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2. Abbreviations 

+ wild-type allele 

- null allele 

AJ adherens junctions 

AMP adenosine-monophosphate 

AMPK AMP-activated protein kinase 

ATM ataxia telangiectasia mutated 

ATR ATM- and Rad3-related 

BCC basal cell carcinoma 

xC x chromosome complements 

CDK cyclin-dependent kinase 

CIN chromosomal instability 

CSF colony-stimulating factor 

DMBA 7,12-Dimethylbenz(a)anthracene 

DNA-PK DNA-dependent protein kinase 

ECM extra-cellular matrix 

ES cells embryonic stem cells 

FA focal adhesion 

Fblim1 filamin-binding LIM protein 1 

fl floxed allele 

IFE interfollicular epidermis 

IL-1 interleukin-1 

IL1RA interleukin-1 receptor antagonist 

IR ionizing radiation 

Kn keratin n 

LIM Lin-11/Isl-1/Mec-3 

xN (x multiples of) the monoploid chromosome complement 

NES nuclear export signal 

NMSC non-melanoma skin cancer 

ORS outer root sheath 

PPARβ/δ peroxisome proliferator–activated receptor β/δ 

SAC spindle assembly checkpoint 

SCC squamous cell carcinoma 

siRNA short interfering RNA 

Tnf(r) tumor necrosis factor (receptor) 

TPA 12-O-Tetradecanoylphorbol-13-acetate 
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3. Summary 

Integrins are major cellular adhesion molecules that mediate binding to the 

extracellular matrix (ECM). Cell adhesion to the ECM is essential for the 

development and homeostasis of all multi-cellular organisms. The affinity of integrins 

for matrix ligands is increased by the β integrin tail binding proteins talin and kindlin, 

and decreased by filamin. Migfilin was found to interact both with kindlin-2 and 

filamins in vitro. siRNA-mediated depletion of migfilin was reported to interfere with 

cell adhesion and spreading, which made the study of migfilin in vivo an interesting 

case for increasing our understanding of integrin function. To this end, we disrupted 

its expression in mice using the gene ablation technology in embryonic stem (ES) 

cells. 

To identify cell types and tissues that could be affected by the loss of migfilin 

expression, we investigated the expression of migfilin in cells, tissues and different 

developmental stages. In adult mice, migfilin was mainly expressed in heart, lung, 

skin, and in simple epithelia. In embryos migfilin was expressed throughout 

embryonic development. Migfilin-null mice had no detectable phenotypes. Moreover, 

integrin activation, cell adhesion and spreading were normal in primary migfilin-null 

cells. Migfilin-null skin keratinocytes, but not fibroblasts, had a slightly reduced 

migration velocity. This overall lack of defects could not be due to long-term 

compensatory defects, as transient siRNA-mediated depletion of migfilin also failed 

to produce any detectable defects in fibroblasts (these results are shown in Moik et 

al., 2011a). 

In parallel to the analysis of the constitutive deletion of the migfilin gene in mice, 

we also restricted migfilin loss to the epidermis using the Cre/loxP system. Cre 
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expression is known to have cytotoxic off-target effects. Although migfilin-null skin 

was normal, the expression of Cre in migfilin-null epidermis induced a reactive 

inflammatory hyperplasia in the skin associated with lethality between 7-10 days 

after birth. Adhesion defects were not observed in the mutant epidermis. However, 

the Cre recombinase increased cellular ploidy and apoptosis when expressed in 

migfilin-null background. Apoptosis increased over time and correlated with the 

increasing morbidity. Since Cre-expressing wild-type epidermis was normal, these 

findings point to a dedicated role of migfilin as a suppressor of tetraploidy in 

epidermis. 

A well-known suppressor of tetraploidy is p53. Deletion of p53 in Cre-expressing 

migfilin-null epidermis further increased morbidity, suggesting that migfilin is part of a 

novel tetraploidy-repression mechanism that functions independently of p53. 

Tetraploidy is an intermediate towards aneuploidy and promotes carcinogenesis and 

cancer progression in vivo. To test if migfilin suppresses tetraploidy-associated 

tumor formation independently of Cre recombinase, we exposed migfilin-null mice to 

the DMBA/TPA two-stage skin carcinogenesis protocol. Loss of migfilin led to 

significantly increased tumor incidence and number, confirming that migfilin is a bona 

fide tumor suppressor, probably by suppressing tetraploidy (these results are shown 

in Moik et al., 2011b). 
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4. Introduction 

Migfilin and the Zyxin family 

The zyxin gene family consists of seven highly conserved members in 

mammals. The genes code for adaptor proteins with a variable N-terminus, a proline-

rich domain with a nuclear export signal (NES), and three C-terminal Lin-11/Isl-

1/Mec-3 (LIM) domains, as shown for migfilin/Fblim1 (filamin-binding LIM protein 1) 

(Figure 1, p.6). LIM domains are tandem zinc finger protein interaction domains 

(Kadrmas and Beckerle, 2004; Zheng and Zhao, 2007).  

Like all zyxin family members, migfilin is found at cell-matrix adhesion sites, also 

called focal adhesions (FAs) (Takafuta et al., 2003; Tu et al., 2003), cell-cell 

adhesions (Gkretsi et al., 2005), and in the nucleus (Akazawa et al., 2004) (Figure 1, 

p.6). It is recruited to these compartments by its C-terminal LIM domains (Gkretsi et 

al., 2005). Migfilin is shuttled out from the nucleus by karyophorins recognizing the 

NES (Akazawa et al., 2004). The recruitment to FAs is tension-dependent for all 

zyxin family proteins, pointing to an important function as sensors and/or modulators 

of intracellular tension (Schiller et al., 2011). 

In mouse, the genes of  four members of the zyxin family have previously been 

ablated: ajuba (Pratt et al., 2005), limd1 (Feng et al., 2007), lpp (Vervenne et al., 

2009) and zyxin (Hoffman et al., 2003). Previous in vitro data suggested that their 

gene ablation should result in substantial defects. However, embryonic development 

and homeostasis were normal in their absence. When the mutant mice were 

exposed to specific stressors some of the proteins gave rise to defects including 

inflammation (ajuba, Feng and Longmore, 2005) and cancer (limd1, Sharp et al., 

2008). This argues for molecular redundancy regarding adhesive functions, whereas 
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the specific stress response functions were not fully compensated. In fly, ablation of 

one of the two zyxin family members was pharate lethal, but also here there were no 

obvious adhesion defects (Das Thakur et al., 2010). 

 

We chose to study the functional role of the zyxin family member migfilin, a 

putative interactor of the essential integrin adaptor Kindlin-2/Fermt-2 (fermitin family 

homolog-2) (Montanez et al., 2008). Biochemical and cell culture experiments 

suggested an important role for migfilin in integrin activation (Lad et al., 2008), cell 

adhesion (Gkretsi et al., 2005; Tu et al., 2003), migration (Zhang et al., 2006), 

transcriptional activation (Akazawa et al., 2004), and cell survival (Zhao et al., 2009). 

In vivo, we expected migfilin would have a role in cell-cell adhesion of cutaneous 

 

Figure 1: Domain architecture and sub-cellular localization of migfilin. 

Migfilin weakly localizes to actin stress fibers via interaction of its N-terminus with 

filamins. Migfilin’s C-terminal triple LIM domains mediate its localization to cell-

matrix and cell-cell adhesion sites. The LIM domains also enable accumulation of 

migfilin in the nucleus if its nuclear export signal (NES) in the proline-rich domain is 

mutated. In the nucleus, migfilin can co-activate transcription factors like Nkx2.5. 
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epidermis, as kindlin-2 localizes exclusively to cell-cell, but not to cell-matrix 

adhesions in this tissue (Ussar et al., 2008). 

 

Migfilin function in its sub-cellular compartments 

Migfilin in focal adhesions 

Cellular adhesion to the ECM is highly dependent on the integrin family of 

heterodimeric transmembrane receptors (Hynes, 2002). Integrins consist of 18 α- 

and 8 β-subunits. Integrin ligand-specificity depends on which α- and β-subunits 

dimerize. Keratinocytes for example adhere to laminins via the hemidesmosomal 

integrin α6β4 and the FA integrin α3β1, and to collagens via integrin α2β1 

(Margadant et al., 2010). Disruption of integrin β1 function is lethal during 

embryogenesis (Fässler and Meyer, 1995) or it results in blistering and organ defects 

if the disruption is organ restricted (Brakebusch et al., 2000; Lorenz et al., 2007). 

Stable attachment of cells to their surrounding ECM provides not only 

mechanical stability, but also triggers downstream signaling events that regulate 

processes such as polarity, survival, proliferation and differentiation (“outside-in” 

signaling) (Legate et al., 2009). The extent of integrin signaling is not solely 

dependent on integrin surface expression levels, but also on their conformational 

activation state (Moser et al., 2009) and their recycling (Caswell et al., 2009): Integrin 

heterodimers are by default preferentially in an inactive conformation, and 

intracellular integrin ligands such as talins and kindlins shift integrins into an active 

conformation (“inside-out” signaling) (Moser et al., 2009). This adaptor-induced 

allostery effectively increases the amount of integrins available for matrix binding, in 

return enabling increased attachment and outside-in signaling. Other intracellular 

integrin ligands like filamin shift integrins back into an inactive conformation (Kiema 
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et al., 2006). In some cell types such as thrombocytes, integrins need to be kept in 

an inactive state and are activated following a specific stimulus by inside-out 

signaling to fulfill their biological function (Moser et al., 2008; Nieswandt et al., 2007). 

In other cell types such as keratinocytes, integrin activation modulates integrin 

turnover and the number/stability of FAs (Reinhard Fässler, personal 

communication). 

Migfilin was shown to bind both kindlin-2 and filamins (Takafuta et al., 2003; Tu 

et al., 2003), making migfilin an attractive target for studying integrin activation. 

Migfilin was shown to enhance integrin activation in vitro by competing with β integrin 

cytoplasmic tails for filamin binding, and migfilin-derived peptides could activate 

thrombocytes (Ithychanda et al., 2009; Lad et al., 2008). Migfilin’s possible role in 

integrin activation might explain adhesion defects observed after siRNA-mediated 

depletion of migfilin in cell lines (Tu et al., 2003). Defective integrin activation upon 

loss of migfilin expression could also account for defects in cell migration and 

survival (Zhang et al., 2006; Zhao et al., 2009). Migration was also defective after 

migfilin overexpression (Zhang et al., 2006). 

 

Migfilin in cell-cell adhesions 

Adhesion between cells is mediated by adherens junctions (AJ) and 

desmosomes and is established by homo-dimerization between cadherins on 

adjacent cells. AJ connect the cell-cell adhesion to the actin cytoskeleton via 

catenins, whereas desmosomes connect intracellularly to intermediate filaments. 

Abolishment of cell-cell interactions prohibits organogenesis and homeostasis 

(reviewed in Stepniak et al., 2009). 
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Immunoelectron microscopy in epithelial cells showed that migfilin localized to 

AJ (Gkretsi et al., 2005). siRNA-mediated depletion of migfilin in HT1080 cells 

diminished E-cadherin and β-catenin staining and weakened cell-cell adhesion, 

pointing to a possible function of migfilin in formation or maintenance of cell-cell 

contacts (Gkretsi et al., 2005). 

 

Nuclear functions of migfilin 

Migfilin is highly expressed in mouse heart and was found to interact with and 

transactivate the transcription factor Nkx2.5 (Akazawa et al., 2004). Migfilin is usually 

efficiently excluded from the nucleus, but high intracellular Ca2+-levels were shown to 

enable nuclear localization of migfilin, as did deletion of the NES or inhibition of 

karyophorins. Deletion of the NES further increased Nkx2.5 transactivation, while 

deletion of the C-terminal LIM domains abolished it. Overexpression of a NES-

deficient migfilin mutant increased cardiomyocyte-specific transcript levels in 

P19CL6 cells, an embryonic carcinoma cell line which can assume some 

characteristics of cardiomyocytes upon treatment with Dimethylsulfoxide. This 

indicates a potential role of migfilin in cardiac development and/or homeostasis. 

 

Gene targeting of migfilin in mouse using Cre recombinase 

To study the role of migfilin in development, homeostasis, and disease, we 

pursued a reverse genetics approach by targeting migfilin for genetic ablation. 

Specific genomic loci can be manipulated in ES cells by homologous recombination. 

These ES cells are then introduced into blastocysts and give rise to chimeras and to 

mutant mouse lines after germ line transmission. Commonly used genetic 

modification strategies include the introduction of point mutations to manipulate 
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protein function, delete genes, or introduce new genes into a specific locus. For 

inducible and/or tissue-specific gene targeting, genes are flanked with loxP sites 

(“floxing”, fl), consisting of a palindromic 34 base pair sequence of viral origin that is 

recognized by the Cre recombinase. Cre-mediated excision of floxed alleles allows 

time- and cell type-specific gene modification depending on the promotor used to 

drive Cre expression (Rajewsky et al., 1996). 

Since we were interested in the role of migfilin in vivo, we wanted to analyze the 

consequences of constitutive and epidermis-specific ablation of migfilin. Keratin 5 

(K5) or K14 promoters for Cre transgene expression enable gene targeting in the 

stratified epithelium of the epidermis when using male carriers, as the floxed migfilin 

allele is excised in basal layer keratinocytes that gives rise to all other epidermal 

layers (Hafner et al., 2004; Ramirez et al., 2004). Female carriers have constitutive 

null-offspring due to K5 and K14 promoter activity in oocytes, which results in oocytic 

Cre activity. These transgenes can thus be used to study the effects of both 

constitutive and stratified epithelium-specific ablation of a floxed gene in parallel. 

 

Cre recombinase – a useful tool with routinely overlooked side-effects 

One caveat when using Cre recombinase is its off-target activity, which 

presumably results from nonspecific recognition of genomic sequences that distantly 

resemble loxP sites (Thyagarajan et al., 2000). These are present at a frequency of 

1 per 1.2 mega base pairs in the mouse genome (Semprini et al., 2007). In cells, 

nonspecific Cre recombinase activity inhibits proliferation and results in increased 

fractions of cells with 4 or more chromosomal complements (C) and chromosomal 

aberrations (Loonstra et al., 2001; Pfeifer et al., 2001; Silver and Livingston, 2001). 

In mice, Cre can nonspecifically induce apoptosis and chromosomal instability (CIN) 
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(Higashi et al., 2009; Naiche and Papaioannou, 2007) and damage post-mitotic DNA 

(Schmidt et al., 2000). This necessitates proper controls to avoid conclusions that 

may potentially be based on Cre-mediated toxicity (Lee et al., 2006; Schmidt-

Supprian and Rajewsky, 2007). Such possibilities, however, are not routinely 

discussed in publications employing Cre-mediated gene ablation. 

 

General role and composition of skin 

Establishment and maintenance of a firm barrier to the environment is essential 

for all organisms. This barrier ranges in complexity from the bacterial cell envelope to 

mammalian skin, a complex organ derived from several germ layers. Some tasks are 

universal to all these barriers: defining a clear boundary between the organism and 

its environment, maintaining homeostasis of water and other compounds, protecting 

against harm e.g. from radiation, trauma, and pathogens. Some highly developed 

organisms like mammals additionally need to maintain a constant body temperature 

for survival. Mammalian skin therefore also needs to insulate against cold and heat. 

Skin is thus the most exposed organ to various forms of stress, and studying the 

stress response of skin can provide useful knowledge for treatment of a variety of 

human diseases (e.g. Segre, 2006; Wagner et al., 2010). Mouse and human skin are 

similar, making mouse skin a useful model for human skin development and 

diseases despite macroscopic differences such as a reduced thickness of mouse 

skin, its near-lack of sweat glands, and its increased density of hair follicles 

compared to most parts of human skin (Wagner et al., 2010). 
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Epidermis 

The architecture of skin is composed of distinct compartments (Figure 2A, p.12) 

(McGrath et al., 2008). The outmost compartment is the epidermis, a squamous 

stratified epithelium that predominantly consists of keratinocytes. Epidermal 

keratinocytes are organized in histologically well-distinguishable layers (Figure 2B). 

First, there are basal keratinocytes attached to a basement membrane. Above them 

are three suprabasal keratinocyte layers: spinous, granular and cornified. All 

epidermal layers contribute to mechanical stability, which depends on expression 

and intra- and intercellular cross-linking of keratins and secreted matrix proteins 

(Elias, 2005; Proksch et al., 2008). 

 

Figure 2: Architecture of mammalian skin and epidermis. 

(A) Mammalian skin compartments: epidermis (e), dermis (d), subcutis (s) and 

muscle layer (m). The dermal-epidermal basement membrane (bm) is indicated by 

a blue line. Continuous with the epidermis are hair follicles (hf), which produce the 

hair shaft (hs). (B) Epidermal keratinocyte layers: basal, spinous, granular and 

cornified. Nuclei are indicated by blue circles, granula by small purple ellipses. 
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Passage of liquids or pathogens is averted by the outside-in barrier, which is 

maintained by highly cross-linked protein and lipid complexes in the cornified layer 

(Segre, 2006). Protection against radiation (e.g. ambient UV radiation) is also 

provided by the cornified layer (Denecker et al., 2007). Water loss from the inside is 

partially prevented by this barrier and mainly by tight-junctions in the granular layer 

(inside-out barrier) (Brandner et al., 2006). Furthermore, keratinocytes function as 

non-professional antigen presenting cells, stimulate innate immunity and produce 

anti-microbial peptides – for these reasons, epidermis is often viewed as a primary 

immune organ (Nestle et al., 2009). 

Epidermis is not innervated or vascularized, receiving nutrients from the 

underlying dermal layers. It also contains melanocytes, which leave mouse 

epidermis shortly after birth in pelagic skin to colonize hair follicles (Okura et al., 

1995). This is in contrast to human melanocytes, which persist in the epidermis 

throughout life and are replenished by dermal melanoblasts (Costin and Hearing, 

2007). Melanocytes produce melanin-containing melanosomes that are transferred 

to keratinocytes and protect against UV irradiation (Box and Terzian, 2008). This 

process is regulated by the tumor suppressor and stress sensor p53 (Figure 3, p.14): 

p53 is activated in irradiated keratinocytes and induces the expression of 

melanogenic cytokines like Kit ligand (Kitl), which stimulates proliferation of 

melanocytes and leads to an increased production of melanosomes (Cui et al., 2007; 

McGowan et al., 2008; Murase et al., 2009). 
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Dermis and subcutis 

The dermis is a collagen-rich mesenchyme mostly composed of fibroblasts and 

resident macrophages (Dupasquier et al., 2004). It is connected to the epidermis at 

the basement membrane and is continuous with the subcutis, containing white 

adipose tissue connected to a subcutaneous muscle layer underlying the whole skin. 

These layers also contain lymphatic vessels, blood vessels and nerves (McGrath et 

al., 2008; Wagner et al., 2010). 

 

 

Figure 3: p53-mediated epidermal tanning 

Upon UV irradiation, p53 is activated in keratinocytes and upregulates 

melanogenic factors like Kit ligand (Kitl), which stimulates melanocyte proliferation 

and melanosome production by binding to the receptor tyrosine kinase Kit. 

Melanosomes are consequently transferred to keratinocytes and increase 

protection against further UV irradiation. 
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Skin appendages 

The appendages of the skin fulfill additional tasks beyond barrier function. 

Especially hair is very versatile and serves a variety of uses: pelagic hair ensures 

thermal homeostasis, as it insulates the body, while e.g. the hair of whiskers has 

sensory functions. Thermal insulation is further increased when the arrector pili 

muscle pulls at the hair follicle and erects the hair. Colored pelagic hair can also 

provide camouflage or serve in signaling/warning purposes. Sweat glands can 

provide cooling. Sebaceous glands grease hair and epidermis, decreasing wear and 

tear on hair and increasing epidermal barrier efficiency, and have important anti-

microbial and endocrine functions (Zouboulis et al., 2008). Specialized skin 

appendages like nails or claws can serve as weapons and assist in movement. 

 

Epidermis in development and homeostasis 

Epidermis is derived from ectodermic progenitor cells and forms a single layered 

simple epithelium by E8.5 in mouse. After formation of a transient second cell layer, 

the peridermis, by E10.5, suprabasal cell layers develop and stratify between the 

basal layer and peridermis. With establishment of epidermal barrier function between 

E16 and E18, the peridermis is lost and stratification is complete (Mack et al., 2005). 

During homeostasis, epidermis is constantly renewed by p63-mediated 

programmed differentiation of basal keratinocytes, which in turn are constantly 

replenished by a pool of epidermal stem cells (Kaur, 2006) (Figure 2B, p.12). Upon 

differentiation, basal epidermal keratinocytes stop proliferating, down regulate 

integrin expression and delaminate from the basement membrane (Watt, 2002). 

They consequently undergo programmed differentiation while progressing upward 

through the spinous and granular layer into the cornified layer. Differentiation status 
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can be assessed by specific markers: e.g. basal keratinocytes express the keratin 

dimers K5 and K14, spinous cells express K1 and K10, and granular and early 

cornified cells express loricrin. In the cornified layer, keratinocytes undergo a 

specialized form of programmed cell death resulting in the loss of nucleus and cell 

membrane, and fuse into cornified sheets (Lippens et al., 2005). Eventually, these 

sheets are shed and replaced from underneath, completing epidermal turn-over. 

 

Development of hair follicles 

Crosstalk between epidermis and the underlying dermis first induces 

development and later maintenance of hair follicles (Schneider et al., 2009). Hair 

follicles are highly complex mini-organs, undergoing cyclic growth and regression, 

and are empowered by a distinct pool of hair follicle stem cells. The outermost layer 

of hair follicles, the outer root sheath (ORS), is continuous with basal keratinocytes 

of the epidermis, which is also termed interfollicular epidermis (IFE) to distinguish it 

from the ORS. Hair follicle stem cell compartments are supportive in, but not 

essential for, post-natal lateral skin expansion (Heath et al., 2009) and regeneration 

of interfollicular epidermis after wounding (Langton et al., 2008; Levy et al., 2007). 

 

The inflammatory stress response in skin 

Damage to the skin triggers a wound healing response to repair the damage and 

re-establish barrier function. Simultaneously, harmful irritants, toxins or pathogens 

that crossed the barrier have to be neutralized by activating an immune response. 

These two processes are linked as keratinocyte proliferation is regulated through 

inflammatory cytokines (Eming et al., 2007) such as interleukin-1 (IL-1): keratinocyte-

derived IL-1 induces dermal fibroblasts to secrete keratinocytes growth factor (KGF) 
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and Colony stimulating factor 2 (CSF2). They support homeostatic keratinocyte 

proliferation, creating a paracrine feed-forward loop (Angel et al., 2001). Negative 

feedback regulation of this loop is provided by IL-1–mediated up-regulation of 

peroxisome proliferator–activated receptor β/δ (PPARβ/δ) in dermal fibroblasts 

leading to the activation of IL-1 receptor antagonist (IL1RA), which in turn inhibits IL-

1 activity (Chong et al., 2009). 

Thus, increased IL-1 secretion during wound healing promotes keratinocyte 

proliferation, but it also activates the immune response together with CSF2 (Hanada 

and Yoshimura, 2002): neutrophils are rapidly recruited to wounding sites and 

release toxins to battle pathogens (Eming et al., 2007). Macrophages subsequently 

remove dead and apoptotic cells by phagocytosis and resolve inflammation by 

release of anti-inflammatory cytokines (Serhan and Savill, 2005). As a corollary, a 

local activation of the immune response will induce epidermal hyperthickening 

independently of barrier breaches due to release of pro-inflammatory cytokines. 

 

Mouse mutants displaying reactive epidermal hyperplasia 

Thus, hyperactivation of the immune system in the skin can lead to 

hyperproliferative skin diseases, as seen after transgenic overexpression of 

inflammatory cytokines like IL-1 (Groves et al., 1995) or manipulation of immune 

regulators like nuclear factor kappa B (NF-κB) (Descargues et al., 2008; Gareus et 

al., 2007; Klement et al., 1996; Nenci et al., 2006; Pasparakis et al., 2002; Schmidt-

Supprian et al., 2000). Epidermal damage activates the immune system irrespective 

of the cause of damage, e.g. blistering at the basement membrane (Brakebusch et 

al., 2000; Lorenz et al., 2007), defective cell-cell adhesion (Tinkle et al., 2004), 

compromised barrier function (Demehri et al., 2008; Yang et al., 2010), or damage 
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by ultraviolet radiation (Clydesdale et al., 2001; Feldmeyer et al., 2007). Due to this 

intensive cross-talk, many phenotypes resulting from gene mutations in mouse skin 

are macroscopically similar, differing mainly in the degree of severity. 

This entwinement of inflammation and epidermal stress response led to intense 

discussion in the past regarding whether keratinocytes or immune cells are the 

primary triggers of chronic skin diseases like psoriasis and atopic dermatitis 

(Bowcock and Krueger, 2005; Lowes et al., 2007; Nickoloff et al., 2007). An 

emerging synthetic view acknowledges that irrespective of the trigger, epidermal 

stress can lead to hyperproliferative pathogenesis (Nestle et al., 2009). 

