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Abstract

For the estimation of disease progression in conditions like osteoarthritis, it is ne-

cessary to quantify articular cartilages. In modern clinical practice this is achieved

by imaging the joints with Magnetic Resonance Imaging, segmenting the cartilages

and assessing the respective parameters like volume or thickness. The segmen-

tation procedure is time-consuming, pain-staking and prone to error when done

manually. I developed a framework for the automatic segmentation of articular car-

tilages in MRI of human knee joints to eliminate those drawbacks. Because of

the scarce available image quality, my framework is based on a shape-constrained

segmentation method. The segmentation results were evaluated using twelve 1.5T-

MRI of right human knee joints. For comparison, I used a ground truth calculated

by Simultaneous Truth and Performance Level Estimation (STAPLE) out of four

different semi-automatic segmentations. The discrepancy between automatic seg-

mentation results and ground truth was comparable to the inter-observer variability

in manual segmentations.

Kurzbeschreibung

Zur Bestimmung des Krankheitsverlauf der Osteoarthrose ist es notwendig, die

Gelenkknorpel zu quantifizieren. In der heutigen klinischen Praxis geschieht dies

durch Bildgebung mit Magnetresonanztomographie, Segmentierung der Knorpel

und Bestimmung der gewünschten Parameter wie Volumen oder Dicke. Die Seg-

mentierung ist, wenn sie manuell durchgeführt wird, zeitaufwendig, mühsam und

fehleranfällig. Diese Arbeit beschreibt die Entwicklung eines Frameworks für die

automatische Segmentierung von Gelenkknorpeln in MRTs des Knies, das die

genannten Probleme beheben soll. Auf Grund der schlechten verfügbaren Bild-

qualität basiert das Framework auf einer formbeschränkten Segmentierungsme-

thode. Die Segmentierungsergebnisse von zwölf 1.5T-MRTs von rechten Kniege-

lenken wurden zur Evaluierung des Algorithmus verwendet. Zum Vergleich wurden

Segmentierungen benutzt, die mit dem Simultaneous Truth and Performance Le-

vel Estimation (STAPLE) Algorithmus aus jeweils vier verschiedenen manuellen

8
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Segmentierungen berechnet wurden. Die Abweichungen zwischen automatischen

Segmentierungsergebnissen und dem Goldstandard war in der Größenordnung

der Inter-Observer-Variabilität bei manuellen Segmentierungen.
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1 Einleitung

1 Einleitung

1.1 Motivation

Bei der Osteoarthrose (OA), engl. Osteoarthritis, handelt es sich um eine dege-

nerative Erkrankung der Gelenke, die vorranging durch einen Verschleiß der Knor-

pelgewebe im Gelenkzwischenraum charakterisiert wird. Die heute bekannten me-

dikamentösen Therapien von arthrotischen Erkrankungen wirken symptomatisch

und haben wenig bis keinen Einfluß auf den Krankheitsverlauf. Gleichzeitig handelt

es sich bei OA um eine Krankheit, die nicht nur persönliches Leiden für den Patien-

ten, sondern auch immense sozioökonomische Folgekosten verursacht. Entspre-

chend hoch ist das Interesse an der Entwicklung von neuartigen Pharmakothera-

pien, um OA ursächlich behandeln zu können und deren Verlauf zu verlangsamen,

bzw. aufzuhalten.

Die Evaluation solch neuer therapeutischer Methoden ist nur mittels aussage-

kräftiger Maße zur Bestimmung des Krankheitszustandes möglich. Derartige Maße

können aus der Beurteilung des Zustandes der Knorpel in den Gelenkzwischen-

räumen gewonnen werden. Dies ist im Rahmen einer Medikamentenstudie jedoch

nur nicht-invasiv möglich, sodaß auf Verfahren der medizinischen Bildgebung zu-

rückgegriffen werden muss. Hierbei handelt es sich gegenwärtig um die Magnetre-

sonanztomographie (MRT), die in der Lage ist, hochaufgelöste, dreidimensionale

Bilder der Gelenke zu liefern, in denen die Knorpelgewebe direkt für das mensch-

liche Auge sichtbar sind.

Die Beurteilung des Knorpelzustandes erfolgt über verschiedene Parameter,

so z.B. die Dicke, das Volumen oder die Krümmung in verschiedenen Regionen

des Knorpels. Um diese Parameter korrekt zu quantifizieren, ist eine akkurate Seg-

mentierung der Knorpelgewebe innerhalb der MRT-Bilder Voraussetzung.

Diese Segmentierung kann manuell, bzw. semi-automatisch erstellt werden,

ist in diesem Fall jedoch zeit- und arbeitsaufwendig und hierdurch kostenintensiv.

Zudem wird die Genauigkeit der Ergebnisse stark durch Konzentration und Motiva-

tion des medizinischen Experten beeinflusst, sodass eine unerwünscht hohe Dif-

ferenz zwischen Segmentierungen von verschiedenen Experten (Inter-Observer-

Variabilität), sowie zwischen verschiedenen Segmentierungen eines Experten (In-

10



1 Einleitung

tra-Observer-Variabilität) besteht.

Eine vollautomatische Segmentierungsmethode könnte die Quantifizierung der

Knorpel zur Evaluation neuer Therapieformen vereinfachen, beschleunigen und

durch reproduzierbare Segmentierungsergebnisse qualitativ verbessern.

1.2 Zielsetzung

Ziel dieser Arbeit ist die Entwicklung eines Systems zur automatischen Segmen-

tierung von Knorpeln innerhalb von dreidimensionalen Magnetresonanztomogram-

men des menschlichen Kniegelenks.

11



2 Grundlagen

2 Grundlagen

2.1 Anatomie des Kniegelenks

Das Kniegelenk (siehe Abbildungen 1 und 2) ist das größte und komplexeste Ge-

lenk des menschlichen Körpers. Es besteht aus drei Teilgelenken und zwar den

Gelenken zwischen

• den medialen Gelenkknorren des Femurs und der Tibia

• den lateralen Gelenkknorren des Femurs und der Tibia

• der Patella und der Kniescheibenfläche des Femurs

Die drei Teilgelenke bilden eine funktionale Einheit. Das heisst, an einer Bewegung

sind stets alle Teilgelenke beteiligt. Zudem werden sie von einer gemeinsamen

Gelenkkapsel umschlossen.

Das Kniegelenk besitzt im Gegensatz zum Ellbogengelenk zwei Freiheitsgra-

de: Es kann gebeugt und gestreckt werden, sowie bei gebeugtem Gelenk um seine

Achse gedreht werden.

2.1.1 Kniegelenkknorpel

Die Gelenkknorren des Femurs und der Tibia sowie die Kniescheibenfläche des

Femurs sind von Knorpelgewebe bedeckt. Die Dicke dieser knorpeligen Strukturen

beträgt wenige Millimeter an Femur und Tibia und bis zu 8 mm beim patellaren

Knorpel.

Die Gelenkknorpel bestehen zu ca. 90 % aus hyalinem Knorpel. Hyaliner Knor-

pel setzt sich aus Chondrozyten, Grundsubstanz und Kollagenfasern zusammen

[24]. Die Ernährung des Knorpelgewebes erfolgt dabei durch Diffusion über die

Synovialflüssigkeit des Gelenkspaltes. Die Antwort von Gelenkknorpel auf eine

Verletzung weicht deutlich von den üblichen Phasen der Gewebeheilung ab. Auf

Grund seiner Gefäßarmut ist die Einwanderung von Entzündungszellen und re-

parativem Gewebe in den Gelenkknorpeldefekt nicht möglich. Zudem wird eine

lokale Geweberegenierung aus dem angrenzenden gesunden Knorpel verhindert,

12



2 Grundlagen

Abbildung 1: Das menschliche Kniegelenk, aus [21]

13
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Abbildung 2: Sagittaler Schnitt durch das Kniegelenk, aus [21]

da durch die zelluläre Fixierung der Chondrozyten in der Knorpelmatrix keine Mi-

gration in das Defektareal erfolgen kann [41].

2.2 Osteoarthrose

2.2.1 Allgemeines

Bei der OA handelt es sich um eine degenerative Gelenkerkrankung. Die OA ist

die weltweit häufigste Gelenkerkrankung des erwachsenen Menschen [30].

2.2.2 Symptome

Ein osteoarthrotisches Gelenk äußert sich vor allem durch Schmerzen [34]. Die

Schmerzqualität wird vom Patienten häufig als bohrend beschrieben [23]. Bela-

stung des betroffenen Gelenks verschlimmert die Schmerzen, während Ruhe zu

einer Schmerzminderung führt. Bei fortgeschrittenem Krankheitsverlauf kann der

Schmerz jedoch auch in Ruhephasen anhalten.

14
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Zu den Schmerzen gesellt sich nach längeren Ruhephasen (zum Beispiel beim

morgendlichen Aufstehen) eine charakteristische Steifheit des Gelenks, die bis zu

einer Stunde anhalten kann.

Mit Fortschreiten der Krankheit erlebt der Patient stärker werdende Einschrän-

kungen der Beweglichkeit des betroffenen Gelenks, die durch Unregelmäßigkeiten

innerhalb des Gelenks, Muskelkrämpfe, Gelenkkontraktur und mechanischen Wi-

derstand durch Osteophyten und freigewordene Gelenkpartikel verursacht werden

kann.

2.2.3 Prävalenz

Etwa jeder dritte Erwachsen zeigt radiologische Zeichen einer Arthrose [9].

Dabei nimmt das Risiko an OA zu erkranken mit dem Alter zu. Hat bei unter 30-

Jährigen nur jeder Zwanzigste mindestens ein osteoarthrotisches Gelenk, beträgt

die Rate bei den über 60-Jährigen schon 50 % [35]. Weitere Risikofaktoren sind

Fettleibigkeit und eine Berufstätigkeit, die mit körperlicher Arbeit einhergeht.

2.2.4 Ätiologie

Die Ätiologie der OA ist bis heute nicht schlüssig geklärt [20]. Wahrscheinlich han-

delt es sich um eine multifaktorielle Erkrankung mit einer Vielzahl von Ursachen -

genetischen, mechanischen und metabolischen.

2.2.5 Diagnose

Eine Diagnose der OA ergibt sich aus klinischen Zeichen wie Schmerz, Funktions-

einschränkung, Krepitationen, tastbaren Osteophyten, Vergröberung der Gelenk-

kontur, Instabilität, Achsabweichung, Erguss und Schwellung [20]. Zusätzliche dia-

gnostische Merkmale im Röntgenbild sind eine Gelenkspaltverschmälerung, sub-

chondrale Sklerosierung, osteophytäre Anbauten und Geröllzysten.

2.2.6 Therapie

Bis zum heutigen Tage liegt der Schwerpunkt in der OA-Therapie auf symptoma-

tischer Behandlung [23]. Strukturmodifizierende sogenannte Disease-modifying-

15



2 Grundlagen

OA-Drugs (DMOAD), welche den eigentlichen Arthroseprozess verlangsamen oder

gar umkehren können, konnten bisher nicht identifiziert werden, sind jedoch For-

schungsgegenstand.

Zu den konservativen nicht-medikamentösen Therapiemaßnahmen zählen Phy-

siotherapie, orthopädische Hilfsmittel, Gewichtsreduktion, sowie Maßnahmen wie

Akupunktur, Magnetfeldtherapie, etc. Gleichzeitig wird OA medikamentös behan-

delt. In diesem Zusammenhang wichtige Wirkstoffe sind Paracetamol, Nichtsteroi-

dale Antirheumatika (NSAR), Kortikoide und Opiode.

Hinzu kommen operative Verfahren bis hin zur Ersetzung des betroffenen Ge-

lenks durch eine Prothese.

2.2.7 Sozioökonomische Folgen

Erkrankungen des Muskel-Skelett-Systems führen zu immensen Kosten für die

Sozial- und Gesundheitssysteme. Diese betrugen zum Beispiel in den Vereinig-

ten Staaten von Amerika im Jahr 1992 149,4 Milliarden US-Dollar, was ca. 2.5%

des Bruttosozialprodukts entsprach [43]. Der Betrag teilte sich zu 48,4% in direk-

te Kosten für die medizinische Versorgung und zu 51,6% in indirekte Kosten wie

Lohneinbußen. Erkrankungen des Muskel-Skelett-Systems führten zu 315 Millio-

nen Arztbesuchen und mehr als 8 Millionen Klinikeinweisungen. Hiervon entfielen

65 Milliarden Dollar auf die Behandlung von OA. Die Erkrankung führte dabei zu

145 Millionen Krankheitstagen.

In Deutschland betrugen die Kosten durch Erkrankungen des Muskel-Skelett-

Systems für das Gesundheitssystem im Jahr 2004 24,46 Milliarden Euro, davon

entfielen alleine 6,77 Milliarden Euro auf die Behandlung von OA [3].

Aufgrund der demographischen Entwicklung und dem prognostizierten Anstieg

des Anteils älterer Menschen an der Bevölkerung ist anzunehmen, dass diese

Kosten in den nächsten Jahren weiter steigen [32].
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2.3 Bildgebung des Kniegelenks

2.3.1 Radiographie

2.3.1.1 Allgemeines

Röntgenstrahlen sind elektromagnetische Wellen, die von Wilhelm Conrad Rönt-

gen zum ersten Mal 1895 beobachtet wurden, und schon bald Anwendung in der

medizinischen Bildgebung fanden.

Röntgenstrahlung wird durch eine Röntgenröhre erzeugt (siehe Abbildung 3).

