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Zusammenfassung

Wachstumsphänomene stellen ein wichtiges Teilgebiet in der statistischen Mechanik des
Nichtgleichgewichts dar. Einerseits sind sie überall in der Natur anzutreffen, andererseits
stellt ihr theoretisches Verständnis eine Herausforderung an die Methoden der theoreti-
schen Physik dar. Typischerweise führen Wachstumsprozesse zu statistisch skaleninvari-
anten Strukturen. Für nichtlokales Wachstum bilden sich selbstähnliche Cluster in Form
von Fraktalen, man denke an Schneeflocken oder Eisblumen. Oberflächenwachstum, bei
dem das Wachstum ausschließlich lokal bestimmt ist, führt dagegen zur Bildung eines
kompakten Objekts, das durch eine wohldefinierte Oberfläche von seiner Umgebung ge-
trennt ist, wie zum Beispiel bei Kristallwachstum aus einer Lösung. Die Komplexität liegt
in diesem Fall in der selbstaffinen Rauhigkeit der Oberfläche, die durch Fluktuationen bei
der zufälligen Anlagerung bewirkt wird.

Für solches stochastisches Oberflächenwachstum schlugen Kardar, Parisi und Zhang
(KPZ) im Jahre1986 eine Kontinuumstheorie vor, die durch die KPZ-Gleichung, eine
nichtlineare stochastische partielle Differentialgleichung definiert wird. Sie ist die wohl
einfachstmögliche Bewegungsgleichung für die Dynamik einer Grenzfläche, die alle we-
sentlichen Zutaten für nichttriviales Wachstum beinhaltet, nämlich Irreversibilität, Nicht-
linearität, Stochastizität und Lokalität. Wegen ihrer grundlegenden Bedeutung für die
Physik des Nichtgleichgewichts war und ist die KPZ-Theorie Gegenstand intensiver For-
schung mittels Simulationen, feldtheoretischer und anderer, überwiegend approximativer
Methoden.

In dieser Arbeit wird ein besonders einfaches halbdiskretes Modell, das polynuclear
growth (PNG)-Modell, betrachtet, das in der KPZ-Universalitätsklasse liegt. Daher erge-
ben alle im Skalenlimes für dieses Modell gewonnenen Ergebnisse direkte Vorhersagen
für die entsprechenden Größen in der KPZ-Theorie und somit für alle Wachstumsmodelle
in der gleichen Universalitätsklasse. Für Wachstum auf einem eindimensionalen Sub-
strat ist das PNG-Modell exakt lösbar. Durch Umformulierung zu einem last-passage-
Perkolationsproblem werden die von der(1 + 1)-dimensionalen KPZ-Theorie vorher-
gesagten Skalenexponenten rigoros hergeleitet und zum ersten mal Grenzverteilungen
der Oberflächenfluktuationen für verschiedene Wachstumsgeometrien bestimmt. Darüber
hinaus wird die dynamische KPZ-Zweipunktfunktion durch die Lösung des Riemann-
Hilbert Problems für die Painlevé-II-Gleichung ausgedrückt und mit nicht unerheblichem
Aufwand numerisch bestimmt.

Durch die Erweiterung zu einem Multi-layer-Modell kann die Wahrscheinlichkeits-
verteilung zu einem festen Zeitpunkt durch eine Theorie freier Fermionen auf einem ein-
dimensionalen Gitter in euklidischer Zeit beschrieben werden. In dieser Formulierung
ist der Kontinuumslimes durchführbar. Die Fluktuationen bei Wachstum mit mittlerer
Krümmung werden im Skalenlimes durch den hierzu eingeführten Airy-Prozess [102]
beschrieben, der grob gesagt der Trajektorie des letzten Teilchens in Dysons Version sich
nicht überschneidender Brownscher Bewegungen entspricht.

Eng verwandt mit dem Multi-layer-PNG-Modell ist das Gates-Westcott-Modell ei-
ner relativ zu einer Hochsymmetrie-Ebene leicht angeschrägten wachsenden Kristallo-
berfläche. Die Vorhersagen der zugehörigen anisotropen KPZ-Theorie werden durch eine
exakte Lösung auch dieses Modells bestätigt. Schließlich werden noch Monte-Carlo-
Simulationen für das PNG-Modell in höheren Dimensionen präsentiert.
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Abstract

Growth phenomena constitute an important field in nonequilibrium statistical mechanics.
On the one hand, they are ubiquitous in nature, on the other hand, their theoretical under-
standing poses a challenging problem for the methods of theoretical physics. Typically,
growth processes lead to statistically scale invariant structures. For nonlocal growth, self-
similar clusters are generated in the form of fractals, as for example snowflakes or patterns
on a frosted window. In contrast, surface growth with strictly local rules leads to the for-
mation of a compact body separated by a well-defined surface from its surrounding. In
this case the complexity lies in the roughness of the surface generated by the fluctuations
of the random attachment.

For this type of surface growth, in 1986 Kardar, Parisi, and Zhang (KPZ) proposed
a continuum theory, which is defined by the KPZ equation, a nonlinear stochastic par-
tial differential equation. It is arguably the simplest possible equation of motion for the
dynamics of an interface, which comprises all the ingredients for nontrivial growth: irre-
versibility, nonlinearity, stochasticity, and locality. Because of its fundamental importance
for nonequilibrium physics the KPZ theory has been and still is the subject of intensive
research by means of simulations, field theoretic and other, predominantly approximative
methods.

In this work an especially simple semi-discrete model, the polynuclear growth (PNG)
model, is considered, which lies in the KPZ universality class. Therefore all results for this
model obtained in the scaling limit provide direct predictions for the corresponding quan-
tities in KPZ theory and thereby for all models belonging to the same universality class.
For growth on a one-dimensional substrate the PNG model is exactly solvable. Through
reformulation as a last-passage percolation problem the scaling exponents, predicted by
(1 + 1)-dimensional KPZ theory are rigorously derived and for the first time limiting
distributions of the surface fluctuations are determined for different growth geometries.
Moreover the dynamical KPZ two-point function is expressed by means of the solution to
the Riemann-Hilbert problem for the Painlevé II equation and solved numerically, which
requires some effort.

By means of the extension to a multi-layer model the probability distribution at a
given point in time is described by a theory of free fermions on a one-dimensional lattice
in Euclidean time. In this formulation the continuum limit is feasible. The fluctuations
for curved growth are described by the Airy process [102], introduced for this purpose.
Roughly speaking the Airy process corresponds to the trajectory of the last particle in
Dyson’s Brownian motion.

Closely related to the multi-layer PNG model is the Gates-Westcott model of a vicinal
growing surface. The predictions of the corresponding anisotropic KPZ theory are con-
firmed by an exact solution of the model. Finally Monte-Carlo simulations of the PNG
model in higher dimensions are presented.



CONTENTS

1 Introduction 1
1.1 KPZ theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Exactly solvable models. . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Self-similar surface growth 9
2.1 Deterministic dynamics. . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Convex growth, last passage percolation. . . . . . . . . . 11
2.1.2 Saddle-like growth. . . . . . . . . . . . . . . . . . . . . 13

2.2 Perturbations around the deterministic shape. . . . . . . . . . . . 14
2.3 Stochastic surface growth. . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Stationary growth. . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Extended self-affinity. . . . . . . . . . . . . . . . . . . . 20

2.4 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Space-time description. . . . . . . . . . . . . . . . . . . . . . . 27
2.6 The driven 2d Ising corner – a simple application. . . . . . . . . 28

3 The (1+1)-dimensional PNG model 31
3.1 The PNG droplet . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Ulam’s problem. . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Orthogonal polynomials.. . . . . . . . . . . . . . . . . . 41

3.2 Flat initial conditions, other symmetry restrictions. . . . . . . . . 43
3.3 The stationary two-point function. . . . . . . . . . . . . . . . . 46

3.3.1 Convexity of the scaling function.. . . . . . . . . . . . . 47
3.3.2 The distribution of height differences.. . . . . . . . . . . 49
3.3.3 The scaling limit of the height distribution.. . . . . . . . 51
3.3.4 Discussion of the scaling function.. . . . . . . . . . . . . 54

v



vi CONTENTS

4 The Bernoulli cone 59
4.1 The directed bond percolation cluster. . . . . . . . . . . . . . . . 59
4.2 The PNG limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 The TASEP limit . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 The generator of asymptotics. . . . . . . . . . . . . . . . . . . . 73

5 The multi-layer PNG model 75
5.1 The Airy process. . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 The multi-layer PNG droplet. . . . . . . . . . . . . . . . . . . . 77
5.3 The scaling limit . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Anisotropic Growth 89
6.1 The Gates-Westcott model. . . . . . . . . . . . . . . . . . . . . 91
6.2 The steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 The fermion picture and the infinite volume limit. . . . . . . . . 94
6.4 Slope, growth velocity, and two point correlations. . . . . . . . . 97

7 Models in higher dimensions 103
7.1 The isotropic PNG droplet. . . . . . . . . . . . . . . . . . . . .103
7.2 PNG models with general island shape. . . . . . . . . . . . . . .105
7.3 Monte Carlo simulations on a flat substrate. . . . . . . . . . . . 107
7.4 2+1 dimensional triangle PNG droplet. . . . . . . . . . . . . . .114
7.5 Summary of the numerical results. . . . . . . . . . . . . . . . .119

A Orthogonal polynomial identities 121

B Taylor expansion method for Painlevé II 127

Bibliography 133



CHAPTER 1

Introduction

Matter in its solid state has been formed originally always by some sort of growth
process. Therefore the theoretical understanding of growth phenomena has at
all times been a challenging problem. In the framework of statistical mechanics
one tries to discover and explain macroscopic or mesoscopic laws from systems
which have a simple microscopic description. Nonequilibrium statistical mechan-
ics deals with the properties of nonreversible processes where thermodynamical
notions like entropy and temperature are not directly available. One of the most
common types of processes which are out of thermodynamical equilibrium are
growth processes.

Patterns originating from growth processes have been always fascinating to
curious observers. The faceted shape of naturally formed crystals, the ramified
structure of snowflakes and other frost patterns, the rough surface of amorphously
growing solids, raise the question for a deeper understanding of the underlying
mechanisms which could explain structural similarities and differences of the re-
sults of growth processes. Since the advent of semiconductor technology about
half a century ago it has become more and more important to be able to quanti-
tatively control the growth of crystals. Modern techniques like molecular beam
epitaxy allow to engineer solid state devices with a precision ranging up to single
atomic layers. On the other hand surface structures can be probed by scanning
tunneling or atomic force microscopy with a resolution distinguishing individual
atoms or molecules, which allows for testing theoretical predictions with spectac-
ular precision.

Apart from the eminent technological relevance growth phenomena are of con-
siderable fundamental interest, since they provide examples for the emergence of
complex structures out of interacting simple agents. A very powerful concept
which originally was developed in the context of equilibrium statistical mechan-
ics is scale invariance. At the critical point of a second order phase transition an
infinite system has no distinguished length scale. Therefore the system looks sta-
tistically the same on every length scale. Correlation functions have to decay as
a power law, and the corresponding scaling exponents are characteristic for the
system in question. Microscopic models always have some sort of short distance
cut-off. Scale invariance thus can hold only in the limit of arbitrary large scales.
The phenomenon that the large scale limit does not depend on the details of the
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2 CHAPTER 1. INTRODUCTION

underlying model but only on qualitative properties like conservation laws and
symmetries is called universality.

A very spectacular realization of scale invariance is encountered in fractal ge-
ometry. Random fractals show scale invariance in the form of statistical self-
similarity characterized by the fractal dimension. Another instance of scale in-
variance is self-affinity, where one has to rescale the axes of the observation frame
differently. The simplest example for scale invariance is Brownian motion. The
image of ad-dimensional Brownian path is perfectly self-similar, whereas the
graph of a Brownian motion as a whole is only self-affine. Upon rescaling space
by a factor`, time has to be rescaled by`2 in order to recover the same law of
Brownian motion characterized by its variance. Universality expresses itself in
this context by the simple fact that any discrete random walk model with weakly
dependent increments of finite variance converges to Brownian motion in the large
scale limit.

It is remarkable that there are not so many mechanisms known which generi-
cally produce scale invariance of nonequilibrium systems. Among these are clus-
ters created by Brownian motion, like the outer boundary of a planar Brownian
path and related processes like Schramm-Loewner evolutions in two dimensions
[128]. More directly related to physics is nonlocal growth, where the driving force
is a Laplacian field, as for diffusion limited aggregation (DLA) [129] or front
propagation in Hele-Shaw cells [109]. The resulting structures are statistically
self-similar objects with characteristic fractal dimensions. Slowly driven noisy
systems which exhibit self-organized criticality [15] typically produce avalanche-
like events, which look similar on every length scale. Finally local surface growth
is characterized by a well-defined interface between the growing cluster and its
environment. The attachment of new material takes place according to rules de-
pending only on the local surface configuration. In this case the growing cluster
is not fractal. It acquires a definite macroscopic shape. The randomness of the
growth process manifests itself in the fluctuations around the mean shape. The
dynamical fluctuations lead to self-affine surface roughness.

1.1 KPZ theory

There are numerous books about growth phenomena and scale invariance in gen-
eral [43, 126, 16, 88]. In this thesis we focus on stochastic surface growth which is
dominated by local dynamical rules. In 1986 Kardar, Parisi, and Zhang proposed
a continuum description of stochastic surface growth, the famous KPZ equation
[70]. Together with its equivalent formulations as stochastic Burgers equation and
as directed polymers in random media, it is probably the most extensively studied
theory of nonequilibrium physics. All the above mentioned books devote a consid-
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erable part to KPZ theory. In addition a number of review articles have appeared
over the time which give thorough accounts of the KPZ theory [78, 87, 59, 75, 80].

The (d + 1)-dimensional KPZ equation describes the stochastic dynamics of
an interface parameterized by a height functionh(x, t) relative to ad-dimensional
substrate,x ∈ Rd, which is driven by some noiseη(x, t) random in space and
time,

∂th(x, t) = v0 + ν∆h(x, t) + 1
2
λ
(
∇h(x, r)

)2
+ η(x, t). (1.1)

This equation is believed to capture the essential ingredients of stochastic surface
growth, irreversibility, nonlinearity, stochasticity, and locality, which lead to the
phenomenon of kinetically enhanced surface roughness.

Without the noise termη(x, t) (1.1) describes deterministic growth of an in-
terface. Hills grow upward ifv0 > 0 and extend laterally forλ > 0. v0 can be
absorbed by using a co-moving frame, butλ 6= 0 generates an intrinsic nonlinear-
ity, which can not be removed by any simple transformation. The Laplace term
represents surface tension which prevents the formation of cusps in the valleys.
The noise term mimics the stochastic nature of the growth process. Ifη(x, t) is
chosen as white noise in space and time the equation has no intrinsic length scale
and produces scale invariant fluctuations of its solutions. Without the nonlinear
term, if λ = 0, (1.1) becomes a linear stochastic partial differential equation,
known as the Edwards-Wilkinson equation [42]. In this case, since white noise
has a Gaussian distribution, the solutions to the linear equation are Gaussian, too,
with a simple covariance matrix. The fluctuations show scale invariance. Since
they are Gaussian the corresponding scaling exponents are easily extracted from
the covariance matrix. The associated field theory is a free massless scalar field
[93, 92], which is well understood. In particular with the nonlinearity vanishing,
the equation is reversible and therefore can be interpreted as a model of equilib-
rium surface dynamics.

Kardar, Parisi, and Zhang recognized the importance of the quadratic term in
order to describe isotropic growth. Other possible non-linear terms turn out to
be always negligible in the presence of the KPZ nonlinearity. Although the KPZ
equation with white noise is ill-defined as it stands, a perturbative renormalization
group treatment shows already that the nonlinearity is always relevant in1 and
2 substrate dimensions, whereas in higher dimensions for small enoughλ the
large-scale behavior of solutions to (1.1) is characterized by the linear theory with
λ = 0, called the weak coupling regime. Ford ≥ 2 a natural generalization of
the KPZ equation is to allowλ to be a quadratic form represented by ad × d
matrix. Wolf argued [130] that if λ is not strictly positive (or negative) definite
(the anisotropic case) again the nonlinear term is irrelevant. On the other hand if
all eigenvalues ofλ have the same sign the large scale behavior is the same as in
the isotropic case.
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From the beginning the great challenge was to extract information in the strong
coupling case, when the nonlinearity is relevant. The corresponding field theory
is non-Lagrangian, reflecting irreversibility, and non-perturbative, a consequence
of nonlinearity. Renormalized perturbation theory, which treats the nonlinear-
ity as a small perturbation, fails to approximate the strong coupling fixed point
[46, 48, 79]. Several other approaches have been developed. A mode-coupling ap-
proximation [18, 49, 34, 35], an approximate real space renormalization scheme
[29], a soliton approximation treating the noise as perturbation [44, 45], a non-
perturbative operator product expansions technique [80] and of course numerous
Monte-Carlo simulations of discretized models believed to belong to the KPZ uni-
versality class, e.g. [77, 120, 3, 4, 71, 85, 86].

Despite these considerable efforts there is no consistent answer to the proper-
ties of the strong coupling phase in dimensionsd ≥ 2. There are several distinct
predictions for the scaling exponents and even the existence of an upper critical
dimension atdc = 4 is under dispute. Ford = 1 the situation is somewhat bet-
ter. A formal fluctuation-dissipation theorem allows to determine the values of the
critical exponents exactly and the KPZ equation has always been regarded as ex-
actly solvable in some sense. Nevertheless scaling functions have been calculated
only by some sort of uncontrolled approximations [119, 49, 35, 44]. Limiting dis-
tributions and their universal moment ratios have been studied only by means of
Monte-Carlo simulations [72, 7, 77, 86].

1.2 Exactly solvable models

From very early on the one-dimensional KPZ model was regarded as being exactly
solvable. The Bethe ansatz solution for the ASEP chain, formulated as a six-vertex
model, provides a semi-rigorous derivation of the scaling exponents [40, 57, 56].
Also exact large deviation functions for finite systems could be obtained [39, 38].

Exactly solvable models provide arguably the greatest insight into a physical
theory. For example, the2d-Ising model can be viewed as a discretization of the
Ginzburg-Landau scalarφ4-theory. To extract information beyond the values of
critical exponents seems to be feasible only by using exact expressions of the finite
Ising system and identifying their asymptotics in the infinite volume limit as has
been achieved by Wu et al [131] for critical and close to critical scaling functions.
By universality one has obtained the corresponding scaling functions of theφ4-
theory which provide a prediction for the scaling functions fo any model believed
to be in theφ4 universality class.

This approach to scale invariance and universality has its restrictions. Firstly,
the universality class in question has to contain at least one model which is ex-
actly solvable. In equilibrium statistical mechanics for critical phenomena this is
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believed to be restricted to one or two spatial dimensions. In nonequilibrium
one usually hopes for exactly solvable models only in one spatial dimension.
Roughly speaking the non-reversible dynamics, lacking detailed balance, requires
to take into account the two-dimensional space-time. Secondly by solving a spe-
cial model one obtains no direct information on the universality of the results.
Although there is usually no doubt about its validity, to actually prove universal-
ity is a different issue. Even for slight modifications of the solvable model which
apparently do not affect its physical properties but renders it non-solvable, there
are only very few examples where some kind of universality is proven rigorously,
as has been achieved for the2d-Ising model with local perturbations [115].

In this thesis we provide a similar approach to the study of the(1 + 1)-
dimensional KPZ field. We mainly deal with a class of very simple growth mod-
els, the polynuclear growth (PNG) model and its fully discretized version whose
space-time trajectory we call the Bernoulli cone. Originally it was introduced
by Rajesh and Dhar as an anisotropic directed percolation model [106]. The
Bernoulli cone might be regarded as the “Ising” model of nonequilibrium physics.
It contains the PNG model and the celebrated (totally) asymmetric simple exclu-
sion process (ASEP) as limiting cases.

The connection to longest increasing subsequence problems, which only re-
cently has gained fast-growing attention through the already seminal work of
Baik, Deift, and Johansson [10], allows us not only to confirm the1d KPZ scaling
exponents rigorously for the PNG model, but also, for the first time, to identify
limiting distributions of the height fluctuations. Furthermore the scaling form of
the stationary two-point function for the PNG model can be obtained. By univer-
sality it determines the two-point function of the stationary KPZ field.

There is a deep connection of curved nonstationary KPZ growth with random
matrices [68, 99]. The reason is that both theories can be formulated as free
fermion theories with determinantal correlation functions. The PNG model can be
extended in a very natural way to a multi-layer version consisting of many height
lines, where the last line describes the original PNG cluster. Like the eigenvalues
of a stochastically evolving random matrix they form a non-intersecting, otherwise
non-interacting line ensemble. Therefore it is not too surprising that the statistics
of the last line in the growth model has the same scaling limit as the trajectory of
the largest eigenvalue in the matrix model. This limiting process, the Airy process,
roughly looks like Brownian motion in a confining potential, but it has only slow
decay of correlations.

The results in this thesis yield very detailed information on the properties of
the one-dimensional KPZ field theory. For example, the rather intricate definition
of the stationary two-point function, which is obtained by taking the scaling limit
of the PNG correlations, should be derivable from the KPZ equation directly in
an appropriate field theoretic formulation. It is not at all clear how this could be
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achieved. The Airy process as the limiting process of curved KPZ growth shows
that there must be non-stationary but nevertheless scale invariant “solutions” to
the KPZ equation which are essentially different from the stationary KPZ field.

For a full understanding of the KPZ field one needs to know arbitraryn-point
correlation functions. For a Gaussian field they are given in a simple and direct
way by means of the two-point correlation function. For a non-Gaussian theory
like KPZ there should be a way to generate them in a systematic way. The Airy
process, although not very explicit, provides such a tool for the curved KPZ field,
but only for single-time correlations. It remains an open problem to extend this to
dynamicaln-point correlation functions evaluated at different times.

1.3 Outline

In Chapter2 we introduce the description of macroscopic self-similar growth in
some detail, leading to the Wulff construction. Small perturbations around the
self-similar solutions are discussed qualitatively, implying already two different
modes of stochastic growth, convex and saddlelike. The scaling theory for sta-
tionary stochastic growth, is reviewed briefly and then extended to curved surface
growth.

Chapter3 deals with the one-dimensional polynuclear growth (PNG) model
as an especially simple model for stochastic surface growth. It is exactly solv-
able and confirms validity of the scaling theory, at least in one substrate dimen-
sion. In the simplest geometry with droplet initial conditions it can be mapped to
Ulam’s problem about longest increasing subsequences in random permutations.
We show how this leads by means of the orthogonal polynomial method to a re-
cursive expression for the height distribution above the origin. In the scaling limit
they become differential equations and the limiting distribution can be identified
as the GUE Tracy-Widom distribution known from random matrix theory. Simi-
lar results for other deterministic initial and boundary conditions are reported. A
special type of random boundary conditions corresponds to exact sampling of the
stationary PNG model. We use this fact to determine the exact stationary two-
point function, and analyze its scaling limit.

In Chapter4 we introduce the Bernoulli cone, a discrete version of the PNG
model, interpreted as a random set in space-time. We describe several stochastic
models, some of them well-known, which, with appropriate initial and boundary
conditions, are all equivalent to the Bernoulli cone. Two different continuum
limits let us recover the PNG model and the (continuous-time) totally asymmetric
simple exclusion process (TASEP). We determine the family of stationary states in
an especially simple geometry and sketch, how this allows to predict quantitatively
the scaling behavior of all the described models.
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In Chapter5, to go beyond one- (or two-) point distributions, we extend the
PNG model to a multi-layer version, with the statistics of the last line being un-
changed. To describe the fluctuations of the last line in the scaling limit, we
introduce the Airy process, which roughly speaking behaves as the last particle
in Dyson’s Brownian motion. By means of the determinantal correlations of the
multi-layer process it is shown (in the sense of finite-dimensional joint distribu-
tions) that the height of the PNG droplet in a region above the origin converges to
the Airy process when scaled appropriately.

Chapter6 is devoted to anisotropic growth on a two-dimensional substrate. We
introduce the Gates-Westcott model which mimics a vicinal growing surface, be-
ing closely related to multilayer PNG growth. Its steady state on a finite substrate
is very simple, and we determine the growth velocity and height-height fluctua-
tions in the thermodynamic limit of infinite substrate area and show agreement
with the prediction by a thermodynamical equilibrium argument.

Finally, in Chapter7 we introduce simple higher dimensional generalizations
of the PNG model. The Monte-Carlo simulations performed for some of these
models lead to estimates of the KPZ exponents which in two dimensions are in
accord with previous Monte-Carlo studies, but differ considerably from the the-
oretical prediction of Lässig. In three dimensions they are closer to the theoret-
ical prediction. The analogue of the GUE Tracy-Widom distribution for curved
stochastic growth on a two-dimensional substrate is determined from the Monte-
Carlo data.

AppendixA collects some useful identities for orthogonal polynomials on the
circle and AppendixB describes the numerical method we used to determine the
solution of the Riemann-Hilbert problem for Painlevé II.

Parts of the results presented in this thesis have been already published in
articles co-authored by Herbert Spohn [97, 98, 99, 100, 102, 101].
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CHAPTER 2

Self-similar surface growth

2.1 Deterministic dynamics

On a macroscopic level the dynamics of an interface between two thermodynam-
ical phases at a first order transition follows the steepest energy gradient deter-
mined by the sum of bulk and surface energies. For simplicity we imagine one
phase being a solid and the other the corresponding gas phase. If the chemical
potential is slightly in favor of the solid phase both bulk phases away from the
interface are very close to equilibrium and the dynamics is determined by phys-
ical (or chemical) processes at the interface alone (reaction limited aggregation,
RLA). This is in contrast to, for example, diffusion limited aggregation (DLA),
where the supply of material is subject to transport properties of the bulk. In RLA
the solid, described by a subset of(d + 1)-dimensional space evolving in time,
grows at the expense of the gas phase with a growth velocity depending on the lo-
cal interface configuration. Let us represent the interface by the graph of a smooth
single-valued height functionh(x, t), x ∈ Rd, t ≥ 0, with respect to an appro-
priate reference frame, which excludes the existence of small scale overhangs or
cavities. For a global description several frames might have to be glued together.
In a deterministic continuum description of RLA the growth velocity is a func-
tional of the local height configuration, or, assuming enough regularity, a function
of derivatives of the height function,

∂th(x, t) = v
(
∂xh(x, t), ∂2

xh(x, t), . . .
)
. (2.1)

We focus here on scale invariant growth properties, i.e. properties, which per-
tain on large length scales, where curvature and higher derivatives of the height
function become arbitrarily small. Therefore we neglect higher derivatives in (2.1)
and are left with the deterministic large-scale equation of motion for the height
function

∂th(x, t) = v
(
∂xh(x, t)

)
. (2.2)

The main focus will be on self-similar solutions, i.e. solutionsh(x, t) to (2.2) with

lh(x, t) = h(lx, lt), for l > 0. (2.3)

9
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The macroscopic shape

H(c) = h(c, 1) (2.4)

allows to recover the self-similar solution ash(x, t) = tH(x/t). In geometric
terms self-similarity means that the region occupied by the solid phase at time
t, Ct ⊂ R

d+1 forms a cone in(d + 2)-dimensional space-time, i.e. forC =
{(Ct, t); t > 0} one has

lC = C, for l > 0. (2.5)

Certains of these macroscopic shapesH(c) are attractors in the space of solu-
tions to (2.1) and (2.2) (parameterized by their initial conditions). Thus ifh(x, t)
is a solution to (2.1) or (2.2) with h(x, 0) = h0(x), there is a macroscopic shape
H(c), such that

lim
l→∞

l−1h(lx, lt) = tH(x/t). (2.6)

Clearly thet → 0 limit of a self-similar solutionh(x, t), if it exists, is self-
similar itself,

lh(x, 0) = h(lx, 0). (2.7)

Generically it will have a cusp at the origin. We will argue that for physically
relevant self-similar solutions there is even a one-to-one relation between self-
similar initial conditions and macroscopic shapes.

To facilitate coordinate transformations one can define a homogeneous scalar
functionF (x, t, h), whose set of zeros coincides with the boundary of the self-
similar cluster, and which has nonzero gradients along this set.F is clearly not
unique, for example one can choose

F (x, t, h) = hγ − (h(x, t))γ, γ > 0, (2.8)

such thatF is homogeneous of degreeγ. To fully specify a convex cluster one
has to use several height functions in different coordinate systems to describe
the full circonference of the cluster.F can be defined for the whole cluster
boundary, which makes it easy to recover the form of the height function for
any choice of coordinates(x′, t′, h′) just by solvingF ′(x′, t′, h′) for h′, where
F ′(x′, t′, h′) = F (x, t, h), sinceF transforms as a scalar under change of coor-
dinates. This property will be very useful, as described in Section2.5 where a
special choice ofF will allow us to encode the size of fluctuations around the
deterministic cluster shape in the gradient ofF at the cluster boundary.
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For illustration we look at the fully isotropic case. The normal velocityv0

is independent of the interface slope, which implies in Cartesian coordinates the
growth velocity

v(u) = v0

√
1 + |u|2, (2.9)

whereu ∈ Rd is the surface slope. For simplicity we setv0 = 1. Obviously the
semi-spherical clusterH(c) =

√
1− |c|2 for |c| ≤ 1,H(c) = −∞, otherwise, is a

possible macroscopic shape. The corresponding self-similar initial configuration
is h0(x) = 0 for x = 0, h0(x) = −∞ otherwise. The homogeneous function
F (x, t, h) = h2 + x2 − t2 obviously encodes the full spherical cluster shape also
for negative values ofx.

Different initial conditions lead to further self-similar shapes. Another possi-
ble macroscopic shape, for example, isH(c) =

√
1− |c|2 for |c| ≤ 1√

2
, H(c) =√

2− |c| otherwise, leading to the self-similar solution

h(x, t) =

{ √
t2 − |x|2 for |x| ≤ 1√

2
t,

−|x|+
√

2t otherwise.
(2.10)

The initial configuration to (2.10) ish0(x) = −|x|. But alsoh(x, t) = −|x|+
√

2t
provides a self-similar solution to (2.2) with this initial conditions, besides for
the persisting cusp atx = 0. The latter self-similar solution is very unstable
with respect to small perturbations of the initial conditions, whereas the first is
generically stable. The cusp itself is not an indicator for instability per se, as can
be seen from the initial conditionsh0(x) = |x|. A self-similar solution with this
initial conditions is

h(x, t) =
√

2t+ |x|. (2.11)

Although there is a cusp atx = 0, (2.11) is the only almost everywhere solution
to (2.2) and it is very stable with respect to perturbations of the initial conditions.

The question arises how stable self-similar solutions may be characterized.
For convex cluster growth, i.e. when a convex cluster grows from a single seed,
self-similar solutions are obtained from the initial conditions by the Wulff con-
struction, which is explained in the next section and we will reformulate it as a
deterministic last passage percolation problem. In Section2.1.2, for non-convex
self-similar growth we give an analytic characterization of self-similar shapes,
which requires enough regularity of the growth velocityv(u).

2.1.1 Convex growth, last passage percolation

If the growth velocity is a convex function of the slope, or at least has a convex
envelope, the fundamental growth mode is a cluster growing from a single small
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seed at the origin in(d + 1)-dimensional space. For simplicity we assume the
growth velocity to be positive for all slopes. To obtain the cluster shape at later
times, one employs the Wulff construction. A crystal filling the half-space on one
side of a perfect plane evolves in time by moving the boundary plane parallely
with its characteristic growth velocity. Imagine now a collection of these plane
interfaces at all possible slopes intersecting the initial seed and moving indepen-
dently. The actual cluster then arises as the intersection of all these extending half
spaces.

This geometrical construction of the cluster shape, the Wulff construction, has
been known for a long time in crystallography [132]. In the substrate geometry
one has

h(x, t) = inf
u
tv(u) + u · x. (2.12)

Mathematically the macroscopic shapeH(c) = h(c, 1) is the Legendre transform
of the growth velocity

H(c) = inf
u
v(u) + u · c. (2.13)

By construction the droplet shape is a concave function. The regionDt = {(x, h);
h ≤ h(x, t)} is a convex set inRd+1. As is well-known for the Legendre transfor-
mation nonconvex parts of the growth velocityv(u) are irrelevant,v(u) could be
replaced by its convex hull [78].