 

Treatment of reactive epidermal hyperplasia 

Interestingly, phenotypes arising from a dysregulated immune response can 

often be fully rescued by immune suppression, e.g. by treatment with glucocorticoids 

or deletion of the tumor necrosis factor receptor (Tnfr) (Nenci et al., 2006; 

Pasparakis et al., 2002). These measures were proposed to protect keratinocytes 

against tumor necrosis factor (Tnf)-mediated apoptosis, which otherwise would 

escalate inflammation and further increase apoptosis in a possibly lethal feed-

forward loop (Omori et al., 2006). For treatment of non-immune based defects, 

immune-suppression can be expected to worsen the phenotype as this also 

attenuates the beneficial wound healing response. Rather, the primary defect has to 

be treated, e.g. amelioration of barrier defects by treatment with moisturizing crème 

(Yang et al., 2010). 
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Cutaneous inflammation and skin cancer 

There is extended overlap between molecular pathways involved in wound 

healing and non-melanoma skin carcinogenesis (Schafer and Werner, 2008), but the 

relationship between inflammation and carcinogenesis in the skin is complex and not 

entirely understood. On the one hand, early-stage cancer is suppressed by immune 

surveillance (Bui and Schreiber, 2007). Therefore, suppression or defects of the 

immune response increase cancer risk, in addition to carcinogenesis caused by 

opportunistic viral infections (Hofbauer et al., 2010; Nindl et al., 2007). Also, some 

chronic inflammatory hyperproliferative skin conditions like psoriasis have no 

increased associated cancer risk, but rather suppress tumorigenesis (de Visser et 

al., 2006; Nickoloff et al., 2005). On the other hand, chronic inflammatory milieus are 

also well-known to stimulate carcinogenesis (Allavena et al., 2008). In skin, wound-

associated inflammation increases the risk to develop cancer (Eming et al., 2007). 

Also, cancer generates its own inflammatory niche, which has been shown to drive 

carcinogenesis as it increases genetic instability (Colotta et al., 2009). 

 

Non-melanoma skin cancer 

The development of cancer depends on the acquisition of somatic mutations and 

can be roughly divided into three stages (Figure 4, p.22) (Hanahan and Weinberg, 

2000; Hanahan and Weinberg, 2011): an initiating event activates an oncogene (A). 

Under growth promoting conditions, initiated cells can grow into pre-cancerous 

lesions and accumulate additional genetic hits that promote the development of a 

benign tumor (B). Finally, additional mutations allow tumor cells to metastasize (C). 

There are two major mechanisms how cancer cells can acquire somatic 

mutations: microsatellite instability (MIN) and CIN. MIN results from defective DNA 
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damage repair (e.g. mismatch repair defects). CIN describes gains or losses of 

whole chromosomes (e.g. by chromosome missegregation), or structural changes of 

chromosomes (e.g. translocations, deletions, inversions, duplications) (Lengauer et 

al., 1998). 

Non-melanoma skin cancer (NMSC) is the cancer with the highest incidence 

worldwide, e.g. at about 0.1% per annum in northern Germany (Katalinic et al., 

2003), but fortunately prognosis and therapy are usually non-problematic (Boukamp, 

2005). While melanoma diagnoses are nearly 10-fold lower (Katalinic et al., 2003), 

the prognosis is usually worse due to a high propensity to metastasize (Gray-

Schopfer et al., 2007). Nonetheless, the sheer number of NMSC cases warrants 

study to improve prevention, prognosis and treatment. 

Human NMSC can be differentiated into basal cell carcinoma (BCC) and 

squamous cell carcinoma (SCC) (Boukamp, 2005): BCC is derived from hair follicles 

and is thought to develop de novo in otherwise normal epidermis driven by mutated 

Sonic Hedgehog pathway components. SCC is derived from IFE keratinocytes, 

which accumulates mutations and develops into a malignancy in a step-wise 

manner. A well-established model for NMSC is the two-stage DMBA/TPA protocol 

(reviewed by Kemp, 2005). 

 

The DMBA/TPA skin cancer model 

In the DMBA/TPA skin cancer model, application of 7,12-

Dimethylbenz(a)anthracene (DMBA) to the skin of 6 weeks old mice induces 

amongst other an activating K-Ras mutation and initiates carcinogenesis. Two weeks 

later, 12-O-Tetradecanoylphorbol-13-acetate (TPA) treatment starts, which induces a 

hyperproliferative inflammatory response that promotes the growth of the 
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immortalized cell. Cancer progression is rare in this model and can usually only be 

observed in mouse models that have an increased propensity to develop metastasis. 

DMBA/TPA-treated mice usually develop benign, endophytically growing papillomas. 

Endophytic growth indicates tumor progression to SCC. Other possible tumors 

observed with this treatment regime are sebocyte-derived adenomas. 

The laboratory mouse strain C57BL/6 is highly resistant to towards skin 

carcinogenesis compared to other strains (e.g. FVB/N), and is therefore well suited 

to discover tumor suppressive gene functions (Hennings et al., 1993; Wakabayashi 

et al., 2007). 
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The cell cycle 

A hallmark of cancer cells is their aberrant growth. Study of the mechanistic 

details of the cell cycle can therefore provide insight into carcinogenesis (Figure 5, p. 

26). Mitosis or M phase is the process of cell division (Alberts, 2002). In interphase 

between two mitoses (Figure 5A), a cell grows until it doubles its volume. Interphase 

is divided into G0/G1, S, and G2 phase. A senescent/non-cycling cell is designated 

 

Figure 4: 3-stage skin cancer 

model – initiation, promotion, 

progression. 

(A) An initiating hit, e.g. by treating 

skin with DMBA (yellow lightning), 

induces an initial lesion in basal 

keratinocytes (magenta nucleus and 

darkened cytoplasm). (B) When this 

lesion is promoted, e.g. by TPA-

induced hyper-inflammation, a benign 

papilloma will grow. Over time, the 

benign cells acquire further mutations 

(indicated by cyan nuclei). (C) Further 

progression enables cancer cells (red 

cytoplasm) to disintegrate the 

basement membrane (blue lines) and 

metastasize. 
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as a G0 phase cell. Mitogenic stimulus triggers entry into the cell cycle (G1 phase). A 

G1 phase cell proceeds to S phase, at which point it replicates its genome. Diploid 

cells have two complements of sister chromatids in G0/G1 phase and at the onset of 

S phase (2N;2C). In S phase each sister chromatid is replicated, thus the cell enters 

G2 phase with 4 chromosomal complements (2N;4C). The duplication of the 

centrosome/microtubule-organizing center also starts in S phase and is completed in 

the following G2 phase. When cellular growth is completed, a cell undergoes mitosis 

and divides into two identical G1 phase daughter cells. 

Cell cycle progression is driven by specific activated cyclin-dependent kinases 

(CDK) in complex with cyclins (Alberts, 2002). Proper completion of a given phase of 

the cycle results in proteosomal degradation of its specific cyclin. Entry into G1 

phase by mitogenic stimulus results in expression of cyclin D and formation of a 

complex with CDK4/6. This complex releases retinoblastoma-mediated inhibition of 

the transcription factor E2F, which in turn upregulates cyclin E and A expression. 

The cyclin E-CDK2 complex mediates entry into S phase, and cyclin E is 

consequently degraded to prevent DNA re-replication. Cyclin A-CDK2 assists 

progression through S phase (Woo and Poon, 2003). Cells with undamaged DNA 

directly proceed through G2 phase into mitosis, which is regulated by cyclin A-CDK2 

and cyclin B-CDK1 (Sullivan and Morgan, 2007). 

DNA damage triggers checkpoints in G1 phase, at the G1-S phase boundary, 

intra-S phase, or at the G2/M boundary (Bartek et al., 2004; Kastan and Bartek, 

2004). The master regulators of the DNA damage response are the apical kinases 

ATM (ataxia telangiectasia mutated), ATR (ATM- and Rad3-related), and DNA-PK 

(DNA-dependent protein kinase), which are activated by damaged DNA and trigger a 

signaling cascade that initiates DNA damage repair and activates p53. The ubiquitin 
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ligase Mdm2 ubiquitinates p53 and thereby maintains low cytosolic concentrations 

through its proteosomal degradation. Inhibition of Mdm2 binding to p53 e.g. by 

phosphorylation at residues S15 and S20 by activated ATM increases and stabilizes 

p53 protein levels (Vousden, 2002). Activated p53 then induces expression of cell 

cycle inhibitors like p21 to prevent cell cycle progression before DNA damage can be 

repaired, or pro-apoptotic proteins if the damage is beyond repair. 

 

Progression through mitosis 

Mitosis (Figure 5B) (Alberts, 2002; Sullivan and Morgan, 2007) starts with 

prophase, during which time the nuclear envelope breaks down and the 

chromosomes start to condense. The microtubule polymerizing activity of the 

centrosomes increases and leads to formation of an interdigitating mitotic 

microtubule spindle. Motor proteins push the centrosomes apart towards opposite 

ends of the cell, the mitotic poles. In the subsequent pro-metaphase, the DNA 

completes condensation into chromosomes. Astral microtubules anchor the 

centrosomes to the cortex, and mitotic spindle microtubules start capturing the 

kinetochores, specialized protein complexes that attach mitotic microtubules to the 

chromosomes. Mitotic microtubules can initially be attached to kinetochores in 

monotelic, syntelic or merotelic fashion (Figure 5C). With the transition to 

metaphase, the chromosomes convene at the equatorial metaphase plate while the 

microtubules attached to the kinetochores mature into thick mitotic fibers. The 

spindle assembly checkpoint (SAC) prevents progression into anaphase until all 

kinetochores are stably attached (Figure 5C). The release of the SAC results in the 

degradation of cyclin B and progression to anaphase (Glotzer, 2009; Sullivan and 

Morgan, 2007). 
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In anaphase, the sister chromatids of the chromosomes segregate along the 

mitotic fibers towards the mitotic poles and an equatorial contractile ring 

circumscribing the metaphase plate forms at the cell membrane. When the 

chromosomes reach the mitotic poles, telophase begins: the nuclear envelope 

reforms around the decondensed chromosomes, and the cell initiates cytokinesis 

(Steigemann and Gerlich, 2009): the cell membrane constricts at the contractile ring, 

leading to the formation of a cleavage furrow. The mitotic spindle compacts into a 

central spindle during ingression of the cleavage furrow (not shown on Figure 5). 

Finally, only a cytokinetic bridge remains between the two daughter cells, and this is 

pinched off in a process termed abscission. Successful cytokinesis depends on a 

large and diverse number of participants, involving cell cycle regulators, actomyosin- 

and microtubule-associated proteins, vesicle transport and targeting, (reviewed in 

Eggert et al., 2006), integrins and their regulators (Pellinen et al., 2008), and AJ 

constituents like APC (Caldwell et al., 2007). 
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Tetraploidy, aneuploidy and cancer 

More than a century ago, cancer cells were noted to be strikingly heterogeneous in 

nuclear and cellular size, and they often underwent abnormal mitoses and cell death. 

Hansemann and Boveri found that abnormal mitoses result in aneuploidy, and they 

attributed the observed cell death to nullisomy (lack of a chromosome) after an 

abnormal mitosis (Bignold et al., 2006). They proposed that aneuploidy could confer 

 

Figure 5: The cell cycle 

(A) The phases of the cell cycle. (B) The phases of mitosis. The mitotic 

centrosomes (red asters) promote formation of microtubules (thin red lines) which 

mature into mitotic microtubule fibers (thick red lines). Chromosomes (blue lines) 

segregate along these fibers and later recondense into nuclei (blue circles). (C) 

Kinetochores (green dots) can attach to mitotic fibers (thick red lines) in (a) 

syntelic, (b) monotelic, (c) amphitelic, or (d) merotelic fashion. 
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growth advantages in the cases where it is not lethal, and drive carcinogenesis. 

Boveri further pointed out that tetraploid cells underwent tetrapolar mitoses due to 

supernumerary centrosomes, resulting in severe aneuploidy and thus increasing the 

chance to acquire tumor promoting characteristics (Boveri, 2008). Tetraploidy would 

accordingly be an intermediate towards aneuploidy. 

Since then, many aspects of their theory could be formally proven. Karyotyping 

confirmed substantial genomic and chromosomal abnormalities in malignant tumors 

(Mitelman et al., 2011), explaining heterogeneity in cell and nuclear size since both 

depend on DNA content (Epstein, 1967; Huber and Gerace, 2007). Tetraploid cells 

promote carcinogenesis in vivo (Fujiwara et al., 2005) and are associated with high 

CIN (Ganem et al., 2007; Storchova and Kuffer, 2008). It was confirmed that 

tetraploidy is an intermediate state between diploidy and aneuploidy (Vitale et al., 

2010): tetraploid cell clones acquired near-diploid aneuploidy with chromosomal 

rearrangements upon cultivation or in vivo inoculation, and this correlated with 

tumorigenic aggressiveness. These experimental findings could be confirmed in 

human cancer, where tetraploid and aneuploid cells are often found in precancerous 

lesions, e.g. chronically inflamed esophagus and cervical dysplasia, and serve as 

potent predictors for cancer progression (Maley et al., 2004; Olaharski et al., 2006). 

Tetraploidy was also found in precancerous intraepithelial lesions in human 

epidermis, while malignant SCC were diploid or possibly near-diploid aneuploid 

(Smits et al., 2007). Furthermore, tetraploidy/aneuploidy in head and neck squamous 

cell carcinoma (HNSCC) and NMSC indicated increased propensity to recur and to 

metastasize (Hass et al., 2008; Robinson et al., 1996). 

In light of these findings, answers to the following questions can help to better 

understand the fundamental processes that promote carcinogenesis and cancer 
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progression, which could in turn lead to more efficient prevention, prognosis and 

treatment of cancer: how does tetraploidy arise? Why are tetraploid cells prone to 

CIN and become aneuploid? How are tetraploidy and aneuploidy repressed? 

 

Roads to tetraploidy 

When a G2 phase diploid cell (2N;4C) undergoes mitosis (Figure 6, p.29), the 

condensed chromosomes align at the mitotic cleavage plane in metaphase until the 

SAC is satisfied. When the SAC cannot be satisfied, cells can escape mitotic arrest 

by a process termed mitotic slippage to become G1 mononucleated tetraploid cells 

(4N;4C) (Figure 6Aa) (Musacchio and Salmon, 2007). Mitotic slippage depends on 

nonspecific degradation of cyclin B, which is necessary for cell cycle progression into 

anaphase (Brito and Rieder, 2006). After progression into anaphase, the cell has to 

successfully complete cytokinesis. Incomplete cytokinesis results in binucleated G1 

tetraploid cells that produce mononucleated daughter cells after another round of 

mitosis (Figure 6Ab) (Glotzer, 2009). Cytokinesis defects can also be caused by 

lagging chromosomes caught in the cytokinetic bridge (Steigemann et al., 2009). 

Binucleated tetraploid cells also arise after fusion of two diploid cells (Figure 6B). 

Cell fusion is part of normal physiology e.g. in muscle development as part of 

terminal differentiation and will give rise to multinucleated giant cells, the muscle 

fibers (Ogle et al., 2005). Non-physiological cell fusion was observed after viral 

infection (Duelli et al., 2005) or after transplantation of hematopoietic stem cells 

(Vassilopoulos et al., 2003; Wang et al., 2003). Finally, during endoreduplication 

(also termed endomitosis) mitosis is skipped and a diploid G2 phase cell resets to 

G1 as a tetraploid and mononucleated cell (Figure 6C). This has been shown in 

connection with insufficient capping of telomeres, which triggers continuous DNA 
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damage signaling and interferes with commencement of mitosis, but not with DNA 

replication (Davoli et al., 2010). Megakaryocytes, the progenitors of thrombocytes, 

employ endomitosis to acquire highly polyploid genomes under physiological 

conditions (Geddis et al., 2007; Lordier et al., 2008). 

 

 

 

Figure 6: Roads to tetraploidy. 

(A) Diploid G2 cells undergo mitosis and cytokinesis, resulting in two diploid G1 

daughter cells. a. If the spindle assembly checkpoint (SAC) cannot be satisfied, 

metaphase cells might abandon mitosis and reset as mononucleated G1 tetraploid 

cells (mitotic slippage). b. Cytokinesis failure results in binucleated G1 tetraploid 

cells, which will be mononucleated after their next mitosis (dashed arrow). 

(B) Fusion of two diploid G1 cells results in a binucleated G1 tetraploid cell. 

(C) Diploid G2 cells can reset into mononucleated G1 tetraploid cells without 

undergoing mitosis (endoreduplication). 
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Mechanisms of CIN 

In the scenarios discussed above, the cells end up with 4 centrosomes. The loss 

or gain of whole chromosomes is highly increased by supernumerary centrosomes, 

which increase the likelihood of multipolar mitoses or chromosome missegregation. 

A cell with supernumerary centrosomes can initiate multipolar mitoses, as each 

centrosome can serve as a mitotic pole (Figure 7, p.32). During a multipolar mitosis, 

chromosomes segregate near-randomly to the daughter cells, and a large 

percentage of these mitoses result in nullisomy for at least one daughter cell (48% 

tetraploid/tetrapolar, 92% diploid/tetrapolar) (Gisselsson et al., 2008) (Figure 7a). 

Nullisomy is thought to be inescapably lethal, viable nullisomic cells cannot be 

detected (Roumier et al., 2005). Notably, surviving progeny of a multipolar mitosis 

could end up with a single centrosome, increasing the likelihood of stable 

propagation in subsequent mitoses. Furthermore, multipolar mitoses are prone to 

defective cytokinesis, where two or more daughters fuse back into a highly aneuploid 

cell (Ganem et al., 2009; Gisselsson et al., 2010), and take several times longer than 

bipolar mitoses to complete (Gisselsson et al., 2008; Yang et al., 2008). 

The extended duration of multipolar mitosis depends on SAC components and 

allows for centrosome clustering (Kwon et al., 2008; Yang et al., 2008). Centrosome 

clustering depends on specialized kinesins, actin-dynamics and interphase 

attachment patterns, and will reduce the number of mitotic poles (Ganem et al., 

2009; Kwon et al., 2008). Unless a pseudo-bipolar spindle can be achieved, there 

remains a high risk for severe CIN (Ganem et al., 2009; Gisselsson et al., 2010). But 

even after centrosome clustering, a pseudo-bipolar mitosis can result in CIN caused 

by merotelic kinetochore attachment (Figure 5, p.26) and resulting lagging 

chromosomes (Ganem et al., 2009): lagging chromosomes could be caught in the 
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cytokinetic bridge, preventing cytokinesis (Figure 7b1) (Steigemann et al., 2009), or 

alternatively be trapped with one daughter cell during cytokinesis, resulting in CIN 

(Figure 7b2). Aneuploidy can only be avoided if amphitelic chromosome attachment 

is achieved before anaphase onset (Figure 7c). 
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Figure 7: Supernumerary centrosomes promote aneuploidy. 

Supernumerary centrosomes often lead to multipolar spindles. a. Unless resolved, 

this results in multipolar mitosis with 3 or more progeny, which are highly 

aneuploid and frequently apoptotic. b. Centrosome clustering results in a bipolar 

spindle, but often with merotelic kinetochore attachments (black). This results in 

lagging chromosomes, which can lead to cytokinesis defects (b1) or chromosomal 

instability (b2). c. If these difficulties are overcome, the cell successfully 

completes mitosis. 
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Suppression of tetraploidy/aneuploidy 

CIN represents a tremendous mutagenic potential in tetraploid cells and their 

hyper-diploid progeny, promoting carcinogenesis and driving cancer progression 

(Schvartzman et al., 2010). It is therefore essential for multi-cellular organisms to 

suppress propagation of tetraploid/aneuploid cells, e.g. by ensuring cell death or cell 

cycle arrest. 

CIN triggers apoptosis in a p53-dependant manner (Castedo et al., 2006; 

Zhivotovsky and Kroemer, 2004). Primary cells with induced tetraploidy cannot 

inoculate tumors in vivo or be cultivated, unless the tumor suppressor p53 is deleted 

(Fujiwara et al., 2005). Also, tetraploidy/aneuploidy in esophageal precancerous 

lesions coincides with loss of p53 (Maley et al., 2004). However, while the 

suppressive role of p53 is well established in aneuploid cells (Thompson and 

Compton, 2010), it is not clear whether p53 suppresses tetraploid cells, or rather 

their aneuploid progeny. Furthermore, ablation of p53 merely halved the apoptosis 

rate in dividing tetraploid cells (Castedo et al., 2006), which hints at additional, 

currently unknown mechanisms contributing to tetraploidy/aneuploidy suppression. 

An aneuploidy-specific trigger of p53 activation in cells could be caused by 

chromosomal imbalances: heteromeric protein complexes are often degraded if they 

cannot properly form due to gene imbalances, which puts a cell under proteotoxic 

stress (Torres et al., 2010; Williams and Amon, 2009). Inhibition of autophagy or 

activation of adenosine-monophosphate(AMP)-activated kinase (AMPK) both 

selectively induce apoptosis in aneuploid cells, and apoptosis rates correlate with the 

degree of aneuploidy (Tang et al., 2011). AMPK in turn activates p53 under 

conditions of proteotoxic stress (Jones et al., 2005), which could induce apoptosis in 

aneuploid cells. 
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Tetraploidy per se is apparently not toxic: tetraploid mouse embryos could 

develop until E14, although they show a high rate of death and their forebrain 

development was especially defective (Henery et al., 1992). Similarly, 

tetraploidy/aneuploidy accounts for a sizeable number of human first-trimester 

miscarriages (Hassold et al., 1980), but case-reports describe tetraploid children 

surviving for at least two years, albeit with severe growth and developmental 

retardation (Guc-Scekic et al., 2002; Lafer and Neu, 1988). These findings suggest 

that wild-type tetraploid cells can be viable. Death observed in tetraploid mouse 

embryos could be due to CIN occurring during development, whereas longer living 

embryos could have avoided aneuploidy by chance (Figure 7, p.32). Unfortunately, 

the p53 status was not established in tetraploid mouse embryos and human children 

that survived. It could be possible that random inactivation of p53 occurred, allowing 

them to evade p53-mediated cell death and cell cycle arrest. Lack of p53 does not 

seriously affect embryonic development (Jacks et al., 1994). Limited embryonic 

lethality upon p53 deletion is caused by defective brain development (Sah et al., 

1995). In contrast, gene defects resulting in increased CIN lead to embryonic 

lethality (Dobles et al., 2000; Jeganathan et al., 2007). 

Tetraploidy induced by defective cytokinesis does not result in G1 phase arrest 

(Uetake and Sluder, 2004; Wong and Stearns, 2005), refuting earlier claims 

concerning a putative tetraploidy checkpoint (Andreassen et al., 2001). Rather, for 

diploid cells it could be shown that G1 arrest results from a prolonged mitotic arrest 

(Uetake and Sluder, 2010). This arrest was p53- and p38 MAPK-dependent and 

could only be transiently relieved by inhibition of p38 MAPK. Similar results were 

observed after mitotic arrest with low doses of taxol: whereas high doses trigger 

G2/M phase arrest, low doses allowed for cell cycle completion, but induce G1 
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phase arrest of the daughter cells (Demidenko et al., 2008). Therefore, cell cycle 

arrest does not appear to specifically suppress tetraploidy/aneuploidy, but rather is a 

universal outcome of mitotic defects. 

 

Mechanism of p53-mediated repression of tetraploidy/aneuploidy 

The molecular mechanism of p53-mediated tetraploidy/aneuploidy suppression 

is not well understood. Tetraploidy/aneuploidy results in p53-phosphorylation at 

residues S15 and S46 independently of the canonical DNA damage response 

mediator ATM, but there are inconclusive reports about the responsible kinase: p53-

phosphorylation was BubR1-dependent after mitotic spindle damage, but it was p38α 

MAPK-dependent in stable tetraploid cell clones after siRNA-mediated depletion of 

Chk1 (Ha et al., 2007; Vitale et al., 2008). Further studies support a functional role of 

both kinases: on the one hand, reduced protein levels of the BubR1-interactor Bub1 

resulted in less aneuploidy-dependent apoptosis after chromosomal missegregation 

(Jeganathan et al., 2007). On the other hand, pharmaceutical inhibition or depletion 

of p38 suspended the p53-mediated post-mitotic cell cycle arrest (Uetake and 

Sluder, 2010; Vitale et al., 2008). 

Independently of p53 phosphorylation, increased duration of mitosis as observed 

in cells with supernumerary centrosomes could be sufficient to stabilize p53 protein 

levels: transcription does not occur during mitosis, and p53 transcript has a longer 

half-life than the transcripts of its inhibitors (Blagosklonny, 2006). This allows for p53 

protein accumulation as soon as its inhibitors are degraded as part of normal 

turnover. With resumed transcription in the next G1 phase, p53 could induce cell 

cycle arrest or apoptosis.  
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5. Aim of the thesis 

A number of in vitro experiments suggested that migfilin functions in concert with 

kindlin-2 and possible filamins in mediating cell-matrix and cell-cell adhesion. We 

initially wanted to test how this interaction contributes to cell adhesion in vivo using a 

reverse genetics approach, i.e. by targeted deletion of the migfilin gene in mice. Mice 

lacking kindlin-2 were embryonic lethal, prompting us to generate a floxed-allele to 

enable tissue-restricted ablation of migfilin in case of embryonic lethality upon 

constitutive deletion of migfilin. 