Es handelt sich hierbei um einen hochevakuierten Glaszylinder, in dem sich zwei

Elekroden befinden: Die durch eine Heizspirale zum Glühen gebrachte Kathode

und die Anode. Nach Anlegen einer Spannung zwischen Anode und Kathode wer-

den durch die Wärmeeinwirkung freigewordene Elektronen von der Kathode zur

Anode hingezogen und beschleunigt. Treffen diese Elektronen auf die Anode wer-

den sie stark abgebremst und geben ca. 1% ihrer Energie in Form von Röntgen-

bremsstrahlung ab (den Rest in Form von Wärme). Zudem werden innerhalb der

Anode durch die Elektronenstöße Atome angeregt. Beim darauf folgenden Über-

gang zurück in den Grundzustand entsteht die charakteristische Röntgenstrah-

lung. Die Röntgenbremsstrahlung weist ein kontinuierliches Spektrum auf, wäh-

rend die charakteristische Strahlung ein Linienspektrum besitzt.

Gemein ist der Röntgenstrahlung die Fähigkeit, Materie zu durchdringen. Ihre

Schwächung während dieses Prozesses ist abhängig von der Qualität des Materi-

als und Grundlage für ihre Anwendung in der radiologischen Diagnostik.

Die Abschwächung bei Durchdringung eines Körpers kann mittels geigneten

Filmmaterials, bzw. elektronischer Sensoren (digitale Radiographie), sichtbar ge-

macht werden. Stark abschwächende Strukturen erscheinen in der dadurch ent-

stehenden zweidimensionalen Projektion des Körpers hell, weniger abschwächen-

de Strukturen dunkel.

Exposition gegenüber ionisierender Strahlung wie Röntgenstrahlung kann den

menschlichen Körper belasten und zu Krebserkrankungen führen. Röntgenunter-

suchungen muß daher stets eine Kosten-Nutzen-Abwägung vorausgehen.
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Abbildung 3: Schematischer Aufbau einer Röntgenröhre

Abbildung 4: Röntgenaufnahme des Kniegelenks
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Stadium Radiologische Anzeichen

Grad 0 Ohne Befund
Grad 1 Initiale Arthrose, beginnende Osteophyten an Eminentia
Grad 2 Mäßige Gelenkspaltverschmälerung, mäßige subchondrale

Sklerosierung
Grad 3 Gelenkspaltverschmälerung > 50 %, Entrundung

Femurcondylus, ausgedehnte subchondrale Skleorisierung,
ausgeprägte Osteophyten

Grad 4 Gelenkdestruktion, Gelenkspalt komplett aufgehoben,
Geröllzysten im Tibiakopf und Femurcondylus,
Subluxationsstellung

Tabelle 1: Stadieneinteilung nach Kellgren und Lawrence [19]

2.3.1.2 Radiographie des osteoarthrotischen Kniegelenks

Die Radiographie ist zur Zeit das entscheidende bildgebende Verfahren zur

klinischen Diagnostik von Osteoarthrose, auch wenn im Röntgenbild Knorpelschä-

den nicht direkt sichtbar sind, da Knorpelgewebe Röntgenstrahlung nicht ausrei-

chend schwächt, um dargestellt werden zu können. Abbildung 4 zeigt ein Röngen-

bild der menschlichen Kniegelenke.

Kriterien für die Diagnose von OA in Röntgenbildern des Kniegelenks wurden

bereits 1957 vorgeschlagen [19]. Dabei handelt es sich um:

• Die Bildung von Osteophyten

• Periartikuläre Knöchelchen

• Verschmälerung des Gelenkspaltes und Sklerose des angrenzenden Kno-

chens

• Zystenbildung

• Veränderungen der Knochenenden, besonders des Femurkopfes

Die Stadieneinteilung nach Kellgren und Lawrence ist Tabelle 1 zu entehmen.

Diese radiologischen Kriterien machen die Diagnose von OA jedoch erst in ei-

nem relativ späten Stadium der Krankheit möglich und sind zu unspezifisch, um

den Krankheitsfortschritt von OA genau zu quantifizieren [10, 31]. Zudem wurde
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gezeigt, dass die Radiographie zwar im medialen Teil des Gelenks relativ akkurate

Ergebnisse liefert, dies aber nicht für den lateralen Teil gilt [2]. Ein genereller Man-

gel ist auch, dass durch Messung der Gelenkspaltbreite nicht zwischen tibialem

und femoralem Knorpelverlust unterschieden werden kann.

Dies sind Gründe dafür, dass sich seit einigen Jahren das Verfahren der Ma-

gnetresonanztomographie, bei der die Knorpel direkt darstellbar sind, als diagno-

stisches Werkzeug immer stärker durchsetzt.

2.3.2 Magnetresonanztomographie

2.3.2.1 Allgemeines

Das Prinzip der magnetischen Kernspinresonanz wurde 1946 entdeckt. Die

Magnetresonanztomographie (MRT) ist ein bildgebendes Verfahren, das auf die-

sem Effekt beruht.

2.3.2.2 Physikalische Grundlagen

Die MR-Bildgebung nutzt einen Effekt von Atomkernen, die ein magnetisches

Kernmoment besitzen [33]. Dies trifft auf alle Atomkerne mit ungerader Nukleo-

nenzahl zu. Der einfachste dieser Atomkerne ist der Wasserstoffatomkern mit nur

einem Proton. Er besitzt das größte magnetische Kernmoment aller Atomkerne

mit ungerader Nukleonenzahl und kommt in jedem lebenden Gewebe vor. Daher

kann man sich bei einer Darstellung der MRT auf die Betrachtung von Wasserstoff-

atomkernen beschränken.

In einem magnetfeldfreien Raum sind die magnetischen Momente innerhalb

eines Gewebes chaotisch und ungeordnet. Befindet sich das Gewebe jedoch in ei-

nem Magnetfeld, richten sich die magnetischen Momente parallel bzw. antiparallel

zum umgebenden Magnetfeld aus. Diese beiden Zustände besitzen unterschiedli-

che Energieniveaus, weshalb der energieärmere parallele Zustand stärker besetzt

ist. Es bildet sich also eine messbare Magnetisierung in Richtung des umgeben-

den Magnetfeldes aus.

Dieser Gleichgewichtszustand kann gestört werden, indem man ein elektroma-

gnetisches Wechselfeld mit einer geeigneten Frequenz senkrecht zum umgeben-
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den Magnetfeld einstrahlt. Bei dieser geeigneten Frequenz handelt es sich um die

von der Stärke des umgebenden Magnetfeldes abhängigen Lamorfrequenz ω0,

welche die Resonanzbedingung erfüllt. Durch Einstrahlung dieses Störfeldes kippt

die Magnetisierung des Gewebes aus der Richtung des statischen Magnetfeldes

und beginnt, um die Feldrichtung des statischen Magnetfeldes zu präzedieren. Die-

se Präzessionsbewegung kann mittels Induktion in einer Empfängerspule gemes-

sen werden. Nach Abschalten des Störfeldes streben die magnetischen Momente

wieder dem Gleichgewichtszustand zu, richten sich also wieder parallel bzw. anti-

parallel aus. Diese sogenannte Relaxation benötigt eine gewebecharakteristische

Abklingzeit.

Der Relaxationsvorgang wird durch gewebespezifische Zeitkonstanten beschrie-

ben.

Spin-Gitter-Relaxationszeit T1 Die Spin-Gitter-Relaxationszeit T1 ist die Zeit,

in der die Längsmagnetisierung nach einem Anregungsimpuls der zu einer 90°-

Auslenkung Kernspins führt, wieder auf 63% der Gleichgewichtsmagnetisierung

angestiegen ist.

Spin-Spin-Relaxationszeit T2 Die Spin-Spin-Relaxationszeit T2 ist die Zeit,

in der die Quermagnetisierung nach einem 90°-Anregungsimpuls wieder auf 37%

ihres ursprünglichen Wertes abgefallen ist.

2.3.2.3 Bilderzeugung

Zur Ortskodierung der magnetischen Impulse werden linear ortsabhängige

Magnetfelder, sogenannte Gradientenfelder, geschaltet.

Schaltet man einen magnetischen Feldgradienten in z-Richtung während der

Anregungsimpuls eingestrahlt wird, so wird nur eine bestimmte Schicht, in der die

Resonanzbedingung erfüllt ist, angeregt. Ein derartiger Gradient kann also zur

Schichtselektion angewendet werden.

Etabliert man nun zusätzlich kurzzeitig einen Gradienten in y-Richtung zum

Zeitpunkt der Anregung, ist es möglich die Phasenlage der Präzession der Spins

zu kontrollieren, sodass jede Bildzeile eine andere Phasenlage besitzt. Schaltet
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man nun noch einen Gradienten in x-Richtung zum Zeitpunkt des Datenauslesens,

kann die Präzessionsgeschwindigkeit, also die ausgesendete Lamorfrequenz, je-

der Bildspalte gesteuert werden.

Die drei verschiedenen Gradienten sorgen also für eine Ortskodierung des

MRT-Signals in allen drei Raumebenen. Das pro Schicht empfangene Signal kann

dann mit Hilfe einer Fourier-Transformation in ein zweidimensionales Schichtbild

umgerechnet werden.

2.3.2.4 Gerätetechnik

Die wesentlichen Bestandteile eines MRTs sind:

• Magnet

• Gradientenspulen

• Hochfrequenzspulen

• Rechnersystem

2.3.2.5 Magnetresonanztomographie des osteoarthrotischen Kniegelenks

Die Magnetresonanztomographie ist zur Zeit das einzige klinisch anwendbare,

nichtinvasive bildgebende Verfahren, das Gelenkknorpel direkt sichtbar machen

kann [4] (siehe Abbildung 5).

Für die Schweregradeinschätzung von Knorpelschäden in Arthroskopien wur-

den im Laufe der Zeit verschiedene Kriterien vorgeschlagen [26], von denen sich

im klinischen Alltag vor allem die Einteilung nach Outerbridge [27] durchgesetzt

hat. Diese sind allerdings nur bei höhergradigen Knorpelschäden auf Magnetreso-

nanztomographien übertragbar [13].

Hingegen bietet sich die quantitative Analyse der Gelenkknorpel auf Grund

ihrer hohen Sensitivität auch in frühen Krankheitsstadien zur Einschätzung des

Krankheitsfortschritts vor allem innerhalb epidemiologischer und klinischer Studien

an. Es wurde gezeigt, das die MRT in der Lage ist akkurate 3D-Repräsentationen

des Knorpelvolumens und der Dickeverteilung bei gesunden Probanden und Pati-

enten mit schwerem Knorpelverlust zu liefern [4, 29].
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Abbildung 5: MRT eines Kniegelenks
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2.4 Segmentierung in der medizinischen Bildverarbeitung

2.4.1 Allgemeines

Mit der steigenden Bedeutung bildgebender Verfahren in der klinischen Diagnostik

nahm auch die Relevanz von Problemstellungen aus dem Bereich der Bildverar-

beitung mit den Jahren zu.

Diese Problemstellungen betreffen die Reduktion der enormen Informations-

menge eines medizinischen Bildes auf einige wenige, für die präzise Diagnostik

aussagekräftige Parameter. Diese Parameter können je nach verwendetem bild-

gebendem Verfahren anatomischer (Computertomographie (CT), MRT, etc.) oder

auch physiologischer (Positronenemissionstomographie (PET), Szintigraphie, etc.)

Natur sein. So ist es zum Beispiel möglich, aus Parametern, wie dem Volumen,

der Lokalisation oder der Form einer bestimmten anatomischen Struktur innerhalb

des MRTs, Informationen über den Krankheitszustand des Patienten zu gewinnen.

Gleiches gilt für Ausdehnung, Ort oder Gestalt einer Region mit bestimmter phy-

siologischer Funktion innerhalb einer PET.

Um die beschriebenen, diagnostisch aussagekräftigen Parameter zu gewin-

nen, ist es notwendig, die interessierenden Strukturen innerhalb des Bildes auf

geeignete Art zu quantifizieren. Grundlage hierfür bildet ein analysiertes Bild, dass

in jeweils bedeutungsgleiche Teilbereiche aufgeteilt ist.

Den Prozeß der Unterteilung eines Bildes in inhaltlich homogene Regionen

bezeichnet man in der Bildverarbeitung mit dem Begriff Segmentierung.

2.4.2 Rechnerunterstützte Segmentierung

Die Durchführung einer Segmentierung geschieht in den meisten Fällen rechner-

unterstützt. Je nach Grad der Rechnerunterstützung kann man den Prozess der

Segmentierung als manuell, semiautomatisch oder vollautomatisch bezeichnen.

Die Rechnerunterstützung bietet dabei mehrere Vorteile. Sie kann nicht nur

den Arbeitsaufwand und die zeitlichen Kosten radikal verringern, sondern zusätz-

lich die Qualität der Segmentierungsergebnisse verbessern.

So ermöglicht sie die Erfassung und Verarbeitung von Bildmerkmalen, die für

das menschliche Auge nicht sichtbar sind. Andererseits ist ein vollautomatisches
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Segmentierungsverfahren trotz Umsetzung komplexer Algorithmen den Bildverar-

beitungsfähigkeiten eines menschlichen Beobachters in den meisten Fällen unter-

legen. Dieser Sachverhalt führt dazu, dass im klinischen Umfeld häufig auf semi-

automatische Verfahren zurückgegriffen wird, die akkurate Ergebnisse und vertret-

baren Zeitaufwand kombinieren.

2.4.3 Klassische Segmentierungsverfahren

2.4.3.1 Allgemeines

Die hier klassische Segmentierungsverfahren genannten Methoden haben ge-

mein, dass die Segmentierung des Bildes nur auf Grund der Betrachtung der Ei-

genschaften des jeweiligen Bildes, also auf Grund der Betrachtung der Grauwerte,

erreicht wird.

