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1. Summary 

The integrity of the genome displays a central role for all living organisms. Double 

strand breaks (DSBs) are probably the most cytotoxic and hazardous type of DNA lesion 

and are linked to cancerogenic chromosome aberrations in humans. To maintain genome 

stability, cells use various repair mechanisms, including homologous recombination (HR) 

and non-homologous end-joining (NHEJ) pathways. The Mre11:Rad50 (MR) complex 

plays a crucial role in DSB repair processes including DSB sensing and processing but also 

tethering of DNA ends. The complex consists of the evolutionarily conserved core of two 

Rad50 ATPases from which a long coiled-coil region protrudes and a dimer of the Mre11 

nuclease. Even though various enzymatic and also structural functions of MR(N) could be 

determined, so far the molecular interplay of Rad50´s ATPase together with DNA binding 

and processing by Mre11 is rather unclear. The crystal structure of the bacterial MR 

complex in its nucleotide free state revealed an elongated conformation with accessible 

Mre11 nuclease sites in the center and a Rad50 monomer on each outer tip, thus suggesting 

conformational changes upon ATP and/or DNA binding. However, so far high resolution 

structures of MR in its ATP and/or DNA bound state are lacking.  

The aim of this work was to understand the ATP-dependent engagement-

disengagement cycle of Rad50´s nucleotide binding domains (NBDs) and thereby the 

ATP-controlled interaction between Mre11 and Rad50. For this purpose high resolution 

crystal structures of the bacterial Thermotoga maritima (Tm) MR complex with engaged 

Rad50 NBDs were determined. Small angle x-ray scattering proved the conformation of 

the nucleotide bound complex in solution. DNA affinity was also analyzed to investigate 

MR´s DNA binding mechanism.  

ATP binding to TmRad50 induces a large structural change and surprisingly, the 

NBD dimer binds directly in the Mre11 DNA binding cleft, thereby blocking Mre11’s 

dsDNA binding sites. DNA binding studies show that MR does not entrap DNA in a ring-

like structure and that within the complex Rad50 likely forms a dsDNA binding site in 

response to ATP, while the Mre11 nuclease module retains ssDNA binding ability. Finally, 

a possible mechanism for ATP dependent DNA tethering and DSB processing by MR is 

proposed. 
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2. Introduction 

2.1. DNA – history of the keystone of life 

Deoxyribonucleic acid (DNA) was first discovered and isolated in 1869 by 

coincidence by the physician Friedrich Miescher. Since the isolated substance was located 

in the nuclei of the cell it was first called nuclein (Dahm, 2008). Almost ten years later, 

Albrecht Kossel started the investigation of nuclear materials and could isolate the non-

protein component of the nuclein – consequently, due to its unusual acidic properties, 

called nucleic acid - and later on all five primary nucleobases (Jones, 1953). The 

importance of DNA as carrier of heritable information was first proposed by Frederick 

Griffith in 1928, soon after by Oswald Avery and coworkers in 1944 and finally confirmed 

in 1952 by Alfred Hershey and Martha Chase as they could show that DNA is the genetic 

material of the T2 phage (Avery et al., 1944; Hershey and Chase, 1952; Lorenz and 

Wackernagel, 1994). In 1953, James D. Watson and Francis Crick published the to date 

accepted double-helix model of DNA structures (Watson and Crick, 1953). To understand 

genome function, variation and evolution, and the information stored in DNA, sequencing 

projects started in the 1980s. A significant achievement was the 2.91 billion base pair (bp) 

consensus sequence of the euchromatin portion of the human genome (Venter et al., 2001). 

 

2.2. DNA damage  

The physiochemical organization of DNA does not provide for life-time stability. 

Environmental factors and normal metabolic processes cause between thousand and one 

million individual lesions per cell per day (Hoeijmakers, 2009). In fact, mutagenesis is a 

widespread fact of life, generating genetic diversity such as that in germ cells for 

Darwinian evolution. However, various severe diseases with fatal outcomes occur as a 

result of defective DNA damage repair pathways, illustrating that preventing mutational 

liability in somatic cells is as essential to life as the generation of a limited value of 

mutations in the germ line (Friedberg et al., 2004; Hoeijmakers, 2001). 

DNA damage can occur spontaneously (endogenously) or exogenously, meaning it 

is environmentally derived. Endogenously derived DNA modifications are the primarily 
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source of DNA damages and include mutations caused by products of the normal cellular 

metabolism like reactive oxygen species (ROS), such as superoxide anions, hydroxyl 

radicals and hydrogen peroxide. ROS originate naturally from oxidative respiration and 

display products of lipid peroxidation. So far, over one hundred oxidative mediated 

modifications have been identified in DNA, including oxidized DNA bases and DNA 

breaks (Cadet et al., 2002; Hoeijmakers, 2001). Further endogenously derived damage may 

occur since some chemical bonds in the DNA, like the base-sugar N-glycosyl bond, are 

prone to hydrolysis (depurination, depyrimidination) leading to the release of free bases 

and therefore to abasic sites. Also spontaneously occurring hydrolytic deaminations of 

cytosine, adenine, guanine and 5-Methylcytosine can cause modifications resulting in the 

miscoding bases uracil, hypoxanthine, xanthine and thymine. Moreover, non-enzymatic 

alkylation of bases, usually methylation and often induced by S-adenosylmethionine 

(SAM), compromises the genome (Lindahl, 1993; Lindahl and Barnes, 2000). Finally, the 

process of replication is susceptible to errors leading to spontaneously derived DNA 

damage like mismatched base pairs and insertion or deletion in the range of one error per 

1010 nucleotides synthesized (Jiricny, 1998).  

Even DNA is damaged to a great part from within the cell exogenous sources for 

DNA modifications can also induce up to 105 lesions per cell per day (Hoeijmakers, 2009). 

Environmental agents derived from chemical or physical sources such as ionizing 

radiation, ultraviolet (UV) light, various genotoxic chemicals or carcinogens contained in 

foods and cigarettes can lead to alterations in DNA structure (Hoeijmakers, 2001; Jiricny, 

1998).  

The diversity and frequency of DNA modification illustrate the importance of a 

variety of repair mechanisms, like nucleotide-excision repair (NER), base-excision repair 

(BER), mismatch repair or repair pathways like homologous recombination (HR) and non-

homologous end-joining (NHEJ). Their functionality is the basis to maintain genomic 

stability preventing cancer, aging or inborn diseases. Some of the common types of DNA 

damages and their repair mechanisms are summarized in Figure 1. 
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Figure 1: Simplified scheme of the correlation between DNA damaging agents, repair mechanisms and 
consequences of DNA damage, adapted from Hoeijmakers, 2001. (A)  Endo- and exogenously occurring 
mutations lead to a variety of DNA damages. Corresponding DNA repair pathways are annotated. Cis-Pt and 
MMC, cisplatin and mitomycin C (both crosslinking agents); (6-4)PP and CPD, 6-4 photoproduct and 
cyclobutane pyrimidine dimer (both induced by UV light); HR, homologous recombination; EJ, end-joining. 
(B) DNA damage can lead either to transient cell-cycle arrest upon checkpoint control (upper panel), to cell 
death (middle panel), or long-term DNA damage (lower panel) if checkpoint control and repair are not 
functional.  

 

2.2.1. DNA double strand breaks (DSBs) 

Various types of endo- and exogenously derived DNA damage are able to occur 

within the cell, leading to genomic instability if not repaired correctly. One species that 

displays probably the most cytotoxic form of damaged DNA are double strand breaks 

(DSBs) (Khanna and Jackson, 2001). DSBs can arise directly from a diversity of 

exogenous sources, but they also occur indirectly for instance during the replication of 

single strand breaks (SSBs) or bulky lesions like pyrimidine dimers (Borde and Cobb, 

2009). Contrariwise DSBs also play an important role in cellular metabolic processes 

where they are induced with intent (Khanna and Jackson, 2001). Thus, DSBs exhibit a dual 

role within a cell: as harmful lesions and important intermediates in cellular metabolism.  

 

A B 
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Directly and indirectly occurring DSBs from exo- and endogenous sources 

DSBs can arise directly and indirectly from a variety of exogenous agents like 

ionizing radiation, genotoxic chemicals and UV light but also indirectly from endogenous 

sources like ROS. 

 Ionizing radiation (IR) appears naturally from environmental sources such as 

cosmic radiation but it can also arise as a result of medical procedures like x-ray 

examinations or radiation therapy in cancer treatment (Ciccia and Elledge, 2010). IR can 

damage DNA either directly by deposition of energy or indirectly via the formation of 

ROS. ROS, which can occur also endogenously, affect DNA molecules as cited before in 

several ways but amongst others lead to SSBs. Two or more SSBs on opposing strands 

within 10-20 bp cause in turn DSBs. Besides this, DSBs may occur when a replication fork 

crosses one single SSB present in the template strand, leading to a fork collapse 

(Kuzminov, 2001; Mahaney et al., 2009; Sutherland et al., 2000).  

Chemical agents like camptothecin or its derivates topotecan and irinotecan play a 

role in cancer therapy as topoisomerase (Topo) I inhibitors. These chemicals bind to the 

covalently fused TopoI-DNA complex and prevent religation of the transiently created 

SSBs. The accumulation of TopoI bound SSBs potentially lead indirectly to DSBs when a 

replication fork collides. Moreover TopoII inhibitors like etoposide act similar by trapping 

the cleavable TopoII-DNA complex and therefore preventing re-annealing of the 

transiently introduced DSB (Ciccia and Elledge, 2010; Degrassi et al., 2004).  

In addition, UV light induced lesions like cyclobutane pyrimidine dimers and 

photoproducts or aromatic DNA adducts from cigarette smoke are assumed to cause 

indirectly DSBs at or close to stalled replication forks (Ciccia and Elledge, 2010; 

Hoeijmakers, 2009; Limoli et al., 2002).  

DSBs in cellular processes 

Beside the hazardous role of DSBs which compromises the integrity of the genome, 

DSBs have an impact on cellular processes as they display important intermediates. For 

instance the recombinational processes between homologous chromosomes in meiosis 

exhibit a significant role for the genetic diversity of sexually reproducing organisms 

(Edlinger and Schlogelhofer, 2011). Meiotic recombination is initiated in the first meiotic 

prophase by transiently formed DSBs which are catalyzed by the TopoII-like enzyme 
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Spo11 and facilitated by the Mre11:Rad50:Nbs1(Xrs2) complex. Most of the DSBs arise in 

hot spot intergenic regions, but also locations in coding sequences are reported. To 

guarantee the genetic diversity on the one hand and the genomic stability on the other 

hand, it is necessary to repair these DSBs in the course of meiosis by interaction with the 

unbroken homologous chromosome (see section 2.3.1) (Baudat and Nicolas, 1997; Borde, 

2007).  

In addition, the generation of genetic diverse T cell receptors (TCR) and B cell 

receptors (immunoglobulins) in vertebrates during early B and T lymphocyte development 

necessitate the recombination of Variable (V), Diversity (D) and Joining (J) encoding 

DNA segments (Dudley et al., 2005). During the process of V(D)J recombination, 

programmed DSBs are induced between the encoding gene sequences and a flanking 

recombination signal sequence (RSS) which is recognized and therefore cleaved by 

lymphocyte-specific RAG1 and RAG2 proteins. Further progress does need enzymes 

involved in end-joining repair pathways (see section 2.3.2) (Bassing et al., 2008; Perkins et 

al., 2002). 

The final maturation of B lymphocytes proceeds upon antigen recognition in which 

B cells diversify their range of immunoglobulins (Ig) in a process called class switch 

recombination (CSR). The modification of Ig´s leading to different isotypes takes place 

through the introduction of transient DSBs at large repetitive switch regions initiated by 

the activation-induced cytidine deaminase (AID). To ensure progress of CSR and assure 

the diversity in humoral response, religation of DSBs is required and relies on enzymes 

involved in end-joining repair pathways (see section 2.3.2) (Du et al., 2008; Dudley et al., 

2005; Soulas-Sprauel et al., 2007).  

Regardless if DSBs result due to exo- and endogenous agents or are introduced as 

intermediates on purpose to ensure genetic diversity in germ cells as well as cells of the 

immune system, repair of these breaks is indispensable to life. 

 

2.3. DSB repair 

The integrity of the genome is essential for all living organisms. As already 

mentioned, DSBs are one of the most cytotoxic and disruptive forms of DNA damages. 

They can result in broken chromosomes and therefore cell death if not repaired. On the 
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other hand, DSBs can lead to chromosome aberrations like translocations and therefore to 

genomic instability and diseases like cancer if repair proceeds inappropriate. Therefore 

sensing and repair of these life-threatening DSBs is critical for cell viability (Chu, 1997; 

Costanzo et al., 2001).  

In normal cells, DSBs are recognized by different checkpoints, which control 

transient cell cycle arrest and activate DNA repair systems. In eukaryotic cells, DSBs are 

predominantly repaired by two major pathways: homologous recombination (HR) and 

classical non-homologous end-joining (c-NHEJ). The HR pathway is dependent on the 

existence of an intact sister chromatid as template, and is therefore relatively error free and 

almost exclusively activated in S- and G2-phase of the cell cycle (Ciccia and Elledge, 

2010; Harper and Elledge, 2007). By contrast c-NHEJ is based on the rejoining and 

ligation of two broken DNA ends and potentially active throughout the entire cell cycle. C-

NHEJ is the preferred pathway in G1-phase when no sister chromatid is available (Dudley 

et al., 2005; Mahaney et al., 2009). In addition, recently published data suggests that c-

NHEJ is also the first choice pathway in G2-phase in mammalian cells and only if rapid 

rejoining does not occur, HR is promoted (Shibata et al., 2011). Since DNA ends on DSBs 

contain often non-ligatable groups, processing leads to either the loss or addition of 

nucleotides at the repair junction, making c-NHEJ potentially error-prone (Mladenov and 

Iliakis, 2011).  

The relative importance of the two main repair pathways, HR and c-NHEJ, varies 

by organism and cell-type as well as cell-cycle stage. Whereas HR seems to be the major 

repair pathway in yeast cells, the majority of DSBs, including IR- and RAG-induced 

DSBs, are repaired by c-NHEJ in higher eukaryotes (Chu, 1997; Mahaney et al., 2009; 

Shibata et al., 2011).  

In addition to HR and c-NHEJ, there are two extra pathways which are considered 

to repair DSBs, the microhomology-mediated end joining (MMEJ) which belongs to the 

alternative NHEJ (alt-NHEJ) pathway and the single strand annealing (SSA) process 

(Ciccia and Elledge, 2010; Wang et al., 2006). 
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2.3.1. Homologous recombination and single strand annealing  

Homologous recombination is defined as the exchange of genetic information 

between allelic sequences and plays an important role in both mitosis and meiosis to 

maintain genomic integrity and stability of the organism karyotype. The mechanism of 

eukaryotic HR can be roughly divided in three different states: presynapsis, synapsis and 

postsynapsis (Figure 2B) (Heyer et al., 2010; San Filippo et al., 2008).  

In the first stage, DSBs are detected and resected to form an extended 3´single 

stranded DNA end. The Mre11:Rad50:Nbs1 (MRN; MRX in S. cerevisiae) complex plays 

a crucial role in this by sensing and tethering the break but also in mediating the initiation 

of resection. Further proteins involved in human presynapsis are nucleases like CtIP (Sae2 

in S. cerevisiae), Exo1 and Dna2, the helicase BLM (Sgs1 in S. cerevisiae) and the E3 

ligase BRCA1 (Heyer et al., 2010; Huen et al., 2010; Nimonkar et al., 2011). To stabilize 

the single strand tail and to prevent formation of secondary structures the replication 

protein A (RPA) binds to the resected ssDNA end (San Filippo et al., 2008).  

The synapsis stage includes a homology search and strand invasion between 

homologous DNA sequences induced by the Rad51 (RecA in bacteria) recombinase (New 

et al., 1998; Ogawa et al., 1993). The formation of the Rad51-DNA nucleoprotein filament 

and the displacement of RPA is carried out in the presence of so-called mediator proteins 

belonging to the Rad52 epistasis group. The nucleoprotein filament invades the 

homologous strand with the help of accessory proteins like the translocase Rad54 which 

induces superhelical stress in dsDNA. After removal of Rad51, the homologous sequence 

attaches the template strand by correct base-pairing, forming a so-called displacement loop 

(D-loop) (Sung and Klein, 2006). In meiosis, an additional recombinase, Dcm1 was found 

to play a role in DNA pairing and strand exchange (Heyer et al., 2010; San Filippo et al., 

2008).  

After DNA polymerase extension from the 3´end of the invading strand, the 

generated D-Loop can be resolved in postsynapsis by three different modes. First, the D-

loop can be cleaved in a process called break-induced replication (BIR) which occurs in 

the absence of a second DSB end, e. g. at telomeres or at broken replication forks. 

Otherwise, when two DSB ends are present, the D-loop intermediate can be repaired either 

by synthesis-dependent strand annealing (SDSA) or double strand break repair (DSBR).  
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Figure 2: Schematic representation of pathways involved in eukaryotic DSB repair adapted from 
Ciccia and Elledge, 2010. (A) The classical NHEJ (c-NHEJ) pathway is initiated by binding Ku proteins to 
the DSB break. Recruitment of DNA-PKcs enables the initial processing by enzymes like Artemis. Ligation 
by the XRCC4/Ligase IV complex is stimulated by XLF/Cernunnos and attaches the two broken DNA ends, 
resulting in an rather error-prone repair. (B) The HR pathway is mediated by MRN which recruits various 
additional processing enzymes to ensure repair with the help of the homologous sister chromatid. The 
generated D-loop can be resolved in three different modes: break induced repair (BIR), double strand break 
repair (DSBR) and synthesis-dependent strand annealing (SDSA). These different subpathways lead to either 
crossover or non-crossover events or both. Involved proteins are annotated for the human orthologs.            
(C) Microhomology-mediated end-joining (MMEJ) is based on short microhomologies (1-4bp) and displays 
a backup system which seems to be rather error-prone than c-NHEJ. (D) Single strand annealing (SSA) is the 
most mutagenic pathway and is based on homologous repeat sequences which are located in direct 
orientation on both sides of the DSB. 
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In SDSA the invading 3´ strand is displaced after its extension and re-anneals to the 

ssDNA end that was not involved in D-loop formation. Since this pathway restricts 

crossovers and therefore reduces the genetic variability it is predominat in somatic cells. 

Contrary to this, meiotic recombination mainly proceeds via the third so-called DSBR 

pathway. In this case, the 3´ overhang which is not involved in D-loop formation gets 

annealed to the extended D-loop, therefore forming a structure designated as Holliday 

junction (Bzymek et al., 2010). Dependent on how the Holliday junction is resolved DSBR 

results in either crossover or non-crossover events or both (Ciccia and Elledge, 2010; 

Heyer et al., 2010; San Filippo et al., 2008). 

Another homology-mediated recombinational repair pathway, known as single 

strand annealing (SSA), is well characterized in yeast but not in mammalian cells, although 

SSA has been identified as a significant pathway leading to translocations frequently 

inflicted in human cancers. The repair via SSA is carried out when two homologous 

(repeat) sequences are flanking each side of the DSB (Figure 2D). The DSB ends are first 

degraded in 5´-3´ direction to form 3´tails like in HR. Subsequently the single stranded 

homologous sequences anneal and the non-complementary 3´ends are removed. As a result 

SSA is always correlated with a sequence deletion, therefore presenting the most 

mutagenic and for this reasons least attractive pathway for DSB repair in a cell (Ivanov et 

al., 1996; Mansour et al., 2008). 

 

2.3.2. Classical and alternative non-homologous end-joining 

The classical NHEJ (c-NHEJ) pathway starts with the detection and binding of the 

Ku70/80 heterodimer to DSB ends (Figure 2A). The potential function of Ku70/80 is to 

protect the DNA ends from unwanted processing or degradation, assistance in the tethering 

of broken ends and the recruitment or activation of damage repair enzymes (Dudley et al., 

2005). After binding, Ku70/80 performs an inward translocation to allow a serine-

threonine kinase, the catalytic subunit of a DNA dependent protein kinase (DNA-PKcs) to 

bind to the DNA end and Ku80. The DNA-PKcs interact with each other across the DSB 

and form the so-called synaptic complex which tethers and secures the DSB ends and 

stimulates the kinase activity of DNA-PKcs (Dudley et al., 2005; Mahaney et al., 2009). 

Since the ends of DSBs contain often non-ligatable groups, like ssDNA overhangs or 

damaged bases, processing enzymes are recruited to the break. Autophosphorylation of 
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DNA-PKcs leads to destabilization of itself with DNA and consequently enables the 

nuclease Artemis to bind and process on DSB ends (Ciccia and Elledge, 2010). Depending 

on the nature of the DSB other processing enzymes apart from Artemis can be involved in 

this repair pathway. These enzymes include DNA polymerase lambda () and mu (µ) (Pol 

4 in yeast), polynucleotide kinase (PNK) and most likely the Aprataxin and PNK-like 

factor (APLF) and the Werner´s syndrome helicase (WRN). Subsequent to processing, 

DNA Ligase IV which exists in complex with XRCC4 (Dnl4 and Lif1 in yeast) is recruited 

to the end (Mahaney et al., 2009). XRCC4 depicts a scaffolding protein, which stabilizes 

and activates the function of the DNA Ligase IV. With the help of an additional 

stimulatory factor XLF (also known as Cernunnos; Nej1 in yeast), which interacts with 

XRCC4, the religation of the broken ends is carried out by the Ligase IV/XRCC4 complex 

(van Gent and van der Burg, 2007; Wang et al., 2006).  

Mutants with defects in enzymes involved in c-NHEJ show declined repair activity, 

but nevertheless most DSBs are rejoined. This is assumed to occur by a slowly operating, 

alternative NHEJ pathway (alt-NHEJ) or also called Microhomology-mediated end-joining 

(MMEJ) (Figure 2C). The repair mechanism is based on a short junctional homology of 1-

4bp, also designated as microhomologies. In this pathway, DSBs are most likely detected 

by PARP-1 (no yeast homolog) in association with DNA ligase III and possibly XRCC1. 

This backup system is rather more error-prone than classical NHEJ but appears to be 

efficiently used in class switch recombination (Lieber, 2010; Wang et al., 2006; Zha et al., 

2009). 

Finally, also MRN or MRN together with the nuclease CtIP is indicated to have an 

important function in the c-NHEJ and alt-NHEJ pathways, respectively, since a depletion 

of respective proteins reduced the end-joining efficiency up to 40% in mammalian cells 

(Rass et al., 2009; Xie et al., 2009). 

 

2.4. The Mre11:Rad50:Nbs1 (MRN) complex – a key player in DSB repair 

The Mre11:Rad50:Nbs1 (MRN; Mre11:Rad50:Xrs2 in S. cerevisiae; Mre11:Rad50 

in prokaryotes) complex is a keystone complex, involved in early DSB detection, 

nucleolytic processing of DNA ends, recruitment of DSB processing enzymes and DNA 

damage signaling by activating the checkpoint kinase ATM. Furthermore, MRN acts as 

scaffolding protein by tethering DNA ends (Mirzoeva and Petrini, 2001). There are also 
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indications that the MRN complex could play a central role in bridging the 

recombinational and the NHEJ pathways in human cells (Yang et al., 2006). In any case 

complete deletion of either Mre11, Rad50, or Nbs1 leads to embryonic lethality in mice 

emphasizing the importance of MRN (Luo et al., 1999; Xiao and Weaver, 1997; Zhu et al., 

2001). Moreover, hypomorphic mutations in the MRN-ATM axis are linked to human 

diseases like Ataxia-Telangiectasia (A-T, mutations in ATM) A-T like disorder (A-TLD, 

mutations in Mre11), the Nijmegen breakage syndrome (NBS; mutations in Nbs1) and 

NBS-like disorders (NBSLD, mutations in Rad50 or Mre11), respectively. All diseases 

show similar phenotypes including predisposition to cancer, mostly lymphomas, radiation 

sensitivity, immunodeficiency and neurological disorder. In addition, cells derived from 

patients show increased levels of spontaneously arising chromosomal aberrations or short 

telomeres (Carney et al., 1998; Petrini, 2000; Stewart et al., 1999; Uchisaka et al., 2009; 

Varon et al., 1998; Waltes et al., 2009). These findings stress the role of MRN as key 

player in the cellular response to double strand breaks and therefore the maintenance of 

genomic stability and cell viability. 

 

2.4.1. Structural organization of the MR(N) complex  

The multisubunit complex MR(N) is composed of the two core proteins Mre11 

(meiotic recombination 11) and Rad50 (radiation sensitive) in prokaryotes and of a third 

component, Nbs1 (Nijmegen breakage syndrome, or its functional homolog Xrs2 in S. 

cerevisiae) which is only found in eukaryotes (Figure 3). Both, Mre11 and Rad50 are 

highly conserved in all three biological kingdoms and even exist in some viruses like the 

bacteriophage T4 (Herdendorf et al., 2011). The Mre11 dimer and the ABC ATPase 

domains of Rad50 form the catalytic head module. A large flexible helical region protrudes 

from the catalytic head module as indicated by electron and atomic force microscopy, 

linking the N- and C-terminal ABC segments of Rad50 (de Jager et al., 2001; Hopfner et 

al., 2002; Moreno-Herrero et al., 2005; Sharples and Leach, 1995; Stracker and Petrini, 

2011). Nbs1, in contrast, is less sequence conserved and associated with the globular MR 

head module possibly in the course of evolutionarily diversification from prokaryotes to 

eukaryotes (Assenmacher and Hopfner, 2004).  

Each Mre11 monomer consists of a conserved phosphodiesterase domain at the N-

terminus that harbors a nuclease active site (also designated as nuclease domain) (Figure 
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3A1 and B). The five conserved phosphodiesterase motifs are located in loop regions 

connecting core ß-sheets and are capable of coordinating two Mn2+ ions near the surface. 

Adjacent to the phosphodiesesterase domain is a C-terminal DNA capping domain which 

comprises one of the two interaction regions for Rad50. A second interaction site could be 

identified on the C-terminal end of Mre11 (Bemeleit, 2007; Chamankhah and Xiao, 1999). 