To study the effects of constitutive removal of migfilin, we used female Keratin5-

driven Cre recombinase transgenic mice (K5Cre+). Germ-line deletion is achieved by 

oocytic expression of maternal Cre transcript. Tissue-specific deletion can be 

achieved in parallel with male K5Cre+ mice, which express Cre in stratified 

squamous epithelia. 

Unpredictably, constitutive removal of migfilin had no obvious effect, whereas 

epidermis-specific ablation resulted in post-natal lethality. Therefore, we modified our 

initial aim of the study thusly: 

I. To test in vitro findings on migfilin function in vivo in migfilin-null mice (Moik et 

al., 2011a) 

II. To explain how a tissue restricted gene ablation can cause a lethal 

phenotype, while constitutive migfilin-null mice were apparently normal (Moik 

et al., 2011b). 
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6. Brief summaries of the publications 

Summary of Moik et al, 2011a 

Migfilin is expressed in adult mice mainly in skin, heart, lung, and in simple 

epithelia, and in embryos at least from embryonic day 7.5. We generated a 

constitutive migfilin-null allele in mice using homologous recombination in ES cells. 

In contrast to previous publications claiming that depletion of migfilin interferes with 

FA function, homozygous migfilin-null mice had no detectable organ defects in 

development and homeostasis. Migfilin-null cells had no defects in integrin-mediated 

functions like integrin activation, adhesion or spreading. A previously described cell 

migration defect could be confirmed in skin keratinocytes, but excluded in fibroblasts. 

This overall lack of defects could not be due to long-term compensatory defects, as 

short-term siRNA-mediated depletion of migfilin in fibroblasts also failed to produce 

any defect. 

 

Summary of Moik et al, 2011b 

Migfilin-null skin epidermis was normal, but Cre recombinase expression in 

migfilin-null epidermis led to increased tetraploidy and apoptosis. This did not affect 

epidermal adhesion or barrier function, but led to severe epidermal inflammation and 

was lethal 7-10 days after birth. Cre expressing wild-type epidermis was normal 

except for slightly increased apoptosis, indicating that migfilin functioned in 

suppression of epidermal tetraploidy and apoptosis. Deletion of p53 in Cre-

expressing migfilin-null epidermis increased morbidity, suggesting that migfilin 

suppresses tetraploidy independently of p53. Since tetraploidy drives skin 

carcinogenesis, we predicted migfilin-null mice to be more sensitive to skin cancer, 
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which we tested and confirmed in a DMBA/TPA two-stage skin carcinogenesis 

model. 



 

 39 

7. References 

 Akazawa, H., Kudoh, S., Mochizuki, N., Takekoshi, N., Takano, H., Nagai, 
T. and Komuro, I. (2004). A novel LIM protein Cal promotes cardiac differentiation 
by association with CSX/NKX2-5. J Cell Biol 164, 395-405. 
 Alberts, B. (2002). Molecular biology of the cell. New York: Garland Science. 
 Allavena, P., Garlanda, C., Borrello, M. G., Sica, A. and Mantovani, A. 
(2008). Pathways connecting inflammation and cancer. Curr Opin Genet Dev 18, 3-
10. 
 Andreassen, P. R., Lohez, O. D., Lacroix, F. B. and Margolis, R. L. (2001). 
Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells 
in G1. Mol Biol Cell 12, 1315-28. 
 Angel, P., Szabowski, A. and Schorpp-Kistner, M. (2001). Function and 
regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20, 2413-
23. 
 Bartek, J., Lukas, C. and Lukas, J. (2004). Checking on DNA damage in S 
phase. Nat Rev Mol Cell Biol 5, 792-804. 
 Bignold, L. P., Coghlan, B. L. and Jersmann, H. P. (2006). Hansemann, 
Boveri, chromosomes and the gametogenesis-related theories of tumours. Cell Biol 
Int 30, 640-4. 
 Blagosklonny, M. V. (2006). Prolonged mitosis versus tetraploid checkpoint: 
how p53 measures the duration of mitosis. Cell Cycle 5, 971-5. 
 Boukamp, P. (2005). Non-melanoma skin cancer: what drives tumor 
development and progression? Carcinogenesis 26, 1657-67. 
 Boveri, T. (2008). Concerning the origin of malignant tumours by Theodor 
Boveri. Translated and annotated by Henry Harris. J Cell Sci 121 Suppl 1, 1-84. 
 Bowcock, A. M. and Krueger, J. G. (2005). Getting under the skin: the 
immunogenetics of psoriasis. Nat Rev Immunol 5, 699-711. 
 Box, N. F. and Terzian, T. (2008). The role of p53 in pigmentation, tanning 
and melanoma. Pigment Cell Melanoma Res 21, 525-33. 
 Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J. 
L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R. et al. (2000). Skin 
and hair follicle integrity is crucially dependent on beta 1 integrin expression on 
keratinocytes. Embo J 19, 3990-4003. 
 Brandner, J. M., Kief, S., Wladykowski, E., Houdek, P. and Moll, I. (2006). 
Tight junction proteins in the skin. Skin Pharmacol Physiol 19, 71-7. 
 Brito, D. A. and Rieder, C. L. (2006). Mitotic checkpoint slippage in humans 
occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16, 
1194-200. 
 Bui, J. D. and Schreiber, R. D. (2007). Cancer immunosurveillance, 
immunoediting and inflammation: independent or interdependent processes? Curr 
Opin Immunol 19, 203-8. 
 Caldwell, C. M., Green, R. A. and Kaplan, K. B. (2007). APC mutations lead 
to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol 178, 
1109-20. 
 Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., 
Pequignot, M. O., Casares, N., Valent, A., Mouhamad, S. et al. (2006). Apoptosis 
regulation in tetraploid cancer cells. Embo J 25, 2584-95. 



7. References 

 40 

 Caswell, P. T., Vadrevu, S. and Norman, J. C. (2009). Integrins: masters 
and slaves of endocytic transport. Nat Rev Mol Cell Biol 10, 843-53. 
 Chong, H. C., Tan, M. J., Philippe, V., Tan, S. H., Tan, C. K., Ku, C. W., 
Goh, Y. Y., Wahli, W., Michalik, L. and Tan, N. S. (2009). Regulation of epithelial-
mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis 
and wound healing. J Cell Biol 184, 817-31. 
 Clydesdale, G. J., Dandie, G. W. and Muller, H. K. (2001). Ultraviolet light 
induced injury: immunological and inflammatory effects. Immunol Cell Biol 79, 547-
68. 
 Colotta, F., Allavena, P., Sica, A., Garlanda, C. and Mantovani, A. (2009). 
Cancer-related inflammation, the seventh hallmark of cancer: links to genetic 
instability. Carcinogenesis 30, 1073-81. 
 Costin, G. E. and Hearing, V. J. (2007). Human skin pigmentation: 
melanocytes modulate skin color in response to stress. Faseb J 21, 976-94. 
 Cui, R., Widlund, H. R., Feige, E., Lin, J. Y., Wilensky, D. L., Igras, V. E., 
D'Orazio, J., Fung, C. Y., Schanbacher, C. F., Granter, S. R. et al. (2007). Central 
role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853-
64. 
 Das Thakur, M., Feng, Y., Jagannathan, R., Seppa, M. J., Skeath, J. B. 
and Longmore, G. D. (2010). Ajuba LIM proteins are negative regulators of the 
Hippo signaling pathway. Curr Biol 20, 657-62. 
 Davoli, T., Denchi, E. L. and de Lange, T. (2010). Persistent telomere 
damage induces bypass of mitosis and tetraploidy. Cell 141, 81-93. 
 de Visser, K. E., Eichten, A. and Coussens, L. M. (2006). Paradoxical roles 
of the immune system during cancer development. Nat Rev Cancer 6, 24-37. 
 Demehri, S., Liu, Z., Lee, J., Lin, M. H., Crosby, S. D., Roberts, C. J., 
Grigsby, P. W., Miner, J. H., Farr, A. G. and Kopan, R. (2008). Notch-deficient skin 
induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a 
sentinel for epidermal integrity. PLoS Biol 6, e123. 
 Demidenko, Z. N., Kalurupalle, S., Hanko, C., Lim, C. U., Broude, E. and 
Blagosklonny, M. V. (2008). Mechanism of G1-like arrest by low concentrations of 
paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated 
by prolonged mitosis. Oncogene 27, 4402-10. 
 Denecker, G., Hoste, E., Gilbert, B., Hochepied, T., Ovaere, P., Lippens, 
S., Van den Broecke, C., Van Damme, P., D'Herde, K., Hachem, J. P. et al. 
(2007). Caspase-14 protects against epidermal UVB photodamage and water loss. 
Nat Cell Biol 9, 666-74. 
 Descargues, P., Sil, A. K. and Karin, M. (2008). IKKalpha, a critical regulator 
of epidermal differentiation and a suppressor of skin cancer. Embo J 27, 2639-47. 
 Dobles, M., Liberal, V., Scott, M. L., Benezra, R. and Sorger, P. K. (2000). 
Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint 
protein Mad2. Cell 101, 635-45. 
 Duelli, D. M., Hearn, S., Myers, M. P. and Lazebnik, Y. (2005). A primate 
virus generates transformed human cells by fusion. J Cell Biol 171, 493-503. 
 Dupasquier, M., Stoitzner, P., van Oudenaren, A., Romani, N. and 
Leenen, P. J. (2004). Macrophages and dendritic cells constitute a major 
subpopulation of cells in the mouse dermis. J Invest Dermatol 123, 876-9. 
 Eggert, U. S., Mitchison, T. J. and Field, C. M. (2006). Animal cytokinesis: 
from parts list to mechanisms. Annu Rev Biochem 75, 543-66. 



7. References 

 41 

 Elias, P. M. (2005). Stratum corneum defensive functions: an integrated view. 
J Invest Dermatol 125, 183-200. 
 Eming, S. A., Krieg, T. and Davidson, J. M. (2007). Inflammation in wound 
repair: molecular and cellular mechanisms. J Invest Dermatol 127, 514-25. 
 Epstein, C. J. (1967). Cell size, nuclear content, and the development of 
polyploidy in the Mammalian liver. Proc Natl Acad Sci U S A 57, 327-34. 
 Fässler, R. and Meyer, M. (1995). Consequences of lack of beta 1 integrin 
gene expression in mice. Genes Dev 9, 1896-908. 
 Feldmeyer, L., Keller, M., Niklaus, G., Hohl, D., Werner, S. and Beer, H. D. 
(2007). The inflammasome mediates UVB-induced activation and secretion of 
interleukin-1beta by keratinocytes. Curr Biol 17, 1140-5. 
 Feng, Y. and Longmore, G. D. (2005). The LIM protein Ajuba influences 
interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of 
the protein kinase Czeta/p62/TRAF6 signaling complex. Mol Cell Biol 25, 4010-22. 
 Feng, Y., Zhao, H., Luderer, H. F., Epple, H., Faccio, R., Ross, F. P., 
Teitelbaum, S. L. and Longmore, G. D. (2007). The LIM protein, Limd1, regulates 
AP-1 activation through an interaction with Traf6 to influence osteoclast 
development. J Biol Chem 282, 39-48. 
 Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T. and 
Pellman, D. (2005). Cytokinesis failure generating tetraploids promotes 
tumorigenesis in p53-null cells. Nature 437, 1043-7. 
 Ganem, N. J., Godinho, S. A. and Pellman, D. (2009). A mechanism linking 
extra centrosomes to chromosomal instability. Nature 460, 278-82. 
 Ganem, N. J., Storchova, Z. and Pellman, D. (2007). Tetraploidy, 
aneuploidy and cancer. Curr Opin Genet Dev 17, 157-62. 
 Gareus, R., Huth, M., Breiden, B., Nenci, A., Rosch, N., Haase, I., Bloch, 
W., Sandhoff, K. and Pasparakis, M. (2007). Normal epidermal differentiation but 
impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat Cell 
Biol 9, 461-9. 
 Geddis, A. E., Fox, N. E., Tkachenko, E. and Kaushansky, K. (2007). 
Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow 
ingression followed by furrow regression. Cell Cycle 6, 455-60. 
 Gisselsson, D., Hakanson, U., Stoller, P., Marti, D., Jin, Y., Rosengren, A. 
H., Stewenius, Y., Kahl, F. and Panagopoulos, I. (2008). When the genome plays 
dice: circumvention of the spindle assembly checkpoint and near-random 
chromosome segregation in multipolar cancer cell mitoses. PLoS One 3, e1871. 
 Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., Hanks, 
S., Sehic, D., Mengelbier, L. H., Ora, I., Rahman, N. et al. (2010). Generation of 
trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proc Natl 
Acad Sci U S A 107, 20489-93. 
 Gkretsi, V., Zhang, Y., Tu, Y., Chen, K., Stolz, D. B., Yang, Y., Watkins, S. 
C. and Wu, C. (2005). Physical and functional association of migfilin with cell-cell 
adhesions. J Cell Sci 118, 697-710. 
 Glotzer, M. (2009). The 3Ms of central spindle assembly: microtubules, 
motors and MAPs. Nat Rev Mol Cell Biol 10, 9-20. 
 Gray-Schopfer, V., Wellbrock, C. and Marais, R. (2007). Melanoma biology 
and new targeted therapy. Nature 445, 851-7. 
 Groves, R. W., Mizutani, H., Kieffer, J. D. and Kupper, T. S. (1995). 
Inflammatory skin disease in transgenic mice that express high levels of interleukin 1 
alpha in basal epidermis. Proc Natl Acad Sci U S A 92, 11874-8. 



7. References 

 42 

 Guc-Scekic, M., Milasin, J., Stevanovic, M., Stojanov, L. J. and 
Djordjevic, M. (2002). Tetraploidy in a 26-month-old girl (cytogenetic and molecular 
studies). Clin Genet 61, 62-5. 
 Ha, G. H., Baek, K. H., Kim, H. S., Jeong, S. J., Kim, C. M., McKeon, F. 
and Lee, C. W. (2007). p53 activation in response to mitotic spindle damage 
requires signaling via BubR1-mediated phosphorylation. Cancer Res 67, 7155-64. 
 Hafner, M., Wenk, J., Nenci, A., Pasparakis, M., Scharffetter-Kochanek, 
K., Smyth, N., Peters, T., Kess, D., Holtkotter, O., Shephard, P. et al. (2004). 
Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed 
protein. Genesis 38, 176-81. 
 Hanada, T. and Yoshimura, A. (2002). Regulation of cytokine signaling and 
inflammation. Cytokine Growth Factor Rev 13, 413-21. 
 Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 
57-70. 
 Hanahan, D. and Weinberg, Robert A. (2011). Hallmarks of Cancer: The 
Next Generation. Cell 144, 646-674. 
 Hass, H. G., Schmidt, A., Nehls, O. and Kaiser, S. (2008). DNA ploidy, 
proliferative capacity and intratumoral heterogeneity in primary and recurrent head 
and neck squamous cell carcinomas (HNSCC)--potential implications for clinical 
management and treatment decisions. Oral Oncol 44, 78-85. 
 Hassold, T., Chen, N., Funkhouser, J., Jooss, T., Manuel, B., Matsuura, 
J., Matsuyama, A., Wilson, C., Yamane, J. A. and Jacobs, P. A. (1980). A 
cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet 44, 151-78. 
 Heath, J., Langton, A. K., Hammond, N. L., Overbeek, P. A., Dixon, M. J. 
and Headon, D. J. (2009). Hair follicles are required for optimal growth during lateral 
skin expansion. J Invest Dermatol 129, 2358-64. 
 Henery, C. C., Bard, J. B. and Kaufman, M. H. (1992). Tetraploidy in mice, 
embryonic cell number, and the grain of the developmental map. Dev Biol 152, 233-
41. 
 Hennings, H., Glick, A. B., Lowry, D. T., Krsmanovic, L. S., Sly, L. M. and 
Yuspa, S. H. (1993). FVB/N mice: an inbred strain sensitive to the chemical 
induction of squamous cell carcinomas in the skin. Carcinogenesis 14, 2353-8. 
 Higashi, A. Y., Ikawa, T., Muramatsu, M., Economides, A. N., Niwa, A., 
Okuda, T., Murphy, A. J., Rojas, J., Heike, T., Nakahata, T. et al. (2009). Direct 
hematological toxicity and illegitimate chromosomal recombination caused by the 
systemic activation of CreERT2. J Immunol 182, 5633-40. 
 Hofbauer, G. F., Bouwes Bavinck, J. N. and Euvrard, S. (2010). Organ 
transplantation and skin cancer: basic problems and new perspectives. Exp 
Dermatol 19, 473-82. 
 Hoffman, L. M., Nix, D. A., Benson, B., Boot-Hanford, R., Gustafsson, E., 
Jamora, C., Menzies, A. S., Goh, K. L., Jensen, C. C., Gertler, F. B. et al. (2003). 
Targeted disruption of the murine zyxin gene. Mol Cell Biol 23, 70-9. 
 Huber, M. D. and Gerace, L. (2007). The size-wise nucleus: nuclear volume 
control in eukaryotes. J Cell Biol 179, 583-4. 
 Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. 
Cell 110, 673-87. 
 Ithychanda, S. S., Das, M., Ma, Y. Q., Ding, K., Wang, X., Gupta, S., Wu, 
C., Plow, E. F. and Qin, J. (2009). Migfilin, a molecular switch in regulation of 
integrin activation. J Biol Chem 284, 4713-22. 



7. References 

 43 

 Jacks, T., Remington, L., Williams, B. O., Schmitt, E. M., Halachmi, S., 
Bronson, R. T. and Weinberg, R. A. (1994). Tumor spectrum analysis in p53-
mutant mice. Curr Biol 4, 1-7. 
 Jeganathan, K., Malureanu, L., Baker, D. J., Abraham, S. C. and van 
Deursen, J. M. (2007). Bub1 mediates cell death in response to chromosome 
missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 179, 
255-67. 
 Jones, R. G., Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, 
M. J. and Thompson, C. B. (2005). AMP-activated protein kinase induces a p53-
dependent metabolic checkpoint. Mol Cell 18, 283-93. 
 Kadrmas, J. L. and Beckerle, M. C. (2004). The LIM domain: from the 
cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5, 920-31. 
 Kastan, M. B. and Bartek, J. (2004). Cell-cycle checkpoints and cancer. 
Nature 432, 316-23. 
 Katalinic, A., Kunze, U. and Schafer, T. (2003). Epidemiology of cutaneous 
melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: 
incidence, clinical subtypes, tumour stages and localization (epidemiology of skin 
cancer). Br J Dermatol 149, 1200-6. 
 Kaur, P. (2006). Interfollicular epidermal stem cells: identification, challenges, 
potential. J Invest Dermatol 126, 1450-8. 
 Kemp, C. J. (2005). Multistep skin cancer in mice as a model to study the 
evolution of cancer cells. Semin Cancer Biol 15, 460-73. 
 Kiema, T., Lad, Y., Jiang, P., Oxley, C. L., Baldassarre, M., Wegener, K. 
L., Campbell, I. D., Ylanne, J. and Calderwood, D. A. (2006). The molecular basis 
of filamin binding to integrins and competition with talin. Mol Cell 21, 337-47. 
 Klement, J. F., Rice, N. R., Car, B. D., Abbondanzo, S. J., Powers, G. D., 
Bhatt, P. H., Chen, C. H., Rosen, C. A. and Stewart, C. L. (1996). IkappaBalpha 
deficiency results in a sustained NF-kappaB response and severe widespread 
dermatitis in mice. Mol Cell Biol 16, 2341-9. 
 Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., 
Thery, M. and Pellman, D. (2008). Mechanisms to suppress multipolar divisions in 
cancer cells with extra centrosomes. Genes Dev 22, 2189-203. 
 Lad, Y., Jiang, P., Ruskamo, S., Harburger, D. S., Ylanne, J., Campbell, I. 
D. and Calderwood, D. A. (2008). Structural Basis of the Migfilin-Filamin Interaction 
and Competition with Integrin {beta} Tails. J Biol Chem 283, 35154-63. 
 Lafer, C. Z. and Neu, R. L. (1988). A liveborn infant with tetraploidy. Am J 
Med Genet 31, 375-8. 
 Langton, A. K., Herrick, S. E. and Headon, D. J. (2008). An extended 
epidermal response heals cutaneous wounds in the absence of a hair follicle stem 
cell contribution. J Invest Dermatol 128, 1311-8. 
 Lee, J. Y., Ristow, M., Lin, X., White, M. F., Magnuson, M. A. and 
Hennighausen, L. (2006). RIP-Cre revisited, evidence for impairments of pancreatic 
beta-cell function. J Biol Chem 281, 2649-53. 
 Legate, K. R., Wickstrom, S. A. and Fassler, R. (2009). Genetic and cell 
biological analysis of integrin outside-in signaling. Genes Dev 23, 397-418. 
 Lengauer, C., Kinzler, K. W. and Vogelstein, B. (1998). Genetic instabilities 
in human cancers. Nature 396, 643-649. 
 Levy, V., Lindon, C., Zheng, Y., Harfe, B. D. and Morgan, B. A. (2007). 
Epidermal stem cells arise from the hair follicle after wounding. Faseb J. 



7. References 

 44 

 Lippens, S., Denecker, G., Ovaere, P., Vandenabeele, P. and Declercq, W. 
(2005). Death penalty for keratinocytes: apoptosis versus cornification. Cell Death 
Differ 12 Suppl 2, 1497-508. 
 Loonstra, A., Vooijs, M., Beverloo, H. B., Allak, B. A., van Drunen, E., 
Kanaar, R., Berns, A. and Jonkers, J. (2001). Growth inhibition and DNA damage 
induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98, 
9209-14. 
 Lordier, L., Jalil, A., Aurade, F., Larbret, F., Larghero, J., Debili, N., 
Vainchenker, W. and Chang, Y. (2008). Megakaryocyte endomitosis is a failure of 
late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. 
Blood 112, 3164-74. 
 Lorenz, K., Grashoff, C., Torka, R., Sakai, T., Langbein, L., Bloch, W., 
Aumailley, M. and Fassler, R. (2007). Integrin-linked kinase is required for 
epidermal and hair follicle morphogenesis. J Cell Biol 177, 501-13. 
 Lowes, M. A., Bowcock, A. M. and Krueger, J. G. (2007). Pathogenesis and 
therapy of psoriasis. Nature 445, 866-73. 
 Mack, J. A., Anand, S. and Maytin, E. V. (2005). Proliferation and 
cornification during development of the mammalian epidermis. Birth Defects Res C 
Embryo Today 75, 314-29. 
 Maley, C. C., Galipeau, P. C., Li, X., Sanchez, C. A., Paulson, T. G., 
Blount, P. L. and Reid, B. J. (2004). The combination of genetic instability and 
clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res 
64, 7629-33. 
 Margadant, C., Charafeddine, R. A. and Sonnenberg, A. (2010). Unique 
and redundant functions of integrins in the epidermis. Faseb J 24, 4133-52. 
 McGowan, K. A., Li, J. Z., Park, C. Y., Beaudry, V., Tabor, H. K., Sabnis, 
A. J., Zhang, W., Fuchs, H., de Angelis, M. H., Myers, R. M. et al. (2008). 
Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat 
Genet 40, 963-70. 
 McGrath, J. A., Eady, R. A. J. and Pope, F. M. (2008). Anatomy and 
Organization of Human Skin: Blackwell Publishing, Inc. 
 Mitelman, F., Johansson, B. and Mertens, F. (2011). Mitelman Database of 
Chromosome Aberrations and Gene Fusions in Cancer. 
http://cgap.nci.nih.gov/Chromosomes/Mitelman. 
 Moik, D. V., Janbandhu, V. C. and Fassler, R. (2011a). Loss of migfilin 
expression has no overt consequences on murine development and homeostasis. J 
Cell Sci 124, 414-21. 
 Moik, D. V., Janbandhu, V. C. and Fassler, R. (2011b). Migfilin represses 
tetraploidy and acts a tumor suppressor in skin. manuscript in preparation. 
 Montanez, E., Ussar, S., Schifferer, M., Bosl, M., Zent, R., Moser, M. and 
Fassler, R. (2008). Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 
22, 1325-30. 
 Moser, M., Legate, K. R., Zent, R. and Fassler, R. (2009). The tail of 
integrins, talin, and kindlins. Science 324, 895-9. 
 Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. and Fassler, R. (2008). 
Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 14, 
325-30. 
 Murase, D., Hachiya, A., Amano, Y., Ohuchi, A., Kitahara, T. and Takema, 
Y. (2009). The essential role of p53 in hyperpigmentation of the skin via regulation of 
paracrine melanogenic cytokine receptor signaling. J Biol Chem 284, 4343-53. 

http://cgap.nci.nih.gov/Chromosomes/Mitelman


7. References 

 45 

 Musacchio, A. and Salmon, E. D. (2007). The spindle-assembly checkpoint 
in space and time. Nat Rev Mol Cell Biol 8, 379-93. 
 Naiche, L. A. and Papaioannou, V. E. (2007). Cre activity causes 
widespread apoptosis and lethal anemia during embryonic development. Genesis 
45, 768-75. 
 Nenci, A., Huth, M., Funteh, A., Schmidt-Supprian, M., Bloch, W., 
Metzger, D., Chambon, P., Rajewsky, K., Krieg, T., Haase, I. et al. (2006). Skin 
lesion development in a mouse model of incontinentia pigmenti is triggered by 
NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol 
Genet 15, 531-42. 
 Nestle, F. O., Di Meglio, P., Qin, J. Z. and Nickoloff, B. J. (2009). Skin 
immune sentinels in health and disease. Nat Rev Immunol 9, 679-91. 
 Nickoloff, B. J., Ben-Neriah, Y. and Pikarsky, E. (2005). Inflammation and 
cancer: is the link as simple as we think? J Invest Dermatol 124, x-xiv. 
 Nickoloff, B. J., Xin, H., Nestle, F. O. and Qin, J. Z. (2007). The cytokine 
and chemokine network in psoriasis. Clin Dermatol 25, 568-73. 
 Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D., Monkley, S., 
Critchley, D. and Fassler, R. (2007). Loss of talin1 in platelets abrogates integrin 
activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp 
Med 204, 3113-8. 
 Nindl, I., Gottschling, M. and Stockfleth, E. (2007). Human 
papillomaviruses and non-melanoma skin cancer: basic virology and clinical 
manifestations. Dis Markers 23, 247-59. 
 Ogle, B. M., Cascalho, M. and Platt, J. L. (2005). Biological implications of 
cell fusion. Nat Rev Mol Cell Biol 6, 567-75. 
 Okura, M., Maeda, H., Nishikawa, S. and Mizoguchi, M. (1995). Effects of 
monoclonal anti-c-kit antibody (ACK2) on melanocytes in newborn mice. J Invest 
Dermatol 105, 322-8. 
 Olaharski, A. J., Sotelo, R., Solorza-Luna, G., Gonsebatt, M. E., Guzman, 
P., Mohar, A. and Eastmond, D. A. (2006). Tetraploidy and chromosomal instability 
are early events during cervical carcinogenesis. Carcinogenesis 27, 337-43. 
 Omori, E., Matsumoto, K., Sanjo, H., Sato, S., Akira, S., Smart, R. C. and 
Ninomiya-Tsuji, J. (2006). TAK1 is a master regulator of epidermal homeostasis 
involving skin inflammation and apoptosis. J Biol Chem 281, 19610-7. 
 Pasparakis, M., Courtois, G., Hafner, M., Schmidt-Supprian, M., Nenci, A., 
Toksoy, A., Krampert, M., Goebeler, M., Gillitzer, R., Israel, A. et al. (2002). TNF-
mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. 
Nature 417, 861-6. 
 Pellinen, T., Tuomi, S., Arjonen, A., Wolf, M., Edgren, H., Meyer, H., 
Grosse, R., Kitzing, T., Rantala, J. K., Kallioniemi, O. et al. (2008). Integrin 
trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 15, 371-85. 
 Pfeifer, A., Brandon, E. P., Kootstra, N., Gage, F. H. and Verma, I. M. 
(2001). Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient 
gene targeting in vivo. Proc Natl Acad Sci U S A 98, 11450-5. 
 Pratt, S. J., Epple, H., Ward, M., Feng, Y., Braga, V. M. and Longmore, G. 
D. (2005). The LIM protein Ajuba influences p130Cas localization and Rac1 activity 
during cell migration. J Cell Biol 168, 813-24. 
 Proksch, E., Brandner, J. M. and Jensen, J. M. (2008). The skin: an 
indispensable barrier. Exp Dermatol 17, 1063-72. 



