degree ≤ k for a pair of integer lists we use a triangular
matrix Q = (q(i , j ))0≤i+ j≤k with q(i , j ) ≥ 0. Then Q defines a potential-function of the form

∑
0≤i+ j≤k

q(i , j )

(
n

i

)(
m

j

)

where m and n are the lengths of the two lists.
This definition has the same advantages as the univariate version of the system.

Particularly, we can still use the additive shift to assign potential to sublists. To generalize
the additive shift of the univariate system, we use the following identity.

∑
0≤i+ j≤k

q(i , j )

(
n +1

i

)(
m

j

)
= ∑

0≤i+ j≤k−1
q(i+1, j )

(
n

i

)(
m

j

)
+ ∑

0≤i+ j≤k
q(i , j )

(
n

i

)(
m

j

)

It is reflected by two additive shiftsC1(Q) = (q(i , j )+q(i+1, j ))0≤i+ j≤k andC2(Q) = (q(i , j )+
q(i , j+1))0≤i+ j≤k where q(i , j ) :=0 if i + j > k. The shift operations can be used like in
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the univariate case. For example, we derive the typing tail1: ((L(int),L(int)),Q) →
((L(int),L(int)),C1(Q)) for the function tail1(xs,ys)=(tail xs,ys) and every annotation Q.

To see how the mixed potential is used, consider the function dyad that computes
the dyadic product of two lists.

mult(x,l) = match l with | nil → nil
| y::ys → x*y::mult(x,ys)

dyad(l,ys) = match l with | nil → nil
| x::xs → (mult(x,ys))::dyad(xs,ys)

Similar to previous examples, mult consumes 2n heap cells if n is the length of input.
This exact bound is represented by the typing

mult : ((int,L(int)), (0,2,0)) → (L(int), (0,0,0))

that states that the potential is 0+2n+0
(n

2

)
before and 0 after the evaluation of mult(x,`)

if ` is a list of length n.
The function dyad consumes 2n+2nm heap cells if n is the length of first argument

and m is the length of the second argument. This is why the following typing represents
a tight heap-space bound for the function.

dyad : ((L(int),L(int)),

0 0 0
2 2
0

 ) → (L(L(int)),0)

To verify this typing of dyad, the additive shiftC1 is used in the pattern matching. This
results in the potential

(xs,ys) : ((L(int),L(int)),

2 2 0
2 2
0

 )

that is used as in the function eratos: the constant potential 2 is used to pay for the
cons operation (i), the linear potential y s:(L(int), (0,2,0)) is used to pay the cost of the
evaluation of mult(x,ys) (ii), the rest of the potential is used to pay for the recursive call
dyad(xs,ys) (iii).

Multivariate potential is also needed to assign a super-linear potential to the result
of a function like append. This is, for example, needed in order to type an expression
such as pairs(append(`1,`2)). If we consider heap-space consumption, append can
have the following type.

append : ((L(int),L(int)),

0 0 6
2 6
6

 ) → (L(int), (0,0,6)) .

The correctness of the bound follows from the convolution formula
(n+m

2

)= (n
2

)+ (m
2

)+
nm and from the fact that append consumes 2n heap cells if n is the length of the first
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argument. The respective initial potential 2n+6(
(n

2

)+(m
2

)+mn) furnishes a tight bound
on the worst-case heap-space consumption of the evaluation of pairs(append(`1,`2)),
where |`1| = n and |`2| = m.

I formally describe the multivariate analysis system in Chapter 6.

2.3 Overview of Contributions

The contributions of my dissertation were presented at the 19th European Symposium
on Programming (ESOP’10) [HH10b], the eighth Asian Symposium on Programming
Languages and Systems (APLAS’10) [HH10a], and the 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL’11) [HAH11].

The main developments of the work with my collaborators are the following.

1. We addressed the longstanding problem of extending amortized analysis to non-
linear resource bounds by presenting an automatic amortized analysis that com-
putes univariate polynomial resource bounds [HH10b]. (Chapter 5)

2. We identified non-negative linear combinations of binomial coefficients as an
ideal set of polynomial potential functions. They allow for an easy manipula-
tion in local type rules despite being fine-grained enough to represent accurate
bounds [HH10b]. (Chapter 5)

3. The main challenge for the inference of polynomial bounds is the need to deal
with resource-polymorphic recursion (see Chapter 5), which is required to type
most of the example programs we tested. It seems to be a hard problem to infer
general resource polymorphic recursion, even for the linear system.

We presented [HH10a] a pragmatic approach to resource-polymorphic recursion
that works well and efficiently in practice. Despite being not complete with respect
to the type rules, it infers types for most functions that admit a type-derivation.
(Chapters 5 and 6)

4. Classically, the soundness theorems for automatic amortized analyses show that
the derived resource bounds are sound with respect to a big-step operational
semantics. A dissatisfying feature of classical big-step semantics is that it does
not provide evaluation judgments for non-terminating evaluations. As a result,
the soundness theorems for amortized resource analyses have in the past been
formulated for terminating evaluations only [HJ03, JLH+09, JHLH10].

We introduced [HH10a] a novel big-step operational semantics for partial evalua-
tions that agrees with the usual big-step semantics on terminating computations.
In this way, we retain the advantages of big-step semantics (shorter, less syntactic
proofs; better agreement with actual behaviour of computers) while capturing
the resource behaviour of non-terminating programs. This enables the proof of
a strong soundness result: if the type analysis has established a resource bound
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then the resource consumption of the (possibly non-terminating) evaluation does
not exceed the bound. It follows that run-time bounds also prove termination.
(Chapter 3)

5. We defined multivariate resource polynomials that generalize univariate resource
polynomials and developed type annotations that correspond to global polyno-
mial potential functions for amortized analysis which depend on the sizes of
several data structures [HAH11]. (Chapter 6)

6. We developed a multivariate polynomial amortized analysis [HAH11]. It uses local
type rules that modify type annotations for global potential functions. The type
rules emit only simple linear constraints and are remarkably modest considering
the variety of relations between different parts of the data that are taken into
account. (Chapter 6)

7. We verified the practicability of our approach with a publicly available implemen-
tation and a reproducible experimental evaluation1 [HH10b, HH10a, HAH11].

Our experiments with the prototype implementation show that our system auto-
matically infers tight univariate and multivariate bounds for complex programs
that involve nested data structures such as trees of lists. Additionally, it can deal
with the same wide range of linear programs as the previous systems.

For instance, the prototype automatically infers evaluation-step bounds for the
sorting algorithms quick sort and insertion sort that exactly match the measured
worst-case behavior of the functions [HH10a].

Other representative examples are the successful and precise analyses of the
dynamic programming algorithm for the length of the longest common subse-
quence of two lists and of an implementation of matrix multiplication where
matrices are lists of lists of integers. (Chapter 7)

1See http://raml.tcs.ifi.lmu.de for a web interface, example programs, and the source code.

http://raml.tcs.ifi.lmu.de


Retrofitting a type system onto a language not
designed with typechecking in mind can be
tricky; ideally, language design should go
hand-in-hand with type system design.

BENJAMIN C. PIERCE

Types and Programming Languages (2002)3
Resource Aware ML

This chapter introduces the functional programming language Resource Aware ML
(RAML), a first-order, monomorphic fragment of ML that features lists, binary trees, and
recursion.

In Section 3.1, I define the syntax of RAML. Section 3.2 contains a standard type
system for RAML, as well as the definitions of well-typed expressions and well-typed
programs. To prove the correctness of the resource analyses, I introduce a cost-aware
big-step operational semantics for RAML in Section 3.3. It formalizes the call-by-value
evaluation of RAML programs and monitors the resource consumption during eval-
uation. The semantics is parametric in the monitored resource and can track every
quantity whose consumption during an atomic step is bounded by a constant.

3.1 Syntax

RAML is a first-order functional language with ML-like syntax. It features booleans,
integers, pairs, lists, binary trees, recursion and pattern match. I decided to use an
ML-like syntax because most people who know functional programming are familiar
with ML. Consequently, it should be easy for them to read and write RAML programs.

I tried to keep the language as small as possible to enable definitions and proofs that
are short enough to be checked by the reader in reasonable time. On the other hand,
I wanted to include just enough features to demonstrate the main capabilities of the
analysis techniques.

There are two main differences between RAML and ML. Firstly, RAML only allows
for first-order and monomorphic functions. This greatly simplifies the type system and
the semantics. To analyze higher-order and polymorphic programs, it is possible to
transform them to equivalent first-order, monomorphic programs prior the analysis by
defunctionalization [Rey72]. Moreover, there exists a linear amortized analysis system

27
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that directly analyzes higher-order and polymorphic programs [JHLH10]. I think that
the techniques described there also apply to the polynomial analysis systems I develop
in this theses.

The second difference to ML is that RAML only contains binary trees and lists rather
than user-definable inductive data types. This simplifies the type systems and the
semantics while providing the main ideas of how to deal with inductive data structures
in the analysis systems.

Below is the EBNF grammar for the expressions of RAML. I skip the standard defini-
tions of integer constants n ∈Z and variable identifiers x, f ∈ VID.

e ::= () | True | False | n | x

| x1 binop x2 | f (x)

| let x = e1 in e2 | if x then et else e f

| (x1, x2) | nil | cons(xh , xt ) | leaf | node(x0, x1, x2)

| match x with (x1, x2) → e

| match x with
nil → e1

cons(xh , xt ) → e2

| match x with
leaf → e1

node(x0, x1, x2) → e2

binop ::=+ | − | ∗ | mod | div | and | or

The expressions of RAML are in let normal form. This means that term formers are
applied to variables only, whenever possible. This simplifies typing rules and semantics
considerably without hampering expressivity in any way.

In the implementation we transform unrestricted expressions into a let normal form
with explicit sharing before the type analysis. This is straightforward and reduces the
complexity of the implementation of the analysis. Explicit sharing means that multiple
occurrences of variables are introduced explicitly. Details on the code transforma-
tions that are preformed in the implementation before the analysis are described in
Section 7.1.

In the examples in this theses, I use the same unrestricted RAML expressions as in
the implementation to make them more readable. I also write (x::y) instead of cons(x,y).

For the resource analysis it is unimportant which ground operations are used in
the definition of binop. In fact, you can use here every function that has a constant
worst-case resource consumption. I assume that integers have a fixed length, say 32
bits, to ensure this property of the integer operations. In the implementation we have
some more operators such as ==, <, and >.

I also included a destructive pattern match in the implementation to enable manual
deallocation. The treatment of destructive pattern matches in the analysis systems is
very similar to the treatment of usual pattern matches. Since it does not convey any
additional features of the analysis systems, I exclude it from this dissertation. You can
find details on destructive pattern matching in the literature [HJ03].
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3.2 Simple Types

In this section, I define the well-typed expressions of RAML by assigning a simple type—
a usual ML type without resource annotations—to well-typed expressions. I then define
well-typed (first-order) RAML programs.

Simple types are data types A and first-order types F as given by the following
grammars.

A ::= unit | bool | int | L(A) | T (A) | (A, A)

F ::= A → A

Let A be the set of simple data types and let F be the set of simple first-order types as
defined by the preceding grammars.

To each data type A ∈A we assign a set of semantic values �A� in the obvious way.
For example �T (int, int)� is the set of finite binary trees whose nodes are labeled with
pairs of integers.

If t ∈ T (A) is a binary tree then I write elems(t) = [a1, . . . , an] for the list of nodes
a1, . . . , an of t in pre-order. It is convenient to identify tuples like (A1, A2, A3, A4) with
the pair type (A1, (A2, (A3, A4))).

A typing context Γ : VID →A is a partial, finite mapping from variable identifiers to
data types. As usual Γ1,Γ2 denotes the union of the contexts Γ1 and Γ2 provided that
dom(Γ1)∩dom(Γ2) =;. We thus have the implicit side condition dom(Γ1)∩dom(Γ2) =;
whenever Γ1,Γ2 occurs in a typing rule. Especially, writing Γ= x1:A1, . . . , xk :Ak means
that the variables xi are pairwise distinct.

Let FID be a set of function identifiers. A signature Σ : FID → F is a finite, partial
mapping of function identifiers to first-order types.

The typing judgment Σ;Γ` e : A states that the expression e has type A under the
signature Σ in the context Γ. It is defined by the simple typing rules in Figure 3.1. If
Σ;Γ` e : A for some expression e then I say that e is well-typed in Γ under Σ.

The simple typing rules in Figure 3.1 are a subset of the resource-annotated typing
rules from the following chapters if the resource annotations are omitted. As a result,
they form an affine linear type system with a sharing rule S:SHARE that explicitly tracks
multiple occurrences of variables. The type system thus imposes no linearity restrictions
but gives finer information on occurrences of variables than a simple type system does.
For simple types this does not result in any advantages compared to usual type rules. I
only present the simple type rules with an explicit sharing rule to resemble the annotated
type rules in the later chapters. There, this approach greatly simplifies the rules. For
now, just note that the set of well-typed expressions is as expected and that the rules in
Figure 3.1 are equivalent to the usual rules with this regard.

The expression e[z/x, z/y] is the expression e in which all free occurrences of the
variables x and y are replaced by the variable z.
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Σ; x:B ` x : B
(S:VAR)

Σ;;` () : unit
(S:CONSTU)

n ∈Z
Σ;;` n : int

(S:CONSTI)

b ∈ {True,False }

Σ;;` b : bool
(S:CONSTB)

op ∈ {+,−,∗,mod,div }

Σ; x1:int, x2:int ` x1 op x2 : int
(S:OPINT )

Σ( f ) = A → B

Σ; x:A ` f (x) : B
(S:APP)

op ∈ {or,and }

Σ; x1:bool, x2:bool ` x1 op x2 : bool
(S:OPBOOL)

Σ;Γ` et : B Σ;Γ` e f : B

Σ;Γ, x:bool ` if x then et else e f : B
(S:COND)

Σ;Γ1 ` e1 : A Σ;Γ2, x:A ` e2 : B

Σ;Γ1,Γ2 ` let x = e1 in e2 : B
(S:LET )

B = (B1,B2)

Σ; x1:B1, x2:B2 ` (x1, x2) : B
(S:PAIR)

Σ;;` nil : L(A)
(S:NIL)

A = (A1, A2) Σ;Γ, x1:A1, x2:A2 ` e : B

Σ;Γ, x:A ` match x with (x1, x2) → e : B
(S:MATP)

Σ; xh :A, xt :L(A) ` cons(xh , xt ) : L(A)
(S:CONS)

Σ;;` leaf : T (A)
(S:LEAF)

Σ; x0:A, x1:T (A), x2:T (A) ` node(x0, x1, x2) : T (A)
(S:NODE)

Σ;Γ` e1 : B Σ;Γ, xh :A, xt :L(A) ` e2 : B

Σ;Γ, x:L(A) ` match x with | nil → e1 | cons(xh , xt ) → e2 : B
(S:MATL)

Σ;Γ` e1 : B Σ;Γ, x0:A, x1:T (A), x2:T (A) ` e2 : B

Σ;Γ, x:T (A) ` match x with | leaf → e1 | node(x0, x1, x2) → e2 : B
(S:MATT)

Σ;Γ` e : B

Σ;Γ, x:A ` e : B
(S:AUGMENT )

Σ;Γ, x:A, y :A ` e : B

Σ;Γ, z:A ` e[z/x, z/y] : B
(S:SHARE)

Figure 3.1: Type rules for simple types.
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RAML Programs

A (well-typed) RAML program consists of a signature Σ and a family (e f , y f ) f ∈dom(Σ) of
expressions e f with a distinguished variable identifier y f such that Σ; y f :A ` e f :B if
Σ( f ) = A → B .

I write f (y1, . . . , yk ) = e ′f to indicate that Σ( f ) = (A1, (A2, (. . . , Ak ) · · ·) → B and that

Σ; y1:A1, . . . , yk :Ak ` e ′f : B . In this case, f is defined by e f = match y f with (y1, y ′
f ) →

match y ′
f with (y2, y ′′

f ) . . .e ′f . Such function definitions are of course also included in the
extended syntax of RAML that we use in the prototype implementation (see Chapter 7).

3.3 Resource-Aware Semantics

In this section, I formalize the call-by-value evaluation of RAML programs by defining an
operational big-step semantics. I use big-step rather than (term-rewriting) small-step
semantics because I think that it is more natural and better agrees with actual behaviour
of computers. Moreover, it is preferable to work with big-step semantics in the context
of program analysis since it allows for shorter, less syntactic proofs.

In Section 3.3.1, I define a classic (inductive) operational big-step semantics for
RAML which is annotated with a counter to monitor the resource usage during the
evaluation. In Section 3.3.2, I define the notion of a well-formed environment that is
used in some theorems.

A dissatisfying feature of classical big-step semantics is that it does not provide
evaluation judgments for non-terminating evaluations. As a result, the soundness theo-
rems for amortized resource analyses have in the past been formulated for terminating
evaluations only [HJ03, JLH+09, JHLH10].

To address that issue, Section 3.3.3 contains a novel big-step operational semantics
for partial evaluations which agrees with the usual big-step semantics on terminating
computations. In this way, we retain the advantages of big-step semantics while captur-
ing the resource behaviour of non-terminating programs. This enables the proof of an
improved soundness result (see, i.e., Chapter 4): if the type analysis has established a
resource bound for an expression then the resource consumption of its (possibly non-
terminating) evaluation does not exceed the bound. It follows that run-time bounds
also ensure termination.

3.3.1 Big-Step Operational Semantics

In the following, I define a big-step operational semantics that measures the quantitative
resource consumption of programs. It is parametric in the resource of interest and can
measure every quantity whose usage in a single evaluation step can be bounded by
a constant. The actual constants for a step on a specific system architecture can be
derived by analyzing the translation of the step in the compiler implementation for that
architecture [JLH+09].
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The semantics is formulated with respect to a stack and a heap as usual: Let Loc
be an infinite set of locations modeling memory addresses on a heap. The set of RAML
values Val is given by

v ::= ` | b | n | NULL | (v1, v2)

A value v ∈ Val is either a location ` ∈ Loc, a boolean constant b, an integer n, a null
value NULL or a pair of values (v1, v2). I identify the tuple (v1, . . . , vn) with the pair
(v1, (v2, · · · ) · · · ).

A heap is a finite partial mapping H : Loc → Val that maps locations to values. A
stack is a finite partial mapping V : VID → Val from variable identifiers to values.

Since we also consider resources like memory that can become available during an
evaluation, we have to track the watermark of the resource usage, that is, the maximal
number of resource units that are simultaneously used during an evaluation. To derive
a watermark of a sequence of evaluations from the watermarks of the sub evaluations,
you have also to take into account the number of resource units that are available after
each sub evaluation.

The operational evaluation rules in Figures 3.2 and 3.3 thus define an evaluation
judgment of the form

V , H ` e v, H ′ | (q, q ′)

expressing the following. If the stack V and the initial heap H are given then the
expression e evaluates to the value v and the new heap H ′. In order to evaluate e one
needs at least q ∈Q+ resource units and after the evaluation there are at least q ′ ∈Q+

resource units available. The actual resource consumption is then δ = q − q ′. The
quantity δ is negative if resources become available during the execution of e.

In contrast to similar versions in earlier works there is at most one pair (q, q ′) such
that V , H ` e  v, H ′ | (q, q ′) for a given expression e, a heap H and a stack V . The
non-negative number q is the watermark of resources that are used simultaneously
during the evaluation.

It is handy to view the pairs (q, q ′) in the evaluation judgments as elements of a
monoid1 Q = (Q+

0 ×Q+
0 , ·). The neutral element is (0,0) which means that resources are

neither used nor restituted. The operation (q, q ′) · (p, p ′) defines how to account for an
evaluation consisting of evaluations whose resource consumptions are defined by (q, q ′)
and (p, p ′), respectively. We define

(q, q ′) · (p, p ′) =
{

(q +p −q ′, p ′) if q ′ ≤ p
(q, p ′+q ′−p) if q ′ > p

The intuition is that you need q resource units to perform the first evaluation and after
the evaluation q ′ restituted units remain. Now you have to pay for the second operation
which needs p units. If q ′ ≤ p then you additionally need p − q ′ resources to pay for
both evaluations and have p ′ resources left in the end. If q ′ > p then q units suffice

1In fact, it is possible to define the evaluation more abstractly with respect to an arbitrary monoid M .
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x ∈ dom(V )

V , H ` x V (x), H | K var (E:VAR)
V , H ` () NULL, H | K unit

(E:CONSTU)

n ∈Z
V , H ` n n, H | K int

(E:CONSTI)
b ∈ {True,False }

V , H ` b b, H | K bool
(E:CONSTB)

V (x) = v ′ [y f 7→ v ′], H ` e f  v, H ′ | (q, q ′)

V , H ` f (x) v, H ′ | K app
1 · (q, q ′) ·K app

2

(E:APP)

x1, x2 ∈ dom(V ) v = op(V (x1),V (x2))

V , H ` x1 op x2 v, H | K op (E:BINOP)

V (x) = True V , H ` et  v, H ′ | (q, q ′)

V , H ` if x then et else e f  v, H ′ | K conT
1 ·(q, q ′)·K conT

2

(E:CONDT)

V (x) = False V , H ` e f  v, H ′ | (q, q ′)

V , H ` if x then et else e f  v, H ′ | K conF
1 ·(q, q ′)·K conF

2

(E:CONDF)

V , H ` e1 v1, H1 | (q, q ′) V [x 7→ v1], H1 ` e2 v2, H2 | (p, p ′)

V , H ` let x = e1 in e2 v2, H2 | K let
1 · (q, q ′) ·K let

2 · (p, p ′) ·K let
3

(E:LET )

x1, x2 ∈ dom(V ) v = (V (x1),V (x2))

V , H ` (x1, x2) v, H | K pair
(E:PAIR)

V (x) = (v1, v2) V [x1 7→ v1, x2 7→ v2], H ` e v, H ′ | (q, q ′)

V , H ` match x with (x1, x2) → e v, H ′ | K matP
1 · (q, q ′) ·K matP

2

(E:MATP)

Figure 3.2: Rules of the big-step operational semantics (1 of 2).
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V , H ` nil NULL, H | K nil
(E:NIL)

xh , xt ∈ dom(V ) v = (V (xh),V (xt )) ` 6∈ dom(H)

V , H ` cons(xh , xt ) `, H [` 7→ v] | K cons (E:CONS)

V (x) = NULL V , H ` e1 v, H ′ | (q, q ′)

V , H ` match x with | nil → e1 | cons(xh , xt ) → e2

 v, H ′ | K matN
1 · (q, q ′) ·K matN

2

(E:MATNIL)

V (x)=` H(`)=(vh , vt ) V [xh 7→vh , xt 7→vt ], H ` e2 v, H ′ | (q, q ′)

V , H ` match x with | nil → e1 | cons(xh , xt ) → e2

 v, H ′ | K matC
1 · (q, q ′) ·K matC

2

(E:MATCONS)

V , H ` leaf NULL, H | K leaf
(E:LEAF)

x0, x1, x2 ∈ dom(V ) v = (V (x0),V (x1),V (x2)) ` 6∈ dom(H)

V , H ` node(x0, x1, x2) `, H [` 7→ v] | K node
(E:NODE)

V (x) = NULL V , H ` e1 v, H ′ | (q, q ′)

V , H ` match x with | leaf → e1 | node(x0, x1, x2) → e2

 v, H ′ | K matTL
1 · (q, q ′) ·K matTL

2

(E:MATLEAF)

V (x) = `
H(`) = (v0, v1, v2) V [x0 7→v0, x1 7→v1, x2 7→v2], H ` e2 v, H ′ | (q, q ′)

V , H ` match x with | leaf → e1 | node(x0, x1, x2) → e2

 v, H ′ | K matTN
1 · (q, q ′) ·K matTN

2

(E:MATNODE)

Figure 3.3: Rules of the big-step operational semantics (2 of 2).
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to perform both evaluations. Additionally, the q ′−p units that are not needed for the
second evaluation are added to the resources becoming finally available.

The following facts are often used in proofs.

Proposition 3.3.1 Let (q, q ′) = (r,r ′) · (s, s′).

1. q ≥ r and q −q ′ = r − r ′+ s − s′

2. If (p, p ′) = (r̄ ,r ′) · (s, s′) and r̄ ≥ r then p ≥ q and p ′ = q ′

3. If (p, p ′) = (r,r ′) · (s̄, s′) and s̄ ≥ s then p ≥ q and p ′ ≤ q ′

4. (r,r ′) · ((s, s′) · (t , t ′)) = ((r,r ′) · (s, s′)) · (t , t ′)

If resources are never restituted (as with time) then we can restrict ourselves to elements
of the form (q,0) and (q,0) · (p,0) is just (q +p,0).

I identify (positive and negative) rational numbers with elements of Q as follows:
q ≥ 0 denotes (q,0) and q < 0 denotes (0,−q). This notation avoids case distinctions in
the evaluation rules since the constants K that appear in the rules can be negative. Then
resources are restituted during an evaluation step. This is the case for stack space and
also for heap space in a destructive pattern match which is omitted here for simplicity.

The evaluation rules are standard apart from the resource information that measure
the resource consumption. These resource annotations are very similar in each rule and
I explain them for the rules E:VAR and E:CONDT.

Assume that the resource cost for looking up the value of a variable on the stack
and copying it to some register is K var ≥ 0. The rule E:VAR then states that the resource
consumption of the evaluation of a variable is (K var,0). So the watermark of the resource
consumption is K var and there are no resources left after the evaluation. If K var < 0 then
E:VAR states that the resource consumption of the evaluation of a variable is (0,−K var).
So the watermark is zero and after the evaluation there are K var resources available.

Now consider the rule E:CONDT. Assume that the resource cost of looking up
the value of the variable x and jumping to the source code of et is K conT

1 ≥ 0. As-
sume furthermore that the jump back to the code after the conditional costs K conT

2 ≥
0 resources. Then the rule E:CONDT states that the cost for the evaluation of are
(K conT

1 ,0) · (q, q ′) · (K conT
2 ,0) if the watermark for the evaluation of et is q and if there

are q ′ resources left after the evaluation. There are two cases. If q ′ ≥ K conT
2 then the

overall watermark of the evaluation is q +K conT
1 and there are q ′−K conT

2 resources avail-
able after the evaluation. If q ′ < K conT

2 then the overall watermark of the evaluation is
q +K conT

1 +K conT
2 −q ′ and there are zero resources available after the evaluation. The

statement is similar for negative constants K conT
i .

The values of the constants K x
i ∈Q in the rules depend on the resource, the imple-

mentation and the system architecture. In fact, the value of a constant can also be a
function of the type of a subexpression. For instance, the size of a cons cell depends on
the size of the value that is stored in the cell in our implementation. Since the types of
all subexpressions are available at compile time, this is a straightforward extension.
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v ∈ {True,False }

H Í v 7→ v :bool
( V:BOOL)

v ∈N
H Í v 7→ v : int

( V:INT )
v = NULL

H Í v 7→ () :unit
( V:UNIT )

v = (v1, v2) H Í v1 7→ a1 : A1 H Í v2 7→ a2 : A2

H Í v 7→ (a1, a2) : (A1, A2)
( V:PAIR)

v = NULL A ∈A

H Í v 7→ [] :L(A)
( V:NIL)

v = NULL A ∈A

H Í v 7→ leaf :T (A)
( V:LEAF)

v ∈ Loc H(v)=(v1, v2)
H ′ = H\v H ′ Í v1 7→ a1 : A H ′ Í v2 7→ [a2, . . . , an] :L(A)

H Í v 7→ [a1, . . . , an] :L(A)
( V:CONS)

v ∈ Loc H(v) = (v0, v1, v2)
H ′ = H\v H ′ Í v0 7→ a : A H ′ Í v1 7→ t1 :T (A) H ′ Í v2 7→ t2 :T (A)

H Í v 7→ tree(a, t1, t2) :T (A)
( V:NODE)

Figure 3.4: Relating heap cells to semantic values.

Actual constants for stack-space, heap-space and clock-cycle consumption were
determined for the abstract machine of the language Hume [HM03] for the Renesas
M32C/85U architecture. A list can be found in the literature [JLH+09].

The following proposition states that heap cells are never changed during an evalua-
tion after they have been allocated. This is a convenient property to simplify some of
the later proofs but it is not necessarily needed. We would not have this property if we
would include an destructive pattern matching in RAML. How to formally deal with it is
described in the literature [JLH+09].

Proposition 3.3.2 Let e be an expression, V be a stack, and H be a heap. If V , H ` e 
v, H ′ | (q, q ′) then H ′(`) = H(`) for all ` ∈ dom(H).

PROOF The only rules that allocate new heap cells are E:CONS and E:NODE. And in
these rules we have the side condition ` 6∈ H that prevents an old location from being
changed by assigning a value to `. ■

3.3.2 Well-Formed Environments

The notion of a well-formed environment is used in many of the following theorems.
Intuitively, a heap and stack are well-formed with respect to some typing context if
for each variable, the type assigned by the typing context agrees with the actual value
assigned to the variable by the stack and the heap.



3.3. Resource-Aware Semantics 37

If H is a heap, v is a value, A is a type, and a ∈ �A� then I write H Í v 7→ a : A to mean
that v defines the semantic value a ∈ �A� when pointers are followed in H in the obvious
way. The judgment is formally defined in Figure 3.4.

I write [] for the empty list. For a non-empty list [a1, . . . , an] I write [a1, . . . , an] =
a1 ::[a2, . . . , an]. The tree with root a, left subtree t1 and right subtree t2 is denoted
by tree(a, t1, t2). The empty tree is denoted by leaf . For a heap H , I write H ′ = H\`
for the heap in which the location ` is removed. That is, dom(H ′) = dom(H)\{`} and
H ′(`′) = H(`′) for all `′ ∈ dom(H ′).

Note that there exist three semantic values a such that H Í NULL 7→ a : A for every
heap H ; namely a = (), a = [], and a = leaf . However, if we fix a data type A then the
semantic value a is unique.

Proposition 3.3.3 Let H be a heap, v be a value, and let A be a data type. If H Í v 7→ a : A
and H Í v 7→ a′ : A then a = a′.

PROOF We prove the claim by induction on the derivation of H Í v 7→ a : A .
Assume first that H Í v 7→ a : A has been derived by the application of a single rule.

Then the judgment has been derived by one of the rules V:BOOL, V:INT, V:UNIT, V:NIL,
or V:LEAF. An inspection of the rules shows that for given A and v only one of rules is
applicable. Thus it follows that a = a′.

Assume now that the derivation of H Í v 7→ a : A ends with an application of the
rule V:CONS. Then A = L(B), a = [a1, . . . , an], v ∈ Loc, and H(v)=(v1, v2). It follows that
the derivation of H Í v 7→ a′ : A also ends with an application of V:CONS. Thus we have
a′ = [b1, . . . ,bm]. From the premises of V:CONS it follows that

H ′ Í v1 7→ a1 : A

H ′ Í v2 7→ [a2, . . . , an] :L(A)

H ′ Í v1 7→ b1 : A

H ′ Í v2 7→ [b2, . . . ,bm] :L(A)

where H ′ = H\v . It follows by induction that n = m and bi = ai for all 1 ≤ i ≤ n.
The cases in which the derivation ends with the V:NODE or V:PAIR are similar. ■

Note that if H Í v 7→ a : A then v may well point to a data structure with some aliasing,
but no circularity is allowed since this would require infinite values a. I do not include
them because in our functional language there is no way of generating such values.

I write H Í v : A to indicate that there exists a, necessarily unique, semantic value
a ∈ �A� so that H Í v 7→ a : A . A stack V and a heap H are well-formed with respect to a
context Γ if H ÍV (x) :Γ(x) holds for every x ∈ dom(Γ). I then write H ÍV : Γ.

Theorem 3.3.4 shows that the evaluation of a well-typed expression in a well-formed
environment results in a well-formed environment.

Theorem 3.3.4 If Σ;Γ` e : B , H ÍV : Γ and V , H ` e v, H ′ | (q, q ′) then H ′ ÍV : Γ and
H ′ Í v : B .
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PROOF From Proposition 3.3.2 it follows H ′(`) = H(`) for all ` ∈ dom(H) and thus
H ′ ÍV :Γ.

The second part, H ′ Í v : B , is proved by induction on the derivations of V , H `
e v, H ′ | (q, q ′) and Σ;Γ` e : B where the induction on the evaluation judgment takes
priority.

Note that a single induction on the derivation of the evaluation judgment fails
because of the structural type rules S:SHARE and S:AUGMENT. If the type derivation
ends with one of these rules then you do not obtain type judgments that correspond
to the premises of the last evaluation rule. As a result, you can not apply the induction
hypothesis.

A single induction on the derivation of the type judgment Σ;Γ` e : B fails because
of the type rule S:APP and the corresponding evaluation rule E:APP. On the one hand,
the evaluation of a function application proceeds with the evaluation of the body of the
function. On the other hand, a type derivation that ends with S:APP consists of one step
only. To apply the induction hypothesis the evaluation of e f , you need to use a type
derivation of e f which is longer then zero steps. Thus the induction hypothesis can not
be applied.
(S:SHARE) Suppose that the derivation of Σ;Γ` e : B ends with an application of the
rule S:SHARE. Then Γ= Γ, z:A and it follows from the premise that

Σ;Γ′, x:A, y :A ` e ′ : B (3.1)

for some data type A, a context Γ′ and an expression e ′ with e ′[z/x, z/y] = e. Since
H ÍV : Γ′, z:A and

V , H ` e v, H ′ | (q, q ′) (3.2)

it follows that H ÍVx y : Γ′, x:A, y :A and

Vx y , H ` e ′ v, H ′ | (q, q ′) (3.3)

for Vx y =V \z ∪ {x 7→V (z), y 7→V (z)}. Furthermore, the derivation tree of (3.3) has the
same shape as the derivation tree of (3.2). Thus we can apply the induction hypothesis
to (3.1) and (3.2), and derive H ′ Í v : B .
(S:AUGMENT ) If the derivation of Σ;Γ ` e : B ends with an application of the rule
S:AUGMENT then we have

Σ;Γ′ ` e : B (3.4)

for a context Γ′ with Γ′, x:A = Γ. But it follows by definition that H Í V : Γ′. Thus we
can apply the induction hypothesis to (3.4) and the evaluation judgment, and derive
H ′ Í v : B .
(S:VAR) If the type derivation ends with the application of the rule S:VAR then the
derivation of the evaluation judgment ends with and application of E:VAR. The claim
H ′ ÍV (x) : Γ(x) follows from H ÍV : Γ′ ,and H ′ = H .
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(S:CONST*) Assume that the type derivation ends with one of rules (S:CONST*) for
constants. Then the derivation of the evaluation judgment ends with an application of
the corresponding rule E:CONST*. The claim follows directly from the definition.
(S:OPINT ) The evaluation ends with an application of the rule E:BINOP. Since we
have Σ; x1:int, x2:int ` x1 op x2 : int and H ÍV : x1:int, x2:int it follows that V , H ` e 
n, H ′ | (q, q ′) for an integer n; thus H ′ Í n : int.
(S:OPBOOL) Similar to the case (S:OPINT ).
(S:APP) Assume the type derivation ends with the derivation of Σ; x:A ` f (x) : B ,
using the rule S:APP. Then the derivation of the evaluation judgment ends with an
application of the rule E:APP. From the premise Σ( f ) = A → B of S:APP it follows that
Σ; y f :A ` e f :B . Since H ÍV (x) : A we have H Í [y f 7→ H(x)] : (y f :A). Thus we can apply
the induction hypothesis to the premise [y f 7→ H(x)], H ` e f  v, H ′ | (q, q ′) of the rule
E:APP. It follows that H ′ Í v : B .
(S:COND) Then the evaluation ends with an application of the rules E:CONDT or
E:CONDF. Assume it ends with E:CONDT; the case E:CONF is similar. We use the
premise Σ;Γ` et : B of S:COND and the fact H ÍV : Γ to apply the induction hypothesis
to the premise V , H ` et  v, H ′ | (q, q ′) of E:CONDT. It follows that H ′ Í v : B .
(S:LET ) Then the derivation of the evaluation judgment ends with an application of
the rule E:LET. We have Σ;Γ1 ` e1 : A from the premises of S:LET and also H Í V : Γ1

from H ÍV : Γ. So we can apply the induction hypothesis to V , H1 ` e1 v1, H1 | (q, q ′)
and derive H1 Í v1 : A. From Proposition 3.3.2 it follows that H1(l ) = H(l ) for all l ∈
dom(H). Since H1 Í v1 : A and img(V ) ⊆ dom(H) we conclude H1 ÍV [x 7→ v1] : Γ, x:A.
Furthermore, Σ;Γ2, x:A ` e2 : B is a premise of S:LET. Thus we can apply the induction
hypothesis a second time to V [x 7→ v1], H1 ` e2 v2, H2 | (p, p ′) and derive H2 Í v2 : B .
(S:PAIR) Then the evaluation ends with an application of the rule E:PAIR. We conclude
from H ÍV : (x1:B1, x2:B2) that H Í (V (x1),V (x2)) : (B1,B2) (using V:PAIR).
(S:MATP) Then the evaluation ends with an application of the rule E:MATP. Since
H Í V : Γ, x:(A1, A2) it follows that H Í (v1, v2):(A1, A2) and thus H Í v1:A1 and H Í
v2:A2 where V (x) = (v1, v2). We conclude that H ÍV [x1 7→ v1, x2 7→ v2] : Γ, x1:A1, x2:A2.
Furthermore we have the premise Σ;Γ, x1:A1, x2:A2 ` e : B in the rule S:MATP. Hence
we can apply the induction hypothesis the premise V [x1 7→ v1, x2 7→ v2], H ` e v, H ′ |
(q, q ′) of E:MATP. It follows that H ′ Í v : B .
(S:NIL) and (S:LEAF) Then the corresponding evaluation rules E:NIL or E:LEAF have
been applied to derive the evaluation judgment. The claim follows directly from the
definition.
(S:CONS) and (S:NODE) Similar to the case (S:PAIR).
(S:MATL) and (S:MATT) Similar to the case (S:MATP). ■

3.3.3 Partial Big-Step Operational Semantics

A general shortcoming of classic big-step operational semantics is that it does not
provide judgments for evaluations that diverge. This is problematic if one intends to
prove statements for all computations (divergent and convergent) that do not go wrong.



40 Chapter 3. Resource Aware ML

A straightforward remedy is to use a small-step semantics to describe computations.
But in the context of resource analysis, the use of big-step rules seems to be more
favorable. Firstly, big-step rules can more directly axiomatize the resource behavior of
compiled code on specific machines. Secondly, it allows for shorter and less syntactic
proofs.

Another classic approach [CC92, Ler06] is to add divergence rules to the operational
semantics that are interpreted coinductively. But then one loses the ability to prove state-
ments by induction on the evaluation which is crucial for the proof of the soundness
theorems of the analysis systems (see Chapters 4, 5, and 6). It should also be possible to
work with a coinductive definition in the style of Cousot or Leroy [CC92, Ler06]. How-
ever, coinductive semantics leans itself less well to formulating and proving semantic
soundness theorems of the form “if the program is well-typed and the operational
semantics says X then Y holds”. For example, in Leroy’s Lemmas 17-22 [Ler06] the
coinductive definition appears in the conclusion rather than as a premise.

That is why I use a novel approach to the problem here by defining a big-step
semantics for partial evaluations that directly corresponds to the rules of the big-step
semantics in Figures 3.2 and 3.3. The rules in Figures 3.5 and 3.6 define a judgment of
the form

V , H ` e | q

where V is a stack, H is a heap, q ∈Q+
0 , and e is an expression. The meaning is that there

is a partial evaluation of e with the initial stack V and the initial heap H that consumes
q resources. Here, q is the watermark of the resource usage. We do not have to keep
track of the restituted resources since partial evaluations are composed of complete
evaluations only.

Since there might be negative constants K , the partial evaluation rules have conclu-
sions of the form V , H ` e | max(q,0) to ensure non-negative values. For simplicity, I
just write V , H ` e | q instead of V , H ` e | max(q,0) in each conclusion of the rules
in Figures 3.5 and 3.6.

Note that the rule P:ZERO is essential for the partiality of the semantics. It can
be applied at any point to stop the evaluation and thus yields to a non-deterministic
evaluation judgment. I explain the other rules with three representative examples.

The rule P:VAR can be understood as follows. To partially evaluate a variable, you
can only do one evaluation step, namely evaluating the variable thereby producing the
cost K var if K var > 0 and zero cost otherwise.