Interaction of Nbs1 and Mre11 was first predicted by yeast-two-hybrid screening and then 

confirmed by structural analysis to occur via a eukaryotic insertion loop region situated in 

the nuclease domain (Desai-Mehta et al., 2001; Schiller, 2011). Beside Mre11´s nuclease 

domain, studies on eukaryotic Mre11 revealed two potential DNA binding sites located in 

the C-terminal part of Mre11. Whereas the DNA interaction motif adjacent to the capping 

domain seems to be important for mitotic repair, the DNA motif on the C-terminal end was 

reported to play a role in DSB formation in meiotic recombination (Furuse et al., 1998; 

Usui et al., 1998). In addition the former DNA motif seems to be at least partially 

conserved in prokaryotes, as it was shown to be involved in forming DNA contacts as well 

in the archaeal Pyrococcus furiosus Mre11 (see section 2.4.6) (Williams et al., 2008). 

Additionally, the interaction of two phosphodiesterase domains and therefore the 

dimerization of Mre11 is critical for DNA binding and activity (Hopfner et al., 2001; 

Stracker and Petrini, 2011; Williams et al., 2008). Last but not least, the structural analysis 

of archaeal, bacterial and eukaryotic Mre11 proved the conserved morphology of the 

complex throughout all three biological kingdoms (Bemeleit, 2007; Hopfner et al., 2001; 

Schiller, 2011). 

Rad50 resembles the structural maintenance of chromosomes (SMC) proteins, 

which are involved in chromatin condensation and chromosome cohesion and contains a 

bipartite ABC ATP binding cassette. The N-terminal part of Rad50 harbors the ATP 

binding Walker A motif, whereas the C-terminal part contains the ATP hydrolyzing 

Walker B and signature motifs (Figure 3A2 and B). The two ABC segments dimerize in a 

head to tail orientation upon ATP binding. In detail, each lobe I (mainly consisting of the 

N-terminal ABC segment) binds to lobe II (mainly consisting of the C-terminal ABC 

segment) of the opposing Rad50 molecule, therefore coordinating one ATP and one Mg2+ 

molecule (Hopfner et al., 2001; Hopfner et al., 2000b). Both, the N- and C-terminal 

segments are connected over a long antiparallel coiled-coil region which can be up to 500 

Å in length in human Rad50 (Figure 3A2-3).  
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Figure 3: Schematic and structural overview of the Mre11:Rad50:Nbs1 complex. (A) Schematic 
overview of MRN adapted from Stracker and Petrini, 2011 including 3D structure representations of four 
crystallized domains (1-4). (1-3) Ribbon representation of the P. furiosus (1) Mre11 dimer (blue), consisting 
of the phosphodiesterase and flanking capping domains (PDB entry: 1II7), (2) N- and C-terminal (lobe I, 
orange; lobe II, sand) part of the Rad50 monomer (PDB entry: 1II8) and (3) of a Rad50 coiled-coil fragment 
(grey) containing the highly conserved Cys-X-X-Cys motif (red) (PDB entry: 1L8D). (4) Ribbon 
representation of the S. pombe N-terminal part consisting of FHA (yellow), BRCT1 (crème) and BRCT2 
(red) domain (PDB entry: 3HUE). (B) Domain architecture of the individual MRN complex subunits. Upper 
panel: Mre11 consists of an N-terminal nuclease domain and an adjacent capping domain (blue). The Rad50 
interaction regions (orange), the two proposed DNA binding sites (yellow) and the eukaryotic Nbs1 
interaction region (crème) are highlighted. Middle panel: Rad50 ABC ATPase consisting of an N- and C-
terminal ATPase segment (orange), connected by a long coiled-coil domain (grey). The center of the heptad 
repeats contains the CXXC motif (red) that forms a Zn-hook bridge between two neighbored coiled-coil 
domains. Mre11 binding sites are highlighted in blue. Lower panel: The N-terminus of Nbs1 consists of the 
FHA (crème) and BRCT1/2 (orange/red) domains and is connected via an unstructured linker with Mre11 
interaction region 1 and 2 (blue) and an ATM binding domain (grey).  
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The two coiled-coil domains contain a highly conserved Cys-X-X-Cys (CXXC) motif in 

the center of the heptad repeats that folds into a Zn-hook motif. Therefore, Rad50 is able to 

form dimers on the basis of a second dimerization site, via coordinating a Zn2+ ion by four 

conserved cysteine residues to form a flexible bridge of up to 1000 Å (Stracker and Petrini, 

2011). Mutations in the conserved cysteine residues disrupt the interaction of Mre11 and 

Rad50, suggesting a conformational cross-talk between Rad50´s Zn-hook and the 

Mre11:Rad50 globular head domain (Hohl et al., 2011; Hopfner et al., 2002). Rad50 was 

found to interact with Mre11 upon its upper coiled-coil domain, including segments of the 

N- and C-terminal ATPase region (Bemeleit, 2007; Williams et al., 2011). Further 

interaction sites are possible, yet remain to be investigated. 

Nbs1 is the least conserved component of the eukaryotic MRN complex (Figure 

3A4 and B). The N-terminal region of Nbs1 consists of a forkhead-associated (FHA) 

domain and two (tandem) breast cancer carboxy-terminal (BRCT) domains which are 

primarily considered to be interaction sites for phosphoproteins like CtIP, and are known to 

be elements of other proteins involved in DNA damage response and cell cycle checkpoint 

control (Desai-Mehta et al., 2001; Durocher and Jackson, 2002; Williams et al., 2009). The 

C-terminal part of Nbs1 contains a rather unstructured linker connecting the FHA/BRCT 

domain with two Mre11 interacting regions and an ATM interaction site (Schiller, 2011). 

Taken together, Nbs1 seems to be the connecting link between the Mre11:Rad50 core, the 

checkpoint kinase ATM (Tel1 in S. cerevisiae) and the DSB processing enzyme CtIP (Sae2 

in S. cerevisiae) (Williams et al., 2009). 

 

2.4.2. Functional insights into the MR(N) complex 

Biochemical in vitro studies on pro- and eukaryotic MR(N) revealed three basic 

activities for Mre11: endonucleolytic cleavage of single stranded DNA, DNA hairpin 

opening and exonucleolytic degradation of double stranded DNA in 3´-5´polarity. All three 

activities require Mn2+ and cannot be replaced by other divalent ions like Mg2+, Fe2+ or 

Co2+ (Connelly et al., 1997; Connelly and Leach, 1996; Paull and Gellert, 1998; Trujillo et 

al., 1998). Hairpin opening and exonucleolytic activity, the latter one at least in 

prokaryotes, was shown to be stimulated by ATP binding. Although Mre11 acts as an 

endonucleolytic enzyme on single stranded DNA its activity is suggested to require double 

stranded DNA ends, hence the opening of hairpins occurs by nicking the dsDNA part 5´ to 
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the ssDNA region (Connelly et al., 1999). Finally, MR(N) is able to remove 15-55 

nucleotides (nt) 5´ to DSBs in an ATP dependent manner resulting in 3´single strand tails 

therefore possibly disrupting covalent protein-DNA interactions on DSBs in vivo, such as 

removing of Spo11 in meiosis (see section 2.4.3) (Connelly et al., 2003; Hopkins and 

Paull, 2008).  

The role of Rad50´s ATPase function has been unclear, although it is essential for 

MR(N) function (Waltes et al., 2009). ATP binding was identified to play a role in 

Mre11´s nuclease activity as described above. Furthermore, the appearance of 3´single 

strand ends generated by removal of 15-55 nt 5´ to DSBs could occur due to a dual role of 

endonucleolytic cleavage and partial melting and unwinding on the basis of Rad50´s ATP 

binding and hydrolysis activity (Hopkins and Paull, 2008; Paull and Gellert, 1999). It has 

been proposed that Rad50 could also operate as an adenylate kinase in vivo (Bhaskara et 

al., 2007). Nevertheless, a Rad50 signature motif mutant, which lacks the ability to bind 

ATP, loses the capability to stimulate the checkpoint kinase ATM in vivo (Lee and Paull, 

2005), making it necessary to learn more about the structural framework of the catalytic 

head and therefore the role of Rad50´s ATPase.  

Besides the enzymatic functions of Mre11 and Rad50, the complex comprises also 

non-enzymatic, architectural features based on Rad50´s coiled-coil domain (Hopfner et al., 

2002). A structural function of MR(N) was suggested as nuclease-inactivating mutations in 

Mre11 did not impair most forms of DSB repair in mitotic cells. Moreover, the Rad50 

hook domain was shown to be critical in telomere maintenance and for induction of Spo11 

dependent meiotic DSB formation (Hohl et al., 2011; Wiltzius et al., 2005). In addition, 

MRX increased the ligation rate of linear DNA ends in c-NHEJ, suggesting a role for 

MRN as end-bridging factor (Chen et al., 2001). Scanning force microscopy analysis of 

human and prokaryotic MR(N) support these genetic studies. Intramolecular coiled-coil 

interaction seems to alter upon DNA binding, leading to either a structure where the 

coiled-coils are oriented in parallel or to a intermolecular bridging interaction based on the 

Zn-hook (Figure 4) (Moreno-Herrero et al., 2005; van der Linden et al., 2009). Summing 

up, MR(N) seems to have a major role in enforcing physical proximity of DNA ends, 

moreover the recombinational repair achieved by MR(N) in mitotic and meiotic cells 

seems to be primarily structural (Stracker and Petrini, 2011). 
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Nbs1 possesses no enzymatic activity on its own but rather it plays an important 

role in mediating between the MR core complex and the signal checkpoint protein kinase 

ATM and in recruiting other processing enzymes involved in DSB repair like CtIP. Nbs1 

also regulates the MR(N) complex, stimulating DNA binding and Mre11´s nuclease 

activity (Lee et al., 2003; Paull and Gellert, 1999; Schiller, 2011). 

 

 

 

Figure 4: Atomic force microscopy (AFM) of human MRN adapted from Moreno-Herrero et al., 2005.  
(A) AFM images and schematic model of free MRN shows intramolecular coiled-coil interaction within the 
complex. (B) AFM images and schematic model of MRN upon DNA binding shows long, parallel oriented 
coiled-coils or (C) intermolecular coiled-coil interaction. (D) The observed conformational changes are 
important for DNA-end tethering. 

 

2.4.3. Multiple roles of MRN in eukaryotes 

The multitude of features of the MR(N) complex, including enzymatic but also 

structural roles and the impact of MRN on genome stability, perceivable in various 

diseases like A-TLD, emphasizes MR(N)´s importance in various processes like DNA 

metabolism (DSB repair, meiosis, replication), telomere maintenance, immune system 

development and checkpoint signaling.  

MRN in DNA metabolism 

For the role of MRN in meiotic recombination various important indications have 

emerged from studies in S. cerevisiae. The essential step in meiosis is the insertion of 

DSBs catalyzed by Spo11. This initial process is facilitated by MRN in a nuclease 

independent way (Furuse et al., 1998; Keeney et al., 1997). Subsequent to cleavage, Spo11 

B A C D
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remains covalently bound to the 5´strands flanking the DSB and is not released until MRN 

endonucleolytically cleaves and removes Spo11-DNA oligonucleotides from the DSB site, 

resulting in an 3´overhanging structure (Neale et al., 2005; Usui et al., 1998). Furthermore, 

Spo11 removal is Sae2/Com1 dependent and interaction could possibly occur via Rad50 on 

DNA. Despite this proposal, a direct interaction of MRN and Sae2 could not be observed 

in vitro (Keeney and Neale, 2006; Lengsfeld et al., 2007; Stracker and Petrini, 2011). 

Additionally, MRN does stimulate the recruitment of DSB processing enzymes like Exo1 

(Zakharyevich et al., 2010). Consequently, MRN seems to display a ternary role in 

meiosis, by: (1.) facilitating DSB cleavage via Spo11, (2.) removal of Spo11 from DSB 

sites and (3.) stimulating the recruitment of DSB processing enzymes.  

Furthermore, the nuclease activity of Mre11 could play a role in dissolving 

covalently formed topoisomerase 1 and 2 intermediates. This suggestion is based on 

MRN´s function in Spo11 removal and it´s sensitivity to topoisomerase poisons when 

Mre11´s nuclease is deficient (Stracker and Petrini, 2011). 

Considering the DNA tethering feature of MRN it is likely that MRN is one of the 

early, if not the first, factors in sensing DSBs, emphasizing MRN´s role in recombinational 

repair. The scaffolding function of MRN links homologous chromosomes and prevent their 

separation during repair (Borde and Cobb, 2009; Hopfner et al., 2002). In S. cerevisiae, 

where the mechanistic details of resection are probably best understood, MRN together 

with Sae2 is suggested to catalyze the first resection at DSB sites by removal of a short 

ssDNA fraction, resulting in a short 3´ssDNA tail. Continuative resection, which is 

required for efficient induction of G2 arrest as well as SSA or HR repair, is carried out 

either by Exo1 or Dna2 together with the helicase Sgs1. Recruitment of processive 

nuclease/helicase complexes seems to be, at least in S. cerevisiae, stimulated by MRN 

whereas bulk resection is likely to be independent of MRN´s enzymatic function (Shim et 

al., 2010; Stracker and Petrini, 2011). In mammals, MRN together with CtIP (orthologue 

of Sae2) is supposed to facilitate analogous function in DSB resection. Whereas Sae2 in 

vitro shows a nuclease activity on its own, such a function couldn´t be demonstrated for 

CtIP and Ctp1 (CtIP orthologue in S. pombe), therefore possibly acting as co-factor for 

MRN (Lengsfeld et al., 2007; Limbo et al., 2007). The initial generation of 3´ssDNA tails 

by MRN and CtIP in mammalian cells was shown to affect Ku70/80 binding to the DSB, 

main sensor of DSBs in c-NHEJ. Recently reported data of S. pombe also suggest a role of 

Mre11´s nuclease activity and Ctp1 in the release of Ku70/80 (Langerak et al., 2011), 
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supporting an antagonistic role of MRN and Ku70/80. It is also known that HR is 

suppressed by Ku via inhibition of MRN, but inhibition mainly takes place in G1 and less 

in G2/S-phase when sister chromatids are not available, consistent with the fact that MRN 

is also involved in different NHEJ pathways (Dudley et al., 2005; Stracker and Petrini, 

2011). However, the importance of the first resection step in which MRN together with 

Sae2/CtIP/Ctp1 is active and the regulation of the different pathways is still poorly 

understood and needs to be investigated. 

Finally, MRN has an important function during the process of DNA replication, 

even though its role is less characterized than in homologous recombination. MRN is 

proposed to maintain genomic stability during replication by at least three different modes. 

First, MRN seems to prevent fork associated damage during ordinary replication and under 

stress. Second, MRN is presumably required in a nuclease-dependent manner to activate 

ATM upon replication stress promoting HR-mediated fork restart. Third, the scaffolding 

function of MRN could preserve the fork in its conformation to ensure progression during 

replication pauses (Borde and Cobb, 2009; Stracker and Petrini, 2011). 

MRN in telomere maintenance 

The MRN complex is proposed to represent at least two different functions in 

telomere homeostasis in mammals. First, MRN seems to be involved in telomere resection 

of the leading strand after replication resulting in a 3´ssDNA tail. This 3´ single strand 

overhang is important to impair c-NHEJ and it is required to form the t-loop, a structure 

critical for telomere protection and maintenance. MRN is also proposed to play a role in 

sensing dysfunctional telomeres, leading to activation of ATM and DSB repair by c-NHEJ, 

resulting in telomere end-joining and thus in loss of chromosome segregation, therefore 

causing cell death. MRN could also be involved in degradation of the 3´ overhang at 

dysfunctional telomeres to allow c-NHEJ but this suggestion has not been proven so far 

(Deng et al., 2009; Stracker and Petrini, 2011). In general, the scaffolding function of 

MRN seems to play a crucial role in telomere maintenance as illustrated in 2.4.2. In 

contrast to mammals, MRN has an impact on telomere length in S. cerevisiae, by 

recognizing short telomeres and recruiting the enzyme telomerase via Tel1 (ATM 

homologue) (Sabourin and Zakian, 2008).  
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MRN in immune system development 

Although MRN is not a key player for mammalian c-NHEJ, it is crucial for V(D)J 

recombination, which is strongly dependent on c-NHEJ (Deriano et al., 2009; Helmink et 

al., 2009). Furthermore, hypomorphic mutations in Nbs1, which cause the Nijmegen 

breakage syndrome, results in aberrant immunoglobulin isotype profiles in serum and 

reduced numbers of mature T cells. Mre11 nuclease deficient mice indicated a dual role for 

MRN in class switch recombination: (1) as essential component by catalyzing the resection 

at DSBs to generate ends with compatible microhomology sequences and (2) to activate 

ATM. In contrast, c-NHEJ seems to be independent of Mre11´s nuclease activity. MRN is 

also thought to play an important role in c-NHEJ by activating ATM and possibly as 

scaffolding protein (see section 2.4.2) (Dinkelmann et al., 2009; Rahal et al., 2010; Rass et 

al., 2009; Stracker and Petrini, 2011). Nevertheless, it will be essential to elucidate the 

precise role for MRN in both V(D)J and class switch recombination.  

MRN as mediator in checkpoint signaling 

MRN not only plays a role in sensing and resection of DSBs or as scaffolding 

protein, but also in the mediation of checkpoint signaling, therefore controlling repair, cell-

cycle arrest and apoptosis (in metazoa) in response to DSBs by recruiting the cell cycle 

checkpoint phosphoinisotide-3-kinase-related protein kinase (PIKK) ATM (Tel1 in yeast). 

In undamaged cells, ATM exists as an inactive dimer until it is activated by 

autophosphorylation followed by dimer dissociation, resulting in an active ATM monomer 

(Bakkenist and Kastan, 2003). The active monomer interacts with a conserved C-terminal 

sequence motif of Nbs1. This interaction is proposed to take place at DSB sites, since 

DNA binding by MRN enhances the affinity for ATM. But there is also evidence that 

ATM and MRN arrive at DSB ends as pre-assembled complex. The exact function of the 

MRN complex in controlling ATM activation is not fully understood. There are contrary 

results about the action of MRN in DSB induced autophosphorylation and activation of 

ATM (Falck et al., 2005; You et al., 2005). However, once activated and recruited to DSB 

sites by the sensor MRN, ATM acts as transducer and mediates in turn the phosphorylation 

of several important effector proteins, such as SMC1, Nbs1, Chk2 and histone H2AX. The 

generated circuit of phosphorylation between sensor, transducer and effector proteins 

promotes both DNA damage checkpoint signaling as well as accumulation of repair 
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proteins at DSBs and covalent marking of chromatin during break (Williams et al., 2007; 

You et al., 2005). 

 

2.4.4. Role of MR in prokaryotes  

The prokaryotic MR complex, also identified as SbcD (Mre11) and SbcC (Rad50) 

in bacteria, shares not only sequence similarities and morphological features with the 

eukaryotic system, it also displays almost identical enzymatic activities in vitro (Bemeleit, 

2007; Connelly et al., 1997; Connelly and Leach, 1996; Hopfner et al., 2001; Hopfner et 

al., 2000a; Paull and Gellert, 1998; Schiller, 2011; Sharples and Leach, 1995; Trujillo and 

Sung, 2001).  

Interestingly, and contrary to eukaryotes (and bacteriophage T4), there is no 

evidence that bacterial MR is directly involved in generating 3´ ssDNA tails in DSB repair 

necessary for homologous recombination. For that, bacterial cells possess an additional 

system, called RecBCD. MR and also ExoI are suggested to participate indirect in the 

RecBCD-catalyzed degradation process, eventually by blunting DNA ends, and thus 

preparing a substrate for RecBCD. It is not clear if both ExoI and MR act as 3´-

5´exonuclease on ssDNA overhangs or if MR shortens 3´overhangs indirect by cleaving 

hairpin-like structures present in ssDNA. So far, just the efficient degradation of hairpin 

structures could be demonstrated for the bacterial system in vitro and in vivo, even though 

weak degradation of 3´ssDNA tails could be reported for eukaryotic MR(N) (Connelly et 

al., 1999; Paull and Gellert, 1998, 1999; Zahradka et al., 2009). Moreover, bacterial MR 

has been directly implicated in genomic stability by elimination of palindromic sequences 

during replication. Together with RecA, MR was shown to process DNA hairpin structures 

which arise upon spontaneous DSB formation close to palindromic sequences (Connelly 

and Leach, 1996; Darmon et al., 2010). Bacterial MR was also shown to act in interstrand-

crosslink repair and removing proteins bound to DNA (see section 2.4.2) (Mascarenhas et 

al., 2006). Besides the HR pathway, a possible bacterial c-NHEJ pathway for DSB repair 

and MR association needs to be investigated, even though homologs of Ku70/80 in 

combination with ATP-dependent DNA ligases were found in various species (Cromie et 

al., 2001).  
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The archaeal Mre11:Rad50 complex is expected to play a key function in DNA 

metabolism pathways similarly to the bacterial and eukaryotic homologs, but so far there is 

no genetic evidence. HR is assumedly the preferred pathway for DSB repair in archaea as 

homologs for c-NHEJ Ku70/80 were not found in most species. There are no RecBCD 

homologs in archaea suggesting that Mre11:Rad50 exhibit equivalent functions in the first 

steps of HR like in eukaryotes. MR is linked in almost all thermophilic archaea to a 3´-

5´nuclease called HerA and the helicase NurA which could carry out the initial resection 

together with MR in HR (Constantinesco et al., 2004; Hopkins and Paull, 2008). 

The conservation of Rad50 and Mre11 morphological features and enzymatic 

activities in all three biological domains, makes the prokaryotic MR complex an ideal 

candidate for structural as well as biochemical analysis.  

 

2.4.5. The bacterial MR catalytic head complex 

Structural analyses of the bacterial Mre11:Rad50 complex have shed more light on 

its functional characteristics and on the interplay between the nuclease and ATPase 

subunits of the complex. The crystal structure of the MR catalytic head domain from the 

thermophilic bacteria Thermotoga maritima (Tm) has been determined in the ATP-free 

state (Bemeleit, 2007; Lammens et al., 2011). Unexpectedly, the MR catalytic head is an 

elongated crescent shaped complex with approx. 60Å x 70Å x 210Å dimensions (Figure 

5). Its core is formed by a dimer of the two Mre11 nuclease domains whereas the Rad50 

nucleotide binding domains (NBDs) attach to the outside of the nuclease dimer and form 

the tips of the crescent. The Rad50 coiled-coils protrude from the convex side of the 

catalytic head, opposite the nuclease active sites. As a result, the angle between the coiled-

coils in the nucleotide free conformation is approx. 120°. This architecture fits well the 

bipolar shapes of full prokaryotic MR and eukaryotic MRN complexes previously 

visualized by electron and atomic force microscopy (Connelly et al., 1998; de Jager et al., 

2001; Hopfner et al., 2001). The NBDs of Rad50 possess the typical ABC ATPase 

segments, while Mre11 is composed of two functional nuclease modules, consistent of 

phosphodiesterase and accessory DNA binding capping domain, and the Rad50 binding 

domain. The Rad50 binding domain contains a helix-loop-helix (HLH) domain that binds 

to the root of Rad50’s coiled-coil (designated as interface 1). The nuclease module and the 

HLH domain are widely separated and connected by a long, poorly structured linker, that 
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wraps around Rad50’s NBD therefore placing the capping and HLH domains of Mre11 on 

opposite sites. A second interaction is formed between Mre11’s capping domain and the C-

terminal part of Rad50’s NBDs (designated as interface 2), stabilizing the observed 

extended domain arrangement between Mre11 and Rad50 in the catalytic head. Finally, 

small angle x-ray scattering (SAXS) analysis of the bacterial MR complex in solution 

could verify the elongated shape of the complex in the nucleotide free state (Bemeleit, 

2007). 

The overall structure explains two functional characteristics of MR which were 

poorly understood so far. The widely separated Rad50 NBDs allows unobstructed access 

of DNA to the Mre11 active sites, even if DNA ends are blocked by large proteins. In 

addition, the structure shows that MR has the potential to undergo major conformational 

changes, consistent with the observation of large conformational changes identified by 

scanning force microscopy of human MRN (Moreno-Herrero et al., 2005).  

 

 

 

Figure 5: T. maritima Mre11:Rad50 catalytic head complex structure in its ATP-free state adapted 
from Lammens et al., 2011. The catalytic head module of the bacterial MR complex shows an elongated, 
crescent shape in the absence of ATP. The center of the head module is formed by the Mre11dimer which 
binds a Rad50 monomer on each side therefore forming the tips of the crescent. Individual domains and 
important motifs are highlighted and annotated. 
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2.4.6. Working model of MR´s DNA binding mechanism 

Besides in vivo analysis of potential DNA binding sites in eukaryotes (Furuse et al., 

1998; Usui et al., 1998), structural analysis of archaeal Mre11 bound to DNA revealed new 

insights into a possible DNA binding mechanism. The crystal structure of dimeric Mre11, 

including phosphodiesterase and capping domain from the thermophilic archaeon 

Pyrococcus furiosus has been determined bound to two different DNA´s, so-called 

synaptic and branched complex (Figure 6A and B) (Williams et al., 2008).  

 

 

 

Figure 6: P. furiosus Mre11 dimer bound to DNA and hypotethical DNA bridging model adapted from 
Williams et al., 2008. (A) Mre11 dimer bound to synaptic DNA indicate symmetrically bound dsDNA ends. 
Synaptic DNA ends are designated as DNA 1 and DNA 2. (B) Mre11 dimer bound to branched DNA. The 
ssDNA-dsDNA junction is bound asymmetric by Mre11 dimer and capping domain interactions.                 
(C) Presumed model of MR bridging short-range and long-range DNA ends. Mre11 phosphodiesterase dimer 
colored in blue, Mre11 capping domain colored in black, and Rad50 colored in orange. 

 

Whereas the synaptic complex is mimicking two DSB ends arising upon DNA damage, the 

branched complex (ssDNA-dsDNA junction) could represent a DNA structure occurring at 

a collapsed replication fork. The synaptic DNA is bound symmetrically by Mre11, 

meaning one dsDNA end to each nuclease domain. In contrast the ssDNA-dsDNA junction 

A 

B 

C
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is bound asymmetrically, implicating the capping domain in ssDNA binding of branched 

DNA. Nevertheless, both DNA´s illustrate analogous but not equivalent core DNA binding 

contacts. In addition, at least some of the DNA-Mre11 binding contacts are conserved to 

the predicted DNA binding motif in S. cerevisiae (Usui et al., 1998; Williams et al., 2008). 

