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Abstract 

 

Sensory systems are the interface between an animal and its environment. Therefore, it 

is essential for the survival of a species that its sensory neurons are optimized for 

encoding all behaviorally relevant information contained in a stimulus. However, the 

characteristics of the sensory input perceived by an animal change over time depending 

on both the external world and the behavioral state of the animal. In the visual system 

of vertebrates and invertebrates the question of how sensory neurons adapt to different 

stimulus statistics has been investigated to a great extent, including information 

theoretical work on synthetic as well as natural stimuli. However, little is known about 

the influence of the behavioral state on sensory processing, because most work on 

sensory processing has been restricted to immobilized and/or anesthetized animal 

preparations. Since the behavior of an animal has a strong influence on the perceived 

stimulus, it might be of evolutionary advantage to adapt the response properties of 

sensory neurons to the behavioral state. Recent work, in vertebrates as well as insects, 

demonstrated that the behavioral state of an animal indeed has an influence on sensory 

processing.  

Motion vision in flies is especially suitable for studying how the motor-activity of an 

animal can change sensory processing. The dynamic range of visual input in flies changes 

dramatically from the values at rest, through walking, to flying. Furthermore, lobula 

plate tangential cells (LPTCs), the neurons coding for self-motion based on optic-flow, 

are well described. In this work I investigated whether and how visual response 

properties of LPTCs depend on the behavioral state. I focused on the response 
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properties of H1, a well-described cell responding to horizontal motion, as it is easy to 

access and to identify with extracellular methods. 

In the first set of experiments, I investigated the influence of ascending projections from 

the motor-system onto H1. The experiments were based on previous work, in which 

cutting of the neck connective resulted in a loss of response to visual stimuli in different 

LPTCs.  However, these findings could not be confirmed for H1.  

In the second set of experiments, I compared the neuronal responses of H1 to visual 

stimulation during non-flight and during flight. LPTCs are thought to control different 

behavioral responses, including the optomotor response. The optomotor response 

functions most likely as a mechanism for course stabilization during flight. One of its 

major characteristics is its tuning to a particular temporal frequency [the number of 

cycles passing a given point on the retina per unit time] of the moving visual 

environment. Previous comparisons between electrophysiological data obtained from 

LPTCs and behavioral studies on the optomotor response have revealed a discrepancy in 

the velocity tuning. The behavioral response was shifted to higher temporal frequencies 

compared to the response of LPTCs recorded from immobilized flies. Hence, I was 

particularly interested in the effect of flying on the velocity tuning curve of H1. The 

results demonstrated that during flight the temporal frequency tuning curve is 

broadened towards higher frequencies, solving the discrepancy between behavioral 

observations and electrophysiological measurements in fixed flies.  

Next, I wanted to investigate what physiological mechanisms are responsible for the 

changes observed during flight. Octopamine is a neuromodulator known to change the 

behavioral state of an animal. In addition, octopaminergic projections into the optic lobe 

have been described. Using the same visual motion stimuli as beforehand, I applied the 

octopamine agonist CDM into the hemolymphe of fixed flies and recorded the change in 

activity of H1. Similar to flight, the application of CDM broadened the temporal 

frequency tuning curve of H1 towards higher frequencies. This indicates that 

octopamine is involved in the observed effects of flying. 

Where do the octopamine-mediated changes in motion-processing take place? To 

address this question, I made use of the fact, that visual motion detection in flies is well 
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described by a phenomenological model called the Reichardt detector, thought to be 

implemented presynaptic to LPTCs. Although the cellular mechanisms of the Reichardt 

detector are not yet fully understood, the different processing steps – filtering, 

multiplication and subtraction – can at least coarsely be related to specific visual 

neuropils. I evaluated how the parameters of the Reichardt model have to be adjusted 

for different behavioral states to explain the difference in the temporal frequency tuning 

of the response of H1 to visual stimulation. The results indicate that the low-pass time 

constant is shortened during flight and after the application of CDM. Hence, the 

observed behavioral state dependent effects most likely have their origin in the circuitry 

presynaptic to H1. 

My work is among several pioneering studies conducted in parallel that found that 

behavior has a strong influence on sensory processing in the fly visual system. By using a 

combination of different approaches – electrophysiology, pharmacology and modeling – 

it is one of a few studies not only describing the difference in neuronal processing linked 

to the behavioral state but also yielding insights into the underlying mechanisms.  
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1. Introduction 

 

Insects – flies, beetles, wasps, and moths – account for the majority of animal life on 

Earth. The history of fly evolution can be traced back over 260 million years. During this 

time flies experienced three episodes of rapid radiation — lower Diptera (220 Ma), 

lower Brachycera (180 Ma), and Schizophora (65 Ma) — and a number of life history 

transitions to hematophagy, phytophagy, and parasitism (Wiegmann et al., 2011). Since 

flies occur in almost every ecological niche, one can easily imagine that they must show 

great diversification and adaptation to different life styles. However, what has been 

most fascinating to human beings is probably their amazing ability to fly and to perform 

acrobatic flight maneuvers. This behavior has created interest regarding many different 

aspects of flight control, ranging from aerodynamic principles to sensory and motor 

control. For flight control, sensory feedback is obviously a very important aspect (Frye 

and Dickinson, 2001). The importance of visual information for flying insects becomes 

even more evident when one considers the amount of neural hardware these organisms 

dedicate to vision. In flies, the optic lobes account for approximately a third of the 

brain’s volume (Strausfeld, 1976). The following paragraphs provide the reader with 

some basic background about vision in flies.  
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1.1 The Role of Sensory Input in Maintaining Flight Stability 

As mentioned above, flies are known for their amazing maneuverability during flight. 

While chasing mates, for example, they encounter turning velocities of more than 3000 

deg/sec. There are several important tasks an animal has to perform to keep flight 

stable. First, a fly needs to maintain its flight equilibrium, for example by maintaining a 

certain angle of attack. Second, it needs to control various aspects of its movement in 

space, such as flight speed and direction.  

To control this complex behavior, the fly has access to three different sensory 

modalities: inertial and gyroscopic forces, wind, and visual input. Coriolis forces can be 

measured by halteres (Hengstenberg, 1988; Nalbach, 1993; Nalbach and Hengstenberg, 

1994). Halteres are transformed hindwings (Weismann, 1964). They consist of an end 

knob, a thin stiff stalk and an innervated basal swelling containing hundreds of 

mechanoreceptors. Several studies have investigated how halteres are involved in 

controlling flight equilibrium (Hengstenberg, 1988; Nalbach, 1993; Nalbach and 

Hengstenberg, 1994; Sherman and Dickinson, 2003; Sherman and Dickinson, 2004). They 

demonstrated that the haltere-mediated response to mechanical rotation increases with 

rising angular velocity, whereas visual input is tuned to lower frequencies. Therefore, 

integration of feedback from both modalities may enable the fly to stabilize flight over a 

wide range of angular velocities (Sherman and Dickinson, 2003; Sherman and Dickinson, 

2004).  

Wind has been shown to be involved in stabilizing aspects of the animal's position during 

flight, such as its angle of pitch (Reichert et al., 1985; Simmons, 1980). An animal 

supported by moving air is unlikely to use mechnosensory cues, but rather relies on 

vision to determine ground speed (David, 1982). However, mechanosensory cues might 

play a critical role in determining the detection of an insect’s self-induced velocity 

relative to the ambient air. Johnston’s organs, the chordotonal organs in the antennae 

of the fly, are involved in regulating the wind beat amplitude and contribute to the 

stabilization of the flight direction in the horizontal plane (Gewecke, 1967). 

Furthermore, a recent behavioral study has demonstrated the importance of Johnston’s 

organs to sustain forward flight (Budick et al., 2007). Wind stimuli transduced via 
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mechanosensory means can compensate for visual expansion stimuli that have been 

shown previously to elicit avoidance responses (Tammero and Dickinson, 2002). 

The visual system is generally considered as the most important aspect for guiding flight 

behavior (Borst et al., 2010). Whereas wind and gyroscopic forces give information 

about flight stability, vision in addition relates the animal’s flight to the physical 

structure of its immediate environment. It has been demonstrated that vision is used for 

various aspects of flight control including the regulation of speed (Fry et al., 2009) and of 

flight altitude (Straw et al., 2010)  as well as object fixation (Kimmerle and Egelhaaf, 

2000).  

 

1.2 Visually Guided Behavior 

The current work is focused on motion vision of the fly during different behavioral 

states. When a fly is flying through a textured environment, self-motion creates an optic 

flow on the retina (Borst et al., 2010; Franz and Krapp, 2000). The optic flow provides 

three-dimensional information about how the fly is moving through its environment. 

When flying through the air, the movement of a fly can be separated into two basic 

components: translation (thrust, sideslip, lift) and rotation (pitch, roll, yaw). All these 

movements create distinct optic flow patterns on the retina of the fly’s eye (fig. 1.1). A 

specific set of cells in the fly's visual system, the lobula plate tangential cells, have 

receptive fields acting as matched filters of the optic flow created during self-motion 

(Franz and Krapp, 2000; Krapp et al., 1998). 

 

 

Figure 1.1 Optic Flow Fields for Different Flight Maneuvers. Although locally the optic flow field 

created by the different flight maneuvers might be ambiguous, integrating information over the 

entire visual space gives distinct information about the movement (from Zbikowski, 2005). 

lift roll 
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Behavioral studies on various invertebrate species have shown that, by using specific 

optic flow stimuli, stereotypic behaviors can be elicited, including visual odometry, 

peering behavior, the centering response, the landing response, visual regulation of 

flight speed and the optomotor response (Srinivasan et al., 1999).  

The ability to navigate to a specific location like a food source by measuring the distance 

and direction to fly in order to reach it is called visual odometry (Srinivasan et al., 1996). 

Bees share this information with conspecifics through the well-known waggle dance 

(von Frisch, 1947; von Frisch, 1993). The peering response is a behavior used to measure 

a target distance. A nice example of this behavior can be found in the desert locust. It 

sways its head from side to side before jumping onto a nearby object (Wallace, 1959). 

Studies related to the peering responses suggest that this behavior is used to estimate 

the distance of a target by a movement-detecting mechanism that measures for 

example the speed/displacement of the target’s image and compares this information 

with the speed/displacement of the eyes (Collett and Paterson, 1991; Kral and Poteser, 

1997; Wallace, 1959). In vertebrates, small eye movements might be enough to create a 

displacement sufficient for object detection. Arthropods, however, have to move their 

whole head since the eyes are immobile. 

Bees are able to fly through the middle of a narrow gap by balancing the distances to the 

boundary on either side. The so-called centering response can be manipulated by 

presenting patterns at the adjacent borders of the gap that move with different speed. 

This, together with additional observations, indicates that bees estimate the distances of 

surfaces in terms of the apparent motion of patterns by measuring their angular speed 

(Srinivasan et al., 1991; Srinivasan et al., 1996). Little is known about the centering 

response in flies. However, most likely similar mechanisms are used (Sugiura and 

Dickinson, 2009). On the other hand, the landing response has been described in detail 

in tethered flying flies. It consists mainly of the extension of the forelegs in preparation 

to land. The landing response can be elicited when flies encounter, for example, looming 

stimuli representing an approaching object (Borst and Bahde, 1986; Braitenberg and 

Ferretti, 1966; Goodman, 1960).  
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Many insect species can regulate the speed of their flight by monitoring and holding 

constant the velocity with which the image of the environment moves on the eyes 

(Srinivasan et al., 1999). In bees it has been shown that the speed of flight is controlled 

by a motion-detecting system which measures and holds constant the speeds of the 

images of the walls accurately regardless of their spatial structure (Srinivasan et al., 

1996). A similar dependence of flight speed on pattern velocity has also been suggested 

for flies (David, 1982; Fry et al., 2009).  

The optomotor response can be described as the turning response evoked by the 

apparent motion of the visual environment. This behavior was first described in studies 

of beetles (Hassenstein and Reichardt, 1951; Hassenstein and Reichardt, 1956b). The 

most important characteristic feature of the optomotor response is its tuning to a 

particular temporal frequency [the number of cycles passing a given point on the retina 

per unit time] (Borst and Egelhaaf, 1989; Buchner, 1984; Reichardt, 1961; Reichardt, 

1987).  It serves to stabilize the insect’s orientation with respect to the environment 

(Goetz et al., 1979; Goetz, 1968). The optomotor response can be elicited by several 

types of stimuli, ranging from moving stripe patterns to movement of randomly 

constructed patterns of shades from white through black  (Reichardt and Varjú, 1959, 

Reichardt, 1969).     

Traditionally it has been thought that motion vision in flies in general can be computed 

by a correlation type motion detector model (see below) (Borst and Haag, 2002; Borst, 

2007; Srinivasan et al., 1999). As predicted by the model, the optomotor response 

clearly shows a strong dependence on the temporal frequency and hence on particular 

pattern characteristics (Borst and Bahde, 1987; Duistermars et al., 2007). The 

measurement of flight speed is supposed to be independent of the pattern size (Fry et 

al., 2009; Srinivasan et al., 1991). This raises the issue of identifying the neuronal stage 

at which the two pathways segregate (Fry et al., 2009). Different solutions have been 

suggested in recent years (Fry et al., 2009; Katsov and Clandinin, 2008; Srinivasan et al., 

1999; Zanker et al., 1999). Zanker et al. (1999), for example, demonstrated that different 

weighting of the Reichardt detector subunits (see below) can produce responses which 

vary with image speed and display tuning curves that are substantially independent of 
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the spatial structure of an image. Srinivasan et al. (1999) suggested mechanisms based 

on multiple correlators with different temporal frequency optima. 

 

1.3 Elementary Motion Detection 

There are different possibilities for how motion information might be computed in the 

fly brain. The most common models are the gradient type and the correlation type 

motion detector (Borst, 2007). While the gradient detector provides an estimate of the 

local retinal image velocity by dividing the spatial and the temporal luminance gradient 

(Hildreth and Koch, 1987; Srinivasan, V, 1990), the correlation type motion detector – 

also called Reichardt detector - correlates the luminance levels derived from two 

adjacent image points (Hassenstein and Reichardt, 1956a; Hassenstein and Reichardt, 

1956b; Reichardt, 1961). In flies, there is strong evidence that the mathematical 

operation underlying motion detection can best be explained by the Reichardt detector 

(Borst, 2007). In its simplest form, the Reichardt detector consists of two mirror-

symmetrical subunits (Borst and Egelhaaf, 1989; Haag et al., 2004; Hassenstein and 

Reichardt, 1956a; Hassenstein and Reichardt, 1956b; Reichardt, 1961). In each subunit, 

the luminance values as measured in two adjacent image locations become multiplied 

(M) by each other after one of them is delayed by a low-pass filter with time constant τ 

[s]. This operation is performed twice in a mirror-symmetrical form and the resulting 

output signals are then subtracted (fig. 1.2). In particular, the bell-shaped steady-state 

velocity dependence of the response is faithfully described with this model. Furthermore 

as the optomotor response, the Reichardt detector exhibits an inherent dependence on 

the spatial pattern wavelength such that the ratio of the optimum velocity and the 

spatial wavelength remains at a constant temporal frequency (Borst and Egelhaaf, 

1989). However, there are several points which are not captured by the model, in 

particular adaptive properties (Borst et al., 2003; Harris et al., 1999). This can be 

demonstrated by the example of the so-called impulse response elicited by a brief 

motion stimulus. The impulse response is characterized by a transient excitation that 

decays exponentially. The time constant of this decay is supposed to reflect the time 

constant of the low-pass filter in the simple version of the Reichardt detector (fig 1.2 a). 
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The impulse response shortens after presenting an adaptation stimulus such as 

movement or flicker (Borst and Egelhaaf, 1987). However, there is a strong discrepancy 

between the temporal frequency tuning curves predicted from these experiments and 

the observed tuning of motion-sensitive cells. A shortening of the low-pass filter would 

shift the temporal frequency optimum to higher values after motion adaptation; this has 

not been confirmed by experimental results (Harris et al., 1999).  

This discrepancy can be resolved by using an extended version of the model (Borst et al., 

2003). In agreement with the original model, the signal coming from the retina is low-

pass filtered in one cross-arm of the detector; in the other cross-arm, however, an 

additional high-pass filter is added (fig. 1.2 c). According to the ‘High-pass’ model the 

time constant of the impulse response is identical to the high-pass time constant of the 

model. Changing the time constant of the high-pass filter by an adapting stimulus will 

only have little effect on the temporal frequency tuning curve (Borst et al., 2003; 

Reisenman et al., 2003).  

How the Reichardt detector is implemented on a cellular level is not yet well 

understood. However, there are several cell types in the fly visual system which might 

be suitable to compute one of the different steps that are necessary for a motion 

detection mechanism based on the Reichardt detector (Higgins et al., 2004). I will use 

the following section to introduce the visual system of the fly, with special focus on 

motion computation.  
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Figure 1.2: Different Elementary Motion Detector Units (EMDs) Building up Variations of the 

Reichardt Detector Model. a) Reichardt and Hassenstein model for directionally selective 

motion detection (from Borst and Haag, 2002). b) The intermediate signals from the Reichardt 

detector at the corresponding positions in (a). A light bar passes the detector unit in its preferred 

direction. First the left photoreceptor is stimulated (1); the signal is delayed while passing 

through the left arm of the unit (1’), but not while passing through the crossarm (1). The light 

bar needs some time to travel to the second photoreceptor (2). Here again the signal is delayed 

when passing through the right arm (2’), but not when passing through the crossarm (2). When 

the temporal delay induced by the filter in the left arm is equivalent to the temporal delay 

induced by the spatial distance between the photoreceptors, the signals arrive at the same time 

and lead to a maximum output after the multiplication step (1’*2). Since, in the right half of the 

detector unit, the signals do not arrive together, the output is minimal (2’*1). The last 

subtraction step (R=1’*2-2’*1) increases the direction selectivity of the detector and also 

determines the polarity of the output (from Borst and Haag, 2002). c) ‘High-pass’ detector model 

- modified version of the Reichardt detector model with a high-pass filter added to the cross arm 

of the detector unit (from Borst et al., 2003). d) A detector version with a high-pass filter added 

to the input lines (from Borst et al., 2003). 

 

 

C 
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1.4 The Optic Lobes and their Role in Motion Computation 

Like most insects, flies have a compound eye built up from hundreds to thousands of 

ommatidia, depending on the species. Each ommatidium possesses its own lens and its 

own set of photoreceptors. The axons of the photoreceptors project into a brain area 

called the optic lobe. The optic lobe is composed of three visual ganglia: the lamina, the 

medulla and the lobula complex, which itself is divided into the lobula and the lobula 

plate (fig. 1.3 a). The visual neuropil are composed of columnar elements. The specific 

elements are called ommatidia (compound eye/retina), cartridges (lamina) and columns 

(lobula complex). Two chiasms exist in the visual track of the fly, one between the 

lamina and the medulla and one between the medulla and the lobula complex, which 

reverse the order along the anterior-posterior axis of visual space. The visual input is 

organized in a retinotopic fashion. This means that the spatial relationship between 

neighboring image points is preserved throughout the visual neuropil (Borst and Haag, 

2002; Borst et al., 2010; Braitenberg, 1970). 

