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i
Zusammenfassung

Wachstumsphéanomene stellen ein wichtiges Teilgebiet in der statistischen Mechanik des
Nichtgleichgewichts dar. Einerseits sind sie Uberall in der Natur anzutreffen, andererseits
stellt ihr theoretisches Verstandnis eine Herausforderung an die Methoden der theoreti-
schen Physik dar. Typischerweise flihren Wachstumsprozesse zu statistisch skaleninvari-
anten Strukturen. Fir nichtlokales Wachstum bilden sich selbstahnliche Cluster in Form
von Fraktalen, man denke an Schneeflocken oder Eisblumen. Oberflachenwachstum, bei
dem das Wachstum ausschlie3lich lokal bestimmt ist, fihrt dagegen zur Bildung eines
kompakten Objekts, das durch eine wohldefinierte Oberflache von seiner Umgebung ge-
trenntist, wie zum Beispiel bei Kristallwachstum aus einer Lésung. Die Komplexitét liegt

in diesem Fall in der selbstaffinen Rauhigkeit der Oberflache, die durch Fluktuationen bei
der zufalligen Anlagerung bewirkt wird.

Fur solches stochastisches Oberflachenwachstum schlugen Kardar, Parisi und Zhang
(KPZ) im Jahrel986 eine Kontinuumstheorie vor, die durch die KPZ-Gleichung, eine
nichtlineare stochastische partielle Differentialgleichung definiert wird. Sie ist die wohl
einfachstmogliche Bewegungsgleichung fur die Dynamik einer Grenzflache, die alle we-
sentlichen Zutaten fr nichttriviales Wachstum beinhaltet, namlich Irreversibilitat, Nicht-
linearitat, Stochastizitat und Lokalitdt. Wegen ihrer grundlegenden Bedeutung fir die
Physik des Nichtgleichgewichts war und ist die KPZ-Theorie Gegenstand intensiver For-
schung mittels Simulationen, feldtheoretischer und anderer, Uberwiegend approximativer
Methoden.

In dieser Arbeit wird ein besonders einfaches halbdiskretes Modell, das polynuclear
growth (PNG)-Modell, betrachtet, das in der KPZ-Universalitatsklasse liegt. Daher erge-
ben alle im Skalenlimes fir dieses Modell gewonnenen Ergebnisse direkte Vorhersagen
fur die entsprechenden Gré3en in der KPZ-Theorie und somit fur alle Wachstumsmaodelle
in der gleichen Universalitatsklasse. Fur Wachstum auf einem eindimensionalen Sub-
strat ist das PNG-Modell exakt l6sbar. Durch Umformulierung zu einem last-passage-
Perkolationsproblem werden die von dér+ 1)-dimensionalen KPZ-Theorie vorher-
gesagten Skalenexponenten rigoros hergeleitet und zum ersten mal Grenzverteilungen
der Oberflachenfluktuationen fur verschiedene Wachstumsgeometrien bestimmt. Daruber
hinaus wird die dynamische KPZ-Zweipunktfunktion durch die Lésung des Riemann-
Hilbert Problems fur die Painlevé-II-Gleichung ausgedriickt und mit nicht unerheblichem
Aufwand numerisch bestimmt.

Durch die Erweiterung zu einem Multi-layer-Modell kann die Wahrscheinlichkeits-
verteilung zu einem festen Zeitpunkt durch eine Theorie freier Fermionen auf einem ein-
dimensionalen Gitter in euklidischer Zeit beschrieben werden. In dieser Formulierung
ist der Kontinuumslimes durchfiihrbar. Die Fluktuationen bei Wachstum mit mittlerer
Krimmung werden im Skalenlimes durch den hierzu eingefuhrten Airy-Proz€sk [
beschrieben, der grob gesagt der Trajektorie des letzten Teilchens in Dysons Version sich
nicht iberschneidender Brownscher Bewegungen entspricht.

Eng verwandt mit dem Multi-layer-PNG-Modell ist das Gates-Westcott-Modell ei-
ner relativ zu einer Hochsymmetrie-Ebene leicht angeschragten wachsenden Kristallo-
berflache. Die Vorhersagen der zugehdérigen anisotropen KPZ-Theorie werden durch eine
exakte Losung auch dieses Modells bestatigt. Schlie3lich werden noch Monte-Carlo-
Simulationen fur das PNG-Modell in hdheren Dimensionen présentiert.
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Abstract

Growth phenomena constitute an important field in nonequilibrium statistical mechanics.
On the one hand, they are ubiquitous in nature, on the other hand, their theoretical under-
standing poses a challenging problem for the methods of theoretical physics. Typically,
growth processes lead to statistically scale invariant structures. For nonlocal growth, self-
similar clusters are generated in the form of fractals, as for example snowflakes or patterns
on a frosted window. In contrast, surface growth with strictly local rules leads to the for-
mation of a compact body separated by a well-defined surface from its surrounding. In
this case the complexity lies in the roughness of the surface generated by the fluctuations
of the random attachment.

For this type of surface growth, in 1986 Kardar, Parisi, and Zhang (KPZ) proposed
a continuum theory, which is defined by the KPZ equation, a nonlinear stochastic par-
tial differential equation. It is arguably the simplest possible equation of motion for the
dynamics of an interface, which comprises all the ingredients for nontrivial growth: irre-
versibility, nonlinearity, stochasticity, and locality. Because of its fundamental importance
for nonequilibrium physics the KPZ theory has been and still is the subject of intensive
research by means of simulations, field theoretic and other, predominantly approximative
methods.

In this work an especially simple semi-discrete model, the polynuclear growth (PNG)
model, is considered, which lies in the KPZ universality class. Therefore all results for this
model obtained in the scaling limit provide direct predictions for the corresponding quan-
tities in KPZ theory and thereby for all models belonging to the same universality class.
For growth on a one-dimensional substrate the PNG model is exactly solvable. Through
reformulation as a last-passage percolation problem the scaling exponents, predicted by
(1 + 1)-dimensional KPZ theory are rigorously derived and for the first time limiting
distributions of the surface fluctuations are determined for different growth geometries.
Moreover the dynamical KPZ two-point function is expressed by means of the solution to
the Riemann-Hilbert problem for the Painlevé Il equation and solved numerically, which
requires some effort.

By means of the extension to a multi-layer model the probability distribution at a
given point in time is described by a theory of free fermions on a one-dimensional lattice
in Euclidean time. In this formulation the continuum limit is feasible. The fluctuations
for curved growth are described by the Airy proces87, introduced for this purpose.
Roughly speaking the Airy process corresponds to the trajectory of the last particle in
Dyson’s Brownian motion.

Closely related to the multi-layer PNG model is the Gates-Westcott model of a vicinal
growing surface. The predictions of the corresponding anisotropic KPZ theory are con-
firmed by an exact solution of the model. Finally Monte-Carlo simulations of the PNG
model in higher dimensions are presented.
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CHAPTER1

Introduction

Matter in its solid state has been formed originally always by some sort of growth
process. Therefore the theoretical understanding of growth phenomena has at
all times been a challenging problem. In the framework of statistical mechanics
one tries to discover and explain macroscopic or mesoscopic laws from systems
which have a simple microscopic description. Nonequilibrium statistical mechan-
ics deals with the properties of nonreversible processes where thermodynamical
notions like entropy and temperature are not directly available. One of the most
common types of processes which are out of thermodynamical equilibrium are
growth processes.

Patterns originating from growth processes have been always fascinating to
curious observers. The faceted shape of naturally formed crystals, the ramified
structure of snowflakes and other frost patterns, the rough surface of amorphously
growing solids, raise the question for a deeper understanding of the underlying
mechanisms which could explain structural similarities and differences of the re-
sults of growth processes. Since the advent of semiconductor technology about
half a century ago it has become more and more important to be able to quanti-
tatively control the growth of crystals. Modern techniques like molecular beam
epitaxy allow to engineer solid state devices with a precision ranging up to single
atomic layers. On the other hand surface structures can be probed by scanning
tunneling or atomic force microscopy with a resolution distinguishing individual
atoms or molecules, which allows for testing theoretical predictions with spectac-
ular precision.

Apart from the eminent technological relevance growth phenomena are of con-
siderable fundamental interest, since they provide examples for the emergence of
complex structures out of interacting simple agents. A very powerful concept
which originally was developed in the context of equilibrium statistical mechan-
ics is scale invariance. At the critical point of a second order phase transition an
infinite system has no distinguished length scale. Therefore the system looks sta-
tistically the same on every length scale. Correlation functions have to decay as
a power law, and the corresponding scaling exponents are characteristic for the
system in question. Microscopic models always have some sort of short distance
cut-off. Scale invariance thus can hold only in the limit of arbitrary large scales.
The phenomenon that the large scale limit does not depend on the details of the

1



2 CHAPTER 1. INTRODUCTION

underlying model but only on qualitative properties like conservation laws and
symmetries is called universality.

A very spectacular realization of scale invariance is encountered in fractal ge-
ometry. Random fractals show scale invariance in the form of statistical self-
similarity characterized by the fractal dimension. Another instance of scale in-
variance is self-affinity, where one has to rescale the axes of the observation frame
differently. The simplest example for scale invariance is Brownian motion. The
image of ad-dimensional Brownian path is perfectly self-similar, whereas the
graph of a Brownian motion as a whole is only self-affine. Upon rescaling space
by a factor/, time has to be rescaled [y in order to recover the same law of
Brownian motion characterized by its variance. Universality expresses itself in
this context by the simple fact that any discrete random walk model with weakly
dependent increments of finite variance converges to Brownian motion in the large
scale limit.

It is remarkable that there are not so many mechanisms known which generi-
cally produce scale invariance of nonequilibrium systems. Among these are clus-
ters created by Brownian motion, like the outer boundary of a planar Brownian
path and related processes like Schramm-Loewner evolutions in two dimensions
[128. More directly related to physics is honlocal growth, where the driving force
is a Laplacian field, as for diffusion limited aggregation (DLARH or front
propagation in Hele-Shaw cell&(9. The resulting structures are statistically
self-similar objects with characteristic fractal dimensions. Slowly driven noisy
systems which exhibit self-organized criticalityq typically produce avalanche-
like events, which look similar on every length scale. Finally local surface growth
is characterized by a well-defined interface between the growing cluster and its
environment. The attachment of new material takes place according to rules de-
pending only on the local surface configuration. In this case the growing cluster
is not fractal. It acquires a definite macroscopic shape. The randomness of the
growth process manifests itself in the fluctuations around the mean shape. The
dynamical fluctuations lead to self-affine surface roughness.

1.1 KPZtheory

There are numerous books about growth phenomena and scale invariance in gen-
eral [43, 126, 16, 88]. In this thesis we focus on stochastic surface growth which is
dominated by local dynamical rules. In 1986 Kardar, Parisi, and Zhang proposed
a continuum description of stochastic surface growth, the famous KPZ equation
[70]. Together with its equivalent formulations as stochastic Burgers equation and
as directed polymers in random media, it is probably the most extensively studied
theory of nonequilibrium physics. All the above mentioned books devote a consid-
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erable part to KPZ theory. In addition a number of review articles have appeared
over the time which give thorough accounts of the KPZ thedsy$7, 59, 75, 80.

The (d + 1)-dimensional KPZ equation describes the stochastic dynamics of
an interface parameterized by a height functidn, t) relative to al-dimensional
substrategy € R¢, which is driven by some noisg(z,¢) random in space and
time,

Oh(z,t) = vy + vAh(z,t) + 3A(Vh(z, 7“))2 +n(x,t). (1.2)

This equation is believed to capture the essential ingredients of stochastic surface
growth, irreversibility, nonlinearity, stochasticity, and locality, which lead to the
phenomenon of kinetically enhanced surface roughness.

Without the noise termy(z, ¢) (1.1) describes deterministic growth of an in-
terface. Hills grow upward ity > 0 and extend laterally foh > 0. v, can be
absorbed by using a co-moving frame, bug 0 generates an intrinsic nonlinear-
ity, which can not be removed by any simple transformation. The Laplace term
represents surface tension which prevents the formation of cusps in the valleys.
The noise term mimics the stochastic nature of the growth procesgz |f) is
chosen as white noise in space and time the equation has no intrinsic length scale
and produces scale invariant fluctuations of its solutions. Without the nonlinear
term, if A = 0, (1.1) becomes a linear stochastic partial differential equation,
known as the Edwards-Wilkinson equaticf?]. In this case, since white noise
has a Gaussian distribution, the solutions to the linear equation are Gaussian, too,
with a simple covariance matrix. The fluctuations show scale invariance. Since
they are Gaussian the corresponding scaling exponents are easily extracted from
the covariance matrix. The associated field theory is a free massless scalar field
[93, 92], which is well understood. In particular with the nonlinearity vanishing,
the equation is reversible and therefore can be interpreted as a model of equilib-
rium surface dynamics.

Kardar, Parisi, and Zhang recognized the importance of the quadratic term in
order to describe isotropic growth. Other possible non-linear terms turn out to
be always negligible in the presence of the KPZ nonlinearity. Although the KPZ
eguation with white noise is ill-defined as it stands, a perturbative renormalization
group treatment shows already that the nonlinearity is always relevanaird
2 substrate dimensions, whereas in higher dimensions for small enotigé
large-scale behavior of solutions th {) is characterized by the linear theory with
A = 0, called the weak coupling regime. Fér> 2 a natural generalization of
the KPZ equation is to allowk to be a quadratic form represented by & d
matrix. Wolf argued 13( that if X is not strictly positive (or negative) definite
(the anisotropic case) again the nonlinear term is irrelevant. On the other hand if
all eigenvalues ok have the same sign the large scale behavior is the same as in
the isotropic case.



4 CHAPTER 1. INTRODUCTION

From the beginning the great challenge was to extract information in the strong
coupling case, when the nonlinearity is relevant. The corresponding field theory
is non-Lagrangian, reflecting irreversibility, and non-perturbative, a consequence
of nonlinearity. Renormalized perturbation theory, which treats the nonlinear-
ity as a small perturbation, fails to approximate the strong coupling fixed point
[46, 48, 79). Several other approaches have been developed. A mode-coupling ap-
proximation [L8, 49, 34, 35], an approximate real space renormalization scheme
[29], a soliton approximation treating the noise as perturbatigh 45], a non-
perturbative operator product expansions technidgdnd of course numerous
Monte-Carlo simulations of discretized models believed to belong to the KPZ uni-
versality class, e.g.7[/, 120 3, 4, 71, 85, 86).

Despite these considerable efforts there is no consistent answer to the proper-
ties of the strong coupling phase in dimensiadns 2. There are several distinct
predictions for the scaling exponents and even the existence of an upper critical
dimension atl. = 4 is under dispute. Faf = 1 the situation is somewhat bet-
ter. A formal fluctuation-dissipation theorem allows to determine the values of the
critical exponents exactly and the KPZ equation has always been regarded as ex-
actly solvable in some sense. Nevertheless scaling functions have been calculated
only by some sort of uncontrolled approximationd §, 49, 35, 44]. Limiting dis-
tributions and their universal moment ratios have been studied only by means of
Monte-Carlo simulations/2, 7, 77, 86].

1.2 Exactly solvable models

From very early on the one-dimensional KPZ model was regarded as being exactly
solvable. The Bethe ansatz solution for the ASEP chain, formulated as a six-vertex
model, provides a semi-rigorous derivation of the scaling exponéfi$7, 56).
Also exact large deviation functions for finite systems could be obtaiB@®Bf].
Exactly solvable models provide arguably the greatest insight into a physical
theory. For example, thed-Ising model can be viewed as a discretization of the
Ginzburg-Landau scala#*-theory. To extract information beyond the values of
critical exponents seems to be feasible only by using exact expressions of the finite
Ising system and identifying their asymptotics in the infinite volume limit as has
been achieved by Wu et al3]] for critical and close to critical scaling functions.
By universality one has obtained the corresponding scaling functions af‘the
theory which provide a prediction for the scaling functions fo any model believed
to be in thep* universality class.
This approach to scale invariance and universality has its restrictions. Firstly,
the universality class in question has to contain at least one model which is ex-
actly solvable. In equilibrium statistical mechanics for critical phenomena this is
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believed to be restricted to one or two spatial dimensions. In nonequilibrium
one usually hopes for exactly solvable models only in one spatial dimension.
Roughly speaking the non-reversible dynamics, lacking detailed balance, requires
to take into account the two-dimensional space-time. Secondly by solving a spe-
cial model one obtains no direct information on the universality of the results.
Although there is usually no doubt about its validity, to actually prove universal-
ity is a different issue. Even for slight modifications of the solvable model which
apparently do not affect its physical properties but renders it non-solvable, there
are only very few examples where some kind of universality is proven rigorously,
as has been achieved for théIsing model with local perturbationd 15.

In this thesis we provide a similar approach to the study of (the- 1)-
dimensional KPZ field. We mainly deal with a class of very simple growth mod-
els, the polynuclear growth (PNG) model and its fully discretized version whose
space-time trajectory we call the Bernoulli cone. Originally it was introduced
by Rajesh and Dhar as an anisotropic directed percolation magé]. [ The
Bernoulli cone might be regarded as the “Ising” model of nonequilibrium physics.
It contains the PNG model and the celebrated (totally) asymmetric simple exclu-
sion process (ASEP) as limiting cases.

The connection to longest increasing subsequence problems, which only re-
cently has gained fast-growing attention through the already seminal work of
Baik, Deift, and Johanssof()], allows us not only to confirm thed KPZ scaling
exponents rigorously for the PNG model, but also, for the first time, to identify
limiting distributions of the height fluctuations. Furthermore the scaling form of
the stationary two-point function for the PNG model can be obtained. By univer-
sality it determines the two-point function of the stationary KPZ field.

There is a deep connection of curved nonstationary KPZ growth with random
matrices §8, 99]. The reason is that both theories can be formulated as free
fermion theories with determinantal correlation functions. The PNG model can be
extended in a very natural way to a multi-layer version consisting of many height
lines, where the last line describes the original PNG cluster. Like the eigenvalues
of a stochastically evolving random matrix they form a non-intersecting, otherwise
non-interacting line ensemble. Therefore it is not too surprising that the statistics
of the last line in the growth model has the same scaling limit as the trajectory of
the largest eigenvalue in the matrix model. This limiting process, the Airy process,
roughly looks like Brownian motion in a confining potential, but it has only slow
decay of correlations.

The results in this thesis yield very detailed information on the properties of
the one-dimensional KPZ field theory. For example, the rather intricate definition
of the stationary two-point function, which is obtained by taking the scaling limit
of the PNG correlations, should be derivable from the KPZ equation directly in
an appropriate field theoretic formulation. It is not at all clear how this could be
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achieved. The Airy process as the limiting process of curved KPZ growth shows
that there must be non-stationary but nevertheless scale invariant “solutions” to
the KPZ equation which are essentially different from the stationary KPZ field.
For a full understanding of the KPZ field one needs to know arbitnappint
correlation functions. For a Gaussian field they are given in a simple and direct
way by means of the two-point correlation function. For a non-Gaussian theory
like KPZ there should be a way to generate them in a systematic way. The Airy
process, although not very explicit, provides such a tool for the curved KPZ field,
but only for single-time correlations. It remains an open problem to extend this to
dynamicaln-point correlation functions evaluated at different times.

1.3 Outline

In Chapter2 we introduce the description of macroscopic self-similar growth in
some detail, leading to the Wulff construction. Small perturbations around the
self-similar solutions are discussed qualitatively, implying already two different
modes of stochastic growth, convex and saddlelike. The scaling theory for sta-
tionary stochastic growth, is reviewed briefly and then extended to curved surface
growth.

Chapter3 deals with the one-dimensional polynuclear growth (PNG) model
as an especially simple model for stochastic surface growth. It is exactly solv-
able and confirms validity of the scaling theory, at least in one substrate dimen-
sion. In the simplest geometry with droplet initial conditions it can be mapped to
Ulam’s problem about longest increasing subsequences in random permutations.
We show how this leads by means of the orthogonal polynomial method to a re-
cursive expression for the height distribution above the origin. In the scaling limit
they become differential equations and the limiting distribution can be identified
as the GUE Tracy-Widom distribution known from random matrix theory. Simi-
lar results for other deterministic initial and boundary conditions are reported. A
special type of random boundary conditions corresponds to exact sampling of the
stationary PNG model. We use this fact to determine the exact stationary two-
point function, and analyze its scaling limit.

In Chapter4 we introduce the Bernoulli cone, a discrete version of the PNG
model, interpreted as a random set in space-time. We describe several stochastic
models, some of them well-known, which, with appropriate initial and boundary
conditions, are all equivalent to the Bernoulli cone. Two different continuum
limits let us recover the PNG model and the (continuous-time) totally asymmetric
simple exclusion process (TASEP). We determine the family of stationary states in
an especially simple geometry and sketch, how this allows to predict quantitatively
the scaling behavior of all the described models.
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In Chapter5, to go beyond one- (or two-) point distributions, we extend the
PNG model to a multi-layer version, with the statistics of the last line being un-
changed. To describe the fluctuations of the last line in the scaling limit, we
introduce the Airy process, which roughly speaking behaves as the last particle
in Dyson’s Brownian motion. By means of the determinantal correlations of the
multi-layer process it is shown (in the sense of finite-dimensional joint distribu-
tions) that the height of the PNG droplet in a region above the origin converges to
the Airy process when scaled appropriately.

Chapter6 is devoted to anisotropic growth on a two-dimensional substrate. We
introduce the Gates-Westcott model which mimics a vicinal growing surface, be-
ing closely related to multilayer PNG growth. Its steady state on a finite substrate
is very simple, and we determine the growth velocity and height-height fluctua-
tions in the thermodynamic limit of infinite substrate area and show agreement
with the prediction by a thermodynamical equilibrium argument.

Finally, in Chaptei7 we introduce simple higher dimensional generalizations
of the PNG model. The Monte-Carlo simulations performed for some of these
models lead to estimates of the KPZ exponents which in two dimensions are in
accord with previous Monte-Carlo studies, but differ considerably from the the-
oretical prediction of Lassig. In three dimensions they are closer to the theoret-
ical prediction. The analogue of the GUE Tracy-Widom distribution for curved
stochastic growth on a two-dimensional substrate is determined from the Monte-
Carlo data.

AppendixA collects some useful identities for orthogonal polynomials on the
circle and AppendiB describes the numerical method we used to determine the
solution of the Riemann-Hilbert problem for Painlevé II.

Parts of the results presented in this thesis have been already published in
articles co-authored by Herbert Spola7,[98, 99, 100, 102, 101].
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CHAPTER?Z2

Self-similar surface growth

2.1 Deterministic dynamics

On a macroscopic level the dynamics of an interface between two thermodynam-
ical phases at a first order transition follows the steepest energy gradient deter-
mined by the sum of bulk and surface energies. For simplicity we imagine one
phase being a solid and the other the corresponding gas phase. If the chemical
potential is slightly in favor of the solid phase both bulk phases away from the
interface are very close to equilibrium and the dynamics is determined by phys-
ical (or chemical) processes at the interface alone (reaction limited aggregation,
RLA). This is in contrast to, for example, diffusion limited aggregation (DLA),
where the supply of material is subject to transport properties of the bulk. In RLA
the solid, described by a subset(af+ 1)-dimensional space evolving in time,
grows at the expense of the gas phase with a growth velocity depending on the lo-
cal interface configuration. Let us represent the interface by the graph of a smooth
single-valued height functioh(x,t), z € R%, t > 0, with respect to an appro-
priate reference frame, which excludes the existence of small scale overhangs or
cavities. For a global description several frames might have to be glued together.
In a deterministic continuum description of RLA the growth velocity is a func-
tional of the local height configuration, or, assuming enough regularity, a function
of derivatives of the height function,

Oph(z,t) = v(0,h(z,t), 02h(z,t),. . .). (2.1)

We focus here on scale invariant growth properties, i.e. properties, which per-
tain on large length scales, where curvature and higher derivatives of the height
function become arbitrarily small. Therefore we neglect higher derivativesin (
and are left with the deterministic large-scale equation of motion for the height
function

Oh(z,t) = v(0,h(z,1)). (2.2)
The main focus will be on self-similar solutions, i.e. solutidns, ) to (2.2) with

Ih(z,t) = h(lz,1t), forl> 0. (2.3)
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The macroscopic shape
H(c) = h(c, 1) (2.4)

allows to recover the self-similar solution &éz,t) = tH(z/t). In geometric
terms self-similarity means that the region occupied by the solid phase at time
t, C; C R forms a cone in(d + 2)-dimensional space-time, i.e. faf =
{(Cy,t);t > 0} one has

IC=C, forl>0. (2.5)

Certains of these macroscopic shapgEs) are attractors in the space of solu-
tions to @.1) and @.2) (parameterized by their initial conditions). Thusifr, t)
is a solution to 2.1) or (2.2) with h(z,0) = ho(z), there is a macroscopic shape
H(c), such that

llim I7'h(lz, It) = tH(x/t). (2.6)
Clearly thet — 0 limit of a self-similar solutioni(z, t), if it exists, is self-
similar itself,

Ih(z,0) = h(lz,0). 2.7)

Generically it will have a cusp at the origin. We will argue that for physically
relevant self-similar solutions there is even a one-to-one relation between self-
similar initial conditions and macroscopic shapes.

To facilitate coordinate transformations one can define a homogeneous scalar
function F'(z, ¢, h), whose set of zeros coincides with the boundary of the self-
similar cluster, and which has nonzero gradients along this/seas. clearly not
unique, for example one can choose

F(x,t,h) = h" — (h(z, 1)), >0, (2.8)

such thatf’ is homogeneous of degree To fully specify a convex cluster one

has to use several height functions in different coordinate systems to describe
the full circonference of the clusterF' can be defined for the whole cluster
boundary, which makes it easy to recover the form of the height function for
any choice of coordinateg:’,t', ') just by solving F’'(2’,t', k') for b/, where
F'(«',t',h') = F(z,t,h), sinceF transforms as a scalar under change of coor-
dinates. This property will be very useful, as described in Se@iérwhere a
special choice off” will allow us to encode the size of fluctuations around the
deterministic cluster shape in the gradientoét the cluster boundary.
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For illustration we look at the fully isotropic case. The normal veloeity
is independent of the interface slope, which implies in Cartesian coordinates the
growth velocity

v(u) = v/ 1+ |ul?, (2.9)

whereu € R? is the surface slope. For simplicity we sgt= 1. Obviously the
semi-spherical clustei (c) = /1 — |¢|? for |¢| < 1, H(c¢) = —o0, otherwise, is a
possible macroscopic shape. The corresponding self-similar initial configuration
iS ho(x) = 0 for x = 0, ho(z) = —oo otherwise. The homogeneous function
F(xz,t,h) = h? + 22 — t* obviously encodes the full spherical cluster shape also
for negative values of.

Different initial conditions lead to further self-similar shapes. Another possi-
ble macroscopic shape, for examplef$c) = /1 — [¢[2 for |¢| < 5, H(c) =
V2 — |c| otherwise, leading to the self-similar solution

2 _ |2 < L
h(x,t):{ VE=Tal? for |z < Lt, 2.10)

—|z| + /2t otherwise

The initial configuration t0Z.10) is ho(x) = —|z|. But alsoh(z,t) = —|z|+ /2t
provides a self-similar solution t®(2) with this initial conditions, besides for
the persisting cusp at = 0. The latter self-similar solution is very unstable
with respect to small perturbations of the initial conditions, whereas the first is
generically stable. The cusp itself is not an indicator for instability per se, as can
be seen from the initial conditiorig)(xz) = |z|. A self-similar solution with this
initial conditions is

h(z,t) = V2t + |a. (2.11)

Although there is a cusp at= 0, (2.11) is the only almost everywhere solution
to (2.2) and it is very stable with respect to perturbations of the initial conditions.
The question arises how stable self-similar solutions may be characterized.
For convex cluster growth, i.e. when a convex cluster grows from a single seed,
self-similar solutions are obtained from the initial conditions by the Wulff con-
struction, which is explained in the next section and we will reformulate it as a
deterministic last passage percolation problem. In Se&itr?, for non-convex
self-similar growth we give an analytic characterization of self-similar shapes,
which requires enough regularity of the growth veloeity).

2.1.1 Convex growth, last passage percolation

If the growth velocity is a convex function of the slope, or at least has a convex
envelope, the fundamental growth mode is a cluster growing from a single small
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seed at the origin ind + 1)-dimensional space. For simplicity we assume the
growth velocity to be positive for all slopes. To obtain the cluster shape at later
times, one employs the Wulff construction. A crystal filling the half-space on one
side of a perfect plane evolves in time by moving the boundary plane parallely
with its characteristic growth velocity. Imagine now a collection of these plane
interfaces at all possible slopes intersecting the initial seed and moving indepen-
dently. The actual cluster then arises as the intersection of all these extending half
spaces.

This geometrical construction of the cluster shape, the Wulff construction, has
been known for a long time in crystallography3p)]. In the substrate geometry
one has

h(z,t) = inf tv(u) + u - x. (2.12)

Mathematically the macroscopic shafiéc) = h(c, 1) is the Legendre transform
of the growth velocity

H(c) = i%fv(u) +u-c. (2.13)

By construction the droplet shape is a concave function. The régioea {(z, h);
h < h(z,t)} is a convex set ifR‘™. As is well-known for the Legendre transfor-
mation nonconvex parts of the growth velocitft:) are irrelevanty(u) could be
replaced by its convex hull’B).

The droplet clusteD, grows according to Huygen’s principle. The cluster at
timet, D, arises from the cluster at timg D,, as the superposition of droplets
growing for a timet — s from each point in the clustdp,,

Dy = Ds+ Dy, (2.14)

with the common notatiodl + B = {z + y; * € Aandy € B}. For the height
function this reads

h(z,t) =suph(y,s) + (t — s)H(x — y) (2.15)
y t
Iterating this splitting we can writg(z, t) as a functional of paths,
t
h(z,t) = sup h(y,0) +/ H (4,(s))ds, (2.16)
0

Yy

where the supremum runs through all continuous, piecewise differentiable paths
v, 1 [0,t] — R? with ~,(0) = y and,(t) = z. Eq. .16 is valid for arbitrary
initial conditionsh(z,0) = ho(x).
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The desired one-to-one mapping from self-similar initial conditions to stable
self-similar solutions is given by Huygen'’s constructionClf is a cone inR¢*!
the corresponding macroscopic shape is givet'by Cy + D;.

In eq. .16 h(z,t) might be interpreted as a deterministic last passage per-
colation problem. For this we interpret the height variabkes time and the time
variablet as an additional spatial dimensio#i(c) is regarded as a passage ve-
locity of, say, a fluid which depends on the directiorThe passage time along a
directed pathy from (y, 0) to (z, ¢) is given by

L(v) = /OtH(‘y(s))ds. (2.17)

Inthese termé(z, t) arising from initial conditiong — h(y, 0) is the last passage
time of the fluid which origins from the lineé = 0 with starting timesh(y, 0) at
(y,0), subjected to the anisotropic passage velo&ity). ¢tH (x/t) itself can be
thought of as the point-to-point last passage time for paths startiftg @t and
ending at(z, t)

2.1.2 Saddle-like growth

When the growth velocity depends smoothly on the slope we can give an local
analytic characterization for the macroscopic shape.

One plugs the homogeneity ansatz inspired h)( h(z,t) = tH(x/t), di-
rectly into the evolution equatior2 (2) yielding the condition

H(c) — cVH(c) =v(VH(c)). (2.18)

Differentiating with respect te € R?, at a point wheréV H(c) = u, yields the
linear equation

0= (0°H)(c)(c+ Vv(u)), (2.19)

which is a sufficient local condition for a self-similar shape. The trivial solution
0*H = 0 everywhere leads to the family of plane solutidn(s;, t) = tv(u) +

r - u. Assumingd?H to be invertible, enforces = —Vu(u), or equivalently
2H(c) = —(0%v(u))". Thus if the vector fieldVo(u) is differentiable and
invertible in some open set one recovers the differential version of the Legendre
transformation,

H(c) =v(u(c)) + ¢ ulc), (2.20)

with «(c) the inverse vector field of Vo (u).
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In the case thab?v is positive (if negative, flip from to —v) definite we are
led back to the Legendre transforh13 for a concave macroscopic shape. When
0%v has eigenvalues of different sign, but nevertheless is invertibl2()(defines
H only locally. Initial conditions enforcing such a nonconvex self-similar shape
have to form a nonconvex cone. As an explicit exampl2 411 dimensions, the
growth velocity for the multi-layer PNG (or Gates-Westcott) mod@eél P7] is

v(u) = 71 /(2sinuym)2? 4 (ugm)?2, (2.21)

defined foru = (uy,us) € [0, 1] x R. A simple but tedious calculation yields for
the macroscopic shape

7T-l(\/4(,52 —y?)—a22+x arcco:’{x/\/W))

for 224+ y? < 3
Wz, y, t) = 2.22
(@5.1) max{0, z} for > <t*<a2?/4+y? (2.22)
0 otherwise.