7. References 

 46 

 Rajewsky, K., Gu, H., Kuhn, R., Betz, U. A., Muller, W., Roes, J. and 
Schwenk, F. (1996). Conditional gene targeting. J Clin Invest 98, 600-3. 
 Ramirez, A., Page, A., Gandarillas, A., Zanet, J., Pibre, S., Vidal, M., 
Tusell, L., Genesca, A., Whitaker, D. A., Melton, D. W. et al. (2004). A keratin 
K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated 
recombination. Genesis 39, 52-7. 
 Robinson, J. K., Rademaker, A. W., Goolsby, C., Traczyk, T. N. and 
Zoladz, C. (1996). DNA ploidy in nonmelanoma skin cancer. Cancer 77, 284-91. 
 Roumier, T., Valent, A., Perfettini, J. L., Metivier, D., Castedo, M. and 
Kroemer, G. (2005). A cellular machine generating apoptosis-prone aneuploid cells. 
Cell Death Differ 12, 91-3. 
 Sah, V. P., Attardi, L. D., Mulligan, G. J., Williams, B. O., Bronson, R. T. 
and Jacks, T. (1995). A subset of p53-deficient embryos exhibit exencephaly. Nat 
Genet 10, 175-80. 
 Schafer, M. and Werner, S. (2008). Cancer as an overhealing wound: an old 
hypothesis revisited. Nat Rev Mol Cell Biol 9, 628-38. 
 Schiller, H. B., Friedel, C. C., Boulegue, C. and Fassler, R. (2011). 
Quantitative proteomics of the integrin adhesome show a myosin II-dependent 
recruitment of LIM domain proteins. EMBO Rep. 
 Schmidt-Supprian, M., Bloch, W., Courtois, G., Addicks, K., Israel, A., 
Rajewsky, K. and Pasparakis, M. (2000). NEMO/IKK gamma-deficient mice model 
incontinentia pigmenti. Mol Cell 5, 981-92. 
 Schmidt-Supprian, M. and Rajewsky, K. (2007). Vagaries of conditional 
gene targeting. Nat Immunol 8, 665-8. 
 Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S. and Capecchi, M. 
R. (2000). Illegitimate Cre-dependent chromosome rearrangements in transgenic 
mouse spermatids. Proc Natl Acad Sci U S A 97, 13702-7. 
 Schneider, M. R., Schmidt-Ullrich, R. and Paus, R. (2009). The hair follicle 
as a dynamic miniorgan. Curr Biol 19, R132-42. 
 Schvartzman, J. M., Sotillo, R. and Benezra, R. (2010). Mitotic 
chromosomal instability and cancer: mouse modelling of the human disease. Nat 
Rev Cancer 10, 102-15. 
 Segre, J. A. (2006). Epidermal barrier formation and recovery in skin 
disorders. J Clin Invest 116, 1150-8. 
 Semprini, S., Troup, T. J., Kotelevtseva, N., King, K., Davis, J. R., Mullins, 
L. J., Chapman, K. E., Dunbar, D. R. and Mullins, J. J. (2007). Cryptic loxP sites in 
mammalian genomes: genome-wide distribution and relevance for the efficiency of 
BAC/PAC recombineering techniques. Nucleic Acids Res 35, 1402-10. 
 Serhan, C. N. and Savill, J. (2005). Resolution of inflammation: the 
beginning programs the end. Nat Immunol 6, 1191-7. 
 Sharp, T. V., Al-Attar, A., Foxler, D. E., Ding, L., de, A. V. T. Q., Zhang, Y., 
Nijmeh, H. S., Webb, T. M., Nicholson, A. G., Zhang, Q. et al. (2008). The 
chromosome 3p21.3-encoded gene, LIMD1, is a critical tumor suppressor involved in 
human lung cancer development. Proc Natl Acad Sci U S A 105, 19932-7. 
 Silver, D. P. and Livingston, D. M. (2001). Self-excising retroviral vectors 
encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8, 
233-43. 
 Smits, T., Olthuis, D., Blokx, W. A., Kleinpenning, M. M., van de Kerkhof, 
P. C., van Erp, P. E. and Gerritsen, M. J. (2007). Aneuploidy and proliferation in 
keratinocytic intraepidermal neoplasias. Exp Dermatol 16, 81-6. 



7. References 

 47 

 Steigemann, P. and Gerlich, D. W. (2009). Cytokinetic abscission: cellular 
dynamics at the midbody. Trends Cell Biol 19, 606-16. 
 Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., 
Maar, S. and Gerlich, D. W. (2009). Aurora B-mediated abscission checkpoint 
protects against tetraploidization. Cell 136, 473-84. 
 Stepniak, E., Radice, G. L. and Vasioukhin, V. (2009). Adhesive and 
signaling functions of cadherins and catenins in vertebrate development. Cold Spring 
Harb Perspect Biol 1, a002949. 
 Storchova, Z. and Kuffer, C. (2008). The consequences of tetraploidy and 
aneuploidy. J Cell Sci 121, 3859-66. 
 Sullivan, M. and Morgan, D. O. (2007). Finishing mitosis, one step at a time. 
Nat Rev Mol Cell Biol 8, 894-903. 
 Takafuta, T., Saeki, M., Fujimoto, T. T., Fujimura, K. and Shapiro, S. S. 
(2003). A new member of the LIM protein family binds to filamin B and localizes at 
stress fibers. J Biol Chem 278, 12175-81. 
 Tang, Y. C., Williams, B. R., Siegel, J. J. and Amon, A. (2011). 
Identification of Aneuploidy-Selective Antiproliferation Compounds. Cell. 
 Thompson, S. L. and Compton, D. A. (2010). Proliferation of aneuploid 
human cells is limited by a p53-dependent mechanism. J Cell Biol 188, 369-81. 
 Thyagarajan, B., Guimaraes, M. J., Groth, A. C. and Calos, M. P. (2000). 
Mammalian genomes contain active recombinase recognition sites. Gene 244, 47-
54. 
 Tinkle, C. L., Lechler, T., Pasolli, H. A. and Fuchs, E. (2004). Conditional 
targeting of E-cadherin in skin: insights into hyperproliferative and degenerative 
responses. Proc Natl Acad Sci U S A 101, 552-7. 
 Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, 
C. A., Gygi, S. P., Dunham, M. J. and Amon, A. (2010). Identification of 
aneuploidy-tolerating mutations. Cell 143, 71-83. 
 Tu, Y., Wu, S., Shi, X., Chen, K. and Wu, C. (2003). Migfilin and Mig-2 link 
focal adhesions to filamin and the actin cytoskeleton and function in cell shape 
modulation. Cell 113, 37-47. 
 Uetake, Y. and Sluder, G. (2004). Cell cycle progression after cleavage 
failure: mammalian somatic cells do not possess a "tetraploidy checkpoint". J Cell 
Biol 165, 609-15. 
 Uetake, Y. and Sluder, G. (2010). Prolonged prometaphase blocks daughter 
cell proliferation despite normal completion of mitosis. Curr Biol 20, 1666-71. 
 Ussar, S., Moser, M., Widmaier, M., Rognoni, E., Harrer, C., Genzel-
Boroviczeny, O. and Fassler, R. (2008). Loss of Kindlin-1 causes skin atrophy and 
lethal neonatal intestinal epithelial dysfunction. PLoS Genet 4, e1000289. 
 Vassilopoulos, G., Wang, P. R. and Russell, D. W. (2003). Transplanted 
bone marrow regenerates liver by cell fusion. Nature 422, 901-4. 
 Vervenne, H. B., Crombez, K. R., Delvaux, E. L., Janssens, V., Van de 
Ven, W. J. and Petit, M. M. (2009). Targeted disruption of the mouse Lipoma 
Preferred Partner gene. Biochem Biophys Res Commun 379, 368-73. 
 Vitale, I., Senovilla, L., Galluzzi, L., Criollo, A., Vivet, S., Castedo, M. and 
Kroemer, G. (2008). Chk1 inhibition activates p53 through p38 MAPK in tetraploid 
cancer cells. Cell Cycle 7, 1956-61. 
 Vitale, I., Senovilla, L., Jemaa, M., Michaud, M., Galluzzi, L., Kepp, O., 
Nanty, L., Criollo, A., Rello-Varona, S., Manic, G. et al. (2010). Multipolar mitosis 
of tetraploid cells: inhibition by p53 and dependency on Mos. Embo J 29, 1272-84. 



7. References 

 48 

 Vousden, K. H. (2002). Activation of the p53 tumor suppressor protein. 
Biochim Biophys Acta 1602, 47-59. 
 Wagner, E. F., Schonthaler, H. B., Guinea-Viniegra, J. and Tschachler, E. 
(2010). Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 6, 
704-14. 
 Wakabayashi, Y., Mao, J. H., Brown, K., Girardi, M. and Balmain, A. 
(2007). Promotion of Hras-induced squamous carcinomas by a polymorphic variant 
of the Patched gene in FVB mice. Nature 445, 761-5. 
 Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-
Dhalimy, M., Lagasse, E., Finegold, M., Olson, S. and Grompe, M. (2003). Cell 
fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897-
901. 
 Watt, F. M. (2002). Role of integrins in regulating epidermal adhesion, growth 
and differentiation. Embo J 21, 3919-26. 
 Williams, B. R. and Amon, A. (2009). Aneuploidy: cancer's fatal flaw? 
Cancer Res 69, 5289-91. 
 Wong, C. and Stearns, T. (2005). Mammalian cells lack checkpoints for 
tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6, 6. 
 Woo, R. A. and Poon, R. Y. (2003). Cyclin-dependent kinases and S phase 
control in mammalian cells. Cell Cycle 2, 316-24. 
 Yang, J., Meyer, M., Muller, A. K., Bohm, F., Grose, R., Dauwalder, T., 
Verrey, F., Kopf, M., Partanen, J., Bloch, W. et al. (2010). Fibroblast growth factor 
receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous 
homeostasis. J Cell Biol 188, 935-52. 
 Yang, Z., Loncarek, J., Khodjakov, A. and Rieder, C. L. (2008). Extra 
centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10, 
748-51. 
 Zhang, Y., Tu, Y., Gkretsi, V. and Wu, C. (2006). Migfilin interacts with 
vasodilator-stimulated phosphoprotein (VASP) and regulates VASP localization to 
cell-matrix adhesions and migration. J Biol Chem 281, 12397-407. 
 Zhao, J., Zhang, Y., Ithychanda, S. S., Tu, Y., Chen, K., Qin, J. and Wu, C. 
(2009). Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated 
survival signaling. J Biol Chem 284, 34308-20. 
 Zheng, Q. and Zhao, Y. (2007). The diverse biofunctions of LIM domain 
proteins: determined by subcellular localization and protein-protein interaction. Biol 
Cell 99, 489-502. 
 Zhivotovsky, B. and Kroemer, G. (2004). Apoptosis and genomic instability. 
Nat Rev Mol Cell Biol 5, 752-62. 
 Zouboulis, C. C., Baron, J. M., Bohm, M., Kippenberger, S., Kurzen, H., 
Reichrath, J. and Thielitz, A. (2008). Frontiers in sebaceous gland biology and 
pathology. Exp Dermatol 17, 542-51. 

 
 



 

 49 

8. Acknowledgements 

This work would not have been possible without essential contributions by many 

members of the Department of Molecular Medicine and beyond, and I would like to 

express my deep-felt feeling of gratitude to them. 

First and foremost, I am greatly thankful to my supervisor Prof. Dr. Reinhard Fässler, 

who helped and supported me in any conceivable manner while exploring the maze 

inside a labyrinth inside a tangle that turned out to be the analysis of the migfilin-null 

phenotype. 

I would like to thank the members of the thesis committee for reviewing my work: 

Prof. Dr. Reinhard Fässler as first referee, Prof. Dr. Angelika Vollmar as second 

referee, and the committee members Prof. Dr. Karl-Peter Hopfner, PD Dr. Manfred 

Ogris, PD Dr. Stefan Zahler, and Prof. Dr. Klaus Förstemann. 

I am indebted in gratitude and friendship to Dr. Vaibhao C. Janbandhu, who joined 

me in solving the migfilin phenotype conundrum. Without him, we surely would not 

have elucidated the function of migfilin. 

For help with generation of the migfilin-floxed allele, I would like to thank PD Dr. 

Markus Moser and Dr. Siegfrid Ussar. Invaluable introductions to various 

experimental techniques were thankfully received from Dr. Hao-Ven Wang, Dr. 

Aurelia Raducanu, Dr. Katrin Lorenz, Dr. Michael Leiss, Dr. Carsten Grashoff and 

Dr. Attila Aszodi. For helpful discussions and advice, I would like to thank Dr. Sara 

Wickström and Dr. Marc Schmidt-Supprian. For help with getting to grips with the 

tetraploidy field, I am deeply thankful to Dr. Zuzana Storchova, Christoph Kuffer and 

Anastazia Kuznetsova. Raphael Ruppert, Klaus-Dieter Heger and Christoph Vahl 

offered gratefully received support with cell sorting and flow cytometry. Thanks to Dr. 



8. Acknowledgements 

 50 

Kyle Legate, Christoph Kuffer, Moritz Widmaier and Emanuel Rognoni for critically 

reading this thesis. 

I would also like to thank Dr. Walter Göhring, Dr. Armin Lambacher and Klaus Weber 

for constant technical and administrative support, Carmen Schmitz for help with 

administrative work. For ensuring outstanding mouse facilities and help and 

guidance with animal handling and experimentation, I would like to thank Dr. Heinz 

Brandstätter and Dr. Eva Hesse. Finally, I would like to express my gratitude to the 

animal caretakers for excellent animal husbandry, in particular Jens Päßler and 

Silvana Kaphengst. 

All modern scientists are standing on the shoulders of a legion of giants, who drove 

and expanded science ever further. Thus, deep-felt words of appreciation go towards 

the countless scientists who devoted their lives to science before us and elevated us 

to these great heights of scientific knowledge we are privileged to experience today. 

Most importantly, I would like to thank my family, especially my wife Stefanie and my 

daughter Pia Katharina, who gave a deeper purpose to this work and constantly 

provided support, love, warmth and energy during my doctoral research and writing 

of this thesis. 



 

 51 

9. Curriculum vitae 

PERSONAL INFORMATION 

Name Daniel V. Moik Nationality German 

    

DOCTORAL EDUCATION 

10/2005-

5/2011 

Ph.D. student with Prof. Dr. Reinhard Fässler, 

Department of Molecular Medicine, Max-Planck Institute of Biochemistry, 

Martinsried, Germany 

 

München, den 15. April 2011 



 

 52 

10. Supplements 

Reprint of Moik et al, 2011a (including supplementary information). 

Manuscript version of Moik et al, 2011b as prepared for submission. 



 

 53 

Moik et al, 2011a 

 



414 Research Article

Introduction
Cell–matrix and cell–cell adhesions are essential for the
development and homeostasis of multicellular organisms. During
development, cell adhesion to defined substrates or neighboring
cells defines spatial identity and can induce cell fate decisions and
provide migratory guidance cues. In fully developed organisms,
adhesion-mediated signaling provides survival cues and regulates
tissue functions. Cell adhesion to extracellular matrix (ECM)
proteins is largely mediated through specific transmembrane
receptors of the integrin family. Integrins are heterodimeric
glycoproteins comprising  and  subunits. Each subunit consists
of a large extracellular domain, a transmembrane domain and a
short cytoplasmic domain. Integrins function as bidirectional
signaling molecules; their affinity for ligands is regulated (integrin
activation) by direct interactions of the -subunit cytoplasmic tails
with the cytoskeletal proteins talin and kindlin (inside-out signaling)
(Moser et al., 2009). Following ligand binding, integrins transduce
signals into cells (outside-in signaling) by forming large signaling
hubs called focal adhesions (FAs), which consist of signaling and
adaptor proteins that regulate actin dynamics and various
intracellular signaling pathways (Hynes, 2002; Legate and Fässler,
2009).

Migfilin [encoded by filamin-binding LIM protein 1 (Fblim1)] is
an adaptor protein that is recruited to FAs. It belongs to the zyxin
family of LIM-domain-containing proteins (where LIM stands for
Lin-11, Isl-1 and Mec-3) and comprises an N-terminal domain,
without obvious sequence motifs, followed by a proline-rich region
containing a nuclear export signal (NES) and three C-terminal LIM
domains. The N-terminal domain of migfilin can bind to filamins,
the proline-rich region to VASP (for vasodilator-stimulated
phosphoprotein) (Zhang et al., 2006) and the LIM domains to
kindlin-2 (FERMT2) and the transcription factor Nkx2.5 (Akazawa
et al., 2004; Takafuta et al., 2003; Tu et al., 2003). Migfilin is
encoded by a single gene, which can be alternatively spliced to give

rise to two smaller isoforms whose biological relevance is unknown;
one splice variant is called migfilin(s), which lacks the NES and the
proline-rich region. The other isoform is called filamin-binding LIM
protein 1 (Fblp1), which lacks the third LIM domain.

Studies with cultured cell lines have identified migfilin as an
important mediator of integrin function. Small interfering RNA
(siRNA)-mediated depletion of migfilin in different cell lines
results in reduced integrin-mediated adhesion, spreading and
migration (Tu et al., 2003; Zhang et al., 2006). Talin and the
kindlins activate integrins (Montanez et al., 2008; Moser et al.,
2009), whereas filamins compete with talin for binding to the
cytoplasmic tails of integrins and thereby attenuate integrin
activation (Kiema et al., 2006). On the basis of findings showing
that migfilin can compete with -integrin cytoplasmic tails for
binding to filamins, it has been proposed that migfilin conveys its
stimulating role on integrins by promoting talin binding to integrin
tails, resulting in integrin activation (Ithychanda et al., 2009; Lad
et al., 2008). Interestingly, overexpression of migfilin can also
diminish cell migration, which was shown to depend on the proline-
rich motif (Zhang et al., 2006). Furthermore, the proline-rich motif
seems to be required for recruiting VASP to FAs. It is not entirely
clear, however, whether recruitment of VASP plays a regulative
role for modulating cell migration.

Besides its role in cell–matrix adhesions, migfilin has been
shown to have several additional functions. Migfilin is found at
cell–cell junctions together with -catenin; formation of cell–cell
contacts was impaired after siRNA-mediated knockdown of
migfilin, as shown in a time course with keratinocytes after
addition of Ca2+ (Gkretsi et al., 2005). Furthermore, migfilin is
also present in the nucleus, where it might co-activate transcription
factors including Nkx2.5 (Akazawa et al., 2004), whose activity
is essential for heart morphogenesis. Finally, migfilin has also
been shown to bind to c-Src, which promotes cell survival (Zhao
et al., 2009).

Summary
Migfilin is a LIM-domain-containing protein of the zyxin family of adaptor proteins and is found at cell–matrix and cell–cell adhesion
sites and in the nucleus. In vitro studies have suggested that migfilin promotes 1 integrin activity, regulates cell spreading and
migration and induces cardiomyocyte differentiation. To test directly the function of migfilin in vivo, we generated a migfilin-null
mouse strain. Here, we report that loss of migfilin expression permits normal development and normal postnatal aging. Fibroblasts
and keratinocytes from migfilin-null mice display normal spreading and adhesion, and normal integrin expression and activation. The
migration velocity and directionality of migfilin-null embryonic fibroblasts were normal, whereas the velocity of migfilin-null
keratinocytes in wound scratch assays was slightly but significantly reduced. Our findings indicate that the roles of migfilin are
functionally redundant during mouse development and tissue homeostasis.
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To test directly the role of migfilin function in vivo, we used
homologous recombination in embryonic stem (ES) cells to
generate null alleles for the gene encoding migfilin. Surprisingly,
migfilin-null mice develop and age normally. These results suggest
that the role of migfilin in adhesion signaling and developmental
pathways overlaps with functions of other LIM-domain-containing
proteins.

Results
Migfilin-null mice have no apparent phenotype
We generated a conditional floxed (fl) allele of the gene encoding
migfilin by flanking exons 2 and 3 with loxP sites (supplementary
material Fig. S1A,B). Intercrossing of floxed migfilin mice with a
deleter flippase removed the neomycin selection cassette and
resulted in migfilin floxed mice, which expressed comparable
migfilin levels in all tissues tested including heart (supplementary
material Fig. S1C and data not shown). Mating migfilin floxed
mice with a deleter-Cre strain removed the loxP-flanked exons,
which contain the start codon of migfilin. Given that downstream
ATG codons would not be in the correct reading frame, we expected
to observe loss of migfilin expression. To confirm this, we
performed western blotting of lung and heart lysates using an
antibody raised against a peptide from the first LIM domain of
migfilin. In control lysates the antibody recognized a single band
at an apparent molecular mass of 50 kDa (Fig. 1A). This was larger
than the predicted size calculated from the primary sequence but
comparable with the reported molecular mass of human migfilin
(Tu et al., 2003). We did not detect bands at molecular masses
below 50 kDa, suggesting that Fblp1 or migfilin(s) was not
expressed in heart and lung (Fig. 1A). As expected, migfilin protein
was absent from homozygous mutant migfilin (–/–) mice and
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reduced in migfilin heterozygous (+/–) mice (Fig. 1A). Cre-
mediated deletion of exons 2 and 3 did not significantly affect the
level of the transcript encoding migfilin, as measured by
quantitative RT–PCR (supplementary material Fig. S1D). Offspring
from migfilin heterozygous intercrosses yielded normal numbers
of migfilin-null mice, which presented no apparent defects (Fig.
1B), gained weight in the same manner as wild-type and
heterozygous littermates (Fig. 1C) and were fertile.

To test whether other zyxin family members were upregulated,
thereby compensating for the loss of migfilin, we performed
quantitative RT–PCR and western blotting in heart and lung. We did
not observe significant changes of their transcript or protein levels
upon migfilin deletion (Fig. 1D,E; supplementary material Fig.
S1E,F), indicating that compensatory upregulation did not occur.