2.4.3.2 Punktorientierte Segmentierungsverfahren

Bei den punktorientierten Segmentierungsverfahren handelt es sich um Me-

thoden, bei denen die Klassifizierung in Vorder- und Hintergrund ausschließlich

auf Grund der Intensität des betreffenden Pixels gefällt wird. Ein Beispiel ist das

Schwellwertverfahren, bei dem nach Festlegung eines geeigneten Schwellwerts

jedes einzelne Pixel je nachdem, ob seine Intensität unter oder über diesem Wert

liegt, dem Vorder- oder Hintergrund zugeordnet wird. Abbildung 6 zeigt beispielhaft

eine Schwellwertsegmentierung eines Kniegelenkknorpels in einem MRT.

2.4.3.3 Regionenbasierte Segmentierungsverfahren

Regionenbasierte Segmentierungsverfahren beziehen nicht nur die Merkma-

le eines einzelnen Pixels, sondern einer ganzen Region in den Klassifizierungs-

prozess ein. So zum Beispiel das Region-Growing-Verfahren, bei dem ein Pixel

zum Vordergrund zugeordnet wird, wenn seine Intensität jenseits eines gegebe-

nen Schwellwertes liegt und ein Pfad aus Pixeln mit Intensitäten jenseits des

Schwellwertes zu einem zuvor gesetzten Saatpixel existiert. Im Gegensatz zum

Schwellwertverfahren entsteht als Segmentierungsergebnis so nur eine verbun-
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Abbildung 6: Schnitt durch ein mit der Schwellwert-Methode segmentiertes Knie-
gelenk (T=201)
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Abbildung 7: Schnitt durch ein mit der Region-Growing-Methode segmentiertes
Kniegelenk (T=201)

dene Region. Abbildung 7 zeigt beispielhaft eine Region-Growing-Segmentierung

eines Kniegelenkknorpels in einem MRT.

2.4.3.4 Kantenbasierte Segmentierungsverfahren

Kantenbasierte Verfahren orientieren sich nicht an den Intensitäten der einzel-

nen Pixel, sondern am Intensitätsunterschied zwischen benachbarten Pixeln, also

dem Intensitätsgradienten. Ein hoher Gradient an einer bestimmten Stelle des Bil-

des ist Anzeichen für die Existenz einer Kante über dieser Stelle. Somit genügt es,

das Bild nach lokalen Maxima des Intensitätsgradienten zu untersuchen, um die
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Abbildung 8: Schnitt durch ein Gradientenbetragbild eines Kniegelenks

Pixel zu extrahieren, über die eine Kante verläuft. Im Anschluss kann mit einem

Konturverfolgungsalgorithmus eine zusammenhängende Region als Segmentie-

rungsergebnis extrahiert werden. Abbildung 8 zeigt beispielhaft ein Gradientenbe-

tragbild eines Kniegelenks in einem MRT.

2.4.4 Modellbasierte Segmentierungsverfahren

2.4.4.1 Allgemeines

Die modellbasierten Verfahren beziehen zusätzlich zur Bildinformation des je-

weiligen Bildes a-priori-Wissen über Merkmale des zu segmentierende Objekts

ein. Hierbei kann es sich zum Beispiel um die Form des Objektes handeln. Dies

28



2 Grundlagen

ermöglicht die Segmentierung von qualitativ schlechteren Bildern, bei deren Seg-

mentierung die klassischen Verfahren auf Grund qualitativ ungenügender Bildinfor-

mationen scheitern. Im medizinischen Anwendungsbereich handelt es sich bei den

zu segmentierenden Objekten jedoch nicht um solche mit einer stets identischen

Form, sondern um Strukturen, deren anatomische Form zwischen verschiedenen

Interviduen und zu verschiedenen Zeitpunkten stark variieren kann. Dies bedeu-

tet, das nicht mit rigiden Modellen, sondern mit flexiblen, deformierbaren Modellen

gearbeitet werden muss.

2.4.4.2 Active Contours

Die Active Contours, auch Snakes genannt, wurden 1988 von Kass et al. vorge-

stellt [18]. Es handelt sich dabei um deformierbare Gitternetzmodelle aus Vertices

sowie Vertexverbindungen.

Zu Beginn der Segmentierung muss das Gitternetzmodell innerhalb des Bil-

des in der Nähe der Abbildung des interessierenden Objektes initialisiert werden.

Die eigentliche Segmentierung geschieht über ein physikalisches Energiemodell.

Hierbei wirken externe und interne Kräfte an den einzelnen Vertices, welche deren

Lokalisation verändern. Die Segmentierung ist abgeschlossen, wenn ein lokales

Energieminimum erreicht ist; die Vertices sich also nicht weiter verschieben.

Im Laufe der Zeit wurden viele Formulierungen zur Berechnung der externen

und internen Kräfte vorgeschlagen [18, 42].

2.4.4.3 Active Shape Models

Active Shape Models [6] (ASMs) können verwendet werden, um ein Bild form-

beschränkt zu segmentieren. Das bedeutet, dass die Form des Segmentierungs-

ergebnisses stets einer Menge von Formvariationen entspricht, die zuvor in einer

Trainingsphase definiert wurden. Von Vorteil ist eine formbeschränkte Segmen-

tierung in Bildern, deren Qualität für eine akkurate Segmentierung mit Hilfe von

Snakes nicht ausreicht.

In einer Trainingsphase wird eine repräsentative Anzahl Bilder manuell seg-

mentiert, um aus den resultierenden Binärbildern ein sogenanntes Point Distributi-

on Model (PDM) zu erstellen. Das PDM fasst die im Trainingsdatensatz vorhande-
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nen Formen zu einer mittleren Form x̄, sowie einer Matrix P, welche die Variabilität

der einzelnen Landmarken repräsentiert, zusammen.

In der eigentlichen Segmentierungsphase wird dieses PDM benutzt, um die

Formen des Segmentierungsergebnisses auf solche zu beschränken, die vom

PDM repräsentiert werden. Es werden also stets anatomisch plausible Formen

erzeugt.

2.5 Registrierung in der medizinischen Bildverarbeitung

2.5.1 Allgemeines

Die heute verfügbaren medizinischen Bildgebungsverfahren werden benutzt, um

Informationen über Anatomie oder Funktion des menschlichen Körpers zu gewin-

nen.

Zur Beantwortung einer medizinischen Fragestellung muss die jeweils geeig-

nete Modalität ausgewählt werden - so würde zum Beispiel zur Diagnose einer

Knochenfraktur eine Röntgenuntersuchung angeordnet, während zur Diagnose

eines Hirntumors ein Magnetresonanztomogramm verwendet würde. Die unter-

schiedlichen Verfahren haben dabei jeweils verschiedene Vor- und Nachteile für

die verschiedenen Anwendungsgebiete.

Ein häufiges Problem in der medizinischen Bildverarbeitung besteht darin, dass

gewünscht ist, den Informationsgehalt von zwei unterschiedlichen Modalitäten zu

kombinieren - zum Beispiel jenen eines anatomisch orientierten Bildgebungsver-

fahrens wie der MRT mit dem eines funktional orientierten wie der Positronenem-

misionstomographie (PET).

Eine vergleichbare Problematik ergibt sich, wenn zwei Bilder der selben Moda-

lität, die zu verschiedenen Zeitpunkten entstanden sind oder ein Bild eines spezi-

fischen Patienten mit einem Modell verglichen werden müssen.

Stets ist es gewünscht, zwei unterschiedliche Bilder eines vergleichbaren Ob-

jektes ineinander überzuführen.

In der Bildverarbeitung bezeichnet man die Zuordnung von korrespondieren-

den Koordinaten innerhalb verschiedener Bilder mit dem Begriff Registrierung. Ist

eine derartige Zuordnung gefunden, können die Bilder mittels einer geeigneten
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Transformation ineinander überführt werden.

2.5.2 Einteilung von Registrierungsverfahren

Registrierungsmethoden können je nach Freiheitsgrad der verwendeten Transfor-

mation eingeteilt werden in

• Rigide

• Affine

• Projektive

• Elastische

Verfahren.

Nach der Anwendungsregion der Transformation kann man die Verfahren in

• globale und

• lokale

Methoden unterteilen.

2.6 Reduktion von Formmerkmalen

2.6.1 Allgemeines

Modellbasierte Segmentierungsverfahren basieren auf a-priori-Wissen über die

Form der zu segmentierenden Struktur. Um dieses Wissen rechnertechnisch zu-

gänglich zu machen, muss eine mathematische Beschreibung gefunden werden.

Dies gilt für die Segmentierung rigider Formen zum Beispiel in technischen Anwen-

dungen genauso wie für die Segmentierung von in gewissen Grenzen variablen

Formen wie anatomischen Strukturen.

Um die Formbeschreibungen für digitale Rechnersysteme beherrschbar zu

machen, ist es in der Regel nötig die Beschreibungen durch eine Approximation

zu ersetzen. Es gilt also die Formmerkmale zu reduzieren.
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2.6.2 Beschreibung von rigiden Formen

Es gibt viele Möglichkeiten eine dreidimensionale Form zu beschreiben. Dies reicht

von einfachen Formdeskriptoren wie dem Volumen, dem Umfang und der Rundheit

bis hin zu komplexeren, topologischen Deskriptoren oder statistischen Momenten.

Eine einfache jedoch unter Umständen speicherintensive Möglichkeit eine Form

zu beschreiben, besteht in der Festlegung einer bestimmten Anzahl von Landmar-

ken, welche die Form ausreichend gut approximieren. Landmarken bezeichnen

markante Punkte, die sich zum Beispiel durch eine hohe Krümmung oder eine an-

derweitige besondere Bedeutung auszeichnen. Durch ein Setzen von genügend

Landmarken kann eine Form beliebig genau beschrieben werden. Die Festlegung

der Landmarken kann dabei manuell geschehen oder auch automatisiert werden.

2.6.3 Beschreibung von variablen Formen

Ist es gewünscht, eine in gewissen Grenzen variable Form zu beschreiben, genügt

es nicht, diese nur durch eine gewisse Anzahl Landmarken zu charakterisieren,

denn auch die Varianz der Landmarken muss nun im Modell abgebildet werden.

Als erster Schritt wird nicht nur eine einzige Instanz der Form, sondern ein Trai-

ningsdatensatz aus s Instanzen durch n Landmarken mit jeweils drei Koordinaten

xi charakterisiert, um die Variabilität der Form abzubilden. Die Vektoren x bilden

also eine Verteilung im 3n-dimensionalen Raum. Gelingt es diese Verteilung zu

modellieren, können neue Instanzen, die der beobachteten Formvariabilität inner-

halb der s Instanzen gebildet werden. Zudem können Formen danach untersucht

werden, ob sie gemäß der beobachteten Variabilität plausibel sind. Es wird also

eine Abbildung x = M(b) gesucht, wobei b ein Vektor von instanzbeschreibenden

Parametern ist.

Um das Problem weniger speicherintensiv zu gestalten, ist es nötig, dieses

zu vereinfachen und die Dimensionalität der Daten von 3n zu reduzieren. Hierbei

kann die Tatsache ausgenutzt werden, dass die Lage der einzelnen Landmarken

innerhalb einer Instanz x nicht von einander unabhängig ist, sondern sich gegen-

seitig beeinflusst. Ein Standardverfahren zur Dimensionalitätsreduktion bildet die

Principal Component Analysis (PCA).
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2.6.4 Principal Component Analysis

Die s Instanzen der Form bilden eine Punktwolke im 3n-dimensionalen Raum. Die

PCA berechnet die Hauptachsen dieser Wolke, das heisst die zu einander recht-

winkligen Achsen mit der höchsten Varianz. Diese können daraufhin benutzt wer-

den, um jeden der Punkte durch weniger als 3n Parameter zu approximieren.

Die PCA wird wie folgt durchgeführt:

1. Berechne den Mittelwert x̄:

x̄ =
1
s

s

∑
i=1

xi

2. Berechne die Kovarianzmatrix S:

S =
1

s−1

s

∑
i=1

(xi− x̄)(xi− x̄)T

3. Berechne die Eigenvektoren φi und die dazu gehörigen Eigenwerte λi der

Matrix S

Wenn die 3n× t-Matrix P aus den t Eigenvektoren besteht, welche die größten

Eigenwerte besitzen, kann man jede der s Instanzen durch folgende Formel ap-

proximieren:

x≈ x̄+Pb

wobei b ein t-dimensionaler Vektor mit b = PT (x− x̄) ist.

Durch Variation der Parameter b können dann auch neue Instanzen gebildet

werden, die eine Form besitzen, welche der im Trainingsdatensatz beobachteten

Verteilung entspricht:

x = x̄+Pb (1)

Hierbei muss allerdings die Bandbreite von b beschränkt werden. Da die Va-

rianz der bi innerhalb des Trainingsdatensatzes durch die λi bestimmt wird, ist es

sinnvoll, diese Werte zur Beschränkung zu benutzen. Begrenzt man die bi durch

−3
√

λi ≤ bi ≤ 3
√

λi

erhält man eine den s Instanzen im Trainingsdatensatz ähnliche Form.
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Abbildung 9: PCA: Hauptachsen P1 und P2 einer zweidimensionale Punktmen-
ge (obere Abbildung); Approximation des Datums x durch Formel 1 (t=1) (untere
Abbildung)
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2 Grundlagen

Eine Instanz einer variablen Form kann also durch ein Modell bestehend aus

einer mittleren Form x̄ und einer 3n× t-Matrix P sowie t Parametern gebildet wer-

den, wobei t� 3n.

