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Abstract

The ongoing automation in our modern information society leads to a tremen-

dous rise in the amount as well as complexity of collected data. In medical

imaging for example the electronic availability of extensive data collected as

part of clinical trials provides a remarkable potentiality to detect new relevant

features in complex diseases like brain tumors. Using data mining applica-

tions for the analysis of the data raises several problems. One problem is

the localization of outstanding observations also called outliers in a data set.

In this work a technique for parameter-free outlier detection, which is based

on data compression and a general data model which combines the Gener-

alized Normal Distribution (GND) with independent components, to cope

with existing problems like parameter settings or implicit data distribution

assumptions, is proposed.

Another problem in many modern applications amongst others in medical

imaging is the efficient similarity search in uncertain data. At present, an

adequate therapy planning of newly detected brain tumors assumedly of glial

origin needs invasive biopsy due to the fact that prognosis and treatment,

both vary strongly for benign, low-grade, and high-grade tumors. To date

differentiation of tumor grades is mainly based on the expertise of neuroradi-

ologists examining contrast-enhanced Magnetic Resonance Images (MRI). To

assist neuroradiologist experts during the differentiation between tumors of

different malignancy we proposed a novel, efficient similarity search technique

for uncertain data. The feature vector of an object is thereby not exactly

known but is rather defined by a Probability Density Function (PDF) like a

Gaussian Mixture Model (GMM). Previous work is limited to axis-parallel

Gaussian distributions, hence, correlations between different features are not

considered in these similarity searches. In this work a novel, efficient simi-

larity search technique for general GMMs without independence assumption

is presented. The actual components of a GMM are approximated in a

conservative but tight way. The conservativity of the approach leads to a
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filter-refinement architecture, which guarantees no false dismissals and the

tightness of the approximations causes good filter selectivity. An extensive

experimental evaluation of the approach demonstrates a considerable speed-

up of similarity queries on general GMMs. Additionally, promising results

for advancing the differentiation between brain tumors of different grades

could be obtained by applying the approach to four-dimensional Magnetic

Resonance Images of glioma patients.
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German Abstract

Die voranschreitende Automatisierung in unserer modernen Informationsge-

sellschaft führt zu einem gewaltigen Anstieg von Quantität und Komplexität

der erfassten Daten. Im Bereich medizinischer Bildgebungsverfahren stellt die

elektronische Verfügbarkeit von komplexen und umfangreichen Daten, welche

als Teil klinischer Studien erhoben werden, ein außergewöhnliches Potential

dar, um wichtige Eigenschaften in komplexen Krankheiten wie z. B. Hirntu-

moren zu entdecken. Die Verwendung von Datamining-Verfahren zur Analy-

se der erhobenen Daten führt zur Entstehung verschiedener Probleme. Eine

Fragestellung die es zu lösen gilt, ist die Lokalisierung von außerordentlichen

bzw. bedeutenden Beobachtungen in Datensätzen, auch bekannt als Ausrei-

ßer. Hierfür wird in dieser Arbeit ein technisches Verfahren zur parameter-

freien Identifikation von Ausreißern vorgestellt. Dieses Verfahren basiert auf

Datenkomprimierung und einem sehr generellen Datenmodell welches die ge-

neralisierte Normalverteilung (GND) mit Hilfe der Unabhängigkeitsanalyse

(ICA) auf unabhängige Komponenten anwendet.

Ein weiteres Problem welches in vielen modernen Anwendungsbereichen

unter anderem in medizinischer Bildgebung auftritt, ist die effiziente Ähn-

lichkeitssuche in unsicheren Daten. Zur Zeit wird für eine vollwertige Thera-

pieplanung von neu entdeckten Hirntumoren, welche vermutlich glialen Ur-

sprungs sind, eine invasive Biopsie benötigt, da sich sowohl die Prognose als

auch die Behandlung von gutartigen, niedrig-gradigen und hoch-gradigen

Hirntumoren sehr stark unterscheiden. Desweiteren werden unterschiedli-

che Hirntumoren hauptsächlich aufgrund der Expertise von Neuroradiolo-

gen, welche magnetresonanztomographische, kontrastmittel-verstärkte Bilder

untersuchen, differenziert. Zur Unterstützung der Neuroradiologen bei der

Unterscheidung von unterschiedlichen Tumorgraden wurde hier ein neues,

effizientes Verfahren zur Ähnlichkeitssuche in unsicheren Daten entwickelt.

Da der Eigenschaftsvektor eines unsicheren Objektes hierbei nicht exakt be-

kannt ist, wird er statt dessen als Funktion einer Wahrscheinlichkeitsver-
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teilung, in unserem Fall eines Gemischten Gauß Modells (GMM), definiert.

Bestehende Verfahren werden durch die Verwendung von achsen-parallelen

Gaußverteilungen beschränkt, da sie Korrelationen zwischen verschiedenen

Eigenschaften bei der Ähnlichkeitssuche nicht berücksichtigen. In dieser Ar-

beit wird eine neue, effiziente Technik zur Ähnlichkeitssuche auf generellen

Gemischten Gauß Modellen ohne eine Unabhängigkeitsannahme präsentiert.

Die eigentlichen Komponenten des GMM werden hierbei in einer konservati-

ven, aber dennoch undurchlässigen Art und Weise approximiert. Die Konser-

vativität des Verfahrens führt zu einer Filter-Verfeinerungsarchitektur, wel-

che dafür garantiert, dass es keine falsch positiven Ergebnisse gibt und die

Undurchlässigkeit der Abschätzungen bedingt eine gute Filterselektivität.

Eine ausführliche experimentelle Auswertung des Verfahrens zeigt eine be-

trächtliche Beschleunigung einer Ähnlichkeitsanfrage auf generellen GMM im

Vergleich zu einer erschöpfenden Suche. Zusätzlich konnten während der An-

wendung des Verfahrens auf vier dimensionale Magnetresonanztomographie

Bilder von Gliompatienten vielversprechende Ergebnisse bei der Differenzie-

rung zwischen verschiedenen Hirntumoren unterschiedlichen Grades erzielt

werden.
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Chapter 1

Introduction

The proceeding development in medical imaging techniques has accounted to

a large amount of high-resolution three-dimensional image data. Especially

the high volume of non-invasive measures acquired in clinical routine like

structural and functional Magnetic Resonance Imaging (MRI) have revealed

new possibilities in getting to know more about the functioning of the human

brain. To reveal new relations between imaging and features like diagnosis,

prognosis, response to treatment, or genetic profiling elaborated algorithms

are required. For the field of brain imaging data mining techniques have

proven to be very useful. Even if data mining can be used to discover know-

ledge from medical data some requirements have to be satisfied so that they

can be applied. All applied techniques are application dependent, hence,

the utilization of different data mining techniques heavily depends on the

different applications, and in order to be processed the data has to have a

specific size and format.

In mining medical images several difficulties have to be faced. One im-

portant problem is that the majority of data mining approaches like decision

trees, nearest neighbor search, or rule-based learning systems need data con-

sisting of certain data objects meaning simple numeric values. Since brain

images are multidimensional data arrays the conversion to single numeric val-

1



2 1 Introduction

ues leads to a large amount of information loss. Hence, it is desirable to find

a data structure which approximates the complex image data as accurate as

possible. Another problem is that most classification algorithms do not use

the raw medical image data but rather the medical record information due to

the lack of efficient and effective approaches which learn from the raw images

directly. Medical images are complex and large data structures, one patient

can be represented by millions of intensity values with multiple dimensions,

therefore, the comparison of single intensity values between different patients

in order to find patient pairs sharing similarities is impractical and inefficient.

In clinical routine medical doctors can not wait hours for data mining algo-

rithms to be finished with their complex calculations. Therefore, algorithms

are required which find a compromise between using as much information

as possible from the underlying image data but still being computationally

efficient due to the clinical practicability. An additional problem which has

to be faced working with medical image data is the large heterogeneity of

brain image data like the diverse image acquisition modalities, the different

formats produced, and the different resolutions which lead to problems in

general analysis. The acquired data in the field of brain imaging usually

consists of images from various modalities like Magnetic Resonance Imag-

ing, Computer Tomography (CT), or Positron Emission Tomography (PET)

which comprise structural and/or functional information of the human brain.

In order to be able to include these different data formats produced by diverse

modalities accurate preprocessing of the data is of essential importance.

One fundamental step in image preprocessing is the detection of outly-

ing observations. These recorded voxels can either be considered as noise

being removed from the data before the actual data mining process starts,

or they may incorporate important, outstanding information. The detection

and removal of outliers may avoid model misspecification, biased parameter

estimation, and hence incorrect results. The identification of outliers prior

to modeling and analysis is thus very important. Most existing outlier de-

tection approaches assume Gaussian or Uniform data distributions but for
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many real world applications amongst others medical data this cannot be

applied. Another problem which has to be addressed when dealing with out-

lier detection algorithms is the correct setting of parameters. Parameters

are often difficult to be distinguished and in order to correctly set these pa-

rameters, background knowledge of the underlying data is required. Here we

propose a new technique for the identification of outliers. Our approach does

not require the selection of any parameter, thus it is a parameter-free outlier

identification technique. This can be achieved on account of data compres-

sion which we use to distinguish outliers since they cannot be compressed as

efficient as the rest of the data. To avoid the assumption of a specific data

structure we used a Generalized Normal Distribution (GND) in combination

with Independent Components. In addition to the removal of the data sev-

eral other preprocessing steps have to be executed to address the problem of

medical image data heterogeneity including motion correction, standardiza-

tion, and co-registration in order to obtain image data which has the same

format and resolution. Having readily preprocessed three dimensional brain

data various data mining techniques can be applied.

The classification of brain tumors using features from structural as well

as functional brain images in order to improve diagnosis and therapeutic re-

sponse has become a considerable research area. The correct assignment of

tumor malignancy is important due to the different prognosis and therapy

planning of brain lesions with different grading. In most cases a biopsy is

necessary to amplify the validity of the diagnosis. However biopsy carries

risks, since a single tumor mass can be histologically heterogeneous; extract-

ing parts of the tumor that are not representative (sampling error) would

lead to an incorrect diagnosis and an inadequate treatment. Furthermore,

biopsy implies risks associated with anesthesia and surgery. Hence, being

able to diagnose tumor grades using non-invasive structural and functional

Magnetic Resonance Imaging techniques instead of a biopsy would give a

tremendous benefit to the patient. To address the problems of finding an ac-

curate data structure loosing as little information as possible while keeping
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a high computational efficiency we propose a novel similarity search based

classification algorithm. Since one patient is represented by a tremendous

amount of voxels we decided to consider each patient as an uncertain object

being represented by a Probability Density Function (PDF). In our approach

we utilize Gaussian Mixture Models (GMM) as PDF representatives due to

the fact that mixture models can capture the different subparts of the images

as separate components. Hence, the entire data distribution is considered in

our analysis. Furthermore, to accelerate the similarity search in a first step

we approximate the Gaussian components to minimize the candidate set for

which the time consuming joint probabilities between the query object and

the database objects have to be computed. Therefore, our approach is con-

servative even considering attribute correlations it is still efficient.

1.1 Outline Of The Thesis

The thesis at hand is organized as follows:

Chapter 1 provides an introduction to the general context of this thesis.

Chapter 2 describes the theoretical background information of existing ap-

proaches concerning the field of data mining.

Section 2.1 outlines a selection of existing information theoretic measures

which can be used to facilitate the differentiation of several given models.

Section 2.2 gives a general overview of uncertain data in the field of data

mining.

Section 2.3 provides a brief overview of existing clustering approaches

divided into the three major categories. To overcome parametrization a short

summary of clustering in combination with information theoretic principles
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is also introduced.

Section 2.4 gives an overview of outlier detection introducing the different

concepts to identify outstanding objects.

Section 2.5 introduces the field of classification for knowledge discovery

in databases. Thereby, different strategies for assigning an unknown object

to one of several known classes are presented.

Chapter 3 deals with the identification of outstanding objects in data sets.

A new method is proposed which is able to detect outliers without any ex-

plicit parameter settings and without requiring the data to be of any specific

distribution type.

Section 3.1 gives an introduction to the field of outlier detection and a

motivation to our newly proposed outlier approach.

Section 3.2 reviews existing outlier detection approaches and introduces

the Minimum Description Length principle in the context of existing data

mining methods.

Section 3.3 presents a novel parameter-free outlier detection algorithm

which uses ICA to convert data into independent components to reduce re-

dundancy in the data before the broadly applicable General Normal Distri-

bution is applied to the data. The returned outlier score is based on coding

costs generated by the Minimum Description Length principle.

Section 3.4 comprehends several different data scenarios of synthetic and

real world data to demonstrate the superiority of our proposed outlier detec-

tion algorithm.

Section 3.5 concludes the proposed outlier detection approach.
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Chapter 4 treats a new efficient similarity search technique being able to

handle uncertain data represented by general Gaussian Mixture Models. The

method comprises a variety of data mining techniques, including a clustering

algorithm adjusted to circular measures, an approximation technique leading

to a large runtime reduction, and a classification scheme for finding similar

uncertain query objects in a database of uncertain objects. Combining these

techniques results in our conservative but tight filter-refinement architecture

considering also attribute correlations in the similarity search.

Section 4.1 introduces uncertain objects and the relevance of having an

exact representation of these objects for obtaining more accurate similarity

search results.

Section 4.2 motivates the need of including correlations in the represen-

tation of uncertain objects.

Section 4.3 reviews previous classification approaches on certain and un-

certain data including acceleration techniques for handling query processing

more efficiently.

Section 4.4 describes our novel similarity search for uncertain data. Af-

ter the preprocessing of a given database of nGMMs, meaning rotation and

approximation of all Gaussian components of the nGMMs, the k objects

having the highest probability of being drawn from the same distribution as

the query object are returned by the similarity search. Thereby, also feature

correlations are considered in the similarity search.

Section 4.5 comprises a variety of different synthetic as well as real world

data sets to elaborate the strength of our new similarity search and empha-

sizes the importance of considering correlations for query processing.

Section 4.6 concludes the novel similarity search technique on uncertain

data.
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Chapter 5 draws the connection between medical imaging, outlier detec-

tion, and similarity search. The complete workflow from image acquisition

to query processing of glioma data is described. The algorithm is evaluated

using glioma data of low- and high-grade glioma patients leading to a con-

siderable increase in accuracy compared to existing glioma grading methods.

Section 5.1 specifies the need for a new, accurate glioma grading method

which is able to integrate the entire tumor ROI information in the grading

method.

Section 5.2 delineates our new glioma grading similarity search which is

based on non-axis parallel GMMs. Thereby, each nGMM in the data corre-

sponds to one four-dimensional glioma of a brain tumor patient. We present

the entire workflow including data preprocessing and query processing and

introduce three additional methods which are subsequently used for method

comparison.

Section 5.3 comprises glioma grading results on a set of biopsy confirmed

glioma patients for our similarity search based glioma grading method as well

as for three additional methods highlighting the strength of our method.

Section 5.4 discusses the different aspects of our new glioma grading tech-

nique including the advantages and the drawbacks.

Section 5.5 concludes the glioma grading approach.

Chapter 6 concludes this thesis.

Section 6.1 summarizes and discusses the major contributions of this the-

sis.





Chapter 2

Algorithmic Fundamentals

2.1 Information Theoretic Measures

If for a given model several explaining variables are plausible and the data set

is rather small it can be difficult to find a qualified model. For this purpose

different model selection approaches have been proposed to assist in finding

a good model.

Comparing two alternative models the risk of having a bias due to not con-

sidering relevant variables and the risk of using too many irrelevant variables

has to be balanced. For this purpose information criterions can be used. An

information criterion is a criterion for selecting a model using the goodness

of fit of an estimated model to the underlying empirical data. The complex-

ity of the measured model determined by the number of parameters is also

included in the decision. The number of parameters is punished to avoid the

preference of models with many parameters. All information criteria have in

common that they can be formalized in two different ways. The measure for

the goodness of fit is either defined by the maximal likelihood or the minimal

variance of the residuals. Hence, different interpretation possibilities can be

found. For the first criterion using maximal likelihood, the best fitting model

9
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is the model having the highest value, therefore the number of parameters

has to be subtracted. Whereas, using the minimal variance the best model is

the model with the lowest value, hence the number of parameters has to be

added. In the following we will explain different information criteria using

solely the maximum likelihood as measure for the goodness of fit.

2.1.1 Akaike Information Criterion

The oldest information criterion is called Akaike Information Criterion (AIC)

[Aka74]. It is based on the principle of information entropy, indeed using a

given model for characterizing reality AIC provides a relative quantity value

of the lost information. AIC does not test a model hypothesis but it offers

a possibility to compare different models, hence it can be used for model

selection.

Let Ln(k) be the maximum likelihood of a model taking k parameters

based on a sample of size n. The likelihood function for k ≤ m is denoted

by L̂n(θ), θ ∈ Θ ⊂ Rm,

Ln(k) = max
θ∈Θ

L̂n(θ), with Θk =
{
θ =

(
θ1
θ2

)
∈ Θ : θ2 = 0 ∈ Rm−k

}
(2.1)

Hence, the Akaike Information Criterion for selecting the best model is

AIC = −2 ln(Ln(k))

n
+

2k

n
(2.2)

with k being the number of independent adjusted parameters of the model.

Multiple models can thus be ranked by their AIC using the same data set

and the model having the minimum AIC can then be selected as the model of

choice. The disadvantages of AIC are that the penalty term depends on the

size of the sample and that large samples have a better chance to enhance the

log likelihood function, hence AIC prefers models with a lot of parameters.
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2.1.2 Bayesian Information Criterion

To overcome AIC’s disadvantages Schwarz proposed the Bayesian Informa-

tion Criterion (BIC) [Sch78] also called Schwarz criterion which is closely

related to AIC. Here, the penalty factor grows logarithmic with the number

of observations n, leading to the following criterion,

BIC = −2 ln(Ln(k))

n
+
k ln(n)

n
. (2.3)

Some applications of BIC are model identification in time series and linear

regression. But in general it can be applied to a wide range of applications

given maximum likelihood-based models. However, in several applications

the number of parameters is equal for the different tested models, hence BIC

only reduces the maximum likelihood selection.

2.1.3 Minimum Description Length

The Minimum Description Length (MDL) [Ris78] was introduced to describe

regularities in the observed data. It is a formalization of Occam’s Razor and

it is an important concept in information theory. MDL uses the fact that

the stronger the data can be compressed the larger is the regularity in the

signal. The underlying principle can be described as follows: A sender S

wants to transfer a message to a receiver R. Thereby, the receiver knows the

characters that could be contained in the message but he does not know the

frequency of each character in the message. In order to send the message

first the description of the coding schemata is sent followed by the message

that was coded by the coding schemata. The sum of the characters which

have to be sent can therefore be lower than sending the entire message.

An intuitive example of the MDL principle is shown in Figure 2.1. Sup-

pose we want to transfer data through a transfer channel. The sender wants

to transfer the string XAY ZB to the receiver. A naive way would be to
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Figure 2.1: An intuitive example of the Minimum Description Length prin-
ciple. Sending the string message X1000Y Z100 from a sender to a receiver as
simple string would require 8,808 bits. Transferring the same string coded
by the coding schemata shown on top only 296 bits are required, therefore,
a total of 8,512 bits can be saved.

transfer each single character requiring in total 8,808 bits for A = 1, 000,

B = 100 and 8 bits per character. To minimize the communication costs, a

smart sender exploits regularities in the data. A little program could gener-

ate the string by printing 1,000 times the character X, followed by printing

Y finishing with printing 100 times Z. An efficient coding in an arbitrary

language requires thus, 296 bits to transfer the string in total. This clever

compression reduces the communication cost to 3.36% using MDL.

2.2 Uncertain Data Mining

Most existing databases can only handle exact value representations. But as

the amount of data rises also the complexity of the data increases. Many real

world applications produce data which imply uncertainty. Data uncertainty

in real world applications arises due to measurement inaccuracy, sampling

discrepancy, outdated data sources, or other errors. This is especially true

for applications that require interaction with the physical world. Hence,
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handling of data uncertainty has gained a lot of research interest in the last

decade. Thereby, uncertain data can be subdivided into two subtypes, ex-

istential uncertainty and value uncertainty. Existential uncertainty implies

that it is not certain if the object is existent or not. This can be accounted

for by assigning an existence probability value to the object, indicating the

confidence of its existence [BGMP92]. An example of existential uncertainty

could be a mobil phone tracing system. If a mobil user shuts off his phone

or passes through a tunnel the signal is lost hence the data is only partially

available. In contrast to that in value uncertainty data instances consist of

values with margins of error which can be modeled as areas in combination

with a Probability Density Function [CKP04, CKP03]. This is for example

the case in face recognition, a person is represented by multiple images taken

with different camera angles. Hence, the face specific features, e.g. eye dis-

tance or the distance between the nose tip and the chin, which are extracted

in order to find the person in a database can include large variability.

In many databases uncertain objects are converted into exact values by

assigning a weight to the average or extracting the values of highest occur-

rence to reduce the complexity and to ease the handling of the data. But the

approximation of uncertain data can lead to wrong results in data mining,

e.g. due to approximated data, the centroids in clustering tasks are also ap-

proximations and hence the deviation of cluster centroids can lead to wrong

object assignments.

In order to find an accurate distance measure to handle uncertain objects

different strategies can be applied. In general, a set of d dimensional objects

oi each associated with a Probability Density Function, like a Uniform or a

Gaussian distribution is given. A naive approach for handling this uncer-

tainty would be to use the least expected distance between two uncertain

objects p and q [CCK05]. But the expected distance is a rather unreliable

distance indicator. Figure 2.2 shows an example of uncertain objects p, q,

and r. Objects p and q are intuitively the closest objects since q1 has a prob-

ability of 0.99 and p2 has a probability of 0.8 being very close to each other.
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Figure 2.2: An example of three uncertain objects p, q, and r demonstrating
that the expected distance is an unreliable distance measure for uncertain
objects. Even if objects p and q seem to be most similar since q1 and p2 which
have very high probabilities are close to each other the expected distance is
large due to the distant q2.

But the expected distance between p and q is very large since q2 is far away

from p.

A more reliable approach would be to report the matching probability

between two uncertain objects p and q [BSI08, BPS06]

P (p, q) =

∫
Rd

pdfp(x) · pdfq(x)dx (2.4)

where pdf(x) denotes the Probability Density Function of p and q. The

matching probability represents the relative probability with which a sam-

ple x, randomly drawn from the distribution of p equals another sample x

randomly drawn from q. Finding an accurate distance measure for uncertain

objects is very important because of the various queries and data mining

tasks, like Nearest Neighbor queries or clustering which will be introduced

in the following sections.
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2.3 Clustering

The aim of clustering is the identification of a finite number of categories,

classes, or groups in a data set. While objects in the same cluster should be

as similar as possible, objects in different clusters should be as dissimilar as

possible. Typical application areas for clustering are customer segmentation,

clustering of web-logs, structuring of large sets of text documents, or the gen-

eration of topical maps from satellite images. Clustering can be subdivided

into three fundamental clustering paradigms:

• Partitioning clustering - searches for flat clusterings in k clusters with

minimal costs. Parameters are the number of clusters k and the dis-

tance function.

• Hierarchical clustering - distinguishes the hierarchy of clusters by com-

bining the most similar clusters. Parameters are the distance function

for objects and clusters.

• Density-based clustering - expands clusters by neighboring objects until

the density is large enough. Parameters are the minimal density of a

cluster and the density function.

In the following these clustering approaches will be explained in more detail,

followed by a brief introduction of information theoretic measures which can

be used to overcome the problem of parametrization and to evaluate the

quality of different clustering approaches.

2.3.1 Partitioning Clustering

The goal of partitioning clustering approaches is to partition a data set into k

clusters by minimizing a given cost function. After k initial cluster represen-

tatives have been chosen, these representatives are iteratively improved until



16 2 Algorithmic Fundamentals

they are optimal, followed by assigning each object to its closest, or most

similar representative. Thereby, different types of cluster representatives are

feasible, e.g. the mean of a cluster (k-Means), a cluster element (k-Medoid),

or a Probability Density Function of the cluster (Expectation Maximization).

Objects in partitioning approaches are defined as points x = (x1, ..., xd)

in an Euclidean vector space, having a centroid µ of all points contained in

a cluster C. Cluster costs are measured by

cost(C) =
∑
x∈C

dist(x, µ)2 (2.5)

and costs for a clustering are measured by

cost =
k∑
i=1

cost(Ci). (2.6)

The algorithm starts with a random initialization step, where k objects

are randomly chosen as cluster representatives. Subsequently, each data

object is assigned to the representative which is closest in space and new

representatives, which are the centroids of the cluster objects, are calculated.

These steps are repeated until convergence, meaning no objects change their

cluster membership anymore.

Existing approaches can be differentiated by their used distance function.

In the following, we will address the three most common partitioning cluster-

ing approaches k-Means, k-Medoid, and Expectation Maximization (EM).

K-Means The K-Means [DH73] algorithm has the characteristics of the

basic partitioning algorithm. Before starting the algorithm the number of

clusters k has to be selected. As distance measure k-Means uses measures

like the Euclidean norm or the Mahalonobis distance and the cluster repre-

sentative is located in the center of the cluster.
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The algorithm is one of the most frequently used techniques for object

clustering. It depends on the order of the objects because of the direct update

of the centroids. As soon as an object changes its cluster membership, the

affected centroids are updated. The average time complexity of k-Means is

O(n) for each iteration and the number of iterations is rather small (average

5-10). A disadvantage of k-Means is its sensitivity to noise and outliers which

is caused by the fact that all objects are considered for the calculation of the

centroids. Additionally, the number of clusters k is hard to be assigned and

k-Means is strongly affected by the initialization step. Therefore, it is useful

to try several random initializations and retain the best result.

K-Medoid The K-Medoid algorithm uses a medoid m, instead of the mean,

as central element of a cluster. A medoid is a representative object of a

cluster whose average dissimilarity to all the objects in the cluster is minimal.

Therefore, the cluster costs are calculated by cost(C) =
∑

x∈C dist(x,m)2

and the clustering costs by cost =
∑k

i=1 cost(Ci).

An example of a greedy k-Medoid algorithm is PAM (Partitioning Around

Medoids) [KR90] which replaces in each step one medoid with an object not

being a medoid (non-medoid), thereby using the medoid - non-medoid pair

causing the largest cost reduction. CLARANS [NH94] (Clustering Large Ap-

plications based on Randomized Search), another k-Medoid approach has two

additional parameters (maxneighbor, numlocal) leading to a time complexity

reduction in contrast to the greedy PAM algorithm. At most maxneighbor

medoid - non-medoid pairs are considered and the first replacement which

leads to a cost reduction is applied. Numlocal is the number of times the

search for the k optimal medoids is repeated.

Expectation Maximization The EM algorithm [DLR77] uses, in con-

trast to k-Means and k-Medoid, a Probability Density Function as cluster

representative. The EM algorithm can also be split into two steps, the Max-

imization step (M-step) which maximizes the log-likelihood of the data and
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Figure 2.3: Normal distributions. A a) univariate and a b) bivariate normal
distribution are depicted.

the Expectation step (E-step) which assigns the objects proportionally to

their likelihood to the cluster representatives. A model for a cluster is e.g. a

multivariate normal distribution (Figure 2.3). A cluster C is represented by

a mean µ and a d×d covariance matrix Σ of all objects contained in the clus-

ter. The basic idea is that each object belongs to each cluster with a certain

probability, which is dependent on P (x|Ci). Like all partitioning algorithms

the EM algorithm also consists of two alternating steps, the assignment of

the points to the clusters (relative probabilities) and the recalculation of the

cluster representative (Gaussian distribution). For obtaining the cluster cen-

ters µi one has to consider that objects are not assigned with an absolute

but rather a relative probability to the clusters.

Each cluster Ci is modeled by a Probability Density Function (Figure

2.3) like

P (x|Ci) =
1√

(2π)d|ΣCi
|
· exp− 1

2
(x−µCi

)T Σ−1
Ci

(x−µCi
). (2.7)

The integral of the density function is unity and the integral of a region R

of the density function produces the probability that an arbitrary object of

the cluster is located in the region or rather the relative portion (e.g. 20 %)
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of objects of the cluster that are located in R.

K clusters are represented by k Gaussian distributions leading to a prob-

ability density

P (x) =
k∑
i=1

wiP (x|Ci), (2.8)

where wi is the relative portion of data objects assigned to Ci.

Bayes’ theorem can then be used to obtain the probability of an object

x to belong to a cluster Ci. Let A,B ⊆ Ω and P (A|B) be the conditional

probability of A given B then the conditional probability is defined as

P (A|B) =

0, if P (B) = 0

P (A∩B)
P (B)

, else.
(2.9)

Furthermore, A and B are independent if P (A|B) = P (A) and P (B|A) =

P (B)

The theorem of Bayes states that if A1, ..., Ak is a disjunct partitioning

of Ω, so that for at least one i, 1 ≤ i ≤ k, it can be applied that P (Ai) > 0

and P (B|Ai) > 0, than ∀1 ≤ i ≤ k it can be applied that

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
. (2.10)

Using the theorem of Bayes we can now obtain the probability with which

a given object x belongs to cluster Ci

P (Ci|x) = wi
P (x|Ci)
P (x)

. (2.11)

As k-Means and k-Medoid, EM depends strongly on the initialization and

the right choice of the parameter k. The approach finds only local optima,

hence it is often necessary to run the EM multiple times choosing the best

outcome as final result.
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Figure 2.4: An example of a dendrogram which was build using single linkage
hierarchical clustering.

2.3.2 Hierarchical Clustering

The goal of hierarchical clustering is the construction of a hierarchy of clus-

ters, called a dendrogram, in which always those clusters having minimal

distance are merged. A dendrogram, as depicted in Figure 2.4, is a tree like

structure. The root represents the entire data set, the knots of the tree rep-

resent clusters, where the inner knots are clusters consisting of objects which

are located in the subjacent subtree, and the leaves are the single objects.

There are two different types of hierarchical approaches, the bottom-up

construction of the dendrogram (agglomerative) and the top-down construc-

tion (divisive). The agglomerative version of the algorithm works as follows:

1. Build singleton clusters, which consist of one object each and determine

the distances between all pairs of clusters.

2. Build a new cluster consisting of the two clusters having the smallest

distance to each other.

3. Determine the distances between the new cluster and all other clusters.
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4. If all objects are located in one single cluster stop, otherwise repeat

steps 2 through 4.

Additionally, there are three different hierarchical principles differing in the

distance function dist(x, y): single linkage, average linkage, and complete

linkage. These principles will be explained in the following in more detail.