Expression profile of migfilin
As migfilin-null mice did not have an obvious phenotype, we
decided to analyze migfilin expression in various mouse tissues.
Western blotting detected migfilin protein in heart, lung, skin,
spleen, uterus and in the entire intestinal tract (Fig. 2A). In line
with a previous report (Takafuta et al., 2003), migfilin levels were
not detectable in platelets (supplementary material Fig. S2A).
Furthermore, we could not detect migfilin in B cells and mast cells
and found only very low amounts in macrophages (supplementary
material Fig. S2A). Northern blotting showed a major transcript
encoding migfilin of 3.2 kb in heart, lung, skin, intestinal tract,
spleen and uterus (Fig. 2B). As previously reported (Akazawa et
al., 2004), lung contained a second transcript with a size of
approximately 6 kb (Fig. 2B). Brain, kidney, liver, skeletal muscle
and thymus lacked detectable migfilin mRNAs (Fig. 2B). RT–PCR
confirmed the absence of migfilin expression in brain, liver and

Fig. 1. Migfilin-null mice are viable and without obvious
phenotype. (A)Western blot of migfilin expression in heart and
lung from migfilin wild-type, heterozygous and null (+/+, +/–
and –/–, respectively) littermates. Gapdh served as the loading
control. (B)Wild-type and migfilin-null littermates at 4 weeks of
age. (C)Weight-gain curve of migfilin wild-type (n7),
heterozygous (n15) and null (n7) littermates. (D)Quantitative
RT–PCR analysis of the zyxin family members using total RNA
isolated from migfilin wild-type, heterozygous and null lung.
Transcript levels were normalized to the levels of Gapdh. Results
are means + s.d. (E)Expression levels of the indicated proteins
in wild-type and migfilin-null lungs (three animals per
genotype). Band intensities of western blots were first
normalized to that of Gapdh, then normalized to the wild-type
expression levels. Results are means + s.d.
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skeletal muscle and revealed only minute amounts in kidney and
thymus (Fig. 2C).

The FBLP1 transcript in humans is generated by a read-through
of exon 7 into the following intron (supplementary material Fig.
S2B) and thus lacks exons 8 and 9 coding for the third LIM domain.
Primers specific for the equivalent murine Fblp1 transcript
(supplementary material Fig. S2C) detected very low Fblp1 mRNA
levels, as we required 36 amplification cycles to detect Fblp1 mRNA
in brain and liver (Fig. 2C). Expression of the migfilin(s) transcript
could not be detected with primers flanking exons 3 and 6 (data not
shown). Semi-quantitative RT–PCR with total RNA isolated from
embryos of embryonic day (E) 7.5 to 18.5 (Fig. 2D) detected mRNAs
encoding migfilin and Fblp1 in all stages analyzed.

Migfilin-null mice have no apparent organ abnormities
Next we carried out hematoxylin and eosin (HE) and
immunofluorescence stainings of sections from various tissues.
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HE staining revealed no abnormalities in hearts from migfilin-null
mice (Fig. 3A). Migfilin colocalized with vinculin at the intercalated
discs in the wild-type heart (Fig. 3A; see also supplementary
material Fig. S3A for single-color channels). Previous data
implicated a nuclear localization of migfilin in cardiomycytes
(Akazawa et al., 2004), which we could not confirm (Fig. 3A). As
expected, migfilin expression was lost in hearts from migfilin-null
mice. Although migfilin expression was lost, we found a normal
distribution of vinculin (Fig. 3A; supplementary material Fig.
S3A).

Despite the high expression of migfilin in the lung, we did not
detect abnormalities in lungs from migfilin-null mice (Fig. 3B).
Migfilin levels were high in lung epithelial cells (Fig. 3B), in
mural cells of the lung vasculature (supplementary material Fig.
S3B) and in residential macrophages (Fig. 3B, arrowheads;
supplementary material Fig. S3C). Lung endothelial cells,
visualized by endomucin co-staining, did not express detectable
levels of migfilin (Fig. 3B).

The morphology of colon and kidney was unaltered in migfilin-
null mice, as determined by HE staining (Fig. 3C,D), and
immunofluorescence stains revealed low expression of migfilin in
cryptal enterocytes and high expression in upward moving and
differentiated enterocytes (Fig. 3C). Although we did not detect
migfilin protein in lysates of whole kidney (Fig. 2A), migfilin
levels were high in glomeruli (Fig. 3D).

Finally, apoptosis was normal in all the organs we tested (data
not shown). We also could not detect changes in the levels of total
Src and Src phosphoylated at Tyr416 in lung tissue lysates from
migfilin-null mice (supplementary material Fig. S3D).

Migfilin-null cells display normal F-actin distribution and
1 integrin activation
Next, we isolated primary migfilin-null keratinocytes, cultured
them in the presence of low levels of Ca2+, to prevent
differentiation, and analyzed integrin- and actin-mediated functions.
Migfilin was present in FAs of wild-type keratinocytes, where it
colocalized with vinculin (Fig. 4A). Migfilin-null cells developed
normal FAs, in terms of number and size, which were connected
to F-actin stress fibers in a manner similar to that in wild-type cells
(Fig. 4B). In contrast with a previous report (Zhang et al., 2006),
we found robust recruitment of VASP to vinculin-containing FAs
both in migfilin-null keratinocytes (Fig. 4C,D) and in migfilin-null
fibroblasts (data not shown). Addition of Ca2+ induced migfilin
translocation to cell–cell adhesion sites, where it colocalized with
vinculin (Fig. 4E). Upon Ca2+ treatment migfilin-null cells were
also able to form cell–cell adhesions with a fine, but prominent,
lining of vinculin (Fig. 4F).

We next tested whether migfilin-null cells have a normal integrin
profile. The levels of integrin 1, 4, 2, 5 and v were similar
on wild-type and migfilin-null keratinocytes (Fig. 4G;
supplementary material Fig. S4B). We also found normal 9EG7
binding on migfilin-null keratinocytes (Fig. 4H; supplementary
material Fig. S4B) and a similar increase in 9EG7 binding on wild-
type and migfilin-null keratinocytes after treatment with Mn2+

(Fig. 4H). These findings suggest that migfilin is required neither
for maintaining the basal 1 integrin activity nor for inducing 1
integrin activation by Mn2+.

Migfilin promotes the migration speed of keratinocytes
siRNA-mediated depletion of migfilin has been shown to impair
integrin-mediated adhesion and spreading of human cells (Tu et

Fig. 2. Expression profile of murine migfilin. (A)Western blot of migfilin in
different organs. Gapdh served as the loading control. (B)Northern blot
analysis of migfilin from indicated tissues. The 28S and 18S ribosomal RNAs
are shown as a loading control. (C)Semi-quantitative RT–PCR from the
indicated tissues. The migfilin-specific primers span exons 5 and 8 and the
Fblp1-specific primers span exons 6 and 7b (results are after 36 cycles for the
latter) (see supplementary material Fig. S2C for a schematic of the primer
positions). neg. represents a no-template control. (D)Semi-quantitative RT–
PCR from whole embryos at the indicated embryonic age (E).
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al., 2003; Zhang et al., 2006). To test whether genetic ablation led
to similar defects, we plated wild-type and migfilin-null
keratinocytes on different substrates to compare their adhesive and
spreading properties. Loss of migfilin expression did not affect
adhesion to collagen I, collagen IV, fibronectin or laminin-322
(Fig. 4I). Furthermore, spreading of migfilin-null keratinocytes on
a mixture of collagen I and fibronectin was also indistinguishable
from that displayed in wild-type cells (Fig. 4J).

It is possible that abrupt migfilin depletion by specific siRNAs
results in phenotypic changes that are not visible in the
‘compensation prone’ genetic model used in the present study. To
test this possibility, we performed siRNA-mediated depletion of
migfilin in immortalized migfilin floxed (fl/fl) mouse embryonic
fibroblasts (MEFs). This resulted in an efficient knockdown of
migfilin, whereas cells transfected with a scrambled control siRNA
expressed normal levels of migfilin (supplementary material Fig.
S5A and data not shown). To control off-target effects, we also
transfected migfilin-null MEFs derived from fl/fl MEF clones with
these siRNAs. Vinculin localized to FAs in both migfilin fl/fl and
null MEFs transfected with either migfilin-specific or scrambled
siRNAs (supplementary material Fig. S5B). Furthermore, the size
and the number of FAs were similar in cells transfected with either
siRNA (supplementary material Fig. S5B). Moreover, we did not
find defects in cell adhesion or in spreading kinetics (supplementary
material Fig. S5C,D).

Given that it has also been reported that siRNA-mediated
migfilin depletion impairs cell migration (Zhang et al., 2006), we
analyzed cell migration in a scratch wound assay. Whereas migfilin-
null MEFs showed a migration behavior similar to that of wild-
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type cells (Fig. 5A; supplementary material Fig. S5E), migration
velocity was reduced by 28% in migfilin-null keratinocytes when
compared with that of wild-type keratinocytes (P<0.001; Fig. 5B;
supplementary material Fig. S5F). The directionality of migration
was unchanged in migfilin-null keratinocytes (Fig. 5B).

To ensure that the migration defect of migfilin-null keratinocytes
was specific to migfilin loss, we retrovirally transduced migfilin-
null keratinocytes with expression constructs encoding either the
wild-type migfilin–GFP (green fluorescent protein) fusion protein
or for the filamin-binding-deficient (D11A13 mutated) migfilin–
GFP fusion protein (Ithychanda et al., 2009). The transduced cells
were sorted by FACS for equal GFP levels (Fig. 5C) and the
subcellular localization of the fusion proteins was analyzed. Both
migfilin –GFP and migfilin(D11A13)–GFP localized to FAs (Fig.
5D). Similar to endogenous migfilin in wild-type keratinocytes
(Fig. 4A), the re-expressed wild-type protein also weakly localized
to F-actin stress fibers (Fig. 5E). This stress fiber localization
depended on interaction with filamins as it could not be observed
in cells expressing migfilin(D11A13)–GFP (Fig. 5E). Both
constructs were able to rescue the defect in the migration velocity
of migfilin-null keratinocytes (P<0.001; Fig. 5F). These findings
suggest that the migfilin–filamin interaction is not required for
controlling the migration speed in keratinocytes.

Discussion
Cell–ECM adhesion is important for cell shape, motility and
signaling. Migfilin is an integrin-proximal adaptor localized to
FAs and provides a link between integrins and the actin cytoskeleton
(Takafuta et al., 2003; Tu et al., 2003). Here, we tested the role of

Fig. 3. Migfilin is not required for tissue
homeostasis. Hematoxylin and eosin
(HE) and immunofluorescence staining of
migfilin wild-type (+/+) and null (–/–)
heart (A), lung (B), colon (C) and kidney
(D) with the indicated antibodies. Endom.,
endomucin. The arrowheads in B indicate
residential macrophages. Scale bars:
50m.
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migfilin in vivo by genetically ablating the gene encoding migfilin.
Unexpectedly, we found that migfilin is dispensable for
development and tissue maintenance.

The wide expression pattern of migfilin suggested a role for this
FA protein in several organs. Although high levels were found at
the intercalated discs of cardiomyocytes and in smooth muscle
cells, migfilin was not detected in skeletal muscle. Similarly, some
epithelia, such as epidermis, lung and intestine, expressed high
levels of migfilin, whereas in others, such as in the epithelium of
the esophagus, tongue or mammary gland, it could not be detected
(data not shown). However, regardless of the migfilin expression
level in the different tissues, we were unable to detect abnormalities
in migfilin-null organs, including changes in cell survival.

It has been suggested that migfilin promotes activation of integrin
1 in vitro (Ithychanda et al., 2009); however, we observed no
change in activation of integrin 1 upon eliminating migfilin
expression in vivo. This also holds true for all previously published
in vitro findings regarding cell–matrix adhesion and cell spreading.
In line with a previous observation (Zhang et al., 2006), we noticed
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a reduction in the migration speed of migfilin-null keratinocytes in
scratch assays. Migfilin-null fibroblasts, however, did not display
this defect. Previous cell culture studies demonstrated that both
siRNA-mediated depletion, as well as overexpression, of migfilin
reduce migration speed (Zhang et al., 2006). It has been proposed
that a diminished localization of VASP to FAs might cause the
diminished migration speed. Clearly, this observation cannot explain
the defect in primary cells as we did not observe defects in VASP
localization after genetic ablation of migfilin in keratinocytes.

We do not know why migration velocity is reduced in migfilin-
null keratinocytes. Neither polarity nor directionality of migration
was affected, which excludes a requirement for migfilin in initiating
or maintaining a polarized lamellipodium (Harms et al., 2005).
Integrin activation and keratinocyte adhesion were also unchanged,
precluding increased integrin activity as a cause for the reduced
migration speed. We can also exclude abnormal distribution or
reduced levels of p130Cas (Bcar1) in nascent FAs as cause for the
reduced migration speed (data not shown). Such a reduced p130Cas
level leading to diminished Rac1 activity was shown to be causative

Fig. 4. Migfilin-null keratinocytes have normal integrin function. Immunofluorescence staining of primary migfilin wild-type (+/+; A,C,E) and null (–/–;
B,D,F) keratinocytes for migfilin (green), F-actin (red) and vinculin (blue) (panels A and B); for VASP (green), vinculin (red) and nuclei (blue) (panels C and D);
and for migfilin (green), vinculin (red) and nuclei (blue) after Ca2+ treatment for 24 hours (panels E and F). Scale bar: 20m. (G)Primary keratinocytes from
migfilin wild-type, heterozygous (+/–) and null mice were stained with antibodies against the indicated integrin subunits and analyzed by flow cytometry. Isot.,
isotype control. (H)Flow cytometry of primary keratinocytes stained with the monoclonal antibody 9EG7 before and after treatment with 1 mM Mn2+. Normalized
mean fluorescence intensity (MFI) values are shown. Data are measurements from a single representative experiment repeated three times and are means + s.d.
(I)Cell adhesion assay with primary migfilin wild-type and null keratinocytes on poly-L-lysine (PLL), collagen I (Col I), fibronectin (FN), laminin 322 (Ln322)
and collagen IV (Col IV). Results are the means + s.e.m. for four replicates. (J)Spreading kinetics of primary keratinocytes on FN+Col I when visualized by time-
lapse microscopy. A total of ten cells per genotype were analyzed; the cell area was measured using ImageJ. Results are means ± s.e.m.
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for the migration defect in Ajuba-deficient cells (Pratt et al. 2005).
The migration defect was specific to the loss of migfilin as re-
expression of migfilin in migfilin-null keratinocytes restored the
wild-type migration speed. Interestingly, re-expression of a filamin-
binding-deficient migfilin mutant was also able to rescue the
migration speed. Clearly, future studies are required to unravel
how migfilin affects migration.

Several zyxin family members can translocate to the nucleus,
where they influence gene expression (Hervy et al., 2006). Migfilin
has also been shown to be present in nuclei and, furthermore, has
an NES for exiting the nuclear compartment (Akazawa et al., 2004).
These findings, together with the observation that migfilin can
interact with the transcription factor Nkx2.5, led to the proposal that
migfilin might be required for heart development (Akazawa et al.,
2004). However, genetic ablation of migfilin resulted neither in
abnormal heart development nor in structural heart defects or heart
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failure. As we never observed nuclear accumulation of migfilin in
heart or any other tissue, as analyzed by immunofluorescence
staining, nuclear translocation of migfilin is either a transient event
or it occurs only under specific conditions such as tissue stress.

The zyxin gene family consists of seven members in mammals.
Although we could demonstrate that none of these members was
upregulated in the absence of migfilin expression, functional
redundancy could serve as the explanation for the lack of
phenotype. Flies have two zyxin family members and thus less
possibility for redundancy. This might explain why depletion of
one of the two zyxin family members in flies induces pharate
lethality (Das Thakur et al., 2010). Genetic studies on different
zyxin family members in mice have so far revealed that single
genetic ablations allow normal development and tissue homeostasis;
ablations of migfilin (the present study), ajuba (Pratt et al., 2005),
limd1 (Feng et al., 2007) and zyxin allow mice to develop normally

Fig. 5. Migfilin-null keratinocytes have a reduced migration velocity. (A)Monolayers of migflin (fl/fl) and null (–/–) MEFs were scratch wounded and scratch
closure was visualized by time-lapse microscopy. Migration was analyzed by tracking single cells using ImageJ. Data shown are measurements from three
experiments and are mean + s.e.m. for 30 tracks. (B)Migfilin wild-type (+/+) and null primary keratinocytes were grown to confluence, wounded and analyzed as
in A. Data shown are measurements from three experiments and are means + s.e.m. for 40 keratinocyte tracks. *P<0.001. (C)Representative FACS plot of migflin-
null immortalized keratinocytes expressing migfilin–GFP or migfilin(D11A13)–GFP. (D)Immunofluorescence staining for vinculin (red) and nuclei (blue) of
migfilin-null keratinocytes re-expressing migfilin–GFP or migfilin(D11A13)–GFP. The GFP signal is shown in green. Scale bar: 20m. (E)Immunofluorescence
staining for F-actin (red) and nuclei (blue) of migfilin-null keratinocytes re-expressing migfilin–GFP or migfilin(D11A13)–GFP. The GFP signal is green in the
‘merge’ image. The single channels for the GFP and actin signal are also shown. Scale bar: 20m. (F)Monolayers of immortalized migfilin wild-type and null, and
migfilin-null keratinocytes rescued with either migfilin–GFP or migfilin(D11A13)–GFP, were scratch wounded and analyzed as in A. Data shown are
measurements from three experiments and are means + s.e.m. for 40 keratinocyte tracks. *P<0.001.
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(Hoffman et al., 2003), although Lpp-null mice show slightly
reduced female viability and fertility (Vervenne et al., 2009). The
functions of ajuba and limd1 have been further elucidated by
challenging the mutant mice in disease models or by drug treatment.
These studies have revealed that ajuba promotes activation of
nuclear factor B (NF-B) after stimulation with interleukin-1
(Feng and Longmore, 2005) and that limd1 can act as a tumor
suppressor (limd1-null mice are more prone to the development of
lung cancer) (Sharp et al., 2008). It is therefore possible that zyxin
family members have specialized roles in dealing with cellular or
physiological stress. The presence of such potential non-
compensatable functions must be addressed in the future by
subjecting migfilin-null mice to different pathological situations.

Materials and Methods
Mouse generation
Migfilin cDNA was obtained from IMAGE clone no. 3257486. A single-nucleotide
polymorphism resulting in the mutation I159R was reversed by site-directed
mutagenesis (Stratagene). The cDNA was cloned into pBluescript II SK (Stratagene).
Final constructs were confirmed by DNA sequencing. Details of the cloning of the
targeting construct and mouse generation are available from the corresponding
authors on request. In brief, full-length migfilin cDNA was used to generate a
radiolabeled probe. This was then used to isolate a SpeI fragment, including exons
1 to 3 of the gene encoding migfilin and the flanking arms of the targeting construct,
from a 129/Sv RPCI mouse PAC library 21 clone. A loxP site was inserted 5� of exon
2, and a loxP site together with an frt-flanked neomycin selection cassette was
inserted 3� of exon 3. The linearized targeting vector was electroporated into R1
mouse ES cells, which were selected with G418. Surviving clones were analyzed for
homologous recombination by Southern blotting using an external probe (Fässler
and Meyer, 1995). Three clones showing successful homologous recombination
were injected into blastocysts, which were then transplanted into foster mice.
Chimeras derived from two clones gave germline transmission. Mice were kept at
the MPI of Biochemistry animal facilities in accordance with Bavarian animal
welfare laws.

Southern and northern blotting
For Southern blotting (SB), 15 g of DNA was separated on an agarose gel and
transferred onto Hybond N+ membranes (GE Healthcare). For northern blotting
(NB), 10 g of total RNA extracted with TRIzol (Invitrogen) was separated on a
denaturing agarose gel and transferred onto Hybond N+ membranes (GE Healthcare).
Full-length migfilin cDNA was excised from the pBS-Migfilin(SK) vector and
radiolabeled with [-32P]CTP using a RediPrime II DNA labeling kit (GE Healthcare).
Membranes were hybridized overnight at 65°C in Church buffer [250 mM Na2HPO4,
0.34% (v/v) H3PO4, pH 7.4, 7.0% (w/v) SDS, 1.0% (w/v) BSA and 0.1 g of sheared
salmon sperm/l], and were then washed and exposed to Kodak Biomax MS screens
for 1–8 days at –80°C .

RT–PCR
TRIzol-extracted total RNA (2 g) was used for first-strand cDNA synthesis, using
SuperScript III reverse transcriptase according to the manufacturer’s protocol
(Invitrogen), with random hexamer primers. Specific cDNA fragments were amplified
using the following primers: migfilin forward (fwd), 5�-CAGAGAGAGAAGTG -
TCCACG-3� and reverse (rev), 5�-GATTCTCGCAGATGCTGCAC-3�; Fblp1 fwd,
5�-GTTGGCTGGACAGAGATTCTA-3� and rev, 5�-CATTCCCGAAGCCCCAGTC-
3�; glyceraldehyde-3-phosphate dehydrogenase (Gapdh) fwd, 5�-GGTGTGAA -
CCACGAGAAATATG-3� and rev, 5�-CAGTGAGCTTCCCGTTCAG-3�; migfilin(s)
fwd, 5�-GATGTAGCCGTGAGTGAGG-3� and rev, 5�-CAGGCTTGTGACA GA -
AACCAC-3�. Migfilin(s) primers produce two amplicons, one specific for migfilin(s)
with a size of a 207 nt and a second one specific for migfilin and Fblp with a size of
505 nt. The latter amplicons are suppressed by shortening the amplification cycle
during PCR. Primers used to amplify zyxin family transcripts were: ajuba-exon1 fwd,
5�-GAGTCTCCTGGTCCCTTCG-3� and ajuba-exon3 rev, 5�-CTTCCTCACA -
GTAGACAGAGC-3�; Limd1-exon1 fwd, 5�-CCTCACCCAGCGTCTGG-3� and
Limd1-exon4 rev, 5�-GTCCATGATCAGGTGTCCAC-3�; Lpp-exon5 fwd, 5�-
CCAGTTGTTGCTCCGAAACC-3� and Lpp-exon7 rev, 5�-CCAAGATGC -
TGGTCAAGGAG-3�; Trip6-exon3 fwd, 5�-TGGCAGTCTGGATGCTGAG-3� and
Trip6-exon4 rev, 5�-GCCACCTTCACTTGTACAGG-3�; Wtip-exon2 fwd, 5�-
GGCATCTACGGAGCGAGG-3� and Wtip-exon5 rev, 5�-GCAGCGGAAGCAG -
CCTGG-3�; and zyxin-exon3 fwd, 5�-CCATTCCCCCCTGCTCCT-3� and
zyxin-exon5 rev, 5�-GGCAACTGGTGGGGGTAC-3�.

Antibody generation
A migfilin-specific peptide sequence (CVSPRELAVEAMKRQY; residues 192–206)
located within LIM domain 1 was coupled to Imject Maleimide Activated mcKLH
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(Pierce Biotechnology) and used to immunize rabbits. The resulting serum was
subsequently affinity-purified using a SulfoLink Kit (Pierce Biotechnology). Affinity
purified antibodies were eluted using 100 mM glycine buffer, pH 2.7, and dialyzed
against PBS.

Western blotting
Cells or tissues from adult C57BL/6 mice were homogenized in RIPA buffer, pH 7.6
[150 mM NaCl, 50 mM Tris-HCl, pH 7.6, 5 mM EDTA, pH 8.0, 0.1% SDS, 1.0%
(w/v) sodium deoxycholate, 1.0% (v/v) Triton X-100 and phosphatase inhibitor
cocktails P1 and P2; all purchased from Sigma] with Complete protease inhibitors
(Roche). A total of 20 to 50 g of protein per lane was separated on a polyacrylamide
gel and transferred onto a PVDF membrane (Millipore). Membrane blocking and
antibody dilution were performed with Tris-buffered saline (TBS), pH 7.6,
supplemented with 5% (w/v) skimmed milk powder (Fluka) and 0.1% Tween 20
(Serva). Subsequently, membranes were incubated for 1 hour at room temperature
or overnight at 4°C with antibodies against migfilin (self-made), actin (Sigma), Src
(Invitrogen), Src phosphorylated at Tyr419 (Cell Signaling), zyxin (Abcam) or
Gapdh (Chemicon). Anti-Trip6 antiserum was provided by Mary Beckerle (University
of Utah, Salt Lake City, UT), and anti-Ajuba and anti-Limd1 antisera were provided
by Gregory Longmore (Washington University, St Louis, MO). Appropriate HRP-
coupled secondary antibodies (BioRad) were applied for 1 hour at room temperature
followed by enhanced chemiluminescence (ECL) detection (Western Lightning,
PerkinElmer).