Abbildung 9 zeigt beispielhaft die Reduktion eines zweidimensionalen Daten-

satzes auf ein Modell mit einem Parameter.
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3 Stand der Forschung

Nachdem gezeigt wurde, dass die radiologische Untersuchung des Kniegelenkzwi-

schenraums nicht geeignet zur genauen Erfassung der Knorpeldicke ist [11, 17],

wurde nach alternativen Methoden gesucht. Hierbei stellte sich die Magnetreso-

nanztomographie, mit der es möglich ist, Knorpelgewebe direkt und nichtinvasiv

abzubilden, als geeignet heraus [10]. Zur Quantifizierung der Knorpel ist es aller-

dings notwendig, diese innerhalb des dreidimensionalen Bildvolumens zu segmen-

tieren.

3.1 Manuelle Segmentierung

Bei der manuellen Segmentierung muss jedes einzelne Voxel des Bildes von Hand

eines medizinischen Experten in Knorpelgewebe oder Hintergrund klassifiziert wer-

den. Da es sich bei den MRTs um dreidimensionale Bildvolumen handelt, muss

Schicht für Schicht segmentiert werden, was eine aufwendige Nachbearbeitung

der Segmentierungsergebnisses in den anderen Schnittebenen notwendig macht.

Die manuelle Segmentierung der Knorpel erwies sich für klinische Studien als

zu zeitaufwendig und kostenintensiv [12]. Zudem beinhalten die Methoden eine

unerwünscht hohe Intra- und Inter-Observer-Variabilität [12], liefern also keine re-

produzierbaren Segmentierungsergebnisse.

Um den Zeit- und Kostenaufwand zu senken, wurden schon bald zweidimen-

sionale semi-automatische Methoden verwendet.

3.2 Zweidimensionale semi-automatische Methoden

Die schon bald angewendeten semi-automatischen Methoden beruhen auf traditio-

nellen zweidimensionalen Ansätzen, wie zum Beispiel interaktiv eingeschränktem

Region-Growing [10] oder Live-Wires [39].

Diese Ansätze weisen allerdings Schwächen auf:

• Die dreidimensionalen Bilddaten werden Schicht für Schicht zweidimensio-

nal segmentiert, was bedeutet, dass eigentlich verfügbare Bildinformatio-
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nen vernachlässigt werden. Folge hiervon sind Diskontinuitäten zwischen

benachbarten Schichten, die aufwendig nachkorrigiert werden müssen.

• Die Methoden weisen durch ihre starke Abhängigkeit von Interaktion mit dem

Benutzer noch immer eine hohe Intra- und Inter-Observer-Variabilität auf.

Die beschriebenen zweidimensionalen semi-automatischen Methoden können die

von manuellen Segmentierungen bekannten Schwächen also nur eingeschränkt

verbessern.

3.3 Zweidimensionale automatisierte Methoden

Um den Zeitaufwand weiter zu verringern und reproduzierbare Ergebnisse zu lie-

fern, wurden zweidimensionale, automatisierte Methoden vorgeschlagen.

Solloway et al. benutzen zweidimensionale Active Shape Models, um einen

zweidimensionalen, sagittalen Schnitt durch das MRT-Volumen zu segmentieren

und die Dicke des Knorpels zu bestimmen [38]. Hierbei muss das Modell interaktiv

initialisiert werden. Das Verfahren wurde an gesunden Probanden und Patienten

im Frühstadium der OA evaluiert.

Kapur et al. schlagen den Gebrauch eines Bayes’schen Klassifizierers vor, der

im Anschluss an eine Femursegmentierung, jedes Pixel in einem zweidimensiona-

len Schnittbild auf Grund der räumlichen Beziehung zu Femur und dessen Inten-

sität in femoralen Knorpel oder Hintergrund klassifiziert [16].

Cheong et al. verwenden CDCG Snakes für die Segmentierung eines zwei-

dimensionalen Schichtbildes [5]. Die Methode wurde für die Segmentierung von

fortgeschritten arthrotischen Gelenken entwickelt. Eine Evaluierung der Ergebnis-

se wurde nicht präsentiert.

Die Segmentierung einer einzigen Schicht innerhalb des Bildvolumens genügt

jedoch nicht zur Bestimmung von Indikatoren für den Krankheitsverlauf der OA, da

die Zuordnung zur entsprechenden anatomischen Posistion innerhalb des Knies

nur ungenau möglich ist. Zudem bedeutet dies einen Verzicht auf wichtige Infor-

mationen, wie zum Beispiel das Gesamtvolumen des Knorpels.
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3.4 Dreidimensionale semi-automatische Methoden

Um Parameter wie das Knorpelvolumen liefern zu können, wurden dreidimensio-

nale semi-automatische Methoden entwickelt, die die gesamten Knorpel segmen-

tieren.

Shim et al. schlagen eine semi-automatische Graph-Cut-Methode vor, bei der

der Benutzer verschiedene Saatpunkte für den Gelenkknorpel sowie angrenzen-

des Gewebe (Knochen, Gelenkflüssigkeit, Menisci) setzt [37]. Das Verfahren wur-

de an zehn Bildern evaluiert. Die Inter-Observer-Variabilität war dabei besser als

bei manuellen Segmentierungen.

Grau et al. verwenden eine Watershed-Methode, die auf a-priori-Wissen zu-

rückgreift [15]. Der Benutzer muss auch hier Marker für die verschiedenen Gewebe

setzen. Das Verfahren wurde an vier gesunden Probanden evaluiert.

Die beschriebenen dreidimensionalen semi-automatischen Verfahren können

den Zeitaufwand deutlich verringern, allerdings ist ihre Performanz dabei weiterhin

stark von der Benutzereingabe abhängig. Somit ergibt sich ähnlich den manuellen

Segmentierungen stets eine gewisse Intra- und Inter-Observer-Variabilität.

3.5 Dreidimensionale automatisierte Methoden

Das Verfahren der Wahl lieferte akkurate und reproduzierbare, dreidimensiona-

le Segmentierungen des Knorpelgewebes ohne Arbeitsaufwand eines Benutzers.

Gesucht wird also eine dreidimensionale, automatisierte Methode.

Ein derartiges Verfahren wurde von Pakin et al. vorgeschlagen. Es handelt sich

dabei um ein Region-Growing-Verfahren, das auf a-Priori-Wissen über die Form

der Knorpel zurückgreift [28]. Die Methode unterscheidet dabei zwischen femo-

ralem und tibialem Knorpelgewebe. Allerdings wurde sie nur an einem gesunden

Probanden und zwei synthetischen Phantomen evaluiert.

Eine weitere vollautomatische Methode wurde von Folkesson et al. präsen-

tiert. Es handelt sich dabei um einen k-Nearest-Neighbour-Klassifizierer [12]. Bei

der Segmentierung wird zwischen femoralem und tibialem Knorpel unterschieden.

Die Methode wurde an einer hohen Zahl Bilder evaluiert, die auch pathologisch

degenerierte Knorpel enthielt.
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4 Material und Methoden

4.1 Bilddaten

Als Bilddaten für die Erstellung von Formmodellen und die Evaluation der au-

tomatischen Segmentierungsergebnisse wurden 17 coronare T1-gewichtete 3D

FLASH Water-Excitation (WE) MR-Bilder von rechten Kniegelenken verwendet, die

mit einem Siemens 1.5-Tesla-Gerät aufgenommen wurden. Die Voxelgröße betrug

0.3125 mm×0.3125 mm×1.5 mm. Die Auflösung der Bilder betrug 512×512×96

Bildpunkte.

4.2 Manuelle Segmentierung

Für die Erstellung der Modelle und die Evaluierung der Segmentierungsergebnis-

se wurden die Bilddaten manuell segmentiert. Hierzu wurde die Software Amira

verwendet. Die Bilder wurden dabei von zwei medizinischen Experten in Hinter-

grund, femoralen Knorpel, medialen und lateralen tibialen Knorpel unterteilt. Fünf

der Segmentierungen wurden zur Erstellung von Formmodellen für Femur und

Knorpel verwendet, die restlichen zwölf zur Evaluation der automatischen Seg-

mentierungsergebnisse.

4.3 Meshgenerierung

Zur Erstellung von Meshes aus Binärbildern wurde das Marching-Cubes-Verfahren

benutzt [22]. Hierbei handelt es sich um einen Algorithmus zur Berechnung von

Isoflächen, der aus einem Bildvolumen ein dreidimensionales Gittermodell gene-

riert.

Der Ansatz des Marching-Cubes-Verfahrens besteht darin, das gegebene Bild-

volumen innerhalb eines kleinen Würfels (Marching Cubes) bestehend aus je acht

Pixeln zu untersuchen. Hierbei wird bestimmt, auf welche Art die Oberfläche den

Würfel schneidet und daraufhin der nächste Würfel untersucht. Das Verfahren

’marschiert’ also von Würfel zu Würfel.

Da jeder Würfel aus acht Vertices besteht und jeder Vertex zwei Zustände - in-
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Abbildung 10: Die 15 verschiedenen Konfigurationen der Würfel

nerhalb (Grauwert 1) und außerhalb ( Grauwert 0) - besitzen kann, gibt es 28 = 256
Möglichkeiten, wie eine Oberfläche den Würfel schneiden kann. Durch Ausnutzung

von zwei Symmetrieeigenschaften kann diese Anzahl reduziert werden:

Erstens erhält man äquivalente Schnittflächen wenn die Werte der Vertices

invertiert sind, was die Anzahl auf 128 reduziert.

Zweitens kann man die Drehsymmetrie ausnutzen und die Anzahl somit weiter

auf 15 verschieden Konfigurationen reduzieren [25] (siehe Abbildung 10).

Diese 15 Konfigurationen werden in einer Lookup-Tabelle abgelegt und für je-

den der 256 ein Index erstellt, der als Zeiger auf die Lookup-Tabelle benutzt wird.

Auf diese Weise kann nachvollzogen werden, welche Kanten des Würfels für ei-

ne bestimmte Konfiguration geschnitten werden. Der Schnittpunkt mit der Kante

wird dabei linear interpoliert. Somit entstehen pro Voxel ein bis fünf Dreiecke, also

hochaufgelöste Meshes. Um diese weniger rechenintensiv zu gestalten, wurden

Verfahren zur Meshreduktion benutzt.

4.4 Meshreduktion

Zur Meshreduktion wurden zwei Verfahren eingesetzt: Das Verfahren zur Verein-

fachung von Oberflächen mit einer quadrischen Fehlermetrik nach [14] und das

Verfahren zur Meshreduktion durch Vertexdezimierung nach [36]. Das erste Ver-
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fahren kollabiert Kanten und interpoliert den entsprechenden Vertex, während das

zweite Verfahren Vertices löscht, sodass die Vertices des reduzierten Meshes eine

Teilmenge des ursprünglichen Meshes bilden.

4.4.1 Vereinfachung von Oberflächen

Zur Reduktion von hochaufgelösten Meshes wurde das Verfahren nach [14] be-

nutzt. Der Algorithmus kollabiert nach und nach die von je zwei Vertices gebildeten

Kanten bis die gewünschte Meshreduktion erreicht ist. Hierzu werden die Kanten

nach ihren Kosten priorisiert, die sich aus einem Maß für den Fehler der entstehen-

den Oberfläche (dem Abstand zur ursprünglichen Oberfläche) berechnen. Dieses

Fehlermaß ist die sogenannte quadrische Fehlermetrik Q.

Zur Berechnung von Q betrachtet man einen bestimmten Vertex v als Schnitt-

punkt der Ebenen, in denen die Meshdreiecke, die an diesem Vertex zusammen-

stossen, liegen. Man erhält damit eine Menge von zum Vertex gehörenden Ebe-

nen. Der Fehler des Vertex kann dann wie folgt als Summe der quadrierten Ab-

stände zu den Ebenen formuliert werden:

∆(v) = ∑
p∈planes(v)

(pT v)2

wobei p = [a b c d]T die Ebene repräsentiert, die durch die Gleichung ax + by +
cz+d = 0 mit a2 +b2 + c2 = 1 definiert wird.

Diese Fehlermeldung kann dann in eine quadratische Form umgeschrieben

werden:

∆(v) = ∑
p∈planes(v)

(vT p)(pT v) =

= ∑
p∈planes(v)

vT (ppT )v =

= vT ( ∑
p∈planes(v)

Kp)v
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Algorithmus 1 Die Vereinfachung von Oberflächen nach [14]

1. Berechne die Matritzen Q für alle Vertices

2. Finde alle Vertexpaare (v1,v2)

3. Berechne die optimale neue Vertexposition v̄. Aus dem Fehler ∆(v) =
v̄T (Q1 +Q2)v̄ berechnen sich die Kosten für die Kontraktion dieser Kante

4. Sortiere alle Kanten nach der Höhe ihrer Kosten

5. Entferne iterativ die Kante (v1,v2) mit den jeweils geringsten Kosten aus der
Kostenliste, kollabiere die Kante auf v und aktualisiere die Kosten von allen
Paaren in der Kostenliste

wobei Kp die Matrix

Kp = ppT =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2


ist. Kp kann also benutzt werden, um den quadrierten Abstand eines beliebigen

Punktes zur Ebene p zu berechnen. Wenn man alle Matritzen Kp eines Vertex

summiert, kann der Fehler eines Vertex mittels einer einzigen Matrix Q angegeben

werden:

∆(v) = vT Qv

Die neue Vertexposition v̄ auf einer zu kollabierenden Kante wird dann berech-

net, indem der Fehler ∆(v) minimiert wird. Dieses Minimum ist bestimmt durch
∂∆

∂x = ∂∆

∂y = ∂∆

∂z = 0 und kann durch die Lösung eines linearen Gleichungssystems

bestimmt werden.

Algorithmus 1 beschreibt den Vorgang der Meshreduktion Schritt für Schritt.

