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Summary

The interactions between biomolecules and their environment can be studied by ex-
periments and simulations. Results from experiments and simulations are often inter-
pretations based on the raw data. For an accurate comparison of both approaches,
the interpretation of the raw data from experiments and simulation have to be in
compliance.
The design of such simulations and interpretation of raw data is demonstrated in this

thesis for two examples; fluorescence resonance energy transfer (FRET) experiments
and surface adsorption of biomolecules on inorganic surfaces like gold.
FRET experiments allow to probe molecular distances via the distance-dependent

energy transfer efficiency from an excited donor dye to its acceptor counterpart. In
single molecule settings, not only average distances, but also distance distributions or
even fluctuations can be probed, providing a powerful tool to study flexibilities and
structural changes in biomolecules.
However, the measured energy transfer efficiency does not only depend on the dis-

tance between the two dyes, but also on their mutual orientation, which is typically
inaccessible to experiments. Thus, assumptions on the orientation distributions and
averages have to be employed, which severely limit the accuracy of the distance distri-
butions extracted from FRET experiments alone.
In this work, I combined efficiency distributions from FRET experiments with dye

orientation statistics from molecular dynamics (MD) simulations to calculate improved
estimates of the distance distributions. From the time-dependent mutual dye orien-
tations, the FRET efficiency was calculated and the statistics of individual photo-
absorption, FRET, and photo-emission events were determined from subsequent Monte
Carlo (MC) simulations. All recorded emission events were then collected to bursts
from which efficiencies were calculated in close resemblance to the actual FRET ex-
periment. The feasibility of this approach has been tested by direct comparison to
experimental data.
As my test system, I chose a poly-proline chain with Alexa 488 and Alexa 594 dyes

attached. Quantitative agreement of calculated efficiency distributions from simula-
tions with the experimental ones was obtained. In addition, the presence of cis-isomers
and specific dye conformations were identified as the sources of the experimentally ob-
served heterogeneity.
This agreement of in silico FRET with experiments allows employment of the dye

orientation dynamics from simulations in the distance reconstruction. For multiple
levels of approximation, the dye orientation dynamics was used in dye orientation
models. At each level, fewer assumptions were applied to the dye orientation model.
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Summary

Each model was then used to reconstruct distance distributions from experimental
efficiency distributions.
Comparison of reconstructed distance distributions with those from simulations re-

vealed a systematically improved accuracy of the reconstruction in conjunction with a
reduction of model assumptions.
This result demonstrates that dye orientations from MD simulations, combined with

MC photon generation, can indeed be used to improve the accuracy of distance distri-
bution reconstruction from experimental FRET efficiencies.
A second example of simulations and interpretation in compliance with experi-

ments are the studies of protein adsorption on gold surfaces. Interactions between
biomolecules and inorganic surfaces, e.g. during the biomineralization of bone, are
fundamental for multicellular organisms. Moreover, understanding these interactions
is the basis for biotechnological applications such as biochips or nano-sensing.
In the framework of the PROSURF project, a multi-scale approach for the simulation

of biomolecular adsorption was implemented. First, parameters for MD simulations
were derived from ab initio calculations. These parameters were then applied to simu-
late the adsorption of single amino acids and to calculate their adsorption free energy
profiles. For the screening of adsorbed protein conformations, rigid body Brownian
dynamics (BD) docking on surfaces was benchmarked with the free energy profiles
from the MD simulations.
Comparison of the protein adsorption rate from surface plasmon resonance experi-

ments and BD docking yielded good agreement and therefore justifies the multi-scale
approach. Additionally, MD simulations of protein adsorption on gold surfaces re-
vealed an unexpected importance of positively charged residues on the surface for the
initial adsorption steps.
The multi-scale approach presented here allows the study of biomolecular interac-

tions with inorganic surfaces consistently at multiple levels of theory: Atomistic details
of the adsorption process can be studied by MD simulations whereas BD allows the
extensive screening of protein libraries or adsorption geometries.
In summary, compliance of simulation and experimental setup allows benchmarking

of the simulation accuracy by comparison to experiments. In contrast to employing
experiments alone, the combination of experiments and simulations enhances the ac-
curacy of interpreted results from experimental raw data.
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Zusammenfassung

Wechselwirkungen zwischen Biomolekülen und ihrer Umgebung können sowohl in Ex-
perimenten als auch in Simulationen untersucht werden. Die Ergebnisse von beiden
Methoden beruhen häufig auf der Auswertung von Rohdaten. Um die beiden Ansät-
ze genau miteinander vergleichen zu können, muss die Auswertung der Rohdaten aus
Experiment und Simulation übereinstimmen.
In dieser Arbeit wird der Entwurf von Simulationen sowie die gemeinsame Inter-

pretation von deren Rohdaten zusammen mit dem Experiment demonstriert. Gezeigt
wird dies zum einen am Beispiel von Fluoreszenz-Resonanzenergietransfer (FRET),
zum anderen an der Adsorption von Biomolekülen auf anorganischen Oberflächen wie
Gold.
FRET Experimente bestimmen molekulare Abstände durch die Abstandsabhängig-

keit der Energietransfereffizienz von einem angeregten Donorfarbstoff zum Akzeptor-
farbstoff. Neben den mittleren Abständen können in Einzelmolekülexperimenten auch
Abstandsverteilungen und sogar Fluktuationen des Abstandes bestimmt werden. Dies
ist eine wichtige Voraussetzung für die Untersuchung von Flexibilität sowie Struktur-
änderungen in Biomolekülen.
Die gemessene Effizienz des Energietransfers hängt nicht nur vom Abstand, sondern

auch von der relativen Orientierung der Farbstoffe ab. Da diese normalerweise nicht
im Experiment bestimmt werden kann, werden Modellannahmen über die Orientie-
rungsverteilung der Farbstoffe gemacht und Mittelwerte verwendet. Diese Annahmen
begrenzen jedoch die Genauigkeit der rekonstruierten Abstände.
Um genauere Abstandsverteilungen zu erzielen, wurden in dieser Arbeit Effizienz-

verteilungen aus FRET Experimenten mit Statistik und Dynamik der Farbstoffori-
entierung aus Molekulardynamik (MD) Simulationen kombiniert. Dabei wurde zuerst
aus der zeitabhängigen Farbstofforientierung die zugehörige FRET Effizienz berechnet.
Diese sind die Grundlage für Monte Carlo (MC) Simulationen mit dem Ziel die Kine-
tik von Photo-Absorption, FRET und Photo-Emission zu modellieren. In Anlehnung
an Einzelmolekül-FRET-Experimente wurden anschließend Photonenbündel erzeugt,
aus denen dann die jeweilige Effizienz bestimmt wurde. Durch direkten Vergleich zu
experimentellen Daten wurde die Genauigkeit dieses Ansatzes überprüft.
Als Modellsystem dienten Poly-Prolinketten mit gebundenen Alexa 488 und 594

Farbstoffen. Dabei wurde eine quantitative Übereinstimmung mit dem Experiment be-
obachtet. Darüber hinaus wurden Cis-Isomere sowie spezielle Farbstoffkonformationen
als Ursache für die experimentell beobachtete Heterogenität identifiziert.
Die Übereinstimmung von in silico FRET mit Experimenten ermöglichte die Ab-

standsrekonstruktion mit Hilfe der simulierten Farbstofforientierung und Dynamik.
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Zusammenfassung

Auf Grundlage der Farbstoffdynamik wurden Farbstofforientierungsmodellen erstellt.
Eine Reduktion der Modellannahmen erfolgte dabei in mehreren Schritten. Anschlie-
ßend wurde an jedem dieser Modelle die Rekonstruktion von Abstandsverteilungen aus
den experimentell bestimmten Effizienzverteilungen getestet.
Beim Vergleich von den rekonstruierten Abständen konnte eine systematische Ver-

besserung der Genauigkeit bei gleichzeitiger Reduktion von Modellannahmen beobach-
tet werden.
Dieses Ergebnis zeigt, dass eine höhere Genauigkeit der rekonstruierten Abstände

erzielt werden kann, wenn experimentelle FRET Effizienzen mit der Farbstofforientie-
rung aus MD Simulationen kombiniert werden.
Als zweites Beispiel wurde die Adsorption von Proteinen auf Goldoberflächen unter-

sucht. Für multizelluläre Organismen sind Wechselwirkungen zwischen Biomolekülen
und anorganischen Oberflächen von hoher Wichtigkeit, wie etwa bei der Biomineralisie-
rung von Knochen. Des Weiteren ist das Verständnis dieser Wechselwirkungen grund-
legend für biotechnologische Anwendungen wie in Biochips oder beim Nano-Sensing.
Im Rahmen des PROSURF Projekts wurden daher Ansätze für Simulationen von

biomolekularer Adsorption auf mehreren Skalen entwickelt. Zu Beginn wurden mit ab
initio Berechnungen Kraftfeldparameter für MD Simulationen bestimmt. Mit diesen
wurde anschließend die Adsorption von einzelnen Aminosäuren simuliert, sowie de-
ren freie Energielandschaft berechnet. Mit den Energielandschaften wurde Brownsche
Dynamik (BD) mit starren Körpern getestet, mit welcher im Anschluss adsorbierte
Proteinkonformationen erzeugt wurden.
Es konnte gezeigt werden, dass die Adsorptionsraten von Oberflächenplasmonenre-

sonanzspektroskopie Experimenten mit denen von BD Simulationen übereinstimmen.
Dies zeigt die Genauigkeit von verschiedenen, aufeinander aufbauenden Simulations-
skalen. In MD Simulationen von Proteinadsorption auf Goldoberflächen wurde eine
überraschende Schlüsselrolle von positiv geladenen Seitenketten für die anfängliche
Adsorption beobachtet.
Der hier gezeigte Ansatz ermöglicht Simulationen von biomolekularen Wechselwir-

kungen mit anorganischen Oberflächen auf verschiedenen Skalen. So können mit Hilfe
von MD Simulationen atomare Details der Adsorption untersucht werden. Mit Hilfe
von BD Simulationen wird das Auswählen aus Proteinbibliotheken und von Adsorpti-
onsgeometrien ermöglicht.
Zusammenfassend kann eine gemeinsame Rohdatenauswertung von Experiment und

Simulation zum Testen der Genauigkeit von Simulationen herangezogen werden. Dar-
über hinaus ermöglicht die Kombination mit Simulationen auch die Auswertung von
experimentellen Rohdaten mit verbesserter Genauigkeit.
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1
Overview

In many cases, results from experiments and simulations show only qualitative agree-
ment or are even in contradiction [12]. Prominent examples are the simulations of
water or lipid bilayers, where the experimentally determined properties are not accu-
rately reproduced in simulations without additional surface tension [13]. For complex
biomolecular systems, it is often challenging to mimic the experiment and only indirect
comparisons between experiments and simulations are made.
The reasons for such discrepancies are manifold. The interpretation of experimental

raw data can be wrong, e.g. when crystal structures are derived from the measured
electron densities. For the simulations, the model may not accurately describe the
system and therefore lead to different results than in the experiments. But even if
experiment and simulation are accurate and correct on their own, discrepancies can
arise from the differences in the setups and different interpretation of the raw data.
Therefore, one of the guidelines in this thesis is to interpret raw data from simulations

in compliance with experiments. The foundation for this is accurate modeling of
the experimental conditions. Simulation of interactions between biomolecules often
requires an atomistic description, and therefore atomistic molecular dynamics (MD)
simulations are employed in my work. Further, additional techniques are required to
accurately model the processes in the experiment, since not all interactions are modeled
in MD simulations.
Examples in my work are the combination of MD with Monte Carlo (MC) techniques

to simulate fluorescence resonance energy transfer (FRET) or ab initio parameteriza-
tion of dyes and surface interactions. During the design of each simulation system,
tight cooperation with experimental scientists is required to reflect the experimen-
tal conditions in the theoretical model. Finally, direct comparison of raw data from
experiment and simulation will serve as benchmark for the accuracy of simulations.
Instead of simulating a particular biomolecular process, I developed simulations

reflecting the entire experimental setup. As I will show, the combination of such
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1 Overview

simulations with experiments enables higher accuracy of measurements and a better
throughput in contrast to stand alone experiments or simulations. This principle will
be demonstrated on two major examples. First, I performed in silico single molecule
fluorescence resonance energy transfer (smFRET) experiments by combining MD sim-
ulations with MC techniques (Chapter 3). In addition, the combination of FRET
experiments and their in silico counterpart resulted in a better accuracy of FRET dis-
tance measurements. Second, the assembly of a computational toolbox for protein-gold
interactions and the validation by experiments will serve as a prototype for character-
ization of protein interactions with arbitrary inorganic surfaces in silico (Chapter 4).
This in silico characterization yields a higher protein screening throughput by reducing
the number of proteins that have to be tested experimentally.
Both projects constitute the main part of this thesis and will be introduced in

more detail in Chapter 3 and 4. Three further small projects are summarized in
Chapter 5-7. In Chapter 5, the first steps towards simulations of the transmembrane
(TM) signaling of integrins are described whereas protein complex formation is studied
computationally in Chapter 6. Finally, the technical details of my GromPy analysis
library and their usage in other projects are summarized in Chapter 7.

1.1 Distance Measurement in Molecular Biology via
FRET

Distance measurements on the nanometer scale are fundamental to understand func-
tional processes in biomolecular systems. Interaction, relative orientation and confor-
mational changes of biomolecules are revealed by distance measurements. Preferably,
the measurement should be performed in conditions similar to the in vivo process and
the measurement itself should not interfere with the analyzed process.
FRET is an excellent method to measure distances even in vivo. In FRET experi-

ments, two dyes are covalently attached to the sites between which the distance should
be measured. After excitation of one dye, the efficiency of the resonance energy trans-
fer (RET) is measured and the distance dependency of the efficiency is exploited to
determine distances.
Unfortunately, the RET does not only depend on the distance but — similar to

antennas — also on the mutual orientation of the two dyes. Moreover, the dyes move
during the measurement process and therefore their mutual orientation changes during
time. The instantaneous dye orientation during RET cannot be measured in experi-
ments.

2



1.2 Biomolecular Adsorption on Inorganic Surfaces

Instead of the inaccessible mutual dye orientation, assumptions are commonly ap-
plied in experiments. Assuming an isotropic dye orientation results in the well known
mean orientation factor κ2 = 2/3. To which extend this and further assumptions limit
the accuracy of distance measurements in FRET experiments is difficult to assess [14].
In contrast to experiments, the instantaneous dye orientation is accessible by MD

simulations. Therefore, my major goal in Chapter 3 is to replace the assumptions of
the dye orientation made in experiments by orientational information calculated from
MD simulations. Thereby, I will demonstrate that a systematic reduction of model
assumptions improves the accuracy of experimental distance reconstruction.
As a first validation step, I verified that the simulations performed are an accurate

model of the experimental setup. To achieve this, I developed an in silico FRET proto-
col based on MD simulations and MC photon statistics. This method was successfully
tested on a poly-proline model system.
After successful validation, the dye orientation statistics from simulations was em-

ployed to calculate distance distributions from the experimental efficiency distributions.
A systematic improvement in distance accuracy was found upon reduction of the dye
orientation model assumptions.
In summary, the virtue of this approach is to use the results of MD simulations for

the analysis of experimental data — in contrast to only compare them — to improve
the accuracy of distances measurement in FRET experiments.

1.2 Biomolecular Adsorption on Inorganic Surfaces

The second topic are interactions of biomolecules with inorganic surfaces. Studying
these interactions is not only important for biotechnological applications such as bio-
sensing [15, 16] but also for the design of biocompatible implants and to assess toxicity
of nano crystals [17, 18]. Moreover, biomolecules interact with surfaces during the
mineralization of dentin and bones in vivo. In all cases, the understanding of the
biomolecular interactions with inorganic surfaces is key to specifically design or avoid
adsorption [19].
Recently, a variety of peptides with a high affinity for gold surfaces were found

by screening with combinatorial experiments [20–22]. However, these experiments
require extensive library scans. Specialized interactions, e.g. for enzyme adsorption
not interfering with the enzymatic activity, are difficult to create [21]. Furthermore,
the exact adsorption mechanisms are not understood by combinatorial experiments.
For these reasons, the specific design of surface interactions is currently challenging.
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1 Overview

For the biotechnological screening of protein-surface interactions, a reduction of the
required library scan experiments is desirable. Therefore, in silico docking of proteins
to surfaces is expected to aid the design of protein-surface interactions similar to in
silico docking of compounds to proteins which revolutionized drug discovery during
the last decade [23–25].
The principle interactions with surfaces (electrostatics, van-der-Waals) are known.

However, they often compensate each other such that the overall adsorption behavior
is difficult to predict in purely qualitative terms. In addition, the interactions of the
biomolecule with the surface compete with desolvation of the biomolecule and the sur-
face. Force fields in MD simulations accurately model the complex interactions between
biomolecules in solution. Thus, MD simulations of biomolecules and surfaces in explicit
solvent are promising in the study of the adsorption process in atomistic detail. To
enable adsorption simulations, additional force field parameters of biomolecules with
the inorganic surface had to be developed and tested in a first step (Chapter 4) since
the interactions are not described by standard force fields.
In Chapter 4, computational protein-surface docking is demonstrated for gold sur-

faces. In the development process, multiple levels of theory are required and my MD
simulations are pivotal for connecting the highest level of theory, ab inito calculations
of amino acid fragments [26–28], with rigid body Brownian dynamics (BD) docking of
proteins to the surface.
The in silico docking of proteins was validated experimentally by comparison of

calculated and experimental adsorption rates [29] such that the first step towards
efficient computational screening of protein-surface interactions is achieved. In this
second topic, BD simulations close to experiments are employed to verify the multi-
scale approach at the end.
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2
Theoretical Background and

Methods

2.1 Approximations in Molecular Dynamics
Simulation

The time-dependent Schrödinger equation of nuclei and electrons describes the atomic
motions of a biological system. The solution of this equation computationally faces two
main problems, the size of biological systems and the typical time scales of biological
processes.
At high levels of detail, taking electronic degrees of freedom explicitly into account,

the time-dependent Schrödinger equation can only be solved in the attosecond range,
whereas typical biological processes on the molecular level occur in the range of picosec-
onds to hours. In addition, this solution is only possible for small systems consisting
of few atoms (≈ 10).
Even smallest proteins in explicit solvent easily reach system sizes in the order of

10,000 atoms, e.g. the small protein complex without solvent in Publication P7 already
consists of ≈ 3, 200 atoms. Therefore, several approximations will be outlined in this
section, which will allow a sufficient description of systems, consisting of more than a
few atoms. They will lead to the electron interaction being taken into account by a
force-field in which the nuclei move according to classical equations of motion.
These approximations allow MD simulations of systems consisting of proteins, sol-

vent, membranes, deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and inorganic
surfaces. Simulation of large systems consisting of millions of atoms [30] and simula-
tions up to milliseconds are possible with specialized hardware [31]. Detailed theoret-
ical background, algorithms and MD simulation protocols are found in textbooks [32–
36] and in the Groningen machine for chemical simulations (GROMACS) simulation
software manual [37].
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2 Theoretical Background and Methods

2.1.1 Born Oppenheimer Approximation

Aim: Separation of nuclear and electronic degrees of freedom

As stated before, the goal is to (approximatively) solve the time-dependent Schrödinger
equation

HΨ(R, r, t) = i~
∂Ψ(R, r, t)

∂t
, (2.1)

which describes the time evolution of a system consisting of nuclei and electrons. Here,
H denotes the Hamilton-operator, Ψ the time dependent wave-function and ~ the
reduced Planck constant. The wave-function depends on the position of all electrons
r and nuclei R at time t.
Since the electron mass is much smaller than a nuclei mass, the electron configuration

can be assumed to adapt instantaneously to slow changes of the nuclei positions. This
adiabatic approximation is known as “Born Oppenheimer approximation” [38]. As a
consequence, the molecular wave-function Ψ is expressed by a product

Ψ(R, r, t) = Ψnuc(R, t) · Ψel(r;R) (2.2)

of nucleic and electronic wave-functions Ψnuc and Ψel.
The electronic wave-function depends on the nuclei coordinates R only parametri-

cally and therefore, applying the Hamilton-Operator H results in a separate expression
for the electronic part

Hel(R)Ψel(r;R) = Eel(R)Ψel(r;R) (2.3)

in any given nuclei configuration R. Here the electronic Hamiltonian Hel is defined as
Hel = H−Tnuc, the complete Hamiltonian H without the kinetic energy operator Tnuc
of the nuclei (see Ref. 35, p. 21).
The system of interest is commonly in the electronic ground state. Therefore, the

smallest eigenvalue E0
el(R) of Eq. 2.3 is used in the remaining Schrödinger equation

for the nuclei dynamics:

(E0
el(R) + Tnuc)Ψnuc(R, t) = i~

∂Ψnuc(R, t)

∂t
. (2.4)

Alternatively, Hel can be defined without containing the Coulomb interaction be-
tween the nuclei (e.g. as in Ref. 32, p. 107) which then leads to an additional term
qiqj
rij

for each pair of nuclei ij.
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2.1 Approximations in Molecular Dynamics Simulation

2.1.2 Approximation of the Electronic Potential by a Force Field
Aim: Avoid expensive solving of the electronic Schrödinger Eq. 2.3 for each
set of nuclei coordinatesR by approximation through an empirical force field.

The separation into electronic and nuclear parts of the Schrödinger equation still re-
quires separated solving of the time-independent electronic part (Eq. 2.3) for a given
nuclei configuration. Solving this equation computationally is not feasible for systems
consisting of more than a few atoms. Thus, the interactions are described by a potential
function

V =
∑

bond i

V i
B +

∑

bond angle j

V j
α +

∑

dihedral k

V k
dih +

∑

imp.dih. l

V l
imp

︸ ︷︷ ︸
bonded interactions

+
∑

pairsm,n

(V mn
vdW + V mn

coul)

︸ ︷︷ ︸
non-bonded interactions

(2.5)

whose derivative is a conservative force field which only depends on the nuclei positions.
As shown by Eq. 2.5, typical force fields for bio-molecular applications consist of

bond, bond-angle, dihedral and improper dihedral potentials describing the covalent
bonds (see Tab. 2.1) between atoms as well as “non-bonded” potentials (Tab. 2.2)
for dispersion, Pauli-repulsion and Coulomb interactions. The non-bonded interaction
potentials are pair additive.
During most chemical reactions, molecules are in the ground state, which is therefore

commonly selected as the electronic state for which force-field parameters are derived.
In Publication P8, the donor-dye is in the excited state before FRET occurs, thus the
first excited state was used for parameterization here (see Section “Force Field”, page
139, Publication P8).
Force fields are parameterized using quantum chemical calculations [39, 40] and/or

by calibrating the free parameters to reproduce experimentally known thermodynamic
properties in simulations [41].
In my studies, the optimized potentials for liquid simulations, all-atom (OPLS/AA)

force field [42, 43], designed for proteins, was used. In Publications P5, P7 and P9,
additional parameters [26–28] modeling the interaction between biomolecules and gold
surfaces were employed. The dyes used in Publication P8 are not covered by the
standard force field parameters of OPLS/AA and therefore required calculation of
additional parameters.
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2 Theoretical Background and Methods

Table 2.1: Bonded Interactions Between Atoms

Bond potentials
Harmonic: VBharm

(r) = 1
2
kB (r − r0)2

standard potential for covalent bond-stretching.
Morse: VBmorse(r) = kB [1− exp(β(r − r0))]2

allows anharmonic bond-stretching and breaking
of covalent bonds.

Angle potential
Harmonic: VBharm

(α) = 1
2
kα (α− α0)

2

standard angle potential, e.g. modeling tetrahe-
dral bond angles from sp3 hybridization.

Dihedral potentials
Periodic: Vdih(φ) = kφ [1− cos (n · φ− φ0)]

Ryckaert-Bellemans: VRBdih(φ) =
5∑

n=0

Cn(cos(φ− π))n

cosine power series potential.
dihedral potentials for sterical restriction, e.g. due to Pauli-
repulsion of orbitals from first and fourth atom.

Improper dihedral potential
Harmonic: Vimp(φ) = 1

2
kφ (φ− φ0)

2

Improper dihedral potentials atoms restrain atoms to a plane,
e.g. in conjugated planar ring systems with delocalized
π−electron systems.
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2.1 Approximations in Molecular Dynamics Simulation

Table 2.2: Non-bonded Interactions Between Atoms

Combined repulsion and dispersion potentials
Lennard Jones: VLJ(r) =

C(12)

r12 − C(6)

r6

standard potential for repulsion and disper-
sion

Buckingham: VB(r) = A · exp(−B · |r|)− C
r6

more realistic repulsion (3 free parameters),
computationally expensive due to expansion
of the exponential function.

repulsion and dispersion usually cut-off at distances of ≈ 1 nm

Coulomb potential
Standard Coulomb: Vc(r) = 1

4πε0

qi·qj
εr·|r|

Commonly, the standard Coulomb interaction is cut-off at dis-
tances of ≈ 1 nm for computational efficiency. This however
can cause severe artifacts [44] in simulations. The method I
used in my simulations to accurately treat long-range electro-
static interactions is particle mesh Ewald (PME) [45].

2.1.3 The Nuclei are Treated as Classical Particles

Aim: Avoid expensive solving of the nuclei Schrödinger Eq. 2.4 by classical
description of nuclei dynamics.

In the last approximation, is is assumed that the nuclei dynamics (Eq. 2.4) are well
described by classical particle dynamics

mi
d2ri(t)

dt2
= −∇iV (r1, . . . , rn) = F i, (2.6)

where mi are the masses and ri the coordinates of the i-th particle (nucleus).
Several justifications are made such as Ehrenfest’s theorem [46] or the parametric

dependency of Eq. 2.3 (Ref. 35, p. 22-25), however they are not a rigorous derivation
of this approximation. MD was applied successfully for many systems in the past so
that the classical approximation is considered to be valid for bio-molecules within a
certain range (for limitations see the following Section).
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2 Theoretical Background and Methods

2.1.4 Known Limitations

In the next paragraph, I will discuss some limitations of these approximations which
might affect results obtained from MD simulations carried out in this work.
Force fields are simplified and approximate representations of the electronic poten-

tial. Therefore describing the reconfigurations of the electronic system due to bond
formation would require additional parameterization and treatment with non-standard
(computationally expensive) potential functions, e.g. Morse instead of harmonic po-
tentials for bonds (Tab. 2.1).
In Publications P5, P7 and P9 Lennard-Jones instead of Morse potentials (Tab. 2.2)

were used to efficiently model the surface-peptide interaction. How does this affect
the results and the design of my adsorption studies on gold surfaces? While most
amino acids only physisorb on gold surfaces [26], cysteine is known to form covalent
bonds with gold atoms on the surface. For this reason, the cysteine adsorption in
Publications P7 and P5 only models the physisorption step. This is also reflected in the
low interaction free energy of 37.7 kJ/mol compared to the covalent bonding energy of
at least 200 kJ/mol [47]. In summary, adsorption of proteins or peptides with exposed
cysteines at the surface is not correctly modeled by the current approach. Details are
found in the “Results and Discussion” section of Publication P7.
A second limitation arises from the fact that an important property of gold as a metal

is its polarizability. Current force fields used for biomolecules and water, however, do
not explicitly include atomic polarizability of the electronic system. The gold-protein
force field (GolP) [26] applied in Publications P5, P7 and P9 (see Section 4 and Fig. 4.2
for the implementation in my simulations) includes the polarization of the gold surface,
since the polarizability of gold is expected to be much stronger than the bio-molecular
one. Through this treatment, the induced atomic polarization at the interface is only
partially described — polarization of the gold surface is included while polarization in
the peptides or water molecules close to the surface is neglected. In summary, e.g. the
structure of the un-polarizable water molecules near the surface might not be modeled
correctly.
In Chapter 3, the lacking of inducible atomic polarization in current force fields

might also influence the dynamics of the dyes in Publication P8, which form a highly
delocalized electron system with inducible polarizability. This would influence the
sampling of dye conformations. However, since fluorescence anisotropy decay experi-
ments agree with anisotropy decay in our simulations, the dye orientations are most
likely accurately sampled. In Section 3.3.2, future directions towards an improved
parameterization and quantification of error are pointed out.
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2.2 Simulation of Biological Systems via Molecular Dynamics

A further issue is the force field parameterization itself. MD simulates trajectories
of (classical) nuclei, the electron contribution is incorporated by a mean field in which
the nuclei move and commonly described by a force field. As stated in Section 2.1.2,
force fields are parameterized for a distinct electronic state of the molecule, usually the
ground state, and therefore effects like photo-absorption, fluorescence, electron transfer
and FRET processes are not described by MD simulations.
For this reason, I developed a hybrid approach in Publication P8. First simulations

of the molecule are performed choosing the donor parameters in the excited state
and the acceptor parameters in the ground state, as this is the situation after donor
excitation and before FRET (see Section 2.4). The resulting trajectories are then used
in a Markov chain MC process to discriminate between FRET and donor relaxation,
as described later in detail in Section 2.4.

2.2 Simulation of Biological Systems via Molecular
Dynamics

2.2.1 Integrating the Equations of Motion

For the integration of Newton’s equations of motion, the leap-frog integrator [48]

v(t+
1

2
∆t) = v(t− 1

2
∆t) +

∆t

m
F (t) (2.7)

r(t+ ∆t) = r(t) + ∆t · v(t+
1

2
∆t) , (2.8)

implemented in GROMACS [37], was used for all simulations. As Eqs. 2.7 and 2.8
show, the name originates from calculation of velocity v and positions r at different
times, interleaved by 1

2
∆t. Energy is conserved accurately, if the integration time step

is small compared to the fastest degrees of freedom in the system.
The leap-frog algorithm was chosen, because it has two advantages over classical O4

Runge-Kutta [49] algorithms. First, it requires calculation of forces only once per full
iteration step and therefore is computationally more efficient. Second and in contrast
to Runge-Kutta schemes, leap-frog is a symplectic integrator (see 32, p. 492) with the
property that during numerical integration, the system Hamiltonian is conserved up to
a small perturbation. Symplectic integrators preserve the phase space area [48] which
is also fulfilled by the time evolution of Hamilton’s equations [35, 50, p. 48].
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2 Theoretical Background and Methods

In comparison to standard Verlet [51] integration, velocities e.g. required to calculate
temperature or the kinetic energy are explicitly present. The velocity-Verlet integrator
also explicitly contains the velocities [52] and has the same numerical stability and
computational efficiency as the leap-frog algorithm. Velocity-Verlet, however, has a
slight disadvantage in parallel communication [37].
Some methods, e.g. rigorously corrected pressure control [53, 54] require v and r at

the same instant t. In those cases, leap-frog integration is only applicable at twice of
the computational cost compared to velocity-Verlet integration. No methods with the
requirement of v and r at the same instant were used in my studies and therefore the
leap-frog algorithm was chosen for all simulations.

2.2.2 Solvent Environment and Boundary Conditions
In the biological systems I studied, the proteins or poly-peptides are dissolved in water.
The structure of the solvent at biomolecular interfaces strongly influences biological
function [55]. Thus, simulations in explicit solvent are desirable [56].
In my studies, the simple point charge (SPC) [57] water model was used for Publica-

tions P3, P5, P7 and P9, because this water model was combined with the OPLS/AA
force field for parameterization of water gold interactions [26]. In Publication P8 the
transferable intermolecular potential with 4 points (TIP4P) [58] water model was ap-
plied, since this is the water model, OPLS/AA was parameterized with [42].
Simulations of molecules require a box to constrict the space in which the molecules

move. Exceptions are simulations in the gas phase, in vacuum, or when using implicit
solvent models, where the center of mass (COM) translation is removed. All simula-
tions in my work were performed in explicit solvent. Therefore, to avoid unphysical
interfaces for the solvent molecules at the microscopic scale, periodic boundary condi-
tions (PBC) were employed in MD simulations.

2.2.3 Temperature and Pressure
MD simulations in my work were performed in the canonical NVT or NPT ensem-
bles [59, p. 12]. In both cases, the number of particles and the temperature are kept
constant. In the NVT ensemble, the volume, and thus the (periodic) box size, is fixed
while in the isothermal-isobaric (NPT) ensemble, the box size is adjusted to obtain
constant pressure.
The simplest algorithm to maintain temperature is the Berendsen thermostat [60],

which rescales atomic velocities to a certain temperature within a decay time τ . This
thermostat shows no temperature oscillations when the starting temperature strongly
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2.2 Simulation of Biological Systems via Molecular Dynamics

differs from the target temperature. Berendsen thermostats however do not generate
proper canonical ensembles [37, 61].
The Nosé-Hoover thermostat uses an extended-ensemble approach in which the sys-

tem Hamiltonian is extended by a thermal reservoir and a friction term is used in the
equations of motion (more details can be found in Ref. 37). Nosé-Hoover thermostats
produce correct canonical ensembles but show temperature oscillations when far from
the target temperature.
In Publications P3, P5, P7 and P9, Berendsen temperature coupling was used during

the equilibration due to the non-oscillatory behavior and the Nosé-Hoover [62, 63]
thermostat was employed for the production runs.
Recently, the Berendsen thermostat was improved by including a stochastic term to

generate a proper canonical ensemble, leading to the v-rescale thermostat [64]. This
approach, however, was not implemented in GROMACS at the beginning of my studies,
and thus was used in Publication P8 only.
In particular, during the equilibration of the simulation system, it might be desirable

to establish or maintain (atmospheric) pressure in the system. Throughout my studies,
I used the Parrinello-Rahman [65] barostat, which is conceptually similar to the Nosé-
Hoover thermostat [37] by also using an extended ensemble.
In Publications P3 and P8, the protein or poly-peptide is dissolved in water only,

and no membrane or surface is present. Therefore, the pressure is isotropically applied
to the system (equally to all three dimensions). However, this is not applicable in
simulations involving an incompressible gold surface as in Publications P5, P7 and P9.
In those cases, the pressure was applied by adjusting the box vector perpendicular to
the surface only.

2.2.4 Software and Hardware
In the following, an overview of the applied software packages, the computational hard-
ware and programming languages is given. In addition, the computational workload
and simulation performance is exemplified for one of the projects.
For the MD simulations in this work, the GROMACS software package [66–70] was

employed. GROMACS has an outstanding single core performance [70] and also shows
an excellent parallel scaling since version 4 [67, 68, 71]. Publications P5 and P7 use
the version 3.3.3 and 4.0.1 of the GROMACS package, version 4.0.1 was used for
Publication P3 and version 4.0.7 for Publications P8 and P9.
Different cluster installations have been used for my studies. The work in Publica-

tions P3, P4, P7 and P5 was performed mainly on the Linux cluster of the Leibnitz
Rechenzentrum (LRZ) in Munich whereas the computations in Publications P6, P8 and
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P9 were conducted on the cluster of the Computational and Theoretical Biophysics
group at the Max Planck Institute for Biophysical Chemistry in Göttingen.
The computationally largest project in my studies was the extensive sampling of dye-

conformations in Publication P8 with ≈ 1, 000, 000 CPUh, which is comparable to a
medium sized project on a national supercomputer such as the Höchstleistungsrechner
Bayern II (HLRB-II)1. Each of the 230 simulations in Publication P8 covers 100 ns
of dynamics. On compute nodes with 16 CPU cores, the typical performance of a
simulation was 25 ns/day.
For analysis, the g_tools, provided with the GROMACS software package were used,

and additional analysis tools were written in C [72] and Python (cPython, NumPy,
SciPy, Matplotlib) [73, 74]. During my thesis, I wrote a python library interfacing the
GROMACS MD package, which was the basis for the grand canonical Monte Carlo
(GCMC) package in Manuscript M1. The FRET MC algorithm [P8] was implemented
in Python using optimized C-code for performance critical parts of the algorithm.
Molecules were visualized using visual molecular dynamics (VMD) [75] and PyMol [76].

2.2.5 Trajectory Analysis

Typically, the result of MD simulations are trajectories containing the atomic coordi-
nates and velocities, (constraint) forces as well as the (decomposed) potential energy.
This information is then used to calculate observables such as the root mean square
deviation (RMSD) or the solvent accessible surface (SAS) in Publication P3 as well as
mutual orientations or distances of (parts of) molecules in Publications P8 and P9.
Often, one is interested in ensemble averages of observables. For my work in Publi-

cation P8, e.g. the ensemble average of the orientation factor 〈κ2〉 was an important
property to study. When using the ergodic hypothesis

〈A〉ens = lim
t→∞

∫

t

A(t′)dt′, (2.9)

time averages can be employed instead of averages from multiple systems to obtain
ensemble averages of an observable 〈A〉ens. In many cases, e.g. for the 〈κ2〉 calculation
in Publication P8, a hybrid approach is taken using multiple systems (simulations)
combined with averaging over time. The advantage is that sampling of multiple systems
in parallel shows a perfect scaling with the available computational power — it is easy
to simulate 100 systems for 100 ns but not a single system for 10µs.

1https://www.lrz.de/services/compute/hlrb/projectproposal/
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2.3 Free Energy Calculations via Thermodynamic
Integration

Free energy is an important property to understand biophysical processes, such as
transient-protein complex formation. In Publication P3, I studied the dependence of
the free energy landscape on mutations and the salt concentration. In the adsorption
studies on gold surfaces (Publications P3 and P7), the free energy landscape of amino
acid adsorption was calculated and later used to benchmark potentials for BD simula-
tions in Publication P4. Therefore, the calculation of the exact free energy landscape
or the projection on an appropriate reaction coordinate for the process involved was
essential for my work.

The Helmholtz free energy F = U − TS, with internal energy U , temperature T
and entropy S, is the thermodynamic potential of the natural variables temperature
T , volume V and particle count N . F can also be expressed by the partition function
Q as

F = kBT lnQ(N, V, T ) . (2.10)

This equation connects thermodynamics and statistical mechanics in the canonical
ensemble by stating that calculation of F allows estimation of Q. The probability
ratio PA/PB to find a system in state A or B (e.g. adsorbed and in solution) is given
by the free energy difference ∆F between those states,

PB

PA

= exp(−∆Fβ) with β = (kBT )−1, (2.11)

kB as the Boltzmann constant and T as temperature.

Transition rates k are governed by barriers ∆F in the free energy landscape as

k = ω exp(−∆Fβ), (2.12)

where ω is the frequency pre-factor or attempt frequency. Two models involving bar-
riers in the free energy profile that limit the association rate of barnase-barstar (see
Chapter 6) were suggested in Ref. 77. In Publication P3, I examined which of the
models applies and what are the interactions that create these barriers.
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2.3.1 Calculating Free Energies from Molecular Dynamics
Simulations

Many methods exist to estimate free energy differences from MD simulations. Some
examples are the usage of thermodynamic integration, perturbation theory, probability
distributions and histograms, non-equilibrium methods or transition path sampling.
An extensive overview of the individual methods is found in literature [78]. For recent
developments see Refs. 79, 80. In Publications P3 and P7, thermodynamic integration
was used as one of the well tested methods with excellent convergence behavior [81].
The key idea of thermodynamic integration is that free energy differences are calcu-

lated by integrating forces [82], the derivative of the free energy. These forces constitute
a conservative force field and therefore the integration is independent of the integration
path. Statistical averages

dF

dλ
=

〈
∂H
∂λ

〉

λ

(2.13)

are calculated along a reaction path described by a reaction coordinate λ. The average
on the right side of Eq. 2.13 is computed for a fixed λ and is interpreted as constraint
force or generalized force along λ [78, p. 121]. Simulating a constrained system at
multiple points along λ from state A to B and thereby recording the constraint force
allows numerical integration of Eq. 2.13 to calculate free energy differences.
The right side of Eq. 2.13 is also written as

〈
∂H
∂λ

〉

λ

=

〈
∂U

∂λ
− kBT

∂ ln |J |
∂λ

〉

λ

, (2.14)

assuming that λ is a function of atomic coordinates [78, 82, p. 121]. Here, U is the
potential energy and |J | the determinant of the Jacobian matrix, which measures the
change in volume when switching from Cartesian to general coordinates. The last term
leads to an entropic correction for the increase in phase space volume [81], e.g. when
using radial symmetric reaction coordinates as in Publication P3.
Although free energy differences between two states are independent from the choice

of the reaction coordinate, the free energy profile (also referred to as potential of mean
force (PMF)) itself depends on the integration path. In many cases, the most probable
pathway is the one of interest and therefore the path with the lowest barriers, and thus
fastest kinetics. Therefore, the careful choice of the reaction coordinate is important
and non-trivial in many cases. The distance between the COM of Barnase and Barstar
was used as reaction coordinate in Publication P3 and the COM distance from the
surface atom layer was chosen in Publication P7.
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2.4 Fluorescence Resonance Energy Transfer

In biotechnology, RET in combination with fluorescence (FRET) is a widely used
method to measure distances. In addition, RET plays a key role in photosynthesis
as energy transfer mechanism in the light harvesting complex (LHC). The theoretical
description of RET has been pioneered by Theodor Förster in the late 1940’s [83],
therefore, FRET is also referred to as Förster Resonance Energy Transfer. First, the
principal mechanism and limits of RET will be explained (Section 2.4.1) and RET
measurements are sketched (Section 2.4.2). This will be followed by a summary of
the theory and of the approximations used in experiments (Section 2.4.3). Finally, the
orientational dependency of the RET mechanism and the approximations commonly
applied in experiments are highlighted (Section 2.4.4), leading to the combination of
experiments and simulations demonstrated in the following Chapter 3.

2.4.1 Resonance Energy Transfer and the Limitations

During RET, also referred to as electronic energy transfer (EET), the excitation, and
thus the energy localized on (part of) a donor molecule is transferred to the corre-
sponding acceptor molecule. Thereby, the electronic system of the donor molecule
relaxes to the ground state with the excitation transfered to the acceptor counterpart
(Fig. 2.1, step 2b).
RET is the dominant energy transfer process for molecular separations of 1−20 nm,

where the orbital overlap of donor and acceptor can be neglected (short range limit).
The long range limits of this radiationless energy transfer are distances, where the
energy is transferred via radiation (photon emission and absorption). The classical
analogon for the RET regime is the near field zone of an antenna, where the distance
of the receiver to the emitting antenna is small compared to the wavelength.

2.4.2 Measurement of FRET

Despite the term “fluorescence” in the common abbreviation of FRET, the energy
transfer mechanism itself is unrelated to molecular fluorescence. However, fluorescence
or fluorescence quenching is often used to measure the efficiency of the energy trans-
fer [84]. In the following, determination of the FRET efficiency based on measurement
of fluorescence intensities is sketched [85]. An overview of the different FRET detection
methods is found in Ref. 86.
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Figure 2.1: Two Competing Pathways During FRET: Normal fluorescence, the
donor is excited by an absorbed photon (1) and the energy is released via photo-
emission (2a). After excitation via photo-absorption (1), the excitation is transferred
by RET to the acceptor (2b) and then again released via photo-emission, in this case
from the acceptor (3b). The number 1–3 denote the first, second and third step while
a/b discriminates between the two pathways

Figure 2.1 shows the two pathways in the FRET process. By recording the donor
(1 → 2a) and acceptor (1 → 2b → 3b) fluorescence decay intensities after donor
excitation, the efficiency EFRET is calculated via

EFRET =
Iacc

Iacc + Idon
. (2.15)
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Iacc and Idon are the measured acceptor and donor photon fluorescence intensities (pho-
ton counts per time-interval), respectively. Distances are obtained from the efficiency
measurement, when the Förster formula,

EFRET =
1

1 + (R/R0)6
, (2.16)

is applied. R is the distance between the two dyes and R0 the Förster radius, the
distance at which the excitation is transferred with 50% probability. The Förster
radius is assumed to be constant for a given dye pair.
Combination of Eq. 2.15 and Eq. 2.16 together with measurement of donor and ac-

ceptor fluorescence intensities allows measurement of distances. The accuracy, however,
strongly depends on assumptions “hidden” in the constant R0 which will be discussed
in the next section.

2.4.3 Derivation of the Förster Formula
In the following paragraph, the derivation of the Förster formula, Eq. 2.16, and the
Förster radius R0, commonly used in FRET experiments, are sketched and the under-
lying assumptions are explained. For extensive discussion of the individual approxi-
mations the reader is referred to Refs. 87–89. Reference 90 summarizes determination
of the individual parameters in the Förster radius R0 by experiments.
The rate (or probability) of RET is described by an equilibrium Fermi’s golden rule

approach [91, 92] of initial and final state, D∗A and DA∗ (the asterisk denotes the
excitation), in a time-dependent perturbing Hamiltonian H ′,

kRET =
2π

~
|〈D∗A|H ′|DA∗〉|2 J =

2π

~
|Vcpl|2 JDA, (2.17)

with Vcpl as coupling between donor and acceptor between state D∗A and DA∗. J is the
density of final states or Franck-Condon overlap [93, 94]. Derivation of Fermi’s golden
rule based on second order time-dependent perturbation theory is found in Ref. 95.
In the following, it is assumed that the transition density (see Ref. 96, page 128ff),

Pg→e(x) =

∫
Ψg(x1, . . . , xN)Ψ ∗e (x1, . . . , xN)dx2 . . . dxN , (2.18)

of each dye from ground to excited state (g → e) is not affected by the presence of
surrounding molecules, in particular not by the presence of the second dye (no orbital
overlap). Ψg(x1, . . . , xN) and Ψe(x1, . . . , xN) are the wave-functions of N electrons in
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ground and excited state, respectively. xi are the spatial coordinates and spin of the
electron Ni. The electronic coupling is independent of the spin, therefore the spatial
transition density is

ρg→e(r) =

∫

s

Pg→e(x)ds . (2.19)

With this assumption, the coupling,

Vcpl ≈ Vcoul =
1

4πε0

∫

r

∫

r′

ρD(r)ρA(r′)

Rrr′
drdr′ , (2.20)

is described by the Coulombic coupling Vcoul between the transition densities of ρD and
ρA for donor and acceptor, respectively. Rrr′ is the distance between the two volume
elements.
In the next step, the transition density coupling is approximated by dipole-dipole

coupling,

Vcoul ≈ Vdip−dip =
1

4πε0n2

κ|dD||dA|
R3

DA

(2.21)

neglecting higher coupling moments. dD and dA are the dipole moments of the transi-
tion densities ρD and ρA for donor and acceptor, respectively, and RDA is the separation
between the two dyes.
Starting from the dipole-dipole coupling approximation, the refractive index n of

the media at optical frequencies has to be considered [97], commonly assumed to
be homogeneous and isotropic. The orientation factor κ represents the orientational
dependency of the dipole-dipole coupling,

κ = [cos θDA − 3 cos θD cos θA] . (2.22)

The overlap J (Eq. 2.17) of the Franck-Condon envelopes1 is calculated by the
spectral overlap integral I of normalized donor emission and acceptor absorption spec-
tra [88, 89].
With these approximations and assumptions, the Förster radius R0 is

R6
0 =

9(ln 10)QDIκ
2

128π5n4NA

, (2.23)

with NA as Avogadro number, and QD as the quantum yield of the donor dye.

1Franck-Condon envelopes are the intensity distribution shape in the adsorption or emission bands.
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The Förster radius is commonly considered as constant in experiments, assuming
that all parameters do not change for different conformations. QD, n and I are con-
sidered independent of the local environment. In the following, the approximations to
obtain a constant orientation factor κ2 are summarized.

2.4.4 The 〈κ2〉 = 2/3 Approximation
The competing process to FRET is donor decay, e.g. via fluorescence. Therefore, donor
fluorescence decay limits the time scale on which FRET can occur to the lifetime of
the donor excitation τD in absence of the acceptor dye.
To understand the basis for the κ2 = 2/3 approximation, two limiting cases are

considered first1:

• The dye re-orientation is slow compared to the donor lifetime τD. The
probability for FRET, which is equal to the FRET efficiency, depends on the
static dye orientation while the donor is excited. −→ κ2(t) ≈ κ2static

• The dye re-orientation is fast compared to the donor lifetime τD. There-
fore, the mean orientation factor determines the FRET efficiency.
−→ κ2(t) ≈ 〈κ2〉τD

Assuming that the second case applies for the system of interest, the average of the
orientation factor within τD is close to the ensemble average. In addition, it is assumed
that the orientation distributions of both dyes are isotropic and both dye orientations
are uncorrelated. With this, Eq. 2.22 integrates to

〈κ2〉τD
isotropic

=
2

3
. (2.24)

The focus of the following Chapter 3 are the limits of this approximation.

1The cases are discussed for dye distances close to or larger than the Förster radiusR0, where donor
fluorescence and FRET have comparable probabilities. Therefore the donor lifetime with acceptor
dye present is still comparable to the lifetime of the donor τD in absence of the acceptor dye.
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Main Projects

Simulation-Aided Distance Reconstruction in FRET Experiments
Aims:

• Development of a smFRET simulation protocol and test against experimental
data.

• Assess the impact of the isotropic κ2 = 2/3 approximation on the accuracy of
distance reconstruction in experiments.

• Improve accuracy of distance reconstruction in experiments through combination
with simulated orientational dye dynamics.

Simulated Adsorption of Biomolecules on Gold Surfaces
Aims:

• Development of experimentally validated surface docking toolkit for high through-
put screening.

• Find design principles for surface adsorption of proteins and biomolecules.
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3
Simulation-Aided Distance Recon-

struction in FRET Experiments

• M. Hoefling, N. Lima, D. Hänni, B. Schuler, C. A. M. Seidel and H. Grub-
müller. Structural Heterogeneity and Quantitative FRET Efficiency Distributions of
Polyprolines Through a Hybrid Atomistic Simulation and Monte Carlo Approach.
PLoS One, 6(5):e19791, 2011. (Publication P8).

Individual Contributions
Parameterization and testing of the dye parameters in simulations was performed by
Nicola Lima. Simulations of poly-prolines with dyes attached, trajectory analysis and
the photon generation MC were done by myself. Helmut Grubmüller and myself estab-
lished the theoretical framework. The transfer function (TF) formalism for the different
levels of approximation was introduced by Helmut Grubmüller and myself. Experi-
ments were performed by Benjamin Schuler and Dominik Haenni. The manuscript
of Publication P8 was written by Nicola Lima, Helmut Grubmüller and myself. All
authors of Publication P8 aided in the interpretation of the results from simulation
and experiments.

3.1 Introduction
After considering the theoretical foundations of FRET in the previous chapter, I will
first compare FRET to other techniques for the measurement of distances on the
nanometer scale (Section 3.1.1) and thereby highlight the advantages of FRET. The
development of FRET over the last decades shows, why the dye orientation models em-
ployed in the Förster formula limit the accuracy in particular in recent single molecule
setups (Section 3.1.2). The current knowledge on how much the dye orientation influ-
ences the measured distances is summarized in Section 3.1.3.
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3.1.1 Measurement Techniques in the Nanometer Range

Several techniques allow the measurement of distances in the nanometer range. Most
prominent examples are X-ray crystallography, cryo electron microscopy (cryo-EM)
and transmission electron microscopy (TEM). These techniques are successfully applied
in structural biology to resolve the structure of large proteins. However, they are not
applicable in vivo; X-ray requires crystallized structures of the analyte, TEM and
cryo-EM require staining with heavy metals or frozen structures, respectively.

Nuclear magnetic resonance (NMR) spectroscopy is a further technique routinely
employed in structural biology to resolve protein structures in solution. No crystal
is required and therefore NMR is particularly useful to study intrinsically disordered
proteins or membrane proteins. However, it allows the measurement of distances in
small proteins only. Further, NMR can only detect changes in the ensemble and —
like X-Ray crystallography — is not suitable to study single molecules.

Since the 17th century, optical microscopy has been used for imaging of cells and
cell compartments. The resolution of optical microscopy is diffraction-limited and
therefore only structures larger than ≈ 200 nm can be resolved. Recent advances in
optical microscopy like stimulated emission depletion (STED) microscopy broke this
limit [98, 99]. STED typically improves the resolution of optical microscopy by one
order of magnitude [100].

The FRET technique combines the optical readout and thus the in vivo applica-
bility with the measurement of the distance-dependent RET process. The distance is
measured between two sites, labeled by donor and acceptor dyes, respectively. FRET
is applied to measure distances in a single molecule or in an ensemble.

FRET can also easily be combined with other techniques. In vivo force imaging in
the cell [101] is a beautiful example of such a combination: Vinculin, a protein con-
necting integrins (see Chapter 5) to the actin cytoskeleton in the cell is separated into
two parts, connected by an elastic linker with the ends labeled by a pair of FRET dyes.
The FRET signal of the elastic linker is calibrated by force spectroscopy measurements
with optical tweezers on single dye-linker constructs. Recording the FRET signal of
the calibrated linker in vivo allows force imaging in a living cell.

FRET is not limited to the measurement of single distances. Monitoring the transfer
efficiency of multiple FRET pairs and thus distances at the same time allows trilat-
eration, e.g. of domain positions in biomolecules [102]. The measurement of multiple
distance via FRET has recently been improved by using switchable dyes [103] instead
of multiple dye pairs. In summary, FRET is a versatile method to measure distances.
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To understand why the dependency of the FRET efficiency on dye orientation limits
the accuracy in particular in recent experiments, the history of FRET experiments is
discussed in the following Section 3.1.2.

3.1.2 Historical Perspective on the Dye Orientation Problem

Förster developed his theory in 1948 [83] to describe RET of dyes in solution. In
Förster’s setup, the dyes are assumed to freely diffuse in the solvent. Therefore assum-
ing isotropic and uncorrelated movement of the dyes is accurate at low concentrations.
In 1967, Stryer and Haughland published FRET measurements of different poly-

proline chain lengths and demonstrated that FRET can be used as “spectroscopic
ruler” [104]. Stryer and Haughland measured the FRET efficiency in the ensemble,
as Förster did before. In the ensemble, the efficiency is measured as the average of
intensities from multiple dye-pairs and thereby the derived distances also represent an
ensemble average.
Advancements in several fields were required to allow FRET experiments of single

molecules. Most notably in this context are the improvements in detection efficiency of
single photons reducing the undetected signal from the dyes [105]. On the other side,
the signal itself has been improved by the development of dyes with large quantum
yields [106] such as quantum dots [107].
Through these advancements, FRET became a standard tool to determine inter-

actions and to measure distances in vivo [108]. SmFRET was used for example to
monitor the folding process in chaperons [109, 110], or to estimate free energy surfaces
of protein folding in solution from measured distance distributions [111].
The assumed isotropic orientation, described by an orientation factor of κ2 = 2/3,

was recognized as accuracy-limiting quite early [112]. With FRET being increasingly
used to determine exact distances [113] and not only the presence of the second dye,
the unknown orientation became a major uncertainty [114, 115]: “In almost all pre-
vious single molecule FRET studies [. . . ], it was assumed that κ2 = 2/3, not because
this assumption is strictly valid, but for lack of further information. In fact, most flu-
orophores [. . . ] orientations relative to the host molecules are not entirely randomized
within their fluorescence lifetimes. Therefore, the best we can hope for is an approxi-
mation to a true distance.” [116].
Particularly, two factors render the orientation dependency of FRET as accuracy-

limiting in recent setups. First, and in contrast to Förster’s experiments, the dyes
are employed to label biomolecules and therefore interact with them. When dyes
are attached to the protein surface for example, the surface restricts the available
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conformational space for the attached dyes and therefore the dye orientation sampling
is non-isotropic. As a consequence, the averaged orientation factor κ2 is not 2/3.
The second issue affects in particular smFRET experiments. Förster and also Stryer

and Haughland performed ensemble experiments and thereby measured the average
efficiency of the dye conformation ensemble. In single molecule experiments, the mea-
surement time can be too short to obtain a converged dye conformation ensemble and
therefore the ergodic hypothesis (Section 2.2.5) is not fulfilled.
The following section summarizes previous approaches to assess the unknown dye

orientation in experiments and by theoretical considerations.

