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Summary 

 

Genetic aberrations are one of the major causes for a broad range of diseases. Gene 

therapeutic approaches based on the transfer of functional genes into affected cells resemble 

an attractive alternative for treatment of genetic disorders. For transport of genetic material 

vectors are used, which are mainly based on recombinant viruses. Newest generation of 

vectors based on non�enveloped adenoviruses called high�capacity adenoviral vectors (HCAs) 

are devoid of all viral coding sequences and generation depends on an adenoviral helper�virus 

(HV) providing the viral proteins in trans. Therefore, vector�associated toxicity and 

immunogenicity is low, whereas the capacity for cargo sequences is high (>36kb). In this 

thesis, I focused on improving features and generation of HCAs by genetic engineering. 

First, a standardized protocol for cloning of HCA genomes with a single cargo sequence of up 

to 14 kb and large�scale preparation of HCA utilizing a bioreactor system was established in 

the content of this thesis. Details of the protocol highlight critical steps during vector 

preparation and titration and an extensive trouble�shooting guide is provided enabling 

establishment of this method in any laboratory.  

Next, to circumvent clearance of naturally episomal HCA genomes, a hybrid vector system 

was established combining efficient delivery by HCAs with the integration machinery of the 

Sleeping Beauty transposase (SB). In this study, I optimized the system by replacing SB with 

the hyperactive variant HSB5, which exhibited a 10�fold higher activity. Efficacy of the 

system was demonstrated in mice delivering a hepatocyte�specific expression cassette for the 

canine coagulation factor IX (cFIX). Application of this system for treatment of a hemophilia 

B dog resulted in phenotypic correction of the blood clotting disorder for approximately 3 

years mediated by stable and therapeutic cFIX expression levels (60 ng/ml). Additional 

analysis revealed no vector�associated acute toxicity, no anti�cFIX antibodies and only low 

levels of neutralizing anti�adenovirus antibodies indicating no potent induction of the immune 

system. Molecular analysis of hepatocyte�derived DNA revealed that the main portion of 

transposons was integrated into the host genome. However, increase of dosage resulted in a 

total loss of therapeutic effects probably due to significantly increased induction of the 

immune response. In conclusion, even for the improved hybrid vector system the therapeutic 

window is narrow and therefore, I aimed at improving the HCA vector system into several 

directions. 

To circumvent restrictions of cloning methods currently used for incorporation of therapeutic 

DNA into HCA genomes and modulation of HV genomes, I established a novel cloning 
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platform based on bacterial artificial chromosomes (BACs), which allows arbitrary sequence 

modulations by homologous recombination. In sharp contrast to common cloning strategies, 

no intermediate clones have to be generated. Furthermore, I demonstrated simple generation 

of BACs utilizing isolated viral genomes or the newly invented backbone�exchange method 

for conversion of plasmids into BACs. Traceless modification in a 2�step procedure was 

exemplified by construction of BACs with HV genomes containing capsid�modifications 

fib5/35 and hex5/48. Furthermore, I invented a recombination pipeline based on iterative 

recombination steps utilizing alternating bacterial selection cassettes. This enables generation 

of complex HCAs genomes such as B�HCA�2indsys containing two independent systems for 

cell type�specific and inducible expression. In addition, ion�exchange columns were shown to 

allow easy and rapid purification of several small�scale HCA preparations in parallel. 

To broaden the spectrum of HCA applications, I modified the hypervariable regions (HVRs) 

located within the surface region of the major capsid protein hexon, which mediate liver�

tropism of unmodified adenoviral vectors via interaction with coagulation factor X after 

intravenous administration. Chimeric hexon genes were generated by precise exchange of 

HVRs or exchange of the complete surface domains with respective sequences of other 

human adenovirus serotypes. Expressed chimeric hexon proteins were shown to enable initial 

capsid assembly steps and therefore, respective hexon�modified HV genomes were 

constructed by BAC cloning technology. Challenging reconstitution was successful for HVs 

with HVRs precisely exchanged with sequences of serotypes 12 (HV�HVR12) and 48 (HV�

HVR48) and with completely exchanged surface domains of serotypes 4 (HV�SD4) and 12 

(HV�SD12). Analysis of FX�mediated transduction in cell culture revealed high transduction 

efficiency for HV�HVR12 indicating a newly created binding site. Bioluminometric 

measurements after intravenous injection of HV�HVR12 in mice demonstrated enhanced 

expression levels located within the liver with 500�fold higher maximum signal strength 

compared to unmodified HVs. In contrast, for HV�SD12 neither enhanced transduction rates 

in cell culture were observed nor transduction of liver tissue was detected in mice. Therefore, 

the whole hexon surface domain seems to be responsible for the interaction with FX, which is 

in contrast to the current hypothesis claiming that exclusively HVR sequences bind to FX.  

In summary, improvements introduced in this thesis for generation of genetically modified 

adenoviruses will pave a new path towards widespread in gene therapeutic approaches, anti�

cancer treatments and vaccination purposes as well as basic research. 
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Zusammenfassung 

 

Genetische Aberrationen sind eine der Hauptursachen für eine Vielzahl von Krankheiten. 

Gentherapeutische Ansätze, die auf dem Transfer von funktionellen Genen in die betroffenen 

Zellen basieren, repräsentieren eine attraktive Alternative für die Behandlung von genetisch 

bedingten Erkrankungen. Für den Transport von genetischem Material werden hauptsächlich 

Vektoren verwendet, die auf rekombinanten Viren basieren. Die neueste Generation von 

Vektoren genannt „high)capacity adenovirale Vektoren“ (HCAs), die auf nicht)umhüllten 

Adenoviren basieren, enthalten keine viralen, kodierenden Sequenzen. Ihre Herstellung beruht 

auf einem adenoviralen Helfer)Virus (HV), das die viralen Proteine in trans zur Verfügung 

stellt. Daher ist die Vektor)assoziierte Toxizität und Immunogenität gering, während die 

Kapazität für Fracht)Sequenzen hoch ist (> 36kb). In dieser Arbeit habe ich mich auf die 

Verbesserung der Eigenschaften und der Erzeugung von HCAs mit Hilfe gentechnischer 

Manipulationen  konzentriert. 

Zunächst wurde im Rahmen dieser Arbeit ein standardisiertes Protokoll etabliert, das die 

Klonierung von HCA)Genomen mit einzelnen Sequenzen von bis zu 14 kb ermöglicht sowie 

die Herstellung von HCAs im großen Maßstab unter Verwendung eines Bioreaktor)Systems 

erlaubt. Details des Protokolls heben kritische Schritte innerhalb des Herstellungsverfahrens 

und der Titration der Vektoren hervor. Zudem stellt es einen umfangreicher Leitfaden zur 

Fehleranalyse zur Verfügung, der die Etablierung dieser Methode in jedem Labor ermöglicht. 

Um den Abbau von naturgemäß episomal vorliegenden HCA)Genomen zu umgehen, wurde 

daraufhin ein Hybrid)Vektor)System etabliert, das den effizienten Transport mittels HCAs mit 

der Integrationsmaschinerie der Sleeping Beauty Transposase (SB) kombiniert. In dieser 

Studie optimierte ich das System durch den Austausch der SB mit der hyperaktiven Variante 

HSB5, die eine 10)fach höhere Aktivität aufweist. Die Wirksamkeit des Systems konnte in 

Mäusen durch den stabilen Transport einer Expressionskassette gezeigt werden, die eine 

leber)spezifische Expression des Blutgerinnungsfaktor IX von Hunden (cFIX) bewirkte. Die 

Anwendung des Systems zur Behandlung eines Hundes mit Hämophilie B führte zur 

Korrektur des Phänotyps der Blutgerinnungsstörung für ca. 3 Jahren, die durch die stabile 

Expression von cFIX auf einem therapeutischen Level (60 ng / ml) bewirkt wurde. 

Zusätzliche Analysen zeigten keine akute, vektor)assoziierte Toxizität, keine Bildung von 

anti)cFIX Antikörpern und nur geringe Mengen von neutralisierenden anti)Adenovirus 

Antikörpern und damit kein Anzeichen für eine starke Induktion des Immunsystems. Die 

molekulare Analyse der DNA, die aus Hepatozyten isoliert wurde, ließ erkennen, dass der 
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Hauptteil der Transposons in das Wirtsgenom integriert wurde. Allerdings führte die 

Erhöhung der Dosis zu einem vollständigen Verlust des therapeutischen Effekts, der 

vermutlich auf die deutlich angestiegene Induktion der Immunantwort zurückzuführen ist. 

Zusammenfassend ist selbst für das verbesserte Hybrid)Vektor)System das therapeutische 

Fenster schmal und deshalb strebte ich auf mehreren Ebenen die Verbesserung des auf HCA 

basierenden Vektorsystems an.  

Um die Limitierungen der derzeitigen Klonierungsmethoden zu umgehen, die für den Einbau 

von therapeutischer DNA in HCA)Genome und für die Veränderung von HV)Genomen 

verwendet werden, etablierte ich eine neue Klonierungsplattform. Diese basiert auf 

künstlichen bakteriellen Chromosomen (BACs), die beliebige Veränderungen von Sequenzen 

mit Hilfe homologer Rekombination ermöglicht. Im Gegensatz zu anderen 

Klonierungsstrategien müssen dabei keine Zwischen)Klone generiert werden. Darüber hinaus 

habe ich gezeigt, dass die Generierung von BACs sowohl unter Verwendung isolierter viraler 

Genome als auch mit Hilfe der neu entwickelten Methode des „Backbone)Austausches“, der 

die Konvertierung von Plasmiden in BACs ermöglicht, einfach ist. Des Weiteren erlaubt ein 

2)stufiges Verfahren rückstandsfreie Modifikationen wie am Beispiel der Konstruktionen von 

BACs veranschaulicht wurde, die HV Genome mit den Kapsid)Modifikationen fib5/35 und 

der Hexon)Modifikation hex5/48 beinhalten. Des Weiteren entwickelte ich eine 

Rekombination)Pipeline, die auf iterativen Rekombinationsschritten unter Benutzung von 

sich abwechselnden bakteriellen Selektionskassetten basiert. Dies ermöglicht die Erzeugung 

komplexer HCA)Genome wie beispielsweise B)HCA)2indsys, das zwei unabhängige 

Systeme für Zelltyp)spezifische und induzierbare Expression enthält. Außerdem wurde 

gezeigt, dass Ionenaustausch)Säulen eine einfache und schnelle Aufreinigung von mehreren 

kleinen Mengen von HCAs parallel ermöglichen. 

Zur Erweiterung des Spektrums der HCA)Anwendungen, modifizierte ich die hypervariablen 

Regionen (HVRs) im oberflächennahen Bereich des Haupt)Kapsidproteins Hexon, das über 

die Interaktion mit dem Gerinnungsfaktor X den Leber)Tropismus von unmodifizierten 

adenovirale Vektoren nach intravenöser Gabe bestimmt. Chimäre Hexon)Gene wurden durch 

präzisen Austausch der HVRs oder durch Austausch der kompletten Oberflächenbereiche mit 

den entsprechenden Sequenzen von anderen humanen Adenovirus)Serotypen erzeugt. 

Nachdem gezeigt wurde, dass die chimären Hexon)Proteine die anfänglichen 

Assemblierungsschritte ermöglichen, wurden Hexon)modifizierte HV)Genome mit Hilfe der  

BAC)Klonierungstechnologie konstruiert. Die an sich anspruchsvolle Rekonstitution war 
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erfolgreich für die HVs, bei denen die HVRs exakt mit den Sequenzen der Serotypen 12 (HV)

HVR12) und 48 (HV)HVR48) ausgetauscht wurden und bei denen die kompletten 

Oberflächenbereiche mit denen der Serotypen 4 (HV)SD4) und 12 (HV)SD12) ersetzt 

wurden. Die Analyse der FX)vermittelten Transduktion in der Zellkultur ergab eine hohe 

Transduktionseffizienz für HV)HVR12, was auf eine neu geschaffene Bindungsstelle 

hinweist. Bioluminometrische Messungen nach intravenöser Injektion von HV)HVR12 in 

Mäuse zeigten eine erhöhte Expression in der Leber mit 500)fach höherer maximaler 

Signalstärke im Vergleich zu unmodifizierten HVs. Im Gegensatz dazu war für HV)SD12 

weder eine erhöhte Transduktionsrate in Zellkultur noch Transduktion von Lebergewebe in 

vivo beobachtet worden. Daher scheint der gesamte Oberflächenbereich des Hexons für die 

Interaktion mit FX verantwortlich zu sein, im Gegensatz zu der aktuellen Hypothese, die 

besagt, dass ausschließlich HVR)Sequenzen an FX binden. 

Zusammenfassend werden die Verbesserungen, die in dieser Arbeit für die Erzeugung von 

gentechnisch veränderten Adenoviren vorgestellt wurden, den Weg für die Verbreitung in 

gentherapeutischen Ansätzen, Anti)Krebs)Behandlungen, Impfstrategien und Gebieten der 

Grundlagenforschung ebnen. 
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1. Introduction 

 

In general diseases could be classified in contagious diseases and non-communicable 

diseases. Contagious diseases are caused by pathogens, for instance the acquired immune 

deficiency syndrome (AIDS) is caused by the human immunodeficiency virus (HIV), 

tuberculosis by mycobacterium tuberculosis or malaria by plasmodium malariae. In contrast, 

main risk factors, which cause non-communicable diseases, are inherited genetic aberrations 

as well as the environment and the life-style, which could affect a person directly or by 

generation of spontaneous genomic mutations by physical (UV light), chemical (reactive 

oxygenic substances) or biological damage (virus infection). Most of the non-communicable 

diseases like cancer, cardiovascular diseases of neurological disorders are caused by multiple 

genetic defects affecting expression of cellular proteins. Therefore, a single mutation in one of 

these genes represents a predisposition of the affected person for the respective disease but 

does not necessarily result in clinical symptoms, whereas accumulation of mutations finally 

initializes the onset of the disease and the related phenotype (Bos 1989; Bertram 2000; Setel, 

Saker et al. 2004; Hamosh, Scott et al. 2005; Antonarakis and Beckmann 2006).  

For a small fraction of non-communicable diseases called monogenetic diseases a mutation of 

a single gene is sufficient to cause clinical symptomes. These diseases are classified in 

dominant, recessive and X-linked disorders. For dominant genetic disorders like the 

Huntington disease one affected allel is sufficient to cause the phenotype, whereas for patients 

with a recessive disease for instance cystic fibrosis or phenylketonuria both allels of the 

respective gene have to be affected. Genetic diseases caused by mutated genes located on the 

X chromosome like hemophilia A and B or Duchenne muscular dystrophy are called x-linked, 

which mainly affect male patients. Mutations causing a monogenetic disease affect either 

regulatory elements or coding sequences of the respective gene. In detail, sequences are 

altered by point mutations, deletions of endogenous sequences, insertion of additional 

sequences into the coding sequence or chromosomal aberrations such as rearrangements. As a 

consequence, the gene product is non-functional or instable or the expression is altered in 

strength, location or regulation. Generally, impact of the mutation on the functionality of the 

protein is directly related with the severity of the clinical symptoms (Scriver and Waters 

1999; Weatherall 2001; Hamosh, Scott et al. 2005; Antonarakis and Beckmann 2006).  

Currently used therapies for monogenetic diseases mainly focus on treatment of clinical 

symptoms such as skin transplantations for patients with epidermolysis bullosa, a disorder in 
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collagen VII causing strongly decreased connectivity of skin tissue (Lin and Carter 1993). 

Other monogenetic diseases can be treated by protein replacement therapy. Herein, synthetic 

functional protein is injected intravenously to replace the non-functional endogenous protein, 

which leads to compensation of the pathogenic effect, for example to treat the clotting 

disorder hemophilia B patients are repeatedly treated with recombinant coagulation factor IX. 

Nevertheless, this kind of therapy is cost intensive and inconvenient as well as repeated 

intravenous injections restrict the application of this kind of therapy to diseases caused by a 

defect of a secreted protein (Konkle, Josephson et al. 1993). In addition, for many severe 

monogenetic diseases like SCID, dermolysis bullosa or Duchenne muscular dystrophy current 

therapies are insufficient (Darras, Korf et al. 1993). Therefore, to face the challenges of 

treating genetic diseases scientists aim at elimination of disease, origins on DNA level 

utilizing gene therapeutic approaches.  

 

 

1.1. Gene therapy 

Gene therapy is defined as the delivery of therapeutic DNA to a certain tissue or cell type to 

treat the genetic defect. For example hemophilia B is caused by a mutation located within the 

gene encoding coagulation factor IX and therefore blood coagulation is severely impaired, 

which causes spontaneous bleedings in affected patients. In a gene therapeutic approach the 

gene encoding functional factor IX is delivered to hepatocytes and is subsequently expressed 

and secreted resulting in phenotypic correction. In contrast to therapeutic treatments based on 

gene addition for correction of a genetic disease, gene replacement therapies aim for the repair 

of the endogenous mutated gene or the replacement with the correct gene in the genomic 

context. These approaches are applied for dominant mutations or gene products, which are 

toxic for the cell. Furthermore, gene knock-down approaches could be applied for toxic gene 

products as long as the encoded protein is not essential for the cell or the organism (O'Connor 

and Crystal 2006). 

 

 

1.1.1. Classifications of gene therapeutic approaches 

In principle, for a gene therapeutic application the therapeutic DNA is packaged in or coupled 

to a gene vector, which enables the transfer of the DNA into the respective target cell. Based 

on the strategy used gene therapeutic applications are classified in direct (in vivo) and cell-
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mediated (ex vivo) approaches (Fig. 1.1) (O'Connor and Crystal 2006). In vivo applications 

are based on direct application of the therapeutic agent to the patient (Zabner, Couture et al. 

1993), whereas for ex vivo approaches cells derived from the patient are transduced and 

subsequently expanded and reimplanted (Blaese, Culver et al. 1995). Besides classical gene 

therapeutic approaches aiming for compensation of gene defects, therapy forms based on 

similar principles are evaluated for vaccination purposes. Herein, the antigen encoding gene is 

transfered to cells enabling the establishment of a robust antigen-specific immune response 

(Rollier, Reyes-Sandoval et al. 2011). Furthermore, gene therapeutic setups were used for 

anti-viral treatments either delivering genes encoding for proteins, which inhibit virus 

replication, or siRNAs targeting viral mRNAs (Arbuthnot 2010). Last but not least treatments 

of cancer with conditionally replicating viruses can be included in the category of gene 

therapeutic strategies. These modified therapeutic viruses mainly replicate in cancer cells 

causing cell death and therefore reduction or even elimination of cancer tissue can occur 

(Hernandez-Alcoceba 2011). 

 

 

Figure 1.1: Schematic illustration of direct (in vivo) and cell-mediated (ex vivo) gene therapeutic 

strategies. Modified from The National Institutes for Health resource for stem cell research 

(http://stemcells.nih.gov/info/2006report/2006Chapter4.htm). 
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1.1.2. Clinical and pre-clinical studies 

For establishment of a gene therapeutic application efficiency and persistence of the 

therapeutic effect as well as adverse effects like toxicity or immunogenicity have to be 

evaluated in small and large animals before tested in phase I clinical studies. In these studies, 

the lowest dose resulting in a therapeutic effect and the highest dose with tolerable side effects 

are determined. Defined therapeutic windows are transferred to humans including all data sets 

gained from related studies (Van Spall, Toren et al. 2007). First gene therapeutic attempts 

were performed in the early 1990s treating patients with monogenetic diseases causing severe 

symptoms with no alternative therapies such as severe combined immunodeficiency (SCID) 

(Blaese, Culver et al. 1995; Cavazzana-Calvo, Hacein-Bey et al. 2000). Due to the death of 

patient Gessie Gelsinger in 1999 treated with a high dose of a gene therapeutic agent (Raper, 

Chirmule et al. 2003), restrictions for gene therapeutic applications were tightened and the 

progress in this field slowed down. Nevertheless, recent successes led to an increase of 

clinical trials and over the past years two gene therapeutic treatments for nasopharyngeal 

carcinomas were legalized in China (Wilson 2005). Up to now clinical trials include 

monogenetic disease as well as the treatment of infectious diseases, polygenetic diseases like 

diverse cancer types, cardiovascular diseases and neurological disorders (Fig. 1.2) (Edelstein, 

Abedi et al. 2004).  

 

 

Figure 1.2: Indications addressed by gene therapy clinical trials. Modified from the journal of gene medicine 

2011 (http://www.wiley.com/legacy/wileychi/genmed/clinical/)  
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1.2. Variables defining therapeutic window of a gene therapeutic approach 

Main determinants affecting the efficiency of a gene therapeutic treatment are the 

composition of the therapeutic DNA and the route of administration as well as the type and 

composition of the vector used for delivery (O'Connor and Crystal 2006). 

 

 

1.2.1. Application route 

For in vivo application, vectors are either distributed systemically via intravenous injection or 

administration is locally restricted. The latter option includes several application routes such 

as intramuscular injection, intranasal application, inhalation or direct injection into the target 

organ or specific tissue (Knowles, Hohneker et al. 1995; Perricone, Morris et al. 2001; 

Harvey, Maroni et al. 2002). Furthermore, administration could be combined with standard 

chirurgical procedures, for instance ballon-catheters to enable local restriction of vectors 

transported via the blood stream (Brunetti-Pierri, Stapleton et al. 2007). In general, it was 

demonstrated, that local administrations are often more efficient and cause less immune 

response, but application procedures are usually sophisticated and often invasive.  

Ex vivo gene therapeutic applications include a broad subset of strategies, which significantly 

differ in the experimental setup (Naldini 2011). For example often certain types of stem cells 

like hematopoietic stems are used for cell-mediated gene therapy (Malatack, Consolini et al. 

2003). Isolation of these stem cells from patient material is often challenging and cells have to 

be characterized before further processing. Therefore, standardized stem cells not derived 

from the patient were used as an alternative in some studies (Fairchild, Cartland et al. 2004). 

In other approaches complete tissue pieces composed of several cell types were transduced 

with the therapeutic DNA. Efficiency of ex vivo approaches is often limited by the number of 

processing steps such as isolation or expansion of transduced cells and therefore alterations, 

which may result in cancer formation or induction of the immune response after implantation. 

 

 

1.2.2. Therapeutic DNA 

The design of the therapeutic DNA has also a major influence on the efficiency of the gene 

therapeutic approach. For expression of a therapeutic gene the coding cDNA sequence could 

be used, but often utilization of the enogenous sequence encoding all regulatory elements or 

usage of an optimized gene is more suitable (Nott, Meislin et al. 2003; Bollenbach, Vetsigian 
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et al. 2007). Furthermore, regulatory elements like enhancers, promoters or miRNA-target 

sites represent tools, which enable tissue-specific expression (Pastore, Morral et al. 1999; 

Wolff, Wolff et al. 2009), induction of expression in presence or absence of certain drugs 

(Osterwalder, Yoon et al. 2001; Mohr, Arapovic et al. 2010) or inhibition of expression in 

cells, which are not targeted (Brown and Naldini 2009). Moreover, internal ribosomal entry 

sites or synthetic protease cleavage sites facilitate coupled expression of two or more 

transgenes whereas insulator sequence provide the option to separate two expression cassette 

allowing independent transcription. In contrast to gene insertion and replacement approaches, 

gene knock-down strategies are mainly based on targeting mRNA transcripts of the mutated 

gene with specific siRNAs to decrease expression of the affected gene. Delivery of multiple 

siRNA expression cassettes specific for the same mRNA may enhance efficiency and 

specificity of the knock-down effect (Castanotto and Rossi 2009; Sliva and Schnierle 2010). 

To enable long-term expression of transgenes essential for the treatment of genetic disorders, 

additional sequences could be used enabling persistence and amplification of the transgene 

expression cassette in replicating cells. For instance, persistence of episomal vector DNA 

could be mediated by vector-associated sequences or DNA maintenance could be supported 

by additional non-coding sequences such as the EBNA-binding sequences (Yates, Warren et 

al. 1985). These mediate attachment to the chromosomal DNA via the Eppstein-Barr virus 

derived EBNA1 protein or non-viral S/MAR sequences, which interact with histones to 

anchor the DNA and which also act as origins of replication enabling DNA replication during 

the S phase in cycling cells (Ehrhardt, Haase et al. 2008). As an attractive alternative, 

therapeutic DNA can be incorporated into the host genome. Most prominent enzymes 

mediating somatic integration are provided by viral integration machineries e.g. retroviral 

integrases or Rep proteins from the adeno-associated virus. Furthermore, non-viral integration 

machineries based on transposases like the Sleeping Beauty transposase and the PiggyBac 

transposase or bacterial integrases such as the phiC31 integrase are used for incorporation of 

foreign DNA into the host chromosomes (Ehrhardt, Xu et al. 2005; Sorrell and Kolb 2005; 

Ehrhardt, Yant et al. 2007; Muther, Noske et al. 2009). The integration patterns of these 

systems differ significantly with varying preferences for transcriptional active regions or 

distinct genomic loci. Although integration into the host chromosomes is efficient for these 

enzymes resulting in long-term effects, unwanted genotoxic side effects such as insertional 

mutagenesis could occur. This could lead to activation of endogenous proto-oncogenes 

initializing transformation of transduced cells in cancer cells (Baum 2007). In contrast, zinc 
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finger nucleases and transcription activator like effectors (TALEs) can mediate specific 

modulation of a single location within the host genome allowing precise gene replacement or 

gene corrections with no or low genotoxic side effects (Wood, Lo et al. 2011). As a further 

alternative, homologous recombination dependent on cellular proteins was used for targeted 

integration of therapeutic DNA (Katada and Komiyama 2011). Although off-target integration 

and associated oncogenic potential is significantly reduced, efficiency of these gene 

replacement strategies in vivo have been shown to be low in comparison to non-targeted 

integration machineries. Although maintenance of therapeutic DNA could be provided by 

described strategies, expression of a therapeutic protein generally decreases due to 

transcriptional silencing mediated by DNA-methylation (Brooks, Harkins et al. 2004). 

Therefore bacterial sequences like the origin of replication or selection markers as well as 

CpG islands of the cargo sequence can be depleted, resulting in a significantly improved 

expression profile and reduction of induced intracellular defense mechanisms (Haase, Argyros 

et al. 2010). 

 

 

1.2.3. Vectors for gene therapeutic applications 

Preclinical as well as clinical applications demonstrated, that the vector type used for the 

treatment is the major determinant for the outcome of a gene therapeutic approach. It 

determines the efficacy for somatic transfer of the therapeutic DNA and most of the adverse 

effects such as toxicity and immune response are associated with the vector. Furthermore, 

other aspects like the persistence of the therapeutic effect or genotoxicity are dependent on the 

vector type. Due to their natural ability to invade a cell and transport their genomic cargo into 

the nucleus of a cell, several virus types were utilized as a shuttle for DNA transfer. In 

parallel, non-viral strategies were developed to deliver therapeutic DNA mimicking viral 

entry methods (Gonin and Gaillard 2004; Gardlik, Palffy et al. 2005).  

 

 

1.3. Vector types 

In principle, vector design aims at achieving optimal features concerning all aspects of the 

respective gene therapeutic application. Ideally, the vector should mediate highly efficient 

transduction of cells and intracellular transport into the cell nucleus as well as specificity for 

target cells to avoid adverse effects especially for direct in vivo applications. Furthermore, 
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after delivery of the therapeutic DNA, the therapeutic effect should either persist life-long or 

for a sufficient time period dependent on the demands of the respective disease. In addition, 

the vector should induce neglegible toxicity and immune responses either directed against 

vector components or the therapeutic gene product. In case of viral vectors the latter issue 

includes unwanted expression of viral proteins and virus replication. For transfer into clinical 

studies the final vector preparations should yield high purity and high titers. Moreover, vector 

production should be easy and fast including adoption to the respective application by 

cloning, amplification, purification and titration. Moreover, the vectors should feature high 

stability enabling at least medium-term storage (Crystal 1995).  