4.4.2 Meshreduktion durch Vertexdezimierung

Zur weiteren Reduktion der Meshes wurde das Verfahren nach [36] benutzt. Hier-

bei wird die Anzahl der Dreiecke eines Dreiecksmeshes reduziert, wobei versucht
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wird, die ursprüngliche Topologie zu bewahren und die ursprüngliche Geometrie

so gut wie möglich zu approximieren. Die ursprünglichen Vertexpositionen bleiben

dabei erhalten.

Zur Meshreduktion untersucht der Algorithmus nach und nach jeden Vertex

des Meshes darauf, ob dieser entfernt werden kann. Falls er entfernt werden kann,

wird das dadurch im Mesh entstanden Loch durch eine Triangulation geschlossen.

Dieser Prozess wird solange wiederholt, bis eine bestimmte Endbedingung (zum

Beispiel eine gewisse Anzahl Dreiecke) erreicht wird.

Die drei Schritte des Algorithmus beinhalten:

1. Klassifizierung der lokalen Geometrie und Topologie des Vertex

2. Anwendung des Entfernungskriteriums

3. Triangulation des eventuell entstehenden Lochs

4.4.2.1 Klassifizierung der lokalen Geometrie und Topologie

In einem ersten Schritt ist es notwendig, jeden Vertex in eine von fünf Klassen

einzuordnen, da die Klassenzugehörigkeit das Entfernungskriterium bestimmt. Die

drei Hauptklassen sind (siehe Abbildung 11):

• Simple

• Komplex

• Boundary

Zusätzlich kann ein Simple-Vertex in folgende zwei Klassen eingeordnet werden:

• Interior Edge

• Corner

Hierzu muss überprüft werden, ob sogenannte Feature Edges existieren. Das sind

mit dem Vertex verbundenen Kanten, deren angrenzende Flächen einen Winkel

aufweisen, der größer als ein spezifizierter Feature Angle ist.
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Abbildung 11: Beispiele für die drei Hauptklassen: Simple (links), Complex (Mitte)
und Boundary (rechts)

Simple-Klasse Der Vertex ist von einem geschlossenen Ring von Dreiecken

umgeben und jede mit dem Vertex verbundene Kante ist Teil von genau zwei Drei-

ecken.

Komplex-Klasse Der Vertex ist von einem nicht geschlossenen Ring von

Dreiecken umgeben oder es gibt eine oder mehrere mit dem Vertex verbundene

Kanten, die nicht Teil von genau zwei Dreiecken sind.

Boundary-Klasse Befindet sich ein Vertex auf dem Rand des Meshes, wird

er in die Boundary-Klasse klassiert.

Interior-Edge-Klasse Wenn der Vertex ein Simple-Vertex ist und mit genau

zwei Feature Edges verbunden ist, wird er in die Interior-Edge-Klasse eingeordnet.

Corner-Vertex-Klasse Ist der Vertex ein Simple-Vertex und mit einer oder

drei Feature Edges verbunden, wird er in die Corner-Vertex-Klasse klassiert.
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4.4.2.2 Anwendung des Entfernungskriteriums

Simple-Vertices Simple Vertices werden entfernt, wenn sie innerhalb eines

bestimmten Toleranzabstandes zu der von den verbundenen Dreiecken gebildeten

Durchschnittsebene liegen.

Boundary-Vertices Boundary-Vertices werden entfernt, wenn sie innerhalb

eines bestimmten Toleranzabstandes zu der von den zwei angrenzenden randbil-

denden Vertices gebildeten Geraden liegen.

Interior-Edge-Vertices Interior-Edge-Vertizes werden entfernt, wenn sie in-

nerhalb eines bestimmten Toleranzabstandes zu der von den zwei angrenzenden

auf den Feature Edges liegenden Vertices gebildeten Geraden liegen.

Corner-Vertices Corner-Vertices werden nicht entfernt.

4.4.2.3 Triangulation

Zur Triangulation der entstandenen Löcher im Mesh wird das Loch in zwei

Hälften geteilt. Dies geschieht entlang einer Linie von zwei nicht benachbarten

Vertices. Jedes der entstandenen Segmente wird erneut geteilt bis nur noch drei

Vertices das Segment bilden. Diese drei Vertices können dann ein neues Dreieck

bilden.

Allerdings kann es vorkommen, dass die Segmente sich überlappen. In diesem

Fall wird ein Fehler ausgegeben und der entsprechende zu löschende Vertex nicht

entfernt und die von ihm gebildeten Dreiecke bleiben erhalten.

4.5 Registrierung

Zur Lösung der Aufgabenstellung war es notwendig, ein Verfahren zur Registrie-

rung einer Punktmenge auf eine andere Punktmenge zu verwenden. Eine Stan-

dardmethode hierfür ist der Iterative-Closest-Point-Algorithmus (ICP) [1]. Der ICP

ist ein iteratives Verfahren, das den Abstand zwischen korrespondierenden Punk-

ten minimiert, bis ein lokales Minimum der Fehlerfunktion erreicht wird.
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Algorithmus 2 ICP-Algorithmus

1. Finde die räumlich nächsten Punkte in den beiden Punktmengen

2. Berechne die Transformation, die die Summe der Quadrate der Abstände
minimiert

3. Wende die Transformation an

4. Breche ab, wenn die Änderung in der Summe der Quadrate der Abstände
unter einen bestimmten Schwellwert fällt, ansonsten gehe zu 1.

Sei P1 eine auf die Punktmenge P2 zu registrierende Punktmengen und beste-

he P1 aus n1 Punkten und P2 aus n2, so werden in einem ersten Schritt für jeden

der n1 Punkte aus P1 der räumlich nächste Punkt aus P2 gesucht.

Nach der Berechnung dieser korrespondierenden Punktpaare wird eine Trans-

formation berechnet, welche die Punktmengen derart aufeinander registriert, dass

die Summe der Quadrate der Abstände zwischen den korrespondierenden Punkt-

paaren minimal wird. Diese Transformation wird auf P1 angewendet.

Das beschriebene Verfahren wird iterativ wiederholt, bis die Änderung in der

Summe der Quadrate der Abstände unter einen vorgegebenen Schwellwert fällt,

also ein lokales Minimum der Fehlerfunktion erreicht wird (siehe Algorithmus 2).

4.6 Landmarkengenerierung

Zur Erstellung eines Point Distribution Models (PDMs) ist es notwendig, die in ei-

nem Trainingsdatensatz beobachteten Formen durch eine genügend hohe Anzahl

von Landmarken zu charakterisieren. Gerade bei komplexen Formen wie denen

von menschlichen Kniegelenkknorpeln ist das eine schwierige Aufgabe: Es muss

eine hohe Zahl von Landmarken gesetzt werden, um die Form ausreichend zu be-

schreiben, während gleichzeitig genügend herausstechende anatomische Merk-

male fehlen. Dies bedeutet, dass ein automatisches Verfahren entwickelt werden

muss, das anatomisch korrespondierende Pseudolandmarken generiert (siehe Ab-

bildung 12).

Hierzu wurden aus den manuell segmentierten Trainingsbildern hochaufgelö-

ste Gitternetze erstellt, deren Vertexanzahl schrittweise reduziert wurde. Diese Re-
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Abbildung 12: Das verwendete Verfahren zur Landmarkengenerierung
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Abbildung 13: Von der manuellen Segmentierung über elastische Registrierung
zur Erstellung von Pseudolandmarken
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duktion geschah unter Berücksichtigung des Erhalts der ursprünglichen Form der

Oberflächen, sowie der anatomischen Korrespondenz der verbleibenden Vertices.

Die anatomisch korrespondierenden Vertices wurden durch eine elastische Regi-

strierung der Oberflächen ausfindig gemacht (siehe Abbildung 13).

4.6.1 Oberflächenerstellung

Die Trainingsvolumina wurden manuell segmentiert. Aus den resultierenden Binär-

bilden wurden mit Hilfe des Marching-Cubes-Verfahrens jeweils ein Gitternetz für

den femoralen sowie den medialen und den lateralen tibialen Knorpel erstellt. Die-

se Meshes konnten jedoch nicht direkt zur Modellerstellung verwendet werden,

da sie zwei Grundbedingungen für die Erstellung eines PDMs verletzten: Erstens

war die Anzahl der Vertices zu hoch, um eine vertretbare Rechenzeit zu erreichen,

zweitens waren die Vertices nicht anatomisch korrespondierend.

4.6.2 Meshdezimierung

Um die erste Grundbedingung - eine niedrige Vertexanzahl - zu erfüllen, mus-

sten die Meshes vereinfacht [14] werden. Dies konnte jedoch nicht unabhängig

voneinander für jeden Mesh einzeln geschehen, da ansonsten die zweite Grund-

bedingung - die anatomische Korrespondenz - unerfüllbar wurde. Daher wurde

zunächst nur ein zufällig ausgewählter Referenzmesh dezimiert.

4.6.3 Registrierung

Um die anatomisch korrespondierenden Vertices zu finden, wurden folgend auf die

Vereinfachung des Referenzmeshes alle weiteren Meshes auf den Referenzmesh

registriert.

Dafür wurde zunächst eine hierarchische Registrierung mittels des ICPs durch-

geführt, bei der die Freiheitsgrade immer mehr erhöht wurden, bis am Ende eine

Rotation, Skalierung und Translation zugelassen wurde. Die rigide registrierten

Meshes sowie der Referenzmesh wurden dann weiter auf eine sehr geringe An-

zahl Vertices reduziert [36], und die jeweils räumlich am nächsten liegenden Verti-

ces von registrierten Meshes und Referenzmesh einander zugeordnet. Über diese
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Zuordnung konnte durch Interpolation ein Vektorfeld berechnet werden, das den je-

weiligen Mesh auf den Referenzmesh abbildet. In einem nächsten Schritt wurden

diese Vektorfelder auf die noch nicht reduzierten Meshs angewendet und diese so

elastisch auf den Referenzmesh registriert.

4.6.4 Pseudolandmarkenbestimmung

In einem letzten Schritt wurden zu jedem Vertex im Referenzmesh die räumlich

jeweils nächsten Vertices in den elastisch registrierten Meshes identifiziert. Diese

Vertices wurden in die ursprüngliche Position zurücktransformiert und als Pseudo-

landmarken für die Generierung des PDMs übernommen.

4.7 Modellbasierte Segmentierung

4.7.1 Allgemeines

Modellbasierte Verfahren finden Anwendung in der Segmentierung von qualitativ

schlechtem Bildmaterial, das unter Rauschen, Stördaten oder Artefakten leidet.

Segmentierungsverfahren, die rigide Modelle benutzen, sind seit längerer Zeit be-

kannt. Allerdings verlangen viele praktische Anwendungen die Segmentierung von

Objekten, deren Form - wenn auch in gewissen Grenzen - veränderlich sind. Gera-

de in der medizinischen Bildverarbeitung ist dies eine häufige Problemstellung, da

die anatomischen Entitäten des menschlichen Körpers zwischen verschiedenen

Patienten in ihrer Form außerordentlich variabel sein können.

4.7.2 Intensitätsbasierte Active Contours

4.7.2.1 Allgemeines

Bei den Active Contours handelt es sich um Meshmodelle, die iterativ defor-

miert werden, indem ihre Vertices basierend auf einem physikalischen Energiemo-

dell verschoben werden. Dieses Energiemodell besteht aus externen und internen

Kräften. Hierbei ziehen die externen Kräfte die Vertices in Richtung der Orte inner-

halb des Bildes, von denen angenommen wird, dass sich dort eine Kante des zu

segmentierenden Objektes befindet, während die internen Kräfte der Deformation
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Abbildung 14: Schema einer Snakeiteration: Externe Kräfte (rot) und interne Kräfte
(grün) bestimmen die neue Vertexpositionen

entgegenwirken und die innere Struktur des Meshes beibehalten (siehe Abbildung

14). Externe und interne Kräfte wirken also antagonistisch. Eine Segmentierung

des Objektes ist erzielt, wenn die Kräfte im Gleichgewicht sind, das heisst, wenn

ein lokales Energieminimum erreicht wurde.

Die jeweils neuen Vertexposition ergeben sich dann wie folgt:

pi (t +1) = pi (t)+αfext (pi (t))+βfint (pi (t))

wobei α und β Parameter sind, die den Einfluß der externen und internen Kräfte

festlegen.
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4.7.2.2 Interne Kräfte

Für die Formulierung der internen Kräfte wurde eine elastische Kraft zwischen

miteinander verbundenen Vertices modelliert:

fint (pi (t)) =
1
m

m

∑
j=1

(
n j (pi (t))−pi (t)
||pi (t)−n j (pi (t))

∗wpi j (t)
)

mit

wpi j = ||pi (t)−n j (pi (t)) ||− ||pi(0)−n j (pi (0)) ||

wobei n j (pi (t)) die m mit pi verbundenen Nachbarvertices sind.

4.7.2.3 Externe Kräfte

Die externe Kraft orientiert sich an der Intensität des Bildes in Normalenrich-

tung:

fext (pi (t)) = z−pi (t)

wobei z die Koordinaten des räumlich nächsten Punktes in Normalenrichtung be-

zeichnet, an dem die Intensität

• unter einem bestimmten Threshold T liegt, falls die Intensität bei pi über T

ist

• über einem bestimmten Threshold T liegt, falls die Intensität bei pi unter T

ist

4.7.3 Active Shape Models

4.7.3.1 Allgemeines

Eine modellbasierte Methode zur Segmentierung von Formen deren Erschei-

nungsbild variiert sind die sogenannten Active Shape Models (ASMs). Hierbei han-

delt es sich um ein Verfahren, das, beruhend auf der Segmentierungsmethode

der Active Contours oder Snakes, Objekte innerhalb eines Bildes segmentiert. Die

Form des Segmentierungsergebnisses bleibt dabei auf Formen, die auf Grund der
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Abbildung 15: Segmentierung mit ASMs

beobachteten Formen in einem Trainingsdatensatz plausibel sind, beschränkt. Ab-

bildung 15 zeigt schematisch den Aufbau eines ASM-Frameworks.