Single Linkage The distance function of single linkage can be defined as

follows: let X and Y be clusters, that means sets of objects than the distance

between those objects is defined by

distsl(X, Y ) = min
x∈X,y∈Y

dist(x, y). (2.12)

Single linkage approaches have a time complexity of O(n2), like e.g. SLINK

[Sib73]. Single linkage results in chain-like clusters, with a large dispersion

and an elongated structure. A single linkage variant called CURE (Clustering

Using Representatives) [GRS98] is able to adapt the shape of the cluster

without a single-link effect by using a larger number of objects instead of

only one single reference object as cluster representative.

Average Linkage For average linkage the distance between two clusters

X and Y is defined by

distal(X, Y ) =

∑
x∈X,y∈Y dist(x, y)

|X| · |Y | . (2.13)

The time complexity for average linkage isO(n2log(n)) and it is a compromise

between single and complete linkage.
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Complete Linkage Complete linkage calculates the distance between two

clusters X and Y by using

distcl(X, Y ) = max
x∈X,y∈Y

dist(x, y). (2.14)

Like single linkage the time complexity for complete linkage is O(n2). An

example of a complete linkage algorithm is CLINK [Def77]. Complete linkage

leads to small, strongly separated clusters which are convex and equal in size.

2.3.3 Density-based Clustering

Clusters in density-based clustering approaches are areas in a d dimensional

space with a high object density. These dense cluster regions are separated

by areas with lower object density. Additionally, density-based clusters have

to fulfill certain criteria like the local object density of each object contained

in a cluster has to exceed a given threshold and all objects in a cluster have

to be spatially connected.

An algorithm for density-based clustering is DBSCAN (Density-Based

Spatial Clustering of Applications with Noise) [EKSX96]. DBSCAN requires

the setting of two parameter, ε and MinPts to specify the density threshold

of a cluster. An object p is called core object if their are at least MinPts-

1 (because the core object is also counted) objects for which the distance

between the core object p and an object q is smaller or equal to ε. There

are three fundamental terms for density-based clustering which are depicted

in Figure 2.5. An object p is directly density reachable from an object q

if the distance between p and q is smaller or equal to ε (indicated by the

circles around p and q). An object p is density reachable from an object q if

there is a chain of objects between p and q that are direct density reachable.

Two objects p and q are density-connected if they are both density reachable

from a third object r. In order to find a cluster DBSCAN starts with an

arbitrary object collecting all objects that are density-connected with this
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Figure 2.5: Fundamental terms of density-based clustering.

object. That means a density-based cluster is defined by the maximal set of

density-connected objects. All objects that are not part of a density-based

cluster are considered noise objects.

2.3.4 Parameter-free Clustering

A problem most presented approaches have to overcome is the correct setting

of required parameters. In most cases these parameters have to be set by

domain experts. To solve this problem some algorithms have been developed

coping the parametrization problem by using information theoretic measures.

X-Means Based on k-Means clustering the X-Means [PM00] algorithm

tries to solve the parametrization problem of k-Means. For this purpose

X-Means does not take one single value k for the number of clusters to

be found but rather an interval in which the optimal number of classes is

probably located. The X-Means algorithm can be subdivided into two steps,

the improve parameter step and the improve structure step. The first step

is basically an ordinary k-Means run and the second step determines which

centroids are being split to improve the clustering result. Starting from the
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lower threshold of the given interval new centroids are added by splitting the

parent centroid into two child centroids. To determine if the splitting pays

off BIC is determined for the parent cluster as well as for the children clusters

on the basis of the contained cluster objects. The centroid getting the more

beneficial BIC value is kept the other one is discarded. The clustering having

the optimal overall BIC value is returned as the final clustering result.

Robust Information-theoretic Clustering In contrast to X-Means the

algorithm RIC (Robust Information-theoretic Clustering) [BFPP06] was not

designed for a specific clustering algorithm. It is rather an extension of any

arbitrary clustering approach. In particular, RIC is a post-processing step

which takes a given clustering of any traditional clustering method as input.

Based on the initial clustering, RIC starts by filtering possible noise points

from the data followed by cluster modeling. Thereby, given a set of PDFs

each cluster model is represented by a rotation matrix from the Principle

Component Analysis and a PDF. Clusters possessing similar characteristics

are combined and due to the MDL principle RIC is parameter-free. The

accomplishment of RIC is that it has the ability to enhance an imperfect

clustering which has been generated using suboptimal parameterization.

Outlier-robust Clustering using Independent Components [BFP08]

OCI is a parameter-free clustering approach using a very general PDF as

cluster description, namely the Exponential Power Distribution (EPD). This

distribution function implies several different PDFs like the Gaussian, the

Uniform, and the Laplace distribution. In a top-down splitting approach

OCI combines the EPD with the Independent Component Analysis in order

to obtain major orientations in the feature space for each cluster. Addition-

ally, in applying EPD to independent components OCI can obtain adequate

planes which can be used for cluster splitting. Due to the MDL principle

OCI is a parameter-free approach and due to the general cluster definition it

is able to identify clusters of different shape and density not being restricted
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to solely Gaussian or Uniform distributions.

2.3.5 Quality Measures

The comparison of different clusterings is a difficult task. Therefore, numer-

ous measures for comparing clusterings have been proposed like pair-counting

based, set-matching based, and information theoretic measures. As stated

by Vinh et al. [VEB10] an adequate clustering comparison should fulfill the

following properties: it should be a metric, it should be normalized, and it

should have a constant baseline. The metric property requires that a distance

measure is positive definite, symmetric and that it has a triangle inequality.

The normalization property states that the range of a similarity or distance

measure is located within a fixed range like [0,1] and the constant baseline

property states that the expected value between independent clustering pairs

should be constant. In the ideal case the baseline value should be zero which

indicates no similarity between the clusterings. Since the Normalized Mutual

Information (NMI) [SG02] and the Adjusted-for-chance Mutual Information

(AMI) [VEB09] fulfill all the properties required to be adequate clustering

comparison methods they seem to be convincing choices to compare different

clusterings.

The Normalized Mutual Information between two clusterings U and V

can be defined as

NMI(U, V ) =
MI(U, V )√
H(U)H(V )

. (2.15)

where the Mutual Information (MI) between two clusterings is normalized

by the entropy (H(U), H(V )) associated with the clusterings U and V . The

Adjusted-for-chance Mutual Information additionally considers the expecta-

tion of the mutual information in order to correct for chance leading to

AMI(U, V ) =
MI(U, V )− E{MI(M)|a, b}√
H(U)H(V )− E{MI(M)|a, b}

. (2.16)
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where a and b are the marginals of the contingency table of U and V and

MI(M) denotes the mutual information between any two clusterings associ-

ated with the contingency table M .

2.3.6 Discussion

For partitioning clustering approaches, like K-Means, K-Medoid, or EM clus-

tering selecting a suitable k is a major problem. Additionally, these ap-

proaches are sensitive to noise. Density-based clustering approaches find

clusters with varying shape and size, but they have problems finding clusters

with different density. In contrast to partitioning clustering density-based

and hierarchical clusterings do not require the number of clusters in advance.

Density-based clustering approaches are robust against outliers in the data,

but they depend on the setting of the two parameters ε and MinPts which

can be difficult to determine. Hierarchical clusterings do not only produce

one flat clustering but a complete hierarchy including all data points. Never-

theless, it is still possible to extract one single clustering using a dendrogram,

e.g. by a horizontal cut through the dendrogram. Disadvantages of hierar-

chical clustering approaches are that decisions that have been made cannot

be withdrawn, they are very sensitive to noise, and the runtime complexity

is at least quadratic regarding the number of objects.

To overcome some of the disadvantages of the presented clustering ap-

proaches combinations of those techniques have been proposed like e.g. density-

based hierarchical clustering. Additionally, approaches trying to solve the

problem of parameter selection like X-Means, RIC, or OCI have been pro-

posed. Although, the repeated execution of the underlying algorithm leads

to a runtime increase, the handling of the annoying parametrization problem

by the use of information theoretic measures like BIC, or MDL implicates a

huge advantage.
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2.4 Outlier Detection

In the field of clustering, outliers are considered as noise, hence all objects

that do not belong to a cluster are considered as outliers. There is no general

valid and accepted definition for outliers. In general outliers are a relative

phenomenon which always has to be evaluated in connection with the given

data set. Hawkins [Haw85] defined outliers as observations that are substan-

tially different from other observations one could even think they have been

produced by a different mechanism.

The reason why outlier detection is needed, is because clustering algo-

rithms are normally optimized to find clusters rather than outliers. A group

of many untypical data objects which are somehow similar to each other

would be classified as a cluster and not as outliers or noise.

If a data set contains outliers there are two different ways to solve the

problem. The first variant is adjustment, i.e. one tries to derive those mod-

eling inferences that are biased as little as possible from the number, shape,

or occurrence of such an observation, than an outlier is characterized as an

observation which could possibly avoid that inference. The second variant of

handling outliers is the identification of such observations. The identification

solution is used because observations which are considered as outliers could

contain additional information about the dataset which are lost using the

adjustment solution. The goal of the identification solution is to separate

the data set into outliers and non-outliers.

A typical sample application of outlier identification is abuse detection.

Lets say a credit card gets stolen, then in general purchasing behavior of the

new credit card owner (thief) changes, hence abnormal buying patterns can

be an evidence for credit card fraud. Another example would be untypical

symptoms and test results which might be an indication for a disease.

In the following we will only concentrate on the identification solution in

order to handle outliers. Thereby, outlier identification can be handled with
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Figure 2.6: The creation of the convex hull for depth-based outlier identifi-
cation. a) The untreated data set is depicted and b) shows all depths and
convex hulls of the data set. The outer hull (blue line) is the convex hull
with depth = 1. The hull on the very inside (purple line) is the convex hull
with depth = 4.

different principles. In the following we will focus on depth-based, distance-

based, and density-based outlier detection approaches.

2.4.1 Depth-based Approach

The general idea of depth-based approaches is to search for outliers at the

boundary of the data space not being dependent on statistical distributions.

Thereby, data objects are organized in convex hull layers and outliers are

those objects being on the outer layers.

An object in depth-based outlier identification methods is represented as

a point in a d dimensional space. First the depth of all objects is calculated,

thereby objects on the convex hull containing the entire data space have a

depth of 1, shown as blue line in Figure 2.6. If the convex hull of depth

= 1 is removed, all remaining objects have a depth of 2 (red line Figure

2.6). This can go on until the last convex hull is removed leading to an

empty set. Objects are considered as outliers if their depth is smaller or

equal to a depth of k. Theoretically this method can also be used for high
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Figure 2.7: Two examples of how to select pct and dmin in order to identify
outliers using a distance-based approach. For the example on the left using
pct = 0.95 and dmin = 5 the outliers p1 and p2 can be identified. Whereas
the choice of the parameters in the example on the right can not be clearly
distinguish without including objects of cluster C2 in the set of outliers.

dimensional data but in practice it is already inefficient using d ≥ 4, because

of the calculation of the convex hull. Sample algorithms for depth-based

approaches are ISODEPTH [RR96] and FDC [JKN98].

2.4.2 Distance-based Approach

In general distance-based approaches judge an object based on the distance

to its neighbors. An object in a data set is considered as a distance-based

outlier if less than pct percent of the objects in the data set have a larger

distance then dmin to that object. Thereby, pct and dmin have to be set by

an expert.

An example of the selection of pct and dmin is shown in Figure 2.7 on

the left. Selecting dmin = 5 and pct = 0.95, p1 and p2 will be identified as

outliers, because 95 % of the objects have a distance which is larger than 5 to

those objects. The problem with these approaches is that they use a global

outlier factor. Lets say a data set contains two clusters, one very tight one
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(C1) and one cluster with a large dispersion (C2) depicted in Figure 2.7 on

the right. If q ∈ C2 and p1 as well as p2 are both outliers, what would be

the correct choice for pct and dmin in order to identify the outlier without

selecting objects of C2 as outliers?

For distance-based outlier identification different algorithms have been

proposed. Knorr and Ng [KN98, KN97, KN99] introduced three different

algorithms for this purpose: index-based, nested-loop based, and grid-based

outlier identification. The index-based approach computes a distance range

join using a spatial index structure. The nested-loop based approach divides

the buffer into two parts and uses the second part to compare all points with

the points from the first part. Finally, the grid-based approach builds a grid

such that any two points from the same grid cell have a distance of at most

dmin to each other, thereby points only need to be compared with points

from the neighboring cells.

2.4.3 Density-based Approach

In the presence of clusters with varying density, distance-based approaches

have problems identifying outliers. In those cases density-based approaches

would be a better choice. The general idea of density-based approaches is to

compare the density around an object with the density of its local neighbors.

The relative density of a point compared to its neighbors is thereby com-

puted as an outlier score. Two example approaches of density-based outlier

detection are the Local Outlier Factor (LOF) [BKNS00] and the Local Out-

lier Correlation Integral (LOCI) [PKGF03] which will be explained in more

detail in the following.

Local Outlier Factor LOF is a density-based approach which compares

the density of an object to the densities of its neighbors. Thereby, an object

which is more dense than its neighbors has to be part of a cluster and an

object whose density is considerably lower than that of its neighbors is an
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outlier. Each object is assigned with a degree of being an outlier, called the

Local Outlier Factor.

LOF defines the local neighborhood of an object using its k-Nearest

Neighbors. The distance to those k objects is used to approximate a lo-

cal density. The k-distance of an object p is defined by the distance of p to

its k-Nearest Neighbors. The distance of p to an object o in the database

DB is called k-distance(p), if at least k objects q ∈ DB have a distance

dist(p, q) ≤ dist(p, o) and there are at most k-1 objects q ∈ DB having a

distance dist(p, q) < dist(p, o). The k-distance neighborhood, Nk(p), con-

tains all objects which are closer to p than k-distance(p).

Nk(p) = {q ∈ DB \ {p}|dist(p, q) ≤ k-distance(p)} (2.17)

Based on this distance the reachability distance of p with respect to an object

o can be defined as

reach-distk(p, o) = max{k-distance(o), dist(p, o)} (2.18)

The reachability distance of an object p to o is, therefore either the true

distance between p and o or at least the k-distance of o. Figure 2.8 displays

the reachability distance of an object p with k = 3. The reachability distance

of p with respect to the objects o, p, and s is always the k-distance(o).

The local reachability distance (lrd) of p is defined as

lrdk(p) = 1/

(∑
o∈Nk(p) reach-distk(p, o)

|Nk(p)|

)
(2.19)

This quotient is the mean reachability distance of p to its neighbors. Finally,

the local reachability distance is compared to that of the neighbors resulting
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Figure 2.8: An illustration of the reachability distance. Objects o, q, and
s have the same reachability distance for k = 3, whereas object r is not a
k-Nearest Neighbor of objects o, p, q, and s.

in the Local Outlier Factor:

LOFk(p) =

∑
o∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)|
(2.20)

A LOFk(p) ≈ 1 means that an object is close to the middle of a cluster

and a LOFk(p)� 1 denotes that an object is a strong local outlier.

An extension of LOF is the Local Outlier Probability (LoOP) [KKSZ09]

which statistically estimates the density in order to be less dependent on the

exact value of k. Additionally the results are statistically normalized to be

located between 0 and 1 to achieve a better interpretability of the values.

Local Outlier Correlation Integral An approach whose idea is similar

to LOF is LOCI. In contrast to LOF, LOCI does not take the k-Nearest

Neighbors as reference set but rather the ε-neighborhood. An additional

difference is that LOCI does not require any input parameters instead it

tests multiple granularities of the reference set. In order to obtain the local

density of an object p, which is the set of objects in the ε-neighborhood,
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Figure 2.9: An illustration of the cardinality of the local density |N(p, ε)|,
|N(p, αε)|, and of the average density of the neighborhood n̂(p, ε, α). For
example |N(p, ε)| = 4 (objects inside red circle), |N(p, αε)| = 1 (objects
inside black circle around p, including p), |N(s, αε)| = 5, |N(r, αε)| = 6, and
n̂(p, ε, α) = (1 + 5 + 6 + 1)/4 = 3.25.

N(p, ε) has to be defined as

N(p, ε) = {p|dist(p, q) ≤ ε}. (2.21)

The average number of ε-neighbors of p, hence the average density of the

neighborhood is

n̂(p, ε, α) =

∑
q∈N(p,ε) |N(q, αε)|
|N(p, ε)| . (2.22)

An intuitive illustration of the density of the neighborhood and the car-

dinality of the local density of an object p is shown in Figure 2.9. Finally,

the Multi-granularity Deviation Factor (MDEF) is defined as

MDEF (p, ε, α) =
n̂(p, ε, α)− |N(p, α · ε)|

n̂(p, α, ε)
= 1− |N(p, α · ε)|

n̂(p, α, ε)
(2.23)

If MDEF equals zero the objects are cluster members, if MDEF is larger

than 3 times the normalized standard deviation of the densities of all points

from N(p, ε) than the object is considered an outlier.

An additional feature of LOCI is the LOCI plot which displays for a
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given point p with respect to ε, the cardinality of the ε-neighborhood and

the average density of the neighborhood with a border of ±3σn̂(p, ε, α).

Since the exact solution is very expensive due to the fact that MDEF

values have to be calculated for all possible ε values, the procedure aLOCI

[PKGF03] was proposed which is a fast, approximated solution of LOCI.

Thereby, the data space is discretized using a grid with a side length of

2αε. The range queries are approximated through grid cells and the ε-

neighborhood of an object is defined for all cells that are completely covered

by the ε sphere around the object.

2.4.4 Discussion

In general different models are based on different assumptions to model out-

liers and provide different types of output like labeling or scoring. They can

either consider outliers at global or local resolution, therefore, the different

approaches will produce different results.

Depth-based approaches have similar basic concepts as classical statisti-

cal approaches using k = 1 distributions, except for the independence of the

chosen kind of distribution. They use a global reference set and are usu-

ally only efficient in 2 or 3 dimensional spaces due to the calculation of the

convex hull. Although the original output is only a label it can be easily

extended to a scoring output taking the depth as scoring value. Distance-

based approaches can either produce a scoring or a labeling output just like

density-based approaches. They use a local reference set where the resolution

can be adjusted via dmin and pct. Density-based approaches have an expo-

nential runtime with respect to the data dimensionality. Outlier detection is

an important task to further improve the process of clustering and to iden-

tify abnormal or extraordinary objects in data sets. At present, a thorough

and comprehensive comparison between the different models and approaches

is still missing which would help to further understand the differences and

common properties.
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2.5 Classification

Classification approaches construct models to assign unknown objects to

predefined classes which were build using object and environment specific

features. The difference between classification and clustering is that classifi-

cation has to know the class label of the objects in the database a priori and

the goal of clustering is to search for the class labels. The assignment of class

labels to unknown query objects allows the association of class specific fea-

tures with the object to derive the expected characteristics of the object. In

order to establish a mathematical model the fixed number of classes present

in the database as well as examples of class instances with known class la-

bels have to be known in advance. Auxiliary mathematical methods for the

construction of classification models can be based on both classical statistics

(e.g. discriminant analysis or k-Nearest Neighbor methods) and on machine

learning. Symbolic learning approaches like the decision tree or rule in-

duction constitute approaches which construct understandable classification

descriptions for the user. In contrast to that, sub-symbolic approaches like

artificial neural networks use the black box principle, for those approaches

class descriptions cannot be directly derived from the constructed model.

Using classification, classes or categories are defined which are then al-

located to unknown objects. This allocation works based on comparisons

between class features and object characteristics. The classifier is thereby

the function which assigns the corresponding classes to the objects. In the

following we will explain different classification techniques and their quality

measures.

2.5.1 Bayes Classifier

A Bayes classifier is a statistical classifier based on the theorem of Bayes.

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
(2.24)
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with P (Ai) and P (B) being the priori probability of Ai and B and P (Ai|B)

being the conditional probability of Ai given B. Bayes’ theorem estimates

the probability with which a feature vector belongs to a class. Each object

is either assigned to the class with the highest probability or to the class

whose costs are increased the least when adding the object. To define a

Bayes classifier a cost function is needed which allocates certain costs to

each possible classification. The goal of the Bayes classifier is to minimize

the produced costs which arise from the classifications.

Bayes classifiers have a high classification accuracy in many applications.

Additionally, the classifiers are incremental meaning that classifiers can be

easily adjusted to new training objects. But since the classifiers need a priori

knowledge for the conditional probabilities they are not applicable in many

cases.

Naive Bayes Classifier In high dimensional data the estimation of the

conditional probabilities is time and memory consuming since all attribute

combinations have to be considered. The probabilities can not be saved

anymore, hence, the naive Bayes classifier [LIT92] assumes conditional inde-

pendence.

P (A1 ∧ A2|B) = P (A1|B) · P (A2|B) (2.25)

Nevertheless, this assumption can also be wrong leading to unsatisfying re-

sults, e.g. if all attributes are equally distributed for several classes. Despite

the fact that the independence assumptions are often inaccurate, in reality

naive Bayes classifiers often achieve good results in case of uncorrelated data.

In the presence of strong attribute correlations naive Bayes classifiers should

be extended by a tree between the attributes.

For now the independent attribute model, meaning the naive Bayes prob-

ability model, has been derived. To realize a naive Bayes classifier which is a

combination of the independent attribute model and decision rules the Max-

imum A Posteriori (MAP) decision rule can be used, choosing the class with



2.5 Classification 37

the most probable hypothesis. The probability of belonging to a class Ai can

be described as

P (Ai|B1 ∧B2 ∧ ...) =
P (Ai)P (B1 ∧B2 ∧ ...|Ai)

P (B1 ∧B2 ∧ ...)
=
P (Ai)

∏
j P (Bj|Ai)∑

k

∏
j P (Bj|Ak)

(2.26)

and hence

A = argmax
Ai

{P (Ai)
∏
j

P (Bj|Ai)} (2.27)

due to the fact that the denominator is equal for all classes.

2.5.2 Nearest Neighbor Classifier

Nearest Neighbor classifiers [CH67] are based on instance based learning. The

basic Nearest Neighbor classifier is the assignment of an object to the class of

its Nearest Neighbor object based on a similarity measure like the Euclidean

distance. Thereby, the region which is used to assign a class label to an

unknown object can be displayed by Voronoi diagrams as shown in Figure

2.10. Since a basic Nearest Neighbor classifier is very sensitive to noise in

most cases it is superior to use a k-Nearest Neighbor (k-NN) classifier for the

classification to obtain a more robust outlier handling.

k-Nearest Neighbor Classifier The difference between a basic Nearest

Neighbor classifier and a k-NN classifier is that instead of considering solely

the most similar object in the database for the decision process the k-NN

classifier considering the k closest neighbors of the query object. To ascer-

tain the class assignment based on the k-NNs of the decision set either the

majority class is selected (maximum likelihood method) or weighted decision

rules can be applied (classes in the decision set are weighted either by their

distance or their distribution). Thereby, the correct setting of k in a k-NN

search depends on the underlying data. If k is chosen too small the sensitivity

for outliers is very high, by contrast if k is set too large an oversized number
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Figure 2.10: A Voronoi diagram of a data set consisting of 3 classes. Voronoi
diagrams can be used to illustrate the class assignment of Nearest Neighbor
classifiers.

of objects from other classes gets enlisted in the set of Nearest Neighbors.

It has been shown that choosing k between 1 � k < 10 seems to be a good

choice.

An example of a Nearest Neighbor search and a k-NN search is depicted

in Figure 2.10. Using a basic Nearest Neighbor approach (depicted as 1-

NN in the Figure), object p would be assigned to the dark gray class since

the closest object belongs to the dark gray class indicated by the red circle.

Whereas, a k-NN classifier considering the majority class with k = 4 would

correctly assign object p to the middle gray class since three objects of the

decision set (k closest objects) belong to the middle gray class and only one

object belongs to the dark gray object (blue circle).

k-Probable Nearest Neighbor Classifier A variant of the k-NN clas-

sifier which is able to handle uncertain data objects is the Top k-Probable

NN (Top k-PNN) classifier [BSI08]. As mentioned in Section 2.2 uncertain

objects consist of values with margins of error which can be described using

PDFs. Thereby, the Top k-PNN approach tries to find uncertain objects by

selecting those objects having the highest marginal probability to the given
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query object.

k-Most Likely Identification Query Classifier The k-Most Likely Iden-

tification Query (k-MLIQ) [BPS06] was also invented to handle uncertain

data queries. A k-MLIQ is very similar to the k-NN approach differing

mainly in the choice of the similarity measure. Instead of using distances to

determine the most similar objects, the k-MLIQ method computes matching

probabilities between the database object and a query object. In contrast

to the Top k-PNN classifier the k-MLIQ classifier considers the complete in-

formation contained in the PDF of the uncertain objects leading to a more

accurate similarity measure.

2.5.3 Decision Tree Classifier

Decision trees are ordered directed trees which are applied to illustrate de-

cision rules [BFSO84]. They hierarchically exemplify successive decisions

and they are widely used in application areas where classification is done

automatically or where formal rules are deduces from know-how.

The inner knots of a decision tree represent attributes, an edge represents

an attribute test on the parent knot, and a leave represents the class to which

an object will be assigned. The construction of a decision tree is performed

in a top-down manner. For the classification of an object the decision tree

has to be traversed from the root to a leave of the tree. At each knot the

attribute is tested specifying the edge that leads to the next knot. Hence,

there is a distinct classification path through the tree. This procedure is

executed until a leaf is reached which specifies the classification. In general,

a decision tree contains rules to answer exactly one question.

It is substantial for decision trees to have a representative training data set

with reliable experience to the problem which is going to be solved. Starting

with the entire training data set being located in the root knot, in each
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Figure 2.11: A decision tree example illustrating the entropy, the information
gain, and the gini index.

induction step the attribute which most reliably classifies the training data

with respect to the target attribute is searched for. As stability index for the

classification one can use measures like the information gain or the Gini index.

An example decision tree of whether or not to become a millionaire is depicted

in Figure 2.11 having an information gain for the attribute heritage of 0.012

and a Gini index of 0.369. In the next step the training data is subsequently

split according to the identified attribute and the procedure is recursively

applied to the newly generated subsets until either each subset only contains

objects with the same classification or no further splitting attributes are left.

One large problem when working with decision trees is overfitting. If a

decision tree is excessively adjusted to the training data the decision tree

tends to overfit the training data leading to a large error rate on the entity

of the data. To overcome overfitting erroneous training objects have to be

removed and the size of the training set has to be adjusted before building the

decision tree. The effect of overfitting can also be diminished by subsequent
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pruning of the decision tree. Thereby, after the decision tree has been built

on the basis of the training set, the test set can be used to prune the tree by

cutting those branches which cause the largest classification error reduction.

2.5.4 Support Vector Machine Classifier

The goal of Support Vector Machines (SVM) [CV95] is to find a linear sep-

aration, i.e. an SVM searches for a hyperplane which separates two classes

maximally stable. An SVM separates a set of objects into classes so that the

area around the class margins which is free of objects is as large as possible.

Given a set of training objects with known class labels each object is

represented by a vector in a vector space. The task of a Support Vector

Machine is to fit a hyperplane in the vector space which serves as separation

plane separating the training data according to its class labels as accurate as

possible. Thereby, the distance of those objects being closest to the hyper-

plane is maximized. This large empty space makes sure that objects that are

different from the training objects can still be reliably classified. Building

the Maximal Margin Hyperplane (MMH), it is not necessary to consider all

training objects, only those objects having the smallest distance to the hyper-

plane have an influence and are needed to describe the plane mathematically.

These objects are called support vectors.

A hyperplane can only linearly separate objects. But since in general

real world data cannot be linearly separated, the SVM uses a kernel trick in

those cases, to constitute a non-linear class margin. The basic idea of the

kernel trick is to transform the vector space and all the training objects into a

higher dimensional space. In a space with a sufficient number of dimensions,

which might even be an infinite number, even the most interleaved set of

objects gets linearly divisible. In this higher dimensional space the MMH

is selected. Transforming the linear hyperplane back into the original lower

dimensional hyper space the linear hyperplane becomes non linear and might
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even consist of several non connected hyperplanes. These hyperplanes are

then able to accurately separate the training data into two classes. Since

the transformation in the higher dimensional space is computationally very

intensive and the delineation of the hyper margin in the lower dimensional

space is extremely complex and hence virtually unfeasible, the kernel trick

is applied. Kernel functions can be used to characterize the MMH which

delineates the hyperplane in the higher dimensions and nevertheless stays

well behaved in lower dimensions. Therefore, using kernel functions it is

possible to realize the back and forth transformation without actually having

to calculate it.

2.5.5 Cross Validation

A major problem of classification approaches is over-fitting. Classifiers are

optimized using training data which they can in general handle well but they

can still achieve poor results on the entity of the data set, because they

have been over-fitted to the training data. In order to prevent over-fitting

the entire data set O is split into a training set to generate the classifier

(construct the model) and a test set to judge the classifier. This procedure

is called train-and-test.

Though, in many application fields the amount of data is very limited

and, therefore, a different procedure has to be applied, called m-fold cross

validation. As illustrated in Figure 2.12, m-fold cross validation first sepa-

rates the data set into m equally sized subsets, then m-1 subsets are combined

to build the training set and the remaining subset is used to estimate the

classifier [Koh95]. Finally, the obtained m classification errors and the m

generated models are combined to one final model. A special case of the

m-fold cross validation is the leave-one-out cross validation. As the name

suggests, it involves using a single object from the data set as test data and

the remaining data as training data. This is repeated until each object in

the data set has been used once for testing. Therefore, leave-one-out cross
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Figure 2.12: The process of m-fold cross validation with m=4. The entire
data set shown on top is subdivided into 4 equally large subsets. One subset
is used as test set and the remaining 3 subsets are combined to one training
set.

validation is the same as an m-fold cross validation with m being the number

of objects in the data set.

2.5.6 Quality Measures

In general, classifiers assign a certain amount of objects to wrong classes

meaning they make classification errors. Quantitative measures for the eval-

uation of a classifier can be derived from the relative frequency of these errors.

In many cases there are only two possible classes that means the classifica-

tion is binary. These classifications answer questions like does a patient have

a certain disease or not, or is a hurricane going to hit a city or not.

To evaluate a classifier it has to be applied to a certain amount of objects

for which class labels are known. Then the resulting classifications obtained
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Figure 2.13: Illustration of different classification quality measures.

by the classifier are separated into four groups shown in Figure 2.13. These

four groups will be explained on a short example. Let’s say the classifier is

supposed to distinguish if a person has a disease or not. In order to evaluate

the classifier we have to know in advance if the people that are tested really

have the disease or not, this is the condition or gold standard. All people

that have the disease and are correctly classified as having the disease, are

considered True Positives (TP). Those people that do not have the disease

and are correctly classified as not having the disease are considered True

Negatives (TN). If a person has the disease and was falsely classified as

not having the disease this person is a False Negative (FN). The last group

consists of those people that do not have the disease but they were falsely

predicted to have the disease they are called False Positives (FP).