The droplet clusterDt grows according to Huygen’s principle. The cluster at
time t, Dt, arises from the cluster at times, Ds, as the superposition of droplets
growing for a timet− s from each point in the clusterDs,

Dt = Ds +Dt−s, (2.14)

with the common notationA + B = {x + y; x ∈ A andy ∈ B}. For the height
function this reads

h(x, t) = sup
y
h(y, s) + (t− s)H

(x− y
t− s

)
(2.15)

Iterating this splitting we can writeh(x, t) as a functional of paths,

h(x, t) = sup
y,γy

h(y, 0) +

∫ t

0

H
(
γ̇y(s)

)
ds, (2.16)

where the supremum runs through all continuous, piecewise differentiable paths
γy : [0, t] → R

d with γy(0) = y andγy(t) = x. Eq. (2.16) is valid for arbitrary
initial conditionsh(x, 0) = h0(x).
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The desired one-to-one mapping from self-similar initial conditions to stable
self-similar solutions is given by Huygen’s construction. IfC0 is a cone inRd+1

the corresponding macroscopic shape is given byC1 = C0 +D1.
In eq. (2.16) h(x, t) might be interpreted as a deterministic last passage per-

colation problem. For this we interpret the height variableh as time and the time
variablet as an additional spatial dimension.H(c) is regarded as a passage ve-
locity of, say, a fluid which depends on the directionc. The passage time along a
directed pathγ from (y, 0) to (x, t) is given by

L(γ) =

∫ t

0

H
(
γ̇(s)

)
ds. (2.17)

In these termsh(x, t) arising from initial conditionsy 7→ h(y, 0) is the last passage
time of the fluid which origins from the linet = 0 with starting timesh(y, 0) at
(y, 0), subjected to the anisotropic passage velocityH(c). tH(x/t) itself can be
thought of as the point-to-point last passage time for paths starting at(0, 0) and
ending at(x, t)

2.1.2 Saddle-like growth

When the growth velocity depends smoothly on the slope we can give an local
analytic characterization for the macroscopic shape.

One plugs the homogeneity ansatz inspired by (2.3), h(x, t) = tH(x/t), di-
rectly into the evolution equation (2.2) yielding the condition

H(c)− c∇H(c) = v
(
∇H(c)

)
. (2.18)

Differentiating with respect toc ∈ Rd, at a point where∇H(c) = u, yields the
linear equation

0 = (∂2H)(c)
(
c+∇v(u)

)
, (2.19)

which is a sufficient local condition for a self-similar shape. The trivial solution
∂2H = 0 everywhere leads to the family of plane solutionsh(x, t) = t v(u) +
x · u. Assuming∂2H to be invertible, enforcesc = −∇v(u), or equivalently
∂2H(c) = − (∂2v(u))

−1. Thus if the vector field∇v(u) is differentiable and
invertible in some open set one recovers the differential version of the Legendre
transformation,

H(c) = v
(
u(c)

)
+ c · u(c), (2.20)

with u(c) the inverse vector field of−∇v(u).
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In the case that∂2v is positive (if negative, flip fromv to−v) definite we are
led back to the Legendre transform (2.13) for a concave macroscopic shape. When
∂2v has eigenvalues of different sign, but nevertheless is invertible, (2.20) defines
H only locally. Initial conditions enforcing such a nonconvex self-similar shape
have to form a nonconvex cone. As an explicit example in2 + 1 dimensions, the
growth velocity for the multi-layer PNG (or Gates-Westcott) model [50, 97] is

v(u) = π−1
√

(2 sinu1π)2 + (u2π)2, (2.21)

defined foru = (u1, u2) ∈ [0, 1]× R. A simple but tedious calculation yields for
the macroscopic shape

h(x, y, t) =


π−1
(√

4(t2 − y2)− x2 + x arccos
(
x/
√

4(t2 − y2)
))

for x2/4 + y2 ≤ t2,

max{0, x} for y2 ≤ t2 < x2/4 + y2,

0 otherwise.

(2.22)

In this case the initial conditions areh(x, y, 0) = max{0, x} for y = 0 and
h(x, y, 0) = 0 otherwise. The set initially occupied by the crystal,{(x, y, h) ∈
R

3; h ≤ h(x, y, 0)} = R2 × R−0 ∪ {(x, 0, z); z ≤ x} is a nonconvex cone inR3.

2.2 Perturbations around the deterministic shape

We give a rough argument concerning the stability of a self-similar solutionh(x, t)
to (2.2) with respect to small localized deviations. The argument is independent
of the macroscopic curvature, since the support of the perturbation can be made
arbitrary small. Therefore we take as unperturbed heighth(x, t) = v(0)t for the
sake of simplicity and, by a suitable Gallilean transformation inx andt, one can
arrangev(0) = 0,∇v(0) = 0, leaving unchanged the second derivative∂2v(0). In
one substrate dimension,x ∈ R, if the growth velocity has nonzero curvature we
take it to be positive. Otherwise one has to flip the height coordinate. A positive
perturbation of initial excess height,∆h, and small compact support, denoted a
bump, spreads in the course of time and quickly adopts the approximate shape
of a parabola with decreasing curvature ,(v′′(0)t)−1 at its maximum, which itself
does not move in time. Higher derivatives of the growth velocity only result in a
diminishing deviation from this parabolic shape. The excess height stays constant
and the lateral extension increases with the square root of the time passed since
the formation of the bump, compare with Fig.2.1(a). Conversely a negative per-
turbation, a dent, develops a cusp at its center after some finite time. The further
evolution is approximately described by the right and left branch of two parabolas,
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∆h

time

(a) (b)

Figure 2.1: A bump, (a), and a dent, (b), with the same initial excess height∆h,
evolving in time for positive curvature of the growth velocity.

having their maxima fixed at the left, resp. right, edge of the initial dent. Since
the curvature of these parabolas has the same behavior as for a bump, the cusp in
the middle flattens asymptotically, and the excess height vanishes ast−1, compare
with Fig. 2.1(b). Thus if bumps and dents are added at random in space and time
to the self-similar solution, only the bumps effectively contribute to the time evo-
lution of the surface line. Since new bumps can be added on already existing ones,
the net effect is an enhancement, or renormalization, of the mean growth velocity.
Furthermore the surface line becomes roughened by such a persistent stochastic
perturbation.

In higher dimensions, if the curvature of the growth velocity is convex (resp.
concave) the above picture remains unchanged. Bumps spread laterally into all
directions, adopting a paraboloidal shape, and dents do not extend laterally and
there excess height vanishes very fast.

In contrast if the curvature is indefinite, a bump spreads in the directions of
positive curvature but shrinks in the direction of negative curvature, and from the
latter its excess height vanishes inevitably. The same holds for dents with the
subspaces of positive and negative curvature interchanging their role. This behav-
ior indicates that in the convex case dynamically added perturbations around the
deterministic shape generically enhance the growth velocity and the roughness,
whereas for a saddle-like growth velocity the effect is suppressed by a qualita-
tively different behavior.

This naïve argument is corroborated by Wolf’s analysis [130] of the Kardar-
Parisi-Zhang equation, a stochastic continuum model for surface growth explained
in detail in Section2.4. Furthermore in Chapter6we present a microscopic growth
model where we determine explicitly the growth velocity and show that at its is
behavior conforms with the anisotropic scenario established by Wolf.
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2.3 Stochastic surface growth

The macroscopic laws for a compactly growing cluster described in Section2.1
emerge phenomenologically from the underlying physical solidification process.
On a classical level growth processes can be described as random dynamics of the
microscopic particles. Mathematically a macroscopic mean growth velocity and
correspondingly a deterministic shape of the self-similarly growing cluster arise
as a law of large numbers for an underlying stochastic process. For simplicity we
assume that the stochastic growth process can be parameterized by a single-valued
height functionh(x, t) relative to ad-dimensional substrate,x ∈ Rd. Vaguely this
can be achieved by some coarse graining procedure, which gets rid of cavities and
overhangs. We think ofh(x, t) as a function valued stochastic process int with
local time- and space-homogeneous update rules and some, yet unspecified, initial
and/or boundary conditions. Expectation values will be denoted byE(·).

2.3.1 Stationary growth

In general one expects to have a family of space-time stationary solutionshu(x, t)
which is parameterized by the mean slopeu = E

(
∇hu(0, 0)

)
∈ Rd. A standard

way to obtain these stationary processes is to start with a finite substrate and to
impose suitable boundary conditions fixing the desired mean slopeu. The sim-
plest choice, for example, is to take chiral boundary conditions in a rectangular
substrate, which means that opposite borders are identified only after an appropri-
ate vertical shift. In finite volume the height process is required to be ergodic. It
relaxes to a unique stationary state, which depends only on the boundary condi-
tions. In the thermodynamic limit of infinite substrate area at given slopeu one
expects to have a unique limiting process,hu(x, t), whose gradient is stationary
in space and time [117]. To be precise at this point, one obtains a limiting mea-
sure on space-time height configurations which is invariant under vertical shifts,
hu(x, t) 7→ hu(x, t) + const, and thus can not be normalized. The probability
measure of the height process has to be defined on equivalence classes of height
functions differing only by a constant. Consequently expectations are well defined
only for height differences.

If the thermodynamical limit exists and is unique, one can define the mean
growth velocityv(u) corresponding to the slopeu, as the infinite substrate limit
of the finite stationary growth velocities. A priori there is no reason why the point-
wise defined growth velocity should have any regularity properties. Nevertheless,
since fluctuations cause to probe also neighboring slopes, one expects a smooth
dependence onu, at least generically. In the following we describe the situa-
tion at slopesu whereλ = v′′(u) is a well-defined matrix, as it is suggested by
renormalization group studies of the corresponding continuum theory, the Kardar-
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Parisi-Zhang equation [70, 130].
Since the growth rule is local there is only one intrinsic length scale,xm, given

by the underlying lattice structure or the effective correlation length of the deposi-
tion dynamics. For length scales much larger thanxm one expects scale invariance
of the surface fluctuations, as it is familiar for an order parameter in equilibrium
thermodynamics at criticality, because of the absence of any distinguished length
scale. For example height differences relative to the mean slope should increase
algebraically with the distance,

E

(
(hu(x, 0)− hu(0, 0)− x · u)2

)
∝ |x|2α, for large|x| (2.23)

with the static roughness exponentα < 1. If α = 0, the marginal case, the surface
may be logarithmically rough, ifα < 0 the surface is microscopically flat with
very small deviations from the mean shape.

This asymptotic scale invariance extends to dynamical fluctuations. We per-
form a Gallilean transformation which absorbs the constant and the linear part of
the growth velocity,

ξu(x, t) = hu(tc+ x, t)− t(v(u) + c · u)− x · u, (2.24)

with c = −v′(u) ∈ Rd. The mean slope ofξu(x, t) is zero and the transformed
growth velocityw(u) reads

w(u) = 1
2
〈u, λu〉+O(|u|3). (2.25)

ξu(x, t) represents the fluctuations ofhu around its mean along the characteristic
trajectoryx = c t. In this new coordinates

E

(
(ξu(0, t)− ξstat

u (0, 0))2
)
∝ |t|2β, (2.26)

where the dynamical roughness exponentβ turns out to be smaller thanα in gen-
eral. The scaling hypothesis states that not only the two-point correlation has
the scaling properties explained above, but that the stationary height process as a
whole is statistically self-affine at large scales.

Scaling Hypothesis.If α, β > 0 the fluctuation processξu(x, t) converges under
proper scaling to a scale invariant limiting processH(x, t),

`−βξu(`
1/zx, `t)→ H(x, t), as`→∞, (2.27)

with z = α/β. Obviously (2.27) reproduces (2.23) and (2.26). The scale invari-
ance ofH(x, t) is expressed by

H(`1/z, `t) = `βH(x, t) (2.28)
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in distribution.

The renormalization group analysis suggests thatα andβ are universal in the
sense that they depend only on qualitative properties of the underlying micro-
scopic model like the substrate dimension and the signature ofλ. More precisely,
one has to distinguish three cases:

Universality Hypothesis.

1. (Anisotropic KPZ) If λ is not positive or negative definite, i.e. ifλ has one
eigenvalue equal to0 or two eigenvalues of opposite sign, thenH(x, t) is
the solution of a linear partial differential equation, the Edwards-Wilkinson
equation

∂tH(x, t) = 〈∂x, C∂x〉H(x, t) + η(x, t) (2.29)

with η(x, t) space-time white noise of strengthD, for someD > 0, with
covarianceE

(
η(x, t)η(x′, t′)

)
= Dδ(x′ − x)δ(t′ − t), andC some positive

definited× d-matrix.

2. (Isotropic KPZ, strong coupling) If λ is positive definite (ifλ < 0 we
switch fromH to −H), and if for d > 2 the microscopic noise is strong
enough, then the scaling relation

α + z = 2 (2.30)

holds. The variance of height differences is given by

E

((
H(x, 0)−H(0, 0)

)2
)

= a
(
〈x, λ−1x〉

)α
, (2.31)

with the roughness parametera, and

HKPZ
d (x, t) = (cd/a)1/2H(λ1/2x, t) (2.32)

is a space-time stationary, isotropic, and scale invariant process. It is com-
pletely independent of the underlying microscopic model and the slope one
is looking at. cd > 0 is an arbitrary constant fixing the static two-point
function asE

(
(HKPZ

d (x, 0)−HKPZ
d (0, 0))2

)
= cd|x|2α.

3. (Isotropic KPZ, weak coupling) If λ > 0, d > 2, and the noise produced
by the microscopic dynamics is weak enough,H(x, t) is again a solution of
the Edward-Wilkinson equation (2.29).
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Remarks:

• The anisotropic KPZ case is motivated by the renormalization group treat-
ment of Wolf [130]. For d = 2 we give convincing support for the conjec-
ture in Chapter6 by showing that the stationary distribution of a particular
anisotropic growth model is consistent with (2.29).

• The scaling relation (2.30) in the strong coupling regime is well established
on a nonrigorous level independently of the substrate dimension. There
are more or less formal derivations of its validity, e.g. [78] and references
therein. We will present another heuristic argument based on the extended
self-affinity conjecture at the end of Section2.3.2. The analysis of the con-
tinuum theory confirms (2.30) to all orders in perturbation theory [79], and
simulations agree with it very well within statistical errors. Nevertheless
only for d = 1, whereα = 1/2 there have been rigorous results confirming
z = 3/2 indirectly for special models [40, 56]. But only the limiting the-
orems of Johansson [68] and the ones presented in Chapters3 and5 of the
present work go beyond the mere determination of the exponents and thus
verify (2.30) explicitely for some special models. For2 or more substrate
dimensions nobody doubts the validity of (2.30), but the convincing support
is at most indirect and far from rigorous.

• HKPZ
d (x, t) arises from the model dependentH(x, t) by rescaling the sub-

strate coordinates in a way to make the two point function isotropic. By the
scale invariance (2.28) and isotropy the universal two-point scaling-function

gdyn
d (|x|) def

= t−2β
E

((
HKPZ
d (t1/zx, t)−HKPZ

d (0, 0)
)2
)

(2.33)

is well defined since the rhs is independent oft > 0 andx/|x|. One has
gdyn
d (y) ∼ cdy

2α for large y. In Section3.3 we determinegdyn
1 (y). The

analytical expressions suggest to setc1 = 2. Therefore we propose to set
cd = 2 for higher dimensions as well.

• For d = 1 and c1 = 2 the formulas simplify considerably. In this case
x ∈ R, λ = v′′(u) is a number and the exponentsα = 1

2
, β = 1

3
are known

exactly. It is natural to define the roughness amplitude as

A = lim
x→∞

x−1
E

(
(hu(x, 0)− hu(0, 0)− xu)2

)
, (2.34)

thus a = Aλ1/2. With these settings one has for the fluctuations (2.24)
directly the limit

ξu
(
(2`2λ2A)1/3x, `t

)
sign(λ)(1

2
`|λ|A2)1/3

`→∞−→ HKPZ
1 (x, t) (2.35)
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as a universal relation for any growth model in the KPZ universality class
with nonlinearityλ(u) 6= 0 and roughness amplitudeA(u), for all possi-
ble slopesu. Although the equal-time distribution of the KPZ field,x 7→
HKPZ

1 (x, 0) is Brownian motion which is symmetric under the transforma-
tion H 7→ −H, dynamical correlations do depend on the sign ofλ as in-
dicated in (2.35). This can be seen already in the two-point probability
distribution, which is identified in Section3.3. In higher substrate dimen-
sions even the up/down symmetry of the equal-time distribution seems to
be broken [80, 32].

• The weak-coupling/strong-coupling transition ford > 2 is indicated by per-
turbative renormalization of the KPZ theory [70]. Existence of the weak
coupling phase is confirmed ford ≥ 3 by rigorous results for directed poly-
mer models [64, 23, 95]. Existence of the strong-coupling phase in substrate
dimensionsd ≥ 4 is a controversially discussed question [81, 2, 21, 34, 86].

2.3.2 Extended self-affinity

The macroscopic growth velocityv(u) arises from the stationary processes at
given slopeu. If we start with arbitrary initial conditionsh(x, 0), the surface
roughens on a microscopic scale. But, assuming appropriate regularity ofv(u),
on a larger scale fluctuations will be around a mean shape. One area of interest is
to derive the macroscopic evolution equation (2.2) from the microscopic dynamics
in the sense of a law of large numbers. In general one takes a sequence of initial
conditionshn(x, 0) approximating the smooth functionh(x) in the macroscopic
limit 1

n
h(nx, 0)→ h(x) asn→∞. The aim is to show that the rescaled processes

converge to a (weak) solutionh(x, t) of (2.2) with initial datah(x, 0) = h(0), i.e.

1
n
hn(nx, nt)→ h(x, t) in probability asn→∞, (2.36)

uniformly in x andt ∈ [0, T ], T > 0. There is a huge literature on these hydrody-
namic limit type results, e.g. [36, 116, 112, 73] and references therein.

We focus here on a simpler setting. We take just one process, whose initial
conditionh(x, 0) itself is macroscopically self-similar,

lim
`→∞

`−1h(`x, 0) = h0(x), (2.37)

where necessarilyh0(`x) = `h0(x). If h(x, 0) is random (2.37) has to be under-
stood as convergence in probability.

Macroscopic Self-similar Shape Conjecture. On macroscopic scalesh(x, t)
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converges to a self-similar deterministic solutionH(x, t) of (2.2) with initial con-

ditionH(x, 0) = h0(x). One has̀−1H(`x, `t) = H(x, 1)
def
= H(x), whereH(x)

is the Wulff shape (2.13) or (2.20) with respect to the growth velocityv(u). Then

lim
`→∞

`−1h(`x, `t) = H(x) (2.38)

in probability.
Closely related to the macroscopic shape is the

Local Stationarity Hypothesis. Relative to a rayx = c t of constant and well
defined mean slope,u = H ′(c) ∈ Rd, the fluctuations ofh(x, t),

ξc,T (x, t) = h
(
(T + t) c+ x, T + t

)
− (T + t)(v(u) + c · u)− x · u, (2.39)

locally converge to the stationary fluctuations (2.24) at slopeu, i.e.

lim
T→∞

ξc,T (x, t) = ξstat
u (x, t) (2.40)

in distribution forx, t restricted to a bounded set.

The plausible assumption that local stationarity holds not only on the microscopic
scale but does extend maximally to regions in which the systematic curvature of
h(x, t) is still negligible leads to the

Extended Self-Affinity Conjecture. If for somec ∈ Rd the macroscopic shape
is smooth and concave,H ′′(c) < 0, then, settingu = H ′(c), we know that the
curvature of the growth velocity isλ = v′′(u) = −

(
H ′′(c)

)−1
. If in addition

α > 0, thenα+z = 2, or equivalentlyβ = α/(2−α). In this case the fluctuations
converge to a unique limit

lim
T→∞

2β( cd
a

)1/zT−βξc,T
(
21/z( a

cd
)1/2zT 1/zλ1/2x, 0

)
= Hcurved

d (x)− |x|2, (2.41)

wherea is the static roughness parameter from the stationary process (2.31).
Hcurved
d (x) is stationary inx and isotropic.

Remarks:

• By the local stationarity hypothesis one recovers the stationary KPZ distri-
bution in the small scale limit

lim
`→0

`−βHcurved
d (`1/zx) = HKPZ

d (x, 0). (2.42)
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• The distribution of the universal random variableχcurved
d

def
=Hcurved

d (0) de-
pends only on the substrate dimensiond. For d = 1 it is the GUE Tracy-
Widom distribution as derived in the following chapter. In Chapter7 Monte-
Carlo results ford = 2 are presented.

• For d = 1 with the roughness amplitude (2.34) the scaling form (2.41)
simplifies to

ξc,T
(
(2λ2AT 2)1/3x, 0

)
sign(λ)(1

2
|λ|A2T )1/3

T→∞−→ Hcurved
1 (x)− x2, (2.43)

with λ andA evaluated atu = H ′(0). In chapter5 the processx 7→
Hcurved

1 (x) is identified as the Airy process [102].

• For |x| largeHcurved
d (x) andHcurved

d (0) become independent. The correla-
tions define another universal scaling function

gcurved
d (|x|) = E

(
(Hcurved

d (x)−Hcurved
d (0))2

)
. (2.44)

By definitiongcurved
d (y) ' y for smally and by the postulated independence

gcurved
d (y) ' 2Var(χcurved

d ).

The scaling form (2.41) is trivial in the case of zero substrate dimensions. The
“cluster” being a single column of increasing height by the random attachment
of material. If these increments are independent or only weakly dependent in
time, the law of large numbers tells us that indeedh(T )/T → v in probability,v
being the macroscopic growth velocity. Furthermore by the central limit theorem
we know, thatβ = 1/2, and the limiting distributionχ0 is Gaussian, its width
being determined by the first and second moments of the increments alone. Since
x ∈ R0 = {0} the definition of the static roughness is void.

For higher substrate dimensions the following picture arises. At a given time
T the surface fluctuates around its deterministic shape, as if it were confined in a
potential well alonghdet, whose width scales asT β, and whose shape is given by
the logarithm of the probability density ofχcurved

d . Thus at finiteT local station-
arity has to be violated above a length scale, where the static roughness is of the
same order as the global surface width implied by the width of the distribution of
Hcurved
d (0). This happens at a time-dependent typical correlation lengthξ(T ) and

suggests that for|x| � ξ(T ) the random variablesh(cT, T ) andh(cT + x, T ) are
essentially independent. We haveξ(T )α ≈ T β, or ξ(T ) ≈ T 1/z. On the other
hand, if the macroscopic shape is convex,∂2hdet(cT, T ) < 0, the mean devia-
tion from the tangent at(cT + x, T ) is 1

2
(x, ∂2hdet(cT, T )x) ∝ x2/T , which at a

distanceξ(T ) is estimated to be of the same order as the surface width of order
T β. Thus we obtainξ(T )2 ≈ T β, or 2/z = β. Multiplying by α one recovers by
this simple heuristical argument the celebrated scaling relation (2.30), valid for all
substrate dimensionsd [78, 74, 89].
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2.4 Universality

It is widely accepted that the roughness exponentsα andβ are the same for all
microscopic models of reaction limited aggregation (RLA), i.e. where the growth
process depends only on the local interface configuration, and vary only for differ-
nent substrate dimensiond. Ford = 1 the static roughness exponent is fixed by a
fluctuation-dissipation relation asα = 1

2
, the interface line has the static roughness

of a fluctuating string, as in equilibrium [78]. Thus by the scaling relation (2.30),
the dynamical roughness scales withβ = 1

3
. Ford = 2 the value of the exponents

is still controversial. Numerical investigations [120] indicateβ = 0.240(1), but
theoretical predictions, based on an operator product expansion [80], or on a self-
consistent real space renormalization [30], areβ = 1

4
andβ = 0.22, respectively.

Ford > 2 there is a weak coupling regime, predicted already by the renormaliza-
tion group flow of the KPZ equation [70] with α = β = 0. For strong coupling
in d = 3 the predictions forβ range from0.1655 [30] over 1

6
[80] to 0.180(2)

[120, 3]. For d ≥ 4 even the nature of the strong coupling fixed point is under
dispute. There are theoretical arguments which predict thatdc = 4 is the upper
critical dimension withα = β = 0 for d ≥ dc even in the strong coupling regime
[81]. But numerical investigations, though restricted to moderate system sizes,
especially in higher dimensions, notoriously indicateα, β > 0 even for larged
[3, 71] and a self consistent expansion in1/d predictsβ ∝ 1/d asymptotically
[29].

The universality hypothesis comprises not only the exponents but also the
shape of the distributions whose width scales with the roughness exponents, like
the Gaussian normal distribution does in the central limit theorem. The distri-
butions arising are generically non-Gaussian. The properly rescaled (truncated)
moments have universal ratios corresponding to the moments of the limiting dis-
tribution, sometimes called universal amplitude ratios [72, 58, 77, 7].

In Section2.3we presented a formulation of the universality hypothesis which
emphasizes the uniqueness of the fluctuation fields in the proper scaling limit. For
convex growth, i.e.∂2v(u) > 0 or ∂2v(u) < 0, we assumed that after a linear
transformation of the local substrate coordinates such that∂2v(u) becomes the
identity matrix, the stationary fluctuation field is rotationally invariant, and indeed
is up to a normalizing prefactorthestationary KPZ fluctuation processHKPZ

d (x, t)
of (2.32).

The stochastic fieldHKPZ
d (x, t) is usually thought of as a spatio-temporally

stationary solution to the KPZ equation [70]

∂th = ν∆h+ λ
2

(∇h)2 + η(x, t), (2.45)



24 CHAPTER 2. SELF-SIMILAR SURFACE GROWTH

with space-time white noiseη(x, t) of zero mean and correlations

〈η(x, t)η(x′, t′)〉 = 2Dδ(t− t′)δ(x− x′). (2.46)

The nonlinear term arises from a second order Taylor expansion of the growth
velocity with respect to the slope, lower order terms being absorbed by a suitable
affine transformation, higher orders being irrelevant by naïve power counting. The
Laplace operator is added to represent surface tension, being necessary to control
the singular noise term. The stochastic partial differential equation (2.45) is ill-
defined as it stands and much effort has been made to extract physical information
by means of renormalization group (RG) analysis in the field theoretical context
[70, 48, 79, 80], which unfortunately can not reliably access the strong coupling
fixed point. In principle eq. (2.45) has to be regularized with some kind of ultra-
violet cut-off, and then studied in the large scale limit.

Let us mention that there are two formally equivalent formulations of the KPZ
equation. We set

Z(x, t) = exp
(
− λ

2ν
h(x, t)

)
, (2.47)

which is called the Cole-Hopf transformation ofh(x, t). Z(x, t) is governed by
the linear diffusion equation

∂tZ = ν∆Z − λ
2ν
η(x, t)Z. (2.48)

The price for obtaining a linear equation is paid by introducing multiplicative
noise. FormallyZ(x, t) can be written as a path integral over Brownian paths,Bs,
with B0 = 0 andBt = x, weighted by the Boltzmann factor

exp
(
− (2ν)−1

∫ t

0

η(B(s), s)ds
)
. (2.49)

Thus, if we call such a Brownian path with fixed endpoints a directed polymer,
Z(x, t) has an interpretation as the partition sum for a directed polymer in a ran-
dom environment. The temperature corresponds to2ν and the KPZ height is pro-
portional to the free energy− lnZ. Of course one still has to regularize the noise
in order to give meaning to eq. (2.48). The growth models we are presenting in the
following chapters all have the property that once mass is attached to the growing
cluster it can never detach. We will see that these property allows to formulate
naturally a corresponding directed polymer problem at zero temperature.

If we take the gradient on both sides of the KPZ equation and substituteh
through the gradient vector fieldu = ∇h, we obtain the noisy Burgers equation

∂tu = ν∆u+ λ(u · ∇)u+∇η (2.50)
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driven by conserved noise. Ford = 1 it can be interpreted as the flow of a fluid
with conserved mass. All the1-dimensional growth models which will be de-
scribed in this work have a fairly obvious interpretation as a driven particle model
which are possible discretizations of the noisy Burgers equation.

Let us describe the nonrigorous results about the KPZ equation obtained from
renormalization theory in some detail. The RG approach supplies a sophisticated
framework to obtain flow equations for the parametersν, λ, andD, in a perturba-
tive approximation. Roughly described, the KPZ equation is regularized by intro-
ducing an ultraviolet cut-offΛ in Fourier space. One tries to match the parameters
of the KPZ equation for different values of the cut-off parameter. Integrating out
high frequency modes results in an effective lowering ofΛ and at the same time
changing the effective values forλ, ν, andD. The resulting equation with effec-
tive parameters is rescaled, such that the noise strengthD and the surface tension
ν is unchanged. The dimensiond becomes a parameter in this formulation which
naturally extends to real values. One expands aroundλ = 0 and obtains for fixed
d a differential equation forλ under the continuous coarse-graining and rescaling
procedure, called renormalization group flow. Ifλ converges to zero under this
flow, the nonlinearity in (2.45) is irrelevant, and the large scale behaviour should
be governed by the linear equation withλ = 0, called the Edwards-Wilkinson
equation [42], which is well-defined mathematically and can be analyzed thor-
oughly [92]. λ diverging under the RG flow, however, indicates a strong coupling
fixed point atλ =∞.

For d ≤ 2 the fixed pointλ = 0 is unstable, which implies that under renor-
malization the rescaling after coarse-graining should be done in a way to leaveλ
invariant. Doing this the parametersD andν tend to zero, and the limiting equa-
tion is deterministic, reflecting only the quadratic nonlinearity in (2.2). In this
sense perturbative renormalization is not able to predict properties of the strong
coupling phase beyond the macroscopic shape. Above the lower critical dimen-
sion2 the fixed pointλ = 0 becomes stable. Thus for small values ofλ the large
scale behavior should be governed by the Edwards-Wilkinson equation. A refined
analysis aroundd = 2 exhibits a bifurcation. Ford > 2 a second fixed point
emerges with a square root singularity, which is unstable, compare with Figure
2.2. Thus for a large enough nonlinearity, also in dimensionsd > 2 one still
expects the existence of a strong coupling phase. Using higher orders in the per-
turbation theory and extrapolating along the unstable fixed point seems to indicate
that atd = 4 a further singularity develops, leading to the claim thatd = 4 is the
upper critical dimension for the KPZ equation [81].

A closer inspection of the KPZ equation (2.45) exhibits that the nonlinear term
should be replaced by a quadratic form,1

2
(∇h, λ∇h), whereλ is the Hesse matrix

of the slope dependent growth velocity. In coordinates where thed × d matrix is
diagonal one hasd nonlinear terms,λi

2
(∂ih)2, i = 1, . . . , d where the eigenvalues
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Figure 2.2:The phase diagram for the KPZ equation.

λi can take arbitrary values. Ford = 2 Wolf [130] analyses the RG flow for
arbitrary values ofλ1, λ2. Forλ1λ2 > 0 he obtains qualitatively the same result
as in the isotropic case. If the two eigenvalues have different sign or one of them
is zero,λ1 = λ2 = 0 is the only stable fixed point indicating the weak coupling
regime.

All these methods start with regularizing the ill-defined KPZ equation. In the
renormalization group approach one regularizes by introducing an ultraviolet cut-
off in Fourier space. One can also discretize the KPZ equation by introducing a
lattice constant, which can be viewed as an ultraviolet cut-off in real space.

A somewhat different approach is to take a definite model with a specified
small scale dynamics, to determine the model dependent parameters and thende-
fine the KPZ field as the appropriately scaled limit of the well defined growth
process. Believing in universality the limiting process does not depend on the
choice of the model. This has to be thought of in much the same way as Brownian
motion could be defined as the diffusive limit of any well-behaved random walk
model. Since Wiener it is known that there are more elegant ways to define Brow-
nian motion explicitely. For KPZ although there are abstract approaches [20, 8],
they do not seem to be able to extract any non trivial properties of the KPZ field,
so far.

We mention here two ways to extract all the model parameters for a given mi-
croscopic model. The first possibility is to take a growing droplet, whose macro-
scopic shape has encoded via the Legendre transform the full slope dependence
of the growth velocityv(u). The scaling of the height distribution along a ray in
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space-timex = ct can be written in the form

h(cT, T ) = H(c)T + C(c)T βχcurved
d , (2.51)

with χcurved
d = Hcurved

d (0) the dimensionless universal random variable for curved
KPZ growth. The knowledge of ofH ′′(c) andC(c) allows to fix all model depen-
dent quantities needed to determine the parameters in (2.41) at fixed macroscopic
slopeH ′(c).