The rule P:LET1 can be read as follows. If there is a partial evaluation of e1 that needs
q resources then you can partially evaluate let x = e1 in e2 by starting the evaluation of
the let expression which costs K let

1 ≥ 0 or reimburses K let
1 < 0 resources. Then you can

partially evaluate e1, deriving a partial evaluation of the let expression that produces
the watermark K let

1 +q .
Another way to partially evaluate the let expression let x = e1 in e2 is to use the

rule P:LET2. There we completely evaluate e1 measuring the resource consumption
(q, q ′). Then we partially evaluate e2 using p resources. Then we compose the two



3.3. Resource-Aware Semantics 41

V , H ` e | 0
(P:ZERO)

V , H ` () | K unit
(P:CONSTU)

b ∈ {True,False }

V , H ` b | K bool
(P:CONSTB)

n ∈Z
V , H ` n | K int

(P:CONSTI)

x ∈ dom(V )

V , H ` x | K var (P:VAR)
V (x) = v [y f 7→ v], H ` e f  | q

V , H ` f (x) | K app
1 +q

(P:APP)

x1, x2 ∈ dom(V )

V , H ` x1 op x2 | K op (P:BINOP)
V , H ` e1 | q

V , H ` let x = e1 in e2 | K let
1 +q

(P:LET1)

V , H ` e1 v1, H1 | (q, q ′)
V [x 7→ v1], H1 ` e2 | p K let

1 · (q, q ′) ·K let
2 · (p,0) = (r,r ′)

V , H ` let x = e1 in e2 | r
(P:LET2)

V (x) = True V , H ` et  | q

V , H ` if x then et else e f  | K conT
1 +q

(P:CONDT)

V (x) = False V , H ` e f  | q

V , H ` if x then et else e f  | K conF
1 +q

(P:CONDF)
V , H ` nil | K nil

(P:NIL)

x1, x2 ∈ dom(V )

V , H ` (x1, x2) | K pair
(P:PAIR)

xh , xt ∈ dom(V )

V , H ` cons(xh , xt ) | K cons (P:CONS)

V (x) = (v1, v2) V [x1 7→ v1, x2 7→ v2], H ` e | q

V , H ` match x with (x1, x2) → e | K matP
1 +q

(P:MATP)

V (x) = NULL V , H ` e1 | q

V , H ` match x with
nil → e1

cons(xh , xt ) → e2 | K matN
1 +q

(P:MATNIL)

V (x) = ` H(`) = (vh , vt ) V [xh 7→ vh , xt 7→ vt ], H ` e2 | q

V , H ` match x with
nil → e1

cons(xh , xt ) → e2 | K matC
1 +q

(P:MATCONS)

Figure 3.5: Partial big-step operational semantics (1 of 2).
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V , H ` leaf | K leaf
(P:LEAF)

x0, x1, x2 ∈ dom(V )

V , H ` node(x0, x1, x2) | K node
(P:NODE)

V (x) = NULL V , H ` e1 | q

V , H ` match x with | leaf → e1 | node(x0, x1, x2) → e2 | K matTL
1 +q

(P:MATLEAF)

V (x) = `
H(`) = (v0, v1, v2) V [x0 7→v0, x1 7→v1, x2 7→v2], H ` e2 | q

V , H ` match x with | leaf → e1 | node(x0, x1, x2) → e2 | K matTN
1 +q

(P:MATNODE)

Figure 3.6: Partial big-step operational semantics (2 of 2).

evaluations and obtain a partial evaluation for the let expression that uses r resources
where (r,r ′) = K let

1 · (q, q ′) ·K let
2 · (p,0).

Theorem 3.3.5 proves that if an expression converges in a given environment then
the resource-usage watermark of the evaluation is an upper bound for the resource
usage of every partial evaluation of the expression in that environment.

Theorem 3.3.5 If V , H ` e v, H ′ | (q, q ′) and V , H ` e | p then p ≤ q .

PROOF By induction on the derivation D of the judgment V , H ` e v, H ′ | (q, q ′). To
prove the induction basis let D consist of one step. Then e is a constant c, a variable
x, a binary operation x1 op x2, a pair (x1, x2), the constant nil, leaf, cons(x1, x2), or
node(x1, x2, x3). Let e be for instance a variable x. Then by definition of E:VAR it follows
that V , H ` e v, H ′ | (K var,0) or V , H ` e v, H ′ | (0,−K var). Thus q = max(0,K var).
The only P-rules that apply to x are P:VAR and P:ZERO. Thus it follows that if V , H ` e 
| p then then p = max(0,K var). The other cases are similar.

For the induction step assume that |D| > 1. Then e is a pattern match, a function
application, a conditional, or a let expression. For instance, let e be the expression
let x = e1 in e2. Then it follows from rule E:LET that V , H ` e1 v1, H1 | (q1, q ′

1), V [x 7→
v1], H1 ` e2 v2, H2 | (q2, q ′

2) and

(q, q ′) = K let
1 · (q1, q ′

1) ·K let
2 · (q2, q ′

2) ·K let
3 (3.5)

By induction we conclude

if V , H ` e1 | p1 then p1 ≤ q1 (3.6)

if V [x 7→ v1], H1 ` e2 | p2 then p2 ≤ q2 (3.7)

Now let V , H ` e | p. Then this judgment was derived via the rules P:LET1 or P:LET2.
In the first case it follows by definition that p = max(p1+K let

1 ,0) for some p1 and p1 ≤ q1

by (3.6) and (3.5) that p ≤ q .
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If V , H ` e | p was derived by P:LET2 then it follows that (p, p ′) = K let
1 · (q1, q ′

1) ·
K let

2 · (p2,0) for some p ′, p2. We conclude from (3.7) that p2 ≤ q2 and hence from Propo-
sition 3.3.1 and (3.5) p ≤ q . The other cases are similar to the case P:LET1. ■

Theorem 3.3.9 states that, in a well-formed environment, every well-typed expression
either diverges or evaluates to a value of the stated type. To this end we instantiate the
resource constants in the rules to count the number of evaluation steps.

Proposition 3.3.6 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and

K x
m = 0 for all x and all m > 1. Let V , H ` e v, H ′ | (q, q ′) and let the derivation of the

judgment have n steps. Then q = n and q ′ = 0.

PROOF By induction on the derivation D of V , H ` e v, H ′ | (q, q ′).
If D consists of only one step (|D| = 1) then e is a constant c, a variable x, a binary

operation x1 op x2, a pair (x1, x2), the constant nil, leaf, cons(x1, x2), or node(x1, x2, x3).
In each case, q = 1 and q ′ = 0 follows immediately from the respective evaluation rule.

Now let |D| > 1. Then e is a pattern match, a function application, a conditional, or a
let expression. For instance, let e be the expression let x = e1 in e2. Then it follows from
rule E:LET that V , H ` e1 v1, H1 | (q1, q ′

1), V [x 7→ v1], H1 ` e2 v2, H2 | (q2, q ′
2) and

(q, q ′) = 1 · (q1, q ′
1) ·0 · (q2, q ′

2) ·0 = (1+q1, q ′
1) · (q2, q ′

2)

Let n1 be the evaluation steps needed by e1 and let n2 be the number of evaluation
steps needed by e2. By induction it follows that q1 = n1, q2 = n2 and q ′

1 = q ′
2 = 0. Thus

q = n1 +n2 +1 = n.
The other cases are similar. ■

The following lemma shows that if there is a complete evaluation that uses n steps then
there are partial evaluations that use i steps for 0 ≤ i ≤ n. It is used in the proof of
Theorem 3.3.9 with i = n.

Lemma 3.3.7 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

m = 0
for all x and all m > 1. If V , H ` e v, H ′ | (n,0) then V , H ` e | i for every 0 ≤ i ≤ n.

PROOF By induction on the derivation D of V , H ` e v, H ′ | (n,0). The proof is very
similar to the proof of Theorem 3.3.5. ■

Lemma 3.3.8 proves that you can always make one partial evaluation step for a well-
typed expression in a well-formed environment. It is used in the induction basis of the
proof of Theorem 3.3.9.

Lemma 3.3.8 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

m = 0
for all x and all m > 1. If Σ;Γ` e : A, H ÍV : Γ then V , H ` e | 1.
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PROOF By case distinction on e. The proof is straightforward so I only demonstrate two
characteristic cases.

Let e for instance be a variable x. Then it follows from Σ;Γ` x : A and H ÍV : Γ that
x ∈V . Thus V , H ` x | 1 by (P:VAR).

Let e now be a conditional if x then et else e f . Then it follows from Σ;Γ ` e : A
and H Í V : Γ that V (x) ∈ {True,False }. Furthermore, we derive V , H ` et  | 0 and
V , H ` e f  | 0 with the rule P:ZERO. Thus we can use either P:CONDT or P:CONDF to
derive V , H ` e | 1. ■

Theorem 3.3.9 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

i = 0
for all x and all i > 1. If Σ;Γ ` e : A and H Í V : Γ then V , H ` e v, H ′ | (n,0) for an
n ∈N or V , H ` e | m for every m ∈N.

PROOF We show by induction on n that if

Σ;Γ` e : A, V , H ` e | n and H ÍV : Γ (3.8)

then V , H ` e v, H ′ | (n,0) or V , H ` e | n +1. Then Theorem 3.3.9 follows since
V , H ` e | 0 for every V , H and e.

Induction basis n = 0: We use Lemma 3.3.8 to conclude from the well-formedness
of the environment (3.8) that V , H ` e | 1.

Induction step n > 0: Assume (3.8). If e is a constant c, a variable x, a binary
operation x1 op x2, a pair (x1, x2), the constant nil, or cons(x1, x2). Then n = 1 and we
derive V , H ` e v, H ′ | (1,0) immediately from the corresponding evaluation rule.

If e is a pattern match, a function application, a conditional, or a let expression
then we use the induction hypothesis. Since the other cases are similar, we provide the
argument only for the case where e is a let expression let x = e1 in e2. Then V , H ` e | n
was derived via P:LET1 or P:LET2. In the case of P:LET1 it follows that V , H ` e1 | n−1.
By the induction hypothesis we conclude that either V , H ` e1 | n or V , H ` e1 
v1, H1 | (n −1,0). In the first case we can use P:LET1 to derive V , H ` e | n +1. In
the second case it follows from Theorem 3.3.4 that H1 ÍV : Γ and H1 Í v1:A and thus
H1 ÍV [x 7→ v1]:Γ, x:A. We then apply Lemma 3.3.8 to obtain V [x 7→ v1], H1 ` e2 | 1.
Therefore we can apply P:LET2 to derive V , H ` e | n +1.

Assume now that e was derived by the use of P:LET2. Then it is true that V , H `
e1 v1, H1 | (n1,0) and V [x 7→ v1], H1 ` e2 | n2 for some n1,n2 with n1 +n2 +1 = n.
From Theorem 3.3.4 it follows that H1 Í V [x 7→ v1]:Γ, x:A. Therefore we can apply
the induction hypothesis to infer that V [x 7→ v1], H1 ` e2 v2, H2 | (n2,0) or V [x 7→
v1], H1 ` e2 | n2 +1. In the first case we apply E:LET and derive V , H ` e v2, H2 |
(n,0). In the second case we apply P:LET2 and derive V , H ` e | n +1. ■

Cost-Free Metric

The type inference algorithm makes use of the cost-free resource metric. This is the
metric in which all constants K that appear in the rules are instantiated to zero. I use it in
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Chapters 5 and 6 to define a resource-polymorphic recursion that uses cost-free function
types to pass potential from the argument to the result. The following proposition can
be proved analogous to Proposition 3.3.6.

Proposition 3.3.10 Let all resource constants K be instantiated by K = 0. If V , H ` e 
v, H ′ | (q, q ′) then q = q ′ = 0. If V , H ` e | q then q = 0.





Elegance is not a dispensable luxury but a
quality that decides between success and failure.

EDSGER W. DIJKSTRA

Keynote address at the ACM Symposium on
Applied Computing (1999)4

Linear Potential

Hofmann and Jost introduced linear automated amortized analysis in 2003 to analyze
the heap-space consumption of first-order functional programs. As I am writing this
thesis, their work [HJ03] has been cited more then 200 times1 and has been devel-
oped further in several directions. Linear amortized analysis has been applied to ana-
lyze object-oriented programs [HJ06, HR09], to compute bounds for generic resources
[JLH+09, Cam09], to analyze polymorphic and higher-order programs [JHLH10], and to
analyze Java-like bytecode by means of separation logic [Atk10].

In this chapter I present a linear amortized analysis system for generic resources,
following [JLH+09]. It is the basis of the polynomial analysis systems that I develop
in the following two chapters and introduces many concepts that are used there. An
informal introduction to linear amortized analysis can be found in Section 2.2.1.

The chapter is organized as follows. In Section 4.1, I define linear resource-annotated
data types and the potential functions that the annotations represent. I then, in Sec-
tion 4.2, introduce type judgments that constitute resource bounds together with type
rules to derive the judgments for RAML programs. In Section 4.3, I prove the soundness
of the type system. It states that derived type judgments constitute correct bounds.
Section 4.4 explains how the type analysis can be automated through an inference of
the type derivations. Finally, Section 4.5 demonstrates the analysis on several example
programs.

4.1 Resource Annotations

The first step in the design of an automatic amortized analysis is to choose a set of
potential functions. In this chapter, I use potential functions that are linear in the size of
the data in the memory.

1according to Google Scholar
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To represent the linear potential functions in the type system, types of inductive data
structures are annotated with non-negative rational numbers2 q ∈Q+

0 . The following
EBNF grammar defines the (linear) resource-annotated data types of RAML.

A ::= unit | bool | int | Lq (A) | T q (A) | (A, A)

Let Alin be the set of linear resource-annotated data types. Let A ∈Alin be an annotated
data type. As in Section 3.2, I write �A� for the set of semantic values of type A. For
instance, �Lq (int)� is the set of (finite) lists of integers. Similarly, we extend all other
definitions—such as H Í v 7→ a : A and H Í v : A —for simple data types to resource-
annotated data types by ignoring the resource annotations.

Let A ∈Alin by a resource-annotated data type and let a ∈ �A�. The potential Φ(a:A)
of a under type A is defined as follows. Recall from Section 3.2 that elems(t) are the
elements of the tree t ∈ �T (A)� in pre-order.

Φ(a:A) = 0 if A ∈ {unit, int,bool}

Φ(a:(A1, A2)) =Φ(a1:A1)+Φ(a2:A2) if a = (a1, a2)

Φ(`:Lq (B)) = q ·n + ∑
i=1,...,n

Φ(ai :B) if `= [a1, . . . , an]

Φ(t :T q (B)) = q ·n + ∑
i=1,...,n

Φ(ai :B) if elems(t ) = [a1, . . . , an]

Let A ∈ Alin, let H be a heap, and let v ∈ Val be a value such that H Í v 7→ a : A . The
potentialΦH (v :A) of v under type A in H is then defined asΦH (v :A) =Φ(a:A).

In the following I will sometimes explain an idea by talking about the potential
Φ(x:A) of a variable x with respect to an annotated type A. In such a case I mean in fact
the potentialΦH (V (x):A) with respect to a stack V and a heap H that I do not want to
describe precisely.

Lemma 4.1.1 states some facts about the potential of a value without referring to
the corresponding semantic value. These facts can also be used to define the potential
functionΦ.

Lemma 4.1.1 Let A ∈ Alin, let H be a heap and let v ∈ Val be a value with H Í v : A .
Then the following is true.

1. ΦH (v :A) = 0 if v = NULL or if A ∈ {int,unit,bool}

2. ΦH ((v1, v2):(A1, A2)) =ΦH (v1:A1)+ΦH (v2:A2)

3. ΦH (`:Lq (B)) = q +ΦH (v1:B)+ΦH (`′:Lq (B)) if H(`)=(v1,`′).

4. ΦH (`:T q (B)) = q +ΦH (v1:B)+ΦH (`1:T q (B))+ΦH (`2:T q (B)) if H(`)=(v1,`1,`2)

2The use of rational rather than natural numbers in the potential annotations leads to more precise
bounds. An example is given in Section 4.5.
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PROOF 1. Since H Í v : A , we have H Í v 7→ [] :L(A′) , H Í v 7→ leaf :T (A′) , H Í v 7→
n : int , H Í v 7→ () :unit , or H Í v 7→ a :bool for a ∈ {True,False }. Then the claim
follows from the definition ofΦ.

2. It follows from definition that H Í v 7→ (a1, a2) : (A1, A2), H Í v1 7→ a1 : A1, and
H Í v2 7→ a2 : A2. The claim is thus a direct consequence of the definition ofΦ.

3. From rule V:CONS we conclude that H Í v1 7→ a1 :B , H Í `′ 7→ [a2, . . . , an] :L(B)
and H Í ` 7→ [a1, . . . , an] :L(B). Then ΦH (`:Lq (B)) = qn +∑

1≤i≤nΦ(ai :B) = (q +
Φ(a1:B))+ (q(n −1)

∑
2≤i≤nΦ(ai :B)) = q +ΦH (v1:B)+ΦH (`′:Lq (B).

4. The proof is similar to the list case. In addition, one has to use the fact that
elems(tree(a, t1, t2)) = [a, a1, . . . , am ,b1, . . . ,bm] where elems(t1) = [a1, . . . , am] and
elems(t f ) = [b1, . . . ,bm]. ■

For instance, we have Φ([b1, . . . ,bn] : Lq (bool) = q ·n for a list [b1, . . . ,bn] of Booleans.
Similarly, we have for a list of lists of Booleans thatΦ([[b11, . . . ,b1,m1 ], . . . , [bn1, . . . ,bnmn ]] :
Lq (Lp (bool)) = q ·n +p · (m1 +·· ·+mn). Note that potential functions incorporate the
length of each individual inner data structure. This is an important property that enables
the precise analysis of nested data structures.

The Subtyping Relation

Intuitively, it is true that a resource-annotated data type A is a subtype of a resource-
annotated data type B if and only if A and B have the same set �A� of semantic values,
and for every value a ∈ �A� the potentialΦ(a:A) is greater or equal than the potential of
φ(a:B). More formal, we define <: to be the smallest relation such that the following is
true.

C <: C if C ∈ {unit,bool, int}

(A1, A2) <: (B1,B2) if A1 <: B1 and A2 <: B2

Lp (A) <: Lq (B) if A <: B and p ≥ q

T p (A) <: T q (B) if A <: B and p ≥ q

Lemma 4.1.2 Let A, B be two resource-annotated data types with A <: B . Then �A� =
�B� andΦ(a:A) ≥Φ(a:B) for all a ∈ �A�.

PROOF By induction on the definition of subtyping relation. If A = B ∈ {unit,bool, int}
then �A� = �B� andΦ(a:A) = 0 =Φ(a:B).

If A = (A1, A2) then B = (B1,B2), A1 <: B1 and A2 <: B2. By induction it follows that
�Ai � = �Bi � and Φ(ai :Ai ) ≥ Φ(ai :Bi ) for all (a1, a2) ∈ (A1, A2). But then �A� = �B� and
Φ((a1, a2):A) =Φ(a1:A1)+Φ(a2:A2) ≥Φ(a1:B1)+Φ(a2:B2) =Φ(a:B).
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If A = Lp (A′) then B = Lq (B ′) for a q ∈Q+
0 , A <: B , and p ≥ q . By induction we have

�A′� = �B ′� and thus �A� = �B�. Let [a1, . . . , an] ∈ �Lp (A′)�. Then

Φ([a1, . . . , an] : Lp (A′)) = pn +∑
1≤i≤nΦ(ai :A′) (Def.)

≥ qn +∑
1≤i≤nΦ(ai :A′) (p ≥ q)

≥ qn +∑
1≤i≤nΦ(ai :B ′) (Ind.)

=Φ([a1, . . . , an] : Lq (B ′)) (Def.)

The case A = T p (A′) is very similar to the case A = Lq (A′). ■

The Sharing Relation

The sharing relation .defines how the potential of a (zero-order) variable can be shared
by multiple occurrences of that variable. We have A .(A1, A2) if and only if A, A1 and
A2 are structural identical, that is, have the same set �A� of semantic values, and for
every value a ∈ �A� the potentialΦ(a:A) is identical to the sumΦ(a:A1)+Φ(a:A2). The
sharing relation . is the smallest relation such that following holds.

C .(C ,C ) if C ∈ {unit,bool, int}

(A,B) .((A1,B1), (A2,B2)) if A .(A1, A2) and B .(B1,B2)

Lp (A) .(Lq (A1),Lr (A2)) if A .(A1, A2) and p = q + r

T p (A) .(T q (A1),T r (A2)) if A .(A1, A2) and p = q + r

Lemma 4.1.3 Let A, A1, and A2 be resource-annotated data types with A . (A1, A2).
Then �A� = �A1� = �A2� andΦ(a:A) =Φ(a:A1)+Φ(a:A2) for all a ∈ �A�.

PROOF The proof is similar to the proof of Lemma 4.1.2 ■

4.2 Type Rules

This section presents typing rules that assign resource-annotated data types to RAML
expressions.

Like in the case of simple types, a typing context is a partial finite mapping Γ : VID →
Alin from variable identifiers to resource-annotated data types. The potential of a typing
context Γwith respect to a heap H and a stack V is

ΦV ,H (Γ) = ∑
x∈dom(Γ)

ΦH (V (x):Γ(x)) .

Sometimes I just writeΦ(Γ) in informal discussions leaving stack and heap implicit.
The (linear) resource-annotated first-order types are defined by the following gram-

mar.
F ::= A−−−−→q/q ′

A
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Here, q, q ′ are rational numbers and A ranges over the resource-annotated data types.
The intended meaning is that q is the constant potential before a call to the function
and q ′ is the constant potential after the call to the function. Let Flin denote the set of
resource-annotated first-order types.

A resource-annotated signature Σ : FID → (P (Flin)\;) is a finite, partial mapping
of function identifiers to non-empty sets of resource-annotated first-order types. As a
result, every function can have different resource annotations depending on the context.

A resource-annotated typing judgment has the form

Σ;Γ
q

q ′ e:A

where e is a RAML expression, q, q ′ ∈ Q+
0 are non-negative rational numbers, Σ is a

resource-annotated signature, Γ is a resource-annotated context and A is a resource-
annotated data type. The intended meaning of this judgment is that if there are more
than q +Φ(Γ) resource units available then this is sufficient to evaluate e and there are
more than q ′+Φ(v :A) resource units left if e evaluates to a value v .

Similarly as for simple types, a RAML program with resource-annotated types
consists of a resource-annotated signature Σ and a family (e f , y f ) f ∈dom(Σ) of expres-

sions e f with a distinguished variable identifier y f such that Σ; y f :A
q

q ′ e f :B for each

A−−−−→q/q ′
B ∈Σ( f ).

Figures 4.1 and 4.2 contain the type rules to derive resource-annotated type judg-
ments for RAML expressions. All rationals that appear in the rules are non-negative.
If an arithmetic expression like p − q occurs in a rule then we have the implicit side
condition that p −q ≥ 0. Also recall, that I write e[z/x] to denote the expression e with
all free occurrences of the variable x replaced with the variable z.

Figure 4.1 contains only syntax-directed rules. This means that there is exactly one
rule for every syntactic expression. Figure 4.2 contains one syntax-directed rule (namely
L:MATT) and structural rules that can be applied to every syntactic form. In the type
inference, the structural rules have to be incorporated into the syntax-directed rules.
Details are given in Section 4.4.

The most interesting syntax-directed rules are the ones for lists and trees. Before I
explain them, I describe the rules L:VAR and L:APP that are more suitable to explain the
general idea.

(L:VAR) According to the operational semantics of RAML, the evaluation of a
variable costs K var resources. The rule (L:VAR) reflects this fact by requiring the constant
potential before the evaluation of a variable to be q +K var. The potential K var is used
up after the evaluation and there is the constant potential q left. If K var < 0 then the
resulting potential is greater then the initial potential. In this case, we have the implicit
side condition q +K var ≥ 0 since all potential annotations must be non-negative.

(L:APP) The evaluation of a function application costs K app
1 resources before

the evaluation of the body of the function, and K app
2 resources after the valuation of

the body. Since A−−−−→q/q ′
B ∈ Σ( f ), we have Σ; y f :A

q

q ′ e f :B . So we need q +Φ(x:A)
resources to evaluate the body e f of the function. Thus we require the initial potential
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Σ;; q +K unit

q () : unit
(L:CONSTU)

b ∈ {True,False }

Σ;; q +K bool

q b : bool
(L:CONSTB)

n ∈Z

Σ;; q +K int

q n : int
(L:CONSTI)

op ∈ {+,−,∗,mod,div }

Σ; x1:int, x2:int
q +K op

q x1 op x2 : int
(L:OPINT )

Σ; x:B
q+K var

q x : B
(L:VAR)

op ∈ {or,and }

Σ; x1:bool, x2:bool
q+K op

q x1 op x2 : bool
(L:OPBOOL)

Σ;Γ
q −K conT

1

q ′+K conT
2

et : B Σ;Γ
q −K conF

1

q ′+K conF
2

e f : B

Σ;Γ, x:bool
q

q ′ if x then et else e f : B
(L:COND)

Σ;Γ1
q −K let

1
p e1 : A Σ;Γ2, x:A

p −K let
2

q ′+K let
3

e2 : B

Σ;Γ1,Γ2
q

q ′ let x = e1 in e2 : B
(L:LET )

A−−−−→q/q ′
B ∈Σ( f )

Σ; x:A
q+K

app
1

q ′−K
app
2

f (x) : B

(L:APP)

Σ; x1:A1, x2:A2
q+K pair

q (x1, x2) : (A1, A2)
(L:PAIR)

A = (A1, A2) Σ;Γ, x1:A1, x2:A2
q −K matP

1

q ′+K matP
2

e : B

Σ;Γ, x:A
q

q ′ match x with (x1, x2) → e : B
(L:MATP)

Σ;; q +K nil

q nil : Lp (A)
(L:NIL)

Σ;; q +K leaf

q leaf : T p (A)
(L:LEAF)

Σ; xh :A, xt :Lp (A)
q+p+K cons

q cons(xh , xt ) : Lp (A)
(L:CONS)

Σ; x0:A, x1:T p (A), x2:T p (A)
q +p +K node

q node(x0, x1, x2) : T p (A)
(L:NODE)

Σ;Γ
q −K matN

1

q ′+K matN
2

e1 : B Σ;Γ, xh :A, xt :Lp (A)
q +p −K matC

1

q ′+K matC
2

e2 : B

Σ;Γ, x:Lp (A)
q

q ′ match x with | nil → e1 | cons(xh , xt ) → e2 : B
(L:MATL)

Figure 4.1: Linear resource-annotated type rules (1 of 2).
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Σ;Γ
q −K matTL

1

q ′+K matTL
2

e1 : B Σ;Γ, x0:A, x1:T p (A), x2:T p (A)
q +p −K matTN

1

q ′+K matTN
2

e2 : B

Σ;Γ, x:T p (A)
q

q ′ match x with | leaf → e1 | node(x0, x1, x2) → e2 : B
(L:MATT)

Σ;Γ, x:A1, y :A2
q

q ′ e : B A .(A1, A2)

Σ;Γ, z:A
q

q ′ e[z/x, z/y] : B
(L:SHARE)

Σ;Γ, x:A
q

q ′ e : B A′ <: A

Σ;Γ, x:A′ q

q ′ e : B
(L:SUPERTYPE)

Σ;Γ
q

q ′ e : B B <: B ′

Σ;Γ
q

q ′ e : B ′ (L:SUBTYPE)

Σ;Γ
p

p ′ e : B q ≥ p q−p ≥ q ′−p ′

Σ;Γ
q

q ′ e : B
(L:RELAX)

Σ;Γ
q

q ′ e : B

Σ;Γ, x:A
q

q ′ e : B
(L:AUGMENT )

Figure 4.2: Linear resource-annotated type rules (2 of 2).

q +K app
1 +Φ(x:A) in the rule L:APP. After the evaluation of the body of the function

there are q ′+Φ( f (x):B) resources left. Hence there are q ′−K app
2 +Φ( f (x):B) resources

left after the function application. Remember that we have the implicit side condition
q ′−K app

2 ≥ 0.
(L:CONS) The construction of a new list element costs K cons resource units3.

Additionally, we have to pay for potentialΦ(cons(xh , xt ):Lp (A)) of the resulting list. The
potentialΦ(xt :Lp (A)) of the tail and the potentialΦ(xh :A) is paid by the potential of the
context. The missing potential p of the new list element, the resource cost K cons, and
the resulting constant potential q , are paid by the constant initial potential q+p+K cons.

(L:MATL) The rule L:MATL defines how to use the potential of a list to pay for
resource consumptions. First, it matches the corresponding rules E:MATN and E:MATC
from the operational semantics in terms of constant resource cost (like L:APP). But it
also incorporates the fact that either e1 or e2 is evaluated. The cons case is inverse to
the rule L:CONS and allows one to use the potential associated with a list. For one thing,
p resource units become available directly to pay for the evaluation of e2. For another
thing, the tail of the list is annotated with potential p.

The rules L:NIL and L:LEAF are similar to the rule L:VAR. It is safe to attach any
potential annotation p to empty data structures since the resulting potential is always
zero. The rules L:NODE and L:MATT are similar to L:CONS and L:MATL, respectively.

The structural type rules have three purposes. (1) Multiple occurrences of variables

3In fact, the resource cost of the construction of a list element often depend on the type A of the list
elements. Since A is known at compile time this can be easily implemented in the type system. Just replace
K cons with K cons(A).
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in expressions have to be introduced by the sharing rule L:SHARE. The sharing relation
.ensures that the potential associated with the variable z, which occurs twice, is split
between the variables x and y such that potential is neither gained nor lost.

(2) The syntax-directed rules are formulated with contexts that are minimal in the
sense that they only mention variables that are needed in the rule. For instance, the
rule L:VAR uses the context x:B instead of Γ, x:B for every Γ. If a variable occurs in a
larger expression, then the rule L:AUGMENT can be used to delete variables from the
context. If the deleted variable points to a list or a tree then its deletion can cause a loss
of potential.

(3) There are many cases in which the syntax-directed rules implicitly assume that
two resource annotations are equal or differ by a fixed constant. For instance, the rule
L:CONS requires a context of the form xh :A1, xt :Lp (A2) such that A1 = A2. Another
example is the rule L:COND. It has the two premises Σ;Γ

q1

q ′
1

et : B and Σ;Γ
q2

q ′
2

e f : B

where q1 = q2 +K conF
1 −K conT

1 and q ′
1 = q ′

2 −K conF
2 +K conT

2 . In practice, these require-
ments are often too rigid. That is why the rules L:RELAX, L:SUBTYPE, and L:SUPERTYPE

can be used to equal two potential annotations in order to apply the syntax-directed
rules. Their application can cause a loss of potential.

4.3 Soundness

In this section, I prove that type derivations establish correct bounds. An annotated
type judgment for an expression e shows that if e evaluates to a value v in a well-
formed environment then the initial potential of the context is an upper bound on the
watermark of the resource usage. Moreover, the difference between the initial and the
final potential is an upper bound on the consumed resources.

The introduction of the partial evaluation rules enables the formulation of a stronger
soundness theorem than in earlier works on amortized analysis, as for instance, in
[HH10b] or [JLH+09]. It states that the bounds derived from annotated type judgments
also hold for non-terminating evaluations. Additionally, the new accounting of resource
usage in the operational semantics allows for a more concise statement.

Theorem 4.3.1 (Soundness) Let H ÍV :Γ and let Σ;Γ
q

q ′ e:B .

1. If V , H ` e  v, H ′ | (p, p ′) then p ≤ ΦV ,H (Γ) + q and p − p ′ ≤ ΦV ,H (Γ) + q −
(ΦH ′(v :B)+q ′).

2. If V , H ` e | p then p ≤ΦV ,H (Γ)+q .

It follows from Theorem 4.3.1 and Theorem 3.3.9 that run-time bounds also prove the
termination of programs. Corollary 4.3.2 states this fact formally.

Corollary 4.3.2 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

m = 0

for all x and all m > 1. If H ÍV :Γ and Σ;Γ
q

q ′ e:A then there is an n ∈N,n ≤ΦV ,H (Γ)+q
such that V , H ` e v, H ′ | (n,0).
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Theorem 4.3.1 is proved by a nested induction on the derivation of the evaluation
judgment—V , H ` e v, H ′ | (p, p ′) or V , H ` e | p, respectively—and the type judg-
ment Σ;Γ

q

q ′ e:B . The inner induction on the type judgment is needed because of the
structural rules (compare the discussion in the proof of Theorem 3.3.4). There is one
proof for all possible instantiations of the resource constants. It is technically involved
but conceptually unsurprising.

The proof uses Lemma 4.3.3 to show the soundness of the rule L:LET. It states that
the potential of a context is invariant during the evaluation. This is a consequence of
allocated heap-cells being immutable with the language features that I describe in this
thesis. Note, however, that it suffices to use the weaker statement ΦV ,H (Γ) ≥ΦV ,H ′(Γ)
(rather thanΦV ,H (Γ) =ΦV ,H ′(Γ)) in the soundness proof. It remains true in the presence
of a destructive pattern match. The intuition is that the deallocation of heap cells can
lead to a reduction of potential.

Lemma 4.3.3 Let H Í V : Γ, Σ;Γ
q

q ′ e:A, and V , H ` e v, H ′ | (p, p ′). Then it is true
thatΦV ,H (Γ) =ΦV ,H ′(Γ).

PROOF The lemma is a direct consequence of the definition of the potentialΦ and the
fact that H ′(`) = H(`) for all ` ∈ dom(H) which is proved in Proposition 3.3.2. ■

Proof of the Soundness Theorem

In the remainder of this section I prove Theorem 4.3.1.

PROOF (PART 1) I prove p ≤ΦV ,H (Γ)+ q and p −p ′ ≤ΦV ,H (Γ)+ q − (ΦH ′(v :B)+ q ′) by

induction on the derivations of V , H ` e v, H ′ | (p, p ′) and Σ;Γ
q

q ′ e : B , where the
induction on the evaluation judgment takes priority.

(L:SHARE) Suppose that the derivation of Σ;Γ
q

q ′ e:B ends with an application of the
rule L:SHARE. Then Γ= Γ′, z:A. It follows from the premise that

Σ;Γ′, x:A1, y :A2
q

q ′ e ′ : B (4.1)

for data types Ai with A . (A1, A2) and an expression e ′ with e ′[z/x, z/y] = e. Since
H ÍV : Γ′, z:A and V , H ` e v, H ′ | (p, p ′) it follows that H ÍVx y : Γ′, x:A, y :A and

Vx y , H ` e ′ v, H ′ | (p, p ′) (4.2)

where Vx y =V \z ∪ {x 7→V (x), y 7→V (z)}. Thus we can apply the induction hypothesis to
(4.1) and (4.2) and derive

p ≤ΦVx y ,H (Γ′, x:A1, y :A2)+q (4.3)

and
p −p ′ ≤ΦVx y ,H (Γ′, x:A1, y :A2)+q − (ΦH ′(v :B)+q ′) . (4.4)
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By Lemma 4.1.3 we have thatΦVx y ,H (x:A1)+ΦVx y ,H (y :A2) =ΦV ,H (z:A) and hence

ΦVx y ,H (Γ′, x:A1, y :A2) =ΦV ,H (Γ′, z:A) (4.5)

by Lemma 4.1.1. The claim follows from (4.3), (4.4), and (4.5).

(L:AUGMENT ) If the derivation of Σ;Γ
q

q ′ e : B ends with an application of the

rule L:AUGMENT then we have Σ;Γ′
q

q ′ e : B for a context Γ′ with Γ′, x:A = Γ. From
the premise H Í V : Γ′, x:A it follows that H Í V : Γ′. Thus we can apply the induc-
tion hypothesis and derive p ≤ΦV ,H (Γ′)+q ≤ΦV ,H (Γ)+q and p −p ′ ≤ΦV ,H (Γ′)+q −
(ΦH ′(v :A)+q ′) ≤ΦV ,H (Γ′+q−(ΦH ′(v :A)+q ′). The respective second inequalities follow
fromΦV ,H (Γ′) ≤ΦV ,H (Γ), which is a direct consequence of Lemma 4.1.1.

(L:SUPERTYPE) Assume the derivation of the typing judgment ends with an applica-
tion of the type rule L:SUPERTYPE. Then we have Γ= Γ′, x:A. Furthermore we have the
premise

Σ;Γ′, x:A
q

q ′ e : B (4.6)

and A′ <: A. Since A′ and A have the same set of inhabitants (Lemma 4.1.2) it is true
that H Í V :Γ′, x:A. So we can apply the induction hypothesis to (4.6) and V , H `
e  v, H ′ | (p, p ′) and derive p ≤ ΦV ,H (Γ′, x:A) + q and p − p ′ ≤ ΦV ,H (Γ′, x:A) + q −
(ΦH ′(v :B)+q ′). From Lemma 4.1.2 it follows thatΦ(a:A′) ≥Φ(a:A) for all a ∈ �A�. Thus
p ≤ ΦV ,H (Γ′, x:A′)+ q and p −p ′ ≤ ΦV ,H (Γ′, x:A′)+ q − (ΦH ′(v :B)+ q ′) follows directly
from Lemma 4.1.1.

(L:SUBTYPE) Similar to the case (L:SUPERTYPE).

(L:RELAX) We apply the induction hypothesis to V , H ` e v, H ′ | (p, p ′) and to the
premise Σ;Γ r

r ′ e : B of L:RELAX. Then we have p ≤ΦV ,H (Γ)+ r and p −p ′ ≤ΦV ,H (Γ)+
r − (ΦH ′(v :B)+ r ′). From the premise of L:RELAX we have q ≥ r and q−r ≥ q ′−r ′ and
thus q−q ′ ≥ r−r ′. Therefrom the claim follows.

(L:VAR) Assume that e is a variable x that has been evaluated with the rule E:VAR.
Assume first that K var ≥ 0. Then it follows by definition that p = K var and p ′ = 0. The
type judgment Σ;Γ

q

q ′ x:B has been derived by a single application of the rule L:VAR.
Thus we have 0 ≤ q ′ = q −K var and therefore p = K var ≤ q ≤ΦV ,H (x:B)+q . Furthermore
it follows from the evaluation rule E:VAR that v =V (x) and thus p −p ′ = K var = q −q ′ =
ΦV ,H (x:B)+q − (ΦH ′(v :B)+q ′)

Assume now that K var < 0. Then it follows by definition that p = 0 and p ′ =−K var.
Thus p = 0 ≤ ΦV ,H (x:B)+ q . We have again that q − q ′ = K var = p −p ′. Therefore the
second part of the statement follows like in the case where K var ≥ 0.

(L:CONST*) Similar to the case (L:VAR).

(L:OPINT ) Assume that the type derivation ends with an application of the rule
L:OPINT. Then e has the form x1 op x2 and the evaluation consists of an application
of the rule E:BINOP. From the rule L:OPINT it follows that 0 ≤ q ′ = q −K op. If K op ≥ 0
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then p = K op and p ′ = 0. Thus p = K op ≤ q =ΦV ,H (x1:int, x2:int)+q and p −p ′ = K op =
ΦV ,H (x1:int, x2:int)+q − (ΦH ′(v :int)+q ′).

If K op < 0 then p = 0 and p ′ = −K op. Thus p ≤ q = ΦV ,H (x1:int, x2:int)+ q and
p −p ′ = K op =ΦV ,H (x1:int, x2:int)+q − (ΦH ′(v :int)+q ′).

(L:OPBOOL) The case in which the type derivation ends with an application of
L:OPBOOL is similar to the case (L:OPINT ).

(L:NIL) If the type derivation ends with an application of L:NIL then we have e =
nil, B = Lr (A) for some A, and 0 ≤ q ′ = q −K nil. The corresponding evaluation rule
E:NIL has been applied to derive the evaluation judgment and hence v = NULL. If
K nil ≥ 0 then p = K nil and p ′ = 0. Thus p = K nil ≤ q = ΦV ,H (;)+ q . Furthermore it
follows from Lemma 4.1.1 that ΦH ′(NULL:Lr (A)) = 0. Thus p −p ′ = K nil = ΦV ,H (;)+
q − (ΦH ′(NULL:Lr (A))+q ′). If K nil < 0 then p = 0 and p ′ =−K nil. Then p ≤ q and again
p −p ′ = K nil.

(L:CONS) If the type derivation ends with an application of the rule L:CONS then e has
the form cons(xh , xt ) and it has been evaluated with the rule E:CONS. It follows by defini-
tion that V , H ` cons(xh , xt ) `, H [` 7→ v ′] | K cons, xh , xt ∈ dom(V ), v = (V (xh),V (xt )),
and ` 6∈ dom(H). Thus

p = K cons and p ′ = 0 (4.7)

or (if K cons < 0)
p = 0 and p ′ =−K cons (4.8)

We have B = Ls(A) and the type judgment Σ; xh :A, xt :Ls(A)
q

q ′ cons(xh , xt ) : Ls(A) has
been derived by a single application of the rule L:CONS; thus

0 ≤ q ′ = q − s −K cons . (4.9)

If p = 0 then p ≤ΦV ,H (Γ)+q holds because of our implicit side condition q ≥ 0. Other-
wise we have p = K cons ≤ q ≤ΦV ,H (Γ)+q .

From Lemma 4.1.1 it follows that

s +ΦV ,H (xh :A, xt :Ls(A)) =ΦH [ 7̀→v ′](` : Ls(A)) (4.10)

Therefore

ΦV ,H (Γ)+q = ΦV ,H (xh :A, xt :Ls(A))+q
(4.9)= ΦV ,H (xh :A, xt :Ls(A))+q ′+ s +K cons

(4.10)= q ′+K cons +ΦH [ 7̀→v ′](` : Ls(A))

and thusΦV ,H (Γ)+q − (ΦH [ 7̀→v ′](`:Ls(A))+q ′) = K cons = p −p ′.

(L:LEAF) This case is proved like the case (L:NIL).