Cell culture
Primary keratinocytes were isolated from mice at the telogen phase of the hair cycle.
Mice were killed, shaved and skinned. Then the muscle and fatty layer were scraped
off, and the skin was incubated for 1 hour in Dulbecco’s phosphate-buffered saline
(PBS) supplemented with 0.8% trypsin (Gibco) at 37°C. Afterwards the epidermis
was peeled off the underlying dermis and manually dissociated. The resulting
suspension was filtered through a 45-m nylon mesh. Cells were seeded and
maintained at 37°C under a 5% CO2 atmosphere in growth medium [Spinner’s
MEM supplemented with 5 mg of insulin/l, 10 mg of EGF/l (Roche), 10 mg of
transferrin/l, 10 M phosphoethanolamine, 10 M ethanolamine, 0.36 mg of
hydrocortisone/l (Calbiochem), 0.3 g of glutamine/l, 100 units penicillin/ml, 100 mg
of streptomycin/l, 45 M CaCl2 and 8% (v/v) chelated fetal calf serum (FCS)]. For
differentiation, keratinocytes were cultured in growth medium containing 1 mM
CaCl2. For spontaneous immortalization, keratinocytes were maintained as above, at
high confluency, for 2 months. When colonies of immortalized keratinocytes
appeared, they were pooled and expanded.

For generation of the migfilin(D11A13)–GFP expression construct, migfilin cDNA
was mutated with the Quickchange kit (Stratagene) using primers 5�-GAGAAA -
AGGGTGGCCGACTCTGCTTTCATCACCCTGGCA-3� and 5�-TGCCAGGG -
TGATGAAAGCAGAGTCGGCCACCCTTTTCTC-3�. Successful mutagenesis was
confirmed by sequencing. Both wild-type and mutant migfilin cDNA were cloned
into pEGFP-N1 (Clontech) and subsequently into pCLMFG-MCS for generating the
viral supernatants used to infect the immortalized migfilin-null keratinocytes. Cells
expressing migfilin–GFP or migfilin(D11A13)–GFP were sorted using a FACS
method for equal GFP levels.

Mouse embryonic fibroblasts (MEFs) were isolated from E13.5 embryos by
standard methods. Immortalization was achieved by retroviral transduction of SV40
large T antigen and immortalized MEFs were subsequently cloned. Migfilin-null
MEFs were derived from migfilin fl/fl MEFs by adenoviral Cre transduction followed
by cloning. MEFs were maintained at 37°C under a 5% CO2 atmosphere in Dulbecco’s
modified Eagle’s medium (DMEM) with 4 mM glutamax, 100 units/ml penicillin
and 100 mg of streptomycin/l and supplemented with 10% v/v FCS.

In some experiments, culture dishes were coated with ECM molecules as indicated.
The ECM molecules used were collagen I, collagen IV, fibronectin or laminin-322
(kindly provided by Monique Aumailley, University of Cologne, Cologne, Germany).
Unless noted otherwise, all cell culture reagents were purchased from Invitrogen or
Sigma.

Adhesion assays
Adhesion assays were conducted in 96-well plates. Quadruplet wells were coated
with the substrate overnight at 4°C. Nonspecific adhesion was assayed in wells
coated with 1% BSA in PBS. Before the assay, the coating substrate was washed out
and the wells were blocked with 1% BSA in PBS. A total of 40,000 cells per well
were added in Spinner’s MEM supplemented with 40 M CaCl2 and 2 mM glutamine.
After 30 minutes at 37°C under a 5% CO2 atmosphere, the wells were washed three
times with PBS and substrate solution (3.8 mM 4-nitrophenyl N-acetyl--D-
glucosaminide, 0.25% Triton X-100 and 50 mM sodium citrate, pH 5.0) was added.
After an overnight incubation at 37°C, 1.5 volumes of stop solution (50 mM glycine
and 5 mM EDTA, pH 10.4) was added and absorption was measured at 405 nm.

Spreading and scratch wound healing assays
Cell spreading and migration were assayed with a live-cell imaging setup consisting
of a microscope (Axiovert; Carl Zeiss MicroImaging) equipped with a �10 0.3NA
objective, motorized scanning table (Märzhäuser) and a stage incubator (EMBL
Precision Engineering) at 37°C and under 5% CO2 atmosphere. Images were captured
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with a cooled charge-coupled-device camera (MicroMAX; Roper Scientific) using the
MetaMorph software (Universal Imaging) for microscope control and data acquisition.

For spreading analysis, cells were added to pre-equilibrated culture dishes and
image acquisition was started immediately. Images were collected every 5 minutes.
Cell area over time was measured using ImageJ software (National Institutes of
Health). The data shown were generated by randomly choosing ten cells per genotype
from a representative experiment, which was repeated three times.

For migration analysis, cells were treated with 4 mg of mitomycin C/l (Sigma),
to abolish proliferation, and were seeded and allowed to achieve confluency overnight.
The resulting monolayer was scratched using a 1-ml plastic pipette tip. Image
acquisition was started after 1 hour and images were collected every 10 minutes for
up to 30 hours. Cells at the wound edge were chosen randomly and tracked with the
manual tracking plug-in from ImageJ. The resulting tracks were analyzed for
directionality and velocity using the ‘cell migration and chemotaxis’ tool (Ibidi). The
data shown were generated from experiments that were repeated three times.

siRNA-mediated knockdown
Migfilin fl/fl and the derived migfilin-null MEFs were plated to ~60–70% confluency
and cultured as described above. After 24 hours, MEFs were transfected with
scrambled control siRNA (siScr, 5�-GAUGAAACGCGUAACAGAU-3�) or with
siRNA targeting migfilin (siMig, 5�-GAAGGAAUUUCCACGGAA-3�, Sigma) using
Lipofectamine 2000 in Opti-MEM I (both by Invitrogen) according to the
manufacturer’s protocol. After 6 hours, the medium was changed to normal growth
medium and MEFs were cultured for an additional 48 hours before further assays
were conducted.

Flow cytometry
Freshly isolated primary keratinocytes were stained directly with primary antibodies
for 10 minutes on ice, and after washing were then stained with secondary antibody
for 10 minutes on ice. After washing, cells were resuspended in PBS containing BSA
and propidium iodide. Immortalized keratinocytes were trypsinized and treated as
described above. Flow cytometry was conducted on a FACSCalibur or FACSAria
flow cytometer (BD). Antibodies were purchased from BD (clone 9EG7, which
detects active integrin 1, and against integrins 1, 2, 5, 6 or V) or Serotec
(against integrin 4).

Immunofluorescence
Cryosections from frozen adult and embryonic tissues were prepared and embedded
according to standard protocols. All tissues sections, except heart, were fixed for 10
minutes in 3.7% paraformaldehyde (PFA) in PBS, then permeabilized for 3 minutes
with 0.1% Triton X-100 in PBS and blocked for 1 hour in 5% BSA in PBS. Heart
sections were fixed for 10 minutes in acetone at –20°C and blocked as described
above. Cells were grown on glass coverslips coated with fibronectin (5 mg/l,
Calbiochem) and then fixed with PFA and blocked as described above. Antibodies
were used against vinculin (Sigma), migfilin (self-made), endomucin (Santa Cruz
Biotechnology), integrin 6, Mac1, Pecam1 (all by BD Pharmingen) and VASP
(Cell Signaling). Appropriate fluorophore-labeled secondary antibodies were used to
detect primary antibodies. Alexa-Fluro-546-labelled phalloidin (Invitrogen) was used
to visualize F-actin. Slides were mounted in Elvanol. Pictures were taken with a TCS
SP2 AOBS confocal laser-scanning microscope (Leica).

Statistics
All data are given as a mean value with the standard error of the mean (s.e.m.) or
standard deviation (s.d.) as indicated. Statistical significance was tested with a non-
paired two-tailed Student’s t-test.
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Supplementary Figure Legends – Moik et al. 2011a 

Figure S1. Migfilin gene ablation. 

(A) Targeting strategy to generate migfilin floxed (fl) and null (-) alleles. Depicted is a 

part of the wt migfilin gene locus containing exons 1-4 (numbered white boxes). SpeI 

and EcoRI restriction sites are designated with S and E, respectively. The targeting 

vector contains exons 1-3. The Start codon is located in exon 2. Exons 2-3 are 

flanked by loxP1 sites (white triangles) and a neo cassette (grey box) in intron 3 is 

flanked by frt sites (black ovals). The external 5’ and 3’ probes used in Southern blot 

(SB) are indicated with red and green bars, respectively. The sizes of EcoRI 

fragments detected in wt and recombinant locus are indicated below the respective 

loci. The migfilin floxed allele is obtained after Flp-mediated excision of the neo 

cassette. The migfilin null allele is obtained after Cre-mediated excision of exons 2-3. 

(B) Southern blot of migfilin +/+ and +/fl genomic DNA using the external 3’ and 5’ 

Probes. (C) Western blot of migfilin in heart isolated from migfilin +/+, +/fl and fl/fl 

littermates. (D) Quantitative RT-PCR from heart and lung with primers spanning 

migfilin exons 5-8. Transcript levels of migfilin were normalized against Gapdh 

levels. Error bars indicate mean ± s.d. (E) Quantitative RT-PCR analysis of the zyxin 

family members using total RNA isolated from heart. Transcript levels of migfilin 

were normalized against Gapdh levels. Error bars indicate mean ± s.d. (F) 

Expression levels of indicated proteins in migfilin+/+, +/-, and -/- heart. Gapdh served 

as loading control. 
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Figure S2. Migfilin expression in hematopoietic cells and migfilin gene 

structure. 

(A) Western blot of migfilin in hematopoietic cell types. Keratinocyte lysates served 

as positive control and Gapdh served as loading control. (B) Exon structure of the 

murine migfilin gene. (C) Exon composition of the murine migfilin and Fblp-1 and 

indications of the primers used to amplify specific transcripts in Fig. S1D, Fig. 2C,D. 

 

Figure S3. Expression of migfilin in heart and lung. 

(A) Single color channels of migfilin +/+ and -/- heart IF stainings shown in Fig. 3A. 

Size bars represent 50 µm. (B-C) Staining of wild-type lung tissues with indicated 

antibodies. Size bar represents 50 µm. (D) Western blot of lung lysate from three 

migfilin +/+ and three -/- littermates using antibodies against src pY416 (pY419 in 

human, indicated with asterisk), total src and migfilin. 

 

Figure S4. Integrin expression profiles on primary keratinocytes. 

(A) Normalized MFI values of the FACS experiment shown in Fig. 4G. Results for +/- 

and -/- keratinocytes were normalized to +/+ MFI values for each experiment. Cells 

of three animals per genotype were used except for Itga6 where n=5. Error bars 

indicate mean ± s.d. (B) Representative 9EG7 FACS plot used to generate Fig. 4H. 

 

Figure S5. siRNA-mediated depletion of migfilin neither affects spreading nor 

adhesion of immortalized MEFs. 

(A) Western blot of migfilin in immortalized fl/fl and Adeno-Cre derived -/- MEFs 

transfected either with scrambled (siScr) or migfilin-specific siRNAs (siMig). (B) IF 
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stainings for migfilin (green), vinculin (red) and nuclei (blue) of immortalized migfilin 

fl/fl and Adeno-Cre derived -/- MEFs transfected with either scrambled (siScr) or 

migfilin-specific siRNAs (siMig). Size bar represents 50 µm. (C) Cell adhesion assay 

with migfilin fl/fl and -/- MEFs on ColI/FN. Error bars indicate mean ± s.e.m. of 3 

replicates. (D) Spreading assay of migfilin fl/fl and -/- MEFs on ColI/FN. 10 cells per 

genotype were analyzed. Error bars indicate the mean ± s.e.m. (E) Tracks of 

migrating migfilin fl/fl and -/- MEFs analyzed in Fig. 5A. (F) Tracks of migrating 

migfilin +/+ and -/- keratinocytes analyzed in Fig. 5B. 
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SUMMARY 

Mice lacking the zyxin-family LIM protein migfilin (encoded by Fblim1) have no 

obvious developmental or physiological defects. Here we report that the expression 

of Cre recombinase in Migfilin-/- epidermis triggered a lethal hyperinflammatory skin 

phenotype characterized by increased occurrence of tetraploid cells and apoptosis. 

The tumor and tetraploidy suppressor p53 was activated in Cre-expressing Migfilin-/- 

epidermis, but was unable to suppress tetraploidy and morbidity. Furthermore, 

deletion of p53 and migfilin further increased epidermal apoptosis and morbidity, 

indicating that both proteins contribute to suppression of tetraploidy. Tetraploidy is an 

early event in skin carcinogenesis, and loss of migfilin made mice more susceptible 

to chemically induced skin cancer. Our findings indicate that migfilin diminishes 

carcinogenesis by suppressing tetraploidy. 
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INTRODUCTION 

The zyxin gene family consists of seven members in mammals. They function as 

adaptor proteins and are composed of a variable N-terminus, a proline-rich domain 

with a nuclear export signal (NES), and three C-terminal Lin-11/Isl-1/Mec-3 (LIM) 

domains. LIM domains are protein-binding tandem zinc fingers that target the zyxin 

family proteins to cell-matrix (focal adhesions, FAs) and cell-cell adhesions 

(adherens junctions, AJ) and to the nucleus (Kadrmas and Beckerle, 2004; Zheng 

and Zhao, 2007). Although their function at cell adhesion sites is not fully clear 

(Kadrmas and Beckerle, 2004; Zheng and Zhao, 2007) recent proteomics studies 

suggested that they control mechano-transduction (Schiller et al., 2011). Nuclear 

accumulation of zyxin family proteins is prevented by the NES, but can be transiently 

induced by specific stimuli such as UV irradiation (Hervy et al., 2006), resulting in the 

transcription of specific genes (Hervy et al., 2010; Zheng and Zhao, 2007). 

The most recently discovered member of the zyxin family is migfilin/Fblim1 

(filamin-binding LIM protein 1). Migfilin interacts with kindlin-2 and filamin A to C at 

focal adhesions and actin stress fibers (Takafuta et al., 2003; Tu et al., 2003), and 

with the transcription factor Nkx2.5 in the nucleus (Akazawa et al., 2004). 

Overexpression as well as siRNA-mediated depletion associate migfilin with integrin 

activation (Lad et al., 2008), cell adhesion (Gkretsi et al., 2005; Tu et al., 2003), 

migration (Zhang et al., 2006), transcriptional activation (Akazawa et al., 2004), and 

cell survial (Zhao et al., 2009). Gene ablation studies have shown that Migfilin-/- mice 

develop and age normally (Moik et al., 2011) suggesting that the loss of migfilin is 

compensated by other members of the zyxin family. 

Four other members of the zyxin gene family have also been ablated in mouse: 

ajuba (Pratt et al., 2005), limd1 (Feng et al., 2007), lpp (Vervenne et al., 2009) and 
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zyxin (Hoffman et al., 2003). Similar to migfilin, their pre- and postnatal development 

proceeded normally despite ample in vitro data pointing to important roles e.g. in cell 

adhesion, actin dynamics, and cell migration (Hoffman et al., 2006; Pratt et al., 2005; 

Yi et al., 2002). Interestingly, specific stressors revealed an important role of ajuba in 

inflammation (Feng and Longmore, 2005) and of limd1 in tumour suppression (Sharp 

et al., 2008), pointing to the possibility that migfilin may also exert essential functions 

during certain stress situations. 

The protected breeding of laboratory mice ensures that they do not encounter 

certain stressors such as microbial infections or DNA damage induced by UV light or 

ionizing irradiation. Another form of genotoxic stress is caused by the viral Cre 

recombinase, which is routinely used to specifically excise genomic sequences that 

are flanked by loxP sites ("flox”, fl) (Schmidt-Supprian and Rajewsky, 2007). It has 

been shown that Cre can also bind to loxP-like sequences present in the mammalian 

genome (Semprini et al., 2007; Thyagarajan et al., 2000). Such an unspecific Cre 

activity can result in inhibition of cell proliferation, increased cell size, increased DNA 

content/ploidy, chromosomal instability (CIN) in vitro (Loonstra et al., 2001; Pfeifer et 

al., 2001; Schmidt et al., 2000; Silver and Livingston, 2001) and apoptosis in vivo 

(Naiche and Papaioannou, 2007; Pfeifer et al., 2001). Although the underlying cause 

for these defects is unclear, it has been speculated that Cre recombinase induces 

DNA damage, which in turn triggers mitotic checkpoint activation and finally 

apoptosis (Loonstra et al., 2001). Tetraploidy and CIN caused by unspecific Cre 

activity could contribute to cancer development (Ganem et al., 2007), as the majority 

of human cancers have been shown to employ CIN to acquire the mutations 

necessary for promotion and progression (Hanahan and Weinberg, 2000; Hanahan 

and Weinberg, 2011; Lengauer et al., 1998). 
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The mammalian tissue that is most exposed to environmental stressors is the 

epidermis, as it constitutes the barrier preventing any harm from the outside as well 

as loss of water from the inside (Proksch et al., 2008). To maintain this protective 

role, it is constantly renewed by programmed differentiation of basal keratinocytes 

(Mack et al., 2005), which are replenished from a pool of epidermal stem cells (Kaur, 

2006). Breaches in the epidermal barrier (Segre, 2006) or stressors like increased 

cell death (Omori et al., 2006) trigger an inflammatory hyperproliferative wound 

healing response in skin. 

When we generated a constitutive deletion of the migfilin gene (Moik et al., 

2011), we also bred Migfilinfl/fl mice with a transgenic line expressing Cre 

recombinase under control of the Keratin 5(K5) promoter (K5Cre) to specifically 

delete the migfilin gene in keratinocytes (K5Cre; Brakebusch et al., 2000; Ramirez et 

al., 2004). We initially assumed that Migfilin-/- mice develop defects, which, however, 

turned out not to be the case (Moik et al., 2011). To our surprise we found that 

K5Cre-mediated deletion of migfilin resulted in a lethal reactive hyperplastic skin 

phenotype characterized by tetraploidy and apoptosis of keratinocytes. Furthermore, 

migfilin-null mice were more sensitive to chemically induced skin carcinogenesis. 

Our findings assign a novel role to migfilin in suppressing tetraploidy and cancer. 
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RESULTS 

Loss of migfilin affects neither skin nor hair follicles 

We previously reported that Migfilin-/- mice develop no overt phenotype during 

development or adult life (Moik et al., 2011). When examining Migfilin-/- skin, we 

found that the interfollicular epidermis and HF number and morphogenesis were 

indistinguishable from littermate controls (Figure 1A). We confirmed expression of 

migfilin in skin lysates (Moik et al., 2011), but did not detect migfilin in other stratified 

epithelia including cervix, esophagus, tongue, nor in composite (simple and 

stratified) epithelia like mammary and salivary glands (Figure 1B). While our migfilin 

anti-serum did not work in staining tissue sections, it readily detected migfilin in 

primary keratinocytes at focal adhesions (FAs) and at cell-cell contacts after Ca2+ 

treatment (Figure 1C). We observed no nuclear migfilin staining in undifferentiated or 

differentiated keratinocytes (Figure 1C). 

 

Cre-mediated deletion of the migfilin gene in keratinocytes leads to postnatal 

lethality 

In parallel to the study of Migfilin-/- mice, we crossed migfilin floxed mice 

(Migfilinfl/fl) with K5Cre transgenic mice to induce a keratinocyte-specific deletion of 

migfilin (Brakebusch et al., 2000). The resulting Migfilinfl/fl;K5Cre+ offspring were slightly 

smaller than their littermate controls (Migfilinfl/fl, Migfilin+/fl) at birth, failed to thrive, 

became cachectic and lethargic (Figure 1D,E) and usually died within 7-10 days after 

birth. The skin of Migfilinfl/fl;K5Cre+ mice became increasingly scaly and hairless (Figure 

1D). Furthermore, Migfilinfl/fl;K5Cre+ mice developed epidermal hyperpigmentation at 

ears, paws and tail, which gradually expanded to the whole skin. Heterozygous 

floxed mice expressing K5Cre (Migfilin+/fl;K5Cre+) had a decreased pelagic hair density 
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and displayed a weak epidermal hyperpigmentation, but gained weight normally 

(Figure 1D,E). The severe skin defects and lethality were faithfully reproduced in 

Migfilinfl/fl;K5Cre+ mice derived from a second embryonic stem cell clone. 

 

Migfilinfl/fl;K5Cre+ mice develop epidermal hyperplasia and skin inflammation 

Hematoxylin-eosin (H/E) stainings of back skin from 8 day old (P8) 

Migfilinfl/fl;K5Cre+ mice showed inflammatory infiltrations in the dermis and a 

hyperthickening of the epidermis, but neither blisters nor epidermolysis (Figure 1F). 

In P8 control mice the HFs have reached the subcutis, while in Migfilinfl/fl;K5Cre+ mice 

the majority of HFs were misaligned and malformed (Figure 1F). 

Inflammatory infiltrations were further characterized by immunofluorescence (IF); 

whereas activated Mac-1-positive macrophages were rare in control skin, they were 

abundant in P8 Migfilinfl/fl;K5Cre+ dermis and occasionally also seen in the epidermis 

(Figure 1G,H). T-cells and neutrophils were largely unchanged when compared to 

controls (data not shown). Inflammatory stress was also indicated by the expression 

of keratin 6 (K6) in P8 Migfilinfl/fl;K5Cre+ epidermis, whereas K6 expression was absent 

in control skin and weak in HFs (Figure 1I,J). Masson-Fontana staining revealed an 

increased number of melanocytes in the epidermis of Migfilinfl/fl;K5Cre+, which are 

absent in wild-type epidermis at this stage of development (Figure 1K and Okura et 

al., 1995). The increased melanocyte numbers caused the hyperpigmentation of 

Migfilin-/-;K5Cre+ mice (Figure 1D). 

 

Migfilin and Cre gene dosages influence phenotype severity 

Since Migfilin-/- mice were normal, we suspected a synthetic lethality upon 

disruption of the migfilin gene together with expression of the Cre transgene. To test 
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this, we intercrossed Migfilin-/- mice with the K5Cre transgenic strain to generate 

Migfilin-/-;K5Cre+ offspring. Migfilin-/-;K5Cre+ mice were born at sub-Mendelian ratios 

(Table 1) and fully phenocopied the skin defects of Migfilinfl/fl;K5Cre+ mice and also died 

around 7-10 days after birth. 

The insertion of the K5Cre transgene could have disrupted a genomic locus that 

together with migfilin loss causes the defects. To examine such a possibility, we 

intercrossed Migfilin-/- mice with a transgenic mouse line expressing the Cre 

recombinase under the control of the keratin 14 (K14) promoter (K14Cre ;Hafner et 

al., 2004). All Migfilin-/-;K14Cre+ mice analyzed (n=71) died before or shortly after birth. 

Since the K14Cre and K5Cre transgenes have inserted into different loci, we exclude 

an insertional mutation by the transgene as cause for the defects of Migfilin-/- mice 

expressing Cre in the epidermis. 

Since Cre protein levels were higher in K14Cre than in K5Cre mice (Figure 2A), 

we suspected that a Cre gene dosage effect might underlie the early death of 

Migfilin-/-;K14Cre+ mice. To test whether Cre dosage can indeed modulate the severity 

of the phenotype, we generated heterozygous mice (Migfilin+/-) with none, either one 

(K5Cre or K14Cre) or both (K5Cre;K14Cre) Cre transgenes. As expected, Cre 

protein levels were higher in K14Cre than in K5Cre skin, and even higher in mice 

expressing both transgenes (Figure 2A). Migfilin+/-;K5Cre+ and Migfilin+/-;K14Cre+ offspring 

developed a similar mild skin hyperpigmentation and sparse fur (Figure 2B). 

Migfilin+/-;K5Cre+;K14Cre+ carrying both Cre transgenes died around 10 days after birth 

and displayed a similar phenotype as Migfilin-/-;K5Cre+ mice (Figure 2B). Similar to 

Migfilin-/-;K5Cre+ epidermis, their epidermis was hyperthickened and contained 

numerous epidermal melanocytes (Figure 2C). 
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Altogether the data show that germ-line deletion of migfilin or expression of 

keratin-driven Cre alone produced normal mice, while the combination of migfilin loss 

and epidermal expression of Cre resulted in synthetic lethality. Furthermore, migfilin 

and Cre gene dosages correlate with phenotype severity. 

 

Migfilinfl/fl;K5Cre+ epidermis does not display adhesion or terminal differentiation 

defects 

Loss of migfilin affected cell-matrix adhesion neither in vivo nor in vitro (Moik et 

al., 2011). To test whether Cre expression in Migfilin-/- epidermis altered integrin 

expression or localization, we stained skin sections with specific antibodies and 

determined integrin levels on primary keratinocytes by flow cytometry. 

Immunostaining revealed that basal keratinocytes of control and Migfilinfl/fl;K5Cre+ 

epidermis had a similar distribution of integrins, with β1 integrin around the entire 

plasma membrane (Figure 3A,B), and α6 and β4 integrins at the basal side (Figure 

3E-J,M-P and data not shown). Flow cytometry showed that β1 and α6 integrin 

levels and the activation of β1 integrin were also normal at P3 (Figure 3Q). In line 

with the normal integrin expression, the assembly of Laminin-511 and Laminin-322 

into a dermal-epidermal basement membrane was unaffected in Migfilinfl/fl;K5Cre+ skin 

(LM-322, Figure 3A-D,K,L). 

The immunostaining also demonstrated that in Migfilinfl/fl;K5Cre+ epidermis β1 and 

α6 integrins were present on suprabasal keratinocytes. Concordant with the ectopic 

expression of integrin subunits, we also found K5 in suprabasal layers of 

Migfilin-/-;K5Cre+ epidermis, while in controls it was only found in basal cells (Figure 

3E,F). Keratin 10 (K10) expression is turned on when basal cells move to the 

suprabasal layer in both Migfilinfl/fl;K5Cre+ and control epidermis, but it appeared less 
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intense and patchy in Migfilinfl/fl;K5Cre+ epidermis (Figure 3G,H). Loricrin, which is 

upregulated during terminal keratinocytes differentiation, was similarly expressed in 

control and Migfilinfl/fl;K5Cre+ epidermis (Figure 3I,J). 