The second possibility is to start with the steady state of the height process
for mean slopeu, hu(x), at a given time. To determine the growth velocity
v(u) = ∂tE

(
h(x)

)
one only needs to apply the generator of the dynamics onto

the steady state, and thus requires no knowledge of dynamical correlations. If one
can determine the roughness amplitudeA(u, n), n ∈ Rd a unit vector, defined as

E

(
(h(x)− h(0)− u · x)2

)
' A(u, x/|x|)|x|2α, (2.52)

the KPZ theory predicts thatx 7→
(
A(u, x/|x|)

)1/α|x|2 is a positive quadratic

form, and actually is a multiple of
(
v′′(u)

)−1
. The proportionality factor is given

asa(u)1/α by (2.31) with the roughness parametera(u). Again the knowledge of
v(u) up to second derivatives anda(u) at a given slopeu is enough to write down
the correct scaling form (2.41) along a space-time trajectoryx = −v′(u) t.

2.5 Space-time description

A convenient way to emphasize universality in stochastic growth is to regard the
growing cluster as a random setC in ad+ 2 dimensional space made up of thed
substrate dimensions and an extra dimension for the height and time coordinate,
each. If the cluster grows macroscopically self-similar,C has a deterministic
shape in the macroscopic scaling limit,

`−1C → C∞, in probablity, for`→∞. (2.53)

The boundary of the coneC∞ can be characterized by the set of zeros of a suitable
homogenous functionG(x, t, h), as described briefly at the end of Section2.1.2.
For example one can takeG(x, t, h) = h2−hdet(x, t)2, wherehdet(x, t) = tH(x/t)
andH(c) is the Wulff shape of the cluster (2.38).

Shape fluctuations ofC, i.e. the deviations from the exact limiting shapeC∞,
are described by the scaling form

h(x, t) ' hdet(x, t) + C(x, t)χcurved
d , (2.54)
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whereC(x, t) is homogeneous of degreeβ. Comparing with the scaling form
(2.41) one findsC(ct, t) = 2−β( a

cd
)β/α tβ, where the roughness parametera in

general depends onc. This motivates the definition of the generator of asymptotics

F (x, t, h) =
G(x, t, h)

C(x, t)∂hG(x, t, h)
, (2.55)

which is homogeneous of order1− β. The definition ofF is not unique, only its
set of zeros,∂C, the gradient at∂C, and its degree of homogeneity are relevant.
The knowledge ofF , at least in a neighborhood of its set of zeros, allows to
recover easily the scaling form (2.54). One solvesF (x, t, h) = 0 for h, obtaining
hdet(x, t). Then

h(x, t) ' hdet(x, t) +
(
∂hF (x, t, hdet(x, t)

)−1
χcurved
d . (2.56)

F is by construction a dimensionless scalar. Under coordinate transformations it is
invariant. Thus eq. (2.56) has the advantage, that it is valid for an arbitrary choice
of coordinate axes(x′, t′, h′). One simply has to expressF (x, t, h) in terms of the
new coordinates(x′, t′, h′). As long as one can solve forh′ locally, (2.56) gives the
scaling form in the primed coordinates. Not that by the scaling theory of Section
2.3.2one can also determine the lateral scaling needed to have convergence to the
curved KPZ fieldHcurved

d (x).

2.6 The driven 2d Ising corner – a simple applica-
tion

Let us illustrate the determination of the generator of asymptotics in a simple ex-
ample We define a Glauber dynamics for the Ising spins on a two-dimensional
square lattice with the initial conditions that in one quadrant of the plane all spins
are up, all other spins are down. A spin can flip, only if exactly two of its four
nearest neighbor spins are up. Under this conditions spin flips occur indepen-
dently with rater from up to down and with rater + ε from down to up, driven
by some chemical potential in favor of up-spins. The special initial conditions
ensure that the solid-on-solid (SOS) condition is not violated, i.e. no overhangs
occur, and the boundary between up-spins and down-spins can be parameter-
ized by a time-dependent height function. If the initial borderline between ups
and downs is a non-increasing or non-decreasing step-line, this property is con-
served by the stochastic dynamics. The height function obtained with respect to
the coordinate system spanned by the two diagonals of the lattice is known as
the single-step model [120]. It is well known that the steady state of the single-
step model with the above continuous-time update rule is particularly simple, the
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height differences of adjacent sites are independently geometrically distributed
[96]. The density,ρ, of up-steps in the steady state is related to the mean slope,
u = 〈h(x + 1, t) − h(x, t)〉, asu = 2ρ − 1. The mean growth velocity is by the
absence of correlations easily obtained as

v(u) = 2ρ(1− ρ)(r + ε− r) =
ε

2
(1− u2). (2.57)

The critical direction beingc = −v′(u) = εu, the macroscopic shape of the height
profile is given by the Legendre transform of (2.57),

hdet(x, t) = (v(u) + cu)t =
(εt)2 + x2

2εt
. (2.58)

With the same ease we calculate the roughness amplitude as

A(u) = 〈(h(x+ 1, t)− h(x, t))2〉 − u2 = 1− u2, (2.59)

yielding the complete asymptotic scaling form for the model as

h(x, t) ' hdet(x, t)−
(

1
2
|v′′(u)|A(u)2

)1/3
χcurved

1

=
(εt)2 + x2

2εt
−

(
((εt)2 − x2)

2

2(εt)3

)1/3

χcurved
1 . (2.60)

Finally the generator of asymptotics for the continuous-time single-step model
reads

G(x, t, h) =
ε2t2 + x2 − 2εt h

22/3(ε2t2 − x2)2/3
. (2.61)

Note that the generator of asymptotics depends only on the difference in the de-
position and evaporation rates. The value of the evaporation rater itself is com-
pletely irrelevant for the KPZ asymptotics of the process. Furthermore upon a
simple rescaling of time we can choseε = 1, thereby excluding only the sym-
metric case. This fortunate coincidence sheds some light on the meaning of the
asymptotic scaling form.

For a given value ofr (2.60) tells us that forc fixed, |c| < ε, and for a time
t large enough, the distribution of−(t(ε2 − c2)2/2)−1/3(h(ct, t)− (ε2 + c2)t/2ε)
is arbitrary close to the universal distribution ofχcurved

1 . On the other hand for a
given timet and locationx we can always take large enough values forr such that
the asymmetry in the flipping rate can be neglected and the height distribution is
approximately the same as for symmetric flipping rates. This model might serve
as a prototype to study the finite size corrections to the scaling form (2.43) since
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by varying the flipping rater one can control the cross-over region from purely
diffusive behavior to KPZ scaling.

Only as a side remark we mention that Tang et al use an alternating parallel-
update scheme in [120] (with a checker board coloring of the Ising lattice. Spins
on black sites can only flip at even times and spins on a white site only at odd
times). In this case, instead of rates, there are two transition probabilities,p± ∈
[0, 1], for evaporation and deposition. This model still has a simple steady state
which allows for the determination of the growth velocity and the roughness am-
plitude. In terms of the biasb = p+ − p− and the productr = (1 − p+)(1 − p−)
one has [120]

v(u) =
2b(1− u2)√

4r + b2 +
√

4r + b2u2
(2.62)

and

A(u) =
2(1− u2)

√
4r + b2u2

√
4r + b2 +

√
4r + b2u2

. (2.63)

Some simple but tedious algebra then yields for the scaling form

h(x, t) =
sr tx2 + b

√
4t2 − x2t2

4t2 − (1− rd2)x2 + sd
√

4t2 − x2t

− 22/3(4t2 − (1 + 4r2)x2)2/3t4/3

(4t2 − x2)5/6(4rb t+ s
√

4t2 − x2)2/3
χcurved

1 (2.64)

with the additional abbreviations = (1 − p+) + (1 − p−). The corresponding
generator of asymptotics for this discrete-time single-step model (which we do
not write down here because of its length) can serve, for example, to express the
scaling form in the original coordinates of the Ising lattice.
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The (1+1)-dimensional Polynuclear
Growth model

The polynuclear growth (PNG) model is an idealized model for surface growth
[52, 47]. The discrete crystalline structure of the solid is retained only in one spa-
tial direction. As a model for layer-by-layer growth it mimics a crystal interface
along a high symmetry direction. Within the(1 + 1)-dimensional PNG model
the interface is described by an integer-valued height functionh(x, t) on a one-
dimensional substratex ∈ R. Thus the interface consists of terraces bordered by
steps of unit height. The steps are at arbitrary positions inR, cf. Fig.3.1.

h(x,t)

x

Figure 3.1:A possible configuration of the height functionh(x, t) at timet.

The dynamics has a deterministic and a stochastic part. Terraces grow deter-
ministically in the lateral direction. Up-steps move to the left with velocity−w
and down-steps move to the right with velocityw. Two adjacent terraces on the
same level eventually coalesce into a single one, which means that an up/down
step pair, where the down step is to the immediate right of the up-step, disappears
upon collision.

The stochastic part of the dynamics comes from the nucleation of spikes of
unit height forming new terraces upon already existing ones. Independently with
space-time densityξ up/down step pairs are generated together at one position and
immediately move apart into opposite directions.

In order to identify the one-dimensional PNG model as a member of the 1d
KPZ universality class we first study the stationary growth velocity and the static

31
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roughness. Letx 7→ h(x, 0) be a two sided random walk of mean slopeu,
h(0, 0) = 0. This means that the positions of up-steps and down-steps are drawn
from two independent Poisson point processes onR with densitiesp+ andp−,
respectively,p+ − p− = u. During an infinitesimal time intervaldt, inside an
interval of lengthL the mean production of new up/down step pairs,ξL dt, has
to match the average annihilation2wp+p−Ldt. As a necessary condition for sta-
tionarity the density of up- and down-steps has to be preserved, which implies
p+p− = ξ/(2w).

To simplify notation we setw = 1 andξ = 2 in the sequel, reinstatingw andξ
only in some formulas where it seems appropriate. This convention is obtained for
any values ofw andξ by measuringx in units of

√
w/ξ andt in units of1/

√
wξ.

The fact that the full distribution of up- and down-steps remains independent
Poisson is not obvious but not very hard to show. One way is to explicitly solve for
the steady state of the master equation for the step positions in finite volume with
periodic boundary conditions and then to take the infinite volume limit [19]. On
the other hand it is an immediate consequence of the following Poisson property of
the stationary PNG process extended to arbitrary negative times, which is proven
in Section4.4 by taking the continuum limit of a discretized version of the PNG
model.

Proposition 3.1 For the stationary height processh(x, t) with mean slope0 the
crossing positions of up- and down-step trajectories along a space-like direction
{t = bx}with |b| ≤ 1 are distributed like two independent Poisson point processes
with line densitiespb+ = (1+b)/

√
1 + b2 andpb− = (1−b)/

√
1 + b2, respectively.

Thus for a space-like separation|x| ≥ t the height differenceh(x, t)− h(0, 0), is
distributed as the position of a drifting random walk with mean2t and variance2x.
Furthermore, the stationary process with mean slopeu can be constructed from
the stationary process with mean slope0 by means of the Lorentz transformation

x′ = (1− c2)−1/2(x− ct), t′ = (1− c2)−1/2(t− cx), (3.1)

where the speed of “light” is1 and the velocity parameterc = −u/
√

4 + u2. The
mapping preserves the deterministic dynamics, leaves invariant the space-time
density of nucleation events and maps the Poisson ratesp± for t = 0 correctly.

For the slope dependent growth velocityv(u) = ∂t〈h(x, t)〉 we thus obtain the
relation

v(u) = w(p+ + p−) = w

√
2ξ

w
+ u2, (3.2)

Obviously it is a convex function ofu with non-vanishing curvature. Together
with the locality of the stochastic growth rule it tells us already that the model lies
in the KPZ universality class.
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Sincex 7→ h(x, t) is a random walk the static roughness exponent is1/2,
consistent with the KPZ prediction in one dimension. The roughness amplitude
A = x−1〈(h(x, t)− h(0, t)− ux)2, by the Poisson property, is given by

A(u) = p+ + p− =

√
2ξ

w
+ u2. (3.3)

Indeed, (3.2) and (3.3) fix already all the model dependent parameters (again
with w = 1, ξ = 2), λ(u) = v′′(u) = 4(4 + u2)−3/2 andA(u) =

√
4 + u2, which

allows to extract universal quantities from the quantitative scaling properties of
the PNG height process.

The directed polymer. There is an equivalent formulation of the PNG model as
a zero temperature directed polymer in a random environment. We fix the initial
conditionsx 7→ h(x, 0) and take a realization of nucleation events in the half plane
{t ≥ 0}. In Figure3.2 the trajectories of up- and down-steps are drawn. They

t

x

Figure 3.2:A space-time picture of the PNG model and a corresponding longest
polymer.

form the height lines ofh(x, t) in space-time. The height differenceh(y, t) −
h(x, s), where(y, t) lies in the forward light cone of(x, s), i.e. |y − x| ≤ t − s,
is given by the number of height lines crossed by a time-like pathγ : [s, t] → R

from (x, s) to (y, t), where time-like means that|γ(s′) − γ(s′′)| ≤ |s′ − s′′| for
s′, s′′ ∈ [s, t]. A directed path is a piecewise linear time-like pathγ where jumps
in the gradient ofγ are only allowed at nucleation events inside the rectangle
R = {(x′, s′); |x′−x| ≤ s′−s, |x′−y| ≤ t−s′} or at incoming height lines at the
lower edges ofR, {(x′, s′); x−x′ = s−s′}∩R and{(x′, s′); x′−x = s−s′}∩R
which we address as nucleation events forR as well.



34 CHAPTER 3. THE (1+1)-DIMENSIONAL PNG MODEL

We define the length of such a directed pathγ as the number of nucleation
events met byγ and claim thath(y, t) − h(x, s) equals the length of the longest
directed path from(x, s) to (y, t). To see this, note that two points on such a path
always belong to nucleation events in different levels, thus the number of points
on a path is always smaller or equal toh(y, t)− h(x, s). But a maximal path with
h(y, t) − h(x, s) points is easily constructed by starting from(y, t) and working
one’s way back to(x, s), since each nucleation event inR which belongs to level
l has at least one nucleation event belonging to levell − 1 in its backward light
cone. Note that the directed path can pick up nucleation events along either of the
lower edges ofR only until it eventually enters the bulk ofR.

A directed polymer is a directed pathγ whose energy is given by the negative
length ofγ. Since the mapping from PNG to the directed polymer is realization-
wise we conclude that the distribution ofh(x, s)− h(y, t) equals the ground state
energy of a directed polymer from(x, s) to (y, t).

The PNG cluster. A nice geometric interpretation of the PNG model is in terms
of the setD = {(x, t, h); h ≤ h(x, t)}, the space-time image of the PNG cluster.
D ⊂ R3 is a random set made up of level setsDl ⊂ R2, l ∈ Z, such thatD =⋃
l∈ZDl×[l−1, l]. Now fix an arbitrary subsetA ⊂ [c,∞[2, c ∈ R some constant,

as initial condition and setDl = A+ [0,∞[2 for l ≤ 0. Randomness is introduced
by taking for each levell > 0 independent Poisson point processesPl onR2 with
density2, Pl ⊂ R2 being the set of Poisson points. The level sets are than defined
recursively as

Dl = (Pl ∩Dl−1) + [0,∞[2, l > 0. (3.4)

In Figure3.3a part of a PNG cluster with initial conditionA = {(0, 0)} is shown,
it corresponds to the “droplet” initial conditionh(0, 0) = 0 andh(x, 0) = −∞ for
x 6= 0. The PNG cluster is just a static description of the PNG dynamics of the
height functionh(x, t) = max{l; (x, t) ∈ Dl}. In order to recover arbitrary initial
conditionsx 7→ h(x, 0) one has to allow for initializing setsAl = {x; h(x, 0) ≥ l}
in level l respectively. The recursion (3.4) is modified toDl =

(
(Al ∪ Pl) ∩

Dl−1

)
+ [0,∞[2 with l ∈ Z. In the case thath(x, 0) is unbounded from below

one has to constructD as the limitk → ∞ of clusters with initial condition
x 7→ max{h(x, 0),−k}.

The Aldous-Diaconis-Hammersley process. Yet another equivalent formula-
tion of the PNG model is the Aldous-Diaconis-Hammersley (ADH) process [60,
5, 76] whose hydrodynamics and diffusive properties have been studied by Sep-
päläinen [111, 112, 113]. We have a countable collection of point particles on
R ∪ {∞} whose positions at times are labeled byri(s), i ∈ Z. Particles are
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x

th

Figure 3.3:A small PNG cluster with initial conditionA = {(0, 0)}.

ordered,ri−1(s) ≤ ri(s), which is preserved under the dynamics. They can only
jump to the left and are otherwise at rest. At times the i’th particle jumps with
rateri(s)− ri−1(s) independently of all other particles and lands anywhere in the
interval [ri−1(s), ri(s)] with uniform probability. The process is well defined if
the distance between adjacent particles with large negative index does not get to
large, more precisely ifri = o(i2) for i→ −∞ [113]. Note that the end points of
particle jumps, irrespectively of particle positions, form a Poisson point process
in the whole(r, s)-plane with density1. If limi→−∞ ri = r > −∞ the Poisson
points are restricted to[r,∞[×R.

To establish the connection to the PNG model, we define the height function
H(r, s) =

∫ r
0

∑
i δ
(
r − ri(s)

)
dr. Now it is fairly obvious that the transformed

height function

h(x, t) = H(t+ x, t− x) (3.5)

is a PNG height process with initial/boundary conditionx 7→ h(x,−x) = H(x, 0)
and only defined in{(x′, t′); x ≥ −t}. Under the rotation by45◦ up-step trajec-
tories of PNG correspond to particles at rest in ADH and down-step trajectories
correspond to jumps of particles. The overall scaling by a factor

√
2 accounts for

the nucleation rate2 in PNG.

3.1 The PNG droplet

Droplet growth for the PNG model is obtained by the proper choice of initial
conditions. We chooseh(0, 0) = 0 andh(x, 0) = −∞ for x 6= 0. The ground
layer at level zero starts att = 0 and extends laterally with velocity one in both
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directions. Thus only nucleation events above the ground layer, i.e. at space-time
points(x, t) with |x| ≤ t, are relevant. Obviouslyh(±t, t) = 0 with probability
1, growth occurs only in the interval[−t, t]. These initial condition correspond to
an initial setA = {(0, 0)} for the PNG cluster.

From the macroscopic theory, Section2.1, at large times we expect the PNG
cluster to form a droplet whose shape is given by the Wulff construction. Thus
from (3.2) (with w = 1, ξ = 2) we haveh(x, t) ' 2

√
t2 − x2. The initial con-

ditions for the PNG droplet correspond to an initial setA = {(0, 0)} for the
three-dimensional PNG cluster, which macroscopically has the shape of a cone.
Figure3.4shows a piece of such a PNG cone.

From the KPZ theory for curved growth, Section2.1.1, we estimate the height
fluctuations of the PNG cone as

h(x, t) ' 2
√
t2 − x2 + C(x/t)t1/3χdroplet

1 , ast→∞, x = ct, (3.6)

in distribution. The dynamical exponentβ = 1
3

follows from the scaling relation
(2.30). The distribution ofχdroplet

1 is the universal distribution for one-dimensional
curved KPZ growth. The functionC(c) depends only on the direction of the ray
x = ct along which one observes the distribution ofh(x, t). It determines the
absolute scale on whichχdroplet is observed. By the scaling form (2.41) it is given
by C(c) = (1

2
λ(u)A(u)2)1/3 with u such thatv′(u) = c, thus we can predict

C(c) = (1− c2)1/6.
In the directed polymer picture the rectangleR(x,t) = {(x′, t′); |x′| ≤ t′, |x −

x′| ≤ t− t′} has no incoming lines at all. Its length is determined exclusively by
the Poisson points of density2 inside the rectangle. Since the Lorentz transfor-
mation (3.1) leaves invariant the PNG dynamics we can mapR(x,t) to the square
R(0,v) with v =

√
t2 − x2. We conclude that the distribution ofh(x, t) for the PNG

droplet depends only onv. Therefore, provided the dynamical exponentβ = 1
3

is
correct, one has

h(x, t) ' 2v + C v1/3χdroplet
1 (3.7)

confirming (3.6), where the constantC is set to one by convention and thereby
defines the absolute scale ofχdroplet

1 .

3.1.1 Ulam’s problem.

Take a random permutation of lengthN , i.e. each permutationp ∈ SN has the
same probability1/N !. An increasing subsequence of lengthn of the permuta-
tion p =

(
p(1), . . . , p(n)

)
, is specified by the indicesi1 < · · · < ik, such that

p(i1) < · · · < p(ik). In 1961 Ulam [124] presented the problem to determine
the asymptotics of the lengthlN of the longest increasing subsequence in such a
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Figure 3.4:A large piece of a PNG cone in light coordinates. It has been cut in a
way to improve the 3d impression. The black vertical line represents a PNG line
x 7→ h(x, t). The horizontal line marks a level setDl.
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random permutation. As example take the permutationp = (4, 7, 5, 2, 8, 1, 3, 6).
Then(5), (4, 7), (2, 3, 6), (4, 5, 8) are increasing subsequences ofp, but only the
last two of them are maximal.

A survey of the history of Ulam’s problem is given in [6]. Ulam already con-
jectured thatlN/

√
N → c for largeN , Hammersley’s treatment of the question

[60] strongly suggestedc = 2. Logan and Shepp [84] and Vershik and Kerov
[125] independently showed, in essence, convergence toc = 2 in probability.
Then, 1999, Baik, Deift, and Johansson in their by now already famous work
[10] settled the problem by determining not only the rate of convergence but also
identifying the limiting distribution. They show that

lim
N→∞

Prob{lN − 2N1/2 ≤ N1/6s} = FGUE(s), (3.8)

which means thatlN is distributed asymptotically for largeN as2N1/2+N1/6χGUE

wereχGUE is a random variable with distribution functionFGUE(s) = Prob{χGUE ≤
s}. It is called the Tracy-Widom GUE distribution [121] and arises as the distri-
bution of the properly rescaled largest eigenvalue of a random matrix drawn from
the general unitary ensemble (GUE), see Mehta [90] for an introduction.

The definition ofFGUE(s) is slightly involved. We have to introduce the
Hastings-McLeod solutionu(s) to the Painlevé II equation

u′′(s) = 2u(s)3 + s u(s). (3.9)

which is specified uniquely by requiringu(s) < 0 for s ∈ R [61]. It has asymp-
totics

u(s) ∼ −Ai(s) for s→∞ (3.10)

and

u(s) ∼ −
√
−s
2

for s→ −∞. (3.11)

u(s) interpolates smoothly between its left and right asymptotics withu′(s) > 0
for s ∈ R. We define the auxiliary functions

U(s) = −
∫ ∞
s

u(x)dx, (3.12)

v(s) = (u(s)2 + s)u(s)2 − u′(s)2, (3.13)

V (s) = −
∫ ∞
s

v(x)dx. (3.14)
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Note thatU ′ = u, V ′ = v, andv′ = u2 by (3.9). Finally the Tracy-Widom GUE
distribution function is defined as

FGUE(s) = e−V (s). (3.15)

Before we further explain the result let us get the connection to the PNG
droplet. We fix a realization of nucleation events in the squareR(0,v). The align-
ment of an enumeration of the nucleation events(xi, ti), i = 1, . . . , N , with re-
spect to the light-like coordinatesri = ti + xi andsi = ti − xi uniquely defines a
permutationp of lengthN with probability one. To see this assume that the points
are ordered such thatr1 < r2 < · · · < rn. Now there is a unique permutation(
p(1), p(2), . . . , p(N)

)
such thatsp(1) < sp(2) < · · · < sp(N), cf. Fig. 3.5. The
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Figure 3.5: Space-time picture for the height of a small PNG droplet at(x, t)
with light-like coordinatesr, s. The dashed line is a maximal directed path. The
nucleation events correspond to the permutation(4, 7, 5, 2, 8, 1, 3, 6).

nucleation events met by a directed path define an increasing subsequence ofp,
which yields a one-to-one correspondence between directed paths and increasing
subsequences.

Conditioned on a fixed numberN of points inR(0,v) the Poisson point process
induces equal weight1/N ! for all permutationsp ∈ SN . Therefore we conclude
thath(x, t) is distributed as the lengthlv of the longest increasing subsequence of
a random permutation having random lengthN , whereN has Poisson distribution
with meanv2, v =

√
t2 − x2.

This is almost the statement (3.8). It turns out that the Poissonized version of
lN , lv with 〈N〉 = v2 is much easier to study thanlN directly. In [10] actually (3.8)
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is proven forlv and the result forlN follows from “depoissonization” lemmas. In
summary let us state the result obtained for the height distribution of the PNG
droplet [98]:

Theorem 3.2 Leth(x, t) be the height process corresponding to the PNG droplet,
|c| ≤ 1, then

lim
t→∞

Prob
{h(ct, t)− 2t

√
1− c2

(1− c2)1/6t1/3
≤ s
}

= FGUE(s). (3.16)

Let us describe the derivation of (3.8). The starting point is an explicit expression
for FGUE

n = Prob{h(0, v) ≤ n}. We suppress writing down the explicit depen-
dence onv in the following. In shortFGUE

n is expressed as an expectation with
respect to the Haar measure over the unitary groupU(n), which can be written as
a Toeplitz determinant,

FGUE
n = e−v

2

EU∈U(n)

(
ev tr(U+U−1)

)
= e−v

2

detTn
(
e2v cos θ

)
. (3.17)

Tn
(
f(θ)

)
= (µk−l)0≤k,l<n is an × n Toeplitz matrix with weight functionf(θ).

Its entries are the Fourier coefficients off(θ), µk = (2π)−1
∫ 2π

0
eikθf(θ)dθ. The

first identity in (3.17) follows from work of Gessel [51]. It is a very remark-
able relation which is based on the Robinson-Schensted-Knuth correspondence
between permutations and pairs of standard Young tableaus. Concise derivations
can be found in [6] or in the Appendix of [10]. The second identity is a very gen-
eral correspondence between determinantal expectations of the unitary group and
Toeplitz determinants. One has for arbitrary functionsf andg integrable on the
unit circle ([12], Thm. 2.1)

EU∈U(n) det
(
f(U)g(U−1)

)
= detTn

(
f(eiθ)g(e−iθ)

)
. (3.18)

As a side remark let us mention that there is a similar formula as (3.17) for
random permutations with fixed lengthN [104, 6],

Prob{lN ≤ n} = (N !)−1
EU∈U(n)

(
|tr(U)N |2

)
. (3.19)

One recovers (3.17) by noting that

FGUE
n =

∑
N≥0

v2N

N !
Prob{lN ≤ n} (3.20)

and thatEU∈U(n)

(
[tr(U) + tr(U−1)]2N

)
=
(

2N
N

)
EU∈U(n)

(
[tr(U)N + tr(U−1)N ]2

)
.

The latter holds becauseEU∈U(n)

(
tr(U)ktr(U−1)l

)
= 0 for k 6= l by the invariance

of the Haar measure under the transformationU 7→ eiϕU .
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3.1.2 Orthogonal polynomials.

We need to deal with the Toeplitz determinantDn = detTn
(
f(θ)

)
. A standard

tool to do so are orthogonal polynomials on the unit circle [118]. We introduce the
polynomialsπn(z) which arise from the Gram-Schmidt orthogonalization proce-
dure of the functionszn, n ≥ 0, with respect to the measure concentrated on the
unit circledµ(z) = e−v(z+z−1)dz(2πiz)−1. Thus the polynomials are orthogonal
with respect to the inner product

〈p, q〉 =

∮
p(z)q(z−1)dµ(z) = (2π)−1

∫ 2π

0

p(eiθ)q(eiθ)e2v cos θdθ, (3.21)

where · denotes complex conjugation, andq means conjugating the coefficients
of q. The polynomials are defined to be monic,πn(z) = zn + O(zn−1). Their
squared norm is denoted byNn, thus

〈πm, πn〉 = δm,nNn. (3.22)

The Toeplitz determinantDn = Tn
(
e−2v cos θ

)
in this notation reads

Dn = det(〈zk, zl〉)0≤k,l<n ∈ R. (3.23)

We define the reciprocal polynomials

π∗(z) = znπn(z−1) (3.24)

and abbreviatepn = πn(0). Let us mention that since all the coefficients ofπn are
real one hasπn(z) = πn(z).

Classical results from the theory of orthogonal polynomials on the circle [118]
relate the Toeplitz determinants to the norms ofπn.

Dn =
n−1∏
k=0

Nk (3.25)

and for the squared norm one has

Nn = N0

n∏
k=1

(1− p2
k). (3.26)

With the special weight functionf(θ) = e−2v cos(θ) one obtains a nonlinear recur-
sion relation for thepn, the discrete Painlevé II equation. It has been derived in
the context of orthogonal polynomials for the first time in [94], and later on more
or less independently in [62, 123, 9, 24]. One has

pn+1 = −
n
v
pn

1− p2
n

− pn−1 for n > 0, (3.27)
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with initial valuesp0 = 1, p1 = − I1(2v)
I0(2v)

. For the convenience of the reader we
prove equations (3.25), (3.26), and (3.27) in AppendixA.

Setting

Rn = −(−1)npn, (3.28)

we rewrite (3.27) as

Rn+1 − 2Rn +Rn−1 =
(n
v
− 2)Rn + 2R3

n

1−R2
n

. (3.29)

In order to obtain a non trivial continuum limit of this second order difference
equation we introduce the scaling variables in the limit v →∞ and set

n = [2v + v1/3s] (3.30)

ApproximatingRn by the the smooth functionu(s) as

Rn = v−1/3u
(
v−1/3(n− 2v)

)
+O(v−1) (3.31)

and taking the limitv → ∞ implies thatu(s) satisfies the Painlevé II equation
(3.9). The starting valueR0 = −1 is consistent with the left asymptotics ofu(s)
only if

u(s) ∼ −
√
−s/2 ass→ −∞, (3.32)

which singles out the Hastings-McLeod solutionu(s) < 0. We conclude that

u(s) = lim
v→∞

v1/3R[2v+v1/3s], (3.33)

provided the limit exists. We do not know of a direct proof of this convergence. In
[10] it is shown by means of the Deift-Zhou steepest decent method for associated
Riemann-Hilbert problems [37]. The convergenceFGUE

n → FGUE(s) under the
scaling (3.30) follows from (3.33) by noting that the second log-derivative of the
latter is

d2

ds2
ln(FGUE(s)) = −u(s)2 (3.34)

and

Dn+1Dn−1

D2
n

= 1−R2
n, (3.35)

sinceFGUE
n = e−v

2
Dn.
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3.2 Flat initial conditions and other symmetry re-
strictions

In the physical literature it is very common to study flat initial conditions for
surface growth. For Monte-Carlo simulations this is a preferred situation since the
flat initial profile is easily prepared and the growth process is spatially translation
invariant. This property is preserved when the infinitely extended substrate is
approximated by a finite substrate with periodic boundary conditions. Thus the
ensemble averaging of the local height statistics can be replaced or supplemented
by spatial averaging.

For the PNG model flat initial conditions are defined byh(x, 0) = 0 for x ∈ R
with nucleation events possible everywhere on the real line. The KPZ scaling
theory predicts for the distribution of the height abovex = 0

h(0, t) ' 2t+ t1/3χflat
1 , ast→∞. (3.36)

The absolute scale for the random variableχflat
1 is the same as for the droplet at

zero slope, i.e.c = 0 in (3.6). Analogously to the droplet case a mapping to
longest increasing subsequences of random permutations [99] leads to a proof of
(3.36) [14] and the identification ofχflat

1 as the Tracy-Widom GOE distribution
[122].