In this case the initial conditions argz,y,0) = max{0,z} for y = 0 and
h(z,y,0) = 0 otherwise. The set initially occupied by the crystflz, y, h) €
R3; h < h(z,y,0)} = R* x R, U{(z,0,2); 2 < x}is anonconvex cone iR>.

2.2 Perturbations around the deterministic shape

We give a rough argument concerning the stability of a self-similar solétiory)

to (2.2) with respect to small localized deviations. The argument is independent
of the macroscopic curvature, since the support of the perturbation can be made
arbitrary small. Therefore we take as unperturbed heightt) = v(0)¢ for the

sake of simplicity and, by a suitable Gallilean transformatiom andt, one can
arrangev(0) = 0, Vo(0) = 0, leaving unchanged the second derivative(0). In

one substrate dimension,c R, if the growth velocity has nonzero curvature we
take it to be positive. Otherwise one has to flip the height coordinate. A positive
perturbation of initial excess heightyh, and small compact support, denoted a
bump, spreads in the course of time and quickly adopts the approximate shape
of a parabola with decreasing curvature’,(0)¢)~! at its maximum, which itself

does not move in time. Higher derivatives of the growth velocity only result in a
diminishing deviation from this parabolic shape. The excess height stays constant
and the lateral extension increases with the square root of the time passed since
the formation of the bump, compare with Fig.1(a). Conversely a negative per-
turbation, a dent, develops a cusp at its center after some finite time. The further
evolution is approximately described by the right and left branch of two parabolas,
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(b)

Figure 2.1: A bump, (a), and a dent, (b), with the same initial excess helght
evolving in time for positive curvature of the growth velocity.

having their maxima fixed at the left, resp. right, edge of the initial dent. Since
the curvature of these parabolas has the same behavior as for a bump, the cusp in
the middle flattens asymptotically, and the excess height vanishes, a@mpare

with Fig. 2.1(b). Thus if bumps and dents are added at random in space and time
to the self-similar solution, only the bumps effectively contribute to the time evo-
lution of the surface line. Since new bumps can be added on already existing ones,
the net effect is an enhancement, or renormalization, of the mean growth velocity.
Furthermore the surface line becomes roughened by such a persistent stochastic
perturbation.

In higher dimensions, if the curvature of the growth velocity is convex (resp.
concave) the above picture remains unchanged. Bumps spread laterally into all
directions, adopting a paraboloidal shape, and dents do not extend laterally and
there excess height vanishes very fast.

In contrast if the curvature is indefinite, a bump spreads in the directions of
positive curvature but shrinks in the direction of negative curvature, and from the
latter its excess height vanishes inevitably. The same holds for dents with the
subspaces of positive and negative curvature interchanging their role. This behav-
ior indicates that in the convex case dynamically added perturbations around the
deterministic shape generically enhance the growth velocity and the roughness,
whereas for a saddle-like growth velocity the effect is suppressed by a qualita-
tively different behavior.

This naive argument is corroborated by Wolf’'s analy&i3(] of the Kardar-
Parisi-Zhang equation, a stochastic continuum model for surface growth explained
in detail in Sectior2.4. Furthermore in Chaptéwe present a microscopic growth
model where we determine explicitly the growth velocity and show that at its is
behavior conforms with the anisotropic scenario established by Wolf.
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2.3 Stochastic surface growth

The macroscopic laws for a compactly growing cluster described in Seetion
emerge phenomenologically from the underlying physical solidification process.
On a classical level growth processes can be described as random dynamics of the
microscopic particles. Mathematically a macroscopic mean growth velocity and
correspondingly a deterministic shape of the self-similarly growing cluster arise
as a law of large numbers for an underlying stochastic process. For simplicity we
assume that the stochastic growth process can be parameterized by a single-valued
height functiom:(z, t) relative to ad-dimensional substrate,c R?. Vaguely this

can be achieved by some coarse graining procedure, which gets rid of cavities and
overhangs. We think of(x,t) as a function valued stochastic process mith

local time- and space-homogeneous update rules and some, yet unspecified, initial
and/or boundary conditions. Expectation values will be denoted(by

2.3.1 Stationary growth

In general one expects to have a family of space-time stationary solitjons)
which is parameterized by the mean slape- E(Vh,(0,0)) € R?. A standard
way to obtain these stationary processes is to start with a finite substrate and to
impose suitable boundary conditions fixing the desired mean slofdéne sim-
plest choice, for example, is to take chiral boundary conditions in a rectangular
substrate, which means that opposite borders are identified only after an appropri-
ate vertical shift. In finite volume the height process is required to be ergodic. It
relaxes to a unique stationary state, which depends only on the boundary condi-
tions. In the thermodynamic limit of infinite substrate area at given slopee
expects to have a unique limiting procesg(x,t), whose gradient is stationary
in space and timel[L7. To be precise at this point, one obtains a limiting mea-
sure on space-time height configurations which is invariant under vertical shifts,
hy(x,t) — hy(z,t) + const, and thus can not be normalized. The probability
measure of the height process has to be defined on equivalence classes of height
functions differing only by a constant. Consequently expectations are well defined
only for height differences.

If the thermodynamical limit exists and is unique, one can define the mean
growth velocityv(u) corresponding to the slopg as the infinite substrate limit
of the finite stationary growth velocities. A priori there is no reason why the point-
wise defined growth velocity should have any regularity properties. Nevertheless,
since fluctuations cause to probe also neighboring slopes, one expects a smooth
dependence on, at least generically. In the following we describe the situa-
tion at slopes: where\ = v”(u) is a well-defined matrix, as it is suggested by
renormalization group studies of the corresponding continuum theory, the Kardar-
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Parisi-Zhang equatiory, 130.

Since the growth rule is local there is only one intrinsic length saglegiven
by the underlying lattice structure or the effective correlation length of the deposi-
tion dynamics. For length scales much larger thgrone expects scale invariance
of the surface fluctuations, as it is familiar for an order parameter in equilibrium
thermodynamics at criticality, because of the absence of any distinguished length
scale. For example height differences relative to the mean slope should increase
algebraically with the distance,

E ((hu(z,0) = hy(0,0) — z - u)?) o |z|**,  for large|z| (2.23)

with the static roughness exponenk 1. If « = 0, the marginal case, the surface
may be logarithmically rough, ifv < 0 the surface is microscopically flat with
very small deviations from the mean shape.

This asymptotic scale invariance extends to dynamical fluctuations. We per-
form a Gallilean transformation which absorbs the constant and the linear part of
the growth velocity,

Eu(x,t) = hy(te+ x,t) — t(v(u) + ¢~ u) — x - u, (2.24)
with ¢ = —v'(u) € R% The mean slope df,(z,t) is zero and the transformed
growth velocityw(u) reads

w(u) = 3(u, Au) + O(|ul?). (2.25)

&.(x,t) represents the fluctuations kf around its mean along the characteristic
trajectoryr = ct. In this new coordinates

E ((€u(0,1) — €0, 0))%) o< [t[*, (2.26)

where the dynamical roughness exponeiirns out to be smaller thanin gen-

eral. The scaling hypothesis states that not only the two-point correlation has
the scaling properties explained above, but that the stationary height process as a
whole is statistically self-affine at large scales.

Scaling Hypothesis.If a, 3 > 0 the fluctuation process,(x, t) converges under
proper scaling to a scale invariant limiting procésgr, t),

(7Pe (022, 0t) — H(x,t), asl — oo, (2.27)

with z = «/(3. Obviously @.27) reproducesd.23 and @.26). The scale invari-
ance ofH (z,t) is expressed by

H((Y7 0t) = (P H (z,t) (2.28)
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in distribution.

The renormalization group analysis suggests thand 7 are universal in the
sense that they depend only on qualitative properties of the underlying micro-
scopic model like the substrate dimension and the signatuxebre precisely,

one has to distinguish three cases:

Universality Hypothesis.

1. (Anisotropic KPZ) If X is not positive or negative definite, i.e.Afhas one
eigenvalue equal t6 or two eigenvalues of opposite sign, th&tz, t) is
the solution of a linear partial differential equation, the Edwards-Wilkinson
equation

OiH(x,t) = (0, COp)H (x,t) +n(x, 1) (2.29)
with n(x,t) space-time white noise of strengih, for someD > 0, with
covariancek (n(z, t)n(2’,t')) = Dé(«’ — z)é(t' — t), andC some positive

definited x d-matrix.

2. (Isotropic KPZ, strong coupling) If X is positive definite (ifA < 0 we
switch from H to —H), and if ford > 2 the microscopic noise is strong
enough, then the scaling relation

a+z=2 (2.30)
holds. The variance of height differences is given by
E ((H(m, 0) — H(0, 0))2) = a({z, A "2))" (2.31)
with the roughness parameterand
HKPZ (2, t) = (cq/a) P H(A %z, t) (2.32)

is a space-time stationary, isotropic, and scale invariant process. It is com-
pletely independent of the underlying microscopic model and the slope one
is looking at. ¢; > 0 is an arbitrary constant fixing the static two-point
function ask ((H P4(z,0) — H5P%(0,0))?) = cqla|*.

3. (Isotropic KPZ, weak coupling) If A > 0, d > 2, and the noise produced
by the microscopic dynamics is weak enougfi;, ¢) is again a solution of
the Edward-Wilkinson equatior2 (29.
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Remarks:

e The anisotropic KPZ case is motivated by the renormalization group treat-
ment of Wolf [L3(. Ford = 2 we give convincing support for the conjec-
ture in Chapteb by showing that the stationary distribution of a particular
anisotropic growth model is consistent withZ9).

e The scaling relationZ.30 in the strong coupling regime is well established
on a nonrigorous level independently of the substrate dimension. There
are more or less formal derivations of its validity, e.g8|[and references
therein. We will present another heuristic argument based on the extended
self-affinity conjecture at the end of Secti@r8.2 The analysis of the con-
tinuum theory confirms2.30 to all orders in perturbation theory 9], and
simulations agree with it very well within statistical errors. Nevertheless
only ford = 1, wherea = 1/2 there have been rigorous results confirming
z = 3/2 indirectly for special models4D, 56]. But only the limiting the-
orems of Johanssol§] and the ones presented in Chapteend>5 of the
present work go beyond the mere determination of the exponents and thus
verify (2.30 explicitely for some special models. Fdror more substrate
dimensions nobody doubts the validity @80, but the convincing support
is at most indirect and far from rigorous.

o HXPZ(z,t) arises from the model dependéidtx, t) by rescaling the sub-
strate coordinates in a way to make the two point function isotropic. By the
scale invariance 28 and isotropy the universal two-point scaling-function

def ,_ . 2
o)) R (2 n) - HP%0,0))°)  (2.33)

is well defined since the rhs is independent af 0 andz/|z|. One has
9P (y) ~ cqy® for largey. In Section3.3we determiney*"(y). The
analytical expressions suggest to set= 2. Therefore we propose to set
cq = 2 for higher dimensions as well.

e Ford = 1 andc¢; = 2 the formulas simplify considerably. In this case
z € R, A = v"(u) is a number and the exponents= 3, 3 =  are known
exactly. It is natural to define the roughness amplitude as

A= lim 27 'E ((hy(z,0) — hy,(0,0) — zu)?), (2.34)

T—00

thusa = AX/2. With these settings one has for the fluctuation24)
directly the limit
. ((202024) 32 1t)

(=00 17KPZ
signV) (e Azys 0 h (x,t) (2.35)
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as a universal relation for any growth model in the KPZ universality class
with nonlinearity A\(u) # 0 and roughness amplitudé(«), for all possi-

ble slopes:. Although the equal-time distribution of the KPZ field,—
HXPZ(x,0) is Brownian motion which is symmetric under the transforma-
tion H — —H, dynamical correlations do depend on the sign afs in-
dicated in 2.395. This can be seen already in the two-point probability
distribution, which is identified in SectioB.3. In higher substrate dimen-
sions even the up/down symmetry of the equal-time distribution seems to
be broken §0, 32].

e The weak-coupling/strong-coupling transition tbr- 2 is indicated by per-
turbative renormalization of the KPZ theory(]. Existence of the weak
coupling phase is confirmed fdr> 3 by rigorous results for directed poly-
mer models§4, 23, 95]. Existence of the strong-coupling phase in substrate
dimensionsl > 4 is a controversially discussed questi@n,[2, 21, 34, 86].

2.3.2 Extended self-affinity

The macroscopic growth velocity(u) arises from the stationary processes at
given slopeu. If we start with arbitrary initial condition%(z,0), the surface
roughens on a microscopic scale. But, assuming appropriate regularity. jof

on a larger scale fluctuations will be around a mean shape. One area of interest is
to derive the macroscopic evolution equati@r?j from the microscopic dynamics

in the sense of a law of large numbers. In general one takes a sequence of initial
conditionsh,,(z,0) approximating the smooth functidr(z) in the macroscopic

limit =7 (na,0) — h(z) asn — oco. The aim is to show that the rescaled processes
converge to a (weak) solutidi(z, t) of (2.2) with initial datah(z,0) = h(0), i.e.

10, (nx,nt) — h(z,t) in probability asn — oo, (2.36)

uniformly inz andt € [0, 7], T > 0. There is a huge literature on these hydrody-
namic limit type results, e.g3p, 116, 112, 73] and references therein.

We focus here on a simpler setting. We take just one process, whose initial
conditionh(x, 0) itself is macroscopically self-similar,

lim ¢~ 'h(lx,0) = ho(x), (2.37)

{—o0

where necessariliyy(¢x) = Cho(z). If h(z,0) is random R.37) has to be under-
stood as convergence in probability.

Macroscopic Self-similar Shape Conjecture. On macroscopic scales(z, t)
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converges to a self-similar deterministic solutiéifiz, t) of (2.2) with initial con-

dition H(x,0) = ho(z). One hag—'H((z, ¢t) = H(z,1) £ H(x), whereH (z)

is the Wulff shapeZ.13 or (2.20 with respect to the growth velocity(«). Then
elim (" h(lx, 0t) = H(x) (2.38)

in probability.
Closely related to the macroscopic shape is the

Local Stationarity Hypothesis. Relative to a rayr = ¢t of constant and well
defined mean slope, = H'(c) € R, the fluctuations of(z, t),

Cer(@t) =h(T+t)c+z,T+t)— (T+t)(v(w) +c-u)—z-u, (2.39)
locally converge to the stationary fluctuatios24) at slopeu, i.e.
i &, 1) = £8%a, 1) (2.40)
in distribution forz, t restricted to a bounded set.

The plausible assumption that local stationarity holds not only on the microscopic
scale but does extend maximally to regions in which the systematic curvature of
h(z,t) is still negligible leads to the

Extended Self-Affinity Conjecture. If for somec € R? the macroscopic shape
is smooth and concavé!”(c) < 0, then, setting: = H'(c), we know that the

curvature of the growth velocity i = v"(u) = —(H”(c))fl. If in addition
a > 0, thena+z = 2, or equivalently? = «/(2—«). In this case the fluctuations
converge to a unique limit

lim 2°(S)V/2T=B¢, p(2V/7(L)V22TVEN 22 0) = HSVe z) — |z|?,  (2.41)

T—o0 Cd

wherea is the static roughness parameter from the stationary pro@e33$.(
HS™qz) is stationary inr and isotropic.

Remarks:

e By the local stationarity hypothesis one recovers the stationary KPZ distri-
bution in the small scale limit

lim (P HSY Yz ) = HRPZ (2, 0). (2.42)
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e The distribution of the universal random variab}%”e@Hg““’ed(o) de-
pends only on the substrate dimensibnFord = 1 it is the GUE Tracy-
Widom distribution as derived in the following chapter. In Chagtbtonte-
Carlo results forl = 2 are presented.

e Ford = 1 with the roughness amplitud®.84) the scaling form Z.41)
simplifies to
Er((2A2AT?)32,0)
Sign(A) (3 |A|A2T)1/8
with A\ and A evaluated at: = H’(0). In chapter5 the process: —
Heved 1) is identified as the Airy process (7.

5 HEMeY () — o, (2.43)

e For |z| large HS""*qz) and H$""*40) become independent. The correla-
tions define another universal scaling function

g5 ) = B((HS"™o) — HEo0)2).  (244)

By definition g5""4y) ~ y for smally and by the postulated independence
ggurved(y) ~ 2Var(X§urved)_

The scaling formZ.41) is trivial in the case of zero substrate dimensions. The
“cluster” being a single column of increasing height by the random attachment
of material. If these increments are independent or only weakly dependent in
time, the law of large numbers tells us that indé€d’) /T’ — v in probability, v
being the macroscopic growth velocity. Furthermore by the central limit theorem
we know, thats = 1/2, and the limiting distributiony, is Gaussian, its width
being determined by the first and second moments of the increments alone. Since
r € R® = {0} the definition of the static roughness is void.

For higher substrate dimensions the following picture arises. At a given time
T the surface fluctuates around its deterministic shape, as if it were confined in a
potential well alongh?*, whose width scales &&°, and whose shape is given by
the logarithm of the probability density gff"e? Thus at finiteT" local station-
arity has to be violated above a length scale, where the static roughness is of the
same order as the global surface width implied by the width of the distribution of
HE™e40). This happens at a time-dependent typical correlation lefgth and
suggests that fdr:| > £(T') the random variables(cT', T') andh(cT + x,T') are
essentially independent. We hay)* ~ T, or £(T) ~ T'/%. On the other
hand, if the macroscopic shape is conv@xh®!(cT,T) < 0, the mean devia-
tion from the tangent &7’ + z, T) is 5(x, 0*h*(¢T, T)x) o 2* /T, which at a
distances(7") is estimated to be of the same order as the surface width of order
TP. Thus we obtairf(T)? ~ T#, or2/z = 3. Multiplying by o one recovers by
this simple heuristical argument the celebrated scaling rela2i@®)( valid for all
substrate dimensions[78, 74, 89].
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2.4 Universality

It is widely accepted that the roughness exponensd 5 are the same for all
microscopic models of reaction limited aggregation (RLA), i.e. where the growth
process depends only on the local interface configuration, and vary only for differ-
nent substrate dimensiah Ford = 1 the static roughness exponent is fixed by a
fluctuation-dissipation relation as= 3, the interface line has the static roughness
of a fluctuating string, as in equilibriunT§]. Thus by the scaling relatior2(30),

the dynamical roughness scales witk= % Ford = 2 the value of the exponents

is still controversial. Numerical investigation$Z( indicate 3 = 0.240(1), but
theoretical predictions, based on an operator product exparg&iprof on a self-
consistent real space renormalizatiGo][ are = i andg = 0.22, respectively.
Ford > 2 there is a weak coupling regime, predicted already by the renormaliza-
tion group flow of the KPZ equatiorv] with o« = § = 0. For strong coupling

in d = 3 the predictions fors range from0.1655 [30] over% [80] to 0.180(2)

[120, 3]. Ford > 4 even the nature of the strong coupling fixed point is under
dispute. There are theoretical arguments which predictdhat 4 is the upper
critical dimension withe = 5 = 0 for d > d. even in the strong coupling regime
[81]. But numerical investigations, though restricted to moderate system sizes,
especially in higher dimensions, notoriously indicates > 0 even for larged

[3, 71] and a self consistent expansionlifd predictsg o« 1/d asymptotically

[29).

The universality hypothesis comprises not only the exponents but also the
shape of the distributions whose width scales with the roughness exponents, like
the Gaussian normal distribution does in the central limit theorem. The distri-
butions arising are generically non-Gaussian. The properly rescaled (truncated)
moments have universal ratios corresponding to the moments of the limiting dis-
tribution, sometimes called universal amplitude rati3 p8, 77, 7].

In Section2.3we presented a formulation of the universality hypothesis which
emphasizes the uniqueness of the fluctuation fields in the proper scaling limit. For
convex growth, i.ed*v(u) > 0 or 9*v(u) < 0, we assumed that after a linear
transformation of the local substrate coordinates suchahat.) becomes the
identity matrix, the stationary fluctuation field is rotationally invariant, and indeed
is up to a normalizing prefactehe stationary KPZ fluctuation procegs; (x, )
of (2.32.

The stochastic field7'P%(z,¢) is usually thought of as a spatio-temporally
stationary solution to the KPZ equationcj

Oih = vAh + 3 (Vh)? +n(x,t), (2.45)
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with space-time white noisg(z, t) of zero mean and correlations
(n(x, t)n(a’ 1)) =2Do(t — t")o(xz — 2'). (2.46)

The nonlinear term arises from a second order Taylor expansion of the growth
velocity with respect to the slope, lower order terms being absorbed by a suitable
affine transformation, higher orders being irrelevant by naive power counting. The
Laplace operator is added to represent surface tension, being necessary to control
the singular noise term. The stochastic partial differential equaietd(is ill-
defined as it stands and much effort has been made to extract physical information
by means of renormalization group (RG) analysis in the field theoretical context
[70, 48, 79, 80], which unfortunately can not reliably access the strong coupling
fixed point. In principle eq.4.45 has to be regularized with some kind of ultra-
violet cut-off, and then studied in the large scale limit.

Let us mention that there are two formally equivalent formulations of the KPZ
equation. We set

Z(x,t) = exp ( — 5-h(z,1)), (2.47)

which is called the Cole-Hopf transformation bfz,t). Z(z,t) is governed by
the linear diffusion equation

WZ =vAZ — 2n(z,1)Z. (2.48)

The price for obtaining a linear equation is paid by introducing multiplicative
noise. FormallyZ (z, t) can be written as a path integral over Brownian paths,
with B, = 0 and B, = x, weighted by the Boltzmann factor

t

exp < - (21/)_1/0 n(B(s),s)ds). (2.49)

Thus, if we call such a Brownian path with fixed endpoints a directed polymer,
Z(z,t) has an interpretation as the partition sum for a directed polymer in a ran-
dom environment. The temperature corresponds/tand the KPZ height is pro-
portional to the free energy In Z. Of course one still has to regularize the noise
in order to give meaning to e 48. The growth models we are presenting in the
following chapters all have the property that once mass is attached to the growing
cluster it can never detach. We will see that these property allows to formulate
naturally a corresponding directed polymer problem at zero temperature.

If we take the gradient on both sides of the KPZ equation and substitute
through the gradient vector field= Vh, we obtain the noisy Burgers equation

Ou =vAu+ ANu-V)u+ Vn (2.50)
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driven by conserved noise. Fdr= 1 it can be interpreted as the flow of a fluid
with conserved mass. All the-dimensional growth models which will be de-
scribed in this work have a fairly obvious interpretation as a driven particle model
which are possible discretizations of the noisy Burgers equation.

Let us describe the nonrigorous results about the KPZ equation obtained from
renormalization theory in some detail. The RG approach supplies a sophisticated
framework to obtain flow equations for the parameiers, andD, in a perturba-
tive approximation. Roughly described, the KPZ equation is regularized by intro-
ducing an ultraviolet cut-off\ in Fourier space. One tries to match the parameters
of the KPZ equation for different values of the cut-off parameter. Integrating out
high frequency modes results in an effective lowering\and at the same time
changing the effective values far v, andD. The resulting equation with effec-
tive parameters is rescaled, such that the noise stréngiid the surface tension
v is unchanged. The dimensidrbecomes a parameter in this formulation which
naturally extends to real values. One expands arduad) and obtains for fixed
d a differential equation fok under the continuous coarse-graining and rescaling
procedure, called renormalization group flow.\Iconverges to zero under this
flow, the nonlinearity in2.45) is irrelevant, and the large scale behaviour should
be governed by the linear equation with= 0, called the Edwards-Wilkinson
equation §2], which is well-defined mathematically and can be analyzed thor-
oughly [92]. X diverging under the RG flow, however, indicates a strong coupling
fixed point at\ = oo.

Ford < 2 the fixed point\ = 0 is unstable, which implies that under renor-
malization the rescaling after coarse-graining should be done in a way toleave
invariant. Doing this the parametefsandv tend to zero, and the limiting equa-
tion is deterministic, reflecting only the quadratic nonlinearity 2r2). In this
sense perturbative renormalization is not able to predict properties of the strong
coupling phase beyond the macroscopic shape. Above the lower critical dimen-
sion 2 the fixed pointA = 0 becomes stable. Thus for small values\dhe large
scale behavior should be governed by the Edwards-Wilkinson equation. A refined
analysis around = 2 exhibits a bifurcation. Fot/ > 2 a second fixed point
emerges with a square root singularity, which is unstable, compare with Figure
2.2 Thus for a large enough nonlinearity, also in dimensiéns 2 one still
expects the existence of a strong coupling phase. Using higher orders in the per-
turbation theory and extrapolating along the unstable fixed point seems to indicate
that atd = 4 a further singularity develops, leading to the claim tthat 4 is the
upper critical dimension for the KPZ equatidsil].

A closer inspection of the KPZ equatio®.45 exhibits that the nonlinear term
should be replaced by a quadratic for%‘(\,Vh, AVh), where)\ is the Hesse matrix
of the slope dependent growth velocity. In coordinates wherd thel matrix is
diagonal one hag nonlinear terms:(9;h)%, i = 1,...,d where the eigenvalues
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Figure 2.2:The phase diagram for the KPZ equation.

A; can take arbitrary values. Far = 2 Wolf [13( analyses the RG flow for
arbitrary values of\;, \,. For \;\; > 0 he obtains qualitatively the same result
as in the isotropic case. If the two eigenvalues have different sign or one of them
is zero,\; = Ay = 0 is the only stable fixed point indicating the weak coupling
regime.

All these methods start with regularizing the ill-defined KPZ equation. In the
renormalization group approach one regularizes by introducing an ultraviolet cut-
off in Fourier space. One can also discretize the KPZ equation by introducing a
lattice constant, which can be viewed as an ultraviolet cut-off in real space.

A somewhat different approach is to take a definite model with a specified
small scale dynamics, to determine the model dependent parameters add-then
fine the KPZ field as the appropriately scaled limit of the well defined growth
process. Believing in universality the limiting process does not depend on the
choice of the model. This has to be thought of in much the same way as Brownian
motion could be defined as the diffusive limit of any well-behaved random walk
model. Since Wiener it is known that there are more elegant ways to define Brow-
nian motion explicitely. For KPZ although there are abstract approacles][
they do not seem to be able to extract any non trivial properties of the KPZ field,
so far.

We mention here two ways to extract all the model parameters for a given mi-
croscopic model. The first possibility is to take a growing droplet, whose macro-
scopic shape has encoded via the Legendre transform the full slope dependence
of the growth velocityv(u). The scaling of the height distribution along a ray in



2.5. PACE-TIME DESCRIPTION 27

space-timer = ¢t can be written in the form
h(cT,T) = H(c)T + C(c) TPx5"™ed (2.51)

with y§ved = Feuved () the dimensionless universal random variable for curved
KPZ growth. The knowledge of aff”(c) andC/(c) allows to fix all model depen-
dent quantities needed to determine the parameteBs4d) @at fixed macroscopic
slopeH’(c).

The second possibility is to start with the steady state of the height process
for mean slopeu, h,(z), at a given time. To determine the growth velocity
v(u) = OE(h(x)) one only needs to apply the generator of the dynamics onto
the steady state, and thus requires no knowledge of dynamical correlations. If one
can determine the roughness amplitutie, n), n € R? a unit vector, defined as

E((h(z) — h(0) — u - x)?) >~ A(u, z/|z])|z]*, (2.52)

the KPZ theory predicts that (A(u,x/]x|))1/a]1:\2 is a positive quadratic
form, and actually is a multiple ((fv”(u))_l. The proportionality factor is given
asa(u)* by (2.31) with the roughness parametgfu). Again the knowledge of
v(u) up to second derivatives aagu) at a given slope is enough to write down
the correct scaling forn?2(41) along a space-time trajectory= —v'(u) t.

2.5 Space-time description

A convenient way to emphasize universality in stochastic growth is to regard the
growing cluster as a random sgtin ad + 2 dimensional space made up of the
substrate dimensions and an extra dimension for the height and time coordinate,
each. |If the cluster grows macroscopically self-simildrhas a deterministic
shape in the macroscopic scaling limit,

(~1C — C, in probablity, for¢ — oco. (2.53)

The boundary of the coné,, can be characterized by the set of zeros of a suitable
homogenous functiot¥(x, ¢, h), as described briefly at the end of Sectihh.2
For example one can tak&(z, t, h) = h>—h%(x t)?, whereh®(z, t) = tH(x/t)
andH (¢) is the Wulff shape of the cluste? (39.

Shape fluctuations df, i.e. the deviations from the exact limiting shapg,
are described by the scaling form

Ba. 1) = 0%, t) + O, )G (2.54)



28 CHAPTER 2. SELF-SIMILAR SURFACE GROWTH

whereC(x,t) is homogeneous of degrge Comparing with the scaling form
(2.41) one findsC(ct, t) = 277(%)/*°, where the roughness parameiein
general depends an This motivates the definition of the generator of asymptotics

G(z,t,h)
C(x,t)0,G(z,t,h)’

F(x,t,h) = (2.55)
which is homogeneous of ordér— 5. The definition ofF" is not unique, only its
set of zerosQC, the gradient abC', and its degree of homogeneity are relevant.
The knowledge ofF', at least in a neighborhood of its set of zeros, allows to
recover easily the scaling forr2.64). One solved’(x,t,h) = 0 for h, obtaining
h9%Y(x,t). Then

h(w,t) = h9(z, t) + (O, F (x, t, h9(x, 1)) " xSmed (2.56)

F'is by construction a dimensionless scalar. Under coordinate transformations it is
invariant. Thus eq.4.56 has the advantage, that it is valid for an arbitrary choice

of coordinate axe&r’,t', h'). One simply has to expre$dz, t, h) in terms of the

new coordinatesy’, ¢', k). As long as one can solve faflocally, (2.56) gives the
scaling form in the primed coordinates. Not that by the scaling theory of Section
2.3.2one can also determine the lateral scaling needed to have convergence to the
curved KPZ fieldH $“™Ved( ).

2.6 The driven 2d Ising corner — a simple applica-
tion

Let us illustrate the determination of the generator of asymptotics in a simple ex-
ample We define a Glauber dynamics for the Ising spins on a two-dimensional
square lattice with the initial conditions that in one quadrant of the plane all spins
are up, all other spins are down. A spin can flip, only if exactly two of its four
nearest neighbor spins are up. Under this conditions spin flips occur indepen-
dently with rater from up to down and with rate + ¢ from down to up, driven

by some chemical potential in favor of up-spins. The special initial conditions
ensure that the solid-on-solid (SOS) condition is not violated, i.e. no overhangs
occur, and the boundary between up-spins and down-spins can be parameter-
ized by a time-dependent height function. If the initial borderline between ups
and downs is a non-increasing or non-decreasing step-line, this property is con-
served by the stochastic dynamics. The height function obtained with respect to
the coordinate system spanned by the two diagonals of the lattice is known as
the single-step modellp(. It is well known that the steady state of the single-
step model with the above continuous-time update rule is particularly simple, the
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height differences of adjacent sites are independently geometrically distributed
[96]. The density,p, of up-steps in the steady state is related to the mean slope,
u = (h(x + 1,t) — h(x,t)), asu = 2p — 1. The mean growth velocity is by the
absence of correlations easily obtained as

v(u) =2p(1 —p)(r+e—r)= %(1 —u?). (2.57)

The critical direction being = —v'(u) = eu, the macroscopic shape of the height
profile is given by the Legendre transform &t%7),

2 2
he®(z, t) = (v(u) + cu)t = (et) +a” (2.58)
2et
With the same ease we calculate the roughness amplitude as
A(u) = ((h(x + 1,t) — h(z,1))?) —u?* =1 —u?, (2.59)

yielding the complete asymptotic scaling form for the model as
hir,t) =~ W%z, t) — (L0 (w)| Au)?) " yeorved

. 2 2\ 3

Finally the generator of asymptotics for the continuous-time single-step model
reads

et? + a2 — 2t h

G(x,t,h) = 22/3(e242 _ 42)2/3°

(2.61)

Note that the generator of asymptotics depends only on the difference in the de-
position and evaporation rates. The value of the evaporation liggelf is com-
pletely irrelevant for the KPZ asymptotics of the process. Furthermore upon a
simple rescaling of time we can chose= 1, thereby excluding only the sym-
metric case. This fortunate coincidence sheds some light on the meaning of the
asymptotic scaling form.