Based on the structural insights of Mre11´s DNA binding site it is conceivable that 

upon ATP binding MR encloses DNA in a ring shape conformation (Figure 6C). Therefore 

the MR complex could keep two opposed short-range DSB ends in close proximity but 

also link sister chromatids by Rad50 hook-dependent long-range tethering. Taken together, 

it seems like the MR complex harbors flexible and diversified DNA-bridging capabilities 

and makes use of distinct modes of long-range and short-range DNA tethering to sense, 

coordinate, process, and allows access for variable DNA ends to repair proteins involved in 

HR (Williams et al., 2008). 
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2.5. Objectives 

The MR complex plays a crucial role in many processes including DSB sensing and 

repair processing. Even though various enzymatic and also architectural functions have 

been determined for the MR complex in vitro and in vivo, the functional interplay and 

actual working mechanism has been unclear so far. Besides the controversial role of 

Rad50’s ATPase function it is unknown why DSB recognition by MR(N) has no clear 

biochemical preference for DNA ends or hairpins and binds DNA also at internal sites. 

Moreover Mre11´s endonuclease activity was shown to play a crucial role in MR´s 

functionality whereas the 3´-5´-exonuclease activity seems to have a rather dispensable 

role (Williams et al., 2008). Even though the catalytic head of the bacterial MR complex 

could be determined in its ATP-free state only low resolution images indicate gross 

conformational rearrangements upon ATP and/or DNA binding.  

Therefore the aim of this work was to analyze the interplay and the conformational 

changes of the prokaryotic Mre11:Rad50 complex upon ATP and/or DNA binding. To this 

end, it was an ambition to determine a high resolution structure of the bacterial 

Thermotoga maritima (Tm) Rad50 nucleotide binding domain bound to an ATP analog and 

besides this, the structure of the complete TmMre11:Rad50 catalytic head domain in its 

nucleotide bound state. High-resolution crystal structures were combined with small-angle 

x-ray scattering data to clearly define the conformation of the nucleotide bound MR 

complex in solution. In addition, to understand MR´s DNA binding mechanism in more 

detail, the precise study of its DNA affinity was also necessary.  

 

 

 



3. Materials and Methods                                                                                                                    27 
       

 

3. Materials and Methods 

3.1. Materials 

All chemicals used in this work were of the highest available grade obtained from 

Sigma-Aldrich (Deisenhofen), Carl Roth (Karlsruhe), or Merck (Darmstadt), unless 

otherwise stated. Enzymes for molecular biology were purchased from Fermentas (St. 

Leon-Rot) or New England Biolabs (Frankfurt). HPSF purified oligonucleotides for 

molecular cloning and RP-HPLC purified oligonucleotides for in vitro activity assays were 

obtained from Eurofins MWG Operon (Ebersberg) and Thermo Fisher Scientific (Ulm), 

respectively. Chromatographic media and columns were purchased from GE Healthcare 

(Munich). Crystallization screens and tools were from Hampton Research (Laguna Niguel, 

USA), NeXtal (QIAGEN; Hilden), and the Max-Planck-Crystallization Facility 

(Martinsried).  

 

3.1.1. Oligonucleotides 

Table 1: DNA oligonucleotides used for molecular cloning and site directed mutagenesis. Recognition 
sites of restriction endonucleases are underlined. Bold nucleotides correspond to added sequences encoding 
linker regions, affinity tags or start/stop codons, red nucleotides correspond to mutated codons. Tm, 
Thermotoga maritima; Pf, Pyrococcus furiosus; aa, amino acid; fwd, forward; rev, reverse; C-His6, C-
terminal hexahistidine tag.  

 

Amplified gene fragment/ 
mutation 
 

Sequence (5´-3´ direction) Restriction 
site 

TmRad50 aa 1-190 fwd  AAAAAAAACATATGCGCCCTGAACGCCTCACCGTTAGAAA
CTTTCTCGG  
 

NdeI 

TmRad50 aa 1-190 Linker rev  CCGCACCGCCCGCACCGCCTGAGGATATCTCGTTCTCCA
GCT 
 

--- 

TmRad50 aa 686-852 Linker fwd GGCGGTGCGGGCGGTGCGGGCGGTAGTCTGGAGAAGA
AACTAAAAGAGA  
 

--- 

TmRad50 aa 686-852 rev AAAAAAAAGCGGCCGCTCACTCATTCACCACAACTCCTC 

 

NotI 

TmMre11 aa 7-385 fwd AAAAAAAAGCGGCCGCTAACTTTAAGAAGGAGATATACA
ATGAAAATTCTGCACACATCCGACTGGCACCTC 
 

NotI 

TmMre11 aa 7-385 rev TTTTTTGCTCAGCTCAGGCCTCACTCTTTTTCACCTCAT 

 

Bpu1102I 

TmMre11H94Q fwd CAGGAAACCAGGATTGGAAGGGGTTGAAACTCTT 

 

--- 
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TmMre11H94Q rev CTTCCAATCCTGGTTTCCTGGAAGTACAACCAC 

 

--- 

 
TmMre11 aa 343-385 fwd 

 
AAAAAAAAGCGGCCGCTAACTTTAAGAAGGAGATATAGT
AATGAAAGAAGAACTGGACAAGCTTGATT 
 

 
NotI 

TmMre11 aa 343-385 C-His6 rev TTTTTTGCTCAGCTTAGTGGTGGTGGTGGTGGTGGCCGG
CCTCACTCTTTTTCACCTCAT 
 

Bpu1102I 

TmMre11F291S fwd GAAAAGCATAAGGGATTCCTGCAGGAATTTTCCTG 

 

--- 

TmMre11F291S rev CAGGAAAATTCCTGCAGGAATCCCTTATGCTTTTC 

 

--- 

TmMre11Y277R fwd CGTTGAAAACTCTCTACCGCAAAAAGATAGACACCT 

 

--- 

TmMre11Y277R rev GAGGTGTCTATCTTTTTGCGGTAGAGAGTTTTCAACG 

 

--- 

TmRad50W758A fwd GGTTTTATCATAAAAGATGCGGGTATCGAAAGACCAG 

 

--- 

TmRad50W758A rev CTGGTCTTTCGATACCCGCATCTTTTATGATAAAACC 

 

--- 

TmRad50I760C fwd CATAAAAGATTGGGGTTGCGAAAGACCAGCGAGG 

 

--- 

TmRad50I760C rev CCTCGCTGGTCTTTCGCAACCCCAATCTTTTATG 

 

--- 

TmRad50N64C fwd GATTACGTGAACAGGTGCGCCGTCGATGGAAC 

 

--- 

TmRad50N64C rev GTTCCATCGACGGCGCACCTGTTCACGTAATC 

 

--- 

TmRad50D804C fwd GGGTTTTCCAGTCTCTGCACGGAGAACAAAGAG 

 

--- 

TmRad50D804C rev CTCTTTGTTCTCCGTGCAGAGACTGGAAAACCC 

 

--- 

TmRad50H830C fwd GATCGTTTTCATCACGTGCGACAGGGAGTTCTC 

 

--- 

TmRad50H830C rev GAGAACTCCCTGTCGCACGTGATGAAAACGATC 

 

--- 

PfRad50 aa 1-215 fwd CTATACTCATATGAAGTTGGAGAGAGTGACTGTGA 

 

NdeI 

PfRad50 aa 1-215 Linker rev TGCAGATCCTGAACCAGATGCTATCTCTTGGAGAACTTG
AATAA 
 

--- 

PfRad50 aa 689-882 Linker fwd GCATCTGGTTCAGGATCTGCAGAAAAGAGGAGAGACAC
AATAAA 
 

--- 

PfRad50 aa 689-882 rev ACTATTCTGCGGCCGCTCAAGAGACCACCTCCACC 

 

NotI 

PfMre11 aa 1-426 fwd CTATACTCATATGAAGTTTGCTCACTTAGCCGATAT 

 

NdeI 

PfMre11 aa 1-426 rev ATATATTGCGGCCGCTCATCTAGCACCACCAAGCCAGCTA
TCAAG 
 

NotI 

PfRad50E823Q fwd GCCTCCTGATTTTAGATCAGCCAACGCCTTATTTAG 

 

--- 

PfRad50E823Q rev CTAAATAAGGCGTTGGCTGATCTAAAATCAGGAGGC 

 

--- 

PfMre11H85Q fwd CTATAGAAGGGAATCAGGACAGAACACAGAGAGG 

 

--- 

PfMre11H85Q rev CTCTCTGTGTTCTGTCCTGATTCCCTTCTATAG --- 
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Table 2: DNA oligonucleotides used for in vitro activity assays. DNA sequences are adjusted to (Guy and 
Bolt, 2005). For annealing, the oligonucleotides were mixed with a 1.1fold molar excess of the unlabeled 
oligonucleotide in annealing buffer (40 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2), incubated in a 
thermocycler (Biometra T personal) for 5 min at 95°C, and cooled down to 4°C at a cooling rate of 0.1°C/s. 
In the case of ds40mer either strand 1 and 2 or strand 1 and 3 were annealed. The particular label, 6-FAM or 
fluorescein (FLC), are highlighted in green. ds, double stranded; ss, single stranded;   

 

Name 
 

Sequence (5´-3´ direction) 

ss40mer strand 1: 6-FAM – TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 
 

 
ds40mer 
 

strand 1: FLC- ATTCTGGCTTGCTAGGACATGCTGTCTAGAGACTATCGAT 

strand 2:          ATCGATAGTCTCTAGACAGCATGTCCTAGCAAGCCAGAAT 

strand 3: FLC- ATCGATAGTCTCTAGACAGCATGTCCTAGCAAGCCAGAAT 
 

 

ds50mer 
strand 1: 6-FAM- ATCGATAGTCTCTAGACAGCATGTCCTAGCAAGCCAGAATTCGGCAGCGT 

strand 2:               ACGCTGCCGAATTCTGGCTTGCTAGGACATGCTGTCTAGAGACTATCGAT 
 

 

3.1.2. Plasmids 

Table 3: Plasmids used for recombinant protein expression in E. coli. Tm, Thermotoga maritima; Pf, 
Pyrococcus furiosus; aa, amino acid; HLH, helix-loop-helix domain; NBD, nucleotide binding domain; 
C(N)-His6, C(N)-terminal hexahistidine tag; L8(7), Linker of 8 and 7 amino acids, respectively;  

 

Name of expression 
construct 
 

Encoded fragment Restriction 
sites 

Tag Vector 

pTmMre11HLH:Rad50NBD 
(from D.J. Bemeleit, AG Hopfner) 

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852 and 
TmMre11: aa 343-385 
 

NdeI/NotI 
 
 NotI/Bpu1102I 

CMre11-His6 pET-29b 

pTmMre11:Rad50NBD                
(from D.J. Bemeleit, AG Hopfner) 

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852 and   
TmMre11: aa 7-385 
 

NdeI/NotI  
 
NotI/Bpu1102I 

--- pET-29b 

pTmMre11H94Q:Rad50NBD         
(from C.B. Schiller, AG Hopfner) 

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852 and             
TmMre11: aa 7-385H94Q 

 

NdeI/NotI  
 
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q, F291S:Rad50NBD   TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852 and          
TmMre11: aa 7-385H94Q, F291S 

 

NdeI/NotI  
 
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q, Y277R:Rad50NBD   TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852 and             
TmMre11: aa 7-385H94Q, Y277R 

 

NdeI/NotI  
 
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q:Rad50NBD, W758   TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852W758A and 
TmMre11: aa 7-385H94Q 

NdeI/NotI  
 
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 
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pTmMre11H94Q:Rad50NBD, I760C   TmRad50: aa 1-190/ 

L8GGAGGAGG/686-852 I760C and      
TmMre11: aa 7-385H94Q 

 

NdeI/NotI             
             
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q:                     
Rad50NBD, N64C, I760C   

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852I760C, N64C 
and TmMre11: aa 7-385H94Q 

 

NdeI/NotI  
           
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q:             
Rad50NBD, D804C, H830C   

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852D804C, H830C 
and TmMre11: aa 7-385H94Q 

 

NdeI/NotI  
         
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q, F291S:                 
Rad50NBD, D804C, H830C   

TmRad50: aa 1-190/ 
L8GGAGGAGG/ 686-852D804C, 

H830C and TmMre11: aa 7-
385H94Q, F291S 

 

NdeI/NotI  
       
NotI/Bpu1102I 

NRad50-His6 pET-28bTEV 

pTmMre11H94Q:             
Rad50NBD, D804C, H830C   

TmRad50: aa 1-190/ 
L8GGAGGAGG/686-852D804C, H830C 
and TmMre11: aa 7-385H94Q, 

F291S 

 

NdeI/NotI  
 
NotI/Bpu1102I 

--- pET-29b 

pPfMre11:Rad50NBD, E823Q  PfRad50: aa 1-215/ 
L7ASGSGSA/689-882E823Q and         
PfMre11: aa 1-426 
 

NdeI/NotI 
NotI/AscI 
AarI/AscI  

--- pKP-29 

pPfMre11H85Q:Rad50NBD, E823Q PfRad50: aa 1-215/ 
L7ASGSGSA/689-882E823Q and         
PfMre11: aa 1-426H85Q 

 

NdeI/NotI 
NotI/AscI 
AarI/AscI 

--- pKP-29 

pAK400-FITC-E2wt 
(Pedrazzi et al., 1997) 

scFv fragment FITC-E2 
 

SfiI C-His6 pAK400 

 

 

Table 4: Plasmids used for in vitro activity assays.  

 

Name 
 

description length Source 

X174 RF II 


double stranded, nicked, circular 

form of X174 DNA (relaxed form) 

5386 base pairs New England Biolabs 
(Frankfurt) 

X174 Virion 
 

single stranded, circular, viral DNA 5386 bases  New England Biolabs 
(Frankfurt) 

pBluescript II 
KS + 

double stranded, supercoiled DNA 2958 base pairs Fermentas (St. Leon-
Rot) 
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3.1.3. Strains 

Table 5: E. coli strains used for molecular cloning and recombinant protein expression. The E. coli XL1 
blue strain was used for molecular cloning, the E. coli Rosetta (DE3) and BL21 Star (DE3) strains were used 
for recombinant protein expression. 

 

Strain 
 

Genotype Source 

XL1- Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F' proAB lacIqZΔM15 Tn10 (TetR)] 
 

Stratagene (Heidelberg)  
  

Rosetta (DE3) F- ompT hsdSB (rB
- mB

-) gal dcm (DE3) pRARE (CamR)
 

Novagen (Madison, USA) 
 

BL21 Star 
(DE3) 

F- ompT hsdSB (rB
-mB

-) gal dcm rne131 (DE3)  Invitrogen (Karlsruhe)  
 

 

3.1.4. Media and antibiotics 

Lysogeny Broth (LB) liquid media as well as LB agar plates (1% (w/w) NaCl, 1% 

(w/v) Bacto-tryptone, 0.5% (w/v) yeast extract and  1.5% agar) were prepared according 

to standard protocols (Sambrook and Russell, 2001). Respective antibiotics were added to 

the media using following concentrations: kanamycin (50 µg/ml) and chloramphenicol (34 

µg/ml). 

 

3.1.5. Preparation of sodium orthovanadate solution 

Since vanadium is a transition metal, it exists in aqueous solutions in different 

oxidation states (4+, 5+), resulting in vanadyl and vanadate ionic species, respectively. 

Vanadyl, metavanadate, orthovanadate, and decavanadate are interconverted depending on 

the concentration, pH, and redox potential of the solution. Therefore the preparation of a 

150 mM sodium orthovanadate stock solution was carried out in water adjusted to pH ~10.  

To ensure the presence of vanadate monomers, the solution was boiled until it became 

translucent followed by readjustment of the pH to 10. Orange color observed before 

boiling is due to decavanadate. Recurring cycles of boiling and readjustment lead to a 

stable pH of 10, therefore resulting in a stable solution containing orthovanadate. 
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3.2.  Molecular biology methods 

Common molecular biology procedures were carried out according to standard 

protocols if not indicated differently (Sambrook and Russell, 2001). Commercially 

available kits and enzymes were used following the manufacturer’s instructions.  

 
 

3.2.1. Molecular cloning 

Constructs of bacterial and archaeal Mre11 and Rad50 (MR) were designed using 

sequence alignments of MR from several species generated by ClustalW (Larkin et al., 

2007), as well as secondary structure predictions with JPRED (Cole et al., 2008) and 

PSIPRED (Bryson et al., 2005), and coiled-coil predictions considered by the COILS 

server (Lupas et al., 1991).  

DNA Oligonucleotides for molecular cloning were designed using the program 

GeneRunner (http://www.generunner.net/) and contained individually restriction sites and 

additional sequences encoding linker regions or hexahistidine affinity tags for protein 

purification (Table 1). The corresponding genes of Mre11 and Rad50 were amplified by 

polymerase chain reaction (PCR) from Thermotoga maritima MSB8 (Tm) or Pyrococcus 

furiosus (Pf) genomic DNA using the Phusion® Flash High-Fidelity PCR Master Mix 

(Finnzymes, Espoo, Finnland). A typical PCR reaction contained 10-50 ng template DNA 

and 50 pmol of each DNA oligonucleotide in a total volume of 20 µl. The standard PCR 

program used is shown in Table 6. 

 

Table 6: Standard PCR program used for molecular cloning. X°C, depending on melting temperature of 
used oligonucleotide. 

 

Cycle step 
 

temperature time Cycles 

nitital denaturation 98°C 10 sec 1 

2.  Denaturation 98°C 1 sec  

3.  Annealing X°C 5 sec 30 

4.  Extension 72°C 15 sec/1 kb  

5.  Final extension 72°C 1 min 1 

 4°C hold  
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TmRad50NBD was engineered by fusing the N-terminal (aa 1-190) and C-terminal 

(aa 686-852) segments by an 8 amino acid linker (GGAGGAGG) in a single open reading 

frame of pET-29b or pET-28bTEV with NdeI/NotI. Either TmMre11 (aa L7M-385) or 

TmMre11HLH (aa 343-385) were cloned downstream the Rad50NBD gene with 

NotI/Bpu1102I, respectively. 

PfRad50NBD was engineered by fusing the N-terminal (aa 1-215) and C-terminal (aa 

689-882) segments by an 7 amino acid linker (ASGSGSA) in a single open reading frame 

of pKP-29 with NdeI/NotI. Likewise PfRad50NBD, PfMre11 (aa 1- 426) was cloned into 

pKP-29. To facilitate coexpression of Mre11 and Rad50NBD, PfRad50NBD was 

transformed/subcloned with NotI/AscI and AarI/AscI from pKP-29_PfRad50NBD into pKP-

29_ PfMre11 downstream the Mre11 gene. 

All constructs were analysed via DNA sequencing by Eurofins MWG Operon 

(Ebersberg) or GATC Biotech (Kempten) and are listed in Table 3. 

 

3.2.2. Site directed mutagenesis 

DNA Oligonucleotides with single and multiple nucleotide substitutions were 

designed with the help of the program PrimerX (http://www.bioinformatics.org/primerx/) 

(Table 1). Mre11:Rad50 mutants described in this thesis were generated by Site Directed 

Mutagenesis using Overlap Extension PCR and the Phusion® Flash High-Fidelity PCR 

Master Mix (Finnzymes, Espoo, Finnland). Usually an Overlap Extension PCR exists of 

two separated PCR steps. In the first PCR reaction, two fragments containing either the 5´ 

or 3´ region of the mutation site together with an overlapping region are generated. In a 

second step, to allow subsequent hybridization of the overlapping regions and therefore 

extension of the full length PCR product, relevant DNA oligonucleotides are added with a 

hold of 5 PCR cycles to the second PCR reaction. Both PCR and further cloning steps were 

carried out analogous to 3.2.1. Constructs were analysed via DNA sequencing by Eurofins 

MWG Operon (Ebersberg) or GATC Biotech (Kempten) and are listed in Table 3. 
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3.2.3. Transformation of E. coli 

E. coli strains used for transformation are listed in Table 5. Chemically competent 

cells were prepared based on the methodology from Hanahan (Hanahan, 1983). For 

transformation, 10 ng of plasmid DNA or 100 ng of ligated DNA were added to 75 µl of 

chemically competent E. coli cells. Subsequent incubation on ice for 15 min, cells were 

heat-shocked at 42°C for 1 min and cooled down on ice for 2 min. After adding 900 µl of 

LB medium, the cells were incubated under aerobic conditions at 37°C for 45 min. Either 

50 µl or in the case of a ligation reaction the whole cell suspension were plated on LB-agar 

plates containing the respective antibiotics and incubated at 37°C overnight. 

 

3.3. Protein biochemistry methods 

3.3.1. Protein expression in E. coli 

For recombinant protein expression either E. coli Rosetta (DE3) or E. coli BL21 

Star (DE3) (Table 5) cells containing the plasmid of interest (Table 3) were grown in LB 

media under aerobic conditions at 37°C to an OD600 of 0.6-0.8. Protein expression was 

induced by addition of 0.5 mM IPTG and carried out at 18°C overnight. Cells were 

harvested by centrifugation the next morning, frozen in liquid nitrogen and stored at -80°C 

until further use. 

 

3.3.2. Purification of recombinant proteins 

Purification of recombinant MR protein was dependent on the character and on the 

tag-labeling of the particular protein. Respective buffers and their compositions are listed 

in Table 7. 

Cells containing recombinant TmMre11:Rad50NBD protein without tag were 

resuspended in buffer A and disrupted by sonication. The cell lysate was cleared by 

centrifugation and the supernatant was heated up to 60°C for 10 min to remove heat labile 

E. coli proteins. Further purification was performed by ammonium sulfate precipitation 

(40%, 60%) and hydrophobic interaction chromatography Phenyl HP column with buffer B 
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and C. Subsequently HiTrap Q HP anion exchange chromatography with buffer D and E, 

and Superdex 200 size-exclusion chromatography with buffer F was performed.  

His6-labeled TmMre11:Rad50NBD protein was purified following initial 

respuspension of harvested cells in buffer G and disruption by sonication. The cell lysate 

was cleared by centrifugation and the supernatant was incubated at 60°C for 10 min. After 

Ni-NTA affinity chromatography (Qiagen) in buffer H-J, the proteins were purified by 

Superdex 200 size-exclusion chromatography in buffer F.  

Cells containing recombinant His6-labeled TmMre11HLH:Rad50NBD protein were 

resuspended in buffer K and disrupted by sonication. The cell lysate was cleared by 

centrifugation and the supernatant was heated up to 60°C for 10 min. Further purification 

was performed by affinity chromatography Ni-NTA column (Qiagen) in buffer K-M and 

by Superdex 200 size-exclusion chromatography with buffer N.  

For purification of PfMre11:Rad50NBD cells, containing recombinant protein, were 

resuspended in buffer A and disrupted by sonication. The cell lysate was cleared by 

centrifugation and the supernatant was incubated at 60°C for 10 min. After ammonium 

sulfate precipitation, Sephacryl 300 size-exclusion chromatography in high salt buffer O 

was performed. Following this, the protein was purified by HiTrap SP FF ion-exchange 

chromatography in buffer P and Q and by Superdex 200 size-exclusion chromatography in 

buffer R. 

Purification of the fluorescein binding scFv fragment FITC:E2 was carried out on 

the basis of C-terminal His6 tag. First, harvested cells were respuspended in buffer H and 

disrupted by sonication. After the cell lysate was cleared by centrifugation the protein was 

purified by affinity chromatography Ni-NTA column (Qiagen) with buffers H, I and S and 

by HiTrap Q HP anion exchange with buffer T and U. As final step, a Superdex 200 size-

exclusion chromatography in buffer F was performed. 
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Table 7: Buffers used for purification of recombinant protein. When stated, 5 mM ß-Mercaptoethanol 
was added to the buffers when cysteine mutants were purified.  

Name 
 

Composition 

Buffer A 20 mM Tris pH 7.6, 500 mM NaCl, 5 mM EDTA, ( 5 mM ß-Mercaptoethanol) 
  

Buffer B 
 

20 mM Tris pH 7.5, 3 M KCl, 1 mM EDTA, ( 5 mM ß-Mercaptoethanol) 
 

Buffer C 
 

20 mM Tris pH 7.5, 1 mM EDTA, ( 5 mM ß-Mercaptoethanol) 
 

Buffer D 
 

20 mM Tris pH 8.3, 50 mM NaCl, 1 mM EDTA, ( 5 mM ß-Mercaptoethanol) 

Buffer E 
 

20 mM Tris pH 8.3, 1 M NaCl, 1 mM EDTA, ( 5 mM ß-Mercaptoethanol) 
 

Buffer F 200 mM NaCl, 20 mM Tris pH 7.8, ( 5 mM ß-Mercaptoethanol)  
 

Buffer G 
 

20 mM Tris pH 7.6, 500 mM NaCl, ( 5 mM ß-Mercaptoethanol) 

Buffer H 
 

50 mM NaH2PO4 pH 7.8, 200 mM NaCl, 10 mM imidazole ( 5 mM ß-Mercaptoethanol) 

Buffer I 
 

50 mM NaH2PO4 pH 7.8, 1 M NaCl, 30 mM imidazole ( 5 mM ß-Mercaptoethanol) 

Buffer J 
 

50 mM NaH2PO4 pH 7.8, 200 mM NaCl, 250 mM imidazole (  5 mM ß-Mercapto-
ethanol) 
 

Buffer K 
 

50 mM NaH2PO4 pH 7.0, 300 mM NaCl, 10% (v/v) glycerol, 10 mM imidazole, 2 mM ß-
Mercaptoethanol 
 

Buffer L 
 

50 mM NaH2PO4 pH 7.0, 1.5 M NaCl, 10% glycerol, 30 mM imidazole, 2 mM ß-
Mercaptoethanol 
 

Buffer M 
 

50 mM NaH2PO4 pH 7.0, 100 mM NaCl, 250 mM imidazole, 2 mM ß-Mercaptoethanol 

Buffer N 200 mM NaCl, 5 mM Tris pH 7.8  
 

Buffer O 
 

20 mM Tris pH 7.6 and 2 M LiCl 

Buffer P 
 

20 mM MES pH 7.0, 100 mM Potassium acetate, 5 mM EDTA 

Buffer Q 
 

20 mM MES pH 7.0 1 M Potassium acetate, 5 mM EDTA 

Buffer R 20 mM Tris pH 7.6, 200 mM NaCl, 5 mM MgCl2 
  
Buffer S 
 

50 mM NaH2PO4 pH 7.8, 200 mM NaCl, 150 mM imidazole  
 

Buffer T 
 

20 mM Tris pH 8.0, 50 mM NaCl, 0.1 mM EDTA 

Buffer U 20 mM Tris pH 7.8, 1 M NaCl 
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3.3.3. Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were analyzed by discontinuous Polyacrylamide Gel 

Electrophoresis analogous to the protocol of Laemmli (Laemmli, 1970) using the vertical 

Mini-PROTEAN 3 System (BioRad). Depending on the molecular weight of the particular 

protein, gels containing 10%, 12% and 15% acrylamide in the separating gel were used. 

