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Abstract

Future Extremely Large Telescopes (ELTs) will be segmented. To achieve the desired
image quality, in particular for high contrast imaging, the segments of the primary mirror
must be phased to an accuracy which corresponds to a small fraction of the observing
wavelength.

Information on the misalignments of the segments of the primary mirror will be provided
with a phasing camera. The Zernike phase contrast method is a novel technique to phase
the primary mirrors of segmented telescopes.

The present thesis aims at studying the phasing of segmented mirrors using the Zernike
phase contrast method. The theoretical background of this sensor and the algorithm used
to retrieve the piston, tip, and tilt information are described.

The Zernike Phase Contrast Sensor has been tested in the laboratory and on-sky on a
Unit Telescope of the ESO Very Large Telescope with a segmented mirror conjugated to
its primary mirror to emulate a segmented telescope. The performance of the sensor as
a function of various parameters such as star magnitude, seeing, and integration time is
discussed.

The phasing accuracy obtained on sky has always been below 15 nm root mean square
wavefront error under normal conditions of operation. Equivalent limiting star magnitudes
of 18 and 15.7 achieved in the laboratory and on-sky, respectively, with this sensor would
be sufficient to phase segmented telescopes in closed-loop during observations.
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Chapter 1

Introduction

The year 1609 signalled a true revolution in astronomy with the first use of a refracting
telescope for astronomical observations by Galileo Galilei. In 1669, Isaac Newton intro-
duced the first reflecting telescope, with a parabolic primary mirror. The refractive and
reflecting design concepts have then been competing against each other for the following
300 years. For apertures larger than 1 meter, the reflecting telescopes have proved to be the
most efficient, in particular since reflecting telescopes are exempt of chromatic aberrations.

Since then, the need to study fainter objects with higher resolution has led to telescopes
with larger aperture diameters. The evolution of telescope aperture diameter over the last
400 years is illustrated in Figure 1.1. The diameter of the largest telescopes doubles about
every 40 years. The 20- to 30- meter class telescopes planned for the 2015 time frame
display a somewhat faster growth rate than the historical trend [3].

In the 1980s and 1990s, many technological advances have been made that allowed
scientists to build larger telescopes. These included computerized design, faster and im-
proved optical figuring techniques, the use of the altitude-azimuth configuration to reduce
the mass and cost of telescope mounts, and faster focal ratios of the primary mirrors for
smaller domes and buildings [3]. Also the invention of active optics on thin meniscus mir-
rors has had a major impact on this new generation of telescopes. This technology has
been tested for the first time on the 3.5 m primary mirror of the New Technology Tele-
scope in 1989. The fundamental advantage was that the residual intrinsic stiffness, which
was required in passive telescopes to cope with the inaccuracies of the forces applied by
the astatic supports, could now be reduced even further, which made the fabrication of
telescopes with mirror diameters of 8 m feasible and affordable [58].

The positive results obtained with the active optics developed on the NTT served as
a baseline for the design of the four Unit Telescopes (UT) of the Very Large Telescope
(VLT), which were completed between 1998 and 2001. Similarly, the Gemini observatory
consisting of two 8.1-meter telescopes located in Hawaii and Chile, was completed in 2000
as well as the Subaru telescope in Hawaii, with a primary mirror of 8.2 meter, which started
to take scientific images in 1999.

An increase in telescope size does not only improve the amount of collecting area,
which allows the observation of fainter objects, but also affects the angular resolution of



4 1. Introduction

1600 1650 1700 1750 1800 1850 1900 1950 2000 2050
10

−2

10
−1

10
0

10
1

10
2

Year

D
ia

m
et

er
 (

m
)

 

 

Refracting telescopes
Reflecting Telescopes
Segmented telescopes
Space telescopes
Liquid mirror telescopes

Hadley

Herschel
Rosse

E−ELT
TMT
GMT

Hubble

JWST

Keck I,II

VLT

GTC

Newton

Galileo

NTT

Horn d’Arturo

Pierre Connes

MMT

Figure 1.1: Evolution of telescope aperture diameter in time. Adapted from [3], [61].

the astronomical target observed. This is only true for diffraction limited observations. In
the presence of atmospheric turbulence, the resolution is limited by the seeing disk. Gains
in resolution were made possible by moving the telescopes to better sites, by going into
space, or even by compensating the effects of the atmospheric turbulence with adaptive
optics.

Building a giant telescope from a monolithic mirror presents many difficulties. These
difficulties typically grow rapidly with the increasing size, and quickly make monolithic
mirrors impractical [55]. One solution to build telescopes with primary mirror diameters
larger than 8 meter is to construct segmented primary mirrors. Segments are much easier
to fabricate, transport, install, and maintain than large monolithic mirrors. However, new
problems arise with segmentation: the segments are difficult to polish, they need active
position control, the edges of the segments and the gaps produce diffraction effects, and
there are more degrees of freedom to control which leads to an increase in complexity [55].

Before the very successful Keck telescope, different attempts to build segmented tele-
scopes had been undertaken.

• In 1932, Horn d’Arturo in Italy made a 1.5 m mirror, which could only be used facing
zenith [55].

• Pierre Connes in France made a 4.2 m segmented mirror telescope for infrared astron-
omy. Unfortunately, the optical quality was too low to be useful for astronomy [55].

• The MMT, before the conversion of its primary mirror to a monolithic one, has been
in operation between 1979 and 1998 with 6 mirrors, each with a diameter of 1.8 m.
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Figure 1.2: The first three segmented telescopes: The mirror of Horn d’Arturo (Courtesy of J.
Nelson [55]), the segmented telescope of Pierre Connes (Courtesy of [52]) and the MMT (Courtesy
of [53]).

In the late 1970s, a very ambitious idea to build a telescope with a segmented 10-meter
diameter primary mirror was initiated [55]. The primary mirror of the Keck telescope is
made of 36 hexagonal segments. This project officially started in 1984 and was completed
in 1993. Due to the success of the telescope, a second identical telescope has been built
and saw first light in 1996. Both telescopes can be combined and used for interferometry.

In 1997, the Hobby-Eberly Telescope (HET), a telescope with 91 segments polished
spherically to form an effective 8-meter telescope, was completed in Texas. With a very
similar design, the South African Large Telescope (SALT) saw first light in 2005.

The Spanish project Gran Telescopio Canarias (GTC) [1] saw first light in 2009 and
is today the world’s largest single-aperture optical telescope. This telescope is based on
a design very similar to the Keck, with 36 segments and an equivalent primary mirror of
10.4 meter.

The desire to build ever larger mirrors did not come to an end here. Even more
challenging telescope projects, of more than 20-meter in diameter, all of them with seg-
mented primary mirrors, are currently in their design phase: the Thirty Meter Telescope
(TMT) [56], the Giant Magellan Telescope (GMT) [42], and the European Extremely Large
Telescope (E-ELT) [31].

These three telescope projects are part of a new class of telescopes: the Extremely Large
Telescopes.

1.1 Extremely Large Telescopes

1.1.1 Thirty Meter Telescope (TMT)

The TMT project began after the merging of three earlier large-telescope projects: the
California Extremely Large Telescope, which was a partnership between Caltech and the
University of California; the Very Large Optical Telescope, led by ACURA; and GSMT,
the Giant Segmented Mirror Telescope, which was a partnership between the National
Optical Astronomical Observatory (NOAO), and the Gemini Observatory [76].
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On April 1 2009, TMT officially entered in Early Construction Phase and is expected
to see first light in 2018 (Fig. 1.3), on Mauna Kea, in Hawaii.

The optical design of the telescope is a folded Ritchey-Chrétien. The thirty meter
primary mirror consists of 492 hexagonal segments with diameters of 1.44 meter from
corner to corner. The segments are closely spaced, with gaps between the segments of only
2.5 mm.

The secondary mirror has a diameter of 3.1 meter and converts the focal ratio of 1 of
the primary mirror to a focal ratio of 15 for science instruments.

The elliptical tertiary mirror has diameters of 3.6 and 2.5 meter. The M3 mirror can
be rotated around a vertical axis to direct the light beam into the scientific instruments
mounted on the Nasmyth Platforms [56, 57].

Figure 1.3: Left: The Thirty Meter Telescope on Mauna Kea in Hawaii and its spherical dome
with a calotte design. Right: The segmented primary, the secondary and the tertiary mirrors.
Courtesy of [76].

1.1.2 Giant Magellan Telescope (GMT)

The design of the GMT is unique within the class of Extremely Large Telescopes. The
optical design is based on a Gregorian telescope [42] with a primary mirror comprised of
six off-axis circular mirrors and a central mirror on axis. Each mirror has a diameter of 8.4
meter. The equivalent collecting area is that of a 21.4 meter telescope and the resolving
power is that of a 24.5 meter aperture.

The secondary mirror (M2) is also segmented with seven thin adaptive shells for adap-
tive optics operation. Each of the seven 1.1 meter M2 segments maps to a single primary
mirror segment. This arrangement greatly simplifies the alignment of the telescope optics:
the primary mirror segment misalignments are compensated by the motions of the more
agile M2 shells [42].

The GMT is expected to see first light in 2018. It will be erected in the Las Campanas
Observatory, in Chile.
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Figure 1.4: View of the GMT with its primary mirror made of 7 circular segments of 8.4m each.

1.1.3 The European Extremely Large Telescope (E-ELT)

ESO studied the concept of the Overwhelmingly Large Telescope (OWL) [19], with an
optical design based on a 6 mirror solution, with a spherical primary of 100 meter, a flat
secondary and a corrector consisting of 4 elements, including two 8 meter class active mir-
rors and two adaptive mirrors, of 2.3 meter and 3.2 meter (M6 and M5, respectively) [27].
The primary and secondary mirrors of the OWL would have been segmented with 3048 and
216 segments respectively. However, substantial technical risks were identified, associated
especially with the large segmented secondary mirror. The estimated cost was also too
high. It was then decided to proceed with a detailed design phase aiming for a smaller pri-
mary diameter, a less complex and less risky telescope. In 2007, a new concept was born,
with a primary mirror of 42 meter, the European Extremely Large Telescope (E-ELT).

The optical design of the E-ELT is a 5 mirror design [31] shown in Figure 1.5:

• three powered mirrors to improve the optical correction over a larger field (10-
arcminute field of view): M1, M2 and M3.

• two additional folding flat mirrors to steer the beam to the Nasmyth foci: M4 and
M5.

The segmented aspheric primary mirror will measure 42 meter with 984 hexagonal
segments of 1.45-m (corner to corner). A new option with a 39 meter primary mirror (the
two external rings would be removed) is also considered today. The pupil of the telescope
is the primary mirror. The convex secondary mirror will measure six meter (and only 4
meter for the 39 meter design ) and the tertiary mirror four meter.

Adaptive optics is embedded inside the telescope by means of M4 which is a deformable
mirror of 2.6 meter. M4 is naturally conjugated to the ground layer of the atmosphere and
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Figure 1.5: The 5 mirror optical design of the E-ELT.

inclined at 11 degrees. Embedding adaptive optics (AO) into the telescope is a natural
evolutionary step in the design of telescope.

The 5th mirror, a flat tip-tilt mirror of 2.7-m in diameter located near the pupil,
redirects the beam to the f/15 Nasmyth focus. The fifth mirror is envisaged to provide for
field stabilization of the telescope beam. A simultaneous rotation of the fourth and fifth
mirror around the axis through the centers of the first three mirrors allows access to either
of the two Nasmyth foci.

An artist’s impression of the future E-ELT can be seen in Figure 1.6.

Figure 1.6: Left: The E-ELT and the dome. Right: View inside the telescope.

The Council of the European Southern Observatory selected Cerro Armazones in Chile
(Figure 1.7) as the baseline site for the E-ELT.
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Figure 1.7: View of Cerro Paranal (VLT) and Cerro Armazones (E-ELT). Cerro Paranal is in
the lower right, and left is the VISTA telescope. Cerro Armazones is the peak in the middle on
the left. In the background, the volcano Llullaillaco (6739 m). Courtesy of [24].

1.2 Space telescopes

For ground-based observations, the main limitation comes from the atmosphere. The
wavefront emitted by a distant star is perturbed by the different layers in the atmosphere
and the resolution of the telescope will not be limited by its optical design but by the
seeing disk. Moreover, the atmosphere acts as a window for ground-based observations,
absorbing the ultraviolet, X and gamma-rays and being transparent only to a small part
of the electromagnetic spectrum, i.e. the visible, the near, mid and far infra-red, and
radio wavelengths. Last but not least, in space, instrumental stability is excellent. Apart
from thermal variations, space offers a more stable environment, e.g. no disturbances are
induced by the wind [3].

Going to space presents many advantages over ground-based observations. One of the
most famous examples of space telescopes is the Hubble Space Telescope (HST), launched
in 1990, which covers wavelengths from the near ultra-violet to the near infrared. However,
the telescope was only real success three years later, after the installation of COSTAR, a
system designed to correct for the spherical aberration of the 2.4 meter primary mirror.

The planned successors of HST are the James Webb Space Telescope and, much further
out, the Advanced Technology Large-Aperture Space Telescope (AT-LAST). AT-LAST is
a proposed 8 to 16-meter optical space telescope, which would be a true replacement and
successor for the Hubble Space Telescope (HST).

The James Webb Space Telescope (JWST) is a space telescope designed for infrared
imaging and spectroscopy. The novelty of this telescope is that the 6.2 meter primary
mirror will be made of 18 independent, hexagonal mirror segments [16].

The primary mirror will be in a folded configuration during the launch and deployed
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Figure 1.8: The James Webb Space Telescope.

in space. The alignment of the primary mirror with the secondary mirror will be done in
orbit.

1.3 Outline of the thesis

Chapter 1 has presented a brief history of telescopes and how this led to the segmentation
of the primary mirrors of current and future telescope projects.

However, new problems arise with segmentation. The misalignments of the segments
in piston, tip and tilt, the misfigure of the edges of the segments, the inter-segment gaps,
the aberrations of individual segments, and the variations in reflectivity between the seg-
ments, all these effects will affect the image quality of a segmented mirror. The telescope
errors, introduced by segmentation are presented in Chapter 2. The requirements on the
alignment of the segments, in particular for applications such as high-contrast imaging,
are defined in Section 2.2. To achieve these stringent requirements, the segments must be
actively controlled by means of a control loop between edge sensors and position actuators
(Section 2.3). However, the edge sensors require a periodic calibration of their readings,
which is achieved with an optical phasing sensor (Section 2.4).

In Chapter 3, different concepts of phasing sensors are presented. Four of them, the
curvature sensor, the pyramid sensor, the Shack-Hartmann type phasing sensor and the
Zernike Phase Contrast Sensor, have been tested in the laboratory and on sky at the VLT,
in the framework of the Active Phasing Experiment (APE) (Chapter 4).

The Shack-Hartmann type sensor has been successfully used for the phasing of the
Keck telescopes. While this technique is optimal for a 10 meter class telescope, the fine
alignment required between the sensor and the pupil of the telescope will be harder to
achieve in an ELT, with possible distorsions of the pupil. Therefore, in the framework
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of the Active Phasing Experiment, alternative techniques have been investigated. One of
them, the Zernike Phase Contrast Sensor, constitutes the main topic of the present Ph.D.
thesis. Part II is dedicated to this sensor.

In Chapter 5, a theoretical study of the Zernike Phase Contrast Sensor, using Fourier
optics, is presented. All the algorithms which have been implemented to test the sensor in
the framework of APE are discussed in Chapter 6. The results obtained in the laboratory
and on sky, are shown in Chapter 7 and Chapter 8, respectively. Finally, in Chapter 9, the
results obtained on sky are analyzed with a complementary approach, based on the use of
the diffraction theory for segmented mirrors.
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Chapter 2

Image quality of a highly segmented
mirror

Segmentation has enabled astronomers to build larger and larger telescopes. However, as
already mentioned in the introduction, new problems arise with segmentation. For a seg-
mented system to deliver an image quality comparable to that of a monolithic telescope, the
segments have to be coaligned, cofocused and cophased (Figure 2.1). Coaligning consists
of stacking the images produced by the individual segments, cofocusing ensures that the
focal length of all the individual segments is the same, and cophasing (or phasing) ensures
that there is no piston discontinuity between the edges of neighboring segments [3].

Figure 2.1: Left: Coaligning, cofocusing, and cophasing a segmented system. Right: the PSF of
a segmented system where the mirror segments are unphased or phased. The width of the PSF is
λ/d in the first case, where d is the diameter of the mirror segments, and it is λ/D in the second
case, where D is the diameter of the full primary mirror [3]. (Courtesy of [3], page 334).

If not phased, the image quality or the resolution of a segmented telescope is equivalent
to that of a single segment. When phased, the resolution is better by a factor of

√
N where

N is the number of segments [13].
A segment has a total of six degrees of freedom: translation along the axis perpendic-

ular to the segment (piston), rotation about two axes horizontal to the segment (tip and
tilt), and translations and rotation in the plane of the segment. The strongest wavefront
discontinuities are generated by the piston and tip-tilt movements of the segments.
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Other parameters which also affect the image quality of a segmented mirror are the
inter-segment gaps, the misfigure of the segment edges, the shape aberrations of individual
segments, variations in reflectivity between the segments. All these effects have been
studied in the following publications [84, 77, 11, 82, 90].

The effect of segmentation, and in particular the effect of piston errors on the point
spread function of a segmented telescope are shown in the following section.

2.1 Point spread function of a segmented telescope

The theory in this section is extracted from the publication by N. Yaitskova et al. [84] on
the analytical study of diffraction effects in extremely large segmented telescopes.

The aperture function of a telescope with N segments can be written as

F (x) =
N∑
j=1

fj(x− rj) =
N∑
j=1

θj(x− rj) exp[iφj(x− rj)], (2.1)

where fj is the aperture function of an individual segment, x is the position vector in the
aperture plane, j corresponds to the segment index, rj is the segment center point, and φj
is the phase corresponding to the segment j. θj is the transmission function of the segment
j, which is unity inside the segment and zero outside.

The point spread function (PSF) P(w) is, by definition, the modulus of the square of
the Fourier transform of Eq. (2.1) and is given by:

P(w) =

(
AN

λz

)2
∣∣∣∣∣ 1

N

N∑
j=1

[
exp

(
i
2π

λz
w · rj

)
1

A

∫
θj(ξ) exp [iφj(ξ)] exp

(
i
2π

λz
w · ξ

)
d2ξ

]∣∣∣∣∣
2

,

(2.2)
where λ is the wavelength, w is the position vector in the image plane, z is the focal
distance, ξ = x − rj is the local position vector for the segment j and A is the area of an
ideal segment.

2.1.1 Perfect telescope

In the particular case of a perfect telescope, with φj = 0, θj = θ, Eq. (2.2) takes the
form [32, 84]

P(w) =

(
AN

λz

)2
∣∣∣∣∣ 1

N

N∑
j=1

exp

(
i
2π

λz
w · rj

)∣∣∣∣∣
2

×
∣∣∣∣ 1

A

∫
θ(ξ) exp

(
i
2π

λz
w · ξ

)
d2ξ

∣∣∣∣2
= (

AN

λz
)2Fg(w)Ps(w). (2.3)

The PSF of a perfect telescope is the product of two factors: a grid function Fg and the
PSF of an individual segment, Ps.
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The grid function is a periodic function with sharp peaks, since it is the Fourier trans-
form of the segmentation grid. The analytical expression for Ps is given by:

Ps = |t1(w)|2

=

∣∣∣∣ 1

A

∫
θ(ξ) exp

(
i
2π

λz
w · ξ

)
d2ξ

∣∣∣∣2
=

∣∣∣∣∣sin(
√

3α− β)sinc(α
√

3 + β) + sin(
√

3α + β)sinc(α/
√

3− β)

2
√

3α

∣∣∣∣∣
2

(2.4)

where α = (πd/2λz)wx and β = (πd/2λz)wy are normalized coordinates in the image
plane. d represents the size of a hexagon defined as the flat-to-flat distance between two
opposite edges. The segment point spread function Ps is shown in Figure 2.2.
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Figure 2.2: The point spread function of a segment Ps plotted as a function of the normalized
coordinates α and β.

2.1.2 Piston errors

If the only errors are random piston errors such that φj(ξ) = δj is the piston error on the
segment j, the general expression (2.2) becomes

P(w) =

(
AN

λz

)2
∣∣∣∣∣ 1

N

N∑
j=1

exp

(
i
2π

λz
w · rj

)
exp (iδj)

∣∣∣∣∣
2

×
∣∣∣∣ 1

A

∫
θ(ξ) exp

(
i
2π

λz
w · ξ

)
d2ξ

∣∣∣∣2
=

(
AN

λz

)2

F′g(w)Ps(w). (2.5)
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The piston errors modify only the grid function, which is defined for perfectly aligned
segments in Eq. (2.3). The modified grid function F′g introduces an irregular speckle
background, which also reduces the Strehl ratio1.

From Equation (2.5), one can derive an expression for the Strehl ratio. For an unphased
segmented telescope with a RMS piston error of δp nm, measured on the wavefront2, the
ensemble-averaged Strehl ratio for a telescope with phase errors distributed over its N
segments is given by [11, 85]:

S =
1 + exp(−σ2)(N − 1)

N
(2.6)

where σ = kδp and k = 2π/λ is the wavenumber.
For large piston errors, this expression converges to 1/N and the Strehl ratio is reduced

by a factor N . The telescope quality in terms of Strehl is therefore equivalent to that of
a single segment. However, for small piston errors with σ → 0, the Strehl ratio converges
to 1 (Figure 2.3).
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Figure 2.3: Strehl ratio of a segmented system with N segments and in the presence of piston
error with σ RMS.

For an E-ELT with 984 segments, reducing the piston error measured on the wavefront
from δp = 60 nm to δp = 20 nm results in a substantial improvement of Strehl ratio from
S = 0.71 to S = 0.96.

For a perfectly phased telescope, the zeros of the Ps coincide with the peaks of the Fg

so that in the resulting PSF a single central peak is observed (Fig. 2.4 a). It is interesting

1The ratio between the normalized peak intensity of an aberrated telescope to that of the same telescope
working at the diffraction limit.

2We suppose that the piston errors are independent and that they obey Gaussian distribution statistics
with zero mean.



2.1 Point spread function of a segmented telescope 17

to note that gaps, tip-tilt errors, and turned-down edges modify only the segment PSF Ps

while leaving the grid function Fg unchanged. These perturbations therefore lead to the
appearance of higher-order peaks in the telescope PSF (Fig. 2.4 b), as described in the
next paragraph.

Figure 2.4: a. Grid factor (regular spots) and the segment Ps for a perfect telescope without
gaps. b. The same but with gaps between segments. Courtesy of N. Yaitskova [84].

2.1.3 Arbitrary segment aberration

The phase error on each individual segment can be represented as a set of aberrations,
described by a Zernike polynomial.

The term segment aberration refers to a particular aberration of an individual segment
and the term segmentation error refers to the shape of the wavefront reflected by the whole
segmented mirror.