Migfilin is also present at cell-cell adhesions (Gkretsi et al., 2005). Adhesion 

molecules such as E-cadherin (Cadh1, Figure 3K,L), desmoplakin (Dsp, Figure 

3M,N), and kindlin-2 (Kind2, Figure 3O,P) were similarly distributed in control and 

Migfilinfl/fl;K5Cre+ epidermis. To exclude potential dysfunction of the cell-cell adhesion 

sites in Migfilinfl/fl;K5Cre+ epidermis, we compared their skin barrier function with 

controls. Trans-epidermal water loss (TEWL) measurements of P3 skin were similar 

regardless of genotype (Figure 3R). Furthermore, outside-in dye exclusion assays 

confirmed a normal skin barrier function in Migfilinfl/fl;K5Cre+ skin (Figure 3S), indicating 

that such defects could be excluded as cause for the lethality. 

 

Migfilin-nullK5Cre+ epidermis contains enlarged and multi-/binucleated 

keratinocytes 

H/E and immune staining of skin sections revealed that the cells and their nuclei 

were markedly enlarged in Migfilin-/-;K5Cre+ epidermis at embryonic day (E) 18.5, P3, 

and P6 (Figure 4A). Furthermore, we found a large number of bi- and multinucleated 

cells in P3 Migfilin-/-;K5Cre+ epidermis (176±16 per mm2 epidermis, mean±SEM) 

(Figure 4A arrowheads), while binucleated cells were very rare in P3 Migfilin-/- or 

Migfilin+/+ epidermis (both 4±5 per mm2 epidermis) and more frequent in 

Migfilin+/+;K5Cre+ (40±3 per mm2 epidermis). 

The epidermal thickness and the number of cell layers were similar at E18.5 and 

P3 for Migfilin-/-;K5Cre+ and control mice (Migfilin+/+, Migfilin-/-, Migfilin+/+;K5Cre+, Figure 

4B,C), but increased in Migfilin-/-;K5Cre+ mice when hyperthickening became apparent 



Migfilin suppresses tetraploidy and skin cancer 

 81 

by P6 (Figure 4B,C). The number of basal keratinocytes per mm epidermis was 

slightly reduced in Migfilin-/-;K5Cre+ epidermis at E18.5 and stagnated (Figure 4D), 

whereas in control mice their numbers increased as part of normal post-natal 

development (Figure 4D). These data indicate that the reduced cell number at E18.5 

and P3 is associated with an increase in cell size, which preserved epidermal 

thickness. 

To test whether decreased survival and/or proliferation were responsible for the 

reduced cellularity, we determined the rates of proliferation and apoptosis in 

Migfilin-/-;K5Cre+ and control epidermis. The absolute number of Ki67-positve 

keratinocytes per mm epidermis was similar in control and Migfilin-/-;K5Cre+ epidermis 

at E18.5 and P3 (Figure 4E), but increased significantly in Migfilin-/-;K5Cre+ epidermis 

at P6 (Figure 4E,F). The proliferative index of basal keratinocytes (Ki67+ cells/basal 

cells) was significantly increased at P3 and P6 (Figure 4G), indicating that a 

diminished proliferation rate cannot account for the reduced cell number in the basal 

keratinocyte layer. 

Apoptosis is a rare event in unstressed epidermis, as damaged cells are usually 

discarded by terminal differentiation (Lippens et al., 2005). Indeed, the epidermis of 

Migfilin+/+ and Migfilin-/- mice contained rarely cleaved caspase3-positive cells at all 

time points analyzed (Figure 4H). We found a slightly increased apoptosis rate in 

Migfilin+/+;K5Cre+ epidermis (Figure 4H), which did not affect epidermal thickness, cell 

or layer numbers (Figure 4B-E). In Migfilin-/-;K5Cre+ epidermis, the number of apoptotic 

cells was highly increased at all time points tested (Figure 4H,I), indicating that 

increased apoptosis is likely causing hypo-cellularity in the basal layer of 

Migfilin-/-;K5Cre+ epidermis. 
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Migfilin-/-;K5Cre+ keratinocytes become tetra- and hyperploid 

We observed binucleated keratinocytes in Migfilin-/-;K5Cre+ epidermis (Figure 4A, 

arrowheads). Binucleated cells are tetraploid and can occur after defective mitoses 

(Storchova and Kuffer, 2008). Since Cre can induce tetraploidy and/or a G2/M cell 

cycle arrest (Loonstra et al., 2001; Silver and Livingston, 2001), we next examined 

the DNA content of freshly isolated P3 keratinocytes by flow cytometry to identify the 

percentage of tetraploid G2 and/or polyploid G1 cells with >4C DNA content, diploid 

G2 cells and/or tetraploid G1 cells with 4C DNA content, diploid S phase cells with 

DNA content between 2C and 4C, and diploid G0/G1 cells with 2C DNA content. The 

relative cell numbers of these fractions were unchanged in control keratinocytes 

(Migfilin+/+, Migfilin-/-, Migfilin+/+;K5Cre+, Figure 5A,B). In sharp contrast, the numbers of 

Migfilin-/-;K5Cre+ cells with 4C and >4C DNA contents were significantly increased, the 

number of cells with 2C to 4C content was unchanged, and the number of cells with 

2C content was decreased. The increased ratio of S phase to diploid G0/G1 cells 

points to an increased proliferative index and is in line with the increased Ki67 

staining (Figure 4G). The increased number of cells with >4C DNA content is due to 

increased ploidy, whereas the increase in the 4C cell number is either due to 

tetraploidy or G2/M cell cycle arrest. 

Altogether these results indicate that Cre-expression in Migfilin-/- epidermis 

causes increased ploidy levels. Since defective mitoses do not increase cell 

numbers, increased ploidy together with an increased apoptosis rate results in 

reduced number of basal Migfilin-/-K5Cre+ keratinocyte. 
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Cell cycle progression and DNA-damage response are normal in Migfilin-/-;K5Cre+ 

keratinocytes 

Cre activity can cause tetraploidy and/or induce DNA damage followed by G2/M 

cell cycle arrest and apoptosis (Loonstra et al., 2001; Silver and Livingston, 2001). 

To clarify if the increase in 4C DNA content was due to tetraploidy or cell cycle 

arrest, we examined the DNA damage response and cell cycle progression in control 

and Migfilin-/-;K5Cre+ keratinocytes. Migfilin-/- keratinocytes adhered normally to 

different extra-cellular matrix substrates and could readily be cultivated (Moik et al., 

2011). In contrast, Migfilin-/-;K5Cre+ keratinocytes underwent collective apoptosis after 

isolation and thus could not be cultured, excluding further in vitro studies. To test if 

the loss of migfilin alone or in conjunction with DNA damage affected mitosis, we 

compared the duration of mitosis (defined by breakdown and reformation of the 

nuclear membrane) in Migfilin+/+ and Migfilin-/- cells before and after γ-irradiation. The 

duration of mitosis of Migfilin+/+ and Migfilin-/- cells was identical under basal 

conditions and increased to a similar extent after γ-irradiation with a dose of 5 Gy 

(Figure 5C). Furthermore, the localization of essential mediators of cytokinesis like 

aurora kinase B was unchanged during mitosis in Migfilin-/- keratinocytes with or 

without γ-irradiation when compared to Migfilin+/+ controls (Figure 5D). Collectively, 

these results argue against migfilin-dependent changes of mitotic progression under 

basal conditions or after DNA damage. 

To test if migfilin has a critical function in DNA repair, we γ-irradiated primary 

Migfilin+/+ and Migfilin-/- keratinocytes and examined the number of nuclear serine139 

phosphorylated (pS139) H2ax foci, which mark sites of DNA damage (Bonner et al., 

2008). We used a dose of 5 Gy, which caused a >10 fold increase in foci number in 

vitro (Figure 5E), but does not cause skin damage in vivo (Iwakawa et al., 2003). 
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Since H2ax is also strongly phosphorylated in apoptotic cells due to DNA laddering 

(Lu et al., 2006; Rogakou et al., 2000), we excluded apoptotic cells identifiable by 

abnormal nuclear shape from our analysis. After irradiation we observed similar 

increase of pS139-H2ax foci numbers in Migfilin+/+ and Migfilin-/- keratinocytes, which 

reverted to background levels after 36 hours (Figure 5E). These findings indicate that 

loss of migfilin does not affect recognition and repair of DNA breaks. 

To assess whether the extent of DNA damage is also normal in vivo, we 

examined the pS139-H2ax levels in keratinocytes from freshly isolated from control 

and Migfilin-/-;K5Cre+ mice using flow cytometry. Mean fluorescence intensities (MFIs) 

of pS139-H2ax were 1.6-fold increased in Migfilin-/-;K5Cre+ keratinocytes when 

compared with control cells (Figure 5F,G). This increase correlated with increased 

DNA content (Figure 5A) and side scatter (ssc) MFIs (Figure 5F), both of which 

correspond to increased nuclear size (Grove and Ghosh, 2006; Roumier et al., 

2005). Activation of the DNA damage response markers Ataxia telangiectasia 

mutated protein (Atm) as indicated by its phosphorylation at S1981 and Chk1 

indicated by phosphorylation at S345 were normal in Migfilin-/-;K5Cre+ epidermis 

(Figure 5H). Altogether these data indicate that Cre expression in Migfilin-/-;K5Cre+ 

epidermis does not trigger an abnormal DNA damage response. 

Cell cycle arrest is associated with changes in the expression of cyclins (Samuel 

et al., 2002; Sullivan and Morgan, 2007). Specifically, an increase in cyclin B levels 

indicates a G2/M arrest, leading to an increase in the 4C DNA content cell fraction. 

To test whether Migfilin-/-;K5Cre+ keratinocytes display a G2/M arrest, we determined 

the expression levels of cyclins D1/2, E1, A1, and B1 in epidermal lysates. We found 

that cyclin E1, A1 and B1 levels were unchanged (Figure 5I), while the cyclins D1/2 

levels were increased in Migfilin-/-;K5Cre+ epidermis (Figure 5I). Elevated cyclin D1/2 
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indicate a heightened rate of cell cycle entry and normal levels of cyclins E1, A1, and 

B1 indicate normal cell cycle progression in Migfilin-/-;K5Cre+ epidermis and exclude 

G2/M arrest as an explanation for the increases in 4C DNA content. We therefore, 

conclude that the increased numbers of 4C and >4C DNA content cells in 

Migfilin-/-;K5Cre+ epidermis were solely due to an increased ploidy. 

 

Loss of p53 in Migfilin-/-;K5Cre+ epidermis increases morbidity 

After induction of tetraploidy, the tumor suppressor p53 (endoded by Trp53) is 

phosphorylated at S18 (pS18) and stabilized, leading to increased p53 protein levels 

and suppression of tetraploid cells (Castedo et al., 2006; Vitale et al., 2010a). Loss 

of p53 expression combined with cytochalasin D-mediated induction of tetraploidy 

can make primary cells tumorigenic (Fujiwara et al., 2005). To assess whether the 

accumulation of tetraploid cells in the Migfilin-/-;K5Cre+ epidermis is due to impaired 

activation of p53, we compared the levels of total and pS18-p53 in Migfilin+/+;K5Cre+ 

and Migfilin-/-;K5Cre+ epidermis. The increase of tetraploidy in Migfilin-/-;K5Cre+ epidermis 

correlated with increased total p53 and pS18-p53 levels (Figure 6A). Thus, activation 

of p53 by tetraploidy was not impaired, but did not suffice to efficiently repress 

tetraploidy in Migfilin-/-;K5Cre+ epidermis. 

If migfilin was a down-stream target of p53 in tetraploidy suppression, additional 

deletion of p53 should not further affect the phenotype of Migfilin-/-;K5Cre+ mice. To this 

end we intercrossed a Trp53-floxed allele (Jonkers et al., 2001) to obtain Migfilin-/-

;K5Cre+ mice with either Trp53fl/+ or Trp53fl/fl alleles in their epidermis. The loss of a 

single Trp53 allele did not decrease p53 protein levels, while ablation of both alleles 

resulted in the loss of p53 expression (Figure 6B). Migfilin-/-;Trp53fl/fl epidermis was 

normal (Figure 6C). Ablation of both p53 alleles increased morbidity of Migfilin-/-;K5Cre+ 
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offspring, which rarely survived until P6. Their epidermis lacked the 

hyperpigmentation observed in Migfilin-/-;K5Cre+ epidermis (Figure 6C,D) and appeared 

dysplastic with keratinocytes of abnormal size, shape and layering (Figure 6C). The 

epidermal thickness and the absolute number of proliferating cells were comparable 

to both Migfilin-/-;K5Cre+;Trp53+/+ and Migfilin-/-;Trp53fl/fl mice (Figure 6E,F), whereas 

the number of basal keratinocytes was decreased compared to Migfilin-/-;Trp53fl/fl 

controls and similar to Migfilin-/-;K5Cre+ mice with wild-type p53 (Figure 6G).The 

increased morbidity of Migfilin-/-;K5Cre+;Trp53fl/fl mice correlated with a further 3fold 

increase in the number of apoptotic cells compared to Migfilin-/-;K5Cre+ mice with 

Trp53+/+ or Trp53fl/+ alleles (Figure 6H). This indicates that both migfilin and p53 

function in suppression of tetraploidy. 

 

Migfilin is a novel tumor suppressor 

Tetraploidy can give rise to aneuploidy by CIN and thus promotes 

carcinogenesis (Ganem et al., 2007; Storchova and Kuffer, 2008). To test whether 

migfilin loss modulates tumor development, we made use of the two-stage 

carcinogenesis model involving DMBA and TPA (Kemp, 2005) to directly compare 

the effects of Migfilin loss on tumor development. We found that DMBA/TPA 

treatment increased tumor incidence (p<0.005) and tumor burden (mean tumor 

number per mouse) (p<0.05) of Migfilin-/- mice compared to Migfilin+/+ controls 

(Figure 7A,B). Tumor growth was evaluated by grouping papillomas into 4 size 

categories. The relative abundances of those groups did not reveal a significant 

difference between Migfilin-/- and Migfilin+/+ tumors (Figure 7C), indicating that the 

overall growth rate of tumors was unchanged. Histological examination revealed that 

tumors from Migfilin+/+ mice were well-differentiated, even after acquiring endophytic 
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growth characteristics (Figure 7D,E). The majority of tumors from Migfilin-/- mice were 

also well-differentiated (Figure 7F,G). A few endophytic tumors from Migfilin-/- mice 

featured a high degree of inflammatory infiltration and showed signs of progression 

characterized by loss of layering, de-differentiation and disintegration of basal 

membranes (Figure 7H,I). Treatment of control and Migfilin-/- mice every other day 

with TPA resulted in comparable dermal inflammation and epidermal hyperthickening 

(Figure 7J). However, a prolonged TPA treatment for 16 weeks did not induce tumor 

development in control or Migfilin-/- mice, indicating that the loss of migfilin does not 

change the outcome of the TPA-induced reactive epidermal hyperplasia or modulate 

the rate of spontaneous cancer development in skin. Altogether these findings point 

to a tumor suppressor role of migfilin in skin. 
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DISCUSSION 

The in vivo function of migfilin is obscure, as migfilin expression is dispensable 

for mouse development and postnatal life (Moik et al., 2011). Here we report the 

surprising observation that the combination of migfilin loss and the expression of Cre 

in the epidermis led to a hyperthickened epidermis with massively enlarged and 

significantly fewer cells in the basal keratinocyte layer, cutaneous inflammation and 

lethality at around 10 days after birth. The basal keratinocytes showed increased 

binucleation, tetraploidy, and apoptosis. The tumor and tetraploidy suppressor p53 

was induced and activated in the mutant epidermis, and deletion of p53 further 

increased epidermal apoptosis rates and accelerated lethality, indicating that migfilin 

is a novel and p53-independent suppressor of tetraploidy in keratinocytes. A defect 

in tetraploidy suppression was further corroborated by the observation showing that 

loss of migfilin enhanced chemically induced skin carcinogenesis. 

Keratinocyte binucleation, tetraploidy and apoptosis were evident already in 

utero, where embryonic skin is protected from environmental stressors like microbial 

infections, irradiation or defects in skin barrier function. Interestingly, other defects 

such as epidermal blistering due to impaired integrin function or barrier defects due 

to compromised cell-cell adhesion were not apparent in mutant skin. We therefore 

conclude that tetraploidy and/or apoptosis represent the trigger for the lethal 

inflammatory hyperplasia in Migfilin-/-;K5Cre+ and Migfilinfl/fl;K5Cre+ epidermis. 

It is well known that Cre recombinase activity can cause apoptosis in vivo 

(Naiche and Papaioannou, 2007) and inhibit cell proliferation in vitro due to an 

increase in >4C and 4C DNA content, and increased CIN (Loonstra et al., 2001). 

Pfeiffer et al. (2001) reported similar defects induced by Cre activity, and furthermore 

showed they were associated with a dramatic enlargement of cells. The cytotoxicity 
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of Cre depended on its recombinase activity (Pfeifer et al., 2001; Schmidt et al., 

2000; Silver and Livingston, 2001). Furthermore, it was also shown that Cre can bind 

and process cryptic loxP sites present in mammalian genomes, albeit with low 

efficacy, and induce DNA breaks (Semprini et al., 2007; Thyagarajan et al., 2000). 

These Cre-induced DNA breaks represent a DNA damage that can lead to G2/M cell 

cycle arrest and apoptosis (Loonstra et al., 2001). Although this course of events 

provides a plausible explanation for the increased cellular 4C DNA content, 

apoptosis and CIN, it fails to explain the increased cell size and >4C DNA content 

(Loonstra et al., 2001). 

Could failure of an ongoing DNA damage response cause the defects in the 

Migfilin-/-;K5Cre+ and Migfilinfl/fl;K5Cre+ epidermis? We made several observations that 

argue against such a possibility. First, the extent of DNA damage determined by the 

levels of pS139-H2ax was slightly increased in Migfilin-/-;K5Cre+ keratinocytes, which 

associate to their increased nuclear size and DNA content and thus to a higher 

probability of spontaneous DNA damage. Second, we excluded an abnormal 

response to DNA damage by measuring the activation of Atm, which was similar in 

Migfilin-/-;K5Cre+ and control epidermis. Third, we also found normal cyclin B1 levels 

and thus no signs of a DNA damage-induced G2/M cell cycle arrest in Migfilin-/-;K5Cre+ 

keratinocytes. Finally, activation of the DNA damage response should also repress 

cell cycle entry and thus induce senescence in Migfilin-/-;K5Cre+ keratinocytes (Campisi 

and d'Adda di Fagagna, 2007), but we observed an increase in the number of cycling 

keratinocytes when examining Ki67- and cyclin D1/2-levels, arguing against induced 

senescence. Thus, an abnormal activation of the DNA damage response does 

clearly not explain the defects observed in Cre-expressing migfilin-null epidermis. 
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Tetraploidy can arise from endomitosis (a failure to segregate the replicated 

DNA), from defective cytokinesis (a failure to separate the two daughter cells) or 

from cell fusion (Storchova and Kuffer, 2008). Since endomitosis increases ploidy 

levels without producing binucleated cells we can exclude this possibility as cause 

for the tetraploidy in Migfilin-/-;K5Cre+ and Migfilinfl/fl;K5Cre+ epidermis. Cell fusion and 

cytokinesis defects can give rise to binucleation and have not been excluded as 

cause for the tetraploidy in our mouse model. However, since Cre activity is inducing 

cell fusion to the same extent as in non-Cre expressing cells (Pfannkuche et al., 

2010) we consider cell fusion an unlikely cause for the Cre-induced binucleation in 

migfilin-null keratinocytes. A cytokinesis defect is more likely, as Cre activity causes 

low level DNA damage which is believed to be not sufficient to trigger a cell cycle 

arrest in mammalian cells (Deckbar et al., 2007) but sufficient to induce cytokinesis 

defects. Such cytokinesis failure occurs when the DNA damage persists into mitosis 

and leads to the formation of cytokinetic DNA bridges (Ichijima et al., 2010; 

Steigemann and Gerlich, 2009). Thus, the increased incidence in binucleation 

combined with the dependence on Cre recombinase activity makes a strong case for 

a cytokinesis failure in the Migfilin-/-;K5Cre+ and Migfilinfl/fl;K5Cre+ epidermis. Clearly, the 

possibility of cell fusion, however, must also be experimentally excluded in future 

studies. 

Since the DNA damage response was not activated, it is unclear how Cre 

expression can account for the increased rate in apoptosis in the Cre-expressing 

migfilin-null epidermis. There are no indications that tetraploidy per se is recognized 

by cells (Uetake and Sluder, 2004; Wong and Stearns, 2005) and triggers apoptosis. 

Tetraploid cells, however, are prone to CIN and aneuploidy through multipolar 

mitoses or lagging chromosomes (Ganem et al., 2009; Kwon et al., 2008; Vitale et 
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al., 2010b), which in turn can result in lethal nullisomy, i.e. the lack of a chromosome 

(Gisselsson et al., 2008), or in senescence or apoptosis in a p53-dependent (Ganem 

et al., 2009; Kwon et al., 2008; Thompson and Compton, 2010; Vitale et al., 2010a; 

Vitale et al., 2010b; Zhivotovsky and Kroemer, 2004) as well as -independent 

manner (Castedo et al., 2006). 

In line with a role of p53 in repression of tetraploidy/aneuploidy, we observed a 

pronounced pS18 phosphorylation and thus activation of p53 in Migfilin-/-;K5Cre+ 

epidermis. The mechanism underlying p53-mediated suppression of tetraploidy and 

aneuploidy is not well-understood. Several candidate kinases for S18-p53 

phosphorylation in the context of tetraploidy/aneuploidy have been proposed 

including p38 mitogen-activated kinase (MAPK), ATM and AMP-activated protein 

kinase (AMPK). p38 is necessary for p53-mediated senescence (Uetake and Sluder, 

2010). AMPK has been implicated in p53-mediated aneuploidy-suppression caused 

by proteotoxic stress due to chromosome imbalance (Jones et al., 2005; Tang et al., 

2011). The role of ATM is more complex: spontaneously arising, radiation-, and 

aneuploidy-induced thymic lymphoma are repressed by p53 and ATM in a 

cooperative manner (Bailey et al., 2008; Li et al., 2010), while loss of ATM has no 

impact on the outcome of DMBA/TPA-induced skin cancer (Bailey et al., 2008). 

The tissue-dependent differences of p53-activation reflect the tumor spectrum of 

p53-null mice, which develop mainly lymphomas and sarcomas at a median age of 

4.5 months, but seldom carcinomas (Jacks et al., 1994). Epidermal ablation of p53 

with a K14Cre transgene does not lead to obvious skin abnormalities, and 

spontaneous skin tumor development occurs at a median age of 8.3 months 

(Martinez-Cruz et al., 2008). The limited impact of p53-deletion on skin 

tumorigenesis could be due to the fact that the central role of p53 in the skin is to 
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regulate tanning response after exposure to UV light, which leads to p53-mediated 

secretion of melanogenic cytokines by keratinocytes, stimulating proliferation of and 

pigment production of melanocytes (Cui et al., 2007). Thus, this skin-specific function 

of p53 might be incompatible with its role in suppressing tetraploidy, which has likely 

been taken over by other genes including migfilin. Indeed, in a ribosomal stress 

model where p53 is constitutively activated, p53 induced hyperpigmentation but not 

apoptosis in the skin, while it strongly increased apoptosis in lymphocytes 

(McGowan et al., 2008). We found a strong activation of p53 in Migfilin-/-;K5Cre+ 

epidermis suggesting that the mechanisms recognizing aneuploidy may still be 

functioning. The activated p53, however, did not efficiently suppress 

tetraploidy/aneuploidy to prevent morbidity. Furthermore, deletion of p53 in 

Migfilin-/-;K5Cre+ epidermis rescued the epidermal hyperpigmentation, but increased 

rather than decreased epidermal apoptosis, resulting in a slightly accelerated 

morbidity.  

How could migfilin suppress tetraploidy and/or aneuploidy? Similar to p53, 

migfilin could induce apoptosis and/or block proliferation (Figure 7K). In the presence 

of migfilin, epidermal Cre-expression induced a minor increase of binucleation and 

apoptosis, but did not affect cell cycle progression or the DNA content profile. The 

increased apoptosis in Cre-expressing wild-type epidermis could result from an 

efficient repression of tetraploidy. In the case of migfilin loss, tetraploid cells 

accumulate and become apoptotic, e.g. due to nullisomy. 

The link between cancer and tetraploidy/aneuploidy has been subject to 

intensive analysis for more than a century (Boveri, 1914). It is now accepted that 

tetraploidy represents an intermediate to aneuploidy and thus promotes progression 

to cancer (Schvartzman et al., 2010; Thompson and Compton, 2010). In line with this 
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dogma, tetraploidy or aneuploidy is found in the majority of cancers (Mitelman et al., 

2011; Schvartzman et al., 2010). In epithelial tissues such as skin, esophagus and 

cervix tetraploidy and aneuploidy are major predictors for cancer progression (Conti 

et al., 1986; Maley et al., 2004; Olaharski et al., 2006; Robinson et al., 1996). Loss of 

a suppressor of tetraploidy like migfilin therefore sensitizes skin to carcinogenesis, 

which we indeed observed in the DMBA/TPA skin cancer model. 