For a given value of (2.60 tells us that forc fixed, |¢| < ¢, and for a time
t large enough, the distribution ef(¢(e — ¢2)2/2)~/3(h(ct, t) — (€2 + )t /2¢)
is arbitrary close to the universal distribution-gf**¢ On the other hand for a
given timet and locationz we can always take large enough valuesfeuch that
the asymmetry in the flipping rate can be neglected and the height distribution is
approximately the same as for symmetric flipping rates. This model might serve
as a prototype to study the finite size corrections to the scaling 3 (since
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by varying the flipping rate one can control the cross-over region from purely
diffusive behavior to KPZ scaling.

Only as a side remark we mention that Tang et al use an alternating parallel-
update scheme inp( (with a checker board coloring of the Ising lattice. Spins
on black sites can only flip at even times and spins on a white site only at odd
times). In this case, instead of rates, there are two transition probabitities,

[0, 1], for evaporation and deposition. This model still has a simple steady state
which allows for the determination of the growth velocity and the roughness am-
plitude. In terms of the biak = p™ — p~ and the product = (1 — p*)(1 —p7)

one has12(

B 20(1 — u?)
vlu) = VAr 4+ b2 + VAr + b2u? (262)
and
Alu) 2(1 — u?)V4r + b?u? (2.63)

a Var + b2 +VAr + b2u2

Some simple but tedious algebra then yields for the scaling form

srtx? + byv/4t2 — 222
482 — (1 — rd?)2z? 4 sdv/4t? — z%t

22/3(4t2 B (1 + 4T2)$2)2/3t4/3 curved (2 64)
(482 — 22)5/5(4rb i + sv/af2 — 2223 ! '

with the additional abbreviatioa = (1 — p*) + (1 — p~). The corresponding
generator of asymptotics for this discrete-time single-step model (which we do
not write down here because of its length) can serve, for example, to express the
scaling form in the original coordinates of the Ising lattice.

h(z,t) =




CHAPTER3

The (1+1)-dimensional Polynuclear
Growth model

The polynuclear growth (PNG) model is an idealized model for surface growth
[52, 47). The discrete crystalline structure of the solid is retained only in one spa-
tial direction. As a model for layer-by-layer growth it mimics a crystal interface
along a high symmetry direction. Within tHé + 1)-dimensional PNG model
the interface is described by an integer-valued height funétiont) on a one-
dimensional substrate € R. Thus the interface consists of terraces bordered by
steps of unit height. The steps are at arbitrary positior, icf. Fig. 3.1

A h(x,t)

%,
- 5 .

- >

"
e
Figure 3.1:A possible configuration of the height functibfx, ¢) at timet.

The dynamics has a deterministic and a stochastic part. Terraces grow deter-
ministically in the lateral direction. Up-steps move to the left with veloeity
and down-steps move to the right with velocity Two adjacent terraces on the
same level eventually coalesce into a single one, which means that an up/down
step pair, where the down step is to the immediate right of the up-step, disappears
upon collision.

The stochastic part of the dynamics comes from the nucleation of spikes of
unit height forming new terraces upon already existing ones. Independently with
space-time densityup/down step pairs are generated together at one position and
immediately move apart into opposite directions.

In order to identify the one-dimensional PNG model as a member of the 1d
KPZ universality class we first study the stationary growth velocity and the static

31



32 CHAPTER 3. THE (1+1)-DIMENSIONAL PNGMODEL

roughness. Let: — h(z,0) be a two sided random walk of mean slopg
h(0,0) = 0. This means that the positions of up-steps and down-steps are drawn
from two independent Poisson point processefRonith densitiesp, andp_,
respectivelyp, — p_ = u. During an infinitesimal time intervalt, inside an
interval of lengthZ the mean production of new up/down step pafis/t, has

to match the average annihilati@ap, p_ Ldt. As a necessary condition for sta-
tionarity the density of up- and down-steps has to be preserved, which implies
pp- =&/ (2w).

To simplify notation we seiv = 1 and{ = 2 in the sequel, reinstating and¢
only in some formulas where it seems appropriate. This convention is obtained for
any values ofv and¢ by measuring: in units of \/w/¢ andt in units of1//wé.

The fact that the full distribution of up- and down-steps remains independent
Poisson is not obvious but not very hard to show. One way is to explicitly solve for
the steady state of the master equation for the step positions in finite volume with
periodic boundary conditions and then to take the infinite volume libdlk [On
the other hand it is an immediate consequence of the following Poisson property of
the stationary PNG process extended to arbitrary negative times, which is proven
in Section4.4 by taking the continuum limit of a discretized version of the PNG
model.

Proposition 3.1 For the stationary height procesgz, t) with mean slopé the
crossing positions of up- and down-step trajectories along a space-like direction
{t = bx} with|b| < 1 are distributed like two independent Poisson point processes
with line densitieg®. = (1+b)/v1 + b2 andp® = (1-b)/V/1 + 12, respectively.

Thus for a space-like separatipr] > ¢ the height differencé(z,¢) — h(0,0), is
distributed as the position of a drifting random walk with meaand variancez.
Furthermore, the stationary process with mean slogan be constructed from
the stationary process with mean sldpey means of the Lorentz transformation

o =1-A) e —ct), t'=1-A) "Vt —cx), (3.2)

where the speed of “light” i$ and the velocity parameter= —u/v/4 + u?. The
mapping preserves the deterministic dynamics, leaves invariant the space-time
density of nucleation events and maps the Poisson patés ¢t = 0 correctly.

For the slope dependent growth veloaity:) = 0,(h(z,t)) we thus obtain the

relation
/28
v(u) = w(py +p-) =w w u?, (3.2)

Obviously it is a convex function of with non-vanishing curvature. Together
with the locality of the stochastic growth rule it tells us already that the model lies
in the KPZ universality class.
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Sincex — h(z,t) is a random walk the static roughness exponenit/iy
consistent with the KPZ prediction in one dimension. The roughness amplitude
A =x"Y(h(z,t) — h(0,t) — ux)?, by the Poisson property, is given by

A(u) =py +p- =/ i—g + u?. (3.3)

Indeed, 8.2) and 3.3 fix already all the model dependent parameters (again
with w = 1, € = 2), Mu) = v"(u) = 4(4 + v?)~%? and A(u) = v/4 + u2, which
allows to extract universal quantities from the quantitative scaling properties of
the PNG height process.

The directed polymer. There is an equivalent formulation of the PNG model as
a zero temperature directed polymer in a random environment. We fix the initial
conditionsr — h(zx,0) and take a realization of nucleation events in the half plane
{t > 0}. In Figure3.2 the trajectories of up- and down-steps are drawn. They

N

Ly

Figure 3.2:A space-time picture of the PNG model and a corresponding longest
polymer.

form the height lines ofi(x,t) in space-time. The height differenégy,t) —
h(z,s), where(y, t) lies in the forward light cone ofz, s), i.e. |y — z| < t — s,

is given by the number of height lines crossed by a time-like paths,t] — R
from (z, s) to (y,t), where time-like means thaf(s') — v(s”)| < |s' — §”| for

s, " € [s,t]. A directed path is a piecewise linear time-like pattvhere jumps

in the gradient ofy are only allowed at nucleation events inside the rectangle
R={(a,9); |2/ —z| < §—s, |2’ —y| < t—5'} oratincoming height lines at the
lower edges oR, {(2',s'); x—a’ = s—s'}NRand{(2',s); 2’ —x = s—s'}NR
which we address as nucleation eventsias well.



34 CHAPTER 3. THE (1+1)-DIMENSIONAL PNGMODEL

We define the length of such a directed paths the number of nucleation
events met byy and claim that:(y,t) — h(zx, s) equals the length of the longest
directed path frontzx, s) to (y, t). To see this, note that two points on such a path
always belong to nucleation events in different levels, thus the number of points
on a path is always smaller or equaltQy,t) — h(z, s). But a maximal path with
h(y,t) — h(z, s) points is easily constructed by starting frgm ¢) and working
one’s way back t@z, s), since each nucleation eventihwhich belongs to level
[ has at least one nucleation event belonging to levell in its backward light
cone. Note that the directed path can pick up nucleation events along either of the
lower edges ofz only until it eventually enters the bulk @.

A directed polymer is a directed pathwhose energy is given by the negative
length ofy. Since the mapping from PNG to the directed polymer is realization-
wise we conclude that the distribution lofz, s) — h(y, t) equals the ground state
energy of a directed polymer frofm, s) to (y, t).

The PNG cluster. A nice geometric interpretation of the PNG model is in terms
of the setD = {(z,t,h); h < h(x,t)}, the space-time image of the PNG cluster.
D c R3is a random set made up of level séls C R?, [ € Z, such thatD =

U,z Dix[1—1,1]. Now fix an arbitrary subset C [c, co[?, ¢ € R some constant,

as initial condition and seb; = A + [0, oo[? for [ < 0. Randomness is introduced

by taking for each level > 0 independent Poisson point procesggenR? with
density2, P, C R? being the set of Poisson points. The level sets are than defined
recursively as

Dy = (PN D)+ 0,00 1>0. (3.4)

In Figure3.3a part of a PNG cluster with initial conditiaA = {(0,0)} is shown,

it corresponds to the “droplet” initial conditidin 0, 0) = 0 andh(x,0) = —oc for

x # 0. The PNG cluster is just a static description of the PNG dynamics of the
height functiom:(z, t) = max{l; (z,t) € D;}. In order to recover arbitrary initial
conditionsz — h(x,0) one has to allow for initializing setd; = {z; h(z,0) > [}

in level | respectively. The recursior8{) is modified toD;, = ((4, U B) N
Dy_1) 4 [0,00> with [ € Z. In the case thak(z,0) is unbounded from below
one has to construdd as the limitk — oo of clusters with initial condition

x +— max{h(z,0), —k}.

The Aldous-Diaconis-Hammersley process. Yet another equivalent formula-
tion of the PNG model is the Aldous-Diaconis-Hammersley (ADH) procé8s [

5, 76] whose hydrodynamics and diffusive properties have been studied by Sep-
palainen 11, 112, 113. We have a countable collection of point particles on

R U {oco} whose positions at time are labeled by-;(s), i € Z. Particles are
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Figure 3.3:A small PNG cluster with initial conditiodl = {(0,0)}.

ordered;;_1(s) < r;(s), which is preserved under the dynamics. They can only
jump to the left and are otherwise at rest. At timt#hei'th particle jumps with
rater;(s) — r;_1(s) independently of all other particles and lands anywhere in the
interval [r;_;(s),7;(s)] with uniform probability. The process is well defined if
the distance between adjacent particles with large negative index does not get to
large, more precisely if; = o(i?) for i — —oo [113. Note that the end points of
particle jumps, irrespectively of particle positions, form a Poisson point process
in the whole(r, s)-plane with densityi. If lim; ., . r; = r > —oo the Poisson
points are restricted to, co[xR.

To establish the connection to the PNG model, we define the height function
H(r,s) = [ >,6(r — ri(s))dr. Now it is fairly obvious that the transformed
height function

h(z,t) =H({t+z,t —x) (3.5)

is a PNG height process with initial/boundary conditior> h(z, —x) = H(x,0)

and only defined i{ («',t'); * > —t}. Under the rotation byt5° up-step trajec-
tories of PNG correspond to particles at rest in ADH and down-step trajectories
correspond to jumps of particles. The overall scaling by a fagtbaccounts for

the nucleation rate in PNG.

3.1 The PNG droplet

Droplet growth for the PNG model is obtained by the proper choice of initial
conditions. We choosg(0,0) = 0 andh(z,0) = —oo for x # 0. The ground
layer at level zero starts at= 0 and extends laterally with velocity one in both
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directions. Thus only nucleation events above the ground layer, i.e. at space-time
points(x,t) with |z| < ¢, are relevant. Obviously(+¢,¢) = 0 with probability

1, growth occurs only in the interval-t, t]. These initial condition correspond to

an initial setA = {(0,0)} for the PNG cluster.

From the macroscopic theory, Sectidr, at large times we expect the PNG
cluster to form a droplet whose shape is given by the Wulff construction. Thus
from (3.2 (with w = 1, £ = 2) we haveh(x,t) ~ 2v/t> — z2. The initial con-
ditions for the PNG droplet correspond to an initial set= {(0,0)} for the
three-dimensional PNG cluster, which macroscopically has the shape of a cone.
Figure3.4shows a piece of such a PNG cone.

From the KPZ theory for curved growth, Sectidri.], we estimate the height
fluctuations of the PNG cone as

h(z,t) ~ 2Vt — 22 + C(x/0)t/*x TP ast — oo, z = ct, (3.6)

in distribution. The dynamical exponefit= % follows from the scaling relation

(2.30. The distribution ofy{"*"®'is the universal distribution for one-dimensional
curved KPZ growth. The functiofi'(c) depends only on the direction of the ray
x = ct along which one observes the distribution/dfc, ¢). It determines the
absolute scale on whictf"P'is observed. By the scaling forra.@41) it is given
by C(c) = (AM(u)A(u)?)Y/3 with u such that'(u) = ¢, thus we can predict
C(c) = (1 —c2)Ys,

In the directed polymer picture the rectandle, ) = {(2/,t); |2'| < ¥, |z —
2’| <t —t'} has no incoming lines at all. Its length is determined exclusively by
the Poisson points of densi%yinside the rectangle. Since the Lorentz transfor-
mation @.1) leaves invariant the PNG dynamics we can niap;, to the square
R,y Withv = v/t2 — 22. We conclude that the distribution bfz, ¢) for the PNG
droplet depends only om Therefore, provided the dynamical expongnt % is
correct, one has

h(z,t) ~ 20 + C vl/3) okt (3.7)

confirming @.6), where the constar' is set to one by convention and thereby
defines the absolute scaledf°™"

3.1.1 Ulam’s problem.

Take a random permutation of lengl¥, i.e. each permutatiop € Sy has the
same probabilityl /N!. An increasing subsequence of lengtlof the permuta-
tionp = (p(1),...,p(n)), is specified by the indices < --- < i, such that
p(i1) < -+ < p(ig). In 1961 Ulam [24] presented the problem to determine
the asymptotics of the lengtly of the longest increasing subsequence in such a
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Figure 3.4:A large piece of a PNG cone in light coordinates. It has been cutin a

way to improve the 3d impression. The black vertical line represents a PNG line

x +— h(z,t). The horizontal line marks a level sBy.
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random permutation. As example take the permutatien (4,7,5,2,8,1,3,6).
Then(5), (4,7), (2,3,6), (4,5,8) are increasing subsequencegpbut only the
last two of them are maximal.

A survey of the history of Ulam’s problem is given ifi][ Ulam already con-
jectured thaty /v N — ¢ for large N, Hammersley’s treatment of the question
[60] strongly suggested = 2. Logan and SheppBf] and Vershik and Kerov
[125 independently showed, in essence, convergence 1o 2 in probability.
Then, 1999, Baik, Deift, and Johansson in their by now already famous work
[10] settled the problem by determining not only the rate of convergence but also
identifying the limiting distribution. They show that

lim Prob{ly — 2NV < NY6s} = Foue(s), (3.8)

N—oo

which means thdty is distributed asymptotically for larg¥ as2N'/2+N/6ygue
werexcue is @ random variable with distribution functidiyue(s) = Prob{ xeue <
s}. Itis called the Tracy-Widom GUE distributioi21] and arises as the distri-
bution of the properly rescaled largest eigenvalue of a random matrix drawn from
the general unitary ensemble (GUE), see Mehti {or an introduction.

The definition of Fgye(s) is slightly involved. We have to introduce the
Hastings-McLeod solution(s) to the Painlevé Il equation

u”(s) = 2u(s)® + su(s). (3.9)

which is specified uniquely by requiring's) < 0 for s € R [61]. It has asymp-
totics

u(s) ~ —Ai(s) fors — oo (3.10)

and

u(s) ~ — 78 for s — —oco. (3.11)

u(s) interpolates smoothly between its left and right asymptotics with) > 0
for s € R. We define the auxiliary functions

Uls) = — /00 u(x)dx, (3.12)
v(s) = (u(s)®+ s)u(s)? —u/(s)? (3.13)
V(s) = — / v(x)dx. (3.14)
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Note thatl’ = u, V' = v, andv’ = «? by (3.9). Finally the Tracy-Widom GUE
distribution function is defined as

FGUE<S) = G_V(S). (315)

Before we further explain the result let us get the connection to the PNG
droplet. We fix a realization of nucleation events in the square,. The align-
ment of an enumeration of the nucleation evenist;), i = 1,..., N, with re-
spect to the light-like coordinates = ¢; + x; ands; = t; — z; uniquely defines a
permutatiorp of length NV with probability one. To see this assume that the points
are ordered such that < r, < --- < r,. Now there is a unique permutation
(p(1),p(2),...,p(N)) such thats,) < spe) < -+ < sy, cf. Fig. 3.5 The

(1)

1
(0.0)

Figure 3.5: Space-time picture for the height of a small PNG dropletaatt)
with light-like coordinates:, s. The dashed line is a maximal directed path. The
nucleation events correspond to the permutafiory, 5,2, 8, 1,3, 6).

nucleation events met by a directed path define an increasing subsequence of
which yields a one-to-one correspondence between directed paths and increasing
subsequences.

Conditioned on a fixed numbé¥ of points inR, ., the Poisson point process
induces equal weight/N'! for all permutation® € Sy. Therefore we conclude
thath(z, t) is distributed as the length of the longest increasing subsequence of
a random permutation having random lengthwhereN has Poisson distribution
with meam?, v = V12 — 22

This is almost the statemerg.8). It turns out that the Poissonized version of
In, I, with (N) = v? is much easier to study thag directly. In [10] actually 3.8)
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is proven forl, and the result foty follows from “depoissonization” lemmas. In
summary let us state the result obtained for the height distribution of the PNG
droplet Pg]:

Theorem 3.2 Leth(z, t) be the height process corresponding to the PNG droplet,
lc| <1, then

, h(ct,t) — 2t\/1 — 2
lim Prob{ (1= E)1/531/3 < 3} = Foue(s). (3.16)

t—oo

Let us describe the derivation &.8). The starting point is an explicit expression
for FCYE = Prob{h(0,v) < n}. We suppress writing down the explicit depen-
dence orv in the following. In shortF’°YE is expressed as an expectation with
respect to the Haar measure over the unitary gfé(p), which can be written as
a Toeplitz determinant,

FSUE _ €7UQEUGU(n) (6vtr(U+U‘1))
= e det T, (2. (3.17)

T (f(0)) = (Hk—1)o<ki<n IS @n x n Toeplitz matrix with weight functiory ().

Its entries are the Fourier coefficients ff), i, = (27)~* fUQ’T ek £(0)dh. The

first identity in 3.17) follows from work of Gesselq1]. It is a very remark-

able relation which is based on the Robinson-Schensted-Knuth correspondence
between permutations and pairs of standard Young tableaus. Concise derivations
can be found inq] or in the Appendix of L0]. The second identity is a very gen-

eral correspondence between determinantal expectations of the unitary group and
Toeplitz determinants. One has for arbitrary functignand g integrable on the

unit circle ([L2], Thm. 2.1)

Evevm det (f(U)g(U™)) = det T, (f(e”)g(e™™)). (3.18)

As a side remark let us mention that there is a similar formule3als/) for
random permutations with fixed lengifi [104, 6],

Prob{ly < n} = (N)'Eyeu@m) (Jtr(U)V]?). (3.19)
One recovers3.17) by noting that
GUE v
FRE=)" —r Prob{ix < n} (3.20)
N>0

and thatEy ey ([tr(U) + tr(U)]2Y) = (%V)IEUeU(n)([tr(U)N + tr(U1)N]?).
The latter holds becaud&cy () (tr(U)*tr(U1)") = 0 for k # [ by the invariance
of the Haar measure under the transformation- ¢ U.
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3.1.2 Orthogonal polynomials.

We need to deal with the Toeplitz determindnt = det 7,,(f(¢)). A standard
tool to do so are orthogonal polynomials on the unit ciréleq. We introduce the
polynomialsr, (z) which arise from the Gram-Schmidt orthogonalization proce-
dure of the functiong™, n > 0, with respect to the measure concentrated on the
unit circle du(z) = e ¢+ dz(27riz)~'. Thus the polynomials are orthogonal
with respect to the inner product

(p,q) = ]f p()T(Y)dp(z) = (27)"! /0 ()@ st (3.21)

where™~ denotes complex conjugation, afigneans conjugating the coefficients
of q. The polynomials are defined to be monig,(z) = 2™ + O(z""!). Their
squared norm is denoted by, , thus

(Tims Tn) = O N (3.22)
The Toeplitz determinanb,, = T}, (e~2* «=?) in this notation reads
D, = det({z", 2"))o<p1<n € R. (3.23)
We define the reciprocal polynomials
™(2) = 2"Ta(27h) (3.24)

and abbreviate,, = 7,(0). Let us mention that since all the coefficientsqfare
real one ha%, (z) = m,(2).

Classical results from the theory of orthogonal polynomials on the citdlg [
relate the Toeplitz determinants to the norms of

n—1
D, = H N, (3.25)
k=0
and for the squared norm one has
N, = No [J(1 = pi)- (3.26)
k=1

With the special weight functiofi(9) = e~2" () one obtains a nonlinear recur-
sion relation for thep,,, the discrete Painlevé Il equation. It has been derived in
the context of orthogonal polynomials for the first time 9], and later on more

or less independently ibp, 123 9, 24]. One has

n
;pn

_p2

Pnt1 =77 —pn1 forn >0, (3.27)
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with initial valuespy = 1, p; = f,; ;Z For the convenience of the reader we
prove equations3(25), (3.26), and @. 273 in AppendixA.

Setting

R, =—(—1)"py, (3.28)
we rewrite 8.27) as

(2 —2)R, + 2R3
—9 = v
Ry R, + R, - R

(3.29)

In order to obtain a non trivial continuum limit of this second order difference
equation we introduce the scaling variablm the limitv — oo and set

n = [2v 4+ v'/3s] (3.30)

ApproximatingR,, by the the smooth function(s) as

R, =v"u(v™3(n —2v)) + O(w™1) (3.31)
and taking the limitv — oo implies thatu(s) satisfies the Painlevé Il equation
(3.9). The starting valud?, = —1 is consistent with the left asymptotics ofs)
only if

u(s) ~ —y/—s/2 ass — —oo, (3.32)

which singles out the Hastings-McLeod solutiofs) < 0. We conclude that

u(s) = lim v/? Rigyiv1/34) (3.33)
provided the limit exists. We do not know of a direct proof of this convergence. In
[1Q] itis shown by means of the Deift-Zhou steepest decent method for associated
Riemann-Hilbert problems3[7]. The convergencé°Y — Fgue(s) under the
scaling @.30 follows from (3.33 by noting that the second log-derivative of the
latter is

d2
1 In(Fgue(s)) = —u(s)? (3.34)
and
D, 1D,_
'%2 L—1-R2, (3.35)

2

sinceFSYE = ¢~ D,..
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3.2 Flat initial conditions and other symmetry re-
strictions

In the physical literature it is very common to study flat initial conditions for
surface growth. For Monte-Carlo simulations this is a preferred situation since the
flat initial profile is easily prepared and the growth process is spatially translation
invariant. This property is preserved when the infinitely extended substrate is
approximated by a finite substrate with periodic boundary conditions. Thus the
ensemble averaging of the local height statistics can be replaced or supplemented
by spatial averaging.

For the PNG model flat initial conditions are definedigy, 0) = 0 for z € R
with nucleation events possible everywhere on the real line. The KPZ scaling
theory predicts for the distribution of the height abave: 0

h(0,t) ~ 2t + 13\ ast — oo, (3.36)

The absolute scale for the random variapl@ is the same as for the droplet at
zero slope, i.ec = 0 in (3.6). Analogously to the droplet case a mapping to
longest increasing subsequences of random permuta@i®hkepds to a proof of
(3.36 [14] and the identification of® as the Tracy-Widom GOE distribution
[127).

Let us describe the directed polymer picture for flat initial conditions. For a
given space-time realization of nucleation ever(is ¢) depends only on Poisson
points inside the triangl&;, = {(2,t); |2'| <t — ¢/, ' > 0}. The heighth(0, t)
equals the length of a longest directed path in the sqiiare: {(z/,t'); |2'| <
|t|—|t'|} from (0, —t) to (0, ¢), where all the points lie in the upper hdlf. Equiv-
alently we can define a line-to-point directed polymer in the triafiglét ends in
(0,t) but is allowed to start anywhere jrt, t] x {0}. Since the distribution of the
length of a longest directed path is invariant under the transformétient — ¢/
the distribution ofh(0, t) equals the realizationwise maximum of directed poly-
mers starting front0, 0) and ending somewhere {iz’, t); |«’| < t}. This simple
observation of the connection between point-to-line and point-to-point directed
polymers (first mentioned, to our knowledge, in the context of growth in a foot-
note in [77]) allows us to expresk(0, t) in terms of the PNG droplet process from
the previous section, denoted héfPe(z ¢), as

h(0,t) = max, hdoPleY: +) in distribution (3.37)
e[t
To access the asymptotic distributior/ab), ¢) let us mirror the Poisson points
in 7 into (,_")7;. Obviously2h(0,t) is now distributed as a point-to-point di-
rected polymer from0, —¢) to (0, t), where the random environment, the set of
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Poisson pointspP, is symmetric,P = (éj)P As in the droplet case each real-

ization of2NV Poisson points insid&, corresponds to a random permutatioaf
length2 N which has the symmetry restrictiqm@N +1-— p(k)) =2N +1-k,

and we need the lengthof the longest increasing subsequence in such a random
permutation of lengtR N, whereN is Poisson distributed with mean?. Equiv-
alently, by defining the permutatiofit) = p(2N + 1 — k) one can think of the
longestdecreasingubsequence in a random involutigh,= id. Baik and Rains
study exactly this case irifl]. They start with

Prob{l; < 2n} = ¢ "/ *Eyegpian (¢'"Y), (3.38)

where the expectation is over the Haar measure of the symplectic gig@p)

[104, 12]. Similarly to the case of the unitary group, such an expectation can be
expressed by the determinant of a combination of Toeplitz and Hankel matrices (a
Hankel matrix has entries constant along anti-diagonals). It is dealt with the same
orthogonal polynomials3;22) as in the pure Toeplitz case. Baik and Rains obtain
[12]

n—1

Evespan) (e'"Y) = H Nojeyo(1 — pajia) (3.39)

k=0

We scale as in the droplet case= [2¢ + t'/3s]. Given the limit 3.33 one
arrives at the limiting distribution

Jim Prob{l, — 4t < (2t)Y3s} = Foog(s), (3.40)
where
Foog(s) = e 2@V (3.41)

is the Tracy-Widom GOE distribution which appears in the theory of random ma-
trices as the properly scaled distribution of the largest eigenvalue of a random
matrix from the general orthogonal ensemble (GOE)]. Sinceh(t,0) = %lt

we can state the final result foc0, ¢).

Theorem 3.3 Leth(z,t) be the height process corresponding to the PNG model
with flat initial conditions, then

lim Prob{w < 2_2/33} = FGoe(s). (3.42)

t—00 t1/3

Note that because of the relation = 2h(0,¢), the universal random variable
Xfllat — 92/3,GOE
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In the beautiful work of Baik and Rains1{{] for a survey, 2, 13] for the
details) longest increasing subsequences of random permutations restricted to
other symmetry classes are analyzed. We translate their results to identify fur-
ther asymptotic distributions arising when the growth process is confined by a
rigid wall.

We restrict the PNG model to the half line,> 0, up-steps reaching = 0
just disappear. With the initial conditioh(0,0) = 0 andh(x,0) = —oc for
x > 0 a half droplet is growing with macroscopic shap€ — x2, x > 0. h(0,t)
is determined by the Poisson points{iw’,#'); 0 < o’ < ¢/’ <t —t'}. Al-
ternatively one can think of the original PNG model on the whole line R
growing symmetrically around = 0. Thus a nucleation event occurring(at¢),

x > 0is mirrored and implies a similar nucleation event-at:, t). The permuta-
tions corresponding to Poisson point realizations inside the squate’); |z/'| <

t',|2'| <t —t'} are involutions. In this case a similar expression is obtained as
in (3.39 with the symplectic group replaced by the orthogonal grodp). The
analysis of the corresponding Hankel/Toeplitz determinants in terms of the or-
thogonal polynomials3.22) in the scaling limit leads to the Tracy-Widom GSE
distribution

FGSE(S) = %(6_%(](8) + €%U(S))€_V(S), (343)

the properly rescaled distribution of the largest eigenvalue of a random matrix
from the general symplectic ensemble (GSE)]).

Theorem 3.4 Let h(z,t) be the height process corresponding to the PNG half
droplet, then

lim Prob{M < s} = Fosels). (3.44)

t—00 t1/3

Here the height.(ct, t) is obtained only forc = 0 wherex = ct. For other
values ofc no analytic results are available. From KPZ theory we expect that for
any0 < ¢ < 1 the droplet case3(16 should be recovered, since the correlation
length for height fluctuations increases only witf?. In the polymer picture the
symmetry of the Poisson points is seen by the polymer only in the very beginning
up to a timet’ of ordert'/3. This does not affect the scaling limit.

Let us mention that Baik and Rains can also deal with a source of Poisson
points of arbitrary line density > 0 above the originc = 0. The result is as
expected. Whem < 2 the limiting distribution 8.44) is unchanged. It does
not pay for the polymer to go along the line of Poisson points for a macroscopic
fraction of time. Fora > 2 the polymer stays at = 0 for most of the time
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because, on the average, it there collects more Poisson points than in the bulk. By
the central limit theorem the asymptotic height distribution is given by a Gaussian
on the scalé'/2. Only if a = 2 4 t~/3y, y fixed, the number of Poisson points
from the line is such that their fluctuations are on the same order as the bulk
fluctuations. One obtains a smooth transition fr@isiF for y < 0 to a Gaussian
with variance proportional tg for y > 0. Fora = 2, the critical value FoE is
recovered as limiting distribution, exactly.

Finally flat initial conditions for the PNG model on the half lin€z,0) = 0
for x > 0 can be treated in a similar way. The Poisson points in the region
{(«,t'); 2/, ¢ > 0,2" +t < t} are mirrored at = 0 andz = 0, to fill the square
R, with points of fourfold symmetry. The limiting distribution for the height turns
out to be agairGU E, but is narrower by a factor &/, since the length of the
polymer corresponds (0, t)

Theorem 3.5 Let h(x,t) be the height process corresponding to the PNG model
with flat initial conditions on the half line, then

h(0,t) — 2t
lim F>|rob{L < 2*2/35} = Foue(s). (3.45)
t—o00 t1/3

A source at the origin results in the same qualitative behavior as for the half
droplet. For the critical value: = 2 the limiting distribution isFgog(2%/35)?,
which can be thought of as the maximum of two independ&nt’ random vari-
ables.

3.3 Stationary initial conditions, the stationary two-
point function

When the initial conditions for the PNG model at= 0 are drawn from the
stationary distribution, say at slope zero, the resulting growth process is spa-
tially and temporarily translation invariant. The variance of the height difference
h(z,t) — h(0,0) defines the stationary two-point function of the PNG model,

Clx,t) = ((h(z,t) — h(0,0) — 2t)), (3.46)

where () means expectation with respect to initial conditions and nucleation
events. By the KPZ scaling and universality hypothesis the properly rescaled
two-point function converges to the universal scaling funct@“u’](y), for one-
dimensional KPZ growth,

C(t*3y, t
% — ¢1"(y) fort — oo, (3.47)
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which has been defined ir2.33. It will be denoted byg(y) throughout this
section. There have been numerous approaches togtydy 8, 63, 119, 49, 44].
For historical reasons the equivalent scaling functibt,), is analyzed in some
of these works. As a reference we indicate here their relation,

F(&) = (£/2)*P g ((26%)717), resp. g(y) =2y F(1/(2"%y*?)). (3.48)

The largey behavior ofg is fixed by definition agj(y) ~ 2|y|. The special
value g(0) = 1.1503944782594709729961 is the Baik-Rains constani.f, 99].