When the segmentation error is described by the polynomial ZN with the coefficients
ajn randomly distributed over the whole population of segments

φ(x) =
N∑
j=1

ajnZn(x− rj)θ(x− rj), (2.7)

the ensemble-averaged PSF of a segmented aperture can be written in the canonical
form [82, 83]:

P(w) = Fg(w)B(w) +
D(w)− B(w)

N
. (2.8)

B(w) =

∣∣∣∣ 1
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< exp [ianZn(ξ)] > θ(ξ) exp

(
i
2π

λ
w · ξ

)
d2ξ

∣∣∣∣2 , (2.9)
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1
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∫ ∫
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× exp

(
i
2π

λ
w · (ξ − ξ′)

)
θ(ξ)θ(ξ′)d2ξd2ξ′. (2.10)
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The first term of Eq. (2.8) 3 describes the diffraction pattern and its modification, and the
second one describes a halo. The halo consists of quasi-static speckles, each having the size
of the Airy disk of the telescope. The speckled field covers an area inversely proportional
to the size of a segment, i.e., an area much larger than the Airy disk of a segment [83].

If σn =
√
a2
n is the coefficient of a segment aberration in form of the Zernike polynomial

Zn, the halo term in Eq. (2.8) can be expressed as

D(w)− B(w)

N
≈ σ2

n

N
|tn(w)|2 , (2.11)

where

tn(w) =
1

A

∫
Zn(ξ)θ(ξ) exp

(
i
2π

λ
wξ

)
d2ξ. (2.12)

The halo is proportional to the variance of the segment aberration coefficient, inversely
proportional to the number of segments, and its shape is the square of the modulus of the
Fourier transform of the polynomial corresponding to this aberration within a segment’s
boundary [83].

In the case of pure piston error, t1(w) is given by Eq. (2.4) and

D(w)− B(w)

N
≈ σ2

1

N
|t1(w)|2 , (2.13)

For pure piston error, the halo of the PSF is shown in Figure2.2.

2.1.4 Power spectral density of phase errors

The result presented here will be used in Chapter 9.
The power spectral density (PSD) Φphase of arbitrary wavefront error, is the square of

the modulus of the Fourier transform of the phase error ϕ(x), given by:

Φphase(w) =

∣∣∣∣ 1

AN

∫
ϕ(x) exp

(
i
2π

λ
w · x

)
d2x

∣∣∣∣2 . (2.14)

If, across individual segments, the phase errors are described by Zernike polynomials
and the coefficients of the Zernike modes are randomly distributed over the set of segments
with RMS-values σn, Φphase is given by

Φphase(w) =
∑
n

σ2
n

N
|tn(w)|2 (2.15)

which coincides with the PSF halo given by Eq. (2.11). The PSF halo is the statistically
averaged PSD of the phase error [83].

3The segment index is omitted in ajn, assuming that the values of the aberration coefficients ajn for any
pair of segments are uncorrelated and assuming that the statistical properties of the aberration coefficient
do not change from one segment to another.
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2.2 Requirements

The importance of the phasing of segmented mirrors in a telescope has been demonstrated
in several papers [84], [85], [77].

We have seen that in a segmented telescope, the image quality is strongly affected by
wavefront errors introduced by the segment aberrations including segment misalignments.
The PSF halo, and the Strehl ratio, are both strongly affected by the variance of the
segment aberration coefficients. The first is proportional to the variance of the segment
aberration coefficients and the Strehl ratio decreases rapidly with an increase of the phasing
error, as shown in Figure 2.3.

The requirements on the shape of the primary mirror of future ELTs will strongly de-
pend on the science case and on the astronomical instruments used for the observations.
For applications such as direct detection of exoplanets with extreme adaptive optics and
coronagraphy on an ELT, as is the case of the future instrument EPICS4 [43], the require-
ments are more stringent. The PSF halo will particularly affect the contrast. The challenge
of high contrast imaging is to directly image an exoplanet, against the bright background
of its parent star. In order to reach contrasts of 10−8 or 10−9, a precision of the order of
30 nm RMS must be reached [83, 6, 49].

2.3 Active control

As seen in the previous section, the image quality of a segmented telescope will be affected
by segment misalignment errors of the primary mirror. In order to achieve an optical quality
equivalent to the corresponding monolithic telescope, the segments have to be phased.

If not actively controlled, the segments of the primary mirror will move in a random
manner. At high temporal frequencies, they are affected by the wind and by vibrations
of the structure. At lower temporal frequencies, gravitational load and thermal variations
will also induce misalignments of the segments.

The control of the primary mirrors of the future E-ELT and the TMT will be based
on the well proven strategy used at the Keck telescope. The 10-meter primary mirror of
the Keck telescope is made of 36 hexagonal segments which measure 180 cm corner to
corner. The segments are supported by three 12-point whiffletrees (Figure 2.5). A warping
harness, foreseen to correct the lower-order aberrations of the segments, is attached to the
whiffletree support. Three mechanical actuators, called position actuators, will move the
whiffletree, and consequently the segment, in its three out-of-plane rigid body degrees of
freedom: piston and tip-tilt 5.

The primary mirror segments of the E-ELT will be supported by a 27-point whiffle
tree [20], shown in Figure 2.6.

During observations, the relative displacements of the segments in real time are mea-
sured by edge sensors. Typical edge sensors measure only one direction of the displacement.

4EPICS is a near infra-red instrument foreseen for the E-ELT, aimed at the research of exo-planets.
5The optical performance is less sensitive to the translation and rotation in the plane of the segment
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Position 

actuators

Segment

Whi!etree

Figure 2.5: Left: The segments are supported by three 12-point whiffle trees. Right: View of one
of the whiffletrees and of two position actuators. The foot prints of the three position actuators
can also be seen on the left figure, shown as circles. (Courtesy of [3], page 220.)

Figure 2.6: Left: Primary mirror of the 42-meter E-ELT with 984 segments. Right: The segment
is shown on the 27 point whiffletree; the three blue cylinders are the actuators for piston and
tip-tilt control. Courtesy of M. Dimmler [20].)

Therefore, two edge sensors per edge are required to provide the relative piston and the
relative tip-tilt between neighboring segments. The typical bandwidth for the control loop
between the edge sensors and the position actuators is a few Hertz (2-3 Hz). The accuracy
of the edge sensors can reach sub-nm level [20].

Existing segmented telescopes such as Keck, SALT and GTC use capacitance-based
edge sensors. The edge sensors on the Keck telescopes are made of low-expansion ceramic
glass and have an operating range of ± 20 µm [3]. However, capacitive edge sensors are
sensitive to humidity variations, dust and condensation. As a result, the sensors drift by
about 2 nm per day, and therefore require calibrations at regular intervals. Currently, such
reference values can only be obtained with a precision of the order of a few nanometers by
optical measurements, with a phase sensor, preferably using the light of a star in the field
of the telescope.
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2.4 Optical phasing

Optical phasing is performed with a phasing sensor which uses the light of a star outside
the science field to produce an image, in which the misalignments of the segments can be
detected.

There are two scenarios where optical phasing is required:

• during the integration of new segments (or after the exchange of a segment) to provide
an initial zero reference value for the edge sensors,

• periodically to re-calibrate the reference values of the edge sensors.

In the first case, the positions of the newly installed segments on the primary mirror
will be within a range of 20 µm wavefront with respect to the neighboring segments. It
is foreseen to replace two segments per day for re-coating in the future E-ELT and to
phase them with the light of bright stars. With a large number of detectable photons, high
accuracies can be obtained during this process [60].

For the periodic calibration, there are different possibilities. The first one is to perform
the optical phasing at the beginning of the night before the observations, as is done at
the Keck telescope [12]. The phasing is undertaken at intervals of about four weeks, using
relatively bright guide stars, and takes between half an hour and two hours. For the rest
of the time the control of the segment positions relies on the stability of the edge sensors.
The alternative solution is to perform optical phasing during the scientific observations.
In this case, one has to cope with a small number of photons6, but has to correct only
comparatively small differential segment phase errors [60]. This would result in a second
control loop, which would work at a bandwidth of approximately 0.01 Hz.

In the next Chapter (Chapter 3), different concepts of phasing sensors are presented.

6This option is valid provided that a sufficiently bright reference star for the phasing camera can be
found in the field of view.
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Chapter 3

Phasing sensors

The general problem of wavefront sensors is to recover the phase ϕ(r) of a given wavefront
although only intensity measurements are available. Let U(r) be the complex amplitude
of the wavefront, such that U(r) = |u(r)| exp(iϕ(r)) where r is a two dimensional spatial
coordinate.

The light is taken to be monochromatic, with wavelength λ. In the case of pure piston
errors, the general problem of phasing becomes one-dimensional. With a local coordinate

Figure 3.1: Cartesian coordinate system at the boundary between two segments and the phases
ϕ1 and ϕ2 due to piston in each segment.

system centered at the border between two segments (the x-axis being perpendicular to
the edge as shown in Figure 3.1), and with ϕ1 and ϕ2 being the piston phase values of two
segments with piston values p1 and p2, the phase ϕ(r) can be expressed as:

ϕ(r) = ϕ(x) =

{
ϕ1 = (2π/λ) p1 if x < 0
ϕ2 = (2π/λ) p2 if x > 0

(3.1)

and the complex amplitude as U(r) = U(x) = |u(x)| exp(iϕ(x)). We define ∆ϕ as:

∆ϕ = ϕ2 − ϕ1 =
2π

λ
∆p (3.2)

where ∆p = p2 − p1 is the differential piston generated by the phase jump ∆ϕ.
With the development of large segmented telescopes, the phasing of segmented aper-

tures is a major concern and many different phasing technologies have been proposed. In
this section a review of different phase sensors will be presented.
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Depending on the technique used, the recovery of the phase can be done directly in the
image plane, in a pupil plane or in intermediate planes.

Image plane techniques include phase retrieval [33, 28], where the phase is directly de-
termined from a focal plane image. The solution is not unique. However, this ambiguity
can be resolved with the use of a second image where a phase perturbation, typically a
defocus, has been added. This second method is called phase diversity [35, 34, 62]. Both
techniques, which are strongly affected by atmospheric effects, are particularly advanta-
geous for space applications since they require little or no additional hardware.

Intermediate plane techniques include curvature sensing, where the wavefront recon-
struction is performed with defocused images of the pupil. In classical curvature sensing
with a continuous wavefront, the image planes are sufficiently far from the focus to jus-
tify approximations of geometrical optics: local differences in the intensities between two
de-focused images, taken at the same distance from the focus, are proportional to the lo-
cal wavefront curvature [68]. However, for the measurement of wavefront discontinuities,
diffraction effects have to be taken into account.

Pupil plane techniques include the Shack-Hartmann type wavefront sensor, the Pyramid
sensor, the Mach-Zehnder interferometer and the Zernike Phase Contrast Sensor. A major
advantage of pupil-plane techniques is that there is a unique and simple relation between
the location on the sensor and the location in the pupil.

3.1 Image plane techniques

Different techniques exist which allow phase differences to be detected from one or more
in- or out-of-focus images. These techniques have the advantage of requiring little or no
dedicated hardware; imaging cameras, which already exist on the telescope, are used.

3.1.1 Phase retrieval

Estimating the aberrations from a single focal-plane image of a point source is a difficult
problem known as phase retrieval [33]. The image of a given object contains information
not only about the object, but also about the wavefront. A focal-plane sensor thus requires
usually no additional optics. Phase retrieval is an inverse problem. The wavefront cannot
be directly calculated from the PSF since the intensities in the image plane is related in a
highly non-linear way to the phases in the pupil plane. Therefore, phase retrieval relies on
iterative techniques to recover the phase. An initial estimate is made and iterated until the
derived PSFs and the measured PSFs are sufficiently close. In phase retrieval, the most
important part is the algorithm used to compute the wavefront [28]. Most algorithms are
based on [30].

Phase retrieval has two limitations: it only works with a point source and there is
generally a sign ambiguity in the recovered phase, i.e., the solution is not unique.

The phase retrieval technique was very successfully applied to measure the wavefront
error in the HST from images taken by the onboard cameras. The information was then
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used to design corrective optical systems [29].

3.1.2 Phase diversity

The concept of phase diversity goes back to 1979 [35, 34]. The sign ambiguity in phase
retrieval is removed by using a second image, in which a known phase difference has been
introduced [34], traditionally a defocus, as illustrated in Figure 3.2. (This second image is
then used to constrain the estimate of the wavefront error.) It is possible to estimate the
unknown phase even when the object is extended and its shape not known. Phase diversity
is optically very easy to implement but requires considerable computing power for real-time
corrections, as it is most often based on an iterative algorithm. Phase diversity has been
studied for the cophasing of segmented telescopes in [51, 18] and has even been tested at
the Keck telescopes but the expectations were not fulfilled [47].

Telescope

Beam splitter

Focused image

Defocused image

Defocused 

length

ϕ(x)

Figure 3.2: Principle of the phase diversity

Phase diversity is very sensitive to the seeing. However, phase diversity has been shown
to work well after extreme AO correction [51].

3.2 Intermediate plane techniques

3.2.1 Curvature sensor

The curvature sensor1 has been proposed and developed by Roddier [68] for atmospheric
turbulence measurements in adaptive optics systems.

The principle is presented in Figure 3.3. The light emitted by a celestial object enters
the telescope with a focal length f and is focused onto the focal plane. Two detectors are
placed in planes at equal distances in front and behind the focal plane. They record the
intensity distributions Ii and Ix (intra-focal and extra-focal, respectively). If the incoming
wave front is free of aberrations, both detector planes are uniformly illuminated. A local

1The term curvature sensing is commonly used for out of focus measurements of piston errors although
strictly speaking no curvature is measured.
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curvature in the incoming wave front has the effect that the focal plane of the correspond-
ing subaperture no longer coincides with the nominal focal plane, resulting in different
intensities Ii and Ix. Therefore, local curvature variations will result in local intensity dif-
ferences in the two defocused planes (see Figure 3.3). The normalized intensity difference

Figure 3.3: Principle of the curvature sensor. Courtesy of A. Schumacher.

S(r) =
Ii(r)− Ix(−r)

Ii(r) + Ix(−r)
(3.3)

can therefore be used to retrieve information on wavefront aberrations. However this
applies only for a continuous wavefront. The geometrical optics approximation cannot be
used in the case of a discontinuous wavefront.

The use of curvature sensing for the measurement of wavefront discontinuities has been
first suggested by Rodrigez-Ramos and Fuensalida [70] and has later been studied by
Chanan, Troy and Sirko [14] and Cuevas et al. [17]. Schumacher and Devaney [71] have
developed a method that allows fast precision measurements of large piston errors even at
visible wavelengths.

The analytical expression for the signal due to a single piston step was derived by Ro-
drigez and Fuensalida [69] using an extension of the classical Fresnel treatment of diffraction
at a semi-infinite opaque screen. With the phase step given by Eq. (3.1), the normalized
intensity as a function of the coordinate x in a detector plane at a distance z from the
pupil plane is given by:

I(x)

I0

= 1 + A sin(∆ϕ) +B[1− cos(∆ϕ)] (3.4)

A = C(
x

ρ
)− S(

x

ρ
), (3.5)

B = C2(
x

ρ
)− S2(

x

ρ
)− 1

2
(3.6)

ρ =
√
λz/2, (3.7)
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where C and S are the Fresnel cosine and sine integrals, respectively, and ρ determines the
signal width. The formula is valid for collimated light. In a telescope of focal length f , the
effective propagation distance z2 can be expressed as

z =
f(f − l)

l
, (3.8)

where l is the distance from the focal plane (see Figure 3.3) [71].

Figure 3.4: Left: Diffraction effect due to a segment step. Right: Projection along an axis
perpendicular to the edge gives a one dimensional signal which contains the information on the
piston step. Courtesy of A. Schumacher [71].

Figure 3.4 shows the one-dimensional signal which corresponds to equation (3.4) ob-
tained on one defocused image [71]. Schumacher and Devaney [71] show that the piston
information can be extracted either from a single image or a pair of defocused images.
In the case of a single image (intra or extra focal image), the capture range is doubled
compared to the normalized intensity difference.

The width of the signal increases with the propagation distance z. This is illustrated in
Figure 3.5, which shows three defocused images simulated with three different propagation
distances. An upper limit on the signal width is determined by the signal crosstalk from
nearby segment edges and a lower limit by the required signal sampling of the detector.
The blur due to seeing shall also be smaller than the width of the signal.

Chanan et al. [7] have developed a method called Phase Discontinuity Sensing (PDS),
which has been successfully applied at the Keck telescopes. It is applied at a wavelength
of 3.3 µm using an existing infrared instrument. Chanan and Pinto [10] have also further
developed a broadband version of phase discontinuity sensing, similar to the broadband
technique used with the Shack-Hartmann type phasing sensor [12], in order to extend the
capture range from 0.4 µm to 40 µm.

The advantage of curvature sensing is that it requires no special-purpose hardware. It
also has the advantage that the spatial sensitivity can be easily adjusted. The greater the

2For collimated light, I1 and I2 can be considered as defocused pupil images in the conjugate object
space. Their distance to the pupil plane is z. According to Newton’s formula (z + f)l = f2 [67].
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Figure 3.5: Simulated de-focused images of a 36 segment telescope with piston errors. The piston
values are uniformly distributed within ±λ/8 and the same for each image. D = 10 m, f = 250
m, λ = 3.3 µm, r0(500nm) = 0.2 m. z=(10.2, 31.0, 77.9) km, l = (6; 2; 0.8) m. Courtesy of
Achim Schumacher [71].

defocus, the higher is the spatial resolution in the pupil, however, at the price of lower
sensitivity to aberrations.

The curvature sensor was part of the Active Phasing Experiment described in Chapter 4
under the acronym DIPSI, the Diffraction Image Phase Sensing Instrument [54].

3.3 Pupil plane techniques

3.3.1 Modified Shack-Hartmann phasing sensor

The Shack-Hartmann method is a technique widely used for active and adaptive optics
applications. When applied to the phasing of segmented mirrors, a circular lens is placed
across the border between two segments. The information on the phase step is contained
in the diffraction pattern of the lens.

This sensor is being used for the phasing of the 36 segments of the Keck telescope,
with a prism array and a lens replacing the traditional lenslet array. This prism array is
preceded by a mask at the position of the exit pupil. The mask, at a scale of 1/200 of the
primary mirror, defines small circular subapertures of 12 cm in diameter projected on the
primary mirror and located at the center of each of the 84 intersegment edges shown to
scale in the left image of Figure 3.6 [9].

The diffraction pattern as a function of ∆ϕ at the intersegment border is shown in the
right plot of Figure 3.6. For ∆ϕ = 0 we obtain the Airy disk and for ∆ϕ = π/2 we obtain
a diffraction pattern with two peaks. The algorithm used to reconstruct the wavefront
is the following. The 11 theoretical diffraction patterns shown in Figure 3.6 are used as
templates in the reconstruction algorithm. The diffraction pattern of the measured edge is
cross-correlated pixel by pixel against all 11 templates. ∆ϕ is estimated from the template
that maximizes the correlation coefficients. This method is known as the narrowband
phasing algorithm [9].

The other algorithm used at the Keck telescope for measuring the piston error is called
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Figure 3.6: Left: Geometry of the primary mirror of the Keck telescopes, showing the 78 circular
subapertures that sample the intersegment edges in the phasing procedure. Each segment is 0.9
m on a side. The subapertures are 12 cm in diameter. Right: Theoretical diffraction patterns
(monochromatic light) for a split circular subaperture of radius a with a physical step δ between
the two halves given by ∆ϕ = 0, π/11, 2π/11, . . . , 10π/11. Courtesy of G. Chanan [9].

the broadband phasing algorithm [12]. It is based on the coherence length of a broadband
filter. The light has a finite bandwidth ∆λ. The coherence length lc of a filter, centered
on the wavelength λ, of finite bandwidth ∆λ, is given by lc = λ2/∆λ.

In the framework of the Active Phasing Experiment (APE), described in Section 4,
the Shack-Hartmann phasing sensor (SHAPS) [50, 39] has been tested with an array of
cylindrical lenslets for the piston measurement and traditional circular lenslets for the
tip-tilt and segment shape measurements. With cylindrical lenslets, one can measure the
piston signal continually along the border between two segments.

If the length of the lenslet is much larger than its width, the signal can be treated
as one-dimensional. If the lenslet is perfectly centered across the border, its normalized
intensity distribution can be expressed by

p(ξ,∆ϕ) =
[sin(πξ

ξ0
+ ∆ϕ)− sin(∆ϕ)]2

(πξ
ξ0

)2
, (3.9)

where ξ is the spatial dimension and ξ0 = λ/a is a normalization factor and a = 150 µm is
the width of the lenslet. The position of the first zero of the diffraction pattern is located
at ξ = ξ0.

Results obtained with SHAPS in the framework of the Active Phasing Experiment are
presented in [39].
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Figure 3.7: Left: Likelihood functions for four differential segment phases θ as a function of the
normalized angular coordinate in the focal plane of the Shack-Hartmann lens [60]. Right: Lenslet
array used for SHAPS. The cylindrical lenslets are used for the piston measurements, the circular
lenslets are used for the tip-tilt and segment shape measurements. Courtesy of R. Mazzoleni [50].

3.3.2 Pyramid sensor

The Pyramid sensor, introduced by Ragazzoni [66] for adaptive optics, is based on the
principle of the knife edge test, in the geometrical optics regime. A knife edge, or a
sharp blade, is placed in the focal plane close to the focus to block a certain fraction
of the rays. In the re-imaged pupil those subapertures corresponding to rays that have
been blocked appear dark, whereas those corresponding to rays that could pass appear
bright. In this configuration the knife-edge test will give only a bi-valued information on
the slopes. By moving the edge up and down, the fraction of the time when the ray passes
through the unobstructed half plane and therefore the intensity of the corresponding pixel
on the detector in a re-imaged pupil plane depends smoothly on the position where the
ray intersects the focal plane and therefore on the slope of the ray in the pupil plane.
Figure errors appear on the detector as areas of variable intensity. A uniform movement
of the edge therefore linearizes the information on the slopes. The sensor can supply two-
dimensional information if the knife edge is replaced by a pyramid and the up and down
movement by a circular movement around the focus, as shown in Figure 3.8 [63].

As in the case of the Shack-Hartmann and the curvature sensors, the signal generated
by phase discontinuities cannot be derived with geometrical optics approximations. Cal-
culation based on diffraction optics show that for monochromatic light, the amplitude of
the signal is a sinusoidal function of the piston step.

The sensor has the capability to measure phase steps between the segments as well
as wavefront aberrations inside the segment subapertures simultaneously. The use of the
pyramid sensor for co-phasing has been proposed by S. Esposito and N. Devaney [26].



3.3 Pupil plane techniques 31

Figure 3.8: Principle of the Pyramid sensor. Courtesy of E. Pinna [63].

3.3.3 The Mach-Zehnder Interferometer

The use of the Mach-Zehnder interferometer for phase step measurements has been pro-
posed by K. Dohlen and studied theoretically by N. Yaitskova [86, 88, 81].