Prior to loading, samples were mixed with 1fold Loading Dye (4fold: 110 mM Tris pH 6.8, 

16% (v/v) glycerol, 4% (w/v) SDS, 5% (v/v) ß-mercaptoethanol, 0.6% (w/v) bromphenol 

blue). Subsequent to electrophoresis at 200V-230V in running buffer (25 mM Tris, 192 

mM glycine, 0.1% (w/v) SDS), gels were stained in Coomassie staining solution (7% (v/v) 

acetic acid, 50% (v/v) ethanol, 0.2% (w/v) Coomassie Brilliant Blue R-250) and destained 

with deionised water. As molecular weight standard the PAGE RULERTM PRESTAINED 

PROTEIN LADDER #SM0671 (Fermentas) was used.  

 

3.3.4. Dimerization of TmMre11HLH:Rad50NBD 

Dimerization of TmMre11HLH:Rad50NBD was carried out by mixing 54 mg/ml (580 

µM) protein with 14 mM of the ATP analog AMPPNP. The dimerization process reached 

its maximum after 3 days of incubation at 4°C. To quantify the amount of dimerized 

protein, an aliquot of the mixture was loaded onto a S200 5/150 GL column and analyzed 

by analytical Gel filtration (see section 3.3.5).  

 

3.3.5. Analytical size exclusion chromatography 

In order to determine the oligomeric state and homogeneity of purified proteins or 

to analyze Protein-Protein and DNA-Protein interactions of the bacterial MR complex, 

samples were loaded onto a Superdex 200 5/150 GL or Superose 6 PC 3.2/30 gel filtration 

column respectively and analyzed by analytical gel filtration. Examined interaction 

partners and their corresponding chromatography running buffers are listed in Table 8. 
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Table 8: Analyzed Protein-Protein and DNA-Protein interactions and their corresponding buffer 
conditions. Tm, Thermotoga maritima; HLH, helix-loop-helix domain (aa 343-385); NBD, nucleotide 
binding domain (aa 1-190/L8/686-852); (1), interaction partner 1; (2), interaction partner 2; (3), interaction 
partner 3. 

 

Interaction partner 
 

Chromatography running buffer 

(1) TmMre11HLH:Rad50NBD (Mono)              
(2) TmMre11HLH:Rad50NBD (Mono)  
 

50 mM Tris pH 7.8, 100 mM NaCl, 5 mM MgCl2, 100 µM 
MnCl2 

(1) TmMre11F291S:Rad50NBD, D804C, H830C   

(2) ds plasmid DNA (X174 RF II) 
 

50 mM Tris pH 7.8, 200 mM NaCl, 10 mM MgCl2, 1 mM 
MnCl2 

(1) TmMre11F291S:Rad50NBD, D804C, H830C   

(2) ss plasmid DNA (X174 Virion) 
 

50 mM Tris pH 7.8, 200 mM NaCl, 10 mM MgCl2, 1 mM 
MnCl2 

(1) TmMre11:Rad50NBD (S-S)                 
(2) FITC-E2                                          
(3) ds40mer (strand 1 and 3) 

50 mM Tris pH 7.8, 300 mM NaCl, 10 mM MgCl2, 1 mM 
MnCl2 

 
3.3.6. Crosslinking via Bis-Maleimidoethane (BMOE) 

The double-mutant TmMre11:Rad50NBD, I760C, N64C complex was purified under 

reducing conditions (5 mM -Mercaptoethanol; 3.3.2) and rebuffered into crosslinking 

buffer containing 50 mM Tris pH 7.8, 200 mM NaCl, 10 mM MgCl2, 1 mM MnCl2 using a 

HiTrap Desalting column. The protein was concentrated to 1 mg /ml (5.5 µM) and mixed 

with either 5 mM AMPPNP or 5 mM ATP and 16.5 µM BMOE (Bis-Maleimidoethane) 

(Pierce). The crosslinking agent was dissolved to a concentration of 10 mM in DMSO just 

before use and diluted to 50 µM BMOE stock solution in crosslinking buffer. After 1 min 

incubation at 60°C, 50 mM cysteine was added to stop the reaction. Subsequently the 

samples were run on SDS–PAGE followed by Coomassie blue staining (3.3.3).  

 

3.3.7. Disulfide bridging via copper sulfate (CuSO4) 

For disulfide bond formation the TmMre11H94Q:Rad50NBD, D804C, H830C and 

TmMre11H94Q, F291S:Rad50NBD, D804C, H830C mutant complexes were purified under reducing 

conditions (5 mM ß-Mercaptoethanol; 3.3.2) and rebuffered into crosslinking buffer as 

described for the BMOE crosslink (3.3.6). The proteins were concentrated to 4 mg/ml 
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(21.5 µM), mixed with 5 mM ATP and 50 µM CuSO4 and incubated at 25°C for 3h. 

Formation of the disulfide bond (denoted S-S) was analyzed by SDS-PAGE using a 

nonreducing Loading Dye (4fold: 110 mM Tris pH 6.8, 16% (v/v) glycerol, 4% (w/v) SDS, 

0.6% (w/v) bromphenol blue) (3.3.3).  

 

3.4. Structural biology methods 

3.4.1. Crystallization 

Crystals of TmMre11HLH:Rad50NBD:AMPPNP were grown by the sitting drop vapor 

diffusion method at 19°C. Crystals were set up in commercial 96-well format screens by 

the Max-Planck-Crystallization Facility (Martinsried). Prior to crystallization set up, 5 mM 

AMPPNP was added to the protein solution. By mixing 200 nl of protein solution at 10.5 

mg/ml protein concentration with 200 nl of the reservoir solution containing 20% (w/v) 

PEG-2000 MME, 0.2 M Trimethylamine N-oxide and 0.1 M Tris pH 8.5, protein crystals 

appeared after 9 days of incubation. After 5 additional days the crystals reached a 

maximum size of 300 x 100 x 25 µM. Prior to flash freezing in liquid nitrogen, crystals 

were transferred to reservoir solution supplemented with 10% (v/v) 2,3-butandiol.                               

To get insights about the transition state expected for phosphoryl transfer in Rad50, 

TmMre11HLH:Rad50NBD was co-crystallized with ADP and the orthovanadate anion 

[VO4]
3- which mimics the conformation of the leaving phosphate group. Crystals were set 

up in commercial 96-well format sitting drop screens by the Max-Planck-Crystallization 

Facility (Martinsried). Prior to crystallization set up, 5 mM ADP, 8.5 mM sodium 

orthovanadate solution (3.1.5) and 2.5 mM MgCl2 was added to the protein solution. By 

mixing 200 nl of protein solution at 10.5 mg/ml protein concentration with 200 nl of the 

reservoir solution containing 25% (v/v) PEG 1500 and 0.1 M MMT buffer pH 9.0, protein 

crystals appeared after 2 days of incubation at 19°C. Prior to flash freezing in liquid 

nitrogen, crystals were transferred to reservoir solution supplemented with 10% (v/v) 2,3-

butandiol. 

Prior to crystallization set up, the Mre11H94Q, F291S:Rad50NBD, D804C, H830C complex of 

T. maritima was disulfide bridged as described in 3.3.7. Subsequently crystals of 

Mre11H94Q, F291S:Rad50NBD, D804C, H830C (S-S) were grown by the sitting drop vapor diffusion 
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method at 20°C. Crystals were set up manually in commercial 96-well format sitting drop 

screens. By mixing 1 µl of protein solution at 4 mg/ml protein concentration with 1 µl of 

the reservoir solution containing 2.2 M ammonium sulfate and 0.2 M di-ammonium 

tartrate, protein crystals appeared after 9 days of incubation. After 2 additional days the 

crystals reached a maximum size of 70 x 70 x 50 µM. Prior to flash freezing in liquid 

nitrogen, crystals were transferred to reservoir solution supplemented with 10% (v/v) 

sucrose and 10% (v/v) xylitol. 

TmMre11core (aa 7-325) crystals were grown by the sitting drop vapor diffusion 

method at 19°C. Trials were set up in commercial 96-well format sitting drop screens by 

the Max-Planck-Crystallization Facility (Martinsried). By mixing 200 nl of protein 

solution at 3 mg/ml protein concentration with 200 nl of the reservoir solution containing 

20% (w/v) PEG 3350, 0.2 M sodium sulfate, 0.1 M Bis-tris propane pH 6.5, protein 

crystals appeared after 12 days of incubation. Prior to flash freezing in liquid nitrogen, 

crystals were transferred to reservoir solution supplemented with 15% (v/v) 2,3-butandiol.                          

An overview of protein preparation buffers, protein concentrations, crystallization 

solutions and cryo protectants for all crystallized proteins are summarized in Table 9. 

 

Table 9: Overview of crystallization conditions for various T. maritima Mre11(:Rad50NBD) constructs.  

 

Crystallised protein 
 

Preparation 
buffer 

c (Protein)  Crystallization solution Cryo 
reagent 

TmMre11HLH:Rad50NBD, 
AMPPNP  

5 mM Tris pH 7.8, 
200 mM NaCl,        

10.5 mg/ml 20% (w/v) PEG-2000 MME, 
0.2 M Trimethylamine N-
oxide, 0.1 M Tris pH 8.5 
 

10% (v/v)  
2,3-
butandiol 

TmMre11HLH:Rad50NBD, 
ADP[VO4]

3-  
 
 

5 mM Tris pH 7.8, 
200 mM NaCl,          

10.5 mg/ml 25% (v/v) PEG 1500, 0.1 M 
MMT buffer pH 9.0 

10% (v/v)  
2,3-
butandiol 

TmMre11H94Q,F291S: 
Rad50NBD, D804C, H830C (S-S),  

ATP 

 
 
 

50 mM Tris pH 7.8, 
200 mM NaCl,          
10 mM MgCl2,           
1 mM MnCl2,            
50 µM CuSO4,         
5 mM ATP 
 

4 mg/ml  2.2 M ammonium sulfate,          
0.2 M di-ammonium tartrate 

10% (v/v) 
sucrose and 
10% (v/v) 
xylitol 

TmMre11core 5 mM Tris pH 7.8, 
200 mM NaCl 

3 mg/ml 20% (w/v) PEG 3350,             
0.2 M sodium sulfate,                
0.1 M Bis-tris propane pH 6.5 

15% (v/v) 
2,3-
butandiol 
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3.4.2. Data collection 

Data from native TmMre11HLH:Rad50NBD:AMPPNP and TmMre11HLH:Rad50NBD: 

ADP[VO4]
3- crystals were collected to a resolution of 1.9 Å and 2.9 Å respectively at the 

beamline ID14-1 and ID14-4 at the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France). The crystals containing AMPPNP belonged to space group P1 with 

a=49.3 Å, b=68.8 Å and c=71.4 Å, whereas crystals containing ADP[VO4]
3- belonged to 

space group P21 with a=69.4 Å, b=51.8 Å and c=134.3 Å. Both crystal forms contained 

one TmMre11HLH
2:Rad50NBD

2 complex molecule in the asymmetric unit. 

Data from native TmMre11core crystals were collected to a resolution of 2.8 Å at the 

X06SA beamline Swiss Light Source (SLS, Villigen, Switzerland). The crystals of 

TmMre11core belonged to space group P6122 with a, b=138.9 Å and c=123.1 Å and 

contained one Mre11 “core” monomer (aa 7-325) in an asymmetric unit.  

Data from native TmMre11H94Q, F291S:Rad50NBD, D804C, H830C (S-S) crystals were 

collected to a resolution of 2.6 Å at the X06SA beamline Swiss Light Source (SLS, 

Villigen, Switzerland). Crystals of the disulfide bridged complex belonged to space group 

P3221 with a, b=121.5 Å and c=134.9 Å and contained half of the Mre112:Rad50NBD
2 

complex in an asymmetric unit. 

All collected data were integrated and scaled with XDS (Kabsch, 1993). 

 

3.4.3. Structure determination, model building and refinement 

The structure of the Mre11HLH:Rad50NBD:AMPPNP complex was determined by 

molecular replacement with Phaser (McCoy, 2007) using several fragments (Rad50 

residues: 1-142, 143-190/686-792, 793-850; Mre11 residues: 343-385) of the nucleotide 

unbound TmMre11:Rad50NBD complex (PDB entry: 3QG5) as search model. Prior to 

model building and refinement, 5% of the reflections for monitoring the free R-value were 

randomly omitted. The initial model was automatically rebuilt using ARP/wARP (Langer 

et al., 2008) and Buccaneer (Cowtan, 2006) and manually completed with COOT (Emsley 

and Cowtan, 2004). After corrections for bulk solvent and overall B-values, the model was 

refined by iterative cycles of positional and B-factor and TLS refinement with PHENIX 

(Adams et al., 2002) and manual model building with COOT. The coordinates of the 
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TmMre11HLH:Rad50NBD:AMPPNP complex structure were submitted to the PDB and 

assigned PDB ID code 3QF7. 

The structure of the Mre11HLH:Rad50NBD: ADP[VO4]
3- complex was determined by 

molecular replacement with Phaser using the previously solved Rad50NBD dimer of 

TmMre11HLH:Rad50NBD (see above) in its AMPPNP bound state without ligand as search 

model. Prior to model building and refinement, 5% of the reflections for monitoring the 

free R-value were randomly omitted. Refinement was carried out against the previously 

built TmMre11HLH:Rad50NBD:AMPPNP model omitting AMPPNP, coiled-coil and HLH 

region using the refinement program autoBUSTER and by manual model building with 

COOT.  

The structure of TmMre11core was determined by molecular replacement with 

Phaser using TmMre11 (residues M7-325) of the nucleotide unbound Mre11:Rad50NBD 

complex (PDB entry: 3QG5) as search model. Prior to model building and refinement, 5% 

of the reflections for monitoring the free R-value were randomly omitted. The initial model 

was automatically rebuilt using PHENIX and after corrections for bulk solvent and overall 

B-values, the model was refined with PHENIX and manually completed with COOT. The 

coordinates of the TmMre11core structure were submitted to the PDB and assigned PDB ID 

code 3THN.  

The structure of the TmMre11H94Q, F291S:Rad50NBD, D804C, H830C (S-S) complex was 

determined by molecular replacement with Phaser using two fragments (Rad50: residues 1-

163 and 720-852) of the previously solved structures TmMre11HLH:Rad50NBD and 

TmMre11core(residues M7-325) (see above) as search models. Prior to model building and 

refinement, 5% of the reflections for monitoring the free R-value were randomly omitted. 

The model was manually built using COOT. After corrections for bulk solvent and overall 

B-values, the model was refined by iterative cycles of positional and B-factor and TLS 

refinement with PHENIX and manual model building with COOT. The coordinates for the 

TmMre11H94Q, F291S:Rad50NBD, D804C, H830C (S-S) complex structure in its ATP/ADP bound 

state were submitted to the PDB and assigned PDB ID code 3THO. 

All figures were prepared with PyMOL (DeLano Scientific). 
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3.4.4. Small angle x-ray scattering 

Small angle x-ray scattering (SAXS) data were collected at the EMBL X33 

beamline at the DORIS storage ring (Deutsches Elektronen Synchrotron (DESY), 

Hamburg, Germany) using a MAR345 two-dimensional image plate detector and at the 

ID14-3 BioSAXS beamline at the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France) using a Pilatus 1M detector. Scattering patterns from solutions of 

TmMre11:Rad50NBD, I760C, N64C (+BMOE) (3.3.6), TmMre11H94Q, F291S:Rad50NBD, D804C, H830C 

(S-S) and PfMre11:Rad50NBD (w/ or w/o ATPγS) at concentrations between 1 and 10 mg/ml 

were measured in SAXS buffer containing 50 mM Tris pH 7.7, 200 mM NaCl, 5 mM 

MgCl2. Various programs of the ATSAS software package (Konarev et al., 2006) were 

used to process and evaluate SAXS data. Initial data processing was carried out with 

PRIMUS (Konarev et al., 2003) and the radius of gyration (RG) was calculated using the 

Guinier approximation and the low resolution (sxRG < 1.3) data. The program GNOM 

(Svergun, 1992) was used to determine P(r)-functions and subsequent maximum 

interelectron distances Dmax. CRYSOL (Svergun et al., 1995) was utilized to compute 

theoretical SAXS-curves from crystallographic coordinate files and for comparison with 

the experimental data. Ab initio structure modeling was based on the DAMMIN (Svergun, 

1999) reciprocal space fitting algorithm, assuming twofold particle symmetry. All figures 

were prepared using the program UCSF CHIMERA (Pettersen et al., 2004). 

 

3.5. In vitro activity assays of Mre11:Rad50 

3.5.1. ATP hydrolysis assay 

The ATP hydrolysis activity was analyzed by the BIOMOL GREENTM assay 

(BIOMOL Research Labs, Inc.) using 500 µM ATP and 5 µM of the purified protein of 

interest. The mixtures were incubated either at 60°C or at 25°C for 10 min in buffer 

containing 50 mM Tris pH 7.7, 100 mM NaCl, 10 mM MgCl2, 5 mM MnCl2 and 

subsequently incubated on ice and centrifuged at 15,000 rpm for 1 min. Afterwards the 

suitable amount of BIOMOL GREENTM reagent was added to the supernatants, incubated 

25 min at 25°C and OD620 was measured. Amounts of released free phosphate in the 
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supernatants were obtained by subtracting the background phosphate following the 

manufacturer’s instruction.  

 

3.5.2. Electrophoretic mobility shift assay (EMSA) 

DNA binding reactions for EMSAs were carried out with the nuclease deficient 

Mre11H94Q mutant of the respective complexes.  

For the binding analysis of the TmMre11:Rad50NBD (denoted TmMRNBD) complex 

various concentrations of the protein (0, 0.5, 2.0, 4.0 and 6.0 µM respectively) and 6-FAM 

labeled blunt end ds50mer DNA (10 nM) (Table 2) were used in 20 mM Tris pH 7.5, 100 

mM KCl, 5 mM MgCl2, 5 mM MnCl2 and 5% glycerol. The mixture was incubated at 

room temperature for 5 min in a total volume of 10 µl. The DNA was resolved by 

electrophoresis on a step gradient native acrylamide gel (4% and 6.5%) in TB buffer and 

visualized by scanning with a Typhoon System (Amersham Biosciences) using the green-

excited (532 nm) fluorescence mode.  

The binding reaction of the disulfide bridged TmMre11F291S:Rad50NBD, H830C, D804C 

(S-S) (denoted TmMRNBD (S-S)) complex was carried out with various amounts of the protein 

(0, 2.5, 5.0, 30, 40 and 50 µg respectively) and 0.5 µg of the ds plasmid DNA X174 RF 

II (Table 4). For comparison of the binding activities of TmMRNBD (S-S) and TmMRNBD 

either with or w/o 5 mM AMPPNP, various amounts of the protein (0, 5, 10, 20, 40 and 60 

µg respectively) and 0.5 µg of the ds plasmid DNA X174 RF II (Table 4) were used. The 

binding reactions of TmMRNBD (S-S) and TmMRNBD w/o ATP analog were performed with 

fluorescein labeled blunt end ss40mer or ds40mer DNA (strand 1 and 2; 100 nM; Table 2) 

and various concentrations of the protein (0, 1.0, 2.5, 5.0, 7.5, 10 and 15 µM respectively). 

All of the latter mixtures were incubated in 50 mM Tris pH 7.8, 100 mM NaCl, 5 mM 

MgCl2 and 100 µM MnCl2 at room temperature for 15min in a total volume of 20 µl. The 

DNA was resolved by electrophoresis on an agarose gel (0.5%) in TAE buffer and either 

stained with ethidium bromide (non fluorescent labeled DNA) and visualized with an UV-

Imaging System (Intas) or visualized by scanning with a Typhoon System (Amersham 

Biosciences) using the green-excited (532 nm) fluorescence mode. 

Comparison of the DNA affinity of TmMre11HLH:Rad50NBD (Mono), 

TmMre11HLH:Rad50NBD (Dimer) and TmMRNBD (S-S) was carried out with various 
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concentrations of the protein (0, 0.25, 0.50, 1.0, 2.0 and 3.0 mg/ml respectively) and 0.025 

µg/µl of the ds plasmid DNA X174 RFII (Table 4). Comparison of the plasmid ssDNA 

X174 Virion (Table 4) binding activity of TmMre11HLH:Rad50NBD (Dimer) and TmMRNBD 

(S-S) was carried out with 2 fold protein and DNA concentrations. The samples were 

incubated in 50mM Tris pH 7.8, 100mM NaCl, 5mM MgCl2 at room temperature for 15 

min in a total volume of 20µl. TmMRNBD (S-S) samples contained additionally 100 µM 

MnCl2, whereas TmMre11HLH:Rad50NBD (Dimer) additionally contained 1 mM of the ATP 

analog AMPPNP. The DNA was resolved by electrophoresis on an agarose gel (0.5%) in 

TAE buffer, stained with ethidium bromide and visualized with a UV-Imaging System 

(Intas). 

 

3.5.3. Nuclease activity assay 

Mre11 nuclease activity was tested using a fluorescein 5´ labeled ds40mer (strand 1 

and 3) (Table 2). For each reaction, 80 nM DNA was incubated with 24 µM of 

TmMre11:Rad50NBD in 20 µl reaction buffer containing 100 mM NaCl, 50 mM Tris pH 

7.8, 10 mM MgCl2, 100 µM MnCl2 at 60°C for 90 min. The reaction was stopped by 

addition of 0.5% SDS and 1 mg/ml proteinase K following incubation at 50°C for 20 min. 

Subsequently the sample was mixed with 1fold loading dye (6fold: 16% (v/v) formamide, 

16% (v/v) glycerol, 10 mM EDTA, 10 mM Tris pH 7.8, 0.03% (w/v) bromphenol blue, 

0.03% (w/v) xylene cyanol) and incubated at 95°C for 5 min. Reaction products were 

resolved by electrophoresis on a denaturing 20% acrylamide gel in TB buffer containing   

7 M Urea and visualized with a Typhoon System (Amersham Biosciences) using the 

green-excited (532 nm) fluorescence mode. 

 

3.5.4. Endonuclease activity assay 

Endonucleolytic cleavage of DNA was performed using 0.07 mg/ml of purified 

TmMre11:Rad50NBD and 70 ng/µl of circular double stranded plasmid DNA (pBluescript II 

KS +) (Table 4)  in 80 mM NaCl, 25 mM HEPES pH 7.0, 5 mM MgCl2, 5 mM MnCl2, 1 

mM DTT. After incubation at 65°C for 45 min, reactions were stopped by the addition of 

1% SDS and 1 mg/ml proteinase K and incubation for 20 min at 50°C. Specific nicking of 

pBluescript II KS+ on the basis of the nicking enzyme Nt. Bsp QI (New England Biolabs) 
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was performed as control following the manufacturer´s instructions. Reaction products 

were mixed with 1fold loading dye (6fold: 10 mM Tris pH 7.6, 60 mM EDTA, 60% (v/v) 

glycerol, 0.03% (w/v) bromphenol blue, 0.03% (w/v) xylene cyanol) and subsequently 

resolved by electrophoresis on a 1% agarose gel in TAE buffer, stained with ethidium 

bromide and visualized with a UV-Imaging System (Intas). 

 

3.5.5. Protein-DNA encircling assay 

To test if Mre11:Rad50NBD of T. maritima can be crosslinked by disulfide bond 

formation around double stranded or single stranded plasmid DNA (X174 RF II; X174 

Virion) (Table 4), 0.04 mg/ml DNA was added to the TmMre11F291S:Rad50NBD, D804C, H830C 

protein solution right before CuSO4 treatment and disulfide bridging respectively (3.3.7). 

Subsequently the samples were loaded onto a Superose 6 PC 3.2/30 gel filtration column 

and the elution fractions were concentrated by precipitation with 10% TCA and analyzed 

by SDS-PAGE followed by Coomassie blue staining (3.3.3). 

 

3.5.6. Antibody DNA binding assay 

Blocking of DNA ends for electrophoretic mobility shift assays (EMSAs) was 

carried out with 100 nM of 5´ fluorescein labeled ds40mer (strand 1 and 3) (Table 2) and 

14 µM of the single-chain (sc) anti-fluorescein antibody Fv fragment FITC-E2 in buffer 50 

mM Tris pH 7.8, 100 mM NaCl, 5 mM MgCl2, 100 µM MnCl2, 3% glycerol and a total 

volume of 10 µl. After 10 min incubation various concentrations of the nuclease deficient 

TmMre11H94Q, F291S:Rad50NBD, D804C, H830C (S-S) protein (0, 1.75, 3.50, 7.0 and 14.0 µM 

respectively) were added to the samples and incubated for another 10 min. The DNA was 

resolved by electrophoresis on an agarose gel (0.5%) in TB buffer and visualized with a 

Typhoon scanner (Amersham Biosciences) using the green-exited (532 nm) fluorescence 

mode. To verify complete DNA blocking by the scFv, an aliquot of the DNA-scFv mixture 

was loaded onto a S200 5/150 GL Gel filtration column. To verify if TmMre11H94Q, F291S: 

Rad50NBD, D804C, H830C (S-S) can be trapped onto ds DNA, 50 µM of the protein was incubated 

for 10 min with 500 nM 5´ fluorescein labeled ds40mer in buffer containing 50 mM Tris 

pH 7.8, 300 mM NaCl, 10 mM MgCl2, 1 mM MnCl2. Subsequently 5 µM of the 

fluorescein binding scFv fragment FITC-E2 was added to the DNA-protein mixture and 
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incubated for another 10 min. The samples were loaded onto a S200 5/150 GL Gel 

filtration column and corresponding elution fractions examined by agarose gel 

electrophoresis (1%). 

 

3.6.  Bioinformatic methods 

3.6.1. Structure based sequence alignment 

The archaeal Rad50 NBD domain of Pyrococcus furiosus (Pf) was aligned against 

the previously solved bacterial Rad50 NBD domain of Thermotoga maritima (Tm) with the 

program FATCAT (Ye and Godzik, 2004) using the pdb-coordinates of PfRad50NBD (PDB 

entry: 1F2U) and TmMre11HLH:Rad50NBD (chain A and B) as input file. 
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4. Results 

4.1. Mre11HLH:Rad50NBD of T. maritima 

4.1.1. Cloning and purification of Mre11HLH:Rad50NBD  

To get insights into how ATP might impact on the orientation of the coiled-coil 

domain and Mre11 interaction, an expression construct of T. maritima Mre11:Rad50 was 

designed (see section 3.2.1). The construct spans the nucleotide binding domain of Rad50 

including approx. 50 amino acids of the Mre11 binding coiled-coil region (aa 1-190 and aa 

686-852; denoted as Rad50NBD) and Mre11´s helix-loop-helix domain (aa 343-385; 

denoted as Mre11HLH) (Figure 7A). The two ends of the shortened coiled-coils were 

covalently fused by a short, 8 amino acid linker containing glycine and alanine residues in 

alternating sequence namely GGAGGAGG. To prevent apace hydrolysis of ATP, a 

substitution of the glutamic acid residue 798Rad50 to glutamine (E798Q) was introduced. 