Currently, viral vectors commonly used are based on retroviruses, lentiviruses, adeno-

associated viruses or adenoviruses, whereas common non-viral vectors are mainly based on 

polymers complexing therapeutic DNA, artificial liposomes encapsulating the DNA or naked 

DNA administered with specific delivery methods (Gonin and Gaillard 2004; Gardlik, Palffy 

et al. 2005). So far, however, none of these vectors could unify all features required for the 

optimal vector and therefore different vectors are used for a specific application due to 

individual requirements (Table 1.1).  

 

 

1.3.1. Non-viral vector types 

For proof-of-principle experiments in cell culture as well as in small animal models often 

naked DNA-circles are used, because they are easy to produce in high amounts and regularly 

no toxicity or immunogenicity is related with pure DNA. However, yielded effects are 

transient due to degradation of the DNA-circles by endogenous nucleases. Furthermore, the 

transduction efficiency is low due to repulsive electrostatic interactions between DNA 

molecules and the cellular surface and the lack of an import mechanism for the transfer of the 

DNA molecules into the cellular nucleus. In contrast, transduction efficiency of non-viral 

DNA-polymer complexes and artificial liposomes for transport of plasmids are significantly 

higher due to charge-based interactions between positive-charged polymers or lipids with the 

negative-charged cellular surface. However, no nuclear import is enabled inhibiting 

transduction of resting cells and long-term effects are limited by nuclease-mediated 

degradation as seen for naked plasmid DNA. Therefore, applications of these vector types are 

limited to a few approaches including transduction of certain cell types ex vivo and direct 

application into target organs in vivo. Nevertheless, perspectives of these vector types are  
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Table 1.1: Features and application fields of vector types most commonly used in gene therapeutic 

approaches. Modified from (Gonin and Gaillard 2004; Mintzer and Simanek 2009). tu: transducing units; kb: 

kilobases; ssRNA: single-strand RNA; MLV: murine leukaemia virus; HIV-1: human immunodeficiency virus 1; 

ssDNA: single-strand DNA; dsDNA: double-strand DNA; CAR
-
: negative for Cosackievirus and adenovirus 

receptor.  

Vector type Description Advantages Disadvantages Application field

Naked Circular plasmids ; Easy production; Low transduction rates; Prelimina ry experiments  

plasmid-DNA Often mini-circles High capacity (<20 kb); No active nuclear import; in cell culture

or va ria nts of epi- Low toxicity; Tra nsient effects  due to and small anima ls;

somal s ta ble Low immunogenicity; degradation by nucleases; Part of prime-boost 

plasmids (pEpi); In vivo delivery by hydro- vaccination approaches;

dynamic injection;

Lipoplexes DNA (Plasmids) Easy production; Substantia l toxicity; Direct loca l a dministration

enca psulated High capacity (< 20 kb); No active nuclear import; in vivo for transient effects;

by cationic lipids; Low immunogenicity; Tra nsient effects  due to

Modification of lipids or degradation by nucleases;

a ddition of components;

Modera te transduction rates

for certa in cell types;

Polyplexes DNA (Plasmids) Easy production; Substantia l toxicity; Direct loca l a dministration

complexed with High capacity (<20 kb) No active nuclear import; in vivo for transient effects;

cationic polymers Low immunogenicity; Tra nsient effects  due to

like poly-L-lys ine Modification of polymers or degradation by nucleases;

or polyethylen- a ddition of components;

imine (PEI); Modera te transduction rates

for certa in cell types;

Retroviruses Enveloped Modera te ca pacity (9-10 kb); Low titers  (10
5
-10

6
); Transduction of cells  in 

ssRNA-virus; High tra nsduction efficiency Oncogenic potentia l due to ex vivo approaches for 

Mainly ba sed on for a  broad range of host cells ; insertional muta genesis example modification of 

MLV; Integrating a nd therefore (biased towa rds tra nscriptional T cells  or hematological 

s ta ble expression active regions); diseases;

(integra tion); Low capsid sta bility;

No transduction of resting cells ;

Lentiviruses Enveloped Modera te ca pacity (9-10 kb); Modera te titers  (10
6
-10

9 
tu/ml); Transduction of cells  in 

ssRNA-virus; High tra nsduction efficiency Oncogenic potentia l due to ex vivo approaches for 

Mainly ba sed on for a  broad range of host cells ; insertional muta genesis example modification of 

HIV-1; Tra nsduction of resting cells ; (a lmost random); T cells  or hematological 

Low toxicity; Low capsid sta bility; diseases;

Low immunogenicity;

Sta ble expression (integration);

Adeno- Non-enveloped High titers  (10
10

-10
11

 tu/ml); Substantia l immunogenicity Direct systemic or local 

associated  ssDNA-virus Genome persistance in in huma ns;  applica tion to treat

viruses (AAV) Based on various Resting cells  (long-term effect); Low capacity (< 5 kb);  genetic disorders or

serotypes Non-pathogenic in humans; Low transduction efficiency in neurologica l, cardiovascular

(1,2,5,6,8,9); Modified targeting by capsid- cell culture;  and ocular diseases;

modifications;

First- Non-enveloped Modera te ca pacity (7.5-8 kb); High acute toxicity; Vaccina tion (intramuscula r

generation dsDNA-virus High titers  (10
11

-10
12

 tu/ml); High immunogenicity; injection);

adenoviruses deleted for High tra nsduction efficiency Tra nsient effects  in cycling cells ; Transient transduction of

(FG-AdVs) early genes; for a  broad range of host cells ; Clearance of vector genomes; cells  in cell culture;

Mainly ba sed on Tra nsduction of resting cells ; Low transduction of CAR
-
 cells ;

serotype 5; Liver-targeting in vivo; liver-targeting in vivo;

Modified targeting by capsid-

modifications;

High-capacity Non-enveloped High capacity (36 kb); Substantia l immunogenicity; Systemic applica tion in vivo;

adenoviruses dsDNA-virus No acute toxicity; Tra nsient effects  in cycling cells ; Treatment of diverse 

(HC-AdVs deleted for High titers  (10
11

-10
12

 tu/ml); Low transduction of CAR
-
 cells ; cancer types;

or HCAs) all coding High tra nsduction efficiency Liver-targeting in vivo; Vaccina tion (intramuscula r

sequences; for a  broad range of host cells ; injection);

Mainly ba sed on Tra nsduction of resting cells ; Transient transduction of

serotype 5; Liver-targeting in vivo; cells  in cell culture;

Genome persistance in

resting cells
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promising, because features could be improved by additional or modified components for 

example to increase the transduction efficiency, to enable nuclear import or to allow targeting 

of specific cell surface markers. However, new components could affect other vector 

properties such as the vector-associated toxicity (Douglas 2008; Mintzer and Simanek 2009).  

 

 

1.3.2. Viral vector types 

For most gene therapeutic applications viral vector types are used (Thomas, Ehrhardt et al. 

2003). For ex vivo approaches often retroviral vectors mainly based on the murine leukemia 

virus (MLV) were used in the past, with cargo sequences replacing viral coding sequences. 

They are able to transduce a broad range of cell types, especially various stem cells, and 

transduction efficiency is even improved for retroviral vectors, which are pseudo-typed with 

the glycoprotein of the Vesicular Stomatitis Virus (VSV-G) (Yang, Vanin et al. 1995). MLV 

vector genomes usually integrate into the host genome mediating stable and persistent 

expression levels of the transported transgene or siRNA. However, somatic integration can be 

associated with cancer formation due to the integration profile, which is biased towards 

transcription active regions leading to induction of proto-oncogenes (Yi, Hahm et al. 2005). 

Therefore, currently lentiviral vectors based on the human immunodeficiency virus 1 (HIV-1) 

are mainly used for ex vivo approaches. Features of this vector type are similar to vectors 

based on MLV, but 5’ and 3’ of lentiviral vector genomes have significantly lower 

transcriptional activity and therefore vectors have lower oncogenic potential  (Pluta and 

Kacprzak 2009; Dropulic 2011). For direct in vivo applications mainly vectors based on 

adeno-associated viruses are used. Vector preparations with high titers can be generated and 

direct in vivo administration of this vector type results in high transduction rates not 

accompanied by vector-associated toxicity. Furthermore, AAV genomes persist episomally in 

non-diving cells resulting in relatively stable long-term effects and AAV capsid-modifications 

enable more specific targeting of defined organs or cell types in vivo. However, clinical 

studies revealed an immunological response after systemic administration of AAVs in 

humans resulting in a strong decrease of the therapeutic effect. Another limiting factor is the 

low capacity for cargo sequences (<5kb) within the AAV vector genomes and additionally, 

evaluation of vectors in cell culture is hampered by low transduction efficiencies in ex vivo 

(Warrington and Herzog 2006; Daya and Berns 2008). As an alternative for in vivo 

applications, first-generation adenoviral vectors deleted for up to three early viral genes were 
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used providing higher capacity for transgenic sequences (7.5-8 kb) and mediating highly 

efficient transduction of a broad range of cell types. However, due to acute toxicity after 

systemic administration and potent vector-related immunogenicity adenoviral vectors were 

mainly used for vaccination purposes or for treatment of diverse cancer types by conditional 

replicating oncolytic adenoviruses (Nasz and Adam 2001; Douglas 2002). In sharp contrast, 

evaluation of the newest generation of adenoviral vectors called high-capacity adenoviral 

vectors revealed almost undetectable vector-associated toxicity and strongly reduced 

immunogenicity due to deletion of all viral coding sequences. Furthermore, these vectors 

allow transport of sequences up to 36 kb and vector genomes are stable in resting cells. These 

features provide new options for vaccination studies as well as direct in vivo applications 

(Palmer and Ng 2005; Segura, Alba et al. 2008). Considering the high potential of high-

capacity adenoviral vectors further optimization is a desirable goal.  

 

  

1.4. Features of adenoviruses 

Human adenoviruses (hAds) belong to the genus of mastadenoviridae of the family of 

adenoviridae. Based on neutralization assays 56 serotypes have been identified up to now 

(Robinson, Singh et al. 2011), which are divided in six subgroups (A-F) based on the GC 

content of the viral genome and the ability of the adenovirus to agglutinate erythrocytes 

(Norrby, van der Veen et al. 1970). In general, human adenoviruses cause mild infections of 

the upper respiratory tract (Hilleman and Werner 1954), the gastrointestinal tract (Flewett, 

Bryden et al. 1973) or the eyes (Jawetz 1959), but for immune-compromised patients 

especially after organ transplantations, infections could cause severe complications  

(Kojaoghlanian, Flomenberg et al. 2003; Echavarria 2008). 

 

 

1.4.1. Structure of the adenoviral particle 

Adenoviruses are non-enveloped particles with a diameter of about 70-100 nanometers 

(Stewart, Burnett et al. 1991). The main structure features are shared by all serotypes, 

although they could differ slightly in details (Chiu, Mathias et al. 1999). For structural 

analysis serotypes 2 and 5 of adenovirus subgroup C were used (Fig. 1.3a), which were 

historically characterized in great detail and which were used for generation of most 

recombinant adenoviral vectors (Schmid and Hearing 1998).  
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Figure 1.3: Structure of the adenovirus particle. (a) Structure of the human adenovirus serotype 5 particle 

reconstructed based on data derived of electron microscopy measurements and x-ray christallography 

measurements (Saban, Silvestry et al. 2006). (b) Schematic composition of an adenovirus particle. The virus 

capsid consists of major capsid proteins hexon, penton and fiber as well as minor proteins IIIa, VIII and IX. The 

protein VI connects the capsid with the core consisting of the dsDNA genome associated with the proteins µ, V, 

VII, IVa and the terminal proteins (TPs). In addition, a mature particle contains several viral protease molecules. 

 

In general, the viral particle consists of an icosaedric capsid and the inner matrix including the 

viral genome (Fig. 1.3b) (Stewart, Burnett et al. 1991). The capsid shell is composed of three 

major capsid proteins called hexon, penton and fiber and three minor proteins pIX, pIIIa and 

pVIII (Stewart, Fuller et al. 1993; Chiu, Mathias et al. 1999; Liu, Jin et al. 2010; Reddy, 

Natchiar et al. 2010). In detail, 240 hexon timers build the scaffold of the icosaedric capsid 

structure, which are fixed by 12 penton pentameres located at the vertices (Burnett, Grutter et 

al. 1985; Stewart, Fuller et al. 1993). Hexon trimeres are organized in 20 groups of nine 

(GONs), which are stabilized by several hexon-hexon interactions and form the facets of the 

icosaeder, and five peripentonal hexon trimers per vertex tightening the interaction between 

penton pentameres and GONs by additional hexon-hexon and hexon-penton interactions 

(Fabry, Rosa-Calatrava et al. 2005). Fiber proteins are organized in 12 trimeres, each of them 

interacting with a penton pentamer, respectively (Svensson, Persson et al. 1981). A protein 

network consistent of 240 copies of pIX proteins stabilizes the facets on the outer surface of 

the capsid (Fabry, Rosa-Calatrava et al. 2009) whereas the network built by 60 IIIa proteins 

and 120 VIII proteins steel the capsid at the inner surface (San Martin, Glasgow et al. 2008; 

Liu, Jin et al. 2010). The pVI protein is bound to the cavity of hexon trimers at the inner 

surface, mediating the connection of the capsid with the adenovirus core. The core of an 

adenoviral particle contains the linear, double-strand DNA genome and each end of the 

genome is covalently linked to a terminal protein (TP) (Rekosh 1981; Smart and Stillman 

1982). Highly basic core proteins pVII and Mu are directly associated with the adenoviral 

genome mediating condensation of DNA similar to histones into a nucleosome-like structure 

(Mirza and Weber 1982; Chatterjee, Vayda et al. 1985). pV proteins are suggested to form a 



1. Introduction 

  23 
 

core shell interacting with core protein pVII (Newcomb, Boring et al. 1984) and the capsid 

proteins pVI, penton and pIIIa (Matthews and Russell 1998; Liu, Jin et al. 2010). Therefore, 

pV proteins anchor the genomic DNA in the capsid. In addition, in every intact virus capsid 

about 10 copies of the viral cysteine protease are present, which are essential for maturation 

of the virus capsid and the cell entry during infection (Webster, Russell et al. 1989). 

 

 

1.4.2. The adenoviral genome organization 

The adenoviral genome is a linear DNA double-strand and about 36 kb in size with variations 

depending on the adenovirus serotype (Chroboczek, Bieber et al. 1992). In general the 

adenovirus genome is organized in four early transcribed genome regions (E1-E4) and five 

late transcribed genome regions (L1-L5) as depicted in Fig. 1.4. Early genes encode for 

several proteins, which enable efficient expression of viral proteins and viral genome 

replication as well as interaction with the host immune system (Nevins 1987). Proteins 

encoded by late transcribed regions are mainly structural proteins and proteins essential for 

efficient capsid assembly and release from the cell (Russell 2009). The genome is secluded by 

homologous sequences of about 100-150 bp called inverted terminal repeats (ITRs) (Hay, 

Stow et al. 1984). ITR sequences form so called panhandle structures, which are recognized 

by the terminal proteins (TPs) facilitating initialization of genome replication and protection 

against degradation by cellular exonucleases. Within the first 300 bp downstream of the 

5’ITR the packaging signal ψ is located consisting of 7 repeats (Grable and Hearing 1990) 

with the consensus sequence motif 5’-TTTGN8CG-3’(Hearing, Samulski et al. 1987; Schmid 

and Hearing 1998).  This sequence is essential for incorporation of the viral genome into an 

empty capsid during virus assembly in the cell nucleus (Hearing, Samulski et al. 1987). 

Additionally, 1-2 viral miRNAs are encoded within the genome (Mathews and Shenk 1991). 

These are transcribed by the cellular RNA polymerase III and were shown to be essential for 

efficient virus replication.  
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Figure 1.4: Genomic organization of the human adenovirus serotype 5.  The adenoviral genome depicted in 

blue is secluded by inverted terminal repeats (ITRs) and contains the packaging signal ψ at the 5’ end.. Regions 

E1-E4 encoding early genes and spliced transcripts E2A encoding the DNA-binding protein (DBP), E2B 

containing genes for terminal proteins (TP) and the adenoviral polymerase (Pol) and the transcript for IVa are 

shown as white arrows. The late regions L1-L5 encoding the late proteins and the complete late transcript 

generated under control of the major late promoter (MLP) are shown as blue arrows. Adenoviral non-coding 

RNAs VAI and VAII are depicted as gray arrows. 

 

 

1.4.3. The adenoviral replication cycle 

The replication cycle of human adenovirus serotype 5 (hAd5) can be divided in the phases of 

cell entry (Fig. 1.5), virus replication and formation of viral particles with subsequent release 

from the cell.  

Primary interaction during cell entry, called attachment, is mediated by the knob domain of 

the adenoviral fiber proteins. These domains are recognized by the Coxsackie- and 

Adenovirus Receptor (CAR) (Bergelson, Cunningham et al. 1997), which is mainly located in 

tight junctions of epithelial cells. This initial interaction is postulated to be a universal 

mechanism for all adenoviruses but targeted cellular receptors differ upon serotype-specific 

sequence and structure of the adenovirus fiber knobs, although most serotypes target the CAR 

receptor (Bergelson, Cunningham et al. 1997). For example a recent study demonstrated that 

human adenovirus serotypes 3, 7, 11 and 14 belonging to subgroup B attach to the cellular 

receptor desmoglein-2 (DSG-2) expressed at intercellular junctions of polarized cells but also 

present on nonpolarized erythrocytes or granulocytes (Wang, Li et al. 2010). In contrast, 

earlier studies report interaction between cell surface marker CD46 and fiber proteins of other 

human adenoviruses of subgroup B (serotypes 16, 21, 35 and 50) (Tuve, Wang et al. 2006; 

Nilsson, Storm et al. 2011). Furthermore, human adenovirus serotype 37, which causes 

epidemic kerato-conjunctivitis, was shown to interact with GD1 gangliosides demonstrating 

that other cell surface structures than extracellular protein domains could be utilized by an 

adenovirus for cell entry (Nilsson, Storm et al. 2011).  
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Figure 1.5: CAR-mediated cell entry of human adenovirus serotype 5. During cell entry fibers of the 

adenoviral particle attach to the cosackie- and adenovirus receptor (CAR) and clathrin-mediated endocytosis is 

initiated via interaction of adenoviral penton proteins with cellular integrins. Acidification in the endosome 

triggers partial shedding of the capsid mediating endosomal escape. Subsequently, the capsid binds to dynein 

proteins and is transported along microtubuli to a nuclear pore complex. There, nuclear pore filament proteins 

Can/Nup214 enable docking to the nuclear pore complex. Finally, the virus genome is released into the nucleus 

during disassemble of the virus capsid. 

 

After attachment of the virus capsid to the cell surface cellular integrins αvβ3 and αvβ5 interact 

with penton proteins via a RGD-motif displayed in a loop located at the particle surface 

initializing internalization of the viral particle by clathrin-mediated endocytosis (Patterson and 

Russell 1983; Bai, Harfe et al. 1993; Wickham, Mathias et al. 1993; Mathias, Wickham et al. 

1994). Acidification of the endosomal compartment (pH > 6.0) activates the viral protease, 

which triggers the removal of the vertices of the virus particle. In addition adenoviral pVI 

proteins are processed by protease cleavage enabling escape of viral particles from the 

endosome (Greber, Webster et al. 1996; Wiethoff, Wodrich et al. 2005). Due to partially 

disruption, released viral particles are able to interact with the cellular microtubule network, 

facilitating the transport from the periphery to the nuclear membrane (Suomalainen, Nakano 

et al. 1999; Wodrich, Henaff et al. 2010). There, particles dock to the nuclear pore complex 

via interaction of hexon proteins with nuclear pore filament CAN/Nup214 (Trotman, 

Mosberger et al. 2001; Strunze, Engelke et al. 2011). Subsequently viral particles disassemble 

releasing the adenoviral genomes associated with proteins pV, pVII and mu into the cell 

nucleus 1-2 h after initial attachment (Matthews and Russell 1998). 
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After entering the nucleus, the viral genome attaches to the nuclear matrix via the terminal 

proteins (Fredman and Engler 1993) and it is stabilized by cellular histones. Subsequently, the 

adenovirus replication takes place by expression of viral proteins in a temporally coordinated 

manner. Initially, proteins encoded by the E1 region are transcribed and expressed (Akusjarvi 

1993). These proteins modulate the cellular transcription pattern, promote entering into the S 

phase and prevent induction of apoptosis. Furthermore, E1A induces transcription of all other 

early regions E2-E4 (Akusjarvi 1993; Flint and Shenk 1997). Respective proteins interfere 

with pathways for induction of apoptosis and further modulate the transcription profile for 

optimized virus amplification, prevent from induction of the innate immune response, and 

enable escape from the cellular immune response. Furthermore, expressed factors facilitate 

efficient RNA transport as well as correct splicing of the mRNAs (Wold, Doronin et al. 

1999). Proteins responsible for the synthesis of viral genomes are mainly encoded by E2 and 

it was shown that upon replication of the viral genome the major late promoter is activated 

mediating the transcription of late protein (Ramachandra and Padmanabhan 1995). In detail, a 

single mRNA of about 30 kb is transcribed containing all late regions L1-L5, which is 

processed by alternative polyadenylation and splicing into 18 separated mRNAs (Shaw and 

Ziff 1980). These mRNAs encode for capsid proteins as well as for proteins essential for 

correct folding, nuclear transport, protein processing and capsid assembly.  

Capsid assembly is assumed to take place in several stages. First, hexon trimeres form groups 

of nine (GONs), which subsequently assemble with hexon trimeres and penton pentameres as 

well as minor capsid proteins forming an intermediate virus capsid. During maturation the 

double-strand DNA genome connected to viral core proteins is imported together with viral 

cysteine-protease, which is essential for final processing steps in capsid formation (Schmid 

and Hearing 1995; Weber 1995). Newly generated viruses are released by cell death called 

cytopathic effect, which is caused by accumulation of adenovirus death protein as well as 

other adenoviral proteins (Tollefson, Scaria et al. 1992).  

 

 

1.4.4. Fate of adenoviral particles after intravenous injection 

Adenoviral vectors based on human adenovirus serotype 5 used for gene therapy are often 

applied intravenously when tested in vivo. After entering the blood stream the adenoviral 

capsids initially bind to coagulation factor X (FX) (Kalyuzhniy, Di Paolo et al. 2008; 

Waddington, McVey et al. 2008) or to other vitamin K-dependent serine proteases 
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(coagulation factor IX and VII) as well as protein C (Fig. 1.6a) (Parker, Waddington et al. 

2006). In detail, this interaction occurs between amino acids located within the hypervariable 

regions of hexon monomers located in a cavity built by hexon trimerization and the γ-

carboxylated glutamic acid (Gla) domain of factor X (Fig. 1.6b, c) (Waddington, McVey et al. 

2008; Alba, Bradshaw et al. 2009). Heparin binding exosites of virus-associated factor X 

molecules bind to N- or O-sulfated heparan sulfate proteoglycans (HSPGs) presented on cell 

surfaces, therefore bridging the viral particle to these cells (Bradshaw, Parker et al. 2010). 

Due to the fact, that a major portion of the blood passes the liver tissue and liver cells as well 

as liver-associated macrophages called Kupffer cells present a high number of heparin sulfate 

proteoglycans on their surface, intravenously applied adenoviral vectors mainly transduce the 

liver tissue. Nevertheless, recent studies demonstrated, that primary attachment receptor CAR 

as well as the alternative receptor complement receptor CR1 is present on human erythrocytes 

(Fig. 1.6a). Therefore, it was suggested, that efficiency of adenovirus-mediated gene transfer 

via intravenous injection is reduced. Furthermore, adenovirus particles interacting with 

erythrocytes might be recognized or taken up by immune cells activating or triggering the 

anti-adenoviral immune response. Unfortunately, murine erythrocytes were shown to be 

negative for both receptors. Thus, translation of vectors evaluated in mouse experiments to 

large animals models or humans is challenging (Carlisle, Di et al. 2009). 

 

 

 

Figure 1.6: Interaction of human adenovirus 5 particles (hAd5) after intravenous injection. (a) hAd5 

particles interact with erythrocytes via binding of viral fiber proteins to cosackievirus and adenovirus receptor 

(CAR) or complement receptor 1 (CR1). Furthermore, coagulation factor X (FX) and other proteins vitamin K 

dependent serine proteases as well as protein C bind to surface domains of hexon protein. This mediates 

interaction with heparan sulfate proteoglycans (HSPGs) presented on the surface of hepatocytes and other cells 

such as Kupffer cells. (b) Structural details of FX-binding to surface domains of hexon timers were analyzed by 

cryoelectron microscopy (modified from Waddington et. al, 2008). (c) Hexon trimers can be devided into the 

base, which is orientated to the virus core and highly conserved, and the surface domains harboring 7 

hypervariable region (depicted in colours), which are essential for FX-binding. 
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Figure 1.7: Organization of recombinant adenoviral vector genomes. At the top the genome of the human 

adenovirus 5 is depicted in blue secluded by inverted terminal repeats (ITRs) and with the packaging signal ψ at 

the 5’ end. First-generation adenoviral vectors are depleted for the early region 1 (E1) and fakultatively early 

region 3 (E3) is also deleted. For second-generation adenoviral vectors additionally early region E2 or E4 is 

deleted. High-capacity adenoviral vectors are composed of stuffer DNA (28-36 kb) flanked by 5’- and 3’-ends of 

the wild-type adenoviral genome.  

 

 

1.5. Adenoviral vectors 

Historically, most adenoviral vectors are based on adenovirus serotype 5, although vector 

systems based on several other serotypes were established in the past. In principle, deletion of 

certain regions in the adenoviral genome guaranties complete inhibition of viral replication in 

native cells and provides the space for incorporation of the therapeutic DNA. Amplification of 

adenoviral vectors containing modified genomes is feasible by providing missing adenoviral 

components in trans (Benihoud, Yeh et al. 1999; Zhang 1999). 

 

 

1.5.1. First-generation adenoviral vectors (FG-AdVs) 

FG-AdVs are based on the deletion of the early region 1 (E1), which encodes factors essential 

for initiation of adenovirus replication (Fig. 1.7) (Akusjarvi 1993). Therefore cells could be 

infected efficiently resulting in efficient transport of the vector genome but initiation of virus 

replication is inhibited. Depletion of the E1 region enables incorporation of a cargo sequence 

of up to 4.5 kb (McGrory, Bautista et al. 1988). For amplification of these vectors, cell lines 

were generated providing E1 proteins or homologs in trans. The most commonly used cell 

line is the human embryonic kidney HEK293 cell line containing a fragment of the wild-type 

human adenovirus 5 genome including the E1 region (Benihoud, Yeh et al. 1999; Zhang 

1999). However, during amplification spontanous homologous recombination could occur 

between a FG-AdV genome and the cell-encoded genome fragment resulting in replication 

competent adenoviruses (RCAs) (Hehir, Armentano et al. 1996). To avoid this effect the cell 

line PERC.6 was generated, which is based on human embryonic retinoblasts. These cells 
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contain an expression cassette for the adenovirus E1 region under control of the ubiquitous 

phosphoglycokinase (PGK) promoter sharing no homologies with the adenoviral vector 

genomes (Fallaux, Bout et al. 1998). FG-AdVs were further development by partial or 

complete deletion of the E3 region allowing incorporation of larger cargo sequences (up to 8 

kb) and offering the option for incorporation of two separated sequences in the E1 and the E3 

region, which are transcribed independent from each other (Bett, Haddara et al. 1994). 

