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Abstract
Variable selection and model choice are of major concern in many statistical ap-

plications, especially in regression models for high-dimensional data. Boosting is a

convenient statistical method that combines model fitting with intrinsic model se-

lection. We investigate the impact of base-learner specification on the performance

of boosting as a model selection procedure. We show that variable selection may be

biased if the base-learners have different degrees of flexibility, both for categorical

covariates and for smooth effects of continuous covariates. We investigate these

problems from a theoretical perspective and suggest a framework for unbiased

model selection based on a general class of penalized least squares base-learners.

Making all base-learners comparable in terms of their degrees of freedom strongly

reduces the selection bias observed with naive boosting specifications. Further-

more, the definition of degrees of freedom that is used in the smoothing literature

is questionable in the context of boosting, and an alternative definition is theo-

retically derived. The importance of unbiased model selection is demonstrated in

simulations and in an application to forest health models.

A second aspect of this thesis is the expansion of the boosting algorithm to new

estimation problems: by using constraint base-learners, monotonicity constrained

effect estimates can be seamlessly incorporated in the existing boosting framework.

This holds for both, smooth effects and ordinal variables. Furthermore, cyclic re-

strictions can be integrated in the model for smooth effects of continuous covari-

ates. In particular in time-series models, cyclic constraints play an important role.

Monotonic and cyclic constraints of smooth effects can, in addition, be extended

to smooth, bivariate function estimates. If the true effects are monotonic or cyclic,

simulation studies show that constrained estimates are superior to unconstrained

estimates. In three case studies (the modeling the presence of Red Kite in Bavaria,

the modeling of activity profiles for Roe Deer, and the modeling of deaths caused

by air pollution in São Paulo) it is shown that both constraints can be integrated in

the boosting framework and that they are easy to use.

All described results were included in the R add-on package mboost.





Zusammenfassung
Insbesondere in Regressionsmodellen für hochdimensionale Daten kommt der

Variablenselektion und der Modellwahl eine herausragende Bedeutung zu. Boost-

ing-Verfahren bieten die Möglichkeit die Modellanpassung mit intrinsischer Mo-

dellwahl zu kombinieren. In dieser Arbeit wird der Einfluss der Spezifikation der

Base-learner auf die Modellwahl untersucht. Es zeigt sich, dass sowohl für kate-

goriale Einflussvariablen als auch für glatte Effekte stetiger Einflussgrößen Base-

learner mit höheren Freiheitsgraden bevorzugt werden. Um diese Verzerrung zu

reduzieren oder gar zu vermeiden müssen die Freiheitsgrade gleich gewählt wer-

den. Darüber hinaus wird der in der Smoothing-Literatur vorherrschende Frei-

heitsgradbegriff im Kontext von Boosting in Frage gestellt und eine alternative De-

finition theoretisch begründet. Die hergeleiteten Resultate werden in Simulations-

studien untersucht und beispielhaft für die Modellierung von Waldschadensdaten

herangezogen.

Ein weiterer Aspekt dieser Arbeit besteht in der Erweiterung des Boosting-

Algorithmus auf neue Fragestellungen: Durch die Einbeziehung von Nebenbedin-

gungen in die Schätzung der Base-learner können monotonie-restringierte Effekte

nahtlos in den bestehende Rahmen integriert werden. Dies ist sowohl für glatte

Effekte als auch für ordinale Variablen möglich. Darüber hinaus lassen sich zy-

klische Restriktionen für glatte Funktionen einer stetigen Variable in die Modell-

schätzung einbeziehen. Zyklische Restriktionen spielen insbesondere in der Mo-

dellierung von Zeitreihen eine wichtige Rolle. Monotonie und zyklische Effekte

lassen sich darüber hinaus ebenso auf glatte, bivariate Funktionen erweitern. Beide

Arten von Restriktionen stellen sich in Simulationsstudien gegenüber unrestrin-

gierten Modellen als überlegen heraus, falls in Wahrheit ein monotoner bzw. ein

zyklischer Effekt vorliegt. In drei Anwendungen (der Modellierung des Vorkom-

mens von Rotmilanen in Bayern, der Modellierung von Aktivitätsmustern beim

Reh und der Modellierung der Todesfälle aufgrund von Luftverschmutzung in São

Paulo) zeigt sich, dass sich die beschriebenen Restriktionen in Boosting-Modelle

integrieren und einfach verwenden.

Alle beschriebenen Ergebnisse fanden Eingang in das R Paket mboost.
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1. Introduction

Science may be described as the art of systematic over-simplification

— the art of discerning what we may with advantage omit.

(Sir Karl Raimund Popper 1)

The methodological advances in statistical modeling during the last two decades

make it possible to determine relationships in complex, high-dimensional data sets

that are hard to handle by using classical methods such as linear models with

stepwise variable selection. Especially ideas from computer science and machine

learning had — and still have — a big impact on developments in this area. As

Breiman (2001b) argues, these two fields have developed very important ideas and

algorithms that should greatly influence the way statisticians think. Perhaps the

three most influential approaches that emerged in the field of machine learning

are support vector machines (Vapnik 1995), boosting (Freund and Schapire 1996)

and random forests (Breiman 2001a). While random forests are a rather simple,

yet very powerful non-parametric approach to regression modeling, support vec-

tor machines and boosting might rather be seen as ‘meta-algorithms’ that provide

rich frameworks and can be used to derive specialized solutions. Typically, these

machine learning approaches are complex methods. However, statisticians and

related scientists should see the great benefits arising from models derived with

these approaches. As Breiman argues, these new approaches build a rich basis for

the derivation of more accurate models in small data sets, and they can be used to

derive models for high-dimensional data sets as well.

1Popper K (1988). The open universe: An argument for indeterminism. Routledge, London. Edited by
W.W. Bartley, III. p. 44.

1



2 Introduction

1.1. Statistical Modeling and Machine Learning –

Two Worlds?

In his thought-provoking paper, Breiman (2001b) advocates to use tools from the

field of machine learning, which he calls “algorithmic models”, and to focus on the

prediction accuracy of models, rather than using what he calls “data models”. In

his eyes, statisticians tended (or still tend) to focus too much on statistical models.

Breiman (2001b, p. 199) states that the research focus on data models has “led to

irrelevant theory and questionable scientific conclusions”. He proposes to focus on

prediction accuracy and algorithmic properties such as convergence or the reasons

for the good prediction properties of algorithms. No doubt, this focus is relevant in

many machine learning problems, where huge data sets are used to make superb

predictions on new data. However, statisticians and practitioners typically are also

interested in making inference about the unknown regression relationship. In many

fields, such as medicine, researchers do not purely ask for prediction machines but

want to draw conclusions on the quality of a therapy in subgroups of patients,

or to understand the mechanisms of diseases. Algorithmic models derived from

random forests, support vector machines, or boosting, however, do not necessarily

provide measures that statisticians are used to interpret and that allow to draw

conclusions (i.e., make statistical inference). For random forests and tree-based

gradient boosting, variable importance measures were introduced (Breiman 2001a,

Friedman 2001, Strobl, Boulesteix, Zeileis, and Hothorn 2007) that allow to pick

‘important’ variables from a potentially large number of covariates. For boosting,

the link between algorithmic models and data models was created by the ground-

breaking papers of Friedman, Hastie, and Tibshirani (2000), and Bühlmann and

Yu (2003), who interpreted functional gradient descent boosting as an optimization

algorithm that fits forward stagewise additive models. The resulting model can be

interpreted as a generalized additive model. Consequently, statisticians can inter-

pret these models based on regression coefficients (linear model), or by looking at

the partial contributions of each model component (additive model). Hence, with

boosting, we have an algorithmic model with good algorithmic properties (as we

will discuss in the next chapter), which is at the same time an interpretable sta-

tistical data model. Thus, the dichotomy that Breiman exaggeratedly devised can

be bridged to a certain extend. One should mention that the idea to use statisti-

cal models and to consider their algorithmic properties is also acknowledged by
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Breiman (2001b). Two approaches, which are also considered in this work, can be

seen as a way to combine algorithmic and statistical models. According to Breiman

(2001b), Wahba’s (1990) research on smoothing splines, embedded in the theory of

reproducing kernel Hilbert spaces, is one good example of a new research focus

in the statistics community. In Section 2.3.4, thin plate splines (a generalization of

cubic smoothing splines) and general radial basis functions are introduced; both

can be theoretically derived from reproducing kernel Hilbert spaces (see, e.g., An-

jyo and Lewis 2011). Breiman (2001b) also mentions the (at this time new) boosting

algorithm as a possible method to bridge the gap between statistics and machine

learning. Lots of research has been conducted since then to understand the sta-

tistical properties of this machine learning procedure (see Chapter 2). Nowadays,

boosting algorithms provide a versatile framework to derive models from, which

are well interpretable in many cases.

1.2. Scope of this Work

In this thesis we investigate ways to model complex data situations using boosting

approaches. We aim to fit models to complex data sets that comprise spatial com-

ponents, and which might require spatio-temporal components or spatially varying

coefficients. In these complex settings we try to find a relatively sparse and inter-

pretable model. For this purpose, variable and model selection are required. With

different degrees of complexity and flexibility of the competing model terms, un-

biased or bias reduced selection of the modeling alternatives becomes an absolute

necessity. In Chapter 3, we aim to predict the health status of beeches in a northern

Bavarian forest district. The model should be interpretable and useful, thus, un-

biased model selection is demanded. The data set consists of continuous, ordinal

and binary covariates that describe the environmental conditions at the location of

the trees. Furthermore, the locations should be used to model additional spatial

variation.

Prior demands on the effects, such as monotonicity or cyclicity are another major

topic of this thesis. Constrained effect estimation allows to include these require-

ments in the estimation process. In Chapter 4, we face these challenges. In a first

case study, we model the species distribution of Red Kite in Bavaria. In this model

we have spatial information of the Red Kite sightings as well as many environmen-

tal variables of different nature. The aim is to find an interpretable model for the
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conditional breeding probability of Red Kite. As some effects become biologically

implausible, monotonic constraints are incorporated in the modeling process.

The second study investigates the activity profiles of Roe Deer. Temporal infor-

mation is given along with environmental variables and the activity measurement

of the observed Roe Deer. The activity of the animals changes during the day and

throughout the year. Thus, we try to find a smooth interaction surface that de-

scribes the activity during the day and within the year. In order to allow smooth

transitions at the boundaries (end of the day and end of the year) periodic con-

straints should be considered.

The third case study investigating the impact of SO2 on the number of respira-

tory deaths, combines periodic effects with monotonicity constrained effects. We

want to model long term trends and periodic trends of mortality due to respiratory

causes within the year. At the same time, increasing concentrations of the pollutant

of interest, i.e., SO2, should result in an increased expected number of deaths.

In summary, in this thesis some important challenges in the context of com-

plex data sets are investigated. First, spatial models are considered. Second, we

investigate a framework for unbiased selection of competing variables and compet-

ing modeling alternatives. Third, possibilities for the inclusion of subject matter

knowledge via monotonicity constraints or cyclic effects are demonstrated. All

these topics have in common that the resulting model should be easily accessible

and interpretable while allowing enough flexibility to be reliable and generalizable.

As spatial and complex data, which requires further restrictions, is very com-

mon in the field of ecology, all data sets considered in this thesis arose — more

or less — from this scientific area. However, medical applications are also con-

ceivable. Spatial data might for example result from large clinical trials where the

spread of diseases is investigated. An example are cancer studies with data from

population-based cancer registries. In this context it is also of interest to model

temporal developments and periodic patterns. Hence, periodic constraints are also

of interest. The link between ecological and medical applications is given in the São

Paulo air pollution study, where the influence of ecological parameters on human

health is considered.
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1.3. Structured Additive Models

All models discussed in this thesis can be regarded as structured additive models.

Let us consider a set of observations (yi, x>i ), i = 1, . . . , n, where yi is the response

variable and xi = (x(1)i , . . . , x(p)
i ) consists of p possible predictors of different na-

ture, such as categorical or continuous covariates. To model the dependency of

the response on the predictor variables, we consider a structured regression model,

where E(y|x) = h(η(x)) with (known) response function h, and an structured addi-

tive predictor η(x) of the form

η(x) = β0 +
p

∑
j=1

f j(x(j)) (1.1)

is used. The functions f j(·) are generic representations for modeling alternatives

such as linear effects ( f j(x(j)) = x(j)β, where x(j) is one of the predictors), cate-

gorical effects ( f j(x(j)) = z>β, where z results from dummy or effect coding of a

categorical covariate x(j)) and smooth effects ( f j(x(j)) = f j,smooth(x(j)), where x(j) is

one of the continuous predictors). Here, we assume that each covariate has exactly

one modeling alternative. However, more complex models with multiple modeling

alternatives or functions that depend on multiple variables are possible as well.

Hence, other modeling alternatives such as spatial and random effects can also

be expressed in this framework (see Fahrmeir, Kneib, and Lang 2004, for details).

Generalized additive models (GAMs) as introduced by Hastie and Tibshirani (1986,

1990) appear as an important special case of (1.1) if all generic functions represent

smooth effects. Having the model formulation at hand, two challenges arise: First,

a method for model fitting in this flexible framework is needed. Second, the ques-

tion which covariates should enter the model, and how these covariates should be

modeled, needs to be answered. Both issues can be addressed in one framework

by applying a component-wise boosting approach.

1.4. Transferring Machine Learning Tools to the

“Real World”

Thinking of functional gradient descent boosting (see Chapter 2) the resulting mod-

els are in many cases illustrative and relatively easy to interpret. The machinery

in the background, i.e., the boosting algorithm, might be irrelevant for the inter-
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pretation of the final model. On the other hand, some of the results need to be

seen in the light of the algorithm. For example, the algorithm internally performs

variable selection. This can also be used for model selection, i.e., boosting is able to

determine which modeling alternative is more appropriate for a covariate. As we

will show in Chapter 3, some care needs to be taken when model terms with very

different degrees of flexibility are specified or if the predictors are of different na-

ture such as continuous and categorical variables. Another point is that one should

keep in mind that the results arise from a regularized model, hence the effect sizes

are shrunken toward zero. Furthermore, it is helpful to know how these models

can be optimized or tuned, for example, by the use of cross-validation methods.

Finally, one should be aware that in regularized models naturally no tests and

p-values are available. However, with some further effort, resampling-based con-

fidence bands or selection of variables with a built in error control (i.e., stability

selection; cf. Meinshausen and Bühlmann 2010, and Section 2.5) can be derived.

Thus, some notion of the model uncertainty is available.

In this light, statisticians need to find ways to ‘sell’ models derived with machine

learning tools to scientists in fields where these models are of interest. The resulting

models, for example models derived with boosting, are relatively easy to interpret

and can be tuned to have a good prediction accuracy. Thinking of the data sets

resulting from ‘omics’ (e.g., genomics, proteomics, or metabolomics) or other high

dimensional data sets, which can be easily collected due to the general availabil-

ity of sensors, GPS-trackers and computers, regularized, computer-intensive fitting

methods are without alternatives. Statisticians and practitioners need to get used

to these computational methods. For the interpretation of the model one does not

need to understand every fiddly detail of the algorithms. However, the derivation

of the model should be the responsibility of researchers with a thorough under-

standing of the statistics and algorithms involved. This task can be simplified but

not automated by readily available software tools, which guide the researcher by

well defined defaults (which build a good starting point but need to be carefully

reconsidered in a second step). These tools may assist researchers to (easily) gain

knowledge from their data. We try to meet this demands by providing a well

developed and versatile add-on package to the statistical computing environment

R (R Development Core Team 2011) called mboost (Hothorn, Bühlmann, Kneib,

Schmid, and Hofner 2011a). Details of the implementation and examples are given

in Chapter 2 and in Appendix B.
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Contributions

The work presented in this thesis results in parts from different collaborations of

mine and were influenced by various discussions with my colleagues. Most no-

tably, Chapter 3 is mainly based on the paper of Hofner, Hothorn, Kneib, and

Schmid (2011a). Parts of Chapter 4 presenting some general ideas for monotonic-

ity constrained regression and the application of monotonic constraints to species

distribution models were published in Hofner, Müller, and Hothorn (2011c). Fur-

thermore, an extended version of the simulations presented there is part of this

thesis. In Section 2.6, ideas and work from a manuscript on boosting GAMLSS

models (Mayr, Fenske, Hofner, Kneib, and Schmid 2011b) are presented in a con-

densed fashion. Another basis of this thesis was the R add-on package mboost

(Hothorn et al. 2011a, Hothorn, Bühlmann, Kneib, Schmid, and Hofner 2011b) and

the associated paper by Hothorn, Bühlmann, Kneib, Schmid, and Hofner (2010).





2. An Introduction to Boosting

Boosting is the best off-the-shelf classifier in the world.

(Attributed to Leo Breiman 1)

Leo Breiman’s often cited statement that “boosting is the best off-the-shelf clas-

sifier in the world” (Hastie, Tibshirani, and Friedman 2001, p. 302) refers to the

very beginnings of boosting: the development of AdaBoost (Freund and Schapire

1996, 1997). Boosting was originally designed for classification. It uses many weak

classifiers such as trees or stumps (trees with one split and two terminal nodes)

and boosts their performance by combining them to a strong ‘ensemble’. Improve-

ments of the classifiers are most prominent in situations with many features and

few observations, such as data mining (Hastie et al. 2001, p. 302).

In this thesis the focus will be on the “statistical view of boosting” (Friedman

et al. 2000). This allows to formulate and estimate (regression) models in the context

of boosting. The concept of boosting is expanded from classification to regression

models in general, and new classes of weak learners (or base-learners as they will

be called in this thesis) are introduced . Thus, strictly speaking, Breiman’s state-

ment does not apply anymore. Still, boosting has proven to be a strong competitor

and an adaptable method suited for many estimation problems.

Before going into detail, a short overview of the development of boosting from

a classification tool in the machine learning community to a widely applicable

method in the statistical context is given.

2.1. A (Short) History of Boosting

The foundations of boosting were first laid down by a paper on the strength of

weak learnability (Schapire 1990). Later, Freund and Schapire developed the now

famous AdaBoost algorithm for classification (Freund and Schapire 1996, 1997).

1see Hastie T, Tibshirani R, Friedman J (2001). The elements of statistical learning: Data mining,
inference, and prediction. Springer, New York. p. 302.
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AdaBoost gains its strength from using ensembles of weak learners (i.e., boosting

the performance of the weak learner) and from adaptively choosing observation

weights based on the classification of the previous iteration. One adaptively boosts

the weak learners — hence the name of the algorithm. In each step, the weights

of correctly classified observations are decreased, while weights are increased for

misclassified observations. This results in an algorithm that focuses on the “diffi-

cult” observations rather than the “easy” ones (see,e.g., Ridgeway 1999). The fact

that the algorithm tries to fit all observations and not only the easy ones gives some

idea on why AdaBoost performs so well.

For statisticians the problem of this notion was that it is not linked to the way

statisticians are used to learn from data. Statisticians tend to fit models by least

squares minimization, by likelihood maximization or by similar methods. Breiman

(1998, 1999) established the link between AdaBoost and statistical learning by show-

ing that AdaBoost can be seen as an optimization algorithm in function space. A

further step to the break through of boosting in the statistical community was

achieved by Friedman et al. (2000) who showed that AdaBoost is equivalent to a

“forward stagewise additive model” (additive does not mean that the model is ad-

ditive in the covariates but is formed by an additive combination of weak learners).

From this point onward, boosting rapidly evolved from a classification algorithm

to a versatile modeling algorithm based on the view of boosting as a functional

gradient descent (FGD) optimization algorithm. This ‘view’ is sketched in the next

section in more detail.

An overview of the development of boosting and first steps to regression mod-

eling by boosting methods can be found in Ridgeway’s (1999) paper on the “state

of boosting”. Later, Bühlmann and Yu (2003) introduced component-wise functional

gradient descent boosting: each base-learner depends only on a subset of the pos-

sible predictors and in each boosting iteration only the best-fitting base-learner is

updated. This leads to an intrinsic selection of base-learners and thus variable

selection. An overview of recent directions and developments of boosting in the

statistical community is given in Bühlmann and Hothorn (2007). The following

section gives a detailed overview.
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2.2. Functional Gradient Descent Boosting

As Friedman et al. (2000) and Friedman (2001) state, many learning techniques (or

modeling approaches as statisticians call them) aim at minimizing the expected loss

function

η∗(x) = arg min
η

EY,X

(
ρ(y, η(x))

)
,

where η(x) a function that is to be optimized, i.e., a function that is fitted to the

outcome y, as statisticians would call it. The loss function ρ is typically assumed

to be differentiable and convex with respect to the second argument. Well known

examples for the loss function are the squared error loss ρ(y, η(x)) = (y− η(x))2,

which is minimized by least squares estimation or loss functions based on the

(negative) log-likelihood.

Friedman et al. (2000) and Friedman (2001) developed a general framework for

functional gradient descent boosting. Let the observations be (yi, x>i ), i = 1, . . . , n,

where yi is a scalar response and the possible predictors are denoted by xi =

(xi1, . . . , xip)
>. Estimates of the minimizer η∗(x) can be found by minimizing the

empirical risk

R =
n

∑
i=1

ρ(yi, η(x>i )) (2.1)

instead of the expected loss. Let ηi := η(x>i ) and consider η = (η1, . . . , ηn)> as an

n-dimensional parameter vector. Then, one aims at finding the optimal parameter

vector

η̂ = arg min
η

n

∑
i=1

ρ(yi, ηi).

One way to solve this minimization problem is to use a steepest descent algorithm,

where η̂ is found by an iterative procedure: In step m = 0 we start by initializing

η̂ = η̂[0]. In step m, updates are computed based on the negative gradient of ρ(y, η)

evaluated at the current estimate η̂[m−1]:

u[m]
i = − ∂ρ(yi, ηi)

∂ηi

∣∣∣∣
ηi=η̂

[m−1]
i

, i = 1, . . . , n.

With the negative gradient vector u[m] = (u[m]
1 , . . . , u[m]

n )>, the updated solution

becomes

η̂[m] = η̂[m−1] + ν[m]u[m], (2.2)
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with step-length

ν[m] = arg min
ν

ρ(y, η̂[m−1] − νu[m]). (2.3)

So far, no covariate information or special functional form is considered for η.

Constraining the negative gradient u[m] to a class of parameterized functions of

the covariates — the so-called base-learner — leads to functional gradient descent

boosting as noted and elaborated by Breiman (1999), Friedman et al. (2000), and

Friedman (2001) amongst others. The constraint is not directly applied but it is

introduced by relating the negative gradient to the base-learners by (penalized)

least squares estimation. The negative gradient is replaced by a parameterized esti-

mate in Equation (2.2). The resulting generic functional gradient descent algorithm

(Friedman 2001) is given in Algorithm 1. The negative gradient in step (a) is the best

steepest descent direction in the n-dimensional data space at point η̂[m−1](x) (Fried-

man 2001). The estimate in step (b) is a constrained approximation of this steepest

descent direction. As one can see from the update step (c), the final estimate η̂[m]

is additive in the base-learners, as claimed earlier. Note that in Friedman’s (2001)

original algorithm the step-length factor ν is optimized using a line search (Eq. 2.3).

In Section 2.4.1, we discuss why the additional line search is usually not necessary.

2.2.1. Component-wise FGD Boosting

Based on the functional gradient descent (FGD) boosting algorithm, Bühlmann and

Yu (2003) developed a component-wise boosting algorithm (see Algorithm 2). The

main difference is that they use nBL base-learners instead of one single base-learner

as in Algorithm 1. Each of the base-learners typically depends only on a subset of

the covariates. A simple and common example is that for each of the covariates

a separate linear base-learner is specified — i.e., a simple linear model regressing

u[m] only on the jth covariate x(j). In this case the number of base-learners nBL is

equal to the number of covariates p.

One could also consider to specify smooth base-learners or decompose smooth

effects into parametric parts for the null space and smooth deviations from the

parametric parts (Kneib, Hothorn, and Tutz 2009). With the decomposition, we get

two base-learners per covariate2 (a linear base-learner and a smooth base-learner

that captures the deviation from linearity). Usually, the base-learners correspond

to the modeling alternatives as expressed by the generic functions f j in the struc-

2in the case of P-splines with a second order difference penalty; see Equation (3.9)
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Algorithm 1 Generic functional gradient descent algorithm

Initialize Set the iteration index m := 0, initialize the estimate with an offset
value, typically η̂(·) ≡ 0 or η̂(·) ≡ arg minc n−1 ∑n

i=1 ρ(yi, c).

Iterate

(a) Negative gradient Increase m by 1. Compute the negative gradient of
the loss function ρ(yi, η) evaluated at the function values of the previous
iteration η̂[m−1](x>i ):

u[m]
i = − ∂ρ(yi, η)

∂η

∣∣∣∣
η=η̂[m−1](x>i )

, i = 1, . . . , n.

(b) Estimation Relate the negative gradient vector u[m] = (u[m]
1 , . . . , u[m]

n )>

to the observed values x>1 , . . . , x>n of covariates by fitting u[m] by
a real-values base-learner g(·) of the covariates. Hence, ĝ[m] =

(ĝ[m](x>1 ), . . . , ĝ[m](x>n ))> is a constrained estimate of u[m].

(c) Update Compute the update

η̂[m](·) = η̂[m−1](·) + νĝ[m](·)

with step-length factor 0 < ν ≤ 1.

Stop Stop if m = mstop for a given stopping iteration mstop.

tured additive predictor (Eq. 1.1). Details on possible base-learners are given in

Section 2.3.

The transition from FGD boosting to component-wise FGD boosting allows

model fitting with intrinsic variable selection. As we select only one base-learner

(= modeling alternative) in each boosting iteration (see Alg. 2, step (b2)), variable

selection is achieved by stopping the boosting procedure after an appropriate num-

ber of iterations mstop,opt. In settings with many covariates, some base-learners and

thus some covariates are never selected. At maximum mstop,opt covariates are cho-

sen in the course of the boosting algorithm, but typically a lot less variables enter

the model. Obviously, the base-learner selection (Eq. 2.5) is the crucial part for

variable and model selection. The intrinsic base-learner selection can be further

employed for model selection. While for variable selection, one specifies one base-

learner for each covariate, model selection is incorporated by additionally speci-

fying base-learners for different, competing modeling alternatives. An example is
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Algorithm 2 Component-wise generic functional gradient descent algorithm

Initialize Set the iteration index m := 0, and initialize the function estimates and
the additive predictor with offset values, typically f̂ [0]j (·) ≡ 0, j = 1, . . . , nBL,

and η̂[0](·) ≡ arg minc
1
n ∑n

i=1 ρ(yi, c).

Iterate

(a) Negative gradient Increase m by 1. Compute the negative gradient of
the loss function ρ(yi, f ) evaluated at the function values of the previous
iteration η̂[m−1](x>i ):

u[m]
i = − ∂ρ(yi, η)

∂η

∣∣∣∣
η=η[m−1](x>i )

, i = 1, . . . , n. (2.4)

(b) Estimation

(b1) Relate the negative gradient vector u[m] = (u[m]
1 , . . . , u[m]

n )> to the
observed values x>1 , . . . , x>n of covariates by separately fitting u[m] by
real-values base-learner gj(x), ∀j ∈ {1, . . . , nBL}. Each base-learner
gj(x) typically depends only on a subset of the covariates in x.

(b2) Select the best-fitting base-learner gj∗ , i.e., the base-learner that min-
imizes the residual sum of squares (RSS),

j∗ = arg min
j

n

∑
i=1

(
u[m]

i − ĝ[m]
j (x>i )

)2
. (2.5)

(c) Update Compute the update for the additive predictor

η̂[m](·) = η̂[m−1](·) + νĝ[m]
j∗ (·)

and the function estimate

f̂ [m]
j∗ (·) = f̂ [m−1]

j∗ (·) + νĝ[m]
j∗ (·), (2.6)

while leaving all other function estimates f̂ j, j 6= j∗ unchanged. In each
update step, only a fraction 0 < ν ≤ 1 of the fitted values is added,
where ν is a step-length factor in the gradient descent approach.

Stop Stop if m = mstop for a given stopping iteration mstop.
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given by the decomposition of smooth effects into a linear effect and the smooth

deviation from linearity as sketched above (cf. Kneib et al. 2009).

L2Boosting A special case of the generic FGD algorithm is L2Boosting as investi-

gated by Bühlmann and Yu (2003), where the rescaled L2-loss

ρ(yi, η(xi)) =
1
2
(yi − ηi)

2

is used. The factor 1/2 is used so that the negative gradient in step m becomes

u[m]
i = yi − η

[m−1]
i ,

thus, the negative gradient vector u[m] is just a vector of residuals. Hence, L2Boosting

can be described as refitting of residuals. The idea of refitting residual has gained

early attention with two refits in the twicing algorithm (Tukey 1977). From this

point of view the strength of boosting in regression settings becomes a bit clearer:

similar to the AdaBoost algorithm, L2Boosting especially concentrates on the ‘dif-

ficult’ observations, which are not yet fitted good enough.

Other Loss Functions In addition to AdaBoost and L2Boosting, one can use a

huge variety of other loss functions that reflect the estimation problem at hand. A

popular choice is the negative log-likelihood, which is arising from the regression

problem: for example, the negative Binomial log-likelihood for binary classifica-

tion, or the negative Poisson log-likelihood for count data. Other problems require

special loss functions that are not derived from likelihoods. Robust estimation can

be achieved, for example, by using the L1-loss or the Huber-loss (see Bühlmann and

Hothorn 2007, for details on these loss functions). Loss functions tailored to the es-

timation of survival models include the negative Cox partial log-likelihood (Ridge-

way 1999) or negative log-likelihoods arising from accelerated failure time models

(Schmid and Hothorn 2008b). Survival models can also be fitted in the boosting

framework using weighted regression with weights according to the inverse prob-

ability of censoring (see Hothorn, Bühlmann, Dudoit, Molinaro, and van der Laan

2006a, Bühlmann and Hothorn 2007). Proportional odds models are introduced in

Schmid, Hothorn, Maloney, Weller, and Potapov (2010a). Further modeling alter-

natives include quantile (Fenske, Kneib, and Hothorn 2011) or expectile regression

(Sobotka and Kneib 2010). Furthermore, with some modifications, the boosting
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framework can be used to estimate generalized additive model for location, scale

and shape (GAMLSS; Mayr et al. 2011b, Mayr, Fenske, Hofner, Kneib, and Schmid

2011a). A short introduction to GAMLSS models and the corresponding boosting

approach is given in Section 2.6.