Each ommatidium is composed of eight photoreceptors (R1-R8). There is a strong 

separation between different visual pathways. The different absorption spectra of the 

photoreceptors leads to a spilt of visual information into a chromatic and an achromatic 

channel (Cook and Desplan, 2001; Hardie, 1979; Sanes and Zipursky, 2010; Yamaguchi et 

al., 2008).  

The chromatic channel starts with the photoreceptors R7 and R8 (Montell et al., 1987; 

Sanes and Zipursky, 2010; Zuker et al., 1987). R7-R8 do not form synapses in the lamina, 

but directly project to the medulla. Here, they aborize in distinct layers. In the medulla 

the information is further processed by local neurons and transmedullary neurons 

innervating the lobula, the lobula plate, or both. Visual projection neurons (VPNs) link 

the medulla, lobula, and lobula plate with the central brain (Otsuna and Ito, 2006; Sanes 

and Zipursky, 2010). 
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R1-R6 neurons provide an achromatic channel which is further divided into multiple 

information pathways including circuits for motion computation and phototaxis 

behavior (Hardie, 1979; Sanes and Zipursky, 2010; Yamaguchi et al., 2008; Zhu et al., 

2009). The minimal circuitry presumed to be involved in motion detection starts with the 

photoreceptors R1-R6 which project into the lamina (fig. 1.2 b). Here, large monopolar 

cells – L1 and L2 – further transfer information to the medulla cells Mi1 and Tm1, 

respectively (Meinertzhagen and O'Neil, 1991; Takemura et al., 2008). Within the 

medulla, Mi1 is thought to project onto the dentrites of T4 cells. Tm1 projects into the 

lobula where it likely synapses onto T5 cells. Therefore, there exist two different 

pathways involved in motion computation, starting with L1 and L2, respectively. Both 

pathways merge again in the lobula plate where T4 and T5 innervate the so-called lobula 

plate tangential cells (Bausenwein and Fischbach, 1992; Douglass and Strausfeld, 2003; 

Fischbach and Dittrich, 1989). The latter cells are directionally selective and involved in 

the visual course control of the fly (Borst and Haag, 2002; Borst et al., 2010).  

a b 

Figure 1.3: Visual Processing in the Fly Brain. a) Schematics of the 

retina and the three types of optic neuropil – lamina, medulla, lobula 

complex (lobula & lobula plate) together with a lobula plate 

tangential cell (blue). Note the columnar and the retinotopic 

organization indicated by the red and yellow columns (from Borst 

and Haag, 2002). b) Schematics of minimal circuitry candidate to 

implement the Reichardt model (from Gabbiani and Jones, 2011). 

.  



14 
 

 

1.4.1 Compound Eyes in Insects 

The compound eye is the most common eye design found in animals, including most 

species of insects, crustaceans, myriapods and even some clams and polychaetes (Exner, 

1981; Land and Fernald, 1992). There are several very interesting aspects related to the 

optics of compound eyes. The most striking one is the strong relationship between the 

size of the eye and its spatial resolution. All compound eyes are composed of ommatida 

consisting of a corneal facet lens, a crystalline cone, screening pigments and a rhabdom 

which contains the photoreceptor molecules. The anatomical resolution is given by the 

interommatidial angle φ and is defined by 1/(2*φ) (Land, 1997). The visual acuity, 

however, is determined by the photoreceptor’s spatial receptive field, which also 

depends on the specific eye design (Land, 1997).   

There is a trade-off between spatial resolution and light sensitivity that led to two 

different major designs for compound eyes: the apposition eye (1.4 a) and the 

superposition eye (1.4 b). The apposition eye is best adapted to bright light and is mostly 

found in animals active during daylight. Each ommatidium is isolated from its neighbors 

by a sleeve of light-absorbing screening pigments to prevent light from adjacent 

ommatidia reaching its photoreceptors (Land, 1999). The rhabdomeres are often fused 

(e.g., in honeybees) such that all photoreceptors within one ommatidia receive light 

from the same direction in space (Borst, 2009). Higher flies also possess an apposition 

eye; however, they have a special adaption to increase sensitivity while losing only little 

spatial resolution, called neuronal superposition (Kirschfeld, 1973). Each ommatidium 

has a distinct optical axis. The same is true for the different photoreceptors in one 

ommatidium, since the rhabdomeres are segregated. Within neighboring ommatidia 

certain groups of photoreceptors have parallel optical axes. By connecting these groups 

of photoreceptor to a common postsynaptic target, sensitivity of the system increases 

without the drawback of losing spatial resolution (fig. 1.4 c) (Braitenberg, 1967; 

Braitenberg, 1970; Kirschfeld, 1973).   
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Figure 1.4: Three Different Types of Compound Eyes in Insects. a) Apposition eye. A light 

absorbing pigment between the ommatidia prevents light from entering any neighboring 

rhabdomere. b) Superposition eye. The lower parts of the ommatidia are only separated by a 

transparent material. Therefore, light from neighboring ommatidia can reach the rhabdomere 

from the central ommatidia. c) Neural superposition eye. As in the apposition eye, only light 

entering one ommatidium can reach the rhabdomere. However, on a neuronal level, 

photoreceptors located in neighboring ommatidia pointing into the same direction are pooled 

together at the next processing stage, leading to an increase in sensitivity without losing spatial 

resolution (from Borst, 2009).  

In the second major design type of the compound eyes – the superposition eye – the 

pigment sleeve is withdrawn and a wide optically transparent area is interposed 

between the lenses and the photoreceptors. Light traveling between ommatidia is 

focused on one rhabdomere which increases the sensitivity of the eye to light but 

decreases the spatial resolution. This eye design is mainly found in animals active during 

dim light or night (Warrant, 1999; Land, 1999).  

 

1.4.2 Lamina 

The lamina is organized in cartridges. Anatomical studies have shown that each cartridge 

is composed of 12 neuron types that include 11 narrow-field elements and one wide-

field/amacrine cell (Fischbach and Dittrich, 1989; Meinertzhagen and O'Neil, 1991). The 

narrow-field elements are composed of one of the receptor terminals R1-6, two fibers 

from the receptors R7 and R8 that do not ramify in the lamina, five types of monopolar 

cells L1-5 and three types of medulla cells C2, C3 and T1 (fig. 1.5). There is little known 

about L3, L4 and L5 neurons, but L1-L2 cells and, to some extent, L4 cells are thought to 
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be involved in motion processing. The neuronal superposition principle reveals itself by 

the fact that in each cartridge, L1 and L2 receive input from each of the R1-R6 

photoreceptor cell types originating from different ommatidia but pointing to the same 

direction in space (Braitenberg, 1967; Braitenberg, 1970; Kirschfeld, 1973).  

 

  

 

Although electrophysiological data from lamina neurons (L1-5) exist, it is difficult to 

assess from this data the contribution of these neurons to motion processing (Jarvileh 

and Zellter, 1971; Laughlin and Osorio, 1989; Skingsley et al., 1995; Straka and 

Ammermuller, 1991; Uusitalo et al., 1995; Uusitalo and Weckstrom, 2000). However, it 

has been proposed that they take part in high-pass filtering the visual input before it 

reaches further motion processing stages (Higgins et al., 2004; Jarvileh and Zettler, 

1973). Genetic tools have given some interesting insights into information processing in 

the lamina, including direct evidence of the role of lamina cells in motion vision. 

Inactivation studies have revealed that information is segregated into multiple 

information streams for the general sensitivity to light and specific motion computations 

that arise in higher-order brain regions. It could be demonstrated for example that 

inactivating L4 cells result in a complete loss of motion vision without comprising 

phototaxis behavior (Zhu et al., 2009). The importance of the L1 and the L2 pathway has 

been shown by genetically silencing either one or both of them. It was suggested that L1 

and L2 together are necessary and largely sufficient for motion-dependent behavior 

(Rister et al., 2007). A recent study confirmed the importance of L1 and L2 for motion 

Figure 1.5: Drawings of Receptor Cell Axons and of 

Neurons Connecting the Lamina with the Medulla. 

R1-R6 terminate in the lamina, while the axons of  

R7 and R8 project into the medulla. Nine 

interneurons are shown, which arborize in lamina 

and medulla. The Lawf neuron corresponds to the 

wide-field neuron (from Fischbach and Dittrich, 

1989). 
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detection (Joesch et al., 2010). Joesch et al. (2010) further concluded that, similar to the 

processes taking place in the retina of vertebrates, L1 and L2 neurons provide the input 

to separate on- and off-channels. The response of L2 to motion stimuli has also been 

studied by using calcium imaging (Reiff et al., 2010). It was concluded that half-wave 

rectification takes place at the level of the L2 neurons because brightness decrements 

induced a strong increase in the intracellular Ca-signals, but brightness increments 

induced only small changes. Based on these recent studies, new experiments and 

modeling studies were performed to gain insight into the internal structure of the 

Reichardt detector (Eichner et al., 2011). The new model, proposed by Eichner et al. 

(2011), is a modification of the so-called 2-Quadrant model originally suggested by 

Franceschini et al. (1989). Here, the input to each subunit of the Reichardt detector is 

split into ON (brightness increment) and OFF (brightness decrement) components. Only 

input combinations of the same sign (ON-ON, OFF-OFF) are further processed. 

Therefore, the 2-Quadrant model is not mathematically identical to the original 

Reichardt detector. Nevertheless, the 2-Quadrant model can still account for its major 

characteristics. However, recordings from lobula plate tangential cells revealed strong 

directionally-selective responses to sequences of same sign (ON-ON, OFF-OFF) and 

inverted responses to sequences of opposite sign (ON-OFF, OFF-ON) (Eichner et al., 

2011). The latter is a clear contradiction to the original proposed 2-Quadrant model. 

However, Eichner et al. (2011) found persistent directionally selective responses, 

indicative of a tonic representation of the brightness level at the input of the motion 

detector. By preprocessing the input by a filter stage that feeds the signal through a 

first-order high-pass filter but in parallel allows 10% of the original signal to pass (DC), 

the authors could reproduce all measured responses including the directionally selective 

response to sequences of opposite sign (fig. 1.6 a). However, Clark et al. (2011) came to 

a contradictory conclusion regarding the internal structure of the Reichardt detector. 

Similar to Reiff et al. (2010), they performed calcium imaging in lamina cells. Using 

random brightness changes, they found that the encoding of L1 and L2 is largely linear, 

arguing against the half-wave rectification within L1 and L2. For their experiments, Clark 

et al. (2011) used a combination of specific genetic silencing, minimal motion stimuli and 

in vivo calcium imaging, as well as behavioral experiments. Based on the experimental 

findings, they proposed a weighted 4-Quadrant model (fig. 1.6 b). The functional role for 
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L1 and L2 is still under discussion, since the modified 2-Quadrant model, as well as the 

weighted 4-Quadrant model, could reproduce a wide range of experimental data.  

  

 

 

 

 

 

 

 

 

 

 

 

 

1.4.3 Medulla 

The medulla is divided into ten layers (M1-M10). The first 6 outer layers (M1-M6) 

receive direct input from the lamina neurons (L1-L5) or the photoreceptors R7 and R8 

(fig. 1.5). The input is cartridge-specific, resulting in a retinotopic organization of the 

medulla. In addition, the separation of the chromatic and the achromatic channels is 

preserved, because the different pathways innervate distinct layers. Also, the 

postsynaptic neurons, such as medulla tangential cells and interneurons, ramify in 

distinct layers. However, the strong retinotopy becomes diluted because some of the 

postsynaptic neurons extend their arborizations beyond cartridge boundaries. A few 

major classes of medulla cells send information further to the lobula complex. TM cells 

innervate the lobula, T-cells innervate either lobula (T2-3) or lobula plate (T4), whereas 

TmY neurons bifurcate and innervate both lobula as well as lobula plate (Bausenwein 

and Fischbach, 1992; Fischbach and Dittrich, 1989).  

Figure 1.6: Motion Detection Models. a) ‘2-Quadrant-Detector’ with an additional preprocessing 

stage including a DC component and a high-pass filter step in parallel. The two signals are added 

before the rectification step takes place. The ON pathway is depicted in red; the OFF pathway is 

depicted in blue (from Eichner et al., 2011). b) Weighted quadrant model. The inputs are filtered 

before being split into four multiplication steps that are weighted differently in the two pathways. 

The weighting is indicated by the thickness of the lines (from Clark et al., 2011).  

a b 
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Recent work using serial-section electron microscopy closely matches previously 

reported Golgi-staining results concerning the anatomy of the cells (Takemura et al., 

2008).  However, in addition, synaptic connectivity could be shown (fig. 1.7). In the 

chromatic channel, R8 forms contacts upon R7 and thus these two spectral inputs are 

interconnected. L3 provides input upon both R6 and R7, adding an achromatic input. In 

the achromatic the channel the terminal of L5 reciprocally connects to that of L1. 

Importantly, input cells L1 and L2 lack direct interconnection, which speaks in favor of a 

strong separation of the two motion-processing pathways. However, L1 and L2 cells 

both receive input from C2 and C3 cells. 

 

 

 

 

1.4.4 Lobula 

The lobula forms the anterior part of the lobula complex. Compared to the lobula plate, 

the lobula is a less well-studied optic neuropil. It receives input directely from the 

medulla (Fischbach and Dittrich, 1989). Like the preceeding neuropil, the lobula is 

organized in a retinotopic fashion, but the number of columns is reduced compared to 

the number of cartridges. This results in a coarser visual resolution (Strausfeld, 1976). 

The lobula is divided into six layers. It is assumed that the lobula processes colour as well 

as motion. Indication for a colour vision channel comes from the fact that certain 

transmedulla neurons which arborize in medulla layers receive input from R7 or R8 and 

terminate in discrete layers of the lobula (Gao et al., 2008).  

Figure 1.7. Summary Diagram of 

Synaptic Connections between Input 

Terminals to the Medulla. The 

terminals are also presynaptic to 

many unknown cells, probably mostly 

medulla neurons. The numbers of 

synapses found in a specific column 

are indicated by each arrow.  The gray 

shaded panels (p1, p2, p3 a,b) 

represent previously proposed visual 

pathways (Bausenwein and Fischbach, 

1992) (from Takemura et al., 2008). 
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Three of the six layers were labeled with 2-Deoxyglucose in response to a motion 

stimulus (Buchner et al., 1984). The most posterior layer of the lobula contains the 

axonal arborizations of the Tm1 cells from the medulla as well as the T5 dendritic 

arborizations. The T5 neurons are one of a few cell types which interconnect the lobula 

with the lobula plate (Fischbach and Dittrich, 1989). T5 cells are assumed to be crucial 

for motion vision (Douglass and Strausfeld, 1995). They project to distinct layers of the 

lobula plate containing cells selective for motion (Buchner et al., 1984; Douglass and 

Strausfeld, 1995; Douglass and Strausfeld, 2003; Strausfeld, 1976).  

 

1.4.5 Lobula Plate 

The lobula plate forms the posterior part of the lobula complex. This brain area is also 

often refered to as the cockpit of the fly because it contains neurons – the lobula plate 

tangential cells (LPTCs) – that have been shown to be involved in the visual course 

control of flies (Borst and Haag, 2002; Borst et al., 2010). The later idea has its origin 

from experiments that showed that the optomotor response is strongly effected when 

LPTCs are ablated (Geiger and Nassel, 1981; Hausen and Wehrhahn, 1983; Heisenberg et 

al., 1978). In blowflies each hemisphere contains about 60 different LPTCs which are 

individually identifiable based on their anatomy and response properties to visual 

stimulation. The principal output elements of the lobula plate are thought to be the 

‘horizontal system’ (HS) cells and the ‘vertical system’ (VS) cells. As indicated by their 

names, they receive information about large-field horizontal (HS cells) and vertical (VS 

cells) motion which they further transmit onto descending neurons (Haag et al., 2007; 

Hausen, 1982a; Hausen, 1982b; Hengstenberg, 1982; Hengstenberg et al., 1982; Krapp 

et al., 1998; Wertz et al., 2008). Interestingly, however, looking more closely at the 

response properties of theses neurons reveals that they are not only direction-selective 

to visual motion but, more specifically, tuned to certain axes of rotation of the fly (fig. 

1.8). This  rotation selectivity is thought to represent certain movements such as yaw, 

roll and pitch occuring during flight or other locomotor behaviors (Franz and Krapp, 

2000; Krapp et al., 1998). How do these complex receptive fields arise? This has been 

investigated in great detail by analysing the vertical system in flies (fig. 1.8 a-c). The 

receptive field of these cells is composed of two components (Haag and Borst, 2004): 
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one from local motion detectors on their dendrites, and one from other large-field 

neurons (fig. 1.9). For the first component, the dendritic organization and the layered 

structure of the lobula plate is of critical importance. First of all, the lobula plate forms a 

map of direction-selective small-field elements as a result of the retinotopic 

organisation, where a specific location on the lobula plate corresponds to a particular 

position in the visual world. There exists a segregation of the input into different layers 

of the lobula plate. In total, four direction-specific input layers exist, representing the 

four main directions of motion (Buchner et al., 1984). The LPTCs run perpendicular to the 

columns, covering many hundreds or thousands of them with their dendrites. The dendrites 

only obtain input from specific layers of the lobula plate and this explains a large part of the 

directional selectivity of the particular LPTCs (Hausen, 1982a; Hausen, 1982b; Hengstenberg 

et al., 1982). Theoretically, it would be possible to build up neurons matching the receptive 

field properties of VS cells by only using small-field elements. However, the receptive fields 

predicted from the anatomy of VS cells do not match the measured receptive fields 

(Hengstenberg et al., 1982; Krapp et al., 1998; Krapp and Hengstenberg, 1996). 

Consequently, the receptive fields of VS cells cannot be explained only by their retinotopic 

input from local elementary motion detectors (EMDs). It turns out that network connectivity 

within the lobula plate plays a critical role (Borst and Weber, 2011). The coupling of 

neighboring VS-cells through gap junctions leads to a broadening of their receptive fields 

(Elyada et al., 2009; Farrow et al., 2005). Inhibitory chemical synapses play a role in sign 

reversal in a few of these cells; in addition, indirect coupling to the HS-system adds a 

horizontal component to the receptive field of VS cells (Haag and Borst, 2004).  

Figure 1.8: VS Cells as Rotation 

Detectors. a) Anatomy of VS cells 

as obtained from cobalt fills. b) 

Schematic fly with various axes of 

rotation. c) Receptive fields of VS 

cells. Note that receptive fields 

match different axes of rotation 

around different poles (red dot) 

(from Borst and Haag, 2007).  
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1.4.6. H1 Cell 

Almost all data in this work are obtained from the lobula plate tangential cell H1. 

Anatomically, H1 is interesting because its aborizations span over the lobula plate of 

both brain hemispheres (fig. 1.10 inset). The dendritic input and the receptive field, 

however, are restricted to only one hemisphere (Eckert, 1980). The axon crosses along 

the dorsal surface of the central protocerebrum to the opposite side, where it finally 

enters into the contralateral lobula plate.  

Figure 1.9: Network circuitry of 

selected tangential cells of the 

blowfly lobula plate. In addition to 

receiving retinotopic input from 

arrays of local motion detectors, 

cells are strongly interconnected 

with each other. Excitatory and 

inhibitory chemical synapses are 

symbolized by triangles and circles, 

and electrical synapses are 

represented by resistor symbols 

(from Borst and Haag, 2007).   
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Figure 1.10: Anatomy of H1 together with a Vector Field of its Response Properties to 

Visual Motion. The anatomy (inset, modified from Hausen 1993) as well as the response field 

are shown as depicted from a neuron that receives its retinotopic input in the left visual 

hemisphere. The neuron’s local preferred direction (LPD) is indicated by the direction of the 

arrow.  The local motion sensitivity (LMS) is reflected by the length of the arrows (from Krapp et 

al., 2001).   