3.1.3 The Unknown Orientation Factor κ2

The common experimental procedure to estimate the deviation of the isotropic dye
orientation is to perform anisotropy measurements. Thereby, the dye is excited by a
polarized laser pulse, and the fluorescence relaxation intensities parallel and perpen-
dicular to the excitation beam are recorded. By this, the rotation of the dyes between
excitation and decay is estimated and for anisotropy values is below 0.2, the isotropic
assumption κ2 = 2/3 is considered sufficiently accurate [108].
However, anisotropy measurements detect only orientational dynamics perpendicu-

lar to the transition dipole axis. Also, anisotropy decay measurements are typically
ensemble measurements and therefore the specific dynamics of individual dyes might
be hidden in the ensemble decay. Moreover, the decay is measured for each dye of
the FRET pair separately and therefore anisotropy decay does not detect correlations
between the mutual orientations of both dyes.
One question arising from these measurements is how to handle those cases, in which

the anisotropy is large and thus the dye orientation is not accurately described by the
isotropic κ2.
Improved accuracy was achieved by estimating the mean κ2 for the measured system

through models and simulations. In some models, geometries in the confined dye orien-
tation space are generated by a MC approach [117, 118]. Other models are based on a
combination of intensity measurements and geometrical considerations [119]. For rigid
periodic structures like DNA, the orientation factor κ2 has implicitly been determined
by fitting to a structural model for the Förster radius R0 [120, 121] .
For many dye environments like complex protein surfaces, simple treatment of the

interactions between dye with its environment as geometrical constraint is not an
accurate model. Simulations are therefore a promising approach to obtain accurate dye
orientation dynamics. From coarse grained (CG) Langevin dynamics (LD) simulations
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of immunity protein Im7 in implicit solvent it was concluded, that the error in κ2 is
smaller than the experimental one [122].
In MD simulations of lipid systems it has been shown, that κ2 strongly depends on

the local environment of the dyes [123, 124]. The simulations were performed at atom-
istic detail with explicit solvent, and the findings are in contrast to the influence of the
dye environment smaller than the experimental error observed in CG/LD simulations
in implicit solvent. As a result, fully atomistic simulations in explicit solvent might be
required to accurately model interactions of dye and its environment.
In summary, the dye motion is often strongly restricted due to interactions with the

biomolecule attached to, thus also restricting the conformational sampling of orien-
tational space [125]. This anisotropic sampling is difficult to detect and quantify in
experiments [126].
Besides the non-isotropicity of the individual dye orientation, the correlations be-

tween the two dyes might also limit the accuracy (see Section 2.4.4). First, the dye
orientations not necessarily have to be uncorrelated. Second, and more importantly,
each dye orientation can be correlated with the distance between the dyes.
Recent findings suggest that assuming a distance independent, ensemble averaged

orientation factor κ2 limits the accuracy in FRET measurements due to the averaging
over the distance. Van Beek et al. [14] found that the averaging of orientation factor
κ2 and the distance R, 〈κ2R−6〉, differed by a factor of 1.6 from to the product of
the individual averages of κ2 and R, 〈κ2〉〈R−6〉. Therefore, the correlation between κ2
and R is not negligible in experiments. Since this correlation is difficult to measure, I
included a distance-dependent orientation factor κ2(R) in the distance reconstruction
as shown further below.
In summary, the effect of the employed approximations in the orientation factor κ2

on the accuracy of distances from FRET experiments is not clear. For these reasons,
I systematically studied different levels of approximation. Each level distance distri-
butions, e.g. κ2 from a refined model or distance-dependent κ2(R) were compared to
distances from the isotropic approximation κ2 = 2/3. This comparison allows to probe
the impact on the accuracy of reconstructed distances. The aim was twofold: First, the
error in measurements — which is different for each system — was quantified. Second,
I replaced the isotropic κ2 assumption by dye orientation dynamics and statistics to
improve the accuracy of distance reconstruction from experimental raw data .
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3.1.4 The Poly-Proline Model System
Poly-proline forms a type II helix in water [127] with the peptide bonds in the trans-
configuration. Since the structure and thus also length of the straight type II helix was
known, Stryer and Haughland used poly-proline as a spacer between two dyes in their
FRET experiments [104]. The poly-proline chain was considered being in the all-trans
configuration by Stryer et al. and therefore suitable as “spectroscopic ruler” [104].
Schuler et al. recently re-investigated poly-proline chains of different lengths in

smFRET experiments and found unexpectedly high efficiencies [128], hinting at ad-
ditional dynamics in the system. These dynamics were attributed to the formation
of cis-isomers as later confirmed according to NMR measurements and simulations of
poly-proline chains [129].
Cis-conformations result in a kink in the poly-proline helix. These kinks decrease the

distance and thus result in higher FRET efficiencies as shown by Fig P8.9 on page 146.
Besides the change in distance through isomers, a second source of heterogeneity is
the anisotropicity of the dye orientation sampling. Interactions of the dye with the
poly-proline chain alter isotropic orientation sampling and thus also affect the FRET
efficiency.
Simulations of small poly-proline chains in implicit solvent show κ2 deviations from

2/3 for [129], although the steric restrictions of the poly-proline chain on the dye con-
formations are small. This finding suggests that the dynamics of the dyes is influenced
by the interactions with the poly-proline chain. However the exact mechanism of this
interaction and the influence on the FRET efficiencies are unknown.
There are two main reasons, why poly-proline is an excellent model system to study

FRET in silico and the impact of dye orientation on reconstructed distances. First
the cis/trans isomer probabilities are known from NMR experiments [129]. This allows
studying the effect of this heterogeneity by a simulated ensemble as I will show below.
Second, accurate smFRET efficiency distributions [128] are available as reference to
test the accuracy of my in silico FRET approach.
For these reasons, I studied a system consisting of poly-proline chains with different

lengths (15, 20 and 30). Alexa 488 and Alexa 594 dyes (Fig. P8.1 on page 139) were
attached via linkers at the termini of the poly-proline chain respectively as shown in
Fig. P8.2 on page 139.
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Figure 3.1: FRET Distance Measurement in Biomolecules. To measure the
distance RXY between X and Y in a protein, the donor dye is excited by incident
photons. After the excitation, the donor dye relaxes to the ground state either emitting
a photon or by transferring the excitation to the acceptor via FRET which also relaxes
to the ground state after emitting a photon. By measurement of the donor and acceptor
fluorescence intensities ID and IA, the efficiency E of the FRET process is determined.
Assuming isotropic dye orientation sampling, the distance between donor and acceptor
RDA can be calculated from the efficiency E and the Förster radius R0 (Eq. 2.16). Since
the dyes are attached to X and Y via linkers, the distance RDA is a measure for RXY .

3.2 Results and Discussion
As outlined already in Chapter 1, I proceeded in two steps:

• First, I modeled smFRET experiments in silico as close as possible to experi-
ments. Agreement of in silico FRET with experiments served as a test if the in
silico model accurately describes the experiment (Section 3.2.1).

• Second, the impact of approximations on the distance reconstruction was sys-
tematically studied (Section 3.2.2).

To better understand the steps of my in silico FRET approach, a typical ensemble
FRET measurement as shown in Figure 3.1 will be considered first. In ensemble
experiments, intensities ID and IA of donor and acceptor fluorescence are measured
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3 Simulation-Aided Distance Reconstruction in FRET Experiments

from an ensemble consisting of many FRET pairs. The obtained efficiency is therefore
a measure for the ensemble average of the distance between the dyes.
To monitor the dynamics of individual molecules and the heterogeneity in the en-

semble, smFRET experiments have to be performed which are for these reasons also
the experimental reference [128] in this work.
In smFRET experiments a single molecule diffuses through the detection volume of

a confocal laser spot. As sketched in Fig. 3.3 (a), the donor is excited multiple times
during this diffusion, and single photons from donor and acceptor are measured, in
analogy to the measurement of intensity in the ensemble. The collected photons from
a single diffusion event are referred to as a burst.
Each burst has its own FRET efficiency, which is calculated from the donor and

acceptor photon counts. This efficiency is an average of the single molecule and dye
dynamics in the burst in contrast to ensemble experiments, where the efficiency is an
average of the entire ensemble dynamics. From multiple bursts, an efficiency distribu-
tion is obtained.
The diffusion through the detection volume is on the time scale of milliseconds

whereas the cis/trans isomerization occurs on much longer times scales of minutes to
hours. For this reason each poly-proline chain diffusing through the laser spot is in a
distinct isomeric state and smFRET experiments allow the detection of the isomeric
ensemble heterogeneity [128].

3.2.1 In silico FRET Experiments

In the following, the three steps of my developed in silico smFRET approach are
explained and the obtained efficiency distributions are compared with the experiment.

Step 1: Calculation of dye orientation and dynamics in MD simulations

At the beginning of my in silico approach the poly-proline and dye dynamics was
sampled by MD simulations. The interaction balance between dye, solvent and the
poly-proline chain determines the dye dynamics as highlighted in Section 3.1.3. For
this reason, my simulations were performed in explicit solvent to accurately model
interactions between all three components. To assess the required sampling by simu-
lations, three time scales are considered here.
First, continuous dye dynamics from photo-adsorption to photo-emission is required

to simulate a single FRET event. This dynamics is on the time scale of the donor
lifetime (≈ 4 ns for Alexa 488) and thus covered by my simulations covering 100 ns of
dynamics each.
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Figure 3.2: Orientational Dynamics of Poly-Proline and the Corresponding
Instantaneous FRET Efficiency. The time dependent dye-to-dye distance R(t)
and orientation factor κ2(t) as well as the resulting efficiency trajectory EFRET(t) are
shown as plot. The red bar shows the time t of the four poly-proline snapshots.

Second, the total dynamics of one burst covers a few milliseconds. This is difficult
to simulate by MD and for this reason, I will assume that the dye dynamics of each
recorded photon in the burst is uncorrelated to the dynamics of the other recorded
photons. With this assumption, multiple simulations were conducted to sample the
dye dynamics during a burst. The convergence behavior of multiple simulations is
shown in Fig. P8.5 and P8.6 on page 143 for the distance and orientation factor
distributions.
The third time scale is the cis-trans isomerization which results in the isomeric

heterogeneity of the poly-proline ensemble detected by NMR experiments. The cis-
trans transition times from minutes to hours are far beyond the time scale accessible
to MD simulations. Therefore, to obtain the proper isomer ensemble, simulations
starting from cis and all-trans isomers were performed and weighted according to the
measured probabilities from NMR spectroscopy. The number of trajectories of the
simulation ensemble is summarized in Tab. P8.1 on page 140 and covers a total of
22 µs of dynamics of the poly-proline ensemble.
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The simulation trajectories were then employed to calculate FRET efficiency tra-
jectories. As shown in Fig. 3.2, each trajectory snapshots contains distance and ori-
entation of the dyes. From the distance and orientation, the instantaneous FRET
efficiency EFRET(t) or FRET rate kFRET(t) was calculated for each trajectory snapshot
using Eq. 2.16.

Step 2: Generation of photons using a Monte Carlo process

In the next step, photons are generated using the FRET rate kFRET(t) in a kinetic
model:

D + A + hν −→ D∗ + A
kFRET(t)−→ D + A∗

↓ kD ↓ kA
D + A + hνD D + A + hνA

(3.1)

D and A are donor and acceptor, respectively; the asterisk denotes the excited state.
The initial point of the kinetics is the excitation of the donor by an incident photon
with energy hν. In this excited state D∗ + A, the donor relaxes to the ground state
either via fluorescence kD or via FRET kFRET(t) followed by acceptor fluorescence kA.
As summarized in in Fig. P8.4 on page 141, the kinetic Scheme 3.1 was evaluated

as Markov Chain MC process starting at a random excitation time t in the simulation
trajectory ensemble. When donor or acceptor decay is reached in the kinetic model,
the corresponding photon was recorded.
It is useful here to point out that for ensemble experiments as reference, the FRET

efficiency can be calculated from the obtained donor and acceptor photon counts. As
explained before, the experimental reference in my work are smFRET experiments
where photon bursts are measured. Therefore, in the next step photon bursts were
generated from the recorded photons.

Step 3: Calculation photon bursts from multiple trajectories

As pointed out in Section 3.2, the dynamics of the dye and the poly-proline chain is
averaged in a photon burst (Fig. 3.3 (a)) when the efficiency of the burst is calculated1.
The photons in my approach are not generated from continuous dynamics, i.e. a single
simulation trajectory, and thus burst formation using multiple simulations has to take
the dynamics into account.

1Dynamics on shorter time scales can be recovered by maximum likelihood techniques [130, 131]
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Figure 3.3: Combining Simulation Trajectories to Mimic Experimental
Bursts. (a) smFRET experiments measure photon bursts from a single molecule,
diffusing through the laser spot. (b-d) describes the bursts formation from simula-
tions. In (b), photons of each burst originate from the entire trajectory ensemble. All
trajectories of the same isomer are used for each burst in (c) whereas in (d) each burst
originates from a single trajectory from the ensemble.

The poly-proline chain dynamics has two main components: The first one are
changes in length, which are much shorter than the simulation length as shown by
the chain length convergence within simulation time in Fig. P8.5 on page 143.
The second component of the dynamics is the isomerization which is slower than

the burst recording time. To test the impact of the isomerization, each bursts was
formed from photons of the entire ensemble first (Fig. 3.3 (b)). Comparison of this
burst formation method (blue) with the measured efficiency distributions (black) from
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smFRET in Fig. P8.10 on page 147 shows a clear discrepancy due to the averaging
over the entire ensemble dynamics. Thus, each bursts will consist of photons from the
same isomer in the following.
In contrast to the poly-proline chain, the dye dynamics in each burst can only be

estimated indirectly, e.g. by anisotropy decay measurements as discussed previously.
To assess the impact of the dye dynamics on the efficiency distributions two burst
formation schemes shown in Fig. 3.3 (c-d) were tested.
In the first (c), the barriers between different dye conformations are low and the dyes

sample the conformational space within each burst. To reflect this in the smFRET
approach, photons from multiple trajectories are combined.
In the second approach (d), it is assumed that large barriers between different dye

conformations are present preventing the transition within burst recording time. For
this reason, the sampling of a single trajectory is used for each burst to represent the
photon burst heterogeneity. The results from these two approaches (c-d) are compared
to the measured efficiency distribution in the following.

Comparison of efficiency distributions from simulations and experiment

Comparison of the efficiency distribution from the methods referred to as (c) and (d)
(Fig. 3.3) shows agreement with the experiment at different parts of the burst efficiency
histogram (Fig. 3.4). The burst efficiencies from all isomer trajectories (c) match the
experimental efficiency on the low efficiency side while the burst efficiencies from single
trajectories (d) are in agreement with the high efficiency side.
This difference in agreement has its origin in different dye conformations leading to

the high and low efficiencies. While the open conformation, shown in Fig. 3.4, has an
increased distance between both dyes and therefore results in low burst efficiencies,
the opposite is found for the closed conformation.
The two conformations not only have different distances between the dyes but also

different dynamics. In the open conformation (Fig. 3.4, right side), only weak inter-
actions with the poly-proline chain are present. Therefore multiple simulations are
required to accurately sample the conformation space as in the much longer bursts. In
the closed conformation, the interactions of dye and poly-proline backbone are strong
such that an interconversion of different closed conformations is inhibited.
In summary, the simulations revealed that the slow dye dynamics is an additional

source of the heterogeneity observed in the smFRET experiments apart from the iso-
meric heterogeneity. The agreement between experiment and simulation suggests that
the in silico approach is a realistic description of smFRET measurements. Thus,
distance reconstruction based on the recorded dye statistics is feasible and will be
demonstrated in the following.
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Figure 3.4: Comparison of in silico FRET With Experiments. Normalized
FRET efficiency histograms of bursts from: isomer trajectories (green), single trajec-
tories (red), experiment (black, with fill). The filled area indicates the agreement of
experiment and simulation with isomer trajectories (green) and single trajectories (red)
for the burst formation. The black area around the zero efficiency are poly-prolines
with only the donor dye attached to in the experiment. Agreement on the high and
low efficiency side is explained by the difference in dynamics of open and closed dye
conformation shown on the right side.
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3 Simulation-Aided Distance Reconstruction in FRET Experiments

Figure 3.5: Combination of
Experiment and Simulation
to Reconstruct Distances.
Experiments measure FRET ef-
ficiency distributions or time-
resolved FRET efficiency. MD
simulations yield the dye orien-
tation statistics and dynamics.
Simulation and experiments are
then combined to reconstruct
the underlying distance distri-
butions.

3.2.2 Combination of Simulations and Experiments for Distance
Reconstruction

So far, it has been demonstrated that the in silico approach is suitable to calculate
accurate efficiency distributions from simulation dye distances and orientations. How-
ever, the opposite direction — determining accurate distances from efficiencies — is
after all the purpose of FRET experiments.
As in conventional FRET experiments, the efficiency distribution or time-resolved

efficiency is measured, but instead of employing models like the isotropic κ2 = 2/3
approximation in Eq. 2.24, the dye orientations from simulations will be used. Further,
not only distance-independent averages of the dye orientation will be considered. In
multiple steps, the dye orientation assumptions will be replaced by orientation statistics
from simulations in the reconstruction process.
To assess the quality of reconstruction, the distance reconstruction is not only tested

with the efficiency distribution from experiments, but also with the one from in silico
FRET. In the latter case, the distance distribution is known from the simulations and
therefore the comparison of distances serves as benchmark for the obtained accuracy
in each step.
The Förster formula, Eq. 2.16, transfers an efficiency distribution q(E) to a distance

distribution p(R) and vice versa and is therefore interpreted as transfer function (TF)
g(E,R). An exemplary TF is shown in Fig. 3.6. The reconstructed distance distri-
bution with the isotropic model for the orientation is plotted in green in Fig. 3.6 and
shows an error ∆xiso = 0.62 nm in peak location compared to the reference peak from
simulations.
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3.2 Results and Discussion

Figure 3.6: Distance Reconstruction from Experiment and Simulations. The
distance distribution p(R) is reconstructed by transformation of the reference efficiency
distribution q(E) via TFs g(E,R) from simulations. Panel on each side: q(E): top
left, g(E,R): top right, p(R): bottom right, transformation path: bottom left. Left
panel: Reconstruction with reference efficiencies from simulation and comparison to
the known distance distribution. Right panel: Application of distance reconstruction
using reference efficiencies from experiments. The reconstructed distance distributions
p(R) for different levels of approximation are color-coded as follows: blue is the distance
distribution from simulations, green, red and cyan are reconstructed distributions from
κ2 = 2/3, improved κ2 and distance-dependent κ2(R), respectively. Pink shows the
distance reconstruction using TFs based on photo emission probability normalized
(R, κ) samples (see Publication P8, Eq. P8.23 on page 152).

In the following steps, the dye orientation dependency in R0 of the TF is modified
by replacing assumptions on the dye orientation by information from my simulations.
For each step, the key idea and replacement is given. The resulting TFs of each step
are shown in Fig P8.12 on page 150 and the mathematical description of the steps can
be found in section “Reconstructing Distance Distributions from FRET Efficiencies”
on page 148 (Publication P8).

• The dye orientations are not necessarily isotropic. Therefore, the isotropic
model assumption was dropped and 〈κ2〉 6= 2/3 in the Förster radius (Eq. 2.23)
was replaced by the average from simulations 〈κ2〉 = 0.80. This reduced the
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3 Simulation-Aided Distance Reconstruction in FRET Experiments

error in peak location to ∆xnoniso = 0.42 nm as seen by the shift (red in Fig. 3.6)
towards the reference distance peak from simulations .

• The dye orientation distribution is distance-dependent. Therefore, cor-
relation between κ2 and R has to be taken into account. In this step, the assump-
tion of distance independent orientation averages was dropped and the mean 〈κ2〉
was replaced by a distance-dependent 〈κ2〉R (R). As a result, also the Förster
radius R0 is distance-dependent. In the in silico efficiency reconstruction, the
primary peak (cyan in Fig. 3.6) is close to the distances in the simulations.

• Orientation averages of the dyes mask the conformational heterogene-
ity. Therefore, the assumption is dropped that the dye dynamics averaged over
the donor lifetime is converged to the ensemble average. Instead of averages, the
distributions p(R, κ2) at each distance R were employed.

The probability to measure a photon is not constant for each sample from {R, κ2}
(see Fig. P8.14 on page 152) and for this reason, the samples are weighted accord-
ing to their photon emission probability (Eq. P8.23 on page 152). Distributions of
κ2 (magenta in Fig. 3.6) showed the best agreement with the reference distances
from the simulations. The peak position of the simulation distance distribution
is accurately reproduced and compared to shape deviations of isotropic, non-
isotropic and distance dependent averages of κ2, only a slight underestimation of
low distances is seen.

In summary, the reconstructed distances from in silico FRET efficiency distributions
yield better agreement with the distances from simulation for decreasing approximation
levels (Fig. 3.6, left side). When using the isotropic dye orientation model, the peak
location has an error of 0.62 nm in contrast to an error which is within the histogram
bin width of 0.035 nm for the reconstruction with distributions of κ2. This shows that
distances with improved accuracy are obtained by combination with simulations and
reduced levels of dye orientation assumptions.
The approximation levels used for the reconstruction were also employed to calculate

distances from experimental efficiencies (Fig. 3.6, right panel). Here, the true distance
distribution is unknown and only the relative differences are observable.
In the experimental reconstruction, the location of the peak differs by up to 0.65 nm

using the isotropic dye orientation model in contrast to the usage of κ2 distributions. In
the latter case, the peak positions differ less than 0.1 nm from the simulation distance
peak. This corresponds to an error1 reduction from ≈ 12% using experiments alone

1relative error of the peak location
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to 2% obtained by the combination of experiments and simulation. However, this is
only a strong indication for an improved distance reconstruction since the true distance
distribution in experiments is unknown.
In contrast to the poly-proline, many systems have even stronger interactions with

the dyes or spatially restrict the conformational space of the dyes. For these cases, dis-
tance reconstruction from FRET experiments with higher accuracy is reached through
the combination with simulations as demonstrated here.

3.3 Outlook

3.3.1 Application to Further Systems

The foundations laid in this thesis have established an approach to simulate FRET
in silico and a method to combine experiments and simulations for accurate distance
reconstruction. From this stage, a number of routes appear promising.
To that aim, one possibility are folding studies of small proteins. In fact, we have

already established a collaboration with the group of Jörg Enderlein1 who will study
the folding of small proteins or protein domains like the helix-turn-helix (HTH) motif
[132] with smFRET experiments.
For the measurement, a single protein labeled with two dyes will be encapsulated in a

polymerosome nanocontainer to enable continuous measurements on a single molecule.
The protein will then be unfolded by changing the guanidine hydrochloride (GdHCl)
or urea concentration. Simultaneously, donor and acceptor photons are recorded. The
dye distance measured by the FRET efficiencies will serve as a measure of the folding
degree and folding dynamics.
While folding time scales itself are too long for simulations, they will provide the

dye dynamics for accurate distance reconstruction. In simulations, the protein will
be unfolded in urea [133] or using high temperatures. The system will be sampled at
different stages of folding to calculate TFs from the dye conformations. The TFs will
be employed in the distance reconstruction and thus will allow monitor the folding
process of HTH molecules with high accuracy.
Further the computer-aided distance reconstructions will be employed in FRET

experiments with extreme deviations from κ2 = 2/3. Here, our focus are FRET mea-
surements in the ribosome which will be performed in the group of Marina Rodnina2.

1Universität Göttingen
2Max Planck Institute for Biophysical Chemistry, Göttingen
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Dyes labeling substrates or sites in the ribosome are severely restricted in their ori-
entational freedom. Therefore, the orientational sampling will be highly anisotropic.
This anisotropicity will be estimated by simulations, and TFs from simulations will
enable an accurate distance reconstruction as in the previous example.

3.3.2 Improving the Dye Parameterization
A general problem in simulations are the required force field parameters. Force fields
not only contain the topology of a molecule but also reflect its hydrophobic or hy-
drophilic behavior. The balance between these two is crucial to correctly model the
tendency of dyes to adsorb on the protein surface or to expose themselves to the sol-
vent. This tendency is crucial for accurate simulation of the dye dynamics. While well
tested force fields exist for proteins, DNA or RNA, dye parameterization is challenging
for reasons explained in the following.
The fluorescent centers of dyes are often ring systems with a strong hydrophobic-

ity. To increase solubility in experiments, highly charged groups (e.g. SO3 groups in
Fig. P8.1 on page 139) are attached to the fluorescent center of the dye. A related
function of the soluble groups is to increase the probability of the dye and its linker
to expose to the solvent instead of sticking to the protein surface. When in solution,
more dye orientations are sampled and thus the dye orientation factor is closer to the
isotropic case.
Ab initio parameterization of the partial charges (Coulomb interaction, Tab. 2.2) is

commonly performed in vacuo [40]. However, for highly charged molecules and groups,
the shielding of the solvent, not included in the parameterization in vacuo, is a problem
leading to inaccurate partial charges. As a result, hydrophobicity of dyes might not
not be reflected accurately in the simulations.
A further problem affecting the dye hydrophobicity is the delocalized electron system

of dye, which is easily polarized in contrast to the localized charges of the soluble
groups. This results in inducible dipoles which are not included in current force fields.
Due to the uncertain hydrophobicity caused by the static and inducible charges, the
dye mobility might be inaccurate in simulations.
To test the mobility of the dyes, the calculated and measured anisotropy decay was

compared and found to be in agreement in Publication P8 (see page 144). Anisotropy
decay is however an indirect measure of the dye hydrophobicity and ideally, the pa-
rameterization should be tested before extensive simulations are performed.
To this end, a direct comparison of the hydrophobicity in experiments and simula-

tions is desirable. A test for the dye hydrophobicity is the difference in the free energy
of solvation between two solvents. This difference can be measured and calculated.
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Experimentally, partition coefficients of the dye between two non-mixing solvents
measure the probability and therefore the free energy difference. In simulations, free
energies will be calculated in a thermodynamic cycle between the two identical solvents.
The comparison of the free energies will allow an assessment of the partial charge
parameter quality. Further, multiple simulation cycles with different sets of partial
charges can be performed for a systematic optimization.

Table 3.1: Transition Density Coupling Methods
Multipole coupling TDC coupling

With the convoluted multipole mo-
ment [134]

QCP
LM =

∑

l+l′=L

(−1)l
4π(2L+ 1)

(2l + 1)(2l′ + 1)

×
∑

m+m′=M

ξlmξl′m′

ξLM
qClmq

P
l′m′ (3.2)

and ξlm =
√

2l+1
4π(l−m)!(l+m)!

, the potential can
be written as

Vmp =
∑

L,M

4π

2L+ 1
QCP
LM

YLM(d̂)

|d|L+1
. (3.3)

YLM are spherical harmonics, qClm and qPl′m′

the multipole moments of the two transi-
tion densities respectively. For an order
Lmax = 2, dipole-dipole coupling as in the
Förster formula Eq. 2.16 is obtained.

The transition density cube
(TDC) method calculates the
direct coupling between the two
transition densities. The coupling
potential is expressed as

Vcoul =
∑

i,j

Mi ·Mj

|dij|
, (3.4)

with Mi and Mj as the transition
density of each dye, discretized on
a grid.
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Figure 3.7: Comparison of Multipole Coupling and Transition Density Cube
Coupling. On the left side, coupling potentials for an all-trans poly-proline 15 sys-
tem are shown. Multipole contributions of dipole-dipole (yellow), dipole-quadrupole
(green), quadrupole-quadrupole (red) and TDC (black) coupling are plotted. Below
the dye-to-dye distance is shown. The right side shows poly-proline 20 with a central
cis-bond leading to a small dye-to-dye distance. Multipole coupling up to fourth order
(quadrupole-quadrupole, dipole-octopole) and TDC coupling is shown.

3.3.3 Transition Density Coupling Beyond the Ideal Dipole
Approximation

A central assumption of the Förster approximation (Eq. 2.21) is the sufficient descrip-
tion of the electronic coupling between the two dyes by dipole-dipole interactions. This
approximation, commonly referred to as ideal dipole approximation (IDA), is valid for
dyes with a strong dipolar transition density and for large distances compared to the
extension of the two electronic systems. When measuring small distances or using dyes
with non negligible higher transition density moments, the IDA limits the accuracy.

In order to take higher moments into account, the dipole-dipole coupling has to
be replaced by a multipole expansion including higher coupling moments. Table 3.1
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(left column) summarizes the coupling of two transition densities using convoluted
multipole moments.
Preliminary tests of the influence were performed for the system in Publication P8.

Figure 3.7 (left side) shows the distance and the Coulombic coupling potential between
both dyes for the system used in Publication P8. For the two employed Alexa dyes,
the effect of higher coupling moments (green and red) than dipole-dipole coupling
(yellow) is small. Thus the dipole-dipole coupling is close to the reference calculation
with the TDC method which will be discussed below. This dominating behavior of the
dipole-dipole coupling term is not surprising for the two Alexa dyes since both exhibit
a strong dipolar transition density. However, e.g. for FRET between nano crystals,
higher coupling moments like the dipole-quadrupole coupling is not negligible [135].
For small distances, the extension of the electronic system is large compared to

the distance. As a result, higher moments L of the multipole expansion have to be
included due to the higher inverse power in the distance dependency of the potential
(see Eq. 3.3 in Table 3.1). Evaluation of the sum in Eq. 3.3 is however not feasible
for large coupling moments L. Thus, instead of using a multipole expansion of the
transition densities, the direct coupling can be calculated via the TDC method [87].
Table 3.1 (right column) summarizes the key idea of the TDCmethod: The transition

density of both dyes is discretized on a grid and the coupling between the grid points
is calculated. For first tests, the poly-proline 20 simulations with central cis-bond were
used (see Fig. 3.7, right side). Due to the central cis, the inter dye distances are below
2 nm. In Fig. 3.7, a fourth order multipole coupling (black) is compared with the TDC
method (pink). The error of the multipole coupling potential at these short distances is
up to 40% for the test trajectory. Since the squared coupling potential is proportional
to the FRET rate, this error is not negligible.
In addition, RET is not accurately described by Försters theory at short distances,

not only due to the IDA but also due to the assumption of weak coupling between the
dye orbitals. Therefore, e.g. coupling by Dexter electron transfer should be examined
as well in the future.
Finally, also the surrounding medium influences the coupling between the transi-

tion densities as demonstrated by Curutchet et al. [136]. Therefore, the effect of the
dielectric constant at optical frequencies ε(λ) should also be investigated in future
studies.
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Individual Contributions
• Publication P2: All authors contributed to this workshop review publication

according to their field. Kay E Gottschalk and myself gave the overview of
atomistic simulations of biomolecules near inorganic surfaces.

• Publication P4: Daria B Kokh, Peter J Winn and Rebecca C Wade established
the BD protocol and the additional potentials for the surface interactions of
amino acids, which were then implemented by Daria B Kokh and Peter J Winn
in the University of Houston Brownian dynamics (UHBD) program. The MD
simulation of water and the analysis of the PMF for individual water molecules
were done by Stefano Corni. MD simulations and the analysis of the PMF and
conformations of the amino acids near the surface were performed by myself.
Kay E Gottschalk aided in the system setup and interpretation of the amino
acid simulations. All authors interpreted the results and contributed to the
manuscript.

• Publication P5: MD simulations of amino acids and density functional the-
ory (DFT) fragments, used for parameterization, on gold surfaces were done by
myself. Kay E Gottschalk and myself analyzed the resulting trajectories and
performed the cluster analysis of conformations on the surface. The DFT con-
formations were calculated by Francesco Iori and Stefano Corni. The manuscript
was written by Kay E Gottschalk and myself with the aid of the other authors.

• Publication P7: Kay E Gottschalk and myself designed the simulation setup
and the free energy calculations. Simulations of amino acids and the analysis of
the adsorption free energy were performed by myself. Kay E Gottschalk ana-
lyzed the correlation of the adsorption free energies with known physiochemical
properties. The analysis of the adsorption pathway was done by myself and
interpreted by all authors. The manuscript was written by Kay E Gottschalk,
Stefano Corni and myself.

• Publication P9: Simulations of the oligopeptide were suggested by Susanna
Monti and performed and analyzed by Stefano Corni. The MD simulations of
fibronectin adsorption, the analysis of the adsorption pattern and the analysis
of structural changes during adsorption were done by myself. Kay E Gottschalk
interpreted the physiological impact of adsorbed conformations and aided in the
design of the fibronectin studies. The manuscript was written by all authors
which also interpreted the results.
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4.1 Introduction

The following Section 4.1.1 summarizes examples for the importance of biomolecular
interactions with inorganic surfaces in vivo as highlighted in Chapter 1.2. Biocom-
binatorial approaches to select molecules with high affinities and the drawbacks of
biocombinatorial techniques are discussed in Section 4.1.2. Computational approaches
to aid in the design of biomolecular surface interactions are proposed in Section 4.1.3.

4.1.1 Inorganic Surfaces in Biomolecular Systems

The interactions between proteins and inorganic surfaces are of increasing importance
to understand processes in many natural systems. One example is hard-tissue growth,
e.g. of dentin or bone, where collagen mineralized tissue (CMT) is formed. The biomin-
eralization in CMTs relies on the interactions of the protein collagen with inorganic
surfaces to control deposition of apatite crystals [137].
A further example is cell-adhesion on inorganic surfaces [138] which depends on

the surface properties apart from the surface topology. Cell adhesion molecules like
integrins (see Chapter 5) link the cell to the surface via extracellular matrix (ECM)
proteins adsorbed on the surface.
Some cells contain thermal hysteresis proteins (THPs) to prevent freezing. Thereby,

the THPs adsorb to the surface of ice crystal nuclei leading to a hysteresis between
the reduced freezing temperature and the unchanged melting temperature of the solu-
tion [139]. The nature of freezing inhibition and the responsible interactions of THPs
with the ice crystal surface are still under debate [139].
Interactions of biomolecules with inorganic surfaces are also pivotal for biotechno-

logical applications. The design of bio-sensing devices and bio-compatible implants
requires a fine tuning of biomolecule-surface interactions [15, 16]. A further example
is nano-toxicity, which not only depends on the size and shape of nano-particles but
also on the type of surface exhibited [17, 18].
For all given examples, it is fundamental to understand the design principles of

biomolecular adsorption on inorganic surfaces.
What is the optimal surface to avoid protein binding or to facilitate adsorption?

How can we design proteins specifically binding to distinct surfaces? Experimentally,
biocombinatorial techniques allow the screening for interactions and are therefore dis-
cussed in the following section.
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4.1.2 Design of Interactions Between Biomolecules and
Inorganic Surfaces

Biocombinatorial approaches like phage display (PD) selected small peptides with a
specific binding affinity, e.g. to gallium arsenide (GaAs) [140] or gold surfaces [22]. In
PD, a recombinant library of peptide fragments is displayed on the surface of bacte-
riophages. After binding to the surface and removal of the non-binding species, the
phages binding to the surface are amplified by bacteria. By repetition of these steps,
an enrichment of phages with the high affinity peptides on the surface is achieved.
Despite its success in selecting peptides binding specifically to the target surface [20],

the PD technique has several drawbacks:

• PD is limited to small proteins and peptide libraries. Design of custom libraries,
e.g. specific protein mutations, is expensive or not feasible at all.

• Amino acids sequences are encoded as codons (nucleotide triplets) on the mes-
senger ribonucleic acid (mRNA). To generate peptide libraries, the nucleotide
sequence of the mRNA is randomized. The number of codons encoding the same
amino acid varies, e.g. six different codons encode leucine while tryptophane is
encoded by only one nucleotide triplet. Therefore, peptide libraries are biased in
their amino acid composition [21].

• The influence of the phage on the surface binding affinity of peptides and proteins
is elusive. All phage-encoded proteins are fusion proteins, which might limit the
activity or accessibility for protein binding.

• Reasons for high or low affinity and the mechanism of binding are not revealed
by PD experiments [19].

In summary, biocombinatorial approaches allow the testing of available libraries for
components with high affinity. However, they do not explain the nature of binding.
Moreover, affinity tests of biomolecules not available in libraries is often very expensive
if feasible at all.
Further examples to experimentally study the adsorption of single biomolecules on

surfaces are atomic force microscopy (AFM) and magnetic tweezers while adsorption
rates in the ensemble can be monitored in surface plasmon resonance (SPR) experi-
ments.
Single molecule techniques are not suitable for library screening but excel in the

study of the responsible interactions. As an example, electrically controlled adsorption
of DNA to gold surfaces has been studied by AFM experiments recently [141, 142].
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4.1.3 Computational Methods to Probe Interactions Between
Biomolecules and Inorganic Surfaces

Monitoring the adsorption process in experiments is challenging (Publication P2) since
the adsorption to the surface is often very strong. As a consequence, only on-rates are
measurable in SPR experiments. Therefore, the combination with simulations not
only provides an atomistic model of the adsorption process but in principle also allows
calculation e.g. of desorption rates, difficult to access in experiments [143].

For an accurate modeling of adsorption, the balance of interactions between solvent,
solute and surface is crucial [144]. In addition, the flexibility of the solute plays an
important role during adsorption or desorption [145]. Both aspects are accurately
described by atomistic MD simulations in explicit solvent, which I therefore employed
to contribute to the understanding of biomolecular surface adsorption.

Besides understanding the details of the interaction balance, methods allowing to
select promising species with high or low affinity for surfaces are key to biotechnolog-
ical applications. Due to the disadvantages of the currently available combinatorial
techniques described in the previous Section 4.1.2, alternatives were developed in this
work. In the following, I will show that computational methods may contribute in
analogy to the role of in silico docking in the field of drug discovery.

In silico docking selects promising compounds with desired properties from a li-
brary. This docking of compounds to protein surfaces led to a revolution in drug
discovery [23–25]. The main advantage in comparison to PD is that arbitrary libraries
can be tested. Unbiased peptide libraries are easily produced and protein modifi-
cations, e.g. only at distinct sites, are screenable. A further advantage is that the
computational power of supercomputers is still growing exponentially from which this
technique will automatically benefit in the future.

For these reasons, the availability of a computational docking toolkit to estimate
interactions between proteins and inorganic surfaces would be an optimal starting point
for technological applications. Design, implementation and experimental verification
of such a docking toolkit was one of the goals of the PROSURF1 project, which will
be described below.

An overview of this project and related computational studies from other groups
concerning interactions of peptides with inorganic surfaces can be found in Ref. 146.

1PROSURF, European Union FP6 NEST project no. 028331 http://www.s3.infm.it/prosurf/
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Figure 4.1: Work Flow of the PROSURF
Project. The contributions of different computa-
tional groups are marked by color:

• Modenaa, ab-initio parameterization: blue

• Munich, MD simulations: red

• Heidelbergb, BD docking: yellow.

Steps with experimental validation (Rehovotc, SPR)
are shown with dashed green frame.

aGroup of Stefano Corni, Theoretical Nanoscience, Uni-
versity of Modena, Italy

bGroup of Rebecca Wade, Heidelberg Institute for Theo-
retical Studies (HITS), Germany

cGroups of Gideon Schreiber and Israel Rubinstein, Weiz-
mann Institute of Science, Rehovot, Israel

Derive force field parameters
(based on ab-initio methods)

Binding free-energy calculations
with MD for different peptides

validate results 
vs. experiment

Fit empirical free-energy scoring
function in docking to 

MD/experimental results

Implement new scoring function
and search algorithm in docking

code

Validate docking results
vs. MD/experiment

Validated protein-surface docking tool

4.2 Results and Discussion

4.2.1 The PROSURF Project
The work presented in Publications P2, P4, P5, P7 and P9 is part of the PROSURF
project. Aim of PROSURF was the development of a computational toolkit for docking
of proteins on gold surfaces.
Figure 4.1 sketches the work flow towards a validated surface docking toolkit and

the contribution of each group. The required steps and the results will be summarized
in the following paragraphs.
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Figure 4.2: Parameteriza-
tion of Gold(111) Sur-
faces. On the left side, the
location of the virtual in-
teraction sites, responsible
for the van-der-Waals inter-
actions of the surface, is
shown. The right side shows
the modeling of the metal
polarizability through freely
rotatable dipoles.

4.2.2 Ab inito Force Field Parameterization
Before adsorption simulations with MD were performed, a force field modeling the
interactions of proteins with the inorganic gold surface had to be developed. This
task was performed by our partners in Modena1 using a combination of ab-initio DFT
quantum chemistry calculations and experimentally known properties. The additional
GolP force field parameters [26, 27] extend the OPLS/AA force field by interactions
with gold surface and were the basis for my MD simulations.
One of the advantages of the developed GolP force field is that all interactions are de-

scribed by standard non-bonded MD potentials (see Tab. 2.2 in Chapter 2). Thereby,
employing standard MD packages like GROMACS or “Not just Another Molecular
Dynamics program” (NAMD) takes advantage of available optimizations for these po-
tentials and the interactions are easy to implement.
Technically, each of the two long-range potentials — Coulomb and Lennard-Jones

from Tab. 2.2 — is used to mimic parts of the interaction:

• As shown in Fig. 4.2 (left), chemisorption and van-der-Waals interactions with
the surface are modeled by Lennard-Jones potentials on virtual interaction sites.
This special treatment is required, since atomic adsorption on gold is centered
on the hollow sites rather than on top of the gold atom. Each surface gold atom
is represented by two virtual interaction sites on the hollow sites.

• The polarization of the metal surface is described by static dipoles which are
allowed to freely rotate around the gold atoms (Fig. 4.2, right side) [28]. For the
electrostatic interaction, standard Coulomb potentials are employed.

1Group of Stefano Corni, Theoretical Nanoscience, University of Modena, Italy
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For efficiency reasons no additional potentials to describe bond formation are in-
cluded. As a consequence, only the first step of chemisorption is described by the force
field. Bond formation, e.g. of cysteines with the surface is therefore not described.
This is a general limitation of force fields which is not solved easily without additional
computational cost (see Section 2.1.4). In the following step, the GolP force field was
applied in MD simulations.

4.2.3 Molecular Dynamics of Peptide Adsorption

Screening of large protein libraries or sampling of the adsorbed conformations of a
single protein are not feasible with MD. Therefore, BD simulations were used for the
actual docking procedure (see Fig. 4.1). While BD interactions for protein-protein
interactions exist, parameters for the interactions with surfaces had to be developed
first.
To test the implemented BD interactions, the adsorption of amino acids — the

building blocks of proteins — was compared to MD simulations. The accuracy of the
simplified treatment in BD was verified by comparison to the corresponding adsorption
free energy landscape from MD simulations. Beyond verification of the BD simulations,
the correlation of the calculated free energy of adsorption from MD simulations with
known physiochemical properties or available experimental data was tested.
In the following, the calculation of the amino acid adsorption free energy from my

MD simulations is summarized. The surface distance was chosen as reaction coordi-
nate λ (Section 2.3.1). Each amino acid was simulated with constraints at different
distances.
The obtained mean constraint forces from multiple simulations (over 100 per amino

acid) were integrated to obtain the free energy profile according to Eq. 2.14 in Sec-
tion 2.3.11. The PMF from infinite distance to adsorption was reconstructed by per-
forming simulations at increasing distances until no mean force and thus interaction
was recorded. The obtained PMF was interpreted as one-dimensional adsorption free
energy landscape, perpendicular to the surface.
The adsorption free energies for all 20 natural amino acids are summarized in

Tab. P7.1 on page 133 and range from 17.5 kJ/mol for glutamate to 44.2 kJ/mol for
tyrosine. In general, the highest interaction free energies are observed for aromatic
residues. Sulfur-containing, positively charged, aliphatic and negatively charged amino
acids show reduced interaction energies in this order (Fig. P7.1 (c) on page 132).

1The principal idea of constraint biased force analysis [81] to calculate free energies of adsorption
is shown in Fig. P7.1 (a) and (b) on page 132.
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Figure 4.3: Alanine Adsorption on a Gold(111) Surface. The plot shows the
COM distance of alanine to the surface atom layer. The insets show the different
stages connected by arrows to the corresponding trajectory point. 1 & 4: diffusion,
2 & 3: association, 5 & 6: adsorption. No desorption was observed in the remaining
simulation time after step 5.

The adsorption free energy profiles also allowed the identification of different stages
in the adsorption process. As shown in Fig. P7.3 on page 134, diffusion dominates until
penetration of the second water layer occurs. This stage is followed by the association
step in which parts of the amino acid have penetrated the first water layer and are
in contact with the surface. The steepest change in free energy was observed upon
surface binding, which maximizes the contact of amino acid and surface. Figure 4.3
shows an example trajectory with associated snapshots of each stage.
The free energy of adsorption is one order of magnitude larger than the thermal

energy at room temperature. Therefore desorption events are very unlikely within
simulation time. In fact, no spontaneous desorption was observed in my simulations.
Further, the correlation of the interaction free energies with available experimental

results and other known chemical properties was investigated (Fig. P7.2 on page 134).
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Most notably is the correlation of the adsorption free energies from simulations with
the surface coverage in PD experiments [147].
In addition, a strong correlation of the adsorption free energies with the propensity of

each amino acid type to form β-sheets was found. The propensity to form α-helices was
uncorrelated with the adsorption free energies. This observed adsorption preference of
β-sheets was one of the reasons to continue with the adsorption study of β-sheet folds
as described later in Section 4.2.5 and in Publication P9.

4.2.4 Brownian Dynamics Docking
The free energy profiles (Publication P7) and geometries (Publication P3) of single
amino acids were used in cooperation with our partners in Heidelberg1to implement
BD protein-surface interactions.
The interactions in BD simulations of the protein and amino acid with the gold

surface are decomposed into three components:

• Lennard-Jones interaction in analogy to the interactions in MD simulations (see
Fig. 4.2, left).

• Protein metal electrostatic interactions for the charged amino acids modeled by
image charges.

• The metal desolvation term required for implicit solvent simulations was de-
scribed by modulation of the effective dielectric constant ε, parameterized by
MD simulations in explicit solvent.

The implementation in the existing UHBD simulation software package is described in
Publication P4 and was the focus of our partners in Heidelberg1.
The input conformations were chosen from MD simulations, since the protein in

BD is treated as a rigid body. For each amino acid, representative structures of the
cluster(s) with the highest population(s) in the MD (see Publication P5) were selected
for the BD simulation ensemble.
In a next step, the free energy of adsorption was calculated for each conforma-

tion. Comparison with the free energies from MD simulations shows a good agreement
(Fig. P4.10 on page 114).
The influence of the rigid treatment in BD on the free energy was probed by test-

ing multiple conformations of the same amino acid. In most cases, the differences
between individual conformations were smaller than 5 kJ/mol, whereas for glycine,

1Group of Rebecca Wade, Heidelberg Institute for Theoretical Studies (HITS), Germany
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isoleucine, cysteine and histidine, differences up to 16 kJ/mol were observed (Fig. P4.10
on page 114).
To verify this computational multi scale approach from ab initio DFT calculations

via MD to BD docking, the agreement of BD simulations and experiment was tested.
The adsorption of amino acids is difficult to measure. Therefore, SPR experiments with
entire proteins were performed by an experimental collaboration1and the comparison
to BD simulations was performed in a follow up study of the group in Heidelberg2 and
Rehovot1.
Gold(111) surfaces and the identical proteins were used in experiments and BD

simulations. The experimental adsorption strength show a good agreement with the
adsorption strength revealed in simulations [29].
In summary, this agreement with experimental results suggests that our simulation

approach is suitable to study protein surface adsorption. Moreover, it renders BD
docking with the implemented surface interactions a valuable tool to rapidly screen for
the surface binding potential of proteins and other biomolecules.

4.2.5 Molecular Dynamics Simulations of Protein Adsorption on
Gold Surfaces

The correlation of free energies in simulations with the β-sheet propensity of each
amino acid studied in Publication P7 suggests that these structural elements support
adsorption to surfaces. Therefore, the adsorption of β-sheet rich RAD16II fibers and
the fibronectin domains 9 & 10 on the surface was simulated in Publication P9 as a
first step towards simulations of larger molecules.
In the protein, amino acids are restricted in their conformations and cooperativity

is required during adsorption in contrast to single amino acids. Therefore, the side
chains of individual amino acids on the protein surface might contribute to differently
to each adsorption step, and not just act as the sum of individual interactions.
The study of β-sheet rich proteins was focused in particular on the formation of

initial contacts during the adsorption process. Interestingly, I observed a special role
of the positively charged amino acids with long side chains, arginine and lysine, in the
initial anchoring of the protein to the surface. The anchored protein conformations
then drive further adsorption to the surface.

1Groups of Gideon Schreiber and Israel Rubinstein, Weizmann Institute of Science, Rehovot,
Israel

2Group of Rebecca Wade, Heidelberg Institute for Theoretical Studies (HITS), Germany
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The special behavior of positively charged amino acids reveals an interesting starting
point to electrically control adsorption kinetics of proteins with arginine and lysine
residues on the surface. In the simulations performed, the surface is neutral but in
principle the surface charge is adjustable in simulations. Experimentally, the surface
charge in metals can be controlled as well, e.g. in AFM setups [141, 142]. Therefore,
single molecule studies combining experiments and simulations may lead to a consensus
picture of the adsorption process in the future.

4.3 Outlook
With a tested force field available, adsorption studies of large molecules such as fi-
bronectin (Publication P9) are now possible. These studies will provide insights into
the stability of proteins or protein subunits close to surfaces.
The stabilization of certain conformations is important for diseases like Alzheimer or

bovine spongiform encephalopathy (BSE), where fibrillous β-sheet forming structures
play a key role. Surfaces in the organism might be responsible for the initial formation
of β-sheet like structures and thereby related to the diseases. Further, the interactions
with surfaces might aid in research of diseases like BSE by inducing certain protein
folds in vitro.
For the design of protein surface interactions, simulations now allow the calculation

of preferred adsorption geometries and conformational changes on the surface. These
properties will help answering the question if an enzyme is still active on the surface.
Moreover, mutations preventing the inactivation of an enzyme after the adsorption are
testable.
Although an MD simulation protocol for interactions between proteins and gold

surfaces was tested, further steps are required to obtain the same accuracy in protein-
surface adsorption simulations as in protein-protein simulations. A crucial point is the
lack of experiments which can be accurately modeled by MD simulations to benchmark
force fields [146]. The availability of such experimental data not only would aid in the
parameterization but could also be applied to benchmark the available force fields for
surface interaction studies. In this context single molecules studies combining AFM
experiments and MD simulations are promising.
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Further Projects

Mechanical Signal Transduction
through Transmembrane
Proteins

Aims:

• Classify available structures and models of the integrin TM domain for future
atomistic simulations.

• Development of a simulation protocol for TM protein insertion into previously
equilibrated bilayers with minimal disturbance of the bilayer equilibrium.

Association Mechanism of
Transient Protein-Protein
Complexes

Aims:
• Calculate the free energy landscape of the complex formation and understand

the impact on kinetics.

• Test the effect of mutations and salt concentration on the association pathways.

GromPy: Python Interface for
GROMACS

Aim:
• Development of a GROMACS simulation package interface for the rapid proto-

typing programming language Python.
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Mechanical Signal Transduction

through Transmembrane Proteins

• M. Hoefling, H. Kessler and K.-E. Gottschalk. The Transmembrane Structure of
Integrin αIIbβ3: Significance for Signal Transduction. Angew. Chem., Int. Ed.,
48(36):6590–6593, 2009. (Publication P1).

• M. G. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller and G. Groenhof.
g_membed: Efficient Insertion of a Membrane Protein Into an Equilibrated Lipid
Bilayer With Minimal Perturbation. J. Comput. Chem., 31(11):2169–2174, 2010.
(Publication P6).

Individual Contributions

• Publications P1, P1a: The manuscript was written by Kay E Gottschalk,
Horst Kessler and myself. Kay E Gottschalk and myself proposed the force
induced straightening model for integrin activation.

• Publication P6: A first prototype of the membrane insertion procedure was
written by myself in Python using GromPy (see Manuscript M1) while the
g_membed tool was implemented and tested by Maarten GWolf. The manuscript
was mainly written by Maarten G Wolf with the aid of all other authors. The
Integrin αIIbβ3 system setup was contributed from myself, the yeast Aquaporin
from Camilo Aponte-Santamaria and the β-Barrel Platform and Reaction Center
from Maarten G Wolf. All tests with these systems were performed and analyzed
by Maarten G Wolf.

61



5 Mechanical Signal Transduction through Transmembrane Proteins

5.1 Introduction

In multicellular organisms, controlled adhesion of cells to surfaces or to the ECM
is pivotal. For this task, a specialized class of heterodimeric adhesion glycoprotein
receptors, known as integrins [148], is found in cells.

Integrins provide a stable linkage between the ECM and the intracellular actin cy-
toskeleton of the cell. The affinity of the integrin ectodomain, e.g. to vascular cell
adhesion molecule (VCAM) 1 is controlled from the cytoskeleton [149] (inside-out sig-
nal). The reverse signaling pathway through the membrane is found when binding
to the ECM changes shape and arrangement of the cytoskeleton [150] (outside-in sig-
nal). Both signals are transduced through the TM domains of the integrin heterodimer
(Fig. P1.1 on page 79).

Signal cascades starting from integrins are involved in a multitude of physiological
processes like apoptosis, cell adhesion and migration or cancer metastasis [151]. There-
fore, an understanding of the signal transduction on the atomistic level would not only
lead to additional insight into the physiology of multicellular organisms but also aid
in the discovery of integrin targeting drugs.

In signal transduction, the TM region of integrins plays a key role by relaying the
signal from the inside to the outside of the cell and vice versa [152, 153]. It is known
for example, that integrins are permanently activated after mutation of the GFFKR1

motif in the TM α-domain [154]. How does this mutation affect the stability of the
TM domain complex? Here, I aim at atomistic simulations to aid in answering the
question.

In the following, I addressed two important problems to improve the accuracy and
feasibility of atomistic simulations of the integrin TM domains. First, an accurate
model or structure of the TM domains is required. Therefore, I evaluated available
computational models and structural models from NMR. Second, the TM structure
was inserted into an equilibrated bilayer.

TM structures are difficult to resolve by crystallographic techniques. It is known
that the TM part of the integrin αIIbβ3 complex consists of two helices. On this
basis and using experimentally known properties, e.g. from cross-link studies, com-
putational models of the structure [155] and the clustering of multiple integrins [156]
were proposed.
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Figure 5.1: Integrin Embedded in a DOPC Bilayer via g_membed. Left panel:
side view. Right panel: view from intra to extracellular. The DOPC bilayer is shown
as SAS. Extracellular waters are shown in sphere representation in the background of
the hole.

5.2 Results and Discussion

Recently, the first structures of the integrin αIIbβ3 TM domain were resolved by
Lau et al. Refs. 157–159 using NMR experiments. The proposed structure from
computational models from Gottschalk et al. [155] are in good agreement with the
structures from NMR (see Fig. P1.4 on page 81).
A remarkable feature is the structure of the GFFKR motif which binds the helix

of the α-subunit with two salt bridges to the β-subunit. This structure might act
as a force sensor inducing a conformational change of the two helices upon external
force (Fig. P1.2 on page 80). In summary, the new NMR structures are a big step
forward to test and propose new models for the TM signal transduction. Moreover,
these structures are the structural basis for atomistic simulations of integrin activation.
Once the structure of TM integrin domains is chosen, the two helices had to be

inserted into an equilibrated lipid bilayer to perform atomistic simulations including
the membrane and water. Thereby, the distortion of the bilayer itself and the bilayer

1amino acid single letter code
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water interface should be minimized to avoid long and expensive equilibration runs
after the insertion.
In Publication P6, a method for efficient membrane insertion of TM proteins was

tested and implemented. The key idea of this insertion protocol is to laterally shrink
the protein (see Fig. P6.1 on page 126) and only to remove lipids, whose van-der-Waals
radii are in contact with the shrunken protein. The protein is then slowly grown to its
original lateral extension performing MD or energy minimization (EM) steps during
the growth process. Figure 5.1 shows the resulting integrin TM domain embedded in
a DOPC bilayer from the side and top view.
It was also examined how fast the initial area per lipid (APL) is re-established in the

simulation after insertion of the protein with this protocol. Relaxation times shorter
than 1 ns are found for all tested systems (see Publication P6). By carefully choosing
the initial protein scaling factor, the APL is not disturbed after insertion at all (see
Tab. P6.2 on page 128).
With the structure of the integrin TM domain available and an established efficient

insertion protocol into bilayers (Publication P6), two key problems towards atomistic
simulations of the integrin TM domain system are solved.

5.3 Outlook

One remaining key issue towards accurate TM simulations of integrins are lipid force
fields and their combination with the protein force field. Here, we first have to dis-
tinguish between all-atom force fields with parameters for every atom type including
hydrogens and united-atom force fields where methyl and methylene groups are rep-
resented by a single pseudo atom. For all-atom simulations, two approaches exist:
Consistent description of protein and lipid interactions with a single all-atom force
field or the combination of an all-atom force field for the protein with a united-atom
lipid force field.
For all-atom force fields, e.g. OPLS/AA or assisted model building with energy

refinement (AMBER), simulations of lipid bilayers only reproduce a subset of proper-
ties experimentally determined [13]. Such simulations require for example additional
surface tension potentials to exert lateral pressure on the lipids such that the APL of
experiments is reproduced [160]. This additional lateral pressure might affect the inte-
grin conformations in the simulations, therefore artificial potentials should be avoided.
United-atom lipid force fields [161] in contrast allow simulations without application

of additional lateral pressure [161]. Protocols for the combination with all-atom force
fields exist [162], rendering it the more promising approach at the moment. However,
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Figure 5.2: Integrin Trans-
membrane Domain With
Talin Bound. The α and β
subunits are shown in red and
blue, talin is shown in green.

when performing simulations with such a combination, the effect of mixing different
force fields is not negligible [162]. So far, this problem has no general solution so
that the effect of mixed force fields has to be carefully investigated for each system
separately.
After selection and testing of a force field, multiple in silico research directions are

possible. So far, it is known that the signal transduction is achieved by a conformational
change of the helical alignment of the integrin TM domains.
Recent results suggest that externally applied forces dramatically enhance the signal

transduction, rendering integrins as force sensors. Most likely, the external forces
therefore also act on the TM domain. A computational method to mimic this setup
are steered molecular dynamics (SMD) simulations. In these simulations, forces are
applied to individual TM domains to probe how force direction, magnitude and the
point of application change the conformation of the TM domain.
In one step further, calculation of the free energy landscape for the TM helix align-

ment in the membrane will give a detailed insight into the dimerization pathways
and barriers. Considering the two helices as rigid, the free energy landscape has five or
seven dimensions1, depending if rotation around the helix axes is included. This multi-
dimensional free energy landscape contains information about the activation mecha-
nism. The required dimensionality of the free energy landscape however renders this
calculation computationally very expensive. Therefore, SMD simulations are the first
step.