Based on those four classes (TP, TN, FN, FP) several different classifi-

cation quality measures can be constituted. The sensitivity also called recall

or True Positive rate (TP-rate) indicates the fraction of correctly positive

classified objects from the complete set of positive objects. Therefore, the

sensitivity is the estimated conditional probability

Sensitivity = Recall = TP-rate =
TP

TP + FN
(2.28)
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Accordingly, the False Negative rate (FN-rate) denotes the fraction of the

falsely negative classified objects from the complete set of positive objects.

FN-rate =
FN

TP + FN
(2.29)

Since both measures refer to the positive category they add up to 1, hence

the sensitivity = 1– FN-rate and vice versa.

The specificity also called True Negative rate (TN-rate) declares the frac-

tion of correctly negative classified objects from the entity of real negative

objects.

Specificity = TN-rate =
TN

TN + FP
(2.30)

Accordingly the False Positive rate (FP-rate) corresponds to the fraction of

falsely positive classified objects from the complete set of negative objects.

FP-rate =
FP

TN + FP
(2.31)

Also those two measures add up to 1, hence the specificity = 1–FP-rate and

vice versa.

In order to detect the fraction of correctly classified objects based on the

entity of positive classified objects the Positive Predicted Value (PPV) also

called precision is used.

PPV = Precision =
TP

TP + FP
(2.32)

Accordingly, the Negative Predicted Value (NPV) includes those objects that

are correctly negative classified from all negative classified objects.

NPV =
TN

TN + FN
(2.33)

In contrast to all other quality measure pairs those two measures do not add

up to 1, because the denominator is different for both cases.
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The last quality measure to mention is the accuracy which denotes the

fraction of all objects which were correctly classified.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.34)

In general it is not enough to only specify one quality measure but rather

a combination of several measures to indicate the real quality of a classifier.

Though the choice of the measure always depends on the underlying data

set.

2.5.7 Discussion

The Nearest Neighbor classifier has a good applicability since it only needs

training data as input. It can easily be adapted to new training objects due

to the fact that it is incremental. However, the Nearest Neighbor classifier is

inefficient because it requires k-NN queries. The interpretation of a decision

tree is simple, attributes are implicitly weighted, and the evaluation of the

traced model is efficient. Furthermore, decision trees are powerful and effec-

tive classifiers which are often used in practical experience. But the tracing

of the decision is exponential and therefore very extensive. Besides, heuristic

approaches can find only local optima and decision trees are very susceptible

to overfitting. In contrast to other classifiers SVMs produce very accurate

results while having a rather low tendency to overfitting. The classification of

new objects is very efficient and the model is compact. Drawbacks of SVMs

are that the training phase can be very time consuming, the implementation

is very complex, and the found models are difficult to interpret.



Chapter 3

Parameter-free Outlier

Detection Using Data

Compression

3.1 Introduction

In many real-world applications a certain amount of exceptional data objects

which differ from the rest of the data by some extent is present. For some

applications in biology or medicine the removal of those objects is essential in

order to achieve accurate data mining results where regularities in the data

are searched for. In medicine the advances in medical imaging techniques has

lead to the generation of a huge amount of data on a daily basis, hence an

automatic detection and removal of unusual data also called noise is essential

to guarantee adequate data analysis. For other application fields in medicine,

biology, meteorology, or economy, the identification of these exceptional ob-

jects is of great importance. For example the identification of patients that

differ from the healthy population by a certain amount can help to identify

specific features as disease indicators. In meteorology finding extraordinary

47
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combinations of weather elements, e.g. before the occurrence of hurricanes

or flood waves can assist in evacuating endangered people betimes and can

prevent extreme damages.

Clustering as well as outlier detection are very prominent research areas

attracting a lot of attention in recent years. Even if both fields are in prin-

ciple interested in different aspects of data sets they are still closely related.

While clustering is interested in finding similarities between objects, outlier

detection looks for dissimilarities in data sets. Nevertheless, without the

removal of noise objects, corrupting the clusters being identified by outlier

detection, clustering is not able to acceptably handle most real world data

sets leading to incorrect clustering results. Hence, the preliminary removal of

outliers is essential to guarantee a good clustering quality. Outlier detection

algorithms need a clear description of the distribution of cluster objects to be

able to separate the outliers from the cluster objects even if cluster objects

are not of primary interest. Only if cluster objects are clearly defined outliers

can be identified by the algorithm.

There are several different outlier definitions, for our approach we used

the definition by Hawkins [Haw80] which states that outliers are observa-

tions that deviate so much from other observations as to arise suspicion

that they were generated by a different mechanism. To be able to realize

this outlier definition, outliers as well as general cluster objects have to be

clearly distinguished by means of a discrepancy criterion. This discrepancy

criterion has been quantified using either computational geometry by calcu-

lating the convex hull [JKN98] or by utilization of a specific distance function

[KN99]. Most existing approaches have in common that they strongly rely

on adequate parameter settings. Identified outliers are only extraordinary if

parameters have been set correctly depending on the unknown data distri-

bution and if the distance function or convex hull fits to the data. Hence,

in order to apply existing outlier detection approaches a priori knowledge of

the data distribution is required which is not given in most real world data

sets.
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In the following we will propose a new parameter-free outlier detection

algorithm, to overcome the problems of finding a discrepancy criterion and

setting parameters which are hard to determine. Since our approach employs

data compression we can avoid tedious parameterization. To cope with the

definition of a discrepancy criterion we use an adaptable description for the

ordinary data. For describing regular data we apply the adjustable Gener-

alized Normal Distribution (GND) which is a generalization of the Gaussian

Probability Density Function in combination with Independent Component

Analysis (ICA) converting the data into highly compressed independent com-

ponents. The GND incorporates several different distribution types like e.g.

the Uniform, the Gaussian, and the Laplace distribution. In our experiments

(Section 3.4) we verify the great adaptability of the GND to different data

distribution types.

An object is regarded an outlier if it does not suit well in the estimated

PDF of any arbitrarily sized neighborhood of the object. The goodness of a

fit is determined by the principle of data compression where an object can

be efficiently compressed if it fits well into a distribution function. Applying

the concept of Huffman coding [Huf52] an object being a vector in a d-

dimensional space is flagged with sparse bits if it has frequent coordinate

values while an object having a seldom combination of coordinate values

receives many bits. Applying ICA in combination with GND the redundancy

in the data can be minimized and determination of frequent and seldom

objects can be clearly identified. The used data compression concept is called

Minimum Description Length (MDL). In our approach we employ the MDL

concept in order to obtain an outlier detection algorithm without the need of

any explicit parameter settings. Hence, no prior knowledge of the underlying

data is required to apply our approach like the approximate amount of outlier

objects present or the density of the clusters. Moreover, our outlier score

which arises from the coding costs of an object with respect to the entire data

set simplifies the handling and allows to identify outliers by the formation of

an outlier ranking.
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The following sections are composed as follows: Section 3.2 gives an

overview of existing outlier detection approaches and the MDL principle in

the field of clustering and other data mining procedures. Section 3.3 charac-

terized our main outlier detection algorithm, including detailed descriptions

of the ICA and GND which are applied to generate a very general data de-

scription model. Moreover, we utilize the MDL principle to define our outlier

score. In Section 3.4 we demonstrate the broad applicability by an exten-

sive experimental evaluation including synthetic and real world data and in

Section 3.5 we conclude Chapter 3.

3.2 Related Work

In general outlier detection approaches can be divided into three major cat-

egories namely depth-based, distance-based, and density-based approaches.

In the following we will give a short summary of different outlier detection

approaches. Furthermore, since our approach is based on the information-

theoretic MDL principle we will give a short overview of existing information-

theory based data mining approaches. For more information concerning

anomaly detection, extensive reviews can be found at [CBK09, PP07].

3.2.1 Depth-based Outlier Detection

In order to identify outliers each data point in depth-based approaches is

associated with a certain depth. According to the assigned depths the data

points can than be arranged in different layers indicated by the convex hulls.

Outliers are thereby objects that are expected to be on the shallow lay-

ers in contrast to the cluster objects being located on the deep layers. A

depth-based outlier detection method which determines 2 dimensional depth

contours is called ISODEPTH [RR96]. An extension of ISODEPTH is FDC

[JKN98] which constrains the determination of contours to a selected sub-
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set of points. The fitting of distributions is avoided and in general multi-

dimensional data could be processed. However, depth-based outlier detec-

tion approaches have problems with growing dimensionality they only give

acceptable performance for k ≤ 2 since depth-based approaches rely on the

calculation of the convex hull [RR96].

3.2.2 Distance-based Outlier Detection

The concept of distance-based outlier detection has been introduced and ad-

vanced by Knorr and Ng [KN98, KN97, KN99]. In order to detect an outlier

object in distance-based outlier detection two parameters have to be set, in

fact pct which indicates the minimal fraction of points in a database having a

larger distance than dmin to that object. Distance-based methods depend on

the calculation of distance values which are based on a distance metric func-

tion. Objects are labeled as outliers and non-outliers in these approaches. In

[KN99] a method providing intensional knowledge for the extraordinariness

of an outlier is proposed. This intentional knowledge supports semantic inter-

pretation of the identified outliers. Even if proposed distance-based methods

are very efficient, the need of a suitable distance metric as well as the correct

setting of the parameters pct and dmin which have to be conducted by a

domain expert make an application of distance-based outlier detection very

difficult. The data distribution has to be known in advance which is not the

case for many real world data sets. Additionally, only global outliers can be

identified since the distance threshold dmin is fixed to a single value for the

entire data set.

3.2.3 Density-based Outlier Detection

The basic concept of density-based outlier detection has been adopted from

density-based clustering approaches. In contrast to distance-based outlier de-

tection, density-based approaches are also able to identify local outliers. The
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key assumption is that cluster objects are located in dense neighborhoods,

whereas outliers do not fit into the objects neighborhood density therefore

being far from their closest neighbors.

3.2.3.1 Local Outlier Factor

Breunig et al. [BKNS00] were the first to apply the concept of object den-

sity to outlier detection. This approach depends on the Local Outlier Factor

(LOF) which is assigned to each object. The LOF relies on the local neigh-

borhood density of the objects and indicates the degree of “outlierness”. In

order to obtain the LOF of an object the parameter MinPts has to be set.

MinPts which is the number of Nearest Neighbors of an object is used to

define the local neighborhood of the object. To determine the LOF score of

an object, the average local density of the MinPts-Nearest Neighbors of an

object has to be divided by the local density of the object. An object is an

outlier if it has a large LOF score (LOF� 1). Although LOF is not affected

by the local density problem, the selection of the global MinPts parameter

has a strong impact on the resulting outlier set. If MinPts is chosen too

large, objects belonging to small clusters can be regarded as outliers and

if MinPts is chosen too small no outliers are detected at all. Additionally,

LOF only returns an outlier ranking of the objects, therefore an approximate

number of outliers has to be known in advance which is not given for real

world data sets. Hence, LOF is only applicable if looking for the k most

outlying objects but it is not applicable to remove noise points from a data

set.

3.2.3.2 Local Correlation Integral

Another density-based approach called Local Correlation Integral (LOCI)

[PKGF03] uses the Multi-granularity Deviation Factor (MDEF) to detect

outliers. MDEF is a variation of LOF, thereby an object is an outlier if the
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density in its local neighborhood deviates from the local density of the ob-

ject’s nearest neighbors including the object itself. To accelerate the determi-

nation of the multi-granularity the counting and the sampling neighborhood

are introduced. The sampling neighborhood contains all objects which are

in the set of Nearest Neighbors of the object, it is used to calculate the mean

neighborhood density of the object. The counting neighborhood is used to

estimate the local density of the object. The sampling neighborhood, be-

ing larger than the counting neighborhood, is used to collect samples of the

counting neighborhood for a more precise estimation of the average neighbor-

hood density. This separation of sampling and counting neighborhood leads

to more robust results in some cases as compared to LOF which does not

use different neighborhoods. Moreover, the separation makes the algorithm

more efficient with respect to the multi-granularity calculation. Neverthe-

less, the separation leads to more parameters which have to be set, namely

α which is required for the counting neighborhood and rmin specifying the

minimum radius of the sampling neighborhood. In addition to the outlier

factor LOCI introduces a specific type of visualization. This so-called LOCI

plot can be used to determine further information about the vicinity of the

objects, giving information about the outlier objects or about close clusters

and micro-clusters. However, LOCI and LOF both use Euclidean distances

to determine the density of the objects. Furthermore, to identify outliers

using LOCI the authors recommend to use three times the standard devia-

tion of the overall object density of the sampling neighborhood as threshold

which presumes Gaussian distributed data.

3.2.4 Data Mining And MDL

The main concept of information theory is to find models which can efficiently

find and learn regularities from data. These regularities can then be used

to compress the data more powerfully. The concept of information-theory

has been applied to a variety of data mining research areas. In particu-
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lar, the MDL principle as well as related information-theoretic measures like

BIC or AIC have been adapted to different data mining fields like cluster-

ing [BFPP06, BFP08, PM00], rule mining [YMW02], classification [KK06],

regression [KK06], and anomaly detection [KLR04]. The MDL principle is

an important concept in information theory and learning theory, because it

draws a connection between learning and data compression. To avoid pa-

rameters in clustering and classification MDL can be used to distinguish the

best fitting model. Thereby, MDL contrasts different models being able to

find a compromise between model quality and complexity. Since MDL has

shown to be a good measure for clustering and other data mining techniques

we decided to adopt MDL to outlier detection, which as far as we know has

not been done yet.

The research field which is most similar to outlier detection with respect

to the problem description is clustering. Most outlier detection principles

are based on clustering concepts but clustering and outlier detection differ

strongly in the output of the algorithms. While clustering searches for sub-

groups having strong similarities, outlier detection is mainly interested in

the dissimilarities. For clustering, outliers or noise can be a big problem

since noise is dissimilar to all other objects and would therefore need an

own cluster. X-Means [PM00] as a parameter-free extension of the parti-

tioning clustering approach K-Means [DH73] uses the information-theoretic

criterion BIC to overcome the parameter k which is responsible for the num-

ber of clusters. X-Means is very sensitive to noise since it uses spherical

Gaussians as cluster description. Another clustering approach called Ro-

bust Information-Theoretic Clustering (RIC) [BFPP06] has been proposed

to post-process a clustering. For clustering any conventional clustering al-

gorithm can be used. After primary clustering RIC starts by clarifying the

initial clustering from noise followed by a cluster improvement step. The

improvement is implemented by the determination of a model for each clus-

ter where each model implies a rotation matrix which has been assigned by

Principle Component Analysis and a PDF. Each object is thereby allocated
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with one of a number of previously defined PDFs. A further approach which

has been introduced lately is called Outlier-robust Clustering using Indepen-

dent components (OCI) [BFP08]. OCI applies a general PDF, called the

Exponential Power Distribution (EPD), in combination with ICA to define

a global clustering concept. Some approaches have used the MDL principle

to de-noise signals of time series [Ris00, XZX04] with the main intention to

remodel the signal as precise as possible.

3.3 Outlier Detection Via Minimum Descrip-

tion Length

We introduce an outlier detection algorithm which uses the Independent

Component Analysis to reduce redundancy in the data in combination with

the Generalized Normal Distribution to approximate the data. The pro-

posed approach is entirely parameter-free which can be achieved using MDL

for data compression based on Huffman coding [Huf52]. Following Hawkin’s

outlier definition [Haw80], an outlier is defined as an object having extraor-

dinary large coding costs which is in our approach determined by the MDL

principle. To identify the set of outliers we use X-Means clustering [PM00].

Thereby, the cluster having the largest coding cost cluster mean is returned

as outlier set. Since we use the MDL principle to assign coding costs to

the objects we nicely avoid the use of any distance metric, which would re-

quire thresholding rendering very difficult without prior knowledge of the

neighborhood.

Data sets located in cartesian coordinate systems of real world applica-

tions are often spread, rotated, and distorted. The ICA is able to handle

data sets which are non-orthogonal. The identification of the independent

components can be achieved since the ICA maximizes the statistical inde-

pendence of the estimated components. As independence definition we used

the maximization of non-Gaussianity which is motivated by the central limit
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theorem [Fis10]. Before starting with the actual ICA the data has to be

preprocessed by centering, whitening, and reduction of the dimensionality.

We used Principle Component Analysis (PCA) [Ait84] for whitening and di-

mensionality reduction of the data. For the actual ICA we used the FastICA

algorithm [HKO01], but the idea of ordinary points still needs to be clearly

defined.

Most existing outlier detection algorithms assume the underlying data

to solely follow a Uniform or Gaussian distribution but since we did not

want to restrict our approach to solely one distribution type we decided

to incorporate a generalization of the Gaussian PDF called the Generalized

Normal Distribution. It includes different distributions, besides the Gaussian

PDF, it also includes the Uniform, and the Laplace PDF. The usage of

the GND keeps us from requiring any prior knowledge on the type of data

distribution. Hence, no bias to models with Gaussian data is created. Finally,

in applying a combination of ICA and GND as description of a regular data

subset we are able to comprise a diversity of real-world data sets without

explicit assumptions on cluster density, shape, and orientation.

In the following we will explain the general algorithm, and the principles

of ICA, GND, and data compression. Furthermore, the connection between

ICA and GND as well as data compression leading to our outlier approach

will be described.

3.3.1 Algorithm

Since outliers have unusually high coding costs in contrast to cluster

points having coding costs close to zero, our approach is able to identify

outliers completely automatic. Choosing a well fitting compression model

for ordinary objects we used a bottom-up approach to detect all irregular

data objects. The algorithm (Alg. 3.1) is processed for each data object

x separately. Starting with the initialization of a substantial set of Nearest
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Algorithm 3.1 Outlier Detection

Input: Database DB
Output: Set of outliers O

4:
OS = []; // outlier scores
for all objects x ∈ DB do

// initial set of Nearest Neighbors determined by Euclidean distances
8: nnx = initializeNN ;

not nnx = DB \ nnx;
costx = []; // coding costs of x
cost minnnx = []; // minimal coding cost of x

12:
// determine de-mixing matrix and NN mean and transform data using ICA
[Mnnx ,mnnx ] = ICA(nnx);
nnx,ica = transform(nnx,M

−1
nnx

,mnnx);
16: [µnnx , σnnx , pnnx ] = estimateGND(nnx,ica);// estimate GND parameters

while not nnx 6= [] do
costx = costx ∪ coding cost(xica;M

−1
nnx

, µnnx , σnnx , pnnx); // Eq. 3.19
cost minnnx = cost minnnx∪

min(coding cost(nnx,ica;M
−1
nnx

, µnnx , σnnx , pnnx));
20:

not nnx = transform(not nnx;M
−1
nnx

,mnnx);
costnot nnx,ica

= coding cost(not nnx,ica;M
−1
nnx

, µnnx , σnnx , pnnx));
nnx = nnx ∪ {not nno,ica with min(costnot nnx,ica

)}
24: not nnx = DB \ nnx;

update Mnnx ,mnnx ;
nnx,ica = transform(nnx,M

−1
nnx

,mnnx);
28: update µnnx , σnnx , pnnx ;

end while
j = min(cost minnnx); // index of best compressed set of NN
OS = OS ∪ (costx(j)−min(cost minnnx));

32: end for
// the cluster with the lowest cluster mean contains cluster points
C = XMeans(OS);
O = C \min(mean(C)); // set of outlier objects
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Neighbors nnx of x based on Euclidean distances (Alg. 3.1, line 8), we center,

whiten, and transform the set of Nearest Neighbors resulting in a data set

with independent components nnx,ica (Alg. 3.1, line 14f). Then a GND is

fitted to the transformed data resulting in the three parameters µnnx , σnnx ,

and pnnx in Alg. 3.1. To determine the coding cost costx as compression rate

of object x we used the data description of the GND of the set of Nearest

Neighbors. Subsequently, the compression rate of each object in the set of

Nearest Neighbors is calculated. Having determined the compression rate of

all objects in nnx the cost of the object having the minimum compression

rate given the GND model is included in the cost minx.

Incrementally, the set of Nearest Neighbors is extended by those resid-

ual objects not nnx which can be optimally compressed using the present

parameters µnnx , σnnx , and pnnx of the GND (Alg. 3.1, line 23f). Having

updated the set of Nearest Neighbors, the de-mixing matrix Mnnx and the

mean mnnx of the Nearest Neighbors as well as µnnx , σnnx , and pnnx are sim-

ply adjusted to the new set of Nearest Neighbors since this is less expensive

than estimating the parameters completely anew.

The outlier score of object x is calculated by subtracting the minimal

overall compression rate min(cost minnnx) from the corresponding compres-

sion rate of object x costx(j). In the last step the obtained outlier scores are

clustered by X-Means. Thereby the cluster having the minimal cluster mean

includes all cluster points and the remaining objects build the set of outliers.

3.3.2 Independent Component Analysis

ICA [Com94] provides a basis for the calculation of independent components

in a mixture of statistically independent random variables. Let a vector ~x

consist of n statistically independent random variables. In order to apply

ICA at most one random variable is allowed to follow a Gaussian distribu-

tion. It has been determined that the best decomposition of a mixture of
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signals can be established by searching for data not following a Gaussian

distribution. One reason could be that mixtures of signals from an arbitrary

distribution function are always more Gaussian than the original signal. In

our approach we apply ICA to maximize non-Gaussianity which is used as

a measure of the statistical independence. This can be achieved since ICA

favors directions of the data which are not Gaussian distributed. We de-

termine coding costs (measured by entropy) which have to be minimized in

order to guarantee a best possible compression efficiency. Since the entropy

of Gaussian distributions is maximal and all other distributions have a lower

entropy it is desirable to maximize non-Gaussianity.

Most real world data is distorted in the data space, hence the assumption

of equally dense data distributions is not applicable in those data sets. To

overcome this drawback we applied the ICA to the data. One step in the

ICA algorithm is the whitening of the data leading to a de-correlation and

a normalization of the data to unit variance. This transformation to the

so-called white space makes it possible to implicitly handle data with diverse

density.

3.3.2.1 Data Preprocessing

In general ICA needs centered data, meaning data with zero mean, as input.

If this is not the case the data has to be centered. In Figure 3.1 the different

steps of the ICA algorithm are illustrated. The first step is centering of the

data. This can be achieved by subtracting the empirical mean ~m of a data

set DB, in the example this is ~m = {100, 50}, from each data point ~x ∈ DB

~c = ~x− ~m (3.1)

whereby the empirical mean is defined as

~m =

∑
~x∈DB ~x

n
(3.2)
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Figure 3.1: The principle of the Independent Component Analysis. Shown
are the different steps from the original data until the data is transformed
into independent components. First the data is centered, then the data is
normalized to unit variance and whitened by PCA, and finally the data is
transformed into independent components by ICA.

with n = |DB| being the cardinality of the data set.

Now, since the data is centered the PCA [Ait84] which is a subpart of

the ICA can be applied. PCA is used to transform the data loosing as lit-

tle information as possible while combining existing redundancy in terms of

correlations in the data. Thereby, given a set of centered points ~c, PCA iden-

tifies those directions in a d-dimensional vector space which have maximal

variance. For this purpose the centered data ~c need to be normalized to unit

variance in all directions. To achieve this, first the covariance matrix Σ has
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to be determined by multiplying the centered data vector with its transpose

Σ = ~c · ~c T . (3.3)

Then an eigenvalue decomposition of the covariance matrix is conducted

Σ := V DV T , (3.4)

resulting in the Eigenvectors V and the Eigenvalues D of the covariance ma-

trix. Both Eigenvectors and Eigenvalues are orthogonal matrices. In addition

to that the Eigenvalue matrix is a diagonal matrix D = diag(λ1, ..., λd). The

Eigenvectors build a rotation matrix and the square root of the Eigenvalues

corresponds to the variance of the main components.

The PCA transform of vector ~x is obtained by

~y :=
√
D
−1 × V T × ~c. (3.5)

Note, that since the Eigenvalue matrix is a diagonal matrix the inverse of the

Eigenvalue matrix is simply the inverse of each diagonal entry in the matrix√
D
−1

= diag(
√

1/λ1, ...,
√

1/λd). By multiplying the diagonal matrix with

the variance the main components are normalized to one. The effect of

normalization and whitening of a data set by PCA is depicted in Figure

3.1. The redundancy combination in terms of correlations in the data can be

clearly seen.

3.3.2.2 Identification Of Independent Components

For solving the problem of finding independent components which is the ma-

jor goal of the ICA we used the efficient FastICA [Hyv99, HKO01]. FastICA

is based on a fixed-point iteration scheme which solves the determination of

the weighting matrix W = {~w1, ..., ~wd} to discover the independent compo-

nents of the transformed data. Until now, we determined projections with
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maximal variance by PCA but since we are rather interested in the optimal

projection of the data we need to determine the directions of minimal en-

tropy which can be obtained by ICA. Since the iterative optimization of W

expects whitened data as input the whitened data produced by PCA can

be inserted. In order to optimize W using the fixed-point iteration of the

FastICA algorithm the weight vectors ~w of the matrix W are updated by

~w = E
(
~y · g(~wT · ~y)

)
− E

(
g′(~wT · ~y)

)
· ~w. (3.6)

Thereby, E(· · · ) is the expected value, g(· · · ) is a non-linear contrast func-

tion, and g′(· · · ) is the derivative of the non-linear function g. We decided to

use tanh(a) for g(a), resulting in g′(a) = d tanh(a)
da

. The optimization process

is finished in case of convergence of W followed by the orthonormalization of

W . By now the problem of determining an orthogonal weighting matrix W

is reduced, but the random variables are not yet stochastically independent.

In order to project the original data ~x into the independent components

we need to determine the de-mixing matrix M−1 which is composed of the

Eigenvectors V and the Eigenvalues D of the covariance matrix as well as

the weighting matrix W . Since the mixing matrix is

M = V ×
√
D ×W (3.7)

we can obtain the de-mixing matrix M−1 by

M−1 = W T × 1√
D
× V T (3.8)

where W and V are both orthonormal matrices. Hence, the determinant of

the de-mixing matrix M−1 can be written as

det(M−1) =
∏

1≤i≤d

√
1

λi
. (3.9)
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Note that the rotation or weighting matrix W is responsible for the rotation

in the white space after the data has been whitened by the scaled Eigenvector

matrix of the original data vector.

Finally, to convert the centered data ~c, which has been obtained from the

original data ~x, into independent components ~z we have to project ~c into the

independent component space by

~z = M−1 × ~c. (3.10)

The last step of Figure 3.1 shows the impact of the transformation of the

data into independent components. After ICA the redundancy in the data

is minimal.

3.3.3 Generalized Normal Distribution

The Generalized Normal Distribution which is also called power exponential,

exponential error, or generalized Gaussian distribution incorporates a large

family of symmetric distributions, like the Gaussian, the Laplace, and the

Uniform distribution depending on the parameter settings. Given a point

x in a d-dimensional space the GND incorporates the following Probability

Density Function [MR05]

f(x;µ, σ, p) =
1

2σp1/pΓ(1 + 1/p)
exp

(
−|x− µ|

p

pσp

)
(3.11)

The three parameters µ, σ, and p represent, the location, scale, and shape of

the GND, respectively. Thereby, −∞ < x < +∞, −∞ < µ < +∞, and σ as

well as p are both larger than zero. The gamma function Γ(a) =
∫∞

0
ta−1e−tdt

is an extension of the factorial operator for real numbers.

Note, that the parameter p is responsible for the shape of the curve. It

is connected to the broadness of the tails and therefore to the kurtosis of

the distribution. The GND can describe platikurtic distributions for p > 2
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Figure 3.2: Generalized Normal Distribution with different parameter set-
tings of the shape parameter p.

and also leptokurtic distributions 0 < p < 2. Particularly, using a shape

parameter of p = 1 leads to a Laplace (or double exponential) distribution

(Figure 3.2, red line) and choosing the shape parameter to be 2 results in

a Gaussian distribution (N (µ, σ2/2); Figure 3.2, green line). As the shape

parameter grows towards infinity (p→∞) the GND coincides with the PDF

of the Uniform distribution (U(µ− σ, µ+ σ), Figure 3.2, black line).

3.3.4 ICA With GND Linkage

Now lets combine the result of the ICA with the GND function. During ICA

the data was centered, whitened, and normalized to unit variance, followed

by the de-correlation of the data. Hence, the resulting data ~z is de-correlated

and independent, therefore after ICA we are able to describe each component

separately by an own GND. Since we have d different dimensions, d different

parameter settings for the GNDs f(~zi;µi, σi, pi) with 1 ≤ i ≤ d have to be

estimated. As described in Subsection 3.3.2, the mixing matrix M which was

identified by ICA combines all d PDFs and is used to de-correlate the data

~x by ~z = M−1× (~x− ~m) = M−1×~c, with ~m being the empirical mean of the

data and ~c being the centered data. The resulting independent components
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a) b)

Figure 3.3: a) ICA in combination with GND approximation and b) approx-
imation after ICA using Gaussian distributions.

are not orthogonal anymore due to the mixing matrix M . To combine the

independent components with the GND we define the PDF of the GND by

f(~z;M−1, µ, σ, p) =
1

|det(M−1)|
∏

1≤i≤d

f(~zi;µi, σi, pi) (3.12)

The advantage of incorporating the GND instead of a Gaussian or Uni-

form PDF can be seen in Figure 3.3. After ICA each dimension can be

modeled separately illustrated by the rotated histograms. A Gaussian dis-

tribution (Figure 3.3, b) fails to approximate the different dimensions, since

one dimension is uniformly distributed and the other one is close to being

Gaussian. In contrast to that the shape parameter p enables the GND to

model both dimensions more accurately (Figure 3.3, a).

3.3.5 GND Parameter Estimation

As mentioned earlier the GND has three parameters µi accounting for the

location, σi representing the scale, and pi which is responsible for the shape of

the GND. The determination of these parameters is not a trivial task. After

ICA, µi and σi are no longer identical to the empirical mean and standard



66 3 Parameter-free Outlier Detection Using Data Compression

deviation. Given a data set DB, the three parameters µi, σi, and pi can be

determined by the maximum likelihood estimation method. One condition

in order for the derivatives of the likelihood to dissolve with reference to µi,

σi, and pi is a concurrent estimation of all three parameters.

The log likelihood function of the GND can be formalized as [MR05]

l(DB;µi, σi, pi) = −n log[2σip
1/pi

i Γ(1 + 1/pi)]−
∑

~z∈DB |zi − µi|pi

piσ
pi

i

(3.13)

with n = |DB| being the cardinality of the data set DB.

3.3.5.1 Scale Parameter Estimation

Now, lets assume µi and pi to be given, then the parameter σi can be com-

puted by deriving the log-likelihood function l(DB;µi, σi, pi) regarding σi of

the GND and setting the resulting expression to zero

d l(DB;µi, σi, pi)

dσi
= − n

σi
+

∑
~z∈DB |zi − µi|pi

σpi+1
i

= 0. (3.14)

Solving the equation for σi the maximum likelihood estimator of σi can be

obtained by

σ̂i =

(
1

n

∑
~z∈DB

|zi − µi|1/pi

)
. (3.15)

3.3.5.2 Location Parameter Estimation

For µi no explicit solution can be determined, hence we use a nested bisec-

tion search to optimize the location parameter in its parameter space. To

determine the direction of browsing through the space the derivative of the

log-likelihood function with respect to µi is used

d l(DB;µi, σi, pi)

dµi
= − 1

σpi

∑
~z∈DB

(
|zi − µi|pi−1sign(zi − µi)

)
. (3.16)
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3.3.5.3 Shape Parameter Estimation

Just like for the location parameter, no explicit solution can be determined

for the shape parameter pi either. Hence, we also use a nested bisection

search for the optimization of the shape parameter in its parameter space.

