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psaA  gene encoding the P700 apoprotein A1 of PSI 
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Zusammenfassung 

Die Zusammensetzung und Struktur essentieller Proteinkomplexe innerhalb der 

Chloroplasten, wie die der Photosysteme, des Cytochrom b6f-Komplexes, der ATP-Synthase 

und der Ribulose-1,5-bisphosphat-Carboxylase/Oxygenase (Rubisco), sind sehr gut erforscht.  

Weitaus weniger ist dagegen über die Identität und Funktion von Faktoren, die in die 

Synthese sowie die Assemblierung der Untereinheiten dieser Komplexe involviert sind, 

bekannt. Der Schwerpunkt dieser Dissertation lag in der Untersuchung von Proteinen, die auf 

posttranskriptioneller Ebene regulativ auf die Synthese von Untereinheiten des Photosystems 

II und der Rubisco einwirken. 

Zahlreiche Untersuchungen zur plastidären Genexpression in höheren Pflanzen und 

Grünalgen belegen die Beteiligung kernkodierter Proteinfaktoren an der Prozessierung und 

Stabilisierung entsprechender mRNAs sowie an deren Translation. In der hier untersuchten 

Grünalge Chlamydomonas reinhardtii wird die psbD-mRNA, welche für das D2-Protein im 

Reaktionszentrum des Photosystems II (PSII) kodiert, durch Interaktion mit dem 

kernkodierten Nac2-Protein vor exonukleolytischem Abbau geschützt. Ein weiterer, in die 

Translation der psbD-mRNA involvierter Proteinfaktor RBP40, wurde im Rahmen dieser 

Arbeit näher charakterisiert. Durch Anwendung verschiedener biochemischer und 

molekularbiologischer Methoden konnte gezeigt werden, dass Nac2 und RBP40 einen 

Komplex bilden, wobei RBP40 in Abhängigkeit der Anwesenheit von Nac2 spezifisch an 

einen poly(U)-Bereich der 5`UTR der psbD-mRNA bindet. Es konnte zudem nachgewiesen 

werden, dass RBP40 zwar mit ribosomaler RNA interagiert, jedoch nicht mehr an psbD-RNA 

gebunden ist, die mit translatierenden Polysomen assoziiert ist, wodurch Rückschlüsse auf die 

zeitliche Abfolge der D2-Synthese gezogen werden können. Weitere Untersuchungen zeigten 

eine lichtabhängige, redoxregulierte Assoziation von RBP40 mit dem Nac2-Komplex, die für 

die Bindung von RBP40 an seine RNA-Zielsequenz sowie der wahrscheinlich daraus 

resultierenden Auflösung einer Haarnadelstruktur um das psbD-Startkodon verantwortlich ist. 

Dieser Prozess stellt somit einen entscheidenden Kontrollpunkt für die D2-Synthese dar. Die 

Analyse verschiedener psbD-Mutanten, in denen zum einem durch Punktmutationen diese 

Haarnadelstruktur aufgelöst und zum anderen die RBP40-Bindestelle deletiert wurde, zeigten 

eine reduzierte, lichtabhängige Steigerung der D2-Synthese. Somit scheint dieser von RBP40 

ausgehende Prozess für die Syntheserate von D2 im Licht verantwortlich zu sein. Erste 

Schritte der psbD-Translation beinhalten daher wahrscheinlich eine redoxabhängige Bindung 

des Nac2/RBP40-Komplexes, wodurch es zur RBP40-vermittelten Auflösung der 
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Haarnadelstruktur im 5’UTR der psbD-mRNA kommt. Die Entfernung dieser RNA-

Sekundärstruktur ermöglicht nachfolgend den ribosomalen Zugang zum 

Translationsinitiationsort. 

Darüber hinaus wurde im Rahmen dieser Arbeit ein Translationsrepressor, das Protein NAB1, 

auf seine mögliche redoxabhängige RNA-Bindungsfähigkeit hin untersucht. NAB1, ein 

Protein, welches durch Bindung an die lhcb-mRNA die Synthese der kodierten 

Lichtsammelkomplexproteine inhibiert, zeigte hierbei in vitro ebenfalls eine vom 

Redoxzustand bestimmte Interaktion mit der Ziel-RNA. 

Der Redoxzustand könnte ebenfalls für Bindung von RNA an Komplexe verantwortlich sein, 

welche die Eisen-Schwefel-Cluster-haltigen Proteine CDJ3 und CDJ4 aufweisen. Von beiden 

Proteinen wird angenommen, dass sie redoxabhängig die Spezifität des HSP70B-

Chaperonsystems und somit die Organisation regulatorischer Proteinkomplexe beeinflussen. 

Tatsächlich erwies sich das Protein CDJ3 als Komponente eines hochmolekularen RNA-

bindenden Komplexes, was auf eine Chaperon-vermittelte Remodellierung dieses Protein-

RNA-Komplexes hinweist. CDJ3 könnte auf diese Weise an der Expression plastidärer 

Transkripte beteiligt sein. Allerdings scheint es sich hier nicht um einen generellen RNA-

bindenden Komplex zu handeln, da beispielsweise keine Interaktion mit psbD-mRNA 

nachgewiesen werden konnte. 

Die Regulation der plastidären Genexpression über hochmolekulare RNA-bindende 

Komplexe scheint einen häufig auftretenden Mechanismus darzustellen. So konnte ebenfalls 

für das konservierte, kernkodierte Regulatorprotein Mrl1, das sowohl in Arabidopsis als auch 

in Chlamydomonas an der Prozessierung der Transkripte der großen Untereinheit der Rubisco 

(rbcL) beteiligt ist, nachgewiesen werden, dass es sich hierbei um eine Komponente eines 

hochmolekularen rbcL-mRNA-bindenden Komplexes handelt. Die im Rahmen dieser Arbeit 

erlangten Resultate erlauben somit tiefere Einblicke in Mechanismen der plastidären 

Genexpression sowie in die Organisation involvierter regulativ wirkender RNA-Protein-

Komplexe. 
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Summary 

Composition and structure of the essential complexes in the chloroplast, like photosystems, 

cytochrome b6f complex, ATP synthase and Rubisco, is well known. Less understood is the 

regulation of subunit synthesis and assembly into these complexes. The focus of this thesis 

was the analysis of proteins involved in post-transcriptional regulation of subunit synthesis of 

PSII and Rubisco. 

Several studies about plastid gene expression in higher plants and green algae have proven the 

participation of nucleus-encoded protein factors in processing and stabilization as well as 

translation of corresponding mRNAs. One example in the green alga C. reinhardtii is the 

psbD mRNA, encoding for the D2 protein of the PSII reaction center. The transcript is 

protected from exonucleolytic degradation by interacting with the nucleus-encoded Nac2 

protein. The additional factor RBP40 which is involved in translation of the same mRNA was 

investigated in more detail in the framework of this thesis. Interaction between RBP40 and the 

transcript is mediated by a poly(U)-sequence of the psbD 5’UTR. By combining several 

methods from the fields of biochemistry and molecular biology it was proven that RBP40 

binds specifically to the 5`UTR of the psbD mRNA in a Nac2 dependent manner. 

Additionally, it could be shown that, even though RBP40 is binding to ribosomal RNA, it 

seems not to be associated with polysomes which actively translate psbD mRNA. This allows 

conclusions about the chronology of D2 synthesis. Further investigations established a light-

dependent and redox-regulated association of RBP40 to the Nac2 complex, which is involved 

in the association of RBP40 to its target RNA and subsequent synthesis of the D2 protein. The 

analysis of psbD mutants which exhibit deletion of the RBP40 binding region and point 

mutations within a hairpin structure downstream of the RBP40 binding site showed different 

increases in the translation of the psbD mRNA when switching from dark to light conditions. 

Therefore, elevated D2 synthesis rates in the light seem to be determined by a process that 

involves RBP40. Thus, first steps for translation of the psbD RNA likely include a redox-

dependent binding of RBP40 to the Nac2 complex and the psbD mRNA. 

In addition another factor involved in translation, the NAB1 protein, was analyzed within this 

thesis in regard to its potentially redox-dependent RNA binding ability. Hereby, NAB1, which 

- by binding to lhcb mRNAs - represses the synthesis of light harvesting complex proteins 

similarly to RBP40 showed a redox-dependent RNA binding activity in vitro.  
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The oxidation level could also be responsible for binding of RNA to complexes containing the 

iron-sulfur-cluster proteins CDJ3 and CDJ4. It is assumed that both proteins regulate the 

specificity of HSP70B chaperones in a redox dependent manner and, therefore, the 

organization of regulatory protein complexes. CDJ3 is part of a high molecular weight RNA-

binding complex, suggesting a chaperone-assisted remodeling of this RNA-protein complex 

and a role for CDJ3 in expression of plastid transcripts. However, this complex does not seem 

to have a general function since no specific interaction with the psbD RNA was shown. 

Regulation of chloroplast gene expression by high molecular weight RNA binding complexes 

seem to be a frequent mechanism. Accordingly, the conserved nucleus-encoded protein 

MRL1, which is necessary for processing of the transcripts of the large subunit of Rubisco 

(rbcL) in Arabidopsis and Chlamydomonas, was shown to be a component of a high 

molecular weight complex binding to rbcL mRNA. Therefore, results obtained in this thesis 

improved the understanding of mechanisms of plastid gene expression as well as the 

organization of involved regulatory RNA protein complexes. 
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1. Introduction 

Eukaryotic cells of animals and fungi originated from the fusion of an archaebacterium with 

an -proteobacterium (Cavalier-Smith 2002). Recent results propose that a likely host of this 

event belongs to the archaebacterial group of the Thermoplasmatales (Pisani, et al. 2007). The 

endosymbiotic proteobacteria evolved to mitochondria (Gray, et al. 1999). An additional 

fusion event with an oxygen-producing cyanobacterium gave rise to the first photoautotroph 

eukaryotes with chloroplasts (Palmer 1993, Gray 1999, Gould, et al. 2008).  

 

1.1 Evolution of organelles: chloroplasts and mitochondria 

The evolution of mitochondria definitely enhanced abilities of the host cell to conduct 

oxidative phosphorylation. This resulted in higher ATP yields, giving an energetic advantage 

over the “organelle-free” prokaryote that was only able to produce ATP by glycolysis 

(Cavalier-Smith 2002). 

Chloroplasts enable the conversion of light energy into chemical energy as well as storage of 

carbon as high energy organic compounds, therefore giving their host cells even more 

metabolic advantages (Gould, et al. 2008, Martin 2010). 

Since these endosymbiotic events, an ongoing transfer of organellar genes into the nuclear 

genome can be observed, while some genes that were necessary for the survival of the former 

independent endosymbiont have been lost (Martin, et al. 2002, Raven and Allen 2003, 

Timmis, et al. 2004, Kleine, et al. 2009). Whereas chloroplasts and mitochondria still contain 

their own DNA, the transfer of genes to the nucleus reduced their number in chloroplasts to 

~20-200 and 3-63 genes in mitochondria. Approximately 4500 genes of the ancestral 

endosymbiont are nowadays encoded in the nucleus (Martin, et al. 2002, Timmis, et al. 2004). 

Gene transfer does not occur unilaterally in direction to the nucleus. There are also examples 

of mitochondrial genes being transferred to the chloroplast or putative former nuclear genes 

which are expressed in mitochondria (Schuster and Brennicke 1987, Brouard, et al. 2008). It 

is also known that proteins which are encoded by genes of cyanobacterial origin now have a 

function outside of the chloroplast (Vesteg, et al. 2009). Some organelle-like mitosomes 

which are found in various unicellular eukaryotic organisms have even lost all of their genes 

(Tovar, et al. 2003, Martin and Müller 2007). Reasons might be that organellar genomes 

reproduce asexually. Thus, plastid and mitochondrial genes have higher mutation rates and 
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2006). The most basic way of describing photosynthesis is the conversion of water, carbon 

dioxide and light energy to sugars and, as a by-product, molecular oxygen.  

Therefore, due to creation of oxygen as its secondary product, oxygenic photosynthesis is 

responsible for the oxygen content in the atmosphere. Another implication is the constitution 

of an ozone layer, protecting life forms from harmful levels of UV radiation. These effects 

allowed for respiration and evolution of all eukaryotes (Blankenship 1992). Photosynthetic 

reactions can be declared by these arguments to be the most import series of chemical 

reactions for development of higher life forms (Xiong and Bauer 2002). 

As the photosynthetic reactions start with the splitting of water in PSII - a central event of this 

process - this multimeric complex as it is defined in eukaryotes will be described in more 

detail. A schematic depiction of the subunit-composition of PSII is shown in figure 2. Water-

splitting and binding of several pigments takes place at the reaction center, consisting of the 

proteins D1 and D2 (Dekker and Boekema 2005). The center is embedded between the 

chlorophyll-binding proteins CP47 and CP43, representing the inner antenna of the PSII core. 

Additional intrinsic subunits are assembled around the core. Most of them seem to be 

involved in assembly, stabilization and dimerization of the PSII complex; their exact number 

is organism-dependent (Dekker and Boekema 2005). The extrinsic subunits PsbO, PsbP and 

PsbQ which are positioned on the luminal side constitute the oxygen-evolving complex of 

PSII (Dekker and Boekema 2005). This monomeric form of PSII undergoes a dimerization 

event (Nield, et al. 2000). Between two and four LHCII (light harvesting complex of PSII) 

trimers are then attached to the PSII core dimer as peripheral antennae to enable more 

efficient capture of excitation energy from photons. CP24, CP26 and CP29 serve as linkers 

for the outer antennae in these supercomplexes (Ruffle and Sayre 1998, Dekker and Boekema 

2005). 
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2. Its flagella turn Chlamydomonas into a promising organism for basic research on 

human diseases that are caused by cilia/flagella dysfunction, e.g. primary cilia 

dyskinesia (Snell, et al. 2004, Morillas, et al. 2007, Pan 2008). 

3. It contains both animal- and plant-like genes and can be used to analyze the eukaryotic 

circadian clock at different levels of organization as the complete genomic sequence 

and several sub-proteomes are known (Schulze, et al. 2010, Matsuo and Ishiura 2011). 

4. It can be grown in large numbers at short generation times in low cost media, resulting 

in high yields of compounds of interest. In case of biofuel production, it does not 

compete with food crops for arable land. Another example is the overexpression of 

important proteins like vaccines in a plant system, circumventing problems of animal-

based approaches (Rupprecht 2009, Cardi, et al. 2010, Schmidt, et al. 2010, Specht, et 

al. 2010, Maliga and Bock 2011). 

Therefore, C. reinhardtii has become an important and frequent tool in biology and 

biotechnology after being first described by Dangeard in 1888. 

 

1.4 Gene expression in chloroplasts 

Non-locally encoded proteins of the chloroplast have to be imported into the organelle after 

their synthesis in the cytoplasm. Therefore, a highly coordinated expression of nuclear and 

organellar genomes is an essential prerequisite for proper timely and spatial arrangement of 

all subunits by the involvement of nucleus-encoded regulatory factors (figure 4; Goldschmidt-

Clermont 1998, Barkan and Goldschmidt-Clermont 2000, Woodson and Chory 2008). Even 

most complex functions in the organelle can be regulated at several levels by this delicate 

machinery in coordination with signaling pathways, which allows the cell to respond to 

different kinds of environmental changes by fine-tuning its metabolism (Gray, et al. 2003). 

Changes in cell development that depend on exact stoichiometry of differentially encoded 

components rely on anterograde signaling, e.g. signals are going from the nucleus to the 

organelles. Examples are nucleus encoded proteins that determine the rate of existing RNAs 

in chloroplasts, like Mbb1 in Chlamydomonas and its orthologue HCF107 in Arabidopsis, 

which detect psbB or psbH transcripts, respectively (Vaistij, et al. 2000b, Sane, et al. 2005). 

Rapidly changing conditions, i.e. redox levels / oxidative stress and availability of nutrients, 

have to be reported from the organelles to the nucleus by the process of retrograde signaling 

as the former endosymbionts have lost their own regulatory mechanisms (Woodson and 

Chory 2008). This holds true amongst other examples for regulation of chlorophyll 
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transcriptional regulation to optimize processes involved in photosynthesis (Huala, et al. 

1997, reviewed in Christie 2007, Goh 2009). Receptors for red and far-red wavelengths 

include the phytochromes and phytochrome-related sensors which are present amongst others 

in unicellular green algae, diatoms, cyanobacteria, non-oxygenic photosynthetic bacteria, non-

photosynthetic bacteria, and even fungi. The first red light receptor in plants was already 

characterized at the molecular level in 1984 (Hershey, et al. 1984, reviewed in Rockwell and 

Lagarias 2010). Of importance to plants for regulation of their cellular functions are also 

intermediates of chlorophyll biosynthesis as well as the redox state of the photosynthetic 

electron transport (Kropat, et al. 1997, Beck 2005, Koussevitzky, et al. 2007). 

One chloroplast complex that is regulated by these signaling pathways is the aforementioned 

PSII. As shown in figure 2 it is composed of several subunits, some of which are encoded in 

the chloroplast (figure 2; green-colored subunits) and others in the nucleus (figure 2; grey-

colored subunits). Levels of nuclear encoded factors involved in regulating PSII by 

controlling synthesis and assembly of subunits are efficiently controlled by their rates of 

transcription, whereas the expression of participating chloroplast genes is mainly regulated at 

the post-transcriptional level (reviewed in Goldschmidt-Clermont 1998, Leon, et al. 1998, 

Woodson and Chory 2008). In case of photosystems an interesting model of interaction 

between the redox state and illumination of the chloroplast has been proposed by 

Pfannschmidt and co-workers. Depending on light intensity there are supposed to be three 

different redox responses: (1) plastoquinone is responsible for exact regulation and low-light 

adaption, (2) the thioredoxin system reactions at medium light, and (3) the glutathione pool 

regulating responses to high-light and oxidative stress (Pfannschmidt, et al. 2001). 

Glutathione itself is responsible for storage and transport of reduced sulfur in many cellular 

processes, e.g. antioxidative defense (Tausz, et al. 2004). Thioredoxins are involved in the 

regulation of the redox environment of the cell by catalyzing thiol-disulfide interchanges. 

They act on their target proteins depending on ferredoxin thioredoxin reductases, NADP 

thioredoxin reductases or glutaredoxines. Electrons for these reactions are either provided by 

light or NADPH  (Gelhaye, et al. 2005). 

Focusing on C. reinhardtii, the following subsections will describe in more detail how 

synthesis of chloroplast-encoded photosystem components is regulated at different levels of 

expression. 
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1.4.1 Transcription 

Expression of genes starts with the transcription of their encoding DNA. In chloroplasts of 

higher plants this feat is performed by RNA polymerases of different origin. One type of these 

enzymes, the so called “plastid-encoded plastid RNA polymerase” (PEP), is of cyanobacterial 

origin as is supported by the endosymbiotic roots of the chloroplast and the fact that most 

subunits of this RNA polymerase are encoded in the chloroplast itself. The ancestral origin of 

this RNA polymerase is reinforced by its susceptibility to inhibitors of bacterial transcription 

and its ability to complement homologous subunits in Escherichia coli (Severinov, et al. 

1996, Pfannschmidt and Link 1997, Navarro, et al. 2000). Specificity to promoters of PEP 

target genes is mediated by nucleus-encoded proteins, which are called sigma-like factors due 

to their homology to bacterial 70 factors and their ability to recognize bacterial type -35/-10 

promoters (reviewed in Liere and Börner 2006, Lerbs-Mache 2011). A proposed model in 

Arabidopsis argues that transcriptional activity of the PEP as well as its specificity to its target 

promoters is regulated by the redox-dependent phosphorylation of a casein kinase type II 

plastid transcription kinase and subsequent phosphorylation of sigma factors by this kinase 

(Baginsky, et al. 1999, Schweer, et al. 2010). 

Sigma-like factors are represented by small gene families in higher plants. Members within a 

family are differentially expressed according to conditions of the cell and the environment 

(reviewed in Lysenko 2007). The only known example for such a factor in Chlamydomonas is 

RpoD (Carter, et al. 2004, Bohne, et al. 2006).  

Other RNA polymerases suggested to be involved in chloroplast transcription are phage-type 

enzymes with only one polypeptide chain encoded in the nucleus, which are called “nucleus-

encoded plastid RNA polymerases” (NEP). They are closely related to DNA-dependent RNA 

polymerases from the bacteriophages T3/T7 (reviewed in Liere and Börner 2007). A nuclear 

encoded RNA polymerase activity in plastids was first described in spinach chloroplasts 

(Lerbs-Mache 1993). Further evidence was provided by the maintained transcription of 

chloroplast genes in plants in which distinct PEP subunits were deleted or chloroplast 

ribosomes were severely depleted (Hess, et al. 1993, Allison, et al. 1996, Hajdukiewicz, et al. 

1997, Legen, et al. 2002). The small family of phage-type RNA polymerases in higher plants 

consists of three members, two of them (RpoTmp and RpoTp) are targeted to the chloroplast 

(reviewed in Lysenko and Kuznetsov 2005, Liere, et al. 2011). Interestingly, algae like 

Chlamydomonas, Osteococcus and Thalassiosira seem to lack a nucleus-encoded plastid 

RNA polymerase (Armbrust, et al. 2004, Derelle, et al. 2006). Investigations in 
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Chlamydomonas showed that there is no transcription of plastid genes in the presence of the 

PEP-inhibiting antibiotic rifampicin (Eberhard, et al. 2002). Any attempts to find a phage-

type enzyme in algal plastids failed, as well as the disruption of PEP-encoding genes 

(Goldschmidt-Clermont 1991, Fischer, et al. 1996). Therefore it is likely that all chloroplast 

genes of Chlamydomonas are transcribed by the PEP (reviewed in Smith and Purton 2002). 

 

1.4.2 RNA processing and stability 

The next step of regulation of gene expression is processing and/or stabilization of newly 

synthesized transcripts. This is predominantly mediated by binding of trans-acting factors at 

the 5´UTR. Binding of these factors is more important in Chlamydomonas for RNA levels 

than transcription rates. There is also no example of a proven primary transcript (Salvador, et 

al. 1993, Stern, et al. 2010). In spinach, processing events alone can account for up to 18 

different RNA molecules from a single primary transcript in the chloroplast when excluding 

the possibility of additional promoters (Westhoff and Herrmann 1988). 

Predominant examples of processing of 5’termini in Chlamydomonas are the psbA, psbB and 

psbD transcripts. Respective mRNAs exist in two forms: a longer precursor and a 

predominant shorter form which results from processing of the longer one (Bruick and 

Mayfield 1998, Nickelsen, et al. 1999, Vaistij, et al. 2000a). The subsequent binding of 

regulatory proteins then effects stability. Eventually, RNA structures are altered to make them 

more accessible to nucleases. Subsequently, translation efficiency can be altered by 

association of nucleases with ribosomes (Nickelsen, et al. 1994, Bruick and Mayfield 1998). 

Processing of 5`ends can be either done by endonucleolytic cleavage or by exonucleases that 

partially degrade the RNA. This exonucleolytic degradation has been reported in 5` to 3` 

(petD) as well as in 3` to 5` (atpB) direction (Drager, et al. 1999, Hicks, et al. 2002). The 

existence of several different nucleases in the chloroplast allows the endonucleolytic cleavage 

of unprotected sequences. Presence of specific RNA-binding proteins then circumvents 

changes of the secondary RNA structure which would turn an unprotected transcript into an 

easier substrate of exonucleases (reviewed in Stern, et al. 2010). Another explanation suggests 

that these nucleolytic events facilitate coordinated translation of the psbA, psbB and psbD 

RNA. Binding of a nuclease to the pre-mRNAs would guide them to thylakoid membranes 

before processing and translation take place (Rochaix 1996). 
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RNA processing at the 3`terminus must also include nucleolytic degradation as most 

chloroplast transcripts have specific 3`ends but transcription termination is very inefficient 

(Stern, et al. 2010). In spinach chloroplasts, a simple model describes the degradation of 3’ 

ends by a polynucleotide phosphorylase that degrades RNA until being stopped by secondary 

structures like inverted repeats (Yehudai-Resheff, et al. 2001). Also observed are more 

complicated events including cleavages by endonucleases like CSP41 or CRR2 and also 

protection of RNAs by capping proteins, i.e. for psbB, psbD, petA, petD and rbcL messages 

(Yang, et al. 1996, Boudreau, et al. 2000, Vaistij, et al. 2000b, Hashimoto, et al. 2003, 

Murakami, et al. 2005, Raynaud, et al. 2007, Johnson, et al. 2010). Alternatively, capping 

proteins might fulfill additional roles like splicing (Williams-Carrier, et al. 2008). Cis 

elements include binding regions for these proteins or sequences that can even stabilize the 

RNA in a mutant background. An example is the addition of a poly(G)-tract to the 5’UTR of 

the psbD RNA. Transcripts were still detectable when the stabilizing Nac2 factor was missing 

(Drager, et al. 1998, Nickelsen, et al. 1999). Importance of this stabilizing elements and 

factors is given again in psbD gene expression. Transcript levels are not as severely reduced 

as suggested by their synthesis rate (Klinkert, et al. 2005). The number of involved factors 

can be even increased. Polycystronic primary transcripts exist that require endonucleases for 

processing but also contain internal promoters (Drapier, et al. 1998, Rymarquis, et al. 2006). 

Examples for higher plants exist in Arabidopsis including HCF107, an orthologue to Mbb1 in 

Chlamydomonas, which protects 5`ends of psbH messages, and HCF 109 which is important 

for mRNAs that contain UGA codons (Meurer, et al. 2002, Sane, et al. 2005). 

Similar to the processing of polycistronic messages is the event of splicing. During this 

process introns are removed before a transcript is translated. Chloroplast introns can be 

divided into the classes I or II. The most important member of class I introns in 

Chlamydomonas is represented by introns of the psbA gene whose splicing regulated in a 

light-dependent manner (Deshpande, et al. 1997, Herrin and Nickelsen 2004). Group II 

introns in this organism, present in the psaA gene, are even more remarkable as both of them 

are trans-spliced with three different RNAs participating in formation of the first intron. 

Although several introns contain specific splicing factors, other factors must be involved in 

this process as auto-catalytically splicing introns can be only observed at non-physiological 

conditions (reviewed in Goldschmidt-Clermont 2009). Splicing of psaA introns in 

C. reinhardtii includes a chloroplast-encoded RNA and different nucleus-encoded proteins 

(Goldschmidt-Clermont, et al. 1991, Goldschmidt-Clermont 2009). Intriguingly, besides the 

aforementioned light-regulation of psbA intron removal, there are no phenotypical differences 
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compared to the wild-type when intron-less genes were introduced into the chloroplast of 

Chlamydomonas (Johanningmeier and Heiss 1993, Deshpande, et al. 1997). Mutation of an 

intron-encoded open reading frame (ORF) in a psychrophilic Chlamydomonas species led to 

the loss of splicing, although the same intron splices correctly in vitro under the same 

conditions. This indicates that a maturase assists in that process (Odom, et al. 2004). Most 

identified proteins involved in splicing of transcripts in chloroplasts act very specifically on 

their target while a few examples seem to fulfill a more general function (examples include 

Ostersetzer, et al. 2005, Balczun, et al. 2006, Glanz, et al. 2006, Merendino, et al. 2006, 

Williams-Carrier, et al. 2008, Kroeger, et al. 2009). 

Another important step in RNA metabolism is editing of organellar transcripts from cytidine 

to uracil residues, which is reported for most plants with the exception of chlorophytes (Stern, 

et al. 2010). Editing sites are not species specific and these events occur more often in 

chloroplasts than in mitochondria (Stern, et al. 2010). Most editing sites are situated in 

reading frames with a few exceptions occurring in non-coding regions. Editing besides 

spontaneous deamination ensures translation of a conserved amino acid (Stern, et al. 2010). 

A final step in processing of RNAs is degradation of transcripts which do not fulfill the 

organelle’s actual requirements. These messages are inactivated by endonucleases and do not 

need to be completely degraded. This is necessary as RNAs are quite often protected from 

degradation by inverted repeats at their 3’termini. Exceptions without those repeats most 

likely follow the example of the 5’ends. In these cases presence of message-specific proteins 

is needed (reviewed in Stern, et al. 2010). A list of known stabilization and processing factors 

in C. reinhardtii is presented in table 1. 

Table 1: Cloned nucleus-encoded factors involved in processing and stability of plastid 
transcripts of C. reinhardtii 

Factor Homology Target RNA References 
Mbb1 TPR protein psbB Vaistij, et al. 2000b 
Mca1 PPR protein petA Loiselay, et al. 2008 
Mcd1 OPR protein petD Murakami, et al. 2005 
Mrl1 PPR protein rbcL Johnson, et al. 2010 
Nac2 TPR protein psbD Boudreau, et al. 2000 
Raa1 OPR protein psaA Perron, et al. 2004 
Raa2 pseudo uridine synthetase psaA Perron, et al. 1999 
Raa3 pyridoxamine 5`phosphate oxidase psaA Rivier, et al. 2001 
Raa4 --- tscA Glanz, et al. 2011 
Rat1 poly-(ADP ribose)-polymerase tscA Balczun, et al. 2005 
Rat2 --- tscA Balczun, et al. 2005 
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Repeat motifs are a reoccurring theme in proteins which are involved in RNA processing. 

Therefore, a brief description will be given about the repeat families present in the mentioned 

protein examples. The shortest known repeat of 34 amino acid residues (arranged in 3-16 

tandem-repeats) is present in tetratricopeptide repeat (TPR) proteins. Members of this protein 

family are participating in different processes by mediation of protein–protein interactions. 

Besides RNA processing, TPR proteins are also involved in regulation of the cell cycle or 

protein folding/transport. These proteins are found in various eukaryotes and prokaryotes 

(reviewed in D'Andrea and Regan 2003). One more amino acid is found in the repeats of 

pentatricopeptide repeat (PPR) proteins arranged in up to 30 tandems. They bind RNA and are 

especially numerous in plants although they can be found in all eukaryotes. All known 

examples are targeted to organelles and play an important role in regulation of gene 

expression (reviewed in Schmitz-Linneweber and Small 2008). The largest mentioned motif 

contains 38 amino acids in the octatricopeptide repeat (OPR) proteins. OPR proteins were 

mainly described in Chlamydomonas, and known examples are involved in several steps of 

RNA metabolism (Eberhard, et al. 2011). 

 

1.4.3 Translation 

Translation is the next major control level for expression of genes in the chloroplast. It is 

mainly regulated through initiation of translation though elongation steps can also be 

modulated (Marín-Navarro, et al. 2007). Important control mechanisms include the redox 

state of components involved in photosynthetic electron transport, the abundance of ATP and 

a pH gradient. This differentiated regulation machinery arose during the incorporation of the 

“cyanobacterial” chloroplast into the eukaryotic host which can already be seen in the 

structure of plastid 70S ribosomes. They clearly differ in structure and antibiotic susceptibility 

from eukaryotic ribosomes. Even though they share most features with bacterial ribosomes, 

some differences and unique subunits occur when comparing them to their prokaryotic 

counterparts. These plastid specific ribosomal proteins and additional domains in already 

known ribosomal proteins could have a function in organelle-specific processes as 

chloroplasts have a special role in integrating light-driven photosynthesis into the whole-cell 

metabolism (reviewed in Marín-Navarro, et al. 2007). General translation factors involved in 

elongation or release of synthesized polypeptides have been shown to be possible target of 

redox and phosphorylation control in a light-dependent manner (Akkaya and Breitenberger 

1992, Balmer, et al. 2004, Wagner, et al. 2006). Another difference of plastidial RNAs 
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compared to prokaryotic RNAs influencing the translation initiation is the higher 

dispensability of a ribosomal binding site, the Shine-Dalgarno (SD) sequence (Hirose and 

Sugiura 1996). Synthesis of the D1 protein is an example for a required SD sequence in 

Chlamydomonas (Mayfield, et al. 1994). Additional elements for ribosome binding in the 

psbA mRNA essential for high level expression of the D1 protein were described by Mayfield 

and co-workers (reviewed in Barnes and Mayfield 2003). In case of psbD translation removal 

of the SD sequence resulted only in minor changes of synthesis rates (Nickelsen, et al. 1999). 

In case of the tobacco rps2 gene a similar sequence is even a negative regulatory element 

(Plader and Sugiura 2003). This implies that SD sequences are not always necessary and were 

replaced by sequence specific factors that alter RNA structures to allow access to the 

ribosomes. Several nucleus-encoded trans-acting factors required for translation of plastid 

RNAs in C. reinhardtii have been characterized which are summarized in table 2. Other 

elements important for translation include the AUG start codon, potential binding by a 

chloroplast homologue of the E. coli S1 ribosomal protein and ribosomal scanning for internal 

start codons (reviewed in Zerges 2000). 

Table 2: Cloned nucleus-encoded factors involved in plastid translation of C. reinhardtii.  

Factor Homology target RNA References 

RB38/RBP40 --- psbD 
Barnes, et al. 2004; 
Schwarz, et al. 2007 

RB47 poly(A)-binding protein psbA Yohn, et al. 1998 
RB60 protein disulfide isomerase psbA Kim and Mayfield 1997 
Tab2 --- psaB Dauvillée, et al. 2003 
Tba1 oxidoreductase psbA Somanchi, et al. 2005 
Tbc2 OPR protein, CRP1 (maize) psbC Auchincloss, et al. 2002 
Tca1 --- petA Raynaud, et al. 2007 
Tda1 OPR protein atpA Eberhard, et al. 2011 

 

Also important for organellar regulation of translation is the localization of translational 

events within the chloroplast as involved factors have been found in the stroma and in 

different membranes (examples can be found in Zerges and Rochaix 1998, Ossenbühl, et al. 

2002, Somanchi, et al. 2005). This enables spatial organization through localization of the 

transcripts beside import into the chloroplast and co/post-translational localization of the 

proteins. This can even differ for the same transcript when it is needed for different reasons. 

In Chlamydomonas replacement of D1 in photodamaged PSII – repair synthesis - occurs co-

translationally throughout the thylakoids whereas newly synthesized D1 can be found along 
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with psbA transcripts in specialized translation zones (T-zones) around the pyrenoid (Uniacke 

and Zerges 2007, Uniacke and Zerges 2009). 

The post-transcriptional regulation of psbA expression is also the most extensively studied 

example for translation of a plastid gene in Chlamydomonas. Cis-elements include a stem-

loop structure close to the start codon (Mayfield, et al. 1994). Trans-acting factors were 

identified by affinity chromatography using psbA 5`UTR. This led to the isolation of a 

complex consisting of at least four proteins, designated RB38, RB47, RB55 and RB60 

(Danon and Mayfield 1991). The first characterized protein was RB60, a protein disulfide 

isomerase, later shown to be co-localized in the ER and chloroplast thylakoids (Kim and 

Mayfield 1997, Trebitsh, et al. 2001, Levitan, et al. 2005). RB47, a poly(A)-binding protein 

revealed a direct RNA binding activity, which is necessary for D1 synthesis (Yohn, et al. 

1998). This protein localizes to “low density membranes”, which harbor several other RNA 

binding proteins and were suggested to be the subcellular compartment in which targeted 

de novo synthesis of photosynthetic proteins takes place (Zerges and Rochaix 1998, Uniacke 

and Zerges 2007, Uniacke and Zerges 2009). Also for RB38, a poly(U)-binding protein, a 

direct interaction with transcripts was reported in vitro. So far, a molecular characterization of 

RB55 remains elusive (Barnes, et al. 2004). An independent approach identified an RNA 

binding protein of 63 kDa, RBP63, which was shown to specifically bind to an adenosine-rich 

region upstream of the psbA start codon (Ossenbühl, et al. 2002). Although a high level of 

psbA transcripts is already present in the dark, increased D1 synthesis in the light could be 

caused by increased binding activity of those RNA binding proteins (Malnoë, et al. 1988, 

Danon and Mayfield 1991). Recent results suggest a mediation of this effect by red light 

and/or calmodulin (Alizadeh and Cohen 2010).  

As phosphorylation of RB60 in response to the ADP/ATP ratio leads to losing the RNA 

binding activity which is also controlled by the redox state of vicinal thiols, a picture emerges 

for phosphorylation-dependent redox control of D1 synthesis (Danon and Mayfield 1994b, 

Danon and Mayfield 1994a). One candidate electron source for a reduction of respective 

disulfide bridges within the protein is the thioredoxin pool, which itself is reduced by 

electrons transferred from PSI by ferredoxin. Indications come from Danon and Mayfield who 

reported a reduced translation of the psbA RNA in a PSI mutant (Danon and Mayfield 1994a). 

In the dark, RB60 is kept in its inactive form by phosphorylation. Priming and reduction of 

RB60 requires photoreduction of the plastoquinone pool by PSII activity showing that in the 

light both photosystems are required for D1 synthesis (Trebitsh and Danon 2001, Barnes and 



1. Introduction  20 
 

 
 

Mayfield 2003). RB47 on the other hand is inactivated in the dark due to its oxidized state, 

which prevents binding to the target RNA. Reduction and activation of RB47 in the light is 

supposedly performed by Tba1, another oxidoreductase involved in psbA translation. In the 

dark lack of reducing equivalents leads to oxidation and inactivation of RB47 by RB60 due to 

the high oxidation potential of protein disulfide isomerases (Somanchi, et al. 2005). This 

provides a tool of two counteracting proteins for balancing the synthesis rates of a central 

subunit of PSII. A comparable system could exist in higher plants as potentially similar 

factors for psbA translation have been detected by UV crosslinking in Arabidopsis  (Shen, et 

al. 2001). 

Another example for the control of chloroplast gene expression is the translation of the psbD 

transcript in Chlamydomonas. At least two proteins which are encoded in the nucleus interact 

with the 5`UTR of the RNA. One of them is the TPR protein Nac2 whose binding is 

absolutely necessary for transcript accumulation (Boudreau, et al. 2000). The other protein is 

RBP40 and binding to the transcript as well as its interaction with Nac2 are required for 

initiation of translation (Ossenbühl and Nickelsen 2000). Cis elements within the RNA 

include the binding regions for both proteins and nucleotides in vicinity of the start codon that 

influence translation rates by altering the secondary structure of the RNA (Nickelsen, et al. 

