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viii Summary



Summary

Flies heavily rely on optic-flow to maintain a stable course during flight. In the blowfly,

the lobula plate comprises about 60 motion-sensitive neurons that process optic-flow in-

formation. To characterize these so-called lobula plate tangential cells, I pursued a system

identification approach: I recorded the activity of single or pairs of neurons, while present-

ing optic-flow stimuli of varying complexity. By means of system identification methods,

I then estimated single cell or small circuit models describing the processing of optic-flow

by the tangential cells.

A standard approach to functionally characterize sensory neurons is the linear-nonlinear

(LN) model comprising a linear stage, followed by a nonlinear response function. To

estimate the components of an LN-model for optic-flow processing neurons, I presented

novel random motion stimuli with individually moving dots. The linear stage can be

represented as a time-varying vector field, referred to as dynamic receptive field. I found

that the dynamic receptive field can by fully described by a separate spatial and temporal

component. Next, I examined the dependence of the LN-model components on the stimulus

strength as controlled by the density of motion dots. I found that an increase of the

stimulus strength leaves the receptive field unchanged but strongly modulates the gain

and selectivity of the response nonlinearity. To correct for these systematic changes, I

developed an explicit biophysical model of the neuron’s input-output relation, which could

account for the neural responses under all stimulus conditions.

To probe how well the optic-flow is encoded by the tangential cells, I presented dynamic

rotational and translational self-motions within various environments differing in their

textures, while recording the cells’ responses. To quantify the encoding of rotational or

translational optic-flow, I tested how well the presented rotations or translations can be

reconstructed from the recorded spikes. I found that rotations are better encoded in the

neural responses than translations. Especially, when simultaneously presenting rotations

and translations, the representation of rotations is less affected than the representation of

translations.



x Summary

To understand how the lateral interactions between neurons influence the optic-flow pro-

cessing, I simultaneously recorded from a pair of tangential cells (left Vi and right H1 cell)

while presenting dynamic, rotational self-motion stimuli. To characterize the functional

connectivity between Vi and H1, I fitted a generalized linear model (GLM) to the recorded

responses. The GLM can be interpreted as an extension of the LN-model which accounts

for lateral interactions between the recorded neurons. The GLM revealed a uni-directional

coupling from H1 to Vi. Further analysis showed that the coupling improves the optic-flow

encoding in Vi by increasing the gain of its rotation tuning. Interestingly, the coupling

between Vi and H1 is adjusted to a value such that the information per spike is maximized

in Vi.

Hence, by the applied system identification approach, I characterized the dynamic receptive

fields of the tangential cells, tested the robustness of the optic-flow encoding, and studied

how the neural connectivity improves the optic-flow processing.



Chapter 1

Introduction

Animals move with ease through their surrounding three-dimensional environment. Pri-

mates including ourselves as well as flies thereby heavily rely on vision. First ideas on the

importance of vision for stable navigation through our world have been formulated by von

Helmholtz (1925). Gibson coined the term ’optic-flow’ for the motion pattern on the retina,

when we move relative to the world (Gibson, 1950). Figure 1.1 illustrates the optic-flow

resulting from a forward translation. For stable navigation, the nervous system has to es-

timate from the retinal optic-flow pattern the self-motion. In an ideal world with constant

velocities and homogeneous distances between the animal and the surrounding objects, this

problem is well-posed: In this case, each optic-flow pattern corresponds unambiguously to

a combination of a specific rotation and translation (Koenderink and van Doorn, 1987).

The difficulty of self-motion perception arises from the inhomogeneous depth structure

of natural environments, their strongly differing textures and contrast distributions, all

disturbing the ideal optic-flow pattern (Franz et al., 2004).

The processing of optic-flow stimuli has been intensively studied in flies (for review see

(Borst et al., 2010)). The lobula plate in the visual system of the fly comprises neurons

which preferentially respond to specific optic-flow patterns Hausen (1984); Krapp and

Hengstenberg (1996). To characterize these so-called lobula plate tangential cells, motion

stimuli of varying complexity have been presented in the past, while recording the neural

responses (see e.g. (Krapp et al., 1998; Borst, 2003; Haag and Borst, 2003; Wertz et al.,

2009; van Hateren et al., 2005)). Various types of models have been formulated to describe

how the stimuli are processed by the tangential cells.

The general term system identification has been coined for approaches trying to unravel

how sensory stimuli are transformed to the recorded, neural response (Wu et al., 2006;

Marmarelis and Marmarelis, 1978). All models falling under this term share one common
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Figure 1.1: Illustration of Optic-Flow. Self-motion causes a permanent shift of the images on the

retina. The resulting pattern of local velocities (represented by the arrows) is called optic-flow. The image

illustrates the optic-flow induced by a forward translation.

feature: They are all top-down models derived from the recorded responses. Hence, the

main focus is not a detailed physiological description of the recorded neurons, but rather

a phenomenological characterization how an input (stimulus) is mapped to the output

(response). The resulting input-output model characterizes the neural processing in func-

tional terms. By means of system identification, I characterized the lobula plate tangential

cells. Single cell as well as small circuit models were estimated to describe how dynamic

optic-flow stimuli are processed by these neurons. In the following, I will introduce basic

concepts of system identification and then review the visual system of the fly as well as

the Reichardt detector, a well-established model for local motion detection.

1.1 System Identification

To understand how sensory systems operate, neuroscientists have long sought to quantify

how single neurons or populations of neurons respond to sensory stimuli. Most models

in sensory neuroscience are based on experiments, where tightly controlled stimuli are

presented to the animal, while recording the responses of sensory neurons. Quantitative

analysis of the recorded data aims at characterizing the functional relationship between

stimuli and neural responses. This approach yielded are large variety of computational and

quantitative models describing all kinds of sensory systems in different animals including

insects and vertebrates (for review see (Dayan and Abbott, 2001; Rieke et al., 1999; Wu

et al., 2006)). The large number of different studies makes it difficult to describe a gen-

eral methodology summarizing all previously developed models. Nevertheless, there were

different attempts to formulate a unifying framework applying to all kinds of models (Wu

et al., 2006; Rieke et al., 1999). Typically, models in sensory neuroscience are derived from
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a classical input-output analysis: Giving the known input to the system and its recorded

output, the goal is to find a simple, general model transforming the input to the output. In

the engineering literature such a phenomenological characterization is called system iden-

tification, a term also used for input-output models in neuroscience by Wu et al. (2006);

Marmarelis and Marmarelis (1978). Other terms describing the same basic approach are

receptive field estimation (Aertsen and Johannesma, 1981; DeAngelis et al., 1995), reverse

correlation (Ringach et al., 1997; Haag and Borst, 1997), spike-triggered neural character-

ization (Schwartz et al., 2006), or white-noise analysis (Chichilnisky, 2001), each stressing

another aspect of the applied methodology. Here, I will not try to add another general

framework. Instead, I will introduce basic concepts and approaches which have been widely

and successfully applied as well as recent attempts to characterize the responses of neural

populations.

1.1.1 Tuning Curves

A standard tool to characterize the stimulus selectivity of single neurons is the neural

tuning curve (Butts and Goldman, 2006; Dayan and Abbott, 2001), a plot of the average

firing rate of single neurons in dependence of one or two stimulus parameters. The stimuli

to determine tuning curves are typically very restricted. Tuning curves have long served

as an invaluable tool to characterize neurons in virtually every sensory system ranging

form the olfactory system (Wilson et al., 2004), visual system (Henry et al., 1974), motion-

sensitive neurons in monkeys (Albright, 1984) and flies (Haag and Borst, 2003) to the

wind-detection system in crickets (Theunissen and Miller, 1991). As an example, Figure

1.2A shows the extracellular recording of a single neuron in the monkey visual cortex, while

presenting a light bar moving at different orientations. The number of action potentials

fired depends on the orientation of the bar. Figure 1.2B illustrates the same effect by a

tuning curve, showing the mean firing rate of a neuron in cat visual cortex in dependence

of the bar orientation.

1.1.2 Spike-Triggered Average

Due to time limitations during experiments, the number of different stimuli which can

be presented to reliably estimate tuning curves is restricted. The spike-triggered average

(STA), an approach to increase the number of presented stimuli, is complementary to the

tuning curve: Instead of averaging the neural responses for a given set of stimuli, the STA

represents the average of stimuli for a given response (Dayan and Abbott, 2001). A typical
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Figure 1.2: Characterizing Neurons by their Stimulus Tuning (A) Extracellular recording of a

neuron in monkey visual cortex. A light bar was moved across the receptive field (dashed rectangle) of

a single neurons. The orientation of the light bar is indicated by the black bar. The traces on the right

show the extracellularly recorded activity. (B) Tuning curve of a neuron in cat visual cortex. Each dot

represents the average firing rate for the bar orientation indicated on the x-axis. The figure is taken from

Dayan and Abbott (2001). The data for (A) originally stems from Hubel and Wiesel (1968). The data for

(B) was originally taken from Henry et al. (1974).

choice for the response is the appearance of a spike. The spike-triggered average then

describes the average stimulus which makes the neuron most likely spike. At the expense

of reducing the range of responses to ’spike’ or ’no spike’, this approach allows largely

enriching the set of presented stimuli.

Since tuning curves are calculated by averaging the neural response for given set of stimuli,

any dynamics present in the response is averaged out. Moreover, the chosen stimuli are

typically restricted in their dynamics. E.g. for the neural tuning depicted in Figure 1.2 a

light bar was moved at constant velocity across the receptive field. Contrarily, the STA

describes dynamic aspects of stimulus processing. It is typically computed for stimuli

that strongly vary over time. Hence, the STA describes the average stimulus waveform or

fluctuation preceding a spike.

The calculation of the STA is illustrated in Figure 1.3A: At each time point the presented

stimulus consists of an array of randomly chosen pixel values. It is assumed that, for

each time point, the neural response is completely determined by the preceding stimulus.

The stimulus intervals preceding a spike are marked by red boxes. Averaging all stimuli

preceding a spike yields the STA. In the example, the STA represents a spatio-temporal
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Figure 1.3: Illustration of Spike-Triggered Average. The stimulus consists of an array of eight

pixels, randomly changes their values at each time point. The neural response is schematically represented

as a time axis (bottom). Each time point where a spike was fired is indicated by a black tick. Stimulus

intervals preceding a spike a marked by red boxes. The stimulus intervals extend over 6 time steps, and,

thus, comprise 48 spatio-temporal pixel values. Averaging all spike-triggered stimuli yields the spike-

triggered average. Figure taken from (Schwartz et al., 2006).

matrix describing how, in average, the values of the pixel array evolve in time before a

spike is elicited.

Formally, if the recorded neuron fired n spikes at time points ti, i = 1, . . . n, the STA C(τ)

can be written as

C(τ) =
1

n

∫ T

0

dt s(t− τ) r(t) =
1

n

n∑
i=1

s(ti − τ) (1.1)

with s(t) describing the time varying stimulus presented for T seconds. The function r(t)

represents the neural response function, which is 1, if the neuron fired a spike a time point

t, and 0 otherwise. The first Equality of equation 1.1 can be interpreted as cross-correlation

of the presented stimulus and the recorded response.

The STA allows predicting the response of the neuron given the stimulus s(t): The more

similar a particular waveform to the STA, the more likely it is that the neuron will fire a

spike. The firing rate of the neuron at time t can be estimated by convolving the stimulus

with the STA,

r̂(t) = r0 +

∫ ∞
0

dτC(τ)s(t− τ), (1.2)

where r0 accounts for the neuron’s background firing, when s = 0.
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So far, the STA has been intuitively introduced as the average stimulus waveform preceding

a spike. A more formal justification of Equation 1.2 is to consider the STA as the linear

kernel in a Volterra expansion (Rieke et al., 1999; Dayan and Abbott, 2001).

The Volterra expansion is the functional equivalent of the Taylor series. It allows expressing

the neural response, r(t), in powers of the stimulus s(t),

r(t) = r0

∫
dτC(τ)s(t− τ) +

∫
dτ1dτ2C2(τ1, τ2)s(t− τ1)s(t− τ2)

+

∫
dτ1dτ2dτ3C3(τ1, τ2, τ3)s(t− τ1)s(t− τ2)s(t− τ3) + . . .

(1.3)

Comparison with Equation 1.2 shows that the STA corresponds to the first linear filter in

the Volterra expansion. C(τ) is also called the first Wiener kernel or the linear receptive

field. It can be shown that, if s(t) is a white-noise stimulus, the STA equals C(τ) (Dayan

and Abbott, 2001).

Note that the estimate of the firing rate by Equation 1.2 is a linear function of the stimulus.

This linear estimate suffers from two obvious problems: The predicted firing rate can

become negative and does not saturate for large stimulus values. One way to overcome

these problems is to include higher-order kernels in the prediction. However, to reliably

estimate higher order kernels, increasing amounts of data are needed. Practically, only

estimates up to the second-order kernel are feasible (Dayan and Abbott, 2001).

1.1.3 Linear-Nonlinear Model

A simpler approach to account for basic nonlinearities as spike-rate saturation or non-

negative firing rates is to include a static nonlinearity f into Equation 1.2,

r̂(t) = f

(
r0 +

∫ ∞
0

dτC(τ)s(t− τ)

)
. (1.4)

The resulting model consists of a cascade of the linear filter C(τ) and the nonlinearity f ,

and is therefore referred to as linear-nonlinear (LN) model illustrated in Figure 1.4. To

simulate a spike train, the estimated firing rate can be used to drive a Poisson generator

whose rate is determined by the output of the nonlinearity. Using a Poisson distribution

to generate spikes, it is implicitly assumed that the appearance of a spike only depends on

the recent stimulus and not on the history of previous spikes (Schwartz et al., 2006; Dayan

and Abbott, 2001).

LN-models have been successfully applied to describe the stimulus processing in a variety

of sensory areas as the retina (Berry and Meister, 1998), lateral geniculate nucleus (LGN)
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Figure 1.4: Linear-Nonlinear Model. In the LN-model the stimulus is first convolved with a linear

filter (receptive field). The output of the linear filter is then fed through a nonlinearity yielding the time-

variable firing rate. To generate spikes, the firing rate can be used to drive a Poisson generator. Figure

taken from (Schwartz et al., 2006).

(DeAngelis et al., 1995; Lesica et al., 2007), visual cortex (Ringach et al., 1997), the

auditory system (Aertsen and Johannesma, 1981; Linden et al., 2003), the olfactory system

in crickets (Geffen et al., 2009), or the visual motion system in flies (Haag and Borst,

1997). However, especially at more central cortical stages, these models often show a poor

performance in predicting the neural responses (Machens et al., 2004; Linden et al., 2003;

David et al., 2004). A reason for this might be that central neurons are more nonlinear than

peripheral ones (Carandini et al., 2005) and that their responses often strongly depend on

the behavioral state of the animal (Reynolds and Chelazzi, 2004; Atiani et al., 2009). A

further problem might be that, in the LN-model, the response depends only on the stimulus.

Hence, recurrent interactions between sensory neurons are not explicitly accounted for.

Instead, the LN-model describes the receptive field of a single neuron as arising from its

feedforward inputs from the sensory organ and recurrent inputs from other neurons.

1.1.4 Generalized Linear Model

In principle, a whole population of neurons could be modeled by a population of LN-models

fitted independently to each of the recorded neurons. However, simultaneous recordings

of pairs of neurons revealed that the responses of sensory neurons are typically correlated

(Zohary et al., 1994; Pillow et al., 2008; Bair and Movshon, 2004; Kazama and Wilson,

2009; Cafaro and Rieke, 2010; Kohn and Smith, 2005; Smith and Kohn, 2008; Schneidman

et al., 2006; Schulz and Carandini, 2010; Trong and Rieke, 2008). Such correlations in

the spike trains of simultaneously recorded neurons cannot be reproduced by a population

of LN-models, since in each LN-model spikes are generated independently by a Poisson

generator. A model accounting for dependencies between neurons, the so-called generalized
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linear model (GLM), was developed by (Paninski et al., 2007; Pillow et al., 2008; Okatan

et al., 2005; Gerwinn et al., 2010).

Figure 1.5: Generalized Linear Model. The scheme illustrates a generalized linear model (GLM)

to simulate a two-neuron circuit. The stimulus dependency of each neuron is modeled by a linear filter.

The impact of each neuron’s own spiking history is modeled by the post-spike filter. Interactions between

the neurons are captured by the coupling filters. The outputs of the three linear filters are summed and

transformed by a static nonlinearity to the firing rate, which drives a Poisson generator to simulate spike

trains. Figure taken and modified from Paninski et al. (2007).

In Figure 1.5, the GLM is illustrated for a two-neuron circuit. As in the LN-model, the

stimulus dependency of each neuron’s firing rate is modeled by a linear filter. Spike trains

generated by a LN-model with a Poisson generator do not account for the refractory period

or further history dependent effects as bursting (Pillow et al., 2005; Paninski et al., 2007).

To account for the impact of previous spikes on the neuron’s firing rate, the preceding

spike train is convolved with the post-spike filter (see Figure 1.5). Interactions between

the neurons are captured by two further linear filters, the coupling filters. For each neuron,

the outputs of the three linear filters are summed and then fed through a static nonlinearity

yielding an estimate of the firing rate. To generate spikes, the firing rate is used to drive

a Poisson generator. The GLM has been successfully applied to reproduce correlations

between retinal ganglion cells (Pillow et al., 2008), to model neural interactions in the
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monkey and human sensorimotor cortex (Truccolo et al., 2010) and to elucidate the role

of feedback in the thalamus (Babadi et al., 2010).

1.2 The Visual System of the Fly

Visual processing in the fly starts with the photoreceptors in the retina (see Figure 1.6).

The photo-receptors send axons into the first neuropile, the lamina. From there, motion

information is transmitted through the outer optic chiasm to the second visual neuropile,

the medulla. The axons of the medullar neurons finally project through inner chiasm to the

second neuropile, the lobula complex, consisting of the lobula and the lobula plate. The

lobula plate comprises about 60 motion-sensitive neurons known as lobula plate tangential

cells. Lamina, medulla, and the lobula complex are all organized into retinotopically

arranged columns. Due to this retinotopic organization, the neighborhood relationships of

points in visual space are preserved throughout the visual system. Thus, each neuropile

represents a retinotopic map, where light emitted from two neighboring spots induces

activity in neurons within two neighboring columns.

Figure 1.6: Anatomy of the Fly Visual System. Scheme illustrating the anatomy of the fly visual

system. The visual system is retinotopically arranged. From the retina axons project to the lamina.

Neurons of the next neuropile, the medulla, synapse to the lobula and the lobula plate forming the lobula

complex. Within the lobula plate the synaptic output of pre-synapic elements are integrated by the

motion-sensitve tangential cells. The colored neurons represent detailed anatomical reconstructions from

2-photon image stacks of the ten VS-cells. The dendrites of the tangential cells run perpendicular to the

columns. Figure taken from Borst et al. (2010).
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1.2.1 Retina and Photoreceptors

The compound eye of the blowfly comprises about 5000 hexagonal ommatidia (Strausfeld,

1984). The angular separation between the optical axes of two neighboring ommatidia is

inhomogeneously distributed across the visual field (Petrowitz et al., 2000): The interom-

matidial angle is smallest at the equator in the frontal visual field (about 1◦). The spatial

resolution is about two times lower in the caudal part and up to three times lower in the

dorsal part of the visual field. In the frontal visual space the optical axes of both eyes

overlap, i.e. the most frontal ommatidia of the left eye sample regions on the right side of

visual space and vice verse. In the blowfly, this binocular overlap region extends up to 15◦

on the contralateral side (Beersma et al., 1977).

Each ommatidium comprises one lens and eight photoreceptors. The lens consists of a

cornea and a cone. Light is guided through these structures before hitting the light-

absorbing pigments in the photoreceptors. Rhodopsin 1 serves as light-absorbing photo-

pigment in R1-R6 with greatest sensitivity in the UV and green range (O’Tousa et al.,

1985). Contrarily, the rhodopsins in R7 and R8 exhibit different absorption spectra in-

dicating a role in color vision (Cook and Desplan, 2001). The photoreceptors R1-R6 are

arranged as a outer ring with R7 and R8 in the center. Consequently, each of the pho-

toreceptors R1-R6 has a different optical axis (Land, 1997). The six photoreceptors of six

neighboring ommatidia looking at the same spot in visual space send their axons to the

same post-synaptic target in the lamina (Braitenberg, 1967). This arrangement, called

neural superposition, increases light sensitivity without affecting the eye’s spatial resolu-

tion (Kirschfeld, 1972). It has been shown that the photoreceptors R1-R6 are involved in

motion processing (Heisenberg and Buchner, 1977; Yamaguchi et al., 2008), while R7 and

R8 mediate color vision (Gao et al., 2008; Yamaguchi et al., 2010). In contrast to R1-R6,

the axons of R7-8 do not project to the lamina, but directly target neurons in the medulla.

1.2.2 Lamina

The lamina represents the first neuropile of the visual system. It exhibits a highly regular

structure arising from the assembly of identical, columnar units, the so-called cartrides.

The columnar structure of the lamina preserves retinotopy, i.e. two neighboring cartrides

correspond to two neighboring points in visual space. The so-called monopolar cells L1-L3

and an amacrine cell are directly innervated by the photoreceptors R1-R6 (Meinertzhagen

and O’Neil, 1991). Contrarily, the monopolar cells L4 and L5 receive indirect input via L2

and the amacrine cell (Meinertzhagen and O’Neil, 1991; Braitenberg, 1970). The axons of



1.2 The Visual System of the Fly 11

the monopolar cells project to the medulla. L1 innervates the layers M1 and M5 of the

medulla, whereas L2 synapses to the medullar layer M2 (Bausenwein and Fischbach, 1992).

By measuring calcium signals in the terminals of L2, it could be shown that L2 is not sen-

sitive to motion direction (Reiff et al., 2010). Calcium signals showed a strong response to

brightness decrements (off-signals), but not to increments (on-signals). Hence, L2 rectifies

the input from the photoreceptors, thereby only providing information about decrements

in the brightness signal to its post-synaptic targets in the medulla. By specifically blocking

the synaptic output of L1 or L2, a recent study found that these monopolar cells constitute

two functionally different pathways (Joesch et al., 2010): Blocking L1, lobula plate tan-

gential cells show no response to moving on-edges (on-signals). Contrarily, if the output of

L2 is blocked, tangential cells mainly only respond to moving off-edges (off-signals). These

experiments demonstrate that L1 feeds into an on-channel, whereas L2 provides input to

a separate off-channel.

1.2.3 Medulla

The next neuropile is the medulla, where the important computations involved in motion-

processing are thought to take place. The medulla is built of retinotopically arranged

columns, which are divided into ten layers. The number of medullar columns matches

the number of cartridges in the lamina. Each column is innervated by the axons of the

photoreceptors R7 and R8 and by the laminar monopolar cells L1-L3. In total, each column

comprises more than 60 medullar or trans-medullar cells which inter-connect the medullar

layers or project to downstream structures (Strausfeld, 1976; Fischbach and Dittrich, 1989).

The medulla is the first stage in the visual system where the computation of motion could

be experimentally demonstrated: Using the activity-dependent 2-deoxyglucose staining

technique, it could be shown that motion stimulation lead to a layer-specific staining of

the medulla (Bausenwein and Fischbach, 1992; Bausenwein et al., 1992). During whole-

field stimulation layers M1, M2, M9, and M10 were labeled, while stimulation by a single

bar resulted in the staining of layers M1, M5, and M7. This finding suggests the presence

of various parallel motion pathways specialized for different motion types.

The separation in on- and off-channels at the level of the lamina anatomically persists in

the medulla. The laminar monopolar cell L1 (on-channel) innervates the medullar layers

M1 and M5, where it connects to the dendrites of the medullar Mi1-cell (Bausenwein and

Fischbach, 1992). This cell, in turn, synapses onto T4-cells projecting to the lobula plate.

L2, the laminar input to the off-channel, connects in the medullar layer M2 to the Tm1-

cells. These neurons synapse in the lobula onto the T5-cells, which send their axons into
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the lobula plate.

1.2.4 The Lobula Complex

The axons of medullar neurons target the lobula complex, which comprises two structures:

the lobula and the lobula complex. As the pre-synaptic neuropiles, the lobula exhibits a

retinotopic columnar organization. However, compared to the medulla, it comprises less

columns reducing the visual resolution (Strausfeld, 1989) and consists of only six different

layers. By means of the 2-deoxyglucose technique, it could be shown that three layers of

the lobula are sensitive to motion stimuli (Buchner et al., 1984). The most posterior layer

of the lobula is part of the presumable off-channel: The axons of the medullar Tm1 cells,

which are connected to L2, synapse within this layer onto the dendrites of the T5 cells.

As the lobula, the lobula plate is organized into retinotopic columns, but comprises only

four layers. Activity dependent labeling by the 2-deoxyglucose technique demonstrated

that the four layers are responsive to four different motion-directions (Buchner et al., 1984;

Bausenwein and Fischbach, 1992; Bausenwein et al., 1992): Neurons in the two anterior

layers respond to horizontal motion (front-to-back, back-to-front), whereas the activity in

the two posterior layers represents vertical motion (up and down).

The synaptic outputs of the columnar elements are integrated by the motion-sensitive

lobula plate tangential cells (Hausen, 1984; Hengstenberg et al., 1982). The dendrites of

the tangential cells run orthogonal to the columns and cover several hundred columns.

The layer where the dendrite of a specific tangential cells ramifies determines the neu-

ron’s preferred motion-direction. The motion-sensitivity of the tangential cells arises from

the integration of pre-synaptic motion-sensitive elements. Possible candidates are the T4

and T5 cells, since both cells exhibit directionally selective responses to moving gratings

(Douglass and Strausfeld, 1995, 1996). Moreover, in Strausfeld and Lee (1991) a chemical

synapse between a tangential cell and T4 could be identified.