(L:PAIR and L:NODE) Similar to the case (L:CONS).
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(L:MATP) Assume that e is a pattern match match x with (x1, x2) → e ′ for a pair. Then
the rule E:MATP has been used at the root of the derivation of the evaluation judgment.
Therefore we have V (x) = (v1, v2) and V ′, H ` e ′ v, H ′ | (r,r ′) for V [x1 7→ v1, x2 7→ v2]
and some r,r ′ with

(p, p ′) = K matP
1 · (r,r ′) ·K matP

2 (4.11)

Similarly, the type judgment for e has been derived by an application of the rule L:MATP
and thus Γ= Γ′, x:A, A = (A1, A2), Σ;Γ′, x1:A1, x2:A2

s
s′ e : B , and

q = s +K matP
1 and s′−K matP

2 = q ′ ≥ 0 (4.12)

for some A1, A2, s, s′. Since H ÍV ′ : Γ′, x1:A1, x2:A2 we can apply the induction hypothe-
sis and withΦV ′,H (Γ′, x1:A1, x2:A2) =ΦV ,H (Γ) we derive

r ≤ ΦV ,H (Γ)+ s (4.13)

r − r ′ ≤ ΦV ,H (Γ)+ s − (ΦH ′(v :B)+ s′) (4.14)

Let

(u,u′) = K matP
1 · (ΦV ,H (Γ)+ s,ΦH ′(v :B)+ s′) ·K matP

2 (4.15)

Per definition and since s′ ≥ K matP
2 , it follows that u = max(0, s+K matP

1 +ΦV ,H (Γ)) (recall
that K matP

1 might be negative). From Proposition 3.3.1 applied to (4.13), (4.15) and (4.11)
we derive u ≥ p. If s +K matP

1 +ΦV ,H (Γ) ≤ 0 then u = p = 0 and q +ΦV ,H (Γ) ≥ p trivially
holds. If s +K matP

1 +ΦV ,H (Γ) > 0 then it follows from (4.12) that

q +ΦV ,H (Γ) = s +K matP
1 +ΦV ,H (Γ) = u ≥ p

Similarly, we apply Proposition 3.3.1 to (4.11) and use (4.14) and (4.12) to see that

p −p ′ = r − r ′+K matP
1 +K matP

2

≤ ΦV ,H (Γ)+ s − (ΦH ′(v :A)+ s′)+K matP
1 +K matP

2

≤ ΦV ,H (Γ)+ (s +K matP
1 )− (ΦH ′(v :A)+ (s′−K matP

2 )

= ΦV ,H (Γ)+q − (ΦH ′(v :A)+q ′)

(L:APP) Assume that e is a function application of the form f (x). The evaluation
of e then ends with an application of the rule E:APP. Thus we have V (x) = v ′ and
[y f 7→ v ′], H ` e f  v, H ′ | (r,r ′) for some r,r ′ with

(p, p ′) = K app
1 · (r,r ′) ·K app

2 (4.16)

The derivation of the type judgment for e ends with an application of L:FUN. Therefore
it is true that Γ= x:A , A−−−→s/s′ B ∈Σ( f ), and

q = s +K app
1 and q ′ = s′−K app

2 . (4.17)
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In order to apply the induction hypothesis to the evaluation of the function body e f we

recall from the definition of a well-formed program that A−−−→s/s′ B ∈ Σ( f ) implies that
Σ; y f :A s

s′ e f :B . Since H ÍV : x:A and V (x) = v ′ it follows that H Í [y f 7→ v ′] : y f :A. We
obtain by induction that

r ≤ Φ[y f 7→v ′],H (y f :A)+ s (4.18)

r − r ′ ≤ Φ[y f 7→v ′],H (y f :A)+ s − (ΦH ′(v :B)+ s′) (4.19)

Now everything is in place to proceed as in the case of E:MATP. Let

(u,u′) = K app
1 · (Φ[y f 7→v ′],H (y f :A)+ s,ΦH ′(v :B)+ s′) ·K app

2 . (4.20)

Then it follows that p ≤ u = max(0,K app
1 +Φ[y f 7→v ′],H (y f :A)+ s). Furthermore we have

Φ[y f 7→v ′],H (y f :A) =ΦV ,H (x:A) and with (4.17) it follows that p ≤ q +ΦV ,H (x:A).
For the second part for the statement observe that

p −p ′ = r − r ′+K app
1 +K app

2
(4.19)≤ Φ[y f 7→v ′],H (y f :A)+ s − (ΦH ′(v :B)+ s′)+K app

1 +K app
2

≤ ΦV ,H (x:A)+ s − (ΦH ′(v :B)+ s′)+K app
1 +K app

2

= ΦV ,H (x:A)+ s +K app
1 − (ΦH ′(v :B)+ s′−K app

2 )
(4.17)= ΦV ,H (x:A)+q − (ΦH ′(v :B)+q ′)

(L:COND) Similar to the case (L:MATP).

(L:MATL) Assume that the type derivation of e ends with an application of the rule
L:MATL. Then e is a pattern match of the form match x with | nil → e1 | cons(xh , xt ) → e2

whose evaluation ends with an application of the rule E:MATCONS or E:MATNIL. The
latter case is similar to the case (L:MATP). So assume the derivation of the evaluation
judgment ends with an application of E:MATCONS.

Then V (x) = `, H(`) = (vh , vt ), and V ′, H ` e2  v, H ′ | (r,r ′) for V ′ = V [xh 7→
vh , xt 7→ vt ] and some r,r ′ with

(p, p ′) = K matC
1 · (r,r ′) ·K matC

2 (4.21)

Since the derivation of Σ;Γ
q

q ′ e:A ends with an application of L:MATL, we have Γ=
Γ′, x:Lt (A), Σ;Γ′, xh :A, xt :Lt (A) s

s′ e2 : B , and

q = s +K matC
1 − t and q ′ = s′−K matC

2 . (4.22)

It is true (by Lemma 4.1.1) thatΦH (v :Lt (A)) = t+ΦH (vh :A)+ΦH (vt :Lt (A)) and therefore

ΦH ,V (Γ) = t +ΦH ,V ′(Γ′, xh :A, xt :Lt (A)) . (4.23)
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Since H ÍV ′ : Γ′, xh :A, xt :Lt (A) we can apply the induction hypothesis to V ′, H ` e2 
v, H ′ | (r,r ′) and obtain (with (4.23))

r ≤ ΦV ,H (Γ)− t + s (4.24)

r − r ′ ≤ ΦV ,H (Γ)− t + s − (ΦH ′(v :B)+ s′) (4.25)

Note thatΦV ,H (Γ)− t ≥ 0 and let

(u,u′) = K matC
1 · (ΦV ,H (Γ)− t + s,ΦH ′(v :B)+ s′) ·K matC

2 (4.26)

Per definition and from (4.22) it follows that u = max(0,ΦV ,H (Γ)− t + s +K matC
1 ). From

Proposition 3.3.1 applied to (4.24), (4.26) and (4.21) we derive u ≥ p. IfΦV ,H (Γ)− t + s +
K matC

1 ≤ 0 then u = p = 0 and q+ΦV ,H (Γ) ≥ p trivially holds. IfΦV ,H (Γ)−t+s+K matC
1 > 0

then it follows from (4.22) that

q +ΦV ,H (Γ) =ΦV ,H (Γ)− t + s +K matC
1 = u ≥ p .

Finally, we apply Proposition 3.3.1 to (4.21) to see that

p −p ′ = r − r ′+K matC
1 +K matC

2
(4.25)≤ ΦV ,H (Γ)− t + s − (ΦH ′(v :B)+ s′)+K matC

1 +K matC
2

= ΦV ,H (Γ)+ (s +K matC
1 − t )− (ΦH ′(v :B)+ (s′−K matC

2 ))
(4.22)≤ ΦV ,H (Γ)+q − (ΦH ′(v :B)+q ′)

(L:MATT) Similar to the case (L:MATL).

(L:LET ) If the type derivation ends with an application of L:LET then e is a let
expression of the from let x = e1 in e2 that has eventually been evaluated with the rule
E:LET. Then it follows that V , H ` e1 v1, H1 | (r,r ′) and V ′, H1 ` e2 v2, H2 | (t , t ′) for
V ′ =V [x 7→ v1] and r,r ′, t , t ′ with

(p, p ′) = K let
1 · (r,r ′) ·K let

2 · (t , t ′) ·K let
3 (4.27)

The derivation of the type judgment for e ends with an application of L:LET. Hence
Γ= Γ1,Γ2, Σ;Γ1

s1
s′1

e1 : A, Σ;Γ2, x:A
s2
s′2

e2 : B , and

q = s1 +K let
1 (4.28)

s′1 = s2 +K let
2 (4.29)

q ′ = s′2 −K let
3 (4.30)

It follows from the definition ofΦ that

ΦV ,H (Γ) =ΦV ,H (Γ1)+ΦV ,H (Γ2) (4.31)
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Since H ÍV : Γwe have also H ÍV : Γ1 and can thus apply the induction hypothesis for
the evaluation judgment for e1 to derive

r ≤ ΦV ,H (Γ1)+ s1 (4.32)

r − r ′ ≤ ΦV ,H (Γ1)+ s1 − (ΦH1 (v1:A)+ s′1) (4.33)

Form Theorem 3.3.4 it follows that H2 ÍV ′ : Γ2, x:A and thus again by induction

t ≤ ΦV ′,H1 (Γ2, x:A)+ s2 (4.34)

t − t ′ ≤ ΦV ′,H1 (Γ2, x:A)+ s2 − (ΦH2 (v2:B)+ s′2) (4.35)

Now let

(u,u′) = K let
1 · (ΦV ,H (Γ1)+ s1,ΦH1 (v1:A)+ s′1) ·K let

2 ·
(ΦV ′,H1 (Γ2, x:A)+ s2,ΦH2 (v2:B)+ s′2) ·K let

3

Then it follows that

(u,u′) (4.29,4.30)= K let
1 · (ΦV ,H (Γ1)+ s1,ΦH1 (v1:A)+ s′1 −K let

2 ) ·
(ΦV ′,H1 (Γ2, x:A)+ s2,ΦH2 (v2:B)+ s′2 −K let

3 )

= K let
1 · (v +ΦV ,H (Γ1)+ s1, v ′)

for v, v ′ ∈Q+
0 with

v ≤ ΦV ′,H1 (Γ2, x:A)+ s2 − (ΦH1 (v1:A)+ s′1 −K let
2 )

= ΦV ′,H1 (Γ2)+ s2 − (s′1 −K let
2 )

(4.29)= ΦV ′,H1 (Γ2)

and thus

u ≤ max(0,ΦV ,H (Γ1)+ΦV ′,H1 (Γ2)+ s1 +K let
1 )

(Lem. 4.3.3)≤ max(0,ΦV ,H (Γ1)+ΦV ,H (Γ2)+ s1 +K let
1 )

(4.28)≤ ΦV ,H (Γ)+q

Finally, it follows with Proposition 3.3.1 applied to (4.32), (4.34), and (4.27) that u ≥ p.

For the second part of the statement we apply Proposition 3.3.1 to (4.27) and derive
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the following.

p −p ′ = r − r ′+ t − t ′+K let
1 +K let

2 +K let
3

(4.35,4.33)≤ ΦV ,H (Γ1)+ s1 − (ΦH1 (v1:A)+ s′1)+ ΦV ′,H1 (Γ2, x:A)

+ s2 − (ΦH2 (v2:B)+ s′2)+ K let
1 +K let

2 +K let
3

= (ΦV ,H (Γ1)+ΦV ′,H1 (Γ2)+ s1)

+ (s2 +K let
2 − s′1)− (ΦH2 (v2:B)+ s′2)+K let

1 +K let
3

(4.29)= ΦV ,H (Γ1, )+ΦV ′,H1 (Γ2)+ s1 − (ΦH2 (v2:B)+s′2)+K let
1 +K let

3
(L. 4.3.3)≤ ΦV ,H (Γ1)+ΦV ,H (Γ2)+ s1 − (ΦH2 (v2:B)+ s′2)+K let

1 +K let
3

= ΦV ,H (Γ)+ s1 +K let
1 − (ΦH2 (v2:B)+ s′2 −K let

3 )
(4.28,4.30)≤ ΦV ,H (Γ)+q − (ΦH2 (v2:B)+q ′) ■

PROOF (PART 2) The proof of part 2 is similar but simpler than the proof of part 1.
However, it uses part 1 in the case of the rule P:LET2. Like in the proof of part 1, I prove
p ≤ ΦV ,H (Γ)+ q by induction on the derivations of V , H ` e  | p and Σ;Γ

q

q ′ e : B ,
where the induction on the partial evaluation judgment takes priority.

I only present some cases to convince you that the proof is similar to the poof of
part 1.

(L:VAR) Assume that e is a variable x and that the type judgment Σ;Γ
q

q ′ x:B has
been derived by a single application of the rule L:VAR. Thus we have 0 ≤ q ′ = q −K var.

Then e has been evaluated with a single application of the rule P:VAR and it follows
by definition that p = max(K var,0). (Remember that V , H ` x | K var is an abbreviation
for V , H ` x | max(K var,0) in P:VAR.)

Assume first that K var ≥ 0. Then we have 0 ≤ q ′ = q −K var and therefore p = K var ≤
q ≤ΦV ,H (x:B)+q . Assume now that K var < 0. Then it follows by definition that p = 0.
Thus p = 0 ≤ΦV ,H (x:B)+q .

(L:CONS) If the type derivation ends with an application of the rule L:CONS then
e has the form cons(xh , xt ) and it has been evaluated with the rule P:CONS. It follows
by definition that V , H ` cons(xh , xt ) | max(K cons,0). If K cons ≤ 0 and p = 0 then the
claim follows immediately from the fact that the potential is non-negative. If K cons > 0
and p = K cons then it follows with the rule L:CONS that 0 ≤ q ′ = q −K cons and thus
p = K cons ≤ q ≤ΦV ,H (x:A)+q .

(L:MATL) Assume that the type derivation of e ends with an application of the rule
L:MATL. Then e is a pattern match of the form match x with | nil → e1 | cons(xh , xt ) →
e2 whose evaluation ends with an application of the rule P:MATCONS or P:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application of
P:MATCONS.
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Then V (x) = `, H (`) = (vh , vt ), and V ′, H ` e2 | r for V ′ =V [xh 7→ vh , xt 7→ vt ] and
some r with

p = max(K matC
1 + r,0) (4.36)

Since, the derivation of Σ;Γ
q

q ′ e:A ends with an application of L:MATL, we have Γ=
Γ′, x:Lt (A), Σ;Γ′, xh :A, xt :Lt (A) s

s′ e2 : B , and

q = s +K matC
1 − t (4.37)

It is true (by Lemma 4.1.1) thatΦH (v :Lt (A)) = t+ΦH (vh :A)+ΦH (vt :Lt (A)) and therefore

ΦH ,V (Γ) = t +ΦH ,V ′(Γ′, xh :A, xt :Lt (A)) (4.38)

Since H ÍV ′ : Γ′, xh :A, xt :Lt (A) we can apply the induction hypothesis to V ′, H ` e2 |
r and obtain (with (4.38))

r ≤ s +ΦV ,H (Γ)− t (4.39)

If p = 0 then the claim follows immediately. Thus assume that p = K matC
1 + r . Then it

follows from (4.39) and (4.37) that

p = K matC
1 + r ≤ K matC

1 + s +ΦV ,H (Γ)− t = q +ΦV ,H (Γ) .

Assume now that the derivation of the evaluation judgment ends with an application of
P:MATNIL. Then V , H ` e1 | r for a r with

p = max(K matN
1 + r,0)

Since, the derivation of Σ;Γ
q

q ′ e:A ends with an application of L:MATL, we have Γ=
Γ′, x:Lt (A), Σ;Γ′ s

s′ e1 : B , and
q = s +K matN

1 (4.40)

Since H ÍV : Γ′, we can apply the induction hypothesis to V , H ` e1 | r and obtain
(with (4.38))

r ≤ s +ΦV ,H (Γ)− t . (4.41)

If p = 0 then the claim follows immediately. Assume that p = K matN
1 + r . Then it follows

from (4.41) and (4.40) that

p = K matN
1 + r ≤ K matN

1 + s +ΦV ,H (Γ)− t ≤ q +ΦV ,H (Γ) .

(L:LET ) If the type derivation ends with an application of L:LET then e is a let
expression of the from let x = e1 in e2 that has eventually been evaluated with the rule
P:LET1 or with the rule P:LET2.
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Assume first that the evaluation judgment ends with an application of the rule
P:LET2. Then it follows that V , H ` e1 v1, H1 | (r,r ′) and V ′, H1 ` e2 | t for V ′ =
V [x 7→ v1] and r,r ′, t with

(p, p ′) = K let
1 · (r,r ′) ·K let

2 · (t ,0) (4.42)

The derivation of the type judgment for e ends with an application of L:LET. Hence
Γ= Γ1,Γ2, Σ;Γ1

s1
s′1

e1 : A, Σ;Γ2, x:A
s2
s′2

e2 : B and

q = s1 +K let
1 (4.43)

s′1 = s2 +K let
2 (4.44)

It follows from the definition ofΦ that

ΦV ,H (Γ) =ΦV ,H (Γ1)+ΦV ,H (Γ2) (4.45)

Since H Í V : Γ we have also H Í V : Γ1 and can thus apply part 1 of the soundness
theorem to the evaluation judgment for e1 to derive

r ≤ ΦV ,H (Γ1)+ s1 (4.46)

r − r ′ ≤ ΦV ,H (Γ1)+ s1 − (ΦH1 (v1:A)+ s′1) (4.47)

Form Theorem 3.3.4 it follows that H2 Í V ′ : Γ2, x:A and we can apply the induction
hypothesis for the partial evaluation judgment for e2 to obtain

t ≤ ΦV ′,H1 (Γ2, x:A)+ s2 . (4.48)

Now let

(u,u′) = K let
1 · (ΦV ,H (Γ1)+ s1,ΦH1 (v1:A)+ s′1) ·K let

2 ·
(ΦV ′,H1 (Γ2, x:A)+ s2,ΦH2 (v2:B)+ s′2)

Then it follows that

(u,u′) (4.44)= K let
1 · (ΦV ,H (Γ1)+ s1,ΦH1 (v1:A)+ s′1 −K let

2 ) ·
(ΦV ′,H1 (Γ2, x:A)+ s2,ΦH2 (v2:B)+ s′2)

= K let
1 · (v +ΦV ,H (Γ1)+ s1, v ′)

for v, v ′ ∈Q+
0 with

v ≤ ΦV ′,H1 (Γ2, x:A)+ s2 − (ΦH1 (v1:A)+ s′1 −K let
2 )

= ΦV ′,H1 (Γ2)+ s2 − (s′1 −K let
2 )

(4.44)= ΦV ′,H1 (Γ2)
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and thus

u ≤ max(0,ΦV ,H (Γ1)+ΦV ′,H1 (Γ2)+ s1 +K let
1 )

(Lem. 4.3.3)≤ max(0,ΦV ,H (Γ1)+ΦV ,H (Γ2)+ s1 +K let
1 )

(4.43)≤ ΦV ,H (Γ)+q

Finally, it follows with Proposition 3.3.1 applied to (4.46), (4.48), and (4.42) that u ≥ p.
Assume now that the evaluation judgment ends with an application of the rule

P:LET1. Then it follows that V , H ` e1 | r and

p = max(K let
1 + r,0) .

The derivation of the type judgment for e ends with an application of L:LET. Hence
Γ= Γ1,Γ2, Σ;Γ1

s
s′ e1 : A, and

q = s +K let
1 . (4.49)

It follows from the definition ofΦ thatΦV ,H (Γ) =ΦV ,H (Γ1)+ΦV ,H (Γ2). Since H ÍV : Γwe
have also H ÍV : Γ1 and can apply the induction hypothesis to the evaluation judgment
for e1 to derive

r ≤ ΦV ,H (Γ1)+ s . (4.50)

If p = 0 then the claim follows immediately. Otherwise it is true that p = K let
1 + r . Then it

follows from (4.50) and (4.49) that

p = K let
1 + r ≤ K let

1 + s +ΦV ,H (Γ1) ≤ q +ΦV ,H (Γ) .

The other cases are similar to the case in which the derivation of the evaluation judgment
ends with an application of P:LET1. ■

4.4 Type Inference

In a nutshell, the type inference for linear amortized resource analysis is a usual type
inference that collects linear constraints, which are solved by a linear programming
solver (LP solver). You can think of the collection of the linear constraints as being
performed in three steps.4

First, a standard type inference algorithm computes a type derivation of simple
types (see Section 3.2) of RAML functions. Descriptions of such algorithms can be found
in textbooks such as Types and Programming Languages [Pie02]. Since RAML programs
are monomorphic, the user has to specify function types.

4In practice, we do it in one step only.
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q ≥ q ′+K var

Σ;Γ, x:B
q

q ′ x : B
(A:VAR)

Σ( f ) = (A1, . . . , An)−−−−→p/p ′
B q = p + c +K app

1 q ′ = p ′+ c −K app
2

Σ;Γ, x1:A1, . . . , xn :An
q

q ′ f (x1, . . . , xn) : B
(A:APP)

Γ
sn

s′n
e1:B1 Γ, xh :A, xt :Lp (A)

sc

s′c
e2:B2 Bi <: B for i=1,2

q+p≥sc+K matC
1 q≥sn+K matN

1 s′c≥q ′+K matC
2 s′n≥q ′+K matN

2

Σ;Γ, x:Lp (A)
q

q ′ match x with | nil → e1 | cons(xh , xt ) → e2 : B
(A:MATL)

Figure 4.3: Representative resource-annotated algorithmic type rules.

Second, type derivation trees for simple types are converted into type derivation
trees for resource-annotated types with yet unknown resource variables. To this end,
every type in the derivation is replaced with a corresponding resource-annotated type
with fresh resource variables. For instance, L(int) is replaced with Lq (int) such that the
variable q occurs nowhere else in the derivation. Similarly, every occurrence of the
symbol ` is replaced with

q

q ′ for fresh variables q and q ′.
The third step is the collection of constraints on the resource annotations as required

by algorithmic versions of the annotated type rules in Figures 4.1 and 4.2.

Algorithmic Type Rules

To obtain algorithmic type rules that can be used to produce the constraints during
the type inference, the structural rules in Figure 4.2 have to be integrated in the syntax
directed rules.

This integration is outlined in Section 4.2. In short, if the syntax-directed rules
implicitly assume that two resource annotations are equal or differ by a fixed constant,
an integration of the rules L:RELAX, L:SUBTYPE, or L:SUPERTYPE enable the analysis of a
wider range of programs. Figure 4.3 shows algorithmic versions of some representative
linear resource-annotated type rules. For convenience, I integrated construction and
destruction of tuples into the rule A:APP.

A difference to standard type systems is the sharing rule S:SHARE that has to be
applied if the same free variable is used more than once in an expression. The rule is not
problematic for the type inference and there are several ways to deal with it in practice.
The easiest way is maybe to transform input programs into programs that make sharing
explicit before the type inference using a syntactic construct. Such a transformation is
straightforward: Each time a free variable x occurs twice in an expression e, we replace
the first occurrence of x with x1 and the second occurrence of x with x2 obtaining a
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new expression e ′. We then replace e with share(x, x1, x2) in e ′. In this way, the sharing
rule becomes a normal syntax directed rule in the type inference. Another possibility
is to integrate sharing directly into the type rule for let expressions as we did in an
earlier work [HH10a]. Then you have to ensure a that variable only occurs once in each
function or constructor call.

A fine point of the type inference arises from the treatment of function applications.
The simplest way to treat them is to assume one fixed resource-annotated function type
for each function. Each (possibly recursive) function application then uses this type.
However, a context-sensitive analysis of functions extends the accuracy and range of
the analysis. The reason is that one sometimes has to analyze function applications
context-sensitively with respect to the call stack. Consider for example the expres-
sion f(attach(x,l)) from Chapter 1 where you need to attach a potential to the result of
attach(x,l) that depends on the resource consumption of the function f.

In our implementation we collapse the cycles in the call graph and analyze each
function once for every path in the resulting graph.

Recursive function calls are always typed resource-monomorphically, that is to say,
with the same type as the caller (see the following example). This approach enables
an efficient inference. However, it makes the type inference incomplete with respect
to the type rules. I give an example that cannot be typed with resource-monomorphic
recursion in Section 4.5.

Example

In the following, I use the rules A:VAR, A:APP, and A:MATL from Figure 4.3 to demon-
strate the process of inferring a resource annotated type. As an example I use the
function last:(int,L(int))→int that returns the last element of the input list or the integer
input in the first component if the list is empty. It is implemented as follows.

last (acc,l) = match l with | nil → acc
| x::xs → last(x,xs)

Figure 4.4 shows a classic type derivation that is annotated with resource variables. Be-
low the derivation is the set of linear constraints as defined by the used algorithmic type
rules. In the recursive call we require the function application to match its specification.

The constrains in Figure 4.4 can be simplified to q ≥ K matN
1 +K var +K matN

2 +q ′ and
p ≥ K app

1 +K app
2 +K matC

1 +K matC
2 . Note that it is not always possible to simplify the

constraints that arise in the type inference to such a simple form. In general p, q , and q ′

might appear in multiple constraints.

Objective Function

The final step of the type inference is to solve the linear constraints with an LP solver.
The solver minimizes the variables in the constraints with respect to a given objective
function. In the example in Figure 4.4, the objective function is qΣ + 1000pΣ. The
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acc:int
qv

q ′
v

acc : int
(A:VAR)

Σ(last) = (int,LpΣ(int))−−−−−→qΣ/q ′
Σ int

acc:int, x:int,xs:Lp (int)
qa

q ′
a

last(x,xs) : int
(A:APP)

acc:int, l :Lp (int)
q

q ′ match l with | nil → acc | cons(x,xs) → last(x,xs) : int
(A:MATL)

A:VAR: qv ≥ q ′
v +K var

A:APP: qa = qΣ+ c +K app
1 q ′

a = q ′
Σ+ c −K app

2
A:MATL: q+p≥qa+K matC

1 q≥qv+K matN
1 q ′

a≥q ′+K matC
2 q ′

v≥q ′+K matN
2

Recursive: pΣ = p qΣ = q q ′
Σ = q ′

Minimize: qΣ+1000pΣ

Figure 4.4: Inferring a linear resource-annotated type for the last: the annotated
type derivation, the linear constraints derived from the algorithmic type rules,
and the objective function.

multiplicative factors 1 and 1000 reflect that linear potential (p) is more expensive then
constant potential (q). In general, we state in objective functions that inner potential,
say, in list of list, is more expensive than outer potential.

The choice of the multiplicative factors is a heuristic. You can always construct RAML
programs that will admit a linear constraint system in which the objective function is
minimized by a solution that assign more potential to linear annotations than necessary.
The problem is that classic linear programming does permit objectives that state that
the minimization of one constraint is more important than the minimization of another.

In practice, the objective function is however not very important. The results are
generally stable when changing the constant factors in the objective function. The
reason is that cases where the LP solver has an option to trade linear for constant
potential are relatively seldom. The example in Figure 4.4 is representative in this
regard.

4.5 Examples

This section exemplifies the analysis with different RAML programs. At first, I demon-
strate that the analysis works well on typical linear functions on lists and trees like
map, fold, and filter operations, which are naturally implemented by using structural
induction. Hereafter, I demonstrate the advantages of amortization by automatically
analyzing a breath-fist search on trees that uses a stack. Then I give more theoretically
motivated examples that demonstrate the need of rational potential and the possibility
of analyzing non-terminating functions.
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Structural Recursion

Many functions that often appear in functional programming are usually implemented
using structural recursion and one recursive function call. Examples of such functions
are map, fold, and filter operations on tree-like data structures. Linear amortized
resource analysis works reliably and precisely for these functions. In most cases, the
computed bounds for these functions exactly match the actual worst-case behavior.
This is important for a successful deployment of the analysis in practice.

Consider for instance the function plus: (T (int), int)→T (int) that adds an integer to
every node in an integer-labeled binary tree. It can be naturally implemented as follows.

plus (t,n) = match t with | leaf → leaf
| node(x,t1,t2) → let t1’ = plus(t1,n) in

let t2’ = plus(t2,n) in
node (x+n,t1’,t2’)

Our prototype implementation computes the heap-space bound 3n and the evaluation-
step bound 21n+3, where n is the number of nodes in the input tree. Both bounds match
the exact run-time behavior of the function. The respective types are the following.

plus : (T 3(int), int)−−−→0/0 T 0(int)

plus : (T 21(int), int)−−−→3/0 T 0(int)

The inference first fixes the function type plus:(T q (int), int)−−−−→p/p ′
T q ′

(int), where p, p ′, q
and q ′ are variables that range over non-negative rational numbers. In the heap-space
case it computes linear constraints that essentially state that p ≥ p ′ and q ≥ q ′+3.

Another example is the function zip: (L(int),L(int))→L(int) that can be implemented
as follows.

zip (l1,l2) = match l1 with | nil → nil
| x::xs → match l2 with

| nil → nil
| y::ys → (x,y)::zip(xs,ys)

The expression zip([1,2,3],[4,5,6]) evaluates for instance to [(1,4),(2,5),(3,6)]. The pro-
totype implementation computes the heap-space bound 3m and the evaluation-step
bound 10m +2n +3, where n is the length of the first component and m is the length
of the second component of the input. Both bounds are tight if n = m. A tight bound
for inputs with m 6= n would however be min(n,m) which cannot be expressed by the
analysis system. However, our prototype computes exact bounds for the function in
cases where concrete inputs are available. This is possible since both of the following
heap-space typings are inferred depending on the context.

zip : (L3(int),L0(int))−−−→0/0 L0(int)

zip : (L0(int),L3(int))−−−→0/0 L0(int)
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A mixed typing like zip:(L1(int),L2(int))−−−→0/0 L0(int) is also correct. The linear program
that is inferred from the function definition states essentially that q1 +q2 ≥ 3+q ′ and
p ≥ p ′ if the function type is zip:(Lq1 (int),Lq2 (int))−−−−→p/p ′

Lq (int).

Breadth-First Search

The implementation of breadth-first search below is a nice example whose analysis
relies heavily on amortization. The function bfs’ uses a FIFO-queue that is implemented
with two lists (in the functions queue and fqueue).

appendrev : (L(T(int)),L(T(int))) → L(T(int))

appendrev (toreverse,sofar) = match toreverse with
| nil → sofar
| a::as → appendrev(as,a::sofar);

reverse: L(T(int)) → L(T(int))

reverse xs = appendrev(xs,[]);

bfs : (T(int),int) → T(int)

bfs(t,x) = bfs’([t],[],x);

bfs’ : (L(T(int)),L(T(int)),int) → T(int)

bfs’(queue,fqueue,x) = match queue with
| nil → match fqueue with

| nil → leaf
| t::ts → bfs’(reverse(t::ts),[],x)

| (t::ts) → match t with
| leaf → bfs’(ts,fqueue,x)
| node(y,t1,t2) → if x==y then node(y,t1,t2)

else bfs’(ts,t2::t1::fqueue,x);

For the evaluation-step metric, the prototype computes the following typing for the
function bfs.

bfs : (T 80(int), int)−−−−→21/0 T 0(int)

It states the fact that an evaluation of bfs(t,x) needs less then 80n+21 evaluation steps if
the tree t has n nodes. The previous typing is an instance of the more general typing
bfs: (T q (int), int)−−−−→p/p ′

T q ′
(int) if p +21 ≥ p ′, q ≥ 80 and q ≥ q ′. It is a particularly nice

feature of this typing is that the potential of the subtree returned by bfs is not wasted but
can be used in the rest of the program. An alternate type of the function is for instance
bfs: (T 80(int), int)−−−−−→51/30 T 80(int).
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Rational Potential

To get a precise bound it is sometimes essential to assign rational potential to a data
structure. A simple example is the function group2: L(int)→L((int, int)) that is imple-
mented below.

group2 l = match l with
| nil → nil
| x::xs → match xs with

| nil → nil
| y::ys → (x,y)::group2 ys

The expression group2([1,2,3,4,5]) evaluates for example to [(1,2),(3,4)]. By inferring the
following type, the prototype implementation computes the heap-space bound 1.5n for
inputs of length n.

group2 : L1.5(int)−−−→0/0 L0((int, int))

This bound is the exact heap-space usage if n is even. If n is odd then the heap-space us-
age is 1.5(n−1). The constraints for the generic type group2: Lq (int)−−−−→p/p ′

Lq ′
((int, int))

are p ≥ p ′ and 2q ≥ q ′+3.

Non-Termination

Note that there is no syntactic restriction on the functions that can by analyzed by
automatic amortized resource analysis. If a function does not consume resources then
even non-termination is unproblematic.

Consider the function omega defined as follows.

omega (x) = omega (x)

For the heap-space metric and the generic type omega: Lq (int)−−−−→p/p ′
Lq ′

(int), the con-
straint system states no restrictions on the values of the resource annotations. Conse-
quently, our prototype infers that no heap-space is used by omega.

Since the prototype can infer the typing

omega : L0(int)−−−→0/0′
L3(int)

it can also infer that the expression let l’ = omega l in zip(l’,l’) needs zero heap cells.
For an example of a non-terminating function that consumes heap-space consider

the following function fibs that successively stores all Fibonacci numbers on the heap.

fibs l = matchD l with
| nil → ()
| n::ls → matchD ls with

| nil → ()
| m::_ → fibs [m,n+m];

main = fibs [0,1]



72 Chapter 4. Linear Potential

The destructive pattern matching matchD deallocates the matched node of the list `
and frees 2 memory cells.5 As a result, the function fibs stores the Fibonacci numbers in
the heap space that is occupied by the input list ` without requiring additional space.
The prototype implementation infers the following types for the program.

fibs : L0(int)−−−→0/0′
unit

main : unit−−−→4/0′
unit

The type of fibs states that the function does not need any heap space and the type of
main states that the main expressions requires four heap cells. These cells are used to
create the initial list [0,1].

5See Chapter 7 for details on destructive pattern matches.
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Univariate Polynomial Potential

Linear automatic amortized analysis works well in practice because of three reasons:
it is compositional; it computes precise bounds; and the type inference uses linear
constraint solving only. The main shortcoming of the analysis is its limitation to linear
bounds.

In this chapter, I show how to overcome this shortcoming while preserving the
appealing features of the analysis system. I describe an automatic amortized resource
analysis that computes univariate polynomial bounds. It is based on two works that
I presented at the 19th European Symposium on Programming (ESOP’10) [HH10b]
and the eighth Asian Symposium on Programming Languages and Systems (APLAS’10)
[HH10a]. You find an informal introduction of the main ideas in Section 2.2.2.

The structure of the chapter resembles the structure of Chapter 4. In Section 5.1,
I introduce polynomial resource annotations and binomial coefficients as a basis for
potential functions. A key notion is the additive shift that relates resource annotations
of data structures with different sizes. Section 5.2 defines type judgments for annotated
types that establish polynomial resource bounds and type rules that derive such type
judgments for RAML programs. In Section 5.3, I prove the soundness of the resource
bounds that are derived by resource-annotated type derivations.

Section 5.4 deals with the inference of type derivations. Despite of establishing
polynomial bounds, the inference algorithm relies on linear constraint solving. A main
challenge in the inference is the treatment of polymorphic recursion. Finally, in Sec-
tion 5.5 I demonstrate the analysis with illustrative examples.

5.1 Resource Annotations

In this chapter I use potential functions that are non-negative linear combinations of
binomial coefficients

(n
k

)
, where k is a natural number and n is some size parameter

73
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derived from the data structure. Notice that n depends sometimes on the height of a
tree-like data structure; this is not the case in Chapters 4 and 6.

The following EBNF-grammar defines the (univariate) resource-annotated data
types of RAML. A resource annotation ~q = (q1, . . . , qk ) ∈ (Q+

0 )k is a vector of non-negative
rational numbers.

A ::= unit | bool | int | L~q (A) | T ~q (A) | (A, A)

Let Apol be the set of univariate resource-annotated data types.
Let A ∈ Apol be an annotated data type. As in Chapter 4, I write �A� for the set of

semantic values of type A. For instance, �L~q (int)� is the set of (finite) lists of integers.
Also like in Chapter 4, all other definitions for simple data types from Section 3.2—
such as H Í v 7→ a : A and H Í v : A —are extended to resource-annotated data types by
ignoring the resource annotations.

For two resource annotations ~p = (p1, . . . , pk ) and ~q = (q1, . . . , q`) I write ~p ≤ ~q if
k ≤ ` and pi ≤ qi for all 1 ≤ i ≤ k. If ` ≥ k then we define ~p +~q = (p1 + q1, . . . , pk +
qk , qk+1, . . . , q`).

One intuition for the resource annotations is as follows: The annotation ~q assigns
the potential q1 to every element of the data structures, the potential q2 to every element
of every proper suffix (sublist or subtree, respectively) of the data structure, q3 to the
elements of the suffixes of the suffixes, etc.

For linear potential annotations we can simply assign potential to sublists and
subtrees by using the same annotations as for the corresponding parental data structures.
This would however lead to a substantial loss of potential in the polynomial case. For
that reason, I use an additive shift operation to assign potential to sublists and subtrees.
It is an important concept of my work and discussed in more detailed in the remainder
of this section.

Let ~q = (q1, . . . , qk ) be a resource annotation. The additive shift of ~p is

C(~p) = (q1 +q2, q2 +q3, . . . , qk−1 +qk , qk ) .

In contrast with the definitions in Chapters 4 and 6, the potentialΦ is defined recursively
to unify the treatment of lists and trees (compare Lemma 4.1.1). I then develop closed
formulas for the potential functions.

Let A ∈Apol by a resource-annotated data type and let a ∈ �A�. The potential Φ(a:A)
of a under type A is defined as follows.

Φ(a:A) = 0 if A ∈ {unit, int,bool}

Φ((a1, a2):(A1, A2)) =Φ(a1:A1)+Φ(a2:A2)

Φ([]:L~q (B)) = 0

Φ((a ::`):L~q (B)) = q1 +Φ(a:B)+Φ(`:LC(~q)(B))

Φ(leaf :T ~q (B)) = 0

Φ(tree(a, t1, t2):T ~q (B)) = q1 +Φ(a:B)+Φ(t1:TC(~q)(B))+Φ(t2:TC(~q)(B))
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As usual, I assume in the definition that ~q = (q1, . . . , qk ).
Let A ∈Apol, let H be a heap, and let v ∈ Val be a value such that H Í v 7→ a : A . The

potentialΦH (v :A) of v under type A in H is then defined asΦH (v :A) =Φ(a:A).
In the following I will sometimes explain an idea referring to the potentialΦ(x:A) of

a variable x with respect to an annotated type A without mentioning a stack V and a
heap H .

After having all the basic definitions in place, we investigate in the following what
the potentialΦ and the additive shiftCmean for different data structures.

The Potential of Lists

To understand the potential functions for lists, we first consider some simple examples.
Let for instance `= [a1 . . . , an] : L(int) be list of integers. Then the following is true for all
q1, q2, q3 ∈Q+

0 .

Φ(`:L(q1)(int)) = q1 ·n

Φ(`:L(0,q2)(int)) =
n−1∑
i=1

q2 · i = q2
n · (n −1)

2

Φ(`:L(0,0,q3)(int)) =
n−1∑
i=1

q3
i · (i −1)

2
= q3

n · (n −1) · (n −2)

6

In fact, the potential of a list can always be written as a non-negative linear combination
of binomial coefficients. This is proved by the following lemma. We define

φ(n,~p) =
k∑

i=1

(
n

i

)
pi .

Lemma 5.1.1 Let ` = [a1 . . . , an] : L(A) be a list of type A and let ~p = (p1, . . . , pk ) be a
resource annotation. Then

Φ(`:L~p (A)) =φ(n,~p)+
n∑

i=1
Φ(ai :A) .

PROOF We prove the statement by induction on n. If n = 0 then ` = [] and we have
Φ(`:L~p (A)) = 0 =∑0

i=1Φ(ai :A)+φ(0,~p).
Let n > 0. It then follows by induction that

Φ(`:L~p (A)) = p1 +Φ(a1:A)+Φ([a2, . . . , an]: LC(~p)(A))

= p1 +
n∑

i=1
Φ(ai :A)+φ(n −1,C(~p))

But since (
n −1

i

)
+

(
n −1

i +1

)
=

(
n

i +1

)
(5.1)
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it is true that

φ(n −1,C(~p)) =
k∑

i=1

(
n −1

i

)
pi +

k−1∑
i=1

(
n −1

i

)
pi+1

= (n −1)p1 +
k−1∑
i=1

((
n −1

i +1

)
+

(
n −1

i

))
pi+1

= (n −1)p1 +
k−1∑
i=1

(
n

i +1

)
pi+1 (by (5.1))

=
k∑

i=1

(
n

i

)
pi −p1 =φ(n,~p)−p1 ■

The use of binomial coefficients rather than powers of variables has many advantages
as discussed in Section 2.2.2. In particular, the identity

∑
i=1,...,k

qi

(
n +1

i

)
= q1 +

∑
i=1,...,k−1

qi+1

(
n

i

)
+ ∑

i=1,...,k
qi

(
n

i

)

gives rise to a local typing rule for cons match which naturally allows the typing of both
recursive calls and other calls to subordinate functions in branches of a pattern match.

It is essential for the type system that φ is linear in the sense of the following lemma
that follows directly from the definition of φ.

Lemma 5.1.2 Let n ∈ N, α ∈ Q and let ~p,~q be resource annotations. Then φ(n,~p)+
φ(n,~q) =φ(n,~p +~q) and α ·φ(n,~p) =φ(n,α ·~p).

It is a general pattern in functional programs to compute a task on a list recursively for
the tail of the list and to use the result of the recursive call to compute the result of the
function. In such a recursive function it is natural to assign a uniform potential to each
sublist (depending on its length) that occurs in a recursive call. In other words: one
wants to use the potential of the input list to assign a uniform potential to every suffix of
the list. With this view, the list potential α=φ(n, (p1, p2, · · · , pk )) can be read as follows:
a recursive function on a list ` of length n that has the potential α can use the potential
φ(i , (p2, · · · , pk ) for the suffixes of ` of length 1 ≤ i < n that occurs in the recursion. This
intuition is proved by the following lemma.

Lemma 5.1.3 Let ~p=(p1, . . . , pk ) be a resource annotation, let n ∈N and defineφ(n, ()) =
0. Then φ(n, (p1, . . . , pk )) = n ·p1 +∑n−1

i=1 φ(i , (p2, . . . , pk )).

PROOF The proof uses the following well-known equation.

n−1∑
i=1

(
i

k

)
=

(
n

k +1

)
for each k ∈N (5.2)
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Let now k ≥ 0. Then

φ(n, (p1, . . . , pk+1)) =
k+1∑
j=1

(
n

j

)
p j

= n ·p1 +
k∑

j=1

(
n

j +1

)
p j+1

= n ·p1 +
k∑

j=1
(

n−1∑
i=1

(
i

j

)
p j+1)) (by (5.2))

= n ·p1 +
n−1∑
i=1

(
k∑

j=1

(
i

j

)
p j+1))

= n ·p1 +
n−1∑
i=1

φ(i , (p2, . . . , pk+1)) (by definition) ■

Note that the binomial coefficients are a basis of the vector space of the polynomials.
Here, however, we are only interested in non-negative linear combinations of binomial
coefficients. These admit a natural characterization in terms of growth: for f :N→N

define (∆ f )(n) = f (n +1)− f (n). Call f hereditarily non-negative if ∆i f ≥ 0 for all i ≥ 0.
One can show that a polynomial p is hereditarily non-negative if and only if it can
be written as a non-negative linear combination of binomial coefficients. To wit, the
coefficient of

(n
i

)
in the representation of p is (∆i p)(0). The hereditarily non-negative

polynomials are scalar multiples of unary resource polynomials [GSS92] and thus are
closed under sum, product, and composition. Note that they include all non-negative
linear combinations of the polynomials (xi )i∈N. In Chapter 6, I consider multivariate
linear combinations of binomial coefficients and study their properties in more detail.