Proteins encoded by the E3 region mainly inhibit immunological pathways (Wold, Tollefson 

et al. 1995). Therefore the effect of the E3 deletion on virus replication is low during 

amplification in cell culture (Wold, Doronin et al. 1999). Although viral transcription 

activation of other early proteins and late proteins encoded by the vector genome is not 

activated due to the lack of E1 encoded proteins, viral proteins are expressed at low levels due 

to partial complementation by cellular factors (Yang, Nunes et al. 1994). Some of the 

expressed viral proteins were shown to be toxic and furthermore, expressed viral proteins are 

processed and presented as antigen. Therefore transduction with adenoviral vectors cause cell 

death in a dose-dependent manner and in vivo applications of FG-AdVs cause a strong and 

robust cytotoxic T-cell response (Yang, Nunes et al. 1994). 

 

 

1.5.2. Second-generation adenoviral vectors 

FG-AdVs were further developed by deletion of E2 or E4 region (Fig. 1.7) (Engelhardt, 

Litzky et al. 1994; Lusky, Christ et al. 1998; Schaack 2005). Proteins encoded by these 

regions are essential for replication in cell culture. Therefore, they are provided in trans by 

respective producer cell lines based on HEK293 cells. These adenoviral vectors are classified 

as second generation adenoviral vectors, which provide additional space for larger cargo 

sequences (10.5 kb) and up to four independent expression cassettes. Moreover, deletions of 

additional early gene regions prevent generation of replication-competent adenoviruses during 

amplification. Nevertheless, trans-complementation during amplification of these vectors 

could be less efficient due to the fact that some E2- and E4-encoded proteins are toxic. 

Despite utilization of inducible expression systems the vector replication rate might be 

decreased during amplification reducing significantly vector yields as well as vector titers 

(Krougliak and Graham 1995; Lusky, Christ et al. 1998). Additionally, reduction in transgene 

expression indicated leaky expression of viral proteins. Therefore, vector-related toxicity and 

immunogenicity are still major obstacles for usage of these vectors (Fang, Wang et al. 1996). 
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1.5.3. High-capacity adenoviral vectors (HCAs) 

As a logical consequence third generation adenoviral vectors called high-capacity adenoviral 

vectors (HCAs) were created containing an artificial vector genome deleted of all viral 

sequences except for the ITRs and the packaging signal (Fig. 1.7) (Parks, Chen et al. 1996). In 

contrast to first- and second-generation adenoviral vectors, viral proteins are not provided in 

trans by producer cells but instead a adenoviral helper-virus (HV) is used for vector 

amplification. For this reason high-capacity adenoviral vectors were also called helper-

dependent, gutless or gutted adenoviral vectors in the literature (Fisher, Choi et al. 1996; 

Hardy, Kitamura et al. 1997; Hartigan-O'Connor, Amalfitano et al. 1999). The helper-virus is 

a first-generation adenoviral vector with a packaging signal flanked by loxP-sites. For 

production modified HEK293 cells are used, which constitutively express high levels of Cre 

recombinase. During amplification the producer cell is transduced with a HV and the HCA 

genome (Fig. 1.8). Transcription of the HV genome provides viral proteins and enables 

assembly of viral capsids, but packaging of the HV genome is prevented due to excision of 

the packaging signal by Cre-mediated recombination of the loxP-sites. Therefore, only HCA 

vector genomes are packaged. Alternative production systems are based on other 

recombinases like the Flp recombinase from Saccharomyces cerevisiae (Ng, Beauchamp et al. 

2001) or the bacteriophage-derived phiC31 integrase (Alba, Hearing et al. 2007). 

 

 

Figure 1.8: Schematic overview for production of high-capacity adenoviral vectors. For production of high-

capacity adenoviral vectors 116 producer cells expressing the Cre recombinase (Cre) are co-transduced with a 

helper-virus and the high-capacity adenoviral (HCA) vector genome. Transcription of the helper-virus genomes 

allows production of virus proteins, but packaging the helper-virus genome is inhibited due to Cre-mediated 

excision of the packaging signal ψ, which is flanked by loxP-sites. Therefore, only HCA genomes are packaged 

resulting in the formation of high-capacity adenoviral vectors. 
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HCAs enable transport of cargo sequences of up to 36 kb and for this reason large transgenes 

or multiple expression cassette as well as endogenous regulatory sequences or complex 

expression system such as inducible systems can be used (Kochanek, Clemens et al. 1996; 

Kawano, Ishizaki et al. 2008; Puntel, Muhammad et al. 2010). Importantly, deletion of all 

viral coding sequences results in decrease of vector-associated acute toxicity, which was only 

detected for high doses of HCAs (Morral, Parks et al. 1998). Moreover, the adaptive immune 

response is significantly reduced such as formation of anti-adenoviral neutralizing antibodies 

interfering with efficient transduction (Chen, Mack et al. 1997; Muruve, Cotter et al. 2004). In 

addition, separation of capsid-encoding sequences and packaged sequences containing the 

therapeutic DNA increases the flexibility of the system, although generation of HCAs is also 

more complex. Nevertheless, HCA production remains a sophisticated method and Cre-

mediated excision of the helper-virus packaging signal is not complete resulting in 

contaminations of high-capacity adenoviral vector preparations with 0.1-1% HV (Palmer and 

Ng 2003). Furthermore, generation of replication competent adenovirus due to homologous 

recombination of HV genomes with E1 region encoded by the producer cells can not be 

excluded (Hehir, Armentano et al. 1996). 

 

 

1.5.4. Vector preparation 

In general, preparations of all generations of adenoviral vectors are similar except for the 

construction of the vector genome used for vector production. For initial generation of the 

first and second generation adenoviral vectors, human embryonic kidney 293 cells are 

transfected with the respective linearized vector genome. After cytopathic effect was observed 

due to formation of adenoviral vector particles, cells are harvested. Viral particles are released 

by consecutive freezing and thawing steps and virus lysate is used for the next amplification 

round. This procedure is repeated with increasing numbers of cells and final amplification is 

performed utilizing approximately 4 x 10
8
 HEK293 cells (Luo, Deng et al. 2007). HCAs are 

produced using a similar methodology, but instead utilizing the Cre-expressing HEK293-

based cell line 116 and co-infection with HVs. Newest protocols for large-scale amplification 

of HCAs use 116 cells growing in suspension utilizing bioreactors (Palmer and Ng 2003).  

For adenoviral vector purification cell lysates are harvested, vector particles released from the 

cells and separated from cellular debris as well as from unpackaged adenoviral particles by 

ultracentrifugation utilizing a CsCl step gradient and successively a CsCl continuous gradient 
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(Kanegae, Makimura et al. 1994). Isolated particles are stored in physiological buffer by 

dialysis and finally the physical titer of the vector preparation is determined by optical density 

measurement for the vector DNA. For detection of the infectious titer DNA is isolated from 

HEK293 cells 2h post infection and vector genome copies are determined by real-time PCR 

(Ma, Bluyssen et al. 2001).   

For incorporation of a cargo sequence into the vector genome or for modification of a capsid 

protein three cloning methods are currently used (Fig. 1.9). These are based on homologous 

recombination in HEK293 cells (McGrory, Bautista et al. 1988) or E.coli strain BJ5183 

(Chartier, Degryse et al. 1996) or based on rare restriction enzymes and in vitro ligation of 

fragments (Mizuguchi and Kay 1998). Homologous recombination in HEK293 cell is mainly 

used for incorporation of a transgene into the E1-region of a first generation adenoviral vector 

genome. Therefore, cells are transfected with a genome fragment lacking the 5’end and a 

plasmid containing the 5’ITR, the packaging signal, the transgene expression cassette and 

more than 1000 bp sequence homologous to the 5’ end of the genome fragment (Berkner and 

Sharp 1983). Homologous recombination is mediated by cellular proteins resulting in 

formation of the final vector genome. This method was also used for modification of the fiber 

gene located at the 3’end of the FG-AdV genome containing a reporter gene in the E1 region. 

For several cloning methods commercial kit are available.  

In contrast, cloning with rare restriction enzymes is based on generation of the final vector 

genome prior to transfection into HEK293 cells. In detail, a plasmid is generated containing 

the transgene or the modified genome region flanked by recognition site for a rare restriction 

enzyme. Furthermore, the vector genome encoded by a plasmid is modified by flanking the 

region, which should be replaced, with identical restriction enzyme recognition sites. For 

generation of the final vector genome fragments of these two plasmids generated by 

respective restriction digests are ligated and subsequently transformed in E.coli for 

amplification. Due to the binding sites of the restriction enzymes, this method is not traceless, 

which is essential for precise modifications of capsid proteins. For these modulations 

homologous recombination in E.coli strain BJ5183 is the method of choice. Similar to the 

ligation based method intermediate clones have to be constructed, containing the modification 

flanked by at least 200 bp of homologous sequences at each side. Furthermore, a plasmid 

encoding the adenoviral vector genome with a binding site for a rare restriction enzyme in the 

region of interest has to be generated. For construction the linearized genome and the 

modified sequence are recombined in recombinase-expressing BJ5183 E.coli bacteria.  
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Figure 1.9: Current cloning strategies for manipulation of adenoviral genomes. For generation of modified 

adenoviral genomes using the classical cloning strategy based on rare restriction enzymes (left) a plasmid 

containing the modified sequence flanked by restriction enzyme binding sites (RS1 and RS2) is generated by 

several cloning steps. In addition, a plasmid is created containing the adenoviral genome with identical 

restrictions enzyme binding sites in the target region, which should be modified. Both plasmids are cutted with 

the respective restriction endonucleases and fragments are ligated resulting in a plasmid containing the modified 

adenoviral genome. For cloning based on homologous recombination (right) a plasmid containing the 

modification flanked by homologous regions and a plasmid with a restriction enzyme binding site (RS2) within 

the target region have to be created. For generation of the plasmid containing the modified adenovirus genome, 

the modified genome region is amplified by PCR (black arrows) or excised by a restriction endonuclease (RS1). 

In parallel, the plasmid with the adenovirus is cutted with RS2. Subsequently sequences are combined by 

homologous recombination of HR1- and HR2-regions in human embryonic kidney 293 cells (HEK293) or 

bacteria of the Escherichia coli (E.coli) strain BJ5183.  

 

 

In summary the last two methods enable targeting of any genome region, but intermediate 

clones have to be constructed newly for every region. In addition, generation of intermediate 

vector genomes with binding sites for rare restriction enzymes is highly challenging (Youil, 

Toner et al. 2002). It is of note, that most modulations were tested with FG-AdVs. However, 

for adoption to second or third generation adenoviral vectors, cloning steps had to be repeated 

and construction might be hampered by differences in the vector genome with respect to 

binding sites of restriction enzymes (Khare, May et al. 2011). Therefore, established capsid-

modifications are rare for these vectors, whereas for incorporation of cargo sequences into 

second generation adenoviral vectors or high-capacity adenoviral vector genomes cloning 

strategies are established, which are often based on rare restriction enzymes (Ehrhardt and 

Kay 2002; Shi, Graham et al. 2006). These could be adopted easily for new approaches, 

although alteration of the respective genome is restricted to a single site and often limited in 

size. 
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1.5.5. Optimization of adenoviral vectors by capsid modifications and hybrid vector systems 

To optimize adenoviral vector properties virus capsid can be modified for retargeting of the 

vector or to escape from the immune response (Smith, Mehaffey et al. 1993; Yei, Mittereder 

et al. 1994). For example adenoviral vectors could be modified chemically by components 

bound to capsid components (Kreppel and Kochanek 2008; Wortmann, Vohringer et al. 

2008). This enables shielding from recognition by components of the immune system as well 

as partial or complete detargeting from the liver tissue. However, often transduction 

efficiency of these vectors is severely affected. Another option to modulate vector features is 

to use other human or non-human adenoviruses for gene transfer. In general, these serotypes 

have a lower seroprevalences and enable more efficient transduction of certain cell types for 

defined applications. However, respective vectors are rarely used and little is known about the 

fate of these serotypes after application in cell culture and in vivo and moreover, construction 

of respective vector genomes is challenging (Seshidhar Reddy, Ganesh et al. 2003; Keriel, 

Rene et al. 2006). For these reasons studies are mainly concentrating on capsid manipulations 

precisely altering specific capsid proteins or protein domains of a vector based on hAd5, 

which has been extensively investigated in the past. In detail, for detargeting of an adenoviral 

vector from the liver, interaction of hexon proteins with coagulation factor X can be prevented 

by alteration of the hypervariable regions of the hexons. Therefore, either point mutations can 

be introduced or hypervariable regions can be precisely exchanged with respective sequences 

of other adenovirus serotypes (Roberts, Nanda et al. 2006; Waddington, McVey et al. 2008; 

Alba, Bradshaw et al. 2009). Moreover, modulations of the fiber by exchanging of the knob 

domain with other adenovirus serotypes or by introduction of peptide ligands can significantly 

increase transduction efficiency for various cell types (Henning, Andersson et al. 2005; Wang, 

Shayakhmetov et al. 2005; Terashima, Oka et al. 2009). In addition, fiber modifications can 

lead to retargeting in vivo from the liver to other organs or tissues, but efficiencies of these 

approaches are usually low. Similar effects were shown for several capsid-modified vectors 

based on pIX fusion proteins or with altered RGD loops of the penton protein (Wickham, 

Carrion et al. 1995; Poulin, Lanthier et al. 2010). For the escape from neutralizing anti-

adenovirus antibodies, modulations of the hypervariable regions of the hexon proteins have 

shown high efficacy (Sumida, Truitt et al. 2005; Pichla-Gollon, Drinker et al. 2007), whereas 

fiber modifications have rather small effects and pIX or penton modifications have no 

significant influence on the humoral immune response.  
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Another set of options for improvements is provided by the high capacity of the HCA 

genome. This allows transport of additional foreign DNA, which could improve vector 

features or add new vector properties. For example expression of a toxic transgene product 

could be realized by combination with an inducible expression system, for instance the Tet-

systems for doxycycline-based induction (Puntel, Muhammad et al. 2010). Furthermore, 

combinations with systems for somatic integration such as the Sleeping Beauty transposase 

enable incorporation of a transgene expression cassette into the cellular genome resulting in 

long-term expression in dividing cells (Yant, Ehrhardt et al. 2002). Additionally, genes with 

supporting effects for virus replication could be incorporated into the vector genome. For 

instance it was shown, that the miRNA suppressor protein p19 significantly improves vector 

production due to increase of viral protein expression (Rauschhuber, C. T., Muck-Hausl, 

M.H. et al., manuscript in preparation). 

Most of these vector modifications either affecting capsid structure or gene expression were 

evaluated individually and in context of first generation adenovirus vector. This is mostly due 

to challenges regarding cloning procedures of respective genomes. In principle, capsid 

modifications affecting different capsid proteins and systems modulating transgene expression 

profiles could be combined in a single vector unifying new vector features. Nevertheless, the 

latter approaches are strongly hampered by limitations of currently available cloning methods. 

Therefore the number of available vectors containing multiple modifications is very low. 

 

 

1.6. Aim of this study 

High-capacity adenoviral vectors provide high capacity for cargo sequences, high stability 

and high titer yields, low cell toxicity after administration as well as no relation to cancer or 

other severe malignancies in humans. Therefore, they are attractive tools for gene and cell 

therapy as well as for vaccination purposes and basic research. Nevertheless, usage of HCAs 

is restricted due to labor-intensive production procedures, limited persistence of episomal 

genomes in replicating cells, low transduction efficiency of certain cell types, strong liver-

tropism after intravenous application and induction of a robust adaptive immune response 

after first in vivo administration. Although previous preclinical and clinical studies based on 

cellular transduction with first-generation adenoviral vectors and HCAs showed some 

success, major limitations for this type of vector need to be overcome. In this study a system 

should be established allowing transfer of information obtained from first-generation 
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adenoviral vectors to high-capacity adenoviral vectors as well as optimization of HCA 

features should be achieved. This should significantly improve HCA vector performance in 

current applications and it should pave a new path towards new application fields for this type 

of vector.  

To realize this aim, I worked on following projects:  

 

1. A standardized protocol for large-scale production of high-capacity adenoviral vectors 

should be established containing a trouble-shooting guide. This represents a prerequisite 

to establish this method in other laboratories. Furthermore, an established protocol is 

necessary for adoption of modifications to components required for generation of HCAs 

as exemplified by capsid-modified helper-viruses in this thesis. 

 

2. The established hybrid vector system combining high-capacity adenoviral vectors for 

efficient delivery and the Sleeping Beauty transposase for sustained transgene expression 

should be improved by utilization of hyperactive sleeping beauty variant HSB5. The 

improved system has to be tested in mice for functionality and it should be evaluated for 

therapeutic efficiency in the context of a large animal model for a monogenetic disease.  

 

3. Fast and smooth modulations of adenoviral vector genomes should be enabled utilizing an 

alternative cloning technology based on bacterial artificial chromosomes and manipulation 

by homologous recombination. This technique should be evaluated for capsid-

modifications of helper-viruses. Furthermore, an advanced cloning technique for 

generation of complex high-capacity adenoviral vector genomes should be established.  

  

4. Modification of surface domains of major capsid protein hexon should be generated by 

serotype switch and evaluated with respect to early capsid assembly steps. Promising 

candidates should be incorporated into the helper-virus genome and the respective virus 

reconstituted. Generated hexon-modified helper-viruses should be evaluated in cell culture 

and also biodistribution after intravenous administration in mice should be determined. 
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3.8 Supplements 

 

3.8.1 Supplementary Figures 

 

Supplementary Figure 3.1: Expression levels from episomal HC)AdVs. C57Bl/6 mice were co�injected with 

HC�AdV�TcFIX and HC�AdV�luciferase (n=10) at a ratio of 3: 1 (transposon TcFIX vector: luciferase vector) 

with a total number of 8x10
8
 transducing units. Three weeks after vector administration (on day 21 virus post�

injection) one group (n=5) was injected with carbon tetrachloride (+CCl4) to induce hepatocyte proliferation. (a) 

Stability of transgene expression was monitored by performing an ELISA two and three weeks post CCl4 

treatment (days 36 and 42). (b) The control group (n=5) was not treated with CCl4 (�CCl4). 

 

 

Supplementary Figure 3.2: PCR setups for specific detection of total cFIX and episomal HC)AdVs. 
Primers are presented as horizontal arrows. (i) For detection of all DNA sequences encoding the cFIX expression 

cassette, primer binding sites in the liver�specific hAAT�promotor and the cFIX encoding sequence were chosen. 

Therefore, interferences with the genomic cFIX encoding sequence were avoid and only transposon encoded 

expression cassettes were detected independent of the molecular status of the transposon (HC�AdV, circular 

intermediate or integrated transposon). (ii) Primer�set for amplification of the intact episomal HC�AdV�TcFIX 

genome without excision of the transposon. (iii) Primer�set specifically detecting Sleeping Beauty Transposase 

encoding sequences. 

 

 

 

 

 

 

 

Supplementary Figure 3.3: Detection of circular intermediates in transduced canine liver cells. Additional 

PCR analysis to detect specifically episomal circular intermediates after Flp�mediated recombination was 

performed. (a) Primer binding site are depicted. (b) Two dilutions of liver genomic DNA from D1 (D1: 500 ng; 

D1 dil.: 10 ng) were analyzed. As a positive control (+) genomic DNA obtained from Hela cells infected with 

the corresponding viral vectors was used, whereas DNA from non�infected Hela cells served as negative control 

(–). 
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Supplementary Figure 3.4: Detailed description of integration sites after SB)mediated transposition into 

genomic DNA of canine liver cells. 

 

 

 

3.8.2 Supplementary Tables 

 

Supplementary Table 1.1: Laboratory measurements of dogs D1 (HSB5), D2 (HSB5, high dose) and D3 

(mSB). Samples were collected periodically. (a) white blood count [103/mm3], (b) hematocrit [%], (c) 

hemoglobin [g/dL], (d) creatin phosphokinase [U/L], (e) total bilirubin [mg/dL], (f) amylase [U/L], (g) urea N 

[mg/dL], (h) creatinine [mg/dL], (i) Blood urea nitrogen (BUN)/creatinine, (j) total protein [g/L], (k) albumin 

[g/dL], (l) glutamine [mg/dL], (m) cholesterol [mg/dL], (n) calcium [mg/dL], (o) phosphate [mg/dL], (p) natrium 

[mEq/L], (q) potassium [mEq/L], (r) chloride [mEq/L], (s) albumin globulin ratio, (t) globulin [g/dL], (u) 

lipsosome [U/L], (v) triglyceride [mg/dL], (w) gamma glutamyltransferase [U/L], (x) magnesium [mEq/L], H: 

higher than normal range, L: lower than normal range. * Samples were collected 4 or 5 days before any 

treatment. 
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3.8.3 Supplementary Methods 

 

1. Generation of high�capacity adenoviral vector DNA constructs 

To generate the plasmids pFTC�HSB5�Flp and pFTC�mSB�Flp for production of high�

capacity adenoviral vectors HC�AdV�HSB5 and HC�AdV�mSB (Figure 1b), we first ligated 

the blunted EcoRI/BamHI fragment from pCMV�mSB and pCMV�HSB5
1,2

 encoding either 

mSB or HSB5 into the PmeI site of pPGK�HTP
3,4

. The blunt�ended ClaI/NotI fragment, 

containing the PGK�promoter and HSB5 or mSB, was then cloned into T4�DNA polymerase 

treated SmaI/BsmI digested plasmid pHD�SB�Flp�HNotI
3,4

, generating the plasmids pHD�

HSB5�Flp�HNotI (encoding HSB5 under the control of the PGK promoter and Flp under the 

control of the EF1�alpha promoter) and pHD�mSB�Flp�HNotI (encoding mSB under the 

control of the PGK promoter and Flp under the control of the EF1�alpha promoter). Flp 

recombinase and HSB5 or mSB expression cassettes were released by PacI/PmeI digest, 

blunted and cloned into the PmeI site of pHM5PmeI derived from plasmid pHM5
5
. Therefore 

the plasmids pHM5PmeI�Flp�HSB5 and pHM5PmeI�Flp�mSB were constructed. I�CeuI and 

PI�SceI fragments from pHM5PmeI�Flp�HSB5 and pHM5PmeI�Flp�mSB were ligated into 

the I�CeuI and PI�SceI digested adenoviral production plasmid pAdFTC�I/S/P
6,7

. 

For construction of the adenoviral production plasmid pFTC�TcFIX�FRT2 we ligated the 

FRT sites from pBS�P/P�FRT2 as blunt�ended PacI/PmeI fragment into the XbaI and BamHI 

sites of the kanamycin resistant plasmid pHM5
5,8

 therefore generating the plasmid pHM5�

FRT2. Subsequently we cloned the blunted XbaI/SpeI attB fragment from pCR�attB
9
 into the 

SnaBI site of pHM5�FRT2 resulting into the plasmid pHM5�attB�FRT2. Next, the PacI 

restriction enzyme recognition site within the multiple cloning site was deleted from the 

plasmid pTMCS (containing inverted repeats for SB�mediated transposition
1
) by PacI 

restriction enzyme digest, cleavage sites blunted by fill�in reaction and construct re�ligation. 

The NotI site from the resulting plasmid was replaced by a linker from New England Biolabs 

(NEB) for the restriction enzyme endonuclease PmeI generating the plasmid pTMCS�HPacI�

PmeI. The blunted KpnI/PstI fragment from pTMCS�HPacI�PmeI was ligated into the NotI site 

of pHM5�attB�FRT2 to create the plasmid pHM5�attB�TMCS�FRT2. The MscI fragment from 

pAAV�cFIX16 (kindly provided by K. Chu and K. A. High, Department of Pediatrics and 

Pathology, University of Pennsylvania and Children’s Hospital of Philadelphia) with a canine 

factor IX (cFIX) transgene driven by the liver specific apolipoprotein E enhancer and the 

human alpha�1�antitrypsin (ApoE/hAAT)�promoter was ligated by blunt�end ligation into the 

PmeI site of pHM5�attB�TMCS�FRT2. The I�CeuI/PI�SceI fragment from this shuttle vector 
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containing the canine FIX expression cassette flanked by SB transposase recognition sites 

(IR) and Flp recombinase recognition sites (FRT) was ligated into the I�CeuI and PI�SceI 

digested adenoviral production plasmid pAdFTC�I/S/P as described previously
6,7

. 

The vector HC�AdV�luciferase is also based on the adenoviral production plasmid pAdFTC�

I/S/P and contains a luciferase expression cassette under the control of the liver�specific 

human alpha�1�antitrypsin promoter (hAAT) including two liver specific enhancers (HCR: 

hepatocyte control region; ApoE: Apolipoprotein E). 

Further details about the cloning strategies and shuttle vectors used for cloning can be 

obtained upon request.  

 

2. Production of high�capacity adenoviral vectors 

Large�scale HC�AdV production was performed in adenoviral producer cell line 116 as 

described earlier
7,10

. Therefore 116 cells were cultured in minimal essential medium (MEM) 

supplemented with 10% fetal bovine serum (FBS) and 100 g/ml hygromycin B. For 

production of HC�AdV the bacterial backbone was released from the plasmids pFTC�TcFIX�

FRT2, pFTC�HSB5�Flp and pFTC�mSB�Flp by NotI digest and DNA was transfected into a 6 

cm tissue culture dish with 116 cells. Preamplification of HC�AdV vectors was performed in 

3 serial passaging steps using adherent 116 cells as described earlier
7,10

.  

Large�scale HC�AdV production was performed in 116 cells as described earlier
7,10

. In brief, 

10 confluent 15 cm tissue culture dishes of 116 cells were transferred into 1 l of MEM 

supplemented with 10% FBS and 100 g/ml hygromycin B. The following days, the same 

growth medium was added to a final volume of 3 l (500 ml on days 2 and 3, 1000 ml on day 

4). At day 5, 3 litres of 116 cells (3�4x10
5
 cells/ml) were harvested by centrifugation, 

resuspended in 5% volume medium, and co�infected with 100% of the crude lysate from one 

15 cm dish of serial passaging step 3 and AdNG163R�2 helper virus
9
 at one infectious unit 

per cell. Virus infection was performed at 37°C on a magnetic stir plate for 2 hrs, after which 

medium (MEM supplemented with 5% FBS) was added to a final volume of 2 l. Co�infected 

cells were harvested 48 hrs later for lysis and HC�AdV virions were purified by a CsCl step 

gradient and an subsequent overnight ultracentrifugation in a continuous CsCl gradient. In an 

alternative simplified protocol, purified HC�AdV virus (obtained by the method described 

above) instead of crude lysate was used as inoculum at a dose of 100 infectious units per cell 

for co�infection of 3 liters of 116 cells. 
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3. Titration of adenoviral vector preparations 

We determined the physical and the infectious titer of adenoviral vector preparations. The 

physical titer represents the concentration of vector genomes per ml in a preparation of HC�

AdV and is expressed in viral particle (vp) numbers. It was routinely obtained by measuring 

the absorbance at 260 nm (OD260). Viral DNA was released from virions obtained from CsCl 

gradients in TE buffer with 0.1% SDS. The OD260 was measured to determine the viral titer 

which is expressed in viral particles (vps) per ml according to the following formula: vps/ml = 

(absorbance at 260 nm) x (dilution factor) x (1.1 x 10
12

) x (36 kb)/(size of adenoviral genome 

in kb). The amount of transducing units (TUs) within a final vector preparation was 

determined by Southern blot analysis as described earlier
6,7

. Only vector preparations with 

high titers (> 4 x 10
7
 TUs/ l) were used for animal experiments. Detection for helper�virus 

contaminations was performed as described earlier.  
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4. BAC cloning techniques for advanced engineering of high�capacity 

adenoviral vectors 

 

High�capacity adenoviral vectors (HCA) are powerful tools for a broad range of applications 

but modification of capsids provided by a helper�virus and the design of complex cargo 

sequences remain challenging. Herein, we established platforms based on a traceless bacterial 

artificial chromosome (BAC) cloning strategy and newly invented a recombination pipeline 

for complex manipulations. We used these tools to design a panel of capsid�modified helper�

viruses and to construct the complex vector HCA�2indsys containing four transgene 

expression cassettes. The latter vector included two complex systems for mifepristone�

induced expression in hepatocytes and doxycycline�dependent expression in oct4�expressing 

cells for selective and inducible expression of reporters in hepatocytes and induced 

pluripotent stem cells. Therefore, our novel adenovirus pipeline allows selective genetic 

manipulation of mammalian cells in therapy and cell marking such as visualisation of 

differentiation and dedifferentiation processes. 