2.3. Base-learners

While the loss function defines the stochastic component of the model (distribu-

tional assumption), base-learners reflect the structural assumption (cf. structured

additive predictor; Sec. 1.3). By choosing the base-learners, the available set of

modeling alternatives is fixed. All base-learners ĝj(x) that are considered in this

thesis are estimated by (penalized) least squares. Hence, they can be estimated by

solving the penalized least squares criterion

Q(β) = (u− Xβ)>(u− Xβ) + λJ (β), (2.7)

where J (β) is a quadratic penalty of the form

J (β) = β>Kβ.

The response u is defined by the negative gradient (Eq. 2.4). The design matrix for

x is denoted as X, λ is the smoothing parameter and K is a suitable penalty matrix.

The parameter vector is given as β = (β1, . . . , βp)>.

The solution to Equation (2.7) can be expressed as a penalized linear model of the

form

ĝj(x) = Xβ̂

= X(X>X + λK)−1X>u,
(2.8)

where β̂ is a (penalized) estimate of the coefficient vector β. It is important to note

that the term ‘linear model’, does not refer to models that contain only linear effects

of the variable x. In contrary, the resulting model might be highly non-linear in x,

that is, ĝj(x) might comprise smooth functions of x. The model (2.8) is only linear in

the design matrix X as one can see from the first line of Equation (2.8). Examples for

non-linear base-learners (of x) comprise P-splines or radial basis functions, which

are both introduced in the subsequent sections.

The smoothing parameter λ in Equations (2.7) and (2.8) governs the amount of
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penalization. Higher values of λ result in a stronger impact of the penalty, while

unpenalized least squares base-learners emerge as a special case when λ = 0. In

Chapter 3 we show the usefulness of penalized linear base-learners in the setting

of unbiased or at least bias reduced variable selection.

From Equation (2.8) one can deduce that the final boosting estimate for the mod-

eling alternative f j can be derived as

f̂ [mstop]
j =

mstop

∑
m=1

ν · ĝ[m]
j ,

where ĝ[m]
j ≡ 0 if the jth base-learner was not selected in iteration m. This means,

f j is estimated as the weighted sum over ĝ[m]
j for all iterations m where the jth base-

learner was selected. Due to this fact and due to the linear nature of each single

base-learner, we can also define the parameter estimates of the jth base-learner in

the mstopth iteration as the sum

β̂
[mstop]
j =

mstop

∑
m=1

ν · β̂[m]
j,u ,

where β̂
[m]
j,u = (X>X+λK)−1X>u[m] is the parameter estimate of the jth base-learner

if the base-learner was selected in step m, and β̂
[m]
j,u = 0 otherwise.

In the following sections, an introduction to some of the possible base-learners

is given. A special focus is set to base-learners used or developed in later sections.

In the latter case details on these base-learners are derived in later sections.

2.3.1. Linear Base-learners

Linear base-learners can be used to express a linear effect of a continuous covariate

x. In this case, the design matrix X in Equation (2.8) is just the covariate vector

and possibly comprises an additional vector of ones for the intercept. The ith row

of the design matrix is then defined as Xi = (1, xi). At the same time, a group

of covariates can be used within one linear base-learner, say xi = (x(1)i , . . . , x( p̃)
i )>,

where p̃ is smaller or equal than the number of covariates p. In this case, the design

matrix has one column per covariate. Again one can specify an additional intercept.

Now the ith row reads Xi = (1, x>i ). The covariates are then handled as one group,

which means that all covariates enter the model if the base-learner is chosen. If the

base-learner is never selected, none of its covariates enters the model.
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In the case of categorical variables, the design matrix reflects the dummy-coding

with given contrasts. For a categorical covariate x with ncat categories, let the ith

row of the dummy-coded design matrix be Xi = (1, x(2)i , . . . , x(ncat)
i ), i = 1, . . . , n,

where x(k)i = 1 if xi = k, and x(k)i = 0 otherwise. Other codings are possible but are

not considered in detail in this thesis.

Ridge Penalized Base-Learners Often, an unpenalized linear base-learner is used.

However, it is possible to extend linear base-learners to penalized linear base-

learners. In this case a ridge penalty can be introduced (Hoerl and Kennard 1970).

Then the penalty matrix becomes K = I, where I is the identity matrix of appropri-

ate dimensions. With the ridge penalty all coefficients are evenly shrunken toward

zero. This is especially attractive in the case of dummy-coding for an unordered

categorical covariate or a group of variables. Shrinkage then allows to make base-

learners comparable with respect to the flexibility they offer (cf. Chapter 3). If we

have variables with many categories or group many variables in one base-learner,

the base-learner gets stronger, i.e., it can carry more information and is more flexi-

ble. Regularization, e.g., via ridge regression, introduces a method to obtain weak

base-learners in this situation. This leads to a base-learner with a low variance

and a potentially large bias. Many authors noted that boosting seems especially

strong in reducing the bias through subsequent boosting steps (Friedman et al.

2000, Bühlmann and Yu 2003, Park, Lee, and Ha 2009). Hence, the base-learners

should be weak in the sense of having a low variance but (potentially) a high bias

(‘low-variance principle’; see e.g., Bühlmann and Hothorn 2007).

Penalized Ordinal Base-Learners Other penalties, for example for ordered cate-

gorical variables, might also be useful. Hofner et al. (2011a) introduced a penalized

base-learner for ordered factors that exploits the neighborhood information and

shrinks the differences of effects for adjacent categories. This seems reasonable as

it is often the case that an ordering of the covariate’s categories converts to a similar

ordering of the corresponding effects and this additional information can be incor-

porated to enforce stable estimation. Therefore, we consider a ridge-type penalty

for the differences of adjacent parameters that favors smooth coefficient sequences

similar to P-splines (see below). A slight difference arises from the fact that the

effect of the reference category is restricted to zero. We will use (without loss of

generality) the restriction β1 = 0 and use a base-learner without intercept. Hence,



2.3 Base-learners 19

the penalty is given by

J (β; d) =
ncat

∑
j=d+1

(∆dβ j)
2, (2.9)

where β = (β2, . . . , βncat)
> is the vector of dummy-coded effects, ncat refers to the

number of categories of the covariate, and β1 = 0. The difference operator ∆d can

be defined recursively as

∆1β j = ∆β j = β j − β j−1,

∆2β j = ∆(∆β j) = ∆(β j − β j−1) = ∆β j − ∆β j−1 = β j − 2β j−1 + β j−2,
(2.10)

and so on. Usually, for penalized ordinal base-learners, differences of order one

are used. In matrix notation the penalty can be written as J (β; d) = β>Kβ, and

penalty matrix K = D>(d)D(d), with a first order difference matrix of the form

D(1) =


1

−1 1
. . . . . .

−1 1

 , (2.11)

where empty cells are equal to zero. For more details see also Gertheiss and Tutz

(2009) and Hofner et al. (2011a).

Centering of Linear Base-learners Without Intercept For linear base-learners

that are specified without intercept3, it is of great importance to center the covari-

ates before fitting the model. Without centering of the covariates, linear effects that

result from base-learners without intercept are forced through the origin (with no

data lying there). Hence, the convergence will be very slow or the algorithm will

not converge to the “correct” solution even in very simple cases. As an example,

consider one normally distributed predictor x = (x1, . . . , xn)>, and a model

y = βx + ε,

with β = 1 and ε ∼ N (0, 0.32). Usually, a model without intercept could be

fitted to estimate β. However, if we apply boosting, L2Boosting in this case, the

3Linear base-learners without intercept are obtained in mboost by specifying a base-learner
bols(x, intercept = FALSE). Furthermore, if the fitting function glmboost() is used – which
fits generalized linear models by boosting – the single base-learners never contain an intercept.
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negative gradient in the first boosting step is, per default, the centered response,

i.e., u[1] = y− 1/n ∑n
i=1 yi. For other loss functions the negative gradient in the

first boosting iteration is not exactly the mean-centered response. Yet, the negative

gradient in the first step is always “centered” around zero. In this situation, the

application of a base-learner without intercept (i.e., a simple linear model without

intercept) is not sufficient anymore to recover the effect β (see Figure 2.1(a)). The

true effect is completely missed. To solve this problem, it is sufficient to use a

centered predictor x. Then, the center of the data is shifted to the origin (see

Figure 2.1(b)) and the model without intercept goes through the origin as well. The

model and the data match up.
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Figure 2.1.: L2Boosting in the first boosting step, i.e., with centered response variable as
outcome. A base-learner without intercept misses the true effect completely if x is not
centered (left) and is able to capture the true structure if x is centered (right).

Centering the predictors does not change the estimated effects of the predictors.

Yet, the intercept needs to be corrected as can be seen from the following example.

Consider two predictors and estimate a model with centered predictors, i.e,

ŷ = β̂0 + β̂1(x1 − x̄1) + β̂2(x2 − x̄2) ⇔

ŷ = (β̂0 − β̂1x̄1 − β̂2x̄2)︸ ︷︷ ︸
=β̂∗0

+β̂1x1 + β̂2x2.

Hence, the intercept from a model without centering of the covariates equals β̂∗0 =

β̂0 − ∑ β̂ j x̄j, where β̂0 is the intercept estimated from a model with centered pre-

dictors.
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2.3.2. P-spline Base-Learners

To model smooth effects of continuous variables, we utilize penalized B-splines

(i.e., P-splines). They were introduced by Eilers and Marx (1996) for nonparametric

regression and were later transferred to the boosting framework by Schmid and

Hothorn (2008a). Consider observations x = (x1, . . . , xn)> of a single variable x,

then a non-linear function f (x) can be approximated as

f (x) =
J

∑
j=1

β jBj(x; δ) = B(x)>β, (2.12)

where Bj(·; δ) is the jth B-spline basis function of degree δ, and the design ma-

trix is B(x) = (B1(x), ..., BJ(x))> (where for simplicity, δ was dropped). The basis

functions are defined on a grid of J− (δ− 1) inner knots ξ1, . . . , ξ J−(δ−1) with addi-

tional boundary knots (and usually a knot expansion in the boundary knots). For

more details on the construction of B-splines we refer to Eilers and Marx (1996).

The function estimates can be written in matrix notation as f̂ (x) = Bβ̂, where the

design matrix B = (B(x1), . . . , B(xn))> comprises the B-spline basis vectors B(x)

evaluated for each observation xi, i = 1, . . . , n.

The function estimate f̂ (x) might adapt the data too closely and might become

too erratic. To enforce smoothness of the function estimate, an additional penalty

is used that penalizes large differences of the coefficients of adjacent knots. Hence,

for a continuous response u (in our case the negative gradient vector (Eq. 2.4), i.e.,

the ‘working residuals’), we can estimate the function via a penalized least squares

criterion

Q(β) = (u− Bβ)>(u− Bβ) + λJ (β; d) (2.13)

with a quadratic difference penalty on the coefficients

J (β; d) =
J

∑
j=d+1

(∆dβ j)
2 = β>D>(d)D(d)β, (2.14)

where d is the order of the difference penalty for the P-spline and λ is the smooth-

ing parameter that governs the trade-off between the smoothness and the closeness

to the data. The difference operator is defined as in Equation (2.10). Higher or-

der difference penalties can be easily derived. Difference penalties of order one

penalize the deviation from a constant. Second order differences penalize the de-

viation from a straight line. In general, differences of order d penalize deviations
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from polynomials of order d− 1. The unpenalized effects, i.e., the constant or the

straight line for d = 1 or d = 2, respectively, are called the null space of the penalty.

For a detailed discussion see Section 3.1 (especially Equation (3.9)).

The difference matrices D(d) are constructed such that they lead to the appropri-

ate differences: first order differences result from a matrix of the form

D(1) =


−1 1

−1 1
. . . . . .

−1 1

 , (2.15)

and second order differences from a difference matrix of the form

D(2) =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 , (2.16)

where again empty cells are equal to zero. This estimation problem can then be

written as a penalized linear model (2.8) with design matrix X = B and penalty

matrix K = D>(d)D(d).

2.3.3. Bivariate P-spline Base-learners

Bivariate P-splines are an extension of univariate P-splines (see above) that allow

to model smooth effects of two variables. Spatial effects are the most common

effects that are modeled using bivariate P-splines. However, they can be used to

model smooth interaction surfaces for other than spatial variables as well. This

is for example illustrated in Section 4.6, where the activity profile of Roe Deer is

modeled as bivariate smooth effect dependent on the calendar day and the time

of the day. A bivariate B-spline of degree δ for two variables x1 and x2 can be

constructed as the product of two univariate B-spline bases

Bjk(x1, x2; δ) = B(1)
j (x1; δ) · B(2)

k (x2; δ).

The bivariate B-spline basis is formed by all possible products Bjk, j = 1, . . . , J,

k = 1, . . . , K. For the sake of simplicity we again drop the degree of the basis

functions δ. In the direction of x1, the basis functions are defined on a grid of
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J− (δ− 1) inner knots, and in the direction of x2, K− (δ− 1) inner knots are used.

Hence, different knot meshes for x1 and x2 are possible. Furthermore, one could

also use B-spline basis functions with different degrees δ1 and δ2 for x1 and x2,

respectively. However, we will not further elaborate this in this thesis. A bivariate

function f (x1, x2) can be approximated as

f (x1, x2) =
J

∑
j=1

K

∑
k=1

β jkBjk(x1, x2) = B(x1, x2)
>β,

where the vector of B-spline bases for variables (x1, x2) equals

B(x1, x2) =
(

B11(x1, x2), . . . , B1K(x1, x2), B21(x1, x2), . . . , BJK(x1, x2)
)>

,

and the coefficient vector

β = (β11, . . . , β1K, β21, . . . , β JK)
>. (2.17)

The (n× JK) design matrix then combines the vectors B(xi) for observations xi =

(xi1, xi2), i = 1, . . . , n, such that the ith row contains B(xi):

B =
(

B(x1), . . . , B(xi), . . . , B(xn)
)>

. (2.18)

The design matrix B can be conveniently obtained by first evaluating the univariate

B-spline bases B1 =
(

B(1)
j (xi1)

)
i=1,...,n
j=1,...,J

and B2 =
(

B(2)
k (xi2)

)
i=1,...,n
k=1,...,K

of the variables

x1 and x2. The univariate bases can subsequently be used to construct the design

matrix as

B = (B1 ⊗ e>K )� (e>J ⊗ B2), (2.19)

where eK = (1, . . . , 1)> is a vector of length K and eJ = (1, . . . , 1)> a vector of length

J. The symbol ⊗ denotes the Kronecker product and � denotes the element-wise

product. Definitions and examples for both products are given in Appendix A.1.

A graphical display of a subset of the tensor product B-spline basis can be found

in Figure 2.2.

As for univariate P-splines, a suitable penalty matrix is required to enforce

smoothness. The bivariate penalty matrix can be constructed from separate, uni-

variate difference penalties for x1 and x2, respectively. Consider the (J× J) penalty

matrix K1 = D>1 D1 for x1, and the (K × K) penalty matrix K2 = D>2 D2 for x2.
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Figure 2.2.: Subset of a bivariate tensor product B-spline basis of degree three.

The penalties are constructed using difference matrices D1 and D2 of (the same)

order d. However, different orders of differences d1 and d2 could be used if this is

required by the data at hand. The combined difference penalty can then be written

as the sum of Kronecker products

Jspatial(β; d) = β>(K1 ⊗ IK + IJ ⊗K2)β, (2.20)

with identity matrices IJ and IK of rank J and K, respectively. The penalty is

constructed such that differences of the coefficients in the directions of x1 and x2

are considered. This corresponds to row-wise and column-wise differences for the

matrix of coefficients

B =
(

β jk

)
j=1,...,J
k=1,...,K

. (2.21)

Hence, in a matrix-like notation to resemble the neighborhood, the first order dif-

ferences for β jk are

β jk − β j(k−1)

β jk − β(j−1)k β(j+1)k − β jk

β j(k+1) − β jk

.

Higher order differences can be visualized analogously.

With the response vector u, models can then be estimated by optimizing the
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penalized least squares criterion in analogy to univariate P-splines:

Q(β) = (u− Bβ)>(u− Bβ) + λJspatial(β; d), (2.22)

with design matrix (2.18) and penalty (2.20).

For more details on tensor product splines we refer to Wood (2006b). Further-

more, Kneib et al. (2009) give an introduction to tensor product P-splines in the

context of boosting.

2.3.4. Radial Basis Function Base-learners

Radial basis-functions (RBFs) are another way to estimate interaction surfaces or

spatial effects. Let (ui, x>i ), i = 1, . . . , n denote the vectors of observations, where

the response u is the negative gradient vector and the covariates xi ∈ Rq. In spatial

models xi represents the two dimensional location of observation i. However, xi

could also be a scalar (q = 1; e.g. in time series) or have higher dimensions (q > 2).

In the remainder of this section we consider (without loss of generality) spatial

models, i.e., xi ∈ R2. Before we consider special types of radial basis functions we

develop the general concept of radial basis functions. As they solely depend on the

distance between an observation xi and a knot ξ j ∈ Rq, and on the distances between

different knots ξ j and ξ j′ , they can be used in any case where a suitable distance

measure exists. In two dimensional space one usually applies the Euclidean norm,

however in principle an arbitrary norm could be used. With rij = ‖xi − ξ j‖ we get

a radial basis function

Bξ j(xi) = B(‖xi − ξ j‖) = B(rij).

with a basis function B (examples for B see below). Hence, for each knot ξ j one gets

a radial basis function Bξ j centered around this knot. In the following paragraphs

we will briefly introduce two special cases of radial basis functions, namely kriging

and thin plate splines.

Kriging as Special RBF Approach To obtain smooth estimates of a function, a

basis function expansion for a given grid of knots can be applied. The aim is to

estimate the model

ui = f (xi) + εi, i = 1, . . . , n,
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where εi
i.i.d.∼ N (0, σ2). The idea of kriging is to consider a zero mean, stationary

Gaussian process for f (xi) ≡ γi, i.e., γ = (γ1, . . . , γn)> ∼ N (0, τ2R) with corre-

lation matrix R. To obtain parsimonious models we use an isotropic parametric

correlation function Ri,j = ρ(γi, γj) = ρ(‖xi − xj‖). The model can be expressed in

matrix notation as

f (xi) = Iγ,

where I is the (n × n) identity matrix. To incorporate the Gaussian process as-

sumption to the estimation problem, we can exploit the fact that Gaussian priori

assumptions on the parameters can be expressed as a special quadratic penalty in

a penalized least squares problem (see Appendix A.2). Here, the penalty becomes

J (γ) = γ>R−1γ ,

and R−1 is the penalty matrix. Substituting the identity matrix I by RR−1 and

defining X := R and β := R−1γ, the function estimate can be equivalently written

as

f (xi) = Iγ = RR−1︸ ︷︷ ︸
=I

γ = Xβ.

Expanding the penalty with R−>R = I (note that R is symmetric), it can be written

dependent on β as

J (β) = γ>(R−>︸ ︷︷ ︸
=β>

R)R−1γ︸ ︷︷ ︸
=β

= β>Rβ .

Altogether, the estimation problem can be written as a penalized least squares

problem

Q(β) = (u− Xβ)>(u− Xβ) + λβ>Kβ, (2.23)

where the quotient λ = σ2/τ2 plays the role of the smoothing parameter, X = R

and K = R (cf. Fahrmeir, Kneib, and Lang 2007, p. 384). With the design matrix R =(
ρ(‖xi− xj‖)

)
i,j

it follows that ρ(·, xj) plays the role of a (radial) basis function with

knot xj and R is the corresponding penalty matrix. The solution to this penalized

least squares problem is

β̂ = (X>X + λK)−1X>u = (R>R + λR)−1R>u, (2.24)

i.e., we have again a base-learner of form (2.8).

As in other smoothing approaches, such as P-splines, one can use a reduced set
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of knots {ξ1, . . . , ξ J} with J ≤ n. This leads to reduced knot or low-rank kriging

as described in Nychka and Saltzman (1998) and Kammann and Wand (2003). The

design matrix for low-rank kriging is then defined as

X =
(

ρ(‖xi − ξ j‖)
)

i=1,...,n, j=1,...,J

and the corresponding (low-rank) penalty matrix is defined as

K =
(

ρ(‖ξ j − ξ j′‖)
)

j=1,...,J, j′=1,...,J
.

With these matrices, f (xi) can again be estimated by penalized least squares as in

Equation (2.23). One problem that occurs with low-rank kriging is the appropriate

choice of knots. To specify knots in higher dimensions that cover the data region

one can use a space filling algorithm (Johnson, Moore, and Ylvisaker 1990, Nychka

and Saltzman 1998). The resulting knots are a subset of the original observations.

Usually, the number of knots for low-rank kriging can be smaller than the number

of knots for tensor product P-splines. Knots in low-rank kriging can be chosen

data adaptive. Thus, in regions with many observations, the space filling algorithm

places more knots than in regions with few observations. In contrast, bivariate P-

splines span a rectangular lattice and knots are placed irrespective of the number of

observations in this region. Hence, in regions with little or no data we get the same

knot mesh as in regions with many observations. As a consequence, more knots

are required to cover the data region appropriately. As the space filling algorithm

tends to be slow for larger numbers of observations and knots, a random subset of

the observations could be used to determine the knot locations in larger data sets.

To simplify the involved computations, one can reformulate the estimation prob-

lem (2.23), both for kriging and low-rank kriging, by reparameterizing the design

matrix as X̃ = XK−1/2. In this case, the penalty simplifies to the ridge penalty, i.e.,

K̃ = I (Kammann and Wand 2003).

A crucial problem for kriging that was not mentioned so far, is the choice of the

radial basis function, i.e., the choice of the correlation function ρ(·). Stein (1999,

Sec. 1.7) advocates to use the Matérn family to specify the correlation function, due

to its flexibility w.r.t. modeling different degrees of differentiability and the fact

that it contains, e.g., the exponential model, and (as a limit) the Gaussian model

(Stein 1999, Sec. 1.6). The Matérn family is specified as a function of κ and θ,

i.e., ρ(·; κ, θ). The parameter κ > 0 defines the smoothness, and the parameter
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θ > 0 defines the effective range. The typical choice κ = 1.5 leads to ρ(r; κ =

1.5, θ) = exp(−|r/θ|)(1 + |r/θ|). More generally, modified Bessel functions (Stein

1999) are needed to express Matérn correlation functions. A simple rule to specify

the effective range is to use θ̂ = maxi,j(xi − xj)/c, where c > 0 is chosen such

that ρ(maxi,j(xi − xj); κ, θ = θ̂) = ε or equivalently ρ(c; κ, θ = 1) = ε with a small

number ε, for example ε = 0.001 (Kneib and Fahrmeir 2006). This choice of θ̂

ensures the scale invariance of the basis function ρ(·).

Thin Plate Splines Instead of using correlation functions as basis functions, we

can specify the basis functions along the lines of thin plate splines (TPS) (e.g., Ny-

chka 2000, Wood 2003). Thin plate splines are a generalization of cubic smoothing

splines and are the minimizer of the penalized least squares criterion

Q( f ) =
1
n

n

∑
i=1

(ui − f (xi))
2 + λJs( f )

with λ > 0 and a penalty

Js( f ) =
∫
Rq ∑
A

s!
α1! . . . αq!

(
∂s f

∂xα1
1 . . . ∂xαq

q

)2

dx, A =

{
α : αj ∈ N0,

q

∑
j=1

αj = s

}
,

where s is the order of differentiation in the wiggliness penalty, q is the dimension

of the covariate space, and 2s > q. The solution to the penalized least squares

criterion can then be written as

f (x) = Zδ + Xβ,

where Z represents the null space and δ the corresponding parameter vector. The

null space of thin plate splines, i.e., the part which is not penalized by Js, consists

of all polynomials with degree smaller or equal to s− 1. The coefficient vector of

the penalized part is denoted by β. The corresponding design matrix can be written

as X =
(

c(s, q) · B(‖xi − xj‖)
)

i,j
with constant c(s, q) and radial basis function

B(‖x− ξ‖) = Bξ(x) =

‖x− ξ‖2s−q if q odd

‖x− ξ‖2s−q log(‖x− ξ‖) if q even.
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Estimation of the smooth part can be expressed in the same manner as for the

kriging estimates above (French, Kammann, and Wand 2001). Note that the con-

stant can be neglected. In this case the coefficients and the smoothing parameter

λ change by the factor c(s, q) and c(s, q)−1, respectively. For computational rea-

sons we again prefer low rank smoothing where the knots are specified using the

space filling algorithm (Nychka and Saltzman 1998) leading to approximate thin

plate splines. For more details in a mixed model estimation framework we refer to

Ruppert, Wand, and Carroll (2003, Ch. 13). In the special case of s = 2 and q = 1

we get the well known cubic smoothing splines (see Reinsch 1967) or approximate

cubic smoothing splines if we use reduced rank smoothing.

2.3.5. Constrained Base-learners

Constrained effect estimates allow us to model monotonicity constrained effects as

well as cyclic effects. In the first case, researchers can specify their knowledge on

the nature of the effect and constrain the estimate to be monotonically increasing

or decreasing. This stabilizes the estimate and helps to avoid erratic estimates,

which might be due to sparse data in certain regions, or noisy data. Cyclic effect

estimates are another way to facilitate the inclusion of subject matter knowledge

into estimation. Especially seasonal trends can be modeled using cyclic estimates.

The constraint stabilizes the estimation especially at the boundary regions. In both

cases, the further constraint arising from a priori knowledge, might even improve

the prediction accuracy, as the erratic behavior of the estimate is inhibited (see

Sec. 4.3). Both constraints can be used in conjunction with univariate P-splines

as well as with bivariate P-splines. Monotonicity constraints can be furthermore

applied to ordered categorical variables. A detailed introduction and derivation of

constrained base-learners is given in Chapter 4.

2.4. Tuning the Boosting Algorithm

There are several potential tuning parameters in the boosting algorithm: the step-

length factor ν, the degrees of freedom df of the base-learners and the stopping

iteration mstop.
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2.4.1. Step-Length

The step-length factor ν ( 0 < ν ≤ 1 ) is of minor importance for the performance of

the boosting algorithm. The step-length factor resembles the learning rate of boost-

ing. Smaller values of ν correspond to more shrinkage. In the original algorithm,

Friedman (2001) used an additional line search (Eq. 2.3) in step (c) of the generic

FGD algorithm (Algorithm 1). However, Bühlmann and Hothorn (2007) argue that

this is not necessary for a good prediction performance but it increases the com-

putational demand. It is sufficient to specify the step-length ν ‘small enough’. As

discussed by Friedman (2001), small values of ν such as ν = 0.1 lead to a good

performance4 and dramatically improve the algorithm compared to no shrinkage

(i.e., ν = 1). A further reduction of the step-length usually results in an increased

number of boosting iterations mstop,opt. However, these additional iterations have

no impact on the predictive performance of the final model (Schmid and Hothorn

2008a).

The step-length factor can be seen as an incremental shrinkage (Friedman 2001):

that means, in each boosting step the estimate is shrunken by the rate ν. Decreasing

the learning rate to a certain extent leads to a strong increase in performance. On

the other hand, global shrinkage of the entire model results in less pronounced per-

formance improvements as incremental shrinkage (Friedman 2001). The effect of

incremental shrinkage is very complex. Therefore, the reason for the good perfor-

mance is not completely understood by now. One possibility for the superiority of

incremental shrinkage could be caused by groups of (highly) correlated predictors.

If we choose one of these predictors and add only a fraction of its fit, other pre-

dictors of the same group still stand a chance of entering the model in subsequent

iterations. Consequently the overall fit might be improved. If the first predictor

enters the model without additional shrinkage, the other covariates will have little

chance to enter the model as well, as in this situation substantial additional im-

provements are hard to gain. Global shrinkage of the model with only one (or

few) of the correlated covariates would not result in the same effect as incremental

shrinkage (Friedman 2001, p. 1206).

Hastie et al. (2001, pp. 328f.) further elaborate on the shrinkage effect of boost-

ing. They show that component-wise L2Boosting can be seen as a solution to the

lasso problem if the step-size ν → 0. This connection only holds if the design

matrix needs to satisfy the positive cone condition (Efron, Hastie, Johnstone, and

4In the package mboost, ν = 0.1 is set as the default value.
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Tibshirani 2004). If this condition does not hold, the boosting solutions still resem-

ble the solutions of the lasso at least qualitatively (Hastie et al. 2001, p. 329). Thus,

boosting can be seen as one way to solve L1 penalized models in high-dimensional

settings. As for the lasso, the resulting models tend to be sparse. Despite the fact

that lasso and boosting are not equivalent in general it seems useful for the un-

derstanding of boosting to think of it as a method that is similar to L1-penalized

methods (Bühlmann and Hothorn 2007, p. 492).

2.4.2. Degrees of Freedom

Another tuning parameter in the context of boosting are the degrees of freedom

of the base-learners. These are directly related to the smoothing parameter λ of

the base-learner (2.8), as we will show in Section 3.1. In short, one could state that

the degrees of freedom are not at all crucial for the performance of the boosting

algorithm as long as they are small enough5. Small degrees of freedom result in

weak learners as desired. However, this is not the complete truth. As we will show

in Section 3, it is desirable that the degrees of freedom additionally are equal for all

base-learners. This helps to avoid biased base-learner selection. Nevertheless, for

boosting the degrees of freedom play only a minor role. In other penalized mod-

eling approaches, the penalty parameter λ — or correspondingly the degrees of

freedom (df ) — are the major tuning parameters, which control the shape and flex-

ibility of the final estimate; see, for example, Buja, Hastie, and Tibshirani (1989) for

penalization in the context of additive models and, Hoerl and Kennard (1970) for

penalization in ridge regression models. In boosting, the flexibility of the smooth

terms is not directly governed by the initial degrees of freedom for the base-learner.

By repeatedly selecting the base-learner, the final effect can adapt higher order

smoothness. Hence, the number of boosting iterations controls much of the flex-

ibility of the estimates (see next section). At the same time, overfitting is much

slower in boosting than in other approaches where small increases of the degrees

of freedom might result in heavy overfitting (see Bühlmann and Yu 2003, in the

context of boosting with smoothing splines).

5In package mboost, the default for df for smooth base-learners is set to 4, except for bivariate
P-splines where the default is set to 6 due to a null space that already has 4 degrees of freedom.
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2.4.3. Stopping Iteration

The most important tuning parameter for boosting is the number of boosting iter-

ations mstop. Boosting, especially AdaBoost, is generally considered to be resistant

to overfitting (e.g., Breiman 1998, Friedman et al. 2000). However, as argued in

Bühlmann and Yu (2000) and Friedman et al. (2000, rejoinder), this resistance to

overfitting needs to be largely attributed to the way it is evaluated. In the classi-

fication context, the model is often assessed via the misclassification rate, which

itself is very stable against overfitting. Evaluating the performance with the out-of-

bag exponential loss (for AdaBoost) or the Binomial log-likelihood (for LogitBoost)

shows that overfitting can and will occur eventually (Friedman et al. 2000, rejoin-

der). Nevertheless, overfitting is relatively slow if appropriate weak learners are

used and additional shrinkage via the step-length ν is introduced (Bühlmann and

Hothorn 2007). Overfitting can be avoided if one stops the boosting algorithm at an

appropriate stage. This is called ‘early stopping’. There are two ways to determine

a suitable stopping iteration mstop,opt: First, one could estimate mstop,opt based on

information criteria such as the AIC (Akaike 1974), the corrected AIC (Hurvich,

Simonoff, and Tsai 1998), or the gMDL criterion (Hansen and Yu 2001). Second, re-

sampling based alternatives such as cross-validation (Stone 1974) or the bootstrap

(Efron 1979) can be used. The idea of all approaches is to mimic the performance

of the model on new data, while taking possible artifacts due to overfitting of the

learning data into account.