 

In contrast to HS and VS cells, H1 is a spiking neuron. It responds with an increase in 

firing rate when the pattern is moved horizontally from back to front in the receptive 

field (preferred direction) and with a decrease in firing rate when the pattern is moved 

in the opposite direction (null direction) (Eckert, 1980). It is generally assumed that H1 

receives input mainly from columnar EMDs (Borst and Haag, 2007; Borst et al., 2010). 

The receptive field of the cell was measured using local stimuli (fig. 1.10) (Krapp et al., 

2001). In addition to the input from the EMDs, a few connections to other lobula plate 

tangential cells are known (fig. 1.9) (Borst and Weber, 2011). The H1 in the left lobula 

plate excites the HS and CH cell of the right lobula plate (Haag and Borst, 2001; Hausen, 

1984; Horstmann et al., 2000), which in turn inhibits the right H1 (Haag and Borst, 2001). 

Thus, the two H1 cells mutually inhibit each other via HS and CH cells. Furthermore, H1 

also receives excitatory input from VS1 (Haag and Borst, 2003).  



24 
 

 

1.5 State-Dependent Influences on Sensory Processing  

Most electrophysiological work in vivo has been conducted in immobilized or even 

anesthetized animal preparations. It has been generally assumed that the response 

properties of sensory neurons are the same, whether the animal is immobilized and 

passively perceiving a stimulus or whether it is freely moving around. Considering how 

different the tasks are an animal has to solve when it is passively receiving a stimulus 

and during active sensation, it is not surprising that this assumption has been challenged 

in the past years.  

 

1.5.1 Examples from Various Modalities 

The behavioral state of an animal has a strong influence on sensory processing. This has 

been shown not only throughout the animal kingdom but also throughout sensory 

modalities.  

In the olfactory cortex of rats it has been shown that odorant-evoked responses are 

changed dependent on whether brain activity of the neocortex is characterized by slow 

wave (SWS) or fast wave (FWS) oscillations (Murakami et al., 2005). In the olfactory 

cortex the majority of units showed a robust spike response to adequate odorants 

during FWS but only a weak response during SWS. Interestingly, this state-dependent 

change in odorant-evoked responses was only observed in a small fraction of units 

recorded in the olfactory bulb. 

Another interesting example comes from the electrosensory system of weakly electric 

fish (Rose, 2004). These fish produce via electric organs in their tails periodic, electrical 

signals (EOD) that can be used, for example, for prey localization (Nelson and Maciver, 

1999). The summation of EOD signals of two fish in the vicinity of each other can cause 

EOD amplitude modulations. These amplitude modulations reduce the ability to detect 

objects if the fish have a similar EOD frequency (Matsubara and Heiligenberg, 1978). 

One of the fish usually shows a so-called jamming avoidance behavior and changes its 

EOD frequency to improve object localization (Bullock et al., 1975; Bullock et al., 1972; 

Watanabe and Takeda, 1963). This example illustrates a completely different aspect of 
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behavioral modulation of sensory processing because sensory information is actively 

changed before even reaching the receptors. 

Behavioral studies in the leech have shown that feeding suppresses different sets of 

locomotor activities such as shortening, swimming, crawling or even local bending. A 

recent study demonstrated that the lack of such locomotor behavior normally induced 

by touch is likely suppressed by presynaptic inhibition of sensory terminals (Gaudry and 

Kristan, 2009). P cells are touch-sensitive neurons. They are presynapitic to many 

neurons involved in locomotion, e.g., to cell 212, which is known to be involved in local 

bending. During feeding the amplitude of EPSPs decreases at P cell synapses (fig. 1.11). 

This process is most likely mediated by serotonin.  

 

 

 

  

 

 

 

 

Figure 1.11: Behavioral Choice by Presynaptic Inhibition of Tactile Terminal. a) Preparation of 

the leech. Leeches still perform normal feeding behavior even though most of their nervous 

system is dissected for electrophysiological recordings. b) EPSP amplitude of P-cell synapses 

before, during and after feeding. During feeding, the EPSP in the postsynaptic neurons 212 and 

AP is strongly reduced. The inset shows an average EPSP form under the three conditions (from 

Gaudry and Kristan, 2009).  

 

It has been shown that visual processing is also strongly modulated by the behavioral 

state of an animal. In monkeys, it has been demonstrated that visual motion processing 

is regulated by behavior (Treue and Maunsell, 1996). The responses of direction-

selective neurons are greatly influenced by attention. An interesting finding of this study 

b a 
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was that attentional modulation of the neuronal response already appeared on the level 

of the middle temporal visual area – a relatively early visual area.  

In mice, visual processing is modulated in a cell-type specific manner when they are 

running on a treadmill (Niell and Stryker, 2010). In the primary visual cortex (V1) one can 

distinguish between broad-spiking, excitatory neurons and narrow-spiking, inhibitory 

interneurons. The authors demonstrated that broad-spiking neurons increase their 

response to motion stimuli while running. Narrow-spiking neurons often increase their 

activity in response to both self-movement and visual stimulation, but, in a subset of 

these neurons, the activity during visual stimulation was suppressed while running (fig. 

1.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.2 State-Dependent Visual Processing in Insects 

In insect neurobiology, the question of how behavior influences sensory processing has 

received more and more attention in recent years (Chiappe et al., 2010; Haag et al., 

2010; Maimon et al., 2010; Rind et al., 2008; Rosner et al., 2010). Using motion-sensitive 

Figure 1.12 Visual Motion Processing is Modulated during Running. a) Experimental setup. A 

mouse is running on a ball while different visual patterns are presented. Neural activity is 

measured extracellularly; the running speed is measured using an optical mouse. b) Cell 

response to visual stimulation during different behavioral states. The gray bar indicates the onset 

of a visual stimulus in the preferred direction of the cell. Trials in which the mouse was running 

are depicted in blue, trials in which the mouse was inactive in red. left: Raster plot of the spiking 

activity (A,E,I). middle: PSTH for non-moving mice (B,F,J), and running mice (C,G,K). right: Visual 

motion tuning curves (D,H,L) (from Niell and Stryker, 2010). 

 

a b 
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lobula plate tangential cells (LPTCs) of blowflies, Rosner et al. (2010) investigated how 

information processing changes for two different states of motor activity based on 

haltere movements. Halteres oscillate when the animals walk or fly, and are therefore 

associated with locomotion (Schneider, 1953; Miller, 1977; Sandeman and Markl, 1980). 

Rosner et al. (2010) observed a response gain in LPTCs when the halteres oscillated. 

LPTCs are known to mediate the head optomotor response. Therefore, a behavioral 

equivalent of the response gain in the LPTCs is an enhanced head optomotor response in 

walking flies. However, haltere activity itself did not change the activity of LPTCs. In 

addition, the response gain observed in the cells was not strong enough to account for 

the observed gain in the optomotor response. Instead, a central signal associated with 

motor activity was proposed to change both the gain of the response of LPTCs as well as 

the gain of the head optomotor response. Regarding the role of a central input on the 

head optomotor response in flies, a recent study by Haag et al. (2010) came to a similar 

conclusion. The work focused on integration of multisensory and central inputs at the 

level of the ventral cervical nerve motorneuron (VCNM), which controls head movement 

in flies. Visual motion only leads to a subthreshold response in these cells. The 

combination with wind stimuli or haltere movement resulted in a modulation of the 

spike activity to visual motion in a directionally selective way. In a subset of flies, both 

the response of HS cells as well as the response of VCNM cells were measured to active 

haltere beating. Interestingly, based on the changes in the membrane potential as well 

as the time course of the responses, the results suggested that excitation spreads from 

the VCNM to HS cells through electrical synapses. Haltere movements resulted in only a 

relatively small change of the response properties of LPTCs to visual stimulation (Rosner 

et al., 2010). In contrary, during walking (Chiappe et al., 2010) and flying (Maimon et al., 

2010) the response gain of LPTCs was greatly increased. In a recent study, calcium 

imaging was used to measure responses of LPTCs in walking flies (Chiappe et al., 2010). 

The response gain of the cells was strongly dependent on the temporal frequency with 

which the pattern was presented, resulting in a shift of the temporal frequency 

optimum. The amplified responses were also correlated with the walking speed, 

suggesting that all the observed changes are modulated to specific behavioral 

requirements. Similar to the results in LPTCs during haltere beating, the membrane 

potential was observed to increase slightly during flight (Maimon et al., 2010). However, 
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stimulus presentation in different spatial orientations revealed an increased response 

gain of LPTCs for null as well as for the preferred direction of the specific cell. One 

additional finding is especially interesting. When the fly stops flying, both the resting 

potential and the visual response go back to baseline. However, the time courses 

underlying these effects are different. Maimon et al. (2010) therefore suggested a 

different mechanism for the baseline shift and the response gain. The baseline shift in 

the membrane potential might be explained by mechanosensory afferents, whereas the 

increase in response gain might be a result of neuromodulator release during flight. 

 

1.6 Octopamine and its Role in Insects 

The physiological role of octopamine is restricted to invertebrates (fig. 1.13). Considering 

the functional similarity, the octopaminergic system of invertebrates and the 

noradrenergic system of vertebrates seem to be analogous. Octopamine modulates 

almost every physiological process in invertebrates and acts a neuromodulator, 

neurotransmitter and neurohormone (Farooqui, 2007; Roeder, 1999). It has been known 

for decades that it changes the behavioral state of an animal. The level of octopamine is 

increased during stress and aggression (Davenport and Evans, 1984; Stevenson et al., 

2005). The effects of octopamine on the flight system of the locust has been studied in 

detail ranging from work on adaptation to energy demanding processes to single-cell 

physiology (Morris et al., 1999; Orchard and Lange, 1984; Orchard et al., 1993; Ramirez 

and Pearson, 1991). Also, work in Drosophila has indicated that octopamine plays an 

important role during flight (Brembs et al., 2007). Early evidence that octopamine might 

play a role in motion detection comes from work on the crab. The experiments showed 

an enhancement of the optokinetic responses after application of octopamine (Erber 

and Sandeman, 1989). Behavioral studies on the antennal reflex and electrophysiological 

studies on motion-sensitive neurons in the lobula have shown that the visual system of 

the honey bee is modulated by octopamine (Erber and Kloppenburg, 1995; Kloppenburg 

and Erber, 1995). In addition, anatomical studies in flies have shown that the visual 

system is highly innervated by octopaminergic neurons originating in the central brain 

(Sinakevitch and Strausfeld, 2006, Busch et al., 2009). Altogether, these results give a 

strong hint that octopamine modulates the visual system involved in motion detection in 
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flies. A recent paper has confirmed that octopamine modulates the cell response of 

lobula plate tangential cells. After the application of chlordimeform (CDM), an 

octopamine agonist, the response to visual stimuli is greatly enhanced (Longden and 

Krapp, 2009). In addition, later work showed that octopamine also modulates temporal 

frequency tuning (Longden and Krapp, 2010). The strong similarities between the results 

of the behavioral state studies mentioned in the previous section and the results from 

the work on octopamine clearly indicates that neuromodulation plays a critical role in 

state-dependent changes of visual processing.  

 

Figure 1.13: Effects of Octopamine on Different Tissues of Invertebrates. Octopamine is a 

multipotent substance in invertebrates. It modulates numerous peripheral tissues as well as 

sense organs. Also, central systems (underlined) are modulated by octopamine (from Roeder, 

1999). 

 

1.7 Goals and Project Outline  

The dynamic range of visual input in flies changes dramatically from the values at rest, 

through walking, to flying. How does the visual system adapt to these changes? Only 

very few studies have addressed the question of how behavior changes the response of 

lobula plate tangential cells. I investigated how the response properties of lobula plate 

tangential cells are modulated during flight.  

To study how H1 changes its response characteristics during flight is especially 

interesting, since H1 is one of the most studied cells in insect physiology (Brenner et al., 

2000; Haag and Borst, 1997; Maddess and Laughlin, 1985; vanSteveninck et al., 1997). I 
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investigated how the response properties of the lobula plate tangential cell H1 changes 

during flight using extracellular recording. Therefore, I had to adapt the preparation 

commonly used for recording H1 in blowflies to allow for tethered flying of the animal 

without restricting the wing beat amplitude and for simultaneous recording of H1 

without destruction of the lobula plate due to brain movements.  

During flight the fly has to deal with much faster image speeds compared to non-moving 

conditions. In addition, it has to compensate fast for involuntary movements, such as 

those induced by wind. Therefore, I investigated whether LPTCs show a difference in 

their response properties as a result of the behavioral state of the fly. First, I measured 

the spontaneous activity and the directional tuning range of the cells. The latter might 

increase during flight as an adaptation to a broader velocity range. There exists a 

mismatch between the behavioral measured optomotor response and the temporal 

frequency tuning curve obtained from electrophysiological recordings of LPTCs (Borst 

and Bahde, 1987; Haag et al., 2004; Hausen and Wehrhahn, 1989). Therefore, I analyzed 

the temporal frequency tuning of H1 during non-flight and during flight in detail. 

In further experiments, I investigated whether octopamine is involved in changing the 

response properties of H1 to visual stimuli. This hypothesis was tested because, as 

described in the previous section, octopamine is thought to be a major player in 

regulating the behavioral state of insects. In addition, it is known to be involved in visual 

motion processing in blowflies (Longden and Krapp, 2009). I compared the response of 

flying flies with fixed flies before and after CDM application using the same stimulation 

protocol as for the flight experiments to figure out whether CDM can mimic some of the 

effects attributed to the flight condition.   

Finally, I addressed the question of which parameters of the Reichardt detector model 

have to be changed to explain the behavioral state dependent differences in the visual 

response (Hassenstein and Reichardt, 1956a; Hassenstein and Reichardt, 1956b; 

Reichardt and Varjú, 1959).  

 

 



31 
 

 

 

 

2. Materials & Methods 

 

Three different preparations were used to perform the experiments presented in the 

next chapter. Originally, the work was based on previous observation that lobula plate 

tangential cells lose their responsiveness to visual motion stimuli when the connective is 

cut. To test whether this holds also true for H1, the experiments were repeated in a 

slightly different manner and the response of the cells to visual stimulation before and 

after cutting of the connective was compared. The main focus of the work, however, is 

on the question of how the neuronal response of H1 changes with the behavioral state 

of the fly. To address this question, in the second set of experiments I recorded 

extracellularly from tethered flying flies and compared the cell response with non-flying 

flies. Since the standard preparation has been modified for tethered flying flies during 

the thesis, I will use the last section of this chapter to describe it in further detail. The 

third set of experiments was conducted in fixed flies. Here, the cell response was 

compared before and after the application of the octopamine agonist CDM.  

 

2.1 Experimental Animals 

Blow flies (Lucilia spp.) were purchased weekly from a local pet shop and subsequently 

maintained in the departmental stock. The animals were delivered at a larval stage and 

started to pupate within the next 2-3 days. During that time, the larvae were not fed. 

Once the flies were hatched they received water and sugar ad libitum.   

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=pet&trestr=0x8001
http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=shop&trestr=0x8001
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Flies were kept in a plastic container of size 25cm x 25cm. The room temperature was 

kept around 20°C and the relative humidity between 50% and 60%. The animals were 

kept under a 12h-12h light-dark cycle. Only female blowflies were used for experiments. 

The age varied between 3-10 days after eclosion.  

 

2.2 Preparation 

2.2.1 Preparation for Cutting Experiments 

The aim of this experiment was to cut the connective of the fly while recording 

extracellularly from H1. The animals were briefly anesthetized with CO2. Then, their 

dorsal part of the thorax was attached to a small glass platform with wax. After the legs 

were removed with scissors, the body was covered with wax to reduce strong 

movements. The halteres, stigmen and proboscis were left open. Next, the head was 

waxed onto the ventral thorax at an angle of approximately 90°, so that the neck of the 

fly was slightly stretched but no strong forces were created. An injection needle was 

used to open the head capsule on both sides. In contrast to the following experiments, 

no care was taken on the size of the holes. After that, the needle was used to open the 

skin of the neck from behind. In order to obtain access to the cervical connective, the 

oesophagus had to be removed. Therefore, it was cut with a scissor as close to the head 

as possible. The part of the oesophagus ending in the stomach was pulled out and 

waxed to the thorax.  Now, the connective was visible and a hair was pushed gently 

under the connective using forceps.  After that, both ends of the hair were waxed 

together to form a ring. Throughout the whole procedure, care was taken that the air 

sacs and other important supply circuits were as little harmed as possible; however, the 

air sacs were usually damaged slightly.  It was also of critical importance that no further 

forces were put onto the hair in order to ensure that the connective was not damaged 

before the actual recording. Ringer's solution was added to keep the brain as well as the 

connective moist, to keep both in an isotonic solution and to ensure sufficient contact 

with the reference electrode.  

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=oesophagus&trestr=0x2001
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2.2.2 Preparation for Experiments on CDM Application 

Regarding anesthetizing and fixation, the preparation was done in a similar way as 

described in the cutting experiment. However, the head was waxed onto the ventral 

thorax at an angle of about 20°-30°. This angle was shallower compared to standard 

conditions to allow the use of the same experimental set-up as in the tethered flight 

experiments. In addition, the ocelli were covered with wax. Finally, an injection needle 

was used to open the head capsule on both sides. The right side of the head (viewing the 

fly’s head from the back) was opened from the most lateral limit to the midline. The 

vertical length of the opening extended from the upper part of the head to 

approximately the middle. Extending the opening further in the dorsal direction often 

resulted in a loss of Ringer's solution or hemolymphe. The left side of the head was 

opened in a similar way; however, the exact size of the opening did not seem to play a 

critical role. The openings left sufficient space for the recording as well as the reference 

electrode. Ringer's solution was added to keep the brain moist, to keep it in an isotonic 

solution and to ensure contact with the reference electrode.  

 

2.2.3 Preparation for Experiments on Tethered Flying Flies 

The preparation consisted of two steps. The first part of the preparation was conducted 

at least 12 hours before the actual experiments. The animals were briefly anesthetized 

with CO2. A small piece of cardboard was waxed perpendicularly onto the dorsal thorax 

of the fly, keeping the wings free to move. The ocelli were covered with wax. The head 

fixation was the most critical part which had to be changed from the commonly 

conducted preparation procedure (described above). The head was fixed to the thorax 

with a very shallow angle of approximately 20°-30° and was fixed to the dorsal part of 

the thorax instead of to the ventral part. During this procedure, the ocelli were covered 

with wax (fig. 2.1). After the pre-preparation, the flies were put back into the holding 

tank to recover for at least 12 hours. The actual recordings were performed within the 

next two days. At that time, the head capsule was opened as described above and 

Ringer's solution was added.  

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=cardboard&trestr=0x8001
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Figure 2.1: Preparation for Tethered Flying Flies. a) View onto the front of the fly. To get a 

strong enough connection between the head of the fly and the back of the thorax the ocelli were 

covered with wax. A piece of cardboard was mounted perpendicularly onto the thorax. The 

wings were free to move. b) View onto the back of the fly while it was in the setup (picture taken 

by R. Schorner).  