1Helix-helix distance, 2 helix tilt angles, relative helix orientation, relative helix location
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Different helix tilt angles are observed in experiments (see Ref. 153 Fig. 2). Is the ori-
gin of the different angles the membrane composition or a change in tilt angle induced
by the binding of intracellular proteins like talin? Atomistic simulations including the
intracellular part (see Fig. 5.2) are suitable to probe the effect of talin binding. More-
over, simulations are able to probe the influence of different lipid compositions and
therefore could contribute in answering this question.
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Association Mechanism of Transient

Protein-Protein Complexes

• M. Hoefling and K.-E. Gottschalk. Barnase-Barstar: From First Encounter to Final
Complex. J. Struct. Biol., 171:52–63, 2010. (Publication P3).

Individual Contributions
The simulations and the setup of the barnase-barstar complex and mutants at different
ion concentrations were done by myself. Kay E Gottschalk suggested the mutations,
aided in the system preparation and discussed the steering behavior in detail. I per-
formed the analysis of the PMF, the adsorption path graphs and the contacts. The
manuscript was written by Kay E Gottschalk and myself.

6.1 Introduction
Proteins in the cell associate to transient protein complexes which exchange between
complexed and free form. Cellular life heavily relies on these protein complexes. They
are involved in the regulation of signal transduction in cells of multicellular organ-
isms [163] or act as natural antibiotics of unicellular organisms [164].
To obtain a distinct binding between two or more proteins, the complex partners

have to recognize each other reliably, and binding to other proteins is minimized.
In nature, binding sites have been optimized during evolution. In order to design
or modify specific protein-protein interactions, the understanding of the underlying
association mechanism is crucial.
In my studies, the well known barnase-barstar model system [164] shown in Fig. 6.1

was investigated, consisting of a RNase and its inhibitor. The RNase is used by the
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Figure 6.1: Barnase (blue)
Barstar (red) in Complex.
Residues responsible for the en-
zymatic catalysis (RNA cleav-
age) are shown in green. The
binding helix of barstar is re-
sponsible for the inhibition of
the barnase RNase in complex.

bacterium Bacillus amyloliquefaciens as an antibiotic and thus is deadly to itself.
Therefore, the RNase is inhibited by barstar in the bacteria and barstar is removed
after secretion. Since survival of the bacteria critically depends on the reliability of
this inhibition, the binding kinetics became fast and reliable during evolution. Barstar
shows inhibitory behavior even when only the binding helix (Fig. 6.1) is folded [165].
The kinetics of the complex formation, responsible for the fast binding, are deter-

mined by the shape of the free energy landscape. In this landscape, the magnitude
of free energy barriers modulate the frequency factor or attempt frequency. If the
barriers are small compared to the available thermal energy, the complex formation is
purely driven by the attempt frequency, which depends on the concentration as well
as the lateral and rotational diffusion behavior (see Section 2.3). When large barriers
are present on the association pathway, the barrier height determines the probability
of barrier crossing. Therefore, calculation of the free energy landscape is important to
understand the kinetics and was one of the goals in my studies.
The fast association of barnase-barstar is mainly driven by electrostatic interac-

tions [166]. Despite the strong interaction, no disulfide bonds or cations are involved
in the barnase-barstar complex. Due to its moderate size, the absence of disulfide
bridges in complex, and the biotechnological importance [167], barnase-barstar is an
excellent target for in silico studies of protein complex formation [168, 169] and was
therefore used in this work.
In experiments, a large number of interacting residue pairs of barnase and barstar

were identified using double-mutant cycles [170, 171]. In double mutant cycles, relative
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free energies of a mutant A, mutant B and double mutant AB are compared. When
the mutated residues interact with each other during complex formation, the difference
in free energy is not the sum of the single mutations. Only relative free energy values
between mutants are obtained in such studies, however.
The exact mechanism of association, the shape of the underlying free energy land-

scape and the influence of mutations and salt concentration are still under debate.
MD simulations were suggested to contribute to the atomistic understanding of the
complex formation [172].
The experimental interaction characterization of the mutants provided a starting

point to select mutations for my study. The selected mutations will then serve to
analyze the impact of mutations on the free energy landscape of binding and thus on
the binding kinetics.
So far, the diffusion and the free energy landscape of the barnase-barstar complex

were extensively studied by BD simulations [173–175]. Due to the rigidity of the
proteins in BD simulations, only the first encounter and not the full complex formation
has been simulated. Moreover, diffusional studies are performed using implicit solvent
models and thus do not accurately recover the effect of desolvation.
However, accurate description of the solvent is required to simulate the final complex

formation steps since it has been demonstrated that the structural modulation of the
solvent structure has a strong influence on the binding [55, 139, 176–178]. Therefore I
will employ MD simulations in explicit solvent to assess the importance of desolvation
and structural rearrangement for the final complex formation steps.

6.2 Results and Discussion
In my study, I compared the wild type complex and three mutants at two different
salt concentrations and thus eight different simulation setups in total (Tab. P3.2 on
page 93). For each setup, I conducted over 100 simulations constraining the distance
between the COM of barnase and COM of barstar to different lengths. From the
constraint force in these simulations, the free energy landscape of association (PMF)
was calculated using Eq. 2.14 as discussed in Section 2.3.11.
Comparison of our calculated free energy landscape with previously suggested ones

in Ref. 77 implies that the only barrier present in the complex formation is the de-
solvation transition (Fig. P3.9 (b) on page 101). No significant barriers at larger

1In contrast to PMF calculations of amino-acid adsorption (Publication P7), the available phase
space increases with increasing COM-COM distances λ and therefore the correction term with the
Jacobian Matrix kBT

∂ ln |J|
∂λ in Eq. 2.14 does not vanish.
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separation distances were found. With weak electrostatic shielding present — low salt
concentration in our case — the desolvation barrier was compensated by the stronger
electrostatic attraction forces.
The shape of the free energy landscape suggests two different interaction regions

(Fig. P3.9 (a) on page 101). First, the complex formation is steered by the long ranging
electrostatics, and at separation distances below 0.4 nm a short ranged funneling region
driven by desolvation is reached. In summary, the final complex formation is not
the rate limiting step for barnase-barstar; complexes with weaker electrostatics might
behave differently, however.
Structural association modes emerge from clustering of representative structures in

our trajectories. To test if different modes are present, I created k-clique community
graphs of our representative structures with the clique percolation method weighted
(CPMw) algorithm [179, 180]. From these graphs, up to two association modes were
found. The equilibrium between both modes depends on the mutations and salt con-
centrations (Fig. P3.5 on page 96). Two distinct association patterns were identified
from the structures which constitute the two paths (Fig. P3.6 on page 97).
My results underline the importance of atomistic simulations to study the effect of

solvent structure on the binding behavior and to identify highly populated intermediate
conformations during the adsorption process.

6.3 Outlook
The resulting free energy landscapes highlights the importance of the final desolvation
barrier, which has been addressed for the same system by MD simulations recently [55].
As a next step, further systems — less rigid and with weaker electrostatic interactions
than barnase-barstar — should be investigated to test the generality of the findings.
Technically, sampling of the free energy at large separations is inefficient via MD

simulations while BD simulations are not able to capture the final association due to
the rigidity of proteins. Therefore, it would be interesting to develop and test a hybrid
approach in the future, combining MD simulations at low and BD simulations at large
separation distances to obtain an overall PMF at minimal computational cost.
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GromPy: Python Interface for

GROMACS

• R. Pool, A. Feenstra, M. Hoefling, R. Schulz, J. C. Smith and J. Heringa. Enabling
Grand-Canonical Monte Carlo: Extending the Flexibility of GROMACS Through
the GromPy Python Interface Module. submitted. (Manuscript M1).

Individual Contributions
The initial version of the GromPy library was written by Roland Schulz and myself
and was made available to the public in 20091. Starting from this version, René Pools,
Anton Feenstra, Jeremy C Smith and Jaap Heringa extended the GromPy library by
an interface to the main MD routines and performed simulations and analysis in the
grand canonical ensemble via GCMC as described in Manuscript M1. The manuscript
was mainly written by René Pools, Anton Feenstra, Jeremy C Smith and Jaap Heringa
with minor additions from Roland Schulz and myself.

7.1 Summary and Outlook
The MD package GROMACS [70] provides a wide variety of library functions. These
libraries implement the MD simulation algorithms and provide functions for the read-
ing, writing and analysis of simulation trajectories.
The simulation core of GROMACS is implemented in C with generated assembler

code for the parts critical for the computational performance. GROMACS analysis
tools and the analysis library are implemented in C as well. For rapid prototyping of

1http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
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applications, analysis tools and new algorithms, dynamic programming languages like
Python are more suitable. Therefore an interface for the available GROMACS routines
for Python is desirable.
The GromPy interface was implemented using the ctypes Python module1, which

allows direct function calls to shared libraries from Python code. Shared libraries
contain compiled machine code, e.g. implemented in C. The calls to shared libraries
from the Python interpreter require no previous compilation of a Python interface
as required for other interfacing techniques like the simplified wrapper and interface
generator (SWIG).
As the name indicates, ctypes in addition provides wrappers for the fundamental

data types and structures in C. Thereby, shared library functions can be directly
executed without computationally expensive conversion of variable types (typecasting)
rendering the overhead of the Python interpreter small. In summary, the advantage of
this approach is the usage of Python as “glue”, to quickly combine and extend available
and tested library functions optimized for computational speed.
The first implementation of GromPy was written for my trajectory analysis in Pub-

lications P3, P6, P8 and P9 and was made available to the public in 20092. Similar
interfaces exist for structure manipulation [181]. René Pools and coworkers extended
the GromPy library by an interface for the GROMACS simulation core to perform
GCMC simulations described in Manuscript M1.
In the future, extension of the GromPy interface to support additional GROMACS

library functions is planned. Moreover, the library will be ported to future GROMACS
releases which will be based on C++.

1http://docs.python.org/library/ctypes.html
2http://lists.gromacs.org/pipermail/gmx-developers/2009-March/003183.html
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The formation of multicellular organisms requires concerted
action by cells, which alter their adhesive and migratory
behaviors. Cell adhesion and migration are tightly regulated
by intra- and extracellular signals, which are conveyed
through the cellular membrane by specialized receptors
known as integrins.[1] Integrins are the starting point of a
variety of signaling cascades and are involved in a multitude
of physiological events important to multicellular organism
morphogenesis, ranging from cell adhesion to migration,
apoptosis, and angiogenesis as well as pathophysiological
behaviors such as those found in cancer metastasis.[2] The
transmembrane (TM) domains of integrins are at the center
of integrin signaling.[3] Recently, a structure of the TM
domains of the aIIbb3 integrin has been reported that sheds
light on the signal transduction mechanism of integrins.[4–7]

Integrins are essential TM proteins that couple the
extracellular matrix to the cytoskeleton. They consist of
noncovalently bound heterodimers, in which each subunit (a
and b) contains one TM helix.[8] With eighteen a and eight b
subunit types identified, there are 24 known distinct hetero-
dimer combinations with partially overlapping yet specific
function.[9]

Cells regulate their integrin-mediated adhesion through a
variety of mechanisms on different time scales. On the slower
time scale, expression patterns are altered by external signals,
such as growth factors.[10] On faster time scales, integrins can
be redistributed (by clustering or recycling) on the cellular
surface,[11] change their intracellular attachment state to the
cytoskeleton[12] as exemplified by different lateral mobilities
of integrins on a single cell,[13] or alter the affinity state for
their extracellular ligand (integrin activation).[14] Changes in
the affinity state are correlated with integrin conformational

changes,[14] which act as one potential mechanism to relay
signals either from the extracellular to the intracellular space
(outside-in signaling) or vice versa (inside-out signaling).
Integrins are bidirectional signaling molecules, as both
signaling directions take place along an allosteric pathway.[15]

The two TM helices of the integrin heterodimer are pivotal in
signaling events as linkers between the extracellular and
intracellular domains. Hence, a variety of groups have
pursued different strategies to understand the role of the
TM domains in signaling.[16–23]

It was postulated that the TM helices were not merely
connectors between the extra- and the intracellular space but
active structures forming specific heterodimers.[24,25] How-
ever, the structural details of this TM heterodimer have
remained elusive until recently. In their recent report, Lau
et al. have solved the structure of the aIIbb3 integrin
heterodimer in its resting state using highly sophisticated,
well-designed NMR spectroscopy experiments on the TM
domains in bicelles.[7] This experimentally determined struc-
ture allows a solid, structural basis for the prior experimental
biochemical results by providing a foundation for an atomistic
understanding of TM integrin signaling.

The experimental structure shows a right-handed helical
dimer (Figure 1). Given that the majority of soluble helix
dimers form left-handed structures,[26] this unusual right-

Figure 1. Overview of the aIIbb3 integrin TM structure recently solved
by Lau et al. The a subunit is shown in red, the GFFKR motif in green,
and the b subunit in blue. Several important residues described in the
text are highlighted.
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handed conformation and the resulting lower thermodynamic
stability may play an important role in signaling. It has been
demonstrated that the TM domains separate in the course of
signaling.[27] Therefore, a fine-tuned energy balance favoring
specific interactions versus the propensity to separate needs
to be encoded in the interaction between these helices. A
right-handed helical dimer is particularly suited by offering
the needed structural flexibility. This propensity to separate,
which complicated the structure determination of this im-
portant complex,[28] is also reflected by the low affinity of the
helices for each other.[29]

The TM structure can be divided into two different
interaction regions. Adjacent to the extracellular domains, the
helices form canonical helix–helix interactions in tight con-
tact. Proximal to the intracellular face of the membrane, an
unusual loop comprising the highly conserved GFFKR[25,30]

motif of the a subunit makes important interactions between
the subunits, while the helices are already well-separated.

Near the extracellular domain, the conserved 972Gxxx976G
motif in the a subunit, a well-known interaction motif of TM
helices (x is a nonconserved amino acid),[31] is located at the
interface of the dimer to allow tight interactions with the
b subunit (Figure 1). A similar but less canonical motif of the
b subunit (699Sxxx703A) points out from the interface and does
not participate in the interaction. The relevance of this motif
remains to be determined, but it may be important for lateral
association with other TM proteins such as tetraspanins or
integrins in integrin clustering, or it might be involved in
transient TM conformations. It would be instructive to mutate
these residues in animal models to test their significance.

Towards the intracellular interface, the C-terminal end of
the a subunit contains an unusual loop (initiated by 991G in the
a subunit). Gly is a well-known helix breaker, given its highly
flexible nature resulting from its lack of side-chain atoms. The
main contact between the subunits is formed in this loop
region by the 992F993F motif and the subsequent salt bridge
(Figure 1). These interactions have previously been shown to
be indispensable in keeping the integrin in its resting
state.[25,30]

Integrins are subjected to force during the mechanical
processes of adhesion and migration. In fact, force has been
identified as a facilitator for integrin activation.[32] Interest-
ingly, the deviation from helicity in the a subunit may be
significant for integrin function: if force is acting on the
a subunit tail, the nonhelical loop would facilitate activation
under applied force, as less of an energetic penalty is paid for
straightening a less-ordered loop than a hydrogen-bond-
stabilized helix. Hence, this loop is an attractive candidate for
a trigger in integrin activation by force (Figure 2). Surpris-
ingly, no such trigger is structurally obvious in the canonical
helix of the b subunit, given that the main intracellular
adaptor protein talin, which connects the integrin to the
cytoskeleton and is likely the force-transducing protein, binds
to the b and not the a subunit. It would be interesting to
identify adaptor proteins that bind to the a subunit and
facilitate activation by mechanical structural changes in the
loop region of the a subunit. Recent evidence suggests that, at
least in the case of the integrin a4b1, paxillin might be a
candidate for such a mechanism.[12]

The formation of a complex between the integrin b tail
and talin has been shown to be the common final step in
integrin activation.[33] During complex formation, talin dis-
places the a subunit, thus inducing TM separation and
integrin activation.[34,35] The new structure of the TM domains
in combination with recently solved structures of the integrin–
talin complex now enables a structural test of this hypothesis.
Surprisingly, talin can bind to the integrin b subunit without
structural constraints imposed by the a subunit (Figure 3).

Hence, a possible mechanism of a purely sterical displace-
ment of the a subunit needs to be refined. It must be
remembered, however, that the intracellular tail of the
a subunit is longer than the portion that was resolved by
NMR spectroscopy.

In the past, models of the TM domains have been
generated by a variety of approaches.[19,24,36–42] The publica-
tion of the structure of the TM domains allows the predictive
power of TM structure versus computer modeling to be
tested. We published in 2002 a first computational model of
the core of the TM domains of the integrin aIIbb3 calculated
in the absence of experimental data on the TM domains.[37]

Despite this lack of experimental support at the time of

Figure 2. Potential impact of force on the a subunit. a) Experimental
structure. GFFKR motif is shown in green. b) Force-induced straighten-
ing of the GFFKR motif (putative model).

Figure 3. Concatenation of TM structure (blue) and two integrin–talin
complexes (red and green). Background: approximate position of the
membrane.
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calculation, the predicted conformation and the experimental
structure are identical with a root-mean-square deviation
(RMSD) of less than 1 ! across the Ca atoms over 34
residues (Figure 4). Later computations by the groups of

DeGrado,[39] Torres,[41] and most recently Springer,[43] ob-
tained with different methods, led to very similar models. The
Springer group even correctly predicted the unusual
C-terminal loop of the a subunit using a large number of
experimental restraints together with an ab initio structure-
prediction tool. This close agreement between experiment
and computation impressively underlines the power of
computational approaches for these kinds of systems.

Obtaining the structure of integrin TM domains provides
the foundations for a structural understanding of TM integrin
signaling. However, open questions remain. These include the
impact of force on the TM domains, the possible existence of
structural intermediates between complexed and uncom-
plexed subunits, and the mechanism of TM activation through
talin binding. Other important issues are the possibility of
formation of homooligomers and their role in formation of
focal adhesion. The molecular nature of cell migration along
concentration gradients as well as the spatiotemporal de-
mands of chemotactic proteins in cooperation with integrin
ligands also require further study.[44,45] Furthermore, the
details of transducing information of ligand binding from
the headgroup to the transmembrane region or vice versa are
still not well-understood. The now available structure of the
transmembrane complex is a tremendous step forward in
understanding the function of these important molecules.
Future computational and experimental efforts will address
the questions on the basis of this structure.
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Mehrzeller ben!tigen ein eng aufeinander abgestimmtes
Handeln von Zellen, die ihre Adh"sions- und Migrations-
eigenschaften ver"ndern k!nnen. Zelladh"sion und -migrati-
on werden stark durch intra- und extrazellul"re Signale re-
guliert, die durch die Zellmembran mithilfe von spezialisier-
ten Rezeptoren, bekannt als Integrine, transportiert wer-
den.[1] Integrine sind der Ausgangspunkt f#r eine Vielzahl von
Signalkaskaden. Außerdem sind sie an vielen physiologischen
Prozessen der Morphogenese von Mehrzellern beteiligt, von
der Zelladh"sion #ber dieMigration bis hin zur Apoptose und
Angiogenese. Außerdem spielen sie bei pathophysiologi-
schem Verhalten, z.B. bei der Metastasenbildung, eine Rol-
le.[2] Das Zentrum der Signal#bertragung des Integrins sind
die Transmembran(TM)-Dom"nen.[3] Erst vor kurzem wurde
eine Struktur der TM-Dom"nen des aIIbb3-Integrins vorge-
stellt, die ein neues Licht auf den Signal#bertragungsmecha-
nismus von Integrinen wirft.[4–7]

Integrine sind essenzielle TM-Proteine, die die extrazel-
lul"re Matrix mit dem Zytoskelett verbinden. Sie bestehen
aus nichtkovalent gebundenen Heterodimeren, von denen
jede Untereinheit – a und b – jeweils eine TM-Helix enth"lt.[8]

Es sind 18 verschiedene a- und 8 verschiedene b-Unterein-
heiten bekannt, aus denen sich 24 bekannte Heterodimer-
kombinationen, teils mit spezifischer, teils mit #berlappender
Funktion, bilden.[9]

Zellen regulieren ihre Integrin-vermittelte Adh"sion
durch eine Vielzahl von Mechanismen auf unterschiedlichen
Zeitskalen. Auf gr!ßeren Zeitskalen werden Expressions-
muster durch externe Signale wie Wachstumsfaktoren ver-
"ndert.[10] Auf kleineren Zeitskalen k!nnen sich Integrine
z.B. auf Zelloberfl"chen durch Clustering und Recycling neu
anordnen[11] oder ihren intrazellul"ren Bindungszustand zum

Zytoskelett ver"ndern,[12] beispielhaft verdeutlicht durch un-
terschiedliche laterale Mobilit"t von Integrinen auf einer
Zelle.[13] Außerdem spielt sich auf dieser Zeitskala auch die
$nderung ihrer Affinit"t zu einem extrazellul"ren Liganden
ab (Integrinaktivierung).[14] Ver"nderungen in der Affinit"t
sind stark mit Konformations"nderungen von Integrinen
korreliert,[14] was ein potenzieller Mechanismus zur Signal-
vermittlung ist, entweder vom extra- zum intrazellul"ren
Raum oder umgekehrt. Integrine k!nnen Signale bidirektio-
nal #bertragen, da beide Signal#bertragungen entlang eines
allosterischen Pfades verlaufen.[15] Die beiden TM-Helices
des Integrinheterodimers sind der Dreh- und Angelpunkt
dieser Signalereignisse, da sie die extra- und intrazellul"ren
Dom"nen miteinander verbinden. Aus diesem Grund wurden
von mehreren Forschergruppen unterschiedliche Strategien
entwickelt, um die Rolle der TM-Dom"nen in diesem Si-
gnalprozess besser zu verstehen.[16–23]

Es wurde postuliert, dass die TM-Helices nicht nur als
Verbindung zwischen extra- und intrazellul"rem Raum wir-
ken, sondern auch als aktive Strukturen, die spezifische He-
terodimerstrukturen bilden k!nnen.[24,25] Allerdings waren
die Strukturdetails dieser TM-Heterodimere bis vor kurzem
noch spekulativ. In ihrer k#rzlich erschienenen Publikation
haben Lau et al. die Struktur des aIIbb3-Integrinhetero-
dimers in seinem Ruhezustand mithilfe anspruchsvoller
NMR-Experimente an TM-Dom"nen in Bizellen gel!st.[7]

Diese experimentell bestimmte Struktur bildet eine solide
Grundlage f#r das Verst"ndnis bisheriger experimenteller
Untersuchungen sowie der TM-Signal#bertragung auf ato-
marer Ebene.

Die experimentelle Struktur zeigt ein rechtsh"ndig heli-
cales Dimer (Abbildung 1). In Anbetracht der Tatsache, dass
die meisten l!slichen Helixdimere linksh"ndige Strukturen
bilden,[26] k!nnten diese ungew!hnliche rechtsh"ndige Kon-
formation und die daraus resultierende niedrigere thermo-
dynamische Stabilit"t eine wichtige Funktion bei der Signal-
#bertragung innehaben. Die TM-Dom"nen trennen sich
nachweislich im Verlauf der Signalweiterleitung.[27] Daher ist
eine fein abgestimmte Energiebalance n!tig, um bestimmte
Wechselwirkungen gegen#ber der Auftrennung beg#nstigen,
die in den Helix-Helix-Wechselwirkungen kodiert sein muss.
Ein rechtsh"ndig helicales Dimer kann die daf#r ben!tigte
besondere Strukturflexibilit"t bereitstellen. Die Tendenz zur
Trennung, die die Bestimmung der Struktur dieses wichtigen
Komplexes in der Vergangenheit erschwerte,[28] spiegelt sich
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auch in der geringen Affinit"t der Helices zueinander wi-
der.[29]

Die TM-Struktur kann in zwei unterschiedliche Wech-
selwirkungsregionen aufgeteilt werden: Nahe den extrazel-
lul"ren Dom"nen gehen die Helices enge, kanonische Helix-
Helix-Wechselwirkungen ein, und nahe der intrazellul"ren
Seite zeigt sich eine ungew!hnliche Schleife, die ein hoch-
konserviertes GFFKR-Motiv[25,30] auf der a-Untereinheit
umfasst und wichtige Wechselwirkungen zwischen den Un-
tereinheiten vermittelt, wenn die Helices schon weiter ge-
trennt sind.

Nahe den extrazellul"ren Dom"nen befindet sich das
konservierte und in TM-Helices bekannte[31] 972Gxxx976G-
Motiv (x: nichtkonservierte Aminos"ure) des Dimers, das
eine enge Wechselwirkung mit der b-Untereinheit (Abbil-
dung 1) erm!glicht. Ein "hnliches, aber weniger kanonisches
Motiv der b-Untereinheit (699Sxxx703A) zeigt von den Ber#h-
rungsfl"chen weg und ist nicht an der Wechselwirkung be-
teiligt. Dieses Motiv, dessen Bedeutung noch unklar ist,
k!nnte wichtig f#r die laterale Assoziation mit anderen TM-
Proteinen, wie Tetraspaninen, oder beim Integrin-Integrin-
Clustering sein; außerdem k!nnte es eine Rolle bei der Bil-
dung von Zwischenzust"nden der TM-Helices spielen. Es
w"re aufschlussreich, die Auswirkungen von Mutationen in
diesem Motiv im tierischen Modellversuch zu testen.

Zur intrazellul"ren Grenzschicht orientiert findet sich das
C-terminale Ende der a-Untereinheit mit einer ungew!hnli-
chen Schleife (eingeleitet durch 991G in der a-Untereinheit).
Glycin wirkt wegen seiner hohen Flexibilit"t und dem Fehlen
von Seitenkettenatomen als Helixunterbrecher. Der Haupt-
kontakt zwischen den Untereinheiten wird in dieser Schlei-
fenregion durch das 992F993F-Motiv und die nachfolgende
Salzbr#cke (Abbildung 1) hergestellt. Diese Wechselwirkun-
gen sind f#r die Stabilit"t von Integrinen im Ruhezustand
unentbehrlich.[25,30]

Bei Adh"sion und Migration unterliegen Integrine ange-
legten Kr"ften, und tats"chlich konnte die Kraft als ein Mo-
derator der Aktivierung von Integrinen identifiziert wer-
den.[32] Interessanterweise k!nnte in diesem Kontext die
Abweichung von der Helizit"t eine Bedeutung f#r die

Funktion des Integrins haben: Wenn eine Kraft auf das Ende
der a-Untereinheit wirkt, k!nnte das nichthelicale Ende eine
Aktivierung erleichtern, da eine geringere Energie f#r das
Strecken der weniger geordneten Schleife n!tig ist als f#r die
H-Br#cken-stabilisierte Helix. Daher ist diese Schleife ein
vielversprechender Kandidat f#r eine kraftinduzierte Akti-
vierung (Abbildung 2). Interessanterweise findet sich in der
Struktur der b-Untereinheit kein klarer Hinweis auf einen

solchen Ausl!semechanismus, obwohl das prominenteste in-
trazellul"re Adapterprotein Talin, welches das Integrin mit
dem Zytoskelett verbindet und daher vermutlich das kraft-
#bertragende Protein ist, an die b- und nicht an die a-Un-
tereinheit bindet. Daher w"re es interessant, weitere Adap-
terproteine zu identifizieren, die an die a-Untereinheit bin-
den und daher eine Aktivierung durch mechanische Struk-
turver"nderung in der Schleifenregion der a-Untereinheit
induzieren k!nnen. Neueste Indizien st#tzen die Vermutung,
dass zumindest im Fall von a4b1 das Paxillin ein Kandidat f#r
einen solchen Mechanismus ist.[12]

Die Bildung eines Komplexes zwischen dem Ende der b-
Untereinheit und Talin ist der letzte gemeinsame Schritt bei
der Aktivierung von Integrinen.[33] Talin verdr"ngt dabei die
a-Untereinheit und bewirkt damit eine Trennung der TM-
Dom"nen, die letztlich zur Aktivierung f#hrt.[34,35] Die neue
Struktur der TM-Dom"nen erm!glicht nun in Kombination
mit vor kurzem gel!sten Strukturen des Integrin-Talin-
Komplexes eine %berpr#fung dieser Hypothese. %berra-
schenderweise kann Talin an die b-Untereinheit binden, ohne
strukturell durch die a-Untereinheit eingeschr"nkt zu sein
(Abbildung 3). Daher muss der m!gliche Mechanismus einer
rein sterischen Verschiebung der a-Untereinheit revidiert
werden. Außerdem ist zu beachten, dass der intrazellul"re
Teil der a-Untereinheit l"nger ist als der Teil, der mithilfe der
NMR-Spektroskopie gel!st wurde.

In der Vergangenheit wurden Modelle von TM-Dom"nen
mit einer Vielzahl von Methoden erstellt.[19,24,36–42] Die Pu-
blikation der Struktur dieser TM-Dom"nen erm!glicht es
nun, die Vorhersagekraft von am Computer berechneten
Modellen zu testen. 2002 ver!ffentlichten wir ein erstes Mo-
dell des Kerns der TM-Dom"nen von Integrin aIIbb3, das
berechnet worden war, ohne dass experimentelle Daten zu
den TM-Dom"nen selbst verf#gbar waren.[37] Trotz des Feh-
lens der experimentellen Verifikation w"hrend der Rechnung

Abbildung 1. K"rzlich von Lau et al. gel#ste aIIbb3-Integrin-TM-Struk-
tur. Die a-Untereinheit ist in Rot gezeigt, das GFFKR-Motiv in Gr"n
und die b-Untereinheit in Blau. Einige im Text beschriebene, wichtige
Reste wurden hervorgehoben.

Abbildung 2. M#gliche Auswirkungen einer an die a-Untereinheit an-
gelegten Kraft. a) Experimentelle Struktur; das GFFKR-Motiv ist in
Gr"n gezeigt. b) Kraftinduziertes Strecken des GFFKR-Motivs (putati-
ves Modell).
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sind die vorhergesagte Konformation und die experimentelle
Struktur innerhalb einer mittleren quadratischen Standard-
abweichung von weniger als 1 & #ber die Ca-Atome der 34
Aminos"urereste identisch (Abbildung 4). Sp"tere Rech-
nungen mit anderen Methoden durch DeGrado,[39] Torres[41]

und neuerdings auch Springer et al.[43] f#hrten zu sehr "hnli-

chen Ergebnissen. Springer und Mitarbeiter gelang es sogar,
die ungew!hnliche C-terminale Schleife der a-Untereinheit
vorherzusagen, indem sie eine Reihe von experimentellen
Beschr"nkungen mit einem Programm zur Ab-initio-Struk-
turvorhersage kombinierten. Diese enge %bereinstimmung
zwischen Experiment und Rechnung demonstriert die Leis-
tungsf"higkeit von Rechenverfahren bei dieser Art von Sys-
temen.

Strukturen von Integrin-TM-Dom"nen bilden die Basis
f#r ein Verst"ndnis der Signalweiterleitung von Integrin-TM-
Dom"nen. Allerdings sind noch einige offene Fragen zu kl"-
ren, z.B. zur Auswirkung einer angelegten Kraft auf die TM-
Dom"nen, zur Existenz von %bergangsstrukturen zwischen
komplexierten und nichtkomplexierten Untereinheiten und
zum Mechanismus der Integrinaktivierung durch das Binden
von Talin. Weitere wichtige offene Punkte sind die m!gliche
Bildung von Homooligomeren und ihre Rolle bei der Bildung
einer fokalen Adh"sion. Auch die molekulare Natur der
Zellmigration entlang von Konzentrationsgradienten sowie
die r"umlichen und zeitlichen Anforderungen an die Protei-
ne, die an der Chemotaxis beteiligt sind, sowie deren Ko-
operation mit Integrinliganden m#ssen noch weiter unter-
sucht werden.[44,45] Auch die Details der Informationsweiter-
leitung nach dem Binden eines Liganden von der Kopfgruppe
hin zur Transmembranregion sind noch immer nicht gut ver-
standen. Die nun verf#gbare Struktur des Transmembran-
komplexes ist ein enormer Schritt nach vorne f#r das Ver-
st"ndnis der Funktion dieser Molek#le und bietet eine
Grundlage, um die offenen Fragen durch weitere Modell-
rechnungen und experimentelle Untersuchungen zu beant-
worten.
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Protein–surface interactions are fundamental in natural processes, and have great potential for applications ranging
from nanotechnology to medicine. A recent workshop highlighted the current achievements and the main challenges
in the field. Copyright ! 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Several natural processes involve the interaction between
polypeptides and solid surfaces (Gray, 2004). To cite a few, the
growth of hard tissue is regulated by protein–mineral inter-
actions, the adhesion of organisms to solid supports (e.g. mussels
to rocks) depends on protein–surface interactions and the
anti-freezing capability of animals living in cold environments
relies on proteins binding to ice.
In recent years, the scope of polypeptide–surface interactions

has enlarged. Proteins inside the body interact with the artificial
materials of implants, an interaction that may induce unwanted
reactions or may also be exploited to perform useful tasks
(bioactive materials). In addition, the natural recognition
capabilities of proteins have inspired new bottom-up approaches
to the self-assembly of nanostructures (Sarikaya et al., 2003).
Moreover, the increasing distribution of man-made nanoparticles
(NPs) naturally raises concerns about possible toxic effects when
they accidentally contact living organisms (Fubini et al., 2006; Nel
et al., 2006). Such effects will likely involve the interactions of
nanomaterials with the protein arsenal of the body.
Protein–surface interactions were the focus of a recent

workshop held in Sestri Levante (Italy) on 4–6 June 2009
(www.s3.infm.it/prosurf_meeting) organized in the context of the
FP6 EU project Prosurf (www.s3.infm.it/prosurf ). The workshop
brought together about 60 scientists from around the world
working on this topic from different perspectives, ranging from
basic science to applications, and from experiments to
computation. Here we report on the main themes that emerged
at the workshop, and discuss some of the important new results
presented there.

Selectivity of proteins/peptides for surfaces

Despite the potential of surface recognition by proteins for
applications and its role in natural processes, the basic
mechanisms determining affinity and specificity are still poorly
understood. Experimental results on the selection of peptides
that possess specific binding properties to different types of
surfaces were described by Candan Tamerler, Istanbul Tech. Univ.,

Turkey (Tamerler and Sarikaya, 2009). To select an initial pool of
binding peptides, her team proceeds by combinatorial biology
methods such as phage and cell display. According to their work,
obtaining consensus sequence is usually not the case. They apply
post-selection engineering to improve the peptide affinity: the
binding of peptides is characterized experimentally (e.g. by
quartz crystal microbalance (QCM) and surface plasmon
resonance (SPR)), then evolutionary engineering approaches
and bioinformatics tools are combined to obtain the next
generation peptides with tailored properties. Their knowledge-
based approach results in peptide sequences that can bind
selectively to a desired material (Au, Pt, SiO2). Tamerler stressed
that high affinity and specificity of peptides to various surfaces
can be achieved, and that proper characterizing of the peptides is
crucial (Tamerler et al., 2006). The surface specific peptides can be
used as linkers (e.g. for immobilization of alkaline phosphatase on
gold), to control material assembly, form films and scaffolds or as
catalysers in the controlled formation of inorganic NPs.
Furthermore, the specific recognition can be used to guide
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proteins towards specific surfaces, including in living organisms
(like teeth or bone).
A different approach to selectivity towards surfaces was

presented in the work by Arbel Artzy-Schnirman et al., Technion,
Israel. Arguing that short peptides are too flexible to be able to
recognize surfaces selectively, in particular different facets of the
same material, these scientists focused on methods to attain
selectivity by using libraries of antibodies with a phage display
approach. They demonstrated that antibodies can indeed select
different facets of the same material (GaAs), a task that was not
fulfiled by peptides (Artzy-Schnirman et al., 2006). The antibody
library was also used to select an antibody able to discriminate
between the two states of an ‘electronic antigen’ comprised of a
hydroquinone monolayer assembled on a gold electrode
(Artzy-Schnirman et al., 2008). An oxidative pulse switches the
monolayer to the benzoquinone state which is recognized by
the specific antibody. A subsequent opposite pulse reduces the
monolayer back to its hydroquinone state and releases the
antibody. These developments show the potential use of
protein–surface interactions as an electronic switch, which
provides a means for external control of biological pathways.

Quantifying the affinity of proteins to surfaces

The need for quantifying the binding affinity of proteins/peptides
to surfaces was mentioned in several presentations. The often
irreversible character of the adsorption was remarked (see also
the next paragraph). Besides the above-mentioned QCM and SPR
studies by Tamerler, SPR measurements of peptide adsorption on
functionalized gold surfaces were reported by Robert Latour,
Clemson Univ., USA (Wei and Latour, 2009). A workflow for
measuring the binding of peptides and proteins to gold NPs was
described by Ori Cohavi, Weizmann Inst., Israel. This method
utilizes high-throughput, real-time SPR measurements. To
characterize the binding of amino acids to the NPs, a set of
fusions of short homopeptides to the beta-lactamase inhibitor
protein (BLIP) were prepared. Wild-type BLIP binds poorly to the
Au NPs, allowing for themeasurements of the binding strength of
each of the fused polypeptides to gold. Synthesized 3-mer
homopeptides of some amino acids confirmed the fusion protein
results. All the fusions bound irreversibly to the Au NPs,
suggesting a rather different mechanism of binding from that
observed between proteins. The adsorption of wild-type BLIP and
BLIP-His fusion protein to gold was also measured in a different
systemwith well-defined, atomically flat (111) surfaces and found
to give the same results (Alexander Vaskevitch, Weizmann Inst.,
Israel). These data indicate that Au NPs can be used as a model for
the determination of quantitative binding constants of proteins to
Au surfaces.
In addition to SPR, high-throughput fluorescent-based detec-

tion (Marcy et al., 2008) can be adapted to study protein
adsorption (Claude Weisbuch, Ecole Polytechnique, France and
UCSB, USA). Biochips with spatially selective adsorption of
different proteins (Weisbuch; François Rossi, IHCP Joint Research
Centre, EU) or surface spots with variable chemistry/surface
morphology can be used in this format (Rossi; Paolo Milani, Univ.
of Milan) (Giorgetti et al., 2008; Ceriotti et al., 2009).

The structure of proteins at surfaces

The question of whether proteins unfold on a surface or maintain
their native conformation is not only fundamental to interpreting

the adsorption data, but it also determines how the adsorbed
proteins interact with other agents (e.g. how blood plasma
proteins adsorbed on NPs elicit immune response). Latour
presented measurements of the activity of lysozyme bound to
surfaces. He showed that the reduction in activity was greater
when the enzyme was bound to hydrophilic than to hydrophobic
surfaces, although changes in the protein secondary structure
were the same. The difference in activity may be the con-
sequence of different orientations of lysozyme on the two kinds
of surfaces.
Ornella Cavalleri, Univ. of Genoa, Italy, remarked the key role of

surface hydrophobicity and crystalline structure in the protein
adsorption onto highly ordered pyrolytic graphite, HOPG
(Svaldo-Lanero et al., 2008). Proteins (e.g. lysozyme) create
ordered striped domains on HOPG, losing their native folding.
The stripe periodicity is the same irrespectively of the protein
structural properties. Interestingly, such patterned interface
works as template to align amyloid protofilaments.
Electron Spin Resonance (ESR) of spin-labelled proteins was

applied, in association to other techniques, to determine the
orientation of adsorbed species and for the assessment of
proteins adsorbed on silica NPs (Ivana Fenoglio, Univ. of Turin,
Italy). Interesting results were found in studies of peptide
adsorption on GaAs (Karsten Goede, Univ. of Leipzig, Germany).
Changes in the molecular structure upon adsorption were
detected by Fourier transform infrared spectroscopy (FTIR). It was
found that adsorbed peptides contain only small amounts of
water, enabling FTIR spectroscopy without the use of D2O. This
finding is also important for experimental verification of the role of
water molecules present at the surface–protein interface (see next
paragraph). Rossi presented an NMR characterization of a model
protein, ubiquitin, on a Au NP. Ubiquitin remained folded upon
binding and these measurements permitted the protein residues
affected by adsorption to be identified.
Heiko Seeger, CNR-INFM Natl. Ctr. S3, Italy, presented Atomic

Force Microscopy results on the lateral redistribution of the KcsA
ion channel in supported lipid bilayers upon the formation of
lipid domains. Finally, the capability of hydrophobin to form
layers on surfaces (Houmadi et al., 2008) was discussed by
Michele Giocondo, CNR-INFM Licryl Lab., Italy, while the use of
surfaces to obtain protein crystals (Tosi et al., 2008) was presented
by Giuseppe Falini, Univ. of Bologna, Italy.

The importance of the environment: the role of water and
ions

A recurring observation was the importance of water for
protein–surface binding. Water depletion is observed near
hydrophobic surfaces due to the orientation of water molecules
in the first layer to hydrogen bond to each other rather than to
the surface (Sedlmeier et al., 2008). This water is more mobile
than on a hydrophilic surface, affecting protein diffusion as
demonstrated by MD simulations (Roland Netz, Tech. Univ. of
Munich, Germany). Different computational treatments of the
solvent-surface–biomolecule interface effects were presented.
Existing implicit solvent models can be successfully used for
hydrophobic surfaces, where there is no water between the
surface and the biomolecule: hydrogenated Si was discussed by
Michael Bachmann, FZ Jülich, Germany (Mitternacht et al., 2007);
carbon nanotubes and graphite were presented by Tiffany Walsh,
Univ. of Warwick, UK (Tomasio and Walsh, 2009). In other cases,
implicit-solvent methods were found to be unsatisfactory (Latour,
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2008) or should be designed specifically for the surface
considered (as discussed by Rebecca Wade, EML Research,
Heidelberg, Germany). Some MD simulations with explicit water
show that, for strongly polar surfaces, binding is not to the surface
itself, but rather to a structured water layer on the surface (Walsh;
Netz; Lucio Colombi Ciacchi; Univ. of Bremen, Germany; Susanna
Monti, CNR-IPCF, Italy; Monti, 2007; Skelton et al., 2009). The
importance of hydration at metal surfaces was clearly demon-
strated by Luigi Delle Site, MPI Mainz, Germany, who showed
computationally how amino acids with similar affinities for Pt in
vacuo behave quite differently in water (Ghiringhelli et al., 2008).
Not only water, but also ions play a fundamental role in controlling
interactions at interfaces. Alkali ion specificity was shown by Uri
Sivan, Technion, Israel, for the forces between two silica surfaces
(Dishon et al., 2009). As the ion concentration was varied, even
inversion of the force, from repulsive to attractive, was observed.
This behaviour was related to the different hydration properties
of ions (strength of the hydration shell and the consequent
effective hydrated ion radius). From the computational side, Netz
showed how existing force field (ff ) parameter sets for ions are
not reliable and contradict each other. Netz presented instead a
natural-ionic ff parameter set (Horinek et al., 2009) constructed
from the experimental solvation data (comparing computed vs.
experimental solvation-free energies). They found that hydro-
phobicity of the ion, rather than its polarizability, is the key to
explaining ion behaviour at the water/vapour interface.

The challenges for computations

Experiments can be effectively complemented by theoretical and
computational approaches based on coarse-grained simulations,
classical molecular dynamics and density functional theory, as
demonstrated by several presentations. Protein–surface systems
cover a huge diversity which poses a challenge for the derivation
of accurate, consistent force fields. One needs to consider the
properties of the surface material and the protein, as well as the
aqueous solution in which they are immersed (Cole et al., 2007).
The level of details necessary to obtain reliable results depends
on the properties under study. While most computational studies
presented in the workshop were based on atomistic molecular
mechanics models, there were also quantum mechanical (QM)
studies (Susan Köppen, Univ. of Bremen, Germany, Köppen et al.,
2008; Stefano Corni, CNR-INFM Natl. Ctr. S3, Italy, Delle Site) and
models with continuum solvent (Walsh, Bachmann) or further
coarse graining (Delle Site). Most MD simulations rely on an
established ff for proteins, with tailored additions aimed at
describing the interaction with the surface. For polymer surfaces,
a hybrid ff is being developed by Latour: it combines the class-I ff,
CHARMM, for proteins and the class-II ff, PCFF, for polymers;

further terms that describe the interface are derived to fit
experimental data (Latour, 2008). Another approach is to develop
parameters for the protein–surface and water–surface inter-
actions based on QM calculations and the available experimental
data (Iori et al., 2009). MD simulations in explicit water (Martin
Hoefling, Ludwig Maximilian Univ., Germany) based on these
parameters can then form the basis for developing implicit
solvent models and coarser protein descriptions able to explore
the adsorption preferences of entire proteins (Wade and Kokh,
EML Research, Heidelberg, Germany). Force field evaluation or
modification needs experimental benchmark data sets, such as the
peptide–surface interaction set reported by Latour, or the
peptide–gold binding studies presented by Cohavi.
Extensive sampling of conformations is another fundamental

problem to be addressed for gaining insights into the binding
process. Latour highlighted the importance of both a proper
combination of ffs and the improvement of sampling techniques.
He described temperature intervals with global exchange of
replicas (TIGER2), a sampling algorithm that has a higher
efficiency than conventional replica-exchange molecular
dynamics, REMD (Li et al., 2009). Bachmann exploited Monte
Carlo based sampling techniques to study peptides known to
bind to hydrogenated Si. He reproduced the experimental
relative affinities of the peptides and predicted the relative
binding order of new peptides, which was experimentally
confirmed afterwards.
A key issue in the context of simulations is bridging time and

length scales. An adaptive simulation scheme was proposed by
Delle Site (Praprotnik et al., 2008). Here, the level of coarse
graining is spatially controlled in a consistent way during the
simulation, thus allowing the treatment of interactions with the
appropriate detail. Although this approach has not yet been
applied to the protein–surface problem, it would significantly
improve the range of accessible sizes and times.
In conclusion, the Prosurf ‘Protein Surface Interactions’

workshop provided a comprehensive overview of the current
achievements and the main challenges of the protein–surface
interaction research field. The interdisciplinarity of this research
field is one of its intrinsic strengths, but it is also a potential
hindrance for developments. Occasions such as the Prosurf
workshop are needed to overcome the boundaries between
different disciplines and to develop a common language and
shared concepts in the emerging scientific community working
on protein–surface interactions.
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a b s t r a c t

Formation of transient protein complexes is an important process in cells. Details of the association pro-
cess as well as the energy landscapes of association are not well understood. In particular, the nature,
height and position of the energy barriers during complexation are debated. Computational studies are
well suited for atomistically investigating protein association processes. The Barnase–Barstar complex
constitutes a well-studied target for computational studies as a small system with fast association rates.
Here, we performed constraint biased Molecular Dynamics simulations along the reaction coordinate
reaching from the diffusion regime to the bound complex. We simulated the wild-type and different
mutants at different salt concentrations. A structural analysis of our simulation trajectories revealed
not a single, but two distinct association patterns dominated by an interplay between two charged con-
tact points near the binding site. Electrostatics and/or mutations influence the relative population of
these patterns. Further, we computed the energy landscape of association as PMF (Potential of Mean
Force) profiles within a reasonable agreement to experiment. We find a single energy barrier at a distance
of �0.3 nm, which corresponds to the final desolvation transition. Electrostatics has a profound influence
on the height of this energy barrier, but not on its position.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Transient protein–protein complexes regulate the cellular life.
Therefore, the complexation and the recognition of the complex
partners need to be fine-tuned, specific and reliable. Investigations
of the fundamentals of protein–protein complexation require suit-
able model systems. One well established model system is the
ribonuclease Barnase and its inhibitor Barstar. Barnase–Barstar is
one of the best-studied systems by experiments and in theory
(Hartley, 1989). This complex has also found applications in bioen-
gineering (Strittmatter et al., 1995). Barnase is deadly to the host-
ing organism and is excreted. For protection, it is complexed with
Barstar prior to export. This interaction needs to be very fast and
strong to prevent cell death. The complexation is mainly driven
by electrostatics leading to the fast association. With an on-rate
of 108s�1 M�1 (Buckle et al., 1994), it is one of the fastest known
in biological systems. Together with its moderate size, this system
provides an excellent target for a detailed examination of complex-
ation processes in silico (Janin, 1997; Gottschalk et al., 2004).

We aim here at analyzing the association behavior of this com-
plex. Protein–protein association can be divided into three steps:
free diffusion, steered diffusion and desolvation (Janin, 1997).
Some proteins reach the diffusion limit for complexation (North-

rup and Erickson, 1992; Schreiber and Fersht, 1996), despite the
fact that the rotational degrees of freedom hamper the protein rec-
ognition process. Successful complexation is strongly facilitated if
the proteins are pre-aligned before contact (Janin, 1997). This im-
plies that during complexation certain relative orientations of the
two proteins are overrepresented, forming specific patterns of
complexation. In order to detect these complexation patterns, the
focus of this study is the structural and energetical analysis of
the last complexation step starting from encounter complexes.
Factors influencing the association process in this regime include
electrostatic complementary regions of the complex, desolvation
and in some cases structural reorganization in the interface region
(Dong and Zhou, 2006).

Computational methods have been shown to be well suited for
analyzing protein–protein structures and predicting conformations
(Gottschalk and Kessler, 2004) and interactions (Gottschalk et al.,
2002; Grater et al., 2005). Several previous studies on Barnase–
Barstar and similar systems focused on the steps towards forming
an encounter complex (Janin, 1997; Gabdoulline and Wade, 1998;
Camacho et al., 1999; Frisch et al., 2001). Due to computational
restrictions, these studies are typically performed using implicit
water models, which is a good approximation for well-separated
proteins. However, recent studies have shown that a structural
modulation of water by solvated specimen can greatly influence
the physical properties of the solvent (Abseher et al., 1996; Galla-
gher and Sharp, 2003; Despa et al., 2004; Yang and Sharp, 2005)
and thus affect the modeling of the short-range interactions. Since

1047-8477/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
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we are interested in the last steps of association including
short-range interactions between the complex partners, we explic-
itly treated the surrounding environment, namely water and ions.
This is required to correctly model the barriers in the association
process (Schröder et al., 2006).

Although it is well established that electrostatics plays a major
role for complexation in this system (Schreiber and Fersht, 1996),
the exact effects of changes in the electrostatics of the system such
as salt concentrations or mutations involving charged residues on
the system are still under debate (Sheinerman et al., 2000; Lee
and Tidor, 2001; Novotny and Sharp, 1992). Molecular Dynamics
has been suggested as a good source of information about the role
of electrostatics in protein association by Dong et al. (2003).

To obtain information about both structural and energetic as-
pects of the association of Barnase–Barstar and the influence of
electrostatics, we performed constraint-biased simulations along
the reaction coordinate, the distance between the Centers of Masses
(COM). To this end, we separated the proteins along the vector con-
necting the COMs (Fig. 1) and simulated the system with con-
strained distance of the COMs, while all other degrees of freedom
were left unconstrained. We have simulated the wild-type and dif-
ferently charged mutations under varying salt conditions. This
yields not only information about free energy changes during asso-
ciation (Trzesniak et al., 2007; Schlitter et al., 2001) under a variety
of electrostatic conditions, the overall small perturbance of our sys-
tem along the reaction coordinate furthermore allows detailed in-
sight into structural processes accompanying the complexation.

The here computed interaction energy of �46.9 kJ/mol of
the wild-type complex of Barnase with its inhibitor Barstar at
150 mM NaCl is in reasonable agreement with experimental stud-
ies reporting an interaction energy of �79.8 kJ/mol at ionic condi-
tions of 50 mMol Tris–HCl buffer (Schreiber and Ferscht, 1995). In
our simulations, we find two different overrepresented relative ori-
entations during association for the wild-type complex under
physiological ion concentrations, arguing for the existence of mul-
tiple pathways of complexation. The energy landscape of associa-
tion has a single barrier at a separation distance of �0.3–0.4 nm.
Electrostatics strongly influences the height of this barrier, how-
ever hardly its location.

2. Material and methods

2.1. Simulations

The initial point of our studies is the crystal structure of the
Barnase–Barstar complex (1BRS) (Buckle et al., 1994). A single
complex (chain A and E) from the crystal structure was used for

the wild-type and mutations. From the obtained initial complex
structure, Barstar was simulated in 111 steps along the vector con-
necting the COMs up to a final separation distance of 5.6 nm
(Fig. 1). Barnase and Barstar additionally were rotated separately
in all three directions randomly up to 15�. The system was solvated
with SPC water in truncated octahedron boxes with a distance of
1.1 nm to the boundaries avoiding direct protein–protein interac-
tions from van-der-Waals and Coulomb interactions by separating
the protein by at least twice the cutoff radius from its image. Stud-
ies on two-ion model systems showed that the effect of the
periodicity together with long-range electrostatic treatment via
PME has only a small effect on the computed Potential of Mean
Force (Bergdorf et al., 2003), thus the overall effect of periodicity
of our system on the computed free energy differences should be
small. Ions were added to neutralize the net charge to avoid arti-
facts from Particle Mesh Ewald background charges when calculat-
ing free energy differences (Donnini et al., 2005). Additionally, we
achieved physiological ion concentrations of 150 mMol NaCl by
adding additional ions in a subset of simulations. Altogether, eight
different setups were studies as summarized in Table 2. The OPLS-
AA force field was used for all simulations.

The box was scaled in a separate 500 ps simulation coupled to
Parinello-Rahman barostat while temperature coupling to 300 K
with Nose–Hoover thermostat to protein and non-protein parts
was used in all simulations. On the result of these runs a distance
constraint was established between the COMs of Barnase and Bar-
star via the SHAKE algorithm (Ryckaert et al., 1977). Hereby, in
every step, the atoms of the pull group are translated according
to the new COM position to fulfil the constraint. Then, the con-
straint force is calculated by F = mtot drCOM dt�2, where mtot is the
total mass of the constrained group, drCOM the displacement vector
to fulfill the constraint and dt the integration time. Simulations of
5 ns were performed with temperature coupling to 300 K. All simu-
lations were performed with 2 fs integration steps and PME with a
Fourier grid of 0.12 nm above 1.1 nm to avoid artifacts from a plain
coulomb cutoff on the protein and water (Schreiber and Steinhauser,
1992; van der Spoel and van Maaren, 2006). Switch-cutoff for van-
der-Waals interactions with a switch radius of 0.9 nm and cutoff
at 1.0 and the Gromacs 4.0 package was used for all simulations
(Hess et al., 2008; Kutzner et al., 2007; van der Spoel et al., 2005).

2.2. Potential of Mean Force

The obtained average constraint forces from the simulations of
the last 3 ns of the simulations where integrated and corrected for
their entropic part to obtain the PMF corresponding to fR ¼ @U

@R �
2kBT

R
and DFCðRabÞ ¼

R Rab

0 hfRidR0 (Swegat et al., 2003). The standard error

Fig. 1. Initial structures for constraint simulations. We generated a multitude of initial orientations with increasing distance by displacing the proteins along the COM–COM
vector.
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was calculated by first estimating the errors in the individual sim-
ulation via block averaging of the force (Hess, 2002) and then prop-
agating the errors in the integration. The obtained standard errors
for the potential minimum were between 1.4 kJ/mol and 2.2 kJ/
mol, except for mutant 2 in 150 mMol ionic strength with a calcu-
lated standard error 2.8 kJ/mol.

2.3. Mutants

Experimental studied mutations revealed a strong effect on
binding kinetics (Frisch et al., 1997), in particular when charged
residues were mutated. We have chosen two sets of interacting
residues from experiments, which showed strong (Bn27K, Bs39D)
and moderate (Bn59R–Bs76E) impact on binding energy (Frisch
et al., 2001; Schreiber and Ferscht, 1995) when mutated. Each of
our double mutations to Alanine (Table 3 and Fig. 2) change the
net charge complementary by 2, and lead to Barnase charged with
1e in case of mutant 1 and mutant 2 and neutral Barnase for mu-
tant 12. Mutations were created with the mutagenesis tool from
PyMol (DeLano, 2009).