1.2.5 Circuitry of the Lobula Pate Tangential Cells

The lobula plate comprises about 60 interneurons, which integrate on their dendrites the

synaptic outputs of several hundred columns. These lobula plate tangential cells are ideally

suited for electrophysiological experiments, since they are large and identified, i.e. the

same cell can be found in every fly. Especially, the area within the lobula plate covered

by the dendrite of a specific cell is stereotyped across flies, while the detailed branching

pattern of the dendrites is less conserved (Cuntz et al., 2008). By ablation experiments it
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could be shown that the tangential cells are involved in the optomotor response of the fly

(Heisenberg et al., 1978; Geiger and Naessl, 1981; Hausen and Wehrhahn, 1983). Many of

the tangential cells synapse onto descending neurons, which directly connect to and control

muscles or provide optic-flow information to the thoracic ganglion involved in motor control

(Strausfeld and Seyan, 1985; Strausfeld et al., 1987; Huston and Krapp, 2008).

Figure 1.7: Intracellular Recording of an HSE-cell. Back-to-front motion hyperpolarizes the cell,

whereas front-to-back motion leads to a graded shift of the membrane potential overlaid with spikes of

irregular amplitude. The gray bars indicates the time interval where the motion stimulus was presented.

The motion direction is schematically shown the by the black arrows. Figure taken from Borst and Haag

(2002).

The most characteristic feature of the lobula plate tangential cells is their directionally

selective response to visual motion. Figure 1.7 shows an example recording of a tangential

cell (HSE cell). This neuron responds to back-to-front motion (null direction) with a

hyperpolarization of its membrane potential. Contrarily, motion in the opposite direction

(preferred direction) leads to a depolarization overlaid with spikes of irregular amplitude.

The lobula plate tangential cells can be grouped according to their different response

characteristics (Borst and Haag, 2002): (1) They can be categorized according to their

overall preferred direction: whether they respond mainly to horizontal or vertical motion.

(2) Another distinguishing feature is the response mode: One group of tangential cells

responds to motion in their preferred direction by a graded shift of the membrane potential,

while others respond with an increase of their frequency of action potentials, and a third

group with a mixture of both modes (see Figure 1.8). (3) Finally the tangential cells can

be classified according to their projection area: A first group of tangential cells projects

with their axon to the contralateral brain hemisphere (heterolateral tangential cells), while
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Figure 1.8: Response Modes of the Tangential Cells. The lobula plate tangential cells can be

grouped according to their response modes to visual motion. One group of tangential cells responds to

motion in their preferred direction by a graded shift of the membrane potential. An example is the CH cell

(left). The HS cell (middle) is a representative of the second group which responds to a preferred stimulus

with a depolarization of the membrane potential overlaid with action potentials of variable amplitude. The

V1 cell (right) is an example of a tangential cell firing full-blown action potentials. A preferred stimulus

increases the frequency of action potentials. Figure taken from Borst and Haag (2002).

the axons of others remain on the ipsilateral side (ipsilateral tangential cells). The lobula

plate tangential cells exhibit a complex recurrent connectivity (Borst and Haag, 2002;

Borst et al., 2010; Borst and Weber, 2011). All well characterized tangential cells and

their known connectivity are schematically depicted in Figure 1.9.

When categorizing the tangential cells according to their preferred direction, they fall into

two groups: Horizontal (H) and vertical (V) cells. The dendrites of the horizontal cells

lie within the anterior layer of the lobula plate. Among those are the three horizontal

system (HS) cells, which are sensitive to motion in the upper, equatorial, and lower part

of the visual space (Hausen, 1982a,b). They are accordingly named the northern (HSN),

equatorial (HSE), and southern horizontal (HSS) cell. The HS cells respond to front-to-

back motion in their receptive field with a depolarization of their membrane potential

overlaid by action potentials of variable amplitude (see Figure 1.8) and are hyperpolarized

by motion in the opposite direction.

The three HS cells form electrical synapses with the two centrifugal horizontal (CH) cells

(Eckert and Dvorak, 1983). HSN and HSE are indirectly coupled to each other via the

dCH cell, whereas vCH connects to HSE and HSN. As the HS cells, the CH cells are also

mainly sensitive to front-to-back motion. Both neurons are an example for tangential cells

encoding motion in their preferred direction by a graded shift of the membrane potential

(Figure 1.8).

Further representatives of the horizontal cells are the neurons H1, H2, H3, and H4 (Hausen,
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Figure 1.9: Circuitry of the Lobula Plate. Circuit diagram of a network simulation of the left and

right lobula plate involving 22 well characterized neurons and their connectivity. Each neuron comprises

two compartments depicting their axon and dendrite (the labeled compartment). The axons of spiking

tangential cells are drawn in red. Representing neurons by two compartments allows categorizing inter-

actions into axo-axonal, dendro-dendritic and axo-dendritic connections. The connection type (electrical

synapse, excitatory or inhibitory chemincal synapse) are depicted by black, blue, or red lines (see legend).

The neurons V2, Vi2 and Hu are not mentioned in the text. The connectivity of V2, a spiking neuron,

is unknown. So far, there exist no direct electrophysiological recordings of Hu, however its existence can

be concluded from inhibitory postsynaptic potentials (ipsps) in CH (Haag and Borst, 2001). The purely

hypothetical neuron Vi2 is assumed to mediate the observed inhibition of VS10 by VS1. Figure taken and

modified from Borst and Weber (2011).
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1984) which are heterolateral neurons projecting with their axon to the contralateral lobula

plate. In contrast to the CH and HS cells, H1-H4 fire full-blown action potentials and re-

spond to motion in their preferred direction by an increased frequency of action-potentials.

The response properties and connectivity of H1 and H2 are well characterized. Both neu-

rons preferentially respond to back-to-front motion. They form excitatory synapses with

the contralateral HS (Horstmann et al., 2000; Farrow et al., 2006) and CH cells (Hausen,

1984; Haag and Borst, 2001) and are inhibited by the ipsilateral CH cells (Haag and Borst,

2001).

The group of vertically tuned cells comprises, among others, a population of ten so-called

vertical system (VS) cells (Hengstenberg et al., 1982). The dendrites of the VS cells are

sequentially positioned within the lobula plate, where VS1 has the most lateral and VS10

the most medial dendrite (see Figure 1.11A). Detailed compartmental models of the VS

cells are depicted in Figure 1.6. All VS cells preferentially respond to downward motion

and are inhibited by upward motion. They encode the motion direction by a graded shift

of the membrane potential. According to the retinotopic arrangement of the lobula plate,

their receptive fields are sequentially arranged, thus nearly covering half of the visual space.

VS1 has a frontal receptive field, whereas VS10 responds to caudal motion (Krapp et al.,

1998).

The connectivity of the VS cells has been revealed by intracellular double recordings (Haag

et al., 2004): Each VS cell is electrically coupled to its neighbors via axo-axonal gap

junctions (see Figure 1.9). Moreover, this chain-like network exhibits a mutual end-to-end

inhibition. Current injections into VS1 lead to a hyperpolarization of the proximal VS

cells (VS7-VS10). Contrarily, a current injection into VS10 resulted in an inhibition of

VS1 (Haag et al., 2004). The circuitry underlying the inhibition of VS1 by the proximal

VS cells was revealed in Haag and Borst (2007). VS7-VS10 are electrically coupled to the

dendrite of Vi, a heterolateral, spiking tangential cell. Vi’s dendrite is inhibitorily coupled

to VS1. The neuron mediating the inhibition in the opposite direction is still unknown.

Lateral interactions between tangential cells are not restricted to pairs of neurons that

belong to the same group. E.g. the proximal VS cells which belong to the vertical group of

neurons, are electrically coupled to dCH, a representative of the horizontal neurons (Haag

and Borst, 2007). Another interaction between the horizontal and vertical system is the

electrical coupling between H1 and V1 (Haag and Borst, 2003), a further heterolateral,

spiking neuron (see Figure 1.8), which is connected via electrical synapses to VS1-VS3

(Kurtz et al., 2001; Haag and Borst, 2008). Further interactions among the tangential cells

are depicted in Figure 1.9.
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1.2.6 Receptive Fields of the Lobula Plate Tangential Cells

The lobula plate tangential cells are sensitive to visual motion. A rough characterization

of their direction tuning is given by their preferred and null direction as exemplarily shown

for the HSE cell in Figure 1.7. An approach which allows describing the receptive field

Figure 1.10: Determining the Spatial Receptive Fields of the Tangential Cells. (Left) A black

dot moves with constant speed along a circular path. (Right) The local preferred direction (LPD) and sen-

sitivity for a particular location is inferred from the neural response after correcting for the neural response

delay. The local preferred direction corresponds to the maximum response, the sensitivity is defined as the

difference between maximum and minimum response. Figure taken from Krapp and Hengstenberg (1996).

properties of the tangential cells in much more detail was applied in Krapp and Hengsten-

berg (1996); Krapp et al. (1998, 2001). For this purpose, a small rotating dot was shown

at various positions of the visual field, while recording the response of a tangential cell (see

Figure 1.10). After correcting for the response delay, the local preferred direction and sensi-

tivity could be determined from the neural response, and were represented as the direction

and length of a vector. Repeating this procedure for several locations yields a vector field

describing the arrangement of local motion sensitivities. Strikingly, these receptive fields

strongly resemble optic-flow fields as induced by certain self-motions. Figure 1.11C shows

the receptive fields of VS4, VS7, and VS8 which all exhibit curly vector fields as induced

by specific rotations of the fly. The rotation axes inducing the flow fields best matching

the receptive fields are depicted in Figure 1.11B. The strong resemblance of the receptive

fields with the optic-flow patterns gave rise to the hypothesis that the tangential cells act

as matched filters (Franz and Krapp, 2000; Franz et al., 2004): The actual self-motion of

the fly is encoded by the cell whose receptive field best matches the resulting optic-flow

field and therefore responds most strongly.

The receptive fields determined by the rotating dot stimulus are derived from local stim-

ulation. Whether the receptive field estimated using a local stimulus correctly predicts

the preferred rotation axis during global stimulation was tested in Wertz et al. (2009).
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Figure 1.11: The Tangential Cells Act as Matched Filters. (A) Structure of the VS cells obtained

from cobald staining (M - Medulla, PC - Protocerebrum). (B) Schematic fly with various rotation axes. (C)

Spatial receptive fields of VS10, VS7 and VS4. The rotation axes of the best fitting rotational flow fields

are indicated by red dots. Figure taken from (Borst and Haag, 2007). (A) modified from (Hengstenberg

et al., 1982), (B) modified from (Zbikowski, 2005), and (C) taken from (Krapp et al., 1998).)

For global stimulation, rotations about various body axes within a rectangular room were

presented to fixed flies, while the activity of VS cells was recorded. It could be shown that

the rotation axis predicted from the receptive field indeed matches the preferred axis for

global stimulation.

The mechanisms underlying the complex receptive fields of the tangential cells have been

intensively studied for the VS cells (Haag et al., 2004; Farrow et al., 2005; Elyada et al.,

2009; Borst and Weber, 2011). Photo-ablations of single VS cells narrowed the tuning

width of neighboring cells (Farrow et al., 2005), demonstrating that the broadening of

the receptive fields relies on the electrical synapses between these neurons. Modeling and

experimental studies revealed that the specific connectivity of the VS cells allows for a

robust representation of the fly’s rotation axis (Cuntz et al., 2007; Weber et al., 2008;

Elyada et al., 2009).

Due to the curly structure of their receptive fields, the VS cells are not only sensitive

to vertical downward-motion, but also exhibit regions where they respond to horizontal

or upward motion. The connectivity of the VS cells probably underlies these complex

receptive fields This hypothesis was tested in a simulation study based on a network model
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including all known tangential cells and their connectivity (Borst and Weber, 2011). Figure

1.12A depicts the receptive field of a simulated VS10 cell strongly resembling a rotational

flow field. To test to what extent the receptive field depends on the connectivity of VS10, it

was re-calculated after disconnecting all tangential cells in the stimulated network. When

disconnected, VS10 is only sensitive to downward motion within a small stripe (Figure

1.12A). The remaining vertical motion sensitivity arises from pre-synaptic, vertically tuned

motion detectors integrated by the dendrite. To test whether dCH, which is electrically

coupled to VS10, is responsible for the horizontal sensitivity, it was voltage-clamped. The

resulting receptive field of VS10 indeed shows a reduced horizontal sensitivity (Figure

1.12C). By voltage clamping VS1 in the network stimulation, it could be demonstrated

that the inhibition of VS10 by VS1 underlies VS10’s upward sensitivity. The resulting

receptive field still shows sensitivity to horizontal motion, however all upward oriented

components vanished (Figure 1.12D).
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Figure 1.12: The Receptive Field Structure of VS10 Arises from its Connectivity. (A) Re-

ceptive field of a simulated VS10 cell. In the simulation, the receptive field was determined by the same

method as applied in (Wertz et al., 2009). (B) Receptive field of VS10 with all connections between the

cells removed. (C) Receptive field of VS10 after voltage-clamping dCH. (D) Receptive field of VS10 after

voltage-clamping VS1. Figure modified from Borst and Weber (2011).
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1.2.7 Processing of Dynamic Motion Stimuli by H1

The spatial receptive fields describe the preferred optic-flow patterns of the lobula plate

tangential cells. However, they completely neglect any dynamic properties of the tangential

cells. Moreover, they provide no information on how the processing by the tangential cells

is affected when changing properties of the stimulus. Such issues have been addressed

in experiments with the heterolateral, spiking neuron H1 (Haag and Borst, 1997; Borst,

2003; Fairhall et al., 2001; Brenner et al., 2000; Borst et al., 2005; Safran et al., 2007).

In these studies, H1 was stimulated by a global grating moving horizontally according to

a Gaussian-noise velocity profile. The presented velocity profiles were typically generated

by low-pass filtering a white-noise time series (specifying for each time point the velocity

value). These studies then tested how the stimulus processing by H1 varies, when changing

the statistics of the velocity profile. To this end, LN-models transforming the velocity to

the recorded firing rate were fitted. Changes in the statistics have strong effects on both

the stimulus filter of H1, describing its dynamics and on the nonlinearity mapping the

filtered stimulus on the firing rate (Safran et al., 2007; Borst, 2003; Borst et al., 2005;

Brenner et al., 2000; Fairhall et al., 2001).

Figure 1.13: The LN-model of H1. (A) Increasing the standard deviation σ of the presented velocity

profile reduces the steepness of the nonlinearity. The measured data is depicted by the dots. The solid

lines show predictions by an array of Reichardt detectors. (B) The width of the stimulus filter decreases

with increasing σ. The solid lines depict the predicted filters, the dashed lines show the filters measured

for the data. Figure modified from Safran et al. (2007).

As demonstrated in Brenner et al. (2000); Fairhall et al. (2001), when increasing the stan-

dard deviation of the velocity waveform, the steepness of the nonlinearity (i.e., the gain of

H1) is reduced. Hence, although the range of presented velocity amplitudes is increased,

the range of elicited firing rates is still unchanged. This phenomenon is demonstrated
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in Figure 1.13A showing the nonlinearities of H1 for five different velocity profiles with

increasing standard deviation. This finding suggests the presence of a gain control mech-

anism which matches the dynamic range of the neural response to the stimulus, thereby

maximizing information transmission (Brenner et al., 2000).

The mechanism underlying the observed gain control mechanism was studied in (Borst

et al., 2005; Safran et al., 2007). The changes in the gain could be attributed to the

intrinsic nonlinearity of the local motion detectors integrated on H1’s dendrite. The local

motion processing was modeled by Reichardt detectors, an algorithmic model for motion

detection presented in more detail in the following section.

Changes in the standard deviation of the velocity waveform do not only effect the nonlin-

earity in LN-model, but also the stimulus filter. This is illustrated in Figure 1.13B. With

increasing standard deviation of the presented velocity, the width of the stimulus filter is

reduced. This finding could be also accounted for by the Reichardt detector.

1.3 The Reichardt Detector

1.3.1 The Structure of the Reichardt Detector

The Reichardt detector estimates motion by correlating the luminance signals at two spa-

tially separated locations, why it is also referred to as correlation-type motion detector

(Reichardt, 1961). The basic working principle of the Reichardt detector is illustrated

in Figure 1.14. An object passes two input channels sampling brightness changes at two

neighboring, but spatially distinct locations. Since the object is moving from left to right,

it arrives first at the left input channel, inducing a change in its activity (Figure 1.14A).

After some time interval ∆t the object activates the second input channel (Figure 1.14B).

The time interval depends on the object velocity and the distance between the input chan-

nels, i.e. the sampling base of the motion detector. To account for this time interval, the

left input signal is delayed by a low-pass filter. The signal of the left channel and the

non-delayed input signal of the right channel then arrive at the multiplication state. If the

delay induced by the low-pass filter ideally matches the time interval ∆t, the multiplication

yields the maximal response.

The motion detector depicted in Figure 1.14 is sensitive to left-to-right motion correspond-

ing to its preferred direction. To inhibit its activity by motion in the opposite direction, the

activity of a second, mirrored detector with right-to-left motion as preferred direction is

subtracted. The resulting motion detector is excited by left-to-right motion (preferred di-

rection) and inhibited by right-to-left motion (null direction) and represents the Reichardt
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Figure 1.14: Working Principle of the Reichardt Detector. An object passes two input channels

or photoreceptors. Since it moves from left to right, it first activates the left input channel at time point

t0. The upper gray curve illustrates the resulting input signal at the left input channel. This signal is then

delayed by a low-pass filter with time-constant τL, as illustrated by the second gray curve. After some

time interval ∆t the object arrives at the second input channel. If the left input signal is ideally delayed

by ∆t s, the input signals of both photoreceptors arrive at the same time point at the multiplication stage

(asterisk). The right input signal is illustrated by the third gray curve. Multiplication of both signals then

yields the maximal response indicated by the gray curve at the bottom.

detector in its most parsimonious form shown in Figure 1.15 A.

A more advanced version of the Reichardt detector is shown in Figure 1.15B: In this model,

an additional high-pass filter is inserted in the cross-arms of the detector. With the high-

pass filters the Reichardt detector better reproduces responses to a velocity pulse induced

by a abrupt displacement of the presented visual pattern (Egelhaaf and Borst, 1989; Borst

et al., 2003). Moreover, changes in the high-pass filter constant have been postulated to

account for adaptive changes of the detector’s impulse response (Borst et al., 2003).

1.3.2 Evidence for the Reichardt Detector

The response properties of the Reichardt detector have been mainly studied for sine grat-

ings. Due to the simplicity of this stimulus, the response elicited by a moving sine grating

can be analytically derived. All fundamental characteristics of the Reichardt detector could

be experimentally verified (Borst and Egelhaaf, 1990; Egelhaaf et al., 1989; Borst et al.,

2010). A first characteristic of the Reichardt detector is that it does not behave as an ideal

speedometer, where the response depends linearly on the velocity. Instead, the response

first increases with increasing velocity, before reaching an optimum and then starts de-

creasing. Second, the velocity tuning depends on the wavelength of the sine grating: the
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Figure 1.15: The Reichardt Detector. (A) Minimal Reichardt detector. In each subunit the input

signal is delayed by the first-order low-pass filter with time-constant τL and multiplied with the unfiltered

signal from the neighboring photoreceptor. (B) Reichardt detector with an additional high-pass filter

inserted in the cross-arms of the detector. The time-constant of the first-order high-pass filters is denoted

by τH .

larger the wavelength, the higher the velocity at which the response maximum is reached.

Since the response optimum increases linearly with the wavelength, it is determined by the

ratio of the wavelength and the velocity, referred to as temporal frequency. As function of

the temporal frequency, the velocity tuning curves peak at same frequency, independent of

the pattern wavelength.

These predictions by the Reichardt detector could be verified in electrophysiological ex-

periments in blowflies (Haag et al., 2004) and fruit flies (Joesch et al., 2008; Schnell et al.,

2010). In dependence of the temporal frequency, the velocity tuning curves of the lobula

plate tangential cells indeed coincide for different wavelengths, reaching their maximum at

about 1 Hz.

A further characteristic feature of the Reichardt detector is that its response oscillates

at the temporal frequency of the presented stimulus. Only when summing the responses

of a whole array of Reichardt detectors, the oscillations induced by single detectors are

smoothed out through spatial integration. As predicted, the membrane potential of the

lobula plate tangential cells exhibited oscillations, when presenting a sufficiently small

stimulus such that spatial integration cannot take place (Egelhaaf et al., 1989). Similarly,

it could be demonstrated using Calcium imaging that, within small dendritic branches, the

measured signals are strongly modulated (Single and Borst, 1998).
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1.3.3 Biophysical Implementation of the Reichardt Detector

The Subtraction Stage

How the different algorithmical elements of the Reichardt detector are implemented within

the circuitry of the visual system is still largely unclear. So far, there exists only strong

evidence for the physiological implementation of the subtraction in the Reichardt detector.

The motion-sensitivity of the tangential cells arises from the integration of the outputs

of pre-synaptic motion-sensitive neurons, probably T4 and T5 cells. There is strong evi-

dence that the pre-synaptic neurons integrated by a tangential cell have opposite preferred

directions (Brotz and Borst, 1996; Single et al., 1997). In analogy to the Reichardt detec-

tor, these inputs represent the two mirror-symmetrical subunits of the detector which are

physiologically subtracted via excitatory and inhibitory synapses.

Assuming that the dendrite of a tangential cell integrates the synaptic outputs of a whole

array of Reichardt detectors allows for the following predictions: Injecting a positive current

into the dendrite should lower the driving force of the excitatory synapses. Consequently,

the response amplitude to motion in the preferred should be reduced. Similarly, an injection

of negative current will reduce the inhibitory driving force yielding a reduced response to

motion in the null direction. Both predictions could be verified in blow flies (Borst et al.,

1995, 2010) and Drosophila (Joesch et al., 2008).

Besides the subtraction in the Reichardt model, this push-pull input organization also im-

plements an automatic gain control mechanism compensating for the size of a sine grating:

Increasing the size of the pattern, an increasing number of pre-synaptic motion detectors is

activated leading to a reduction of the cell’s input resistance. Consequently, the impact of

an inflowing current onto the cell’s membrane potential is reduced. Therefore, the response

of a tangential cell saturates with increasing patterns size (Borst et al., 1995; Single et al.,

1997).

Separate Off/On-Pathways

A recent study analyzed the internal structure of the fly’s motion detector (Eichner et al.,

2011): Based on the observation that the brightness signals from the photoreceptors are

split into its on and off-parts (Joesch et al., 2010), the authors compared two alternative

models. The first model, the four-quadrant detector, consists of four parallel detectors each

processing one of the four possible combinations of on- and off-signals (see Figure 1.16B).

In the on-detector, the two on-components of the brightness signal from the two photore-

ceptors of the detector are correlated to compute motion. Analogously, off-components are
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correlated in the off-detector. The correlation of an on- or off-component from the first

photoreceptor and an off- or on-signal from the second photoreceptor takes place in the

on-off or off-on detector. The second model comprises only two parallel detectors corre-

lating brightness components of the same sign, whereas signals of different polarity do not

interact (see Figure 1.16C).

Figure 1.16: Different Implementations of the Reichardt Detector. (A) Original Reichardt detec-

tor (B) The four-quadrant detector. This detector is mathematically equivalent to the original Reichardt

detector in (A). The brightness signals from the photoreceptors are split into its on- and off-components

through a half-wave rectification. The four possible combinations of on- and off-signals are then processed

in four different detectors. (C) The two-quadrant detector. In this detector only input components of

the same sign are correlated, whereas on- and off-signal components do not interact. Figure taken from

Eichner et al. (2011).

To test which of the two proposed detector models best reproduces the structure of the fly

motion detector, apparent motion stimuli were presented. By presenting two short bright-

ness pulses which were displayed in sequence at two neighboring locations, it was possible

to exclude the four-quadrant detector. Hence, the fly motion detector is in agreement with

a two-quadrant detector, where on- and off-signals are processed in separate pathways that

do not interact.

1.4 Thesis Projects

This thesis describes in detail the methods and results of three projects discussed as dif-

ferent sections in the third chapter (Results 3):

1. Spatio-Temporal Response Properties of the Tangential Cells

2. Self-Motion Encoding by the Tangential Cells

3. The Functional Role of an Inter-Hemispheric Projection
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Parts of the thesis are based on previous publications. The findings of the first section

of the Results chapter were published in (Weber et al., 2010). The third section of the

Results follows a still unpublished manuscript. Parts of the first (Introduction 1) and the

second chapter (Materials and Methods 2) were previously published in (Borst and Weber,

2011). Since my main contribution to the latter paper were parts of the applied methods,

its major findings were not summarized as an own section in the Results.



Chapter 2

Materials and Methods

2.1 Visual Stimulation

The visual stimuli used for the experiments presented in Sections 3.1 and 3.3 were displayed

on a custom-built light-emitting (LED) arena (see Figure 2.1A). For presentation of stimuli

discussed in Section 3.2, a stimulus device consisting of three LCD-monitors was used (see

Figure 2.1B).

90

-180

120 -120 

A B0 0 

Figure 2.1: Schematic top view of the stimulus devices. (A) LED-arena. The arena is cylinder-

shaped. The fly was positioned in the center of the cylinder facing the center point (0◦, 0◦). Along the

azimuth, the arena ranges from −120◦ to 120◦. The arrow indicates the viewing direction of the fly. (B)

LCD-monitor setup. Three 120Hz LCD-monitors were positioned on three edges of a square. The fly faced

the node connecting the edges of the middle and right screen. The stimulated visual space ranged from

−180◦ to 90◦ along the azimuth. Any distortions along the horizontal or vertical due to the inhomogeneous

distances of the fly to the monitor surfaces were accounted for by the stimulus generation.
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LED-Arena

The LED-arena is cylinder-shaped and allows for 16 different intensity values at a refresh

rate of 200 Hz or 250 Hz. The arena is assembled from 30 × 8 TA08-81GWA dot matrix

displays (Kingbright, Walnut, CA), each harboring 8× 8 individual green (568-nm) LEDs.