 

2.2.4 Preparation for Control Experiments on the Influence of Wind 

For the control experiments on the influence of wind on the neuronal response the 

same preparation was made as for the CDM application, except that the legs were free 

to move and the body was not covered with wax. This kept other wind-sensitive body 

parts such as hairs free for sensation, in addition to the antenna.  

 

2.3 Experimental Set-up and Positioning of the Fly  

The fly was mounted on a heavy recording table with the stimulus monitor in front of it. 

The fly was fixed in a slightly forward bend position to mimic the angle of flight a fly 

would have under free flight conditions (fig. 2.1 b). The LED-Arena used for stimulation 

(described below) was tilted forward until the fly faced the visual stimulation frontally 

(fig. 2.2). For the experiments on flying flies, a constant air flow had to be delivered to 

the fly through a plastic tube in order to keep the fly flying. The opening was 

approximately 4 cm away from the fly and pointed towards its head. At the head of the 

fly, the air velocity was approximately 2.5 m/s. Under these conditions, flies flew steadily 

for about 20 min. Flight was stopped by giving the flies a piece of paper to the legs and 

Recording 

Electrode 

Reference 

Electrode 

Cardboard 

Glass 

Head Fixation Free Wings 

a b 
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stopping the air flow. The reference electrode was always inserted into the left side of 

the head capsule; the recording electrode was inserted into the right side. The fly brain 

was viewed from behind through a Zeiss dissection scope. 

 

 

Figure 2.2: Positioning of the Fly in the Experimental Set-up. Stimulus arena and fly were tilted 

towards each other so that the fly was flying in an angle comparable to free flight conditions. 

The reference electrode and the recording electrode were placed on the left and right side of 

the fly, respectively. Air was delivered through a plastic tube. The fly brain was viewed from 

behind through a Zeiss dissection scope (picture taken by R. Schorner). 

 

2.4 Stimulation 

The stimuli were presented using a cylinder-shaped LED-Arena that was custom built 

based on the open-source information of the Dickinson Laboratory (Reiser and 

Dickinson, 2008). The arena consists of 15x 8 TA08-81GWA dot matrix displays 

(Kingbright, CA, USA), each harboring 8 x 8 individual green (568 nm) LEDs. The arena 

covered 170° and 60° of the horizontal and vertical visual field, respectively. The angle 

between adjacent LEDs was 1.7°. It was possible with the arena to show patterns with a 

refresh rate of 600 Hz and 16 intensity values. Each dot matrix display was controlled by 

an ATmega644 microcontroller (Atmel) that obtains pattern information from one 

central ATmega128-based main controller board. The main controller reads in pattern 

information from a compact flash memory card. For achieving high frame rates, each 

panel controller was equipped with an external AT45DB041B flash memory chip for local 

pattern buffering. Matlab was used for programming and generation of the patterns as 

well as for sending the serial command sequences via RS-232 to the main controller 

board. 

Recording 

Electrode 

LED-Arena Camera 

Binocular 

Plastic tube 

Fly 

Cold Light Source Light Conductor 

Reference 

Electrode 

 

Fly Holder 



36 
 

The stimulus pattern consisted of a vertical two-dimensional sine wave grating of either 

20° or 40° spatial wavelength. The mean luminosity of the screen was 5.3 cd/m². The 

stimuli had either a low (17.4%) or a high (approximately 90%) contrast. For low contrast 

stimuli, patterns were generated by two consecutive frames. This resulted in 32 

equidistant intensity levels available per image; however, only 8 intensity levels were 

used. Since two frames were used to create one picture, the actual picture rate was half 

the frame rate. Given a frame rate of 400 Hz, this resulted in a picture rate of 200 Hz. For 

high contrast stimulus the frame rate and picture rate were identically 400 Hz. The 

number of intensity levels used was 16. 

The spontaneous firing of H1 was measured after the fly was adapted to light for at least 

5 min. The response of H1 to stimuli moving in preferred and null directions was 

measured using all four possible combinations of contrast and wavelength (high 

contrast: 20° & 40° wavelength;  low contrast: 20° & 40° wavelength; fig. 2.3 b). The 

pattern was presented with a temporal frequency of 5 Hz for 3 s in either the preferred 

or the null direction in an alternating fashion. The inter-stimulus time interval was 3 s. 

The temporal frequency tuning was measured in a different set of flies. To measure the 

temporal frequency tuning, a pattern of a spatial wavelength of 40° and low contrast 

was used. The pattern moved at temporal frequencies ranging from 0.3 Hz to 20 Hz in 

the preferred direction of H1 (fig. 2.3 a). For each stimulus trial 10 different temporal 

frequencies were presented in a pseudo-random fashion. Each temporal frequency was 

presented for 3 s; the interval between each stimulus presentation consisted of a 

stationary pattern presented for 3 s. This stimulus protocol was repeated 10 times, so 

that for each frequency 10 measurements were performed.  
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In order to measure the impulse response of H1, a brief motion stimulus was delivered. 

The impulse response of H1 was analyzed before and after the presentation of constant 

motion stimuli (‘adaptation stimulus’). Apparent motion was used as a test stimulus. 

Both the adaptation and the test stimulus were delivered at low contrast. The 

displacement of the pattern was 180°. For each fly, the test stimulus was repeated 100 

times with an inter-stimulus interval of 7 s to evaluate the response of H1 to an isolated 

impulse (fig. 2.3 c). As for the velocity tuning measurement, the inter-stimulus time 

interval between each presentation of the adaptation stimulus was 3 s. The adaptation 

stimuli lasted 3 s and had a temporal frequency of 5 Hz; a test stimulus was presented 

200 ms after the adaptation stimulus (fig. 2.3 d).  

Figure 2.3 Stimulus Protocols used for Different Experiments. a: Stimulus protocol to measure the 

temporal frequency tuning curve for the preferred direction of H1. b: Stimulus protocol to measure 

the response to the preferred and null direction of H1. c: Stimulus protocol to measure the isolated 

impulse response. d: Stimulus protocol to measure the impulse response after the presentation of 

an adaptation stimulus.   
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2.5 Cell Identification and Recording 

H1 is one of a few spiking interneurons in the fly's lobula plate which crosses the midline 

(fig. 2.4 a). This property, in addition to the specific directional motion sensitivity, makes 

it possible to identify the cell (Eckert, 1980). I always recorded extracellularly from the 

axonal arborizations in the right brain hemisphere and measured the firing rate in 

response to visual stimuli on the contralateral side. The reference electrode was 

inserted into the left head capsule. H1 was identified during the non-flight or before-

CDM condition. In order to identify the cell, a different sine-wave grating was shown 

than for the actual experiments. The spatial wavelength of the pattern was 20°; the 

contrast was above 90% and the stimulus velocity was 5 Hz. The direction of movement 

alternated between preferred direction (PD) and null direction (ND). Movement in PD 

led to a strong increase in firing frequency, whereas movement in ND led to a strong 

reduction of H1 activity (fig. 2.4 b). Since the stimulus arena covered most of the 

receptive field of both eyes, it was ensured by waving a hand in front of the eye that the 

receptive field of the cell was always contralateral to the recording site.  

For electrical recording, tungsten electrodes were used with a resistance of 0.5-1 

MOhm. Spikes were transferred at 30 kHz temporal resolution to a computer to allow 

offline spike extraction. Spike extraction was performed via threshold detection based 

on the digital band-pass filtered recording and its first derivative. 
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To enable recordings in tethered flying flies, the recording procedure had to be adjusted 

slightly compared to previous work done in immobilized flies. Since the small angle 

between head and thorax blocked access to the lobula plate with straight electrodes, 

the tip of the tungsten electrodes was bent beforehand using forceps. The same kind of 

electrodes were used as a reference because they turned out to be relatively thin but 

stable compared to the normal silver wires used for H1 recordings. To get a low 

resistance, the tip of the electrode was cut and the tip of the electrode was polished. 

 

2.6 Chlordimeform 

Chlordimeform-HCl (CDM; Sigma–Aldrich) is a tissue-permeable octopamine agonist 

(Hiripi et al., 1999). It has been used already in many insect preparations to test, for 

example, the functional role of octopamine in locomotion (Rosenberg et al., 2007; Vierk 

et al., 2009). CDM was dissolved in water and stored as a 1 M stock solution at 4° C. 

Before each experiment the CDM solution was diluted in Ringer's solution to give a final 

concentration of 20 µM. 2 µl of the CDM solution was applied to the lobula plate 

contralateral to the recording site. Before application of CDM, the reference electrode 

had to be removed from the head capsule of the fly. For the delivery of CDM, a 

micropipette was used. After that, the reference electrode was put back into place. It 
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Figure 2.4: H1 Anatomy and Response 

Properties to Visual Stimulation. a) Anatomy of 

H1; the recording site (arrow) was always 
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Hausen, 1993). b) Response of H1 to visual 

stimulation of a moving pattern in preferred and 

null direction. 
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was taken care that during this procedure the fly was neither touched by the reference 

electrode nor by the micropipette. The recording electrode was not moved at all, so that 

H1 could be recorded after the application of CDM without reorientation of the 

recording electrode. 

The amount of CDM used in each experiment was about 1.5x higher than that used in 

previous studies on arousal in flies (Longden and Krapp, 2009). Given the different size 

of Calliphora and Lucilia the difference in total concentration per brain volume is 

assumed to be even higher and was approximated at 7.2 x 10-10 mol/g. However, 

considering the broad range of concentrations in bath solutions used in other insects 

studies I consider the concentration well within the range of physiologically relevant 

concentrations for CDM (Duch and Pfluger, 1999; Kinnamon et al., 1984; Stevenson et 

al., 2005; Vierk et al., 2009). The spontaneous spike rate of H1 was reliable increased 

within 5 min after application and remained so throughout the duration of the stimulus 

presentation (20 min). 

 

2.7 Data Analysis 

To calculate the spontaneous activity, the firing rate was recorded for 1 min while 

presenting the stationary visual pattern described above. In the experiments in which 

the effect of CDM was studied I measured the spontaneous firing rate before and after 

recording the velocity tuning and averaged the results. 

In response to the onset of a constant velocity stimulus, H1 exhibits transient oscillations 

before settling to a steady-state value. The response transients are characterized by 

oscillations that have the same frequency as the temporal frequency of the periodic 

pattern and are only observed when the visual pattern has been shown before stimulus 

onset (Egelhaaf and Borst, 1989; Maddess, 1986). The steady-state response is, in 

contrast, independent of the presence or absence of a visual pattern before stimulus 

presentation (Maddess, 1986; Reisenman et al., 2003). The data under different stimulus 

conditions were analyzed by plotting either the firing rate or the response defined as the 

firing rate minus the average firing rate during the last second before stimulus 
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presentation. The instantaneous firing rate was always calculated using a bin width of 10 

ms.  

To describe the temporal frequency tuning curves, two different parameters were 

calculated. The steady-state firing rate was defined as the average firing rate during the 

last second of stimulus movement; the steady-state response was defined as the 

difference between the steady-state firing rate and the average firing rate during the 

last second before stimulus onset. 

Before the Reichardt detector model could be used for fitting the experimental results, 

the data had to be normalized. For the data set on flying flies normalization was 

performed within each single fly. The temporal frequency-tuning curve of the steady-

state response of H1 was calculated for the non-flight as well as for the flight condition. 

The maximum value of the steady-state response curve of the non-flight condition was 

then used to normalize the data set. After normalization, all curves were averaged 

across flies. The same procedure was repeated for the CDM experiments. Here, the 

condition ‘before-CDM application’ was used as reference.  

 

2.8 Modeling 

The Reichardt detector – a correlation based motion detector model, described above – 

can account for many properties observed in fly motion vision (Hassenstein and 

Reichardt, 1951, Reichardt, 1969; Borst, 2007). In particular, the bell-shaped steady-

state velocity dependence is faithfully described with this model. However, adaptive 

properties – such as the shortening of the impulse response after the presentation of a 

motion stimulus – are not captured with the original model (Borst and Bahde, 1986; 

Goetz, 1972). For my simulations, I used an extended version of the Reichardt detector 

model. In agreement with the original model, the signal coming from the retina was low-

pass filtered in one cross-arm of the detector; in the other cross-arm, however, an 

additional high-pass filter was added (fig. 2.5). Following the original publication, the 

model will be referred to as the ‘High-pass’ model (Reisenman et al., 2003). According to 

the High-pass model the time constant of the impulse response is identical with the 
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high-pass time constant of the model. It has been observed that visual motion leads to 

an adaptation and hence shortening of the time constant (Borst et al., 2003; Reisenman 

et al., 2003). Therefore, I used the adapted high-pass time constant for all experimental 

conditions (non-flight, flight, before-CDM, CDM) as a parameter for the model. The 

steady-state response of the High-pass model was calculated by Borst et al. (2003):  

 

where λ represents the wavelength of the pattern *°+, ∆φ the sampling base *°+, ∆I the 

pattern contrast, τh the high-pass and τl the low-pass time constant [s],  the 

angular frequency of the pattern [Hz] and v the stimulus velocity. As can be seen from 

the above equation, the steady-state velocity tuning of this detector depends only on 

the time constants of the internal filters, since the first two terms are independent of 

stimulus velocity, affecting the overall amplitude of the response only.  

  

 

I investigated to what extent which filter time constants had to be adjusted in order to 

explain the differences observed in the response to visual stimulation under various 

conditions (e.g., when the flies are at rest or during tethered flight, and before or after 

CDM application). Since for both types of experiments the same fitting procedure was 

performed, it will be explained only once for the experiments on flying flies. I used the 

adapted high-pass time-constant during non-flight and during flight as one parameter of 

Adaptor 

τ τ 

Adaptor 

Figure 2.5: High-Pass Model. The High-pass 

model was based on the original Reichardt 

detector model with an additional HP filter in the 

input line. To fit the temporal frequency tuning 

curves, the measured adapted high-pass 

constant (red) was set as a fixed value, whereas 

the low-pass time constant was fitted. To 

calculate the transient response, the High-pass 

model was used. The adapted high-pass time 

constant and the fitted low-pass time constant 

were used as input parameters (adapted from 

Borst at al. (2003). 

 

(1) 



43 
 

the model. To estimate the other parameter, i.e., the time constant of the low-pass 

filter, I fit the tuning curve of the model to the tuning curve of the fly obtained under 

both conditions by minimizing the mean square error between the model response and 

the experimental data. Values of the low-pass time constant were tested ranging from 

0.005 to 0.25 s at a resolution of 0.001 s. The model values and the experimental data 

do differ by a constant. In this work the results are presented in which this constant 

could be different for the non-flight and flight condition (or before-CDM vs. CDM 

condition). However, the fits only change slightly, when for both conditions the same 

multiplication factor is used to map the model data onto the experimental data. 

To verify whether the High-pass model can also reproduce the transient response 

characteristics of H1 to different temporal frequencies, the measured and fitted 

parameters were used to calculate the transient response. The step response to a 

grating moving with constant velocity is given by Borst et al. (2003): 

 

with 

 

 

 

 

(2) 
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2.9 Setting up Extracellular Recordings in Tethered Flying Flies 

2.9.1 Behavioral Pre-Preparations 

To record from flying flies, the standard preparation for H1 recordings had to be 

adapted (Eckert, 1980; Reisenman et al., 2003; Weber et al., 2010). To enable the wings 

of the flies to move freely a piece of paper was waxed perpendicular to the thorax 

(figure 2.1). Instead of fixing the head to the front of the thorax a wax bridge was built 

from the head to the back of the thorax. The latter step had two advantages: first, the 

back of the thorax is more rigid during flight, which reduced vibration of the head, and, 

second, the front legs were free to move. Nevertheless, it turned out that under these 

conditions the flies did not fly when recording extracellularly from H1. To entangle 

whether this was due to the fact that flies do not like electrodes in their head or because 

particular aspects of the preparation reduced their willingness to fly, initial behavioral 

experiments were performed. The first parameter tested was the angle between thorax 

and head. In former behavioral studies on the response of flies to visual stimulation, the 

head of the fly was directly fixed to the thorax (Geiger, 1974; Mayer et al., 1988; 

Wehrhahn and Hausen, 1980). The flight duration of 13 flies of the species Calliphora 

vicina was measured with an angle between thorax and head of either <30 or 45 

degrees. It turned out that a smaller angle between head and thorax was favorable for 

longer flight periods (fig. 2.6 a). However, long flight periods were rarely observed in 

Calliphora vicina (fig. 2.6 c). Therefore, another species, Lucilia, was tested (n=16). 

Assuming that also in this species a small angle between thorax and head is favourable 

for flight willingness; the next parameter tested was the age of the fly at the day of 

preparation (fig. 2.6 b). If the flies were too young at the time of the preparation – most 

likely because the cuticula was not yet hardened and in general the flies were more 

fragile – flies did not fly very well. A comparison between Calliphora vicina and Lucilia 

showed that the duration of flight was longer when Lucilia were used for experiment 

instead of Calliphora vicina (fig. 2.6 c). It has to be noted, however, that within these two 

groups, beside species type, other parameters were also different such as the average 

age during testing. Nevertheless, further experience confirmed that Lucilia fly better in 

this experimental setting than Calliphora vicina.    
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Figure 2.6: Behavioral Test to Increase Willingness of Flies to Fly. a) Originally, Calliphora were 

use for flight experiments. Here, preliminary results showed that a small angle between head 

and thorax was favorable for getting the flies to fly. b) The dependence of flight duration on age 

of the fly (Lucilia) at the day of preparation is shown. c) A general comparison between the 

duration of flight in Calliphora and Lucilia is shown. Long periods of flight are rarely seen in 

Calliphora. Note however, parameters other than the species were changed as well.  

 

2.9.2 Spike Extraction 

To extract action potentials from extracellular recordings with a high reliability, the 

signal to noise ratio is of critical importance. In the experiments on tethered flying flies 

the signal strength might decrease during flight, whereas the noise level might increase 

during flight. First of all, the brain could move during recording because of the forces 

created by flight. It turned out that a reduction in spike amplitude was rarely observed 

during flight. Most likely, strong brain movements decreased the willingness to fly when 

an electrode was inserted into the brain. Therefore, no recordings could be performed in 

these flies anyway. However, an increased noise level caused further experimental 

difficulties. One critical aspect was that vibrations due to wing/body movements could 

be captured by both the reference as well as the recording electrodes as an increase in 

noise level with wing beat frequency. Hence, even small vibrations within the Ringer's 

solution on top of the brain should be avoided. Another aspect which had to be taken 

into account was that not only might H1 change its pattern of activity during flight, but 

a b c 
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other cells in the lobula plate might as well. As an ‘online criterion’ for single cell 

recording a strong stimulus pattern (the same as used for cell identification) was 

presented in the preferred as well as in the null direction. If the spiking activity was 

completely suppressed in the null direction a single cell recording was very likely. As an 

off-line criterion, after spike extraction the interspike interval (ISI) was checked for 

consistency with the refractory period of a cell.  

In the following, the spike separation process is outlined using one example data set. 

This particular data set was chosen because it consisted of a long stretch of recording of 

the spontaneous activity in which non-flight, flight and non-flight conditions were 

alternated. For each condition before, during and after flight a 60 s long recording trace 

was evaluated. First, the recording trace was digitally band-pass filtered between 200 Hz 

and 4800 Hz. The high-pass threshold was set to remove some of the motion artifacts 

(e.g., movements of the legs); the low-pass threshold was set to smooth the recording. 