In the classical Mach-Zehnder interferometer, the beam is collimated in the two arms
of the interferometer. Angel [2] proposed to place, at an intermediate focus in one of the
two arms of the interferometer, a pinhole, which spatially filters the incoming wavefront
to use the light from this arm as a reference (Figure. 3.9). The diameter of the pinhole is
smaller than the Airy disk, producing a perfectly spherical reference beam. For the phasing
of segmented mirrors, the diameter of the pinhole is approximately equal to that of the
seeing disk [22].

When the wavefront corresponding to this filtered signal is recombined with the original
wavefront from the other arm, two complementary interferograms are produced.

The lower spatial frequency components of the wavefront are near the center of the
PSF whereas the higher spatial frequency components are in the wings of the PSF. In the
reference arm, the spatial filter removes the high frequency components of the wavefront
and transmits the lower spatial frequency ones. When the pinhole diameter a is equal to the
full width at half maximum (FWHM) θseeing of the seeing disk, that is a ≈ θseeing, most of the
aberrations generated by atmospheric turbulence are therefore removed after interference
between the two optical beams, leaving only the high spatial frequency components in the
output interferograms. With a constant optical path difference (OPD) between the arms
equal to λ/4, the sign of the piston step can be easily deduced on the output interferograms.

The studied pinholes have either an apodized edge with a Gaussian profile or can be
represented by the top-hat function. In the case of a round pinhole, the signal is strongly
affected by diffraction at the edges of the pinhole.

The mathematical expression for the signal, in the case of pure piston error, is now
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Figure 3.9: Set up of the Mach-Zehnder interferometer. Courtesy of [86].

derived as the phasing sensor which is the main subject of the current thesis, the Zernike
Phase Contrast Sensor, is very similar to the Mach-Zehnder interferometer.

In the Fraunhofer diffraction approximation, U1(r) and U2(r) denote the complex am-
plitudes in the pupil planes of the unfiltered and filtered arms of the interferometer, re-
spectively.

The complex amplitude u1(w) in the focal plane of the unfiltered arm is the Fourier
transform of U1(r).

u1(w) =
1

λ

∫
U1(r) exp(−i2π

λ
(r ·w))dw2 (3.10)

The complex amplitude u2(w) is therefore the product of the complex amplitude u1(w)
and the filter t(w):

u2(w) = u1(w) · t(w). (3.11)

t(w) is the function defining the pinhole and T (r) its Fourier transform. The round
pinhole is defined by the top hat function:

t(w) =

{
1 if |w| < a/2
0 if |w| > a/2

and its Fourier transform is given by:

T (r) =
πa2

4

2J1(πar/λ)

πar/λ
=
b2λ2

4π

2J1(br)

br
, (3.12)

where J1 represents the Bessel function of the first kind. The Gaussian pinhole is
represented by the function:

t(w) = exp

(
−
[

w

a(2
√

ln 2)−1

])2

, (3.13)
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where a is the full width at half maximum of the Gaussian function. Its Fourier transform
is also a Gaussian:

T (r) = π

[
a

2
√

ln 2

]2

exp

[
−
(

πa

λ(2
√

ln 2)
r

)2
]

=
b2λ2

π
exp(−b2r2). (3.14)

The parameter b is related to the pinhole diameter a by

b = πa/λ (round pinhole) (3.15)

b = (2
√

ln 2)−1πa/λ (Gaussian pinhole) (3.16)

Therefore, the complex amplitude in the pupil plane for the second arm is the convolution
of U1(r) and T (r)

U2(r) =
1

λ2

∫
U1(ξ)T (r− ξ)dξ2 (3.17)

The interference of the two beams is now calculated under the assumption that the beam
splitters are perfect 3. I1 and I2 denote the intensities at the two outputs of the interfero-
gram, respectively:

I1(r) = 0.5[|U1(r)|2 + |U2(r)|2 + 2Re(U∗1 (r)U2(r) exp(iψ0))], (3.18)

I2(r) = 0.5[|U1(r)|2 + |U2(r)|2 − 2Re(U∗1 (r)U2(r) exp(iψ0))], (3.19)

where ψ0 = 2π
λ
δ0 is a phase offset in one arm of the interferometer, with δ0 representing

the Optical Path Difference (OPD).
The difference between the two interferograms, to which we refer as the signal S(r),

contains the information about the phase of the wavefront, or in our case, the wavefront
discontinuities generated by the segment misalignments [86].

S(r) = I1(r)− I2(r) = 2Re(U∗1 (r)U2(r) exp(iψ0)) (3.20)

In the case of pure piston errors, the phase of the wavefront is given by Eq. (3.1) and
the complex amplitude U1(r) = U1(x) = A exp(iϕ(x)). The filtered wave is also given by
U2(r) = U2(x).

Introducing equations (3.12), (3.14) and the expression for U1(x) into equation (3.17),
one obtains the expression for the intensity of the diffracted wave:

|U2(x)|2 = 0.5{2− [1− cos(∆ϕ)][1− f 2(b|x|)]} (3.21)

and using equation (3.20) an expression for the signal S(x) :

S(x) = {sin(∆ϕ)sign(x)[1− f(b|x|)]} sin(ψ0)− {2− [1− cos(∆ϕ)][1− f(b|x|)]} cos(ψ0),
(3.22)

3No light absorption and equal transmission and reflection coefficients.
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The signal is the sum of two terms: the first term is an anti-symmetric function and the
second term is a symmetric function. If one sets the OPD to δ0 = λ/4 (ψ0 = π/2) one
obtains

S(x) = sign(x) sin(∆ϕ)[1− f(b|x|)] (3.23)

where f(b|x|) is the error function in the case of a Gaussian pinhole:

f(b|x|) = Φ(b|x|) =
2b√
π

∫ |x|
0

exp(−b2t2)dt (3.24)

and the normalized sinc integral in the case of a round pinhole:

f(b|x|) =
2

π
Si(b|x|) =

2

π

∫ b|x|

0

sin(t)

t
dt. (3.25)

The amplitude of the signal is proportional to the sine of the piston step, sin(∆ϕ). Because
of the term sign(x) in equation (3.23), the signal is discontinuous at x = 0. Figure 3.10
shows the expected signals for the two pinholes.
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Figure 3.10: Signal profiles for an OPD of π
2

and for different ∆p for the round pinhole
and the Gaussian pinhole profiles.

The main advantage of this phasing sensor is that the sign of the piston step can
be easily deduced from the shape of the signal. However, the technical difficulty with
the Mach-Zehnder interferometer is the need for a precise alignment: the optical path
difference between the two arms must be very accurate and shearing effects as well as
defocusing must be avoided in the alignment of the two arms. K. Dohlen from LAM has
proposed a new concept, called the Zernike Phase Contrast Sensor, which avoids such
alignment problems [21]. This sensor is the major topic of this thesis and is treated in
Part II.



Chapter 4

Active Phasing Experiment

All the experimental results presented in this thesis were obtained with the Zernike Phase
Contrast Sensor (under the acronym ZEUS in APE) in the framework of the Active Phasing
Experiment, in which I have been fully involved from the beginning until the end of the
experiment.

Figure 4.1: Fish eye view of the APE bench and its components.

4.1 Goals and description of the Active Phasing Ex-

periment

The goal of the Active Phasing Experiment [37] has been to demonstrate active wavefront
control technologies for a future ELT and to compare four phasing wavefront sensing tech-
nologies both in the laboratory (Figure 4.2) and on Melipal, the third Unit Telescope of
the ESO Very Large Telescope (VLT) (Figure 4.3)

The phasing camera used at Keck requires a precise alignment of the lenslet array of
the Shack-Hartmann detector with respect to the locations of the inter-segment borders in
the pupil image. In a rather flexible E-ELT, with potential distortions of the pupil, this
accurate alignment is more difficult to achieve than in a more rigid 10 meter telescope.

Phasing sensors, such as the pyramid sensor [65], the curvature sensor [54] and the
Zernike Phase Contrast Sensor [21], working directly with pupil images do not suffer from
the effects generated by pupil distortions and misalignments.
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Figure 4.2: The Active Phasing Experiment and all its sub-systems, in the laboratory. From left
to right: MAPS, Internal Metrologoy, ASM, ZEUS, PYPS, DIPSI and SHAPS.

Figure 4.3: The Active Phasing Experiment on the Nasmyth platform of Melipal, the third Unit
Telescope of the VLT.

Together with the Shack-Hartmann sensor, these three new phasing camera concepts
have been studied in the framework of the Active Phasing Experiment (APE) [37].

The principle of these phasing techniques is presented in Chapter 3.

The project started at the end of 2004. It has been carried out by a consortium of three
European institutes - Instituto de Astrofisica de Canarias (IAC), Osservatorio Astrofisico
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de Arcetri or Instituto Nazionale d’Astrofisica (INAF) and Laboratoire d’Astrophysique
de Marseille (LAM) - one industrial company (Fogale Nanotech) and ESO. Four optical
phasing sensors have been designed and fabricated, all based on technologies which have
been used in active and adaptive optics systems during the last twenty years: a pyramid
sensor, called PYPS, developed by INAF, a curvature sensor, called DIPSI for Diffraction
Image Phase Sensing Instrument, developed by IAC, and the Zernike Phase Contrast Sensor
called ZEUS for Zernike Unit for Segment phasing, developed by LAM and ESO, and finally
a Shack-Hartmann phasing sensor, called SHAPS, developed by ESO. The commissioning
of the experiment was finished in the laboratory during the spring of 2008 and APE saw
first light on sky on the 6th of December 2008. The project ended in June 2009 with its
dismounting from the visitor focus on Melipal (UT3). This experiment has been supported
by the FP6 research program of the European Union [36].

Figure 4.4: APE team during the First light of the Active Phasing Experiment in December
2008.

It has then been decided to remount the experiment in the laboratory with a new
design. An adaptive optics system has been added in the APE optical design in order to
study the interaction of phasing and adaptive optics. The new experiment, called Phasing
ELT with Adaptive Optics Experiment (PEACE) saw first light in the laboratory with the
Adaptive Optics in August 2010.
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4.2 APE Sub-systems

This section describes the main subsystems of APE: the Active Segmented Mirror (ASM),
the internal metrology (IM), the turbulence generator MAPS, and gives an overview of the
four phasing wavefront sensors used in the experiment.

4.2.1 Active Segmented Mirror

A segmentation is created by a scaled-down segmented mirror, called the Active Segmented
Mirror (ASM) [38]. At the telescope, the ASM is conjugated to the primary mirror of the
VLT to emulate a segmented telescope, as shown in Figure 4.5.

Figure 4.5: Left: ASM on its mount. Middle: Image of the primary mirror of the VLT seen by
APE. Right: Melipal

The ASM is a flat segmented mirror composed of 61 hexagonal segments, which can be
moved in piston, tip and tilt by three piezo-actuators. The segments are made of Zerodur
and are coated with protected aluminum.

Each segment of the ASM has an inner diameter of 17 mm and an optical quality
of 15 nm wavefront RMS. The gaps between the segments all lie in the range 70-130 µm.
Projected onto the 8.2 meter primary mirror of the VLT, the 61 individual segments appear
to have an inner diameter of 1.05 m with gaps of the order of 4 to 8 mm between them.
These values are comparable to the ones of future extremely large telescopes, which may
have segments with inner diameters of approximately 1.2 meter and gaps of about 4 mm.

Each actuator has a stroke of 30 µm of which 15 µm are dedicated to the alignment
and 15 µm dedicated to the experiment. The resolution of the actuators is 0.5 nm. The
surface quality of the hexagonal mirrors is better than 15 nm RMS and the edges are sharp
(no chamfer and coating without jig-lip). The ASM is shown in Figure A.1.

The segments are controlled in piston, tip and tilt by an Internal Metrology (IM)
system.
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Figure 4.6: Left: ASM on its mount. Right: ASM on the bench.

4.2.2 Internal Metrology

The Internal Metrology (IM) has been developed by Fogale Nanotech [80]. It is a dual
wavelength (835 and 860 nm) low-coherence instantaneous phase-shifting interferometer
with two optical arms having lengths of 2.5 meter each. The first arm, located inside the
IM unit serves as the reference. The second arm is represented in Figure 4.7 as the green
beam. The optical beam of the second arm hits the ASM after a reflexion on the off-axis
parabola.

The IM measures the position of each segment of the ASM with respect to the central
segment at a frequency of 8 Hz with a precision better than 0.3 nm. Like any other
interferometer the system is sensitive to environmental disturbances such as vibrations of
the bench and air turbulence due to temperature inhomogeneities or wind, all creating noise
in the measurement and consequently a loss of resolution in the control loop between the
ASM and the IM. In the laboratory the APE bench was placed on a pneumatic support to
filter the vibrations coming from the ground. The IM resolution obtained for the positioning
of the segments relative to the central one was better than 0.4 nm RMS in the laboratory
and better than 5 nm wavefront RMS during night observations at the VLT (90% of the
time better than 3 nm RMS). For piston aberrations, the measurement range of the IM is
± 7.2 µm. With the help of the IM, the system can be brought into any desired aligned
or misaligned state within this range.

The internal metrology has different functions in APE [87].

• It supplies independent very high accuracy measurements of the positions of the ASM
segments. It is therefore used for the verification of the phasing sensor measurements
(with a very high accuracy).

• It stabilizes the relative segment positions during the acquisition of images by the
Phasing Wavefront Sensors.

• It plays a role that is similar to the edge sensors in a future ELT.
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Figure 4.7: Top view of the APE opto-mechanical bench. From bottom to top: MAPS, Calibra-
tion Source, Parabola, ASM, ZEUS, DIPSI, SHAPS and PYPS. The green optical beam is the
second 2.5 meter arm for the IM measurements, the path is the following: IM - Parabola - ASM
- Parabola - IM. The red optical beam starts in MAPS or in the calibration source and feeds the
four PWFS. Courtesy of F. Gonté [40].

4.2.3 MAPS

For testing the influence of atmospheric disturbances on the phasing measurements in the
laboratory, the APE system is equipped with a turbulence generator called MAPS (Multi
Atmospheric Phase screens and Stars) [44], which can be placed at the entrance focus of
APE.

The wavefront errors introduced by MAPS are similar to the ones generated by the
atmosphere during median seeing conditons. The effects of the atmosphere are reproduced
by three transmissive phase screens conjugated to heights of 0, 6 and 8.5 km. The phase
screens have different power according to the expected vertical distribution of the tur-
bulence intensities and can rotate at different speeds, to simulate different atmospheric
correlation times, which are related to different wind speeds at different altitudes [48].
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4.2.4 Phasing wavefront sensors

The following four phasing wavefront sensors were tested on APE.

DIPSI This sensor has been developed by IAC [54]. The concept is based on the principle
of curvature sensing as described in Section 3.2.1

PYPS This sensor has been developed by INAF-Arcetri [65]. It is a pyramid sensor as
described in Section 3.3.2.

SHAPS This sensor has been developed by ESO [50]. As described in Section 3.3.1, the
prism array used for the phasing of the Keck telescope has been replaced by an array
of cylindrical lenslets covering subapertures across segment borders. In addition,
circular lenslets covering subapertures inside the segments are able to measure the
tip and tilt of the segments as well as the segment shapes. Results obtained with
SHAPS on sky are presented by Gonté et al. [39].

ZEUS This sensor has been developed by LAM [22], IAC and ESO. It is based on the
Zernike Phase Contrast Sensor as mentioned in Section 3.3.3. This sensor is the main
topic of the research presented in the Part II of this thesis. Results obtained with
ZEUS on sky are presented by Surdej et al. [75].

4.3 Optical path

There are two different optical paths on the APE bench: the first optical path is used for
the IM measurements and the second one is used for the four phasing wavefront sensors.

The path for the Internal Metrology is shown in green in Figure 4.7. The beam from
the IM enters a beam expander composed of a doublet and of the parabola. The pupil of
the IM is then imaged on the ASM and is then sent back to the IM via the parabola and
the doublet [40].

The phasing wavefront sensor path is shown in red in Figure 4.7 and is better visible
in Figure 4.8. An optical beam having a focal ratio of F/15 and a field of view of 45
arcsecond, coming from the telescope or from MAPS or from the calibration source (as
shown in Figure 4.7), passes trough a first group of lenses (LG1) which collimates the
diverging beam. A second group of lenses (LG2) refocuses the beam to a shorter focal
ratio (F/8). A folding mirror (FM1) directs the beam to an off-axis parabola, which
images the pupil of the telescope on the ASM. The beam is then refocused by the off-axis
parabola and hits a second folding mirror (FM2). Three wheels containing neutral density
filters (NDFW) and color filters (CFW) are positioned on the bench. The optical beam is
then split into four identical beams which are refocused at the entrances of each phasing
wavefront sensor. Each sensor receives a F/15 beam. The range of the wavelengths used
in APE is between 500 nm and 900 nm.



42 4. Active Phasing Experiment

Figure 4.8: APE optical path

4.4 Main questions to be answered with APE

The major topics which should be investigated by APE are based on the facts presented
in Section 2.4.

The performance of the phasing wavefront sensors can be described in terms of final
accuracy, capture range and limiting star magnitude [87]:

• The final accuracy is the standard deviation of the residual segmentation error, mea-
sured by the Internal Metrology.

• If phase sensors use monochromatic light of wavelengths λ, they are insensitive to
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phase errors that are multiples of this wavelength. The capture range of the phase
sensor is then ±λ/4 or ±λ/2, depending on the technique used. To resolve these
ambiguities and to increase the capture range to several wavelengths, that is typically
up to a few microns, different techniques are available. One is based on the use of
several wavelengths, and the other one based on the use of a broadband filter of
spectral bandwidth ∆λ with a finite coherence length lc = λ2/|∆λ|. These techniques
are explained in Chapter 6.5.

• In the context of this thesis, the limiting star magnitude is defined as the faintest star
magnitude with which the phasing sensor is capable of driving the segmented mirror
in closed loop to a final accuracy smaller than 30 nm RMS [83]. A phasing sensor, that
is capable of phasing a segmented mirror with a small number of photons, typically
using the light of stars of magnitude 16, would allow optical phasing measurements
to be performed during science operations and therefore to deliver continuous closed
loop updates of the reference values of the edge sensors [36].

4.5 Technical description of the ZEUS sensor

The Zernike Phase Contrast Sensor, or the ZEUS sensor, is the main subject of the present
Ph.D. thesis. This section gives a technical description of the ZEUS sensor, with which all
the results presented in the Chapters 7 and 8 have been obtained.

In the entrance focal plane of the sensor at F/15, different phase masks can be positioned
by a translation stage, which can move in the x and y directions [22]. A doublet lens re-
images the Active Segmented Mirror onto the CCD detector. The size of the pupil image
on the CCD is 6.2 mm which corresponds to 475 pixels of 13 microns [45]. The intensity
of the light and the color of the light can be changed by means of a neutral density filter
wheel and an optical filter wheel located after the translation stage of the phase mask. The
optical filter which has been used for most of the tests is centered on the 650 nm wavelength
with a bandwidth of 100 nm. The optical path difference of 175 nm corresponds to a phase
shift of ψ0 = λ/3.7 for this filter, which is close to the optimum of λ/4 (see Chapter 5).

The CCD is a 512 × 512 16 bit E2V chip (CCD 57-10). The noise of the CCD was
around 12 counts RMS/sec on sky and 7 counts RMS/sec in the laboratory. The poor
quality of the CCD has limited the performance of the Zernike phasing sensor when the
tests were performed with long exposure times to average out the turbulence and with a
small number of counts.

The Zernike phasing sensor can also be used as a pupil camera when the phase mask
is translated such that the beam is not affected by the phase mask.

The following phase masks are available on the ZEUS translation stage.

OPD [nm] 100 100 175 175 175
Phase mask diameter a [”] 1.5 2 1.5 2 1
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The choice on the phase mask depends on the seeing and the color of the light. Only
the last 3 phase masks with an OPD of 175 nm and mask diameters of 1”, 1.5” and 2” to
cover seeing conditions ranging from 0.3” to 2” have been used for most of the tests in the
laboratory and on sky. These masks have been used since they produce the signals with
the maximum signal to noise ratio. The first 2 phase masks would have been useful for
shorter wavelengths.

The following optical filters are available in ZEUS:

λ 650 750 880 630 650 550 800 700
∆λ 40 40 20 300 200 20 40 400

Due to the poor optical quality of the ZEUS optical filters, the filters in the APE color
filter wheel have been used for most of the tests.

When the filter with the central wavelength λ = 700 nm and ∆λ = 400 nm is in po-
sition in the ZEUS color filter wheel, ZEUS can use the following filters available in the
APE color filter wheel:

λ 650 650 900 900 700
∆λ 10 100 10 100 400

All the optical components of ZEUS are mounted on a breadboard (600x450x60 mm3),

Figure 4.9: Left: CAD view of the ZEUS sensor. Right: Picture of the ZEUS sensor. The red
line represents the optical path. Courtesy of K. Dohlen [22].

shown in Figure 4.9. The selection of the phase mask is done with a very high precision
x/y translation stage. The color filters and neutral density filters are placed on two ro-
tary wheels. The neutral density filter wheel also contains a lens to produce an image of
the mask on the CCD detector. This lens is used during the alignment procedure of the
different phase masks.
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This part of the thesis is dedicated to the Zernike Phase Contrast Sensor.
A general theoretical study of the sensor is given in detail in Chapter 5. After a

description of the principle of the phasing sensor in Section 5.1, a mathematical description
of the sensor is given in Section 5.2. Smooth aberrations are first studied (Section 5.3). In
particular, Section 5.3.3 shows that the sensor behaves as a high pass filter of the phase.
The response of the sensor to a piston step is studied in Section 5.4, without and with
atmospheric disturbances. The performance of the sensor, in terms of Fisher information
in the presence of atmospheric disturbances, is analyzed in Section 5.5.

The Zernike Phase Contrast Sensor was part of the Active Phasing Experiment, under
the acronym ZEUS1. All the algorithms which have been developed in the framework of
APE, for the analysis of the signals delivered by the sensor, are then described in Chap-
ter 6: image normalization (Section 6.1), pupil registration (Section 6.2), signal extraction
(Section 6.3), fitting algorithm (Section 6.4), capture range (Section 6.5), tip-tilt analysis
(Section 6.6) and singular value decomposition (Section 6.7).

Finally, the results obtained with APE in the laboratory and on sky at the VLT are
presented in chapters 7 and 8, respectively. The theoretical predictions are confirmed by
the experimental data. A typical image obtained with the Zernike Phase Contrast Sensor,
on sky at the VLT, can be seen in Figure 4.10.

Finally, the last Chapter of this thesis (Chapter 9), shows how the theory of diffraction
for segmented mirrors can be applied on the images of the Zernike Phase Contrast Sensor,
which have been obtained on sky at the VLT.

1ZErnike Unit for Segment phasing
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Figure 4.10: Image obtained with the ZEUS sensor on sky.



Chapter 5

Theory

5.1 General principle

The concept of the Zernike Phase Contrast Sensor has its origins in the Mach-Zehnder
interferometer, already presented in Section 3.3.3. The delicate alignment between the
two arms of the Mach-Zehnder interferometer is overcome in the Zernike Phase Contrast
Sensor with the introduction of a simple phase mask in a focal plane [21]. After the phase
mask, a lens projects the image of the pupil of the telescope on a CCD detector, as shown
in Figure 5.1.