Definitions of AIC and gMDL in the context of boosting are given in Bühlmann

and Hothorn (2007). Essentially, they use the trace of the hat matrix of component-

wise boosting to estimate the degrees of freedom of the boosted model. For

L2Boosting, they derived the hat matrix in iteration m as

Bm = I−
m

∏
r=1

(I− νS (j∗r )), (2.25)

where S (j∗r ) is the smoother matrix of the rth boosting step for the best-fitting

base-learner j∗r and I is the identity matrix. Bühlmann and Hothorn (2007) also

derive approximate hat matrices for boosting based on the (negative) binomial log-

likelihood and the (negative) Poisson log-likelihood (see their formulae (7.3) and

(7.4), respectively). The degrees of freedom of the model in iteration m can then be
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estimated as the trace of the approximate hat matrix:

df(m) = tr(Bm).

The AIC in iteration m then becomes AIC(m) = −2 `( f̂ [m]) + 2 df(m), where `( f̂ [m])

is the log-likelihood in iteration m.

Chang, Huang, and Huang (2010) propose an early stopping rule based on in-

formation criteria. They record the AIC while running the boosting algorithm and

use a change point detection rule to find the minimum AIC ‘on-the-fly’.

Hastie (2007) criticizes the use of information criteria, which are based on some

notion of degrees of freedom for the boosting model, to determine the optimal stop-

ping iteration mstop,opt of the boosting algorithm. He states, that the estimators for

the model degrees of freedom given in the boosting literature (e.g., Bühlmann and

Yu 2003, Bühlmann and Hothorn 2007, Tutz and Binder 2006) neglect the flexibility

of choosing the base-learners in each iteration and solemnly consider the flexibility

of the model as if the selection steps were predefined. Hence, the degrees of free-

dom underestimate the true degrees of freedom. The AIC tends to stop to late, i.e.,

the optimal stopping iteration mstop,opt is over-estimated.

To achieve an unbiased estimator for the optimal stopping iteration of the boost-

ing algorithm, it is preferable to use cross-validation techniques (including k-fold

cross-validation and the bootstrap), which do not require the estimation of the de-

grees of freedom for the model. Cross-validation avoids the biased estimates of the

degrees of freedom and is available for any kind of regression problem, i.e., not

only in special cases where an (approximate) hat matrix can be derived. In both

cases, the data set is split into two parts, a learning sample and a validation sample.

The model is fitted on the learning sample and the empirical out-of-bag risk, i.e.,

the empirical risk on the validation sample, is recorded for each iteration up to the

initial mstop. This is done repeatedly. Finally, one chooses the iteration that results

in the lowest aggregated out-of-bag estimate of the empirical risk.

If we are not sure how many iterations are required for the optimal stopping

iteration, a large initial value of mstop might be required. Thus, each of the cross-

validation or bootstrap runs need to run up to this iteration. Here, the tendency of

AIC-based stopping to overshoot slightly, could be used to find an initial ‘guess’ for

mstop,opt, which we call m̂stop,AIC. Based on this value one can now run the search

for an optimal stopping iteration on a smaller set as one can stop at m̂stop,AIC. This

idea could also be combined with the change point detection method of Chang
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et al. (2010). However, we feel that this is not that necessary. It seems sufficient

to run the algorithm and check from time to time if the minimum is reached and

if the optimal mstop is not to close to the current mstop. In situations with few

observations and many candidate predictor variables (n � p), the use of mstop,AIC

could be especially beneficial. In this situation, computing the AIC ‘on the fly’ is

relatively quick and easy. Cross-validation — with a high number of initial boosting

steps mstop — on the other hand might become computationally very demanding

as in each boosting step all the base-learners need to be evaluated. One could then

use the estimate m̂stop,AIC as an upper bound for the number of boosting iterations

in cross-validation. For data sets with many observations (i.e., when n becomes

large), this strategy is less useful. The computation of the approximate hat matrix

becomes more demanding as it is an (n× n) matrix.

2.5. Boosting as a Method for Sparse Modeling

A feature that directly relates to the component-wise fitting and the subsequent se-

lection of base-learners is that boosting works especially well in settings where the

number of covariates is large and where it is desirable to select a relatively small

subset of predictors. In these situations boosting usually outperforms standard

regression models with subset selection methods (Schmid and Hothorn 2008a).

As each base-learner depends only on a small subset of the predictors and as in

each iteration only one of the base-learners is fitted to the negative gradient vec-

tor, component-wise boosting can be even applied in settings where the number of

predictors is much larger than the number of observations (n� p). Many classical

variable selection techniques fail in this case. Others can only add up to (at ab-

solute maximum) n variables to the model. In contrast, due to regularization, the

final boosting model could — in theory — depend on all p predictors. However,

usually this does not happen and it is not desirable as sparse models are easier to

handle and interpret. The optimal model depends on few predictors only while

having a very good prediction capability. As discussed in the introduction (Chap-

ter 1), there are two competing goals when we try to learn (i.e., extract information)

from data: the first goal is prediction, the second is interpretation. Prediction is the

main target in machine learning, while interpretation is rather targeted in the sta-

tistical community. Even if these goals are competing they are not always mutually

exclusive. Sparse, regularized models often lead to better prediction accuracy and
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at the same time are easier to interpret and understand. This is both facilitated by

sparse models, as long as the level of sparsity is chosen with care. First, sparse

models are easier to interpret as there are fewer variables (and corresponding ef-

fects), and less complicated (interaction) structures will be derived in the model.

Second, sparse models tend to be superior with regard to prediction: models that

are too rich tend to fit the learning data very well — but they perform poorly on

new data. A very rich model is usually not generalizable. Hence, prediction fails

and at the same time the estimated effects should be doubted. On the other hand,

models that are too sparse are contra-productive as well. They will miss important

parts of structure in the data and hence are easy to interpret but highly misleading

in their results. The prediction performance usually decreases notably. Therefore,

it is desirable with respect to both goals (interpretation of the results and predic-

tion modeling) to find a fair amount of sparsity, which relates to a fair amount of

informative variables.

To further enhance sparsity of the model several approaches exist in the boost-

ing literature. We will briefly sketch three: The first approach, sparse L2Boosting

(Bühlmann and Yu 2006), changes the criterion that is used to select the best fitting

base-learner (Alg. 2, step (b2)). The residual sum of squares (RSS) is replaced by

a penalized criterion such as the AIC, the BIC or the generalized minimum de-

scription length (gMDL; see above for details) where the degrees of freedom arise

from the approximation of the model degrees of freedom. Bühlmann and Yu show

that this leads in many situations to sparser models, while the prediction perfor-

mance at least does not suffer substantially. The second approach, twin boosting

(Bühlmann and Hothorn 2010), uses two successive runs of the boosting algorithm.

In the first run a standard boosting estimate is obtained. In the second run, the

selection of the base-learners is not based on the RSS but on the RSS rescaled by

the importance of the base-learner in the first boosting run. Hence, base-learners

that were not selected in the first pass are not subject to selection in the second

pass. Base-learners that had only a small contribution (e.g., had an effect close to

zero) are less likely to be selected in the second round. The third approach is called

stability selection (Meinshausen and Bühlmann 2010). Stability selection can be ap-

plied to a wide range of methods including boosting. It allows to extract influential

variables (or base-learners in the boosting context) with an error control. Stability

selection is especially useful in settings with many potential predictors. To achieve

variable selection, the empirical probability of a base-learner to enter the model

is investigated via subsampling (i.e., the model is trained on random subsets of
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the original data of size bn/2c; see, for example, Bühlmann and Yu 2002). Only

base-learners that enter the model with a probability higher than a specific cut-off

value are considered to be influential. At the same time, stability selection controls

the family-wise error rate. Hence, non-influential variables are only selected by

stability selection with a controllable, small probability. The final model is usually

sparser and hence, easier to interpret than the model without stability selection.

Altogether, the third approach seems to be most promising as no changes in the

boosting algorithm are required, and as, furthermore, no estimates for the degrees

of freedom of the model are required. Stability selection can be simply applied to

the final model (almost) no matter how the underlying estimation and selection

algorithm works. Moreover, stability selection controls the probability of falsely

selected base-learners.

2.6. Fitting GAMLSS with Boosting

As a short outlook that goes beyond the actual scope of this thesis we want to briefly

discuss generalized additive models for location, scale and shape (GAMLSS) in the

context of boosting. Boosted GAMLSS can be seen as an extension of the boosting

algorithm itself, which is used as a basis to fit models for multiple components.

Generalized additive models for location, scale and shape were first introduced by

Rigby and Stasinopoulos (2001, 2005). This class of models represents a flexible

extension of GAMs (Hastie and Tibshirani 1986, 1990). GAMs are typically used

to model the mean of the conditional distribution of an outcome. This conditional

distribution follows an exponential family. Hence, the scale and shape are im-

plicitly defined by the mean — in combination with the distribution. However, if

heteroscedastic or skewed distributions shall be modeled, this approach is not suit-

able. In contrast, GAMLSS models regress multiple parameters of the conditional

distribution — say θ1, . . . , θK, where usually K ≤ 4 — on a set of covariates. These

parameters might include the location (e.g., the mean), the scale (e.g., the standard

deviation or the variance) and additional shape parameters (e.g., the skewness or

the degrees of freedom). By using GAMLSS models, one gets rid of some of the

shortcomings and limitations of classical GAMs. The price to pay is the additional

complexity of the model and possibly a higher degree of instability compared to

simpler generalized linear or generalized additive models.

Other problems arise on the computational, algorithmic side. One problem of
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the standard algorithms, which are used to estimate GAMLSS models (Rigby and

Stasinopoulos 2005, App. B), is that they cannot be used to fit models to high-

dimensional data with less observations than variables (n � p). If many possible

predictors are available variable selection becomes a crucial part of modeling the

data. This is especially important for GAMLSSs as we have multiple components,

which are all regressed on (subsets of) these predictors. Rigby and Stasinopoulos

(2005) propose to use the generalized AIC (GAIC), with AIC and BIC as special

cases, for model selection. The problem with this approach is that it tends to be

highly instable. Furthermore, in data sets with many predictors the only feasible

approaches that make use of the (G)AIC are stepwise approaches. This increases

the instability even further and an ‘optimal’ or ‘near-optimal’ model might be com-

pletely missed in this case. Other problems associated with the AIC are that it tends

to overfit the data, i.e., in tendency the AIC favors models that are too large (e.g.

Ripley 2004). In penalized fitting approaches, such as generalized additive models

and their extensions, further conceptual problems arise, as — strictly speaking —

the AIC is only valid for maximum likelihood estimation (Ripley 2004).

Our idea to overcome the problem of model selection, in this complex and (po-

tentially) high-dimensional context, makes use of boosting with its intrinsic vari-

able selection feature. The approach is based on a recently published boosting

algorithm for multi-dimensional prediction functions (Schmid, Potapov, Pfahlberg,

and Hothorn 2010b), which was extended to the fitting of GAMLSS models (Mayr

et al. 2011b). In essence, an additional inner loop is processed within each boost-

ing step. In each boosting iteration, we cycle consecutively through all distribution

parameters θ1, . . . , θK of the GAMLSS model. For each parameter θk, the nega-

tive gradient is computed with respect to this parameter (i.e., the partial derivative

of the loss function with respect to θk) and the current values of the distribution

parameters are plugged in as offset values. Subsequently, the negative gradient

vector is fitted by (component-wise) base-learners and the current estimate of θk is

updated with the best-fitting base-learner. Further details about the algorithm are

provided in Mayr et al. (2011b).

In the simplest version, one uses one common mstop for all distribution param-

eters. In many cases this might be sufficient. However, in other cases the model

for the mean of the distribution θ1 might, for example, be more complex than the

model for the standard deviation θ2. In this case, using one single stopping itera-

tion might either result in overfitting of the standard deviation or in ‘underfitting’

of the mean, or possibly a mixture of both. Hence, it might be more sensible to
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allow different values of mstop,k, k = 1, . . . , K for the different components. In the

algorithm this is achieved by skipping the update of parameters θk after mstop,k

steps. Only parameters that did not reach their maximum number of iterations are

further updated. An issue that arises in the case of ‘multi-dimensional stopping’ is

that each of the stopping parameters has to be optimized simultaneously, i.e., by

taking the stopping iterations of the other parameters into account. In line with the

classical boosting approach cross-validation techniques are well advised, however,

multi-dimensional cross-validation might become problematic if many distribu-

tion parameters are estimated. Multi-dimensional stopping is of special interest in

high-dimensional settings where variable selection is desired. More research on

feasible strategies to find the optimal (multi-dimensional) stopping iterations is re-

quired. One solution to this problem might be given by the ideas on AIC-based

pre-stopping as discussed in Section 2.4.3. However, in this case, approximate de-

grees of freedom would be required. On the other hand, if prediction is of primary

interest and variable selection is of minor importance, multi-dimensional stopping

seems less crucial. Using one single mstop might often be sufficient (as suggested

by the simulation studies in Mayr et al. 2011b) due to the slow overfitting behavior

of boosting.

2.7. Model-based Boosting in R

The generic functional gradient descent algorithm and all base-learners that were

discussed in this chapter are implemented in the R (R Development Core Team

2011) add-on package mboost (Hothorn et al. 2011a). Base-learners that were newly

developed as part of this thesis are implemented in the current development ver-

sion only6 (mboost 2.1-0; Hothorn et al. 2011b). Linear base-learners, both for

categorical and continuous covariates are implemented in the function bols(). A

change in this function compared to the standard versions of mboost was required

to reflect the research presented in this thesis. The change only affects the way

categorical covariates are handled if base-learners without intercept (bols(...,

intercept = false)) are requested. We elaborate on this in Appendix B.2 together

with the required code.

In addition to the implementation of various estimation problems as specified

by the loss function (via family in mboost), and many different base-learners,

6at the time of writing; the code will be moved to the official package on CRAN in the near future
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mboost offers a convenient interface to compute the cross-validated risk (cvrisk)

and allows the use of parallel computation methods for this task. Parallelization

can, for example, be achieved by using the packages multicore (Urbanek 2011) or

snow (Tierney, Rossini, Li, and Sevcikova 2011). Alternatively users can extract

information criteria (AIC, corrected AIC and gMDL) by the function AIC() for

models fitted with appropriate families. Further convenience functions to extract

the coefficient estimates, to plot the effects, to make predictions, or to manipulate

the model are available in the package mboost.

More details, a list of the contributions to the package mboost, and a short

introduction — showcasing some of the code that was used to produce the analyses

in the thesis — is given in Appendix B.

An implementation of boosted GAMLSS models is available in the R add-on

package gamboostLSS (Hofner, Mayr, Fenske, and Schmid 2011b). By depending

on the R package mboost, gamboostLSS incorporates a wide range of base-learners

(cf. Sec. 2.3) and can rely on a well-tested and mature software back end. Further-

more, convenience functions like those implemented in mboost exist.





3. A Framework for Unbiased

Model Selection

Statistical thinking will one day be as necessary for efficient

citizenship as the ability to read or write.

(Attributed to H. G. Wells 1)

The finding that is going to be presented in this chapter is the fact that general-

ized or structured additive models fitted using a component-wise functional gra-

dient boosting algorithm suffer from variable selection bias if base-learners with

different flexibility are considered as competitors. Basically, a variable might be

considered influential not only because of its correlation with the response but also

because of its measurement scale. The problem was first observed in the regres-

sion tree community in the 1980s (Breiman, Friedman, Olshen, and Stone 1984, Loh

and Vanichsetakul 1988) and still receives a lot of attention (in so-called ‘unbiased

trees’, see for example Loh 2002, Kim and Loh 2003, Hothorn, Hornik, and Zeileis

2006b). More recently, Strobl et al. (2007) observed a tendency of variable impor-

tance measures obtained from random forests to favor categorical covariates with

a large number of levels compared to a covariate that has the same effect size but

is measured at fewer levels. This variable selection bias is hard to deal with analyt-

ically. Therefore, this selection bias is usually defined and assessed in the situation

where none of the covariates is actually associated with the response (“null case”,

see for example Loh 2002, Kim and Loh 2003, Hothorn et al. 2006b, Strobl et al.

2007). Variable selection is said to be unbiased if each covariate has the same prob-

ability of being selected in the null case, regardless of its scale. Similarly, model

selection is said to be unbiased if each modeling alternative (linear, non-linear, etc.)

for one covariate is selected with the same probability in the null case.

The sources of variable and model selection bias in component-wise boosting

1see Huff D (1954). How to lie with statistics. W.W. Norton & Company, New York, 1993 Paperback
edition. p. 3.
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under both the null case and when informative covariates are present in the model

are theoretically investigated. The results give insights into how to modify the

algorithm to reduce the effect of variable selection bias.

3.1. (Un-) Biased Selection of Base-Learners

Model estimation is carried out using the component-wise, model-based boosting

approach described in Chapter 2. More precisely we apply the generic functional

gradient descent algorithm derived there (Algorithm 2). In this chapter we focus

on three special base-learners, namely, ridge-penalized categorical base-learners,

penalized ordinal base-learners and P-spline base-learners: In the case of a con-

tinuous covariate x, we consider penalized least squares base-learners based on

P-splines (cf. Sec. 2.3.2). While an unpenalized least squares base-learner might

be the first choice for (dummy coded) categorical covariates, we consider the more

general approach of univariate ridge regression with treatment contrasts to serve as

base-learner (cf. Sec. 2.3.1). In the case of ordinal categorical covariates, one could

also use a ridge penalty for the coefficients of the dummy coded design matrix

if penalized estimation is desired. However, penalized ordinal base-learners (cf.

Sec. 2.3.1) might be favorable as one often might expect the transition from on cat-

egory to a neighboring one to result in relatively small changes. As stated earlier,

all three base-learners under consideration can be expressed as penalized linear

models of the form gj(x) = X(X>X + λK)−1X>u, with a suitable design matrix X,

smoothing parameter λ, and an appropriate penalty matrix K.

Using the component-wise boosting approach naturally leads to variable and

model selection if we choose an appropriate stopping iteration m̂stop,opt. However,

the selection of base-learners in each iteration can be seriously biased if the com-

peting base-learners have different degrees of flexibility. This bias is intuitively

plausible if one tries to distinguish whether a covariate x has a linear or a smooth

effect on y. In this case, the usual strategy would be to specify a linear base-learner

g1(x) = βx and a smooth base-learner g2(x) = fsmooth(x), and to choose between

the two based on the RSS (Eq. 2.5) in the boosting algorithm. However, the smooth

base-learner offers much more flexibility and typically incorporates a linear effect

for x as a special case. Hence, we can expect that boosting (almost) always prefers

the smooth base-learner over the linear base-learner, regardless of the nature of

the true effect. A similar selection bias can be expected when performing variable
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selection between competing categorical covariates with different numbers of cat-

egories. The covariate with more categories offers greater flexibility and thus is

preferred in general when using unpenalized least squares base-learners.

In the following, we will theoretically investigate the presence of a selection bias

in the selection of base-learners for the special case of L2-boosting in the null model,

i.e., when the response y is independent of the covariates. Here, a reasonable

selection procedure should randomly select the base-learners without preference

of more flexible base-learners.

Theorem 3.1 Let x1 and x2 be categorical covariates with M1 and M2 categories and

design matrices X1 and X2. Let u be the (n× 1) negative gradient vector arising in the first

step of the boosting algorithm for a response variable y of i.i.d. normally distributed random

variables with variance σ2 that is independent of x1 and x2; i.e., u is simply the centered

response variable. Let β̂1 and β̂2 denote the effect estimates resulting from unpenalized

least squares base-learners and define the difference of the residual sums of squares as ∆ =

(u− X1β̂1)
>(u− X1β̂1)− (u− X2β̂2)

>(u− X2β̂2). Then we have

E(∆) = σ2(M2 −M1), (3.1)

i.e., E(∆) = 0 if and only if M1 = M2.

Proof for Theorem 3.1 The difference of the RSS is given by

∆ = RSSX1 −RSSX2 = (u− X1β̂1)
>(u− X1β̂1)− (u− X2β̂2)

>(u− X2β̂2)

= u>(I− X1(X>1 X1)
−1X>1 )

2u− u>(I− X2(X>2 X2)
−1X>2 )

2u

= u>(I− X1(X>1 X1)
−1X>1 )u− u>(I− X2(X>2 X2)

−1X>2 )u

= u>Qu

with Q = [I− X1(X>1 X1)
−1X>1 ]− [I− X2(X>2 X2)

−1X>2 ], and

tr(Q) = [n− (M1 − 1)]− [n− (M2 − 1)] = M2 −M1 . (3.2)

Using the theorem for the expected value of quadratic forms (Ruppert et al. 2003,

App. A.4.5) it holds:

E(∆) = E(u>Qu) = tr[Q cov(u)] +E(u)>QE(u) . (3.3)
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As we assumed E(u) = 0 and cov(u) = σ2I, we obtain

E(∆) = σ2 tr(Q) = σ2(M2 −M1) . (3.4)

�

Theorem 3.1 can be interpreted such that the expected difference of the RSS is

greater than zero if the number of additional categories of x2, i.e., M2 − M1, is

greater than zero, which reflects that a selection bias in favor of x2 is present. To

overcome this problem, the base-learners should be made comparable with respect

to their flexibility even if the number of categories is different. A specific possibility

to achieve this is presented in the following theorem.

Theorem 3.2 Assume that the assumptions from Theorem 3.1 hold. Furthermore, replace

the categorical base-learners with ridge penalized base-learners, where the penalty matri-

ces K1 and K2 are identity matrices (of appropriate dimensions) and λ1 and λ2 are the

corresponding smoothing parameters. Let S1 = X1(X>1 X1 + λ1K1)
−1X>1 be the smoother

matrix of x1 and S2 be defined accordingly for x2. Then

E(∆) = 0 ⇔ tr
(

2S1 − S>1 S1

)
= tr

(
2S2 − S>2 S2

)
, (3.5)

where ∆ is the difference in RSS resulting from the penalized least squares fits.

Proof for Theorem 3.2 The difference of the RSS in the ridge penalized model is

given by

∆ = (u− X1β̂pen,1)
>(u− X1β̂pen,1)− (u− X2β̂pen,2)

>(u− X2β̂pen,2)

= (u− S1u)>(u− S1u)− (u− S2u)>(u− S2u)

= u>(I− X1(X>1 X1 + λ1K1)
−1X>1 )

2u− u>(I− X2(X>2 X2 + λ2K2)
−1X>2 )

2u

= u>Qpenu

with

Qpen = (I− X1(X>1 X1 + λ1K1)
−1X>1 )

2 − (I− X2(X>2 X2 + λ2K2)
−1X>2 )

2

= −2X1(X>1 X1 + λ1K1)
−1X>1 + (X1(X>1 X1 + λ1K1)

−1X>1 )
2

+2X2(X>2 X2 + λ2K2)
−1X>2 − (X2(X>2 X2 + λ2K2)

−1X>2 )
2 (3.6)

=
[
−2S1 + S>1 S1

]
−
[
−2S2 + S>2 S2

]
.
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With E(u) = 0 and cov(u) = σ2I, σ2 > 0 it follows from (3.4) that

E(∆) = 0 ⇔

tr(Qpen) = 0 ⇔

tr
{[
−2S1 + S>1 S1

]
−
[
−2S2 + S>2 S2

]}
= 0 ⇔

tr
[
2S1 − S>1 S1

]
= tr

[
2S2 − S>2 S2

]
.

�

From Theorem 3.2 one can deduce that the effective degrees of freedom, which

are defined as

df := tr
(

2S − S>S
)

, (3.7)

should be comparable for the two competing base-learners in order to overcome the

selection bias. Note that the degrees of freedom resulting from Theorem 3.2 dif-

fer from the standard definition in the smoothing literature given by d̃f := tr (S).
However, (3.7) is an alternative definition for the degrees of freedom in penalized

models. As stated by Buja et al. (1989) and confirmed by Theorem 3.2, it is the

preferred choice if one compares two models with respect to their RSS. Both defini-

tions of degrees of freedom are implemented in the dedicated R package mboost.

One can switch to the degrees of freedom (3.7) with the command

R> options(mboost_dftraceS = FALSE)

Setting the option to TRUE, which is the default at the moment, uses the definition

d̃f for the degrees of freedom.

The following theorem shows that a selection bias occurs also if competing linear

and smooth base-learners for the same covariate are specified. As for categorical

covariates we consider the null case to derive the results.

Theorem 3.3 Let x be a continuous covariate with design matrix X = (1, x). A smooth

effect for x is modeled using P-splines with the design matrix B = (B1(x), . . . , BJ(x)),

which consists of B-spline basis functions evaluated at the values of x. Let K = D>D be

the penalty matrix, where D is a difference matrix of order 2. The corresponding smoothing

parameter is denoted by λ. Let u be the (n × 1) negative gradient vector arising in the
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first step of the boosting algorithm for a response variable y of i.i.d. normally distributed

random variables with variance σ2 that is independent of x, i.e., u is simply the centered

response variable. Let β̂ = (X>X)−1X>u and β̂pen = (B>B + λK)−1B>u denote the

effect estimates resulting from unpenalized linear base-learner, and from the P-spline base-

learner, respectively. Define the difference of the residual sum of squares as ∆ = (u −
Xβ̂)>(u− Xβ̂)− (u− Bβ̂pen)>(u− Bβ̂pen). Then it holds that

E(∆) > 0 (if λ < ∞).

Proof for Theorem 3.3 The difference of the RSS is given by

∆ = RSSlin−RSSpen = u>(I− X(X>X)−1X>)2u− u>(I− B(B>B + λK)−1B>)2u

= u>(I− X(X>X)−1X>)u− u>(I− B(B>B + λK)−1B>)2u

= u>Qu

with

Q = [I− X(X>X)−1X>]− [I− B(B>B + λK)−1B>]2

= −X(X>X)−1X> + 2B(B>B + λK)−1B> − (B(B>B + λK)−1B>)2. (3.8)

It holds that tr(B(B>B + λK)−1B>) = tr((I + λK̃)−1) = ∑J
j=1(1 + λdj)

−1, where

K̃ = (B>B)−1/2K(B>B)−1/2 and dj are the eigenvalues of K̃ (cf. Eilers and Marx

1996). For second order difference penalty matrices D, two eigenvalues are equal

to zero, all others eigenvalues dj are positive. Thus

tr(Q) = −2 + 2
J

∑
j=1

(1 + λdj)
−1 −

J

∑
j=1

(1 + λdj)
−2

≥ −2 + 2
J

∑
j=1

(1 + λdj)
−1 −

J

∑
j=1

(1 + λdj)
−1

= −2 +
J

∑
j=1

(1 + λdj)
−1 ≥ 0,

where tr(Q) = 0 if and only if λ→ ∞. As we assumed E(u) = 0 and cov(u) = σ2I,

by using (3.3) we obtain for a finite smoothing parameter λ

E(∆) = σ2 tr(Q) > 0.

�
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Hence, a selection bias in favor of smooth base-learners exists for finite smooth-

ing parameter λ.

Lemma 3.4 Assume that the assumptions from Theorem 3.3 hold. Let S = B(B>B +

λK)−1B> be the smoother matrix of the P-spline. To make the linear and smooth term

comparable

df = tr(2S − S>S)

needs to be controlled.

Proof for Lemma 3.4 To avoid bias, it must hold that E(∆) = 0. Let H = X(X>X)−1X>

be the hat matrix of X. With Equation (3.8) we get

E(∆) = 0⇔

tr(Q) = 0⇔

tr(−H + 2S − S>S) = 0⇔

tr(2S − S>S) = tr(H)

Hence, df = tr(2S − S>S) must be made comparable to tr(H) = rank(X), which

is the number of independent parameters in the linear model, i.e., the degrees of

freedom for the linear base-learner.

�

Thus, the appropriate degrees of freedom have the same form as for categorical

effects. Controlling df = tr(2S − S>S) can be seen as an improved version of

the model selection scheme that was proposed by Kneib et al. (2009) who used d̃f

instead of df. Following these lines, one should specify equal degrees of freedom

for all base-learners if unbiased model and variable selection are the goal. As we

do not include an intercept in the base-learners but specify a separate base-learner

for the intercept, the natural choice for these common degrees of freedom is one

single free parameter as it appears for a linear least squares base-learner of one

single continuous covariate. This can easily be achieved for categorical covariates

by setting the smoothing parameter to an appropriate value (see below).

In contrast to categorical covariates, we cannot make the degrees of freedom

arbitrarily small for P-splines, even with λ approaching infinity, since a polynomial

of order d − 1 remains unpenalized by a dth order difference penalty (Eilers and

Marx 1996). This is the so called null space. As we usually apply second order
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differences, a linear effect (with intercept) remains unpenalized and thus df ≥ 2

for all λ. This can also be seen from the eigenvalue decomposition in the proof of

Theorem 3.3. To be able to specify a base-learner with one degree of freedom, a

reparameterization as described by Kneib et al. (2009) is needed. The smooth (jth)

base-learner is decomposed into parametric parts for the unpenalized polynomial

and a smooth deviation from this polynomial

gj(x) = β0,j + β1,jx + . . . + βd−1,jxd−1 + gcentered(x), (3.9)

where only gcentered(x) is modeled using the reparameterized, centered P-spline

base-learner. Now, we can specify separate base-learners for each parametric effect

and a base-learner with one degree of freedom for the smooth deviation from the

polynomial. For more details on the technical realization and further implications

of the decomposition we refer to the article by Kneib et al. (2009).

As mentioned above, we propose to specify the smoothness of all base-learners

via the degrees of freedom. We use an initial value df init for each penalized base-

learner and solve tr
(

2S − S>S
)

= df init for λ. The following lemma provides

a convenient, numerically efficient way to compute the degrees of freedom and

therefore to determine the corresponding λ.

Lemma 3.5 Let S = X(X>X + λK)−1X> be the smoother matrix of x with non-negative

definite, symmetric penalty matrix K. Let R>R = X>X be the Cholesky decomposi-

tion of the cross-product of the design matrix. Then, the degrees of freedom df(λ) =

tr
(

2S − S>S
)

are equal to

df(λ) = 2
M

∑
j=1

1
1 + λdj

−
M

∑
j=1

1
(1 + λdj)2 (3.10)

where dj ≥ 0 are the M non-negative singular values of R−>KR−1.