After that, the derivative of the signal was taken. The recording was then binned into 

segments of 0.001 s. For each segment the maximum of the filter signal and the 

maximum of the first derivative are plotted against each other in a scatter plot (fig. 2.7). 

Based on the scatter plot, thresholds were chosen to separate spikes from noise. In 

order to be counted as a spike, a data point had to lie above both criteria. The 

histograms of the signal and derivative height are also shown, in order to give a more 

qualitative overview. For example, even though the spike separation for the flight 

condition does not appear well-resolved on the scatter plot, the histograms show clear 

and distinct peaks for spikes and noise.  The ISI in the last column of the figure indicates 

a good spike separation since, for all conditions, no spikes are detected within the 

refractory period of the cell.  
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Figure 2.7: Spike Extraction Protocol. Spike were extracted from 60 s long recording stretches 

obtained during before (a-c), during (d-f), and post (g-i) flight condition. a,d,g) scatter plot of the 

maximum and the maximum of the derivative of the recording trace based on 0.001 s long time 

bins. b,e,h) the same data are presented as in the first column, but plotted as histograms. c,f,i) 

ISI histograms based on the extracted spikes. Note that the criterion of a refractory period is 

fulfilled.  

 

A two-second long recording stretch for each condition is shown in figure 2.8. Note that 

during flight the noise level seems to rise slightly. However, it is difficult to tell whether 

this is only due to an increase of activity within the lobula plate or whether the noise is 

caused by slight vibrations of the brain. The waveform of the extracted spike was the 

same for each condition.  
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Figure 2.8: Spontaneous Activity Recorded before, during, and post Flight, together with the 

Waveforms of the Extracted Spikes. a-c) 2 s long segments of spontaneous activity pre (a), 

during (b) and post flight (c). d-f) the corresponding waveform from the spikes shown in a-c. 

Note that the waveform does not change throughout the recording.  

 

2.9.3 Control for a Functional Optomotor Response 

To assure that the flies were still behaving normally, the wingbeat frequency and the 

optomotor response were measured. In order to do this, the flies were filmed with a 

high-speed camera (MotionPro Y3, Redlake) with a macro objective (Sigma, 105mm F2,8 

EX DG).  To measure the wingbeat frequency, a frame rate of 1000 Hz was used. In order 

to test whether the fly shows a normal optomotor response during flight, the fly was 

filmed at a frame rate of 90 Hz while a visual motion stimulus was displayed. To elicit the 

optomotor response a high pattern contrast was used. After one second exposure to a 

stationary pattern, a moving pattern (temporal frequency 2 Hz) was displayed which 

changed direction every 5 seconds. The acquired movies were tracked manually (ImageJ, 

Manual Tracking plug-in). From the acquired movies, the wingbeat frequency and 

wingbeat amplitude of the left and right wing were determined.  
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3. Results 

 

The main focus of my dissertation is the investigation of how lobula plate tangential cells 

change their response properties with the behavioral state of the animal. To address this 

question I used three different experimental approaches.  

The first set of experiments regard the clarification of previous observations in which the 

response properties of lobula plate tangential cells where tested after cutting the 

connective. Previous results indicated that lobula plate tangential cells lose their 

responsiveness to visual stimuli when the main connective is cut. This indicates a 

feedback mechanism from the motor system to the optic neuropil. However, the results 

obtained by cutting the connective while recording extracellularly from H1 revealed that 

the response properties of the cell to visual motion stimuli did not alter dramatically.  

In the next set of experiments I investigated how H1 changes its response to visual 

stimuli while the fly was flying compared to the non-flight condition. I demonstrated 

that H1 increases its firing rate dramatically when the flies started to fly, and maintained 

an elevated firing rate throughout the duration of flight. Next, I demonstrated that the 

directional tuning range is increased during flight. However, this effect depended on 

different parameters such as pattern wavelength and contrast. Furthermore, I found 

that the temporal frequency tuning of the steady-state response of the cell is broadened 

towards higher frequencies. This effect was due to a reduced adaptation to higher 

stimulus velocities when fast patterns were presented.  
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The last sets of experiments were performed to investigate functional mechanisms 

involved in the changes of the response properties of H1. The current literature suggests 

that octopamine is a promising candidate for being involved in inducing behavioral 

state-dependent changes in the response properties of lobula plate tangential cells. By 

applying the octopamine agonist Chlordimeform-HCl (CDM; Sigma–Aldrich) the effects 

induced by flight could be mimicked to some extent; the baseline firing rate increased 

and the temporal frequency tuning curve was shifted to higher frequencies. 

Octopaminergic projections can be found in the lobula plate as well as in the medulla. 

Therefore, the question remains whether the observed effects are a result of changes in 

the properties of H1 itself of whether the presynaptic circuitry is altered.  Using the 

Reichardt detector as a model, the conclusion could be drawn that the most likely 

scenario is that the broadening of the tuning curve results from changes in the 

presynaptic circuitry of H1. The changes in the tuning curve could be fit by decreasing 

the low-pass time constant of the model.  

 

3.1 Cutting of the Connective 

Previous experiments have suggested that lobula plate tangential cells lose their ability 

to respond to visual motion after the connective between the central brain and the 

thoracic ganglia is cut (Haag, unpubished). This suggests a strong interaction between 

the motor system and the optic neuropil. The experiments were conducted on cells 

belonging to the horizontal system and vertical system in flies (HS and VS) which 

respond to motion stimuli with a graded change in their potential. Working on spiking 

cells allowed repeating the previous experiments with the additional possibility of 

recording while the connective was cut. The cutting was performed by pulling on a hair 

which had been previously attached to the connective.  Most of the time the cell was 

lost after cutting the connective and often it could not be found again. In most of these 

cases, the lobula plate appeared to be relatively silent: no other spiking cells were 

located after the initial spiking cell was lost. This is in agreement with the previous 

results; however, after some practice it was possible to identify H1 after cutting the 

connective, though the recording quality was often not good enough for spike 
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extraction. In a few cases, however, the recording quality was good and spike extraction 

could be performed throughout the experiments. During the cutting procedure the firing 

rate increased (figure 3.1). In addition, the adaptation to a moving grating appeared to 

be less strong. However, the increase in activity and the reduction in adaptation was 

only a temporary change in firing pattern. After 5 min the cell recovered back to baseline 

activity and the response properties to a moving grating recovered completely as well. 

Therefore, previous observations from J. Haag could not be confirmed. 
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Figure 3.1: Response of H1 before and after Cutting the Connective. a) The black trace shows 

the firing rate (bin-width: 0.01 s) of H1 in response to a visual stimulus. An alternating moving 

grating was shown while the connective was cut (indicated by the arrow). The visual pattern was 

changed from a stationary sine grating, to a sine grating moving in the preferred direction of H1, 

then back to a stationary grating, and finally to a sine grating moving in the null direction of H1 

(gray trace). b) The recordings were performed before the connective was cut; upper panel: the 

spontaneous activity is shown; lower panel: the response of H1 to an alternating moving grating 

(same as in a) is shown. c-d) same as in b) but the data were obtained approximately 1 min after 

cutting the connective (c), or after a recovery period of 5 min (d). Note that directly after cutting 

(c), the baseline activity is increased. 
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The experiments were repeated with V1, which is another spiking lobula plate tangential 

cell (fig. 3.2). Since the directional selectivity of V1 is shifted by 90° compared to H1, a 

vertical moving grating was presented. V1 was chosen because it is electrically coupled 

to VS1, and therefore any changes in the VS-cell should be reflected in V1. Again, an 

increase in baseline activity could be observed after cutting the connective, but 

nevertheless the response properties to a moving grating before and after cutting the 

connective were qualitatively similar (fig. 3.2 b&c). 
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3.2 Flight Modulates Visual Processing 

In order to study how the visual motion processing is modulated during flight, I recorded 

extracellularly from the lobula plate tangential cell H1 during flight and compared the 

Figure 3.2: Response of V1 before and after Cutting the Connective. a) Spontanous activity of 

V1 before (black) and after cutting the connective (gray). b-c) The black trace shows the firing 

rate (bin-width: 0.01 s) of V1 in response to a visual stimulus. The gray trace indicates the visual 

stimulation. The response of V1 looks does not change significantly when the connective is 

severed. However, a slight offset between the baseline activity and the firing rate during the 

presentation of the null-direction could be observed.   
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results with data from the same animals when they were not moving. To confirm that 

the flies show normal flight behavior, wingbeat frequencies and the optomotor response 

were measured in a dissected preparation, simultaneous with H1 recordings.  

The average wingbeat frequency during flight was 153 ± 5 Hz (n=5). The optomotor 

response was elicited by showing a high contrast pattern moving in the preferred and 

null directions of H1. The amplitudes of the left and right wing were modulated in 

counterphase depending on the direction of pattern motion (fig. 3.3 a, n=1). The 

difference in wing amplitude between left and right wing reflected the turning tendency 

of the fly (fig. 2.9 b) which was syndirectional with the pattern motion. This result 

demonstrates that the tethered flying flies showed a normal optomotor response. The 

higher contrast pattern parameters presented during the measurement of the 

optomotor response were used to measure the temporal frequency tuning curve of H1 

in the same fly. The results did not qualitatively differ from the temporal frequency 

tuning curve measured at low contrast frequencies.  

 

 

 

 

 

Figure 3.3: Wingbeat Amplitude during Tethered Flight. The direction of pattern movement 

alternated every five seconds from left to right and from right to left. a) Wingbeat amplitude of the 

left (black line) and the right wing (gray line) are shown. Pattern motion to the left is indicated by the 

gray boxes. b) Difference in wingbeat amplitude of left and right wing (wingbeat amplitude of left 

wing – wingbeat amplitude of right wing). The fly was trying to compensate for the visual stimulus. 

Square wave corresponds to the frequency of the pattern motion indicated by the gray boxes in 3.3a 

(picture by J. Haag). 
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3.2.1 Flight Changes Neuronal State  

To characterize the influence of flight on the response properties of the H1 cell, first the 

spontaneous activity was measured under light adapted conditions. Therefore, I 

presented a stationary sine-wave grating which was later used as the motion stimulus 

(mean luminance: 5.2 cd/m²; contrast: 17.4%; wavelength: 40°).  

Figure 3.4 a shows the firing rate of a single fly under flight and non-flight conditions. 

Note that the data for the non-flight condition were acquired approximately 5 min after 

flying. The firing rate was measured over a duration of 60 seconds and calculated over a 

time interval of 0.5 seconds. Throughout the recording, the firing rate during flight 

remained at a much higher level than during non-flight.  In general, the standard 

deviation of the firing rate between flight and non-flight conditions was very similar 

(non-flight: 6.7 Hz; flight: 8 Hz); however, whereas, during flight, changes in the firing 

rate remained at the same order of magnitude throughout the recording, during non-

flight sudden peaks in the firing rate occurred.  These sudden increases in firing rate 

during non-flight most likely had their origin in movement of the antennae, halteres or 

legs.  

The ISI-Histogram (fig. 3.4 b) shows a much narrower peak during flight, which 

corresponds to a comparably low standard deviation (non-flight: 0.049 s; flight: 0.009 s); 

however, the coefficient of variance (CV) is very similar (non-flight: 0.7253; flight: 

0.6365). Note that for both conditions the CV is below 1, which indicates a relatively 

regular spike train compared to a Poisson distribution. Whether the regularity in the 

spike train is a consequence of cell-specific properties or is due to a regular input cannot 

be discriminated.  

The average spontaneous activity over all flies is shown in figure 3.4 c. The mean 

spontaneous firing rate was increased dramatically by almost a factor of nine from 8.39 

Hz ± 1.65 to 75.54 Hz ± 6.48 (mean±sem; n=8; P<0.05; paired t-test).  
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Figure 3.4: Spontaneous Activity during Non-Flight and Flight Conditions. a) Spontaneous firing 

rate of a single fly during flight and 5 min after flight. b) Interspike-Interval-Histogram calculated 

from the same spike train used to measure the firing rate in a. c) Average spontaneous activity 

calculated from 8 different flies under non-flight and flight conditions. Error bars indicate 

standard error of the mean.  

 

3.2.2 Flight Increases the Directional Tuning Range  

Work on Drosophila has shown that during flight the directional tuning range of lobula 

plate tangential (VS) cells – the difference between the response of cells to motion 

stimuli in the preferred vs. the null direction – is increased (Maimon et al., 2010). To test 

whether this holds true for H1 in Lucilia the firing rate in response to stimuli in the 

preferred and null directions was measured using a sine wave pattern moving with a 

temporal frequency of 5 Hz. 
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Figure 3.5 shows the average firing rate in response to four different stimulus 

conditions, each delivered both in the preferred and the null direction. Throughout the 

experiments the firing rate in the flight condition was clearly elevated. Also the response 

to pattern movement in the preferred direction of H1 was higher during the flight 

condition. The response increased between 10 - 20 Hz during flight, except for the 

strongest stimulus condition (high contrast + 20°) where only a small increase of 2.5 Hz 

could be observed. This is likely a result of a saturation of the firing rate of H1, which 

was close to 300 Hz during the flight condition. For the low contrast condition the 

response to the null direction was close to zero for the non-flight as well as for the flight 

condition. However, for the high contrast condition an increase of the negative tuning 

range could be observed during flight; this increase was most pronounced for the 

strongest stimulus (non-flight: high contrast + 20° = -3.73 Hz; flight: high contrast + 20° = 

-40.25 Hz). 
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Figure 3.5: Firing Rate in Response to Different Patterns Moving in Preferred and Null 

Directions of H1. As indicated, four different patterns, varying in contrast and spatial 

wavelength, were used. The firing rates for stimulus presentations in the preferred and null 

directions are shown in black and red, respectively. Left: Results for the non-flight condition are 

shown (n=4). Right: Results for the flight conditions are shown (n=4). 
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3.2.3 Flight Broadens the Temporal Frequency Tuning Curve 

One important aspect of motion detection is that the dynamic range of the visual input 

changes strongly depending on whether the animal is at rest, walking or in flight. 

Therefore, it is particularly interesting to ask whether the cells’ temporal frequency 

tuning properties are changed in addition to the observed elevated spontaneous spike 

rate and the increased directional tuning range. The temporal frequency is defined as 

the pattern wavelength divided by the pattern velocity. To measure the temporal 

frequency tuning curve a moving sine-wave grating was shown for 3 sec with different 

temporal frequencies ranging from 0.3 Hz to 20 Hz.  

The firing rate recorded during the presentation of different temporal frequencies (fig. 

3.6 a & b) revealed two major differences between non-flight and flight conditions. First, 

the overall firing rate for low (e.g., 1 Hz) as well as for high (e.g., 10 Hz) frequencies is 

elevated over the entire duration of pattern presentation during flight (fig. 3.6 a & b). 

Second, for high frequencies the time course of the firing rate during prolonged stimulus 

presentation seems to be changed as well. Note, however, that during flight the 

maximum firing rate might already be influenced by saturation effects. 

For low frequencies the responses of H1 during non-flight and during flight look very 

similar (fig. 3.6 c & d). However, one interesting observation can be made. During flight 

the response at pattern movement onset seems to rise faster. This phenomenon might 

have its explanation in the fact that H1 is closer to threshold during flight, as suggested 

by its increased spontaneous activity. The largest state-dependent difference between 

the response properties of H1 was observed for high frequencies, whereas the peak 

response was almost unchanged. The response adapted more slowly and stayed at a 

higher steady-state value during flight. This finding was further analyzed by calculation 

of the steady-state firing rate and the steady-state response of the cell.  
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The steady-state firing rate of H1 was significantly higher during flight than during non-

flight (fig. 3.7 a) over the whole frequency range tested. However, the picture looks very 

different when one considers the steady-state response. At low frequencies, as one 

might already suspect from the results presented in figure 3.6, there was no significant 

change between the flight and the non-flight condition (fig. 3.7 b). This changed when 

the pattern frequency was increased. The response to high frequencies was, in contrast 

to the responses to low frequencies, higher during flight than during non-flight. Hence, 

both the steady-state firing rate and response of H1 to high frequencies were increased 

during flight.  

Figure 3.6: Response of H1 to Different Temporal Frequencies during Flight and Non-Flight 

Condition. a & b) Average firing rate to a 1 Hz (a) or 10 Hz (b) stimulus presentation during 

flight and non-flight conditions (n=8). c & d) Average response to a 1 Hz (c)  or 10 Hz (d) 

stimulus presentation during flight and non-flight conditions (n=8). 



59 
 

0 5 10 15 20

0

20

40

60

80

100

120

140

160

0 5 10 15 20

0

20

40

60

80

100

fi
ri

n
g

 r
a

te
 [
H

z
]

temporal frequency [Hz]

a b

re
s
p

o
n

s
e

 [
H

z
]

temporal frequency [Hz]

 non flying

 flying

 

Figure 3.7: Temporal Frequency Tuning Curve. a) Average of the steady-state firing rate in 

response to a stimulus presentation in preferred direction under flight and non-flight condition 

(n=8 flies). Each temporal frequency was presented 10 times to every fly. Error bars are 

indicating the standard error of the mean. b) same as in a, but the steady-state response is 

plotted. 

In summary, one can describe the steady-state response tuning curve as follows: 

Whereas in non-flying flies the response of H1 reached a maximum around 2 Hz, during 

flight the response further increased slightly and stayed at an almost constant level until 

a pattern frequency of 7 Hz was reached. For higher temporal frequencies the response 

decline was relatively small, so that even at 20 Hz the response was still significantly 

higher than during non-flight. These results show that the temporal frequency curve 

changes with the behavioral state of the fly.  

 

3.2.4 Control for Wind  

To induce and maintain flight behavior, it was necessary to use wind as an additional 

stimulation for flight. It is therefore possible that the wind stimulus is responsible for the 

observed change in the neuronal response of H1. The influence of wind on the neuronal 

response of H1 was tested in fixed flies (fig. 3.8). The spontaneous rate increased slightly 

when the wind was turned on. The effect, however, was much lower than the effect of 

flying.  A reason for this increase could be a stronger movement of antennae, halteres or 
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legs during wind stimulation. The frequency tuning curve did not shift, and only a small 

increase in the overall gain was observed.  
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Figure 3.8: Control of Wind-Induced Changes in the Response of H1. a) The average 

spontaneous activity is shown with and without wind stimulation (n=4). b) Average of the 

steady-state firing rate of H1 to different temporal frequencies presented in the preferred 

direction (n=4). The same flies as in (a) were used. Each temporal frequency was presented 10 

times to every fly. Error bars indicate the standard error of the mean.  

 

3.3 Neuromodulation of the Visual Response 

It is commonly assumed that octopamine plays an important role in the arousal state of 

insects (Davenport and Evans, 1984; Roeder, 1999) and it has been shown that it 

changes the response properties of lobula plate tangential cells in flies (Longden and 

Krapp, 2009; Longden and Krapp, 2010). Therefore, it is a reasonable assumption that 

some of the observed effects of flying on the response properties of H1 can be mimicked 

by the application of octopamine into the hemolymphe. 