In the literature the universal amplitude rafi; = 2-%/3¢(0) = 0.7247031092

and the universal coupling constayit = ¢(0)~%/2 = 0.81045670 have been in-
vestigated. Approximate values have been determined by means of Monte-Carlo
simulations for the single step modéll[9, numerically within a mode-coupling
approximation §3, 49, 35], and even experimentally for slowly combusting paper
[91] yielding estimates fog(0) within reasonable ranges around the (numerically)
exact value indicated.

3.3.1 Convexity of the scaling function.
By the asymptotics of(y) the function

fy) =359"() (3.49)

has integrall. It turns out to be positive, which implies thaty) is a convex
function and thug (y) can be interpreted as a probability density.
To prove thatf(y) > 0 we introduce the structure function for the step density,

S(J],t) = <p(l‘,t)p(0,0)>, (3.50)

wherep(x,t) = 0,h(z,t) is the signed step density, which has delta peaks at
the up-step positions and negative delta peaks at the down-step positions. By
stationarityS(x, t) is closely related to the correlation functi6f{z, t). An easy
calculation yields

302C(n,1) = 303 (h(x, 1) = h(0,0) — 2t)°)

= O.(p(z,t)(h(z,t) — h(0,0) — 2t))

= 9,(p(0,)(h(0,t) — h(—z,0) — 2t))

= {p(0,1)p(~2,0))

= S(x,1). (3.51)

f(y) is the scaling function fo6(x, t), by (3.47) one has
L2883y, 1) — f(y) fort — oc. (3.52)
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To show thatS(z,¢) > 0 we interpret; S(z, t) as the transition probability for a
second class particle starting at the origin. Its initial velocity-iswith proba-

bility % as for the “first-class” up/down-steps. In contrast to an ordinary step the
second class particle is never destroyed upon colliding with another step. Rather
it eats up the step encountered and, by reversing its own direction of motion, con-
tinues along the trajectory of the absorbed step, cf. FiGuse Let p(x,t) be a

| N

Figure 3.6:The trajectory of a second-class patrticle.

given realization of the PNG process. The second class patrticle is added as
P (2,0) = p(x,0) + 0é(zx), o=l (3.53)

p\?)(z,0) evolves top?)(z,t) with nucleation events identical to the one for
p(x,t). By construction, ifX; denotes the position of the second class particle
at timet,

Pz, t) — p(x,t) = 0d(z — Xy). (3.54)

Noting that by the Poisson propert¥?’(z, 0) is given byp(z, 0) conditioned on
the presence of either an up-step-€ +1) or down-step{ = —1) at the origin,
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we obtain
0 < Zi:l<a (p\7 (2, t) — 21@7/)
_ lin; Zﬂo—@(x,t)e({ S5 0(y,0) dy:a})>
Sl S e O[5 plx+y,1) fsly =o', [*5p(y,0)dy = 0}))
N2 L= 26 (0({ /°5p(y,0)dy = c}))
= 3{p(z,1)p(0,0)) = 35 (x,1), (3.55)

whered({-}) is the characteristic function of a sub$ef of configurationgz, t) —
h(z,t). For arbitrary slope:, employing the Lorentz invariance of the stationary
height process3(1) the normalization ob,,(x, t) is given byv(u) = v/4 + uv? and

the mean o, (z) evolves along the characteristics of the macroscopic evolution
equationd,u = —d,v(u). Thus

/Su(zc,t)dx =V4+wu?, and /:ESu(:z:,t)d:E = —tu. (3.56)

3.3.2 The distribution of height differences.

In order to findg(y), resp. f(y), we study the distribution of height differences
h(z,t) — h(0,0) = h(z,t), since we fixh(0,0) = 0. It can be determined ex-
plicitly for all values of (x,t). For a space-like separatiofy;] > |t|, by the
Poisson property of Pro@.1, h(x,t) is the difference of two independent Pois-
son distributed integer valued random variables with mean- |¢| and|z| —
respectively. Other signs far andt follow by symmetry. Thus, explicitly, the
height distribution functiorfi, ;(n) = Prob{h(z,t) = n} is given as

x+t x—t) o
Fx,t(”) - Zélkn ( )62

k, >0 KL
= (#)"LEVE =P 0<t<z  (357)

2k+n

wherel,(z) = > o0 7 (e is the modified Bessel function. Obviously, by the
central limit theoremh(z, t) is close to a Gaussian distribution, for largevith

exact mearzt and variancez. Nevertheless it has non-vanishing fully truncated
third and fourth moments. They can be calculatedtaand2zx, respectively. Let

us mention that for space-like separations arbitrapoint correlation functions

are trivial in the sense that the corresponding joint distributions are expressed as
joint distributions of points along a corresponding simple random walk.
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For time-like separationgz| < t, the distribution ofh(x,t) is non-trivial.
From the mapping to directed polymers we know th@t, ¢) equals in distribution
the length of the longest polymer frof@, 0) to (z, ¢) inside the rectangl&, ;) =
{(«,t); |2| < t,|x —2'| <t—t'}. The incoming up- and down-steps at the
lower edges of(, ;), according to PropositioB.1, are Poisson distributed with
line densitiesy/2. With the Lorentz transformatior(1) we map R, into a
square. An additional overall scaling by2/v, v = V/t2 — 22, leads to a unit
square, with bulk density? and line densitiesv for the lower left, and3v for the
lower right side, wherex = \/(t — z)/(t + «) and3 = 1/a. We thereby have
recovered precisely the setting ihl] 9] with ¢ replaced by. Let us explain their
result.

Take a directed polymer with boundary parameterand 3, o3 < 1 and
add an additional source of points at the origin. The number of poirtsat
the origin is geometrically distributed with strengtt®, i.e. Prodn, = n} =
(1—af)(aB)"™. The distribution of the length ,, s of the longest directed polymer
in this case is given by

P, = Prob{l, .z <n}
e T OTAVE iy det (14 al) (14 U)W+ (3.58)
Using standard results for orthogonal polynomials with a weight function multi-

plied by a polynomial it is shown inlp] that the corresponding Toeplitz determi-
nant factorizes by means of the orthogonal polynomialg8d) and @3.24) into

~(atap M=) (=0) — afmn(=a)m.(=0)

Pn — FGUE
¢ 1—ap "
— e (atB - ﬂ—k(_a)ﬂ-k(_ﬁ) JGUE 3.59
e n ;; N, h (3.59)

The second equality follows by a simple application of the Christoffel-Darboux
formula
i (@) (b) ™ (a)7y,(b) — mn (@) (b)

N, S IR : 3.60
Nk 1—ab ( )

cf. AppendixA.
Conditioning onny = 0 yields

Prob{l, .5 <n,ng =0} = P, — afP,_1. (3.61)

If « is fixed, P, seems to have a simple pole @at= 1/a. But by the second
equality in 8.59 it is obvious thatP, is entire as a function gf. Altogether we
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arrive at
Fo(n) = (@) F3YE = gu 1 () F2UF, | <t, (3.62)
with
gn(a) = e "IN N (—a)m(—a ). (3.63)
k=0

An alternative form is obtained by applying I'Hospital’s rule to the first expression
for P, in (3.59 when tends tol /.

gula) = e (m (—a)ma(—ah)

a7 lm(—a)m (o) — a7 m(—a)m (~a 7))

_ e—v(a-i-ofl)((l — n)qn(—a)wn(—a_l)

—am, (—a)T(—a ") — a T (—a)m,(—ah))  (3.64)

n

where the second, more symmetric form follows from the simple identity

* —1__x/ * *

() M (Y 4 2w ()T (2T D= (2) T (7Y = nak ()T (2.

(3.65)

By stationarity the mean @f(z, t) is 2t. Therefore the PNG two-point-function
(3.46 is given by

C(z,t) =Y (2(n—2t) — 1)Prob{h(z, t) < n}. (3.66)

n>0

As aremark let us note that the value of the meal(of ¢) is far from being obvi-
ous by looking at§.62. Remember that = /(t — z)/(t + ), v = V12 — 22,
and that the orthogonal polynomials are implicitely depending.oin a more
general context][09 this mean identity has been shown to hold directly from the
explicit expression for the distribution function.

3.3.3 The scaling limit of the height distribution.

In order to determine the scaling functigfy) (3.47) we need to study the scaling
properties of Proph(z,t) < n}. Since 8.62 depends explicitly om = v/t? — x2
it is favorable to introduce the scaling variableands as
r = 2)2/33/,
t o= v+ 0!y (3.67)
n = [2v04 03],
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and determine the limit
Prob{h(z,t) <n} — F,(s) forv — oo. (3.68)

The finite height distribution is expressed in terms of the orthogonal polyno-
mialst,(z). They satisfy the classical recursion relations

Tnt1(2) = 27a(2) + paramy(2),
Tri1(2) = 2papima(2) +mh(2), (3.69)

which hold for an arbitrary weight function, and the differential equations

m(2) = (n/z+0/2" = puapnv/2)Tn(2) + (Pusiv/z — pav/2°)m, (2)
T (2) = (=pnt10/2 + pav)m(2) + (=V + pusipnv/n)m, (2), (3.70)

which heavily rely on 8.27), compare AppendiX for a proof. They are implic-
itly derived in [9] and in this form written down explicitly for the first time. Ismail
and Witte p5] have derived a differential-difference equation for orthogonal poly-
nomials with a general weight function. Specializing to the weigtit="") also
yields 3.70.

The scaling 8.67) impliesa = 1 — v='/3y 4 O(v=%/3). In order to obtain
a nontrivial limit asv — oo of the above equations we approximate ) and
7. (2) in the vicinity of 2 = —1 by two smooth functiona(s, y) andb(s, y) as

T(—a) ~ e”aa(v_l/?’(n — ), 031 — ), (3.71)
To(—a) =~ —e“a(—l)”b(v’1/3(n — 0),03(1 — ). (3.72)
(3.73)

Using that the asymptotical behavi@:81) of R, is given by the Hastings-McLeod
solution to Painlevé llu(s), one obtains from3.69 the differential equations
with respect tos

dsa = ub,
0sb = wa—yb, (3.74)
and from B.70 after some calculation the differential equations with respegt to
0,0 = u'a— (v +yu)b,
b = (v —yu)a+ (y* —s—u?)b. (3.75)
From 3.69 one immediately obtains’(—1) = (—1)"m,(—1) = [[,_, (1 — Rx).
One has the limi{[;>,(1 — R;) = ¢ sincee " ** Ny []r_, Nx(1 — R;,)~" has
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an interpretation as a probability distribution functidr?], Therefore the initial
conditions to 8.79 are

a(s,0) = —b(s,0) = e V), (3.76)

The scaling limit ofg(n, «) as defined in Eq.3.63 is the function

g(s.y) = / " (e, y)ale, —y)dz

[e.e]

= a(s,—y)0ya(s,y) — b(s,—y)0,b(s,y), (3.77)

where the second equality can be verified by differentiation with respecamnal
using the identity

G(S, y) = _b(87 _/y)e%y3—sy7 (378)

itself being a direct consequence 815 and (3.76. Putting these pieces to-
gether we obtain as scaling limit for the distribution functidns(n),

Fy(s) = %(9(5 + 1%, y) Foue(s + 4%)). (3.79)

The shift in .79 by y* comes from the fact that, (s) is evaluated for constant
t=v+ 03y + O(w™/3).

Finally we can write down the scaling functigry) of (3.47), which by the
scaling B.67) is given as

o) = [ B (o) (3.80)

As in the droplet case we do not provide a proof for the existence of limits.
This has been accomplished by Baik and Rains in a series of wbtksd, 11, 9].
We gave a heuristic derivation of the limiting distributions which avoids intro-
ducing the machinery of Riemann-Hilbert techniques. All the above relations,
apart from B8.70) appeared already elsewhere. Nevertheless we find it instructive
to present the above derivation, stressing the origin of the differential equations
(3.74 and @.75 as the continuum limit of their discrete counterpaB$9 and
(3.70. For completeness let us collect some more propertie$sof/) shown in
[11]:

a(s,y) — 1, ass— +oo,
a(s,y) — 0, ass— —oo,
a((29)?r +97y) — 1, asy— +oo,
1 x
(-2 +4"9) — G /Oo e72'd¢, asy — —oo. (3.81)
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ThereforeF,(s) is asymptotically Gaussian and we recoygy) ~ 2|y| for large
Y.

In AppendixB we describe the method to determine the scaling function nu-
merically. One first needs to find the Hastings-McLeod solution to Painlevé Il
and then integrate3(75 starting fromy = 0. Then one has to integrat8.74)
for different values ofy to obtain the variance aof),(S). And finally ¢(y) has
to be differentiated twice numerically to get the scaling functidn). The high
precision we wanted to achieve rules out any conventional numerical integration
methods for ordinary differential equations. As explained in the Appendix we
used a Taylor expansion method with multiprecision arithmetic, to estimate the
fast decaying tails of (y) with an absolute accuracy of abolt—'%°, and to be
able to determine reliable Fourier transforms of the scaling function.

3.3.4 Discussion of the scaling function.

In Figure3.7 the scaling functiory(y) = ig”(y) is shown as determined by the

1¢

f(y)

le-10 |
e-10 ¢ exp(-0.295y3) *******

1e-20 |
1e-30 |
1e-40 —
1le-50 —
1e-60 |
1e-70 |
1e-80 |

1e-90 £ i

1e-100 E 1 1 1 1 1 1 1 1

Figure 3.7:The scaling functiorf (y) versusy in a semilogarithmic plot. The dot-
ted lineexp(—0.295|y|?) is drawn as a guide to the eye for the largasymptotics
of f.

multiprecision expansion method explained in ApperiglixVe estimate its large
y asymptotics as

log f(y) = —cly|* + o(|y]) for y — oo. (3.82)

The cubic behavior is very robust and numerical fits yield aBA#6—2.998 quite
independently of the assumed nature of the finite size corrections. The prefactor
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¢ = 0.295(5) has arelatively high uncertainty because of the unknown subleading
corrections. Even though inaccessible systematically we estimate the error term,
as indicated in%.82), to be sublinear or even only logarithmic from the numerical
data. Possibly, the exact asymptotic behavior could be extracted from a refined
asymptotic analysis of the Riemann-Hilbert problem.

Colaiori and Moore 35, 33] tackled the same scaling function by completely
different means. Starting from the continuum version of the KPZ equation they
numerically solved the corresponding mode-coupling equatl@& 49|, which
contains an uncontrolled approximation, since diagrams which would renormal-
ize the three-point vertex coupling are neglected. Nevertheless a qualitative com-
parison of their result with the exact scaling functiffy) shows reasonable sim-
ilarity, cf. Figure3.8. Both functions are normalized to integraby definition.

The mode coupling solution oscillates arounéor |y| > 3, whereasf(y) > 0

0.6

fy) ——

mode-coupling -------

Figure 3.8:The exact scaling functiofiy) compared to the mode coupling result
of Colaiori and Moore B5|(dotted line). Both functions are even.

for the exact solution. We do not know whether this is a numerical artifact or an
inherent property of the mode-coupling approximation. On the other hand, the
second moments are reasonably close togeth&t(523 for f(y), and0.4638

for the mode-coupling approximation. So is the value of the Baik-Rains constant
g(0) = 2 [ |y| f(y)dy for which mode-coupling predicts the vallig 137.

From the solution to the mode-coupling equations one does not directly obtain
f(y), but rather its Fourier transform. The functiéf(7) from [35] is defined
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through
G2 )2772) = fik) = 2 / " cos(hky) f(y)dy. (3.83)

Colaiori and Moore predict a stretched exponential decay of the fun€tien as
oc exp(—c|7|?/?) [33] and numerically find a superimposed oscillatory behavior
on the scalér|?/ [35]. In Figure3.9 f(k) is plotted as obtained by a numerical

1 T T T T T

0.8

0.6 |

04 -

0.2 —

-~

Figure 3.9:The Fourier transforny (k) of the scaling functiorf (y).

Fourier transform off(y). Indeed it exhibits an oscillatory behavior as can be

seen in Figure3.10 where the modulus of (k) is shown on a semilogarithmic
scale. The dotted line in the plot is the modulus of the function

10.9k~ 4 sin(1k%/2 — 1.937)e 2%, (3.84)

shifted by a factor ofl 000 for visibility, which fits f(k) very well in phase and
amplitude fork Z 15. This behavior is not in accordance with the results of
Colaiori and Moore, since the oscillations and the exponential dec&y(of for
the exact solution are apparently on the scated notr2/3.

Note thatf (k) is the scaling function for the intermediate structure function

S(k,t) = /dxeika(x,t) ~ Zf(tz/gk). (3.85)

By Fourier transforming with respect towe determine the dynamical structure
function,

S(k,w) = / di dte B0 (2 1) = 22 f (w/KY/2), (3.86)
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Figure 3.10:The modulus of (k) on a semilogarithmic scale. The dotted line is
a heuristic fit, shifted by a factdr000 for visibility.

where
F = [asemfiss) =2 [Cayr et @)
andL has the representation
L(r) = 2-3*3Ai(—37%3k2) sin(2x3/27). (3.88)

The correlation function3.46) in Fourier space is given by

o

C(k,w) = 2k 28 (k, w) ~ CKPZ(k, w) T ak™/2 £ (w/E¥?), (3.89)

describing the asymptotic behaviorfatv = 0. Note thatC'(k,w) > 0 by defini-

tion, since(hg ,hp o) = Ok —k0w - C(k,w) for (k,w) # (0,0). The anomalous
scaling behavior in real space is reflected by the exponents for the divergence of
C*PZ(k,w) atk = w = 0. In the linear case, the Edwards-Wilkinson equation

A =01In(2.49, one easily obtains

D
O k) =

(3.90)

A 3d-plot of CKP%(k,w) is shown in Figure3.11 Its striking features are the
smooth behavior away frorh, w = 0, especially on the lines wheke= 0 and
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Figure 3.11:The correlation functior(k,w) in Fourier space.

w = 0 and the two symmetric maxima &f — CKP4(k,w) for constantv. Our
numerical data yield for the singular behaviokat 0, w = 0,

C*2(k,w) = w 7/3(2.10565(1) + 0.85(1) k2w /3 + O(k*w /%)),
= k772(19.4443(1) — 52.5281(1) wk + O(w*k™9)). (3.91)



CHAPTERA4

The Bernoulli cone

The Bernoulli cone is a random subset®f with parametep € [0,1]. Itis
defined as the wetted cluster of a layered directed bond percolation ni@dg! [
Active bonds can be passed only in the direction of increasing coordinates. The
Bernoulli cone is made up of those sites which can be reached from the origin
through a chain of active bonds. Horizontal bonds are always active, and vertical
bonds are active with probabilify The statistics of the Bernoulli cone has various
interpretations in the form of well-known statistical mechanics models, such as
last passage percolation, directed polymers in random media, random growth,
and driven diffusive systems. The Bernoulli cone always maps to the simplest
discrete versions of these type of models. The two limiting cases,0, 1 also

map to various well-known problems. The PNG limit,— 0 is equivalent to
Ulam’s problem of the length of the longest increasing subsequences in random
permutations, compare the previous chapter, and the TASEP fimit,1, maps

to the continuous—time totally asymmetric simple exclusion process with special
initial conditions, first considered by Rost{q.

4.1 The directed bond percolation cluster

We define the Bernoulli con® as a random subset &, made up of unit cubes
(n1,n2,n3) +]=1 0]3. There are three types of nearest neighbor bonds pointing in
the direction of the three coordinate axe&, and3. Some of the bonds are active,
the others are not. The directed percolation clusten Z* consists of all those
lattice sites which can be reached from gitel, 0) by a sequence of sites, which
is non decreasing in the coordinates, such that adjacent sites in the sequence are
always connected by an active bond. The bonds are active independently with
probabilitiesp;, p2, andps, corresponding to the directiof, 2, and3, they are
pointing to. Thus if one thinks of the active bonds as diodes and the sites as
grounded light bulbspD contains all the glowing bulbs, when a voltage is applied
at site(1, 1,0).

If the probabilities are small enougb, will be finite almost surely, but for any
directionr € R, r| = 1, D extends to infinity above certain critical values for
p1, p2, andps. When approaching these critical values from below, not only the

59
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Figure 4.1:Part of a Bernoulli cone witlp = 0.1.

mean of the radiug(r) = max{\; A\r € D} tends to infinity, but also its variance

diverges with characteristic exponents (se@q for a more detailed description).
Here we are exclusively interested in the special case of layered percolation,

i.e. the maximally anisotropic cage = p» = 1, ps = p € ]0, 1[. Since horizontal

bonds are always active, for each Site, no, n3) € D all sites(my, ms, ng) € D

for my > ny, my > no. Since there is a chain of active bonds froim1,0) to

(n1,ng,n3) also the site$m,, mq, m3), my > ny, my > ny, 0 < my < ng lie in

D. ThereforeD is uniquely specified by the height function

h(z1,x9) = max{xs € R; (21, z9,23) € D}. (4.1)

(compare with Figurd.1). The definition of the Bernoulli con® can be formal-
ized by the following recursive rules:

() DCRFxRtx]-Loo[, D= (DNZ3+]-1,0p,
(i) (1,1,0) € D,
(i) if {(z1 — 1,29, 23), (x1, 29 — 1,23), (21,22,23 — 1)} C D, and the
vertical bond ending itz x2, x3) iS active, ther(z, x9, x3) € D.
(4.2)

Thus for the height function one has the relation

for (4,7) € N*\ {(1,1)} andh(1,1) = w(1,1). Thew(, j) count the number of
consecutive active vertical bounds right abdvel, 0) for i = j = 1, and right
above(i, j, max{h(i — 1,75),h(i,7 — 1)}), for (z,5) € N*\ {(1,1)}. Therefore
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they are geometrically i.i.d. with strengthi.e. Prodw(i, j) = k} = (1 — p)p*,
k € Np.

We are going to study the asymptotic shapéxadipon rescalinglim_. ., %D
which almost surely is a convex cone of a certain shape. As we wilDsean be
interpreted as the space-time image of a self—similarly growing droplet. Therefore
the scaling theory of Chaptéris applicable. However, first we will explain the
various interpretations of the Bernoulli cone mentioned above. All the follow-
ing processes can be constructed realizationwise from the Bernoulli distributed
active vertical bonds. Thus the equivalences are in distribution with an explicit
identification of the underlying probability spaces.

Last passage percolation

Let w(i,7), i,7 € N be geometrically i.i.d. random variables of strengthA
directed pathy, from (1, 1) to (M, N) is a sequence of lattice points ), which

is non—decreasing in its components and contains both endpoints. The cost of
such a pathy is the sum of theu(i, j) with (7, j) belonging toy. We set

t(M,N) = max Z w(i, ). (4.4)

If we regard thew(i, j) as waiting times{(M, N) has the interpretation of the
last passage time of an ensemble of walkers getting from) to (M, N) along
the directed bonds df? [68]. In queuing theory one asks for the processing time
of M customers, passing one after another throdigbueues, where customer
needsw(i, j) units of time to be served in queyieThust(M, N) is the total time
needed for the last customer to exit the last queue. In more physical terms one
can think of—w(i, j) as a random potential. The energy of a directed polymer
configurationy from (1, 1) to (M, N) is then given by— >, ... w(i, j). Thus
—t(M, N) is the ground state energy of the point—to—point directed polymer.

To see that(z, x2) equals the height functior(1) at integer arguments in
distribution, we set(i, j) = —oofori < 0orj <0,t(1,1) = w(l,1). Then for
i,j € N?\ {1, 1} one has the recursive relation

t(i,7) = max{t(i — 1,7),t(i,5 — 1)} +w(i, j), (4.5)

which is identical to 4.3).

The corner growth model

Let A, C R?,t € Ny be a set valued process as follows. For eachN, the
random setd, is made up of unit squares of the for j) + |1, 0]>. Initially
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Ay = R%\ (RT)?, a perfect cornerA,, , arises from4; by adding squares to its
boundary at random. The squdre;) + -1, 0]* is added with probability — p,
only if (¢ — 1,7) and(i,7 — 1) belong already to; [68]. Thus A, always stays
connected without overhangs. We define the tiffig, j), when the square at
(1,7) is added taA4,,

T(i,j) = min{t € No; (4, ) € A} (4.6)
Then it is easy to see th#li, j) = 0 for (4, j) € Z* \ N?> and
T(i,j) = max{T(i —1,5),T(i,j — )} + w(i, j) + 1, (4.7)

for i,j € N, where thew(:, j) just count the number of rejected attempts to add

the squardi, j) +]-1, 0], and thus again are geometrically i.i.d. with strength

Comparing 4.5 with (4.7) one hasl'(i, j) = t(i,7) + ¢ + j — 1, in distribution.
Emphasizing the geometric picture, we can obtain the dewirectly from

the Bernoulli cone by slicind perpendicularly to the body diagonal and fixing

the intersection with thd—axis as origin,

Av=A{(i,j) € Z% (i,j,t —i—j) ¢ DUR" x R xRy} +]-10].  (4.8)

Conversely the graph of;, A = (J,¢y, (t+]-1,0] x A; becomes the Bernoulli
cone, by shifting all the unit cubes, 7, k)+]-1,0]3, 4,5,k € Z vertically by
—(i+ 7) units.

In the literature the corner growth model is also known as the single—step
model, the(1 + 1)—dimensional version of the hypercube—stacking motiadj
For givent one parameterizes, by the height function}, : R — R,

hy(z) = max{i + j; (i,7) € A, withi — j = x}. (4.9)

The values at integer are enough to specify the function, sintginterpolates
linearly between those points. Clearly ferc Z one has that + = + h(z) is
even andh;(z + 1) — h(z)| = 1, hence the name of the model. The update rule
iS hyt1(x) = hy(x) + 2 with probability 1 — p if the single—step constraint is not
violated,h; 1 (z) = hy(x) otherwise.

The discrete—time parallel-update TASEP

Let n(z), z € Z, t € Ny be {0, 1} random variables withy,(z) = 1 for x <

0, no(z) = 0forz > 0. my(z) = 1 is interpreted as a particle on siteat

time t, if n,(x) = 0 the site is empty. The update rule for the TASEP (totally
asymmetric simple exclusion) is very simple. At each time step particles jump to
their immediate right independently with probability- p, given the target site is
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empty (simple exclusion). Jumps to the left are prohibited (totally asymmetric).
Thus the waiting time for a particle to jump to an empty site is again geometrically
distributed with strengtp. The connection to the single—step model is immediate,
one just sets

Converselyh;(x) has the interpretation as integrated current fr@n0) up to
(x,t), which equals for the given initial condition the number of particles to the
right of z, at timet¢. This discrete—time version of the TASEP has been studied,
for example, in the context of traffic flow models by Schreckenberg et al}.|

The asymmetric zero range process

Letn.(i) € No, i € N, t € Ny, be integer valued random variables wit}(i) = 0

for i € Ninitially. n,(0) = oo takes the role of an infinite reservoir of particles,
nt(x) > 0 is regarded as the number of particleszimt timet. At each time

step at most one particle from each nonempty site (including the reservoir) jumps
to the right nearest neighbor site independently with probalilityhis process
arises from the corner growth model by parameterizdndgy the height function

he(i) = max{j € No; (1,7) € Ar} (4.11)
The zero range process now can be defined as

(i) = hy(3) — (i + 1), (4.12)

Discrete polynuclear growth

There are two versions of the discrete polynuclear growth (PNG) model, the first
has no restrictions on the step heigtitS][ the second, restricted one, allows only
step heights-1,0,+1[107. The height function of the forme¥, (), t > 0,
x € Ris defined as

Hy(x) = h(5E,5%) € No U {—o0}, (4.13)
whereh(-, ) is the height function of the Bernoulli cone. Fore R \ Ny, H;
evolves deterministically, up—steps of integer height move to the left with velocity
—1 and down-steps move to the right with velocitylf an up—step and a down—
step meet (which happens only at integer timesth x + ¢ € 2N), they coalesce,
and either they disappeatr, if they are of the same height, or the larger step swallows
the smaller one, and proceeds with its size reduced, accordingly. At the same time
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Figure 4.2:(a) The height lines of the Bernoulli codefrom Fig. 4.1, and (b) the
shifted height lines for the stretched Bernoulli cabe(Courtesy of D. Dhar and
R. Rajesh).

new islands of geometrically distributed integer height are produced randomly
on top of existing ones, again only at integer timeand at integer values af,

with x + ¢t € 2Ny, and start to extend laterally according to the deterministic
rule. Formally, sinceH, is by definition lower semi—continuous, i.€1,(z,) =
liminf, .., H:(x), attimest € N, there might be isolated local minima at integer
values ofr with z + ¢t € 2N. H,(z) is modified at these integer values to

H,(x) :li_r%maX{Ht(x—e),Ht(x—i-e)}—i-w(HTm,“Tm), (4.14)

where thew(i, j), i, 7 € N are the geometrically i.i.d. random variables from the
last passage percolation. Afterwards in the time intejtval+ 1], hy(x) evolves
deterministically with initial conditiorH,(x) = H,(z). The overall initial condi-
tion is Hy(z) = —oo for = # 0, andHy(0) = 0.

To define the restricted discrete PNG model we modify the Bernoulli cone be
shifting its layers along the horizontal diagonal in order to allow only steps of size
one, compare with Figuré.2,

D" = {(x1,29,23); (v1 — [w3],22 — [23],23) € DURT x R" x Ry} (4.15)
The corresponding height function
h'(z1,z2) = max{xs € R; (z1,22,23) € D'}. (4.16)

now has only jumps of at most The PNG height functiod/;(z),t > 0,z € R
is defined analogously as

Hi(z) = (52, 5%) € NgU {—o0}. (4.17)
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Figure 4.3:The mapping from the restricted discrete PNG height funciipf)

to the corner growth modelA; moves upward during the evolution. The light
shaded squares are added in going fromto A;,,. Therefore no step pair is
created there at time

Figure 4.4:The kink—antikink gas at two half-integer time steps.

Its deterministic evolution is exactly the same as in the unrestricted case. The
relative height of new islands now is not any more geometrically distributed, but
is one with probabilityp and zero with probability — p. Furthermore islands can
nucleate, only at integer timesat pointsz with « + ¢ + Hj(x) € 2N.

The restricted discrete PNG model, having a somewhat tricky definition, arises
naturally as the borderline between the bulk and the north polar region of the
Aztec diamond®7]. Actually it is a version of the single—step modél9) via the
mapping sketched in Figt.3.

The discrete kink—antikink gas

The height differences in the unrestricted discrete PNG model have integer values,
and thus can be identified with an occupation number of particles, called kinks for
up—steps and antikinks for down-steps. kgtz) € Z be the signed occupation
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number atr € R and timet > 0, i.e. if m;(z) > 0 there arem;(z) kinks, if
m¢(z) < 0 there are-m,(x) antikinks, andn;(x) = 0 means no particles at

kinks move leftward with velocity-1, antikinks rightward with velocity. Kinks

and antikinks can not cross each other, upon collision they immediately annihilate
in pairs until only one kind remains. If there are survivors they proceed in their
direction. In addition to that, kink—antikink pairs are created infinitesimally after
integer timeg + ¢, t € Ny, and at positions: + ¢, z + ¢ € {0,2,...,2t}, for
some smalk > 0. The number of created pairs is geometrically distributed with
strengthp. Initially there are no particles at all and the restriction on the space—
time location of possible nucleation events ensures that

For the restricted case there is a simple exclusion constraint. At most one
particle, kink or antikink, is allowed to be at a plaee,(x) € {—1,0,1}. Nucle-
ations are allowed only one pair at a time with probabititgt integer times but
with the nonlocal constraint that inter-particle distances have to be always even
integers at the time of creation. With these definitions the correspondence to the
discrete—time TASEP can be seen as follows. The mapping is exact for all values
of the jump ratep but becomes especially easy to see if we think béing close
to 1.