Let us describe the directed polymer picture for flat initial conditions. For a
given space-time realization of nucleation eventsh(0, t) depends only on Poisson
points inside the triangleTt = {(x′, t′); |x′| ≤ t − t′, t′ ≥ 0}. The heighth(0, t)
equals the length of a longest directed path in the squareRt = {(x′, t′); |x′| ≤
|t|−|t′|} from (0,−t) to (0, t), where all the points lie in the upper halfTt. Equiv-
alently we can define a line-to-point directed polymer in the triangleTt. It ends in
(0, t) but is allowed to start anywhere in[−t, t]×{0}. Since the distribution of the
length of a longest directed path is invariant under the transformationt′ 7→ t − t′
the distribution ofh(0, t) equals the realizationwise maximum of directed poly-
mers starting from(0, 0) and ending somewhere in{(x′, t); |x′| ≤ t}. This simple
observation of the connection between point-to-line and point-to-point directed
polymers (first mentioned, to our knowledge, in the context of growth in a foot-
note in [77]) allows us to expressh(0, t) in terms of the PNG droplet process from
the previous section, denoted herehdroplet(x, t), as

h(0, t) = max
x∈[−t,t]

hdroplet(x, t) in distribution. (3.37)

To access the asymptotic distribution ofh(0, t) let us mirror the Poisson points
in Tt into

(
1 0
0−1

)
Tt. Obviously2h(0, t) is now distributed as a point-to-point di-

rected polymer from(0,−t) to (0, t), where the random environment, the set of
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Poisson points,P , is symmetric,P =
(

1 0
0−1

)
P . As in the droplet case each real-

ization of2N Poisson points insideRt corresponds to a random permutationp of
length2N which has the symmetry restrictionp

(
2N + 1− p(k)

)
= 2N + 1− k,

and we need the lengthlt of the longest increasing subsequence in such a random
permutation of length2N , whereN is Poisson distributed with mean2t2. Equiv-
alently, by defining the permutationq(k) = p(2N + 1 − k) one can think of the
longestdecreasingsubsequence in a random involution,q2 = id. Baik and Rains
study exactly this case in [14]. They start with

Prob{lt ≤ 2n} = e−t
2/2
EU∈Sp(2n)

(
et trU

)
, (3.38)

where the expectation is over the Haar measure of the symplectic groupSp(2n)
[104, 12]. Similarly to the case of the unitary group, such an expectation can be
expressed by the determinant of a combination of Toeplitz and Hankel matrices (a
Hankel matrix has entries constant along anti-diagonals). It is dealt with the same
orthogonal polynomials (3.22) as in the pure Toeplitz case. Baik and Rains obtain
[12]

EU∈Sp(2n)

(
et trU

)
=

n−1∏
k=0

N2k+2(1− p2j+2)−1. (3.39)

We scale as in the droplet case,n = [2t + t1/3s]. Given the limit (3.33) one
arrives at the limiting distribution

lim
t→∞

Prob{lt − 4t ≤ (2t)1/3s} = FGOE(s), (3.40)

where

FGOE(s) = e−
1
2

(U(s)+V (s)) (3.41)

is the Tracy-Widom GOE distribution which appears in the theory of random ma-
trices as the properly scaled distribution of the largest eigenvalue of a random
matrix from the general orthogonal ensemble (GOE) [122]. Sinceh(t, 0) = 1

2
lt

we can state the final result forh(0, t).

Theorem 3.3 Leth(x, t) be the height process corresponding to the PNG model
with flat initial conditions, then

lim
t→∞

Prob
{h(0, t)− 2t

t1/3
≤ 2−2/3s

}
= FGOE(s). (3.42)

Note that because of the relationlt = 2h(0, t), the universal random variable
χflat

1 = 22/3χGOE.
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In the beautiful work of Baik and Rains ([14] for a survey, [12, 13] for the
details) longest increasing subsequences of random permutations restricted to
other symmetry classes are analyzed. We translate their results to identify fur-
ther asymptotic distributions arising when the growth process is confined by a
rigid wall.

We restrict the PNG model to the half line,x ≥ 0, up-steps reachingx = 0
just disappear. With the initial conditionh(0, 0) = 0 andh(x, 0) = −∞ for
x > 0 a half droplet is growing with macroscopic shape

√
t2 − x2, x ≥ 0. h(0, t)

is determined by the Poisson points in{(x′, t′); 0 ≤ x′ ≤ t′, x′ ≤ t − t′}. Al-
ternatively one can think of the original PNG model on the whole linex ∈ R
growing symmetrically aroundx = 0. Thus a nucleation event occurring at(x, t),
x ≥ 0 is mirrored and implies a similar nucleation event at(−x, t). The permuta-
tions corresponding to Poisson point realizations inside the square{(x′, t′); |x′| ≤
t′, |x′| ≤ t − t′} are involutions. In this case a similar expression is obtained as
in (3.38) with the symplectic group replaced by the orthogonal groupO(n). The
analysis of the corresponding Hankel/Toeplitz determinants in terms of the or-
thogonal polynomials (3.22) in the scaling limit leads to the Tracy-Widom GSE
distribution

FGSE(s) = 1
2

(
e−

1
2
U(s) + e

1
2
U(s)
)
e−V (s), (3.43)

the properly rescaled distribution of the largest eigenvalue of a random matrix
from the general symplectic ensemble (GSE) [122].

Theorem 3.4 Let h(x, t) be the height process corresponding to the PNG half
droplet, then

lim
t→∞

Prob
{h(0, t)− 2t

t1/3
≤ s
}

= FGSE(s). (3.44)

Here the heighth(ct, t) is obtained only forc = 0 wherex = ct. For other
values ofc no analytic results are available. From KPZ theory we expect that for
any0 < c ≤ 1 the droplet case (3.16) should be recovered, since the correlation
length for height fluctuations increases only witht2/3. In the polymer picture the
symmetry of the Poisson points is seen by the polymer only in the very beginning
up to a timet′ of ordert1/3. This does not affect the scaling limit.

Let us mention that Baik and Rains can also deal with a source of Poisson
points of arbitrary line densityα ≥ 0 above the originx = 0. The result is as
expected. Whenα < 2 the limiting distribution (3.44) is unchanged. It does
not pay for the polymer to go along the line of Poisson points for a macroscopic
fraction of time. Forα > 2 the polymer stays atx = 0 for most of the time
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because, on the average, it there collects more Poisson points than in the bulk. By
the central limit theorem the asymptotic height distribution is given by a Gaussian
on the scalet1/2. Only if α = 2 + t−1/3y, y fixed, the number of Poisson points
from the line is such that their fluctuations are on the same order as the bulk
fluctuations. One obtains a smooth transition fromGSE for y � 0 to a Gaussian
with variance proportional toy for y � 0. Forα = 2, the critical value,FGOE is
recovered as limiting distribution, exactly.

Finally flat initial conditions for the PNG model on the half line,h(x, 0) = 0
for x ≥ 0 can be treated in a similar way. The Poisson points in the region
{(x′, t′); x′, t′ ≥ 0, x′ + t′ ≤ t} are mirrored att = 0 andx = 0, to fill the square
Rt with points of fourfold symmetry. The limiting distribution for the height turns
out to be againGUE, but is narrower by a factor of22/3, since the length of the
polymer corresponds to2h(0, t)

Theorem 3.5 Leth(x, t) be the height process corresponding to the PNG model
with flat initial conditions on the half line, then

lim
t→∞

Prob
{h(0, t)− 2t

t1/3
≤ 2−2/3s

}
= FGUE(s). (3.45)

A source at the origin results in the same qualitative behavior as for the half
droplet. For the critical valueα = 2 the limiting distribution isFGOE(2

2/3s)2,
which can be thought of as the maximum of two independentGOE random vari-
ables.

3.3 Stationary initial conditions, the stationary two-
point function

When the initial conditions for the PNG model att = 0 are drawn from the
stationary distribution, say at slope zero, the resulting growth process is spa-
tially and temporarily translation invariant. The variance of the height difference
h(x, t)− h(0, 0) defines the stationary two-point function of the PNG model,

C(x, t) =
〈
(h(x, t)− h(0, 0)− 2t)2

〉
, (3.46)

where 〈·〉 means expectation with respect to initial conditions and nucleation
events. By the KPZ scaling and universality hypothesis the properly rescaled
two-point function converges to the universal scaling function,gdyn

1 (y), for one-
dimensional KPZ growth,

C(t2/3y, t)

t2/3
→ gdyn

1 (y) for t→∞, (3.47)
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which has been defined in (2.33). It will be denoted byg(y) throughout this
section. There have been numerous approaches to studyg(·) [18, 63, 119, 49, 44].
For historical reasons the equivalent scaling function,F (·), is analyzed in some
of these works. As a reference we indicate here their relation,

F (ξ) = (ξ/2)2/3 g
(
(2ξ2)−1/3

)
, resp. g(y) = 2y F

(
1/(21/2y3/2)

)
. (3.48)

The largey behavior ofg is fixed by definition asg(y) ∼ 2|y|. The special
valueg(0) = 1.1503944782594709729961 is the Baik-Rains constant [11, 99].
In the literature the universal amplitude ratioRG = 2−2/3g(0) = 0.7247031092
and the universal coupling constantg∗ = g(0)−3/2 = 0.81045670 have been in-
vestigated. Approximate values have been determined by means of Monte-Carlo
simulations for the single step model [119], numerically within a mode-coupling
approximation [63, 49, 35], and even experimentally for slowly combusting paper
[91] yielding estimates forg(0) within reasonable ranges around the (numerically)
exact value indicated.

3.3.1 Convexity of the scaling function.

By the asymptotics ofg(y) the function

f(y) = 1
2
g′′(y) (3.49)

has integral1. It turns out to be positive, which implies thatg(y) is a convex
function and thusf(y) can be interpreted as a probability density.

To prove thatf(y) ≥ 0 we introduce the structure function for the step density,

S(x, t) = 〈ρ(x, t)ρ(0, 0)〉, (3.50)

whereρ(x, t) = ∂xh(x, t) is the signed step density, which has delta peaks at
the up-step positions and negative delta peaks at the down-step positions. By
stationarityS(x, t) is closely related to the correlation functionC(x, t). An easy
calculation yields

1
2
∂2
xC(x, t) = 1

2
∂2
x

〈(
h(x, t)− h(0, 0)− 2t

)2〉
= ∂x

〈
ρ(x, t)

(
h(x, t)− h(0, 0)− 2t

)〉
= ∂x

〈
ρ(0, t)

(
h(0, t)− h(−x, 0)− 2t

)〉
=

〈
ρ(0, t)ρ(−x, 0)

〉
= S(x, t). (3.51)

f(y) is the scaling function forS(x, t), by (3.47) one has

1
2
t2/3S(t2/3y, t)→ f(y) for t→∞. (3.52)
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To show thatS(x, t) ≥ 0 we interpret1
2
S(x, t) as the transition probability for a

second class particle starting at the origin. Its initial velocity is±1 with proba-
bility 1

2
, as for the “first-class” up/down-steps. In contrast to an ordinary step the

second class particle is never destroyed upon colliding with another step. Rather
it eats up the step encountered and, by reversing its own direction of motion, con-
tinues along the trajectory of the absorbed step, cf. Figure3.6. Let ρ(x, t) be a

Figure 3.6:The trajectory of a second-class particle.

given realization of the PNG process. The second class particle is added as

ρ(σ)(x, 0) = ρ(x, 0) + σδ(x), σ = ±1. (3.53)

ρ(σ)(x, 0) evolves toρ(σ)(x, t) with nucleation events identical to the one for
ρ(x, t). By construction, ifXt denotes the position of the second class particle
at timet,

ρ(σ)(x, t)− ρ(x, t) = σδ(x−Xt). (3.54)

Noting that by the Poisson propertyρ(σ)(x, 0) is given byρ(x, 0) conditioned on
the presence of either an up-step (σ = +1) or down-step (σ = −1) at the origin,



3.3. THE STATIONARY TWO-POINT FUNCTION 49

we obtain

0 ≤ pt(x) =
1

2

∑
σ=±1

〈
σ
(
ρ(σ)(x, t)− ρ(x, t)

)〉
=

1

2

∑
σ=±1

〈
σρ(σ)(x, t)

〉
= lim

δ↘0

1

2

∑
σ=±1

σ
〈
ρ(x, t) θ

({ ∫ δ
−δ ρ(y, 0) dy = σ

})〉
= lim

δ↘0

1

2

∑
σ,σ′=±1

σσ′
〈
θ
({ ∫ δ

−δ ρ(x+ y, t) dy = σ′,
∫ δ
−δ ρ(y, 0) dy = σ

})〉
2 δ
〈
θ
({ ∫ δ

−δ ρ(y, 0) dy = σ
})〉

= 1
2

〈
ρ(x, t)ρ(0, 0)

〉
= 1

2
S(x, t), (3.55)

whereθ({·}) is the characteristic function of a subset{·} of configurations(x, t) 7→
h(x, t). For arbitrary slopeu, employing the Lorentz invariance of the stationary
height process (3.1) the normalization ofSu(x, t) is given byv(u) =

√
4 + u2 and

the mean ofpt(x) evolves along the characteristics of the macroscopic evolution
equation∂tu = −∂xv(u). Thus∫

Su(x, t)dx =
√

4 + u2, and
∫
xSu(x, t)dx = −t u. (3.56)

3.3.2 The distribution of height differences.

In order to findg(y), resp. f(y), we study the distribution of height differences
h(x, t) − h(0, 0) = h(x, t), since we fixh(0, 0) = 0. It can be determined ex-
plicitly for all values of (x, t). For a space-like separation,|x| ≥ |t|, by the
Poisson property of Prop.3.1, h(x, t) is the difference of two independent Pois-
son distributed integer valued random variables with mean|x| + |t| and|x| − |t|,
respectively. Other signs forx and t follow by symmetry. Thus, explicitly, the
height distribution functionF|x|,|t|(n) = Prob{h(x, t) = n} is given as

Fx,t(n) =
∑
k,l≥0

δl−k,n
(x+ t)k(x− t)l

k! l!
e−2x

=
(
x+t
x−t

)n/2
In
(
2
√
x2 − t2

)
e−2x, 0 ≤ t ≤ x (3.57)

whereIn(z) =
∑

k≥0
z2k+n

k!(k+n)!
is the modified Bessel function. Obviously, by the

central limit theoremh(x, t) is close to a Gaussian distribution, for largex with
exact mean2t and variance2x. Nevertheless it has non-vanishing fully truncated
third and fourth moments. They can be calculated as2t and2x, respectively. Let
us mention that for space-like separations arbitraryn-point correlation functions
are trivial in the sense that the corresponding joint distributions are expressed as
joint distributions of points along a corresponding simple random walk.
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For time-like separations,|x| < t, the distribution ofh(x, t) is non-trivial.
From the mapping to directed polymers we know thath(x, t) equals in distribution
the length of the longest polymer from(0, 0) to (x, t) inside the rectangleR(x,t) =
{(x′, t′); |x′| ≤ t, |x − x′| ≤ t − t′}. The incoming up- and down-steps at the
lower edges ofR(x,t), according to Proposition3.1, are Poisson distributed with
line densities

√
2. With the Lorentz transformation (3.1) we mapR(x,t) into a

square. An additional overall scaling by
√

2/v, v =
√
t2 − x2, leads to a unit

square, with bulk densityv2 and line densitiesαv for the lower left, andβv for the
lower right side, whereα =

√
(t− x)/(t+ x) andβ = 1/α. We thereby have

recovered precisely the setting in [11, 9] with t replaced byv. Let us explain their
result.

Take a directed polymer with boundary parametersα andβ, αβ < 1 and
add an additional source of points at the origin. The number of points,n0, at
the origin is geometrically distributed with strengthαβ, i.e. Prob{n0 = n} =
(1−αβ)(αβ)n. The distribution of the lengthlv,α,β of the longest directed polymer
in this case is given by

Pn = Prob{lv,α,β ≤ n}
= e−v

2−(α+β)v
EU∈U(n) det

(
(1 + αU)(1 + βU−1)ev(U+U−1)

)
(3.58)

Using standard results for orthogonal polynomials with a weight function multi-
plied by a polynomial it is shown in [12] that the corresponding Toeplitz determi-
nant factorizes by means of the orthogonal polynomials (3.22) and (3.24) into

Pn = e−(α+β)v π
∗
n(−α)π∗n(−β)− αβπn(−α)πn(−β)

1− αβ
FGUE
n

= e−(α+β)vNn

n∑
k=0

πk(−α)πk(−β)

Nk

FGUE
n . (3.59)

The second equality follows by a simple application of the Christoffel-Darboux
formula

Nn

n−1∑
k=0

πk(a)πk(b)

Nk

=
π∗n(a)π∗n(b)− πn(a)πn(b)

1− ab
, (3.60)

cf. AppendixA.
Conditioning onn0 = 0 yields

Prob{lv,α,β ≤ n, n0 = 0} = Pn − αβPn−1. (3.61)

If α is fixed,Pn seems to have a simple pole atβ = 1/α. But by the second
equality in (3.59) it is obvious thatPn is entire as a function ofβ. Altogether we
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arrive at

Fx,t(n) = gn(α)FGUE
n − gn−1(α)FGUE

n−1 , |x| < t, (3.62)

with

gn(α) = e−v(α+α−1)Nn

n∑
k=0

N−1
k πk(−α)πk(−α−1). (3.63)

An alternative form is obtained by applying l’Hospital’s rule to the first expression
for Pn in (3.59) whenβ tends to1/α.

gn(α) = e−v(α+α−1)
(
πn(−α)πn(−α−1)

+α−1π∗n(−α)π∗n
′(−α−1)− α−1πn(−α)π′n(−α−1)

)
= e−v(α+α−1)

(
(1− n)πn(−α)πn(−α−1)

−απ′n(−α)πn(−α−1)− α−1πn(−α)π′n(−α−1)
)

(3.64)

where the second, more symmetric form follows from the simple identity

π∗n(z)z−1π∗n
′(z−1) + z π′n(z)πn(z−1)=nπn(z)πn(z−1) = nπ∗n(z)π∗n(z−1).

(3.65)

By stationarity the mean ofh(x, t) is2t. Therefore the PNG two-point-function
(3.46) is given by

C(x, t) =
∑
n≥0

(
2(n− 2t)− 1

)
Prob{h(x, t) ≤ n}. (3.66)

As a remark let us note that the value of the mean ofh(x, t) is far from being obvi-
ous by looking at (3.62). Remember thatα =

√
(t− x)/(t+ x), v =

√
t2 − x2,

and that the orthogonal polynomials are implicitely depending onv. In a more
general context [105] this mean identity has been shown to hold directly from the
explicit expression for the distribution function.

3.3.3 The scaling limit of the height distribution.

In order to determine the scaling functiong(y) (3.47) we need to study the scaling
properties of Prob{h(x, t) ≤ n}. Since (3.62) depends explicitly onv =

√
t2 − x2

it is favorable to introduce the scaling variablesy ands as

x = v2/3y,

t = v + 1
2
v1/3y2, (3.67)

n = [2v + v1/3s],



52 CHAPTER 3. THE (1+1)-DIMENSIONAL PNG MODEL

and determine the limit

Prob{h(x, t) ≤ n} → Fy(s) for v →∞. (3.68)

The finite height distribution is expressed in terms of the orthogonal polyno-
mialsπn(z). They satisfy the classical recursion relations

πn+1(z) = z πn(z) + pn+1π
∗
n(z),

π∗n+1(z) = z pn+1πn(z) + π∗n(z), (3.69)

which hold for an arbitrary weight function, and the differential equations

πn
′(z) = (n/z + v/z2 − pn+1pnv/z)πn(z) + (pn+1v/z − pnv/z2)π∗n(z)

π∗n
′(z) = (−pn+1v/z + pnv)πn(z) + (−v + pn+1pnv/n)π∗n(z), (3.70)

which heavily rely on (3.27), compare AppendixA for a proof. They are implic-
itly derived in [9] and in this form written down explicitly for the first time. Ismail
and Witte [65] have derived a differential-difference equation for orthogonal poly-
nomials with a general weight function. Specializing to the weightev(z+z−1) also
yields (3.70).

The scaling (3.67) impliesα = 1 − v−1/3y + O(v−2/3). In order to obtain
a nontrivial limit asv → ∞ of the above equations we approximateπ∗n(z) and
πn(z) in the vicinity ofz = −1 by two smooth functionsa(s, y) andb(s, y) as

π∗n(−α) ' evαa
(
v−1/3(n− 2v), v1/3(1− α)

)
, (3.71)

πn(−α) ' −evα(−1)nb
(
v−1/3(n− 2v), v1/3(1− α)

)
. (3.72)

(3.73)

Using that the asymptotical behavior (3.31) ofRn is given by the Hastings-McLeod
solution to Painlevé II,u(s), one obtains from (3.69) the differential equations
with respect tos

∂sa = u b,

∂sb = u a− y b, (3.74)

and from (3.70) after some calculation the differential equations with respect toy

∂ya = u2a− (u′ + y u)b,

∂yb = (u′ − y u)a+ (y2 − s− u2)b. (3.75)

From (3.69) one immediately obtainsπ∗n(−1) = (−1)nπn(−1) =
∏n

k=1(1−Rk).
One has the limit

∏∞
k=1(1 − Rk) = ev sincee−v

2+vN0

∏n
k=1 Nk(1 − Rk)

−1 has
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an interpretation as a probability distribution function [12]. Therefore the initial
conditions to (3.75) are

a(s, 0) = −b(s, 0) = e−U(s). (3.76)

The scaling limit ofg(n, α) as defined in Eq. (3.63) is the function

g(s, y) =

∫ s

−∞
a(x, y)a(x,−y)dx

= a(s,−y)∂ya(s, y)− b(s,−y)∂yb(s, y), (3.77)

where the second equality can be verified by differentiation with respect tos and
using the identity

a(s, y) = −b(s,−y)e
1
3
y3−sy, (3.78)

itself being a direct consequence of (3.75) and (3.76). Putting these pieces to-
gether we obtain as scaling limit for the distribution functionsFx,t(n),

Fy(s) =
d

ds

(
g(s+ y2, y)FGUE(s+ y2)

)
. (3.79)

The shift in (3.79) by y2 comes from the fact thatFy(s) is evaluated for constant
t = v + 1

2
v1/3y +O(v−1/3).

Finally we can write down the scaling functiong(y) of (3.47), which by the
scaling (3.67) is given as

g(y) =

∫
s2dFy(s). (3.80)

As in the droplet case we do not provide a proof for the existence of limits.
This has been accomplished by Baik and Rains in a series of works [12, 13, 11, 9].
We gave a heuristic derivation of the limiting distributions which avoids intro-
ducing the machinery of Riemann-Hilbert techniques. All the above relations,
apart from (3.70) appeared already elsewhere. Nevertheless we find it instructive
to present the above derivation, stressing the origin of the differential equations
(3.74) and (3.75) as the continuum limit of their discrete counterparts (3.69) and
(3.70). For completeness let us collect some more properties ofa(s, y) shown in
[11]:

a(s, y) → 1, ass→ +∞,
a(s, y) → 0, ass→ −∞,

a
(
(2y)1/2x+ y2, y

)
→ 1, asy → +∞,

a
(
(−2y)1/2x+ y2, y

)
→ 1

(2π)1/2

∫ x

−∞
e−

1
2
ξ2

dξ, asy → −∞. (3.81)
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ThereforeFy(s) is asymptotically Gaussian and we recoverg(y) ' 2|y| for large
y.

In AppendixB we describe the method to determine the scaling function nu-
merically. One first needs to find the Hastings-McLeod solution to Painlevé II
and then integrate (3.75) starting fromy = 0. Then one has to integrate (3.74)
for different values ofy to obtain the variance ofFy(S). And finally g(y) has
to be differentiated twice numerically to get the scaling functionf(y). The high
precision we wanted to achieve rules out any conventional numerical integration
methods for ordinary differential equations. As explained in the Appendix we
used a Taylor expansion method with multiprecision arithmetic, to estimate the
fast decaying tails off(y) with an absolute accuracy of about10−100, and to be
able to determine reliable Fourier transforms of the scaling function.

3.3.4 Discussion of the scaling function.

In Figure3.7 the scaling functionf(y) = 1
4
g′′(y) is shown as determined by the
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Figure 3.7:The scaling functionf(y) versusy in a semilogarithmic plot. The dot-
ted lineexp(−0.295|y|3) is drawn as a guide to the eye for the largey asymptotics
of f .

multiprecision expansion method explained in AppendixB. We estimate its large
y asymptotics as

log f(y) ≈ −c|y|3 + o(|y|) for y →∞. (3.82)

The cubic behavior is very robust and numerical fits yield about2.996–2.998 quite
independently of the assumed nature of the finite size corrections. The prefactor
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c = 0.295(5) has a relatively high uncertainty because of the unknown subleading
corrections. Even though inaccessible systematically we estimate the error term,
as indicated in (3.82), to be sublinear or even only logarithmic from the numerical
data. Possibly, the exact asymptotic behavior could be extracted from a refined
asymptotic analysis of the Riemann-Hilbert problem.

Colaiori and Moore [35, 33] tackled the same scaling function by completely
different means. Starting from the continuum version of the KPZ equation they
numerically solved the corresponding mode-coupling equation [18, 49], which
contains an uncontrolled approximation, since diagrams which would renormal-
ize the three-point vertex coupling are neglected. Nevertheless a qualitative com-
parison of their result with the exact scaling functionf(y) shows reasonable sim-
ilarity, cf. Figure3.8. Both functions are normalized to integral1 by definition.
The mode coupling solution oscillates around0 for |y| > 3, whereasf(y) > 0

0

0.1
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0.3

0.4

0.5

0.6

-2 -1 0 1 2

y

f(y)

mode-coupling

Figure 3.8:The exact scaling functionf(y) compared to the mode coupling result
of Colaiori and Moore [35](dotted line). Both functions are even.

for the exact solution. We do not know whether this is a numerical artifact or an
inherent property of the mode-coupling approximation. On the other hand, the
second moments are reasonably close together,0.510523 for f(y), and0.4638
for the mode-coupling approximation. So is the value of the Baik-Rains constant
g(0) = 2

∫
|y|f(y)dy for which mode-coupling predicts the value1.1137.

From the solution to the mode-coupling equations one does not directly obtain
f(y), but rather its Fourier transform. The functionG(τ) from [35] is defined
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through

G(k3/2/27/2) = f̂(k) = 2

∫ ∞
0

cos(ky)f(y)dy. (3.83)

Colaiori and Moore predict a stretched exponential decay of the functionG(τ) as
∝ exp(−c|τ |2/3) [33] and numerically find a superimposed oscillatory behavior
on the scale|τ |2/3 [35]. In Figure3.9 f̂(k) is plotted as obtained by a numerical
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Figure 3.9:The Fourier transform̂f(k) of the scaling functionf(y).

Fourier transform off(y). Indeed it exhibits an oscillatory behavior as can be
seen in Figure3.10 where the modulus of̂f(k) is shown on a semilogarithmic
scale. The dotted line in the plot is the modulus of the function

10.9k−9/4 sin(1
2
k3/2 − 1.937)e−

1
2
k3/2

, (3.84)

shifted by a factor of1000 for visibility, which fits f̂(k) very well in phase and
amplitude fork ' 15. This behavior is not in accordance with the results of
Colaiori and Moore, since the oscillations and the exponential decay ofG(τ) for
the exact solution are apparently on the scaleτ and notτ 2/3.

Note thatf̂(k) is the scaling function for the intermediate structure function

S(k, t) =

∫
dxeikxS(x, t) ' 2f̂(t2/3k). (3.85)

By Fourier transforming with respect tot we determine the dynamical structure
function,

S(k, ω) =

∫
dx dtei(kx+ωt)S(x, t) ' 2k−3/2

◦
f (ω/k3/2), (3.86)
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Figure 3.10:The modulus of̂f(k) on a semilogarithmic scale. The dotted line is
a heuristic fit, shifted by a factor1000 for visibility.

where

◦
f (τ) =

∫
ds eiτsf̂(s2/3) = 2

∫ ∞
0

dy τ−1L′(y/τ 2/3)f(y) (3.87)

andL has the representation

L(κ) = 2 · 32/3Ai(−3−4/3κ2) sin(2κ3/27). (3.88)

The correlation function (3.46) in Fourier space is given by

C(k, ω) = 2k−2S(k, ω) ∼ CKPZ(k, ω)
def
= 4k−7/2

◦
f (ω/k3/2), (3.89)

describing the asymptotic behavior atk, ω = 0. Note thatC(k, ω) > 0 by defini-
tion, since〈hk,ωhk′,ω′〉 = δk,−k′δω,−ω′C(k, ω) for (k, ω) 6= (0, 0). The anomalous
scaling behavior in real space is reflected by the exponents for the divergence of
CKPZ(k, ω) at k = ω = 0. In the linear case, the Edwards-Wilkinson equation
λ = 0 in (2.45), one easily obtains

CEW(k, ω) =
D

ω2 + ν2k4
. (3.90)

A 3d-plot of CKPZ(k, ω) is shown in Figure3.11. Its striking features are the
smooth behavior away fromk, ω = 0, especially on the lines wherek = 0 and
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Figure 3.11:The correlation functionC(k, ω) in Fourier space.

ω = 0 and the two symmetric maxima ofk 7→ CKPZ(k, ω) for constantω. Our
numerical data yield for the singular behavior atk = 0, ω = 0,

CKPZ(k, ω) = ω−7/3
(
2.10565(1) + 0.85(1) k2w−4/3 +O(k4ω−8/3)

)
,

= k−7/2
(
19.4443(1)− 52.5281(1)ω2k−3 +O(ω4k−6)

)
. (3.91)



CHAPTER 4

The Bernoulli cone

The Bernoulli cone is a random subset ofR3 with parameterp ∈ [0, 1]. It is
defined as the wetted cluster of a layered directed bond percolation model [106].
Active bonds can be passed only in the direction of increasing coordinates. The
Bernoulli cone is made up of those sites which can be reached from the origin
through a chain of active bonds. Horizontal bonds are always active, and vertical
bonds are active with probabilityp. The statistics of the Bernoulli cone has various
interpretations in the form of well-known statistical mechanics models, such as
last passage percolation, directed polymers in random media, random growth,
and driven diffusive systems. The Bernoulli cone always maps to the simplest
discrete versions of these type of models. The two limiting cases,p → 0, 1 also
map to various well-known problems. The PNG limit,p → 0 is equivalent to
Ulam’s problem of the length of the longest increasing subsequences in random
permutations, compare the previous chapter, and the TASEP limit,p → 1, maps
to the continuous–time totally asymmetric simple exclusion process with special
initial conditions, first considered by Rost [108].

4.1 The directed bond percolation cluster

We define the Bernoulli coneD as a random subset ofR3, made up of unit cubes
(n1, n2, n3) + ]–1, 0]3. There are three types of nearest neighbor bonds pointing in
the direction of the three coordinate axes1, 2, and3. Some of the bonds are active,
the others are not. The directed percolation clusterD ∩ Z3 consists of all those
lattice sites which can be reached from site(1, 1, 0) by a sequence of sites, which
is non decreasing in the coordinates, such that adjacent sites in the sequence are
always connected by an active bond. The bonds are active independently with
probabilitiesp1, p2, andp3, corresponding to the direction,1, 2, and3, they are
pointing to. Thus if one thinks of the active bonds as diodes and the sites as
grounded light bulbs,D contains all the glowing bulbs, when a voltage is applied
at site(1, 1, 0).

If the probabilities are small enough,D will be finite almost surely, but for any
directionr ∈ R+

0
3, |r| = 1, D extends to infinity above certain critical values for

p1, p2, andp3. When approaching these critical values from below, not only the

59
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1
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3

Figure 4.1:Part of a Bernoulli cone withp = 0.1.

mean of the radiusR(r) = max{λ; λr ∈ D} tends to infinity, but also its variance
diverges with characteristic exponents (see [106] for a more detailed description).

Here we are exclusively interested in the special case of layered percolation,
i.e. the maximally anisotropic casep1 = p2 = 1, p3 = p ∈ ]0, 1[. Since horizontal
bonds are always active, for each site(n1, n2, n3) ∈ D all sites(m1,m2, n3) ∈ D
for m1 ≥ n1, m2 ≥ n2. Since there is a chain of active bonds from(1, 1, 0) to
(n1, n2, n3) also the sites(m1,m2,m3), m1 ≥ n1, m2 ≥ n2, 0 ≤ m3 ≤ n3 lie in
D. ThereforeD is uniquely specified by the height function

h(x1, x2) = max{x3 ∈ R; (x1, x2, x3) ∈ D}. (4.1)

(compare with Figure4.1). The definition of the Bernoulli coneD can be formal-
ized by the following recursive rules:

(i) D ⊂ R+ × R+×]–1,∞[, D = (D ∩ Z3)+]–1, 0]3,
(ii) (1, 1, 0) ∈ D,
(ii) if {(x1 − 1, x2, x3), (x1, x2 − 1, x3), (x1, x2, x3 − 1)} ⊂ D, and the

vertical bond ending in(x1, x2, x3) is active, then(x1, x2, x3) ∈ D.
(4.2)

Thus for the height function one has the relation

h(i, j) = max{h(i− 1, j), h(i, j − 1)}+ w(i, j), (4.3)

for (i, j) ∈ N2 \ {(1, 1)} andh(1, 1) = w(1, 1). Thew(i, j) count the number of
consecutive active vertical bounds right above(1, 1, 0) for i = j = 1, and right
above(i, j,max{h(i − 1, j), h(i, j − 1)}), for (i, j) ∈ N2 \ {(1, 1)}. Therefore
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they are geometrically i.i.d. with strengthp, i.e. Prob{w(i, j) = k} = (1− p)pk,
k ∈ N0.