The arena covers 242◦ and 96◦ of the horizontal and vertical visual field, with an angular

resolution of at least 1◦. Since the arena is not curved along the elevation direction, the

presented stimuli were distorted along the vertical to mimic their shape on a sphere. In the

graphical representations of the receptive fields, the left border of the arena corresponds

to an azimuth of −121◦, whereas −48◦ denotes the lower border, such that the point (0◦,

0◦) lies in the middle of the arena surface. Flies were placed in the center of the cylinder,

with their eyes facing the center point (0◦, 0◦). All stimuli presented on the LED-arena

were programmed in MATLAB (www.mathworks.com).

LCD-Monitor Setup

The LCD-monitor setup is assembled from three LCD-monitors (SyncMaster 2233RZ, Sam-

sung) which were placed along three edges of a square. The fly faced the node connecting

the middle and right monitor (see Figure 2.1B). The stimulated visual space ranged from

−180◦ to 90◦ along the azimuth. Along the vertical, the stimulated visual space had a min-

imal extension of 58◦ and a maximal extension of 76◦. Stimuli were presented at 120 Hz.

All three monitors were synchronized by a graphics card (3D Vision Surround, Nvidia).

To record the exact frame rate a photo-diode was placed on a small square on one of the

monitors, whose color switched for each frame between light gray and black. The timing

of each frame was derived from the recorded oscillating signal. All presented stimuli were

programmed using the open-source game engine panda3D (www.panda3d.org).

2.2 Preparation and Recording

The experiments were carried out in two different fly species: For the receptive field and

self-motion processing studies, presented in Sections 3.1 and 3.2, recordings were performed

in Calliphora vicina. The fly species Lucilia sericata was used for the lateral interaction

study discussed in Section 3.3. All experiments were carried out in 3 to 15 days-old male

or female flies. In both species the spiking responses of lobula plate tangential cells were

recorded. Flies were fixed with wax and their heads were aligned using the pseudo-pupils in

the frontal region of both eyes. To introduce an electrode into the brain, the head capsule

was opened and fat tissue and air sacks were removed. The neural activity was recorded
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extracellularly with a tungsten electrode with an input resistance of 1 ΩM , which was

inserted into the lobula plate. For simultaneous recordings of two tangential cells, each

neuron was recorded with a single electrode. The recorded signals were then band-pass

filtered, amplified, and sampled at 10 kHz. For spike detection, two different approaches

were applied: For excellent signal-to-noise ratios (> 3), spikes were detected using a simple

threshold algorithm. If the signal-to-noise ratio was worse, I first isolated all potential

waveforms whose negative peak exceeded a sensitive threshold. To reduce dimensionality,

the waveforms were projected by principal component analysis onto the first three eigen-

vectors. Then, a Gaussian mixture model was fitted to separate waveforms corresponding

to spikes from noise induced waveforms (Bishop, 2008).

2.3 Self-Motion Induced Optic-Flow

2.3.1 Mathematical Description of Optic-Flow

A fly whose eye is modeled as a sphere is flying around in an environment. For simplicity,

the sphere is centered at the origin 0 of the Cartesion coordinate system and its radius has

length 1. Qi denotes the position of a point somewhere in the surrounding environment.

This point is projected onto the point di on the surface of the sphere with di = Qiµi, where

µi = 1/||Qi|| denotes the nearness of the fly to the point Qi. The vector di describes the

viewing direction where Qi is located. When the fly moves, the point at position Qi is

displaced with respect to the sphere which, in turn, also changes di, the projection of Qi

onto the sphere.

According to Chasles’ theorem, a movement of the fly can be unambiguously described

by a translation along a vector T and a rotation about an axis R through the center of

the sphere. Moreover, a self-motion of the fly can be simulated through a translation and

rotation in the respective opposite direction.

If the sphere translates forward for an infinitesimal time ∆t, the environment moves back-

ward in the same direction. The displacement of Qi (with respect to the sphere center)

due to the translation is given by

∆Qi = −T ∆t

Accordingly, if the fly rotates clockwise around R, this corresponds to a counter-clockwise

rotation of the environment causing the displacement

∆Qi = −(R×Qi)∆t
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Combining these equations describes the displacement of Qi due to an arbitrary motion

of the fly. However, a displacement of Qi during ∆t changes the projection of Qi onto the

surface of the eye by some ∆di. For a motion in the radial direction, i.e. in the direction

of Qi, the projection point of Qi does not change, i.e. ∆di = 0. Therefore (T · Qi)Qi (the

projection of T onto di) has to be subtracted from the translation yielding the expression:

∆di = −µi(T− (T · di) + R× di)∆t

where I used di = Qiµi. If ∆t→ 0, the last equation becomes

pi =
d

dt
di = lim

∆t→0

∆di
∆t

= −µi(T− (T · di)di)︸ ︷︷ ︸
translation

−
rotation︷ ︸︸ ︷
R× di (2.1)

pi describes the optic-flow induced by a rotation about R and a translation along T. Note

that the operation T − (T · di) di orthogonalized T with respect to di. Since the cross-

product R × di is also orthogonal to di, the optic-flow pi is orthogonal to di. Therefore,

although pi is a three-dimensional vector, it can be unambiguously defined by only two

dimensions tangent to di. Hence, through multiplication by a 2 × 3 matrix B, pi can be

projected onto a two-dimensional vector. A convenient choice for B is the matrix

B =

[
− sin θ cosφ 0

− sin θ cos θ − sin θ sinφ cos θ

]
.

The matrix B is orthonormal, i.e. BB> = 1. Its rows can be interpreted as a local

coordinate system positioned at (φ, θ) on the sphere with its axes pointing in the direction

of the longitude and latitude. Instead by the sub index i, we refer in the following to a

location on the unit sphere through the azimuth and elevation angle φ and θ. (Here, I

follow the convention that the north pole of the sphere corresponds to π/2.) The values

for the azimuth and elevation angle lie in the range−π ≤ φ ≤ π and −π/2 ≤ θ ≤ π/2.

The optic-flow at position (φ, θ) through a rotation and translation about R and along T

can then be expressed as

F(R,T, φ, θ) = B p(R,T, φ, θ).

The flow-field new expressed by the two-dimensional vector F(φ, θ) can be decomposed in

its translational and rotational component, i.e. F (R,T, φ, θ) = F (R, 0, φ, θ)+F (0,T, φ, θ)

with

F (R,0, θ, φ) = vrot

(
cos θ sin θrot − sinφ sin θ cos θrot sinφrot − cosφ sin θ cos θrot cosφrot

cos θrot (sinφ cosφrot − cosφ sinφrot)

)
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and

F (0,T, θ, φ) = µ vtra

(
cos θtra (sinφ cosφtra − cosφ sinφtra)

− cos θ sin θtra + sinφ sin θ cos θtra sinφtra + cosφ sin θ cos θtra cosφtra

)
Here I expressed R and T in spherical coordinates, i.e.

R = vrot[cosφrot cos θrot, sinφrot cos θrot, sin θrot ]T

and

T = vtra[cosφtra cos θtra, sinφtra cos θtra, sin θtra ]T .

As an optic-flow pattern, the receptive field of a motion-sensitive neuron is described by

a vector field attributing to each point (φ, θ) on the unit sphere a vector. Intuitively, this

vector, denoted by H(φ, θ), describes the neuron’s sensitivity to horizontal and vertical

motion at location (φ, θ). The receptive field H(φ, θ) can be decomposed into two scalar

fields, Haz(φ, θ) and Hel(φ, θ), specifying the horizontal and vertical component of the

vector H(φ, θ).

2.3.2 Comparison of Rotation and Translation

Rotations and translations are originally defined in different units. The rotation velocity

is typically specified by the number of rotations per second or the angular width rotated

in a second. Contrarily, the translation velocity is defined in distance per second. To

make rotations and translations comparable, the translation axes T(t) were normalized by

the distance of a particular receptive field on the unit sphere (modeling the fly’s eye) to

the surrounding environment. The receptive field is given by the matrices Haz(φ, θ) and

Hel(φ, θ) describing the preferred motion vector at location (φ, θ). The motion sensitivity

at location (φ, θ) is defined by

S(φ, θ) = ||H(φ, θ)|| = (Haz(φ, θ)
2 +Hel(φ, θ)

2)−1/2 (2.2)

The distance of a particular receptive field is defined as the scalar product of the dis-

tances between the fly and the surrounding environment, D(φ, θ, t), and the receptive field

sensitivity,

DH(t) =

∫
φ

∫
θ

D(φi, θj, t) S(φi, θj) cos θ dφ dθ. (2.3)

Dividing T(t) with units m/s by DH(t) with units m gives a normalized translation vector

Tn(t) with units 1/s. Consequently, Tn(t) and R(t) can be directly compared.
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2.3.3 Optic-Flow Norm

To guarantee that the strength translational and rotational optic-flow perceived by a spe-

cific receptive field is comparable, I defined an optic-flow norm. The motion sensitivity

of the receptive field at location (φ, θ) is again defined by S(φ, θ). The optic-flow pat-

tern induced by a translation along T(t) and rotation about R(t) is again denoted by

p(T,R, φ, θ, t) (see Equation 2.1). The norm of the optic-flow at time t is then defined by∫
φ

∫
θ

S(φ, θ) ||p(T(t),R(t), φ, θ, t)|| cos θ dφ dθ. (2.4)

2.4 Visual Stimuli

2.4.1 Brownian Motion Stimulus

The Brownian motion stimulus consists of n dots moving randomly across the stimulated

visual space. Each dot is represented by a 2D Gaussian with a standard deviation of

1.5◦. The luminance intensities ranged from the second lowest intensity value for regions

not covered by a Gaussian dot to the highest intensity for the center of a Gaussian. The

motion of each point follows the formula for Brownian motion. The azimuth and elevation

location of point k at time ti+1 are denoted by φk(ti+1) and θk(ti+1) and are calculated

from the previous time point ti by

φk(ti+1) = φk(ti) + σN(0, σ)
√
dt, (2.5)

and

θk(ti+1) = θk(ti) + σN(0, σ)
√
dt, (2.6)

where N(0, σ) denotes a mean zero Gaussian with standard deviation σ. The time step

dt = 5ms is determined by the refresh rate (200 Hz) of the LED-arena. The time series

of azimuth and elevation positions of point k, φk and θk, where then fed through a 50-th

order low-pass FIR digital filter with a cutoff frequency, fc of 20 Hz. Thus, the stimulus

is controlled by three parameters: the number of points, n, the standard deviation of the

Gaussian, σ, and the cut-off frequency, fc. We compared two stimulus conditions: A sparse

motion stimulus with 6 dots and a dense motion stimulus where 120 dots were presented.

The stimuli were presented to the fly as two dimensional luminance frames displayed at a

refresh rate of 200 Hz. In its original format, each stimulus is specified at position (φi, θj)

and time point tk by the luminance value S(φi, θj, tk). Since the lobula plate tangential

cells are primarily sensitive to motion and not luminance, we transformed the stimuli from
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the luminance to the visual motion space. Parameterizing the luminance value S(φi, θj, tk)

in terms of velocity, yields two values value Vaz(φi, θj, tk) and Vel(φi, θj, tk) specifying the

horizontal and vertical speed at location (φi, θj). To reduce dimensionality, the motion

space is discretized to an rectangular 6 × 14 grid. The six elevation angles of grid square

centers ranged from θ1 = −41 to θ6 = 41 deg and were inter-spaced by an angle of ∆θ =16.3

deg. The azimuth angles of the centers ranged from φ1 = −112◦ to φ14 = 112◦ deg, and

were thus separated by ∆phi = 17.3◦. To parameterize the stimulus, velocity was defined

as being proportional to the positional change of a dot within two successive luminance

frames. I summed all azimuth and elevation speeds of dots within the grid square given

by φi − ∆φ
2
< φi + ∆φ

2
and θi − ∆θ

2
< θi + ∆θ

2
to specify Vaz(φi, θj, tk) and Vel(φi, θj, tk).

In total I recorded from ten H1, nine Vi, five V1, four V2, and six H2 cells in Calliphora

vicina during presentation of the Brownian motion stimulus.

2.4.2 Local White-Noise Stimulus

For the local white-noise stimulus, a small circular horizontally or vertically oriented sine

grating was presented at various positions. The wavelength and diameter of each circular

sine was set to 15◦. The sine grating moved then horizontally or vertically according to

a white-noise velocity profile. The phase of the sine was again generated by a Brownian

walk. More precisely, the phase angle ψaz of a horizontally oriented sine grating at position

(φi, θj) and time point ti+1 is given by

ψaz(φi, θj, ti+1) = ψaz(φi, θj, ti) +N(0, σ)
√
dt, (2.7)

where N(0, σ) denotes Gaussian white noise with mean zero and a standard deviation of

σ = 12◦/s. The time series of phases, ψaz, was then low-pass filtered using a 50-th order

low-pass FIR digital filter with a cutoff frequency, fc, of 80 Hz. The phase angles of the

vertically oriented sine gratings, ψel, were computed analogously.

To estimate temporal filters mapping the velocity of a specific local grating onto the cor-

responding firing rate, the stimulus is parameterized in the following way: The stimulus

velocity is proportional to the phase change of a sine grating within two successive lumi-

nance frames. The horizontal speed value Vaz(φi, θj, tk) is only non-zero, if, at time point

tk, a horizontally oriented sine-grating is presented at position (φi, θj). The correspond-

ing velocity value is then given by Vaz(φi, θj, tk) = (ψaz(φi, θj, tk) − ψaz(φi, θj, tk−1))/dt.

Vel(φi, θj, tk) is calculated analogously.

The stimuli were presented on the LED-arena at a refresh rate of 200 Hz. The local sine

gratings were presented at all square of a 6 × 8 grid. The six elevation angles of the grid
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square centers ranged from θ1 = −41◦ to θ6 = 41◦ and were inter-spaced by an angle of

∆θ = 16.3◦. The azimuth angles of the centers ranged from φ1 = −112◦ to φ8 = 9◦, and

were separated by ∆φ = 17.3◦. In total, five H1 and five Vi cells from Calliphora vicina

were recorded, while presenting the local-white noise stimulus.

2.4.3 White-Noise Self-Motion Stimulus

The white-noise self-motion stimulus was generated by randomly moving a virtual fly

modeled as small sphere within a rectangular room. The ceiling, floor, and walls of the

room can be tapered with arbitrary textures or images. The lower-left corner of the room

corresponds to the origin of the chosen Cartesian coordinate system. In all simulations,

the lengths of all edges were set to 1 m. At each time the self-motion of the virtual fly

is defined by a rotation axis R(t) and a translation axis T(t) defining the fly’s rotation

and translation at time point t. Note that ||R(t)|| specifies the rotation velocity given in

rotations/second, whereas ||T(t)|| describes the translation velocity in m/s.

The x-, y-, and z-components of the rotation and translation axes were specified by three

independent Gaussian white-noise profiles with a standard deviation of 158◦/s and 1.4m/s

which were then fed through a 50-th order low-pass FIR filter with a cutoff frequency of

τ = 30 Hz. The position of the fly at time point ti+1, P(ti+1), was calculated according to

the formula for Brownian motion by

P(ti+1) = P(ti) + T(ti)
√
dt+ Z. (2.8)

Z specifies a repulsion term which prevents that the fly collides with the walls of the room.

The repulsion for the x-component, Zx(t) is given by

Zx(t) =
g

(L− Px(t))n
− g

(Px(t))n
, (2.9)

where L denotes the length of the room. The first term describes the repulsion from the

front wall, the second term corresponds to the repulsion from the back wall. The parameter

n specifies the range of the repulsion. For large n the repulsion has only a short range.

For all presented stimuli I set n = 5. The parameter g defines the overall strength of the

repulsion and was set to 1e − 4. The repulsion components Zy(t) and Zz(t) are defined

analogously.

The orientation of the fly at time ti is specified by the rotation matrix M(ti). Multiplication

of the initial fly’s orientation by M yields then the actual orientation at time point ti. The

rotation matrix M(ti+1) is recursively defined by
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M(ti+1) = M(ti)C (R(ti)/||R(ti)||, θ) , (2.10)

where C(A, α) denotes the rotation axis for a rotation of the angle α about the vector A.

The angle θ is given by ||R(ti)||2πdt with units 1/s.

Given the position and orientation of the virtual fly at each time point, the surrounding

room was projected onto the fly’s eye (modeled as sphere). The resulting images were

then displayed as movie on the stimulus device. All white-noise self-motion stimuli were

displayed on the LCD-monitor setup at a refresh rate of 120 Hz. For the experiments pre-

sented in Section 3.2, the rectangular room was tapered with eleven different images shown

in Figure 3.9. For each image, we presented a presented three different conditions: (1) Only

rotations, (2) only translations, (3) rotations and translations, where the rotational and

translational profile from the two previous conditions were summed. Each condition was

presented for 15 s and repeated as often as possible. In total, I recorded two H1, two Vi,

and two V2 cells (with their dendrites located in the left lobula plate) in Calliphora vicina

while presenting this stimulus.

2.4.4 Random Rotation Stimulus

For the double recordings of the tangential cells Vi and H1 presented in Section 3.3, a

simplified version of the self-motion stimulus was developed: First, only rotations were

presented, and, second, the stimulus was further simplified by replacing the rectangular

room by a sphere, such that all distances between the fly’s eye and the surface of the

surrounding sphere are homogeneous.

The virtual fly was placed in the center of a large black sphere painted with a regular grid of

white dots and rotated at each time point ti about a randomly changing rotation axis R(ti).

The time series of x-, y-, and z-components of the rotation axes were low-pass filtered using

a 50th-order low-pass FIR digital filter with a cutoff frequency of 37.5 Hz. The orthogonal

coordinate systems was such arranged that Vi’s preferred rotation axis aligns with the

x-axis, whereas H1’s preferred axis is given by a linear combination of the x- and z-axis.

The preferred axes of both cells are orthogonal to the y-axis. I compared two stimulus

conditions: For weak stimulation the sphere was painted with a 9× 5 grid of dots, whereas

for strong stimulation with a 30× 15 grid. The dots were represented as two-dimensional

Gaussians with as standard deviation of 1.5◦. For weak and strong stimulation I compared

three conditions: (1, Uncorrelated condition) For training the generalized linear models, I

generated two independent random rotation stimuli, and displayed the first stimulus only

on the left side of the LED-arena, and the second one only on the right side. Consequently,



36 2. Materials and Methods

the stimuli on the left and right side of visual space are uncorrelated. (2, Correlated

condition) For testing the GLMs, I presented the same random rotation stimulus on the

left and right side of visual space. (3, Unilateral stimulation) To test H1’s impact on Vi,

the random rotation stimulus on the right side was replaced by a small sine grating with a

wavelength of 20◦ moving in H1’s null direction (front-to-back) at a temporal frequency of

1.5 Hz. The grating ranged form -7.5◦ to 7.5◦ along the elevation and from 50◦ to 100◦ deg

along the azimuth. Each stimulus condition lasted for 30 s. All conditions were repeatedly

presented during one recording. To blank the binocular overlap region in the frontal part

of the visual space a homogeneously illuminated mask was positioned such that it spanned

the entire elevation of the LED-arena and ranged from -30 to 30◦ along the azimuth. The

luminance intensity of the mask was such adjusted that the mean luminance of all stimuli

(integrated over the whole LED-arena) was comparable. The random rotation stimulus

was presented, while simultaneously recording from the tangential cells Vi and H1 (n=8)

in Lucilia sericata.

2.5 Modeling and Data Analysis

2.5.1 Modeling an Array of Reichardt Detectors

The response properties of the fly tangential cells can be well described by assuming that

they integrate the synaptic outputs of Reichardt detectors (Borst et al., 1995; Lindemann

et al., 2005; Haag et al., 1999). I simulated the responses of the pre-synaptic elementary

motion detectors to the presented stimuli using an array of Reichardt-detectors with a

sampling base of 2.5◦.

A visual stimulus presented on the stimulus device can be described as a temporal series

of two-dimensional luminance matrices. Generally, the luminance value presented at time

point tk at location (φi, θj) is referred to as S(φi, θj, tk).

In the Reichardt model, the luminance signals at two horizontally or vertically neighboring

locations are correlated to compute a motion prediction. For a horizontally tuned mo-

tion detector, the luminance signals Saz(φi, θj) and Saz(φi+1, θj), at locations (φi, θj) and

(φi+1, θj), were fed through a low-pass and high-pass filter and subsequently multiplied,

Gexc
az (φi, θj, t) = (Saz(φi, θj, t) ∗ LP (t))(Saz(φi+1, θj, t) ∗HP (t)) (2.11)

with ’*’ denoting the convolution operator. LP(t) denotes a first-order low-pass filter with

time constant τLP (Borst, 2003). The time constant of the first-order high-pass filter HP(t)
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is denoted by τHP . A second multiplication is performed in a mirror symmetrical way,

Ginh
az (φi, θj, t) = (Saz(φi, θj, t) ∗HP (t))(Saz(φi+1, θj, t) ∗ LP (t)) (2.12)

The subtraction

Vaz(φi, θj, t) = Gexc
az (φi, θj, t)−Ginh

az (φi, θj, t) (2.13)

yields an estimate for horizontal motion at location (φi, θj). Physiologically, the subtraction

in Equation 2.13 is implemented via an excitatory and inhibitory synapse, both project-

ing onto the tangential cell’s dendrite (see Section 1.3.3). The corresponding synaptic

conductances are given by Gexc
az (φi, θj, t) and Ginh

az (φi, θj, t). To ensure that all synaptic

conductances are positive, negative values for Gexc
az (φi, θj, t) were interpreted as (positive)

inhibitory conductances and vice versa. The vertical motion prediction Vel(φi, θj, t) was

computed analogously by correlating the luminance signals Sel(φi, θj, t) and Sel(φi, θj+1, t).

For various combinations of the low- and high-pass time-constants, I evaluated the predic-

tive power of LN-models mapping the motion predictions by the Reichadt detector array

onto the recorded firing rates. Optimal performance values were reached for a low-pass

filter time-constant of 8 ms and a high-pass filter constant of 800 ms. These values lie

within the range of time-constants as found in (Lindemann et al., 2005).

2.5.2 Estimation of the Dynamic Receptive Field

The LN-model approach was adapted for optic-flow encoding neurons. The linear compo-

nent of the LN-model of a motion-sensitive neuron can be represented as a time-varying

vector field referred to as dynamic receptive field (DRF). To predict the neural response,

the velocity profiles Vaz(φi, θj, t) and Vel(φi, θj, t) of each location (φi, θj) are first linearly

filtered with the kernels Haz(φi, θj, t) and Hel(φi, θj, t) and then summed. Time was dis-

cretized according to the frame rate of the LED-arena. Assuming that the DRF has a finite

temporal extent of duration Kdt, the convolution of the parameterized stimulus with the

receptive field can be expressed as

r̂(tl) = r0 +
K∑
k=1

naz∑
i=1

nel∑
j=1

Vaz(φi, θj, tl−k+1)Haz(φi, θj, tl)

+
K∑
k=1

naz∑
i=1

nel∑
j=1

Vel(φi, θj, tl−k+1)Hel(φi, θj, tl)

(2.14)

where naz and nel determine the resolution of the discretized visual space along the azimuth

and elevation. The scalar parameter r0 denotes a constant offset. The hat on top of r(tl)
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distinguishes the estimated response, r̂(tl), from the measured response, r(tl). In the

following, the notation Xk
c refers to a two-dimensional naz × nel matrix with Xc(φi, θj, tk)

as entry in its i-th row and j-th column. To find a linear filter optimally mapping the

transformed stimulus onto the recorded neural response, I first formulated a constrained

linear system of equations. For this purpose, I transformed the K matrices V k
az and V k

el

preceding time point tl through re-indexing into a vector: I concatenated the columns of

the matrices Vk
az and Vk

el to two vectors which were then fused to a single stimulus vector

vl. Applying the same re-indexing to the kernel matrices Hk
az and Hk

el yields a single vector

h that allows to rewrite equation 2.14 as r̂(tl) = r0 + (vl)Th. Considering all time points tl

from l = K, . . . ,M and combining all corresponding estimations for r̂(tl) in a single vector

r̂ yields

r̂ = Vh (2.15)

where the i-th row of the matrix V equals (vi)T . Since, without loss of generality, the mea-

sured response and the stimulus was centered such that 1/M
∑

i ri = 0 and 1/M
∑

i Vij = 0

for each column j, the parameter r0 can be omitted. The parameters of the DRF are given

by the vector h minimizing the following error function,

Err(h) =
1

2
||r−Vh||2 +

λ

2
hTh (2.16)

The second term forces the vector h to be small and is often called power constraint. The

estimate h can be written as a linear combination of the eigenvectors of the auto-correlation

matrix VTV. Increasing λ decreases the contribution of poorly sampled stimulus directions

to the final estimate of h. Thus, if appropriately chosen, this constraint prevents an over-

fit of the model parameters. Setting the derivative of Err with respect to h to zero and

rearranging gives the optimal solution which can be expressed as

h = (VTV + λI)−1VT r, (2.17)

where I denotes the identity matrix. The vector h is known as the regularized least-squares

solution of equation 2.16 (Bishop, 2008).