 

 

4.1. Introduction 

Adenoviral vectors are attractive tools for efficient DNA transfer into a broad variety of 

cycling and resting cells in vitro and in vivo
1
. Up to now 56 human adenoviruses were 

isolated but historically, most vectors are based on the human adenovirus serotype 5 with a 

distinct tropism and a high sero�prevalence strongly limiting the usage of these vectors
2,3,4

. 

For construction of early generation vectors the early region E1 encoding the essential factors 

for initiation of virus replication or in addition the early regions E2, E3 or E4 were replaced 

by the genetic cargo sequence
5,6

. In contrast, newest generation of adenoviral vectors called 

high�capacity adenoviral vectors (HCA) or helper�dependent adenoviral vectors are devoid of 

all viral coding sequences
7,8,9

. The production is dependent on a helper�virus (HV), which 

provides viral capsid proteins in trans for efficient capsid assembly and release of viral 

particles, but packaging of helper�virus genome is inhibited due to recombinase�mediated 

excision of the packaging signal (Fig. 1.8). This enables packaging of HCA genomes 

containing cargo sequences flanked by minimal 5’ and 3’ sequences of the adenoviral genome 

with a maximized capacity for cargo sequences (up to 36 kb) and reduced vector�related 

toxicity and immune responses
10,11

. Thus, HCAs represent attractive tools for gene and cell 

therapy as well as for vaccination approaches and basic research applications
12,13

. Due to their 
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large genome they offer new perspectives regarding applications for transfer of complex 

expression systems like inducible systems or transgenes under control of endogenous 

regulation sequences
10,14

. In addition, a limited amount of capsid�modulations was exploited 

utilizing early generation adenoviral vectors revealing significant improvements in 

transduction efficiency for specific cell types, in vivo targeting and in escape from 

neutralizing anti�adenoviral antibodies
15,16,17

. However, up to now the full potential of HCA 

was not accessible due to the major challenge of cloning and modulating the HCA and HV 

genomes.  

 

 

Figure 4.1: Cloning strategies for manipulation of adenoviral genomes. (a) Currently used cloning methods 

are either based on homologous recombination in HEK293 cells or BJ5183 E. coli bacteria (left) or on rare 

restriction enzymes and ligation of fragments (right). For both strategies, plasmids have to be generated in 

several steps, which contain the modification flanked by long homologous regions (HR1 and HR2) or flanked by 

restriction enzyme binding sites (RS1 and RS2). In addition, plasmids containing the adenoviral genome have to 

be manipulated inserting a unique restriction enzyme binding site (RS) between the homologous regions (left) or 

respective rare restriction enzymes binding site within the region of the adenoviral genome, which should be 

modified (right). (b) Cloning technology utilizing bacterial artificial chromosomes (BACs) is based on 

homologous recombination of homologous regions (HRs) created by PCR (indicated by blue arrows). This 

allows traceless manipulation of a BAC containing the adenoviral genome in a 2�step process. First a cassette 

with positive selection marker kanamycin resistance (Kan) and negative selection marker galactokinase (galK) is 

amplified by PCR generating flanking HRs and introduced into the BAC by homologous recombination and 

positive selection for kanamycin resistance. Subsequently, the sequence containing the modification (Mod) 

flanked by HRs is amplified by PCR and replaces the galK�Kan cassette by homologous recombination. 

Negative selection against galactokinase enables isolation of the BAC containing the modified adenoviral 

genome. 
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Currently used methods for genetic manipulation of adenoviruses are based on either rare 

endonucleases or homologous recombination in mammalian cells or bacteria of E. coli strain 

BJ5183, which constitutively express λ recombinases (Figure 4.1a)
18,19,20

. However, these 

methods are highly work�intensive and time�consuming. Moreover, generation is dependent 

on complex constructions of intermediate clones containing either respective endonuclease 

binding sites or long homologous sequences (>200 bp)
21

. Therefore, design of HCA genomes 

is significantly limited in complexity and size of the cargo sequence whereas modulations of 

the HV genome are restricted to a certain region, which is defined by the homologous regions 

or the endonuclease binding sites within the intermediate clones.  

Recently, an elegant method was established allowing traceless modification of bacterial 

artificial chromosomes (BACs). Herein, modifications were incorporated by two successive 

homologous recombinations, which are high efficiency due to the usage of a positive selection 

marker like zamycin resistance (Kan), ampicillin resistance or zeocin resistance in 

combination with galactokinase (galK) as a negative selection marker (Figure 4.1b)
22

. In this 

system recombinases are encoded endogenously by bacteria of E. coli strain SW102, which 

express high levels upon heat�induction. In contrast to previous methods small homologous 

regions (<50 bp) are sufficient for efficient recombination, which can be generated by PCR 

utilizing adequate primers. Therefore, time�consuming and challenging construction of 

intermediate clones containing the modified sequence flanked by long homologies or 

endonuclease binding sites and especially vectors with the adenoviral genome with 

endonuclease binding sites incorporated at the target region is not necessary.  

 

 

Figure 4.2: Generation of a BAC containing the helper�virus genome. (a) SW102 bacteria with the BAC B�

GK, which contains 5’ and 3’ ITRs of the human adenovirus 5 genome separated by the galK�Kan cassette, were 

transduced with helper�virus genomes isolated from purified particles. After homologous recombination and 

negative selection against galK the helper�virus BAC B�HV was isolated. (b) B�HV was verified by digest with 

the restriction enzyme EcoRV (expected pattern is depicted on the right). M: 1 kb ladder (PEQLAB 

Biotechnologie GMBH, Erlangen, Germany);     
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4.2. Results 

To utilize this technology for manipulation of HCA vectors, we established BAC platforms 

for the helper�virus genome and the HCA genome allowing arbritary genetic modifications. 

For generation of a master BAC clone containing the helper�virus genome, DNA was isolated 

from purified HV particles and transformed into SW102 bacteria with the BAC B�GK, which 

contained the 5’ and 3’ ends of the adenovirus genome separated by a galK�Kan cassette (Fig. 

4.2a). After induction of recombination and negative selection against galK a positive clone 

was isolated. Integrity of generated B�HV was verified by restriction enzyme digest (Fig. 

4.2b) and reconstitution of the helper�virus in 293 cells. Notably, this method can be 

performed for genomes isolated from any adenoviral serotype
23

. 

 

 

Figure 4.3: Generation of capsid�modified helper�viruses HV�hex5/48 and HV�fib5/35. (a) Genetic 

sequences encoding modified capsid proteins hex5/48 and fib5/35 are depicted schematically. Hex5/48 is based 

on the human adenovirus 5 hexon with hypervariable regions (HVRs) precisely exchanged with respective 

sequences of human adenovirus 48. Fib5/35 consists of the human adenovirus 5 fiber shaft fused with the human 

adenovirus 35 fiber knob. (b) For generation of capsid�modified helper�virus genomes, the galk�Amp cassette 

was inserted into the hexon and the fiber region, respectively, and subsequently replaced by modified sequences. 

Capsid�modified HVs were generated by transfection of HEK293 cells with modified HV genomes excised from 

the respective BACs. (c) Before transfection BACs were tested for integrity of the helper�virus genome by 

EcoRV digests. The red arrows point out the characteristic DNA fragments containing the genetic modification, 

which are absent in the intermediate clones. (d) Fiber�modification fib5/35 was verified for the BAC B�HV�

fib5/35 and for the respective helper�virus HV�fib5/35 by specific PCRs. In addition, contamination with 

unmodified HV�genomes or HV�particles was excluded by PCRs specific for the unmodified fiber.                   

(e) Verification of hexon�modification hex5/48 and proof for the absence of contamination with unmodified HV 

genomes was performed for B�HV�hex5/48 and HV�hex5/48 with specific PCRs.  
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For proof�of�principle the helper�virus BAC was utilized to incorporate fiber chimera fib5/35 

and hexon chimera hex5/48 (Fig. 4.3a, b). Adenoviral vectors with the fib5/35 modification 

contain fiber knob domains of human adenovirus 35 allow transduction of cells, which are not 

accessible for vectors with unmodified fibers like hematopoietic stem cells
15

. In contrast, in 

hex5/48 modified vectors hypervariable regions of the major capsid protein hexon presented 

on the capsid surface were precisely exchanged by respective sequences of human adenovirus 

48
16

. Therefore theses vectors escape from the majority of neutralizing, anti�adenoviral 

antibodies generated after contact with adenovirus 5 based capsids and interaction with 

coagulation factor X is inhibited resulting in detargeting the vector from the liver
24

. For 

generation of these HV genomes a galK�Amp cassette was introduced replacing the fiber 

encoding gene of the HV�BAC or the region containing the hypervariable regions in the 

hexon gene, respectively. Subsequently, modified sequences were amplified by PCR and 

directly incorporated into the helper�virus BACs by homologous recombination replacing the 

galK�Amp cassette. After negative selection isolated clones were tested for integrity of 

helper�virus genome by digest with restriction enzyme EcoRV (Fig. 4.3c) and reconstitution 

of respective viruses. In addition, introduced modifications were verified for BACs and 

respective helper�viruses by PCRs specific for modified sequences, whereas contaminations 

with unmodified HV genome were excluded by PCRs specific for unmodified fiber and hexon 

genes (Fig. 4.3d, e). 

 

Figure 4.4: Generation of 

BAC B�HCA�eGPF 

containing the HCA 

genome with an eGPF�

expression cassette by 

backbone�exchange. (a) 
SW102 bacteria with 

plasmid pHCA�eGFP 

containing x�chromosomal 

stuffer DNA and an eGFP 

expression cassette were 

transfected with a PCR�

product containing the 

backbone of a BAC 

flanked by sequences, 

which are homologous to 

sequences next to the 5’ and 3’ ends of the HCA genome. After recombination B�HCA�eGFP clones were 

isolated by selection for positive selection marker chloramphenicol resistance (Cm), which is part of the BAC�

backbone. The respective vector HCA�eGFP was generated by co�transduction of 116 cells with helper�virus 

particles and HCA genomes excised from B�HCA�eGFP. (b) Purity of the PCR�product, which is essential for 

the cloning procedure, was checked and B�HCA�eGFP was verified by PmeI�digest (specific fragment is marked 

by the red arrow). (c) Column�purified HCA�eGFP was tested by analysis for eGFP�expression in HEK293 cells 

(10x magnification). 
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Access to the BAC platform for HCA genomes was provided utilizing an alternative method, 

which works reverse to the isolation of specific regions from a BAC library
25

. Therefore 

plasmid pHCA�eGFP encoding a HCA genome with an eGFP expression cassette
26

 was 

transformed into SW102 bacteria. Subsequently, the backbone of a BAC including the gene 

for chloramphenicol resistance (Cm) was amplified by PCR with adequate primers generating 

regions homologous to sequences next to the HCA genome. After transformation and 

homologous recombination positive clones were isolated by selection for chloramphenicol 

resistance (Fig. Fig. 4.4a). HCA�BAC was verified by digest with restriction enzymes (Fig. 

4.4b) and generation of respective high�capacity adenovirus HCA�eGFP.  

To exploit full potential of HCAs a recombination pipeline was established enabling smooth 

combination of sequences to design complex expression systems. This pipeline is based on 

iterative BAC cloning steps successively incorporating sequences coupled with alternating 

positive selection markers into the same BAC (Fig. 4.5a).  In detail, a PCR product is 

generated containing a positive selection marker and the first sequence of interest and 

transformed into bacteria with the BAC, which should be modified. In sharp contrast to the 

standard procedure, transformed bacteria are grown in liquid culture and directly used to 

generate competent cells, which are used for the next cloning step. The second PCR product 

contains another positive selection marker and the second sequence of interest flanked by 

sequences, which are homolog to 5’� and 3’� sequences of the first selection marker. 

Homologous recombination and selection for the second selection marker enables efficient 

site�directed incorporation of the second sequence of interest into the BAC. This process 

could be repeated for fast combination of sequences within a single BAC. In addition, DNA 

could be isolated from liquid culture and utilized as template for PCR amplification. 

Therefore, sequences combined by iterative homologous recombinations could be amplified 

by PCR and incorporated into another BAC. Combinations of sequences with alternating 

positive selection markers, which are necessary for the recombination pipeline, are either 

present in adequate plasmids or generated by subcloning, overlapping PCR or ligation of 

PCR�amplified sequences. Furthermore, iterative PCRs can be used to generate small 

sequences like minimal polyadenylation signals, minimal internal ribosomal entry sites 

(IRES) or minimal pA�signal sequences attached to amplified template sequences (Fig. 4.5b). 

Therefore, the recombination pipeline enables design of complex systems by smooth 

modulation of BACs utilizing repetitive cloning steps without isolation of intermediates. 
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Figure 4.5: Generation of B�HCA�2indsys utilizing the novel recombination pipeline. (a) Principle of the 

recombination pipeline for combination of sequences. A PCR product containing the first sequence (1) coupled 

with positive selection marker cin resistance (Zeo) is introduced into a BAC by homologous recombination in 

SW102  bacteria (HR) and bacteria are grown in liquid culture under selection for zeocin resistance. Next, the 

generated BAC is used for introduction of a PCR product containing the second sequence (2) coupled to positive 

selection marker kanamycin resistance (Kan), replacing the zeocin resistance selection marker. The next step for 

introduction of the third sequence is similar to the second step, but the third sequence is coupled to ampicillin 

resistance and kanamycin resistance is replaced. For further proceeding either the generated BAC could be used 

as target BAC for the next cloning step (Option I) or the combined sequences coupled with the last selection 

marker could be amplified by PCR for insertion into another BAC (Option II). (b) The novel recombination 

pipeline was used to generate four intermediate BACs containing expression cassettes depicted at the bottom 

(positive selection markers are not shown). For each intermediate BAC two sequences were combined, 

respectively (steps Ia – IVb). Furthermore, additional sequences were generated by extension of the respective 

PCR products (IIb: pA�signal, IIIa: Tet�Operator, IVa: IRES). Subsequently, expression cassettes encoded by the 

intermediate BACs were amplified by PCR incorporated into the BAC B�HCA�eGFP resulting in B�HCA�

2indsys (steps I – IV). DNA isolated from liquid cultures of intermediate clones B�Ib – B�IVb (c) and the final 

BAC BHCA�2indsys (d) were analysed for inserted sequences by specific PCRs. 
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We used this method to generate a complex high�capacity adenoviral vector for transient cell 

marking to track differentiation or dedifferentiation processes. Therefore, two independent 

inducible and tissue�specific expression systems were incorporated into the HCA genome 

resulting in the vector HCA�2indsys. One system consists of the switch protein under control 

of a liver�specific promoter construct containing the apolipoprotein E (ApoE) enhancer 

element in combination with the human α1�antitrypsin (hAAT) promoter
27

 and the Renilla 

luciferase under control of the Gal4�promoter
28

. Therefore, transduced hepatocytes express 

the switch protein and upon administration of mifepristone this protein is activated mediating 

specific transcription of the Gal4�promoter controlled Renilla luciferase. The second system 

was realized by two expression cassettes encoding the Tet�suppressor protein under control of 

the CMV�promotor as well as an eGFP/Firefly luciferase fusion protein under control of the 

endogenous oct�4 promoter
29

 and four Tet�operator sequences
30

. Thus, after transduction of 

cells expressing the stem cell�specific transcription factor oct4 this factor can bind to the oct4�

promoter. However, transcription is blocked by binding of highly expressed Tet�suppressor 

proteins to the Tet�operator sequences. Only in presence of doxycycline, which interacts with 

the Tet�suppressor protein and therefore inhibits binding to Tet�operator sequences, the fusion 

protein eGFP/FLuc is transcribed efficiently. In addition, fluorescence marker dsRed was 

coupled to constitutive expression of Tet�repressors via an internal ribosomal entry site 

(IRES) enabling detection of transduction rates. For generation of the BAC encoding the final 

vector genome HCA�2indsys, expression cassettes encoding components of both expression 

systems were constructed in parallel by successive homologous recombinations in BACs and 

verified by specific PCRs (Fig. 4.5c). Subsequently, expression cassettes were incorporated in 

serial cloning steps into the BAC B�HCA�eGFP replacing the eGFP expression cassette. 

Generated BAC B�HCA�2indsys was isolated and verified by PCRs specific for inserted 

sequences (Fig. 4.5d).  

Standard purification process for helper�viruses and high�capacity adenoviral vectors consists 

of two sequential CsCl�gradients for separation of viral particles from cellular debris and 

empty viral particles followed by a dialysis step to transfer isolated capsids into a 

physiological buffer
31

. Although this method is very robust, amplification of high amounts of 

viral particles are necessary and the procedure is work�intensive as well as time�consuming
5,8

.  
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Figure 4.6: Characterization of column�purified helper�viruses. Mean values for physical titers (a) and total 

yields (b) were determined for preparations of unmodified helper�virus (HV) and capsid�modified helper�viruses 

HV�fib5/35 and HV�hex5/48, which were purified with an ion�exchange column. As a reference, the range of 

titers and total yields for preparations of CsCl�purified HVs are depicted. (c) Cre�mediated excision of the 

packaging signal of column�purified helper�viruses was tested by a PCR specifically amplifying a region 

containing the packaging signal. For analysis, DNA was used, which was extracted from HEK293 cells (�) and 

116 producer cells expressing Cre�recombinase (+) transduced with respective helper�viruses. (d) Functionality 

of helper�viruses was tested by production of HCAs encoding a LacZ expression cassette. Generated HCAs were 

tested for LacZ�expression after transduction of HEK293 cells. (scale bars: 200 µm) 

 

In contrast, an alternative purification procedure for small�scale production of first�generation 

adenoviral vectors is based on ion�exchange columns (Vivapure AdenoPACK 20, Sartorius, 

Göttingen). Although empty viral particles were not separated from packaged capsids, this 

method requires only 3�6 hours and it is accessible to all laboratories. Therefore, we applied 

this system to BAC�derived helper�viruses HV, HV�fib5/35 and HV�hex5/48 as well as to the 

vector HCA�eGFP. Vector preparations were performed utilizing columns for purification of 

vector particles obtained from amplification with 0.5�1.0 x 10
9
 HEK293 cells. Physical titers 

determined for unmodified HV and HV�fib5/35 were similar to vector preparations obtained 

by standard purification process, although total yields are significantly lower due to the lower 

number of cells used for the last amplification step (Fig. 4.6a, b). Even for HV�hex5/48 0.4 x 

10
9
 vps/µl were obtained, although ion�exchange is impaired due to reduced number of 

positively charged amino acids displayed on the capsid surface
32

. Functionality of the helper�

viruses was verified by testing excision of the packaging signal in cells expressing Cre 

recombinase (Fig. 2c). Furthermore, we used these helper�viruses to verify suitability for 
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generation of high�capacity adenoviral vectors encoding a LacZ expression cassette, 

respectively (Fig. 2d). For HCA�eGFP preparations the physical titers as well as the total 

vector yields were slightly reduced in comparison with HV preparations or CsCl�purified 

high�capacity adenoviral vectors (data not shown). Nevertheless, the vector was proven to be 

functional as shown by detection of by eGFP�expression in transduced HEK293 cells (Fig. 

4.4c). In conclusion, column�purification is an attractive option to gain purified HCA amounts 

sufficient for quantitative in vitro studies and preliminary in vivo studies. Furthermore, it has 

been shown to be suitable for purification of fiber�modified adenoviral vectors and also 

hexon�modified adenoviral vectors could be purified despite decreasing vector yields. 

 

 

4.3. Discussion 

In summary, BAC platforms enable smooth design of arbitrary helper�viruses utilizing 

traceless cloning strategies. Therefore, the BAC cloning technology is a suitable method for 

rapid generation of adenoviral genomes containing a variety of mutations at a single site 

within the adenoviral genome. This allows screening of a relatively high number of mutated 

capsid�proteins in the viral context, which is essential to ensure, that capsids can be formed by 

incorporation of the mutated protein. Furthermore, a newly invented recombination pipeline 

was demonstrated to allow complex modulations for high�capacity adenoviral genomes. 

However, utilization of the recombination pipeline is limited by the size of the PCR product, 

which could be generated specifically. With respect to this issue, amplification of PCR 

products of up to 10 kb were shown to be specific utilizing the proof�reading polymerase 

PRECISOR (BioCat, Heidelberg) (data not shown). Nevertheless, larger sequences such as 

the dystrophin gene used for treatment of patients with muscular dystrophy
33

 could be splitted 

in two fragments and sequentially incorporated into the target BAC. Additionally, even PCR 

products generated by a proof�reading polymerase may contain mutations. Therefore, either 

incorporated sequences should be verified by sequencing or respective functionalities should 

be tested. Furthermore, incorporation of sequences with homologies to the target BAC larger 

than 50 bp appeared to be challenging due to unspecific recombination events. Especially 

with respect to sequences often used in expression cassette such as polyadenylation signals 

and some promoter� or enhancer�elements, careful planning of the construction procedure is 

essential to avoid problems caused by this restriction. In contrast, two homologous regions of 
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more than 500 bp, which were part of the same BAC, were stable even after heat�induction of 

recombinases (data not shown). 

With respect to purification of small�scale preparations of HCAs, ion�exchange columns 

represent an attractive alternative accessible to any researcher. With respect to the purity of 

column�purified HCA it is of note that the ratio of infectious units to physical units is about  

1:20 for regular HCA preparation purified by CsCl�gradients, indicating a high number of 

packaged but non�infectious adenoviral particles. Moreover, several other research groups 

used vector preparations with even worse ratios (1:100 or less)
34

. Therefore, unpackaged 

particles contained in column�purified HCA preparations probably have no substantial 

negative effect on the quality. Regarding purification of capsid�modified adenoviral vectors, 

modulation of surface domains of the hexon protein might affect the total charge of the capsid 

surface and in consequence alter binding properties. This could result in reduction of the titer 

as well as the total vector yield and therefore, column�purification might not be suitable for 

screening of hexon�modified adenoviral vectors. However, columns could be optimized for 

any capsid�modification and in addition column�purification might be adopted easily to 

higher numbers of vector particles
32

. Therefore, ion�exchange columns might provide an 

attractive alternative for the production of sufficient amounts of HCAs for clinical studies. 

In summary, the new tools for generation of HCA vectors presented in this study and the 

option to cross�package any HCA genomes into capsids provided by any helper�virus allow to 

exploit the full potential of high�capacity adenoviral vectors. This was demonstrated by 

generation of HCA�2indsys enabling simultaneous delivery of two independent inducible and 

cell line specific expression systems and generation of two capsid�modified helper�viruses 

providing additional features for the delivery in cell culture and in vivo. Therefore new 

resources are opened for current approaches in gene therapy or vaccination as well as for new 

areas like stem cell technology, tissue engineering or basic research. 

 

 

4.4. Material and Methods: 

 

4.4.1. Generation of bacterial artificial chromosomes 

 

Detailed description of the general cloning procedure utilized for modulation of bacterial 

artificial chromosomes by homologous recombination is provided in previous 
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publications.
22,35

 In brief, expression of λ recombinases in SW102 bacteria containing the 

target BAC listed in Table 4.1 was heat�shock induced by incubation at 42°C for 15 min and 

subsequently, bacteria were used for preparation of electro�competent cells. Sequence, which 

should be introduced, flanked by regions homolog to the target site within the target BAC 

were amplified by PCR (primers are listed in Table 4.1) and competent cells were transformed 

with about 1.5 µg of purified PCR�product. For isolation of single clones bacteria were 

selected on agar�plates containing the respective selection marker. For recombination pipeline 

cloning steps, transformed bacteria were grown in liquid culture containing the respective 

selection marker(s). 

 

 

4.4.2. Quantitative PCRs, qualitative PCRs and sequencing 

For all PCRs high�fidelity KOD Hot Start DNA Polymerase (Novagen, Darmstadt) was used 

except for amplification of the BAC�backbone, which was performed with the PRECISOR 

polymerase (Biocat, Heidelberg). Primers and templates for respective PCRs are depicted in 

Table 4.1. For quantitative PCRs 35 cycles were performed and for qualitative PCRs 25 

cycles were used. For each PCR annealing temperature was 60°C and for elongation 

recommended time was chosen. For verification of sequences vector genomes were 

sequenced by Eurofins MWG Operon (Ebersberg, Germany) utilizing adequate primers listed 

in Table 4.1. 

 

 

4.4.3. Cell culture 

Human embryonic kidney HEK293 cells were cultured in Dulbecco’s modified Eagle’s 

medium supplemented with 10 % fetal bovine serum (PAA Laboratories) and producer 116 

cells were grown in modified Eagle’s medium supplemented with 10 % fetal bovine serum 

(PAA Laboratories) and hygromycin B (100 µg / ml).  

 

 

4.4.4. Reconstitution and amplification of unmodified and capsid�modified helper�viruses 

For generation and amplification of unmodified and capsid�modified helper�viruses 

previously published protocols were used
5,8

. In brief, helper�virus genomes were excised from 

respective BACs by PacI�digest and transfected into HEK293 cells utilizing transfection 
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reagent Fugene 6 (Roche, Penzberg). 10�20 days post transfection cytopathic effect occurred 

and cells were harvested. Subsequently virus particles were released by three consecutive 

freeze�thaw steps and for further amplification increasing numbers of HEK293 cells were 

infected. Final amplification step was performed with 8 x 10
7
 HEK293 cells for small�scale 

preparations and 4 x 10
8
 HEK293 cells for large�scale preparations.  

 

 

4.4.5. Production of high�capacity adenoviral vectors 

Production of HCAs was performed in producer cell line 116 as described earlier
7,10

. In detail, 

HCA genome was released from the BAC and DNA was transfected into a 6 cm tissue culture 

dish with 116 cells. After 24 hrs cells are co�infected the helper�virus and harvested 72 hrs 

after transfection. HCA capsids were released by repeated freeze�thaw steps and used for 

three further amplification steps. For small�scale production finally 8 x 10
7
 116 producer cells 

were used. In contrast, for large�scale amplification 10 confluent 15 cm tissue culture dishes 

of 116 cells were transferred into 1 l of medium placed in a bioreactor (3l). Cells were grown 

for five days increasing the volume up to 3 litres. At day 5, cells were harvested by 

centrifugation, resuspended in 150 ml medium, and co�infected with 100% of the lysate 

derived from 8 x 10
7
 116 producer cells and AdNG163R�2 helper virus

9
 (one infectious unit 

per cell). Virus infection was performed at 37°C on a magnetic stir plate for 2 h. 