1999, Ossenbühl and Nickelsen 2000, Klinkert, et al. 2006). Nac2 protects the processed 

transcript against nucleolytic processes. Association of RBP40 to the complex/RNA evokes 

conformational changes around the start codon, enabling access of ribosomes and the 

initiation tRNA to the transcript (Klinkert, et al. 2004, Klinkert, et al. 2006). Therefore, 

synthesis of the D2 reaction center proteins relies on similar mechanisms of alteration of RNA 

structures and translation-activating proteins as described for D1 in C. reinhardtii, even 

though much less is known about the regulation of individual factors. 

Processes regulating psbD expression are of vital importance in C. reinhardtii as this protein 

limits the accumulation rates of total PSII. Synthesis rates of the subunits D1 and CP47 in de 

novo assembly of PSII are dependent on limiting steps of D2 synthesis, whereas repair 

synthesis is coordinated in a different manner (Minai, et al. 2006). This hierarchy of de novo 

subunit assembly which highlights the importance of the Nac2/RBP40 complex is described 

as “control by epistasy of synthesis (CES)”. This model assumes that the subunit 

stoichiometry for organellar complexes which is required for assembly into a functional state 

has additional regulating principles beside a highly efficient degradation of unassembled 

subunits. Synthesis rates are supposed to be regulated by the assembly state of more 
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“dominant” subunits belonging to the same complex. If these “dominant” members are not 

bound to their complexes then they interact (in)directly with factors that regulate translation 

of even or less dominant subunits at the 5´UTR of their encoding transcripts in a down-

regulating manner, decreasing the number of unbound/unnecessary subunits (Choquet, et al. 

2001). This enables the cell compartment to coordinate synthesis and assembly of subunits.  

The hierarchy of CES for de novo assembly of PSII in Chlamydomonas starts with D2 as the 

most “dominant” protein. Lack of D2 protein leads to downregulation of D1, CP47, and PsbH 

synthesis. Next in this cascade is D1, because missing D1 proteins downregulate translation of 

psbB and psbH messages while D2 synthesis remains unaltered (Minai, et al. 2006). Evidence 

for this CES process has been found for all the major chloroplast complexes (Choquet and 

Wollman 2002). The simplest example in Chlamydomonas or higher plants is a reduction of 

rbcL translation rates when the small subunit of Rubisco (RBCS) is missing (Wostrikoff and 

Stern 2007). Inhibition at the translation level was shown by lack of transcript association to 

polysomes (Khrebtukova and Spreitzer 1996, Rodermel, et al. 1996). CES also holds true for 

the cytochrome b6f-complex: a lack of subunit IV (PetD) leads to a reduction in translation of 

petA messages as described for C. reinhardtii and Z. mays (Barkan, et al. 1994, Kuras and 

Wollman 1994, Choquet, et al. 1998). Other examples include the ATP synthase or influence 

of different PSI subunits on translation of other PSI components (Girard-Bascou, et al. 1987, 

Drapier, et al. 1992, Stampacchia, et al. 1997). Intriguingly, it was shown in yeast 

mitochondria that CES could be also involved in assembly of several complexes (Calder and 

McEwen 1991, Payne, et al. 1991, Nakai, et al. 1995, Rak and Tzagoloff 2009). 

While there are examples for CES in higher plants and algae this principle seems to be absent 

in Synechocystis as translation rates do not depend on the presence of other gene products and 

the assembly state of functional complexes. This shows the differences that arose between 

chloroplasts and their cyanobacterial ancestors during evolution (Yu and Vermaas 1990, 

Wollman, et al. 1999). 
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2. Aims of this work 

Most steps of organellar gene expression are regulated at post-transcriptional levels. Beside 

several cis-elements there is a major influence of nucleus encoded trans-acting factors on the 

fate of chloroplast RNA. For an improved understanding of events in the chloroplast it is of 

great interest to characterize the function of these factors, as these are essential for cell 

metabolism and might also be of importance to applied research, e.g. the interplay between 

photosynthetic electron flow and hydrogen production. 

As D2 is one of the major proteins of the photosynthetic apparatus, several chapters of this 

thesis focus on components which influence the synthesis of that protein in Chlamydomonas. 

Some characteristics of its translational activator RBP40 had been described before, e.g. 

interaction with the maturation factor Nac2 or binding to an uracil-rich-sequence of the psbD 

mRNA. Biochemical methods were employed that enabled the identification of RBP40. In 

combining that knowledge with a genetic approach, complex composition and function of its 

subunits were analyzed (3.1). To enrich the native RBP40 ribonucleoprotein complex an 

approach was developed, that is possibly applicable to all RNA-containing high molecular 

weight (HMW) complexes (3.2). Additionally, the regulation of association of RBP40 to 

HMW complexes (HMWC) was investigated, as this association is likely to be important for 

alterations of cis-elements within the target mRNA that enable D2 synthesis (3.3).  

Other important components of eukaryotic photosystems are proteins that compose the light 

harvesting complexes. Previous experiments identified a repressing factor for translation of 

the encoding lhcb mRNAs of PSII. To achieve further insights in the regulation of this 

process the influence of the redox level of that factor was investigated (3.4). 

Important for the function of the photosystems are also factors that play a role in repair 

synthesis of respective components by the stromal HSP70B chaperone complex. Therefore, 

specificity-mediating factors of this complex were analyzed with regard to their biochemical 

properties as well as their interaction with RNA-containing complexes (3.5). 

The initial step of light-independent reactions of photosynthesis is catalyzed by Rubisco. This 

paramount complex of chloroplast metabolism and its subunits belong to the most abundant 

proteins on the planet. Therefore, a comparative analysis concerning the role of a factor 

involved in processing of the RNA encoding the large subunit of Rubisco in Chlamydomonas 

and the vascular plant Arabidopsis was performed (3.6). 
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3. Results 

Included in the following section are six studies (3.1 – 3.6) that have been published in or 

submitted to international peer-reviewed journals. Besides a brief description of results and 

conclusions, the contribution of the authors to individual publications is explained. 

3.1 Synthesis of the D2 protein of photosystem II in Chlamydomonas is 
controlled by a high molecular mass complex containing the RNA 
stabilization factor Nac2 and the translational activator RBP40. (2007)  

 
Schwarz, C., Elles, I., Kortmann, J., Piotrowski, M. and Nickelsen, J. Plant Cell, 
19, 3627 – 3639 

In this study, the Nac2/RBP40-complex necessary for maturation and translation of psbD 

mRNA was investigated in more detail. To identify the gene of the so far only biochemically 

described RBP40, the protein was isolated from stromal extracts through several steps of ion-

exchange and affinity chromatography and analyzed by mass spectrometry. Surprisingly, the 

identified gene revealed that RBP40 is identical to RB38, which was described to be part of a 

complex that regulates D1 synthesis through its binding activity to psbA mRNA (Barnes, et 

al. 2004). Interaction between RBP40 and its psbD target was confirmed by severely reduced 

synthesis levels of D2 as well as reduced association of target RNA to polysomes in RBP40 

RNAi lines. Earlier work implicated that Nac2 and RBP40 are components of the same 

complex, which could now be confirmed by immunodetection of these proteins co-migrating 

in sedimentation analyses. Supporting results were achieved by CN-PAGE analyses or co-

immunoprecipitation experiments. Therefore, processes of 5’UTR-mediated RNA 

stabilization and translation initiation are tightly coupled in Chlamydomonas. 

My contributions to this publication were the isolation of RBP40 as well as the interaction 

analysis of the RBP40 protein with ribosomal and the target RNA. Furthermore, I analyzed 

the interaction between Nac2 and RBP40 in a mutant lacking stable psbD mRNA by co-

immunoprecipitation. Association of the Nac2/RBP40 complex with polysomes was analyzed 

in sucrose density gradients. The behavior of the complex was further investigated by using 

an RNAi system to reduce the amount of RBP40. Ingolf Elles generated / characterized the 

RNAi lines, and analyzed the distribution of the Nac2/RBP40 complex in glycerol gradients. 

Jens Kortmann performed the CN-PAGE analysis and the protein co-immunoprecipitations in 

the wild-type, whereas Markus Piotrowski identified RBP40 by doing the MS sequencing of 

the purified stromal protein. The manuscript was written by Jörg Nickelsen, Ingolf Elles and 

me with final revision by Jörg Nickelsen. 



Synthesis of the D2 Protein of Photosystem II in
Chlamydomonas Is Controlled by a High Molecular Mass
Complex Containing the RNA Stabilization Factor Nac2 and
the Translational Activator RBP40

Christian Schwarz,a,1 Ingolf Elles,a,1 Jens Kortmann,a Markus Piotrowski,b and Jörg Nickelsena,2

a Molekulare Pflanzenwissenschaften, Ludwig-Maximilians Universität München, 80638 Munich, Germany
b Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany

Gene expression in chloroplasts is regulated mainly at the posttranscriptional level. In the green alga Chlamydomonas

reinhardtii, synthesis of the D2 protein (PsbD), which is the rate-determining subunit for the assembly of photosystem II, depends

on the RNA stability factor Nac2. In addition, the RNA binding protein RBP40 has been implicated in translational control via a

U-rich element in the 59 untranslated region (59UTR) of the psbD mRNA. Here, we report the identification of the RBP40 gene

based on mass spectrometric analysis of its purified product. Unexpectedly, this was found to be identical to the previously

described RNA binding protein RB38, which had been suggested to be involved in the regulation of D1 protein synthesis.

However, we show that RBP40 binds to the psbD 59UTR in a Nac2-dependent fashion both in vitro and in vivo. Molecular

characterization of RBP40 RNA interference lines confirmed that RBP40 specifically affects the initiation of D2 synthesis. Native

polyacrylamide gel electrophoresis, coimmunoprecipitation, and sedimentation analyses revealed that Nac2 and RBP40 form

parts of a complex of 550 kD that is displaced from the psbD mRNA prior to polysome assembly. Together, these data indicate

that the processes of 59UTR-mediated RNA stabilization and translation initiation are tightly coupled in Chlamydomonas.

INTRODUCTION

Chloroplasts originated from a cyanobacterium that formed an

endosymbiotic relationship with a heterotrophically growing eu-

karyote. The gradual transformation of the endosymbiont into the

chloroplast involved extensive gene transfer from the developing

organelle to the nuclear genome of the host. Nevertheless, the

modern chloroplast genome has retained a set of ;100 protein-

coding genes and encodes the basic machinery for their expres-

sion, which is essentially of prokaryotic origin. Since the chloro-

plast-encoded gene products form multisubunit complexes with

imported nucleus-encoded proteins, the requirement for tight

coordination of gene expression in these two cellular compart-

ments has resulted in the development of an intracellular com-

munication system. This comprises nucleus-encoded regulatory

factors that regulate almost all stages of chloroplast gene ex-

pression, including transcription, RNA metabolism, and splicing,

as well as translation and protein complex assembly.

Translational regulation plays a central role in determining the

levels of the various chloroplast proteins (Bruick and Mayfield,

1999; Zerges, 2000). The application of in vitro and in vivo

approaches has allowed several cis-acting determinants for

translation initiation to be mapped in chloroplast RNAs (Hirose

and Sugiura, 1996; Bruick and Mayfield, 1999; Higgs et al., 1999;

Nickelsen et al., 1999; Yukawa et al., 2007), and these probably

represent the target sites for translational regulatory factors

(Zerges, 2000; Manuell et al., 2004).

To date, genetic analyses have identified only a few nuclear

genes whose products play a role in protein synthesis in the

chloroplast. The CRP1 gene is required for translation of petA/

petD mRNA in maize (Zea mays) (Barkan et al., 1994; Schmitz-

Linneweber et al., 2005), and HCF107 and HCF173 from Arabi-

dopsis thaliana participate in psbB and psbA mRNA translation,

respectively (Sane et al., 2005; Schult et al., 2007). Recently, a

fourth factor from vascular plants, named ATAB2, was charac-

terized in detail. ATAB2 is a novel, blue light–induced, RNA

binding protein that activates the synthesis of plastid-encoded

subunits of both photosystems I and II (PSI and PSII) (Barneche

et al., 2006). In the green alga Chlamydomonas reinhardtii, its

ortholog Tab2 specifically recognizes the 59 untranslated region

(59UTR) of the psaB mRNA and, as a consequence, controls

PsaB synthesis (Dauvillee et al., 2003). Furthermore, the algal

proteins Tbc2 and Tba1 are required for the translation of psbC

and psbA mRNAs, respectively (Auchincloss et al., 2002;

Somanchi et al., 2005).

In vitro interaction assays using plastid RNA probes have also

contributed to the identification of proteins capable of specifi-

cally recognizing distinct RNA elements within the 59UTR of

chloroplast mRNAs, and these represent good candidates for

translational control factors (Bruick and Mayfield, 1999; Nickelsen,

2003). The genes for a few of these biochemically identified RNA

1 These authors contributed equally to this work.
2 Address correspondence to joerg.nickelsen@lrz.uni-muenchen.de.
The author responsible for distribution of materials integral to the
findings presented in this article in accordance with the policy described
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binding proteins have been cloned, but no mutants are currently

available that substantiate their functional assignments.

One of the best-characterized examples is represented by a

multisubunit complex from Chlamydomonas that binds to the

psbA 59UTR in a redox-regulated fashion (Danon and Mayfield,

1991, 1994). This complex is composed of four major polypep-

tides: the 63-kD protein disulfide isomerase cPDI (Kim and

Mayfield, 1997), the 47-kD poly(A) binding protein cPAB1

(Yohn et al., 1998a), the novel 38-kD RNA binding protein RB38

(Barnes et al., 2004), and a 55-kD protein (RB55). RNA binding

activity of the complex correlates directly with rates of D1

synthesis, and in several nuclear mutants that exhibit reduced

accumulation/activity of some of these subunits, the translation

of psbA mRNA is perturbed (Yohn et al., 1998b).

The expression of the related psbD gene encoding the D2

subunit of the PSII reaction center is particularly interesting,

because D2 represents the starting point for the assembly of PSII

as a whole (de Vitry et al., 1989; Komenda et al., 2004; Minai et al.,

2006). According to the CES (for control by epistasis of synthesis)

model for the temporal sequence of PSII assembly, the amount

of D2 available directly determines the levels of the other com-

ponent subunits of PSII via feedback control mechanisms (Minai

et al., 2006).

In Chlamydomonas, Nac2, a 140-kD tetratricopeptide repeat

protein, is strictly required for the stabilization of the psbD mRNA

via its 59UTR (Kuchka et al., 1989; Nickelsen et al., 1994;

Boudreau et al., 2000). Furthermore, a second factor, named

RBP40, binds to a U-rich translational element located 15 nucle-

otides upstream of the AUG start codon in vitro (Nickelsen et al.,

1999; Ossenbühl and Nickelsen, 2000). Recently, the analysis of

cis-acting suppressor mutations suggested that RBP40 func-

tions by inducing conformational changes within the RNA region

encompassing the AUG start codon and thereby regulates the

early steps in translation initiation on the psbD message (Klinkert

et al., 2006).

Here, we report the identification and characterization of the

RBP40 gene. Our genetic and biochemical data strongly suggest

that the psbD mRNA is the primary target for RBP40 function.

Furthermore, RBP40 is shown to be part of a chloroplast multi-

subunit complex that also contains the RNA stability factor Nac2.

RESULTS

Identification of the RBP40 Gene

RBP40 is a soluble protein found in the stroma of chloroplasts

from Chlamydomonas, where it forms part of a high molecular

mass complex and recognizes a U-rich sequence in the 59UTR of

the psbD mRNA (Ossenbühl and Nickelsen, 2000). In order to

isolate RBP40, a stromal fraction prepared from wild-type

Figure 1. Isolation of RBP40.

(A) Flow chart listing the steps used to purify RBP40.

(B) SDS-PAGE and Coomassie blue staining of proteins at various stages of purification (top panel), UV cross-linking of RBP40 to radiolabeled psbD

59UTR RNA (middle panel), and immunodetection of Nac2 in selected fractions by protein gel blot analysis (bottom panel). neg., negative control for

RNA binding (no protein loaded); cp, chloroplast lysate; S, stromal protein fraction; HepFT, flow-through fraction from heparin-Sepharose column;

HepE150, -500, and -1000, eluates obtained with 150, 500, and 1000 mM KCl, respectively; pUFT/W, flow-through/wash fraction from poly(U)-

Sepharose column; pUE150, -500, and -1000, eluates obtained with 150, 500, and 1000 mM KCl, respectively. The RBP40 that eluted with high salt

from poly(U)-Sepharose is marked by the arrow.
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chloroplasts (Figure 1A) was loaded onto a heparin-Sepharose

column, and bound proteins were eluted stepwise with KCl. Each

fraction was tested for the ability to bind a radiolabeled RNA

probe derived from the psbD 59UTR (Figure 1B). Most of the

binding activity was found in the fraction eluted with 150 mM KCl

(Figure 1B, HepE150). This material was then subjected to affinity

chromatography on a poly(U)-Sepharose column, with stepwise

elution, and a major RNA binding activity, in the size range of ;40

kD, was eluted with 1 M KCl, indicating tight binding to the

homopolymeric RNA matrix (Figure 1B, pUE1000). Gel electro-

phoresis and Coomassie blue staining revealed that this fraction

contained one major protein of 40 kD as well as smaller amounts

of material at 60 and 80 kD (Figure 1B, pUE1000).

To test whether this 40-kD protein represents RBP40, binding

assays with the psbD probe were performed in the presence of

increasing concentrations of homologous or heterologous unla-

beled RNA probes as competitors. As shown in Figure 2, the

40-kD activity bound the psbD probe. However, in contrast with

what one would expect for RBP40 (Ossenbühl and Nickelsen,

2000), it also recognized both a mutant psbD probe lacking the

U-rich RBP40 target sequence and a psbA 59UTR probe with

almost equal affinity. In vivo, RBP40 activity is known to require

the RNA stability factor Nac2 (Ossenbühl and Nickelsen, 2000).

Therefore, we tested for the presence of Nac2 in the pUE1000

fraction using antibodies (Figure 1B, pUE1000), but none was

detected. Instead, Nac2 was observed in the flow-through

material containing 50 mM KCl, which itself has no RBP40

activity (Figure 1B, pUFT/W). Thus, in contrast with heparin-

Sepharose, poly(U)-Sepharose chromatography does not allow

copurification of the two factors.

Addition of the poly(U) flow-through to the pUE1000 fraction

indeed restored high-affinity binding of RBP40 to the psbD

59UTR (Figure 2). To verify that Nac2 represents the affinity-

conferring component of the pUFT/W fraction, we also analyzed

stromal proteins obtained from the nuclear mutant nac2, which

lacks the Nac2 factor (Boudreau et al., 2000). When the poly(U)-

Sepharose flow-through material obtained from this preparation

was added to purified RBP40, the affinity of RBP40 for the psbD

59UTR was reduced significantly, confirming that Nac2 is essen-

tial for high-affinity binding (Figure 2). Nevertheless, in contrast

with purified RBP40 alone, the addition of nac2 mutant material

still resulted in a slight increase in the affinity of RBP40 for the

psbD probe relative to the other two RNAs. This might indicate

the presence of additional unknown factors that facilitate recog-

nition of the psbD 59UTR by RBP40. However, the data confirm

that the 40-kD protein in the pUE1000 fraction represents

RBP40, which is separated from the Nac2 factor during poly(U)-

Sepharose chromatography.

To identify the RBP40 gene, we subjected the 40-kD protein

band to proteolytic digestion and analyzed the resulting peptides

by mass spectrometry (Table 1). Surprisingly, the peptide anal-

ysis indicated that the 40-kD protein from the 1 M KCl poly(U)

eluate fraction is identical to the previously described chloroplast

RNA binding protein RB38, which has been implicated in regu-

lating the translation of psbA mRNA (Barnes et al., 2004). That

highly purified RBP40 recognizes RNA molecules in an unspe-

cific manner (Figure 2) is consistent with the report that recom-

binant RB38 expressed in Escherichia coli binds to the 59UTRs of

Figure 2. Nac2 Confers RNA Binding Specificity on RBP40.

(A) The pUE1000 fraction containing the purified RBP40 (see Figure 1A)

alone, in combination with the wild-type flow-through fraction from the

poly(U)-Sepharose column (pUEþWTFT) containing Nac2, or with the

same fraction from the mutant nac2 (pUEþnac2FT) was incubated with

radiolabeled psbD 59UTR RNA in the presence of a 5-, 50-, or 500-fold

excess of the indicated competitor RNA and analyzed by UV cross-

linking.

(B) In the graphs, the intensities of the RBP40 signals are plotted against

the relative levels of the indicated competitor RNAs in the reactions,

based on densitometric scanning of the autoradiograms shown in (A).
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several RNAs (Barnes et al., 2004). Since neither of these sources

of RBP40/RB38 contains Nac2, these results are compatible

with our finding that RBP40 only recognizes the psbD 59UTR with

high affinity in the presence of Nac2.

The psbD mRNA Is the Target of RBP40 in the Chloroplast

To identify target mRNAs for RBP40, immunoprecipitates ob-

tained using an aRBP40 antiserum were probed with radiola-

beled DNA probes derived from the 59UTR regions of the psbD,

psbA, rbcL, and atpB genes (Figure 3). All of these probes

detected the corresponding transcripts in the supernatant after

immunoprecipitation. However, only the psbD mRNA was found

in substantial amounts in the precipitate, indicating that native

RBP40 indeed forms a complex with the psbD mRNA, but

not—or only to a very limited extent—with any of the other

transcripts tested, including psbA. The preimmune serum used

as a further negative control was unable to precipitate psbD

mRNA, as expected (Figure 3).

Analysis of RBP40 RNA Interference Lines

To confirm that RBP40 is specifically involved in regulating the

synthesis of D2, RBP40 RNA interference (RNAi) lines were

generated according to Rohr et al. (2004). As described in

Methods, an inverted repeat structure comprising the RBP40

coding region was cloned into the vector NE537 (Rohr et al.,

2004), and 2000 transformants harboring this construct were

selected on paromomycin. Of these, 63 were resistant to 10 mM

5-fluoroindole, indicating efficient silencing of the vector-encoded

Maa7 gene (Rohr et al., 2004). Subsequent chlorophyll fluores-

cence measurements on the 63 lines (data not shown) then

identified three lines, named 40-1, 40-5, and 40-9, that exhibited

the most pronounced effects on photosynthetic activity. In lines

40-5 and 40-1, the steady state levels of RBP40 protein were

equivalent to 20 and 10%, respectively, of that accumulating in

the wild type (Figure 4A). The greatest reduction was observed in

line 40-9, which contained <10% of the wild-type level (Figure

4A). Concomitantly, levels of D2 were reduced to 80, 30, and

<5% in lines 40-5, 40-1, and 40-9, respectively, indicating a

strong effect of RBP40 knockdown on PSII. Other protein

complexes in the chloroplast were not affected by the RNAi

construct, as judged by parallel monitoring of the steady state

levels of the PsaF and AtpB subunits of PSI and ATP synthase,

respectively (Figure 4A).

Interestingly, the reductions in D2 levels were not associated

with any significant change in concentrations of psbD mRNA,

indicating that RBP40 affects the synthesis or stability of PSII

subunits (Figure 4B). To distinguish between these two possibil-

ities, pulse labeling of chloroplast proteins was performed after

inhibition of cytoplasmic translation with cycloheximide. D2

synthesis rates were found to be drastically reduced in RNAi

lines (Figure 4C), and the degree of reduction correlated with the

levels of D2 accumulation revealed by protein gel blot analysis

(Figure 4A). Like the nac2 mutant, RNAi lines also showed a

reduction in labeling of the D1 protein, albeit less pronounced

than in the case of D2 (Figure 4C) (Kuchka et al., 1988). Effects

related to light-dependent PSII repair synthesis were minimized

during these experiments, because cells from RNAi lines gener-

ally were kept in very low light. However, the virtual absence of

D2 synthesis excludes the possibility that the primary effect of

RBP40 deficiency is a defect in translation of the psbA mRNA,

since, based on previous reports, D1 deficiency does not com-

promise the synthesis of D2 (Kuchka et al., 1988; de Vitry et al.,

1989; Minai et al., 2006).

To further confirm a role for RBP40 in translation of the psbD

message, polysomal loading of atpB, psbA, and psbD mRNAs

was assayed (Figure 5). In the wild type, all three mRNAs

migrated into the lower regions of a sucrose gradient, indicating

that they were associated with polysomes and were thus being

actively translated. Overall, the polysomal association of all three

mRNAs in the wild type was lower than reported previously

(Minai et al., 2006). However, this is likely due to the very low light

conditions used in these experiments. Disassembly of poly-

somes by treatment with EDTA resulted in the accumulation of all

three transcripts, mainly in fractions 1 to 3 at the top of the

gradient; these fractions contain ribosomal subunits and smaller

RNP particles (Figure 5, WTþEDTA). When the RNAi line 40-9

was analyzed, psbD mRNA was detected only in fractions 1 to 4,

even after extended exposure of autoradiograms; none was

found at polysome positions within the gradient. This finding

indicates that the psbD mRNA is not or almost not translated in

Table 1. Mass Spectrometric Identification of RB40

Peptide

Mass (D)

Predicted

Sequencea

Database Hit (Swissprot

Accession No.)

999 AFALWLDGR Q6EMK7

1060 NSALWLDSR Q6EMK7

1199 SAAPSTPELEAK Q6EMK7

1294 SNPDEWYDNR Q6EMK7

1328 QAAEAANWEALR Q6EMK7

a Note that Leu (L) and Ile (I) cannot be distinguished.

Figure 3. Coimmunoprecipitation of RBP40 and psbD mRNA.

Chloroplast stromal proteins were used for immunoprecipitation reac-

tions with an aRBP40 antiserum or the preimmune serum (PRE). RNAs

were extracted from precipitates (aRBP40 and PRE) and supernatants

(SaRBP40 and SPRE), and equal proportions were subjected to dot-blot

hybridization using the radiolabeled DNA probes indicated at top.
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40-9. By contrast, atpB mRNAs migrated into the 40-9 gradient,

revealing that they are actively translated in this RNAi line. The

loading of psbA mRNA with polysomes was affected by the

silencing of the RBP40 gene in line 40-9, although to a weaker

extent compared with that of the psbD mRNA (Figure 5). Some

mRNA was detected in the high molecular mass fraction corre-

sponding to polysomes, but especially in fractions 4 to 6 con-

taining monosomes, a significant decrease in psbA signal

intensity was detectable compared with the wild type (Figure

5). This corresponds to the pulse-labeling data presented in

Figure 4C, which also indicate a less-pronounced effect on D1

synthesis in the RNAi line 40-9 compared with that of D2.

Together, these data strongly support the idea that RBP40 is a

psbD-related translation factor that acts together with the RNA

stabilization factor Nac2 to regulate psbD gene expression at the

posttranscriptional level. Furthermore, the accumulation of wild-

type levels of psbD mRNA in the RBP40 RNAi lines indicates that,

although translational control via RBP40 requires Nac2-mediated

RNA stabilization, RBP40 deficiency does not affect RNA stabi-

lization by Nac2.

RBP40 Is Associated with Monosomes but Not

with Polysomes

The Nac2 factor has been shown previously not to be associated

with the polysomal fraction from Chlamydomonas chloroplasts,

suggesting that it functions only during the early posttranscrip-

tional stages of psbD expression (Boudreau et al., 2000). The

same holds for RBP40, which was only observed in top fractions

1 to 8 of the polysome gradient (Figure 5). Moreover, treatment of

samples with EDTA had no significant effect on RBP40 migra-

tion, suggesting that it sediments independently of polysomes

(Figure 5, WTþEDTA). Nevertheless, the data did not exclude the

possibility that RBP40 might interact with monosomes, for

instance during translation initiation. To address this question,

immunoprecipitates obtained following reaction with aRBP40

antiserum, similar to those shown in Figure 3, were hybridized

with probes specific for either 16S or 23S rRNA (Figure 6).

Indeed, both rRNAs were precipitated by the aRBP40 antiserum,

suggesting that both ribosomal subunits, and thus monosomes,

are assembled on the psbD mRNA while RBP40 is bound to its

59UTR (Figure 6). However, as soon as polysomal assembly has

started, RBP40 appears to leave the psbD message.

RBP40 and Nac2 Form Part of the Same High Molecular

Mass Complex

Based on earlier sedimentation analyses, it had been speculated

that Nac2 and RBP40 might form parts of the same high

molecular mass complex (Boudreau et al., 2000; Ossenbühl

and Nickelsen, 2000). This idea can now be substantiated by

data from three independent assays. First, high molecular mass

material at 550 kD is detectable using aRBP40 and aNac2

antisera after colorless native PAGE of wild-type stromal proteins

(Figure 7). Furthermore, the functional interdependence of the

two factors is correlated with the ability to form the 550-kD

complex, as the complex could not be detected by the aRBP40

antibody in the nac2 mutant (Figure 7).

Second, coimmunoprecipitation experiments clearly demon-

strated that both factors are part of the same complex. When

Figure 4. Molecular Characterization of RBP40 RNAi Lines.

(A) Protein gel blot analysis of total proteins (10 mg) isolated from the indicated RBP40 RNAi lines and the wild type was performed using antibodies

raised against the proteins indicated at left.

(B) RNA gel blot analysis of psbD mRNA accumulation in RBP40 RNAi lines.

(C) Total proteins from the indicated strains were pulse-labeled for 20 min with [35S]sulfate and subsequently fractionated by SDS-PAGE. The positions

of cytochrome f, D2, and D1 proteins are indicated (Klinkert et al., 2006). Fluctuations of signal intensities marked with asterisks were not seen

reproducibly.
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RBP40 was immunoprecipitated from the stromal protein extract

by the aRBP40 antiserum, the Nac2 protein was detected in the

precipitate (Figure 8A). Conversely, RBP40 is present in the

immunoprecipitate formed upon incubation with an aNac2 an-

tiserum (Figure 8B). As a further control, immunoprecipitations

were performed using stromal proteins from the nac2 mutant. In

that case, no RBP40 protein was precipitated with aNac2

antiserum, ruling out the possibility that RBP40 might bind to

the protein G–Sepharose via unrelated proteins (Figure 8B). To

test whether the association of Nac2 and RBP40 depends on the

presence of psbD mRNA, stromal proteins from a chloroplast

cis-acting mutant called PRB2A were immunoprecipitated. In

PRB2A, the PRB2 element of the psbD 59UTR is mutated and, as

a consequence, psbD transcripts do not accumulate because

they are destabilized (Nickelsen et al., 1999) (see Figure 10).

As shown in Figure 8B, the aNac2 antiserum was capable

of precipitating RBP40 from PRB2A, indicating that the forma-

tion of a Nac2/RBP40 complex does not require any psbD

mRNA.

Finally, the existence of a 550-kD complex containing both

Nac2 and RBP40 was verified by demonstrating the cosedimen-

tation of both factors after centrifugation of wild-type stromal

proteins in glycerol gradients (Figure 9). When the nac2 mutant

was analyzed in the same way, RBP40 was found only in the low

molecular mass fraction at the top of the gradient, again indi-

cating that Nac2 is strictly required for the formation of the

550-kD complex and perhaps even for the assembly of sub-

complexes (Figure 9; see also Figure 7). In the RNAi line 40-9,

which contains only minute amounts of RBP40 (cf. Figure 4A), a

high molecular mass complex that appears slightly smaller

(Figure 9, fractions 10 to 13) than the wild-type form (Figure 9,

fractions 11 to 14) was observed with the aNac2 antibody. Under

standard conditions, no RBP40 was detectable anywhere on the

gradient. However, extended exposure of immunoblots led to the

detection of tiny amounts of RBP40 in fractions 11 to 14 in line

40-9 (Figure 9, RBP40ee). This strongly suggests that loss of the

40-kD RBP40 subunit, in contrast with Nac2, does not com-

pletely destabilize the complex; instead, a smaller, RBP40-less

complex of ;500 kD is observed, which contains active Nac2

and is capable of stabilizing the psbD mRNA (Figure 9; see also

Figure 4B). However, the residual RBP40 protein still present in

line 40-9 appears to associate with the 500-kD Nac2 complex,

resulting in very low amounts of the normal 550 kD complex.

Earlier gel filtration analyses had revealed that psbD RNA–

containing material was detectable throughout the 200- to 2000-

kD range (Boudreau et al., 2000). This is compatible with the idea

of a 550-kD complex containing Nac2, RBP40, and psbD RNA

sequences. Treatment of the complex with RNase resulted in a

reduction in its size to ;450 kD (Boudreau et al., 2000). The same

shift following incubation with RNase A was observed in glycerol

gradients by monitoring the distribution of both Nac2 and RBP40

Figure 5. Polysomal Loading of psbD mRNA.

Whole-cell extracts from the wild type (WTþMgCl2) and the RNAi line

40-9 (40-9þMgCl2) were fractionated on 15 to 40% sucrose gradients by

ultracentrifugation. As a negative control, polysomes were destabilized

by the addition of EDTA (WTþEDTA). At the top of each of the three

panels, the ethidium bromide–stained rRNA patterns before blotting of

the gels are shown. Below, hybridization signals are shown that were

obtained with the radiolabeled probes indicated at right. The sedimen-

tation behavior of RBP40 in the wild type was followed by protein gel blot

analysis of proteins from the same gradient fractions.
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using the appropriate antibodies (Figure 9). This suggests that

the 550-kD complex represents a ribonucleoprotein complex. To

test whether the associated RNA is derived from the psbD gene,

we analyzed the above-mentioned mutant PRB2A, which does

not accumulate any psbD transcripts. Sedimentation analysis of

stromal proteins from PRB2A showed that the Nac2-containing

complex is of the same size (450 kD) as that seen after treatment

with RNase. This strongly suggests that the size reduction to 450

kD is due to the removal of psbD mRNA regions that remain

associated with the complex during sample preparation (Figure

9). That the entire psbD mRNA forms an integral part of the 550-

kD complex appears unlikely, because its loss would be ex-

pected to cause a larger change in molecular mass than the

observed 100 kD. Most likely, endogenous RNase activities

cleave away most of the complexed RNA during sample prep-

aration and/or gradient centrifugation. However, it cannot be

totally excluded that, apart from the psbD mRNA, other RNA

molecules might be present in the Nac2/RBP40 complex, since

RNase treatment also resulted in complexes that are slightly

smaller than those observed in PRB2A (cf. fractions 6 in Figure 9).

DISCUSSION

RBP40Specifically Recognizes the59UTRof thepsbDmRNA

Here, we report the purification of the RNA binding protein

RBP40 from Chlamydomonas, which was found to be identical to

the previously described RNA binding protein RB38 (Barnes

et al., 2004). Notable structural features of RBP40/RB38 include

a putative chloroplast transit sequence and four repeats of a

motif comprising 70 amino acids with a high percentage of basic

residues. Despite limited primary sequence homology between

them, these repeats appear to fold into a tertiary structure that

resembles well-known RNA binding domains such as the RNA

recognition motif domain (Barnes et al., 2004). As implied by

these features, RB38 was shown to be imported into chloro-

plasts, and the recombinant protein expressed in E. coli ex-

hibited RNA binding activity, showing a selective affinity only for

U-rich regions (Barnes et al., 2004). Like recombinant RB38,

highly purified RBP40 showed low-specificity RNA binding

in vitro. However, when the RNA stability factor Nac2 was present,

RBP40 bound preferentially to the 59UTR of psbD RNA, suggest-

ing that Nac2 recruits the protein into a psbD-specific complex or

modifies the RNA binding surface of RBP40 directly (Figure 2).

Further lines of evidence indicate that RBP40 indeed repre-

sents a trans-acting factor required for psbD gene expression.

First, RBP40 was shown to form a structural and functional unit

with the psbD-specific RNA stabilization factor Nac2. By con-

trast, RB38 has been postulated to form part of a complex of four

subunits, namely RB60, RB55, RB47, and RB38, which specif-

ically recognizes the psbA 59UTR and mediates the redox control

Figure 6. Association of RBP40 with Ribosomes.

Dot-blot hybridization with radiolabeled 16S and 23S rDNA probes was

performed on immunoprecipitates similar to those shown in Figure 3.

Figure 7. Native PAGE of RBP40 and Nac2.

Stromal protein fractions from wild-type and nac2 chloroplasts were

subjected to native PAGE on 8% gels and transferred to nitrocellulose

filters, which were immunolabeled with either aNac2 or aRBP40 anti-

bodies. The arrow indicates the 550-kD Nac2/RBP40 complex. Equal

loading was confirmed by Ponceau red staining of ribulose-1,5-bis-

phosphate carboxylase/oxygenase (Rubisco). The sizes of marker pro-

teins are given at left.
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of D1 protein synthesis (Barnes et al., 2004). This conclusion was

based solely on the coelution of the four proteins from an RNA

affinity column bearing psbA 59UTR sequences following a single

application of 0.55 M KOAc (Danon and Mayfield, 1991, 1994).

An interaction between RB60 and RB47 has been demonstrated:

both polypeptides were isolated from an RNase T1-resistant

psbA 59UTR RNA/protein complex that had been cut out of a

native mobility-shift gel (Danon and Mayfield, 1991). However,

neither RB38 nor RB55 was detected in this psbA-specific com-

plex, arguing against the formation of a complex containing all

four proteins. In this study, we show that RBP40/RB38 cosedi-

ments with Nac2 in an ;550-kD complex. Previously, we showed

that the Nac2 complex is distinct from a significantly smaller

complex of ;440 kD containing the RB60 protein (Boudreau

et al., 2000). This indicates that RBP40/RB38 and the psbA-

specific factor RB60 do not form parts of the same complex;

therefore, it seems questionable whether RB38 is indeed in-

volved in RB60/RB47-mediated psbA gene expression.

Second, psbD, but little or no psbA, atpB, or rbcL, mRNA was

immunoprecipitable in substantial amounts with aRBP40 anti-

serum. Although we have not precisely quantitated the RNA

amounts detected in these immunoprecipitates (Figure 3), the

Figure 8. Coimmunoprecipitation of RBP40 and Nac2.

Stromal protein fractions from wild-type and nac2 chloroplasts were incubated with either aRBP40 antibody coupled to protein A–Sepharose (IP

aRBP40) (A) or aNac2 antibody coupled to protein G–Sepharose (IP aNac2) (B). After elution from the matrix, the material was subjected to SDS-PAGE

and immunolabeled using the same antibodies (ID aNac2 or ID aRBP40). The asterisk marks material that cross-reacts with the aNac2 antiserum.

Figure 9. Formation of an RBP40/Nac2 Complex in the Absence of psbD mRNA.