2.5.3 Space-Time Separation of the Dynamic Receptive Field

Singular value decomposition was used to separate the DRF given by Haz(φi, θj, tk) and

Hel(φi, θj, tk) into a spatial and temporal component. First, I constructed a matrix F in

the following way: The elements of Haz(φi, θj, tk) and Hel(φi, θj, tk) describing the k-th

kernel frame were rearranged and appended to form the k-th column vector of the matrix
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F. Thus, each column of F corresponds to a time point, whereas each row refers to the

specific location of an azimuth or elevation weight. Singular value decomposition of the

matrix F yields pairs of normalized spatial and temporal components, each weighted by a

singular value. To decompose the DRF, I set all singular values, except the largest one, to

zero. To normalize the resulting space-time separated receptive field, the largest singular

value was set to 1.

2.5.4 Estimation of the Static Nonlinearity

The shape of the static nonlinearity of an LN-model can be estimated from a calibra-

tion plot, where the measured responses ri are plotted against the predicted responses r̂i

(Dayan and Abbott, 2001; Chichilnisky, 2001). The functional shape of the nonlinear-

ity was determined by first sorting the prediction values in ascending order and dividing

them into groups containing equal number of points. I then calculated for each group the

mean response and mean prediction value. Finally, the actual nonlinearity was estimated

through fitting a sigmoidal function to the resulting points. The sigmoidal function has

three free parameters (s, µ, σ) and is given by fsig(x) = s/
(
1 + exp

(
µ−x
σ

))
. To compare

the nonlinearities for different stimulus conditions the corresponding linear filters were first

normalized to have unit variance. The gain α and selectivity θ of a neuron were determined

by fitting a half-wave rectifier to the calibration plot:

f(x) =

{
α(x− θ) x ≥ θ

0 x ≤ θ

2.5.5 Biophysically Extended LN-Model

In the experiments with the Brownian motion stimulus, I found that the gain and selectivity

of the fly tangential cells are strongly modulated by the density of presented dots. To

account for the gain and selectivity modulation, the LN-model was extended by including

explicit biophysical elements.

The resulting biophysical model comprises four stages: First, the luminance stimuli are

fed through a two-dimensional array of Reichardt detectors describing the conductances of

excitatory and inhibitory synapses of local motion detectors projecting onto the tangential

cell. The conductances are then temporally filtered using the filter b(t) and weighted by

the synaptic weight matrices Waz and Wel (for horizontally and vertically tuned motion

detectors), before being integrated within the tangential cell dendrite. The dendritic inte-

gration transforms the conductances to a current which is finally mapped onto the firing



40 2. Materials and Methods

rate through the current-discharge curve f .

To model the dendritic integration taking place in the dendrite of the tangential cells, the

investigated neurons were simplified into a finite cable with the passive dendrite at one end

and the spike initiation zone (SIZ) on the opposite end. Dendrite and SIZ are separated

by the electrotonic distance L. The total excitatory and inhibitory conductance (given by

the weighted sum of conductances of all excitatory and inhibitory synapses of the motion

detectors) integrated by the finite cable are denoted by gexc and ginh. Using Equations 2.11

and 2.12, they can be written as

gexc(tk) =
1

nw

∑
s∈az,el

∑
i

∑
j

(Gexc
s (φi, θj, tk)Ws(φi, θj)) ∗ b(tk) (2.18)

and analogously for ginh(tk). Ws(φi, θj) specifies the synaptic strength of the horizontally

or vertically tuned motion detectors at location (φi, θj). The norm of the synaptic weight

matrix Ws, or total synaptic strength, is defined as

nw = |Ws| =

( ∑
s∈az,el

∑
i

∑
j

Ws(φi, θj)
2

)1/2

.

The normalized filter b(tk) was added to account e.g. for delays in the motion processing

system. Assuming that the neuron integrates over K time steps, the convolutions in

Equation 2.18 can be expressed as a further discrete sum. Note that the presented stimuli

where fed through a Reichardt detector array consisting of rightward and upward tuned

Reichardt detectors. If, however, for a particular neuron, the detector at position (φi, θj) is

leftwards or downwards tuned, Ginh
s (φi, θj, tk) has to be substituted by Gexc

s (φi, θj, tk) and

vice versa. Assuming that the spiking mechanism acts as a voltage clamp (Koch et al.,

1995), the current flowing to the SIZ at steady-state is

Isiz = −g∞Vs + 2g∞e
−Lnw

(
gexc(Eexc − Vse−L) + ginh(Einh − Vse−L)

)
+ g∞Vse

−L

nw(gexc + ginh)(1− e−2L) + g∞(1 + e−2L)
(2.19)

with g∞ as input conductance for an infinite cable (Holt and Koch, 1997). Vs denotes

the time-averaged voltage. Eexc and Einh refer to the excitatory and inhibitory reverse

potentials. Since the lobula plate tangential cells exhibit very small passive membrane time-

constants (Borst and Haag, 1996), it was assumed that the current flowing in response to a

dynamic visual stimulus can be approximated by Equation 2.19 as well. If L is sufficiently

large, Equation 2.19 can be approximated using the following functional expression

Isiz(tk) = z +
A(gexc(tk)− ginh(tk))
gexc(tk) + ginh(tk) + c

+
Dgexc(tk)

gexc(tk) + ginh(tk) + c
(2.20)
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where the parameters A, c, D and z are independent of gexc or ginh.

Compared with the linear dynamic receptive field, Ws corresponds to the spatial com-

ponent, while b(tk) is analogous to the temporal filter. Analogously to the full dynamic

receptive field, Ws and b(tk) can be interpreted as the most significant dimensions of the

matrices Ps(φi, θj, tk) ≈ Ws(φi, θj, tk)b(tk) with s ∈ {az, el}. The parameters A,c,D, and z

can be expressed in terms of physiological entities as:

A = 2
g∞e

−L

1− e−2L
|Einh| (2.21)

c =
g∞(1 + e−2L)

(1− e−2L)nw
(2.22)

D = 2(Eexc − |Einh|)
g∞ e−L

1− e−2L
(2.23)

z = −g∞Vs (2.24)

Consequently, the parameter combinations used for Figure 6 yield:

A

c
= 2

e−L|Einh|nw
1 + e−2L

(2.25)

D

A
+ 1 =

Eexc
|Einh|

(2.26)

The current Isiz is finally mapped by the current-discharge curve f onto a continuous firing

rate, i.e. r(t) = f(Isiz(t)). To optimize Isiz, the the following error function was minimized,

Err(A, c,D, z,Paz,Pel) =
1

2

N∑
i=1

(ri − Isiz(ti))2 (2.27)

with r(ti) = ri denoting the recorded firing rate at time point ti. The error function was

optimized using conjugate gradient descent. To minimize Err, the following procedure was

used: In a first run of the applied algorithm, I optimized for A,c, and Ps(φi, θj, tk) without

constraints on the rank and length of Ps. From the obtained matrices Ps, I then extracted

an estimate for Ws and b through singular value decomposition of Ps. The values for Ws

and b were then used as start vectors for a second optimization where Ws and b were

refined. Given the resulting estimates for Ws and b, I re-optimized in two further runs A

and c and finally D and z. In the end, f was estimated by comparing the prediction given

by Isiz with the recorded firing rate as described above (see Methods 2.5.4). The biophysical
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model was estimated simultaneously for both conditions of the Brownian motion stimulus

(see Methods 2.4.1). Due to computational limitations, I used a firing rate bin size of 10

ms for H1 and Vi and of 20 ms for H2, V1 and V2. The predictive power of the estimated

model was then evaluated using cross-validation (see Methods 2.5.8). For comparison, I

determined the predictive power of a model equivalent to the biophysical model without

the dendritic integration stage.

2.5.6 Estimation of Self-Motion Filters

An LN-model was applied to predict the firing rate for a given self-motion profile specified

by the translation and rotation axes R(t) and T(t). In the following the x-, y-, and z-

component of R(t) are referred to by Rx(t), Ry(t), and Rz(t) and analogously for T(t).

To predict the neural firing rate at time tk, r(tk), I filtered the three components of the

rotation and translation profile with a linear filter. Assuming that the linear filter has a

temporal extent of duration Kdt, the estimate r̂(tk) is given by

r̂(ti) =
K∑
k=1

∑
s∈x,y,z

Rs(ti−k+1) fRs (tk)

+
K∑
k=1

∑
s∈x,y,z

Ts(ti−k+1) fTs (tk)

(2.28)

where fRs (t) denotes the linear filter for one of the three rotational components and anal-

ogously for fTs (t). To find the optimal self-motion filters, I defined a linear system of

equations. To do so, I first appended all filters fRs and fTs to a single vector f . Similarly,

the K rotation and translation axes were concatenated to a single vector wk. Combining

all estimates r̂(tk) in a single vector r̂ then gives

r̂ = Wf (2.29)

where the k-th row of the matrix W equals (wk)T . The optimal filter f minimizes the error

function

Err(f) =
1

2
||f −Wf ||2 +

λ

2
fT f (2.30)

Analogous to Equation 2.17 the optimal solution can be found by

f = (WTW + λI)−1WT r. (2.31)
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2.5.7 Generative Spiking Model

The encoding model used to predict the spike trains of the lobula plate tangential cells

comprises two stages: (1) First, the luminance stimuli are fed through a two-dimensional

array of Reichardt detectors. The outputs of the Reichardt detector array are projected

on the spatial receptive fields of Vi or H1 yielding a one-dimensional signal. (2) Second,

this signal is used as input for a generalized linear model (GLM) modeling the tangential

cells’ spiking.

Input Signal Estimation

To reduce the dimensionality of the presented stimulus, I fed all luminance stimuli through

a two-dimensional array of Reichardt detectors (see Methods 2.5.1). The estimate of the

horizontal or vertical motion at location (φi, θj) is denoted as Vaz(φi, θj, t) and Vel(φi, θj, t).

To estimate the input to a tangential cell, the output of the Reichardt detector array is pro-

jected onto the spatial receptive field of the corresponding cell yielding a one-dimensional

time signal used as input signal for the GLM. The input signal at time tk is denoted by xk

and is given by

x(tk) =
∑
i,j

Haz(φi, θj)Vaz(φi, θj, tk) +Hel(φi, θj)Vel(φi, θj, tk),

where Haz(φi, θj) and Hel(φi, θj) denote the spatial receptive field of the tangential cell.

Generalized Linear Model

A generalized linear model was applied to describe a neuron’s spiking activity in dependence

of the presented stimuli, their preceding activity, and the response of another neuron

(Okatan et al., 2005; Paninski et al., 2007; Pillow et al., 2008). Time was discretized such

that each time bin lasts for dt = 1 ms. The response ri at time point ti can take two

possible states: ri = 0, i.e. no spike, or ri = 1, i.e. at least one spike. Hence, the likelihood

for ti follows a Bernoulli distribution, i.e.

L(ri|pi) = prii (1− pi)1−ri , (2.32)

where pi describes the probability to observe (at least) one spike at ti. The actual number

of spikes fired at ti follows a Poisson distribution. Thus, the spiking probability pi is given

by

pi = Poiss(ri > 0|λi) = 1− exp(−λidt). (2.33)
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The instantaneous firing rate λi depends on the input signal xi preceding ti, the neu-

ron’s response up to time point ti, and the spiking history of additional neurons. These

dependences are expressed via linear filters,

λi = f(k · xi + h · ri−1 + c · si−1 + µ), (2.34)

where k is the stimulus filter (i.e. linear receptive field). The vector h denotes the post-

spike filter describing the impact of preceding spikes on the firing rate and c is the coupling

filter quantifying the impact of the second neuron on the firing rate. The parameter µ is a

constant offset to match the neuron’s firing rate. Assuming that k comprises m elements,

k · xi is a short-hand notation for
∑m

j=1 kjxi−j+1. The vector s denotes the spike train of a

second neuron. Note that Equation 2.34 can be simply extended to an arbitrary number

of additional neurons. I set the invertible function f to f = exp(·). The likelihood of the

entire spike train is the product of independent observations at all time points,

L(r|x, θ) =
n∏
i=1

prii (1− pi)1−ri =
n∏
i=1

(1− exp(−λidt))ri exp (−λidt)1−ri (2.35)

With r = [r1, . . . , rn] and x = [x1, . . . , xn]. All hidden variables are summarized by θ, i.e.

θ = {k,h, c, µ}. The log likelihood of the entire spike train is then given by

logL(r|x, θ) =
n∑
i=1

ri log(1− exp(−λidt))−
n∑
i=1

(1− ri) λidt (2.36)

The optimal model parameters are found by maximizing the log likelihood with respect

to θ yielding the maximum posteriori estimate for θ. To avoid over-fitting, I added a

regularizing term p penalizing the size of all parameters according to the L1-norm, i.e.

p = −α(
∑
i

|ki|+
∑
i

|hi|+
∑
i

|ci|)

(Gerwinn et al., 2010). The parameter α was chosen by means of cross-validation on the

unknown test set. The penalized log likelihood was maximized using a nonlinear gradient-

descent algorithm.

Evaluation

To evaluate the spike train prediction of the GLM estimated for the training data set

(uncorrelated condition), we calculated the log-likelihood on the test data set (correlated

condition). If logLhom denotes the log-likelihood of the spike train under a homogeneous

Poisson process, the prediction quality measured in bits/spike is given by

logLspike(r|x, θ) = (logL(r|x, θ)− logLhom(r)) /
∑

i
ri.
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Bias Correction

The spike trains predicted by a GLM directly estimated from the data underestimates the

amount of information carried by the spikes about the stimulus. This is likely due to an

underestimate of the amplitude Ak of the stimulus filter k. The input signal x to the GLM

is only an estimate of the actual unknown input y provided by pre-synaptic elements to

the modeled neuron. The input x can then be expressed as x = y + (x − y) = y + η,

i.e. x equals the actual signal plus added noise. Simulations showed that with increasing

noise added to the actual input, the stimulus filter amplitude Ak is underestimated. To

account for this bias on the filter amplitude, I increased Ak while reducing the constant

offset µ to match the mean firing rate. To do so, I first varied the amplitude and offset and

calculated the likelihood for all resulting models. For each value of Ak I then determined

the value of µ which preserved the mean firing rate. Next, two errors were calculated in

dependence of Ak to adjust the filter amplitude: (1) An encoding error, Errenc, quantifying

for a given Ak the percentage by which the log likelihood deviates from the log likelihood

of the unmodified GLM. (2) A decoding error, Errdcd, quantifying the percentage by which

the information carried by the spikes of the GLM for Ak deviates from the information

encoded by the recorded spikes. For Ak, I chose then the value which minimized the sum

of both errors.

For the experiments presented in Section 3.3, the corrected stimulus filter amplitude was

estimated separately for Vi and H1 as well as for weak and strong stimulation. For Vi, Ak

was set to 1.15 (weak) and 1.2 (strong). For H1, Ak was found to be 1.35 (weak) and 1.15

(strong).

2.5.8 Evaluation of Firing-Rate Models

To evaluate a neural model which predicts the firing rate of a neuron in response to a given

stimulus, a cross-validation approach was performed: I split the data into five equally sized

subsets, four of which were assembled to form the training set, whereas the remaining one

was used as test set. In total, there were thus four different training sets on each of

which I estimated the model and finally evaluated it on the corresponding test set. The

average performance of the model on the test sets quantifies the model’s ability to predict

the correct response. The quality of a filter can be measured by the mean square error

between estimated and measured response, σ2
e = 〈 1

M

∑
i(ri − r̂i)2〉. (The angular brackets

〈·〉 denote averaging over trials.)

A frequently applied measure for the performance of a model estimated using linear
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regression is the so-called coefficient of determination, r2. Given the response power

σ2
r = 〈 1

M

∑
i r

2
i 〉, r2 can be calculated by

r2 = 1− σ2
e/σ

2
r . (2.37)

Intuitively, the coefficient of determination is the proportion of variability in a data set

that is accounted for by the linear model. It varies between 0 and 1, where 1 describes the

case where the predicted and recorded response equal each other.

However, since the response normally includes non-stimulus related noise, a value of 1 for r2

is quite unrealistic. To account for the noise in the recorded signal, an alternative measure

was proposed to evaluate the model performance (Sahani and Linden, 2003): Assuming

that the recorded response is additively composed of a stimulus-related signal and non-

stimulus related noise, the lowest value σ2
e can reach is the residual noise component. The

latter can be estimated by

σ2
η =

n

n− 1

[〈
1

M

∑
i

r2
i

〉
− 1

M

∑
i

〈ri〉2
]
, (2.38)

where n is the number of trials. Given the response power σ2
r = 〈 1

M

∑
i r

2
i 〉, the relative

success of the linear model is given by

β =
σ2
r − σ2

e

σ2
r − σ2

η

, (2.39)

which is 1 when the mean square error σ2
e equals the signal noise. In case of over-fitting,

where the model fits noise, β becomes larger than 1. Generally, β can be interpreted as

the percentage of the stimulus-related response power, (σ2
r −σ2

η), that can be explained by

the given model.

I calculated the predictive power of a given model on the training and on the test sets. The

relative success on the training set, βtrain, gives an upper bound for the predictive power

of a model. On the other hand, the relative success on the unknown test set, βtest sets a

lower bound for the model quality.

The introduction of a regularizer generally lowers the success of a given model on the

training set. Intuitively, a regularizer allows to decrease the extent to which the predictions

r̂ vary when training the model on different data sets and, thus, makes the model less

sensitive to a particular data set. Therefore, if correctly chosen, the regularizer prevents

the model from over-fitting. Constraint parameters were chosen such that they maximize

βtest.
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2.5.9 Linear Decoding

For stimulus reconstruction and the information estimates in Sections 3.2 and 3.3, I used

linear decoding (Dayan and Abbott, 2001; Rieke et al., 1999). In both sections the stimulus

was a white-noise rotation or translation profile parameterized by the time-varying, three-

dimensional rotation axis R(t) or the translation axis T(t) (see Methods 2.4.3 and 2.4.4).

I tested how well the x-, y- or z-component of R(t) or T(t) can be reconstructed given

a (recorded or simulated) spike train r. In the following, v denotes either the x, y, or z-

component of R(t) or T(t). To obtain a linear estimate of v, the spike train r is filtered

with a linear kernel g,

v̂i =
∑
i

ri · g.

The optimal kernel g was determined by minimizing the mean squared error between the

actual and the estimated stimulus, 1/n
∑
i

(vi − v̂i)2. I minimized this error term using

Bayesian linear regression (Bishop, 2008). The reconstruction quality was evaluated by

means of a five-fold cross-validation on single trials. Comparison of the power spectrum of

the stimulus Pv(f) and the power spectrum of the estimate, Pv̂(f), gives a lower bound of

the information, ILB, transmitted by the spike train (Borst and Theunissen, 1999; Rieke

et al., 1999), i.e.

ILB =

∫ ∞
0

log2(Pv(f)/Pv̂(f)) df. (2.40)

ILB measures the information in bits/s. Dividing ILB by the mean firing rate gives an

information estimate in bits/spike referred to as Ispike.

2.5.10 Self-Motion Tuning Maps

Self-motion tuning maps are two-dimensional tuning curves representing the rotation or

translation tuning of a given tangential cell. They were calculated for the white-noise self-

motion stimuli (see Methods 2.4.3 and 2.4.4). To reduce the dimensionality of the rotation

profile R(t) and translation profile T(t) to two dimensions, rotation and translation axes

were represented in spherical coordinates by their azimuth and elevation angle. Note that

by this representation the length of the rotation or translation axes (i.e. the rotation or

translation velocity) is neglected. To account for the neurons’ response delay, I convolved

the rotation or translation profile, R(t) or T(t), with the optimal linear filter mapping R(t)

onto the recorded firing rate. I then calculated for each rotation or translation axis the

mean firing rate which was color-coded on a sinusoidal projection of a sphere yielding a two-

dimensional tuning map T (φ, θ). The azimuth tuning Tθ(φ) is calculated by averaging over
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all elevation angles: Tθ(φ) = 1/π
∫ π/2
−π/2 T (φ, θ) cos(θ)dθ. The elevation tuning is computed

analogously by Tφ(θ) = 1/(2π)
∫ π
−π T (φ, θ)cos(θ)dφ.



Chapter 3

Results

3.1 The Spatio-Temporal Response Properties of the

Tangential Cells

Previously, the spatial and temporal response properties of the lobula plate tangential cells

have been characterized separately. The spatial receptive fields have been determined by

presenting local stimuli (Krapp and Hengstenberg, 1996; Krapp et al., 2001) (see Intro-

duction 1.2.6). These experiments allowed calculating the preferred motion direction of

tangential cells at various positions in visual field. The resulting static receptive fields

describe the spatial arrangement of local motion sensitivities, but disregard the dynamics

of the neural response. On the other hand, purely temporal aspects of motion processing

have been studied in experiments where the tangential cell H1 was stimulated with global

gratings moving according to a white-noise velocity profile (see Introduction 1.2.7). Tem-

poral filters mapping the stimulus velocity onto the neural response gave insight into the

dynamic features of H1, however neglecting the spatial dimension of the receptive field.

I developed two stimuli which allow studying both the spatial and temporal properties of

the tangential cells simultaneously in a combined approach. The first stimulus represents

a global white-noise motion stimulus comprising several dots moving randomly on the

stimulus screen and is referred to as Brownian motion stimulus. To describe the motion-

processing by the neurons, I fitted an LN-model adopted for optic-flow processing neurons.

Varying the number of moving dots also allows for studying to what extent the response

properties of the tangential cells depend on the motion density.

The second approach applied to estimate the dynamic receptive fields is a purely local

method. The recorded cells are locally stimulated by presenting a small sine grating moving
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horizontally or vertically according to a white-noise profile. This so-called local white-noise

stimulus allows estimating how the reliability, by which motion stimuli are encoded, differs

depending on the location in visual space.

3.1.1 Processing of Sparse and Dense Motion

Dynamic Receptive Fields of Optic-Flow Processing Neurons

To address both the spatial and dynamic features of the tangential cells, I first presented

a global white-noise stimulus to the fly, while recording the neural response (firing rate)

of the tangential cells H1, H2, V1, V2 and Vi. More specifically, the stimulus comprised

several dots, each of which performed a random walk within the stimulated visual space,

guaranteeing that the stimulus is spatially uncorrelated. Consequently, at each time point,

several positions were simultaneously stimulated. To study the impact of the stimulus

strength on the cells’ properties, I varied the number of motion cues in each recording:

During sparse motion only 6 dots were shown, while the dense motion stimulus comprised

120 dots. Both stimulus conditions are displayed in Figures 3.1A and B along with example

responses of a single H1 neuron.

Among the recorded cell types, the tangential cells H1 and Vi exhibited the highest mean

firing rates during sparse and dense motion presentation (Figure 3.1C). Generally, an in-

crease in the motion density resulted in significantly higher mean firing rates, with an

almost twofold increase for the H1 neuron. To evaluate the response reliability to re-

peated presentations of the same stimulus, I measured the signal-to-noise ratio for firing

rates binned in 5ms. Among all cells, H1 responded most reliably, both during sparse and

dense motion (Figure 3.1). Both H1 and Vi exhibited a significant increase of the response

reliability during dense motion. The remaining cells shows a similar trend, though not

significant.

To characterize both the spatial and temporal properties of large-field optic-flow processing

neurons, I adopted the linear-nonlinear (LN) model (see Figure 3.2A). The first stage of

the LN-model consists of a set of linear filters, processing horizontal or vertical motion

at each spatial location, which thereby capture both the temporal and spatial properties

of the studied neuron. The output of the linear stage is then summed and fed through

a static nonlinearity. This nonlinearity can be interpreted as the neural input-output

relation that transforms the filtered local dot velocities to the firing rate. For the Brownian

motion stimulus, the velocity of a dot was defined as its positional change within two

successive frames times the frame rate. The linear stage of the LN-model attributes to
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Figure 3.1: Tangential Cell Responses to the Brownian Motion Stimulus. (A-B) Frames of

the Brownian motion stimulus along with responses of the H1 neuron. The Brownian motion stimulus

comprises several dots that randomly move across the stimulated visual space and cover 242◦ in azimuth

and 96 deg in elevation direction. The fly faced the center point (0◦,0◦). In the sparse motion stimulus

condition, 6 dots were shown (A), compared to 120 dots in the dense motion condition (B). Sparse motion

elicits weaker and less reliable responses. The repeated spike responses are represented in a raster plot

(top) and in a trial-averaged peri-stimulus time histogram (PSTH); the gray shading depicts the standard

deviation of the PSTH. (C) Mean firing rates of the five recorded neurons. Presentation of the dense

motion condition (Dense, red) elicited higher firing rates than sparse motion (Sparse, blue). Error bars

denote the S.E.M. Significant differences (based on a paired t-test) are indicated by asterisks (*p < 0.05,

**p < 0.01, ***p < 0.001). (D) Reliability of responses to sparse and dense motion. An increase of the

density of the presented motion cues results in an increase of the reliability. Reliability was calculated as

the signal-to-noise ratio for firing rates binned in 5ms. Error bars represent the S.E.M. (**p < 0.01).
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each position two components weighting the local horizontal and vertical velocity. These

two components can be represented as a two-dimensional vector. Intuitively, the direction

of this vector indicates the local preferred direction, and the vector length the cell’s local

motion sensitivity. Considering all positions in visual space finally yields a vector field,

describing the preferred motion pattern of the cell. However, since the linear stage also

comprises a temporal component, it becomes a time-varying vector field (see Figure 3.2A)

which is referred to as dynamic receptive field (DRF). In its discrete form, the DRF consists

of a temporal series of vector fields. To estimate the DRF of the investigated neurons,

least-squares techniques were applied which account for the high stimulus dimensionality

(Bishop, 2008) (see Methods 2.5.2).