2.4. Clustering

We tried to find common structures for analyzing association
modes. To this end, the last 3 ns of the trajectories were reduced
to 30 snapshots per simulation (100 ps steps). These where then
preprocessed to find representative structures for the trajectories.
For all snapshots of a trajectory normalized contact maps of all res-
idues of Barnase vs. those of Barstar were calculated with g_mdmat
(Lindahl et al., 2001). From the obtained matrices the absolute dif-

ference was calculated for each pair and used as input for preclu-
stering step with CFinder (Palla et al., 2005) and the CPMw
(Clique Percolation Method weighted) algorithm. A value of 1.2

Table 2
Constraint-biased simulations summary.

Setup Ionic strength Simulation # Separation range

wt 150 mMol NaCl 111 2.360–4.966 nm
Mutant 1 150 mMol NaCl 111 2.414–5.435 nm
Mutant 2 150 mMol NaCl 111 2.366–4.964 nm
Mutant 12 150 mMol NaCl 111 2.416–4.886 nm
wt Na + counterions

(neutral box)
111 2.338–5.134 nm

Mutant 1 Na + counterions
(neutral box)

111 2.414–4.818 nm

Mutant 2 Na + counterions
(neutral box)

111 2.338–5.563 nm

Mutant 12 Na + counterions
(neutral box)

110 2.353–5.416 nm

Table 1
Energy comparison, Molecular Dynamics simulations vs. experiment.

DGexp [kJ/mol]
(50 mM
Tris–HCl)

DGPMF [kJ/mol]
(150 mM NaCl)

DGPMF [kJ/mol]
(counterions
only)

Wild-type �79.8 �46.9 ± 2.1 �69.1 ± 2.0
Bn27 K and Bs39D �43.2 �27.1 ± 1.7 �36.7 ± 1.8
Bn 59R and Bs76E �59.2 �33.3 ± 2.8 �28.8 ± 2.2
Bn27 K, Bn59R,

Bs39D and Bs76E
n/a �15.1 ± 1.4 �11.4 ± 1.9

Table 3
Setup and system description.

wt Wild-type Barnase(Bn) – Barstar(Bs) complex (chain A
and E from 1BRSBuckle et al. (1994)

Mutant 1 Bn27 K ? Bn27A, Bs39D ? Bs39A
Mutant 2 Bn59R ? Bn59A, Bs76E ? Bs76A
Mutant 12 Combined mutations from mutant 1 and mutant 2

Fig. 2. Mutations performed on Barnase–Barstar. (a) Mutations to alanine per-
formed on 1BRS (Buckle et al., 1994) complex structure. Chain A (Barnase) and E
(Barstar) were extracted as input structure for the simulations. The side chains pairs
were mutated to Alanine with PyMol (DeLano, 2009) as shown in Table 3. Bn59R is
located in the Guanidine binding-loop while Bn27 K is oriented towards the pocket
for the binding helix of Barstar. (b) The impact of the mutations on the electrostatics
of the complex. The complex is opened with the binding site facing the spectator to
show the impact on the interface region. The electrostatic maps were calculated
with APBS (Baker et al., 2001) and mapped on surfaces generated by msms (Sanner
et al., 1996) with VMD (Humphrey et al., 1996).
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was used as intensity threshold. CFinder locates and visualizes
overlapping dense groups of nodes in networks, based on the cli-
que percolation method (Palla et al., 2007). For the obtained com-
munities (total count typically in the magnitude of 1–3) and their
nodes, a representative structure was selected based on minimal
RMSD to all other community members.

The obtained representative frames from all simulations and
communities of a setup were then used for clustering the associa-
tion patterns. In the second clustering step the RMSD between the
structures was used as cluster distance metric and an intensity
threshold of 15.0 were used in CFinder. The community graphs
were calculated from all connected communities with k-cliques
of 3. To further describe specific regions with their average COM
distance clusters were split up in their higher k-clique constituents
for visualization if possible.

3. Results

3.1. Association pattern

First, we were interested in structural variations of the individ-
ual proteins during complexation. To investigate this, we calcu-
lated the average Root-Mean-Square-Deviation (RMSD) values of
our sampled structures of the individual proteins in our simula-
tions compared to the crystal structure of the individual proteins
in the complex. For Barnase, a significant increase with growing
separation distance can be observed (Fig. 3). For Barstar, a small
initial increase is observed. However, the RMSD decreases again
for larger separation distances. The most significant changes of
Barnase occur in the range up to separations of 1 nm. In general,
the RMSD is higher for Barstar compared to Barnase.

We went onto analyze the relative orientation of the proteins to
each other during complexation. To initially analyze the individual
contribution of the residues to the early complexation steps, we
plotted the 10 residue pairs with the smallest distance to the com-
plex partner at each distance from both complexation partners
(Fig. 4). This reveals that in early stages of complexation at larger
distances, Barnase contacts the approaching partner with three
distinct residue regions around the residues K39, R59 and Q104.
Mutations on the complexation partners significantly change the
role of the residues in early complexation of Barnase. In case of
Barstar, Y29 and E80 maintain their key-role in early complexation
while residue D39 and E76 (mutant 1 and 2) reveal changes only in
shorter separation distances upon mutation. No change in prefer-
ence of contacts can be observed upon changes in ion concentra-
tion for Barnase (Fig. 4) and Barstar (data not shown).

We then analyzed the relative orientations of the proteins in
structural terms. To this end, we clustered the structures according
to their similarity using the clique percolation method as described
in Section 2. During clustering, the RMSD distance of two struc-
tures was used to establish a simple and effective metric in config-
urational space. Interestingly, we find distinct communities in a
distance dependent manner (Fig. 5), arguing for multiple overrep-
resented relative orientations during complexation. Under physio-
logical ion conditions, we find a splitup into two specific
association patterns, which merge at a separation distance of
approximately 0.4 nm. This is not observed for mutant 2. In the ab-
sence of ionic environment, only mutant 1 shows this splitup. In
general, the splitup length decreases when mutations are applied.

In the case of the wild-type at physiological ion concentration,
we created an exemplary reconstruction of the overrepresented
orientations corresponding to the two clusters by ordering the
representative frames in our cluster communities (Fig. 6). Here,
the hinge region between both patterns is near residue S38-K39
on Barnase, residues previously found to play an important role
in early complexation. While the first orientations (0.55 nm/

0.74 nm, each corresponding to the COM separation distance in
the two major pathways) only show a tilt around the hinge region
after splitup, the last two states of our overlapping communities
(distances 0.70 nm/0.82 nm and 0.72 nm/0.84 nm) additionally re-
veal rotations around the connection vector and not only tilted ori-
entations. Both pathways differ in their contact regions along the
path. While in the first pathway (red in Fig. 6) Barstar maintains con-
tact via residue R59 in the Guanidine binding-loop of Barnase, this
can only be observed for the first distance set of the second pathway.

In order to obtain structural information of the association pro-
cess at greater distances, we mapped the mutual orientation of the
two constituents in our simulation on spherical shells. For small
separation distances, the sampling is concentrates on a small spot
(Fig. 7). By increasing the distance, the sampled regions increase in
area. Additionally, an increase of area can be observed comparing
wild-type and the double mutant 12, while changes in ionic envi-
ronment do not affect the sampled region size.

Fig. 3. RMSDs (a) RMSD vs. Distance of Barnase and Barstar. The RMSD of Barnase
increases with the distance, in particular in the first nm, indicating a structural
reorganization in the close distance. Barstar displays an overall higher flexibility
than Barnase with a less pronounced RMSD increase. (b) Map of residue-wise Ca
RMSD onto structures, showing the increased structural flexibility at larger
separation distances. Red: high RMSD; Blue: low RMSD. In Barnase, the loop region
29–33 shows significant deviations. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Most frequent contacts vs. separation distance. In these graphs, for each distance the 10 smallest contact distances are shown with symbol size reproducing the order.
Each residue can have multiple contacts in this list together with its counterparts. Residues with contacts in early complexation are highlighted as sticks in the opened
complex structure below. In terms of contacts – virtually no difference can be observed at different ion concentrations, while mutation completely extinct the early
interactions of the corresponding residue region.

56 M. Hoefling, K.E. Gottschalk / Journal of Structural Biology 171 (2010) 52–63

– P3 – 95



Fig. 5. k-clique community graphs of all setups based on the clique percolation method. Each data point corresponds to a representative frame from simulation trajectories.
The metric is defined by the RMSD between the frames. For all complexes, except mutant 2, a splitting up into two domains can observed at a separation of about 0.4 nm at
physiological ion concentration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Potentials during complex formation

Apart from structural considerations, the mean forces in the
constrained simulations (Fig. 8) allow the calculation of the Poten-
tial of Mean Force along the reaction coordinate and hence an ener-
getically detailed picture of the association process (Fig. 8). The
absolute free energy of association of wt and mutants in different
ionic conditions can be found in Table 1. The shape of the free en-
ergy profile reveals interesting details. For physiological ion con-
centration, our profiles reveal a pronounced barrier around
0.25 nm separation. The barrier height is 6.0 kJ/mol in case of the
wild-type, 3.8 kJ/mol for mutant 1 as well as 4.6 kJ/mol for the dou-
ble mutant 12. Exception is mutant 2, where the barrier vanishes
and only a plateau is observable at this separation (Fig. 8). For sim-
ulations with increased electrostatic attraction due to reduced ion
content in the simulated cell (only counterions were added), no
barriers can be observed. Another observation is a shift in the loca-
tion of the absolute minima, which corresponds to deviations from
the equilibrium distance in the crystal structure. Here, only muta-
tion 1 and double mutation 12 show a shift in their minimum loca-
tion of about 0.12 nm. The wild-type complex has the longest
reaching interactions compared to the mutants with a significant
decrease in energy already at 2 nm separation, arguing for a far-
reaching pre-orientation.

4. Discussion

4.1. Conformations of individual proteins

The crystal structures of the Barnase and Barstar individually
are very similar to the structures of the two proteins in the com-

plex, showing only minor conformational changes. For Barstar,
conformational changes are known to occur in the loop region
29–33 which mainly involves rearrangement of side chains (Buckle
et al., 1994; Selzer and Schreiber, 1999) (Fig. 3b). Additionally, Bar-
star as the inhibitor displays a higher overall flexibility. This is does
not hamper complexation as long as the binding helix preserves
the conformation still allowing successful inhibition (SolerGonz-
alez and Fersht, 1997). In our simulations, also no major conforma-
tional change is observed. However, an increase of the RMSD can
be observed for Barnase. For Barstar, we indeed found an overall
higher RMSD comparing to Barnase. Steered Molecular Dynamics
simulations on this complex results suggest a higher liability of
this protein, with the stable inhibiting binding helix as the stron-
gest element in the inhibitor protein (Neumann and Gottschalk,
2009), in agreement with our results here. The overall change in
solvent accessible surface (SAS) during complexation computed
here (DSAS � 20 nm2, data not shown) is slightly larger than pre-
dicted by other calculations (17 nm2) (Sheinerman and Honig,
2002) and has its origin in the structural relaxation during de-com-
plexation observed in our simulations. Additionally, we did not ob-
serve an effect of the ion concentration on the RMSD (data not
shown), underlining that electrostatics does not significantly stabi-
lize/destabilize the individual proteins. Hence, effects observed
when altering the ionic environment are due to altered interac-
tions between the proteins rather than structural modifications
within the proteins.

4.2. Choice of mutations

A wide variety of Barnase–Barstar mutants have been studied
experimentally under various conditions (Frisch et al., 2001,

Fig. 6. Association pattern of the wt simulations in physiological ion concentration. The longer reaching pattern (see Fig. 5) is colored in blue, the shorter one in red. Residues
used for our mutants are displayed as sticks. All units if not denoted otherwise are nm. The contact region on the opposite site of the Guanidine binding-loop is highlighted in
the rotated view of the maximum split distance. Common clusters at shorter separation distances are shown in gray. Patterns differ in their tilt of the binding helix of Barstar
as well as the rotation around the COM – connection vector. This also explains the limitation of cluster splitting. For higher distances it has been found that this orientation is
only of minor importance for the association (Selzer and Schreiber, 2001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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1997; Schreiber and Ferscht, 1995) in order to gain insight into
contributions of individual amino acids to the association. We
decided therefore to not only study the wild-type protein, but also
mutants with an altered electrostatic profile. Several consider-

ations lead us to the choice of Bn27–Bs39 and Bn59–Bs76 as our
mutation set. Barnase and Barstar form a tight complex and most
potential mutation targets can interact with multiple residues.
Thus the idea is to maximize the impact by mutating both partners

Fig. 7. Probability densities at different distances. In this figure, the normalized probability density of Barstar position from Barnase is calculated from our simulations at
three different average distances. Distances are shown with the corresponding average sphere radii of the 10 used simulations. Blue color depicts a low probability while red
corresponds to areas with a high probability. The simulations did not sample transparent areas. When mutated, the area increases independent of the size, reducing the
probability of a distinct pattern. In the low distance regime, no difference between the ion concentrations is observable while for greater distances – the physiological ion
concentration differences in the highly occupied regions are observable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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of strongly interacting pairs. The pair Bn27–Bs39 shows the high-
est coupling energies in experiments (Schreiber and Ferscht,
1995) while Bn59–Bs76 is located in the guanine binding-loop
(residues 57–60 of Barstar), known to play an important role in
the recognition process (Camacho et al., 1999; Spaar and Helms,
2005). Both are known to still interact at high salt concentrations
despite their different location and exposure to solvent (Frisch
et al., 2001). Finally, the mutation of both residues allows us to
determine the additive content of these interactions as well as
the examination of electrostatic interactions with no net charge
remaining on Barnase. In this case, the monopole character and
thus also electrostatic attraction of Barnase is reduced and higher
momentums can contribute more to electrostatic interactions
resulting in a complex associating at the minimum rate of
ka ffi 105 M�1 s�1 (Janin, 1997).

4.3. Structural motifs during complexation

As a first step towards an identification of structural motifs dur-
ing complexation and the influence of charged residues on associ-
ation, we analyzed contact maps at different separation distances
(data not shown). Here, no clear preference of a single distinct con-
tact pair was observable at higher distances. This underlines a
rather dynamic ensemble of structures. For lower distances, the
contacts as found in the crystal structure are preserved, demon-
strating a pre-orientation leading to the final complex.

For a better analysis of the contribution of individual amino
acids in the complex, we identified residues being close to the
binding partner without specifying the exact contacting amino acid
in the partner protein at varying distances (Fig. 4). For Barnase, the
identified residues being close to Barstar are mainly K39, R59 and
Q104. K39 and R59 are on opposite sites of the binding pocket, lo-
cated in two well-exposed loops. R59 is located in the RNA bind-
ing-loop. Q104 is located in a neighboring loop near the RNA
binding-loop and thus also accounts for binding in this direction.
These three state the most important initial early contact residues
on Barnase and suggest two different regions for the initial contact
located at the two loops adjacent to the binding interface. The loca-
tion of residue K27 inside the binding pocket (mutation 1) pre-
cludes contact formation in the early complexation stadium and
thus a significant contribution at this early stage. This behavior

shows that although both double mutations form tight contacts
in the crystal structure and strongly affect the binding energy, their
individual role in early complexation differs significantly.

The initial contacts are not equally well defined for Barstar. Two
main regions are found: one involves Glu76 and Glu80, which are
both located at the outer rim of the binding site, while a second,
broad region is centered around Asp39, which is in the center of
the binding helix of Barstar. For both complexation partners, a
change in ion concentration does not affect the importance of the
residues for the first contact.

Interestingly, exclusively charged and polar residues participate
in establishing the first contact independent of the ion concentra-
tion. This suggests that the ions do not individually shield charges
on the surface but instead have a global shielding effect on the
complex. Additionally, charged residues are exposed to the solvent
and thus are more likely involved in the first contact.

Mutations lead to a loss of interaction with the selected residue
while having only a limited effect on neighboring residues. This
underlines that the binding interface has a modular architecture
forming well-defined, but separated, independent binding patches
as described before (Reichmann et al., 2005). This finding further
suggests that the overall binding modes are only slightly affected
by individual mutations, indicating that at least for the
Barnase–Barstar complex, information about the correct relative
orientations of the proteins during complexation is redundant.
The redundancy may be a safety measure minimizing the potential
deadly effect of random point mutations.

Particularly in the short-range domain, single or multiple
overrepresented relative orientations, constituting something
resembling an association pathway, can ensure a proper pre-orien-
tation for final complexation to overcome desolvation penalties
and to steer the complex into the correct final configuration (Lee
and Tidor, 2001; Sheinerman and Honig, 2002). While the encoun-
ter complex can be seen as a loosely bound structure, displaying
high orientational flexibility, steric mismatch in the final complex-
ation steps can lead to long living intermediates with incorrect
alignment, which can be prevented by the existence of a strong
bias towards certain, ‘correct’ relative orientations. To analyze this
potential bias, we further analyzed the structures of complexation
using a sophisticated clustering scheme. The obtained graphs with
connected community clusters provide us a picture of structures
along the complexation pathways. Preferred patterns reaching up
to 0.8 nm separation could be observed. At physiological ion con-
centration, the structures split up into two branches of connected
clusters, merging at a separation of �0.4 nm. Mutation and/or
changes on the electrostatics of the complex by mutation can alter
the occurrence of the splitting. A reconstruction of the wild-type
pathway revealed that the structural difference is the tilt of Barstar
towards the contact region on Barnase. Both motives have been
previously recognized: The first motif we found has been sug-
gested previously by Gabdoulline and Wade (Gabdoulline and
Wade, 1998) as well as Camacho et al. (1999). The second path cor-
responds to the suggestion of a second energy minimum opposite
to the RNA binding-loop location important to steer the complex
into the encounter complex region (Spaar et al., 2006). Here, Bar-
star residue Y27 maintains close contact only with the Barnase
pocket region opposite to the Guanidine binding-loop. Due to the
heterogeneity of the structures at larger separation distances, a
result of the weaker steering forces, the range of this method is
limited. Rotations around the connection vector have a decreasing
impact on the complex formation at higher separation distances
(Selzer and Schreiber, 1999) and thus limit the range of observable
patterns with this method.

For larger separations, we mapped the complex orientations on
spherical surfaces providing a probability distribution in a certain
distance range. In general, spots with a high probability together

Fig. 8. Computed mean force from a set of distance restrained simulations. Here, wt
and mutant 12 setups are shown exemplarily. For each setup – 111 simulations
constrained to a certain distance were performed and the constraint force was
averaged after equilibration. Errorbars indicate the individual error estimate of the
force based on block average (Hess, 2002) of each simulation.
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with a high orientational restraint can be only observed for small
distances. Upon increasing distance, the sampled area increases
as a result of the weaker steering. The same effect can be obtained
by mutation. The covered area from our simulations increases with
separation and at an average distance of 2 nm sampling shows only
slight preference for some spots (Fig. 6). At this separation, the
interactions are weak at some orientations and nearly vanishing
after only slight orientational changes. These regions of weak inter-
action are overrepresented. Surprisingly, electrostatic changes
caused by the investigated mutations and in particular the change
of ion concentration do not strongly affect the sampled area. How-
ever, mainly the occupancy of highly populated spots changes.
Hence, the pre-orientation is influenced by electrostatics.

4.4. Sampling performance

Furthermore, these maps provide us with information on our
sampling at a certain distance. The sampled region strongly in-
creases with distance. Hence, the small regions sampled at low dis-
tance are caused by protein–protein interactions and not by
limited simulation time. However, at large distances sampling
may be insufficient. This is a significant difference to Brownian
Dynamics based approaches (Fig. 6). While sufficient sampling at
low distances is achievable with MD including the flexibility of
the complex constituents and explicit solvent molecules, computa-
tional restrictions may compromise the sampling performance for
increasing distances. Not only the phase space to sample increases
with increasing distance additionally, more explicit water mole-
cules / r3 are required, in the best case leading to a linear increase
of computation time with the number of atoms. At lower distances
REMD combined with free energy calculation techniques such as
umbrella sampling may improve sampling in some cases (Wolf
et al., 2008), at the price of higher computational costs. We choose
initial random rotations of up to 15�, increasing the sampling but
still allowing successful encounter as previously suggested in the-
oretical studies of Janin and co-workers (1997). In BD simulations,
a free energy contribution of roughly �13 kJ/mol has been sug-
gested from infinity up to a separation of 2 nm, based on average
distance of the contact surfaces (Spaar and Helms, 2005). Here,
the loss of rotational entropy DGrot of both complexation partners
after diffusion is about 16.5 kJ/mol (Janin, 1997). These contribu-
tions are only partially included in our free energy profiles.

4.5. Free energy profiles

The absolute free energy values computed here can further be
affected by the choice of a specific force field. In order to accurately
model the protein stability and structure, we applied the OPLS/AA
(Jorgensen and TiradoRives, 1988; Jorgensen et al., 1996) force
field, which is known to perform very good for unbiased simula-
tions involving protein interactions. However, Spaar et al. (2006)
observed a significant improvement in the agreement of absolute
free energy values with experimental data upon the usage of the
AMBER 95 (Cornell et al., 1996) force field together with a rigid
protein model in implicit solvent using BD simulations. Hence,
force field inaccuracies may play a role in the absolute computed
values. However, the general shape of the energy landscape is
not expected to be strongly influenced by the choice of a specific
force field.

Several free energy profiles have been suggested for transient
protein complexes with fast associations such as Barnase–Barstar
(Selzer and Schreiber, 1999; Spaar and Helms, 2005). In particular,
two different scenarios have been discussed previously (Selzer and
Schreiber, 2001). In these model landscapes, two barriers have
been proposed: one before the encounter-complex formation and
one before the final complexation. The two landscapes differ in

the relative height of these barriers: in one landscape, the encoun-
ter-complex formation is the rate determining step, while in the
second landscape, the final desolvation transition has the higher
barrier. Our results stress the importance of the desolvation transi-
tion (Fig. 9). We further find that first significant interaction takes
place at a separation distance of approx. 2 nm, which leads to a
strong steering effect at closer distances. This is in agreement with
earlier findings (Selzer and Schreiber, 2001). Our simulations indi-
cate the potential existence of an initial small barrier with a barrier
height of 2 kJ/mol at this separation distance of �2 nm. The size of
the barrier is very small compared to our standard error in the MF
(Fig. 8) and at a region where sampling may be sub-optimal. How-
ever, nearly all setups display similar barriers at this region, argu-
ing that it may be no artifact of our simulation. The barrier has a
height on the order of one kBT and therefore may have a noticeable
effect on the overall rate. The barrier vanishes at lower ion concen-
trations for all systems but the double mutant. Notably, the wild-
type at a physiological ion concentration does not show this
desolvation barrier. This stresses the importance of electrostatics
for the reduction of this first barrier.

In particular at lower separation distances, sampling with MD
simulations allows an accurate picture of the energy landscape dur-
ing association. Here, we find a pronounced barrier (see Section 3)
for wt, mutant 1 and mutant 12 at a separation distance of�0.3 nm
at physiological ion concentrations. This distance correlates with
the thickness of the first hydration shell. Interestingly, for all of
the three setups displaying this barrier, two different overrepre-
sented relative orientations of the proteins at larger distances can
be observed (see Fig. 4). The location of the barrier (around 0.3–
0.4 nm COM separation) is close to the junction position observed
in clustering. This indicates that at this distance a structural re-ori-
entation might have to take place. Additionally, the distance sug-
gests the involvement of bound water being displaced, known to
play an important role in protein–protein interactions (Camacho
et al., 2000; Bhattacharyya and Bagchi, 2000; Perutz, 1978). Hence,
an interplay between desolvation and structural transitions ap-
pears to be responsible for this barrier. Single molecular force
experiments, which measure the distance between ground state
and rate determining barrier, are in good agreement with the bar-
rier position computed here and often report values in the range
of 0.2–0.5 nm(Cai and Yang, 2003; Kada et al., 2001; Yuan et al.,
2000; Chen and Moy, 2000).

From our simulations, we could not reliably observe the sug-
gested barriers (Selzer and Schreiber, 1999) of the encounter-com-
plex formation. There are two possible explanations: (1) The
proposed barriers (in the free energy) are small, at least in the
Barnase–Barstar system. (2) The barrier is beyond our sampled
range. The latter might play a role at long distances, where we face
the previously discussed sampling limitations. On the other hand,
for lower distances, we also could only observe a relatively small
barrier on the order of 6 kJ/mol. This is supported by other compu-
tational results, where a significant local minimum along the reac-
tion coordinate could not be observed (Spaar and Helms, 2005;
Selzer and Schreiber, 2001). Furthermore, the very fast association
rate of this complex argues against high barriers in the energy
landscape. For the complex of the beta lactamase, TEM, and its nat-
ural inhibitor, BLIP, it has been suggested based on thorough bio-
chemical and biophysical investigations that the encounter-
complex formation is not hindered by a significant barrier, while
the final complexation step is the rate determining process (Selzer
and Schreiber, 2001). Although TEM–BLIP represents a different
protein system, these findings are consistent with our results here.

We can directly compare our obtained values of the free energy
of binding with other calculations and experimental values. The
energies of wt (�46.9 vs. 79.8 kJ/mol), mutant 1 (�27.1 vs.
43.2 kJ/mol) and mutant 2 (�33.3 vs. 59.2 kJ/mol) in 150 mMol
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NaCl correlate with a factor of 2 with experimental and computa-
tional values in 50 mMol Tris (Frisch et al., 1997; Wang et al.,
2004). For our double mutant 12 we found that the absolute free
energy difference in presence of physiological ion concentration
(�15.1 kJ/mol) is even larger than in absence of ionic environment
(�11.4 kJ/mol). This suggests that the presence of stronger electro-
static interactions here might even destabilizes the complex. How-
ever, the observed difference is close to the standard error of the
mean in the minimum for mutant 12 in absence and presence of
ionic environment (±1.9 kJ/mol and ±1.4 kJ/mol).

Another interesting observation from our simulation is that also
the order of absolute free energy difference of the mutants 1
and 2 switches (mutant 1: �36.7 kJ/mol, mutant 2: �28.8 kJ/mol)
depending on the ion concentration, while the overall effect on
the absolute values is small. A significant impact was only observa-
ble for the wild-type complex (from �46.9 to �69.1 kJ/mol).

5. Conclusions

The details of the complexation process of Barnase and Barstar
in particular and other systems in general are still under debate.
Our simulations suggest a steep decrease in free energy starting
from a distance of 2 nm with small barriers only for this complex
with strong electrostatics. The final barrier is caused by both struc-
tural reorganizations and displacement of water. It affects the rates
up to one order of magnitude. This suggests that the final complex-
ation of this complex is not the overall rate-limiting step and that
complexation for such strongly charged system is predominantly a
downhill process. However, less-charged systems may well have
differing energy landscapes.

Our findings suggest the existing of two main interaction re-
gions each with a short ranging funneling region. The terminology
path might be misleading, because orientational coherence is lost
very quickly at larger distance. Structurally, two association modes

could be identified, both interacting with different interaction re-
gions. The equilibrium between both patterns can be shifted by
mutation in different ionic environment.
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Abstract: In order to study protein-inorganic surface association processes, we have developed
a physics-based energy model, the ProMetCS model, which describes protein-surface
interactions at the atomistic level while treating the solvent as a continuum. Here, we present
an approach to modeling the interaction of a protein with an atomically flat Au(111) surface in
an aqueous solvent. Protein-gold interactions are modeled as the sum of van der Waals, weak
chemisorption, and electrostatic interactions, as well as the change in free energy due to partial
desolvation of the protein and the metal surface upon association. This desolvation energy
includes the effects of water-protein, water-surface, and water-water interactions and has
been parametrized using molecular dynamics (MD) simulations of water molecules and a test
atom at a gold-water interface. The proposed procedure for computing the energy terms is
mostly grid-based and is therefore efficient for application to long-time simulations of protein
binding processes. The approach was tested for capped amino acid residues whose potentials
of mean force for binding to a gold surface were computed and compared with those obtained
previously in MD simulations with water treated explicitly. Calculations show good quantitative
agreement with the results from MD simulations for all but one amino acid (Trp), as well as
correspondence with available experimental data on the adhesion properties of amino acids.

1. Introduction

Protein-surface binding events are of great importance in
many bioengineering, biomedical and nanotechnology ap-
plications. For example, protein adsorption properties are
crucial for the integration of medical implants with tissue,
and for the assembly of interfacial protein constructs in

nanotechnology, such as sensors, activators, and other
functional components at the biological/electronic junction.
Over the past decades, extensive experimental investigations
on the molecular recognition, binding, and self-assembly of
proteins, peptides, and amino acids on inorganic surfaces
have been reported (for gold, see refs 1-7), and even
combinatorially selected peptides with affinity for specific
inorganic materials have been successfully synthesized.8-10

For some examples of protein adsorption studies, particularly
in connection with possible applications, see the reviews in
refs 11-14 and references therein.

Because of the high complexity of protein adsorption
phenomena and the scarcity of experimental data at the
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atomistic level, however, the mechanisms by which biomol-
ecules interact with inorganic surfaces are still poorly
understood,14 and until very recently, investigations of protein
adsorption properties either had a rather qualitative character
or were done on the macroscopic scale. This is why, in recent
years, great efforts have been applied to adapt computational
methods that are usually employed for molecular modeling
in solution to the protein-surface problem. In particular, all-
atom empirical force field methods, treating water molecules
and the internal coordinates of an adsorbate explicitly, are
now widely used to investigate biomolecule-surface binding
behavior at the atomistic level13-24 and have been shown to
be able to provide qualitative agreement with experimentally
observed adsorption tendencies for some small peptides.19

However, all-atom molecular modeling methods, with ex-
plicit inclusion of water molecules, are extremely compu-
tationally demanding and therefore restricted to short time
(typically of 10-100 ns) and length scales, while most
experimental studies give an averaged behavior of large
biomolecules over milliseconds or longer. Most of the atoms
in molecular dynamics (MD) simulations with explicit water
molecules come from the solvent itself. Furthermore, the
presence of explicit water molecules slows protein motions.
These two factors can make the computational time needed
for the convergence of calculated properties extremely long.
Therefore, a possible way to reduce computational time is
to use an implicit solvent model that, in combination with
an all-atom force field representation of a protein, may
provide a reasonable compromise between accuracy and
computational cost.

Existing implicit solvent models have primarily been
developed for simulation of protein or peptide behavior in
solution alone25 and are generally not appropriate for protein
interactions with inorganic interfaces.13 This was demon-
strated, in particular, by Sun and Latour26 in their compara-
tive analysis of commonly used empirical force-field-based
implicit solvent models. It was found that the adsorption free
energy of a peptide on a self-assembled monolayer (SAM)
may change by up to several tens of kilocalories per mole,
depending on which solvent model was used for the
calculations. Furthermore, it has been recognized recently
that the microscopic properties of the hydration shell vary
for different solid surfaces, thereby altering the mechanism
of adsorbate-surface interaction. For example, on metal
surfaces, the desolvation energy may cause a transition barrier
to adsorption due to the energetically unfavorable displace-
ment of the water layer,24 whereas, for some polar surfaces,
peptides may be bound to the structured water layer rather
than to the surface itself.23 Hence, to provide a reliable
description of protein-metal association in aqueous solvent,
the solvent model should include a microscopic characteriza-
tion of processes at the protein-surface interface.

In the present paper, we propose an approach for com-
putation of the adsorption free energy of a biomolecule to a
gold surface with an implicit solvent model that accounts
for the short- and long-range effects of the protein-solvent-
metal interactions. We employed the Au(111) surface for
modeling because of its importance in the field of protein-
surface interactions, both for fundamental studies (well-

characterized, stable surface in both air and water) and for
potential applications (e.g., contacts in nanobioelectronics
and optical detection systems). Moreover, extensive theoreti-
cal investigations of small organic molecules adsorbed on
gold,1,7,20,27-29 as well as experimental data on protein and
peptide adsorption,3,5,7 are available and can be used for
model optimization and validation. The present energy
function is designed for use in Brownian Dynamics (BD)
simulations of protein adsorption to surfaces but is not limited
to this application.

BD methods in which solute molecules are treated as rigid
bodies diffusing in a continuum solvent are commonly
applied to simulate diffusion-influenced reactions and have
been shown to be successful for computing protein-
protein,30 protein-small molecule,31 and protein-mem-
brane32 association kinetics. Similarly, BD methods can be
directly applied to a large group of proteins with high internal
stability that can adsorb onto inorganic surfaces without
appreciable changes in conformation or can form a transient
complex before conformational changes occur. This method
may also open the way for simulation of protein-protein
interactions mediated by solid surfaces or protein self-
assembly on inorganic substrates.

Despite the apparent similarity of the protein-protein and
protein-solid surface association reactions, they have in-
trinsic differences in kinetics and in the driving forces for
the binding processes. Indeed, the leading interaction in the
case of protein-protein association to a diffusional encounter
complex often arises from the long-range electrostatic forces,
while the short-range effects can be described simply by
prohibiting overlap of the exclusion volumes of the proteins.
The influence of electrostatics on the interaction between a
protein and an uncharged metal surface is much weaker since
it arises solely from polarization effects. For a neutral solute
molecule without a well-pronounced dipole moment, the
image-charge potential must rapidly converge to zero as the
distance from the metal increases due to the cancellation of
contributions from opposite charges. On the other hand, at
small distances from the surface, short-range interactions
such as van der Waals forces and small metal-solute
molecule charge transfers (that may also involve π electrons),
along with the desolvation free energy, dominate over the
electrostatic interaction. The construction of such an energy
function is facilitated by the fact that the van der Waals
interaction between organic molecules and a solid state
surface, in particular gold, has recently been parametrized
with a set of force field parameters27 which can be directly
implemented at an atomistic level in the energy function. A
continuum solvent model able to provide a reliable descrip-
tion of the solvent-protein-solid interface, especially
hydrophobic effects, needs to be developed and parametrized.
This task is complicated by the fact that there is no well-
established microscopic model of the protein-water-metal
interface even though the behavior of aqueous solvent itself
on the metal (in particular, gold) surfaces has been intensively
studied both theoretically33-40 and experimentally,33,41-45

and some solution-driven effects in MD simulations of
peptide adsorption on metal surfaces have been reported.19,23,24
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In experimental studies of metal wetting properties, gold
surfaces have been described both as hydrophilic (on the
basis of contact angle measurements)43 and rather hydro-
phobic (from the sublimation kinetics of ice layers).45 On
the other hand, experimental and theoretical evidence
indicates that water-Au(111) interactions are weak relative
to the hydrogen bonds between water molecules.33,34,40 To
minimize the intermolecular interaction energy in the inter-
facial region at an uncharged surface, water forms hydrogen-
bonded clusters (in some studies described as having an ice-
like structure40,42,44) in which the water dipoles in contact
with the metal surface are oriented in the surface plane or
slightly tilted with hydrogen oriented toward the bulk water
(oxygen points to the surface).33,42 MD simulations and ab
initio calculations show that the water density has a
maximum in the vicinity of the Au(111) surface (the first
water layer) and some density fluctuations at larger distances
caused by screening effects (the hydration shell).34,37-40 This
effect is responsible for some energy penalty due to displace-
ment of the hydration shell upon adsorption, which makes
binding to gold in water less favorable than in a vacuum as
observed in MD simulations.24 Furthermore, oriented water
molecules on the metal surface, acting as dipoles, induce an
electrostatic field, which may affect the behavior of charged
and polar molecules.39 Taking all these data into account, it
is reasonable to include in the continuum solvent model both
the hydrophobic and the electrostatic effects of the interaction
with the hydration shell of the metal, and to employ MD
simulations of water molecules to compute their hydrophobic
and electrostatic contributions to the desolvation energy, in
order to parametrize them.

Finally, to check the designed continuum solvent model,
we need a well-characterized test system that not only allows
us to verify the reliability of our representation of solvation
effects and the derived energy parameters but also helps us
to understand the contributions of different interaction
mechanisms to the total protein-metal binding free energy.
It is reasonable therefore to start with validation on small
systems, whose interaction can be studied accurately either
by experimental or by theoretical methods or both, and then
make use of parameter transferability to apply the method
to larger ones. The natural choice of such small systems is
a set of amino acids whose binding to metal surfaces has
been analyzed using MD simulations28,29 and can also be
related to available experimental studies.1,5,7,9 For the sake
of consistency, we used the same gold surface representation,
amino acid structures, and force field parameters as used
previously in the MD simulations.28,29 We also employed
the same image-charge model and water force field in the
MD simulations with explicit water molecules performed to
support the development of the continuum approach pre-
sented here. Thus, we note that the ProMetCS model
developed is based on the force field employed in MD
simulations (the GolP model27) and, therefore, inherits the
limitations of the latter.

The paper is organized as follows. In the next section
(Computational Methods), we describe the procedure used
for calculating adsorption free energy. We show how the
effects of solvent-metal-solute interactions can be ap-

proximated by physics-based energy terms, parametrized
using explicit solvent simulations, and how they are imple-
mented in the ProMetCS model. We give details of the MD
simulations of the behavior of water molecules in the metal
hydration shell, which we have used for the design and
parametrization of the desolvation energy term. Finally, we
show how the adsorption free energy and the potential of
mean force (PMF) obtained from MD simulations can be
calculated with the ProMetCS model. In the following
section, we present the results of the application of the
ProMetCS model to amino acid residues and compare the
computed PMF binding energies with those from MD
simulations as well as with available experimental data. In
Appendix I, we give details of the MD simulations of the
behavior of water molecules and test atoms in the surface
hydration shell that were used for the design and parametri-
zation of the desolvation energy. In Appendix II, we estimate
the influence of the intrinsic electrostatic field of the
hydration shell on the adsorption of charged molecules.

2. Computational Methods

2.1. Description of System (Setup). The Au(111) surface
is described by a gold cluster with atomic layers. A minimum
of three layers is necessary (and sufficient) for the accurate
calculation of protein-gold van der Waals interactions, as
will be shown below. During the calculations, the position
of the cluster is fixed with the centers of the atoms in the
surface layer at z ) 0, i.e., in the xy plane of the simulation
box, as illustrated in Figure 1. The surface area of the cluster
must be larger than the size of the adsorbate in order to
account for interatomic interaction effects up to the cutoff
employed in calculations (see below). In the present study,
a gold cluster with surface dimensions of 100 Å × 100 Å
was employed. Since we used the force field parameters for
the biomolecule-gold interaction derived in ref 27, the
cluster was constructed accordingly (see details below). In

Figure 1. Illustration of the simulation box used for the
calculations (left panel) and of the protein-image system
employed for computing metal polarization effects (right
panel). The low dielectric cavities of the protein and surface
are shaded dark gray, and their images are light gray. The
gold cluster is shown by a hatched block. Vectors are defined
as rbj

p ≡ (xi
p, yi

p, -zi
p - 2zCG) and rbi

im ≡ (xi
p, yi

p, zi
p + 2zCG)

from the geometric centers of the real and image protein,
respectively. zCG is the distance between the geometric center
of the protein and the surface, and zi ≡ zCG + zi

p is the distance
between a protein effective charge i and the surface.
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calculations of electrostatic and desolvation effects, the gold
surface was considered to be a plane.

A distance b from the surface defines the limit of the
simulation box where the protein-surface interaction energy
is negligible and serves as a reference state for the calculation
of the protein adsorption free energy and PMFs. The z ) b
plane is also used for the generation of the starting positions
of the adsorbate for the computation of BD trajectories.

Amino acid residues capped with an acetyl group at the
N terminus and a methylamide group at the C terminus,
corresponding to those studied in refs 28 and 29, were
employed as test adsorbates. Calculations were performed
for all 20 natural amino acids with their side chains assigned
the standard protonation state at pH 7. Cysteine is known to
form a strong bond with the gold surface which cannot be
described by the Lennard-Jones-based force field parameters
and a rigid gold surface. Therefore, we considered only the
protonated form (denoted CysH), which cannot form a strong
bond to gold, for the present simulations. To evaluate the
effect of conformational variability of the capped amino acids
upon binding to gold, we compared the binding properties
of several of the most populated binding conformations
obtained in MD simulations.28

2.2. Implicit Solvent Model: Interaction Energy Func-
tion. The protein-metal interaction energy function, U,
which implicitly includes solvent effects, is expressed in the
ProMetCS model as a sum of three separate contributions:

The ELJ energy term describes nonpolar, van der Waals,
and weak chemical interactions between a protein and a metal
surface. It is parametrized to reproduce experimental binding
properties of small organic molecules on gold.27 It is a sum
of classical Lennard-Jones 12-6 terms and will hereafter
be denoted as a Lennard-Jones (LJ) term.

UEP is the protein-metal electrostatic interaction free
energy in aqueous solvent. (In the general case, it also
includes the energy due to the electrostatic interaction
between the charges in the protein binding site and the
interfacial water potential on the metal surface, see Appendix
II; this latter term is neglected in the implementation
described in this work.)

The last term in eq 1, Udesolv, describes desolvation effects,
i.e., the free energy change arising from protein-water, solid
surface-water, and water-water interactions. Desolvation
effects can be further split into two separate components:
the desolvation energy of the protein, Udesolv

p , and the
desolvation energy of the metal surface, Udesolv

m :

The first term, the nonpolar (or hydrophobic) protein
desolvation energy, is the free energy change of the
protein-water system that arises from the replacement of
the protein-water interface in the region of the adsorption
site by a protein-vacuum interface. The second term in eq
2 represents effects arising from the partial replacement of
the metal hydration shell by a protein adsorption site and is
given by the free energy change due to insertion of a

hydrophobic cavity (which mimics the binding site of the
protein) into the hydration shell of the metal surface (note
that the change of the protein-metal electrostatic interaction
due to surface desolvation is instead included in the
electrostatic energy term, UEP).

It should be noted that the entropy contribution to the
function represented by eq 1 [specifically, the second and
third terms] is limited to the entropy change upon binding
of the solvent only. The entropy change due to the restriction
of protein motion upon binding the metal surface must be
calculated separately. Hence, although U in eq 1 includes
some entropic effects, it does not correspond to the complete
adsorption free energy. The procedure for calculation of the
entire adsorption free energy will be considered at the end
of the present section. The three terms contributing to U in
eq 1 are now described in more detail.

2.2.1. Lennard-Jones Term: ELJ. van der Waals and weak
chemical interactions between the biomolecule and the gold
surface are described by the sum of 12-6 Lennard-Jones
atom-atom pair potentials corresponding to interactions
between each atom i of the biomolecule and each atom j of
the gold cluster

where Rij is the interatomic distance and

are the (OPLS/AA-like) gold force field (GolP) parameters
optimized by Iori et al.27 for the interaction between organic
molecules and a Au(111) surface.

The most important additions introduced in the GolP force
field with respect to the standard OPLS/AA force-field46 can
be briefly summarized as follows: (i) The physical position
of each Au atom in the upper layer of the gold cluster was
replaced by two virtual atoms that occupy hollow sites. This
particular representation of the structure of the surface layer
has been proposed27 to reproduce the correct binding position
of the adsorbed molecules on the Au(111) surface. (ii) A
new generic atom type for the Au atom was introduced, with
generic εAuAu and σAuAu LJ parameters to be used for
calculating ELJ for gold-water and gold-protein atom pairs.
(iii) Specific LJ parameters for the interaction between Au
and the unprotonated N atom in His and the S atoms in CysH/
Met were optimized to introduce N-Au and S-Au chemical
bonding, respectively. (iv) The εij value of carbon atoms in
π rings was fitted to reproduce the rather strong interaction
between the π electrons of aromatic molecules and the metal
surface observed experimentally (if the π ring is oriented
parallel to the surface plane). (v) A shell type model describes
polarization effects of the gold surface,47 although the latter
feature is not used in the calculations presented here. Details
on the derivation of the GolP parameters and a comparison
between the adsorption energies calculated with GolP and
experimental results for different molecules (typical devia-
tions of less than 5-10% or a few kJ/mol), can be found in
ref 27.

U ) ELJ + UEP + Udesolv (1)

Udesolv ) Udesolv
p + Udesolv

m (2)

ELJ ) ∑
j

∑
i

4εij[(σij/Rij)
12 - (σij/Rij)

6] (3)

εij ) √εiiεjj and σij ) √σiiσjj
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The direct pairwise calculation of the ELJ energy between
all atoms of the protein and of the metal cluster is too
expensive for the large biological molecules usually studied
by BD methods. Therefore, a grid-based procedure was
implemented in which the LJ interaction energy between the
protein and a gold atom is saved on the nodes of a three-
dimensional grid with the origin placed at the protein center.
The grid size is chosen so that the long-range limit of the
protein atom-Au interactions with a cutoff of ∼10 Å is
inside the LJ grid. Then, the ELJ interaction energy between
the gold surface and a protein can be obtained by summation
over all Au atoms of the gold cluster.

The balance between the repulsive and attractive parts of
the LJ potentials arising from neighboring protein atoms is
extremely important at small protein-surface distances. The
binding energy is thus very sensitive to the grid spacing.
Our test calculations of amino acid adsorption in a vacuum
showed, for example, that a spacing of 0.2 Å may lead to
an error in binding energy of up to about 3 kJ mol-1

compared to the binding energy of amino acids obtained
directly by summation of the pairwise terms in eq 3. For
comparison, a grid spacing of 0.5 Å results in an error in
the binding energy of up to 12 kJ mol-1. Therefore, a grid
spacing of 0.2 Å has been used throughout the present study.
Both the accuracy of the computed energy and the calculation
speed depend on the number of gold layers employed. The
optimal number of layers is three, since the energy correction
due to adding a fourth layer is smaller than the uncertainty
due to the grid discretization.

At short interaction distances (less than the sum of the
atomic van der Waals radii in the OPLS force field), a
constant positive energy of 100 kJ mol-1 was assigned to
avoid very strong repulsion and therefore excessively high
forces in BD simulations.

2.2.2. Protein-Metal Electrostatic Free Energy in an
Aqueous Solution: UEP. The interaction of a fixed set of
partial point charges with a flat infinite uncharged metal
surface is represented in classical electrostatics by the
interaction between real charges qi and their image charges,
qi

img ) -qi, placed symmetrically with respect to the metal
surface plane. This approximation was shown to give good
agreement with density functional calculations at a surface-
charge distance of >2.5 Å.48 Likewise, the electrostatic field
of a fixed charge density in a nonuniform dielectric medium
in the presence of the uncharged metal surface can be
simulated by introducing an oppositely charged mirror image
of the charge system instead of the metal surface. It is
important that, to satisfy the boundary conditions (zero
surface potential of the metal), electrostatic potentials of the
protein and its opposite-charged image should exactly cancel
each other at the surface plane. Therefore, not only the spatial
distribution but also the dielectric surroundings of the real/
image charges should be symmetrical with respect to the
metal surface plane. Practically, in the implicit solvent model,
a protein interacting with its image system consists of two
charge distributions (one distribution for the real protein and
one for its image), each immersed in low dielectric cavities
surrounded by a high dielectric solvent and separated by a
low dielectric cavity that surrounds the metal surface. The

latter cavity is introduced since the centers of the surface
layer of metal atoms (defining the metal surface plane) are
separated from the solvent by the LJ radius for the
metal-water interaction.

The image potential is defined as Φim(rbi
im) ≡ -Φ(rbj

p),
where rbi

im ≡ (xi
p,yi

p,zi
p + 2zCG) and rbj

p ≡ (xi
p,yi

p, - zi
p - 2zCG)

are vectors from the geometric centers of the image and real
protein, respectively, and zCG is the distance between the
protein center and the metal surface as illustrated in Figure
1. Hence, we replace the protein-metal electrostatic interac-
tion by a protein-image interaction with an additional low-
dielectric cavity between the protein and the image as
illustrated in Figure 1.

The electrostatic interaction free energy of two macro-
molecules (including solvent-related entropic effects only)
can be calculated by numerical solution of the Poisson-
Boltzmann equation. This however requires considerable
computational resources and cannot be done at each time
step of a BD simulation. Alternatively, the problem can be
quite accurately solved by using the effective charge ap-
proximation for macromolecules (ECM) developed for
protein-protein interactions.49 Following this work, we
describe the electrostatic interaction free energy between a
protein and its image in the presence of the metal cavity as

where Up (Uim) corresponds to the energy of interaction of
the protein (image) charges with the image (protein) elec-
trostatic potential computed in the presence of both protein
and image cavities as well as the metal cavity; Up-c (Uim-c)
describes perturbation of the protein (image) electrostatic
potential by the low-dielectric cavity of the image (protein).
The latter term decreases rapidly with the protein-image
distance (i.e., with the distance from the metal surface) and
will be referred to hereafter as the electrostatic desolvation
energy.

The first and the second terms in eq 4 are equal, and so
are the third and fourth terms. Thus,

For the real protein, the effective charges, qi
eff, in a uniform

high dielectric medium give the same electrostatic potential
outside the protein surface as that computed for the real
protein treated as a low dielectric cavity immersed in high
dielectric solvent.49 The electrostatic energy, Up, can then
be approximated by the interaction energy of the real protein
effective charges qi

eff,49 immersed in a uniform solvent
medium, with the electrostatic potential of the protein image

The electrostatic potential, Φ(rbj
p), of a protein in water

was calculated by numerically solving the linearized
Poisson-Boltzmann equation using the UHBD (University
of Houston Brownian Dynamics) program.50 The relative
dielectric constant of the protein was assigned as 4 and that
of the solvent as 78, and the dielectric boundary was defined
by the van der Waals radii of the protein atoms. The protein

UEP ) Up/2 + Uim/2 + Up-c + Uim-c (4)

UEP ) Up + 2Up-c (4a)

Up ) ∑
i

Φim( rbi
im)qi

eff (where Φim( rbi
im) ≡ -Φ( rbj

p)) (5)
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atoms were assigned partial charges from the OPLS force
field.46 The electrostatic potential was computed on a three-
dimensional grid centered on the geometric center of the
protein. Since the electrostatic potential changes smoothly
with rb, it does not require as accurate a representation as the
LJ potential, and we have therefore used a grid with a spacing
of 0.5 Å in the present calculations. The effective charges
qi

eff were positioned on selected atoms of the charged
residues (the carboxylate oxygen atoms of Asp and Glu
residues, as well as the amine nitrogen atoms of Lys, Arg,
and protonated His residues), and their values were derived
by fitting the protein electrostatic potential in a 3-Å-thick
layer extending outward from the protein’s accessible surface
computed with a probe of radius 4 Å.49,51

The last term in eq 4a is the electrostatic desolvation term
of the protein with effective charges qi

eff due to presence of
the image protein cavity and the metal surface cavity. This
can be accounted for by the introduction of a positive energy
term analogous to that proposed in ref 49 as

A general equation for the electrostatic desolvation
potentials, Φed(rb) [Φed

met(rb) or Φed
im(rb)], due to a set of spherical

low dielectric cavities is given in the dipole approximation
in ref 52 as

k is the Debye-Hückel parameter, εp is the protein dielectric
constant, εs is the solvent dielectric constant, aj is the van
der Waals radius of the jth atom of the protein image (or
atoms of the metal surface), and rij is the distance from the
jth atom to the effective charge of the protein qi

eff. The scaling
factor R was estimated52 for protein-protein association as
R ) 1.67. Since Φed

met(rbi) is at least 24 times larger than
Φed

im(rbi) (eq 7), we can omit the effect of the image cavity
on the electrostatic field of the protein and keep only the
metal cavity terms:

The electrostatic energy given by eq 8 has been derived
for the case of nonoverlapping cavities of the protein and
the metal surface. To complete this model, we have to
consider the case in which the adsorbed molecule penetrates
the first hydration layer of the surface, which in the context
of the implicit solvent model means that the low-dielectric
cavities of the protein and the metal merge. In general, this
has two effects: (i) The change in Born solvation energy
should be taken into account; this, however, rapidly vanishes
with increasing adsorbate size53 and can be neglected in the
case of molecular adsorption (the case of ions will be
discussed at the end of the present section). (ii) The metal-
charge interaction energy must be scaled appropriately for
the transition from high to low dielectric surroundings.

Effect ii can be estimated from the electrostatic energy of
an ion in the presence of the metal surface obtained in an
MD model in which the solvent is treated explicitly. To this
end, we have computed the image-charge energy, UMD, of
a test charge atom (with unit charge and σii ) 2.87 Å) as
the difference in ion energy in explicit-water simulations with
and without image-charge effects, see Figure 2. One can see
in Figure 2 that, at surface separation distances smaller than
z ∼ 5.5 Å, the electrostatic ion-metal energy computed in
the explicit water model, UMD, is much lower than that
obtained in the present implicit solvent approximation, UEP.
This z value can be considered as the approximate ion-surface
distance at which the ion (or an effective charge in a
molecule) and surface cavities start to merge. Indeed, this
agrees with the Au-water and test charge-water LJ radii
(∼3 Å and ∼2.5 Å, respectively).

The simplest way to account for this effect at small charge-
surface distances in the ProMetCS model is to introduce a
variable dielectric constant that increases as an effective
charge moves away from the surface and reaches the value
of ε ) εs when the cavities of the charge and the surface are
separated and water molecules are able, at least partially, to
screen the charge-metal interaction. Keeping the electrostatic
desolvation energy Up-c unchanged, we fitted the dependence
of the dielectric constant on the unit charge-surface separation
distance, z, to reproduce the explicit-water electrostatic
energy:

and therefore,

Up-c ) ∑
i

(Φed
met( rbi) + Φed

im( rbi)) × (qi
eff)2 (6)

Φed( rbi) ) R
εs - εp

εs(2εs + εp)
∑

j

(1 + krbij)
2 exp(-2krij

aj
3

rij
4
)

(7)

UEP( rb) ) ∑
i

Φim( rbi
im)qi

eff + 2 ∑
i

Φed
met( rbi) × (qi

eff)2 (8)

Figure 2. Total electrostatic energy for a test charge atom
as a function of distance from the gold surface with explicit
(UMD) and implicit (UEP

corr) water models (Up, UEP, and Up-c

are separate contributions to the electrostatic energy, see text
for details). Insert: Plot of effective dielectric constant derived
from the image-charge potential computed from explicit water
simulations (solid line) and approximated by an analytical
function (dashed line).

UEP
corr ≡ -1

2z(4πε0) ε(z)
+ 2Up-c ≈ UMD (9)

ε(z) ) 1

2z(4πε0)(2Up-c - UMD)
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The computed variable dielectric constant can be ap-
proximated by an analytical function ε(z) ) 4.0 + 0.8z2 +
exp(z/0.385 - 10.4), where z is in Å, for z < 5.5 Å (see the
insert in Figure 2).

In the case of a set of effective charges, the corrected
electrostatic energy, UEP

corr, can be directly applied to the
diagonal terms, which correspond to the interaction of an
effective charge i with its own image (for charge-surface
distances of zi < 5.5 Å):

This approximation is valid for the case of amino acids
that are described by one effective charge in the ECM
model,49 but for a system of many effective charges, cross-
terms that correspond to the interaction between a charge
and the image of another charge should also be taken into
account.

The minimum value of the relative dielectric constant is
∼10 (see Figure 2), which is consistent with typical values
used in modeling of the electrochemical interface.54 This
value can lead to an up to 4-times larger Coulomb energy
for a monatomic ion in pure water.

2.2.3. Protein Nonpolar (Hydrophobic) DesolVation En-
ergy. The free energy change of a protein due to its partial
desolvation by the gold surface can be described by a
nonpolar desolvation energy that is proportional to the solvent
accessible surface area (SASA) of a protein and an energy
coefficient (Φpd):55

where the energy potential Φpd is computed on a three-
dimensional grid and is defined as a function of the distance
r from the van der Waals surface of a protein:55

The parameters a and b have been optimized55 by using
a standard method for SASA calculations (NACCESS) and
are set to 3.1 Å and 4.35 Å, respectively; c ) 0.5; the
coefficient � was set to ∼-0.021 kJ mol-1 Å-2 in the present
calculations. It should be noted that the regions of nonzero
desolvation energy and LJ binding energy strongly overlap,
and this may lead to the relatively smaller hydrophobic
desolvation term being dominated by the larger LJ attraction.