Stromal chloroplast proteins from the strains indicated at left were centrifuged through 15 to 35% glycerol gradients. The distribution of the Nac2 and

RBP40 proteins after centrifugation (at right) was monitored by protein gel blot analysis of the fractions marked below each filter strip. RBP40ee

represents an extended exposure (>100-fold) of the blot shown directly above it.
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dramatically obvious differences in precipitation efficiencies

indicate a clear preference of RBP40 for complex formation

with the psbD mRNA.

Finally, molecular characterization of RBP40 RNAi lines re-

vealed severe defects in D2 synthesis. Nevertheless, minor

effects on D1 synthesis were also observed. This suggests that

RBP40 might—besides psbD—also be involved in psbA gene

expression. Alternatively, and more likely, reduced D1 synthesis

in the RBP40 RNAi lines is caused by a secondary effect

reflecting the mode of regulation of PSII assembly/synthesis

known as the CES principle (Minai et al., 2006). For instance, a

strong effect of D2 deficiency on D1 synthesis has been reported

for the nac2 mutant (Kuchka et al., 1989; Nickelsen et al., 1999)

(Figure 4C) and chloroplast psbD deletion mutants (Minai et al.,

2006). This reduction is attributed to a feedback control mech-

anism that depends on nonassembled D1 protein accumulating

in the absence of its assembly partner D2. Nonassembled D1 is

sensed by an unknown mechanism, and as a consequence, D1

synthesis is reduced by processes mediated via the psbA 59UTR

(Minai et al., 2006). A similar situation is expected to occur in the

RBP40 RNAi lines, with partial (40-4 and 40-1) or almost com-

plete (40-9) loss of D2 resulting in partial feedback inhibition of

psbA translation. Indeed, an effect of RBP40 deficiency on D1

synthesis during protein pulse labeling and polysomal loading

was observed (Figures 4C and 5). This is in agreement with

previous reports revealing only a limited, although still significant,

effect of D2 deficiency on polysomal loading of the psbA mRNA

in a chloroplast psbD deletion mutant of Chlamydomonas (Minai

et al., 2006).

Thus, together, our data support a scenario in which RBP40 is

specifically or at least preferentially required for the posttrans-

criptional regulation of psbD gene expression. Whether the Nac2/

RBP40 complex or parts of it are also involved in psbA gene

expression—for instance, during feedback inhibition of psbA

gene expression during CES regulation—remains to be clarified.

Aspects of Nac2/RBP40 Complex Formation

Three different approaches—native PAGE, coimmunoprecipita-

tion, and sedimentation analysis—were utilized successfully to

document that Nac2 and RBP40 form parts of a single complex

of 550 kD. However, whether the two factors interact directly or

via adapter components remains an open question. Yeast two-

hybrid analysis, in vitro glutathione S-transferase pull down, and

chemical cross-linking experiments have provided no evidence

for such a direct physical interaction (data not shown). This

suggests that formation of the Nac2/RBP40-containing complex

requires one or more additional components that can serve as a

molecular bridge between the two proteins. The sedimentation

data (Figure 9) demonstrate that the psbD mRNA itself does not

supply this function, because complex formation still occurs in

the psbD mRNA–deficient mutant PRB2A. Two other lines of

evidence suggest that additional polypeptides are present in the

550-kD complex. (1) Previous studies have revealed the exis-

tence of three unlinked nuclear loci that, when mutated, can

suppress a defect in the RNA stability element PRB2 (Nickelsen,

2000). It was speculated that these loci encode subunits of a

Nac2 complex that recognize the PRB2 element, which is

located immediately upstream of the U-rich RBP40 target region

in the psbD 59UTR (Nickelsen, 2000) (Figure 10). (2) Treatment

with RNase reduces the apparent size of the 550-kD complex by

only ;100 kD, suggesting a stable protein complex of 450 kD

(Figure 9).

One other aspect of Nac2/RBP40 complex formation con-

cerns the different requirements for Nac2 and RBP40. While lack

of Nac2 prevents the formation of stable high molecular mass

Figure 10. Working Model for the Posttranscriptional Control of psbD Gene Expression.

The sequence of the psbD 59UTR from Chlamydomonas is given with the PRB2 site, the U-rich translational element boxed in gray, and the putative

Shine-Dalgarno element (PRB1) (Nickelsen et al., 1999). The AUG start codon (gray letters) is marked by Met. Putative additional components of the

Nac2/RBP40 complex are indicated by a question mark. The closed arrow represents the change in RNA conformation induced by RBP40, and the

open arrows stand for the subsequent binding of components of the translational machinery. For further explanation, see text.
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complexes containing RBP40, drastic reduction of RBP40 has

only a minor effect on the Nac2-containing complex. Thus,

RBP40 might be less tightly associated with the complex and/or

might not represent an essential structural subunit. Whether this

finding has functional implications remains to be elucidated.

Consistent with the data presented here, previous sedimenta-

tion analyses using either sucrose or glycerol gradients had

revealed a Nac2 complex size of 500 to 600 kD (Boudreau et al.,

2000; Ossenbühl and Nickelsen, 2000). However, additional,

less-abundant Nac2 complexes of 700 to 2000 kD in size were

observed using fast protein liquid chromatography gel filtration

for the separation of complexes (Boudreau et al., 2000). In view of

the finding that the Nac2/RBP40 complex might be associated

with monosomes (Figure 6), these supercomplexes might still

contain ribosomes or ribosomal subunits, thereby explaining their

huge size. However, these associations are probably destabilized

during the relatively long-lasting sedimentation analysis com-

pared with the fast protein liquid chromatography procedure.

RBP40 Is Involved in Controlling the Translation of

psbD mRNA

RBP40 recognizes a U-rich region located 15 nucleotides up-

stream of the psbD AUG start codon (Ossenbühl and Nickelsen,

2000) (Figure 10). Deletion of this U-rich stretch leads to the

complete loss of D2 synthesis, while mRNA accumulation is

compromised to only a minor extent. Both findings suggest that

this element is required for translational control (Nickelsen et al.,

1999). Moreover, detailed analyses of cis-acting second-site

suppressor mutants have revealed a functional relationship

between the U-rich stretch and an RNA stem-loop structure

containing the AUG codon within the stem region. It was hy-

pothesized that RBP40 binding alters the conformation of this

region, thereby giving the ribosomal subunits access to the

initiation codon (Klinkert et al., 2006) (Figure 10).

The analysis of RBP40 RNAi lines supports the idea that

RBP40 is a translational activator. In particular, the pulse labeling

and polysomal loading analyses underline its significance for

translation initiation (Figures 4C and 5). Interestingly, psbD

mRNA accumulation was not affected in RBP40-deficient cell

lines, indicating that Nac2 is still fully functional and, hence,

can operate independently of RBP40. This is consistent with

the accumulation of high molecular mass Nac2 complexes in the

absence of RBP40. By contrast, absence of Nac2 leads to the

loss of translational activity, even when the psbD mRNA is

artificially stabilized by the insertion of poly(G) stretches into the

psbD 59UTR (Nickelsen et al., 1999), indicating that Nac2 is

required for the RBP40 function. Thus, the Nac2/RBP40 complex

fulfills two distinct functions. First, a subcomplex containing

Nac2 but lacking RBP40 is sufficient to stabilize the psbD mRNA,

probably via the PRB2 element (Figure 10). Then, the complete

Nac2/RBP40 holocomplex of 550 kD mediates the subsequent

steps of psbD gene expression (i.e., translation initiation via an

interaction with the U-rich element) (Klinkert et al., 2006). Future

work will focus on the identification of the predicted additional

subunits of the complex by genetic and biochemical means, with

a view to obtaining a more complete picture of the regulatory

network controlling psbD gene expression in Chlamydomonas.

Strikingly, a recent characterization of the spatial organization

of PSII synthesis and assembly processes has revealed that

RBP40 is localized to a specialized chloroplast subcompartment

near the pyrenoid, called the T zones (Uniacke and Zerges,

2007). This further underlines the role that RBP40 plays for the de

novo biosynthesis of PSII.

METHODS

Culture Conditions

Chlamydomonas reinhardtii strains were grown to a density of 2 3 106

cells/mL in Tris-acetate-phosphate (TAP) medium (Harris, 1989) contain-

ing 1% sorbitol. RNAi lines were grown in low light (<5 mE�m�2�s�1).

Chlorophyll content was determined following acetone extraction as

described before (Klinkert et al., 2006).

Purification of RBP40 and Peptide Sequencing by

Mass Spectrometry

Chloroplasts from cell wall–deficient strains carrying the cw15 mutation

were isolated from a discontinuous Percoll gradient (45 to 75%) as

described previously (Zerges and Rochaix, 1998). To prepare chloroplast

stromal fractions, isolated chloroplasts were osmotically lysed in hypo-

tonic buffer (10 mM Tricine/KOH, pH 7.8, 10 mM EDTA, and 5 mM

2-mercaptoethanol) by repeated pipetting. Insoluble material was re-

moved by ultracentrifugation for 30 min at 100,000g through a 1 M

sucrose cushion in hypotonic buffer in an SW40 rotor (Beckman).

An aliquot of the supernatant containing 10 to 15 mg of stromal protein

was then applied to a 5-mL heparin–Sepharose 4B (GE Healthcare)

column equilibrated with buffer I (50 mM KCl, 10 mM Tricine/KOH, pH 7.8,

and 10 mM EDTA). Bound proteins were eluted using a discontinuous salt

gradient (150 mM, 550 mM, and 1 M KCl in buffer I). Proteins eluting at

150 mM KCl were desalted using Amicon Ultra centrifugal filtration

devices (Millipore) with a 10-kD molecular mass cutoff according to the

manufacturer’s instructions.

The protein solution (in buffer I) was then applied to a 2-mL poly(U)–

Sepharose4B(GEHealthcare) columnequilibratedwithbuffer I.Thecolumn

was washed with 3 volumes of buffer I, and bound proteins were eluted with

a discontinuous salt gradient (150 mM, 550 mM and 1 M KCl in buffer I).

The different fractions were tested for the presence of RNA binding

activity by assessing their ability to bind to 59UTR sequences from psbD

RNA in UV cross-linking assays. Prior to use in UV cross-linking assays

(see below), all protein fractions were dialyzed against RNA binding

buffer (30 mM Tris-HCl, pH 7.0, 50 mM KCl, 5 mM MgCl2, and 5 mM

2-mercaptoethanol). Protein concentrations were determined using the

Bradford assay (Bio-Rad).

For mass spectrometric peptide sequencing, RBP40-containing gel

pieces were treated with trypsin (sequencing grade; Promega) and the

resulting peptides were analyzed on a Q-TOF2 mass spectrometer

(Micromass) as described (Piotrowski and Volmer, 2006).

Production of Antiserum against RBP40

An RBP40 cDNA was isolated after screening of a cDNA library prepared

from wild-type cells (Boudreau et al., 2000). A DNA fragment encoding the

first 191 amino acids of RBP40 was amplified from this cDNA by PCR with

the primers 59-GGATCCGCCGCGGCGCACCCCCCTGG-39 (RBP40-

BamHI-59) and 59-GTCGACGCTGTCCAGCCACAGCG-39 (RBP40-SalI-39).

The fragment was cloned into the expression vector pGEX4T1 (via the

BamHI and SalI restriction sites present in the two primers). Overexpres-

sion of this construct in the Escherichia coli strain BL21 and purification

of the resulting RBP40–glutathione S-transferase fusion protein were
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performed according to the manufacturer’s protocol using glutathione–

Sepharose 4B (GE Healthcare). A polyclonal antiserum was produced by

immunizing rabbits with this protein fraction (Biogenes).

Analysis of Nucleic Acids and Proteins

Pulse labeling of total cell proteins with [35S]sulfate, isolation of algal

nucleic acids and proteins, and RNA gel blot and protein gel blot analyses

were performed essentially as described previously (Klinkert et al., 2006).

Signal intensities in four independent protein gel blot analyses were

densitometrically quantified using Scion Image software (http://www.

scioncorp.com).

Generation of RBP40 RNAi Lines

To create RBP40-deficient mutants of Chlamydomonas, we used the

RNAi system described previously by Rohr et al. (2004). For the gener-

ation of an inverted repeat construct specific for RBP40 RNA, a 573-bp

fragment corresponding to the 59 coding sequence of RBP40 was

amplified with PCR using the RBP40 cDNA as a template with the primers

RBP40-BamHI-59 and RBP40-SalI-39, which add BamHI and SalI restric-

tion sites, respectively. A longer 800-bp fragment containing an additional

227 bp of the coding sequence that functioned as a spacer for the

inverted repeat was amplified using the primers RBP40 RNAi-H-E-S

(59-AAGCTTGAATTCCTGACCTTGAGACGTGC-39) and RBP40 RNAi39

(59-GAGCTCGTCGACCTAGTAGCGGGCGC-39), adding HindIII, EcoRI,

SalI, and SacI restriction sites to the sequences. These two fragments

were ligated and cloned as an inverted repeat (with the central spacer)

into the EcoRI site of the vector NE537 (which is located in the inverted

repeat of the Maa7 gene for the b-subunit of Trp synthase) using the E. coli

strain XL-1 Blue as a host (Rohr et al., 2004).

Cells of the cw15 strain were transformed with the resulting construct,

kept for 2 d in liquid culture (TAP þ 1.5 mM L-Trp) in dim light, and then

plated on TAP plates containing 5 mg/mL paromomycin (to select for

transformants) and 1.5 mM L-Trp. At intervals of 2 weeks, colonies were

transferred to TAP plates containing 5 and then 10 mM 5-fluoroindole in

the dark. 5-Fluoroindole–resistant clones were screened for high chloro-

phyll fluorescence phenotypes and then subjected to molecular analysis.

In Vitro Synthesis of RNA and UV Cross-Linking of RNA to Proteins

DNA templates for the in vitro synthesis of psbD and psbA leader RNA

probes were generated by PCR using appropriate primers: for psbD RNA

(the wild-type and the DU mutant sequences of the psbD mRNA

corresponding to positions �74 to þ18 relative to the AUG), 59-ACC-

GATCGCAATTGTCAT-39 (3131) and 59-TAATACGACTCACTATAGGGA-

CACAATGATTAAAATTAAA-39 (2126); and for psbA RNA (the wild-type

sequence of the psbA mRNA corresponding to positions �91 to þ13

relative to the AUG), 59-GTAATACGACTCACTATAGGGTACCATGC-

TTTTAATAGAAG-39 (T7-psbA59) and 59-GATCCATGGTCATATGTTAA-

TTTTTTTAAAG-39 (2054). In vitro transcription of RNA, UV cross-linking

of RNA to protein, and quantification of binding signals were performed

as described previously (Klinkert et al., 2006). Radiolabeled RNA and

nonlabeled competitors were mixed prior to the addition of proteins to

competition experiments. Quantification of competitor RNAs was per-

formed by measuring the incorporation of low levels of radioactivity into

transcripts. Signal intensities in competition experiments were densito-

metrically quantified using Scion Image software.

Coimmunoprecipitations of Proteins and RNA

Chlamydomonas chloroplasts were isolated as described above and

resuspended in lysis buffer (10 mM Tricine/KOH, pH 7.8, 10 mM EDTA,

5 mM 2-mercaptoethanol, and Roche Complete mini protease inhibitor

cocktail). Membranes were pelleted by centrifugation for 30 min at

100,000g through a 1 M sucrose cushion in an SW40 rotor (Beckman).

The resulting supernatant constituted the stromal fraction used for

subsequent immunoprecipitation experiments. To minimize nonspecific

interactions, this supernatant was first incubated with 250 mL of pro-

tein A–Sepharose (GE Healthcare) in lysis buffer for 1 h at 48C. For

coimmunoprecipitations, aRBP40 IgGs cross-linked to 10 mg of protein

A–Sepharose were added to the pretreated stromal fraction, and the

mixture was incubated overnight at 48C. The beads were then washed 10

times in Tris-buffered saline–BSA (10 mM Tris-HCl, pH 7.5, 150 mM NaCl,

0.05% BSA, and Roche Complete mini protease inhibitor cocktail).

Bound proteins were released from the beads in 53 SDS loading buffer

(50% glycerol, 125 mM Tris-HCl, pH 7.0, 5% SDS, 0.05% bromophenol

blue, and 150 mM 2-mercaptoethanol) for 15 min and subsequently

subjected to immunoblotting analysis. For immunoprecipitations using

aNac2 IgGs, the same protocol was followed, except that protein

G–Sepharose was substituted for protein A–Sepharose.

Coimmunoprecipitations of RNA were performed in the presence of

0.5 mg/mL yeast tRNA and 1 unit/mL RNasin (Promega). The RNA was

isolated by extraction with phenol-chloroform after the addition of SDS to

0.5%. Equal proportions of RNA samples were transferred to nylon

membranes using a dot-blot manifold (Schleicher and Schüll). To avoid

membrane saturation effects, total RNA amount per dot was restricted to

2.5 mg. Subsequently, membranes were hybridized with radiolabeled

DNA probes comprising the 59UTRs of the indicated genes, which were

PCR-amplified using appropriate oligonucleotides. As a loading control,

all blots were finally hybridized with the psbD probe.

Sedimentation Analysis in Glycerol Gradients

For sedimentation analysis, isolated chloroplasts were hypotonically

lysed in 20 mM Tricine/KOH, pH 7.8, 55 mM KCl, 3 mM EDTA, 5 mM

e-amino caproic acid, 5 mg/mL tRNA, 80 units of RNasin, and 0.05% BSA.

Aliquots equivalent to 1.5 mg of stromal proteins were then loaded onto

15 to 35% glycerol gradients and centrifuged for 18 h at 180,000g in an

SW40 rotor (Beckman). The gradient was fractionated into 18 0.5-mL

samples, and 40 mL of each was used for immunoblotting analysis.

Polysome Purification in Sucrose Gradients

Polysomes were purified as described previously (Mussgnug et al., 2005).

Cells (7.4 3 108) were recovered by centrifugation, broken in a freeze–

thaw cycle, resuspended in 1 mL of polysome extraction buffer (200 mM

Tris-HCl, pH 9.0, 200 mM KCl, 35 mM MgCl2, 25 mM EGTA, 0.2 M

sucrose, 1% Triton X-100, and 2% polyethylene-10-tridecyl-ether),

supplemented with inhibitors (0.5 mg/mL heparin, 100 mM 2-mercapto-

ethanol, 100 mg/mL chloramphenicol, 1 mM 1,10-phenanthroline, and

0.5% [v/v] Complete mini protease inhibitor cocktail either with or without

EDTA [Roche]), and immediately centrifuged at 48C for 20 min at 10,000g.

The supernatant was supplemented with sodium deoxycholate to a final

concentration of 0.5% and layered onto a linear gradient composed of

15 to 40% sucrose in cushion buffer (40 mM Tris-HCl, pH 9.0, 20 mM KCl,

30 mM MgCl2 or 1 mM EDTA, and 5 mM EGTA). The gradients were

centrifuged for 225 min at 100,000g at 48C. Aliquots of collected fractions

were either used for immunoblot analysis or supplemented with 0.5%

SDS and 20 mM EDTA before RNA isolation by phenol/chloroform

extraction. RNA was dissolved in nuclease-free water and separated on

a 1% agarose-formaldehyde gel.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data

libraries under accession numbers AJ271460 (Nac2) and AY124882

(RPB40/RB38).
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Introduction 

Recent  years  have  seen  the  identification  of  numerous 
nucleus‐encoded  factors  which  participate  in  chloroplast 
RNA metabolism and translation (for review see Stern et al. 
2010). Accumulating evidence indicates that most of these 
factors  form parts of multi‐subunit, high molecular weight 
(HMW)  complexes  with  their  target  RNAs  (RNPs),  which 
often  accumulate  to  only  low  amounts  (Nickelsen  2003; 
Schwarz et al. 2007; Pfalz et al. 2009; Johnson et al. 2010). 
For instance, the Nac2 protein is involved in stabilization of 
the chloroplast psbD mRNA in the unicellular green alga C. 
reinhardtii,  while  the  RNA  binding  protein  RBP40  is  re‐
quired  for  translation  of  the  same mRNA. We  have  previ‐
ously  shown  that  these  two  factors  assemble  into  psbD 
mRNA containing HMW complexes  (Boudreau et  al.  2000; 
Schwarz et al. 2007). However, high‐abundant plastid HMW 
complexes containing no RNA, for instance the ribulose‐1,5‐
bisphosphate‐carboxylase/oxygenase‐complex  (Rubisco), 
interfere  with  preparative  biochemical  analyses  of  native 
RNP   
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complexes  by  using  density gradient  centrifugation 
and/or size exclusion chromatography (SEC). 

We  have  previously  drafted  an  experimental  proce‐
dure  which  allows  for  the  selective  enrichment  of  native 
RNP  particles  (Bohne  et  al.  2009).  The  basic  strategy  is 

given in Figure 1A. Provided that at least one of the protein 
constituents of the RNP complex can be followed by either 
its activity or immunological means, a first purification step 
involves separation of complexes via SEC. This procedure is 
favorable when compared to other methods due to its rela‐
tively  low  processing  time  of  ca.  1h  as  compared  for  in‐
stance  to  18h  during  a  single  density  gradient  centrifuga‐
ion  step.  This  minimizes  degradation  processes  on  both 
NA and protein moieties of RNPs.  
t
R
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Figure 1: (A) Scheme for enrichment of RNP proteins by digesting 
HMW complexes with RNase A (adapted  from Bohne et al. 2009). 
(B) SEC behavior of RBP40 before and after RNase treatment. 1 mg 
of  stromal  proteins  from  C.  reinhardtii  was  separated  on  a  Su‐
perose 6 10/300GL  column.  1% of  each  fraction was  analyzed  in 
parallel by silver staining for overall protein content and Western 
blotting  for RBP40 distribution  (upper part).  After  determination 
of  RBP40  distribution,  only  fractions  eluting  above  ~  1000  kDa 
were  concentrated  and  treated  with  RNase  A  before  a  second 
round of SEC. Most of the remaining RBP40 now appears in lower 
molecular weight fractions. 
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Further  specific  enrichment  of  RNP  particles  is  then 
achieved by treating only pooled fractions containing HMW 
complexes with RNase and a subsequent second SEC step. 
Addition  of  RNase  leads  to  degradation  of  the  nuclease‐
accessible  parts  of  RNAs  from  HMW  RNP  particles  and, 
therefore, to a drastically reduced size of the residual RNP 
complexes which  now  contain  only  their  protein  subunits 
and  those  RNA  parts  which  are  protected  by  bound  pro‐
teins.  Since  RNase  inhibitors  reduce  the  efficiency  of  this 
treatment,  they  are  omitted  throughout  the  whole  proce‐
dure.  Other  non  RNA‐containing  HMW  protein  complexes 
are  RNase‐insensitive  and,  therefore,  elute  at  the  same 
position as in the first SEC step. Consequently, proteins that 
are  part  of  RNP  complexes  are  specifically  enriched  in 
lower molecular weight  (LMW)  fractions  after  the  second 
SEC step due  to  the removal of accessible RNA parts  from 
RNP  particles  (Figure  1A;  Bohne  et  al.  2009).  RNase  does 
not  interfere with  downstream  analyses  of  the  RNP  com‐
plexes, because it is separated from these complexes due to 
its smaller size during the second SEC step. 

When  the  Nac2/RBP40  complex  is  exemplarily  ana‐
lyzed by following this strategy, a huge variety of RNP com‐
lex  orms, ranging in size from 2000 – 160 kDa, is detected 

after elution from the first gel filtration column. This broad 
range  reflects  degradation  processes  acting  especially  on 
the nuclease‐accessible parts of the psbD mRNA during the 
preparation of  stromal  extracts  and/or  assembly  interme‐
diates of the Nac2/RBP40 complex (Figure 1B). Rationaliz‐
ing  that  especially  the  largest  HMW  complexes  represent 
intact RNPs containing most of the psbD mRNA, only RNPs 
in the size range of 2000 – 1000 kDa are further processed. 
Thereby, most of  the high‐abundant  interfering complexes 
like  the  Rubisco  enzyme  are  readily  excluded  from  the 
preparation.  After  RNase  treatment  and  the  second  SEC 
step,  the residual Nac2/RBP40 complex elutes  in  fractions 
corresponding  to  a  size  of  450  –  150  kDa  which  is  in 
agreement with  previous  analyses  using  glycerol  gradient 
centrifugation (Figure 1B; Schwarz et al. 2007). Silver stain‐
ing  of  elution  fractions  reveals  an  approximate 10fold  en‐
richment of the Nac2/RBP40 complex after the second SEC 
step when RBP40 signal intensities per protein amount are 
compared to the first SEC step (Figure 1B). Below, we pro‐
vide the detailed experimental protocol for the enrichment 
of the Nac2/RBP40 complex which is likely to be applicable 
to the analysis of other chloroplast RNPs (for a  flow chart, 
see Figure 2). p
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igure 2: Flow chart for selective enrichment of high molecular weight RNP complexes. 

 
Cultivation of cells 
Media and growth conditions  for  cells  are given by Harris 
(2009;  Step  1).  For  isolation  of  chloroplasts,  cell‐wall  re‐
duced  strains  are  used.  Alternatively,  autolysin  treatment 
can remove the cell‐wall. Conditions for cell treatment with 

his  enzyme  have  to  be  established  for  every  strain  indi‐
idually (Harris 2009). 
t
v
 
Preparation of columns and chromatography system 
Column material  is  chosen based  its  optimal  resolution  in 
the  size  range  of HMW RNPs,  i.  e.  2000  –  100  kDa.  These 

equilibration 
(step 3)

programming 
(step 4) 

isolation of stromal proteins (step 5.1)
+concentration increase (step 5.2) 

cell growth 
(step 1) 

buffer preparation 
(step 2) 

first SEC 
(step 6) 

determination of size distribution (step 7)
+ RNase treatment (step 8) 

second SEC 
(step 9) 

distribution of RNase treated RNP proteins 
+ further analysis (step 10) 

  Journal of Endocytobiosis and Cell Research VOL 20 | 2010 90 



Running title 

criteria are met, e.g., by matrices  like Superose or TSK‐Gel 
(GE  Healthcare  and  Tosoh  Bioscience,  respectively).  The 
chromatographic  processes  are  under  the  control  of  the 
Unicorn operating software using an ÄKTApurifier 10 sys‐
tem (GE Healthcare). 

Buffers need to be filtered to ensure that no solid par‐
ticles  enter  the  chromatography  system.  A  convenient 
method for larger buffer volumes is vacuum filtration using 
appropriate membranes. Degassing is also necessary as air 
entering the system can significantly affect the experiment, 
e.g.  larger  air  bubbles  passing  through  the  system  make 
photometric  measurements  impossible  or  carbon  dioxide 
could acidify the buffer (Step 2). After washing with water, 
the  column  is  equilibrated  with  the  buffer  that  was  pre‐
pared in the second step (Step 3). The Unicorn software is 
sed  in  parallel  for  programming  the  SEC  steps  in  accor‐
ance with column parameters (Step 4). 
u
d
 
Isolation of stromal proteins 
Isolation  of  chloroplasts  and  stromal  proteins  is  done  as 
described by Zerges and Rochaix (1998). Since RNA‐protein 
interactions  are  intrinsically  unstable,  buffers  and  equip‐
ment must be  cooled at 4°C  throughout  the  entire  experi‐
ment.    It  is  also  important  to  work  as  fast  as  possible  to 
limit degradation processes  (Step 5). Proteins are  concen‐
rated  by  ultrafiltration  using  Amicon  Ultra  filters  (Milli‐
ore, Step 5.2). 
t
p
 
Size  exclusion  of  untreated  and  treated  stromal  pro­
teins 
Using  the  program  from  step  4  and  proteins  from  step  5, 
soluble complexes are separated according to their hydro‐
dynamic  volume  (Step  6).  Only  the  HMW  fractions  of  the 
complexes,  supposed  to  contain  intact  RNA,  are  collected 
(Figure  1;  Step  7).  As  SEC  leads  to  dilution  of  the  initial 
sample, the increased sample volume has to be reduced for 
the n t r oext gel filtration step by ul rafilt ation. C ncomitantly, 
the HMW RNPs are subjected to RNase treatment (Step 8). 

The  resulting  mixture  is  then  applied  to  a  second 
round of SEC using parameters from step 6 (Step 9). Having 
lost  their  nuclease‐accessible  RNA  parts,  residual  RNPs 
now  have  a  different  size  exclusion  behavior.  In  contrast, 
on‐RNA containing HMW complexes will  not  change  size 
nd, thus, are specifically separated from RNP complexes. 
n
a
 
Further analysis of proteins 
Fractions collected  in step 9 are used  for downstream ap‐
plications and/or further purification steps, like mass spec‐
troscopic analyses or immunoprecipitations, after determi‐
nation of the size distribution of residual RNPs (lower part 
of Figure 1B; Step 10; see also Watkins et al. 2007; Kroeger 
et al. 2009). By using two coupled gel filtration steps, RNA 
nteracting proteins  can be  investigated  in a  rapid  fashion 
ince  fast  separation  procedures  at  low  temperatures 

minimize the risk of degradation caused by RNases / prote‐
ases or disassembly of less stable complexes. 
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Box 
 
Step 1 ‐ Cell growth – Cells from the cell wall‐reduced strain CC406 are grown in liquid TAPS medium to a 
ensity of less than 2∙106 cells/ml to harvest them in the log phase (Harris 2009). Cultures are grown at 23 
C with s
d
° haking at 120 rpm and a light intensity of 30 µE m‐2 s‐1. 
 
Step 2 ­ Buffer preparation – SEC buffer used in the analysis of the Nac2/RBP40 complex contains 20 mM 
ricine/KOH, pH 7.5, 50 mM KCl, 5 mM ε‐aminocaproic acid and 2.5 mM EDTA. When estimating the neces‐

f b ffer, co
t
sary amount o u nsider for each step: 

tion 
 
equilibra   5 column volumes 
elution      1 column volume 
washing    2 column volumes . 
All experimental procedures  from now on are performed at 4°C. Adjustment of pH value and removal of 
olid particles by vacuum filtration are carried out at the same temperature because pH value and gas solu‐
ility are
s
b  both dependent on temperature (Weast 1975). The same holds for any other buffer. 
 
tep 3 ­ System/column equilibration – Use the parameters for a Superose 6 10/300 GL column, with reso‐

lobular proteins, in the Unicorn software’s method editor: 
S
lution limits of 5 – 5000 kDa for g

l mit 
 

essure 
 

Alarm Pr i 1.5 MPa 
l Column volume   23.6 m

ve 
flowrate    0.5 ml / min 
njection Val   Inject I
EndMethod    5 column volumes 
 
Complete buffer exchange can be assumed when monitored values, e.g. conductivity, stay stable for two to 
ive  column  volumes.  Residual  proteins  from  previous  runs,  including  RNases,  are  removed  during  the 
quilibra
f
e tion with 5 column volumes of SEC buffer. 
 
tep 4  ­ Programming – During equilibration, SEC parameters can be added  in  the method editor of  the 

are. 
S
Unicorn softw
 
Pump mode    Normal 

n 
e of the UV photometer 

Flow rate    0.3 – 0.5 ml/mi
AutozeroUV    to normalize the baselin

 Injection valve   Inject (0.5 ml) 

tion   
      Load (23.5 ml) 
Fractiona 0 – 24 ml (includes void volume fractions that are discarded later) 

ed vol‐Fraction  0.75 ml (starts a new fraction every 0.75 ml, can be changed to any desir
actionation) 
ctionation until total volume of 72 ml 

ume, results in 30 fractions for that fr
EndMethod    72 ml (continues buffer flow after fra
      to remove residual material) 
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Step 5 ­ Isolation of stromal proteins – Chloroplasts are isolated from ~ 2∙109 CC406 cells. Cell harvest is 
usually done in fixed‐angle rotors, while all other centrifugation steps are performed in swing‐out rotors. 
The method of Zerges and Rochaix (1998) can be used at 4°C with the following modifications. To isolate 
intact  chloroplasts  from  the  strain CC406, 15 ml of  resuspended cells  (in  isotonic  solution) are  lysed by 
incubating them with  the detergent saponin  for exactly  five minutes (mix one volume of cells  in  isotonic 
olution with one volume of 10 % saponin in isotonic solution). The lysate is sedimented by centrifugation s
(4000g, 10 sec). 
 
x isotonic solution 4 1.2 M sorbitol 

20 mM magnesium chloride 
      40 mM tricine pH 7.5 
 
The resulting sediment is resuspended in 8 ml of hypotonic solution and layered on a 10 ml 45% / 10 ml 
75% Percoll step gradient, which  is  then centrifuged (6000 g, 20 min).  Intact chloroplasts migrate to the 
interphase between the Percoll solutions. To remove Percoll, the chloroplasts are taken from the gradient 
and  diluted with  twice  the  volume  of  isotonic  solution  before  being  centrifuged  (5000  g,  10 min).  After 
complete removal of  isotonic solution chloroplasts are  lysed osmotically by applying ~1 ml of hypotonic 
olution (add protease inhibitors, for instance Roche CompleteMini Inhibitor cocktail) and repeated pipet‐

 pipet ipetman P1000 and Greiner 740291 tips. 
s
ting using a 1000µl te, e.g. Gilson P
 
ypotonic solution  10 mM EDTA h
      10 mM tricine/KOH pH7.5 
 
Insoluble material  is  removed by  layering ~ 1ml  lysate on 12 ml  cushion of 0.6 M  sucrose  in hypotonic 
solution  and  subsequent  centrifugation  (100000  g,  30 min).  The  resulting  supernatant  is  considered  as 
tromal  proteins  (Zerges  and  Rochaix  1998).  Protein  content  is  determined  as  described  by  Bradford 
1976). 
s
(
 
Step 5.2 ­ Concentrating stromal proteins – As hypotonic lysis usually leads to large sample volumes, lys‐
ates  have  to  be  concentrated  to  fulfill  sample  volume  restrictions  for  SEC.  The  sample  contains  1 mg of 
stromal proteins, while the sample volume has to be less than 1% of the total column volume (~250 µl for a 
uperose 6 10/300GL column). The lysate is then concentrated by using Amicon Ultra filters with an exclu‐
ion limi
S
s t of 30 kDa (Millipore).  
 
Step 6  ­ First SEC – Make sure  that the system is  in an  idle position.  Inject  the stromal proteins  into  the 
ample loop by using the INV‐907 mixer of the ÄKTApurifier system. The first chromatography step is then 
tarted w
s
s ith the parameters that were programmed at step 4.  
 
Step 7 ­ Determinations of protein distribution – Aliquots of 1 % of the eluted fractions are separated on 
SDS‐PAGE gels. Overall protein distribution is checked with silver staining of the gels as described by Heu‐
eshoven and Dernick (1988). Distribution of RBP40 is followed by Western blotting using available anti‐
odies (upper part of Fig. 1B). 
k
b
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Step 8  ­ RNase treatment – As seen  in Figure 1B, HMW complexes containing RBP40 elute above ~1000 
kDa. These  fractions are pooled and  their volume  is adjusted  to  sample  loop restrictions by applying ul‐
rafiltration in the presence of 200 µg RNase A (see step 5.2). During the concentration procedure, RNase 
egrade
t
d s the accessible RNA parts of RNPs. 
 
Step 9  ­ Second SEC – Having lost most of their RNA, the RNP particles have a reduced molecular weight 
nd hydrodynamic volume. This results  in a different SEC pattern when performing the chromatography 
gain usin
a
a g the RNase treated samples and the same Unicorn parameters as in step 6. 
 
Step 10 ­ Determination of protein distribution from RNase treated HMW complexes – The additional elu‐
ion  fractions of step 9 undergo the same procedures as described  in step 7. The expected change of  the 
BP40 elution profile is confirmed as shown in Figure 1B. 
t
R
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3.3 An intermolecular disulfide-based light switch for chloroplast psbD 
gene expression in Chlamydomonas reinhardtii. (2011) 

 
Schwarz, C., Bohne, A.V., Cejudo, F.J. and Nickelsen, J. Plant J., (submitted) 

We analyzed the regulation of the interaction between Nac2 and RBP40 and its influence on 

D2 synthesis in C. reinhardtii. Light-dependent translation of the psbD mRNA is regulated by 

the interaction between a poly(U)-sequence within the 5’UTR of the transcript and RBP40. 

Deletion of that sequence abolishes RBP40 binding and D2 synthesis. Suppressor mutants 

exhibiting point mutations in the psbD 5’UTR, which are able to restore D2 synthesis but not 

binding to RBP40, showed lower increase of light-dependent D2 synthesis in comparison to 

the wild-type. SEC analyses showed that RBP40 dissociated from the Nac2 complex in the 

dark and this disassembly heavily depends on the redox state of the single cysteine residue of 

RBP40. These results could be confirmed by addition of a reducing agent to isolated stroma 

of light-grown strains before SEC as well as in 2D redox gels that show a Nac2-dependent 

intermolecular disulfide bridge in RBP40 in the light. Reduction of this disulfide bridge could 

also be achieved in vitro by addition of NTRC, a NADPH-dependent thioredoxin reductase 

with an additional thioredoxin domain. Therefore, our data indicate a light-controlled 

formation of the NAC2/RBP40 complex and resulting D2 synthesis levels. Additionally, these 

processes require cross-talk with the energy state of the cell as NTRC is involved in carbon 

metabolism. 

I was involved in this work by performing size exclusion filtrations of all analyzed strains as 

well as redox dependent two-dimensional gels using antibodies raised against proteins of 

interest. Additionally, I performed the analysis of protein synthesis and steady state RNA 

levels as well as the S-alkylation of RBP40. Alexandra-Viola Bohne carried out the cloning 

and expression of full-length recombinant RBP40 as well as UVX experiments. Francisco 

Javier Cejudo provided the recombinant NTRC enzymes. The manuscript was written by all 

authors supervised by Jörg Nickelsen. 
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Abstract 

Expression of the chloroplast psbD gene encoding the D2 protein of the photosystem 

II (PSII) reaction center is regulated by light. In the green alga Chlamydomonas 

reinhardtii, D2 synthesis requires a high-molecular-weight complex containing the 

RNA stabilization factor Nac2 and the translational activator RBP40. Based on size 

exclusion chromatography (SEC) analyses, we provide evidence that light control of 

D2 synthesis depends on the dynamic formation of the Nac2/RBP40 complex. 