We are going to study the asymptotic shape ofD upon rescaling,limλ→∞
1
λ
D

which almost surely is a convex cone of a certain shape. As we will seeD can be
interpreted as the space-time image of a self–similarly growing droplet. Therefore
the scaling theory of Chapter2 is applicable. However, first we will explain the
various interpretations of the Bernoulli cone mentioned above. All the follow-
ing processes can be constructed realizationwise from the Bernoulli distributed
active vertical bonds. Thus the equivalences are in distribution with an explicit
identification of the underlying probability spaces.

Last passage percolation

Let w(i, j), i, j ∈ N be geometrically i.i.d. random variables of strengthp. A
directed path,γ, from (1, 1) to (M,N) is a sequence of lattice points(i, j), which
is non–decreasing in its components and contains both endpoints. The cost of
such a pathγ is the sum of thew(i, j) with (i, j) belonging toγ. We set

t(M,N) = max
γ

∑
(i,j)∈γ

w(i, j). (4.4)

If we regard thew(i, j) as waiting times,t(M,N) has the interpretation of the
last passage time of an ensemble of walkers getting from(1, 1) to (M,N) along
the directed bonds ofN2 [68]. In queuing theory one asks for the processing time
of M customers, passing one after another throughN queues, where customeri
needsw(i, j) units of time to be served in queuej. Thust(M,N) is the total time
needed for the last customer to exit the last queue. In more physical terms one
can think of−w(i, j) as a random potential. The energy of a directed polymer
configurationγ from (1, 1) to (M,N) is then given by−

∑
(i,j)∈γ w(i, j). Thus

−t(M,N) is the ground state energy of the point–to–point directed polymer.
To see thatt(x1, x2) equals the height function (4.1) at integer arguments in

distribution, we sett(i, j) = −∞ for i ≤ 0 or j ≤ 0, t(1, 1) = w(1, 1). Then for
i, j ∈ N2 \ {1, 1} one has the recursive relation

t(i, j) = max{t(i− 1, j), t(i, j − 1)}+ w(i, j), (4.5)

which is identical to (4.3).

The corner growth model

Let At ⊂ R2, t ∈ N0 be a set valued process as follows. For eacht ∈ N0 the
random setAt is made up of unit squares of the form(i, j) + ]–1, 0]2. Initially
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A0 = R
2 \ (R+)2, a perfect corner.At+1 arises fromAt by adding squares to its

boundary at random. The square(i, j) + ]–1, 0]2 is added with probability1 − p,
only if (i − 1, j) and(i, j − 1) belong already toAt [68]. ThusAt always stays
connected without overhangs. We define the time,T (i, j), when the square at
(i, j) is added toAt,

T (i, j) = min{t ∈ N0; (i, j) ∈ At}. (4.6)

Then it is easy to see thatT (i, j) = 0 for (i, j) ∈ Z2 \ N2 and

T (i, j) = max{T (i− 1, j), T (i, j − 1)}+ w(i, j) + 1, (4.7)

for i, j ∈ N, where thew(i, j) just count the number of rejected attempts to add
the square(i, j) + ]–1, 0]2, and thus again are geometrically i.i.d. with strengthp.
Comparing (4.5) with (4.7) one hasT (i, j) = t(i, j) + i+ j − 1, in distribution.

Emphasizing the geometric picture, we can obtain the setsAt directly from
the Bernoulli cone by slicingD perpendicularly to the body diagonal and fixing
the intersection with the3–axis as origin,

At = {(i, j) ∈ Z2; (i, j, t− i− j) /∈ D ∪ R+ × R+ × R−0 }+ ]–1, 0]2. (4.8)

Conversely the graph ofAt, A =
⋃
t∈N0

(t+]–1, 0] × At becomes the Bernoulli
cone, by shifting all the unit cubes(i, j, k)+]–1, 0]3, i, j, k ∈ Z vertically by
−(i+ j) units.

In the literature the corner growth model is also known as the single–step
model, the(1 + 1)–dimensional version of the hypercube–stacking model [120].
For givent one parameterizesAt by the height function,ht : R→ R,

ht(x) = max{i+ j; (i, j) ∈ At with i− j = x}. (4.9)

The values at integerx are enough to specify the function, sinceht interpolates
linearly between those points. Clearly forx ∈ Z one has thatt + x + ht(x) is
even and|ht(x + 1)− ht(x)| = 1, hence the name of the model. The update rule
is ht+1(x) = ht(x) + 2 with probability1 − p if the single–step constraint is not
violated,ht+1(x) = ht(x) otherwise.

The discrete–time parallel–update TASEP

Let ηt(x), x ∈ Z, t ∈ N0 be {0, 1} random variables withη0(x) = 1 for x ≤
0, η0(x) = 0 for x > 0. ηt(x) = 1 is interpreted as a particle on sitex at
time t, if ηt(x) = 0 the site is empty. The update rule for the TASEP (totally
asymmetric simple exclusion) is very simple. At each time step particles jump to
their immediate right independently with probability1− p, given the target site is
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empty (simple exclusion). Jumps to the left are prohibited (totally asymmetric).
Thus the waiting time for a particle to jump to an empty site is again geometrically
distributed with strengthp. The connection to the single–step model is immediate,
one just sets

ηt(x) =
ht(x)− ht(x+ 1) + 1

2
. (4.10)

Converselyht(x) has the interpretation as integrated current from(0, 0) up to
(x, t), which equals for the given initial condition the number of particles to the
right of x, at timet. This discrete–time version of the TASEP has been studied,
for example, in the context of traffic flow models by Schreckenberg et al. [110].

The asymmetric zero range process

Let nt(i) ∈ N0, i ∈ N, t ∈ N0, be integer valued random variables withn0(i) = 0
for i ∈ N initially. nt(0) = ∞ takes the role of an infinite reservoir of particles,
nt(x) ≥ 0 is regarded as the number of particles inx at time t. At each time
step at most one particle from each nonempty site (including the reservoir) jumps
to the right nearest neighbor site independently with probabilityt. This process
arises from the corner growth model by parameterizingAt by the height function

ht(i) = max{j ∈ N0; (i, j) ∈ At} (4.11)

The zero range process now can be defined as

nt(i) = ht(i)− ht(i+ 1). (4.12)

Discrete polynuclear growth

There are two versions of the discrete polynuclear growth (PNG) model, the first
has no restrictions on the step heights [69], the second, restricted one, allows only
step heights−1, 0,+1[102]. The height function of the former,ht(x), t ≥ 0,
x ∈ R is defined as

Ht(x) = h( t+x
2
, t−x

2
) ∈ N0 ∪ {−∞}, (4.13)

whereh(·, ·) is the height function of the Bernoulli cone. Fort ∈ R \ N0, Ht

evolves deterministically, up–steps of integer height move to the left with velocity
−1 and down–steps move to the right with velocity1. If an up–step and a down–
step meet (which happens only at integer timest with x+ t ∈ 2N), they coalesce,
and either they disappear, if they are of the same height, or the larger step swallows
the smaller one, and proceeds with its size reduced, accordingly. At the same time
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Figure 4.2:(a) The height lines of the Bernoulli coneD from Fig. 4.1, and (b) the
shifted height lines for the stretched Bernoulli coneDr (Courtesy of D. Dhar and
R. Rajesh).

new islands of geometrically distributed integer height are produced randomly
on top of existing ones, again only at integer timest and at integer values ofx,
with x + t ∈ 2N0, and start to extend laterally according to the deterministic
rule. Formally, sinceHt is by definition lower semi–continuous, i.e.Ht(x0) =
lim infx→x0 Ht(x), at timest ∈ N0 there might be isolated local minima at integer
values ofx with x+ t ∈ 2N. Ht(x) is modified at these integer values to

H̃t(x) = lim
ε→0

max{Ht(x− ε), Ht(x+ ε)}+ w( t+x
2
, t−x

2
), (4.14)

where thew(i, j), i, j ∈ N are the geometrically i.i.d. random variables from the
last passage percolation. Afterwards in the time interval]t, t + 1], ht′(x) evolves
deterministically with initial conditionHt(x) = H̃t(x). The overall initial condi-
tion is H̃0(x) = −∞ for x 6= 0, andH0(0) = 0.

To define the restricted discrete PNG model we modify the Bernoulli cone be
shifting its layers along the horizontal diagonal in order to allow only steps of size
one, compare with Figure4.2,

Dr = {(x1, x2, x3); (x1 − dx3e, x2 − dx3e, x3) ∈ D ∪ R+ × R+ × R−0 }. (4.15)

The corresponding height function

hr(x1, x2) = max{x3 ∈ R; (x1, x2, x3) ∈ Dr}. (4.16)

now has only jumps of at most1. The PNG height functionH r
t(x), t ≥ 0, x ∈ R

is defined analogously as

H r
t(x) = hr( t+x

2
, t−x

2
) ∈ N0 ∪ {−∞}. (4.17)
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H      (x)t+½ x

Figure 4.3:The mapping from the restricted discrete PNG height functionH r
t(x)

to the corner growth model.At moves upward during the evolution. The light
shaded squares are added in going fromAt to At+1. Therefore no step pair is
created there at timet.

t−½

t+½

Figure 4.4:The kink–antikink gas at two half-integer time steps.

Its deterministic evolution is exactly the same as in the unrestricted case. The
relative height of new islands now is not any more geometrically distributed, but
is one with probabilityp and zero with probability1− p. Furthermore islands can
nucleate, only at integer timest at pointsx with x+ t+H r

t(x) ∈ 2N.
The restricted discrete PNG model, having a somewhat tricky definition, arises

naturally as the borderline between the bulk and the north polar region of the
Aztec diamond [67]. Actually it is a version of the single–step model (4.9) via the
mapping sketched in Fig.4.3.

The discrete kink–antikink gas

The height differences in the unrestricted discrete PNG model have integer values,
and thus can be identified with an occupation number of particles, called kinks for
up–steps and antikinks for down–steps. Letmt(x) ∈ Z be the signed occupation
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number atx ∈ R and timet ≥ 0, i.e. if mt(x) > 0 there aremt(x) kinks, if
mt(x) < 0 there are−mt(x) antikinks, andmt(x) = 0 means no particles atx.
kinks move leftward with velocity−1, antikinks rightward with velocity1. Kinks
and antikinks can not cross each other, upon collision they immediately annihilate
in pairs until only one kind remains. If there are survivors they proceed in their
direction. In addition to that, kink–antikink pairs are created infinitesimally after
integer timest + ε, t ∈ N0, and at positionsx ± ε, x + t ∈ {0, 2, . . . , 2t}, for
some smallε > 0. The number of created pairs is geometrically distributed with
strengthp. Initially there are no particles at all and the restriction on the space–
time location of possible nucleation events ensures that

For the restricted case there is a simple exclusion constraint. At most one
particle, kink or antikink, is allowed to be at a place,mr

t(x) ∈ {−1, 0, 1}. Nucle-
ations are allowed only one pair at a time with probabilityp at integer timest but
with the nonlocal constraint that inter-particle distances have to be always even
integers at the time of creation. With these definitions the correspondence to the
discrete–time TASEP can be seen as follows. The mapping is exact for all values
of the jump ratep but becomes especially easy to see if we think ofp being close
to 1.

We think of a TASEP configurationηt(j) with alternating0’s and 1’s, say
· · · 101010101010 · · · . This corresponds to the configuration with no (anti)kinks
at all. If at the next time step every1 in the TASEP jumps to its right one has
· · · 010101010101 · · · and no kink/antikink pairs are produced. If in the fol-
lowing time step a1 decides not to jump there is a1100 subsequence, one has
· · · 101011001010 · · · , corresponding to the production of a kink antikink pair.
Subsequently, assuming that all TASEP particles which can jump to there right
do so, one has· · · 010110100101 · · · . The11 pair has moved to the left, and thus
corresponds to the kink and the00 pair has moved to the right corresponding to an
antikink. Annihilation of kink/antikink pairs takes place in much the same way.
To conclude we obtain the occupation numbers for the kink/antikink gas at half
integer times asmt− 1

2
(j + 1

2
) = ηt(j) + ηt(j + 1), t ∈ Z. Positions inbetween

these discrete time steps can be linearly interpolated.

Oriented digital boiling

Gravner et al [53] study the so called oriented digital boiling (ODB) model, see
also [55, 54] for a nonhomogeneous generalization. It is specified by the height
functionhODB

t : N0 → {−∞}∪Z, t ∈ N0. Initially hODB
0 (j) = −∞ for j > 0 and

hODB
0 (0) = 0. The dynamics is given by

hODB
j (t+ 1) = max{hODB

j−1 (t), hODB
j (t) + p(j, t)}, (4.18)
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wherep(j, t) ∈ {0, 1} are Bernoulli random variables with Prob{p(j, t) = 1} = p.
In [55] an inhomogeneous version of this model is studied where the probability
for p(t, j) = 1 is allowed to depend onj. The ODB is just another interpretation of
the Bernoulli cone. We distortD by the following (lattice-)affine transformation,

DODB = {(x1, x2, x3) ∈ Z3; (x1 − x2 + 1, x2 + 1, x3 − x2) ∈ D}+]–1, 0]3.
(4.19)

If we now set

hODB
j (t) = max{x3; (j, t, x3) ∈ DODB}, j, t ∈ N0, (4.20)

the rule forD, (4.2), implies the law forhODB
j (t) as given by (4.18), where the

value of eachp(j, t) correspond to the activeness of exactly one vertical bond
determiningD.

Finally let us mention that as for the last passage percolation interpretation
of the Bernoulli cone itself,hODB

j (t) can be expressed analogously tot(M,N)
in (4.4), as the maximum over all pathsγ, running from(0, 0) to (j, t), The set
of paths is restricted to those sequences, which are strictly increasing in thej–
direction, i.e. if(j, t) ∈ γ, t > 0, then necessarily either(j − 1, t − 1) ∈ γ or
(j, t− 1) ∈ γ. with these settings

hODB
j (t) = max

γ

∑
(0,0) 6=(j,t)∈γ

p(j, t), (4.21)

with the Bernoulli random variablesp(j, t) as “random potential”.

Translations between the models

There are further distortions of the Bernoulli cone which upon time slicing lead to
new or already described discrete height processes. We enumerated the most im-
portant of them which have been studied in the literature. Our main point here is
to illustrate that any statement for one of the above mentioned models gives some
insight in properties of any of the other models. The way to obtain these transla-
tions most conveniently is to translate first from one model into the language of
the Bernoulli cone, and then back to any other model of interest.

Especially we would have the most detailed information of the statistics of the
Bernoulli cone if we knew all the correlation functions, i.e, for subsetsA ⊂ Z3,
the probability

pA(D) = Prob{A ⊂ D}. (4.22)

Although we do not explore it any further, let us note that for|A| = 1 one has
explicit expressions forpA, which has been found by Baik and Rains [12]. It holds
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even for spatially dependent activation rates for vertical bonds. Letαj, βj be two
arbitrary sequences in[0, 1[. Let the vertical bonds, which start at(l,m, n) ∈ N3

0,
be active with probabilityαlβm, i.e. all vertically aligned bonds have the same
probability, then

Prob
{

(l,m, n) /∈ D
}

= EU∈U(n)

(
det

l∏
i=1

m∏
j=1

(1− αiβj)(1 + αiU)(1 + βjU
†)
)
. (4.23)

Note that the distribution depends only on the values but not on the order of the
constantsαi andβj. It would be of considerable interest to have similar expres-
sions for the probability of a subset of the lattice with two or more elements having
empty intersection withD.

4.2 The PNG limit

In order to obtain a nontrivial limitp→ 0 of the Bernoulli cone, we have to rescale
horizontally, such that the density of active vertical bonds stays fixed. We define

DPNG = lim
p→0

 √
p/2 0 0

0
√
p/2 0

0 0 1

Dp (4.24)

The number of active vertical bonds rarefies whenp gets small. The limit is chosen
in such a way, that there density remains finite. In the limitp → 0 the vertical
bonds in each layer are distributed according to a homogeneous Poisson point
process of density2 in [0,∞[2. Since the probability that two vertical bonds right
above each other are active is zero, the corresponding height function

hPNG(x1, x2) = max{x3 ∈ Z; (x1, x2, x3) ∈ DPNG} (4.25)

has maximum step size1 with probability one. We have recovered the height
function of the PNG model of Chapter3 with droplet initial conditions. Without
giving details we mention that obviously one can obtain PNG clusters with arbi-
trary initial conditions by properly choosing a sequence of initial conditions for
the Bernoulli cluster.
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Figure 4.5:A piece of a TASEP cone. The height lines are corner growth config-
urations at different times.

4.3 The TASEP limit

The opposite limitp→ 1 of the droplet process requires a rescaling of the3–axis
by the factor1− p, in order to obtain a well defined process. We set

DTASEP = lim
p→1

 1 0 0
0 1 0
0 0 1− p

Dp. (4.26)

The lateral lattice structure is retained. Look at the recursive law for the height of
the Bernoulli cone (4.3)

hp(i, j) = max{hp(i− 1, j), hp(i, j − 1)}+ wp(i, j), (4.27)

with i.i.d. random variableswp(i, j) having geometrical distribution of strengthp.
Under the scaling (4.26) one obtains the law for the height of the TASEP cone
h(i, j) = limp→1(1− p)hp(i, j) as

h(i, j) = max{h(i− 1, j), h(i, j − 1)}+ w(i, j), (4.28)

wherew(i, j) are now real valued positive i.i.d. random variables with expo-
nential distribution Prob{w(i, j) > s} = e−s. All of the models equivalent to



70 CHAPTER 4. THE BERNOULLI CONE

n

m

n’

m’

h=0

h=2 h=7

h=4

Figure 4.6: One square of the model with height lines. Three new height lines are
produced corresponding to three consecutive active vertical bonds being wetted.

the Bernoulli cone enumerated in Section4.1 have their analogue in the TASEP
limit. Notably the corner growth, resp. single-step model, become continuous
time growth processes with exponentially distributed waiting times for adding a
square, cf. Figure4.5. Also the corresponding particle models, the discrete-time
TASEP and zero range processes converge to their well-known continuous-time
counterparts, the standard totally asymmetric simple exclusion process and zero
range process [82, 83].

4.4 Stationarity

Coming back to the percolation model, we introduce boundary sources, i.e. the
vertical bonds at the bordersn1 = 0 andn2 = 0 now have a probabilityα andβ,
respectively, to become active. The vertical bonds in the bulk still have probability
p. The bond at the origin is chosen to be inactive by convention. In the Johansson
picture this corresponds to a geometric distribution of the first row and the first
line of the integer valued random matrix with strengthα andβ, respectively, the
entry in the corner being fixed as zero. By properly choosingα andβ one can
arrange the height functionh(n1, n2) to have stationary increments in the direction
of increasing coordinates. We are not aware of any publications which investigate
this property. Although the stationary state has been determined for the various
mappings to vertex and lattice gas models [106, 110], the height lines ofh(n1, n2)
provide the simplest way to investigate stationarity, since one does not have to
impose periodic boundary conditions in order that the steady state has a simple
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product form.
The key observation is that it is enough to look at one single square of the

shifted lattice(N0−1/2)2 and study the statistics of incoming and outgoing height
lines, projected vertically. If there arem lines entering from the bottom andn lines
from the left,m ∧ n = min{m,n} of them annihilate. Letk denote the number
of created line pairs in the square, then the number of outgoing lines at the top is
m′ = m−(m∧n)+k, andn′ = n−(m∧n)+k at the right side, see Fig.4.6. Now
let k, m, andn be independent and geometrically distributed with parametersp,
α, andβ, respectively. The joint probability,Pm′,n′, for m′ andn′ outgoing lines
is

Pm′,n′ = (1− p)(1− α)(1− β)
∑
m,n≥0

pm
′∧n′αmβnδm−m′,n−n′

= (1−p)(1−α)(1−β)
1−αβ pm

′∧n′α(m′−n′)∨0β(n′−m′)∨0

=
1− p

1− αβ

(
p

αβ

)m′∧n′
(1− α)(1− β)αm

′
βn
′
, (4.29)

wherem ∨ n = max {m,n}. Thus if αβ = p the outgoing lines are again dis-
tributed independently and geometrically with the same strength as the incoming
lines,

Pm′,n′ = (1− α)αm
′
(1− β)βn

′
. (4.30)

For a givenp we arrive at a one-parameter familyα ∈]p, 1[ of stationary solu-
tions, which extend to product measures on space-like paths, i.e. chains of sites
connected by bonds and being mutually non-time-like,(m1 − n1)(m2 − n2) ≤ 0,
for each two sites(m1,m2) and(n1, n2) in the path. More precisely, we take two
space-like pathsγ1 andγ2, having a time-like separation, i.e. for each site(n1, n2)
in γ2 there is at least one site(m1,m2) in γ1 with m1 ≤ n1 andm2 ≤ n2. The
(possibly infinite) region enclosed by the two paths is bounded by bonds with in-
coming lines belonging toγ1, and bonds with outgoing lines belonging toγ2. If the
numbers of incoming lines for each bond are distributed independently geometri-
cally with strengthα for horizontal bonds andp/α for vertical bonds, eq. (4.30)
immediately tells us by induction that the numbers of outgoing lines for each bond
are still independent with the same distribution for horizontal and vertical bonds
as for the incoming lines.

For a space-like path approximating the straight linen2 = −1−b
1+b

n1, b ∈
[−1, 1], one obtains a proof for Proposition3.1 of Chapter3 in the PNG limit.
We chooseα = β =

√
p. The geometric distribution of incoming lines at vertical,

resp. horizontal bonds becomes independent Poisson point processes along the
straight line in the limitp→ 0 upon rescaling the lattice by

√
p. The line densities
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Figure 4.7:Two examples of propagating the product measure: (a) from a stair-
case to the border of a quadrant (the parametersα, β ∈]p, 1[ can be chosen in-
dependently), and (b) from the lower-left sides of a rectangle to the upper-right
sides.

for entering horizontal lines can be easily calculated as(1 + b)/
√

1 + b2, likewise
the density for vertical lines is(1− b)/

√
1 + b2.

Two special cases of interest are sketched in Fig.4.7. Viewed as the discrete
PNG model, the anti-diagonal defines initial conditions in form of a fixed macro-
scopic slope, being different forx > 0 andx < 0. The macroscopic shapes arising
from these initial conditions cover all self-similar macroscopic shapes, possible
for this model.

TheM × N rectangle in (Fig.4.7(b)) can be regarded as a piece of a truely
stationary height process defined on the whole plane. This is the discrete analogue
of the setting in Section3.3and one expects that one could recover the same scal-
ing result. Explicit expressions for the distribution ofh(M,N) are available [11].
Unfortunately, the Riemann-Hilbert techniques used for the proof in the PNG case
work only for the square case ofH(M,M) which allows to prove convergence to
the scaling functiongdyn

1 (y) only aty = 0, so far. In the next section we illustrate
how the stationarity property allows to determine the generator of asymptotics by
application of the KPZ scaling theory.
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4.5 The generator of asymptotics for the
Bernoulli cone

For an arbitrary large rectangular piece of the stationary height process as in
Fig. 4.7(b) the mean slope ofh(m,n) and its roughness amplitude along its sides
are immediately obtained from (4.30) as

uα = E

(
h(m+ 1, n)− h(m,n)

)
=

α

1− α
,

vα = E

(
h(m,n+ 1)− h(m,n)

)
=

p

α− p
, (4.31)

and the roughness amplitude

Aα = E
(
(h(m+ 1, n)− h(m,n)− uα)2

)
=

α

(1− α)2
. (4.32)

If we interpretm as the spatial direction andn as the time direction we obtain for
the slope dependent growth velocity

v(u) =
p(1 + u)

(1− p)u− p
, (4.33)

and the roughness amplitude reads

A(u) = u(1 + u), (4.34)

whereu > 0.
This information is indeed enough to determine the scaling form of the height

process (4.1) for the Bernoulli cone completely. Solvingc = −v′(u) for u with
c > 0, we haveu =

√
p/c(
√
pc + 1)/(1 − p). We are looking at a macroscopic

reference point(M,N). By settingc = M/N the Legendre transform of (4.33)
yields the macroscopic part of the scaling form for a growing droplet

hdet(M,N) = Nv(u) +Mu =
p(M +N) + 2

√
pMN

1− p
. (4.35)

The scale of fluctuations,C(M,N) = (1
2
v′′(u)A(u)2N)1/3 becomes

C(M,N) =
1

1− p

( p

MN

)1/6 (√
pM +

√
N
)2/3 (√

M +
√
pN
)2/3

. (4.36)

For the lateral scale of fluctuations,c(M,N) = (2λ2AN2)1/3, in the scaling form
(2.43) we obtain

c(M,N) = 2

(
M2

√
pN

)1/3(√
pM +

√
N
)1/3(√

M +
√
pN
)1/3

. (4.37)
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Putting the pieces together, KPZ scaling theory predicts the scaling limit for the
Bernoulli cone

h(M + c(M,N)m,N)− (hdet(M,N)− ∂1h
det(M,N)c(M,N)m)

C(M,N)

−→ Hcurved
1 (m)−m2 (4.38)

for M,N →∞,M/N = const.
Let us determine the generator of asymptotics for the Bernoulli cone. We

make the ansatz

G(m,n, h) =
(
[(1− p)h− p(m+ n)]2 − 4pmn

)
f(m,n, h), (4.39)

wheref(m,n, h) has to be chosen such that

∂hG(m,n, h) = C(m,n)−1, (4.40)

wheneverG(m,n, h) = 0. Thus we can set

G(m,n, h) =
[(1− p)h− p(m+ n)]2 − 4pmn

4p2/3(mn)1/3
(√

pm+
√
n
)2/3 (√

m+
√
pn
)2/3

. (4.41)

This generator of asymptotics can be used to determine the scaling form in any
of the coordinates introduced for the different models described in Section4.1.
Also the limiting casesp = 0, p = 1 can be easily obtained from (4.41). Perform-
ing the PNG limitp → 0, whith new coordinatesr = (p/2)1/2 m, s = (p/2)1/2 n
one arrives at

GPNG(x, t, h) =
h2 − 8 rs

4(2 rs)2/3
=
h2 − 4(t2 − x2)

4(t2 − x2)2/3
(4.42)

expressed in the variables for space and time taken as in the original PNG model,
t = (r + s)/21/2, x = (r − s)/21/2.

In the TASEP limitp → ∞, the heighth has to be rescaled by1 − p and we
obtain

GTASEP(m,n, h) =
(h−m− n)2 − 4mn

4(mn)1/3(
√
m+

√
n)4/3

(4.43)

In the following chapter the scaling form (2.43) for the PNG model will be
shown to be correct, at the same time identifying the limiting process. This
strongly confirms the validity of (4.42). Furthermore in a recent preprint [69]
Johansson proves the same scaling form for the Bernoulli cone in the language of
the unrestricted discrete polynuclear growth model of Section4.1. As expected,
the scaling parameters are given in terms of (4.41). In [100] the consequences of
the KPZ scaling theory for the continuous-time TASEP are discussed. All prefac-
tors in scaling relations are in fact contained in (4.43).



CHAPTER 5

The multi-layer PNG model

Up to now we studied one-point distribution functions for given initial conditions.
Since they can be interpreted as distributions of height differences, in the station-
ary case of Section3.3we were able to derive two-point correlation functions for
arbitrary relative positions in space-time. To go beyond a single height (differ-
ence) distribution we need a better understanding of the law for the whole process
(x, t) 7→ h(x, t). To this end we extend the PNG model to a multi-layer ver-
sion with several interacting copies of PNG lines below the original one. The
dynamics we introduce for the lower lying lines resembles very much Viennot’s
geometric construction to prove the Robinson-Schensted-Knuth correspondence
[127]. Therefore we call it RSK dynamics. The dynamics does not affect the
statistics of the first line. Surprisingly, the whole line ensemble has a simple dis-
tribution with Boltzmann weights. The energy associated with a configuration is
very simple. One the one hand the difficulty lies in the structure of the configura-
tion space, which is restricted to non-overlapping PNG lines. On the other hand
we need to recover the statistics of the first line as the marginal distribution of the
line ensemble.

The equilibrium statistics of the non-intersecting line ensemble is rephrased
as a theory of non-interacting lattice fermions on the line in Euclidean space-
time. Height fluctuations can be written as expectations of fermionic densities
and currents, which have determinantal form.

The scaling limit of the PNG line translates to the continuum limit of the lat-
tice fermions. One obtains non-interacting fermions on the line governed by a
Hamiltonian with linear potential. The position of the first fermion at Euclidean
timey defines the Airy processA(y). It is stationary iny, the distribution ofA(0)
is the Tracy-Widom GUE distribution. Very roughly the Airy process looks like
one-dimensional Brownian inside a confining potential with long-range correla-
tions.

For the first line of the multilayer PNG model, the original PNG droplet
h(x, t), one obtains the limit

h(t2/3y, t)− 2t

t1/3
→ A(y)− y2 for t→∞, (5.1)

75
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identifyingHcurved
1 (y) as the Airy processA(y). Thus the limiting distribution for

curved growth,FGUE, is recovered. But (5.1) contains much more information.
It predicts the scaling limit for arbitrary staticn-point correlation functions. In
[102] the Airy process was introduced and (5.1) proved in the sense of joint distri-
butions. In a recent preprint [69] Johansson proves for the discrete PNG model of
Section4.1 convergence of the probability measures themselves, confirming the
universality claim.

5.1 The Airy process

The Airy process can be obtained as the position of the first particle in Dyson’s
Brownian motion [41]. The first line ofN non-intersecting Brownian paths con-
fined to a quadratic potential converges in the limitN → ∞ to the Airy process.
Dyson’s particle trajectories correspond to the eigenvalues of a GUE random ma-
trix valued process. Letajk(s), 1 ≤ j, k ≤ N be real-valued mutually independent
stationary Ornstein-Uhlenbeck processes of variance1

4
. Then the hermitian ma-

trix H(s) with entriesHjk = ajk + iakj = Hkj for j < k andHjj =
√

2 ajj is, for
fixeds, distributed according to the standard Gaussian unitary ensemble (GUE) of
hermitianN ×N matrices. The eigenvalues ofH(s), λ1(s) < · · · < λN(s) have
the stationary distributionZ−1

N

∏
i<j(λi − λj)2

∏
i e
−λ2

i . They are the trajectories
of Dyson’s particles. The largest eigenvalue converges to the Airy process,

√
2N1/6(λN(N−1/3y)−

√
2N)→ A(y) (5.2)

in the sense of joint distributions.
Explicitly A(y) is defined by means of the extended Airy kernel [102, 69]

K(u, y; u′, y′) =

{ ∫ 0

−∞ e
λ(y′−y)Ai(u− λ)Ai(u′ − λ)dλ for y ≤ y′

−
∫∞

0
eλ(y′−y)Ai(u− λ)Ai(u′ − λ)dλ for y > y′.

(5.3)

Note that the exponents in the integrand are always decaying. Fory = y′ it reduces
to the ordinary Airy kernel [121], which has integral form

K(u, u′) =

∫ 0

−∞
Ai(u− λ)Ai(u′ − λ)dλ

=
Ai(u)Ai ′(u′)− Ai ′(u)Ai(u′)

u− u′
. (5.4)

The Airy processA(y) is defined through its finite-dimensional distributions at
y1, . . . , ym ∈ R. For y1 < · · · < ym we define the projectorP on Ω = R ×
{y1, . . . , ym} ⊂ R

2 as multiplication by the characteristic function of the set
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⋃
1≤j≤m]uj,∞[×{yj} ⊂ Ω. PKP , with K given by the kernel (5.3) is a trace

class operator onL2(Ω, µ) with counting measure on{y1, . . . , ym} and Lebesgue
measure onR ([69], Prop. 2.4) and one sets

Prob{A(y1) ≤ u1, . . . , A(ym) ≤ um} = det(1− PK)L2(Ω,µ). (5.5)

The determinant is defined by the Fredholm expansion

det(1−K) =
∞∑
m=0

(−1)m

m!