Residue 798 is located in the Walker B motif of Rad50´s ATPase domain and this 

substitution was shown to block ATP hydrolysis whereas ATP binding stays unaffected 

(Hung et al., 1998).  

In view of the fact that T. maritima belongs to the thermophilic bacteria, 

Mre11HLH:Rad50NBD was first purified by heat denaturation of contaminant E. coli 

proteins. Subsequent purification based on the plasmid encoded C-terminal hexahistidine 

tag was carried out via Ni-NTA affinity chromatography and gel filtration chromatography 

(see section 3.3.2). The purified protein was analyzed by analytical gel filtration and SDS-

PAGE (Figure 7B and C). According to the calibration of the column, Mre11HLH:Rad50NBD 

eluted as monomeric fraction, when purified without ATP or ATP analog (Figure 7B). The 

stable protein was approx. 95% pure as validated by SDS-PAGE and the rate of yield 

conformed 9 mg protein per liter expression culture (Figure 7C). Therefore 

Mre11HLH:Rad50NBD was suitable for crystallization and biochemical analysis (see below). 
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Figure 7: Construct design and purification of T. maritima Mre11HLH:Rad50NBD. (A) Construct design of 
Mre11HLH:Rad50NBD with Rad50 colored in orange and Mre11 colored in blue. The yellow triangle indicates 
the E798Q substitution in the ATPase domain of Rad50. ATPase-N(C), N(C)-terminal ATPase domain; His6, 
hexahistidine tag. (B) Analytical size exclusion chromatography of purified Mre11HLH:Rad50NBD was carried 
out on a Superdex 200 5/150 GL gel filtration column. Respective elution profile indicates a monomeric state 
of the protein in the absence of ATP or ATP analog. (C) Validation of purified Mre11HLH:Rad50NBD on a 
15% SDS-Gel proves the purity of the protein complex. M, molecular weight marker; MR, 
Mre11HLH:Rad50NBD. 

 

4.1.2. Crystallization and structure determination of Mre11HLH:Rad50NBD:AMPPNP  

To achieve the ATP bound, dimeric state of T. maritima Mre11HLH:Rad50NBD with 

engaged NBD´s, ATP was added to the purified monomeric fraction prior to crystallization 

setup. To stabilize the dimeric state during crystallization and consequently prevent self 

hydrolysis of ATP, non-hydrolysable analogs like ATPγS and AMPPNP were used. 

 Crystallization setups of Mre11HLH:Rad50NBD with ATPγS and AMPPNP yielded 

crystals in various conditions (Figure 8A and B). However, crystals containing AMPPNP 

grew larger in size and to a greater extent in all three dimensions. A single crystal from an 

initial screen occurred in 20% (w/v) PEG-2000 MME, 0.2 M Trimethylamine N-oxide, 0.1 

M Tris pH 8.5 and reached a maximum size of 300 x 100 x 25 µM (Figure 8B). The crystal 

formed in space group P1 and contained one AMPPNP bound Rad50NBD dimer together 

A 

B C 



4. Results                                                                                                                                            50 
 

 

with Mre11´s HLH domain per asymmetric unit. Data were collected to a resolution of 1.9 

Å at beamline ID14-1 at the European Synchrotron Radiation Facility (ESRF) (Figure 8C). 

Due to large structural differences of the NBD domain from the open, nucleotide free 

Mre11:Rad50NBD complex (PDB entry: 3QG5) and the engaged, AMPPNP bound  form, 

the final structure determination required several attempts of molecular replacement and 

various short fragments of the open T. maritima Mre11:Rad50NBD complex were used. The 

achieved electron density was of a sufficient quality that the majority of the model could 

be built automatically. Subsequent recurring cycles of manual model building and 

refinement yielded the following R-factors: 15.7% for Rwork and 19.1% for Rfree. The final 

model covers in addition to the amino acid sequence of Rad50NBD and Mre11HLH, two 

molecules of the ATP analog AMPPNP and two molecules of Mg2+. A summary of the 

crystallographic data and refinement statistics of T. maritima Mre11HLH:Rad50NBD bound 

to AMPPNP are illustrated in Table 10. 

 

 

 

Figure 8: Crystallization of T. maritima Mre11HLH:Rad50NBD in nucleotide bound state and data 
collection of relevant crystals. (A) Mre11HLH:Rad50NBD co-crystallized with ATPγS lead to rather small 
branched needle crystals. (B) Initial native crystal of Mre11HLH:Rad50NBD bound to AMPPNP occurred in 
20% (w/v) PEG-2000 MME, 0.2 M Trimethylamine N-oxide, 0.1 M Tris pH 8.5 and reached a maximum 
size of 300 x 100 x 25 µm. (C) Exemplarily shown image of diffraction pattern of Mre11HLH:Rad50NBD 
bound to AMPPNP signifies a high resolution data collection. 

 

 

B 

CA 
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Table 10: Summary of crystallographic data and refinement statistics of the T. maritima 
Mre11HLH:Rad50NBD complex in its AMPPNP bound state. Data were collected at ID14-1 at the ESRF. 
Numbers in parentheses correspond to the high resolution shell from 2.03 -1.9 Å. 

 

 
TmMre11HLH : 

Rad50NBD:AMPPNP 

  
TmMre11HLH : 

Rad50NBD:AMPPNP 

Data collection  Refinement

Space group P1  Resolution (Å) 45.63 – 1.90 

Cell dimensions   No. reflections 64744 

a, b, c (Å) a=49.3  Rwork / Rfree 15.70 / 19.10 

 b=68.8  No. atoms  

 c=71.4      Overall 7005 

 () 98.5      Protein 6382 

 111.1      AMPPNP 62  

 91.9      Magnesium 2  

Wavelength (Å) 0.933400      Water 559  

Resolution (Å) 50.0-1.9  B-factors (Å²)  

Rsym (%) 3.4 (16.9)      Overall 26.90 

I / I 24.93 (7.10)      Protein 33.88 

Completeness (%) 94.6 (89.9)      AMPPNP 15.05 

Redundancy  3.49 (3.51)      Water 39.15 

   R.m.s deviations  

       Bond lengths  (Å) 0.008 

       Bond angles () 1.097 

 

 

4.1.3. Crystal structure of Mre11HLH:Rad50NBD bound to AMPPNP 

Although the archaeal Rad50 ATPase domain had been crystallized as an ATP 

bound dimer before (Hopfner et al., 2000b), this structure lacked the coiled-coil domain 

and could not give insights into how ATP might impact on the orientation of the coiled-

coil domain and the interaction with Mre11. The bacterial T. maritima 
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Mre11HLH:Rad50NBD structure in the presence of AMPPNP offers a much more detailed 

view of nucleotide coordination and hydrolysis (Figure 9A-C). 

 

 

 

Figure 9: Structure of the T. maritima AMPPNP bound Rad50NBD dimer in complex with the HLH 
domain of Mre11 (Lammens et al., 2011). (A) Two perpendicular views of a ribbon representation of the 
AMPPNP bound Rad50NBD dimer (orange) in complex with the C-terminal helix-loop-helix (HLH) region of 
Mre11 (blue). AMPPNP is highlighted and shown with the final 2Fo-Fc electron density (contoured at 1 σ and 
colored blue). Lobe I is mainly consisting of the N-terminal ABC segment, whereas lobe II consists mainly 
of the C-terminal part. (B) and (C) Two views of the ATP binding site with 1.9 Å 2Fo-Fc electron density 
around AMPPNP (B) or the nucleophilic water (designated as W1) (C).  Individual domains and important 
motifs are highlighted and color coded as following: signature motif (yellow), Walker A (olive), Walker B 
(purple), Q-loop (turquoise) and Mg2+ ion (green sphere). Selected side chains are shown as color-coded 
sticks. 

 

The Mre11HLH:Rad50NBD structure shows a compact shape with engaged Rad50NBD 

domains and dimensions of approx. 40 x 70 x 100 Å. The NBDs of Rad50 sandwich two 

nucleotides and Mg2+ in the typical head to tail orientation of lobe I and lobe II. The 

Walker A motifs bind the three phosphates of the AMPPNP moieties, while the Signature 

A B 

C 
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motifs of the opposing NBDs coordinates the -phosphates. Mg2+ is coordinated by 

oxygens from  and  phosphate, two water molecules and side chain oxygens of S37 

(Walker A) and Q142 (Q-loop). A bound water molecule (W1) is suitably located for 

nucleophilic attack on the -phosphate, positioned and activated by hydrogen bonds to 

E798 (Walker B), H830 (His-switch) and the main chain oxygen of S802 (opposing D-

loop) (Figure 9C).  

Rad50 binds the C-terminal HLH domain of Mre11 in an interface comprising area 

of 1334 Å2 (designated as interface 1) (Figure 10). Interface 1 is formed by H and I of 

the Mre11 HLH domain binding perpendicularly across Rad50’s coiled-coil (Figure 

10A).HMre11 binds only one coiled-coil helix (HRad50), while IMre11 reaches across both 

coiled-coil helices (GRad50 andHRad50). Interestingly, HMre11 binds to HRad50 at a 

pronounced kink and extended loop, located directly opposite the start of GRad50 at the 

other side of the coiled-coil. Thus, the coiled-coil is attached to the NBD not with a 

continuous helix, but with a structure that may allow for movements between the coiled-

coil and Mre11 binding site and the globular part of the ATPase.  

The HLH motif and coiled-coil domains bind to each other via an array of aromatic 

and hydrophobic residues (Figure 10C). HMre11 and HRad50 interact through eight 

aromatic residues (Mre11: Y351, F352, F355, Y358; Rad50: Y707, F714, Y717, F718). 

The interface is further stabilized mainly by hydrophobic interactions between IMre11 and 

GRad50 but also some specific hydrogen bonds and salt bridges, e.g. between E379Mre11 

and K180Rad50 (Figure 10C). The hydrophobicity in the motifs of interface 1 is highly 

conserved in all known homologues (Figure 10B). In vivo analysis of interface 1 in S. 

cerevisiae also revealed that mutations within the Mre11 HLH motif predicted to affect 

interface 1 (ScMre11: L474R, I487R, I491R) result in sensitivity to methyl-

methanesulfonate, hydroxyurea and camptothecin (Lammens et al. 2011). 

Given that the helix following the Q-loop and the subsequent coiled-coiled domains 

are well ordered with clearly interpretable electron density, comparison of nucleotide 

bound and -free states of the interaction site between Mre11 and Rad50 is feasible (Figure 

10D and E). Superposition of the Mre11HLH:Rad50NBD:AMPPNP and the nucleotide free 

Mre11:Rad50NBD complex (PDB entry: 3QG5) on Rad50´s lobe II point towards both the 

coiled-coil structure of Rad50NBD and the interaction interface 1 being largely unaltered 

upon nucleotide binding (Figure 10D).  
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Figure 10: Detailed view of T. maritima Mre11HLH:Rad50NBD interface 1 and conformational changes 
upon nucleotide binding. (A) Detailed view of the Mre11 HLH motif (blue) and its interaction with the base 
of the Rad50 coiled-coil (orange). Selected side chains are shown as color-coded sticks and the 2Fo-Fc 

electron density map contoured at 1.0  is shown in blue around the interacting residues. (B) Sequence 
alignment of the Mre11 HLH domain (αH and αI) involved in Rad50NBD binding (interface 1). Orange 
spheres represent residues implicated in Mre11HLH:Rad50NBD interaction. Yeast mutations (ScMre11: F474R, 
I487R, I491R) introduced to analyze interface 1 in vivo are highlighted in red (Lammens et al. 2011). (C) 
Close up view of aromatic and hydrophic interactions of αHMre11 and αHRad50 and salt bridge formation of 
αIMre11 and αGRad50. Relevant residues are labeled and shown as color-coded sticks. (D) Superposition of 
Rad50NBD from the open Mre11:Rad50NBD (PDB entry: 3QG5; grey) and AMPPNP bound (blue/orange) 
crystal structures at Lobes II shows that the coiled-coil structure and interaction interface 1 is not directly 
modulated by AMPPNP binding. Selected side chains are shown as color-coded sticks. (E) Superposition of 
the nucleotide free (PDB entry: 3QG5; grey) and AMPPNP bound forms of Rad50NBD via Lobe I shows that 
AMPPNP binding induces a large, approx. 50° rotation between Lobe I and Lobe II, leading to a rigid body 
movement (arrow) of the HLH and coiled-coil domain with respect to the ATP binding interface of Rad50. 

 

ATP binding not only tightly engages the two Rad50 NBDs, but induces a second 

conformational change within the NBDs, resulting in an approx. 50° rotation of the 

signature motif helix (Figure 10E) with respect to the Walker motifs. This rotation is the 

result of Q142 (Q-loop) binding to Mg2+, inducing a conformation within the NBDs that 

enables tight NBD-NBD engagement. As a consequence, the coiled-coil and the interacting 

HLH domain of Mre11 undergo a “rigid body” rotation by approx. 50° with respect to 

ATP binding lobe I.  

B 

C D E 
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Formation of the engaged NBDs strongly affects the angle between the two coiled-

coils protruding from the DNA binding catalytic head, consistent with scanning force 

microscopy of human MRN, where DNA binding was shown to alter the angle between 

two coiled-coils of about 60°. Comparing the angle between coiled-coils in the open 

nucleotide free conformation (~120°) and the ATP-bound closed state (~60°) there is also a 

difference of about 60°.  

 

4.1.4. Crystallization and structure determination of Mre11HLH:Rad50NBD:ADP[VO4]3-  

To gain insights into the mechanism of phosporyl transfer and therefore insights 

into the transition state of Rad50´s ATPase, T. maritima Mre11HLH:Rad50NBD was co-

crystallized with ADP and the orthovanadate anion [VO4]
3-. The vanadate ion adopts 

trigonal bipyramidal coordination and has very similar size and charge to inorganic 

phosphate. Therefore the vanadate ion is suitable to mimic the conformation of the γ-

phosphate group at the transition state expected for phosphoryl transfer (Smith and 

Rayment, 1996).   

Crystal setup of Mre11HLH:Rad50NBD bound to ADP[VO4]
3- yielded crystals in 

several conditions that were epitaxial twinned (Figure 11A). Crystals formed in space 

group P21 and contained the Rad50NBD dimer bound to ADP[VO4]
3- plus Mre11´s HLH 

domains per asymmetric unit. Data were collected to a resolution of 2.9 Å at ID14-4 at the 

European Synchrotron Radiation Facility (ESRF) (Figure 11B). In fact, the collected data 

were of a low quality and low completeness caused by high mosaicity and, anisotropy. 

However, the structure of the Mre11HLH:Rad50NBD:ADP[VO4]
3- complex was solved by 

molecular replacement using the previously solved Mre11HLH:Rad50NBD structure in its 

AMMPNP bound state without ligand (see section 4.1.2). The difference density observed 

for the coiled-coil and HLH domain was rather weak and not suitable for model building. 

Therefore iterative cycles of refinement were carried out against the 

Mre11HLH:Rad50NBD:AMPPNP model omitting AMPPNP, coiled-coil and HLH region and 

yielded in following R-factors: 28.87% for the Rwork and 32.80% for the Rfree. A summary 

of the crystallographic data and refinement statistics of T. maritima Mre11HLH:Rad50NBD 

bound to ADP[VO4]
3- are presented in Table 11.   
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Table 11: Summary of crystallographic data and refinement statistics of the T. maritima 
Mre11HLH:Rad50NBD complex bound to ADP[VO4]

3-. Data were collected at the ID14-4 at the ESRF. 
Numbers in parentheses correspond to the high resolution shell from 3.04-2.90 Å. Refinement was carried 
out against the Mre11HLH:Rad50NBD model without ligand, Rad50 coiled-coil and Mre11 HLH region. 

 

 
TmMre11HLH: 

Rad50NBD:ADP[VO4]
3- 

 

  
TmMre11HLH: 

Rad50NBD:ADP[VO4]
3- 

 
Data collection  Refinement

Space group P21  Resolution (Å) 44.24-2.90 

Cell dimensions   No. reflections 21525 

a, b, c (Å) a=69.4  Rwork / Rfree 28.87/32.80 

 b=51.8  No. atoms  

 c=134.3      Protein 4832 

 () 90.0  B-factors (Å²)  

 98.6      Protein 111.46 

 90.0  R.m.s deviations          

Wavelength (Å) 0.9395      Bond lengths  (Å) 0.010 

Resolution (Å) 50.0-2.9      Bond angles () 1.180 

Rsym (%) 5.4 (84.2)        

I / I 18.34 (2.04)        

Completeness (%) 90.0 (99.1)    

Redundancy  4.05 (4.07)        
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Figure 11: Crystallization and data collection of relevant T. maritima Mre11HLH:Rad50NBD:ADP[VO4]
3-

crystals. (A) Initial native crystal of Mre11HLH:Rad50NBD bound to ADP[VO4]
3- occurred in 0.1 M MMT 

buffer pH 9.0 and 25% (v/v) PEG 1500 and were epitaxial twinned. (B) Exemplarily shown image of 
diffraction pattern of Mre11HLH:Rad50NBD:ADP[VO4]

3- indicates the low quality of the obtained data, mainly 
induced by high mosaicity and anisotropy of the crystal.  

 

The obtained R-factor of 28.87% and 32.80% for Rwork and Rfree is still out of 

acceptable ranges and may improve with some rebuilding, e.g. of the coiled-coil and HLH 

domain and/or better data. However, the refined model fits very well into the 2Fo-Fc 

density map. The only major difference density  3.0 σ present after refinement clearly 

belongs to the co-crystallized ligand (Figure 12A). As seen in the close up view the 

vanadate ion is coordinated equally to the γ-phosphate of the AMPPNP by the signature 

motifs of the opposing NBDs (Figure 12B). Likewise, the entire ATPase domain shows no 

large structural alterations upon approaching phosphoryl transfer. Consequently, the 

transition from the ATP bound to the phosphoryl transfer state does not seem to have 

impact on the conformation of Rad50´s ATPase domain. 

 

 

 

 

 

 

 

B 

A 
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Figure 12: Structure of the T. maritima Mre11HLH:Rad50NBD complex bound to ADP[VO4]
3- and 

illustration of its transition state. (A) Close up view of the ATP binding site of Mre11HLH:Rad50NBD with 
the Fo-Fc map (contoured at 2.0 σ and colored in blue) refined against the model without ligand showing a 
clearly defined electron density for ADP and the trigonal [VO4]

3- ion (vanadate, gray sphere; oxygen, red 
spheres). Individual domains and important motifs are highlighted and annotated. (B) Superposition of the 
ATP binding region of Mre11HLH:Rad50NBD in AMPPNP (grey) and ADP[VO4]

3- (orange) bound state. The 
vanadate ion (vanadate, gray sphere; oxygen, red spheres) mimics the conformation of the γ-phosphate group 
at the transition state expected for phosphoryl transfer. The close up view of the two nucleotide bound states 
shows no structural alteration of the ATP binding domain upon upcoming phosphoryl transfer.   

 

4.2. Mre11:Rad50NBD of T. maritima 

4.2.1. Cloning and enzymatic characterization of Mre11:Rad50NBD 

Mre11:Rad50NBD of T. maritima covers the nucleotide binding domain of Rad50 

including approx. 50 amino acids of the Mre11 binding coiled-coil region (aa 1-190 and aa 

686-852; denoted as Rad50NBD) and nearly full length Mre11 (aa M7-385; denoted as 

Mre11), including phosphodiesterase, capping and helix-loop-helix (HLH) domain (see 

section 3.2.1). The two ends of Rad50´s shortened coiled-coils are covalently fused by a 

short linker as described earlier for the Mre11HLH:Rad50NBD construct (see section 4.1.1). 

Mre11 lacks the first 6 amino acids of the N-terminus as sequence alignment with various 

bacterial and archaeal Mre11 revealed weak homology in this unstructured region. 

Construct design and cloning was done in previous work by Christian Schiller and Derk 

Bemeleit (AG Hopfner, Gene Center, Munich). 

To clarify the functionality of the Mre11:Rad50NBD complex, enzymatic activity 

assays including analysis of ATP hydrolysis, DNA affinity and nucleolytic cleavage of 

DNA were performed (Figure 13). To prevent unintentional ATP hydrolysis and nuclease 

A B 
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activity during DNA binding experiments, both a nuclease deficient (H94QMre11 

substitution) and an ATPase deficient (E798QRad50 substitution) mutant were designed.  

 

 

 

Figure 13: Enzymatic characterization of T. maritima Mre11:Rad50NBD. (A) ATP hydrolysis activity of 
thermophilic Mre11:Rad50NBD (denoted as wt) at 60°C or 25°C reveals temperature dependent activity of the 
protein.  A Walker B motif mutant (E798Q) in Rad50 rules out contaminating activities. Error bars depict +/- 
standard deviation of three independent experiments. (B) DNA affinity of Mre11:Rad50NBD using 
Electrophoretic Mobility Shift Assay (EMSA). Following protein concentrations (0, 0.5, 2.0, 4.0 and 6.0 µM 
respectively) were analyzed and 10 nM of 6-FAM 5´ -labeled double stranded DNA (50mer) was used.      
(C) (Exo)nuclease activity of thermophilic Mre11:Rad50NBD at 60°C shows degradation of 5´ -fluorescein 
labeled double stranded DNA (D) Analysis of endonuclease activity of thermophilic Mre11:Rad50NBD at 
60°C confirm endonuleolytic cleavage on double stranded plasmid DNA (pBluescript II KS +) containing 
secondary structures like hairpins. Resulting nicked DNA was proven by the nicking enzyme Nt. Bsp QI.  

 

Given that T. maritima belongs to the thermophilic bacteria with an optimum 

growth at approx. 80°C enzymatic activities were mainly examined at higher temperatures. 

ATP hydrolysis at 25°C revealed no measurable turnover rate of ATP per min whereas at 

60°C approx. 4 ATP per min were hydrolyzed by Mre11:Rad50NBD (Figure 13A). Beside 

the functionality of the ATPase, Mre11:Rad50NBD showed a moderate, temperature 

independent, affinity to double stranded DNA as observed by Electrophoretic Mobility 

A B 
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Shift Assay (EMSA) (Figure 13B). In addition, short double stranded DNA oligomers were 

degraded by Mre11:Rad50NBD and secondary DNA structures like hairpins were 

endonucleolytically cleaved resulting in nicked DNA (Figure 13C and D). Briefly, the 

Mre11:Rad50NBD complex of T. maritima showed complete functionality with a 

characteristically rather moderate enzymatic activity (Hopfner et al., 2000a). 

 

4.2.2. Analysis of Mre11:Rad50NBD interface 2 

Although T. maritima Mre11:Rad50NBD showed enzymatic activity and the 

structure of the open, nucleotide free complex could be determined due to previous work 

by Katja Lammens and Derk Bemeleit (AG Hopfner, Gene Center, Munich), attempts to 

crystallize the complex in presence of AMPPNP, ATPS or other ATP analogs failed. This 

was likely because of equilibrium between ATP bound (closed) and free (open) states 

which could be observed and examined via SAXS (Lammens et al., 2011). To come up 

with a solution to adjust the equilibrium in direction to the nucleotide bound (closed) state, 

the structures of AMPPNP bound Mre11HLH:Rad50NBD with engaged NBDs and the 

nucleotide free Mre11:Rad50NBD complex were compared.  

Beside the earlier described interface 1 (see section 4.1.3), Rad50 binds Mre11 in a 

second, smaller area comprising 686 Å2 (designated as interface 2) (Figure 14A and B). 

Interface 2 is formed between one face of Mre11’s capping domain and the bottom side of 

Rad50’s Lobe II. This interface is predominantly polar, although W758Rad50 and I760Rad50 

bind a small hydrophobic patch at the core of this interface (F291Mre11). Interestingly, a part 

of the interface is mediated by the signature motif, which becomes bound by ATP in the 

engaged conformation of the NBDs (Figure 14A). Consequently, interface 2 could 

transiently stabilize the open conformation, as seen in the crystal structure of the nucleotide 

free Mre11:Rad50NBD complex (PDB entry: 3QG5).  

To test the possibility that destabilizing interface 2 could increase the efficiency of 

the transition into the nucleotide bound, closed form, several mutations were introduced in 

Mre11 and Rad50 to weaken the interaction in this particular interface (F291SMre11, 

Y277RMre11, I760CRad50, W758ARad50) (Figure 14A and B).  
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Figure 14: Analysis of T. maritima Mre11:Rad50NBD interface 2. (A) Ribbon representation of 
Mre11:Rad50NBD (PDB entry: 3QG5) in front view orientation (Mre11 shown in blue, Rad50 shown in 
orange). Interface 2 is depicted by a black box. Mutated residues in interface 2 are illustrated as spheres and 
highlighted in red (F291SMre11), green (I760CRad50), cyan (W758ARad50) and magenta (Y277RMre11), 
respectively. The signature motif is highlighted and colored in yellow. (B) Close up view of interface 2 
showing the four residues selected for mutational analysis. Color coded corresponding to Figure 14A.        
(C) ATP hydrolysis activity of five interface 2 Mre11:Rad50NBD mutant complexes compared to wildtype 
(wt) activity at 60°C. The I760CRad50 mutant as well as the F291SMre11 mutant possess a slightly increased 
ATPase activity (116% and 121% compared to wt), whereas the I760CRad50/F291SMre11 double mutant shows 
130% of the wt activity. Error bars depict +/- standard deviation of three independent experiments. 

 

Analysis of the ATP hydrolysis activity of respective mutants revealed a slight, but 

statistical significant increase in activity for the F291SMre11 and I760CRad50 mutants (116% 

and 121% compared to wt activity respectively) and even more (130% of wt activity) when 

both F291Mre11 and I760Rad50 were mutated. Since ATP hydrolysis by Rad50NBD requires 

formation of a tightly engaged NBD dimer with sandwiched ATP molecules, these data 

support the suggestion that weaken interface 2 leads to an adjustment of equilibrium in 

direction of the nucleotide bound, closed state. 