The phase mask consists of a cylindrical pellet etched into a substrate with a diameter
of the order of the seeing disk and a depth of the order of a fraction of the wavelength of
the light. The phase mask is shown in Figure 5.2. When the focal plane of the telescope is
centered on the cylindrical cavity, a phase shift, or equivalently an optical path difference,
is introduced between the center of the PSF and the outer rings of the PSF.

When the diameter of the cavity is close to that of the seeing disk, the low frequency
components of the wavefront, in particular the aberrations generated by atmospheric dis-
turbances are filtered out by the phase mask whereas the high frequency components of
the wavefront, which correspond to the wavefront discontinuities generated by the pupil
aberrations, are transmitted and finally appear as intensity variations on the detector.

This principle is similar to the famous Zernike phase contrast method [92, 91] for which
Fritz Zernike received the Nobel prize in 1953.

The variations of the intensity in the plane of the exit pupil, which are generated by the
misalignments of the segments, represent the signal of the Zernike Phase Contrast Sensor.

The piston information in the signal can be optimized by adjusting the diameter of the
cavity, called the pinhole (as for the Mach-Zehnder interferometer) and by adjusting the
depth of the cavity, generating an optical path difference (OPD).

The optimum diameter of the pinhole is approximately equal to the diameter of the
seeing disc. The highest contrast of the signal is obtained for an OPD of λ/4 [75] as will
be shown theoretically in Section 5.4.
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5.2 Mathematical description of the sensor

Let r, with rectangular coordinates (x, y), be the position vector in the pupil plane and let
ρ, with polar coordinates (ρ, ϑ), be the position vector in the focal plane. The coordinate
ρ will be defined as an angular coordinate on the sky.

U1(r) is defined as the complex amplitude in the plane of the entrance pupil, in front
of the phase mask, and U2(r) as the complex amplitude in a pupil plane after the phase
mask as shown in Fig. 5.1.

Pupil imaging lens

Phase mask

f f

Pupil planeTelescope focal

image

Focus

Figure 5.1: Zernike phasing sensor layout: After the filtering of the incoming wavefront U1 by
the phase mask (shown in detail in Fig. 5.2) in the focal plane, the pupil is re-imaged on the
detector plane, U2, by a pupil re-imaging lens of focal length f .

phase mask

diameter

O
P

D

Figure 5.2: The phase mask consists of a cylindrical pellet, etched within a substrate, with a
depth corresponding to the OPD and with a diameter noted as phase mask diameter in the figure.

The phase mask, illustrated in Fig. 5.2, can be described mathematically by the fol-
lowing expression

b(ρ) = 1 + [exp(iψ0)− 1] Π(ρ), (5.1)

where ψ0 is the phase shift introduced by the phase mask. If the diameter of the phase
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mask is represented by a, Π(ρ) is given by

Π(ρ) =

{
1 if |ρ| ≤ a

2

0 if |ρ| > a
2

. (5.2)

We also refer to this type of mask as the sharp edge pinhole.
As for the Mach-Zehnder interferometer studied in [86], the case of a phase mask with

apodized edges with a Gaussian function is also studied1:

Π(ρ) = exp [−(
ρ

(2
√

ln 2)−1a
)2]. (5.3)

In this case the pinhole size a is defined by the full width at half maximum of the Gaussian
function (Eq. (5.3)).We also refer to this type of mask as the Gaussian pinhole.

The complex amplitude in the plane of the exit pupil can be expressed as the convolution
of the complex amplitude in the plane of the entrance pupil and the Fourier transform T (r)
of the transmission function of the phase mask Π(ρ):

U2(r) = U1(r) + (exp(iψ0)− 1)
1

λ2

∫
U1(r

′
)T (r− r

′
)dr

′
(5.4)

where for the sharp edge pinhole

T (r) =

∫
Π(ρ) exp(−i2π

λ
ρ · r)dρ (5.5)

=
b2λ2

4π

2J1(br)

(br)
, (5.6)

b =
πa

λ
.

For the apodized pinhole

T (r) =
b2λ2

π
exp [−(br)2] (5.7)

and b =
0.6πa

λ
.

The intensity in the plane of the exit pupil, that is the signal of the Zernike Phase
Contrast Sensor, is given by

S(r) = |U2(r)|2. (5.8)

Before we study the signal of the Zernike Phase Contrast Sensor using diffraction theory
in the case of piston errors, we shall first understand the properties of the signal, its relation
to the complex amplitude U1(r) (see Section 5.3.1) and its relation to the phase ϕ(r) (see
Section 5.3.2). In Section 5.3.3 we show that the sensor behaves as a high pass filter of the
phase [89].

1We will see in Section 5.4.5 that this phase mask can also be used to model the effects generated by
the atmosphere.
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5.3 Theoretical signal for smooth aberrations

The results presented in this section were obtained in close collaboration with N. Yaitskova
and are based on an ESO technical report [89].

5.3.1 Variations of the complex amplitude

In this section, the relation between the complex amplitude U1(r) and the signal |U2(r)|2
of the sensor is studied.

The Fourier transform T (r) of the symmetric functions Π(ρ), expressed in Eqs. (5.2)
and (5.3), respectively, is also a symmetric function with a characteristic size l, which is
inversely proportional to the pinhole size a, that is l ≈ a−1. For the apodized pinhole, the
characteristic size is l = λ/((2

√
ln 2)−1πa).

If the diameter of the pinhole is larger than the Airy disk corresponding to a diameter
D of the pupil, that is a� λ

D
or l < D, and the complex amplitude U1(r) is produced by

wavefront errors with a correlation length larger than l (such as residual polishing errors,
atmospheric turbulence), the integration in Eq. (5.4) is performed within a limited domain
l, where the function U1(r) can be expanded in a Taylor series:

U1(r′) = U1(r) +
∞∑
n=1

1

n!

dnU1(r)

drn
(r′ − r)n. (5.9)

For the calculation of U2(r) in Eq. (5.4), the terms with odd n cancel out due to the
convolution with the symmetric function T (r). If we keep only the first quadratic term,
Eq. (5.4) becomes:

U2(r) = exp(iψ0)U1(r) +
1

2
(exp(iψ0)− 1)∆U1(r)

1

λ2

∫
r
′2T (r

′
)2d2r

′
(5.10)

where ∆ is the Laplace operator.
The integral in Eq. (5.10) is given by∫

r
′2T (r

′
)2d2r

′
=

2λ2

αb2
(5.11)

where α = 0.68 for the sharp edge mask2 and α ≈ 4 for the apodized mask3. Therefore,

U2(r) = exp(iψ0)U1(r) + (exp(iψ0)− 1)
1

αb2
∆U1(r). (5.12)

The intensity in the plane of the output pupil is given by:

|U2(r)|2 = |U1(r)|2 +
2

αb2
Re{[1− exp(−iψ0)]U∗1 (r)∆U1(r)}. (5.13)

The first term is the intensity in the plane of the entrance pupil and the second term is
proportional to the Laplacian and to the complex conjugate of the complex amplitude in
the plane of the entrance pupil. The terms in ∆U2 have been neglected.

2analytical integration
3numerical integration
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5.3.2 Variations of the phase

In this section, the relation between the phase in the plane of the entrance pupil and the
signal is studied. The modulus of the complex amplitude is assumed to be constant and
the wavefront ϕ(r) is considered to be a smooth, differentiable function such that

U1(r) = A exp[iϕ(r)], (5.14)

where A is the constant intensity of the complex amplitude in the plane of the entrance
pupil.
It is easy to show that

∆U1(r) = U1(r)[i∆ϕ(r)− |∇ϕ(r)|2]. (5.15)

Substituting Eq. (5.15) into Eq. (5.13) gives

|U2(r)|2 = A2

[
1 +

2

αb2

(
[1− cos(ψ0)]|∇ϕ(r)|2 − sin(ψ0)∆ϕ(r)

)]
. (5.16)

The signal of the Zernike Phase Contrast Sensor is a linear combination of the Laplacian
of the phase and the square modulus of the gradient of the phase. The coefficients of these
two terms depend on the OPD of the phase mask. If the OPD equals λ/4 (ψ0 = π/2)
and if the intensity in the plane of the entrance pupil is normalized such that A = 1, the
intensity |U2(r)|2 can be expressed as

|U2(r)|2 = 1 +
2

αb2

[
|∇ϕ(r)|2 −∆ϕ(r)

]
. (5.17)

5.3.3 Spatial filter of the phase

The general principle of the phase filtering sensor is that the phase mask acts as a high-pass
filter on the phase, suppressing the low frequency components of the wavefront. With a
simple mathematical development, we find an expression for the filter. This result will also
be used in Chapter 9.

If F (r) is a signal constructed from |U2(r)|2 such that |U2(r)|2 = 1 + F (r), with U2(r)
given by Eq. (5.17), the signal is given by the following expression:

F (r) =
2

αb2

[
|∇ϕ(r)|2 −∆ϕ(r)

]
. (5.18)

The two-dimensional Fourier transform of Eq. (5.18), F̂ (w), leads to the following expres-
sion:

F̂ (w) =

∫
F (r) exp(−i2π

λ
w · r)dr

=

∫
2

αb2

[
|∇ϕ(r)|2 −∆ϕ(r)

]
exp(−i2π

λ
w · r)dr. (5.19)
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Assuming that at the limits of the integration the phase and its derivatives are zero,
Eq. (5.19) becomes:

F̂ (w) =
2

αb2

(
2π

λ

)2

|w|2
[
|ϕ̂(w)|2 + ϕ̂(w)

]
. (5.20)

The Power Spectral Density (PSD) Φsignal(w) of the signal F (r) is defined as the square of
the modulus of the Fourier transform. Since the higher power terms can be neglected for
small phase errors, Φsignal(w) is given by

Φsignal(w) = |F̂ (w)|2 =
4

α2

(
2π

λb

)4

|w|4Φphase(w) (5.21)

where Φphase(w) = |ϕ̂(w)|2 is the PSD of the phase.
The Zernike Phase Contrast Sensor behaves as a high-pass filter on the phase. The

filter, noted as H(w), is given by the following expression:

H(w) = (1/κa)4|w|4,
{
κ = 0.28 for the sharp edge phase mask ,
κ = 0.42 for the gaussian profile phase mask ,

(5.22)

and
Φsignal(w) = H(w)Φphase(w). (5.23)

5.4 Theoretical signal for piston steps

In this section the analytical expression for the signal produced by the Zernike phasing
sensor in the presence of pure piston errors is derived using Fourier optics. The light is
considered to be monochromatic.

The approach used in Section 5.3 where all aberrations were assumed to be smooth,
cannot be applied when the wavefront is discontinuous. Therefore an analysis based on
the theory of diffraction is used to calculate the signal, that is the intensity |U2(r)|2 in the
plane of the exit pupil of the Zernike Phase Contrast Sensor in the presence of a piston
error.

5.4.1 Definition of the wavefront error

With a local coordinate system centered on the border between two segments (the x-axis
being perpendicular to the edge as shown in Figure 5.3), and with ϕ1 and ϕ2 being the
piston phase values of two segments, the complex amplitude in the plane of the entrance
pupil depends only on the x-coordinate and can be expressed as

U1(r) = U1(x) =

{
exp(iϕ1) = exp(i k p1) if x < 0
exp(iϕ2) = exp(i k p2) if x > 0

(5.24)
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where p1 and p2 are the piston values4 of the two segments, λ is the wavelength of the light
and k = 2π/λ is the wavenumber.

∆ϕ is defined as the phase jump generated by the phase difference ϕ2 − ϕ1 and ∆p
as the piston step generated by the piston difference p2 − p1, therefore ∆ϕ = k∆p. ∆p
is the piston step measured on the wavefront, which is twice the value of the piston step
measured on the surface of the mirror.

Figure 5.3: Cartesian coordinate system at the boundary between two segments and the phases
ϕ1 and ϕ2 due to piston in each segment.

U1(x) will always be normalized such that the intensity in the plane of the entrance
pupil is equal to 1: ∫

dx U∗1 (x) U1(x) = 1. (5.25)

5.4.2 Piston error without atmospheric disturbances

The results presented in this Section have been published by Surdej et al. [75].
From Eq. (5.4), the intensity on the detector is given by

S(x) = |U2(x)|2

= |U1(x)|2 + 2[1− cos(ψ0)]U∗c (x)Uc(x)

+2Re{U∗1 (x)Uc(x)(exp(iψ0)− 1)} (5.26)

where Uc(x) is the convolution of U1(x) and the Fourier transform of the transmission
function T (x) of the phase mask:

Uc(x) =
1

λ

∫
U1(x′)T (x− x′)dx′. (5.27)

A normalization of the intensity in the plane of the entrance pupil, such that |U1(x)|2 = 1,
leads to the following expression for the intensity in the plane of the exit pupil:

S(x) = 1 + F (x) (5.28)

and the signal F (x) is given by

F (x) = 2[1− cos(ψ0)]U∗c (x)Uc(x) + 2Re{U∗1 (x)Uc(x)(exp(iψ0)− 1)}. (5.29)

4Throughout this dissertation, all the piston values are measured on the wavefront.
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Introducing Eqs. (5.24) and (5.27) into Eq. (5.29) leads to:

F (x) = [1− f(b|x|)]sign(x) sin(∆ϕ) sin(ψ0)

−[1− f(b|x|)] f(b|x|)[1− cos(∆ϕ)] [1− cos(ψ0)]. (5.30)

The expressions for f(b|x|) for the sharp edge and the Gaussian pinhole are given by the
equations (3.25) and (3.24), respectively. Eq. (5.30) represents the signal profile of the
Zernike Phase Contrast Sensor as a function of the phase jump ∆ϕ in the absence of
atmospheric turbulence.

Note that the structure of the signal of the Zernike Phase Contrast Sensor is the same
as for the curvature signal, expressed by Eq. (3.4).

The signal is a periodic function of ∆ϕ, and the range of the measurable steps ∆p,
expressed in wavefront, is therefore limited to the range [−λ/2, λ/2].

Except for ψ0 = 0, the signal of the Zernike Phase Contrast Sensor is always the sum
of two terms, an anti-symmetric and a symmetric one, shown in Figure 5.4.

The anti-symmetric term is given by:

Fas(x) = [1− f(b|x|)][sign(x) sin(ψ0) sin(∆ϕ)], (5.31)

and the symmetric term by:

Fs(x) = −[1− f(b|x|)] {f(b|x|)[1− cos(ψ0)][1− cos(∆ϕ)]}. (5.32)

The lobes, which are present in the signal with the sharp-edge mask, disappear with the
apodized one.
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Figure 5.4: Symmetric and anti-symmetric parts of the signal for (left) the sharp edge phase
mask and (right) the phase mask with the apodized profile.

The anti-symmetric term of the Zernike Phase Contrast Sensor is the same as the
signal obtained with the Mach-Zehnder interferometer for an optical path difference of
δ0 = λ/4 [86].

The weights of both terms depend on the values of ∆ϕ and ψ0. They are plotted in
Figure 5.5. The highest sensitivity to phase steps is, for the symmetric as well as for the
anti-symmetric term, obtained if ψ0 = π/2.
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Figure 5.5: Weights of the symmetric and anti-symmetric term.

When the phase step is in the range ∆ϕ ∈ [0 . . . π/2[ (Fig. 5.6), the anti-symmetric
part of the signal dominates, whereas in the range ∆ϕ ∈ [π/2 . . . π[, the symmetric part
dominates. The same applies to the phase of the optical path difference ψ0.

The phase mask used in the experiment is always the one with sharp edges. When
the terms ”sharp edge phase mask” or ”gaussian phase mask” are used, they refer to the
analytical expressions of functions (3.25) or (3.24) used inside the signal equation (5.30).
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Figure 5.6: Theoretical signal profiles for different piston steps ∆p and phase masks. (top)
∆p = 0, ∆p = λ/8, ∆p = λ/4. (bottom) ∆p = 3λ/8, ∆p = λ/2. Both mask shapes are
represented: the side lobes of the signal are a signature of the sharp edge phase mask.
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Figure 5.7: Left: Smooth function, its square of the module of its derivative and Laplacian.
Right: Step function, [1− f(b|x|)] f(b|x|) and [1− f(b|x|)]sign(x).

A comparison of the exact signal due to a discontinuous step, described by Eq. (5.30),
with the signal for a smooth aberration, described by Eq. (5.17), shows

2

αb2
|∇ϕ(r)|2 ∝ [1− f(b|x|)] {f(b|x|)[1− cos(∆ϕ)]} = F1(b|x|), (5.33)

2

αb2
∆ϕ(r) ∝ [1− f(b|x|)] sign(x)[sin(∆ϕ)]} = F2(b|x|). (5.34)

The symmetrical part F1(b|x|) of the signal is proportional to the modulus square of the
gradient of the phase and F2(b|x|), or the anti-symmetrical part of the signal, is proportional
to the Laplacian of the phase function. This comparison is illustrated in Figure 5.7. The
plot on the left shows the phase as a step function approximated by a smooth function,
the square of the module of its derivative and its Laplacian. The plot on the right shows
the discontinuous phase, and the terms F1(b|x|) and F2(b|x|) of the signal, calculated with
Fourier transformations. The anti-symmetrical part has a similar shape in both plots,
which means that the approximation of the discontinuous step by a smoothed step is
justified. This is, however, not the case for the symmetrical part, where the simple peak
in the approximated signal is replaced by two peaks in the exact signal.

It is interesting to note that the signal of the Mach-Zehnder interferometer for the
choice δ0 = λ/4 can be retrieved with a proper combination of two images of the Zernike
Phase Contrast Sensor, acquired with different optical path differences:

F (x)|ψ0=π/2 − F (x)|ψ0=−π/2 = 2× S(x)|MZ = 2× [1− f(b|x|)][sign(x) sin(∆ϕ)] (5.35)

Signal width

The parameter b appearing in Eq. (5.30) is proportional to the pinhole diameter a, and
inversely proportional to the wavelength λ:

b =
πa

λ
. (5.36)
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Figure 5.8: Illustration of the definition of the signal width for the sharp edge phase mask
and gaussian profile phase mask.

This parameter determines the width of the signal, ∆x, illustrated in Fig. 5.8. As for
the signal obtained with the Mach-Zehnder interferometer, the width ∆x of the signal is
defined for the gaussian phase mask as the distance between two points where the intensity
of the signal has dropped to 10% of its maximum value and for the sharp edge phase mask
as the distance between the two first zeroes of the curve. It can be expressed in mm as [86]:

∆x [mm] =
253.5λ

c a
(5.37)

where c=(2
√

ln 2)−1 for a gaussian type mask and c=1 for a sharp edge mask. The sig-
nal width is proportional to the wavelength and is inversely proportional to the pinhole
size. The signal width is an important parameter to optimize because this is where the
information on the phase discontinuity is contained (see Section 5.5).

5.4.3 Piston error in the presence of atmospheric disturbances

In the presence of atmospheric turbulence, the calculations which lead to the analytical
expression for the signal given by Eq. (5.30) cannot be simplified. Therefore, we evaluate
the expression for the signal by numerical integration.

The effects of the atmosphere can be taken into account by multiplying the complex
amplitude in the plane of the entrance pupil, U1(x), given by Eq. (5.24), with a stochastic
function Uatm(x) = exp [iφ(x)] where φ(x) is the distortion of the wavefront due to the
atmosphere.
In the one-dimensional case the complex amplitude Ua

1 (x) in the plane of the entrance
pupil is given by:

Ua
1 (x) = U1(x)Uatm(x) (5.38)
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and the one-dimensional signal S(x) becomes, in the presence of atmospheric turbulence:

S(x) = |U2(x)|2

= |Ua
1 (x)|2 + 2 [1− cos(ψ0)]Ua∗

c (x)Ua
c (x)

+ 2 Re{Ua∗
1 (x)Ua

c (x) [exp(iψ0)− 1]}. (5.39)

As in the previous section, Ua
c (x) is the convolution of Ua

1 (x) and the Fourier transform of
the transmission function T (x) of the phase mask:

Ua
c (x) =

1

λ

∫
Ua

1 (x+ x
′
)T (x

′
)dx

′
(5.40)

=
1

λ

[
exp(iϕ1)

∫ −x
−∞

Uatm(x+ x′)T (x
′
)dx

′
+ exp(iϕ2)

∫ +∞

−x
Uatm(x+ x′)T (x

′
)dx

′
]

(5.41)

and Ua∗
c (x) is the complex conjugate of Ua

c (x).
After a normalization in the plane of the entrance pupil, such that |Ua

1 (x)|2 = 1, the
intensity in the plane of the exit pupil can be expressed in the form S(x) = 1 +F (x), with

F (x) = 2 [1− cos(ψ0)] < Ua∗
c (x)Ua

c (x) > + 2 Re{< Ua∗
1 (x)Ua

c (x) > [exp(iψ0)− 1]}
= t1(x) + t2(x) (5.42)

where the angular type brackets symbolize the statistical averaging due to long exposures.
The first term can be expressed as

t1(x) = 2 [1− cos(ψ0)] < Ua∗
c (x)Ua

c (x) >

= 2 [1− cos(ψ0)]
1

λ2

∫
dx
′
∫

dx
′′
U∗1 (x+ x

′
)U1(x+ x

′′
)T (x

′
)T (x

′′
)

< U∗atm(x+ x
′
)Uatm(x+ x

′′
) > . (5.43)

For Kolmogorov turbulence statistics, the expression in the brackets is the optical transfer
function (OTF) Ω of the atmosphere:

Ω(x
′′ − x′) =< U∗atm(x+ x

′
)Uatm(x+ x

′′
) >= exp

[
−3.44(

x
′′ − x′

r0

)5/3

]
(5.44)

and r0 is the atmospheric coherence length. We omit the details of the calculations. Finally
Eq. (5.43) is given by:

t1(x) = 2 [1− cos(ψ0)]
1

λ2

(∫ −x
−∞

dx′ exp(iϕ1)
[
exp(−iϕ1)g1(x

′
) + exp(−iϕ2)g2(x

′
)
]

+

∫ +∞

−x
dx′ exp(iϕ2)

[
exp(iϕ1)g1(x

′
) + exp(−iϕ1)g2(x

′
)
])

, (5.45)
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where

g1(x
′
) =

∫ −x
−∞

dx
′′
T (x

′
)T (x

′′
)Ω(x

′′ − x′) (5.46)

g2(x
′
) =

∫ +∞

−x
dx
′′
T (x

′
)T (x

′′
)Ω(x

′′ − x′). (5.47)

With

g11(x) =

∫ −x
−∞

dx
′
g1(x

′
) (5.48)

g12(x) =

∫ −x
−∞

dx
′
g2(x

′
) (5.49)

g21(x) =

∫ +∞

−x
dx
′
g1(x

′
) (5.50)

g22(x) =

∫ +∞

−x
dx
′
g2(x

′
) (5.51)

Eq. (5.45) can be simplified to:

t1(x) = 2 [1− cos(ψ0)]
1

λ2
{g11(x) + cos(∆ϕ)[g12(x) + g21(x)] + g22(x)}. (5.52)

Note that g12(x) = g21(x).
The second term of Eq. (5.42), 2Re{< Ua∗

1 (x)Ua
c (x) > [exp(iψ0)− 1]}, becomes:

t2(x) =
2

λ
Re {U∗1 (x)

∫
dx
′
U1(x+ x

′
)Ω(x

′
)T (x

′
)[exp(iψ0)− 1]}

=
2

λ
Re {U∗1 (x) {exp(iϕ1)F1(x) + exp(iϕ2)F2(x)} [exp(iψ0)− 1]} (5.53)

t2(x) =

{
2
λ

Re {exp(−iϕ1) {exp(iϕ1)F1(x) + exp(iϕ2)F2(x)} [exp(iψ0)− 1]} for x < 0
2
λ

Re {exp(−iϕ2) {exp(iϕ1)F1(x) + exp(iϕ2)F2(x)} [exp(iψ0)− 1]} for x > 0,

(5.54)

where

F1(x) =

∫ −x
−∞

dx
′
T (x

′
)Ω(x

′
) (5.55)

F2(x) =

∫ +∞

−x
dx
′
T (x

′
)Ω(x

′
). (5.56)

With

F12(x) =

{
F1(x) for x < 0
F2(x) for x > 0

(5.57)
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and

F21(x) =

{
F2(x) for x < 0
F1(x) for x > 0

(5.58)

Eq. (5.53) is given by:

t2(x) =
2

λ
[F12(x) [cos(ψ0)− 1] + F21(x) {cos(∆ϕ) [cos(ψ0)− 1]

+ sign(x) sin(∆ϕ) sin(ψ0)}] . (5.59)

Finally, the signal in the presence of atmospheric turbulence is given by:

F (x) = [1− cos(ψ0)][
2

λ2
{g11(x) + cos(∆ϕ)(g12(x) + g21(x)) + g22(x)}

−2

λ
{F12(x) + F21(x) cos(∆ϕ)}]

+
2

λ
sign(x) sin(∆ϕ) sin(ψ0)F21(x). (5.60)

The symmetric and anti-symmetric terms of the signal are now given by:

• Symmetric term:

2

λ2
(g11(x) + cos(∆ϕ)(g12(x) +g21(x)) +g22(x))− 2

λ
{F12(x) +F21(x) cos(∆ϕ)} (5.61)

• Anti-symmetric term:
2

λ
sign(x) sin(∆ϕ)F21(x). (5.62)

Figure 5.9 shows the shape of the signal in the presence of different seeing conditions,
characterized by the seeing disk, for a piston step of λ/4 and λ/2, respectively, and for a
pinhole with a diameter of 1 arcsec. The signals shown in the plots were obtained after
numerical integration of Eq. (5.60). It is obvious that the signal becomes less significant
in deteriorating seeing conditions.