To test this hypothesis I applied the octopamine agonist CDM (Hiripi et al., 1999) to the 

hemolymphe of the fly. The stimulus protocol before and after the application of CDM 

consisted of three steps: first: recording of the spontaneous firing rate; second: 

measuring the response to different temporal frequencies (same stimulus protocol as 

for the flight experiments); third: recording of the spontaneous firing rate. The second 

measurement of the spontaneous activity was performed in order to ensure that the 
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influence of CDM application was relatively constant over the whole duration of the 

protocol.   

 

3.3.1 CDM Changes Neuronal State  

In all flies the application of CDM resulted in an increase in spontaneous activity. As can 

be seen from the example of the spontaneous activity of a single fly (fig. 3.9 a), the 

increase in activity remained relatively constant over the whole duration of recording 

(std – before-CDM: 3.55 Hz; std - CDM: 7.56 Hz). For both conditions the CV calculated 

from the Interspike-Interval-Histogram was very close to 1 (fig. 3.9 b; before-CDM: 0.97; 

CDM: 0.84). After the application of CDM, the spontaneous firing rate increased on 

average from about 10.5 Hz to 37.6 Hz (fig. 3.9 c, P<0.05, paired t-test, n=10).  
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Figure 3.9: Spontaneous Activity before and after the Application of CDM. a) Spontaneous 

firing rate of a single fly during flight and 5 min after flight. b) Interspike-Interval-Histogram 

calculated from the same spike train used in (a) to measure the firing rate. c) Average 

spontaneous activity calculated from 8 different flies under both conditions.  
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3.3.2 CDM Broadens the Temporal Frequency Tuning Curve 

In addition to the increase in spontaneous firing rate, I also observed that several 

aspects of the changes in the response of H1 to different pattern frequencies between 

non-flying and flying animals could be mimicked with CDM. Throughout the stimulus 

protocol the firing rate was elevated after the application of CDM (fig. 3.10 a & b). As for 

the experiment on flying flies, the responses to a 1 Hz stimulation is very similar 

between both conditions. For a 10 Hz stimulation the response, however, stays at higher 

level after the application of CDM. However, the differences in steady-state level are not 

as pronounced as for the flight condition.  
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Figure 3.10: Response of H1 to Different Temporal Frequencies before and after the 

Application of CDM. a & b) Average firing rate to a 1 Hz (a) or 10 Hz (b) stimulus presentation 

before and after the application of CDM (n=10). c & d) Average response to a 1 Hz (c) or 10 Hz 

(d) stimulus presentation before and after the application of CDM (n=10). 
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The increased steady-state firing rate after CDM application is also observed when one 

looks at the temporal frequency tuning curve (fig. 3.11 a). Further analyzing the steady-

state response revealed that the application of CDM led to a broadening of the temporal 

frequency tuning curve (Fig. 3.11 b). Overall, the changes in the activity of H1 were not 

as pronounced as during flight conditions; however, both effects (increase in 

spontaneous activity & broadening of the temporal frequency tuning curve towards 

higher frequencies) could be observed.   
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Figure 3.11: Temporal Frequency Tuning Curve. a) Average steady-state firing rate in response 

to a stimulus presentation in preferred direction before and after the application of CDM (n=10 

flies). Each temporal frequency was presented 10 times to every fly. Error bars indicate the 

standard error of the mean. b) same as in a, but the steady-state response is plotted. 

 

3.3.3 Control for Neuromodulation  

As a control for the application of CDM, exactly the same experimental procedure was 

applied except that no CDM was added to the Ringer’s solution. The application of 

Ringer’s onto the fly brain is a standard method to keep it from drying out during the 

experiment. Therefore, no change in the activity of H1 was expected when Ringer’s was 

applied during the experiment. Nevertheless, small effects might be possible since the 

Ringer’s in the pipette might have a different temperature as the Ringer’s already 
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previously applied to the fly’s head. Moreover, it is possible that the fly becomes slightly 

aroused by the procedure, though care was taken that the pipette never touched the fly 

while applying the Ringer’s. In addition to the test for effects induced by the 

experimental procedure, this control also shows that the stimulus protocol is short 

enough so that the preparation is still in good condition at the end of the experiment. 

Neither the spontaneous activity nor the steady-state firing rate measured for different 

temporal frequencies showed any difference after the Ringer’s was applied to the head 

capsule (fig. 3.12).   
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Figure 3.12: Control for Neuromodulation Experiments. a) Average spontaneous activity 

measured before and after the application of Ringer’s (n=2) b) Average steady-state firing rate 

for different temporal frequencies before and after the application of Ringer’s (n=2). 

 

3.4 Simulations with the Reichardt Detector 

To test whether a change in the filter parameters of the Reichardt detector model could 

explain the observed broadening of the tuning curve, I used the ‘High-pass’ model (fig. 

2.5) to fit the results. The ‘High-pass’ model has, in addition to the low-pass filter in one 

input line, a high-pass filter in the cross-arm of the detector unit. The high-pass time 

constant in this model is given by the time constant of the impulse response (Borst et al., 

2003). Since the high-pass constant adapts during stimulus presentation I measured the 
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impulse response after presenting an adaptive stimulus (de Ruyter van Steveninck et al., 

1986; Reisenman et al., 2003). The low-pass time constant can then be fitted using the 

model.  

For non-flight as well as during flight I measured the impulse response in isolation and 

200 ms after the presentation of a sine grating moving for 3 sec with a temporal 

frequency of 5 Hz in the preferred direction of the cell (fig. 3.13). The latter stimulus 

protocol was used to obtain an estimate for the high-pass filter time constant after 

adaptation. Figure 3.13 (a-c) shows the experimental results and the respective fits for 

the impulse response of a single fly.  The impulse response had a similar maximum for 

non-flight and for flight. However, if one considers the time course of the response it can 

be seen that during flight the time constant of the impulse response is increased. The 

impulse response measured after the presentation of the adaptive stimulus was very 

different between the two conditions (fig. 3.13 d). The response decreased compared to 

the isolated impulse response for the non-flight condition, whereas for the flight 

condition the response stayed on a relatively high level.  The time courses of the impulse 

response after the presentation of a moving grating shortened for both conditions. 

However, the effect was much more pronounced for the flight condition, resulting in a 

relatively small difference of the high-pass time constant in the adapted state (fig. 3.13 

e-f).  

On average the time constant of the impulse response decreased after the presentation 

of a moving grating to about 2/3 of the value of the isolated impulse response for non-

flight as well as for the flight condition (fig. 3.13 g). The absolute decrease was more 

dramatic for the flight condition. 
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Figure 3.13: Impulse Response before and after the Presentation of a Moving Sine Grating. a-f) 

Impulse responses and fits obtained from a single fly are shown. a) Impulse response during 

non-flight and flight conditions. b) Data and fit to the impulse response during the non-flight 

condition. c) Data and fit to the impulse response during the flight condition. d) Impulse 

response 200 ms after the presentation of a moving grating (5 Hz) during non-flight and flight 

conditions. e) Data and fit to the impulse response 200 ms after the presentation of a moving 

grating (5 Hz) during the non-flight condition. f) Data and fit to the impulse response 200 ms 

after the presentation of a moving grating (5 Hz) during the flight condition. g) Average time 

constant measured in 5 flies for all conditions as presented in (b-c;e-f). 

 

The same stimulus protocol as described above was repeated for CDM application. The 

results are illustrated in figure 3.14. It turned out that, in the case of CDM application, 

some cells showed a strong after-hyperpolarization after the presentation of the moving 

grating. In these cases, the adapted impulse response could not be measured because 

the observed time course is a mixture between the actual impulse response and the 

hyperpolarization after the stimulus, which could not be entangled. To solve this 

problem, one could measure the hyperpolarization occuring after the presentation of a 
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moving grating separately. This was not performed for the experiments of flying flies 

because the problem did not occur to a significant extent. The after-hyperpolarization 

was rather weak or not present (fig. 3.5). Due to the time limitation given by the 

duration of flight, the decision was made to perform more stimulus presentations rather 

than to attempt to measure the after-hyperpolarization. To keep the data comparable, 

the same stimulus protocol was used as for the flight experiments in order to perform 

the CDM experiments and exclude the data sets with a strong hyperpolarization after 

the presentation of a moving grating. Therefore, only the data from 3 flies are shown in 

figure 3.14, which corresponds to about 50% of the recorded flies. For the single fly 

chosen as an example, the response to an isolated impulse looks very similar before and 

after CDM application (fig. 3.14 a). Moreover, the time course of the response does not 

differ significantly (fig. 3.14 b-c). The overall response strength, evaluated by the 

maximum firing rate, decreased after the presentation of an adaptation stimulus for 

both conditions. When an adaptation stimulus is presented beforehand, the impulse 

response is shorter for the CDM application condition compared to before application of 

CDM (fig. 3.14 d-f). This observation is opposite to what was expected from the 

experiments on flying flies. Whereas flying led to an increase of the high-pass time 

constant, CDM led to a decrease in the high-pass time constant.  

Before the application of CDM, on average the time constant of the impulse response 

after adaptation had a value about 2/3 of the impulse response before adaptation. The 

application of CDM lead to a stronger adaptation of the time constant; the value was 

only about half of the isolated impulse response (fig. 3.14 g).  
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Figure 3.14: Impulse Response before and after the Presentation of a Moving Sine Grating. a-f) 

Impulse responses and fits obtained from a single fly are shown. a) Impulse response during 

before-CDM and CDM conditions. b) Data and fit to the impulse response during the before-

CDM condition. c) Data and fit to the impulse response during the CDM condition. d) Impulse 

response 200 ms after the presentation of a moving grating (5 Hz) during the before-CDM and 

CDM conditions. e) Data and fit to the impulse response 200 ms after the presentation of a 

moving grating (5 Hz) during the before-CDM condition. f) Data and fit to the impulse response 

200 ms after the presentation of a moving grating (5 Hz) during the CDM condition. g) Average 

time constant measured in 3 flies for all conditions measured as presented in (b-c; e-f). 

 

The output Reichardt detector model was fitted to the steady-state response with 

equation (1). I used the high-pass time constant measured after the presentation of a 

moving grating as a parameter in the detector model; the low-pass time constant was 

fitted using the method of least mean squares. The experimental results for the flight 

experiments as well as for the CDM experiments are plotted together with the outcome 

of the fit in figure 3.15.  
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Figure 3.15: Comparison between the Experimentally Measured and Fitted Temporal 

Frequency Tuning Curves. a) The steady-state frequency tuning curve measured for the non-

flight and flight conditions are shown together with the corresponding fits of the Reichardt 

detector model. The same experimental data are shown as in fig. 3.3 b; however, the responses 

were normalized by the maximum peak of the non-flight condition. The fit of the Reichardt 

detector model was performed on the normalized data sets. b) The steady-state frequency 

tuning curve measured for the before-CDM and CDM conditions are shown together with the 

corresponding fits of the Reichardt detector model. The same experimental data are shown as in 

fig. 3.8 b; however, the responses were normalized by the maximum peak of the before-CDM 

condition. The fit of the Reichardt detector model was performed on the normalized data sets. 

 

The best fit for the non-flight condition could be obtained with a low-pass time constant 

of 0.069 s. For the flight condition, the best fit was a low-pass time constant of 0.024 s. 

Therefore, the results indicate that the low-pass time constant has to decrease during 

flight.  The best fit for the before-CDM condition could be reached with a low-pass time 

constant of 0.077 s.  As expected, this is very similar to the non-flight condition. For the 

CDM condition, the best fit was reached with a low-pass time constant of 0.036 s. This is 

a slightly higher value than for the flight condition.  

If one considers the error function of the fit, it becomes evident that for the non-flight as 

well as for the before-CDM condition the curve is much shallower than for the flight or 

the CDM condition (fig. 3.16). Therefore, even though the fits for the non-flight and the 

before-CDM conditions do not result in exactly the same low-pass time constant, the 
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small differences in the time constant are not surprising. However, on the other hand, 

the difference in the fitted low-pass time constant between the flight and the CDM 

conditions is more significant. 
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Figure 3.16: Error Function of the Low-pass Time Constant. a) The least mean square error is 

plotted against τlow-non-flight; τhigh-non-flight was held fixed at the value measured from the 

impulse response.  b) The least mean square error is plotted against τlow-flight; τhigh-flight was 

held fixed at the value measured from the impulse response.  c) The least mean square error is 

plotted against τlow-before-CDM; τhigh-before-CDM was held fixed at the value measured from 

the impulse response.  d) The last mean square error is plotted against τlow-CDM; τhigh-CDM was 

held fixed at the value measured from the impulse response.   

 

The good fit of the steady-state response between the model and the experimental data 

is only one aspect of the High-pass model. To test whether the step response could also 

be explained by the High-pass model, the previously determined time constants were 

used to calculate the transient response characteristics (equation 2). 
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Figure 3.17: Model Prediction of the Step Response to Visual Stimulation. a-b) Experimental 

data and model predictions of the transient response for the non-flight condition. The temporal 

frequency of the moving pattern was 2 Hz (a) or 10 Hz (b), respectively. c-d) same as in (a-b), but 

for the flight condition. e-f) same as in (a-b), but for the CDM application condition.  

 

The transient response of the non-flight, flight and CDM conditions were compared with 

the results of the High-pass detector model for a sine-wave grating moving with a 

constant speed of 2 Hz and 10 Hz (figure 3.17). The peak response of the modeled 

results fit quite well to the experimental data. The difference between experimental 

data and model was largest for the non-flight condition. The transient response 

properties were not captured as well by the model as the steady-state and peak 

response.  
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4. Discussion 

 

 

In this work I investigated how visual motion processing is modulated by the behavioral 

state of the fly. First, I studied how visual motion processing is modulated during flight. 

Therefore, I measured the response of the lobula plate tangential cell H1 to visual 

stimulation during non-flight and during flight. Furthermore, by using the same stimulus 

protocol I investigated whether some of the observed effects of the flight condition can 

be mimicked by octopamine. To test this I applied the octopamine agonist CDM into the 

hemolyphme of the brain and recorded the change in response properties of H1. Flight, 

as well as the application of CDM, increased the spontaneous activity of the cell. Both 

also broadened the frequency tuning curve of H1 towards higher frequencies. In the last 

part of the work, I examined what parameters had to be adjusted in the Reichardt model 

for elementary motion detection to explain the difference in the tuning properties of H1 

between the non-flight/before–CDM and flight/CDM condition. 

 

4.1 Methodology 

4.1.1 Cut Experiments 

This set of experiments was performed to show whether there exist a feedback from the 

motor system to the LPTCs. The idea came from previous observation in which the 

cutting of the connective in the neck of the fly led to an abolishment of the responses of 

certain neurons in the lobula plate (fig. 4.1; Haag, unpublished). This led to the 
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hypothesis that ascending projections from the motor system are necessary for the 

survival and function of lobula plate tangential cells. 

In these experiments, graded response neurons were recorded intracellularly (Haag, 

unpublished). The experiment itself consisted of three steps. First, a cell was recorded 

with an electrode containing Alexa 488. Then, the fly was removed from the set-up and 

the connective was cut with scissors. At the end, the fly was placed back in the set-up. A 

second set of recordings of the same cell were made, using an electrode containing 

Alexa 568. The resulting double staining confirmed that before and after the cutting 

procedure the same cell was recorded. However, it was impossible to cut the connective 

while recording the cells since this would have most likely resulted in losing the cell. 

Recording from spiking neurons changed the situation and it was possible to cut the 

neck connective while recording. As described in the Methods section above, a hair was 

attached to the neck connective; by pulling the hair with forceps the connective was 

destroyed. The success of this procedure was confirmed after completion of the 

experiments under a microscope. Of course, a strong fixation of the head to the thorax 

as well as a very stable attachment of the fly within the set-up is absolutely crucial for 

the success of the process. Even under the best circumstances brain movements cannot 

be completely avoided but only minimized. Therefore, all the obtained results from the 

experiments have to be interpreted with caution. Changes in the response properties 

after cutting the connective might not only be attributed to the effect of ascending 

projections from the motor or mechanosensory system but also be induced by a 

destruction of parts of the brain caused by relative movements between the reference 

electrode and the brain or by an increased level of arousal.  

Many of the first experiments were unsuccessful; the cell was lost during cutting and 

often also the lobula plate appeared to be silent after the procedure. Most of the 

variability in the data could be attributed to differences in the success of the 

experimental procedure rather than to intrinsic variability of flies or cells. Therefore, no 

statistics on the data were performed. Nevertheless, the results obtained in the work 

from the cutting experiment are in strong disagreement with previous observations (fig. 

4.1). 
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Figure 4.1: Intracellular Recording of Lobula Plate Tangential Cells before and after Cutting the 

Connective. The cells were simulated with a pattern either moving in their preferred direction 

(0.5-1.5 sec) or in the null direction (2.0-3.0 sec). Before the connective was cut, a clear response 

to the pattern movement could be observed which diminished completely (HSE, VS1) or almost 

completely (VS2) after the connective was cut (picture taken from J. Haag). 

 

The experiments were initially only performed with H1. Here, in a few cases a temporary 

increase in firing rate and small changes in the response properties were observed. It is 

difficult to draw conclusions about the underlying mechanisms causing these changes of 

the response of H1. The fact that the changes observed were not permanent speaks for 

the hypothesis that the cell or other brain regions might have been slightly damaged 

during that procedure or the arousal level increased.  

The results obtained from the H1 recordings were completely unexpected considering 

previous data suggesting that the lobula plate tangential cells (HSE and VS) become 

silent after cutting the connective (fig. 4.1;, Haag, unpublished). The additional data 

from V1 further support the conclusion that previous observations of lost of 
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responsiveness of LPTCs to motion stimuli are artifacts caused by the experimental 

procedure rather than being caused by actually cutting the connective. V1 is coupled to 

VS1 via electrical synapses (Haag and Borst, 2008); therefore, it would be almost 

impossible that the strong effects observed in VS1 are not reflected to a great extent in 

V1. The specific reason for the different results still remains unclear. However, it might 

be possible that during previous work other structures in the neck essential for the 

survival of lobula plate cells might have been destroyed such as air sacks or the heart 

tube.  

One very important point I want to address is that the discussed results do not exclude 

the possibility that the neuronal projections in the neck connective, including ascending 

projections from the motor system, have an important function during flight or arousal. 

To test this one could, for example, simultaneously record the flight activity and record 

from LPTCs, or stimulate ascending neurons while recording from LPTCs  (Heide, 1983). 

Experiments pointing in these directions were recently published (Haag et al., 2010; 

Rosner et al., 2010). LTPCs or descending neurons were recorded while the halteres 

were either moving actively or passively. However, the rather short sequences of haltere 

beating did not cause much change in the response properties of the LTPCs. 

 

4.1.2 Extracelluar Recordings in Tethered Flying Flies 

Extracellular recordings from tethered flying insects are not that uncommon. However, 

most studies so far have been conducted in locusts. In these studies, the neurons 

recorded were usually postsynaptic to the lobula complex (Rind et al., 2008; Santer et 

al., 2006; Santer et al., 2005).  Something one has to consider is that the robustness of a 

preparation as well as the motivation to fly is highly dependent on the animal species. 

The great success of experiments in locusts could be attributed to the fact that these 

animals are well suited for such kind of experiment. 

One of the major problems that occurred when performing extracellular recordings in 

tethered flying flies was the increased level of noise. In contrast to a previous study 

(Heide, 1983) I fixed the head directly on the thorax. Vibration and other movement 
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artifacts were reduced by minimizing the angle between head and thorax. Having a 

relatively large hole in the cuticula in the back of the head made it possible to determine 

during the preparation whether small vibrations will occur during experiments.  