4.7.3.2 Training

Um ASMs zu trainieren muss a-priori-Wissen über die Form des zu segmen-

tierenden Objektes generiert und in einer verarbeitbaren Weise zur Verfügung ge-

stellt werden. Dies geschieht in Form eines Point-Distribution-Modells. Ein derarti-

ges PDM besteht aus einer mittleren Form x̄ und einer 3n× t-Matrix P, welche die

Varianz der Landmarken modelliert.

Zur Erstellung eines PDMs benötigt man einen Trainingsdatensatz aus vorseg-

mentierten Bildern des gesuchten Objekts. Innerhalb dieser Datensätze werden
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Abbildung 16: Von Pseudolandmarken zum Point-Distribution-Model
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anatomisch korrespondierende Landmarken gesetzt. Die Anzahl der Landmarken

muß dabei hoch genug sein, um die Form des Objektes ausreichend akkurat zu

beschreiben. Die einfachste Methode ist, die Landmarken manuell von einem Ex-

perten setzen zu lassen. Das ist aber in der Praxis sehr mühsam und zeitaufwen-

dig. Zudem ist es bei Formen denen herausragende anatomische Merkmale fehlen

schwierig, genügend Landmarken zu finden, um die Form akkurat zu beschreiben.

Aus diesen Gründen wurde in dieser Arbeit das beschriebene Verfahren zur Er-

stellung von Pseudolandmarken benutzt, um ein PDM zu generieren.

Sind die Landmarken gesetzt, können die dreidimensionalen Formen im Trai-

ningsdatensatz durch jeweils n Punkte beschrieben werden. Als Struktur hierfür

eignet sich ein 3n-dimensionaler Vektor der Form

x = (x1, . . . ,xn,y1, . . . ,yn,z1, . . . ,zn)T

Daraufhin werden die Landmarken rigide aufeinander registriert, da verschie-

dene globale Skalierungen und Rotationen nicht ins PDM eingehen sollen.

Aus den aufeinander registrierten xi wird dann durch Anwendung der PCA

ein PDM gebildet (siehe Kapitel 2.6.4). Die Anzahl der Modes of Variation t kann

dabei in der Regel auf einige wenige beschränkt werden, ohne hohe Einbußen in

der Genauigkeit des Modells in Kauf nehmen zu müssen (siehe Abbildung 16).

4.7.3.3 Segmentierung

Zur Segmentierung eines unbekannten Bildes muß die mittlere Form x̄ inner-

halb des Bildes nahe dem gesuchten Objektes initialisiert werden. Daraufhin wird

es als Active Contour gemäß der Bildinformationen deformiert. Das Ergebnis ist

eine Segmentierung x′, die unter Umständen anatomisch nicht plausibel ist. Um

diesen Mangel zu beheben, wird das Segmentierungsergebnis in einem nächsten

Schritt formbeschränkt.

Gesucht ist also die zum Segmentierungsergebnis nächste plausible Form in-

nerhalb des Parameterraumes. Hierzu wird zunächst x̄ rigide auf x′ registriert, um

eventuelle Rotationen und Skalierungen abzubilden.
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Daraufhin wird x′ in den Parameterraum projiziert:

b′ = PT (x′− x̄)

Um eine plausible Form zu generieren, werden aus den b′i die neuen Parameter

b∗i beschränkt, sodaß

|b∗i | ≤ 3
√

λi

wobei

b∗i =


3
√

λi falls b′i > 3
√

λi

−3
√

λi falls b′i <−3
√

λi

b′i falls |b′i| ≤ 3
√

λi


Die zu x′ nächste plausible Form ergibt sich dann als

x∗ = x̄+Pb∗

Dieser Prozeß aus Active-Contour-Deformation, Registrierung und Formbe-

schränkung wird iterativ durchgeführt, bis die Änderung zwischen den b∗ aufein-

anderfolgender Iterationen unter einen festgesetzten Schwellwert fällt.

4.8 Automatische Knorpelsegmentierung

4.8.1 Problematik

Gegenwärtige klinische MR-Aufnahmen des menschlichen Kniegelenks liefern Bil-

der, in denen die Knorpel regional unterschiedlich gut von den umgebenden Ge-

weben abgrenzbar sind. So kann man einen hohen Kontrast zu den Knochen,

geringeren Kontrast zu Muskeln und Sehnen, schlechten Kontrast zu den Menis-

ken sowie synovialer Flüssigkeit und erwartungsgemäß praktisch keinen Kontrast

zu angrenzendem Knorpelgewebe beobachten.

Dies hat zur Folge, dass klassische Segmentierungsalgorithmen, die sich an

Bildinformation wie Kanten und Intensitäten orientieren, bei Anwendung auf die

Knorpelsegmentierung nicht zu qualitativ ausreichenden Ergebnissen führen. Die-

se Segmentierungsergebnisse bedürfen daher einer aufwendigen Korrektur durch

einen Experten mit ausreichend Vorwissen über die Anatomie des menschlichen
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Kniegelenks.

4.8.2 Ansatz

Ein naheliegender Ansatz zur Automatisierung der Knorpelsegmentierung besteht

darin, den beschriebenen Korrekturprozess zu modellieren und in den Segmen-

tierungsalgorithmus einzubinden. So kann man aus einem Trainingsdatensatz aus

vorsegmentierten Bildern a-priori-Wissen bezüglich der Form der Kniegelenkknor-

pel gewinnen, mit dessen Hilfe es möglich wird, die Segmentierung der Knorpel

in weiteren, unbekannten Datensätzen auf anatomisch plausible Formen zu be-

schränken.

Zur Realisierung einer solchen formbeschränkten Segmentierung können Ac-

tive Shape Models (siehe Kapitel 4.7.3) benutzt werden.

Bei der vollautomatischen Segmentierung von Kniegelenkknorpeln führt dieser

Ansatz jedoch zu mehreren Problemen:

• Zur akkuraten Segmentierung muss die mittlere Form x̄ des PDMs räumlich

nahe der Position der interessierenden Struktur initialisiert werden.

• Die Segmentierung von fortgeschritten arthrotischen Kniegelenken mittels

ASMs gestaltet sich als schwierig, da die Einbeziehung von pathologisch

stark veränderten Knorpeln in den Trainingsdatensatz die Formbeschrän-

kung durch das PDM zu sehr aufweichen würde. Dies hätte zur Folge, dass

das ASM sich im Extremfall wie eine Snake verhalten würde und dessen De-

formation lediglich durch die im Bild enthaltenen (für die akkurate Segmen-

tierung nicht ausreichenden) Informationen bestimmt würde. Mit der ASM-

Methode können also nur gesunde Knorpel segmentiert werden.

Um dem ersten Problem zu begegnen, sollte in einem ersten Schritt der leich-

ter zu bestimmende Femurknochen segmentiert werden, um die starke räumliche

Beziehung zwischen Knorpeln und Femur zur Initialisierung des Knorpelmodells

auszunutzen.

Das zweite Problem sollte durch eine anschliessend an die ASM-Segment-

ierung der Knorpel durchgeführte Verfeinerung der Segmentierung gelöst werden.
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Diese Verfeinerung sollte die strenge Formbeschränkung des ASM aufheben und

die Bildinformationen im Umkreis der ASM-Segmentierung näher untersuchen.

4.8.3 Training

Um eine formbeschränkte Segmentierung zu ermöglichen, wurden Point-Distribu-

tion-Modelle für Femur und femoralen sowie die beiden tibialen Knorpel erstellt.

Hierzu wurde ein Trainingsdatensatz aus fünf MRTs von fünf verschiedenen, ge-

sunden Probanden manuell segmentiert. Aus den resultierenden Binärbildern wur-

den mit dem Marching-Cube-Verfahren hochaufgelöste dreidimensionale Mesh-

Modelle erstellt. Diese wurden benutzt um gemäß Kapitel 4.6 Pseudolandmarken

zu generieren und gemäß Kapitel 4.7.3.2 jeweils ein PDM für Femur und Knorpel

zu erstellen.

Dabei wurden die Meshes bis auf eine möglichst geringe Anzahl Landmarken

reduziert, um die Rechendauer niedrig zu halten, und gleichzeitig die Form von Fe-

mur und Knorpeln ausreichend gut zu repräsentieren. Resultat war ein Modell mit

353 Landmarken für den Femur und 300 Landmarken für die Knorpel. Abbildung

17 zeigt die mittlere Form des entstandenen PDM.

Abbildungen 18 und 19 zeigen die Auswirkungen einer Variation des Parame-

ters b1 auf das Femur- und das Knorpelmodell, während Abbildung 20 eine durch

das PDM erstellte Forminstanz zeigt, die nicht anatomisch plausibel ist.

4.8.4 Automatische Schwellwertbestimmung

Für die Segmentierung der Knorpel wurde in einem ersten Schritt ein geeigneter

Schwellwert bestimmt, der Knorpel und knöcherne Strukturen akkurat trennt.

Innerhalb der MRTs gab es Voxel mit ungewöhnlich hohen Ausreißerwerten,

welche die automatische Bestimmung eines geeigneten Schwellwertes erschwer-

ten. Daher wurden die MRTs in einem ersten Schritt vorverarbeitet.

Dies geschah, indem ein kumulatives Histogramm berechnet wurde, in wel-

chem der Grauwert gesucht wurde, bis zu dem 99 % der Voxel enthalten waren.

Die übrigen 1 % der Voxel mit ungewöhnlich hohen Grauwerten wurden mit diesem

Grauwert belegt. Daraufhin wurde das MRT normalisiert, also über den gesamten

Wertebereich gestreckt. Nach dieser Prozedur waren die MRTs vergleichbar, das
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Abbildung 17: Mittlere Form des Modells von Femur und Knorpel
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Abbildung 18: Das Femur-Modell: Erster Mode of Variation: b1 = −50; b1 =
0; b1 = 50; λ1 = 3298.37

Abbildung 19: Das Knorpel-Modell: Erster Mode of Variation: b1 = −50; b1 =
0; b1 = 50; λ1 = 565.052
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Abbildung 20: Eine durch das PDM generierte anatomisch nicht plausible Form:
b1 = 75 = 3.16

√
λ1

heißt vergleichbare anatomische Strukturen lagen in einem ähnlichen Grauwert-

bereich.

Der automatische Schwellwert, der den Knochen von den Knorpeln trennen

sollte, wurde daraufhin wie folgt berechnet:

T = m+(Imax−m)∗0.5

wobei Imax der höchste Grauwert des MRTs ist und m das absolute Maximum

des Histogramms des Bildes.

Der Schwellwert T wurde benutzt, um das Bild in zwei Segmente zu teilen: Ein

Segment enthielt die gesamten knöchernen Strukturen, das andere Segment den

gesamten Knorpel.

Das entstandene Binärbild wurde daraufhin mit einer 3×3×3-Maske dilatiert

und erodiert, um eventuelle Löcher zu schließen.

Abbildung 21 zeigt ein MRT, das mit dem Schwellwert T segmentiert wurde.
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Abbildung 21: Mit dem automatischen Schwellwert T segmentiertes MRT
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Abbildung 22: Initialisierung des Femurmodells

4.8.5 Femursegmentierung

4.8.5.1 Initialisierung

Um das Knorpelmodell ausreichend akkurat initialisieren zu können, wurde in

einem ersten Schritt der Femur segmentiert. Bedingt durch die Größe und definier-

te Lokalisation des Femurs innerhalb der Kniegelenk-MRTs konnte die Initialisie-

rungsprozedur relativ einfach gestaltet werden, indem die mittlere Form des PDMs

in der oberen Hälfte des Bildes zentriert wurde (siehe Abbildung 22). Daraufhin

wurde die mittlere Form gemäß Kapitel 4.7.2 deformiert und gemäß Kapitel 4.7.3
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formbeschränkt. Dieser Vorgang wurde iterativ wiederholt.

4.8.5.2 ASM-Segmentierung

Zur Segmentierung des Femurs wurde die mittlere Form des Femurmodells

im Zentrum der oberen Hälfte des Bildes initialisiert. Daraufhin wurde es gemäß

Kapitel 4.7.2 an das aus der automatischen Schwellwertsegmentierung entstande-

ne Binärbild angepasst und durch das im Training erstellte PDM formbeschränkt.

Folgende Parameter stellten sich als geeignet für eine akkurate Segmentierung

heraus:

• Anzahl Snake-Iterationen: 10

• Länge des Suchstrahls in Normalenrichtung: 70 mm

• α = 0.5

• β = 0.2

• Anzahl ASM-Iterationen: 30

Abbildung 23 zeigt einen Schnitt durch die Initialisierung des Femurmodells sowie

die Active-Contour-Segmentierung nach 5 Iterationen. Abbildung 24 zeigt einen

Schnitt durch die Active-Contour-Segmentierung und die resultierende formbe-

schränkte ASM-Segmentierung nach einer Iteration. Abbildung 25 zeigt die Initiali-

sierung des Femurmodells und das Segmentierungsergebnis nach 30 Iterationen.