5.4.4 Dependence of the signal on the properties of the atmo-
sphere and the phase mask

Figure 5.10 shows the signal profile for a piston step of λ/4, and the symmetrical and
anti-symmetrical terms for four different sizes of the pinhole diameter and different values
of the seeing. The phase shift introduced by the OPD is, as always, ψ0 = π/2.

As shown in Section 5.4.2, the width of the signal decreases with an increase of the size
of the pinhole (Eq. (5.37)).

The large oscillations produced by the sharp edge pinhole in the diffraction limited case
seem to disappear in the presence of atmospheric turbulence, leading to a signal similar to
the one obtained with the phase mask with a Gaussian profile.

It is interesting to analyze the effects due to atmospheric turbulence on the symmetric
and anti-symmetric terms separately.
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Figure 5.9: Signal profiles for different seeing conditions characterized by the seeing disk θseeing

in the case of a round pinhole and piston step of (a) ∆p = λ
4 and (b) ∆p = λ

2 .

Anti-symmetric term

Without the aberrations introduced by the atmosphere, the analytical expression for the
anti-symmetric signal is identical to the signal obtained with the Mach-Zehnder interferom-
eter with an optical path difference δ0 = λ/4. A comparison of the signals in Figure 5.10
shows that the influence of atmospheric turbulence on the anti-symmetric signal of the
Zernike Phase Contrast Sensor is the same as on the anti-symmetric signal of the Mach-
Zehnder interferometer, which can be found in [86].

As for the Mach-Zehnder interferometer, the anti-symmetric signal under the influence
of atmospheric turbulence is given by

< S(x) >Mach−Zehnder≈ sign(x) sin(∆ϕ)p−1
seeing[1− f(

√
pseeing/b|x|)]. (5.63)

The parameter pseeing can be expressed by the ratio of the seeing disk to the diameter of
the pinhole

pseeing = 1 + 1.24

(
θseeing

a

)2

. (5.64)

From Eq. (5.63), both the amplitude and the width of the signal are modified in the
presence of atmospheric turbulence.

As for the Mach-Zehnder interferometer, the width of the signal ∆x given in Eq. (5.37),
is, in the presence of atmospheric turbulence, modified to:

wseeing =
∆x
√
pseeing

=
253.5 λ

c a [1 + 1.24(θseeing/a)2]1/2
(5.65)

where c=(2
√

ln 2)−1 for a gaussian type mask and c=1 for a sharp edge mask. The signal
width is expressed in mm when λ is measured in µm and a in arcseconds. It is proportional
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Figure 5.10: Signal profile for a step of λ/4 (column on the left), symmetrical (central column)
and anti-symmetrical (column on the right) terms for different diameters of pinhole a = 0.5”,
a = 1”, a = 1.5”, a = 2” and for different seeing conditions.

to the wavelength and inversely proportional to the seeing and the size of the mask. A
plot of Eq. (5.65) is shown in Figure 5.11 for different sizes of the pinhole.

Figure 5.12 shows the behavior of the signal width of the anti-symmetric term of the
Zernike Phase Contrast Sensor as a function of the seeing for different sizes of pinhole.

The dependence of the width of the signal on the seeing is almost the same for the
anti-symmetric term of the Zernike Phase Contrast Sensor and for the Mach-Zehnder
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Figure 5.12: ∆xanti−sym as a function of the seeing disk for different sizes of the pinhole diameter.

interferometer.

Symmetric term

The plots in Figure 5.10 show that the behavior of the symmetric term in the presence of
atmospheric turbulence is different from the anti-symmetric one:

• the width of the signal is almost not modified by the seeing

• the amplitude of the side lobes is reduced

• a new peak appears at x = 0 with the amplitude of the peak depending on the
combination of the seeing and the pinhole diameter.

Figure 5.13 shows the definition of the signal width for the symmetric term while Figure
5.14 shows its dependence on the seeing for different sizes of the pinhole diameter. The
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Figure 5.13: Definition of the width of the symmetric term, ∆xsym.
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Figure 5.14: ∆xsym as a function of the seeing disk for different sizes of the pinhole diameter.

appears at the location of the phase discontinuity. The amplitude of the peak is plotted
as a function of θseeing for different sizes of pinhole in Figure 5.15. When a ≈ θseeing the
amplitude of the peak attains its maximum.

5.4.5 Simplified model of the signal in the presence of atmo-
spheric turbulence

The final mathematical expression describing the signal is too complex to be used for the
signal analysis algorithm. However, it has been shown in Section 5.4.4 that the signal can
be well approximated by the signal obtained with the apodized mask.
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Figure 5.15: Amplitude of the peak at x = 0 of the symmetric term as a function of the seeing
disk for different sizes of the pinhole diameter.

The influence of atmospheric turbulence on long exposure images is therefore modeled
with the apodization of the mask, Π(ρ), with the Gaussian function

Π(ρ) = exp

[
−(

ρ

(2
√

ln 2)−1a
)2

]
. (5.66)
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Figure 5.16: Signal profiles. (left: phase steps up to ∆p = λ/4 and right: phase steps between
∆p = λ/4 and ∆p = λ/2) obtained with the gaussian phase mask (a = 1.5”) and no turbulence.

Figure 5.16 shows the shape of the signal for different step sizes in the range [λ/20, λ/2],
with a gaussian phase mask and with a pinhole with a diameter of 1.5” and no turbulence.

Figure 5.17 shows the same signals with a sharp edge phase mask and three different
seeing conditions: no turbulence, θseeing = 1” and θseeing = 2”.

A comparison of Figure 5.16 with 5.17 shows that the effect of the atmosphere is a
reduction of the amplitude of the side lobes of the signal generated by the diffraction of
the light on the sharp edges of the mask.
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Figure 5.17: Signal profiles. (left: phase steps up to ∆p = λ/4 and right: phase steps between
∆p = λ/4 and ∆p = λ/2) obtained with the gaussian phase mask (a = 1.5”) and θseeing ranging
from 0.5” to 2.5”.

For piston steps ∆p between 0 and λ/4, the gaussian mask is a good approximation.
However, it fails for ∆p→ λ/2 because of the new central peak in the symmetric term.
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Adjusted signal width

For small signals and neglecting the symmetric term, the signal width wseeing can be eval-
uated with the same approximation for the signal as the one given by Eq. (5.65).

In the next section we will see how the performance of the sensor can be predicted,
using the Fisher information, for different combinations of the pinhole diameter and the
seeing.

5.5 Performance and Fisher information

5.5.1 Definition of the Fisher information

The fundamental precision limits of all four phasing sensors studied in APE, including the
Mach-Zehnder interferometer, have been calculated by L. Noethe and H. M. Adorf [60].
They are a basis for the understanding of the performances achieved on sky. The limit for
the precision with which the height of the steps can be estimated with a given number of
photons is evaluated for all sensors, however this study only includes the effect of the at-
mosphere for the Shack-Hartmann sensor. It shows that without atmospheric disturbances
the Shack-Hartmann and the Pyramid sensor require twenty and ten times, respectively,
fewer photons than the Mach-Zehnder interferometer to reach the same precision. However,
during night observations and in the presence of atmosphere, the Zernike Phase Contrast
Sensor and the Shack-Hartmann sensor have achieved very similar performances.

To understand the performance obtained in the laboratory and on sky with the Zernike
Phase Contrast Sensor, we have applied the same methodology to obtain the Fisher infor-
mation for the Zernike Phase Contrast Sensor also in the presence of noise such as the one
generated by the atmosphere. In particular, the aim of these calculations is to find the
optimal diameter of the phase mask for a given value of the seeing disk.

We first recall the definition of the Fisher information as explained in [60].
The likelihood function p (x|∆ϕ) describes the ”likelihood” to register a photon on the

detector as a function of the spatial variable x on the detector, given a certain value of
a parameter, the segment phase step ∆ϕ. It corresponds to the signal of the sensor, as
described by Eq. (5.30) without seeing and Eq. (5.60) with seeing.

The Fisher information is defined as:

IF = 4

∫ ∞
−∞

dx p(x|∆ϕ)

(
∂ ln p(x|∆ϕ)

∂∆ϕ

)2

. (5.67)

The integrand in equation (5.67), the Fisher information density iF (x|∆ϕ), can be written
as

iF (x,∆ϕ) = 4

(
∂q(x|∆ϕ)

∂∆ϕ

)2

=
1

p(x|∆ϕ)

(
∂p(x|∆ϕ)

∂∆ϕ

)2

. (5.68)
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where q (x|∆ϕ) denotes the real-valued likelihood amplitude, defined by

q (x|∆ϕ) =
√
p (x|∆ϕ). (5.69)

The Fisher information IF can then be computed as:

IF = 4

∫ ∞
−∞

dx

(
∂q(x|∆ϕ)

∂∆ϕ

)2

. (5.70)

5.5.2 Measurement of a piston step

The Fisher information density and the Fisher information are now calculated in the pres-
ence of Kolmogorov turbulence for the Zernike Phase Contrast Sensor.

The likelihood function p (x|∆ϕ) to be introduced into the expressions (5.68) and (5.70)
is given by

p(x|∆ϕ) = 1 + F (x) (5.71)

where F (x) is given by Eq. (5.30) for the case without atmospheric disturbances and by
Eq. (5.60) for the case with atmospheric disturbances.

The Fisher information iF (x) is calculated for two values of the parameter ∆ϕ, always
with an Optical Path Difference δ0 = λ/4 or, equivalently, ψ0 = π/2. The wavelength of
the light used in the calculations is λ = 650 nm.

1. Limit values for small steps: ∆ϕ→ 0

iF (x,∆ϕ→ 0) =

(
2

λ

F21(x)sign(x)√
p(x|∆ϕ→ 0)

)2

=
4

λ2
F 2

21(x) (5.72)

In this limit, the Fisher information density is proportional to the square of the anti-
symmetrical term of the signal. Since the signal is zero for ∆ϕ = 0, the denominator
is 1.

Figure 5.18 shows the Fisher information density for different seeing conditions and
different diameters of the pinhole.

All the information on the phase step is concentrated near the phase discontinuity
and the width of the Fisher information density corresponds to the width of the
anti-symmetric signal, given by Eq. (5.65), since iF (x,∆ϕ→ 0) ∼ (F21(x))2.

The Fisher information is now obtained with an integration of the Fisher information
density from x = −∞ to x = +∞.

The dependence of the Fisher information as a function of the seeing disk for different
sizes of pinholes is shown in Figure 5.19. The maximum of the Fisher information de-
pends on the combination of pinhole diameter a and seeing disk θseeing. The maximum
is attained when

a = 1.5× θseeing. (5.73)
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Figure 5.18: Fisher information density for ∆ϕ→ 0 and for phase masks with different pinhole
diameters a: a = 0.5”, a = 1”, a = 1.5”, a = 2” and different seeing conditions.

This result can be compared to the optimal pinhole size found with the Mach-Zehnder
interferometer, for different values of the gaps [86].

The Fisher information is by definition the integral of the Fisher information den-
sity and can therefore be approximated by the area under the curve of the Fisher
information density. This area can be approximated by the area of a triangle, whose
base is the width of the signal, given by wseeing (Eq. (5.65)), and whose height is
the amplitude of the signal, given by the term p−1

seeing, which has been introduced in
Eq. (5.63).

The area (0.5 · p−1
seeing · wseeing) is plotted as a function of the seeing for different

diameters of pinhole in Fig. 5.20. The plots shown in the Figures 5.19 and 5.20 are
very similar. The slight discrepancy between the values of the two plots around the
origin can be explained by the side lobes of the signal (or of the Fisher information
density), which are not taken into account in the calculation of the area of the triangle.

The similarity of the Fisher information with the parameter (0.5 · p−1
seeing · wseeing)
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Figure 5.19: Fisher information for ∆ϕ→ 0 and for phase masks with different pinhole diameters
a and different seeing conditions ranging from θseeing = 0” to θseeing = 2.5”.
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Figure 5.20:
p−1
seeing·wseeing

2 for phase masks with different pinhole diameters a and different seeing
conditions ranging from θseeing = 0” to θseeing = 2.5”.

justifies the use of this parameter for the estimate of the piston step from Mach-
Zehnder data in [86].
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2. Limit values for large phase steps: ∆ϕ→ π

iF (x,∆ϕ→ π) =

(
−2

λ

F21(x)sign(x)√
p(x|∆ϕ→ π)

)2

(5.74)

The Fisher information density for ∆ϕ → π is the same as for ∆ϕ → 0, except for
the denominator, which corresponds now to F (x)|∆ϕ→π. Unlike the previous case
(∆ϕ→ 0), it is not a constant but similar to curves in the middle column of Figure
5.10.

Nevertheless, the Fisher information is very similar to the previous case. However,
the amplitude is approximately 30% smaller. All the information on the phase step
is concentrated near the phase discontinuity, and, therefore, also in the new peak
generated by the atmospheric disturbances.
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Figure 5.21: Fisher information density for ∆ϕ→ π and for phase masks with different pinhole
diameters a: a = 0.5”, a = 1”, a = 1.5”, a = 2” and different seeing conditions.
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Figure 5.22: Fisher information for ∆ϕ→ π and for phase masks with different pinhole diameters
a and different seeing conditions ranging from θseeing = 0” to θseeing = 2.5”.

5.5.3 Measurement of a differential tilt

Assume that the complex amplitude over an interval [−d,+d] is given by

U1(x|θ) =
1√
2d
eikϕ(x) =

1√
2d
eikθf(x) (5.75)

where f(x) is an arbitrary real-valued function across the interval and θ is the coefficient,
which has to be measured. Under the assumption that the average of ϕ(x) across the
interval is zero, the quantum statistical Fisher information is given by

IF = 4k2

∫ +d

−d
dx

∂

∂θ
U∗1 (x|θ)dx ∂

∂θ
U1(x|θ). (5.76)

Introducing Eq. (5.75) into Eq. (5.76) gives the expression for the Fisher information

IF = 4k2 1

2d

∫ +d

−d
dxf 2(x) = 4k2σ2

f , (5.77)

where σf is the RMS of f(x) across the integration interval. The corresponding Cramér-
Rao bound is then given by

σCRB =
1

IF

=
1

2kσf
=

λ

4πσf
. (5.78)
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For a piston step of θ one has σf = 1/2 and therefore for the Cramér-Rao bound σCRB,piston

as in [60]

σCRB,piston =
λ

2π
. (5.79)

For optical wavelengths of λ ≈ 600 nm the fundamental precision limit for the measurement
of a piston step with a single photon is therefore of the order of 100 nm. For the tilt

x-d d

0

δ

Figure 5.23: Differential tilt δ between two segments of length d.

shown in Fig. 5.23 with the unknown parameter θ = δ representing the slope one obtains
σf = d/(2

√
3) and therefore the Cramér-Rao bound σCRB,tilt

σCRB,tilt =

√
3

2π

λ

d
. (5.80)

For a subaperture with a diameter of 2d = 120 mm on the primary mirror, which is
typically used for Shack-Hartmann measurements of piston steps, the precision limit for
the measurement of relative tilts is then given by

σCRB,tilt =
λ

2π

600nm

60mm
≈ 2.8 · 10−6 ≡ 0.58”. (5.81)

Across a segment with a diameter of 1.5 m such a tilt of 0.58” around an axis through the
center of the segment would be equivalent to piston steps at the border to adjacent non-
tilted segments of approximately 2 µm. Fundamentally, slope errors can, with the chosen
diameter of the subaperture, only be measured with a precision that is approximately 20
times smaller than the precision for piston measurements.

To compare these figures with data obtained with APE, the tilt errors have to be
adapted to the size of the Active Segmented Mirror. With a scale factor of approximately
60 between the VLT primary mirror and the ASM, the fundamental precision limit for tilt
measurements on the ASM is therefore of the order of 35”.

One can now compare the ratio of the precision obtained for piston and tilt measure-
ments with the Zernike Phase Contrast Sensor. Comparing the Figures 5.24 and 5.25,
showing the measured signals for different values for the piston steps and the tilts, respec-
tively, one can estimate the limits for the visibilities for the effects of piston steps and
tilts as 30 nm for a piston step and 6” for a tilt. For the piston steps there is a ratio of
approximately 3 between the fundamental precision of 100 nm and the estimated limit of
30 nm for measurements with bright stars, which are, however, affected by various sources
of noise. Applying the same ratio to the tilt measurements, one would expect a limit of
35”/3 ≈ 12” for the limit for visibility limit. This is approximately 2 times larger than
the measured visibility limit. The reason may be that in the case of the Zernike Phase
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Figure 5.24: Signal of the Zernike Phase Contrast Sensor obtained for piston steps, ∆p, from
0 to 5 ε, where ε = λ/20 nm. The images have been acquired with the following parameters:
λ = 650 nm, the phase mask has a diameter a = 1”.

Contrast Sensor a much larger subaperture contributes to the signal than the 120 mm used
in the calculation of the fundamental precision limit above. If this was true, the tilts could
be measured by the Zernike Phase Contrast Sensor with a somewhat higher precision and
consequently also with fewer photons than with the Shack-Hartmann sensor. However, a
clarification of this point requires further measurements and analyses.

5.5.4 Optimal Optical Path Difference of the phase mask

The optimal phase shift ψ0 introduced by the OPD δ0 of the phase mask (ψ0 = kδ0) has
also been studied with the Fisher information. In the calculations, the diameter of the
phase mask is a = 1.5” and the wavelength of the light is λ = 650 nm.

Figure 5.26 shows the Fisher information density for different values of the phase shift
ψ0, from ψ0 = 0 to ψ0 = π.

The corresponding Fisher Information is shown in the plot of Figure 5.27. The values
obtained are perfectly symmetric around ψ0 = π/2.
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Figure 5.25: Signal of the Zernike Phase Contrast Sensor obtained for a differential tilt, δ, from
0.2” to 20”. The images have been acquired with the following parameters: λ = 650 nm, the
phase mask has a diameter a = 1”.

As expected (see Section 5.4), the Fisher information is maximal for ψ0 = π/2 and zero
for ψ0 = 0 and ψ0 = π. This confirms our choice for the OPD δ0 = λ/4.
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Figure 5.26: Fisher information density for different phase shifts introduced by the phase mask.
Left: from ψ0 = 0 to ψ0 = π/2. Right: from ψ0 = π/2 to ψ0 = π.
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from ψ0 = 0 to ψ0 = π.



Chapter 6

Phasing algorithm

The methods and algorithms used to retrieve the piston, tip and tilt values from the raw
images obtained with the Zernike Phase Contrast Sensor are discussed in this section. All
the steps are listed in the order of their execution. The first step is the image normalization
which has to be performed for every image. The second step is the localization of the
border signals in the normalized image with a sufficient accuracy with a pupil registration
algorithm. In the third step, the signals are extracted and analyzed with a fitting algorithm.
Different methods to increase the capture range are also presented. Finally, in the last step,
the piston, tip and tilt values of each individual segment are reconstructed with an inverted
interaction matrix derived by a singular value decomposition (SVD).

The methods and algorithms presented in this Chapter have been developed by myself
in the course of my thesis. A summary of this Chapter has been presented in Surdej et.
al. [75].

6.1 Image Normalization

The goal of the image normalization procedure is to obtain a signal equivalent to F (x)
described by Eq. (5.30) where the values of F (x) are all in the range [−1,+1].

The signal image IS is the CCD image of the intensity in the plane of the exit pupil of
the sensor. An example of an image obtained on sky is shown in Figure 6.2.

If B0 is the background in the CCD image, IS = IS − B0 corresponds to the intensity
S(x) = |U2(x)|2 expressed by Eq. (5.26). The background B0 is directly measured in the
signal image IS outside the image of the pupil.

Sufficiently far away from the borders of the segments, the intensity of the signal image
is uniform. 〈IS〉 is defined as the mean value of the intensity of the image IS calculated
inside the segments (excluding areas affected by the spider and the obscuration by M2).
With 〈IS〉 = 〈IS〉 − B0 corresponding to the intensity |U1(x)|2 defined in Section 5.2 one
gets

IS = 〈IS〉 (1 + F (x)). (6.1)
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Figure 6.1: CCD image, or signal image IS, obtained with the Zernike phasing sensor at the
VLT with the following parameters: θseeing ≈ 0.55”, a = 1”, δ0 = 175 nm, λ = 650 nm.