Thus, the derivative of the log-likelihood function with respect to pi is used

to determine the direction of browsing through the parameter space of pi.

d l(DB;µi, σi, pi)

dpi
= − n

p2
i

(
log pi + Ψ(1 +

1

pi
)− 1

)
+ (3.17)

+
1

p2
iσ

pi

i

(∑
~z∈DB

|zi−µi|pi+p log σi
∑
~z∈DB

|zi−µi|pi−p
∑
~z∈DB

(|zi−µi|pi log |zi−µi|)
)

with Ψ(· · · ) being the digamma function which is the logarithmic derivative

of the gamma function Ψ(a) = d ln Γ(a)
da

. The estimation process is finished in

case of convergence of pi.

3.3.6 Coding Cost Determination

Until now we converted the original data ~x into independent components

using ICA and estimated the three parameters of the GND for each dimen-

sion separately, in order to determine an accurate representation of the data

distribution. Next, we require a quality criterion to evaluate the accuracy of

the fit. For this purpose we interlink the principle of data compression with

the concept of Probability Density Functions. For data compression we use

the Minimum Description Length principle which exploits the fact that the

stronger the data can be compressed the larger is the regularity in the signal.

To find a good coding cost representation we used Huffman coding [Huf52]

which is an entropy coding. The basic idea of Huffman coding is that different

characters have to be coded by a different number of bits in order to save

memory. Thus, in our case each object in the data set is tagged by a certain
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number of bits. The number of bits is obtained by the inverse logarithm of

the probability of the object. Therefore, given an arbitrary PDF f(~x) the

coding costs coding cost of an object ~x can be defined using the negative

log-likelihood. To represent the coding cost in number of bits the basis of

the logarithm is typically 2.

coding cost(~x) = log2 f(~x)−1 = − log2 f(~x). (3.18)

Since we have a General Normal Distribution as PDF we can define the

relative coding cost of an object ~z which has been transformed by ICA as

coding cost(~z;M−1, µ, σ, p) = − log2 f(~z;M−1, µ, σ, p) = (3.19)

= log2(|det(M−1)|)−
∑

1≤i≤d

log2 f(~zi;µi, σi, pi).

with ~z = M−1 × (~x− ~m).

We disregard the selection of a grid resolution defining the storage accu-

racy of the points as well as the parameter costs in our coding costs since

we are only interested in the comparison of different GNDs. Hence, we do

not determine absolute coding cost values but rather relative ones. Since,

optimal data compression is dependent on redundancy in the data it is es-

sential to determine statistically independent major directions of the data

with ICA prior of computing the coding costs. This can be clearly seen in

Figure 3.1. Starting with disperse data with respect to the x- and y-axis ICA

restrains redundancy in the data concerning the axes by transforming it into

independent components, providing an optimal basis for data compression.

3.3.7 Outlier Score And Outlier Detection

Putting everything together, for each data object x we screen the entire data

set DB by iteratively adding a set of Nearest Neighbors nnx to x. In order
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to assure a stable GND estimation the set of Nearest Neighbors is initialized

with the 20 objects having the smallest Euclidean distance to x.

For each set of Nearest Neighbors nnx the rotation, meaning the de-

mixing matrix of the ICA, and the data description determined by the three

parameters µ, σ, and p of the GND are computed. Having the ICA and the

GND estimate of nnx, the data compression rate for each object in the set

of centered and whitened Nearest Neighbors of x, nnx,ica can be determined

by the coding costs coding cost(nnx,ica;M
−1, µ, σ, p). Since, we obtain one

coding cost value for each object in nnx,ica but we are only interested in the

most efficient compression of nnx,ica only the minimal coding cost determined

from the set of Nearest Neighbors is kept. This compression rate information

(min(coding cost(nnx,ica;M
−1, µ, σ, p))) is gathered for each set of Nearest

Neighbors. For an optimal compression regarding x it would be necessary to

know the correct number of best compressed Nearest Neighbors in advance.

But since we do not have this information but we do have information of

the objects’ coding costs, the minimal coding cost corresponding to the best

compression rate in the set of Nearest Neighbors throughout the complete

set of Nearest Neighbor sets, min(cost minnnx), represents the best possible

GND estimate for any nnx. As we are interested in the degree of x being an

outlier we need to obtain an outlier score. This outlier score is the absolute

compression rate increase costx with respect to the overall minimal coding

cost in the set of Nearest Neighbors throughout the complete set of Nearest

Neighbor sets. Hence, the outlier score is costx(j)−min(cost minnnx) with

j being the index of the best compressed set of Nearest Neighbors. Since the

screening of Nearest Neighbors is quadratic in the number of points n and

cubic in the dimensionality d due to ICA and GND, we decided to increase

the size of nnx exponentially with respect to the size of DB.

By now, outlier scores for all objects have been determined, the next step

is to differentiate outlier objects from cluster objects. In general, outliers are

expected to have extremely high coding costs in comparison to ordinary data

points in the data set. The outlier scores of cluster points are located around
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zero because cluster points can be compressed very efficiently, whereas, out-

liers can have arbitrary large outlier scores. Since the structure of a data set is

unknown in most cases, the tagging of outliers is a non-trivial task, because

the detection of an adequate threshold is very difficult for unknown data.

To overcome the problem of setting this threshold parameter we applied X-

Means algorithm [PM00] to the set of n outlier scores. Thereby, X-Means is

a parameter-free extension of the partitioning K-Means clustering algorithm.

To decide whether a cluster split is advantageous or not, X-Means uses the

information theoretic BIC values of the two structures. The outlier scores

are one dimensional numeric values which can be efficiently clustered by X-

Means. Since all cluster points should have an outlier score close to zero and

thus the cluster mean is also close to zero, the cluster having the smallest

cluster mean contains the cluster objects and all other clusters contain outlier

objects. We are even able to create an outlier order arranging the identified

clusters in ascending order of their cluster mean. But in the majority of the

tested data sets two clusters were identified by X-Means, whereby the cluster

with a cluster mean close to zero contained the cluster points and the other

one comprised all outliers.

In our approach we are able to detect outliers without the need of any

explicit parameter settings. This can be achieved by combining ICA and

GND to estimate the set of Nearest Neighbors, followed by the application

of the MDL principle for data compression. Hence there is no need of knowing

the number of outliers or the type of data distribution, including shape and

density of the data, in advance.

3.4 Experiments

To emphasize the advantages of our approach in contrast to existing outlier

detection algorithms we evaluate our outlier detection approach in compari-

son to two outlier detection approaches, LOF [BKNS00] and LOCI [PKGF03].
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For this purpose, two data sets are used, one synthetic data set as well as

data from the National Basketball Association (NBA) from the 2007/2008

season. We implemented our approach as well as LOF in Java and obtained

the implementation of LOCI from the authors [PKGF03]. The synthetic data

set was created to exemplify the strength of our approach. To facilitate the

visual comparison and to demonstrate the potency of our approach we use a

2-dimensional synthetic data set.

3.4.1 Synthetic Data

The synthetic data set consists of four clusters, cluster 1 (C1) contains 184

points, cluster 2 (C2) is composed of 154 points, the third cluster (C3) com-

prises 50 points, and cluster 4 (C4) includes 52 data points shown in Figure

3.4. Each cluster has different cluster properties and a non-orthogonal major

orientation. Figure 3.4 illustrates the cluster distributions of all 4 clusters

after application of the ICA. As depicted cluster C1 follows a Laplace dis-

tribution after ICA in both dimensions, cluster C2 is uniformly distributed,

clusters C3 is a mixture of a Uniform and a Gaussian distribution, and C4

underlies Gaussian PDFs. In addition to the cluster points, all together 26

noise points were added to the data set shown in blue.

3.4.2 Outlier Detection Results

We applied our novel outlier detection algorithm to the synthetic data set

and compared the outlier results with outliers detected by LOF and LOCI.

Figure 3.5 provides the results of our approach, LOF, and LOCI for the

synthetic data set.
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Figure 3.4: The synthetic data set including four clusters and 26 outliers
shown on top. All clusters have different shapes and different data distribu-
tions. The histograms illustrate the data distributions of the four clusters
after application of the ICA. Each dimension is represented by an own his-
togram. Cluster C1 is mainly Laplacian, C2 uniformly distributed, C3 is a
mixture of a uniform and a Gaussian PDF, and C4 has a Gaussian distribu-
tion.

3.4.2.1 Outlier Detection Using MDL

We were able to correctly detect all 26 outlier points highlighted in blue

(Fig. 3.5, a) with our approach. No outlier order could be detected, hence

we obtained 2 clusters from the outlier score clustering by X-Means. All

outliers belong to one group, the remaining group constitutes the cluster

points shown in black. Note, that our approach did not require any input

parameter in order to identify all noise points. It can handle different types of
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Figure 3.5: Outlier detection results from a) our approach, b) LOF (MinPts
= 50 selecting the top 26 outliers), and c) LOCI (α = 0.5 and rmin = 10) for
the synthetic data set consisting of four clusters (C1-4) and 26 outliers. Cor-
rectly identified outliers are shown in blue, while wrongly identified outliers
are highlighted in red. In addition the four wrongly found outliers by LOF
are marked by numbers to ease cross referencing in the text. The two points
circled in green (cluster point cp, outlier point op) are illustrated in Figure
3.6 using LOCI plots.

cluster shapes, distributions, and orientations without expecting an explicit

description of their distributions.

3.4.2.2 Local Outlier Factor

LOF was applied to identify the outliers based on a MinPts neighborhood
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Figure 3.6: LOCI plot for two points detected as outliers. a) shows an outlier
which was correctly identified as outlier by LOCI (Figure 3.5, c; labeled by
op) and b) shows a cluster point which was falsely identified as outlier (Figure
3.5, c; labeled by cp).

of 50 determined by the size of the smallest cluster in the set (Fig. 3.5, b).

We obtain the top 26 outliers since we know how many outliers are present

in the data set. There are 24 out of the 26 noise points assigned correctly

by LOF. Two noise points next to cluster C2 (red points 1. and 2.) are

not detected, leading to two falsely identified cluster points as outliers (red

points 3. and 4.). Note, that we collected the top 26 data points ranked by

the LOF score. Setting the parameter MinPts to a value smaller or equal

to 10, LOF identifies more cluster points as outliers while leaving many true

outliers undetected (data not shown). A MinPts value of 20 to 50 leads

to the same result as shown in Figure 3.5. It is important to mention, that

even if LOF is able to find the majority of the outliers, for most values of

the parameter MinPts, an approximate size of the clusters as well as an

approximate number of outliers has to be known in advance in order to get

a meaningful output. If we have no prior information about the number of

outliers, it is only possible to determine an arbitrary number of outliers. In

addition, an approximate cluster size needs to be known in advance to set

MinPts. These assumptions make it difficult to apply LOF to real world

data.
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3.4.2.3 Local Correlation Integral

LOCI was applied to the synthetic data set with α = 0.5 and rmin = 10

(Fig. 3.5, c) and could identify 43 outlier points based on the suggested

outlier flagging criteria. Altogether 17 true outliers are missed, while two

points from within cluster C3 and 27 points from cluster C4 are labeled as

outliers. Different parameter settings of rmin may detect more true outliers,

but at the same time label more cluster points as outliers. Obviously, LOCI

is not able to deal with clusters showing low density, like C4. In Figure 3.6,

we have a closer look at the LOCI plot of an outlier point (circled in green

as op in Figure 3.5, c) and a cluster point (cp). The LOCI plots look very

similar even though they are supposed to emphasize the difference between

a cluster point and an outlier. We have to note, that although we applied

the algorithm with the suggested parameter settings, the result was difficult

to interpret even after correspondence with the authors.

3.4.3 Outlier Score Visualization

To emphasize the difference and strength of our outlier score in comparison

to the LOF score, we introduce a visualization of the “outlierness” (Fig.

3.7). A scatter plot of the data in x-y directions is combined with a bar

representation of the outlier factors in the z-dimension. We can clearly show

that the utilization of data compression is able to separate the outliers from

the cluster points in comparison to the outlier factor of LOF. The majority

of the cluster points have an outlier score which is located close to 0.0 which

can be seen by the short, dark blue bars in Figure 3.7 a. Outliers are either

light blue or even red indicating their extraordinariness, ranging from 6.4

up to 24.2. Due to the large range between cluster points and outliers it is

possible to clearly differentiate them using X-Means in our approach.

In contrast, LOF produces values ranging from 0.8 up to 2.3 which makes

it almost impossible to clearly differentiate cluster points from outliers ex-
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Figure 3.7: Outlier cost of our approach (a) and outlier-factor of LOF (b) for
the synthetic data set. Our outlier score (a) and the local outlier factor (b)
are shown on the z-axis indicated also by the different coloring of the bars. If
a point has a short, dark blue colored bar it has a low score and is a cluster
point, if the bar is tall and red it is an outlier.

plicitly. The visualization of the outlier factors of LOF demonstrates, that

the cluster structure is based on Euclidean distances: the outlier factors con-

tinuously increase circular from the cluster centers to the cluster margins.

In contrast to LOF, our outlier scores are equally low throughout the entire

cluster except for the cluster edge points. It is based on the flexible cluster

structure description using ICA and EPD.

3.4.4 Experimental Data

After extensive evaluation of our approach on synthetic data sets, we want

to apply our novel parameter-free outlier detection method to experimental

data. We used the National Basketball Association (NBA) data available at

the NBA website http://www.nba.com. In Season 2007/08, 450 players are

described with four attributes: the number of games played (GP), and the

number of points (PPG), rebounds (RPG), and assists (APG) per game. Our

approach was applied to this NBA data detecting 105 outliers. Figure 3.8

http://www.nba.com
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Outlier Score Name GP PPG RPG APG
19.6 Stephon Marbury 24 13.9 2.5 4.7
17.9 Jamaal Tinsley 39 11.9 3.6 8.4
16.1 Gilbert Arenas 13 19.4 3.9 5.1
15.4 Andrew Bynum 35 13.1 10.2 1.7
13.6 Elton Brand 8 17.6 8 2
12.9 Ronald Muray 73 9.1 4.5 1.3
12.8 Jason Kidd 80 10.8 7.5 10.1
12.5 Chris Kaman 56 15.7 12.7 1.9
12.3 Ramon Sessions 17 8.1 3.4 7.5
12.0 Randy Foye 39 13.1 3.3 4.2

Table 3.1: Top 10 outliers identified with our approach on NBA data.

displays scatter plots of the NBA data. For simplicity reasons, we highlight

only the top 10 outliers in red as listed in Table 3.1. Obviously, the data

distribution is non-Gaussian.

The top 10 outliers identified by our approach, include outstanding play-

ers like Stephon Marbury with a coding cost of 19.6 being 12 times higher

than the average coding costs. Marbury is an outstanding player with respect

to all attributes. He played only 24 games out of 82 and was still able to

achieve 13.9 points and additionally assisted in 4.7 points, resulting in being

involved in 18.6 points per game. Jamaal Tinsley, has played 39 games in

this season but was still able to assist in 8.4 game points. He was involved in

20.3 points and played more games than Marbury. Gilbert Arenas exhibits a

rare combination of playing 13 games while achieving 19.4 points per game.

Jason Kidd is outstanding in the number of rebounds having played in 80

out of 82 games. Elton Brand has played only few games but was still able

to achieve an outstanding number of points. As evident from Figure 3.8,

outstanding players such as Kidd or Brand are best characterized with the

most general model with only one component.

To put our outlier detection method into a context, we applied LOF and

LOCI to the NBA data set, as well. Table 3.2 displays the top 10 outliers

identified by LOF. Highlighted in bold are all players that were identified as
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Figure 3.8: NBA data of the 2007/2008 season. Shown with red crosses are
the top 10 outliers identified with our approach. For clarity reasons 5 outliers
are labeled and marked with circles in the upper triangle and the remaining
5 outliers are labeled and marked in the lower triangle.

top 10 outliers with our approach, like Marbury, Arenas, or Brand. Except

for one, all players from the set of top 10 outliers of our approach are at

least under the top 20 of LOF. However, the outstanding player Kidd was

missed by LOF ranked at the 50th position with a LOF score of 1.16. In

addition, as observed for synthetic data, the result of LOF strongly depends

on its parameterization. Only seven players are reproducibly detected as top

10 for a MinPts = 40 (players are marked with an asterisk). All five players

which were included in the Top 10 of our approach were also included in

the intersect of MinPts = 40 and MinPts = 50 which strikes that they are

strongly outstanding. The top 10 outliers found by LOCI are shown in Table

3.3. The intersect between LOCI and our approach is again highlighted.
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LOF Name GP PPG RPG APG
1.43 Elton Brand* 8 17.6 8 2
1.32 Steve Francis 10 5.5 2.3 3
1.31 Kasib Powell 11 7.6 4 1.6
1.28 Gilbert Arenas* 13 19.4 3.9 5.1
1.28 Chris Webber* 9 3.9 3.6 2
1.27 Stephon Marbury* 24 13.9 2.5 4.7
1.26 Dwyane Wade* 51 24.6 4.2 6.9
1.25 LeBron James 75 30 7.9 7.2
1.24 Andrew Bynum* 35 13.1 10.2 1.7
1.24 Chris Kaman* 56 15.7 12.7 1.9

Table 3.2: Top 10 outliers identified by LOF with MinPts = 50 on NBA
data sorted by the Local Outlier Factor. Players also among the top 10 of
our approach are marked in bold font. The asterisk indicates players which
are also among the top 10 using MinPts = 40. Note that all players found
to be in the Top 10 of our approach and LOF using MinPts = 50 are also
found using LOF and MinPts = 40.

Name GP PPG RPG APG
LeBron James 75 30 7.9 7.2
Kobe Bryant 82 28.3 6.3 5.4
Dwyane Wade 51 24.6 4.2 6.9
Chris Kaman 56 15.7 12.7 1.9
Elton Brand 8 17.6 8 2
Andrew Bynum 35 13.1 10.2 1.7
Jamaal Tinsley 39 11.9 3.6 8.4
Mike Bibby 48 13.9 3.3 6
Jermaine O’Neal 42 13.6 6.7 2.2
Udonis Haslem 49 12 9 1.4

Table 3.3: Top 10 outliers identified by LOCI on NBA data. Players also
among the top 10 of our approach are marked in bold font.

3.5 Conclusion

Outlier detection is an important research area for detecting outstanding

observations in data sets or to remove noise prior to data analysis. Here a

complete parameter-free outlier detection approach was presented. Starting
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with converting the data into independent components we used a Generalized

Normal Distribution which is a generalization of the Gaussian distribution to

describe each independent component separately. To determine the degree of

“outlierness” of an object we used data compression which is very intuitive

to interpret and does not need any user defined input parameters.

Our approach includes three desirable properties. First of all it is parame-

ter-free which simplifies the handling of the algorithm since no complicated

parameters like the number of outliers present in the data have to be known

in advance. Second, the utilization of the ICA prior to approximating the

data enables us to describe even non-orthogonal data very accurate. Com-

bining the independent components produced by the ICA with the flexible

GND model which comprehends the Uniform, the Gaussian, and the Laplace

distribution for describing the data leads to a wide applicability of the algo-

rithm. Third, we incorporated the MDL principle which relates learning and

data compression for learning regularities in the data in order to achieve a

natural balance between goodness of fit and model complexity.

Many approaches explicitly or implicitly assume Gaussian distributions or

do not provide a model of the data which is essential in many applications,

including selectivity estimation, indexing, and classification. As shown by

our experimental section our approach does not depend on any specific data

distribution like Gaussian or Uniform data due to the general data model of

the GND. Therefore, our method is applicable to a variety of different real

world data sets.



Chapter 4

Similarity Search In Uncertain

Data

4.1 Introduction

In several application fields e.g. biometric identification, sensor networks,

medical imaging, or video retrieval, data can contain a certain amount of un-

certainty. Uncertainty can arise by measurement error or if single objects are

represented by a huge amount of values. Conventionally available database

systems are not able to handle these uncertain data objects since they can

only model certain data associated with a feature vector. To overcome this

shortcoming a considerable amount of research has been conducted in the

field of uncertain data handling.

An uncertain object is not represented by an exact position like a cer-

tain object but it is rather assigned a Probability Density Function. This

data representation enables the object to imply an infinite amount of values.

Thereby, objects can be defined by different PDFs, like Uniform, Gaussian, or

other PDFs. A very general distribution function for representing uncertain

objects is the Gaussian Mixture Model (GMM). A GMM is a probabilistic

81
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model which consists of a mixture of several weighted Gaussian distributions.

A GMM combines m Gaussian distributions by a weighted sum, with m be-

ing the cardinality of the model. Each of the m Gaussian components of

a GMM can be modeled by three parameters: a weight w, a d-dimensional

location vector µ, and a d×d dimensional covariance matrix Σ. In Figure 4.2

a one dimensional (left) and a two dimensional (right) example of a GMM

are depicted, both consisting of four Gaussian components. Each Gaussian

component comprehends a weight, a mean vector, and a covariance matrix.

In some cases GMMs are restricted to model solely axis-parallel Gaussian

distributions due to efficiency reasons and to reduce the complexity of the

data. In other words, in those cases correlations between different features

like those shown on the left in Figure 4.2 (ellipsoids build angles close to

45◦) are ignored leading to a loss of precision. Including those correlations in

the data model would lead to a more general representation of the respective

data leading to a higher accuracy in finding the most similar objects to a

given uncertain query object.

In addition to a correct representation of the uncertain data, it is also

important to provide efficient query processing when dealing with highly com-

plex uncertain data. To accelerate the processing of certain queries several

indexing structure techniques have been proposed e.g. the R-tree [Gut84],

the X-tree [BKK96], or the iDistance [JOT+05]. For low dimensional data

these indexing techniques arrange the data hierarchically. Hence, query pro-

cessing requires only logarithmic time complexity, but for moderate and high

dimensional data efficiency decreases. This led to the invention of advanced

indexing methods like e.g. the VA-file [WSB98]. The VA-file accelerates the

sequential scan of the data using a lax data compression. Thereby, the cer-

tain data points are approximated in a conservative and tight way. For low

dimensional data the VA-file is as efficient as the hierarchical structures but

in higher dimensional data especially in large data sets it is often superior to

tree-like indexing structures.

Since uncertain data is even more complex than certain data leading to
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high computation time, indexing structures are essential in order to be effi-

ciently handled. For this purpose tree-like methods like the U-tree [TCX+05]

or the Gauss-tree [BPS06] have been proposed to accelerate the handling of

uncertain data. However, these structures handle only axis-parallel PDFs

disregarding possible correlation between different features. This leads to

false dismissals when answering queries on general GMMs. To the best of

our knowledge until now no indexing method has been introduced which is

able to process exact GMM representations including correlations between

attributes. Furthermore, no method has yet been proposed for speeding up

the sequential scan of uncertain data, similar to the VA-file for certain data.

In our proposed similarity search method we try to overcome these draw-

backs by using a conservative approximation approach for accelerating the

similarity search on general Gaussian Mixture Models. Our approach does

not only use GMMs but also considers correlations between different features,

hence being able to handle so-called non-axis parallel GMMs. Thereby, the

similarity between a database object and a query object is calculated by

computing the probability of an uncertain database object to be randomly

drawn from the PDF of the query object. Thus, for object comparison we

use relative matching probabilities, being a probabilistic equivalent of the

similarity measure for certain data objects. To accelerate the very expensive

matching probabilities between non-axis parallel GMMs we introduce a con-

servative approximation method which guarantees no false dismissals, since

the approximated probability density values are an over-estimation of the

absolute matching probabilities. To minimize the approximation error which

arises by approximating Gaussian distributions with strongly correlated at-

tributes we introduce a clustering procedure which clusters those Gaussian

components having similar orientation in space. Thus, Gaussian distribu-

tions implying strong correlations are grouped together leading to a more

accurate approximation. This clustering method particularly supports the

tightness of our conservative approximation. The tightness is responsible for

the filtering of a large amount of candidates filtered that are dissimilar to the
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uncertain query object. Thus only very few possible candidate objects pass

the filtering step being transformed to the computationally expensive refine-

ment step. Therefore, our filter-refinement architecture leads to a substantial

reduction in runtime. The major contributions of our approach are:

• General uncertain data representation: Uncertain database objects and

uncertain query objects are represented by so-called non-axis parallel

GMMs considering correlations between features.

• Cluster similarly oriented Gaussian components: To reduce the approx-

imation error Gaussian distributions with comparable main orientation

in space are clustered using a circular partitioning clustering approach.

• Filter-refinement architecture: The combination of our conservative

and tight approximation technique filtering a large amount of candi-

dates and the expensive refinement step which only has to calculate

few absolute probabilities ensures no false dismissals, a good filter se-

lectivity, and a large runtime reduction.

In the following we will start by giving a few motivating examples in Sec-

tion 4.2, followed by briefly overviewing related work in the field of uncertain

data and similarity search in Section 4.3. In Section 4.4 we will introduce our

filter-refinement architecture. Starting with an overview of our algorithm we

will then explain the representation of uncertain objects by non-axis parallel

GMM and their conservative approximation. For improving the approxi-

mation of Gaussian distributions with a similar major orientation in space

the circular clustering is described. Then, the actual similarity search in-

cluding the filtering step and the refinement step are described. A detailed

and elaborated experimental evaluation is given in Section 4.5, including

several synthetic and real world data sets. Thereby, we perform parameter

benchmarking and performance measures. In Section 4.6 we conclude this

Chapter.
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4.2 Motivation

Since the attacks on September 11th, 2001, the idea of more effective secu-

rity technology arose. Biometric identification implies methods for uniquely

recognizing humans based upon one or more intrinsic physical or behavioral

traits. One area of biometric identification is face recognition where un-

certainty arises from limitations of feature measurements like eye distance,

mouth corner distance, or length, width, and curvature of the nose. These

uncertainties among different features may well be correlated due to the fact

that the aspect of the camera influences some of the feature measurements in

the same way and, therefore, it is complex enough to require non-axis parallel

GMMs. It is obvious that we want to find distributions that considerably

overlap with the query distribution, not those having a small Euclidean dis-

tance. Another area in biometrics is speaker identification. Thereby, short-

time segments of speech are used to identify a suspicious subject. Auditory

signals are decomposed into Mel-Frequency Cepstral Coefficients (MFCC)

which are then used to build GMMs [RR95]. These models can have full

covariance matrices because some features are statistically dependent.

For sensor networks like for example weather data including measure-

ments like temperature, humidity, barometric pressure, etc. the exact time

period is crucial to the accuracy, as well as the technical equipment. Fur-

thermore, additional complexity is added by the dependencies between the

obtained measurements like e.g. an increase in barometric pressure and hu-

midity results in most mesothermal climate zones in increasing temperature.

In many application fields the dependency of these weather criteria is not

considered at all or only represented in a very imprecise way. With the use

of non-axis parallel GMMs the imprecise weather data can be modeled more

accurately. To find the most alike date in a weather data history given a

weather phenomena of one day is of high importance e.g. to predict floods,

hurricanes, or other weather catastrophes.

In medical imaging neuroradiologists use medical images as a “second
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opinion” in both detecting tumors and making diagnostic decisions. Ex-

tracting and analyzing the characteristics of benign and malignant tumors

produced by different Magnetic Resonance Imaging techniques like e.g. perfu-

sion or diffusion weighted Magnetic Resonance Imaging can aid neuroradiol-

ogists in their diagnosis and, therefore, save lives. Several perfusion features

like Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), and Mean

Transit Time (MTT) can be extracted from the tumor region and fitted by

a non-axis parallel GMM. Since the CBF is highly dependent on the CBV

and the MTT, non-axis parallel GMM would be a perfect choice to repre-

sent the tumor data. Building a database which contains perfusion GMMs

of affirmed tumors with different grades could then aid neuroradiologists in

grading tumors of new patients.

4.3 Related Work

In many data mining and information retrieval systems the identification of

objects which are similar to a given query object is of great relevance. The

most commonly used method to compare diverging feature vectors is to use

a distance metric measure like e.g. the Euclidean distance. Since the impor-

tance of some features can be larger compared to others, weighted Euclidean

queries or general ellipsoid queries can be utilized instead of ordinary metric

distance measures. Since efficiency is always an important aspect in informa-

tion retrieval several different indexing structures for accelerating similarity

queries in high-dimensional feature spaces have been proposed (for a survey

see [BBK01]). However, individual object uncertainty is a problem these

approaches cannot adequately deal with.

Several applications like e.g. biometric identification, sensor networks,

or medical image data include uncertainty. Hence, the different features of

the objects cannot be determined exactly but with some degree of insecu-

rity which can arise from measurement errors in sensor networks. Usually
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uncertain objects are modeled using Probability Density Functions, while a

large amount of queries specifically k-Nearest Neighbor and range queries

have been extended to probabilistic cases. As for the certain data also un-

certain data has to be processed efficiently, hence several research groups

have proposed indexing and query processing methods for uncertain data

[DS05, DSBHW06, CKP03, CXP+04, TCX+05, BPS06].

Uncertain data can be handled in different ways. One way to is to use

probabilistic queries which have lately attained increasing attention. The

model proposed in [CKP03] can deal with different types of queries which

enable the processing of uncertain data. Each object is assigned a feature

value interval, comprising the exact values. Thereby, the feature value is

defined by a specific PDF modeling the distribution of the values. This

PDF is located in the aforementioned interval. Another group [CXP+04]

introduced methods which were based on the R-tree [Gut84] to productively

handle probabilistic threshold queries. Thereby, if the probability of a data

object being located in the query interval is larger than the assigned prob-

ability threshold value of the probabilistic threshold query it is returned by

the algorithm as hit. The Top-K Probability Nearest Neighbor query intro-

duced by Bescales et al [BSI08] intends to identify those database objects

which have the highest probability of being a Nearest Neighbor to the given

query object. The applied general uncertainty model can handle uncertain

database objects and uncertain query objects. But the model only regards

the PDF as black box without actually employing the information contained

in the probability distribution itself. In a related approach the uncertainty of

the objects was described by an uncertainty region which was connected to a

PDF [TCX+05]. To efficiently handle those uncertainty regions the authors

introduce the U-tree which is a hierarchical multi-dimensional index structure

on uncertain data. A method also considering the PDF distribution informa-

tion was proposed in [BPS06]. They used Gaussian distributions to model

uncertain objects. Thereby those objects which are most likely represented

by the same object as the query object are returned by the probabilistic
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query. This approach can be used to find those images in a given database of

facial images showing a suspect portrayed on the query image. The Gauss-

tree which is included in the approach to efficiently handle queries is again

a hierarchical index structure. The minimal bounding rectangle thereby en-

closed those Gaussian distributions possessing similar mean and variance.