4.8.6 Knorpelsegmentierung

Zur Segmentierung der Gelenkknorpel wurde eine ähnliche Prozedur wir für die

Segmentierung des Femurs genutzt: Das Knorpelmodell wurde initialisiert und

daraufhin als intensitätsbasierte Active Contour deformiert und danach formbe-

schränkt.
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Abbildung 23: Initialisierung des Modells (rot) und Active-Contour-Segmentierung
nach 5 Iterationen (grün)
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Abbildung 24: Active-Contour-Segmentierung (rot) und formbeschränkte ASM-
Segmentierung (gelb) nach einer ASM-Iteration
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Abbildung 25: Initialisierung des Femurmodells (rot, transparent) und ASM-Seg-
mentierung nach 30 Iterationen (grün)

67



4 Material und Methoden

4.8.6.1 Initialisierung

Der segmentierte Femur wurde zur Initialisierung des Knorpelmodells genutzt,

indem die mittlere Form des Femurs mit dem ICP auf die entstandene Segmen-

tierung registriert wurde und die berechnete Transformation auf die mittlere Form

des Knorpelmodells angewendet wurde.

4.8.6.2 ASM-Segmentierung

Zur Segmentierung der Knorpel wurde das Knorpelmodell gemäß Kapitel 4.7.2

an das aus der automatischen Schwellwertsegmentierung entstandene Binärbild

angepasst und durch das im Training erstellte PDM formbeschränkt. Folgende Pa-

rameter stellten sich als geeignet für eine akkurate Segmentierung heraus:

• Anzahl Snake-Iterationen: 30

• Länge des Suchstrahls in Normalenrichtung: 5 mm

• α = 0.6

• β = 1.0

• Anzahl ASM-Iterationen: 30

Abbildung 26 zeigt die ASM-Segmentierung der Knorpel in Bild 212.

4.8.6.3 Intensitätsbasierte Verfeinerung der Segmentierung

Um die erhaltene ASM-Segmentierung weiter zu verfeinern, wurden die Inten-

sitäten in der Region der ASM-Segmentierung genauer untersucht.

In einem ersten Schritt wurde ein Schwellwert automatisch bestimmt, der die

Knorpel von ihrer Umgebung trennen sollte. Hierzu wurde die Region der ASM-

Segmentierung aus dem ursprünglichen Bild ausgeschnitten und die Intensitäten

jener Voxel untersucht, die einen hohen Gradientenbetrag aufwiesen. Der Schwell-

wert wurde für jeden coronaren Schnitt durch das MRT wie folgt berechnet:

T2(z) =
1

|ICut,Grad|

X

∑
x=0

Y

∑
y=0

ICut,Grad(x,y,z)
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Abbildung 26: ASM-Segmentierung der Knorpel in Bild 212
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mit

ICut,Grad(x,y,z) =

{
1 falls ∇I(x,y,z)≥ G ∧ IASM(x,y,z)≥ 1
0 falls ∇I(x,y,z) < G ∨ IASM(x,y,z) < 1

}

wobei I(x,y,z) das ursprüngliche MRT ist, IASM(x,y,z) die ASM-Segmentierung

und G ein geeigneter Schwellwert für den Gradientenbetrag.

Die Segmentierung wurde daraufhin verfeinert, indem alle Voxel, für die folgen-

de Bedingung zutraf, als Knorpel klassifiziert wurden:

I(x,y,z) > T2(z)+d

wobei d die Distanz des Voxels x,y,z zum nächsten Voxel innerhalb der ASM-

Segmentierung ist.

4.9 Implementierung

4.9.1 Allgemeines

Die beschriebenen Methode zur Knorpelsegmentierung in MRT wurde in der Pro-

grammiersprache C++ implementiert. Hierzu wurden verschiedene C++-Klassen-

bibliotheken zur Bildverarbeitung, Visualisierung und Erstellung der Benutzerschnitt-

stelle verwendet: Qt, ITK und VTK.

4.9.2 Qt

Qt ist eine plattformübergreifende Softwarebibliothek für die Programmierung von

graphischen Benutzeroberflächen. Qt wird für nichtkommerzielle Zwecke unter der

GNU Lesser General Public License (LGPL) vertrieben und ist damit eine quellof-

fene und freie Softwarebibliothek.

4.9.3 ITK

Bei ITK, dem Insight Segmentation And Registration Toolkit, handelt es sich um

eine quelloffene und freie, plattformübergreifende Softwarebibliothek, die Daten-

strukturen und Algorithmen für die Bildverarbeitung bereitstellt. Dabei handelt es

70



4 Material und Methoden

Abbildung 27: Screenshot der entwickelten Applikation

sich zum Beispiel um Datenstrukturen für zwei- und mehrdimensionale Bilder und

Algorithmen, die Methoden für die Registrierung und Segmentierung zur Verfü-

gung stellen. ITK wird unter der Simplified BSD License vertrieben.

4.9.4 VTK

Bei VTK, dem Visualization Toolkit, handelt es sich um eine quelloffene und freie,

plattformübergreifende Softwarebibliothek, die Datenstrukturen und Algorithmen

zur Bildverarbeitung sowie Methoden zur Visualisierung von dreidimensionalen

Datensätzen zur Verfügung stellt. Mit QVTK stellt VTK eine Integration in Qt zur

Verfügung. VTK wird unter der BSD License vertrieben.
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4.9.5 Applikation

Für die Segmentierung der Knorpel in MRT wurde eine Applikation entwickelt (sie-

he Abbildung 27). Diese Applikation stellt die Methoden zum Training des Modells

und zur Segmentierung der Knorpel sowie Hilfsfunktionalitäten bereit.

Die Anwendung kann Meshes im STL-Format und Bilder als Rohdatei mit Hea-

derinformationen im MHD-Format sowie im DICOM-Format laden und speichern.

Die Auswahl eines solchen in der Applikation geöffneten Objektes ist mittels eines

Objektmanagers möglich, in dem zusätzlich die Parameter des Objektes wie Da-

teigröße, Ausdehnung und bei Meshes das Zentrum und bei Bildern der Ursprung

angezeigt werden.

Die Benutzeroberfläche der Anwendung enthält vier Fenster zur Visualisierung

der geladenen Objekte: Eine 3D-Darstellung und drei zweidimensionale Ansichten

für Schnitte durch das Volumen. Innerhalb der 3D-Darstellung können die Objekte

mit der Maus gedreht werden, in den zweidimensionalen Ansichten kann mit Hilfe

eines Schiebereglers die Schnittebene geändert werden.

4.9.5.1 Funktionalität des Menüs

Über das File-Menü können Dateien geöffnet und gespeichert werden.

Über das Functionality-Menü kann die Knorpelsegmentierungsanwendung ge-

startet werden.

Über das Tools-Menü kann auf die Hilfsfunktionalitäten wie:

• Konvertieren von Meshes in Binärbilder

• Konvertieren von Binärbildern in Meshes

• Mesh glätten

• Mesh dezimieren

• Mehrere Meshes zu einem Mesh verbinden

• Einen Mesh in zusammenhängende Meshes auftrennen

• Berechnung des Volumens eines Meshes
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• Berechnung des Dice-Koeffizienten zwischen zwei Bildern

zugegriffen werden.

4.9.5.2 Funktionalität der Segmentierungsanwendung

Über die Knorpelsegmentierungsanwendung kann auf folgende Funktionalitä-

ten zugegriffen werden:

• Erstellung eines Modell aus einer Anzahl Meshes

• Laden und Speichern eines Modells

• Pseudolandmarken erstellen

• MRT segmentieren

Zudem ist es möglich die ersten drei Modes of Variations eines Modells interaktiv

zu verändern.

4.10 Evaluation

4.10.1 Allgemeines

Um automatische Segmentierungsergebnisse zu evaluieren, benötigt man ein Ver-

gleichsmaß. Idealerweise wird dieses Vergleichsmaß über ein Verfahren, das Po-

sition und Ausdehnung der zu segmentierenden Struktur exakt bestimmt, erstellt.

Solch ein Verfahren ist aber vielfach nicht verfügbar. So handelt es sich bei Pro-

blemstellungen der medizinischen Bildverarbeitung häufig um die Segmentierung

elastischer Organe, deren Form hoch variabel ist, was es unmöglich macht, diese

Form beispielsweise anschliessend an eine Sektion zu vermessen. Ähnlich ver-

hält es sich bei der Knorpelsegmentierung. So ist es zwar möglich, den Knorpel

vom Kniegelenk abzuschaben, um das Volumen zu vermessen, doch geht hier-

bei jegliche Information über Position und Form des Knorpels verloren. Man kann

also nur noch die Volumina von automatischer Segmentierung und extrahiertem

Knorpelgewebe vergleichen.
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Abbildung 28: Hohe Inter-Observer-Variabilität zwischen zwei verschiedenen ma-
nuellen Segmentierungen

Andererseits spiegeln Phantome, bei denen Lokalisation und Form genau be-

kannt sind, nicht die wahren Begebenheiten wieder, da es unmöglich ist, Phantome

in der Komplexität eines menschlichen Kniegelenkes herzustellen.

Diesem Problem kann nur begegnet werden, indem man die automatischen

Segmentierungsergebnisse mit den Ergebnissen des besten bekannten Segmen-

tierungsverfahrens vergleicht. Hierbei handelt es sich in der Regel um die manuelle

Segmentierung durch einen medizinischen Experten. Ein solches maßgebendes

Standardverfahren nennt man in der Medizin Goldstandard.

Allerdings besitzen manuelle Segmentierungen stets eine gewisse Intra-Ob-

server- und Inter-Observer-Variabilität. Bei der Intra-Observer-Variabilität handelt

es sich um die Abweichung manueller Segmentierungen eines medizinischen Ex-

perten zu verschiedenen Zeitpunkten, bei der Inter-Observer-Variabilität um die

Abweichung zwischen manuellen Segmentierungen verschiedener Experten. Ab-

bildung 28 zeigt zwei manuelle Segmentierungen der selben Schicht eines MRTs

mit einer sehr hohen Abweichung.

Dies stellt ein Problem dar, wenn manuelle Segmentierungen als Vergleichs-

maß benutzt werden. Schließlich würde man die automatischen Segmentierungs-

ergebnisse gerne mit der ’wahren’ Segmentierung vergleichen. Um diese ’wahre’

Segmentierung zumindest zu schätzen, wurde das STAPLE-Verfahren entwickelt.
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Abbildung 29: STAPLE-Schätzung der wahren Segmentierung aus vier manuellen
Segmentierungen von zwei Experten

75



4 Material und Methoden

4.10.2 STAPLE-Verfahren

Das STAPLE-Verfahren (Simultaneous Truth and Performance Level Estimation)

[40] berechnet aus einer Reihe Segmentierungen eine wahrscheinlichkeitstheore-

tische Schätzung der wahren Segmentierung und liefert ein geschätztes Maß für

die Genauigkeit der Segmentierungen.

Die Schätzung wird wie folgt durchgeführt:

Eine Struktur innerhalb eines Bildes bestehend aus N Voxeln wird R-mal seg-

mentiert.

Sei D eine N×R-Matrix mit Elementen 0 und 1, welche die R Segmentierungs-

entscheidungen für jedes der N Voxel charakterisiert.

Sei T ein Vektor aus N Elementen, welcher die unbekannte, wahre Segmen-

tierung repräsentiert.

Sei p = (p1, p2, ...pR) ein Vektor aus R Elementen, wobei jedes Element die

Sensitivität einer der R Segmentierungen angibt und q = (q1,q2, ...qR) ein Vektor

aus R Elementen, bei dem jedes Element die Spezifität einer der R Segmentierun-

gen angibt.

Die vollständigen Daten wären also (D,T) und ihre Wahrscheinlichkeitsfunkti-

on f (D,T|p,q).
Das Ziel ist nun, die Parameter p̂ und q̂ zu schätzen, welche die Log-Likelihood-

Funktion der vollständigen Daten maximiert:

(p̂, q̂) = argmax
p,q

ln f (D,T|p,q) (2)

Die Lösung von Gleichung 2 kann mit dem EM-Algorithmus [7] geschätzt werden.

Die Grundannahme des EM-Algorithmus ist, dass es wesentlich einfacher wür-

de, bestimmte Maximum-Likelihood-Probleme zu schätzen, wenn die unbekannten

Daten vorhanden wären. In diesem Fall handelt es sich um die wahre Segmentie-

rung T.

Seien

θ j = (p j,q j)T

die unbekannten Parameter, welche die Genauigkeit der j-ten Segmentierung
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angeben und

θ = [θ1θ2...θR]

die vollständigen unbekannten Parameter der R Segmentierungen, welche be-

stimmt werden sollen.

Die Log-Likelihood-Funktion der vollständigen Daten wäre dann

lnLc {θ}= ln f (D,T|θ).

Der EM-Algorithmus löst nun das Problem der Log-Likelihood-Funktion der un-

vollständigen Daten

lnL{θ}= ln f (D|θ)

indem er iterativ die Log-Likelihood-Funktion der vollständigen Daten schätzt und

dann maximiert. Die Schätzung geschieht auf Grund der bekannten Daten D und

der aktuellen Schätzung von θ. Dieser iterative Prozess wird wiederholt, bis er

konvergiert.

Abbildung 29 zeigt ein Schnittbild einer mit der STAPLE-Methode aus vier ma-

nuellen Segmentierungen geschätzte wahre Segmentierung von Knorpeln eines

menschlichen Kniegelenks.

Der STAPLE-Algorithmus liefert also eine vertrauenswürdige Vergleichsseg-

mentierung zur Evaluierung der automatischen Segmentierungsergebnisse. Die

beiden Segmentierungen können dann mittels eines Ähnlichkeitsmaßes wie zum

Beispiel dem Dice-Koeffizient mit einander verglichen werden.

4.10.3 Dice-Koeffizient

Der Dice-Koeffizient [8] ist ein Ähnlichkeitsmaß, das verwendet werden kann, um

die Überlappung zweier Segmentierungen zu charakterisieren.