∫
Ω

det
(
K(xk;xl)

)
1≤k,l≤md

mµ(x) (5.6)

for any trace class operatorK onL2(Ω, µ) with integral kernelK(x; y). One has
det(1 − KK ′) = det(1 − K ′K). For a finite counting measure (5.6) is just the
ordinary determinant.

In the Appendix of [102] it is shown thatA(y) has a version with continuous
sample paths. The distribution aty is given by

Prob{A(y) ≤ s} = det(1−K)L2(]s,∞[) = FGUE(s), (5.7)

independently ofy, whereK reduces to the ordinary Airy kernel (5.4). The vari-
ance increases linearly for short distances,

E

(
[A(y)− A(0)]2

)
= 2|y|+O(y2), (5.8)

and correlations are slowly decaying,

E

(
A(y)A(0)

)
− E

(
A(y)

)
E

(
A(0)

)
= c y−2 +O(y−4) (5.9)

with a positive constantc, whose value≈ 1.5 ± 0.3 is estimated from a Monte-
Carlo simulation.

5.2 The multi-layer PNG droplet

Let us define the multi-layer PNG model with the RSK dynamics. In addition to
the original PNG lineh(x, t) = h0(x, t) we have an infinite hierarchy of height
linesh`(x, t) ∈ Z, ` ≤ 0, subject to the constraint of no overlap,h`−1(x, t) <
h`(x, t), as a static and dynamical restriction. The deterministic dynamics for each
of the height lines is the same as for the PNG model, up/down-step motion with
constant velocity and annihilation upon collision. Nucleations of up/down-step
pairs for the lower lying lines are not independently random but occur whenever
an annihilation event takes place in the adjacent line above. Thus at timet if in the
`-th height line a collision of an up-step and a down-step occurs at positionx, they
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disappear in this line only to reappear as nucleation at(x, t) in line `− 1. Only in
the first line nucleations happen randomly with space-time density2. Clearly this
dynamics respects the orderingh` < h`+1.

As initial conditions we takeh`(x, 0) = `with nucleations on the first line only
allowed in the region{|x| ≤ t}. Inside the interval[−t, t] the first lineh0(x, t) has
the law of the PNG droplet, Section3.1. Note that the total number of up-steps,
which equals the total number of down-steps, can not decrease in the course of
time. At timet it is Poisson distributed with mean2t2, two times the space-time
volume up to timet. In Figure5.1a typical realization at timet is shown.

h

h

h
−2

−1

0

x=tx=−t

Figure 5.1:A multi-layer PNG droplet at timet. The asymptotic droplet shape is
indicated by the dotted line. Forx = 0 a corresponding fermionic configuration
is drawn.

Let us define a measure on the spaceΓt of all non-intersecting height line
configurationsh`(x, t) at timet, with finitely many steps, by parameterizing with
respect to the step positions. For definiteness we requireh`(x, t) to be upper semi-
continuous, i.e.{x; h`(x, t) ≥ c} is closed for allc ∈ R. One hash`(x, t) = `
for |x| > t andh`(x, t) < h`−1(x, t) for ` ≤ 0. Let n` be the number of up-
steps in height linè which always equals the number of down-steps. Ifn` = 0,
h`(x, t) = ` for all x ∈ R. If n` > 0, the position of thej-th up-step in height
line ` is denoted byy`,+j , −t < y`,+1 < · · · < y`,+n` < t and the position of thej-th

down-step in the same height line is denoted byy`,−j ,−t < y`,−1 < · · · < y`,−n` < t.
We setn = (n0, n−1, . . . ), and|n| =

∑
`≤0 n`. We denote byΓt(n) the set of
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all step configurations
(
(y`,+j , y`,−j )1≤j≤n`

)
`≤0

such that the corresponding height
lines do not intersect.Γt(0) is a single point andΓt(n) is naturally embedded in
[−t, t]2|n|. By the upper semi-continuity if an up-step and a down-step in the same
height line are at the same location, they represent a nucleation and not a collision.
We setΓt(n) =

⋃
|n|=n Γt(n) as a disjoint union, and finallyΓt =

⋃
n≥0 Γt(n).

Let wt be the uniform measure onΓt, which means thatwt
(
Γt(0)

)
= 1 and

wt � Γt(n) is the 2|n|-dimensional Lebesgue measure onΓt(n). For arbitrary
nucleation rateξ we define the probability measureµt on Γt as

µt = Z−1
t

(
ξ
2

)|n|
wt. (5.10)

Thusµt is proportional to the Lebesgue measure in each sector.

Theorem 5.1 The probability measure induced by the multilayer droplet process
h`(x, t) at timet on Γt is µt. FurthermoreZt = eξ t

2
and

wt
(
Γt(n)

)
=

(2t2)n

n!
. (5.11)

Proof: The mapping defined by the RSK dynamics from Poisson point configu-
rations inside the triangleTt = {(x′, t′); |x′| ≤ t′ ≤ t} into Γt is clearly locally
linear in an open dense set. More precisely, for Poisson points(xi, ti) ∈ Tt,
1 ≤ i ≤ n, such that allri = ti + xi are pairwise distinct and allsi = ti − xi are
pairwise distinct, up-step positions at timet are att− si and down-step positions
are att + ri. Therefore the determinant of this mapping is2n. The probability to
haven points inTt is (ξ t2)n/n!. The theorem follows provided the RSK mapping
is onto.

This can be easily seen by running the RSK dynamics backwards in time.
Take any element

(
(y`,+j , y`,−j )1≤j≤n`

)
`≤0

of Γt. The corresponding height lines
are defined as

h`(x, t) = `+

n∑̀
j=1

θ(x− y`,+j ) +
(
θ(y`,+j − x)− 1

)
(5.12)

with the Heaviside functionθ(x) = 1 for x ≥ 0, θ(x) = 0 for x < 0. The
evolution backward in time is completely deterministic. When an up-step and a
down-step collide inside the same height line` they are bumped into linè+ 1.
Collisions in the first linè = 0 mark the space-time coordinates of nucleation
events. Att = 0 one has recovered all nucleation events, which obviously lie in
Tt. �

We introduce the occupation variablesηj(x) with values in{0, 1} by setting

ηj(x) =

{
1, if h`(x, t) = j for somè ,
0, otherwise.

(5.13)
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Their expectations with respect toµt can be written in the form of a path integral,

E

(
ηj1(x1) · · · ηjm(xm)

)
= Z−1

t

∫ (
ξ
2

)∑
`

∫ t
−t |∂xh`(x)|dx

ηj1(x1) · · · ηjm(xm)dwt.

(5.14)

To proceed we introduce a cut-offM > 0. Height lines with index̀ < M
are neglected. The remaining height lines are restricted vertically to the interval
{−M, . . . ,M}. We will suppress the indexM in the following formulas, even-
tually we sendM → ∞. Let us compute the general partition sumZ[x,y](η, ϑ),
with arbitrary left and right boundary conditionsη, ϑ ∈ {0, 1}{−M,...,M},

∑
j ηj =∑

j ϑj = N ,

Z[x,y](η, ϑ) =

∫
η(x)=η,η(y)=ϑ

(
ξ
2

)∑
`

∫ y
x |∂xh`(x

′)|dx′
dw[x,y]. (5.15)

w[x,y], y > x, denotes the Lebesgue measure with respect to step positions re-
stricted to the interval[x, y] of non-intersecting line configurations.Z[x,y](η, ϑ) is
the weighted phase space volume for configurations ofN height lines in the inter-
val [x, y] with fixed left and right boundary and confined to values in{−M, . . . ,M}.
Clearly Zt = Z[−t,t](ω, ω), ωj = 1 for j ≤ 0 andωj = 0 for j > 0, in the
limit M → ∞. Z[x,y] is a square matrix of dimension

(
2M+1
N

)
with the semi

group propertyZ[x,y]Z[y,z] = Z[x,z]. Assume that in (5.14) the xk are ordered,
−t ≤ x1 ≤ · · · ≤ xm ≤ t. Then the path integral can be written as

E

(
ηj1(x1) · · · ηjm(xm)

)
= lim

M→∞

(
Z[−t,t](ω, ω)

)−1

×
(
Z[−t,x1]δj1Z[x1,x2]δj2 · · ·Z[xm−1,xm]δjmZ[xm,t]

)
(ω, ω), (5.16)

whereδj(η, ϑ) is the diagonal matrix with entries1 if ηj = 1 and0 otherwise.
At this point we switch to the fermionic language which facilitates the task

to calculate these expectation values explicitly. The CAR algebra overZ is gen-
erated by the fermionic creation and annihilation operatorsa∗(j), a(j), j ∈ Z,
respectively. They satisfy the canonical anticommutation relations

{a(i), a∗(j)} = δij, {a(i), a(j)} = 0, {a∗(i), a∗(j)} = 0. (5.17)

The Hamiltonian for the free fermions is

H = −
∑
j∈Z

√
ξ
2

(
a∗j+1aj + a∗jaj+1

)
(5.18)

with a∗j , aj = 0 for j ∈ Z \ {−M, . . . ,M}. From now on we specify toξ = 2,
without loss of generality. The state with fermionic occupationη ∈ {0, 1}{−M,...,M}
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is denoted as

|η〉 =
M∏

j=−M

(a∗j)
ηj |0〉, (5.19)

where|0〉 is the vacuum vector with no fermions at all. With this notation at hand
it is easy to see that the partition function (5.15) can be written as

Z[x,y](η, ϑ) = 〈η|e−(y−x)H |ϑ〉, (5.20)

compare with [102], where the construction of the fermionic Fock space is ex-
plained in detail. General expectations now read (with proper time order in force)

E

(
ηj1(x1) · · · ηjm(xm)

)
= lim

M→∞
〈ω|e−2tH |ω〉−1〈ω|e−(x1+t)Ha∗j1aj1

×e−(x2−x1)Ha∗j2aj2 · · · e
−(xm−xm−1)Ha∗jmajme

−(t−xm)H |ω〉. (5.21)

Exponentials of operators quadratic ina, a∗ are easily handled. ForH =∑
ij a
∗
ihijaj one has

e−xHaie
xH =

∑
j

(exh)ijaj, e−xHa∗je
xH =

∑
i

a∗i (e
−xh)ij, (5.22)

easily verified by differentiation with respect tox. Therefore we first focus on
expectations atx = 0.

We define the density matrix

ρt = 〈ω|e−2tH |ω〉−1e−tH |ω〉〈ω|e−tH . (5.23)

Its trace is1 and arbitrary expectations can be reduced to quadratic ones by

tr(ρta
∗
j) = 0 = tr(ρtaj), (5.24)

BM,t(i, j)
def
= tr(ρta

∗
i aj) =

(
e−thPω(Pωe

−2thPω)−1Pωe
−th)

ij
, (5.25)

tr(ρta
∗
i1
· · · a∗imajm · · · aj1) = det

(
BM,t(ik, jl)

)
1≤k,l≤m, (5.26)

where(Pω)ij = δijωj is the projection onto sites occupied in the ground state.
The inverse in (5.25) is taken within the image ofPω. It can be simplified for
a Cholesky decomposition ofe2th. Let U andL be invertible operators andP a
projection such thatUP = PUP andPL = PLP . One hasPU−1 = PU−1P
andL−1P = PL−1P . Therefore

P
(
(1− P ) + PLUP

)−1
P = U−1PL−1. (5.27)
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In finite dimensions one can think ofU as an upper triangle matrix and ofL as
a lower triangle matrix, andP a diagonal projector, for examplePij = δi,j for
i < k ∈ N and zero otherwise.

From (5.18) we have thath = −d− d∗, whered is the left shiftdij = δi,(j−1),
an upper triangle matrix, andd∗, its transpose, lower triangle. Ifd andd∗ were
commuting we could apply (5.27). For finiteM this is not the case. The situation
simplifies whenM →∞.

In the limitM →∞ we have to give up the Fock space, for we have infinitely
many fermions. In [102] it is shown that tr(ρt · ) converges to a quasifree state
ωt(·), i.e. a bounded linear functional on the CAR algebra overZ [26]. It is defined
by

ωt(1) = 1, (5.28)

ωt(a
∗
j) = 0 = ωt(aj), (5.29)

ωt(a
∗
i aj) = Bt(i, j)

def
= lim

M→∞
BM,t(i, j), (5.30)

ωt(a
∗
i1
· · · a∗imajm · · · aj1) = det

(
Bt(ik, jl)

)
1≤k,l≤m. (5.31)

Sinced andd∗ commute onZ, by (5.27) we can identifyBt as

Bt = e−thPω(Pωe
2td∗e2tdPω)−1Pωe

−th = et(d
∗−d)Pωe

−t(d∗−d). (5.32)

By Fourier transforming one has(
et(d

∗−d)
)
mn

= 1
2π

∫ π
−π e

ik(n−m)e−2it sin kdk = Jn−m(2t), (5.33)

the modified Bessel function of ordern−m. ThusBt is the well-known discrete
Bessel kernel

Bt(i, j) =
∑
`≤0

Ji−l(2t)Jj−l(2t) (5.34)

It has integral representation

Bt(i, j) = t
Ji−1(2t)Jj(2t)− Ji(2t)Jj−1(2t)

i− j
for i 6= j, (5.35)

which holds also on the diagonal, employing l’Hospital’s rule fori→ j. To verify
one has to convert (5.34) into a telescoping sum using the identityn

t
Jn(2t) =

Jn−1(2t) +Jn+1(2t). The shifted Bessel functionsn 7→ Jn−l(2t) form a complete
system of eigenfunctions with eigenvaluesl

t
for the Hamiltonianht,

htψ(n) = −ψ(n− 1)− ψ(n+ 1) +
n

t
ψ(n) (5.36)



5.2. THE MULTI -LAYER PNG DROPLET 83

regarded as an operator on`2(Z). Note that this is the free one-particle Hamilto-
nian (5.18) together with a linear potential. ThusBt is the spectral projection onto
{ht ≤ 0}.

Using the anticommutation relations (5.17) we can already compute expecta-
tions atx = 0. For pairwise distinctj1, . . . , jm one has

E

(
ηj1(0) · · · ηjm(0)

)
= ωt(a

∗
j1
aj1 · · · a∗jmajm)

= det
(
Bt(jk, jl)

)
1≤k,l≤m. (5.37)

The second equality holds for there is always an even number of transpositions
needed to propagate theaj to the right as in (5.31). Thus the probability mea-
sure forηj(0) has determinantal correlations. In the probabilistic literature point
processes of this structure are known as determinantal [114]. We need (5.37) for
arbitraryjk. One has to take care of the anticommutation relations (5.17) when
normal ordering.Bt(i, j) has to be replaced byBt(i, j) − δi,j whenaj is left of
a∗i . This yields

E

(
ηj1(0) · · · ηjm(0)

)
= det

(
Bt(jk, jl)− θ(k − l)δjk,jl

)
1≤k,l≤m. (5.38)

For arbitraryx we have to employ (5.22). In order to allow for coinciding sites
one has to respect the time order. We define the extended discrete Bessel kernel
[102]

Bt(i, x; j, y) =


ωt(e

−xHa∗i e
xHe−yHaje

yH) = (e−xhBte
yh)ij for x ≤ y

−ωt(e−yHajeyHe−xHa∗i exH) = (e−xh(Bt − 1l )eyh)ij
for x > y,

(5.39)

where 1l is the identity matrix.
Let us write the extended Bessel kernel in the eigenbasis ofht. The integer

order Bessel function has the representation

Jn(2t) =
1

2πi

∮
dz

z
et(z

−1−z)zn (5.40)

where the contour integration is a circle aroundz = 0. Therefore(
e−xhJ.(2t)

)
n

=
1

2πi

∮
dz

z
et(z

−1−z)ex(z−1+z)zn . (5.41)

Substitutingz by (t+ x)1/2(t− x)1/2z yields(
e−xhJ.(2t)

)
n

= Jn
(
2
√
t2 − x2

)( t+ x

t− x

)n/2
. (5.42)
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We substitute into (5.39) and obtain

Bt(j, x; j′, x′) =

{ ∑
l≤0 α

j−lJj−l(2v)Jj′−l(2v)α−(j′−l) for x ≤ x′

−
∑

l>0 α
j−lJj−l(2v)Jj′−l(2v)α−(j′−l) for x > x′

(5.43)

with α =
(
t+x
t−x

)1/2
andv =

√
t2 − x2.

The expectation (5.21) with arbitraryjk and time orderedx1 < · · · < xm is

E

(
ηj1(x1) · · · ηjm(xm)

)
= ωt

(
(e−x1Ha∗j1e

x1H)(e−x1Haj1e
x1H)× · · ·

· · · × (e−xmHa∗jme
xmH)(e−xmHajme

xmH)
)

= det
(
Bt(jk, xk; jl, xl)

)
1≤k,l≤m. (5.44)

Expectation with equal timesxk = xk+1 are recovered in the limitxk ↗ xk+1.
Here is a subtlety which merits to be stressed.E

(
ηj1(x1) · · · ηjm(xm)

)
is a con-

tinuous function ofx1, . . . , xm even if some of thejk are coinciding. Obviously
it is symmetric with respect to permutations of the(jk, xk). The same is true for
det
(
Bt(jk, xk; jl, xl)

)
1≤k,l≤m. But the determinant is always zero if there arek, l

with jk = jl and one setsxk = xl. Nevertheless the limitsxk ↗ xl andxk ↘ xl
exist, are equal, and in general nonzero. In conclusion Expectations for arbitrary
pairwise distinct points(jk, xk)1≤k≤m are given by the determinantal formula in
(5.44).

We mention that the extended kernelBt(j, x; j′, x′) can be replaced by the
kernelg(j, x)Bt(j, x; j′, x′)g(j′, x′)−1 with arbitraryg(j, x) 6= 0. The additional
factors for such a similarity transformation cancel always upon evaluating the
determinant in (5.44).

We promised to learn something about joint distributions of the first PNG line
h0(x, t) = h(x, t). We look at them-point distribution at(jk, xk)1≤k≤m, jk ∈ Z
arbitrary andx1 < · · · < xm in [−t, t]. Define the set

QM =
m⋃
k=1

({xk} × {jk + 1, . . . ,M}) ⊂ Ω, (5.45)
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Ω = {x1, . . . , xm} × Z. The joint distribution function is given by

Prob{h(x1, t) ≤ j1, . . . , h(xm, t) ≤ jm} =

= lim
M→∞

E

( ∏
(x,j)∈QM

(
1− ηj(x)

))

= lim
M→∞

|QM |∑
n=0

(−1)n
∑

A⊂QM , |A|=n

E

( ∏
(x,j)∈A

ηj(x)

)

= lim
M→∞

|QM |∑
n=0

(−1)n
∑

A⊂QM , |A|=n

det
(
Bt(j, x; j′, x′)

)
(x,j),(x′,j′)∈A

= lim
M→∞

|QM |∑
n=0

(−1)n

n!

∑
((ξ1,i1),...(ξn,in))∈(QM )n

det
(
Bt(ik, ξk; il, ξl)

)
1≤k,l≤n

= det(1− PQBt)`2(Ω), (5.46)

where the projectorPQ is multiplication by the characteristic function of the set
Q = limM→∞QM andBt is regarded as an operator on`2(Ω). To prove the
existence of the limitM →∞ we need to show that

Prob{h(x1, t) > M, . . . , h(xm, t) > M} → 0 for M →∞. (5.47)

Since the maximum ofh(x, t) is smaller than the number of nucleation events up
to time t, we have forM > 2t2, the average number of nucleation events, an
exponential bound on the left expression in (5.47).

5.3 The scaling limit

The statement (5.1) is shown in the sense of joint distributions. For the single
point distribution this reduces to the limit

FGUE
n = det(1−Bt)`2({n+1,∞}) → FGUE(s) (5.48)

with n = [2t + t1/3s] as t → ∞. HereBt is the ordinary discrete Bessel ker-
nel (5.35). Comparing (5.48) with (3.17) we encounter a special instance of the
Borodin-Okounkov identity [25] which constructively relates any Toeplitz deter-
minant to a corresponding Fredholm determinant. The proof of the convergence
of them-point distribution function (5.46) to (5.5) in the proper scaling limit is
shown essentially by the convergence of the extended Bessel kernel to the Airy
kernel.
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Before going into details, let us first note that the Airy kernel can be regarded
as the spectral projectionP{HAi≤0} onto the negative spectrum of the selfadjoint
operatorHAi onL2(R),

HAi = − d2

du2
+ u. (5.49)

H is the Hamiltonian of a particle in a linear potential with generalized eigenfunc-
tionsu 7→ Ai(u − λ), for we have Ai′′(s) = sAi(s). The extended Airy kernel
(5.3) can be written as

K(u, y; u′, y′) =
(
e−yHAi

(
P{HAi≤0} − θ(y′ − y)1l

)
ey
′HAi
)
(u, u′). (5.50)

HAi determines not only the ground state of non-interacting fermions at chemical
potential zero corresponding to the line ensemble, but also their dynamical corre-
lations in Euclidean time. This is in contrast to the fermions on the lattice for the
multi-layer PNG, whose ground state is determined byht but their dynamics is
governed by the free Hamiltonianh. Note that we have to rescale in (5.36) n by
t−1/3 and fermionic timex by t−2/3 in order to obtainHAi from ht in the contin-
uum limit t → ∞. Focusing on the asymptotic mean2t of h0(0, t) and removing
the curvature,h0(x, t) ' 2t− x2/t for smallx, we arrive at the scaling

n = [2t+ t1/3(u− y2)],

x = t2/3y,
(5.51)

where we expect a nontrivial limit. Indeed one has

lim
t→∞

t1/3J[2t+t1/3(u−y2)]

(
2t
√

1− t2/3y2
)

= Ai(u) (5.52)

uniformly for u varying over a compact set [1].
Let us define the rescaled Bessel kernel

Kt(u, y;u′, y′) = t1/3e−t
−1/3nyBt(n, x; n′, x′)et

1/3n′y′ (5.53)

with (5.51) also for the primed variables. The multiplication byet
1/3(n′−n)y does

not affect determinants, for it is a similarity transformation. It is needed to tame

the diverging factors
(
t+x
t−x

)n/2
,
(
t+x′

t−x′
)−n′/2

in the extended Bessel kernel. Indeed
one has (1 + t−1/3y

1− t−1/3y

)(2t+t1/3u)/2

→ e2t2/3y+(u−y2)y, (5.54)
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uniformly on compactu, y sets, ast→∞. These ingredients are enough to show
[102]

lim
t→∞

Kt(u, y; u′, y′) = K(u, y; u′, y′) (5.55)

uniformly for u, u′ varying over a compact set.
From the convergence of kernels the convergence of join distributions

det(1− PQBt)`2({x1,...,xm}×Z) → det(1− PK)L2({y1,...,ym}×R) (5.56)

follows in the same way as theM → ∞ limit in (5.46). We replaceQ by QM ,
defined in (5.45), with M = 2t + t1/3a, a large. By (5.55) we have convergence
in (5.56) with P replaced byPa, the projector on

⋃m
k=1({yk}×]uk, a + y2

k[). The
remainder converges to zero whena→∞ since both kernels decay exponentially
for large arguments, compare with [102].
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CHAPTER 6

Anisotropic Growth in 2 + 1
Dimensions –

The Gates-Westcott Model

Crystal growth usually takes place in three dimensions. Many of the microscopic
growth models in one substrate dimension are easily generalized to higher dimen-
sions. The simplicity of the steady state allows there to exploit the anomalous
fluctuations and even to extract dynamical information of the growth process. In
2+1 or higher dimensions in the isotropic KPZ regime already the static fluctua-
tions show anomalous roughness [70]. The steady state is completely inaccessible
by any currently known analytical methods. A vicinal surface driven by step-flow
growth is expected to lie in the anisotropic KPZ or Wolf regime [130]. If the
growth velocity depends saddlelike on the surface slope, the steady state has the
same large scale statistics as a thermally roughened surface, which is governed by
a Gaussian free field fixed point. In particular the roughness is only logarithmic.
Jeong, Kahng, and Kim verified this behavior for a Toom interface in three dimen-
sions numerically [66]. We present here the Gates-Westcott model [50] where the
steady state is known explicitly and which can be analyzed in the limit of infi-
nite substrate size to determine an analytic expression for the macroscopic growth
velocity and the roughness.

A vicinal surface is formed by miscutting a crystal by a small angle with re-
spect to one of its high symmetry planes, e.g. (100) for a simple cubic lattice. Thus
the surface is made up of terraces separated by step lines of height one in units
of the lattice constant, see Fig.6.1. Exposed to its supersaturated vapor phase the
crystal grows by continuous deposition of material. Bulk cohesion causes parti-
cles to attach predominantly at a step line thereby enlarging the upper terrace at
the expense of the lower one. If the mean step line spacing is not to large, island
formation on the terraces can be neglected. Similarly overhangs are energetically
very unfavorable and suppressed completely in an SOS (solid on solid) model de-
scription, where the surface is characterized by a single valued height function
above the high symmetry reference plane. Thus the projected step lines do not
cross.

89
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Figure 6.1: A terrace-step-kink model of a vicinal surface. The slope(u1, u2)
determines the density and the inclination of lines.

If island formation is completely suppressed, the surface dynamics is de-
scribed in terms of the dynamics of the individual step lines, governed by(1+1)–
dimensional growth dynamics, modified by interactions between the lines. The
no-crossing condition is incorporated by a hard core repulsion of lines, but there
might be also long ranged elastic forces due to lattice distortion along the steps. A
perfectly flat surface with no step lines does not change in time, its growth velocity
is zero. For a very small tiltu the step lines evolve independently and the vertical
growth velocityv(u) is proportional to the step density, thus to lowest order one
expectsv(u) ∝ |u|. Increasing the tilt the overall mobility of the step lines will be
reduced because of the no-crossing condition. Thus roughlyv(u) ∝ |u| − γ|u|3
with γ > 0. We see that besides the cusp atu = 0 the curvature of the slope
dependent growth velocity is saddlelike, i.e.∂2

uv(u) is indefinite. Thus the surface
is in the Wolf regime of anisotropic surface growth [130] predicting logarithmic
roughness for the height fluctuations. Note, that if one admits island formation
at some small rate, the growth velocity atu = 0 is nonzero. Effectively the cusp
smoothens and the growth velocity depends on the slope in a convex form for
small enough|u|.
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6.1 The Gates-Westcott model

A very simple realization of the Wolf scenario is to choose for the stochastic evo-
lution of an individual step line the dynamics of the one-dimensional PNG model
without any interactions between lines besides the no-crossing condition. It has
been introduced by Gates and Westcott [50]. We represent a vicinal surface at
time t by a collection of non-crossing PNG linesφ`(x, t), ` ∈ Z, x ∈ R, with
φ`(x, t) ≤ φ`+1(x, t) for all `, x, andt. The graph ofφ`, {(x, φ`(x, t)), x ∈ R}
marks the position of the step line separating the terrace at levell + 1 from the
terrace at levell. In this chapter we call up- and down-steps of the individual PNG
lines antikinks and kinks, respectively, to avoid confusion with the notion of step
lines for theφ`. Antikinks move in the direction of negativex, having velocity
−1, and kinks move in the opposite direction with velocity1. A kink and an an-
tikink belonging to the same step line disappear upon collision. New kink/antikink
pairs are created randomly for each step line with space-time densityξ, provided
the non-crossing constraint is not violated. This means that whenever one has
φ`(x, t) = φ`+1(x, t) nucleations onφ` are suppressed at positionx.

This model is very similar to the multilayer PNG model introduced in chapter
5. In fact if we defineh`(x, t) = φ`(x, t) + `, the non-crossing condition for the
φ`, φ` ≤ φ`+1, translates to the non-intersection condition for theh`, h` < h`+1.
Via this mapping the configuration space for the Gates-Westcott (GW) model and
the multi-layer PNG model are identified, provided initial and boundary condi-
tions are adapted accordingly. But note that the GW dynamics is quite different
from the RSK dynamics. In the GW dynamics nucleations take place indepen-
dently on each line, only subject to the non-intersection constraint. In the RSK
dynamics, except for the first line, nucleations are completely deterministic. It is
very remarkable that nevertheless for some special types of initial/boundary con-
ditions the distribution induced by the GW dynamics is as simple as for the RSK
dynamics.

The formulation with a non-crossing condition has to advantages. Firstly it is
physically more realistic, since it allows for arbitrary inclinations of the crystal
surface, corresponding to unrestricted step line densities (the inverse mean step
line spacingφ`+1−φ`). Whereas for non-intersecting lines the line density can not
exceed1. Secondly it exhibits a symmetry in exchanging the`- andφ-direction.
More precisely, letCt = {(x, y, z); φ[y](x, t) ≥ z} represent the crystal. Then

Hm(x, t) = min{y; (x, y,m) ∈ Ct} ∈ Z, (6.1)

regarded as the step lines indexed bym, also follow the GW dynamics.
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6.2 The steady state

We restrict to periodic surface configurations obeyingφ`+L(x) = φ`(x) + B and
φ`(x + T ) = φ`(x) −M , whereT ∈ R+, B,L,M ∈ N. If we regard` as the
vertical direction, the height function of the surface isHm(x, t), compare with
Figure6.2. It has mean slopeu = (u1, u2) with u1 = −L/B andu2 = u1M/T .

kink
antikink

x
m

φ

B
T

M

L l

l

Figure 6.2:A Gates-Westcott surface on a finite substrate. The deterministic mo-
tion is indicated.

In the coordinates we chose one hasu1, u2 < 0.
A surface with the above periodicity is specified by theL step lines in the

rectangle{0, . . . , B − 1} × [0, T ] and the reference height at(0, 0),H0 ∈ Z. The
periodicity is accounted for by periodic boundary conditions form ∈ {0, . . . , B−
1} and twisted periodic boundary conditions forx ∈ [0, T ], i.e. the points(m, 0)
are identified with

(
(m−M)modB, T

)
. The height at timet can be reconstructed

by the step line configuration on the twisted torus{0, . . . , B−1}× [0, T ] together
with the reference heightH0(t). The incrementH0(t) −H0(0) is encoded in the
number of step lines passing through(0, 0) in the time interval[0, t]. Note that
we can equivalently think ofL non-intersectingstep linesh`(x, t) on the torus
{0, . . . , N − 1} × [0, T ], N = B + L, twisted by−M . Let us note that the
slope in theφ-formulation,(u1, u2), is related to the slope in theh-formulation,
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T

M

N

x
j

Figure 6.3:The step lines of Figure6.2regarded as fermionic world lines.

(−ρ,−σ) as

ρ =
|u1|

1 + |u1|
, (6.2)

σ =
u2

1 + |u1|
. (6.3)

Let y`,+j ∈ [0, T ] be the position of thej-th antikink for step linè , j =

1, . . . , n` andy`,−j ∈ [0, T ] be the position of thej-th kink, j = 1, . . . , n` + M .
We setn = (n1, . . . , nL), |n| = 2(n1 + · · ·+nL)+ML, the total number of kinks
and antikinks, andh0 = (h1(0), . . . , hL(0)). The twisted boundary conditions are
reflected by the condition

lim
x→T

(h1(x), . . . , hL(x)) = (h1(0)−M, . . . , hL(0)−M), (6.4)

compare with Figure6.3. The space of height line configurationsΓ decomposes
then as the disjoint unionΓ =

⋃̇
n,h0

Γ(n; h0), whereΓ(n; h0) is some subset of
[0, T ]|n| as defined through the constraints already explained ([0, T ]0 is a single
point). Furthermore for fixedn the Γ(n;h0) are glued together in a way that is
determined by the condition that (anti-)kinks leaving the interval[0, T ] reappear
smoothly on the opposite side. Letw be the measure onΓ, such thatw � Γ(n) is
the|n|-dimensional Lebesgue measure onΓ(n). Then

µ = Z−1
(
ξ
2

)|n|/2
w (6.5)
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is the stationary measure for the GW dynamics with normalizing partition function
Z.