The disadvantage of the proposed approach is that it can only handle sin-

gle axis-parallel Gaussian distributions assuming that the underlying data

follows a Gaussian distribution. For querying a database of uncertain video

clip objects Böhm et al. [BGK+07] introduced a video retrieval system. Just

like the Gauss-tree this model also used axis-parallel PDFs to represent the

data objects (video clips in a color histogram space), but instead of Gaus-

sian distributions they use Gaussian Mixture Models. All mentioned tree-like

structure (Gauss-tree, U-tree) as well as most other index structures for effi-

cient uncertain data management are only able to process uncertain objects

with non-correlated feature vectors, hence resulting in constrained overall

accuracy.

4.4 Searching Uncertain Data Using GMMs

This chapter will start up with the description of our algorithm. In the

following Gaussian Mixture Models will be introduced with a focus on the

non-axis parallel version of Gaussian Mixture Models (nGMM). Since our

approach also considers the correlations between features, the determination

of absolute similarity probabilities between a query object and the database

objects is very time consuming and highly complex. To accelerate the sim-

ilarity search while maintaining the same accuracy as the extensive search

we introduce a filter-refinement architecture using conservative and tight ap-

proximations in combination with a clustering procedure to achieve a more

accurate approximation of highly correlated features.



4.4 Searching Uncertain Data Using GMMs 89

//Each object comprising the three parameters w, µ,Σ
Given: Database DB, Query object G ′, Number of hits k

//Preprocess (rotate and approximate) DB and obtain rotation angle representa-
tives
(DBra, θuv) = preprocessDB(DB); //Alg. 4.1

//Identify k-Most Likely Identification Queries and their absolute probabilities
using the four-step procedure
(k-MLIQ, k-P) = identifyMLIQs(k,DB,G ′, DBra, θuv); //Alg. 4.3

Figure 4.1: Overview of the different steps of our algorithm. The prepro-
cessing has to be execute only once. As soon as a rotated and approximated
database has been generated several k-MLIQs can be executed.

4.4.1 Algorithm

As input the algorithm needs a database DB of n uncertain objects as well

as an uncertain query object. The database objects G∗ and the query object

G ′ are all non-axis parallel GMMs meaning they can contain correlations

between different features. In addition the algorithm needs the parameter

k being the number of most similar objects returned by the algorithm. An

overview of the main steps of our algorithm including the preprocessing and

the k-Most Likely Identification Query (k-MLIQ) search is depicted in the

Figure 4.1. Before being able to search for the most similar objects to a

given query object the database has to be prepared (Alg. 4.1). Note, that

this procedure has to be executed only once for a given database.

The preprocessing of the data in the database as formalized in Alg. 4.1 is

done separately for each Gaussian distribution, hence each of the m Gaussian

distributions of the n GMMs in the database has to be processed separately

following the same workflow. We start the preprocessing by clustering all

Gaussian distributions according to their main orientation in space followed

by the approximation of each Gaussian distribution. The clustering has to be

done to minimize the approximation error, evolving from strongly correlated
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Algorithm 4.1 preprocessDB

Input: Database DB
//Rotate and approximate DB and obtain rotation angle representatives θuv

4: Output: DBra, θuv

l = (d2 − d)/2; //Number of rotation angle dimensions
θ = []; // Set of n ·m l-dimensional rotation angles

8: //The procedure is done for each Gaussian distribution separately
for all G∗i ∈ G∗ ∈ DB do

Σ∗i,tmp = Σ∗i ; //covariance matrix of Gaussian distribution G∗i
θG∗i = []; // l rotation angles of Gaussian distribution G∗i

12: for all l coordinate axis pairs xi, xj do
//Get largest Eigenvector of covariance matrix Σ∗i,tmp

Vmax = EigenvalueDecomposition (Σ∗i,tmp);
θv = shift(arctan2(Vmax(xi, xj))); // Eqs. 4.27, 4.29

16: θG∗i = θG∗i ∪ θv;
Σ∗i,tmp = R(θv) · Σ∗i,tmp ·R(θv)

T ;
end for
θ = θ ∪ θG∗i ;

20: end for
//Obtain c l-dimensional cluster representatives
θuv = X-Means (θ);

24: //Rotate and approximate all n ·m Gaussian distributions in the database
DBra = [];
for all G∗i ∈ G∗ ∈ DB do

//Rotate and approximate G∗i using its cluster representative θuv,G∗i
28: G∗i,ra = prepareGaussian(θuv,G∗i ,G∗i ); //Alg. 4.2

DBra = DBra ∪ G∗i,ra;
end for

features. Firstly, after having obtained the Eigenvector Vmax of the largest

Eigenvalue generated by the Eigenvalue decomposition of the covariance ma-

trix Σ∗i of a Gaussian distribution G∗i , one rotation angle at a time is obtained

followed by a rotation of the covariance matrix. The rotation is executed by
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Algorithm 4.2 prepareGaussian

Input: Angle representative θuv, Gaussian distribution Gi
Output: Gra //Rotated and approximated Gaussian distribution

4:
for all θuv do

//Rotation matrix of the jth rotation angle
µi,r = rotateMean(µi, θuv); // Eq. 4.32

8: Σi,r = rotateSigma(Σi, θuv); // Eq. 4.33
end for
χi,r = approxSigma(Σi,r); // Eq. 4.23
ψi,r = approxW(wi, χi,r,Σi,r); // Eq. 4.22

12: Gra = ψi,r ·N(xr;µi,r, χi,r);

inserting the currently calculated rotation angle in the corresponding Givens

rotation matrix. Secondly, all m · n l-dimensional rotation angles are then

clustered using an X-Means algorithm which has been adjusted to cyclic dis-

tance values. Thirdly, all Gaussian distributions are first rotated using the

currently calculated cluster representatives to be as axis-parallel as possible

in the new coordinate system followed by the approximation of the Gaussian

distribution (Alg. 4.2). Finally, these rotated and approximated Gaussian

distributions are stored in a separate database DBra.

This newly generated database DBra in combination with the original

database DB can then be used as input for the actual k-MLIQ search

(Alg. 4.3). The k-MLIQ search is a four-step procedure. In the first step

the query object has to be converted to be able to compare the query object

with the rotated and approximated objects of the database DBra. Contrary

to the database object the Gaussian distributions have to be rotated into all

coordinate systems followed by the approximation to calculate approximated

Probability Density Values (PDVa) with a preferably small approximation

error. The actual rotation and approximation is done the same way as for

the database objects using Alg. 4.2. Now the database objects and the query

object are preprocessed and the actual k-MLIQ search can start (Alg. 4.3
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Algorithm 4.3 identifyMLIQs

Input: Number of MLIQ k, Database DB, Preprocessed database DBra,
Query G′, Rotation angle cluster representatives θuv
Output: k-MLIQ; k-P;

4: //Step 1) Rotate and approximate all Gaussian distributions of query object G′ in all
rotation angle clusters θuv leading to c representations of G′
G′ra = [];
for all G′i ∈ G′ do
G′ra = G′ra∪ prepareGaussian(θuv,G′i); //Alg. 4.2

8: end for

//Step 2) Calculate approximated PDV s
PDVa = []; //Probability density values of all objects in the database
for all G∗ra ∈ DBra do

12: PDVa = PDVa ∪ PDVa(G∗ra,G′ra); //Eq. 4.44
end for
//Sort approximated PDV s in descending order
sort(PDVa);

16: //Step 3) Obtain k largest PDVs
k-MLIQ = []; //k-most likely identification queries
k-PDV = []; //Probability density values of k most likely identification queries
PDVub = −∞; //PDV upper bound

20: while PDVub < getF irst(PDVa) do
//G∗1 being the object on the first position of PDVa with largest PDVa

PDV = PDV (G∗1 ,G′); //Eq. 4.37
indexI = min(k-PDV);

24: if PDVub < PDV then
k-PDV = {k-PDV \k-PDV(indexI)} ∪ PDV ;
k-MLIQ = {k-MLIQ \k-MLIQ(indexI)} ∪ G∗;

end if
28: PDVub = min(k-PDV);

PDVa = PDVa \ getF irst(PDVa)
end while

//Step 4) Calculate absolute probabilities of k-MLIQ
32: k-P = [];

for all G∗ ∈ k-MLIQ do
k-P= P (G∗,G′); //Eq. 4.45

end for
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Step 2-4). The search starts by calculating and sorting all approximated

PDVa values between the preprocessed query object G ′ra and each prepro-

cessed database object G∗ra (Step 2). Then, subsequently the Probability

Density Value (PDV ) between the original database object G∗1 momentarily

having the largest PDVa and the original query object is calculated, until a

PDVa having a smaller value then the upper bound PDVub is found (Step 3).

Thereby, the present object is added to the list of k-MLIQ if and only if it has

a PDV which is larger than the smallest PDV in the list of k-MLIQs. The

upper bound PDVub is updated to the smallest PDV in the list of k-MLIQs.

In the last step (Step 4) absolute probabilities (k-P) for the k objects being

most similar to the query object are computed and the algorithm stops.

Using the four-step procedure we can keep an accuracy of 100 % while

saving computation time due to the lesser absolute probability computations.

A detailed formalization of the single parts of the algorithm are given in the

following sections.

4.4.2 Non-axis Parallel Gaussian Mixture Model

Mixture Models are a specific type of Probability Density Functions which

comprehend a certain amount of component functions. In the case of Gaus-

sian Mixture Models the component functions are Gaussians. The combi-

nation of these Gaussian component functions build a multimodal density.

In contrast to non-parametric histograms, Gaussian Mixture Models offer a

higher flexibility and are more precise when modeling complex data distri-

butions. For uncertain data, where values are not exactly known, Gaussian

Mixture Models can provide a very accurate estimation of the uncertain ob-

jects.

The general form of a Gaussian distribution for a single variable x can be

formalized as

N(x;µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(4.1)
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where µ corresponds to the mean and σ to the standard deviation of the

distribution. Hence, N(x;µ, σ) indicates the density function characterizing

the measurements of the variable x.

A Gaussian distribution in a d-dimensional space is defined by two param-

eters, the location parameter µ and the covariance matrix Σ. The location

parameter is a d-dimensional vector µ = (µ1, · · · , µd)T and the covariance

matrix is a quadratic, positive-definite, and symmetric d × d dimensional

matrix which contains the covariances of the random vector. The Gaus-

sian distribution function of one d-dimensional Gaussian can be defined as

[DMJRM00]:

N(x;µ,Σ) =
1√

(2π)d|Σ|
exp

(
−(x− µ)TΣ−1(x− µ)

2

)
(4.2)

thereby |Σ| corresponds to the determinant of Σ and Σ−1 denotes the matrix

inverse of Σ. Note, that we consider the entire covariance matrix not only

the diagonal of the matrix containing the variances. Hence, also feature

correlations are included in our model leading to non-axis parallel Gaussians.

As mentioned, a GMM consists of several Gaussian distributions which

build one non-axis parallel GMM G. Let G comprise m = |G| different

Gaussian distributions, m being the cardinality of the model. Thereby, each

Gaussian component is additionally assigned by a weight w and the weights

of a GMM sum up to identity ∑
G

w = 1. (4.3)

Let furthermore, each Gaussian PDF be modeled by µ and Σ then the com-

plete Probability Density Function of a GMM G can be defined as

fG(x;w, µ,Σ) =
m∑
i=1

(wi ·N(x;µi,Σi)) = (4.4)
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Figure 4.2: A 1-dimensional GMM object with m=4 components is depicted
on the left and a 2-dimensional nGMM object consisting of m=4 components
G1, . . . , G4 is illustrated on the right. Thereby, the objects are comprised of
three parameters, a weighting vector w = (w1, . . . , w4), a covariance matrix
Σ, and a location vector µ. In case of the 1-dimensional GMM the covari-
ance matrix is not a matrix but rather the standard deviation of the single
components.

=
m∑
i=1

(
wi√

(2π)d|Σi|
exp

(
−(x− µi)TΣ−1

i (x− µi)
2

))

Due to the fact that the weights of each GMM add to unity we can

additionally deduce that ∫
Rd

fG(x;w, µ,Σ) dx = 1. (4.5)

Two examples of GMMs are depicted in Figure 4.2. Both GMMs consist

of m = 4 Gaussian components G1, . . . , G4. The GMM on the left comprises

four 1-dimensional Gaussian components (cf. Eq. 4.1) which are connected

using Eq. 4.4 by replacing the covariance matrix with the standard deviation.

Hence, the GMM consists of the weights w = (w1, . . . , w4) = (0.35, 0.4, 0.15,

0.1) summing up to unity, the location vector µ = (µ1, . . . , µ4) = (1, 13,
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8, -2), and the standard deviation σ = (σ1, . . . , σ4) = (0.8, 1.5, 2.5, 1). In

the 2-dimensional example on the right Eq. 4.4 can be applied to obtain the

GMM with the 4 components. The weights w1, . . . , w4 are depicted on top

of each component again summing up to unity and the location vector is

a 4 × 2 vector µ = (µ11, µ12; . . . ;µ41, µ42). Since we have a 2 dimensional

GMM we also have covariances between the two features leading to one 2×2

covariance matrix for each component Σ1, . . . ,Σ4. Hence, as soon as more

than one dimension is existent correlations between features (indicated by

the rotated ellipsoids in Figure 4.2 left) can occur leading to non-axis parallel

Gaussian distributions.

4.4.3 Non-axis Parallel GMM Approximation

To accelerate the computation of our similarity measure for achieving the

most similar objects to a query object we propose an approximation tech-

nique. This is required since our similarity measure is very expensive due to

the consideration of the entire covariance matrix information including cor-

relations between different features. In this approximation technique each

weighted non-axis parallel Gaussian component Gi of the nGMM with the

three parameters wi, µi, and Σi is approximated. The goal is to replace

each non-axis parallel Gaussian component with an axis parallel Gaussian

component having the parameters ψi, µi, and χi = φiDi. Thereby, ψi and

φi are scalar values and Di is a diagonal matrix leading to an axis parallel

matrix and hence an axis parallel Gaussian representation. ψi represents the

new weighting factor and φi in combination with Di corresponds to the new

axis parallel covariance matrix χi. To put it in other words, the conservative

approximation of a non-axis parallel Gaussian curve leads to an axis parallel

Gaussian curve.

The aim is to conservatively enclose the original non-axis parallel Gaus-

sian Gi in the new axis parallel Gaussian which can be achieved by a specific

setting of the new weighting factor ψi. In the following we will explain how
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to determine the axis parallel representation of a non-axis parallel Gaussian.

We start up with the non-axis parallel Gaussian curve which can be de-

scribed by the three original model components wi, µi, and Σi

wi ·N(x;µi,Σi) =
wi√

(2π)d|Σi|
exp

(
−(x− µi)TΣ−1

i (x− µi)
2

)
(4.6)

The notion in the exponent not considering the −1
2

is the Mahalonobis

Distance (MD) or generalized squared interpoint distance [Mah36, DMJRM00]

between x and µi of the same distribution with the covariance matrix Σi

MD(x;µi,Σi)
2 = (x− µi)TΣ−1

i (x− µi). (4.7)

The Mahalonobis distance uses correlations in the data to specify the simi-

larity of an unknown and a known variable because the MD is obtained by

inverting the covariance matrix.

Note, that we intent to replace the covariance matrix Σi by an axis parallel

matrix χi. Hence, we have to look for a distance function MD(x;µi, χi)
2 for

the axis parallel matrix χi satisfying the following characteristic

MD(x;µi, χi)
2 ≤MD(x;µi,Σi)

2, ∀x, µi ∈ Rd. (4.8)

Since the exponential function is a monotonous function, in our case it is

a steeply and monotonously downward-sloping curve on account of the −1
2

in the exponent, we have to find a real lower bound of MD(x;µi, χi)
2 to

guarantee that MD(x;µi, χi)
2 is smaller or equal in contrast to the original

Mahalonobis distance.

The covariance matrix Σi consists of the covariances on the off diagonal

and the squared variances σ2
i1, . . . , σ

2
id on the diagonal. In order to obtain an

axis parallel matrix representation χi we need a diagonal matrix. Therefore,

we fill Di, being part of the axis parallel matrix χi, with the squared variances
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original Gaussian ellipsoid

axis parallel Gaussian 
ellipsoid with Di

-1 axis parallel Gaussian 
ellipsoid with χi = ϕiDi

-1

a) b)

Substitute z = Di
-1/2(x-μi) 

=> Transform data space 

c)

Data spaceData space

Transformed space

(x-μi)
T (ϕiDi)

-1 (x-μi) = 1

(x-μi)
T Σi

-1 (x-μi) = 1

(x-μi)
T Di

-1 (x-μi) = 1

zTϕi
-1z = 1

zTDi
1/2Σi

-1Di
1/2z = 1

ϕi
1/2

Figure 4.3: Illustration of the approximation using φi and D−1
i . a) Without

the scaling factor φi the evolving axis parallel ellipsoid (red ellipsoid) is not
a conservative approximation of the original Gaussian ellipsoid (black ellip-
soid). b) Including the scaling factor in the Mahalonobis distance leads to the
desired conservative approximation (blue ellipsoid). c) In order to achieve the

scalar value φi we transform both ellipsoids by substituting z = D
−1/2
i (x−µi).

of the original covariance matrix Σi

Di = diag(σ2
i1, . . . , σ

2
id). (4.9)

If we would now simply insert the diagonal matrix Di in the Mahalonobis

distance MD(x;µ,D)2 we would not receive a lower bound of MD(x;µ,Σ)2

as shown in Figure 4.3 a. Hence, we need to multiply the matrix Di with a

scalar value φi also called the scaling factor to obtain the final axis parallel

matrix χi illustrated in Figure 4.3 b.

In order to determine this scaling factor, we use a transformation which

leads to a spherical representation of the axis parallel ellipsoid. An ellipse can



4.4 Searching Uncertain Data Using GMMs 99

be described by the equation of center x2/a2 + y2/b2 = 1 with a and b being

positive real numbers. In case of a sphere a = b and since the denominator of

the spherical equation of center is the squared radius of the sphere, the radius

can be easily determined by taking the squared root of the denominator.

Now, to determine a spherical representation of the ellipsoid we convert

the data space. In other words, we multiply the original data (x − µi) with

the inverted square root of the diagonal matrix Di leading to a spherical

view of the axis parallel ellipsoid depicted in Figure 4.3 c. To transform the

ellipsoid we first have to obtain
√
D−1
i . The inverse and the square root of

Di can be calculated for each element σ2
1i, . . . , σ

2
id separately, due to the fact

that the matrix Di is a diagonal matrix:

√
D−1
i = diag

(
1√
σ2
i1

, . . . ,
1√
σ2
id

)
. (4.10)

Now, to determine the transformation we substitute z =
√
D−1
i (x− µi),

which can be reformulated as (x − µi) = z
√
Di. Hence, the axis-parallel

ellipsoid

(x− µi)Tχ−1
i (x− µi) = 1 (4.11)

becomes with χi = φiDi

(z
√
Di)

T (φiDi)
−1(
√
Diz) =

zT z

φi
= 1 (4.12)

while the non axis-parallel ellipsoid becomes

(x− µi)TΣ−1
i (x− µi) = zT

√
DiΣ

−1
i

√
Diz = 1. (4.13)

Since, the radius of the sphere is the square root of the denominator, it

is
√
φi. This radius corresponds to the largest semiaxis of the inner ellipsoid

which can be determined by taking the inverse of the smallest Eigenvalue of

the inverse correlation matrix C−1
i .
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The correlation matrix Ci with the elements corrr,s (1 ≤ r ≤ d, 1 ≤
s ≤ d) of the Gaussian Gi can be obtained by dividing each element covr,s

of the covariance matrix by the corresponding square root of the variance

of covr,r = σ2
r and covs,s = σ2

s , hence, corrr,s = covr,s√
covr,rcovs,s

= covr,s√
σ2

rσ
2
s

. Since

the matrix Di contains the diagonal elements of the covariance matrix Di =

diag(σ2
i1, . . . , σ

2
id) we can also obtain the correlation matrix by

Ci =
√
D−1
i Σi

√
D−1
i . (4.14)

Looking at equation 4.13 we have the inverse of the correlation matrix

C−1
i =

√
DiΣ

−1
i

√
Di. (4.15)

The aim is to determine the largest semi-axis of the inner ellipsoid which

corresponds to the transformed ellipsoid of the original non-axis parallel

Gaussian distribution. To determine the largest semi-axis of the inner el-

lipsoid we have to calculate the inverse of the smallest Eigenvalue of the

inverse correlation matrix C−1
i . Thereby, the Eigenvalues Λ′ as well as the

Eigenvectors V ′ can be obtained by the Eigenvalue decomposition of C−1
i .

C−1
i =

√
DiΣ

−1
i

√
Di = V ′Λ′V ′T (4.16)

Note, that the Eigenvalue matrix is a diagonal matrix Λ′ = diag(λ′1, . . . , λ
′
d),

therefore, the inverse of the smallest Eigenvalue can be simply obtained by

φi = (min(diag(λ′1, . . . , λ
′
d)))

−1
. (4.17)

Using the correlation matrix Ci instead of the inverse of the correlation

matrix C−1
i we can equivalently determine φi by using Eigenvalue decompo-

sition of the correlation matrix Ci

Ci =
√
D−1
i Σi

√
D−1
i = V ΛV T (4.18)
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but instead of taking the inverse of the smallest Eigenvalue we now have to

take the largest Eigenvalue of the set of Eigenvalues Λ = diag(λ1, . . . , λd)

leading to

φi = max(diag(λ1, . . . , λd)) (4.19)

and subsequently

χi = φiDi = max(diag(λ1, . . . , λd)) ·Di. (4.20)

Now that we have obtained the new axis parallel matrix χi we only have

to determine the new weighting factor in order to receive a complete Gaussian

component with the three parameters ψi, µi, and χi. For identifying the new

scalar value ψi we have to restructure the original Gaussian component as

follows:

wi ·N(x;µi,Σi) =
wi√

(2π)d|Σi|
exp

(
−(x− µi)TΣ−1

i (x− µi)
2

)
(4.21)

≤ wi√
(2π)d|Σi|

exp

(
−(x− µi)Tχ−1

i (x− µi)
2

)

=
wi
√
|χi|√
|Σi|

1√
(2π)d|χi|

exp

(
−(x− µi)TΣ−1

i (x− µi)
2

)

= wi

√
|χi|
|Σi|

N(x;µi, χi)

Taken together, the new model component is composed of the weighting

factor ψi which can be written as

ψi = approxW(wi, χi,Σi) = wi

√
|χi|
|Σi|

(4.22)
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and the new matrix

χi = φiDi = approxSigma(Σi) = φi · diag(σ2
i1, . . . , σ

2
id). (4.23)

We have to mention that the new weighting factors of the newly emerged

axis parallel nGMM approximation do not sum up to unity anymore. But

it is not necessary that the new axis parallel conservative approximation of

the original PDF is a PDF for itself since it is only an approximation which

is used as an upper bound to save absolute probability calculations.

4.4.4 Clustering Of Non-axis Parallel Gaussians

By now each component of the nGMMs can be represented by an axis parallel

Gaussian approximation. If the original Gaussians have only weak correla-

tions between the features the Gaussian approximation is very similar to the

original Gaussian but in case of very strong correlations (45◦ angle) of two

or more coordinate axis the original Gaussian can not be approximated well.

A solution for this problem might be to transform the Euclidean coordi-

nate system in case of strong correlations. For a better understanding Figure

4.4 depicts an example of two GMMs G and H which are composed of four

Gaussian components each G = (G1, . . . , G4) and H = (H1, . . . , H4). In

the Euclidean coordinate system (Figure 4.4 a) four of the Gaussian com-

ponents (G1, G2, H1, H2) can be approximated very well since their features

are almost uncorrelated. But the remaining four Gaussians (G3, G4, H3, H4)

having really strong correlations (close to a bisector) can only be badly ap-

proximated. Note, that even though e.g. G1 and G2 have different rotation

angles they can still be approximated equally well in the same coordinate

system. The rotation of the coordinate system by 45◦ (Figure 4.4 b) causes

Gaussians G3, G4, H3, and H4 to be approximated well having a low approx-

imation error while the approximation error of G1, G2, H1, and H2 is very

high. Thus, separating the set of Gaussian distributions according to their
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G1 G2

H1

G3

G4

H3

H4

H2

G1 G2

H1

G3

G4

H3

H4

H2

a) b)

G1 G2

H1 H2

G3

G4

H3

H4

c)

Figure 4.4: Two 2-dimensional Gaussian Mixture Models G and H each
comprising four Gaussian components G = (G1, . . . , G4) and H = (H1, . . . ,
H4). a) Normal coordinate system where components G1, G2, H1, and H2 can
be approximated very well but components G3, G4, H3, and H4 can only be
badly approximated. b) Using a coordinate system which has been rotated
by 45◦ G3, G4, H3, and H4 can be approximated well, whereas G1, G2, H1,
and H2 can only be badly approximated. c) Hence, separating the set of
Gaussians according to their rotation angle in space, all ellipsoids can be
approximated equally well.

rotation angle in space (Figure 4.4 c) independent of the GMM they be-

long to would significantly decrease the approximation error of all Gaussian

distributions.

We decided to use a clustering method in order to group those Gaus-

sian distributions together having a similar main extension (rotation angle)

in space. Thereby, the rotation angle can be determined by means of the

Eigenvector matrix arising from Eigenvalue decomposition of the covariance

matrix. Since, for clustering we need cluster representatives, we have to

find typical Eigenvector matrices (prototype matrices) summarizing a set of

Gaussian distributions according to their rotation angle. To obtain those pro-
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totype matrices we require a similarity measure for combining matrices with

a small approximation error in the same coordinate system. Additionally, we

need a procedure to determine all rotation angles of a Gaussian distribution

using the Eigenvector matrix.

For calculating the rotation angles we decided to use the idea of Givens

rotation matrices [PFTV92]. A Givens rotation also called Jacobi-Rotation

is a rotation in one plane which is spanned by two coordinate axis. Since we

want to obtain c new coordinate systems all being represented by l = (d2 −
d)/2 Givens rotation matrices Buv (1 ≤ u ≤ c, 1 ≤ v ≤ l). Consequently, the

components Gi (1 ≤ i ≤ m) of an object G ∈ DB defined by the parameter

wi, µi, and Σi are not saved by their original coordinates µi but rather by

the rotated version of their coordinates Buv · µi. The Mahalonobis distance

in the Gaussian PDFs thus has to be adjusted as follows

MD(x;µi,Σi)
2 = (Buvx−Buvµi)

TBuvΣ
−1
i BT

uv(Buvx−Buvµi). (4.24)

If the rotated covariance matrix BuvΣ
−1
i BT

uv is more axis parallel then the

original covariance matrix Σ−1
i indicated by a smaller approximation error√
|BuvχiBT

uv|
|BuvΣiBT

uv|
<

√
|χi|
|Σi|

(4.25)

then it is useful to rotate the Gaussian PDF.

4.4.4.1 Rotation Angles By Givens Rotations

Givens rotation matrices in combination with Eigenvalue decomposition can

be applied to determine all l = (d2−d)/2 rotation angles θv (1 ≤ v ≤ l) of one

Gaussian distribution. These l rotation angles θv will then be used to cluster

the Gaussian distributions according to their orientation in space. For each

coordinate axis pair combination the rotation angle has to be determined

separately. In other words, after having obtained the first rotation angle θ1
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of an ellipsoid, the ellipsoid has to be rotated by that angle before being able

to achieve the next angle.

For a Gaussian distribution Gi rotation angles can be determined by the

Eigenvalue decomposition of the Gaussian’s covariance matrix Σi

Σi = V ΛV T (4.26)

using the Eigenvector Vmax =
(
x1
...
xd

)
of the largest Eigenvalue (max(Λ)). Since

the arctangent function for two real arguments x1 and x2 (arctan2(x1, x2))

can be used to obtain the angle between the positive x1 axis of a plane and

the point given by the coordinates x1, x2 we can adopt

θv = arctan 2(x1, x2) =



arctan(x1/x2) x2 > 0

arctan(x1/x2) + π x2 < 0

π/2 x2 = 0, x1 ≥ 0

−π/2 x2 = 0, x1 < 0

(4.27)

to compute the l rotation angles θv based on the Eigenvector Vmax.

As mentioned before, each angle, corresponding to two coordinate axis

has to be calculated separately. In order to achieve all l rotation angles we

have to rotate the covariance matrix after each rotation angle calculation.

The rotation of the covariance matrix Σi can be achieve by a Givens rotation

matrix of the form

R(θv) =


Id

cos(θv) sin(θv)

Id

− sin(θv) cos(θv)

Id

 . (4.28)

Thereby, the recently computed rotation angle θv is inserted in the corre-
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sponding Givens rotation matrix. Note, that the position of the cos(θv) and

sin(θv) corresponds to the two axis examined at present. This Givens rota-

tion matrix can then be used to rotate Σi using R(θv) · Σi · R(θv)
T . After

having rotated Σi the next rotation angle can be calculated applying again

an Eigenvalue decomposition on the newly determined covariance matrix and

consequently calculating arctan2 of the newly evolved Vmax of the subsequent

coordinate axis pair followed by the rotation of the covariance matrix. This

has to be done l times in total until all l rotation angles have been determined.

For a better understanding of the rotation angle determination we will

clarify the procedure using a 3D example. In a 3D space there are a total of

l = (32 − 3)/2 = 3 rotation angles which have to be computed. Given a co-

variance matrix Σ, we first have to apply an Eigenvalue decomposition for ob-

taining the Eigenvector Vmax =
(
x1
x2
x3

)
of the largest Eigenvalue. To determine

the first rotation angle we now have to apply arctan2 to one coordinate axis

pair. We will start with the axis pair x1, x2 leading to θ1 = arctan2(x1, x2).

Now, the covariance matrix has to be rotated by the Givens rotation matrix

R(θ1) =

 cos(θ1) sin(θ1) 1

− sin(θ1) cos(θ1) 1

1 1 1


leading to the new rotated covariance matrix Σ′ = R(θ1) ·Σ ·R(θ1)T . Based

on the new covariance matrix Σ′ a new Eigenvector V ′max =

(
x′1
x′2
x′3

)
has to be

calculated by Eigenvalue decomposition. Now we can compute the second

rotation angle by inserting the next axis pair in the two-argument arctangent

function θ2 = arctan2(x′1, x
′
3). The corresponding rotation matrix

R(θ2) =

 cos(θ2) 1 sin(θ2)

1 1 1

− sin(θ2) 1 cos(θ2)


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is used to obtain Σ′′ = R(θ2) · Σ′ ·R(θ2)T . The third and last rotation angle

θ3 can be determined analogously leading to θ3 = arctan2(x′′2, x
′′
3).