Figure 3.2B depicts the DRF of the Vi neuron, estimated for sparse motion. Starting

from 45 ms preceding the predicted response bin, Vi exhibits an increasing sensitivity to

a rotational optic-flow which then vanishes in the last frame. The vector fields from -45

to -15 ms strongly resemble the optic-flow pattern as induced by a self-rotation around

a rotation axis pointing toward an azimuth and elevation angle of about -43◦ and -8◦,

respectively. Inspection of the DRF suggests that, instead of a whole series of vector

fields, a single spatial and temporal component might be sufficient to fully capture the

spatio-temporal properties of Vi: A single vector field or static receptive field indicating

the preferred optic-flow pattern and a temporal filter modulating this spatial component

in time. In this case, the DRF is formally described by the product of a single spatial and

temporal component (Figure 3.3A), i.e. it is space-time separable. This would imply that

the dynamic processing properties are independent of the location in the receptive field

and that the vector orientations, i.e. the local preferred directions, do not change over

time.

To test whether the DRFs of the tangential cells are indeed space-time separable, I first

determined for each studied cell the components of the LN-model and then compared the

performance of the unmodified full DRF to the product of its most significant spatial and

temporal component (see Methods 2.5.3). The quality of a given DRF was quantified by

the predictive power, defined as the percentage of the stimulus-related response captured

by the model (Sahani and Linden, 2003). Figure 3.3B shows the predictive power values

for the sparse motion stimulus. For all five cells, separating the DRF into a single spatial

and temporal component even increased the performance of the model. The same result

was also found for dense motion (data not shown). Hence, a spatial receptive field and a

temporal filter are sufficient to describe the linear component of the LN-model. Figures

3.3C and 3.3D show the spatial and temporal components of a single H1 and Vi cell.

In general, H1 is mainly sensitive to back-to-front motion in the left visual hemisphere
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Figure 3.2: Dynamic Receptive Field of Vi. (A) Diagram of the linear-nonlinear (LN) model

adopted to optic-flow processing neurons. The LN-model was estimated on a parameterized version of

the stimuli specifying for each time point and dot a horizontal and vertical velocity value. First, the

(velocity) stimulus is passed through a spatio-temporal linear filter, represented as a time-varying vector

field (Dynamic Receptive Field, DRF). The output of the DRF is finally mapped by a static nonlinearity

onto the firing rate. (B) Dynamic receptive field (DRF) of the Vi neuron. The DRF was estimated for

a firing rate binned in 5 ms. The DRF exhibits from -45 ms on an increasing sensitivity to a rotational

optic-flow pattern, vanishing at -5 ms. (For visibility, only every second kernel frame is shown). The time

lags indicate the time relative to the response bin to be predicted.
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Figure 3.3: Space-Time Separated Dynamic Receptive Fields of an H1 and Vi Neuron for

Sparse Motion. (A) A single spatial and temporal component was separated from the linear DRF, and

then approximated the DRF as a product of these components. (B) Predictive power values for the sparse

motion condition. For all neurons, the predictive power of the space-time separated DRF (Separated) is

higher than for the full DRF (Full). (C-D) Components of the linear-nonlinear (LN) model for a single

H1 and Vi cell estimated for sparse motion. (Left) Spatial component of the H1 and Vi cell. (Middle)

Temporal components of H1 and Vi. (Right) Static nonlinearities for H1 and Vi.
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(negative azimuth angles). However, the response strength depends on the location and is

strongest in frontal regions around the equator (Figure 3.3C left). The spatial component

of H1 is similar to the static receptive field (spatial map of local preferred directions) as

determined in a previous study (Krapp et al., 2001). The spatial component of Vi (Figure

3.3D left) is similar to the vector fields at -45 to -25 ms of the DRF presented in Figure

3.2B. The temporal components of H1 and Vi both peak at -25 ms (Figures 3.3C and 3.3D

middle), and then decay to zero for increasing negative time points. The output of the

DRF is transformed by a static nonlinearity (input-output relation) to the firing rate (see

Figure 3.2A). H1 exhibits a sigmoidal nonlinearity with a decreasing slope for small and

large input values (Figure 3.3C right). In contrast, the input-output relation of Vi is rather

linear (Figure 3.3D right).

The Input-Output Relation of the Tangential Cells Depends on Motion Density

To study whether the receptive fields of the tangential cells depend on stimulus strength

controlled by the density of the motion cues, I systematically compared the responses of

each cell type to both sparse and dense Brownian motion stimuli. To test for changes in

the spatial components of H1, I calculated the mean motion sensitivity as a function of the

azimuth angle for both stimulus conditions. As shown in Figure 3.4A (left), the tuning of

the mean motion sensitivity is slightly sharper for dense motion when compared to sparse

motion. To quantify the effect of the motion density on the spatial component of Vi, the

motion sensitivities were averaged along a circular path that was centered on the midpoint

of the rotational flow field of Vi (see inset Figure 3.4B left). Vi’s motion sensitivity is only

weakly modulated by the number of motion cues. Similarly, the spatial components of the

remaining tangential cells are only slightly affected by changes in the motion density (data

not shown).

Figure 3.4A (middle) depicts the temporal components of the H1 neuron for both stimulus

conditions, when averaged over all H1 recordings. During dense stimulation, H1 integrates

over a slightly shorter stimulus history. Similarly, the temporal components of Vi (Figure

3.4B middle) and the tangential cells H2, V1 and V2 are only weakly modulated by the

motion density (data not shown). The finding that the linear component of the LN-

models is only weakly affected by the motion density implies that a DRF estimated for

dense motion should also perform well for predicting the neural response to sparse motion.

Indeed, I found that exchanging the spatial and/or temporal component determined for

sparse motion with the respective component(s) for dense motion reduces the predictive

power of H1 and Vi only slightly (data not shown). Figures 3.4A and 3.4B (right) show
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the static nonlinearities of the LN-models for H1 and Vi averaged over all recordings

for both stimulus conditions. Compared to the spatial and temporal components, the

static nonlinearities exhibit pronounced changes: For dense motion, the slope of these

nonlinearities decreases strongly. Since the reduction of the slope is equivalent to a smaller

the neural gain, the larger input range during dense motion (along the x-axis) is mapped

onto a response interval (along the y-axis) comparable to that for sparse motion. For

the other cells, the gain was likewise significantly reduced for stimuli with higher motion

density.

To quantify these changes, I fitted for each neuron a half-wave rectifier to the static nonlin-

earity (see inset Figure 3.4C and Methods 2.5.4). The gain of each cell was then quantified

as the slope of the half-wave rectifier. For all cells, the gain was significantly reduced by a

factor of 3.3-4.4 when presenting the dense instead of the sparse motion stimulus (Figure

Figure 3.4 (following page): Changes in the Input-Output Relation Due to an Increase of

the Motion Density. (A) Comparison of the spatial (left) and temporal components (middle) and

the static nonlinearities (right) for sparse and dense motion of H1. (Left) Sensitivity tuning of H1 for

sparse (Sparse, blue) and dense motion (Dense, red). The mean motion sensitivity was calculated for each

azimuth angle. The resulting tuning curves were averaged over all H1 recordings (n=10). The motion

sensitivity at a particular position is defined as the length of the corresponding vector in the spatial

component. Error bars denote the S.E.M. (Middle) Averaged temporal components for sparse (blue) and

dense motion (red) of H1. (Right) Static nonlinearities of H1 averaged over all recordings (error bars:

S.E.M). An increase of the motion density resulted in a decrease of the slope (gain) of the nonlinearity,

also called a divisive modulation of the nonlinearity. The blue dashed line shows the nonlinearity for sparse

motion when re-scaled by a factor of 4.6. Compared with the re-scaled nonlinearity for sparse motion,

the nonlinearity for dense motion (red) is shifted to the left, also called an additive modulation of the

nonlinearity. (B) (Left) Spatial sensitivity tuning of Vi for sparse (blue) and dense motion (red). For Vi,

we calculated the mean sensitivity for eight sectors of a circle centered at the point (-43◦, -8◦) (see inset

for illustration). (Middle) Averaged temporal components for Vi. (Right) Averaged static nonlinearities

for Vi. The rescaled nonlinearity (blue dashed line) for sparse motion was scaled by a factor of 3.2. (C-

D) The neural gain and selectivity during sparse and dense motion for all recorded fly tangential cells.

The gain and selectivity for each recording and stimulus condition were determined by fitting a half-wave

rectifier to the corresponding static nonlinearity. The gain is defined as the slope α (see inset). The neural

selectivity for dense motion is given by the offset θ1. For sparse motion, we defined the offset θ2 of the

re-scaled nonlinearity (blue dashed line) as the selectivity. The relative offset θ2 − θ1 corresponds to the

additive shift of the nonlinearity induced by the increase of the motion density. (E) Scheme illustrating

the modulations of the static nonlinearity induced by the increase of the motion density. (Top) A divisive

modulation of the nonlinearity f(x) (red) rescales its shape yielding the blue curve. Formally this rescaling

can be expressed as f(x/d) for d>1. (Bottom) A leftwards shift of f(x) (resulting in the blue curve) is

formally given by f(x+d) for d>0.
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3.4C). Further investigation shows that the gain change with motion density is mostly

divisive, i.e. it can be explained by rescaling or stretching the x-axis: If f(x) describes the

nonlinearity for sparse motion, a divisive modulation of the input-output relation by the

increased motion density can be expressed as f(x/d) (see Figure 3.4E, Divisive Modula-

tion). Figures 3.4A and 3.4B (right) show rescaled versions of the nonlinearities of H1 and

Vi for sparse motion (blue dashed lines). These rescaled nonlinearities for sparse motion

are similarly shaped as the original nonlinearities for dense motion, yet they do not over-

lap precisely. Especially for H1, the nonlinearity for dense motion is shifted to the left.

Such an additive modulation of the input-output relation can be expressed as f(x+d) (see

Figure 3.4E, Additive Modulation). The shift of the nonlinearity lowers the selectivity of

the neuron so that even weaker stimuli, e.g., those that only poorly match the receptive

field, are sufficient to elicit a response. We quantified this neural selectivity as the offset of

the fitted half-wave rectifier (see inset Figure 3.4C and Methods 2.5.4). For comparability,

the selectivity for sparse motion is defined as the offset of the rescaled nonlinearity (blue

dashed lines in Figures 3.4A and 3.4B, right). All cells showed a significant reduction of

their selectivity (Figure 3.4D). The selectivity of H1 and V2 was decreased by a factor of

2.1, whereas Vi only showed a reduction of its selectivity by a factor of 1.2.

A Biophysical Model for Gain and Selectivity Control

To unravel the biophysical mechanisms that could underlie the observed divisive and ad-

ditive modulation of the static nonlinearities, the LN-model was extended to incorporate

explicit biophysical elements. To develop this biophysical model, the fly tangential cells

were described as finite cables integrating the synaptic inputs provided by pre-synaptic,

retinotopically arranged elementary motion detectors (see Methods 2.5.1). These local

motion-sensitive elements are well described by the Reichardt model (Reichardt, 1961). A

single Reichardt detector comprises two subunits whose outputs are finally subtracted from

each other. In each subunit, the incoming luminance signal is delayed through low-pass

filtering and multiplied with the high-pass filtered signal of the second subunit. Exper-

imental studies demonstrated that the subtraction is biophysically implemented via an

excitatory and inhibitory synapse connecting each subunit to the dendrite of a tangential

cell (Single et al., 1997).

For the biophysical model I simulated the motion processing of the local motion detectors

presynaptic to the tangential cells by feeding the presented luminance stimuli through

a two-dimensional array of horizontally and vertically oriented Reichardt detectors (RDs

in Figure 3.5A). The processing by the Reichardt detector array can be viewed as an



3.1 The Spatio-Temporal Response Properties of the Tangential Cells 59

gexc

inhg
TC

Stimulus    RDs

*

DRF Nonlinearity
 Dendritic
Integration

 R
at

e 
[H

z]

Current [A]

...

Fi
rin

g 
R

at
e 

[H
z]

Filtered Stimulus [a.u.]
−50 0 50

0

50

100

150

F
iri

ng
 R

at
e 

[H
z]

Filtered Stimulus [a.u.]

Sparse
Dense
Sparse&Dense

P
re

di
ct

iv
e 

P
ow

er

H1    H2     V1   V2    Vi

A

B C D

...

ViH1

****** *** * ** ***

  
0

0.2

0.4

0.6

0.8

Current Injection
Dend. Integration

LN-model

Response

Time [s]

R
at

e 
[H

z]

Figure 3.5: Biophysical Model for Optic-Flow Processing Neurons. (A) Schematic diagram

illustrating the biophysical model. First, the (luminance) stimulus is fed through a two-dimensional array

of Reichardt detectors (RDs). The output signals of the Reichardt detector subunits are filtered with

a space-time separated dynamic receptive field (DRF), thereby yielding a total excitatory and inhibitory

conductance gexc and ginh. Dendritic integration of the excitatory and inhibitory inputs in a tangential cell

(TC) modeled as finite cable results in a current which is finally transformed to the firing rate (Response)

through a current-discharge curve (Nonlinearity). (B) The nonlinear dendritic integration enhances the

predictive power. The performance of the biophysical model (Dendritic Integration, green) is compared to

the LN-model (LN, orange) and an alternative model where the dendritic integration was replaced by a

weighted linear summation of the Reichardt detector outputs (Current Injection, blue). All models were

trained on the whole data set comprising both dense and sparse motion. For each neuron the performance

increase of the biophysical model is significant (*p < 0.05, **p < 0.01, ***p < 0.001). The significance

of the performance increase was tested by comparing the predictive power of the control model (Current

Injection) with the biophysical model (Dendritic Integration). Error bars represent the S.E.M. (C-D) Static

nonlinearities of the biophysical model for H1 (C) and Vi (D). For both neurons, the nonlinearity estimated

for both stimulus conditions (black) is shown together with nonlinearities determined separately for sparse

and dense motion (blue and red). The close overlap of the nonlinearities indicates that the nonlinear

dendritic integration indeed compensates for the divisive and additive modulation of the nonlinearity.
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alternative approach for estimating the local velocities of the moving dots, which, for

the LN-model, were determined by explicitly attributing to each dot a velocity vector

(given by the dot’s displacement within two successive frames). However, the Reichardt

detector array additionally allows us to incorporate the conductances of the excitatory and

inhibitory synapses between the pre-synaptic motion elements and the tangential cells.

The output signals of the Reichardt detectors are filtered using a space-time separated

dynamic receptive field (DRF in Figure 3.5A). The horizontal and vertical vector ele-

ments of the spatial component are interpreted as the strengths (weights) of the synapses

between horizontally or vertically tuned Reichardt detectors and the tangential cell’s den-

drite. The temporal component accounts for delays in the motion processing system and

might additionally improve the prediction of the Reichardt detectors through linear fil-

tering. Convolving the excitatory and inhibitory Reichardt detector outputs with the

dynamic receptive field yields a prediction of the total excitatory and inhibitory conduc-

tance input, gexc and ginh, into the tangential cell’s dendrite. These conductance inputs

are then integrated within the dendrite of the tangential cell (modeled as finite cable) and

thereby transformed into a prediction of the inflowing current (Dendritic Integration in

Figure 3.5A). Here, I considered current instead of voltage, since theoretical studies have

demonstrated that the current flowing from the dendrite to the spike initiation zone can be

studied separately from the spiking mechanism (Bernander et al., 1994; Koch et al., 1995).

With this additional nonlinear stage, the biophysical model explicitly accounts for the

nonlinearity imposed by the dendritic integration of synaptic inputs. Finally, the current

estimate is transformed into a firing rate by a static nonlinearity, which, for the biophysical

model corresponds to a current-discharge curve (Nonlinearity in Figure 3.5A). As for the

classical LN-model the parameters for the spatial and temporal components, the dendritic

integration in the finite cable, and the nonlinearity were directly derived from the recorded

responses through minimization of an error function (see Methods 2.5.5).

To derive a formal expression for the current flowing in response to a visual stimulus, it was

assumed that the studied neurons can be described as finite cables: The excitatory and

inhibitory subunits of the Reichardt detectors project to one end of the cable, while the

spike initiation zone is positioned at the other end. Moreover, I assumed that the passive

dendrite is separated from the spike initiation zone by a large electrotonic distance. Since

the tangential cells exhibit small time-constants in the range of a few milli-seconds (Borst

and Haag, 1996), only the steady-state current was considered.

The motion prediction by the Reichardt detector array is given by the difference of the

total excitatory and inhibitory conductance, gexc and ginh: If the Reichardt detector array

prediction was provided as current injections to the dendrite, the inflowing current would
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be proportional to the motion prediction x = gexc − ginh. However through dendritic

integration, x is nonlinearly transformed to the current Isiz flowing to the spike initiation

zone. This current can be approximated by

Isiz(x) = z +
Ax

gexc + ginh + c︸ ︷︷ ︸
Ibal

+
Dgexc

gexc + ginh + c︸ ︷︷ ︸
Idiff

(3.1)

(A, c, D and z are parameters independent of synaptic conductances). The first term, Ibal,

denotes the current if the driving forces for excitatory and inhibitory currents are balanced;

The second term, Idiff , denotes the additional excess current flowing if the driving forces

are unbalanced; the parameter D is proportional to the difference of the driving forces.

The current flowing to the spike initiation zone is then transformed into a firing rate by

the current-discharge curve f(Isiz) (Nonlinearity in Figure 3.5A).

Dendritic Modulation of Gain and Selectivity Improves Predictions and Gen-

eralization

Figure 3.5B demonstrates that the nonlinear dendritic integration of synaptic inputs indeed

enhances the quality of the model predictions. The predictive power of the biophysical

model was compared with the LN-model (green and orange bars in Figure 3.5B). Here,

the parameters for both models were estimated (in contrast to Figure 3.3 and 3.4) for

the whole data set, i.e., for both sparse and dense motion stimuli. Since the LN-model

cannot correct for changes of gain and selectivity by the motion density, its predictive

power dropped significantly compared to its performance on either sparse or dense motion

stimuli (see Figure 3.3B). The biophysical model with the dendritic integration mechanism

significantly raised the predictive power for all cells. Thus, one biophysical model can

predict the neural response to both sparse and dense motion as well as two LN-models

needed to compensate for changes in the gain and selectivity due to the stimulus condition.

The biophysical model is therefore more general than the LN-model.

In order to show that the performance increase is due to the dendritic integration stage,

rather than pre-processing of the stimuli by the Reichardt detector array, I constructed an

alternative model where the dendritic integration stage is replaced by a linear weighted sum

of the Reichardt detector array outputs. Biophysically, this linear summation is equivalent

to providing the synaptic outputs of the local motion detectors as current injections to the

tangential cell’s dendrite. The resulting model only shows a slight increase in performance

when compared to the LN-model (blue bars in Figure 3.5B). Hence, the pre-processing

of stimuli by the Reichardt detector array by itself does not correct for the divisive and
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additive modulation of the input-output relation. This finding is in contrast to the results

of experiments where H1 was stimulated with a grating moving horizontally according

to a white-noise velocity profile. An increase of the amplitude of the velocity fluctuations

reduced the gain of the input-output relation (Fairhall et al., 2001). For this type of stimuli,

the changes in the gain could be attributed to the intrinsic nonlinearity of the Reichardt

detector (Borst et al., 2005) (see Introduction 1.2.7).

Figures 3.5C and 3.5D show the current-discharge curves of the biophysical model for

sparse motion, dense motion, and when bot h stimulus conditions are treated jointly. The

strong overlap of these nonlinearities for all cells demonstrates that the biophysical model

accounts for the changes of the nonlinearities by the motion density as observed for the LN-

model (compare Figure 3.4A-B right). Hence, the modulations of the gain and selectivity

can be attributed to a fundamental biophysical nonlinearity, the dendritic integration of

synaptic inputs.

To explain how the biophysical model compensates for changes in the gain and selectivity of

the studied neurons, I again refer to Equation 3.1. Since each Reichardt detector processes

motion only within a small region of the visual field, a higher motion density leads to the

activation of more motion detectors and their output synapses. This, in turn, results in

increased total conductances gexc and ginh. An increased motion density, therefore, has a

stronger divisive effect on the balanced current, Ibal: The motion prediction, x = gexc−ginh,
of the Reichardt detector array is divided by a larger term (gexc + ginh + c) corresponding

to a divisive rescaling of x. Hence, the gain (slope) of the input-output relation mapping

local velocities onto the firing rate is reduced. In contrast, the positive excess current

Idiff is enhanced through an increased motion density. This term can be interpreted as a

depolarizing current lowering the spiking threshold, and thus induces a leftwards shift of

the nonlinearity mapping x onto the firing rate. The size of the shift depends on D, i.e.

the larger the excitatory compared to the inhibitory driving force, the more pronounced

the leftwards shift. Hence, I hypothesize that an increase of the membrane conductance

underlies a reduction of the gain, while the additive modulation of the input-output relation

relies on the unbalanced driving forces for the excitatory and inhibitory currents. For both

requirements there exists strong experimental evidence: During presentation of a grating

moving in the preferred or anti-preferred direction the input resistance of a fly tangential

cell drops considerably (Borst et al., 1995). Moreover, motion noise (incoherently moving

dots) was also shown to increase the membrane conductance (Grewe et al., 2006). Evidence

for a stronger excitatory driving force was provided in (Egelhaaf et al., 1989).

Finally, I asked which parameters in the biophysical model might underlie properties of

the tangential cells such as mean firing rate, reliability, gain, and shifts in their selectivity



3.1 The Spatio-Temporal Response Properties of the Tangential Cells 63

0 0.5 1
0

100

Transfer Current [a.u.]

M
ea

n 
F

iri
ng

 R
at

e 
[H

z] H1
H2
V1
V2
Vi

0 0.5 1
0

1

2

3

Total Syn. Driving Force [a.u.]

R
el

ia
bi

lit
y

A B

C D

r  = 0.552 r  = 0.612

r  = 0.682

r  = 0.572

0 0.5 1
0

0.2

0.4

0.6

G
ai

n 
[a

.u
.]

Total Syn. Driving Force [a.u.]

r  = 0.572

Figure 3.6: Correlation between Tangential Cell Properties and Parameters for the Biophys-

ical Model. (A) Correlation between the transfer current (corresponding to the parameter A in Equation

1) and all 35 tangential cell recordings. The r2-coefficient equals 0.55. The transfer current is proportional

to the product of the input conductance and the size of the inhibitory driving force |Einh| (see Equation

2.21). (B) Correlation between the measured reliabilities and the total synaptic driving force given by A/c

(see Equation 2.25, r2 = 0.61). (C) Correlation between the neural gains and total synaptic driving force

(r2 = 0.68). (D) The decrease of the neural selectivity induced by the increase of the motion density most

strongly correlates with the ratio of the excitatory and inhibitory driving force, Eexc/|Einh| (see Equation

2.26, r2 = 0.57).

due to changes in the motion density. For this purpose, I correlated all parameters of

the biophysical model with the measured properties of all 35 recorded neurons. I explicitly

searched for parameters which correlate most strongly with the corresponding cell property.

I found that the parameter A in Equation 3.1 most strongly correlates with the mean firing

rate of the neurons (Figure 3.6A). Physiologically, this parameter is proportional to the

product of the input conductance of the finite cable and the size of the inhibitory driving

force, |Einh| (see Equation 2.21). Thus A determines the amount of current flowing to

the spike initiation zone and is therefore referred to as transfer current. Assuming that

the reverse potential is approximately constant for all cells, this suggests that the larger

the input conductance, the higher the mean firing rate of the cell. The reliability of the

recorded cells can be best explained by A/c which can be interpreted as a measure of the

total synaptic driving force (see Equation 2.25). Correlating the reliability with the total
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synaptic strength and additionally the transfer current, improves the r2-coefficient only by

about 2%. Hence, the reliability is primarily determined by the total synaptic driving force

and not the input conductance (Figure 3.6B). The gain of the neurons is also best explained

by the total synaptic driving force (Figure 3.6C). Again, the input conductance in form

of the parameter A had no additional significant impact on the correlation. As shown

in Figure 3.6D, the increase of the neural selectivity through an increase of the motion

density correlates most strongly with D/A + 1 describing the ratio of the excitatory and

inhibitory driving forces, Eexc/|Einh| (see Equation 2.26). Hence various properties of the

tangential cells can be attributed to the parameters of the biophysical model which can be

physiologically interpreted.

3.1.2 Local Reliability of Motion Processing

The Brownian motion stimulus allowed studying how the gain and selectivity of the fly

tangential cells depends on the stimulus strength as controlled by the density of presented

dots. Besides the dependence of the receptive fields on the motion density, I also studied the

local processing properties of the tangential cells. In particular, I addressed the question,

how the reliability, by which a local stimulus is represented, depends on its position in

visual space. In principle, the Brownian motion stimulus could be localized by presenting

only a single dot. However, to sample with a single dot the whole visual space covered

by the LED-arena might take to long. Moreover, to study the local reliability requires

the repeated presentation of a specific stimulus at a given position in visual space. To

this end, I developed a further stimulus with the aim to investigate the local processing

properties of the tangential cells. The so-called local white-noise stimulus can be seen as a

local version of previous white-noise motion stimuli used for experiments with H1, where

a global sine grating moved horizontally according to a white-noise velocity profile (Borst,

2003; Fairhall et al., 2001). Instead of a global grating, I presented a small grating at

various positions moving in vertical and horizontal direction according to a white-noise

velocity profile (Figure 3.7A; for more detail see Methods 2.4.2). Previously, it has been

shown that presentation of horizontal and vertical motion is sufficient to determine the

local preferred direction, since the fly tangential cells exhibit for most locations in their

receptive field a sinusoidal direction tuning (Wertz et al., 2009). Hence, the local white-

noise stimulus allows not only to estimate the local dynamic processing properties, but

also the local preferred direction.