Furthermore, 2D redox SDS-PAGE assays revealed an intermolecular disulfide 

bridge between Nac2 and Cys11 of RBP40 as the molecular basis for attachment of 

RBP40 to the complex in light-grown cells. This covalent link is reduced in the dark, 

most likely via the NADPH-dependent thioredoxin reductase C (NTRC), suggesting  

crosstalk between chloroplast gene expression and chloroplast carbon metabolism 

during dark adaption of algal cells. 
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Introduction 

 

Owing to the endosymbiotic origins of the chloroplast, its gene expression machinery 

is basically of prokaryotic origin. During the evolutionary development of chloroplasts, 

however, this machinery was extensively modified by the recruitment of nucleus-

encoded regulatory factors which nowadays constitute an intracellular network 

dedicated to the coordination of gene expression in the nucleus and the organelle 

(for a recent review see Barkan 2011). While recent years have seen the 

identification and characterization of a number of these trans-acting factors, much 

less is known about their precise molecular modes of action with regard to light-

dependent regulation. 

In this context, the idea of redox control of chloroplast gene expression has attracted 

much attention, since it provides an appealing basis for a direct link between 

photosynthetic activity and the expression of photosynthesis-related chloroplast 

genes (Dietz and Pfannschmidt 2011). Indeed, many elements of chloroplast gene 

expression, including RNA transcription, stabilization, processing and splicing, and 

translation have been shown to be affected directly or indirectly by the redox state of 

the organelle (for an overview see Barnes and Mayfield 2003). Translation, however, 

appears to represent the rate-limiting step for the synthesis of chloroplast-encoded 

proteins (Eberhard et al. 2002; Zerges and Hauser 2009). 

In the green alga Chlamydomonas reinhardtii, synthesis of the large subunit of 

ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) encoded by the rbcL 

gene has been shown to be regulated via the redox state of the chloroplast 

glutathione pool, which in turn is modulated by light-induced oxidative stress 

(Irihimovitch and Shapira 2000). Interestingly, the RbcL protein possesses an intrinsic 

non-specific RNA binding activity located within its N-terminal region (Yosef et al. 

2004). It has therefore been postulated that the binding of RbcL to its own mRNA 

blocks its translation if either its redox-controlled interaction with the chloroplast 

chaperone system or Rubisco subunit assembly is disturbed (Cohen et al. 2005). 

The most elaborate – but also most controversial – model for redox-controlled 

translational regulation in chloroplasts has been described in C. reinhardtii for the 

psbA gene that encodes the D1 protein of the photosystem II (PSII) reaction center 

(Barnes and Mayfield 2003; Zerges and Hauser 2009). This model postulates that 

redox-controlled binding of a protein complex to the 5´ UTR of the psbA mRNA leads 
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to recruitment of ribosomes. The heart of this complex is the RNA-binding protein 

RB47, whose activity is modulated by RB60, a disulfide isomerase homolog (Kim and 

Mayfield 2002). RB60 was shown to form intermolecular disulfide bonds with RB47 in 

vitro, suggesting tight cooperation of these factors also in vivo (Alergand et al. 2006). 

It was proposed that light-dependent reduction of the involved thiol groups in RB60 

provides the molecular basis for light-dependent increases in D1 synthesis (Trebitsh 

et al. 2000).  

We have previously shown that the expression of the chloroplast psbD gene in C. 

reinhardtii is under the control of a high-molecular-weight (HMW) complex containing 

the RNA stabilization factor Nac2 and the translational activator RBP40 (Schwarz et 

al. 2007). Furthermore, translation of psbD mRNA depends on an U-rich element 

within its 5´ UTR which serves as a binding site for the translational activator RBP40 

(Nickelsen et al. 1999; Ossenbühl and Nickelsen 2000). Deletion of this element 

(∆U) results in the complete loss of D2 synthesis (Nickelsen et al. 1999; see also Fig. 

1a, b) but is partially restored in genetically selected second-site suppressor lines, 

namely su∆U+9, su∆U-3 which harbor point mutations in a downstream RNA stem-

loop structure encompassing the AUG start codon (Klinkert et al. 2006). In these 

lines, the psbD mRNA can be translated in the absence of RBP40 binding, leading to 

a model in which Nac2-assisted binding of RBP40 to the U-rich element affects the 

RNA conformation at the initiation codon, and thereby makes the initiation site 

accessible to the translational machinery (Schwarz et al. 2007). Thus, both RBP40 

and the RNA stem-loop have the capacity to form a molecular switch that regulates 

psbD gene expression and, as a direct consequence of the so-called CES (control by 

epistasis of synthesis) process, the accumulation of the entire PSII in C. reinhardtii 

(Minai et al. 2006). 

Here, we report on the molecular mechanisms that underlie light-controlled regulation 

of psbD gene expression via the RBP40/RNA stem-loop switch. We provide evidence 

showing that RBP40 is required for this control and that the light-dependent formation 

of the active Nac2/RBP40 complex is mediated by the establishment of an 

intermolecular disulfide bridge between the two factors. The redox state of this 

connection appears to represent a key determinant for D2, and therefore PSII, 

synthesis. 

Page 4 of 29

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

Results 

 

Light regulation of D2 synthesis depends on the RBP40/RNA stem-loop switch 

To test whether the RBP40/psbD RNA stem-loop switch is involved in the well-known 

light-dependent regulation of D2 synthesis in C. reinhardtii, we analyzed light-

dependent D2 synthesis rates in the deletion strain ∆U (which lacks the U-rich 

element) and the suppressor lines su∆U-3 and su∆U+9 which have lost the RBP40 

binding site but contain a less stable RNA stem-loop (Malnoe et al. 1988; Klinkert et 

al. 2006). In pulse-labeling experiments, wild-type cells grown in the light exhibited an 

2.8-fold increase in rates of D2 synthesis relative to cells which had been adapted to 

dark conditions for 38 h (Fig. 1a, b). As described previously, in the dark the ∆U 

strain showed no D2 protein synthesis, while both suppressor lines exhibited reduced 

D2 synthesis compared to the wild-type (Nickelsen et al. 1999). Moreover, in the 

light, D2 expression increased only 1.9-fold in su∆u-3 and su∆U+9 strains (Fig. 1a, 

b). These results suggest that in the suppressor lines both the overall rate of psbD 

mRNA translation and the degree of induction of D2 synthesis by light are affected. 

Northern analyses verified that the observed differences are due to translational 

effects, since no significant alterations in psbD mRNA levels occurred under the 

conditions tested (Fig. 1c). In conclusion, these findings suggest that RBP40 is 

required for efficient regulation of D2 synthesis by light since bypass of RBP40 

function in the suppressor lines results in reduced levels of light control. This 

supports the hypothesis of a light switch which is constituted by the negatively acting 

psbD mRNA stem-loop at the AUG start codon and RBP40 which activates 

translation by changing the conformation of this RNA structure. 

  

RBP40 contains a single Cys residue  

How then does light affect this molecular switch? Redox reactions have been 

postulated to play critical roles during light activation of chloroplast gene expression 

(Barnes and Mayfield 2003; Dietz and Pfannschmidt 2011) and, interestingly, RBP40 

had been identified as a target for glutathionylation under conditions of oxidative 

stress in a proteomic analysis in C. reinhardtii (Michelet et al. 2008). Inspection of the 

amino acid sequence of RBP40 revealed the presence of only a single cysteine 

residue at amino acid position 11 (Cys11) which could serve as a target for 

Page 5 of 29

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

glutathione binding (Fig. 2a). However, Cys11 is located within the predicted N-

terminal transit sequence of RBP40 which should be cleaved off upon import by the 

chloroplast and, thus, should not be present in the mature protein (Barnes et al. 

2004). To test for the presence of a Cys residue in mature RBP40, stromal proteins 

from C. reinhardtii were treated with the thiol-alkylating reagent PEG5000-maleimide 

for various times, and subsequently analyzed by immunoblotting. As shown in Figure 

2b, an alkylation-dependent size shift of RBP40 was observed, indicating that Cys11 

is indeed still present in the mature RBP40. This implies either that RBP40 is 

imported into the chloroplast by an alternative pathway which does not involve N-

terminal processing of proteins or it contains an unusually short transit sequence of 

less than 11 amino acid residues (Schwenkert et al. 2011). Both possibilities are 

compatible with previous in vitro import experiments, which have detected no size 

change in RBP40 after transport into chloroplasts (Barnes et al. 2004). 

To test whether the redox state of Cys11 directly affects the RNA-binding activity of 

RBP40, UV crosslinking experiments with full-length recombinant RBP40 (rRBP40) 

and a psbD 5´ UTR RNA probe were performed under different redox conditions (Fig. 

2c, supple. Fig 1). The addition of neither oxidized (GSSG) nor reduced (GSH) 

glutathione to the reaction mixture had any influence on RNA recognition (Fig. 2c). 

Moreover, alkylation with NEM had no significant effect on RNA binding, indicating 

that binding of RBP40 to RNA is not dependent upon the redox state of Cys11. 

 

Light- and redox-dependent formation of the Nac2/RBP40 complex 

We have previously shown that RBP40 forms a complex with the RNA stabilization 

factor Nac2 and that this interaction specifies recognition of the psbD 5´ UTR by 

RBP40; on its own RBP40 binds to any RNA, at least in vitro (Ossenbühl and 

Nickelsen 2000; Barnes et al. 2004; Schwarz et al. 2007). We therefore wished to 

know whether the interaction with Nac2 is affected by the redox state of Cys11. To 

this end, we analyzed the distribution of stromal RNA/protein (RNP) complexes by 

size-exclusion chromatography (SEC, Johnson et al. 2010; Schwarz and Nickelsen 

2010). When wild-type cells were grown in the light, the previously described 

Nac2/RBP40 complex was identified by both Nac2 and RBP40 antibodies in the 

range of 550 kDa (Schwarz et al. 2007, Fig. 3a, fractions 6-9). In addition, even larger 

complexes in the range of 1000 kDa were detected only with the RBP40 antibody 

(Fig. 3a, fractions 4 and 5). These latter complexes have not been observed in 
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previous experiments using time-consuming glycerol gradient centrifugation for RNP 

complex separation, probably because they are relatively labile. Since RNA co-

immunoprecipitation experiments have previously shown that ribosomal RNA can be 

precipitated by an RBP40 antibody these RBP40-specific HMW complexes might 

represent associations with ribosomes/ribosomal subunits during the initiation phase 

of translation when Nac2 has already left the psbD mRNA (Schwarz et al. 2007). This 

idea is further supported by data revealing that the ribosomal protein S1 and, thus, at 

least the small ribosomal subunit partially co-elutes with these larger RBP40-

containing complexes (Fig. 3a). 

Intriguingly, when dark-adapted cells were analyzed, RBP40 accumulated only in the 

low molecular weight (LMW) range, peaking at ~160 kDa (Fig. 3a, fractions 9-15). 

Concomitantly, the Nac2 signal shifted towards the later fractions 8-10, 

corresponding to a complex of smaller size in the range of 440 kDa (Fig. 3a). This 

suggests that, in the dark, most of RBP40 is detached from the Nac2 complex and, 

as a consequence, psbD mRNA translation would be turned down. Hence, the 

dynamic formation of the Nac2/RBP40 complex could provide the molecular basis for 

the observed light-dependent regulation of D2 synthesis (Fig. 1). To determine 

whether formation of this complex is redox-dependent, we performed SEC analysis 

on RNP complexes from light-grown cells in the presence of reduced glutathione. As 

shown in Figure 3a, these reducing conditions resulted in the detachment of RBP40 

from the Nac2 complex, although the effect was less pronounced than that observed 

in dark-grown cells (Fig. 3a, fractions 8-15). Nevertheless, the data strongly suggest 

that the redox state does have a critical role in Nac2/RBP40 complex formation. 

Moreover, SEC analysis of RNP complexes from the suppressor line su∆U+9 

revealed the presence of HMW Nac2/RBP40 complexes similar to the situation in the 

wild-type (Fig. 3b). This indicates that interaction of RBP40 with its cognate binding 

site on the psbD 5´ UTR is not a prerequisite for Nac2/RBP40 complex formation, 

which is consistent with the earlier finding that this complex can form even in a 

mutant strain lacking the psbD mRNA (Schwarz et al. 2007). 

The observed redox control of RBP40 association with the Nac2 complex raises the 

question whether photosynthetic electron flow is directly involved in controlling the 

synthesis of D2. To check this, two photosynthetic mutants with defects in either PSII 

or PSI were examined with regard to formation of Nac2/RBP40 complexes in the 

light. In mbb1, a nuclear factor is mutated that is required for the stabilization of the 
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chloroplast psbB mRNA encoding the CP47 subunit of PSII (Vaistij et al. 2000), as 

Nac2 is for psbD stability. As shown in Figure 3b, the distribution of both Nac2 and 

RBP40 following SEC analysis resembled that found for light-grown wild-type cells, 

indicating that the absence of PSII does not affect Nac2/RBP40 complex formation 

per se. In the psaA trans-splicing mutant raa1, PSI is absent, causing severe 

oxidative stress when cells are grown in the light (Merendino et al. 2006). Under 

these conditions, partial disassembly of the Nac2/RBP40 complex was observed as 

indicated by the shift of both the Nac2 and the RBP40 signal towards lower molecular 

weights during SEC (Fig. 3b). This suggests that oxidative stress might lead to down-

regulation of D2 and, consequently, of PSII synthesis. 

 

Light- and redox-dependent disulfide bridge formation between Nac2 and 

RBP40 

The data obtained so far support the idea of a light-dependent control of 

Nac2/RBP40 complex formation which might involve Cys11 of RBP40. To test this 

more directly, two-dimensional SDS-PAGE analyses were carried out in which 

stromal proteins were first fractionated by SDS-PAGE in the absence of reducing 

agents, i.e. preserving preformed disulfide bridges (Ströher and Dietz 2008), and 

then orthogonally electrophoresed under reducing conditions. Consequently, 

polypeptides that contain no S-S groups in their native state come to lie on a 

diagonal across the second-dimension gel, while intermolecular or intramolecular 

disulfide bridges cause deviations from the diagonal to the left or right, respectively 

(Ströher and Dietz 2008). 

When stromal proteins from light-grown wild-type cells were analyzed by following 

this procedure, some RBP40 was detected on the diagonal, but substantial amounts 

were also found in the HMW range up to ca. 170 kDa (Fig. 4a). When stromal 

proteins were pretreated with reduced glutathione, no such HMW signals were 

detectable, indicating that RBP40 forms an intermolecular disulfide bridge via its 

single cysteine Cys11 (Fig. 4b). On the other hand, most Nac2 was found on the 

diagonal at 140 kDa, but lesser amounts migrated in the range of the RBP40 signal 

at 170 kDa (Fig. 4a). Reduction prior to electrophoresis in the first dimension 

eliminated this 170 kDa HMW form, confirming that its formation is redox-dependent 

(Fig. 4b). These findings are consistent with the existence of a direct disulfide bridge 

between Cys11 in RBP40 and one of the several Cys residues present in Nac2 (Fig. 
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S2). The analysis of the nac2-26 mutant, which fails to accumulate any Nac2 protein, 

further substantiated this idea: no HMW RBP40 signals were obtained in this strain 

(Fig. 4c).  

Strikingly, HMW RBP40 signals were also lacking when stromal proteins from dark-

adapted wild-type cells were assayed, suggesting that the disulfide bridge linking 

Nac2 and RBP40 is reduced in the dark (Fig. 4b). Furthermore, the Nac2 signal 

appeared to be shifted towards lower molecular weight on the right side of the 

diagonal, suggesting enhanced formation of intramolecular disulfide bridges in Nac2 

in the dark (Fig. 4b).  

We also analyzed Nac2/RBP40 disulfide bond formation in the genetic backgrounds 

used to study complex formation by SEC. In the suppressor su∆U+9, Nac2 and 

RBP40 signals at 170 kDa were actually enhanced, indicating efficient binding of 

RBP40 to Nac2 despite the absence of its cognate binding site on the psbD 5’UTR 

(Fig. 4c). Furthermore, several additional intermediate RBP40 signals appeared 

whose nature remains elusive. In mbb1, enhanced Nac2/RBP40 binding was also 

detected, verifying that the effect seen in the nac2-26 mutant is not due to a 

deficiency in PSII but is Nac2-specific (Fig. 4c). Finally, reduction of the Nac2-RBP40 

disulfide bridge was found to occur in light-grown raa1 cells, suggesting that oxidative 

stress leads to down-regulation of D2 synthesis via the Nac2/RBP40 redox switch 

(Fig. 4c). In conclusion, these data reveal a clear correlation between Nac2/RBP40 

complex formation as visualized by SEC analysis and the formation of a disulfide 

bridge between Nac2 and RBP40.  

 

Blue or red light do not affect Nac2/RBP40 complex formation 

In higher plants, both chloroplast transcription and translation have been shown to be 

regulated by exposure to low levels of blue light (Gamble and Mullet 1989; Barneche 

et al. 2006). In particular psbD gene transcription depends on a blue-light-responsive 

promoter element which is recognized by a specific sigma factor, namely sig5 (for an 

overview see Lerbs-Mache 2011). However, in the chloroplast of C. reinhardtii only a 

single sigma factor has been shown to operate, and accordingly no obvious changes 

in psbD mRNA levels were observed under the light conditions applied in this work 

(Carter et al. 2004; Bohne et al. 2006, Fig. 1c). Nevertheless, we tested whether 

exposure of dark-adapted cells to low-level blue or red light induces Nac2/RBP40-

disulfide bridge formation. As shown in Figure 5, irradiation with neither red nor blue 
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for 3 h does induce formation of the Nac2/RBP40 complex. This suggests that 

disulfide bridge formation is not dependent on signal relays activated by blue or red 

light. 

 

Chloroplast NTRC might be involved in reduction of the Nac2/RBP40 disulfide 

bridge in the dark 

The emerging picture of light-dependent regulation of D2 synthesis postulates a 

central role for the redox state of the Nac2/RBP40 complex. In the light, assembly of 

this complex requires formation of a disulfide bond between the two proteins. In the 

dark or under oxidative stress, this bond is reduced and, consequently, RBP40 is 

detached from Nac2. While oxidative stress is likely to lead to the previously 

observed glutathionylation of RBP40 (Michelet et al. 2008), it has remained obscure 

how reduction in the dark can be achieved.  

One candidate for this role is the recently identified NTRC (chloroplast NADPH-

dependent thioredoxin reductase C) enzyme (Serrato et al. 2004). NTRC reduces 

disulfides in the dark using electrons from NADPH, which is generated by the 

oxidative pentose phosphate pathway (Kirchsteiger et al. 2009). To test the possibility 

that NTRC might be involved in redox regulation of the Nac2/RBP40 complex in the 

dark, 2D redox PAGE was performed with stromal proteins from light-grown cells that 

had been preincubated with recombinant rNTRC from the cyanobacterium Anabena 

sp. PCC 7120  in the presence of 250 µM NADPH (Fig. 6a). Whereas NADPH alone 

had no effect on the covalent link between Nac2 and RBP40, the disulfide bridge was 

reduced when the cyanobacterial enzyme was added. In contrast, rNTRC from rice 

had no effect on the Nac2/RBP40 complex (data not shown), suggesting that specific 

recognition of the disulfide target has diverged during evolution. Nevertheless, in C. 

reinhardtii it does appear that the Nac2/RBP40 complex represents a target for 

chloroplast NTRC, which may therefore be the enzyme that mediates down-

regulation of D2 synthesis in the dark in this species. 

To substantiate the idea that dark-grown cells contain an activity that reduces the 

Nac2/RBP40 disulfide bridge, we mixed stromal protein extracts from light- and dark-

grown wild-type cells in a 1:1 ratio. When this mixture was assayed, a drastic 

decrease in the level of the Nac2/RBP40 complex was observed which cannot be 

explained by a dilution effect (Fig. 6b). In the presence of 250 µM NADPH, this effect 

was even more pronounced, strongly suggesting that dark-adapted chloroplasts from 
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C. reinhardtii contain an activity, probably the algal NTRC, which severs the link 

between Cys11 of RBP40 and Nac2, and thereby turns down psbD gene expression.  

 

Discussion 

We have previously postulated that the translational activator RBP40, together with 

an RNA stem loop structure encompassing the AUG start codon, form a molecular 

switch with the capacity to regulate chloroplast psbD gene expression (Klinkert et al. 

2006). Here, we demonstrate that this molecular switch is indeed involved in 

controlling D2 synthesis in a light-dependent manner (Fig. 7). Suppressor lines in 

which the requirement for RBP40 is bypassed, exhibited reduced levels of light-

induced D2 synthesis (Fig. 1b). This argues for a light-dependent resolution of the 

RNA structure by RBP40. We have previously shown that recruitment of RBP40 by 

the Nac2 complex specifies its interaction with the psbD 5´ UTR (Schwarz et al. 

2007). Intriguingly, this recruitment process and the subsequent formation of a 

Nac2/RBP40 complex is light-dependent and, thus, most likely forms the critical step 

during dark/light transitions in patterns of psbD gene expression (Fig. 3b).  

Moreover, the data reveal a direct interaction of RBP40 with Nac2 via a light-

dependent disulfide bridge involving the single Cys residue in RBP40 at position 11, 

suggesting that the redox state of Cys11 is the main target for the light control 

mechanism. To date, no RBP40 knock-out mutant lines are available, which hampers 

site-directed genetic approaches to confirm the role of Cys11 in vivo. However, the 

redox state of Cys11 apparently has no direct influence on the RNA-binding activity of 

RBP40, which is consistent with the localization of Cys11 in the N-terminal segment of 

RBP40, relatively remote from its predicted RNA-binding domain which starts at 

position 39 (Barnes et al. 2004, Fig. 2a). This RNA-binding domain is made up of four 

conserved repeats, each spanning 70 amino acids, and is structurally related to other 

RNA-binding domains of the RBD or KH type (Barnes et al. 2004, Fig. 2a). In 

agreement with this, a truncated version of RBP40 lacking the first 18 N-terminal 

amino acids – including Cys11 – has been shown to retain general RNA-binding 

activity (Barnes et al. 2004).  

The question arises as to which Cys residue in the Nac2 protein interacts with Cys11 

of RBP40. Nac2 encodes a total of eleven Cys residues at various positions, some of 

which might form intramolecular disulfide bonds, as suggested by the 2D redox 

PAGE analyses (Fig. 4; suppl. Fig. 2). Interestingly, the most probable disulfide 

Page 11 of 29

SUBMITTED MANUSCRIPT

The Plant Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



CO
NFIDENTIAL

bridge is predicted to be formed between Cys981 and Cys1008, which are both located 

within the tetratricopeptide repeat (TPR) domain of Nac2. This domain has previously 

been shown to play a critical role for Nac2 function, probably by mediating the 

interaction with other subunits of the Nac2 complex (Boudreau et al. 2000). In 

addition, a putative dinucleotide-binding domain is predicted at position 402 – 413 of 

Nac2 which might be involved in the modulation of the redox state of one or more of 

its Cys residues. However, only a systematic evaluation of these sites can uncover 

the residue that forms the link with RBP40.  

The most interesting question concerns the light-mediated redox switch at Cys11. The 

current models for redox control of chloroplast gene expression usually involve light-

catalyzed reduction processes which are linked to the photosynthetic electron 

transport (PET) via either PSI and thioredoxin or the redox state of the plastoquinone 

pool (Barnes and Mayfield 2003). In case of Nac2/RBP40 complex formation, PET is 

apparently not directly involved in the regulatory process since Cys11 oxidation is also 

observed in the PSII mutant mbb1. This is consistent with previously measured wild-

type levels of D2 synthesis rates in this mutant (Vaistij et al. 2000). PSI deficiency 

leads to oxidative stress in the light, which obviously affects NAC2/RBP40 complex 

formation and results in a shutdown of de novo PSII synthesis, thereby avoiding 

harmful photosynthetic electron overflow. The reductive detachment of RBP40 from 

Nac2 under oxidative stress conditions is likely to be mediated via gluthationylation of 

RBP40 as has been reported previously (Michelet et al. 2008, Fig. 4c).  

In the dark, however, a different regulatory redox system appears to operate on the 

Nac2/RBP40 disulfide bridge, namely the NTRC system. NTRC uses NADPH as 

source of reducing power, which can be produced during darkness by the oxidative 

pentose phosphate pathway (Neuhaus and Emes 2000). Thus it was proposed that 

NTRC allows redox regulation in the chloroplast during the night, a notion supported 

by the hypersensitivity of the Arabidopsis NTRC knock out mutant to prolonged 

darkness (Pérez-Ruiz et al. 2006). Recently the regulation of the ADP-Glc 

pyrophosphorylase (AGPase) involved in starch synthesis in A. thaliana was shown 

to be mediated by NTRC (Michalska et al. 2009). Our data suggest that this enzyme, 

which is active in the dark, is also involved the regulation of chloroplast psbD gene 

expression – at least in C. reinhardtii. Thus, NTRC would directly link the regulation 

of chloroplast gene expression to carbon metabolism in the chloroplast, i.e. the 

oxidative pentose phosphate pathway. 
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In conclusion, the following scenario is likely to describe the molecular events which 

underlie light-dependent regulation of D2 synthesis (Fig. 7). In the light, psbD mRNA 

translation is activated by RBP40 which is tightly bound via its Cys11 residue to Nac2, 

and is thereby targeted to its cognate binding site within the psbD 5´ UTR. The 

electron acceptor during formation of the disulfide bridge is not yet known. As 

discussed by Wittenberg and Danon (2008), reactive oxygen species, GSSG and O2 

might serve the purpose. RBP40 binding alters the RNA conformation at the initiation 

codon, making it accessible to the translation machinery. In the dark, reduction of the 

disulfide bond between Nac2 and RBP40 via NTRC leads to detachment of RBP40 

from the Nac2 complex, resulting in down-regulation of D2 synthesis. Thus, the redox 

state of the Nac2/RBP40 disulfide bridge appears to represent the key control point 

for regulation of D2 synthesis, which – in light of the CES principle of PSII assembly –  

represents the key player in determining PSII levels in the green alga C. reinhardtii 

(Minai et al. 2006).  
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Methods 

 

Strains and culture conditions 

C. reinhardtii strains were grown in continuous light (30 µE·m-2·s-1) at 23°C in Tris-

acetate-phosphate medium containing 1% sorbitol (TAPS, Gorman and Levine 

1965). For dark adaption, cells were transferred to complete darkness for 38 h prior 

to analysis. 

 

Analysis of nucleic acids 

Whole-cell RNA was prepared with TriReagent (Sigma-Aldrich) according to the 

manufacturer’s instructions, and 2-µg aliquots were electrophoretically fractionated 

on gels, blotted onto positively charged nylon membranes and hybridized to atpB and 

psbD probes. Probes were generated by PCR using DIG-11-dUTP (Roche 

Diagnostics) and primers specific for the respective target genes (psbD: 5’-

GTAATACGACTCACTATAGGGCCACAATGATTAAAATTAAA-3’, 5’-

GTTGGTGTCAACTTGGTGG-3’ / atpB: 5’-ATGTTGTCCAGCGTGCGC-3’, 5’-

TTACTTCTTGGGCAGGAG-3’). Visualization of hybridization signals was performed 

by ECL using AP-conjugated anti-DIG-antibody and CDP* substrate (Roche 

Diagnostics). 

 

Pulse labelling of proteins 

Chlamydomonas liquid cultures were grown in TAPS medium to a density of ~ 2·106 

cells/mL, pelleted, resuspended in TAPS medium in which all sulfur-containing 

ingredients were replaced by the respective chloride salts (TAPS-S), and incubated 

for 16 hours at 23°C in the light. Cells were pelleted, washed, and resuspended in 

TAPS -S/-T (lacking both sulfur salts and trace elements) and grown in the dark for 2 

hours. Cells were then washed again and resuspended in TAPS -S/-T to a 

concentration of 80 µg  chlorophyll per mL. Aliquots (225 µl) of the cell suspension 

were incubated with cycloheximide (10 µg/mL) for 10 minutes. Subsequently, 100 µCi 

H2
35SO4 (Hartmann Analytic, Braunschweig) was added to each, followed by 

incubation for 15 minutes in the light as before. After centrifugation, sedimented cells 

were frozen in liquid nitrogen. Cells were resuspended in 10 mM HEPES-KOH pH 

7.5, 10 mM EDTA in the presence of CompleteMini protease inhibitors (Roche) and 
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disrupted by sonication (30 sec, RT). The homogenate was then centrifuged at 

20000 g for 30 min. The pellet was resuspended in 10 mM HEPES-KOH pH 7.5, 10 

mM EDTA. Samples were fractionated by electrophoresis on a 16% sodium dodecyl 

sulfate-polyacrylamide gel containing 8 M urea. 

 

UV cross-linking of RNA to recombinant RBP40 

For expression of recombinant RBP40 protein, the DNA sequence encoding amino 

acids 1-382 was PCR-amplified from a cDNA clone using the primer pair BamHI-

RBP40 (5’- aaggatccATGCTGACCTTGAGACGTGC-3’) and RB38-DN44revSalI (5’- 

ttgtcgacCTAGTAGCGGGCGCCC-3’), and inserted into the plasmid pQE30 (Qiagen) 

via BamHI/SalI restriction sites. Protein expression in E. coli M15 blue cells 

(Stratagene) was induced by addition of IPTG to a final concentration of 1 mM, 

followed by growth at 37°C for 3 h. The recombinant protein was purified according to 

the GE Healthcare protocol for purification of histidine-tagged recombinant proteins 

under native conditions using Ni-Sepharose 6 Fast Flow (GE Healthcare). In 

preparation for the binding reactions described below, the purified protein was 

incubated for 1 h at RT with 25 mM GSSG, 50 mM GSH, or a 50-fold molar excess of 

NEM, respectively, in a buffer containing 100 mM HEPES/KOH pH 7.8, 25 mM MgCl2 

and 300 mM KCl, followed by desalting using Amicon Ultra centrifugal filtration 

devices (Millipore) with a 10-kD molecular mass cutoff, in accordance with the 

manufacturer’s instructions. 

The DNA template for in vitro synthesis of the psbD RNA probe was generated by 

PCR using T7psbD5 (5’-gtaatacgactcactatagggCCACAATGATTAAAATTAAA-3’; T7 

RNA polymerase  promoter in lower case letters) and psbDUTR3 (5’-

ACCGATCGCAATTGTCAT-3’) as primers. RNA synthesis was catalyzed by T7 RNA 

polymerase (Fermentas) in the presence of [α-32P]UTP (3000 Ci/mmol; Hartmann 

Analytic), according to the manufacturer’s protocol. After removal of the template by 

treatment with DNase I (Promega), the RNA was extracted with phenol-chloroform 

and precipitated with ethanol in the presence of ammonium. Binding reactions (20 µl) 

were performed at RT for 5 min and contained 500-1000 kcpm of 32P-labeled RNA 

probe, 20 mM HEPES/KOH pH 7.8, 5 mM MgCl2, 60 mM KCl, and 3 µg of pretreated 

protein. After irradiation, the free RNA probes were digested by treatment with 10 U 

RNase One (Promega) for 30 min at 37°C, and the samples were fractionated by 

SDS-PAGE, and analyzed by phosphorimaging. 
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Gel filtration analysis of native proteins 

For analysis of native protein complexes, chloroplasts were isolated from cw15 

strains according to Zerges and Rochaix (1998), and lysed in non-reducing breaking 

buffer (10 mM EDTA, 10 mM Tricine-KOH pH 7.5, and Roche CompleteMini protease 

inhibitors). Membrane material was removed by centrifugation on a 1 M sucrose 

cushion (100000 g, 30 min). Reducing conditions, if indicated, were achieved by 

adding 5 mM GSH to the stroma-containing supernatant prior to concentration using 

Amicon Ultra filtration devices (Millipore). Samples (~2 mg protein) were loaded 

through an SW guard column onto a 2.15 × 30-cm G4000SW column (Tosoh), and 

elution was performed with gel filtration buffer (50 mM KCl, 5 mM MgCl2, 5 mM ϵ -

aminocaproic acid, 20 mM Tricine-KOH pH 7.5), at a flow rate of 2 mL/min (Johnson 

et al. 2010). All steps were performed at 4 °C  

 

 

Diagonal 2D redox SDS–PAGE 

Stromal proteins (100ϵµg) from cw15 strains were isolated according to Zerges and 

Rochaix (1998) in the absence of reducing agents. To prevent thiol reoxidation, 

proteins were alkylated with 0.1 M iodoacetamide in the dark (15 min, 4 °C). An 

appropriate volume of non-reducing Laemmli buffer was added, and the samples 

were separated by SDS-PAGE in the first dimension (10 % polyacrylamide) resolving 

gel. After electrophoresis, gel lanes were excised and incubated in SDS running 

buffer containing 0.1 M DTT (10ϵmin, RT), before incubation with 0.1 M 

iodoacetamide in the same buffer (10 min, RT). The gel strips were then horizontally 

applied to another 10% SDS-PA gel, and electrophoresis was performed in the 

second dimension (Ströher and Dietz 2008; Stengel et al. 2009). Immunoblotting was 

carried out with antibodies raised against Nac2 and RBP40 (Schwarz et al. 2007). 

 

PEGylation 

Stromal proteins (20 µg) were treated with 10 mM methoxypolyethylenglycol-

maleimide (5 kDa, PEG-MAL; Laysan) in alkylation buffer (0.1 M Tris-HCl pH 7.0, 1 

mM EDTA) for 0, 10, 20 and 30 minutes, at 4 °C in the dark. The reaction was 

stopped by addition of Laemmli buffer in the presence of 0.1 M DTT (Balsera et al. 
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2009). Sauer:bis-Tris SDS-PAGE (10%) and MOPS running buffer were used to 

separate the proteins. RBP40 was detected by immunoblot analysis. 
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Figure legends 

Figure 1: Rates of D2 synthesis depends on light conditions.  

(a) Thylakoid membrane proteins of indicated strains were pulse labeled with 35S-

sulfur, fractionated by SDS-PAGE in 16 % gels containing 8 M urea, and visualized 

by autoradiography. D: cells were grown in the dark for 38 h prior to analysis; L: cells 

were grown in continuous light at 30 µmol m-2s-1. (b) Densitometric quantification of 

D2 protein synthesis rates shown in (a). The results are representative of three 

independent experiments. D2 signals were normalized relative to the AtpA signal 

marked by the star in (a). The relative increase of D2 synthesis upon light induction is 

indicated. 

(c) Northern blot analysis of psbD and atpB transcripts from the indicated strains 

grown under the same conditions as in (a).  

 

Figure 2: Thiol labellingand RNA binding activity of RBP40. 

(a) Schematic representation of the RBP40 polypeptide showing the disposition of 

the four repeats involved in RNA binding relative to the single Cys residue (Cys11). 

The C-terminal end of the putative transit peptide predicted by the TargetP 1.1 

algorithm (30 amino acids, http://www.cbs.dtu.dk/services/TargetP) is indicated by 

the scissors. (b) Time course of Cys11 alkylation. Stromal proteins (20 µg) were 

treated with 10 mM mPEG5000-maleimide for the periods indicated, and then 

subjected to immunoblot analysis with an anti-RBP40 antibody. (c) RNA-binding 

activity of full-length recombinant RBP40 protein (rRBP40). Aliquots (3 µg) of rRBP40 

were pretreated with 25 mM GSSG, 50 mM GSH, or a 50-fold molar excess of NEM, 

UV-crosslinked to a radiolabelled psbD 5´UTR probe and fractionated by SDS-PAGE.  

 

Figure 3: Light-dependent formation of Nac2/RBP40 complexes.  

Wild-type (a) and mutant (b) cells were grown under the conditions indicated on the 

left margin (see Fig. 1 for details) and subjected to SEC. Fractioned proteins were 

subjected to Western blotting and labeled with the antibodies indicated on the right. 

The samples marked LR was treated with 5 mM gluthatione prior to SEC. Fraction 

numbers and molecular weights are indicated at the top. 
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Figure 4: Light-dependent formation of a disulfide bridge between Nac2 and RBP40. 

(a) Aliquots (100 µg) of stromal proteins from light-grown wild-type cells were 

fractionated by 2D redox SDS-PAGE, and Nac2 and RBP40 were localized by 

immunoblot analysis. The diagonal along which polypeptides that form no S-S bonds 

are expected to lie is indicated. For further explanation, see text. (b) Sections of 2D 

redox gels showing immunodetected Nac2 and RBP40 signals after 2D 

electrophoresis of samples from strains grown under the indicated conditions. The 

samples marked LR were reduced with 5 mM glutathione prior to electrophoresis in 

the first dimension. For details see Figs. 1 and 3. 

 

Figure 5: Blue and red light do not affect Nac2/RBP40 disulfide bridge formation. 

Stromal proteins were isolated from dark-adapted wild-type cells that had been 

exposed to low levels (5 µmol m-2 s-1) of either blue (BL) or red light (RL) for 3 h, and 

subjected to 2D redox PAGE. Nac2 and RBP40 proteins were localized by 

immunoblot analysis. 

 

Figure 6: The Nac2/RBP40 disulfide bridge can be reduced by rNTRC. 

(a) Stromal proteins isolated from light-grown wild-type cells were incubated with 250 

µM NADPH in the presence or absence of 2 µM rNTRC enzyme from Anabena sp. 

PCC 7120, and analyzed by 2D redox PAGE. The rNTRC enzyme was prepared as 

reported in Pascual et a. (2011). 

(b) A 1:1 mixture of 50 µg each of stromal proteins from dark-adapted and light-

grown cells was incubated in the presence or absence of 250 µM NADPH prior to 2D 

redox PAGE. Nac2 and RBP40 proteins were detected by immunoblot analysis. 

 

Figure 7: Working model for redox regulation of psbD gene expression. 

In the light, RBP40 binds to Nac2 via an intermolecular disulfide bridge and, as a 

consequence, the RNA conformation at the AUG start codon is altered. This allows 

ribosomes access to the initiation site and enables efficient translation of psbD 

mRNA. In the dark, the disulfide bridge between Nac2 and RBP40 is reduced via 

NTRC leading to detachment of RBP40 from Nac2 and down-regulation of D2 

synthesis. For further explanation see text. 
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3.4 Cysteine modification of a specific repressor protein controls the 
translational status of nucleus-encoded LHCII mRNAs in 
Chlamydomonas. (2009) 

 
Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J.H., Nickelsen, J. and Kruse, 
O. Proc. Natl. Acad. Sci. USA, 106, 13290 – 13295 

In this study, NAB1, a cytosolic RNA-binding protein, which is involved in translation of 

nuclear encoded PSII proteins in C. reinhardtii was analyzed in regard to its redox-dependent 

RNA binding ability. NAB1 is a translational repressor of LHCII mRNAs, preferentially 

binding to the lhcbm6 isoform. It was established that the redox state of two cysteine residues 

in this protein regulates the RNA binding activity. Mutants lacking these residues had a small-

antenna phenotype even under low-light conditions when cysteines were replaced by serines. 