Solving Eq. (6.1) for F (x) one obtains

F (x) =
IS − 〈IS〉
〈IS〉

=
IS − 〈IS〉
〈IS〉 −B0

. (6.2)

The value of a pixel (i, j) in the normalized signal image IN is given by

IN
ij =

IS
ij − 〈IS〉
〈IS〉 −B0

. (6.3)

The internal metrology is used as a reference to quantify the precision of the piston,
tip and tilt measurements performed by the different phasing sensors. The piston, tip and
tilt values of each individual ASM segment are measured by the Internal Metrology (IM)
in an area located inside each segment. For the correction however, they are deduced from
measurements with the phasing sensor performed in areas located at the inter-segment
borders. Since the optical surface quality of the ASM segments is of the order of 25 nm
peak to valley (PtV), the measurements of the phasing sensor differ from the measurements
of the IM as illustrated in Fig. 6.4 where, as an example, the phasing sensor measures a
piston step of 25 nm surface and the IM measures identical piston values for the segments
1 and 2.

One solution to eliminate this inconsistency is to subtract from IS the image acquired
with the phasing sensor when, according to the IM, the ASM is in the flat configuration
called Iref , instead of subtracting the constant value 〈IS〉. This image must be acquired with
the same optical filter and the same phase mask as the signal image IS. The normalized
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Figure 6.2: CCD image (of Figure 6.2) normalized using Eq. (6.3).
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Figure 6.3: The definition of a flat mirror is different for the IM and for the PWFS because
the phase is measured at different locations. The IM measures the piston, tip and tilt in an area
located inside the segment. The phasing sensor (S) measures the piston, tip and tilt information
in an area located at the inter-segment edges.

pixel values can now be expressed as

IN
ij =

IS
ij − Iref

ij

〈IS〉 −B0

. (6.4)

Figure 6.5 shows the normalization of the CCD image shown in Figure 6.2 obtained using
Eq. (6.4).

For most measurements, the use of Eq. (6.4) is preferred since the IM is the reference
for the performance of the phasing sensor. However, Eq. (6.3) can also be used if the goal
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measures the phase at the inter-segment edges. If the segments are not ideally flat, the IM and
the optical phasing sensor measure two different quantities.
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Figure 6.5: CCD image (of Figure 6.2) normalized using Eq. (6.4).

of the measurement is to phase the segmented mirror without the use of any calibration.

6.2 Pupil registration

The misalignments of the segments produce intensity variations on a CCD detector that
correspond to the locations of the segment edges. The positions of the segment edges on a
CCD image must first be determined with an accuracy of the order of one pixel to localize
the signals, which can then be analyzed in a second phase with a robust signal analysis
algorithm.

A pupil registration algorithm to retrieve the locations of the edges has been developed
by Surdej et al. [74] and is presented here. Another method, which is based on the use of
the Hough transform, has also been studied by Surdej et al. [73].

The pupil registration algorithm consists of three main steps. First, the orientation of
the hexagonal pattern is measured, using measurements of the directions of the gradients
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(a) (b)

Figure 6.6: (a) Modulus of the gradient (
√
G2
x +G2

y) (b) Gradient direction γ, each pixel
value corresponding to an angle in the range [0, 2π].

in the image. Once the orientation is determined, the hexagon size can be measured using
a projection of the image onto lines perpendicular to the edges. Finally, the position of
the centers of the hexagons are calculated as the intersection of three lines.

The algorithm has to be able to cope with small piston errors and, if it is used during
observations, also with a small number of photons.

6.2.1 Detection of the orientation

The one-dimensional signals generated by the Zernike Phase Contrast Sensor in the case of
piston steps are given by luminosity variations with gradients perpendicular to the edges
of the hexagonal pattern.

If Gx and Gy are the gradient images of the signal image, in the x and y directions,
respectively, the value of the amplitude of the local gradient, G(i, j), of pixel (i, j), is given
by

G(i, j) =
√
G2
x(i, j) +G2

y(i, j) (6.5)

where Gx(i, j) and Gy(i, j) are the values of the gradients at the location of the pixel (i, j)
in the x and y directions, respectively. The direction γ(i, j) of the local gradients, for the
pixel (i, j), is simply given by

γ(i, j) = arctan
Gy(i, j)

Gx(i, j)
. (6.6)

Images of the amplitude of the gradient and of the associated angle are shown in Fig. 6.6.

Measuring the amplitudes of the local gradients G(i, j) and their associated angles
γ(i, j) with γ ∈ [0, 2π[, the dominant orientation of the gradients γ of the image can be
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calculated with the following standard algorithm :

z =

(∑
i

∑
j

G(i, j) · eiγ(i,j)·p

)
(6.7)

γ =
1

p
· arctan

(
=(z)

<(z)

)
(6.8)

where p stands for a periodic factor in the orientation. With a hexagonal tessellation this
periodic factor is equal to 6. It makes the contributions of all angles α + (k − 1)π/3,
k = 1, . . . , 3 identical. However, it does not make sense to compute a mean angle in the
range [0 . . . 2π[. The final division by p scales the angle back to the range [0 . . . 2π

p
[= [0 . . . π

3
[.

The mean angle γ corresponds to the direction of the gradient, perpendicular to the
segment edges along the three directions αk = γ + (k − 1)π/3 , k = 1, 2, 3.

6.2.2 Measurement of the hexagon size

The first step of this analysis is to project the modulus of the original image onto the lines
of directions αk (k = 1, 2, 3), shown in Figure 6.7. The projection is weighted by the term
sin2n(αk−γij). This gives more weight to those edges where the gradients are perpendicular
to the projection direction. The constant n can be any number; n = 3 has been found to
be a good choice.

α1

α2

α3

Figure 6.7: Definition of the three lines of direction αk, k = 1, 2.3, perpendicular to the edges of
the segments.

The result of this projection onto one line is shown in the upper graph of Figure 6.8.
The distance between the evenly spaced peaks corresponds to half of the flat to flat distance
of the hexagon. A measurement of the peak positions and the mean distance between them
leads to a good approximation for the hexagon size.
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Figure 6.8: Top: Projection along one of the three directions of the lines previously
calculated. Bottom: Normalized auto-correlation of the projection.

In order to improve this estimate, the normalized auto-correlation of the projection is
calculated [41]:

c(k, l) =

∑
s

∑
t[f(s, t)− f(s, t)][f(k + s, l + t)− f(k + s, l + t)]√∑

s

∑
t[f(s, t)− f(s, t)]2

∑
s

∑
t[f(k + s, l + t)− f(k + s, l + t)]2

(6.9)

where f represents the image and f(s, t) is the mean of f in a region around the pixel with
coordinates (s, t). This normalized auto-correlation, lies in the range between -1 and 1 and
is independent of scale changes in the amplitude of f .

The form of the normalized auto-correlation still contains equally spaced peaks. The
center is given by the position of the highest peak with a value of 1.

The average of the mean distances between these peaks over all three directions is the
final estimate of the size of the hexagon.

6.2.3 Estimate of the position of the center

From the positions of the peaks in the projections, one can calculate the position of the
intersegment edges in the image. Then, knowing the orientation angles and the size of the
hexagons, the lines that run along the intersegment edges can be constructed. Ideally, lines
along three different directions intersect in the centers of the hexagons. The estimate for
the centers of the hexagons including the center of the whole pattern can then be obtained
from a best fit of the expected hexagonal pattern to the intersections of the lines.

6.2.4 Results

The paper by Surdej et al. [74] contains a discussion of the performance of the pattern
recognition algorithm as a function of the number of photons, the amplitude of the segment
misalignments and their distribution. The accuracy achieved under conditions similar to
the ones expected during observations is also discussed. For a sufficiently large number of
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photons and large piston heights, the RMS of the estimation error of the orientation angle
is smaller than 0.1 degree, the one of the hexagon size is smaller than 0.1 pixel and the
one of the coordinates of the center is smaller than 1 pixel.

6.3 Extraction of the signal

After the pupil registration algorithm, which enables the localization of the edges, the
signals are extracted from a two dimensional window centered on the hexagon border, as
shown in Fig. 6.9a. The projections of the measured profiles onto the axis perpendicular
to the edge are similar to the expected theoretical profile described by Eq. (5.30) (see Fig.
6.10).

(a) (b)

24 24

59 59

9999

x

Figure 6.9: Normalized images acquired on sky with a filter centered on the 650 nm wavelength
and with a bandwidth of 100 nm. The seeing conditions were around 0.5” (a) and 1.2” (b). The
phase mask of 1” diameter has been used in (a) and of 1.5” diameter in (b). The subaperture
centered on a segment edge is used to extract the signal of that edge. The two subapertures
centered on one border shown in (b) are used to retrieve, in addition, the relative tip-tilt between
the segments.

6.4 Fitting algorithm

The theoretically expected signal of Eq. (5.30) can be expressed as a function of the piston
step and a few other nuisance parameters, which affect the signal but do not alter the
information on the piston step. A theoretically derived function with a few free parameters
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is fitted in the least squares sense to the measured intensity profiles perpendicular to the
segment edges.

Expressing the theoretical equation of the signal (Eq. (5.30)) as a function of the fitted
parameters results in the following formula:

F (x) = a3+a4(x−a5)+[1−f(u)]{a1sign(x−a5) sin(ψ0)−(1−a2)f(u)(1−cos(ψ0))} (6.10)

where u = a6|x − a5|. ai, (i = 1 . . . 6), are six free fitting parameters. The first term
a3 represents a constant background, the second term a constant slope in the signal, a5

represents the shift of the signal with respect to the origin and a6 determines the signal
width.
f(u), (Eq. (3.25)), is the normalized sinc integral for the sharp edge mask (round pinhole):

f(u) =
2

π
Si(u) =

2

π

∫ u

0

sin(t)

t
dt, (6.11)

and for the gaussian pinhole (or in the presence of atmospheric turbulence) f(u) is given
by the Gaussian error function (Eq. (3.24)):

f(u) = Φ(u) =
2a6√
π

∫ u

0

exp (−t2)dt. (6.12)

In the presence of atmospheric turbulence, a simplified model of the signal, as presented
in Section 5.4.5, is used.

The piston step information is contained in the two parameters, a1 and a2, which are
proportional to the sine and cosine of the phase ∆ϕ, respectively,{

a1 = C1 sin(∆ϕ)
a2 = C2 cos(∆ϕ)

. (6.13)

Under ideal conditions, C1 and C2 are equal to 1, as described by Eq. (5.30). However,
in the presence of noise such as atmospheric disturbances or polishing errors the values of
C1 and C2 are modified and are smaller than 1, as explained in [86]. In the fitting, it is
assumed that a1 and a2 are two independent parameters.

The equations (6.13) are called calibration curves.
Only the information contained in the anti-symmetric term, given by the fitting pa-

rameter a1 is used for the determination of the piston step:

∆p =
λ

2π
arcsin

(
a1

C1

)
. (6.14)

The values of the piston step deduced from the fitting parameter a2 are, in the presence
of atmospheric turbulence, not accurate, as will be shown by the experimental results
presented in the sections 7 and 8.

The capture range is limited to ±λ/4. The availability of the cosine term represented
by a2 would have increased the capture range of the sensor to ±λ/2.
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Figure 6.10: Each of the following three sets contains the identification number of the border,
the real piston step value, and the two measured piston steps obtained from the data in Fig.
6.9(a) and Fig. 6.9(b). (24, -65.4 nm, (a) -39.8 nm, (b) -74.9 nm) (59, 60.5 nm, (c) 54.8 nm, (d)
91.9 nm) (99, -80 nm, (e) -66.4 nm, (f) -98.3 nm).

Fitted signal profiles for different borders from images acquired on sky are shown in
Fig. 6.10. The signal profiles in the plots (a), (c) and (e), which are extracted from
Fig. 6.9(a) (θseeing ≈ 0.5”), are fitted using the sharp-edge phase mask expression. Plots
(b), (d) and (f), extracted from Fig. 6.9(b) with θseeing ≈ 1.2” are fitted using the apodized-
edge phase mask expression. The side lobes of the theoretical signal are smoothed in the
presence of stronger turbulence.
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6.5 Capture range

When measuring at a single wavelength λ, the range of non-ambiguity for the Zernike
Phase Contrast Sensor is given by ±λ/4.

Two methods can be used to enlarge the capture range of a phasing sensor:

• the multiple wavelength method: the ambiguity on the measurements can be removed
by repeating the same measurement at a different wavelength.

• the coherence method: a filter, centered on the wavelength λ and with a bandwidth
∆λ has a finite coherence length. The usage of this property, the coherence, results
in a large increase of the capture range.

6.5.1 Multiple wavelength method

With the use of two wavelengths, the range of non-ambiguity for the step heights can be
increased to Λ/2 where Λ is the synthetic wavelength defined as

Λ =
λ1λ2

|λ1 − λ2|
(6.15)

with λ1 and λ2 denoting the two individual wavelengths.
Löfdahl and Eriksson [46] describe a procedure which allows to increase the capture

range above the synthetic wavelength when the two wavelengths are chosen appropriately
and when the absolute error on the piston steps is small. This technique has also been
used by Schumacher et al. [72]. A different approach, called the two wavelengths closed
loop technique, has been proposed by Esposito et al. [25]. The technique has been success-
fully tested at the William Herschel Telescope in 2006 [64] and in the framework of the
Active Phasing Experiment together with two very innovative techniques: the wavelength
sweep technique and the segment sweep technique, which are also described in [64]. The
wavelength sweep technique has been successfully tested in the laboratory with the Active
Phasing Experiment with a commercial tunable filter [4].

Finally, Vigan et al. [79, 78] have implemented, for the Zernike Phase Contrast Sensor,
a new algorithm based on the two wavelengths closed loop technique. The technique has
been successfully tested on sky in the framework of the Active Phasing Experiment [79, 78].

6.5.2 Coherence method

Another method, called the broadband phasing algorithm, to increase the capture range
has been implemented by Chanan et al. for the phasing of the Keck telescopes [12]. It
exploits the finite spread in the wavelength of the light. For a filter with a finite bandpass
∆λ centered on the wavelength λ, a signal can be detected as long as the piston step is
not larger than the coherence length lc = λ2/∆λ of the optical filter. This method has also
been successfully tested in the framework of the Active Phasing Experiment by Gonté et
al. [39] with the Shack-Hartmann phasing sensor (SHAPS).
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This efficient method, to which we refer to as the coherence method, has also been
tested with the Zernike Phase Contrast Sensor in the laboratory. The results are presented
in Section 7.2.

6.6 Tip-tilt algorithm

The tip-tilt is a rotation of the segment about two horizontal axes.

Three particular cases, shown in Figure 6.11, are considered. The configuration shown
in Figure 6.11(a) produces a signal similar to a piston error. In the second case, (b), the
tip-tilts of the segments produce a change of the phase step along the inter-segment border.
The third case (c), is a differential tilt between the segments. The signal is constant along
the edge and symmetric with respect to the border.

(a) (b) (c)

Figure 6.11: Three different tip-tilt configurations. (a) The tip-tilt of the segments produces only
locally a differential piston, constant along the edge. (b) The tip-tilt of the segments produces
only locally a differential piston, varying along the edge. (c) The tip-tilt produces locally only
differential tilt, constant along the edge.

Therefore, instead of using one subaperture (Fig. 6.9(a)) which is sufficient for the
evaluation of the piston, two subapertures (Fig. 6.9(b)) are used to extract, in addition,
the relative tilt between the two segments around an axis perpendicular to the border and
parallel to the surface [15].

Since the tip-tilt of the segments is deduced from the differential piston, the capture
range for the determination of the tip-tilt is related to the capture range for the measure-
ment of the individual phase steps.

The details of the relationship between the tips, the tilts and the phase steps along the
borders are omitted in this manuscript and can be found in the publications by Chanan et
al. [8] and Chueca et al. [15].

6.7 Singular value decomposition

The last step of the phasing algorithm consists of converting the differential pistons along
each border to segment pistons, tips and tilts with the help of an inverted interaction
matrix derived by Singular Value Decomposition (SVD).
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6.7.1 Short introduction to SVD

Each segment piston is determined from up to six piston step measurements. This can be
expressed mathematically by a system of linear equations with M equations, where M is
the number of edges, and N unknowns, where N is the number of segments:

pj − pk = ∆pi (6.16)

i = 1, . . . ,M

j, k = 1, . . . , N

where pj and pk are the piston values of two adjacent segments j and k corresponding to
sensor i and ∆pi is the measured piston step.

A signal vector u = {∆p1, . . . ,∆pi, . . . ,∆pM} is related to an actuator vector v =
{p1, . . . , pi, . . . , pN} by the linear mapping represented as the two dimensional matrix A [59,
8]:

Av = u. (6.17)

The matrix A maps the N -dimensional actuator space P into a M -dimensional signal
space S. The image space Q is therefore a N -dimensional sub-space of S. The SVD
finds the unique orthonormal basis vectors {pi, i = 1, . . . , N} for the actuator space and
{si, i = 1 . . . , N} for the signal space, such that a basis vector pi is mapped onto a basis
vector si:

Api = σisi. (6.18)

In other words, well distinguishable basis vectors in the actuator space P are mapped onto
well distinguishable basis vectors in the signal space Q.

The factors σi are called the singular values. They describe the sensitivity of the system
to piston errors in the mode described by the vector vi.

Technically, the SVD factorizes the matrix A:

A = SΣPT (6.19)

where

• S is a matrix of dimension M ×N containing the N basis vector si.

• Σ is a square diagonal matrix of dimension N × N which contains the N singular
values σj.

• PT is a square matrix of dimension N ×N containing the N basis vector pi.

Solving Eq. (6.17) for the unknown vector v requires the pseudo-inverse B of A.
The pseudo-inverse B of the matrix A maps vectors only from the image space Q,

which describes all possible signals which can be generated by actuator movements, to P .
Therefore, applying B to a signal vector, the signal vector is first projected onto the space
Q, eliminating all signals that cannot be generated by actuator movements. A correction
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based on the actuator commands calculated by applying B on a signal vector, therefore
corrects perfectly the errors created by segment misalignments and is, in a least squares
sense, the best possible correction of the signal vector.

The control matrix B, is defined as

B = PΣ−1ST . (6.20)

The diagonal matrix Σ−1 consists of the values σ−1
j . If a value σj is zero, its inverse

σ−1
j in the matrix Σ−1 is set to zero.

To exclude the least sensed modes with zero or very small singular values, the cor-
responding σ−1

j in the SVD are simply replaced by zero. The threshold depends on the

amount of noise in the system, since σ−1
j determines the noise propagation from the signal

space into the actuator space [88].

6.7.2 Modes of the ASM in the case of pure piston error

The ASM is a segmented mirror with 61 segments and 156 edges. Six outer segments of the
ASM are hidden by the pupil of the primary mirror of the VLT while the central segment is
obstructed by the secondary mirror. Therefore, these 7 segments are not controlled1. The
corresponding 24 edges are also ignored in the analysis2. The dimensions of the interaction
matrix A are therefore N = 61− 7 = 54 and M = 156− 24 = 132.

The singular values of the interaction matrix are shown in Figure 6.12. A small σi
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Figure 6.12: Singular values of the ASM for pure piston error.

expresses the fact that segment displacements in this mode i only generate small sensors

1The 7 ignored segments are the following: {0, 37, 41, 45, 49, 53, 57}. APE indexation is shown in A.1.
2edges ignored: {152, 151, 148, 147, 144, 143, 139, 140, 136, 135, 155, 132, 125, 118, 111, 104, 97, 90, 0, 1, 2, 3, 4, 5}
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signals. This is the case for the smooth modes like the modes shown in Figure 6.13. The
low order modes are similar to the classical optical aberrations such as global piston, global
tip, global tilt, defocus, astigmatism, coma, etc. On the other hand, the modes with higher
spatial frequencies, like the ones shown in Figure 6.14, have large singular values.

If only the segment piston errors are controlled the number of eigenmodes is M-1 since
the rigid body motion (global piston) of the segmented mirror as a whole has no effect at
the segment edges. It corresponds to the first mode with a singular value σ = 0. Modes 2
and 3 have identical singular values and correspond to tip and tilt of the ASM.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6.13: Modes 2 to 9 of the ASM.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6.14: (a) Mode 54, (b) Mode 46, (c) Mode 43, (d) Mode 39, (e) Mode 36, (f) Mode 32,
(g) Mode 29, and (h) Mode 16 of the ASM.
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Chapter 7

Experimental results in the
Laboratory

The results presented in this chapter are from images acquired in the laboratory with the
following configuration: a = 1”, ψ0 = λ/3.7, and λ = 650 nm. When the turbulence
generator is used, it is configured to simulate a seeing of θseeing = 0.65”.

All the presented results are given in nanometer, measured on the wavefront, and not
on the surface.

7.1 Calibration curves

The fitted parameters a1 and a2, defined in Section 6.4, can be plotted for each border as
a function of the piston step ∆p.

Calibration curves, in the absence and in the presence of atmospheric disturbances are
first presented. The effect of a misalignment of the phase mask on the calibration curves
is then shown and requirements on the alignment of the phase mask are deduced.

7.1.1 Calibration curves in the absence and in the presence of
atmospheric disturbances

Figure 7.1: Three families of segments.
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There are three families of segments on the segmented mirror with no borders in com-
mon. The three families are shown in Figure 7.1 in three different colors.

A set of 21 images has been acquired by moving a family of segments in piston from
−λ/2 to +λ/2 (measured at the wavefront) with steps of λ/20. For each acquired image,
the fitting parameters a1 and a2 are calculated for all the borders. The procedure has
been performed both with and without the turbulence generator. The calibration curves
are plotted in Figure 7.2 for 8 different borders. These curves are compared with the
theoretical sine curve for a1 and cosine curve for a2, shown as the dashed lines in the plots.
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Figure 7.2: a1 (left column) and a2 (right column) calibration curves for different borders,
without (top row) and with atmospheric turbulence with θseeing = 0.65” (bottom row).

The curves of the parameter a1 are well defined, irrespective of aberrations introduced
by atmospheric turbulence, whereas the curves for the parameter a2 acquired with the
turbulence generator are noisy and cannot be used for the determination of the piston
step.

For some of the edges and a piston step ∆p = λ/4, the signals and the associated
fitted signals, obtained without and with atmospheric turbulence, are shown in Figure 7.3.
The signals shown in the left column were obtained without and the ones in the right
column with atmospheric turbulence. The values of the fitted parameters a1 and a2 are
also indicated in the plots. The plots in the same row correspond to the same border.

All obtained signals are strongly affected by the atmospheric disturbances. First, the
amplitude of the signals and of the side lobes is reduced (note that the scale in both
Figures is different). The theoretical predictions described in Section 5.4.3 seem to be
consistent with the data obtained in the laboratory. The amplitude of the central peak
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of the symmetric term, which is amplified in the presence of the atmosphere, strongly
affects the fitting of the signal. This is illustrated with the peak drawn in the second row
of Figure 7.3. The superposition of the two signals and the suppression of the side lobes
generates a signal, on the right, which looks anti-symmetric. This new peak is interpreted
by the fitting algorithm as the positive peak of the anti-symmetrical signal. In Figure 5.15,
the amplitude of the peak of the symmetric term is plotted as a function of the seeing for
different diameters of the phase mask. For a = 1” and θseeing = 0.65”, the amplitude of
the peak is about 0.35, which is in agreement with the amplitudes observed in the plots
in Figure 7.3. The fitting parameter a2 can therefore not be used for the measurements
of the piston step, in the presence of atmospheric turbulence, at least with the current
signal analysis algorithm. The influence of atmospheric turbulence on the symmetric term
should be taken into account in the model used for the fitting of the signal, which is given
by Eq. (6.10).