To estimate the dynamic receptive field, the same approach was applied as for the Brownian

motion stimulus. I attributed to each time point and stimulated location the currently
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Figure 3.7: Dynamic Receptive Field of H1 and Vi for Local White-Noise Stimulation. (A)

Scheme illustrating the local white-noise stimulus: A horizontally and then vertically oriented sine grating

moves at various positions according to a white-noise velocity waveform specified by v(t). (B) Predictive

power of the dynamic receptive fields (DRFs) estimated for the local white-noise stimulus. I separated

a single spatial and temporal component from the linear DRF, and then approximated the DRF as a

product of these components. The resulting space-time separated DRF exhibits for both neurons a higher

predictive power than the full DRF. (C,D) Components of the linear-nonlinear (LN) model for a single H1

and Vi cell estimated for the local white-noise stimulus. (Left) Spatial component of H1 and Vi. (Middle)

Temporal components of H1 and Vi. (Right) Static nonlinearities for H1 and Vi.
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displayed vertical or horizontal velocity value (of the corresponding sine grating) yielding

a spatio-temporal stimulus parameterization. Using linear regression, I then calculated a

dynamic receptive field optimally mapping the local velocity onto the recorded firing rate.

Despite the differences in the stimuli, the dynamic receptive fields of H1 and Vi estimated

for the local white-noise stimulus are again space-time separable. Figure 3.7B compares the

predictive power of the full and space-time separated dynamic receptive fields. Moreover,

the spatial components of H1 and Vi (Figures 3.7C and 3.7D, left) are quite similar to those

found for the Brownian motion stimulus (compare Figures 3.3C and 3.3D). The shapes of

the nonlinearities for H1 and Vi are also similar to those found for the Brownian motion

stimulus (Figures 3.7C and 3.7D, right). The temporal components again peak at -25 ms,

however differ in their shapes: H1’s filter found for local white-noise stimulus (Figure 3.7C,

middle) integrates over a longer stimulus history compared with the filter for the Brownian

motion stimulus (Figure 3.3C, middle). In contrast to Brownian motion stimulation, the

temporal filter of Vi exhibits no inhibitory phase (Figure 3.7D, middle). In experiments,

where H1 was stimulated with global white-noise grating, it has been already demonstrated

that the shape of the optimal temporal filter adapts to changes in the stimulus statistics

(Fairhall et al., 2001; Safran et al., 2007; Borst, 2003; Borst et al., 2005). Hence, differences

in the local statistics of both stimuli might underlie the observed changes in the temporal

components.

Local Reliability of Motion Processing

Since at each time point only one location is stimulated, the local white-noise stimulus

allows assessing to what extent the response reliability depends on the stimulus position

in visual space. The reliability was calculated for responses to repeated presentation of

identical stimuli and was measured as the signal-to-noise ratio for firing rates binned in 5

ms (Borst and Theunissen, 1999). The maximal local reliability of H1 is nearly 3 times

higher than for Vi. Moreover, the reliabilities of H1 are distributed over a larger range

(reaching from 0.11 to 2.87) than for Vi, where all measured values lie between 0.28 and

0.97. As shown in Figures 3.8A and 3.8B, both neurons represent motion information most

reliable in frontal regions at an azimuth of about -9◦. While the reliability distribution

of H1 is symmetric with respect to the equator, Vi represents motion, in average, more

reliably for positive elevation angles. How reliably motion is encoded at a certain position

in space primarily depends on the local response power. This can be shown by correlating

the local reliabilities with the local response powers (Figures 3.8C and 3.8D). In average,

97.4% and 86.1% of the variance in the reliabilities of H1 and Vi are explained by the
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Figure 3.8: The Reliability of the Tangential Cells Depends on the Location of Stimulation.

(A-B) The local white-noise stimulus allows determining the response reliability as a function of position

in visual space. For each stimulated location, I calculated the reliability of the responses to a horizontally

and vertically moving sine grating. The larger of the two resulting values was color-coded according to

the color bar. Note that for better visibility the color code for Vi and H1 differs. (C-D) Correlation of the

response powers and corresponding reliabilities for each location and orientation. In average, 97.4% and

86.1% of the variance in the reliabilities of H1 (n=5) and Vi (n=6) are explained by the local response

powers. Vertical error bars show the S.E.M. of the reliability, horizontal error bars refer to the S.E.M. of

the response power.

strength of the neural response.

I presented two different stimuli to characterize the spatio-temporal response properties of

large-field motion-sensitive neurons of the fly and constructed LN-models to predict the

neural response. In an LN-model, the neuron is modeled by a linear filter, i.e. its receptive

field, followed by a static nonlinearity. For an optic-flow processing neuron, the linear

filter is described by a time-varying vector field referred to as dynamic receptive field. The

dynamic receptive fields of the tangential cells turned out to be space-time separable: they

can be decomposed into a spatial component (a static receptive field), multiplied by a

single temporal filter, modulating each vector in the same way.

The first stimulus (Brownian motion stimulus) allowed varying the stimulus strength by

increasing or decreasing the number of moving dots. Increasing the stimulus strength
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has only a weak impact on the spatial or temporal component of the DRF. However,

it changes the nonlinearity of the subsequent processing stage: Increasing the motion

density reduces the slope of the nonlinearity (gain), while increasing its offset (selectivity).

Such modulations of the gain and selectivity cannot be captured by an LN-model and,

therefore, prevent its generalization to arbitrary stimuli. To unravel possible mechanisms

underlying these changes, I developed a biophysical model: At the first stage, the luminance

stimuli are fed through an array of Reichardt detectors modeling the processing of local

motion detectors. The outputs of the motion detectors are subsequently passed through

a spatial and temporal filter yielding the total excitatory and inhibitory conductance of

synapses impinging onto the tangential cell. This linear stage corresponds to the DRF

of the LN-model. The following nonlinear stage then integrates the total excitatory and

inhibitory conductance resulting in an estimate of the inflowing current. Finally, this

current is mapped onto the firing rate by a static nonlinearity. As for the classical LN-

model, all unknown parameters of the biophysical model were directly fit to the recorded

data. Explicitly modeling the nonlinearity imposed by dendritic integration corrects for the

modulations of the gain and selectivity by the motion density. Variations in the gain can be

attributed to changes in the membrane conductance, while changes in the selectivity are due

to an unbalance of excitatory and inhibitory driving forces on the dendrite. Hence, besides

generalizing the LN-model, the new model explicitly implements dendritic integration and

thereby offers a physiological explanation of functional phenomena.

The second presented stimulus (local white-noise stimulus) was developed to study the local

processing properties. The reliability by which local motion stimuli are encoded strongly

differs across the receptive field. For both H1 and Vi, the reliability depends linearly on

the local response power.

3.2 Self-Motion Encoding by the Tangential Cells

The receptive fields of the lobula plate tangential cells strongly resemble optic-flow patterns

as induced by certain self-motions of the animal. This strong similarity of receptive fields

and optic-flow patterns lead to the hypothesis that the tangential cells act as matched filters

(Franz and Krapp, 2000; Franz et al., 2004), responding strongest for specific maneuvers

of the fly. In contrast to optic-flow encoding neurons in area MST of monkeys (Britten,

2008), the receptive fields of the tangential cells mainly resemble rotational optic-flow fields

suggesting that these neurons rather encode rotations than translations (Krapp and Heng-

stenberg, 1996; Krapp et al., 1998; Borst and Weber, 2011). The stimuli presented in the
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previous Section 3.1 allowed estimating the receptive fields of the tangential cells. How-

ever, the receptive fields alone do not permit to quantify how well the responses of the

tangential cells encode a certain self-motion of the fly. Moreover, the previously presented

stimuli were designed such as to elicit strong, easily interpretable responses. In contrast, in

their natural environment, flies are confronted with strongly varying textures and inhomo-

geneous contrast distributions as are characteristic for natural images. Since the tangential

cells seem to be mainly tuned to rotations (Krapp and Hengstenberg, 1996; Krapp et al.,

1998; Borst and Weber, 2011), I studied the encoding of rotations around various body

axes in single tangential cells. Moreover, I also tested how strongly the representation of

rotations is disturbed by superimposed translations.

3.2.1 Responses to the White-Noise Self-Motion Stimulus

To quantify the robustness of the optic-flow encoding by the tangential cells, I developed

the so-called white-noise self-motion stimulus (see Methods 2.4.3). A virtual fly was placed

in a cube tapered with eleven different images (see Figure 3.9A). At each time point, the fly

was moved according to a randomly changing translation and rotation axis fully specifying

the animal’s self-motion (see Methods 2.3.1). For each time point, the environment was

then projected onto the virtual fly’s eye (modeled by a small sphere). The resulting series

of images was then displayed on the LCD-monitor setup (see Methods 2.1), while recording

the firing rate of left H1, V1, or V2 cell.

Three stimulus conditions were compared: In the first condition, only rotations were pre-

sented. Secondly, a purely translational self-motion profile was presented. Finally, the

rotations and translations of the two previous conditions were simultaneously displayed.

Note that the self-motion stimulus is six-dimensional: At each time point the fly’s self-

motion is described by a three-dimensional rotation and a three-dimensional translation

axis.

I verified that for each recorded cell type, the translational and rotational optic-flow was

equally strong. To do so, the translation axes were first normalized by the distance of the

respective receptive field to the environment such that translations and rotations are ex-

pressed in the same units (m/s) (see Methods 2.3.2). Then, for each time point, I calculated

the rotational and translational optic-flow strength given the (normalized) translation and

rotation axes according to Equation 2.2. The optic-flow strength or norm is computed by

convolving the motion sensitivity distribution of a specific cell with the analytically derived

optic-flow (see Equation 2.1). The distribution of the resulting rotational and translational

optic-flow strengths are shown in Figure 3.9B. Example patches of the firing rates induced
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by the same rotational or translational self-motion within the eleven different environments

are depicted in Figure 3.9C. The color code of the images follows the sorting of the images

in Figure 3.9A.

Especially during rotation, the time course of the firing rates exhibits a very similar shape,

however strongly differs in amplitude in dependence of the environment.
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Figure 3.9: Tangential Cell Responses to the White-Noise Self-Motion Stimulus. (A) Envi-

ronments surrounding the virtual fly. Each image shows the tapering of a single cube side. (B) Histogram

of rotation and translation strength of the presented stimuli. For each time point the rotation and trans-

lation strength was quantified according to the optic-flow norm (see Equation 2.2). (C) Peri-stimulus time

histograms (PSTH) of H1 for rotation and translation in all eleven environments. The color code indicates

the image number. Images are sorted as in (A).

To characterize the self-motion processing by the tangential cells, I fitted the components

of an LN-model which transforms the translational and rotational self-motion profile into

a firing rate. Figure 3.10 shows for all environments the three rotation filters of H1 which

are convolved with the x-, y-, and z-components of the rotation axes denoted by Rx, Ry,

and Rz. As expected from its receptive field (see Figure 3.3C, left), H1 is mainly sensitive

to rotations around the z-axis. The nonlinearities of the LN-models of H1 are depicted

in Figure 3.10B. While the normalized rotation filters closely overlap, the nonlinearities

significantly differ in their gain. The images in Figure 3.9A were sorted according to H1’s

gain, quantified by the slope of a half-wave rectifier fitted to the nonlinearity (see Methods

2.5.4).
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Figure 3.10: LN-models of H1 and Vi for all Environments. (A,B) LN-models of H1 for rotation

processing in all environments. (A) Linear filters for the x-, y-, and z-component of the rotation profile. The

time points on the x-axis indicate the time relative to the response bin to be predicted. (B) Nonlinearities

for all environments. Rotation filters and nonlinearities were sorted according to the coloring of the color

bar on the right. (C,D) LN-models of H1 for translation processing in all environments. (E,F) LN-models

of Vi for rotation processing in all environments. (G,H) LN-models of Vi for translation processing in all

environments.
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The translational filters of H1 for the x-, y-, and z-component of the translation axes (Tx,

Ty, and Tz) are shown in Figure 3.10C. Compared to the rotation filters, the translational

filters overlap less strongly. As for rotations, the nonlinearities exhibit different gains

dependent on the environment (Figure 3.10D).

The rotation and translation filters of Vi are shown in Figure 3.10E and 3.10G. As for H1,

the translation filters overlap less than the rotation filters. Especially, the translational

z-filters differ in their time course. Similar to H1, the gain of the nonlinearities strongly

varies with the presented environment (Figures 3.10F and H). Hence, the tangential cells

are sensitive to both rotations and translations, however, the encoding of rotations is more

robust across different environments.
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Figure 3.11: Contribution of Rotation and Translation to the Neural Response. (A) For

each environment, I tested whether the firing rate recorded for simultaneous presentation of rotation and

translation (Rotation & Translation) can be approximated as a linear combination of the firing rates

recorded for separate presentation of the rotation and translation profile. The weighting factors for the

rotational and translational firing rates are denoted by aR and aT . (B) R2-coefficient quantifying how

well the firing rate for Rotation & Translation can be approximated as linear sum of the firing rates

recorded separately for rotation and translation. Error bars indicate the standard deviation over all eleven

environments. (C) Rotation contributes more to the combined firing rate. For all recorded cells, the

weighting factor for the rotational firing rate is larger. Error bars denote the standard deviation.

Since the tangential cells are sensitive to both rotational and translational optic-flow, their

responses are ambiguous. From the firing rate of a single cell it cannot be deduced, whether

the response was caused by a rotation or translation. In a previous simulation study, it
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was hypothesized that the strong resemblance of the receptive field with rotational flow

patterns reduces the translation sensitivity of the tangential cells (Borst and Weber, 2011).

To quantify whether translations are suppressed in comparison to rotations, I approximated

the firing rates during simultaneous presentation of rotation and translation by a linear

sum of the firing rates elicited by separate presentation of the same rotation or translation

profile (see Figure 3.11A). The quality of the approximation was quantified by the r2-

coefficient, which was for all three recorded cell types above 0.5 (Figure 3.11C). Figure

3.11C depicts the weighting factors for the rotational and translational firing rates. For all

three cell types, the contribution of the rotational rate is significantly larger. This finding

suggests that the tangential cells are less sensitive to translations than rotations.

Consequently, their responses should convey more information about rotational compared

to translational optic-flow. To quantify the amount of information, I tested, how well each

of the self-motion components can be reconstructed from a single-trial response using an

optimal linear filter (see Methods 2.5.9). Comparison of the power spectra of the real

and estimated stimulus gives a lower bound on the information carried by the spike train

quantified in Bits/s (Rieke et al., 1999; Borst and Theunissen, 1999).

To reduce the dimensionality of the stimulus, the three-dimensional rotation and transla-

tion profiles were projected onto the preferred rotation and translation axis of the respec-

tive cell. Hence, I quantified how well a tangential cell represents rotations or translations

around its preferred rotation or along its translation axis.

The blue and red solid lines in Figures 3.12A-C show the information that H1, Vi, and V2

carry about rotations and translations, when presenting only rotational or translational

self-motions. In average, each cell type carries more information about rotations than

translations. As shown by the dashed lines, the encoding of rotations or translations is

strongly impaired, when simultaneously presenting both self-motion profiles. However, the

information about rotations is less affected than the representation of translations. This

finding again suggests that tangential cells are more sensitive to rotations than translations.

During presentation of a single self-motion component, the stimulus representation strongly

depends on the environment. Figure 3.12 demonstrates that the information about rota-

tions linearly depends on the neural gain. The gain of a cell for a specific environment was

quantified by the slope of a half-wave rectifier fitted to the nonlinearity of the corresponding

LN-model.

In summary, I quantified the representation of rotations and translations by the responses

of the tangential cells. Thereby, I especially tested the robustness of the representation of

rotations and translations in different environments. Through the analysis of LN-models

and a linear decoding approach, I found that the tangential cells exhibit a stronger sensi-
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coding was applied to test how well the rotation or translation profile can be reconstructed from the

single-trial firing rates. The solid lines show the decoding performance for separate presentation of trans-

lation or rotation. For all three cells, rotation (blue) is slightly better represented than translation (red).

The dashed lines show the decoding performance of rotation (blue) and translation (red), if rotation and

translation are simultaneously presented. The representation of both rotation and translation is signifi-

cantly reduced. However, the information about rotation is less affected by the simultaneous presentation

of translation than vice verse. (D) The information about rotation linearly depends on the neural gain.

Each dot represents the gain and information of the H1 (blue), Vi (green), or V2 (red) cell of a single fly

in one of the eleven environments. The r2-coefficient equals 0.68.
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tivity to rotations. Consequently, the responses of the neurons contain more information

about rotations than translations.

3.3 The Functional Role of an Inter-Hemispheric Pro-

jection

The complex receptive fields of the lobula plate tangential cells arise from the integration

of signals from pre-synaptic elementary motion detectors and lateral interactions between

other tangential cells Borst et al. (2010); Borst and Weber (2011). Due to their receptive

fields the tangential cells are tuned to specific self-motions. In the previous sections, I

presented approaches which allow mapping the spatio-temporal receptive field properties

of a tangential cell and determining the self-motion tuning arising from the receptive field.

However, these methods do not unravel how the receptive field and stimulus tuning of a

particular cell arises from its underlying connectivity. The receptive field does not account

for the different origins of the inputs to a sensory neuron. Consequently, it does not allow

describing the impact of a specific lateral connection on stimulus processing. The lateral

interaction of a pair of neurons is typically described by correlating their simultaneously

recorded responses. However, the resulting cross-correlation does not reveal to what extent

the coupling influences the properties of a single neuron. If a neuron e.g. receives an

excitatory input from a further cell, this connection might change its firing rate or stimulus

tuning. Although this interaction will induce a peak in the cross-correlation, such effects

cannot be deduced from purely correlating neural responses. Rather, to quantify the

functional impact of lateral inputs on a sensory neuron necessitates a model which explicitly

accounts for afferent feedforward inputs and lateral interactions.

To study the impact of a specific lateral interaction, I simultaneously recorded from two

heterolateral tangential cells located in the left and right lobula plate: The left Vi and

the right H1 neuron. Since both neurons are located in opposite brain hemispheres they

receive independent afferent feedforward inputs from their corresponding ipsilateral eye.

Moreover, they have different, largely non-overlapping receptive fields. First, I estimated

the functional connectivity describing the strength and temporal dynamics of the inter-

hemispheric coupling. I then studied to what extent the lateral connectivity improves the

optic-flow encoding and tried to unravel the factors that determine the strength of the

coupling. To this end, a generative model (generalized linear model, GLM) was fitted to

the neural responses which explicitly includes the effects of feedforward input and lateral

connectivity (Gerwinn et al., 2010; Okatan et al., 2005; Paninski et al., 2007; Pillow et al.,
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2008). Based on the GLM, I estimated the impact of H1 on Vi’s rotation tuning and

encoding.

3.3.1 A Generative Spiking Model for Vi and H1

To investigate the functional role of a lateral interaction between two neurons, I simulta-

neously recorded from the left Vi cell with its dendrite located in the left lobula plate and

the right H1 cell with its dendrite in the right lobula plate. All recordings were performed

in the fly Lucilia sericata. Figures 3.13A and 3.13B show the spatial receptive fields of

Vi and H1 depicted as vector fields. Both cells only exhibit strong responses to motion

on their ipsilateral side, except for the small binocular overlap area in the frontal part

of the receptive fields (Beersma et al., 1977). Nevertheless, the simultaneously recorded

spontaneous activity of Vi and H1 is clearly correlated: Given a spike fired by H1, Vi’s

firing rate is increased by a factor of about three with a delay of 3 ms (Figure 3.13C). This

lag in the response cross-correlation indicates, that H1 projects to Vi. The neural connec-

tivity underlying this correlation as known from previous experiments is depicted in Figure

3.13D: Vi is electrically coupled to the caudal VS cells (VS7-VS10), which are connected

via electrical synapses to the CH cell (Haag and Borst, 2007). CH receives excitatory input

from the contralateral H1 neuron (Haag and Borst, 2003). The interaction partners of Vi

in the contralateral lobula plate are unknown. The indirect, lateral interaction between Vi

and H1 is clearly detectable in their cross-correlation, however it is too weak to be visible

in the receptive field of Vi. Hence, it is questionable to what extent the lateral input from

H1 might affect the stimulus processing in Vi at all.

To study the functional impact of this weak inter-hemispheric interaction between Vi and

H1 and to unravel potential factors constraining the strength of the coupling, I presented a

random rotation stimulus. This stimulus mimics what a fly would see if it randomly rotated

around in a big, black sphere painted with a regular grid of white dots (see Figure 3.14A).

To generate the random rotation stimulus, I placed a virtual fly in the center of the large

sphere. At each time point, this virtual fly rotated around a steadily changing rotation axis

whose x-, y- and z-component are given by independent white-noise profiles (see Figure

3.14A, right). For each time point, the image seen by the virtual fly was projected onto

the stimulus device which was faced by a real, fixed fly. The coordinate system was such

arranged that the x-axis aligns with Vi’s preferred rotation axis, whereas H1’s preferred

axis is a linear combination of the x- and z-axis. To test whether the stimulus strength

influences the interaction between Vi and H1, I compared two stimulus conditions: Strong

stimulation where the sphere is painted with a dense grid of dots and weak stimulation with
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Figure 3.13: The Responses of the Left Vi and Right H1 Cell Are Correlated. (A) Spatial

receptive fields of a left Vi cell with its dendrite located in the left lobula plate. The direction and length

of each arrow indicate the local preferred direction and motion sensitivity. (B) Spatial receptive field of

a right H1 cell. (C) Cross-correlation of Vi and H1 for spontaneous activity (n=8 flies). The correlation

function depicts the firing rate of Vi relative to the time of a spike fired by H1. The gray shading shows

the standard deviation over flies. (D) Physical connectivity of the two heterolateral neurons Vi and H1

as revealed through intracellular double-recordings: The right H1 projects with its axon to the left lobula

plate where it is connected to CH via an excitatory, chemical synapse. CH is electrically coupled to VS7-

VS10 which form electrical synapses with the left Vi cell (Haag and Borst, 2007). The targets of left Vi

in the contralateral lobula plate are still unknown.

a sparse density of dots. To exclude correlations due to shared input from the binocular

overlap area, I blanked the frontal region of the stimulus device. Figures 3.14C and 3.14D

show both conditions along with example responses of the simultaneously recorded left Vi

and right H1 neuron.

The random rotation stimulus allows determining the rotation tuning for both neurons.

Given the neural response delay, I calculated for each rotation axis, specified by its azimuth

and elevation angle, the mean firing rate. Note that this way, the velocity dependence of

the neurons is averaged out. Figure 3.14 shows the resulting two-dimensional tuning maps

for Vi and H1 represented as color-coded planar projection of a sphere. As expected from

the stimulus arrangement, Vi elicits strongest responses for rotations around the x-axis,

whereas H1’s preferred rotation axis is clearly shifted towards the z-axis. The tuning maps

for Vi and H1 overlap: Rotations around axes located in the frontal region of the southern
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Figure 3.14: Random Rotation Stimulus. (A) Scheme illustrating the generation of the random

rotation stimulus. (Left) A virtual fly rotates within a large sphere around a steadily changing rotation

axis R. The coordinate system to describe R was such arranged that the x-axis aligns with Vi’s preferred

rotation axis. H1’s preferred axis is a combination of the x- and z-axis. For all time points, I calculated the

projection of the sphere onto the virtual fly’s eye. The resulting movie was then displayed on the stimulus

device which was presented to a (real) fixed fly. (Right) Vi’s receptive field is mainly restricted to the left

half of the stimulus device, whereas H1 is stimulated via the right half. To avoid correlations induced by

overlapping receptive fields, the frontal binocular field was blanked (indicated by the gray shading). The

mask ranged from −30◦ to 30◦ along the azimuth. (B) Rotation velocities around the x-, y-, and z-axis

as a function of time. At each time point the three-dimensional rotation axis is specified by an x-, y-, and

z-component describing the rotation velocity around the x-, y-, and z-axis denoted by Rx, Ry, and Rz.

(C,D) A single frame of the strong and weak stimulus along with responses of a simultaneously recorded

left Vi and right H1 cell. The repeated responses to a 0.5 s stimulus segment are represented as raster

plots with each black tick representing the appearance of a spike. Spike trains were binned in 1 ms. (E)

Rotation tuning of Vi and H1.
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hemisphere excite both neurons, i.e. Vi and H1 are stimulus correlated for rotations. This

implies that the lateral input from H1 to Vi should shift Vi’s tuning towards H1’s preferred

axis.

To functionally describe the strength and dynamics of the connectivity between Vi and

H1, I fitted a generative model which explicitly includes the effects of afferent feedforward

input from local motion detectors and potential lateral interactions on a neuron’s firing

rate. Figure 3.15 shows the generative model, which comprises two stages: At the first

stage, the visual stimulus is fed through an array of vertically and horizontally tuned local

motion detectors modeled by Reichardt detectors, an established algorithmic model for

local motion detection in the fly (Reichardt, 1961; Borst et al., 2010). The outputs of the

detector array are projected onto the receptive field of Vi or H1, yielding a one-dimensional

time signal. This signal is used as stimulus input for a generalized linear model (GLM)

(Gerwinn et al., 2010; Okatan et al., 2005; Paninski et al., 2007; Pillow et al., 2008), the

second stage of the applied neuron model (see Methods 2.5.7. In the GLM, Vi’s or H1’s

firing rate is modeled by three linear filters: A stimulus filter describing the impact of the

feedforward input on Vi’s firing rate, a post-spike filter describing the effect of each spike

fired by the neuron on its own firing rate, and a coupling filter capturing the dependency

of Vi (H1) on a spike fired by H1 (Vi). To match the neuron’s firing rate, an additional

constant offset parameter is introduced. The summed filter responses are fed through

an exponential nonlinearity yielding the neuron’s firing rate. Assuming an exponential

function for the neuron’s spiking nonlinearity, the exponentiated outputs of the coupling

and post-spike filter can be interpreted as multiplying the cell’s firing rate. All unknown

components of the GLM (drawn in red in Figure 3.15A) were directly fit to the data by

maximizing the likelihood of the recorded spike trains under the model. To ensure that

the coupling filter describes an existing lateral interaction between Vi and H1 and does

not reflect shared noise, common input, or stimulus correlations, I applied the following

approach: First, as previously described, I blanked the binocular overlap region and second,

the GLMs were trained using uncorrelated random rotation stimuli: I presented on the left

and right side of our stimulus device two independent rotation stimuli such that the inputs

provided from the left and right eye to the left Vi and the right H1 cell are uncorrelated

(see Methods 2.5.7). The GLMs for spontaneous activity, strong and weak stimulation

reproduce the observed response correlations with their characteristic sharp peak at 3 ms

(see Figures 3.15B-D).