In order to reduce the time period needed to find H1, low resistance electrodes of 0.5 

MOhms were used. This increased the motivation of flying in the flies but had the 

drawback that more background activity was recorded as well. Based on background 

activity, flying increased the activity of neurons in the lobula plate. This increased the 

risk of recording the activity of multiple units. Therefore, the ISI were checked carefully. 

In addition, data were only used from recordings where the electrode did not have to be 

adjusted within the experimental session and the same threshold criteria were used for 

the flight and non-flight condition. Performing recordings in the lobula plate of blowflies 

has the advantage that this brain area is very well characterized (Borst and Haag, 2002). 

Identification of H1 is easy since only one other neuron (H2) has been described that has 

the same preferred direction and similar projection patterns (Eckert, 1980; Haag and 

Borst, 2003).  

The behavioral data obtained with the high-speed camera confirmed that extracellular 

recording from LPTCs does not affect the wingbeat frequency and the optomotor 

response. The wingbeat frequency was only a few Hz different from values previously 

reported in blowflies (Balint and Dickinson, 2001). The optomotor response was robust. 

Most experimental data were obtained with a lower contrast pattern than the 

optomotor response; however, it has to be noted that for technical reasons the 

background illumination was also higher during the recording with the high-speed 

camera. 

Extracellular recordings are a usefulmeans of obtaining relatively fast information about 

changes in motion processing related to the behavioral state. In contrast to calcium-

imaging and patch clamp, extracellular recording has the advantage that it is a relatively 

easy method to apply. In addition, it is possible to hold the cells over a long time period, 

and therefore the recording time was only limited by the flight durations. Hence, similar 

to studies previously done on fixed flies, tools like information theory etc. can be used.    
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4.1.3 Application of CDM 

CDM was used as an octopamine agonist. It was investigated whether the application of 

CDM has a similar effect on the visual system as flight.  

The first question, of course, is why the application of CDM/octopamine should have 

similar effects on neuronal processing in the visual system as flight. There are numerous 

studies indicating that octopamine plays an important role during flight (Brembs et al., 

2007; Buhl et al., 2008; Orchard, 1982; Orchard et al., 1993). Furthermore, it has also 

been shown that octopamine can modulate the response properties of neurons involved 

in vision (Erber and Kloppenburg, 1995; Erber and Sandeman, 1989; Kloppenburg and 

Erber, 1995; Longden and Krapp, 2009). In addition, anatomical projections of 

octopaminergic neurons into the lobula complex and medulla are known (Sinakevitch 

and Strausfeld, 2006; Busch et al., 2009). Taken together, all three points justify the 

assumption that the release of octopamine might explain, at least partially, the effect of 

flight on the response properties of lobula plate tangential cells.  

It is well known that CDM can be used as a tissue-permeable octopamine agonist; this 

has already been tested in a number of studies (Duch and Pfluger, 1999; Kinnamon et 

al., 1984; Longden and Krapp, 2009; Vierk et al., 2009). A good description about the 

binding properties of the octopamine receptor can be found in (Hiripi et al., 1999). 

However, it has to be asked whether the method of application is suitable as an 

experimental condition. Bath application itself of course is a relatively crude method, 

e.g., it does not give much information about the actual place of function of octopamine. 

However, the fact that octopamine is increased in the hemolymphe during flight 

(Orchard, 1982; Orchard et al., 1993) indicates that bath application of CDM should at 

least result in some effects. A great advantage of the method is that it is simple and easy 

to apply. In addition, the application procedure does not disturb the animal at all. This is 

of critical importance since octopamine is known to be released during arousal 

(Davenport and Evans, 1984; Roeder, 1999; Stevenson et al., 2005). Therefore, bath 

application seems to be suitable as an initial experiment to address the question of 

whether octopamine contributes to some of the observed effects in flight. The CDM 

concentration used in this work was more towards the lower end of the range used in 
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previous studies (Duch and Pfluger, 1999; Kinnamon et al., 1984; Stevenson et al., 2005; 

Vierk et al., 2009). It was in the same order of magnitude as used previously in studies 

on flies (Longden and Krapp, 2009). Since this earlier work already suggested that the 

spontaneous activity increases after the application of octopamine, a concentration was 

chosen that induced a stable increase in spontaneous firing rate over the duration of the 

stimulus protocol.  

  

4.2 State-Dependent Modulation of Visual Processing in the Fly 

In the current work, the response properties of the lobula plate tangential cell H1 to 

visual motion stimuli were recorded under different behavioral states of the fly. Two 

conditions have been used as a non-active state – the non-flight condition and the fixed 

fly condition before the application of CDM.  The other behavioral states are the flight 

condition and the CDM application condition. In the following I will compare the findings 

of this study with previous work (Heide, 1983) and recent literature on the effect of the 

behavioral state in flies (Chiappe et al., 2010; Haag et al., 2010; Longden and Krapp, 

2009; Longden and Krapp, 2010; Maimon et al., 2010; Rosner et al., 2010).  

 

4.2.1 H1 Recordings of Tethered Flying Calliphora 

Heide (1983) in collaboration with his colleagues Foster and McCann also recorded from 

a lobula plate tangential cell which they assumed to be H1. Taking into account the 

result from this work it is rather surprising that Heide did not observe changes in the 

activity of H1 related to the locomotor state. As a stimulus they presented a pattern 

moving either in the preferred or null direction of H1. The firing rate – close to 300 Hz 

during non-flight and flight conditions – they reported when the pattern was moved in 

the preferred direction indicates a rather strong stimulus. A pattern movement in the 

null direction of H1 completely suppressed the firing rate for the non-flight condition but 

not for the flight condition (Heide, 1983; fig. 5: firing rate 5-20 Hz). Since the difference 

in the firing rate in response to visual stimulation was rather small for the non-flight and 

for the flight condition they concluded that flight does not alter the response properties 
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of H1. How can this strong disagreement with my findings be explained? I never used a 

stimulus which resulted in a similar strong response in the firing rate for the non-flight 

condition as Heide and colleagues. Nevertheless, figure 3.2 shows that differences, for 

non-flight and flight conditions, in the firing rate as a response to a pattern moving in 

the preferred and null directions decrease for very strong stimuli. This is especially true 

if one considers only the first two seconds of the stimulus presentation. In the current 

work neither in the non-flight nor in the flight condition were firing rates above 300 Hz 

observed over a time period longer than a few milliseconds. For both stimulus 

directions, the input-output relations in the experiments presented by Heide (1983) are 

probably saturated. Unfortunately, Heide (1983) did not report any spontaneous 

activity. 

 

4.2.2 The Behavioral State Changes the Level of Spontaneous 

Activity and the Directional Tuning Range 

In this work a strong increase in the spontaneous firing rate of H1 due to a change in the 

behavioral state of the animal was observed. While the increase in the firing rate after 

the application of CDM was about 3-fold, the increase associated with flying was about 

6-10-fold. An increase in spontaneous activity is in accordance with work done in parallel 

on state-dependent influences of other lobula plate tangential cells in Drosophila and 

Calliphora (Chiappe et al., 2010; Haag et al., 2010; Longden and Krapp, 2009; Longden 

and Krapp, 2010; Maimon et al., 2010; Rosner et al., 2010). In principle, four different 

behavioral states were investigated: application of CDM (Longden and Krapp, 2009), 

passive and active movement of the halteres (Haag et al., 2010; Rosner et al., 2010), 

walking (Chiappe et al., 2010) and flying (Maimon et al., 2010). Three of these studies 

included work on spiking neurons, which makes a quantitative comparison possible 

(Haag et al., 2010; Longden and Krapp, 2009; Rosner et al., 2010).  

The application of CDM in Calliphora vicina resulted in an increase of spontaneous 

activity of V1 and V2 cells (Longden and Krapp, 2009). The increase in spontaneous 

activity was on the same order of magnitude as in the CDM experiment of the current 

study. The difference might be attributed to various causes such as fly species, cell type, 
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different end concentration of CDM in the hemolymphe, different diffusion properties 

within the tissue, etc.  

Halteres are known to oscillate during walking and flying, indicating locomotor behavior 

(Miller, 1977; Sandeman and Markl, 1980; Schneider, 1953). However, haltere 

movements were also reported during grooming (Rosner et al., 2010) or even without 

any locomotoractivity (Miller, 1977). Rosner et al.  (2010) recorded from lobula plate 

tangential cells while monitoring active haltere movements. The baseline activity of 

lobula plate tangential cells (CH, HS, H1, V1) increased during haltere movement. 

Interestingly, the increase in baseline activity of H1 was rather weak (Rosner et al., 2010; 

fig. 4,~ 3 fold) compared to the results from flying flies, but similar to the changes 

reported after the application of CDM. The major focus of the work from Haag et al. 

(2010) was on an identified motorneuron, the ventral cervical nerve motorneuron 

(VCNM). This neuron integrates information from multiple sensory modalities (halteres, 

vision, wind). Active haltere movement resulted in a strong depolarization of VCNM 

(~20.2 mV), whereas HS cells recorded in the same flies only showed a rather small 

depolarization (~2.3 mV). Both studies concluded that the changes in activity in the 

different neurons are not due to a direct feedback from the haltere to the lobula plate 

tangential cells but rather a result of a central input modulating both haltere movement 

and LPTC responses (Rosner et al., 2010; Haag et al., 2010). However, whereas Haag et 

al. (2010) argue that the observed baseline shift in HS cells is caused by back-

propagation of activity from postsynaptic neurons via gap junction, Rosner et al. (2010) 

assumed that the central signal is acting directly at the level of the lobula plate or 

presynaptically. Nevertheless, the central signal causing the increased firing rate and 

haltere movement is too weak to explain the changes observed in the increased firing 

rate of H1 during flight.  

Rosner et al. (2010) also tested the response of H1 to moving stimuli during active 

haltere beating. They did not find any increase in activity compared to the trials where 

the haltere did not move. For the spiking neurons (H1, V1, possible U element) the 

observed changes in the responses to different stimuli were rather weak compared to 

results of this study. The relative increase in the spike frequency associated with haltere 
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beating was more pronounced for weak stimuli. Taken together, haltere beating had a 

rather small effect on the response properties of lobula plate tangential cells.  

Similar to flying, however, it could be shown that HS cells show a strong increase in their 

response gain to visual stimulation during walking compared to non-walking (Chiappe et 

al., 2010). This suggests that although halteres are moving actively during walking and 

flying, the central signals associated with haltere movement alone cannot explain the 

observed effects of response increase during flight, walking and, to a lesser extent, also 

after CDM application. Different or at least additional mechanisms must cause the 

strong changes observed. Nevertheless, the haltere movements are bringing the cells 

closer to threshold and therefore might be important in combination with additional 

signals. Furthermore, the work of Haag et al. (2010) demonstrated that haltere 

movements have a strong effect on neck motor neurons. 

Maimon et al. (2010) did patch clamp recordings on VS cells in the lobula plate of 

Drosophila. In contrast to H1, VS cells are non-spiking cells and respond to visual 

stimulation only with a shift in their membrane potential. Qualitatively, this study and 

mine point into the same direction since Maimon et al. (2010) observed an increase in 

resting potential linked to flight. They also measured the time course with which the 

baseline increase during flight decays back to the baseline value measured before flight 

was initiated. The fast decay time (Maimon et al., 2010; fig. 6c, right) made them 

conclude that the baseline shift is most likely not a result of neuromodulation (e.g., 

octopamine) but rather of input from a central signal or sensory feedback from the 

mechanoreceptors. 

What are the consequences of an increased spontaneous activity during flight? An 

increase of the spontaneous activity can have a strong effect on the neural coding 

properties. For the non-flight condition, the spontaneous activity of H1 is rather low, 

ranging from 5-20 Hz. Therefore, the tuning range in the null direction is also limited to 

5-20 Hz since the firing rate cannot fall below 0 Hz. For CDM application, it has been 

shown that the tuning range for motion in the null direction is increased through the 

elevated spontaneous firing rate (Longden and Krapp, 2009). Since the effect of the 

behavioral state on the spatial and directional tuning curve of different lobula plate 



82 
 

tangential cells was already discussed in other studies (Maimon et al., 2010; Longden 

and Krapp, 2009), the present study did not focus on this aspect. However, preliminary 

data suggest, in agreement with the other findings, that the tuning range for H1 is also 

increased during flight (fig. 3.5). Interestingly, despite the elevated firing rate during 

flight, weak stimuli (low contrast) did not increase the tuning range of H1 for null 

direction motion. Moreover, strong stimuli (high contrast) did not lead to a symmetric 

response to movement in the preferred and in the null direction. This can be modeled, 

for example, by using a different gain for the left and right half detector at the 

subtraction stage of the Reichardt detector or by assuming different input-output 

relationships between excitatory or inhibitory synapses and H1. As for the baseline 

activity alone, Maimon et al. (2010) measured the time course with which the dynamic 

range of response to a visual stimulus decreased after the fly stopped flying. The time 

scale was rather long and on the order of seconds (Maimon et al. 2010; fig. 6c, left). 

Therefore, neuromodulation might play a role, and the time course might reflect the 

time needed for octopamine to diffuse out of the receptor range or to become 

degraded. 

Furthermore, an increased spontaneous activity is an indication that a cell is closer to 

threshold. This might reduce the latency of a cell’s response to the onset of a stimulus or 

even increase the stimulus sensitivity. However, these relationships are not 

deterministic because the level of noise in the spike train could be increased as well. The 

effect will also depend on where on a stimulus response curve the spontaneous firing 

rate is located.  

Another interesting aspect comes from information theoretical work. Comparing the 

response to dynamic stimuli in different neurons of various animals (e.g., fly, monkey, 

fish) it has been suggested that the information transmitted per spike is relatively 

constant, varying between values of one to two bits per spike in general (Borst and 

Theunissen, 1999). In addition, it has been shown that the information rate of H1 

increases with an elevated firing activity (Borst and Haag, 2001). This result is far from 

trivial because, although it might be intuitive that increasing the number of spikes for 

example can increase the tuning range of a cell, other aspects such as noise entropy 

might change as well. Longden et al. (2009) showed that for V1 cells, despite the fact 
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that the information rate per spike was reduced after application of CDM, the 

information rate per second increased. The increase of spontaneous activity during flight 

and after the application of CDM, in addition to findings from the previous literature, 

suggests an increased information transfer during flight.  

Why is the spontaneous rate of H1 not increased during the non-flight condition, as 

well? One possible explanation is that a low spontaneous firing rate is an evolutionary 

adaptation for saving energy. It has been demonstrated that action potentials carry a 

significant metabolic cost (Laughlin, 2001). Therefore, there exists a trade-off between 

an increased information rate and metabolic cost. An increase in the tuning range and 

an elevated information rate might be a favorable and efficient adaptation to the 

changed visual input statistic during flight. However, keeping up a high firing throughout 

the lifetime of a fly might be metabolically too expensive.  

 

4.2.3 State Dependent Broadening of the Temporal Frequency 

Tuning Curve 

The response properties of H1 to visual motion stimuli of different temporal frequency 

changed in three aspects with the behavioral state of the fly: 

1.) at low stimulus frequencies the latency to the stimulus onset was reduced, 

2.) the level of adaptation was reduced for prolonged stimulation in a frequency-

dependent manner, 

3.) the tuning curve was broadened towards higher frequencies. 

The first result was observed in flying flies but not after the application of CDM. It is, 

however, possible that this decrease in latency was simply not detected, due to the 

variability in the data and the small number of stimulus repetitions. This is quite likely 

since other work has found a reduced latency to stimulus onset at low frequencies after 

the application of CDM (Longden and Krapp, 2010).  

The second observation was that at high frequencies the steady-state level of the visual 

response changes during flight and after CDM application. The increased steady-state 



84 
 

level during flight and after CDM application is interesting because the fly receives 

permanent visual motion input due to self-motion during flight. The preferred direction 

of H1 is back-to-front motion, a visual input that a fly usually receives only during turns. 

Therefore, a prolonged stimulation of H1 might not occur that often during flight. 

However, it is likely that an elevation of the steady-state level is common for lobula 

plate tangential cells since similar observations have already been obtained for V1 after 

the application of CDM (Longden and Krapp, 2010). In addition, the modeling results 

suggest that a change in the low-pass time constant in the Reichardt detector is causing 

the elevated steady-state level during flight and after CDM application. Since the EMD 

are providing the input to the lobula plate, this further indicates that all lobula plate 

tangential cells should be affected in the same manner. Similar to the results of the 

current work, Longden and Krapp (2010) showed that the differences in the steady-state 

level between the CDM and before-CDM application conditions depended on temporal 

frequency (Longden and Krapp, 2010; fig. 4). Maimon et al. (2010) did not report any 

changes in the time course of the response of VS cells to a stimulus presentation in the 

preferred direction during flight. This is not surprising since they used a rather low 

frequency stimulus.  

The broadening of the temporal frequency tuning curve of the steady-state response 

was also observed after the application of CDM in VS cells (Longden et al., 2010, fig. 4) 

and during walking in HS cells (Chiappe et al., 2010). Chiappe at al. (2010) suggested that 

an increased response gain to high temporal frequencies might be a strategy that 

stabilizes the optomotor response. During locomotion flies are exposed to a higher 

range of image speeds. Therefore, an increased gain at high temporal frequencies may 

enable the detection of faster retinal image shifts. It remains questionable whether the 

increased gain at higher temporal frequencies is sufficient to explain the detection of 

faster images during flight. Nevertheless, the broadening of the tuning curve is 

interesting with respect to the optomotor response and will be discussed further.  

Throughout the literature, the similarity between the optomotor response and the 

temporal frequency tuning curve have been emphasized. Qualitatively, the behavioral 

data are quite similar to the electrophysiological tuning curve acquired in LPTCs (Borst 

and Bahde, 1987; Duistermars et al., 2007; Fry et al., 2009; Haag et al., 2004; Hausen 
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and Wehrhahn, 1989; Joesch et al., 2008; Schnell et al., 2010). However, studies in 

Drosophila revealed a discrepancy between the electrophysiologically-measured 

temporal frequency tuning curve in lobula plate tangential cells recorded in fixed flies 

and the behaviorally-observed optomotor response (fig. 4.2 a & b). Whereas tuning 

properties of single cells showed an optimum around 1 Hz (Joesch et al., 2008; Schnell et 

al., 2010), behavioral analyses revealed an optimal response of 1-4 Hz for walking 

(Buchner, 1984; Goetz and Wenking, 1973) and 4-10 Hz for flying flies (Duistermars et 

al., 2007). A similar observation can be made from work on Calliphora vicina, although 

the data are less clear (fig. 4.2 c & d). If one compares the optomotor response from 

Calliphora vicina with the response of H1 to a moving grating, a discrepancy between 

the cellular and behavior data can be seen at high temporal frequencies (Borst and 

Bahde, 1987; Haag et al., 2004).  

Regarding the experiments performed in Drosophila, a complete shift in the temporal 

frequency tuning curve between behavioral and electrophysiological data can be 

observed. In contrast, in Calliphora the temporal frequency tuning curve acquired during 

behavior is broadened towards higher frequencies compared to the cellular data (fig. 