The proof of Lemma 3.5 can be derived using the Demmler–Reinsch orthogonal-

ization (cf. Ruppert 2002). As Lemma 3.5 only requires the penalty matrix K to be

non-negative definite and symmetric, we can use (3.10) to compute the degrees of

freedom for all base-learners considered in this thesis.
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3.2. Variable Selection Bias under Test —

A Simulation Study

3.2.1. Biased Selection of Categorical Covariates

To empirically evaluate the bias introduced by categorical covariates with poten-

tially many categories, we examine two situations: the null case, where none of

the covariates has an influence on the response and a set of power cases, where a

subset of the covariates influences the response. The null case is used to examine

the selection bias and the proposed solution formally, whereas the power case is

used to verify that the model also benefits from the proposed correction in case of

influential covariates.

In the null case, the response is simply i.i.d. normally distributed, yi
i.i.d.∼ N (0, 1),

i = 1, . . . , n but we fit a model with structure

y = Xβ + Z1γ1 + ε, (3.11)

where the (n× p) matrix X = (x1, . . . , xp) is formed of continuous covariates, Z1 is

the dummy coded design matrix of a categorical covariate z1, and β and γ1 are the

corresponding parameter vectors. The p = 25 continuous covariates were sampled

as realizations X1, . . . , Xp
i.i.d.∼ U[0, 1] and the categorical covariate z1, with varying

numbers of categories ncat ∈ {2, . . . , 10}, was sampled from a discrete uniform

distribution on {1, . . . , ncat}.
In the first power case, the response depends on five continuous covariates; the

remaining 20 continuous covariates and the categorical covariate have no influence

on y. Again, we fit a model with structure (3.11).

In the second power case setting, we add a second, informative categorical co-

variate z2 with the same numbers of categories as z1, which is sampled i.i.d. from

a discrete uniform distribution as used for z1. The response now depends on five

continuous covariates and on the categorical covariate z2. The model is fitted ac-

cording to the structure

y = Xβ + Z1γ1 + Z2γ2 + ε (3.12)

where Z2 and γ2 are the design matrix and the coefficient vector for z2, respectively.

The effects of the categories for z2 do not exceed two and hence are comparable to



50 A Framework for Unbiased Model Selection

the other effects in (3.11). Table 3.1 summarizes all simulation settings.

For both the null case and the power cases, the sample size was set to n = 150

and the error terms are i.i.d. samples from ε ∼ N (0, σ2) with σ2 chosen such that

the fraction of explained variance is R2 ≈ 0.3. In the power cases we simulated

B = 100 data sets while B = 1000 simulation replicates were considered in the null

case. Changes of the sample size (n = 50, 500, 1000), the number of covariates (p =

10, 100), the sampling distribution (standard normal and binomial distribution), or

the fraction of explained variance (R2 = 0.5) led to qualitatively same results in

the tested scenarios. The stopping iteration m̂stop,opt was determined based on an

independent test sample of size 750.

Table 3.1.: Overview of different simulation schemes for categorical covariates z1 and z2
(upper part) and continuous covariate z1 (lower part).

Effects for x1, . . . , x25 Effects for z1 (and z2)

Null model β = (0, . . . , 0)> γ1 = (0, . . . , 0)>

Power case 1 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> γ1 = (0, . . . , 0)>

Power case 2 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> γ1 = (0, . . . , 0)>

z2 influential γ2 = ( 2
ncat/2 , 3

ncat/2 , . . . , ncat
ncat/2 )

>

Null model β = (0, . . . , 0)> fz(z1) ≡ 0
Power case 1 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) ≡ 0
Power case 2 z1 linear effect β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) = 1.5z1
Power case 3 z1 smooth effect β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) = sin(−(2z1)

2 − 0.6(2z1)
3)

All models were fitted using the gamboost function from the R package mboost

and one base-learner was specified per model component. All continuous covari-

ates were standardized since we use base-learners without intercept (and specify an

additional base-learner for the intercept; see Section 2.3.1). For the base-learner of

categorical covariates, we considered either unpenalized or penalized least squares

base-learners. In the remainder of this chapter we use the terms “unpenalized

model” and “penalized model” to refer to models where the base-learner for the

categorical effect is unpenalized and ridge penalized, respectively.

Null Case Here, the criterion for the variable selection bias is the selection fre-

quency of the base-learners averaged over all simulation runs. In the null model

case, i.e., in the case where no covariate has an influence on the response, a sensi-

ble selection procedure should not prefer one base-learner over another but should

randomly select any of the non-informative covariates.

The selection rates in models with and without penalized base-learners can be

found in Figure 3.1. Obviously, the selection frequency of the categorical covariate
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increases with increasing ncat if no ridge penalty is applied. When applying the

ridge penalty, the selection frequency of the categorical covariate becomes com-

parable to the selection frequency of the continuous covariates. Hence, we can

conclude that using penalized categorical base-learners improves the boosting al-

gorithm in the null case with respect to the selection rates.
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(a) Unpenalized Model
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(b) Ridge Penalized Model

Figure 3.1.: Null Model: Average selection frequencies of base-learners for ncat = {2, 5, 10}
in the “optimal step” m̂stop,opt without and with ridge penalty. The last bar in each
graph represents the selection frequency of the categorical covariate.

Power Cases Applying the ridge penalty to correct for the selection bias shrinks

the parameter estimates such that the resulting df s are all equal to 1 (independently

of ncat).

Unlike in the null case, one cannot assess the selection bias in power cases di-

rectly via the selection frequency as we have a complicated mixture of effect size,

type of effect, etc. Therefore, to assess the quality of the resulting models and the

effect of the ridge penalty in power cases, we use the mean squared prediction

error (MSE) of the coefficients

MSE =
1
p̃

p̃

∑
j=1

(β̂ j − β j)
2, (3.13)

where p̃ is the number of coefficients including those for the categorical effect(s).

Figure 3.2(a) shows that the MSE is decreased in the first power case when us-

ing the penalized base-learner for z1. In the the second power case, an additional

informative categorical covariate z2 is included in the model. Figure 3.2(b) shows
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(c) Power Case 2: without z2

Figure 3.2.: Power Cases: Boxplots represent MSEunpenalized−MSEpenalized in the first power
case (left) and in the second power case, where the MSE is computed with (middle)
and without (right) the influential, categorical covariate z2.

the differences of the MSEs for the models with unpenalized and penalized base-

learners for the categorical covariates. As the boxes cover zero or sometimes are

even located below, the “unpenalized model” seems to be better. However, the

figures represent a mixture of two different, competing effects: The effect of the

non-influential categorical covariate is shrunken toward zero with the penalized

base-learner (decrease of MSE). At the same time, the effect of the influential co-

variate is also shrunken toward zero introducing an additional bias (increase of

MSE) leading to the apparent U-shape in Figure 3.2(b). However, this is true for

any penalization approach. Looking at Figure 3.2(c), one can see the differences of

MSEs, where the influential, categorical covariate z2 is excluded (for the calcula-

tion of the MSE but not for the estimation of the model). Here one clearly sees the

superiority of the penalized approach. One can conclude that penalization has the

advantage to reduce the selection bias for non-informative covariates and addition-

ally shrinks the effects of influential covariates. If one deals with high-dimensional

settings, and variable selection and shrinkage are desired beforehand, the ridge

penalty is exactly what one would like to apply.

Comparison to Stepwise Linear Model To benchmark the bias-corrected ap-

proach, we compared the resulting MSEs to the mean squared errors of a linear

model with forward stepwise selection based on AIC. In our settings, the boosting

models are better on average than the stepwise models. In the first power case

and in the second power case (MSE computed without z2) the boosting model was

better in more than 75% of the cases with respect to the mean squared prediction
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error. If we compute the MSE with the informative categorical covariate z2, the

shrinkage effect decreases the superiority of boosting a bit. Nevertheless, boosting

is still superior to stepwise regression in the majority of the cases.

Penalized Ordinal Base-learners If categorical covariates are ordinal, one can

use ordinal penalized base-learners (see Sec. 2.3.1) instead of ridge penalized base-

learners. To assess the properties of this penalty, we used the same simulation

setting as for unordered covariates (see Table 3.1).

To summarize the results (see Appendix C.1), we can conclude that ordinal pe-

nalized base-learners show basically the same behavior as ridge penalized base-

learners: In the null case, the penalized ordinal base-learners reduce the selection

bias such that the selection frequencies of all base-learners are approximately equal

(Fig. C.1).

Looking at the performance of the penalty approach for ordinal covariates, we

can state an overall improvement compared to the unpenalized model. In the first

power case, the MSE is improved in comparison to the unpenalized model, and

ordinal penalized base-learner and ridge penalized base-learner are overall compa-

rable (see Figure 3.3(a)). In the second power case with an additional, informative

covariate z2, the ridge penalized model shows an improvement compared to the

unpenalized model, but the ordinal penalty offers a further improvement over the

ridge penalty, which does not exploit the ordinal structure of z2. This can be seen

in Figure 3.3(b), where we see another increase in the differences of the MSE. This

is possibly due to a weaker penalization of the higher categories, which have a

bigger effect (cf. Table 3.1): The ridge penalty shrinks all coefficients equally to-

ward zero, whereas the ordinal penalty just shrinks the increase with respect to the

preceding category toward zero. Hence, we can conclude that it is preferable to ex-

ploit the ordinal structure of the covariates if possible and only use ridge penalized

base-learners if no ordinal structure can be assumed.

3.2.2. Biased Model Selection

To evaluate the preferred selection of smooth effects compared to linear effects, we

again examined the null case and a set of power cases. The data were generated

similarly to the categorical case (Sec. 3.2.1), where the categorical covariate was
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Figure 3.3.: Comparison of model with ridge penalized and ordinal penalized base-learner: Box-
plots represent MSEridge penalized−MSEordinal penalized with non-influential categorical
covariate (left) and with additional influential categorical covariate (right).

replaced by a continuous covariate. This leads to the model

y = Xβ + fz(z1) + ε (3.14)

with the (n× 1) dimensional response vector y, the (n× p) matrix X = (x1, . . . , xp),

and the corresponding parameter vector β of length p (see Table 3.1). The function

fz(·) can be of different nature, e.g., it can be a linear function, a smooth function,

or it can be a function that is equal to zero for all realizations z1 (cf. Table 3.1).

The p = 25 continuous covariates were all sampled i.i.d. from U[0, 1], as well as

the continuous covariate of interest z1. The error term was sampled again from

ε ∼ N (0, σ2) with σ2 such that the fraction of explained variance is R2 ≈ 0.3. To

empirically evaluate the selection bias introduced by smooth terms compared to

linear terms we simulated B = 1000 (null case) and B = 100 (power cases) data

sets with n = 150 observations from model (3.14). The optimal stopping iteration

m̂stop,opt was determined on an independent test sample of size 750. Changes of

the sampling distribution (standard normal distribution), explained variance (R2 =

0.5), sample size (n = 50, 500, 1000) or number of covariates (p = 10, 100) were

examined and led to essentially the same results.

Null Case We use the null case (i.e., the case where no variable influences the

response) to show that the model selection is biased if no correction is applied. We

specify a linear base-learner for z1, and additionally a smooth base-learner with
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df = 4. A reasonable model selection procedure should not prefer either of the two

modeling alternatives for z1. However, the smooth base-learner for z1 with four

degrees of freedom is highly preferred due to the increased flexibility. At the same

time the linear base-learner for z1 is never selected (see Figure 3.4(a)). If we apply

the decomposition (3.9) and specify one degree of freedom for each base-learner,

the selection bias in favor of smooth effects vanishes completely (see Figure 3.4(b)).

In conclusion, model selection in the naive specification is highly biased whereas

the bias is strongly reduced in the case of equally flexible base-learners.
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(b) Model with Decomposition

Figure 3.4.: Null Case: Mean selection frequency of base-learners in the “optimal step”
m̂stop,opt with df = 4 (left) and decomposition (with df = 1; right).

Power Cases To measure the performance of the penalized approach and gain

some insight into the nature of the bias that is introduced by competing linear and

smooth base-learners we use the following L2-norm

∆L2
partial,i =

∫ max(xi)

min(xi)
[ f̂i(x̃)− fi(x̃)]2dx̃.

The norm measures the deviation of the estimated partial function from the true

function. For numerical evaluation, the model was predicted on a fine, equidistant

grid, and the trapezoidal rule was applied to evaluate the integral. As a summary

measure we use the mean L2-deviation ∆L2 = p̃−1 ∑
p̃
i=1 ∆L2

partial,i, where p̃ is the

number of covariates. Thus, ∆L2 is an extension of the MSE (3.13) (see Sec. 3.2.1)

to smooth effects. Additionally, we examined the selection frequencies of the cor-

responding base-learners.

Power Case 1 From Figure 3.5(a) we can conclude that the decomposition im-

proves the model when a smooth base-learner is used but the respective covariate
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is not influential. Figure 3.5(b) shows that the decomposition leads to a decreased

selection of the smooth base-learner and an increase of the selection of the com-

peting linear base-learner, which implies a reduction of the model selection bias.

However, the bias does not seem to be completely removed.
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Figure 3.5.: Power Case 1: Partial deviation ∆L2
model − ∆L2

model with decomposition (left) and mean
selection frequency of base-learners in the “optimal step” m̂stop,opt with df = 4 (upper)
and decomposition (with df = 1; lower). The bars 2 to 6 represent the influential
covariates x1, . . . , x5.

Power Case 2 In the following paragraph, fZ(z1) = γz1, with γ = 1.5, i.e., the

covariate of interest has a linear effect. Figure 3.6(a) shows that the model with

decomposition is almost always better (or comparable) to the model without de-

composition with respect to the deviations of the partial fits, i.e., the fitted functions

seem to be better in many cases. At the same time, we can observe a considerable

increase of the selection frequency of the linear base-learner for z1 if the decom-

position is applied. We can still observe an reasonable amount of selections for

the smooth base-learner. However, the linear base-learner is selected more often

than the smooth base-learner. Note that, without the decomposition, the linear

base-learner is never selected. Hence, the true nature of the underlying effect is

completely missed in this case.

Power Case 3 To investigate the behavior in the case where a smooth effect for

z1 is present, we chose fZ(z1) = sin(−(2z1)
2 − 0.6(2z1)

3). We thus have a combi-

nation of a sine form with a polynomial of z1. From Figure 3.7(a) we can conclude

that the mean L2-deviation ∆L2 is slightly larger with model decomposition but an
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Figure 3.6.: Power Case 2: Partial deviation ∆L2
model − ∆L2

model with decomposition (left) and mean
selection frequency of base-learners in the “optimal step” m̂stop,opt with df = 4 (upper)
and decomposition (with df = 1; lower).

considerable overlap with zero exists. Other non-linear functions were investigated

and showed similar results. Depending on the effect size and the functional form

the box lies more or less around zero. This shows that the model with decompo-

sition and without decomposition are almost equally good in the case of smooth

effects. The non-inferiority of the “decomposition model” is expected, as the model

without decomposition has a flexible base-learner directly customized to smooth

effects. Again we see an increased selection frequency of the linear effect for z1 if

we apply the decomposition, which can be partially ascribed to the slight linear

effect that is present for z1 (see Figure 3.7(b)). Despite the fact that the model with

P-spline decomposition reduces the selection of smooth effects, the model without

decomposition (and thus greater flexibility to model the smooth effect) is not bet-

ter with respect to the partial deviation. This might be partially attributed to the

weaker base-learner in the model with decomposition which leads to a more stable

estimate as can be seen in Figure 3.8.

Summing up, we could observe that models with the P-spline decomposition

(3.9), where all base-learners are specified with one degree of freedom, performed

better than models where a linear and a competing smooth base-learner for z1 with

four degrees of freedom are specified.
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(b) Selection Frequency

Figure 3.7.: Power Case 3: Partial deviation ∆L2
model − ∆L2

model with decomposition (left) and mean
selection frequency of base-learners in the “optimal step” m̂stop,opt with df = 4 (upper)
and decomposition (with df = 1; lower).

3.3. Forest Health Prediction

In our application, we consider models describing the forest health status. The aim

is to identify predictors of the health status of beeches, which is measured in terms

of the degree of defoliation. The data originates from yearly visual forest health

inventories carried out from 1983 to 2004 in a northern Bavarian forest district. The

data consists of 83 plots of beeches within a 15 km × 10 km area with a total of n =

1793 observations. The response is a dichotomized version of the defoliation index

indicating defoliation above 25%. Obviously, the data set combines a longitudinal

and a spatial structure. An overview of the covariates is given in Table 3.2.

Previous analysis (Kneib and Fahrmeir 2006, 2010, Kneib et al. 2009) resulted in

models that contained categorical covariates, as well as linear and smooth effects

of continuous covariates. Additionally, a spatial effect and a random effect for

the plots could be identified. When considering a structured additive regression

model of comparable complexity in a naive boosting implementation, biased model

selection of smooth model components as well as categorical covariates with several

categories is likely to occur. In the following, we will apply the methodology

developed in this chapter to achieve bias corrected variable and model selection

for the forest health data. Since the outcome is binary, we minimize the negative

binomial log-likelihood, i.e., we fit a structured logit model to the data. We consider
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Figure 3.8.: Power Case 3: True (partial) effect of z1 together with point-wise 95% variability
intervals based on simulation replicates.

a candidate model with the additive predictor

η = x>β + f1(ph) + f2(canopy) + f3(soil) + f4(inclination)

+ f5(elevation) + f6(time) + f7(age) + f8(s1, s2) + bplot, (3.15)

where x contains the parametric effects of the categorical covariates fertilization,

stand, humus and saturation. The ordinal covariates humus and saturation are

modeled using penalized ordinal base-learners, whereas the other categorical co-

variates are modeled using ridge penalized base-learners. The smooth effects

f1, . . . , f7 are specified as a combination of linear base-learners and univariate cubic

P-splines with 20 inner knots and a second order difference penalty. For the spatial

effect f8 we assumed bivariate cubic P-splines with first order difference penalties

and 12 inner knots for each of the directions. Finally, the plot-specific effects bplot

are represented by a ridge-type “random effects” base-learner with fixed degrees

of freedom (see Kneib et al. 2009, for details). All continuous covariates were cen-

tered as suggested in Section 2.3.1. To correct for the selection bias, one degree of

freedom was assigned to each single base-learner including the spatial and random

effect base-learners.

The optimal stopping iteration was estimated via stratified bootstrap, i.e., we

randomly selected plots (with replacement) and not single observations, as the

plots can be considered as the observational units. The resulting model included

five covariates, and additionally the spatial information and the random intercept

for the plots. Fertilization (represented as a binary indicator for the application

of fertilization) was included in the model with a negative effect on defoliation
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(βfert = −0.77). Age and calendar time (both included as linear base-learners) had

positive effects on defoliation (βage = 0.016 and βyear = 0.070). This means that

the severity of defoliation increases each year if the other covariates (including the

age of the trees in the plot) are kept fixed. The estimated effects of base saturation,

which was modeled using a penalized ordinal base-learner, and canopy density,

which was included as a combination of a linear and a smooth base-learner, can

be found in the upper part of Figure 3.9. The spatial effect was included in the

model but is clearly dominated by the spatially unstructured, plot-specific effect

(Figure 3.9). The remaining six covariates were not included in the final model.

In summary, our boosting framework allows to fit a complex model, comprising

many different kinds of effects, while interpretable and biologically meaningful

results are obtained. Code to fit the forest health prediction model can be found in

Appendix B.3.
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Figure 3.9.: Partial effects of base saturation, canopy density, spatial effect and random

effect (without spatial variation) on forest health.
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3.3.1. A Comparison with the Uncorrected Model

To benchmark our approach, we compared the bias-corrected modeling approach

with the uncorrected approach. We used the same candidate model (3.15) but

specified each smooth base-learner and the random effect base-learner with four

degrees of freedom and added the categorical base-learners unpenalized. We used

stratified 10-fold cross-validation where the corrected as well as the uncorrected

model were fitted on the learning sample. The optimal stopping iteration within

each learning sample was estimated by stratified bootstrap separately for each model

(i.e., within each learning sample). Each of the 10 test samples was used to deter-

mine the out-of-bag risk, i.e., the negative log-likelihood. We observed that the

corrected model was superior to the uncorrected model in 80% of the cases with

respect to the prediction error measured by the negative log-likelihood (see Fig-

ure 3.10). The improvement in the prediction error is relatively small but visible.

Thus, using equal degrees of freedom resulted in an improved prediction accuracy,

and it corrected for biased selection of base-learners.
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Figure 3.10.: Comparison of the risk for each of the 10 test samples, where the model was
fitted without the correction (left) and with the correction (right). For each learning
sample, each model was tuned separately by 25-fold cross-validation on the learning
sample. The red lines connect the paired bootstrap samples.
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Table 3.2.: Description of the covariates for the forest health data. All continuous covariates
were centered before they were included in the model, categorical covariates were
dummy coded with the first category as reference.

Covariate Description

age average age of trees at the observation plot in years (continuous, 7 ≤
age ≤ 234)

time calendar time (continuous, 1983 ≤ time ≤ 2004)
elevation elevation above sea level in meters (continuous, 250 ≤ elevation ≤

480)
inclination inclination of slope in percent (continuous, 0 ≤ inclination ≤ 46)
soil depth of soil layer in centimeters (continuous, 9 ≤ soil ≤ 51)
ph ph-value at 0-2cm depth (continuous, 3.28 ≤ ph ≤ 6.05)
canopy density of forest canopy in percent (continuous, 0 ≤ canopy ≤ 1)

humus thickness of humus layer in 5 categories (ordinal, higher categories
represent higher proportions)

saturation base saturation in 4 categories (ordinal, higher categories indicate
higher base saturation)

stand type of stand (categorical, −1 = mixed forest, 1 = deciduous forest)
fertilization fertilization (categorical, −1 = no, 1 = yes)

3.4. Concluding Remarks

Component-wise boosting techniques offer the possibility to fit a wide range of

models with intrinsic variable and model selection. To reduce selection bias of the

base-learners, equal degrees of freedom need to be assigned to all base-learners.

This can be achieved by using penalized least squares base-learners. We considered

ridge penalized base-learners for categorical covariates, penalized base-learners

with a ridge penalty applied to the differences of adjacent coefficients for ordi-

nal covariates, and P-spline base-learners for smooth model terms. For the latter,

an additional reparameterization step has to be applied to differentiate between an

unpenalized polynomial and the penalized deviation (Kneib et al. 2009).

For all base-learners, degrees of freedom can be specified using the definition

df := tr
(

2S − S>S
)

. This definition is tailored for the comparison of residual

sums of squares (RSS) and also appeared naturally from our theoretical considera-

tions about the selection bias. Specifying equal degrees of freedom for all modeling

components to achieve bias-corrected model selection can be easily incorporated in

all component-wise functional gradient descent boosting approaches. These are not

restricted to additive models with L2-loss, but cover a wide class of models includ-
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ing generalized additive models and survival models. In Section 3.3 we presented

a case-study on forest health where a complex spatial regression model was used

to classify defoliation of trees. The model was built making use of the approach

proposed in this chapter. This illustrates that the penalization approach can be ex-

tended to more sophisticated models, which include spatial effects or plot-specific

random effects (Kneib et al. 2009).

In contrast to our approach, most of the literature dedicated to likelihood-based

boosting (based on Fisher scoring) currently advocates to use one single smoothing

parameter λ for the penalty (e.g., Tutz and Binder 2006), or even to decrease the

penalty for some covariates to prefer them in the selection step without a thorough

theoretic reasoning, yielding a faster convergence toward the maximum (partial)

likelihood estimates (Binder and Schumacher 2008). Obviously, one could also

define the smoothing parameters in this framework such that the resulting degrees

of freedom are equal and thus obtain bias-corrected variable and model selection

procedures based on likelihood-based boosting. However, one problem arises in

this context: The degrees of freedom for a fixed smoothing parameter change over

the subsequent boosting iterations (Hofner, Hothorn, and Kneib 2008), for example,

due to changes in the working weights for GLMs.

Alternatively, one could think of altering the goodness-of-fit criterion that is

used to determine the best fitting base-learner in each step instead of making the

competing base-learners comparable by specifying equal degrees of freedom to

achieve unbiased base-learner selection. Examples include penalized alternatives

to the RSS such as AIC and BIC. In the context of likelihood-based boosting, Binder

and Schumacher (2008) proposed to use the penalized partial likelihood or the AIC

as selection criteria. Another idea could be to use F-tests, which also account for

the different degrees of freedom. However, our experience from simulation studies

shows that such approaches do not work well when comparing base-learners with

very different degrees of freedom. Criteria such as AIC and BIC are composed

of two parts: one that measures the fit via the likelihood and one term for the

penalty. In the linear regression model, which applies here, the AIC is defined as

AIC = n/ log(RSS /n) + 2 df . The degrees of freedom df are the initially defined

degrees of freedom of each base-learner. In the course of the boosting procedure,

the information still left in the data decreases sequentially and consequently the

RSS is forced to decrease. Thus, the criterion will be dominated by the penalty term.

The selection of base-learners in later iterations is based solely on the penalty while

neglecting the fit to the data. Hence, base-learners with fewer degrees of freedom
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are preferred, more flexible terms are even completely ignored in later iterations.

The same reasoning applies for BIC as well as F-tests. The problem that arises here

is that the penalty is not chosen adaptively to the maximum variance that could be

explained.

A possible solution for this problem is given in Bühlmann and Yu (2006). The

authors propose to use AIC, BIC or gMDL criteria to select the best-fitting base-

learner in each boosting step. In contrast to our discussion above Bühlmann and

Yu do not use the degrees of freedom of the single base-learner but use the degrees

of freedom of the boosted model. In this case, the degrees of freedom of the base-

learners in step m do not govern the selection in step m that strong, as they are

only one part of the overall degrees of freedom. In some exemplary simulations

we could show that the problem of penalized criteria (e.g., AIC and BIC), that more

flexible base-learners are never selected in later iterations, vanishes. Nevertheless,

this approach does not solve the problem of biased base-learner selection as in this

case the penalty induced by the model degrees of freedom even seems to be too

weak.

In conclusion, unbiased model selection seems not possible if different degrees

of freedom are specified. As we directly specify the degrees of freedom of the base-

learners, no high-dimensional optimization via cross-validation is needed to choose

appropriate smoothing parameters. Choosing the appropriate complexity of each

smooth term is reduced to one-dimensional cross-validation: one only needs to

choose an appropriate stopping iteration mstop. Yet, due to the iterative nature of

boosting, the final degrees of freedom for one covariate can vary greatly, even if

equal degrees of freedom are specified for the base-learners.



4. Constrained Regression in

Multivariate STAR Models

We have no idea about the ‘real’ nature of things . . . . The

function of modeling is to arrive at descriptions which are useful.

(Richard Bandler and John Grinder 1)

In many situations, researchers have prior knowledge of or assumptions on the

shape of effects. A very strong assumption is the common linearity assumption.

The effect estimate is constrained to follow a straight line. The linearity assumption

implicitly imposes a monotonicity assumption. Yet, the direction of monotonicity

is not restricted, i.e., monotonically increasing or decreasing functions are possible.

In many models it seems more appropriate to relax the linearity assumption but

to maintain the monotonicity assumption. The linearity assumption can be relaxed

if one switches to (generalized) additive models (GAM) or structured additive re-

gression (STAR) models (see Sec. 1.3).

An example of a structured additive model with monotonicity constraints is

given in the first case study of this chapter in the context of modeling the breed-

ing distribution of the Red Kite (Milvus milvus) in the German federal state of

Bavaria (see Section 4.5). Hothorn, Müller, Schröder, Kneib, and Brandl (2011c)

used a very flexible STAR model for describing the breeding distribution. In cer-

tain aspects, the resulting model leads to biologically implausible effects, such as

non-monotonic estimates for certain environmental variables, which are difficult to

justify and might be due to artifacts in the data. Particularly at the extremes of

environmental gradients, observational data, e.g., in atlases, often represents low

numbers of observations (e.g., very high or very low elevation). This can lead to

artificial bumps in the estimated regression curves that lack any biological back-

ground. Also a low amount of information in the middle of an environmental

1Richard Bandler and John Grinder. (1979) Frogs into Princes: Neuro Linguistic Programming.
Real People Press, Utah, USA. p.7.

65



66 Constrained Regression in Multivariate STAR Models

gradient may induce such effects. Here, we extend the modeling framework sug-

gested in an earlier, related work (Hothorn et al. 2011c) and allow for monotonicity

constraints to be incorporated on the smooth, additive regression curves in the

global model component. In doing so, we add a Bayesian flavor to species distribu-

tion models while technically adhering to a frequentist’s approach. In this sense,

allowing for monotonicity constraints builds a bridge between the two worlds of

statistics.

Another case of a priori information resulting in constrained estimation is given

if one tries to model periodic, seasonal effects. The effect should be continuous over

time. Thus, for example the first and the last day of the year should be continuously

joined if a seasonal effect is estimated. Huge jumps for effects only one day apart

seem unrealistic. In this case a strong assumption could be a sine (or a similar

periodic function) where the frequency is chosen such that the effects match up

for the first and last day and only the amplitude is estimated. This functional

assumption can be relaxed by using smooth functions that match up, i.e. smooth

functions with a cyclic constraint. The second case study considered in this chapter

investigates the activity of European Roe Deer (Capreolus capreolus) over the day

and over the seasons while controlling for further covariates such as the age or the

sex of the animal and climatic data (see Section 4.6). For the time of day, as well

as for the day of the year, cyclic constraints are well advised. This has two effects:

First of all it allows to fit a plausible model as we avoid jumps at the boundaries.

Second, we stabilize the estimation at the boundaries as we “borrow information

from the other side”, i.e. we exploit the cyclic nature of the data.

A third case study, which is on mortality due to air pollution in São Paulo, is pre-

sented in Section 4.7. Saldiva, Pope, Schwartz, Dockery, Lichtenfels, Salge, Barone,

and Bohm (1995) investigate the impact of SO2 on the mortality with respiratory

causes in elderly people (over 65 years of age). Smooth estimates of the effect of

SO2 on respiratory deaths showed a very erratic behavior. This seems unreasonable

as an increase in the air pollutant should not result in a decreased risk of death.

Hence, a monotonic increasing effect should lead to a more stable and interpretable

model. Leitenstorfer and Tutz (2007) used an approach based on likelihood-based

boosting (Tutz and Binder 2006) to estimate a model with monotonic effect. They

also included time as a covariate to control for seasonality. The study ranged over

four successive years from January 1994 to December 1997. This allows to estimate

cyclicity constrained effects for the seasonal component. Hence, we combine both,

monotonicity constraints and cyclic effects in one model. We will use the air pol-
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lution study to compare our approach with the approach of Leitenstorfer and Tutz

(2007). Differences of the approaches will be discussed in depth.