Until now we have obtained all l rotation angles for each Gaussian dis-

tribution Gi. These angles can capture arbitrarily large negative as well as

positive degree values. However, since a Gaussian distribution having a 0◦

angle has practically the same orientation in space as a Gaussian distribution

with a ±180◦ angle and orthogonal angles should also be clustered together

(cf. Figure 4.4) we have to shift the obtained angles before determining the

angle cluster representatives. The goal is to shift all angles so that they are

located between 0◦ and 90◦. Therefore, angles have to be shifted as follows

shift(θv) =


90◦+(θv mod 90◦), θv < 0◦

θv mod 90◦, θv ≥ 90◦

θv, otherwise

(4.29)

Finally, all angles are located in the interval between 0◦ and 90◦, hence we

are ready to determine cluster representatives.

4.4.4.2 Rotation Angle Cluster Representative

By now we have obtained l rotation angles for each Gaussian distribution Gi.
Since each Gaussian Mixture Model contains m Gaussian distributions (m

being different for each GMM) and the database DB consists of n GMMs we

have a total of m×n l-dimensional rotation angle sets. The goal is to cluster

the Gaussian distributions according to their orientation in space, hence our

next step is to find a cluster representative θuv (1 ≤ u ≤ c, 1 ≤ v ≤ l) for

each angle cluster C. As input the clustering algorithm needs the recently

calculated m · n l-dimensional rotation angle sets. As clustering algorithm

we decided to use the parameter-free clustering algorithm X-Means [PM00]

which is a parameter-free extension of the partitioning clustering algorithm

K-Means.
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Typically X-Means uses Euclidean distances for clustering but as men-

tioned in the previous Subsection we want to insert angles, being cyclic val-

ues, into the algorithm. Note, that the angles contain values between 0◦

and 90◦, while 0◦ and 90◦ should be clustered together. In other words, the

distance between 0◦ and 90◦ equals zero. Therefore, we first have to adjust

the basic X-Means algorithm to the cyclic measures. Hence, instead of using

Euclidean distance measures in order to obtain the similarity between two

sets of l rotation angles θq and θp of two Gaussian distributions q and p

dE(θq, θp) =

√√√√ l∑
i=1

(θqi − θpi)2 (4.30)

we adjusted the Euclidean distance to cyclic values by

dC(θq, θp) =

√√√√ l∑
i=1

(min{|θqi − θpi|; 90− |θqi − θpi|})2. (4.31)

To clarify the impact of the cyclic distance measure we will give a short

example. Given are the three l = (22 − 2)/2 = 1-dimensional rotation an-

gles θq = (89◦), θp = (1◦), and θr = (47◦). Using the Euclidean distance

measure would lead to the distances dE(θq, θp) = 88◦, dE(θq, θr) = 42◦, and

dE(θp, θr) = 46◦ while the cyclic Euclidean distance measure leads to the

distances dC(θq, θp) = 2◦, dC(θq, θr) = 42◦, and dC(θp, θr) = 44◦. Since the

two angles 89◦ and 1◦ are almost orthogonal the desired distance for our

algorithm is 2◦ rather than 88◦.

Subsequently, we also have to change the update of the cluster represen-

tatives θuv (1 ≤ u ≤ c, 1 ≤ v ≤ l; with c being the number of clusters) to

cyclic measures. For each of the l rotation angle dimensions the following

procedure is done separately. All angles contained in a cluster are sorted in

ascending order for each of the l dimensions using the HeapSort sorting algo-

rithm [BFF96]. The sorting is done to obtain a ring-like data structure of the
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Figure 4.5: Update of a cluster center. a) All angles of each dimension are
sorted separately in an ascending order resulting in a ring-like data structure
where 90◦ is equal to 0◦. b) An example of a cluster update. The illustrated
cluster comprises the three angles 10◦, 16◦, and 69◦. After sorting the angles
in ascending order distances between all θi and θi+1 are calculated indicated
by the colored numbers 6, 53, and 31. The largest distance is then used as
cut-point resulting in a flip of -90◦ of all angles which are larger than 16◦.
Hence, 69◦ has to be converted to -21◦ leading to a cluster representative
θuv = 1.7◦.

angles contained in the cluster as depicted in Figure 4.5 a. Then in the list of

sorted angles all distances between angle θi and the successive angle θi+1 are

obtained. The largest obtained distance is then used as cut-point leading to

a flip of -90◦ of all angles that are larger than θi. In other words, we subtract

90◦ from all angles which are larger than θi. In the last step of obtaining

cluster representatives the mean of all cluster members is calculated.

An example of how to determine a cluster representative is depicted in

Figure 4.5 b. Thereby, the three angles 10◦, 16◦, and 69◦ are sorted in ascend-

ing order and distances (indicated by the colored values) are calculated. The

two red dashes mark the largest distance (53) which is used as cut-point.

Therefore, all angles larger than 16◦ have to be converted by subtracting

90◦ (69◦-90◦ = -21◦). The cluster representative can then be calculated by

building a mean of all cluster members leading to θuv = 1.7◦ = (10◦ + 16◦

+ -21◦)/3 instead of θuv = 31.7◦ = (10◦ + 16◦ + 69◦)/3 using the original
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Figure 4.6: Clustering example of the X-Means clustering adjusted to cyclic
distances. Six GMMs G1, . . . , G6 each comprising m = 2 Gaussian distribu-
tions G11, G12, . . . , G61, G62 are depicted. The 12 Gaussian distributions are
clustered according to their main orientation in space resulting in 4 clusters
containing 3 Gaussian distributions each. The different coloring as well as
the signs in front of the distribution name constitute the cluster belonging
of the Gaussian distributions (cluster 1: green, +; cluster 2: blue, ’; cluster
3: red,”; cluster 4: yellow, *).

angles.

To illustrate the effect of clustering Gaussian distributions according to

their orientation in space we depicted a clustering example of 12 Gaussian

distributions belonging to a total of six GMM (G1, . . . , G6) in Figure 4.6.

Each GMM consists of m = 2 Gaussian distributions indicated by the second

subscripted number, e.g. G11 and G12 both belong to the same GMM G1.

Note, that the amount of Gaussian distributions m of the GMMs can vary

between GMMs but for simplicity reasons we decided to use an equal amount

in the example. The clustering algorithm X-Means which has been adjusted

to cyclic values could identify a total of 4 clusters (indicated by the different

coloring of the distributions and also by the signs ”, ’, +, and *). The cluster

representatives for the four clusters are θ11 = 1.6◦ (green, +), θ21 = 31.6◦
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(blue, ’), θ31 = 40◦ (red, ”), and θ41 = 71.2◦ (yellow, *). We want to point out

that the clustering does not take into account the mean µi of the Gaussian

distributions, therefore, Gaussian distributions do not need to have a similar

mean in order to be clustered together, since the clustering considers solely

the rotation angles of the distributions.

4.4.4.3 Coordinate System Update

As a reminder, the main goal of the rotation angle clustering was to rotate

those Gaussian distributions which are highly correlated (45◦) in order to

determine a more meaningful approximation of the original Gaussian dis-

tribution when applying the nGMM approximation from Subsection 4.4.3.

Hence, after having completed the actual rotation angle clustering by the

cyclic X-Means, all Gaussian distributions belonging to one cluster have to

be rotated l times in order to be located in the new coordinate system.

The rotation is accomplished once more by inserting rotation angles in

Givens rotation matrices. The l rotation angles of the cluster representatives

θuv (1 ≤ u ≤ c, 1 ≤ v ≤ l) are inserted one at a time in the corresponding

Givens rotation matrices Buv = R(θuv). These matrices are then used to

transform the mean µi and the covariance matrix Σi of each Gaussian dis-

tribution before being inserted in the Mahalonobis distance. Thus each µi

as well as each Σi has to be rotated l times using the corresponding cluster

representative θuv by

rotateMean(µi, θuv) = Buv · µi = R(θuv) · µi (4.32)

and

rotateSigma(Σi, θuv) = Buv · Σi ·BT
uv = R(θuv) · Σi ·R(θuv)

T . (4.33)

The rotated mean and covariance matrix can then be inserted in the
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Mahalonobis distance as follows

MD(x;µi,Σi)
2 = (Buvx−Buvµi)

TBuvΣ
−1
i BT

uv(Buvx−Buvµi) (4.34)

before the approximation takes place leading to a smaller approximation

error in comparison to using the original covariance matrix and mean.

4.4.5 Object Identification

Until now we have introduced an approximation procedure for non-axis par-

allel Gaussian Mixture Models and a clustering algorithm to minimize the

approximation error. In the following we will define a similarity measure to

compare two nGMMs. Since this similarity measure is very time consuming

we will subsequently draw the connection to the approximation introduced

earlier to accelerate our similarity search while producing no false dismissals

due to the upper bound quality of the approximation.

4.4.5.1 Object Identification Using nGMMs

In order to identify the most similar objects in a database DB consisting of

n uncertain objects to a given query object G ′ we need to define a similarity

measure. The database is represented by DB = {G1, . . . ,Gn}. Each object

in the database as well as the query object itself are defined by a non-axis

parallel GMM using the parameters w, µ, and Σ

G = {(w1, µ1,Σ1), . . . , (wm, µm,Σm)}. (4.35)

Note, that the query object does not need to be part of the database.

Since we also take feature correlations into account we have to consider

the entire covariance matrix information for the similarity search. Now, to

obtain the similarity between an object G∗ ∈ DB and the query object
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G ′ we use the joint Probability Density Value PDV of two objects. This

Probability Density Value constitutes the joint probability with which a ran-

dom variable x drawn from the nGMM distribution of a database object G∗,
fG∗(x;w∗, µ∗,Σ∗), coincides with a random variable x′ which was drawn from

the distribution of the query object fG′(x
′;w′, µ′,Σ′). This joint Probability

Density Value can be defined as

PDV (G∗,G ′) =

∫
Rd

fG∗(x;w∗, µ∗,Σ∗) · fG′(x;w′, µ′,Σ′)dx. (4.36)

We expect the query object to always be statistically independent of the

database objects and hence we can rephrase the formula of the PDV by

PDV (G∗,G ′) =
m∗∑
i=1

(
m′∑
j=1

(
w∗iw

′
j

∫
Rd

N(x;µ∗i ,Σ
∗
i ) ·N(x;µ′j,Σ

′
j)dx

))
.

(4.37)

Based on the work of [BPS06] we will demonstrate in the following that

the assumption

PDV (G∗,G ′)=
m∗∑
i=1

(
m′∑
j=1

(
w∗iw

′
j

∫
Rd

N(x;µ∗i ,Σ
∗
i ) ·N(x;µ′j,Σ

′
j)dx

))
= (4.38)

=
m∗∑
i=1

(
m′∑
j=1

w∗iw
′
j ·N(µ∗i ,Σ

∗
i + Σ′j, µ

′
j)

)
can be applied since variances and covariances of independent stochastic

variables can be simply summed up.

Using substitution of the definition of the normal distribution

N(x;µ,Σ) =
1√

(2π)d|Σ|
· exp

(
−(x− µ)TΣ−1(x− µ)

2

)
(4.39)

the probability density of the productN(x;µ∗i ,Σ
∗
i )·N(x;µ′j,Σ

′
j) can be rewrit-
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ten as follows:

N(x;µ∗i ,Σ
∗
i ) ·N(x;µ′j,Σ

′
j) =

1√
(2π)d|Σ∗i + Σ′j|

· (4.40)

· exp

(
−(µ∗i − µ′j)T (Σ∗i + Σ′j)

−1(µ∗i − µ′j)
2

)
·N
(
x;

Σ′jµ
∗
i + Σ∗iµ

′
j

Σ∗i + Σ′j
,

Σ∗iΣ
′
j

Σ∗i + Σ′j

)
.

The first term corresponds to the normal distribution N(µ∗i ,Σ
∗
i + Σ′j, µ

′
j) and

is independent from the integration variable x. Hence, the first term can

safely be written in front of the integral, since it is a constant. The second

term is the PDF of a normal distribution which always integrates to 1 when

integrating from −∞ to +∞ independent of µ and Σ. Hence we obtain

PDV (G∗,G ′) =
m∗∑
i=1

(
m′∑
j=1

(
w∗iw

′
j

∫
Rd

N(x;µ∗i ,Σ
∗
i ) ·N(x;µ′j,Σ

′
j)dx

))
=

=
m∗∑
i=1

(
m′∑
j=1

(
w∗iw

′
jN(µ∗i ,Σ

∗
i + Σ′j, µ

′
j)

∫
Rd

N

(
x;

Σ′jµ
∗
i + Σ∗iµ

′
j

Σ∗i + Σ′j
,

Σ∗iΣ
′
j

Σ∗i + Σ′j

)
dx

))
=

=
m∗∑
i=1

(
m′∑
j=1

w∗iw
′
jN(µ∗i ,Σ

∗
i + Σ′j, µ

′
j)

)
. (4.41)

Until now we have obtained the PDV which indicates the relative prob-

ability with which a sample x drawn from the distribution fG∗(x;w∗, µ∗,Σ∗)

equals a sample x′ drawn from the distribution fG′(x;w′, µ′,Σ′). Hence, the

Probability Density Value denotes the probability with which G∗ and G ′ over-

lap being the relative matching probability of a database object G∗ ∈ DB

and a query object G ′.

To obtain absolute probabilities for each object in the database to coin-

cide with the query object we use the theorem of Bayes which leads to the
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following

P (G∗,G ′) =
PDV (G∗,G ′)∑n
i=1 PDV (G∗i ,G ′)

(4.42)

with n being the cardinality of the dataset n = |DB|.
The time complexity for object identification using absolute probabili-

ties is O(d3). This can be ascribed to the calculation of the inverse of the

covariance matrix (Σ−1), the eigenvalue decomposition, and the calculation

of the determinant (|Σ|). Since the calculation of the absolute probabilities

for every object in the database is very time consuming and, therefore in-

efficient for object identification it is amenable to minimize these expensive

computations.

4.4.5.2 Acceleration By Rotation And Approximation

To speed up the determination of absolute probabilities we use the conser-

vative nGMM approximation step in combination with the rotation angle

clustering introduced in Sections 4.4.3 and 4.4.4. Finding similar objects us-

ing the conservative approximation involves only a time complexity of O(d)

in contrast to the complex computation of the absolute probabilities which

involves a time complexity of O(d3).

We first have to rotate and approximate each original Gaussian distri-

bution G∗i in the original database DB to build a rotated and approxi-

mated database DBra. Therefore, all Gaussian distributions G∗i of all GMMs

G∗ ∈ DB have to be rotated according to the rotation angle cluster repre-

sentative of the cluster they belong to. These rotated Gaussians can then

be approximated following the procedure described in Subsection 4.4.3. By

now we have a database of rotated and approximated Gaussian distributions

defined by

G∗i,ra =
ψ∗i√

(2π)d|χ∗i |
exp

(
−(Buvx−Buvµ

∗
i )
TBuvχ

∗
i
−1BT

uv(Buvx−Buvµ
∗
i )

2

)
.

(4.43)
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4.4.5.3 k-Most Likely Identification Query

Putting everything together, we are now ready to search for a query object.

The main goal of our approach is to identify those k objects in the database

which are most similar to the query object. For this purpose we used a k-

Most Likely Identification Query [BPS06]. Similar to a k-Nearest Neighbor

(k-NN) search a k-MLIQ searches for the objects being most similar to a

given query object but in contrast to a k-NN search probabilities are used

for comparing two objects. Hence, not the k objects having the smallest

distance to the query object but rather those k objects having the largest

probability to be drawn from the same distribution are searched for.

Thereby, our k-MLIQ is a four-step approach (cf. Alg. 4.3):

1. Before being able to search a query object G ′ in the database of rotated

and approximated GMMs G∗ra ∈ DBra, the query object also has to be

rotated and approximated.

2. Approximated Probability Density Values PDVa between the rotated

and approximated query object and all rotated and approximated ob-

jects in the database DBra are calculated using

PDVa(G∗ra,G ′ra)=
m∗∑
i=1

(
m′∑
i=1

ψ∗ψ′N
(
Buvµ

∗, Buvχ
∗BT

uv +Buvχ
′BT

uv, Buvµ
′)) .

(4.44)

3. Probability Density Values between those objects in the database hav-

ing the highest approximated PDVa and the query object are calculated

until the abortion criterium is met.

4. PDV s are converted to absolute probabilities.

This four-step procedure will now be explained in more detail.

Figure 4.7 illustrates the complete four-step procedure of Alg. 4.3 includ-

ing the determination of the upper bound PDVub for two different values
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Figure 4.7: The abortion criterion and the determination of the upper bound
PDVub are illustrated using a k-MLIQ search with n = 100 for k = 1 and
k = 2. Shown are only the first 20 objects until the abortion criterion is
met. Illustrated are steps 2 to 4 from the four-step procedure. Step 2:
Approximated PDVas for all 100 objects are computed and sorted (green
line). Step 3: Then starting with the object on the very left (object 1) having
the largest PDVa (green line), PDV values between the original query object
and the original data objects are computed from left to right until 1 for k
= 1 or 2 objects for k = 2 are identified having a PDV larger than PDVub
(light red line for k = 1, red line for k = 2). The upper bound is updated,
indicated by a step of the threshold line, if a subsequent object has a PDV
which is than PDVub of the smallest object in the set of k-MLIQs. The
abortion criterion is met (light grey line for k = 1, grey line for k = 2) if one
object has a PDVa smaller than the upper bound PDVub at present. Step 4:
Absolute probabilities of all objects in the set of k-MLIQ are then calculated
and sorted.
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of k. Before we can start the search of a query object G ′ in the database

G∗ra ∈ DBra we have to preprocess the query object (Step 1, not shown in

Figure 4.7). In contrast to the database objects the query object has to be

rotated into all coordinate systems in order to be able to calculate the simi-

larity between the database objects G∗ra and the query G ′ra. Hence, we have a

total of c (the number of rotation angle clusters) query object representations.

Since we have a database of n objects after completion of Step 2 we have n

approximated PDVas. In Step 3 these values are sorted in descending order

since we are interested in those objects having the largest PDVa (green line).

As mentioned earlier, approximated Gaussian distributions are an overesti-

mation of the original Gaussians, subsequently approximated PDVas are also

an overestimation of the PDV between the original query object G ′ and the

original database objects G∗. The total number of PDV calculations neces-

sary until convergence of the algorithm are not known in advance they are

rather determined on the run. Starting with the object G∗ in the database

having the largest PDVa (object number 1 on the left), subsequently, Prob-

ability Density Values PDV s between G ′ and G∗ are calculated. If k PDV s

have been obtained having a larger PDV value (PDVub; light red line, k =

1; red line, k = 2) than the PDVa regarded at present the procedure stops

(light gray and gray line). In other words, if the smallest PDV (PDVub)

in the set of k-MLIQs is larger then the PDVa examined momentarily, the

abortion criterion is met and the procedure stops.

In the last step, the PDV of the objects included in the set of k-MLIQs

have to be converted to absolute probabilities. For this purpose the PDV of

each object has to be opposed to the sum of all PDV s.

P (G∗,G ′) =
PDV (G∗,G ′)∑n
i=1 PDV (G∗i ,G ′)

. (4.45)

As explained in Step 3 our aim is to compute as little PDVs as possible,

hence a complete summation of the denominator is not possible. But since

the remaining uncounted PDV s are smaller then their corresponding PDVas
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and since the PDVas are sorted in descending order and are all smaller then

the ones examined so far, the summation of the calculated PDV s is sufficient

for calculating absolute probabilities. In other words, since those PDV s

corresponding to PDVas smaller than PDVup belong to objects which are

very dissimilar to the query object their PDV s are close to zero and are

therefore irrelevant for the computation of the absolute probabilities.

Summing all up, after the preprocessing of the database (rotation and

approximation) the k-MLIQ can start by first rotating the query object c

times to be represented in all rotation angle clusters followed by the approxi-

mation of all query object representations. Then the four-step procedure for

determining the k-MLIQs in the database is executed and those k objects in

the database having the highest absolute probabilities of being drawn from

the same distribution as the query object are returned.

4.5 Experiments

For evaluating the performance of our k-MLIQ algorithm we conducted sev-

eral experiments including synthetic as well as real world data. The main

goal was to demonstrate that our approach is superior to existing similar-

ity and Nearest Neighbor searches not considering correlations in the data

while reducing computation time due to the conservative approximation of

the nGMMs. Hence, by adding the approximation filtering architecture to

correlated nGMMs the overall runtime can be reduced compared to comput-

ing the absolute probability for every nGMM, while guaranteeing no false

dismissals due to the conservativity of our filter.

As a runtime reference point for our approximation k-MLIQ search we

used the k-MLIQ approach computing Probability Density Values PDV s be-

tween the query object and every single data object in the database, named

complete k-MLIQ search, in the following. Furthermore, we compared our

approximation k-MLIQ search to two additional methods not considering cor-
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relations between different features of the Gaussian distributions. As quality

comparison method we ran a k-MLIQ search considering axis-parallel Gaus-

sian distributions of the nGMMs, meaning the weights, the location vector,

and the standard deviations but not the complete covariance matrix was

considered for searching the most similar objects to a query object. This

method will be called axis-parallel k-MLIQ search. As additional compar-

ison method, a k-Nearest Neighbor approach, using Euclidean distances of

the weighted mean values of the nGMMs as a distance measure was im-

plemented, which will be called k-NN search in the following. For runtime

comparison we produced several synthetic data sets, varying four properties

of the data, namely the dimension d, the number of objects n in the database,

the number of Most Likely Identification Queries or alternatively the number

of Nearest Neighbors k, as well as the number of Gaussian distributions per

GMM m. For performance comparison we varied the number of MLIQs or

NNs k and reported the Area Under the Curve (AUC) for all approaches. As

real world examples we used two datasets, one 6 dimensional biometric data

set from the BioID Face DB [JKF01] and one 4 dimensional weather data set

from Freiburg, Germany. All algorithms are implemented in Java and were

run on a 2.4 GHz Intel Core 2 Duo Macintosh computer with 4 GB RAM.

4.5.1 Synthetic Data

Uncertain data for the query and the database objects was generated ran-

domly by choosing mean values to be located between 0 and 100 for each

Gaussian distribution of each GMM object. The weights were assigned sum-

ming up to 1 within each GMM object. For building the non-axis parallel

covariance matrices, we started to choose the standard deviation randomly

within a range of 0 to 10. These covariance matrices were rotated in each

dimension d using Givens rotations matrices (cf. Eq. 4.28), where the an-

gle of the rotation depended on the cluster the Gaussian distribution was

randomly assigned to. Note, that the rotation of the Gaussian distributions
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was independent of the GMM it belonged to. The number of angle clusters

l was also adjusted depending on the experimental design. Additionally, a

randomly chosen variance between 1 and -1 was added to each rotation an-

gle before transforming the covariance matrices as described in Subsection

4.4.4.3.

We generated four data scenarios demonstrating the advantages of our

approximation k-MLIQ search compared to the complete k-MLIQ search

indicated by a tremendous runtime reduction of the approximation k-MLIQ

in comparison to the complete k-MLIQ search. Varying one of the four

data properties d, n, k, or m all other properties were kept constant. The

default values were d = 2, n = 1, 000, k = 1, and m = 2. In order to

obtain stable results we conducted 10 rounds of k-MLIQ/k-NN queries for

each condition with equal property settings. We benchmarked the number of

PDV computations in percent as well as the overall runtime for each round

and averaged over the 10 rounds.

4.5.1.1 Data Property Benchmarks

We started by varying the dimension (d = 2, ..., 20) while keeping n, k, and

m constant (Fig. 4.8 a, b). All four methods show increased runtime with

increasing dimensionality, while the runtime of the complete k-MLIQ search

is 3 to 15 times larger compared to the approximation k-MLIQ search. On

average the approximation k-MLIQ search, the axis-parallel k-MLIQ search,

and the k-NN search have a subordinate runtime of 7, 40, and 75 fold, re-

spectively, compared to the complete k-MLIQ search. For the approximation

k-MLIQ search this is in accordance with the percentage of avoided PDV

calculations shown in Fig. 4.8 (b). On average 96 % of the PDV calculations

could be saved.

Additional experiments were conducted diversifying the number of ob-

jects in the data sets (n = 1 000, ..., 500 000) (Fig. 4.8 c, d). A 13 fold
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Figure 4.8: Runtime comparison of the approximation k-MLIQ search, the
complete k-MLIQ search, an axis-parallel k-MLIQ search, and a k-NN search
as well as the percentage of Probability Density Value calculations PDV
that could be saved using the approximation k-MLIQ search compared to
the complete k-MLIQ search. a), b) Varying the dimension d and c), d)
varying the number of objects n.

speed-up in runtime was achieved using the approximation k-MLIQ search,

due to the saved comparisons.

Varying the number of Most Likely Identification Queries or Nearest

Neighbors k = 1, ..., 1 000, (Fig. 4.9 e) led to an increase in runtime us-

ing the complete k-MLIQ search, the axis-parallel k-MLIQ search, and the

k-NN search until approximately two-thirds of the objects were processed,

followed by a decrease until k = n = 1 000. This can be easily explained by
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Figure 4.9: Runtime comparison of the approximation k-MLIQ search, the
complete k-MLIQ search, an axis-parallel k-MLIQ search, and a k-NN search
as well as the percentage of Probability Density Value calculations PDV
that could be saved using the approximation k-MLIQ search compared to
the complete k-MLIQ search. e), f) Varying the number of MLIQs/NNs k
and g), h) varying the number of Gaussians m per nGMM.

the number of sorting operations that had to be executed, each time a new

object was detected having a larger probability than the smallest probability

in the list of k-MLIQs/k-NNs so far. Once the set of MLIQs/NNs comes

closer to the size of the database the sorting has to be executed only rarely,

resulting in a runtime decrease. The curve progression of the approximation

k-MLIQ search is different, it has an almost constantly rising curve with a

smaller slope than all other methods until k = n = 1 000 where all PDV
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calculations have to be executed and, therefore, ending up with the same

runtime as the complete k-MLIQ search. With increasing k more PDV cal-

culations are needed as can be seen in Fig. 4.9 (f), therefore, the runtime also

increases. On average the approximation k-MLIQ search, the axis-parallel

k-MLIQ search, and the k-NN search process the objects with a speed-up

factor of 4 compared to the complete k-MLIQ search.

Finally, m the number of Gaussian distributions in a GMM was varied

from 2 to 20. The curves of the complete k-MLIQ search compared to the

approximation k-MLIQ search, the axis-parallel k-MLIQ search, and the k-

NN search in Fig. 4.9 (g, h) are even further apart than in Fig. 4.8 (a, c)

and can be explained the same way, having even a larger runtime increase of

almost 40 fold using the approximation k-MLIQ search, and the axis-parallel

k-MLIQ search, and 70 fold using the k-NN search compared to the complete

k-MLIQ search.

4.5.1.2 Performance

Furthermore, we ran a performance comparison between our approximation

k-MLIQ search, the axis-parallel k-MLIQ search, and the k-NN search. For

method comparison we used Receiver Operator Characteristic (ROC) curves

on k-MLIQ and k-NN queries displaying the False Positive (FP) rate on

the x-axis and the True Positive (TP) rate on the y-axis. In the context of

Most Likely Identification Queries as well as Nearest Neighbor queries, FP

rate is defined as the percentage of objects which are predicted positive but

actually are negative (FP) among all objects in the database that are actually

negative. The TP rate is the percentage of objects that are predicted positive

and actually are positive (TP) among all objects in the database that are

actually positive.

For data generation we used the same generator as described at the be-

ginning of this section with the default values d = 2, n = 1 000, and m = 2,

varying k between 1 and 1 000 and altogether 10 rounds of k-MLIQ and
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Figure 4.10: Receiver Operating Characteristic curves of a) the approxima-
tion k-MLIQ search (magenta), b) the axis-parallel k-MLIQ search (green),
and c) the k-NN search (light-blue) using different k values for the MLIQ and
NN search. Displayed in the center of the ROC curves are the Area Under
the Curve values for each ROC plot.

k-NN queries were averaged in order to obtain stable ROC curves. The AUC

of our approximation k-MLIQ search with 87.22% (Fig. 4.10 a) was larger

than the AUC of the axis-parallel k-MLIQ search with 84.88 % and the k-

NN search with only 75.42 % (Fig. 4.10 b, c) suggesting that the quality of

the approximation k-MLIQ search’s results is better than the quality of the

axis-parallel k-MLIQ search as well as the quality of the k-NN search.
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4.5.2 Real World Data

To demonstrate the advantages of our approximation k-MLIQ search in com-

parison to existing similarity search methods not considering correlation be-

tween different features we used two different real world data sets. The first

data set was a BioID Face DB [JKF01] which was used for a face recognition

task and the second one was meteorologic data [Rad10] which was used for

weather forecasting.

4.5.2.1 Biometric Identification

Face recognition is a major area of research within biometric signal process-

ing. In the process of face recognition the localization and identification

of human faces in digital images is a fundamental area. Given a series of

images for one person with different camera angles, each person can be rep-

resented by a variety of correlated distance measures which can be modeled

as non-axis parallel GMMs.

We used the BioID Face DB [JKF01] which contains a total of 1521 gray

level images to demonstrate the performance of our approximation k-MLIQ

search. Thereby, we extracted 6 different distance features of each image in

the BioID Face DB. For the 6 dimensional nGMM database we extracted all

distances between the left and the right pupil, the right pupil and the nose

tip, the left pupil and the nose tip, the right mouth corner and the nose tip,

the left mouth corner and the nose tip, and the right and the left mouth

corner of each image (cf. Fig. 4.11). To generate nGMMs of the image data

we employed the Expectation Maximization algorithm [MP00]. The EM al-

gorithm is a two-step algorithm starting in the first step with a randomly

chosen model, and then alternately assigning the data to the individual parts

of the model (Expectation step). In the second step the parameters of the

model are improved according to the current model assignment (Maximiza-

tion step). The EM algorithm is a partitioning algorithm with one parameter,
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Figure 4.11: Illustration of the features extracted from the BioID Face DB
[JKF01]. The 6 different features that we extracted were a) the distances
between the left and the right pupil, b) the distances between the right
pupil and the nose tip, c) the distances between the left pupil and the nose
tip, d) the distances between the right mouth corner and the nose tip, e)
the distances between the left mouth corner and the nose tip, and f) the
distances between the right and the left mouth corner.

the number of clusters k. To automatically estimate k (in our case number

of Gaussian components m) we performed a 10-fold cross validation as im-

plemented in the WEKA package [HFH+09]. Now to generate nGMMs, we

used half of the images of each person as input for the EM algorithm and the

other half of the images of each person were used to generate a set of query

nGMMs.