Subsequently, medium (MEM supplemented with 5% FBS) was added to a final volume of 2 

l. Co�infected cells were harvested 48 hrs later for unmodified and fiber�modified helper�virus 

and 96 hrs later for hexon�modified helper�virus. Cells were lysed and released HCAs were 

purified. 

 

 

4.4.6. Purification of adenoviral particles with an ion�exchange column and with CsCl 

gradients 

Purification of Small�scale adenoviral vector preparations was performed with ion�exchange 

columns (Sartorius, Göttingen) according to manufacturer’s instructions. To reduce the 

volume of cell lysate (80 ml) to the volume recommended by the manual, cells were harvested 

by centrifugation before lysis and resuspended in 20 ml of the supernatant. Large�scale 

amplified HCAs were purified by two successive caesium chloride (CsCl) gradients according 

to a manual described previously
7,10

. For application in vitro and in vivo toxic CsCl solutions 
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with virus were exchanged with a physiological buffer by dialysis. Final vector aliquots were 

stored at �80°C until usage. 

 

 

4.4.7. Determination of physical titers of hexon�modified helper�viruses 

Determination of physical titers of adenoviral vector preparations was described in detail 

elsewhere
8
. Briefly, 5 µl of the vector preparation was diluted with 95 µl TE buffer 

supplemented with 0.1 % sodium dodecylsulfate. Vector capsids were lysed for 30 min at 37 

°C and subsequently OD260 was determined. The mean value of five measurements was used 

for calculation of the physical titer.  

 

 

4.4.8. Detection of Cre�mediated excision of the packaging signal 

HEK293 cells and 116 producer cells were seeded in 6�well plates. At 90% confluency, cells 

were infected with the helper�virus, which should be analyzed (MOI 3). 36 hrs post 

transduction DNA was extracted from harvested cells, purified with phenol�chloroform and 

precipitated with isopropanol. DNA samples solved in water were used as templates for PCR 

analysis (primers listed in Table 4.1). 

 

 

4.4.9. LacZ�Staining 

HEK293 cells were seeded in 6�well plates and transduced with the capsid�modified HCA 

containing the lacZ expression cassette, which should be analyzed. 48 hrs post transduction 

cells were washed with Dulbecco’s PBS (1x) and fixed with glutaraldehyd (0.8 %). After 10 

min cells were washed with Dulbecco’s PBS (1x) and stained with the staining solution        

(1 mg / ml X�Gal, 10 mM FeK4(CN)6, 10 mM FeK3(CN)6, 2 mM MgCl2) for 10 h.  

 

 

4.4.10. Fluorescence microscopy 

HEK293 cells were seeded in 6�well plates and transduced with the HCA containing the 

eGFP expression cassette. 48 hrs post transduction eGFP expression was detected with an 

inverse fluorescence microscope (Leica DM IRB).   
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Table 4.1: Primers, plasmids and BACs used for generation and analysis of BACs described in this study. 

In each line, materials used for one cloning step are described: primers and template DNA used for generation of 

the PCR�product as well as the BAC, which should be modified. The BACs B�Kan, B�Zeo and pB�TA5 as well 

as plasmids pT�GA, pMA�hex5/48, pFTC�TcFIX�FRT2, phRL�CMV, T�oct4�pr�rev, T�Kan and pCI�dsRed were 

constructed in the laboratory of Anja Ehrhardt. Plasmids pAd5GFP/F35 and pHCA�eGFP were provided by 

Dmitry Shayakhmetov, pSwitch and pGene/V5�HisB were derived from the Kit Gene Switch (Invitrogen), 

pEpito�[eGFP/FLuc] from Rudolf Haase and MKp06�SVT from Zsolt Ruzsics.  
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5. Hexon	modified helper	viruses showed significantly altered tropisms in 

vivo 

 

High�capacity adenoviral vectors (HCAs) resemble a potential tool to face challenges in gene 

therapy and vaccination. Nevertheless usage of this vector type for in vivo applications is 

restricted to liver tissue due to binding of coagulation factor X (FX). Furthermore, efficiency 

of repeated administrations is hampered due to recognition of the capsid surface by 

neutralizing antibodies.  

In this study we modified the hexon containing hypervariable regions (HVRs) as the most 

abundant capsid component, which resemble most of the immunogenic sites of the vector 

capsid and which mediate FX�binding. Therefore, chimeric hexon gene regions were 

synthesized with coding sequences of HVRs precisely exchanged with respective sequences 

of human adenovirus serotype 12, 41, 44, 48 and 50. In parallel, a cloning system based on 

type II endonucleases was used to generate chimeric hexon genes replacing complete hexon 

surface domains with respective sequences from human adenoviruses 4, 7, 12, 13 and 41. 

After demonstrating that all chimeric proteins trimerize in presence of adenoviral 100K�

protein they were incorporated by homologous recombination into a bacterial artificial 

chromosome containing the genome of the helper�virus, which provides the capsid proteins 

during HCA amplification. Although reconstitution of respective viruses was challenging, 

helper�viruses HV�HVR12 and HV�HVR48 containing precisely exchanged hypervariable 

regions from serotypes 12 and 48 as well as HV�SD4 and �SD12 with hexon surface domains 

replaced by sequences from serotype 4 and 12 were successfully generated.  

Replication rates of hexon�modified helper�viruses appeared to be lower than for unmodified 

vectors but physical titers as well as infectious titers of final vector preparations were 

comparable to unmodified helper�viruses. In vitro FX�binding assays and bioluminescence 

measurements after intravenous application in vivo showed that transduction of liver tissue 

with HV�SD4 is inefficient compared to the conventionally used adenovirus serotype 5, 

although in vitro transduction efficiency is significantly enhanced in presence of FX. Based 

on these observations we concluded, that the strength of FX�binding might be a key player for 

efficient transduction of liver tissue in vivo. In contrast, for HV�HVR12 an impressive 

increase of luciferase activity from liver tissue and transduction of peripheral tissue was 

observed. More than 30�fold increased transduction rates in vitro in the absence of FX under 
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serum�free conditions suggested a new interaction directly mediating attachment of the viral 

capsid to an unkown cell surface marker. Surprisingly, bioluminescence measurements for 

HV�SD12 revealed no transduction of liver tissue even though some luciferase activity in 

peripheral tissue could be detected. Although this was in line with in vitro FX binding 

analysis, both vectors HV�SD12 and HV�HVR12 contain identical hypervariable regions and 

therefore, similar distributions and transduction efficiencies were expected with respect to our 

current knowledge. Thus, we concluded, that the hypervariable regions within the hexon are 

not exclusively responsible for the distinct in vivo tropism of adenovirus and that precise 

exchanges of hypervariable regions might have a stronger impact on structure of the capsid 

surface than expected. In summary, this study showed potency of capsid modifications to alter 

in vivo tropism opening new options for a broad variety of applications. 

 

 

5.1. Introduction 

Transfer of DNA into cells is an essential tool in biotechnology and molecular medicine. Due 

to low transduction rates of naked DNA for various cell types and inefficient in vivo delivery, 

vectors based on replication�deficient viruses are utilized as transfer vehicles.
1,2

 These so 

called vectors package DNA and transport it into cells using virus�specific entry pathways. A 

multitude of vector types with type�specific features based on different viruses e.g. lenti� and 

retroviruses, herpes simplex virus 1, adeno�associated viruses or adenoviruses were utilized in 

the past to face the various challenges regarding cellular gene transfer.
2,3

  

Vectors based on adenoviruses are an attractive option for gene transfer into dividing and 

non�dividing cells in vitro as well as in vivo.
4
 Therefore they are potent tools for basic 

research as well as for gene therapy or vaccination approaches.
5
 The adenovirus capsid is 70�

90 nm in diameter and consists of a protein shell and a virus core with the viral double�strand 

DNA genome, which is 36 kb in length. Independently of the cell cycle status, cell entry is 

initiated by interaction of the viral fiber knob with the Coxsackie virus and adenovirus 

receptor (CAR).
6
 Subsequently RGD motifs of the penton proteins bind to αV integrins 

inducing endosomal uptake.
7
 Virus capsids can escape from endosomes by partial 

disassembly and are transported along the microtubuli to the nucleus.
8
 After docking to the 

nuclear pore complexes, capsids disassemble and viral DNA is imported into the nucleus 

where it persists episomally.
9
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Most adenoviral vectors are based on human adenovirus 5 (hAd5) and for construction of first 

generation vectors the E1 region encoding major key players for initiation of virus replication 

was deleted enabling insertion of a transgene expression cassette up to 5 kb in size.
10

 

Nevertheless, these vectors showed leaky expression of viral proteins mediated by cellular 

transcription factors.
11

 Therefore, intravenous administration in animals and humans resulted 

in high liver toxicity and formation of a strong anti�adenoviral immune response inhibiting 

repeated treatments.
12,13

 Further deletions of E2, E3 and E4, encoding factors, responsible for 

efficient virus replication and modulation of the cellular status as well as the intracellular 

immune responses, enhanced the packaging capacity of vectors for transgenic sequences.
14

 

Despite reduced toxicity and immunogenicity of second generation vectors these issues 

remain challenging. In addition, vector yields often are significantly reduced, although 

proteins encoded by deleted genes are provided by production cell lines in trans.  

In contrast, newest generation of adenoviral vectors called high�capacity adenoviral vectors 

(HCA), helper�dependent adenoviral vectors or gutted adenoviral vectors are devoid of all 

viral coding regions.
15,16

 Only the inverted terminal repeats (ITRs) located at the left and the 

right termini of the adenoviral genome and the packaging signal (ψ) are maintained within the 

HCA genome. Generation of these vectors depend on a helper�virus providing capsid proteins 

and mediating efficient capsid assembly and release (Fig. 1.8). The majority of helper�viruses 

contain a packaging signal flanked by loxP�sites and for production of HCAs a producer cell 

line is utilized, which is derived from HEK 293 cells which constitutively express Cre 

recombinase.
17,18

 For generation of HCAs, producer cells are transduced with the HCA 

genome and co�infected with the helper�virus. The helper�virus provides capsid proteins in 

trans whereas packaging of helper�virus genome is inhibited due to Cre�mediated excision of 

the packaging signal. As a consequence only HCA genomes are packaged, which are 28�36 

kb in size.
19

 Therefore, transport of cargo DNA is enabled allowing delivery of complex 

expression systems
20

 or transgenes under control of large endogenous regulatory sequences. 

Importantly, due to the lack of viral genes HCA�related toxicity is strongly reduced in 

comparison to first�generation adenoviral vectors
21

 and adaptive immune response directed 

against the vector is significantly diminished.
22

 Several studies to these features demonstrated, 

that HCAs show better performance in gene therapeutic approaches and vaccination 

studies.
23,24

 

Nevertheless, researchers utilizing HCAs for in vivo approaches are still facing substantial 

challenges. One of the remaining obstacles is the inhibition of repeated administrations by 
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neutralizing anti�adenoviral antibody formation after first treatment with adenoviral vectors or 

infection with wild�type hAd5.
25

 Most of these antibodies are directed against the major 

capsid protein hexon comprising more than 90 % of the whole capsid surface.
26

 In detail, 

recognized targets within in the hexon are mainly unstructured sequences called hypervariable 

regions (HVRs), which are serotype�specific and located at the capsid surface (Fig. 1.6c).
27

 

Another severe restriction of HCAs which are predominantly based on hAd5 is the liver�

tropism shown after intravenous injection.
28,29

 Recent studies demonstrated that targeting to 

liver cells is mediated by interaction of surface structures formed by HVRs of hexon trimers 

with coagulation factor X (FX), which is present in blood at high concentrations (Fig. 1.6a, 

b).
30,31,32

 Capsid�bound FX molecules interact with heparin�sulfate proteoglycans (HSPGs) on 

cellular surface of hepatocytes mediating attachment of the vector capsids to target cells and 

endosomal uptake.
33

 Therefore, in a multitude of attempts capsid�modifications were 

evaluated for their potential to retarget adenoviral vectors from the liver to other organs or cell 

types.  

Initial approaches were based on the modulation of the fiber protein and respective interaction 

with CAR. Fiber chimeras were created by exchanging the fiber knob with respective 

domains of other adenovirus serotypes, variation of the fiber shaft length or incorporation of 

peptides into variable loops of the fiber knob to mediate specific interactions with cell surface 

markers.
34,35,36,37

 Other studies were based on bridging fiber proteins to specific receptors by 

bispecific antibody variants.
38

 Although for many modifications strongly enhanced cellular 

uptake was shown in vitro and also detargeting from the liver was observed to small extend, 

retarting effects to specific tissues in vivo were marginal.
39

 Similar results were seen for 

incorporation of ligands into the minor capsid protein pIX present on the capsid surface
40

, 

whereas mutation of the RGD�motif in the major capsid protein penton generally impairs 

uptake of adenoviral capsids in most cell types except for some cancer cell lines.
41

 Analysis of 

fiber� and penton�modifications showed low or no effect with respect to masking against 

neutralizing antibodies.
42

 In further studies adenoviral vectors were generated based on other 

human and non�human adenovirus serotypes, which successful escaped anti�adenovirus 5 

antibodies.
43,44

 Nevertheless, little is known about genomic organization including the 

position of the packaging signal, biodistribution after administration, vector�related toxicity 

and immune responses as well as the oncogenic potential of non�human serotypes. 

Furthermore, until now only for hAd 1, 2 and 6 adenoviral vectors were adopted to the high�

capacity adenoviral vectors system, because respective cloning procedures remain challenging 
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even though a new cloning system was established which might provide a suitable 

technology.
45

  

Other attempts to modify the adenovirus capsid surface included modulation or complete 

exchange of the hexon protein with respective sequences of other adenovirus serotypes. 

Realization of this idea appeared to be challenging due to the major role of hexons for the 

protein interaction network providing capsid stability.
46

 In detail, the adenovirus protein shell 

consists of 240 copies of hexon trimers. Besides mediating trimerization, hexon trimers bind 

to neighboring trimers, penton pentamers located at the capsid vertices, and protein networks 

consisting of minor capsid protein pIIIa, pVIII and pIX providing substantial portions for total 

capsid stability.
47

 All interactions are mediated by structural domains of the hexon not 

displayed on the capsid surface, except for two interactions within hexon trimers anchored in 

surface domains DE1 and FG1.
48

  

In an attempt to genetically modify the hexon composition in the adenovirus protein shell, 

first approaches were based on replacement of the complete hexon encoding sequence with 

corresponding sequences from other human adenoviruses. However, alteration did not result 

in virus capsid formation and virus reconstitution except for exchanges with hexons of hAd1, 

hAd2 and hAd6, which all belong to serotype class C, and hexons derived from serotypes 3 

and 12.
49,50,51

 Chimeras within the serotype class C resulted in viruses with similar growth 

kinetics and high potential to escape anti�adenovirus 5 antibodies and all vectors mediated 

transduction of liver tissue. In contrast, chimeric adenoviruses with hexons 3 and 12 exhibited 

strongly reduced replication rates and yields of final preparations were more than ten�fold 

lower in comparison to unmodified vectors based on hAd5. In a recent study first generation 

adenoviral vectors were developed containing a modified hexon gene with precisely 

exchanged HVRs from hAd48.
52

 Yields of vector preparations were similar to unmodified 

vectors and in vivo studies demonstrated highly efficient escape from neutralizing anti�human 

adenovirus serotype 5 antibodies. In addition, in vitro studies showed abrogation of FX�

binding and biodistribution analysis in mice after intravenous administration revealed low 

transduction rates of liver cells.
32

 These data emphasize the impact of hexon�mediated factor 

X binding on the biodistribution after intravenous injection, underlining importance of hexon�

modulation for any approach to improve in vivo targeting.   

In this study we modified the surface domains of hexon protein from the adenoviral helper�

virus providing the capsid proteins for high�capacity adenoviral vectors. We either exchanged 

sequences of the hypervariable regions precisely or the entire hexon surface domains 
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including all HVRs were replaced with equivalent sequences derived from other human 

adenovirus serotypes.
48

 Subsequently hexon variants were incorporated into the helper�virus 

genome utilizing a BAC technology which was established recently in our laboratory. 

Successfully reconstituted helper�viruses were analyzed in vitro with respect to binding of FX 

and in vivo biodistribution after intravenous injection in mice was analysed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Principle for construction of modified hexon genes. (a) The solvent�exposed surface of human 

adenovirus serotype 5 hexon proteins is mainly part of two extended loops DE1 and FG1, which contain 7 

hypervariable regions (HVRs) representing main target sites for anti�hAd5 antibodies and binding sites for 

coagulation factor X. Respective gene sequences are depicted in orange (extended loops) and blue (HVRs) 

within the hexon gene shown as white arrow. (b) Modified hexon genes either contain HVRs of another 

adenovirus serotype precisely replacing original HVRs or complete surface domains are exchanged containing 

solvent�exposed parts of the DE1� and FG1�loop, which include all HVRs. 

 

 

5.2. Results 

 

5.2.1. Design and construction of chimeric hexon genes 

An essential step to exploit full potential of high�capacity adenoviral vectors is modification 

of the capsid by modulation of the helper�virus genome. This could enable specific targeting 

to organs or cell types as well as repeated administration without eliciting a severe immune 

response. Previously, genetically modified adenoviruses were generated encoding a hexon 

chimera with hypervariable regions (HVRs) precisely replaced with respective regions of 

hAd48.
52

 This vector showed efficient amplification, successful escape from neutralizing 

antibodies and abrogation from factor X resulting in detargeting from the liver. Herein, we 

synthesized similar chimeras based on gene region of hAd5 encoding the HVRs precisely 

replacing HVRs with the respective sequence of another human adenovirus serotype (Fig. 
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5.1b). To evaluate the reconstitution procedure we utilized hAd48 as a positive control and 

hAd12, because in a previous attempt a larger portion of this particular hexon protein was 

successfully exchanged.
49

 Furthermore, serotype 44 and 50 were chosen due to low 

seroprevalences and distinct FX�binding properties, which are even for hAd50 compared to 

hAd5 or not detectable for hAd44.
32,53,54

 Additionally, hAd41 mainly infecting the 

gastrointestinal tract was included to evaluate the role of HVRs of hexon proteins for 

serotype�specific biodistribution.
55

 

HVR�specific sequences of each serotype were determined utilizing sequence alignments of 

amino acid sequences. Due to this analysis all HVRs are located in domains DE1 (HVRs 1�6) 

and FG1 (HVR 7), which contain the complete region presented on the capsid surface (Fig. 

5.1a) as shown by X�ray christallographic measurements.
48

 Furthermore, structural analysis 

enabled prediction of secondary structure elements within the hexon protein. Protein sequence 

alignment revealed close proximity or even overlapping amino acids of these structural 

elements and HVRs. Therefore, exchanges of HVRs with respective sequences of other 

serotypes might interfere with correct formation of secondary structures. In our new approach 

we enlarged exchanged sequences in a second setup, including surface domains located within 

domains DE1 and FG1 as well as the connecting domain DE2, which is highly conserved. We 

hypothized that with this strategy disrupture of secondary structure motifs is avoided and 

alterations in tertiary structure are minimalized resulting in maintenance of trimere stability 

and capsid integrity. Therefore, we constructed respective hexon chimeras with serotypes 

from adenovirus subgroups A�F (Fig. 5.1b). Utilizing respective sequences from hAd4 (E), 

hAd7 (B), hAd12 (A), hAd13 (D) and hAd41 (F), plasmids were generated allowing analysis 

of chimeric hexon proteins expressed in mammalian cells. For smooth contruction of 

respective plasmids we created a master vector (pCI�M) containing highly conserved N�

terminal and C�terminal regions derived from the hAd5 hexon gene (Fig. 5.2a). Hexon 

sequences were separated by endonuclease type II (AarI and BspQI) binding sites, which bind 

sequence dependent but cut sequence independent at defined distances from binding sites. 

This feature enabled traceless insertion of PCR products with hexon surface regions of 

various adenovirus serotypes into the master vector by ligation of sticky ends, created by AarI 

and BspQI (Fig. 5.2a).  Constructed expression vectors pCI�hex5�SD4, �SD7, �SD12, �SD13 

and �SD41 for respective hexon chimeras were proven by modification�specific PCRs (Fig. 

5.2b) and restriction digests (data not shown). 
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Figure 5.2: Construction of 

chimeric hexon genes and 

trimerisation of respective 

proteins. (a) For generation of 

chimeric hexon genes, plasmids 

pT�SD4,       �SD7, �SD12, �SD13 

and �SD41 were used, which were 

generated by incorporation of PCR 

products into vector pCR�BluntII�

Topo. Amplified sequences 

contain surface domains (SD) of 

hexon genes from respective wild�

type adenovirus serotypes flanked 

by binding sites for type II 

endonuclease AarI and BspQI, 

which cut within the SD 

sequences. Furthermore, plasmid 

pCI�M was used, which contains a 

mammalian expression cassette 

encoding conserved 5’ and 3’ 

regions of the hAd5 hexon gene. 

Sequences were separated by 

binding site AarI and BspQI, 

which cut within conserved 

regions. Ligation of fragments 

created by AarI / BspQI double 

digest resulted in mammalian 

expression vectors for the 

respective hexon chimera. (b) Plasmids were analyzed by PCRs specific for the respective hexon chimeric gene. 

As negative control (�), the plasmid encoding unmodified hexon gene was used. (c) HEK293 cells were co�

transfected with mammalian expression plasmids for hexon chimeras and adenoviral chaperone 100K�protein. 

Cells were harvested after 48 h and boiled (99°C) as well as cooled (4°C) lysates were analyzed for expression 

and trimerization of chimeric hexon proteins. Plasmid encoding unmodified hexon gene was used as positive 

control (+) whereas cells transfected only with plasmid encoding 100K�protein served as negative control (�). M: 

1 kb ladder (PEQLAB Biotechnologie GMBH, Erlangen, Germany); 

 

 

5.2.2. Trimerisation of chimeric hexon proteins with exchanged hexon surface regions  

Modified hexon proteins were analyzed for their potential to form viral capsids. Initial steps 

during capsid assembly are interaction of cytosolic hexon protein with adenoviral 100K�

protein providing solubility of hexon proteins and enabling nuclear import as well as 

trimerization of hexon proteins.
56

 To evaluate ability of novel hexon chimeras to perform 

these steps, HEK 293 cells were co�transfected with plasmid pCI�100K�pr encoding the 

adenoviral 100K�protein and the mammalian expression plasmids encoding respective hexon 

chimera. Cells were harvested 48 h after transfection and lysates were either boiled or cooled 

before analysis by Western blot. For detection a polyclonal antibody was utilized, which 

recognizes unmodified hexon proteins as well as chimeras. As a positive control unmodified 

hexon proteins were analyzed and as a negative control HEK293cells were transfected with 

the plasmid pCI�100K�pr. For heated samples derived from modified hexons a dominant band 
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was detected at about 100 kDa, respectively, matching the size of unmodified hexon 

monomers (Fig. 5.2c). Visualization of this band indicated solubility mediated by efficient 

interaction between hexon chimeras and the adenoviral 100K�protein. In contrast, for all 

cooled samples hexon trimers with a molecular weight of 330 kDa were detected (Fig. 5.2c). 

Therefore all chimeras were proven to be able to trimerize. Notably, boiled samples derived 

from cells transfected with pCI�SD4 and pCI�SD41 contained small amounts of trimers 

indicating a high heat�stability of modified hexon trimers. Furthermore, due to the fact that 

trimerization mainly takes place in the nucleus, the absence of monomers in all cooled 

samples indicated efficient nuclear import of hexon chimeras as well as high stability of 

trimers at 37°C.
56

  

 

 

5.2.3. Construction of BACs encoding hexon�modified helper�virus genomes 

Next, sequences encoding surface domains of one serotype as well as synthesized sequences 

containing precise HVR exchanges were incorporated into the helper�virus genome replacing 

endogenous hexon gene sequence (Fig. 5.3a). Therefore, we utilized our recently generated 

bacterial artificial chromosome pB�HV containing the genome derived from helper�virus 

AdNG163R�2
18

, which can be used for HCA production. In brief, the cloning procedure 

involved following steps. First, the region of the hexon gene encoding the surface domains 

within DE1 and FG1 was replaced by prokaryotic double selection marker galK�Amp, 

containing negative selection marker galactokinase and positive selection marker ampicillin. 

Subsequently, chimeric hexon gene fragments were PCR�amplified and incorporated into the 

intermediate BAC replacing galK�Amp, respectively. This resulted in helper�virus BACs pB�

HV�HVR12, �HVR41, �HVR44, �HVR48, �HVR50, �SD4, �SD7, �SD12, �SD13 and �SD41. 

In addition, revertant BAC pB�HV�HVR5/5 containing the unmodified hexon gene was 

constructed by incorporation of HVR regions amplified from unmodified adenovirus into 

intermediate BAC to proof stability and reliability of the BAC cloning procedures.  
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Figure 5.3: Incorporation of chimeric hexon genes into helper	virus genomes embedded in bacterial 

artificial chromosomes. (a) Hexon�modified helper�virus genomes were generated by traceless modulation of a 

bacterial chromosome (BAC) utilizing homologous recombination. Positive�negative selection marker cassette 

galactokinase�ampicillin (galK�Amp) was incorporated into BAC pB�HV containing the helper�virus genome 

replacing the region encoding surface domains of hexon gene. Intermediate clone pB�HV�hexGA was isolated 

after selection for ampicillin. Subsequently PCR�amplified chimeric hexon sequences replaced selection cassette 

and final BACs were obtained upon selection against galactokinase. (b) Integrity of hexon�chimeric helper�virus 

BACs was verified by restriction digests with EcoRV. (c) Incorporation of chimeric hexon sequences was 

verified by specific PCRs and pB�HV was used as negative control. (d) Contaminations with unmodified helper�

virus BACs were excluded by PCR specific for surface domains of original hexon from serotype 5. Unmodified 

pB�HV as well as revertant BAC pB�HVR5 were used as a positive control. M: 1 kb ladder (PEQLAB 

Biotechnologie GMBH, Erlangen, Germany); 

 

Previous attempts demonstrated low efficiencies for reconstitution of hexon�modified 

adenoviruses. Therefore, a reporter cassette containing eGFP/Firefly luciferase fusion protein 

was incorporated into the E3 region of each hexon�modified helper�virus genome, replacing 

non�coding stuffer DNA.
18

 This allows visualization of eGFP expression during reconstitution 

and in vitro experiments. In addition, non�invasive bioluminescence imaging based on Firefly 

luciferase could be used for in vivo analysis. Final constructs were analyzed by restriction 

enzyme digests resulting in a specific pattern of fragments of respective viral genomes (Fig. 