The thiol groups of these cysteines are required in their reduced state for specific RNA 

binding. The color of the cultures already indicated the phenotype due to lower chlorophyll 

content in mutant cells. Polysomal analyses showed that decreased amounts of chlorophyll 

and antennae are caused by less efficient translation of lhcbm6 transcripts. This was also 

confirmed by diminishing NAB1 binding affinity for its target RNA by alkylation of these 

cysteines. Additionally, binding capacity of mutated NAB1 was less prone to oxidative stress. 

It was shown by co-immunoprecipitation of RNA that the redox state of NAB1’s cysteine 

residues directly affects the translation repressor activity of that protein in vivo. The repressor 

can be reversibly deactivated by modification of its cysteines and becomes fully active when 

those amino acid residues return to their dithiol state. 

My contribution to this publication was the performance of in vitro RNA binding studies by 

UV crosslinking followed by SDS-PAGE separation of the recombinant NAB1 protein and 

labeled lhcbm6 RNA as well as unlabeled psbD 5´ UTR under different redox conditions. 

Lutz Wobbe and Olga Blifernez did all the in silico and in vivo analyses, while Lutz Wobbe 

contributed the chemical agents and the analysis tools. The manuscript was written by Lutz 

Wobbe, Jan Mussgnug, Jörg Nickelsen, and Olaf Kruse with the final supervision by Olaf 

Kruse. 
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The cytosolic RNA-binding protein NAB1 represses translation
of LHCII (light-harvesting complex of photosystem II) encoding
mRNAs by sequestration into translationally silent mRNP com-
plexes in the green alga Chlamydomonas reinhardtii. NAB1 con-
tains 2 cysteine residues, Cys-181 and Cys-226, within its C-terminal
RRM motif. Modification of these cysteines either by oxidation or
by alkylation in vitro was accompanied by a decrease in RNA-
binding affinity for the target mRNA sequence. To confirm the
relevance of reversible NAB1 cysteine oxidation for the regulation
of its activity in vivo, we replaced both cysteines with serines. All
examined cysteine single and double mutants exhibited a reduced
antenna at PSII caused by a perturbed NAB1 deactivation mecha-
nism, with double mutations and Cys-226 single mutations causing
a stronger and more distinctive phenotype compared with the
Cys-181 mutation. Our data indicated that the responsible redox
control mechanism is mediated by modification of single cysteines.
Polysome analyses and RNA co-immunoprecipitation experiments
demonstrated the interconnection of the NAB1 thiol state and its
activity as a translation repressor in vivo. NAB1 is fully active in
its dithiol state and is reversibly deactivated by modification of its
cysteines. In summary, this work is an example that cytosolic
translation of nucleus encoded photosynthetic genes is regulated
via a reversible cysteine-based redox switch in a RNA-binding
translation repressor protein.

Chlamydomonas reinhardtii � light harvesting antenna �
redox control � translation control

To compensate for changes in light intensity or spectral
quality, plants have developed several short-term and long-

term mechanisms to regulate the amount of light that is captured
by each photosystem (1). One important long-term adaptation
strategy of plant organisms involves the complex expression
regulation of various nuclear-encoded light harvesting complex
(Lhcb) genes (1). All levels of LHCII gene expression are
targeted by regulation mechanisms (2–5) which rely on a com-
plex retrograde and anterograde communication between plas-
tid, nucleus, and cytosol (6). The cytosolic translation repressor
NAB1, which was identified in a Chlamydomonas reinhardtii light
acclimation mutant (4), is the center of interest within this work.
NAB1 harbors 2 RNA-binding motifs and 1 of these motifs,
located at the N terminus, belongs to the highly conserved family
of CSD (cold shock domain) domains. Proteins containing a
CSD motif are referred to as Y-box proteins and eukaryotic
members of this large family generally contain a second auxiliary
RNA-binding domain, which modulates the RNA affinity of the
protein but can be dispensable for selective RNA recognition
(7). In the case of NAB1, the CSD motif is combined with a
C-terminal RRM (RNA recognition motif) domain, which was
demonstrated not to be essential for selective RNA recognition
(4). It was shown that NAB1 binds to the mRNA of LHCBM
(major light-harvesting complex of photosystem II) genes,
thereby preventing translation via sequestration of the message
in translationally silent messenger ribonucleoprotein complexes

(mRNPs). The LHCII complex of C. reinhardtii is constituted by
10 individual highly homologous LHCBM isoforms (8, 9), and
NAB1 displays selectivity toward distinct isoforms with
LHCBM6 mRNA being 1 of its main targets (4). It has been
shown for numerous proteins that reversible modification of
cysteine residues can act as an effective activity switch (10). In
this work, we intended to investigate whether the composition of
the light-harvesting antenna of PSII is controlled via the redox
state of 2 cysteines, which are located in the C-terminal RRM
domain of NAB1.

Results
Free Cysteines Are Required for Full RNA-Binding Activity of NAB1 in
Vitro. NAB1 harbors 2 cysteine residues, located at amino acid
positions 181 and 226 within the C-terminal RRM domain. A
structural model of the RRM domain of NAB1 was generated
using the NMR structure of the highly homologous RRM motif
of human RNA binding protein hnRNP M (Fig. 1A). Within this
structure Cys-181 is part of a loop structure whereas Cys-226 is
part of the �-helix �2 and both residues are separated by 14.97
Å. Exposition of these cysteines on the protein surface is a
prerequisite for a potential reversible interaction with thiol
modifying compounds in vivo. Modeling of the C terminus (Fig.
S1) indicated that Cys-181 is buried in a groove-like structure
together with 2 leucine residues and surrounded by uncharged
amino acids creating an environment of low electrostatic poten-
tial. In contrast, Cys-226 could be more reactive because it is
positioned in an exposed surface area at the interface of a
negatively and positively charged patch. To analyze whether
modification of cysteines within the RRM motif has an impact
on the binding affinity toward its cellular mRNA target
LHCBM6, RNA-binding studies with oxidized and reduced
recombinant NAB1 were performed (Fig. 1B). For these exper-
iments, a probe containing the CSDCS (cold shock domain
consensus motif) motif of LHCBM6 was chosen, which was
previously shown to bind NAB1 specifically (4). Because of the
reducing conditions used for NAB1 purification, recombinant
NAB1 proteins were maintained in a reduced state. Under this
condition they efficiently bound a radioactive CSDCS probe
derived from LHCBM6 (Fig. 1B, untreated). The presence of
unlabeled competitor RNA (Fig. 1B, psbD �) had a negligible
effect on binding efficiency, indicating sequence specificity of
the protein-RNA interaction (4). In contrast, when shifted to an
oxidized form by treatment with glutathione disulfide (GSSG),
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the binding signal of the NAB1-RNA complex was most strongly
reduced after addition of competitor RNA (Fig. 1B, GSSG, psbD
�), showing that oxidation mainly affects the specific binding
activity of NAB1. To investigate whether oxidation of both
cysteines via the formation of an intramolecular disulfide is
crucial for the observed decrease in RNA affinity, thiol-
alkylating compounds were used to modify NAB1 cysteines
individually. The thiol-specific alkylator N-ethylmaleimide

(NEM) and 4-vinylpyridine turned out to be potent inhibitors of
the specific binding activity of NAB1, which was indicated by a
complete absence of LHCBM6-NAB1 complexes after compet-
itor addition (Fig. 1B). This result indicated that modification
of RRM cysteines impairs the specific binding of NAB1 to
LHCBM6 mRNA. An additional result was that intramolecular
disulfide bridge formation is not a prerequisite for NAB1
deactivation in vitro. In line with these findings was that the
treatment of recombinant NAB1 with GSSG resulted in the
glutathionylation of single cysteines (Fig. 1C). To address the
potential of intramolecular disulfide formation within NAB1
more precisely, a peptide mapping analysis with recombinant
wild-type Wt-NAB1 and a recombinant Cys226Ser mutant was
performed. Wt- and Cys-226-NAB1 protein was oxidized with
diamide and subsequently digested by V8 protease treatment.
Any intramolecular disulfide bridge formation in the Wt protein
should result in an altered peptide fragment pattern compared
with the corresponding Cys226Ser sample, for which intramo-
lecular disulfide formation is not possible. However, nearly
identical digestion patterns of Wt and Cys226Ser samples were
obtained (Fig. S2). As an additional control, 1 part of each
oxidized sample was rereduced with DTT before SDS/PAGE.
After rereduction, the banding pattern remained unchanged,
indicating again that no disulfide linked peptides were present in
the oxidized digest samples. In summary, these results demon-
strated that modification of individual cysteines impairs the
activity of NAB1 in vitro and led us to investigate the in vivo
relevance of thiol regulation as a mechanism to control the
activity state of NAB1.

Replacement of RRM Domain Cysteines with Serine Creates a Small
Antenna Phenotype. To determine whether the 2 cysteine residues
have an essential regulative function in vivo, a mutagenesis
strategy was applied. For this experiment, we selected a deriv-
ative strain of Stm3 that expresses an HA-epitope-tagged form
of the LHCBM6 protein. The HA-tagged LHCBM6 isoform is
expressed under the control of the PSAD promoter (4, 11), thus
decoupling its transcription from LHC promoter activity. This
NAB1-free strain was transformed with a mutated version of the
NAB1 gene. This experimental setup allowed the direct corre-
lation between NAB1 activity and post-transcriptional regula-
tion of LHC isoform LHCBM6. Mutated constructs for each
single cysteine (NSM) and for both cysteines (NDM) were
obtained by site-directed mutagenesis which resulted in the
exchange of cysteine with serine residues. After cotransforma-
tion of these constructs, 15 strains were successfully identified
which stably expressed a mutated version of NAB1, carrying
either the double mutation Cys-181/226Ser or the single muta-
tions Cys181Ser and Cys226Ser. For precise chlorophyll analyses
to investigate the relevance of both cysteines for LHC antenna
size regulation (Fig. 2A), a control strain (C) was obtained by
transformation of Stm3 with a Wt version of NAB1, which is
expressed under control of the same promoter that drives
expression of mutated NAB1 in the cysteine mutants. Based on
this control strain, the Cys double mutants and the single
Cys226Ser mutants showed a similar phenotype with an increase
of Chl a/b ratios [from 2.2 in the control strain (C) to �2.6/2.8
in the mutants] accompanied by a 15–25% decrease of total
chlorophyll content (Fig. 2 A). Because Chl b is exclusively bound
by light-harvesting proteins whereas Chl a is also present in the
PS core complexes, the Chl. a/b ratio provides a parameter for
the overall LHC antenna size compared with the entire PSI and
PSII complexes. Consequently, the increased Chl a/b ratios are
indicative for smaller light-harvesting antenna systems due to a
regulatory dysfunction of NAB1. Of particular note was how-
ever, that the Cys-181 mutants exhibited a less distinctive
phenotype with no differences in total chlorophyll content
indicating functional differences between Cys-181 and Cys-226.

Fig. 1. In silico and in vitro analyses to examine a potential cysteine regu-
lation of NAB1. (A) Homology model of the C-terminal RRM domain of NAB1.
Cys-181 and Cys-226 within the RRM domain are indicated. (B) In vitro RNA
binding studies. Autoradiogram of UV-cross-linked and SDS/PAGE separated
NAB1-LHCBM6-CSDCS complexes. Recombinant NAB1 was either left un-
treated (Top) or oxidized with 5 mM glutathione disulfide (GSSG, Middle)
before addition of a radioactively labeled LHCBM6-CSDCS probe alone (�) or
of a mixture containing labeled LHCBM6-CSDCS and a 5-fold molar excess of
unlabeled psbD competitor RNA (�). N-ethylmaleimide (NEM, third panel
from Top) or 4-vinylpyridine (4-vinylpyridine, Bottom) was applied for cysteine
alkylation. (C) Treatment of recombinant NAB1 with different concentrations
of glutathione disulphide (GSSG) and immunodetection of protein-
glutathione adducts (Upper). Coomassie blue (CBB) stain of recombinant
NAB1 after treatment with the indicated GSSG concentrations (Lower).
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To allow for more detailed analyses regarding the phenotypical
characteristics caused by the mutations, we selected 1 represen-
tative strain for each single (NSM1: Cys181Ser; NSM2:
Cys226Ser) and the double mutation (NDM1: Cys-181/226Ser).
Immunoblot studies using a NAB1-specific antiserum demon-
strated that the expression of NAB1 variants in these mutant
strains was lower compared with the expression of Wt NAB1 in
the control strain (Fig. 2B), excluding the risk that the significant
decrease of antenna size was caused by increased levels of NAB1
protein.

Protein Expression of the Target mRNA LHCBM6 Is Down-Regulated by
Cysteine Mutation. Because all mutant strains expressed an HA-
tagged version of the isoform LHCBM6, a comparative analysis

of HA-LHCBM6 expression in the cysteine mutants, the paren-
tal strain, and in the control strain was a suitable method to
analyze the effects of NAB1 cysteine mutation on its activity as
a translation repressor in vivo. Transformation of the parental
strain with mutagenized versions of NAB1, which lack 1 or both
cysteines, yielded reduced HA-LHCBM6 amounts (Fig. 2C).
Importantly HA-LHCBM6 expression of the mutant cell lines
was also reduced compared with a cell line expressing wild-type
NAB1 [Fig. 2C, lane 2 (C)].

Cysteine Mutants Are Unable to Enlarge Their LHCII Complexes Re-
sulting in Impaired Growth Under Phototrophic Dim Light Conditions.
Chlorophyll measurements and LHCBM6 protein expression
studies indicated that the presence of cysteine residues within its
RRM domain is crucial for a deactivation of NAB1. Photoau-
totrophic growth experiments in minimal medium (HSM) under
dim light (40 �mol m�2 s�1) were performed which force Wt
Chlamydomonas cells to increase their light-harvesting antenna
size to enhance the capture of photons for photosynthesis. All
selected cysteine mutants showed a reduced growth rate under
limiting light conditions when compared with the control strain
(Fig. 3A). The exponential growth rates of the examined mutants
varied between 0.0048� O.D.750 nm/h in the case of NDM1,
0.0058� O.D.750 nm/h for NSM1, and 0.0043� O.D.750 nm/h for
NSM2 and were therefore significantly reduced in relation to the
control strain (0.0095� O.D.750 nm/h). In good agreement with
the results obtained under standard light conditions (see Fig.
2A), the Chl a/b ratio was highly increased in NDM1 and NSM2
only (2.24 � 0.03 SD in control strain vs. 2.87 � 0.03 SD in
NDM1 and 3.09 � 0.03 SD in NSM2), whereas the Cys-181
mutant NSM1 showed an increase to a much lesser extent (Chl
a/b 2.32 � 0.03 SD). In addition, total chlorophyll values in
relation to the control strain (C) were only reduced in the double
mutant NDM1 and strain NSM2 (76 � 1% SD of control strain
in case of NDM1 and 68 � 2% SD for NSM2). Anti LHCII
immunoblot studies (Fig. 3 B and C) confirmed that the amount
of LHCII proteins was reduced in the cysteine mutants (72.8 �
7.1% SE in the case of NDM1, 85.5 � 12.3% SE for NSM1 and
67.7 � 6.8% SE for NSM2 with the control strain being set to
100%) and demonstrated that the Cys-226 mutation again has a
more severe effect on the LHC antenna size compared with the
Cys-181 mutation (Fig. 3C). In conclusion, the observed phe-
notypes strongly indicate a direct correlation between the thiol
state of the cysteines of NAB1 and the activity as a LHC
translation repressor.

Cys:Ser Replacement in NAB1 Prevents the Deactivation of LHCBM
Translation Repression. Polysome analyses were performed to
investigate whether the observed reduced LHCII protein ex-
pression was caused by altered LHCBM6 mRNA translation
efficiency (Fig. 4). Sucrose gradient fractionation of cytosolic
extracts was performed to separate nontranslated subpolysomal
mRNPs, monosomal and polysomal complexes (4). According to
our previous findings regarding the prominent role of Cys-226
for NAB1 regulation we selected the Cys226Ser mutation strain
NSM2 for this experiment. The results presented in Fig. 4
demonstrated that the distribution of LHCBM6 mRNA within
the sucrose gradient of NSM2 was considerably different com-
pared with the control strain. NSM2 displayed a high LHCBM6
content exclusively in subpolysomal nontranslated RNA frac-
tions (Fig. 4, fractions 1–4) and only low amounts in monosomal/
polysomal fractions (Fig. 4, fractions 5 and greater) whereas the
control strain showed high amounts of LHCBM6 mRNA also in
efficiently translated polysomal fractions. This result strongly
indicated that the Cys-226 mutation causes an increased
LHCBM6 mRNA sequestration, which is in good accordance to
the observed reduced HA-LHCBM6 and LHCII expression
levels in vivo (Figs. 2C and 3 B and C).

Fig. 2. Phenotypical analyses of NAB1-cysteine mutants. (A) Total chloro-
phyll content of NAB1-cysteine mutants relative to the control strain C ex-
pressing Wt-NAB1 (left y axis; black bars) and Chl. a/b ratios of cysteine
mutants and control strain (right y axis; white bars). The data represent mean
values of three independent chlorophyll measurements (using triplicates)
performed with different strains for each cysteine mutation (10 strains ex-
pressing NAB1Cys181Ser; three strains expressing NAB1Cys226Ser; two strains ex-
pressing NAB1Cys-181/226Ser). Error bars indicate standard deviations (n � 30 for
NAB1Cys181Ser; n � 9 for NAB1Cys226Ser; n � 6 for NAB1Cys-181/226Ser). (B) Anti-NAB1
immunoblot analyses to assess the NAB1 expression level in the Wt control
strain and the cysteine mutant strains. (Upper) Representative immunoblot.
(Lower) Coomassie blue stain (loading control). (C) Anti-HA-tag immunoblots
to determine the expression of HA-epitope tagged LHCBM6 protein (Upper).
(Lower) Coomassie blue-stained SDS protein gel (loading control).
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Cys:Ser Mutation Results in a Higher Stability of NAB1-LHCBM6
Complexes Under Oxidative Stress Conditions in Vivo. Characteriza-
tion of the cysteine mutants strongly indicated that mutation of
RRM cysteines perturbs the in vivo deactivation mechanism of
NAB1. Consequently, we investigated whether oxidation of
NAB1 changes its binding efficiency toward the target mRNA
LHCBM6 in vivo by RNA coimmunoprecipitation (4). Control
strain, NSM1 (Cys181Ser), and NSM2 (Cys226Ser) cultures were
grown and cysteine oxidation of NAB1 was induced by the
addition of diamide. To follow the in vivo thiol state of both
NAB1 cysteines we applied the thiol alkylating compound
mPEG-MAL. mPEG-MAL exclusively reacts with the SH-group
of free cysteines and enables to determine the number of free
cysteines present in a protein at a certain time. Because protein
modification by mPEG-MAL results in a large shift in the

electrophoretic mobility, the number of free cysteines is directly
correlated to the apparent molecular weight and can be traced
via immunodetection (12). Diamide addition resulted in a strong
shift from the reduced to the oxidized NAB1 thiol state (Fig.
5A). After 120 min of incubation the bulk of NAB1 was shifted
to a fully oxidized state, containing no reduced cysteines. This
time point was chosen to analyze the RNA-binding activity of
fully oxidized NAB1 compared with the reduced NAB1 thiol
states found in the cell under normal, stress-free conditions.
Cysteine oxidation resulted in a strong reduction of RNA-
binding affinity in the control strain to 19 � 2% and in the
Cys-181 mutant NSM1 (28 � 5%) compared with the reduced
state (Fig. 5B). In the case of the Cys-226 mutant NSM2
however, more than half of the binding activity remained (57 �
1%) demonstrating a higher resistance of NAB1Cys226Ser toward
oxidative deactivation (Fig. 5B). Importantly, the amount of
NAB1 was not significantly affected by the diamide treatment in
all examined mutants and the control strain (Fig. S3). The results
demonstrated that the oxidation of NAB1 cysteines in vivo is
accompanied by a decreased binding toward the LHCBM6 target
mRNA. The exchange of Cys-226 with serine strongly attenuates
oxidative NAB1 deactivation, confirming that Cys-226 has a key
function in the redox dependent activation of NAB1.

Discussion
The aim of the present study was to evaluate the possible
relevance of 2 cysteine residues located in the RRM domain of
NAB1 as central elements of an in vivo redox control mecha-
nism, which determines its translation repressor activity. Pre-
liminary studies carried out in vitro gave initial indications for
the importance of the cysteines in controlling NAB1 activity,

Fig. 3. Growth and photosynthetic low light acclimation of control strain (C)
and NAB1 cysteine mutants. (A) Growth rates within the exponential phase
observed under phototrophic low light conditions (HSM medium; 40 �mol
m�2 s�1). The growth rate was determined by measurements of the increase
of the optical density per hour. Error bars indicate the standard deviation of
three independent growth experiments. (B) Representative immunoblot us-
ing a LHCII-specific antiserum and Coomassie blue-stained SDS/PAGE gel.
Protein samples were taken from cells grown under photoautotrophic dim
light conditions (HSM medium; 40 �mol m�2 s�1). (C) Results from three
independent LHCII immunoblot analyses after phototrophic growth (HSM
medium; 40 �mol m�2 s�1) using samples of the control strain and the cysteine
mutants. Signal intensities were quantified by densitometry and used to
calculate the mean values represented by black bars. The amount of LHCII
protein in the control strain was set to 100%. Standard errors are indicated by
error bars.

Fig. 4. Polysome analysis of control strain and NSM2 cells grown pho-
totrophically under dim light conditions. Cytosolic extracts were centrifuged
through a 15–45% continuous sucrose gradient to separate subpolysomal
mRNPs, monosomes and polysomes. RNA was extracted from 18 gradient
fractions and analyzed by formaldehyde-agarose gel electrophoresis and
ethidium bromide staining. The amount of LHCBM6 and �-ACTIN mRNA in
each fraction was assessed by Northern slot-blot analysis. Slot-blot signals of
LHCBM6 were quantified by densitometrical scanning and normalized to the
corresponding ß-ACTIN signal. The strongest LHCBM6 blot signal obtained for
each strain was set to 100%. Standard errors are based on three independent
polysome fractionations.
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which were subsequently confirmed by intense in vivo studies. In
vitro studies indicated that full RNA-binding activity of NAB1
requires cysteines in their SH-states (Fig. 1B) and that cysteine
modification by either glutathionylation or alkylation inhibits the
specific RNA-binding activity of NAB1 (Fig. 1 B and C). Peptide
mapping analyses of oxidized and reduced protein samples of
Wt-NAB1 and a Cys226Ser mutant did not reveal the existence
of disulfide linked peptides, challenging the importance of
intramolecular disulfide formation for NAB1 redox control (Fig.
S2). Replacement of both cysteines with serine yielded in a
distinct phenotype characterized by a perturbed expression of
LHCII proteins thus proving that the cysteines are crucial for
NAB1 regulation in vivo (Figs. 2 and 3). These findings strongly
indicated that NAB1 was arrested in a permanently active
repressor state after both cysteines were replaced by serine.
Further in vivo analyses, however, demonstrated that the single
cysteine mutants NAB1Cys181Ser and NAB1Cys226Ser displayed
clear different phenotypical characteristics (Figs. 2, 3C, and 5).
The phenotypes of NAB1Cys-181/226Ser double mutants and the
NAB1Cys226Ser single mutants were very similar, which makes it
feasible to suggest that modification of Cys-226, if compared
with modification of Cys-181, has a larger impact on the activity
state of NAB1 in vivo (Figs. 2, 3C, and 5). It should be noted,
however, that oxidative treatment of a mutant recombinant
NAB1Cys226Ser protein caused a significant decrease in its in vitro
LHCBM6 RNA binding activity. This clearly demonstrates that
Cys-181 is indeed involved in the deactivation of NAB1, although

the phenotype of the corresponding Cys181Ser mutant cell lines
is comparably milder than those of the Cys226Ser mutation.
Finally polysome analyses together with mRNA-Coimmunopre-
cipitation studies (Figs. 4 and 5) fully demonstrated that in vivo
deactivation of LHCBM6 mRNA sequestration and accordingly
translation repression depends on cysteine modification of
NAB1. As a final conclusion from the sum of our in vivo results
the translation repressor activity of NAB1 is determined by the
thiol state of 2 cysteines located in the RRM domain. Oxidized
cysteines represent the off state of the repressor, whereas
reduced cysteines represent the on state. It has already been
shown that RRM containing proteins from plant organisms
involved in translational regulation of photosynthetic genes can
be activity-regulated via cysteine modification (13). However,
these proteins were shown to be located in the plastid. NAB1
represents a eukaryotic example of a cytosolic RRM protein
being subject to cysteine-based redox control. Apart from C.
reinhardtii, NAB1 analogous proteins containing a combination
of CSD and RRM domains were only identified in the genomes
of closely related algal species C. incerta (14) and Volvox carteri
(15). The position of both cysteines is conserved in all 3 genome
sequences indicating that the mechanism of redox regulation is
conserved at least within the Volvocales taxonomic group of
green algae. The cysteine residues of cytosolic proteins are
maintained in the reduced thiol state by action of thiol-based
redox buffer systems (glutathione/glutaredoxins; thioredoxins/
thioredoxin reductase). The total concentration of glutathione
and the ratio of reduced to oxidized glutathione defines the
cytosolic redox-state and undergoes considerable changes in
response to a variety of environmental stresses (16). Disulfide
bridge formation in proteins frequently tracks the oxidation state
of the glutathione redox buffer (16). NAB1 forms mixed disul-
fides with glutathione under in vitro conditions, which in turn
reduces its RNA-binding activity (Fig. 1 B and C). However,
future experiments have to clarify whether glutahionylation of
NAB1 occurs in vivo.

NAB1 fine-tunes the translation efficiency of plastid-targeted
LHCII proteins and therefore the capacity of light-harvesting
and rates of photosynthesis in the chloroplast of C. reinhardtii
cells. Under conditions where the size and composition of the
LHCII complex is not properly adjusted to the prevailing
external situation, the increased/decreased need for LHCII
protein synthesis has to be sensed by the translation repressor
NAB1 through changes in the cytosolic redox-state.

Currently the knowledge of the interplay between the plastidic
redox-state, which is to a large extent determined by photosyn-
thetic electron transport activity, and the cytosolic redox-state is
limited (17). Accordingly we currently cannot depict the com-
plete retrograde signaling pathway of NAB1 redox-regulation.
However, the finding that NAB1 is regulated via reversible thiol
modification, and thus the cytosolic redox environment provides
important insights into the mechanisms of redox-controlled
translation regulation in the cytosol of photosynthetic organisms.
Redox regulation of photosynthetic gene translation in the
cytosol of plant cells was reported before (18, 19), but the
molecular basis and the involvement of transcript-specific RNA-
binding proteins remained to be elucidated. Because the active
form of NAB1 contains cysteines in the reduced thiol state,
NAB1 activation is linked to reducing conditions in the cytosol,
whereas its deactivation is accompanied by shifts toward the
more oxidized state. Under normal, stress-free conditions the
cytosol of eukaryotic cells is in a highly reduced redox state (16).
A key factor, required to maintain this reduced environment, is
NADPH. Major sources of NADPH supply in the cytosol of
plant organisms are the glucose consuming oxidative pentose
phosphate cycle (17) and NAD(P)H exporting shuttle systems in
the chloroplast envelope membrane (17, 20, 21), which are
reliant on photosynthetic activity in the plastid. In our current

Fig. 5. Effects of cysteine oxidation on the RNA-binding capacity of Wt-
NAB1 (control strain), NAB1Cys181Ser, and NAB1Cys226Ser analyzed in vivo. (A)
Examination of the Wt-NAB1 thiol state after 60 and 120 min after diamide
addition (2 mM) to a liquid cell culture. The degree of cysteine modification
was assessed by mPEG-MAL-labeling and subsequent anti-NAB1 immunoblot
detection. (B) Coimmunoprecipitation of LHCBM6-mRNA using a NAB1-
specific antiserum before and after diamide-induced oxidation of Wt -NAB1
(control strain), NSM1 (Cys181Ser) and NSM2 (Cys226Ser). The amount of
coprecipitated LHCBM6-mRNA was quantified by RT-Q-PCR and the t0-value
was set to 100% for each strain. Error bars indicate the standard error of four
independent RT-Q-PCR measurements.
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working model, physiological conditions characterized by a
sufficient provision of these photosynthates are connected to an
active state of NAB1 and hence effective translation repression
of LHCII transcripts. Within this model, a reduced photosyn-
thetic performance caused by limited light supply in combination
with a small antenna system oxidizes the cytosolic redox system.
This in turn deactivates NAB1, thereby stimulating LHCII
protein synthesis and facilitating an increase of the photosyn-
thetic performance. For green alga, nuclear transcription activity
of LHCII genes was shown to be regulated by a retrograde
redox-signaling pathway emanating from the plastidic plastoqui-
non pool (3). With the identification of NAB1 (4) and with our
recent findings, an additional mode of redox-regulated LHCII
gene expression control was discovered that involves translation
repression in the cytosol. Future studies targeted on the corre-
lation between photosynthetic activity and the redox state of
NAB1 could make important contributions to the understanding
of retrograde signaling pathways in the context of photoaccli-
mation processes.

Methods
Strains and Culture Conditions. Liquid cultures of C. reinhardtii were either
cultivated mixotrophically in TAP or phototrophically in HSM medium using
low-light conditions of 40 �mol m�2 s�1 continuous white-light. Cultures
growing in HSM medium were bubbled with 2% CO2. For details, see SI
Materials and Methods.

Site-Specific Mutagenesis of NAB1 and Transformation. Plasmid pGDNG1 was
constructed by inserting the Wt NAB1 gene into the NdeI and EcoRI cloning
sites of plasmid pGenD (13). The plasmids pGDNG1/Cys(181/226Ser), pGDNG1/
Cys(181Ser), and pGDNG1/Cys(226Ser) were generated by site-specific replace-
ment of thymine by adenine at positions 541 and 676 of the NAB1 gene in
plasmid pGDNG1 (QuikChange Site-Directed Mutagenesis Kit; Stratagene. For
primer details, see Table S1). These vectors were used to cotransform the
NAB1-deficient cell line Stm3-HA-LHCBM6 (see SI Materials and Methods).

Coimmunoprecipitation (Co-IP) of NAB1 Targets. Co-IPs were performed with
liquid TAP cultures of control strain, strain NSM1, and strain NSM2 before and
after a 2-h treatment with 2 mM diamide. RT-Q-PCR was applied to quantify
the amounts of coprecipitated LHCBM6 and ß-ACTIN mRNA. ß-ACTIN served

as a reference gene. For a detailed description of the procedure, see SI
Materials and Methods.

Overexpression of Recombinant NAB1. Recombinant NAB1 was purified under
native conditions according to the QIAexpressionist manual (Qiagen). Reduc-
ing conditions during the purification process were maintained by addition of
5 mM �-mercaptoethanol to binding and wash buffer. Purified protein sam-
ples were supplemented with 10 mM DTT directly after elution.

NAB1-RNA-Binding Studies. Recombinant NAB1 was subjected to oxidative
treatment with 5 mM GSSG, alkylated with a 50-fold excess of NEM (N-
ethylmaleimide) or a 5-fold excess of 4-vinylpyridine in respect to the sulfhy-
dryls to blocked. Protein samples were then subjected to RNA-binding studies
applying RNA probes derived from the C. reinhardtii LHCBM6 and psbD genes.
The probe derived from the gene LHCBM6 was radioactively labeled, whereas
the psbD probe was unlabeled and served as a competitor. For details, see SI
Materials and Methods.

Subpolysome and Polysome Complex Fractionation. Polysomes were fraction-
ated as described before (5) and RNA was extracted from all 18 sucrose
gradient fractions and analyzed in an agarose-formaldehyde denaturing gel.
The RNA was slot-blotted on a positively charged nylon membrane (Hybond
N�, Amersham) and hybridized with a digoxigenin-labeled LHCBM6- or ß-
ACTIN-specific DNA probe. Signal intensity was quantified by densitometry
and the LHCBM6 signal of each fraction was normalized to the corresponding
ß-ACTIN signal. For experimental details, see SI Materials and Methods.

Gel Electrophoresis and Immunoblotting. Proteins were separated by Tris-
tricine or Tris-glycine-SDS/PAGE and detected by immunoblotting using en-
hanced chemiluminescence (ECL, Amersham). The NAB1-specific antiserum
was obtained as already described (5) and anti-LHCII was provided by S.
Jansson (Umeå, Sweden). HA-tagged proteins were detected with a HA-
specific antibody (Roche Applied Science). NAB1-glutathione adducts were
detected with a mouse monoclonal antibody directed against glutathione
(101-A-250, Virogen). For a description of the procedure used for the detec-
tion of glutathionylated cysteines in recombinant NAB1 and the mPEG-MAL
labeling procedure, see SI Materials and Methods.
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Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas
reinhardtii contain redox-active Fe–S clusters and interact with stromal
HSP70B
Karolin V. DORN*, Felix WILLMUND*, Christian SCHWARZ†, Christine HENSELMANN*, Thomas POHL‡, Barbara HESS*,
Daniel VEYEL§, Björn USADEL§, Thorsten FRIEDRICH‡, Jörg NICKELSEN† and Michael SCHRODA*§1
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In the present study we report on the identification and
characterization of three novel chloroplast-targeted DnaJ-like
proteins CDJ3–5, which in addition to their J-domains contain
bacterial-type ferredoxin domains. In sequence databases we
could identify homologues of CDJ3–5 in green algae, moss and
higher plants, but not in cyanobacteria. Phylogenetic analyses
allowed us to distinguish two clades containing CDJ3/4 and CDJ5
that must have diverged early in the ancestor of the ‘green lineage’
and have further diversified later on. Molecular and biochemical
analysis of CDJ3 and CDJ4 from Chlamydomonas reinhardtii
revealed that both proteins are weakly expressed and appear to be
localized to the stroma and to thylakoid membranes respectively.
The low transcript levels of the CDJ3 and CDJ4 genes declined
even further in the initial phase of heat shock, but CDJ3 transcript
levels strongly increased after a dark-to-light shift. Accordingly,
the Arabidopsis orthologue of CDJ5 was also found to be light-
inducible and to be under strong circadian control. CDJ3 and

CDJ4 proteins could both be expressed in Escherichia coli and
had redox-active Fe–S clusters. In vitro cross-linking studies
demonstrated that CDJ3 and CDJ4 interact with chloroplast ATP-
bound HSP70B (heat-shock protein 70B), presumably as dimers,
and immunoprecipitation studies showed that CDJ3/4 were also in
a complex with HSP70B in Chlamydomonas cell extracts. Finally,
CDJ3 was found in complexes with apparent molecular masses
of approx. 550–2800 kDa, which appeared to contain RNA. We
speculate that the CDJ3–5 proteins might represent redox switches
that act by recruiting HSP70B for the reorganization of regulatory
protein complexes.

Key words: bacterial ferredoxin, chloroplast chaperone,
chloroplast DnaJ-like protein (CDJ), J-domain protein, redox
regulation, RNA-binding protein.

INTRODUCTION

Molecular chaperones of the HSP70 (heat-shock protein 70) class
are highly conserved and found in all living organisms, except for
some archaea. HSP70 chaperones are involved in a plethora of
different cellular functions, such as folding of newly synthesized
proteins, refolding of denatured proteins after stress, protein
quality control and transport of proteins across membranes, as
well as assembly and disassembly of protein complexes [1].
HSP70 proteins contain two functionally interconnected domains,
an N-terminal ATPase and a C-terminal substrate-binding domain.
Substrate proteins typically have exposed hydrophobic regions
and substrate binding to HSP70 in the ATP-bound state stimulates
ATP hydrolysis [2]. This results in the tight binding of the
substrate when HSP70 is in the ADP-bound state. The specificity
of HSP70 function is mediated by so-called J-domain proteins,
which interact with selected substrates and deliver them to HSP70
proteins in the ATP-bound state [3,4]. ATP hydrolysis is further
stimulated by the interaction of the J-domain with the ATPase
domain of the HSP70 partner. Exchange of ADP for ATP in
most prokaryotic-type HSP70 proteins is catalysed by GrpE-type
nucleotide-exchange factors [5].

Compared with the well-studied HSP70 systems in bacteria,
and most compartments of the eukaryotic cell [cytosol, ER
(endoplasmic reticulum) and mitochondria], rather little is known
about HSP70 systems in chloroplasts. This is surprising, as
chloroplasts contain thylakoid membranes, which provide the
basis for almost all life on earth, and knowledge about chloroplast
proteostasis is fundamental to understanding the biochemical
mechanisms underlying the conversion of light energy into
carbohydrates. To remedy this situation, we are studying
the chloroplast HSP70 system in the unicellular green alga
Chlamydomonas reinhardtii. Chlamydomonas possesses only one
major chloroplast HSP70, termed HSP70B, and is therefore less
complex than higher plants or mosses, which contain two and
three major chloroplast HSP70 homologues respectively [6–9].

HSP70B itself is assisted by its escort protein HEP2 (HSP70
escort protein 2) to assume the functional state [10]. HSP70B
co-operates with its GrpE-type nucleotide-exchange factor,
CGE1 (chloroplast GrpE homologue 1) [11] and appears to
be constitutively in complex with chloroplast HSP90C [12].
HSP70B has been shown to protect PSII (Photosystem II)
from photo-inhibition and to play a role in the repair of photo-
damaged PSII [13]. To date, two CDJ (chloroplast DnaJ-like

Abbreviations used: CDJ, chloroplast DnaJ-like protein; CGE1, chloroplast GrpE homologue 1; DTT, dithiothreitol; ECL, enhanced chemiluminescence;
EST, expressed sequence tag; HEP2, Hsp70 escort protein 2; HSP, heat-shock protein; psbD, Photosystem II protein D2; PSII, Photosystem II; RBP,
RNA-binding protein; ROS, reactive oxygen species; TAP, Tris/acetate/phosphate; VIPP1, vesicle-inducing protein in plastids 1.