Für zwei Bilder A und B der Dimension X×Y×Z mit den Grauwerten IA(x,y,z)
und IB(x,y,z) ist der Dice-Koeffizient wie folgt definiert:

D(A,B) =
2|A∩B|
|A|+ |B|
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mit

|A∩B|=
X

∑
x=0

Y

∑
y=0

Z

∑
z=0

δ[IA(x,y,z), IB(x,y,z)]

wobei δ das Kronecker-Symbol ist, und

|A|=
X

∑
x=0

Y

∑
y=0

Z

∑
z=0

IA(x,y,z)

beziehungsweise

|B|=
X

∑
x=0

Y

∑
y=0

Z

∑
z=0

IB(x,y,z)

Daraus folgt, dass D(A,B) den Wert 1 annimmt, wenn A und B exakt gleich sind

beziehungsweise 0 wenn keine Überlappung zwischen A und B besteht.
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5 Ergebnisse

Die automatischen Segmentierungsergebnisse wurden mit einer durch den STAPLE-

Algorithmus aus vier manuellen Segmentierungen von Experten berechneten Gold-

standardsegmentierung verglichen. Hierzu wurde der Dice-Koeffizient verwendet.

Um Vergleichszahlen zu erhalten, wurde auch der Dice-Koeffizient zwischen den

Segmentierungen der verschiedenen Experten berechnet, also die Inter-Observer-

Variabilität gemessen.

Die Dice-Koeffizienten der Überlappung zwischen automatischer und STAPLE-

Segmentierung sind in Tabelle 2 abgetragen.

ID Femoraler
Knorpel

Lateraler
Tibialer Knorpel

Medialer
Tibialer Knorpel

Gesamter
Knorpel

111 0.72 0.7 0.59 0.77
209 0.76 0.64 0.77 0.77
212 0.77 0.78 0.79 0.79
215 0.74 0.78 0.69 0.76
302 0.66 0.69 0.7 0.69
311 0.72 0.8 0.73 0.78
315 0.65 0.66 0.67 0.68
409 0.68 0.72 0.72 0.71
413 0.67 0.72 0.71 0.71
504 0.66 0.76 0.61 0.68
510 0.72 0.66 0.73 0.74
514 0.71 0.74 0.69 0.76

Tabelle 2: Dice-Koeffizient zwischen automatischer Segmentierung und STAPLE-
Segmentierung

Tabelle 3 zeigt zum Vergleich die mittlere Inter-Observer-Variabilität zwischen

manuellen Segmentierungen der beiden verschiedenen Experten.
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ID Femoraler
Knorpel

Lateraler tibialer
Knorpel

Medialer tibialer
Knorpel

Gesamter
Knorpel

111 0.77 0.83 0.80 0.81
209 0.79 0.86 0.76 0.81
212 0.73 0.81 0.79 0.77
215 0.77 0.83 0.84 0.80
302 0.61 0.78 0.74 0.66
311 0.69 0.81 0.75 0.73
315 0.66 0.78 0.81 0.71
409 0.66 0.86 0.75 0.72
413 0.70 0.80 0.71 0.72
504 0.76 0.79 0.89 0.79
510 0.73 0.77 0.83 0.75
514 0.77 0.83 0.80 0.81

Tabelle 3: Mittlerer Dice-Koeffizient zwischen manuellen Segmentierungen von
zwei Experten

Abbildung 30 zeigt eine graphische Veranschaulichung zum Vergleich von au-

tomatischen Segmentierungsergebnissen und der Inter-Observer-Variabilität für

jedes einzelne Bild.

In Tabelle 4 sind die Mittelwerte und Standardabweichungen der Ergebnisse

zusammengefasst.

Femoraler
Knorpel

Lateraler
tibialer
Knorpel

Medialer
tibialer
Knorpel

Gesamter
Knorpel

Automatische
Segmentierung

vs. STAPLE

0.71±0.04 0.72±0.05 0.70±0.06 0.74±0.04

Mittlere
Inter-Observer-

Variabilität

0.72±0.06 0.81±0.03 0.79±0.05 0.76±0.05

Tabelle 4: Mittelwerte und Standardabweichungen der Dice-Koeffizienten zwi-
schen automatischer und STAPLE-Segmentierung sowie der Inter-Observer-
Variabilität

Abbildungen 31 und 32 zeigen den Vergleich der dreidimensionalen Modell aus

STAPLE-generierter Segmentierung und automatischer Segmentierung.
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Abbildung 30: Graphische Veranschaulichung der Evaluation der automatischen
Segmentierungsergebnisse und der Inter-Observer-Variabiltät für den gesamten
Knorpel

Abbildung 31: Vergleich zwischen automatischem Segmentierungsergebnis (rot)
und STAPLE-Schätzung (grün) in Bild 212
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Abbildung 32: Vergleich zwischen automatischem Segmentierungsergebnis (rot)
und STAPLE-Schätzung (grün) in Bild 315

Abbildung 33: Stark pathologisches Bild 504 (links) und Detail mit automatischer
Segmentierung (rot) und STAPLE-Schätzung (grün)

Abbildung 33 zeigt die Segmentierung eines pathologisch stark degenerierten

Knorpels.
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6 Diskussion

Beim vorgestellten Verfahren zur Segmentierung der Gelenkknorpel in MRT des

menschlichen Knies handelt es sich um eine vollautomatische Methode, die unab-

hängig von jeglicher Interaktion mit einem Benutzer arbeitet.

Das Segmentierungssystem wurde anhand von zwölf klinischen Bildern von

rechten Kniegelenken evaluiert. Hierbei wurde sowohl die Inter-Observer-Variabilität

zwischen verschiedenen manuellen Segmentierungen, als auch die Überlappung

zwischen automatischen Segmentierungsergebnissen und einer durch STAPLE

aus den manuellen Segmentierungen geschätzten Goldstandardsegmentierung

untersucht.

6.1 Inter-Observer-Variabilität

Auffallend war die hohe Inter-Observer-Variabilität zwischen manuellen Segmen-

tierungen. Dabei zeigten sich deutliche Unterschiede zwischen den einzelnen Knor-

pelkompartimenten.

Die höchste Inter-Observer-Variabilität wies der femorale Knorpel auf (Mittlerer

Dice: 0.72). Zu erklären ist das durch die relativ schlechte Bildqualität der verwen-

deten klinischen MRTs, die die Unterscheidung an Schnittstellen von verschie-

denen Knorpelkompartimenten sehr schwierig gestaltete. Dieses Problem zeigte

sich vor allem an der Schnittstelle zwischen femoralem und patellarem Knorpel,

die auch durch einen medizinischen Experten kaum akkurat zu bestimmen war.

Gleichzeitig hat die Über- bzw. Untersegmentierung an dieser Stelle starke Auswir-

kungen auf das Volumen der Segmentierung und damit auf den Dice-Koeffizienten

zwischen verschiedenen manuellen Segmentierungen.

Die tibialen Knorpel wiesen eine deutlich niedrigere Inter-Observer-Variabilität

auf (Mittlerer Dice: 0.81 und 0.79), die in einem für die relativ schlechte Bildqualität

der klinischen MRTs erwarteten Bereich lag.
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6.2 Automatische Segmentierung

Die Evaluation ergab Abweichungen zwischen den automatischen Segmentierun-

gen und der STAPLE-Schätzung (Mittlerer Dice für den gesamten Knorpel: 0.74),

die in der Größenordnung der beobachteten Inter-Observer-Variabilität zwischen

manuellen Segmentierungen (Mittlerer Dice für den gesamten Knorpel: 0.76) lag.

Das präsentierte vollautomatische Verfahren lieferte also Ergebnisse, die in

ihrer Segmentierungsgenauigkeit mit den manuellen Segmentierungen eines me-

dizinischen Experten vergleichbar sind.

Die Unterteilung der Knorpel in medial tibialen, lateral tibialen und femoralen

Knorpel zeigte unterschiedliche Ergebnisse. So war die Abweichung der auto-

matischen Segmentierung von der STAPLE-Segmentierung des femoralen Knor-

pels mit einem mittleren Dice-Koeffizienten von 0.71 vergleichbar mit der Inter-

Observer-Variabilität zwischen verschiedenen manuellen Segmentierungen (Mitt-

lerer Dice: 0.72). Bei den beiden tibialen Kompartimenten traten deutlichere Unter-

schiede zwischen Inter-Observer-Variabilität und Vergleich zwischen Goldstandard

und automatischer Segmentierung zu Tage.

Zu erklären, ist das durch die Tatsache, dass die im Gelenkzwischenraum lie-

gende Schnittstelle, an der tibiale Knorpel und femoraler Knorpel aneinander lie-

gen, von der automatischen Methode nur unzureichend akkurat erkannt wurde.

6.3 Verfahrensvergleich

Das vorgestellte Verfahren unterscheidet sich von vergleichbaren Methoden zur

Segmentierung von Gelenkknorpeln dadurch, dass es

1. vollständig automatisch

2. unabhängig von Bildeigenschaften wie Auflösung und Voxelgröße

3. unabhängig von variierender Illumination

4. aufgrund der dreidimensionalen Bildinformationen

5. gesunde und pathologische
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6. tibiale und femorale Knorpel

in klinischen MRTs akkurat segmentiert.

Es handelt sich also um eine sehr robuste Methode, die innerhalb einer großen

Anzahl unterschiedlicher Szenarien anwendbar ist.

Da es sich beim verwendeten Modell um ein anatomisches Formmodell han-

delt, muss das System nur ein einziges Mal trainiert werden und kann daraufhin die

Bilder von verschiedenen Bildgebungskonfigurationen akkurat segmentieren. Die

abschließende Verfeinerung der Segmentierung stellt sicher, dass auch patholo-

gisch degenerierte Knorpel mit Verdünnungen und Löchern segmentiert werden

können.

Tabelle 5 zeigt einen Vergleich der Eigenschaften des Verfahrens mit verschie-

denen State-of-the-Art-Methoden.
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vorgestellte
Methode

Solloway et al.
[38]

Kapur et al.
[16]

Cheong et al.
[5]

vollautomatisch Ja Nein Ja Ja
Unabhängigkeit
von Voxelgrö-
ße/Auflösung

Ja Ja Nein Ja

Unabhängigkeit
von Illumination

Ja Ja Nein ?

Dreidimensionale
Segmentierung

Ja Nein Nein Nein

geeignet für
pathologisch

stark
degnerierte

Knorpel

Ja Nein Nein Ja

Unterteilung in
Knorpelkompar-

timente
Ja Nein Nein Nein

Shim et al. [37] Grau et al. [15] Pakin et al. [28] Folkesson et
al. [12]

vollautomatisch Nein Nein Ja Ja
Unabhängigkeit
von Voxelgrö-
ße/Auflösung

Ja Ja Ja Nein

Unabhängigkeit
von Illumination

Ja Ja ? ?

Dreidimensionale
Segmentierung

Ja Ja Ja Ja

geeignet für
pathologisch

stark
degnerierte

Knorpel

Ja ? ? Ja

Unterteilung in
Knorpelkompar-

timente

Ja Nein Ja Ja

Tabelle 5: Merkmale der neuen Methode und vergleichbarer Verfahren
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7 Zusammenfassung

Die vorliegende Arbeit beschreibt die Entwicklung eines Systems zur Segmentie-

rung von tibialen und femoralen Gelenkknorpeln innerhalb von dreidimensionalen

MRTs des menschlichen Knies.

Hierbei handelt es sich um ein System, das die Knorpel des Kniegelenks unab-

hängig von jeglicher Interaktion mit einem Benutzer vollautomatisch segmentiert.

Zur Umsetzung wurden Active Shape Models verwendet. Für die Erstellung der

notwendigen Point Distribution Models wurden aus manuell segmentierten Trai-

ningsdaten hochaufgelöste Meshes generiert, die daraufhin bis auf wenige Pseu-

dolandmarken dezimiert wurden.

Zur Initialisierung des Knorpelmodells wurde in einem ersten Schritt der Femur

segmentiert und daraufhin die starke räumliche Beziehung zwischen Femur und

Knorpel ausgenutzt.

Anschliessend an die Segmentierung der Knorpel mit dem Active Shape Mo-

del wurde in einem abschliessenden Schritt die Voxel im Umkreis des Segmen-

tierungsergebnisses, auf Grund automatisch berechneter Intensitätsschwellwerte

und dem Abstand zum Modell, in medial tibialen, lateral tibialen oder femoralen

Knorpel beziehungsweise Hintergrund klassifiziert.

Die Evaluation der automatischen Segmentierungen ergab dabei eine Seg-

mentierungsgenauigkeit, die für den gesamten Knorpel und den femoralen Knorpel

im Bereich der Inter-Observer-Variabilität lag. Für die tibialen Knorpel war die Seg-

mentierungsgenauigkeit etwas geringer als die Übereinstimmung zwischen manu-

ellen Segmentierungen.

Das vorgestellte System segmentiert somit vollständig automatisch, unabhän-

gig von Bildeigenschaften wie Auflösung und Voxelgröße und unabhängig von va-

riierender Illumination aufgrund der dreidimensionalen Bildinformationen gesunde

und pathologische tibiale und femorale Knorpel zufriedenstellend akkurat und lie-

fert reproduzierbare Ergebnisse.

Die präsentierte Methode erfüllt damit Voraussetzungen, die für eine Anwen-

dung zur Quantifizierung der Knorpel und Schätzung des Krankheitsfortschrittes

nötig sind und könnte den Arbeitsaufwand und die Genauigkeit von klinischen Stu-

dien zur Erforschung neuer Pharmakotherapien verbessern.
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