2.2.4. Metal DesolVation Energy for Nonpolar Adsorp-
tion Sites. To understand the nature of the solvation effects
arising from the partial replacement of the metal hydration
shell by a biomolecule, we considered the properties of the
water in the vicinity of the Au(111) surface that can be
derived from MD simulations. We first computed the partial
water density as a function of surface water separation
distance from a simulation of bulk water in the presence of
an Au(111) surface, see Figure 3. The hydration shell consists
of two water layers (at 3 Å and 6 Å) with a high partial

density of water molecules. The comparison of the density
of oxygen and hydrogen inside the first and second layers is
higher than that of hydrogen, which indicates a nonuniform
orientation of the water molecules, in agreement with other
studies.38,40 We then computed the PMF for one water
molecule as a function of the surface water separation
distance, see Figure 4. From the PMF, the computed binding
free energy for a water molecule is ∼-2.8 kJ mol-1 and
∼-0.6 kJ mol-1 for the first and second hydration layers,
respectively. The bound water in the first hydration layer is
separated by a free energy barrier of ∼-4.4 kJ mol-1 from
the bulk water. The PMF shows that there will be an
unfavorable positive energy change of the solvent-metal
system when a water molecule is removed from the hydration
shell to the bulk.

The metal desolvation energy is the free energy change
caused by the replacement of the hydration shell of the metal
surface by the protein adsorption site. It is, therefore,
reasonable to assume that the desolvation energy is propor-
tional to the desolvated area of the metal so that we can use
an expression similar to eq 11:

UEP
corr ) UEP + ∑

i

(qi
eff)2

2zi(4πε0)( 1
εs

- 1
ε(zi)) (10)

Udesolv
p ) ∑

m

ΦpdSASAm (11)

Φpd(r) ) � c{ 1
b - r
b - a

0

if
if
if

r < a
a < r < b

r > b

Figure 3. Dependence of the partial density of the water
oxygen atoms (solid line) and hydrogen atoms (dashed line)
on the distance from the gold surface computed from MD
simulations of water in the presence of a gold surface.
Densities are normalized to the bulk values; details of
calculations are given in Appendix I.

Figure 4. PMF of a water molecule as a function of the
distance from the surface computed from MD simulations.
Details of calculations are given in Appendix I.
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where the coefficient Φmetd is a free energy change for
desolvation of a unit surface area of the metal. A proper
modeling of the metal desolvation requires Φmetd to depend
on the distance of the protein surface atom i from the atoms
of the metal surface. At large separations, when the distance
between a protein atom i and the metal surface is greater
than the LJ cutoff value, Zmax, Φmetd must converge to zero.
The summation in eq 12 must be carried out over the protein
surface atoms, and Si

desolv defines a desolvated area of the
metal surface associated with the contacting protein atom i.

In the ProMetCS model, the desolvation energy describing
replacement by a protein atom i of the first (zi < Zadw) and
the second and higher (zi > Zadw) hydration layers is given
by

where zi is the distance between the center of the protein
surface atom i and the metal surface, Φmetd

0 is the desolvation
energy per unit area of the first hydration layer, γ describes
the decrease in magnitude of the desolvation energy when
the second and higher hydration layers are replaced, Zadw

corresponds to the position of the first hydration layer as
defined above (∼3 Å) plus the average LJ radius for the
protein-metal atom interaction, which gives Zadw ∼ 5 Å,
and Zmax ∼ 10 Å is the cutoff for computing the
desolvation term. Using the binding free energies per water
molecule derived from the PMF in Figure 4, and assuming
that the surface area occupied by one water molecule is
∼9 Å2, we estimate Φmetd ≡ Φmetd

0 ∼ 0.31 kJ mol-1 Å-2

and Φmetd ∼ 0.07 kJ mol-1 Å-2 for the first and the second
hydration layers, respectively, which leads to an assign-
ment of γ ∼ 1.51 Å.

It should be noted that the desolvation energy Udesolv
m of

eq 12 represents only the part of the free energy change of
the metal hydration shell due to replacement of parts of the
hydration shell by a noninteracting cavity. Electrostatic
effects caused by the interaction of the charges at the
adsorption site with oriented water dipoles on the metal
surface (see Appendix II) are neglected here. Hence, the
value of Φmetd

0 estimated from the water adsorption energy
is only a first approximation that may need further correction.

In order to calculate the desolvation area due to binding
of a protein, we placed a two-dimensional grid on the surface
plane, centered on the protein. Then, the positions of all
protein atom-metal contacts with zi < Zmax were stored on
the grid, and the area defined by the distance around the
contact points Radw (defined below) was considered as the
desolvation area (illustrated in Figure 5). The total contact
areas for atoms with zi < Zadw and with Zadw < zi < Zmax were
calculated separately (they are shown in Figure 5 by the bold
solid and dashed lines, respectively). These areas were then
multiplied by the corresponding energy coefficients given
by eq 13.

The value of Radw was estimated by considering the
desolvation energy, Sdesolv, of a single test atom with “iodine-
like” force-field parameters (σii ) 5.4 Å, εii ) 0.293 kJ
mol-1) that mimics a small nonpolar functional group of a
protein. The PMF of the test atom obtained from MD
simulations using a harmonic restraint potential applied along
the z axis (the x and y coordinates were fixed during the
simulations) is shown in Figure 6, along with the corre-
sponding LJ potential. Since the translational entropy change
along the PMF is zero for the present case, the difference
between the PMF and LJ energies (dashed line in Figure 6)
corresponds to the metal desolvation energy. It shows
maxima at the first and second hydration layers at surface

Udesolv
m ) ∑

i

ΦmetdSi
desolv (12)

Φmetd ) { Φmetd
0

Φmetd
0 exp(-(zi - Zadw)/γ))

0

zi e Zadw

Zadw < zi < Zmax

zi > Zmax

(13)

Figure 5. Illustration of the method employed for the calcula-
tion of the metal surface area in which water molecules are
replaced by the adsorption site of the protein. The crosses
and zeros show the positions of the centers of the protein
atoms, with z < Zadw and Zadw < z < Zmax, respectively. The
hatched circles with radius Radw show the area each atom is
assumed to desolvate. The computed desolvation area is
shown by bold lines, the solid and dashed lines corresponding
to water desorption from the first and second hydration layers,
respectively. See the text for details.

Figure 6. PMF obtained from MD simulations for the test
atom (solid line), corresponding LJ potential (squares), and
their difference (dashed lines) associated with the desolvation
energy. Dotted line, PMF energy computed using the present
model (includes both LJ and metal desolvation energies).
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separation distances of ∼5.5 Å and ∼8.5 Å, respectively.
From the magnitude of the energy maxima, we estimate the
desolvation energy change associated with partial replace-
ment of the first hydration layer by an adsorbed atom as
Udesolv

m ) 8.4 kJ mol-1. With Φmd
0 ) 0.31 kJ mol-1 Å2, Si

desolv

∼ 27 Å2, which can be described by an effective desolvation
radius, Radw, of ∼3 Å. The total adsorption energy for the
test atom computed as a function of the separation distance
with the ProMetCS model with the parameters derived above
is shown by the dotted line in Figure 6. The energy function
given by eq 13 is by definition not able to reproduce the
energy fluctuation at zi > Zadw, but in the case of a protein,
the contribution of this effect is expected to be relatively
small. The value of Radw ) 3 Å was used throughout all the
calculations and appeared to be a good first approximation,
as will be shown below.

2.3. Calculation of the Adsorption Free Energy and
Potential of Mean Force. We consider an adsorbate as a
rigid molecule moving relative to the solid surface. The
geometry of the simulation box is the same as described
above and shown in Figure 1. An adsorbate energy, defined
by eq 1, is generally a six-dimensional function of the protein
position and orientation. Three translational degrees of
freedom define the position of the molecular center of
geometry, xCG, yCG, and zCG, where rbCG ) (xCG, yCG, zCG),
and the three rotational coordinates, Ω ) (Ω1, Ω2, Ω3), are
represented by Euler angles of the coordinate frame centered
at the protein.

The solid surface is usually characterized by a periodic
structure, and one can, therefore, expect a periodic variation
of interaction energy as the protein position is shifted in the
xy plane. Without any loss of generality, the molecule motion
in the xy plane can, therefore, be considered in the area of
∆S ) ∆xCG∆yCG, where ∆xCG and ∆yCG define a period of
energy variation along the corresponding coordinate. The unit
volume of configurational space of the protein-surface
system is defined as dS dΩ dz (dS ) dxCG dyCG, dΩ ) sin
Ω1 dΩ1 dΩ2 dΩ3), and the total simulation volume of the
configurational space is 8π2∆Sb.

The free energy change upon protein adsorption is then
given by56

where Qb and Qf denote configurational partition functions
of an adsorbate in the bound and free states per unit volume,
S ) (x,y), and

The value Qf ) 8π2 represents a uniform distribution of
an unbound protein over configurational space, and Vb )
∆Sb is the simulation volume.

Direct calculation of the complete 6-dimensional free
energy landscape is difficult, and we have therefore used
the system symmetry to reduce the dimensions of the energy
matrix. First, due to the periodicity of the interaction potential
along the xCG and yCG coordinates, only a small area, ∆S,
must be explored. A period of the interaction potential is
about the dimension of the Au metal cell. In fact, preliminary
calculations showed that the greatest variations in potential
occur within an area of 6 × 6 Å with a grid spacing of 0.5
Å; i.e., 13 ×13 grid nodes should be computed for the xGC

and yGC coordinates. Variations in potential in the xy plane
as well as with respect to rotation around z (Ω3 angle) arise
only from the short-range energy terms (i.e., LJ and
desolvation energy terms) and can therefore be neglected if
the smallest separation between protein surface atoms and
the metal surface, zmin, is larger than the LJ cutoff, Zmax ∼
10 Å. Thus, at large distances, only the electrostatic
component is important, and only three coordinates, Ω1, Ω2,
and zGC, must be explored. Moreover, since the electrostatic
potential is quite smooth, the grid spacing over zGC can be
notably increased at zmin > Zmax. After some test calculations,
we chose a grid spacing dΩ1 ) dΩ2 ) 3°, dΩ3 ) 6°, and
dzGC ) 0.2 Å at zmin < Zmax, and dΩ1 ) dΩ2 ) 6°, dΩ3 )
12°, dzCG ) 2 Å at zmin > Zmax.

Computation of the free energy change upon binding using
standard molecular dynamics simulations is not feasible since
it requires very extensive sampling to reach and cross high-
energy regions of the underlying energy landscape. To
overcome this problem, enhanced sampling techniques, such
as those based on the umbrella-sampling concept,57,58 can
be used. To explore a reaction coordinate z, a series of
simulations can be performed with a biasing harmonic
restraint potential defined at each point of interest, zCG

0 , along
the reaction coordinate: V(zCG - zCG

0 ) )-1/2k(zCG - zCG
0 )2.58

The biased energy distribution function is given by
exp(-(U(rbCG, S, Ω) + V(zCG - zCG

0 ))/kT), and, for a very
sharp harmonic potential, the energy distribution function
can be approximately described as

where δ(zCG - z0) is the Dirac delta function and rbCG
0 ) (xCG,

yCG, zCG
0 ). In this case, we are concerned with a local function

at fixed zCG
0 that describes the Boltzmann distribution over

the adsorbate positions in the xCGyCG plane and over the
adsorbate orientation. Instead of an adsorption free energy
given by eq 14, we have a PMF along the reaction coordinate,
zGC, with

It is important to note that the GPMF(zCG) given by eq 16
includes the same kinds of entropy contributions as the MD
simulations and can, therefore, be directly compared with
the MD results.

∆G ) -kBT ln[Qb

Qf
]

) -kBT ln[ ∫b
dz∫∆S,Ω

dΩ dS exp(-U( rbCG, Ω, S)/kBT)

b8π2∆S ]
(14)

Qb )
∫bound

dz∫∆S,Ω
dΩ dS exp(-U( rbCG, Ω, S)/kBT)

Vb

(15)

exp(-(U( rbCG, S, Ω) + V(zCG - zCG
0 ))/kT) ≈

δ(zCG - zCG
0 ) exp(-U( rbCG

0 , S, Ω))/kT)

GPMF(zCG
0 ) ) -kBT ln[ ∫∆SΩ

dΩ dS exp(-U( rbCG
0 , Ω, S)/kBT)

8π2∆S ]
(16)
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3. Results and Discussion: Testing of the
Model for Adsorption of Capped Amino
Acids on the Au Surface

To evaluate the accuracy of the energy model described, we
computed the adsorption free energies and the PMFs of
capped amino acids and compared the results with those
obtained in MD simulations reported recently.28,29 The main
aim of this comparison was the testing of the proposed
implicit solvent model against results with an explicit
representation of water molecules. However, the solvent
representation is obviously not the only difference between
the ProMetCS energy function and that used in the MD
simulations. To minimize the differences in physical char-
acteristics of the amino acid-gold-water system employed
in the two models, we used the same structure of the gold
cluster and the same force-field parameters for the LJ energy
as used by Hoefling et al.28,29 Furthermore, in both models,
an image-charge approximation was employed for calculation
of the electrostatic effects. Finally, we used the most
populated binding conformation of each capped amino acid
obtained in MD simulations28,29 in the present simulations.
If several conformations with comparable populations were
reported, we carried out simulations for all of them sepa-
rately. However, we did not take into account the change in
internal energy of the molecules upon conformational transi-
tion during the adsorption process, and this may cause some
uncertainty in binding energy as will be discussed below in
more detail.

Before presenting the results of the PMF simulations, let
us consider the relative contributions of the energy terms of
eq 1 to the binding energy of the amino acids. The largest
contribution to the binding energy for almost all the amino
acids arises from the LJ term, see Figure 7. As can be
expected, the LJ energy increases with the number of atoms
contacting the surface and, therefore, tends to increase with
the size of the amino acid side chain. Due to the empirical
design of the GolP force field parameters used in the present
study, the binding to gold of Cys, Met, and His is favored if
sulfur or nitrogen, respectively, comes close to the surface.
Similarly, molecules with π rings (His, Phe, Trp, Tyr) are
rather strongly bound to gold if their rings are parallel to
the plane of the surface. Indeed, the absolute value of the
LJ term shown in Figure 7 demonstrates the largest magni-
tudes for His, Met, Phe, Tyr, and Trp. In His, we found that
binding through the π ring is stronger than attraction via an
unprotonated nitrogen atom, and in our calculations, the

conformation with the ring parallel to the plane of the surface
is more preferable than the tilted one.

The image-charge interaction is quite weak because of the
charge-image distances (>6 Å) and the high dielectric
constant aqueous medium between them. Indeed, the image-
charge energy (first term in eq 8, Up) is ∼-1.5 kJ mol-1

for all charged amino acids. Moreover, as an effective charge
approaches the metal surface, induced solvent polarization
around the low-dielectric cavities makes the electrostatic
interaction effectively repulsive. This effect is described by
the positive electrostatic desolvation penalty (2Up-c ∼ +5-7
kJ mol-1 at an ionic strength of 150 mM used in the MD
simulations). In fact, the total electrostatic energy becomes
negative only when an effective charge penetrates the
hydration shell of the metal and its field is not screened by
the water molecules any more. This effect, simulated by the
variable dielectric constant, leads to an electrostatic energy
of about -7 to -14 kJ mol-1 for charged residues, which
is, however, still notably smaller than the |ELJ| binding energy
of up to ca. 115 kJ mol-1.

Whereas the electrostatic contribution to binding to a
neutral gold surface is small for capped amino acids, as is
the favorable hydrophobic protein desolvation energy (|Udesolv

p |
< 3 kJ mol-1), the positive metal desolvation penalty varies
from +20 kJ mol-1 to +40 kJ mol-1 and provides the largest
compensation to the LJ term, see Figure 7. Since, Udesolv

m is
proportional to the capped amino acid-metal contact area,
the larger residues are in general characterized by a larger
desolvation penalty as well as larger LJ binding energies.
From Figure 7, one can also see that residues with long side
chains, such as Arg and Lys, have a larger desolvation
penalty than more compact residues. On the other hand,
comparing all amino acids, the difference in the Udesolv

m value
does not exceed 15 kJ mol-1, while the LJ energy differs
by up to ∼50 kJ mol-1.

Finally, the binding energy is additionally compensated
by the loss in translational and rotational entropy of the
molecule upon binding to the surface. The entropy contribu-
tion has quite a small dependence on the amino acid type
since all the capped amino acids have a well-defined binding
position that corresponds to a rather sharp energy minimum.
The entropic part due to restriction of rotation and of
translation in the xy plane (which is included in the PMF) is
about 25 kJ mol-1, whereas the entropy difference due to
translation along the z coordinate is ∼10 kJ mol-1.

Figure 7. Contribution of the LJ, metal desolvation, and electrostatic (UEP
corr) terms to the binding energy of capped amino acids

on gold as calculated with the ProMetCS energy function. Error bars show energy deviation for different binding conformations
used in simulations.
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Representative PMF profiles for weakly (Pro) and strongly
(Phe) bound residues are shown in Figure 8. The shape of
the PMF, and the value of its global minimum depend on
the conformation of the molecule used in the simulations.
For example, the Phe conformation with the aromatic ring
and backbone oriented in the same plane is more strongly
bound and has only one minimum, whereas tilting the
aromatic ring with respect to the backbone plane leads to
two minima in the PMF (at ∼3.7 Å and ∼4.4 Å, see Figure
8), corresponding to the orientation of either the side chain
or the backbone in the surface plane, respectively.

From the above analysis, we conclude that the relative
binding strength of the amino acids in the present model is
mainly driven by the LJ energy term. Since the LJ binding
energy is very sensitive to the positions of the interacting
atoms, conformational effects can be very important in the
adsorption energy calculations. However, with the rigid-body
approximation, the conformation is not adjusted at each
simulation step, and therefore, changes in the internal energy
of adsorbed molecules are not included in the present
simulations. Therefore, to account for the existence of
multiple conformations and minimize the uncertainty in the
computed energies due to neglecting the change in internal
molecular energy upon binding, calculations were carried
out for some of the capped amino acids for several of the
most populated binding conformations obtained in the MD
simulations.28 For most of the residues, there was only one
dominant binding conformation in the MD simulations. For
Asn, Arg, Cys, Gln, Glu, Leu, Lys, and Tyr, however, there
were two bound conformations with similar populations, and
for Ile, there were at least three conformations. The variation
in binding energies obtained in the ProMetCS model for the
different conformations is less than within ∼5 kJ mol-1 for
most of these amino acids, except for Gln, Ile, and Cys, whose

binding energy variation reaches ∼10-15 kJ mol-1. The most
populated binding conformations for the latter residues are
shown in Figure 9 along with their relative populations; the
corresponding computed PMF binding energies are given in
the figure caption. For all of these residues, the most strongly
bound conformation has a nearly “flat” geometry (denoted as
A in Figure 9) with the side chain as well as part of the
backbone oriented parallel to the plane of the surface so that
the LJ energy is optimized for the most atoms. In Figure 9,
two binding conformations of His, “flat” and “tilted”, which
were observed in MD simulations28 for two His forms corre-
sponding to protonation of different nitrogen atoms in the
aromatic ring (HIE, HID), are also shown. These have a binding
energy difference of ∼16 kJ mol-1 in the present calculations
with the ProMetCS model, but almost equal binding free
energies were computed from the MD simulations.29 Here, the
energy difference may be caused by underestimation of the
desolvation penalty of the aromatic ring if it is placed in
the surface plane since, as noted above, the Udesolv

m value is
relatively small for aromatic residues.

Figure 8. Representative PMF profiles computed using the
ProMetCS model for two capped amino acids shown as a
function of surface the separation distance: squares, Pro;
triangles, circles, Phe. For Phe, PMFs computed for two
slightly different conformations are shown: the aromatic ring
is in the backbone plane (a, red conformation) and slightly
tilted (b, blue conformation). Phe conformations are shown
in projection onto the Au surface plane.

Figure 9. The most populated binding conformations of
capped amino acids28 for which significant dependence of
computed PMF binding energy on conformation was ob-
served, shown with their relative populations in the MD
simulations. The corresponding PMF binding energies com-
puted with the ProMetCS model are as follows: Gln, -40 (A)
and -27 (B) kJ mol-1; Ile, -24.3(A), -16.3 (B) kJ mol-1; His,
-48 (A), -31.9 (B) kJ mol-1, where configurations A and B
correspond to HIE and HID, respectively; CysH, -43 (A),
-33(B) kJ mol-1.
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Figure 10 shows a comparison of the PMF binding
energies (the minimum of the PMF along the z coordinate)
computed from the MD simulations29 and with the ProMetCS
model. For the residues mentioned above, characterized by
several binding conformations in MD simulations that have
notably different binding energies in ProMetCS, the PMF
energies for the different conformations were averaged with
equal weights. With the exception of Trp, the deviation of
the PMF binding energies computed with the ProMetCS
model from those from MD simulations does not exceed 5
kJ mol-1. The binding energy of Trp is overestimated by
∼13 kJ mol-1, which may be due to two reasons: (i)
underestimation of the metal desolvation energy for aromatic
residues, which was discussed above and might be especially
pronounced in the case of Trp (the notable overestimation
of the binding energy for conformation A of His is consistent
with this suggestion, see Figure 9); (ii) a conformational
energy change upon binding that is not taken into account
in these calculations.

Taken into account the uncertainties in the present calcula-
tions, we can select capped amino acids with adsorption
energies below -40 kJ mol-1 and above -25 kJ mol-1 and
assign them to groups of strongly and weakly bound amino
acids, respectively. Thus, His, Met, Phe, Trp, and Tyr belong
to the group of strong binders, whereas Ala, Glu, Gly, Ile,
Leu, Pro, Ser, and Val can be described as weak binders.
The list of “strong binders” agrees with the experimental
study of Peelle et al.,5 in which notable binding was observed
only for homopeptides of Cys, His, Met, and Trp. Further-
more, high affinity to the gold lattice has also been suggested
for Trp and Tyr by Hnilova et al.9 However, Phe was not
mentioned among the amino acids with high affinity to gold
reported in these experimental studies.5,9

In general, some overestimation of computed binding
energy relative to that observed experimentally might be
expected because, in particular, there should be some
conformational restrictions on the amino acids in the peptides
studied in experiments (i.e., the optimal binding conformation
of an amino acid on the surface may be greatly unfavorable
in the peptide). Furthermore, the binding to gold of the
capping residues used in the calculations may additionally
contribute to the computed affinity, leading to some over-
estimation of binding strength, especially for weakly bound
residues. For example, the adsorption free energy of L-
phenylalanine derived from electrochemical measurements7

was characterized as typical for weak chemisorption of small

aromatic molecules (from -18 to -37 kJ mol-1, where the
larger value is associated with electrostatic binding of the
carboxylic group to a positively charged electrode). Con-
sidering that, in the present simulations, about 20-25 kJ
mol-1 of the adsorption energy of the capped Phe molecule
come from the capping residues (see adsorption geometry
of Phe shown in Figure 8), the binding energy of the Phe
residue can be estimated as ∼-25-30 kJ mol-1, which is
in the range of experimental values.

4. Summary and Future Directions

In the present paper, we propose an approximation for the
calculation of the binding free energy of biomolecules on
an atomically flat uncharged Au(111) surface in a continuum
aqueous solvent. The interfacial interaction energy is based
on an atomistic representation of short-range interactions (van
der Waals, weak charge transfer, π orbital interactions) that
are approximated by a set of Lennard-Jones potentials,
electrostatic interactions described by the image charge
method combining with the effective charge approximation,
and adsorbate desolvation and metal desolvation free ener-
gies. The latter term simulates the solvation free energy
change due to the replacement of part of the gold hydration
shell by the uncharged binding region of an adsorbate and
has been parametrized by using the results of MD simulations
of water molecules on gold. MD simulations were also the
basis for parametrizing a model of the desolvation effects
based on the electrostatic energy. The case when the
adsorption site of the biomolecule is charged and interacts
with the induced electrostatic field of the oriented water
dipoles on the gold surface was also considered. When
parametrized using the PMFs for surface binding of nega-
tively and positively charged ions obtained from MD
simulations, this effect was found to generally lead to slightly
stronger binding of positively charged adsorbates than
negatively charged ones (see Appendix II).

The proposed energy model, ProMetCS, has been verified
against the recently reported PMFs of capped amino acids
obtained from MD simulations.29 We computed the binding
energy of 1-3 of the most populated binding conformations
observed in the MD simulations for each amino acid.28,29

When averaged over these conformations, the computed PMF
minimum values (i.e., PMF binding energies) reproduce the
results of MD simulations with an error of less than 5 kJ
mol-1 for all residues except Trp. The trends in amino acid

Figure 10. PMF binding free energies of the capped amino acids on the gold surface obtained using the ProMetCS model and
MD calculations29 as calculated with the ProMetCS energy function. Error bars show energy deviation for different binding
conformations used in simulations.

1764 J. Chem. Theory Comput., Vol. 6, No. 5, 2010 Kokh et al.

114 – P4 –



binding to gold are mostly in agreement with available
experimental observations of the binding of homopeptides
to gold despite the different conditions of the experiments.5,7,9

Analysis of the computed binding energies, in particular
in comparison with experimental data, gives strong evidence
that short-range van der Waals interactions (described by
LJ potentials) are a driving force for adsorption of amino
acids to a neutral metal surface. The change of the solvation
free energy upon adsorption species is positive due to
unfavorable distortion of the structure of the water layer on
the gold surface. The balance of the short-range LJ attraction
and the surface desolvation penalty makes the adsorption
energy very sensitive to conformational variations of the
adsorbed species and the orientation of the molecule on the
gold surface. Therefore, it is advisible to explore a range of
adsorbate conformations that are energetically accessible in
aqueous solution.

As can be expected, the image-charge electrostatic effects
on amino acid-gold interactions are quite small in com-
parison with the LJ term and the metal desolvation penalty,
except in cases where a charged residue penetrates the
hydration shell of the metal surface. On the other hand, in
adsorption kinetics of large molecules, the electrostatic effects
may gain more importance due to their long-range character.

The next step in validation of the ProMetCS model will
be to apply it to a set of proteins and compare it with
experimental adsorption data on the relative binding proper-
ties. Furthermore, due to the time-saving grid-based tech-
nique employed in the present model, it can be extended to
the simulation of coadsorption and adsorption kinetics.
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Appendix I. MD Simulations with Explicit
Water Molecules

Three MD simulations with explicit water have been
performed for this work:

(i) MD simulation of the water-Au(111) interface.
(ii) Calculation of the PMF of “fluorine-like” ions, i.e.,

an ion/atom with the LJ parameters assigned in the OPLS/
AA force field to F-, but with a +1, 0, and -1 e charge.

(iii) Calculation of the PMF of an “iodine-like” neutral
atom, i.e., a neutral atom with the OPLS/AA46 LJ parameters
corresponding to those for I-.

All these calculations were performed with the GRO-
MACS (version 3.3.3 and 4.0.1) software.59 The simple point
charge, SPC, model was used for water (with rigid internal
geometry constrained by the RATTLE algorithm), while the
force field used for the water-gold, ion-gold, and atom-gold
interactions is GolP.27 The Au surface was simulated by a
5-layer gold slab, using a 7 × 4�3 supercell. 3D periodic
boundary conditions were used. A second Au slab was placed
at ∼3.5 nm from the first in the direction perpendicular to
the surface (z), to confine water in a fraction of the periodic

box along z (10 nm). In this way, possible spurious effects
due to fictitious periodicity along z were minimized. The
interslab space is large enough to have a ∼1-nm-thick region
of water behaving like bulk SPC water in the middle of the
slab (as verified by density profile and oxygen-oxygen
correlation functions). The precise value of the interslab space
was adjusted for each simulation to yield the bulk density
of SPC water at 1 bar of pressure and 300 K at the center of
the water layer.

The PME electrostatic model was employed in all the
simulations, using GROMACS defaults for the PME param-
eters. For neutral systems, we performed some tests employ-
ing the Yeh and Berkowitz60 electrostatic corrections pro-
posed for 2D periodic systems treated with 3D periodicity.
No significant variation in the reported result was found. For
charged systems, no counterions were inserted to neutralize
the simulation box to avoid sampling issues.61 All the
simulations were performed in the NVT ensemble, with T
) 300 K. LJ interactions were cut off at 1.0 nm.

For simulation i, an initial equilibration of 100 ps was
followed by a 5 ns production run. The density profiles in
Figure 3 were obtained from the resulting trajectory. The
PMF of water in Figure 4 was obtained as

where d(z) is the water density in the slab centered at z and
dbulk is the bulk density.

PMF calculations ii and iii were performed by integration of
the average force along the ion-surface separation coordinate,62

using either umbrella-biased simulations, also called umbrella
integration63 (calculation ii), or a constraint-biased simulation,
with a LINCS constraint.64 In both cases, an initial simulation
was performed in which the ion/atom was pulled through the
box, along the direction perpendicular to the surface, in 1 ns.
From this simulation, 30 snapshots corresponding to 30 different
ion-surface distances ranging from 0.25 to 1.2 nm were
extracted. From each of these snapshots, a 5-ns-long simulation
was started, keeping the ion/atom at the initial distance by using
a tight harmonic restraint for ii or a constraint for iii. The
thermodynamic restraint/constraint forces were collected during
the last 3 ns of the dynamics and averaged to get the opposite
of the PMF derivative with respect to the ion-surface distance.
By numerically integrating such PMF derivatives, the PMF
profiles in Figures 6 and 11 were obtained.

The ability of the GolP force field to reproduce experi-
mental adsorption energies on gold for small molecules has
been verified in ref 27, and the soundness of the calculated
adsorption free energies of amino acids in solution is shown
in ref 29. As a further test of the force field underlying
ProMetCS, we calculated the central quantity to characterize
the liquid water-gold interaction, i.e., the wetting coefficient
k as defined by the relation k ) (γsv - γsl)/γlv where γsv, γsl,
and γlv are the solid-vapor, solid-liquid, and liquid-vapor
interface tensions, respectively.65 The difference γsv - γsl

was calculated from the 5 ns simulation described above in
two ways: by the virial-based expression65,66 as implemented
in GROMACS 4.0.1 and by the energy-based method
proposed in ref 20, using the entropic term correction

PMF(z) ) -RT ln( d(z)
dbulk

)
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proposed there. For the latter calculation, separate simulations
of the gold slabs and the water slab were needed, and we
performed simulations of 5 ns for each. In both cases, k was
then calculated by using the value for γlv obtained by the
virial method on the 5 ns water slab simulation. The virial-
based expression yielded k ) 0.95 ( 0.1, while the energy-
based expression yielded k ) 1.35 ( 0.03. For polycrystalline
gold, it is known that k g 1 (i.e., the water contact angle )
0°), and for the Au(111) surface, a value close to or higher
than 1 is also expected.43 Therefore, the calculated k values
are compatible with the experimental results. This discussion
should not be considered as a detailed study of the
water-gold surface tension obtained with GolP, which would
require tests with respect to the cell size, the duration of the
simulation, and the effects of the LJ cutoff. While such a
detailed treatment is outside the scope of this article, it
remains that the approximate k value computed here supports
the use of GolP results in ProMetCS.

Appendix II. Electrostatic Interaction of an
Ion with an Interfacial Water Potential

The electrostatic energy terms described above are derived
for a uniform CS and do not take into account the effect related
to the ordered water layer that directly contacts the metal
surface. To estimate the contribution of this effect to the surface-
binding energy of an ion, we first considered adsorption of test
ions onto the metal surface. Computed PMFs for the positively
and negatively charged test fluorine-like ion s, as well as a
corresponding neutral atom, are shown in Figure 11.

The PMF function of an ion can be decomposed into four
separate energy terms: (i) the LJ and the image-charge
electrostatic interaction energies between the ion and the metal
surface; (ii) the positive Born solvation energy given by
q/(8πε0a)(1/εS - 1/εI)53 in the case of a charged atom of radius
a that is transferred from a high dielectric εs to a low dielectric
medium with dielectric constant εI; (iii) the free energy change
of the solvent arising from distortion of the hydration shell of
the metal (discussed above); and (iv) the interaction energy of
the ion with the electrostatic field of the interfacial water.

Only the last term depends on the sign of the ion’s
charge and, therefore, can be computed as half of the
difference between the PMF of the positively and nega-
tively charged ions plotted in Figure 11. As expected, the
resultant function (see insertion in Figure 11) shows
fluctuations that roughly correlate with the variation of
the oxygen partial density, i.e., with the negative partial
charge variation within the hydration shell of the metal
surface. One can also see from this plot, that term iv is
relatively small (less than ∼5 kJ mol-1) and attractive
for positively charged ions that are localized at an ion-
surface distance of 3-4 Å (i.e., when the ion is inserted
into the first hydration layer). On the other hand, the
electrostatic field of the surface water layer is preferentially
attractive for an anion when it is placed slightly beyond the
first hydration layer, at 4-5 Å, which corresponds to the
maximum of the hydrogen partial density.

The Born solvation energy is dominant at small distances
(z < 4 Å) for ions but should be negligible for molecules. A
charged fragment of a protein adsorption site would be
surrounded by neighboring neutral atoms of the protein. This
would mean that the electrostatic effect caused by the
hydration shell would be less pronounced than for a bare
ion because the charge-water distance would be too large to
make the magnitude of the effect significant. Thus, the
desolvation effect may be represented solely by the metal
desolvation term iii due to the distortion of the hydration
shell of the metal. Taking into account all these uncertainties
and a modest contribution to the free binding energy, we
did not implement the term accounting for this effect in the
free energy calculations.
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(45) Löfgren, P.; Ahlström, P.; Chakarov, D. V.; Lausmaa, J.;
Kasemo, B. Surf. Sci. 1996, 367, L19–L25. Smith, R. S.;
Huang, C.; Wong, E. K. L.; Kay, B. D. Surf. Sci. 1996, 367,
L13–L18.

(46) Jorgensen, W. L.; Tirado-Rivers, J. J. Am. Chem. Soc. 1988,
110, 1657–1666.

(47) Iori, F.; Corni, S. J. Comput. Chem. 2008, 29, 1656–1666.

(48) Finnis, M. W. Surf. Sci. 1991, 241, 61–72. Sahni, V.; Bohnen,
K.-P. Phys. ReV. B 1985, 31, 7651–7661.

(49) Gabdoulline, R. R.; Wade, R. C. J. Phys. Chem. 1996, 100,
3868–3878.

(50) Madura, J. D.; Briggs, J. M.; Wade, R. C.; Davis, M. E.; Luty,
B. A.; Ilin, A.; Antosiewicz, J.; Gilson, M. K.; Bagheri, B.;
Scott, L. R.; McCammon, J. A. Comput. Phys. Commun.
1995, 9, 57–95.

(51) Gabdoulline, R. R.; Wade, R. C. Methods 1998, 14, 329–
341.

(52) Gabdoulline, R. R.; Wade, R. C. J. Mol. Biol. 1999, 291,
149–162.

(53) Davis, M. E. J. Chem. Phys. 1994, 100, 5149–5159.

(54) Hamann, C. H.; Hamnet, A.; Vielstich, W. Electrochemistry;
Wiley: New York, 1998.

(55) Gabdoulline, R. R.; Wade, R. C. J. Am. Chem. Soc. 2009,
131, 9230–9238.

(56) Ben-Tal, N.; Honig, B.; Bagdassarian, C. K.; Ben-Shaul, A.
Biophys. J. 2000, 79, 1180–1187.

(57) Harvey, S. C.; Prabhakaran, M. J. Phys. Chem. 1987, 91,
4799–4801.

(58) Beutler, T. C.; van Gunsteren, W. F. J. Phys. Chem. 1994,
100, 1492–1497.

(59) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E.
J. Chem. Theory Comput. 2008, 4, 435–447.

(60) Yeh, I. C.; Berkowitz, M. L. J. Chem. Phys. 1999, 111, 3155–
3162.

ProMetCS: An Atomistic Force Field J. Chem. Theory Comput., Vol. 6, No. 5, 2010 1767

– P4 – 117



(61) Donnini, S.; Mark, A. E.; Juffer, A. H.; Villa, A. J. Comput.
Chem. 2005, 26, 115–122.

(62) Trzesniak, D.; Kunz, A.-P. E.; van Gunsteren, W. F. Chem-
PhysChem 2007, 8, 162–169.

(63) Kaestner, J.; Thiel, W. J. Chem. Phys. 2005, 123, 144104.
Van Eerden, J.; Briels, W. J.; Harkema, S.; Feil, D. Chem.
Phys. Lett. 1989, 164, 370–376.

(64) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.
J. Comput. Chem. 1997, 18, 1463–1472.

(65) Sedlmeier, F.; Janecek, J.; Sedner, C.; Bocquet, L.; Netz, R. R.;
Horinek, D. D. Biointerphases 2008, 3, FC23–FC39.

(66) Harris, J. G. J. Phys. Chem. 1992, 96, 5077–5086.

CT100086J

1768 J. Chem. Theory Comput., Vol. 6, No. 5, 2010 Kokh et al.

118 – P4 –



DOI: 10.1002/cphc.200900990

The Conformations of Amino Acids on a Gold(111) Surface
Martin Hoefling,[a] Francesco Iori,[b, c] Stefano Corni,[b] and Kay-Eberhard Gottschalk*[a]

1. Introduction

The assembly of proteins and peptides on gold surfaces plays
an important role in biotechnology ranging from organic/inor-
ganic hybrid materials for protein detection to cancer therapy.
Biocombinatorial techniques allow obtaining proteins and pep-
tides with high affinities for gold.[2–5] Some of these also
behave as selective binders, that is, they are able to discrimi-
nate between gold and other inorganic surfaces by their affini-
ty. These findings open up the way to new strategies to guide
the self-assembling on nanosystems containing gold,[4, 6–8] and
have the potential for many other applications, such as pro-
tein-oriented immobilization on gold, or the use of gold nano-
particles as multifunctional nanocarriers.

These biocombinatorial techniques (phage display or cell
surface display) use large compound libraries generated by the
genetic manipulation of viruses or bacteria, each exposing a
single protein of the library. Performing repeated nature-selec-
tion like cycles, the library is progressively enriched with the
best binders for the target surface.[3, 6] While these methods de-
liver peptides with the desired properties, they do not provide
any direct information on the underlying physicochemical
foundations. This is not only unsatisfactory from the point of
view of a basic understanding of the affinity and specificity,
but it also hinders the rational design of surface-binding bio-
molecules or mimetics. To fully exploit the potential of biomol-
ecule/gold assemblies, the structural foundations of biomolec-
ular adsorption on gold need to be known. While structural
proteomic tools have greatly improved our understanding of
biomolecular interactions, they cannot be easily extended to
biomolecule/gold interactions. Computational methods, on the
other hand, can give direct access to the structural properties
of interacting partners, and are therefore invaluable in the un-
derstanding of protein-surface interactions. Unfortunately, full
quantum mechanical approaches for even the single amino
acids on surfaces in vacuo are computationally demanding,
and have been performed only for a few systems.[9–12] At pres-
ent, a systematic quantum mechanical study of natural amino

acid adsorption on gold, including the effects of solvation, is
not feasible due to the prohibitive computational cost of such
complex systems. Atomistic classical molecular dynamics, on
the other hand, are feasible and offer at present the best com-
promise between accuracy and speed of computation. Howev-
er, reliable MD simulations of biomolecules on gold or other
metals are still rare,[10, 13] the main problem being the lack in ac-
curacy of the metal surface description. One of the core ele-
ments of classical MD is the force field. In fact, force fields tail-
ored to describe protein–metal interactions in water appeared
only recently.[14–16] In particular, the force field GolP, based on
quantum mechanical calculations and experimental data, also
taking into account metal polarizability,[17] has recently been in-
troduced for gold surfaces. Here, we will use a combined ap-
proach of DFT computations and MD simulations with the
GolP force field to compute preferred conformations of amino
acids on the gold surface.

We find that both solvation and backbone have a profound
effect on the preferred sidechain conformations on gold. Inter-
estingly, the backbone of amino acids tends to strongly bind

The interactions of amino acids with inorganic surfaces are of
interest for biologists and biotechnologists alike. However, the
structural determinants of peptide–surface interactions have
remained elusive, but are important for a structural under-
standing of the interactions of biomolecules with gold surfa-
ces. Molecular dynamics simulations are a tool to analyze struc-
tures of amino acids on surfaces. However, such an approach
is challenging due to lacking parameterization for many surfa-
ces and the polarizability of metal surfaces. Herein, we report

DFT calculations of amino acid fragments in vacuo and molec-
ular dynamics simulations of the interaction of all amino acids
with a gold(111) surface in explicit solvent, using the recently
introduced polarizable gold force field GolP. We describe pre-
ferred orientations of the amino acids on the metal surface.
We find that all amino acids preferably interact with the gold
surface at least partially with their backbone, underlining an
unfolding propensity of gold surfaces.
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the gold surface. This suggests beta-sheet forming peptides as
good gold binders and underlines the unfolding propensity of
gold surfaces for helical peptides.

2. Results and Discussion

The conformations of solvated amino acids adsorbed on gold
are the results of the competition between the gold-affinity,
solvation propensity and the geometric preferences of the vari-
ous chemical groups (the side chain, the N and C termini) that
compose each amino acid. These geometric preferences are
determined by basic physical interactions between the chemi-
cal groups, the surface and the solvent.

In order to analyze this basic physics, we employed the fol-
lowing strategy: first we have defined a set of small molecules
that mimic the corresponding chemical functionality found in
amino acids (e.g. methanol to mimic the serine side chain, for-
mamide for the protected N- and C- termini, ammonium for
the unprotected N-terminus). Then, we have studied the geo-
metric preferences of such amino acid fragments on Au(111) in
vacuo, and finally we have explored how these preferences
change by hydrating the system at 300 K. Finally, we simulated
whole solvated amino acids ab-
sorbed on Au(111).

The relative small size of the
amino acid fragments renders
the use of an ab initio descrip-
tion of such fragments in the ab-
sence of water feasible, allowing
a high-level computation of pre-
ferred orientations in compari-
son to force-field simulations.

2.1. DFT Calculations In Vacuo

For a high-level description of
the orientation of these frag-
ments on the gold surface, we
have performed plane-waves
DFT calculations for the chosen
molecules on a Au(111) slab in
the periodic supercell approach.
The minimum energy structure
of each molecule on gold has
been determined. Further details
can be found in refs. [15, 18] .

The conformations of the un-
solvated fragments found in our
DFT calculations are shown in
Figure 1. For chemisorbed mole-
cules (imidazole, dimethylsulfide,
methanthiol), the arrangement is
dominated by the directionality
of the chemical bond. Thus, the
sp2 N of imidazole induces an
upright orientation, while the
sp3 S of dimethylsulfide and

methanthiol induces a pyramidal-like orientation, where one of
the vertex of the pyramid is a surface gold atom.

The arrangement of the other, physisorbed, molecules on
Au(111) is dictated by the interplay of two different molecule–
surface interactions: 1) a short-range term composed of an at-
tractive part (that collects the share of dispersion interaction
mimicked by the employed DFT functional, plus tiny charge-
transfer effects), and a repulsive Pauli exchange term; 2) the
purely attractive image interaction.

(1) tends to maximize the number of molecular atoms con-
tacting the surface, in the on-top sites; the molecule–gold dis-
tance is of typical non-bonding character (~0.3 nm). (2) favors
an adsorption arrangement where the highest charge portion
of the molecule is in contact with the surface, and orientations
that maximize the electric field acting on the metal (e.g. per-
pendicular molecular dipoles vs parallel ones). (2) poses the
molecule as close as possible to the gold surface. The resulting
molecular arrangement is a non-obvious compromise between
the intrinsic preferences of (1) and (2).

The upright position of formate, methylguanidinium and for-
mamide is dictated by the different equilibrium distance of
each atom in the molecule from the surface: due to image in-

Figure 1. Conformations of amino acid building blocks from DFT calculations and the preferred clusters in fully
solvated MD simulations. Figure rendered with PyMol.[1]
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teraction, highly charged, exposed atoms (e.g. the O atoms of
HCOO- or the H and N atoms of methylguanidinium) have a
higher propensity to closely interact with the surface than the
other atoms of the molecules. When the molecule is standing
up, both kinds of atoms are close to their preferences. Notably,
a flat orientation may be a possible arrangement (i.e. a local
energy minimum) also for upright molecules, as we accidental-
ly observed for methylguanidinium. However, our simulations
show that it is not the most stable in vacuo.

In contrast, non-polar molecules (such as indole and tolu-
ene) with a neglectable image contribution prefer a flat confor-
mation. Molecules such as methanol or phenol show an inter-
mediate behavior, in line with their intermediate nature.

2.2. Solvated Molecular Dynamics

DFT calculations were previously compared to minimized con-
formations using the classical GolP forcefield with agreement
in the general conformation and slight differences in the dis-
tances,[15] stressing the validity of the force field. However, the
situation changes substantially for hydrated molecules. The in-
teraction (1) is still at work (although it is now in competition
with the analogous water–Au interaction), but the high dielec-
tric water environment now screens effects of image interac-
tions. In particular, highly charged, exposed atoms have now
the possibility to interact with water molecules, with energies
comparable to the image charge one. Therefore, the balance
that led to standing up arrangement for the in vacuo case is
compromised in water, and the standing-up orientation looses
stability either with respect to a flat conformation or even an
upside-down conformation, where the charges are exposed to
water. The ammonium ion as a small molecule with a high
charge is an extreme case demonstrating these considerations.
Indeed, when solvated, it completely detaches from the gold
surface and does not significantly interact with it, despite the
strong interaction energy of this ion with gold observed in the
DFT calculations. Methylguanidine, on the other hand, prefer-
ring an upright position in vacuo, is absorbing flatly to the
gold surface in water. The differences between the two posi-
tively charged entities, the ammonium ion and methylguani-
dine, are the available surface area and the charge density.
Methylguanidine has a significantly higher surface area allow-
ing for significant van der Waals interaction with the gold sur-
face in a flat conformation, which combined with a reduced
charge density tips the balance of the described effects in
favor of a flat absorption on gold. Interestingly, the preferred
conformation of formate reverses in water: not only does it
only transiently absorb onto the surface, the high dielectric en-
vironment of the solvating water interacts better with the oxy-
gens than the gold surface. The positive charge of methylgua-
nidine, as opposed to the negative charge of formate, appears
to be better suited for interacting with the gold surface as ex-
emplified by the flat conformation of the former and the up-
right conformation with water-exposed charges of the latter.
Somewhat surprisingly, imidazole is hardly affected by the sol-
vation. The DFT-conformation in vacuo and the MD-conforma-
tion in solvent are virtually indistinguishable. This underlines

the subtleties of the effects of charge screening and van der
Waals interactions. As expected, more hydrophobic fragments
prefer a flat orientation: phenol, indole and toluene maximize
their contact area with gold in water. This arrangement mini-
mizes the solvent accessible surface of the test molecule.

2.3. Molecular Dynamics Simulations of Solvated Amino
Acids

How does the backbone of the amino acids influence the ab-
sorption behavior? To investigate this, we simulated as a next
step all amino acids on the gold surface without restraints for
50 ns per amino acid. Here, we capped the N- and C-termini to
avoid artifacts from charges. During this simulation, no amino
acid detached from the surface. On the surface, each amino
acid shows preferential conformations (Figure 2).

The analysis of Gly yields the preferred orientation of the
backbone on the surface, since no sterical or electronic side-
chain properties influence its absorption behavior. Our simula-
tions show that the backbone of Gly prefers a flat conforma-
tion with maximum contact between backbone and surface.
The carbonyl oxygen is pointing towards the surface, while the
NH-moiety is slightly pointing upwards. In fact, not only Gly,
but all of the amino acids prefer to contact the gold surface
with at least part of their backbone. However, the interaction
of the sidechains with the gold surface forces part of the back-
bone away from the surface for some of the amino acids. Arg
with its guanidine side chain is a prominent example of those.
As already seen in the simulations of the fragment, the side-
chain is lying flat on the surface, forcing the C-terminus away
from the surface. The situation of the other positively-charged
amino acid, Lys, is completely different. As seen in the frag-
ment simulations, the terminal nitrogen has no particular pro-
pensity to interact with the gold surface. Hence, one highly oc-
cupied cluster exposes the whole sidechain to the solvent.
However, the methylen groups of the sidechain have a tenden-
cy to contact the gold surface in order to minimize their sol-
vent accessible surface. This is reflected by a second, approxi-
mately equally populated cluster with a flat sidechain orienta-
tion. Differences are also seen between Asp and Glu: Glu
forms two clusters on the surface with a relative population
density of approximately 1:3. The lower occupied cluster has
an adsorbed geometry comparable to Asp with fully solvent
exposed sidechain. The higher occupied cluster, on the other
hand, forms sidechain contacts of the additional methylen
moiety of Glu. These two clusters demonstrate the energetic
balance leading to the preferred conformations: the amino
acids need to compromise between maximum backbone con-
tact, exposure of charges to the solvent and minimizing the
solvent exposure of hydrophobic moieties. This trend is also
observed when going from Ala to Val. While in Ala, the one
methyl group is not sufficient to disturb the backbone, the ad-
ditional methylen moiety in Val tips the balance and enforces
sidechain contact with accompanying backbone distortion. In-
terestingly, also the aromatic amino acids do not behave iden-
tically : while for Tyr and Trp, the sidechains have full contact
with the gold surface with compromised backbone contact,
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the sidechain of Phe is only partially contacting the surface
with optimal backbone contact. The underlying, fine balance
in energetic contributions is not obvious from the chemical
composition. Intuitively, one would expect full sidechain con-
tact also for Phe. Indeed, one minor cluster shows such a con-
formation. However, the conformation with tilted aromatic ring
is approximately tenfold overrepresented.

The observed propensity to maximize backbone contact
with gold indicates 1) a certain unfolding propensity of a gold
surface and 2) shows that naturally unfolded proteins or pro-
teins with a high beta-sheet content, which potentially allows
for backbone contact as opposed to alpha-helices, may be pre-
ferred gold binders. The unfolding propensity of gold surfaces
has recently been demonstrated experimentally: certain pro-
teins, when exposed to gold nanoparticles, form aggregates
with unspecific interactions, indicative of unfolded proteins.[19]

4. Conclusions

We have analyzed the absorption of amino acids onto a gold
surface in great detail, starting from the conformations of

amino acid fragments studied
both by DFT and MD simulations
and then describing the adsorp-
tion properties of all amino
acids. We find an intriguing in-
terplay between steric and elec-
trostatic factors. In passing from
molecules adsorbed on gold in
vacuo to molecule adsorbed in
water, microscopic effects tends
to favor orientations, where the
charges are exposed to the sol-
vent. The backbone plays an im-
portant role in the adhesion pro-
cess of amino acids, indication
an unfolding propensity of the
gold surface. These studies are
the first step for an in-depth un-
derstanding of biomolecular ad-
sorption on gold surfaces.

Computational Methods

The DFT calculations of the amino
acids fragments on the gold sur-
face are described in details in
refs. [15, 18]. They have been per-
formed with the PWscf code in-
cluded in the Quantum Espresso
package. To represent the Au(111)
surface, we used a slab of 4 gold
layers in a 2

p
3 � 3 supercell. The

PBE gradient corrected exchange
correlation functional has been ex-
ploited for all the calculations, with
ultrasoft pseudopotentials to rep-
resent the electron-ion interac-

tions. The basis set was composed of plane waves basis with a ki-
netic energy up to Ecut = 25 Ry. Brillouin zone sums have been per-
formed with a Monkhorst–Pack k-point mesh of 4 � 4 � 1. Geometry
relaxations were started by different initial positions of the frag-
ment with respect to gold, and the most stable final geometry was
used for comparison with classical MD results.

For the MD simulations, we used the recently developed GolP
force field[15, 18] which extends the OPLS/AA by interactions of ami-
noacid building blocks with Au(111), and SPC water. All simulations
were performed with Nose-Hoover temperature coupling at 300 K,
integration timesteps of 2 fs, Particle-Mesh-Ewald for electrostatics
above 1.1 nm as well as a switch-cutoff for van der Waals interac-
tions (0.9–1.0 nm). The Gromacs 3.3.3[20] simulation package was
used for all simulations of aminoacids while Gromacs 4.0.3[21] was
used for the DFT fragments. We choose to simulate in physiologi-
cal ion concentration (150 mm NaCl) with a neutralized box to
avoid effects from particle mesh ewald background charge on the
PMF calculations.[22] Each setup was prepared by energy minimiza-
tion with steepest descent algorithm followed by a position re-
strained run with a Parrinello–Rahman barostat applied in the z-di-
rection for 1 ns to scale the box size after solvation.
The fragments used in the DFT calculations were placed in contact
with the surface. During the relaxation with pressure coupling, no

Figure 2. Conformation clusters with high population and their ratio from amino acids in free simulations on
Au(111) surface. Figure rendered with PyMol.[1]
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restraints were applied. Each fragment was then simulated for
20 ns.

All aminoacids were capped with acetyl groups to prevent interac-
tions of charged ends with the surface. The obtained structures
were placed in a 4.5 nm x 4.3 nm x 4.7 nm box containing a gold
slab with 5 layers. For the simulation of the adsorbed amino acids,
the amino acid was put into contact with the gold surface and sol-
vated. No restraints or constraints were applied for a simulation
time of 50 ns. The amino acids were clustered with the Gromacs
tool g_cluster, single linkage algorithm and a cutoff criterion of
0.5 � RMSD.
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Abstract: To efficiently insert a protein into an equilibrated and fully hydrated membrane with minimal membrane
perturbation we present a computational tool, called g_membed, which is part of the Gromacs suite of programs. The
input consists of an equilibrated membrane system, either flat or curved, and a protein structure in the right position
and orientation with respect to the lipid bilayer. g_membed first decreases the width of the protein in the xy-plane and
removes all molecules (generally lipids and waters) that overlap with the narrowed protein. Then the protein is grown
back to its full size in a short molecular dynamics simulation (typically 1000 steps), thereby pushing the lipids away
to optimally accommodate the protein in the membrane. After embedding the protein in the membrane, both the lipid
properties and the hydration layer are still close to equilibrium. Thus, only a short equilibration run (less then 1 ns in the
cases tested) is required to re-equilibrate the membrane. Its simplicity makes g_membed very practical for use in scripting
and high-throughput molecular dynamics simulations.

© 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2169–2174, 2010

Key words: computer simulations; membrane; Gromacs; molecular dynamics; protein insertion

Introduction

The number of computer simulations to probe the molecular details
of membrane proteins is rapidly increasing.1 Proteins embedded
in or associated with membranes are of interest because they per-
form various crucial tasks, including (selective) transport, signal
transduction and energy conversion. It is estimated that in most
organisms 20–30% of the proteins encoded in the genome are
membrane proteins2 and that many drug targets are located at or
near the cell surface (60% in 2006).3 Nevertheless, these percent-
ages are not reflected in the ratio of studies between soluble and
membrane proteins. Because of the requirement of a lipid bilayer,
membrane proteins are more complicated to crystallize or study
with NMR. Consequently less than 1% of the structurally resolved
proteins are membrane proteins.4 However, the number of mem-
brane protein structures in the pdb-database is rising quickly (see
http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html for a
maintained list) and thus their availability for computational studies.

Also on the simulation side, setting up a membrane protein
system requires additional efforts compared to soluble proteins.
First, an appropriate membrane model has to be selected for
which parameters are available in the desired force field. Setting

up plain membrane simulations can now be considered standard
procedure1 and hence will not be further discussed here. Further-
more, many equilibrated membrane patches and the corresponding
force field parameters can be downloaded from webservers (URLs
given in1) maintained by research groups specialized in membrane
simulations. Second, and crucially, once a suitable membrane is
selected the protein has to be embedded in the membrane before the
production runs can be performed.

Several protocols have been suggested to insert a protein into
a lipid bilayer, but up to now no standard has been established,
mainly for reasons discussed later. The simplest way to insert a
protein is to remove lipids and solvent molecules that overlap with
the protein after combining the coordinate sets (X, Y , Z). However,
the highly disordered nature of lipid tails results in an irregular and
oversized hole and hence a poor lipid-protein packing. Long sim-
ulation runs are then needed to equilibrate the system. To obtain a
good lipid-protein packing one can build a lipid bilayer around a
protein from preequilibrated and prehydrated single lipids.5 Unfor-
tunately, assembling the bilayer from uncorrelated lipids will result
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Figure 1. The embedding proces. Three snapshot of a protein (Reaction Center, see Table 1) grown
within the membrane using g_membed are shown in top view (upper) and side view (lower). The
protein, membrane and water are displayed as Van der Waals spheres and colored yellow, blue, and
red/white, respectively. The width of the protein in the membrane plane is 0.1, 0.55, and 1.0 for
step 1, step 500 and step 1000, respectively. Also the length of the box-vectors are shown.

in bad contacts (overlapping atoms), which require extensive opti-
misation by, for instance, rigid body translation and rotations.5 A
more sophisticated method uses repulsive forces to create a hole at
the intended protein position before inserting the protein itself.6, 7

This will result in a proper lipid-protein packing in an equilibrated
membrane, but needs considerable tuning by the user to find the
optimal hole generating parameters.8 Recently, it has also been
proposed to inflate the lipid bilayer, insert the protein and then,
alternatingly deflate the lipid bilayer in small steps and perform an
energy minimization, until the area per lipid reaches the reference
equilibrium value.8 However, this method cannot be applied with
a solvated membrane and thus requires resolvation. Furthermore,
it is not clear if the membrane remains in equilibrium during the
deflation procedure. The lipid tails that were entangled in the equi-
librated membrane are likely to clash when going from a very diluted
(inflated) to a fully packed membrane, resulting in a different pack-
ing of the lipid tails. Finally, with coarse grained simulations it is
possible to let the lipids self-assemble around the membrane pro-
tein.9 Unfortunately, the level of detail of coarse grained simulation
might not be sufficient to assess the relevant interactions in mem-
brane proteins adequately. Also the inverse mapping problem, i.e.,
obtaining the atom positions from the coarse grained coordinates,
is highly nontrivial.