Figure 3.16A shows the stimulus filters estimated for strong and weak stimulation. Note

that during weak stimulation for both Vi and H1 the amplitude (gain) is increased by a

factor of about 10. Previous studies found that the tangential cells’ input conductance
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Figure 3.15: Generative Model for Fly Tangential Cells. (A) Generative Model for the left Vi

and right H1 cell. The visual stimulus is first fed through a two-dimensional array of Reichardt detectors.

The outputs of the motion detectors are then filtered with the spatial receptive field of Vi or H1 yielding

the input signal to a generalized linear model (GLM). The receptive fields were previously determined in

a different set of experiments. The weights on the contralateral side were set to zero. The components of

the GLM are depicted in the gray shaded area. In the GLM, Vi’s or H1’s firing rate is modeled via three

linear filters: The stimulus filter describing the impact of the stimulus on the cell’s firing rate, a post-spike

filter accounting for the spiking dynamics and a coupling filter describing the cell’s dependence on a second

neuron. The summed filter outputs are fed through an exponential nonlinearity yielding the instantaneous

firing rate. (B,C,D) The measured (black) and predicted (orange) cross-correlations between Vi and H1

(black) for spontaneous activity as well as weak and strong stimulation. Each cross-correlation shows the

firing rate of Vi relative to the time of a spike fired by H1. The measured and predicted correlations were

averaged over all flies (n=8). For the data, the standard deviation is depicted as gray shading.
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Figure 3.16: Generalized Linear Model Components. (A) Stimulus filters of Vi (green) and H1

(blue) for strong and weak stimulation. Note that for weak stimulation the stimulus filter amplitude (gain)

is about ten-fold larger than for strong stimulation (different y-axes). The solid lines indicate the average

over flies, the green and blue shadings depict the standard deviations for Vi and H1. (B) Post-spike filters

for strong and weak stimulation as well as spontaneous activity. The post-spike filters were exponentiated

such that the y-axis shows the factor (gain) by which the neuron’s firing rate is multiplied. (C) Coupling

filters for all conditions. The coupling filter describing H1’s impact on Vi is shown in green, whereas the

filter connecting Vi to H1 is depicted in blue. The coupling filters are exponentiated such that they can

be interpreted as multiplying the neuron’s firing rate.
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underlies a biophysical gain control mechanism: With increasing stimulus strength the

input conductance is enhanced and, consequently, the impact of single pre-synaptic motion

detectors on the neuron’s firing rate is reduced (Borst et al., 1995; Weber et al., 2010).

The post-spike filters are shown in Figure 3.16B. In this representation, the filters are

exponentiated such that they can be interpreted as multiplying the neuron’s firing rate.

The filters of both neurons exhibit for all conditions an inhibitory period following a spike.

After this refractory period, H1 shows for strong and weak stimulation a facilatory period

increasing the likelihood for spike initiation (see Figure 3.16B).

The coupling filters for strong and weak stimulation as well as spontaneous activity are

depicted in Figure 3.16C. For all conditions the filter describing the impact of Vi onto H1

is always one, i.e. Vi has no effect on H1. Contrarily, the coupling filter capturing Vi’s

dependence on H1 clearly peaks at 3 ms, i.e. H1 has an excitatory effect on Vi: A spike

fired by H1 excites Vi with a delay of 3 ms. The influence of H1 then decays to zero within

the next 7 ms. Directly following a spike by H1, the amplitude of Vi’s coupling filters are

close to one for all stimulus conditions. This strongly indicates that the coupling filters do

not reflect common input to Vi and H1, but an existent physical connection from H1 to Vi.

While the shape of the coupling filters connecting H1 to Vi is unaffected by the stimulus

strength, their amplitude is significantly reduced with increasing stimulation. Hence, the

coupling filters strongly suggest a uni-directional coupling from H1 to Vi, with the coupling

strength depending on the stimulus strength.

3.3.2 H1 Improves the Optic-Flow Representation in Vi

Next, the GLM was used to test to what extend Vi’s tuning properties depend on the

input from H1. To do so, I first generated spike trains by the GLM for strong and weak

stimulation. Since the coupling between H1 and Vi is only uni-directional and not recip-

rocal, it was not necessary to simulate the activity of both neurons at once. To predict

Vi’s spiking, I therefore replaced the GLM for H1 by the corresponding recorded H1 spikes

to limit the number of model parameters. Simulating only Vi, it can be excluded that

any predictions on Vi’s tuning properties are due to potential biases in H1’s GLM. Based

on the simulated spike trains, I then calculated rotation tuning maps for the model Vi

cell as done for the recorded data in Figure 3.14E (left). For simplicity, I then averaged

the tuning maps along elevation and azimuth to obtain a one-dimensional azimuth and

elevation tuning depicted in Figure 3.17A for strong stimulation (dark red lines) and in

Figure 3.17B for weak stimulation (dark blue lines) averaged over the GLMs for all flies.

To estimate H1’s impact on Vi’s tuning curves, I canceled the coupling filter connecting
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Figure 3.17: H1 Enhances the Amplitude of Vi’s Rotation Tuning. (A) Averaged azimuth and

elevation tuning of Vi for strong stimulation. The tunings predicted by the GLM before and after ablating

H1 in the model are depicted in dark and pale red. Without input from H1, the amplitude of the rotation

tuning is reduced. The azimuth and elevation tuning were calculated from tuning maps as depicted in

Figure 3.14E through averaging along the elevation and azimuth. To estimate the tuning for a single fly,

only Vi was simulated by the GLM, whereas for H1 the recorded spikes were used. The averaged tuning

curves for the recorded data are shown in black. The gray represent the tunings for unilateral stimulation

depicted in (E,F). The errors bars denote the standard deviation over flies (n=8). Significant differences in

the measured tuning curves (based on a paired t test) are indicated by asterisks (*p < 0.01, **p < 0.001).

(B) Averaged azimuth and elevation tuning of Vi predicted by the GLM for weak stimulation before (dark

blue) and after ablating H1 in the model (pale blue). The measured tuning curves are shown in black and

gray. (C, D) Measured azimuth and elevation tuning of H1 for strong and weak stimulation (error bars

denote the standard deviation). Since H1 is sensitive to rotations around the z-axis its elevation tuning is

shifted towards negative elevation angles. (E,F) Unilateral stimulation of Vi. To deplete the input from

H1 to Vi during strong and weak stimulation, the right side of the stimulus device (H1’s ipsilateral side)

was blanked. To further reduce H1’s remaining activity a small grating moving in H1’s null direction was

presented.
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H1 to Vi and then re-simulated the spike trains by the GLM. The resulting tuning curves

are shown in pale red and pale blue in Figures 3.17A and 3.17B.

Next, I tested whether these predictions by the GLM can be experimentally verified. To

this end, the random rotation stimulus was presented only on the left side of visual space,

while the complete right half corresponding to H1’s ipsilateral side was blanked. To further

decrease H1’s remaining activity during this unilateral stimulation, I presented a small

grating moving in H1’s null direction, strongly reducing H1’s firing (see Figure 3.18A). To

exclude that this small grating excites cells which then inhibit Vi, the activity of Vi was

recorded when only presenting this grating. As can be seen in Figure 3.18B the grating

only had a weak excitatory, but no inhibitory effect on Vi. Figures 3.17A and 3.17B

demonstrate that the model predictions and measured tunings (black and gray) closely

overlap for strong and weak stimulation.
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Figure 3.18: Control Experiments. (A) Mean firing rates of Vi and H1 during strong and weak stim-

ulation. The results for bilateral stimulation are drawn in dark red and dark blue. Unilateral stimulation

decreases Vi’s firing rate (pale red and pale blue), whereas H1 is nearly silenced. (B) To inhibit H1 during

unilateral stimulation of Vi (see Figures 5E and 5F), we presented a small sine grating on the right half

of the stimulation screen. To exclude that this grating inhibits Vi, we recorded Vi’s activity, while only

presenting the sine grating at the same position as in Figures 5E and 5F. The upper scheme illustrates the

stimulus device and indicates by the arrows the motion direction of the grating. To maximally increase Vi’s

spontaneous activity, the area outside the sine grating was constantly fully illuminated. If the sine grating

moved in H1’s preferred direction (indicated by the gray arrow), Vi’s activity was slightly increased as

expected from the uni-directional, excitatory coupling revealed by the GLM (gray solid line). Contrarily,

if the grating moved in H1’s null direction (black arrow), Vi’s firing rate is unaffected (black solid line).

Hence, the grating does not inhibit Vi. The grating started moving at time point 0 at a constant temporal

frequency of 1.5 Hz (n=7 flies).

Note that presenting no stimulus on the right side might also diminish the influence of

further potential interaction partners of Vi from the right lobula plate. Hence, the finding
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that the data reproduces the model predictions strongly suggests that for the presented

stimuli and the stimulated regions H1 is Vi’s main interaction partner from the contralateral

lobula plate.

Generally, the input from H1 increases the amplitude of Vi’s azimuth and elevation tuning.

For comparison, Figures 3.17C and 3.17D show H1’s azimuth and elevation tuning for

strong and weak stimulation. For both conditions, Vi and H1 exhibit a similar azimuth

tuning. Hence, an input from H1 should not shift Vi’s azimuth tuning as can be seen

for the predicted and measured tuning curves. However, compared to Vi, H1’s elevation

tuning is shifted towards negative angles, since H1 is also sensitive to rotations around the

z-axis. Consequently, an excitation from H1 should shift Vi’s elevation tuning. Indeed, the

recorded and measured tuning curves show an asymmetric shift due to the input from H1:

For elevation angles smaller than 40◦, the firing rates for bilateral stimulation are slightly

increased (see the asterisks), while for positive angles (>40◦), the tuning curves closely

overlap. However, though significant, this effect is only very small. Hence, although H1

exhibits a different elevation tuning, its input to Vi increases the amplitude of Vi’s tuning

curves without affecting Vi’s rotation preference.

For the model predictions, H1’s input to Vi was completely depleted in GLM, whereas in the

recordings, H1 still showed a small firing rate of about 5 and 3 Hz (see Figure S2A). To test

whether this residual activity might affect the model predictions presented in Figures 3.17A

and 3.17B, I simulated Vi given H1’s spike trains recorded during unilateral stimulation,

instead of depleting the coupling. However, the resulting tuning curves predicted by the

GLM are unchanged, strongly suggesting that H1’s residual activity has no impact on Vi

(data not shown).

To quantify the functional impact of H1 on Vi, I tested how well the self-motion profile

is represented by the spikes fired by Vi depending on the input from H1. To measure

the stimulus representation by Vi, I tested how well the x-, y-, or z-profile of the random

rotation axes can be reconstructed by a linear filter from the recorded (or simulated)

spikes of Vi (see Figure 3.19A). Comparison of the power spectra of the stimulus and the

reconstruction gives a lower bound on the information carried by the spikes (see Methods

2.5.9). First, I tested whether the spike trains generated by the GLM as directly fit from the

data are as informative as the recorded spikes. The x-profile corresponding to Vi’s preferred

rotation axis was chosen as stimulus. As shown in Figure 3.19B, the GLM under-estimates

the information carried by the spikes. This is likely due to the fact that the stimulus

input to the GLM is itself only an estimate of the real unknown input to Vi. I found

that in case that the real input can only be approximated the amplitude of the stimulus

filter will be under-estimated by the GLM (see Figure S3). To compensate for this bias,
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Figure 3.19: Adjusting the GLM’s Stimulus Amplitude. (A) Optimal Linear Decoding. To

quantify the stimulus encoding by Vi, I tested how well the x-, y-, or z-rotation velocity (stimulus) can

be reconstructed from the spike trains using a linear filter. (B) The optimal encoding model (Orig.

GLM, green) underestimates the information carried by the recorded spikes of Vi (Data, black) about

x-rotations. Adjusting the GLM’s amplitude allows compensating for this bias (Adj. GLM). (C) Scheme

illustrating the adjustment of the GLM. To compensate for the under-estimated decoding performance by

the GLM, the amplitude of the stimulus filter was increased. To match the mean firing rate, the offset

parameter was reduced. (D) Averaged log-likelihood of Vi (measured in Bits/Spike) for strong stimulation

as function of the stimulus filter amplitude and the offset parameter. For both parameters, the factor

by which the amplitude or offset of the original GLM was changed is depicted on the x- or y-axis. All

models which preserve the measured mean firing rate lie on the black line (Mean Firing Rate Isocline).

(E) Encoding and decoding error in dependence of the stimulus filter amplitude (for strong stimulation).

The blue curve shows the averaged percentage deviation from the log-likelihood maximum along the mean

firing rate isocline in (D). The red curve quantifies the percentage by which the information (measured

in Bits/Spike) of the simulated spikes deviates from the information carried by the recorded spikes. As

new stimulus filter amplitude, I chose the value that minimizes the sum of both errors (indicated by the

arrow). The x-axis depicts again the factor by which the filter amplitude was changed. (F) Comparison

of the inter-spike interval distribution of the recorded spikes (black) with the distributions of the spikes

predicted by the original (green) and adjusted GLM (orange). The gray shading depicts the S.E.M. for

the recorded spikes.
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the amplitude of the stimulus filter was slightly increased. To determine how strongly the

amplitude has to be changed, I first calculated the log-likelihood of the GLM (for strong or

weak stimulation) as a function of the stimulus filter amplitude and the offset parameter to

compensate for changes in the mean firing rate (see Figure 3.19C). Since the log-likelihood

function is rather flat (Figure 3.19D), I asked whether a model whose likelihood deviates

slightly from the maximum might perform better in decoding. To find such a model, I

first determined all models which preserve the measured mean firing rate. These models

lie on the black line depicted in Figure 3.19D. I then plotted two errors as function of the

stimulus filter amplitude along this line: An encoding error measuring the (percentage)

deviation from the log-likelihood maximum and a decoding error quantifying how much

the decoding performance of the predicted spikes deviates from the information of the

recorded spikes. Both error functions are depicted in Figure 3.19E. I chose as new filter

amplitude the value minimizing the sum of both errors. As shown in Figure 3.19B (orange),

with this correction, the spikes of the resulting GLM are as informative as the recorded

ones. Figure 3.19F compares the inter-spike interval distribution of the recorded spikes

with the distributions of the spikes predicted by the original and adjusted GLM. Although

adjusting the amplitude slightly increased the peak of the interval distribution at 8 ms, all

three curves still closely overlap. Hence, the correction only slightly affects the predicted

responses. After adjusting the stimulus filter amplitude, the GLM still reproduces the

cross-correlation of Vi and H1. The predicted correlations shown in Figures 3.15B-D were

calculated using the adjusted GLM.

Finally, I estimated how the stimulus reconstruction by Vi depends on the strength of the

coupling between Vi and H1. Vi’s spikes carry only information about rotations around its

preferred rotation axis corresponding to the x-axis (Figure 3.20A, green). Since H1 carries

information about the x-axis (see Figure 3.20A, blue), coupling H1 to Vi should improve

Vi’s stimulus representation. However, on the time, H1 also provides information about

the z-axis, which might impair Vi’s encoding of the x-axis and affect its rotation tuning. To

test this intuition, the coupling strength between Vi and H1 was varied over a large range

of values. In the GLM, the coupling strength was controlled by varying the amplitude of

the coupling filter connecting H1 to Vi (see Figure 3.20B).

Figures 3.20C-E show the information carried by Vi about the x-, y-, and z-axis as function

of the coupling strength. Here, the coupling strength indicates the factor by which the

amplitude of the coupling filter was increased or decreased, i.e. 1 corresponds to the

measured strength, whereas for 0 the coupling is ablated. Experimentally, this case was

measured using the unilateral stimulus presented in Figures 3.17E and 3.17F. As shown

in Figure 3.20C increasing the coupling strength from 0 (’no coupling’) to 1 (’coupling as
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Figure 3.20: The Coupling Improves Vi’s Stimulus Representation. (A) Averaged information

encoded by Vi (green) and H1 (blue) about the x-, y-, and z-rotation velocity for strong (left) and weak

stimulation (right). (B) To vary the coupling strength, I changed the amplitude of the (non-exponentiated)

coupling filter describing H1’s impact on Vi. (C) Information carried by Vi about x-rotations. The

averaged information during strong and weak stimulation as estimated by the GLM is shown in blue

and red. The x-axis indicates the factor by which the coupling filter amplitude was changed. Hence,

1 corresponds to the measured coupling strength, whereas 0 indicates no coupling. The experimentally

measured information rates are depicted in black (strong stimulation) and gray (weak stimulation). The

data values for a coupling strength of 0 were measured for unilateral stimulation. Error bars denote

S.E.M over all flies (n=8). Significant differences between the recorded data (based on a paired t test)

are indicated by asterisks (***p < 0.0001, ****p < 0.00001). (D) Information carried by Vi about the

y-rotation velocity Ry. (E) Information carried by Vi about the z-rotation velocity Rz. (F) Predicted

elevation tuning of Vi in dependence of the coupling strength. Only for large coupling strengths Vi’s

tuning is clearly shifted towards H1’s elevation tuning (dotted black line). (G) Mean firing rates of Vi in

dependence of the coupling strength. The mean firing rates predicted by the GLM are depicted in red

(strong stimulation) and blue (weak stimulation). The experimentally measured rates are shown in black

and gray. (H) Averaged information per spike estimated by the GLM. For the coupling strength measured

in the fly the single spike information is maximal.
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measured in the fly’), for both strong (red) and weak (blue) stimulation, the encoding of

Vi’s preferred rotation axis is significantly improved by 33% and 50%. As indicated by the

black (strong) and gray (weak) dots, the information predicted by the GLM for a coupling

strength of 0 and 1 could be experimentally verified. Increasing the coupling beyond the

strength as found in the fly still increases the information till reaching a maximum at

about 2.5 times the measured coupling strength. To test whether the general trend of the

information as function of the coupling strength might be influenced by the adjustment

of the stimulus filter, I re-calculated the information for the original GLM. As shown by

the dotted lines in Figure 3.20C, for strong and weak stimulation the resulting information

curves are only shifted downward by a constant offset. Hence, the shape of these curves is

not influenced by the adjustment of the stimulus filter amplitude.

As expected from the arrangement of the coordinate system (see Figure 3.14A), Vi has no

information about the y-axis irrespective of the coupling strength (Figure Figure 3.20D).

As depicted in Figure 3.20E, although H1 provides information about the z-axis, only for

large coupling strengths Vi carries information about this axis. However, for weak coupling

strengths (from 0 to 1.5) Vi’s information about the z-axis is negligible. To test whether

this effect is reflected in Vi’s rotation tuning, I calculated its elevation tuning in dependence

of the coupling strength (Figure 3.20F). Increasing input from H1 is expected to shift Vi’s

elevation tuning towards negative angles. However, for coupling strengths up to 1.5, Vi’s

tuning is only slightly affected. Only for strong couplings the tuning is significantly shifted.

As shown in Figure 3.20C, although the input from H1 improves Vi’s rotation representa-

tion, Vi and H1 are clearly not optimally coupled in the fly. However, stronger coupling

both neurons leads to increased firing rates (see Figure 3.20G), hence the stimulus encod-

ing becomes energetically more expensive. A way to account for the consumed energy,

when measuring the quality of the stimulus reconstruction, is to divide the information

rate measured in bits per second by the mean firing rate. The resulting measure quantifies

the information carried by a single spike. Interestingly, for both stimulus conditions, the

information per spike is maximal for the measured coupling strength. Hence, the coupling

strength between the two neurons is adjusted to a value such that the rotation tuning of

Vi is nearly unaffected by inputs from H1 and that the information transmission from H1

to Vi is energetically optimal.

To test whether the improved stimulus representation by Vi is indeed due to the information

about x-rotations provided by H1, the same analysis as presented in Figure 3.20 was applied

to the uncorrelated stimulus condition, where independent (uncorrelated) rotations were

presented to Vi and H1. If the input provided by H1 is uncorrelated to Vi’s activity, it might

be interpreted as additional noise source potentially impairing Vi’s stimulus processing.
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Since the connection is purely excitatory, Vi’s firing rate is enhanced by inputs from H1 with

increasing coupling strength (see Figure 3.21B). However, as expected, the information per

spike is reduced when increasing the coupling between Vi and H1 (see Figure 3.21C). Since

for small coupling strengths, the firing rate increases faster than the information per spike is

reduced, the information rate is slightly increased (see Figure 3.21B). However, for strong

couplings, also the information rate is clearly deteriorated. These findings demonstrate

that the improved stimulus processing by Vi relies on the fact that Vi and H1 are stimulus

correlated due to their shared sensitivity to x-rotations.
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Figure 3.21: Rotation Encoding by Vi for Uncorrelated Stimulation of Vi and H1. (A) Mean

firing rates of Vi in dependence of the coupling strength when uncorrelated rotation stimuli were presented

on the left and right side of visual space (Red - Strong Stimulation; blue - Weak Stimulation). The

measured values are shown in black and gray. Error bars denote the S.E.M. (C) Information of Vi about

Rx during uncorrelated stimulation. The measured values are shown in black and gray. (B) Information

per spike carried by Vi about Rx during uncorrelated stimulation. With increasing coupling strength the

information per spike is reduced.

In the presented project, I characterized the functional connectivity of two heterolateral

neurons (left Vi and right H1) located in the left and right lobula plate and tested the

impact of their inter-hemispheric coupling on the encoding of optic-flow. To characterize

the coupling of these neurons, I simultaneously recorded their spiking during presentation

of random rotation stimuli and fitted a generalized linear model (GLM) to their responses.

To exclude that the estimated coupling reflects common stimulus input due to overlapping

receptive fields, the frontal binocular field was blanked such that both eyes were inde-

pendently stimulated and, consequently, both neuron received independent feedforward

inputs. The GLM reproduces the measured response correlations of Vi and H1. The cou-

pling filters of the GLM strongly suggest an excitatory, uni-directional coupling from H1

to Vi, with the coupling strength depending on the stimulation strength. Ablating H1 in

the GLM reduced the amplitude of Vi’s rotation tuning. These predictions were verified
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by stimulating only Vi, while H1’s activity was reduced by a small grating moving in its

null direction. Next, I tested the dependence of Vi’s stimulus representation on the input

from H1. It was found that the coupling increases the information carried by the spikes by

33% and 50% for strong and weak stimulation. Further investigation of the GLM revealed

potential constraints that might determine the strength of the connection: First, the cou-

pling strength is adjusted to a value such that the information per spike is maximal, i.e.

Vi and H1 are coupled in an energetically efficient way. Second, the coupling is still weak

enough such that the Vi’s rotation tuning is nearly unaffected by the input from H1. This

effect relies on two factors: Vi and H1 are stimulus correlated and the coupling is weak

such that uncorrelated input from H1 does not significantly affect Vi’s stimulus encoding.

Hence, simulating neurons with a generative model, whose components are directly fit to

the data, allows analyzing the functional impact of lateral interactions which might not be

expressed in the receptive field.
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Chapter 4

Discussion

In this thesis, I functionally characterized the encoding of optic-flow by the lobula plate

tangential cells. To this end, I pursued a system identification approach with the aim

to describe the stimulus processing by the tangential cells by means of compact, easily

interpretable single cell or two-cell models. A standard model to characterize sensory

neurons is the linear-nonlinear (LN) model consisting of a linear receptive field followed by

a static nonlinearity.

First, I described the spatio-temporal processing properties of the tangential cells by an LN-

model. To estimate the components of the LN-model, I presented novel random motion

stimuli comprising randomly moving dots (Brownian motion stimulus). The receptive

field of an optic-flow processing neuron can be represented as a time-varying vector field

(referred to as dynamic receptive field) describing how the preferred optic-flow pattern

evolves through time. I found that the dynamic receptive fields of the tangential cells can

be separated into a single spatial (vector field) and temporal component (one-dimensional

temporal filter). When increasing the stimulus strength (through an increased density

of moving dots), the gain and selectivity of the tangential cells is strongly reduced. To

account for these modulations of the nonlinearity, I included explicit biophysical elements

to the LN-model. The resulting model captures the gain and selectivity modulations by

the stimulus strength and, thus, generalizes the LN-model.

The dynamic receptive field describes, what optic-flow pattern induces strongest responses,

and therefore allows predicting which self-motion a specific tangential cell encodes. How-

ever, the receptive field does not permit to conclude how well the tangential cells act as

self-motion sensors when confronted with more naturalistic stimuli and changing environ-

ments. To probe the self-motion encoding by the tangential cells, I presented dynamic

rotational and translational self-motions in varying environments. To characterize the self-
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motion processing, I fitted LN-models transforming the presented self-motion profile to the

recorded firing rates. Especially, the linear filters describing the processing of rotations are

stable across environments. However, the gain (steepness of the nonlinearity) is strongly

modulated by the structure of the environment. Generally, rotations are slightly better

represented by the neural responses than translations.