We think of a TASEP configuration;,(j) with alternating0’s and 1's, say
--+101010101010 - - -. This corresponds to the configuration with no (anti)kinks
at all. If at the next time step everyin the TASEP jumps to its right one has
-+-010101010101 - - - and no kink/antikink pairs are produced. If in the fol-
lowing time step al decides not to jump there is1d00 subsequence, one has
--+101011001010 - - -, corresponding to the production of a kink antikink pair.
Subsequently, assuming that all TASEP particles which can jump to there right
do so, one has - 010110100101 - - -. The11 pair has moved to the left, and thus
corresponds to the kink and the pair has moved to the right corresponding to an
antikink. Annihilation of kink/antikink pairs takes place in much the same way.
To conclude we obtain the occupation numbers for the kink/antikink gas at half
integer times asn, 1 (j + 3) = m(j) + m(j + 1), t € Z. Positions inbetween
these discrete time steps can be linearly interpolated.

Oriented digital boiling

Gravner et al$3] study the so called oriented digital boiling (ODB) model, see
also b5, 54] for a nonhomogeneous generalization. It is specified by the height
functionh®P8 : Ny — {00} UZ, t € Ny. Initially h$PB(;j) = —oo for j > 0 and
hSPB(0) = 0. The dynamics is given by

h?DB(t +1)= HlaX{h]QPlB<t)7 h?DB(t) +p(j,1)}, (4.18)
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wherep(j,t) € {0, 1} are Bernoullirandom variables with Piglij, t) = 1} = p.

In [55] an inhomogeneous version of this model is studied where the probability
for p(t, j) = 1is allowed to depend oj The ODB is just another interpretation of
the Bernoulli cone. We distor® by the following (lattice-)affine transformation,

DO = {(2y, 29, 25) € T (21 — 22 + 1,20 + 1,25 — 25) € D}+]-1, 0.
(4.19)

If we now set
h§P8(t) = max{zs; (j,t,5) € DO°®},  j,t € Ny, (4.20)

the rule forD, (4.2), implies the law forh?P%(t) as given by 4.18, where the
value of eachyp(j,t) correspond to the activeness of exactly one vertical bond
determiningD.

Finally let us mention that as for the last passage percolation interpretation
of the Bernoulli cone itselfa9°8(¢) can be expressed analogouslyt{d/, N)
in (4.4), as the maximum over all paths running from(0,0) to (j,¢), The set
of paths is restricted to those sequences, which are strictly increasing jr the
direction, i.e. if(j,t) € v, ¢t > 0, then necessarily eithéj — 1,¢ — 1) € ~ or
(j,t — 1) € v. with these settings

hSPB(t) =max > p(j.t), (4.21)
(0.0)£(t)er

with the Bernoulli random variables j, ¢) as “random potential”.

Translations between the models

There are further distortions of the Bernoulli cone which upon time slicing lead to
new or already described discrete height processes. We enumerated the most im-
portant of them which have been studied in the literature. Our main point here is
to illustrate that any statement for one of the above mentioned models gives some
insight in properties of any of the other models. The way to obtain these transla-
tions most conveniently is to translate first from one model into the language of
the Bernoulli cone, and then back to any other model of interest.

Especially we would have the most detailed information of the statistics of the
Bernoulli cone if we knew all the correlation functions, i.e, for subsets 73,
the probability

pa(D) = Prob{A C D}. (4.22)

Although we do not explore it any further, let us note that|féf = 1 one has
explicit expressions fgy 4, which has been found by Baik and Raiag][ It holds
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even for spatially dependent activation rates for vertical bondsaLet; be two
arbitrary sequences i, 1[. Let the vertical bonds, which start@dtm,n) € Nj,

be active with probabilityy;5,,, i.e. all vertically aligned bonds have the same
probability, then

Prob{(l,m,n) ¢ D}
— Eveu (det [TT]0 = ai)(1 + a)(1+ 3,U7).  (4.23)

i=1j=1

Note that the distribution depends only on the values but not on the order of the
constantsy; and ;. It would be of considerable interest to have similar expres-
sions for the probability of a subset of the lattice with two or more elements having
empty intersection witlD.

4.2 The PNG limit

In order to obtain a nontrivial limjp — 0 of the Bernoulli cone, we have to rescale
horizontally, such that the density of active vertical bonds stays fixed. We define

N p/2 0 0
DPNG _ }Dli% 0 /p/2 0 |D, (4.24)
0 0 1

The number of active vertical bonds rarefies whegets small. The limitis chosen

in such a way, that there density remains finite. In the li;mit> 0 the vertical
bonds in each layer are distributed according to a homogeneous Poisson point
process of densitg in [0, co[2. Since the probability that two vertical bonds right
above each other are active is zero, the corresponding height function

hPNC(21, 29) = max{w3 € Z; (v, 29, 73) € D"V} (4.25)

has maximum step size with probability one. We have recovered the height
function of the PNG model of Chapt&rwith droplet initial conditions. Without
giving details we mention that obviously one can obtain PNG clusters with arbi-
trary initial conditions by properly choosing a sequence of initial conditions for
the Bernoulli cluster.
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Figure 4.5:A piece of a TASEP cone. The height lines are corner growth config-
urations at different times.

4.3 The TASEP limit

The opposite limip — 1 of the droplet process requires a rescaling of3haxis
by the factorl — p, in order to obtain a well defined process. We set

1 0
D™SEP —_lim [ 0 0
0

p—1

D

-

(4.26)

O = O

I1—p

The lateral lattice structure is retained. Look at the recursive law for the height of
the Bernoulli cone4.3)

hy(i,7) = max{h,(i — 1,7),h,(i, 5 — 1)} + w,(3, j), (4.27)

with i.i.d. random variables, (i, j) having geometrical distribution of strengih
Under the scaling4.26) one obtains the law for the height of the TASEP cone

h(i, ) = lim, 1 (1 — p)h,(i, j) @s
h(i,7) = max{h(i —1,7),h(i,j — 1)} +w(i, ), (4.28)

wherew(i, j) are now real valued positive i.i.d. random variables with expo-
nential distribution Propw(i,j) > s} = e~*. All of the models equivalent to
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ml
[Y)
h=2 h=7
n [t n
h=0 h=4
m

Figure 4.6: One square of the model with height lines. Three new height lines are
produced corresponding to three consecutive active vertical bonds being wetted.

the Bernoulli cone enumerated in Sectbid have their analogue in the TASEP
limit. Notably the corner growth, resp. single-step model, become continuous
time growth processes with exponentially distributed waiting times for adding a
square, cf. Figurd.5. Also the corresponding particle models, the discrete-time
TASEP and zero range processes converge to their well-known continuous-time
counterparts, the standard totally asymmetric simple exclusion process and zero
range process3p, 83].

4.4 Stationarity

Coming back to the percolation model, we introduce boundary sources, i.e. the
vertical bonds at the borders = 0 andn, = 0 now have a probability and 3,
respectively, to become active. The vertical bonds in the bulk still have probability
p. The bond at the origin is chosen to be inactive by convention. In the Johansson
picture this corresponds to a geometric distribution of the first row and the first
line of the integer valued random matrix with strengtland 3, respectively, the
entry in the corner being fixed as zero. By properly choosirend 5 one can
arrange the height functior(n,, n,) to have stationary increments in the direction

of increasing coordinates. We are not aware of any publications which investigate
this property. Although the stationary state has been determined for the various
mappings to vertex and lattice gas modélisq 110, the height lines of.(nq, ny)
provide the simplest way to investigate stationarity, since one does not have to
impose periodic boundary conditions in order that the steady state has a simple
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product form.

The key observation is that it is enough to look at one single square of the
shifted lattice{N, — 1/2)* and study the statistics of incoming and outgoing height
lines, projected vertically. If there are lines entering from the bottom amdines
from the left,;n A n = min{m, n} of them annihilate. Lekt denote the number
of created line pairs in the square, then the number of outgoing lines at the top is
m’ = m—(mAn)+k,andn’ = n—(mAn)+k at the right side, see Fig.6. Now
let k£, m, andn be independent and geometrically distributed with parameters
«, andg, respectively. The joint probability?,,, ,.», for m’ andn’ outgoing lines
is

Pm’,n’ = (1 - p)(l - O{)(]_ - ﬁ) Z pm,/\n,amﬁném—m’,n—n’

m,n>0
= (1*P)(11:;ﬁ)(1*5)pm’/\n’a(m’—n’)VOﬁ(n’—m')\/O
Ly (2" (1—a)(1—p)a™p" (4.29)
= — —a)(l - P :
1—af \ap ’

wherem V n = max{m,n}. Thus if «f = p the outgoing lines are again dis-
tributed independently and geometrically with the same strength as the incoming
lines,

Py = (1= a)a™ (1 - B)8". (4.30)

For a givenp we arrive at a one-parameter family €|p, 1| of stationary solu-
tions, which extend to product measures on space-like paths, i.e. chains of sites
connected by bonds and being mutually non-time-like, — n;)(ms — ny) <0,
for each two site$m,, my) and(nq, ny) in the path. More precisely, we take two
space-like paths, and~,, having a time-like separation, i.e. for each $iig, n,)
in v, there is at least one siten;, ms) in v with m; < n; andms < ny. The
(possibly infinite) region enclosed by the two paths is bounded by bonds with in-
coming lines belonging t9;, and bonds with outgoing lines belongingo If the
numbers of incoming lines for each bond are distributed independently geometri-
cally with strengthn for horizontal bonds angd/« for vertical bonds, eq.4(30
immediately tells us by induction that the numbers of outgoing lines for each bond
are still independent with the same distribution for horizontal and vertical bonds
as for the incoming lines.

For a space-like path approximating the straight line = —}—;Zm, b €
[—1,1], one obtains a proof for Propositidhl of Chapter3 in the PNG limit.
We chooser = 8 = ,/p. The geometric distribution of incoming lines at vertical,
resp. horizontal bonds becomes independent Poisson point processes along the
straight line in the limip — 0 upon rescaling the lattice byp. The line densities
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Figure 4.7:Two examples of propagating the product measure: (a) from a stair-
case to the border of a quadrant (the parameterg €|p, 1] can be chosen in-
dependently), and (b) from the lower-left sides of a rectangle to the upper-right
sides.

for entering horizontal lines can be easily calculatedlasb) /v/1 + b2, likewise
the density for vertical lines i€l — b)/v/1 + b2.

Two special cases of interest are sketched in &ig. Viewed as the discrete
PNG model, the anti-diagonal defines initial conditions in form of a fixed macro-
scopic slope, being different far> 0 andx < 0. The macroscopic shapes arising
from these initial conditions cover all self-similar macroscopic shapes, possible
for this model.

The M x N rectangle in (Fig4.7(b)) can be regarded as a piece of a truely
stationary height process defined on the whole plane. This is the discrete analogue
of the setting in SectioB.3and one expects that one could recover the same scal-
ing result. Explicit expressions for the distribution/gf\/, N) are available1].
Unfortunately, the Riemann-Hilbert techniques used for the proof in the PNG case
work only for the square case &f( M, M) which allows to prove convergence to
the scaling functiO@fy”(y) only aty = 0, so far. In the next section we illustrate
how the stationarity property allows to determine the generator of asymptotics by
application of the KPZ scaling theory.
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4.5 The generator of asymptotics for the
Bernoulli cone
For an arbitrary large rectangular piece of the stationary height process as in

Fig. 4.7(b) the mean slope df(m, n) and its roughness amplitude along its sides
are immediately obtained fror (30) as

ue = E(h(m+1,n) = h(m,n)) = 1f‘a,
va = E(h(m,n+1)—h(m,n)) = Oﬁp, (4.31)
and the roughness amplitude
Ao =E((h(m +1,n) — h(m, n) — u,)?) = ﬁ (4.32)

If we interpretm as the spatial direction andas the time direction we obtain for
the slope dependent growth velocity

p(1+w)
and the roughness amplitude reads
A(u) = u(l + u), (4.34)
whereu > 0.

This information is indeed enough to determine the scaling form of the height
process 4.1 for the Bernoulli cone completely. Solving= —v'(u) for u with
¢ > 0, we haveu = /p/c(,/pc + 1)/(1 — p). We are looking at a macroscopic
reference point)M, N). By settingc = M/N the Legendre transform ofi (33
yields the macroscopic part of the scaling form for a growing droplet

B, N) = No(u) + M — PN 2V MN

e (4.35)
The scale of fluctuations; (M, N) = (30" (u)A(u)*N)'/? becomes
1 p o\ 1/6 2/3 2/3
O N) = 7= (s) " (VP +VN)" (VI +VpN) . (436)

For the lateral scale of fluctuationg, M, N) = (2A2AN?)'/3, in the scaling form
(2.43 we obtain

2

1/3
(M, N) = 2( M ) (VM + VNP (VM +/pN) 2. (4.37)

N
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Putting the pieces together, KPZ scaling theory predicts the scaling limit for the
Bernoulli cone

h(M + ¢(M, N)m, N) — (%M, N) — 8;h%(M, N)c(M, N)m)

— HOVeY ) — m? (4.38)

for M, N — oo, M/N = const.
Let us determine the generator of asymptotics for the Bernoulli cone. We
make the ansatz

wheref(m,n, h) has to be chosen such that
oG (m,n, h) = C(m,n)™", (4.40)

wheneveiG(m, n, h) = 0. Thus we can set
[(1 = p)h —p(m +n)]* — 4pmn

4?3 (mm) 3 (o + Vi)™ (vim + /pn)
This generator of asymptotics can be used to determine the scaling form in any

of the coordinates introduced for the different models described in Setion

Also the limiting casep = 0, p = 1 can be easily obtained from.@41). Perform-

ing the PNG limitp — 0, whith new coordinates = (p/2)/2m, s = (p/2)"/?n

one arrives at

G(m,n,h) = (4.41)

2/3"

h? —8rs  h*—4(t* — 2?)
PNC(z,t,h) = = 4.42
G ) = G T 4 — gy (4.42)
expressed in the variables for space and time taken as in the original PNG model,
t=(r+s)/2Y2, x=(r—s)/22
In the TASEP limitp — oo, the heighth has to be rescaled y— p and we
obtain

(h—m —n)? —4mn

(mn) (/4 /) 73
In the following chapter the scaling forn2.43 for the PNG model will be

shown to be correct, at the same time identifying the limiting process. This

strongly confirms the validity of4.42). Furthermore in a recent preprini9)

Johansson proves the same scaling form for the Bernoulli cone in the language of

the unrestricted discrete polynuclear growth model of Sectidn As expected,

the scaling parameters are given in terms2of{). In [10Q the consequences of

the KPZ scaling theory for the continuous-time TASEP are discussed. All prefac-

tors in scaling relations are in fact contained4n4@.

GTASEP( (443)

m,n,h):4



CHAPTERS

The multi-layer PNG model

Up to now we studied one-point distribution functions for given initial conditions.
Since they can be interpreted as distributions of height differences, in the station-
ary case of Sectio.3we were able to derive two-point correlation functions for
arbitrary relative positions in space-time. To go beyond a single height (differ-
ence) distribution we need a better understanding of the law for the whole process
(x,t) — h(z,t). To this end we extend the PNG model to a multi-layer ver-
sion with several interacting copies of PNG lines below the original one. The
dynamics we introduce for the lower lying lines resembles very much Viennot’s
geometric construction to prove the Robinson-Schensted-Knuth correspondence
[127. Therefore we call it RSK dynamics. The dynamics does not affect the
statistics of the first line. Surprisingly, the whole line ensemble has a simple dis-
tribution with Boltzmann weights. The energy associated with a configuration is
very simple. One the one hand the difficulty lies in the structure of the configura-
tion space, which is restricted to non-overlapping PNG lines. On the other hand
we need to recover the statistics of the first line as the marginal distribution of the
line ensemble.

The equilibrium statistics of the non-intersecting line ensemble is rephrased
as a theory of non-interacting lattice fermions on the line in Euclidean space-
time. Height fluctuations can be written as expectations of fermionic densities
and currents, which have determinantal form.

The scaling limit of the PNG line translates to the continuum limit of the lat-
tice fermions. One obtains non-interacting fermions on the line governed by a
Hamiltonian with linear potential. The position of the first fermion at Euclidean
time y defines the Airy procesd(y). It is stationary iny, the distribution of4(0)
is the Tracy-Widom GUE distribution. Very roughly the Airy process looks like
one-dimensional Brownian inside a confining potential with long-range correla-
tions.

For the first line of the multilayer PNG model, the original PNG droplet
h(z,t), one obtains the limit

h(t¥3y,t) — 2t
t1/3

— A(y) —y* fort — oo, (5.1)

75
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identifying HS'"edy) as the Airy processi(y). Thus the limiting distribution for
curved growth,FguE, Iis recovered. ButH.1) contains much more information.

It predicts the scaling limit for arbitrary static-point correlation functions. In
[102) the Airy process was introduced arel ) proved in the sense of joint distri-
butions. In a recent preprind] Johansson proves for the discrete PNG model of
Section4.1 convergence of the probability measures themselves, confirming the
universality claim.

5.1 The Airy process

The Airy process can be obtained as the position of the first particle in Dyson’s
Brownian motion §#1]. The first line of V non-intersecting Brownian paths con-
fined to a quadratic potential converges in the lifiit— oo to the Airy process.
Dyson’s particle trajectories correspond to the eigenvalues of a GUE random ma-
trix valued process. Let;;(s), 1 < j,k < N be real-valued mutually independent
stationary Ornstein-Uhlenbeck processes of vari%nc@hen the hermitian ma-

trix H(s) with entriesH,;, = aj, +iax; = Hy; for j < kandH,; = v/2aj; is, for

fixed s, distributed according to the standard Gaussian unitary ensemble (GUE) of
hermitianN x N matrices. The eigenvalues #f(s), A\1(s) < --- < Ay(s) have

the stationary distributio ! [Tic;(Ni = N)ATL e~ . They are the trajectories

of Dyson’s particles. The largest eigenvalue converges to the Airy process,

V2NYS(AN(NT3y) = V2N) — A(y) (5.2)

in the sense of joint distributions.
Explicitly A(y) is defined by means of the extended Airy kerri€lZ, 69]

[0 VDA (u— NAI(u — \)dr  fory <y

L _ _ (5.3)
— [T VYA (u — M)A (W — N)dA fory >y

K(u,y; u',y') = {

Note that the exponents in the integrand are always decaying. £qy it reduces
to the ordinary Airy kernel121], which has integral form

K(u) = /_ " A (w — M)A (o — \)dA
_ AA () — A (A (). (5.4

u—u

The Airy processA(y) is defined through its finite-dimensional distributions at
Yi, .-, ym € R. FoOry,; < --- < y,, we define the projectoP on ) = R x
{yi,...,ym} C R? as multiplication by the characteristic function of the set
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Ui<jemlugs 00[x{y;} € Q. PKP, with K given by the kernel%.3) is a trace
class operator oh?(§2, ;1) with counting measure ofy;, . . ., ¥, } and Lebesgue
measure ot ([69], Prop. 2.4) and one sets

PrOb{A(yl> < Uy, ... 7A(ym) < UM} = det(l - PK)LQ(Q,M)' (55)

The determinant is defined by the Fredholm expansion

det(1 — K) — i (=" / det (K (2 21))y e,y "1(z)  (5.6)

for any trace class operatéi on Ly (€2, 1) with integral kernelK'(z; y). One has
det(1 — KK') = det(1 — K'K). For a finite counting measuré.g) is just the
ordinary determinant.

In the Appendix of 107 it is shown thatA(y) has a version with continuous
sample paths. The distribution@ats given by

Prob{A(y) < S} = det(l — K>L2(]5700D = FGUE<5)7 (57)

independently of/, whereK reduces to the ordinary Airy kernéd.@). The vari-
ance increases linearly for short distances,

E([A(y) — A(0)]*) = 2[y| + O(*), (5.8)
and correlations are slowly decaying,
E(A(y)A(0)) —E(A(y))E(A(0) = cy? +0(y™) (5.9)

with a positive constant, whose valuex 1.5 + 0.3 is estimated from a Monte-
Carlo simulation.

5.2 The multi-layer PNG droplet

Let us define the multi-layer PNG model with the RSK dynamics. In addition to
the original PNG lineh(z,t) = ho(x,t) we have an infinite hierarchy of height
lines hy(z,t) € Z, ¢ < 0, subject to the constraint of no overlap, (z,t) <
he(x,t), as a static and dynamical restriction. The deterministic dynamics for each
of the height lines is the same as for the PNG model, up/down-step motion with
constant velocity and annihilation upon collision. Nucleations of up/down-step
pairs for the lower lying lines are not independently random but occur whenever
an annihilation event takes place in the adjacent line above. Thus atifimehe

¢-th height line a collision of an up-step and a down-step occurs at positibey
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disappear in this line only to reappear as nucleatidm at) in line ¢ — 1. Only in
the first line nucleations happen randomly with space-time dens{@jearly this
dynamics respects the orderihg< hy .

As initial conditions we také,(x, 0) = ¢ with nucleations on the first line only
allowed in the regiod |x| < t}. Inside the interval—t, ] the first linehy(z, t) has
the law of the PNG droplet, Sectiéghl Note that the total number of up-steps,
which equals the total number of down-steps, can not decrease in the course of
time. At timet it is Poisson distributed with meai?, two times the space-time
volume up to time. In Figure5.1a typical realization at timeis shown.

xX=-—t

Figure 5.1:A multi-layer PNG droplet at timé The asymptotic droplet shape is
indicated by the dotted line. Far = 0 a corresponding fermionic configuration
is drawn.

Let us define a measure on the spageof all non-intersecting height line
configurationsh,(z, t) at timet, with finitely many steps, by parameterizing with
respect to the step positions. For definiteness we reguitet) to be upper semi-
continuous, i.e{x; hy(x,t) > c} is closed for alle € R. One hasy,(z,t) = ¢
for |z| > t andhy(z,t) < he1(x,t) for £ < 0. Letn, be the number of up-
steps in height liné which always equals the number of down-steps:,If= 0,
he(xz,t) = ¢ forall x € R. If n, > 0, the position of the-th up-step in height
line ¢ is denoted by/; ", —t < yi* < -+ < y&* < t and the position of thg-th

0
down-step in the same height line is denoted/by, —t < 3y~ < -+ < yh~ <.
We setn = (ng,n_1,...), and|n| = >, n,. We denote by;(n) the set of
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all step configurationﬁ(yf*, yf’_)1§jgw)e<o such that the corresponding height
lines do not intersectl’,(0) is a single point and’,(n) is naturally embedded in
[—t, ]2, By the upper semi-continuity if an up-step and a down-step in the same
height line are at the same location, they represent a nucleation and not a collision.
We setl’s(n) = U,,—, I'«(n) as a disjoint union, and finally; = (J,., I'+(n).

Let w; be the uniform measure dn, which means that (I';(0)) = 1 and
wy | T'y(n) is the2|n|-dimensional Lebesgue measure Iofin). For arbitrary
nucleation raté we define the probability measusgonI’; as

2
Thusy, is proportional to the Lebesgue measure in each sector.

Theorem 5.1 The probability measure induced by the multilayer droplet process
he(x,t) at timet onT'; is y,. FurthermoreZ; = £ and
(2¢%)"

wi(Te(n)) = P (5.11)

Proof: The mapping defined by the RSK dynamics from Poisson point configu-
rations inside the triangl&, = {(2/,¢); |2/| < t’ < t} into 'y is clearly locally
linear in an open dense set. More precisely, for Poisson p¢ints;) € T;,
1 <i < n, such that alr; = t; + x; are pairwise distinct and all = ¢; — z; are
pairwise distinct, up-step positions at tirhare att — s; and down-step positions
are att + r;. Therefore the determinant of this mappin@’s The probability to
haven points inT; is (£ t2)" /n!. The theorem follows provided the RSK mapping
is onto.

This can be easily seen by running the RSK dynamics backwards in time.
Take any element(yf*,yf’_)lsjgnl)Ko of I';. The corresponding height lines
are defined as -

ho(z,t) = 0+ Z Oz —y; ") + (0(y;" —z) — 1) (5.12)

with the Heaviside functiod(z) = 1 for x > 0, f(x) = 0 for z < 0. The
evolution backward in time is completely deterministic. When an up-step and a
down-step collide inside the same height lihthey are bumped into liné+ 1.
Collisions in the first line/ = 0 mark the space-time coordinates of nucleation
events. Att = 0 one has recovered all nucleation events, which obviously lie in
T;. O

We introduce the occupation variablggx) with values in{0, 1} by setting

1, if hy(z,t) = j for somer,
m(:c>={ o) = (5.13)

0, otherwise.
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Their expectations with respect tg can be written in the form of a path integral,

E(nj,(21) - - mj, (2m)) = 27 / (%)&f—tlam(m)ldx%(xl) N (T ) A
(5.14)

To proceed we introduce a cut-offf > 0. Height lines with index < M

are neglected. The remaining height lines are restricted vertically to the interval
{—M,...,M}. We will suppress the indeX/ in the following formulas, even-
tually we sendM — oco. Let us compute the general partition sufp ,(n, ),

>0 =N,

Z[x,y] (T/u 19) = / (
n(z)=n,n(y)=2

Wiy, ¥ > z, denotes the Lebesgue measure with respect to step positions re-
stricted to the intervallr, y| of non-intersecting line configuration&y, ., (n, V) is

the weighted phase space volume for configuration¥ bdeight lines in the inter-

val [z, y] with fixed left and right boundary and confined to value§i/, ..., M }.
Clearly Z, = Zj_;14(w,w), w; = 1forj < 0andw; = 0 forj > 0, in the

limit M — oco. Z,, is a square matrix of dimensioft"},"") with the semi
group propertyZ, , Zy,.) = Zj.-- Assume that ing.14) the z; are ordered,

—t <z <--- <z, <t Then the path integral can be written as

E(nj,(21) My () = lim (Z_pg(w,w))

M —o0

X (Z[*t,ml]djl Z[Itl,wz}&j e Z[wm—17$7n]6jm Z[ﬂcm,t]) (wa w)? (516)

BN [y

)ZZ fa;y |8Ih[(ar')\dx’ dw[a},y] ) (515)

whered;(n, 9) is the diagonal matrix with entriesif »; = 1 and0 otherwise.

At this point we switch to the fermionic language which facilitates the task
to calculate these expectation values explicitly. The CAR algebraZovegen-
erated by the fermionic creation and annihilation operatt(s), a(j), j € Z,
respectively. They satisfy the canonical anticommutation relations

{a(i),a"(5)} = 05, {a(i),a(j)} =0, {a*(i),a”(j)} = 0. (5.17)

The Hamiltonian for the free fermions is

H=-— Z \/g(a;rlaj + a;fajﬂ) (5.18)

JEZ

with a%,a; = 0 for j € Z\ {—M,..., M}. From now on we specify t§ = 2,
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is denoted as

M

my =11 (a;)"10). (5.19)

j=—M

where|0) is the vacuum vector with no fermions at all. With this notation at hand
it is easy to see that the partition functidn15 can be written as

Ziay)(0,9) = (nle” @01 9), (5.20)

compare with 107, where the construction of the fermionic Fock space is ex-
plained in detail. General expectations now read (with proper time order in force)

E(n;, (1) - -y, (2m)) = A}Enm<w|€_2tH|w>_l<w|e CH0 s ay,
x e~ (@2~ wl)Ha;an e e_(mm_’”mfl)Ha;majme_(t_’jm)H|w). (5.21)

Exponentials of operators quadratic dna* are easily handled. FaH =
>_ij a;hija; one has

6—xHaie:cH _ Z(exh)ijaja —xH * xH Za’ —J:h 1]7 (522)
J

easily verified by differentiation with respect 1o Therefore we first focus on
expectations at = 0.
We define the density matrix

pr = (wle 2 |w) " te W) (wle M. (5.23)

Its trace isl and arbitrary expectations can be reduced to quadratic ones by

tr(pia;) = 0 = tr(pay), (5.24)
Bua(i,§) € tr(paia;) = (" Po(Poe™™"P,) ' Pue™™) ., (5.25)
tr(p.aj, ---a; aj, ---a;) = det (BMJ(ik,jl))lSk,lgm, (5.26)

where(F,);; = d;;w; is the projection onto sites occupied in the ground state.
The inverse in%.25 is taken within the image oF,. It can be simplified for

a Cholesky decomposition ef*. Let U and L be invertible operators anf a
projection such that/ P = PUP andPL = PLP. One hasPU~! = PU'P
andL~'P = PL~'P. Therefore

P((1—P)+ PLUP) ' P=U"'PL". (5.27)
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In finite dimensions one can think &f as an upper triangle matrix and 6fas
a lower triangle matrix, and® a diagonal projector, for examplg; = ¢, ; for
1 < k € N and zero otherwise.

From (.18 we have that, = —d — d*, whered is the left shiftd;; = 0, (;_1),
an upper triangle matrix, andf, its transpose, lower triangle. dfandd* were
commuting we could applys(27). For finite M this is not the case. The situation
simplifies whenM — oo.

In the limit M — oo we have to give up the Fock space, for we have infinitely
many fermions. In107 it is shown that tfp, - ) converges to a quasifree state
w(+), i.e. abounded linear functional on the CAR algebra @/gi6]. Itis defined

by
we(1) 1, (5.28)
wi(a;) = 0 = wi(ay), (5.29)
wi(aga;) = By, ) = J\}{nooBM’t(i’j)’ (5.30)
we(ay, ---a; az, ---a;) = det (Bt(ik’jl))l§k7l§m' (5.31)

Sinced andd* commute or¥, by (5.27) we can identifyB; as
By = e P (P e P,)  Pe ! = eI p,e ), (5.32)
By Fourier transforming one has

(et(d*fd)) _ 17 eik(n_m)e—%tsinkdk — Jnfm(2t)7 (533)

mn 2m J—m

the modified Bessel function of order— m. ThusB, is the well-known discrete
Bessel kernel

i,§) =Y Jia(2t)J;i(2t) (5.34)

<0
It has integral representation
tJi_l(zt)Jj(zt) — Ji(2t)J;_1(2t)
i—j
which holds also on the diagonal, employing I'Hospital’s ruleifer j. To verify
one has to converts(34) into a telescoping sum using the identity/, (2t) =

Jn—1(2t) + J,41(2t). The shifted Bessel functions— J,,_;(2t) form a complete
system of eigenfunctions with eigenvaldteﬁar the Hamiltoniar,,

Bt(i,j) =

fori # j, (5.35)

heth(n) = —tb(n = 1) = (n + 1) + F4b(n) (5.36)
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regarded as an operator 64{Z). Note that this is the free one-particle Hamilto-
nian (6.18 together with a linear potential. Thu is the spectral projection onto

{h < 0}.
Using the anticommutation relations.{7) we can already compute expecta-
tions atz = 0. For pairwise distincjy, . . ., j,, one has
E(1;,(0) - 1;,,(0)) = wilajay, ---aj aj,)
= det (Bi(jr: 1)) <jo s (5.37)

The second equality holds for there is always an even number of transpositions
needed to propagate the to the right as in§.31). Thus the probability mea-
sure forn;(0) has determinantal correlations. In the probabilistic literature point
processes of this structure are known as determinahid].[We need $.37) for
arbitrary j,. One has to take care of the anticommutation relatiéns7/ when
normal ordering.B;(i, j) has to be replaced b, (i, j) — ¢; ; whena; is left of

a?. This yields

E(nﬁ (O) N (0)) = det (Bt(]k’a]l) - 0(]{7 — l)éjkvjl)lgk,lgm' (538)

For arbitraryz we have to employS.22). In order to allow for coinciding sites
one has to respect the time order. We define the extended discrete Bessel kernel

[102

wt(e_gﬁHa;-‘exHe_yHajeyH) = (e*thteyh)ij forz <y
Bi(i,x;j,y) = § —wi(eVajev e Hare™™) = (e7"(B;, — 1)e™),;
forz >y,
(5.39)

where 1 is the identity matrix.
Let us write the extended Bessel kernel in the eigenbasis.olhe integer
order Bessel function has the representation
1 dz
—¢€

Tn(2t) = —

: Hzm=2) (5.40)
21 z

where the contour integration is a circle around 0. Therefore

1 [dr, .
(7™ J(2t)) = — et Derle ) 0 (5.41)
no 2w z

Substitutingz by (¢ + z)'/2(t — )22 yields

(ea(20), = Ju(2vE =) (L), (5.42)

t—x
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We substitute into.39 and obtain

> 1o @71 (20) T (20)a 0D forx < o

— i=lJ. ‘ ~(7'=1) , 64)
Yos0 @ (20) Ty (20)a forz >z

By(j, x4, 2") = {

with o = (if—i)l/? andv = V12 — 22.