The Potential of Trees

As in the case of lists, closed forms of the potential functions for trees involve bino-
mial coefficients. In contrast to the potential functions for trees in the linear and the
multivariate system, the closed form depends on the shape of the tree.

The advantage of this univariate tree potential is that it allows for more precise
bounds. The disadvantage is that it is not possible to transfer super-linear potential
from a tree to a list or to a tree of a different shape. That is why I prefer the multivariate
version of tree potential that I present in Chapter 6. It is of course possible to combine
both forms of potential in a single analysis system.

Lemma 5.1.4 shows that there is a closed formula that exactly describes the potential
of a tree. Note that the root of a tree has height 1 and that children of a node at height h
have height h +1.

Lemma 5.1.4 Let t : T (A) be a tree of height h with nodes a1, . . . , an such that ni is the
number of nodes at level i . let ~p = (p1, . . . , pk ) be a resource annotation and define
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pi = 0 for i > k. Then

Φ(t :T ~p (A)) =
n∑

i=1
Φ(ai :A)+

h∑
i=1

ni

(
i∑

j=1
p j

(
i −1

j−1

))
.

PROOF We prove the statement by induction on h. If h = 0 then n = 0 and the statement
follows directly from the definition ofΦ.

Let now h > 0. Then t = tree(a1, t1, t2) and

Φ(t :T ~p (A)) = p1 +Φ(a1:A)+Φ(t1: TC(~p)(A))+Φ(t2: TC(~p)(A))

= p1 +
n∑

i=1
Φ(ai :A)+

h−1∑
i=1

ni+1

(
i∑

j=1
(p j +p j+1)

(
i −1

j −1

))

= p1 +
n∑

i=1
Φ(ai :A)+

h∑
i=2

ni

(
i−1∑
j=1

(p j +p j+1)

(
i −2

j −1

))

= p1 +
n∑

i=1
Φ(ai :A)+

h∑
i=2

ni

(
p1 +pi +

i−1∑
j=2

p j

((
i−2

j−2

)
+

(
i−2

j−1

)))

=
n∑

i=1
Φ(ai :A)+

h∑
i=1

ni

(
i∑

j=1
p j

(
i −1

j −1

))
■

Lemma 5.1.5 shows two simple bounds for tree potential functions that can be presented
to a user after the analysis.

Lemma 5.1.5 Let t : T (A) be a tree of height h with nodes a1, . . . , an of type A and let
~p = (p1, . . . , pk ) be a resource annotation.

1. Φ(t :T ~p (A)) ≤φ(n,~p)+∑n
i=1Φ(ai :A)

2. Φ(t :T ~p (A)) ≤∑n
i=1Φ(ai :A)+∑k

i=1 pi ·n · (h −1)i−1

PROOF Part 1 follows by induction on n and from the fact that φ(n1,~p)+φ(n2,~p) ≤
φ(n1 +n2,~p).

To prove part 2 let ni be the number of nodes on level i . It follows from Lemma 5.1.4
that

Φ(t :T ~p (A)) =
n∑

i=1
Φ(ai :A)+

h∑
i=1

ni

(
i∑

j=1
p j

(
i −1

j −1

))

≤
n∑

i=1
Φ(ai :A)+

h∑
i=1

ni

(
h∑

j=1
p j

(
h −1

j −1

))

≤
n∑

i=1
Φ(ai :A)+n

(
h∑

j=1
p j

(
h −1

j −1

))

≤
n∑

i=1
Φ(ai :A)+n

(
k∑

j=1
p j (h −1) j−1

)
■
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The Subtyping Relation

Intuitively, a resource-annotated data type A is a subtype of a resource-annotated data
type B if A and B have the same set �A� of semantic values, and for every value a ∈ �A�
the potentialΦ(a:A) is greater or equal than the potential of φ(a:B). More formal, we
define <: to be the smallest relation such that the following is true.

C <: C if C ∈ {unit,bool, int}

(A1, A2) <: (B1,B2) if A1 <: B1 and A2 <: B2

L~p (A) <: L~q (B) if A <: B and ~p ≥~q
T ~p (A) <: T ~q (B) if A <: B and ~p ≥~q

Lemma 5.1.6 Let A, B be two resource-annotated data types with A <: B . Then �A� =
�B� andΦ(a:A) ≥Φ(a:B) for all a ∈ �A�.

PROOF By induction on the definition of subtyping relation. If A = B ∈ {unit,bool, int}
then �A� = �B� andΦ(a:A) = 0 =Φ(a:B).

If A = (A1, A2) then B = (B1,B2), A1 <: B1 and A2 <: B2. By induction it follows that
�Ai � = �Bi � and Φ(ai :Ai ) ≥ Φ(ai :Bi ) for all (a1, a2) ∈ (A1, A2). But then �A� = �B� and
Φ((a1, a2):A) =Φ(a1:A1)+Φ(a2:A2) ≥Φ(a1:B1)+Φ(a2:B2) =Φ(a:B).

If A = L~p (A′) then B = L~q (B ′) for a ~q , A <: B , and ~p ≥ ~q . By induction we have
�A′� = �B ′� and thus �A� = �B�. Let [a1, . . . , an] ∈ �L~p (A′)�. Then

Φ([a1, . . . , an] : L~p (A′)) =φ(n,~p)+∑
1≤i≤nΦ(ai :A′) (Lemma 5.1.3)

≥φ(n,~q)+∑
1≤i≤nΦ(ai :A′) (p ≥ q)

≥φ(n,~q)+∑
1≤i≤nΦ(ai :B ′) (Ind.)

=Φ([a1, . . . , an] : L~q (B ′)) (Lemma 5.1.3)

The case in which A = T ~p (A′) can be proved similarly to the case A = L~q (A′) using
Lemma 5.1.4. ■

The Sharing Relation

The sharing relation .defines how the potential of a variable can be shared by multiple
occurrences of that variable. We have A . (A1, A2) if and only if A, A1 and A2 are
structural identical, that is, have the same set �A� of semantic values, and for every
value a ∈ �A� the potentialΦ(a:A) is identical to the sumΦ(a:A1)+Φ(a:A2). The sharing
relation . is the smallest relation such that following holds.

C .(C ,C ) if C ∈ {unit,bool, int}

(A,B) .((A1,B1), (A2,B2)) if A .(A1, A2) and B .(B1,B2)

L~p (A) .(L~q (A1),L~r (A2)) if A .(A1, A2) and ~p =~q +~r
T ~p (A) .(T ~q (A1),T~r (A2)) if A .(A1, A2) and ~p =~q +~r
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Lemma 5.1.7 Let A, A1, A2 be three resource-annotated data types with A .(A1, A2).
Then �A� = �A1� = �A2� andΦ(a:A) =Φ(a:A1)+Φ(a:A2) for all a ∈ �A�.

PROOF The proof is similar to the proof of Lemma 5.1.6 ■

5.2 Type Rules

In this section I define typing rules that assign univariate resource-annotated data types
to RAML expressions. Some of the rules are identical to their linear counterparts from
Chapter 4. The most import differences are the rules for construction and destruction
of data structures.

As in the case of linear types, a typing context is a partial finite mapping Γ : VID →
Apol from variable identifiers to (univariate) resource-annotated data types. In this
chapter, however, potential annotations are vectors of non-negative rational numbers
rather than single numbers.

The potential of a typing context Γwith respect to a heap H and a stack V is

ΦV ,H (Γ) = ∑
x∈dom(Γ)

ΦH (V (x):Γ(x)) .

Sometimes I just writeΦ(Γ) in informal discussions leaving stack and heap implicit.
Univariate resource-annotated first-order types are defined by the following gram-

mar.
F ::= A−−−−→q/q ′

A

Here, q, q ′ are rational numbers and A ranges over the resource-annotated data types.
The intended meaning is that q is the constant potential before a call to the function
and q ′ is the constant potential after the call to the function. Let Fpol denote the set of
resource-annotated first-order types.

A resource-annotated signature Σ : FID → (P (Fpol)\;) is a finite, partial mapping
of function identifiers to non-empty sets of resource-annotated first-order types. As a
result, every function can have different resource annotations depending on the context.

A resource-annotated typing judgment has the form

Σ;Γ
q

q ′ e:A

where e is a RAML expression, q, q ′ ∈ Q+
0 are non-negative rational numbers, Σ is a

resource-annotated signature, Γ is a resource-annotated context and A is a resource-
annotated data type. The intended meaning of this judgment is that if there are more
than q +Φ(Γ) resource units available then this is sufficient to evaluate e and there are
more than q ′+Φ(v :A) resource units left if e evaluates to a value v .

As for linearly annotated types, a RAML program with resource-annotated types
consists of a resource-annotated signature Σ and a family (e f , y f ) f ∈dom(Σ) of expres-

sions e f with a distinguished variable identifier y f such that Σ; y f :A
q

q ′ e f :B for each

A−−−−→q/q ′
B ∈Σ( f ).
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Σ;; q +K unit

q () : unit
(U:CONSTU)

b ∈ {True,False }

Σ;; q +K bool

q b : bool
(U:CONSTB)

n ∈Z

Σ;; q +K int

q n : int
(U:CONSTI)

op ∈ {+,−,∗,mod,div }

Σ; x1:int, x2:int
q +K op

q x1 op x2 : int
(U:OPINT )

Σ; x:B
q+K var

q x : B
(U:VAR)

op ∈ {or,and }

Σ; x1:bool, x2:bool
q+K op

q x1 op x2 : bool
(U:OPBOOL)

Σ;Γ
q −K conT

1

q ′+K conT
2

et : B Σ;Γ
q −K conF

1

q ′+K conF
2

e f : B

Σ;Γ, x:bool
q

q ′ if x then et else e f : B
(U:COND)

Σ;Γ1
q −K let

1
p e1 : A Σ;Γ2, x:A

p −K let
2

q ′+K let
3

e2 : B

Σ;Γ1,Γ2
q

q ′ let x = e1 in e2 : B
(U:LET )

A−−−−→q/q ′
B ∈Σ( f )

Σ; x:A
q+K

app
1

q ′−K
app
2

f (x) : B

(U:APP)

Σ; x1:A1, x2:A2
q+K pair

q (x1, x2) : (A1, A2)
(U:PAIR)

A = (A1, A2) Σ;Γ, x1:A1, x2:A2
q −K matP

1

q ′+K matP
2

e : B

Σ;Γ, x:A
q

q ′ match x with (x1, x2) → e : B
(U:MATP)

Σ;; q +K nil

q nil : L~p (A)
(U:NIL)

Σ;; q +K leaf

q leaf : T ~p (A)
(U:LEAF)

~p = (p1, . . . , pk )

Σ; xh :A, xt :LC(~p)(A)
q+p1+K cons

q cons(xh , xt ) : L~p (A)
(U:CONS)

~p = (p1, . . . , pk )

Σ; x0:A, x1:TC(~p)(A), x2:TC(~p)(A)
q +p1 +K node

q node(x0, x1, x2) : T ~p (A)
(U:NODE)

Figure 5.1: Univariate resource-annotated type rules (part 1 of 2).
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~p = (p1, . . . , pk )

Σ;Γ
q −K matN

1

q ′+K matN
2

e1 : B Σ;Γ, xh :A, xt :LC(~p)(A)
q +p1 −K matC

1

q ′+K matC
2

e2 : B

Σ;Γ, x:L~p (A)
q

q ′ match x with | nil → e1 | cons(xh , xt ) → e2 : B
(U:MATL)

~p = (p1, . . . , pk ) Σ;Γ
q −K matTL

1

q ′+K matTL
2

e1 : B

Σ;Γ, x0:A, x1:TC(~p)(A), x2:TC(~p)(A)
q +p1 −K matTN

1

q ′+K matTN
2

e2 : B

Σ;Γ, x:T ~p (A)
q

q ′ match x with | leaf → e1 | node(x0, x1, x2) → e2 : B
(U:MATT)

Σ;Γ, x:A1, y :A2
q

q ′ e : B A .(A1, A2)

Σ;Γ, z:A
q

q ′ e[z/x, z/y] : B
(U:SHARE)

Σ;Γ, x:A
q

q ′ e : B A′ <: A

Σ;Γ, x:A′ q

q ′ e : B
(U:SUPERTYPE)

Σ;Γ
q

q ′ e : B B <: B ′

Σ;Γ
q

q ′ e : B ′ (U:SUBTYPE)

Σ;Γ
p

p ′ e : B q ≥ p q−p ≥ q ′−p ′

Σ;Γ
q

q ′ e : B
(U:RELAX)

Σ;Γ
q

q ′ e : B

Σ;Γ, x:A
q

q ′ e : B
(U:AUGMENT )

Figure 5.2: Univariate resource-annotated type rules (part 2 of 2).
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Figures 5.1 and 5.2 contain the type rules to derive resource-annotated type judg-
ments for RAML expressions. All rationals that appear in the rules are non-negative.
If an arithmetic expression like p − q occurs in a rule then we have the implicit side
condition that p −q ≥ 0. Recall, that I write e[z/x] to denote the expression e with all
free occurrences of the variable x replaced with the variable z.

There are syntax-directed and structural type rules. The purpose of the structural
rules is described in Section 4.2. In the type inference, the structural rules have to be
incorporated into the syntax-directed rules. I discuss this in more detail in Section 5.4.

Most of the rules are identical to the type rules for linear resource-annotated types
from Chapter 4. You find explanations in Section 4.2. The rules that differ are U:NIL,
U:CONS, U:MATL, U:LEAF, U:NODE, and U:MATT. They can be read as follows.

(U:NIL) According to the operational semantics of RAML, the evaluation of a
variable costs K nil resources. The rule U:NIL reflects this fact by requiring the constant
potential before the evaluation of a variable to be q +K nil. The potential K nil is used
up after the evaluation and there is the constant potential q left. If K nil < 0 then the
resulting potential is greater then the initial potential. In this case, we have the implicit
side condition q −K nil ≥ 0 since all potential annotations must be non-negative. It is
sound to attach any potential annotation ~p to empty data structures since the resulting
potential is always zero.

(U:CONS) The rule U:CONS formalizes the fact that one has to pay for the resource
consumption of the evaluation of cons(xh , xt )—that is, basically the allocation of a
new heap-cell that points to xh and xt . This is represented by the constant K cons that
depends on the resource that is studied. In addition one has to pay for the potential
that is assigned to the new list of type L~p (A). We do so by requiring xt to have the type
LC(~p)(A) and to have p1 resource units available. It corresponds exactly to the recursive
definition of the potential functionΦ and ensures that potential is neither gained nor
lost.

(U:MATL) The rule U:MATL defines how to use the potential of a list to pay
for resource consumptions. First, it matches the corresponding rules E:MATCONS

and E:MATNIL from the operational semantics in terms of resource consumption and
incorporates the fact that either e1 or e2 is evaluated. More interestingly, the cons case
is inverse to the rule U:CONS and allows one to use the potential associated with a list.
For one thing, p1 resource units become available directly, for another the tail of the list
is annotated withC(~p) rather than ~p, permitting for example a recursive call requiring
annotation ~p and an additional use of the tail with annotation (p2, . . . , pk ).

The rules U:LEAF. U:NODE and U:MATT are similar to U:NIL, U:CONS and U:MATL,
respectively. By way of example, I describe U:MATT in detail.

(U:MATT) The rule U:MATT shows how the potential of a tree is divided to pay for
resource consumptions. The initial potentialΦ(Γ)+Φ(x:T ~p (A))+q must be sufficient
to pay for the resource consumption of the evaluation of e1 and the cost K matTL

1 of the
pattern match in this case. It must also be sufficient to pay for the evaluation of e2 the
cost K matTN

1 of the pattern match in that case. The potential after each evaluation must
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be sufficient to pay for the potential of the result and for K matTL
2 or K matTN

2 , respectively.
In the case of e2, we can use the initial potential Φ(Γ)+Φ(x0:A)+Φ(x1:TC(~p)(A))+
Φ(x2:TC(~p)(A))+q +p1 −K matTN

1 to pay for the evaluation of e2. This corresponds again
to the recursive definition of the potential functionΦ. In this way, potential is neither
gained nor lost. The initial potential can be used similar as for lists. For one thing, p1

resource units become available directly, for another the subtrees of the matched tree
are annotated withC(~p), permitting a recursive call (requiring the annotation ~p) for
every subtree and an additional use of the subtrees with the annotation (p2, . . . , pk ).

5.3 Soundness

As for the linear system, I prove that univariate annotated type derivations establish
correct bounds.

Assume, that we have derived an annotated type judgment for an expression e by
using the rules from Section 5.2 and that e evaluates to a value v in a well-formed
environment. Then the initial potential of the context in the type judgment in that
environment is an upper bound on the watermark of the resource usage during the
evaluation. Furthermore, the difference between the initial and the final potential is an
upper bound on the consumed resources.

Using the partial evaluation rules, we can moreover prove that the bounds derived
from annotated type judgments also apply to non-terminating evaluations. Addition-
ally, the novel way of cost monitoring in the operational semantics enables a concise
statement.

Theorem 5.3.1 (Soundness) Let H ÍV : Γ and let Σ;Γ
q

q ′ e:B .

1. If V , H ` e  v, H ′ | (p, p ′) then p ≤ ΦV ,H (Γ) + q and p − p ′ ≤ ΦV ,H (Γ) + q −
(ΦH ′(v :B)+q ′).

2. If V , H ` e | p then p ≤ΦV ,H (Γ)+q .

It follows from Theorem 5.3.1 and Theorem 3.3.9 that run-time bounds also prove
termination of programs. Corollary 5.3.2 states this fact formally.

Corollary 5.3.2 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

m = 0

for all x and all m > 1. If H ÍV : Γ andΣ;Γ
q

q ′ e:A then there is an n ∈N,n ≤ΦV ,H (Γ)+q
such that V , H ` e v, H ′ | (n,0).

Note that the formulation of Theorem 5.3.1 is identical to the formulation of Theorem
4.3.1, its linear equivalent. However, it makes a stronger statement since it refers to the
univariate polynomial type system of this chapter.

As for linear version, I prove the soundness theorem by a nested induction on
the derivation of the evaluation judgment—V , H ` e v, H ′ | (p, p ′) or V , H ` e | p,
respectively—and the type judgment Σ;Γ

q

q ′ e:B . The inner induction on the type
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judgment is needed because of the structural rules (compare the discussion in the proof
of Theorem 3.3.4).

Formally, I cannot build on Theorem 4.3.1 to prove Theorem 5.3.1. But many of the
cases in the proofs are similar. In fact, I could copy the entire proof except of the cases
that directly involve the univariate potential annotations; namely U:LEAF, U:NODE,
U:MATT, U:NIL, U:CONS, and U:MATL.

The same is true for Lemma 5.3.3, which is the polynomial equivalent to Lemma 4.3.3.
It is needed to show the soundness of the rule U:LET and states that the potential of a
context is invariant during the evaluation. This is a consequence of allocated heap-cells
being immutable with the language features that I describe in this thesis.

Lemma 5.3.3 Let H Í V :Γ, Σ;Γ
q

q ′ e:A and V , H ` e v, H ′ | (p, p ′). Then ΦV ,H (Γ) =
ΦV ,H ′(Γ).

PROOF The lemma is a direct consequence of the definition of the potentialΦ and the
fact that H ′(`) = H(`) for all ` ∈ dom(H), which is proved in Proposition 3.3.2. ■

Proof of the Soundness Theorem

In the remainder of this section I prove Theorem 5.3.1. Large parts of the proof are
identical to the proof of Theorem 4.3.1, the soundness theorem for the linear type system.
So I refer to the proof of Theorem 4.3.1 and only provide the parts of the proof that differ
from the linear case. This includes all parts that directly involve the polynomial potential
annotations. Additionally, I only provide the arguments for the more involved proof of
part 1. Again, the proof of part 2 is almost identical the proof of part 2 of Theorem 4.3.1.

PROOF (PART 1) I prove p ≤ΦV ,H (Γ)+ q and p −p ′ ≤ΦV ,H (Γ)+ q − (ΦH ′(v :B)+ q ′) by

induction on the derivations of V , H ` e v, H ′ | (p, p ′) and Σ;Γ
q

q ′ e : B , where the
induction on the evaluation judgment takes priority.

(U:NIL) If the type derivation ends with an application of U:NIL then we have
e = nil, B = L~r (A) for some A, and 0 ≤ q ′ = q −K nil. The corresponding evaluation
rule E:NIL has been applied to derive the evaluation judgment and hence v = NULL.
If K nil ≥ 0 then p = K nil and p ′ = 0. Thus p = K nil ≤ q = ΦV ,H (;)+ q . Furthermore,
it follows from the definition of Φ that ΦH ′(NULL:L~r (A)) = 0. Thus p − p ′ = K nil =
ΦV ,H (;)+q − (ΦH ′(NULL:L~r (A))+q ′). If K nil < 0 then p = 0 and p ′ =−K nil. Then p ≤ q
and again p −p ′ = K nil.

(U:CONS) If the type derivation ends with an application of the rule U:CONS

then e has the form cons(xh , xt ) and has been evaluated with the rule E:CONS. It
follows by definition that V , H ` cons(xh , xt ) `, H [` 7→ v ′] | K cons, xh , xt ∈ dom(V ),
v ′ = (V (xh),V (xt )), and ` 6∈ dom(H). Thus

p = K cons and p ′ = 0 (5.3)
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or (if K cons < 0)
p = 0 and p ′ =−K cons (5.4)

Furthermore B = L~s(A) and the type judgment Σ; xh :A, xt :LC(~s)(A)
q

q ′ cons(xh , xt ) :

L~s(A) has been derived by a single application of the rule U:CONS; thus

0 ≤ q ′ = q − s1 −K cons . (5.5)

If p = 0 then p ≤ΦV ,H (Γ)+q holds because of the implicit side condition q ≥ 0. Other-
wise we have p = K cons ≤ q ≤ΦV ,H (Γ)+q .

From the definition ofΦ it follows that

s1 +ΦV ,H (xh :A, xt :LC(~s)(A)) =ΦV ,H [ 7̀→v ′](` : L~s(A)) (5.6)

Therefore

ΦV ,H (Γ)+q = ΦV ,H (xh :A, xt :LC(~s)(A))+q
(5.5)= ΦV ,H (xh :A, xt :LC(~s)(A))+q ′+ s1 +K cons

(5.6)= q ′+K cons +ΦV ,H [ 7̀→v ′](` : L~s(A))

and thusΦV ,H (Γ)+q − (ΦV ,H [ 7̀→v ′](`:L~s(A))+q ′) = K cons = p −p ′.

(U:MATL) Assume that the type derivation of e ends with an application of the rule
U:MATL. Then e is a pattern match of the form match x with | nil → e1 | cons(xh , xt ) →
e2 whose evaluation ends with an application of the rule E:MATCONS or E:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application of
E:MATCONS.

Then V (x) = `, H(`) = (vh , vt ), and V ′, H ` e2  v, H ′ | (r,r ′) for V ′ = V [xh 7→
vh , xt 7→ vt ] and some r,r ′ with

(p, p ′) = K matC
1 · (r,r ′) ·K matC

2 (5.7)

Since the derivation of Σ;Γ
q

q ′ e:B ends with an application of U:MATL, we have Γ=
Γ′, x:L~t (A), Σ;Γ′, xh :A, xt :LC(~t )(A) s

s′ e2 : B and,

q = s +K matC
1 − t1 and q ′ = s′−K matC

2 . (5.8)

It follows from the definition of Φ that ΦH (v :L~t (A)) = t1 +ΦH (vh :A)+ΦH (vt :LC(~t )(A))
and therefore

ΦV ,H (Γ) = t1 +ΦV ′,H (Γ′, xh :A, xt :LC(~t )(A)) . (5.9)

Since H Í V ′ : Γ′, xh :A, xt :LC(~t )(A) we can apply the induction hypothesis to V ′, H `
e2 v, H ′ | (r,r ′) and obtain (with (5.9))

r ≤ ΦV ,H (Γ)− t1 + s (5.10)

r − r ′ ≤ ΦV ,H (Γ)− t1 + s − (ΦH ′(v :B)+ s′) (5.11)
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Note thatΦV ,H (Γ)− t1 ≥ 0 and let

(u,u′) = K matC
1 · (ΦV ,H (Γ)− t1 + s,ΦH ′(v :B)+ s′) ·K matC

2 . (5.12)

Per definition and from (5.8) it follows that u = max(0,ΦV ,H (Γ)− t1 + s +K matC
1 ). From

Proposition 3.3.1 applied to (5.10), (5.12) and (5.7) we derive u ≥ p. IfΦV ,H (Γ)− t1 + s +
K matC

1 ≤ 0 then u = p = 0 and q+ΦV ,H (Γ) ≥ p trivially holds. IfΦV ,H (Γ)−t1+s+K matC
1 > 0

then it follows from (5.8) that

q +ΦV ,H (Γ) =ΦV ,H (Γ)− t1 + s +K matC
1 = u ≥ p .

Finally, we apply Proposition 3.3.1 to (5.7) to see that

p −p ′ = r − r ′+K matC
1 +K matC

2
(5.11)≤ ΦV ,H (Γ)− t1 + s − (ΦH ′(v :B)+ s′)+K matC

1 +K matC
2

= ΦV ,H (Γ)+ (s +K matC
1 − t1)− (ΦH ′(v :B)+ (s′−K matC

2 ))
(5.8)≤ ΦV ,H (Γ)+q − (ΦH ′(v :B)+q ′)

Assume now that the derivation of the evaluation judgment ends with an application of
E:MATNIL. Then V (x) = NULL, and V , H ` e1 v, H ′ | (r,r ′) for some r,r ′ with

(p, p ′) = K matN
1 · (r,r ′) ·K matN

2 . (5.13)

Since the derivation of Σ;Γ
q

q ′ e:B ends with an application of U:MATL, we have

Σ;Γ s
s′ e1 : B and

q = s +K matN
1 and q ′ = s′−K matN

2 . (5.14)

Because H Í V : Γ we can apply the induction hypothesis to V , H ` e1 v, H ′ | (r,r ′)
and obtain

r ≤ ΦV ,H (Γ)+ s (5.15)

r − r ′ ≤ ΦV ,H (Γ)+ s − (ΦH ′(v :B)+ s′) (5.16)

Now let

(u,u′) = K matN
1 · (ΦV ,H (Γ)+ s,ΦH ′(v :A)+ s′) ·K matN

2 . (5.17)

Per definition and from (5.14) it follows that u = max(0,ΦV ,H (Γ)+ s +K matN
1 ). From

Proposition 3.3.1 applied to (5.15), (5.17) and (5.13) we derive u ≥ p. If ΦV ,H (Γ)+ s +
K matN

1 ≤ 0 then u = p = 0 and q +ΦV ,H (Γ) ≥ p trivially holds. IfΦV ,H (Γ)+ s +K matN
1 > 0

then it follows from (5.14) that

q +ΦV ,H (Γ) =ΦV ,H (Γ)+ s +K matN
1 = u ≥ p .
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Finally, we apply Proposition 3.3.1 to (5.13) to see that

p −p ′ = r − r ′+K matN
1 +K matN

2
(5.16)≤ ΦV ,H (Γ)+ s − (ΦH ′(v :B)+ s′)+K matN

1 +K matN
2

= ΦV ,H (Γ)+ (s +K matN
1 )− (ΦH ′(v :B)+ (s′−K matN

2 ))
(5.14)≤ ΦV ,H (Γ)+q − (ΦH ′(v :B)+q ′)

(U:LEAF) This case is nearly identical to the case (U:NIL).

(U:NODE) If the type derivation ends with an application of the rule U:NODE then e
has the form node(x0, x1, x2) and it has been evaluated with the rule E:NODE. It follows
by definition that V , H ` node(x0, x1, x2) `, H [` 7→ v ′] | K node, x0, x1, x2 ∈ dom(V ),
v = (V (x0),V (x1),V (x2)), and ` 6∈ dom(H). Thus (if K node ≥ 0)

p = K node and p ′ = 0 (5.18)

or (if K node < 0)
p = 0 and p ′ =−K node . (5.19)

Furthermore B = T~s(A) and the type judgment

Σ; x0:A, x1:TC(~s)(A), x2:TC(~s)(A)
q

q ′ node(x0, x1, x2) : T~s(A)

has been derived by a single application of the rule U:NODE; thus

0 ≤ q ′ = q − s1 −K node . (5.20)

If p = 0 then p ≤ΦV ,H (Γ)+q holds because of the implicit side condition q ≥ 0. Other-
wise we have p = K node ≤ q ≤ΦV ,H (Γ)+q .

From the definition ofΦ it follows that

s1 +ΦV ,H (x0:A, x1:TC(~s)(A), x2:TC(~s)(A)) =ΦH [ 7̀→v ′](` : T~s(A)) (5.21)

Therefore

ΦV ,H (Γ)+q = ΦV ,H (x0:A, x1:TC(~s)(A), x2:TC(~s)(A))+q
(5.20)= ΦV ,H (x0:A, x1:TC(~s)(A), x2:TC(~s)(A))+q ′+ s1 +K node

(5.21)= q ′+K node +ΦH [ 7̀→v ′](` : T~s(A))

and thusΦV ,H (Γ)+q − (ΦH [ 7̀→v ′](`:T~s(A))+q ′) = K node = p −p ′.

(U:MATT) Assume that the type derivation of e ends with an application of the
rule U:MATT. Then e is a pattern match match x with | leaf → e1 | node(x0, x1, x2) → e2

whose evaluation ends with an application of the rule E:MATNODE or E:MATLEAF. The
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case E:MATLEAF is similar to the case E:MATNIL. So assume that the derivation of the
evaluation judgment ends with an application of E:MATNODE.

Then V (x) = `, H(`) = (v0, v1, v2), and V ′, H ` e2 v, H ′ | (r,r ′) for V ′ = V [x0 7→
v0, x1 7→ v1, x2 7→ v2] and some r,r ′ with

(p, p ′) = K matTL
1 · (r,r ′) ·K matTL

2 (5.22)

Since the derivation of Σ;Γ
q

q ′ e:B ends with an application of U:MATT, we have Γ=
Γ′, x:T~t (A), Σ;Γ′, x0:A, x1:TC(~t )(A), x2:TC(~t )(A) s

s′ e2 : B , and

q = s +K matTL
1 − t1 and q ′ = s′−K matTL

2 . (5.23)

It follows from the definition ofΦ thatΦH (v :T~t (A)) = t1+ΦH (v0:A)+ΦH (v1:TC(~t )(A))+
ΦH (v2:TC(~t )(A)) and therefore

ΦV ,H ,V (Γ) = t1 +ΦV ,H ,V ′(Γ′, x0:A, x1:TC(~t )(A), x2:TC(~t )(A)) . (5.24)

Because we have H ÍV ′ : Γ′, x0:A, x1:TC(~t )(A), x2:TC(~t )(A) we can apply the induction
hypothesis to V ′, H ` e2 v, H ′ | (r,r ′) and obtain (with (5.24))

r ≤ ΦV ,H (Γ)− t1 + s (5.25)

r − r ′ ≤ ΦV ,H (Γ)− t1 + s − (ΦV ,H ′(v :B)+ s′) (5.26)

Since the matched tree contains at least one node, we haveΦV ,H (Γ)− t1 ≥ 0. Let

(u,u′) = K matTL
1 · (ΦV ,H (Γ)− t1 + s,ΦV ,H ′(v :A)+ s′) ·K matTL

2 . (5.27)

Per definition and from (5.23) it follows that u = max(0,ΦV ,H (Γ)− t1 + s +K matTL
1 ). From

Proposition 3.3.1 applied to (5.25), (5.27), and (5.22) we derive u ≥ p. IfΦV ,H (Γ)− t1+s+
K matTL

1 ≤ 0 then u = p = 0 and q+ΦV ,H (Γ) ≥ p trivially holds. IfΦV ,H (Γ)−t1+s+K matTL
1 >

0 then it follows from (5.23) that

q +ΦV ,H (Γ) =ΦV ,H (Γ)− t1 + s +K matTL
1 = u ≥ p .

Finally, we apply Proposition 3.3.1 to (5.22) to see that

p −p ′ = r − r ′+K matTL
1 +K matTL

2
(5.26)≤ ΦV ,H (Γ)− t1 + s − (ΦV ,H ′(v :B)+ s′)+K matTL

1 +K matTL
2

= ΦV ,H (Γ)+ (s +K matTL
1 − t1)− (ΦV ,H ′(v :B)+ (s′−K matTL

2 ))
(5.23)≤ ΦV ,H (Γ)+q − (ΦV ,H ′(v :B)+q ′) ■
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5.4 Type Inference

The basis of the type inference for the univariate polynomial system is type inference
algorithm for the linear system which is described in Section 4.4.

A further challenge for the inference of polynomial bounds is the need to deal with
resource-polymorphic recursion, which is required to type most programs that are not
tail recursive. It seems to be a hard problem to infer general resource-polymorphic
typings, even for the original linear system.

In Section 5.4.2, I present a pragmatic approach to resource-polymorphic recursion
that works well and efficiently in practice. It infers types for most functions that admit
a type-derivation, including all useful programs that we implemented. Nevertheless,
it is not complete with respect to the general resource-polymorphic typing rules. Sec-
tion 5.4.3 contains a somewhat artificial function with a linear heap-space consumption
that admits a resource-polymorphic typing that can neither be inferred by the algorithm
I present here nor in the classic linear system [HJ03].

To begin with, I explain in Section 5.4.1 by example why resource-polymorphic
recursion is needed frequently in the polynomial system and informally introduce the
idea of the inference algorithm.

5.4.1 Resource-Polymorphic Recursion

Recall the function attach that has been introduced in Section 2.2.1. It takes an integer
and a list of integers and returns a list of pairs of integers in which the first argument is
paired with each element of the list.

attach(x,l) = match l with | nil → nil
| (y::ys) → (x,y)::(attach (x,ys))

To infer the potential annotations for attach we use the inference algorithm for the linear
system from Section 4.4. First, we annotate the type of attach with a priori unknown
resource-annotations s, s′, q and p that range over non-negative rational numbers.

attach : (int,Lq (int))−−−→s/s′ Lp (int, int)

We then use the type system to derive linear constraints on the potential annotations.
To informally explain the constraints for attach, expressions of type list are annotated
with variables q, p,r, . . . that range over Q+

0 . The intended meaning of eq is that e is of
type Lq (A) for some type A.

attach(x,lq) = match lq ′
with | nil → nilp

| (y::ysr) → ((x,y)::(attach (x,ysq))p)p

If we assume that a list element for a pair of integers has size 3 (two cells to store the
integers and one for the pointer to the next element) then the heap-space usage of an
evaluation of attach(x,l) is 3|`| memory cells.

The syntax-directed inference then computes inequalities like q ′+ s ≥ 3+p + s. It
expresses the fact that the potential q ′ of the first list element and the initial potential s
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must cover the costs for the cons operation (3 memory cells), the potential p of a list
element of the result, and the input potential s of the recursive call.

To pay the cost during the recursion we require the annotation of the function
arguments and the result of the recursive call to match their specification (s = q and
t = p in the case of attach). The function is then used resource-monomorphically, that
is, with the same annotations as in the result and the arguments of the outer call.

Note that there are functions with linear resource usage that cannot be typed
resource-monomorphically. You find an example in Section 5.4.3. Nevertheless, the
inference algorithm for the linear system from Section 4.4 infers resource-monomorphic
type derivations only. This is unproblematic since most linearly bounded functions that
appear in practice do not require resource-polymorphic recursion.

In contrast, many non-tail-recursive functions with a super-linear resource behav-
ior can often be typed resource-polymorphically only, that is, with different resource
annotations in the recursive calls.

To understand why, consider the function pairs from Section 2.2.2, which computes
the two-element subsets of a given set. It allows for a resource-monomorphic type
derivation but can be turned into a function that needs resource-polymorphic recursion
by a small modification.

pairs l = match l with | nil → nil
| (x::xs) → append(attach(x,xs),pairs xs)

The evaluation of the expression pairs(l) consumes 6 memory cells per element of every
sub-list (suffix) of `. The type that our system infers resource-monomorphically for
pairs is L(0,6)(int)−−−→0/0 L(0)(int, int).

To infer the potential annotations, we start with an annotation of the list types with
resource variables as before.

pairs l = match l(q1,q2) with | nil → nil
| (x::xs(p1,p2)) → append(attach(x,xs(r1,r2)),pairs xs(s1,s2))

The constraints that our type system computes include q2≥p2 and q1+q2≥p1 (additive
shift); p1=r1+s1 and p2=r2+s2 (sharing between two variables); r1≥6 (pay for non-
recursive function calls); q1=s1, q2=s2 (pay for the recursive call). This system is solvable
by q2 = s2 = p1 = p2 = r1 = 6 and q1 = s1 = r2 = 0.

As in the linear case, we require in the constraint system that the type of the recursive
call to pairs matches its specification (qi = si ). Since the resulting constraint system is
solvable, the function pairs can be typed resource-monomorphically. But in contrast to
the linear case, such a resource-monomorphic approach results in an unsolvable linear
program for many non-tail-recursive functions with a super linear resource behavior.

Consider for example the function pairs’ that is a modification of pairs in which we
permute the arguments of append and hence replace the expression in the cons-branch
of the pattern match with append(pairs’ xs,attach(x,xs)).

pairs’ l = match l with | nil → nil
| (x::xs) → append(pairs’ xs,attach(x,xs))
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The heap-space usage of pairs’ is 3
(n

2

)+3
(n

3

)
since append is called with the intermediate

results of pairs’ in the first argument and thus consumes
∑

2≤i<n
(i

2

)= (n
3

)
memory cells.

A resource-polymorphic type derivation establishes an exact heap-space bound for
the function pairs’ by establishing the typing pairs’: L(0,3,3)(int)−−−→0/0 L(0)(int, int). Similar
to the case of pairs, the additive shift assigns the type L(3,6,3)(int) to xs in the cons-branch.
The linear potential xs:L(3,0,0)(int) is passed on to the occurrence of xs in attach. But in
order to pay the costs of append we have to assign a linear potential to the result of the
recursive call and thus use the alternate typing pairs’: L(0,6,3)(int)−−−→0/0 L(3)(int, int).

The need of passing on potential of degree at most k −1 to the output of a func-
tion with a resource consumption of degree k is quite common in typical functions.
It is present in the derivation of time bounds for most non-tail-recursive functions
that we considered, for example, quick sort and insertion sort. The classic (resource-
monomorphic) inference approach of requiring the type of the recursive call to match
its specification fails for these functions and it was a non-trivial problem to address it
with an efficient solution.

Inference with Cost-Free Types

Our pragmatic approach to infer type derivations with resource-polymorphic recursion
is the use of the special cost-free resource metric that assigns zero costs to every evalu-
ation step. A cost-free function type f: A−−−−→a/a′

B then describes how to pass potential
from x to f (x) without paying for resource usage. Any concrete typing for a given re-
source metric can be superposed with a cost-free typing to obtain another typing for
the given resource metric. This is similar to the solution of inhomogeneous systems by
superposition with homogeneous solutions in linear algebra.

I illustrate the idea using pairs’ again. First, we derive the cost-free types attach:
(int,L(3)(int))−−−→0/0 L(3)(int, int) and append: (L(3)(int, int),L(3)(int, int))−−−→0/0 L(3)(int, int).
The type inference for, say, attach works as outlined above with the inequality q ′+ s ≥
3+ p + s replaced with q ′+ s ≥ p + s. Similar, we can assign pairs’ the cost-free type
L(0,3)(int)−−−→0/0 L(3)(int, int). The typing xs:L(3,3)(int) that results from the additive shift is
then used as xs:L(3,0)(int) in attach and as xs:L(0,3)(int) in the recursive call.

If we now aim to infer the type of a function with respect to some cost metric then
we deal with recursive calls by requiring them to match the type specification of the
function and to optionally pass potential to the result via a cost-free type. The cost-
free type is then inferred resource-monomorphically. In the case of the heap-space
consumption of pairs’ we would first infer that the recursive call has to be of the form
L(0+q1,3+q2,3)(int)→L(0+p1)(int, int), where L(q1,q2)(int)→L(p1)(int, int) is a cost-free type.
We then infer like in the linear case that q1 = 0 and q2 = p1 = 3.

This method cannot infer every resource-polymorphic typing with respect to declar-
ative type derivations with polymorphic recursion. This would mean to start with a
(possibly infinite) set of annotated types for each function and to justify each function
type with a type derivation that uses types from the initial set. With respect to this



5.4. Type Inference 93

declarative view, the inference algorithm in this section can compute every set of types
for a function f that has the form

Σ( f ) = {T +q ·Ti | q ∈Q+
0 ,1 ≤ i ≤ m}

for a resource-annotated function of type T , cost-free function types Ti , and m recursive
calls of f in its function body. Since many resource-polymorphic type derivations feature
a set of function types of this format, this approach leads to an effective inference
method.

5.4.2 Inference Algorithm

The inference algorithm is mainly defined by algorithmic versions of the type rules from
Section 5.2, which are described in detail in a conference paper [HH10a]. Like in the
linear case, it works like a standard type inference in which each type is annotated with
resource variables and the corresponding linear constraints are collected as each type
rule is applied.

Algorithmic Type Rules

The derivation of the algorithmic rules is similar as described in Section 4.4. The main
innovation in comparison to the classic algorithm for the linear system [HJ03] is the
resource-polymorphic recursion enabled by the algorithmic versions of the rule U:APP.