4.2).  It remains to be shown whether this effect can be explained by a different data 

analysis or experimental procedure or whether this discrepancy is a result of a real 

species difference. Interestingly, however, changing the low-pass time constant in a 

Reichardt detector lacking the high-pass filter leads to a shift in the temporal frequency 

tuning curve (Borst et al., 2003; fig. 1); by adding the high-pass constant in the cross-

arm, a broadening of the tuning curve is possible with only a slight effect on the low 

frequency tuning (fig. 3.14). As discussed, flying, as well as the application of CDM, led to 

a broadening of the temporal frequency tuning curve of H1. After the application of 

CDM, the measured frequency optimum was about 3-5 Hz; which is similar to the 

frequency at which the maximum response increase was reported from LPTCs in walking 

Drosophila compared to non-walking (Chiappe et al., 2010). Flying led to an even further 

shift of the frequency optimum to around 7 Hz. These results solve the observed 

discrepancy in the optomotor response between behavior and cellular response.   
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Figure 4.2: Behavioral and Cellular Temporal Frequency Tuning Curve. a) optomotor response 

measured in Drosophila (from Duistermars et al., 2007), b) temporal frequency tuning curve of 

HS cells measured in Drosophila (from Schnell et al., 2010), c) optomotor response to a motion 

pattern with a wavelength of 30° measured in Calliphora (from Borst and Bahde, 1987), d) 

temporal frequency tuning curve measured in H1 of Calliphora (from Haag et al., 2004).  

 

4.3 Effect of Neuromodulation on Visual Processing  

What mechanisms mediate the changes in visual motion processing depending on the 

behavioral state of an animal? Clearly, CDM could mimic some of the changes that were 

observed during flight in the neuronal response of H1. Since CDM is an octopamine 

agonist, this finding suggests that octopamine plays a role during state-dependent visual 

processing.  
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4.3.1 Physiological Action of Octopamine on the Visual System 

On the single cell level, octopamine has been shown to increase the response to visual 

stimuli in the lobula plate of flies (Longden and Krapp, 2009; Longden and Krapp, 2010). 

Whether the observed effects are due to a gobal increase of octopamine in the 

hemolymphe or due to specific transmitter release acting only very locally at synapses 

presynaptic to LPTCs is not known. The fact that the specific site of octopamine 

application does not seem to be important speaks in favor of gobal neuromodulation 

(Longden and Krapp, 2009). However, anatomical studies have shown that the optic 

lobes of flies are highly innervated by octopaminergic neurons (Sinakevitch and 

Strausfeld, 2006; Busch et al., 2009). Octopaminergic neurons project into the lobula 

complex and the medulla. The projections to the medulla are of particular interest since 

visual motion processing is thought to take place mainly in this visual neuropil (Borst, 

2009).  To test the importance of these projections, further experiments are necessary; 

for example, direct electrical stimulation of octopaminergic neurons (Stern, 2009) or 

optogenetic activation of specific neurons. 

 

4.3.2 Differences between Flight and CDM Condition 

Both the flight condition and the application of CDM led to an increase in spontaneous 

activity and a shift and broadening of the temporal frequency tuning curve of H1. 

Generally, the effect of flight was more pronounced than the effect of CDM.  However, 

two major differences between the flight condition and the CDM condition could be 

observed. First, the increase in spontaneous rate was much smaller after the application 

of CDM than during flight. Maimon et al. (2010) have suggested that different processes 

are involved in the baseline shift they observed in VS cells and the response gain during 

flight. Similarly, feedback from mechanoreceptors or additional central signals might 

explain the further increase in firing rate of H1 during flight. Second, the impulse 

response shortens after application of CDM, whereas the time constant for the flight 

condition increases compared to rest. It is possible that CDM shortens the high-pass of 

the Reichardt detector at the level of the medulla but additional input during flight 

might obscure this result.  
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The shift in the tuning curve was relatively similar between flying and CDM application. 

The small differences may be caused by several factors, even if one assumes that 

octopamine is solely responsible for the observed changes in the response properties of 

H1. First of all, the affinity of CDM to the octopamine receptor might differ from the 

affinity of octopamine itself (Hiripi et al., 1999). Octopamine acts as a neurohormone, 

neuromodulator or neurotransmitter in the invertebrate nervous system (Roeder, 1999). 

In particular, when considering its role as a neurotransmitter, another important aspect 

is that the local concentration of octopamine might be very different during bath 

application compared to normal synaptic transmitter release. It is very likely that the 

local concentration of octopamine is strongly regulated during flight. Work on 

Drosophila mutants have shown that both octopamine as well as tyramine might be 

involved in flight control (Brembs et al., 2007). Since CDM also binds to tyramine 

receptors, it is in principle possible that the bath application of CDM activates both 

systems.  However, the affinity of CDM to the tyramine receptor is lower, so that the 

observed effect is most likely caused by an activation of the octopaminergic system 

(Hiripi et al., 1999). Nevertheless, comparing the relatively crude experiment of bath 

application to a behavioral state dependent neuronal transmitter release, it is surprising 

how well CDM application could mimic the effect of flying.  

 

4.4 Underling Mechanisms for the Observed Change in the Tuning 

Properties  

To model the response of H1, I used a version of the Reichardt detector which, in 

addition to the low-pass filter, has a high-pass filter in the cross-arm. The high-pass time 

constant of the model is given by the time constant of the impulse response (Borst et al., 

2003). As already mentioned in the Materials and Methods section, it has been shown 

that the time constant of the impulse response is shortened following prolonged 

exposure to motion stimuli (Borst and Egelhaaf, 1987; de Ruyter van Steveninck et al., 

1986; Reisenman et al., 2003).  However, if one assumes an adaptation of the low-pass 

time constant, one expects a difference in the velocity optima for different contrasts 

which has not been observed (Harris et al., 1999). An adapting high-pass constant 

instead of an adapting low-pass constant solves this discrepancy (Borst et al., 2003). The 



89 
 

high-pass time constant for the flight condition was always higher than the time 

constant of the non-flight condition.  As shown previously, measuring the impulse 

response before and after presenting an adapting stimulus revealed a decrease in the 

time constant of the impulse response (Borst and Egelhaaf, 1987; de Ruyter van 

Steveninck et al., 1986; Reisenman et al., 2003). The absolute amount of adaptation was 

stronger in the flight condition as compared to the non-flight condition. Given the 

slower time course of the isolated impulse response during flight, this is in agreement 

with the original model which proposed that the time-constant decreases more, the 

further it is away from the minimum value (Borst et al., 2003). Another important point 

of the model is that the steady-state response to low frequencies is also influenced by 

the high-pass time constant, whereas at high frequencies the low-pass time constant 

plays the most important role. Therefore, the shift of the frequency tuning curve 

towards higher frequencies can only be explained by a change of the low-pass time 

constant. Using the model, I calculated the best fit for the low-pass filter in order to 

explain the results. Low-pass filtering takes place in the presynaptic circuity of LPTCs, 

presumable in the medulla (Higgins et al., 2004). In addition, anatomical projections of 

octopaminergic neurons into the medulla and into the lobula complex are known 

(Sinakevitch and Strausfeld, 2006; Busch et al., 2009). Therefore, assuming a change in 

the low-pass time constant caused by octopaminergic modulation is in agreement with 

anatomical studies as well as with the current understanding of the processing steps 

underlying visual motion detection. The calculated results of the High-pass model 

showed a very good fit to the experimental data for high frequencies. However, for low 

frequencies the fit was not as good for the flight condition. Furthermore, the transient 

response of H1 to stimulus presentation in the preferred direction could be explained by 

the model to a great extent. Differences between the model predictions and the 

experimental data can have various explanations. The high-pass constant could only be 

measured approximately. The high-pass constant (as stated above) has an influence on 

the low frequency tuning of LTPCs as well as on the transient response (Borst et al., 

2003; Reisenman et al., 2003). Hence, imprecise measurements of the high-pass 

constant will affect both, and might be the explanation of the difference found in the 

low frequency tuning and the transient response. In the non-flight condition, after 

presenting an adapting stimulus, the firing rate returned to the spontaneous rate after 
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200 ms before the onset of the impulse stimulus. In case of the flight condition, the 

firing rate was still slightly higher than the resting frequency (< 15 %). Therefore, the 

measured time constant of the impulse response was still, to some extent, influenced by 

the spike rate after visual stimulation, producing errors in the measurement. In previous 

studies this error was prevented by measuring the response to the adapting stimulus in 

isolation and subtracting the measured firing rate from the impulse response (Borst et 

al., 2003; Reisenman et al., 2003). For the flight experiment, however, this was not 

feasible because the length of the stimulus protocol was restricted to 20 min.  

Furthermore, changing the gain in the Reichardt detector model (weighting between the 

left and right half detectors) also influences the transient response. Nevertheless, the 

results show that the high-pass time constants as well as the low-pass time constant 

change from non-flight to flight conditions. Given the fact that the time constant of the 

impulse response and the degree of adaptation are quite different between the non-

flight and fight conditions, it is reasonable to suggest that there should be a significant 

effect in the visual response to stimuli with a lower correlation time. Thus, it would be 

interesting to investigate the response to more naturalistic stimuli.  

 

4.5 State-Dependent Influences on Neuronal Processing 

The results of the current work clearly demonstrated that the behavioral state has a 

strong influence on visual motion processing in flies. The fact, that the behavioral state 

of an animal can modulate neuronal processing has been known for many years. In 

vertebrates, the cortical activity changes dramatically during different phases of sleep 

and wakefulness (Gottesmann, 1999). It has also been observed that the same neurons 

can be involved in different behavioral tasks and in addition to that can also completely 

change their activity patterns. A famous example comes from work on invertebrates. In 

somatogastric ganglia (STG) of crabs, it has been demonstrated that neurons switch 

between different modes of activity depending on whether they are involved in the 

gastric mill rhythm or in the pyloric rhythm. The change in activity is reflected in the 

period of the rhythm. The period of the gastric rhythm is typically 5-10 s, whereas the 

period of the pyloric rhythm is approximately 1 s (Weimann et al., 1991). With a few 
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exceptions, in sensory processing of visual information the influence of the behavioral 

state has been neglected for a long time. However, it has generated more and more 

interest in the last couple of years.   

 

4.6 Effect of Behavioral State on Visual Processing in Invertebrates 

The first question one has to address is why there should be a behavioral effect on visual 

processing at all. There are several aspects related to that question. First of all, the 

environment an animal has to cope with is never constant. There is, for example, a 

strong difference between luminance levels an animal has to deal with depending on 

whether it is active during night or day. Though animals are usually either active at night 

or during the day, to have at least some visual information throughout of the circadian 

cycle the visual system has to be able to adapt to a wide range of light intensities. 

Second, the internal state of an animal might have an influence on visual processing, for 

example depending on whether the animal is aroused or relaxed. Last, the visual input 

might also be changed as a consequence of the animal’s own behavior, such as 

locomotor activity. All these aspects are highly interconnected; the arousal state of an 

animal, for example, might change with the circadian cycle, or changes in the arousal 

state might result in a different locomotor behavior, or vice versa. Let us consider an 

example for all of these three different aspects: environmental, internal state, and self-

motion-induced changes of visual processing. 

The circadian clock is one of the few examples which has received attention for decades. 

The circadian clock of the horseshoe crab (L. polyphemus) originates in the 

protocerebrum. It modulates the sensitivity of the eyes through the activation of 

efferent optic nerve fibers. The gain in sensitivity is most likely achieved by an increase 

in photon catch (Barlow et al., 1977; Kass and Barlow, 1984; Kass and Barlow, 1992). 

Interestingly, the release of octopamine is thought to underlie the increase in visual 

sensitivity (Kass and Barlow, 1984). The use of an increased sensitivity regulated by the 

circadian rhythm becomes evident when one considers that horseshoe crabs are mainly 

active at night. Therefore, as many other nocturnal animals, they have a special 

adaptations to increase visual sensitivity during night time.   
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In locusts, it has been shown that, during flight, visual interneurons connected to 

neurons involved in escape behavior decrease their level of adaptation to looming 

stimuli. This aspect is explained as the result of an increased level of arousal during flight 

and as a mechanism to avoid collision during swarming behavior (Rind et al., 2008).  

The visual input statistics also change due to self-motion. This is especially relevant for 

flying animals. Here the dynamic range of visual stimuli changes strongly from non-

moving, to walking, to flying. Intuitively, it is clear that, for optimal coding of the 

stimulus, early processing steps in the visual system have to be adjusted to the input 

statistics. Therefore, it might not be surprising that this work has revealed differences in 

the encoding of the stimulus depending on the locomotor state of the animal.  

Taken together, the behavioral state has a strong influence on neuronal processing. 

Modulating early processing stages in sensory systems might be a highly efficient 

strategy to adapt the animal to different situations it has to cope with.  

 

4.7 Conclusion and Outlook  

The major finding of this work is that visual motion processing is strongly modulated by 

the behavioral state of an animal. The fact that tethered flight and application of an 

octopamine agonist led to similar changes in response to the same visual stimulus hints 

at an important role for octopamine in state-dependent neuronal processing. 

Neuromodulation plays an important function in many aspects of behavioral state 

dependent sensory processing (e.g., Gaudry and Kristan, 2009). In addition, octopamine 

was already reported to play a role in visual processing in invertebrates (e.g., Kass and 

Barlow, 1984, Longden and Krapp, 2010). It is of high interest to investigate the 

mechanism that leads to changed neuronal processing during behavior. By using 

modeling in addition to electrophysiological recordings and pharmacological 

manipulations, the current work has demonstrated that these changes in neuronal 

processing most likely occur already very early in the sensory system. Recent studies on 

sensory processing suggest that similar changes can be observed throughout the animal 

kingdom (Maimon et al., 2010; Treue and Maunsell, 1996; Niell and Stryker, 2010; 

Gaudry and Kristan, 2009). Thus it is very important to study sensory processing during 
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behavior – by recording from behaving animals and/or studying neuromodulation – to 

get insights in how sensory information is processed in a behaviorally relevant situation. 

Although many interesting findings could be made, this study provides only a first 

glimpse into the field of state-dependent visual processing in flies; further interesting 

results are waiting to be revealed. In the following, I will focus on questions which are 

still open and directly related to this study. 

 

4.7.1 Future Experiments on the Role of Octopamine 

In this study only bath application of CDM has been performed. In addition to an 

octopamine agonist, other neurotransmitters could be studied as well, such as 

serotonin, which has already been shown to have an effect on visual motion processing 

in insects (Donovan , 1986; Chen et al., 1999; Erber et al., 1993). Furthermore, it might 

be of great interest to examine the effect of octopamine antagonists. Is it, for example, 

possible to apply an antagonist to a flying fly and see whether specific effects of flying 

become reduced? This idea does not seem to be completely out of range since studies 

on mutants in Drosophila have shown that octopamine is important for flight initiation 

but not for flight maintenance (Brembs et al., 2007). Here, it would be interesting to see 

whether the spontaneous rate is still increased during flight while the broadening of the 

tuning curve might remain unaffected. This would suggest a different mechanism for 

both effects as suggested by preliminary data from Maimon et al. (2010). 

The modeling results suggest that changing the low-pass time constant in the Reichardt 

detector presynaptic to H1 would be sufficient to explain the broadening of the tuning 

curve. Anatomical studies have revealed octopaminergic projections to the medulla and 

the lobula complex (Sinakevitch and Strausfeld, 2006; Busch et al., 2009). Are they 

responsible for the observed broadening of the tuning curve? Do they have an effect on 

the spontaneous activity of the cell? Or do the change in the time constant and the 

increase in the spontaneous activity have their origin in locally distinct regions? Local 

application of octopamine in Calliphora or the use of genetic tools in Drosophila will 

hopefully solve these questions.  
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4.7.2 Future Experiments on Tethered Flying Flies 

On the experimental level, great advances have already been made. Nowadays, in 

addition to the possibility of recording extracellularly from flying flies, studies using 

intracellular recordings as well as calcium imaging have successfully addressed the 

question of state-dependent modulation of visual processing in flies performing 

different locomotor activities (Chiappe et al., 2010; Maimon et al., 2010; Seelig et al., 

2010). Therefore, it seems quite likely that great progress will be made regarding the 

mechanisms underlying state-dependent modulations as well as the involvement of 

other neurons.  

There are a few experiments which could be performed in the near future that are 

directly linked to the current study. Regarding the electrophysiological work on tethered 

flying flies, it would be interesting to monitor the behavior of the animal while 

performing recordings and, for example, to do closed loop experiments or use 

behavioral choice paradigms (Tang and Juusola, 2010) to establish a correlation between 

neuronal activity and behavior. Furthermore, measuring the response properties of 

lobula plate tangential cells to dynamic and even natural stimuli will give additional 

insights into the function of the observed effects of flying on visual processing. Here, it is 

also possible that other celltype-specific changes related to the behavioral state might 

come into play. The amount of after-hyperpolarization, spike frequency adaptation, etc., 

might change depending on the locomotor activity. Also, double recordings could be 

done from LPTCs and the motor output (Heide, 1983) or from different pairs of LPTCs. 

Recording from pairs of LPTCs is interesting because, considering that likely all of the 

LPTCs are modulated during flight, it is possible that their connectivity properties might 

be altered as well.   
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Duration: 4 weeks 

June 2007 – July 2007 Neuroethology: The Neural Basis of Natural Behavior 
Using an Invertebrate System  
Summer course at Friday Harbor Marine Biology Lab, 
University of Washington 
Duration: 4 weeks 
 

 

Organization of Events__________________________________________ 
April 2009  PhD -Symposium Interact – http://www.munich-

 interact.org/ 
     Function: Head of the Steering Committee 
     Participation: approximately 400 PhD students 
 
 

Publications___________________________________________________ 
 

Full Paper 
Jung SN, Borst A, Haag J (2011) Flight activity alters velocity tuning of fly motion-sensitive 
neurons. J Neurosci 31: 9231-9237    
Hofmann MH, Jung SN, Chagnaud BP, Preissner M, Siebenaller U, Wilkens LA (2008) Response 
properties of electrosensory units in the midbrain tectum of the paddlefish (Polyodon spathula). 
J Exp Biol 211:773-779 
Hofmann MH, Jung SN, Wilkens LA (2007) Resonant properties in the paddlefish electrosensory 
system caused by delayed feedback. Biological Cybernetics 97: 413-421. PMID: 17926062 
 
Talk 
Jung SN (2010) Visual motion detection in tethered flying flies. Joint Graduate School 
Symposium – ‘Networks’, Berlin, Germany. 
Jung SN (2011) Visual motion detection in tethered flying flies. University of Bielefeld, 
Department of Neurobiology, Bielefeld, 14th of July 2011. 
 
Poster Presentations 
Jung SN, Borst A, Haag J (2011) Visual motion detection in tethered flying flies. 9th Göttingen 
Meeting of the German Neuroscience Society. Göttingen, Germany.  
Jung SN, Borst A, Haag J (2009) Visual motion detection in stationary flying flies. Autumn School 
– ‘Space, Time, and Numbers’. Seeon, Germany. 
Jung SN, Wilkens LA, Hofmann MH (2007) Response properties of electrosensory units in the 
midbrain tectum of the paddlefish. Satellite Meeting Electroreception. Vancouver, Canada & 
International Congress of Neuroethology. Vancouver, Canada. 

http://www.munich-/
http://www.munich-/
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