We performed k-MLIQ/NN searches with our approximation k-MLIQ

search, the axis-parallel k-MLIQ search, and the k-NN search varying k from

1 to 5. The number of correctly identified queries is depicted in Fig. 4.12. For

all k-MLIQ searches our approximation k-MLIQ search was able to identify

more queries correctly than both other methods. The approximation k-MLIQ

search was able to identify 100.0% of all queries using a k-MLIQ with k = 4,

while the axis-parallel k-MLIQ search could only correctly identify 81.0% of

the input queries, and the k-NN search could only correctly identify 61.2%
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Figure 4.12: Correctly identified queries in % applying the approximation
k-MLIQ search, the axis-parallel k-MLIQ search, and the k-NN search on
the BioID Face DB [JKF01]. The approximation k-MLIQ search (magenta,
dashes) obtained 100.0% accuracy, meaning all objects were found, using an
k-MLIQ search with k = 4, while the axis-parallel k-MLIQ search (green,
solid) as well as the k-NN search (light blue, dash-dots) could only obtain
an accuracy of 81.0% and 61.2% with k = 4, respectively.

of the queries for k = 4. This clearly demonstrates that our approximation

k-MLIQ search outperforms the axis-parallel k-MLIQ search and the k-NN

search if data features are strongly correlated.

4.5.2.2 Meteorologic Data

Lately the number of natural catastrophes increased all over the world. The

natural catastrophes which are most dangerous having the highest number

of death counts are hurricanes and tornados but also avalanches, forest fires,

flood waves, or floods can cause epidemic plagues, lead to crop loss, or

threaten human life. Therefore, weather forecast is an important system

for early detection of hazards.
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For our weather forecast system we obtained weather data from the web-

site [Rad10] which contains freely available weather data from the city of

Freiburg in Germany ranging from January 1st, 2005 until December 31st,

2009. Therefore, the database consisted of 1826 days. The data of one

day corresponds to one object in the database, each being represented by

a 4-dimensional nGMM, containing the temperature, humidity, barometric

pressure, and the wind speed of one day in Freiburg. We obtained the nG-

MMs of the weather data using again the EM algorithm as described in the

previous Subsection. EM is a two-step algorithm consisting of the Expecta-

tion and the Maximization step. The output of the EM algorithm was one

nGMM for each day.

The goal was to find the MLIQ/NN for one specific day given the weather

data of the past 5 years in order to predict the weather of the following day

as precise as possible. We randomly selected one day from the year 2010

(March 2nd, 2010) for which we performed a weather forecast. Then, we

performed a 1-MLIQ/NN search for the previous day (March 1st, 2010) using

the approximation k-MLIQ search, the axis-parallel k-MLIQ search, and the

k-NN search. Based on the results we built our weather prediction always

using the following day of each hit as source point for predicting the weather

of March 2nd, 2010.

The probability P and the distances between March 1st, 2010 and the

Method Hit Probability/Distance

Approximation k-MLIQ search March 6th, 2009 0.372
Axis-parallel k-MLIQ search Feb. 6th, 2009 0.144
k-NN search March 11th, 2008 28.386

Table 4.1: The k-MLIQ hit and probability of March 1st, 2010 with k = 1
for our approximation k-MLIQ search and the axis-parallel k-MLIQ search
and the k-NN hit and distance of March 1st, 2010 with k = 1 for the k-NN
search.
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Mean (SD) Min Max

March 2nd, 2010

Temp. (◦C) 2.7 (4.1) -2.4 11.0
Humidity (%) 71.7 (14.1) 42.0 86.0
Barometric p. (hPa) 1019.2 (2.5) 1014.0 1023.0
Wind speed (km/h) 2.7 (3.7) 0.0 16.0

Temp. (◦C) 5.2 (2.9) 1.9 11.4
Approximation Humidity (%) 69.7 (13.5) 43.0 87.0
k-MLIQ search Barometric p. (hPa) 1009.4 (3.1) 1003.0 1013.0

Wind speed (km/h) 11.2 (6.2) 0.0 30.3

Temp. (◦C) 1.8 (1.1) -0.3 3.2
Axis-parallel Humidity (%) 90.3 (1.5) 84.0 92.0
k-MLIQ search Barometric p. (hPa) 988.6 (1.8) 987.0 994.0

Wind speed (km/h) 1.3 (2.6) 0.0 12.5

k-NN search

Temp. (◦C) 8.4 (1.7) 5.6 12.0
Humidity (%) 69.0 (11.2) 44.0 91.0
Barometric p. (hPa) 997.1 (5.6) 991.0 1008.0
Wind speed (km/h) 37.3 (11.3) 10.5 72.1

Table 4.2: Real mean, standard deviation, minimum, and maximum values
of the temperature, humidity, barometric pressure, and wind speed of March
2nd, 2010 as well as the predicted values using the following day of the 1-
MLIQ/NN search of the approximation k-MLIQ, the axis-parallel k-MLIQ,
and the k-NN search as source point.

MLIQ/NN hit of all three methods are shown in Table 4.1. For the weather

prediction of March 2nd, 2010 always the day after the identified MLIQ/NN

was chosen. Figure 4.13 (gray bars) shows the frequency of each feature

value of March 2nd, 2010, meaning how often each temperature, humidity,

barometric pressure, and wind speed value occurred on March 2nd, 2010.

To visually compare the weather prediction quality of the approximation k-

MLIQ search (magenta), the axis-parallel k-MLIQ search (green), and the

k-NN search (light-blue) we plotted their predicted feature value distributions

on top of the real distribution. Furthermore, Table 4.2 contains the mean
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Figure 4.13: Weather prediction for March 2nd, 2010. The gray bars show the
real frequency distributions of the temperature, humidity, barometric pres-
sure, and the wind speed of March 2nd, 2010. The colored distributions are
the predicted weather distributions of March 2nd, 2010 by the approximation
k-MLIQ search (magenta), the axis-parallel k-MLIQ search (green), and the
k-NN search (light-blue).

values, standard deviations, minimum, and maximum values of March 2nd,

2010 and the predictions of the three methods.

Based on the data distributions (Figure 4.13) and the mean values (Ta-

ble 4.2) the approximation k-MLIQ method obtained the best overall results,

meaning the mean values and the data distributions were closer to the real

values than the predicted values of the other two methods. The approxima-

tion k-MLIQ method had a mean temperature difference of 5.7◦ C, a mean

humidity difference of 2 %, a mean barometric pressure difference of 10 hPa,
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and a mean wind speed difference of 8.5 km/h. In contrast to that the axis-

parallel k-MLIQ search and the k-NN search obtained the following values:

mean temperature difference 0.9◦ C, 5.7◦ C; mean humidity difference 18.6

%, 2.7 %; mean barometric pressure difference 30.6 hPa, 22.1 hPa, and mean

wind speed difference 1.4 km/h, 34.6 km/h. Even though the axis-parallel

k-MLIQ search produced slightly better results considering the temperature

and the wind speed than the approximation k-MLIQ search, our method

was able to score well in all 4 dimensions. Hence, the approximation k-

MLIQ search produced the best overall results and would, therefore, be the

method of choice for further weather predictions.

4.6 Conclusion

We proposed a new efficient and accurate similarity search for uncertain data.

Existing approaches do not consider correlations between different features

leading to a loss of information and, therefore, introducing inaccuracy in the

search. To overcome this problem we extended the similarity measure to han-

dle very precise Probability Density Functions consisting of non-axis parallel

Gaussian Mixture Models. To our knowledge this has not been done so far.

Since the calculation of the Mahalonobis distance is very time consuming we

introduced a combination of GMM approximation and angle clustering to

speed up the procedure while keeping 100 % filter selectivity. Thereby, the

angle clustering step minimizes the approximation error by clustering those

Gaussian distributions with a similar orientation in space. The newly de-

termined coordinate systems are then used to rotate Gaussians according to

their major orientation in space. These rotated, more axis-parallel distribu-

tions are subsequently approximated using our filter-refinement architecture.

The conservative approximation in combination with the accurate Ma-

halonobis distance considering correlations in the similarity search let to

more accurate results of our approach compared with methods which ig-
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nored correlations thoroughly. This could be demonstrated in our very de-

tailed experimental section including various synthetic and real world data

sets. Furthermore, due to our filter-refinement architecture we demonstrated

the 100 % filter selectivity resulting in no false dismissals while on average a

runtime reduction of 10 fold in comparison with the complete calculation of

all exact Mahalonobis distances could be achieved.





Chapter 5

Similarity Search Based Glioma

Grading

5.1 Introduction

The proceeding development in medical imaging techniques has accounted to

a large amount of high-resolution three-dimensional image data. Especially

the high volume of non-invasive measures acquired during clinical routine like

structural and functional Magnetic Resonance Imaging (MRI) have revealed

new possibilities to study the functioning of the human brain. For the field

of brain imaging, data mining techniques have proven to be very useful since

the large amount of image data cannot be processed directly due to efficiency

reasons. Especially for brain tumors, the use of different structural as well as

functional MRI techniques has become a considerable research area, in order

to improve non-invasive diagnosis, grading, and post-therapeutic follow-up.

The correct assignment of tumor malignancy is important due to the

different prognosis and therapy planning of brain tumors of different his-

tological grades. To date, histological evidence provided by biopsy, being

the gold standard for glioma grading, is necessary to amplify the validity of

135
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the diagnosis. However, biopsy requires non-invasive determination of tumor

hot spots, since a single tumor mass can be histologically heterogeneous; ex-

tracting parts of the tumor that are not representative (sampling error) would

hence lead to an incorrect diagnosis and an inadequate treatment [KTE+11].

Furthermore, biopsy implies risks associated with anesthesia and surgery.

Standard MRI protocols for diagnosis of glioma patients mainly rely on

the interpretation of contrast enhanced T1-weighted images for tumor grad-

ing. Thereby, contrast enhancement is used as an indicator for tumor ma-

lignancy. Since some low-grade gliomas show contrast enhancement while a

considerable subgroup of high-grade gliomas does not [LYW+03], more so-

phisticated techniques for glioma grading are needed. Many studies have

extracted single features of the structural tumor images like location, vol-

ume, size, shape, etc. in order to find relevant features for tumor grading

[BJS10, KKK+10, LKK+01, MFS+00]. Some techniques have been proposed

trying to classify tumors by considering spatial information of three dimen-

sional tumor Regions Of Interest (ROI) [MDH99, PML+05]. Others have

used non-invasive functional dynamic MRI techniques like perfusion MR,

Diffusion Tensor Imaging (DTI), or MR spectroscopy in order to find mean-

ingful criteria to improve non-invasive glioma grading [KIN+01, MAA+03,

MJSA+04, PMB06, ZWC+09].

Several research groups have demonstrated that perfusion MRI can be

used to distinguish between different tumor grades [BJS10, BSW06, LYB+04,

LKK+01, PMB06] mainly differentiating between grade II and a combined

group of grade III and IV brain tumors. It has been shown that Cerebral

Blood Volume reliably correlates with tumor grade and histological findings

of increased tumor vascularity [BJS10, BSW06, PP00, SKK+98, WJH+98].

Nevertheless, until now the non-invasive grading of low-grade versus anaplas-

tic glioma has remained very difficult.

The goal of this work was the development of a semi-automatic classifier-

based method for differentiating between low-grade (grade I/II) and anaplas-
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tic (grade III) gliomas using perfusion-weighted MR imaging in combination

with post contrast T1-weighted imaging (T1CE). For data preprocessing we

included the outlier detection algorithm described in Chapter 3 and for the

similarity search we utilized the algorithm introduced in Chapter 4 consid-

ering amongst others also feature correlations for the grading of the tumors.

The database used for the similarity search consisted of four-dimensional non-

axis parallel Gaussian Mixture Models (GMM), whereat the four dimensions

were comprised of three perfusion parameters Cerebral Blood Volume, Cere-

bral Blood Flow, and Mean Transit Time, as well as the T1CE image. In

our approach we considered the entire intensity distribution information em-

bedded in the tumor ROIs in order to render our methodological approach

more accurate.

5.2 Grading Of Brain Tumors

Data analysis was performed offline using a combination of existing prepro-

cessing MRI software like Statistical Parametric Mapping (SPM8) as well as

self-made software which was combined to a semi-automated workflow (cf.

Figure 5.1).

5.2.1 Glioma Grading Based On Similarity Search

In the following, we will give a short overview of the data preprocessing and

the classifier-based algorithm, which will be described in more detail in the

subsequent subsections. First, a database consisting of perfusion maps and

T1CE images of patients with histologically proven grad I through grade III

gliomas was build. The general 7-step workflow of the database generation

is depicted in Figure 5.1. (1) Perfusion images were corrected for patient’s

head movement [FWH+96], (2) followed by the generation of perfusion maps

(CBF, CBV, MTT) while accounting for contrast agent leakage [BSW06].
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Figure 5.1: Seven-step workflow of the database generation. At first perfu-
sion images have to be corrected for patient motion using the Matlab based
SPM8 Toolbox. Based on the functional images perfusion maps (Cerebral
Blood Flow, Cerebral Blood Volume, and Mean Transit Time) are generated
using self-made software. Perfusion maps and original contrast-enhanced
T1-weighted images (T1CE) are standardized in order to be able to compare
intensity value between different patients since MRI produces only relative
intensity values. To be able to compare different voxels of the different image
modalities the perfusion maps (CBF, CBV, and MTT) as well as the T1CE
image are co-registered to the FLAIR image using the SPM8 toolbox. After
tumor ROIs have been drawn on the FLAIR images the voxel intensity of
those tumor ROIs can be extracted. To reduce the noise in the data the tu-
mor intensities are filtered using the Outlier Detection algorithm introduced
in Chapter 3. In the last step the 4D GMM are created using an Expectation
Maximization algorithm. The generated non-axis parallel GMMs build the
database for the k-Most Likely Identification Query search.



5.2 Grading Of Brain Tumors 139

(3) Then perfusion maps and T1CE images were standardized in order to

obtain comparable intensity scales [NU99]. (4) These standardized images

(CBF, CBV, MTT, T1CE) were registered to the FLAIR images using co-

registration [CMD+95]. Afterwards, all images were in the same space having

comparable intensity values. (5) After drawing tumor ROIs on the FLAIR

images, the voxel intensity values contained in the tumor ROI of each image

were extracted and (6) subsequently filtered from noise/outliers using our

previously introduced outlier detection algorithm (cf. Chapter 3). (7) The

four-dimensional intensity values of each patient were converted to a non-axis

parallel GMM, using an Expectation-Maximization algorithm [MP00]. This

workflow was executed for each patient in the database. It required no user

intervention except for the Arterial Input Function (AIF) selection and the

tracing of the tumor ROI. The resulting GMMs of all patients constituted

the database.

This database built the basis for the similarity search leading to the tu-

mor grading. In order to grade a glioma patient with unknown diagnosis the

image data of the new, non biopsy confirmed patient had to be transformed

into a non-axis parallel GMM by applying the 7-step architecture mentioned

earlier. Next, a k-Most Likely Identification Query [BPS06] using the non-

axis parallel GMM of the new patient as input was executed (cf. Chapter

4). The algorithm returned the k most similar patients and their joint prob-

abilities to the unknown patient similar to the k-Nearest Neighbor approach

using joint probabilities instead of distances as similarity measure; subse-

quently, the TScores were calculated giving evidence of the new patients

tumor grade. For more details concerning individual parts of the algorithm

see the following Subsections.

5.2.1.1 Motion Correction (Step 1)

Since we do not only acquire one single three dimensional brain volume in

functional imaging but a series of 3D brain volumes are acquired over time
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we have to start by correcting for possible head movement of the patient.

The low resolution of the images which has been optimized to highlight con-

trast agent passage leads to limited anatomical contrast. In order to extract

perfusion information from these images it is assumed that the voxel position

in the brain is stable meaning the location of the voxels does not change over

time. Since there is always some degree of head movement during an acqui-

sition series we have to estimate and correct for head movement. Hence, we

used the motion correction routine included in SPM8 implemented in Mat-

lab 7.7 (The MathWorks Inc., Sherborn, MA, USA) [FWH+96] for motion

correction. In general one reference image is chosen from within the series of

3D images and all remaining images are registered to this stationary refer-

ence image. For motion correction we used the first 3D brain volume of each

scanning series to realign all other volumes of the perfusion series to.

5.2.1.2 Perfusion Map Generation (Step 2)

After perfusion data was correctly realigned the parameter maps for CBV,

CBF, and MTT had to be obtained based on the work of Ostergaard et

al. [OWC+96, OSK+96] using self-made software implemented in Matlab

7.7.

For obtaining perfusion parameters we used dynamic susceptibility con-

trast imaging which can be used to measure intracranial hemodynamics.

Using this perfusion weighted MR sequence, perfusion parameters like CBV,

CBF, and MTT can be determined. After an intravenous bolus injection of

a paramagnetic, non-diffusible contrast agent (gadobenate dimeglumine) the

signal intensity change has to be traced over a certain time period using fast

MR sequences [Har08]. Our goal was to determine the perfusion parameter

values of each voxel in the brain based on the time course illustrating the

tracer passage over time. Since the single tracer particles follow a certain

path starting from a feeding artery we were able to obtain the transit time,

the flow, and the vascular structure of each voxel given the tracer volume of
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Figure 5.2: Typical dynamic susceptibility contrast imaging voxel intensity
time curve. The time from the start of the imaging (t0) until the arrival
time (AT) of the contrast agent (pre-contrast frame) is used to relate the
signal intensity S(t) to the contrast agent C(t). The contrast agent passage
is characterized by a signal drop in the T2*-weighted image due to the para-
magnetic properties of the contrast agent followed by a signal increase. ET
indicates the last time point before recirculation of the contrast agent takes
place indicated by a repeated signal drop. Hence, the signal does not return
to the pre-contrast level due to recirculation.

an artery at a starting time point (pre-contrast frame).

Figure 5.2 shows a typical signal intensity curve of a contract agent pas-

sage of one voxel from a T2*-weighted MR sequence. Given an intact Blood-

Brain-Barrier (BBB) the signal reduction is caused by the contrast agent

concentration gradient between the intra- and extra-vascular space. Conse-

quently, when the contrast agent passes a certain brain tissue a decrease in

the T2*-weighted images of the perfusion sequences can be observed.

In order to obtain the perfusion parameters we need to determine the

intravascular contrast agent time course C(t) for each voxel based on the
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original signal time course. Thereby, the relation between the MR signal

S(t) and the intravascular contrast agent concentration C(t) at time point t

is given by

C(t) = − 1

TE
log

(
S(t)

S(0)

)
(5.1)

where TE corresponds to the echo time and S(0) corresponds to the mean

baseline signal

S(0) =

∑AT
i=0 S(ti)

tAT − t0
(5.2)

with t0 being the start time point of the baseline signal before the presence

of the contrast agent but after the magnetization has reached its steady-

state. AT being the contrast agent arrival time point [MFH+06]. Hence, the

denominator of Eq. 5.1 corresponds to the mean of the pre-contrast frame

in Figure 5.2. The resulting contrast agent concentration time signal of the

signal intensity time curve of Figure 5.2 is depicted in Figure 5.3.

Since the perfusion parameters are dependent on the contrast agent curve

we first had to extract the probability density function describing the passage

of the contrast agent before being able to calculate perfusion parameters. For

this purpose we used the adaptive total least square gamma-variate fitting

method [LTL+03] where the start and stop time points of the contrast agent

concentration curve were adaptively determined.

Given the contrast agent passage curve, perfusion parameters can now be

determined. Thereby, CBV can be calculated using the following equation

[OWC+96, Ost05]

CBV =
1

ρ

(1− hLV )

(1− hSV )

∫
C(t)dt∫

CAIF (t)dt
(5.3)

with hLV = 0.45 being the hematocrit value for large vessels, hSV = 0.25

being the hematocrit value for small vessels and ρ = 1.04 g/ml being the

brain density. CAIF (t) corresponds to the concentration curve of an arterial

input function which was estimated from the signal change of a major artery,
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Figure 5.3: The contrast agent concentration C(t) of the signal intensity time
course S(t) from Figure 5.2. In contrast to the signal intensity time course
the contrast agent passage causes the contrast agent signal to increase. The
recirculation can also be seen disabling the signal to return to the pre-contrast
baseline level. AT corresponds to the contrast agent arrival time and ET
corresponds to the last time point before the recirculation takes place.

which had to be selected manually.

Since we know the time interval between the single time points t given

by the repetition time TR we can reformulate Equation 5.3 as follows using

trapezoidal integration

CBV =
1

ρ

(1− hLV )

(1− hSV )

∑ET
i=AT (C(ti) · TR)∑ETa

j=ATa
(CAIF (tj) · TR)

(5.4)

with AT and ET being the first and last time points of the contrast agent

passage of the voxel of interest and ATa and ETa being the first and last

time points of the contrast agent passage of the AIF. Note that these time

point do not have to be equal.
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The Cerebral Blood Flow can be determined using a model-independent

deconvolution technique since the contrast agent concentration is related to

the CBF by the following formula:

C(t) = CBF · CAIF (t)⊗R(t) (5.5)

with R(t) being the residue function and ⊗ indicating convolution. R(t)

is thereby the tissue retention of tracer at time t reflecting the portion of

contrast agent in the vasculature after the bolus has been injected. Since

the residue function is a decreasing function over time R(t = 0) = 1 and R(t

= ∞) = 0 [Ost05]. To solve equation 5.5 we applied a model-independent

linear algebraic deconvolution approach. Therefore, we have to solve the

matrix equation

C = CBF ·∆t · A ·R ⇒


C(tAT )

C(tAT+1)

...

C(tET )

 =

= CBF∆t


CAIF (tAT ) 0 · · · 0

CAIF (tAT+1) CAIF (tAT ) · · · 0

· · · · · · · · · · · ·
CAIF (tET ) CAIF (tET−1) · · · CAIF (tAT )




R(tAT )

R(tAT+1)

...

R(tET )

(5.6)

in order to obtain CBF. To determine a stable solution for CBF we have

to correct for noise present in the signal [Ost05]. This is done by applying

Singular Value Decomposition (SVD) to matrix A by

A = ULV ′, (5.7)

where the diagonal matrix L contains the singular values of matrix A. Before

deconvolution takes place we have to regularize those elements (set to zero) of
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matrix L below 20 % of the maximum element in L [LPL+99]. After the noise

has been eliminated, we can apply deconvolution. Thereby, CBF corresponds

to the maximum of the scaled residue function R′(t) = CBF ·R(t) [Ost05].

Since, the standard SVD is strongly dependent on the effects of algorith-

mic artifacts arising from arterial-tissue delay we calculated the reformulated

SVD rather than the standard SVD to correct for those effects [SLTF04].

Thereby, a time shift of the contrast agent signal curve is applied in case of

an arterial-tissue delay.

Having obtained the CBV as well as the CBF, we can easily calculate the

MTT by means of the central volume theorem [OWC+96]

MTT =
CBV

CBF
. (5.8)

The equation for determining the CBV assumes an intact BBB but since

we use data from brain tumor patients which do not necessarily have an

intact BBB we have to account for possible contrast agent extravasation while

calculating the CBV. Thereby, we used the method described by Boxerman

et al. [BSW06]. The effect of leakage was removed separately for each voxel

by adding the estimate of K2 (reflecting the effects of leakage, being different

for each voxel) multiplied by a constant value C, to the CBVuncorr estimate

calculated using Eq. 5.4 [BSW06]

CBV = CBVuncorr +K2 · C. (5.9)

Subsequently the MTT calculation was also adjusted using the new CBV

instead of the CBVuncorr. An example of perfusion maps of one grade III

glioma patient can be seen in Figure 5.4.
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CBV CBF

MTT

Figure 5.4: An example of the perfusion maps CBV, CBF, and MTT of a
grade III brain tumor patient. The tumor is located in the right hemisphere
indicated by the bright yellow (CBV image) or the dark red (CBF image)
voxels.

5.2.1.3 Image Standardization (Step 3)

Since MR imaging produces only relative signal intensity values leading to

inter-patient and inter-study variability, direct intensity value comparison is

impossible. To overcome this problem most studies normalize the tumor Re-

gions Of Interest by a contra lateral white matter ROI, but since this method

introduces additional operator-dependent errors because contra lateral white
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matter ROIs have to be drawn manually we used image standardization

instead. This method enables us to directly compare intensity values of dif-

ferent patients of the same MR protocol and body region without the need

of a contra lateral white matter ROI. Hence, after standardization similar

intensities have similar tissue meaning.

For image standardization a two-step (training and transformation step)

piecewise linear transformation method, described by Nyul and colleagues

[NU99, NUZ00, MU06, BUB10] was applied. For each of the perfusion maps

as well as for the T1CE images, we used 11 landmarks, corresponding to

the 0, 10, 20, . . . , 80, 90, and 99.8 percentiles (p1, ..., p11) of the intensity

distribution of the images and the standardized intensity range was set to s1

= 0 and s2 = 50,000 as described by Bedekar et al. [BJS10].

In the training step all images of the CBV, CBF, MTT, or T1CE were

used, respectively, to determine the landmarks for a mean histogram of un-

normalized intensity values. Thereby, the 11 percentile landmarks were de-

termined for each of the images in the training data set, separately and

subsequently the mean of these percentile representatives was build.

Starting with the creation of a histogram for an image, intensities at the

predefined landmarks were extracted. Then the intensity values between

p1 = 0th percentile and p11 = 99.8th percentile were linearly mapped to the

minimum and maximum values (s1 and s2) of the standardized image range

using the following equation [BJS10]

px′ = s1 +
(px − p1)

(p2 − p11)
(s2 − s1), px ∈ {p2, ..., p10} (5.10)

In order to obtain meaningful percentile representatives for each percentile

the mean over all images in the training data set is obtained.

In the next step (transformation step) these mean percentile representa-

tives were used to standardize all image scales by mapping the percentiles

of the images to the percentile representatives. This was done by mapping
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Figure 5.5: Two-step piecewise standardization process example. b) An
intensity histogram of an original CBV image. a) The mapping of the 11
percentiles to the standard image scale. This is done for all images of the
training set. c) The resulting mean of the standard image scale from the
training set is then used to standardize all images in the transformation
step. d) The standardized intensity histogram of the image from b. Note
that the intensities on the x-axis now range from p1=0 to p11=50,000. Green
stars and dotted lines indicate the 11 percentiles of the intensity histogram.

each interval between the subsequent percentile representatives separately.

Figure 5.5 shows an example of the training and the transformation step

using one CBV image to determine the percentiles representatives (a and b).
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Then using the mean percentiles obtained by the training of all CBV images

the same CBV image is transformed to the standard scale (c and d). Note

that the bends in Figure 5.5 c correspond to the adjusted intensity intervals.

5.2.1.4 Co-registration (Step 4)

Our goal was to extract intensity values from a tumor ROI coming from

the CBV, CBF, MTT maps, and the T1CE images of each patient. But

these images were not produced by the same modalities. For example the

post-contrast T1 weighted image has a matrix size of 512 x 512 and a voxel

size of 0.5 x 0.5 x 0.6 mm3, whereas the perfusion sequence produced image

volumes with a matrix size of 128 x 128 and a voxel size of 1.8 x 1.8 x 6.5

mm3. Hence, the number of voxels and the size of the voxels varies rendering

direct extraction of intensity values at the same brain location very difficult.

To enable voxel extraction at the same location in the brain of different image

modalities co-registration was used. Thereby, all image volumes had to be

registered to one single target volume.

Since, in the following tumor ROIs will be drawn on Fluid-Attenuated

Inversion Recovery (FLAIR) images we decided to co-register all image vol-

umes (CBV, CBF, MTT, and T1CE) to the corresponding FLAIR image

of each patient using the co-registration method of SPM8 [CMD+95]. After

co-registration, all image volumes had a comparable matrix size of 512 x 512

and a voxel size of 0.4 x 0.4 x 5.5 mm3 corresponding to the matrix and voxel

size of the FLAIR images. Thus by now a voxel in all images corresponded

to the same brain region enabling the extraction of tumor intensity values.

5.2.1.5 Tumor ROI Voxel Extraction (Step 5)

All tumor ROIs were drawn by experienced neuroradiologists on FLAIR im-

ages using the lesion drawing tool of MRIcron [RKB07], including all voxels

identified as solid tumor tissue, but not the voxels interpreted as edema.
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Figure 5.6: An example of a three dimensional tumor ROI extraction of a
grade III glioma. Depicted is the CBV image with the extracted tumor ROI.

In unclear cases the T1CE images were additionally visually inspected to

further clarify the borders of the tumor ROI. The intensities of the three

dimensional tumor ROIs were then extracted from the CBV, CBF, MTT,

and T1CE images. An example of a grade III tumor ROI from a CBV image

is shown in Figure 5.6.

5.2.1.6 Noise Filtering By Outlier Detection (Step 6)

After tumor ROI extraction each patient was represented by a variety of

single voxel values for each of the 4 dimensions. To correct for possible

outliers which would disrupt the creation of nGMMs we applied our outlier

detection algorithm from Chapter 3, filtering all noise points from the data

without the need of any parameter settings.
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5.2.1.7 GMM Creation (Step 7)

Our goal was to model the tumor tissue by a Probability Density Function

using data of the CBV, CBF, MTT, and T1CE (4 dimensions of our feature

space) since it is our hypothesis that tumors of varying grades differ in these

distribution functions. In particular, we believe that these distribution func-

tions involve different correlations among the four dimensions. Therefore, the

tumor tissue of each patient was modeled as a GMM over the 4-dimensional

feature space, because a GMM can fit any finite set of empirical data, and

GMMs are simple and general.

A GMM G is composed of a set of m = |G| Gaussian distributions. Each

Gaussian distribution is defined using the parameters wi, µi, and Σi (1 ≤
i ≤ m), with 0 ≤ wi ≤ 1 being the weight of the Gaussian component,

µi = (µi1, . . . , µid)
T being the location parameter vector of a d-dimensional

space (in our case composed of the d = 4 components CBV, CBF, MTT, and

T1CE), and Σi being a quadratic d× d dimensional covariance matrix. The

Gaussian distributions can be defined by the following formula:

wi ·N(x;µi,Σi) = wi ·
1√

(2π)d|Σi|
exp

(
−(x− µi)TΣ−1

i (x− µi)
2

)
. (5.11)

Particularly if two or more of the dimensions exhibit a dependency (which

is according to our hypothesis eventually characteristic for the grade of a tu-

mor), Σi is not a diagonal matrix but some of the off-diagonal elements are

different from zero. Therefore, we will refer to those GMMs as non-axis par-

allel GMMs (nGMM) in the following to emphasize eventual dependencies.

To illustrate a typical distribution function exhibiting correlations, we have

depicted a two-dimensional nGMM in the space of MTT and T1CE in Figure

5.7.

The overall PDF of an nGMM G is defined as a weighted sum of the m
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Figure 5.7: Example of a two-dimensional nGMM in the MTT and T1CE
space. Correlations are represented by the almost 45◦ angle of the nGMM in
the given example. On the left, the nGMM is depicted as contour plot and
on the right the intensities of the two-dimensional nGMM are additionally
drawn on the z-axis.