A 

B C 
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4.2.3. ATP induced engagement of Rad50 NBDs 

Even though mutations in T. maritima Mre11:Rad50NBD interface 2 seemed to 

adjust equilibrium in direction to the closed, ATP bound state, attempts to obtain a 

homogeneous population with engaged NBDs by addition of various amounts of ATPS, 

AMPPNP, ADP plus BeF3 or using a Walker B E798Q mutation in combination with ATP, 

had been unsuccessful.  

To trap Mre11:Rad50NBD in the ATP bound conformation, the earlier described 

cysteine mutation I760CRad50 together with N64CRad50 was used for site-specific 

crosslinking (Figure 15). Both residues are predicted to be far apart in the nucleotide free 

form (approx. 110 Å) but come close together in the ATP bound dimer of Rad50NBD 

(approx. 8 Å) (Figure 15A). This enables crosslinking analysis with the short bifunctional 

sulfhydryl directed crosslinker Bis-Maleimidoethane (BMOE) (Figure 15C) (see section 

3.3.6). To independently verify the clamping movement of the NBDs another pair of 

cysteine residues were introduced in Rad50NBD. D804C and H830C are located within the 

His-switch and D-loop region in the ATPase domain of Rad50 and are perfectly suited for 

disulfide bond formation (Figure 15A and B) (see section 3.3.7).  

Using I760CRad50 plus N64CRad50 the two NBDs could be crosslinked very 

efficiently in the presence (approx. 65%), but not in the absence of ATP (Figure 16A). To 

see whether the crosslinked protein has a structure similar to the ATP bound 

Mre11:Rad50NBD complex, BMOE crosslinked protein was prepared in the presence of 

ATP, purified by gel filtration to remove unbound ATP and concentrated to perform small 

angle x-ray scattering (SAXS) experiments (see section 3.4.4). Nucleotide free and ATPγS 

bound Mre11:Rad50NBD was previously analyzed via SAXS by Katja Lammens and Derk 

Bemeleit, enabling comparison of crosslinked protein to the ATP bound and unbound form 

(Lammens et al., 2011). Indeed, the solution structure of the crosslinked protein is very 

similar to the ATPS bound protein (Figure 16B and C), validating the idea that the 

crosslink stabilizes the closed conformation. This proofs that addition of ATP or ATP 

analogs induces a conformation in MR’s catalytic head with engaged NBDs, thereby the 

transient interface 2 is disrupted.  
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Figure 15: Cysteine mutations introduced in T. maritima Mre11:Rad50NBD to enable site-specific 
crosslinking and disulfide bonding. (A) Cysteine mutations introduced in Rad50NBD to test formation of the 
ATP bound Rad50 dimer, are illustrated as colored spheres. Sites are widely separated in the open form 
(upper crystal structure; PDB entry: 3QG5), but perfectly oriented for crosslinking (I760C, N64C, colored 
green) or disulfide bonding (D804C, H830C, colored red) in the ATP bound form (lower crystal structure; 
Mre11HLH:Rad50NBD). F291SMre11 (colored red) was additionally mutated for enhanced disulfide bonding by 
weaken interface 2. Mre11 and Rad50 are color coded according to Figure 9 and Figure 14. (B) Close up 
view of residues D804 and H830 (colored as red sticks) in Rad50NBD selected for cysteine mutation. The 
distance between the two residues is suitable to form disulfide bonds (inset: disulfide bridge). (C) Close up 
view of residues I760 and N64 in Rad50NBD (colored green) selected for cysteine mutation. The distance 
between the two residues is suitable for crosslinking with a short bifunctional sulfhydryl directed crosslinker 
(inset: BMOE).  

 

 

A 

B 

C 
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Figure 16: Analysis of site-specific crosslinking and disulfide bridging of T. maritima Mre11:Rad50NBD. 
(A) Non-reducing coomassie stained SDS-PAGE of the Mre11:Rad50NBD, N64C, I760C crosslinking experiment 
using Bis-Maleimidoethane (BMOE). The crosslinker forms a covalently connected Rad50NBD dimer in an 
ATP dependent manner. Approx. 65% of Mre11:Rad50NBD can be trapped in the ATP bound state on the 
basis of this method. (B) Superposition of experimental SAXS curves of Mre11:Rad50NBD in the nucleotide 
free (blue) or ATPγS bound (orange) state and Mre11:Rad50NBD, I760C, N64C crosslinked with BMOE (green). 
The scattering curve of the crosslinked complex shows an even larger alteration in profile (black arrows), 
indicating a more compact and globular shape of the complex. (C) Electron pair distance distribution 
function P(r) in the absence of nucleotide corresponds well to the crystal structure derived P(r) (PDB entry: 
3QG5). The BMOE crosslinking leads to an increase of short distances and decrease of long distances. Some 
residual long distances indicate a residual heterogenous mixture that fits the data where approx. 35% of the 
complex is not crosslinked. (D) Formation of ATP bound engaged Rad50NBD, D804C, H830C is tested by 
ATP/Cu2+ dependent disulfide bond formation and validated by non-reducing Coomassie stained SDS-
PAGE. (E) Modulating the Mre11:Rad50NBD interface 2 by Mre11F291S results in dramatically increased 
disulfide bond formation efficiency, consistent with the idea, that interface 2 stabilizes the open form and is 
disrupted in the closed form. (F) ATP hydrolysis activity of the Mre11H94Q, F291S:Rad50NBD, D804C, H830C mutant 
complex compared to wildtype (wt) activity at 60°C. According cysteine mutations in the His-switch and D-
loop region lead to a slight decrease of ATP hydrolysis activity (66% compared to wt, respectively). Error 
bars depict +/- standard deviation of six independent experiments. 

 

The proposed clamp movement can also be seen by ATP induced formation of a 

disulfide bond between D804CRad50 and H830CRad50, which are ideally positioned at 

opposite interface loops in the ATP bound form of NBDs (Figure 16D). Although 

D804CRad50 and H830CRad50 are located within the His-switch and D-loop region which 
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play a role in ATP dependent dimer formation of NBDs and in positioning of the attacking 

water molecule, the cysteine mutations only slightly decrease ATP hydrolysis activity and 

the proteins remained approx. 68% active (Figure 16F).  

The high efficiency of I760CRad50/N64CRad50 in the presence of BMOE compared to 

the disulfide bond could arise from the fact that I760Rad50 is located in interface 2. If 

interface 2 stabilizes the open form, destabilizing interface 2 will increase the efficiency of 

formation of the closed form. To test this idea, the earlier described mutation F291S 

(F291Mre11 interacts with I760Rad50 in interface 2) was additionally introduced into Mre11. 

While efficient disulfide bond formation is still not observed in the absence of ATP, the 

NBDs can now be efficiently crosslinked (approx. 65%) by disulfide bond formation 

(Figure 16E). Disulfide bridged Mre11F291S:Rad50NBD, D804C, H830C is subsequent designated 

as Mre11:Rad50NBD (S-S).  

The ability to trap Mre11:Rad50NBD in its nucleotide bound state was a keystone for 

further analysis of the closed conformation. Due to the fact that the formation of the 

disulfide bridged Mre11:Rad50NBD (S-S) complex was not dependent on chemical 

crosslinking (BMOE) further investigations were done on the basis of the disulfide bonded 

protein. 

 

4.3.  Mre11:Rad50NBD of T. maritima trapped in its ATP/ADP bound state 

4.3.1. Crystallization and structure determination of Mre11:Rad50NBD (S-S) 

To trap T. maritima Mre11F291S:Rad50NBD, D804C, H830C in the nucleotide bound, 

closed state, the complex was disulfide bridged in the presence of ATP prior to 

crystallization setup. This stabilization facilitated the crystallization process. Crystals 

appeared after approx. 9 days in several high salt conditions containing ammonium sulfate 

(Figure 17A). Single crystals grew in all three dimensions and reached a maximum size of 

70 x 70 x 50 µM. After optimization these crystals diffracted to 2.6 Å resolution in space 

group P3221 at beamline X06SA at the Swiss Light Source (SLS) (Figure 17B and C). 

Each asymmetric unit contained half a M2R
NBD (S-S)

2 complex and the complete 

heterotetrameric complex was generated via a crystallographic two-fold axis.  
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Figure 17: Crystallization of T. maritima Mre11:Rad50NBD (S-S) and data collection of relevant crystals. 
(A) Optimized native crystals of Mre11:Rad50NBD (S-S) occurred in 2.2 M ammonium sulfate and 0.2 M di-
ammonium tartrate and reached a maximum size of 70 x 70 x 50 µM. (B) Flash frozen Mre11:Rad50NBD (S-S) 
crystal in nylon cryo loop (Hampton Research). The image was taken firsthand of data collection at beamline 
X06SA at the SLS. The red box indicates the position of x-ray exposure and data collection of the crystal. 
(C) Exemplarily shown diffraction pattern of the Mre11:Rad50NBD (S-S) crystal indicates high quality data to 
2.6 Å resolution.   

 

Due to large structural differences between the open, nucleotide free (PDB entry: 

3QG5) and the closed, nucleotide bound form, molecular replacement was performed with 

several small Rad50NBD fragments of the previously solved Mre11HLH:Rad50NBD:AMPPNP 

structure (see section 4.1.2). Although two 3-dimensional structures of the TmMre11 dimer 

are provided by the Protein Data Bank (PDB entry: 2Q8U and 3QG5 respectively), several 

loops and some important regions were missing in these structures. In order to obtain a 

suitable model to search for the Mre11 dimer by molecular replacement the core domain of 

T. maritima Mre11 (aa M7-325) was crystallized. Crystals of Mre11core formed in space 

group P6221 and diffracted to 2.8 Å resolution at beamline X06SA at the Swiss Light 

Source (SLS). Each asymmetric unit contained one Mre11 monomer and the Mre11 dimer 

was generated by a two-fold axis. Crystallographic data and refinement statistics for T. 

maritima Mre11core are presented in Table 12.  
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Table 12: Summary of crystallographic data and refinement statistics of the T. maritima Mre11core 
domain bound to manganese. Data were collected at the X06SA beamline at the SLS. Numbers in 
parentheses correspond to the high resolution shell from 2.89-2.81 Å.  

 

 
TmMre11core 

  
TmMre11core 

 
Data collection  Refinement

Space group P6122  Resolution (Å) 46.06-2.81 

Cell dimensions   No. reflections 17309 

a, b, c (Å) a=138.9  Rwork / Rfree 18.69/24.06 

 b=138.9  No. atoms  

 c=123.1      Overall 2560 

 () 90      Protein 2543 

 90      Manganese 2 

 120      Water 12 

Wavelength (Å) 1.000      Sulfate 2 

Resolution (Å) 46.06-2.81  B-factors (Å²)  

Rsym (%) 11.5 (54.8)      Overall 36.43 

I / I 17.82 (4.57)      Protein 37.36 

Completeness (%) 98.2 (98.3)      Water 28.26 

Redundancy  8.48 (8.52)  R.m.s deviations  

       Bond lengths  (Å) 0.008 

       Bond angles () 1.230 

 

 

On the basis of Rad50NBD (Mre11HLH:Rad50NBD) and Mre11core the structure of 

Mre11:Rad50NBD (S-S) could be determined by molecular replacement. Some parts including 

e.g. the coiled-coil region and the Mre11 C-terminus (aa 326-383) were built manually. 

Iterative cycles of manual model building and refinement yielded in following R-factors: 

20.9% for Rwork and 24.6% for Rfree. The final model covers half a tetrameric 

Mre11:Rad50NBD complex, one ADP molecule, 2 Mn2+ and one Mg2+ ion, nine sulfate and 

one phosphate ion. Crystallographic data and refinement statistics of T. maritima 

Mre11:Rad50NBD (S-S) are illustrated in Table 13. 



4. Results                                                                                                                                            68 
 

 

Table 13: Summary of crystallographic data and refinement statistics of the T. maritima 
Mre11:Rad50NBD (S-S) complex in its ATP/ADP bound state. Data were collected at the X06SA beamline at 
the SLS. Numbers in parentheses correspond to the high resolution shell from 2.77-2.61 Å.  

 

 
TmMre11 : 

Rad50NBD (S-S) 

  
TmMre11 : 

Rad50NBD (S-S) 

Data collection  Refinement

Space group P3221  Resolution (Å) 49.12 – 2.60 

Cell dimensions   No. reflections 68086 

a, b, c (Å) a=121.5  Rwork / Rfree 20.90 / 24.60 

 b=121.5  No. atoms  

 c=134.9      Overall 5978 

 () 90.0      Protein 5859 

 90.0      ADP 26  

 120.0      Magnesium 1  

Wavelength (Å) 1.000      Manganese 2  

Resolution (Å) 50.0-2.6      Water 33 

Rsym (%) 5.4 (54.9)      Sulfate 9 

I / I 19.32 (2.56)      Phosphate 1 

Completeness (%) 99.7 (98.4)  B-factors (Å²)  

Redundancy  5.1 (4.8)      Overall 66.01 

       Protein 66.09 

       ADP 45.62 

       Water 61.25 

   R.m.s deviations  

       Bond lengths  (Å) 0.009 

       Bond angles () 1.240 
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4.3.2. Crystal structure of Mre11:Rad50NBD (S-S) in its ATP/ADP bound state 

The T. maritima Mre11:Rad50NBD (S-S)
 complex structure shows a compact ring 

shape with striking differences to the previously solved structure of Mre11:Rad50NBD in 

the ATP free, open state (Figure 18A and B) (Möckel et al., 2011). The core of the 

complex has dimensions of 75 x 80 x 92 Å and consists of the phosphodiesterase and 

capping domains of the Mre11 dimer as well as the ATP bound, engaged NBDs of Rad50. 

The NBDs of Rad50 sandwich two nucleotides and Mg2+ in the typical head to tail 

orientation of lobe I and lobe II (Hopfner et al., 2000b). The formed disulfide bond 

between the introduced cysteine residues C804Rad50 and C830Rad50 could be nicely 

visualized and does not evidently affect the ATPase domain of Rad50 (Figure 18C). Due to 

the extent of disulfide bridging or crystallization, the ATP used to engage NBDs for 

oxidative formation of the disulfide bonds was hydrolyzed to ADP (Figure 18D).  

Surprisingly, the engaged NBD dimer is situated in the groove of the Mre11 dimer 

that harbors the nuclease active sites (Figure 18A). It contacts the phosphodiesterase 

domains and is encompassed by the two capping domains. The buried surface between 

Mre11 and Rad50 comprises a large area of 3052 Å2. However, the new interfaces between 

capping and phosphodiesterase domains are quite polar and cover a rather small area each 

which indicates that these interfaces are presumably transient. The C-terminal HLH 

domain of Mre11 binds tightly across the base of Rad50NBD coiled-coil domains, as seen 

already in the open form of Mre11:Rad50NBD. This interface consists mostly of 

hydrophobic interactions and the preservation of this interaction suggests that this interface 

is unaltered during the conformational cycle and “anchors” Mre11 and Rad50 in a stable 

but flexible manner. 
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Figure 18: The T. maritima Mre11:Rad50NBD (S-S) complex structure in ATP/ADP conformation 
(Möckel et al., 2011). (A) Ribbon representation of the Mre11:Rad50NBD (S-S) heterotetrameric head module 
complex shown in three different orientations with Mre11 in blue and Rad50 in orange. Individual domains 
and important motifs are highlighted and annotated. (B) Construct design of Mre11:Rad50NBD with Mre11 
colored in blue Rad50 colored in orange. The yellow triangles signify the introduced cysteine mutations in 
Rad50NBD (D804C, H830C), the purple triangles indicate the H94Q substitution in the nuclease domain of 
Mre11 and the interface 2 mutation (F291S). ATPase-N(C), N(C)-terminal ATPase domain; His6, 
hexahistidine tag; Nuclease, phosphodiesterase domain; Cap, capping domain; FL, flexible linker; HLH, 
helix-loop-helix domain. (C) Superposition of the His-switch and D-loop region of the ATPase domain of 
Mre11:Rad50NBD (S-S) (orange) and Mre11HLH:Rad50NBD (grey). The introduced cysteine residues with the 
formed disulfide bridge are colored in yellow. (D) Close up view of the ATP-binding site of 
Mre11:Rad50NBD (S-S) with the initially obtained Fo-Fc map (contoured at 2.0 σ and colored blue) showing a 
clearly defined electron density for the ADP ligand. 
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The structural similarity of the resulting engaged NBD dimer to the AMPPNP bound 

dimers of isolated Rad50 NBDs from both T. maritima and P. furiosus confirms that the 

crosslinking traps an ATP like state (Figure 19).  

 

           

 

Figure 19: Structural similarity of Rad50 NBDs from bacterial T. maritima and archaeal P. furiosus 
(Möckel et al., 2011). Superposition of the ATP binding region of T. maritima Mre11:Rad50NBD (S-S) bound 
to ADP (orange), the Rad50 ATPase domain of P. furiosus bound to AMPPNP (grey; PDB entry: 1F2U) and 
T. maritima Mre11HLH:Rad50NBD bound to AMPPNP (beige) presented in stereo view. Individual domains 
and important motifs are highlighted and annotated. 

 

In summary, ATP engages both NBDs of Rad50 into a dimer that closely fits into 

the DNA binding/active site groove of the Mre11 dimer. This interaction suggests that 

ATP binding to Rad50 regulates MR by sterically controlling access to Mre11s nuclease 

and DNA binding sites. 

 

4.3.3. ATP induced conformational changes of Mre11:Rad50NBD 

Comparing T. maritima Mre11:Rad50NBD in the nucleotide free (PDB entry: 3QG5) 

and ATP/ADP bound state revealed a molecular framework for ATP induced 

conformational changes (Figure 20) (Möckel et al., 2011). The large conformational 

change within the whole complex induces a globular and compact shape upon ATP 

binding. The open to closed transition is driven by a large swivel movement of the NBDs, 

which move from the periphery of the MR catalytic head to its center. Rad50 loses the 

interaction with the outward facing side of the capping domain but gains a new interaction 

with the inward facing side. As a result, the angle between the coiled-coils is altered from 

120° in the open complex to approx. 90° in the closed conformation. However, the coiled-
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coils are almost inverted in their orientation relative to Mre11 and undergo an axial 

rotation with respect to each other. 

 

 

 

Figure 20: Impression of conformational changes of the T. maritima Mre11:Rad50NBD complex upon 
nucleotide binding (Möckel et al., 2011). Comparison of the Mre11:Rad50NBD complex structures in the 
open (PDB entry: 3QG5) and ATP bound conformation shown in front and bottom view orientation. The 
large conformational change within the whole complex induces a globular and compact shape upon ATP 
binding. Mre11 is colored in blue and Rad50 is colored in orange. Conformational changes in interface 2 are 
highlighted by red boxes and are correlated to Figure 21. 

 

A detailed view of the conformational changes shows a slight compaction of the 

Mre11 dimer, driven by the 4 Å inward movement of the capping domains due to their 

interaction with the Rad50 NBDs and a slight alteration of the Mre11 dimer angle (Figure 

21C and D; Figure 22C). Moderate movements of the cap domains in response to DNA 

binding have been seen by structural analyses of Mre11 in complex with DNA (Williams 

et al., 2008). At present, the functional role of these rather moderate conformational 

changes in Mre11 remains to be investigated.  
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Figure 21: Detailed view of conformational changes of the T. maritima Mre11:Rad50NBD complex upon 
nucleotide binding (Möckel et al., 2011). (A) Schematic representation of the overall domain movement 
within the complex upon ATP binding. Conformational changes in interface 2 are highlighted and correlated 
to Figure 20 and Figure 21B. (B) Close up view of the Mre11 capping domain and interface 2 in the open (1) 
and closed (2) Mre11:Rad50NBD complex. The capping domains move inward by approx. 4 Å due to their 
interaction with the Rad50 NBDs and helix αGturn rotates by roughly 90° from the open to the closed state. 
(C) and (D) Superposition of the Mre11 core domains of the nucleotide bound (blue) and unbound (grey) 
structures. The arrows indicate the rotation of the capping domain towards the nuclease active site upon 
Rad50 ATP binding. (D) The bottom view highlights the slight changes in the arrangement of the four-helix 
bundle between the open and closed conformation (straight arrows). 

 

Altogether, the conformational changes can be viewed as a rigid body movement of 

three modules. One module represents the dimer of Mre11’s phosphodiesterase and 

capping domain (Figure 21C and D). The two other modules are both Rad50 polypeptides 

together with the HLH domains of Mre11. On closer examination, there are also some 

notable changes on the secondary structure and subdomain level. The largest 

conformational rearrangement in this respect is observed in helix αGturn that follows the 
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capping domain in the primary structure of Mre11 (Figure 20, Figure 21A and B). αGturn 

rotates approx. 90° from the open to the closed state. This flexibility helps the relocation of 

the Rad50 molecules from the outward facing sides of the capping domains to the inward 

facing sides. In addition, the motif following G undergoes a substantial structural 

rearrangement: in the open state, it is a flexible, rather unstructured linker connecting the 

HLH motif and Gturn. Upon relocation of the NBD-HLH module, this region undergoes a 

disorder-to-order transition and forms G’. As a consequence, a right-angled, loose helix-

loop-helix conformation forms at the lateral entry side of Mre11’s blocked DNA binding 

cleft. It may act as a kind of spring to facilitate and allow conformational changes between 

the flexible modules, but is also positioned to perhaps function in DNA binding (see 

below). 

 

4.3.4. Anchoring and transient interfaces of Mre11:Rad50NBD 

The two observed conformational states (nucleotide free and nucleotide bound 

form) of T. maritima Mre11:Rad50NBD are stabilized by three types of macromolecular 

interfaces (Figure 22A) (Möckel et al., 2011). The two “anchor” interfaces between the 

HLH:coiled-coil  (interface 1) (Figure 22B) and phosphodiesterase:phosphodiesterase 

(Mre11 homodimer interface) (Figure 22C) preserve the Mre112:Rad502 heterotetramer 

during the conformational cycle and are maintained in the open and closed states. Finally, a 

third transient interface between the capping domain and NBD and phosphodiesterase and 

NBD (interface 2) specifically orients Rad50 to Mre11 in the open and closed states 

(Figure 22D). 

The Mre11 dimer interface is a four-helix bundle composed of αB and αC of the 

two Mre11 phosphodiesterase domains as already described for the nucleotide free form of 

T. maritima Mre11:Rad50NBD (Bemeleit, 2007; Lammens et al., 2011). Comparison of the 

open Mre11:Rad50NBD and closed Mre11:Rad50NBD (S-S) dimer interfaces shows a slight 

change in the arrangement of the four-helix bundle (Figure 22C). The second “anchor” 

interface between the HLH domain of Mre11 and the coiled-coil of Rad50 (interface 1) is 

largely unaltered between open and closed states (Figure 22B). This interface is composed 

of mainly aromatic and hydrophobic residues and is thoroughly described in section 4.1.3, 

crystal structure of Mre11HLH:Rad50NBD bound to AMPPNP. The hydrophobic pattern in 

interface 1 is highly conserved in all known homologues (see section 4.1.3) (Figure 10B). 
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However, it is interesting to note that despite the motif’s functional conservation, an 

additional third Mre11 helix interacts with the Rad50 coiled-coil in archaea (Figure 23A 

and B) (Lim et al., 2011; Williams et al., 2011). 

 

 

 

Figure 22: Details of the T. maritima Mre11:Rad50NBD (S-S) interfaces (Möckel et al., 2011). (A) 
Denotation of interfaces. Mre11 is colored in blue, Rad50 is colored in orange. The three types of 
macromolecular interfaces are highlighted by black boxes. (B) Superposition of interface 1 of the open and 
closed Mre11:Rad50NBD complex in ribbon representation indicate that the interactions remain unchanged 
(closed complex is colored according to Figure 22A and the open complex is shown in grey, PDB entry: 
3QG5). (C) Superposition of the Mre11 homodimer interface shows slight changes in the arrangement of the 
four-helix bundle between the open and closed complex. (D) Details of the altered and newly formed 
interface 2 of the ATP bound Mre11:Rad50NBD (S-S) complex (3-5). Selected side chains are shown as color 
coded sticks and are annotated. 

  

Large changes in response to ATP binding are seen in interface 2. The interface 

between the NBDs and the outward facing side of the capping domain (interface 2open) is 

disrupted and several new interaction sites are formed (interface 2closed) (Figure 22D). 

Adjacent to the Mre11 four-helix bundle homodimer interface, (αBMre11) residue N64Mre11 

contacts E836Rad50, a highly conserved residue in Rad50 (Figure 22D-3). An additional 
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arginine R832Rad50, disordered in our structure, could provide additional interactions with 

N64Mre11.  

 

 

 

Figure 23: Structural differences observed in interface 1 between bacteria and archaea (Möckel et al., 
2011). (A) Comparison of the Rad50 coiled-coil domain bound to Mre11HLH (HLH domain also denoted as 
RBD in P. furiosus and CTD in M. jannaschii) of the bacterial T. maritima (beige/dark blue) and the archaeal 
P. furiosus (grey/light blue). (B) Superposition of the respective domains of T. maritima (color coded 
according to Figure 23A) and the archaeal M. jannaschii (grey/light blue). (A) and (B) Despite the 
conservation of the helix-loop-helix motif between bacterial and archaeal Mre11, M. jannaschii and P. 
furiosus contain a third helix which interacts additionally with the Rad50 coiled-coils. 

 

The capping domains of Mre11 interact with regions in close proximity to the ATP 

binding site in Rad50 (Figure 22D-4). Residue W758Rad50, situated near the base of a 

coiled-coil helix, forms a small hydrophobic interface with the inward facing side of the 

capping domain, flanked by several hydrogen bonds. This residue also stabilizes the 

interaction of the NBDs with the outward facing site of the capping domain -sheet. 

Additionally some interactions are generated between Rad50 and the newly formed 

helix G’, in the course of the disorder-to-order transition (Figure 22D-5). 
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4.3.5. Analysis of Mre11:Rad50NBD (S-S) in solution via small angle x-ray scattering 

To confirm the proposed molecular framework for ATP induced conformational 

changes the structure of T. maritima Mre11:Rad50NBD (S-S) in its ATP/ADP bound state was 

analyzed by comparing the theoretical calculated scattering curves to the experimental 

SAXS data described in 4.2.3 (Figure 24).  