Σ( f ) = A−−−−→p/p ′
B q = p+c+K app

1 q ′ = p ′+c−K app
2

Σ; x:A
q

q ′ f (x) : B
(A:APPCF)

q = p+pcf +c+K app
1 q ′ = p ′+p ′

cf +c−K app
2 A .(A′, Acf ) B .(B ′,Bcf )

Σc f ; y f :Acf
pcf

p ′
cf

e f :Bcf Σc f ( f ) = Ac f −−−−−−−→pc f /p ′
c f Bc f Σ( f ) = A′−−−−→p/p ′

B ′

Γ, x:A
q

q ′ f (x) : B
(A:APP)

The rule A:APPCF is essentially the rule U:APP from section Section 5.2. It is used for
the cost-free metric and leads to a resource-monomorphic typing of recursive calls.

The rule A:APP is used for function applications in all other resource metrics and
enables resource-polymorphic recursion. It states that one can add any cost-free typing
of the function body to the function type that is given by the signature Σ. Note that
(e f , y f ) f ∈dom(Σc f ) must be a valid RAML program with cost-free types of smaller degree.
The annotated signature Σc f used can differ in every application of the rule.

The idea is as follows. In order to pay for the resource costs of a function call f (x),
the available potential (Φ(x:A)+ q) must meet the requirements of the signature of
the function (Φ(x:A′)+ p). Additionally available potential (Φ(x:Ac f )+ pc f ) can be
passed to a cost-free typing of the function body. The potential after the function call
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(Φ( f (x):B)+q ′) is then the sum of the potentials that are assigned by the cost-free typing
(Φ( f (x):Bc f )+pc f ) and by the function signature (Φ( f (x):B ′)+p). As a result, f (x) can
be used resource-polymorphically with a specific typing for each recursive call while
the resource monomorphic function signature enables an efficient type inference.

The Algorithm

To ensure that the constraint system is finite the user has to provide a maximal degree
of the bounds in the search space. The number of computed constraints grows linearly
in the maximal degree that has been provided by the user.

There is a trade-off between the quality of the analysis and the size of the constraint
system. The reason is that one sometimes has to analyze function applications context-
sensitively with respect to the call stack.

In our implementation we collapse the cycles in the call graph and analyze each
function once for every path in the resulting graph. In a nutshell, the algorithm com-
putes inequalities for annotations of degree k for a strongly connected component
(SCC) F of the call graph as follows.

1. Annotate the signature of each function f ∈ F with fresh resource variables.

2. Use the algorithmic type rules [HH10a] to type the corresponding expressions e f .
Introduce fresh resource variables for each type annotation in the derivation and
collect the corresponding inequalities.

(a) For a function application g ∈ F : if the maximal degree is 1 or in the cost-free
case use the function resource-monomorphically with the signature from (1)
using the rule A:APPCF. Otherwise, go to (1) and derive a cost-free typing of
eg with a fresh signature. Store the arising inequalities and use the resource
variables from the obtained typing together with the signature from (1) in
the rule A:APP.

(b) For a function application g 6∈ F : repeat the algorithm for the SCC of g . Store
the arising inequalities and use the obtained annotated type of g .

The context sensitivity in the algorithm can lead to an exponential blow up of the
constraint system if there is a sequence of function f1, . . . , fn such that fi calls fi+1

several times. But such sequences are not very long in most programs. It would not be a
substantial limitation in practice to restrict oneself to programs that feature a collapsed
call graph with a fixed maximal path length to certainly obtain a constraint system that
is linear in the program size.

5.4.3 Incompleteness

The inference algorithm works very efficiently and infers resource-polymorphic types
for all programs that we manually typed in our system. However, it is not complete
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with respect to full resource-polymorphism. This would mean to start with a (possibly
infinite) set of annotated function types for each function and to justify each type with a
type derivation that uses some first-order types from the initial set.

For example, the inference algorithm does not compute a resource-annotated type
for the function round:L(unit) → L(unit) which computes a list of length max{2i −1 |
2i −1 ≤ n} if n is the length of the input list. The function round is implemented in
RAML as follows.

half l = match l with | nil → nil
| x1::xs → match xs with | nil → nil

| x2::xs’ → x1::(half xs’)

double l = match l with | nil → nil
| x::xs → x::x::(double xs)

round l = match l with | nil → nil
| x::xs → x::double (round (half xs))

The function half deletes every second element and the function double doubles ev-
ery element a list. With the cost-free metric, the following types can be (resource-
monomorphically) inferred for half and double.

half : L1(unit)−−−→0/0 L2(unit)

double : L2(unit)−−−→0/0 L1(unit)

The linear resource-annotated type systems allows the derivation of the typing

round : La(unit)−−−→0/0 La(unit)

for every a ∈Q+
0 . In the derivation this function type for a given a ∈Q+

0 , we need the
type resource-polymorphic type

round : L2a(unit)−−−→0/0 L2a(unit) .

Since the linear cost-free type already requires resource polymorphism, our algorithm
can not infer a typing for round. For every q ∈Q+

0 one can create functions where one
would need to multiply some resource annotations with q in cost-free typing of the
recursive call. So it is unlikely that there is a method to infer a typing for such functions
that uses only linear constraints.

To deal with them one could move to quadratic constraints to address the problem
but the efficiency of such an approach is unclear.

5.5 Examples

In this section, I demonstrate the univariate polynomial analysis on example programs.
To start with, I present a canonical family of functions with a univariate polynomial
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resource analysis in Section 5.5.1. For each k ≥ 2 there is a function that computes all
subsets of size k from a given list if we view the list as a set.

In Section 5.5.2, I show that the analysis works well on the sorting algorithms quick
sort, merge sort, insertion sort, and selection sort. To give a representative example
of a program for which the analysis terminates without computing a bound, I also
implement the sorting algorithm bubble sort.

Finally, I describe in Section 5.5.3 the analysis of a program that computes the
transitive closure of a tree.

5.5.1 Subsets of Fixed Sizes

Canonical examples with polynomial heap-space consumption result from the following
problem: view a given list as a set and compute the subsets of size k for a given k. The
size of the output is a polynomial of degree k.

Below I define the subset functions for k = 2 and k = 3. You shall then see how
it works for k > 3. The function attach(x,l) computes a list of pairs so that x is paired
with every element in the list `. The function pairs(l) computes a list of all (unordered)
pairs that can be built from the elements of l and the function triples(l) computes a
list of all (unordered) triples. For example, the expression triples [1,2,3,4] evaluates to
[(1,(2,3)),(1,(2,4)),(1,(3,4)),(2,(3,4))].

pairs: L(int) → L(int,int)

pairs(l) = match l with | nil → nil
| x::xs → append(attach(x,xs),pairs xs);

attach: (int,L(int)) → L(int,int)

attach(n,l) = match l with | nil → nil
| x::xs → (n,x)::attach(n,xs);

append: (L(int,int),L(int,int)) → L(int,int)

append(l1,l2) = match l1 with | nil → l2
| x::xs → x::append(xs,l2);

triples : L(int) → L(int,(int,int))

triples(l) = match l with | nil → nil
| x::xs → append3(attach3(x,pairs xs),triples xs);

attach3: (int,L(int,int)) → L(int,(int,int))

attach3(n,l) = match l with | nil → nil
| x::xs → (n,x)::attach3(n,xs);
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append3: (L(int,(int,int)),L(int,(int,int))) → L(int,(int,int))

append3(l1,l2) = match l1 with | nil → l2
| x::xs → x::append3(xs,l2);

Since the heap-space consumption of attach and append depends on their types, I
implemented one version of the functions for every type that is needed. The code of the
functions is however identical. It would also be possible to allow polymorphic functions
and to analyze them once for each concrete data type they are used with.

The following resource-annotated types are computed with the heap-space metric.

pairs : L(0,6,0)(int)−−−→0/0 L(0,0,0)(int, int)

triples : L(0,0,14)(int)−−−→0/0 L(0,0,0)(int, (int, int))

attach : (int,L(3,0,0)(int))−−−→0/0 L(0,0,0)(int, int)

attach3 : (int,L(4,0,0)(int, int))−−−→0/0 L(0,0,0)(int, (int, int))

append : (L(3,0,0)(int, int),L(0,0,0)(int, int))−−−→0/0 L(0,0,0)(int, int)

append3 : (L(4,0,0)(int, (int, int)),L(0,0,0)(int, (int, int)))−−−→0/0 L(0,0,0)(int, (int, int))

The computed heap-space bounds for the functions pairs and triples are 3n2 −3n and
2.3̄n3−7n2+4.6̄n, respectively. Our experiments (see Chapter 7) show that the computed
bounds match exactly the measured resource consumption of the functions.

5.5.2 Sorting

A classic way to demonstrate quantitative resource analysis is to analyze the run-time
behavior of sorting algorithms. In the book The Art of Computer Programming [Knu97],
Knuth manually determines worst-case bounds for many well-known sorting algorithms
that are implemented in an assembly language for the MIX architecture. Among the
analyzed algorithms are quick sort, which uses at most 2n2+37n+3 MIX cycles, insertion
sort, at most 9

(n
2

)+7n −6 = 4.5n2 +2.5n −6 MIX cycles, selection sort, at most 5
(n

2

)+
3bn4

2 c+12n −11 ,and merge sort, roughly 10n logn +4.92n MIX cycles1 (n is the size of
the input).

As a result of a careful and elaborate analysis, the bounds are tight in the sense that
they exactly match the actual worst-case behavior of the functions.

In the remainder of this section I implement the four sorting algorithms in RAML
to automatically determine a bound on the number of evaluation steps they use. The
experimental evaluation that I present in Chapter 7 shows that the computed bounds
for insertion sort and quick sort exactly match the measured worst-case behavior of
the functions. The bound for selections sort is asymptotically tight and the constant
factors are quite precise. The bound for merge sort is quadratic but the actual worst-case
behavior of the function is O(n logn).

1The actual worst-case bound is more complicated and presented in a form that is only meaningful in
combination with the source code.
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To give an example for which the analysis does not compute a bound, I also imple-
ment the sorting algorithm bubble sort and describe why the analysis fails.

Insertion Sort

Below is the implementation of insertion sort in RAML. The same implementation may
also be given in a textbook.

insert(x,l) = match l with | nil → [x]
| y::ys → if y < x then y::insert(x,ys)

else x::y::ys;

isort l = match l with | nil → nil
| x::xs → insert (x,isort xs);

If we instantiate our type system with the evaluation-step metric then the prototype
implementation automatically computes the following types.

insert : (int,L(12,0)(int))−−−→5/0 L(0,0)(int)

isort : L(12,12)(int)−−−→3/0 L(0,0)(int)

The typing express that insert needs at most 5+12n evaluation steps and isort needs
at most 3+6n +6n2 if n is the size of the respective input list.2 In the type derivation
of isort we need resource-polymorphic recursion since the result of the recursive call
has to contain potential to pay for the following evaluation of insert. The type of the
recursive call is isort:L(24,12)(int)−−−→3/0 L(12,0)(int).

Quick Sort

Quick sort can also be implemented in RAML in the usual way.

append(l,ys) = match l with | nil → ys
| x::xs → x::append(xs,ys);

split(p,l) = match l with | nil → (nil,nil)
| x::xs → let (ls,rs) = split (p,xs) in

if x > p then (ls,x::rs) else (x::ls,rs);

quicksort l = match l with | nil → nil
| (x::xs) → let (ls,rs) = split (x,xs) in

append(quicksort ls, x::(quicksort rs));

With the evaluation-step metric, the prototype infers the following types.

append : (L(8,0)(int),L(0,0)(int))−−−→0,0 L(0,0)(int)

split : L(50,24)(int)−−−→5,0 (L(34,24)(int),L(26,24)(int))

quicksort : L(26,24)(int)−−−→3,0 L(0,0)(int)

2Note that these symbolic bounds are also part of the output of the analysis in our prototype implemen-
tation.
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Thus quicksort uses at most 3+ 14n + 12n2 evaluation steps. The function is typed
resource-monomorphically in the first recursive call quicksort rs and resource-poly-
morphically in the second recursive call quicksort ls. The typing

quicksort : L(34,24)(int)−−−→3,0 L(8)(int)

is used there to cover the cost of append.
As the computed bounds indicate, insertion sort indeed admits a better worst-case

behavior than quick sort. The reason is that there is an (expensive) call to append at
each recursive call to quicksort. Below is a tail-recursive version of quick sort that does
not use append.

q_aux(l,acc) = match l with | nil → acc
| x::xs → let (ls,rs) = split (x,xs) in

let acc’ = x::q_aux(rs,acc)
in q_aux(ls,acc’);

quicksort2 l = q_aux(l,[]);

The prototype infers the following types.

q_aux : (L(26,16)(int),L(0,0)(int))−−−→3,0 L(0,0)(int)

quicksort2 : L(26,16)(int)−−−→7,0 L(0,0)(int)

The bound for quicksort2 is 7+18n +8n2. It improves the bound of quicksort in the
quadratic part. The reduced potential in the second position of the type annotation
of the argument corresponds directly to the costs for the calls of append. However,
insertion sort has still a slightly better bound. Since quicksort2 is tail recursive, there is
no need to use resource-polymorphic recursion in the type derivation.

Selection Sort

Selection sort is implemented as follows.

findmin l = match l with | nil → nil
| x::xs → match findmin xs with

| nil → [x]
| y::ys → if x < y then x::y::ys

else y::x::ys;

selsort l = match findMin l with | nil → nil
| x::xs → x::selsort(xs);

If we instantiate our type system with the evaluation-step metric then the prototype
implementation automatically computes the following types.

findmin : L(14,0)(int)−−−→3/0 L(0,0)(int)

selsort : L(24,14)(int)−−−→7/0 L(0,0)(int)

The typing express that findmin needs at most 3+14n and selsort needs at most 7+
24n +14n2 evaluation steps if n is the size of the respective input list.
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Merge Sort

The next sorting algorithm I implement is merge sort.

msplit l = match l with | nil → (nil,nil)
| x1::xs → match xs with | nil → ([x1],nil)

| x2::xs’ → let (l1,l2) = msplit xs’ in
(x1::l1,x2::l2);

merge (l1,l2) = match l1 with | nil → l2
| x::xs → match l2 with | nil → (x::xs)

| y::ys → if x<y
then x::merge(xs,y::ys)
else y::merge(x::xs,ys);

msort l = match l with | nil → nil
| x1::xs → match xs with | nil → l

| x2::xs’ → let (l1,l2) = msplit l in
merge (msort l1, msort l2);

The following types are computed with the evaluation-step metric.

msplit : L(23,46)(int)−−−−→25,0 (L(16,92)(int),L(16,92)(int))

merge : (L(16,0)(int),L(16,0)(int))−−−→3,0 L(0,0)(int)

msort : L(0,92)(int)−−−→5,0 L(0,0)(int)

The evaluation-step bound for msort is 5− 46n + 46n2. In both recursive calls, the
function is used resource-polymorphically with the alternate typing

msort : L(16,92)(int)−−−→5,0 L(16,0)(int) .

Although our system cannot express an asymptotically tight O(n logn) bound for the
function, it doubles the quadratic potential in the result of msplit and thus implicitly
infers that msplit divides a list into two sublists of about equal length.

Bubble Sort

Finally, I implement bubble sort in RAML as follows.

bubble l = match l with
| nil → (nil,false)
| x1::xs → match xs with

| nil → (l,false)
| x2::xs’ → if x1 > x2 then

let (ys,flag) = bubble (x1::xs’) in (x2::ys,true)
else
let (ys,flag) = bubble (x2::xs’) in (x1::ys,flag);

bubblesort l = let (l’,flag) = bubble l in
if flag then bubblesort l’ else l’;
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With the evaluation-step metric, the prototype computes the following typing for the
function bubble. It states that the evaluation of the expression bubble(l,n) needs at
most 5+18|`| evaluation steps

bubble : L(18,0)(int)−−−→5,0 (L(0,0)(int),bool)

However, the prototype terminates without providing a bound for bubblesort. To prove
a quadratic evaluation-step bound, one would have to argue that the value flag returned
by bubble is true after at most n −1 recursive calls of bubblesort, where n is the length
of the input list.

The example is representative for a class of functions whose worst-case resource
bounds can only be proved by using domain-specific knowledge. Admittedly, our type-
based approach allows for the manual annotation of such functions using types that
represent bounds determined by a user. So you can still profit from the automatic
inference of the bound for bubble and the manually derived bound for bubblesort can
be used to infer bounds for a larger program. However, it would be beneficial to develop
a program logic to prove the correctness of such user-annotated types.

5.5.3 Transitive Closure

The function trans that is defined below is an example that uses potential of a tree. For
a binary tree t the expression trans(t,[]) evaluates to a list ` such that (x, y) is in ` if
and only if x is an ancestor of y in t . In other words trans(t,[]) computes the transitive
closure of t .

attach : (int,T(int),L(int,int)) → L(int,int)

attach(y,t,acc) = match t with | leaf → acc
| node(x,t1,t2) → let acc1 = attach(y,t1,acc) in

let acc2 = attach(y,t2,acc1) in (y,x)::acc2;

trans : (T(int),L(int,int)) → L(int,int)

trans(t,acc) = match t with | leaf → acc
| node(x,t1,t2) → let acc1 = attach(x,t1,acc) in

let acc2 = attach(x,t2,acc1) in
let acc3 = trans(t1,acc2) in
trans(t2,acc3);

The following types are inferred with the heap-space metric.

attach : (int,T (3,0)(int),L(0,0)(int, int))−−−→0/0 L(0,0)(int, int)

trans : (T (0,3)(int),L(0,0)(int, int))−−−→0/0 L(0,0)(int, int)

According to Lemma 5.1.4, the bound that is implied by the type of trans is

h∑
i=2

ni ·3 · (i −1)
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where ni is the number of nodes on level i . If the input tree is balanced then

h∑
i=2

ni ·3 · (i −1) =
blog2nc∑

i=2
2i ·3 · (i −1)

≤ 3 · (blog2nc−1) ·
blog2nc∑

i=2
2i

≤ 3 · (blog2nc−1) · (n −1)

Note that 3
(n

2

)= 1.5n2 −1.5n is an upper bound for this function.



Mathematical analysis is as extensive as nature
itself; it defines all perceptible relations,
measures times, spaces, forces, temperatures;
this difficult science is formed slowly, but it
preserves every principle which it has once
acquired; it grows and strengthens itself
incessantly in the midst of the many variations
and errors of the human mind.

JOSEPH FOURIER

The Analytical Theory of Heat (1878)6
Multivariate Polynomial Potential

The univariate polynomial amortized analysis that I presented in Chapter 5 extends
linear automatic amortized analysis to polynomial bounds while preserving most of the
features that make the linear system practicable. However, the inability of the univariate
system to express mixed multiplicative bounds such as n ·m hampers both utilization
in practice and compositionality.

In this chapter, I describe a multivariate polynomial amortized resource analysis
that extends the univariate system. It preserves the principles of the univariate sys-
tem while expanding the set of potential functions so as to express a wide range of
dependencies between different data structures. The presentation is based on an article
that appeared at the 38th ACM Symposium on Principles of Programming Languages
(POPL’11) [HAH11].

Section 6.1 introduces resource polynomials, the multivariate potential functions
that I use in the chapter. In Section 6.2, I show how data types can be annotated with
resource polynomials. In contrast to the previous chapters, there is one global resource
polynomial for tuple types. Section 6.3 contains multivariate shift operations as well
as type rules that are used to derive annotated type judgments. In Section 6.4, I prove
the soundness of the multivariate analysis. Section 6.5 explains the type inference and
Section 6.6 demonstrates the analysis with several example programs.

6.1 Resource Polynomials

A resource polynomial maps a value of some data type to a nonnegative rational number.
Potential functions in this section are always given by such resource polynomials.

In the case of an inductive tree-like data type, a resource polynomial will only
depend on the list of entries of the data structure in pre-order. Thus, if D(A) is such a
data type with entries of type A, that is, A-labelled binary trees, and v is a value of type

103
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D(A) then we write elems(v) = [a1, . . . , an] for this list of entries.
An analysis of typical polynomial computations operating on a data structure v with

elems(v) = [a1, . . . , an] shows that it consists of operations that are executed for every
k-tuple (ai1 , . . . , aik ) with 1 ≤ i1 < ·· · < ik ≤ n. The simplest examples are linear map
operations that perform some operation for every ai . Another example are common
sorting algorithms that perform comparisons for every pair (ai , a j ) with 1 ≤ i < j ≤ n in
the worst case.

Base Polynomials

For each data type A, I now define a set P(A) of functions p : �A�→N that map values
of type A to natural numbers. The resource polynomials for type A are then given as
nonnegative rational linear combinations of these base polynomials. We define P(A) as
follows.

P(A) = {a 7→ 1} if A is an atomic type

P(A1, A2) = {(a1, a2) 7→ p1(a1) ·p2(a2) | pi ∈ P(Ai )}

P(D(A)) = {
v 7→ ∑

1≤ j1<···< jk≤n

∏
1≤i≤k

pi (a ji ) | k ∈N, pi ∈ P(A)
}

In the last clause we have [a1, . . . , an] = elems(v). Every set P(A) contains the constant
function v 7→ 1. In the case of D(A) this arises for k = 0 (one element sum, empty
product).

For example, the function ` 7→ (|`|
k

)
is in P(L(A)) for every k ∈N; simply take p1 = . . . =

pk = 1 in the definition of P(D(A)). The function (`1,`2) 7→ (|`1|
k1

) · (|`2|
k2

)
is in P(L(A),L(B))

for every k1,k2 ∈N, and the function [`1, . . . ,`n] 7→∑
1≤i< j≤n

(|`i |
k1

) · (|` j |
k2

)
is in P(L(L(A)))

for every k1,k2 ∈N.

Resource Polynomials

A resource polynomial p : �A�→Q+
0 for a data type A is a non-negative linear combina-

tion of base polynomials, that is,

p = ∑
i=1,...,m

qi ·pi

for qi ∈Q+
0 and pi ∈ P(A). We write R(A) for the set of resource polynomials for A.

An instructive, but not exhaustive, example is given by Rn = R(L(int), . . . ,L(int)). The
set Rn is the set of linear combinations of products of binomial coefficients over variables
x1, . . . , xn , that is, Rn = {

∑m
i=1 qi

∏n
j=1

( x j

ki j

) | qi ∈ Q+
0 ,m ∈ N,ki j ∈ N}. These expressions

naturally generalize the univariate polynomials from Chapter 5 and meet two conditions
that are important to efficiently manipulate polynomials during the analysis. Firstly,
the polynomials are non-negative, and secondly, they are closed under the discrete
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difference operators ∆i for every i . The discrete derivative ∆i p is defined through
∆i p(x1, . . . , xn) = p(x1, . . . , xi +1, . . . , xn)−p(x1, . . . , xn).

As in [HH10b] it can be shown that Rn is the largest set of polynomials enjoying
these closure properties. It would be interesting to have a similar characterisation of
R(A) for arbitrary A. So far, we know that R(A) is closed under sum and product (see
Lemma 6.2.1) and are compatible with the construction of elements of data structures
in a very natural way (see Lemmas 6.2.3 and 6.2.4). This provides some justification
for their choice and canonicity. An abstract characterization would have to take into
account the fact that our resource polynomials depend on an unbounded number of
variables, e.g., sizes of inner data structures, and are not invariant under permutation of
these variables. It seems that some generalization of infinite symmetric polynomials
to subgroups of the symmetric group could be useful, but this would not serve our
immediate goal of accurate multivariate resource analysis.

6.2 Annotated Types

The resource polynomials described in Section 6.1 are non-negative linear combinations
of base polynomials. The rational coefficients of the linear combination are present as
type annotations in our type system. To relate type annotations to resource polynomials
we systematically describe base polynomials and resource polynomials for data of a
given type.

If one considers only univariate polynomials then their description is straightfor-
ward. Every inductive data structure of size n has a potential of the form

∑
1≤i≤k qi

(n
i

)
. So

we can describe the potential function with a vector~q = (q1, . . . , qk ) in the corresponding
recursive type. For instance we can write L~q (A) for annotated list types. Since each
annotation refers to the size of one input part only, univariatly annotated types can
be directly composed. For example, an annotated type for a pair of lists has the form
(L~q (A),L~p (A)). See Chapter 5 for details.

In this chapter, I use multivariate potential functions, that is, functions that depend
on the sizes of different parts of the input. For a pair of lists of lengths n and m we have,
for instance, a potential function of the form

∑
0≤i+ j≤k qi j

(n
i

)(m
j

)
, which can be described

by the coefficients qi j . But I also would like to describe potential functions that refer to
the sizes of different lists inside a list of lists, etc. That is why I need to describe a set of
indexes I (A) that enumerate the basic resource polynomials pi and the corresponding
coefficients qi for a data type A. These type annotations can be, in a straight forward
way, automatically transformed into usual easily understood polynomials. This is done
in our prototype to present the bounds to the user at the end of the analysis.

Names For Base Polynomials

To assign a unique name to each base polynomial I define the index set I (A) to denote
resource polynomials for a given data type A. Interestingly, but as I find coincidentally,
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I (A) is essentially the meaning of A with every atomic type replaced by unit.

I (A) = {∗} if A ∈ {int,bool,unit}

I (A1, A2) = {(i1, i2) | i1 ∈ I (A1) and i2 ∈ I (A2)}

I (L(B)) = I (T (B)) = {[i1, . . . , ik ] | k ≥ 0, i j ∈ I (B)}

The degree deg(i ) of an index i ∈ I (A) is defined as follows.

deg(∗) = 0

deg(i1, i2) = deg(i1)+deg(i2)

deg([i1, . . . , ik ]) = k +deg(i1)+·· ·+deg(ik )

Define Ik (A) = {i ∈ I (A) | deg(i ) ≤ k}. The indexes i ∈ Ik (A) are an enumeration of the
base polyonomials pi ∈ P(A) of degree at most k. For each i ∈ I (A), I define a base
polynomial pi ∈ P(A) as follows: If A ∈ {int,bool,unit} then

p∗(v) = 1.

If A = (A1, A2) is a pair type and v = (v1, v2) then

p(i1,i2)(v) = pi1 (v1) ·pi2 (v2) .

If A = D(B) (in our type system D is either lists or binary node-labelled trees) is a data
structure and elems(v) = [v1, . . . , vn] then

p[i1,...,im ](v) = ∑
1≤ j1<···< jm≤n

pi1 (v j1 ) · · ·pim (v jm ) .

I use the notation 0A (or just 0) for the index in I (A) such that p0A (a) = 1 for all a. We
have 0int = ∗ and 0(A1,A2) = (0A1 ,0A2 ) and 0D(B) = []. If A = D(B) for B a data type then
the index [0, . . . ,0] ∈ I (A) of length n is denoted by just n. For convenience, I identify the
index (i1, i2, i3, i4) with the index (i1, (i2, (i3, i4))).

For a list i = [i1, . . . , ik ] I write i0::i to denote the list [i0, i1, . . . , ik ]. Furthermore, I
write i i ′ for the concatenation of two lists i and i ′.

Recall that R(A) denotes the set of nonnegative rational linear combinations of the
base polynomials.

Lemma 6.2.1 Let p, p ′ ∈ R(A) be resource polynomials. Then we have p+p ′, p ·p ′ ∈ R(A),
deg(p +p ′) = max(deg(p),deg(p ′)), and deg(p ·p ′) = deg(p)+deg(p ′).

PROOF By linearity it suffices to show this lemma for base polynomials. For them, the
claim follows by structural induction. ■

Corollary 6.2.2 For every p ∈ R(A, A) there exists p ′ ∈ R(A) with deg(p ′) = deg(p) and
p ′(a) = p(a, a) for all a ∈ �A�.
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PROOF The proof follows directly from Lemma 6.2.1 noticing that base polynomials
p ∈ P(A, A) take the form pi ·pi ′ . ■

Lemma 6.2.3 Let a ∈ �A� and ` ∈ �L(A)� be a list. Let furthermore k ≥ 0 and let
i0, . . . , ik ∈ I (A) indexes for type A. Then we have

p[i0,i1,...,ik ]([]) = 0

p[i0,i1,...,ik ](a::`) = pi0 (a) ·p[i1,...,ik ](`)+p0(a) ·p[i0,i1,...,ik ](`) .

PROOF Let `= [v1, . . . , vn]. Writing v0 for a we compute as follows.

l ccl p[i0,i1,...,ik ](a::`) = ∑
0≤ j0< j1<···< jm≤n

pio (v j0 ) ·pi1 (v j1 ) · · ·pim (v jm )

= ∑
1≤ j1<···< jm≤n

pio (v0) ·pi1 (v j1 ) · · ·pim (v jm )

+ ∑
1≤ j0< j1<···< jm≤n

pio (v j0 ) ·pi1 (v j1 ) · · ·pim (v jm )

= pio (a) · ∑
1≤ j1<···< jm≤n

pi1 (v j1 ) · · ·pim (v jm )

+ ∑
1≤ j0< j1<···< jm≤n

pio (v j0 ) ·pi1 (v j1 ) · · ·pim (v jm )

= pi0 (a) ·p[i1,...,ik ](`)+p0(a) ·p[i0,i1,...,ik ](`)

The statement p[i0,i1,...,ik ]([]) = 0 is obvious as the sum in the definition of the corre-
sponding base polynomial is over the empty index set. ■

Lemma 6.2.4 characterizes concatenations of lists (written as juxtaposition) as they
will occur in the construction of tree-like data. Note that we have for instance that
elems(node(a, t1, t2)) = a::elems(t1)elems(t2).

Lemma 6.2.4 Let `1,`2 ∈ �L(A)� be lists of type A. Then we have `1`2 ∈ �L(A)� and
p[i1,...,ik ](`1`2) =∑k

t=0 p[i1,...,i t ](`1) ·p[i t+1,...,ik ](`2) for all indexes i j ∈ I (A).

This can be proved by induction on the length of `1 using Lemma 6.2.3 or else by a
decomposition of the defining sum according to which indices hit the first list and which
ones hit the second.

Annotated Types and Potential Functions

I use the indexes and base polynomials to define type annotations and resource polyno-
mials. I then give examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

Q A = (qi )i∈I (A) with qi ∈Q+
0 .
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I say that Q A is of degree (at most) k if qi = 0 for every i ∈ I (A) with deg (i ) > k. An
annotated data type is a pair (A,Q A) of a data type A and a type annotation Q A of some
degree k.

Let H be a heap and let v be a value with H Í v 7→a : A for a data type A. Then the
type annotation Q A defines the potential

ΦH (v :(A,Q A)) = ∑
i∈I (A)

qi ·pi (a) .

Usually, I define type annotations Q A by only stating the values of the non-zero coeffi-
cients qi . However, it is sometimes handy to write annotations (q0, . . . , qn) for a list of
atomic types just as a vector. Similarly, I write annotations (q0, q(1,0), q(0,1), q(1,1), . . .) for
pairs of lists of atomic types sometimes as a triangular matrix.

If a ∈ �A� and Q is a type annotation for A then I also writeΦ(a : (A,Q)) for
∑

i qi pi (a).

Examples

The simplest annotated types are those for atomic data types like integers. The indexes
for int are I (int) = {∗} and thus each type annotation has the form (int, q0) for a q0 ∈Q+

0 .
It defines the constant potential functionΦH (v :(int, q0)) = q0. Similarly, tuples of atomic
types feature a single index of the form (∗, . . . ,∗) and a constant potential function
defined by some q(∗,...,∗) ∈Q+

0 .
More interesting examples are lists of atomic types like, that is, L(int). The set of

indexes of degree k is then

Ik (L(int)) = {[], [∗], [∗,∗], . . . , [∗, ...,∗]}

where the last list contains k unit elements. Since we identify a list of i unit ele-
ments with the integer i we have Ik (L(int)) = {0,1, . . . ,k}. Consequently, annotated
types have the form (L(int), (q0, . . . , qk )) for qi ∈Q+

0 . The defined potential function is
Φ([a1, . . . , an]:(L(int), (q0, . . . , qn)) =∑

0≤i≤k qi
(n

i

)
.

The next example is the type (L(int),L(int)) of pairs of integer lists. The set of indexes
of degree k is

Ik (L(int),L(int)) = {(i , j ) | i + j ≤ k}

if we identify lists of units with their lengths as usual. Annotated types are then of
the form ((L(int),L(int)),Q) for a triangular k ×k matrix Q with non-negative rational
entries. If `1 = [a1, . . . , an], `2 = [b1, . . . ,bm] are two lists then the potential function is
Φ((`1,`2), ((L(int),L(int)), (q(i , j )))) =∑

0≤i+ j≤k q(i , j )
(n

i

)(m
j

)
.

Finally, consider the type A = L(L(int)) of lists of lists of integers. The set of indexes
of degree k is then

Ik (L(L(int))) = {
[i1, . . . , im] | m ≤ k, i j ∈N,

∑
j=1,...,m

i j ≤ k −m
}

.



6.3. Type Rules 109

Thus we have Ik (L(L(int))) = {0, . . . ,k}∪ {[1], . . . , [k −1]}∪ {[0,1], . . .}∪·· · . Let for instance
`= [[a11, . . . , a1m1 ], . . . , [an1, . . . , anmn ]] be a list of lists and Q = (qi )i∈Ik (L(L(int))) be a cor-
responding type annotation. The defined potential function is then

Φ(`, (L(L(int)),Q)) = ∑
[i1,...,il ]∈Ik (A)

∑
1≤ j1<···< jl≤n

q[i1,...,il ]

(
m j1

i1

)
· · ·

(
m jl

il

)
.

In practice the potential functions are usually not very complex since most of the qi are
zero. Note that the resource polynomials for binary trees are identical to those for lists.

The Potential of a Context

For use in the type system, I have to extend the definition of resource polynomials to
typing contexts. I treat a context like a tuple type.

Let Γ = x1:A1, . . . , xn :An be a typing context and let k ∈ N. The index set Ik (Γ) is
defined through

Ik (Γ) = {
(i1, . . . , in) | i j ∈ Im j (A j ),

∑
j=1,...,n

m j ≤ k
}

.

A type annotation Q of degree k for Γ is a family

Q = (qi )i∈Ik (Γ) with qi ∈Q+
0 .

I denote a resource-annotated context with Γ;Q. Let H be a heap and V be a stack with
H ÍV : Γwhere H ÍV (x j ) 7→ax j : Γ(x j ) . The potential of Γ;Q with respect to H and V is

ΦV ,H (Γ;Q) = ∑
(i1,...,in )∈Ik (Γ)

q~ı
n∏

j=1
pi j (ax j )

In particular, if Γ=; then Ik (Γ) = {()} and ΦV ,H (Γ; q()) = q(). I sometimes also write q0

for q().

6.3 Type Rules

Before I describe the multivariate type system, I formalize some facts about the potential
method that are useful to explain some of the ideas I describe later.

If f :�A� → �B� is a function computed by some program and K (a) is the cost of
the evaluation of f (a) then our type system will essentially try to identify resource
polynomials p ∈ R(A) and p̄ ∈ R(B) such that p(a) ≥ p̄( f (a))+K (a). The key aspect of
such amortized cost accounting is that it interacts well with composition.

Proposition 6.3.1 Let p ∈ R(A), p̌ ∈ R(B), and p̄ ∈ R(C ) be resource polynomials. Let
f :�A�→ �B�, g :�B�→ �C�, K1 :�A�→Q, and K2 :�B�→Q. If p(a) ≥ p̌( f (a))+K1(a) and
p̌(b) ≥ p̄(g (b))+K2(b) for all a,b then p(a) ≥ p̄(g ( f (a)))+K1(a)+K2( f (a)) for all a.
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Notice that if we merely had p(a) ≥ K1(a) and p̌(b) ≥ K2(b) then no bound could be
directly obtained for the composition.

Interaction with parallel composition, that is, (a,c) 7→ ( f (a),c), is more complex
than in the univariate system due to the presence of mixed multiplicative terms in the
resource polynomials.

Proposition 6.3.2 Let p ∈ R(A,C ), p̄ ∈ R(B ,C ), f : �A� → �B�, and K : �A� → Q. For
each j ∈ I (C ) let p( j ) ∈ R(A) and p̄( j ) ∈ R(B) be such that p(a,c) = ∑

j p( j )(a)p j (c) and
p̄(b,c) =∑

j p̄( j )(b)p j (c). If p(0)(a) ≥ p̄(0)( f (a))+K (a) and p( j )(a) ≥ p̄( j )( f (a)) holds for
all a and j 6= 0 then p(a,c) ≥ p̄( f (a),c)+K (a).

In fact, the situation is more complicated due to the accounting for high watermarks as
opposed to merely additive cost, and also due to the fact that functions are recursively
defined and may be partial. Furthermore, we have to deal with contexts and not merely
types. To gain an intuition for the development to come, the above simplified view
should, however, prove helpful.

Type Judgments

The declarative type rules for RAML expressions (see Figure 6.1 and Figure 6.2) define a
multivariate resource-annotated typing judgment of the form

Σ;Γ;Q ` e : (A,Q ′)

where e is a RAML expression, Σ is a resource-annotated signature (see below), Γ;Q is a
resource-annotated context and (A,Q ′) is a resource-annotated data type. The intended
meaning of this judgment is that if there are more thanΦ(Γ;Q) resource units available
then this is sufficient to pay for the cost of the evaluation e. In addition, there are more
thanΦ(v :(A,Q ′)) resource units left if e evaluates to a value v .

Programs with Annotated Types

Multivariate resource-annotated first-order types have the form (A,Q) → (B ,Q ′) for an-
notated data types (A,Q) and (B ,Q ′). A multivariate resource-annotated signature Σ is a
finite, partial mapping of function identifiers to sets of resource-annotated first-order
types.

Like in the univariate and linear cases, a RAML program with (multivariate) resource-
annotated types consists of a (multivariate) resource-annotated signatureΣ and a family
of expressions with variables identifiers (e f , y f ) f ∈dom(Σ) such thatΣ; y f :A;Q ` e f : (B ,Q ′)
for every function type (A,Q) → (B ,Q ′) ∈Σ( f ).

Notations

Families that describe type and context annotations are denoted with upper case letters
Q,P,R, . . . with optional superscripts. I use the convention that the elements of the
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families are the corresponding lower case letters with corresponding superscripts, that
is, Q = (qi )i∈I , Q ′ = (q ′

i )i∈I , and Qx = (q x
i )i∈I .

Let Q,Q ′ be two annotations with the same index set I . I write Q ≤Q ′ if qi ≤ q ′
i for

every i ∈ I . For K ∈ Q I write Q = Q ′+K to state that q~0 = q ′
~0
+K ≥ 0 and qi = q ′

i for

i 6=~0 ∈ I . Let Γ= Γ1,Γ2 be a context, let i = (i1, . . . , ik ) ∈ I (Γ1) and j = ( j1, . . . , jl ) ∈ I (Γ2) . I
write (i , j ) to denote the index (i1, . . . , ik , j1, . . . , jl ) ∈ I (Γ).

Like in the other systems, I write

Σ;Γ;Q cf e : (A,Q ′)

to refer to multivariate cost-free type judgments where all constants K in the rules from
Figure 6.1 and Figure 6.2 are zero. I use it to assign potential to an extended context in
the let rule. More explanations will follow later.

Let Q be an annotation for a context Γ1,Γ2. For j ∈ I (Γ2), I define the projection
π
Γ1
j (Q) of Q to Γ1 to be the annotation Q ′ with q ′

i = q(i , j ). The essential properties of the
projections are stated by Propositions 6.3.2 and 6.3.3; they show how the analysis of
juxtaposed functions can be broken down to individual components.

Proposition 6.3.3 Let Γ, x:A;Q be an annotated context. Let furthermore H ÍV :Γ, x:A
and H ÍV (x)7→a : A . Then it is true thatΦV ,H (Γ, x:A;Q) =∑

j∈I (A)ΦV ,H (Γ;πΓj (Q)) ·p j (a).

Additive Shift

A key notion in the type system is the multivariate additive shift that is used to assign
potential to typing contexts that result from a pattern match or from an application of a
constructor of an inductive data type. I first define the additive shift, then illustrate the
definition with examples and finally state and prove the soundness of the operation.

Let Γ, y :L(A) be a context and let Q = (qi )i∈I (Γ,y :L(A)) be a context annotation of de-
gree k. The additive shift for listsCL(Q) of Q is an annotationCL(Q) = (q ′

i )i∈I (Γ,x:A,xs:L(A))

of degree k for a context Γ, x:A,xs:L(A) that is defined through

q ′
(i , j ,`) =

{
q(i , j ::`) +q(i ,`) j = 0
q(i , j ::`) j 6= 0

Let Γ, t :T (A) be a context and let Q = (qi )i∈I (Γ,t :T (A)) be a context annotation of degree
k. The additive shift for binary treesCT (Q) of Q is an annotationCT (Q) = (q ′

i )i∈I (Γ′) of
degree k for a context Γ′ = Γ, x:A,xs1:T (A),xs2:T (A) that is defined by

q ′
(i , j ,`1,`2) =

{
q(i , j ::`1`2) +q(i ,`1`2) j = 0
q(i , j ::`1`2) j 6= 0

The definition of the additive shift is short but substantial. I begin by illustrating its
effect in some example cases. Consider for instance a context `:L(int) with a single
integer list that features an annotation (q0, . . . , qk ) = (q[], . . . , q[0,...,0]). The shift operation
CL for lists produces an annotation for a context of the form x:int,xs:L(int), namely
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CL(q0, . . . , qk ) = (q(0,0), . . . , q(0,k)) such that q(0,i ) = qi +qi+1 for all i < k and q(0,k) = qk .
This is exactly the additive shift that I used in Chapter 5. Like in the univariate system,
we use it in a context where ` points to a list of length n +1 and xs is the tail of `. It
reflects the fact that

∑
i=0,...,k qi

(n+1
i

)=∑
i=0,...,k−1 qi+1

(n
i

)+∑
i=0,...,k qi

(n
i

)
.