All calibration curves, in Fig. 7.2, show two main discrepancies with respect to the
theoretical sine and cosine curves:

• a vertical offset of the calibration curves,

• a change in the scale of the calibration curves.

These discrepancies can be modeled with a modification of Equations 6.13:

a1 = A sin(∆ϕ+ δ1)− A sin(δ1) (7.1)

a2 = C cos(∆ϕ+ δ2)− C cos(δ2) + C (7.2)

where δ1 and δ2 represent offsets of the calibration curves, and A and C represent the
changes in scale.

A misalignment of the system, that is a shift of the phase mask with respect to the
central peak of the point spread function, generates a shift of the calibration curves. This
effect is analyzed in Section 7.1.2.

In the presence of atmospheric disturbances, the amplitude of the signal decreases.
This is expressed through the parameters A and C (A and C are smaller than 1). For
the parameter a1 the ratio of the mean value of A with turbulence (θseeing = 0.65”) to A
without turbulence is given by

χ =
A|θseeing=0.65”

A|θseeing=0”

= 0.88. (7.3)

More generally, a simple visual inspection of Figure 7.2 shows that each edge has its own
calibration curve. Indeed, all the segments have different optical properties such as different
inter-segment gaps, different segment aberrations, different edge profiles, different segment
reflectivity, etc., which can influence the calibration curves of the edges. All these effects
result in discrepancies between the theoretical sine and cosine curve and the experimental
data. For an optimal performance of the sensor in open loop, it is necessary to calibrate
the segmented mirror in order to determine the piston steps accurately. However, since all
the calibration curves pass through zero, the performance in closed loop is not modified.
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Figure 7.3: Signals and their associated fitted signals for different borders, ∆p = λ/2, without
turbulence in the left column and with turbulence in the right column.
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7.1.2 Phase mask misalignment

A shift of the phase mask with respect to the central peak of the point spread function has
a major impact on the calibration curves.

For the measurements described below, the reference position of the mask is the best
alignment achieved for the phase mask.

To measure the effect of such a shift, the phase mask is shifted by ±0.15” in the x and
y directions around the reference position and the calibration curves for each alignment
of the phase mask are evaluated. The calibration curves for three borders of different
orientation are plotted in Figure 7.4.
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Figure 7.4: Calibration curves for the fitting parameters a1 (top row) and a2 (bottom row) for
different alignments of the phase mask and different borders. The three borders shown have
different orientations: border 0 is oriented at 0 degree, border 56 at 60 degrees and border 60 at
-60 degrees (Figure A.1 in Appendix A shows the indexation used on the ASM.) For border 0, the
theoretical calibration curves given by Eqs.(7.4) for a1 and (7.6) for a2 are shown for δ1 = +0.15”
and δ1 = −0.15”.

A misalignment of the mask leads to a vertical shift of the calibration curve, which
will, however, still pass through zero. The slope of the calibration curve around zero also
remains unchanged. Therefore, the requirements on the alignment for closed loop operation
can be relaxed.

Border 0 is an edge which is parallel to the horizontal axis. A horizontal shift of the mask
has no influence on the calibration curves while a vertical shift does. A positive vertical
misalignment leads to a decrease in the amplitude of the signal while a negative vertical
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misalignment leads to an increase in the amplitude of the signal. This effect has been
theoretically analyzed by Yaitskova et al. for the Mach-Zehnder interferometer [86]. The
result was that a shift of the pinhole in a direction corresponding to the higher segment
greatly decreases the signal intensity, while a shift of the pinhole in the other direction
similarly increases the signal intensity [86].

The calibration curves can be described by the expression [86]:

a1(∆ϕ) = A sin(∆ϕ+ δ1)− A sin(δ1). (7.4)

The parameter δ1 depends on the ratio of the phase mask misalignment wx to the diameter
of the phase mask a. For wx < a/4, it can be shown theoretically that δ1 is approximately
a linear function of the shift [86]:

δ1 ≈ 2.8
wx
a
. (7.5)

For the fitting parameter a2, the following function, which models the misalignment of
the phase mask, has been determined with a standard fitting procedure:

a2(∆ϕ) = C cos(∆ϕ+ 2δ1)− C cos(2δ1) + C. (7.6)

Eqs. (7.4) and (7.6) are plotted for border 0 for δ1 = ±0.15” in Figure 7.4. The curves are
indicated in the legend of the plots as a1,2(−0.15”) and a1,2(+0.15”).

The shifts of the calibration curves of borders 56 and 60 is different since they are
oriented at 60 and -60 degrees. Figure A.1 in Appendix A shows the indexation used on
the ASM.

To find tolerances for the misalignment of the phase mask, the phase mask is shifted
in steps of 0.16” in the y direction, perpendicular to the horizontal edges, from -0.5” to
+0.5”, around the reference position. For each position of the phase mask, the calibration
curves are recorded. Only the borders parallel to the horizontal axis (or perpendicular to
the phase mask shift) are analyzed. The results are shown in Figure 7.5.

While all calibration curves still pass through zero, the changes in the slope of the
calibration curves around zero start to be critical for misalignments of the mask larger
than |wx| > 0.33”, when the focal point is on the edge of the phase mask.

From this result and with the addition of a safety margin, a requirement for the align-
ment of the phase mask is defined as:

|wx| <
a

4
. (7.7)

With a = 1”, |wx| < 0.25” and, in the case of ZEUS, 1” = 0.6 mm in the focal plane,
the requirement is |wx|[mm] < 0.15 mm.

The plate scale of the future E-ELT is of 3.6 mm per arcsecond. The requirement,
|wx| < a

4
, is, in mm for a = 1” : |wx|[mm] < 0.9 mm, which can easily be achieved with a

tip-tilt mirror.
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Figure 7.5: Calibration curves for the fitting parameters a1 (top row) and a2 (bottom row) for
different alignments of the phase mask in the y direction and different borders. The three borders
are oriented at 0 degrees. (Figure A.1 in Appendix A shows the indexation used on the ASM.)

7.2 Coherence method

Different methods to increase the capture range of a phasing wavefront sensor have been
presented in Section 6.5. A multi-wavelength phasing algorithm has been implemented
and successfully tested on sky [78] with the Zernike Phase Contrast Sensor. This section
shows the results obtained with the coherence method.

An optical filter, with a central wavelength λ = 650 nm and a finite bandwidth ∆λ =
100 nm has been used. The coherence length lc of this filter is then given by

lc =
λ2

∆λ
=

6502

100
= 4225 nm = 6.5 λ. (7.8)

The coherence function of a filter of coherence length lc is given by:

Γ(x) = A sin

[
2π(x− x0)

λ

]
sinc

(
x− x0

lc

)
(7.9)

where x0 represents the location of the maximum of the coherence.
The segments are moved in such a way that the range covered by the piston movements

is [−12λ,+12λ], which is larger than the coherence length lc with steps of λ/4 between each
movement of the segments. The edge signals are then analyzed with the fitting algorithm
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Figure 7.6: a1 fitting parameter for two edges as a function of the piston step height. Each point
represents a measurement. A broad band filter (λ = 650 nm, ∆λ = 100 nm) with a coherence
length lc = 4225 nm has been used for the measurement.

described in Section 6.4. Figure 7.6 shows the fitting parameter a1 plotted as a function
of the piston step.

The amplitude of the fitting parameter a1 is modulated by the coherence envelope
(Eq. (7.9)) of the broadband filter. A similar result has been obtained for the fitting
parameter a2.

The well defined shape of the envelope shows that the capture range of the Zernike Phase
Contrast Sensor can be extended from ±λ/4 to a few µm, depending on the bandwidth of
the optical filter.
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Figure 7.7: a1 fitting parameter for border 0 as a function of the piston step height without the
turbulence generator. Each star represents a measurement.

The same procedure has been repeated, but with steps of λ/16 between two consecutive
movements of the segments and with a smaller range, [−4.5λ,+4.5λ], covered by the piston
movements. The results are shown for the same edges, without and with the turbulence
generator, in Figures 7.7 and 7.8, respectively. The optimum alignment corresponding to
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Figure 7.8: a1 fitting parameter for border 0 as a function of the piston step height with the
effects of atmospheric turbulence emulated by MAPS (θseeing = 0.65”). Each point represents a
measurement.

the maximum of the coherence, can now be determined with a precision of approximately
λ/4.

Figure 7.8 shows that the atmospheric disturbances (generated by MAPS in the lab-
oratory) do not modify the coherence measurements, apart from a small decrease in the
amplitude.

The coherence method can be used in operation, changing the spectral bandwidth of
the optical filter at every iteration. The measurements can be started with a narrow
bandwidth filter covering a large range of pistons at the expense of a reduced accuracy.
The bandwidth of the optical filter shall then be increased to improve the precision of the
measurement of the optimum alignment.

One can fit the coherence function (Eq. (7.9)) associated with the filter to the data in
order to find the maximum of coherence.
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Figure 7.9: a1 fitting parameter for border 79 as a function of the piston step height. The
coherence function of the filter, Γ(x), is fitted to the data.
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The coherence length of an optical filter with a central wavelength of 800 nm and a
bandwidth of 10 nm is lc = 64 µm. Measured at the surface of the mirror, the segments
must be aligned within a range of ≈ ±30 µm for this particular filter. Since the mechanical
alignment of the segments will provide a precision of about 20 µm, measured at the surface
of the mirror, this technique can be used when segments are exchanged. However, a bright
star is required to compensate for the loss of photons due to the narrow bandwidth of the
filter.

In Figure 7.9, Γ(x) is fitted to the data of the edge 79. One obtains A = 0.7 and x0 = 0
in this particular case, that is, the segments are already well aligned.

7.3 Closed loop measurements

Most of the measurements, which have been performed in the laboratory and on sky, were
performed in closed loop. In this section, a typical closed loop cycle convergence curve is
shown and the principle is explained.

The initial ASM configuration, unless mentioned otherwise, is a random distribution
of pure segment piston with a wavefront RMS of 52 nm and a wavefront peak to valley of
200 nm (Figure 7.10). We refer to this configuration as Random200.
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Figure 7.10: Initial piston distribution for the configuration Random200.

Starting from the initial ASM configuration using a closed loop correction cycle, the
phasing sensor measurements of piston, tip and tilt usually converge after 3 iterations and
the process is stopped after 10 iterations. The final accuracy σfa, which is used to quantify
the performance of the phasing sensor, is defined as the average value of the RMS of piston,
tip and tilt as measured by the IM over the last 3 to 5 iterations. The stability of the loop is
defined as the standard deviation of the RMS calculated over these 3 to 5 stable iterations.

The same optical filter, centered on the 650 nm wavelength with a bandwidth of 100
nm, was used for all the tests.

Two typical closed loop cycle convergence curves obtained in the laboratory with and
without the turbulence generator are shown in Figure 7.11. The seeing generated with the
turbulence generator was θseeing = 0.65” and the integration time was 20 seconds. The
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RMS of the piston error during the closed loop converges to σfa = 3.6 nm without the
turbulence generator and to σfa = 4.1 nm with the turbulence generator.
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Figure 7.11: Two closed loop convergence cycle curves, with and without turbulence. The final
accuracy is, without the turbulence generator, of σfa = 3.6 nm and σfa = 4.1 nm with the
turbulence generator.

7.4 Final accuracy

The purpose of the following test is to measure the final accuracy of the phasing loop as
a function of the flux and to establish a limiting star magnitude, which is defined as the
faintest star magnitude with which the phasing sensor is capable of driving the segmented
mirror in closed loop to a final accuracy smaller than 30 nm RMS [83]. We define ν30 as
the number of counts per pixel in the CCD image which corresponds to this limiting star
magnitude.
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Figure 7.12: Final accuracy as a function of the average number of counts per pixel with and
without the turbulence generator.
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Figure 7.12 shows the final accuracy obtained with and without atmospheric turbulence
as a function of the average number of counts per pixel, ν. One can distinguish between a
low and a high flux regime. In the high flux regime, for ν > 40, the final accuracy converges
to 4 nm RMS wavefront, with and without atmospheric turbulence.

In the low flux regime, however, the performance is limited by the noise of the CCD.
Figure 7.13 shows the normalized images for ν = 8.9 and ν = 18.2 photons per pixel. The
noise of the CCD appears as lines which, in this case, are parallel to edges and disturb the
measurements.
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Figure 7.13: Normalized images for ν = 8.9 (left) and ν = 18.2 (right) photons per pixel. The
noise of the CCD appears as lines parallel to the edges.

The magnitude MV of the star can be calculated from the number of counts on the
CCD image:

MV = −2.5

[
log

(
φ ε

∆λ A τ ρ ∆t

)
+ Z0

]
(7.10)

where

• φ is the number of photons that hit the CCD per second. The CCD gain G is 1.5,
therefore φ = N/G where N is the number of ADUs.

• ε is the energy per photon, ε = hc
λm

, with λm = 650 nm, c = 3 · 108 m · s−1 and

h = 6.67× 10−34 USI.

• ∆λ is the bandwidth of the light. In our case, ∆λ = 100 nm.

• τ is the light transmission of the optics, in front of the sensor. We assume a trans-
mission of τ = 0.65 for the telescope and τ = 0.7 for the phasing sensor.

• ρ is the quantum efficiency of the CCD: ρ = 87% at 650 nm.

• Z0 = 7.6408 is the zero point at a wavelength of 640 nm [23].
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• A is the collecting area. We assume the collecting area A to be the one of the VLT.
With a central obscuration of about 1.8 %, A ≈ 0.98 · π · 4.12m2.

• Two different integration times are considered: ∆t = 20 sec and ∆t = 60 sec.

Figure 7.14 shows the star magnitudes which correspond to the average number of counts
per pixel of Figure 7.12, computed with Eq. (7.10), taking into account the two selected
integration times.
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Figure 7.14: Star magnitude MV which corresponds to the average number of counts of Fig-
ure 7.12, calculated with Eq. (7.10), considering two different integration times: ∆t = 60 sec and
∆t = 20 sec.

With an equivalent star magnitude MV|∆t=20 = 17 and MV|∆t=60 = 18 (ν30 ∼ 13 counts
per pixel), with and without atmospheric turbulence, the sensor is still able to measure
phase steps with a precision that is sufficient for the ASM piston distribution to converge
to a final accuracy σfa of 27.5 nm wavefront RMS.
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Chapter 8

Experimental results on sky

The measurements obtained in the laboratory have validated the methods and algorithms
developed for the Zernike Phase Contrast Sensor (Chapter 6).

The main difference between the experiments made in the laboratory and the ones
made on sky comes from the effects generated by atmospheric turbulence. The turbulence
generator used in the laboratory emulates a periodic atmosphere with a constant seeing
value. On sky, the seeing conditions can change very fast. We have hoped to cover a range
of seeing conditions as large as possible. Unfortunately, most of the time the seeing was
only in the range [0.5”, 1.2”].

The Zernike Phase Contrast Sensor has been studied on sky during a total of 6 nights.
We first show in Section 8.1 how calibration curves, acquired on sky with θseeing > 1.5”,
are still well defined for the fitted parameter a1. The optimal integration time required
to average the seeing is discussed in Section 8.3. The results presented in Section 7.4
have been repeated on sky, and we show how the limiting star magnitude depends on the
strength of the atmospheric disturbances. In Section 8.5 we analyze the optimal diameter
of the phase mask for different seeing conditions. The dependence of the performance the
correction type (piston or tip-tilt) (Section 8.6), the normalization type used (Section 8.7)
and the effects of the seeing on the final accuracy (Section 8.8) are also presented.

The initial configuration of the ASM is the Random200 (defined in Section 7.3), with
a random distribution of pure segment piston with a wavefront RMS of 52 nm and a
wavefront peak to valley of 200 nm.

All the presented results are always given in nanometer, measured on the wavefront,
and not on the surface.

The results of this Chapter have also been presented in the paper by Surdej et. al. [75].

8.1 Calibration curves

Figures 8.1 (a) and (b) show the fitted coefficients a1 and a2, defined in Section 6.4, as
functions of the piston step for three different borders of the ASM. These curves have been
acquired on sky with seeing conditions higher than 1.5”. The phase mask with a diameter
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Figure 8.1: Parameters a1 (a) and a2 (b) as functions of ∆p for three different borders. λ = 650
nm and ∆λ = 100 nm. θseeing ≈ 1.5”, a = 2”.

a = 2” has been used.
Despite the bad seeing conditions, the curves of the parameter a1 are still well defined.

The Zernike Phase Contrast Sensor would be capable of measuring the piston steps also
for bad seeing conditions in the range [1.5”, 2”].

During the acquisitions of these curves, the internal metrology was in an unstable
state, due to vibrations of the bench. The noise on the calibration curves comes from this
instability and not from the poor seeing conditions.

As for the results obtained in the laboratory, described in Section 7, the curves for the
parameter a2 are noisy and cannot be used for the determination of the piston step.

8.2 Closed loop convergence cycle

The evolution of the RMS of the piston error during a typical closed loop cycle, performed
on sky with a bright star, under seeing conditions with θseeing ≈ 0.5” (phase mask size
a = 1”), and with an integration time of 20 seconds, is shown in Fig. 8.2. The RMS of the
piston error reaches a final accuracy of 6.7 nm after 4 iterations.

8.3 Final accuracy and integration time

The aim of this test is to determine the required integration time to sufficiently average
out the effects generated by the turbulence. This test has been performed under different
seeing conditions.

Fig. 8.3 shows that the optimal integration time ∆t, is, under good seeing conditions,
of the order of 10 seconds to 20 seconds.

With integration times longer than ∆t = 20 seconds the final accuracy will not be
improved.
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Figure 8.2: closed loop cycle obtained on sky with a bright star, seeing of 0.5” and the phase
mask of diameter a = 1”.
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Figure 8.3: Final accuracy as a function of the integration time for different seeing conditions.

8.4 Final accuracy and star magnitude

As mentioned in the general introduction, a phasing sensor that could work with a faint
star would give the option to perform optical phasing measurements during operation and
therefore deliver continuous closed loop updates of the reference values of the edge sensors.
Therefore, as in the Chapter dedicated to laboratory measurements, we have repeated the
test performed in Section 7.4 to establish a limiting star magnitude with which the phasing
sensor is capable of driving the segmented mirror in closed loop to a final accuracy smaller
than 30 nm RMS [83].
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The change in flux was done by choosing stars with different magnitudes and/or adding
a neutral density filter. Binning 2 × 2 (bin2 ) has also been used with fainter stars. We
define ν30 as the number of counts per pixel in the CCD image which corresponds to the
limiting star magnitude MV.

The equivalent values of the star magnitudes, MV,sky are calculated from the catalogue
values of the observed stars taking into account the absorption from the neutral density
filters and the rest of the optics on the APE bench.

This test has been performed under different seeing conditions and with different inte-
gration times:

• Test1 : θseeing ≈ 1”− 1.2”, a = 1.5”, ∆t = 60 sec,

• Test2 : θseeing ≈ 0.5”− 0.8”, a = 1”, ∆t = 20 sec.

The final accuracies as functions of the number of counts are shown in the plots of Fig-
ures 8.4 and 8.5 for bin1 and bin2, respectively. Table 8.1 gives a summary of the results
with ∆t representing the integration time, a the diameter of the phase mask, ∆w the sig-
nal width in pixels in the bin1 configuration, and Mbin1

V,sky and Mbin2
V,sky are the limiting star

magnitudes achieved for bin1 and bin2, respectively.
σHighFlux is the value to which the final accuracy converges in the high flux regime,

independently of the number of counts.

Table 8.1: Final accuracy and limiting star magnitude

Test θseeing ∆t a ∆w σHighFlux ν30 Mbin1
V,sky Mbin2

V,sky

1 1”-1.2” 60 sec 1.5” 6.8 pixels 12 nm 114 14 15
2 0.5”-0.8” 20 sec 1.0” 11.3 pixels 8 nm 38 14.7 15.7

The influence of atmospheric turbulence on long exposure images is, as seen in Sec-
tion 5.4.4, to reduce the amplitude of the signal as well as the width of the signal. The
width of the signal is also affected by the diameter of the phase mask. The seeing condi-
tions and the diameter of the phase mask will therefore affect the final accuracies obtained
as well as the limiting star magnitude.

In Fig. 8.4, one can clearly distinguish between a high flux regime and a low flux regime.
In the low flux regime, the CCD electronic noise and the turbulence are the main

contributors to the final accuracy and the limiting star magnitude rather than the photon
shot noise. The noise in the images is analyzed in the frequency domain in Section 9.3.1.

In the high flux regime, many parameters are responsible for the limiting accuracy
σHighFlux, for example the residual turbulence, the obscuration created by the foot-print
of the secondary mirror support and polishing errors. The pupil of the telescope is not
de-rotated during the observations, i.e. the spider and the polishing errors rotate with
respect to the ASM. Therefore, at each image acquisition with the sensor, the spider and
the residual polishing errors of M1 are at different locations in the image. In the normalized
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image, given by Eq. (6.4), Iref is subtracted from IS, the residual polishing errors and the
secondary mirror support foot-print are added due to the rotation of the pupil. However,
very few borders are affected and the fitting process is rather insensitive to the narrow
obstruction of the signal by the spider. The major polishing errors of M1 are of the order
of 35 nm RMS. These effects are analyzed in the frequency domain in Section 9.3.2.
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Figure 8.4: Final accuracy as a function of the average number of counts per pixel for different
seeing conditions, phase masks and integration times. The CCD is configured with binning 1×1.
Left: Test1, Right: Test2.

When the CCD is configured to bin2, the limiting star magnitude is increased by one
as illustrated in Fig. 8.5. The limiting star magnitudes achieved in Test1 and Test2 are
15 and 15.7, respectively.
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Figure 8.5: Final accuracy as a function of the average number of counts per pixel for different
seeing conditions, phase masks and integration times. The CCD is configured with binning 2×2.
The number of counts corresponds to the number of counts in the binning 1× 1 case.
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8.4.1 Comparison between on sky and laboratory measurements

In the laboratory, the same results are obtained with and without atmospheric distur-
bances. The limiting star magnitudes achieved for integration times ∆t = 20 sec and
∆t = 60 sec are MV|∆t=20 = 17 and MV|∆t=60 = 18, respectively, which correspond to a
number of ν30 ∼ 13 counts per pixel.

The limiting star magnitudes MV,sky shown in Table 8.1 are calculated from the cata-
logue values of the observed stars, taking into account the loss of light due to the optics
on the APE bench.