The receptive field and, therefore, the self-motion tuning of a tangential cell arises from the

integration of the input from pre-synaptic local motion detectors and lateral interaction

with further tangential cells. However, classical LN-models do not allow identifying the

different origins of the inputs integrated by a cell. To understand how lateral interactions

influence the properties of single neurons, I simultaneously recorded from two neurons

(left Vi and right H1 cell), while presenting dynamic rotation stimuli. I then fitted to

the recorded responses a generalized linear model (GLM). The GLM can be seen as an

extension of the LN-model. By including an additional coupling filter, the GLM accounts

not only for the stimulus dependence of a neurons firing rate, but also for lateral interactions

between neurons. By means of the GLM, I found that H1 is uni-directionally coupled to

Vi. This interaction improves the rotation encoding in Vi. The strength of the coupling is

adjusted to a value such that the information per spike is maximized in Vi. However, the

coupling is still weak enough such that the excitatory input from H1 does not shift Vi’s

rotation tuning.

4.1 Compartmental Modeling and System Identifica-

tion

In sensory neuroscience, there exist two diametrically opposed approaches to model neu-

rons. The first approach relies on bottom-up models: Based on rich anatomical and physi-

ological data, the goal is to build a detailed biophysical in silico model of a single neuron or

neural circuits. This is typically done by assembling the three-dimensional structure of a

neuron from small cylinders (compartments) (Rall, 1964; Dayan and Abbott, 2001). Each

compartment is equipped with a specific set of ion channels, whose dynamics are described

by differential equations. Such a compartmental model can then be simulated by solving

a large set of differential equations through numerical integration (Carnevale and Hines,

2006). The appeal of this approach is that having a detailed in silico model, all kinds

of experiments can be carried out, allowing for a complete functional characterization of

the input-output relation implemented by a neuron or neural circuit. However, the behav-

ior of a compartmental model depends on an often large number of unknown parameters
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which have to be fit to reproduce the physiological data. The corresponding error function

is generally highly non-nonlinear with multiple local minima. Hence, it is often unclear

whether a given parameter set (although reproducing the physiological data) represents a

unique solution (corresponding to the global minimum) or whether there might be more

sets which exhibit a similar behavior. The existence of different solutions might severely

restrict the generality of a compartmental model and, thus, limits its explanatory power.

Hence, in the end, the parameter selection often does not depend on objective criteria as

the unique solution of an error function, but rather on the intuition of the modeler.

The system identification approach tries to cope with this problem (Wu et al., 2006) by

restricting the number of pre-assumptions on the anatomy, physiology, or structure of neu-

rons or circuits. Top-down models such as LN-models or generalized linear models (GLMs)

describe the input-output relationship of a neuron or circuit by a comparably small number

of parameters. The unknown model components are fit by minimizing an error function.

The appeal of LN-models or GLMs is that the corresponding error function has only one

global maximum, thus defining a unique set of optimal parameters (Dayan and Abbott,

2001; Paninski et al., 2007). However, such top-down models are purely phenomenological:

Although, providing a description of the neural input-output relationship, it is in most

cases not possible to relate its components to physiological properties. E.g. changes in

the neural gain or the coupling strength between neurons are captured by changes in the

models components, however, how these changes are caused by the underlying biophysics

often remains unclear.

A general aim of this thesis was to make the components of top-down models interpretable:

To relate functional phenomena as the gain or selectivity to the physiological properties

of a neuron, I extended the LN-model by explicitly including biophysical elements. The

parameters of the resulting model can be still directly fit to the data by (automatically)

minimizing an error function. This allowed me to relate modulations in the gain and

selectivity of the fly tangential cells to changes in their input conductance and unbalanced

excitatory and inhibitory driving forces (see Section 3.1).

Generalized linear models have been successfully applied to describe the functional con-

nectivity of neural populations in the retina or cortex. However, the coupling filters which

describe the lateral interactions between neurons do not necessarily correspond to existent

synaptic connections (Shlens et al., 2006; Pillow et al., 2008). Instead, they might reflect

shared input to a pair of neurons, shared noise, or overlapping receptive fields. To guar-

antee that the coupling filter between H1 and Vi describes the lateral interaction of these

two neurons, I carefully adjusted the presented stimulus: First, the region in visual space

where the receptive fields of Vi and H1 overlap was blanked. Second, to train the GLM, I
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presented uncorrelated stimuli to Vi and H1 (see Section 3.3).

A goal of future research is to extend the generalized linear model such that it also captures

changes in the neural gain and selectivity as the biophysical LN-model as well as changes

in the coupling strength between the neurons. Such an approach allows compensating for

one of the major flaws of top-down models: their ignorance of biophysical details.

4.2 Space-Time Separability of the Dynamic Recep-

tive Fields

As described in Section 3.1, the dynamic receptive fields of the fly tangential cells are fully

described by a single temporal and spatial component, i.e. they are space-time separable.

This result post-hoc justifies earlier studies which either investigated the spatial lay-out of

local preferred direction neglecting dynamic processing features (Krapp and Hengstenberg,

1996; Krapp et al., 1998, 2001), or merely focused on the temporal processing properties

of the fly neurons (Safran et al., 2007; Fairhall et al., 2001; Brenner et al., 2000; Borst,

2003). The space-time separability implies that the tangential cells exhibit homogeneous

dynamic properties. In contrast, it has been shown that the responses of optic-flow pro-

cessing neurons in cortical area MST in monkeys arise from the contribution of multiple

temporal components (Duffy and Wurtz, 1997): an unspecific followed by a specific re-

sponse component exhibiting a clear tuning. However, if continuously varying optic-flow

patterns are presented, the unspecific component disappears, and the neural responses vary

smoothly with the displayed trajectory (Paolini et al., 2000). Similarly, the lobula plate

tangential cells of flies also encode the degree to which a given velocity pattern matches the

cells’ receptive field. Further evidence for such a linear encoding of optic-flow by large-field

motion-sensitive neurons has been provided for neurons in the accessory optic system in

pigeons (Wylie et al., 1998).

The finding that the spatial and temporal components changed only slightly through an

increase of the motion density suggests that the response of the tangential cells depends

only weakly on second-order correlations in the stimulus. This is surprising given that

each of the recorded neurons is inter-connected via electrical or chemical synapses to other

tangential cells (Borst et al., 2010). A possible explanation for this finding might be that

incoming synaptic inputs do not nonlinearly interact, but rather sum linearly as might

be expected for electrical synapses. Alternatively, synapses connecting tangential cells

might act on a very small time scale and affect more the exact timing of spikes than

trial-averaged firing rates. Compared to other sensory systems, the fly tangential cells
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behave astonishingly linearly: E.g. the visual cortex has been reported to be sensitive

to higher-order correlations in visual textures (Purpura et al., 1994). Moreover, natural

image statistics has been shown to change the receptive fields of neurons in V1 (David et al.,

2004) as well as their gain (Felsen et al., 2005) also indicating that higher-order correlations

affect the stimulus processing in visual cortex. Similarly, it has been demonstrated that

the response properties of neurons in the auditory cortex are influenced by interactions in

the spectrum of the presented auditory stimuli (Ahrens et al., 2008).

4.3 LN-Models and Adaptation

Figure 4.1: Three examples for approximating a parabolic function by a straight line. Depending on

the sampled region (indicated by the thick black line) linear regression yields different fits (shown in red).

Figure taken from Christianson et al. (2008).

Changes in the components of an LN-model, as observed for the input-output relation of the

fly tangential cells, are often described as adaptations to changes in the stimulus statistics:

It is assumed that a change in the model parameters corresponds to changed (adapted)

parameters in the neurons. However, the presence of an adaptation mechanism cannot

be necessarily deduced from modulations of the LN-model components by the presented

stimulus ensembles. The input-output relation of neurons is typically highly nonlinear.

As illustrated in Figure 4.1, sampling e.g. a quadratic nonlinearity in different regions

by changing the stimulus statistics yields different linear approximations (Christianson

et al., 2008). In such a case, the change in the LN-model is not caused by an adaptive

mechanism which accumulates evidence about changes in the external world on a timescale

governed by the stimulus statistics; rather, the input-output relation appears to be changed

simply because the neuron responds differently to various stimulus ensembles due to its

inherent nonlinearity. Notably, such changes happen instantaneously and do not depend

on the stimulus statistics. However, explicitly modeling the involved nonlinearity should

then correct for changes in the LN-model components (Borst et al., 2005; Wark et al., 2007;

Ahrens et al., 2008). Indeed, I found that extension of the LN-model by a further nonlinear
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term modeling the biophysics of dendritic integration accounts for the divisive and additive

modulation of the input-output relation of the tangential cell by the density of presented

dots (see Section 3.1). Explicitly modeling dendritic integration generalizes the resulting

model, such that it can be applied to data sets of varying motion density, without the

need to adjust its gain or selectivity. This finding suggests that for the presented stimuli

no strong adaption process is at work and that all changes in the input-output relation

happen instantaneously. Hence, explicitly modeling excitatory and inhibitory input lines

and subsequent dendritic integration in a finite cable might also allow for other sensory

systems to disentangle changes caused by a fundamental biophysical nonlinearity from

changes by an adaptation process.

A further study where the inclusion of a basic biophysical mechanism allowed improving the

LN-model was provided by Pillow et al. (2005): To account for the dynamics and variability

of spike generation, a noisy integrate-and-fire model driven by the linearly filtered stimulus

and a post-spike current was fit and, thus, reproduced the reliability and selectivity of

primate retinal ganglion cells.

4.4 Gain Modulation in Spiking Neurons

The biophysically extended LN-model captures the divisive (gain) and additive (selectivity)

modulation of the input-output relation by the density of presented dots, thereby relying on

the dendritic integration of synaptic inputs from local motion detectors in a finite cable (see

Section 3.1). The current flowing in response to the presented stimuli is then transformed

to the firing rate. Previously, however, it has been stated that, although changes in the

membrane conductance can have a divisive effect on the membrane potential (Borst et al.,

1995), they mainly act subtractive (or additive) on the neural firing rate (Holt and Koch,

1997). More recently, it has been shown that an increase of excitatory and inhibitory

synaptic noise can also lead to a divisive modulation of the neural gain of a spiking cell

(Chance et al., 2002). This type of gain modulation results from the combination of

a subtractive shift of the neural input-output relation and the lowering of the spiking

threshold due to the overall increase of synaptic input noise. A prerequisite of the presented

biophysical model to exhibit a divisive effect on the firing rate is a large electrotonic

distance between dendrite and spike initiation zone (axon). The large electrotonic distance

effectively segregates the neuron into a dendritic and axonal compartment. As shown in

Holt and Koch (1997), if the spike initiation zone and dendrite are not separated (as for

a simple integrate-and-fire neuron), the excitatory and inhibitory conductances have no
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divisive effect on the firing rate. Thus, the degree to which a neuron is electrically separated

into a dendritic and axonal compartment determines, how strongly the gain and selectivity

are affected by incoming synaptic inputs. This finding suggests that a pronounced neural

compartimentalization might be generally advantageous for sensory neurons that need to

adjust their dynamic coding range to the actual stimulus strength as the mean luminance,

contrast, or motion density.

The input conductance of the finite cable (which is proportional to the parameter c in

Equation 3.1) determines how strongly the gain is modulated by the total synaptic input.

Interestingly, the baseline potential of the tangential cells in tethered flies has been shown to

rise during flight (Maimon et al., 2010). This potential shift indicates an increased synaptic

input to the tangential cells, thus increasing their input conductance. Consequently, during

flight the neural gain might be even stronger affected by the amount of synaptic input,

making the cells highly sensitive to variations in the strength and density of motion cues.

The divisive modulation of the input-output relation adjusts the response range of the

tangential cells to the global stimulus strength determined by the current motion density.

This gain control mechanism can be interpreted as a normalization of the summed local dot

velocities by the global stimulus strength. The summed local velocities as computed by the

local motion detectors are thereby divided by the global stimulus strength as reflected in

the total synaptic input from pre-synaptic motion detectors. Various studies have pointed

out the importance of divisive normalization for explaining the tuning properties of cortical

visual neurons (Carandini and Heeger, 1994; Rust et al., 2006), the processing of natural

images (Schwartz and Simoncelli, 2001), and olfactory signals (Borst, 1983; Olsen et al.,

2010). Models for divisive normalization typically assume that the response of a single

neuron to a local stimulus is divided by the summed population activity, thus accounting

for the global stimulus strength (as e.g. the mean luminance or contrast) of the surrounding

scene. Shunting through an inhibitory feedback synapse has been proposed as a possible

biophysical implementation of divisive normalization (Carandini and Heeger, 1994). Recent

experimental studies showed that global inhibition underlies normalization of neurons in

hippocampus and somato-sensory cortex (Pouille et al., 2009) as well as of projection

neurons in the olfactory pathway of flies (Olsen et al., 2010). To adjust the neural gain

by the overall strength of synaptic inputs, the presented model incorporates a divisive

normalization mechanism relying on a feedforward architecture. In case of the tangential

cells, the integration of synaptic inputs from pre-synaptic detectors already seems to be

sufficient to adjust the neural coding range to the global stimulus strength and, thus,

does not require a further global inhibitory mechanism. Such a feedforward model for

divisive normalization might be a consequence of the large receptive field size of optic-
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flow processing neurons: The receptive field of a single neuron is already large enough to

reliably estimate the global stimulus strength without having to rely on the activity of

neighboring cells. In this respect, it would be interesting to investigate, how neurons with

large receptive fields in other systems such as cortical area MST or the accessory optic

system in birds adjust their gain to the global stimulus strength.

4.5 Rotation and Translation Encoding by the Tan-

gential Cells

In the experiments with the white-noise self-motion stimuli I found that rotations are

better represented in the responses of the lobula plate tangential cells than translations

(see Section 3.2).

This result is in line with a recent simulation study which showed that the strong resem-

blance of the receptive fields with rotational optic-flow patterns reduces the sensitivity to

translations (Borst and Weber, 2011). To illustrate this finding Figure 4.2B depicts the

rotation and translation tuning of an artificial cell whose receptive field was identical to the

flow-field for a rotation about the x-axis. The rotation tuning of this ideal rotation sensor

was calculated by the dot product between the receptive field and the flow fields induced by

rotations around various body axis in a rectangular room. The flow fields were estimated

by a two-dimensional array of Reichardt detectors. The response strength to a particular

rotation or translation axis is color-coded on a sphere (Figure 4.2B). While the optimal

rotation sensor exhibits a clear rotation tuning with a preference for rotations about the

x-axis, it is insensitive to translations. Contrarily, an optimal translation sensor with a

receptive field identical to a flow field resulting from a forward translation is insensitive

to any rotation (Figure 4.2C). Hence, the rotational structure of the fly neurons’ receptive

fields might reduce their sensitivity to translations.

With the white-noise self-motion stimulus I tested the robustness of the self-motion encod-

ing by the tangential cells. To this end, I confronted the flies with different environments

to deliberately make it difficult to estimate the current self-motion. However, although

this approach allowed studying the system at a variety of conditions, it is difficult to relate

phenomena as changes in the linear filters or the nonlinearities to the underlying physi-

ology. Contrarily, the Brownian motion stimulus was such designed that changes in the

neural gain and selectivity could be related to changes in the cells’ biophysical properties.

This was possible, since for both presented stimulus conditions (sparse and dense motion),

the stimuli did not differ locally. Hence, any changes in the processing were more likely to
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Figure 4.2: Rotational and Translational Action Field of an Ideal Rotation and Translation

Sensor. (A) Definition of translation and rotation axes. The red arrow indicates the viewing direction

of the fly. (B) Receptive field of an ideal rotation sensor for x-rotations (left). The rotation tuning is

depicted by the coloring of the sphere. The rotation sensor responds strongest to rotations about the

x-axis. Contrarily, it is nearly insensitive to translations along any axis. The black lines indicate x-, y-,

and z-rotation axis or the x-, y-, and z-translation axis. (C) Receptive field of an ideal translation sensor.

Its rotational tuning is weak for all rotation axes. Contrarily, its translation tuning is strong with a peak

for forward translations. Figure modified from Borst and Weber (2011).
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happen at the level of the tangential cells, where local motion signals are integrated, than

in the pre-synaptic local motion detectors. However, in case of the self-motion stimulus,

modulations of the gain or the linear filters could not be related to changes of the proper-

ties in the local motion detectors or in the physiology of the tangential cells. Moreover, it

cannot be judged whether the observed gain modulation is large, or whether it is actually

small due to the presence of an effective gain control mechanism at the level of the mo-

tion detectors or the lobula plate tangential cells. Hence, future models must include an

Reichardt array simulating pre-synaptic elements and account for fundamental biophysical

nonlinearities at the level of the tangential cells to better understand the physiological

basis of phenomenological changes in the LN-models.

4.6 Receptive Fields and Generative Models

The functional properties of sensory neurons are traditionally studied using receptive fields

which describe the general stimulus selectivity and sensitivity of a neuron (Rieke et al.,

1999; Dayan and Abbott, 2001; Wu et al., 2006). The coupling between H1 and Vi is

an example of an interaction whose effect is not expressed in the receptive fields of both

neurons (see Section 3.3). Nevertheless, I found that the interaction between Vi and H1

improves Vi’s stimulus encoding. However, the strength of motion sensitivities on the

contralateral side of Vi’s receptive field suggests, if at all, only a weak impact of neurons

from the right lobula plate onto the left Vi cell. Although it might be possible to show

via statistical tests that the contralateral motion sensitivities are non-zero, the significance

of this interaction and the mechanism underlying the improved stimulus encoding cannot

be deduced from the receptive field. Intriguingly, the reason why the interaction of the

two neurons is not visible in Vi’s receptive field relies on this mechanism: The input from

H1 enhances the optic-flow encoding only if it is correlated with Vi’s activity. However,

typical protocols to map spatial receptive fields either employ local stimuli (e.g. (Krapp

and Hengstenberg, 1996)) or global, spatially uncorrelated stimuli (e.g. (Marmarelis and

Marmarelis, 1978; Weber et al., 2010; Wu et al., 2006)): Local stimuli are too weak to drive

H1 strongly enough to excite Vi, whereas uncorrelated input from H1 due to uncorrelated

stimulation does not influence Vi’s stimulus encoding. Thus, receptive fields only show

the impact of feedforward or lateral inputs whose effect on the neural firing rate does not

depend on higher-order correlations. Hence, directly estimating the connectivity of neurons

using a generative model permits to address the impact of neural interactions which might

be largely missed in classical receptive field studies.
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4.7 Noise Correlations and Generative Models

Especially in sensory cortex and the retina, correlations between simultaneously recorded

neurons have been intensively studied with the aim to understand their impact on stimulus

processing (Bair et al., 2001; Seung and Sompolinsky, 1993; Zohary et al., 1994) and to infer

the structure and dynamics of the underlying connectivity (Kohn and Smith, 2005; Moore

et al., 1970; Smith and Kohn, 2008; Takeuchi et al., 2011). Correlations induced by similar

stimulus selectivity are typically removed yielding the so-called noise correlation (Brody,

1999). This quantity is used to study the size, temporal scale and directionality of the

coupling between the correlated neurons. However, the exact value of the noise correlations

is influenced by various factors as the temporal scale over which it is computed (Cohen

and Kohn, 2011), the neural mean firing rates (de la Rocha et al., 2007), the behavioral

state (Cohen and Maunsell, 2009; Takeuchi et al., 2011) and global activity changes that

are often difficult to detect and account for (Brody, 1999). To avoid these problems with

noise correlations, I pursued a model-based approach: I fitted a generative model to the

recorded spike trains which explicitly accounts for various factors affecting the neuron’s

firing rate: The stimulus, spiking dynamics and lateral connectivity. The coupling filters

allow for a direct quantification of the size and temporal scale of horizontal connections.

Moreover, modifying model components as the coupling filter allows studying their impact

on stimulus processing, and, thus, gives a more direct insight in the functional role of

horizontal interactions.

Model-based approaches to understand the role of correlations were previously applied in

studies on populations of retinal ganglion cells (Pillow et al., 2008; Schneidman et al.,

2006; Shlens et al., 2006). These studies effectively described correlations by fitting models

which account for pairwise neural interactions. The resulting models allowed exploring

more directly the functional impact of correlations on the neural population activity, and,

thus, identified the structure of the functional connectivity underlying population codes

in the retina. Knowing the correlational structure of the neural code permits formulating

constraints on optimal strategies for decoding the population activity, and, thus, outlines

possible computations performed in upstream areas (Averbeck et al., 2006): It has been

shown that a decoder which accounts for the correlations in the retina yields about 20%

better stimulus reconstructions than a decoder which assumes that retinal ganglion cells

are independent (Pillow et al., 2008). Moreover, knowing the structure and organization

of functional interactions allows better constraining the components of generative models

(Stevenson and Kording, 2011). However, previous model-based studies could not relate

the correlated activity to specific synaptic couplings. Rather the functional connectivity
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reflected correlations induced not only by lateral connectivity, but also by common feed-

forward input, overlapping receptive fields or shared noise (Shlens et al., 2006). Hence,

although these studies could not establish a link between existent physical couplings and

their impact on stimulus processing. To circumvent this problem I explicitly chose a pair

of identified neurons located in opposite brain hemispheres which could, thus, be inde-

pendently stimulated via the left and right eye. The identified connectivity underlying

the response correlations is also purely functional in the sense that is replaces an indirect

coupling from H1 to Vi by a single filter. This filter can be directly related to an existent,

synaptic interaction of two neurons and captures the directionality, dynamics and stimulus

dependence of this interaction.

4.8 Dependence of Functional Connectivity on Stim-

ulation Strength

Previous studies reported that the correlation between neurons in visual cortex depend on

the stimulus strength (Nauhaus et al., 2009; Kohn and Smith, 2005). In Nauhaus et al.

(2009), it was found that the distance travelled by a local-field potential (LFP) wave in-

duced by a spike is reduced with increasing stimulus contrast. This effect suggests that

under strong stimulus conditions neurons in the visual cortex are more driven by feedfor-

ward input than lateral connections. This is in line with our finding that the amplitude of

the coupling filter is reduced with increasing stimulus strength (see Section 3.3). Hence,

it seems that under conditions where there is strong evidence about the external stim-

ulus, the activity of sensory neurons relies more on direct feedforward input. However,

in situations where information about stimuli is less clear, responses of sensory neurons

depend more on lateral connections. Hence, under such conditions, the lateral connectivity

might be interpreted as a prior that accounts for the missing evidence from the sensory

organs (Tkacik et al., 2010). The larger the noise in the input, the larger is the impact

of the prior (coupling) on the neuron’s response. Such a mechanism is only beneficial if

the prior reflects the statistics of the encoded stimuli. E.g. the coupling filter between

Vi and H1 only improves the stimulus representation in Vi, if an increased activity in H1

implies a rotation, which is also similar to Vi’s preferred rotation axis. This condition

is indeed fulfilled, since Vi and H1 are stimulus correlated for rotations. The biophysical

mechanism underlying changes in the coupling strength between Vi and H1 and a thorough

probabilistic interpretation of these findings will be the subject of future research.
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4.9 Role of Correlations in Sensory Areas

Connectivity

Correlations
Single Cell Properties
E.g. Tuning, Firing Rate, 
Precision

Information
Stimulus Encoding

Figure 4.3: Connectivity, Single Cell Properties, and Correlations. Correlations are one of

many effects resulting from lateral interactions between neurons. The underlying connectivity induces

correlations, but also affects the computations in single neurons by changing their tuning, firing rate, or

precision. Correlations between pairs of neurons and changes on the single neuron level must be both

taken into account, when trying to understand how the connectivity in sensory areas influences stimulus

processing.

Vi and H1 have different receptive fields and, correspondingly, respond preferentially to

different optic-flow patterns. Therefore, coupling H1 to Vi might be assumed to shift Vis

rotation tuning. However, although the coupling improves Vis stimulus encoding, its tuning

is nearly unchanged. This effect relies on two factors: Vi and H1 are stimulus-correlated

and the coupling is weak such that uncorrelated input from H1 does not significantly affect

Vis stimulus encoding. Hence, more generally, positively coupling two neurons with similar

stimulus selectivity should improve the stimulus representation in single neurons. Indeed,

it has been found in visual cortex that neurons with similar direction or orientation have

a higher likelihood to be connected (Ko et al., 2011) and their correlations increase with

similarity of preferred stimuli (Kohn and Smith, 2005).

However, it has been demonstrated that positive correlations between stimulus-correlated

neurons restrict the total amount of information carried by the whole population (Aver-

beck et al., 2006; Zohary et al., 1994). From this perspective, positive couplings between

neurons appear disadvantageous and, thus, might represent a factor limiting the strength

of lateral interactions. However, in most cases it is unclear to what extent the connectivity

underlying the correlations affects the properties of single neurons. It has been previously

demonstrated that the lateral inputs of a neuron can change its receptive field (Farrow
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et al., 2005), precision (Cafaro and Rieke, 2010) or gain (Olsen and Wilson, 2008). All

these factors affect the stimulus processing, too. Thus, correlations between neurons are

just one of many factors that constrain how neurons should be coupled to optimally pro-

cess stimuli 4.3. Hence, a more thorough discussion of the effects of correlations should

directly focus on the underlying connectivity and trade the resulting beneficial compu-

tations against potentially negative effects as correlated noise. This requires a systems

approach that either allows separately activating feedforward and lateral input lines as it

was the case for Vi and H1 or to directly manipulate the inputs to neurons (Cafaro and

Rieke, 2010; Elyada et al., 2009). I am convinced, that for the future, a combination of

careful sensory stimulation, targeted stimulation of interacting partners, and analysis of

generative models will deepen our understanding of the connectivity in a variety of systems.
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