Now consider the annotated context t :T (int); (q0, . . . , qk ) with a single variable t that
points to a tree with n +1 nodes. The additive shift CT produces an annotation for
a context of the form x:int, t1:T (int), t2:T (int). We have CT (q0, . . . , qk ) = (q(0,i , j ))i+ j≤k

where q(0,i , j ) = qi+ j + qi+ j+1 if i + j < k and q(0,i , j ) = qi+ j if i + j = k. The intention
is that t1 and t2 are the subtrees of t which have n1 and n2 nodes, respectively (n1 +
n2 = n). The definition of the additive shift for trees incorporates the convolution(n+m

k

) = ∑
i+ j=k

(n
i

)(m
j

)
for binomials. It is true that

∑
i=0,...,k qi

(n+1
i

) = ∑
i=0,...,k−1(qi +

qi+1)
(n

i

)+qk
(n

k

)=∑k−1
i=0

∑
j1+ j2=i (qi +qi+1)

(n1
j1

)(n2
j2

)+∑
j1+ j2=k qi

(n1
j1

)(n2
j2

)
.

As a last example consider the context `1:L(int),`2:L(int);Q where Q = (q(i , j ))i+ j≤k ,
`1 is a list of length m, and `2 is a list of length n + 1. The additive shift results in
an annotation for a context of the form `1:L(int), x:int,xs:L(int) and the intention is
that xs is the tail of `2, that is, a list of length n. From the definition it follows that
CL(Q) = (q(i ,0, j ))i+ j≤k where q(i ,0, j ) = q(i , j )+q(i , j+1) if i+ j < k and q(i ,0, j ) = q(i , j ) if i+ j =
k. The soundness follows from the fact that

∑k−i
j=1 q(i , j )

(m
i

)(n+1
j

) = (m
i

)(∑k−i−1
j=0 (q(i , j ) +

q(i , j+1))
(n

i

)+q(i ,k−i )
(n

k

))
for every i ≤ k.

Lemmas 6.3.4 and 6.3.5 state the soundness of the shift operations.

Lemma 6.3.4 Let Γ,`:L(A);Q be an annotated context, H ÍV : Γ,`:L(A), H(`) = (v1,`′)
and let V ′ =V [xh 7→ v1, xt 7→ `′]. Then H ÍV ′ : Γ, xh :A, xt :L(A) andΦV ,H (Γ,`:L(A);Q) =
ΦV ′,H (Γ, xh :A, xt :L(A);CL(Q)).

Lemma 6.3.4 is a consequence of Lemma 6.2.3. One takes the linear combination of
instances of its second equation and regroups the right hand side according to the base
polynomials for the resulting context.

PROOF It follows directly from the assumptions that H Í V ′ : Γ, xh :A, xt :L(A). Let `=
[v1, . . . , vn] and let qi ∈Q+

0 for each i ∈ I (L(A)). Then
∑

[i1,...,ik ]∈I (L(A)) q[i1,...,ik ] ·p H
[i1,...,ik ](`)

= ∑
[i1,...,ik ]

q[i1,...,ik ] ·
( ∑

1≤ j1<···< jk≤n
p H

i1
(v j1 ) · · ·p H

ik
(v jk )

)
= ∑

[i1,...,ik ]
q[i1,...,ik ]

( ∑
2≤ j1<···< jk≤n

p H
i1

(v j1 ) · · ·p H
ik

(v jk )

+ q[i1,...,ik ] ·p H
i1

(v1)
( ∑

2≤ j2<···< jk≤n
p H

i2
(v j2 ) · · ·p H

ik
(v jk )

))
= ∑

[i1,...,ik ]

(
q[i1,...,ik ] ·p H

(0,[i1,...,ik ])(v1,`′)+q[i1,...,ik ] ·p H
(i1,[i2,...,ik ])(v1,`′)

)
= ∑

[0,i2,...,ik ]
(q[i2,...,ik ] +q[0,i2,...,ik ]) ·p H

(0,[i2,...,ik ])(v1,`′)+ ∑
[i1,...,ik ],i1 6=0

q[i1,...,ik ] ·p H
(i1,[i2,...,ik ])(v1,`′)
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Let Γ = x1:A1, . . . , xm :Am , ji ∈ I (Ai ) and j = ( j1, . . . , jm). We write p H
j (V (Γ)) instead of∏m

i=1 p H
ji

(V (xi )). Let Γ′ = Γ, xh :A, xt :L(A). From the above equation it follows that

ΦV ,H (Γ,`:(A);Q) = ∑
( j ,i )∈I (Γ,L(A))

q( j ,i ) ·p H
j (V (Γ)) ·p H

i (`)

= ∑
j∈I (Γ)

p H
j (V (Γ)) ·

( ∑
i∈I (L(A))

q( j ,i ) ·p H
i (`)

)
= ∑

j∈I (Γ)
p H

j (V (Γ))
( ∑

[i1,...,ik ],i1 6=0
q( j ,[i1,...,ik ])·p H

(i1,[i2,...,ik ])(v1,`′)

+ ∑
[0,i2,...,ik ]

(q( j ,[i2,...,ik ])+q( j ,[0,i2,...,ik ]))·p H
(0,[i2,...,ik ])(v1,`′)

)
= ∑

( j ,i1,[i2,...,ik ]),i1 6=0
q( j ,[i1,...,ik ]) ·p H

( j ,i1,[i2,...,ik ])(V
′(Γ′))

+ ∑
( j ,0,[i2,...,ik ])

(q( j ,[i2,...,ik ])+q( j ,[0,i2,...,ik ]))p H
( j ,0,[i2,...,ik ])(V

′(Γ′))

= ΦV ′,H (Γ′;CL(Q)) ■

Lemma 6.3.5 Let Γ, t :T (A);Q be an annotated context, let H Í V : Γ, t :T (A), H(t) =
(v1, t1, t2), and V ′ = V [x0 7→ v1, x1 7→ t1, x2 7→ t2]. If Γ′ = Γ, x:A, x1:T (A), x2:T (A) then
H ÍV ′ : Γ′ andΦV ,H (Γ, t :T (A);Q) =ΦV ′,H (Γ′;CT (Q)).

PROOF Remember that the potential of a tree only depends on the list of nodes in
pre-order. So, we can think of the context splitting as done in two steps. First the
head is separated, as in Lemma 6.3.4, and then the list of remaining elements into
two lists. Lemma 6.3.5 is then proved like the previous one by regrouping terms using
Lemma 6.2.3 for the first separation and Lemma 6.2.4 for the second one. ■

Sharing

Let Γ, x1:A, x2:A;Q be an annotated context. The sharing operation . Q defines an
annotation for a context of the form Γ, x:A. It is used when the potential is split between
multiple occurrences of a variable. The following lemma shows that sharing is a linear
operation that does not lead to any loss of potential.

Lemma 6.3.6 Let A be a data type. Then there are non-negative rational numbers

c(i , j )
k for i , j ,k ∈ I (A) and deg(k) ≤ deg(i , j ) such that the following holds. For every

context Γ, x1:A, x2:A;Q and every H ,V with H ÍV : Γ, x:A it holds thatΦV ,H (Γ, x:A;Q ′) =
ΦV ′,H (Γ, x1:A, x2:A;Q) where V ′ =V [x1, x2 7→V (x)] and q ′

(`,k) =
∑

i , j∈I (A) c(i , j )
k q(`,i , j ).

Lemma 6.3.6 is a direct consequence of Corollary 6.2.2. In fact, inspection of the argu-

ment of the underlying Lemma 6.2.1 shows that the coefficients c(i , j )
k , are indeed natural

numbers and can be computed effectively.
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For a context Γ, x1:A, x2:A;Q we define .Q to be the Q ′ from Lemma 6.3.6.

PROOF The task is to show that for every resource polynomial p(i , j )((v, v)) = pi (v) ·pi (v)
can be written as a sum (possibly with repetitions) of pi ′(v)’s. We argue by induction
on A. If A is an atomic type bool, int, or unit, we can simply write 1 · 1 as 1. If A is
a pair A = (B ,C ) then we have p(i , j )((v, w)) ·p(i ′, j ′)((v, w)) = pi (v)p j (w)pi ′(v)p j ′(w) =
(pi (v)pi ′(v))(p j (w)p j ′(w)). By induction hypothesis, (pi (v)pi ′(v)) and (p j (w)p j ′(w))
both are sums of elementary resource polynomials for B or C , respectively. So the
expression is a sum of terms of the form pi ′′(v)p j ′′(w), which is p(i ′′, j ′′)((v, w)). If A is a
list A = L(B) we have to consider

p[i1,...,ik ]([v1, . . . , vn]) ·p[i ′1,...,i ′
k′ ]

([v1, . . . , vn])

=
( ∑

1≤ j1<...< jk≤n
pi1 (v j1 ) . . . pik (v jk )

)( ∑
1≤ j ′1<...< j ′

k′≤n

pi ′1 (v j ′1 ) . . . pi ′
k′

(v j ′
k′

)
)

Using the distributive law, this can be considered as the sum over all possible ways
to arrange the j1, . . . , jk and j ′1, . . . , j ′k ′ relative to each other respecting their respective
orders, including the case that some ji coincide with some j ′i ′ . Each of term in this sum
of fixed length (independent of the lists) has the shape∑

1≤ j ′′1 <...< j ′′
`
≤n

q1(v j ′′1
) . . . q`(v j ′′

`
)

where each qr (v jr ) is either a pis (v jr ), a pi ′
s′

(v jr ) or a product pir (v jr )pi ′
s′

(v jr ). The latter
can, by induction hypothesis, be written as sum of pi ′′(v jr )’s. Again, this presentation is
independent of the actual value of v jr . Using distributivity again, we obtain a sum of
expressions of the form ∑

1≤ j ′′1 <...< j ′′
`
≤n

pi ′′1 (v j ′′1
) . . . pi ′′

`
(v j ′′

`
) = p[i ′′1 ,...,i ′′

`
]

The case of A being a tree A = T (B) is reduced to the case of A being a list, as the
potential for trees is defined to be that of a list—the preorder traversal of the tree. ■

Type Rules

Figures 6.1 and 6.2 shows the annotated type rules for RAML expressions. I assume a
fixed global signature Σ that I omit from the rules. The last four rules are structural rules
that apply to every expression. The other rules are syntax-driven and there is one rule
for every construct of the syntax. In the implementation we incorporated the structural
rules in the syntax-driven ones. The most interesting rules are explained below.

M:SHARE has to be applied to expressions that contain a variable twice (z in the
rule). The sharing operation .P transfers the annotation P for the context Γ, x:A, y :A
into an annotation Q for the context Γ, z:A without loss of potential (Lemma 6.3.6). This
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Q =Q ′+K var

x:B ;Q ` x : (B ,Q ′)
(M:VAR)

b ∈ {True,False} q0 = q ′
0 +K bool

;;Q ` b : (bool,Q ′)
(M:CONSTB)

n ∈Z q0 = q ′
0+K int

;;Q ` n : (int,Q ′)
(M:CONSTI)

q0 = q ′
0 +K unit

;;Q ` () : (unit,Q ′)
(M:CONSTU)

op ∈ {or,and} q(0,0) = q ′
0 +K op

x1:bool, x2:bool;Q ` x1 op x2 : (bool,Q ′)
(M:OPBOOL)

op ∈ {+,−,∗,mod,div} q(0,0) = q ′
0 +K op

x1:int, x2:int;Q ` x1 op x2 : (int,Q ′)
(M:OPINT )

P +K app
1 =Q P ′ =Q ′+K app

2 (A,P ) → (B ,P ′) ∈Σ( f )

x:A;Q ` f (x) : (B ,Q ′)
(M:APP)

Γ1;P ` e1 : (A,P ′) Γ2, x:A;R ` e2 : (B ,R ′)
P +K let

1 =πΓ1

~0
(Q) P ′ =πx:A

~0
(R)+K let

2 R ′ =Q ′+K let
3

∀~0 6= j ∈ I (Γ2): Γ1;P j
cf e1 : (A,P ′

j ) P j =πΓ1
j (Q) P ′

j =πx:A
j (R)

Γ1,Γ2;Q ` let x = e1 in e2 : (B ,Q ′)
(M:LET )

Γ;P ` et : (B ,P ′) P +K conT
1 =πΓ0 (Q) P ′ =Q ′+K conT

2

Γ;R ` e f : (B ,R ′) R +K conF
1 =πΓ0 (Q) R ′ =Q ′+K conF

2

Γ, x:bool;Q ` if x then et else e f : (B ,Q ′)
(M:COND)

A=(A1, A2)
Γ, x1:A1, x2:A2;P ` e : (B ,P ′) P+K matP

1 =Q P ′ =Q ′+K matP
2

Γ, x:A;Q ` match x with (x1, x2) → e : (B ,Q ′)
(M:MATP)

Q =Q ′+K pair

x1:A1, x2:A2;Q ` (x1, x2) : ((A1, A2),Q ′)
(M:PAIR)

q0 = q ′
~0
+K nil

;;Q ` nil : (L(A),Q ′)
(M:NIL)

q0 = q ′
~0
+K leaf

;;Q ` leaf : (T (A),Q ′)
(M:LEAF)

Q =CL(Q ′)+K cons

xh :A, xt :L(A);Q ` cons(xh , xt ) : (L(A),Q ′)
(M:CONS)

Figure 6.1: Type rules for annotated types (1 of 2).
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Q =CT (Q ′)+K node

x0:A, x1:T (A), x2:T (A);Q ` node(x0, x1, x2) : (T (A),Q ′)
(M:NODE)

Γ;R ` e1 : (B ,R ′) R +K matN
1 =πΓ0 (Q) R ′ =Q ′+K matN

2

Γ, xh :A, xt :L(A);P ` e2 : (B ,P ′) P +K matC
1 =CL(Q) P ′ =Q ′+K matC

2

Γ, x:L(A);Q ` match x with | nil → e1 | cons(xh , xt ) → e2 : (B ,Q ′)
(M:MATL)

Γ;R ` e1 : (B ,R ′)
Γ, x0:A, x1:T (A), x2:T (A);P ` e2 : (B ,P ′) R +K matTL

1 =πΓ0 (Q)
R ′ =Q ′+K matTL

2 P +K matTN
1 =CT (Q) P ′ =Q ′+K matTN

2

Γ, x:T (A);Q ` match x with | leaf → e1 | node(x0, x1, x2) → e2 : (B ,Q ′)
(M:MATT)

Γ, x:A, y :A;P ` e : (B ,Q ′) Q =.P

Γ, z:A;Q ` e[z/x, z/y] : (B ,Q ′)
(M:SHARE)

Γ;πΓ~0 (Q) ` e : (B ,Q ′)

Γ, x:A;Q ` e : (B ,Q ′)
(M:AUGMENT )

Γ;P ` e : (B ,P ′) Q ≥ P Q ′ ≤ P ′

Γ;Q ` e : (B ,Q ′)
(M:WEAKEN)

Γ;P ` e : (B ,P ′) Q = P + c Q ′ = P ′+ c

Γ;Q ` e : (B ,Q ′)
(M:OFFSET )

Figure 6.2: Type rules for annotated types (2 of 2).
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is crucial for the accuracy of the analysis since instances of M:SHARE are quite frequent
in typical examples. The remaining rules are affine linear in the sense that they assume
that every variable occurs at most once.

M:CONS assigns potential to a lengthened list. The additive shift CL(Q ′) trans-
forms the annotation Q ′ for a list type into an annotation for the context xh :A, xt :L(A).
Lemma 6.3.4 shows that potential is neither gained nor lost by this operation. The
potential Q of the context has to pay for both the potential Q ′ of the resulting list and
the resource cost K cons for list cons.

M:MATL shows how to treat pattern matching of lists. The initial potential defined
by the annotation Q of the context Γ, x:L(A) has to be sufficient to pay the costs of the
evaluation of e1 or e2 (depending on whether the matched list is empty or not) and the
potential defined by the annotation Q ′ of the result type. To type the expression e1 of
the nil case we use the projection πΓ0 (Q) that results in an annotation for the context
Γ. Since the matched list is empty in this case no potential is lost by the discount of
the annotations q(i , j ) of Q where j 6= 0. To type the expression e2 of the cons case we
rely on the shift operationCL(Q) for lists that results in an annotation for the context
Γ, xh :A, xt :L(A). Again there is no loss of potential (see Lemma 6.3.4). The equalities
relate the potential before and after the evaluation of e1 or e2, to the potential before the
and after the evaluation of the match operation by incorporating the respective resource
cost for the matching.

M:NODE and M:MATT are similar to the corresponding rules for lists but use the
shift operatorCT for trees (see Lemma 6.3.5).

M:LET comprises essentially an application of Proposition 6.3.2 (with f = e1 and C =
Γ2) followed by an application of Proposition 6.3.1 (with f being the parallel composition
of e1 and the identity on Γ2 and g being e2). Of course, the rigorous soundness proof
takes into account partiality and additional constant costs for dispatching a let. It is part
of the inductive soundness proof for the entire type system (Theorem 6.4.1).

The derivation of the type judgment Γ1,Γ2;Q ` let x = e1 in e2 : (B ,Q ′) can be ex-
plained in two steps. The first starts with the derivation of the judgment Γ1;P ` e1 :
(A,P ′) for the sub-expression e1. The annotation P corresponds to the potential that
is exclusively attached to Γ1 by the annotation Q plus some resource cost for the let,
namely P = π

Γ1

~0
(Q)+K let

1 . Now we derive the judgment Γ2, x:A;R ` e2 : (B ,R ′). The
potential that is assigned by R to x:A is the potential that resulted from the judgment
for e1 plus some cost that might occur when binding the variable x to the value of e1,
namely P ′ = πx:A

~0
(R)+K let

2 . The potential that is assigned by R to Γ2 is essentially the

potential that is assigned by to Γ2 by Q, namely πΓ2
~0

(Q) = π
Γ2
0 (R). The second step of

the derivation is to relate the annotations in R that refer to mixed potential between
x:A and Γ2 to the annotations in Q that refer to potential that is mixed between Γ1 and
Γ2. To this end we remember that we can derive from a judgment Γ1;S ` e1 : (A,S′) that
Φ(Γ1;S) ≥Φ(v :(A,S′)) if e1 evaluates to v . This inequality remains valid if multiplied
with a potential for φΓ2 =Φ(Γ2;T ), that is,Φ(Γ1;S) ·φΓ2 ≥Φ(v :(A,S′)) ·φΓ2 . To relate the
mixed potential annotations we thus derive a cost-free judgment Γ1;P j

cf e1 : (A,P ′
j )
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for every~0 6= j ∈ I (Γ2). (We use cost-free judgments to avoid paying multiple times for
the evaluation of e1.) Then we equate P j to the corresponding annotations in Q and

equate P ′
j to the corresponding annotations in R, that is, P j =πΓ1

j (Q) and P ′
j =πx:A

j (R).
The intuition is that j corresponds to φΓ2 . Note that we use a fresh signature Σ in the
derivation of each cost-free judgment for e1.

6.4 Soundness

The main theorem of this chapter states that type derivations establish correct bounds:
an annotated type judgment for an expression e shows that if e evaluates to a value v in
a well-formed environment then the initial potential of the context is an upper bound
on the watermark of the resource usage and the difference between initial and final
potential is an upper bound on the consumed resources.

As in Chapter 4 and Chapter 5, I use the partial evaluation judgments to prove that
the bounds derived from an annotated type judgment also apply to non-terminating
evaluations.

Theorem 6.4.1 (Soundness) Let H ÍV :Γ and Σ;Γ;Q ` e:(B ,Q ′).

1. If V , H ` e v, H ′ | (p, p ′) then we have p ≤ΦV ,H (Γ;Q) and p −p ′ ≤ΦV ,H (Γ;Q)−
ΦH ′(v :(B ,Q ′)).

2. If V , H ` e | p then we have p ≤ΦV ,H (Γ;Q).

Like the soundness theorems in the previous chapters, Theorem 6.4.1 is proved by a
nested induction on the derivation of the evaluation judgment—V , H ` e v, H ′ | (p, p ′)
or V , H ` e  | p, respectively—and the type judgment Γ;Q ` e:(B ,Q ′). The inner
induction on the type judgment is needed because of the structural rules.

Compared to the previous soundness proofs, further complexity arises from the
rich multivariate potential annotations. It is mainly dealt with in Lemmas 6.3.4, 6.3.5,
and 6.3.6 and the concept of projections as explained in Propositions 6.3.2 and 6.3.3.

Note that I could define an embedding of the linear into the multivariate polynomial
system so as to derive the soundness of the linear system as corollary. This would
however not be possible for univariate system from Chapter 5 since the univariate
potential of trees is not compatible with the potential of trees that I use here.

It follows from Theorem 6.4.1 and Theorem 3.3.9 that run-time bounds also prove
the termination of programs. Corollary 6.4.2 states this fact formally.

Corollary 6.4.2 Let the resource constants be instantiated by K x = 1, K x
1 = 1 and K x

m = 0
for all x and all m > 1. If H Í V :Γ and Σ;Γ;Q ` e:(A,Q ′) then there is an n ∈ N,n ≤
ΦV ,H (Γ;Q) such that V , H ` e v, H ′ | (n,0).

Lemma 6.4.3 is used to show the soundness of the rule M:LET. It states that the potential
of a context is invariant during the evaluation. This is a consequence of allocated heap-
cells being immutable with the language features that I describe in this dissertation.
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Lemma 6.4.3 Let H Í V :Γ, Σ;Γ;Q ` e : (B ,Q ′) and V , H ` e v, H ′ | (p, p ′). Then it is
true thatΦV ,H (Γ;Q) =ΦV ,H ′(Γ;Q).

PROOF The lemma is a direct consequence of the definition of the potentialΦ and the
fact that H ′(`) = H(`) for all ` ∈ dom(H) which is proved in Proposition 3.3.2. ■

Soundness Proof

In the following I prove Theorem 6.4.1. I first present the details of the proof of part 1
and then I describe some cases of the proof of part 2 to convince you that the proof is
similar.

PROOF (PART 1) I prove p ≤ΦV ,H (Γ;Q) and p −p ′ ≤ΦV ,H (Γ;Q)−ΦH ′(v :(B ,Q ′)) by in-
duction on the derivations of V , H ` e v, H ′ | (p, p ′) and Σ;Γ;Q ` e : (B ,Q ′), where the
induction on the evaluation judgment takes priority.

(M:SHARE) Suppose that the derivation ofΣ;Γ;Q ` e : (B ,Q ′) ends with an application
of the rule M:SHARE. Then Γ= Γ′, z:A. It follows from the premise that

Γ′, x:A, y :A;P ` e ′ : (B ,Q ′) (6.1)

for a type annotation P with Q =.P and an expression e ′ with e ′[z/x, z/y] = e. Since
H ÍV : Γ′, z:A and V , H ` e v, H ′ | (p, p ′) it follows that H ÍVx y : Γ′, x:A, y :A and

Vx y , H ` e ′ v, H ′ | (p, p ′) (6.2)

where Vx y =V ∪ {x 7→V (x), y 7→V (z)}. Thus we can apply the induction hypothesis to
(6.1) and (6.2) to derive

p ≤ΦVx y ,H (Γ′, x:A, y :A;P ) (6.3)

and
p −p ′ ≤ΦVx y ,H (Γ′, x:A, y :A;P )− (ΦH ′(v :(B ,Q ′))) . (6.4)

From the definition of the sharing annotation .Q (compare Lemma 6.3.6) it follows
that

ΦVx y ,H (Γ′, x:A, y :A;P ) =ΦV ,H (Γ′, z:A;Q) . (6.5)

The claim follows from (6.3), (6.4), and (6.5).

(M:AUGMENT ) If the derivation of Σ;Γ;Q ` e : (B ,Q ′) ends with an application of
the rule M:AUGMENT then we have Σ;Γ′;Q ` e : (B ,Q ′) for a context Γ′ with Γ′, x:A = Γ.
From the assumption H Í V : Γ′, x:A it follows that H Í V : Γ′. Thus we can apply the
induction hypothesis to the premise Γ′;πΓ

′
~0

(Q) ` e : (B ,Q ′) of M:AUGMENT. We derive

p ≤ΦV ,H (Γ′;πΓ
′

~0
(Q)) (6.6)

and
p −p ′ ≤ΦV ,H

(
Γ′;πΓ

′
~0

(Q))− (ΦH ′(v :(B ,Q ′)
)

. (6.7)
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Assume that H ÍV (x)7→a : A . From Proposition 6.3.3 it follows thatΦV ,H (Γ′;πΓ
′

~0
(Q)) =

ΦV ,H (Γ′;πΓ
~0

(Q)) · p~0(a) ≤ ∑
j∈I (A)ΦV ,H (Γ′;πΓ

′
j (Q)) · p j (a) = ΦV ,H (Γ′, x:A;Q). Hence we

have

ΦV ,H (Γ′;πΓ
′

~0
(Q)) ≤ΦV ,H (Γ;Q) (6.8)

and the claim follows from (6.6), (6.7), and (6.8).

(M:WEAKEN) Assume the derivation of the typing judgment ends with an application
of the type rule M:WEAKEN. Then we have Γ;P ` e : (B ,P ′), Q ≥ P , and Q ′ ≤ P ′. We can
conclude by induction that

p ≤ΦV ,H (Γ;P ) and p −p ′ ≤ΦV ,H (Γ;P )−ΦH ′(v :(B ,P ′)) . (6.9)

From the definition of ≤ for type annotations it follows immediately that

ΦV ,H (Γ;Q) ≥ΦV ,H (Γ;P ) and ΦH ′(v :(B ,P ′)) ≤ΦH ′(v :(B ,Q ′)) . (6.10)

The claim follows then from (6.9) and (6.10).

(M:OFFSET ) The case M:OFFSET is similar to the case M:WEAKEN.

(M:VAR) Assume that e is a variable x that has been evaluated with the rule E:VAR.
Then it is true that H = H ′. The type judgment Σ;Γ;Q ` x:(B ,Q ′) has been derived by a
single application of the rule M:VAR. Thus we have Γ= x:B ,

ΦV ,H (x:B ;Q)−ΦV ,H ′(x:(B ,Q ′)) = K var (6.11)

and in particularΦV ,H (x:B ;Q) ≥ K var.
Assume first that K var ≥ 0. Then it follows by definition that p = K var, p ′ = 0 and

thus p −p ′ = K var. The claim follows from (6.11). Assume now that K var < 0. Then it
follows by definition that p = 0, p ′ = −K var. We have again that p −p ′ = K var and the
claim follows from (6.11). (Remember that we have the implicit side condition that
ΦV ,H (x:B ;Q) ≥ 0.)

(M:CONST*) Similar to the case (M:VAR).

(M:OPINT ) Assume that the type derivation ends with an application of the rule
M:OPINT. Then e has the form x1 op x2 and the evaluation consists of a single applica-
tion of the rule E:BINOP. From the rule M:OPINT it follows that Γ= x1:int, x2:int and
ΦV ,H (x1:int, x2:int;Q)−ΦV ,H ′(v : (int,Q ′)) = q(0,0) −q ′

0 = K op.
If K op ≥ 0 then p = K op and p ′ = 0. Thus p = K op ≤ q(0,0) = ΦV ,H (x1:int, x2:int;Q)

and p −p ′ = K op =ΦV ,H (x1:int, x2:int;Q)− (ΦV ,H ′(v :(int,Q ′)).
If K op < 0 then p = 0 and p ′ =−K op. Thus p ≤ q =ΦV ,H (x1:int, x2:int;Q) and p−p ′ =

K op =ΦV ,H (x1:int, x2:int;Q)− (ΦV ,H ′(v : (int,Q ′))).

(M:OPBOOL) The case in which the type derivation ends with an application of
M:OPBOOL is similar to the case (M:OPINT ).
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(M:LET ) If the type derivation ends with an application of M:LET then e is a let
expression of the from let x = e1 in e2 that has eventually been evaluated with the rule
E:LET. Then it follows that V , H ` e1 v1, H1 | (r,r ′) and V ′, H1 ` e2 v2, H2 | (t , t ′) for
V ′ =V [x 7→ v1] and r,r ′, t , t ′ with

(p, p ′) = K let
1 · (r,r ′) ·K let

2 · (t , t ′) ·K let
3 . (6.12)

The derivation of the type judgment for e ends with an application of L:LET. Hence
Γ= Γ1,Γ2, Σ;Γ1;P ` e1 : (A,P ′), Σ;Γ2, x:A;R ` e2 : (B ,R ′), and

P +K let
1 = π

Γ1

~0
(Q) (6.13)

P ′ = πx:A
~0

(R)+K let
2 (6.14)

R ′ = Q ′+K let
3 (6.15)

Furthermore we have for every~0 6= j ∈ I (Γ2): Γ1;P j
cf e1 : (A,P ′

j ),

P j =πΓ1
j (Q) (6.16)

P ′
j =πx:A

j (R) (6.17)

Since H ÍV : Γwe have also H ÍV : Γ1 and can thus apply the induction hypothesis for
the evaluation judgment of e1 to derive

r ≤ ΦV ,H (Γ1;P ) (6.18)

r − r ′ ≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′)) (6.19)

From Theorem 3.3.4 it follows that H2 ÍV ′ : Γ2, x:A and thus again by induction

t ≤ ΦV ′,H1 (Γ2, x:A;R) (6.20)

t − t ′ ≤ ΦV ′,H1 (Γ2, x:A;R)−ΦH2 (v2:(B ,R ′)) (6.21)

Furthermore we apply the induction hypothesis to the evaluation judgment for e1 with
the cost-free metric. Then we have r = r ′ = 0 and therefore for every~0 6= j ∈ I (Γ2)

ΦV ,H (Γ1;P j ) ≥ΦH1 (v1:(A,P ′
j )) . (6.22)

Let Γ1 = x1, . . . , xn , Γ2 = y1, . . . , ym , H Í V (x j )7→ax j : Γ(x j ), and H Í V (y j )7→by j : Γ(y j ).
Define

φP = ΦV ,H (Γ1;P )+ ∑
~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

φP ′ = ΦH1 (v1:(A,P ′))+ ∑
~0 6=~∈Ik (Γ2)

ΦH1 (v1:(A,P ′
~ )) ·

m∏
k=1

p jk (bxk )
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We argue that

ΦV ,H (Γ1,Γ2;Q)
Prop. 6.3.3= ∑

~∈Ik (Γ2)

ΦV ,H (Γ1;πΓ1

~
(Q))

m∏
k=1

p jk (bxk )

(6.13,6.16)= ΦV ,H (Γ1;P )+K let
1 + ∑

~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

= φP +K let
1 (6.23)

Similarly, we use Proposition 6.3.3, (6.14), and (6.17) to see that

φP ′ =ΦV ′,H1 (Γ2, x:A;R)+K let
2 (6.24)

Additionally we have

r − r ′ (6.19)≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′))

(6.22)≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′))+ ∑
~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

− ∑
~0 6=~∈Ik (Γ2)

ΦH1 (v1:(A,P ′
~ )) ·

m∏
k=1

p jk (bxk )

= φP −φP ′ (6.25)

Now let

(u,u′) = K let
1 · (φP ,φP ′) ·K let

2 · (ΦV ′,H1 (Γ2, x:A;R),ΦH2 (v2:(B ,R ′))) ·K let
3

Then it follows that

(u,u′) (6.15,6.24)= K let
1 · (φP ,φP ′ −K let

2 ) · (ΦV ′,H1 (Γ2, x:A;R),ΦH2 (v2:(B ,R ′))−K let
3 )

(6.24)= K let
1 · (φP , v ′)

for some v ′ ∈Q+
0 . Now we can conclude that

u ≤ max(0,φP +K let
1 )

(6.23)≤ ΦV ,H (Γ;Q)

Finally, it follows with Proposition 3.3.1 applied to (6.18), (6.25), (6.20), (6.21), and (6.12)
that u ≥ p.

For the second part of the statement we apply Proposition 3.3.1 to (6.12) and derive
the following.

p −p ′ = r − r ′+ t − t ′+K let
1 +K let

2 +K let
3

(6.21,6.25)≤ φP −φP ′ +ΦV ′,H1 (Γ2, x:A;R)−ΦH2 (v2:(B ,R ′))+K let
1 +K let

2 +K let
3

(6.24)= φP −ΦH2 (v2:(B ,R ′))+K let
1 +K let

3
(6.23)= ΦV ,H (Γ;Q)−ΦH2 (v2:(B ,R ′))+K let

3
(6.15)≤ ΦV ,H (Γ;Q)−ΦH2 (v2:(B ,Q ′))
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(M:APP) Assume that e is a function application of the form f (x). The evaluation
of e then ends with an application of the rule E:APP. Thus we have V (x) = v ′ and
[y f 7→ v ′], H ` e f  v, H ′ | (r,r ′) for some r,r ′ with

(p, p ′) = K app
1 · (r,r ′) ·K app

2 (6.26)

The derivation of the type judgment for e ends with an application of M:FUN. Therefore
it is true that Γ= x:A;Q, (A,P ) → (B ,P ′) ∈Σ( f ), and

P +K app
1 =Q and P ′ =Q ′+K app

2 . (6.27)

In order to apply the induction hypothesis to the evaluation of the function body e f we
recall from the definition of a well-formed program that (A,P ) → (B ,P ′) ∈Σ( f ) implies
that Σ; y f :A;P ` e f :P ′. Since H Í V : x:A and V (x) = v ′ it follows H Í [y f 7→ v ′] : y f :A.
We obtain by induction that

r ≤ Φ[y f 7→v ′],H (y f :A;P ) (6.28)

r − r ′ ≤ Φ[y f 7→v ′],H (y f :A;P )−ΦH ′(v :(B ,P ′)) (6.29)

Now define

(u,u′) = K app
1 · (Φ[y f 7→v ′],H (y f :A;P ),ΦH ′(v :(B ,P ′))) ·K app

2 . (6.30)

From (6.27) it follows thatΦH ′(v :(B ,P ′) ≥ K app
2 and hence we obtain u = max(0,K app

1 +
Φ[y f 7→v ′],H (y f :A;P )). We apply Proposition 3.3.1 to (6.26), (6.28), (6.29), (6.30) and obtain
p ≤ u. If u = 0 then p = 0 ≤ΦV ,H (x:A;Q). Otherwise we have u =Φ[y f 7→v ′]H (y f :A;P ))+
K app

1 . Furthermore it follows from (6.27) thatΦ[y f 7→v ′],H (y f :A;P )+K app
1 =ΦV ,H (x:A;Q)

and therefore p ≤ΦV ,H (x:A;Q).
For the second part for the statement observe that

p −p ′ = r − r ′+K app
1 +K app

2
(6.29)≤ Φ[y f 7→v ′],H (y f :A;P )−ΦH ′(v :(B ,P ′))+K app

1 +K app
2

(6.27)= ΦV ,H (x:A;Q)−ΦH ′(v :(B ,Q ′))

(M:NIL) If the type derivation ends with an application of M:NIL then we have e = nil,
Γ=;, B = L(A) for some A, and q0 = q ′

~0
+K nil. The corresponding evaluation rule E:NIL

has been applied to derive the evaluation judgment and hence v = NULL.
If K nil ≥ 0 then p = K nil and p ′ = 0. Thus p = K nil ≤ q0 =ΦV ,H (;,Q). Furthermore it

follows from the definition of Φ that ΦV ,H ′(NULL:(L(A),Q ′)) = q ′
~0

. Thus p −p ′ = K nil =
ΦV ,H (;;Q)−ΦV ,H ′(NULL:(L(A),Q ′)). If K nil < 0 then p = 0 and p ′ =−K nil. Then clearly
p ≤ΦV ,H (;,Q) and again p −p ′ = K nil.

(M:CONS) If the type derivation ends with an application of the rule M:CONS

then e has the form cons(xh , xt ) and it has been evaluated with the rule E:CONS. It
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follows by definition that V , H ` cons(xh , xt ) `, H [` 7→ v ′] | K cons, xh , xt ∈ dom(V ),
v ′ = (V (xh),V (xt )), and ` 6∈ dom(H). Thus

p = K cons and p ′ = 0 or (if K cons < 0) p = 0 and p ′ =−K cons

Furthermore B = L(A) and the judgment Σ; xh :A, xt :L(A);Q ` cons(xh , xt ) : (L(A),Q ′)
has been derived by a single application of the rule M:CONS; thus

Q =CL(Q ′)+K cons . (6.31)

If p = 0 then p ≤ΦV ,H (Γ;Q) follows because potential is always non-negative. Otherwise
we have p = K cons ≤ΦV ,H (Γ;Q) from (6.31).

From Lemma 6.3.4 it follows that ΦV ,H (xh :A, xt :L(A);CL(Q ′)) =ΦV ,H ′(`:(L(A),Q ′))
and therefrom with (6.31) ΦV ,H (xh :A, xt :L(A);Q)−ΦV ,H [ 7̀→v ′](`:(L(A),Q ′)) = K cons =
p −p ′.

(M:MATL) Assume that the type derivation of e ends with an application of the rule
M:MATL. Then e is a pattern match of the form match x with | nil → e1 | cons(xh , xt ) →
e2 whose evaluation ends with an application of the rule E:MATCONS or E:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application of
E:MATCONS.

Then V (x) = `, H(`) = (vh , vt ), and V ′, H ` e2  v, H ′ | (r,r ′) for V ′ = V [xh 7→
vh , xt 7→ vt ] and some r,r ′ with

(p, p ′) = K matC
1 · (r,r ′) ·K matC

2 (6.32)

Since the derivation of Σ;Γ;Q ` e : (B ,Q) ends with an application of M:MATL, we have
Γ= Γ′, x:L(A), Σ;Γ′, xh :A, xt :L(A);P ` e2 : (B ,P ′),

P +K matC
1 =CL(Q) and P ′ =Q ′+K matC

2 (6.33)

It follows from Lemma 6.3.4 that

ΦV ,H (Γ;Q) =ΦV ′,H (Γ′, xh :A, xt :L(A);CL(Q)) . (6.34)

Since H ÍV ′ : Γ′, xh :A, xt :L(A) we can apply the induction hypothesis to V ′, H ` e2 
v, H ′ | (r,r ′) and obtain

r ≤ ΦV ′,H (Γ′, xh :A, xt :L(A);P ) (6.35)

r − r ′ ≤ ΦV ′,H (Γ′, xh :A, xt :L(A);P )−ΦH ′(v :(B ,P ′)) (6.36)

We define

(u,u′) = K matC
1 · (ΦV ′,H (Γ′, xh :A, xt :L(A);P ),ΦH ′(v :(B ,P ′))) ·K matC

2 . (6.37)

Per definition and from (6.33) it follows that ΦH ′(v :(B ,P ′)) ≥ K matC
2 and thus we have

u = max(0,ΦV ′,H (Γ′, xh :A, xt :L(A);P )+K matC
1 ). From Proposition 3.3.1 applied to (6.35),
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(6.36), (6.37) and (6.32) we derive u ≥ p. If ΦV ′,H (Γ′, xh :A, xt :L(A);P )+K matC
1 ≤ 0 then

u = p = 0 and ΦV ,H (Γ;Q) ≥ p trivially holds. If ΦV ′,H (Γ′, xh :A, xt :L(A);P )+K matC
1 > 0

then it follows from (6.33) and (6.34) that

ΦV ,H (Γ;Q) =ΦV ′,H (Γ′, xh :A, xt :L(A);P )+K matC
1 = u ≥ p .

Finally, we apply Proposition 3.3.1 to (6.32) to see that

p −p ′ = r − r ′+K matC
1 +K matC

2
(6.36)≤ ΦV ′,H (Γ′, xh :A, xt :L(A);P )−ΦH ′(v :(B ,P ′))+K matC

1 +K matC
2

(6.33)= ΦV ′,H (Γ′, xh :A, xt :L(A);CL(Q)))−ΦH ′(v :(B ,Q ′))
(6.34)= ΦV ,H (Γ;Q)−ΦH ′(v :(B ,Q ′))

Assume now that the derivation of the evaluation judgment ends with an application of
E:MATNIL. Then V (x) = NULL, and V , H ` e1 v, H ′ | (r,r ′) for some r,r ′ with

(p, p ′) = K matN
1 · (r,r ′) ·K matN

2 . (6.38)

Since the derivation of Σ;Γ; q ` e : (B ,Q ′) ends with an application of M:MATL, we have
Σ;Γ;R ` e1 : (B ,R ′),

R +K matN
1 =πΓ0 (Q) and R ′ =Q ′+K matN

2 (6.39)

From Proposition 6.3.3 it follows that

ΦV ,H (Γ;R)+K matN
1 ≤ΦV ,H (Γ;Q) (6.40)

Because H Í V : Γ we can apply the induction hypothesis to V , H ` e1 v, H ′ | (r,r ′)
and obtain

r ≤ ΦV ,H (Γ;R) (6.41)

r − r ′ ≤ ΦV ,H (Γ;R)−ΦH ′(v :(B ,R ′)) (6.42)

Now let

(u,u′) = K matN
1 · (ΦV ,H (Γ;R),ΦH ′(v :(B ,R ′))) ·K matN

2 . (6.43)

Per definition and from (6.39) it follows that u = max(0,ΦV ,H (Γ;R)+K matN
1 ). From Propo-

sition 3.3.1 applied to (6.41), (6.42), (6.43) and (6.38) we derive u ≥ p. If ΦV ,H (Γ;R)+
K matN

1 ≤ 0 then u = p = 0 and ΦV ,H (Γ;Q) ≥ p trivially holds. If ΦV ,H (Γ;R)+K matN
1 > 0

then it follows from (6.40) that

ΦV ,H (Γ;Q) ≥ΦV ,H (Γ;R)+K matN
1 = u ≥ p .
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Finally, we apply Proposition 3.3.1 to (6.38) to see that

p −p ′ = r − r ′+K matN
1 +K matN

2
(6.42)≤ ΦV ,H (Γ;R)−ΦH ′(v :(B ,R ′))+K matN

1 +K matN
2

(6.40)≤ ΦV ,H (Γ;Q)− (ΦH ′(v :(B ,R))−K matN
2 )

(6.39)= ΦV ,H (Γ;Q)−ΦH ′(v :(B ,Q ′))

(M:LEAF) This case is nearly identical to the case (M:NIL).