To address the issue more systematically, we propose that an
insertion method needs to fulfil four requirements: (1) It should be
easy to use, without the requirement of parameter tuning or manual
intervention during or after the embedding process. (2) It should
yield a structure that is close to equilibrium, to reduce the equi-
libration simulation time before production runs. (3) It should be

easily automated, to allow for large scale high-throughput simula-
tions. (4) It should be distributed as part of a popular MD package,
to maintain availability, functionality and retraceability. None of
the aforementioned methods satisfies these four criteria and there-
fore we developed a new Gromacs10 tool, g_membed, that grows
a protein into a lipid bilayer during a short md simulation (1000
steps typically). By using an already hydrated and equilibrated lipid
bilayer the output system (protein embedded in the solvated mem-
brane) only requires a short equilibration run (maximal 1 ns in
our test systems) to reequilibrate the membrane part of the sys-
tem. Finally, by making g_membed part of Gromacs availability,
functionality, and retraceability is guaranteed.

Method

The basic idea is to slowly grow the protein into an already equili-
brated membrane, thereby pushing away the lipids and waters and fit
the protein nicely into the lipid bilayer. Starting point of the growth
process is the narrowed protein, where the narrowing of the protein
is performed within the membrane plane, but not in the direction of
the membrane normal. In the limiting case, all protein atoms start on
a line perpendicular to the membrane plane. Shrinking the protein
in 2D instead of 3D is crucial, as it avoids severe perturbation of
the lipids, especially when approaching the limiting cases (a line
instead of a point). The growth phase itself is a short md run. After
each md step the size of the protein is slightly increased until the
protein has reached its initial size (see Fig. 1 for a typical exam-
ple). During this process all protein–protein interactions, including
bonded interactions, are switched off.
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Table 1. Systems Used to Test g_membed.

pdb-Code Atoms (nr) Aprot(nm2) Membrane

Integrin αIIbβ311 2K9J 1413 5.78 popc
β-Barrel Platform12,a 2JMM 2372 9.52 popc
Reaction Center13 1PRC 22,196 29.59 dopc
Yeast Aquaporin14 2W2E 15,868 39.10 dopc
β-Barrel Platform12,a 2JMM 1584 7.25 pope (vesicle)

aThe discrepancies are due to the use of different force fields.

The method, as implemented into the Gromacs tool g_membed
(embedding a protein within a membrane) requires a file with the
protein structure overlapping the lipid bilayer spanning the xy-plane
at the desired position and orientation as input (we assume the user
already has this knowledge about the system). Optimal placement of
the protein with respect to the membrane will avoid needlessly-long
equilibration runs after embedding. In the case of a curved bilayer
(e.g., a vesicle), it is important that the protein is overlapping a mem-
brane part that has its normal directed along the z-axis. g_membed
then performs the following steps to embed the protein (or any other
desired group of atoms defined as a Gromacs index group) within a
lipid bilayer.

1. Protein narrowing—The coordinates of the atoms in the protein
are scaled with respect to the geometrical center of the transmem-
brane part of the protein by a user specified scaling factor of the
original (input) coordinates in the xy-plane and, if applicable, in
the z-direction. Normally the protein should not be scaled in the
z-direction. However in special cases, such as a protein that has
the same height as the bilayer, increasing the size of the protein
in the z-direction prevents lipids to envelop the protein during
the growth phase.

2. Remove overlapping molecules—Every molecule not part of the
protein for which at least one atom is within a user defined radius
of a protein atom will be removed. If the difference between
the number of lipids removed from the lower (nlower) and the
upper (nupper) membrane leaflet is not equal to a user defined
number (ndiff ), i.e., nlower − nupper �= ndiff , additional lipids will
be removed, such that this equality will be obtained. This option
is usefull when inserting an asymetrically shaped protein.

3. Growth phase—Iterate steps 3a and 3b nxy + nz times to grow
the narrowed protein to its original size.
a. md step—Do a normal md step.
b. Protein resizing—Change the atom coordinates of the protein

by linear interpolation between the coordinates of the nar-
rowed protein (step 1) and those of the input configuration by

ri = rgeom + si · (r0 − rgeom) (1)

si =




si,x = si,y = s0,xy + i·(1−s0,xy)

nxy
and si,z = s0,z

i ≤ nxy

si,x = si,y = 1 and si,z = s0,z + (i−nxy)·(1−s0,z)

nz

nxy < i ≤ nxy + nz

(2)

with ri the protein atom coordinates at step i, r0 the input
atom coordinates of the protein, rgeom the coordinates of the

geometrical center of the transmembrane region, si the scaling
factor at step i, s0,xy, and s0,z the initial scaling factors and nxy

and nz the number of embedding steps in the xy-plane and the
z-direction, respectively. This way the atom coordinates of the
proteins reach the input configuration in nxy steps in the xy-
plane and, if applicable, after the xy-dimension is completely
expanded in nz steps in the z-dimension.

The output will be a file containing the protein structure properly
embedded in the membrane. All atom coordinates of the protein in
the output file will be equal to the coordinates provided in the input
(see the Appendix for a user manual).

Case Studies

As a test we have applied g_membed to insert four proteins of var-
ious shape and size: Integrin αIIbβ3 2K9J,11 β-Barrel Platform
2JMM,12 Reaction Center 1PRC,13 and Yeast Aquaporin 2W2E14

(see Table 1). We have embedded the first two into a united-atom
(POPC15, 16) and the latter two into an all-atom (DOPC17) mem-
brane. In addition, we have embedded the β-Barrel Platform within
the lipid bilayer of a vesicle (POPE), see Figure 2. The crystal waters
available in the Reaction Centers pdb entry were preserved and con-
sidered as part of the protein. Initially, the width of the protein in
these tests was scaled to 10% of the full-size protein (s0,xy = 0.1).
All proteins listed in Table 1 were inserted successfully within the
bilayer within 1000 md steps.

To assess the time required to reach equilibrium after embedding
the protein within the membrane, a 10 ns standard md simulation
was performed after the embedding (insertion within the vesicle not

Figure 2. A protein embedded in a vesicle bilayer. The β-Barrel plat-
form (yellow) has been embedded within a POPE vesicle (blue) in water
(red/white) with g_membed.
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Figure 3. Equilibrating a system after embedding a protein with
g_membed into a membrane starting with an initial scaling factor of
0.1. The area per lipid (Alip, eq. 3) as a function of simulation time
shows that within 1 ns the equilibrium area per lipid is reached.

included). Figure 3 shows the area per lipid (Alip) as a function of
time, where Alip is obtained through

Alip = 2 ∗ (Axy − Aprot)/nlip (3)

with nlip the number of lipids in the membrane, Axy the area spanned
by the x- and y-box vectors (membrane plane) and Aprot the protein
area estimated by projecting all the atoms of the protein that over-
lap the membrane slab on a two-dimensional square grid in the
xy-plane and summing the area of all grid elements that contain
a protein atom. From Figure 3 it is clear that already within 1 ns
the system reaches the equilibrium area per lipid. For a pure popc
and dopc membrane system we found an area per lipid of 0.59 and
0.62, respectively, which is slightly higher than the values we found
for the protein-membrane system. This discrepancy can partly be
explained by the fact that the protein area is overestimated, result-
ing in an underestimation of the area per lipid. Furthermore, since
the influence of proteins on lipid properties is still not completely
understood, it is not clear whether the area per lipid should actually
be unchanged after protein insertion.18, 19

Reaching the equilibrium area per lipid does not necessarily
imply that the membrane is in equilibrium. As a more rigorous test,
we therefore also analyzed the deuterium order parameter, SCD, a
measure for the amount of disorder in the lipid tails. Comparing
the deuterium order parameter before and after embedding the pro-
tein into the membrane did not show any significant differences. In
addition, we calculated the density profile of water normal to the
membrane plane to compare the hydration of the membrane. Also
here we found no significant difference before and after embedding
the protein. Monitoring the deuterium order parameter and the water
density profile normal to the membrane over time indicate that the
membrane is still in equilibrium.

To determine the time required to reach area equilibrium, we
calculated the relaxation time τ associated with the area per lipid
by fitting

Alip = 〈Alip〉 − A0 ∗ exp(−t/τ) (4)

to the area per lipid as a function of time (Fig. 3). In eq. 4, 〈Alip〉 is the
ensemble average of the area per lipid, where we averaged over the
2–10 ns time interval and A0 the fitted difference with 〈Alip〉 at t = 0.
The resulting relaxation times are listed in Table 2, column 0.1.
The average relaxation time within the scaling factor range 0.1–0.3
(including data not listed in Table 2) is 180 ± 190 ps. From this value
and the values listed in Table 2 we expect that a 1 ns equilibration
run suffices after embedding a protein in an equilibrated membrane
using g_membed. Nevertheless, as the number of cases studied here
is limited, the required equilibration time might differ for some
specific systems.

Finally, we examined the influence of the protein scaling fac-
tor s0,xy used in the first step of the embedding process. We expect
that a larger initial scaling factor implies slower equilibration, since
more lipids have to be moved to accomodate the protein. We embed-
ded a Yeast Aquaporin tetramer and the β-Barrel Platform starting
with initial scaling factors ranging from 0.1 to 0.7, followed by a
10 ns standard simulation. The root mean square deviation (rmsd)
of the Yeast Aquaporin tetramer with respect to the X-ray structure
approaches the same value, 0.15 nm, for all initial scaling factors,
whereas the rmsd for the β-Barrel Platform ranges from 0.3 to 0.6
nm without any correlation to the initial scaling factor. These find-
ings indicate that the protein structure is unperturbed by the initial
scaling factor. Table 2 shows the relaxation times of the area per
lipid for different initial scaling factors. These values show that
indeed our hypothesis that a smaller scaling factor implies slower
equilibration is true. When the scaling factor approaches a value,
for which the removed lipid area is only slightly smaller than the
estimated protein area (0.6 and 0.7 for the β-Barrel Platform and
Yeast Aquaporin, respectively) the perturbation to the membrane
as measured by the area per lipid, deuterium order parameter and
water density profile is minimal in the cases tested. The length of
the simulation to equilibrate the system is then mainly determined
by the equilibration of the protein.

Conclusions

We have presented a program, g_membed, for efficient insertion
of a protein structure into a hydrated and equilibrated membrane.
g_membed can handle both flat and curved membranes, thereby
for instance also allowing embedding of protein structures within
vesicle bilayers. The program only minimally perturbs the proper-
ties and the hydration of the system during protein insertion. As a
consequence short subsequent equilibration runs suffice, enabling
drastically increased throughput. In addition, one set of parameters
(set as default) can be aplied to insert proteins of various shape and

Table 2. Relaxation Time τ(ps) of the Area per Lipid After Embedding the
Protein in a Membrane with Different Initial Protein Sizes.

Initial protein scaling factor s0,xy

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Protein Integrin αIIbβ3 (popc) 2
(membrane) β-Barrel Platform (popc) 113 115 622 2 2 0

Reaction Center (dopc) 306
Yeast Aquaporin (dopc) 153 66 49 0
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size into an arbitrary lipid bilayer, suggesting this set to be useful
for most proteins.

We consider the following two setups most useful. (1) The pro-
tein is embedded within a membrane slab that is relatively small
compared to the protein size, so that a small number of lipids should
be removed. Consequently, the initial scaling factor s0,xy needs to
be set to a very small value (e.g., 0.1 of the full protein size). After
embedding, a 1 ns equilibration is recommended to reequilibrate the
membrane, but longer equilibration times may be required for the
protein. This setup is the default for g_membed. (2) Alternatively, if
the protein is to be embedded within a membrane slab that is large
with respect to the proteins size, the protein scaling factor s0,xy can
be set to a value, such that g_membed removes a lipid portion that
is slightly smaller than the estimated protein area (depending on
the protein size a scaling factor between 0.5 and 0.7). In this case,
the perturbation of the system is even smaller, and the length of the
equilibration run is determined by the time it takes to equilibrate the
protein structure.

Computational Details

g_membed

As g_membed uses the molecular dynamics code implemented in
Gromacs,10 all system options available to a standard md simula-
tion also apply to g_membed. The Integrin αIIbβ3 and the β-Barrel
Platform were simulated using the OPLS-AA force field20 and
embedded in the popc lipid bilayer15, 16 combined with simple point
charge (SPC) water.21 For the Reaction-Centre and Yeast Aquaporin
we used the Amber03 parameter set22 with the dopc membrane17

and TIP3P water.23 During embedding of the β-Barrel Platform
within the pope vesicle we applied the Gromos-87 force field24 with
SPC water.

To insert a protein in the membrane by g_membed, 1000 time
steps were performed. A Van der Waals cut-off of 1.4 nm was used

and the electrostatic interactions were treated using PME25 with a
real space cut-off of 1.0 nm. All bonds were constraint using the
LINCS algorithm,26 allowing a time step of 2 fs. The temperature
and pressure were kept constant at 300 K and 1 bar using veloc-
ity rescaling27 and Berendsen semi-isotropic pressure coupling,28

respectively. Protein–protein interactions were excluded and the
atoms of the protein were set to the position specified in step 3
of the g_membed protocol.

Equilibration Runs

After embedding the protein in the membrane a 10 ns equilibra-
tion run was performed. The same system parameters were used as
during embedding, with the exception that the temperature of the
popc simulations was set to 323 K to prevent ordering of the bilayer.
Also, the protein–protein interactions are not excluded and the atom
positions of the protein are no longer fixed.
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Appendix: Manual

The required input for g_membed is a tpr-file containing the group
to embed (further called protein) and the (solvated) membrane.
The protein should be placed at the desired position and orienta-
tion overlapping the lipid bilayer by using for instance pymol.29

If the position and orientation of the protein is satisfactory, merge
the protein and (solvated) membrane structure files into one (e.g.,
merged.gro) and create a matching topology file.

Download sample.mdp from our website (http://wwwuser.
gwdg.de/∼ggroenh/membed.html) or set the following options in
an mdp file.

integrator = md
energygrp = Protein (or other group that you want to insert)
freezegrps = Protein
freezedim = Y Y Y
energygrp_excl = Protein Protein

Generate the input file for g_membed, input.tpr, with the gromacs
preprocessor.

grompp -f sample.mdp -c merged.gro -p merged.top -o input.tpr

Then run

g_membed -f input.tpr -p merged.top -xyinit 0.1 -xyend 1.0 -nxy 1000 or
g_membed -f input.tpr -p merged.top -xyinit 0.1 -xyend 1.0 -nxy 1000 -zinit 1.1 -zend 1.0
-nz 100
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and select the group that has to be inserted. The options of
g_membed are -f the required input tpr-file, -p to update the num-
ber of molecules in the topology file, -xyinit and -zinit the
scaling factor for the width and height, respectively, of the protein
in the membrane plane at the start of the embedding and -nxy
and -nz the number of steps to reset -xyinit and -zinit to

-xyend and -zend, respectively. If the protein is (very) asym-
metric in shape use -ndiff to remove more lipids from the lower
(negative integer) or upper (positive integer) leaflet.

Finally, a 1 ns equilibration run should be run before performing
any production runs.

grompp -f equi.mdp -c membedded.gro -p merged.top -o equilibrate.tpr
mdrun -deffnm equilibrate

When the group to embed is not a default group, such as a pro-
tein and its crystal water, an ndx file should also be provided to
g_membed. Make sure all the molecule types in the group to embed
are unique, e.g., the molecule type of the crystal waters should be
different from that of the solvent. Also the freeze and energy exclu-
sion parameters in the mdp file should be changed to match the name
of the group to embed.

Note that the program will also issue a warning for most common
mistakes we have encountered (will be updated).
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Interactions of proteins with inorganic surfaces are of high importance in biological events and in modern
biotechnological applications. Therefore, peptides have been engineered to recognize inorganic surfaces with high
specificity. However, the underlying interactions are still not well understood. Here, we investigated the adsorption of
amino acids as protein building blocks onto a Au(111) surface. In particular, using molecular dynamics simulations, we
calculated the potential of mean force between all the 20 amino acids and the gold surface. We found a strong
dependence of the binding affinities on the chemical character of the amino acids. Additionally, the interaction free
energy is correlated with the propensity of amino acids to form β-sheets, hinting at design principles for gold binding
peptides and induction of β-sheet formation near surfaces.

Introduction

Interactions of proteins with inorganic surfaces are involved in
several biological processes1 such as hard-tissue growth,2 cell-
surface adhesion,3 and inhibition of ice formation inside cells.4

The physiologically important event of protein interaction with
inorganic surfaces recently obtained new attention emerging from
the ability of engineered peptides5 and antibodies6 to recognize
specific target inorganic surfaces, which bears promise for appli-
cations in fields such as nanobiotechnology and biomedicine.7

In this framework, gold is a particularly relevant material for
different reasons: Combinatorial techniques yielded peptides with
high affinities for gold,5,8,9,10 and self-assembled nanosystems
have been suggested as leveraging such optimized gold-protein
interactions.9,7,11,12 In addition, gold is important for techno-
logical applications (e.g., contacts in bioelectronics) due to its
biocompatibility and well-behaved properties.

Despite the importance of protein-surface interactions, the
underlying physicochemical principles are still not fully under-
stood. The crucial first step in a bottom-up approach aimed at

understanding the interactions of proteins with gold surfaces is to
focus on the building blocks of proteins, the natural amino acids.
At this level, several important questions can be addressed: What
is the relative strength of the interaction between amino acids and
gold surfaces?How do these correlate with the intrinsic properties
of amino acids, such as hydrophobicity and secondary structure
propensity? Computational methods can contribute to answering
these questions and provide deepened insight into the atomistic
foundations of protein-surface interactions.13,14 However, full
quantum mechanical approaches for even the single amino acids
on surfaces in vacuo are computationally demanding, and have
been performed only for a few systems.15-18 A computationally
more feasible approach is using molecular dynamics simula-
tions as described for some peptides or amino acids on gold
surfaces.8,19-22 Problematic here is the polarizability of metal
surfaces, which is difficult to include in classical force fields.
However, new force fields tailored to describe the interactions of
biomolecules withmetal surfaces appeared recently.19,23 Based on
one of these, developed for the gold (111) surface, we have
performed extensive molecular dynamics (MD) studies on the
free energy of adsorption, answering the question of relative
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interaction strengths between the amino acids and gold surfaces.
Our results correlate with available experimental data and show
a clear dependency of the interaction free energy depending on
the chemical nature of the amino acid. We also analyzed the
correlation between the obtained free energies of adsorption and
other intrinsic physiochemical properties of amino acids. Here we
found a correlation of the β-sheet propensity of amino acids with
the free energy of binding, hinting at a valuable design principle
for gold binding peptides.

Materials and Methods

For the MD simulations, we used the recently developed GolP
force field23,24 which extends the OPLS/AA25 force field by
interactions of amino acid building blocks with Au(111) and
includes a term describing metal polarizability. All simulations
were performed in explicit (SPC) solvent, Nose-Hoover tem-
perature coupling at 300 K, integration time steps of 2 fs, particle
mesh Ewald for electrostatics above 1.1 nm, as well as a switch
cutoff for van der Waals interactions (0.9-1.0 nm). The gromacs
3.3.326 simulation package was used for all constrained and free
simulations of amino acids.We chose to simulate in physiological
ion concentration (150mMNaCl) with a neutralized box to avoid
effects from particle mesh Ewald background charge on the
potential of mean force (PMF) calculations.27 Each setup was
prepared by energy minimization with a steepest descent algo-
rithm followed by a position restrained run with a Parrinello-
Rahman barostat coupled to the z-direction for 1 ns to scale the
box size after solvation.

All amino acid termini were capped to mimic a peptide chain
and to prevent interactions of charged amino or carboxylmoieties
with the surface. The N-terminus was extended with an acetyl
group; for the C-terminus, an N-methyl moiety replaced the OH
group of the carboxylic acid. The obtained capped amino acids
were placed in a 4.5 nm� 4.3 nm� 4.7 nm box containing a gold
slab with five layers. The side chain topologies were set according
to the protonation state suitable for neutral pH.

Free adsorption simulations of amino acids were performed
with starting structures with the center ofmass (COM) placed>1
nm away from the surface. The time per simulation was 5 ns.

In unrestrained simulations, the COM of an amino acid can
move freely within the simulation box. The average force that one
has to apply to the COMof an amino acid to restrain it at a given
distance from the surface corresponds to the negative thermo-
dynamic force acting on the COM at the given distance. Simulat-
ing the amino acid at different distances and integrating over the
distances of restraining forces yields the free energy of association
as given by the PMF. We used an initial pull simulation starting
from the middle between the slab surfaces to generate input
structures at different distances from the surface for the con-
straint-biased simulations. From the pull simulations, 4 sets of
input conformations each consisting of frames in 27 different
distances from the surface were set up. The first 0.4 nm were
sampled in 0.025 nm steps, the following 0.2 nmwere sampled by
0.05 nm steps, while for the remaining 0.6 nm steps of 0.1 nmwere
applied. In each simulation, a harmonic spring with a spring
constant of 5000 kJ/mol/nm2 in the z-direction was used to
constrain the COM of the amino acid (stiff spring approxi-
mation). The xy-translations as well as rotations were not con-
strained. Only the last 0.5 ns of the 5 ns simulations were used for
analysis. The restraint forces during the simulations were moni-
tored for each amino acid and distance. An average of these
forces was then mathematically integrated in order to obtain

relative free energy differences. The boundary condition of free
energy A = 0 kJ/mol at our maximum separation distance of
2 nm yielded the integration constant. The standard error of
the adsorption free energy was calculated by first taking the
block average of the force28 and then propagating the errors
in the integration. These standard errors were between 1.6 and
3.5 kJ/mol.

Results and Discussion

Adsorption Free Energies.A crucial question in understand-
ing the interaction of amino acids with gold surfaces is the free
energyof interaction.Different strategies can be employed for this
task. Recently, it has been demonstrated that the potential of
mean force calculated from constrained biased simulations is a
computationally effective and within the limits of the applied
force field accurate way to compute free energies of interacting
particles.29 Using constrained biased simulations, a reaction
coordinate between the two states of interest needs to be defined.
For the interaction of amino acids with a surface, the reaction
coordinate is the distance between the COM of each amino acid
and the gold layer (Figure 1). Using this, we computed the PMF
for all amino acids by monitoring and averaging the constraint
force at a given distance (Figure 1). Integrating this force versus
distance yields the free energy of association (Figure 1 and
Table 1). Cys, containing a thiol group, is known to chemisorb
onto gold surfaces. Scanning probe microscopy experiments
showed that Au-S bond formation can induce surface defects
upon adsorption.30 Later on, combined crystallographic and
theoretical studies revealed the substructure of the vacancies.31

The description of bond breakage and bond formation is beyond
the capabilities of our method. Therefore, in our simulations, we

Figure 1. (a) PMF calculation based on constraint biased simula-
tions at different distances. (b)Mean force (MF) plot which can be
integrated. (c)Free energydifferences for eachaminoacidobtained
from the PMF in kJ/mol.
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do not calculate chemisorption, but only the initial phase of
association. Our strongest obtained interaction energies aremuch
smaller than the adsorption energy predicted for the Au-S bond
(∼200 kJ/mol),31 and therefore, less disruptive effects on the gold
surface are expected. While our interaction energies may not be
directly comparable with this Au-S value (we are calculating free
energies, in solutions), the directly comparable interaction en-
ergies of neutral chemical groups composing the natural amino
acids are also much smaller than the Au-S value.19,23 However,
the energy needed to form a defect on the Au surface is not very
high (around 50 kJ/mol)31 and is within the range of our here
computed energies. Therefore, our modeling assuming an ato-
mistically flat and rigid surface might underestimate effects
stemming from structural reorganization upon the adsorption
process, in particular in the dense covered regime. However, our
approach using a flat surface for weakly bound molecules is
supported by ab initio modeling of water,32 phenylalanine,15 and
imidazole,33 where only minimal rearrangements of the Au(111)
surfaces were found. Yet, more computational and theoretical
work is needed to gain deeper insight into the effects of surface
irregularities on the adsorption.

From our simulations, we observe a general trend following
aromatic < sulfur < positive < polar < aliphatic ∼ negative.
Several factors (such as electrostatic, dispersion, metal polariza-
tion, direct chemical interactions, hydrophobic effect) may con-
tribute to determine this order. From previous computational
studies,23,33,34 we know that His and Met side chains can create
interactions approaching covalent bonds, although the resulting
interaction is much weaker than that for deprotonated thiols and
Cys. This explains their high affinity for gold. For aromatic amino
acids, stronger-than-expected interactions were also observed.23

These strong interactions may be caused by π-electron mediated
effects. Moreover, the planarity of aromatic amino acids allows
maximizing the dispersion interaction with the equally planar
surface. Remarkably, although the interaction is so favorable
with aromatic amino acids, the surface is not behaving hydro-
phobically, since apolar aliphatic amino acids have poor binding
affinities. The different behavior of positive and negative amino
acids is surprising, considering that the gold surface is overall
neutral. We are performing more work on this result, but the
origin of this difference (that may also be related to the different
structures of Arg and Lys with respect to Glu and Asp, and not
only to their different charges) is not well understood yet.
Comparison with Experimental Data. Most of the experi-

mental literature mainly focuses the on the strong binding of
sulfur containing amino acids to gold surfaces. Moreover, even if
several gold-binding peptides have been reported so far (e.g.,
refs 5 and 8-10), experimental data for amino acids binding
affinity to gold, that would be directly comparable with our
results, are lacking. Thus, the here reported values for adsorption
free energies are computational predictions waiting for experi-
mental verification. Nevertheless, the soundness of these predic-
tions can be estimated by comparison to experiments on related
systems in the weak binding regime. Recently, the coverage of

different inorganic surfaces with homopeptides of natural amino
acids has been reported. Unfortunately, the sensitivity for mea-
surements on gold surfaces was too low to allow quantitative
comparison to our data.35 In a peptide library screened for gold
binding peptides, Arg, Trp, Tyr, and Cys were overrepresented in
strong binding peptides, in agreements with our results.11 How-
ever, the method used to discriminate between strong, medium,
and weak binders in ref 11 (based on adhered cell counting) does
not directly measure the gold-binding affinity of the peptides, a
fact that further decreases the comparability with our calculated
data.Reference 11 indeed reports absorption free energydata, but
for some specific peptides and not for single amino acids.

Our computed energies correlate with experimentally deter-
mined affinities of peptides displayed on phage viruses.9 In this
experiment, the strongest interacting, nonsulfur containing
homohexamers were Trp and His.

Both residues are also strongly interacting in our simulations.
Interestingly, other aromatic residues like Phe did not interact
strongly in the experimental system. This may be caused by
intramolecular hydrophobic or π-stacking interactions in these
homomeric peptides, which prevent the side chains from inter-
acting with gold in the experiments. The authors of the experi-
mental study also designed histidine-containing heptapeptides
(XHXHXHX, where X is a variable amino acid). Our energies
correlate with the gold coverage of phage viruses expressing these
peptides (Figure 2A), although the correlation is not very strong.
The experimental system with small, heterogeneous peptides
expressed on phage viruses is different from the system simulated
here in many regards. In the experiment, possible cooperative
effects between the histidine and the amino acids are likely, in
particular since the experimental system was dependent on the
exact sequence of X and His, and not only on the relative
composition. This underlines the difficulties encountered when
comparing the experimental results with our simulations. Despite
these considerable differences in the systems, the correlation is
encouraging.
Relation with Intrinsic Amino Acid Properties. Interest-

ingly, the association energy is correlated with the energy of
amino acids to be brought from a water/lipid interface to bulk
water as determined by Wimley and White36 (Figure 2B). This
experimental system is conceptually similar to our simulations,
since it measures the distribution of amino acids in a hetero-
geneous system containing a two-dimensional surface. The ob-
served correlation is an indication for a rather hydrophilic nature
of the gold surface in our simulation, in agreement with the low
contact angle of water on gold.37

As expected, the interaction free energy is also correlated with
the size of the amino acid (Figure 2C). The importance of sterical
contact between gold and interacting biomolecules has been
recognized before. In one of the early studies on this subject, a
strong correlation between protein size and the protein’s affinity
to gold nanoparticles has been described, in accordance with our
simulations here.38

Table 1. Absolute Value of the Interaction Free Energy in kJ/mol of the Noncovalent Association of the Amino Acids with a Gold (111) Surface

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

21.9 36.3 26.1 25.5 37.7 28.6 17.5 23.6 34.0 25.1 25.4 30.0 39.3 43.6 26.0 23.1 28.9 40.2 44.2 24.8
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Lett. 2003, 90, 216102.
(33) Iori, F.; Corni, S.; Di Felice, R. J. Phys. Chem. C 2008, 112, 13540–13545.
(34) Hoefling, M.; Iori, F.; Corni, S.; Gottschalk, K. E. ChemPhysChem, in

press; DOI: 10.1002/cphc.200900990.

(35) Willett, R. L.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 7817–7822.

(36) White, S. H.; Wimley, W. C. Annu. Rev. Biophys. Biomol. Struct. 1999, 28,
319–365.

(37) Schrader, M. E. J. Colloid Interface Sci. 1984, 100, 372–380.
(38) Deroe, C.; Courtoy, P. J.; Baudhuin, P. J. Histochem. Cytochem. 1987, 35,
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Surprisingly, the interaction energies are rather strongly corre-
latedwith the propensity of a certain amino acid to form a β-sheet
(when excluding Ile and Val), but not with the propensity to form
a helix (Figure 2D and E). The gold surface favors conformations
that allow contact of the backbone of the amino acid. These
conformations are not available in helices, pointing at an unfold-
ing propensity of gold surfaces for folded, helical proteins. In fact,
amino acids having high β-sheet propensity have intrinsically
preferredΦ,Ψ angles39 that are ideally suited to interact with the
surface (with β-sheet-like angles, the entire backbone including
the capping can contact the surface). On the contrary, the other
amino acids have to distort from their preferred conformation to

maximize the interaction with the surface, an effect that will cost
energy. Therefore, our results are an indication that the gold
surface may induce β-sheet-like conformations, a finding that
points to a future design principle for gold-binding peptides. In
line with our observation here, it has been suggested that other
surfaces such as graphite induce β-sheet-like conformations.40,41

This is structurally comprehensible, since β-sheet-like conforma-
tions allow maximizing the contact between the polypeptide and
the surface.
Adsorption Pathways. The potential of mean force computed

here provides detailed insight into the energy landscape of the
association pathways. The association of the amino acids with the
gold surface has a triphasic behavior (Figure 3). In an initial
diffusive phase, the potential of the gold is hardly influencing the
amino acid.At a distance of∼5 Å from the bound state, the slope of
the energy potential (equaling the force experienced by the amino
acids) increases significantly, and the amino acid associates with the
gold. In the final binding phase, the potential becomes even steeper.

As seen from an overlay of three representative PMFs onto the
vertical distribution function of water over the gold surface, the
phases correspond to the dewetting transitions. In the associative
phase, the center of mass moves through the second water layer,
and first contact ismadewith the gold surface.During the binding
phase, the center ofmassmoves through the final water layer, and
full contact with the surface is established. The constrained biased
simulations also allow a structural insight into the different steps
of association. As shown for the example of Asp, the amino acids
predominantly touch the gold surface first with their capped
backbone. However, in one of the four runs ofArg, first contact is
made with the side chain. Due to the length of this side chain, this
is one of the first contacts observed for all amino acids. Thismight
indicate that Arg may be of importance for the adsorption of
proteins on gold, since for proteins the backbone is in general not
available for the initial association. In this context, experimental
findings suggest Arg as a mediator for nanoparticle assembly.42

Figure 2. Correlation of computed energies with experimental
data. Y-axis corresponds to (A) phage display (here, the log of
the surface coverage as estimated from ref 9 is taken as y-axis); (B)
bilayer partition; (C) aminoacid surface area; (D) sheet propensity;
(E) helix propensity. Solid line, linear fit; dashed lines, 95%
prediction interval. Correlation coefficients are shown in Table 2.
Please note that, in direct comparison of energies (A and B), a
positive slope corresponds to correlation. Due to the sign in the
energy, this is reversed in the comparisonwith propensities and size
(C-E), and thus, a positive slope corresponds to anticorrelation.

Table 2. Correlation coefficients R corresponding to Figure 2a

R p

bilayer interface 0.57 0.01
surface area 0.63 <0.01
phage display 0.62 <0.01
helix propensity 0.08 0.69
sheet propensity 0.70 <0.01

a p is the probability to obtain this correlation by random numbers.

Figure 3. Changes in energy landscape during association of three
exemplary amino acids correlate with low solvent density in the
spatial distribution function (SDF).Different steps during associa-
tion are depicted with snapshots from Asp MD simulations.

(39) Swindells, M. B.; MacArthur, M. W.; Thornton, J. M. Nat. Struct. Biol.
1995, 2, 596–603.

(40) Kowalewski, T.; Holtzman, D. M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96,
3688–3693.

(41) Raffaini, G.; Ganazzoli, F. Langmuir 2004, 20, 3371–3378.
(42) Sethi, M.; Knecht, M. R. ACS Appl. Mater. Interfaces 2009, 1, 1270–1278.
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The adsorption pathway is analogous to the pathways postu-
lated for protein-protein interactions.43 In both cases, something
such as an encounter complex, where the two interacting partners
first meet, is formed. The last stage of complexation in both cases
is determined by the dewetting transition, allowing for maximal
contact.

The constrained simulations use an additional harmonic po-
tential acting on the amino acid that may restrict the conforma-
tional space. Therefore, we performed additional free, uncons-
trained simulations of the solvated amino acids positioned
more than 1 nm away from the surface to reveal the unbiased
adsorption pathway. All of the amino acids adsorbed within 5 ns
of simulation. In the majority of trajectories, the initial contact is
made by one of the backbone caps also in the unconstrained
simulations, indicating that the constrained simulations are in
equilibrium. The backbone caps are exposed, hydrophobic moi-
eties, which tend to minimize their solvent exposed surface.
Future studies of polypeptides, which do not require capping,

need to showwhether also in amore proteinlike context backbone
atoms form the initial contact. After initial contact, the equilib-
rium conformation is reached by further conformational re-
arrangements. The trajectories can be superimposed on the
energy landscape previously obtained by the PMF simulations
(Figure 4). The superimposition reveals that once the amino acid
passed the last barrier, it adsorbs ballistically despite the over-
damped environment in agreement with theoretical models.44

Time reversal of molecular dynamics simulations does imply that
the adsorption trajectory is also relevant for desorption. The
barriers observed in the energy landscape are reflected in in-
creased spatial probability density at the local minima. The
agreement between the distance distribution of the amino acid
relative to the gold surface in the free simulations and the free-
energy landscape obtained from the biased simulations gives
further confidence in the computed potentials of mean force.

Conclusions

In this Article, we described molecular dynamics simulations
for the natural amino acids on the gold (111) surface. The
obtained free energies of adsorption of the amino acids are
dependent on their chemical character. They reasonably correlate
with previous experimental findings in related systems. Addition-
ally, we found that gold surfaces may induce β-sheet-like con-
formations, hinting at a future design principle for gold binding
peptides. Simulations of individual amino acids provided are a
crucial first step in describing the interactions of more complex
biomolecular systems with inorganic surfaces. An important next
step is the investigation of potential cooperative effects between
amino acids9,45 and of whole peptides and proteins. However,
already this basic level revealed insight important for future
rational design efforts of gold-binding polypeptides.
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Figure 4. Energy landscape and free association. Left, Tyr; right,
Asp. Bottom: Superposition of a free adsorption trajectory (green)
with the energy landscape (black). Left axis, time of trajectory;
right axis, energy of energy landscape; x-axis, distance of COM of
amino acid from top layer of gold. Top: Spatial probability density
of amino acid at a given distance during unconstrained simulation.
The density was obtained from a distance histogram of the free
simulation. A low probability is observed at steep areas of the
potential.
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Abstract

Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer
from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also
distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics.
However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their
mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and
averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we
demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from
Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated
time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption,
energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET
kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close
resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached
Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to
experimental data. We identified cis-isomers and different static local environments as sources of the experimentally
observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory
demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results
show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile
tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET
efficiencies.
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Introduction

Since the development of the Resonance Energy Transfer

theory by Förster (FRET) in the late forties [1], and the definition

of this technique as a ‘‘spectroscopic ruler’’ in biological systems by

Stryer and Haugland [2], single molecule detection [3–5] and

time-resolved experiments [6] have opened up a new window to

probe inter- and intramolecular distances and motions. In a typical

experiment, donor molecules are excited by a laser pulse, and part

of the excitation energy is transferred to nearby acceptor

molecules. The transfer efficiency

E~
IA

IDzIA
ð1Þ

is measured via the donor fluorescence intensity ID and the

acceptor fluorescence intensity IA. Among other factors, E

depends on the distance R between the donor and the acceptor

fluorophores, as well as on the mutual orientation of their

respective transition dipole moments. After orientational averag-

ing, the distance dependency is described by Förster’s approxi-

mation,

E~
1

1z
R

R0

� �6
, ð2Þ

where R0 is the so-called Förster radius which denotes the distance

at which 50% of the donor excitation is transferred to the acceptor

molecule.

This relation is widely used to monitor structural changes in

biomolecules via FRET efficiency measurements [2,7]. To that

aim, donor and acceptor fluorophores are covalently attached to

specific sites of the macromolecule of interest. Taking into account
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the flexibility of the fluorophores and their linkers, the measured

intensities provide information on the mutual distance of these

specific sites [8–11]. The use of multiple dye pairs allows for

triangulation of biomolecules, which provides three-dimensional

structural information [10,12–16].

In single molecule setups, distributions and distance fluctuations

of individual molecules are accessible [4,17–19]. If the scatter of

the observed efficiency distributions in these experiments is

broader than the expected shot noise, distance distributions can

be estimated [20]. For distance changes in the biomolecule, which

are slow compared to the burst duration, time resolved

information is then accessible [21,22]. By recording millisecond

fluorescence bursts while the molecules diffuses through a confocal

laser volume, conformational motions in the same time scale have

been resolved [21,23,24].

FRET spectroscopy has proven particularly successful in

situations where the mutual orientation distribution of the

transition dipole moments can be considered isotropic and

uncorrelated. Examples are freely diffusing dyes, or dyes attached

to flexible and solvent-exposed parts of a protein [18] or nucleic

acids [10,11]. In this case, orientational averaging gives rise to the

well-known orientation factor k2~2=3, which is by convention

included within the Förster radius R0 [7]. In contrast to this

average k2, the instantaneous orientation factor k2 tð Þ can assume

values in the range of 0 to 4.

Particularly when triangulating biomolecules, however, the dye

motion is often far from isotropic due to steric restrictions set by

the biomolecule, as well as due to electrostatic or hydrophobic

interactions between the dye and the protein surface [25–30].

Since the mutual dye orientation is typically inaccessible to

experiments, the k2~2=3 approximation provides only qualitative

insights, unless the free and rapid reorientation of the dyes is

commonly verified by fluorescence anisotropy measurements [31].

For this reason, efficiency distributions rather than distances are

often reported.

The orientational dynamics uncertainty of fluorophores has

been addressed via several routes. Empirical, semi-empirical, and

theoretical models [32–36] for the orientational factor have been

developed, assuming that the dynamics of the dyes can indeed be

described by a time average. Recent computer simulations [37,38]

have suggested that the mutual dye orientation can be highly

anisotropic, with k2-values deviating markedly from 2=3 (0.24–

1.02 [38]; 0.71–2.81 [37]). R0 has been refined through

fluorescence quenching measurements of multiple fluorophores

[39].

Despite these efforts, three main problems remain. First, the

assumption of an isotropic dye orientation distribution is invalid or

difficult to establish in most cases [40,41]. Second, possible

correlations between the distance and dye orientation distribution

are neglected in the above treatments [38]. Third, the orienta-

tional sampling during individual bursts may be incomplete, in

which case the dye distribution relevant for the observed efficiency

depends on the duration of the bursts. In all three cases, applying

an average k2 – as opposed to the k2 of instantaneous and time-

dependent Förster transfer rate coefficients – leads to an additional

broadening of the efficiency distribution [25], and biased distance

distributions are obtained.

To overcome these limitations, we have developed an approach

that combines molecular dynamics (MD) simulations of a dye-

labeled biomolecule in solution with Monte Carlo (MC)

simulations of dye excitation, FRET transfer, and fluorescence

decay events. This approach involves four steps.

First, extended and fully atomistic MD simulations of the

solvated biomolecule, labeled with a FRET dye pair, serve to

cover the biomolecular dynamics at the fluorescence decay time

scales of the system. To capture structural motions that are slower

than the nanoseconds time scale accessible to MD simulation,

several MD trajectories are recorded starting from different

isomers and combined into a comprehensive ensemble using

appropriate Boltzmann weights.

In the second step, time-dependent mutual dye orientations

extracted from these trajectories are recorded. These orientations

are then used to derive time-dependent instantaneous resonance

energy transfer rate coefficients kT(t). Within a short time interval

Dt, these rate coefficients specify the probability pT tð Þ~Dt:kT tð Þ
that a FRET transfer event takes place, for each instant of time.

In the third step, using pT(t), a large number of MC runs is

carried out to simulate and collect many individual photon

absorption and excitation, FRET transfer, and emission events.

For each photon absorption event, an instant of the trajectories is

chosen randomly, and the probabilities are propagated appropri-

ately until a photon emission or radiationless decay event occurs.

After averaging over sufficiently many events, fluorescence

intensities ID and IA are calculated. The numbers of photos

recorded from the donor and the acceptor dyes, respectively,

finally determine an average FRET efficiency value E. Similar

approaches using dye conformations from simulations have been

proposed recently [42–45].

To mimic single molecule FRET (smFRET) experiments, in a

fourth step the emitted photons are collected into bursts according

to the experimental photon burst size distribution (BSD). The

efficiency in each burst is then calculated, and efficiency histograms

are obtained, similar to single molecule experiments. By construc-

tion, this procedure takes shot noise accurately into account.

This hybrid simulation approach will enable one to calculate

efficiency distributions that can be directly compared to measured

efficiency distributions. Vice versa, we will develop a systematic

approach to reconstruct distance distributions by combining the

dye orientation and photon statistics at hand with measured

efficiency distributions.

Here we apply this approach to a polyproline 15, 20, and 30-

mer [46] with two FRET dyes (Alexa 488 and 594, Fig. 1)

attached to both termini [2,31,45](Fig. 2A). As dye-labeled

polyproline chains have been widely used as ‘‘rigid rods’’ to test

the validity of the approximations underlying Förster’s theory, and

to gauge the Förster radius of several of FRET pairs in different

environments [2,31,45], much of the current understanding relies

on the particular properties of these systems. Initially assumed to

be quite rigid, all-trans polyproline helices were used in the

definition of FRET as a ‘‘spectroscopic ruler’’ [2]. This assumption

was challenged quite early [47,48], suggesting that polyproline

chains exhibit a substantial degree of flexibility [49]. The issue is

still not fully resolved.

For these reasons, polyproline flexibility has been revisited

recently by performing single molecule FRET recordings [31,50]

and simulations [45] on these molecules. Indeed, unexpectedly

broad efficiency distributions were seen, suggesting substantial

structural heterogeneity. A detailed analysis of single molecule

data showed the heterogeneity that persists on time scales greater

than 10ns [50]. Recent NMR experiments [45] pointed to a

considerable population of cis-isomers within all-trans polyproline

helices, which might contribute further to the structural flexibility

and heterogeneity of polyprolines. These findings put the

suitability of these molecules as ‘‘rigid rods’’ in question, and the

unexpected complexity of their dynamics requires a detailed study

of the structural ensemble in solution at room temperature.

Here we attempt a comprehensive characterization of the

polyproline structural heterogeneity by combining atomistic

FRET through Atomistic Simulation and Monte Carlo
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simulations with single molecule FRET data. Resting on a direct

comparison of single burst efficiencies collected over many bursts,

our approach is based on much fewer assumptions than the

standard interpretation of FRET experiments. In particular, this

approach includes k2 averages, on the basis of the detailed

molecular dynamics of the system, and cases where the motion of

the dyes is slower than the donor fluorescence decay time are

readily handled. Moreover, all possible correlations between the

dye movement and the distances are included, such that accurate

mutual orientation distributions are obtained. Finally, the

approach fully accounts for the photon count shot noise. Vice

versa, comparison with experiments will enable us to test our

approach. As we will demonstrate, our approach serves to

combine dye orientational dynamics from MD with experimental

FRET efficiency distributions at increasingly refined approxima-

tion levels.

The good agreement of distance distributions of polyproline

obtained by this approach with the reference distribution suggests

that this combination allows extraction of improved quantitative

geometrical information from single molecule FRET experiments.

By comparison with synthetic FRET data, the validity of the

reconstruction will be established.

Methods

System Setup
The studied system comprises a polyproline peptide of 15, 20 or 30

proline residues [46], an amino-terminal glycine and a carboxyl-

terminal cysteine residue, to which a succinimide ester and maleimide

derivatives of Alexa 594 and Alexa 488 dyes [52](Fig. 1), respectively,

are attached. Figure 2A shows the simulation system for the

polyproline-20 [53] within a rectangular simulation box. Figure 2B

depicts the box filled with explicit water molecules and 300mM
NaCl, corresponding to the ionic strength of 50mM sodium

phosphate buffer used in the experiment [31]. The number of

Naz and Cl{ ions was chosen such as to obtain a neutral system.

In aqueous solution the most stable configuration for polypro-

line chains is the polyproline II (PPII) helix [53,54], characterized

by dihedral angle values W,Y and V of {750, 1500, and 1800,
respectively [47], with the trans-isomer as the most favorable

configuration. Nevertheless, in water a marked fraction of cis

peptide bonds the PPII helices is observed. By NMR experiments

a fraction of approximately 10% for proline at the C-terminus of

the chain and 2% within the chain was measured [45], with trans

to cis transition times of 103 to 104 seconds [50,55]. As this is far

beyond MD time scales, separate simulations were performed for

all relevant isomers, for subsequent weighted averaging. To this

end, all possible isomers containing one single cis peptide bond

were considered, i.e., 20 cis-trajectories for the polyproline-20 with

dyes attached. Additionally, for polyproline-30, a subset of 61

isomers with cis-bonds at two positions was simulated.

Force Field
For water molecules, the TIP4P model was employed [56].

Force field parameters for the peptide were taken from a modified

OPLS-AA force field [57] including custom parameters for the

two dyes and their corresponding linkers. Alexa 488 and Alexa

594 are highly conjugated systems whose parameters are not

included within the standard OPLS-AA force field. Figure 1

depicts the atomic structure of the two dyes together with the

orientation of the transition dipole moments. All dye parameters

(bonded and Lennard-Jones) – except for the partial charges –

Figure 1. Dye and Linker Structures. Structure and transition dipole
moments of Alexa 488 and Alexa 594. The red arrows show the
orientation of the transition dipole moments. MarvinSketch was used to
draw the chemical structures, Marvin 5.3.0.2 , 2010, ChemAxon (http://
www.chemaxon.com).
doi:10.1371/journal.pone.0019791.g001

Figure 2. System Setup. (A) All-trans polyproline-20 molecular
structure including Alexa 488 (green) and Alexa 594 (red) dyes attached
by their corresponding linkers. The simulation box is shown in blue,
terminal prolines used to restrain the position are depicted in black. (B)
Fully solvated system is shown including Naz (blue) and Cl{ (yellow)
ions.
doi:10.1371/journal.pone.0019791.g002
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were assigned via an analogy approach from similar OPLS-AA

groups [58].

Because FRET occurs when the donor dye is in the excited state

and the acceptor in the ground state, partial charges of these

corresponding states were used in all our simulations for the dyes.

The fact that the partial charges calculated for the ground and

excited states differed only by a small amount suggests that the

effect of this simplified treatment on the dynamics of the dyes is

small. All partial charges were calculated by fitting to the

electrostatic potential surfaces (EPS approach [59]) obtained from

ab-initio B3LYP Density Functional Theory (DFT) calculations

with the 6-31G* basis set. All ab-initio calculations were performed

with the GAUSSIAN 03 program package [60]. First, for

reference, the point charges for the 20 natural amino acids were

calculated with B3LYP/6-31G* CHelpG population analysis to

assure compatibility of the derived charges with OPLS-AA. A

mean scaling factor of 0.9 was calculated by averaging the

multiplicative factors of each amino-acid, which minimizes the

mean square deviation between OPLS-AA and DFT charges

(amino-acid scaling factors shown in Suppl. Table S1).

For the ground state of the two dyes, the same protocol was

used. For the excited state, we determined charge differences with

respect to the ground state for each atom in two steps. First, point

charges were determined from Configuration Interaction Singlets

(CIS) calculations for the first excited state using the STO-3G basis

set. From these values, in a second step, point charges were

subtracted, that were obtained from Hartree Fock (HF) calcula-

tions with the same STO-3G basis.

For both, ground and excited state, the charges were averaged

to reflect the internal symmetry of the molecule, and scaled with

the previously calculated scaling factor of 0.9. Finally, a small

offset was added to all partial charges to re-establish the correct

total charge of the system.

Molecular Dynamics Simulations
All MD simulations were carried out with the GROMACS

4.0.7 simulation software package [61–63]. Each proline system

was energy-minimized by steepest descent to convergence.

Periodic boundary conditions were applied in all three dimensions.

V-Sites on hydrogens [64] were used allowing 4fs integration time

steps. After minimization, 10ns equilibration simulations were

performed. From the last 5ns of these simulations, starting

conformations for all subsequent production runs were selected at

random instances (Table 1). Solvent and ions as well as the solute

were separately coupled to an external temperature bath with a

time constant of 0:1ps applying the v-rescale algorithm [65,66].

The system was coupled to an isotropic pressure bath of 1atm
using the Parinello-Rahman algorithm [67] and a time constant of

1ps. Bond lengths were constrained to their equilibrium lengths

with LINCS [68]. The cut-off for Lennard-Jones interactions was

set to 1nm. Electrostatic interactions between charged groups at

distances below 1nm were calculated in direct space, while for the

long-range interactions the particle-mesh-Ewald method [69] with

a grid spacing of 0:12nm and fourth order spline interpolation was

used. All simulations were performed with random Maxwell-

distributed starting velocities at 293K, 303K, and 313K
(Table 1).

Soft restraints were imposed to suppress rotation of the entire

molecule in the box and thus to allow the use of a small simulation

box, adapted to the shape of the molecule. To this end, the

component of the difference vector perpendicular to the x-axis

(Fig. 2A) between the centers of mass of the two terminal prolines

was restrained to zero with a weak harmonic potential

(k~9:744kJmol{1 nm{2, corresponding to a Boltzmann distri-

bution of width s~0:5nm). We assume that these soft restraints

leave the internal dynamics of the molecule unperturbed.

Resonance Energy Transfer Rates
All FRET efficiencies were calculated from the MD simulations

using following kinetics,

DzA DzA

:kDi
:kAi

DzAzhn ? D�zA ?
kT(t)

DzA�

;kD ;kA

DzAzhnD DzAzhnA

ð3Þ

Starting after a photon adsorption event by the donor dye, this

kinetics is described by

_pp D�zAð Þ~{ kDi
zkDzkT tð Þ

� �
:p D�zAð Þ and ð4Þ

_pp DzA�ð Þ~kT tð Þ:p D�zAð Þ{ kAi
zkA

� �
:p DzA�ð Þ: ð5Þ

In Eq. 3, D=D� is the donor (Alexa 488) and A=A� is the acceptor

(Alexa 594) dye in their ground and the excited state, respectively.

hn,hnD and hnA denote the exciting photon and photons emitted

by the donor and the acceptor dye. The rate coefficients refer to

FRET (kT ), fluorescence and internal conversion of the donor

(kD,kDi
), and fluorescence as well as internal conversion of the

acceptor dye (kA,kAi
).

The rate coefficients were calculated from the lifetimes t of the

dyes and their respective quantum yields Q,

kD~
QD

tD
, kA~

QA

tA
, ð6Þ

Table 1. Performed molecular dynamics simulations.

Proline Length Isomer Temperature Number of simulations

K

pro15 all-trans 293 10

pro15 single-cis 293 30

pro20 all-trans 293 20

pro20 all-trans 303 10

pro20 all-trans 313 10

pro20 single-cis 293 40

pro30 all-trans 293 10

pro30 single-cis 293 30

pro30 double-cis 293 61

Simulations are listed according to isomer and applied temperature. Single-cis
simulation were carried out for all possible cis-isomer positions. For polyproline-
30, in addition, a representative set of 61 isomers, randomly picked from the
870 possible isomers with two cis bonds, was simulated. All simulation lengths
are 100 ns summing up to a total sampling of 22:1 ms.
doi:10.1371/journal.pone.0019791.t001
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kDi
~

1{QD

tD
, kAi

~
1{QA

tA

: ð7Þ

For the Alexa 488 and 594 dyes attached to polyproline peptides, we

used the measured lifetimes tD of 4:0ns and tA~3:9ns. To obtain

photon statistics directly comparable to the experiment, the

quantum yields were combined with the detector efficiencies into

(relative) effective quantum yields using the correction matrix

defined in Ref. [70]. In this framework, QA and QD correspond to

the diagonal correction matrix elements. For the simulations, we

averaged the two detector channels used in the experiment, yielding

0.77 and 1.0 for donor and acceptor effective quantum yields,

respectively. Crosstalk, direct acceptor excitation, and background

were found to change the photon statistics only by a small amount

and thus are neglected in our MC approach.

For the time-dependent FRET rate coefficient kT(t), which

depends on the electronic coupling between the two dyes and thus

also on their mutual orientation at each instant, we used Förster’s

dipole approximation for the electronic coupling,

kT~ kDzkDi

� � R0

R

� �6

: ð8Þ

In Eq. 8, R is the distance between the geometric center of the ring

system of the acceptor and the donor dyes, and R0 is the Förster

radius (the distance of 50% excitation transfer), which is

proportional to the time-dependent orientation factor k2,

R6
0~

9(ln10)QDJk2

128p5n4NA
~R6

const
:k2, ð9Þ

where QD is the quantum yield of the donor in the absence of the

acceptor, J the spectral overlap integral (Franck Condon factor),

NA Avogadro’s number, n the index of refraction of the solvent,

and k2 is the time-averaged orientation factor [3,70,71]. For the

pair Alexa 488 – Alexa 594, a Förster radius R0 of 5:4nm has been

determined [7,72], based on the assumption of isotropic dye

orientations i.e., k2~2=3. To describe time-dependent Förster

transfer, R6
0 in Eq. 8 is therefore replaced by R6

constk
2(t), with

Rconst~5:4nm=

ffiffiffi
2

3

6

r

~5:78nm.

The orientation factor

k2 tð Þ~ coshDA tð Þ{3coshD tð ÞcoshA tð Þ½ �2 ð10Þ

depends on the three relevant angles defined in Fig. 3. The

transition dipole moment orientations within the molecular frame

of the dyes were chosen parallel to the ring system plane, and

connecting the terminal rings of each dye (Fig. 1) [73].

Using the above framework, for all MD trajectories orientation

factors k2(t) and distances R(t) were calculated and stored for

each time step, thus obtaining time-dependent FRET rate

coefficients kT(t), which will be used below. Supplementary Video

S1 shows distance, orientation factor and transfer efficiency for an

exemplary trajectory.

We note that for small inter-dye distances (v2nm), when terms

of higher order than the dipolar are not negligible, Eq. 8 can be

replaced by multipole expansion of the coupling potential or the

transition density cube method [42,74] in a straightforward

manner, such that accurate FRET rate coefficients are also

obtained in these cases. In the present work, the dipolar coupling

potential was used.

Single Photon Generation
For direct comparison with smFRET burst counts, we

developed a Monte Carlo (MC) procedure to calculate single

burst FRET efficiencies from kT tð Þ. In the experiments, the arrival

times of individual photons from single molecules were recorded.

Accordingly, and following the kinetics scheme Eq. 3, multiple

individual photons were generated in a Monte Carlo process

(Fig. 4). For each photon, we proceeded as follows.