Since Cre is such a widely used tool in mouse genetics, it is surprising that there 

are so few reports of Cre mediated cytotoxicity. The K5Cre transgene used in this 

study is widely used without reports of inducing apparent skin defects. The lack of 

such observations is likely due to the mildness of the defects. Interestingly, a Cre 

transgene driven by the human K5 promotor produced normal hemizygous mice 

(Tarutani et al., 1997), but at homozygosity the mice suffered from a wavy-hair 

phenotype and an accelerated skin cancer progression (Chan et al., 2007). Notably, 

also in this study the authors did not report an increased DNA damage response as 

measured by ATM activation (Chan et al., 2007). 

An interesting observation is that all Migfilinfl/fl;K5Cre+ and Migfilin-/-;K5Cre+ mice died 

around 10 days after birth. The cause for this early lethality is not clear. Inflammatory 

hyperplasia followed by a cytokine storm can lead to lethality. A similar inflammation 

can be induced by a diverse range of keratinocytes dysfunctions including defective 

cell-matrix adhesion (Brakebusch et al., 2000; Lorenz et al., 2007), tight junction 

formation (Yang et al., 2010), or a precocious sensitivity to apoptosis (Omori et al., 

2006). These defects trigger a wound healing reaction that is not intrinsically lethal, 

but can become lethal in conjunction with additional defects, as seen after K5Cre-

mediated integrin β1 ablation, where esophageal defects interfere with feeding 

(Brakebusch et al., 2000). The lethal epidermal inflammatory hyperplasia of 
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Migfilin-/-;K5Cre+ mice is reminiscent of the phenotype resulting from epidermal deletion 

of Transforming growth factor β-activated kinase 1 (TAK1) (Omori et al., 2006). 

TAK1-null keratinocytes are driven into apoptosis by endogenous TNF, which 

induces the inflammatory hyperplasia and further upregulates TNF expression, and 

thereby escalates the lethal phenotype. A similar vulnerability to inflammation-

mediated apoptosis after loss of migfilin can be excluded, since loss of migfilin did 

not modulate the TPA-induced hyperplastic skin inflammation. We rather postulate 

that the inflammation promotes proliferation, which results in apoptosis of aneuploid 

Migfilin-/-;K5Cre+ keratinocytes, a dramatic aggravation of the phenotype and finally 

death at P10. 
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EXPERIMENTAL PROCEDURES 

Mouse strains 

Generation and characterization of Migfilinfl/fl and Migfilin-/- strains was described 

(Moik et al., 2011). K5Cre+ and K14Cre+ mice were described previously (Hafner et 

al., 2004; Ramirez et al., 2004). Trp53 floxed mice (Trp53tm1Brn) (Jonkers et al., 2001) 

were obtained from Dr. Anton Berns, University of Amsterdam, NL. All mouse strains 

were backcrossed at least 5 times to the C57BL/6 mouse strain. 

 

Animal husbandry and tumor experiments 

C57BL/6 mice were kept and bred according to German animal welfare laws at 

the MPI of Biochemistry animal facilities. Animal experiments were approved by the 

State Government of Bavaria. For the two-stage skin carcinogenesis experiments, 

mice were shaved at the back at 6-7 weeks of age and 2 days later treated with 

7,12-Dimethylbenz(a)anthracene (DMBA) (2 mM in acetone, 100 µL per treatment, 

Supelco). Two weeks later, a bi-weekly treatment with 12-O-Tetradecanoylphorbol-

13-acetate (TPA) (0.2 mM in acetone, 100 µL per treatment, Sigma) was started. 

Papillomas were counted when their diameter reached 1 mm and they were present 

at least for 2 consecutive weeks. 

 

Antibodies 

The source and working dilution used for immunoblotting (IB), immunofluorescence 

(IF) or flow cytometry (flow.) of primary antibodies are listed in Table 2. Appropriate 

horse radish peroxidase(HRP)- or fluorophor-conjugated secondary antibodies were 

obtained from Biorad or Jackson Laboratories. 
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Cell culture and live cell imaging 

Primary keratinocytes were isolated at P3 or in telogen phase of the hair cycle. 

Mice were killed, shaved and skinned. Muscle and fatty layer were scraped off and 

the skin was incubated for 1 hour in Dulbecco’s phosphate-buffered saline (PBS) 

supplemented with 0.8% Trypsin (Gibco) at 37°C. Afterwards the epidermis was 

peeled off from the underlying dermis and manually dissociated. The resulting 

suspension was filtered through a 45 µm nylon mesh. Cells were seeded onto bovine 

Collagen I (AdvancedBiomatrix) coated culture dishes and maintained at 37°C and 

5% CO2 in growth medium (Spinner’s MEM supplemented with 5 mg/L Insulin, 

10 mg/L EGF (Roche), 10 mg/L transferrin, 10 µM phosphoethanolamine, 10 µM 

ethanolamine, 0.36 mg/L hydrocortisone (Calbiochem), 0.3 g/L glutamine, 

100 units/mL Penicillin, 100 mg/L Streptomycin, 45 µM CaCl2 and 8% chelated 

FCS). Unless otherwise noted, all cell culture reagents were reagent grade 

purchased from Invitrogen or Sigma. 

Live cell imaging was performed as described (Moik et al., 2011) with one 

picture taken every 3 minutes. Phase contrast was sufficient to visualize nuclear 

membrane breakdown and reformation. 

 

Flow cytometry 

Freshly isolated primary keratinocytes were stained with primary antibodies for 

10-30 minutes on ice, washed, and stained with secondary antibody for 10-30 

minutes on ice. After washing, cells were resuspended in PBS containing BSA and 

propidium iodide. Immortalized keratinocytes were trypsinized and treated as above. 

Flow cytometry was performed on a FACSCalibur flow cytometer (Becton & 
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Dickinson). For measuring nuclear antigens, primary antibody staining was 

performed overnight on ice after PFA fixation. 

 

Histology, epidermal morphometry and proliferation/cell death analysis 

Skin and tumor samples were prepared by standard methods for paraffin or cryo 

embedding (Montanez et al., 2007) and stained according to Mayer's hematoxylin 

and eosin (H/E) or the Masson-Fontana protocol. For generation of epidermal whole 

mounts, P3 mice were killed and skinned. Muscle and fatty layer were scraped off, 

followed by careful mechanical separation of dermis and epidermis. Epidermis was 

fixed for 10 Minutes in 4% PFA/PBS and kept in PBS with 0.05% NaN3 at 4°C until 

use. 

For morphometric measurements, 2-5 animals were used for each genotype and 

time point. To measure the epidermal thickness and number of nucleated layers, 

back skin sections were immunostained for β-Catenin and α6 integrin. Images 

randomly chosen along the whole length of the skin section were obtained with a 

TCS SP5 AOBS Confocal Laser Scanning Microscope (Leica) and a 63x/1.4NA 

objective. Epidermal thickness was measured from the α6 integrin-stained basement 

membrane to the top of the upmost cell expressing β-Catenin using the Leica 

microscope operating software. Infundibula, i.e. the egress funnels for hair shafts, 

were avoided. Layer numbers were counted similarly. 

For measurements of proliferation and basal cell number, back skin sections 

were immunostained for Ki67, Laminin-322 and nuclei. 5 images per mouse were 

obtained as above using a 40x/1.25NA objective. For each image, the Laminin-322 

stained basement membrane was aligned with one border of the field-of-view. Ki67-

positive cells and total number of nuclei were counted. Cell number was estimated at 
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infundibula. Cell numbers were divided by the length of the field-of-view of 0.385 mm 

to obtain the cell numbers per mm epidermis. 

Apoptosis was measured by staining 10 back skin sections per animal for 

cleaved Caspase 3 (clCasp3) and integrin α6. ClCasp3+ apoptotic epidermal 

keratinocytes were counted by eye under microscopic epifluorescence illumination 

(ImagerZ1, Zeiss) with a 40x/1.25NA objective. Follicular keratinocytes were 

excluded. Section lengths were measured with a ruler, the derived quotient of cell 

number and section length gave the number of clCasp3-positive cells per mm 

epidermis. 

For determination of bi- or multinucleation, epidermal whole mount preparations 

were immunostained for integrin α6 and counterstained with DAPI. After image 

acquisition of z-stacks, adjacent nuclei that were surrounded by integrin staining and 

deformed each other were counted as belonging to the same cell. 

 

Skin barrier assays 

Inside-out skin barrier function was assayed by measuring trans-epidermal water 

loss (TEWL) using a Tewameter TM300 (Courage+Khazaka electronic GmbH) with a 

probe equilibrated to 37°C. Outside-in barrier function was tested by euthanizing 

pups and immersing the back skin for 30 minutes at 37°C in 1 mM LuciferYellow 

(Sigma)/PBS before isolation of skin and subsequent embedding for cryo sectioning. 

Outside-in barrier function is intact when the LuciferYellow signal is restricted to the 

outermost epidermal cornified layer. 
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Western blotting 

Cells or tissues were homogenized in RIPA buffer (150 mM NaCl, 50 mM Tris-

HCl, 5 mM EDTA, 0.1% w/v SDS, 1.0% w/v sodium deoxycholate, 1.0% v/v Triton X-

100, Phosphatase inhibitor cocktails P1 and P2 [pH 7.6]; all by Sigma), with 

Complete protease inhibitors (Roche). 20 to 50 µg of total protein per lane were 

separated on a polyacrylamide gel and transferred to PVDF membranes (Millipore). 

Membrane blocking and antibody dilution was performed with Tris-buffered saline 

(TBS) pH 7.6 supplemented with 0.1% Tween20 (Serva) and 5% skim milk (Fluka) or 

5% bovine serum albumin (BSA) (PAA Laboratories). Subsequently membranes 

were incubated for 1 hour at room temperature (RT) or overnight at 4°C with primary 

antibody. After washing with TBS, appropriate HRP-coupled secondary antibodies 

(BioRad) were applied for 1 hour at RT. After washing, ECL detection (Immobilon, 

Millipore) was performed at a LAS4000 (Fujifilm). 

 

Immunofluorescence 

Cryo sections from frozen adult and embryonic tissues were prepared and 

embedded according to standard protocols. Cells were grown on glass cover slips 

coated with bovine Collagen I (5 mg/L, Advanced Biomatrix). Samples were fixed 10 

minutes in 3.7% PFA/ PBS, permeabilized 3 minutes with 0.1% Triton X-100/ PBS 

and blocked for 1 hour in 5% BSA/ PBS. Primary antibodies were diluted in blocking 

solution and applied overnight at 4°C. After washing with PBS, appropriate 

secondary antibodies were diluted in blocking solution and applied for 1 hour at RT. 

After washing and DAPI staining (1:10.000 in PBS), slides were mounted in Elvanol. 

Pictures were taken with a TCS SP5 AOBS or TCS SP2 AOBS Confocal Laser 

Scanning Microscope (Leica). 
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DNA damage repair kinetics 

Cells were seeded on glass cover slips pre-coated with Collagen I (5 mg/L, 

Advanced Biomatrix). After 24 h of growth, cells were irradiated with 5 Gy ionizing 

radiation (IR). At defined time points, the cells were immunostained for pS139-H2ax. 

DNA was stained with DAPI. Confocal pictures focused on the maximal diameter of 

the nucleus were acquired from randomly chosen fields-of-view with a TCS SP5 

AOBS Confocal Laser Scanning Microscope (Leica) using a 100x/1.4NA objective. 

The number of foci and the nuclear area were analysed with ImageJ (Rasband, 

1997-2009) using the watershed algorithm and analyze particles functions. 

 

Statistics 

All numerical data are given as a mean value with the standard error of the 

mean (SEM). Statistical significance was tested as indicated in the figure legends. 
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Hematoxylin/Eosin; HF, hair follicle; HRP, horse radish peroxidase; IB, immuno blot, 

IF, immunofluorescence; IR, ionizing radiation; K5, Keratin 5; K14, Keratin 14; LIM, 

Lin-11/Isl-1/Mec-3; MEF, mouse embryonic fibroblast; n, number of samples; N, 
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Transforming growth factor β-activated kinase 1; TBS, Tris-buffered saline; TPA, 12-

O-Tetradecanoylphorbol-13-acetate. 
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Figure Legends 

Figure 1. Cre-expression in migfilin-null epidermis leads to a lethal 

hyperplastic skin defect. 

(A) Hematoxylin/Eosin (H/E) stainings of Migfilin+/+ and Migfilin-/- back skin at P21 or 

P28. Bar: 50 µm. (B) Immunoblot (IB) analysis for Migfilin and Gapdh expression in 

indicated tissues isolated from Migfilin+/+ mice. (C) Immunofluorescence (IF) 

stainings (green: migfilin, red: vinculin, blue: DNA) of primary keratinocytes with 50 

µM CaCl2 and 24 hours after induction of cell-cell contacts with 1 mM CaCl2. Bars: 

50 µm. (D) Image of P8 Migfilinfl/+, Migfilinfl/+;K5Cre+, and Migfilinfl/fl;K5Cre+ littermates. (E) 

Weight gain curve of controls (green, Migfilinfl/fl or Migfilinfl/+; n=14), Migfilinfl/+;K5Cre+ 

(blue, n=5) and Migfilinfl/fl;K5Cre+ (red, n=4) pups. Dots indicate mean ± standard error 

of the mean (SEM). (F) H/E stainings of P8 Migfilinfl/fl and Migfilinfl/fl;K5Cre+ back skin. 

Bar: 100 µm. E, epidermis; d, dermis; s, sub-cutis; m, muscle. (G-J) IF stainings of 

P8 back skin sections of the indicated genotype with the indicated, color-coded 

antibodies. Bars: 50 µm. (K) Masson-Fontana stainings of P8 back skin of the 

indicated genotypes. Melanocytes are dyed black. Hair shafts are indicated by stars 

(*). Bar: 50 µm.  

 

Figure 2. Skin defect severity depends on Cre gene dosage. 

(A) IB analysis of Cre expression in P4 epidermis of Migfilin+/- mice with the indicated 

Cre transgenes. Gapdh serves as loading control. (B) Image of P9 Migfilin+/-, 

Migfilin+/-;K14Cre+, and Migfilin+/-;K5Cre+/K14Cre+ littermates. (C) H/E stainings of P4 back 

skin of the indicated genotypes. Melanocytes are dyed brown. Bar: 50 µm.  
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Figure 3. Terminal differentiation and barrier function in Migfilinfl/fl;K5Cre+ 

epidermis are normal. 

(A-P) Immunofluorescence (IF) staining of cryo-embedded P8 back skin sections of 

the indicated genotypes with the indicated, color-coded antibodies. HFs are indicated 

by white stars (*). Bars: 50 µm. (Q) Surface expression levels of the indicated 

integrins measured by flow cytometry of freshly isolated keratinocytes of the 

indicated genotype. 9EG7 recognizes active β1 integrin, maximal β1 integrin 

activation was enforced by addition of 1 mM MnCl2 for 10 Minutes on ice. Legend: 

Migfilin+/+ (green), Migfilin-/- (red), Migfilin-/-;K5Cre+ (blue), isotype control (grey). (R) 

Trans-epidermal water loss (TEWL) measurements with P3 Migfilin+/+, Migfilin-/-, 

Migfilin+/+;K5Cre+, Migfilin-/-;K5Cre+ mice. The mean is indicated by a black line. (S) Cryo-

sections of P7 Migfilinfl/fl and Migfilinfl/fl;K5Cre+ back skin after immersion in 

LuciferYellow dye (green). Nuclei are stained with DAPI (blue). The basement 

membrane is indicated by a dashed line. Bar: 50 µm. 

 

Figure 4. Altered cellularity and apoptosis rates in Migfilin-/-;K5Cre+ epidermis. 

(A) Upper panel: H/E staining of P6 back skin of the indicated genotypes. Lower 

panel: IF stainings (green: Itga6, blue: DNA) of epidermal whole mounts and imaged 

onto the basal surface of epidermis. Arrowheads point to binucleated cells. Bars: 50 

µm. (B-E) Epidermal morphometry. Epidermal thickness (B), number of nucleated 

cell layers (C), number of basal nuclei per mm epidermis (D) and absolute number of 

Ki67+ keratinocytes per mm epidermis (E) by age and genotype of mice. Bars 

indicate mean+SEM. Legend: Migfilin+/+ (green), Migfilin-/- (red), Migfilin+/+;K5Cre+ 

(black), Migfilin-/-;K5Cre+ (grey). Significance was tested using two-tailed, unpaired 

Student tests and is indicated if p<0.05. (F) Representative IF stainings (green: LM-
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322, red: Ki67, blue: DNA) of back skin used for measurements shown in Figure 4B-

E. Bar: 50 µm. (G) Quotient of absolute number of Ki67+ keratinocytes (Figure 4E) 

per mm and respective number of basal nuclei (Figure 4F) by age and genotype. (H) 

Absolute numbers of apoptotic cells per mm epidermis by age and genotype. (I) 

Representative IF stainings (green: cleaved Casp3, red: Itga6, blue: DNA) of back 

skin used for measurements shown in Figure 4H. Bar: 50 µm. 

 

Figure 5. Migfilin-/-;K5Cre+ keratinocytes have increased ploidy levels, but normal 

DNA damage response and DNA damage levels. 

(A) Relative frequencies of freshly isolated P3 basal keratinocytes with respect to 

DNA contents (2C, 2C to 4C, 4C, or >4C). Significance was tested using two-tailed, 

unpaired Student tests and is indicated if p<0.05. Legend: Migfilin+/+ (green), 

Migfilin-/- (red), Migfilin+/+;K5Cre+ (black), Migfilin-/-;K5Cre+ (grey). (B) Representative flow 

cytometry plots used to generate Figure 5A. Freshly isolated P3 keratinocytes of the 

indicated genotypes were gated for Itga6-expression, RNAse treated and DNA dyed 

with propidium iodide (PI). Analysis was done with the Watson Pragmatic algorithm 

and given as number of chromosomal complements C. (C) Duration of mitosis (time 

between dissolution and re-condensation of nuclear membrane) of freshly isolated 

keratinocytes measured by 24 hour time lapse microscopy. IR, irradiation with 5 Gy 

24 hours before start of experiment. (D) IF stainings (green: α-Tubulin, red: Aurora B 

pT232, blue: DNA) of Migfilin+/+ and Migfilin-/- keratinocytes during late cytokinesis. 

IR, irradiation with 5 Gy 24 hours before staining. Bar: 10 µm. (E) Number of pS139-

H2ax foci over time in primary keratinocytes after irradiation with 5 Gy IR. (F) Flow 

cytometry analysis of pS139-H2ax levels and side scatter (SSC) in freshly isolated 

keratinocytes of the indicated genotypes. Legend: Migfilin+/+ (green), Migfilin-/- (red), 
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Migfilin+/+;K5Cre+ (black), Migfilin-/-;K5Cre+ (blue), isotype control (grey). (G) Repre-

sentative FACS plots used to generate Figure 5F. Freshly isolated P3 keratinocytes 

of the indicated genotypes were stained for pS139-H2ax. For positive control, 

Migfilin+/+ keratinocytes were irradiated with 5 Gy IR and analyzed after 1 hour 

(Migfilin+/+ IR, green+grey). (H) IB analysis of epidermal pS9181-Atm and pS345-

Chk1 in triplicate Migfilin+/+;K5Cre+ and Migfilin-/-;K5Cre+ P3 epidermal lysates. As positive 

control for pS1981-Atm primary Migfilin+/+ keratinocytes were treated for 1 hour with 

5 µM Cisplatin before lysis. As positive control for pS345-Chk1 primary Migfilin+/+ 

keratinocytes were irradiated with 500 J/m2 UV/B 24 hours before lysis. Equal 

loading is indicated by E-cadherin or Gapdh signal intensities. (I) IB analysis of 

epidermal expression of the indicated proteins in triplicate Migfilin+/+;K5Cre+ and 

Migfilin-/-;K5Cre+ P3 epidermis. Equal loading is indicated by Gapdh signal intensities. 

 

Figure 6. Loss of p53 aggravates defects in Migfilin-/-;K5Cre+ epidermis. 

(A) IB analysis of epidermal expression of the indicated proteins in triplicate 

Migfilin+/+;K5Cre+ and Migfilin-/-;K5Cre+ P3 epidermis. Equal loading is indicated by Gapdh 

signal intensities. (B) IB analysis of epidermal expression of the indicated proteins in 

P3 back skin of the indicated genotypes. Equal loading is indicated by Gapdh signal 

intensities. (C) H/E stainings of P3 back skin of the indicated genotypes. Bar: 50 µm. 

(D) Photograph of P3 pups of the indicated genotype. (E-H) Epidermal morphometry. 

Epidermal thickness (E), number of Ki67+ keratinocytes per mm epidermis (F), 

number of basal nuclei per mm epidermis (G), and number of apoptotic cells per mm 

epidermis (H) by age and genotype of mice. Legend: Migfilin-/-;Trp53fl/fl (red), 

Migfilin-/-;K5Cre+;Trp53fl/fl (white), Migfilin-/-;K5Cre+;Trp53fl/+ (grey) and 
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Migfilin-/-;K5Cre+;Trp53+/+ (black). Bars indicate mean+SEM. Significance was tested 

using two-tailed, unpaired Student tests and is indicated if p<0.05. 

 

Figure 7. Migfilin acts as a tumor suppressor in the DMBA/TPA skin cancer 

model. 

(A) Tumor-free survival over time of C57BL/6 Migfilin+/+ (green, n=23) or Migfilin-/- 

(red, n=29) mice treated by DMBA/TPA regime. Significance was tested with the log 

rank test. (B) Tumor number over time of (A). Dots indicate mean±SEM. Significance 

was tested by One-way ANOVA. (C) Relative numbers of skin papillomas of (A), 

binned by size as indicated in the legend. (D-I) H/E stainings of representative 

DMBA-initiated skin tumors of Migfilin+/+ and Migfilin-/- mice after 32 weeks of TPA-

promotion. Representative, well-differentiated Migfilin+/+ (D,E) or Migfilin-/- tumors 

(F,G). (H) Migfilin-/- nodular tumor with high grade of inflammatory infiltration. (I) 

Migfilin-/- spindle cell carcinoma. Bar: 500 µm (a, c) or 125 µm (b, d-f). (J) H/E 

staining of Migfilin+/+ and Migfilin-/- back skin 2 days after triple treatment with TPA or 

acetone every 2 days. Bar: 50 µm. (K) Model for migfilin-mediated suppression of 

tetraploidy. After Cre-mediated generation of tetraploid cells, these could either 

further proliferate, arrest in G1/G0, or undergo apoptosis. Migfilin could either 

facilitate tetraploid cell death (a) or interfere with their proliferation (b). 
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Tables 

Table 1. Mendelian ratios 

Intercrossing No. of  
offspring 

Genotype 
 

Real (ideal) 
percentage 

p(Chi2)  

Migfilin+/-;K5Cre+ 807 Migfilin+/+ 14.5% (12.5%)   
x Migfilin+/-  Migfilin+/- 30.7% (25.0%)   
  Migfilin-/- 11.9% (12.5%)   
  Migfilin+/+;K5Cre+ 10.2% (12.5%)   
  Migfilin+/-;K5Cre+ 25.4% (25.0%)   
  Migfilin-/-;K5Cre+ 7.3% (12.5%)   
 

2.0 * 10-6 
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Table 2. Antibodies 

Antigen Source IB IF Flow. 

Migfilin (Moik et al., 2011) 1:2000 1:100  

Kindlin-2 (Montanez et al., 2008)  1:500  

Atm pS1981 Rockland 600-601-400 1:1000   

Aurora B pT232 Rockland 600-401-677  1:200  

clCasp3 Cell Signaling Technology 9661 1:1000 1:100  

Ctnnb1 Sigma C2206  1:1000  

Cyclin A1 Santa Cruz sc751 1:200   

Cyclin B1 Millipore 05-158 1:1000   

Cyclin D1/2 Millipore 05-362 1:1000   

Cyclin E Millipore 06-459 1:1000   

Desmoplakin Research Diagnostics, no longer 

available 

 1:100  

E-cadherin Zymed 13-1900  1:200  

Gapdh Millipore MAB374 1:30000   

H2ax pS139 Millipore 05-636   1:1000 

Itgb1 Millipore MAB1997  1:400 1:200 

Itgb1 9EG7 BD Pharmingen 550531  1:400 1:100 

Itga6 BD Pharmingen 555735  1:200 1:200 

Ki67 DakoCytomation M7249  1:800  

Loricrin Covance PRB-145P  1:400  

Lm322 R14 by Monique Aumailley 

(University of Cologne, Germany) 

 1:1500  

Keratin 5 Covance PRB-160P  1:400  

Keratin 6 Covance PRB-169P  1:400  

Keratin 10 Covance PRB-159P  1:400  

p53 Cell Signaling Technology 2524 1:1000   

p53 S18 Cell Signaling Technology 9284 1:1000   

α-Tubulin Millipore MAB1864  1:400  

Vinculin Sigma V9131  1:1000  
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