(M:NODE) If the type derivation ends with an application of the rule M:NODE

then e has the form node(x0, x1, x2) and it has been evaluated with the rule E:NODE.
It follows from the definition that V , H ` node(x0, x1, x2) `, H [` 7→ v ′] | K node, v ′ =
(V (x0),V (x1),V (x2)), and ` 6∈ dom(H). Thus

p = K node and p ′ = 0 or (if K node < 0) p = 0 and p ′ =−K node

Furthermore we have B = T (A) and the type judgment x0:A, x1:T (A), x2:T (A);Q `
node(x0, x1, x2) : (T (A),Q ′) has been derived by a single application of the rule M:NODE;
thus

Q =CT (Q ′)+K node . (6.44)

If p = 0 then clearly p ≤ ΦV ,H (Γ;Q). Otherwise we have p = K node ≤ ΦV ,H (Γ;Q) from
(6.44). From Lemma 6.3.5 it follows that

ΦV ,H (x1:A, x2:T (A), x3:T (A);CT (Q ′)) =ΦV ,H ′(`:(T (A),Q ′))

and therefrom with (6.44)

ΦV ,H (x1:A, x2:T (A), x3:T (A);CT (Q ′))−ΦV ,H [ 7̀→v ′](`:(T (A),Q ′)) = K node = p −p ′ .

(M:MATT) Assume that the type derivation of e ends with an application of the
rule M:MATT. Then e is a pattern match match x with | leaf → e1 | node(x0, x1, x2) → e2

whose evaluation ends with an application of the rule E:MATNODE or E:MATLEAF. The
case E:MATLEAF is similar to the case E:MATNIL. So assume that the derivation of the
evaluation judgment ends with an application of E:MATNODE.

Then V (x) = `, H(`) = (v0, v1, v2), and V ′, H ` e2 v, H ′ | (r,r ′) for V ′ = V [x0 7→
v0, x1 7→ v1, x2 7→ v2] and some r,r ′ with

(p, p ′) = K matTL
1 · (r,r ′) ·K matTL

2 . (6.45)

Since the derivation of Σ;Γ;Q ` e : (B ,Q) ends with an application of M:MATT, we have
Γ= Γ′, x:T (A), Σ;Γ′, x1:A, x2:T (A), x3:T (A);P ` e2 : (B ,P ′),

P +K matTN
1 =CL(Q) and P ′ =Q ′+K matTN

2 . (6.46)
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It follows from Lemma 6.3.5 that

ΦV ,H (Γ;Q) =ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);CT (Q)) . (6.47)

Since we have H ÍV ′ : Γ′, x1:A, x2:T (A), x3:T (A) we can apply the induction hypothesis
to V ′, H ` e2 v, H ′ | (r,r ′) and obtain

r ≤ ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P ) (6.48)

r − r ′ ≤ ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )−ΦH ′(v :(B ,P ′)) (6.49)

We define

(u,u′) = K matTN
1 · (ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P ),ΦH ′(v :(B ,P ′))) ·K matTN

2 . (6.50)

Per definition and from (6.46) it follows that ΦH ′(v :(B ,P ′)) ≥ K matTN
2 and thus u =

max(0,ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )+K matTN
1 ). From Proposition 3.3.1 applied

to (6.48), (6.49), (6.50) and (6.45) we derive u ≥ p. IfΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )+
K matTN

1 ≤ 0 then u = p = 0 and ΦV ,H (Γ;Q) ≥ p trivially holds. If we otherwise have
ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )+K matTN

1 > 0 then it follows from (6.46) and (6.47)
that

ΦV ,H (Γ;Q) =ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )+K matTN
1 = u ≥ p .

Finally, we apply Proposition 3.3.1 to (6.45) to see that

p −p ′ = r − r ′+K matTN
1 +K matTN

2
(6.49)≤ ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);P )−ΦH ′(v :(B ,P ′))+K matTN

1 +K matTN
2

(6.46)= ΦV ′,H (Γ′, x1:A, x2:T (A), x3:T (A);CL(Q)))−ΦH ′(v :(B ,Q ′))
(6.47)= ΦV ,H (Γ;Q)−ΦH ′(v :(B ,Q ′))

(M:PAIR) This case is similar to the case in which the type derivation ends with an
application of the rule M:CONS.

(M:MATP) This case is proved like the case M:MATL.

(M:COND) This case is similar to (but also simpler than) the case M:MATL. ■

PROOF (PART 2) The proof of part 2 is similar but simpler than the proof of part 1.
However, it uses part 1 in the case of the rule P:LET2. Like in the proof of part 1, we prove
p ≤ΦV ,H (Γ;Q) by induction on the derivations of V , H ` e | p and Σ;Γ;Q ` e : (B ,Q ′),
where the induction on the partial evaluation judgment takes priority.

I only present a few cases to show that the proof is similar to the poof of part 1.

(M:VAR) Assume that e is a variable x and the type judgment Σ; Q ` x : (B ,Q ′) has
been derived by a single application of the rule M:VAR. Thus we have Γ= x:B ,

ΦV ,H (x:B ;Q)−ΦV ,H ′(x:(B ,Q ′)) = K var
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and in particularΦV ,H (x:B ;Q) ≥ K var.
Furthermore e has been evaluated with a single application of the rule P:VAR and

it follows by definition that p = max(K var,0). (Remember that V , H ` x | K var is an
abbreviation for V , H ` x | max(K var,0) in P:VAR.)

Assume first that K var ≥ 0. Then we have p = K var ≤ΦV ,H (x:B ;Q). Assume now that
K var < 0. Then it follows by definition that p = 0 and p ≤ΦV ,H (x:B ;Q) trivially holds.

(M:MATL) Assume that the type derivation of e ends with an application of the rule
M:MATL. Then e is a pattern match of the form match x with | nil → e1 | cons(xh , xt ) →
e2 whose evaluation ends with an application of the rule P:MATCONS or P:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application of
P:MATCONS.

Then V (x) = l , H (`) = (vh , vt ), and V ′, H ` e2 | r for V ′ =V [xh 7→ vh , xt 7→ vt ] and
some r with

p = max(K matC
1 + r,0) . (6.51)

Since the derivation of Σ;Γ;Q ` e : (B ,Q) ends with an application of M:MATL, we have
Γ= Γ′, x:L(A), Σ;Γ′, xh :A, xt :L(A);P ` e2 : (B ,P ′),

P +K matC
1 =CL(Q) (6.52)

It follows from Lemma 6.3.4 that

ΦV ,H (Γ;Q) =ΦV ′,H (Γ′, xh :A, xt :L(A);CL(Q)) . (6.53)

Since H ÍV ′ : Γ′, xh :A, xt :Lt (A) we can apply the induction hypothesis to V ′, H ` e2 |
r and obtain

r ≤ ΦV ′,H (Γ′, xh :A, xt :L(A);P ) (6.54)

If p = 0 then the claim follows immediately. Thus assume that p = K matC
1 + r . Then it

follows that

p = K matC
1 + r

(6.54)≤ K matC
1 +ΦV ′,H (Γ′, xh :A, xt :L(A);P )

(6.52)≤ K matC
1 +ΦV ′,H (Γ′, xh :A, xt :L(A);CL(Q))

(6.53)≤ ΦV ,H (Γ;Q)

Assume now that the derivation of the evaluation judgment ends with an application of
P:MATNIL. Then V , H ` e1 | r for an r with

p = max(K matN
1 + r,0)

Since the derivation of Σ;Γ; q ` e : (B ,Q ′) ends with an application of M:MATL, we have
Σ;Γ;R ` e1 : (B ,R ′),

R +K matN
1 =πΓ0 (Q)
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From Proposition 6.3.3 it follows that

ΦV ,H (Γ;R)+K matN
1 ≤ΦV ,H (Γ;Q) (6.55)

Since H ÍV : Γ′ we can apply the induction hypothesis to V , H ` e1 | r and obtain

r ≤ ΦV ,H (Γ;R) (6.56)

If p = 0 then the claim follows immediately. So assume that p = K matN
1 + r . Then it

follows from (6.55) and (6.56) that

p = K matN
1 + r ≤ K matN

1 +ΦV ,H (Γ;R) ≤ΦV ,H (Γ;Q) .

(M:LET ) If the type derivation ends with an application of M:LET then e is a let
expression of the from let x = e1 in e2 that has eventually been evaluated with the rule
P:LET1 or with the rule P:LET2.

The case P:LET1 is similar to the case P:MATCONS. So assume that the evaluation
judgment ends with an application of the rule P:LET2. Then it follows that V , H ` e1 
v1, H1 | (r,r ′) and V ′, H1 ` e2 | t for V ′ =V [x 7→ v1] and r,r ′, t with

(p, p ′) = K let
1 · (r,r ′) ·K let

2 · (t ,0) (6.57)

The derivation of the type judgment for e ends with an application of L:LET. Hence
Γ= Γ1,Γ2, Σ;Γ1;P ` e1 : (A,P ′), Σ;Γ2, x:A;R ` e2 : (B ,R ′) and

P +K let
1 = π

Γ1

~0
(Q) (6.58)

P ′ = πx:A
~0

(R)+K let
2 (6.59)

Furthermore we have for every~0 6= j ∈ I (Γ2): Γ1;P j
cf e1 : (A,P ′

j ),

P j =πΓ1
j (Q) (6.60)

P ′
j =πx:A

j (R) (6.61)

Since H Í V : Γ we have also H Í V : Γ1 and can thus apply part 1 of the soundness
theorem to the evaluation judgment of e1 and derive

r ≤ ΦV ,H (Γ1;P ) (6.62)

r − r ′ ≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′)) (6.63)

From Theorem 3.3.4 it follows that H2 ÍV ′ : Γ2, x:A. Thus we can apply the induction
hypothesis of part 2 to the partial evaluation judgment for e2 and obtain

t ≤ ΦV ′,H1 (Γ2, x:A;R) (6.64)
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Furthermore we apply part 1 of the theorem to the evaluation judgment for e1 with the
cost-free metric. Then we have r = r ′ = 0 and therefore for every~0 6= j ∈ I (Γ2)

ΦV ,H (Γ1;P j ) ≥ΦH1 (v1:(A,P ′
j )) . (6.65)

Let Γ1 = x1, . . . , xn , Γ2 = y1, . . . , ym , H Í V (x j )7→ax j : Γ(x j ), and H Í V (y j )7→by j : Γ(y j ).
Define

φP = ΦV ,H (Γ1;P )+ ∑
~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

φP ′ = ΦH1 (v1:(A,P ′))+ ∑
~0 6=~∈Ik (Γ2)

ΦH1 (v1:(A,P ′
~ )) ·

m∏
k=1

p jk (bxk )

We argue that

ΦV ,H (Γ1,Γ2;Q)
Prop. 6.3.3= ∑

~∈Ik (Γ2)

ΦV ,H (Γ1;πΓ1

~
(Q))

m∏
k=1

p jk (bxk )

(6.58,6.60)= ΦV ,H (Γ1;P )+K let
1 + ∑

~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

= φP +K let
1 (6.66)

Similarly, we use Proposition 6.3.3, (6.59), and (6.61) to see that

φP ′ =ΦV ′,H1 (Γ2, x:A;R)+K let
2 . (6.67)

Additionally we have

r − r ′ (6.63)≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′))

(6.65)≤ ΦV ,H (Γ1;P )−ΦH1 (v1:(A,P ′))+ ∑
~0 6=~∈Ik (Γ2)

ΦV ,H (Γ1;P~ ) ·
m∏

k=1
p jk (bxk )

− ∑
~0 6=~∈Ik (Γ2)

ΦH1 (v1:(A,P ′
~ )) ·

m∏
k=1

p jk (bxk )

= φP −φP ′ (6.68)

Now let

(u,u′) = K let
1 · (φP ,φP ′) ·K let

2 · (ΦV ′,H1 (Γ2, x:A;R),0) .

Then it follows that

(u,u′) (6.67)= K let
1 · (φP ,φP ′ −K let

2 ) · (ΦV ′,H1 (Γ2, x:A;R),0)
(6.67)= K let

1 · (φP ,0)
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Now we can conclude that

u ≤ max(0,φP +K let
1 )

(6.66)≤ ΦV ,H (Γ;Q)

Finally, it follows with Proposition 3.3.1 applied to (6.62), (6.68), (6.64), and (6.57) that
u ≥ p. ■

6.5 Type Inference

The type-inference algorithm for the multivariate system extends the algorithm that I
presented the univariate polynomial system in Section 5.4. As for the inference methods
in the previous chapters, it is not complete with respect to the type rules in Section 6.3
but it works well for the example programs we tested.

Its basis is a classic type inference generating simple linear constraints for the
annotations that are collected during the inference, and that can be solved later by
linear programming. In order to obtain a finite set of constraints one has to provide
a maximal degree of the resource bounds. If the degree is too low then the generated
linear program is unsolvable. The maximal degree can either be specified by the user or
can be incremented successively after an unsuccessful analysis.

A main challenge in the inference is the handling of resource-polymorphic recursion
which I believe to be of very high complexity if not undecidable in general. To deal with
it practically, I employ the same heuristic that I presented for the univariate system in
Chapter 5. In a nutshell, a function is allowed to invoke itself recursively with a type
different from the one that is being justified (polymorphic recursion) provided that the
two types differ only in lower-degree terms. In this way, one can successively derive
polymorphic type schemes for higher and higher degrees; for details, see Chapter 5. The
generalisation of this approach to the multivariate setting poses no extra difficulties.

The number of multivariate polynomials our type system takes into account (e.g.,
nm,n

(m
2

)
,n

(m
3

)
,m

(n
2

)
,m

(n
3

)
,
(n

2

)(m
2

)
for a pair of integer lists if the max. degree is 4) grows

exponentially in the maximal degree. Thus the number of inequalities we collect for a
fixed program grows also exponentially in the given maximal degree.

Moreover, one often has to analyze function applications context-sensitively with
respect to the call stack. Consider for example the expression append(a,append(b,c))
you have to use two different types for append. In our prototype implementation we
collapse the cycles in the call graph and analyze each function once for every path in
the resulting graph.

To obtain a type inference that produces linear constaints, I have to develop al-
gorithmic versions of the type rules from Section 6.3. This is described in detail for
the univariate system in another article [HH10a]. It works similar for the multivariate
system in this chapter. Basically, the structural type rules have to be integrated in the
syntax directed rules. If the syntax-directed rules implicitly assume that two resource
annotations are equal or differ by a fixed constant, an integration of the rules M:OFFSET
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P + c +K app
1 =πx:A

~0
(Q) P ′ =Q ′+ c +K app

2 Σ( f ) = (A,P ) → (A′,P ′)

Γ, x:A;Q 1 f (x) : (A′,Q ′)
(A:APP1)

P +Pcf +K app
1 =πx:A

~0
(Q) P ′+P ′

cf =Q ′+K app
2 Σ( f ) = (A,P ) → (A′,P ′)

Σcf( f ) = (A,Pcf) → (A′,P ′
cf) y f :A;Pcf

cf(k −1) (A′,P ′
cf) k > 1

Γ, x:A;Q k f (x) : (A′,Q ′)
(A:APP)

Figure 6.3: Algorithmic type rules for function application.

and M:WEAKEN enable the analysis of a wider range of programs. The rule M:AUGMENT

can be eliminated by formulating the ground rules such as M:VAR or M:CONSTU for
arbitrary contexts.

A difference to standard type systems is the sharing rule M:SHARE that has to be
applied if the same free variable is used more than once in an expression. The rule is not
problematic for the type inference and there are several ways to deal with it in practice.
The easiest way is maybe to transform input programs into programs that make sharing
explicit with a syntactic construct before the type inference. Such a transformation is
straightforward: Each time a free variable x occurs twice in an expression e, we replace
the first occurrence of x with x1 and the second occurrence of x with x2 obtaining a
new expression e ′. We then replace e with share(x, x1, x2) in e ′. In this way, the sharing
rule becomes a normal syntax directed rule in the type inference. Another possibility is
to integrate sharing directly into the type rule for let expression as we did in an earlier
work [HH10a]. Then you have to ensure a variable only occurs once in each function or
constructor call.

Key rules for the type inference are the algorithmic versions of the rule M:APP in
Figure 6.3. In contrast to the declarative versions, signatures map function names to
a single function type. The judgment Γ;Q k e : (A,Q ′) denotes that Γ;Q ` e : (A,Q ′)
and that all type annotation in the corresponding derivation of a maximal degree of at
most k. The judgment Γ;Q cf(k) e : (A,Q ′) states that we have Γ;Q k e : (A,Q ′) for the
cost-free resource metric.

The rule A:APP1 is essentially the rule M:APP from section Section 6.3. It is used if
the maximal degree is one and leads to a resource-monomorphic typing of recursive
calls.

The rule A:APP is used if the maximal degree is greater than one. It enables resource-
polymorphic recursion. More precisely, it states that one can add a cost-free typing
of the function body to the function type that is given by the signature Σ. Note that
(e f , y f ) f ∈dom(()Σc f ) must be a valid RAML program with cost-free types of degree at
most k −1. The annotated signature Σc f used can differ in every application of the
rule. The idea is as follows. To pay for the resource costs of a function call f (x),
the available potential (Φ(x:A;πx:A

~0
(Q))) must meet the requirements of the signa-
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ture of the function (Φ(x:A;P )). Additionally available potential (Φ(x:A;Pcf)) can be
passed to a cost-free typing of the function body. The potential after the function call
(Φ( f (x):(A′,Q ′))) is then the sum of the potentials that are assigned by the cost-free
typing (Φ( f (x):(A′,Pcf))) and by the function signature (Φ( f (x):(A′,P ))). As a result, f (x)
can be used resource-polymorphically with a specific typing for each recursive call while
the resource monomorphic function signature enables an efficient type inference.

The inference can be informally described as follows.

1. Annotate the signature of each function f ∈ F with fresh resource variables.

2. Use the algorithmic type rules to type the corresponding expressions e f . Introduce
fresh resource variables for each type annotation in the derivation and collect the
corresponding inequalities.

(a) For a function application g ∈ F : if the maximal degree is 1 use the function
resource-monomorphically with the signature from 1. using the rule A:APP1.
If the maximal degree is greater than 1, go to 1. and derive a cost-free typing
of eg with a fresh signature. Store the arising inequalities and use the re-
source variables from the obtained typing together with the signature from
1. in the rule A:APP.

(b) For a function application g 6∈ F : repeat the algorithm for the strongly con-
nected component of g . Store the arising inequalities and use the obtained
annotated type of g .

In contrast to the univariate system (Chapter 5), cost-free type derivations also depend
on resource-polymorphic recursion to assign super-linear potential to function results.
A simple example is the function append.

append(l,ys) = match l with | nil → ys
| (x::xs) → x::append(xs,ys)

The following linear cost-free type can be derived resource-monomorphically.

append: ((L(int),L(int)),

0 1 0
1 0
0

 ) → (L(int), (0,1,0))

To derive the quadratic cost-free type

append: ((L(int),L(int)),

0 0 1
0 1
1

 ) → (L(int), (0,0,1))

one needs however the resource-polymorphic typing

append: ((L(int),L(int)),

0 1 1
1 1
1

 ) → (L(int), (0,1,1))

in the recursive call.



134 Chapter 6. Multivariate Polynomial Potential

6.6 Examples

In the following, I demonstrate the multivariate analysis with several example programs.
The aim of the examples is to illustrate how the analysis works. You can find more
realistic example programs in Chapter 7.

Multivariate Tuples

In Section 5.5, I presented canonical examples with a (univariate) polynomial heap-
space consumption. Namely, functions that compute the subsets of size k for a given
set (represented as a list) and a fixed k.

The canonical examples with a multivariate polynomial heap-space consumption
implement the following functions. Given a fixed k ∈N and k lists `1, . . . ,`k , compute a
list of all k-tuples (a1, . . . , ak ) such that ai is an element of the list `i .

I define the functions for k = 2 (mPairs) and k = 3 (mTriples). The expression
mPairs([1,2],[3,4]) evaluates for instance to [(1,3),(1,4),(2,3),(2,4)]. You can then already
see how you can implement similar functions for larger k.

attach2: (int,L(int)) → L(int,int)

attach2(n,l) = match l with | nil → nil
| (x::xs) → (n,x)::attach2(n,xs);

append2: (L(int,int),L(int,int)) → L(int,int)

append2(l1,l2) = match l1 with | nil → l2
| (x::xs) → x::append2(xs,l2);

mPairs : (L(int),L(int)) → L(int,int)

mPairs (l1,l2) = match l1 with | nil → nil
| (x::xs) → append2(attach2(x,l2),mPairs(xs,l2));

attach3: (int,L(int,int)) → L(int,(int,int))

attach3(n,l) = match l with | nil → nil
| (x::xs) → (n,x)::attach3(n,xs);

append3: (L(int,(int,int)),L(int,(int,int))) → L(int,(int,int))

append3(l1,l2) = match l1 with | nil → l2
| (x::xs) → x::append3(xs,l2);

mTriples : (L(int),L(int),L(int)) → L(int,(int,int))

mTriples(l1,l2,l3) = match l1 with | nil → nil
| (x::xs) → let triples = attach3(x,mPairs(l2,l3)) in

append3 (triples,mTriples(xs,l2,l3));
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With the heap-space metric, we can derive the following typings. I only mention the
coefficients in the type annotations that are not zero.

mPairs : ((L(int),L(int)), {(1,1) 7→ 6}) → (L(int, int),;)

mTriples : ((L(int),L(int),L(int)), {(1,1,1) 7→ 14}) → (L(int, (int, int)),;)

attach2 : ((int,L(int)), {(∗,1) 7→ 3}) → (L(int, int),;)

attach3 : ((int,L(int, int)), {(∗,1) 7→ 4}) → (L(int, (int, int)),;)

append2 : ((L(int, int),L(int, int)), {(1,0) 7→ 3}) → (L(int, int),;)

append3 : ((L(int, (int, int)),L(int, (int, int))), {(1,0) 7→ 4}) → (L(int, (int, int)),;)

For instance, the typing for mPairs states that the heap-space usage of the function is
bound by 6nm where n is the length of the first input list and m is the length of the
second input list. Similarly, the type of mTriples states that 14nmx bounds the heap-
space usage of the function where n,m, and x are the lengths of the three arguments.
Both bounds exactly match the actual worst-case behavior of the functions.

Compositionality

A primary feature of the multivariate analysis system is its high compositionality. I
demonstrate this by using the functions that I defined in the previous subsection.

First, consider the function pairs from Section 5.5 again. The function appPairs uses
append to concatenate two lists and then passes the result to pairs.

pairs: L(int) → L(int,int)

pairs(l) = match l with | nil → nil
| (x::xs) → append2(attach2(x,xs),pairs xs);

append: (L(int),L(int)) → L(int)

append(l1,l2) = match l1 with | nil → l2
| (x::xs) → x::append(xs,l2);

appPairs : (L(int),L(int)) → L(int,int)

appPairs (l1,l2) = pairs(append(l1,l2));

With the heap-space metric, we obtain the following types.

pairs : (L(int)), {2 7→ 6}) → (L(int, int),;)

append : ((L(int),L(int)), {(1,0) 7→ 2}) → (L(int),;)

appPairs : ((L(int),L(int)),

{
(0,2) 7→ 6, (1,1) 7→ 6,
(2,0) 7→ 6, (1,0) 7→ 2

}
) → (L(int, int),;)

The (optimal) computed heap-space for the function appPairs is therefore 3m2+6mn−
3m +3n2 −n. The typing of append that is used for the call in the body of appPairs
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passes potential from the arguments to the result without loss.

append : ((L(int),L(int)),

{
(0,2) 7→ 6, (1,1) 7→ 6,
(2,0) 7→ 6, (1,0) 7→ 2

}
) → (L(int), {2 7→ 6})

Note that the potential 2n, represented by the mapping (1,0) 7→ 2, is used to pay for the
resource consumption of append.

Similarly, we can also concatenate an arbitrary number of lists (i.e., the inner lists of
a list of lists) and pass the result to pairs.

appendAll : L(L(int)) → L(int)

appendAll l = match l with | nil → nil
| (l1::ls) → append(l1,appendAll ls);

appAllPairs : (L(L(int))) → L(int,int)

appAllPairs l = pairs(appendAll(l));

For the function appAllPairs we derive the following type which implies the heap-space
bound 3n2m2 −nm if n is the length of the outer list and m is the maximal length of the
inner lists.

appAllPairs : (L(L(int)), {[1,1] 7→ 6, [1] 7→ 2, [2] 7→ 6}) → (L(int, int),;)

The last example in this subsection combines the function appendAll with mPairs.

appAllMPairs : (L(L(int)),L(L(int))) → L(int,int)

appAllMPairs (l1,l2) = mPairs(appendAll(l1),appendAll(l2));

With the heap-space metric, we derive the following type.

appAllMPairs : ((L(L(int)),L(L(int))),


([1],0) 7→ 2,

([1], [1]) 7→ 6,
(0, [1]) 7→ 2

) → (L(int, int),;)

Eliminating Duplicates

A typical example that illustrates the advantages of resource polynomials is duplicate
elimination in a list of lists. To find duplicates, we compare every element with every
other element in the list.1 Since the equality test for lists is linear in the lengths of the
inputs, the running time of the program is O(n ·m2).

1There are more clever ways of eliminating duplicates but for the purpose of this example the naive
algorithm is fine.
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eq : (L(int),L(int)) → bool

eq (l1,l2) = match l1 with
| nil → match l2 with | nil → true

| (y::ys) → false
| (x::xs) → match l2 with | nil → false

| (y::ys) → (x == y) and (eq (xs,ys));

nub : L(L(int)) → L(L(int))

nub l = match l with | nil → nil
| (x::xs) → x::nub( remove(x,xs) );

remove : (L(int),L(L(int))) → L(L(int))

remove (x,l) = match l with | nil → nil
| (y::ys) → if eq (x,y) then remove(x,ys)

else y::remove(x,ys);

The function eq implements an equality test for integer lists. The evaluation of the
function call remove(x,`) eliminates all elements from list ` that are equal to x and the
function nub implements the actual duplicate elimination.

We derive the following types evaluation using the evaluation-step metric. The
bound that is implied for nub is 6n2m +9n2 −6nm +3n +3.

eq : ((L(int),L(int)), {(0,0) 7→ 5, (0,1) 7→ 12}) → (bool,;)

remove : ((L(int),L(L(int))), {(0,0) 7→ 3, (0, [1]) 7→ 12, (0,1) 7→ 18}) → (L(L(int)),;)

nub : (L(L(int)),

{
0 7→ 3, 1 7→ 12,
2 7→ 18, [1,0] 7→ 12

}
) → (L(L(int)),;)





One can always in principle find out how a
particular system will behave just by running an
experiment and watching what happens. But the
great historical successes of theoretical science
have typically revolved around finding
mathematical formulas that instead directly
allow one to predict the outcome.

STEPHEN WOLFRAM

A New Kind of Science (2002)7
Experimental Evaluation

Klaus Aehlig and I implemented the multivariate analysis system from Chapter 6. In this
chapter, I describe this prototype implementation as well as an experimental evaluation
of the precision and the efficiency of the analysis.

In the prototype, we extended the syntax of Resource Aware ML to make it easier to
use. Section 7.1 gives an overview of the implementation, defines the extended syntax,
and explains how to use the prototype to analyze programs. In Section 7.2, I evaluate
the performance of the analysis on a wide range of example programs. I compare the
computed bounds with the measured worst-case behavior of the programs and report
the time that is needed to compute the bounds. Finally, in Section 7.3, I present four case
studies: lexicographic sorting of lists of lists, longest common subsequence via dynamic
programming, split and sorting, and breadth-first traversal with matrix multiplication.

7.1 Prototype Implementation

Together with Klaus Aehlig, I implemented a prototype of Resource Aware ML. It is
written in Haskell and consists of

• a parser (546 lines of code),

• a standard type checker (490 lines of code),

• an interpreter (333 lines of code),

• an LP solver interface (301 lines of code),

• and the multivariate analysis system from Chapter 6 (1637 lines of code).

Our emphasis in the prototype implementation was on correctness and extensibility
rather than efficiency. That is why Haskell was a natural choice. In particular, the
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comprehensive standard library of the Glasgow Haskell Compiler and the handy syntax
for monadic computations proved helpful.

To implement the parser for RAML, we used the monadic parser combinator library
Parsec1. The implementation of the type checker and the interpreter are straightforward.
In the interpreter, we used the state monad to keep track of the resource consumption.
We can track the resource consumption according to one or multiple metrics. We
support two LP solvers in the implementation: Clp (Coin-or linear programming)2 and
lp_solve3.

The main part of the implementation is the actual analyzer. In a nutshell, it works
like a usual type checker that uses the state monad to store linear constraints while
the individual syntactic constructs are type-checked. The main complexity arises from
the manipulation of the rich indexes in the annotations. Altogether, we needed 4.5
man-month for the implementation of the analysis.

7.1.1 Extended Syntax

The RAML syntax in the prototype implementation differs from the syntax described
in Chapter 3. For example, expressions are not restricted to let normal from. We also
have more built-in operators and allow a destructive pattern matching matchD that
deallocates the memory cell associated with the matched node of the data structure.

The following EBNF grammars describe the syntax of RAML programs. I skip the
standard definitions of integer constants n ∈Z, variable identifiers x ∈ VID, and function
identifiers f ∈ VID. Identifiers start with a letter and are built of numbers, letters,
underscore, and prime.

A RAML program P consists of a (possibly empty) list of declarations followed by a
main expression M . A declaration is either a type declaration DT or a function definition
DF . There must be exactly one type declaration for every function definition. For every
identifier, at most one type declaration and at most one function definition is allowed.

P ::= (DT | DF )∗M

DF ::= f (x1, . . . , xn) = e ;

DT ::= f : τ1 → τ2

M ::= main = e

Data types τ are trees, lists, integers, Booleans, units, and tuples as defined by the
following grammar.

τ ::= int | bool | unit | (τ1, . . . ,τn) | L(τ) | T (τ)

The next EBNF grammar defines expressions e. The reserved function tick is used in
a special tick metric which is described later in this section. The argument q of tick

1http://legacy.cs.uu.nl/daan/parsec.html
2https://projects.coin-or.org/Clp
3http://lpsolve.sourceforge.net

http://legacy.cs.uu.nl/daan/parsec.html
https://projects.coin-or.org/Clp
http://lpsolve.sourceforge.net
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denotes a floating point number. Also note that—in contrast to the rule in the grammar—
the order of the patterns in the pattern matches can be arbitrary in the implementation.
Instead of cons(x,xs) you can alternatively write x::xs, and instead of nil you can write []
in the patterns.

e ::= () | True | False | n | x | tick(q)

| e1 binop e2 | unop e | f (e1, . . . ,en)

| let x = e1 in e2 | if e then et else e f

| [] | [e1, . . . ,en] | (e1, . . . ,en)

| nil | cons(eh ,et ) | leaf | node(e0,e1,e2)

| match e1 with (x1, . . . , xn) → e2

| let (x1, . . . , xn) = e1 in e2

| match e with
nil → e1

cons(xh , xt ) → e2

| match e with
leaf → e1

node(x0, x1, x2) → e2

| matchD e with
nil → e1

cons(xh , xt ) → e2

| matchD e with
leaf → e1

node(x0, x1, x2) → e2

binop ::=+ | − | ∗ | mod | div | and | or | :: | <= | >= | == | < | >
unop ::=+ | − | not

The expression x::xs is equivalent to the expression cons(x,xs). An expression such as
[e1,e2,e3] is another way of writing e1::e2::e3::nil. Furthermore, an expression such as
let (x1,x2,x3) = e1 in e2 is equivalent to match e1 with (x1,x2,x3) → e2.

Comments start with (* and end with *). Like in SML there are no line comments.
Note that you have to provide a monomorphic type for every function in a pro-

gram. The reason why we avoid polymorphic functions is that the resource consump-
tion of a function depends on its type. For instance, the heap-space consumption of
append:(L(int),L(int))→L(int) might be 2n where n is the length of the first input list.
In contrast, the heap-space consumption of append:(L(int, int),L(int, int))→L(int, int)
might be 3n. Alternatively, we could allow polymorphic functions and analyze a function
for each concrete type it is used with in the program.

Destructive Pattern Match

A destructive pattern match—written using matchD—can be used to deallocate mem-
ory cells. For instance, let ` be a location in a heap H that contains a list element
(v,`′) and let x be a variable that points to `. Then the evaluation of the expression
matchD x with | nil → e1 | cons(x,xs) → e2 typically results in a heap H ′ that does not
contain the location `. This is provably true if there a no allocations during the evalua-
tion of e2.



142 Chapter 7. Experimental Evaluation

If memory cells are allocated during the evaluation of e2 then the location ` may be
used to store a new value in the resulting heap H ′. So if a deallocated value is accessed
during the evaluation of an expression then the behavior of the program is undefined.
The following expression is an example that would cause a run-time error. The reason is
that the deallocated list ` is accessed in the inner pattern match.

matchD l with
| nil → 0
| (x::xs) → match l with

| nil → 0
| (y::ys) → 1

If carefully used, destructive pattern matches can be used to define programs that use
memory very efficiently. The following version of quick sort consumes for instance only
2n heap cells if n is the length of the input list. If we would replace the destructive pattern
matches with the usual ones then we would have a quadratic heap-space consumption.

quicksortD : L(int) → L(int)

quicksortD l = match l with | nil → nil
| (z::zs) → let (xs,ys) = splitD (z,zs) in

appendD(quicksortD xs, z::(quicksortD ys));

splitD : (int,L(int)) → (L(int),L(int))

splitD(pivot,l) = matchD l with | nil → (nil,nil)
| (x::xs) → let (ls,rs) = splitD (pivot,xs) in

if x > pivot then (ls,x::rs) else (x::ls,rs);

appendD : (L(int),L(int)) → L(int)

appendD(l,ys) = matchD l with | nil → ys
| (x::xs) → x::appendD(xs,ys);

Transformation to Let Normal Form

To perform the resource analysis as described in Chapter 6, we have to transform the
unrestricted RAML expressions of the prototype implementation into expressions in
let normal form as defined in Chapter 3. Furthermore, we make sharing of variables
explicit to enable type inference (compare the discussion in Section 4.4).

The transformation to let normal from uses a special form of a let expression—called
freelet—that does not consume any resources. For every expression that occurs in a
position where only variables are allowed, we introduce a new variable with a freelet. For
technical reasons we also introduce a new variable if the expression in such a variable
only position in the source program is a variable itself. In this way, it becomes easy to
preserve the resource cost of the source program because we know that all variables in
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the variable only positions have been introduced by a freelet. Thus we never count the
resource consumption K var for the evaluation of variables in these places.

Consider for instance the expression cons(cons(x,xs),nil) which is not in let normal
form. We would transform this expression as follows.

freelet x3 = x in
freelet x4 = xs in
freelet x1 = cons(x3,x4) in
freelet x2 = nil in
cons(x1,x2)

The resource cost we account for the evaluation of cons(x3,x4) is K cons rather than
K cons +K var +K var since we ensure that 2K var has been accounted before in the free-let
expressions.

To make sharing explicit, we add an additional syntactic construct to the expression
each time a variable occurs multiple times. If a free variable x occurs twice in an
expression e, we replace the first occurrence of x with x1 and the second occurrence
of x with x2, obtaining a new expression e ′. We then replace e with share(x, x1, x2) in e ′.
In this way, the sharing rule becomes a conventional syntax directed rule in the type
inference. Consider for example the expression let t = leaf in node(1,node(2,t,t),t). It is
transformed by the prototype implementation as follows.

let t = leaf in
share (x9,x10) = t in
freelet x6 = 1 in
freelet x7 = share (x4,x5) = x9 in

freelet x1 = 2 in
freelet x2 = x4 in
freelet x3 = x5 in
node(x1,x2,x3) in

freelet x8 = x10 in
node(x6,x7,x8)

7.1.2 Usage

The prototype implementation is well documented and publically available. You can
download the source code of the latest RAML version on the web site of the project4. It
can be used to evaluate RAML programs and to compute resource bounds.

Resource Metrics

We included three resource metrics in the prototype and it is easy to define more by
instantiating the resource constants.

The first metric that we included is the evaluation-step metric that counts the num-
ber of evaluation steps in the big-step operational semantics described in Section 3.3.

4http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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Evaluation Steps Heap Space Ticks

K var 1 0 0
K unit 1 0 0
K int 1 0 0
K bool 1 0 0
K app

1 1 0 0
K op 1 0 0
K conT

1 1 0 0
K conF

1 1 0 0
K let

1 1 0 0
K pair 1 0 0
K matP

1 1 0 0
K nil 1 0 0
K cons(A) 1 1+size(A) 0
K matN

1 1 0 0
K matC

1 1 0 0
K leaf 1 0 0
K node(A) 1 2+size(A) 0
K matTL

1 1 0 0
K matTN

1 1 0 0
K matND

1 1 0 0
K matCD

1 (A) 1 -(1+size(A)) 0
K matTLD

1 1 0 0
K matTND

1 (A) 1 -(2+size(A)) 0
K tick(q) 1 0 q

Table 7.1: Resource Constants in the Implemented Metrics.
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The second metric we included is the heap-space metric. The heap-space used by
a node of a data structure depends on the type of the elements of the data structure.
That is why we allow the resource constants to depend on the types of the respective
expressions in the prototype. For instance, we do not simply have K cons which defines
the resource usage of a cons but rather K cons(A) where A is the type of the elements of
the list. We define

size(A) =
{

n if A = (A1, . . . , An)
1 otherwise

Then K cons(A) = size(A)+1 is the number of memory cells that are used to store a node
of a list of type L(A). Similarly, −K matCD

1 (A) = size(A)+1 memory cells become available
in a destructive pattern match.

Since the types L(A) are known at compile time, it makes no difference for the
analysis whether the constants depend on data types. I excluded this dependency from
the type rules to simplify the type systems in the previous chapters. Moreover, the values
of the constants can depend on everything that is statically known about the program,
not only the types.

The third metric that we implemented measures the number of ticks that occur in
an evaluation. To this end, a programmer can insert expressions such as tick(3.5) or
tick(−4) into the code. Every time the expression tick(q) is evaluated, q resources are
consumed, or −q resources are restituted if q is negative.

The tick metric can be used to manually model specific resource metrics and is also
helpful for testing.

Table 7.1 on page 144 shows the values of the constants in the evaluation-step, heap-
space, and ticks metric. Constants that are zero in all metrics are not mentioned. The
constant K op stands for the constants of all operators op. These constants (K +, K −, K ≤,
etc.) are identical in all three metrics. The constants K cons(A) and K node(A) depend on
the type L(A) or T (A) of the respective data structure; K tick(q) depends on the lengths
q of the tick. K matND

1 , K matCD
1 (A), K matTLD

1 , and K matTND
1 (A) are the constants for the

destructive pattern matches.

Compilation

To compile the prototype you need the Glasgow Haskell Compiler (GHC)5. We success-
fully compiled it with GHC 6.8, GHC 6.10, GHC 6.12, and GHC 7. To produce the binary
raml you can execute the following command in the directory of the source code.

> ghc -O --make Main.hs -o raml

Alternatively you can use RAML interactively with ghci as follows.

> ghci
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help

5http://haskell.org/ghc

http://haskell.org/ghc
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Prelude> :l Main.hs
*Main> analyseFile "examples/sorting.raml" heapSpace 2

The function analyseFile is documented in detail in the file Main.hs.

The prototype uses the LP solver Clp by default. You can also use lp_solve. However,
Clp seems to be much faster. The RAML implementation expects that the respective
binaries, namely clp or lp_solve, are in the path.

Web Interface

On the RAML website6 you can download the source code of the prototype or use it
directly on the web. Figure 7.1 shows the web interface of the prototype implementation.
You see two text fields.

In the first text field you can provide an input program or select an example file
from the drop-down menu above the text field. Click on the button load file to load the
example into the field. The second text field contains the output of the RAML prototype.
You can use it to compute resource bounds for your program or to evaluate the main
expression.

To evaluate the main expression click on the button Evaluate Main which you find
on the right-hand side between the two text fields. The result of a successful evaluation
is the value of the main expression as well as the number of heap cells, the number of
evaluation steps, and the number of ticks that have been used to evaluate the main
expression. Note that the evaluation on the server will be terminated after 2 minutes.

To analyze the RAML program in the input text field, click on the button Infer Types
that is located on the left-hand side between the input and the output text fields. The
output is either a list of annotated types—one for each function in the program including
the main expression—or an error message. If the program is type correct then the only
error that should occur is the message the linear program is infeasible. It indicates that
the LP solver finished unsuccessful.

Next to the Infer Types button you can choose different options:

1. The resource metric that you want to use in the analysis. It can either be heap-
space consumption, evaluation steps or ticks.

2. An upper bound on the maximal degree that can occur in the resource bounds. If
the degree is too low then the analysis reports that the linear program is infeasible.
The only problem with a too high degree is that the analysis will take longer.

3. Whether you would like to have a verbose output. The verbose output shows for
instance the function definitions in let normal form.

6http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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Figure 7.1: The web interface of the RAML prototype implementation at http:
//raml.tcs.ifi.lmu.de. You can analyze or evaluate predefined examples or
own example programs directly on the web.

http://raml.tcs.ifi.lmu.de
http://raml.tcs.ifi.lmu.de
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Command Line Interface

On the command line, the same options as in the web form are available. The general
pattern is the following.

raml ACTION OPTIONS1 FILE OPTIONS2

At the position OPTIONS1 are the options for the selected action and OPTIONS2 con-
tains global options. FILE is the path to the RAML program.

The actions that are implemented are analyse and evaluate. The options for analyse
are heap−space, eval−steps, or ticks as well as a positive integer n that specifies the
maximal degree of the bounds. There are no local options for the action evaluate.

The following global options are available.

• −−verbose

• −−tempdir=TEMPDIR

• −−time

• −−lp_solve

• −−clp

As you might guess, TEMPDIR defines which directory is used for temporary files. The
temporary files will be deleted after the execution.

The option −−time is used to measure the run time of the prototype. It is not very
exact since it just subtracts the system time at the start of the execution from the system
time at the end of the execution.

The option −−lp_solve enables the use of the LP solver lp_solve. The binary lp_solve
is then assumed to be in the path. Similarly, −−clp (default) enables the use of the LP
solver Clp. It is assumed that the binary clp is in the path.