Figure 3. Geometry of dye orientations. Three angles define the
orientation factor k2 , the angle hDA between d̂d and âa, and the angles hD

and hA between d̂d and âa, respectively, and R̂R. The DR and DA plane are
defined by R̂R and d̂d as well as R̂R and âa.
doi:10.1371/journal.pone.0019791.g003

Figure 4. Photon generation by Monte Carlo. FRET transfer rate
coefficient vs. time, calculated from a molecular dynamics simulation
(box, left part). A random starting point on the trajectory is chosen at
which the donor dye is assumed to be excited by a photon (blue). Then,
for each time step the MC process on the right side is evaluated
according to the corresponding probabilities until de-excitation occurs.
Four de-excitation pathways are considered, thermal de-excitation of
donor or acceptor (dark-blue) and respective photon emissions (donor:
green; acceptor: red). The ratio of the collected donor and acceptor
photons is used to calculate a FRET transfer efficiency.
doi:10.1371/journal.pone.0019791.g004
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First, a random donor excitation instance was chosen from a

randomly chosen trajectory (Fig. 4 left). Next, the Markov scheme in

Fig. 4 (right) was iterated in time steps of Dt until either photon

emission or radiationless decay occurred (see Suppl. Video S2). In

the latter case, the MC run was discarded, in the former, the photon

(donor or acceptor) was recorded. During each MC cycle and using

an integration time step Dt~1ps, transitions were randomly

selected according to probabilities pDi~kDi
:Dt for thermal de-

excitation, pD~kD
:Dt for donor photon emission, pT~kT(t):Dt for

FRET transfer and 1{pDi{pD{pT(t) for no state change.

Acceptor de-excitation probabilities were calculated in the same

way, but with consistent transition probabilities pAi and pA, which

allowed to skip the remaining Monte Carlo step and to record the

emitted photon right away. All random numbers were generated

with an SIMD-optimized Mersenne Twister algorithm [75,76].

In the experiment, no FRET is seen for dyes in or close to van-

der-Waals contact, presumably due to quenching by electron

transfer [77]. The effect of quenching at low inter-dye distances is

not described with Förster theory, and therefore also not in our

MC process. To correct for this, photons are rejected if the inter-

dye distance is below 1nm during the photon generation when

comparing to experiments.

FRET Efficiency Calculation
Averaged over many MC runs, the collected de-excitation

events nAtot~nAiznA and nDtot~nDznDi from donor and

acceptor, respectively, were used to determine the average

efficiency

E~
nAtot

nAtotznDtot
: ð11Þ

In experiments, only radiative de-excitation events (nA,nD) can be

recorded. We therefore followed the same way in reconstructing

the total number of de-excitation events using the respective

fluorescence quantum yields,

nAtot~
nA

QA
, ð12Þ

and analogously for nDtot.

To directly relate efficiency distributions from MC sampling to

single molecule FRET measurements, the effect of shot noise and

burst size distribution has to be taken into account properly

[31,78]. Here, a sufficiently large number (w50000) of bursts has

been measured, which provided sufficient statistics such that the

experimental burst size distribution was used for combining the

MC generated photons into bursts. After correction for quantum

yield and detector efficiency, for each burst a single FRET

efficiency value was calculated using Eq. 11. Collecting FRET

efficiencies from many bursts yielded efficiency distributions that

can be directly compared to the measured ones. As in the

experiment, only bursts larger than 100 photons, after correction

for the effective quantum yield, were used.

Inclusion of cis/trans isomer heterogeneity
So far, we have considered only one isomeric state of the proline

polymer, e.g., the all-trans state. As has been found by NMR,

however, each peptide bond undergoes isomerizations, with a

small but non-negligible population in the cis-isomer, and with a

larger cis-population for the terminal peptide bond at the C-

terminus [45]. Because the isomerization times of minutes to hours

are much longer than all other relevant time scales, we considered

a weighted ensemble of all possible relevant isomerization states

and performed the above MD and MC simulations with efficiency

calculations separately for each isomer. Subsequently, employing

pcis
ter and pcis

int from NMR experiments [45] as probabilities for the

occurrence of cis-isomers for C-terminal and internal peptide

bonds, receptively, a weighted average was obtained (Table 2).

Single-Molecule Experiments
Peptide samples were prepared as described previously [31].

Single-molecule fluorescence experiments were performed with a

MicroTime 200 confocal microscope (PicoQuant, Berlin, Ger-

many) equipped with a pulsed 485nm diode laser (LDH-P-C-

485B, PicoQuant) and an Olympus UplanApo 60 x/1.20 W

objective. After passing through a 100mm pinhole, sample

fluorescence was separated by a polarizing beam splitter cube

into components parallel and perpendicularly polarized with

respect to the excitation light. Subsequently, both components

were further divided into donor and acceptor photons by means of

dichroic mirrors (585DCXR, Chroma), filtered (donor emission

filters: Chroma ET525/50 M, acceptor emission filters: Chroma

HQ650/100), focused on avalanche photodiodes (PerkinElmer

Optoelectronics SPCM-AQR-15), and the arrival times of all

detected photons were recorded using suitable counting electronics

(Hydra Harp, PicoQuant, Berlin, Germany).

Results and Discussion

Time-dependent conformations of the two dyes and their

mutual orientations for the three polyproline systems considered

here (Fig. 2) were obtained from multiple 100ns MD trajectories

of the all-trans and cis-isomers. MD simulations totaling 22:1ms
were carried out for the different isomers, chain lengths, and

temperatures (Table 1). We first focus on polyproline-20 in the all-

trans isomer as the most stable configuration in water and analyzed

two main factors relevant for the FRET efficiencies, the distance R

between the two fluorophores and the orientation factor k2.

Distance Distributions
Fig. 5A shows the distributions of dye-to-dye distances (defined

by the geometric center of the ring system) from individual 100ns
simulations. The fact that the distributions differ from each other

shows that the individual simulations are not fully converged to

represent the full all-trans ensemble. To improve convergence,

multiple simulations were combined. The apparent differences

between the individual distance distributions are mainly due to

Table 2. Isomer weights.

Isomer Probability

all-trans ptrans~ 1{pcis
int

� �n{1
1{pcis

ter

� �

#1 cis, other trans pcis1 ~pcis
int 1{pcis

int

� �n{2
1{pcis

ter

� �

#2 cis, other trans pcis2 ~pcis
int 1{pcis

int

� �n{2
1{pcis

ter

� �

..

. ..
.

#n-1 cis, other trans pcisn{1 ~pcis
int 1{pcis

int

� �n{2
1{pcis

ter

� �

#n cis, other trans pcisn ~ 1{pcis
int

� �n{1
pcis

ter

Here, cis1,cis2, . . . ,cisn indicate the position 1,2, . . . ,n of the cis peptide bond in
the chain, starting from the amino terminus.
doi:10.1371/journal.pone.0019791.t002
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slow transitions between subpopulations of dye-conformations (for

more details see section ‘‘Preferred Dye Conformations’’).

To better characterize the subpopulations and how they differ

between the individual trajectories, the distance between two

terminal proline residues center of mass (COM) was analyzed. As

shown in Fig. 5B, these length fluctuations are much smaller

compared to the dye-to-dye distances. In addition, the mean

length of individual simulations shows only small variations.

These small length fluctuations point to considerable rigidity of

the polyproline peptide, which indeed originally motivated its use

as a molecular ruler. From the angular fluctuation h of selected

segment pairs, separated by length L, a persistence length

P~18:3+0:3nm was obtained via

P~{
L

ln S cos hT
: ð13Þ

Here, 3 proline residues (:1 PPII helix turn) defined a segment

and its tangent with a segment length of 0:93nm. The all-trans

chains are indeed quite rigid and do not strongly deviate from the

type II helix structure model.

Because of the stiffness of the polyproline, the observed broader

distribution between the dyes mainly originate from the flexible

dye linkers rather than from the flexibility of the polyproline chain.

Orientational Dye Dynamics and Orientation Factor k2

Figure 6 shows the k2 distributions derived from 20 all-trans

simulations (gray) as well as their average (red). For comparison,

an isotropic k2 distribution is shown (black). As shown, the

individual simulations scatter considerably, with respective mean

k2 values between 0.58 – 1.06. Averaging over all 20 simulations,

the mean k2 of all-trans simulations was 0:83+0:03, and

0:80+0:02 for the complete ensemble including all cis-isomers

(Fig. 6). Both values agree within statistical error and significantly

deviate from the isotropic k2 value of 2=3.

As seen from the k2 histograms of individual MD simulations,

the sampled dye geometries differ for each simulation, which

underscores the importance of averaging multiple simulations.

The obtained more realistic k2{value shifts the effective Förster

radius from 5:4nm to 5:6nm.

Next, we determined the correlation between R and k2 for the

20 all-trans simulations and found a mean Pearson correlation

coefficient of {0:13+0:02. Because R and k2 are assumed to be

uncorrelated in Försters RET theory, this finding suggests that

using a distance-dependent Sk2T(R) might further improve the

distance reconstruction, as will be discussed below.

Table 3 shows mean auto-correlation times of different variables

from the simulations (exemplary autocorrelation plot shown in

Figure 5. Distance distributions. (A) Histograms of the distances
between the geometric centers of the ring systems of the two dyes for
20 all-trans MD simulations. (B) The distance histogram between the
COM of terminal prolines from the polyproline-20 chain, for the same
simulations. The insets visualize the measured distance in each plot.
Respective averages are shown in red; vertical lines denote the mean
and standard deviation.
doi:10.1371/journal.pone.0019791.g005

Figure 6. Distributions of the orientation factor k2. Each gray line
shows to an orientation factor histogram from one of the 20 all-trans
simulations at 293K, with the average shown in red. The green curve
(full ensemble) additionally includes the cis-isomers with appropriate
weights, the green vertical line shows the corresponding average and
its statistical error (dashed). The black curve shows the k2 histogram for
an isotropic dye orientation distribution, with the well known mean
value of 2=3 (vertical black line).
doi:10.1371/journal.pone.0019791.g006
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Suppl. Fig. S1 ). The orientation factor k2 shows the fastest decay

(0:3ns), whereas the terminal orientation and the dye to dye

distance are in the ns regime (Table 3) and thus comparable to the

donor fluorescence decay times. Calculated fluorescence anisotro-

py decay timescales [34,35] of 0:9ns in our simulations agree with

experimentally measured decay times of 0:3{0:8ns [31] within

the accuracy of the simulation [34] and thus indicate a correct

modeling of the dye dynamics by our force field.

These autocorrelation times determine the correlation of the

dye conformations and distances as probed by successive photons

and, therefore also, how many structures probed by each burst are

effectively statistically independent. Further, this autocorrelation

time may determines the size of the sub-ensemble of conforma-

tions that is actually probed by FRET, because the fluorescence

intensities of the two dyes also depend on past transfer efficiencies.

We will therefore examine the influence of these effects on the

quality that can be achieved for the distance reconstruction

described further below.

Preferred Dye Conformations
What is the structural origin of the orientation factor k2

deviation from its isotropic value of 2=3? A closer inspection of the

MD simulations revealed that hydrophobic interactions of the dye

linker with the proline chain enhanced the population of certain

conformational sub-states, similar to previous reports[45]. This

effect is more pronounced for Alexa 488 due to the longer linker.

For Alexa 488, two distinct conformation sub-states (open and

closed) were seen (Fig. 7).

To test the stability of these confomer ensembles, we analyzed

distances and the orientation factors of the all-trans polyproline-20

system at elevated temperatures (303 and 313K, Table 1). No

significant impact on the values for k2 was found (293K :
0:82+0:03,303K : 0:83+0:05,313K : 0:86+0:04). Also the dye-

to-dye distance R showed no systematic trend towards open

or closed conformations (293K : 5:57+0:08nm,303K : 5:22+
0:08nm,313K : 5:37+0:06nm). For the polyproline-20 chain

length L (293K : 5:77+0:01nm,303K : 5:73+0:01nm,313K :
5:70+0:02nm), a small decrease with increasing temperature was

seen. In summary, the applied temperature changes neither seem to

significantly influence the population ratios of the two conforma-

tions, nor the relative dye-to-dye orientations. However, due to the

limited sampling, we cannot fully exclude small effects, which may

arise at larger temperature changes. It will be an interesting

challenge for future experimental work to directly identify the

presence of the dye conformations observed here, e.g. from a

broadening of fluorescence anisotropy distributions in single

molecule experiments [79], or from the effect of measurements

under conditions that increase the solubility of the fluorophores on

the transfer efficiency histograms.

Efficiency Distributions from Individual Simulations
Figure 8 shows FRET efficiencies calculated separately from all

20 all-trans MD simulations. As already expected from the dye-to-

dye distance distributions, also the mean FRET efficiencies cover a

broad range from 0.27 to 0.66 with s~0:037 to 0:043. These

standard deviations s were compared to the expected shot noise

s2~E 1{Eð Þ=ntotL
[80,81] for each simulation mean efficiency E

using the lower experimental BSD limit (ntotL
~100) resulting in a

width s~0:033 to 0:036. Thus, the efficiency peak observed in the

individual traces of our simulations is mainly broadened due to the

photon shot noise.

Comparison of the distance distributions (Fig. 5A) with the

efficiencies (Fig. 8) illustrates the effect of signal averaging over an

entire fluorescence burst, subsequently referred to as ’‘burst

averaging’. To see this, consider naive transformation from

distances to efficiencies using Eq. 2, which would result in much

broader efficiency distributions than those observed in Fig. 8. This

narrowing is due to the combination of multiple photons, and thus

also of distances, into one burst, such that each efficiency value

represents a corresponding average [11]. It is this averaging, which

markedly narrows obtained efficiency distributions and also

obscures much of the structure seen in the distance distribution.

Isomeric Heterogeneity
To account for the isomeric heterogeneity due to the presence

of cis-isomers, which reduce the average distance between the two

Table 3. Time scales of motions.

mean SEM min max

½ns� ½ns� ½ns� ½ns�

R (dye-to-dye) 2.96 0.52 0.71 8.68

k2 (orientation
factor)

0.34 0.04 0.15 0.86

L (terminal
prolines)

0.80 0.20 0.30 4.12

V (terminal
orientation)

4.96 0.86 1.06 14.55

Anisotropy decay
(Alexa 488)

0.90 0.08 0.42 1.66

Autocorrelation times of all-trans polyproline-20 with their respective standard
error of the mean (SEM), minimum and maximum. Terminal orientation V
denotes the autocorrelation times of the cosine of the angle between the
terminal proline tangent vectors.
doi:10.1371/journal.pone.0019791.t003

Figure 7. Conformational heterogeneity of Alexa 488. Several
conformations of the Alexa 488 dye and its linker attached to the
proline chain during MD simulations are seen in the simulations. For the
open conformation, fast large amplitude motions are seen for the dye
whereas hydrophobic interactions restrict the dye mobility in the closed
conformations (one representative example is shown). Additionally slow
transition between the open and closed conformations are seen.
doi:10.1371/journal.pone.0019791.g007

FRET through Atomistic Simulation and Monte Carlo

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e19791

144 – P8 –



dyes [45], additional MD simulations for all possible isomers were

performed (Table 1). Using the population estimate of Table 2, the

full ensemble includes 5%, 8%, and 15% of isomers with more

than one cis bond for polyprolines of length 15, 20, and 30,

respectively. Thus, for proline 15 and 20, we included only the

single-cis conformers within the ensemble. For polyproline-30,

estimating the impact of multi-cis isomers, additionally a subset of

double-cis isomers was considered (Table 1). In the isomer

simulations, all the other bonds were kept in the trans

configuration, and the same MD parameters and protocol as for

the all-trans isomer were used. FRET efficiencies were then

calculated as explained before.

Figure 9 shows FRET efficiency distributions and averages for

the all-trans and cis polyproline-20 chains in comparison with

experiment. As expected, the average efficiencies of the cis-chains

are larger than that of the all-trans isomer, due to the reduced

distance of the terminal prolines. The largest reduction is seen for

cis-bonds in central positions, thus attributing measured high

efficiencies to those isomers. This behavior can be captured in a

simple model (Fig. 9, top), in which the cis-isomer is described by a

kink angle a between the two stiff parts of the molecule, with

distances RA and RD between the cis-bond and the respective

termini, and R~RAzRD being the all-trans distance between the

two termini. R, was determined from the all-trans mean efficiency

using Eq. 2 and split up on RA and RD for each cis isomer

according to the cis-bond position. To account for the distance

change due to the linker and the observed dye conformations

(Fig. 7), an offset RDzx0 and RA{x0 was allowed for as an

additional fit parameter. After fitting to the model to the average

cis-efficiencies using Eq. 2, an angle of 95:50, and and offset

x0~0:27nm was obtained. The resulting model is shown as green

line in Fig. 9 and has to be compared to the mean efficiency values

(red dots). The dashed line shows an offset of +1nm in efficiency

space as error estimate. The offset towards Alexa 594 x0~0:27nm
agrees with the deviation of the average dye-to-dye distance from

the proline length (6:01nm{5:57nm~0:44nm) within the

accuracy of this simple model.

Next, ensemble efficiency distributions were calculated by

combining cis and trans isomers according to their population in

solution. Using the population of individual isomers as determined

by NMR [45], pcis
int and pcis

ter, weights were determined as listed in

Table 2. For polyproline-20, these weights are ptrans~0:6131,
pcis½1{19�~0:0125,andpcis20~0:0681.

For poly-15 and polyproline-30, the same pcis
int and pcis

ter measured

on polyproline-20, were applied assuming that they are not

strongly influenced by the proline chain length. Because the cis-

content is larger in polyproline-30, an error in pcis
int and pcis

ter has a

larger impact on the accuracy of the ensemble composition. For

example, if polyproline-30 has a pcis
int value of 4% instead of 2%,

the multi-cis isomer ensemble content increases from 15% to 37%,

whereas the all-trans isomer contribution drops from 50% to 28%.

As a result, the obtained ensemble efficiency histograms sensitively

depend on the value of pcis
int and pcis

ter , particularly for the longer

polyproline-30 chain.

As seen before, the cis ensemble content and thus the content of

isomers with double-cis bonds increases with the chain length. For

polyproline-30, this contribution is about 15%. To estimate the

impact of double-cis species on the efficiency histogram, we

simulated a subset of double-cis isomers (Table 1). The obtained

weights for each chain length and isomer were used in the next

step, to calculate efficiency distributions of the entire ensemble.

Combining Photons into Bursts
So far, we calculated efficiency distributions of single simula-

tions (Fig. 8) and their accumulated histograms (Fig. 9). To

calculate burst efficiencies in closer resemblance to single molecule

experiments, we need to define how the recorded photons are

combined, e.g. from multiple trajectories. The specific approach

depends on the relative time scales of the relevant processes in the

experiment and the simulation. In single molecule experiments on

freely diffusing molecules, ten to hundreds of photons are recorded

in each burst of several ms duration. On the simulation side, in

contrast, multiple 100ns trajectories are available. We consider

three different ways of combining photons into bursts and

compare the resulting efficiencies to experiment.

The relevant time scales are the two autocorrelation times for

the dye dynamics, namely those of the orientation factor k2 and of

the distance R fluctuation, from hundreds of picoseconds (k2) to ns

(R) (Table 3); further the polyproline chain dynamics of a specific

isomer with the slowest motions in the 5ns range (Table 3, L and

V), the cis to trans isomerization time ranging from minutes to

hours for polyproline [82], the experimental burst recording

duration of several ms and the respective inter photon times [83],

as well as the simulation trajectory length of 100ns.

In the first case (burst average over fast and slow dye motions as

well as the polyproline isomerization), the burst duration is

assumed to be longer than all other time scales mentioned above.

Accordingly, in this case, each measured burst consists of photons

from the entire isomeric ensemble. To achieve a most compre-

hensive sampling, therefore, photons from all available trajectories

Figure 8. Spread of the efficiency amongst individual simula-
tions. Transfer efficiency histograms (blue) obtained via MC sampling
from 20 all-trans MD simulations of polyproline-20 at 293K. The red
curve at the top depicts the efficiency combined from all 20 trajectories,
where each burst is still combined from photons of one trajectory; the
bootstrapping standard error, calculated from 100 random samples, is
indicated by the shaded area. The vertical lines indicate the mean
efficiency and its standard deviation.
doi:10.1371/journal.pone.0019791.g008
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with their appropriate ensemble weight are combined. The blue

line in Fig. 10 shows the resulting efficiency distribution as a single

peak whose width is solely determined by the shot-noise.

Experiments measuring ensemble efficiencies (e.g., CW in bulk)

correspond to this case, except that in ensemble measurements an

effectively infinite number of photons is gathered, and therefore

the shot noise vanishes. For the polyproline system at hand,

however, the isomerization times are long compared to the burst

duration, and thus this case is not expected to apply here. Indeed,

the measured efficiency distribution (Fig. 10, black) is much

broader.

Accordingly, for the second case (burst average over fast and slow

dye motion), we assume that the isomerization time is longer than

the average burst duration, with the remaining dye and chain

dynamics still being fast compared to the burst duration. In this case,

all photons from a measured burst originate from one particular

isomer. Because the trajectory length is much shorter than the burst

duration, each burst is generated from all trajectories of a particular

isomer. Figure 10, green line, shows the resulting efficiency

distribution. Because in contrast to the previous case, averaging is

not done over multiple isomers within each burst, as assumed above,

the individual cis isomers contribute high efficiencies (w0:7) to the

efficiency distribution (Figure 10). As shown in Fig. 10 (dashed green

line), these high efficiencies are also observable in the experiment

(black line). In addition, Fig. 10 reveals that the low efficiency side

agrees with the experimental distribution (solid green line).

However, when comparing the region around 0.7, a gap between

the all-trans peak and the high efficiency cis region is present, not

found in the experiment. In analogy to the comparison of this case

and the above case, which averages over the polyproline

isomerization, this hints at additional dynamics slower than the

burst duration, averaged out in the current case.

Figure 9. FRET efficiency of trans and cis isomers. Comparison between measured FRET efficiency histograms (black) and histograms computed
from the simulations (blue: ensemble, all-trans and cis01 ... cis20). Red dots denote the respective mean values. The simple model sketched on top
and defined in the text describes the general trend (green line) that isomers with a cis-bond close to the termini show lower efficiencies, whereas
those with cis-bonds close to the polymer center tend to yield higher efficiencies. The dashed green lines estimate the spread of the average
efficiencies of the cis simulations mirroring the spread found for the all-trans simulations (DR~+1:0nm). For illustration purposes, the photons of
the individual cis were not discarded when generated below 1nm as described in the Methods Section. The high efficiencies observed for cis-6 to cis-
12 result from dyes in contact and are quenched in the experiment.
doi:10.1371/journal.pone.0019791.g009
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If this is true, one would expect a better agreement for the third

case considered here. In this case (burst averaging over fast dye

motion only), we now assume that the dye dynamics contains

additional components that are slow compared to the burst

duration. An example of such a component is the transition

between different conformations of the dye, e.g. the ones shown in

Fig. 7. Therefore, all photons in a burst originate from a distinct

dye conformation with an interconversion time larger than 100ns.

In resemblance to this, each burst is generated from one distinct

simulation trajectory. The previous assumption of slow isomeri-

zation times compared to the burst recording duration is

automatically contained in this case, since each trajectory contains

a single distinct isomer. Figure 10 (red line) shows the resulting

efficiency distribution. In contrast to the burst average over fast and

slow dye motion, where all-trans and cis-isomers were resolvable

(Fig. 10, green line), the conformational heterogeneity on time

scales beyond 100ns and thus of different simulations, is now

visible as already observed in Fig. 8. As shown in Fig. 10 (red line),

this heterogeneity is particularly pronounced for the all-trans

simulations due to the largest number of simulations (Table 1) and

the all-trans isomer being the largest fraction of the ensemble. The

small numbers of simulations result in a considerable statistical

error, shown as red area in Fig. 10 and calculated from the all-trans

isomer. When comparing this result to the experiment, the high

efficiency side (solid red line) with cis-efficiencies agrees with the

experiment (black). The discrepancy (gap around 0.7) previously

observed (burst average over fast and slow dye motion) vanishes.

However, an additional low efficiency shoulder is visible not

present in the experiment (dashed red line).

This deviation is not within statistical uncertainty (Fig. 10, red

area) and may be due to several reasons. First, because all

simulations have been started from the open conformation (Fig. 7),

this conformation may have been oversampled. Second, although

the dye dynamics described by the fluorescence anisotropy decay

times agrees with the experiment, we cannot fully exclude over- or

underestimation of the dye-hydrophobicity with our choice of

partial charges. Third, this discrepancy can be explained by the

presence of two different dye dynamics in the experiment as

described below.

Overall, the low-efficiency side (v0:5 in Fig. 10) in case of burst

averaging over fast and slow dye motions agrees well with the

experiment, whereas on the high efficiency side (w0:5), better

agreement is seen for burst averaging over fast dye motions only

(Fig. 10, solid green and blue vs. black). From the above discussion

of time scales, this finding would imply that the low efficiency side

(i.e., large distances) is governed by fast dynamics, whereas parts of

the slow dynamics govern the high efficiency (i.e., shorter

distances) side only. Close inspection of our simulations suggests

a possible structural explanation for this finding. In particular, the

hydrophobic interactions between the polyproline and the Alexa

488, which give rise to the structural heterogeneity shown in Fig. 7,

with very slow transitions between the open and closed conforma-

tion. In the open conformation, the dye-reorientation is fast

compared to the burst duration and thus sampled within a single

burst, in agreement with the low efficiency side (Fig. 10). In the

closed conformations, the dye dynamics is largely restricted, with

the high FRET efficiency therefore being governed by the slow

transitions between these sub-states, in agreement with the

observed burst averaging over fast and slow dye motions.

Next, we compare efficiency distributions for different dye-

labeled proline lengths. Figure 11 shows the calculated efficiency

distributions (burst averaging over fast dye motions only) from

simulations with proline lengths 15, 20, and 30 (solid lines) as well

as measured efficiencies for lengths of 14, 20, 27, and 33 (dashed).

The general length effect, increase in efficiency for shorter prolines

and vice versa, is observed.

For polyproline-15, the calculated distribution has the same

narrow shape as found in the experiment, however with the

simulated efficiency distribution shifted towards higher efficiencies.

Purely from the length difference between polyproline-14

(experiment) and polyproline-15 (simulation), an opposite shift is

expected. A similar slight discrepancy is seen for polyproline-30,

where the peak should be located between the experimental peaks

of polyproline-27 and -33, but is seen in Fig. 11 somewhat below

polyproline-33.

While the overall agreement between simulation and experi-

ment is good, this observed systematic deviation is striking.

Apparently, compared to our simulation results, the experimental

efficiencies tend to be shifted slightly towards 0.5 within both the

high as well as the low efficiency regime. Overall, such behavior

cannot be explained by an uncertainty in the measured R0, which

would lead to a uniform shift in one direction. With the same

argument, also force field inaccuracies, which might, e.g.,

overestimate the hydrophobicity of the dyes and thus also the

population of the closed conformation, are incompatible with the

observed deviation. As a possible explanation one might consider a

modified Förster law with, e.g., an effective power smaller than 6

in Eq. 2 (e.g. a power of &4 yields the best agreement of the

simulated and experimental peak positions). Such effects have

been observed previously [31] and may originate from inter-dye

quenching or the breakdown of the point dipole approximation

Figure 10. Combining photons into bursts. Comparison of
different photon accumulation methods for a full polyproline-20
ensemble at 293K with the experiment (black). Three different
accumulation methods (colors) were considered. First, efficiencies were
calculated from the full ensemble (blue), for which each photon burst
has been combined from photons of all cis and trans simulations, and
which therefore average over all motions and heterogeneities covered
by the simulations. Second, each efficiency value was calculated from
photons of all simulations of a randomly chosen isomer (green), thereby
averaging over all dye motions but not over different isomers. Third,
each efficiency value is derived from photons of one single trajectory,
and weighted by the appropriate ensemble probability (red). The
impact of the cis-isomers is demonstrated by comparison to the all-
trans only efficiency histogram (magenta). The bootstrapping standard
error (Fig. 8) of the all-trans isomers is drawn as light red area. Efficiency
histograms were normalized to their maxima.
doi:10.1371/journal.pone.0019791.g010
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[41,84]. As a third possible cause, decreased fluorescence lifetimes

at high efficiencies leading to a stronger deviation from k2~2=3
has been discussed [31], but is already included within our

simulation approach and thus unlikely to explain the deviation.

Comparing the shapes of the polyproline-30 curves, both the

calculated as well as the measured efficiency distributions share

shoulders reaching into the high efficiency regime. However, this

shoulder is much more pronounced in the experiment than in the

simulation. Closer inspection shows that the shoulder originates

exclusively from cis-isomers. To interpret this discrepancy it is thus

helpful to ask what fraction of the cis-population, according to the

NMR results, is expected to fall into this high efficiency range.

Interestingly, with the 2% cis-population (per bond) from NMR,

and considering the fact that only about 2/3 of the cis-population

contributes to the high efficiency shoulder (whereas about 1/3

contributes to the main, all-trans peak, see Suppl. Fig. S2), the

NMR results are incompatible with the high (ca. 50%) population

seen by FRET. Accordingly, a small correction of the NMR values

towards higher populations of the cis-isomers would resolve both

the discrepancy between NMR and FRET as well as that between

FRET and our calculated efficiency histogram. In contrast, our

neglect of multiple cis-conformers is unlikely to explain the

discrepancy, as seen from the small effect when including the

double-cis-species (Fig. 11, bold dashed red line) as the dominant

multiple cis-population.

In experiments, a peak around zero efficiency is seen for all

proline species. This peak originates from polyproline molecules

lacking an active acceptor dye, either because of imperfect labeling

or because of photobleaching of the acceptor dye during the

measurement [31]. In our simulations, all molecules carry a donor

and an acceptor dye, and photobleaching is not considered; the zero

efficiency peak is thus absent. The clear separation of the zero

efficiency peak from the rest of the signal allows us to compare only

the signal from the ‘‘intact’’ molecules with the simulated data.

Reconstructing Distance Distributions from FRET
Efficiencies

We have shown above that accurate efficiency histograms can

be calculated from a combination of atomistic MD simulations

and Monte Carlo photon sampling. Now we will ask the inverse

question: Can the dye orientation distributions obtained from the

simulations be combined with measured FRET efficiency histograms

in such a way as to enable reconstruction of more accurate

distances and, possibly, also distance distributions, than by the

established k2~2=3 approximation? And if so, which accuracy

can be expected at the different conceivable levels of approxima-

tions that were mentioned in the Introduction?

To address these questions, the efficiency histogram calculated

from the hybrid MD/MC approach (where the distance

distribution is known) as well as the single molecule FRET

efficiency histogram from the experiment (where the distance

distribution is unknown) were used as input for the backward

calculations. The thus reconstructed distance distribution, both

from the synthetic and the experimental FRET data, were then

compared to the known distribution from the simulation. For each

level of approximations, thereby, the impact on accuracy of the

respective assumptions is quantified.

As a common framework for a proper definition of the applied

approximations, we consider the most general (linear) transfor-

mation from a distance distribution p(R) to an efficiency

distribution q(E) in terms of transfer functions g(E,R),

q Eð Þ~
ð Rmax

0

g E,Rð Þp Rð ÞdR: ð14Þ

Each level of approximation, will be defined through an

approximately specified transfer function g(E,R) – or, after

discretization, transfer matrix. In all cases, the all-trans polypro-

line-20 structural ensembles were used for the calculation of the

transfer function as well as to generate the synthetic efficiency

distribution q(E); to reconstruct p(R) from the experimental

efficiency distribution, which involves an isomer mixture, the full

structural ensemble with appropriate weights was used to calculate

the transfer function (except for transfer functions g4 and g5). At

each approximation level, p(R) was then reconstructed from q(E)
and g(E,R) by inverting a discretized version of Eq. 14.

As, generally, such inversion is numerically highly unstable,

regularization assumptions are required. Here, motivated from the

observation of two structural conformers (open and closed confor-

mation, cf. Fig. 7), we assumed that p(R) can be described

sufficiently accurate by the sum of n~2 Gaussian functions

centered at Ri of width si,

p(R)~
Xn

i~1

ai exp {
R{Rið Þ2

2s2
i

" #

: ð15Þ

With this description, the x2 between the calculated and the

reference efficiency distribution was minimized by variation of Ri

and si using the two array differential evolution algorithm [85].

Extension of this method to more Gaussian functions or to a more

sophisticated model [86] is straightforward.

At the lowest level of refinement, the usually assumed isotropic

dye orientation distribution is considered, implying k2~2=3,

independent of the mutual distance between the two dyes. The

efficiency distribution q(E) was obtained from the donor-acceptor

Figure 11. Comparison between proline 15, 20 and 30 and
experiment. Efficiency histograms averaging over fast dye motions
only (Fig. 10) are shown for three different polyproline-lengths (red,
dashed-dotted, solid, dashed), and corresponding measured efficiency
distributions (black). For polyproline-30, inclusion of double-cis isomers
(see Text S1) only slightly changes the efficiency histogram (bold
dashed line).
doi:10.1371/journal.pone.0019791.g011
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distance distribution p(R) via the usual Förster formula, Eq. 2,

q(E)~p(R)
dR

dE
~{

1

6
p(R)

R0

E2(1=E{1)5=6
: ð16Þ

In the more general transfer function formalism used further

below (Eq. 14), the above result (Eq. 16) is readily recovered from

the transfer function

g1(E,R)~d E{
1

1z(R=R0)6

 !

ð17Þ

shown in Fig. 12A.

Figures 13A and B show how well the respective transfer

functions capture the relation between p(R) and q(E) as obtained

from the simulations. At this first level of refinement, using the

above k2~2=3 transfer function for both the all-trans ensemble (A)

as well as for the full ensemble, containing all isomers (B), quite

narrow efficiency distributions (green curves) are obtained, which

are also shifted towards lower efficiencies with respect to the

reference efficiency distributions (blue, black). As expected, the

reconstructed distance distributions, Fig. 13E and F (same color

scheme), are also shifted towards smaller distances, with the

maximum being off by more than 0:5nm. Further, the reconstruct-

ed distance distribution has a shoulder that is not seen in the

reference distribution. Overall, the reconstruction is not satisfactory

at this level of refinement. Figure 13C and D show, that for the all-

trans MC and the full ensemble experimental efficiencies, respec-

tively, adjusting of parameters in Eq. 15 led to convergence.

To quantify to which extent the assumption of an isotropic dye

orientation distribution causes this discrepancy, at a second level of

refinement the correct Sk2T value was used, as obtained from the

respective MD simulation ensemble (cf. Fig. 6). Still, this value was

assumed independent of the distance between the two dyes. This

approximation is described by the transfer function

g2(E,R)~d E{
1

1z(R=Radj)
6

 !

, ð18Þ

with R6
adj~

3

2
Sk2TR6

0, and Sk2T~0:80. As seen in Fig. 12B, this

refinement results in a slight shift of the Förster curve with respect

to the isotropic dye orientation approximation (Fig. 12A).

At this improved level of refinement, a slight shift of the

calculated efficiency distributions towards the reference distribu-

tions is observed (red curves in Figs. 13 A, B). As a result,

correspondingly improved reconstructed distance distributions are

obtained (Fig. 13 E, F). However, the shapes of the efficiency

curves are still too narrow, and the shoulder in the reconstructed

distance distribution is still present. Apparently, these artifacts are

mainly caused by further approximations not investigated so far.

Therefore, at the third level of refinement, we drop the previous

assumption that the dye orientation distribution is independent of

the donor-acceptor distance. Accordingly, the MD structure

ensemble was split into groups according to mutual dye distance,

and an average orientation factor Sk2TR was calculated separately

for every group, i.e., as a function of R. Note that this distance

dependent orientation factor

Sk2T(R)~S cos hDA{3 cos hD cos hAð Þ2T(R) ð19Þ

differs from the previous ones in that it captures correlations

between the dye orientation distribution and the donor-acceptor

distances. This can be used to construct the transfer function

g3(E,R)~d E{
1

1z(R=Rred)6:(1=Sk2T(R))

 !

, ð20Þ

defining R6
red~R6

0
:3=2.

As seen in Fig. 12C, the resulting transfer function is not strictly

monotonic any more, such that the inverse transformation to R(E)
is not straightforward and, the above regularization techniques

need to be applied.

This refinement step yields a marked improvement of both peak

position and shape of the obtained efficiency distributions (Figs. 13

A and B, cyan). Only a slight peak shift towards lower efficiencies

remains for the all-trans ensemble (Fig. 13 A), as is also seen for the

experimental efficiencies in Fig. 13B. Also for the distance

reconstruction, the dominant peak is now at the correct position

in both cases (Fig. 13 E, F), although the second peak in the

synthetic distance reconstruction using the all-trans ensemble still

remains and leads to an overestimate of the distribution for smaller

distances.

So far, our transfer functions uniquely defined the efficiency E
for each distance R. Before continuing with further refinement

steps, we demonstrate how the experimental shot noise impacts the

reconstruction of distances. Two fundamental approaches have

been used so far to calculate the shot noise contribution via

numeric solution [78,80] or via simulation [87,88]. Mathemati-

cally, the shot noise free efficiency distribution ~qq(E) is convoluted

with a shot noise kernel S resulting in an efficiency distribution

q(E) including the shot noise. This convolution

q(E)~

ð
~qq(E’)S(E{E’)dE’, ð21Þ

broadens the underlying efficiency distribution ~qq(E) to q(E).
Because of this broadening, the reconstructed distance distribution

p(R) is narrowed when shot noise is taken into account. In analogy

to image reconstruction from a de-focused image by inversion of

the convolution with the appropriate image transfer function, the

achieved accuracy and the ability to recover finer details of the

original distance distribution are limited by the information loss

due to convolution of the shot noise kernel S with the transfer

function g(E,R), Eq. 14.

Since determining the shot noise kernel S of an experimental

BSD is non-trivial, the experimental shot noise (bursts §100) was

included in the transfer function as follows. Each distance bin of

the transfer matrix (columns in Fig. 12) was randomly sampled by

1200 bursts from the experimental BSD. The target efficiency for

each burst was directly calculated from the transfer function

(g1,g2,g3) or randomly picked from the efficiency distribution (for

the following refinement steps). According to the target efficiency,

donor and acceptor photons were randomly generated, and the

obtained burst efficiency was then recorded in the transfer

function. Figure 12D and H illustrate the impact of an

experimental shot noise (bursts §20) on transfer functions

(Fig. 12C and G). Comparison of C and D illustrates, that after

the inclusion of shot noise, the transfer function not uniquely

defines an efficiency E value for each distance R, but instead an

efficiency distribution. The here observed effect of the BSD on the

transfer function is purely of stochastic origin, whereas a similar

but independent effect will be seen in the following refinement

level.
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To motivate this level of refinement, recall that in all levels of

refinement considered so far the full structure ensemble has been

used to calculate appropriate averages for the orientation factor k2.

This approach implies the salient assumption that each single burst

samples the same dye orientation distribution – which, however,

holds true only if all components of the dye motion are much faster

Figure 12. Transfer functions gi at increasingly refined approximation levels. Transfer functions A, B, and C are shown as black curves; the
remaining transfer functions are shown color-coded, with averages highlighted as black curves. Transfer function g1 was calculated using the
assumption of k2~2=3 (A). For g2 , k2 was adjusted to represent the ensemble average in the simulations (B). g3 includes the distance dependency of
k2 without (C) and with (D) shot noise derived from the experimental BSD (burst size or lower burst size cutoff given in brackets). In contrast to a
distance dependent averaged k2 , g4 includes the k2 distributions at each distance without (E) and including averaging within a burst (F). In g5 , the
time dependent photon emission (Fig. 14) is included, shown without (G) and with experimental shot noise (H).
doi:10.1371/journal.pone.0019791.g012
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than the burst duration. As has been shown from the above

comparison between measured efficiency distributions and those

obtained from three different structure ensembles, there are slow

components of the dye motion, which may render this salient

assumption questionable. Our last level of refinement attempts to

include the dominant effect of this limited dye orientation sampling

within the transfer function. Note, however, that a rigorous

treatment of this effect would require to go beyond the limits of

the transfer function framework, and here is only achieved

conceptually by our explicit hybrid MD/MC simulation approach.

At this refinement level, accordingly, the columns of the transfer

matrix are formed from distance dependent transfer efficiency

distributions pk(k2,R) rather than single valued R-dependent

averages Sk2T(R), from which the transfer function g4(E,R) is

derived as

g4(E,R)~
pk(k2,R)

Ð
dk2pk(k2,R)

: dk

dE
: ð22Þ

Here, the integral over k2 in the denominator of g4 normalizes the

probability distribution on the distances and dk=dE transforms

pk(k2,R) to pk(E,R). The normalized transfer function is obtained

from orientation factor histograms for different distances from the

MD trajectory ensemble, applying Eq. 2.

Figure 13. Distance reconstruction from efficiencies. Reconstruction of distance distributions from synthetic efficiencies with known distance
distributions from simulations, and measured efficiencies with unknown distance distribution. Two ensembles were considered: The left column
consists of all-trans polyproline-20 at 293K. The right column also includes the cis-isomers with appropriate weights and uses experimental
efficiencies as reference. In the first row (A and B), the efficiency distributions obtained from multiplying the transfer matrices (discretized transfer
function) with the distance distributions obtained from simulations are shown together with efficiencies derived from our simulations and
experiment as reference. The second row (C and D) depicts the efficiency obtained by optimizing the parameters of two Gaussian distance
distributions as a measure for the reconstruction quality. The efficiencies were calculated by multiplying the transfer matrix with the Gaussian
distance distributions with optimized parameters (see Text S1). The distance distributions obtained from reconstruction and simulation are shown in
the third row (E and F). In all graphs, the reference is plotted with a bold line. Notably the experimental reference distance is inaccessible in F. The
employed transfer matrices include experimental shot noise.
doi:10.1371/journal.pone.0019791.g013
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Figure 12E shows the transfer function resulting from the samples

of our simulations. Notably, there is a distance dependent maximum

efficiency due to the k2 range from 0 to 4. The samples of pk(k2,R)
from our simulations each determine the efficiency samples of

pk(E,R). In experiments, however, efficiencies are determined using

multiple photons. Thus, the efficiencies in the transfer function need

to be averaged over multiple (k2,R) samples according to the BSD.

Figure 12F shows this effect for a constant burst size of 5. As seen, this

burst size dependent averaging introduces a narrowing of the transfer

function, independent of the photon shot noise.

Figure 14 motivates and illustrates the next level of refinement.

Shown are the donor and acceptor photon counts from a trajectory,

extensively sampled with photons created in our MC process. In

high efficiency regions with efficiency values in the lower plot close

to one (e.g., around 45 and 55ns), a marked depletion of donor and

acceptor photon counts (dips in the green curve in the upper plot) is

observed. As a result, also the mean intensity Iavg depends on k2 and

R and thus affects the probability of obtaining a photon from a

distinct (k2,R) conformation. Thus, for each instant t, the

orientation (k2(t),R(t)) depends on the history of orientations

within the fluorescence lifetime. Because in the construction of g4,

the probability distribution of dye orientations pk(k2,R) is only

normalized at each distance, this memory is not described. By

applying appropriate intensity weights, our last, most realistic

transfer function g5 includes also this effect.

g5(E,R)~
pk(k2,R):Iavg(k2,R)

Ð
dk2pk(k2,R):Iavg(k2,R)

: dk

dE
: ð23Þ

In our transfer function construction, the intensity of each (k2,R)
sample was determined by extensive photon sampling of our

trajectories. Thereby, the adsorption events were equally distrib-

uted over the whole trajectory and the emission times of the

photons was recorded. The (k2,R) samples were then weighted

according to their total emitted photon count. Notably, the

samples are implicitly weighted according to their efficiency

history in experiments. In Fig. 12G, a shift towards higher

efficiencies as an effect of this weighting is seen. To reduce

computationally expensive photon sampling of the trajectories, g4

and g5 were calculated from 20 all-trans simulations only.

Applying this transfer function g5 to our known distance

distributions to asses the quality of approximations results in

efficiency distributions only slightly different from the ones for g3

(Fig. 13 A, B). Nevertheless, as seen in Fig. 13, the high efficiencies

in the experimental ensemble were reproduced better than for g3.

When using g5 for the reconstruction of distances using the

synthetic efficiencies, the best agreement with the distance

distribution from the simulations was found (Fig. 13 E). Also, the

reconstructed peak location using the experimental efficiencies is

slightly closer to the peak from the simulations (Fig. 13 F).

Overall, in the experimental reconstruction, all distance

distributions of different refinement levels are shifted towards

lower distances in comparison to the simulation distance

distribution. This agrees with the observation of low efficiency

overestimation shown in Fig. 10.

These tests demonstrate, that a markedly improved reconstruc-

tion over the established approaches is achieved by inclusion of

dye motion and photon statistics obtained by our hybrid

simulation approach of simulated data. Further, by using step-

Figure 14. Time dependent photon emission along a single trajectory. Top: normalized acceptor (blue) and donor (green) photon count for
time independent excitation probability. Mid: corresponding distance R(t) and orientation factor k2(t). Bottom: resulting time dependent
instantaneous efficiency.
doi:10.1371/journal.pone.0019791.g014
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by-step refined approximation levels for the transfer functions, a

systematic improvement of the inverse distance reconstruction is

achieved for the polyproline system.

Conclusions
We have demonstrated that structural information on the

dynamics of FRET dye pairs from MD simulations improves the

reconstruction of distances and distance distributions from experi-

mental FRET efficiency distributions over the usual k2~2=3
approximation, which assumes isotropic and uncorrelated distribu-

tions of the dye transition dipole orientations. A hybrid MC/MD

method was developed and tested, which uses this structural

information in combination with a Monte Carlo description of

photon absorption, FRET-transfer, and emission, to calculate

quantitative efficiency distributions. Based on the obtained good

agreement with measured efficiency distributions of polyproline

constructs, we have investigated several levels of approximation,

resting on the particular relation of the different relevant time scales of

the experiment and of the simulations. For the system at hand, this

analysis revealed a previously unknown slow component of the dye

movement. Our analysis further highlights that careful consideration

of the time scales of the involved processes is crucial, and offers a

framework that is flexible enough to capture the different time scale

relationships expected for a broad range of systems. Unexpectedly,

already for the simple polyproline system at hand, where the dyes are

usually assumed to be sufficiently flexible to justify the established

k2~2=3 approximation, severe deviations were seen. Our results

suggest that for FRET dye pairs attached to proteins or DNA/RNA

complexes, the orientational dynamics are typically more restricted

due to sterical hindrance and electrostatic interactions, a simulation

approach like the one developed here is essential.

Supporting Information

Figure S1 Autocorrelation decay times of multiple param-
eters. R is the inter-dye distance, L the chain end-to-end distance and

k2 the orientation factor. The 3D, 2D and 2nd Legendre Polynomial

of 2D (Anisotropy decay) was determined from Alexa 488. The decay

here is from an all-trans polyproline-20 simulation.

(EPS)

Figure S2 Polyproline-30 cis-isomer efficiencies. For

each isomer, the normalized probability is shown.

(EPS)

Video S1 Distance and Orientation factor from simula-
tions. For illustration, a fragment of 10 ns simulation time from

polyproline-15 with the two dyes attached is shown as example for

the dynamics. The box in the bottom shows the time dependent

orientation and distance as well as the resulting FRET efficiency.

The position in the time trace is shown as moving red bar in the box.

(M4V)

Video S2 FRET from Monte Carlo and simulation
trajectories. In addition to Video S1, exemplary excitation

and de-excitation events are shown. Both competing pathways, de-

excitation of donor, as well as the alternate pathway via FRET

followed by acceptor de-excitation are displayed.

(M4V)

Text S1

(PDF)

Table S1

(PDF)
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Abstract

The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and
nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the
underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to
analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational
molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the
investigation of the interaction of polypeptides with b-sheet folds. First, we concentrate on a b-sheet forming model
peptide. Second, we investigate the interactions of two domains with high b-sheet content of the biologically important
extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model
peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and
gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for
contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN
domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates
that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold
nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact
between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-
organization and protein aggregation are potentially of immunological importance.
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Introduction

The interaction of inorganic surfaces with biomolecules like

peptides and proteins is central to biotechnology [1], being

involved, e.g., in biosensors, biomaterials [2] or the biological use

of nanoparticles [3]. Further, aspects of nanotoxicity of inorganic

particles may be based on particle-protein interactions [4,5].

Despite such importance, the microscopic understanding of how

proteins interact with inorganic surfaces is still limited. Besides

relatively well-characterized bonds such as Cys on gold [6], little is

known about the exact nature of the interaction. However,

the interaction between proteins and inorganic surfaces is based

on well-defined principles as demonstrated by the ability to geneti-

cally engineer proteins specific for and discriminating between

given surfaces [7]. Yet, technical limitations hamper the detailed

structural and dynamical experimental characterization of biomo-

lecular interactions with surfaces [8]. Computational methods, on

the other hand, are well-suited to atomistically describe the effect

of surfaces on biomolecules [9,10,11]. One important biocompat-

ible metal widely used in biotechnological application is gold [12].

Being a metal, gold polarization effects are important and realistic

simulations need to include them. Only recently, force fields

suitable for this task became available [13]. Using such a force

field in earlier work, we analyzed the adsorption of single

amino acids (the 20 natural ones) onto gold surfaces [14,15,16].

However, the complex cooperative behavior of a polypeptide

[17,18,19,20,21,22] may significantly alter the adsorption proper-

ties. Therefore, our focus in this work is to analyze the association

of a complex biomolecule with a gold(111) surface. Our earlier

results indicated that amino acids with an intrinsic propensity to

form b-sheets are predisposed to interact with gold surfaces [15].

We therefore concentrate here on simulating the adsorption of two

polypeptides with high b-sheet content using a polarizable

gold(111) surface as parameterized in the force field GolP

[13]. First, we simulated by molecular dynamics an oligopeptide

(RAD16II) forming a fibrillious structure. It is a spontaneous self-

assembling amphiphilic peptide, known to form hydrogel-like

matrices that support cell attachment, proliferation and differen-

tiation [23,24]. The structure of the elastic properties of filaments

formed by RAD16II have been investigated by atomistic simu-

lations [25]. This peptide has been suggested as a coating to make

inorganic surfaces biocompatible, and the interaction of RAD16II

fibers with surfaces other than gold (TiO2) has been studied by

classical MD simulations [24]. These studies showed that the

fibrous structure is maintained in typical MD simulation times

Fibrillious structures are important for many protein-folding
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related diseases like Alzheimer or bovine spongiforme encepha-

lopathy (BSE). The peptide absorbs quickly in our simulations, is

stable on the gold surface and shows no tendency of unfolding. For

this peptide, which is rich in Arg, we characterize how the Arg side

chain can penetrate the water easily, creating a stable initial

anchoring points.

Of particular importance, in terms of nanotechnological

applications, is the interaction of a gold surface with members of

the extracellular matrix (ECM). Not only are ECM proteins used

as anchors for cells on gold electrodes, these proteins will also be

the first encountered by gold nanoparticles administered to

organisms [26,27]. One of the most important members of the

ECM proteins is Fibronectin. This protein is involved in cell

migration, adhesion, and metastasis [28]. The large size of

Fibronectin and the lack of a full-length atomistic structure of

this protein prevent the simulation of the adsorption of the whole

protein on the gold surface. However, a crucial part of this protein

is composed of the FibronectinIII modules 9 and 10 (FNIII9–10).

FNIII9–10 contains the RGD binding site in FNIII10 as well as a

synergy site in FNIII9, important for integrin-mediated cell

adhesion and force-initiated signalling [29]. The structure of the

two domains is known and the modest size of this fragment allows

atomistic simulations in a reasonable time frame. Due to the

biological importance of FNIII9–10, appreciating its interaction

with gold not only fosters our basic understanding of biomolecule-

metal interactions in general, but has technological and health-

care implications. Therefore, we report here long atomistic

molecular dynamics simulations of the type III fibronectin do-

mains 9 and 10 (FNIII9–10) on the polarizable gold(111) surface in

explicit water.

We show that gold strongly interacts with FNIII9–10, but does

not lead to unfolding of this b-sheet rich protein within the

simulation time. Also in this case, Arg plays an important role for

penetrating the dense water layer covering the hydrophilic gold

surface. In in silico mutational studies, we show that an ArgRLys

mutation does not alter the general adsorption pattern, while an

ArgRVal significantly changes the proteins behavior, underlining

the importance of charges for the adsorption process. Our results

have implications for assessing possible health risks associated with

gold particles and may serve as a starting point for the design of

gold binding proteins.

Results and Discussion

Model peptide
First, we have performed a simulation of a b-sheet like structure

formed by the oligopeptide RAD16II. This is a 16-mer peptide

with a RARADADARARADADA sequence that spontaneously

self-assembles in anti-parallel b-sheet fibers [30,31]. Hence, it is a

relevant model system for other b-sheet forming peptides like the

Alzheimer precursor protein. Further, RAD16II represents an

ideal system to study the basics of b-sheet forming peptide

adsorption. With Arg and Asp in proximity, it offers two competing

interaction partners with opposite charge. However, it is overall

uncharged. Its rigid, planar structure facilitates the analysis, in

particular in comparison to the complex surface topology of a

multi-domain protein. With its b-sheet structure, it is also a good

simplified representation of the b-sheet fold of Fibronectin.

The Arg-rich b-sheet quickly replaces water molecules, thus

forming strong peptide-surface contacts. However, water replace-

Figure 1. Evolution of the atomic contact number between the fiber and the Au surface, and of the corresponding adsorption
energy. In the right panels, relevant snapshots from the dynamics are shown. The blue box in the top view indicates the adsorbed parts with
progressing simulation time.
doi:10.1371/journal.pone.0020925.g001
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ment and peptide adsorption are not a continuous process des-

pite the symmetric and regular structure of the peptide. The

adsorption process can be divided into four different phases (Fig. 1).

The first contact is formed after ,3 ns. Then, a gradual increase

in the number of contacts takes place during the subsequent 20 ns

leading to the adsorption of all the Arg residues of the lateral

oligopeptide molecule. After a ,35 ns plateau, the sharp increase

in the number of contacts in the interval 58–60 ns corresponds to

the adhesion of the edge of the b-sheet perpendicular to the

adsorbed portion of the molecule (Fig. 1B and 1C). The sharpness

of the transition indicates that the whole edge is cooperatively

getting into contact with the surface. Cooperativity is enforced by

the H-bond network between the chains, which fosters a zipping-

like mechanism. After this jump, the number of contacts gradually

increases till the end of the simulation. No sign of structural

changes in the b-sheet is seen during the dynamics.

The evolution of the adsorption energy for the peptides

approaching the surface is also shown in Fig. 1, so as to be

compared with the number of atomic contacts. The various energy

components (bonding, electrostatics and Lennard Jones, LJ) are

depicted as well. Since the contact of the peptide with the surface is

steadily increasing with time (besides local fluctuations), the

energy curve is representative of the adsorption energy landscape

of the peptide while it settles on the surface, neglecting entropic

contributions. The profile of the adsorption energy, although

fluctuacting, is clearly correlated with the number of atomic

contacts. The increase in the number of contacts during the

0,25 ns time interval is accompanied by a steady decrease in the

adsorption energy. This was initially due to the Lennard Jones

term (,20 ns) and then also to electrostatic interactions. From 25

to 58 ns (i.e., the dotted line) the number of contacts has a plateau

and the potential energy is almost constant. Just before the number

of contacts ramps up (i.e., before the dotted line at 58 ns), there is a

decrease in the electrostatic energy and an increase in both

bonding and LJ terms, suggesting that during this period the

system behavior is guided by the electrostatic interactions, which

Figure 2. Contact and orientation map for the 32 gold-exposed Arg of the RAD16II peptide. The color code (defined in the upper panels)
indicates whether Arg is in contact with the surface or not, and whether its side chain orientation is perpendicular or parallel to the surface. Arg is
defined to be in contact when any of its atoms is within 0.35 nm of the surface. Side chain is defined to be parallel to the surface when all the
guanidinium C-N bonds have angles with the surface smaller than 30u, otherwise orientation is called perpendicular. If a looser definition of parallel
orientation is used (angles smaller than 45u instead of 30u), the number of first contacts taking place in the perpendicular orientation is still .70% of
the total.
doi:10.1371/journal.pone.0020925.g002
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temporarily induce the formation of an higher-energy structure

(the total potential energy has a positive fluctuation). However, this

conformation rapidly relaxes (region between the dotted lines) via

a rearrangement of the sidechains that corresponds to the sharp

increase in the number of atomic contacts described above. After

this step, further stabilization of the system configuration is

achieved through a steady increase in the atomic contacts which is

clearly evidenced after point c. Notably, the bonding term (blue) is

increasing throughout the dynamics, in order to maximize the

interaction with the surface. Indeed, the internal geometry of the

peptide gradually departs from the optimal conformation adopted

by the isolated molecules.