In the following section, a short overview on possible approaches to fit mono-

tonicity constrained effects, and periodic effects is given. In Section 4.2, a novel

method to estimate monotonicity-constrained, smooth effects in the boosting frame-

work is introduced. Subsequently, we demonstrate how this idea can also be ap-

plied to estimate monotonic effects for ordinal variables. Finally, cyclic P-splines

are introduced, which can be used to model periodic effects. The constrained esti-

mation approaches are empirically evaluated in Section 4.3. An extension of mono-

tonicity and cyclicity constraints to bivariate P-splines is given in Section 4.4. We

end the chapter with the three case studies that were already introduced in the

preceding paragraphs.

4.1. Constrained Regression — History and Present

4.1.1. Monotonic Effects

There are many recent approaches and lots of work has been done in the field of

monotonic regression in the last years with the advent of additive models. How-

ever, the history of monotonic regression approaches dates back until the 1950-ies

when Brunk (1955), Ayer, Brunk, Ewing, Reid, and Silverman (1955), and van Ee-

den (1956) — amongst others — independently developed approaches to isotonic

regression. A more extensive treatment of the early history of monotonic regres-

sion is given in Barlow, Bartholomew, Bremner, and Brunk (1972) and de Leeuw,

Hornik, and Mair (2009b). The works of Ayer et al. (1955) and van Eeden (1956)

established the bases for the pool-adjacent-violators algorithm (PAVA). Despite its

age, the PAV algorithm is still subject to active research. De Leeuw et al. (2009b)

give an extensive treatment of the PAV algorithm and derive an active set method

to solve the associated convex programming problem with linear constraints. Their

algorithm is implemented in the R package isotone (de Leeuw, Hornik, and Mair

2009a). Many other packages that implement PAVA exist (for a comprehensive list

see de Leeuw et al. 2009b). PAVA aims at finding a step function that optimizes

a convex loss function under the constraint that the function is monotonic. With

n (unique) observations, in practice this results in a function with at maximum n

steps. Bacchetti (1989) generalized the idea to additive models, allowing multiple

monotonic predictors. Fitting is then achieved by a backfitting-like algorithm built
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around PAVA: the cyclic pool adjacent violators (CPAV) algorithm. This idea is fur-

ther extended to high dimensional models where variable selection in a lasso-like

style is used (Fang and Meinshausen 2011). The Lasso isotonic regression approach

provides the possibility of specifying models with monotonic effects where the di-

rection of monotonicity (increasing or decreasing) is unknown. This is especially

interesting in cases with lots of predictors. However, as for PAVA, this algorithm

leads to monotonic step functions. While this is desirable in some cases, discrete

step functions are not in line with linear or smooth models, which are considered

in many situations. Furthermore, for continuous predictors it may be often be inap-

propriate to assume discontinuous effects. Many processes in nature have a smooth

transition, i.e. small changes in the predictor variable result in small changes in the

response.

Approaches resulting in continuous function estimates include a recent approach

of Dette, Neumeyer, and Pilz (2006) and Dette and Scheder (2006) implemented in

the R package monoProc (Scheder 2009). The idea is to estimate, in a first step,

an unconstrained, smooth function f̂ based, for example, on local polynomials

or kernel smoothers. In a second step a “monotonized” version f̂mono of the ini-

tial smoother is computed. This approach leads to strictly monotonic functions

but it may result in functions that are not necessarily differentiable. Furthermore,

application of the approach in multivariate settings would require an iterative pro-

cedure such as (an adapted version of) backfitting: in each backfitting step an un-

constrained estimate needs to be computed, which is monotonized successively in

each step. Another recent approach, called COBS (constrained B-spline smoothing;

He and Ng 1999), aims at fitting smooth quantile regression models with con-

straints. Models are estimated by minimizing the L1 loss with an additional L1 or

L∞ roughness penalty to ensure smoothness. Monotonicity is incorporated via lin-

ear programming algorithms such as the Frisch-Newton algorithm (Koenker and

Ng 2005a). The resulting estimates are smooth and monotonic. For further details

on this approach we refer to He and Shi (1998), Koenker and Ng (2005b), and Ng

and Maechler (2007). Ramsay (1988) uses integrated M-splines (i.e., I-splines) to

achieve monotonic splines. As the I-spline basis is a monotonic basis, restricting

the coefficients to be non-negative is sufficient to achieve a monotonic increasing

function estimate. Tutz and Leitenstorfer (2007) use this approach in a likelihood-

based boosting algorithm. A boosting algorithm for monotonic models based on

B-splines is considered in Leitenstorfer and Tutz (2007). This approach is similar to

the approach considered here and will be discussed in more detail in Section 4.7. A
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general approach to monotonic regression based on P-splines was introduced ear-

lier by Eilers (2005) and Bollaerts, Eilers, and van Mechelen (2006). The authors use

P-splines with an additional asymmetric penalty to enforce monotonicity. In this

work, we will focus on this approach as it perfectly fits in our boosting framework:

All other base-learners are either unpenalized or apply L2 penalties, which can be

estimated using a penalized least squares criterion. Monotonic P-splines can be

formulated and estimated alike in a penalized least squares framework. Details of

the approach and its integration in model-based boosting are given in Section 4.2.1.

4.1.2. Periodic Effects

The work on periodic function estimation is largely driven by longitudinal studies.

Jones and Brelsford (1967), for example, consider auto-regressive processes and use

a Fourier series expansion for the regression coefficients. Lewis and Stevens (1991)

propose a method to determine cyclic behavior of the underlying data using linear,

truncated regression splines on lagged time-series values in the MARS framework

(Friedman 1991). This results in piecewise linear but flexible functions with the

ability to detect interactions within the auto-regressive process. Fok and Ramsay

(2006) propose an approach to model both, a cyclic trend and a non-periodic long-

term trend. They allow that the cyclic trend may evolve over time, i.e., a varying-

coefficient model is used. Both, the varying coefficients and the long-term trend

are estimated using B-splines (without penalty), while the cyclic trend makes use

of Fourier basis functions. A problem of this approach is that the number of basis

functions, and the placement of knots needs to be very carefully chosen as no

penalty is used to control the smoothness of the fitted model.

Quite recently, periodic function estimation was tackled by using general spline

methodology with additional constraints. Examples to incorporate cyclic con-

straints into spline smoothing include the works of Harvey and Koopman (1993)

and Harvey, Koopman, and Riani (1997). To model periodic effects, they use cu-

bic regression splines where the estimated effects (as well as the first and second

derivatives) at the boundaries are required to be equal. Zhang, Lin, and Sowers

(2000) use cubic smoothing splines with a periodic constraint to model longitudi-

nal hormone data. Formulation and estimation of periodic smoothing splines are

handled in a mixed model framework. Zhang, Lin, and Sowers (2007) expand this

approach in order to model population based periodic functions, subject specific

periodic functions, and take to the measurement error of the data into account.
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This is done using a two-stage regression calibration method. Another approach

extends smoothing splines by altering the penalty to a more general form, which

is based on linear differential operators. The resulting splines are termed L-splines

(see e.g., Gu 2002, Sec. 4.3). Smoothing splines build a special case of L-splines with

the linear differential operator being the second derivative operator. In this case, a

linear function remains unpenalized. In the context of periodic splines, L-splines

can be constructed such that a cyclic function remains unpenalized (see e.g., Ram-

say and Dalzell 1991, Heckman and Ramsay 2000). More recently, Welham, Cullis,

Kenward, and Thompson (2006) used L-splines in a mixed model framework to

model periodic functions.

For P-splines, it is relatively easy to include cyclic penalties. It only requires to

slightly alter the difference penalty. Early versions of periodic function estimation

using P-splines were even considered in the rejoinder to the original P-spline pa-

per (Eilers and Marx 1996). The usual difference penalty is altered by inclusion

of a sine term. This forces the estimated function (for large values of the smooth-

ing parameter λ) to follow a sine function. Eilers, Gampe, Marx, and Rau (2008)

proposed another approach to model seasonal data. They model a smooth trend

based on P-splines and add a seasonal component, which is modeled as a sum of

two varying coefficient terms. The two varying coefficient terms are modeled as

the interaction of a P-spline and a sine function, and a cosine function, respectively.

Eilers and Marx (2010) proposed to alter both the design matrix and the penalty

matrix of P-splines by appropriately ‘wrapping’ the ends of both matrices. This

approach will be further considered here. An in-depth derivation and discussion

of the approach is given in Section 4.2.3.

4.2. Constrained Univariate Regression

4.2.1. Estimating Monotonic, Smooth Effects

The approaches to flexible, yet smooth modeling considered in this chapter are

based on B-splines with difference penalties on adjacent knots (i.e., P-splines, Eil-

ers and Marx 1996). An introduction to P-spline base-learners is found in Sec-

tion 2.3. Consider observations (yi, xi)
n
i=1 and define the negative gradient vector

u = (u1, . . . , un)> as in Equation (2.4) (for simplicity we dropped the iteration index

[m]). Let B = (B(x1), . . . , B(xn))> be the (n× J) matrix of B-spline basis functions.

To achieve a smooth, yet monotonic function estimate, Eilers (2005) introduced P-
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splines with an additional asymmetric difference penalty. The penalized least squares

criterion (2.13) becomes

Q(β) = (u− Bβ)>(u− Bβ) + λ1J (β; d) + λ2Jasym(β; c), (4.1)

with the quadratic difference penalty of order d as in usual P-splines,

J (β; d) =
J

∑
j=d+1

(∆dβ j)
2 = β>D>(d)D(d)β,

and the additional asymmetric penalty

Jasym(β; c) =
J

∑
j=c+1

vj(∆cβ j)
2 = β>D>(c)VD(c)β, (4.2)

where c is the order of the differences. The difference matrices D(c) and D(d) are

constructed as in Equations (2.15) and (2.16). The choice of c implies the type

of additional constraints: monotonicity for c = 1 or convexity / concavity for

c = 2. In the remainder of the chapter, we restrict our attention to monotonicity

constraints; however, one can always think of convex or concave constraints as well.

The asymmetric penalty looks very much like the P-spline penalty (2.14) with the

important distinction of weights vj, which are specified as

vj =

0 if ∆cβ j > 0

1 if ∆cβ j ≤ 0.
(4.3)

The weights are collected in the diagonal matrix V = diag(v). With c = 1, this

enforces monotonically increasing functions. Changing the direction of the inequal-

ities in the distinction of cases leads to monotonically decreasing functions. As the

weights (4.3) depend on the coefficients β, a solution to (4.1) can only be found by

iteratively minimizing Q(β) with respect to β, where the weights v are updated in

each iteration. This is equivalent to repeatedly solving

β̂ = (B>B + λ1D>(d)D(d) + λ2D>(c)VD(c))
−1B>u (4.4)

with updated weights. The estimation converges if no further changes in the weight

matrix V occur. In our experience, the algorithm converges very quickly within a

few steps. The penalty parameter λ2, which is associated with the additional con-
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straint (4.2), could be chosen, for example, by cross-validation techniques. How-

ever, this would increase the computational costs dramatically, and, more impor-

tantly, λ2 resembles the researcher’s a priori belief in monotonicity. Hence, the pro-

posed procedure is located in between pure frequentist and Bayesian approaches.

Eilers (2005) proposes that the penalty parameter chosen should be quite large (e.g.,

106), where larger values are associated with a stronger impact of the monotonic

constraint on the estimation. In the limit of λ2 = 0, no monotonicity constraint is

applied to the estimation procedure. For small values of λ2, the monotonicity con-

straint is a suggestion rather than a constraint. However, if the penalty parameter

chosen is large enough (as suggested), the actual size is negligible. The effect of

the monotonicity constraint can be observed in Figure 4.1, where the blue curve is

fitted via P-splines (corresponding to λ2 = 0) and the red curve with monotonic

P-splines (λ2 = 106). As the corresponding derivatives (dashed lines) show, the

constrained fit is monotonically increasing (derivative always greater zero), while

the unconstrained fit is not monotonic.

0
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)
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Figure 4.1.: Unconstrained P-splines (blue) and monotonic P-splines (red) fitted to simu-
lated data (gray, filled circles) together with corresponding derivatives (dashed lines),
where ξ0, . . . , ξ10 denote the knots of the P-splines

A simulation study evaluating the properties of monotonic, smooth effects can

be found in Section 4.3. In short, we simulate artificial data where the true effect

of the covariates on the response is monotonic. We show that effect estimates of

unconstrained models regularly violate monotonicity and often result in models

with a higher mean squared error compared to monotonicity-constrained models.

Hence, in this setting, monotonicity-constrained models are clearly superior.
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4.2.2. Estimating Monotonic Categorical Effects

As Eilers’ (2005) asymmetric difference penalty relies only on the neighborhood

information, i.e., implies an ordering of β j (for P-splines induced by the knots), we

can extend the estimation scheme to ordered factors x. The ordering of categories

is reflected in an ordering of the effects for the respective categories. Let x be

an ordered, categorical variable with categories 1, . . . , ncat. We use dummy-coded

variables x(2), . . . , x(ncat) (the first category is the reference category), where x(k) =

1 if x = k and x(k) = 0 otherwise. As for the penalized ordinal base-learner

(see Section 2.3.1) we consider, without loss of generality, a base-learner without

intercept. With x(k) = (x(k)1 , . . . , x(k)n )>, k = 2, . . . , ncat, we obtain the dummy-

coded (n × ncat − 1) design matrix X = (x(2), . . . , x(ncat)) of the ordinal variable.

The coefficient vector is β = (β2, . . . , βncat)
>. The estimation problem can then be

written as a penalized least squares problem

Q(β) = (u− Xβ)>(u− Xβ) + λ2Jasym(β; c), (4.5)

with an asymmetric penalty defined similar to Equation (4.2). The only difference

is that the difference matrix D(c) is replaced by a difference matrix where the first

column is removed as β2 − 0 = β2 must fulfill the constraint (as the effect of the

reference category is set to 0). Hence, for c = 1 we get the difference matrix (2.11).

This enforces monotonically increasing or decreasing effect estimates — depending

on the inequality sign that is used in the definition of the weights V (Eq. 4.3).

Figure 4.2(a) shows the effect of the monotonicity constraint. The effects of the

second and third category clearly violate monotonicity, which is eliminated with

the monotonicity constraint. For monotonically increasing effects, the differences

of adjacent effect estimates should always be positive (cf. derivative for smooth

functions). This is enforced by the penalty as Figure 4.2(b) shows.

As for monotonic P-splines, the asymmetric monotonicity penalty can be com-

bined with a smoothness penalty. Here we use the penalty from penalized ordinal

base-learners (see Equation (2.9), Section 2.3.1) This further penalty ensures that

the jumps between adjacent categories are small, i.e., neighboring categories are

assumed to be similar and thus estimates should not be too erratic. In the combi-

nation

Q(β) = (u− Xβ)>(u− Xβ) + λ1J (β; d) + λ2Jasym(β; c), (4.6)

we get a monotonicity-constrained, “smooth” estimate for the categorical variable.
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Figure 4.2.: Unconstrained (blue) and constrained (red) estimates for categorical effects (a)
fitted to simulated data (gray, filled circles), and differences of effects of adjacent cat-
egories, where blue circles represent unconstrained and filled, red dots represent con-
strained estimates (b).

Both estimation criteria (4.5) and (4.6) can be minimized by repeatedly solving

Equation (4.4), where the B-spline design matrix B is replaced by the dummy-

coded design matrix X.

Again, we set up a simulation study to evaluate the properties of ordinal, mono-

tonic effects (Section 4.3). As in the previous case, we simulate artificial data

where the true effect of the ordinal covariates on the response is monotonic. We

show that effect estimates of unconstrained models regularly violate monotonicity

and in the mean result in models with a higher mean squared error compared to

monotonicity-constrained models. Hence, in this setting, monotonicity-constrained

models for ordinal variables are clearly superior to unconstrained models for ordi-

nal factors.

4.2.3. Estimating Cyclic, Smooth Effects

P-splines with a cyclic constraint (Eilers and Marx 2010) can be used to model

periodic, seasonal data. The cyclic B-spline basis functions are constructed without

knot expansion. The B-splines are “wrapped” at the boundary knots (see Fig. 4.3).

The boundary knots ξ0 and ξ J (equal to ξ12 in Fig. 4.3) play a vital role in this

setting, as they specify the points were the function estimate should be smoothly

joined. If x is, for example, the time during the day ξ0 is 0:00, whereas ξ J is 24:00.
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Figure 4.3.: Illustration of cyclic P-splines of degree three, with 11 inner knots and bound-
ary knots ξ0 and ξ12; The black curves correspond to B-splines that are “wrapped” at
the boundary knots leading to a cyclic representation of the function.

As one can see in Figure 4.3, the dashed B-spline basis depends on observations

in [ξ9, ξ12] ∩ [ξ0, ξ1]. Thus, it depends on observations from both ends of the range

of the covariate. The same holds for the other bold, black B-splines in Figure 4.3.

Defining the B-spline basis in this fashion leads to a cyclic B-spline basis with the

(n× (J + 1)) design matrix Bcyclic. The corresponding coefficients are collected in

the ((J + 1)× 1) vector β = (β0, . . . , β J).

Specifying a cyclic basis guarantees that the resulting function estimate is con-

tinuous in the boundary knots. However, no smoothness constraint is imposed so

far. This can be achieved by a cyclic difference penalty, for example,

Jcyclic(β) =
J

∑
j=0

(β j − β j−1)
2 (with d = 1)

or

Jcyclic(β) =
J

∑
j=0

(β j − 2β j−1 + β j−2)
2 (with d = 2),

where the index j is “wrapped”, i.e., j := p + j if j < 0. Thus, the differences

between β0 and β J or even β J−1 are taken into account for the penalty. Hence,

the boundaries of the support are stabilized and smoothness in and around the

boundary knots is enforced. This can also be seen in Figure 4.4. The non-cyclic

estimate (Fig. 4.4(a)) is strongly influenced by the ‘extreme’ values on the left and
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Figure 4.4.: The red curve is the function estimated with non-cyclic (a) and cyclic (b) P-
splines. The blue curve is the same function shifted one period to the right. The
data was simulated from a cyclic sine function with period 2π (gray dots). The cyclic
estimate is more stable in the boundary regions and the ends are meeting (see right
plot at x = 2π).

on the right side. As a consequence, the function ‘overshoots’ at the boundaries,

the ends are not meeting. The cyclic estimate (Fig. 4.4(b)), in contrast, is stabilized

at the boundaries and the ends are smoothly joined.

Coefficients can then be estimated using the penalized least squares criterion (2.13)

where the design matrix and the penalty matrix are replaced with the correspond-

ing cyclic counterparts. In matrix notation the penalty can be written as

Jcyclic(β; d) = β>D̃>(d)D̃(d)β, (4.7)

with difference matrices

D̃(1) =



1 −1

−1 1

−1 1
. . . . . .

−1 1


(4.8)



4.3 Empirical Evaluation of Constrained Effect Estimates 77

and

D̃(2) =



1 1 −2

−2 1 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1


, (4.9)

where empty cells are equal to zero. All together, this leads to the penalized least

squares problem

Q(β) = (u− Bcyclic β)>(u− Bcyclic β) + λJcyclic(β; d), (4.10)

which is essentially identical to the usual P-spline criterion. Only the basis and the

penalty matrices are altered as discussed above.

As discussed in Section 2.3.2, P-splines have a null space, i.e., an unpenalized

effect, which depends on the order of the differences in the penalty. Differences

of order two lead to a linear effect that remains unpenalized, even in the limit of

λ → ∞. However, cyclic P-splines have a null space that only includes a constant,

irrespective of the order of the difference penalty. Globally seen, i.e., for the com-

plete function estimate, the order of the penalty plays no role (even in the limit

λ→ ∞). Locally, however, the order of the difference penalty has an effect. For ex-

ample, with d = 2 the estimated function is penalized for deviations from linearity

and hence, locally approaches a straight line (with increasing λ).

As for monotonic effects, we empirically study the properties of cyclic effects

in the following section. We use truly periodic effects and evaluate the estimates

of models with cyclic constraints and unconstrained models using the MSE, as

before. We show that cyclic effects are superior, both with respect to the MSE and

regarding the number of violations of cyclicity.

4.3. Empirical Evaluation of Constrained Effect

Estimates

We evaluated the estimation procedure for monotonic smooth and monotonic or-

dinal effects, and cyclic effects and compared the resulting effects to unconstrained

estimates. In all settings, we used observations xi = (x1i, x2i)
>, i = 1, . . . , n, and
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true effects f1(xi) and f2(x2) (see below for the specification of the predictor xi and

the effects). The response y was simulated according to

yi = α + f1(x1i) + f2(x2i) + εi, i = 1, . . . , n,

with intercept α, and random error εi
i.i.d.∼ N (0, σ2) with σ2 such that fractions of

the explained variance (R2) of approximately 0.3, 0.5, and 0.8 were realized. The

number of observations n was chosen to be 100, 200, and 500, respectively. In

combination with the different variances, this results in nine scenarios altogether.

For each scenario B = 100 data sets were generated. The model fit was evaluated

by the mean squared error for N = 10, 000 new observations:

MSE =
1
N

N

∑
i=1

([
α̂ + f̂1(x1i) + f̂2(x2i)

]
−
[
α + f1(x1i) + f2(x2i)

])2
.

4.3.1. Smooth, Monotonic Effects

The observations xi = (x1i, x2i)
>, i = 1, . . . , n, were drawn independently from a

uniform distribution on [0, 1]. The effect of x1 follows a polynomial of degree three

f1(x1) = 10(x1 − 0.5)3,

and the effect of x2 follows a logistic function,

f2(x2) =
1

1 + exp{−20(x2 − 0.5)} .

The intercept was set to α = 2. The functions are depicted in Fig. 4.5.

For each of the data sets two models were estimated: one model with monotonic

P-splines and one with unconstrained P-splines. The results are given in Table 4.1.

One can conclude that the monotonic model outperforms the unconstrained model.

Only in cases with many observations (n = 200 and n = 500) combined with very

little noise in the data (σ2 = 0.1), the unconstrained model is marginally better than

the constrained model.

The accuracy of the model fit as measured by the MSE captures only one part of

constrained modeling: the overall goodness of fit. However, the task is to estimate

monotonic effects. This affects the quality of the model and, in situations with

real data, the interpretability of the model. Thus, the resulting effect estimate

should be monotonic (or show only minor deviations from monotonicity). Here we
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Figure 4.5.: Empirical evaluation of smooth, monotonic effects: True functions f1(x1) and
f2(x2). Note that both functions are monotonically increasing.

consider models to be monotonic if the differences of coefficients of adjacent knots

are positive or only marginally negative. Here, an effect is said to be monotonic if

∆β j > −10−4, for all j. (4.11)

Using this boundary to define monotonicity we find that for the monotonically

constrained effects, monotonicity is never violated (see Table C.1 in the appendix).

Function estimates from models fitted using unconstrained P-splines violate mono-

tonicity in approximately 75% of the cases. Violations of monotonicity even in-

crease with decreasing noise σ2. Hence, the situations where the unconstrained

Table 4.1.: Smooth, monotonic effects: MSE of monotonicity-constrained and unconstrained
models; Mean values and corresponding standard errors (se) estimated from 100 sim-
ulation runs.

n σ2 monotonic (se) unconstrained (se)

100 1.0 0.0759 (0.0035) 0.0981 (0.0046)
0.4 0.0349 (0.0015) 0.0431 (0.0019)
0.1 0.0122 (0.0004) 0.0129 (0.0005)

200 1.0 0.0405 (0.0020) 0.0449 (0.0022)
0.4 0.0189 (0.0008) 0.0198 (0.0008)
0.1 0.0076 (0.0002) 0.0063 (0.0002)

500 1.0 0.0155 (0.0008) 0.0171 (0.0007)
0.4 0.0083 (0.0003) 0.0081 (0.0003)
0.1 0.0046 (0.0001) 0.0032 (0.0001)
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model outperforms the monotonic model are the worst situations with respect to

violations of monotonicity. It seems that the reduced MSE comes at the price of

non-monotonicity.

4.3.2. Ordinal, Monotonic Effects

In the second scenario, with ordinal, monotonic effects, the observations xi =

(x1i, x2i)
>, i = 1, . . . , n, were drawn independently from a discrete uniform dis-

tribution on {1, 2, . . . , 5}. With dummy coded design matrices X1 and X2 (the first

category is used as reference category), the true effect functions f1(x1) and f2(x2)

can be written in matrix notation as

fl(xl) = Xl βl, l ∈ {1, 2},

with β1 = (1, 2, 3, 4)> and β2 =
(

exp(1)
40 , exp(2)

40 , exp(3)
40 , exp(4)

40

)>
. The intercept was

set to α = 4. Both effects are monotonic increasing in with increasing categories.

For each of the data sets two models were estimated: one model with monotonicity-

constraint and one with unconstrained effect estimates. The results are given in

Table 4.2 . One can conclude that the monotonic model outperforms the uncon-

strained model in all given scenarios.

Table 4.2.: Ordinal, monotonic effects: MSE of monotonicity-constrained and unconstrained
models; Mean values and corresponding standard errors (se) estimated from 100 sim-
ulation runs.

n σ2 monotonic (se) unconstrained (se)

100 1.0 0.3982 (0.0204) 0.5548 (0.0268)
0.4 0.1961 (0.0102) 0.2566 (0.0127)
0.1 0.0533 (0.0028) 0.0657 (0.0033)

200 1.0 0.2098 (0.0104) 0.2569 (0.0115)
0.4 0.0939 (0.0048) 0.1126 (0.0055)
0.1 0.0248 (0.0012) 0.0284 (0.0013)

500 1.0 0.0746 (0.0036) 0.0921 (0.0039)
0.4 0.0326 (0.0016) 0.0388 (0.0017)
0.1 0.0090 (0.0004) 0.0100 (0.0005)

We also assess the frequency of violations of the monotonicity for all estimated

models. As before, we consider models to be monotonic if Equation (4.11) holds.

The results are given in the appendix (Tab. C.2). Using constrained estimates,
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monotonicity is virtually never violated. In the unconstrained model, much more

violations of monotonicity are present. In contrast to the setting with P-splines, the

number of violations decreases with increasing sample size and decreasing noise.

Furthermore, the overall number of violations is smaller (compare Table C.1 in the

appendix). It seems that the signal of categorical covariates is less affected by noise

and that the true, monotonic effects are recovered more easily.

4.3.3. Cyclic Effects

For the evaluation of cyclic effects, observations xi = (x1i, x2i)
>, i = 1, . . . , n, were

drawn independently from a uniform distribution on [0, 2π]. The true cyclic func-

tion f1(x1) = sin(x1); the second cyclic function f2 is a single B-spline basis of order

three, with equidistant inner knots, and boundary knots in 0 and 2π. The intercept

α = 1 was used. Both functions are depicted in Figure 4.6
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Figure 4.6.: Empirical evaluation of cyclic effects: True functions f1(x1) and f2(x2). Note
that both functions are truly periodic with period 2π.

We fitted the data using a constrained model with cyclic constraints both for x1

and x2 and boundary knots in 0 and 2π. As a comparison, an unconstrained model

was fitted. The MSE of the cyclic model is smaller throughout all nine scenarios

(see Table 4.3).

To evaluate the ability to recover cyclic effects, we use the absolute difference of

the boundaries of the predicted functions, i.e.,

|∆ f̂l| := | f̂l(0)− f̂l(2π)|, l ∈ {1, 2}.

If a function is cyclic, it follows that there is no difference between the function
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Table 4.3.: Cyclic effects: MSE of models with cyclic constraint and unconstrained models;
Mean values and corresponding standard errors (se) estimated from 100 simulation
runs.

n σ2 cyclic (se) unconstrained (se)

100 1.0 0.1126 (0.0052) 0.1354 (0.0054)
0.4 0.0539 (0.0025) 0.0679 (0.0027)
0.1 0.0150 (0.0007) 0.0200 (0.0008)

200 1.0 0.0613 (0.0032) 0.0688 (0.0030)
0.4 0.0278 (0.0013) 0.0316 (0.0013)
0.1 0.0074 (0.0003) 0.0090 (0.0003)

500 1.0 0.0232 (0.0013) 0.0263 (0.0013)
0.4 0.0104 (0.0006) 0.0122 (0.0005)
0.1 0.0028 (0.0001) 0.0040 (0.0002)

values at the boundaries, i.e., |∆ f̂ | = 0. We considered a function estimate f̂ to be

cyclic even if minor deviations occurred, i.e., f̂ is said to be cyclic if |∆ f̂ | ≤ 0.1.

In all scenarios, the effect estimates from the cyclic model are found to be (truly)

cyclic. The effect estimates of the unconstrained model are rarely found to be cyclic.

Even more, the unconstrained model shows on average an absolute difference |∆ f̂ |
of 0.29 (for details see Table C.3 in the appendix). With ranges of [−1, 1] for f1, and

[0, 0.75] for f2 this absolute difference is remarkable.

4.4. Constrained Effects for Bivariate P-Splines

In Section 2.3.3, bivariate P-splines were introduced. As bivariate P-splines are

directly derived from univariate P-splines, they can be extended — basically in

the same manner as univariate P-splines — to include monotonicity constraints or

cyclicity constraints. In the following sections we will shortly derive both concepts

for bivariate P-splines.

4.4.1. Bivariate, Monotonic P-Splines

If it is desired to have a monotonic interaction it is not sufficient to specify an

interaction of monotonic effects. Monotonicity of marginal effects does not transfer

to monotonicity of an interaction surface: This can be easily verified by considering
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the interaction of two increasing, linear functions

f (x1, x2) = x1 · x2, x1, x2 ∈ [−1, 1].

For any (fixed) value x2 < 0, the function f (x1, x2) is linear decreasing in x1 and

for any x2 > 0, the function f (x1, x2) is linear increasing in x1. The function f

is monotonic in both, x1 and x2 given the other variable. However, the direction

of monotonicity changes depending on the sign of the other variable. The result-

ing surface is highly non-monotonic (cf. Figure 4.7). Thus, instead of the marginal

functions, the complete surface needs to be constrained in order to achieve a mono-

tonic surface.

x1

−1

0

1

x2

−1

0

1

f(x
1
, x

2
)

−1

0

1

Figure 4.7.: Non-monotonic interaction surface of f (x1, x2) = x1 · x2, x1, x2 ∈ [−1, 1].