1 To whom correspondence should be addressed (email Schroda@mpimp-golm.mpg.de).
The nucleotide sequence data reported for CDJ3 and CDJ4 will appear in the DDBJ, EMBL, GenBank® and GSDB Nucleotide Sequence Databases

under accession numbers GQ421467 and GQ421468 respectively.
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protein) J-domain protein co-chaperones of HSP70B have
been characterized. CDJ1 contains a glycine/phenylalanine-rich
domain and Zn-finger substrate-binding domain, characteristic
of type I J-domain proteins [14], in addition to the J-domain,
and is therefore probably involved in supplying HSP70B (and
HSP90C) with unfolded substrate proteins [12]. CDJ2 lacks
the glycine/phenylalanine-rich and Zn-finger domains and
therefore is a type III J-domain. CDJ2 binds to the VIPP1
(vesicle-inducing protein in plastids 1) and recruits the HSP70B–
HSP90C chaperone complex [15,16]. HSP70B, CDJ2 and
CGE1 were shown to catalyse assembly and disassembly of
VIPP1 oligomeric structures and might therefore be involved in
biogenesis/maintenance of thylakoid membranes [17].

In the present paper, we report on three novel chloroplast-
targeted type III J-domain proteins, termed CDJ3–5, and provide
a molecular and biochemical analysis of CDJ3 and CDJ4.

EXPERIMENTAL

Strains and culture conditions

C. reinhardtii strains were grown mixotrophically in TAP
(Tris/acetate/phosphate) medium [18] on a rotatory shaker at 25 ◦C
and at an illumination of ∼30 μeinsteins · m−2 · s−1 (1 einstein = 1
mole of photons). For chloroplast isolation, cells were grown in
TAP medium supplemented with 0.5% peptone.

Cloning, expression and purification of CDJ3 and CDJ4

A 623-bp DNA fragment encoding the N-terminal part of
mature CDJ3 was amplified by PCR from a cDNA clone
(Genbank® accession number AV628957) with primers 5′-
GGACTAGTGCTCTTCTAACGCAGCTGATGAAGCAGCA-3′

and 5′-GGATTCGCGACTGCCGCCGCTGCCAGGC-3′. The
PCR product was digested with SpeI and cloned into
SpeI/SmaI-digested pBluescript (Stratagene), giving pMS330.
pMS330 was digested with SpeI/NcoI and the resulting 501-bp
fragment was ligated into a SpeI/NcoI-digested cDNA clone
(Genbank® accession number AV628957), giving pMS332.
Next, cDNA clone Genbank® accession number AV628957 was
digested with NcoI/MfeI and the resulting 894-bp fragment
was ligated into NcoI/EcoRI-digested pMS330 to generate
pMS333. Finally, pMS333 was digested with SapI/XhoI and the
resulting 1415-bp fragment was cloned into SapI/XhoI-digested
pTYB11 (New England Biolabs), giving pMS336. The coding
sequence for CDJ4 was amplified by PCR from cDNA clone
Genbank® accession number AV643891 with primers 5′-G-
GACTAGTGCTCTTCTAACGCAAGCAGTGATGTTGCTTC-3′

and 5′-TACCACTCGAGAGCGGCGGAG-3′. The resulting
1006-bp PCR product was digested with SapI/XhoI and ligated
into SapI/XhoI-digested pTYB11, generating pMS337. pMS336
and pMS337 were expressed in Escherichia coli ER2566 and
purified by chitin-affinity chromatography according to the
manufacturer’s instructions (New England Biolabs). Mature
CDJ3/4 were cleaved from the intein/chitin-binding domain
by incubation with cleavage buffer [20 mM Tris/HCl, pH 9.0,
containing 0.5 M NaCl, 1.0 mM EDTA and 50 mM DTT
(dithiothreitol)] at 25 ◦C for 16 h and collected in five 1-ml
fractions. Fractions 1–3 and 5 were pooled and subjected to
three successive runs of concentration and dilution with KMH
buffer (20 mM Hepes/KOH, pH 7.2, containing 80 mM KCl
and 2.5 mM MgCl2) using Amicon Ultra-4 tubes (Millipore).
Proteins were supplemented with 10% (v/v) glycerol and 1 mM
DTT, frozen in liquid nitrogen and stored at −80 ◦C. Yields

were approx. 300 μg of pure CDJ3/4 per litre of E. coli culture.
Approx. 1 mg of either purified CDJ3 or CDJ4 was dissolved in
20 mM Tris/HCl, pH 8.0, containing 6 M urea and 0.5 M NaCl,
and used for the generation of polyclonal rabbit antisera (Seqlab).
Affinity purification of antibodies was performed as described
previously [19].

Heat-shock and dark-to-light shift kinetics, RNA and protein
extractions, RNA gels and hybridizations

Heat-shock and dark-to-light-shift kinetics, isolation of protein
and RNA, and preparation of RNA blots were carried out as
described previously [16]. Membranes were hybridized with DNA
probes prepared by the random priming technique using [α-
32P]dCTP (Hartmann Analytic). Hybridization was performed as
described previously [13]. A 2-kb NheI/AatII fragment containing
the HSP70B coding region, the entire CDJ3 and CDJ4 cDNAs
and a 1-kb cDNA of CBLP were used as probes [20]. Radioactive
signals were detected with BAS-IP MS 2040 phosphorimager
plates (Raytest).

SDS/PAGE and gel blot analyses

SDS/PAGE was performed as described previously [21]. For
fractionation experiments, one volume of 2× Laemmli sample
buffer [125 mM Tris/HCl, pH 6.8, containing 20% (v/v)
glycerol, 4% (w/v) SDS, 10% (v/v) 2-mercaptoethanol and
0.005% Bromphenol Blue] was added to the samples and pro-
tein concentrations were determined with Amido Black dye
[22]. Proteins in gels were stained with colloidal Coomassie
(Invitrogen) or transferred on to nitrocellulose membranes
(HybondTM-ECL; GE Healthcare) by semi-dry blotting using
a discontinuous transfer system. Blocking and immunostaining
were performed in PBS containing 3% (w/v) non-fat dried
milk and immunodetection was performed by ECL (enhanced
chemiluminescence). Antisera were against HSP70B [13], CGE1
[11], mitochondrial carbonic anhydrase [23], and cytochrome
f [24]. ECL signals were detected with Hyperfilm-ECL (GE
Healthcare).

Cell fractionations

Isolation of chloroplasts and fractionation into stroma, thylakoids
and low-density membranes was performed as described
previously [25]. Mitochondria were isolated as described pre-
viously [26], but using a BioNebulizerTM (Glas-Col) for disrupting
cells instead of vortexing with glass beads.

Immunoprecipitations

Chlamydomonas CF185 cells [13] were grown to a density of
approx. 8 × 106 cells/ml and were harvested in two equal fractions
by centrifugation for 5 min at 3300 g and 25 ◦C. The cells were
either resuspended in 50 ml of pre-warmed TAP medium at 40 ◦C,
for heat-shock, or in 50 ml of TAP medium at 25 ◦C, as a control.
Heat-shock and control treatments were performed for 1 h under
shaking, then cells were harvested and resuspended in lysis buffer
[20 mM Hepes, pH 7.2, containing 10 mM KCl, 1 mM MgCl2,
154 mM NaCl and 0.25× protease inhibitor cocktail (Roche)].
Cells were lysed by sonication on ice for 1 min using a 65 %
duty cycle and 4.5 output control (Branson Sonifier 450). Lysates
were loaded on to sucrose cushions (20 mM Hepes/KOH, pH 7.2,
containing 0.6 M sucrose) and centrifuged in a TI-50 rotor for
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Table 1 Properties of the CDJ3–5 proteins

The mature molecular mass was calcualated by using the transit peptide prediction according to ChloroP. aa, amino acids; –, not determined.

Calculated precursor Calculated mature Apparent Mr Percentage identical/similar Percentage identical/similar
Name Mr (aa number) Mr (aa number) in SDS/PAGE to mature CDJ3 to mature CDJ4 pI mature

CDJ3 43111.3 (393) 38258.6 (353) ∼34000 – – 5.13
CDJ4 41789.1 (371) 33136.2 (306) ∼38000 47 %/63% – 4.97
CDJ5 42851.5 (383) 37737.6 (334) – 36 %/47% 35 %/50% 5.49

30 min at 48000 rev./min and 4 ◦C. Triton X-100 was added to the
supernatants to a final concentration of 0.5% and incubated for
5 min. Protein A–Sepharose beads (Sigma–Aldrich) with coupled
antibodies were equilibrated in lysis buffer and incubated with the
cell lysates under agitation for 1 h at 10 ◦C. Beads were washed
four times with lysis buffer containing 0.1% Triton X-100 and
twice with 10 mM Tris/HCl, pH 7.5. Proteins were eluted by
boiling for 45 s in 2× Laemmli sample buffer (for Figure 5B)
or by shaking for 30 min at 25 ◦C with 2× Laemmli sample buffer
lacking 2-mercaptoethanol (for Figure 5A).

UV–visible spectroscopy

A 200 μl aliquot of purified CDJ3 (30.5 μM) or CDJ4
(22.0 μM) in cleavage buffer was analysed in a 1-cm pathlength
UV microcuvette (Brand) with a TIDAS-II diode array
spectrophotometer (J&M). The samples were reduced by the
addition of 5 μl (0.5 M) of sodium dithionite at 25 ◦C and
measured instantaneously. The molar absorption coefficient at
280 nm was calculated from the amino acid sequence according
to [27], giving values of 35360 M−1 · cm−1 for CDJ3 and 49180
M−1 · cm−1 for CDJ4.

Other procedures

Glutaraldehyde cross-linking was performed as described in [28]
and gel filtration analysis of purified CDJ3/4 as described in
[17]. Recombinant HSP70B containing a C-terminal His6 tag
was co-expressed with HEP2 in E. coli and purified by Ni-
NTA (Ni2+-nitrilotriacetate)-affinity chromatography as described
previously [10]. Stromal chloroplast proteins, for size-exclusion
chromatography, were extracted as described in [25]. For RNase
treatment, stromal proteins were incubated for 60 min at 4 ◦C
with 200 μg of RNase A. After application of proteins to a
SuperoseTM 6 column (GE Healthcare), proteins were eluted with
buffer (20 mM tricin/KOH, pH 7.5, containing 50 mM KCl, 5 mM
ε-aminocaproic acid and 2.5 mM EDTA) using an ÄKTApurifier
system (GE Healthcare) system with a flow rate of 23 cm/h.
Owing to the low abundance of CDJ3, samples were concentrated
using AmiconUltra centrifugal filter devices (Millipore) prior to
analysis by Western blotting.

RESULTS

CDJ3–5 are conserved from green alga to higher plants

To find cDNAs that encode chloroplast-targeted J-domain proteins
we searched Chlamydomonas EST (expressed sequence tag)
libraries [29,30] using the amino acid sequence of the J-domain
of E. coli DnaJ (this had led previously to the identification of
CDJ1 and CDJ2, two chloroplast-targeted J-domain proteins,
which interacted with chloroplast HSP70B [12,16]). We thereby
identified two further ESTs that potentially encoded additional
J-domain proteins with N-terminal extensions, which were

predicted chloroplast transit peptides (by the ChloroP program
[31]) (Figure 1B). We termed these proteins CDJ3 and CDJ4
and determined the full sequences of their cDNAs. The complete
cDNA sequences revealed that the two proteins lacked the
glycine/phenylalanine-rich and Zn-finger domains typical for
type I J-domain proteins of the DnaJ/HSP40 prototype and
therefore CDJ3 and CDJ4 were type III J-domain proteins [14].
Strikingly, both proteins contained a bacterial ferredoxin domain
followed by an extended C-terminal domain of unknown function
(Figure 1B). When using version 3.0 of the Chlamydomonas
genome sequence [32] a further gene (CDJ5) with full EST
coverage was revealed; this encodes another J-domain protein
with a bacterial ferredoxin domain. Analysis by ChloroP qualifies
the N-terminal sequence of CDJ5 as a potential chloroplast transit
peptide. Unfortunately, as CDJ5 was identified at a late stage of the
present study it has not been characterized in detail. Information
on the molecular mass of the CDJ3–5 precursors and mature
proteins, and similarities between their amino acid sequences are
compiled in Table 1.

Database searches revealed that true homologues of CDJ3–
5 existed only in green algae, moss and higher plants, each of
which encoded at least two homologues of CDJ3–5 (note that one
Ostreococcus sequence was incomplete and therefore excluded
from our analysis). It was not clear whether the diversification
of the CDJ3–5 family occurred early in the development of
the green lineage, or rather late, at the level of its different
branches. Phylogenetic analysis of CDJ3–5 homologues from
algae, moss, gymnosperms and angiosperms supported both
hypotheses (Figure 1A): we could clearly distinguish two clades,
one containing homologues of CDJ3 and CDJ4, the other
containing homologues of CDJ5. These results suggested that
the two clades must have diverged early, i.e. in the progenitor
of the green lineage; however, we also found diversification within
the clades, e.g. in rice, which encodes at least three members
of the CDJ3/4 clade.

CDJ3 is inducible by light but not by heat stress

J-domain proteins potentially support their HSP70 chaperone
partner in refolding of stress-denatured proteins. Thus it was
possible that the CDJ3/4 genes were heat-shock-inducible.
As shown in Figure 2(A), the opposite was observed: both,
CDJ3 and CDJ4 mRNA levels declined in response to heat-shock
and only started to recover when the expression of heat-shock
genes, e.g. HSP70B, was attenuated. Interestingly, CDJ3 mRNA
levels strongly increased in cells that were shifted from a 16-h
dark period to low light (Figure 2B). In these conditions CDJ4
mRNA levels were below the detection limit. Consistently, the
mRNA level of the Arabidopsis CDJ5 orthologue atDjC17
(AT5G23240; extracted from publicly available microarray
data) also increased after illumination (Supplementary Fig-
ure S1 at http://www.BiochemJ.org/bj/427/bj4270205add.htm).
Furthermore, the mRNA levels of atDjC17 showed strong
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Figure 1 For legend see facing page
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Figure 2 CDJ3 and CDJ4 mRNA accumulation after heat shock and dark-
to-light shift

mRNA from Chlamydomonas wild-type cells that were exposed to a heat shock at 40◦C or that
were grown for 16 h in the dark and then shifted to low-light (30 μeinsteins · m−2 · s−1) were
separated on agarose gels (10 μg per lane) and transferred on to nylon membranes. These were
hybridized with probes generated from the coding regions of HSP70B (positive control), CDJ3,
CDJ4 and CBLP (loading control).

circadian cycling, with an approx. 30-fold increase in expression
towards subjective dusk [33]. This was even more marked for at-
DjC17 mRNA levels in plant rosettes grown under 12 h light/12 h
dark diurnal cycles [34]. In the case of the Arabidopsis CDJ3/4
orthologue atDjC18 (AT2G42750) weaker circadian/diurnal cyc-
ling could be observed, with the expression peaking shortly after
dawn. atDjC18 was up-regulated by iron starvation [34a] and both
Arabidopsis genes appeared to be down-regulated by sugar [34b].

CDJ3 and CDJ4 contain redox-active Fe–S clusters

To biochemically characterize CDJ3 and CDJ4 we expressed
both proteins, without their predicted N-terminal chloroplast
transit peptides, in E. coli as C-terminal fusions to the yeast
VMA intein/chitin-binding domain. As shown in Figure 3, the

Figure 3 Heterologous expression of CDJ3 and CDJ4

CDJ3 (top panel) and CDJ4 (middle panel) were expressed as C-terminal fusions to the
S. cerevisiae VMA intein, which contains a chitin-binding domain, purified by chitin-affinity
chromatography and eluted after thiol-induced cleavage of the intein. Aliquots obtained during
the purification steps were separated by SDS/PAGE (10 % gels) and stained with Coomassie
Brilliant Blue. Lane 1, lysates of E. coli host cells after induction with IPTG (isopropyl
β-D-thiogalactoside); lane 2, supernatant of cell lysates after a 20-min centrifugation at 20 000 g;
lane 3, flow-through; lane 4, 0.5 % of eluate (fraction 4) after thiol-induced cleavage; lane 5,
0.3 % of fractions 1–3 and 5 after concentration; lane 6, proteins remaining on the chitin column
after elution. The positions of the fusion proteins (FP), cleaved CDJ3 or CDJ4 and of the S.
cerevisiae VMA intein/chitin-binding domain (CBD) are indicated. The molecular mass in kDa
is shown on the left-hand side. Pictures of eluted proteins at concentrations of 3 μg/μl (CDJ3)
and 1 μg/μl (CDJ4) are shown in the bottom panel.

CDJ3/4 fusion proteins were well-expressed in E. coli, but were
barely soluble. When the fusion proteins, present in the soluble
fraction, were concentrated on chitin columns, the columns
became yellow-brownish, which indicated that Fe–S clusters
were already assembled into the fusion proteins. Following thiol-
induced cleavage, mature CDJ3 and CDJ4 proteins with apparent
molecular masses of approx. 38 and 34 kDa were recovered,
which corresponded well with those calculated (Table 1). The

Figure 1 Phylogenetic tree and alignment of CDJ3–5 homologues

(A) Phylogram based on an alignment of the amino acid sequences from CDJ3–5 and their homologues, all lacking the N-terminal extensions from their J-domains. Sequences used were from
the following organisms: Oryza sativa (Os1–4; Genbank® accession numbers NP_001056124, NP_001044143, AAS72346 and NP_001054247 respectively), Arabidopsis thaliana (AtDjC17
and AtDjC18; Genbank® accession numbers NP_197715 and NP_565982 respectively), Vitis vinifera (Vv1–3; Genbank® accession numbers XP_002281976, CAN73797 and XP_002278893
respectively), Picea sitchensis (Ps1–3; Genbank® accession numbers ABK21719, ABK24669 and assembly of ESTs DR538561 and ES860441 respectively), Physcomitrella patens [Pp1–3;
Genbank® accession number EDQ75158 (complemented with ESTs with Genbank® accession numbers FC338026 and FC448519), EDQ53967, and EDQ72847 respectively], Ostreococcus tauri
(Ot1; Genbank® accession number CAL50030) and Chlamydomonas reinhardtii (CrCDJ3–5; Genbank® accession numbers GQ421467, GQ421468 and EDP07097 respectively). Phylogenetic
analysis was conducted using version 4 of the MEGA program [55] on the basis of alignments made by version 1.8 of CLUSTALW. The scale bar indicates 0.1 substitutions per site. (B) Alignment
of amino acid sequences of CDJ3–5 homologues. Sequences were limited to one representative for the CDJ3/4 and CDJ5 clades from angiosperms, gymnosperms, moss and algae from the same
sources as in (A). The sequence of Synechocystis sp. PCC 6803 bacterial type ferredoxin (Genbank® accession number BAA10759) is also shown. Amino acids highlighted in black are conserved
in all ten proteins; those highlighted in grey are conserved in at least eight proteins. Italicized sequences represent chloroplast transit peptides as predicted by TargetP [56] or ChloroP [31] programs,
with the bold underlined residue corresponding to the first amino acid of the mature protein. No prediction was obtained for Pp2. Asterisks indicate cysteine residues involved in [4Fe–4S] cluster
binding [41], and boxed regions represent patches enriched in aromatic and charged residues. Alignments were determined using CLUSTALW and the GeneDoc program was used for presentation.
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purified mature proteins also had a yellow-brownish colour
(Figure 3).

To assay whether CDJ3 and CDJ4 contained redox-active Fe–S
clusters, we characterized the UV–visible spectroscopic properties
of mature CDJ3 and CDJ4. The spectra revealed broad absorption
maxima at 390 nm, which bleached in the presence of sodium
dithionite (Figure 4). Both the oxidized and the reduced spectra
are similar to those observed for P. aerogenes ferredoxin [35]. The
molar absorption coefficients at 390 nm of the oxidized spectra
and the difference absorption coefficients at 425 nm were in the
range reported for a single [4Fe–4S] cluster [36]. It was not
possible to obtain an EPR signal at various temperatures and
microwave power settings with either the oxidized or the reduced
samples (results not shown). It is possible that the putative [4Fe–
4S] clusters of CDJ3 and CDJ4 have a spin-ground state difference
of S = 1/2. The concentration of the samples was too low to
detect any contribution to the g = 4.5 region with the X-band
spectrometer.

CDJ3 and CDJ4 interact with ATP-bound HSP70B in vitro

As CDJ3 and CDJ4 were predicted to be targeted to the
chloroplast, it was probable that they would interact with
HSP70B, which is the major (if not the only) HSP70 in
the chloroplast of Chlamydomonas [7,8]. To test this, we
performed glutaraldehyde cross-linking experiments with the
purified proteins using HSP70B co-expressed with its escort
protein HEP2 (and therefore functional [10]). As J-domain
proteins interact with their HSP70 chaperone partners in the ATP-
bound state (see e.g. [37]), we performed the cross-linking in
the presence and absence of ATP. When cross-linked proteins
were detected with an antiserum against HSP70B, we mainly
detected HSP70B monomers (migrating slightly above the 72-
kDa marker protein) and oligomers (migrating above the 170-
kDa marker protein). However, we also detected cross-linked
products with apparent molecular masses of approx. 140 kDa
in the lanes containing ATP, HSP70B and either CDJ3 or CDJ4
(Figure 5, left-hand gel). These 140-kDa cross-linked products
were also detected with antisera against CDJ3 (Figure 5, middle
gel) and CDJ4 (Figure 5, right-hand gel). Hence CDJ3 and CDJ4
appear to interact with HSP70B, but only when it is in the ATP-
bound state. As judged from the migration of these complexes
at approx. 140 kDa they might consist of an HSP70B monomer
and a CDJ3 or CDJ4 dimer. However, it is also possible that
these complexes consist of monomers of HSP70B and CDJ3/4
and that the migration was retarded by cross-links that preserved
higher-order structures. In addition to the 140-kDa complex with
HSP70B, only monomers of CDJ3 were detected (Figure 5,
middle gel). In contrast, CDJ4 existed as monomers and two
oligomeric forms, which migrated at a little below and a little
above the 72-kDa marker protein (Figure 5, right-hand gel).
It is likely these forms represent CDJ4 dimers; in the form
with higher apparent molecular mass cross-linking might have
preserved higher-order structures.

We could also observe oligomer formation of CDJ4 in
gel filtration experiments. As shown in Figure 6, CDJ3
and CDJ4 monomers migrated with slightly higher apparent
molecular masses compared with the calculated molecular masses
(approx. 47 and 42 kDa compared with approx. 38 and 33 kDa
respectively). Whereas CDJ3 was only found as monomers, a
small fraction of CDJ4 appeared to form oligomers. When we
take into account the higher apparent molecular mass of CDJ4,
the peak corresponding to a 98-kDa oligomer points to a CDJ4
dimer (Figure 6).

Figure 4 UV–visible spectra of purified proteins

(A) The spectra of oxidized (solid line) and dithionite-reduced CDJ3 (broken line) are shown.
The dominant absorbance below 400 nm in the spectra of the reduced samples derives from
dithionite. The inset represents the reduced-minus-oxidized difference spectrum. (B) Spectra of
CDJ4 recorded as described in (A) for CDJ3.

CDJ3 and CDJ4 are very weakly expressed chloroplast proteins that
locate to stroma and thylakoid membranes respectively

To test whether we could verify expression of both proteins by
Western blotting we used antisera that were raised against CDJ3
and CDJ4. As shown in Figure 7, we could not, or at most
barely, detect either of the two proteins in whole-cell extracts,
even when we used the antisera at high concentrations. However,
when we used the antisera against CDJ3 and CDJ4 to enrich the
proteins by immunoprecipitation from whole-cell extracts, we
could detect immunoreactive proteins with apparent molecular
masses of approx. 38 and 34 kDa. These masses corresponded
with those calculated for mature CDJ3 and CDJ4 respectively
(Figure 7A and Table 1). In the anti-CDJ3 and anti-CDJ4 antibody
immunoprecipitates we could also detect HSP70B. Hence these
results suggest that the CDJ3 and CDJ4 proteins are expressed
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Figure 5 Glutaraldehyde-induced cross-linking of HSP70B and CDJ3/4

Purified HSP70B, CDJ3 and CDJ4 (0.5 μM) were incubated alone or in the combinations indicated for 30 min at 30◦C in the presence of 0.5 unit apyrase (ATP −) or 200 μM ATP (ATP +). Proteins
were cross-linked for 15 min with 0.05 % glutaraldehyde (GA), and were separated by SDS/PAGE (4–18 % gel) and analysed by immunoblotting.

Figure 6 Gel filtration of CDJ3 and CDJ4

Purified CDJ3 (50 μg; solid grey line) and CDJ4 (50 μg; broken line) were loaded on to a
Superdex 200 gel-filtration column and developed at a flow rate of 0.5 ml/min. The calibration
curve using thyroglobulin (669 kDa), apoferritin (443 kDa), β-amylase (200 kDa), BSA (66 kDa),
carbonic anhydrase (29 kDa) and cytochrome c (12.4 kDa) as marker proteins are shown in the
inset. kD, k D (partition coefficient).

at low levels in Chlamydomonas and that they may interact with
HSP70B in vivo.

To verify the predicted chloroplast localization of CDJ3 and
CDJ4 and to determine their suborganellar distribution, we
isolated mitochondria and chloroplasts from Chlamydomonas
cells. Chloroplasts were subsequently sub-fractioned into stroma,
thylakoids and low-density membranes, which are considered
to consist of inner envelopes and of transitory membranes
between inner envelope and thylakoids [25]. The purity of
the fractions was tested with antisera against mitochondrial
carbonic anhydrase, stromal CGE1 and the integral thylakoid
membrane protein cytochrome f . As judged from the signals
obtained with these antisera (Figure 7B), chloroplasts contained
mitochondrial contaminations, stroma fractions were free from
thylakoid and mitochondrial contaminations, thylakoids were free
from stromal contaminations, but were strongly contaminated

with mitochondria, and mitochondria were pure. CDJ3 was
detected in the chloroplast and stromal fractions, whereas CDJ4
was weakly detected in chloroplast and strongly detected in
thylakoid fractions (Figure 7B).

CDJ3 appears to be in complex with chloroplast transcripts

As outlined in more detail in the Discussion section, one
possible function of CDJ3–5 might be the redox-regulation of
transcription/translation initiation and/or transcript stability. If
this was the case, we would expect CDJ3–5 to be associated
with chloroplast RNA transcripts. To test this hypothesis, we
subjected untreated stromal extracts and extracts that have been
treated with RNase to a gel-filtration assay and monitored the
fractions for the presence of CDJ3. We limited our analysis to
CDJ3 given we could detect it in the stroma. We also monitored
gel-filtration fractions for the presence of RBP40 (RNA-binding
protein 40) as a control {RBP40 specifically binds to the psbD
(PSII protein D2) mRNA; [38]}. As expected, in untreated stroma
RBP40 was detected in fractions with complexes ranging from
approx. 160 to 2800 kDa, whereas in RNase-treated stroma it
shifted into fractions with complexes in the approx. 160–550 kDa
range (Figure 8). Interestingly, CDJ3 in untreated stroma was
detected in fractions with complexes ranging from approx. 550
to 2800 kDa. RNase treatment extended the fractions in which
CDJ3 was detected down to the 160-kDa region, at the expense of
material in the higher-molecular-mass range. This suggests that
some of the complexes containing CDJ3 are associated with RNA.

To test whether CDJ3 was binding to psbD transcripts, e.g.
in association with RBP40, we isolated stromal fractions from
the PRB2A mutant. In this mutant, the 7-bp PRB2 sequence
in the 5′ UTR (untranslated region) of the psbD mRNA is mutated,
leading to a specific destabilization of the psbD transcript [39,40].
As shown in Figure 8, RBP40 in the PRB2A mutant was detected
only in stroma fractions containing complexes in the approx. 160
to 660 kDa range, corroborating the specific interaction of RBP40
with the psbD message [38]. As the distribution of CDJ3 was not
altered in stroma fractions from the PRB2A mutant, CDJ3 appears
to be associated with transcripts other than psbD.
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Figure 7 Enrichment and subcellular localization of CDJ3/4

(A) Enrichment of CDJ3 and CDJ4 from whole-cell extracts. Chlamydomonas whole cells
were lysed by sonication in the presence of 2 % (v/v) Triton X-100 and solubilized material
was separated from non-soluble matter by centrifugation through a 0.6 M sucrose cushion.
The supernatant was incubated with Sepharose beads coupled to pre-immune serum (Pre) or
to anti-CDJ3 (αJ3) and anti-CDJ4 antisera (αJ4). Whole-cell proteins (WC) and precipitated
proteins were separated by SDS/PAGE (7.5–15 % gels) and analysed by immunoblotting with the
indicated antibody. (B) Subcellular localization of CDJ3/4. Chlamydomonas chloroplasts (Cp)
were separated into soluble stroma (St), low-density membranes (LM) and thylakoid membrane
(Th) fractions. Mitochondria (Mt) were isolated from the same strain. Proteins (7 μg) from whole
cells (WC) and subfractions were separated by SDS/PAGE (7.5–15 % gels) and analysed by
immunoblotting with antisera against HSP70B, CDJ3, CDJ4, thylakoidal cytochrome f (αCytf),
stromal CGE1 and mitochondrial carbonic anhydrase (αCA). Antibodies against CDJ3 and CDJ4
were affinity-purified.

DISCUSSION

In the present paper we report on the molecular and biochemical
analysis of CDJ3 and CDJ4, two novel J-domain proteins
encoded by the Chlamydomonas genome. We present several
lines of evidence to show that CDJ3/4 are chloroplast-targeted co-
chaperones of chloroplast HSP70B. First, CDJ3/4, like all their

homologues in other algae, moss and higher plants, contained
N-terminal extensions that the ChloroP/TargetP programs
predicted to be chloroplast transit peptides. The apparent
molecular masses of mature CDJ3/4 observed by SDS/PAGE
(Figure 7A) corresponded with those calculated for the processed
proteins (Table 1). Accordingly, fractionation experiments
revealed that mature CDJ3 and CDJ4 are targeted to
the chloroplast, where they are localized to stroma and
thylakoids respectively (Figure 7B), with chloroplast HSP70B
[11,12,15,16,19]. Secondly, HSP70B co-immunoprecipitated
with both CDJ3 and CDJ4 from Chlamydomonas cell extracts
(Figure 7A), and recombinant HSP70B was found to interact
with recombinant CDJ3 and CDJ4 in the ATP-bound state in vitro
(Figure 5). Thirdly, recombinant CDJ3/4 stimulated the ATPase
activity of HSP70B, albeit at a weaker extent than the bona fide
chloroplast DnaJ homologue CDJ1 (results not shown).

Evolution of ferredoxin-containing J-domain co-chaperones

A striking feature of CDJ3 and CDJ4 is that they contain
redox-active Fe–S clusters, which according to their spectral
properties and amino acid sequences appear to be of the bacterial
ferredoxin [4Fe–4S] type (Figures 1, 3 and 4; [35,36,41]). The
presence of a ferredoxin domain within a J-domain co-chaperone
is highly unusual. Accordingly, we have found genes encoding
homologues of CDJ3/4 only in algae, moss and higher plants
(Figure 1). We also found Chlamydomonas harbours a third
member of this gene family, which we termed CDJ5 and whose
deduced amino acid sequence is more distantly related to those of
CDJ3 and CDJ4 (Table 1). Each plant species analysed encodes
at least two members of the CDJ3–5 family, of which at least one
belongs to the CDJ3/4 or CDJ5 subfamilies (Figure 1).

Interestingly, proteins containing both a J-domain and a
bacterial ferredoxin domain are also encoded by the genomes
of several members of the mesophilic Crenarchaeota (now also
referred to as Thaumarchaeota) [42–44]. However, the domain
architecture of the archaeal proteins differs from that of the
CDJ3–5 homologues; J- and ferredoxin domains are separated
by a linker of 22–41 amino acids in the CDJ3–5 homologues,
but this linker may contain up to 117 amino acids in the
archaeal proteins (Figure 1B and Supplementary Figure S2 at
http://www.BiochemJ.org/bj/427/bj4270205add.htm). Instead of
this extended linker, the CDJ3–5 homologues contain C-terminal
domains of up to approx. 300 amino acids, which are absent in
the archaeal proteins. Within their linkers, the archaeal proteins
contain conserved patches of aromatic amino acids flanked by
positively and negatively charged residues that, at a lower level of
conservation, are also found in the C-terminal domains of CDJ3–
5. This might indicate that functions exerted by the archaeal linker
are located in the C-terminal domains of CDJ3–5.

Genes encoding DnaK and its co-chaperones appear to be
absent from the genomes of hyperthermophilic Crenarchaeota
and have probably been transferred horizontally from bacteria
to mesophilic euryarchaeota; this might have been a prerequisite
for adaptation to life at lower temperatures [44]. Regarding the
evolution of the ferredoxin-containing J-domain co-chaperones,
three scenarios are possible: (i) that the ancestor of CDJ3–
5 appeared early during the evolution of the green lineage
and was then acquired by a crenarchaeote by horizontal gene
transfer; (ii) that the J-domain–ferredoxin fusion occurred first
in crenarchaeotes after they had acquired components of the
bacterial DnaK system and was then transferred to an early
ancestor of the green lineage, giving rise to CDJ3–5; or (iii)
that the J-domain–ferredoxin fusion occurred independently in
crenarchaeotes and an early ancestor of the green lineage.
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Figure 8 Gel-filtration analysis of CDJ3 complexes

Stromal proteins were separated according to their native size by size-exclusion chromatography before being subjected to SDS/PAGE followed by Western blot analysis using the indicated antisera.
Analysed protein extracts included wild-type stromal proteins without (WT) and with RNase (WT + RNase) treatment and those from the PRB2A mutant lacking the psbD mRNA (PRB2A). Elution
profiles of marker proteins (in kDa) are given at the top, together with the respective fraction numbers.

Phylogenetic analyses suggest that the first scenario is the
most probable (D. Moreira and P. Lopez-Garcia, personal
communication). In any case, development/maintenance of these
specialized co-chaperones is likely to be the solution to a
selective pressure similarly affecting mesophilic crenarchaeotes
and members of the green lineage.

In fact, an HSP70 homologue (HscA), a J-domain protein
(HscB) and a ferredoxin (Fdx) are encoded in close proximity
on the bacterial isc operon and they themselves, and their
mitochondrial homologues Ssq1, Jac1 and Yah1 respectively, are
essential for Fe–S cluster biogenesis [45–47]. The HscB/Jac1
J-domain proteins facilitate the interaction of HscA/Ssq1 with
scaffold proteins that bind Fe–S cluster intermediates. The
chaperones may assist cluster formation by maintaining the
scaffold proteins in a conformation suitable for cluster assembly
or, alternatively, they may facilitate the transfer of the cluster
from the scaffold to an acceptor apoprotein [45]. The yeast
mitochondrial ferredoxin homologue Yah1 was suggested to
provide the reducing power for an essential step in cluster
biogenesis, e.g. for cysteine reduction, iron reduction or reduction
of cluster intermediates prior to release from the scaffold proteins
[47]. If the chaperones were indeed involved in the release
of cluster intermediates and ferredoxin was essential for prior
reduction, the integration of the J-domain co-chaperone and
ferredoxin into the same polypeptide might have made these
processes more efficient.

Possible functions of CDJ3–5
A role for the stromal HSP70 chaperone system in Fe–S cluster
biogenesis might be supported by the finding that stromal
HSP70s are essential [9], which is a typical feature shared
by all proteins with important roles in Fe–S cluster biogenesis
[48]. However, there are arguments against this hypothesis. First,
the Fdx/Yah1 proteins, for which homologues in Arabidopsis
and Chlamydomonas mitochondria exist [49], contain [2Fe–2S]
clusters with a polypeptide fold distinct from that of [4Fe–4S]-
type clusters [50]. Secondly, if CDJ3–5 were involved in such a
fundamental and conserved process as Fe–S cluster biogenesis,
it would be surprising to find so many family members only in
the green lineage and not in cyanobacteria or non-green algae.
Thirdly, a possible role for CDJ3 in Fe–S cluster biogenesis is
difficult to explain in light of its observed association with RBP
complexes (Figure 8).

We can envision functions for CDJ3–5 other than in Fe–S
cluster biogenesis. We found CDJ3 to be strongly induced by
light and the Arabidopsis orthologue of CDJ5 (atDjC17) was
light-inducible and under strong circadian control (Figure 2 and
Supplementary Figure S1). We have also shown that the Fe–
S clusters in CDJ3/4 are redox-active (Figure 4), both proteins
interact with HSP70B (Figures 5 and 7A) and CDJ3 appears to
be part of an RBP complex (Figure 8). J-domain co-chaperones
interact via specialized domains with specific substrate proteins
and deliver them to their HSP70 partner for processing [3,4].
Hence, it is tempting to speculate that CDJ3–5 interact with
specific substrates via their C-terminal domains and that substrate
binding or delivery to HSP70B occurs only at a redox state defined
by their ferredoxin domains, e.g. via an internal conformational
change or a reduction step. The light inducibility of CDJ3
might suggest that redox signals inflicted by light, such the
oxidation state of the thioredoxin system or the accumulation of
ROS (reactive oxygen species), determine the oxidation state of
CDJ3–5 and, therefore, whether substrate processing by HSP70B
occurs. The association of CDJ3 with RNA again might point
to a chaperone-mediated remodelling of RBP complexes that
might be involved in translation initiation/elongation or mRNA
stability. These complexes are also found in the stroma and are
associated with thylakoids [51], where CDJ3/4 and HSP70B
are also located (Figure 7B).

Well-studied examples of chaperone-mediated remodelling
of replication initiation complexes are known from E. coli,
where DnaK and DnaJ monomerize RepA dimers and dissociate
DnaB helicase–λP complexes to trigger replication of plasmid
P1 and λ phage respectively [52,53]. By means of their Fe–S
clusters, the transcription and translation regulators SoxR, FNR,
aconitase and IscR sense signals, such as ROS, NO, cellular
oxygen or iron concentrations, and relay them to transcriptional
or translational activities [54]. In fact, gene expression in
the chloroplast is mainly regulated by nuclear-encoded factors
at the level of translation initiation and/or transcript stability
and, therefore, is distinct from that in cyanobacteria [51]. As
this post-transcriptional regulation of the expression of many
chloroplast genes, including psbA (PSII protein D1), psbD
and rbcL (ribulose bisphosphate carboxylase, large subunit), is
strongly regulated by light [51], we propose that CDJ3–5 might
represent such nuclear-encoded factors that act as redox switches
by recruiting HSP70B for the reorganization of regulatory protein
complexes.
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Figure S1 Circadian regulation of Arabidopsis CDJ3–5 homologues

The scaled mRNA expression levels of AtDjC17 and AtDjC18 in various microarrays pertaining to sugar, light and cycles are shown. The Figure shows (from left to right): the response of seedlings
to light from the Atgenexpress data set; plants left in the dark compared with the expression after plants were shifted from the dark to the light at compensation point CO2; plants shifted from the
dark to the light at compensation point or ambient CO2; the expression of AtDjC17 and AtDjC18 in a seedling culture grown under full nutrition (FN), carbon starvation (-C), and 30 min or 3 h of
sucrose re-addition; the expression in seedlings in constant light after entraining a 12 h light/12 h dark cycle where subjective night phases are indicated by striped grey lines; and the expression
throughout the diurnal cycle, where the light and dark phases are indicated by yellow and grey backgrounds respectively.