To verify the stationarity ofµ we first note that the Lebesgue measure onΓ(n)
is left invariant by the deterministic part of the dynamics. We make the ansatz
µ � Γ(n) = p(|n|) · w � Γ(n). At a configurationh with a total number of|n|
kinks and antikinks there is a gain in probability with rate2Vh p(|n|+ 2) through
the annihilation of kink-antikink pairs. HereVh =

∑L
`=1

∫ T
0
θ(h`+1(x)−h`(x))dx

, ` = L+ 1 identified with` = 1, andθ(x) = 1 for x > 0 andθ(x) = 0 otherwise.
It is the “number” of configurations immediately before the annihilation event
which yieldsh. The loss in probability occurs with rateξVh p(|n|) sinceVh is also
the “number” of configurations which arise fromh by generating a kink-antikink
pair. Equating gain and loss we obtain (6.5). For ξ 6= 0 the process is ergodic
on Γ and therefore the stationary measureµ is unique. (Any configuration can be
evolved to a reference configuration by properly adding kink-antikink pairs in the
course of the deterministic evolution).

One defines the occupation variables at timet, ηj(x), j ∈ {0, . . . , N − 1},
x ∈ [0, T ], as

ηj(x) =

{
1 if h`(x, t) = j for somè ,

0 otherwise.
(6.6)

In [97] the partition function and expectations with respect toµ are explicitly
calculated for finiteT,B andL,M . Then the infinite volume limitB →∞, T →
∞ at fixed slopeu is taken. Due to the twisted boundary conditions enforcing a
tilt of the surface,u2 6= 0, the fermionic formulation has some extra complications
which we are not discussing here. Implicitly it is shown there that a modification
of the boundary conditions leads to the same result in the infinite volume limit and
simplifies the calculations considerably.

6.3 The fermion picture and the infinite volume limit

We modify the state spaceΓ in such a way that instead of (6.4) periodic boundary
conditions in thex-direction are enforced,

lim
x→T
{h1(x), . . . , hL(x)} = {h1(0), . . . , hL(0)} (6.7)

as sets. The relative order of the step lines is preserved in[0, T ]. But the step
lines are free to wind around the torus asx runs from0 to T . Let us define
the winding numberW as the difference of total kink number and total antikink
number divided byN . W is always an integer. If the winding number isL the
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step lines wrap around the torus exactly one time and one hash`(T ) = h`(0).
The definition of the measureµ is unchanged on sectors with constant winding
number.

An average tilt of the lines is enforced by imposing an a priori distribution on
the winding numberW . We assign different weights to antikinks and kinks,η+

andη−, respectively. The weight for a kink/antikink pair isξ
2
, therefore

η+η− =
ξ

2
. (6.8)

We set

µ = Z−1η
|n+|
+ η

|n−|
− w, (6.9)

with |n+| the total number of antikinks and|n−| the total number of kinks. This
implicitly defines the distribution of the winding numberW = (|n+| − |n−|)/N .
The measureµ is stationary for the ensemble of tilted surfaces consisting ofL
step lines with (6.4) and the GW dynamics. The mean slopeρ is given by the line
densityL/N and the slopeσ is given by the mean of the winding number〈W 〉/T .
Thereforeσ is a function ofη±, a relation which still has to be determined.

As in Chapter5 we can write expectations with respect toµ as a path integral
which can be rephrased in terms of fermionic expectations,

E

(
ηj1(x1) · · · ηjm(xm)

)
= Z−1

∫
{h`(0)}={h`(T )}

η
∑
`

∫ T
0 θ(∂xh`(x))dx

+

×η
∑
`

∫ T
0 θ(−∂xh`(x))dx

− ηj1(x1) · · · ηjm(xm)dw

= tr
(
e−TH

)−1
tr
(
e−x1Ha∗j1aj1e

−(x2−x1)Ha∗j2aj2 · · ·
× · · · e−(xm−xm−1)Ha∗jmajme

−(T−xm)H
)
, (6.10)

where the trace runs through the fermionic Fock space over{0, . . . , N − 1} con-
tainingL particles. The transfer matrix for the path integral becomes the non-
hermitian “Hamiltonian”

H = −
N∑
j=0

(
η+a

∗
j+1aj + η−a

∗
jaj+1

)
. (6.11)

Herej = N is identified withj = 0 and thea∗j , aj are the generators and an-
nihilators defining the CAR algebra over{0, . . . , N − 1}. The single particle
Hamiltonian corresponding toH is

hψ(j) = −(η+ψj−1 + η−ψj+1). (6.12)
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The complete set of eigenfunctions is given byN−1/2eikj, k ∈ Λ = {−π +
2π
N
, . . . , π − 2π

N
, π}. The eigenvalues are

ε(k) = −ηs cos(k) + iηa sin(k) (6.13)

with ηs = η+ + η−, ηa = η+ − η−. We want to take the infinite volume limit.
First we sendT → ∞. Expectations with respect to the finiteT density

operator converge to expectations with respect to the ground state ofH with L
fermions,|ωL〉,

lim
T→∞

tr
(
e−TH

)−1
tr
(
e−TH ·

)
= 〈ωL| · |ωL〉 (6.14)

For technical reasons we require thatN + L must be an odd number, otherwise
the ground state is twofold degenerated. The ground state|ωL〉 with L fermions is
then given by

|ωL〉 = a∗
(
−π(L−1)

N

)
a∗
(
−π(L−3)

N

)
· · · a∗

(π(L−1)
N

)
|0〉, (6.15)

wherea∗(k) = N−1/2
∑N−1

j=0 eikja∗j is the generator of a fermion in the eigenstate
k ∈ Λ and|0〉 is the empty state.

One has the discrete sine kernel in finite volume,m,n ∈ {0, . . . , N − 1}

SL(n,m)
def
= 〈ωL|a∗man|ωL〉 = N−1

∑
k∈Λ, |k|≤π(L−1)

N

eik(n−m)

=
sin
(
πL
N

(n−m)
)

N sin
(
π
N

(n−m)
) . (6.16)

The extended kernel is

SL(n, y; m,x) =

{ ∑
|k|≤π(L−1)

N

e(y−x) ε(k)eik(n−m) for y ≥ x,

−
∑
|k|>π(L−1)

N

e(y−x) ε(k)eik(n−m) for y < x
(6.17)

and the expectation values forT =∞ are given by

E

(
ηj1(x1) · · · ηjm(xm)

)
= det

(
SL(jk, xk, jl, xl)

)
1≤k,l≤m, (6.18)

valid for pairwise distinct(jl, xl), as discussed in Chapter5.
Let us turn to theN → ∞ limit. To guarantee a finite density of fermionsρ

we have to setL = [ρN ] or L = [ρN ] + 1, such thatN + L is odd. We obtain
a quasifree stateω as the limit object of the ground state|ωL〉, defined by the
discrete sine kernel

S(n,m)
def
= ω(a∗man) =

∫ πρ

−πρ

dk

2π
eik(n−m) =

sin
(
πρ (n−m)

)
π(n−m)

. (6.19)
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To determine arbitrary expectations one has to replaceSL(n, y; m,x) in (6.18) by
the extended sine kernel

S(n, y; m,x) =

{ ∫ πρ
−πρ

dk
2π
e(y−x) ε(k)eik(n−m) for y ≥ x,

−
∫ 2π−πρ
πρ

dk
2π
e(y−x) ε(k)eik(n−m) for y < x.

(6.20)

6.4 Slope, growth velocity, and two point correla-
tions

The slopeρ is already explicitly incorporated in (6.20), it is the fermionic density,
ρ = ω(a∗i ai), independently ofi. We still have to find the relation betweenσ and
η±. To this end we calculate the drift of the lines. The operator for the rightward
fermion current fromx to x+ 1 is determined through the limit

j+
i = lim

x→0

1
x
(a∗i aiai+1a

∗
i+1)e−xH(a∗i+1ai+1aia

∗
i )e

xH

= (a∗i aiai+1a
∗
i+1) ∂

∂x

(
e−xH(a∗i+1ai+1aia

∗
i )e

xH
)∣∣∣
x=0

= a∗i aiai+1a
∗
i+1[a∗i+1ai+1aia

∗
i , H]

= η+a
∗
i+1ai (6.21)

by the fermion anticommutation rules. Analogously the operator for the leftward
current fromi to i− 1, j−i = η−a

∗
i−1ai. σ/ρ is the inclination of the step lines, or

drift velocity of the fermions, therefore one has

σ = ω(j+ − j−) = (η+ − η−)π−1 sin(πρ). (6.22)

We want to impose the slopes(ρ, σ). By (6.8) and (6.22) we have to fix

η+ = 1
2
(ηs + ηa), η− = 1

2
(ηs − ηa), (6.23)

whereηa = πσ
sin(πρ)

andηs =
√

2ξ + η2
a are the coefficients of the imaginary and

real part in the dispersion relation (6.13), respectively.
The growth velocityv(ρ, σ) of the surface perpendicular to the(j, x)-plane is

given by the total number of kinks and antikinks, divided by the areaTN , or the
kink/antikink density in fermionic space-time. Therefore we have

v(ρ, σ) = ω(j+ + j−) = π−1ηs sin(πρ) = 1
π

√
2ξ sin2(πρ) + π2σ2. (6.24)

This is the slope dependent growth velocity for the surface with non-intersecting
step lines, thereforeρ ∈ [0, 1]. In the original formulation with non-crossing step
lines the area where (anti-)kinks contribute to the growth velocity isTB with
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B = N − ρN . In the infinite volume limit we thus obtain the stationary growth
velocity for the Gate-Westcott model [97],

vGW(u) = 1+|u1|
π

√
2ξ sin2

(
π|u1|

1+|u1|

)
+
(
π|u2|

1+|u1|

)2
. (6.25)

It is defined for all inclinationsu1, u2 ∈ R by symmetry, compare Figure6.4.
Note that as expected, the growth velocity is everywhere saddlelike, except for

v(  )u

u
2

u1

(0,0)

( )uvGW

Figure 6.4:The growth velocity of the Gates-Westcott model as a function of the
surface tiltu.

the cusp at the origin.
We turn to the static height correlations for the surface with step linesh`(x).

The corresponding heightH(x, n) is given by the reference heightH(0, 0) and the
number of step lines between(0, 0) and(x, n). We define the empirical antikink
density

j+
n (x) = lim

y→0

1
y
ηn(x)

(
1− ηn+1(x)

)(
1− ηn(x+ y)

)
ηn+1(x+ y). (6.26)

For a given realization of the surface it has delta peaks at the antikink positions.
The empirical kink density is

j−n (x) = lim
y→0

1
y
ηn(x)

(
1− ηn−1(x)

)(
1− ηn(x+ y)

)
ηn−1(x+ y). (6.27)
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It has delta peaks at the kink positions. There analogues as fermionic operators
are given by (6.21) and following. The heightH(x, n) is determined as

H(x, n) = H(0, 0)−
n−1∑
j=0

ηj(0) +

∫ x

0

(
j+
n−1(x′)− j−n (x′)

)
dx′ (6.28)

for n ≤ 0 and accordingly forn < 0. For y ∈ R we setH(x, y) = H(x, dye),
thusH(x, y) is an integer valued function onR2. We are interested in the large
scale behavior of the two point correlation function

C(n, x) = E
(
[H(n, x)−H(0, 0)− nρ− xσ]2

)
. (6.29)

We look at the structure function

S(n, x) = E

(
ηn(x)η0(0)

)
− ρ2 = −S(n, x; 0, 0)S(0, 0; n, x)

=

∫ πρ

−πρ

dκ

2π

∫ 2π−πρ

πρ

dκ′

2π
e|x|(ε(κ)−ε(κ′))ei

x
|x| (κ−κ

′)n. (6.30)

As in (3.51) the structure function is closely related to the second derivative of
C(x, t) with respect tox. In [97] the discrete analogue of (3.51) is derived,

C(n, x) =

∫ π

−π

dk

2π

1

1− cos k

(
Ŝ(k, 0)− e−iknŜ(k, x)

)
, (6.31)

whereŜ(k, x) =
∑

n e
iknS(n, x) is the discrete Fourier transform ofS(n, x). For

largen, x the asymptotic behavior

C(n, x) =
1

π2
ln(|n|+ |x|) +O(1) (6.32)

is extracted there. Here we take advantage of translation invariance and Fourier
transforms to refine the result considerably.

To this end we define the fermion propagatorG(n, x) by

S(n, y; m,x) = e−πρmG(n−m, y − x)eπρx. (6.33)

The similarity transformation byg(x) = eπρx drops out when taking expectations
(6.18). The Fourier transform ofG(n, x) in n andx is

G(k, ω) =

∫
dx
∑
n

eiωx+iknG(n, x)

=

∫
dxeiωx

(
χ(k)θ(x)− χ(k)θ(−x)

)
e(ε(k)+πρ)x

=
1

iω + E(k)
, (6.34)
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whereχ(k) = χ−πρ,πρ](k), χ(k) = 1− χ(k), andE(k) = ε(k) + πρ. Products of
Fermi propagators in real space become convolutions in Fourier space. One has
the following simple but very useful identity,

G(k, ω)G(k + k′, ω + ω′) =
G(k, ω)−G(k + k′, ω + ω′)

iω′ + E(k + k′)− E(k)
. (6.35)

For the structure function (6.30) we obtain in Fourier space

S(k, ω) =

∫
dω′

2π

∫
dk′

2π
G(k′, ω′)G(k′ − k, ω′ − ω)

=

∫
dω′

2π

∫
dk′

2π

(iω′ + E(k′))−1 − (i(ω′ − ω) + E(k′ − k))−1

−iω + E(k′ − k)− E(k′)
(6.36)

The transformationω′ 7→ ω − ω′, k′ 7→ k − k′ shows thatS(k, ω) is real, since
E(−k) = E(k). For fixedk′ theω′ integration is performed by collecting poles
in the upper halfplane (or, equivalently, in the lower one). The integral along a
semicircle of radiusR vanishes forR → ∞, for the integrand decays as|ω′|−2.
We obtain

S(k, ω) =

∫
dk′

2π

χ(k′)− χ(k′ − k)

−iω + E(k′ − k)− E(k)

=

∫
dk′

2π

Re
(
E(k′ − k)− E(k′)

)(
χ(k′)− χ(k′ − k)

)(
ω + Im

(
E(k′ − k)− E(k′)

))2
+ Re

(
E(k′ − k)− E(k′)

)2 .

(6.37)

For the large scale behavior ofC(n, x) only the pole structure at(k, ω) = (0, 0)
is relevant. One gets

ε−2S(εk, εω) −→ 1

2π

2k2ηs sin(πρ)(
ω − kηa cos(πρ)

)2
+
(
kηs sin(πρ)

)2 (6.38)

for ε → 0. In the large scale limit one has as in (3.89) C(k, ω) ' 2k−2S(k, ω),
for smallk, ω. In real space this translates to

C(Ln,Lx) =
1

π2
ln(CL) +

1

2π2
ln(sin(πρ)2)

+
1

2π2
ln
(
(n+ πσ cot(πρ)x)2 + (2 sin(πρ)2 + π2σ2)x2

)
+O(L−1). (6.39)

To calculate the constantC one would need to be able to control the rate of
convergence in (6.38). We conjectureC = 2e1+γ by numerical comparison,
γ = 0.5772 · · · being Euler’s constant.
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The stationary distribution of a Gates-Westcott surface at given slope can be
regarded as an equilibrium distribution with fugacityη+ for antikinks, η− for
kinks. The corresponding free energy per area, the surface free energyF (ρ, σ)
has been determined in [97] with the result

fξ(ρ, σ) =
1

π

√
2ξ sin2 ρπ + σ2π2 − σ

2
ln

√
2ξ sin2 ρπ + σ2π2 + σπ√
2ξ sin2 ρπ + σ2π2 − σπ

. (6.40)

Assuming that the height distribution becomes Gaussian on large scales, a calcu-
lation with the formal measure

dP ({h(y, x)}) ∝ exp(−
∫
f(∇h)dxdy) (6.41)

yields in the Gaussian approximation for the fluctuations ofh(y, x) in Fourier
space

〈hk,ωhk′,ω′〉 ∝
δ(k + k′)δ(ω + ω′)(

k
ω

)T
f ′′(ρ, σ)

(
k
ω

) , (6.42)

where one has explicitely

f ′′ξ (ρ, σ) =
π√

2ξ(sin πρ)2 + π2σ2

(
π2σ2

(sinπρ)2 + 2ξ(sin πρ)2 −πσ cotπρ

−πσ cotπρ 1

)
.

(6.43)

The quadratic form in the logarithm of (6.39) is just the inverse of (6.43).
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CHAPTER 7

Models in higher dimensions

7.1 The isotropic PNG droplet

The PNG droplet is an instance of the polynuclear growth (PNG) model in a spe-
cial geometry. To let a PNG droplet grow on ad–dimensional substrate, one starts
with a single seed located at the origin of the substrate at zero height. The seed is
a spike of unit height which expands laterally with constant speed. Above this cir-
cular (ford ≥ 3 spherical) island new spikes nucleate with uniform rate forming
further islands. Thus the droplet grows layer by layer. Two islands in the same
layer coalesce upon touching but continue to enlarge in all directions. This en-
sures that each layer reached by the droplet is eventually filled without holes. Ob-
viously we can choose the units of time and space in a way that the a lateral speed,
as well as the nucleation rate equals one. Thus the isotropic PNG model has no
adjustable parameters. Figure7.1shows the realization of a(2 + 1)-dimensional
dropleth(x, 3), x ∈ R2.

Let h(x, t) ∈ N0 be the height of the droplet abovex ∈ Rd at timet ≥ 0. We
have the initial and boundary conditionsh(x, t) = 0, for |x| > t, | · | the Euclidean
norm. Then

h(x, t) = max{h(xj, tj); j ∈ N and|x− xj| ≤ t− tj, t > tj}+ 1 (7.1)

defines the height at(x, t) recursively int, where(xj, tj)j∈N is some enumeration
of the nucleation events having density one in{(x, t) ∈ Rd+1; |x| < t} and density
zero otherwise.

For an alternative description of the processh(x, t), we define the partial order
≺,

(x′, t′) ≺ (x, t) iff |x− x′| ≤ t− t′ andt > t′, (7.2)

representing an ordered time-like relative position of two different space-time
points. For a directed path from(0, 0) to (x, t) γ : [0, 1] → R

d+1, with γ(s′) ≺
γ(s), 0 ≤ s′ < s ≤ 1 we define the length|γ| as the number of nucleation events
passed in the image ofγ. Thenh(x, t) can be alternatively defined as the longest
directed path from(0, 0) to (x, t),

h(x, t) = max
γ
|γ|. (7.3)

103



104 CHAPTER 7. MODELS IN HIGHER DIMENSIONS

Figure 7.1:A snapshot of a small isotropic PNG droplet in 2+1 dimensions.

Physically if we assign to each pathγ, regarded as a directed polymer chain, the
energy−|γ| thenh(x, t) has the interpretation of the ground state energy of a di-
rected polymer in the random energy landscape made up by the nucleation events.
By a superadditivity argument one obtains thatE(h(x, t)) is linearly bounded in
t, which by monotonicity guarantees the existence of the limiting vertical growth
speedv∞ = limt→∞ t

−1
E(h(0, t)).

The model has an apparent Lorentz-type symmetry. The partial order≺, as
well as the Poisson statistics of nucleation events is invariant with respect to ar-
bitrary Lorentz transformations of space-time where the speed of “light” is set to
unity. In our restricted droplet geometry the height processh is still invariant for
all special Lorentz transformations keeping fixed the origin(0, 0). Thus

h = h ◦ L in distribution, (7.4)

whereL is an arbitrary composition of spatial rotations around the origin and
Lorentz boosts,Lc, with velocityc ∈ Rd, |c| < 1, i.e.

Lc(x, t) = (x⊥ + x‖ coshα + t sinhα, t coshα− |x‖| sinhα), (7.5)

wheretanhα = |c| andx = x⊥ + x‖ is the orthogonal decomposition ofx with
respect toc. We immediately derive that along a ray{x = ct; t ≥ 0}, |c| < 1 the
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distribution ofh depends only on|c| and, by Lorentz boosting, is given by

h(ct, t) = h
(

0, t
√

1− |c|2
)
. (7.6)

If h(0, t) ' vdt + (adt)
βdχdroplet asymptotically, the macroscopic shape of the

droplet must be an ellipsoid, and the fluctuations transform according to (7.6) as

h(x, t) ' vd
√
t2 − |x|2 +

(
ad
√
t2 − |x|2

)βd
χdroplet. (7.7)

Since we are going to define the absolute scale of the droplet fluctuations, the dis-
tribution of χdroplet implicitly through a conceptually even simpler growth model
in the we need the (unknown) nonuniversal factora, which for the isotropic PNG
model depends only on the dimension. By Legendre transforming the determinis-
tic part we immediately obtain the slope dependent growth velocity as

v(u) =
√
v2
d + |u|2. (7.8)

7.2 PNG models with general island shape

We generalize the isotropic PNG model to arbitrary convex island shapes. The
spherical island shape is replaced by an arbitrary convex setB ∈ Rd containing
the origin and with nonzero Lebesgue measure. Instead of the Euclidean norm on
R
d one defines the quasi-norm

|x| = inf{λ 0; x ∈ λB}. (7.9)

(7.1) with this quasi-norm defines theB-shaped PNG droplet, again with Poisson
points of space-time density1 lying in the forward “light-cone” of the origin,
{(x, t) ∈ Rd+1; |x| < t}. Convexity of the island shapeBc is preserved under
Lorentz boostsLc with c ∈ B, since(Bc, {1}) = Lc{(tB, t); t ≥ 0} ∩ Rd × {1}.
Therefore we can focus on the height above the origin for a generalB-shaped
PNG droplet. We expect

hB(0, t) ' vBt+ CBt
βdχdroplet

d (7.10)

asymptotically in distribution. Rigorously there is not much known for general
island shapeB, only the case thatB is ad-simplex due to a mapping to longest
increasing subsequences of a tuple of random permutation has been studied in the
mathematical literature as explained in more detail below.

First let us give an intuitive argument to guessvB in the limit of high dimen-
sions. For a sequence ofd-dimensional island shapesBd, d ≥ 1 we start with a
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flat substrate,h(x, 0) = 0 with nucleations allowed everywhere inRd. The proba-
bility that h(0, t) = 0 at timet equals the probability that there have not been any
nucleation events inside the backward light cone{(x, s) ∈ Rd+1; | − x| < t− s}
of (0, t), thus

Prob{h(0, t) = 0} = exp
(
− td+1|Bd|/(d+ 1)

)
, (7.11)

with |Bd| thed-dimensional Lebesgue measure ofBd. 1 − Prob{h(0, t) = 0} is
the occupation ratio of the first layer. For larged, the occupation of the first layer
is very close to zero until a critical timetd, when it suddenly becomes occupied
almost completely.td is not precisely defined for finited, it is the time when the
exponent in (7.11) becomes of order 1. Only aftertd nucleations take place almost
completely in the second layer. Neglecting nucleations in the second layer before
tc and the tiny portion of not yet occupied regions in the first layer aftertd, the
second layer is occupied almost completely only at2td and so on, thus the growth
velocity is expected to be≈ 1/td. If we definetd =

(
c(d + 1)/|Bd|

)1/(d+1)
,

i.e. when the exponent in (7.11) equals−c, c > 0, the limit t∞ = limd→∞ td,
if it exists, is obviously independent ofc, and thus a promising candidate for
v∞ = limd→∞ vd is 1/t∞. Let us give three examples. First for theisotropic
PNG modelone hasBd = 2πd/2/(dΓ(d/2)), the volume of ad-dimensional unit
sphere. This leads to the asymptoticsvd '

√
2πe/d. Otherwise stated, if the

radius ofBd is
√
d instead of1, on hasv∞ =

√
2πe. Second example is the

hypercube PNG model, Bd = [−1, 1]d, which is investigated in the next section.
The above reasoning leads to the conjecturevd → 2, asd→∞.

The third example is thesimplex PNG model, whereBd is ad-dimensional
simplex, taken as the simplex spanned by the endpoints of vectors of lengthd,
forming a(d + 1)-dimensional orthogonal basis whose body diagonal is aligned
with the t-axis. Its Lebesgue measure is|Bd| = dd(d + 1)/d! and thus by the
Stirling formula one hasv∞ = e. Let us note that we chose the size ofBd in such
a way thath(0, t), with droplet initial conditions, equals in distribution the length
of a directed polymer between two opposite corners of a hypercube[0, t]d+1, filled
with Poisson points of density1. A third interpretation is the following. Take a
d-tuple of independent random permutations,(πi)1≤i≤d, all of the same lengthN ,
whereN itself is Poisson distributed with meantd+1. A subsequence(jl)1≤l≤k of
lengthk, 1 ≤ j1 < · · · < jk ≤ N , is called increasing ifπi(jl) < πi(jl+1) for all
1 ≤ i ≤ d and1 ≤ l < k. Then againh(0, t) equals in distribution thelength of a
longest increasing subsequenceof such a tuple of random permutations. Bollobás
and Winkler [22] analyzedh(0, t) exactly in this formulation as a generalization
of Ulam’s problem [124], which corresponds tod = 1. They have shown that
vd ≤ e for all d ∈ N and indeedvd → e asd→∞.

Note that an arbitraryd-simplex can always be transformed toBd as defined
above by an affine transformation, thus knowingvd for oned-simplex we know



7.3. MONTE CARLO SIMULATIONS ON A FLAT SUBSTRATE 107

it for every otherd-simplex as well. In particular we are able to determine the
macroscopic shape of a droplet modulo this single constantvd. In the orthonor-
mal frame, spanned by the edges of the forward light cone from the origin, with
coordinates(ξ0, . . . , ξd) one has

h(ξ0, . . . , ξd) ' vd(ξ0 · · · ξd)
1
d+1 . (7.12)

The reason is thath(ξ0, . . . , ξd) is determined by the Poisson points in a hyper-
cuboid whose sides have lengthsξ0, . . . , ξd. A volume preserving linear transfor-
mation to a hyper-cube leaves invariant the Poisson point process and thus only the
volume of the cuboid determines the height distribution. Legendre transforming
in the same frame, and regardingξ0 as time direction leads to the growth velocity

v(u) =
(
vd
d+1

)d+1
(u1 · · ·ud)−1. (7.13)

7.3 Monte Carlo simulations on a flat substrate

We let the PNG model grow from a flat substrate, ad–dimensional hyper cube
of lengthL with periodic boundary conditions. Equivalently one can think of a
substrate extended to infinity with spatially periodic noise. We mainly studied the
height distributionht = h(0, t), which by translation invariance can be determined
via spatial and ensemble sampling. By the general KPZ theory we expect the
scaling form

ht ' v t+ C tβχflat (7.14)

with model dependent parametersv andC, and the dynamical roughness expo-
nentβ together with the universal distributionχflat, which (in the strong coupling
regime) depend only on the substrate dimensiond. In this simulation we recorded
at different sampling times the first four moments of the height distribution, av-
eraged spatially for each individual run and for a number of independent realiza-
tions.

A given surface configuration was encoded by the positions, creation times,
and height levels of all nucleation events being created up to the current time,
which are not yet covered completely by higher lying islands. To determine the
height of a newly created nucleation event one has to determine from all the nucle-
ation events in its backward light cone the highest level occurring. This has been
down level-by-level with a dynamical KDB (k–dimensional binary) tree search
algorithm adapted for periodic boundary conditions [107].

Since computer memory is restricted one has to get rid of nucleation events
whose islands are already completely covered. This has been done by throwing



108 CHAPTER 7. MODELS IN HIGHER DIMENSIONS

away all nucleation events of a lower lying level, if for a certain amount of time
no new nucleation occurred in this level. If a level were removed to early there
would be holes created in the surface. We determined the time to keep the levels
empirically such that on the average not more then one nucleation event among
108 hits a hole.

To increase performance we did not use the Euclidean norm corresponding to
spherical island shapes, but the maximum norm,|x| = max{|xi|}, corresponding
to islands growing in the shape ofd–dimensional hypercubes. The advantage is
that the evaluation of the norm, clearly the most frequent operation, is less time
consuming, and furthermore the KDB search is more efficient, since it bounds the
substrate region to be searched for nucleation events by hyperplanes parallel to
the island boundaries. The disadvantage of giving up isotropy and the Lorentz
symmetry explained in the preceding section is acceptable, since we are mainly
interested in universal quantities, roughness exponents and measures of the shape
of the limiting distribution, like skewness and kurtosis.

System sizes are up toL = 105 for d = 1, L = 1280 for d = 2, L = 128
for d = 3, L = 30 for d = 4, andL = 15 for d = 5. Note that for times
smaller thanL/2 the evolution is not affected by the finiteness of the substrate,
since the maximal lateral speed is1. But also for larger times finite size effects
are negligible for the recorded times,t ≤ 100, since the correlation length grows
laterally proportional tot1/z with z = 2 − α ∈ [1.5, 2], α the static roughness
exponent. The computation time was several weeks on a modern work station for
each dimension (besides the one-dimensional case where we spent much less time
since the results are known in closed form as explained in Chapter3

Figure7.2 shows the mean height divided by the time and the extrapolated
values of the growth velocities for each dimensiond = 1, . . . , 5. For the hyper-
cube PNG model we expectvd → 2 asd → ∞, compare with Section7.2. The
numerical values are are in accord with this conjecture and even imply mono-
tone convergence from below. The numerical values forvd are well fitted by the
heuristic formulavd ≈ 2− 0.6 d−1/2 (up to1%).

To estimate the dynamical roughness exponent we plot in Figure7.3 the trun-
cated second moment of the height distribution, i.e. the quadratic height distribu-
tion width 〈h2

t 〉 − 〈ht〉2. The damped oscillations reflect the discrete nature of the
height variable, taking only integer values. As can be seen from the vertical scale
the width of the surface is only of order one and smaller ford ≥ 3. This means,
that the height distribution is concentrated mainly in only two or three levels.

For d ≤ 3 we used the last decade of simulation data to fit the ansatzw2
t '

cd t
2βd with the resultβ1 = 0.334(1), c1 = 0.502(4), (dotted line in the leftmost

plot of Figure7.4; the exact values areβ1 = 1/3 andc1 = 〈(χGOE)2〉c/21/3 =
0.50678), β2 = 0.240(1), c2 = 0.2885(35), andβ3 = 0.1665(20), c3 = 0.206(5).
Figure7.4 illustrates the results and gives an idea of the accuracy involved. We
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Figure 7.2: The asymptotic growth velocity of the hypercube PNG model for
d = 1, . . . , 5 substrate dimensions.

plot w2
d/t

βd semi-logarithmically against the time. The horizontal line indicates
cd, and the slope of the two guiding lines bounds the error inβd for d = 2, 3.

Figure7.5shows the skewness and kurtosis of the height distribution ford =
1, . . . , 4, calculated from our Monte Carlo data. Ford = 1 also the exact result is
shown, which converges to the skewness and kurtosis ofχGOE, 0.2935 and0.1652,
respectively. Ford = 2 the results for two substrate sizesL = 1024 and1290 are
superimposed. We estimate0.40(3) and0.30(5) for the skewness and kurtosis of
χflat in two substrate dimensions. Ford = 3 andd = 4 the results are less clear.
We estimate0.41(7) and0.30(15), respectively, in three substrate dimensions and
in the range of our data0.20(15) and0.15(40) in four substrate dimensions. The
d = 4 results do not exclude convergence to a Gaussian distribution, where both
skewness and kurtosis are zero, which would be expected if the upper critical
dimension were already reached.

An alternative approach to determine the critical exponents, is to measure the
static roughness of the surface. Starting from a flat substrate, the lateral corre-
lation lengthξ increases in time with the exponent1/z = β/α. For distances
below the correlation length one expects approximately stationary fluctuations,
and one should be able to detect the scaling law for the second moment of height
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Figure 7.3: The truncated second moments of the surface positionht up to 5
substrate dimensions. The data ford = 5 are modified by a factor0.5 to increase
visibility.

differences

〈(h(x, t)− h(0, t))2〉 ≈ Ax2α, xm � |x| � ξ. (7.15)

Herexm is a microscopic cutoff length and is given by the microscopic dynamics.
We assume it to be of the same size as the typical distance of nucleation events
in a completely filled level, which is of order one. Already ford = 2 this leaves
less then a decade for the validity of (7.15) since we where not able to prepare
surfaces with a correlation length much larger than10. If the system size is small
enough to relax the surface to stationarity additional finite size effects yield even
less reliable results. We indeed verified that our Monte Carlo data do not allow
for a meaningful scaling fit.