Gaussian distributions

fG(x;w, µ,Σ) =
m∑
i=1

(wi ·N(x;µi,Σi)) = (5.12)

=
m∑
i=1

(
wi√

(2π)d|Σi|
exp

(
−(x− µi)TΣ−1

i (x− µi)
2

))
.

The weights wi of each model G sum up to identity (
∑m

i=1 wi = 1).

For the creation of the four-dimensional nGMMs the preprocessed, stan-

dardized, and co-registered three-dimensional perfusion maps (CBV, CBF,

MTT) and the three-dimensional T1CE image of each patient were filtered

using the corresponding tumor ROI and the outlier detection algorithm.

The resulting intensities of each patient were then transformed into four-

dimensional nGMMs. An example of the single channel intensity histograms

of one patient in order to see how the data could be distributed is given in

Figure 5.8. The mixture model can capture the different subparts of the

tumor model as separate components.

For estimating the three parameters w, µ, and Σ of the parametric mix-
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T1CE
MTT

CBV
CBF

Figure 5.8: Example of single channel intensity histograms of a patients
tumor ROI. Each of the single channels builds one dimension in the four-
dimensional nGMM.

ture model distribution we employed the Expectation-Maximization algo-

rithm by Geoffrey and David [MP00]. This algorithm is an iterative two-

step algorithm. It starts with a randomly chosen model, then alternately the

data is assigned to the individual parts of the model (Expectation step) and

the parameters of the model are improved according to the current model

assignment (Maximization step). To automatically estimate the number of

clusters, in our case the number of Gaussian components m of the nGMM,

required for the EM algorithm, we performed a 10-fold cross validation as

implemented in the WEKA package [HFH+09]. Thereby, starting with all

data located in one cluster the number of clusters was increased if the av-

erage log-likelihood over all 10 results increased. In case of a log-likelihood

decrease or if m was equal to the number of instances in the data set, the

model having the maximal log-likelihood was returned. The resulting n nG-

MMs (one for each patient) were inserted in a database DB, which served

as basis for the k-MLIQ search. A result of an EM clustering of one glioma
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Figure 5.9: Example of a four-dimensional nGMM produced by the Expecta-
tion Maximization algorithm. The underlying tumor intensity values (black
dots) of the six possible combinations of the four-dimensional data are over-
laid by the contour lines of the nGMM function which was returned by the
EM algorithm. In this example the CBV and CBF are perfectly correlated
shown by the almost 45◦ angle in the upper left corner image.

patient is shown in Figure 5.9. The contour lines of the four-dimensional

nGMM are thereby superposed on the tumor intensity values (black dots).

In this example the CBV and the CBF are strongly correlated shown by the

almost 45◦ angle of the contour lines.
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5.2.1.8 k-MLIQ Of Non-axis Parallel GMMs

For the k-MLIQ we used the same algorithm as described in Subsection 4.4.5.

The original database DB consisted of n nGMMs, one for each patient. We

conducted the k-MLIQ to identify the most similar patients in the database

to an unknown, non biopsy confirmed query patient. These k-MLIQs are

based on the probability that a query object and a database object describe

the same object [BPS06]. In general a k-MLIQ search is similar to a k-Nearest

Neighbor search, except for the similarity measure, which is used to identify

the most similar objects. Nearest Neighbor searches use distance measures

like the Euclidean distance whereas an MLIQ search uses probabilities to

measure the similarity between two objects.

In order to find a plausible prediction of the tumor grade of a query object

we needed a measure of how similar two objects were, called the matching

probability. To find the joint probability between one query object G ′ and

the database objects G∗ ∈ DB the similarity between G ′ and the objects G∗
is measured using the joint Probability Density Value

PDV (G∗,G ′) =

∫
Rd

fG∗(x;w∗, µ∗,Σ∗) · fG′(x;w′, µ′,Σ′)dx. (5.13)

This PDV measures how likely it is for a sample x, randomly drawn

from the distribution fG∗ , to be equal to another sample x ∼ fG′ . Since

all G∗ ∈ DB are statistically independent from G ′ and variances as well as

covariances of independent stochastic variables can be summed up [BPS06],

PDV can be reformulated as

PDV (G∗,G ′) =
m∗∑
i=1

(
m′∑
j=1

w∗iw
′
j ·N(µ∗i ,Σ

∗
i + Σ′j, µ

′
j)

)
. (5.14)

For a proof of the formula please refer to Subsection 4.4.5.

To find the most likely grading of a new glioma patient G ′, we performed
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a k-MLIQ in our database of biopsy confirmed pre-classified glioma patients.

Using the theorem of Bayes, a k-MLIQ identifies those k glioma patients in

the database, which match the PDF of the query patient with the highest

probability

P (G∗,G ′) =
PDV (G∗,G ′)∑n
i=1 PDV (G∗i ,G ′)

(5.15)

with |DB| = n being the cardinality of the database.

To accelerate the k-MLIQ search we used the conservative nGMM approx-

imation step in combination with the rotation angle clustering as described

in Sections 4.4.3 and 4.4.4. We therefore start be rotating and approximating

each original Gaussian distribution G∗i ∈ DB leading to a rotated and ap-

proximated database DBra. For the actual k-MLIQ search we used the four-

step procedure as described in Subsection 4.4.5.3. Thereby, before searching

a query object G ′, this object also has to be rotated and approximated as

the database objects. Then approximated Probability Density Values PDVa

between the query object G ′ra and all database objects G∗ra are calculated.

Those objects in the database having the largest approximated PDVa are

then used to compute PDV s until an abortion criterium is reached. In the

last step absolute probabilities for the objects located in the set of k-MLIQs

are calculated.

To obtain a suitable glioma score, which expresses the degree of certainty

to predict a glioma of grade I/II vs. a glioma of grade III called TScore, we

contrast the probabilities of grade I/II glioma patients in the query result

G∗ ∈ k-MLIQI/II to those of grade III tumors in the query result G∗ ∈ k-

MLIQIII , according to the formula

TScore(G∗, k −MLIQ) =
∑

G∗∈k−MLIQI/II⊆k−MLIQ

P (G∗,G ′)−
∑

G∗∈k−MLIQIII⊆k−MLIQ

P (G∗,G ′).

(5.16)

The TScore ranges from 1 (low-grade glioma [WHO grade I/II]) to -1 (high-

grade glioma [WHO grade III]). In the following we will call our method
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approximation k-MLIQ search.

5.2.2 Comparison Methods

To compare the quality of the approximation k-MLIQ search to existing

methods and therefore to demonstrate the superiority of considering corre-

lations between features, we conducted three additional methods. The first

method was glioma grading which was based on the presence of contrast en-

hancement executed by neuroradiologist experts. The second method was a

k-MLIQ search not considering correlations which we will call axis-parallel

k-MLIQ search and the third one was a k-NN approach using Euclidean dis-

tances of the weighted mean values of the nGMMs as a distance measure,

which will be called k-NN search in the following.

5.2.2.1 Glioma Grading Based On Contrast Enhancement

Glioma grading based on conventional MRI sequences was performed by two

independent neuroradiologists in consensus who were blinded to the histo-

logical information. They visually inspected FLAIR as well as pre- and post

contrast T1-weighted images. Tumors that showed any pathological contrast

enhancement in the contrast-enhanced T1-weighted sequence were diagnosed

as high-grade gliomas. In the absence of any contrast enhancement a low-

grade glioma was diagnosed.

5.2.2.2 Axis-parallel k-MLIQ Search

To test, whether the non-axis parallel k-MLIQ method is superior to a k-

MLIQ method not considering feature correlations a k-MLIQ of axis parallel

GMMs was carried out, not considering feature correlations of the GMMs.

Instead of using the entire covariance matrix Σi of the Gaussian compo-

nents, the axis-parallel k-MLIQ method used only the variances σi of the
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covariance matrices. Therefore, the joint Probability Density Value for the

axis-parallel k-MLIQ search can be defined by the following formula:

PDVap(G∗,G ′) =
m∗∑
i=1

(
m′∑
j=1

w∗iw
′
j ·N(µ∗i , σ

∗
i + σ′j, µ

′
j)

)
. (5.17)

As for the non-axis parallel method, the theorem of Bayes is used to

convert joint PDVaps to absolute probabilities with |DB| = n.

Pap(G∗,G ′) =
PDVap(G∗,G ′)∑n
i=1 PDVap(G∗i ,G ′)

(5.18)

The TScore is obtained the same way as for the approximation k-MLIQ

search using

TScore(G∗, k−MLIQ) =
∑

G∗∈k−MLIQI/II⊆k−MLIQ

Pap(G∗,G ′)−
∑

G∗∈k−MLIQIII⊆k−MLIQ

Pap(G∗,G ′).

(5.19)

5.2.2.3 k-Nearest Neighbor Search

The k-NN search approach was solely based on the weighted mean values of

the Gaussian components. Euclidean distances of these weighted means were

used to determine the distances between the tumor patients. In contrast

to the k-MLIQ results the k-NN search did not provide any probabilities

but rather distances corresponding to the dissimilarity between two objects.

Hence, the k objects having the smallest distance were returned by the k-NN

search.

To distinguish the predicted grade returned by the k-NN search the most

frequently predicted grade in the set of k-NN was chosen.
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5.2.3 Quality Measures

In order to receive quality measures for the three presented methods (ap-

proximation k-MLIQ search, axis-parallel k-MLIQ search, and k-NN search)

we used leave-one-out cross validation, which is a special case of the X-fold

cross validation [Koh95] with X = n which is the number of observations (=

patients in the database). The validation was performed for each of the n

patients by completely excluding the respective patient from the database

(resulting in a new database size of (n-1)). The test patient p was then used

as query object in the k-MLIQ/k-NN. In total, n = 37 (number of patients

in our database) MLIQs/NNs were executed for obtaining quality measures

of the methods.

Since the k-MLIQ and the k-NN methods include a parameter k which

had to be assigned we executed nested leave-one-out cross validation to ad-

equately evaluate the methods [RHPM04]. Thereby, having excluded the

test patient p from the database resulting in a database size of (n-1), each

remaining patient had to be excluded to determine the best fitting value

for the parameter k. This particular value for k was then assigned to the

k-MLIQ/k-NN search for grading patient p. Thus, using nested leave-one-

out cross validation we obtained an independent validation set, since the

k-MLIQ/k-NN only considered those patients which were presently located

in the database. All algorithms concerning the k-MLIQ/k-NN search were

implemented in Java and run on a 2.4 GHz Intel Core 2 Duo Macintosh

computer.

The accuracy, sensitivity, specificity, positive predicted value (PPV), and

negative predicted value (NPV) were calculated for the grading results of

all four methods. Tumors which were histologically grade III and subse-

quently found as grade III tumors, were considered as True Positive findings;

grade I/II tumors which were identified as low-grade gliomas and found at

histological examination to be grade I/II, were considered as True Negative

findings.
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For statistical analysis SPSS 18.0 for Macintosh (SPSS Inc, Chicago, IL,

USA) was used. To compare the quality of all glioma grading methods,

the Area Under the Curve (AUC) of the Receiver Operating Characteristic

(ROC) curve was carried out. After drawing the ROC curves (one for each

method) the AUC can be obtained. Thereby, the AUC values can range from

0 to 1, where a diagonal ROC curve (lower left corner to upper right corner)

having an AUC of 0.5 (worst possible value) corresponds to random guessing

and a AUC of 1 (most desired value) corresponds to a perfect grading result.

The considered method had discriminatory power if the curve is significantly

different from the diagonal.

5.3 Glioma Grading Results

5.3.1 Patient Population

A total of 37 consecutive adult patients (15 women, 22 men; ranging in age

from 22 to 74 years; mean age 44.8 years, SD 14.0 years) with histologically

proven grad I to grade III gliomas were included in the study (n = 2 pilocytic

astrocytomas, WHO grade I; n = 15 diffuse astrocytomas, WHO grade II; n

= 1 ganglioglioma, WHO grade II; n = 1 oligodendroglioma, WHO grade II;

n = 4 oligoastrocytomas, WHO grade II; n = 11 anaplastic astrocytomas,

WHO grade III; and n = 3 anaplastic oligoastrocytomas, WHO grade III).

Tumors were classified and graded according to the World Health Organi-

zation classification [DHOW07]. All patients gave their written informed

consent to participate in the study prior to the beginning of the MR exami-

nation. The institutional review board of the Ludwig-Maximilians University

Munich, Germany approved the study protocol.
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5.3.2 MR Imaging

MR imaging was performed on a 3 T standard clinical MR scanner (Signa

HDx, GE Healthcare, Milwaukee, WI, USA) with 8 receiving channels. The

standardized MRI protocol included a pre-contrast T1-weighted sequence

(Echo time [TE] = 3.1 ms, repetition time [TR] = 6.9 ms, Field Of View

(FOV) = 23 x 18 mm, voxel size = 0.5 x 0.5 x 0.6 mm3, matrix size = 512 x

512), and a T2 proton density-weighted sequence (TE = 15 ms, TE2 = 130

ms, TR = 3840 ms, FOV = 23 x 18 mm, voxel size = 0.9 x 0.9 x 4.8 mm3,

matrix size = 256 x 256). Axial T2-weighted Fluid-Attenuated Inversion

Recovery images were collected with a fast spin-echo readout (TE = 120 ms,

TR = 8502 ms, FOV = 22 x 22 mm, voxel size = 0.4 x 0.4 x 5.5 mm3, matrix

size = 512 x 512).

A T2*-weighted Echoplanar Imaging (EPI) multislice sequence was ap-

plied for perfusion imaging (TE = 40 ms, TR = 1675 ms, FOV = 23 x 23

mm, voxel size = 1.8 x 1.8 x 6.5 mm3, matrix size = 128 x 128). Functional

perfusion images were obtained approximately 12 seconds before and 50 sec-

onds after a bolus injection of the contrast agent gadobenate dimeglumine

(0.2 mmol/kg, Multihance; Bracco Diagnostics, Inc., Princeton, NJ) at an

injection rate of 5 ml/s. Post-contrast T1-weighted images were acquired af-

ter completion of the perfusion sequence (TE = 3.1 ms, TR = 6.9 ms, FOV

= 23 x 18 mm, voxel size = 0.5 x 0.5 x 0.6 mm3, matrix size = 512 x 512)

followed by a T2-weighted navigation sequence (TE = 102 ms, TR = 11 860

ms, FOV = 22 x 18 mm, voxel size = 0.4 x 0.4 x 2.0 mm3, matrix size = 512

x 512).

In order to run the k-MLIQ and k-NN search algorithms we first had to

preprocess the perfusion images of all 37 patients as described above. After

preprocessing was finished intensities of tumor ROI voxels were extracted and

converted to four-dimensional (CBV, CBF, MTT, T1CE) nGMMs. These

nGMMs formed the database for the k-MLIQ/k-NN searches.
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5.3.3 Approximation k-MLIQ Search

Our approximation k-MLIQ technique achieved an overall tumor grade pre-

diction accuracy of 83.8 %, which was obtained by comparing the true tumor

grade with the predicted tumor grade indicated by a positive or negative

TScore. Thereby, the parameter k was chosen by nested leave-one-out cross

validation as described in the Methods Section. The detailed results of the

37 approximation k-MLIQ searches are illustrated in Figure 5.10 a. Six out

of the 37 patients were falsely graded by the approximation k-MLIQ search

indicated by red circles. In detail, 2 anaplasic astrocytomas (WHO grade III)

and 1 anaplastic oligoastrocytoma (WHO grade III) were falsely graded as

grade II tumors and two diffuse astrocytomas (WHO grade II) as well as one

oligoastrocytoma (WHO grade II) were falsely graded as grade III tumors.

Hence, the approximation k-MLIQ method showed a sensitivity, specificity,

PPV, and NPV of 78.6 %, 87.0 %, 78.6 %, and 87.0 %.

5.3.4 Glioma Grading Based On Conventional MRI

Sequences

Based on contrast-enhancement on conventional MRI sequences 13 out of the

37 patients were graded incorrectly: 10 histologically proven low-grade tu-

mors showed contrast enhancement and were graded as grade III gliomas (1

pilocytic astrocytomas, WHO grade I; 4 diffuse astrocytomas, WHO grade

II; 1 ganglioglioma, WHO grade II; 1 oligodendroglioma, WHO grade II;

and 3 oligoastrocytomas, WHO grade II) and 3 grade III tumors (2 anaplas-

tic astrocytomas, WHO grade III; and 1 anaplastic oligoastrocytoma, WHO

grade III) were falsely graded as low-grade gliomas due to the absence of

contrast enhancement. Thus, based on contrast enhancement alone the ac-

curacy, sensitivity, specificity, PPV, and NPV were 64.9 %, 78.6 %, 56.5 %,

52.4 %, and 81.3 %, respectively. Three out of the six patients, who were

falsely graded by the approximation k-MLIQ search method overlapped with
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Figure 5.10: TScore results of the 37 tumor patients processed with a) the
approximation k-MLIQ search and b) the axis-parallel k-MLIQ search using
nested leave-one-out cross validation. Green upward triangles indicate pa-
tients with a tumor grade I/II diagnosis and should therefore have a positive
TScore and magenta downward triangles denote patients with a tumor grade
III diagnosis preferably having a negative TScore. Red circles imply wrong
graded patients.

the patients falsely graded by the manual method which was solely based on

contrast-enhancement (2 diffuse astrocytomas, WHO grade II; 1 anaplasic

astrocytoma, WHO grade III).
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5.3.5 Axis-parallel k-MLIQ Search

The axis-parallel k-MLIQ search used the same database as the approxi-

mation k-MLIQ while ignoring correlations between different features. It

achieved an accuracy, sensitivity, specificity, PPV, and NPV of 81.1 %, 71.4

%, 87.0 %, 76.9 %, and 83.3 %, respectively. In total 7 gliomas were falsely

classified, including the 6 falsely classified gliomas of the approximation k-

MLIQ search, one additional grade III glioma (anaplastic astrocytoma, WHO

grade III) was falsely graded as grade II glioma. The TScore results of the

axis-parallel k-MLIQ search are shown in Figure 5.10 b.

5.3.6 k-Nearest Neighbor Search

The k-NN search which only considered the weighted means of the database

objects obtained an accuracy, sensitivity, specificity, PPV, and NPV of 78.4

%, 66.7 %, 87.0 %, 76.9 %, and 80.0 %, respectively. The k-NN search

mis-graded 8 out of the 37 gliomas in the database. Three grade II gliomas

(3 diffuse astrocytomas, WHO grade II) were falsely classified as grade III

gliomas by the k-NN search and 5 grade III gliomas (5 anaplastic oligoastro-

cytomas, WHO grade II) were falsely grade as grade II gliomas.

5.3.7 ROC Plot Results

The ROC plots of the k-MLIQ methods’ and the k-NN method’s grading

results as well as the grading by conventional MRI sequences based solely on

contrast-enhancement are shown in Figure 5.11. Thereby, the AUC of the

grading results produced by the approximation k-MLIQ search were signifi-

cantly different from random guessing with p = 0.001 (AUC = 0.828) whereas

not being significant using the grading by conventional MRI sequences con-

sidering contrast-enhancement alone (AUC = 0.675, p = 0.077). The grading

results of the axis-parallel k-MLIQ search (AUC = 0.792, p = 0.003) and of
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Figure 5.11: The ROC plot of the k-MLIQ method results as well as of the
results achieved based on the presence of contrast-enhancement alone. Ad-
ditionally shown is the Area Under the ROC curve (AUC) of both methods.
* AUC significantly different from random guessing with p ≤ 0.01.

the k-NN search (AUC = 0.756, p = 0.010) were also significantly different

from random guessing.

5.4 Discussion

Until now most approaches for glioma grading used only single MRI charac-

teristics of the tumor images like location, size, mean CBV value, etc. [BJS10,

KKK+10, LKK+01, MFS+00]. Most existing perfusion MRI studies consid-

ered only the CBV of the perfusion parameters for tumor grading. In a

study by Zacharaki et al. [ZWC+09] 161 features including different shape,

intensity, and gabor texture features of tumor ROIs were used to classify

brain tumors. Authors applied feature selection to reduce the number of

classification dimensions. Relative CBV (rCBV) and T1CE were located in

the set of top-ranked features to separate grade II from grade III patients

leading to an accuracy of 75 %. Shin et al. [SLK+02] examined relative CBF
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(rCBF) in addition to the rCBV of glioma patients, achieving promising re-

sults. Using an rCBF ratio cutoff of 3.57 they obtained a sensitivity of 72.7 %

and a specificity of 100 % for separating low-grade from high-grade gliomas.

Since, CBV, CBF, and T1CE already demonstrated to be good indicators

for different tumor grades, we decided to integrate the complete perfusion

information including CBV, CBF, and MTT in combination with the T1CE

information in our classifier-based method, which has to our knowledge not

yet been done.

Opposed to most existing studies, our classifier-based method integrates

the information of the whole tumor volumes. There are three major advan-

tages of this approach: 1) It considers the heterogeneity of an individual

glioma by using the distribution of the different perfusion parameters, and

not only the mean value measured in a single ROI. 2) It does not depend on a

cutoff value for perfusion parameters. In existing studies, which used rCBV

ratios for separating low-grade from high-grade gliomas, the rCBV ratio cut-

off values ranged from 1.5 to 2.9 rendering a clear separation without prior

knowledge of the data very difficult [CRL04, LYW+03, LKK+01, SLK+02].

3) The consideration of feature correlations between the CBV, CBF, MTT,

and T1CE in the nGMMs resulted in a more accurate method to determine

the tumor grade without the need of prior knowledge of the underlying data.

The performance of our method with an accuracy, sensitivity, and specificity

of 83.8 %, 78.6 %, and 87.0 %, respectively without the need of a cutoff

value, which would probably change using a different set of patients, is a

major advantage of our approach.

One reason for the large variability in previous studies considering the

rCBV cutoff value could be the lack of a standard image intensity scale in

MRI. MRI produces only relative signal intensity values, hence images of a

patient acquired at different time points or images of different patients can-

not be compared directly. A common approach to handle this problem is

to compare signal intensity values in a given ROI with those measured in

a contra lateral white matter ROI. However, using a reference ROI in con-
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tra lateral tissue in order to produce rCBV ratios introduces an operator

dependent variability. To overcome this problem we applied image inten-

sity standardization [BJS10, NU99], which standardizes the image intensity

scale of one specific MR protocol and body region in a two-step architecture.

Hence, a contra lateral reference ROI is not required anymore, enabling the

direct inter-patient ROI comparison and, thus eliminating a possible error

source. Furthermore, since in our approach nGMMs are automatically de-

termined by EM clustering using exclusively the underlying intensity values

of the tumor ROIs, even subtle intensity changes, which are undetectable by

visual inspection, will be included in the automatic analysis.

The extraction and approximation of the complete tumor ROI leads to

the loss of spatial information. Thus, with the current input information, our

approach does not allow the identification of tumor hot spots, i.e. the part

with the highest malignancy, for biopsy planning [KTE+11]. However, in fur-

ther studies the spatial aspect could be incorporated in the grading procedure

for example by matching hot spot ROIs of Positron Emission Tomography

(PET) images to MRI data. Another drawback of the study is the small and

heterogeneous patient population with several histological diagnoses. One

might wonder how e.g. pilocytic astrocytomas can be correctly graded as

low-grade gliomas by our approach even though they strongly differ from

other glioma types present in our database both histologically as well as on

conventional MRI sequences. As mentioned earlier our method is solely based

on similarities between a respective test glioma and the tumors building the

database. Hence, it seems plausible that perfusion characteristics of pilocytic

astrocytomas are more similar to grade II gliomas than to grade III gliomas

thus leading to a correct grading by our method. Nevertheless, the lack of a

larger dataset disables the algorithm to differentiate between different histo-

logical diagnoses like between oligodendroglioma (1 patient) and diffuse as-

trocytoma (15 patients). Thus, since the prediction of our algorithm is based

on the underlying information of the database, a larger dataset would most

probably further increase the prediction accuracy of our algorithm. If more
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data (patients with biopsy confirmed diagnosis) is included in the database

the chances of finding more accurate and suitable hits to an unknown patient

also rise which leads to a higher grading accuracy. By including additional

grade I and also glioblastoma (GBM) patients in the database our method

could be extended to also distinguish between gliomas of grade I, II, III, and

IV. Furthermore, the incorporation of Diffusion Tensor Imaging and MR

spectroscopy data, as well as PET data which have been shown to be re-

liable tumor grade indicators [HOK+09, LYW+03, MAA+03, PKM+07], as

additional dimensions in the nGMM should further increase the accuracy of

our approach.

5.5 Conclusion

In this Chapter we combined the outlier detection and the similarity search

in uncertain data a propose our classifier-based technique for glioma grading,

which is based on a k-MLIQ search. The approach is almost fully automatic,

except for tracing the tumor ROI and selecting the AIF for the generation of

the perfusion maps. The database for the k-MLIQ search was composed of

four-dimensional nGMMs comprised of the entire ROI intensity distribution

of the CBV, CBF, MTT, and T1CE images also considering attribute corre-

lations. Our approach had a glioma grading accuracy of 83.8 %, which was

significantly better than random guessing, whereas glioma grading based on

contrast-enhancement alone (accuracy of 64.9 %) was not significantly dif-

ferent from random guessing. Even though the axis-parallel k-MLIQ search

and the k-NN search also achieved significantly better results than random

guessing they were not able to reach equally good grading results as our

approach. Therefore, incorporating feature correlations and the entire perfu-

sion information in our similarity search, which is exclusively based on finding

similarities between different gliomas, gives a great benefit to our method.



Chapter 6

Conclusion

6.1 Summary

In the field of data mining especially in mining medical images there are many

difficulties that have to be faced. Starting with the preprocessing of the data

including the removal of noise or outliers the image data has to be adequately

prepared in order to be able to gain as much information as possible. After

the preprocessing has been finished several different data mining techniques

can be applied for knowledge discovery. The methods and concepts presented

in this work contribute to the field of knowledge discovery in medical imaging.

This chapter provides a summary of the major contributions of this work.

6.1.1 Introduction And Algorithmic Fundamentals

Chapter 1 starts with a motivation for this work, constituting the major topic

that is going to be dealt with. After the motivation the algorithmic funda-

mentals to this work are delineated in Chapter 2 starting with an overview

to existing information theoretic measures which can be used to facilitate the

abolishment of parameters in several data mining fields. Furthermore, the

169
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prominence of uncertain data in data mining is described since the remainder

of the work is heavily based on the handling of uncertain data. Then the

field of clustering, outlier detection, and classification are introduced since in

this work we do not only propose a novel outlier detection method which is

based on the cluster definition and other useful principles of existing cluster-

ing algorithms but we also introduce a new classification method including

parts of a cyclic clustering algorithm.

6.1.2 Parameter-Free Outlier Detection Using Data

Compression

Various application fields like e.g. economy, biology, or medicine have to deal

with the automatic identification of outstanding observations in data sets

also known as outliers. In Chapter 3 we introduced our new parameter-free

outlier detection approach which is based on a very general data model. This

new approach thereby overcomes two of the major problems most existing

outlier detection approaches suffer from. The first problem that has to be

dealt with is parametrization. The outcome of most outlier detection ap-

proaches strongly depends on the accurate selection of parameters like the

number of outliers present in the data or the minimum size of clusters. In

order to adequately choose these parameters, for most real world data sets,

the expertise of domain experts as well as background knowledge on the un-

derlying data is required. The second problem that has to be faced is the

restriction to a specific data distribution like a Gaussian or Uniform distri-

bution. In our presented parameter-free outlier detection approach we were

able cope with these problems.

The basic idea of our technique relates outlier detection to data compres-

sion, thereby outliers are objects which can not be effectively compressed

given the rest of the data set. To avoid the assumption of a certain data dis-

tribution e.g. a Gaussian or Uniform distribution, our outlier approach relies
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on a very general data model combining the Generalized Normal Distribu-

tion with Independent Components. We define an intuitive outlier factor

based on the principle of the Minimum Description Length together with a

novel algorithm for outlier detection. An extensive experimental evaluation

on synthetic and real world data demonstrates the benefits of our technique.

6.1.3 Similarity Search In Uncertain Data

Efficient similarity search in uncertain data is a central problem in many

modern applications such as biometric identification, stock market analysis,

or medical imaging. In such applications, the feature vector of an object is

not exactly known but is rather defined by a Probability Density Function

like a Gaussian Mixture Model. Previous work is limited to axis-parallel

Gaussian distributions, hence, correlations between different features are not

considered in the similarity search.

In Chapter 4, we proposed our novel, efficient similarity search tech-

nique for general GMMs without independence assumption for the attributes,

which approximates the actual components of a GMM in a conservative but

tight way. For minimizing the approximation error we clustered Gaussian

distributions with the same major orientation in space before approximat-

ing the Gaussian distributions. The filter-refinement architecture guarantees

no false dismissals, due to conservativity, as well as a good filter selectivity,

due to the tightness of our approximations. An extensive experimental eval-

uation of our approach demonstrates a considerable speed-up of similarity

queries on general GMMs and an increase in accuracy compared to existing

approaches.

6.1.4 Similarity Search Based Glioma Grading

Adequate therapy planning of gliomas needs histological determination of in-

vasive biopsy due to the fact that both treatment and prognosis of glial neo-
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plasms vary strongly depending on their histological grading. Magnetic Res-

onance Imaging based glioma grading is currently mainly based on contrast-

enhanced T1-weighted images. To additionally gain information on tumor

physiology for glioma grading functional Magnetic Resonance Imaging tech-

niques like e.g. perfusion MR have also been considered.

In Chapter 5, we presented our novel technique for glioma grading, which

combines our outlier detection approach with the similarity search for un-

certain data. After preprocessing the tumor data using a combination of

existing and self-made image processing software (e.g. perfusion map gener-

ation, outlier detection, etc.) we performed a similarity search on the tumor

data. In order to perform the search as accurate as possible we used four

different features of the tumors as input for the similarity search: the Cere-

bral Blood Volume, the Cerebral Blood Flow, the Mean Transit Time, and

the post-contrast T1-weighted image. For each patient a so-called tumor fea-

ture vector was defined by a four-dimensional Probability Density Function,

more precisely a Gaussian Mixture Model. In contrast to existing similar-

ity searches we also considered correlations between different features in the

similarity search. Applying our approach to MRI data sets of 37 glioma

patients (23 grade I/II, 14 grade III gliomas), which were preprocessed and

converted to four-dimensional GMMs, we achieved an accuracy, sensitivity,

and specificity of 83.8 %, 78.6 %, and 87.0 % while grading based solely on

contrast-enhancement could only achieve an accuracy, sensitivity, and speci-

ficity of 64.9 %, 78.6 %, and 56.5 %, respectively. Hence, our proposed

similarity search based grading technique is of great value for supporting

non-invasive tumor grading since it integrates the information of different

MRI sequences and perfusion maps in one semi-automatic analysis.
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