Below are some typical usage examples.

raml analyse heap-space 2 quicksort.raml

raml evaluate quicksort.raml

raml analyse eval-steps 2 quicksort.raml --lp_solve --time

raml analyse ticks 2 quicksort.raml --clp --time

Output of the Analysis

Below is the result of the evaluation of the main expression in the file quicksort.raml.
It contains the type of the main expression, the value of the main expression, and the
resource usage according to the heap-space, evaluation-step, and ticks metrics.
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> raml evaluate quicksort.raml --time
main : L(int)

main = [0,1,2,3,4,5,6,7,8,9]

Resource Usage:
112.0 heap cells
807.0 evaluation steps
0.0 ticks

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Run time of the prototype: 0.006705s

The resource analysis of a RAML program computes a resource bound for every function
in the program. The output for the function quicksort and the evaluation step metric is
for instance the following.

> raml analyse eval-steps 3 quicksort.raml
quicksort: L(int) → L(int)
Positive annotations of the argument Pos. annos. of the result
0 → 3.0
1 → 26.0
2 → 24.0

The number of evaluation steps consumed by quicksort is at most:
12.0*n^2 + 14.0*n + 3.0

where
n is the length of the input

It contains the type of the function and the non-zero potential annotations of the
argument type and the result type. Finally, the resource annotations are converted into a
usual polynomial at the convenience of the user. This transformation is straightforward.

7.2 Experiments

We performed experiments to evaluate the performance and accuracy of the prototype.
We used the LP solver Clp7 in the experiments which seems to be much faster than

lp_solve. Further speed-up would be possible by using a commercial LP solver and by
optimizing our Haskell implementation. However, we decided that accessibility and
maintainability take precedence over performance in the prototype implementation.

More profound improvement is possible by finding a suitable heuristic that is in
between the (maybe too) flexible multivariate analysis and the inference for the univari-
ate system, which also works efficiently with high maximal degree for large programs.

7Clp version 1.14. See https://projects.coin-or.org/Clp

https://projects.coin-or.org/Clp
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For example, we could set certain coefficients qi to zero before even generating the
constraints. Alternatively, we could limit the number of different types for each function.

Table 7.2 on page 151 shows a compilation of the computed evaluation-step bounds
for several example functions. Table 7.3 on page 152 contains heap-space bounds.
The tables list the computed resource polynomials, the simplified bounds, the actual
asymptotic worst-case behavior of the functions, and the run time of the analysis on
a 3.6 GHz Intel Core 2 Duo iMac with 4 GB RAM. The run times are between 2.00 s
and 0.02 s and depend on both the maximal degree that is needed and the size of the
program.

Function names that end with a D indicate that the destructive pattern match was
used in the program. The variables that appear in the bounds are defined as follows.

• n is the size of the first argument

• mi are the sizes of the elements of the first argument

• x is the size of the second argument

• yi are the sizes of the elements of the second

• m = max1≤i≤n mi

• y = max1≤i≤x yi

Most bounds are asymptotically tight. Exceptions are the evaluation-step bound for
mergesort and the heap-space bounds for matrixmultT and matrixmultAcc.

To determine the precision of the constant factors, we manually identified worst-
case inputs for the functions and compared the computed bounds with the measured
resource consumption. Our experiments show that the constant factors in the computed
bounds are generally quite tight and even match the measured worst-case running times
of many functions. I briefly discuss the results of the experiments for every function.

Quick Sort The code of quicksort is given in Section 5.5.2 and you can find the code of
quicksortD in Section 7.1. The worst-case resource behavior of quick sort emerges
if the input list is reversely sorted. Figure 7.2 compares the computed bound with
the measured number of evaluation steps that quicksort needed for these lists.
Our experiments show that both the heap-space and the evaluation-step bound
match exactly the measured worst-case behavior.

Insertion Sort You find the code of insertionsort in Section 5.5.2. The destructive
version insertionsortD replaces the pattern match in the function insert with a
destructive one. Our experiments show that the constants in both bounds are
optimal.

We also implemented insertion sort for lists of lists. The computed bounds are
also tight. The program code and more detail can be found in Section 7.3.
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Function / Type Computed Evaluation-Step Bound / Asymptotic Run
Simplified Computed Bound Behavior Time

quicksort : 24
(n

2

)+26n +3 O(n2) 0.08 s

L(int)→L(int) 12n2 +14n +3

insertionsort : 12
(n

2

)+12n +3 O(n2) 0.05 s

L(int)→L(int) 6n2 +6n +3

mergesort : 73.3
(n

2

)+7.3n +3 O(n logn) 0.07 s

L(int)→L(int) 36.6n2 −29.3n +3

pairs : 18
(n

2

)+16n +3 O(n2) 0.08 s

L(int)→L(int, int) 9n2 +7n +3

triples : 36
(n

3

)+16
(n

2

)+20n +3 O(n3) 0.43 s

L(int)→L(int, int, int) 6n3 −10n2 +24n +3

quadruples : 54
(n

4

)+16
(n

3

)+20
(n

2

)+20n +3 O(n4) 2.00 s

L(int)→L(int, int, int, int) 2.2n4 −10.8n3 +26.7n2 +1.8n +3

isortlist :
∑

1≤i< j≤n 16mi +16
(n

2

)+12n +3 O(n2m) 0.19 s

L(L(int))→L(L(int)) 8n2m +8n2 −8nm +4n +3

nub :
∑

1≤i< j≤n 12mi +18
(n

2

)+12n +3 O(n2m) 0.21 s

L(L(int))→L(L(int)) 6n2m +9n2 −6nm +3n +3

transpose :
∑

1≤i≤n 32mi +2n +13 O(nm) 0.10 s

L(L(int))→L(L(int)) 32nm +2n +13

matrixmultT : (
∑

1≤i≤x yi )(32+28n)+14n +2x +21 O(nx y) 0.70 s

(L(L(int)),L(L(int)))→L(L(int)) 28x yn +32x y +2x +14n +21

matrixmultAcc :
∑

1≤i≤n 15mi+∑
1≤i≤x 15nyi+15n+3 O(nx y) 0.41 s

(L(L(int)),L(L(int)))→L(L(int)) 15x yn +16nm +15n +3

dyad : 10nx +14n +3 O(nx) 0.02 s

(L(int),L(int))→L(L(int)) 10nx +14n +3

lcs : 39nx +6x +21n +19 O(nx) 0.10 s

(L(int),L(int))→int 39nx +6x +21n +19

subtrees : 8
(n

2

)+23n +3 O(n2) 0.06 s

T (int)→L(T (int)) 4n2 +19n +3

eratos : 16
(n

2

)+12n +3 O(n2) 0.04 s

L(int)→L(int) 8n2 +4n +3

splitandsort : 42
(n

2

)+58n +9 O(n2) 0.64 s

L(int, int)→L(L(int), int) 21n2 +37n +9

Table 7.2: Computed Evaluation-Step Bounds.
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Function / Type Computed Heap-Space Bound / Asymptotic Run
Simplified Computed Bound Behavior Time

quicksortD : 2n O(n) 0.07 s

L(int)→L(int) 2n

insertionsortD : 2n O(n) 0.04 s

L(int)→L(int) 2n

mergesortD : 0 0 0.05 s

L(int)→L(int) 0

pairs : 6
(n

2

)
O(n2) 0.05 s

L(int)→L(int, int) 3n2 −3n

triples : 14
(n

3

)
O(n3) 0.36 s

L(int)→L(int, int, int) 2.3n3 −n2 +24n +3

quadruples : 24
(n

4

)
O(n4) 1.83 s

L(int)→L(int, int, int, int) n4 −6n3 +11n2 −6n

isortlist : 2
(n

2

)+2n O(n2) 0.11 s

L(L(int))→L(L(int)) n2 +n

nubD : 2n O(n) 0.14 s

L(L(int))→L(L(int)) 2n

transpose :
∑

1≤i≤n 8mi O(nm) 0.98 s

L(L(int))→L(L(int)) 8nm

matrixmultT : (
∑

1≤i≤x yi )(8+2n)+2n O(nx) 0.56 s

(L(L(int)),L(L(int)))→L(L(int)) 2x yn +8x y +2n

matrixmultAcc :
∑

1≤i≤x 2nyi +2n O(nx) 0.37 s

(L(L(int)),L(L(int)))→L(L(int)) 2x yn +2n

dyad : 2nx +2n O(nx) 0.03 s

(L(int),L(int))→L(L(int)) 2nx +2n

lcs : 2nx +2x +4n +2 O(nx) 0.14 s

(L(int),L(int))→int 2nx +2x +4n +2

subtrees : 2
(n

2

)+5n O(n2) 0.05 s

T (int)→L(T (int)) n2 +4n

eratos : 2n O(n) 0.04 s

L(int)→L(int) 2n

splitandsort : 7
(n

2

)+10n O(n2) 0.63 s

L(int, int)→L(L(int), int) 3.5n2 +6.5n

Table 7.3: Computed Heap-Space Bounds.
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Figure 7.2: The computed evaluation-step bound (line) compared to the actual
number of evaluation-steps for reversely sorted list of various sizes (crosses)
used by quicksort. The x-axis represents the length of the list. The computed
bound matches exactly the worst-case costs.

Merge Sort The function mergesort is defined in Section 5.5.2. In mergesortD we re-
placed all pattern matches with destructive ones and thus obtain a version of
merge sort that deallocates the input list. It does not need any additional heap
space. Since the run time of merge sort is O(n logn), our analysis system cannot
represent a tight evaluation step bound. However, it computes a quadratic bound.

Tuples The functions pairs and triples are described in Section 5.5.1. The function
quadruples is similar. All heap-space and evaluation-step bounds match exactly
the worst-case behavior of the functions. Note the negative factors and fractional
numbers in the simplified bounds in contrast to the even factors in the binomial
representation.

Duplicates The functions nub and nubD remove duplicates from a list of lists. The
definition of nub is given in Section 6.6. In nubD, the function remove is imple-
mented with a destructive pattern match. Our experiments indicate that both
bounds match exactly the actual worst-case behavior.

Matrix Multiplication We implemented two versions of matrix multiplication for matri-
ces that are represented as lists of integers. The function matrixmultT transposes
the second matrix before the actual multiplication. The function matrixmultAcc
uses an accumulator to perform the multiplication without transposing the sec-
ond matrix.

Both evaluation-step bounds are asymptotically tight. Figure 7.3 shows a compar-
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ison of the computed bounds with the measured worst-cast evaluation steps. The
bound for matrixmultAcc is almost tight while the bound for matrixmultT is a bit
off. The reason is that the analysis cannot assume that all inner lists of a matrix
have the same length. As a result, there is a loss of potential when transposing
matrices.

The heap-space bounds are not asymptotically tight. This shows a general limita-
tion of the analysis system. Consider for instance the function matrixmultAcc and
the computed bound

∑
1≤i≤x 2nyi +2n, where n is the length of the outer list in the

first component and yi is the length of the i th inner list in the second component.
A tight bound would be 2ny1 +2n. Such a bound cannot be expressed in our
system.

Dyadic Product The function dyad is described in section Section 2.2.2. Our experi-
ments indicate that both computed bounds exactly match the worst-cast behavior.

Longest Common Subsequence The function lcs computes the length of the longest
common sequence of two sequences that are represented as lists of lists. Both
computed bounds are asymptotically tight. Our experiments indicate that the con-
stants in the heap-space bound are optimal. Figure 7.4 shows that the evaluation
step bound is close to the optimal one.

The function is described in detail in Section 7.3.

Subtrees The function subtrees computes a list of all subtrees for a given tree. Both the
heap-space and the evaluation-step bound match exactly the measured worst-
case behavior.

Sieve of Eratosthenes The sieve of Eratosthenes is a classic algorithm that computes
the list of primes that are smaller than a given number. The code of eratos can be
found in Section 2.2.2. Our experiments show that both bounds match exactly
the measured worst-case behavior of the function.

Note that the worst-case behavior emerges when the input of the function is a list
of primes rather than a list [2,3,. . .,n] of succeeding natural numbers.

Split and Sort The function splitandsort consists of two sub-functions. The input is
a list of values and keys. Firstly, the values are split according to their keys. Sec-
ondly, the arising lists of values are sorted. Interestingly, the prototype computes
asymptotically tight, quadratic bounds for splitandsort.

In Section 7.3, I define the function and explain why it may be surprising that an
automatic analysis finds a quadratic rather than a cubic bound.

The source code and the experimental validation of all examples are available online8.

8http://raml.tcs.ifi.lmu.de

http://raml.tcs.ifi.lmu.de
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Figure 7.3: The computed evaluation-step bound (lines) compared to the ac-
tual worst-case number of evaluation-steps for sample inputs of various sizes
(crosses) used by matrixmultT (at the top) and matrixmultAcc (at the bottom).
The x-axis represents the dimension x ×x of the (quadratic) matrix in the first
argument. The y-axis represents the second component of the dimension x × y
of the matrix in the second argument. The integers in the matrices do not
influence the running times of the functions.
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7.3 Case Studies

I present the experimental evaluation of four more involved programs in more detail
in this section. To begin with, I demonstrate the compositionality of the analysis by
implementing insertion sort for lists of lists. I then show that you can analyze a natural
implementation of an algorithm that computes the length of the longest common
subsequence of two sequences. The last two examples—split and sort, and breadth-first
traversal with matrix multiplication—illustrate the advantages of the amortized method.

7.3.1 Lexicographic Sorting of Lists of Lists

The following RAML code implements the well-known sorting algorithm insertion sort
that lexicographically sorts lists of lists. To lexicographically compare two lists one needs
linear time in length of the shorter list. Since insertion sort does quadratically many
comparisons in the worst case it has a running time of O(n2m) if n is the length of the
outer list and m is the maximal length of the inner lists.

leq (l1,l2) = match l1 with | nil → true
| (x::xs) → match l2 with | nil → false

| (y::ys) → (x<y) or ((x == y) and leq (xs,ys));

insert (x,l) = match l with | nil → [x]
| (y::ys) → if leq(x,y) then x::y::ys

else y::insert(x,ys);

isortlist l = match l with | nil → nil
| (x::xs) → insert (x,isortlist xs);

Below is the output of the analysis for the function isortlist when instantiated to bound
the number of needed evaluation steps. The computation needs less than a second on
typical desktop computers.

isortlist: L(L(int)) → L(L(int))
Positive annotations of the argument
0 → 3.0 2 → 16.0
1 → 12.0 [1,0] → 16.0

The number of evaluation steps consumed by isortlist is at most:
8.0*n^2*m + 8.0*n^2 - 8.0*n*m + 4.0*n + 3.0

where
n is the length of the input
m is the length of the elements of the input

The more precise bound implicit in the positive annotations of the argument is pre-
sented in mathematical notation in Table 7.2 on page 151.

We manually identified inputs for which the worst-case behavior of isortlist emerges
(namely reversely sorted lists with similar inner lists). Then we measured the needed



7.3. Case Studies 157

evaluation steps and compared the results to our computed bound. Our experiments
show that the computed bound exactly matches the actual worst-case behavior.

7.3.2 Longest Common Subsequence

An example of dynamic programming that can be found in many textbooks is the
computation of (the length of) the longest common subsequence (LCS) of two given
lists (sequences). If the sequences a1, . . . , an and b1, . . . ,bm are given then an n ×m
matrix (here a list of lists) A is successively filled such that A(i , j ) contains the length of
the LCS of a1, . . . , ai and b1, . . . ,b j . The following recursion is used in the computation.

A(i , j )=


0 if i = 0 or j = 0
A(i −1, j −1)+1 if i , j>0 and ai=b j

max(A(i , j−1), A(i−1, j )) if i , j>0 and ai 6=b j

The run time of the algorithm is thus O(nm). Below is the RAML implementation of the
algorithm.

lcs(l1,l2) =
let m = lcstable(l1,l2) in
match m with | nil → 0
| (l1::_) → match l1 with | nil → 0

| (len::_) → len;

lcstable (l1,l2) =
match l1 with | nil → [firstline l2]
| (x::xs) → let m = lcstable (xs,l2) in

match m with | nil → nil
| (l::ls) → (newline (x,l,l2))::l::ls;

newline (y,lastline,l) =
match l with | nil → nil
| (x::xs) → match lastline with | nil → nil

| (belowVal::lastline’) →
let nl = newline(y,lastline’,xs) in
let rightVal = right nl in
let diagVal = right lastline’ in
let elem = if x == y then diagVal+1

else max(belowVal,rightVal)
in elem::nl;

firstline(l) = match l with | nil → nil
| (x::xs) → 0::firstline xs;

right l = match l with | nil → 0 | (x::xs) → x;

The analysis of the program takes less than a second on a usual desktop computer and
produces the following output for the function lcs.
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lcs: (L(int),L(int)) → int
Positive annotations of the argument
(0,0) → 19.0 (1,0) → 21.0
(0,1) → 6.0 (1,1) → 39.0

The number of evaluation steps consumed by lcs is at
most: 39.0*m*n + 6.0*m + 21.0*n + 19.0
where

n is the length of the first component of the input
m is the length of the second component of the input

Figure 7.4 shows that the computed bound is close to the measured number of evalua-
tion steps needed. In the case of lcs, the run time exclusively depends on the lengths of
the input lists.

7.3.3 Split and Sort

Multivariate resource polynomials take into account the individual sizes of all inner
data structures. In contrast to the approximation of, say, the lengths of inner lists by
their maximal lengths, this approach leads to tight bounds when composing functions.

The function splitAndSort demonstrates this advantage.

splitAndSort : L(int,int) → L(L(int),int)

splitAndSort l = sortAll (split l);

An input to the function is a list such as `= [(1,0),(2,1),(3,0),(4,0),(5,1)] that contains
integer pairs of the form (value,key). The list is processed in two steps. At first, the
function split partitions the values according to their keys. For instance we have
split(`) = [([2,5],1),([1,3,4],0)]. In the second step—implemented by sortAll—the inner
lists are sorted with quick sort.

The function split is implemented as follows.

split : L(int,int) → L(L(int),int)

split l = match l with | nil → nil
| (x::xs) → insert( x, split xs);

insert : ((int,int),L(L(int),int)) → L(L(int),int)

insert (x,l) = let (valX,keyX) = x in
match l with | nil → [([valX],keyX)]
| (l1::ls) → let (vals1,key1) = l1 in

if key1 == keyX then (valX::vals1,key1)::ls
else (vals1,key1)::insert(x,ls);

The prototype computes the tight quadratic bound 9n2 + 9n + 3 on the number of
evaluation steps split needs for inputs of length n.
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The second part of splitAndSort is implemented by the function sortAll. It uses the
sorting algorithm quick sort to sort all the inner lists of its input. The function can be
implemented as follows.

sortAll : L(L(int),int) → L(L(int),int)

sortAll l = match l with | nil → nil
| (x::xs) → let (vals,key) = x in

(quicksort vals,key)::sortAll(xs);

quicksort : L(int) → L(int)

quicksort l = match l with | nil → nil
| (z::zs) → let (xs,ys) = splitqs (z,zs) in

append(quicksort xs, z::(quicksort ys));

splitqs : (int,L(int)) → (L(int),L(int))

splitqs(pivot,l) = match l with | nil → (nil,nil)
| (x::xs) → let (ls,rs) = splitqs (pivot,xs) in

if x > pivot then (ls,x::rs) else (x::ls,rs);

append : (L(int),L(int)) → L(int)

append(l,ys) = match l with | nil → ys
| (x::xs) → x::append(xs,ys);

The simplified computed evaluation-step bound for sortAll is 12nm2 +14nm +14n +3
where n is the length of the outer list and m is the maximal length of the inner lists.

Now consider the composed function splitAndSort again and assume we would
like to derive a bound for the function using the simplified bounds for sortAll and split.
This would lead to a cubic bound for splitAndSort rather than a tight quadratic bound.
The reason is that—in the evaluation of splitAndSort(`)— both n and m can only be
bounded by |`| the bound 12nm2 +14nm +14n +3 for sortAll.

In contrast, the use of the multivariate resource polynomials enables the inference
of a quadratic bound for splitAndSort. For one thing, the actual computed bound∑

1≤i≤n
(
24

(mi
2

)+26mi
)+14n +3 for sortAll incorporates the individual lengths mi of

the inner lists. For another thing, the type annotation for the function split passes
potential from the argument of the function to the inner lists of the result without losses.

As a result, the prototype computes the asymptotically tight, quadratic bound 21n2+
37n +9 for the function splitAndSort. The constant factors are however not tight. The
reason is that the worst-case behavior of the function split emerges if all values in the
input have different keys but the worst-case of sortAll emerges if all values in the input
have the same key. The analysis cannot infer that the worst-case behaviors are mutually
exclusive but assumes that they can occur for the same input.
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Figure 7.4: The computed evaluation-step bound (lines) compared to the ac-
tual worst-case number of evaluation-steps for sample inputs of various sizes
(crosses) used by lcs (at the top) and bftMult (at the bottom). In the first plot,
the x-axis represents the length of the first list and the y-axis represents the
length of the second list in the arguments of lcs. In the second plot, x denotes
the number of nodes in the tree and y × y is the dimension of the matrices in the
input of bftMult. In both cases, the computed bounds are close to the optimal
ones.
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7.3.4 Breadth-First Traversal with Matrix Multiplication

A classic example that motivates amortized analysis is a functional queue. A queue
is a first-in-first-out data structure with the operations enqueue and dequeue. The
operation enqueue(a) adds a new element a to the queue. The operation dequeue()
removes the oldest element from the queue. A queue is often implemented with two
lists Lin and Lout that function as stacks. To enqueue a new element in the queue, you
simply attach it to the beginning of Lin. To dequeue an element from the queue, you
detach the first element from Lout . If Lout is empty then you transfer the elements from
Lin to Lout ; thereby reversing the order of the elements.

Later in this example we shall store trees of matrices (lists of lists of integers) in
our queue. So the two lists of queue have type L(T (L(L(int)))) in the following RAML
implementation.

dequeue : (L(T(L(L(int)))),L(T(L(L(int)))))
→ (L(T(L(L(int)))),(L(T(L(L(int)))),L(T(L(L(int))))))

dequeue (outq,inq) =
match outq with
| nil → match reverse inq with | nil → ([],([],[]))

| t::ts → ([t],(ts,[]))
| t::ts → ([t],(ts,inq));

enqueue : (T(L(L(int))),(L(T(L(L(int)))),L(T(L(L(int))))))
→ (L(T(L(L(int)))),L(T(L(L(int)))))

enqueue (t,queue) = let (outq,inq) = queue in
(outq,t::inq);

appendreverse : (L(T(L(L(int)))),L(T(L(L(int))))) → L(T(L(L(int))))

appendreverse (toreverse,sofar) =
match toreverse with
| nil → sofar
| (a::as) → appendreverse(as,a::sofar);

reverse: L(T(L(L(int)))) → L(T(L(L(int))))

reverse xs = appendreverse(xs,[]);

The prototype implementation infers precise linear bounds for the above functions.
The evaluation-step bound for reverse is for instance 8n +7 where n is the length of the
input list.

The point of this example is the use of a queue in a breadth-first traversal of a binary
tree. Suppose we have given a binary tree of matrices and we want to multiply the
matrices in breadth first-order. The matrices are represented as lists of lists of integers
and can have different dimensions. However, we assume that the dimensions fit if the



162 Chapter 7. Experimental Evaluation

matrices are multiplied in breadth-first order. Before we implement the actual breadth-
first traversal, we first implement matrix multiplication as follows. We use accumulation
to avoid transposing matrices before the multiplication.

matrixMult : (L(L(int)),L(L(int))) → L(L(int))

matrixMult (m1,m2) =
match m1 with | [] → []

| (l::ls) → (computeLine(l,m2,[])) :: matrixMult(ls,m2);

computeLine : (L(int),L(L(int)),L(int)) → L(int)

computeLine (line,m,acc) =
match line with | [] → acc

| (x::xs) → match m with [] → []
| (l::ls) → computeLine(xs,ls,lineMult(x,l,acc));

lineMult : (int,L(int),L(int)) → L(int)

lineMult (n,l1,l2) =
match l1 with | [] → []
| (x::xs) → match l2 with | [] → x*n::lineMult(n,xs,[])

| (y::ys) → x*n + y :: lineMult(n,xs,ys);

The computed evaluation step bound for matrixMult is 15mkn +16nm +15n +3 if the
first matrix is of dimension n ×m and the second matrix is of dimension m ×k.9

Eventually, we implement the breadth-first traversal with matrix multiplication as
follows.

bftMult : (T(L(L(int))),L(L(int))) → L(L(int))

bftMult (t,acc) = bftMult’(([t],[]),acc);

bftMult’ : ((L(T(L(L(int)))),L(T(L(L(int))))),L(L(int))) → L(L(int))

bftMult’(queue,acc) =
let (elem,queue) = dequeue queue in
match elem with | nil → acc
| t::_ → match t with | leaf → bftMult’(queue,acc)

| node(y,t1,t2) →
let queue’ = enqueue(t2,enqueue(t1,queue)) in
bftMult’(queue’,matrixMult(acc,y));

If parametrized with the evaluation-step metric, the prototype produces the following
output for bftMult.

9In fact, the bound that is presented to a user is at bit more general because the analysis can not assume
that the dimensions of the matrices fit.
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bftMult: (T(L(L(int))),L(L(int))) → L(L(int))
Positive annotations of the argument
(0,0) → 51.0 (1,1) → 15.0
(0,[1]) → 2.0 ([1],1) → 14.0
(1,0) → 104.0 ([[1]],1) → 15.0

The number of evaluation steps consumed by bftMult is at most:
2.0*y*z + 15.0*y*n*m*x + 14.0*y*n*m + 15.0*y*n + 104.0*n + 51.0

where
n is the size of the first component of the input
m is the length of the nodes of the first component of the input
x is the length of the elements of the nodes of the
first component of the input

y is the length of the second component of the input
z is the length of the elements of the second comp. of the input

The prototype derives a non-trivial, asymptotically-tight bound on the number of
evaluation-steps that are used by bftMult. The analysis of the whole program takes
about 30 seconds on a usual desktop computer. It is unclear how such a bound can be
computed without the use of amortized analysis.

We compared the computed evaluation-step bound with the measured run time of
bftMult for balanced binary trees with quadratic matrices. Figure 7.4 shows the result
of this experiment where x denotes the number of nodes in the tree and y × y is the
dimension of the matrices. The constant factors in the bound almost match the optimal
ones.





The White Rabbit put on his spectacles. ’Where
shall I begin, please your Majesty?’ he asked.
’Begin at the beginning,’ the King said gravely,
’and go on till you come to the end: then stop.’

LEWIS CARROLL

Alice’s Adventures in Wonderland (1865)8
Related Research

The static computation of resource bounds for programs has been studied by computer
scientists since the 70s. Today, there exist many different techniques for computing
bounds.

In this chapter, I compare my work with related research on automatic resource
analysis and on verification of resource bounds. Classically, automatic resource anal-
ysis is based on recurrence relations. I discuss this long line of work in Section 8.1.
Most closely related to the work in this dissertation is the previous work on automatic
amortized analysis, which I describe in Section 8.2.

Other important techniques for resource analysis use sized types, or abstract in-
terpretation and invariant generation. I discuss this research in Section 8.3 and 8.4,
respectively. Further related work is discussed in Section 8.5.

8.1 Recurrence Relations

The use of recurrence relations (or recurrences) in automatic resource analysis was
pioneered by Wegbreit [Weg75] (compare the discussion in Section 1.2). The proposed
analysis is performed in two steps: first extract recurrences from the program, then
compute closed expressions for the recurrences. Wegbreit implemented his analysis
in the METRIC system to analyze LISP programs but notices that it “can only handle
simple programs” [Weg75]. The most complicated examples that he provides are a
reverse function for lists and a union function for sets represented by lists.

Webreit’s method dominated automatic resource analysis for many years. Ben-
zinger [Ben01] notices in 2001:

“Automated complexity analysis is a perennial yet surprisingly disregarded
aspect of static program analysis. The seminal contribution to this area was
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Wegbreit’s METRIC system, which even today still represents the state-of-
the-art in many aspects.”

Ramshaw [Ram79] and Hickey et al. [HC88] address the derivation of recurrences for
average-case analysis.

Flajolet et al. [FSZ91] describe a theory of exact analysis in terms of generating func-
tions for average-case analysis. A fragment of this theory was implemented in an auto-
matic average-case analyses of algorithms for “decomposable” combinatorial structures.
Possible applications of Flajolet’s method to worst-case analysis were not explored.

The ACE system of Le Métayer [Mét88] analyses FP programs in two phases. A recur-
sive function is first transformed into a recursive function that bounds the complexity
of the original function. This function is then transformed into a non-recursive one,
using predefined patterns. The ACE system can only derive asymptotic bounds rather
than constant factors as it is done in RAML.

Rosendahl [Ros89] implemented an automatic resource analysis for first-order LISP
programs. The analysis first converts programs into step-counting version which is then
converted into a time bound function via abstract interpretation of the step-counting
version. The reported results are similar to Wegbreit’s results and programs with nested
data structures and typical compositional programs can not be handled.

Benzinger [Ben01, Ben04] applied Wegbreit’s method in an automatic complexity
analysis for higher-order Nuprl terms. He uses Mathematica to solve the generated
recurrence equations. Grobauer [Gro01] reported an interesting mechanism to auto-
matically derive cost recurrences from DML programs using dependent types. The
computation of closed forms for the recurrences is however not discussed.

Recurrence relations were also proposed to automatically derive resource bounds
for logic programs [DL93].

The COSTA Project

In the COSTA project, both the derivation and the solution of recurrences are studied.
Albert et al. [AAG+07] introduced a method for automatically inferring recurrence rela-
tions from Java bytecode. They rely on abstract interpretation to generate size relations
between program variables at different program points.

The COSTA team states that existing computer algebra systems are in most cases not
capable of handling recurrences that originate from resource analysis [AAGP08]. As a re-
sult, a series of papers [AAGP08, AAGP11, AGM11] studies the derivation of closed forms
for so called cost relations; recurrences that are produced by automatic resource analy-
sis. They use partial evaluation and apply static analysis techniques such as abstract
interpretation to obtain loop invariants and ranking functions. Another work [AAA+09]
studies the computation of asymptotic bounds for recurrences.

While the COSTA system can compute bounds that contain integers, the amortized
method is favorable in the presence of (nested) data structures and function composi-
tion.
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8.2 Automatic Amortized Analysis

The research on automatic amortized resource analysis is in many respects inspired by
Hofmann’s work [Hof00b, Hof00a] on LFPL. Hofmann defines the first-order functional
programming language LFPL and shows that LFPL programs can be compiled into a
fragment of the programming language C without dynamic memory allocation. LFPL
features a linear type system with a special type ¦ that is used to make memory cells first
class objects in the language. The destruction of data in a pattern match then binds a
memory cell to a variable that can be used for data construction.

Hofmann also showed [Hof02] that adding higher-order functions to LFPL leads to
a programming language that can exactly define the functions that are computable in
polynomial space and an unbounded stack or equivalently (using a result of Cook) in
exponential time.

The concept of automatic amortized resource analysis was introduced by Hofmann
and Jost. In a seminal paper [HJ03], they use the potential method to analyze the heap-
space consumption of first-order functional programs; establishing the idea of attaching
potential to data structures, the use of type systems to prove bounds, and the inference
of type annotations using linear programming. By contrast with my work, the analysis
system uses linear potential annotations and thus derives linear resource bounds only
(as described in Chapter 4).

The subsequent work on amortized analysis for functional programs successively
broadened the range of this analysis method while the limitation to linear bounds re-
mained. Jost et al. [JLH+09] extended automatic amortized analysis to generic resource
metrics and user defined inductive data structures. A particularly interesting aspect of
this work is the development of a resource metric for real-world examples: An amortized
analysis system was built into a compiler for the language Hume [HDF+06] and was
successfully used in concrete embedded systems to compute memory and clock-cycle
bounds for 32 MHz Renesas M32C/85U embedded micro-controllers.

Campbell [Cam09] developed an amortized resource analysis that computes bounds
on the stack space of functional programs. He uses potential annotations that define
functions in the depth of data structures. The potential is linear in the depth of tree-like
data and is reflected in tree-like typing contexts. Campbell also proposed a restitution of
potential that makes the stack-space analysis more precise; this could also be of interest
in for other resources.

Jost et al. [JHLH10] extended linear amortized resource analysis to polymorphic and
higher-order programs. Higher-order functions are resource-parametrically analyzed
without a previous defunctionalization. In this way, function types can express the cost
behaviors at different call sites with only one analysis the function’s definition.

Automatic amortized resource analysis was successfully applied to object-oriented
programs, too. Hofmann and Jost [HJ06] refined potential annotations with so called
views to deal with object-oriented language features such as inheritance, casts, and im-
perative updates. Even though Hofmann and Rodriguez [HR09] presented an automatic
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type-checking algorithm, type inference for views and potential annotations is still an
open problem.

Atkey [Atk10] integrated linear amortized analysis into a program logic for Java-like
bytecode using bunched implications and separation logic. The separating conjunction
A∗B is used for both separating the data on the heap and the potential that is attached
to the data. A subset of the logic allows for effective proof search and inference of
resource annotations. Interestingly, the resource logic is also used to prove termination
in the presence of cyclic data structures.

All the previous works on amortized analysis only describe systems that are restricted
to linear bounds—as the original system by Hofmann and Jost [HJ03]. In this dissertation
I present the first automatic amortized analyses for super-linear bounds. Parts of my
work appeared at several conferences [HH10b, HH10a, HAH11].

8.3 Sized Types

A sized type is a type that features size bounds for the inhabiting values. The size infor-
mation is usually attached to inductive data types via natural numbers. The difference
to the potential annotations of amortized analysis is that sized types bound sizes of data
while potential annotations define a potential as a function of the data size.

Sized types were introduced by Hughes et al. [HPS96] in the context of functional
reactive programming to prove that stream manipulating functions are productive or in
other words, that the computation of each stream element terminates.

Hughes and Pareto [HP99] studied the use of sized types to derive space bounds
for a functional language with region-based memory management. The type system
features both resource and size annotations to express bounds but the annotations have
to be provided by the programmer.

Type inference for sized types was first studied by Chin and Khoo [CK01]. They
employ an approximation algorithm for the transitive closure of Presburger constraints
to infer size relations for recursive functions. The algorithm only computes linear
relations and does not scale well for nested data structures.

Vasconcelos [Vas08] studies sized types to infer upper bounds on the resource usage
of higher-order functional programs. He employs abstract interpretation techniques
for automatically inferring linear approximations of the sizes of data structures and
the resource usage of recursive functions. In contrast to RAML, this system can only
compute linear bounds.

8.4 Abstract Interpretation

Abstract interpretation is a well-established framework for static program analysis.
There are several works that employ abstract interpretation to compute symbolic com-
plexity bounds. Unfortunately, none of the described prototype implementations is
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publicly available. Hence, I can compare our analysis only to the results that are reported
in the respective papers.

WCET Analysis

Worst-case execution time (WCET) analysis is a large research area that traditionally
computes time bounds for “a restricted form of programming, which guarantees that
programs always terminate and recursion is not allowed or explicitly bounded as are
the iteration counts of loops” [WEE+08]. The time bounds are computed for specific
hardware architectures and are very precise because the analysis takes into account
low-level features like hardware caches and instruction pipelines.

By contrast with traditional WCET analysis, parametric WCET analysis uses ab-
stract interpretation to compute symbolic clock-cycle bounds for specific hardware.
Lisper [Lis03] proposed the use of a flow analysis with a polyhedral abstraction and the
computation of symbolic bounds for the points in a polyhedral. This method was re-
cently implemented [BEL09]. In contrast to my work it can only handle integer programs
without dynamic allocation and recursion.

Altmeyer et al. [AHLW08, AAN11] reported a similar approach. They propose a
parametric loop analysis that consists of four phases: identifying loop counters, deriving
loop invariants, evaluation of loop exits, and finally, construction of loop bounds. The
analysis operates directly on executables and can also handle recursion. However, a user
has to provide parameters that bound the recursion (or loop iterations) that traverses a
data structure. In contrast, our analysis is fully automatic.

The SPEED Project

A successful method to estimate time bounds for C++ procedures with loops and re-
cursion was recently developed by Gulwani et al. [GG08, GMC09] in the SPEED project.
They annotate programs with counters and use automatic invariant discovery between
their values using off-the-shelf program analysis tools which are based on abstract
interpretation. An alternative approach that leads to impressive experimental results is
to use “a database of known loop iteration lemmas” instead of the counter instrumenta-
tion [GJK09].

Another recent innovation for non-recursive programs is the combination of dis-
junctive invariant generation via abstract interpretation with proof rules that employ
SMT-solvers [GZ10].

In contrast to our method, these techniques can not fully automatically analyze
iterations over data structures. Instead, the user needs to define numerical “quantitative
functions”. This seems to be less modular for nested data structures where the user
needs to specify an “owner predicate” for inner data structures. It is also unclear if
quantitative functions can represent complex mixed bounds such as

∑
1≤i< j≤n(10mi +

2m j )+16
(n

2

)+12n +3 which RAML computes for isortlist. Moreover, our method infers
tight bounds for functions such as insertion sort that admit a worst-case time usage of
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the form
∑

1≤i≤n i . In contrast, [GMC09] indicates that a nested loop on 1 ≤ i ≤ n and
1 ≤ j ≤ i is over-approximated with the bound n2.

A methodological difference to techniques based on abstract interpretation is that
we infer (using linear programming) an abstract potential function which indirectly
yields a resource-bounding function. The potential-based approach may be favorable
in the presence of compositions and data scattered over different locations (partitions in
quick sort). Additionally, there seem to be no experiments that relate the derived bounds
to the actual worst-case behavior and there is no publicly available implementation.

As any type system, our approach is naturally compositional and lends itself to the
smooth integration of components whose implementation is not available. Moreover,
type derivations can be seen as certificates and can be automatically translated into
formalized proofs in program logic [BHMS04]. On the other hand, our method does not
model the interaction of integer arithmetic with resource usage.

8.5 Other Work

There are techniques [BFGY08, CFGV09] that can compute the memory requirements
of object oriented programs with region based garbage collection. These systems infer
invariants and use external tools that count the number of integer points in the corre-
sponding polytopes to obtain bonds. The described technique can handle loops but not
recursive or composed functions.

Taha et al. [TEX03] describe a two-stage programming language in which the first
stage can arbitrarily allocate memory and the second stage—that uses Hofmann’s
LFPL [Hof00b]—can allocate no memory. However, the work reports no method to
derive a memory bound for the first stage.

Other related works use type systems to validate resource bounds. Crary and
Weirich [CW00] presented a (monomorphic) type system capable of specifying and
certifying resource consumption. Danielsson [Dan08] provided a library, based on de-
pendent types and manual cost annotations, that can be used for complexity analyses
of purely functional data structures and algorithms. In contrast, my focus is on the
inference of bounds.

Chin et al. [CNPQ08] use a Presburger solver to obtain linear memory bounds for
low-level programs. In contrast, the analysis system I present can compute polynomial
bounds.

Polynomial resource bounds were also studied by Shkaravska et al. [SvKvE07] who
address the derivation of polynomial size bounds for functions whose exact growth
rate is polynomial. Besides this strong restriction, the efficiency of inference remains
unclear.



We have seen that amortization is a powerful
tool in the algorithmic analysis of data
structures. . . . It seems likely that amortization
will find many more uses in the future.

ROBERT ENDRE TARJAN

Amortized Computational Complexity (1985)9
Conclusion

In this dissertation, I described a novel automatic amortized resource analysis for
first-order functional programs. I presented it in the form of type systems for the
programming language Resource Aware ML and proved the soundness of the bounds
with respect to a big-step operational semantics. In this way, I interlinked two classic
areas of theoretical computer science: the analysis of algorithms and the design and
implementation of programming languages.

The proposed analysis uses multivariate resource polynomials, which interact well
with pattern matching and express a wide range of polynomial relations between differ-
ent elements of the input. This enables the formulation of simple local type rules that
can be easily checked. I developed an efficient type-inference algorithm that relies on
linear constraint solving only. The result is the first type-based resource analysis system
that automatically computes polynomial bounds.

An experimental evaluation with a prototype implementation showed that programs
are analyzed efficiently in practice. I compared the computed bounds with the measured
worst-case behavior of programs and found that the constant factors are often close or
identical to the optimal ones.

In short, the developed polynomial amortized resource analysis is

• precise, since the bounds are resource polynomials,

• efficient, because the inference is based on linear programming,

• reliable, because of the formal soundness prove with respect to the semantics,

• and verifiable, since type derivations are certificates of the bounds.

Nevertheless, the automatic computation of resource bounds is an undecidable problem.
As a result, an automatic resource analysis can never achieve the same range and
precision of a careful manual analysis.

171
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The method I proposed broadened the range of programs that can be automatically
analyzed. However, it can only compute polynomial bounds and the user has to provide
a maximal degree in the inference to restrict the search space of the bounds. Additionally,
there are still programs with a polynomial resource behavior that can not be analyzed
automatically.

Yet it remains true that manual analyses are prone to error and are often infeasible
in software development. That is why I envision a twofold approach to resource analysis,
which enables software engineers to work with quantitative resource bounds in the
same way they work with usual type information. As types, resource bounds should be
inferred in most cases. But if the inference fails it should be simple and natural to enrich
parts of programs with resource information and to formally reason about soundness in
a flexible way.

The findings in this dissertation provide a basis for such a research enterprise. My
colleagues and I have already started to investigate the extension of polynomial amor-
tized resource analysis to more advanced language features such as garbage collection,
higher-order functions, and user-defined data types. At the same time we are working
on the integration of non-polynomial bounds such as n logn and 2n .

Techniques such as multivariate resource polynomials and additive shifts might
be useful in the development of quantitative program logics that prove the soundness
of user-annotated typings. An interactive prove system could rely on our automatic
inference methods to ease the use of the logic. Conversely, the user-annotated types
could be used in the type inference.

Unlike classic software verification, a quantitative resource analysis of a program
cannot prove its correctness. But the correctness of a program can only proved with
respect to some specification. The reason why resource analysis appeals to me is the
absence of an external specification; its worst-case resource behavior is inextricably
linked with every program.
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