To obtain a monotonic surface estimate, we utilize bivariate P-splines and add

monotonic constraints for the row- and column-wise differences of the matrix of

coefficients (Eq. 2.21). As proposed by Bollaerts et al. (2006), one can use two

independent asymmetric penalties to allow for different directions of monotonicity

— i.e., increasing in one variable, say x1, decreasing in the other variable, say x2 —

or different prior beliefs in monotonicity resembled by different penalty parameters

λ. Let u denote the (n× 1) negative gradient vector (2.4), or an arbitrary continuous

response in settings other than boosting. Let xi = (xi1, xi2), i = 1, . . . , n, denote the

observations of variables x1 and x2, and let B =
(

B(x1), . . . , B(xn)
)>

denote the

(n× JK) design matrix comprising the bivariate B-spline bases of xi (Eq. 2.18) with

J knots in the direction of x1 and K knots in the direction of x2. The corresponding
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coefficient vector (2.17) of dimension (JK × 1) is denoted by β. Monotonicity is

enforced by the asymmetric difference penalties

Jasym,1(β; c) =
J

∑
j=c+1

K

∑
k=1

v(1)jk (∆c
1β jk)

2 = β>(D1 ⊗ IK)
>V1(D1 ⊗ IK)β (4.12)

Jasym,2(β; c) =
J

∑
j=1

K

∑
k=c+1

v(2)jk (∆c
2β jk)

2 = β>(IJ ⊗D2)
>V2(IJ ⊗D2)β (4.13)

where ∆c
1 are the column-wise differences and ∆c

2 the row-wise differences, i.e.

∆1
1β jk = β jk − β(j−1)k and ∆1

2β jk = β jk − β j(k−1). The corresponding difference

matrices are denoted by D1 and D2, and IJ and IK denote identity matrices of rank

J and K, respectively. The weights v(l)jk , l = 1, 2 are specified in analogy to (4.3) for

monotonic increasing estimates (c = 1) as

v(l)jk =

0 if ∆c
l β jk > 0

1 if ∆c
l β jk ≤ 0.

(4.14)

For the matrix notation, the weights are collected in the diagonal matrices Vl =

diag(v(l)). Changing the inequality sign in (4.14) leads to monotonic decreasing

function estimates, while differences of order c = 2 lead to convex or concave

constraints.

The constraint estimation problem for monotonic surface estimates in matrix

notation becomes

Q(β) = (u− Bβ)>(u− Bβ) + λ1Jspatial(β; d)

+ λ21Jasym,1(β; c)

+ λ22Jasym,2(β; c),

(4.15)

where Jspatial(β; d) is the standard bivariate P-spline penalty of order d and λ1 is

the corresponding penalty parameter.

For univariate monotonic P-splines, the usual P-spline penalty and the asymmet-

ric penalty have the same form except for the weights V. This can be also shown

for bivariate P-splines:

Theorem 4.1 Let V be an identity matrix of appropriate dimension, i.e., V is dropped from

the equation. Then Equation (4.12) can be simplified to β>(K1⊗ IK)β and Equation (4.13)

can be simplified to β>(IJ ⊗K2)β. With λ21 = λ22, the sum of the penalties (4.12) and
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(4.13) is equal to the bivariate P-spline penalty (2.20).

Proof As the transpose is distributive over the Kronecker product (Steeb 1991, p.

12) and as we assume V = I

(D1 ⊗ IK)
>V(D1 ⊗ IK) = (D>1 ⊗ I>K )(D1 ⊗ IK).

As the matrices D>1 D1 and I>K IK exist, it holds (Steeb 1991, p. 16)

(D>1 ⊗ I>K )(D1 ⊗ IK) = (D>1 D1)⊗ (I>K IK)

= (K1 ⊗ IK).

The proof that Equation (4.13) can be simplified to β>(IJ ⊗K2)β is straightforward

along the lines of this proof.

�

From Theorem 4.1, one can conclude that the asymmetric penalties only differ from

the usual bivariate P-spline penalty in the weight matrix V.

Example for monotonic surface estimation As an example for bivariate, mono-

tonic smoothing, let us consider uniformly distributed observations xi1, xi2
i.i.d.∼

U[−2, 3], i = 1, . . . , n, and the outcome yi = 0.5 + x2
i1 · (xi2 + 3) + εi, where εi

i.i.d.∼
N (0, 0.52). The function (without the error term εi) is depicted in Figure 4.8(a).

There is a clear non-monotonic effect, which becomes especially apparent for large

values of x2. Figure 4.8(b) shows the estimated function where the non-monotonic

function is estimated by monotonic, bivariate P-splines. The resulting estimated

function appears to be monotonic. As a comparison we estimated the same model

without monotonicity constraint. To check if the apparent monotonicity truly

holds, we plotted the row- and column-wise differences of the coefficients (see

Figure 4.9). The differences of the unconstrained model vary from negative to pos-

itive values while differences from the constrained model are always greater or

equal to zero. Hence, one can conclude that the monotonicity constrained estimate

is monotonic while the unconstrained estimate is clearly non-monotonic.

4.4.2. Bivariate, Cyclic P-Splines

Based on bivariate P-splines, cyclic constraints in both directions of x1 and x2 are

straightforward to implement. With J knots in the direction of x1 and K knots
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Figure 4.8.: Bivariate, true effect and bivariate, monotonic estimate thereof. Both figures
are plotted using the same range for comparability.

in the direction of x2, one builds the univariate, cyclic design matrices B(1)
cyclic and

B(2)
cyclic for x1 and x2, respectively. The bivariate design matrix then is

Bcyclic = (B(1)
cyclic ⊗ e>K )� (e>J ⊗ B(2)

cyclic),

as in Equation (2.19).

With the univariate, cyclic difference matrices D̃(1) and D̃(2) for x1 and x2, respec-

tively (see (Eq. 4.8) and (Eq. 4.9) for cyclic first and second order differences), we

obtain cyclic penalty matrices K1 = (D̃(1))>D̃(1) and K2 = (D̃(2))>D̃(2). Thus, in

analogy to the usual bivariate P-spline penalty (Eq. 2.20) the bivariate cyclic penalty

can be written as

Jcyclic, spatial(β) = β>(K1 ⊗ IK + IJ ⊗K2)β,

where β collects the coefficients of the bivariate P-spline as in Equation (2.17), and

IJ and IK denote identity matrices of rank J and K, respectively. Estimation is then a

straight forward application of the penalized least squares criterion as in (Eq. 2.22).

An example of bivariate, cyclic splines is given in Section 4.6, where a cyclic surface

is used to estimate the effect of time (during the day) and calender day on Roe Deer

activity.
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Figure 4.9.: Differences of adjacent coefficients in the direction of x1 (left) and in the direc-
tion if x2 (right). The blue circles resemble the unconstrained model and the red dots
resemble the monotonicity constrained model. Non-negative differences indicate a
monotonically increasing effect. A change of signs indicates non-monotonic behavior.

4.5. Monotonicity-Constrained Species Distribution

Models for the Red Kite (Milvus milvus)

Species distribution models (SDM) estimate the regression relationship between the

environment and the distribution of a species. The environment is characterized

by a potentially large number of variables that can be used to model occurrence or

abundance of species and typically include climatic variables or variables charac-

terizing the habitat. While simple models, e.g., an ordinary linear model, appeal to

researchers and practitioners, more complex models, e.g., regression trees, may un-

cover structures that simpler models will miss (Elith and Leathwick 2009). Recently,

Hothorn et al. (2011c) developed a framework for species distribution models based

on component-wise boosting. The influence of the environment on species distri-

butions can be described in a very flexible manner (i.e., as a combination of linear

effects, non-linear effects, spatial effects, etc.) while maintaining interpretability of

the regression effects. Within this framework, ecologists can specify local compo-

nents (such as spatial autocorrelation, spatio-temporal effects, and non-stationary

effects) along with global model components. The global model component de-

scribes the effects of the environmental variables as a sum of smooth functions.
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Here, we focus on SDM for the Red Kite (Milvus milvus; see Figure 4.10). We

assume that the probability of confirmed Red Kite breeding at some point s (here

given as longitude and latitude in Bavaria) and time t under environmental con-

ditions as characterized by environmental variables x = (x(1), . . . , x(p)) is given by

the inverse logistic transformation of the regression function η to be estimated:

P( presence of Red Kite breeding | x, s, t) = logit−1(η(x, s, t)). (4.16)

Hothorn et al. (2011c) decompose the contributions of environmental variables,

space, and time via a structured additive regression model (see Fahrmeir et al.

2004, and (Eq. 1.1)) in an additive fashion:

η(x, s, t) = fenv(x)︸ ︷︷ ︸
global

+ fns(x, s) + fs(s) + fst(s, t)︸ ︷︷ ︸
local

. (4.17)

The local model terms fns, fs, and fst, which capture non-stationary effects, and

the spatial- and spatio-temporal autocorrelation are discussed in detail by Hothorn

et al. (2011c). In essence, these effects can be fitted using bivariate P-splines. Here,

we primarily focus on the global model term fenv. The global model term describes

the influence of environmental variables on Red Kite breeding as the sum of func-

tions in the manner of STAR models, i.e., fenv(x) = ∑
p
j=1 f j(x(j)). At the same

Figure 4.10.: Red Kite (Milvus milvus) observed near Murnau, 05.06.2010. By courtesy of
H.-J. Fünfstück.
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time, however, the local components are taken into account in the model. The term

f j(x(j)) represents the contribution of the jth environmental variable to the global

model component. The primary aim of this section is to derive species distribution

models that allow to incorporate monotonicity constraints on certain global model

terms. This can be achieved by applying monotonic P-spline base-learners and

monotonic ordinal effects as introduced in Section 4.2.1 and 4.2.2.

4.5.1. Red Kite Breeding Distribution

We extracted the Red Kite breeding data on grid cells of the topographic map

(scale 1:25000 for Bavaria) with an average cell area of 33.9 km2 from the Bavarian

breeding atlas in the periods 1979–1983 (Nitsche and Plachter 1987) and 1996–1999

(Bezzel, Geiersberger, Lossow, and Pfeifer 2005). A minimum of one record in a

quadrant was sufficient to define the presence of breeding; all other squares were

taken as absence of Red Kite breeding. An overview of the environmental variables

used for the Red Kite habitat selection model is given in Tables 4.4 and 4.5, together

with summary statistics. The environmental variables were extracted from the

WorldClim database (www.worldclim.org), and land cover was extracted from the

CORINE 2000 map (http://www.corine.dfd.dlr.de). CORINE data, with their

resolution of 100 m × 100 m, are highly useful in modeling the species distribution

of the Red Kite. They provide detailed information on the habitat’s patchiness, and

structure and on the amount of specific habitats for a prey of bird as the Red Kite

with a breeding territory of around 10 km2. CORINE data have been successfully

used for birds and bats in other studies (Pfeifer, Müller, Stadler, and Brandl 2010,

Mehr, Brandl, Hothorn, Dziock, Förster, and Müller 2011). The accuracy of the

WorldClim data decreases in mountains. However, in our study area, mountains

(the Alps) comprise only a small portion of the area. Furthermore, these alpine

areas are not inhabited by the Red Kite, and therefore this does not weaken our

analysis. For a more detailed description of the data, we refer the reader to Hothorn

et al. (2011c).

Hothorn et al. (2011c) compared species distribution models of different com-

plexities for Red Kite breeding. Their results indicate that a model with smooth,

additive effects of the environmental variables along with a non-stationary effect of

altitude and spatio-temporal autocorrelation fits the data best (model ‘add/vary’

in their notation). We use this model as a starting point, i.e., we specify smooth

effects for all continuous variables, linear effects for categorical variables, an addi-

www.worldclim.org
http://www.corine.dfd.dlr.de
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Table 4.4.: Overview and summary statistics of the numeric environmental variables (first,
second and third quartile) for Red Kite breeding.

Description 25% 50% 75%

Forest Coverage (in %) 18.00 30.00 47.00
Field (in %) 4.25 26.00 50.00
Complex (in %) 1.00 7.00 17.00
Mixed Forests (in %) 0.00 3.00 11.00
Coniferous Forests (in %) 8.00 19.00 33.00
Meadows (in %) 4.00 11.00 22.00
Total Number of Patches (in %) 19.25 26.00 32.00
Total Patch Density (number per 100 ha) 0.57 0.75 0.95
Total Largest Patch Index (in %) 26.78 40.27 57.72
Length of Total Edge (in m) 85225.00 104000.00 121900.00
Total Edge Density (in m) 24.97 30.57 35.74
Total Landscape Shape Index 3.91 4.69 5.38
Area Forest (in ha) 614.25 1018.50 1568.75
Percentage of Landscape Forest (in %) 18.00 29.89 46.27
Number of Forest Patches (number) 4.00 6.00 9.00
Forest Patch Density (number per 100 ha) 0.12 0.18 0.26
Forest Largest Patch Index (in %) 7.87 16.66 34.62
Forest Edge Density (in m) 11.02 15.37 19.70
Forest Landscape Shape Index 3.23 4.18 5.15
Annual Mean Temp. (in ◦C) 7.53 7.98 8.29
Mean Diurnal Range (in ◦C) 8.49 8.70 8.99
Isothermality (in %) 31.00 31.72 32.05
Temp. Seasonality (in standard deviation) 6624.12 6715.44 6935.49
Max. Temp. of Warmest Month (in ◦C) 22.11 22.69 23.20
Min. Temp. of Coldest Month (in ◦C) -5.64 -4.74 -4.03
Temp. Annual Range (in ◦C) 26.68 27.13 28.06
Mean Temp. of Wettest Quarter (in ◦C) 15.96 16.47 16.86
Mean Temp. of Driest Quarter (in ◦C) 0.45 1.00 2.50
Mean Temp. of Warmest Quarter (in ◦C) 15.96 16.47 16.86
Mean Temp. of Coldest Quarter (in ◦C) -1.53 -1.01 -0.54
Annual Precipitation (in mm) 689.86 764.58 946.46
Precipitation of Wettest Month (in mm) 80.97 95.49 118.90
Precipitation of Driest Month (in mm) 41.42 44.87 51.29
Precipitation Seasonality (coefficient of variation) 20.91 25.76 30.30
Precipitation of Wettest Quarter (in mm) 230.63 271.73 339.16
Altitude (in m) 387.20 453.67 550.00
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Table 4.5.: Overview of the categorical environmental variables for Red Kite breeding.
“0%” means that the characteristic is not present in the observation cell; “> 0%”
means that the characteristic is present. Values in the table represent the absolute
frequency of observing the corresponding category.

Description 0% > 0%

Water Coverage 1501 417
Wasting Asset 1734 184
Dumping Ground 1911 7
Rocks 1866 52
Heather and Moors 1875 43
Industry 1572 346
Broad-leaf Forests 1245 673
Moors 1827 91
Orchards 1833 85
Bogs 1830 88
Traffic 1883 35
Shrubs 1570 348
Rivers 1776 142
Lakes 1650 268
Vineyard 1874 44
Cities and Villages 284 1634

tional smooth, spatial component to account for spatial correlation (possibly vary-

ing for study period), and a spatially varying effect for altitude. Furthermore, we

apply monotonic restrictions (all decreasing) on the effects of ‘Coniferous Forest’,

‘Cities and Villages’, ‘Precipitation of Wettest Month’ and ‘Precipitation of Wettest

Quarter’. The effects of these environmental variables as estimated by Hothorn

et al. (2011c) are difficult to interpret because of local extremes (minima and max-

ima) and erratic fluctuations. For example, small coniferous forests are sufficient

and often used for breeding. The surrounding non-forest land is the major forag-

ing area, and thus its composition is the main limitation factor of a grid cell (Mebs

and Schmidt 2006). Thus, it is appropriate to assume a monotonic decreasing in-

fluence of coniferous forests on Red Kite breeding. Similarly for climatic variables,

such as the wettest quarter, one has to expect a monotonic decrease of the effect

on Red Kite breeding as this variable determines the density of ground vegetation.

With an increasing density caused by increasing precipitation, the availability of

the major prey will decrease. We therefore expect a positive effect only with lower

levels of precipitation and an increasing negative effect with higher levels. Again,

here the observational data underlying the model may lead to artificial bumps in
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the estimated functions. One should note that it is of particular importance to

specify monotonic constraints for both variables of precipitation as these variables

are highly correlated and hence share a lot of information. The reasons for our

belief in monotonicity are the same for both variables. Furthermore, if one effect

remains unconstrained, it may capture some of the erratic behavior left over from

the constrained estimate. In this case, the model and its interpretation could be

misleading. For the proportion of cities and villages, we also have to expect a

monotonically decreasing effect because the species may forage even in the vicinity

of small villages, but will clearly avoid larger cities, possibly because of human

disturbance and a decrease in foraging habitats, such as meadows, and nesting

habitats, such as forests (Mebs and Schmidt 2006).

Here, we estimated two different models: (1) an additive model with monotonic-

ity constraints on the effects of four variables (‘mono’), and (2) an unconstrained

model (‘add/vary’; cf. Hothorn et al. 2011c). The latter model is used as a competi-

tor to assess how monotonicity constraints of some variables affect the estimates

of these and other effects. For the monotonicity constrained model ‘mono’, we ap-

plied P-splines with 4.5 degrees of freedom and 20 inner knots for all continuous

variables. The spatial effect, the change of the spatial effect between the two time

periods and the spatially varying effect for the altitude were specified as bivari-

ate P-splines with 4.5 degrees of freedom and 6 inner knots per coordinate. The

variables ‘Coniferous Forest’, ‘Precipitation of Wettest Month’ and ‘Precipitation

of Wettest Quarter’ were estimated using monotonic P-splines with 4.5 degrees of

freedom and 20 inner knots while the effect of ‘Cities and Villages’ was estimated

with a monotonicity constrained, ordinal factor. The penalty parameter that en-

forces monotonicity was chosen, as recommended by Eilers (2005), as λ2 = 106.

The unconstrained model ‘add/vary’ only differs in the four constrained effect

estimates, where standard P-splines and categorical effects were estimated.

The optimal stopping iteration was estimated separately for the monotonicity-

constrained and the unconstrained model via stratified 25-fold bootstrap, i.e., we

randomly selected grid cells, which represent our observation units, and not sin-

gle observations. Hothorn et al. (2011c) used stability selection (Meinshausen and

Bühlmann 2010), which is briefly discussed in Section 2.5 in this thesis, to extract

the relevant covariates for interpretation. We used the same covariates to be able to

assess the differences or similarities of the two models. Identification of influential

variables with an error control for the inclusion of non-informative terms was not

of primary interest in this study but could be applied directly to the monotonic



4.5 Monotonicity-Constrained Species Distribution Models for Red Kite 93

model as presented in Hothorn et al. (2011c). Code to fit the Red Kite breeding

distribution can be found in Appendix B.4.

4.5.2. Results

The resulting effect estimates of the two models are depicted in Figure 4.11. The

upper row depicts the effects that were estimated with monotonicity constraints in

model ‘mono’. We can conclude from this model that Red Kites prefer dry areas

with broad-leaf forests or mixed forests and avoid especially coniferous forests for

breeding. Areas with a mixture of meadows and trees are more likely to be used

as Red Kite breeding habitats as indicated by our model.
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Figure 4.11.: Estimated partial effects (i.e., the other effects are set to zero in each graph) of
the environmental variables on Red Kite breeding. Estimates from the unconstrained
model ‘add/vary’ are given in blue. The effect estimates from the model with mono-
tonicity constraints ‘mono’ are given in red, where the effects depicted in the upper
row of graphs were subjected to a (decreasing) monotonicity constraint.

In the model, we did not only consider the global effects of the measured en-

vironmental variables, but also local effects, i.e., effects that depend on the obser-

vation point. The spatial component in the model allows us to capture the spatial

autocorrelation, i.e., observations that are close in space are more likely to be simi-
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lar than observations that are further apart. The spatial autocorrelation, depicted in

Figure 4.12, shows a large effect that cannot be attributed to other measured envi-

ronmental variables. Moreover, we found a change in the spatial pattern over time.

The spatial autocorrelation of the first period (1979–1983) is given Figure 4.12(a); the

difference of the second period (1996–1999) to the first observation period is given

in Figure 4.12(b). This difference can be interpreted as a difference in log-odds

ratio between the two study periods. The northwestern part of Bavaria underwent

a change toward lower breeding probabilities in the second observation period.

The central part of Bavaria showed no changes in the breeding probabilities. The

southwestern and eastern regions of Bavaria showed increased probabilities.
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(a) Spatial Autocorrelation (1979 – 1983)
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Figure 4.12.: Left: Spatial autocorrelation for Red Kite breeding in the monotonic model
‘mono’. This model component captures variability in the data that cannot be at-
tributed to other environmental variables. In northwestern Bavaria, the breeding
probability is higher while in southeastern Bavaria, the breeding probability is lower.
Right: Change of the spatial autocorrelation between the two time periods 1979–1983
and 1996–1999. The figure represents the difference to the first period.

The spatially varying effect of altitude is depicted in Figure 4.13. Altitude

showed a positive effect in the northwestern part of Bavaria. These areas are rela-

tively low. Compared to areas at similar altitude in the rest of Bavaria this region

showed increased breeding probabilities at this low altitude. The mountainous

eastern and the southern parts of Bavaria showed a negative effect of altitude, i.e.,

higher altitudes induce a decrease in breeding probabilities.
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Figure 4.13.: Spatially varying effect of altitude in the monotonic model ‘mono’. The sur-
face can be interpreted as the coefficient estimate of altitude at a given point in Bavaria.
Altitude has a negative effect on the probability of Red Kite breeding in the east, i.e.,
with increasing altitude there, the breeding probability decreases. In the northwest-
ern part of Bavaria, altitude has a positive effect on the breeding probability, i.e., with
increasing altitude there, the probability of breeding increases.

Comparison with the Unconstrained Model Comparing the global effects of the

two models (see Figure 4.11), we can conclude that the effect estimate of ‘Conif-

erous Forests’ shows a decreasing trend for model ‘add/vary’; however, model

‘mono’ shows an even smoother, monotonic fit and keeps the main functional form.

The ordinal variable ‘Cities and Villages’, which represents the population density,

had a monotonically decreasing effect in the original model. To keep this effect,

we specified a monotonic constraint. In this case, the effect was still monotonically

decreasing, and thus the additional penalization hardly affected the estimation. In

the case of ‘Precipitation of Wettest Month’, we observed a small, rather erratic

effect in model ‘add/vary’, which completely vanished when we restricted the ef-

fect to be monotonically decreasing. At the same time, the effect of ‘Precipitation

of Wettest Quarter’ was estimated as a small but clearly monotonically decreas-

ing effect. With respect to the remaining, “unconstrained” effects, the two models

were very similar. The unconstrained smooth and categorical effects were practi-

cally identical (Figure 4.11). To further assess the differences between the additive

model ‘add/vary’ and the monotonic model ‘mono’, we plotted the differences of

the estimated local components, i.e., the estimated spatial, spatial-temporal, and
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spatially varying effects, in Figure C.3 (see Appendix C.3). We conclude that, com-

pared to the range of the effect estimates, the differences between the monotonic

model and the non-restricted model are negligible in all three cases. This shows

that the model estimation in boosting is very stable with respect to the uncon-

strained effects, i.e., constraining some of the effects where it is ecologically rea-

sonable hardly influences the estimates and the interpretation of other variables.

Nevertheless, monotonic effects are useful as they allow models that are easier to

interpret and reflect the subject-matter knowledge of ecologists better than uncon-

strained effect estimates.

4.6. Activity of Roe Deer (Capreolus capreolus)

In the Bavarian Forest National Park (Germany) a management scheme for wild

animals is applied and investigated. Within this scheme, researchers try to under-

stand the activity profiles of different species such as Lynx, Wild Boars and Roe

Deer. Here, we focus on the activity of European Roe Deer (Capreolus capreolus).

According to Stache, Hothorn, Heurich, and Heller (2010), animal activity is

influenced by exogenous factors such as the azimuth of the sun (i.e., day and night

rhythm and seasons), temperature, precipitation and the depth of snow. Another

important role play endogenous factors such as the species (e.g., reflected in their

diet; Roe Deer are browsers), age and sex. Additionally, as Roe Deer tend to be

solitary animals, a high level of individual specific variation in activity is to be

expected.

Collection of Activity Data The data was collected in the Bavarian Forest Na-

tional Park. The park comprises 244 km2 and is situated in southeast Germany on

the border to the Czech Republic. The wooded, low mountain region is situated at

an altitude of 650m to 1450m above sea level (Stache et al. 2010).

The activity data on Roe Deer was recorded by telemetric necklaces (Vectronic

Aerospace, Berlin). The necklace contains a GPS-GSM module (records and sends

position), a temperature sensor (records a mixture of ambient temperature and the

body temperature of the animal), and an acceleration sensor unit with two sensors

for two different acceleration directions, which records the activity of the animal.

The sensors measure the acceleration continuously and save it every five minutes.

All animals that were tagged were living within an area where Roe Deer manage-

ment (e.g., supplementary winter feeding and culling) ceased in 2007. Precipitation
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Table 4.6.: Overview of the characteristics for the 29 Roe Deer given in absolute and relative
frequencies. Necklace (∗) has a relative frequency > 100% in total as three Roe Deer
were tagged with two different necklaces within the observation period. Hence, 29
Roe Deer were tagged with 32 sensors.

Frequency Rel. frequency (in %)

Sex
Female 9 31.0
Male 20 69.0

Age
0 - 1 year 10 34.5
≥ 2 years 19 65.5

Necklace (∗)
Type 0 23 79.3
Type 1 8 27.6

and depth of snow were gathered from a local weather station (Waldhäuser, alti-

tude 940m). For more details on Roe Deer activity, the study area as well as on

further technical background of the collars and a first analysis of the data set we

refer to Heller (2009), and Stache et al. (2010).

Data Analysis The data set contains records for 29 European Roe Deer in the

years 2006 to 2008. Table 4.6 shows the characteristics of the animals that were

observed. Acceleration sensor measurements, temperature and precipitation were

aggregated over 15 minutes. This led to a total of 832102 observations (see Ta-

ble 4.7). We used the sum of both acceleration sensors to represent the Roe Deer

activity in this analysis. The activity is represented by a number ranging from

0 to 510, where higher values represent higher activity. An overview is given in

Table 4.8.

Activity profiles for the day and for the year should be provided. As earlier

Table 4.7.: Absolute and relative frequencies of records per year.

Frequency Rel. frequency (in %)

Year of Observation
2006 315931 38.0
2007 312080 37.5
2008 204091 24.5
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Table 4.8.: Overview and summary statistics of the numeric variables (minimum, first, sec-
ond and third quartile, and maximum) for Roe Deer activity.

Description min 25% 50% 75% max

Activity 0.00 2.00 22.00 76.00 510.00
Temperature (in ◦C) -15.77 0.88 7.30 12.56 29.20
Precipitation (in mm) 0.00 0.00 0.00 4.56 76.00
Depth of Snow (in cm) 0.00 0.00 0.00 13.37 191.00

analysis showed, the activity of male and female animals is very different. Hence,

sex should be considered as an effect modifier in the analysis by defining sex-

specific activity profiles. We considered a Gaussian model with additive predictor

E(activity|·) = x>β + f1(calendar day) · temperature

+ f2(calendar day) · depth of snow

+ f3(calendar day) · precipitation

+ f4(time, calendar day)

+ f5(time, calendar day)I(sex = male)

+ broe,

(4.18)

where x contains the categorical covariates sex, type of necklace, year and age.

Temperature, depth of snow and precipitation entered the model rescaled to |x| ≤ 1

by dividing the variables by the respective absolute maximum values. The effects of

temperature ( f1), depth of snow ( f2) and precipitation ( f3) depend on the calender

day. An interaction surface ( f4) for time of the day and calender day is specified to

flexibly model the daily activity profiles throughout the year. An additional effect

for male Roe Deer is specified with f5. Finally, a random intercept broe for each

Roe Deer is included. All smooth base-learners (corresponding to f1 to f5) and the

random intercept were specified with three degrees of freedom (remember: cyclic

splines have a null space consisting of a constant only). The time-varying effects f1

to f3 were specified as P-splines with cyclic constraint. The interaction surfaces f4

and f5 were specified as cyclic tensor product P-splines with 12 interior knots per

variable (i.e., 144 interior knots in total). For all other values, the default was taken.

Overfitting did not occur in this data set with approximately 800,000 observations

and only nine base-learners. Hence, early stopping by using cross-validation was

not possible. To allow for enough flexibility in the model while keeping the running
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time relatively low, we fitted 1000 boosting iterations with a step length of ν = 0.1.

4.6.1. Results

Figure 4.14 shows the selected base-learners and their partial contribution to the

model. The partial contributions of the components corresponding to f4 and f5

show the highest variation and hence explain the most. The individual activity

of the Roe Deer broe gives also a substantial contribution to the total predicted

variation. The time-varying effects of temperature and depth of snow ( f1 and f2)

show minor contributions. Finally, the type of necklace explains additionally some

of the variability. The overall explained variability R2 ≈ 10.1%. Despite the fact that

this seems quite low, the resulting model can be considered very reasonable: The

estimated effects are biological very meaningful and represent current researchers’

knowledge on Roe Deer (see Stache et al. 2010, and the references therein).

The most prominent components are the interaction surfaces referring to the

time-dependent activity profiles for male and female Roe Deer (Figure 4.15), given

climatic variables and characteristics of the Roe Deer. The profiles show that Roe

Deer are most active in the twilight phases in the mornings and evenings. This

holds for the whole year and for both, male and female animals. In general, the

activity profile for female and male Roe Deer is very similar, but male activity is on

a much higher level and has more variability. The activity of Roe Deer is strongly

influenced by the season: During summer, the activity is on a much higher level
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Figure 4.14.: Partial contributions of the selected modeling components and total predicted
values. The notation f1 to f5 refers not only to the time-varying effect but to the
corresponding, complete base-learner. As necklace is a factor, only the effect sizes are
given and no boxplot is shown.
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Figure 4.15.: Influence of time on roe deer activity: Combined effect of calender day and
time of day for female roe (= f4; left) and the effect of male roe (= f4 + f5; right)
together with twilight phases (gray).

throughout the complete day. The phase of least activity is around noon. This is

even enhanced in autumn. In spring, activity is more evenly distributed over the

daytime and the hours after midnight are the least active.

To control for the individual activity of each Roe Deer, a random intercept base-

learner was included in the model. Figure 4.16 depicts the estimated random effect

for each Roe Deer. Both sexes have a relatively high variation within individuals

with a range of approximately 20 units. Some animals, such as the 3rd Roe Deer,

have a much higher individual activity while others, such as the 4th female Roe

Deer, have a much lower personal activity.

The effects of the climatic variables are depicted in Figure 4.17. One can see that a

higher temperature leads to lower activity (negative effect of temperature) with the

exception of January until March, where higher temperatures lead to an increase in

Roe Deer activity (positive effect of temperature). The depth of snow has a negative

effect on Roe Deer activity throughout the year: Deeper snow leads to a decreased

activity. The effect of the depth of snow is stronger in the summer month (where

there is hardly any snow), and it is less strong in January and February. However,

in the latter period the depth of snow is the deepest.