 

 

 

Figure 24: Conformational change between the open and closed T. maritima Mre11:Rad50NBD complex. 
(A) Superposition of experimental and calculated SAXS curves for the open (blue) and closed 
(orange/yellow) Mre11:Rad50NBD complex. Both conformations exist in solution as indicated by the 
corresponding experimental and calculated SAXS curves. (B) The electron pair distance distribution function 
P(r) of the closed and open state corresponds to the respective crystal structure derived P(r) distribution. The 
structure derived P(r) distribution indicates an increase of short distances and a decrease in long distances. In 
contrast to the ATPγS induced Rad50NBD engagement residual long distances which assumed a 
heterogeneous mixture between the open and closed conformation are not apparent anymore.  

 

Both scattering intensities and P(r) distribution of Mre11:Rad50NBD in the presence of 

ATPS show characteristic features (e.g. shape of curve and radius of maximum in P(r)) 

that are qualitatively but not quantitatively preserved in the scattering intensities and the 

corresponding P(r) distribution from the crystal structure of the trapped ATP/ADP state 

(Figure 24A and B). The experimental scattering curves can be interpreted as linear 

combination of the scattering curves from the two open and closed state crystal structures 

(Figure 24A). This emphasizes the assumption that Mre11:Rad50 exists in equilibrium 

between two populated states (open and closed), with ATP shifting the equilibrium 

towards the closed state. The latter state is also indicated with regards to the P(r) 

distribution function. Both the structure derived curve and the experimental P(r) 

distribution function in the presence of ATPγS illustrate an increase of short distances and 
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a decrease of long distances compared to the nucleotide free complex (Figure 24B). 

However, as seen for the ATPγS induced Rad50NBD engagement the residual long 

distances indicates a heterogeneous mixture between the open and closed states which are 

dramatically reduced for the structure based P(r) distribution, stating once more the 

molecular framework for ATP induced conformational changes. 

To validate once more whether the closed, ring-shaped conformation is the 

biological assembly present in solution, SAXS experiments were performed with  the 

disulfide bridged Mre11:Rad50NBD (S-S) complex. The measurements were performed using 

three different protein concentrations between 1 and 10 mg/ml. Based on the assumption 

that both the open and closed form exists in solution and the fact that roughly 65% of the 

Mre11:Rad50NBD can be efficiently crosslinked by disulfide bond formation, 35% of the 

open form was subtracted from the experimental Mre11:Rad50NBD (S-S) scattering curve. Ab 

initio shape reconstructions were calculated with a two-fold symmetry by the program 

DAMMIN (Svergun, 1999). The determined molecular envelope fits nicely to the 

corresponding structure of Mre11:Rad50NBD (S-S) in its ATP/ADP bound state, confirming 

the biological assembly in solution, although the envelope is slightly bigger than the crystal 

structure itself (Figure 25). This is probably due to the conformation of the coiled-coil 

domains of Rad50 which are likely stabilized in the crystal but might be flexible in 

solution.  

 

 

 

Figure 25: Solution scattering analysis and model reconstruction of T. maritima Mre11:Rad50NBD (S-S). 
Three dimensional envelopes were calculated with a two-fold axis from a theoretical SAXS curve where 35% 
of the open form was subtracted from the experimentally obtained Mre11:Rad50NBD (S-S) scattering curve. The 
ab initio model was illustrated with the program UCSF CHIMERA (Pettersen et al., 2004) and superimposed 
with the crystal structure of the Mre11:Rad50NBD (S-S) complex in its ATP/ADP bound state. 
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4.4.  Analysis of the DNA binding mechanism of T. maritima Mre11:Rad50  

4.4.1. DNA affinity of the Mre11:Rad50NBD complex in the open and closed state 

To test whether ATP binding leads to a structure with increased DNA affinity, the 

DNA binding capability of T. maritima Mre11:Rad50NBD was analyzed in the nucleotide 

free and bound conformation by Electrophoretic Mobility Shift Assays (EMSAs).  

 

 

 

Figure 26: DNA affinity of T. maritima Mre11:Rad50NBD in open and closed states. (A) DNA affinity to 
double stranded ФX174 RF II plasmid DNA of the Mre11:Rad50NBD complex w/o AMPPNP compared to 
the disulfide bridged Mre11:Rad50NBD (S-S) complex tested by Electrophoretic Mobility Shift Assay (EMSA). 
The EMSA indicates that the closed, ATP bound complex resembles the DNA binding conformation. 
Following protein (0, 0.25, 0.50, 1.0, 2.0 and 3.0 mg/ml respectively) and ФX174 RF II plasmid DNA (0.5 
µg) concentrations were used. (B) Electrophoretic Mobility Shift Assay shows that the disulfide bonded 
Mre11:Rad50NBD (S-S) complex has strongly increased affinity to double stranded DNA oligonucleotides 
compared to the open, nucleotide free complex. (C) Electrophoretic Mobility Shift Assay shows that the 
disulfide bonded Mre11:Rad50NBD (S-S) complex binds likewise to single and double stranded DNA. (B) and 
(C) Following protein concentrations (0, 1.0, 2.5, 5.0, 7.5, 10.0 and 15.0 µM respectively) were analyzed. 
100 nM of 6-FAM 5´-labeled double stranded and single stranded DNA (40mer) was used, respectively.  
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Indeed, the addition of the ATP analog AMPPNP showed a strong effect on 

binding of Mre11:Rad50NBD to double stranded plasmid DNA (ФX174 RF II) (Figure 

26A). Interestingly, the disulfide bridged Mre11:Rad50NBD (S-S) complex had even higher 

affinity to double stranded DNA (Figure 26A and B). This could be due to the fact that 

during the process of disulfide bridging approx. 65% of the complex gets trapped in the 

closed state whereas in the presence of ATP or analogs a rather small fraction comprises 

engaged NBDs as validated by SAXS experiments (see section 4.3.5).  

The disulfide bridged Mre11:Rad50NBD (S-S) complex binds both double and single 

stranded DNA with increased affinity (Figure 26C). Although several DNA structures like 

hairpins, forks and DNA´s with various overhangs were analyzed, no obvious preference to 

certain secondary structures could be found.  

Anyway, since Mre11:Rad50NBD (S-S) binds with the same affinity to DNA 

regardless if AMPPNP is present or not, these data suggests that the engaged, clamp like 

form presents the DNA binding conformation. 

 

4.4.2.  DNA affinity of the single MR components 

 To see if and how the single components of T. maritima, namely Mre11 and 

Rad50NBD, or the entire Mre11:Rad50NBD may interact with DNA, Mre11HLH:Rad50NBD, 

lacking the Mre11 “core” domain residues M7-342, in comparison to the whole disulfide 

bridged Mre11:Rad50NBD (S-S) complex was analyzed (Figure 27A-C) (Möckel et al., 2011). 

Prior to analysis, Mre11HLH:Rad50NBD was incubated with the nonhydrolysable ATP 

analog AMPPNP for 3 days at 4°C to allow formation of engaged NBD:NBD dimers 

(following denoted as Mre11HLH:Rad50NBD (Dimer)). Subsequent assessment of the dimeric 

state was achieved by analytical gel filtration. Even though the dimer fraction was varying, 

a minimum level of 75% of Mre11HLH:Rad50NBD (Dimer) was reached (Figure 27C). 

Although Mre11HLH:Rad50NBD (Dimer) lacks the phosphodiesterase as well as the capping 

domains of Mre11, previously identified as important dsDNA binding elements (Williams 

et al., 2008), it binds plasmid dsDNA (ФX174 RF II) with an affinity that is comparable to 

that of Mre11:Rad50NBD (S-S), apart from minor differences in the yield of disulfide bridged 

protein and dimerization efficiency. DNA binding of the Mre11HLH:Rad50NBD monomer in 

the absence of ATP could not be detected as expected (Figure 27A). Thus, the ATP 
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induced high affinity dsDNA binding site of Mre11:Rad50 is located in the NBD-HLH 

module and requires dimerization of this, either by binding of AMPPNP or by disulfide 

mediated crosslinking of the ATP bound form followed by ATP hydrolysis to ADP.  

 

 

 

Figure 27: Comparison of the DNA affinity of T. maritima Mre11HLH:Rad50NBD and Mre11:Rad50NBD 

(S-S) using Electrophoretic Mobility Shift Assay (Möckel et al., 2011). (A) While the monomeric 
Mre11HLH:Rad50NBD protein shows no affinity to double stranded plasmid DNA (ФX174 RF II), comparable 
DNA affinities of Mre11HLH:Rad50NBD (Dimer) (lacks Mre11 catalytic core) and the heterotetrameric 
Mre11:Rad50NBD (S-S) complex could be observed. Following protein (0.125, 0.25, 0.5, 1.0 and 1.5 mg/ml 
respectively) and ФX174 RF II plasmid DNA (0.5 µg) concentrations were used. (B) Comparison of the 
affinity to single stranded DNA (ФX174 Virion) revealed a weak interaction between Mre11HLH:Rad50NBD 

(Dimer) and DNA whereas Mre11:Rad50NBD (S-S) showed no difference in binding compared to double stranded 
plasmid DNA. Analyzed protein (0, 0.25, 0.50, 1.0, 2.0 and 3.0 mg/ml respectively) and ФX174 Virion 
plasmid DNA (1.0 µg) concentrations. (C) Gel filtration chromatogram of Mre11HLH:Rad50NBD in the 
presence (solid line) or absence (dashed line) of AMPPNP using a Superdex 200 5/150 GL gel filtration 
column. Incubation of monomeric protein with AMPPNP lead to approx. 75% dimerized protein.  

 

 In contrast to dsDNA binding, Mre11HLH:Rad50NBD (Dimer) showed almost no 

affinity for single stranded plasmid DNA (ФX174 Virion). Thus, the binding site on this 

module is highly specific to dsDNA. However, the disulfide bridged closed complex not 

only binds dsDNA with high affinity, but also efficiently bound the ssDNA plasmid 

(Figure 27B). Thus, the presence of Mre11 nuclease and capping domains created an 

B A 

C 



4. Results                                                                                                                                            82 
 

 

additional ssDNA binding site in the complex. Alternatively, short hairpins could form on 

ФX174 ssDNA which might be recognized by Mre11:Rad50NBD (S-S) but not by the dsDNA 

binding site of Mre11HLH:Rad50NBD (Dimer). It is therefore conceivable that in the ATP 

bound closed state the NBD-HLH module dimer is responsible for binding to dsDNA 

while Mre11 nuclease and capping domains might still bind ssDNA but are blocked from 

binding dsDNA.  

 

4.4.3. Analyzing the molecular clamp mechanism of Mre11:Rad50NBD 

A major result of the structural analysis of T. maritima Mre11:Rad50NBD is that 

Rad50 blocks Mre11’s DNA binding sites in the ATP bound form (see section 4.3.2). 

However the possibility remains that, although the crystal structures of the open and closed 

complex explain the solution SAXS data (see sections 4.2.3 and 4.3.5), DNA induces an 

additional conformational change enabling it to bind to both Mre11 nuclease and capping 

domains and NBD-HLH module. For instance, a relatively moderate structural change 

could lead to double stranded DNA being sandwiched between Rad50 NBDs and the 

phosphodiesterase domains of Mre11. 

To test this possibility, Mre11:Rad50NBD was disulfide bridged in the presence of 

single and double stranded DNA (ФX174 Virion and ФX174 RF II) under conditions 

where in EMSA most of the DNA is shifted by bound protein (Figure 28A-F). In both 

cases subsequent gel filtration failed to detect co-elution of DNA and protein. The fact that 

Mre11:Rad50NBD could not be crosslinked around internal DNA leads to the assumption 

that the complex does not bind the DNA by encircling it in a ring-like structure. 

To confirm this statement DNA binding of T. maritima Mre11:Rad50NBD (S-S) was 

additionally investigated via EMSA and gel filtration with double stranded DNA oligos 

containing a 5′ fluorescein label (Möckel et al., 2011). A single-chain Fv fragment (scFv) 

of a fluorescein binding antibody can be used to block the DNA ends (Honegger et al., 

2005) (Figure 29). To analyze if the disulfide bridged, trapped ATP bound form can still 

bind dsDNA with both ends blocked by the scFv fragment FITC-E2 (Figure 29A) DNA 

affinity of Mre11:Rad50NBD (S-S) was tested by adding the complex to the dsDNA with 

blocked ends and subsequent EMSA (Figure 29B). To exclude incomplete end blocking of 

the DNA, the interaction between antibody and fluorescein labeled DNA was validated by 
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analytical gel filtration (Figure 29C). Nevertheless the disulfide bridged, ATP bound 

complex was still able to bind DNA with blocked ends. Thus, double stranded DNA is 

likely not to be encircled by Mre11:Rad50. 

 

 

 

Figure 28: Biochemical analysis of the molecular clamp mechanism of T. maritima Mre11:Rad50NBD. 
(A) Gel filtration chromatogram of the disulfide bridged Mre11:Rad50NBD complex in the presence of ATP 
and double stranded ФX174 RF II plasmid DNA was carried out onto a Superose 6 PC 3.2/30 gel filtration 
column. Disulfide bridging of the complex was carried out either in the presence (solid line) or absence 
(dashed line) of DNA, prior to gel filtration. The disulfide bridged Mre11:Rad50NBD did not co-elute with the 
plasmid DNA fraction (peak 1), indicating that the complex cannot form a stable ring around internal DNA. 
(B) Electrophoretic Mobility Shift Assay (EMSA) shows that the ФX174 RF II plasmid DNA was 
completely bound by the Mre11:Rad50NBD complex used in the above described gel filtration 
chromatography experiment. (C) SDS PAGE presenting the disulfide bridged Mre11:Rad50NBD complex 
from peak 2 of the gel filtration chromatogram in (A). (D) Gel filtration chromatogram of the disulfide 
bridged Mre11:Rad50NBD complex in the presence of ATP and single stranded ФX174 Virion plasmid DNA 
was carried out onto a Superose 6 PC 3.2/30 gel filtration column. Disulfide bridging of the complex was 
carried out either in the presence (solid line) or absence (dashed line) of DNA, prior to gel filtration. The 
disulfide bridged Mre11:Rad50NBD did not co-elute with the plasmid DNA fraction (peak 1), indicating that 
the complex cannot form a stable ring around internal DNA. (E) EMSA shows that the ФX174 Virion 
plasmid DNA was completely bound by the Mre11:Rad50NBD complex used in the above described gel 
filtration chromatography experiment. (F) SDS PAGE presenting the disulfide bridged Mre11:Rad50NBD 
complex from peak 2 of the gel filtration chromatogram in (D). 
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Figure 29: Details of the DNA binding mechanism of T. maritima Mre11:Rad50NBD (S-S) via the 
Antibody DNA Binding Assay (Möckel et al., 2011). (A) Illustration of the Antibody DNA Binding Assay 
described in Figure 29B–E. (B) Electrophoretic Mobility Shift Assay showing that the nucleotide bound, 
closed Mre11:Rad50NBD (S-S) complex can still bind to antibody blocked double stranded 40mer DNA. 
Following protein concentrations were used: 0, 1.75, 3.50, 7.0 and 14.0 µM. (C) Gel filtration chromatogram 
of 5´fluorescein labeled ds40mer in the absence (solid line) and presence (dashed line) of the antibody 
fragment FITC-E2 verified complete blocking of the respective double stranded DNA. The presence of 
antibody scFV shifted the DNA to larger molecular weights (peak 1) compared to DNA alone (peak 2) and 
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free scFv (peak 3). (D) Gel filtration chromatogram of the 5´fluorescein labeled ds40mer in presence (solid 
line) and absence (dashed line) of Mre11:Rad50NBD (S-S). Prior to gel filtration protein and DNA were 
incubated under conditions where in EMSA most of the DNA is shifted by bound protein. The gel filtration 
retention volumes were subsequently analyzed by agarose gel electrophoresis. The agarose gel lanes are 
aligned with the respective fractions of the gel filtration elution. (E) Gel filtration chromatogram of the 
DNA-antibody mixture (dashed line) and the ternary DNA-(Mre11:Rad50NBD (S-S))-antibody complex (solid 
line). Analysis of the respective elution fractions by agarose gel electrophoresis indicates that the complex 
could not be trapped on double stranded DNA. All gel filtration experiments were carried out using a S200 
5/150 GL column. 

 

To further validate this model, fluorescein labeled dsDNA was first incubated with 

Mre11:Rad50NBD (S-S), followed by blocking of the 5´ ends by scFv. Subsequently the 

DNA:protein complex was analyzed by analytical gel filtration and agarose gel 

electrophoresis (Figure 29D-E). Since the gel filtration retention volume of DNA bound to 

scFv and/or Mre11:Rad50NBD (S-S) would be shifted in comparison to that of free DNA, it 

should be possible to detect encircling of MRNBD (S-S) around DNA. However, we did not 

see any change in retention volume or evidence for a ternary DNA:(Mre11:Rad50NBD (S-S)) 

:antibody complex. Therefore it is unlikely that Mre11:Rad50NBD forms a ring around 

dsDNA (Figure 29B-E). 

 

4.4.4. Examination of DNA binding via surface analysis of Mre11:Rad50NBD 

Beside the biochemical analysis of the DNA binding mechanism of T. maritima 

Mre11:Rad50NBD, the complex was additionally investigated by surface analysis and by 

comparing the complex with already existing structures where Mre11 is bound to DNA 

(Williams et al.).  Superposition of the nucleotide bound closed TmMre11:Rad50NBD (S-S) 

complex with the P. furiosus (Pf)Mre11 bound to either synaptic or branched DNA (PDB 

entry: 3DSC and 3DSD respectively) on the Mre11 dimer indicates, that in both cases the 

dsDNA would interfere with the NBD:NBD domain of TmRad50. PfMre11 is not shown 

for clarity in both illustrations. This matches the biochemical observations that 

Mre11:Rad50NBD does not bind to DNA by encircling and indicates that the Rad50 dimer 

needs to harbor an additional dsDNA binding site. 
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Figure 30: Consideration of Mre11´s double stranded DNA binding site in the nucleotide bound closed 
Mre11:Rad50NBD (S-S) complex. (A) and (B) Superposition of the closed TmMre11:Rad50NBD (S-S) complex 
(Mre11 blue and Rad50 orange) and the PfMre11 dimer bound to synaptic and branched DNA (PDB entry: 
3DSC and 3DSD respectively; DNA colored in red). In both instances the Mre11 bound DNA would 
interfere with the Rad50 domain of the tetrameric, ATP bound complex. 

 

Although the exact nature of the interaction of Mre11:Rad50 with DNA remains to 

be determined experimentally, some clues can be observed from the analysis of the 

molecular and the electrostatic surface potential. A positive patch, complementary in size 

and charge to double stranded DNA backbones, is observed at the surface between the 

protruding coiled-coil elements (Figure 31A). Alternatively, positively charged surface 

patches are located on the lateral side of Rad50. These patches may potentially bind 

dsDNA but in both cases the DNA is rather far away from the cleft between Mre11 and 

B 

A 



4. Results                                                                                                                                            87 
 

 

Rad50, making it at present unclear how DNA binding and DNA processing are 

functionally coupled. 

 Alternatively, ATP dependent engagement of the NBDs could unwind dsDNA ends 

with one of the ssDNA strands binding between Rad50 and Mre11. While Rad50 blocks 

the dsDNA binding site, there are solvent accessible voids between Rad50 and Mre11 that 

reach the Mre11 active site and are large enough to accommodate ssDNA (Figure 31B). 

Thus, at least from a structural point of view, it is conceivable that the closed state can 

cleave ssDNA either endo- or exonucleolytically. 

 

 

 

Figure 31: Surface analysis of T. maritima Mre11:Rad50NBD (S-S). (A) Electrostatic surface potential of T. 
maritima Mre11:Rad50NBD (S-S) in front and bottom view orientation was calculated using APBS tools (Baker, 
2004) and indicates positively (blue) charged patches located on the lateral side of Rad50 and along the 
Rad50 groove. Latter one is suitable in size and charge complementary to dsDNA backbones. (B) 
Superposition of the molecular surface of T. maritima Mre11:Rad50NBD (S-S) and the P. furiosus Mre11 bound 
to branched DNA (PDB entry: 3DSD) (DNA colored in red; TmMre11 and TmRad50 are colored in blue and 
orange respectively; PfMre11 is not shown for clarity). While Rad50 blocks the Mre11 dsDNA binding site 
in the ATP bound state (left hand view), the surface shows holes between Rad50 and Mre11 that are in 
principle large enough to harbor ssDNA (right hand view). 
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5. Discussion 

DNA damages, in particular double strand breaks (DSBs) display a huge hazard to 

genome integrity and therefore cell viability. DSBs can arise as a result of exo- and 

endogenous sources, thus modifying the DNA either direct or indirect (Borde and Cobb, 

2009; Khanna and Jackson, 2001). If repair of these lesions occur inappropriate or, at 

worst, completely fails the cell has to accomplish various modes of chromosome 

aberrations or even cell death (Costanzo et al., 2001). The Mre11:Rad50:Nbs1 (MRN; 

MRX in S. cerevisiae; MR in prokaryotes; also known as SbcCD in bacteria) complex 

describes such a keystone complex, involved in DSB sensing, nucleolytic processing of 

DNA ends, recruitment of DSB processing enzymes, damage signaling and participates as 

a scaffolding protein (Mirzoeva and Petrini, 2001; Sharples and Leach, 1995). MR is 

highly conserved in sequence throughout all domains of life, emphasizing its impact on 

genome maintenance. Disregarding Nbs1, which is restricted to eukaryotes, MR has 

conserved morphological features and enzymatic activities, suggesting a conserved 

framework and mechanism in all living organisms. The catalytic core consists of the 

Mre11 nuclease dimer and two molecules of the Rad50 ABC ATPase. A large flexible 

coiled-coil region sticks out of the catalytic head of Rad50 and links the N- and C-terminal 

ABC segments (Assenmacher and Hopfner, 2004). The high resolution structure of the 

bacterial MR complex in its ATP-free state shows an elongated shape, with the Mre11 

dimer in the center and a Rad50 monomer on each outer tip (Bemeleit, 2007; Lammens et 

al., 2011). Based on the fact that dimer assembly is essential for ABC ATPase function 

(Hopfner and Tainer, 2003), it was considered important to gain insights about the 

occurring conformational changes of MR upon ATP binding. Moreover, little is known 

about MR´s DNA binding mechanism, a further question for this thesis. To this end, the 

single components and the catalytic head of the bacterial Thermotoga maritima (Tm) MR 

complex were characterized structurally and biochemically.  

 

5.1.  Two states of Mre11HLH:Rad50NBD 

Even though the archaeal bipartite Rad50 ATP binding cassette had been 

crystallized in its ATP-bound state previously (Hopfner et al., 2000b) and the sequence of 

this domain is about 25% identical and about 45-50% similar to the bacterial T. maritima, 

the structure lacked the important coiled-coil domain and could not give insights into how 
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ATP might impact on the orientation of the coiled-coils as well as the interaction with 

Mre11. Therefore Rad50´s nucleotide binding domain (NBD) together with approx. 50 

amino acids of the Mre11 binding coiled-coil region and Mre11´s helix-loop-helix (HLH) 

domain was crystallized to gain insights into the structural framework.  

The high resolution structure of TmMre11HLH:Rad50NBD bound to the non-

hydrolyzable ATP analog AMPPNP offers a detailed view of nucleotide coordination and 

hydrolysis. The resulting electron density was of high quality and nicely visualized the 

protein-protein interaction between Rad50´s coiled-coil and Mre11´s C-terminal HLH 

domain (designated as interface 1) (Figure 32). Interface 1 is stabilized mainly by 

hydrophobic patches which are highly conserved from bacteria to higher eukaryotes. 

Moreover mutations in interface 1 resulted in DNA damage sensitivity in S. cerevisiae 

yeast strains examined in vivo by the response to genotoxins (Lammens et al., 2011). The 

large interaction area of 1334 Å2, the genetic studies and the high similarity of this 

interaction region to the nucleotide free, open state of MR (PDB entry: 3QG5) (Bemeleit, 

2007; Lammens et al., 2011), emphasizes the biological relevance of this anchor point 

between Mre11 and Rad50 in DSB repair.  

 

 

 

Figure 32: Schematic representation of (A) the T. maritima Mre11:Rad50NBD complex in its nucleotide 
free state (PDB entry: 3QG5) and (B) T. maritima Mre11HLH:Rad50NBD bound to AMPPNP. Mre11 is 
colored in blue, Rad50 is colored in orange. The macromolecular interfaces 1 and 2 are highlighted by black 
boxes. Important domains are annotated. 

 

The flexible linker that connects Mre11´s nuclease module with the HLH domain in the 

nucleotide free MR complex potentially facilitates large conformational changes based on 

ATP and/or DNA binding (Figure 32). Besides interface 1, tight Rad50 NBD engagement 

upon ATP binding results in an approx. 50° rotation of the signature motif helix in respect 

to the Walker motifs, consequently resulting in a 50° rotation of the coiled-coil-HLH-
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interacting region with respect to the N-terminal ABC-ATPase domain (lobe I) (Figure 

10). As a consequence ATP-binding and therefore the formation of the engaged NBDs 

strongly affects the angle between the two coiled-coils protruding from the DNA binding 

catalytic head, consistent with scanning force microscopy of human MRN (Moreno-

Herrero et al., 2005), where DNA binding was shown to alter the angle between two 

coiled-coils by about 60°. Comparing the angle between the coiled-coils in the nucleotide 

free, open conformation (~120°) and the ATP-bound, closed state (~60°), there is also a 

difference of about 60°. This suggests that the movement in the catalytic head from the 

nucleotide free MR complex to the ATP-bound conformation with engaged NBDs is the 

molecular basis for the observed mesoscale movements of the MRN coiled-coils upon 

DNA binding. The ATP-driven domain rotation in P. furiosus Mre11HLH(RBD):Rad50NBD 

was suggested to be transduced to a ~30 Å linear pull on the linker region connecting the 

HLH domain with the nuclease module of Mre11 (Williams et al., 2011). Therefore, the 

repositioning of the coiled-coils with respect to the ATPase core could presumably 

transmit conformational changes to substrate-specific domains of Mre11 therefore 

stimulating DNA binding and processing activity (Hopfner and Tainer, 2003). 

Furthermore, the high resolution structure of the TmMre11HLH:Rad50NBD:AMPPNP 

complex enabled the alignment of the tertiary ATPase domain structures between P. 

furiosus (PDB entry: 1F2U) and T. maritima. Both structures are quite similar, with overall 

rms deviations of 2.05 Å, highlighting the similarity of morphological features in bacteria 

and archaea. 