The expectationy.21) with arbitraryj, and time ordered; < --- < x,, IS

E(nji (xl) - Ugm(ffm)) — wt((e_mHa;e“H)(e_“Hajle“H) e
BV <€—mmHa;fmezmH)(e—meajmermH))
= det (Bt(]k; Tk, jl; xl))lgk,lgm' (544)

Expectation with equal times, = z;,, are recovered in the limit, ~ xy.1.

Here is a subtlety which merits to be stress&dn;, (1) - - - 1;,,(z)) iS a con-
tinuous function ofr4, ..., z,, even if some of theg, are coinciding. Obviously

it is symmetric with respect to permutations of tyg, z;). The same is true for

det (Bi(jr, zx; ji, 21)) -, .- BUt the determinant is always zero if there &ré

with j, = j, and one sets;, = z;. Nevertheless the limits, ' x; andx; \, z;

exist, are equal, and in general nonzero. In conclusion Expectations for arbitrary
pairwise distinct pointsj, x)1<k<m are given by the determinantal formula in

(5.44).

We mention that the extended kerrl(j, z; j',2') can be replaced by the
kernelg(j, ) B:(j,x; j', 2')g(j', 2")~! with arbitraryg(j,z) # 0. The additional
factors for such a similarity transformation cancel always upon evaluating the
determinant in%.44).

We promised to learn something about joint distributions of the first PNG line
ho(x,t) = h(x,t). We look at them-point distribution at(jx, zx)1<k<m, jx € Z
arbitrary ande; < --- < z,, in [—t, t]. Define the set

m

Qu = JUar} x v +1,...,M}) C Q, (5.45)

k=1
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Q= {x,...,z,} X Z. The joint distribution function is given by
PrOb{h(JL’l, t) < jl, N h([[‘m, t) < jm} =

- A}iinooE( 1T (1—77]-(:):)))

(2,5)€EQM
|Qnr]
= Jm d o Y E( ] we)
n=0 ACQu, |Al=n (z,)€A
|Qnl
_ : n )
- ]V}Enoo (_1) Z det (Bt(jv ;7,2 ))(I,j),(x’,j’)EA
n=0 ACQ]VI,|A‘=TL
Q| (_1>n
- ]V}linoo Z n! Z det (Bt(Zk7§k}) il’ fl>)1§k,l§n
n=0 ((flvil)v---(fnain))E(QM)n
= det(l = PoBi)e ), (5.46)

where the projectoF, is multiplication by the characteristic function of the set
Q = limy .., Qy and B, is regarded as an operator 6t(Q2). To prove the
existence of the limif\/ — oo we need to show that

Prob{h(zy,t) > M, ..., h(zp,t) > M} — 0 for M — co. (5.47)

Since the maximum afi(x, ) is smaller than the number of nucleation events up
to time ¢, we have forM/ > 2t?, the average number of nucleation events, an
exponential bound on the left expression5(/).

5.3 The scaling limit

The statement5(1) is shown in the sense of joint distributions. For the single
point distribution this reduces to the limit

FEY = det(1 — By)ez(fni1.00) — Fouels) (5.48)

with n = [2t + t/3s] ast — oo. Here B, is the ordinary discrete Bessel ker-
nel 6.35. Comparing .48 with (3.17) we encounter a special instance of the
Borodin-Okounkov identity 5] which constructively relates any Toeplitz deter-
minant to a corresponding Fredholm determinant. The proof of the convergence
of the m-point distribution function %.46 to (5.5) in the proper scaling limit is
shown essentially by the convergence of the extended Bessel kernel to the Airy
kernel.
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Before going into details, let us first note that the Airy kernel can be regarded
as the spectral projectiof;y, <oy onto the negative spectrum of the selfadjoint
operatorHj on Ly(R),

d2
H is the Hamiltonian of a particle in a linear potential with generalized eigenfunc-
tionsu — Ai(u — A), for we have Af(s) = sAi(s). The extended Airy kernel
(5.3) can be written as

K(u,y; u',y) = (e_yHAi (P{HAiS[)} —0(y — y)]l)ey/HA‘)(u, u'). (5.50)

H,; determines not only the ground state of non-interacting fermions at chemical
potential zero corresponding to the line ensemble, but also their dynamical corre-
lations in Euclidean time. This is in contrast to the fermions on the lattice for the
multi-layer PNG, whose ground state is determinedhpyput their dynamics is
governed by the free Hamiltoniagn Note that we have to rescale i5.86) n by

t~1/3 and fermionic timer by ¢t~%/% in order to obtain/, from A, in the contin-

uum limitt — oo. Focusing on the asymptotic meanof h,(0,¢) and removing

the curvaturehy(z,t) ~ 2t — 2%/t for smallx, we arrive at the scaling

n = [2t+tY3(u—1y?)],
[ ( )] (5.51)
r = t2/3y,
where we expect a nontrivial limit. Indeed one has
Tim #7251y (2001 = £2/312) = A(u) (5.52)
uniformly for u varying over a compact set]f
Let us define the rescaled Bessel kernel
Kt(“? y? u/’ y/) = tl/ge_t71/3nth (n7 $7 n’? x/)etl/gn/y/ (553)

with (5.51) also for the primed variables. The multiplication b‘i/s("’—")y does

not affect determinants, for it is a similarity transformation. It is needed to tame
the diverging factoriﬁ—i)”ﬂ, (=)™ /2 in the extended Bessel kernel. Indeed
one has

— 2Py (5.54)

Y

1+ t—l/3y (2t+t1/3u) /2
(l — t_1/3y)
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uniformly on compact:, y sets, a$ — oo. These ingredients are enough to show

[107
Jim I (u, y; u'y') = K(u,y; o', y) (5.55)

uniformly for u, v’ varying over a compact set.
From the convergence of kernels the convergence of join distributions