5.3b). Furthermore, incorporated hexon modifications were verified by PCRs specific for 

respective modifications (Fig. 5.3c) and in parallel contaminations with unmodified helper�

virus BACs were excluded by PCR analysis with primers specific for the unmodified hexon 

gene (Fig. 5.3d). 
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5.2.4. Low reconstitution efficiency for hexon�modified helper�viruses 

To reconstitute hexon�modified helper�viruses HV�HVR12 – 50 and HV�SD4 – 41, genomes 

were excised from respective helper�virus BACs by PacI digest. Subsequently HEK293 cells 

were transfected with linear DNA and after cytopathic effect was observed cells were 

harvested and used for further amplification steps. In initial experiments no hexon�modified 

helper�virus could be generated including the positive control HV�HVR48, a hexon 

modification which was reconstituted before. To overcome this hurdle, reconstitution was 

repeated utilizing three different HEK293 cell lines derived from American tissue culture 

collection (ATCC) and two other sources with significantly different features such as 

amplification rates. Additionally, we used various transfection reagents previously used for 

virus reconstitutions as well as different amounts of DNA purified by column preparation, 

phenol�chloroform extraction or alkaline lysis and successive isopropanol precipitation. After 

a multitude of attempts positive control HV�HVR48 as well as three new hexon�modified 

helper�viruses HV�HVR12, HV�SD4 and HV�SD12 could be amplified. This demonstrated 

feasibility of both approaches, namely exchanging hypervariable regions precisely as well as 

replacement of complete surface domains. However, reconstitution remained challenging, 

because no stable protocol could be established and no clear bottleneck could be identified for 

the reconstitution procedure.  

Figure 5.4: Characterization of final preparations for reconstituted hexon	modified helper	viruses. Vector 

genomes derived from purified viral particles of final vector preparations of HV�HVR12, HV�SD12 and HV�

SD4 were analyzed by PCRs (a) specific for respective hexon�modification to verify chimeric hexon genes and 

(b) specific for unmodified hexon gene to detect contamination. For these vector preparations (c) physical titers 

(viral particles per µl) were determined. Functionality of reporter gene eGFP�FLuc was tested by infection of 

HEK293 cells with respective helper�viruses (1 µl /well) and analyzed (d) by flow cytometry for eGFP 

expression or (e) by luciferase assay for Firefly luciferase activity. M: 1 kb ladder (PEQLAB Biotechnologie 

GMBH, Erlangen, Germany); 
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In separated approaches utilizing identical conditions only one helper�virus was generated 

again whereas all other reconstitutions failed including the positive control. We hypothezised 

that purity of BAC�DNA used for transfection and the transfection efficiency could play a key 

role. This was indicated by relation between transduction efficiency and the success rate in 

generation of helper�viruses. In single reconstitution experiments we observed, that high 

transfection rates, as indicated by increased number of eGFP�positive cells, resulted in 

successful formation of infectious particles but during amplification cytopathic effect of 

HEK293 cells was delayed (72�96 h post�infection). Nevertheless, hexon�modified helper�

viruses could be amplified and purified according to the standard procedure for unmodified 

adenoviral vectors. Final vector preparations were analyzed by PCR specific for hexon�

modifications to verify hexon�modifications and by PCR specific for unmodified hexon genes 

to exclude contaminations with unmodified adenoviral vectors (Fig. 5.4a, b). In addition, 

sequencing results for PCR�amplified HVR regions revealed 100 % identity with expected 

sequence demonstrating sequence conservation during BAC cloning as well as stability of 

vector genomes during amplification. Physical titers of vector preparations for modified and 

unmodified helper�viruses were in similar ranges and comparable to previous preparations 

(Fig. 5.4c). Furthermore 48 h after infection with respective helper�viruses HEK293 cells 

were analyzed by flow cytometry and luciferase assay demonstrating functionality or eGFP�

Firefly luciferase reporter cassettes in the E3 region of each vector (Fig. 5.4d, e). These data 

also verified similar transduction efficiencies for identical numbers of unmodified and hexon�

modified virus particles indicating comparable stability of novel and unmodified viral capsids. 

 

 

Figure 5.5: Analysis of FX	binding in vitro 

for hexon	modified helper	viruses. SKOV3 

cells were incubated for 3h with hexon�

modified helper�viruses (1000 viral particles / 

cell) in absence or presence of coagulation 

factor X (FX) in serum�free conditions. 48 h 

post infection cells were analyzed for Firefly 

luciferase activity. * P > 0.05; ** P > 0.005; 

Experiments were performed by Raul Alba in 

the laboratory of Andrew H. Baker (British 

Heart Foundation Glasgow, Cardiovascular 

Research Centre); 
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5.2.5. FX�binding analysis of hexon�modified helper�viruses  

Previous studies demonstrated stringent dependence of in vivo biodistribution on interaction 

of hexon surface domains with coagulation factor X (FX).
32

 Thus, we investigated FX�

mediated uptake of hexon�modified adenoviruses in vitro. This assay is based on SKOV3 

cells, which are transduced by unmodified adenoviral vectors with very low efficiency due to 

low cellular expression levels of CAR. In contrast, transduction efficiency of unmodified 

virus increases dramatically in the presence of FX, which mediates initial attachment of the 

viral capsid to heparin�sulfate proteoglycans expressed at high levels on the cell surface of 

SKOV3 cells.
32

 Herein, generated hexon�modified helper�viruses were used to infected 

SKOV3 cells with 1000 viral particles / cell in absence or presence of FX and 48 hrs post�

infection Firefly luciferase expression was measured (Fig. 5.5). For HV�HVR12 strongly 

enhanced uptake was observed in absence of FX, suggesting that a new interaction site 

mediating efficient attachment to the cell surface and successive uptake is involved. In 

addition uptake was significantly increased in presence of factor X. In contrast, transduction 

efficiency in absence of FX for HV�SD12 as well as HV�SD4 was as low as detected for 

unmodified vectors. In addition, presence of FX did not result in an increase of expression for 

HV�SD12 but for HV�SD4. This indicated efficient binding of hAd4 hexon surface domains 

to FX comparable to unmodified vectors, whereas no interaction with domains from hAd12 

was observed.  

 

 

5.2.6. Biodistribution of intravenously injected hexon�modified helper�viruses in mice 

For further evaluation of hexon�modified helper�viruses and to gain insight into the in vivo 

biodistribution in vivo studies were performed. All vectors were injected intravenously into 

one C57Bl/6 mouse at a high dose (1 x 10
11

 viral particles) and two mice at a low dose (3.3 x 

10
10

 viral particles). Twenty days post�infection first in vivo bioluminescence measurements 

were performed (Fig. 5.6). To evaluate the degree of vector clearance luciferase activity was 

detected a second time after 40 days (Fig. 5.6). In concordance with increased transduction 

efficiency in FX�binding assays, mice infected with HV�HVRs12 showed a dramatic increase 

in luciferase activity in liver tissue in comparison to the unmodified helper�virus (Fig. 5.6). 

Notably, pictures with optimized signal�to�noise ratios and analysis of extracted organs (data 

not shown) indicated that luciferase was mainly expressed from liver tissue, although low 

transduction rates for other organs near to the liver could not be excluded.  
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Figure 5.6: In vivo biodistribution of hexon	modified helper	viruses in mice after intravenous injection. In 

vivo biodistribution of hexon�modified adenoviral vectors in C57Bl/6 mice was analyzed utilizing a 

bioluminometer. For each vector one mouse was tail�vein injected with a high dose (1 x 10
11

 vps) and two mice 

with a low dose (3.3 x 10
10

 vps). (a) 20 days and (b) 40 days after treatment 200 µl of D�luciferin (20 mg/ml) 

were injected intraperitoneal. 10 minutes after injection bioluminometric measurements were performed. 

Experiments were performed with the help of Wenli Zhang in the laboratory of Anja Ehrhardt. 

 

In addition, low bioluminescence signals were also seen in the snoot, the feet and the tail 

underlining hypothesis of an alternative entry pathway. Comparison of luciferase activity 

between measurements revealed stronger decrease of bioluminescence measured for the liver 

than for signals derived from periphery tissue indicating variation in expression silencing or 

vector clearance. In contrast, for HV�SD12, which also showed lack of FX binding in vitro 

very low bioluminescence signals were detected in the liver after 20 days. Furthermore weak 

luciferase activity was observed in peripheral tissues like the snoot and the feet for HV�SD12, 

which was similar to HV�HVR12. In addition, signal derived from the liver was decreased to 

undetectable levels after 40 days for HV�SD12, but luciferase expression in peripheral regions 

was stable or even increased for the mouse treated with the high virus dose. In contrast to FX�

binding assay results, in vivo analysis of HV�SD4 infected mice exhibited low or not 

detectable transduction rates for liver cells after 20 days and 40 days, respectively, even 

though strong liver transduction efficiency was expected based on the results of the FX 

binding assay. These data demonstrated that modifications of hexon surface domains have 

high potential to alter transduction efficiency in vitro and in vivo and severely influence the in 

vivo biodistribution of adenoviruses.  



5. Hexon	modified helper	viruses showed significantly altered tropisms in vivo 

104 

 

5.3. Discussion 

High�capacity adenoviral vectors resemble veritable tools for gene therapy and vaccination 

approaches. Major obstacles for current applications are the targeting to the liver after 

intravenous injection as well as immunogenicity of the viral capsid shell. In this study we 

exploited potential of adenoviral capsid surface modulations, which have been shown to 

escape from the humoral immune response and to affect the biodistribution in vivo. Therefore, 

we altered sequences encoding surface domains of major capsid protein hexon in the context 

of the helper�virus genome, which provides capsid proteins for HCA vectors. In detail, either 

hypervariable regions or complete surface domains were exchanged precisely with respective 

sequences of other human adenovirus serotypes utilizing a recently established BAC cloning 

technique. Even though reconstitution was challenging, helper�viruses with precisely 

exchanged HVRs from hAd12 and hAd48 were generated as well as chimeras with surface 

domains derived from hAd4 and hAd12. Final vector preparation yields were comparable to 

preparations of unmodified helper�viruses underlining suitability for generation of HCAs. 

Analysis of novel helper�viruses HV�HVRs12, HV�SD12 and HV�SD4 revealed strong 

impact of modifications on in vitro transduction efficiency for CAR negative cells and 

tremendous effects on in vivo biodistribution after intravenous injection.  

The rational for the design of hexon�modifications was based on conservation of structural 

features and interactions. Alignment of amino acid sequences of various human adenovirus 

serotypes showed high conservation of all domains of the hexon base indicating importance 

of structural integrity for these parts of the hexon.
48

 In addition, high definition structural 

analysis revealed numerous interactions of hexon monomers with all proteins of the capsid 

shell except for the fiber protein and this interaction network was assumed to provide the 

capsid stability. All interaction sites are located within the conserved hexon basement, which 

build up the scaffold for viral capsid shell
46

, emphasizing importance for conservation of 

these protein regions. Therefore, it is highly likely that any alterations of these parts of the 

hexon protein affect structural integrity of the whole capsid. In concordance with this 

assumption and in previous attempts, which aimed for generation of adenoviruses with 

completely exchanged hexons or with hexon chimeras containing large exchanges, no stable 

capsids were formed and therefore no virus replication was observed. The molecular design 

applied in this study was based on exchanging hypervariable regions precisely or replacing 

only the hexon surface domains. Therefore, no interactions of hexons with other capsid 

proteins were affected and only two regions with trimerization elements located in domains 
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DE1 and FG1 of unmodified hexons were deleted. A previous study demonstrated efficient 

capsid formation by precise exchanges of hypervariable regions with respective sequences of 

hAd48. However, for this design secondary structures predicted by crystal structure of hexon 

monomers
47,48

 might be affected and severe effects on tertiary structure of the hexon surface 

domains cannot be excluded. Therefore, in this study the alternative design of hexon chimeras 

included exchange of main parts of the domains DE1 and FG1. Althought this approach was 

predicted to be even more challenging than the precise replacement of HVRs
52

 (personal 

communication with J. Bruder), HV�SD4 and �SD12 could be generated successfully and 

hexon�modifications were verified by sequencing. 

However, formation of intact capsids remains as a major challenge for generation of hexon�

modified adenoviruses. Although numerous reconstitution experiments with varying 

conditions were evaluated in this study, no stable protocol could be established. Even though 

a clear bottleneck of the procedure was not identified, purity of linearized viral genome DNA 

utilized for transduction of adenovirus producer cells as well as high transfection efficiencies 

seemed to be critical factors. However, several viral vectors with exchanged hypervariable 

regions as well as with completely replaced surface domains were reconstituted, indicating 

that the size of sequence modifications does not significantly influence the reconstitution 

efficiency. In concordance with this assumption, complete trimerisation of protein chimeras in 

cell culture (Fig. 5.1c) demonstrated, that steric hindrance did not inhibit early assembly steps 

and that hexon trimer stability was not significantly reduced. Furthermore, serotype�specific 

HVR sequences are similar in size in comparison with the original sequence derived from 

hAd5. Therefore, steric hindrance causing inhibition of interactions between hexon trimers 

and neighboring hexon trimers or other proteins of the capsid shell is unlikely. 

Amplification of successfully reconstituted hexon�modified adenoviruses revealed prolonged 

replication rates. This fact as well as the low success rate for reconstitution of hexon�modified 

viruses indicated, that capsid assembly is impaired, potentially being caused by variation of 

the kinetics for formation of hexon trimers. However, repeated freeze�thaw cycles performed 

during virus purification did not result in decrease of final vector yields, indicating high 

stability of hexon�modified adenoviruses. Furthermore, kinetics of eGFP expression seems to 

be similar for hexon�modified and unmodified vectors. Therefore, intracellular processes like 

escape from endosomes, transport along the microtubule, attachment to the nuclear pore or 

disassembly of the capsids for genome release are comparable to unmodified vectors. 
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Although replication cycles of modified vectors were prolonged and optimal time points for 

harvesting cells to obtain maximum numbers of packaged viral particles were not determined, 

titers of final vector preparations as well as total yields were comparable to preparations of 

unmodified vectors. Therefore, generation of HCAs utilizing these novel hexon�modified 

helper�viruses should result in comparable titers and yields. In addition, sequencing results 

obtained for modified regions of viral genomes derived from purified particles of the final 

vector preparation revealed no mutations within the chimeric hexon sequences during 

amplification in cell culture demonstrating high stability of the modified vector genome. 

Furthermore, prolonged replication time even might have a positive effect on helper�virus 

contamination in HCA preparations, because it was previously shown, that the expression 

level of Cre�recombinase is the limiting factor for efficient excision of packaging signal.
17

 

Therefore the delay in capsid formation and packaging of the helper�virus genomes prolongs 

incubation time with the recombinases, which in turn might result in reduction of the number 

of packaged helper�virus genomes. This phenomenon was also observed for phiC31 integrase�

mediated excision of the packaging signal.
57

  

Comparison of transduction rates for CAR�negative cells in presence and absence of 

coagulation factor X in cell culture and in vivo biodistribution after intravenous injections 

revealed surprising data, which are not in line with current knowledge and hypotheses. First, 

mice injected intravenously with HV�SD4 did not show strong liver tropism, although 

addition of FX showed significant increase of virus uptake in CAR�negative SKOV3 cells. 

However, concentrations of FX used in cell culture are higher than levels of circulating FX in 

vivo and proximity of virus and target cells as well as the lack of the blood stream enables 

cellular uptake in cell culture even for capsids weakly interacting with FX. Furthermore, 

intravenously injected viruses interact with other blood components such as erythrocytes 

reducing the number transduced target cells.
58

 Therefore, we hypothesized that liver tropism 

mediated by FX depends on the strength of FX interaction with hexon surface domains. Upon 

this assumption HV�SD4 capsids might have a higher dissociation constant for FX�binding 

than unmodified hAd5�based capsids resulting in enhanced FX�mediated uptake for CAR�

negative cells in vitro but no efficient transduction of liver cells in vivo. Based on this 

hypothesis, observation of FX�mediated uptake in the FX�binding assay in cell culture would 

be insufficient to predict in vivo liver tropism after intravenous administration. In contrast, 

more precise FX�binding assays in vitro would be a good indicator for strong FX ablation 

resulting in reduced transduction rates in the liver tissue in mice. As previously observed for 
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adenoviral vectors with HVRs precisely exchanged with HVRs of hAd48, the fate of HV�SD4 

after tail vain injection into mice could not be determined due to the lack of expression of 

sufficient amounts of Firefly luciferase. This might be caused by macrophage mediated vector 

clearance or binding to erythrocytes and successive elimination.  

The second issue raised by in vivo analysis was the generation of new binding sites of the 

virus capsid for cell surface markers of circulating proteins by modification of hexon proteins. 

Injection of HV�HVR12 resulted in expression of Firefly luciferase in liver cells with a 500�

fold increase in maximum signal strength in comparison to the maximum signal derived after 

infection with unmodified helper�virus. Liver tropism could be verified by bioluminometric 

measurement of extracted organs, although signals derived from isolated organs decreased 

rapidly during preparation. In addition, bioluminescence was detected in periphery tissue. 

Low signal strength might be caused by low numbers of infected cells or insufficient 

distribution of the Firefly luciferase substrate D�luciferin. Therefore it could not be excluded, 

that transduction efficiency for cell types located in the periphery is high, but signal intensity 

is low due to low amounts of D�luciferin. In contrast, also the possibility should be 

considered, that the signal could be detected only due to the localization at the body surface of 

the mice. Therefore transduction rate might be low for cells in the periphery, but 

bioluminescence signals were still detectable due to the missing absorption of signal by other 

tissue of the body. Strong signals derived from the liver and weak signals in periphery tissue 

might be caused by one or two new binding sites generated by hexon�modifications. This is 

underlined by results of the FX�binding assay showing 40�fold increased transduction 

efficiency for HV�HVR12 in comparison to unmodified vector in absence of FX, which is in 

line with the increase of the liver signal in vivo. The fact, that transduction is increased in cell 

culture experiments also indicates, that HV�HVR12 capsids directly interact with a yet 

unknown cellular surface component.  

For FX�binding experiments with HV�SD12 no enhanced uptake into CAR�negative cells in 

absence or in presence of FX was noticed. As expected from these data, in vivo experiments 

revealed low signals derived from liver tissue after days post�injection, which declined to 

undetectable levels at day 40. Transduction of liver cells detected after 20 days might have 

occurred due to unspecific uptake of viral particles from the blood as it was seen for liver�

ablated adenoviral vectors in previous studies.
59

 Furthermore, low bioluminescence signals 

from peripheral tissue were observed. These signals persisted for at least 40 days, what might 

be caused by low induction of the immune response or by slow accumulation of expressed 
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Firefly luciferase. Moreover, comparison of bioluminescence pictures from HV�HVR12 and 

HV�SD12 after 40 days supports the hypothesis, that HV�HVR12 capsids have novel cellular 

surface attachment sites. One of these sites might be specific for hAd12 derived sequences 

mediating the transduction of peripheral tissue whereas a second binding site specific for HV�

HVR12 might enhance the transduction efficiency in general resulting in strong signals for 

cells in the periphery and hepatocytes. With respect to the usage of the novel hexon�modified 

helper�viruses in future approaches, dissociation constants for interaction with coagulation 

factor X should be determined to illuminate details of association between FX�binding and in 

vivo liver tropism. Furthermore, new interaction partners and respective affinities should be 

identified to shed light on the mechanisms determining in vivo biodistributions.   

Based on the assumption that factor X binding motifs are located in the hypervariable regions 

and that this interaction mediates transduction of liver tissue after intravenous injections, both 

vectors HV�HVRs12 and HV�SD12 were expected to behave similarly. However, due to 

dramatic differences in bioluminescence signal strength obtained from liver tissue, impact of 

exchanged hexon sequences seems to be less predictable than assumed. This might have 

occurred due to structural alterations, which were not considered during design of helper�virus 

modifications utilizing precise excision of HVRs. Although conserved regions within the 

surface domains were not exchanged by generation of these hexon chimeras, replacements of 

some hypervariable regions might have disrupted structural elements essential for formation 

of the known tertiary structure of the surface domains. Therefore, new unexpected binding 

sites might have been generated just by chance, in addition to interaction sites encoded by the 

incorporated sequences from the respective adenovirus serotype. In contrast, structural 

integrity of complete domains used for exchanges of surface domains is more likely to be 

stable than that of chimeric domains generated by HVR�replacements. Furthermore, altered 

interaction with other domains might affect stability of capsids with completely exchanged 

surface domains but should not affect capsid surface regions containing binding sites e.g. the 

FX binding site. Therefore, effects on biodistribution by replacement of complete surface 

domains might be more predictable based on the in vivo distribution of respective wild�type 

adenoviruses.  

Nevertheless, biodistribution of novel adenoviral vectors generated in this study have to be 

evaluated in more detail e.g. by tracking bioluminescence signal locations and strength more 

frequently as well as by analysis of DNA isolated from extracted organs to reveal vector fate 

independent from expression of reporter genes. Furthermore, analysis of alanin�
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aminotransferase (ALT) levels, released by hepatocytes when toxicity occurs, have to be 

analyzed to explore differences in vector associated toxicity and innate immune responses. In 

addition, efficacy of capsid�modified adenoviral vectors depends on the amount of 

neutralizing antibodies directed against the modified capsid and the number of vector�specific 

cytotoxic T cells. Therefore, these essential factors should be analyzed periodically after 

injection. In combination with monitored expression levels of delivered transgenes, time 

courses for components of the immune system will reveal advantages and limitations of 

respective vectors. 

Moreover, in vivo experiments with macrophage�depleted mice utilizing clodronate 

liposomes should be performed to evaluate the role of uptake by macrophages in the liver 

(Kupffer cells). For unmodified adenoviral vectors main portion of the administered virus 

particles are cleared by Kupffer cells and in correlation with the uptake of adenoviruses, the 

immune response is triggered. Therefore, it might be interesting to determine the impact of 

hexon�modification on the uptake, especially for HV�HVR12. In addition, experiments 

utilizing mice with CAR�expressing erythrocytes simulating the situation in humans as well 

as with warfarin�treated mice inhibiting FX�mediated liver tropims might illuminate new 

features of the vectors with hexon�modified capsids. Also, evaluation of hexon�modified 

adenoviral vectors in other mouse strains such as Balb/c�mice or in other species such as 

Syrian hamsters might provide novel insights in in vivo performance of these viral vectors. 

With respect to gene therapeutic approaches multiple applications of HCAs transporting 

identical expression cassettes might provide an option to increase expression levels of 

delivered transgenes or siRNAs. With respect to correction of liver�associated genetic defects, 

HCA generated with HV�HVR12 holds great promises due to observed increase in liver 

transduction. For retargeting of HCAs from the liver to other tissues or cell types HV�SD4 

and HV�SD12 might be used due to low signals obtained from the liver after intravenous 

administration. Both helper�virus variants could be used as a basis for incorporation of fiber 

mutants with high affinity for tissue�specific markers. This should result in efficient 

retargeting of the respective HCA in combination with shielding the vector capsids against 

anti�adenovirus 5 antibodies. For vaccination approaches repeated intramuscular injections of 

HCAs encoding one or several antigens might be an option to boost the immune response 

enhancing strength and diversity of antigen�specific antibodies and cytotoxic T cells. 

Therefore, evasion from neutralizing anti�adenovirus 5 antibodies as well as cross�reactivity 
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of antibodies specific for the modified vectors, should be determined to optimize sequential 

administrations and therefore to minimize the anti�adenoviral immune responses. 

To sum it up, we investigated three new hexon�modified helper�viruses for generation of 

HCAs. The new features of the novel HVs revealed in this study clearly demonstrated potency 

for modification of hexons to enable modulation of the adenovirus tropism after intravenous 

administration. Furthermore, experimental data raised questions regarding the strict relation of 

FX�binding and the in vivo liver tropism (HV�SD4) and the structural integrity of hexon 

surface domains modulated by precise exchanges of hypervariable regions (HV�HVR12). In 

summary, this study underlines the key role for modulation of most prominent capsid surface 

domains to generate HCAs with specific targeting and immune�modulatory features, although 

design and generation remain challenging. 

 

 

5.4. Materials and Methods 

 

5.4.1. Construction of plasmids for expression in mammalian cells 

For generation of plasmids encoding hexon chimeras with completely exchanged surface 

regions, a master clone was constructed. Therefore conserved 5’ and 3’ sequences were 

amplified by PCR and subcloned into the vector pCR�BluntII�Topo (Invitrogen) generating 

vectors pT�hex5�5’ with AarI and BglII binding sites at the 3’ end and pT�hex5�3’ with BglII 

and BspQI binding sites at the 5’ end (primers: Table 1.1a). Both vectors were cut with BglII 

and NotI and fragments were ligated resulting in pT�M. Subsequently conserved hexon 

regions were excised from pT�M with restriction enzymes SpeI and NotI and cloned into 

mammalian expression vector pCI (Promega) which was cut with XbaI and NotI. Constructed 

vector pCI�M contained conserved 5’ and 3’ regions of hAd5 hexon separated by restriction 

enzyme binding sites AarI, BglII and BspQI. Recognition sites for endonucleases type II AarI 

and BspQI are directed towards the conserved hexon sequences. Subsequently, digests with 

AarI and BspQI enabled cutting in the conserved regions generating sticky ends and excision 

of binding sites. For generation of hexon chimeras, sequences of hexon genes encoded by 

viral genomes of respective adenovirus serotypes were amplified by PCR. PCR products 

encode AarI binding sites at the 5’ end and BspQI binding sites at the 3’ end, with respective 

cutting sites in the amplified hexon�specific region (primers: Table 1.1b).  

 



5. Hexon	modified helper	viruses showed significantly altered tropisms in vivo 

111 

 

a Generation of master clone pCI	M

hAd5�hex�5�5 ATGGCTACCCCTTCGATGATG

hAd5�hex�5�3 AGATCTCACCTGCAGGGCTTAAAAGTAGGGCCCCT

hAd5�hex�3�5 AGATCTGCTCTTCTGCCATGGAAATCAATCTAAAT

hAd5�hex�3�3 TTATGTTGTGGCGTTGCCGGC

b Generation and analysis of T	SD clones and analysis of pB	HV	SD BAC	clones

hAd4�SD�5 AGATCTCACCTGCAGTTTAAGCCCTACTCCGGCACT

hAd4�SD�3 AGATCTGCTCTTCTGGCAAAAGGATTGCCTAC

hAd7�SD�5 AGATCTCACCTGCAGTTTAAGCCATATTCCGGCACA

hAd7�SD�3 AGATCTTCGCTTCTGGCCTGGTTGTTGCCTAT

hAd12�SD�5 AGATCTCACCTGCAGTTTAAGCCCTATTCCGGAACC

hAd12�SD�3 AGATCTGCTCTTCTGGCGGCTATATTCCCAATCC

hAd13�SD�5 AGATCTCACCTGCAGTTTAAGCCCTACTCGGGCACGGCT

hAd13�SD�3 AGATCTGCTCTTCTGGCAAAGATGTTGCCCTTCC

hAd41�SD�5 AGATCTCACCTGCAGTTTAAGCCCTACTCCGGAACCGCC

hAd41�SD�3 AGATCTGCTCTTCTGGCAAAAATGTTCCCAGATTC

c Generation of pCI	100K	pr

hAd5�100Kpr�5 CACTCTAGAATGGAGTCAGTCGAGAAGAAGG

hAd5�100Kpr�3 CACGCGGCCGCCTACGGTTGGGTCGGCGAACGG

d Sequencing  modified regions of hexon chimera and generation of pB	HV	SD BAC	clones

Seq�hex�SD�5 GATAACCGTGTGCTGGACATG

Seq�hex�SD�3 TTGTCGGGCAAATACAGCGCT

e Generation of intermediate BAC pB	HV	hexGA

B�HV�hexGA�5 TACAACGCCCTGGCTCCCAAGGGTGCCCCAACTCAAGCTATGCATCAAGC

B�HV�hexGA�3 TTCCATGGCAAAATTATTTCCAACTCTTATGAATTGGGCCCTCTAGATGC

f Generation of pB	HV	HVR BAC	clones

B�HV�HVR�5 GGCGTGCTGGACAGGGGCCCTACTTTTAAGCCCTACTCTGGCACTGCCTA

B�HV�HVR�3 AGGTTGGCATTTAGATTGATTTCCATGGCAAAATTATTTCCAACTCTTAT

g Analysis of pB	HV	HVR BAC	clones

HVR5�for CTACTGAGGCGACCGCAGGCAATGG

HVR5�rev TGACCTGTTTTAGGTTTTACCTTGG

HVR12�for ATTCAGCTAACAATGCAGCAAACAC

HVR12�rev TTGCTTCACTGACAGTGTTGTCGGC

HVR41�for CGCCTTGCCAAGCACTCCTAATGAG

HVR41�rev GCATAATTGTCGTCTGCAGTCCAGG

HVR44�for GACATTCCACAAAATGGTGTTCAGG

HVR44�rev TTTGATATTGCATTATCCACTTCCC

HVR48�for ATATTCCCAGTACTGGCACAGGTGG

HVR48�rev GATTGTGTTCAGATACTGCAGTGTC

HVR50�for GACCTAAGATCACAAATGACTGGCC

HVR50�rev CTTTCCAAGTAGTGGTTTCATCACC

Table 5.1: Primers used for cloning procedures and analysis. 
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Amplified sequences were subcloned into the plasmid pCR�BluntII�Topo resulting in vectors 

pT�hex5�SD4, �SD7, �SD12, �SD13 and �SD41. After excising inserts with AarI and BspQI, 

fragments were subcloned into the master plasmid pCI�M digested with AarI and BspQI 

resulting in mammalian expression plasmids encoding for hexon chimera. To construct 

plasmid pCI�100K�pr vector pCI was linearized with SmaI and dephosphorylated with 

alkaline phosphatase. In parallel, the gene encoding adenoviral 100K�protein was PCR�

amplified utilizing viral genomic DNA isolated from purified hAd5 particles as template 

(primers: Table 1.1c). Purified PCR product was phosphorylated with T4 polynucleotide 

kinase and blunt�end ligated with SmaI�cutted pCI vector (T4 DNA Ligase) resulting in vector 

pCI�100K�pr.  