1 To whom correspondence should be addressed (email Schroda@mpimp-golm.mpg.de.)
The nucleotide sequence data reported for CDJ3 and CDJ4 will appear in the DDBJ, EMBL, GenBank® and GSDB Nucleotide Sequence Databases

under accession numbers GQ421467 and GQ421468 respectively.
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Figure S2 Alignment of J-domain/bacterial ferredoxin domain proteins from mesophilic crenarchaeota (Thaumarchaeota)

The sequences used were from the following organisms: uncultured crenarchaeote DeepAnt-EC39 (Ucr1; NCBI accession number AAR24498); uncultured marine crenarchaeote AD1000-207-H3
(Ucr2; Genbank® accession number ACF09820); uncultured marine crenarchaeote AD1000-56-E4 (Ucr3; NCBI accession number ACF09658); uncultured crenarchaeote 74A4 (Ucr4; Genbank®

accession number AAK96090); Nitrosopumilus maritimus SCM1 (Nm1; NCBI accession number YP_001582358); and Cenarchaeum symbiosum A, (CsA; NCBI accession number YP_875357).
Amino acids highlighted in black are conserved in all six proteins; those highlighted in grey are conserved in at least five of them. Asterisks indicate cysteine residues involved in [4Fe–4S] cluster
binding and boxed regions represent patches enriched in aromatic and charged residues.
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confirmed that the 5`region of rbcL transcripts is the target of MRL1. Arabidopsis mutants 
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We identify and functionally characterize MRL1, a conserved nuclear-encoded regulator of the large subunit of ribulose-1,5-

bisphosphate carboxylase/oxygenase. The nonphotosynthetic mrl1 mutant of Chlamydomonas reinhardtii lacks ribulose-

1,5-bisphosphate carboxylase/oxygenase, and the resulting block in electron transfer is partially compensated by

redirecting electrons toward molecular oxygen via the Mehler reaction. This allows continued electron flow and constitutive

nonphotochemical quenching, enhancing cell survival during illumination in spite of photosystem II and photosystem I

photoinhibition. The mrl1 mutant transcribes rbcL normally, but the mRNA is unstable. The molecular target of MRL1 is the

59 untranslated region of rbcL. MRL1 is located in the chloroplast stroma, in a high molecular mass complex. Treatment with

RNase or deletion of the rbcL gene induces a shift of the complex toward lower molecular mass fractions. MRL1 is well

conserved throughout the green lineage, much more so than the 10 other pentatricopeptide repeat proteins found in

Chlamydomonas. Depending upon the organism, MRL1 contains 11 to 14 pentatricopeptide repeats followed by a novel

MRL1-C domain. In Arabidopsis thaliana, MRL1 also acts on rbcL and is necessary for the production/stabilization of the

processed transcript, presumably because it acts as a barrier to 59>39 degradation. The Arabidopsis mrl1 mutant retains

normal levels of the primary transcript and full photosynthetic capacity.

INTRODUCTION

The biogenesis of the genome-containing organelles, chloro-

plasts and mitochondria, is governed by protein factors encoded

in the nucleus, most of which probably remain to be unraveled

(Barkan and Goldschmidt-Clermont, 2000). These factors con-

trol chloroplast gene expression at the posttranscriptional, trans-

lational, and posttranslational levels, leading to the concerted

production of nuclear- and chloroplast-encoded subunits of the

photosynthetic enzymes. Each chloroplast gene appears to be

controlled by a suite of nucleus-encoded factors, usually specific

to a single or a few genes. In some cases, these factors have

been shown to accumulate in limiting amounts for the production

of their target protein (Raynaud et al., 2007). Many regulators of

organelle gene expression interacting with mRNA belong to

families of repeat-containing proteins. Among them are the RNA

binding tetratricopeptide repeat proteins, such as NAC2 and

HCF107 (Boudreau et al., 2000; Sane et al., 2005); however, the

majority of sequence-specific RNA-interacting regulators de-

scribed in chloroplasts and mitochondria belong to another

family of repeat proteins, the pentatricopeptide repeat (PPR)

family.

PPR proteins are characterized by the presence of repeated

degenerated units of 35–amino acid residues. Based on similar-

ity to the a-solenoid superfamily, it is believed that each PPR

folds into a pair of antiparallel a-helices, whose stacking forms a

superhelical structure able to bind in its groove an extended RNA

molecule (Delannoy et al., 2007). To date, PPR proteins have

been found in all eukaryotes, but the family is particularly ex-

panded in land plants (for a recent review, see O’Toole et al.,

2008), with >450 in Arabidopsis thaliana, located either in chlo-

roplasts or in mitochondria (Lurin et al., 2004). PPR proteins

function in RNA processing, intron splicing, RNA editing, and

translation. Some, like the E-class PPR proteins, are composed

of a string of PPR motifs and a characteristic C-terminal domain,

which may recruit, by protein–protein interaction, an effector to

the correct site (for a recent review, see Schmitz-Linneweber and

Small, 2008). Others, like CRP1 and PGR3, have no recognizable

1 Current address: Centre National de la Recherche Scientifique,
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Chimique, 13 Rue Pierre et Marie Curie, Paris 75005, France.
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domains apart from the PPR motifs. These two proteins have

been implicated both in RNA stability and in translation (Yamazaki

et al., 2004; Schmitz-Linneweber et al., 2005), similarly to

MCA1, which interacts with petA and was the first PPR protein

characterized in Chlamydomonas reinhardtii (Loiselay et al.,

2008).

The PPR code, which would link the succession and amino

acid sequence of the repeats with the nucleotide sequence of the

target mRNA, remains to be established. Immunoprecipitation

and in vitro binding studies have delineated binding sites for

maize (Zea mays) CRP1, PPR5, and PPR10 (Schmitz-Linneweber

and Small, 2008; Williams-Carrier et al., 2008; Pfalz et al., 2009).

The general model that emerges for the stabilization mechanism

is that binding of the PPR protein shelters a specific region of

RNA from nucleases, in the manner of a protein cap. At the same

time, the protein may facilitate other processes, such as splicing

in the case of PPR5.

In this study, we describe MRL1, a PPR protein found in plants

and green algae, that controls the accumulation of the rbcL

mRNA at a posttranscriptional stage and, hence, ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) biogenesis.

The contrasting phenotypes of the mrl1 mutants of Arabidopsis

and Chlamydomonas underline the high metabolic flexibility of

the latter unicellular organism that developed photoprotection

strategies in the absence of CO2 fixation by Rubisco.

RESULTS

The Chlamydomonas mrl1 Mutant Fails to Accumulate

rbcL mRNA

The Chlamydomonas mrl1 mutant was isolated from a collection

of paromomycin-resistant transformants obtained by random

insertion of the aphVIII gene, followed by screening for a non-

phototrophic (acetate-requiring [ac]) phenotype (Johnson et al.,

2007). The Chla fluorescence induction kinetics and charge

separation activities were normal in the mutant (Figure 1A, Table

1), indicating no defect in the thylakoid electron transfer chain,

which suggested a downstream block in carbon assimilation.

Growth on acetate-containing plates was inhibited even at the

relatively low light intensity of 40 mE m22 s21 (Figure 1B), and this

light-sensitive phenotype was partly alleviated by DCMU, an

inhibitor of photosystem II.

The mutant was backcrossed twice to wild-type strains. In the

second backcross, 18 tetrads were analyzed, and in each the ac,

light-sensitive, and antibiotic resistance phenotypes cosegre-

gated in two of the four progeny, indicating a single mutation in a

nuclear gene caused by insertion of the cassette. We tested the

level of Rubisco, the enzyme in the Calvin-Benson cycle that is

responsible for CO2 fixation. Protein gel blotting revealed that

mrl1 strains lacked both the small and large subunits of the

Rubisco enzyme, under conditions both of growth (TAP medium,

low light) and of growth arrest (resuspended in MIN medium, high

light, 24 h) (Figure 1C). The small subunit is encoded by the RBCS

family of nuclear genes, while the large subunit is encoded by a

single chloroplast gene. By RNA gel blot analysis, we found that

mrl1 strains lacked the rbcL mRNA (Figure 2), although its

synthesis was unaffected (see below). In all our further pheno-

typic analyses of the mrl1 mutant, we found its photosynthetic

parameters and light sensitivity indistinguishable from those of

classical Rubisco mutants, such as 18-5B (Spreitzer et al., 1985),

indicating that the main (or sole) function of MRL1 is to allow

accumulation of rbcL mRNA. We concluded that the nuclear

gene mutated in this strain encodes a protein necessary for

maturation/stability of the rbcL transcript. In keeping with the

accepted nomenclature, we have called the mutated gene

MRL1.

The MRL1 Gene Encodes a PPR Protein

An indexed cosmid library was used to complement the mrl1

mutant as described earlier (Kuras et al., 2007). A cosmid was

identified, 21.11G, as capable of restoring phototrophy. It con-

tains a 27.2-kb fully sequenced region of chromosome 6

(5935919-5963122 in genome version 4, corresponding to scaf-

fold_12:1776719-1803922 in version 3). Based on the current

annotation, the cosmid insert contains four putative genes, two

of which are supported by EST data. Performing different re-

striction digests on the cosmid and using the digested DNA to

transform mrl1, we found that the complementing region corre-

sponded to one of the two EST-supported genes, annotated as

PPR2, which we now rename MRL1. A 10.9-kb AatII fragment of

the cosmid corresponding to this gene (Figure 3A) was purified

and used to retransform a cell-walled mrl1 strain, to generate the

complemented strain mrl1.C.

DNA gel blotting was used to analyze the MRL1 locus in the

mutant. Using the enzyme XmaI, which cuts at two sites within

MRL1 (Figure 3A; see Supplemental Figure 1 online), we ob-

served that the 4.5-kb fragment corresponding to the 59 part of

the gene was replaced by a 3.2-kb fragment. In a NheI digest, the

12-kb band corresponding to the 59 part of MRL1 was shifted to

7.5 kb in the mutant. Figure 3A shows the putative position of the

aphVIII gene in MRL1.

We obtained and sequenced two cDNA clones derived from

MRL1. Because similarity with the MRL1 gene in the closely

related alga Volvox carteri extended beyond the 59 end of the

longest Chlamydomonas cDNA clone, we postulated that it

was truncated at the 59 end. Indeed, using primers designed to

amplify the upstream region, we retrieved by RT-PCR a 650-

nucleotide extension comprising the beginning of the coding

sequence and 57 nucleotides of the 59 untranslated region

(UTR). We found an in-frame stop codon (UAG) 30 nucleotides

upstream of the putative start AUG, providing further evidence

that we had identified the actual translation start site. New

gene models were generated for both species and placed in

the gene catalog (ID 206534 for Chlamydomonas and ID

127498 for Volvox version 1). The Chlamydomonas MRL1

gene contains 11 exons (Figure 3A). Its coding sequence

spans 6901 nucleotides on the genome and 4308 nucleotides

on the mRNA. At 1138 nucleotides, the 39 UTR is unusually

long. The nonphototrophic phenotype of mrl1 could not be

complemented by transformation with the reconstituted full-

length cDNA, but this was achieved with a chimeric construct

containing the promoter and 59 portion of the gene fused to the

cDNA (Figure 3A).
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The hypothetical MRL1 protein is composed of 1435 amino

acids with an estimated molecular mass of 138 kD. It can be

divided into five regions: a chloroplast-targeting peptide (19

amino acids based on WolfPSORT and ChloroP, corresponding

approximately to the region that is not conserved in Volvox), an

N-terminal region, a PPR domain, a new conserved domain,

which we call MRL1-C, and a C-terminal tail rich in Ala and Gly

(Figure 3A; see Supplemental Figure 2 online). From amino acids

155 to 593, the TPRpred program at the Max Planck Institute

(http://frpred.tuebingen.mpg.de/tprpred) (Biegert et al., 2006)

predicts MRL1 to have 10 PPR motifs. Upon further analysis and

based on the comparison with other organisms, we found two

additional PPR motifs contained within this region (see below).

According to predictions by PsiPred (http://www.psipred.net/

psiform.html), the protein is highly a-helical, not only the PPR

domain but also the N-terminal and MRL1-C domains (see

Supplemental Figure 2 online). The tail domain is predicted to

be essentially a random coil.

MRL1 belongs to a small family of 11 PPR proteins in

Chlamydomonas that includes MCA1, a stabilization factor for

the petA mRNA (Loiselay et al., 2008). In contrast with the other

family members, MRL1 shows a high degree of sequence

Figure 1. Phenotype of the mrl1 Mutant.

(A) Fluorescence transients of Chlamydomonas wild-type and mrl1 strains in the presence or absence of DCMU (20 mM). Inset: same traces on an

expanded time scale

(B) Wild-type and mrl1 cells were resuspended in water at a concentration of 104 cells mL�1 and spotted onto Petri dishes of TAP or MIN media and

grown for 10 d. In the last two lines, cells were mixed with DCMU (10 mM final concentration) before spotting onto TAP.

(C) Immunoblot of total cell extracts of wild-type, mrl1, and mrl1.C (complemented mrl1 strain) strains reacted with an antibody to RbcL and RbcS

(Rubisco large and small subunits) and an antibody to cytochrome f (cytf) as a control. RbcS appears as a double band (arrows) in this gel system.

[See online article for color version of this figure.]
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conservation with other green photosynthetic eukaryotes (Vir-

idiplantae) (Figure 3B; see Supplemental Figure 2 online). The

only other Chlamydomonas PPR protein that has a putative

ortholog in land plants is HCF152, but sequence conservation is

low compared with MRL1. Blast searches in the nonredundant

and EST databases and in fully sequenced genomes retrieved

full or partial MRL1 sequences from green algae and land plants

(chlorophytes and streptophytes), but the gene was not found in

other algae (rhodophytes, glaucosystophytes, and heterokonts)

or nonphotosynthetic organisms. The moss Physcomitrella

patens was unusual in showing three MRL1 genes we called

MRL1A, -B, and -C. Phylogenetic analysis (Figure 3B; see

Supplemental Data Set 1 online) indicates that they have arisen

by two successive gene duplication events. Pp-MRL1A and Pp-

MRL1B have a pairwise Ks value (rate of synonymous substitu-

tions) of 1.13 (S. Rensing, personal communication), consistent

with their being derived from the whole genome duplication that

occurred in the moss ;45 million years ago (Rensing et al.,

2007).

In MRL1 proteins, the best conserved regions are the PPR and

MRL1-C domains (see Supplemental Figure 2 online). Compared

with algae, land plants tend to have a longer N-terminal domain

and a shorter C-terminal tail. The tail is longest in Chlamydomo-

nas and Volvox, but complementation experiments using the

mrl1 mutant showed that it is dispensable for function. Indeed,

the mutant could be complemented to phototrophy using the

promoter-cDNA plasmid restricted with ScaI that cuts in the

vector part, but also with enzymes that cut within the tail (BstEII,

marked as B in Figure 3) or at the end of the MRL1-C domain

(SgrAI, marked as S). However, cutting at the MluI site (marked as

M), near the start of the MRL1-C domain, gave no phototrophic

colonies, indicating that the C-domain is essential. In keeping

with its functional importance, the MRL1-C domain is well

conserved, except for three insertions in the Chlamydomonas

and Volvox proteins. BLAST searches with this domain alone

found it only in MLR1 proteins.

Transcription of rbcL Is Unaffected in mrl1

PPR proteins are known as sequence-specific RNA-interacting

proteins, participating in a variety of functions, including RNA

stabilization and modification (Delannoy et al., 2007). To ascer-

tain that the mrl1 mutation prevents stabilization of the mRNA

rather than its synthesis, we pulse-labeled permeabilized wild-

type and mrl1 cells using [a-33P]UTP for 15 min, and the labeled

RNA samples were used as probes in hybridizations to filter-

blotted rbcL, psbB, and petA gene fragments. After normaliza-

tion to the psbB transcript, we found no significant difference in

the synthesis of rbcL between mrl1 and wild-type strains (Figure

4). We conclude that rbcL mRNA transcription is unaffected in

the mutant and that its decreased accumulation is due to an

enhanced degradation compared with the wild type. Using RT-

PCR, we found traces of the rbcL mRNA in the mrl1 mutant,

especially in conditions of growth arrest (see Supplemental

Figure 3B online). We used RNA ligation–mediated rapid ampli-

fication of cDNA ends (RLM-RACE) to identify the 59 end of the

mRNA transcript and found a single 59 end (see Supplemental

Figure 3C online). Treatment with pyrophosphatase increased

signal intensity, indicating that this 59 end is triphosphorylated

and corresponds to a transcription start site. Its abundance was

severely reduced in the mutant, but its sequence was un-

changed, indicating that loss of MRL1 does not induce abnormal

processing of the transcript.

We also examined the 76-5EN mutant (Hong and Spreitzer,

1994), which was described as being deficient in rbcL transcrip-

tion. Preliminary genetic analysis suggested that it is allelic or

closely linked to mrl1 (no segregation in 16 zygotes examined),

even though its MRL1 locus does not appear rearranged in DNA

gel blots. Because preliminary experiments with the original 76-

5EN strain showed a low efficiency of transformation, we

crossed it to the wild type and generated strain 76.5EN.1B,

which could be transformed with the promoter-cDNA fusion

Figure 2. Total Cell RNA Hybridized with rbcL and psbA as a Control

Probe.

The mrl1 strain accumulates no rbcL mRNA compared with the wild type

or mrl1.C. Low light is 10 mE m�2 s�1, and high light is 200 mE m�2 s�1.

Table 1. Photosynthetic Parameters of Chlamydomonas Wild-Type and mrl1 Cells Grown in Low Light (10 mE m�2 s�1) and Treated or Not in High

Light (200 mE m�2 s�1) for 16 h

Wild-Type Low Light Wild-Type High Light mrl1 Low Light mrl1 High Light

Fv/Fm 0.68 6 0.10 0.47 6 0.11 0.70 6 0.08 0.37 6 0.09

PSI 1.00 6 0.15 1.05 6 0.22 1.38 6 0.18 0.66 6 0.23

PSII 1 0.44 6 0.11 1.1 6 0.08 0.43 6 0.09

NPQ ;0 0.28 6 0.10 0.29 6 0.08 0.20 6 0.11

Cells grown in TAP were harvested in the mid-exponential phase and resuspended in MIN medium at a chlorophyll concentration of ;150 mg mL�1.

They were kept in the dark under vigorous shaking before measuring Fv/Fm. Normalized PSI and PSII contents were estimated as described in

Methods. Fluorescence was first recorded at 50 mE m�2 s�1, and NPQ was evaluated as fluorescence quenching (Fm � Fm9/Fm9) after exposure to

saturating (1000 mE m�2 s�1) light for 10 min.
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construct. This strain was efficiently complemented by the ScaI-

restricted construct, restoring a photosynthetic phenotype with

an efficiency similar to that observed in mrl1 strains. We con-

clude that 76.5EN is mutated in the MRL1 gene and designate

this allele as mrl1-2.

MRL1 Is Localized to the Stroma and Is Part of a High

Molecular Mass Complex Profoundly Affected by the

Absence of Its RNA Target

An antibody against MRL1 detected a protein of around 120 kD in

chloroplast stromal extracts from the wild-type strain, but not

from the mrl1 mutant (Figure 5A). To test whether MRL1 forms

part of an RNA/protein complex, chloroplast stroma was

prepared and high molecular mass complexes were separated

by size exclusion chromatography with or without prior treatment

by RNase I. As shown in Figures 5B and 5C, the peak of MRL1

elution was in fraction 5, corresponding to an approximate

molecular mass of ;800 kD. After treatment with RNase I,

however, complex size was reduced to ;600 kD (fraction 7),

suggesting that the complex contains an RNA moiety. To test

whether the rbcL mRNA was part of this complex, we generated a

chloroplast transformant where the entire rbcL gene was deleted.

When isolated stroma fractions were examined, the peak of

MRL1 elution was now in fraction 8, corresponding to a peak in

the range of 550 kD. This demonstrates that the MRL1 protein

Figure 3. The MRL1 Gene.

(A) Top: Map of the MRL1 gene. Location of the aphVIII gene is indicated, together with the NheI (N) and XmaI (X) sites used in DNA gel blotting (see

Supplemental Figure 1 online). Exons are shown as boxes and introns as arrowed lines. The gray bar at the 59 end denotes the genomic fragment that

was cloned into the EcoRI (E) site of the cDNA to generate the promoter-cDNA construct. Bottom: Map of the MRL1 protein, showing its transit peptide

(TP) and four domains (with numbering of their first amino acid) and the positions of introns (ticks on lower line) and of restriction enzyme sites used in

transformation experiments (M, MluI; S, SgrAI; B, BstEII). The three insertions found in the C-domain of Chlamydomonas compared with other

sequences are indicated by gray shading.

(B) Cladogram of MRL1 proteins. The tree was obtained with the program PhyML, based on the alignment of Supplemental Figure 2 online after

truncation of the first 589 ill-aligned positions. Streptophytes appear at the bottom (Sellaginella, Physcomitrella, rice, maize, Arabidopsis, grapevine, and

Populus), Prasinophytes at top left (Ostreococcus and Micromonas), and other chlorophytes at top right (Chlorella, Volvox, and Chlamydomonas). Each

branch is labeled with its aLRT value.
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interacts with the rbcL mRNA in vivo to form a high molecular

mass complex that may or may not include other proteins.

The 59 Region of the rbcL Transcript Is the Target of MRL1

To establish which part of the rbcL transcript interacts with

MRL1, we introduced into the chloroplast genome chimeric

constructs containing a reporter gene fused to either the 39 or the

59UTR of the rbcL gene. When transformed into mrl1, the 59atpA-

aadA-39rbcL resistance cassette (Goldschmidt-Clermont, 1991)

yielded the same number of spectinomycin/streptomycin-

resistant transformants as when transformed into the wild-type

control. This indicates that the chimeric 59atpA-aadA-39rbcL

transcript is stable in an mrl1 background and, hence, that the

target of MRL1 is not the 39 UTR of rbcL. By contrast, a construct

carrying the petA reporter gene under control of the rbcL 59
region (pRF) was unable to express cytochrome f when trans-

formed into an mrl1 strain. Transformants obtained in a wild-type

background showed normal fluorescence induction kinetics

(Figure 6A), indicating that the rbcL 59 region is able to drive

petA expression, but those created in the mrl1 background

showed induction kinetics typical of cytochrome b6f mutants.

This result was confirmed by RNA gel blot analysis (Figure 6B),

which showed that the absence of MRL1 prevents accumulation

of the rbcL-petA chimeric transcript. We conclude that the 59
UTR is the site of interaction between MRL1 and the rbcL

transcript.

Analysis of the PPRs in MRL1

Because target recognition is believed to be mediated by the

PPR repeats, we examined in detail the sequence alignment of

the PPR domain and asked whether the repeats themselves

Figure 4. Run-On Transcription Experiment.

In vivo–labeled RNA from wild-type, mrl1, and DrbcL strains was hy-

bridized to gene fragments separated by electrophoresis and blotted

onto nitrocellulose. Numbers indicate labeling intensity, normalized to

the psbB control. Specificity of the rbcL signal is indicated by its absence

in the DrbcL strain.

Figure 5. A High Molecular Mass Ribonucleoprotein Complex Containing MRL1 Is Located in the Chloroplast Stroma in Chlamydomonas.

(A) Detection of MRL1 in stromal proteins from cw15 and mrl1 by immunoblotting using the MRL1 antibody. A cross-reacting protein at 55 kD is marked

by an asterisk. The psbD-specific translational activator RBP40 was used as a loading control.

(B) Stromal proteins were separated by size exclusion chromatography, and fractions 1 to 15 were subjected to protein gel blot analysis using the MRL1

antibody. Samples are from cw15 (treated or not with 250 units RNase I) and from the cw15 DrbcL strain. Molecular masses were calculated by parallel

analysis of high molecular mass calibration markers.

(C) Quantitation of signal intensity in (B), with error bars calculated from three (the wild type and mrl1) or two (DrbcL) independent experiments.
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were conserved. After refining the alignment based on the

predictions of TPRpred (see Supplemental Figure 2 online), we

identified 12 repeats in most MRL1 proteins, but only 11 in

Physcomitrella MRL1C and 14 in the proteins from prasinophyte

algae (Ostreococcus and Micromonas). Many of the repeats

initially had escaped detection by the TPRpred program, usually

because they contain short insertions between the two a-helices

or after the second one, and TPRpred works on a fixed window of

35 residues. However, sequence conservation around the inser-

tions unambiguously defines these regions as PPR repeats,

albeit of noncanonical length. Allowing short insertions in the

PPR motif helps reconcile sequence alignment and PPR predic-

tion in other algal PPR proteins as well. For some of the repeats,

sequence alignment also indicated short deletions. For example,

the region in land plants that aligns with PPR#1 in algae has only

34 residues, and PPR#2 has deletions or insertions in most

species. These may thus not be bona fide PPRs in all species, yet

their sequence characteristics and presence in a PPR domain

indicate that they derive from, and probably have kept some of

the structural/functional properties of, a PPR.

Using these 224 refined repeats (see Supplemental Data Set 2

online) as independent input sequences, phylogenetic trees

were built (see Supplemental Figure 4 online) to determine if

the MRL1 protein had been subject to rearrangements within its

PPR domain. Overall, the trees show a strong tendency to

cocluster the repeats from a given location in the protein,

suggesting a largely linear evolutionary history of the PPR do-

main.

The Arabidopsis MRL1 Ortholog Also Acts on the rbcL

Transcript but Is Not Essential for Photosynthesis

According to Genevestigator (https://www.genevestigator.

ethz.ch/gv/index.jsp), the Arabidopsis ortholog of MRL1 is

expressed in all green parts, including stems, leaves, and

sepals, but not in nongreen tissues, suggesting an involvement

in photosynthesis. We analyzed two Arabidopsis T-DNA inser-

tion lines, SALK-072806 (At-mrl1-1) and FLAG_568C09

(At-mrl1-2), carrying insertions in the 13th and 10th exons,

respectively (i.e., within the PPR domain) (Figure 7A). Homozy-

gous plants carrying the At-mrl1-1 and At-mrl1-2 mutations

were genotyped and confirmed by RT-PCR to lack the MRL1

transcript (Figure 7B). As controls, we used, respectively, the

Columbia-0 (Col-0) line and MRL1-2, a wild-type progeny from

an At-mrl1-2 heterozygous stock in the Wassilewskija back-

ground. Whether sown on sucrose-supplemented Murashige

and Skoog medium or on soil (Figure 7C), neither growth nor

color phenotype was observed, even in short-day conditions

(8 h light/16 h dark).

Accordingly, functional analysis of mutant Arabidopsis plants

did not show any significant change in the photosynthetic

process compared with the wild type. For example, the photo-

system II (PSII) to photosystem I (PSI) ratio (Figure 8A), which was

assessed in planta from their relative contribution to the light-

induced electrochromic signal, was not affected. The fluores-

cence parameter FPSII, which directly measures PSII-driven

electron flow, was unchanged (Figure 8B). Furthermore, RNA gel

blots did not detect any alterations with probes directed against

psbA, psbB, petB, psbD, psbN, atpBE, psbEL, psaA, psaC, petA,

atpA, atpF, ndhB, or ndhK (see Supplemental Figure 5 online).

Because of the observed lack of rbcL transcript accumulation in

Chlamydomonas, we tested rbcL mRNA accumulation levels in

the plant mutant lines (Figure 8C). While two rbcL transcripts can

be resolved by gel blot analysis in wild-type lines (lanes Col-0 and

MRL1-2), the shorter transcript appeared to be completely

absent in the mutants, a result that was confirmed (Figure 9) by

the more sensitive techniques of primer extension and RLM-

RACE. The size and 59 sequence of the shorter mRNA that is

missing in the mutant are similar to those reported by Shiina et al.

(1998) for the processed rbcL transcript in various land plants. In

the mutant, the amount of the longer transcript appeared unaf-

fected. The accumulation of the Rubisco protein was only

marginally affected (see Supplemental Figure 6A online). Poly-

some gradient analysis (see Supplemental Figure 6B online)

showed that the remaining mRNA was loaded into the heavy

fractions. Still, we observed a small but reproducible shift of rbcL

mRNA toward lighter fractions in the mutants, not seen in the

atpB control.

Figure 6. MRL1 Targets the 59 Region of rbcL.

(A) The wild type, mrl1, and the corresponding pRF-transformed strains

containing the 59rbcL-petA chimera replacing the native petA gene were

analyzed by fluorescence induction to measure photosynthetic activity.

Actinic light is turned on at t = 0 and a pulse of saturating light

superimposed at t = 2 s to reach Fm, after which the light is turned off.

Curves are normalized to Fm.

(B) RNA gel blot hybridization analysis of the strains in (A), showing

accumulation of either endogenous or chimeric petA transcript and rbcL

mRNAs; psbB was used as a loading control.
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In Chlamydomonas, Impairment of Electron Flow from H2O

to CO2 Is Compensated for by an Increased Capacity to

Reduce Molecular Oxygen

As mentioned above, the fluorescence induction profile of the

Chlamydomonas mrl1 mutant was similar to that of the wild type

(Figure 1A). In both strains, the pseudo-steady state fluores-

cence level (Fs) was well below the maximum level (Fm), suggest-

ing that the rate of electron flow is similar in the two strains at

steady state and close to that of PSII turnover. From the kinetics

observed in the presence of DCMU (Butler, 1978), the latter was

estimated to be around 10 ms in both strains (Figure 1A, inset).

Thus, the absence of Rubisco does not represent a major

bottleneck in electron transfer downstream of PSII.

A similar conclusion was reached when electron flow was

assessed under continuous illumination rather than during a

dark-light shift (Figure 10A). The parameter FPSII, which directly

measures PSII-driven electron flow, was only marginally de-

creased in the mrl1 mutant as opposed to the DpetB mutant

(Kuras and Wollman, 1994), which lacks cytochrome b6f and was

used in the experiment as a control for impairment of electron

transfer. Conversely, oxygen evolution that reflects electron flow

from H2O to terminal acceptors was largely suppressed in the

Chlamydomonas mutant at all light intensities tested (Figure

10B), in line with its inability to grow autotrophically. Because

electron flow is not accompanied by a commensurate net O2

evolution, the final electron acceptor must be molecular oxygen

itself.

The chlororespiratory process (reviewed in Peltier and Cournac,

2002), whereby plastoquinol is oxidized by O2 through the action

of the plastoquinol terminal oxidase, is not likely to account for

such a high rate of electron transport. Indeed, we found that

propylgallate, a known inhibitor of plastoquinol terminal oxidase,

had a similar effect onFPSII in the mrl1 and wild-type strains. We

next considered two other possible routes for oxygen reduction,

the so-called Mehler reaction (Mehler, 1951), whereby

Figure 8. Analysis of At-mrl1 Mutants.

(A) PSII-to-PSI ratio, measured from their respective contribution to the

light-induced electrochromic shift (ECS) signal. Bars represent the SE of

three measurements

(B) Light-driven electron transport activity, as derived from the fluores-

cence parameter FPSII (see Methods). Bars represent the SE of three

measurements

(C) RNA gel blot analysis of rbcL and psbA mRNA. The bottom panel is

the ethidium bromide–stained gel. The closed arrowhead indicates the

primary transcript and the open arrowhead the processed species.

Figure 7. Analysis of At-mrl1 Mutants.

(A) Sites of T-DNA insertions in At-MRL1. The arrowheads indicate

primers used for the RT-PCR shown in (B). Gray boxes, exons; black

lines, introns.

(B) RT-PCR was performed using 33 cycles for MRL1 and 27 cycles

for UBQ.

(C) Plants of the indicated genotypes were grown on soil for 3 weeks

under a 16-h-light/8-h-dark photoperiod. The morphological differences

can be ascribed to the fact that mrl1-2 is in the Wassilewskija ecotype

and mrl1-1 is in Col-0. (MRL1-2 is a wild-type progeny from the

heterozygous mrl1-2 seed stock.) Bar = 1 cm.

[See online article for color version of this figure.]
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photosynthesis reduces molecular oxygen at the acceptor side

of PSI, and the malate shuttle, which allows consumption of

photosynthetically generated reducing equivalents by respira-

tion in the mitochondrion (Edwards and Andreo, 1992). To

distinguish between these two pathways, we measured FPSII

and respiration rate simultaneously in a sealed cuvette, as a

function of the decreasing oxygen concentration (Figure 11). At

10mM O2,FPSII was decreased by 90% in the mutant compared

with only ;30% in the wild type, while respiration was unaf-

fected, in line with its known low Km (3 mM; Forti and Caldiroli,

2005). The low affinity of FPSII for O2 (30 to 40 mM) in mrl1 was

comparable to that of the Mehler reaction (;25 mM; Forti and

Caldiroli, 2005), suggesting that this reaction is responsible for

accepting electrons downstream of PSI in the mutant.

We then analyzed the effect of continuous high light on the

electron transfer chain in mrl1. After 16 h at 200 mE m22 s21 (high

light), both the wild type and mrl1 strain suffered a drop in PSII

activity, reflecting photoinhibition (Table 1). However, reduced

PSII activity did not result in a major imbalance in photosynthesis

in mrl1 because PSI activity was also decreased to nearly the

same extent. This PSI photoinhibition was not observed in the

wild type. Interestingly, PSI activity recovered more slowly than

PSII in the mutant (see Supplemental Figure 7 online), indicating

that repair of light-induced damage was less efficient for PSI than

for PSII. Furthermore, nonphotochemical quenching of absorbed

energy (NPQ), a physiological response to light stress, was

observed in mrl1 grown in low light (Table 1), while prior exposure

to high light is necessary in the wild-type strain (Niyogi, 1999).

Finally, despite the growth arrest in high light, no extensive cell

death was observed in mrl1 cultures, unless they were deprived of

oxygen during light exposure (Table 2). This stands in stark

contrast with a DpsaB mutant devoid of PSI, where oxygen

deprivation rescues the strain (Table 2). These observations sug-

gest that the Mehler reaction plays an important photoprotective

role in the Chlamydomonas mrl1 mutant, in spite of the fact that it

produces potentially harmful reactive oxygen species (ROS).

Figure 9. Analysis of At-mrl1 Mutants.

(A) Primer extension analysis of the rbcL transcript, showing absence of the processed transcript (open arrowhead) in the mutants but retention of the

primary transcript (closed arrowhead).

(B) and (C) RLM-RACE experiments: result of the PCR step and alignment on the rbcL upstream sequence of the 59 ends identified by cloning the bands

marked by arrowheads. After ligation of an RNA oligonucleotide at its 59 end, the mRNA was reverse transcribed and amplified. In the mutant, a single

transcript was amplified (closed arrowhead), and its enhancement by pyrophosphatase (PPase) treatment indicates that it corresponds to a primary

transcript. In the wild type, for reasons unclear, only the shorter form was amplified (open arrowhead). Its lack of enhancement by PPase treatment

indicates a 59-monophosphate end typical of a processed RNA. In the mutant, only a very faint band (gray arrowhead) was found at this position, but its

sequencing variable 59 ends, all different from that of the processed transcript in the wild type.
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DISCUSSION

In this article, we show that MRL1 contributes to the stability and/

or maturation of the rbcL transcript both in Chlamydomonas and

in Arabidopsis. In the alga, inactivation of MRL1 completely

prevents accumulation of the mRNA and of the Rubisco protein,

while in the plant, only a very slight reduction in Rubisco content

is observed. This leads to dramatic differences in growth phe-

notypes, nonphototrophic and light-sensitive in the case of the

alga, normal in the plant.

The Cr-mrl1 Mutant: How to Survive without Rubisco

Upon illumination, the Chlamydomonas mutant performs a

sustained H2O-H2O cycle, likely involving the Mehler reaction,

superoxide dismutase, and catalase. The Mehler reaction leads

to ROS accumulation in high light (i.e., when O2
2 is not efficiently

scavenged by superoxide dismutase and catalase activities) (Ort

and Baker, 2002), a possible explanation for the light-sensitivity

of the mutant and its alleviation by DCMU. ROS may induce

photoinhibition of PSII and cause direct photodamage to PSI, as

already proposed (Munekage et al., 2002). The nature of the PSI

damage is unknown, but its slow recovery suggests that it is

severe. Yet, cell death was not observed, unless oxygen was

removed (Table 2). This stands in sharp contrast with the behav-

ior of PSI mutants, which also show a high photosensitivity but

are rescued by anaerobiosis. Thus, in spite of its negative effects

on the photosystems, the Mehler reaction may play a protective

role when CO2 fixation is impaired. By permitting electron flow

even when PSI acceptors are reduced, the Mehler reaction

allows for the generation of a light-induced DmH
+. This not only

triggers NPQ-mediated photoprotection (Table 1), but may also

allow residual ATP synthesis, contributing to cell survival.

Molecular Target and Mechanism of Action of a Conserved

PPR Protein

PPR proteins are present in most eukaryotic phyla but are

exceptionally numerous in land plants. A rapid diversification of

the family has occurred between the colonization of terrestrial

habitats and the monocot-dicot divergence (O’Toole et al.,

2008), possibly as a means to suppress deleterious mutations

in the organellar genomes (Maier et al., 2008). Thus, even though

PPR proteins in land plants are often well conserved, the high

degree of sequence similarity observed between algal and plant

MRL1 (see Supplemental Figures 2 and 4 online) is highly

unusual. It suggests not only that the mechanism of action of

MRL1 has been largely conserved throughout evolution of the

green lineage, but that its target has been fixed early on.

Indeed, our functional and molecular analyses in two model

species have yielded no indication that MRL1 would have a

target other than the rbcL mRNA. Our reporter gene experiments

in Chlamydomonas (Figure 6) show that the molecular target of

MRL1 lies upstream of the rbcL coding sequence (nucleotides

2161 to 21 with respect to the translation start site), in a region

that includes both the promoter and the 59 UTR. Because run-on

experiments show that the mutation does not affect rbcL

Figure 10. Light Dependence of FPSII and O2 Evolution in Chlamydomonas.