det(l — PQBt)KQ({xI Ym } XR) (556)

~~~~~~~~~~

follows in the same way as the — oo limit in (5.46). We replace) by Q,,,
defined in 6.45, with M = 2t + t'/3a, a large. By 6.55 we have convergence
in (5.56 with P replaced byP,, the projector or J;"_, ({yx } x]ux, a + y;[). The
remainder converges to zero whenr- oo since both kernels decay exponentially
for large arguments, compare with(Z].
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CHAPTERG

Anisotropic Growth in 2 + 1
Dimensions —
The Gates-Westcott Model

Crystal growth usually takes place in three dimensions. Many of the microscopic
growth models in one substrate dimension are easily generalized to higher dimen-
sions. The simplicity of the steady state allows there to exploit the anomalous
fluctuations and even to extract dynamical information of the growth process. In
2+1 or higher dimensions in the isotropic KPZ regime already the static fluctua-
tions show anomalous roughneg§]| The steady state is completely inaccessible

by any currently known analytical methods. A vicinal surface driven by step-flow
growth is expected to lie in the anisotropic KPZ or Wolf regimi8(. If the

growth velocity depends saddlelike on the surface slope, the steady state has the
same large scale statistics as a thermally roughened surface, which is governed by
a Gaussian free field fixed point. In particular the roughness is only logarithmic.
Jeong, Kahng, and Kim verified this behavior for a Toom interface in three dimen-
sions numerically§6]. We present here the Gates-Westcott mo8é] yvhere the
steady state is known explicitly and which can be analyzed in the limit of infi-
nite substrate size to determine an analytic expression for the macroscopic growth
velocity and the roughness.

A vicinal surface is formed by miscutting a crystal by a small angle with re-
spect to one of its high symmetry planes, e.g. (100) for a simple cubic lattice. Thus
the surface is made up of terraces separated by step lines of height one in units
of the lattice constant, see Fig.l. Exposed to its supersaturated vapor phase the
crystal grows by continuous deposition of material. Bulk cohesion causes parti-
cles to attach predominantly at a step line thereby enlarging the upper terrace at
the expense of the lower one. If the mean step line spacing is not to large, island
formation on the terraces can be neglected. Similarly overhangs are energetically
very unfavorable and suppressed completely in an SOS (solid on solid) model de-
scription, where the surface is characterized by a single valued height function
above the high symmetry reference plane. Thus the projected step lines do not
Cross.

89
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Figure 6.1: A terrace-step-kink model of a vicinal surface. The slopg u>)
determines the density and the inclination of lines.

If island formation is completely suppressed, the surface dynamics is de-
scribed in terms of the dynamics of the individual step lines, governéd ¥yl )—
dimensional growth dynamics, modified by interactions between the lines. The
no-crossing condition is incorporated by a hard core repulsion of lines, but there
might be also long ranged elastic forces due to lattice distortion along the steps. A
perfectly flat surface with no step lines does not change in time, its growth velocity
is zero. For a very small tilt the step lines evolve independently and the vertical
growth velocityv(u) is proportional to the step density, thus to lowest order one
expect(u) « |u|. Increasing the tilt the overall mobility of the step lines will be
reduced because of the no-crossing condition. Thus rougly oc |u| — v|u|?
with v > 0. We see that besides the cuspuat 0 the curvature of the slope
dependent growth velocity is saddlelike, iy (u) is indefinite. Thus the surface
is in the Wolf regime of anisotropic surface growtt3[] predicting logarithmic
roughness for the height fluctuations. Note, that if one admits island formation
at some small rate, the growth velocity:at= 0 is nonzero. Effectively the cusp
smoothens and the growth velocity depends on the slope in a convex form for
small enoughu.
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6.1 The Gates-Westcott model

A very simple realization of the Wolf scenario is to choose for the stochastic evo-
lution of an individual step line the dynamics of the one-dimensional PNG model
without any interactions between lines besides the no-crossing condition. It has
been introduced by Gates and Westcéfi]] We represent a vicinal surface at
time ¢ by a collection of non-crossing PNG lineg(z,t), { € Z, x € R, with
do(x,t) < ¢ppa(x,t) for all ¢, z, andt. The graph ofpy, {(z, ¢i(x, 1)), z € R}
marks the position of the step line separating the terrace atllevdl from the
terrace at level. In this chapter we call up- and down-steps of the individual PNG
lines antikinks and kinks, respectively, to avoid confusion with the notion of step
lines for the¢,. Antikinks move in the direction of negative having velocity

—1, and kinks move in the opposite direction with velocityA kink and an an-
tikink belonging to the same step line disappear upon collision. New kink/antikink
pairs are created randomly for each step line with space-time deéngitgvided

the non-crossing constraint is not violated. This means that whenever one has
¢e(z,t) = ¢per1(x, t) NUCleations o, are suppressed at position

This model is very similar to the multilayer PNG model introduced in chapter
5. In fact if we defineh,(x,t) = ¢,(x,t) + ¢, the non-crossing condition for the
e, 00 < ¢pi1, translates to the non-intersection condition for kagh, < hyyq.
Via this mapping the configuration space for the Gates-Westcott (GW) model and
the multi-layer PNG model are identified, provided initial and boundary condi-
tions are adapted accordingly. But note that the GW dynamics is quite different
from the RSK dynamics. In the GW dynamics nucleations take place indepen-
dently on each line, only subject to the non-intersection constraint. In the RSK
dynamics, except for the first line, nucleations are completely deterministic. It is
very remarkable that nevertheless for some special types of initial/lboundary con-
ditions the distribution induced by the GW dynamics is as simple as for the RSK
dynamics.

The formulation with a non-crossing condition has to advantages. Firstly it is
physically more realistic, since it allows for arbitrary inclinations of the crystal
surface, corresponding to unrestricted step line densities (the inverse mean step
line spacingy,. 1 — ¢,). Whereas for non-intersecting lines the line density can not
exceedl. Secondly it exhibits a symmetry in exchanging thend ¢-direction.

More precisely, leC; = {(z,y, 2); ¢y, (x,t) > 2} represent the crystal. Then

H,.(z,t) = min{y; (z,y,m) € Cy} € Z, (6.1)

regarded as the step lines indexedhyalso follow the GW dynamics.
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6.2 The steady state

We restrict to periodic surface configurations obeying; (z) = ¢,(x) + B and
oo(x+T) = ¢po(x) — M, whereT € R*, B, L, M € N. If we regard/ as the
vertical direction, the height function of the surfaceHs,(z,t), compare with
Figure6.2 It has mean slopa = (uy, us) With u; = —L/B anduy = uy M/T.

Figure 6.2:A Gates-Westcott surface on a finite substrate. The deterministic mo-
tion is indicated.

In the coordinates we chose one hasu, < 0.

A surface with the above periodicity is specified by thestep lines in the
rectangle{0, ... , B — 1} x [0, 7] and the reference height@ 0), H, € Z. The
periodicity is accounted for by periodic boundary conditionsifoe {0,..., B—
1} and twisted periodic boundary conditions for [0, T, i.e. the pointgm, 0)
are identified with((m — M )modB, T'). The height at time can be reconstructed
by the step line configuration on the twisted tof0s. .. , B—1} x [0, T'] together
with the reference heightt/y(¢). The incrementd,(t) — Hy(0) is encoded in the
number of step lines passing through0) in the time interval0,¢]. Note that
we can equivalently think of. nondintersectingstep linesh,(z,t) on the torus
{0,...,N =1} x [0,T], N = B + L, twisted by—A/. Let us note that the
slope in thep-formulation, (u;, us), is related to the slope in thleformulation,
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Figure 6.3:The step lines of Figuré.2regarded as fermionic world lines.

(_p7 _J) as
|U1|
= 6.2
p T+ ]’ (6.2)
U2
= — 6.3
7Tt 6.3)

Let y;* € [0,T] be the position of the-th antikink for step linet, j =
1,...,n,andy;~ € [0,7] be the position of thg-th kink, j = 1,... ,n, + M.
We setn = (ny,... ,ng), |n| = 2(ny +- - -+ny)+ ML, the total number of kinks
and antikinks, anthy = (h4(0), ..., h.(0)). The twisted boundary conditions are
reflected by the condition

;%(hl(x)> B 7hL($)) = (hl(o) - M7 s 7hL(O) - M)? (64)
compare with Figur&.3. The space of height line configuratiofisiecomposes
then as the disjoint uniofl = (J,;, I'(n; ho), wherel'(n; hy) is some subset of
[0, T]I"! as defined through the constraints already explaified[° is a single
point). Furthermore for fixedh the I'(n; hy) are glued together in a way that is
determined by the condition that (anti-)kinks leaving the intefal’| reappear
smoothly on the opposite side. Letbe the measure dn, such thatv [ I'(n) is
the |n|-dimensional Lebesgue measurelgm). Then

w=27""1 (g)\n|/2w (6.5)

2
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is the stationary measure for the GW dynamics with normalizing partition function
Z.

To verify the stationarity of. we first note that the Lebesgue measuréGm)
is left invariant by the deterministic part of the dynamics. We make the ansatz
i I'(n) = p(n]) -w [ I'(n). At a configurationmh with a total number ofn|
kinks and antikinks there is a gain in probability with raté, p(|n| + 2) through
the annihilation of kink-antikink pairs. Heig, = S>1 | [" 0(hes 1 (z) — he(2))dz
, 0 = L+ 1identified with? = 1, andf(x) = 1 for x > 0 andf(x) = 0 otherwise.
It is the “number” of configurations immediately before the annihilation event
which yieldsh. The loss in probability occurs with rafé}, p(|n|) sinceV}, is also
the “number” of configurations which arise frolmby generating a kink-antikink
pair. Equating gain and loss we obtath). For¢ # 0 the process is ergodic
onI" and therefore the stationary measurns unique. (Any configuration can be
evolved to a reference configuration by properly adding kink-antikink pairs in the
course of the deterministic evolution).

One defines the occupation variables at time;(z), j € {0,...,N — 1},
x €[0,7],as

. (6.6)
0 otherwise

{ 1 if hy(x,t) = j for somer,
15 =

In [97] the partition function and expectations with respeciutare explicitly
calculated for finitel", B and L, M. Then the infinite volume limiB — oo, T' —

oo at fixed slopeu is taken. Due to the twisted boundary conditions enforcing a
tilt of the surfaceyu, # 0, the fermionic formulation has some extra complications
which we are not discussing here. Implicitly it is shown there that a modification
of the boundary conditions leads to the same result in the infinite volume limit and
simplifies the calculations considerably.

6.3 The fermion picture and the infinite volume limit

We modify the state spadein such a way that instead d.¢) periodic boundary
conditions in thec-direction are enforced,

lim {hn(2)... B (2)} = (M (0),...  hu(0)} (6.7)
as sets. The relative order of the step lines is preservé@ . But the step
lines are free to wind around the torus asuns from0 to 7. Let us define
the winding numbeiV as the difference of total kink number and total antikink
number divided byN. W is always an integer. If the winding numberiisthe
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step lines wrap around the torus exactly one time and oné:f{dy = h,(0).
The definition of the measune is unchanged on sectors with constant winding
number.

An average tilt of the lines is enforced by imposing an a priori distribution on
the winding numbei?. We assign different weights to antikinks and kinks,
andr_, respectively. The weight for a kink/antikink pairgstherefore

nen- =2 (6.8)

5
We set
p= 2z gy, (6.9)

with |n. | the total number of antikinks arja_| the total number of kinks. This
implicitly defines the distribution of the winding numbéf = (jn,| — |n_|)/N.
The measure: is stationary for the ensemble of tilted surfaces consisting of
step lines with §.4) and the GW dynamics. The mean slgpis given by the line
densityL /N and the slope is given by the mean of the winding numh@V’) /7.
Therefores is a function of,., a relation which still has to be determined.

As in Chaptel5 we can write expectations with respectt@as a path integral
which can be rephrased in terms of fermionic expectations,

_ 8h dx
(s (@1) -y () = 27 / e Jo 00ehe(@)
{he(0)}={he(T)}

T 0(—0phe(z))dx
st o D (@) - () dw

= tr(e’TH)_ltr( "’"”IHa* Laj, e — (w2 xl)Ha* Ly +
X oo @m—Tmo 1)Ha* aj,e (T_xm)H), (6.10)
where the trace runs through the fermionic Fock space fiver., N — 1} con-

taining L particles. The transfer matrix for the path integral becomes the non-
hermitian “Hamiltonian”

N
— Z (77+a;7+1aj + n,a;ajﬂ). (6.11)
=0

Herej = N is identified with; = 0 and thea}, a; are the generators and an-
nihilators defining the CAR algebra ovéf,..., N — 1}. The single particle
Hamiltonian corresponding t& is

P (j) = — (i1 +n-vj1). (6.12)
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The complete set of eigenfunctions is given Ny'/2¢™%, k € A = {7 +

2. ..., m— 2 w}. The eigenvalues are

e(k) = —ns cos(k) + in, sin(k) (6.13)

with ns = 1y + 1n—, n, = n+ — n—. We want to take the infinite volume limit.

First we sendl’ — oo. Expectations with respect to the finife density
operator converge to expectations with respect to the ground stdfevath L
fermions,|wy,),

lim tr(e*TH)_ltr(e*TH ) = (wr| - |wi) (6.14)

T—o00

For technical reasons we require tiéat+- L must be an odd number, otherwise
the ground state is twofold degenerated. The ground stajewith L fermions is
then given by

fon) = " () g (<22 e (D)) (6.15)

wherea*(k) = N~'/2 Zj.\;l e’ a3 is the generator of a fermion in the eigenstate
k € A and|0) is the empty state.
One has the discrete sine kernel in finite volumen € {0,..., N — 1}

SL(”? m) :f <WL’a:nan’a)L> = Nfl Z eik(nfm)

w(L—1)
keA, [k|<Bs—

B sin(%(n—m)) 6.16
B Nsin (£(n—m)) (6.16)

The extended kernel is
> k| 7E=D) ely=z)ek)gik(n=m)  for ¢ > g,
=7 N

A 6.17
— Z|k|>ﬂ<L71) e ek)ik(n=m)  for ¢ < g ( )
N

SL(n7y; m7$) - {

and the expectation values for= oo are given by

E(Uﬁ (‘Tl) T 77jm($m)) = det (SL(]kv wkvjlv ml))lgk,lgm’ (618)

valid for pairwise distinctj;, z;), as discussed in Chapter

Let us turn to theV — oo limit. To guarantee a finite density of fermiops
we have to sel. = [pN] or L = [pN] + 1, such thatV + L is odd. We obtain
a quasifree state as the limit object of the ground state; ), defined by the
discrete sine kernel

i d_keik(n—m) _ sin (ﬂ-p (TL — m)) )
27 m(n —m)

S(n,m) OI:'afuj((z”;nctn) = / (6.19)

—mp
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To determine arbitrary expectations one has to reptace, y; m, z) in (6.18 by
the extended sine kernel

fﬂ'p gk (y—x) (k) gik(n—m) fory >«

mp 2T —

. _ 2

S(n, Y, m, 517) { _ f27r ™ gk (y—x)e (k)eik'(n—m) for Yy <z (6 O)
Y ™

6.4 Slope, growth velocity, and two point correla-
tions

The slopep is already explicitly incorporated irf6(20), it is the fermionic density,

p = w(ala;), independently of. We still have to find the relation betweerand

n+. To this end we calculate the drift of the lines. The operator for the rightward
fermion current frome to = + 1 is determined through the limit

=t Haaanal e o, i
= (ajaiaina;,y) g (e (af anaia)e™) L
= 07010410741 [071 1 ai10507, H]
= N4+0;410 (6.21)

by the fermion anticommutation rules. Analogously the operator for the leftward
current fromitoi — 1, j; = n_a;_,a,;. o/pis the inclination of the step lines, or
drift velocity of the fermions, therefore one has

o=w(t—j7) = (ny —n-)m 'sin(mp). (6.22)
We want to impose the slopés, o). By (6.8) and 6.22 we have to fix

Ny =2Ms+1a), 1= =305 — M), (6.23)

wheren, = bm(m)) andns = /2¢ + n? are the coefficients of the imaginary and
real part in the dispersion relatiof.( 3, respectively.

The growth velocity(p, o) of the surface perpendicular to thg z)-plane is
given by the total number of kinks and antikinks, divided by the &tad3 or the
kink/antikink density in fermionic space-time. Therefore we have

v(p,0) =w(it +57) =7 nsin(rp) = L \/2§ sin?(mp) + w202, (6.24)

This is the slope dependent growth velocity for the surface with non-intersecting
step lines, thereforg € [0, 1]. In the original formulation with non-crossing step
lines the area where (anti-)kinks contribute to the growth velocity i with



98 CHAPTERG6. ANISOTROPICGROWTH

B = N — pN. In the infinite volume limit we thus obtain the stationary growth
velocity for the Gate-Westcott modéei ],

vow(u) = Pl /g sin? (2l + (Zhel)?, (6.25)

It is defined for all inclinations:;, u, € R by symmetry, compare Figui@4.
Note that as expected, the growth velocity is everywhere saddlelike, except for

Figure 6.4:The growth velocity of the Gates-Westcott model as a function of the
surface tiltu.

the cusp at the origin.

We turn to the static height correlations for the surface with step fnes).
The corresponding heiglif (x, n) is given by the reference height(0, 0) and the
number of step lines betwegf, 0) and(z, n). We define the empirical antikink
density

I () = lm o0, (2) (1= g1 (2)) (L= ma( +y)) (v + ). (6.26)

y—0

For a given realization of the surface it has delta peaks at the antikink positions.
The empirical kink density is

o () = i () (1= s (@) (L= ) ). (627)
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It has delta peaks at the kink positions. There analogues as fermionic operators
are given by §.21) and following. The height{ (x, n) is determined as

n—1

H(en) = 10,00~ 0,0+ [ TG i )de (6.28)

=0

for n < 0 and accordingly forn < 0. Fory € R we setH (x,y) = H(z, [y]),
thus H(z,y) is an integer valued function di?. We are interested in the large
scale behavior of the two point correlation function

C(n,z) =E([H(n,z) — H(0,0) — np — zo]?). (6.29)
We look at the structure function

S(n,z) = E(n.(x)n0(0)) — p2 = —=S(n,z; 0,0)5(0,0; n, x)
T 2m—mp
B / dﬁ/ dl{ elol(elm) el i (=, (6.30)

As in (3.5]) the structure function is closely related to the second derivative of
C'(x,t) with respect tac. In [97] the discrete analogue a8.61) is derived,

[T dk 1 A ikn &
C(n,I)——L/;rggif:T;;;E(S(k,O)—'e SKk,I)), (6:31)

whereS(k, z) = 3, ¢S (n, z) is the discrete Fourier transform 8{n, z). For
largen, x the asymptotic behavior

Cln,z) = % In(|n| + |2|) + O(1) (6.32)

is extracted there. Here we take advantage of translation invariance and Fourier
transforms to refine the result considerably.
To this end we define the fermion propagatir, =) by

S(n,y; myx) =e "P"G(n —m,y — x)e"". (6.33)

The similarity transformation by(z) = ¢™* drops out when taking expectations
(6.18. The Fourier transform af/(n, ) in n andz is

Gk,w) = /deeM”ik"G(n,x)

= /dxe“” (x(k)b(x) —X(/{)G(—x))e(e(k)“p)x

1
" iw+ Bk (6-34)
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wherex (k) = X_rpxp(k), X(k) = 1 — x(k), andE(k) = e(k) + mp. Products of

Fermi propagators in real space become convolutions in Fourier space. One has

the following simple but very useful identity,

Gk,w)—GEk+FK w+w)
i + E(k+ k) — E(k)

For the structure functior6(30 we obtain in Fourier space

/
/ /dk JNGK — ko' —w)

di' (iw' + E(K)) ™" — (i(w' —w) + B(K — k)"
/ / —iw+ E(K' — k) — E(K) (6.36)

Glk,w)Gk+ kK ,w+uw) = (6.35)

The transformation’ — w — o/, ¥’ — k — £’ shows thatS(k, w) is real, since
E(—k) = E(k). For fixedk’ thew' integration is performed by collecting poles
in the upper halfplane (or, equivalently, in the lower one). The integral along a
semicircle of radiusk vanishes forR — oo, for the integrand decays as’| 2
We obtain
dK— X(K) = X(K — k)
271 —iw + E(k’ k) E(k:)
_ / dw Re(E(k k) (X(k — k)
27 (w4 Im(E(k — k) E(k;’)))2 + Re(E(k’ k) — B(k))*
(6.37)

S(k,w)

For the large scale behavior 6f(n, z) only the pole structure dt,w) = (0,0)
is relevant. One gets

1 2k>n, sin(mp)
27 (w — kn, (:os(7rp))2 + (kns sin(7rp))2

for e — 0. In the large scale limit one has as B9 C(k,w) ~ 2k~ 2S(k,w),
for smallk, w. In real space this translates to

€25 (ek, ew) — (6.38)

1 1
C(Ln,Lx) = ﬁln(C’L)%—Z—ﬂln(sin(ﬂp)Q)

1
to3 In ((n + 7o cot(mp)z)* + (2sin(mp)® + 7°0>)z?)
m

+O(L™). (6.39)

To calculate the constart one would need to be able to control the rate of
convergence ing.39. We conjectureC’ = 2¢'*7 by numerical comparison,
~ = 0.5772--- being Euler’'s constant.
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The stationary distribution of a Gates-Westcott surface at given slope can be
regarded as an equilibrium distribution with fugacity for antikinks, n_ for
kinks. The corresponding free energy per area, the surface free eRéngy)
has been determined iA7] with the result

V26 sin? pr + o272 + om

— — (6.40)
\/2£sm pT 4+ o°mE —om

1
felp,0) = /2652 pr + 0w — T n
T

Assuming that the height distribution becomes Gaussian on large scales, a calcu-
lation with the formal measure

dP({h(y,x)}) < exp(— [ f(Vh)dxzdy) (6.41)

yields in the Gaussian approximation for the fluctuations:@f, =) in Fourier
space

5(k + K)(w + w')

<hk,whk’,w’> X T N (642)
()
where one has explicitely
f(p.0) = ™ (Sif;’;)g +2€(sinmp)? —mocotmp '
\/2§<Sjn7rp)2 + 1202 —mo cot p 1
(6.43)

The quadratic form in the logarithm 0839 is just the inverse ofd.43.
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CHAPTER7Y

Models in higher dimensions

7.1 The isotropic PNG droplet

The PNG droplet is an instance of the polynuclear growth (PNG) model in a spe-
cial geometry. To let a PNG droplet grow od-adimensional substrate, one starts
with a single seed located at the origin of the substrate at zero height. The seed is
a spike of unit height which expands laterally with constant speed. Above this cir-
cular (ford > 3 spherical) island new spikes nucleate with uniform rate forming
further islands. Thus the droplet grows layer by layer. Two islands in the same
layer coalesce upon touching but continue to enlarge in all directions. This en-
sures that each layer reached by the droplet is eventually filled without holes. Ob-
viously we can choose the units of time and space in a way that the a lateral speed,
as well as the nucleation rate equals one. Thus the isotropic PNG model has no
adjustable parameters. Figufel shows the realization of @ + 1)-dimensional
dropleth(x,3), z € R?.

Let h(x,t) € Ny be the height of the droplet abowvec R? at timet > 0. We
have the initial and boundary conditiohéz, t) = 0, for || > ¢, | - | the Euclidean
norm. Then

h(z,t) = max{h(z;,t;); j e Nandjx —z;| <t —t;, t >t;} +1 (7.1)

defines the height dtr, t) recursively int, where(z;, ¢;), ey IS SOMe enumeration
of the nucleation events having density oné(in, t) € R4 |z| < ¢} and density
zero otherwise.

For an alternative description of the procéss, ¢), we define the partial order
=,

(') < (x,1) iff |x —a'| <t—t andt >t (7.2)

representing an ordered time-like relative position of two different space-time
points. For a directed path frof,0) to (z,¢) v : [0,1] — R+, with v(s') <

v(s), 0 < &' < s < 1 we define the lengthy| as the number of nucleation events
passed in the image of Thenh(z,t) can be alternatively defined as the longest
directed path fron{0, 0) to (x, t),

h(z,t) = max |7y (7.3)

103
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Figure 7.1:A snapshot of a small isotropic PNG droplet in 2+1 dimensions.

Physically if we assign to each pathregarded as a directed polymer chain, the
energy—|v| thenh(z,t) has the interpretation of the ground state energy of a di-
rected polymer in the random energy landscape made up by the nucleation events.
By a superadditivity argument one obtains tiab(z, t)) is linearly bounded in
t, which by monotonicity guarantees the existence of the limiting vertical growth
speedy,, = lim; .o, t7'E(R(0,1)).

The model has an apparent Lorentz-type symmetry. The partial erdas
well as the Poisson statistics of nucleation events is invariant with respect to ar-
bitrary Lorentz transformations of space-time where the speed of “light” is set to
unity. In our restricted droplet geometry the height prodessstill invariant for
all special Lorentz transformations keeping fixed the or{gird). Thus

h =ho L indistribution (7.4)

where L is an arbitrary composition of spatial rotations around the origin and
Lorentz boostsL., with velocityc € R¢, |¢| < 1, i.e.

L.(x,t) = (v, 4+ x cosha + tsinh o, t cosh a — || sinh o), (7.5)

wheretanh o = |c| andx = =, + x| is the orthogonal decomposition ofwith
respect ta-. We immediately derive that along a réy = ct;t > 0}, |¢| < 1 the
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distribution ofh depends only ofr| and, by Lorentz boosting, is given by
h(ct,t) =h <O,t 1 yc|2) . (7.6)

If h(0,t) ~ wvgt + (aqt)’ 9Pt asymptotically, the macroscopic shape of the
droplet must be an ellipsoid, and the fluctuations transform according@oas

B
h(x,t) ~ vg\/t? — |x|? + <ad\/t2 — ]azP) ’ yaroptet (7.7)

Since we are going to define the absolute scale of the droplet fluctuations, the dis-
tribution of 9Pt implicitly through a conceptually even simpler growth model

in the we need the (unknown) nonuniversal factownhich for the isotropic PNG
model depends only on the dimension. By Legendre transforming the determinis-
tic part we immediately obtain the slope dependent growth velocity as

v(u) = /03 + |ul?. (7.8)

7.2 PNG models with general island shape

We generalize the isotropic PNG model to arbitrary convex island shapes. The
spherical island shape is replaced by an arbitrary conve® setR? containing

the origin and with nonzero Lebesgue measure. Instead of the Euclidean norm on
R? one defines the quasi-norm

|z| = inf{\ 0; z € AB}. (7.9)

(7.1) with this quasi-norm defines thie-shaped PNG droplet, again with Poisson
points of space-time density lying in the forward “light-cone” of the origin,
{(z,t) € R |z| < t}. Convexity of the island shapB. is preserved under
Lorentz boostd.. with ¢ € B, since(B,,{1}) = L{(tB,t);t > 0} NR¢ x {1}.
Therefore we can focus on the height above the origin for a gerigsilaped
PNG droplet. We expect

hp(0,t) =~ vgt 4+ CptPey P (7.10)

asymptotically in distribution. Rigorously there is not much known for general
island shapé&3, only the case thaB is ad-simplex due to a mapping to longest
increasing subsequences of a tuple of random permutation has been studied in the
mathematical literature as explained in more detail below.

First let us give an intuitive argument to guegsin the limit of high dimen-
sions. For a sequence @éfdimensional island shapéds;, d > 1 we start with a
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flat substrateh(z, 0) = 0 with nucleations allowed everywherelR{. The proba-
bility that 2(0,¢) = 0 at timet equals the probability that there have not been any
nucleation events inside the backward light céte, s) € R4 | — 2| < t — s}

of (0,t), thus

Prob{1(0,t) = 0} = exp (— t"'|By|/(d + 1)), (7.11)

with | B,| the d-dimensional Lebesgue measurel®)f. 1 — Prob{A(0,¢) = 0} is
the occupation ratio of the first layer. For lar@ethe occupation of the first layer
is very close to zero until a critical timg, when it suddenly becomes occupied
almost completelyz, is not precisely defined for finité, it is the time when the
exponentin{.11) becomes of order 1. Only after nucleations take place almost
completely in the second layer. Neglecting nucleations in the second layer before
t. and the tiny portion of not yet occupied regions in the first layer aftethe
second layer is occupied almost completely onlgtatand so on, thus the growth
velocity is expected to be: 1/t,. If we definet; = (c(d + 1)/|Bd])1/(d+1),
i.e. when the exponent itv(11) equals—c, ¢ > 0, the limitt,, = limy_ . 4,

if it exists, is obviously independent of and thus a promising candidate for
Voo = limg oo v4 IS 1/ts. Let us give three examples. First for thstropic
PNG modelone hasB, = 2792 /(dTl'(d/2)), the volume of al-dimensional unit
sphere. This leads to the asymptotigs~ /2me/d. Otherwise stated, if the
radius of B, is v/d instead ofl, on hasv., = v2me. Second example is the
hypercube PNG mode) B, = [—1, 1], which is investigated in the next section.
The above reasoning leads to the conjectyre» 2, asd — oo.

The third example is theimplex PNG mode| where B, is ad-dimensional
simplex, taken as the simplex spanned by the endpoints of vectors of léngth
forming a(d + 1)-dimensional orthogonal basis whose body diagonal is aligned
with the t-axis. Its Lebesgue measure|iB;| = d%(d + 1)/d! and thus by the
Stirling formula one has,, = e. Let us note that we chose the sizeR)fin such
a way thath(0, ¢), with droplet initial conditions, equals in distribution the length
of a directed polymer between two opposite corners of a hypefeutié™!, filled
with Poisson points of densitly. A third interpretation is the following. Take a
d-tuple of independent random permutatiofis),<;<q, all of the same lengthv,
whereN itself is Poisson distributed with meatf!. A subsequencey; ), << of
lengthk, 1 < j; < --- < ji < N, is called increasing if;(j;) < m;(j;+1) for all
1 <i<dandl < < k. Then agairh(0, t) equals in distribution theength of a
longest increasing subsequerafesuch a tuple of random permutations. Bollobas
and Winkler 2] analyzedh(0,¢) exactly in this formulation as a generalization
of Ulam’s problem 24, which corresponds td = 1. They have shown that
vy < eforall d € Nandindeed,; — e asd — oo.

Note that an arbitrarg-simplex can always be transformedfy as defined
above by an affine transformation, thus knowingfor one d-simplex we know



7.3. MONTE CARLO SIMULATIONS ON A FLAT SUBSTRATE 107

it for every otherd-simplex as well. In particular we are able to determine the
macroscopic shape of a droplet modulo this single consgtanin the orthonor-

mal frame, spanned by the edges of the forward light cone from the origin, with
coordinategé, . . .,&;) one has

1

h(&o, - €a) = valo -+ £)7. (7.12)

The reason is that(&, . . ., &,) is determined by the Poisson points in a hyper-

cuboid whose sides have lengtfas. . ., £;. A volume preserving linear transfor-

mation to a hyper-cube leaves invariant the Poisson point process and thus only the

volume of the cuboid determines the height distribution. Legendre transforming

in the same frame, and regardifigas time direction leads to the growth velocity
o(w) = (24) " (ur - up) (7.13)

d+1

7.3 Monte Carlo simulations on a flat substrate

We let the PNG model grow from a flat substratej-alimensional hyper cube

of length L with periodic boundary conditions. Equivalently one can think of a
substrate extended to infinity with spatially periodic noise. We mainly studied the
height distributior; = h(0, t), which by translation invariance can be determined
via spatial and ensemble sampling. By the general KPZ theory we expect the
scaling form

hy ~ vt + C Py (7.14)

with model dependent parameters&nd C, and the dynamical roughness expo-
nent3 together with the universal distributiogf®, which (in the strong coupling
regime) depend only on the substrate dimengioim this simulation we recorded

at different sampling times the first four moments of the height distribution, av-
eraged spatially for each individual run and for a number of independent realiza-
tions.

A given surface configuration was encoded by the positions, creation times,
and height levels of all nucleation events being created up to the current time,
which are not yet covered completely by higher lying islands. To determine the
height of a newly created nucleation event one has to determine from all the nucle-
ation events in its backward light cone the highest level occurring. This has been
down level-by-level with a dynamical KDBkEdimensional binary) tree search
algorithm adapted for periodic boundary conditioh87).

Since computer memory is restricted one has to get rid of nucleation events
whose islands are already completely covered. This has been done by throwing
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away all nucleation events of a lower lying level, if for a certain amount of time
no new nucleation occurred in this level. If a level were removed to early there
would be holes created in the surface. We determined the time to keep the levels
empirically such that on the average not more then one nucleation event among
108 hits a hole.

To increase performance we did not use the Euclidean norm corresponding to
spherical island shapes, but the maximum ndrith= max{|z;|}, corresponding
to islands growing in the shape @fdimensional hypercubes. The advantage is
that the evaluation of the norm, clearly the most frequent operation, is less time
consuming, and furthermore the KDB search is more efficient, since it bounds the
substrate region to be searched for nucleation events by hyperplanes parallel to
the island boundaries. The disadvantage of giving up isotropy and the Lorentz
symmetry explained in the preceding section is acceptable, since we are mainly
interested in universal quantities, roughness exponents and measures of the shape
of the limiting distribution, like skewness and kurtosis.

System sizes are up b = 10° ford = 1, L = 1280 ford = 2, L = 128
ford = 3, L = 30 ford = 4, andL = 15 for d = 5. Note that for times
smaller thanZ /2 the evolution is not affected by the finiteness of the substrate,
since the maximal lateral speedlis But also for larger times finite size effects
are negligible for the recorded times< 100, since the correlation length grows
laterally proportional ta'/? with z = 2 — a € [1.5,2], a the static roughness
exponent. The computation time was several weeks on a modern work station for
each dimension (besides the one-dimensional case where we spent much less time
since the results are known in closed form as explained in Chapter

Figure 7.2 shows the mean height divided by the time and the extrapolated
values of the growth velocities for each dimensibe- 1,... ,5. For the hyper-
cube PNG model we expecj — 2 asd — oo, compare with Sectioi.2 The
numerical values are are in accord with this conjecture and even imply mono-
tone convergence from below. The numerical valuesfaare well fitted by the
heuristic formulavg ~ 2 — 0.6 d~'/2 (up to1%).

To estimate the dynamical roughness exponent we plot in FigGrthe trun-
cated second moment of the height distribution, i.e. the quadratic height distribu-
tion width (h?) — (h;)?. The damped oscillations reflect the discrete nature of the
height variable, taking only integer values. As can be seen from the vertical scale
the width of the surface is only of order one and smallerdfer 3. This means,
that the height distribution is concentrated mainly in only two or three levels.

Ford < 3 we used the last decade of simulation data to fit the ansatz
cq 1?4 with the result3; = 0.334(1), ¢; = 0.502(4), (dotted line in the leftmost
plot of Figure7.4; the exact values arg, = 1/3 andc; = ((x®°5)?)./2'/3 =
0.50678), B2 = 0.240(1), co = 0.2885(35), andf; = 0.1665(20), c3 = 0.206(5).
Figure 7.4 illustrates the results and gives an idea of the accuracy involved. We
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Figure 7.2: The asymptotic growth velocity of the hypercube PNG model for
d=1,...,5substrate dimensions.

plot w?2/t% semi-logarithmically against the time. The horizontal line indicates
¢4, and the slope of the two guiding lines bounds the errgt;ifor d = 2, 3.

Figure7.5shows the skewness and kurtosis of the height distribution fer
1,...,4, calculated from our Monte Carlo data. kbe 1 also the exact result is
shown, which converges to the skewness and kurtosi§9f, 0.2935 and0.1652,
respectively. Forl = 2 the results for two substrate sizés= 1024 and1290 are
superimposed. We estimaiel0(3) and0.30(5) for the skewness and kurtosis of
x™tin two substrate dimensions. Fér= 3 andd = 4 the results are less clear.
We estimaté).41(7) and0.30(15), respectively, in three substrate dimensions and
in the range of our dat&20(15) and0.15(40) in four substrate dimensions. The
d = 4 results do not exclude convergence to a Gaussian distribution, where both
skewness and kurtosis are zero, which would be expected if the upper critical
dimension were already reached.

An alternative approach to determine the critical exponents, is to measure the
static roughness of the surface. Starting from a flat substrate, the lateral corre-
lation length¢ increases in time with the exponenhtz = /«. For distances
below the correlation length one expects approximately stationary fluctuations,
and one should be able to detect the scaling law for the second moment of height
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<(h-<h>)*>

(times 0.5)

Figure 7.3: The truncated second moments of the surface positjamp to 5
substrate dimensions. The data tbe 5 are modified by a factadd.5 to increase
visibility.

differences
((h(z,t) — h(0,1))) =~ Az*,  z, < |z| <& (7.15)

Herex,, is a microscopic cutoff length and is given by the microscopic dynamics.
We assume it to be of the same size as the typical distance of nucleation events
in a completely filled level, which is of order one. Already tbe= 2 this leaves
less then a decade for the validity of.15 since we where not able to prepare
surfaces with a correlation length much larger thanlif the system size is small
enough to relax the surface to stationarity additional finite size effects yield even
less reliable results. We indeed verified that our Monte Carlo data do not allow
for a meaningful scaling fit.

On a finite substrate the correlation length can not exceed the systerh. size
After a timetgq < L/? the correlation length is of the same order/asind the
whole surface statistic is close to stationarity. Since the quadratic surface width,

w? = ((n(0,1) — m)2>’ (7.16)

with = denoting spatial averaging for a given realization, is expected to scale with
the exponen?/ in time for initial growth, the stationary surface width attained at
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Figure 7.4: Scaling plot of the surface width against the expected asymptotics.
The left graph shows MC data compared to the exactly known solutiorsur-
strate dimensions, relative to the exactly known scaling expaiénirhe dotted

line is a fit to the Monte Carlo data. Fat dimensions (middle) the best fit for
the dynamical exponent yieldls= 0.240(1), and for3 dimensions (right) we ob-

tain # = 0.1665(20). The vertical scale is chosen to show a regiont@f5%,

+5%, and+10% around the converging valug = 0.50678, ¢, = 0.2885, and

c3 = 0.206, respectively. The two guiding lines in the middle and right graph il-
lustrate the error bounds for the dynamical exponents. Higher dimensional results
are not shown since they do not allow for a meaningful fit.

a time of ordettg 4 Should scale as

wi o< L** (7.17)

with the surface sizé.. In the simulations the surface at a given time is probed
at only finitely many sample points. Thus the empirical estimate for the surface
mean contains an error, which results in a small but systematic under—estimation
of w?. Since the heights of the sample points have no Gaussian distribution and
furthermore are correlated uncontrollably we decided to avoid this error source
and chose as a measure for the surface width the distribution of the height differ-
ence at two points on the surface at maximal distance, i.e.

AhL = h($L,t) — h(O,t), (718)
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Figure 7.5: Skewness and kurtosis of the height distributionsifer 1, ... , 4.
The one-dimensional limits a@2935 and 0.1652, the skewness and kurtosis of
xCCE. The dotted lines fod = 2 are at0.40 and0.32. The rough estimates for
d = 3,4 are0.41, 0.2 for the skewness arid30, 0.15 for the kurtosis, respectively.

with 2, = (L/2,...,L/2). Thisis clearly spatially invariant and does not depend
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Figure 7.6: The stationary surface width for a finite substrate of lenfttvith
periodic boundary conditions against the substrate afad = 1tod = 10.
System sizes are rather moderate, ranging fibra- 64 for d = 2, L = 32 for
d=3toonlyL = 2.35for d = 10.

on the number of sample points taken from one realization of a stationary surface.
The disadvantage is, that we can not examine the surface skewness, an asymmetry
in the distribution ofh — h, which has been recognized in dimensiahs 2 to

persist even in the stationary stag2)].

We observed thatAh?) is always very close tQw?, as expected if the two
opposite sample points are only weakly correlated. Thus for brevity we write
2w? for the quadratic surface width measured by the height difference at most
distant points. In Figur&.6 we plot this surface width against the area of the
substrate forl = 1,... ,10. In order to visualize the quality of scaling of these
data according to7(17) Figure 7.7 shows a finite size scaling of the data, i.e.
the local slope of the log—log graphs in Figut& (divided by two) against /L
such that if 7.17) holds the curves converge to the static roughness exponent
on the vertical axis at zero. The extrapolation of the curves yields for the first
four dimensionsg; = 0.50(1), ap = 0.38(1), a3 = 0.29(2), anday = 0.18(3).

Thed = 4 estimate holds only if we assume that the corresponding curve remains
convex but monotonically decreasing, when approachin@therwisea, = 0
can not be excluded. Far> 5 a reasonable extrapolation is not possible at all.
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Figure 7.7: Finite size scaling of the surface width. Fbr— oo, i.e. along the

left vertical axis, the data are expected to converge to twice the static roughness
exponent. Errorbars have not been recorded, but errors become larger upon ap-
proaching zero. We estimate from this data= 0.50(1) for d = 1, a = 0.38(1)

for d = 2, and0.29(2) for d = 3. For d = 4 one can extractv = 0.18(3) if one
assumes that the curve stays convex but decreasing when appro@cBingnote

that this is excluded if = 4 is the upper critical dimension implying = 0. For
higher dimensions the data are not conclusive at all.

7.4 2+1 dimensional triangle PNG droplet

In a second project we simulated the triangle PNG droplet. We regard this model
as the conceptually simplest of all growth models since it can be mapped to the
longest commonly increasing subsequence problem of random permutations as
described in sectioi@.2 Therefore we propose to define the absolute scale of
the limiting droplet distribution for curved KPZ growth by means of the simplex
model. Thus we define

X = lim 5% (h(s) — vas), (7.19)
as a limit of distributions, if this definition makes sense, i.e. if the dynamical scal-
ing exponent3; > 0 is well defined (the existence of being shown in22] for
d € N). Ford = 1 this definition coincides with the GUE Tracy-Widom distribu-
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tion xcug, compare with Chaptet. We concentrated on the= 2 case, since we

did not expect good statistical results in higher dimensions with the algorithms
and the computer power available. kbr= 2 we shall give strong numerical
support that 5" indeed is well defined withd = 0.2408(12).

The principle used for the Monte-Carlo simulation is very simple. We fill a
cube of lengthZ, with Poisson points of density one. The points are ordered with