 

 

5.4.2. Synthesis of sequences encoding chimeric hexon surface domains  

For synthesis of chimeric hexon surface domains sequences of HVRs located within the 

human adenovirus serotype 5 hexon gene sequence at positions 403�495 (HVR1), 562�582 

(HVR2), 634�657 (HVR3), 742�783 (HVR4), 802�843 (HVR5), 913�945 (HVR6) and 1255�

1353 (HVR7) were precisely exchanged with respective sequences of human adenovirus 

serotype 12, 41, 44, 48 and 50. Sequences synthesis was performed by GeneArt, Invitrogen 

(Regensburg, Germany) and for delivery sequences were incorporated into a standard vector. 

 

 

5.4.3. Construction of BACs encoding for hexon�modified helper�virus genomes 

For incorporation of hexon chimeric sequences into the adenoviral helper�virus genome we 

utilized cloning techniques based on bacterial artificial chromosomes described elsewhere in 

detail.
60

 In brief, recently described bacterial artificial chromosome pB�HV was transformed 

into SW102 E.coli and in parallel a galK�Amp cassette was PCR�amplified with additional 

sequences at 5’ and 3’ ends homologous to hexon gene sequences upstream and downstream 

of HVRs encoding sequences (primers: Table 1.1e). 1.5 µg of respective PCR products was 

transformed into SW102 containing pB�HV and after heat�shock activated homologous 

recombination and selection for the ampicillin intermediate clone pB�HV�hexGA was 

isolated. Subsequently, chimeric hexon sequences generated by synthesis or regions of 

respective adenoviral genomes coding for the surface domains of the hexon were PCR�

amplified utilizing primers (primers: Table 1.1d, f). Purified PCR products were used for 
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BAC cloning replacing the galk�Amp sequence with chimeric hexon sequences by 

homologous recombination and single clones were isolated by negative selection against 

galK. Next, all hexon�modified helper�virus BACs were modulated replacing the stuffer DNA 

in the E3 region
18

 by a reporter gene expression cassette encoding a eGFP�Firefly luciferase 

fusion protein under the control of the CMV�enhancer/EF1α promoter derived from pEPito�

[hCMV/EF1P]�[EGFP::Luc]�TMARS.
61

 For this cloning step primers dE3�GFP/FLuc�5      

(5�AACACATCGAATACGTTGTCCTGCCTTACCAATGCTTAATCAGTGAGGC�3) and 

dE3�GFP/FLuc�3 (5�CAGCCAGAAAGTGAGGGAGCCACGGTTACATAACTTACGGTA 

AATGGCCC�3) were utilized. Positive clones were purified and used for reconstitution of 

respective hexon�modified adenoviral helper�viruses.  

 

 

5.4.4. Quantitative and qualitative PCRs 

All PCRs were performed utilizing high�fidelity KOD Hot Start DNA Polymerase (Novagen), 

which generates blunt ends. All used primers and templates for respective PCRs are listed in 

Supplementary Table 1. For quantitative PCRs 35 cycles were performed with an annealing 

temperature of 60° and an elongation time of 25 seconds per kb, whereas for PCRs for 

verification of modifications 25 cycles were used. Specific primers for control PCRs to verify 

hexon chimeras with precisely exchanged hypervariable regions were designed to bind to 

sequences of HVR5 and HVR7 of respective hexon genes (primers: Table 1.1g). 

Replacements of the complete surface domains were determined by primers used for 

generation of respective plasmids for expression in mammalian cells (primers: Table 1.1b). 

 

 

5.4.5. Cell culture 

Human embryonic kidney HEK293 cells were cultured in Dulbecco’s modified Eagle’s 

medium supplemented with 10 % fetal bovine serum (PAA Laboratories) and human ovarian 

carcinoma SKOV3 cells were cultured in RPMI 1640 media (Invitrogen) supplemented with 2 

mM L�glutamine (Invitrogen), 10 % fetal calf serum (PAA Laboratories) and 1 mM sodium 

pyruvate.  
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5.4.6. Reconstitution, amplification and purification of hexon�modified helper�viruses 

Helper�viruses were generated and amplified according to protocols published previously. 
62,63

 

In brief, respective helper�virus BAC DNA was digested with PacI and transfected into 

HEK293 cells with Fugene 6 (Roche). After cytopathic effect occured 10�20 days post 

transfection, cells were harvested and virus particles were released by three consecutive 

freeze�thaw steps. Helper�virus was amplified by infection of increasing numbers of HEK293 

cells. For the final amplification step 4 x 10
8
 HEK293 cells were infected and generated 

helper�virus particles were purified by two successive caesium chloride (CsCl) gradients. For 

application in vitro and in vivo toxic CsCl solutions with virus were exchanged with a 

physiological buffer by dialysis and vector aliquots were stored at �80°C until usage. 

 

 

5.4.7. Determination of physical titers of hexon�modified helper�viruses and sequencing 

Detailed procedures to determine physical titers of an adenoviral vector preparation were 

described elsewhere.
62

 In brief, for determination of number of packaged viral particles 

(physical titer) we diluted 5 µl of the vector preparation with 95 µl TE buffer supplemented 

with 0.1 % sodium dodecylsulfate. After shaking for 30 min at 37 °C OD260 was measured 5 

times and mean value was used to calculate the physical titer. Sequencing for verification of 

modified hexon regions was performed by Eurofins MWG Operon (Ebersberg, Germany) 

utilizing sequencing primers (primers: Table 1.1d). 

 

 

5.4.8. Western Blot analysis 

HEK 293 cells were seeded in 60 mm dishes and co�transfected at 60% confluence with 

mammalian expression plasmids pCI�100K�pr encoding adenoviral 100K�protein and pCI�

hex5�SD4, �SD7, �SD12, �SD13 and �SD41 for expression of the chimeric hexon protein, 

respectively. 72 hrs post�transfection, cells were harvested in 200 µl lysis buffer (50 nM Tris�

HCl pH 8.0, 150 nM NaCl, 1 % NP�40) and incubated for 30 min on ice. For western blot 

analysis 5 µl loading dye (5x) was added to 15 µl cell lysate, respectively, and subsequently 

boiled at 95°C for 5 min or cooled at 4°C. Proteins were separated by SDS�PAGE utilizing a 

10% SDS�polyacrylamid gel and transferred by semi�dry blotting on a methanol�activated 

PVDF membrane. The membrane was treated over night with blocking buffer (20 mM Tris 

pH 7.5, 500 mM NaCl, 5% milk powder) and after 3 washing steps with TBST (20 mM Tris 
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pH 7.5, 500 mM NaCl, 0.05% Tween, 0.2 % Triton�X100), the membrane was incubated for 

1 hr with the polyclonal anti�adenovirus antibody PA1�7201 (Dianova, final concentration 

1:500) diluted in blocking buffer. Subsequently, the membrane was washed 3 times and 

incubated with the monoclonal peroxidase�conjugated rabbit anti�goat antibody (Jackson 

ImmunoResearch Laboratories Inc., final dilution 1:10000) diluted with blocking buffer. For 

protein detection blots were washed three times, ECL reagent (GE Healthcare) was added and 

peroxidase activity detected according to manufacturers’ instructions. 

 

 

5.4.9. Flow cytometric analysis 

HEK 293 cells were seeded in 6�well plates and infected with unmodified or hexon�modified 

helper�virus (1 µl/well). After 48 hrs incubation at 37°C cells, were washed with DPBS and 

treated with trypsin. Detached cells were harvested and resuspended in DPBS supplemented 

with 0.1% FBS. Subsequently, each sample was analyzed for eGFP expression by flow 

cytometer FACS Canto II and data derived from 20,000 detected events were used for 

evaluation, respectively. 

 

 

5.4.10. Luciferase assay 

Quantification of Firefly luciferase expression was performed utilizing the Dual�Luciferase
R
 

Reporter Assay System kit (Promega). In detail, HEK 293 cells seeded in 6�well plates were 

infected with unmodified or hexon�modified helper�virus (1 µl/well). 48 hrs post�infection, 

cells were washed with DPBS and harvested in 500 µl passive lysis buffer provided by the kit. 

5 µl of the cell lysate were mixed with 35 µl luciferase assay reagent II, respectively, and 

subsequently Firefly luciferase activity was measured for 5 seconds at 492 nm utilizing a 

luminometer (Microlumat Plus LB 96V, Berthold). 
 

 

 

5.4.11. In vitro analysis of FX�mediated transduction 

FX binding assay was performed in a 96�well format with 5 x 10
4
 SKOV3 cells/well. Cells 

were infected with unmodified or modified helper�viruses (1000 vps/cell) in serum�free 

medium in absence or presence of FX (Haematological Technologies) with a final 

concentration of 1 IU/ml. After 3 hrs incubation at 37 °C infected cells were washed with 
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DPBS and subsequently maintained in full medium for 48 hrs. Next, cells were harvested and 

transduction efficiency was quantified by detection of Firefly luciferase activity. 

 

 

5.4.12. In vivo biodistribution studies 

Female C57Bl/6 mice were kept and treated according to the guidelines of the Ludwig 

Maximilians University of Munich (Munich, Germany). Viral vectors were diluted in DPBS 

and injected intravenously via tail vein using a total volume of 250 µl. For biodistribution 

measurements 250 µl D�luciferin diluted with DPBS (20 mg/ml) was administered 

intraperitoneally. Ten minutes post�injection bioluminescence imaging was performed 

detecting luciferase activity by the CCD camera (1 min exposure time) and recorded images 

were evaluated using the Xenogen IVIS Imaging System 200 Software. 
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6. Discussion 

 

Gene therapy is an attractive alternative for long-term correction of genetic disorders, which 

is based on delivery of therapeutic DNA into cells affected by the respective mutated gene. 

For efficient transport of the therapeutic DNA vectors are used, which are commonly based 

on recombinant viruses. The viral vector type and associated vector features mainly determine 

the outcome of a gene therapeutic approach. In this work, I focused on adenoviral vectors, 

which are generally based on human adenovirus 5 (hAd5). hAd5 is a non-enveloped virus 

with a double-strand DNA genome, which was shown to transduce a broad range of cell types 

with high transduction efficiencies in cell culture and after intravenous injection in mice 

transduction of liver tissue is observed. High-capacity adenoviral vectors (HCAs) are the 

newest generation of adenoviral vectors with vector genomes devoid of all coding viral 

sequences. In principle, for generation of HCAs 116 producer cells are co-transduced with a 

helper-virus (HV) enabling generation of virus capsids and the high-capacity adenoviral 

vector genome encoding the therapeutic DNA, which is packaged into the virus capsid 

(Figure 1.7). Therefore, they enable the transfer of therapeutic DNA of up to 36 kb in size. As 

a major advantage of HCAs compared to earlier generations of recombinant adenoviral 

vectors, vector-associated toxicity and immunogenicity are low due to the lack of leaky 

expression of viral proteins. Nevertheless, acute toxicity detected after administration of high 

doses of HCAs and remaining immune response directed against the incoming viral particle or 

the transgene product are major obstacles for applications of HCAs, because these features 

can result in a decreased therapeutic effects. As another limitation, adenoviral vectors are not 

able to transduce certain cell types utilized for cell-mediated gene therapy such as 

hematopoietic stem cells and applications for in vivo gene therapies are mainly restricted to 

diseases affecting the liver. In addition, vector genomes remain episomal in transduced cells 

and therefore achievement of long-term effects is hampered especially for dividing cells. The 

aim of this work was to establish novel methods for genetic engineering of HCAs and to 

evaluate options to improve HCA features with respect to therapeutic applications. 
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6.1. A rapid protocol for construction and production of high-capacity adenoviral 

vectors 

As a basis for optimization of HCA features a standardized protocol for efficient production 

of HCAs was established in this thesis. This protocol includes an efficient cloning procedure 

for incorporation of therapeutic DNA of up to 14 kb into a HCA genome based on rare 

restriction enzymes (Figure 2.3) and large-scale amplification of HCAs utilizing a spinner-

flask system for culturing up to 3 liter of the producer cell line 116, which has been adopted 

for suspension culture (Figure 2.4). Furthermore, purification of produced HCAs by two CsCl 

gradients and successive dilution of the vector in physiological buffer by dialysis are 

described as well as titration methods for determination of the physical titer and the infectious 

titer of HCA preparations. All steps of the manual are described in detail highlighting critical 

points and moreover, an extensive trouble shooting guide is supplied. This should allow any 

scientist to establish this challenging method in a laboratory and therefore, to yield vector 

preparations with titers of 5 x 10
6
 – 5 x 10

7
 transducing units per µl and total numbers of 5 x 

10
9
 – 1 x 10

11
 transducing units within 3 weeks. In conclusion, the protocol provides a 

standard, which allows evaluation and comparison of results obtained with HCAs produced 

and tested by different groups. In addition, amplification based on a spinner-flask has been 

shown to be an extendable system as a recently presented study demonstrated efficient 

amplification of adenoviral vectors utilizing a bioreactor with a volume of 200 liters 

(Cecchini, Virag et al. 2011). Therefore, this protocol provides the opportunity for up-scaling 

the production under GMP conditions, which might be essential for translation of HCAs into 

clinical studies. With respect to optimization of HCA-based vector systems this protocol is a 

prerequisite for introduction of any genetic alteration into HV genomes or HCA genomes. 

 

 

6.2. Hyperactive Sleeping Beauty transposase enables persistent phenotypic correction 

in mice and a canine model for hemophilia B 

As already mentioned, one major challenge for utilization of HCAs in gene therapeutic 

approaches is the fact, that HCA genomes remain episomal in the nucleus of transduced cells. 

Therefore, no long-term effects can be achieved in replicating cells. To face this problem a 

hybrid vector system was established, which combines somatic integration of transgenic 

sequences mediated by the Sleeping Beauty transposase (SB) with efficient delivery by 

HCAs. Evaluation of this system in a murine hemophilia B model revealed efficient 
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transduction of hepatocytes and integration into host genomes as well as long-term 

phenotypic correction mediated by stable expression levels of functional transgenic human 

coagulation factor IX (Yant, Ehrhardt et al. 2002).  

In a follow-up study, I improved the system replacing native SB with the hyperactive version 

HSB5 (Fig. 3.1c), which has been shown to perform 10 times better in cell culture (Yant, 

Huang et al. 2007). Evaluation in mice demonstrated stable expression of canine coagulation 

factor IX (cFIX) even after induction of cell cycling by liver toxin CCl4 (Fig. 3.2a) indicating 

efficient delivery after intravenous application and high integration rates. In a preclinical 

study with a canine model for hemophilia B, treatment resulted in phenotypic correction for 

almost 3 years (Fig. 3.3a) mediated by low but stable serum cFIX expression (Figure 3.4a). 

However, increase of the total vector dose for treatment of a second hemophilia B dog 

resulted in reduction of cFIX expression down to undetectable levels (Fig. 3.4b) accompanied 

by reoccurance of the phenotype (Fig. 3.3b). In contrast to the treatment with a low dose, liver 

enzymes were strongly increased after intravenous administration (Fig. 3.5a, b) and 

additionally, high levels of neutralizing anti-adenoviral antibodies appeared 2-5 weeks after 

treatment (Fig. 3.6), but no formation of anti-cFIX antibodies was observed. This indicated a 

strong immune response specifically directed against adenoviral vector particles, which might 

also include generation of cytotoxic T cells specific for transduced cells contributing to the 

reduction of cFIX levels. In conclusion, the therapeutic window for the adenovirus-SB 

transposase hybrid vector system is narrow and therefore, utilization of hyperactive HSB5 

might have been essential to achieve a long-term effect. Semi-quantitative analysis of DNA 

extracted from liver cells of the phenotypically corrected dog demonstrated, that sustained 

expression of cFIX was mainly derived from integrated transposons (Fig. 3.7a) and SB-

mediated integration was verified by sequencing of integration sites (Fig. 3.7b). In contrast, 

the number of episomal vector forms either containing the transposon or encoding the 

integration machinery was comparably low (Fig. 3.7a), indicating a low probability for severe 

damages of chromosomal DNA caused by rest activity of the integration machinery. 

However, for translation of the system into clinical studies further modifications are necessary 

to broaden the therapeutic window and to improve the safety profile (reviewed in Hausl, 

Zhang et al. 2011). Therefore, utilization of the SB100 with 100-fold higher activity in 

comparison to the original Sleeping Beauty transposase will significantly increase the 

efficiency of the system (Mates, Chuah et al. 2009). In addition, optimized IRs flanking the 

transposon have been shown to significantly enhance the number of transposition events 
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especially for large transposons (Yant, Park et al. 2004; Zayed, Izsvak et al. 2004). 

Furthermore, higher efficacy of the system could be achieved by combination of the 

integration machinery and the transposon within a single HCA (one-vector system) 

circumventing the necessity for co-transduction of a target cell with two vectors. However, to 

prevent excision of the transposon during HCA amplification, expression of the integration 

machinery components has to be coupled with a system for inducible expression such as the 

feed-forward system based on the artificial hormone mifepristone, which was shown to be 

suitable for clinical studies (Elia and Ulmann 1986; Sharma, Moldt et al. 2008). In addition, 

temporal restriction of the expression profile might be an option to avoid the overproduction 

inhibition effect observed for all SB variants (Mates, Chuah et al. 2009) and to reduce 

potential genotoxicity caused by Flpe recombinase (Branda and Dymecki 2004) and SB 

transposase variants (Yant, Wu et al. 2005) as well as protein-associated toxicity of the SB 

transposase itself (Galla, Schambach et al. 2011). Moreover, the one-vector system will allow 

coupling of circularization of the transposon with the shut-down of Flpe expression and the 

on-set of the SB transposase expression (Yant, Ehrhardt et al. 2002). In the same approach the 

excision of the transposon from the circular intermediate could be utilized to stop expression 

of the SB transposase. Therefore, expression of Flpe recombinase and SB transposase will be 

reduced to a minimum significantly decreasing toxic side effects and preventing hopping of 

the transposon within the host genome, which might cause genotoxic effects (Vassiliou, 

Cooper et al. 2011). 

It is of note that for delivery of the SB transposase system, retroviral vectors or AAV vectors 

might be considered as an option (Müther, Noske et al. 2009). Lentivirus/SB hybrid vectors 

with a defective lentiviral integrase have been generated resulting in random SB-mediated 

integration of the therapeutic transgene (Staunstrup et al. 2009). However, further 

improvements of the integration machinery is limited by the restricted capacity of lentiviral 

vectors (>10 kb) and furthermore, some transposon sequences have been shown to decrease 

the vector titer (Vink et al., 2009). Currently, no AAV-based hybrid vector systems are known 

and generation might be challenging due to strongly limited packaging capacity of AAV 

vectors (>5kb). In addition, highly structured inverted terminal repeats flanking AAV vector 

genomes might influence recognition of the inverted repeats flanking the transposon by the 

transposase (Aurnhammer, Haase et al. 2011). Therefore, adenoviral vectors are the vector of 

choice for application of this type of hybrid vector systems in vivo and moreover, HCAs 
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provide sufficient capacity to enable optimizations of the integration machinery and the 

therapeutic DNA. 

Besides vector optimization utilization of other machineries enabling somatic integration also 

might be an attractive alternative. However, the newest hyperactive version of the Sleeping 

Beauty transposase (SB100X) has been shown to be most efficient in comparison to other 

transposon-based integration machineries except for the recently developed hyperactive 

version of the PiggyBac transposase, which have been shown to mediate even higher rates of 

somatic integration in cell culture and in vivo (Doherty, Huye et al. 2011; Yusa, Zhou et al. 

2011). Additionally, the PiggyBac transposase enables transposition of large cargo sequences 

with low reduction in efficiency (Li, Turner et al. 2011), whereas size of the optimized SB 

transposon is limited to transgenic sequences less than 12 kb in size (Alessandra Recchia, 

personal communication). Furthermore, in contrast to Sleeping Beauty transposons excision 

of a PiggyBac transposon, which has been integrated in the chromosomal host DNA, is 

traceless (Yusa, Rad et al. 2009). Therefore, a hybrid vector system based on the PiggyBac 

transposase might be an attractive alternative with respect to the capacity of 36 kb for HCAs, 

although the integration profile is biased towards transcriptional active chromosomal regions 

to a small extend (Huang, Guo et al. 2010). Especially for ex vivo gene therapeutic 

application traceless excision of the PiggyBac transposon is an important feature, because it 

allows generation of autologous cells by dedifferentiation, differentiation or trans-

differentiation without any permanent alterations of the chromosomal DNA potentially 

influencing altered cells after retransplantation (Yusa, Rad et al. 2009).   

To reduce the genotoxicity, an integration machinery specifically targeting distinct loci within 

the host genome is a desired goal. One option is the bacterial phiC31 integrase, which 

preferentially integrates into a hot spot located at chromosomal region 19q13 or in other 

pseudo-attP sites within the host genome (Chalberg, Portlock et al. 2006). However, serious 

side-effects such as chromosomal translocations were detected when using when using the 

phiC31 integrase (Ehrhardt, Xu et al. 2005). As an alternative for more specific targeting 

within the host genome, DNA binding domains of zinc-finger nucleases were analyzed in the 

past, which exhibit specific recognition of distinct sequences with a length of 18 bps. 

Moreover, these domains could be re-designed to bind other sequences enabling targeting of 

an unique site within the human genome (Porteus 2008). Although design of these domains 

remains challenging, several zinc-finger binding domains have been constructed to bind to 

genome regions called “safe harbors”, which have been shown not to be related with any 
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genotoxic side-effects (Alwin, Gere et al. 2005). Furthermore, a new type of binding domains 

called transcription activator like effector domains (TALEs) was discovered recently (Boch, 

Scholze et al. 2009). For the design of TALEs, subdomains binding one distinct base-pair 

could be rearranged resulting in a DNA binding domain which specifically binds the 

respective DNA sequence (Miller, Tan et al. 2011). For gene therapeutic approaches zinc-

finger nucleases as well as TALEs could be combined with homologous recombination 

between the host genome DNA and a therapeutic donor sequence, which is provided in trans 

(Wood, Lo et al. 2011). Although a recent study demonstrated efficacy of this system in 

neonatal mice (Li, Haurigot et al. 2011), application in adults is hampered by the fact, that in 

differentiated cells double-strand breaks are mainly repaired by non-homologous end joining 

(Tichy, Pillai et al. 2010). As an alternative for site-specific integration fusion proteins have 

been generated combining zinc-finger DNA binding domains or artificial DNA-binding 

domains with proteins mediating somatic integration such as the Sleeping Beauty transposase 

or the piggyBac transposase (Wilson, Kaminski et al. 2005; Wu, Meir et al. 2006). 

Nevertheless, design of these fusion proteins appeared to be challenging, because either 

specificity of DNA-binding or functionality of the integration machinery is often reduced 

(Yant, Huang et al. 2007).  

However, one major disadvantage of approaches utilizing systems for site-directed integration 

is the low integration efficiency, which is mainly caused by the low number of target sites 

present in the mammalian genome. In contrast, systems mediating random integration such as 

the Sleeping Beauty transposase or integration into transcriptional active sites like for 

lentiviral vectors are more efficient due to high number of target sites within the host genome 

but insertional mutagenesis might cause genotoxic effects. Nevertheless, a recent report 

describing a clinical study utilizing regular lenti-viral vectors for ex vivo transduction of cells 

showed that several months after transplantation of transduced cells no expansion of certain 

cell clones due to transformation was observed (Mazurier, Gan et al. 2004; Biffi, Bartolomae 

et al. 2011). In summary, major issues which need to be addressed are whether the safety of 

random integration machineries is high enough for their use in clinical trials and whether the 

efficiency of site-directed integration machineries could be increased to obtain sufficient 

effects in humans. 

Moreover, the necessity for somatic integration mediating long-term expression of a transgene 

has to be considered carefully, because particularly in resting cells episomal persistence might 

be an option, which is not associated with insertional mutagenesis. This is underlined by 
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preclinical studies in hemophilia B dogs, which were treated with HCAs (Brunetti-Pierri, 

Stapleton et al. 2009) or AAV vectors (Niemeyer, Herzog et al. 2009). Both studies 

demonstrated expression of canine FIX mainly derived from episomal stable vector genomes 

resulting in therapeutic effect for 6 and 8 years, respectively. Furthermore, DNA replicons for 

episomal persistence such as vectors based on scaffold/matrix attachment regions (S/MAR) 

could also present an attractive option (Stehle, Scinteie et al. 2003). These replicons enable 

replication during the cell cycle and therefore, they provide a potent alternative for integration 

machineries. However, application of episomal stable and replicating DNA circles has been 

shown to be hampered by low transduction and establishment efficiencies, although a hybrid 

vector system utilizing HCA for delivery of DNA replicons may hold great promise 

(Voigtländer R., Muck-Hausl M.; unpublished data).  

Besides improvements regarding the integration machinery of the adenovirus-SB transposase 

hybrid vector system, the HCA vector could be altered to provide new properties. Several 

groups discovered modifications of the adenovirus capsid, which enable detargeting from the 

liver after intravenous injection by ablation from FX-binding. This was achieved by point 

mutations in the HVRs responsible for FX-binding (Alba, Bradshaw et al. 2009) or exchanges 

of the HVRs with respective sequences from other serotypes (Roberts, Nanda et al. 2006). 

Furthermore, combinations with other capsid-modifications like certain published fiber-

modifications might allow retargeting of HCAs to other organs (Noureddini and Curiel 2005). 