So far, two different states of Rad50´s nucleotide binding domains are known, the 

nucleotide unbound NBDs which resembles also the conformation in its ADP-bound state 

(Hopfner and Tainer, 2003) and the ATP-bound state, which results in reorientation of the 

signature motif helix and therefore mesoscale movements of the coiled-coil domain. To 

analyze if Rad50´s ATPase mechanism is affected in a third state, for instance the 

transition state like in P-Type ATPases where phosphorylation of a specific amino acid 

leads to a conformational change and therefore to the pumping power of the ATPase 

(Kuhlbrandt, 2004), Mre11HLH:Rad50NBD of T. maritima was crystallized bound to ADP 

orthovanadate. Since the orthovanadate ion has similar size and charge to inorganic 

phosphate, it can adopt its trigonal bipyramidal coordination, therefore mimicking the 

phosphate ion transition state expected during phosphoryl transfer. Based on these features, 

vanadate is a valuable tool for studying enzyme mechanism (Smith and Rayment, 1996). 
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Structural comparison of the Rad50 ATP binding region in AMPPNP-bound and 

ADP[VO4]
3--state revealed no large conformational changes. These results suggest that 

ATP hydrolysis is not synchronized with a force-generating step leading to a stimulation of 

enzymatic action. This is in opposition to the proposed model where Rad50 might enter an 

adenylate kinase cycle as a result of occurring conformational changes upon ATP 

hydrolysis, which would necessarily reduce the distance between the two ATP binding 

sites from approx. 35Å to approx. 16Å (Bhaskara et al., 2007). However, Rad50 could 

stimulate the nuclease activity of Mre11 either by ATP-binding and/or ATP-release. 

In summary, the Mre11:Rad50 complex has to undergo large open-to-closed 

conformational changes upon ATP binding. Linkage between the Rad50 coiled-coils and 

Mre11´s HLH domain in interface 1 seems to be essential as an anchor point. In addition, 

the conformational changes driven by nucleotide binding lead to an alteration of the coiled-

coil domains with respect to the ATPase core which is suitable to mediate communication 

within and between MR(N) complexes. In contrast, phosphoryl transfer does not seem to 

play a role in energy transfer followed by conformational alterations or stimulation of the 

adjacent substrate domain.  

 

5.2.  Trapping ATP dependent NBD-NBD formation 

SAXS experiments with and without ATP revealed that the complex exists in at 

least two different states, indicating the engagement-disengagement cycle of Rad50 

ATPases, similar to that seen in other ABC ATPases (Bemeleit, 2007; Liu et al., 1999; 

Moody et al., 2002). The nucleotide bound MR complex with closed NBDs could not be 

stabilized, even in the presence of non-hydrolyzable ATP analogs or by using an ATP-

hydrolysis deficient mutant protein. To provide a structural framework for the architecture 

and ATP dependent conformational changes of the entire MR complex, the NBD-NBD 

domains had to be trapped in its ATP bound state. On the basis of the previously solved 

Mre11HLH:Rad50NBD structure bound to AMPPNP, two cysteine residues could be 

specifically introduced in Rad50NDB. While these residues are far apart from each other in 

the nucleotide free MR complex, they are perfectly positioned to stabilize the ATP 

dependent NBD dimer by forming disulfide bonds across the NBD-NBD interface in the 

ATP bound, engaged state. The relatively moderate disulfide bonding efficiency of approx. 

30%, consistent with SAXS data achieved with ATPγS, raised the idea that the nucleotide 
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free conformation is stabilized via a transient structure. The second interaction site 

between Rad50 and Mre11 (designated as interface 2) not only comprises a relatively small 

area but also consists partly of the signature motif which is indispensable for ATP binding, 

therefore interface 2 is presumably representing this transiently stabilizing structure. 

Mutations introduced in interface 2 slightly increased the ATP hydrolysis activity of 

Rad50. Moreover, via specific substitution of a phenylalanine residue to a serine residue in 

position Mre11F291, equilibrium could be shifted from the open to the closed state as 

confirmed by the increased disulfide bonding efficiency of approx. 65%. The well-directed 

trapping of the ATP bound state was key in analyzing the closed conformation of MR. 

 

5.3.  Mre11:Rad50NBD (S-S) in its ATP/ADP bound state 

Due to trapping of the ATP bound engaged Rad50 NBDs by disulfide bridging, it 

was possible to solve the crystal structure of the T. maritima Mre11:Rad50NBD (S-S) (TmMR 

NBD (S-S)) complex, trapped in its ATP/ADP bound state. Although ATP was hydrolyzed to 

ADP in the course of disulfide bridging or crystallization, the NBD dimer is structurally 

similar to the AMPPNP bound form of the Rad50NBD dimer. This similarity not only 

emphasizes the relevance of the presented ATP dependent conformational changes of MR, 

it also suggests that disulfide bond stabilization could be a general approach to trap ABC 

enzymes in the ATP bound state for structural studies. 

Together with the structure of T. maritima Mre11:Rad50NBD in the open nucleotide 

free state, the illustrated structure in its ATP/ADP bound state allows the study of the ATP 

dependent conformational cycle of the MR complex (Figure 33). ATP induces a 

remarkably large transition which leads to an axial rotation of the Rad50 coiled-coils with 

respect to each other and an inverted orientation of them with respect to Mre11. This 

conformational switch is consistent with the previously proposed “clamp” model of MR 

(Williams et al., 2011). Furthermore, SAXS experiments of the bacterial Mre11:Rad50NBD 

catalytic head domain resulted in a substantial decrease of the radius of gyration (Rg) from 

230 Å to 193 Å as well as a more articulated peak at shorter vectors and a significant 

decrease of the long vectors in the pair distribution function P(r) when ATPS was added 

to the solution (Lammens et al., 2011). This resembles the SAXS data of the 

TmMre11:Rad50NBD complex with BMOE crosslinked and disulfide bonded NBDs, 

supporting the conclusion that the MR crystal structure in its ATP/ADP bound state 
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matches the conformation of the complex in solution. In fact, stabilization of MR in open 

and closed conformations by either interface 2 or ATP suggests an at least two state switch 

for the bacterial complex, although additional conformations in the presence of DNA 

cannot be ruled out which will be discussed later on. 

 

 

 

Figure 33: Schematic representation of the overall domain movement within the T. maritima 
Mre11:Rad50NBD complex upon nucleotide binding. Mre11 is colored in blue, Rad50 is colored in orange. 
The interfaces 1 and 2 are highlighted by black boxes. Important domains and motifs are annotated.  

 

Besides the obvious nucleotide-driven conformational change within the whole 

complex several minor alterations occurred, likely to be important for MR´s function. 

Helix αGturn is flipped around 90° from the open to the closed state, therefore enabling with 

its flexibility the large conformational relocation of the Rad50 NBDs. Moreover, the 

flexible linker connecting Mre11´s capping domain with the HLH motif in the open 

conformation undergoes a disorder-to-order transition by forming a well-ordered α-helix 

(αG´) (Figure 33). Still, the most notable result of the closed Mre11:Rad50NBD (S-S) complex 

is the blocking of Mre11´s dsDNA binding/active site groove by the Rad50 NBD dimer. In 

fact it is possible that ATP binding to Rad50 regulates MR by sterically controlling access 

to Mre11s nuclease and DNA binding sites and that the new formed αG´ acts as a kind of 

flexible spring at the lateral entry side allowing conformational changes to enable access to 

the active site and/or functions in DNA binding. In addition, Mre11 interacts with Rad50 in 
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the newly formed interface 2closed in a rather small and polar buried surface area, making 

conformational changes between the flexible modules not inconceivable (see section 5.6).  

At the same time as the structure of TmMre11:Rad50NBD (S-S) in its ATP/ADP bound 

state was solved, Yunje Cho and coworkers reported a related structure of archaeal 

Mre11:Rad50NBD bound to the non-hydrolyzable ATP analog ATPS (Lim et al., 2011). 

The structure of archaeal MR in the absence of ATP is not known at present. However, 

SAXS analysis based on the archaeal Pyrococcus furiosus (Pf)MRNBD complex  indicate as 

well a two state mechanism with an elongated conformation of MR in its ATP-free, and a 

closed conformation with engaged NBDs in its ATP bound state (Figure 34). Together 

with the high degree of similarity between the structures of the ATP/ADP state of bacterial 

MR and ATPS bound state of archaeal MR it can be suggested that the ATP induced 

conformational cycle is an evolutionarily conserved feature of the complex. Moreover, the 

high similarity of the structures rules out crystallization artifacts as a result of site specific 

mutation and disulfide bridging.  

 

 

 

Figure 34: ATP induced conformational cycle of archaeal P. furiosus. (A) Superposition of experimental 
SAXS curves of P. furiosus MRNBD with and without ATPγS illustrate a to T. maritima likewise 
conformational change upon ATP binding. This suggests, that also archaeal MR exists in solution as open 
nucleotide unbound and closed ATP bound conformation. (B) The related electron pair distance distribution 
function P(r) shows an increase of short distances and a decrease in long distances upon ATPγS binding. 
Residual long distances match the prediction of a heterogeneous mixture between the open and closed ATP 
bound complex. 

 

A B 
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5.4. DNA binding mechanism of MR 

Both prokaryotic and eukaryotic MR(N) bind DNA with a rather medium affinity 

and do not show a clear preference for single stranded or double stranded DNA, DNA ends 

or hairpins (de Jager et al., 2001; Lim et al., 2011). Anyway, stabilization of the closed, 

nucleotide bound conformation increased the affinity of MR to DNA, indicating that the 

engaged clamp-like form displays the DNA binding conformation. Even though the whole 

MR complex does not seem to have a preference for binding a specific DNA type, 

analyzing the single components of MR revealed a preference for Mre11HLH:Rad50NBD, 

lacking Mre11´s phosphodiesterase and capping domains, to double stranded DNA. Thus, 

the nucleotide bound closed MR complex could bind dsDNA via the dimeric NBD-HLH 

module, whereas the Mre11 nuclease and capping domains might still bind ssDNA but are 

blocked from binding dsDNA. These data are consistent with the biochemistry of the 

bacteriophage Mre11:Rad50 homolog. Here, the dsDNA exonuclease was inhibited by 

ATPS, at least for processive degradation, while ssDNA endonuclease was not 

(Herdendorf et al., 2011). The phosphodiesterase and capping domains of Mre11, 

previously identified as important dsDNA binding elements (Williams et al., 2008), does 

not seem to play a major role for dsDNA binding in the closed complex. The precise 

interaction of MR with DNA ends remains to be seen, but it was not possible to detect 

disulfide bridged MR around single and double stranded plasmid DNA, respectively. 

Additionally, the disulfide bridged complex was still able to bind to DNA whose ends were 

blocked on both 5` ends by a fluorescein specific single chain Fab antibody fragment. It 

appears that the closed ATP bound complex does not entrap dsDNA like other DNA 

associated rings e.g. PCNA or specific helicases and that ends are not simply recognized 

by a topological ring (Bowman et al., 2004). This does not exclude the possibility that the 

open, elongated form of the MR complex can still bind to internal stretches of DNA. 

However, superimposition of the bacterial Mre11:Rad50NBD complex in its ATP/ADP 

bound state on the archaeal Mre11 dimer bound to either synaptic DNA ends or branched 

DNA  illustrate, that in both cases the Mre11 bound DNA would interfere with the NBDs 

of Rad50 (Figure 30) (Williams et al., 2008). In other words, Mre11´s binding groove is 

completely blocked by the Rad50NBD dimer, making access of dsDNA impossible. The 

positive patch in Rad50´s groove suitable in size and charge to double stranded DNA 

(Figure 31A), together with the data of Mre11HLH:Rad50NBD´s preference for dsDNA, 

support the idea that the Rad50 dimer harbors an additional dsDNA binding site. 
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Furthermore, positively charged surface patches are located on the lateral side of Rad50 

(Figure 31A). Y. Cho and coworkers identified several positively charged residues in the 

archaeal MRNBD complex verified to be involved in DNA binding (Lim et al., 2011). 

Superimposition of the bacterial and archaeal ATP bound MRNBD complex structures 

identified the corresponding positively charged residues in the MR complex of 

Thermotoga maritima. Thus residue R132 and K147 located in the central Rad50 groove 

matches R123 and K144 in M. jannaschii involved in DNA binding. DsDNA binding 

along such an NBD-NBD interface was proposed for the distantly related bacterial 

recombination enzyme RecF in the RecFOR pathway (Koroleva et al., 2007). The residues 

predicted to guide the DNA from the DNA binding site of Rad50´s groove to the active site 

in Mre11 namely K897 and R902 in the archaeal complex correspond to K750 and K756 

in the bacterial MRNBD complex. Both patches may potentially form dsDNA binding sites 

(see section 5.6). 

In summary, the structural and biochemical data of the closed T. maritima 

Mre11:Rad50NBD (S-S) complex in its ATP/ADP bound state suggests that the previously 

identified dsDNA binding site of the Mre11 catalytic domain dimer is unlikely the dsDNA 

binding site of MR in the presence of ATP (Williams et al., 2008). This is in agreement 

with the recently reported structure of the archaeal MR complex bound to ATPγS (Lim et 

al., 2011).  

 

5.5.  Interacting partners of MR(N) 

Even though MR(N) is a key player in DSB repair and seems to sense and bind as 

one of the first proteins to DSBs (Stracker et al., 2004), it is remarkable that MR(N) shows 

a rather weak affinity to DNA (µM range). One reason for this could be interactions with 

accessory proteins, such as with other enzymes involved in DSB repair.  

SSB protein might be, in addition to its role in preventing secondary structures of 

free ssDNA, involved in recruitment of different repair proteins (Richard et al., 2011a). 

The interactome of B. subtilis SSB was recently estimated to include at least 12 proteins 

amongst others Rad50 (Costes et al., 2010). Moreover, human SSB1 was shown to be 

recruited to sites of DSBs in all interphase cells independently of MRN. It seems to 

function upstream of MRN, promoting its recruitment and even more hSSB1 was shown to 

stimulate Mre11´s endonuclease activity (Richard et al., 2011a; Richard et al., 2011b). 
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Whereas hSSB1 seems to interact with Nbs1, human RPA was suggested to bind Mre11 

and Nbs1 (Oakley et al., 2009; Richard et al., 2011a). However, the precise role of 

SSB/RPA together with MR(N) in DSB sensing, protein recruitment and signaling needs to 

be investigated, but this interaction could be an explanation why MR(N) on its own shows 

rather weak DNA binding and nuclease activity in vitro.  

Another interaction site of MR(N) could be the Rad50S mutation cluster which is a 

surface patch that is thought to form a meiosis-specific protein interaction site (Alani et al., 

1990; Usui et al., 2006). One interaction partner could be Sae2 (CtIP in mammals and Ctp1 

in S. pombe) since deletion of Sae2 leads to a similar phenotype than Rad50S mutations 

(McKee and Kleckner, 1997). However, it is conceivable that this cluster is also involved 

in DNA interaction. 

Besides this, further protein interactions with MRN have also been proposed. For 

instance, MRN was shown to stimulate resection by BLM and Dna2 by increasing the 

affinity of the helicase BLM for DNA ends but also by recruiting BLM to partially 

resected DNA (Nimonkar et al., 2011). Consistent with this interpretation, 

coimmunoprecipitation experiments showed that Xenopus Dna2 interacts with Nbs1 

(Wawrousek et al., 2010). In addition, MRN was shown to stimulate together with RPA 

and BLM the resection by Exo1, by recruiting and by stimulating Exo1´s processivity 

(Nimonkar et al., 2011). Biochemical data of P. furiosus also indicates a functional 

interplay in resection of MR together with a helicase and a nuclease (Hopkins and Paull, 

2008). In addition, it is possible that DNA ends are first bound by the high affinity binder 

Ku70/80, which is then released by MRN and Ctp1 to assist recombinational repair as 

shown for S. pombe (Langerak et al., 2011). Studies revealed also that MRN promotes non-

homologous end-joining repair in S. cerevisiae (Chen et al., 2001; Zhang and Paull, 2005).  

In summary, various enzymes involved in DSB repair were shown to interact with 

or to be recruited by MR to DSBs, but physical and specific interaction needs to be 

investigated in most cases. Even though the structures of MR in its nucleotide bound and 

nucleotide free states show no clear evidence for protein-protein interactions and/or DSB 

end binding, such alternatives to address the rather low DNA binding affinity of MR(N) 

cannot be disregarded. 
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5.6. Working model of MR for DNA tethering and DSB processing 

The data presented in this work allow the deduction of the ATP dependent 

conformational cycle of the MR complex, implying an at least two state switch (open-to-

closed) for the bacterial complex, even though additional conformations in the presence of 

DNA are conceivable. However the Mre11 capping domains might play a role as key site 

for the transient stabilization of functional states of the MR complex and orients Rad50’s 

NBDs. Although ATP binding can induce a transition to the closed form even in absence 

of DNA, it is conceivable that formation of the closed state is additionally promoted by 

dsDNA because it binds to this state with higher affinity. For instance, DNA binding to the 

capping domains of Mre11 could help Mre11 to release the NBDs from interface 2, 

allowing them to adopt a closed conformation in the presence of ATP. Thus, the working 

model includes dsDNA and ATP which cooperatively transform MR from the open to the 

closed state, giving MR a key role in both DNA tethering and DNA processing.  

 

 

 

Figure 35: Proposed clamp model for DNA tethering. Hypothetical model for ATP-dependent tethering of 
dsDNA ends by the MR complex. The extended coiled-coil domains of Rad50 undergo an extensive 
conformational reorientation, which could open up the zinc hook interaction after ATP-dependent 
engagement and allow for intermolecular interaction between different MR complexes via the zinc hook. The 
proposed DNA-binding groove (Figure 31A) could orient two DNA ends or sister chromatids in close 
proximity to each other.  
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A possible molecular mechanism for ATP dependent DNA tethering can be seen by 

comparing the open and the ATP-bound closed form (Figure 35). The conformational 

transition turns Rad50 around as well is leading to an axial rotation of the Rad50 coiled-

coil domains with respect to each other. Even though the coiled-coil domains are flexible 

(de Jager et al., 2004), the axial rotation of coiled-coils and zinc hook domains could 

prevent intramolecular tethering after ATP dependent engagement. This could liberate the 

zinc-hooks to allow intermolecular tethering of different MR complexes as seen by atomic 

force microscopy (AFM) in response to DNA binding to MRN (Figure 35) (Moreno-

Herrero et al., 2005). However, in this study, ATP alone did not result in a conformational 

change as observed from the structures reported here as well as for the related archaeal 

system (Lim et al., 2011). These discrepancies can be explained if both ATP and DNA act 

cooperatively to induce the open-to-closed transition. This model also explains the 

tethering functions of MR(N) by preventing Mre11 dependent degradation of dsDNA ends.  

The working model for MR in DSB processing is mainly based on the structural 

insights achieved by the Mre11:Rad50NBD complex in its ATP-free and its ATP/ADP 

bound state combined with biochemical data including DNA affinity of the single MR 

components (Figure 36). Nevertheless, Mre11´s dsDNA binding site could be important 

for 3´-5´exonuclease activity in the open form, for instance to degrade 3′ ends to generate 

suitable substrates for repair synthesis or overhangs at microhomologies for NHEJ (Rahal 

et al., 2010). However, in the closed form Rad50 blocks the dsDNA binding site of Mre11 

making access by dsDNA unfeasible. Positively charged surface patches in Rad50´s 

groove and on the lateral site on Rad50 might bind dsDNA. However in both cases the 

DNA is rather distal to the Mre11 nuclease active site, making it at present unclear how 

DNA and ATP binding and DNA processing are functionally coupled. One explanation is 

that ATP dependent engagement of the NBDs could unwind dsDNA ends with one of the 

ssDNA strands binding between Rad50 and Mre11 since a single strand could fit through 

the tunnel. MRN was shown to melt/unwind short dsDNA oligonucleotides in the presence 

of ATP (Paull and Gellert, 1999). Even though Rad50 blocks the dsDNA binding site, a 

gap in the molecular surface on each side between Rad50 and Mre11 reaches the Mre11 

active site and is large enough to accommodate ssDNA (Figure 31B). Several loops on 

Mre11 flanking this hole are unstructured in the illustrated crystal structure. Proteins from 

thermophilic organisms generally have well folded loops and unstructured loops often 

indicate unsaturated ligand or DNA binding sites. A structural motif for DNA binding is 
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also seen on the Rad50 side of this gap. Here, the helix G’, which connects the HLH and 

capping domain, is formed out of a flexible linker region as a result of the open-to-closed 

transition. Consequently, a right-angled helix-loop-helix structure appears at the lateral 

entry side to Mre11’s nuclease cleft (Gturn-loop-G’). The equivalent region of S. 

cerevisiae Mre11 is implicated in DNA binding (Usui et al., 1998), thus this transient 

helix-loop-helix structure might be involved in DNA recognition in the clamp/closed state.  

 

 

 

Figure 36: Proposed clamp model for DSB processing. Proposed model for ATP-controlled DSB 
processing. ATP driven conformational changes of the MR head module could be responsible for the 
unwinding of double stranded DNA and promote endonucleolytic cleavage of single-stranded DNA or 
hairpins. 

 

The working model of DSB processing in the ATP bound state, where dsDNA is 

excluded but ssDNA can still bind to Mre11’s nuclease active site also matches much of 

the known in vitro data. For instance, Mre11´s ssDNA endonuclease activity was shown to 

be neither dependent on ATP nor inhibited by ATP analogs (Herdendorf et al., 2011). In 

addition, this model would fit data where the generation of a 15-55 nucleotides long 

3´ssDNA tail by endonucleolytic cleavage from the DNA end is promoted by ATP or 

ATPS, rather than inhibited. This event could possibly combine DNA unwinding and 

endonucleolytic cleavage and is maybe dependent on protein conjugates or adducts at the 

5´strand of the DSB (Hopkins and Paull, 2008).  
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However, the possibility remains that there might be a further conformational state 

of MR induced by DNA, allowing simultaneous dsDNA binding across the Mre11 dimer 

interface as seen previously (Williams et al., 2008) and the formation of the NBD dimer as 

seen in this work. Due to the fact that the interaction of Mre11 and Rad50, apart from the 

anchoring HLH coiled-coil interaction being quite polar, it could be in principal modulated 

or disrupted by DNA. The linker between the HLH and capping domain is flexible and can 

adopt extended (open form) and helical (closed form, αG´) conformations, perhaps 

allowing conformational flexibility between Mre11 and Rad50NBD dimer. Nevertheless, the 

biochemical data shown in this thesis implies that MR does not encircle dsDNA, therefore 

assuming that Rad50 indeed competes with Mre11 in dsDNA binding in the presence of 

ATP and at the same time creates an additional dsDNA binding site. Therefore the exact 

nature of the interaction of TmMR with DNA remains to be determined experimentally. 

In conclusion, the presented structures and the biochemical data reveal new insights 

in the ATP-induced conformational cycle of MR and a working model for DNA tethering 

and processing of MR is proposed. However, based on the new structures, the precise 

interaction of DNA with MR needs to be evaluated and the correlation between ATP 

binding and hydrolysis by Rad50 combined with its endo- and exonucleolytic acitivity on 

dsDNA near DNA ends will be important for further work. Finally, possible interaction 

partners of MR(N) and the precise role of its functional interplay needs to be investigated.  
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7. Abbreviations 

 

aa amino acid (residue) 

°C degree Celsius 

6-FAM 6-carboxyfluorescein 

Å angstrom 

ABC ATP binding cassette 

ADP adenosine diphosphate 

AMPPNP adenosine 5´(ß,γ-imido)triphosphate 

A-TLD Ataxia-telangiectasia like disorder 

ATP adenosine triphosphate 

ATPase N (C) amino (carboxy) terminal segment of ATPase domain 

ATPγS adenosine 5´-[γ-thio]triphosphate 

BER base-excision repair 

BIR break-induced replication 

BMOE bis-maleimidoethane 

bp base pair 

BRCT breast cancer carboxy terminus 

Cap Mre11´s DNA capping domain 

CSR class switch recombination 

C-terminus carboxy terminus 

CuSO4 copper sulfate 

DNA deoxyribonucleic acid 

DNA-PKcs catalytic subunit of DNA-dependent protein kinase  

DSB DNA double strand break 

DSBR DNA double strand break repair 

dsDNA double stranded DNA 

ssDNA single stranded DNA 

E. coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

EMSA electrophoretic mobility shift assay 

ESRF European synchrotron radiation facility 
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FHA forkhead associated 

FLC fluorescein 

h hours 

HLH helix-loop-helix motif 

HPSF high purity salt free 

HR homologous recombination 

IPTG isopropyl-ß-D-thiogalactopyranosid 

IR ionizing radiation 

kDa kilo dalton 

LB Lysogeny Broth 

M molar 

MES 2-(N-morpholino)ethanesulfonic acid 

Mg magnesium 

MMEJ microhomology-mediated end-joining 

min minute 

M. jannaschii (Mj) Methanococcus jannaschii 

Mn manganese 

MR Mre11:Rad50 

Mre11 meiotic recombination 

MRN(X) Mre11:Rad50:Nbs1(Xrs2) (in S. cerevisiae) 

NBD nucleotide binding domain 

Nbs Nijmegen breakage syndrome 

NBSLD Nbs-like disorder 

NER nucleotide-excision repair 

alt-NHEJ alternative non-homologous end-joining 

c-NHEJ classical non-homologous end-joining 

nt nucleotide 

N-terminus amino terminus 

Nuc Mre11´s nuclease domain 

OD600 optical density at 600 nm 

PAGE polyacrylamide gelelectrophoresis 

PARP1 poly(ADP-ribose) polymerase 1 

PCNA proliferating cell nuclear antigen 
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PCR polymerase chain reaction 

PDB protein data bank 

PEG polyethylene glycol 

P. furiosus (Pf) Pyrococcus furiosus 

pH potential of hydrogen 

Rad radiation sensitive 

Rec recombination 

rms root mean square 

ROS reactive oxygen species 

RPA replication protein A 

rpm rotation per min 

RT room temperature 

S. cerevisiae (Sc) Saccharomyces cerevisiae 

S. pombe (Sp) Schizosaccharomyces pombe 

SAXS small angle x-ray scattering 

SDS sodium dodecyl-sulfate 

SDSA synthesis-dependent strand annealing 

sec second 

SLS Swiss light source 

SMC structural maintenance of chromosomes 

SSA single strand annealing 

SSB DNA single strand break 

TB tris-borate 

T. maritima (Tm) Thermotoga maritima 

Topo topoisomerase 

Tris tris(hydroxymethyl)aminomethane 

UV ultraviolet 

[VO4]3- orthovanadate ion 

wt wild type 

µ micro 

Zn zinc 
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