respect to one coordinate axis. To get the height of a point one has to find the
height of the highest point in its backward light cone, which is just a cuboid, and
add1. The height functiork(s), s € [0, L]3, is then defined as the maximal height
of the points in the backward light cone af

To save memory and to obtain a complexity of the algorithm of ofdewe
actually split the large cube into smaller cubes which are processed in lexicograph-
ical order. If a cube is processed, the height function restricted to its three distal
(further away from the origin) faces forms(a + 1)—dimensional PNG height
function on each face. The points on the face which generate this height function
(projections of bulk points) are passed to the corresponding nearest neighbor cube
as boundary points. Thus each cube has boundary points at his proximal (closer
to the origin) faces, with associated height, which are treated as bulk points be-
longing to the cuboid. Once the boundary points at the proximal faces are known,
the height of all points inside the cuboid can be determined as described above
without any reference to points lying outside. Also the heightatR3, i(s), can
be determined by processing only the cuboid contairing

The distribution ofh, = h(s, s, s) is then determined by recording the height
of all points with coordinates,, s, s3) lying in the “mass shells < (s;s,s3)'/3 <
s+ 1/1024. Our largest. was 1200 but we recordéd only up tos = 1024. We
managed to process about 50000 points/sec and consumed the equivalent of nearly
one year on a modern work station. We simulated cubes with different lehgths
in order to improve the statistics for smalkerThe distributions for eachcontain
up to2-10® events for s around 2006; 10° ats ~ 400, and still5-10° ats = 1000,
roughly approximated by - 107 exp(—s/220).

The upper half of Figur&.8shows the mean heigkt,) divided bys in order
to extract the asymptotic growth velocity. A nonlinear fit for the ansatz

(he) =vs+ecs’ +k, (7.20)
motivated by the behavior for one substrate dimension, yields

= 2.3640(3),
= —2.85(1)
0.2404(6),
= 2.16(2). (7.21)

™ D o <
[l
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Figure 7.8: The upper graph shows the average height of the1)-dimensional
triangle PNG droplet at times = /3s, above the origin, divided by, a fitted
curve, and the asymptotic spe2d64, errorbars much smaller than the symbols
and omitted. The lower graph shows the deviations of the first momefis)of
from the fitted curve on the scale of the expected limiting distribution with error-
bars.

The result for the growth velocity is consistent with and even somewhat more
precise than the estimates [2.363, 2.366] of Breimer et al. 7], who exclusively
concentrated in our terms on the mean growth velocity of the simplex PNG model
in dimensions! =1, ...,5.

The lower graph of Figur&.8 shows the shifted and scaled mean in order to
extract the first moment of the limiting distributien= (',

Figure7.9shows the scaling of the truncated second momehf.of he theo-
retically predicted exponerts = 1/2 [8(] is taken out, to emphasize the signifi-
cance of the deviation from this conjecture. The scaling ansatz

(h2) — (hs)® = o 5™ (7.22)

in the range30 < s < 1024 yieldsc, = 0.475(2) and3 = 0.241(1).
Also the third and forth moments scale as expected. In Figur@the skew-
ness and kurtosis of the height distributions for differeare shown. From this
let .

data we estimate the corresponding quantitiesy in two substrate dimen-
sions a$).323(5) and0.21(4), respectively.
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Figure 7.11: The droplet probability distributions for one and two dimensional
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Figure 7.12: The same distributions as in Figuig11l on a semi logarithmic
scale.
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Finally Figures7.11 and 7.12 show the limiting probability distribution of
YJePetitself, in comparison to the same random variable in one substrate dimen-
sion, the Tracy-Widom-GUE distribution. Tlle= 2 line is obtained as the shifted

and scaled superposition of the empirical distributionslfior < s < 800.

7.5 Summary of the numerical results

Let us collect the numerical results obtained in SectibBsand7.4. For the hy-
percube PNG model with flat initial conditions we determined on an effectively
infinite substrate the asymptotic growth velocityand the prefactor for the alge-
braic increase in the variancg;, which are nonuniversal quantities. The univer-
sal quantities recorded are the dynamical scaling expangrnhe skewness and
kurtosis of the universal height distributigi}®, and, by means of the stationary
surface width as a function of the substrate size the static roughness expgnent
The scaling relationv,(1 + 1/54) = 2 due to Gallilean invariance of the KPZ

d=1 d=2 d=3 d=14 d=0>5

Vg 2172 1.567(1)  1.646(3)  1.696(4) 1.73(1)

Cy 0.502(4) 0.2885(35) 0.206(5) - -
ngat

skewness | 0.2935(exact) 0.40(3) 0.41(7) 0.20(15) -
kurtosis | 0.1652(exact) 0.32(5) 0.15(40) - -
B4 0.334(1) 0.240(1)  0.1665(20) - -
204/ (1 + Ba) | 0.501(2) 0.3871(13) 0.2855(30) - -
g 0.50(1) 0.38(1) 0.29(2) 0.18(3) -
aqg(1+1/64) | 2.00(5) 1.96(6) 2.03(14) - -

Table 7.1:Nonuniversal and universal quantities from the hypercube PNG model.

equation is just a check for consistency since its validity is beyond any doubt.
Since,; has much less uncertainty we included in the table a guess;fom
the values for; assuming the scaling relation to hold.

Let us compare the scaling exponents with values found in the literature. In
d = 2 almost all numerical studies agree more or lesgoa 0.240(1) [120, 3, 4].
A more recent study by Marinari et aBf], measuringy, in a similar way as we
did, predicts (again assuming the scaling relatjgn} 0.2445(25). Nevertheless
it seems to be widely agreed upon tiaiobtained from Monte-Carlo simulations
is bounded away from the valu}‘econjectured by theoretical considerations of
Léassig BJJ. Only Chin and den Nijs3Z] claim consistency withy, = 2 (5 = 1)
ascribing deviations from it to persisting finite-size effects.
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Xfliroplet d=1 d=29
mean | —1.77109 —2.85(1)
variance|  0.81320 0.475(2)
skewness  0.2241 0.323(5)
kurtosis 0.09345 0.21(4)

Table 7.2:characteristics of the distributiongl™®"® for d = 1, 2.

In d = 3 [12( and [3] consistently obtains; = 0.180(5). [85] has a more
precise guessj; = 0.185(1) from a3 = 0.3135(15). This differs considerably
from our result3; = 0.1665(20), itself being consistent with Lassig’s theoretical
predictionfs; = ﬁ for somek € N [80], obviously withk = 3.

At d = 4 many theoretical studies locate the upper critical dimension of the
KPZ-theory B1, 34]. Thus they expedt; = 0 for d > 4. From the numerical side
the existence of an upper critical dimension is heavily dispu&dd6, 2]. Most
accurate measurements obtained @re= 0.15(1) in [3] and 5; = 0.146(2) in
[85]. Critics would assign these nonzero valuespto finite size effects, since
simulated system sizes are quite small. Our own results are not very decisive in
this question. The estimated valug = 0.18(3), leading to3; = 0.10(2) is
obtained only under the assumption that the curve approximated in7Eedor
d = 4 is actually convex.

In Section7.4 we determined for the triangle PNG model its specific growth
velocity v = 2.3640(3) and the dynamical scaling exponeht= 0.2408(12) in
agreement with the result from the hyper-cube PNG model. The limiting height
distribution y 5" has been recorded. We collect the results for mean, variance,
skewness and kurtosis in Table2 for ¢ = 1 from the GUE Tracy-Widom dis-
tribution and ford = 2 from our Monte-Carlo simulations for the triangle PNG
model. To our knowledge this is the first time that this droplet distribution, or, in
the language of directed polymers, point-to-point distributiondfer 2 itself has
been investigated.
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Orthogonal polynomial identities

We collect identities for orthogonal polynomials on the unit circle used in Chapter
3. For the reader who is new to the subject we sketch the proofs.

Let f(¢) be a non-negative integrable function par, 7). Define the inner
product for polynomial®, q,

(ea) = @)™ [ Bl 000 (A1)

If £(6) has the formf(9) = F(e%), with the functionF'(z) being analytic on the
unit circle, the inner product can be written as a contour integral around

F(z)dz
2miz

@gw:fb@*mu> , (A2)

wherep(z) = p(z ) We are interested in the determinant of the Toeplitz matrix
T.(£(0)) = ((z", ") Joshi<n
D, = detT,,(f(9)). (A.3)

We orthogonalize recursively the monomiats n > 0, to obtain orthogonal
polynomials with respect to the weight functigiy),

0 (o) m(2). (A.4)

T

By definition the polynomials are monic, i®,(z) = 2"+O(z""'), there quadratic
norm is denoted a¥,,, thus

<7Tm, 7Tn> = 5m,nNn- (A5)

To abbreviate we writg,, = 7,,(0). The reciprocal polynomials’ (=) are defined
as

(2) = 2"w(z 7). (A.6)

121
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As easily seen, they are orthogonal to all polynomials of degreewith vanish-
ing constant term,

(mf, 2%y =0 for1<k<n and (r:,1)=N,. (A7)
Therefore(r, 7;) = N, for all k and
(), i) = peNp, for0 < k <n. (A.8)
We have the following identities:

Proposition 1.1

k=0

N = No ] =1l (A.10)
k=1
o m@m®) ()T 0) = (a)m,(0)

N, 2T, = T , (A.11)
m(z) = 2m1(2) +Pnm_1(2), (A.12)
m(2) = zpamni(2) +mh(2), (A.13)
m(1) = JJ(1 -0 (A.14)

k=1

(1+(=1)"p) (A.15)

N
3 *
—~
|
—_
S~—
I
—1=

£
Il
—_

Proof: The proofs can be found scattered 11§ with slightly different notation.
We recapitulate them here in a concise form. First the orthogonal polynomials can
be written explicitly as a determinant,

7o (w) = D' det : : : (A.16)
<2‘,n717 1> <anl7 Z> . <Zn71 zn)

1 w DY w

To check one notes that,(z) is orthogonal ta:*, 0 < k < n and has the proper
leading coefficient.
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To relateN,, with the Toeplitz determinants we adopt the notatioy,; for
the (k,()-minor of D,,, i.e. the determinant of the Toeplitz matrix wikith row
and!-th column removed, an®,, ;; » the minor withk-th, £’-th row andi-th,
I’-th column removed. One has by expanding the determinants
D?z—an = Di—1<7rnv7rn> = Z(_1)n+iDn,ni<zivZj>(_1>n+an,nj

i,j=0

. H—n

- § Dnnz Z y % >Dn,nn
=0
n—1 n

Z Z <Zk’ zj>(—1)i+j+k+9(k_i)Dn,m,jk(Zi, Zj>Dn,nj

=0 i=0 0<k<n, k+#i

= D.D,_1, (A.17)

with 6(n) = 0 for n < 0 andf(n) = 1 otherwise. The last equality holds, since
Dy, nn = D, 1 and in the sum over, k, i # k the terms withi andk interchanged
have opposite sign. Thus,, = N,,D,,_1, Dy = 1 and A.9) follows.

To get A.10) we set

= Z Ny (w) s (2). (A.18)

Using bra and ket notatior?, = >, |m) N, '(m:| is just the projector onto
polynomials with degree not higher than Obwously

(ks Pa(+,0)) = pn, (A.19)
which by (A.8) identifiesP, (w, 0) = N, '7*(w). Forw = 0 this implies

0)=> N.'lpel> =N, (A.20)
k=0

yielding (A.10).

To obtain the Christoffel-Darboux formul&(11) remember thaf, _;(w, z)
is the projector onto polynomials of degree less tha®n the other hand we have
for an arbitrary polynomiap(z) of degree less tham, with z = ¢,

/7r WZ(M)W;(Z) — Wn(w)ﬁn(z)p(z)f(@)de

1 —wz

—T

— () / " WZ(w)WZ(i)_—J;(wm(Z)

F(0)do

—T

[ @ wmE - mmE) B o, @2y

—T
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The last integral vanishes, since writipgz) — p(w) = (z — w)r(z) one has
(m},zr(2)) = 0 by (A.7) and(m,, zr(z)) = 0 by (A.5). This shows that the quo-
tient of (1 — wz)~* (7}, (w)m%(2) — m,(w)ma(2)) and P,_;(w, 2) is independent
of z. The same argument fai(w) with w andz interchanged implies that it is
also independent of. To get the proportionality factarwe setw = z = 0 and

obtain by @A.20)

1— DPn 2

which proves A.11).
If we compare only the highest order in (A.11) we get

—aN]Z*_Ll Tno1(a) = 75 (a)p, — mp(a). (A.23)

Taking the reciprocal polynomials and solving fgi(a) one obtainsA.12). (A.13)
is just the reciprocal ofA.12). Finally (A.14) and A.15) follow by induction
from (A.12) and @A.13) with = = =+1 while noting thatr,(1) = «(1) and
mn(—1) = (=1)"7:(1). O

For the special weight functiofi(§) = e~2" <) one can derive a nonlinear
recursion relation for the,’s, and a system of linear differential equations for
m(2), 75 (2). The recursion relation fop, turns out to be the discrete Painlevé
Il equation. It has been derived in the context of orthogonal polynomials for the
first time in [94], and later on more or less independently6@,[123 9, 24]. The
differential equations for the orthogonal polynomials appear here for the first time
in the given explicit form. They are implicitly derived i8][in the context of the

Riemann-Hilbert formulation of orthogonal polynomials.

Proposition 1.2 For the orthogonal polynomials with respect to the weight func-
tion f(0) = e=2 <) one has

n
»Pn

Pn+1 = _1_

5 — DPn-1 forn > 0. (A.24)

n

The orthogonal polynomials satisfy the differential equations

m/() = (TR g ) () + (P - )ma(2)

m(2) = (=22 4 pov)ma(z) + (— v+ ) (2). (A.25)

z

Proof: Following essentially$4] we have, still for a general differentiable weight
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function,

n(N,—Nn_1) = N,+(n—-1)N, —nN, 4

= <Z Tn—1, 7Tn> + <227T:1—177Tn> - <7Tn*177T;L>

= — j{ 2 (T (2 ma(2)) ]2:752 dz
_ 7{ ﬂnl(z_l)ﬂn(z)FF/g)) 5 75;) dz. (A.26)

We are interested here in the special case whgh = e2v<>? equivalently
F(z) = == Its log-derivative is)(1 — 2~2) and we obtain

Nn - anl = — <Z27Tn,17’/Tn>. (A27)

Note that now all the polynomials are real, thus we can omit the conjugation bars.

We writer,,(z) = 2" + a,2" ! +---. Orderz""! in (A.12) yields the recursion
relationa,, = a,,_1 + p, pn_1, @and we obtain

B(Np— Npo1) = =" +a,12", 7).
= _<7rn+1 - an+1zn> 7Tn> - anlen
- (an—i—l - an—l)Nn
= (anrlpn + pnpnfl)Nw (A28)
SinceN,, = N,,_1(1 — p?) we arrive at pA.24).

Proving egs. A.25) is an elementary but tedious induction. One just has to
check that they are valid for = 0 and that

T — (Tp1 + 270+ pami’ )
=z (npn +(1— pi)(pnﬂ +pn—1)v)7T;§_1 =0,
ﬂ-’;’kLl - (pnﬂ-nfl + anﬂ-:l_]_ + W:Ll)

= —(”Pn + (1= p2)(Prs1 ‘|‘pn—1)U)7Tn—1 =0, (A.29)

when applying A.25) for n andn — 1. OJ
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Taylor expansion method for
Painleve I

The key object in determining the scaling functigh(y) = ¢(y), of Section3.3
is the Hastings-McLeod solutior6{] to Painlevé 1l,u(s), which is the unique
solution to

u” = 2u® + su (B.1)

with asymptotic boundary condition8.(0 and @.11). Tracy and Widom 121,

123 integrate B.1) numerically with conventional differential equation solvers
using the known asymptotics at= +o0o. The precision achieved with this tech-
nique does not suffice for our purposes, since we ngegl as starting values
(3.76 for the differential equations3(75. We develop here a different method to
obtainu(s), in principle with arbitrary precision. Next the functionés, y) and
b(s,y) have to be determined, which directly leads to values for the distribution
functionsF,(s). They have to be further integrated with respect ia order to
obtain their variance, which is the desired scaling functioy. The Taylor ex-
pansion method to be explained intrinsically produces not only function values at
a point but also higher derivatives. Therefore we obydin) not by numerically
differentiatingg(y) but rather by direct calculation via the knowledgeag)Fy(s).

In a first step, to obtain reliable approximations to the Hastings-McLeod so-
lution, we need a good guess ©fs) at some finites, by using asymptotic ex-
pansions aroune-oo. It turns out that the left asymptotics is not well suited to
this purpose, since, when integrated alanghe error of an approximation from
an optimally truncated asymptotic power series at large negateays blows
up to orderl nears = 0 on an exponential scale. Approximations of the right
asymptotics on the other hand allow a, in principle, arbitrary precision on any
given finite interval.

Fors — oo the deviations ofi(s) from the Airy function can be expanded in
an alternating asymptotic power series with exponentially small prefactor,

: e3¢ " (—1)kay,
gt (5) = —AI(s) = e > o (B.2)

127
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with the abbreviatioq = 2s%2. The coefficients arey = 1, a1 = 2, a, = 112,
..., and can be obtained via the recursion relation

an = A + nan—z(n—g)(n—2)a,—» forn>0 (B.3)

with initial conditionsa_; = a_, = 0.

AP = 3" Al Al Al (B.4)

0<k<I<n
are the coefficients in the asymptotic expansion df:Ai and

(6n — 1)(6n — 5)

Ai, = o Ai, 1, Aiy = (B.5)
are the coefficients of the asymptotic expansion of the Airy function itéglf [
: et (=)™ .

A ~ Ai,,. B.6
i(s) N HZZO (n : (8.6)

Empirically we observe that fog, > 0 the optimal truncation inRg.2) is

333/2 leading to an exponentially improved precision

n=

Uright,n(so) - U(S(])
u(so)

~ exp(—%sg/z). (B.7)

We use the notions accuracy for the absolute error of an approximation and pre-
cision for its relative error. Linear perturbation around the true solution tells us
that the precision of the approximate solution decreases rapidly when integrat-
ing in the positive direction, such thafign:,(s)/u(s) — 1 is of order one at ~

32/35, = 2.08s0, but the accuracy is stit exp(—2s2/?). In the negative direc-

tion the accuracy decreases but the precision of the approximation stays roughly
constant down te = 0. For negative values 6f accuracy and precision are sim-

ilar, sinceu(s) is approximately of ordet. Accuracy is lost completely at about
—250, but at—21/3s5, = —1.26s still half of the accuracyexp(—1.33s/%), is re-

tained. What remains is to integrat.{) with initial valuesu(sy) = wightn (o).

3/2
U (50) = Ulighen (50), 1 = [2507].

To solve initial value problems for ordinary differential equations highly so-
phisticated iteration schemes are available, like Runge-Kutta, Adams-Bashford
and multi-step methods. For arbitrary high (but fixed) precision results, all these
methods become ineffective, since the step size is a decreasing function of the re-
guired precision goal for the solution and tends to become ineffectively small. The
only remaining choice is to Taylor expand the solution at a given point. The step
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size is limited by the radius of convergence only and the precision is controlled
by the error made in truncating the Taylor series at some order, conipdrfeq
a thorough discussion.

u(s) is expanded af, as

u(s) = Z un(s — so)". (B.8)

n>0

For the Painlevé Il equation the expansion coefficientat s, are determined by
uo = u(sp), u; = u'(sp) and

2u) + S0 Up, + Up—1

n = s B.9
whereu!?) = > o un_jug’“_l) are the expansion coefficients ofs)* at s,
ul) = wu,. We include the factorial into the expansion coefficients instead of

taking the bare Taylor coefficients, in order to reduce the workload from multipli-
cations by binomials when multiplying two expansions numerically.

Numerically we find that the Hastings-McLeod solution does not have any
pole in a strip/lm(s)| < 2.9. To have a safety margin we choose a step size one
for the extrapolation of the expansioa.g).

We take the starting valuegs), u'(so) from (B.2) ats, = 100. The coeffi-
cients of the function#/(s), V (s), see 8.15 and @.76), when expanded around
sg are given by

(2)

Un
= > B.1
Vn+2 (n + 2)(n + 1)7 n = 07 ( O)

U,
n+1’

Un+1 =

andV; = ug—ui+sou?, leaving unspecified the yet unknown integration constants
U, andV;. By means of the recursion relatioB.9) one determines the values of
u, v, U, andV ats = sy = 1, with these new values at= s, + 2 and so on. The
precision of the integration is in principle only limited by the error in the initial
conditions atsy. In practice the numerical errors from iterating.9) and from
truncating B.8) are easily controlled such that they can be neglected compared
to the initial uncertainty. The precision of the approximated values is of drder
ats = 200 (with an accuracy ok 107%™) and we a posteriori assign t6(s)
andV (so) values, such thal/(200) = V(200) = 0. The arithmetic computing

is done with the C++-based multiprecision packdtfeFUN+431]. At the end

of this first step we have at our disposal the valuesufar, U, V' at the integers

in the interval[—20, 200]. For the convenience of the interested reader let us just
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state the results at= 0 up to50 digits,

u(0) = -0.367061551548078427747792113175610961512192053613139 ,
u’(O) = 0.295372105447550054557007047310237988227233798735629 ,
U(0) = 0.336960697930551393597884426960964843885993886628226 ,
V(0) = 0.0311059853063123536659591008775670005642241689547838 ,

which might be used as starting values for a quick conventional integration of
Painlevé Il to reproduce parts of our results with much less effort but also less
precision.

The next step is to determings, y), b(s,y) atsy € {—20,...,200} in the
intervaly € [—9, 9] employing B8.75 and 3.76). Setting

a(s,y) = Z (s = 50)™ (Y — ¥0)",

m,n>0

m,n>0

(3.75 becomes a recursion relation for the expansion coefficients,

1 =,
Umnt+l = n+1 kzo ul(c )am_k,n - (k + 1)uk+1bm—k’,n - ukbm—k,n—l)a
1
,n+1 n+ 1 —2 —1,
+ Z ( - uk m—k,n + (k + 1)uk+1amfk,n - ukamfk,nfl))a

(B.12)

n > 0, allowing one to determiney ,,, by ,, » > 0 upon the knowledge af o,
bo,o. We integrate along-y with an extrapolation step size @f From @.74) one
obtains the recursions

Am+1n = § ukbm kn
m+1

1
bm+1,n = m( - bm,nfl + ; ukamfk,n) . (813)

The expansion coefficients, , of g(s,y) at (so, o), are determined fronB(77)
as

dm (n -+ 1) ( m ndmn+1 — b;mnbmJH*l) (814)
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wherea,, ., b, , are the corresponding expansion coefficientsarfidb at (s, —o).

To finally determingy(y) and its derivatives we write

dn so+1 ., d2
g(n)(yo) = dun Z/ (s —wo) ﬁ(g(&yo)FGUE(S))dS
yO S0€Z S0 S

— Z n! Z Conm- (B.15)
S0EZ m>1
cm,n are the expansion coefficients@fy) — [ (r— y2)2% (9(r,y)Foue(r))dr
at (so, %o),

Cmn = (M = 2)(9F )m-1,0 — 2m(gF ) n—2 + W(QF)mH,n—& (B.16)

-1

Here
(G ) mn = FrGm—kn (B.17)
k=0
are the expansion coefficients @fs, y) Foue(s) andF,, = — > ;_, %V,CFn_k are

the expansion coefficients digyue. Numerically the sum oves, in (B.15) is
truncated to values inside-15, 200], since outside contributions turn out to be
negligible at the chosen precision goal. After accomplishing this program we
keep values fog(y) aty € 5Z N [-9,9] and forg™(y), n = 0,...,4, at

Y € %Z N [—9, 9] with an accuracy of abou0 digits (a table in ASCII format is
available online at]03). For interpolating these values we deliberately used the
Interpolation -function of the Mathematica package yielding best results

due to the high precision data with an interpolation order7of



132 APPENDIXB. TAYLOR EXPANSION METHOD FORPAINLEVE Il



BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

M. Abramowitz and I. A. Stegun, editorsPocketbook of Mathematical
Functions Verlag Harri Deutsch, Thun - Frankfurt am Main, 19846,
128

T. Ala-Nissila. Comment on “Upper critical dimension of the Kardar-
Parisi-Zhang equation’Phys. Rev. Lett80(4):887-887, 199820, 120

T. Ala-Nissila, T. Hjelt, J. M. Kosterlitz, and O. Vendalainen. Scaling
exponents for kinetic roughening in higher dimensions. Stat. Phys.
72(1/2):207-225, 19934, 23, 23,119 120, 120

T. Ala-Nissila and O. Venaldinen. Scaling exponents for driven two-
dimensional surface growthl. Stat. Phys.76(3/4):1083-1088, 19944,
119

D. Aldous and P. Diaconis. Hammersley'’s interacting particle process and
longest increasing subsequencdobab. Th. Rel. Fields103:199-213,
1995. 34

D. Aldous and P. Diaconis. Longest increasing subsequences: from pa-
tience sorting to the Baik-Deift-Johansson theorBuil. Amer. Math. Sog.
36:413, 1999.38, 40, 40

J. Amar and F. Family. Universality in surface growth: Scaling functions
and amplitude ratios?hys. Rev. A45(8):5378-5393, 19924, 23

S. Assing. A pregenerator for Burgers equation forced by conservative
noise.Commun. Math. Phys225:611-623, 200226

J. Baik. Riemann-Hilbert problems for last passage percolation.
math.PR/0107072001. 41, 50, 52, 53, 124, 124

J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the
longest increasing subsequence of random permutatidndmer. Math.
Soc, 12:1119, 1999.5, 38, 39, 40, 42

133


http://arXiv.org/abs/math.PR/0107079

134 BIBLIOGRAPHY

[11] J. Baik and E. M. Rains. Limiting distributions for a polynuclear growth
model with external sourced. Stat. Phys.100(3—-4):523-541, 200047,
50, 53,53, 72

[12] J. Baik and E. M. Rains. Algebraic aspects of increasing subsequences.
Duke Math. J.109(1):1-65, 200140, 44, 44, 45, 50, 53, 53, 67

[13] J. Baik and E. M. Rains. The asymptotics of monotone subsequences of
involutions. Duke Math. J.109(2):205-281, 200145, 53

[14] J. Baik and E. M. Rains. Symmetrized random permutations. In P. Bleher
and A. Its, editorsRandom Matrix Models and Their Applicatignsol-
ume 40 ofMSRI pages 1-19, 200143, 44, 45

[15] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An expla-
nation of thel/ f noise.Phys. Rev. Le(t59:381-384, 19872

[16] A.L.Barabasiand H. E. Stanlelyractal concepts in surface growtam-
bridge University Press, Cambridge, 1995.

[17] D. Barton, I. M. Willers, and R. V. M. Zahar. Taylor series methods for
ordinary differential equations - An evaluation. In J. Rice, ediktathe-
matical Softwarepages 369-390. Academic Press, New York, 19729

[18] H. v. Beijeren, R. Kutner, and H. Spohn. Excess noise for driven diffusive
systemsPhys. Rev. Lett54(18):2026—-2029, 19854, 47, 55

[19] C. Bennett, M. Biittiker, R. Landauer, and H. Thomas. Kinematics of the
forced and overdamped Sine-Gordon soliton gaStat. Phys$.24(3):419—
442,1981.32

[20] L. Bertini and G. Giacomin. Stochastic Burgers and KPZ equations from
particle systemsCommun. Math. Phys183:571-607, 199726

[21] J. Bhattacharjee. Upper critical dimension of the Kardar-Parisi-Zhang
equation.J. Phys. A: Math. Gen31(5):L93-L96, 1998.20

[22] B. Bollobas and W. P. The longest chain among random points in Euclidean
space.Proc. Amer. Math. Soc103(2):347-353, 1988106, 114

[23] E. Bolthausen. A note on the diffusion of directed polymers in a random
environment.Comm. Math. Phys123(4):529-534, 198920

[24] A. Borodin. Discrete gap probabilities and discrete Painlevé equations.
Duke Math. J.117(3):489-542, 200341, 124



BIBLIOGRAPHY 135

[25] A. Borodin and A. Okounkov. A Fredholm determinant formula for
Toeplitz determinantdntegr. Equat. Oper. Th37(4):386-396, 200085

[26] O. Bratteli and D. RobinsonOperator Algebras and Quantum Statistical
Mechanics 2 Springer-Verlag, New York, 199782

[27] E. Breimer, M. Goldberg, B. Kolstad, and M. Magdon-Ismail. On the
height of a random set of points indadimensional unit cubeExp. Math,
10(4):583-597, 2001116

[28] C. Castellano, A. Gabrielli, M. Marsili, M. Munoz, and L. Pietronero. High
dimensional behavior of the Kardar-Parisi-Zhang growth dynanitgs.
Rev. E 58(5):R5209-R5212, 1998120

[29] C. Castellano, M. Marsili, M. A. Munoz, and L. Pietronero. Scale invariant
dynamics of surface growthPhys. Rev. F59:6460-6475, 19994, 23

[30] C. Castellano, M. Marsili, and L. Pietronero. Non-perturbative renormal-
ization of the KPZ growth dynamic®hys. Rev. Lett80:3527-3530, 1998.
23,23

[31] S. Chatterjee. MPFUN++, a C++-based multiprecision system.
http://www.cs.unc.edu/Research/HARPOON/mpfun++/ :
2000. 129

[32] C.-S. Chin and M. den Nijs. Stationary state skewness in two dimensional
Kardar-Parisi-Zhang type growthPhys. Rev. E59(3):2633-2641, 1999.
20,113 119

[33] F. Colaiori and M. A. Moore. Stretched exponential relaxation in the
mode-coupling theory for the Kardar-Parisi-Zhang equatiéhys. Rev.
E, 63:057103, 200155, 56

[34] F. Colaioriand M. A. Moore. Upper critical dimension, dynamic exponent,
and scaling functions in the mode-coupling theory for the Kardar-Parisi-
Zhang equationPhys. Rev. Le{t86:3946-3949, 20014, 20, 120

[35] F. Colaiori and M. A. Moore. Numerical solution of the mode-coupling
equations for the Kardar-Parisi-Zhang equation in one dimensiiys.
Rev. E 65:017105, 20024, 4, 47, 55, 55, 55, 56

[36] A. De Masi and E. PresuttMathematical methods for hydrodynamic lim-
its, volume 1501 of_ecture Notes in MathematicSpringer-Verlag, Berlin,
1991. 20


http://www.cs.unc.edu/Research/HARPOON/mpfun++/

136 BIBLIOGRAPHY

[37] P. A. Deift and X. Zhou. A steepest descent method for oscillatory
Riemman-Hilbert problems; asymptotics for the MKdV equatiofinn.
Math, 137:295-368, 199342

[38] B. Derrida and C. Appert. Universal large deviation function of the Kardar-
Parisi-Zhang equation in one dimensianStat. Phys.94:1-30, 1999.4

[39] B. Derrida and J. L. Lebowitz. Exact large deviation function in the asym-
metric exclusion proces®hys. Rev. Lett80:209-213, 19984

[40] D. Dhar. An exactly solved model for interfacial growfhase Transitions
9(1):51, 1987.4, 19

[41] F. J. Dyson. A Brownian-motion model for the eigenvalues of random
matrices.J. Math. Phys.3:1191-1198, 196276

[42] S. F. Edwards and D. R. Wilkinson. The surface statistics of a granular
aggregateProc. R. Soc. London, Ser, 381:17, 1982.3, 25

[43] F. Family and T. Vicsek, editorsDynamics of fractal surfacesWorld
Scientific, Singapore, 19912

[44] H. C. Fogedby. Scaling function for the noisy Burgers equation in the
soliton approximationEurophys. Let{.56(4):492—-498, 20014, 4, 47

[45] H. C. Fogedby. Towards a strong coupling theory for the KPZ equation.
Physica A314:182, 2002.4

[46] D. Forster, D. R. Nelson, and M. J. Stephen. Large-distance and long-time
properties of a randomly stirred flui@hys. Rev. A16:732—749, 19774

[47] F. C. Frank. Nucleation-controlled growth on a one-dimensional growth of
finite length.J. Cryst. Growth22(3):223-236, 197431

[48] E. Frey and U. C. Tauber. Two-loop renormalization-group analysis of
the Burgers-Kardar-Parisi-Zhang equatiBthys. Rev. F50(2):1024-1045,
1994. 4,24

[49] E. Frey, U. C. Tauber, and T. Hwa. Mode-coupling and renormalization
group results for the noisy Burgers equatioBhys. Rev. E53(5):4424—
4438, 1996.4, 4, 47, 47, 55

[50] D. J. Gates and M. Westcott. Stationary states of crystal growth in three
dimensionsJ. Stat. Phys.81:681-715, 199514, 89, 91



BIBLIOGRAPHY 137

[51] I. M. Gessel. Symmetric functions and p-recursivenes€Comb. Theory
A, 53:257-285, 199040

[52] N. Goldenfeld. Kinetics of a model for nucleation-controlled polymer crys-
tal growth.J. Phys. A17:2807-2821, 198431

[53] J. Gravner, C. A. Tracy, and H. Widom. Limit theorems for height fluctu-
ations in a class of discrete space and time growth madlebtat. Phys.
102:1085-1132, 200166

[54] J. Gravner, C. A. Tracy, and H. Widom. Fluctuations in the composite
regime of a disordered growth modeCommun. Math. Phys229:433—
458, 2002. 66

[55] J. Gravner, C. A. Tracy, and H. Widom. A growth model in a random
environment Ann. Probah. 30:1340-1368, 200266, 67

[56] L.-H. Gwa and H. Spohn. Bethe solution for the dynamical-scaling expo-
nent of the noisy Burgers equatioRhys. Rev. A46:844-854, 1992.4,
19

[57] L.-H. Gwa and H. Spohn. Six-vertex model, roughened surfaces, and an
asymmetric spin HamiltoniarPhys. Rev. Let68:725-728, 19924

[58] T. Halpin-Healy. Directed polymers in random media: probability distribu-
tions. Phys. Rev. A44(6):R3415-R3418, 199123

[59] T. Halpin-Healy and Y.-C. Zhang. Kinetic roughening phenomena, stochas-
tic growth, directed polymers and all tha&hys. Rep.254:215-414, 1995.
3

[60] J. M. Hammersley. A few seedlings of research.Phoc. Sixth Berkeley
Symp. Math. Statist. and Probabilityolume 1, pages 345—-394. University
of California Press, 197234, 38

[61] S. P. Hastings and J. B. McLeod. A boundary value problem associated
with the second Painlevé transcendent and the Korteweg-de Vries equation.
Arch. Rat. Mech. Anal73:31-51, 1980.38, 127

[62] M. Hisakado. Unitary matrix models and Painlevé Mod. Phys. Letts A
11:3001-3010, 199641, 124

[63] T. Hwa and E. Frey. Exact scaling function of interface growth dynamics.
Phys. Rev. M4(12):R7873-R7876, 199147, 47



138 BIBLIOGRAPHY

[64] J. Imbrie and T. Spencer. Diffusion of directed polymers in a random envi-
ronment.J. Stat. Phys52(3-4):609-626, 198820

[65] M. E. H. Ismail and N. S. Witte. Discriminants and functional equations
for polynomials orthogonal on the unit circlé. Approx. Th.110:200-228,
2001. 52

[66] H. Jeong, B. Kahng, and D. Kim. Dynamics of a toom interface in three
dimensionsPhys. Rev. Lett71(5):747-749, 199389

[67] K. Johansson. Discrete orthogonal polynomial ensembles and the
plancherel measur€ommun. Math. Phys209(2):437-476, 200065

[68] K. Johansson. Shape fluctuations and random matri€gsmm. Math.
Phys, 209:437-476, 20005, 19, 61, 62

[69] K. Johansson. Discrete polynuclear growth and determinantal processes.
math.PR/02062Q8002. 63, 74, 76, 76, 77

[70] M. Kardar, G. Parisi, and Y. Z. Zhang. Dynamic scaling of growing inter-
faces.Phys. Rev. Lett56:889-892, 19862, 17, 20, 23, 23, 24, 89

[71] J. M. Kim. Phase transition of directed polymer in random potentials on
4+1 dimensionsPhys. A 270:335-341, 19994, 23

[72] J. M. Kim, M. A. Moore, and A. J. Bray. Zero-temperature directed poly-
mers in a random potentiaPhys. Rev. A4(4):2345-2351, 19914, 23

[73] C. Kipnis and C. Landim.Scaling limits of interacting particle systems
volume 320 ofGrundlehren der mathematischen Wissenschagennger-
Verlag, Berlin, 1999.20

[74] J. Krug. Scaling relation for a growing interface.Phys. Rev. A
36(11):5465-5466, 198722

[75] J. Krug. Origins of scale invariance in growth processeésdv. Phys.
46:139-282, 19973

[76] J. Krug and J. Garcia. Asymmetric particle systemsRon]. Stat. Phys.
99(1-2):31-55, 200034

[77] J. Krug, P. Meakin, and T. Halpin-Healy. Amplitude universality for
driven interfaces and directed polymers in random medhays. Rev. A
45(2):638-653, 19924, 4, 23, 43


http://arXiv.org/abs/math.PR/0206208

BIBLIOGRAPHY 139

[78] J. Krug and H. Spohn. Kinetic roughening of growing surfaces. In C. Go-
dréche, editorSolids far from equilibrium Cambridge University Press,
Cambridge, 1991.3,12, 19, 22, 23

[79] M. Lassig. On the renormalization of the Kardar-Parisi-Zhang equation.
Nucl. Phys. B448:559-574, 19954, 19, 24

[80] M. Lassig. On growth, disorder, and field theodyPhys. C10(44):9905—-
9950, 1998.3, 4, 20, 23, 23, 24, 116,119 120

[81] M. Lassig and H. Kinzelbach. Upper critical dimension of the Kardar-
Parisi-Zhang equatior?hys. Rev. Lett78(5):903-906, 199720, 23, 25,
120

[82] M. Liggett, Thomasinteracting particle systemsSpringer Verlag, Berlin,
Heidelberg, New York, 198570

[83] M. Liggett, Thomas. Stochastic interacting systems: contact, voter and
exclusion processeSpringer Verlag, Berlin, Heidelberg, New York, 1999.
70

[84] B. Logan and L. Shepp. A variational problem for random young tableaus.
Advances in Math26:206-222, 197738

[85] E. Marinari, A. Pagnani, and G. Parisi. Critical exponents of the KPZ
equation via multi-surface coding numerical simulatioh$?hys. A: Math.
Gen, 33(46):8181-8192, 20004, 119 120, 120

[86] E. Marinari, A. Pagnani, G. Parisi, and Z. Racz. Width distributions and
the upper critical dimension of Kardar-Parisi-Zhang interfa¢tsys. Rev.
E, 65:026136, 20024, 4, 20, 120

[87] P. Meakin. The growth of rough surfaces and interfacédys. Rep.
235:189-289, 19933

[88] P. Meakin.Fractals, scaling and growth far from equilibriunNumber 5 in
Cambridge Nonlinear Science Series. Cambridge University Press, Cam-
bridge, 1998.2

[89] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang. Burgers equation with
correlated noise: Renormalization-group analysis and applications to di-
rected polymers and interface growtPhys. Rev. A39(3053-3075), 1989.

22



140 BIBLIOGRAPHY

[90] M. L. Mehta.Random matrices, 2nd edcademic Press, San Diego, 1991.
38

[91] M. Myllys, J. Maunuksela, M. Alava, J. Merikoski, and J. Timonen. Kinetic
roughening in slow combustion of papd?hys. Rev. E64(036101):1-12,
2001. 47

[92] T. Nattermann and L.-H. Tang. Kinetic surface roughening. I. The
Kardar-Parisi-Zhang equation in the weak coupling regifbys. Rev. A
45(10):7156-7161, 19923, 25

[93] G. Parisi.Statistical field theoryAddison Wesley, New York, 19883

[94] V. Periwal and D. Shevitz. Unitary-matrix models as exactly solvable string
theories.Phys. Rev. Lett64(12):1326-1329, 199041, 124, 124

[95] M. Piza. Directed polymers in a random environment. some results on
fluctuations.J. Stat. Phys.89(3—4):581-603, 199720

[96] M. Plischke, Z. Racz, and D. Liu. Time-reversal invariance and universality
of two-dimensional growth model$hys. Rev. B35(7):3485-3495, 1986.
29

[97] M. Prahofer and H. Spohn. An exactly solved model of three dimensional
surface growth in the anisotropic KPZ reginde Stat. Phy$.88:999, 1997.
7,14, 94, 98,99, 101

[98] M. Prahofer and H. Spohn. Statistical self-similarity of one-dimensional
growth processes?hysica A279(1-4):342-352, 20007, 40

[99] M. Prahofer and H. Spohn. Universal distributions for growth processes in
one dimension and random matricézhys. Rev. Lett84(21):4882-4885,
2000. 5, 7,43, 47

[100] M. Prahofer and H. Spohn. Current fluctuations for the totally asymmetric
simple exclusion process. In S. Vladas, editorand out of equilibrium
volume 51 ofProgress in Probabilitypages 185—-204. Birkhauser Boston,
2002. 7,74

[101] M. Préhofer and H. Spohn. Exact scaling functions for one-dimensional
stationary KPZ growthcond-mat/021251,2002. 7

[102] M. Préahofer and H. Spohn. Scale invariance of the PNG droplet and the
Airy process.J. Stat. Phys.108(5-6):1071-1106, 2004ii, iv, 7, 22, 63,
76,76, 77,81, 82, 83, 87, 87


http://arXiv.org/abs/cond-mat/0212519

BIBLIOGRAPHY 141

[103] M. Préahofer and H. Spohn. The scaling functigy). http://www-
m5.ma.tum.de/KPzZ/ ,2002. 131

[104] E. M. Rains. Increasing subsequences and the classical griigzgron.
J. Combin, 5(1):R12, 1998.40, 44

[105] E. M. Rains. A mean identity for longest increasing subsequence problems.
math.C0O/0004082000. 51

[106] R. Rajesh and D. Dhar. An exactly solvable anisotropic directed percolation
model in three dimensionsPhys. Rev. Leit81(8):1646—-1649, 19985,
59, 60, 70

[107] J. T. Robinson. The k-d-b-tree: A search structure for large multidimen-
sional dynamic indexes. In Y. E. Lien, edit®roceedings of the 1981 ACM
SIGMOD International Conference on Management of Data, Ann Arbor,
Michigan, April 29 - May 1, 1981pages 10-18. ACM Press, 198107

[108] H. Rost. Non-equilibrium behavior of a many particle system: density
profile and local equilibriumZ. Wahrsch. Verw. Gebietg8:41, 1981.59

[109] P. G. Saffman and G. I. Taylor. The penetration of a fluid into a medium
of Hele-Shaw cell containing a more viscous liquittoc. R. Soc. London,
Ser. A 245:312-329, 19582

[110] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito. Discrete
stochastic models for traffic flowPhys. Rev. E51(4):2939-2949, 1995.
63, 70

[111] T. Seppélainen. A microscopic model for the Burgers equation and longest
increasing subsequencddectronic J. Proh.1(5):1-51, 1996.34

[112] T. Seppalainen. Hydrodynamic scaling, convex duality, and asymptotic
shapes of growth modeldviarkov Process. Related Field4:1-26, 1998.
20, 34

[113] T. Seppalainen. Diffusive fluctuations for one-dimensional totally asym-
metric interacting random dynamic€&ommun. Math. Phys229(1):141—
182, 2002. 34, 35

[114] A. Soshnikov. Determinantal random point fieldsuss. Math. Sury.
55:923-975, 200083

[115] T. Spencer. A mathematical approach to universality in two dimensions.
Physica A 279(1-4):250-259, 20005


http://www-m5.ma.tum.de/KPZ/
http://www-m5.ma.tum.de/KPZ/
http://arXiv.org/abs/math.CO/0004082

142 BIBLIOGRAPHY

[116] H. Spohn.Large scale dynamics of interacting particleSpringer-Verlag,
Heidelberg und Berlin, 199120

[117] H. Spohn. Interface motion in models with stochastic dynamitsStat.
Phys, 71:1081-1132, 199316

[118] G. SzegtOrthogonal polynomialsAmerican Mathematical Society Prov-
idence, Rhode Island, 196741, 41, 122

[119] L.-H. Tang. Steady—state scaling function of the (1+1)—dimensional single—
step modelJ. Stat. Phys.67:819-826, 19924, 47, 47

[120] L.-H. Tang, B. M. Forrest, and D. E. Wolf. Kinetic surface roughening. Il.
Hypercube stacking model2hys. Rev. A45(10):7162—-7179, 19924,
23,23, 28, 30, 30,62, 119,120

[121] C. A. Tracy and H. Widom. Level spacing distribution and the Airy kernel.
Commun. Math. Phys159:151-174, 199438, 76, 127

[122] C. A. Tracy and H. Widom. On orthogonal and symplectic matrix ensem-
bles.Commun. Math. Physl77:727—-754, 199643, 44, 45

[123] C. A. Tracy and H. Widom. private communication, 19981, 124, 127

[124] S. M. Ulam. Modern Mathematics for the Engineeq. E. F. Beckenbach,
volume Il, chapter 11, pages 261-277. McGraw-Hill, New York, Toronto,
London, 1961.36, 106

[125] A. M. Vershik and S. V. Kerov. Asymptotics of the plancherel measure of
the symmetric group and the limiting form of Young tabl&oviet Math.
Dokl., 18:527-531, 197738

[126] T. Vicsek. Fractal growth phenomena, 2nd editiokVorld Scientific, Sin-
gapore, 1992.2

[127] G. Viennot. Une forme géométrique de la correspondence de Robinson-
Schensted. In D. Foata, edit@pmbinatoire et représentation du groupe
symétrique volume 579 ofLecture Notes in Mathematicpages 29-58.
Springer-Verlag, Berlin, 197775

[128] W. Werner. Random planar curves and Schramm-Loewner evolutions.
math.PR/03033542003. 2

[129] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic
critical phenomenonPhys. Rev. Lett47:1400-1403, 19812


http://arXiv.org/abs/math.PR/0303354

BIBLIOGRAPHY 143

[130] D. E. Wolf. Kinetic roughening of vicinal surfacesPhys. Rev. Lett.
67:1783-1786, 19913, 15, 17, 19, 26, 89, 90

[131] T. Wu, B. McCoy, C. Tracy, and E. Barouch. The spin-spin correlation
function of the 2-dimensional Ising model: exact results in the scaling re-
gion. Phys. Rev. B13:316-374, 19764

[132] G. Wulff. Zur Frage der Geschwindigkeit des Wachstums und der Aufl6-
sung der KristallflachenZ. Kristallogr. Mineral, 34:449-530, 190112



	Title
	Abstract
	german
	english

	Contents
	Introduction
	KPZ theory
	Exactly solvable models
	Outline
	Acknowledgements

	Self-similar surface growth
	Deterministic dynamics
	Convex growth, last passage percolation
	Saddle-like growth

	Perturbations around the deterministic shape
	Stochastic surface growth
	Stationary growth
	Extended self-affinity

	Universality
	Space-time description
	The driven 2d Ising corner -- a simple application

	The (1+1)-dimensional PNG model
	The PNG droplet
	Ulam's problem.
	Orthogonal polynomials.

	Flat initial conditions, other symmetry restrictions
	The stationary two-point function
	Convexity of the scaling function.
	The distribution of height differences.
	The scaling limit of the height distribution.
	Discussion of the scaling function.


	The Bernoulli cone
	The directed bond percolation cluster
	The PNG limit
	The TASEP limit
	Stationarity
	The generator of asymptotics

	The multi-layer PNG model
	The Airy process
	The multi-layer PNG droplet
	The scaling limit

	Anisotropic Growth
	The Gates-Westcott model
	The steady state
	The fermion picture and the infinite volume limit
	Slope, growth velocity, and two point correlations

	Models in higher dimensions
	The isotropic PNG droplet
	PNG models with general island shape
	Monte Carlo simulations on a flat substrate
	2+1 dimensional triangle PNG droplet
	Summary of the numerical results

	Orthogonal polynomial identities
	Taylor expansion method for Painlevé II
	Bibliography