Strikingly, the interactions of Arg side chains with the gold layer

are the driving force of peptide-surface the association. The

electrostatic energy minimum that accompanies the sharp increase

of atomic contacts at 58–62 ns corresponds to several Arg finding

their way to the surface (Fig. 2). In all the described adsorption

steps, the Arg capability to penetrate the water layer is funda-

mental, forming the initial peptide-gold contact. In .80% of first

contact events, the Arg side chain is perpendicular to the surface

(Fig. 2), minimizing the number of water molecules to be displaced

(Fig. 3). Afterwards, the side chain changes its conformation

becoming parallel to the gold surface. Such an adsorption geo-

metry has already been observed for an isolated Arg, competing

with a second geometry with an adsorbed backbone. The observed

orientation is the preferred orientation found for methylguanidi-

nium (i.e., the molecule representing the Arg side-chain) in water

[16]. Our simulations strongly indicate that Arg may play a

dominant role in the adsorption of polypeptides.

Fibronectin Close to Surface
As the next level of complexity, we simulated the last steps of

adsorption of FNIII9–10. To this end, we placed the protein in

eight different orientations over the gold surface with approxi-

mately one water layer between FN9–10 and the metal surface

(Fig. 4) and monitored the protein-gold distances over a simulation

of 100 ns per orientation. With these simulations, we save

computational time due to the reduced need to simulate the

diffusional encounter of the protein with the surface. This allows us

to sample many different protein-gold orientations. Effects of

diffusion are considered later in this work. Well-defined contact

areas are formed quickly (Fig. 5), being stable over the whole

length of the simulation. Within the 100 ns simulation, no

significant re-arrangement of the initial adsorption geometry

occurs. The contacts between the protein and the metal surface do

not break once formed (Fig. 5). This demonstrates the strong

interaction of the protein with the surface. In a variety of Atomic

Force Microscopy experiments, it has been demonstrated that

adsorption of proteins on surface leads to interactions that are so

strong that the individual protein domains unfold rather than

detach from the surface when force is applied, in line with our

results here [32,33]. Our results furthermore indicate that

once adsorbed, the proteins are in a kinetically trapped state

(translational and rotational), which prevents the reorientation to a

potentially more optimized adsorption geometry. However,

although our simulations of altogether more than one ms approach

experimental time frames, slow re-orientation processes on longer

timescales may occur [34,35].

Despite the strong interaction with the gold surface, the protein

does not unfold on the gold surface within the simulation time

in either of the simulations. The b-sheet content is virtually

unchanged (Fig. 6 [36]), and no major conformational changes

within each domain occur. The Ca RMSD of the individual

domains remains below 3 Å (Fig. 7 and 8). However, the total root

mean square deviation (RMSD) of the two domains together

shows drastic changes, indicative of the gold-induced remodeling

of the domain-domain orientation. The stepwise increase in the

total RMSD indicates collective structural transitions between

different energy minima, and the resulting relative domain

orientation is rigid.

Although the individual domains remain rather stable, the

protein adapts to the gold surface. The originally roundish surface

of the protein becomes planar at the site of adsorption, constituting

something like an induced-fit mechanism.

Like the model peptide, FNIII9–10 has a very high b-sheet

content. Based on simulations of individual amino acids on gold

surfaces [15], we proposed earlier that gold surface might in fact

Figure 3. Switching of Arg side-chain conformation during the association process. Arg contacts the surface having the plane of the side
chain perpendicular to it (Fig. 3a). After a few ns, the plane of the methylguanidinum moiety has changed its orientation becoming parallel to the
surface.
doi:10.1371/journal.pone.0020925.g003
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stabilize b-sheets, in agreement with the stable individual domain

folds observed here.

The behavior of a-helical domains on gold may be different and

will be the focus of future studies.

Inclusion of Diffusion
As a next step, we were also interested in the diffusional states of

FN further away from the protein. To investigate this, we placed

FNIII(9–10) between two gold surfaces with a separation of 8 Å to

one of the gold surfaces resulting in a distance of 23 Å to the other

gold surface. This allows the protein to freely choose on which side

to adsorb and to change the relative orientation of the protein

relative to the gold surface during the diffusional phase. We

simulated the protein starting from identical conformations but

from two different sets of randomly Maxwell distributed atomic

velocities. Due to the chaotic behavior of many particle systems,

simulation trajectories with different initial atomic velocities

quickly diverge in the sub nanosecond regime.

Fast Adsorption
In both cases, FNIII(9–10) quickly adsorbed on the gold surface.

However, despite the identical starting conformation, the

association times and geometries vary significantly, demonstrating

that the protein is still in a diffusional state at the start of the

Figure 4. Starting and final conformations of FN. On the left side, the six rotations of the conformation parallel to the surface are shown while
the right side depicts the perpendicular conformations with N- or C-Terminus close to the surface. The integrin-binding RGD-loop is indicated in red.
Domain 9&10 from 1FNF were used for the simulations. First the principal axis was aligned parallel to the surface. Then, stepwise rotations of 60u
around the principal axis produced the initial conformations. The obtained structures were separated by one water layer from the surface.
doi:10.1371/journal.pone.0020925.g004
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simulation. This behavior is consistent with free energy profiles

calculated for the adsorption of single amino acids to the gold

surface. There, strong attraction was only observed at distances

below 8 Å [15,16].

The fast association reaches the diffusional limit. From simu-

lations in water, we found that the 3D diffusion constant is

D = 0.1031 (+/2 0.0215) 1e-5 cm‘2/s. This translates to a mean

travelled length of L = 0.786 nm within 1 ns. In the simulations

with a separation of 0.8 nm from the gold surface, the first contact

times were 0.4 ns and 21 ns. Thus, in one of the two simula-

tions, the adsorption time is in fact faster than expected for

random diffusion. It indicates that no major energy barriers

exist on the adsorption trajectory. Earlier results on the adsorp-

tion of individual amino acids support that the adsorption of

biomolecules on gold surfaces is energetically predominantly a

downhill process with only a small dewetting barrier. The com-

parable behavior of the complex biomolecule shows that no

energetically costly conformational changes need to occur for the

adsorption. The fast adsorption is further indicative of a rather

unspecific binding interface. Once adsorbed, no desorption is

observed within our simulation time. Further, also in this case we

observe no major rearrangements of the relative orientation of the

gold and the protein once adsorbed.

Physicochemical Properties of the Protein Patch Forming
the Initial Contact

After formation of a first stable contact, the protein does not

diffuse away from the gold surface. Hence, the initial contact

Figure 5. Time resolved adsorption of FN residues. The distance from closest atom of each residue from the surface is shown during each
100 ns simulation color coded according to Dz21 where 1.0 corresponds to the minimum distance and 0 to ‘. Residue # refers to the protein
sequence reported below.
doi:10.1371/journal.pone.0020925.g005
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between protein and surface is the determining step in the

adsorption process. Understanding the physicochemical properties

of this patch may allow identifying putative gold binding sites in

other proteins without reverting to time-consuming atomistic MD

simulations. Two different surface patches form this initial contact

in our simulations. This underlines the rather unspecific nature of

the adsorption process. To analyze the physicochemical properties

of the contacting surface patches, we mapped the electrostatic

potential of proteins as calculated with an adaptive Poisson-

Boltzman approach [37] on the solvent accessible surface. Patches

with electrostatic potential close to zero, surrounded by area with

potential values deviating from zero, form this initial contact

(Fig. 9). Earlier results on the free energy of adsorption of

individual amino acids showed a different trend: there, positively

charged amino acids formed stronger interactions than apolar

amino acids [15]. Different reasons may contribute to reconcile

these apparently contradicting findings. The first and more

fundamental is that the adsorption free energy of the amino acid

is a thermodynamic quantity, while the present results for the

entire proteins refer to the dynamic behavior (i.e., to the kinetics)

of the system. To bring a protein patch in contact with the surface,

it is necessary to desolvate such patch. Therefore, a dewetting

barrier should be overcome. Such a barrier, which can be seen

even for single amino acids [15], will be larger for protein patches

that bound water more tightly, e.g, patches at potentials far from

zero. As a result, patches with a potantial far from zero will dewett

more slowly. Hence, the here observed first contacts may be

determined by the low dewetting barrier of patches with a

potential close to zero.

Of course similar effects related to desolvation may modify the

adsorption thermodynamics for the whole protein, not just the

kinetics. In fact, in the earlier thermodynamics studies on single

amino acids, the charged side chain in proximity to the surface is

still exposed to solvent. Hence, no major desolvation penalty is

Figure 6. Secondary structures changes during simulation time. No significant conversions could be observed. The secondary structure maps
were created with do_dssp, the Gromacs interface to dssp.
doi:10.1371/journal.pone.0020925.g006
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paid for individual charged amino acids, while simultaneously

attractive interactions between the amino acid charge and the

polarizable gold surface are possible. In our studies of a whole

protein reported here, the sidechains are shielded from the solvent

by the neighboring amino acids once adsorbed. This shielding

effect may tip the balance so that the interactions between

polarizable gold surface and the charged amino acids together

with the entropic gain obtained from freeing the water molecules

bound to the gold surface and the charged surface patches cannot

compensate for the loss of solvation enthalpy.

The physicochemical properties observed here resemble the

architecture of protein-protein interaction sites. However, protein-

protein interactions are highly specific and the results of long

evolutionary process, while the here observed interactions are not

physiological and unspecific. Hence, the interactions observed

here can be regarded as a model system for protein-protein

interactions before evolutionary optimization. This supports the

earlier notion that protein-protein interaction sites evolved from

unspecific interactions, formed by patches with an intrinsic

propensity to aggregate. These unspecific interaction sites were

then optimized by mechanisms inducing shape and charge

complementarity. This is facilitated by the plasticity of both

interaction partners and the complexity of a protein surface,

allowing for a high variety in shapes. The challenge for designing

specific protein-to-surface interaction lies in the fact that the

surface is flat, isotropic and not adaptive, so that only one

interaction partner is available for evolutionary optimization.

Adsorption is a step-wise process
Analyzing the contact times of individual amino acids of the

protein with the gold surface shows a step-wise process. First, a

contact is initiated by a few amino acids. This is then followed by

a very fast cooperative adsorption of a complete surface patch.

Despite the more complex nature of the protein, this adsorption

sequence is very similar to the adsorption of the model peptide.

This suggests that the basic features observed in the model

peptide are well preserved in complex systems. The surface

patches of FNIII9–10 behave like independent binding units.

This hints at a modular architecture of the binding interface.

Modular architectures of binding interfaces have previously been

proposed for protein protein interactions, demonstrating a

conceptual similarity. This raises the question whether a certain

modularity is an intrinsic property of interactions involving

proteins, stemming from the self-organization of the polypeptide

chain during folding.

Also here Arg seems to be overrepresented in the early initiation

phase of the interaction, underlining the particular ability of Arg to

penetrate the final water layer, establishing a first contact and

facilitating the dewetting transition.

Binding-Site Reorientation
Binding of cells to fibronectin induces cellular signaling

cascades. It has been shown that two binding sites in FNIII(9–

10) are of particular importance for cellular force sensing: the main

RGD binding site located in FNIII(10) and the synergy-site located

in FNIII(9). Since biological recognition processes rely on the fine-

tuned relative orientation of different binding partners, it is

expected that changes in the relative orientation impact binding

and signaling properties. Therefore, we analyzed the relative

orientation of the synergy site and the main RGD binding loop as

indicated by the dihedral angle distribution between the two

binding sites (Fig. 10). Adsorption on the gold surface leads to a

narrowing of this distribution compared to simulations in water,

indicating a stabilizing effect of the adsorption. Furthermore,

adsorption of both domains leads to a relative orientation of the

two binding sites only rarely observed in free simulations. The

observed binding-site reorientation raises interesting questions

about the physiological activity of surface adsorbed multi-domain

proteins, even if the individual fold of each domain may struc-

turally not be affected by adsorption. For the here simulated

domains FN9–10, it has been suggested that the structural stability

of FN9–10 is important for the proper ligation of the protein with

the cell-surface receptor integrin A5B1 [38], and that the relative

orientation plays an important role in mechanosensing [39,40].

Hence, surface adsorption of adhesion molecules might potentially

alter their signaling properties, as already suggested earlier [41].

Further, these reorientations can expose hidden epitopes, poten-

tially causing an immunological threat.

Impact of Mutations
Since our results of both the model peptide and the protein

imply an important role for Arg in early steps of the adsorption

process, we mutated all Arg in silico to Val or to Lys. The ArgRLys

mutation retains the charge distribution on the FN surface,

while the ArgRVal mutation leads to an overall highly negatively

charged protein. For both mutants, we performed 100 ns adsor-

ption simulation each. Our results underline the importance of

electrostatic properties for the adsorption: while the ArgRLys

mutant adsorbs very similar to the WT, the ArgRVal mutant needs

longer time for adsorption, only adsorbs at the rather uncharged

ends of the protein and bridges the two gold layers. Hence, the

desolvation penalty of the negatively charged protein is too high to

allow fast and strong adsorption. This has strong implications for

the design of specifically adsorbing proteins: it is very desirable to

create proteins that adsorb in a specific orientation onto the gold

surface. For such an effort, comparable to drug design or to the

design of protein-protein interaction, two aspects need to be

regarded. First, one has to create a surface patch that easily

adsorbs onto the surface (design-in). But second and equally

important, one has to design the remaining of the surface such that

it is unlikely to adsorb (design-out). Our results give first hints for

both strategies: overall neutral patches containing Arg are preferred

Figure 7. Ca RMSD of the two domains and the entire protein.
The first inlet shows the initial adsorption while the others depict the
twisting of the domains in the region between 35 ns and 44 ns. Arg are
shown in licorice representation. See Fig. 8 for all simulations.
doi:10.1371/journal.pone.0020925.g007
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Figure 8. RMSD of Domain 9 & 10 and the entire protein from all simulations. Only Ca - atoms are considered. Major changes are
observable only in the RMSD of the entire protein.
doi:10.1371/journal.pone.0020925.g008
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Figure 9. Electrostatic potential on the initial adsorption sites. The electrostatic surface potential on the solvent accessible surface is mapped
on the van-der-Waals surface of FN. The first contact region is surrounded by a black line. Most parts of the contact regions exhibit a low electrostatic
surface potential.
doi:10.1371/journal.pone.0020925.g009
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binding sites (desgn-in). Negatively charged areas hinder adsorp-

tion (design-out).

Summary
Our results of the two weakly related systems, which mainly

share a common secondary structure, reveal certain similarities,

which may be regarded as common topics in protein adsorption

on gold: the adsorption in both cases is a step-wise and cooperative

process. When closely analyzing the adsorption both for the model

peptide and the protein, it becomes apparent that Arg plays a

crucial role. Arg residues are either providing the first contact or

involved within the following ns after the first contact with the

surface (Table 1). No other amino acid has the same behavior. The

availability on the protein surface, the high affinity for gold [17,42]

and its length predestine Arg as an early anchor for protein-gold

interactions. Biotechnological applications may not only require

surface-specific interactions, but additionally preferred orienta-

tions of proteins on the surface, best without sophisticated covalent

attachment schemes. Our simulations indicate that intelligent

placements of Arg could fulfill such a role. Furthermore, b-sheet

rich proteins are stable on the gold surface, but domains may re-

orient impacting biological effects.

Conclusions
We have presented long atomistic molecular dynamics simula-

tions of complex polypeptides on a polarizable gold(111) surface in

water. On the time scale of the simulation, no unfolding has been

observed. However, we did observe significant domain-domain re-

orientation, which may promote the exposure of cryptic epitopes

[41]. The simulations have also demonstrated the crucial role of

Arg in promoting early on in the adhesion process a direct contact

with the gold surface, similar to what has recently been shown for

the adsorption of Lysozyme on a charged model surface [43].

Leveraging these special properties of Arg may help to design

proteins adsorbing on a gold surface in a specific orientation

without the need for sophisticated covalent coupling schemes.

Taking into account that Arg is cationic at neutral pH, our result

hint at the possibility to electrochemically control the protein-gold

interactions, since the gold surface can be made positively charged

(and thus Arg-repelling) by an applied potential bias. Hence, our

simulations offer a first in-depth view into the possibilities to

rationally control the binding of proteins on gold.

Methods

We used fibronectin domains FN9–10 from crystal structure

1FNF [44] as input (starting from residue 1326). The structure

was placed in 6 rotations in 60u steps parallel and 2

conformations perpendicular to the gold surface with a water

layer separating the protein from the gold surface (Fig. 4). In the

solvated box, Na and Cl ions were placed in order to obtain

physiological conditions of 150 mMol and an overall neutral box.

The obtained systems were energy minimized and then subject to

500 ps relaxation with restraints on all heavy atoms followed by a

separate 50 ps simulation with semi-isotropic Parrinello-Rahman

pressure coupling [45] in z-direction. Compressibility was set to

0 m2N21 in xy-direction. The obtained structures were then

simulated for 100 ns. All simulations were performed with the

Gromacs 4.0.7 package [46], integration time steps of 2 fs and a

Nose-Hoover thermostat [47] at 300 K. Particle Mesh Ewald

[48] for long range electrostatics above 1.1 nm and switch cutoff

0.9–1.0 nm for van der Waals interactions was used. GolP [13]

and OPLS/AA parameters [49] were used for the surface and the

protein and the SPC water model were used. For distance and

secondary structure analysis, we used the gromacs tools g_traj

and do_dssp, which is a trajectory interface to the dssp program

[50]. The simulation of RAD was performed by placing the

equilibrated RAD b-sheet [31] parallel to the gold surface at a

distance that do not prevent the formation of a complete water

monolayer between the peptide and the surface. The b-sheet

fragment is composed of 16 RAD16II peptide molecules. After

minimization, the NVT dynamics was started and run for 100 ns.

Values of the adsorption energies and of its components (see

Fig. 1) were collected every 0.2 ps during the entire dynamics.

From them we subracted the energy averaged over the first ns of

the production dynamics (when the peptide is not in contact with

the surface) to define the time-dependent adsorption energy

reported in Fig. 1. The bonded term (blue) also includes the

Lennard-Jones and Coulomb interactions between the peptide

atoms separated by three bonds (1–4 interactions), as their

parameterization and meaning is entangled with those of the

bonding terms. To smooth out statistical fluctuations in the

energy profiles, shown in Fig. 1, we present values obtained by

averaging the energy on a 1 ns window centered on each

collected energy. The use of smaller averaging windows yield

similar trends but noiser profiles (see Fig. S1). We also recall that

the image charge procedure used here provides correct statistical

Figure 10. RGD and synergy site orientation during adsorption.
Dihedral angle between the RGD (blue), two representative residues
(black) and the synergy site (red) in FN is shown top. Below the angular
distribution of this dihedral is shown for two simulations of FN in water
and for two adsorption simulations. The individual water angle
distributions are shown as dashed lines, the cumulative distribution
as solid line. A narrowing of the distribution is observed after
adsorption. Further, for the simulation with both domains adsorbed,
an additional shift in the distribution is seen.
doi:10.1371/journal.pone.0020925.g010
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sampling and free energies [51] but may overestimate the image

contribution to the interaction enthalpy. No entropic term is

included in Fig. 1.

Supporting Information

Figure S1 Impact of averaging of the potential energy of
the system. Potential energy of the system as obtained directly

from the dynamics (Potential E) and averaged over time windows

of different lengths.

(TIF)
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binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20:

502–507.
29. Mardon HJ, Grant KE (1994) The role of the ninth and tenth type III domains

of human fibronectin in cell adhesion. FEBS Lett 340: 197–201.

30. Ellis-Behnke RG, Liang Y, You S, Tay DKC, Zhang S, et al. (2006) Nano neuro
knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with

functional return of vision. Proc Natl Acad Sci U S A 103: 5054–5059.
31. Monti S (2007) RAD16II beta-Sheet Filaments onto Titanium Dioxide:

Dynamics and Adsorption Properties. J Phys Chem B 111: 16962–16973.
32. Rief M, Gautel M, Schemmel A, Gaub HE (1998) The mechanical stability of

immunoglobulin and fibronectin III domains in the muscle protein titin

measured by atomic force microscopy. Biophys J 75: 3008–3014.
33. Meadows PY, Walker GC (2005) Force microscopy studies of fibronectin

adsorption and subsequent cellular adhesion to substrates with well-defined
surface chemistries. Langmuir 21: 4096–4107.

34. Antia M, Islas LD, Boness DA, Baneyx G, Vogel V (2006) Single molecule

fluorescence studies of surface-adsorbed fibronectin. Biomaterials 27: 679–690.

35. Baugh L, Vogel V (2004) Structural changes of fibronectin adsorbed to model

surfaces probed by fluorescence resonance energy transfer. J Biomed Mater

Res A 69: 525–534.

36. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22:

2577–637.

37. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of

nanosystems: Application to microtubules and the ribosome. Proc Natl Acad

Sci U S A 98: 10037–10041.

38. Altroff H, Choulier L, Mardon HJ (2003) Synergistic activity of the ninth and

tenth FIII domains of human fibronectin depends upon structural stability. J Biol

Chem 278: 491–497.

39. Friedland JC, Lee MH, Boettiger D (2009) Mechanically Activated Integrin

Switch Controls alpha5beta1 Function. Science 323: 642–644.

40. Krammer A, Craig D, Thomas WE, Schulten K, Vogel V (2002) A structural

model for force regulated integrin binding to fibronectin’s RGD-synergy site.

Matrix Biol 21: 139–147.

41. Lynch I, Dawson KA, Linse S (2006) Detecting Cryptic Epitopes Created by

Nanoparticles. Science Signaling 2006: pe14–.

42. Hnilova M, Oren EE, Seker UOS, Wilson BR, Collino S, et al. (2008) Effect of

Molecular Conformations on the Adsorption Behavior of Gold-Binding

Peptides. Langmuir 24: 12440–12445.

43. Kubiak-Ossowska K, Mulheran PA (2010) What governs protein adsorption and

immobilization at a charged solid surface?. Langmuir 26: 7690–7694.

44. Leahy DJ, Aukhil I, Erickson HP (1996) 2.0 Å Crystal Structure of a Four-
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Abstract

We report on a python interface to the GROMACS molecular simulation package,
GromPy (available at https://github.com/GromPy). This interface uses the ctypes
python module that allows function calls to shared libraries e.g. written in C. To
the best of our knowledge, this is the first reported interface to the GROMACS library
that uses direct library calls. GromPy can be used for extending the current GROMACS
simulation and analysis modes. In this work we demonstrate that the interface en-
ables hybrid Monte-Carlo/Molecular Dynamics simulations in the grand-canonical
ensemble, a simulation mode that is currently not implemented in GROMACS. For
this application, the interplay between GromPy and GROMACS requires only minor
modifications of the GROMACS source code, not affecting the operation, efficiency
and performance of the GROMACS applications. We validate the grand-canonical
application against molecular dynamics in the canonical ensemble by comparison
of equations of state. The results of the grand-canonical simulations are in com-
plete agreement with molecular dynamics in the canonical ensemble. The python

overhead of the grand-canonical scheme is only minimal.
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1 Introduction

The GROMACS molecular simulation package [1, 2, 3, 4] is widely used in the field of
(bio)molecular simulation. The most common setup of a simulation system in GROMACS,
as in most other major molecular simulation software, assumes a system with a fixed
composition of molecules. In addition, for each type of molecule, a fixed, predefined
chemical connectivity is assumed. This setup does not readily allow the breaking of
chemical bonds, nor the addition or removal of atoms or molecules to or from the system,
e.g. simulations in the grand-canonical ensemble. A common workaround implementation
involves shell scripting to apply modifications to the simulated system setup, followed by
(re)starting of the simulation engine. Needless to say, this adds significant overhead
and subtracts from the overall efficiency. Moreover, such approaches show unfavorable
scaling behavior with respect to computational efforts, e.g. when increasing the amount
of insertions/removals or when increasing the system size.

The grand-canonical ensemble can be used for studying systems where one is interested
in the average number of molecules as a function of the external chemical potential and
temperature. This renders it a suitable ensemble e.g. for exploring adsorption behavior
of a given molecular species to the system of interest [5]. In a grand-canonical Monte
Carlo (GCMC) simulation, one imposes the chemical potential µi of species i, the system
volume V and the temperature T . During simulation, particles of type i are removed or
inserted as a result of the imposed chemical potential. At equilibrium, the amount of
removals is equal to the amount of insertions, and one can sample the average number of
molecules i. The main computational advantage with respect to MD and NV T Monte
Carlo (MC) is that equilibration times are drastically reduced as well as the sizes needed
for the molecular systems [5]. It is also possible to combine MD with grand-canonical
MC (GCMC) [5, 6]. The result is a ‘hybrid’ scheme that alternates short MD trajectories
for particle translations of a system containing Ni particles of type i, with trial particle
removals (Ni ← Ni − 1) or insertions (Ni ← Ni + 1).

The main application of GROMACS is as an engine to perform Molecular Dynamics
(MD) simulations. Based on such simulations, dynamic system properties of interest can
be determined. In addition, the MD trajectories also contain (non-)equilibrium ther-
modynamic properties of molecular systems. For analyzing the simulation outcomes,
GROMACS comes with a range of applications that facilitate this process. With respect to
specific simulation options (e.g. GCMC) or with respect to data analysis, it would how-
ever be useful to have the GROMACS data structures accessible to the user via interpreted,
high-level programming languages such as python.

In contrast to C or Fortran, python is suitable for rapid-prototyping and is easy to
read and learn. Moreover the python user community is active and growing [7] and
several python packages such as BioPython [8] and PyCogent [9] have become standards.
A python interface would therefore extend the scope of users that can contribute to and
use the flexibility of the GROMACS simulation package.

In this work we describe an approach that makes the GROMACS data structures available
to the user via the python module GromPy acting as an interface to the GROMACS C-
library. The module allows access to the desired GROMACS data structures in memory
from the python interpreter that can then be used to implement analysis tools and new
simulation schemes. Here, we illustrate the use of the GromPy interface by implementing a
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grand-canonical Monte Carlo simulation scheme [5] for which we utilize GROMACS C-library
functions to perform energy calculations.

2 Methods

2.1 The GromPy Python Interface

The GROMACS package is written in the C programming language. We base our develop-
ment tree on GROMACS version 4.0.5 that will be ported to the latest development branch
in the near future.

To implement the interface, we choose the python programming language. Python is
a high-level, interpreted, object-oriented and multi-platform programming language. It
provides a large standard library and is easy to code. We use the free and open source
CPython implementation of python [10]. Apart from the standard library, python has
excellent extensions for numerical data analysis and data display [11, 12, 13, 14, 15, 16].
CPython is written in C and compiles python programs into intermediate code that
can be executed by a virtual machine. The CPython implementation also allows the
implementation of modules in C and the interfacing of (precompiled) libraries.

In our setup, we use the ctypes module [17] as interface between python and the
GROMACS C-library. The ctypes module contains python equivalents for all basic C data
types and allows the mapping of compound structures in C to python classes. As soon
as the GROMACS data structures are accessible via ctypes, we can pass them to external
GROMACS functions and access the result from the python interpreter during the execution
with the GromPy module.

The initial GromPy implementation can be used for the analysis of trajectories, e.g.
using GROMACS’ periodic boundary condition removal and structure fitting routines [18].
GromPy can also read in index groups and topologies and was applied in the prototyping
of GROMACS tools which were later implemented in C [19]. Recently, GromPy was applied
to design a combined MD/MC approach to simulate FRET experiments and aid in the
distance reconstruction [20]. This work involves extending GromPy by a GCMC simulation
mode. The GromPy source code is publicly available at https://github.com/GromPy.

2.2 Hybrid Grand-Canonical Monte Carlo / Molecular Dynam-

ics Simulations

In grand-canonical Monte Carlo (GCMC) the simulation box is in chemical equilibrium
with an external bath. Hence, the chemical potential µ of both systems is equal. One
therefore imposes the chemical potential of a particular molecular species upon which
molecules are exchanged between the external reservoir and the simulation box [5]. In
practice, this means that molecules are inserted into or removed from the simulation box
during simulation. The MC acceptance rule for insertion of a molecule reads

Pacc(N → N + 1) = min

[
1,

V

Λ3(N + 1)
exp (β[µ−∆U ])

]
, (1)

where N is the number of molecules, V is the box volume, Λ =
√
h2/ (2πmkBT ) is the

thermal De Broglie wavelength (h denotes Planck’s constant, m the molecular mass, kB
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Boltzmann’s constant and T the temperature), β = 1/(kBT ) is the inverse temperature
and ∆U = U(N +1)−U(N) is the energy difference of adding one molecule at a random
position in the simulation box. For removal of a molecule, we use the following acceptance
rule

Pacc(N → N − 1) = min

[
1,

Λ3N

V
exp (−β[µ+∆U ])

]
, (2)

where ∆U = U(N − 1) − U(N) is the potential energy difference associated with the
removal of a randomly selected molecule.

To simulate thermal motion, we apply several MD steps at constant NV T using the
velocity rescale thermostat [21], that generates a canonical ensemble, in between the
GCMC moves. The nature of the MC move (i.e. a trial insertion/removal or an MD
move) during a MC cycle is chosen at random based on a user-defined list of probabilities
for each type of MC move.

2.3 Extending GromPy and Modifying the GROMACS Source Code

This work involves an extension of GromPy, enabling GCMC using the GROMACS C-library.
The general setup is shown in Fig. 1. When used in GCMC mode, GromPy needs a starting
configuration with a number of molecules Ni,start of type i in the form of a GROMACS tpr

file stored on disk. Such a tpr file serves as input for a GROMACS simulation and contains
all simulation parameters and a configuration of a system. The tpr file range Ni ∈
[Ni,min, Ni,max] is generated in the preprocessing stage, where Ni,min 6 Ni,start andNi,max >
Ni,start are the extrema of the Ni sampling range. By imposing a chemical potential µi of
this molecule type, GromPy samples the Ni range via the hybrid GCMC/MD algorithm.

All MC moves in our hybrid MD/grand-canonical MC module require having the
current state sc :

[
Ni,c, r

Ni,c ,vNi,c
]
and associated total potential energy Uc in memory,

c.f. Fig. 2. This state is a member of the grand-canonical ensemble and thus comprises
the current number of molecules Ni,c of type i, the coordinates rNi,c and the velocities
vNi,c (we use the rN and vN short hand notation for the coordinate and velocity arrays
consisting of N elements). The GCMC module uses two MC move types: one that
performs several MD steps on sc to simulate thermal motion of the molecular system
and one that performs a grand-canonical MC move that tries to modify sc by inserting or
removing a molecule. For computational efficiency, the MD move is always accepted since
the resulting configuration is already part of the correct statistical mechanical ensemble.
After the MD move, we update the coordinates, velocities and total potential energy.
Inside the GCMC move we select either the removal or the insertion of a molecule with
a probability of Pinsert = Premove =

1
2
. For insertion we generate a trial state st that has

Ni,t = Ni,c + 1 molecules. The first Ni,c elements of the coordinate and velocity arrays
are copied from sc. The last element is filled by a random molecular position r′ inside
the box and by a molecular velocity v′ chosen at random from the Maxwell-Boltzmann
velocity distribution associated with the imposed temperature T , respectively. This step
requires having st in memory. If this is not the case, we first read a tpr file with
Ni = Ni,t from disk. A molecular removal involves generating a trial state st that has
Ni,t = Ni,c − 1 molecules. We randomly select a molecule (k) from the list and copy the
Ni,c elements of the coordinate and velocity arrays from sc to st, while excluding the kth
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preprocessing1

input:2

molecule type i
µi

Ni,min, Ni,max

Ni,start ∈ [Ni,min, Ni,max]
tpr path
output path

GROMACS 4.0.5

source5

run GromPy

in GCMC mode3 libmdrun.so4

output analysis

(a)

(b)

(e)

(d)

(c)

Figure 1: The GCMC simulation setup used in this work. The preprocessing stage (1)
involves generating tpr files for each configuration Ni ∈ [Ni,min, Ni,max] using grompp.
The input (2) for GromPy comprises the molecule type i for which the chemical potential
µi is imposed, a range of numbers of molecules [Ni,min, Ni,max] of type i that can be
sampled, a starting configuration Ni,start, the tpr path on disk, and the output path
on disk. The preprocessing step requires prior knowledge of the input parameters (a).
GromPy (3) reads the input parameters (b). Molecular insertions/removals requires tpr

reads from disk (c). Once read, the associated data structures are kept in memory. The
necessary energy evaluations are performed by the GROMACS library (4) with which GromPy

communicates (d). This shared object library is compiled (e) from a slightly modified
version (5) of GROMACS 4.0.5. The generated output can be further analyzed by the native
GROMACS analysis suite, GromPy, or other software.
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element. Again, we require having st in memory and read from disk otherwise. Trial
insertions or removals with associated Ut are accepted according to Eq. 1 or Eq. 2 (where
∆U = Ut−Uc), respectively. If accepted, we update st to sc and the associated potential
energy Ut becomes Uc. Otherwise, we keep sc and Uc. After each MC move we update
the averages and increment the MC loop iterator.

As described above, the GCMC module uses the current and trial states (sc and st) to
sample the grand-canonical ensemble. For this, energy evaluations are needed to obtain
Uc and Ut that serve as input for the acceptance rules for insertion (Eq. 1) and removal
(Eq. 2). At run time, the states are stored in memory by interfacing with specific GROMACS
library functions. The associated energies Uc and Ut are computed by calls to the GROMACS
library. Both operations are performed using the python ctypes module. To achieve the
interfacing, we modified the GROMACS 4.0.5 source code as shown in Fig. 3. Although
the modifications were performed for the serial implementation of GROMACS, we intend
to make the modifications compatible with the parallel parts of the code. We expect
that this will require relatively little effort. The GROMACS function mdrunner() loads a
tpr file and can perform an MD simulation on a given system. This function is called
by the GROMACS mdrun executable. Since ctypes can load only shared object libraries,
we compile the mdrun executable as a shared object library: libmdrun.so. During a
GCMC run we generate trial states st by copying the current state sc to st and adding a
trial position (and velocity) for insertion or excluding a randomly selected molecule for
removal. To achieve this flexibility, we have split up the mdrunner() function into three
parts: mdr init(cs), mdr int(cs) and mdr fin(cs). We added a new data structure
cs for the current state that enables communication between the sub-functions. For
our purposes the most important member of cs is the state s. By subsequently calling
the three separate functions (and without modifying cs in between), the behavior of
the original mdrunner() function is reproduced exactly. Function mdr init(cs) reads a
tpr file from disk and stores the state s in cs. Function mdr int(cs) performs an MD
calculation of NMD steps. NMD is also a member of cs and can be set from within GromPy.
For an MD move the number of MD steps is set to NMD > 0 and for energy evaluations in
a GCMC move it is set to NMD = 0 (which results in a single point energy calculation).
Computational performance of the simulation is calculated by function mdr fin(cs).
The gain in total computational time is realized by keeping cs in python memory once
initialized by a disk read. In this way cs can be (re)used efficiently for MD or GCMC
moves.

Note that the Ni,start configuration should be an equilibrated one. However, this is
not a precondition for all other Ni 6= Ni,start tpr files that the user wishes to use for
sampling, since this tpr file is merely used to fill the coordinate and velocity arrays in a
trial move. During simulation, sc will always be part of the correct ensemble.

To summarize, once in memory cs can be manipulated for whatever intended purpose
and can serve as input for mdr int(cs). Our purpose is GCMC and we therefore need to
manipulate the cs members s and NMD. Obviously, the same behavior can be achieved
by executing a shell script that calls the necessary GROMACS executables, i.e. grompp and
mdrun. The downside of such an approach is that most of the time the GCMC shell will
perform file I/O and/or system calls. Having the relevant GROMACS data structures in
memory, combined with the modified GROMACS source code drastically reduces the time
spent on file I/O and renders GromPy an efficient GCMC application, with less than 6%
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Ni,c ← Ni,start

load libmdrun.so as lmdr
lmdr.mdr init(sc):
sc ←

ˆ

Ni,c, r
Ni,c ,vNi,c

˜

Uc ← lmdr.mdr int(sc,
NMD = 0)

MC loop over
0 ≤ j < Ncycles

Uc ← Ut and sc ← st accept
Ut ← lmdr.mdr int(st,

NMD = 0)

lmdr.mdr init(st):
st ←

ˆ

Ni,t, r
Ni,t ,vNi,t

˜

keep Uc and sc

Uc ← lmdr.mdr int(sc,
NMD > 0)

st in
memory

j < Ncycles
MC move

type
remove /
insert

lmdr.mdr fin(sc)
write results to file
exit

START

no
END

yes

MD

update averages and increment j

GCMC

insert; st : Ni,t ← Ni,c + 1

remove; st : Ni,t ← Ni,c − 1

no

yes

no

yes

Figure 2: Flowchart of GromPy in GCMC mode. Each MC move is based on the current
state sc :

[
Ni,c, r

Ni,c,vNi,c
]
and associated total potential energy Uc, kept in memory.

State sc is defined by the number of molecules Ni,c of type i, their coordinates rNi,c and
velocities vNi,c . GromPy uses two MC move types: an MD move of several MD steps
and a grand-canonical MC move. After the MD move, the coordinates, velocities and
total potential energy are updated. The GCMC move involves removal or insertion of a
molecule selected with a probability Pinsert = Premove =

1
2
. Insertion or removal requires

having st in memory. If this is not the case, we first read a tpr file with Ni = Ni,t

from disk. Insertions or removals are accepted with the probabilities in Eq. 1 and Eq. 2,
respectively. If accepted, st becomes sc and Ut becomes Uc. Otherwise, we keep sc and
Uc. After each MC move we update the averages and increment the MC loop iterator j.
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GROMACS 4.0.5

default compilation
compilation as

shared object library

mdrun executable libmdrun.so library

mdr init(cs)

initializes mdrunner()

function mdrunner()
mdr int(cs)

integrates mdrunner()

mdr fin(cs)

finalizes mdrunner()

unmodified source modified source

yields

calls

yields

members

pass cs

pass cs

Figure 3: Modification of the source code of GROMACS version 4.0.5. Left: default com-
pilation yields the mdrun executable (amongst others). This program calls function
mdrunner() that is the calculation engine for MD simulations. Right: compilation of
the mdrun executable as the shared object library libmdrun.so and splitting up func-
tion mdrunner() into an initialization stage an integration stage and a finalization stage.
Communication between the stages is achieved through the new cs data structure. Li-
brary libmdrun.so is loaded into the GromPy module where mdr init(cs), mdr int(cs)

and are called for performing MD moves and GCMC trial moves by manipulating cs

before each MC move.

of run time spent in overhead. This overhead involves logging to disk, reading of tpr
files from disk, iterating over the MC loop, replacing the rN and vN arrays for trial
insertions/removals and associated evaluations of Eqs. 1 and 2.

2.4 Validation of the Grand-Canonical Monte Carlo Module

We aim to validate the GROMACS-GCMC scheme by comparing equations of state deter-
mined by GCMC and NV T MD. For this, it is necessary to simulate a single phase.
We therefore choose to simulate supercritical fluids. The validation is performed for two
model systems. The first system consists of single Lennard-Jones (LJ) particles of the
same type. For this, we use water particles of the MARTINI coarse-grained force field [22]
that are modeled as single LJ particles. For this system type we approximate the critical
properties by Gibbs ensemble simulation results [5]. For the second system, with polar
SPC water [23], we also need to account for charges and insertions/removals of multi-
atomic molecules, rendering it a more complicated and challenging test case. The critical
properties for the SPC model are taken from the literature [24]: Tc,SPC = 587 K and
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Table I: MD parameters used in this work for the LJ and SPC models. The MD time
step is denoted by ∆t, the total simulation time for each NV T simulation by tNV T , the
simulation time per MD move in each µV T simulation by tMD, µV T and the ‘simulation
time’ for a single point energy calculation needed for a GCMC trial move by tGCMC, µV T .
We apply the velocity rescale thermostat [21] that ensures a canonical ensemble. The
associated coupling frequency is represented by τ−1thermostat.

Model
LJ SPC

Nmolecules [−] 400 500
∆t [ps] 2× 10−2 2× 10−3

tNV T [ps] 2× 103 2× 103

tMD, µV T [ps] 2 0.2
tGCMC, µV T [ps] 0 0
τ−1thermostat [ps

−1] 0.1 0.1

ρc,SPC = 15 mol/l.
In the LJ simulations, we use a shift potential for the non-bonded interactions with

a switch radius of rs = 0.9 nm. The non-bonded interactions were truncated at rc =
1.2 nm [22]. In the SPC simulations all non-bonded interactions were calculated up to
a cut-off distance of rc = 0.9 nm (corrections to the total energy and pressure due to
truncation are taken into account) and he Coulombic interactions are calculated by the
particle mesh Ewald method [25] with a spacing of the Fourier grid of 0.12 nm.

The NV T equations of state (EOS) for both systems are determined at T = 773 K
and T = 900 K. The simulation parameters are summarized in Table I. For each density
ρ, we perform a separate simulation of which the ranges are the x-values in Figs. 4a and 4b
for the LJ and SPC models respectively. These density ranges are obtained by changing
the box volume, while keeping the amount of molecules constant. A pilot experiment
showed that NV T results are consistent when varying the box volume V at constant N
or varying N at constant V . We average the total pressure p and hence obtain a pressure
profile as a function of density ρ.

The µV T EOSs at T = 773 K and T = 900 K are obtained by imposing a range
of chemical potentials µ to fixed volume systems of either LJ particles or SPC water
molecules. The simulation parameters of the µV T simulations can be found in Table II.
The MD parameters used in MD moves are listed in Table I. For the density ranges
studied, c.f. the x-values in Figs. 4a and 4b for the LJ and SPC models respectively. For
this type of simulation, we obtain a density profile as a function of µ.

The Gibbs-Duhem equation is used to validate the µV T results

ρ

[
∂µ

∂ρ

]

T

=

[
∂p

∂ρ

]

T

, (3)

from which the pressure profile

p(ρ) = ρkBT +

∫ ρ′=ρ

ρ′=0

dρ′
(
ρ′
[
∂µex

∂ρ′

]

T

)
(4)
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Table II: GCMC parameters used in this work for the LJ and SPC models. The length of
the cubic simulation box is denoted by b and the number of MC cycles by Ncycles. Each
MC cycle consists of Nmoves trial MC moves where the MC move type is chosen randomly
with probabilities PMD and PGCMC for an MD move and GCMC move respectively.

Model
LJ SPC

b [nm] 3.64 2.70
Ncycles [−] 2500 2500
Nmoves [−] 42 42
PMD [−] 0.05 0.05
PGCMC [−] 0.95 0.95

is derived. The excess part of the chemical potential µex is calculated as

µex = µ− µid

= µ− kBT ln
(
Λ3ρ

)
, (5)

where µid is the ideal part of the chemical potential. The pressure as a function of density
in Eq. 4 is determined from a numerical least-squares fit of a 6th degree polynomial to
the µV T data of Ndat = 1000 data points.

3 Results and Discussion

3.1 A Supercritical Lennard-Jones System

For the supercritical Lennard-Jones (LJ) system, we used a system of single particle
MARTINI [22] water (W) molecules. A system consisting of just this molecule type,
involves non-bonded LJ interactions only and therefore renders it a relatively simple test
system. We calculated the critical temperature of this system as Tc,W = 647.2 K and its
associated critical density as ρc,W = 4.99 mol/l by Gibbs ensemble simulations [5].

The NV T results are shown in Fig. 4a (left and bottom axes). We examined if the
NV T EOS is different when varying the number of molecules compared to varying the
simulation box volume. This was found not to be the case. The results of the LJ µV T
simulations are shown in Fig. 4a (right and bottom axes). The NV T and µV T equations
of state are completely equivalent.

3.2 A Supercritical SPC Water System

Apart from non-bonded LJ interactions between the water oxygen atoms, the SPC
model [23] involves Coulomb interactions between the partially charged hydrogen and
oxygen atoms. The relative orientation of the hydrogen and oxygen atoms within a wa-
ter molecule is assumed constant, i.e. bond stretching and bond bending is constrained
during simulation using the SETTLE algorithm [26].
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Figure 4: Equations of state for the LJ model (a) and the SPC water model (b)) at
T = 773 K (top) and T = 900 K (bottom). The data points on the p(ρ) line are
determined by MD at NV T . The points on the µex(ρ) line are determined by grand-
canonical MC using GromPy in GCMC mode. The standard deviations of µex and of ρ for
the µV T data were calculated by conventional error propagation rules. The least-squares
fit of a 6th degree polynomial to these µex points was transformed into a p(ρ) curve using
Eq. 4. Both results are shown as dotted lines in each plot.
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In Fig. 4b (left and bottom axes), we show the NV T results. We again validated
the NV T EOS when varying the number of molecules compared against the NV T EOS
when varying the simulation box volume. The results of the µV T simulations are shown
in Fig. 4b (right and bottom axes).

As we can see from Fig. 4b, the µV T data at T = 773 K are in agreement with the
NV T results. The µV T data at T = 900 K agrees with the NV T data up to a density
of ρ ≈ 48 mol/l within the NV T error bars. The overestimation of the p(ρ) profile at
higher particle densities derived from the grand-canonical results can be explained by
GCMC sampling difficulties. At T = 773 K the deviation is only very slight, while at
T = 900 K, the deviation is higher due to more extreme simulation conditions. SPC
molecule insertions are performed by generating a random position in the simulation
box for the oxygen atom, followed by randomly orienting the hydrogens while meeting
the bond angular and bond length constraints. A more efficient sampling at higher
densities could be achieved by applying the configurational bias Monte Carlo (CBMC)
technique [5]. In CBMC one selects the most favorable insertion configuration from a set
of trial configurations and appropriately corrects for this bias. It should be kept in mind
that for both temperatures, the conditions at higher densities can be considered extreme,
e.g. pressures of over 5× 108 Pa.

3.3 Computational Performance and Accuracy

To get an impression of the computational performance of GromPy in GCMC mode,
we again determined the EOS for the LJ system at T = 773 K. For the GCMC case,
simulation parameters are the same as above. For each data point in Fig. 5, the number of
particles in the NV T simulation were taken the same as the average number of particles,
calculated from the µV T simulation series. In this way a fair comparison can be made
between the two simulation modes. Per µV T or NV T simulation, we used a total of
749700 integration steps of which the first 16.7% was used for equilibration.

Both EOSs were determined on a 32-bit Linux machine with the applications running
on a single CPU. The total simulation time for the NV T EOS is 2400 s (8 s spent on
system calls and 2392 s spent on ‘real’ CPU time). The total simulation time for the
µV T EOS is 2547 s (149 s spent on system calls and 2397 s spent on ‘real’ CPU time).
The ∼ 150 s difference between the two simulation modes comes from the limited amount
of time spent on system calls and can be considered as ‘python overhead’ as described in
Sec. 2.3. Note that this also involves the evaluations of Eqs. 1 and 2 in python.

The µV T and NV T EOSs are completely equivalent, c.f. Fig. 5. The uncertainty
bandwidth in the pressure profile, based on the standard deviations in the µV T data is
the area between the thin solid lines in Fig. 5. The µV T EOS uncertainty is well within
the error bars of the pressure sampled in the NV T ensemble.

To illustrate the file I/O overhead problem in a shell approach that does not use
direct calls to the GROMACS library, we implemented such a shell that can also sample the
grand-canonical ensemble but uses the GROMACS executables to perform the necessay MC
moves. We simulated the LJ system at T = 900 K at a chemical potential yielding an
average number of 〈N〉 ≈ 377 using both GCMC approaches. For both simulations, the
parameters are listed in Table II (and Table I for the parameters of the MD moves). The
‘shell’ GCMC module requires 10800 s for 2500 MC cycles, whereas GromPy in GCMC
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Figure 5: Equation of state for the LJ model at T = 773 K. The data points on the
p(ρ) line are determined by MD at NV T . The points on the µex(ρ) line are determined
by grand-canonical MC using GromPy in GCMC mode. The standard deviations of µex

and of ρ for the µV T data were calculated by conventional error propagation rules. The
least-squares fit of a 6th degree polynomial to these µex points was transformed into a p(ρ)
curve using Eq. 4. Both results are shown as dotted lines. Note that the data points for
both simulation types are obtained by an equal number of integration steps. The error
band width in the pressure profile based on the uncertainty in the µV T data is the area
between the thin full lines.

mode does the same 14 times faster (771 s). It thus turns out that the ‘shell’ approach
spends over 90% of the computation time on system calls and disk operations.

4 Conclusions

We have successfully implemented and extended the GromPy module (available at
https://github.com/GromPy) and enabled simulations in grand-canonical ensemble us-
ing the GROMACS C-library. To this end, only minor modifications to the GROMACS source
code needed to be applied, and these do not in any way affect the operation, efficiency
and/or performance of the GROMACS applications built with the GROMACS source. To the
best of our knowledge, GromPy is the first reported interface to the GROMACS library and
MD engine that uses direct library calls. It can be used for further extending the current
GROMACS simulation and analysis modes.

We validated our grand-canonical scheme for two system types. For the simplest one
that involves only Lennard-Jones interactions, the µV T results are in complete agreement
with those of NV T MD simulations performed with GROMACS. For a second, more com-
plicated, system that also involves Coulombic interactions and insertions of multi-atomic
molecules, the µV T results agree with the NV T results at T = 773 K, but overestimate
the high density region of the NV T equation of state at T = 900 K. The deviation is
explained by sampling difficulties at these high densities. Sampling efficiency might be
enhanced by implementing configurational bias Monte Carlo for multi-atomic molecules.

The computational performance of GromPy in GCMC mode is comparable to the
GROMACS mdrun executable. The accuracy of the µV T data is well within that of conven-
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tional MD in the NV T ensemble.
Our work is compatible with the 4.0.7 version of GROMACS, and only minor modifica-

tions are needed for the 4.5 version and higher versions. For the near future, we plan to
merge the necessary changes on the code to the main development tree which will make
our GCMC compatible with the latest GROMACS releases, of course in consultation with
the GROMACS developers community. In addition our minor modifications to the serial
implementation of the GROMACS source code should be made compatible with the parallel
implementation. We expect that grand-canonical MC and hybrid MD/MC is of interest
to the GROMACS users community. Our modifications to the source code are only minor
and do not stand in the way of ‘normal’ use of the MD engine. Additionally, a python

interface to GROMACS will contribute significantly to the flexibility of the package.
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Table I: MD parameters used in this work for the LJ and SPC models. The MD time
step is denoted by ∆t, the total simulation time for each NV T simulation by tNV T , the
simulation time per MD move in each µV T simulation by tMD, µV T and the ‘simulation
time’ for a single point energy calculation needed for a GCMC trial move by tGCMC, µV T .
We apply the velocity rescale thermostat [21] that ensures a canonical ensemble. The
associated coupling frequency is represented by τ−1thermostat.

Model
LJ SPC

Nmolecules [−] 400 500
∆t [ps] 2× 10−2 2× 10−3

tNV T [ps] 2× 103 2× 103

tMD, µV T [ps] 2 0.2
tGCMC, µV T [ps] 0 0
τ−1thermostat [ps

−1] 0.1 0.1
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Table II: GCMC parameters used in this work for the LJ and SPC models. The length of
the cubic simulation box is denoted by b and the number of MC cycles by Ncycles. Each
MC cycle consists of Nmoves trial MC moves where the MC move type is chosen randomly
with probabilities PMD and PGCMC for an MD move and GCMC move respectively.

Model
LJ SPC

b [nm] 3.64 2.70
Ncycles [−] 2500 2500
Nmoves [−] 42 42
PMD [−] 0.05 0.05
PGCMC [−] 0.95 0.95
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Figure 1:

preprocessing1

input:2

molecule type i
µi

Ni,min, Ni,max

Ni,start ∈ [Ni,min, Ni,max]
tpr path
output path

GROMACS 4.0.5

source5

run GromPy

in GCMC mode3 libmdrun.so4

output analysis

(a)

(b)

(e)

(d)

(c)

The GCMC simulation setup used in this work. The preprocessing stage (1) involves

generating tpr files for each configuration Ni ∈ [Ni,min, Ni,max] using grompp. The input

(2) for GromPy comprises the molecule type i for which the chemical potential µi is

imposed, a range of numbers of molecules [Ni,min, Ni,max] of type i that can be sampled,

a starting configuration Ni,start, the tpr path on disk, and the output path on disk. The

preprocessing step requires prior knowledge of the input parameters (a). GromPy (3) reads

the input parameters (b). Molecular insertions/removals requires tpr reads from disk

(c). Once read, the associated data structures are kept in memory. The necessary energy

evaluations are performed by the GROMACS library (4) with which GromPy communicates

(d). This shared object library is compiled (e) from a slightly modified version (5) of

GROMACS 4.0.5. The generated output can be further analyzed by the native GROMACS

analysis suite, GromPy, or other software.
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Figure 2:

Ni,c ← Ni,start

load libmdrun.so as lmdr
lmdr.mdr init(sc):
sc ←

ˆ

Ni,c, r
Ni,c ,vNi,c

˜

Uc ← lmdr.mdr int(sc,
NMD = 0)

MC loop over
0 ≤ j < Ncycles

Uc ← Ut and sc ← st accept
Ut ← lmdr.mdr int(st,

NMD = 0)

lmdr.mdr init(st):
st ←

ˆ

Ni,t, r
Ni,t ,vNi,t

˜

keep Uc and sc

Uc ← lmdr.mdr int(sc,
NMD > 0)

st in
memory

j < Ncycles
MC move

type
remove /
insert

lmdr.mdr fin(sc)
write results to file
exit

START

no
END

yes

MD

update averages and increment j

GCMC

insert; st : Ni,t ← Ni,c + 1

remove; st : Ni,t ← Ni,c − 1

no

yes

no

yes

Flowchart of GromPy in GCMC mode. Each MC move is based on the current state

sc :
[
Ni,c, r

Ni,c,vNi,c
]
and associated total potential energy Uc, kept in memory. State sc

is defined by the number of molecules Ni,c of type i, their coordinates rNi,c and velocities

vNi,c. GromPy uses two MC move types: an MD move of several MD steps and a grand-

canonical MC move. After the MD move, the coordinates, velocities and total potential

energy are updated. The GCMC move involves removal or insertion of a molecule selected

with a probability Pinsert = Premove = 1
2
. Insertion or removal requires having st in

memory. If this is not the case, we first read a tpr file with Ni = Ni,t from disk.

Insertions or removals are accepted with the probabilities in Eq. 1 and Eq. 2, respectively.

If accepted, st becomes sc and Ut becomes Uc. Otherwise, we keep sc and Uc. After each

MC move we update the averages and increment the MC loop iterator j.
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Figure 3:

GROMACS 4.0.5

default compilation
compilation as

shared object library

mdrun executable libmdrun.so library

mdr init(cs)

initializes mdrunner()

function mdrunner()
mdr int(cs)

integrates mdrunner()

mdr fin(cs)

finalizes mdrunner()

unmodified source modified source

yields

calls

yields

members

pass cs

pass cs

Modification of the source code of GROMACS version 4.0.5. Left: default compilation yields

the mdrun executable (amongst others). This program calls function mdrunner() that is

the calculation engine for MD simulations. Right: compilation of the mdrun executable

as the shared object library libmdrun.so and splitting up function mdrunner() into an

initialization stage an integration stage and a finalization stage. Communication between

the stages is achieved through the new cs data structure. Library libmdrun.so is loaded

into the GromPy module where mdr init(cs), mdr int(cs) and are called for performing

MD moves and GCMC trial moves by manipulating cs before each MC move.
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Figure 4:
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Equations of state for the LJ model (a) and the SPC water model (b)) at T = 773 K

(top) and T = 900 K (bottom). The data points on the p(ρ) line are determined by MD

at NV T . The points on the µex(ρ) line are determined by grand-canonical MC using

GromPy in GCMC mode. The standard deviations of µex and of ρ for the µV T data were

calculated by conventional error propagation rules. The least-squares fit of a 6th degree

polynomial to these µex points was transformed into a p(ρ) curve using Eq. 4. Both

results are shown as dotted lines in each plot.
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Figure 5:
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Equation of state for the LJ model at T = 773 K. The data points on the p(ρ) line are

determined by MD at NV T . The points on the µex(ρ) line are determined by grand-

canonical MC using GromPy in GCMC mode. The standard deviations of µex and of ρ

for the µV T data were calculated by conventional error propagation rules. The least-

squares fit of a 6th degree polynomial to these µex points was transformed into a p(ρ)

curve using Eq. 4. Both results are shown as dotted lines. Note that the data points for

both simulation types are obtained by an equal number of integration steps. The error

band width in the pressure profile based on the uncertainty in the µV T data is the area

between the thin full lines.
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