Light dependence of FPSII (A) and O2 evolution (B). Chlorophyll concentration was;150 mg mL�1. O2 evolution was followed with a Clark electrode by

increasing light intensity every 2 min and expressed as net photosynthesis (i.e., the maximum rate of photosynthesis after correction for respiration) at

any given light intensity. Bars represent the SE of three independent experiments.

Figure 11. FPSII and Respiration as a Function of Oxygen Concentra-

tion in Chlamydomonas mrl1 versus Wild-Type Cells.

Oxygen concentration was varied by letting the cells respire in the dark.

Cells were illuminated for 30 s before measuring the FPSII at 130 mE

m�2 s�1. Bars represent the SE of three independent measurements.
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transcription, we propose that MRL1 stabilizes the rbcL mRNA

by binding to its 59 UTR (nucleotides 292 to 21). As a possible

mechanism, it could act via stabilization of the secondary struc-

tures (Suay et al., 2005) known to shield the RNA from degrada-

tion by endonucleases. Direct binding to the target has been

proposed or demonstrated for several mRNA stabilization (M)

factors in Chlamydomonas (Boudreau et al., 2000; Herrin and

Nickelsen, 2004; Loiselay et al., 2008) and for other PPR proteins

(Nakamura et al., 2003; Schmitz-Linneweber et al., 2005; Pfalz

et al., 2009). In support of this hypothesis, we found that MRL1 is

part of a high molecular mass ribonucleoprotein complex, whose

size is shifted by RNase I treatment. We note that the size of the

MRL1 complex is less affected by the RNase treatment than by a

total lack of rbcL. This could suggest that the MRL1 protein

protects a region of the rbcL mRNA from the action of the RNase.

In accordance with previous studies (Dron et al., 1982;

Anthonisen et al., 2001), we found a single rbcL transcript in

Chlamydomonas, and the presence of a 59 triphosphate indi-

cates that it is not a processed form (see Supplemental Figure 3

online). It is still detectable in the mutant, consistent with our

finding that the mutation prevents the stabilization of the rbcL

transcript, but not its transcription. Genetic analysis and com-

plementation indicate that the previously described 76-5EN

mutation (Hong and Spreitzer, 1994) is in fact an allele of mrl1.

This casts some doubt on its reported defect in rbcL transcrip-

tion. We note that the RNA run-on transcription experiment

reported by these authors shows a substantial labeling of rbcL in

the mutant, and we propose that the reduced signal they observe

is due to rapid degradation of the transcript during the in vivo

labeling, rather than transcriptional block. This novel mrl1-2 allele

should prove a valuable tool for further dissection of MRL1

function.

In comparison with Chlamydomonas, the less severe pheno-

type of the Arabidopsis mrl1 mutants is explained by the coex-

istence of two rbcL transcripts in the latter. In all dicot and

monocot species that have been examined in detail, the rbcL

gene yields a single primary transcript, which is then processed

into a shorter form. The At-mrl1 mutants miss only the processed

form, and we conclude that MRL1 is necessary either for pro-

cessing or for stabilization of the processed form. The mecha-

nism that generates this secondary transcript in plants is

unknown, but we favor the hypothesis that MRL1 binding defines

the endpoint of nucleolytic degradation of the rbcL 59 end. This

would be similar to the recently reported mode of action of

another PPR, maize PPR10. This protein serves as a mark on its

target mRNAs defining the sites where exonucleases will stop

and, thus, the mature 59 and 39 ends of the processed forms

(Pfalz et al., 2009). A binding of MRL1 to the primary rbcL

transcript is supported by our finding that the mutation affects

the distribution of the transcript in the polysome gradient, al-

though other explanations, such as reduced ribosome loading,

absence of other protein factors, or enhanced cotranslational

mRNA degradation, should also be considered. In any event,

while MRL1 certainly plays a more complex role in Arabidopsis

than in Chlamydomonas, the basic mechanism could be very

similar. After binding to the primary transcript, MRL1 might either

fully stabilize it (as in Chlamydomonas) or serve as a mark to

determine the endpoint of its nucleolytic processing (as in

Arabidopsis). In both cases, it could also recruit other factors

promoting mRNA stabilization or translation (McCormac et al.,

2001). In plants, the primary transcript is intrinsically more stable

than in Chlamydomonas, and MRL1 is no longer necessary for

Rubisco biogenesis. Yet, the resulting increase in rbcL mRNA

accumulation or the ability to differentially regulate the two

mRNAs might benefit the fitness of the organism. This could

explain why rbcL’s interaction with MRL1 has been retained

despite the considerable divergence of its 59 UTR in terms both

of length and sequence.

Can we identify the cis-acting determinants of target recogni-

tion in rbcL, in other words, the MRL1 binding site, by virtue of

their sequence conservation? In chlorophyte algae, the rbcL 59
UTRs are too divergent for automatic sequence alignment (see

Supplemental Figure 8 online) and no convincing conserved

region emerges. The stability sequence described in the 59 UTR

of Chlamydomonas rbcL around position 247 (Suay et al., 2005)

is conserved only in Volvox, which makes it an unlikely candidate

for the MRL1 binding site.

By contrast, after aligning rbcL 59 UTR from a variety of

streptophytes (see Supplemental Figure 9 online), we found

remarkable sequence conservation at the very 59 end of

the processed transcript, the hypothesized MRL1 target in

Arabidopsis. The 15-nucleotide consensus sequence URUCGA-

GYAGACCYY was almost perfectly conserved just downstream

of the processing site. In plants, this 15-nucleotide sequence is

not predicted to be part of a stable stem-loop structure, and we

assume that MRL1 will bind this region in an extended confor-

mation. Similarly, the binding region of MCA1 has been found to

lie in the first 21 nucleotides of the petA mRNA (Loiselay et al.,

2008).

METHODS

Standard nucleic acids manipulations were performed according to

Sambrook et al. (1989). Primers are listed in Supplemental Table 1 online.

Chlamydomonas reinhardtii

Strains of Chlamydomonas were grown in Tris-acetate-phosphate or

minimum (acetate-free) medium, under continuous light (Harris, 1989).

For the description of recipient strain XS1 (cw15 arg7 mt+) and the

Table 2. Chlamydomonas Cell Survival in MIN Medium at 200 mE

m�2 s�1

Wild Type mrl1 DpsaB (PSI-Less)

O2 �O2 O2 �O2 O2 �O2

24 h 99.9 95 95 74 2 90

48 h 96 96 74 28 0 85

Cells were grown in TAP medium, centrifuged and resuspended to a

concentration of 106 cells mL�1 in MIN media with NaHCO3 (5 mM), and

exposed to air (+O2) or nitrogen (�O2). For counting, cells were first

stained with Alcian blue (which stains only dead cells) and then with

iodine (which stains and immobilizes all cells), and percentage of

survival was calculated.
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production and complementation of mutants, refer to Johnson et al.

(2007) For cell-walled strains, transformation by electroporation was

performed at 1 kV (Raynaud et al., 2007) instead of 0.72 kV. cDNA clones

were obtained through the Kazusa DNA Research Institute. Crosses were

performed using the standard protocol (Harris, 1989) with strains WTS34

+, WT242, or cw15 mt2, for generation of the DrbcL cw15 strain.

Run-on transcription was performed for 15 min as by Gagné and Guertin

(1992) with modifications (Stern and Kindle, 1993). Gene fragments derived

from coding sequences for psbB (1200 nucleotides), petA (1000 nucleo-

tides), or rbcL (550 nucleotides) were amplified by PCR, gel purified

(Qiagen), rerun (100 ng) on a 1.4% agarose gel, and transferred to nitrocel-

lulose (Amersham N+) prior to hybridization with the 33P-labeled RNA.

RNA isolation and gel blot analyses were performed as described

(Drapier et al., 1998), and, when mRNA was required for cloning the 59

extremity of MRL1 cDNA, the Oligotex mRNA mini kit (Qiagen) was used,

followed by reverse transcription (TaKara) and PCR amplification (Phu-

sion high fidelity DNA polymerase; Finnzyme) according to the manufac-

turers’ protocols, with primers MRL1-59.fwd and MRL1-59.rev. The MRL1

promoter fragment was amplified with primers MRL1-pro.fwd and MRL1-

pro.rev on genomic DNA. For rbcL, we used Thermo X reverse transcrip-

tase (Invitrogen) and the Taq PCR core kit (Qiagen) with primers rbcL_fwd

and rbcL_rev (578C, 35 cycles).

To construct the rbcL-petA chimeric reporter, the rbcL upstream region

(nucleotides 270 to +92 relative to the transcription start) was amplified

using primers Cr_PrbcL fw and Cr_PrbcL rev and cloned into pGEMTeasy

(Promega). The ClaI-NcoI fragment was then inserted into ClaI-NcoI–

digested paAFFF (Wostrikoff et al., 2004), thereby fusing the rbcL pro-

moter region to the petA coding sequence, generating pRFFF. A 2.9-kb

SacI-KpnI aadA cassette was excised from pEXC (Fisher et al., 1996),

blunted using T4 DNA polymerase, and then subcloned into HincII-

digested pRFFF, yielding pRFFFiK, where the cassette is transcribed

opposite to the rbcL-petA chimera. For the generation of theDrbcL strain,

the R15 region according to the Rochaix nomenclature was cloned into

pUC19 plasmid. The 7459-bp AleI-BseRI fragment from plasmid

R15pUC-2 was ligated with the 1940-bp SmaI-EcoRV fragment from

plasmid pMGS, containing the 59atpA-aadA-39rbcL cassette. Both frag-

ments were pretreated with T4 DNA polymerase to generate blunt ends

before cloning. In the resulting plasmid, pK15-2, the aadA gene is read on

the opposite strand relative to rbcL.

Chlamydomonas was transformed using tungsten particle bombard-

ment (Boynton and Gillham, 1993), as described by Kuras and Wollman

(1994). Transformants were selected on TAP-spectinomycin (100

mg·mL21) under low light (5 to 6 mE m22 s21) and subcloned on 500

mg·mL21 spectinomycin to reach homoplasmy. Proper insertion of trans-

forming DNA and homoplasmy were checked by PCR.

Protein analysis (Figure 1C) was performed according to Kuras and

Wollman (1994). For analysis of high molecular mass complexes (Figure

5), chloroplasts isolated from cw15 strains according to Zerges and

Rochaix (1998) were lysed in nonreducing hypotonic solution (10 mM

EDTA, 10 mM Tricin-KOH, pH 7.5, and Roche CompleteMini protease

inhibitors). Insoluble material was removed by centrifugation on a 1M

sucrose cushion (100,000g, 30 min) and the stroma-containing superna-

tant concentrated in Amicon Ultra filtration devices (Millipore) at 48C, with

or without 250 units of RNaseOne (Promega). Samples (2.5 mg protein)

were loaded through an SW guard column onto a 2.15 3 30-cm

G4000SW column (Tosoh), and elution was performed at 48C with buffer

containing 50 mM KCl, 5 mM MgCl2, 5 mM «-aminocaproic acid, and 20

mM Tricin-KOH, pH 7.5, at a pressure of 0.95 MPa. Elution fractions were

concentrated using Amicon Ultra devices and subjected to immunoblot-

ting. The Cr-MRL1 antibody was a kind gift of Christian Schmitz-

Linneweber and was generated using a 123–amino acid fragment of the

MRL1-C domain, outlined in Supplemental Figure 2 online. The stromal

loading control RBP40 was used as described by Schwarz et al. (2007).

Spectroscopy, Fluorescence, and Oxygen Measurements

In vivo spectroscopy was performed with a JTS spectrophotometer

(Biologic). PSI and PSII contents were calculated from changes in the

amplitude of the fast phase (100ms) of the electrochromic signal (at 520 to

545 nm) upon excitation with a saturating laser flash, as previously

described. PSII and PSI contribution were evaluated from the amplitude

of the signal measured in the presence or absence of the PSII inhibitors

DCMU (20 mM) and hydroxylamine (1 mM) (Joliot and Delosme, 1974).

Fluorescence kinetics were measured using a home-built fluorometer,

where fluorescence was excited with a green LED (520 nm) and measured

in the near far red. Oxygen evolution was measured using a Clark

electrode (Hansatech). FPSII, the quantum yield of PSII (Harbinson et al.,

1990), was calculated as (Fm9 2 Fs)/ Fm9, where Fm9 is the maximum

fluorescence emission level induced by a pulse of saturating light (;5000

mE m22 s21), and Fs is the steady state level of fluorescence emission.

NPQ was calculated as (Fm 2 Fm9)/ Fm9, where Fm is the maximum

fluorescence (Demmig-Adams et al., 1990). The oxygen dependence of

FPSII was measured using the JTS spectrophotometer, coupled to a

ruthenium oxygen sensor, similar to the one described by Tyystjarvi et al.

(1998).

Arabidopsis thaliana

Insertion lines were obtained from the SIGnAL (Alonso and Stepanova,

2003) and FLAGdb (Samson et al., 2002) mutant collections. After

vernalization, seeds were germinated either on Murashige and Skoog

agar containing 3% sucrose or directly in MetroMix 360 soil under a 16-h-

light/8-h-dark photoperiod and fluorescent light. Most experiments were

conducted at 200mE m22 s21, but functional analyses, and some RNA gel

blots, were performed at 100 mE m22 s21. Plants were genotyped by

PCR. The wild-type allele was amplified using the primer pair LP

SALK_072806/RP SALK_072806 for mrl1-1 and LP FLAG_568C09/RP

FLAG_568C09 for mrl1-2. The mutant allele was amplified using the

forward primers LBb1.3 for mrl1-1 and LB4 for mrl1-2 and the specific

reverse primers (RPs).

RNA was extracted with Tri-reagent (Molecular Research Center),

separated on a 0.8% agarose and 3% formaldehyde gel and blotted onto

Genescreen nylon membrane (Perkin-Elmer) by capillary transfer in 25

mM phosphate buffer. Following UV cross-linking in a Stratalinker

(Stratagene), membranes were hybridized in modified Church and Gilbert

buffer (0.25 M sodium phosphate, 1 mM EDTA, 7% SDS, and 0.1% BSA)

with radiolabeled gene-specific probes. The rbcL and psbA probes were

generated by PCR with the Arab rbcL.F and Arab rbcL.R primers, and At

psbA-59 and At psbA-39, respectively. For RT-PCR of MRL1, 0.5 mg of

total RNA was treated with DNase and reverse transcribed using Super-

script III (Invitrogen) and used as a template for PCR with primers

AtMRL1.fw1/AtMRL1.rev2 or the control primers UBQ1/UBQ2, which

amplify UBQ10. DNA was visualized using ethidium bromide.

For primer extension analysis of rbcL, 100 nmol of the AtrbcLrev T7

primer was radiolabeled with [g-32P]ATP and purified on a Sephadex

G-25 column. Five micrograms of total RNA was denatured in a 14.5-mL

reaction containing 13 reverse transcription buffer (Promega), 10 nmol

deoxynucleotide triphosphate, 40 units RNase inhibitor (New England

Biolabs), and 105 cpm of radiolabeled primer for 5 min at 758C and then

shifted to 508C for 5 min. Then, 2.5 units of AMV reverse transcriptase

(Promega) was added to the mix, and the reaction was allowed to

proceed for another 15 min at 508C, where it was stopped by adding 7 mL

of formamide buffer (98% formamide and 1 mM EDTA). Primer extension

products were separated through a 6% polyacrylamide-bisacrylamide

(19:1)/7 M urea gel after a 5-min denaturation at 658C. The gel was then

dried and exposed to a phosphor imager screen. RLM-RACE was

performed using the Generacer kit (Invitrogen) according to the manu-

facturer’s instruction, with primer AtrbcL RLM rev.
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Proteins were extracted from 3- to 4-week-old plants as described

(Wostrikoff and Stern, 2007). Ten micrograms of protein was separated

through 12% SDS-polyacrylamide gels, transferred onto polyvinylidene

fluoride membrane (Perkin-Elmer), and immunodecorated with anti-

bodies against Rubisco LS (Agrisera), PsaD (Agrisera), and cytochrome

f. ECL Plus (GE Healthcare) was used to reveal the immunoreactive

proteins, and the signal was detected using the STORM imager (GE

Healthcare).

Spectroscopy and fluorescence measurements were performed

using the same setups as described for Chlamydomonas. Intact leaves

from 4-week-old plants were clamped to the optical instruments

using specific sample holders. Humidified air was blown over

the leaves during the experiments to avoid CO2 limitation of photo-

synthesis.

Phylogenetic Analysis

The refined Clustal alignment of Supplemental Data Set 1 online was

analyzed with the PhyML program (Guindon and Gascuel, 2003) at http://

www.atgc-montpellier.fr/phyml/ using the substitution model HKY85, 0

invariable sites, four substitution rate categories, SPR and NNI tree

improvement, and the approximate likelihood ratio test (Anisimova and

Gascuel, 2006). The neighbor-joining tree (Saitou and Nei, 1987) of

individual repeats (see Supplemental Data Set 2 online) was calculated at

http://www.ebi.ac.uk/Tools/clustalw2/index.html (correct distance off

and ignore gaps off).

Accession Numbers

Sequence data from Arabidopsis and Chlamydomonas MRL1 can be

found in the Arabidopsis Genome Initiative (agi|At4g34830) or Joint

Genome Institute databases (jgi|Chlre4|206534|OVA_OVA_Chlre2_kg.

scaffold_1200023).
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4. Discussion 

 

4.1 Binary set of factors for protein synthesis in the chloroplast of 

Chlamydomonas 

Coordination of nuclear and chloroplast gene expression is mediated in several ways. 

Examples for post-transcriptional control include ribozymes / riboswitches. Ribozymes are 

catalytic RNAs that require little or no presence of accessory proteins. Riboswitches are RNA 

sensors that regulate post-transcriptional gene expression in response to temperature, other 

RNAs or metabolites (reviewed in Serganov and Patel 2007). 

However, control usually is mediated by nuclear encoded regulatory factors acting on all 

levels of gene expression in the chloroplast. Several recurring themes for regulation by these 

factors can be observed: the dependence of an RNA molecule’s lifespan and translational 

status on structural elements in its untranslated regions as well as prevalent binding of protein 

factors to these regions. These protein factors are often gene-specific and exhibit sharply 

divided functions. The first set of factors is composed of maturation factors necessary for 

stabilization and processing of their target messages, while the second set, represented by 

translation factors, is essentially required for translational activation of the processed 

transcript while interacting simultaneously with a factor from the first set. 

The first example for such a set of factors is the Nac2/RBP40 complex which was 

investigated in more detail in the course of this thesis. This HMW complex participates in the 

early steps of D2 synthesis in Chlamydomonas by interacting with the psbD mRNA 

(Boudreau, et al. 2000, Schwarz, et al. 2007, Schwarz and Nickelsen 2010, Schwarz, et al. 

2011). The psbD 5`UTR starts 74 nucleotides upstream of the start codon, but this full-length 

transcript is processed by degradation of the first 27 nucleotides independent of the presence 

of Nac2 (Nickelsen, et al. 1999). The processed region between the upstream positions -79 

and -47 is recognized by an unidentified membrane-bound protein of approximately 47 kDa 

which eventually mediates Nac2 binding (Nickelsen, et al. 1994). The processed transcript 

requires the first twelve nucleotides as well as interaction of Nac2 with a region between 

positions -32 and -26 for stability (Nickelsen, et al. 1999). Necessary for efficient translation 

are two additional sequences in the psbD 5’UTR, one for binding of RBP40 and the other one 

possibly involved in ribosomal binding by its complementarity to 16S rRNA (Nickelsen, et al. 

1999, Klinkert, et al. 2006). Therefore, the TPR protein Nac2 is the required 
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maturation/stabilization factor responsible for stabilizing the processed psbD message prior to 

its interaction with the translation factor RBP40 to initiate protein synthesis (Nickelsen, et al. 

1999, Boudreau, et al. 2000, Ossenbühl and Nickelsen 2000). Nac2 seems to be integral for 

the formation of this complex as the whole complex appears to be disassembled in a nac2 

mutant (see figure 9 in 3.1: Schwarz, et al. 2007). This is in agreement with the proposed 

main role of TPR proteins as mediators of protein-protein interactions (D'Andrea and Regan 

2003). Also fitting into this picture of a protein scaffold is that neither for Nac2 nor for Mbb1, 

another TPR protein involved in psbB mRNA stabilization, a direct binding to RNA could be 

reported (Boudreau, et al. 2000, Vaistij, et al. 2000b). 

Structural models of RBP40 provided evidence that the repeats of this translational activator 

belong to the “heterogeneous nuclear ribonucleoprotein K homology (KH)” or “RNA binding 

domain (RBD)” families (Barnes, et al. 2004). KH domains were first identified in the human 

heterogeneous nuclear ribonucleoprotein K. Since then, proteins with KH motifs were found 

in other eukaryotes as well as in prokaryotes (reviewed in Adinolfi, et al. 1999). These 

RNA/ssDNA binding proteins contain several copies of one motif of ~ 70 amino acids and 

serve in processes like splicing or translational control. Intriguingly, their target recognition is 

unique. A single KH domain binds only four nucleotides and higher specificity is acquired by 

tandem arrangement of more than one domain or by proximity of other recognition motifs 

(reviewed in Valverde, et al. 2008). Another organellar protein with a KH motif is the 

polynucleotide phosphorylase participating in mRNA degradation in spinach chloroplasts 

(Yehudai-Resheff, et al. 2003). Also interesting are RBD proteins because there are examples 

that would fit into the possible modus operandi of RBP40. This includes helicases altering the 

secondary structure of dsRNA (Hernandez, et al. 2010). Alteration of a RNA structure could 

be the role of interaction between RBP40 and the sterically blocked psbD start codon during 

translation initiation. Evidence supporting this presumption is the abolished D2 protein 

synthesis in the strain in which the poly(U)-region of the psbD mRNA for RBP40 binding 

was replaced (Klinkert, et al. 2006). An additional/alternative role for RBP40 might be the 

enhancement of interaction between the psbD transcript and ribosomal RNA. This guidance 

function was reported for a RBD motif-containing helicase in organellar RNA editing 

(Seiwert and Stuart 1994, Hernandez, et al. 2010). Similar to RBP40 several mitochondrial 

RNA binding proteins, isolated from potato, were described to preferentially bind to poly(U)-

rich sequences. Among those mitochondrial RNA-binding proteins was the chaperone HSP60 

(Vermel, et al. 2002). Interestingly, the chloroplast isoform of the HSP60 chaperone system in 

Chlamydomonas has been reported to bind RNA, too (Balczun, et al. 2006). However, it is 
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conceivable that chaperones, during their involvement in regulation of protein folding, only 

co-migrate with RNA binding complexes (Goldschmidt-Clermont 2009). This is intriguing as 

RNA-containing complexes were also detected when members of the HSP70 chaperone 

system were investigated in Chlamydomonas chloroplasts in this thesis (see 3.5: Dorn, et al. 

2010). Since these chaperones seem to fulfill a more general function, it is possible that they 

interact with HMW complexes involved in translation to regulate post-transcriptional steps of 

chloroplast gene expression.  

Participation of maturation/stabilization factors in Chlamydomonas is not specific to the psbD 

message, as a secondary structure in the very beginning of the 5`UTR of the rbcL transcript is 

necessary for stabilization of the rbcL message. Binding of the PPR protein MRL1 to the first 

nucleotides of the rbcL 5’UTR is required for transcript accumulation, turning it into a 

prerequisite for RbcL protein synthesis (Suay, et al. 2005, see 3.6: Johnson, et al. 2010). Also 

similar to D2 synthesis is the expression of petA, encoding the cytochrome f subunit of the 

cytochrome b6f complex. MCA1, the first described member of the PPR protein family in 

Chlamydomonas, functions as a stabilization factor of the petA transcript, whose start codon is 

part of a complex secondary RNA structure, similar to the situation in the psbD and rbcL 

transcripts (Loiselay, et al. 2008). The amount of petA transcripts is under control of MCA1 

whereas the protein level is limited by the availability of the translational regulator TCA1 

(Raynaud, et al. 2007). These factors form multimers by interacting with each other, possibly 

already accounting themselves for the observed size of the described HMW complex 

(Boulouis, et al. 2011). Also in higher plants a similar mechanism of modulating the stability 

and translation by binding of the protein PPR10 to the atpH transcript has been proposed for 

efficient translation of the respective mRNA (Prikryl, et al. 2011). 

Interaction of regulatory factors with target RNAs is not always limited to the untranslated 

regions. MDA1 in Chlamydomonas mediates its stabilizing function by interacting with the 

ORF of the atpA transcript (Drapier, et al. 2002). An additional example for regulation 

through an ORF is the interaction between the psaC coding region and the ndhD 5`UTR in 

tobacco chloroplasts. This represses translation of both the psaC and the ndhD transcripts 

(Hirose and Sugiura 1997). 

Further experiments have shown that several previously uncharacterized proteins are involved 

in post-transcriptional regulation of chloroplast gene expression in different organisms. The 

precise modus operandi of the investigated proteins and/or their participation in HMW 

complexes was not always elucidated (examples include Stampacchia, et al. 1997, Zerges, et 
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4.2 Influence of post-translational changes on protein synthesis 

Based on the assumption that chloroplast translation is controlled by a system of several 

factors interacting with a target message, research also focuses on the identification of 

mechanisms regulating these interactions. Even though regulation of plastid gene expression 

occurs at several levels (see I.4), activity of mature proteins can also be influenced by 

modifications at the post-translational level in response to external signals. These signals 

include in particular light quantity and quality, which might lead to changes especially in 

phosphorylation as described for the PSII core proteins D1, D2, CP43, CP47 and PsbH 

(reviewed in Pesaresi, et al. 2011). Another significant post-translational modification (PTM) 

that regulates protein activity is the glutathionylation of proteins via their cysteine residues. 

Thioredoxin f is an important example in the redox signaling pathways of the chloroplast 

(reviewed in Lemaire, et al. 2007, Montrichard, et al. 2009). This field of work is supported 

by proteomic approaches detecting specific modifications of chloroplast proteins as a function 

of changing external signals, i.e. the compilation of maps of chloroplast sub-fractions 

(Yamaguchi, et al. 2003, Förster, et al. 2006). 

In case of RBP40, one of these analyses in C. reinhardtii which was based on a mass-

spectrometrical identification of isoelectrically focused stromal proteins did not reveal N-

terminal acetylation to be a PTM of RBP40 as it is reported for D1, D2 and RbcL (Bienvenut, 

et al. 2011). Instead, Michelet and co-workers found RBP40 to be a target for 

glutathionylation under induced oxidative stress, which always occurs at the thiol group of 

cysteine residues (2008). The only cysteine residue within the RBP40 protein sequence is 

located in the proposed transit peptide (Barnes, et al. 2004). Subsequently, there must be an 

unusually short transit peptide upstream of that cysteine (Schwenkert, et al. 2011). RBP40 

could also localize to the stroma by an alternative import pathway, which does not involve 

processing of the import signal, as the size of full-length RBP40 did not change after in vitro 

chloroplast import experiments (Barnes, et al. 2004). The occurrence of a cysteine residue in 

the mature RBP40 protein is further supported by a cysteine-specific thiol-alkylation of the 

native RBP40 protein shown in this thesis (see 3.3: Schwarz, et al. 2011). Thus, RBP40 is 

likely regulated by redox-dependent glutathionylation of its single cysteine residue, which is a 

regulator of its association to the Nac2 complex and therefore the initiation of D2 synthesis 

(see 3.3: Schwarz, et al. 2011). Additionally, association of RBP40 could be affected by the 

redox state of its interaction partner Nac2, a protein containing eleven cysteine residues. 

Interestingly, the last two of those are located within the C-terminal TPR domains of Nac2, 
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whose redox state might influence the protein structure of that TPR protein to change the 

ability of Nac2 for protein-protein interaction or RNA-binding capacity (see 3.3: 

Schwarz, et al. 2011).  

Another mechanism to post-translationally regulate the activity of proteins involved in 

translation is represented by methylation of protein arginines. This modification mainly 

targets RNA-binding proteins and has been shown in mammalian cells (Pahlich, et al. 2006, 

Bedford 2007, Blackwell, et al. 2010). So far, there is no experimental proof that also RBP40 

is regulated by arginine methylation. However, in silico analysis revealed a target motif for an 

arginine-specific methyltransferase, even though until now, no such transferases have been 

characterized in chloroplasts. In silico analyses of annotated and predicted Chlamydomonas 

genes show that there are transferase homologues with putative chloroplast localization 

(Schwarz and Nickelsen, unpublished results). In combination with a potential target motif in 

RBP40, a comparable additional regulation of D2 synthesis by methylation of RBP40 is a 

tempting speculation. Methylation of arginine residues was recently shown to decrease the 

RNA-binding activity of the cytosolic translation repressor NAB1. Oxidative modifications 

(including redox-dependent glutathionylation) of the cysteine residues in NAB1’s RNA 

recognition motif (RRM) also have a negative influence on the protein’s RNA binding 

capacity (see 3.4: Wobbe, et al. 2009, Blifernez, et al. 2011). 

The requirement of binding ATP-binding for HSP70B to enable interactions with CDJ3 is 

another example for potentially PTM-induced conformational changes as CDJ3 is present in 

RNA-containing complexes and its redox-reactive ferredoxin domains could regulate 

chaperone interaction with specific substrates (see 3.5: Dorn, et al. 2010). Taken together, 

results achieved during this thesis provide interesting insights into mechanisms regulating 

plastidic translation by post-translational modification of involved proteins. 

 

4.3 Influence of the organellar redox state on chloroplast translation 

activity  

Change of translation rates by redox levels as described for the translational repressor NAB1 

does not only take place in the cytosol. Reversible formation of a disulfide bridge also 

influences psbD translation in the chloroplast of C. reinhardtii as it was shown in this thesis. 

Establishment of that disulfide bridge associates RBP40 to Nac2 for efficient D2 synthesis in 

the light (see 3.3: Schwarz, et al. 2011). The assembly of translational activators to a target 
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RNA is an important key player of organellar gene expression as translation is supposed to be 

the pacemaker of protein synthesis in the chloroplasts (Eberhard, et al. 2002). In a comparable 

manner redox-dependent interaction of several proteins involved in D1 synthesis was 

proposed (see 1.4.3, Barnes and Mayfield 2003, Somanchi, et al. 2005, Alergand, et al. 2006). 

This also holds true for the light dependence of the synthesis rates of the D1 and D2 proteins 

(Malnoë, et al. 1988, Trebitsh, et al. 2000, see 3.3: Schwarz, et al. 2011). 

The redox regulation of the synthesis of the D2 protein presents a certain challenge. The 

disulfide bridge that is necessary for assembly of the Nac2/RBP40 complex and subsequent 

translation of psbD mRNA is formed in the light and opened in the dark. Lack of 

photosynthetic electron flow during the night cannot reduce this disulfide bridge, whereas 

during the day this covalent bond exists in presence of reducing equivalents that are produced 

from photosynthesis. It is shown in this thesis that a possible source in Chlamydomonas, 

supplying the required electrons for reduction of the Nac2-RBP40 disulfide bridge in the dark, 

could be the NADPH-dependent thioredoxin reductase class C (NTRC) system (see 3.3: 

Schwarz, et al. 2011), which is exclusive to photosynthetic organisms (Pascual, et al. 2011). 

In comparison to other NADPH-dependent thioredoxin reductases, NTRC contains an 

additional thioredoxin domain and offers an alternative electron pathway independent of light 

and ferredoxin. The thioredoxin is reduced by electrons from NADPH by using FAD as a co-

factor (Chibani, et al. 2010). This alternative electron source is possible in the dark as 

NADPH can be generated by the oxidative pentose phosphate pathway (Neuhaus and Emes 

2000). One of the described functions of this enzyme was the reduction of thiol-dependent 

peroxidases during stress responses in Arabidopsis (Moon, et al. 2006). NTRC mutants were 

hypersensitive to extended periods of darkness due to accumulation of hydrogen peroxide 

whereas electrons - required for peroxide reduction - can be provided by ferredoxin during the 

day (Pérez-Ruiz, et al. 2006). Other pathways affected by NTRC include functions during 

biogenesis of aromatic compounds and chlorophyll as well as protection against abiotic stress 

(Serrato, et al. 2004, Stenbaek, et al. 2008, Lepistö, et al. 2009). Moreover, it has been linked 

to the regulation of starch synthesis in combination with the ferredoxin/thioredoxin system 

(Ballicora, et al. 2000, Michalska, et al. 2009). Data provided here suggest an additional role 

of this multifunctional enzyme: the involvement in chloroplast gene expression in the dark. 

The finding of a possible regulatory function of NTRC in synthesis/assembly of PSII 

reinforces the linkage between intracellular transport, metabolism and nutrient availability by 

alteration of redox states and post-translational modifications (Geigenberger, et al. 2005, 
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Bräutigam, et al. 2009, see 3.4: Wobbe, et al. 2009, Balsera, et al. 2010, Dorn, et al. 2010, 

Blifernez, et al. 2011, see 3.3: Schwarz, et al. 2011). In conclusion, a further validation of the 

involvement of the NTRC system in D2 synthesis would provide a direct link between 

expression of chloroplast genes and carbon metabolism in C. reinhardtii. This would provide 

an important crosstalk between photosynthesis and catabolic cell activities. Further details 

that await elucidation include the identification of the cysteine residue of Nac2 interacting 

with RBP40, the elucidation of the function of a predicted NADPH binding site in Nac2 and 

the characterization of the electron acceptor necessary for the formation of the disulfide 

bridge between Nac2 and RBP40. 

A further example of a chloroplast protein whose translation relies on the organellar redox 

state is the large subunit of Rubisco. Synthesis of that protein responds to shifts in the 

glutathione pool caused by oxidative stress (Irihimovitch and Shapira 2000). Oxidative events 

at thiol groups in the Rubisco protein induce a conformational change which leads to the 

exposure of an N-terminal structure with homologies to RRM domains and the human U1A 

splicing factor. This change of protein confirmation, possibly assisted by chloroplast 

chaperones of the HSP60 family, enables Rubisco to bind RNA unspecifically under 

oxidizing conditions (Hemmingsen, et al. 1988, Yosef, et al. 2004). Binding of the protein to 

RNAs in its vicinity, including rbcL mRNA, might stall protein synthesis to lessen the effects 

of oxidative stress. (Cohen, et al. 2005). Further results also showed a co-regulation of 

chaperones belonging to HSP70 complexes and stress conditions as well as their involvement 

in the synthesis of bacterial Rubisco (Checa and Viale 1997, Shrager, et al. 2003). 

Additionally, HSP70 was found to be a potential thioredoxin target itself (Lemaire, et al. 

2004). During this thesis, it was shown for members of the HSP70 chaperone family in 

Chlamydomonas that chaperone complexes themselves contain RNA. It was not elucidated so 

far if the interaction with RNA is direct or if the chaperone binds co/post-translationally to the 

protein encoded by that RNA (see 3.5: Dorn, et al. 2010). This gives rise to the opportunity 

that the organellar redox state directly regulates translational activity for plastidial proteins. 

As an alternative, translational regulation could occur via feedback mechanisms through 

disassembly of resulting protein complexes in response to the oxidation level of a cellular 

compartment. An example of translational regulation by the assembly state of the resulting 

complex is the synthesis of PSII core subunits in Chlamydomonas according to the CES 

principle, e. g. psbB translation also depends on redox-dependent D2 synthesis in addition to 
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the level of available chlorophyll (see 1.4.3, Eichacker, et al. 1992, Plumley and Schmidt 

1995, Minai, et al. 2006).  

These examples of post-transcriptional regulatory events for synthesis of proteins show that 

fluctuating interactions between several factors are necessary for maintaining cellular survival 

while adapting to external (e.g. light conditions) and internal aspects (e.g. available 

interaction partners). 

In conclusion, the results of this thesis enhanced the understanding of several aspects that 

fulfill important functions in the post-transcriptional regulation of chloroplast gene expression 

in C. reinhardtii. 
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5.1 List of publications 

During the progress of this thesis the following papers were published or are in submission. 

 

Research articles 

Schwarz, C., Bohne, A.V., Cejudo, F.J. and Nickelsen, J. (2011) An intermolecular 
disulfide-based light switch for chloroplast psbD gene expression in Chlamydomonas 
reinhardtii. Plant J., (submitted) 

Dorn, K.V., Willmund, F., Schwarz, C., Henselmann, C., Pohl, T., Hess, B., Veyel, D., 
Usadel, B., Friedrich, T., Nickelsen, J. and Schroda, M. (2010) Chloroplast DnaJ-
like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-
reactive Fe-S clusters and interact with stromal HSP70B. Biochem. J., 427, 205 – 215 

Johnson, X., Wostrikoff, K., Finazzi, G., Kuras, R., Schwarz, C., Bujaldon, S., Nickelsen, 
J., Stern, D.B., Wollman, F.A. and Vallon, O. (2010) MRL1, a conserved 
pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in 
Chlamydomonas and Arabidopsis. Plant Cell, 22, 234 – 248 

Schwarz, C. and Nickelsen, J. (2010) Enrichment of native, high molecular weight 
ribonucleoprotein complexes from chloroplast by consecutive gel filtration steps. 
Endocyt. Cell Res., 20, 89 – 94 

Wobbe, L., Blifernez, O., Schwarz, C., Mussgnug, J.H., Nickelsen, J. and Kruse, O. 
(2009) Cysteine modification of a specific repressor protein controls the translational 
status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc. Natl. Acad. Sci. 
USA, 106, 13290 – 13295 

Schwarz, C., Elles, I., Kortmann, J., Piotrowski, M. and Nickelsen, J. (2007) Synthesis of 
the D2 protein of PSII in Chlamydomonas is controlled by a high molecular mass 
complex containing the RNA stabilization factor Nac2 and the translational activator 
RBP40. Plant Cell, 19, 3627 – 3639 

 

Reviews 

Bohne, A.V., Schwarz, C., Jalal, A., Ossenbühl, F. and Nickelsen, J. (2009) Control of 
organellar gene expression in Chlamydomonas reinhardtii – future perspectives. 
Endocyt. Cell Res., 19, 70 – 80 

Wobbe, L., Schwarz, C., Nickelsen, J. and Kruse, O. (2008) Translational control of 
photosynthetic gene expression in phototrophic eukaryotes. Physiol. Plant., 133, 507 – 
515 
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