On a finite substrate the correlation length can not exceed the system sizeL.
After a timetstat∝ Lα/β the correlation length is of the same order asL, and the
whole surface statistic is close to stationarity. Since the quadratic surface width,

w2 = 〈(h(0, t)− h(·, t))2〉, (7.16)

with · denoting spatial averaging for a given realization, is expected to scale with
the exponent2β in time for initial growth, the stationary surface width attained at
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Figure 7.4: Scaling plot of the surface width against the expected asymptotics.
The left graph shows MC data compared to the exactly known solution in1 sub-
strate dimensions, relative to the exactly known scaling exponent2/3. The dotted
line is a fit to the Monte Carlo data. For2 dimensions (middle) the best fit for
the dynamical exponent yieldsβ = 0.240(1), and for3 dimensions (right) we ob-
tain β = 0.1665(20). The vertical scale is chosen to show a region of±2.5%,
±5%, and±10% around the converging valuec1 = 0.50678, c2 = 0.2885, and
c3 = 0.206, respectively. The two guiding lines in the middle and right graph il-
lustrate the error bounds for the dynamical exponents. Higher dimensional results
are not shown since they do not allow for a meaningful fit.

a time of ordertstat should scale as

w2
L ∝ L2α (7.17)

with the surface sizeL. In the simulations the surface at a given time is probed
at only finitely many sample points. Thus the empirical estimate for the surface
mean contains an error, which results in a small but systematic under–estimation
of w2. Since the heights of the sample points have no Gaussian distribution and
furthermore are correlated uncontrollably we decided to avoid this error source
and chose as a measure for the surface width the distribution of the height differ-
ence at two points on the surface at maximal distance, i.e.

∆hL = h(xL, t)− h(0, t), (7.18)
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Figure 7.5: Skewness and kurtosis of the height distributions ford = 1, . . . , 4.
The one-dimensional limits are0.2935 and0.1652, the skewness and kurtosis of
χGOE. The dotted lines ford = 2 are at0.40 and0.32. The rough estimates for
d = 3, 4 are0.41, 0.2 for the skewness and0.30, 0.15 for the kurtosis, respectively.

with xL = (L/2, . . . , L/2). This is clearly spatially invariant and does not depend
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Figure 7.6: The stationary surface width for a finite substrate of lengthL with
periodic boundary conditions against the substrate areaLd, d = 1 to d = 10.
System sizes are rather moderate, ranging fromL = 64 for d = 2, L = 32 for
d = 3 to onlyL = 2.35 for d = 10.

on the number of sample points taken from one realization of a stationary surface.
The disadvantage is, that we can not examine the surface skewness, an asymmetry
in the distribution ofh − h, which has been recognized in dimensionsd ≥ 2 to
persist even in the stationary state [32].

We observed that〈∆h2
L〉 is always very close to2w2

L, as expected if the two
opposite sample points are only weakly correlated. Thus for brevity we write
2w2 for the quadratic surface width measured by the height difference at most
distant points. In Figure7.6 we plot this surface width against the area of the
substrate ford = 1, . . . , 10. In order to visualize the quality of scaling of these
data according to (7.17) Figure 7.7 shows a finite size scaling of the data, i.e.
the local slope of the log–log graphs in Figure7.6 (divided by two) against1/L
such that if (7.17) holds the curves converge to the static roughness exponentα
on the vertical axis at zero. The extrapolation of the curves yields for the first
four dimensions,α1 = 0.50(1), α2 = 0.38(1), α3 = 0.29(2), andα4 = 0.18(3).
Thed = 4 estimate holds only if we assume that the corresponding curve remains
convex but monotonically decreasing, when approaching0. Otherwiseα4 = 0
can not be excluded. Ford ≥ 5 a reasonable extrapolation is not possible at all.
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Figure 7.7: Finite size scaling of the surface width. ForL → ∞, i.e. along the
left vertical axis, the data are expected to converge to twice the static roughness
exponent. Errorbars have not been recorded, but errors become larger upon ap-
proaching zero. We estimate from this dataα = 0.50(1) for d = 1, α = 0.38(1)
for d = 2, and0.29(2) for d = 3. For d = 4 one can extractα = 0.18(3) if one
assumes that the curve stays convex but decreasing when approaching0. But note
that this is excluded ifd = 4 is the upper critical dimension implyingα = 0. For
higher dimensions the data are not conclusive at all.

7.4 2+1 dimensional triangle PNG droplet

In a second project we simulated the triangle PNG droplet. We regard this model
as the conceptually simplest of all growth models since it can be mapped to the
longest commonly increasing subsequence problem of random permutations as
described in section7.2. Therefore we propose to define the absolute scale of
the limiting droplet distribution for curved KPZ growth by means of the simplex
model. Thus we define

χdroplet
d = lim

s→∞
s−βd

(
h(s)− vds

)
, (7.19)

as a limit of distributions, if this definition makes sense, i.e. if the dynamical scal-
ing exponentβd > 0 is well defined (the existence ofvd being shown in [22] for
d ∈ N). Ford = 1 this definition coincides with the GUE Tracy-Widom distribu-
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tion χGUE, compare with Chapter4. We concentrated on thed = 2 case, since we
did not expect good statistical results in higher dimensions with the algorithms
and the computer power available. Ford = 2 we shall give strong numerical
support thatχdroplet

2 indeed is well defined withβ = 0.2408(12).
The principle used for the Monte-Carlo simulation is very simple. We fill a

cube of lengthL with Poisson points of density one. The points are ordered with
respect to one coordinate axis. To get the height of a point one has to find the
height of the highest point in its backward light cone, which is just a cuboid, and
add1. The height functionh(s), s ∈ [0, L]3, is then defined as the maximal height
of the points in the backward light cone ofs.

To save memory and to obtain a complexity of the algorithm of orderL3 we
actually split the large cube into smaller cubes which are processed in lexicograph-
ical order. If a cube is processed, the height function restricted to its three distal
(further away from the origin) faces forms a(1 + 1)–dimensional PNG height
function on each face. The points on the face which generate this height function
(projections of bulk points) are passed to the corresponding nearest neighbor cube
as boundary points. Thus each cube has boundary points at his proximal (closer
to the origin) faces, with associated height, which are treated as bulk points be-
longing to the cuboid. Once the boundary points at the proximal faces are known,
the height of all points inside the cuboid can be determined as described above
without any reference to points lying outside. Also the height ats ∈ R3, h(s), can
be determined by processing only the cuboid containings.

The distribution ofhs = h(s, s, s) is then determined by recording the height
of all points with coordinates(s1, s2, s3) lying in the “mass shell”s ≤ (s1s2s3)1/3 <
s+ 1/1024. Our largestL was 1200 but we recordedhs only up tos = 1024. We
managed to process about 50000 points/sec and consumed the equivalent of nearly
one year on a modern work station. We simulated cubes with different lengthsL,
in order to improve the statistics for smallers. The distributions for eachs contain
up to2 ·108 events for s around 200,5 ·106 ats ≈ 400, and still5 ·105 ats = 1000,
roughly approximated by4 · 107 exp(−s/220).

The upper half of Figure7.8shows the mean height〈hs〉 divided bys in order
to extract the asymptotic growth velocity. A nonlinear fit for the ansatz

〈hs〉 = v s+ c sβ + k, (7.20)

motivated by the behavior for one substrate dimension, yields

v = 2.3640(3),

c = −2.85(1)

β = 0.2404(6),

k = 2.16(2). (7.21)
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Figure 7.8: The upper graph shows the average height of the(2+1)–dimensional
triangle PNG droplet at timest =

√
3s, above the origin, divided bys, a fitted

curve, and the asymptotic speed2.364, errorbars much smaller than the symbols
and omitted. The lower graph shows the deviations of the first moments of〈hs〉
from the fitted curve on the scale of the expected limiting distribution with error-
bars.

The result for the growth velocity is consistent with and even somewhat more
precise than the estimatev ∈ [2.363, 2.366] of Breimer et al. [27], who exclusively
concentrated in our terms on the mean growth velocity of the simplex PNG model
in dimensionsd = 1, . . . , 5.

The lower graph of Figure7.8 shows the shifted and scaled mean in order to
extract the first moment of the limiting distributionc = 〈χdroplet〉.

Figure7.9shows the scaling of the truncated second moment ofhs. The theo-
retically predicted exponent2β = 1/2 [80] is taken out, to emphasize the signifi-
cance of the deviation from this conjecture. The scaling ansatz

〈h2
s〉 − 〈hs〉2 = c2 s

2β (7.22)

in the range30 ≤ s ≤ 1024 yieldsc2 = 0.475(2) andβ = 0.241(1).
Also the third and forth moments scale as expected. In Figure7.10the skew-

ness and kurtosis of the height distributions for differents are shown. From this
data we estimate the corresponding quantities forχdroplet

2 in two substrate dimen-
sions as0.323(5) and0.21(4), respectively.
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Finally Figures7.11 and 7.12 show the limiting probability distribution of
χdroplet

2 itself, in comparison to the same random variable in one substrate dimen-
sion, the Tracy-Widom-GUE distribution. Thed = 2 line is obtained as the shifted
and scaled superposition of the empirical distributions for100 ≤ s ≤ 800.

7.5 Summary of the numerical results

Let us collect the numerical results obtained in Sections7.3 and7.4. For the hy-
percube PNG model with flat initial conditions we determined on an effectively
infinite substrate the asymptotic growth velocityvd and the prefactor for the alge-
braic increase in the varianceCd which are nonuniversal quantities. The univer-
sal quantities recorded are the dynamical scaling exponentβd, the skewness and
kurtosis of the universal height distributionχflat

d , and, by means of the stationary
surface width as a function of the substrate size the static roughness exponentαd.
The scaling relationαd(1 + 1/βd) = 2 due to Gallilean invariance of the KPZ

d = 1 d = 2 d = 3 d = 4 d = 5

vd 21/2 1.567(1) 1.646(3) 1.696(4) 1.73(1)
Cd 0.502(4) 0.2885(35) 0.206(5) - -

χflat
d

skewness 0.2935(exact) 0.40(3) 0.41(7) 0.20(15) -
kurtosis 0.1652(exact) 0.32(5) 0.15(40) - -
βd 0.334(1) 0.240(1) 0.1665(20) - -

2βd/(1 + βd) 0.501(2) 0.3871(13) 0.2855(30) - -
αd 0.50(1) 0.38(1) 0.29(2) 0.18(3) -

αd(1 + 1/βd) 2.00(5) 1.96(6) 2.03(14) - -

Table 7.1:Nonuniversal and universal quantities from the hypercube PNG model.

equation is just a check for consistency since its validity is beyond any doubt.
Sinceβd has much less uncertainty we included in the table a guess forαd from
the values forβd assuming the scaling relation to hold.

Let us compare the scaling exponents with values found in the literature. In
d = 2 almost all numerical studies agree more or less onβ2 = 0.240(1) [120, 3, 4].
A more recent study by Marinari et al. [85], measuringαd in a similar way as we
did, predicts (again assuming the scaling relation)β2 = 0.2445(25). Nevertheless
it seems to be widely agreed upon thatβ2 obtained from Monte-Carlo simulations
is bounded away from the value1

4
conjectured by theoretical considerations of

Lässig [80]. Only Chin and den Nijs [32] claim consistency withα2 = 2
5

(β = 1
4
)

ascribing deviations from it to persisting finite-size effects.
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χdroplet
d d = 1 d = 2

mean −1.77109 −2.85(1)
variance 0.81320 0.475(2)
skewness 0.2241 0.323(5)
kurtosis 0.09345 0.21(4)

Table 7.2:characteristics of the distributionsχdroplet
d for d = 1, 2.

In d = 3 [120] and [3] consistently obtainβ3 = 0.180(5). [85] has a more
precise guess,β3 = 0.185(1) from α3 = 0.3135(15). This differs considerably
from our resultβ3 = 0.1665(20), itself being consistent with Lässig’s theoretical
predictionβ3 = 1

2k
for somek ∈ N [80], obviously withk = 3.

At d = 4 many theoretical studies locate the upper critical dimension of the
KPZ-theory [81, 34]. Thus they expectβd = 0 for d ≥ 4. From the numerical side
the existence of an upper critical dimension is heavily disputed [28, 86, 2]. Most
accurate measurements obtained areβ4 = 0.15(1) in [3] andβ4 = 0.146(2) in
[85]. Critics would assign these nonzero values forβ4 to finite size effects, since
simulated system sizes are quite small. Our own results are not very decisive in
this question. The estimated valueα4 = 0.18(3), leading toβ4 = 0.10(2) is
obtained only under the assumption that the curve approximated in Fig.7.6 for
d = 4 is actually convex.

In Section7.4 we determined for the triangle PNG model its specific growth
velocity v = 2.3640(3) and the dynamical scaling exponentβ2 = 0.2408(12) in
agreement with the result from the hyper-cube PNG model. The limiting height
distributionχdroplet

2 has been recorded. We collect the results for mean, variance,
skewness and kurtosis in Table7.2 for d = 1 from the GUE Tracy-Widom dis-
tribution and ford = 2 from our Monte-Carlo simulations for the triangle PNG
model. To our knowledge this is the first time that this droplet distribution, or, in
the language of directed polymers, point-to-point distribution ford = 2 itself has
been investigated.



APPENDIX A

Orthogonal polynomial identities

We collect identities for orthogonal polynomials on the unit circle used in Chapter
3. For the reader who is new to the subject we sketch the proofs.

Let f(θ) be a non-negative integrable function on[−π, π]. Define the inner
product for polynomialsp, q,

〈p, q〉 = (2π)−1

∫ π

−π
p(eiθ)q(eiθ)f(θ)dθ. (A.1)

If f(θ) has the formf(θ) = F (eiθ), with the functionF (z) being analytic on the
unit circle, the inner product can be written as a contour integral around0,

〈p, q〉 =

∮
p(z−1)q(z)

F (z)dz

2πiz
, (A.2)

wherep(z) = p(z). We are interested in the determinant of the Toeplitz matrix
Tn
(
f(θ)

)
= (〈zk, zl〉)0≤k,l<n

Dn = detTn
(
f(θ)

)
. (A.3)

We orthogonalize recursively the monomialszn, n ≥ 0, to obtain orthogonal
polynomials with respect to the weight functionf(θ),

πn(z) = zn −
n−1∑
k=0

〈zn, πk〉
〈πk, πk〉

πk(z). (A.4)

By definition the polynomials are monic, i.e.πn(z) = zn+O(zn−1), there quadratic
norm is denoted asNn, thus

〈πm, πn〉 = δm,nNn. (A.5)

To abbreviate we writepn = πn(0). The reciprocal polynomialsπ∗n(z) are defined
as

π∗n(z) = znπ(z−1). (A.6)

121



122 APPENDIX A. ORTHOGONAL POLYNOMIAL IDENTITIES

As easily seen, they are orthogonal to all polynomials of degree≤ n with vanish-
ing constant term,

〈π∗n, zk〉 = 0 for 1 ≤ k ≤ n and 〈π∗n, 1〉 = Nn. (A.7)

Therefore〈π∗n, π∗k〉 = Nn for all k and

〈π∗n, πk〉 = pkNn for 0 ≤ k ≤ n. (A.8)

We have the following identities:

Proposition 1.1

Dn =
n−1∏
k=0

Nk, (A.9)

Nn = N0

n∏
k=1

(1− |pk|2). (A.10)

Nn

n−1∑
k=0

πk(a)πk(b)

Nk

=
π∗n(a)π∗n(b)− πn(a)πn(b)

1− ab
, (A.11)

πn(z) = z πn−1(z) + pn π
∗
n−1(z), (A.12)

π∗n(z) = z pn πn−1(z) + π∗n−1(z), (A.13)

πn(1) =
n∏
k=1

(1− pk). (A.14)

π∗n(−1) =
n∏
k=1

(1 + (−1)kpk) (A.15)

Proof: The proofs can be found scattered in [118] with slightly different notation.
We recapitulate them here in a concise form. First the orthogonal polynomials can
be written explicitly as a determinant,

πn(w) = D−1
n det


〈1, 1〉 〈1, z〉 · · · 〈1, zn〉
〈z, 1〉 〈z, z〉 · · · 〈z, zn〉

...
...

...
〈zn−1, 1〉 〈zn−1, z〉 · · · 〈zn−1, zn〉

1 w · · · wn

 (A.16)

To check one notes thatπn(z) is orthogonal tozk, 0 ≤ k < n and has the proper
leading coefficient.
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To relateNn with the Toeplitz determinants we adopt the notationDn,k l for
the (k, l)-minor ofDn, i.e. the determinant of the Toeplitz matrix withk-th row
and l-th column removed, andDn,k l,k′l′ the minor withk-th, k′-th row andl-th,
l′-th column removed. One has by expanding the determinants

D2
n−1Nn = D2

n−1〈πn, πn〉 =
n∑

i,j=0

(−1)n+iDn,n i〈zi, zj〉(−1)n+jDn,n j

=
n∑
i=0

(−1)i+nDn,n i〈zi, zn〉Dn,nn

+
n−1∑
j=0

n∑
i=0

∑
0≤k≤n, k 6=i

〈zk, zj〉(−1)i+j+k+θ(k−i)Dn,n i,j k〈zi, zj〉Dn,n j

= DnDn−1, (A.17)

with θ(n) = 0 for n ≤ 0 andθ(n) = 1 otherwise. The last equality holds, since
Dn,nn = Dn−1 and in the sum overi, k, i 6= k the terms withi andk interchanged
have opposite sign. ThusDn = NnDn−1,D0 = 1 and (A.9) follows.

To get (A.10) we set

Pn(w, z) =
n∑
k=0

N−1
k πk(w)πk(z). (A.18)

Using bra and ket notation,Pn =
∑n

k=0 |πk〉N
−1
k 〈πk| is just the projector onto

polynomials with degree not higher thann. Obviously

〈πk, Pn(·, 0)〉 = pn, (A.19)

which by (A.8) identifiesPn(w, 0) = N−1
n π∗n(w). Forw = 0 this implies

Pn(0, 0) =
n∑
k=0

N−1
k |pk|

2 = N−1
n , (A.20)

yielding (A.10).
To obtain the Christoffel-Darboux formula (A.11) remember thatPn−1(w, z)

is the projector onto polynomials of degree less thann. On the other hand we have
for an arbitrary polynomialp(z) of degree less thann, with z = eiθ,∫ π

−π

π∗n(w)π∗n(z)− πn(w)πn(z)

1− wz
p(z)f(θ)dθ

= p(w)

∫ π

−π

π∗n(w)π∗n(z)− πn(w)πn(z)

1− wz
f(θ)dθ

+

∫ π

−π

(
π∗n(w)π∗n(z)− πn(w)πn(z)

)p(z)− p(w)

1− wz
f(θ)dθ. (A.21)
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The last integral vanishes, since writingp(z) − p(w) = (z − w)r(z) one has
〈π∗n, zr(z)〉 = 0 by (A.7) and〈πn, zr(z)〉 = 0 by (A.5). This shows that the quo-
tient of (1− wz)−1

(
π∗n(w)π∗n(z)− πn(w)πn(z)

)
andPn−1(w, z) is independent

of z. The same argument forp(w) with w andz interchanged implies that it is
also independent ofz. To get the proportionality factorc we setw = z = 0 and
obtain by (A.20)

c =
1− |pn|2

(Nn−1)−1
= Nn, (A.22)

which proves (A.11).
If we compare only the highest orderbn in (A.11) we get

−a Nn
Nn−1

πn−1(a) = π∗n(a)pn − πn(a). (A.23)

Taking the reciprocal polynomials and solving forπ∗n(a) one obtains (A.12). (A.13)
is just the reciprocal of (A.12). Finally (A.14) and (A.15) follow by induction
from (A.12) and (A.13) with z = ±1 while noting thatπn(1) = π∗n(1) and
πn(−1) = (−1)nπ∗n(1). �

For the special weight functionf(θ) = e−2v cos(θ) one can derive a nonlinear
recursion relation for thepn’s, and a system of linear differential equations for
πn(z), π∗n(z). The recursion relation forpn turns out to be the discrete Painlevé
II equation. It has been derived in the context of orthogonal polynomials for the
first time in [94], and later on more or less independently in [62, 123, 9, 24]. The
differential equations for the orthogonal polynomials appear here for the first time
in the given explicit form. They are implicitly derived in [9] in the context of the
Riemann-Hilbert formulation of orthogonal polynomials.

Proposition 1.2 For the orthogonal polynomials with respect to the weight func-
tion f(θ) = e−2v cos(θ) one has

pn+1 = −
n
v
pn

1− p2
n

− pn−1 for n > 0. (A.24)

The orthogonal polynomials satisfy the differential equations

πn
′(z) =

(
n−pn+1pnv

z
+ v

z2

)
πn(z) +

(
pn+1v
z
− pnv

z2

)
π∗n(z)

π∗n
′(z) =

(
− pn+1v

z
+ pnv

)
πn(z) +

(
− v + pn+1pnv

z

)
π∗n(z). (A.25)

Proof: Following essentially [94] we have, still for a general differentiable weight
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function,

n(Nn −Nn−1) = Nn + (n− 1)Nn − nNn−1

= 〈z πn−1, πn〉+ 〈z2π′n−1, πn〉 − 〈πn−1, π
′
n〉

= −
∮
z d
dz

(
z−1πn−1(z−1)πn(z)

)F (z)

2πiz
dz

=

∮
πn−1(z−1)πn(z)

F ′(z)

F (z)

F (z)

2πiz
dz. (A.26)

We are interested here in the special case whenf(θ) = e2v cos θ, equivalently
F (z) = ev(z+z−1). Its log-derivative isv(1− z−2) and we obtain

Nn −Nn−1 = − v
n
〈z2πn−1, πn〉. (A.27)

Note that now all the polynomials are real, thus we can omit the conjugation bars.
We writeπn(z) = zn + anz

n−1 + · · · . Orderzn−1 in (A.12) yields the recursion
relationan = an−1 + pn pn−1, and we obtain

n
v
(Nn −Nn−1) = −〈zn+1 + an−1z

n, πn〉.
= −〈πn+1 − an+1z

n, πn〉 − an−1Nn

= (an+1 − an−1)Nn

= (pn+1pn + pnpn−1)Nn. (A.28)

SinceNn = Nn−1(1− p2
n) we arrive at (A.24).

Proving eqs. (A.25) is an elementary but tedious induction. One just has to
check that they are valid forn = 0 and that

π′n − (πn−1 + zπ′n−1 + pnπ
∗
n
′
−1)

= z−1
(
npn + (1− p2

n)(pn+1 + pn−1)v
)
π∗n−1 = 0,

π∗n
′ − (pnπn−1 + zpnπ

′
n−1 + π∗n

′
−1)

= −
(
npn + (1− p2

n)(pn+1 + pn−1)v
)
πn−1 = 0, (A.29)

when applying (A.25) for n andn− 1. �
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APPENDIX B

Taylor expansion method for
Painlevé II

The key object in determining the scaling functiongdyn
1 (y) = g(y), of Section3.3

is the Hastings-McLeod solution [61] to Painlevé II,u(s), which is the unique
solution to

u′′ = 2u3 + su (B.1)

with asymptotic boundary conditions (3.10) and (3.11). Tracy and Widom [121,
123] integrate (B.1) numerically with conventional differential equation solvers
using the known asymptotics ats = ±∞. The precision achieved with this tech-
nique does not suffice for our purposes, since we needu(s) as starting values
(3.76) for the differential equations (3.75). We develop here a different method to
obtainu(s), in principle with arbitrary precision. Next the functionsa(s, y) and
b(s, y) have to be determined, which directly leads to values for the distribution
functionsFy(s). They have to be further integrated with respect tos in order to
obtain their variance, which is the desired scaling functiong(y). The Taylor ex-
pansion method to be explained intrinsically produces not only function values at
a point but also higher derivatives. Therefore we obtainf(y) not by numerically
differentiatingg(y) but rather by direct calculation via the knowledge of∂2

yFy(s).
In a first step, to obtain reliable approximations to the Hastings-McLeod so-

lution, we need a good guess ofu(s) at some finites0 by using asymptotic ex-
pansions around±∞. It turns out that the left asymptotics is not well suited to
this purpose, since, when integrated alongs, the error of an approximation from
an optimally truncated asymptotic power series at large negatives always blows
up to order1 nears = 0 on an exponential scale. Approximations of the right
asymptotics on the other hand allow a, in principle, arbitrary precision on any
given finite interval.

For s → ∞ the deviations ofu(s) from the Airy function can be expanded in
an alternating asymptotic power series with exponentially small prefactor,

uright,n(s) = −Ai(s)− e−3ζ

32π3/2s7/4

n∑
k=0

(−1)kak
ζk

, (B.2)
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with the abbreviationζ = 2
3
s3/2. The coefficients area0 = 1, a1 = 23

24
, a2 = 1493

1152
,

. . . , and can be obtained via the recursion relation

an = Ai (3)
n + 3

4
n an−1 − 1

8
(n− 1

6
)(n− 5

6
)an−2 for n ≥ 0 (B.3)

with initial conditionsa−1 = a−2 = 0.

Ai (3)
n =

∑
0≤k≤l≤n

Ain−lAi l−kAi k. (B.4)

are the coefficients in the asymptotic expansion of Ai(x)3 and

Ain =
(6n− 1)(6n− 5)

72n
Ain−1, Ai 0 = 1 (B.5)

are the coefficients of the asymptotic expansion of the Airy function itself [1],

Ai(s) ∼ e−ζ

2
√
πs1/4

∑
n≥0

(−1)n

ζn
Ain. (B.6)

Empirically we observe that fors0 � 0 the optimal truncation in (B.2) is
n ≈ 4

3
s

3/2
0 leading to an exponentially improved precision∣∣∣∣uright,n(s0)− u(s0)

u(s0)

∣∣∣∣ ≈ exp(−8
3
s

3/2
0 ). (B.7)

We use the notions accuracy for the absolute error of an approximation and pre-
cision for its relative error. Linear perturbation around the true solution tells us
that the precision of the approximate solution decreases rapidly when integrat-
ing in the positive direction, such thaturight,n(s)/u(s) − 1 is of order one ats ≈
32/3s0 = 2.08s0, but the accuracy is still≈ exp(−2s

3/2
0 ). In the negative direc-

tion the accuracy decreases but the precision of the approximation stays roughly
constant down tos = 0. For negative values ofs, accuracy and precision are sim-
ilar, sinceu(s) is approximately of order1. Accuracy is lost completely at about
−2s0, but at−21/3s0 = −1.26s0 still half of the accuracy,exp(−1.33s

3/2
0 ), is re-

tained. What remains is to integrate (B.1) with initial valuesu(s0) = uright,n(s0),
u′(s0) = u′right,n(s0), n = [4

3
s

3/2
0 ].

To solve initial value problems for ordinary differential equations highly so-
phisticated iteration schemes are available, like Runge-Kutta, Adams-Bashford
and multi-step methods. For arbitrary high (but fixed) precision results, all these
methods become ineffective, since the step size is a decreasing function of the re-
quired precision goal for the solution and tends to become ineffectively small. The
only remaining choice is to Taylor expand the solution at a given point. The step
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size is limited by the radius of convergence only and the precision is controlled
by the error made in truncating the Taylor series at some order, compare [17] for
a thorough discussion.

u(s) is expanded ats0 as

u(s) =
∑
n≥0

un(s− s0)n. (B.8)

For the Painlevé II equation the expansion coefficientsun ats0 are determined by
u0 = u(s0), u1 = u′(s0) and

un+2 =
2u

(3)
n + s0 un + un−1

(n+ 2)(n+ 1)
, (B.9)

whereu(k)
n =

∑n
j=0 un−ju

(k−1)
j are the expansion coefficients ofu(s)k at s0,

u
(1)
n = un. We include the factorial into the expansion coefficients instead of

taking the bare Taylor coefficients, in order to reduce the workload from multipli-
cations by binomials when multiplying two expansions numerically.

Numerically we find that the Hastings-McLeod solution does not have any
pole in a strip|Im(s)| < 2.9. To have a safety margin we choose a step size one
for the extrapolation of the expansion (B.8).

We take the starting valuesu(s0), u′(s0) from (B.2) at s0 = 100. The coeffi-
cients of the functionsU(s), V (s), see (3.15) and (3.76), when expanded around
s0 are given by

Un+1 =
un
n+ 1

, Vn+2 =
u

(2)
n

(n+ 2)(n+ 1)
, n ≥ 0, (B.10)

andV1 = u4
0−u2

1+s0u
2
0, leaving unspecified the yet unknown integration constants

U0 andV0. By means of the recursion relation (B.9) one determines the values of
u, u′, U , andV ats = s0 ± 1, with these new values ats = s0 ± 2 and so on. The
precision of the integration is in principle only limited by the error in the initial
conditions ats0. In practice the numerical errors from iterating (B.9) and from
truncating (B.8) are easily controlled such that they can be neglected compared
to the initial uncertainty. The precision of the approximated values is of order1
at s = 200 (with an accuracy of≈ 10−870) and we a posteriori assign toU(s0)
andV (s0) values, such thatU(200) = V (200) = 0. The arithmetic computing
is done with the C++-based multiprecision packageMPFUN++[31]. At the end
of this first step we have at our disposal the values foru, u′, U, V at the integers
in the interval[−20, 200]. For the convenience of the interested reader let us just
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state the results ats = 0 up to50 digits,

u(0) = -0.367061551548078427747792113175610961512192053613139 ,

u′(0) = 0.295372105447550054557007047310237988227233798735629 ,

U(0) = 0.336960697930551393597884426960964843885993886628226 ,

V (0) = 0.0311059853063123536659591008775670005642241689547838 ,

which might be used as starting values for a quick conventional integration of
Painlevé II to reproduce parts of our results with much less effort but also less
precision.

The next step is to determinea(s, y), b(s, y) at s0 ∈ {−20, . . . , 200} in the
intervaly ∈ [−9, 9] employing (3.75) and (3.76). Setting

a(s, y) =
∑
m,n≥0

am,n(s− s0)m(y − y0)n,

b(s, y) =
∑
m,n≥0

bm,n(s− s0)m(y − y0)n, (B.11)

(3.75) becomes a recursion relation for the expansion coefficients,

am,n+1 =
1

n+ 1

m∑
k=0

(
u

(2)
k am−k,n − (k + 1)uk+1bm−k,n − ukbm−k,n−1

)
,

bm,n+1 =
1

n+ 1

(
bm,n−2 − bm−1,n

+
m∑
k=0

(
− u(2)

k bm−k,n + (k + 1)uk+1am−k,n − ukam−k,n−1

))
,

(B.12)

n ≥ 0, allowing one to determinea0,n, b0,n, n ≥ 0 upon the knowledge ofa0,0,
b0,0. We integrate along±y with an extrapolation step size of1

8
. From (3.74) one

obtains the recursions

am+1,n =
1

m+ 1

m∑
k=0

ukbm−k,n

bm+1,n =
1

m+ 1

(
− bm,n−1 +

m∑
k=0

ukam−k,n

)
. (B.13)

The expansion coefficientsgm,n of g(s, y) at (s0, y0), are determined from (3.77)
as

gm,n = (n+ 1)
(
a−m,nam,n+1 − b−m,nbm,n+1

)
(B.14)
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wherea−m,n, b−m,n are the corresponding expansion coefficients ofa andb at(s0,−y0).
To finally determineg(y) and its derivatives we write

g(n)(y0) =
dn

dyn0

∑
s0∈Z

∫ s0+1

s0

(s− y2
0)2 d

2

ds2

(
g(s, y0)FGUE(s)

)
ds

=
∑
s0∈Z

n!
∑
m≥1

cm,n. (B.15)

cm,n are the expansion coefficients of(s, y) 7→
∫ s
s0

(r−y2)2 d2

dr2

(
g(r, y)FGUE(r)

)
dr

at (s0, y0),

cm,n = (m− 2)(gF )m−1,n − 2m(gF )m,n−2 + m(m+1)
m−1

(gF )m+1,n−4. (B.16)

Here

(gF )m,n =
m∑
k=0

Fkgm−k,n (B.17)

are the expansion coefficients ofg(s, y)FGUE(s) andFn = −
∑n

k=1
k
n
VkFn−k are

the expansion coefficients ofFGUE. Numerically the sum overs0 in (B.15) is
truncated to values inside[−15, 200], since outside contributions turn out to be
negligible at the chosen precision goal. After accomplishing this program we
keep values forg(y) at y ∈ 1

128
Z ∩ [−9, 9] and for g(n)(y), n = 0, . . . , 4, at

y ∈ 1
8
Z ∩ [−9, 9] with an accuracy of about100 digits (a table in ASCII format is

available online at [103]). For interpolating these values we deliberately used the
Interpolation -function of the MathematicaR© package yielding best results
due to the high precision data with an interpolation order of57.
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