Discussion With this type of collars and the resulting activity measurements, one

can access the overall activity of an animal. The source and type of activity cannot
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Figure 4.16.: The random intercept of activity for each Roe Deer. The colors code the sex
of the animal, where blue means ’male’ and red means ’female’. There is a huge
difference in the activity for the animals (30 units). No difference can be observed for
sex.
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(a) Varying Effect of Temperature
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(b) Varying Effect of Depth of Snow

Figure 4.17.: The time-varying effect (i.e. ‘β(t)’) of temperature is depicted in (a) and the
time-varying effect of depth of snow in (b). Note that both variables are rescaled, i.e.,
β(t) is the maximal effect. At a given day, the effects of temperature and depth of
snow are linear. The higher the amplitude for a given day, the stronger the effect.
Snow always reduces the activity while snow in late winter has the smallest negative
effect. While high temperatures have a negative effect on activity for most of the year,
in early spring it increases the activity. However, only in the late summer (August to
October) the effect is “strong”.

be monitored by aggregated data. Furthermore, mounting the collars at different

areas of the animal’s neck can lead to varying measurements (Stache et al. 2010).

Hence, part of the intra-individual variation might be due to the collar itself while

the rest of it is due to individual differences of the animals. A further source

of variability of the measurements is induced by the two different series of the
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necklaces.

The endogenous covariate age did not contribute to the model. This indicates

that there is no difference in adult and sub-adult animals, at least in our study

period. The year of observation did not play a role either. Hence, the changes in

Roe Deer management in the National Park in 2007 do not seem to have influenced

the Roe Deer activity.

The most relevant factors for activity were the light intensity as represented by

the seasonal components, and the individual activity levels of the animals. This

coincides with the idea of Roe Deer being solitary, crepuscular animals and with

the results from other studies (see Stache et al. 2010, and the references therein).

Overall, the explained variance is relatively low. However, the modeling strategy

that we applied resulted in interpretable and biological meaningful models that

agree with existing knowledge.

4.7. São Paulo Air Pollution

Air pollution studies try to investigate the impact of various air pollutants on peo-

ple’s health or mortality (see e.g., Spix et al. 1993, Saldiva et al. 1995). Many modern

studies concentrate on particulate matter such as PM10 or PM2.5 (particulate mat-

ter with aerodynamic diameter ≤ 10µm and ≤ 2.5µm, respectively). Another area

of current research interest focuses on other pollutants that are due to car traffic

or industry such as sulfur dioxide (SO2), carbon monoxide (CO) or ozone (O3).

In this section we will analyze data from São Paulo, Brazil, which was collected

from January 1994 to December 1997. In this study all above mentioned pollutants

were measured together with climatic variables such as temperature and humid-

ity. Furthermore, data on deaths in various age groups caused by respiratory and

non-respiratory causes was collected.

We focus on elderly people (65+ years; cf. Saldiva et al. 1995) and consider

only the pollutant SO2. The impact of the temperature and the concentration of

the pollutant were considered to have a delayed influence with a lag of 2 days

while humidity was used without lag, as Conceição et al. (2001) proposed. Surely,

the model could be refined by using an auto-regressive process or nonlinear time-

series models (i.e., smooth effect estimates for lagged outcomes) as proposed in the

boosting context by Robinzonov, Tutz, and Hothorn (2011). However, we want to

compare our results to the results of Leitenstorfer and Tutz (2007) who modeled
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Table 4.9.: Overview and summary statistics of the numeric variables (minimum, first, sec-
ond and third quartile, and maximum); Covariates that are used with a lag of 2 days
in the analysis are indicated by ∗.

Description min 25% 50% 75% max

Number of respiratory deaths (p. day) 2.00 9.00 12.00 15.00 35.00
Time (in days) 3.00 346.50 708.00 1123.50 1461.00
SO2 (in µg/m3)∗ 1.57 12.39 18.67 27.74 76.13
Min. temperature (in ◦C)∗ 0.60 12.80 15.10 18.00 21.90
Relative humidity (in %) 42.85 75.81 81.85 86.91 96.53
Number of deaths (p. day, other causes) 34.00 56.00 63.00 71.00 118.00

the number of deaths with lagged influence of SO2 and temperature but without an

additional correction for the time-series nature of the data. An overview of the nu-

merical variables with summary statistics can be found in Table 4.9. In addition to

these covariates we included the day of the week in the analysis to account for vari-

ations throughout the week. To account for changes throughout the year we added

the day of the year to the analysis to account for seasonal patterns. To account for

large scale variation over the years, we additionally modeled a (long-term) trend.

The raw data of the daily concentration of SO2 and the daily mortality (caused by

respiratory diseases) is depicted in Figure 4.18. An unadjusted correlation between

the number of deaths and the concentration of the pollutant is revealed. However,

we can clearly see a seasonal variation within the number of deaths and the con-

centration. So, the apparent effect of the pollutant might just be due to the seasonal

variation. Thus, a model taking seasonal effects into account is required to assess

the effect of the pollutant.

The response, number of respiratory deaths in elderly people, consists of counts

for rare events. Hence, the effect of the pollutant SO2 corrected for climatic vari-

ables and effects of time (on a large scale, i.e., the yearly pattern and the trend, and

on a small scale, i.e., the weekly pattern) was modeled using an additive Poisson

model with log-link. The effect of the pollutant SO2 was modeled with monotoni-

cally increasing constraint, which reflects the expected dose-response relationship.

If SO2 has an impact on health in elderly people, one expects higher concentrations

of the pollutant to result in higher mortality. We model the number of respiratory

deaths as

E(respiratory death|·) = exp
{

x>β + f1(time) + f2(SO2)
}

,
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Figure 4.18.: Daily measurements of the number of respiratory deaths and SO2 in São Paulo
together with loess smoother.

where x represents the parametrically modeled covariates temperature, humidity,

number of non-respiratory deaths and the days of the week with 0-1 dummy-

coding where Sunday is the reference category. The smooth function of time, f1, is

decomposed into two parts: a seasonal component fseason and a component for the

trend ftrend, yielding f1(·) = fseason(·) + ftrend(·). The seasonal component is mod-

eled as a cyclic effect for the day of the year to assess the structure of respiratory

deaths throughout the year. The trend is modeled as a smooth effect over time.

The smooth effect of SO2, f2, is modeled with monotonic constraint. Technically,

we modeled fseason as a P-spline of order 3 with 20 inner knots, a second order

difference penalty and fixed boundary knots at day 0 and 365. The trend was mod-

eled using the P-spline decomposition (Kneib et al. 2009) with a linear effect of time

and a reparameterized P-spline (see Equation (3.9)), with one degree of freedom,

20 inner knots and differences of order one. The monotonic effect was modeled as
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a P-spline of order three with increasing constraint and again a difference penalty

of order one. The other covariates were included as linear base-learners.

Leitenstorfer and Tutz (2007) used almost the same model with some minor

differences. They did not split the large scale seasonal component f1 into two

parts, one for changes over the years and one for the periodic effect within one

year. They used only one smooth function to model the influence of time for all

four years together. Thus, in their model, the years can have a different level of

the effect but as well a different shape of the seasonal effect. While this approach

might offer slightly more flexibility, it is harder to assess the common periodic

effect within a calendar year. Furthermore, Leitenstorfer and Tutz (2007) specified

separate base-learners for each day of the week while we use one base-learner

for the complete covariate ’day of the week’. The most notable change, however,

is the fitting approach. Leitenstorfer and Tutz (2007) also used a component-wise

boosting approach to model the monotonic effect of SO2. They use the same idea as

proposed in Section 4.2.1: They exploit the fact that it is sufficient for monotonicity

that the differences of adjacent coefficients have the same sign. However, they use

a different approach to achieve monotonic coefficient sequences. They group the

B-splines and assign one coefficient to each of the two groups. Hence, the P-spline

function estimate (2.12) is simplified to

f̂ (x) = β̂(1)

(
r

∑
j=1

Bj(x)

)
+ β̂(2)

(
J

∑
j=r+1

Bj(x)

)
.

Monotonicity holds if the ‘grouped’ coefficients fulfill β̂(1) ≤ β̂(2). Estimation of

the grouped coefficients is done for all possible splits r = 1, . . . , J − 1. Each of the

groupings represent one base-learner and only the best-fitting base-learner is up-

dated in the component-wise boosting approach. However, only splits for which

the monotonicity condition holds can be selected. The final estimate is then the

sum over all estimates of f (x), which is the sum of monotonic functions and thus

monotonic as well. Hence, the fitting procedure of f (x) itself is not monotonic-

ity constrained but the final model fit resulting from the boosting algorithm is

monotone in x. Note that Leitenstorfer and Tutz (2007) do not use unpenalized

B-splines. They additionally apply a ridge penalty on the B-spline coefficients to

avoid too large jumps, i.e., they use P-splines with differences of order zero.

In addition to our monotonic approach (‘mboost:mono’), which is implemented

in the package mboost, and the monotonic approach of Leitenstorfer and Tutz
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Figure 4.19.: Estimated effect of SO2 for the monotonic model ‘mboost:mono’ centered
around zero.

(‘LT2007’), we fitted a model without monotonicity constraint (‘mboost:uncons’)

via mboost, and an unconstrained additive model with the function gam in the R

package mgcv (Wood 2006a, 2010) (‘mgcv’). The latter model was also used for

comparison in Leitenstorfer and Tutz (2007).

4.7.1. Results

The estimated smooth effect for the pollutant SO2 resulting from the monotonic

model ‘mboost:mono’ (Figure 4.19) indicates that an increase of the pollutant’s con-

centration does not result in a (substantially) higher mortality up to a concentration

of 40 µg/m3. From this point onwards a steep increase in the expected mortality

can be observed which flattens again for concentrations above 60 µg/m3. Hence,

a dose-response relationship can be observed where higher pollutant concentra-

tions results in a higher expected mortality. At the same time the model indicates

that increasing pollutant concentrations are almost harmless until a threshold is

exceeded, and the harm of SO2 is not further increased after an upper threshold.

Investigating the effect of PM10 Saldiva et al. (1995) found no “safe” threshold in

their study on elderly people in São Paulo. They also investigated the effect of SO2

but did not report on details, such as possible threshold values, in this case. The

more recent study on air pollution in São Paulo for children (Conceição et al. 2001)

used only linear effects for pollutant concentrations. Hence, no threshold values
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Figure 4.20.: Seasonal effect (left) and long-term trend (right) for the monotonic model
‘mboost:mono’.

can be estimated.

As we used a cyclic constraint for the seasonal effect, the ends of the function

estimate meet, i.e., the days 365 and 1 are smoothly joined (see Figure 4.20, left).

The effect shows a clear peak in the cool and dry winter months (May to August,

as we are on the southern hemisphere) while a decreased risk of mortality in the

warm summer months can be observed. This is in line with other studies (e.g.,

Saldiva et al. 1995). Looking at the trend over the years (Figure 4.20, right) we see a

decrease in mortality from 1994 to early 1997 and an increase thereafter. However,

one should keep in mind that this trend is combined with the periodical effect to

form the complete temporal pattern.

The estimated linear effects for all four models are given in Table 4.10. At first

we focus on the monotonic model ‘mboost:mono’. It shows a negative effect of

humidity indicating that higher humidity reduces the expected number of deaths.

The minimum temperature shows no effect, at least no additional effect to the

seasonal component, which might capture a temperature effect as well. Regarding

the days of the week, an increase in mortality on Monday can be observed. This

might be due to different behavior and thus personal exposure to the pollutant on

weekends or, more likely, due to a lag in recording on weekends.

Comparison of Modeling Strategies In contrast to the monotonic estimate, the

effect estimate of ‘mgcv’ for the pollutant SO2 is very wiggly for small values up
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Figure 4.21.: Comparison of the four modeling approaches. The estimated effects of SO2 are
centered around zero. Blue lines represent the effect of the ‘mboost:uncons’ model,
red lines represent the effect of the ‘mboost:mono’ model. The black lines correspond
to the ‘LT2007’ model (solid) and the ‘mgcv’ model (dashed).
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Figure 4.22.: Effect of time where the long-term trend is combined with the seasonal pat-
tern. The blue line (not visible as this model coincides with ‘mboost:mono’, red line)
represents the effect of the ‘mboost:uncons’ model, the red line represents the effect
of the ‘mboost:mono’ model. The black lines correspond to the ‘LT2007’ model (solid)
and the ‘mgcv’ model (dashed).
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Table 4.10.: Estimated coefficients of all four models. The model of main interest is high-
lighted in gray.

‘mboost:mono’ ‘LT2007’ ‘mboost:uncons’ ‘mgcv’

(Intercept) 2.5215 2.5383 2.5215 2.6246
Min. temperature 0.0000 −0.0014 −0.0021 −0.0015
Humidity −0.0026 −0.0028 −0.0028 −0.0033
Monday 0.0385 0.0250 0.0387 0.0316
Tuesday −0.0256 −0.0449 −0.0264 −0.0397
Wednesday −0.0107 −0.0290 −0.0113 −0.0250
Thursday −0.0353 −0.0503 −0.0345 −0.0481
Friday −0.0448 −0.0632 −0.0454 −0.0599
Saturday −0.0199 −0.0359 −0.0176 −0.0331
Non-respiratory deaths 0.0046 0.0038 0.0046 0.0029

to a concentration of 40 µg/m3 (see Figure 4.21). Non-monotonic effects might

perhaps be reasonable for large concentrations of the pollutant as people might

adjust their behavior (less sport, more indoor activity, . . . ) as pointed out by a

referee in Leitenstorfer and Tutz (2007). However, for large values the violations

of monotonicity are minor despite the sparse data base there. For small values,

an impact of the pollutant on the behavior of people and thus on their exposure

to SO2 is not expected and the erratic behavior of the estimator is biologically not

explicable. The estimated effect of ‘mboost:uncons’ is less erratic for low con-

centrations of the pollutant. Using differences of higher order (e.g., of order 2)

leads to an even smoother fit for small values, but still a decrease in the estimated

function for increasing concentrations of the pollutant can be observed. Hence, to

stabilize the smooth estimator for concentrations < 40 µg/m3 and at the same time

for larger values with a sparse data base, we fit a monotonically increasing func-

tion. Both monotonic models lead to very similar effect estimates but the ‘LT2007’

model shows more “steps”. This can be attributed to the choice of the penalty:

‘LT2007’ used a ridge penalty while ‘mboost:mono’ used first order differences.

Using higher order penalties leads to a smoother behavior of the estimated func-

tion.

The seasonal effect coincides for the models ‘mboost:mono’ and ‘mboost:uncons’

(Figure 4.22). The shape of the estimated functions resulting from ‘LT2007’ and

‘mgcv’ differs between the years. Still, the estimates are very similar compared to

the models resulting from mboost. Yet, the estimation of the complete time pat-

tern without decomposition into the trend and the periodical, seasonal effect is less
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stable. Especially at the boundaries, the models ‘LT2007’ and ‘mgcv’ are highly

variable, if not to say, expose an erratic behavior. Modeling the trend and the pe-

riodic effect separately may have the disadvantage that some of the small scale

changes (e.g. around day 730) are missed. However, without this decomposition,

models do not allow a direct inspection of the seasonal effect throughout the year.

Hence, decomposing the influence time into seasonal effects and smooth long-term

effects seems highly preferable as it offers a stable, yet flexible method to model

the data and allows an easier and more profound interpretation.

The four considered models have almost the same linear effects for the covari-

ates (see Table 4.10) or show at least the same direction and magnitude of the

effect. Hence, one can conclude that the linear effects in this model are very stable

and are hardly influenced by the fitting method — boosting vs. penalized itera-

tively weighted least squares (P-IWLS; see e.g., Wood 2008) — or constraints —

monotonic and cyclic constraints — that are applied to the smooth effects. Fur-

thermore, we see that both boosting methods for monotonic effects, ‘mboost:mono’

and ‘LT2007’ result in almost the same model here. However, the mboost imple-

mentation seems favorable to the current implementation of ‘LT2007’: First, the

mboost implementation is more flexible as one can freely specify different orders

of penalty and B-spline basis functions. Furthermore, one can use a wide range

of base-learner for other variables that are to be included in the model. Second,

the current implementation in mboost is much quicker than the implementation

of ‘LT2007’. While the speed of ‘LT2007’ could be improved to some extend by

using a more efficient implementation it seems likely that it will stay less efficient

than the penalization based implementation of mboost for two reasons: Leitenstor-

fer and Tutz (2007) compute per monotonic effect J − 1 competing base-learners

in each boosting iteration. Hence, more base-learners need to be estimated. The

second drawback of their approach is that in each boosting iteration at most one

grouping of coefficients is updated. Thus, to obtain a smooth function with k ≤ J

different coefficients β j, at least k− 1 boosting iterations are required. In contrast,

the mboost implementation uses one base-learner only and commonly updates all

coefficients of this base-learner. Third, mboost offers a very rich set of tools to

further manipulate models or extract information such as coefficients from them.

In practice, this is very important.
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4.8. Concluding Remarks

In this chapter, we extended the flexible modeling framework based on boosting

to allow the inclusion of monotonic or cyclic constraints for certain variables. The

monotonicity constraint on continuous variables leads to monotonic, yet smooth

effects. Many other approaches to monotonic modeling result in non-smooth func-

tion estimates (e.g., Dette et al. 2006, de Leeuw et al. 2009b, Fang and Meinshausen

2011). Most of these approaches have appealing theoretical properties. In many ap-

plication contexts such as life sciences in the broadest sense, however, we feel that

smooth effect estimates are more plausible and hence preferable. In the limit, i.e.,

if the ‘true effect’ is monotonic and if there is little noise in the data, our approach

leads to P-spline estimates. Hence, in this case, it does not matter whether mono-

tonic constraints are used or not (see for example the effects of ‘Coniferous Forests’

and ‘Cities and Villages’ in the study on Red Kite breeding; Sec. 4.5). Monotonic

effects can be furthermore applied to bivariate P-splines. In this case, one can spec-

ify different the monotonicity constraint for each variable separately. However, it

is ensured, that the resulting interaction surface is monotonic (as specified).

Monotonicity constraints might be especially useful in (but are not necessarily

restricted to) data sets with relatively few observations or noisy data as supported

by our simulation study (see Sec. 4.3). Another example where monotonic effects

were recently applied can be found in Leathwick, Elith, Francis, Hastie, and Taylor

(2006). There, the survey method was correlated with the outcome in a way that led

to counter-intuitive results. The introduction of monotonicity constraints helped to

estimate more appropriate models.

Cyclic estimates can be easily used to model, for example, for seasonal ef-

fects. The resulting estimate is a smooth effect estimate where the boundaries

are smoothly matched. Cyclic effects can be applied straight forward to model

surfaces where the boundaries in each direction should match by using cyclic ten-

sor product P-splines (Section 4.4.2). Furthermore varying coefficient models can

be fitted where the smooth, time-varying effect has a cyclic constraint as shown

in the analysis of Roe Deer activity (Section 4.6). The idea of cyclic effects could

also be extended to ordinal covariates with a temporal, periodic effect — such as

days of the week. As for smooth, cyclic effects, the estimate should not depend

on the ‘gap’. It should not matter if Sunday is chosen as the first day of the week

(as common in the USA) or if Monday is chosen (as common in Europe). If no

penalty is applied, this naturally holds. However, we would often like to avoid
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large jumps from day to day as these are not reasonable. Using the ordinal penalty

as introduced in Section 2.3.1 resolves this problem. At the same time, however,

the first and last category play a special role as they do not have two neighbors in

this coding. Introducing a cyclic penalty like for the smooth effects would help to

solve this problem and stabilize estimation for cyclic, ordinal variables.

Finally, both restrictions — monotonic and cyclic constraints — can be mixed in

one model: Some of the covariates are monotonicity restricted, others have cyclic

constraints and the reminder is modeled, for example, as smooth effects without

further restrictions or as linear effects. Such a model is used to model the São Paulo

air pollution data in Section 4.7.

Despite the ease of use, monotonicity restrictions should be utilized with care:

knowledge of the subject matter should govern the choice of variables that should

be modeled monotonically. Monotonicity constraints should be used with great

care as, for example, other predominant influences such as strong competitors

might govern the species distribution (Austin 2002). Furthermore, a priori assump-

tions might not always reflect the truth and should be carefully reconsidered if a

monotonic effect seems inappropriate. In this context, one should keep in mind that

also other models have assumptions and constraints, such as linearity, but these are

usually ignored or forgotten. Compared to monotonicity constraints, cyclic effects

are easier to use. Cyclic constraints are primarily applied to model seasonal effects,

i.e., special effects of time. These are much easier to identify from the context of

the data.

Both, monotonic P-splines and cyclic P-splines integrate seamlessly in the func-

tional gradient descent boosting approach as implemented in mboost. This al-

lows one to have a single framework to fit possible complex models. Additionally,

the idea of asymmetric penalties for adjacent coefficients was transferred from P-

splines to ordinal factors. The resulting novel approach to monotonic effect esti-

mation for ordinal variables can be integrated in the boosting framework as well.

Because of the built-in selection step in each boosting iteration, the algorithm al-

lows one to decide whether the monotonic effect is present or not (see ‘Wettest

Month’ for Red Kites). The boosting algorithm informs us whether the monotonic

effect is present in the data. A truly non-monotonic effect, which is estimated using

monotonicity constrained base-learners, will not be selected by the algorithm and

hence be set to zero. However, one should be aware that monotonicity constrained

and unconstrained effects for one variable cannot be specified in the same model.

This would lead to a preference of the unconstrained effect as it can better adapt
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to the data in those cases where small violations of the constraint occur. To com-

pare monotonic and non-monotonic effects, it is necessary to estimate two separate

models, as we did for the Red Kite breeding distribution. These models can then be

easily compared with respect to the stability and interpretability of the results. The

goodness of fit could also be assessed, but one should keep in mind that the un-

constrained model might fit the data better, yet might be less easy to interpret. The

possibility to constrain certain effects in highly flexible statistical methods allows

researchers to start with the most flexible and complex model that, in a step-wise

refinement process, is then simplified by restricting certain parts of the model to

monotonic or even linear functions without losing too much model accuracy. The

resulting simpler model will be easier to interpret and to understand, and, finally,

to accept.





5. Summary and Future Directions

"And if you do not think about the future, you cannot have one."

(Mr. Montross in John Galsworthy (1928) 1)

High-dimensional or complex data situations are very common nowadays. Tools

like computers and smartphones are present in almost every situation of our every-

day life and produce massive amounts of data. In scientific environments the de-

velopment of tiny sensors, microarrays, semi-automated analysis systems for bi-

ological or medical samples and other high-tech solutions produce a plethora of

measurements.

In this thesis we discussed boosting algorithms as one way to tackle scientific

questions that consequently arise from these data sets. Various aspects of the boost-

ing methodology were analyzed. Algorithmic properties were investigated as well

as aspects of statistical modeling.

On the algorithmic side, the selection bias in favor of more flexible base-learners

was investigated in Chapter 3. We could theoretically proof that a selection bias

in favor of categorical variables with more categories exists (Theorem 3.1) and that

smooth base-learners are preferred to linear base-learners (Theorem 3.3). The bias

is associated with the flexibility of the base-learners, which can be measured by

the degrees of freedom. We could show that the usual definition of degrees of

freedom in the smoothing literature is not suitable for the specification of com-

peting base-learners with equal flexibility. The definition that naturally followed

from our considerations in the boosting context coincides with the definition of the

degrees of freedom that is preferred if models are compared with respect to their

residual sums of squares (Buja et al. 1989). We could show — theoretically and in

simulation studies — that the use of penalized base-learners with equal degrees of

freedom is able to reduce the source of biased selection. An in-depth evaluation

of ridge penalized base-learners, P-spline base-learners (with decomposition and

reparameterization) and of the newly derived penalized ordinal base-learners (see
1Galsworthy J (1928), Swan Song, Heinemann, London. Pt. II, Ch. 6
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Sec. 2.3.1) was conducted. Modeling forest health by using the new approach for

unbiased selection resulted in a sparse and well interpretable model. The selected

variables and modeling alternatives were chosen with an appropriate complexity.

Another goal of this thesis was to expand the modeling possibilities that are

available for boosting. Generalized additive models for location, scale and shape

as briefly discussed in Section 2.6 expand the class of available models itself.

With GAMLSS, models for multiple components of a conditional distribution can

be specified and estimated. The loss function that is used, depends on multi-

ple components (i.e., parameters) and, hence, partial derivatives with respect to

each component are used in the boosting algorithm. A problem that still needs

to be solved in the context of boosting models with multiple prediction functions

is early stopping. Multi-dimensional cross-validation quickly becomes computa-

tionally demanding to the point of infeasibility. One-dimensional cross-validation

can be done on a fine grid containing all possible values up to the initial mstop.

Multi-dimensional cross-validation, on the other hand, is only viable on a rela-

tively coarse grid. Consequently, the true optimal combination of stopping itera-

tions might be missed. A finer grid reduces the impact of missing the truly optimal

multi-dimensional mstop but increases the complexity and hence the computing

time. Using AIC-based pre-stopping (see Sec. 2.4.3) could help to narrow down

the area of interest. However, in this case approximate degrees of freedom for all

components (e.g., location, scale and shape) of the boosting model are required.

Within a model class (as specified by the loss function in boosting), the base-

learners govern the way that partial effects are modeled. Base-learners and model

classes can be freely combined. Thus, an enormous range of (new) modeling pos-

sibilities emerges. Possibilities to model the influence of predictors include the

newly implemented base-learner for radial basis functions (see Sec. 2.3.4). Radial

basis functions allow to model interaction surfaces and spatial effects. Moreover,

one could think of extending this approach to other (non-spatial) problems: The

only thing that is required for the computation of radial basis functions is some no-

tion of distance (or of similarity) between pairs of observations, and between knots

in the observation space and the observations themselves. An approach that was re-

cently published uses RKHS regression to model single nucleotide polymorphism

(SNP) data (Gianola and van Kaam 2008, González-Recio et al. 2008, de los Campos

et al. 2009). Combining their approach with boosting seems highly promising as

variable selection is a notorious problem in high-dimensional SNP data.

In Chapter 4 ways to include constraints into boosting models were discussed.
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Two distinct base-learner were derived, namely, a base-learner for monotonicity-

constrained effects and a base-learner for cyclic effect estimates. Both constraints

can be applied to smooth effects of single covariates as well as to smooth, bivari-

ate interaction surfaces. Monotonic effects were furthermore discussed for ordinal

regressors. We evaluated their performance in simulation studies and could show

that (if the true effects are monotonic or cyclic, respectively) constrained regression

estimates outperform unconstrained estimates (see Sec. 4.3). In three applications

we showed the applicability of the proposed methods. In Section 4.5 we used

monotonic effects to improve the interpretability of species distribution models for

the Red Kite. Section 4.6 was dedicated to cyclic interaction surfaces, which were

used to predict the activity of Roe Deer over the day and throughout the year. Fi-

nally, we used monotonic and cyclic effects together in a time-series model to model

the occurrence of respiratory deaths in São Paulo.

In the context of constrained regression, further extensions are self-evident. In

many regression contexts, it might, for example, be required that the effect is

strictly positive, i.e., f (x) > 0 for all values of x. Or one might want the slope

to be bounded, i.e., f ′(x) ≤ m or f ′(x) ≥ m (cf. Hazelton and Turlach 2011). While

the first constraint could be realized in simple settings by a suitable link function

(e.g., the log-link), both constraints can be also formulated in terms of constraints

on the coefficients. For P-splines it is sufficient to require all coefficients to be posi-

tive in order to get a positive function estimate. Likewise, a constraint on the (first)

differences of the coefficients results in a bounded slope. Another idea is a partial

monotonicity constraint. In this case, monotonicity is only claimed over some in-

terval [a, b] ⊆ [min(x), max(x)]. For partial monotonicity constraints in the context

of penalized splines with truncated power series basis see Hazelton and Turlach

(2011).

As a tool to measure variable importance and to select important base-learners,

we briefly discussed the newly developed stability selection (Meinshausen and

Bühlmann 2010) approach in Section 2.5. The generic method is formulated for

arbitrary modeling tools. However, a thorough investigation of the properties in

the context of boosting seems well advised. Special guidance on the choice and the

impact of the possible tuning parameter(s) (the threshold value for the inclusion

probability or the average number of selected variables) is needed. Furthermore,

the impact of the number of observations n on the detectability of influential vari-

ables requires further investigation. In particular with very few observations n

stability selection might suffer as it is based on subsampling with sample size n/2.
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Another issue is the further implication of stability selection: Stability selection re-

sults in a set of stable variables. This set does not (necessarily) correspond to a

model with a specific tuning parameter mstop but is a “fundamentally new solu-

tion” (Meinshausen and Bühlmann 2010, p. 434). To identify influential or — in

other words — relevant variables, the set of stable variables is sufficient. However,

if one wants to make predictions or interpret the coefficients of this set of variables,

things get complicated. One possibility is to use a standard model where mstop is

tuned using cross-validation approaches but restrict the focus on the stable vari-

ables. This means that one only looks at effects of stable variables but potentially

keeps non-stable variables in the final model. This approach was pursued in the

context of the species distribution models for the Red Kite (cf. Hothorn et al. 2011c,

and Section 4.5), where we primarily wanted to enable the interpretation of the

ecological mechanisms. If the aim is to make predictions or to evaluate the pre-

dictive accuracy of the stable variables only, this approach is not sensible, though.

In this case it seems preferable to refit the model using only stable variables as

possible predictors. Hothorn (2010) raises the question how this affects the out-

of-bag prediction error. He argues that the effect depends on the strictness of the

error control and, hence, on the sparseness of the ‘stable model’. If it is likely that

important variables are missed, the prediction accuracy will suffer. Model fitting

with stable variables only is not well advised in this case. Further research in the

boosting context is required in this light.
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A. Algebraic Details

A.1. Matrix Algebra for Bivariate P-splines

This section gives a short introduction on matrix algebra with a focus on the com-

putations that are needed for bivariate P-splines. For further details on matrix

algebra in statistical applications we refer to Gentle (2007), and Harville (2008). A

short introduction to matrix algebra with a focus on spline smoothing is given in

Ruppert et al. (2003, Appendix A).

Definition A.1 Kronecker product Let X and Y be matrices of dimensions (m× n) and

(p× q), respectively. The Kronecker product X⊗Y is then defined as a matrix of dimension

(mp× nq)

X⊗ Y :=


x11Y x12Y . . . x1nY

...
...

xm1Y xm2Y . . . xmnY

 .