This could provide the opportunity to apply the hybrid vector system for in vivo treatment of 

genetic defects affecting other cell types than hepatocytes. Moreover, several capsid-

modifications have been shown to increase the transduction rate of respective HCAs for 

distinct cell types in cell culture. For instance adenoviral vectors with fiber knobs of the 

human adenovirus serotype 35 were shown to mediate transduction of hematopoietic stem 

cells (Yotnda, Onishi et al. 2001). Therefore, the hybrid vector system utilizing HCAs with 

these modulations might resemble a potent alternative for gene transfer in cell-mediated ex 

vivo gene therapeutic approaches. Additionally, some capsid-modifications have shown to 

enable escape from the anti-hAd5 humoral immune response allowing repeated vector 

administration in vivo and therefore, enhancement of vector potency (Liu, O'Brien et al. 

2009). However, to exploit full potential of HCAs more efficient engineering techniques are 

required enabling rapid modulation of arbitrary capsid components and generation of complex 

HCAs like the described 1-vector system. 
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6.3. BAC cloning techniques for advanced engineering of adenoviruses enable selective 

and complex gene transfer  

Current cloning strategies for generation of high-capacity adenoviral vector genomes and 

manipulation of helper-virus genomes are work-intensive and efficiencies are moderate 

(Jager, Hausl et al. 2009; Khare, May et al. 2011). To enable easy and rapid genetic 

manipulations, I established a cloning platform based on bacterial artificial chromosomes 

(BACs), which enables modifications of the adenoviral genome by homologous 

recombination (Fig. 4.1). In detail, bacteria of the E.coli strain SW102 expressing λ 

recombinases upon heat-induction were used to mediate recombination of sequences with at 

least 25-30 base pairs of homology (Warming, Costantino et al. 2005). These homologous 

regions flanking the sequences of interest could be generated by PCR using respective 

primers. For traceless modifications a technique based on a bacterial expression cassette 

containing a negative and a positive selection marker can be used (Wang, Zhao et al. 2009). 

This double selection marker is introduced into the target region of the genome region and 

subsequently replaced by the sequence, which should be introduced (Fig. 3b).  

The BAC cloning technology for manipulation of adenoviral vectors established in this thesis 

provides several advantages compared to methods described previously. These conventional 

cloning strategies are based on rare restriction enzymes or homologous recombination in the 

E.coli strain BJ5183 or human embryonic kidney-derived 293 (HEK293) cells (McGrory, 

Bautista et al. 1988; Bett, Haddara et al. 1994; Chartier, Degryse et al. 1996; Mizuguchi and 

Kay 1998). For all these methods two intermediate clones have to be generated containing the 

sequence of interest flanked by either restriction enzyme sites or homologous regions and 

encoding a modified vector genome with a restriction site at the target region, respectively 

(Fig. 1.9). In sharp contrast, for the novel BAC-based system no intermediate clones have to 

be constructed. Furthermore, the new BAC-based method is suitable for traceless modulation 

of any site within the genome such as an intragenic region, whereas the conventional system 

for recombination in HEK293 cells is restricted to 5’ and 3’ regions of the genome. Also, 

previously described cloning methods based on rare restriction enzyme are not suitable for 

this kind of application. 

The BAC cloning platform is easily accessible for complete viral genomes isolated from 

purified particles (Ruzsics, Wagner et al. 2006) as I exemplified by generation of the BAC 

containing the helper-virus genome (Figure 4.2). Furthermore, I established an alternative 

method called backbone-exchange. This method enables the conversion of a plasmid 
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containing an adenoviral genome into the respective BAC, as demonstrated by generation of a 

BAC containing a high-capacity adenoviral genome (Fig. 4.4). These construction methods 

guarantee rapid access for all available vectors to the BAC cloning platform within a single 

cloning step. Moreover, the backbone-exchange technique includes the option to switch the 

vector types from first-generation adenoviral vector (FG-AdV) genomes to respective helper-

virus genomes or replication-competent oncolytic adenovirus genomes containing modulated 

E1 regions (Parks, Chen et al. 1996; Nettelbeck, Rivera et al. 2002). In contrast, previous 

reported construction methods for generation of novel FG-AdVs or adoption of FG-AdVs to 

HVs afford multiple cloning steps of high complexity (Zhou, Zhou et al. 2010; Khare, May et 

al. 2011). In this thesis utility of the BAC cloning platform was proven by traceless 

modification of the generated HV-BAC incorporating established fiber chimera fib5/35 

(Yotnda, Onishi et al. 2001), which has been shown to alter tropism in cell culture, or hexon 

chimera hex5/48 (Roberts, Nanda et al. 2006), which detargets the vector from the liver and 

enables escape from neutralizing antibodies (Fig. 4.3). This demonstrates, that any known 

modification of adenoviral genomes could be easily adopted to any BAC-encoded adenoviral 

genome. Moreover, capsid-modifications could be rapidly merged within one adenoviral 

genome to combine respective vector properties such as more precise in vivo retargeting and 

escape from neutralizing antibodies offering the option of repeated vector administrations in 

vivo.  

To exploit the full potential of high-capacity adenoviral vectors, I established a recombination 

pipeline based on the BAC technology. This allows generation of high-capacity adenoviral 

genomes containing multiple expression cassettes. In principle, this recombination pipeline is 

based on iterative homologous recombinations with alternating positive selection markers 

coupled to the sequences, which should be inserted (Fig. 4.5a). Therefore, after homologous 

recombination selection in liquid culture for the respective selection marker is possible. This 

culture can directly be used for insertion of the next sequence coupled with another positive 

selection marker replacing the previously used positive selection marker. In sharp contrast to 

established cloning procedures no intermediate clones have to be isolated and as a 

consequence several sequences could be combined rapidly within a HCA genome with small 

effort. Full potential of the recombination pipeline could be exploited by construction of 

several sequence combinations in parallel. Successively generated sequences could be 

amplified by PCR and combined in a single BAC (Fig. 4.5b). Additionally, the recombination 

pipeline allows introduction of small sequences like minimal internal ribosomal entry sites 
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(IRES), protease cleavage sites, minimal polyadenylation signals, microRNA target sites and 

small operator sequences such as used for the tetracycline-inducible expression system.  

In this study, I applied this advanced cloning technology for generation of the BAC BHCA-

2indsys containing two independent expression systems. For construction, 8 sequences 

derived from plasmids or genomic DNA and 3 small sequences generated by PCR were 

combined within the HCA genome by 12 cloning steps utilizing the recombination pipeline 

(Fig. 4.5b). One of the incorporated systems mediates cell-type specific expression of the 

humanized Renilla luciferase in hepatocytes (Ehrhardt, Xu et al. 2003) upon induction by 

addition of the synthetic hormone mifepristone (Osterwalder, Yoon et al. 2001), whereas the 

second system enables expression of enhanced green fluorescence protein (eGFP) and Firefly 

luciferase in cells expressing the stem cell-specific transcription factor oct4 (Nordhoff, 

Hubner et al. 2001) in presence of the antibiotic drug doxycycline (Mohr, Arapovic et al. 

2010). In the future, HCA derived from this BAC might be used in experiments for transient 

tracking of cells in cell culture during dedifferentiation or differentiation processes. 

Furthermore, it might provide an option to track the differentiation status of stem cells after 

transplantation in cell-mediated gene therapeutic approaches (Warlich, Kuehle et al. 2011). In 

addition, modulated expression systems enabling inducible expression of transcription factors 

at a certain differentiation status might provide the opportunity to control transdifferentiation 

in cell culture or even in vivo (Takeuchi and Bruneau 2009; Vierbuchen, Ostermeier et al. 

2010).  

Construction of BHCA-2indsys demonstrated, that the concept of the recombination pipeline 

allows efficient combination of sequences within a BAC containing a HCA genome, whereas 

with currently used cloning methods the effort would be enormous and construction would be 

very time consuming (Hausl, Zhang et al. 2010; Puntel, Muhammad et al. 2010). 

Furthermore, corrections or alterations could be incorporated upon demand utilizing the 

positive-negative selection BAC cloning strategy. Therefore, reporter genes could be 

incorporated for initial evaluation of a HCA, which subsequently could be replaced by the 

gene of interest. Additionally, intermediate clones, which were created during generation of a 

complex HCA genome, could be isolated upon demand to generate a collection of clones, 

which could be used for construction of HCA genomes required for other studies. 

Although the BAC technology combines several advantages in comparison to cloning 

methods conventionally used for generation of adenoviral vectors, the question might rise, 

whether even more efficient cloning procedures can be established. However BAC cloning 
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variants utilizing SacB, rpsL
+
 or rare restriction enzymes like I-SceI for negative selection 

were associated with high numbers of false positive clones caused by low selection pressure 

or sensitivity of the respective sequences for mutations introduced during amplification in 

growing bacteria (Zhang, Buchholz et al. 1998; Jamsai, Orford et al. 2003; Warming, 

Costantino et al. 2005; Wang, Zhao et al. 2009). Nevertheless, alternative negative selection 

markers provide the opportunity to generate intermediate clones for traceless manipulation of 

two or more regions within a single BAC. In the past, yeast artificial chromosomes (YACs) 

were used for manipulation of large DNA sequences, but transformation efficiencies in yeast 

are low (Monaco and Larin 1994) and cloning procedures and isolation of the respective DNA 

were hampered by rearrangements and a high degree of chimerism. Moreover, inserts 

incorporated in YACs were shown to be instable, limiting their usefulness for generation of 

adenoviral vector genomes (Green, Riethman et al. 1991). Regarding applications of 

commercial kits such as the gateway system (Invitrogen) or the in-fusion cloning method 

(Clontech) for adenoviral vectors, these cloning strategies are restricted to manipulation of the 

E1 region within a plasmid containing a first-generation adenoviral vector genome provided 

by the respective company. In contrast, circular polymerase extension cloning (CPEC) allows 

combination of various elements with overlapping homologous regions by PCR with a proof-

reading polymerase (Quan and Tian 2009; Quan and Tian 2011). However, when using the 

latter method construction of plasmids is currently limited to a size of about 20 kb and 

therefore this method is not suitable for design of complete adenoviral vector genomes 

(Shevchuk, Bryksin et al. 2004). Nevertheless, CPEC might resemble a powerful tool to 

generate intermediate clones or combine sequences with a positive selection marker 

essentially for usage in the recombination pipeline. Finally, the most elegant way to generate 

complex HCAs would be the complete synthesis of the vector genome. Recently it has been 

demonstrated, that synthesis of DNA sequences of about 24 kb in size could even be used for 

generation of a functional synthetic bacterial genome (Gibson, Benders et al. 2008). However, 

costs are still very high and synthesis takes a long time for sequences of 30 kb or larger. In 

summary, with respect to the options provided by the established BAC cloning method based 

on positive-negative selection as well as by the newly invented techniques called backbone-

exchange and recombination pipeline, valuable tools for modulation of large DNA sequences 

were established in this thesis.  

Beside restrictions set by previously used cloning methods high effort required for large-scale 

production severely impaired simultaneous production of a multitude of HCAs. Therefore, I 
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tested commercially available ion-exchange columns (Vivapure AdenoPACK 20, Sartorius, 

Göttingen) for small-scale HCA-preparations. Although packaged viral vectors are not 

dissected from empty particles, these HCA preparations had similar titers (Fig. 4.6), which are 

sufficient to perform extensive cell culture experiments and initial in vivo experiments. 

Despite the fact that utilization of ion-exchange columns for purification of HCAs was a 

logical step and success of the application was not surprising, this method simplifies the 

generation of HCAs, HVs or other adenoviral vectors significantly and provides the 

opportunity to implement HCAs in the laboratory without expensive equipment such as an 

ultracentrifuge. Moreover, ion-exchange columns might provide an attractive alternative for 

up-scaling the production of HCAs to provide vector particle amounts sufficient for clinical 

studies. In addition, with respect to capsid-modifications, which might affect the total charge 

of the capsid surface and in consequence alter binding properties, column properties could be 

adapted to altered capsids for optimized vector yields (Konz, Livingood et al. 2005). 

 

 

6.4. Hexon-modified helper-viruses showed significantly altered tropism in vivo 

Next, I utilized the new cloning platform to investigate further improvements for HCAs. One 

of the major disadvantages evaluated in previous studies is the robust adaptive immune 

response, which reduces the effect yielded by a single application of HCAs and also prohibits 

repeated treatments. Moreover, in vivo therapies utilizing intravenous administration are 

restricted to liver-associated diseases. Key plaver for all these features is the major capsid 

protein hexon, which contains the majority of epitopes recognized by neutralizing antibodies  

and also mediates FX-binding and therefore liver tropism (Fig. 1.6) (Sumida, Truitt et al. 

2005). In detail, immunogenic epitopes as well as the FX binding site are located within the 

hypervariable regions (HVRs), which are part of the solvent-exposed surface domains DE1 

and FG1 of the hexon protein (Fig. 5.1a) (Rux, Kuser et al. 2003; Waddington, McVey et al. 

2008; Alba, Bradshaw et al. 2009). Previous studies showed that precise exchanges of HVRs 

with respective sequences of human adenovirus serotype 48 resulted in efficient escape from 

neutralizing antibodies as well as detargeting from the liver for first-generation adenoviral 

vectors (Roberts, Nanda et al. 2006). Therefore, I adopted this design for generation of 

modified helper-virus genomes containing HVRs of human adenovirus serotypes 12, 41, 44 

and 50 as well as 48 serving as a positive control (Fig. 5.1c). In addition, crystal structures of 

all major capsid proteins are known as well as interactions between capsid proteins have been 
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investigated extensively. Moreover, the detailed structure of the whole adenovirus capsid was 

published recently (Liu, Jin et al. 2010; Reddy, Natchiar et al. 2010). These publications 

confirmed that nearly all interaction sites associated with the hexon protein are within hexon 

domains orientated to the inner part of the capsid and conservation of these domains in all 

human adenovirus serotypes underlines the importance for the structural integrity of the 

capsids (Rux, Kuser et al. 2003; Saban, Silvestry et al. 2006). Therefore, I designed hexon 

chimeras with completely exchanged surface domains derived from respective sequences of 

human adenoviruses 4, 7, 12, 13 and 41, which are members of the distinct adenovirus 

serotype subgroups A-F (Fig. 5.1b). Protein analysis of chimeras revealed no inhibition of 

early capsid assembly steps including interaction with adenoviral chaperon 100K-protein, 

nuclear import and trimerization of modified hexon proteins (Fig. 5.2). 

Subsequently all chimeric hexon sequences were cloned into a helper-virus genome 

containing an eGFP/Firefly luciferase reporter construct utilizing BAC technology (Fig. 5.3). 

However, reconstitution of respective hexon-modified HVs appeared to be challenging and 

the bottleneck could not be identified, although transfection efficiency and purity of 

transfected DNA seemed to be critical factors. Nevertheless, helper-viruses with precisely 

exchanged HVRs (HV-HVR12 and positive control HV-HVR48) as well as with completely 

exchanged hexon surface domains (HV-SD4 and HV-SD12) could be rescued and titers as 

well as total yields of respective vector preparations were comparable to unmodified HVs 

(Fig. 5.4). These facts indicate that in principle both designs of hexon chimeras allow 

generation of fully assembled and stable virus capsid. To circumvent the reconstitution 

problems, utilization of a stable cell line expressing unmodified hexon proteins might be an 

option, although homologous recombination between the unmodified and the modified hexon 

genes is highly likely. Therefore, viral particles with unmodified adenoviral genomes would 

contaminate the reconstituted hexon-modified virus preparation and due to higher growth rate, 

unmodified virus outgrows the hexon-modified virus in further amplication steps. As another 

option, miRNA inhibitors like the p19 protein of the tomato bushy stunt virus might be 

applied in cis increasing reconstitution efficiency by enhanced production of viral proteins. 

This has been shown very recently by our group (Rauschhuber C., Häusl M.; manuscript in 

preparation). 

Novel reconstituted capsid-modified HVs were tested in cell culture for FX-binding (Fig. 5.5) 

and furthermore, vector-specific biodistribution after intravenous injection into mice was 

analyzed by in vivo bioluminescence measurements (Fig. 5.6). However, obtained results 
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were not in concordance with the current assumption that FX-mediated uptake of adenoviral 

vectors in CAR-negative SKOV3 cells correlates with the liver-tropism in vivo (Waddington, 

McVey et al. 2008; Alba, Bradshaw et al. 2009). In detail, cell culture experiments revealed 

enhanced uptake of the unmodified helper-virus in presence of FX and transduction of the 

liver in vivo as reported before. In line with the hypothesis, for HV-SD12 no interaction with 

FX was seen and in consequence liver-derived bioluminescence signals were not significantly 

higher than the background. However, transduction of SKOV3 cells by HV-SD4 was 

increased in presence of FX, whereas in vivo bioluminescence measurements showed no 

transduction of liver cells in mice. These results indicate that the liver-tropism might depend 

on the strength of the interaction between hexon HVRs and FX molecules. Due to the fact that 

the FX-binding assay exhibits a low sensitivity, it is not sufficient to predict liver-tropism in 

vivo. Therefore, more precise determination of the dissociation constant utilizing surface 

plasmon resonance or alternative methods might be an option to determine threshold values, 

which may allow prediction of liver-tropism in vivo. With respect to retargeting of vectors to 

other tissues this information might be essential for the vector design. For instance novel 

attachment sites introduced into other capsid proteins such as the fiber knob could mediate 

interactions specific for a distinct cell type (Terashima, Oka et al. 2009). However, the degree 

of retargeting will depend on the strength of the novel interaction in comparison to the 

binding between hexon proteins and FX molecules or any other competing interactions 

(Martin, Brie et al. 2003; Nicklin, White et al. 2004). 

Another issue was raised by different results obtained for HV-HVR12 and HV-SD12. Capsids 

of both vectors present identical hypervariable regions at the surface and therefore, similar 

transduction profiles in cell culture and in vivo were expected. However, for SKOV3 cells, 

transduction efficiency of HV-HVR12 in absence of FX was more than 40-fold increased 

compared to HV-SD12, which was shown to mediate similar transduction efficiencies as 

unmodified HVs (Fig. 5.5). Moreover, in presence of FX transduction rates are even increased 

for HV-HVR12, whereas for HV-SD12 no effect was observed. Furthermore, maximum 

bioluminescence signals obtained from the liver after intravenous injected HV-HVR12 were 

about 500-fold higher than for the unmodified HV at identical vector doses, whereas no 

transduction of liver cells was seen for HV-SD12 (Fig. 5.6). These discrepancies between 

vectors with identical HVRs indicate an influence of the protein sequences surrounding the 

HVRs in the context of the capsid surface domains (Waddington, McVey et al. 2008; Alba, 

Bradshaw et al. 2009). Regarding HV-HVR12, high transduction rates for CAR-negative cells 
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and strongly increased uptake in liver cells as well as in peripheral tissue implicate, that a new 

binding site was generated unexpectedly. This indicates that the features of hexon chimeras 

obtained by precise exchanges of HVRs are less predictable than originally thought and 

therefore, exchanges of complete hexon surface domains might be more suitable for the 

rational design because they have the features of the original adenovirus serotype used for the 

modification of hexon proteins. However, precise exchanges might offer the possibility for 

modulation of the virus capsid in a random approach generating tissue-specific capsid-

modulations by in vivo selection for appropriate vectors as it was shown for AAV capsids 

(Grimm, Lee et al. 2008; Li, Asokan et al. 2008). 

With respect to retargeting, the interaction allowing efficient CAR-and FX-independent 

cellular uptake of HV-HVR12 should be investigated in more detail. This might be the basis 

for a set of new adenoviral vectors in case FX-binding could be inhibited without affecting the 

novel binding site. In detail, highly efficient retargeting might be yielded by combination with 

hexon-mutations ablating FX-binding (Alba, Bradshaw et al. 2009) and modifications of other 

capsid proteins such as the fiber protein for retargeting to other cell types (Nicklin, White et 

al. 2004; Terashima, Oka et al. 2009). Side effects caused by unspecific transduction of other 

cell types like cells located in peripheral tissue could be prevented on transcriptional level 

utilizing cell type-specific promoters, enhancers and suitable miRNA target sites (Wolff, 

Wolff et al. 2009). Moreover, vectors not associated with FX-binding and liver-tropism such 

as HV-SD12 might serve as scaffold for retargeting vectors, however, transduction efficiency 

probably will be significantly lower. For ex vivo approaches HV-HVR12 might provide a 

potent solution to treat certain stem cells. Due to the new binding site, HCAs generated with 

HV-HVR12 might be able to transducer specific cell types, which could hardly be transduced 

by HCAs with unmodified capsids. In addition, all HCAs generated with the novel helper-

viruses should escape from the majority of neutralizing anti-hAd5 antibodies enabling 

repeated administrations (Roberts, Nanda et al. 2006). For these reasons novel vectors 

exploited in this study are an excellent basis for optimization of HCAs regarding ex vivo 

transduction efficiency and in vivo retargeting in combination with escape from immune 

responses. Further improvements should focus on reduction of the innate immune responses, 

which at least in part are responsible for the rapid clearance of vector genomes after in vivo 

administration. Options for realization might be capsid-modifications enabling evasion from 

antigen presenting cells such as Kupffer cells (Khare, May et al. 2011) and vector 
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modulations circumventing intracellular recognition of adenoviral vector components (Ross, 

Kennedy et al. 2009).  

 

 

6.5. Perspectives 

In summary, I provided a standardized protocol for incorporation of therapeutic DNA into a 

HCA genome and large-scale production of the respective HCA. Furthermore, I established a 

new cloning platform based on the BAC technology and I invented novel tools allowing 

construction of complex or multiple HCA genomes as well as modulation of helper-virus 

genomes. Moreover, for fast evaluation of HCAs, ion-exchange columns were used 

successfully for rapid purification of small-scale HCA preparations. For optimization of 

HCAs, I prove functionality of an improved version of the Sleeping Beauty transposase based 

integration machinery delivered by HCAs to mediate stable long-term expression of a 

therapeutic protein in mice and hemophilia B dogs. With respect to the tropism and 

immunogenicity of HCAs, I constructed novel hexon-modified helper-viruses, which should 

enable escape from neutralizing antibodies and which demonstrated distinct transduction 

features in cell culture as well as altered biodistribution after intravenous injection in vivo. 

With respect to obtained results and the opportunities for further optimizations of HCAs 

enabled by newly established methods, this work may pave the way towards successful gene 

therapeutic applications as well as new perspectives are opened for other application fields 

like basic research, vaccination purposes and cancer therapies utilizing oncolytic 

adenoviruses.  
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7. Appendix 

 

7.1. Abbreviations 

  

ψ    packaging signal 

[α

32

P]dATP  α

32

P labeled deoxyadenosintriphosphate  

[α

32

P]dCTP  α

32

P labeled deoxycytosintriphosphate 

µg / mg / g  microgram, milligram, gram 

µl, ml, l   microliter, milliliter, liter 

µm / mm / m  micrometer, millimeter, meter 

µM, mM, M  micromolar, millimolar, molar 

AAV   adeno
associated virus 

AIDS   acquired immunodeficiency syndrome 

ALT   alanine aminotransferase 

Amp(R)  ampicillin resistance 

ApoE   apolipoprotein E (enhancer) 

ARM   adenovirus reference material 

AST   aspartate aminotransferase 

ATCC    American tissue culture collection 

BAC   bacterial artificial chromosome 

bp / kb   base pair / kilo base pair 

BUN   blood urea nitrogen 

CAR   cosackievirus and adenovirus receptor 

CCl4   carbon tetrachloride 

CD46   cluster of differentiation 46 

cDNA   complementary DNA  

cFIX   canine coagulation factor IX 

CIP   calf intestinal alkaline phosphatase 

Cm   chloramphenicol 

CPE   cytopathic effect 

CPEC   circular polymerase extension cloning 

CpG   cytosine phosphatidyl guanine 

CR1   complement receptor 1 
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CsCl   cesium chloride 

DBP   DNA
binding protein 

DFG   Deutsche Forschungsgemeinschaft 

DNA   deoxyribonucleic acid 

DPBS   Dulbecco’s phosphate buffered saline 

dsDNA  double
strand DNA 

DSG
2   desmoglein
2 

E.coli   Escherichia coli 

E1
4   early transcribed (adenoviral) genome region 1
4    

EF1α   elongation factor
1
α (promoter) 

ELISA   enzyme
linked immunosorbent assay 

EtOH   ethanol 

EU   European Union 

FBS   Fetal bovine serum 

FG
AdV  First
generation adenoviral vector 

FLuc   Firefly luciferase 

FRT   Flp recognition target sequence 

FX   coagulation factor X 

g   gravity (unit for centrifugation) 

galK   galactokinase 

GC content  guanine/cytosine content 

GFP   green fluorescent protein 

Gla   γ
carboxylated glutamic acid domain 

GMP   good manufacturing practice 

GON   group of nine 

hAAT   human α
1
antitrypsin (promoter) 

hAd(5)   human adenovirus (5) 

HCA   high
capacity adenoviral vector 

HC
AdV  high
capacity adenoviral vector 

HCR   hepatic control region 

HEK293  human embryonic kidney 293 cell line 

HIV
1   human immunodeficiency virus 1 

HR   homologous region 
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hRLuc   humanized Renilla luciferase 

hrs   hours 

HSB5   hyperactive Sleeping Beauty transposase 5 

HSPGs  heparan sulfate proteoglycans 

HV   helper
virus 

HVRs   hypervariable regions 

IgkMAR  murine immunoglobulin k locus 

IR   inverted repeat (binding site for the Sleeping Beauty transposase) 

IRES   internal ribosomal entry site 

ITR   inverted terminal repeat 

J cm

2   

joule per square centimeter 

Kan   kanamycin resistance 

L1
L5   late transcribed (adenoviral) genome regions 1
5 

LacZ   β
galactosidase 

LB   Luria Bertani medium 

MCS   multiple cloning site 

MEM   Minimal essential medium 

min   minute 

MLP   (adenoviral) major late promoter 

MLV   murine leukaemia virus 

MOI   multiplicity of injection  

mRNA   messenger RNA  

mSB   mutated (non
functional) Sleeping Beauty transposase 

NCBI   National Center for Biotechnology Information 

OPU   optical particle unit 

P   passage 

pA   polyadenylation signal 

PCR    polymerase chain reaction 

PGK   phosphoglycokinase promoter 

pH   potential hydrogenii 

POL   (adenoviral) polymerase 

qPCR   quantitative polymerase chain reaction 

r.p.m.   rotations per minute 
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RCA   replication competent adenovirus 

RGD loop  loop containing the amino acid sequence arginine
glycin
aspartate 

RS   restriction enzyme binding site 

S phase  synthesis phase 

S/MAR  scaffold/matrix attachment region 

SB   Sleeping Beauty transposase 

SCID   severe combined immunodeficiency 

SD   surface domain 

SDS   sodium dodecylsulfate 

SFB   Sonderforschungsbereich 

siRNA   small inhibitory RNA 

SPP   Schwerpunktprogramm 

ssDNA  single
strand DNA 

ssRNA   single
strand RNA 

TALE   transcription activator like effector 

TP   terminal protein 

tu, TU   transducing units    

U   unit 

UV   ultraviolet 

Vol/vol  volume per volume 

vp(s)   viral particle(s) 

VSV
G  glycoprotein of vesicular stomatitis virus 

WBCT   whole blood clotting time 

wt/vol   weight per volume 

YAC   yeast artificial chromosome 

Zeo   zeocin resistance 
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