Definition A.2 Element-wise product Let X and Y be matrices with equal dimensions

(m× n). The element-wise matrix product X� Y is then defined as the (m× n) matrix

X� Y :=


x11y11 x12y12 . . . x1ny1n

...
...

xm1ym1 xm2ym2 . . . xmnymn

 .

A.1.1. Simple example in the context of P-splines

With Definitions A.1 and A.2 we can compute a bivariate P-spline as given in Sec-

tion 2.3.3 (see Equations (2.19) and (2.20)). In the following, we consider a highly

simplified example. Let B(1) be a (2× 2) B-spline design matrix (for variable x1)

and B(2) be a (2 × 4) B-spline design matrix (for variable x2). To compute the

combined basis starting from the univariate B-spline bases we need to ‘inflate’ the
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matrices first:

B(1) ⊗ e>K =

(
b(1)11 b(1)12

b(1)21 b(1)22

)
⊗
(

1 1 1 1
)

=

b(1)11 b(1)11 b(1)11 b(1)11 b(1)12 b(1)12 b(1)12 b(1)12

b(1)21 b(1)21 b(1)21 b(1)21 b(1)22 b(1)22 b(1)22 b(1)22

 . (A.1)

Analogously, we compute the ‘inflated’ version for the second B-spline:

e>J ⊗ B(2) =
(

1 1
)
⊗
(

b(2)11 b(2)12 b(2)13 b(2)14

b(2)21 b(2)22 b(2)23 b(2)24

)

=

b(2)11 b(2)12 b(2)13 b(2)14 b(2)11 b(2)12 b(2)13 b(2)14

b(2)21 b(2)22 b(2)23 b(2)24 b(2)21 b(2)22 b(2)23 b(2)24

 . (A.2)

Finally, the element-wise product of (A.1) and (A.2) than is

(
B(1) ⊗ e>K

)
�
(

e>J ⊗ B(2)
)
=b(1)11 b(2)11 b(1)11 b(2)12 b(1)11 b(2)13 b(1)11 b(2)14 b(1)12 b(2)11 b(1)12 b(2)12 b(1)12 b(2)13 b(1)12 b(2)14

b(1)21 b(2)21 b(1)21 b(2)22 b(1)21 b(2)23 b(1)21 b(2)24 b(1)22 b(2)21 b(1)22 b(2)22 b(1)22 b(2)23 b(1)22 b(2)24

 ,

which is the bivariate B-spline basis.
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For the penalty matrices we get

K(1) ⊗ IK =

(
k(1)11 k(1)12

k(1)21 k(1)22

)
⊗


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=



k(1)11 0 0 0 k(1)12 0 0 0

0 k(1)11 0 0 0 k(1)12 0 0

0 0 k(1)11 0 0 0 k(1)12 0

0 0 0 k(1)11 0 0 0 k(1)12

k(1)21 0 0 0 k(1)22 0 0 0

0 k(1)21 0 0 0 k(1)22 0 0

0 0 k(1)21 0 0 0 k(1)22 0

0 0 0 k(1)21 0 0 0 k(1)22



(A.3)

and

IJ ⊗K(2) =

(
1 0

0 1

)
⊗


k(2)11 k(2)12 k(2)13 k(2)14

k(2)21 k(2)22 k(2)23 k(2)24

k(2)31 k(2)32 k(2)33 k(2)34

k(2)41 k(2)42 k(2)43 k(2)44



=



k(2)11 k(2)12 k(2)13 k(2)14 0 0 0 0

k(2)21 k(2)22 k(2)23 k(2)24 0 0 0 0

k(2)31 k(2)32 k(2)33 k(2)34 0 0 0 0

k(2)41 k(2)42 k(2)43 k(2)44 0 0 0 0

0 0 0 0 k(2)11 k(2)12 k(2)13 k(2)14

0 0 0 0 k(2)21 k(2)22 k(2)23 k(2)24

0 0 0 0 k(2)31 k(2)32 k(2)33 k(2)34

0 0 0 0 k(2)41 k(2)42 k(2)43 k(2)44



(A.4)
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The combined penalty matrix follows as the element-wise sum of (A.3) and (A.4):

K(1) ⊗ IK + IJ ⊗K(2) =

k(1)11 + k(2)11 k(2)12 k(2)13 k(2)14 k(1)12 0 0 0

k(2)21 k(1)11 + k(2)22 k(2)23 k(2)24 0 k(1)12 0 0

k(2)31 k(2)32 k(1)11 + k(2)33 k(2)34 0 0 k(1)12 0

k(2)41 k(2)42 k(2)43 k(1)11 + k(2)44 0 0 0 k(1)12

k(1)21 0 0 0 k(1)22 + k(2)11 k(2)12 k(2)13 k(2)14

0 k(1)21 0 0 k(2)21 k(1)22 + k(2)22 k(2)23 k(2)24

0 0 k(1)21 0 k(2)31 k(2)32 k(1)22 + k(2)33 k(2)34

0 0 0 k(1)21 k(2)41 k(2)42 k(2)43 k(1)22 + k(2)44



A.2. Linear Models with Gaussian Prior as Special

Penalized Least Squares Models

Theorem A.1 Let y be the (n× 1) response vector, and let X be a suitable design matrix.

Let the linear model for y be defined as

y = Xβ + ε,

with independent errors ε ∼ N (0, σ2I). Then, a Bayesian model with an arbitrary Gaus-

sian prior on the parameters is equivalent to a penalized linear model with a special,

quadratic penalty.

Proof Let the assumptions of Theorem A.1 hold, and assume an arbitrary Gaussian

prior on the parameters β, i.e.,

y|X, β ∼ N (Xβ, σ2I)

β ∼ N (0, τ2Σ).

Thus it follows

P(y|X, β) ∝ exp
(
− 1

2σ2 (y− Xβ)>(y− Xβ)

)
P(β) ∝ exp

(
− 1

2τ2 β>Σ−1β

)
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Using Bayes’ theorem we get

P(y|X) = P(y|X, β) · P(β)

∝ exp
(
− 1

2σ2 (y− Xβ)>(y− Xβ)− 1
2τ2 β>Σ−1β

)
Maximizing P(y|X) is equivalent to minimizing

− 2σ2 log(P(y|X)) = (y− Xβ)>(y− Xβ) +
σ2

τ2 β>Σ−1β, (A.5)

which is the penalized least squares estimate with quadratic penalty, penalty pa-

rameter σ2/τ2 and penalty matrix Σ−1.

�
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And that’s really the essence of programming. By the time you’ve

sorted out a complicated idea into little steps that even a stupid

machine can deal with, you’ve learned something about it yourself.

(Douglas Adams 1)

With the work on this thesis lots of code for the R packages mboost (Hothorn et al.

2011a,b) and gamboostLSS (Hofner et al. 2011b) emerged. In mboost, most no-

tably changes to the definition and computation of the degrees of freedom were

implemented. The base-learners for radial basis functions, monotonic effects, and

cyclic effects were also products of the research presented here. The package gam-

boostLSS was entirely created in this period. As it seems not sensible to show

the manuals of evolving software in a static environment like this thesis, we try to

highlight some of the features described above and show some code that was used

in the analyses presented in this thesis. Further documentation can be found in the

R help system of the packages, in the accompanying vignettes (package mboost

only) or the corresponding papers (see, for example, Bühlmann and Hothorn 2007,

Hothorn et al. 2010, Mayr et al. 2011b).

B.1. Overview of News and Changes in mboost

During the preparation of this thesis mboost was migrated from version 1.x to

version 2.x, with many changes in the user-interface and even more changes in

the back end. Lots of work was dedicated to these changes. A non-exhaustive

overview of newly implemented code that was developed as part of this thesis and

significant changes, which are visible to the user and resulted from the work on

this thesis, is given in the following list:

1Adams D (1991), Dirk Gently’s Holistic Detective Agency, Pocket Books, New York. Paperback
edition. p. 25.
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Base-learners

bmono() Newly added base-learner for monotonic, convex or concave functions of

one or two variables. For theoretical details on the base-learner see Chapter 4.

brad() Newly added base-learner that implements radial basis functions. For de-

tails on the base-learner see Section 2.3.4.

buser() Newly added function that specifies a base-learner with user-specified

design and penalty matrices, which then are used to minimize a (penalized)

least squares criterion with quadratic penalty. This can be used to easily

specify base-learners that are not (yet) implemented.

bbs(x, cyclic = TRUE) Newly added base-learner that computes uni- and bivari-

ate cyclic P-splines. For theoretical details on the base-learner see Chapter 4.

bols(x) Newly added penalty for ordinal factors x. For details see Section 2.3.1.

bols(x, intercept = FALSE) If the intercept is removed in bols, it is checked if x

is centered or a constant and a warning is issued if not.

by = z The argument by in bols() and bbs() is now able to handle factors z with

more than two levels.

Null space All P-spline based functions now check that the specified degrees of

freedom are greater than the range of the (unpenalized) null space. A warning

is issued if the degrees of freedom are equal to the range and an error occurs

if they are smaller. Furthermore, the default value for df is increased to 6 in

bspatial().

Changes to the Fitting Methods and Interface

options(mboost_dftraceS = FALSE) The newly derived degrees of freedom (see

Section 3.1) were implemented. They can be used if mboost_dftraceS is set

to FALSE using the global options function.

df2lambda() The function is used internally to compute degrees of freedom df

for a given smoothing parameter lambda or vice versa. The new efficient

computation of degrees of freedom (see Lemma 3.5) is now implemented in

this function and is used automatically for all penalized base-learners. If

df2lambda() is likely to become numerically instable (i.e., in the case of large

entries in the design matrix) a warning is issued.
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glmboost(..., center = TRUE) As a consequence of the finding that the centering

of base-learners without intercept is of great importance (see Section 2.3.1),

we changed the default to center = TRUE. Furthermore, columns of design

matrices that correspond to contrasts are now also centered (if an intercept is

specified in the model) leading to (much) faster risk minimization.

cvrisk() For parallel computations of the cross-validated risk, the interface of

cvrisk() now also allows to use, for example, the packages multicore (Ur-

banek 2011) or snow (Tierney et al. 2011).

Various improvements in storage, speed, and stability were included into mboost.

They make, for example, use of the package Matrix (Bates and Maechler

2011).

Convenience Functions

extract() The newly added generic function allows users to extract various char-

acteristics of a single base-learner or a fitted model.

coef.glmboost() The intercept term is now adjusted for internally centered covari-

ates (i.e., center = TRUE; see Section 2.3.1). Additionally, the new argument

off2int = TRUE adds the offset to the intercept.

plot.mboost The functionality of the (experimental) plot function was improved.

For example, the handling of the which argument is now better. In case of bi-

variate effects lattice plots are used and the resulting lattice object is returned.

Furthermore, the handling of varying coefficients was improved.

lines.mboost The newly added (experimental) lines function allows to easily plot

multiple partial effects into one single devise.

B.2. Different Implementation of bols

In this thesis an implementation of the linear base-learner (bols) different to the

linear base-learner in the current version of mboost was used. They differ in the

implementation of the option ‘intercept = FALSE’ for categorical variables. In

the 2.x series of mboost, base-learners are used where the design matrix of the

categorical variable z with ncat categories is build using
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R> model.matrix(~ z - 1)

This leads to models where the explicit intercept (a column of ones) is removed

but each category of z is specified by a separate mean value. The result is a design

matrix X with ncat columns again, where the element Xij = 1 ⇐⇒ zi = j and

Xij = 0 otherwise. This coding results from the above code irrespective of the

specified contrasts. We call this ‘mean coding’. Actually, we would prefer to have

a base-learner where the coding is specified by the contrasts and the column of

ones is completely dropped, i.e., the intercept is truly removed. This is achieved by

using something similar to

R> X <- model.matrix(z)

R> X <- X[ , -1, drop = FALSE]

The alternative definition used in this thesis is given in the following code. The

main differences reflect the change of code discussed above. They can be found in

the function that creates the design matrix for linear base-learners X_ols. Changes

in base-learner bols itself and other changes in X_ols are only required to call the

correct functions2 if the modified code is sourced after package mboost is loaded.

The changes are highlighted in italics .

bols <- function(..., by = NULL, index = NULL, intercept = TRUE, df = NULL,
lambda = 0, contrasts.arg = "contr.treatment") {

if (!is.null(df)) lambda <- NULL

cll <- match.call()
cll[[1]] <- as.name("bols")

mf <- list(...)
if (length(mf) == 1 && (mboost::: isMATRIX(mf[[1]]) || is.data.frame(mf[[1]]))) {

mf <- mf[[1]]
### spline bases should be matrices
if (mboost::: isMATRIX(mf) && !is(mf, "Matrix"))

class(mf) <- "matrix"

2We need to explicitly call non-exported functions from mboost by using the prefix ‘mboost:::’.
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} else {
mf <- as.data.frame(mf)
cl <- as.list(match.call(expand.dots = FALSE))[2][[1]]
colnames(mf) <- sapply(cl, function(x) as.character(x))

}
if(!intercept && !any(sapply(mf, is.factor)) &&

!any(sapply(mf, function(x){uni <- unique(x);
length(uni[!is.na(uni)])}) == 1)){

## if no intercept is used and no covariate is a factor
## and if no intercept is specified (i.e. mf[[i]] is constant)
if (any(sapply(mf, function(x)

abs(mean(x, na.rm=TRUE) / sd(x,na.rm=TRUE))) > 0.1))
## if covariate mean is not near zero
warning("covariates should be (mean-) centered if ",

sQuote("intercept = FALSE"))
}
vary <- ""
if (!is.null(by)){

stopifnot(is.data.frame(mf))
mf <- cbind(mf, by)
colnames(mf)[ncol(mf)] <- vary <- deparse(substitute(by))

}

CC <- all(mboost::: Complete.cases(mf))
### option
DOINDEX <- is.data.frame(mf) &&

(nrow(mf) > options("mboost_indexmin")[[1]] || is.factor(mf[[1]]))
if (is.null(index)) {

### try to remove duplicated observations or
### observations with missings
if (!CC || DOINDEX) {

index <- mboost::: get_index(mf)
mf <- mf[index[[1]],,drop = FALSE]
index <- index[[2]]

}
}

ret <- list(model.frame = function()
if (is.null(index)) return(mf) else return(mf[index,,drop = FALSE]),
get_call = function(){

cll <- deparse(cll, width.cutoff=500L)
if (length(cll) > 1)

cll <- paste(cll, collapse="")
cll

},
get_data = function() mf,
get_index = function() index,
get_names = function() colnames(mf),
get_vary = function() vary,
set_names = function(value) {

if(length(value) != length(colnames(mf)))
stop(sQuote("value"), " must have same length as ",

sQuote("colnames(mf)"))
for (i in 1:length(value)){
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cll[[i+1]] <<- as.name(value[i])
}
attr(mf, "names") <<- value

})
class(ret) <- "blg"

ret$dpp <- mboost::: bl_lin(ret, Xfun = X_ols, args = mboost::: hyper_ols(
df = df, lambda = lambda,
intercept = intercept, contrasts.arg = contrasts.arg))

return(ret)
}

X_ols <- function(mf, vary, args) {
if (mboost::: isMATRIX(mf)) {

X <- mf
contr <- NULL

} else {
### set up model matrix
fm <- paste("~ ", paste(colnames(mf)[colnames(mf) != vary],

collapse = "+"), sep = "")
## removed: if (!args$intercept) fm <- paste(fm, "-1")
fac <- sapply(mf[colnames(mf) != vary], is.factor)
if (any(fac)){

if (!is.list(args$contrasts.arg)){
txt <- paste("list(", paste(colnames(mf)[colnames(mf) != vary][fac],

"= args$contrasts.arg",
collapse = ", "),")")

args$contrasts.arg <- eval(parse(text=txt))
}

} else {
args$contrasts.arg <- NULL

}
X <- model.matrix(as.formula(fm), data = mf,

contrasts.arg = args$contrasts.arg)
contr <- attr(X, "contrasts")
## newly added:
if (!args$intercept)

X <- X[ , -1, drop = FALSE]
if (vary != "") {

by <- model.matrix(as.formula(paste("~", vary, collapse = "")),
data = mf)[ , -1, drop = FALSE] # drop intercept

DM <- lapply(1:ncol(by), function(i) {
ret <- X * by[, i]
colnames(ret) <- paste(colnames(ret), colnames(by)[i], sep = ":")
ret

})
if (is(X, "Matrix")) {

X <- do.call("cBind", DM)
} else {

X <- do.call("cbind", DM)
}

}
}
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### set up penalty matrix
ANOVA <- (!is.null(contr) && (length(contr) == 1)) && (ncol(mf) == 1)
K <- diag(ncol(X))
### for ordered factors use difference penalty
if (ANOVA && any(sapply(mf[, names(contr), drop = FALSE], is.ordered))) {

K <- diff(diag(ncol(X) + 1), differences = 1)[, -1, drop = FALSE]
if (vary != "" && ncol(by) > 1){ # build block diagonal penalty

K <- kronecker(diag(ncol(by)), K)
}
K <- crossprod(K)

}
list(X = X, K = K)

}

B.3. Implementation Details for Chapter 3

In this section we present the code that was used to derive the model for forest

health prediction (Section 3.3). To load the data set and pre-process the data, the

following code was used

R> ## load data from website:

R> beeches <- read.delim(paste("http://www.stat.uni-muenchen.de/~kneib/",

+ "regressionsbuch/download/buche.raw", sep =""),

+ sep = " ", na.strings = ".")

R> ## remove covariate "frische"

R> beeches["frische"] <- NULL

R> ## rename covariates GER --> ENG

R> nms <- c("year", "x", "y", "inclination",

+ "elevation","soil", "fertilization", "age", "canopy",

+ "stand", "humus", "beeches", "id", "saturation", "ph")

R> names(beeches) <- nms

R> ## use complete cases only

R> beeches <- beeches[complete.cases(beeches), ]

R> ## add column for intercept

R> beeches$intercept <- rep(1, nrow(beeches))

R> ## create defoliation indicator

R> beeches$defoliation <- factor(as.numeric(beeches$beeches > 25))

R> ## reduce number of categories for humus

R> beeches$humus[beeches$humus > 4] <- 4

R> ## factors

R> factors <- c("fertilization", "stand", "id")
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R> for (f in factors)

+ beeches[[f]] <- as.factor(beeches[[f]])

R> ## ordered factors

R> ordered_factors <- c("humus", "saturation")

R> for (f in ordered_factors)

+ beeches[[f]] <- as.ordered(beeches[[f]])

R> ## continuous covariates

R> continuous <- c("year", "x", "y", "inclination", "elevation", "soil",

+ "age", "canopy", "ph")

R> ## center continuous covariates

R> indx <- names(beeches) %in% continuous

R> original_mean <- lapply(beeches[, indx], mean)

R> beeches[, indx] <- sapply(beeches[, indx], scale, center = TRUE, scale = FALSE)

To sample from the observation plots and not from the singe observations, the

following code was used:

R> fold <- function(id, folds = 10, replace = FALSE){

+ n <- length(unique(id))

+ k <- folds

+ ntest <- floor(n / k)

+ if (replace == FALSE){

+ a <- sample(unique(id), ntest * (k-1), replace = FALSE)

+ res <- matrix(NA, ncol = k, nrow = length(id))

+ for (i in 1:(k-1)){

+ res[,i] <- as.numeric(!(id %in% a[(1:ntest) + ntest * (i-1)]))

+ }

+ res[,k] <- as.numeric((id %in% a))

+ stopifnot(all(rowSums(res) == (k-1)))

+ } else {

+ if (!all(sort(unique(id)) == 1:n))

+ stop(sQuote("id"), " is not a sequence of type 1:upper")

+ a <- rmultinom(folds, n, rep(1, n)/n)

+ res <- a[id,]

+ }

+ return(res)

+ }

Finally, the model can be fitted with the code below:
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R> library("mboost")

R> ## make sure to use correct df2lambda:

R> options(mboost_dftraceS = FALSE)

R> ## set seed

R> set.seed(1907)

R> ## model formula

R> fm <- defoliation ~ bols(intercept, intercept = FALSE) +

+ bols(fertilization, intercept = FALSE, df = 1) +

+ bols(stand, intercept = FALSE, df = 1) +

+ bols(humus, intercept = FALSE, df = 1) +

+ bols(saturation, intercept = FALSE, df = 1) +

+ bols(ph, intercept = FALSE) +

+ bbs(ph, center = TRUE, df = 1, knots = 20) +

+ bols(canopy, intercept = FALSE) +

+ bbs(canopy, center = TRUE, df = 1, knots = 20) +

+ bols(soil, intercept = FALSE) +

+ bbs(soil, center = TRUE, df = 1, knots = 20) +

+ bols(inclination, intercept = FALSE) +

+ bbs(inclination, center = TRUE, df = 1, knots = 20) +

+ bols(elevation, intercept = FALSE) +

+ bbs(elevation, center = TRUE, df = 1, knots = 20) +

+ bols(year, intercept = FALSE) +

+ bbs(year, center = TRUE, df = 1, knots = 20) +

+ bols(age, intercept = FALSE) +

+ bbs(age, center = TRUE, df = 1, knots = 20) +

+ bspatial(x, y, center = TRUE, df = 1, differences = 1, knots = 12) +

+ brandom(id, df = 1)

R> ## fit model

R> forest <- gamboost(fm, data = beeches,

+ family = Binomial(),

+ control = boost_control(trace = TRUE))

R> ## stratified bootstrap

R> cv_folds <- fold(beeches$id, replace = TRUE)

R> mstop_10 <- cvrisk(forest, folds = cv_folds, grid = 1:5000)

R> ## subset model to optimal number of boosting iterations

R> ## (i.e., continue until mstop is reached in this case)

R> forest[mstop(mstop_10)]



136 Implementation Details

B.4. Implementation Details for Chapter 4

In this section we present the code that was used to derive the unconstrained and

the monotonicity-constrained species distribution model for Red Kite (Section 4.5).

R> library("mboost")

R> set.seed(290875)

R> ## download dataset (in a zip file combined with other data sets)

R> if (!file.exists("bva.Rda")){

+ download.file("http://esapubs.org/archive/ecol/E092/161/redkite/bva.Rda",

+ destfile = "bva.Rda", quiet = FALSE)

+ }

R> ## load data (Bavaria only)

R> load("bva.Rda")

R> ## make "Stadt" ordered

R> bva_year$Stadt <- ordered(bva_year$Stadt)

R> ## parameters

R> ctrl <- boost_control(mstop = 20, trace = TRUE)

R> nboot <- 25

R> nobs <- nrow(bva_year)/2

R> bs <- rmultinom(nboot, nobs, rep(1, nobs) / nobs)

R> bs <- apply(bs, 2, function(x) rep(x, rep(2, length(x))))

R> ## response and spatial component

R> spatial <- paste("bspatial(X, Y, knots = 6, df = 4.5)",

+ "bspatial(X, Y, by = NNvar, knots = 6, df = 4.5)",

+ sep = " + ")

R> vary <- "bspatial(X, Y, by = year, knots = 6, df = 4.5)"

R> responses <- response <- "Rotmilan"

R> ############################################################

R> # monotonic model

R> ############################################################

R> input_mono <- c("Nadelwald", "Stadt", "bio13", "bio16")

R> constr_mono <- c("decreasing", "decreasing", "decreasing", "decreasing")

R> idx <- 10:(length(bva_year))

R> input <- names(bva_year)[idx][ ! names(bva_year)[idx] %in% input_mono ]

R> fct <- sapply(input, function(i) is.factor(bva_year[[i]]))

R> ## set up formula for linear and smooth terms + spatial

R> rhs <- paste(c(paste("bbs(", input[!fct], ", df = 4.5)",

+ sep = "", collapse = " + "),

+ paste("bmono(", input_mono, ", constraint = \"",

+ constr_mono,"\", df = 4.5)", sep = ""),
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+ paste("bols(", input[fct], ")", sep = "", collapse = " + ")),

+ collapse = " + ")

R> fm_mono <- as.formula(paste(response, " ~ ", rhs, "+", spatial, "+", vary,

+ collapse = ""))

R> print(fm_mono)

R> ## Attention: this may take some time and requires larger amount of RAM

R> ## (especially cross-validation via cvrisk). Make sure package ‘multicore’ is

R> ## installed on multicore Unix systems. There might be problems on Windows with

R> ## parallelization: add ‘papply = lapply’ as argument to cvrisk() in this case.

R>

R> ## model fitting

R> m_mono <- mboost(fm_mono, data = bva_year, control = ctrl, family = Binomial())

R> ## determine optimal number of boosting iterations via bootstrap

R> gr <- seq(from = 10, to = 5000, by = 10)

R> grs <- seq(from = 10, to = 1000, by = 10)

R> cv_mono <- cvrisk(m_mono, fold = bs, grid = gr)

R> m_mono[mstop(cv_mono)]

R> save("cv_mono", "m_mono", "input_mono", "constr_mono",

+ file = "redkite_mono.Rda")

R> ############################################################

R> # unconstrained model

R> ############################################################

R>

R> ## For details see Hothorn et al., 2011

R>

R> fct2 <- sapply(input_mono, function(i) is.factor(bva_year[[i]]))

R> ## set up formula for linear and smooth terms + spatial

R> rhs <- paste(c(paste("bbs(", input[!fct], ", df = 4.5)", sep = ""),

+ paste("bbs(", input_mono[!fct2], ", df = 4.5)", sep = ""),

+ paste("bols(", input_mono[fct2], ")", sep = ""),

+ paste("bols(", input[fct], ")", sep = "")),

+ collapse = " + ")

R> fm_vary <- as.formula(paste(response, " ~ ", rhs, "+", spatial, "+", vary,

+ collapse = ""))

R> print(fm_vary)

R> ## model fitting

R> m_vary <- mboost(fm_vary, data = bva_year, control = ctrl, family = Binomial())

R> ## to save computation time we use mstop = 2920 (as determined in Hothorn

R> ## et. al, 2011); cross-validation with the same seed as in the previous

R> ## analyses leads to the same value of mstop.

R> m_vary[2920]





C. Additional Results

C.1. Additional Simulation Results for Ordinal

Penalized Base-learners

In this section, additional simulation results for ordinal penalized base-learners

are presented. The main discussion can be found in Section 3.2.1. Figure C.1

shows the selection frequencies of the unpenalized base-learner together with the

selection frequencies of ordinal penalized base-learners. A clear bias reduction can

be observed in the latter case.

In the power cases (see Figure C.2), a clear reduction of the MSE can be found

for ordinal penalized models (compared to unpenalized models). In contrast to

ridge penalized ordinal variables, the improvement is not reduced by a strong

overlapping shrinkage effect. It seems that shrinkage occurs but is less pronounced

in the case of the ordinal penalty than in the ridge case.
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Figure C.1.: Null Model: Average selection frequencies of base-learners for ncat = {2, 5, 10}
in the “optimal step” m̂stop,opt without and with ordinal penalty. The last bar in each
graph represents the selection frequency of the categorical covariate.
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Figure C.2.: Power Cases: Boxplots represent MSEunpenalized−MSEpenalized in the first power
case (left) and in the second power case, where the MSE is computed with (middle)
and without (right) the influential, categorical covariate z2.
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C.2. Additional Results for Empirical Evaluation of

Constrained Effect Estimates

In this section, additional results for the empirical evaluation of constrained effect

estimates are given. In Tables C.1, and C.2, the number frequency of violations of

monotonicity are given for smooth, monotonic functions and ordinal, monotonic

functions. Table C.3 shows the average absolute difference at the boundaries for

cyclic functions. For more details we refer to Section 4.3.

Table C.1.: Smooth, monotonic effects: Number of violations of monotonicity in
monotonicity-constrained and unconstrained models; Mean values and correspond-
ing standard errors (se) estimated from 100 simulation runs are given. A maximum of
two violations is possible as two effects are estimated per model.

n σ2 monotonic (se) unconstrained (se)

100 1.0 0 (0) 1.58 (0.0554)
0.4 0 (0) 1.49 (0.0595)
0.1 0 (0) 1.61 (0.0530)

200 1.0 0 (0) 1.43 (0.0655)
0.4 0 (0) 1.47 (0.0611)
0.1 0 (0) 1.63 (0.0525)

500 1.0 0 (0) 1.59 (0.0534)
0.4 0 (0) 1.65 (0.0520)
0.1 0 (0) 1.72 (0.0451)

Table C.2.: Ordinal, monotonic effects: Number of violations of monotonicity in
monotonicity-constrained and unconstrained models; Mean values and correspond-
ing standard errors (se) estimated from 100 simulation runs are given. A maximum of
two violations is possible as two effects are estimated per model.

n σ2 monotonic (se) unconstrained (se)

100 1.0 0.00 (0) 1.02 (0.0651)
0.4 0.00 (0) 0.78 (0.0543)
0.1 0.00 (0) 0.49 (0.0502)

200 1.0 0.00 (0) 0.83 (0.0493)
0.4 0.00 (0) 0.70 (0.0461)
0.1 0.00 (0) 0.37 (0.0485)

500 1.0 0.01 (0.01) 0.50 (0.0503)
0.4 0.00 (0) 0.30 (0.0461)
0.1 0.00 (0) 0.05 (0.0219)
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Table C.3.: Cyclic effects: Absolute difference of the functions’ boundaries |∆ f̂ | in models
with cyclic constraint and in unconstrained models; Mean values and corresponding
standard errors (se) estimated from 100 simulation runs are given.

n σ2 cyclic (se) unconstrained (se)

100 1.0 0 (0) 0.4935 (0.0332)
0.4 0 (0) 0.4163 (0.0250)
0.1 0 (0) 0.2724 (0.0161)

200 1.0 0 (0) 0.3661 (0.0233)
0.4 0 (0) 0.2885 (0.0171)
0.1 0 (0) 0.1966 (0.0112)

500 1.0 0 (0) 0.2487 (0.0142)
0.4 0 (0) 0.2008 (0.0109)
0.1 0 (0) 0.1483 (0.0075)

C.3. Additional Results for SDM for Red Kite

In this section, additional results for the Red Kite breeding distribution are pre-

sented. The main results can be found in Section 4.5.2. Figure C.3 shows the differ-

ences between the additive model ‘add/vary’ and the monotonic model ‘mono’for

the estimated spatial, spatial-temporal, and spatially varying effects. We can con-

clude that, compared to the range of the effect estimates, the differences between

the monotonic model and the non-restricted model are negligible in all three cases.
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Figure C.3.: Difference of estimates (‘mono’ - ‘add/vary’) for the spatial effect (upper left),

change of spatial effect over time-periods (upper right) and varying effect for altitude

(lower). All differences are rather low compared to the effects, which range from -2.72

to 1.97 (spatial autocorrelation), -0.76 to 1.62 (change of spatial autocorrelation over

time-periods) and -3.22 to 5.45 (spatially varying effect for altitude).
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