The limiting star magnitudes obtained on sky can be calculated from the number of
counts (Eq.(7.10)) assuming integration times ∆t = 20 sec and ∆t = 60 sec. With the plot
in Figure 7.14, the magnitudes can be directly deduced from the number of counts:

• Test1 : ν30 = 38, MV|∆t=20 = 14.8 and MV|∆t=60 = 16 (Mbin1
V,sky=14.7),

• Test2 : ν30 = 114, MV|∆t=20 = 13.5 and MV|∆t=60 = 14.7 (Mbin1
V,sky=14).

The catalogue values, MV,sky, and the calculated values of star magnitude are in good
agreement.

There is an improvement of two star magnitudes in the laboratory with respect to the
telescope. There are two explanations:

CCD noise: The CCD used in the laboratory, with a noise of 7 counts RMS/sec is dif-
ferent from the one used on sky, with 12 counts RMS/sec.

Environment: The environment is more stable in the laboratory: the IM precision is bet-
ter, and of course atmospheric turbulence has a major impact on the final accuracy.

In the laboratory, the limiting star magnitude is not modified in the presence of atmo-
spheric disturbances generated by MAPS. On the contrary, on sky, the seeing has a major
impact on the limiting star magnitude: the amplitude and the width of the signal are
strongly reduced by the seeing, and therefore, the limiting star magnitude is also reduced.

The turbulence generated by MAPS is not as complex as the real atmosphere, and
therefore, the effects on the measurements, associated with MAPS, are not as strong as in
a real telescope.

With a star magnitude of 15, the sky coverage is of 97% and with a star magnitude of
16, it is of 100 % [5]. Therefore, the star magnitudes achieved, in the laboratory and on
sky, allow to perform optical phasing also during observations.

8.5 Phase mask test

The principle of the sensor is based on the filtering of the atmospheric turbulence in the
focal plane with a phase mask having a size which can be adapted to the given seeing
conditions.
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Figure 8.6: Dependence of the final accuracy on the diameter of the phase mask a for different
seeing conditions.

Fig. 8.6 shows the final accuracy as a function of the size of the phase mask for different
seeing conditions. With a seeing of [0.5”-0.7”], the smaller phase mask with a diameter
a = 1” is the best choice. For a seeing of [1”-1.2”], the phase mask with a diameter a = 1.5”
is optimal. Unfortunately, the seeing has very rarely been worse than 1.2”.

The optimal size of the phase mask seems to be approximately 1.5 times larger than
the size of the seeing disk; that is a ≈ 1.5 θseeing. This confirms the theoretical prediction
given by Eq. (5.73).

8.6 Tip-tilt

The tip-tilt algorithm as explained in Section 6.6 has been tested on sky with a bright star,
under seeing conditions with θseeing ≈ 0.4” (diameter of the phase mask a = 1”) and with
an integration time of 10 seconds.

The initial configuration of tip-tilt applied on the ASM was a random configuration
with 0.15 arcsecond wavefront PtV on the ASM, which corresponds to a wavefront RMS
of 0.045 arcsecond. The final accuracy obtained is 0.005 arcsecond in tip and in tilt, which
corresponds to approximately 16 nm RMS wavefront of piston step errors at the edges for
segments having an inner diameter of 1.05 meter. The closed loop convergence cycle is
shown in Figure 8.7. The slow convergence is due to a small gain used in the control loop.

8.7 Final accuracy and different normalization proce-

dures

Closed loop correction cycles have been performed without and with the use of the IM flat
reference image, i.e. with Eqs. (6.3) and (6.4), respectively.
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Figure 8.8: Piston correction in closed loop with and without the use of the internal metrology
flat image.

The segmented mirror converges to an edge minimizing configuration which corresponds
to a final accuracy of 22 nm when the reference image Iref is not used (Eq. (6.3)). For
the phasing of future segmented telescopes, no preliminary calibration performed on sky
is therefore necessary to achieve the required phasing accuracy if the edge errors of the
segments are similar to the ones of the ASM.

With the use of the reference image, see Eq. (6.4), the RMS of the final configuration
is 6.7 nm. This is actually the best performance which has been obtained with the Zernike
Phase Contrast Sensor during all the tests performed on sky under very good seeing con-
ditions with θseeing ≈ 0.5” and with a highly stable IM with a precision of 3 nm RMS. The
closed loop convergence curve is shown in Fig. 8.2.
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8.8 Seeing

The final accuracy as a function of the seeing is shown in Fig. 8.9, containing all the data
obtained on sky under similar operational conditions, e.g with the same optical filter and
a large number of counts. The seeing variations during a measurement are represented by
the horizontal error bar in the plot. The vertical error bars represent the stability of the
loop.

Since the seeing is generated by Kolmogorov turbulence, we assume that the final
accuracy σfa has the following dependence on the seeing:

σfa =

√
τ 2 + γ θ

5/3
seeing (8.1)

where τ is a constant value due to systematic errors and γ is a numerical coefficient
dependent on the wavelength. The following values for the parameters τ and γ are obtained
by fitting the data in Fig. 8.9: τ = 5.3 nm and γ = 108 nm/arcsec5/3.
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seeing, with τ and γ being numerical coefficients. The encircled data have been acquired with a
phase mask a = 1” and the rest of the points with a phase mask a = 1.5”.
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Chapter 9

Analysis using the theory of
diffraction in segmented mirrors

In this chapter a complementary and new approach is used to understand the results
obtained with the Zernike Phase Contrast Sensor on sky (Section 8). All the images which
are used in this chapter are from the observations performed on sky at the VLT.

The Power Spectral Density (PSD) of the images obtained with the Zernike Phase
Contrast Sensor is analyzed with the help of the theory presented in the publications [84,
83]. The work presented here is based on an ESO technical report [89].

Assuming that the phasing sensor can be represented as a linear time invariant system,
a filter which models the sensor is calculated from the atmospheric noise in Section 9.2.
This filter is very similar to the expression found with a more theoretical approach in
Section 5.3.3. In Section 9.3, using the filter, the final accuracy of the sensor is estimated
from the measured noise, in the low flux as well as in the high flux regimes. The results
are in good agreement with the ones presented in Section 8.4.

The methods presented in this Chapter can be used for measuring the average piston
error. The sensor can also be modeled as a high pass filter on the phase of the incoming
wavefront.

9.1 PSD of the image of the pupil

The Zernike Phase Contrast Sensor can also act as a pupil camera when the optical beam
only passes through the substrate of the mask, and is not affected by the phase filtering
of the mask. In this case, we obtain an image of the pupil on the CCD detector, shown in
the left image of Figure 9.1. One can see the gaps of the ASM, the obstruction generated
by the secondary mirror of the VLT, and the spider. The corresponding PSD is shown in
the right image of Figure 9.1.
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Figure 9.1: (Left:) Image of the pupil. (Right:) PSD of the image of the pupil.

9.2 Description of the system by a transfer function

In Section 5.3.3 we have demonstrated that the Zernike Phase Contrast Sensor behaves as
a high pass filter on the phase.

Φsignal(w) = H(w)Φphase(w) (9.1)

The filter is given by the following expression:

H(w) = (1/κa)4|w|4,
{
κ = 0.28 for the sharp edge phase mask ,
κ = 0.42 for the gaussian profile phase mask .

(9.2)

In this section, we will derive a similar expression for the filter, but following a different
approach.

In Section 2.1.3 of the introduction, we have shown that the statistically averaged PSD
of the phase is equivalent to the halo of the PSF [83]:

Φphase(w) =
σ2
n

N
|tn(w)|2. (9.3)

In the particular case of pure piston errors, n = 1, σ2
1 = σ2

piston and tn(w) = t1(w), which
is shown in Figure 2.2, the analytical expression for Φphase is given by Eq. (2.4).

Introducing Eq. (9.3) into Eq. (9.1) gives

Φsignal(w) = H(w)
σ2

1

N
|t1(w)|2. (9.4)

|t1(w)|2 can be derived theoretically, and H(w) will be derived from the variations of
the signal due to atmospheric noise. With t1(w) and H(w) known, σ1 can then be deduced
from Eq. (9.4).

Two sets of data have been used to produce the results presented in this section.
The configuration of the system was the following: a = 1”, ψ0 = λ/3.7, λ = 650 nm,
θseeing ≈ 0.5”, and ∆t = 20 sec. The light of bright stars has been used.
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9.2.1 Determination of the shape of the filter from the atmo-
spheric noise

The goal of this section is to estimate the expression for the filter H(w) from the variations
of the signal generated by atmospheric noise only.

We assume that the Zernike Phase Contrast Sensor acts as a linear time invariant
system.

The response of the system to atmospheric turbulence is calculated. The shape of the
filter H(w) is calculated from the following assumption:

Φsignal,atm(w) = H(w)Φatm(w) (9.5)

where Φsignal,atm(w) is the PSD of the signal, which is generated only by the effects of at-
mospheric turbulence and Φatm(w) is the PSD of the atmosphere, given by the Kolmogorov
spectrum of turbulence: Φ(ρ) = 0.033 C2

n ρ
−11/3, where C2

n is the atmospheric structure
constant.

The PSD of the signal, Φsignal,atm(w), is calculated from normalized images of the
Zernike Phase Contrast Sensor as follows.

In a closed loop convergence cycle, when the loop is stable, a set of differential images,
is calculated from pairs of successive images. The alignment of the segments is assumed
to be stable and only the changes induced by atmospheric turbulence contribute to the
differential images. The set of differential images is then normalized using the procedure
described in Section 6.1, which results in the images INDj. The PSDs of the N normalized

differential images is then calculated, ΦDj
signal,atm(w) = |ÎNDj|2. The symbol̂represents the

Fourier transform. Finally, the mean PSD is calculated from the N individual PSDs:
Φsignal,atm(w) =

∑N
j=1 ΦDj

signal,atm(w)/N .
It is easier to process the data in one dimension. Therefore, the azimuthal average of

Φsignal,atm(w) is calculated, and we obtain Φsignal,atm(ρ). The PSD Φatm(ρ) = αρ−11/3 of the
atmosphere is finally fitted to the data, as shown in the left plot of Figure 9.2.

Finally, the filter is calculated from

H(ρ) =
Φsignal,atm(ρ)

Φatm(ρ)
. (9.6)

The results for both sets of data which are shown in the right plot of Figure 9.2, are quite
similar. The best fit of the filter is given by the expression:

H(ρ) = erf2

[( ρ

125

)2
]
, ρ < 222 (9.7)

for lower frequencies, and for higher frequencies, a good fit is given by

H(ρ) = exp

[
−
(
ρ− 222

300

)2
]
, ρ > 222 (9.8)
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Figure 9.2: Left: Φsignal(ρ) fitted with the Kolmogorov spectrum of turbulence. Right: Two
filters obtained with the corresponding two sets of data.

where ρ is measured in pixels. Using the conversion: 1 pixel=̂0.2295 cycle/pupil =̂ 0.004”,
Eqs. (9.7) and (9.8) can be expressed in units of arcsecond:

H(w) = erf2

[(
2w

a

)2
]
, w < 0.89”, (9.9)

H(w) = exp

[
−
(
w − 0.89

1.2a

)2
]
, w > 0.89”. (9.10)

For the low frequencies, the shape of the filter depends only on the diameter a of the phase
mask. For small values of w, the erf function can be expanded in a series. If only the
lowest term is kept, H(w) is given by:

H(w) ≈
( w

0.47a

)4

. (9.11)

Eq. (9.11) can be compared with Eq. (9.2). The value of the new coefficient, κ = 0.47,
found with the experimental data obtained on sky is close to the two values found ana-
lytically for the gaussian profile phase mask (κ = 0.42) and the sharp edge phase mask
(κ = 0.28).

The approximation given by Eq. (9.11) seems to be valid only for w < 0.3”.
The same procedure has been applied to data acquired with the 1.5” phase mask. A

widening of the filter by a factor 1.5 has been observed.

9.2.2 Verification of the filter found with the signal image

The aim of this section is to verify the filter H(ρ), calculated in the previous section, and
given by Eqs. (9.7) and (9.8), on normalized signal images with segment alignment errors.
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The data used in this section are from the same closed loop convergence cycles as in
the previous section. However, the first image of the closed loop convergence cycle is used,
with the configuration Random200 generated on the ASM 1.

The steps to evaluate the PSD of the signal are similar to the steps described in the
previous section. To remove the speckles from the one-dimensional PSD (after azimuthal
averaging), a median filter is applied to the one-dimensional profile.

With

γ =
σ2

1

N
, (9.12)

we want to solve Eq. (9.4) for γ:

γ =
Φsignal(w)

H(w)|t1(w)|2
. (9.13)

The function |t1(w)|2, which represents the PSF of a single segment, is shown in Fig-
ure 2.2 and its analytical expression is given by Eq. (2.4), in Section 2.1.

It is easier to perform this analysis in the one-dimensional case. Therefore, we perform
an azimuthal average of all the power spectral densities.

The azimuthal average, Φt1(ρ), of the function |t1(w)|2, is shown in Figure 9.4.
Φsignal(w) is calculated from both sets of data. The left image of Fig. 9.5 is the normal-

ized signal image with a RMS piston error of 52 nm on the wavefront and the right image
of Fig. 9.5 is the corresponding PSD. After azimuthal averaging, we obtain Φsignal(ρ).

To determine γ, we proceed as follows:

γH(ρ)Φt1(ρ) = Φsignal(ρ). (9.14)

The left hand side of Eq. (9.14) is fitted to the right hand side of the equation, adjusting
the coefficient γ.

The result is shown in Figure 9.6. Some segments are masked by the obstruction in

1The corresponding segment piston error has a wavefront RMS of 52 nm and a wavefront peak to valley
of 200 nm.
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Figure 9.5: Left: Normalized signal image with σ2
1 = 52 nm RMS. Right: Power spectral density

of the normalized image: Φsignal.

the pupil of the primary mirror of the VLT. In this case, it is better to use the expression
N = Atel/Aseg for the number of segments in Eq. (9.12) where Aseg is the area of a single
segment and Atel is the total are of the pupil2.

Finally, the following coefficients γ are obtained for the two sets of data:

• Data 1: γ = 0.0035 and RMS = 42 nm wavefront.

• Data 2: γ = 0.0029 and RMS = 38 nm wavefront.

The calculated values are close to the 52 nm RMS of piston error applied on the ASM.

2The size of a segment, flat to flat is 70 pixels, the inner pupil diameter is 70 pixels and the outer pupil
diameter 470 pixels. Aseg = 3659 and Atel = 169646 pixels2.
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Figure 9.6: Left: First set of data. Right: Second set of data. Top: Measured PSD and median
filtering of the function. Bottom: Comparison of the measured PSD and the modified theoretical
PSD.

9.3 Estimation of the final accuracy from the mea-

sured noise

This section deals with the influence of the different types of noise on the final accuracy,
which has been measured experimentally in Section 8.4 of Chapter 8.

The different types of noise which affect the final accuracy are

• photon noise,

• atmospheric turbulence,

• CCD electronic noise,

• time delay between the acquisition of the signal image and the reference flat image.

In the high flux regime, as explained in Section 8.4, the final accuracy converges to a
value σHighFlux independent of the number of counts. Many parameters are responsible for
limiting the accuracy σHighFlux, for example the residual turbulence, the obscuration created
by the foot-print of the secondary mirror support, and the residual polishing errors, which
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are amplified by the rotation of the primary mirror with respect to the ASM. In the low
flux regime, the image quality is mainly affected by the electronic noise of the CCD.

9.3.1 Low flux regime

The final accuracy obtained in closed loop is related to the amplitude of the noise. The
noise in the signal images can be studied in the frequency domain by analyzing the Power
Spectral Density of the images.

The images analyzed in this section are from Test1 and Test2, presented in Section 8.4.
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Figure 9.7: Left: normalized image, Right: the corresponding PSD. Initial (top) and after last
(bottom) iterations of the closed loop. These images are from Test2 with 19011 counts per pixel.

The PSDs of the normalized images, obtained from the initial state and after the last
iterations of the closed loop, are shown in the left column (top and bottom respectively)
of Figure 9.7. The right column shows the corresponding PSDs. In the initial state, the
information for the segmentation error is contained in the six rays, which are perpendicular
to the edges of the segments. The evolution of the PSD during the closed loop is shown in
the right plot of Figure 9.8. During the closed loop, the amplitude of the six rays decreases
to finally disappear in the noise in the last iterations 3.

3An azimuthal average of the PSD is performed along the 6 rays of the PSD (0.1 radian).
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Figure 9.8: Left: RMS of the piston error at each iteration of the closed loop convergence
cycle. Right: Evolution of the corresponding PSD during the closed loop. The data shown here
corresponds to the images of Figure 9.7.

The RMS of the PSD is calculated in 6 subapertures along the 6 rays of the PSD, where
the segment alignment error is predominant.

The RMS σPSD of the PSD, is calculated from the last four stable iterations of the
closed loop convergence cycle and the result is compared to the final accuracy values, σfa,
presented in section 8.4. The strong correlation between σPSD and the final accuracy σfa is
shown in the plots of Figure 9.9. The coefficient of proportionality, µfit, was found with a
standard fitting procedure.
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Figure 9.9: Final accuracy as a function of the average number of counts per pixel for different
seeing conditions, phase masks and integration time. Left: Test1, Right: Test2

In the low flux regime, the final accuracy is limited by the electronic noise of the CCD.
Figure 9.10 shows the normalized image and the corresponding PSD of the last iteration
of the closed loop for different numbers of counts per pixel. Below 150 counts per pixel,
the image suffers from a periodic electronic noise. In the frequency domain the periodicity
is derived from the peaks, which are symmetrically distributed with respect to the center
of the image.
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Figure 9.10: Normalized images of the last iteration of the closed loop (top images) and their
corresponding PSDs (bottom images) for different intensities. Left: 862 counts per pixel, middle:
142 counts per pixel, right: 8 counts per pixel

9.3.2 High flux regime

All the images analyzed in this section were acquired with integration times of 20 seconds,
a = 1” and λ = 650 nm.

Since APE is installed on a Nasmyth platform and does not include a pupil derotator,
the VLT pupil and, in particular the spider and the residual polishing errors of the primary
mirror rotate with respect to the ASM. Therefore, on each acquired CCD frame, the image
of the VLT pupil is in different locations with respect to the image of the ASM pupil.
When the normalization procedure is performed using Eq. (9.15):

IN =
IS − Iref

〈IS〉 −B0

. (9.15)

where IS is the signal image and Iref the reference image, the spider is in different locations
in IS and in Iref . Therefore in the normalized image, two spiders appear, a negative one
and a positive one. The angle between the spiders depends on the time delay ∆t between
the acquisition of IS and Iref . The left image of Figure 9.11 shows the normalized image,
where the time delay ∆t is of 527 seconds. The corresponding PSD is shown in the right
image of Figure 9.11 where the bright cross in the center comes from the spider.

In Figure 9.12, the PSD is plotted for different time delays ∆t. Up to ∆t = 160
sec (which corresponds to the rotation of one pixel at the edge of the pupil) the PSD is
similar to the filtered atmospheric turbulence, Φsignal,atm. With the increase of the time
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Figure 9.11: Normalized image (left) and PSD (right) for a time delay of 8 min 47 sec.

delay ∆t, the amplitude of the PSD increases and a characteristic peak appears at 335
pixels (equivalent to 77 cycles/pupil or 1.34”). We assume that this frequency, which is
equivalent to 10 cm projected on the VLT pupil, comes from residual polishing errors,
which are not canceled by the subtraction of the images but on the contrary amplified
by it. The residual polishing errors which are centro-symmetric are subtracted during the
normalization procedure and disappear in the normalized images.

Figure 9.12: PSD of the differential signal for different time delays ∆t between the signal image
and the ASM flat image. The reference and the signal images were acquired with the ASM in
the flat configuration.

Determination of the precision limit for the measurement of the piston steps

According to Eq. (9.3), the intensity of the PSD is proportional to the square of the
segmentation error. The azimuthally averaged PSD of the normalized images for different
RMS values of the phase errors is shown in Figure 9.13.
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Figure 9.13: PSD of normalized images, for three different RMS values of phase errors. The
time delay between the acquisition of the signal image and the reference image is less than 100
sec.

Any type of noise increases the amplitude of the PSD, as seen in the previous section,
and therefore limits the amplitude of the measurable piston errors. With the increase of
the time delay, the minimal measurable piston error increases.

The lower limit for the measurable piston errors can be calculated by solving Eq. (9.3)
for σ1 and using the PSDs in Figure 9.12.

The left plot of Figure 9.14 shows one of the PSDs of Figure 9.12. Fitting the theoretical

PSD, given by
σ2
1

N
|tn(w)|2, and multiplying by the filter H(ρ) found in Section 9.2 to the

measured PSDs, the value of σ1 can be deduced.
The results are shown in the right plot of Figure 9.14.

Figure 9.14: Left: Fitting of the theoretical PSD, multiplied by the filter H(ρ) to the measured
PSDs. Right: Limiting RMS value of the piston error which can be measured by the sensor as a
function of the time delay ∆t.

For time delays ∆t shorter than 2 minutes the value of the measurable piston error is
of the order of 8 nm RMS on the wavefront, which is exactly the figure found with Test2
in Section 8.4. Then, the RMS increases linearly with the time delay and finally saturates
at 21 nm for time delays longer than 800 seconds.



Conclusions

Objectives and results

Segmentation seems to be the only promising technique for the construction of mirrors
with diameters of 20 meters and more. The primary mirrors of Extremely Large Telescopes
will consist of hundreds of hexagonal segments. In order to achieve high spatial resolution
and high contrast images, the segments of the primary mirror will have to be phased with
a precision of the order of 30 nm RMS.

A phasing wavefront sensor is required to measure the segmentation error with such
a high precision. A new technology for the measurement of segment misalignments, the
Zernike Phase Contrast Sensor, has been presented in this thesis.

As a first contribution, we have demonstrated, using Fourier optics, the capability of
the Zernike Phase Contrast Sensor to measure phase discontinuities, and in particular,
piston errors. In the absence of atmospheric disturbances, the signal of the sensor for a
phase step is an analytical expression. It is the sum of two terms, an anti-symmetrical part
and a symmetrical part. The anti-symmetrical part is identical to the signal obtained with
the Mach-Zehnder interferometer. Under the influence of atmospheric disturbances the
shape of the anti-symmetric term is still quite similar to the anti-symmetric term without
atmospheric disturbances. Therefore, this term can be used for robust measurements of
the phase step irrespective of the atmospheric conditions. The symmetric term, however,
is strongly modified by the atmosphere.

The second part of our work focused on the development of robust algorithms for the
measurement of the phase errors in a segmented mirror. These algorithms have been
implemented in the framework of the Active Phasing Experiment, where a mirror made
of 61 segments was to be phased with different sensor technologies, including the Zernike
Phase Contrast Sensor.

The signal analysis algorithm is based on analytical expected shapes of the signal.
Therefore, in principle, no calibration is required, which makes this sensor extremely robust
to variations of external parameters such as the operating wavelength and the seeing.

The results obtained in the laboratory and on sky confirm the theoretical predictions.

With measurements performed in the laboratory, we show that in the presence of at-
mospheric disturbances and without a precise knowledge of the atmospheric conditions,
the symmetric term cannot be used to retrieve the information on the piston step. The
required precision for the alignment of the mask can be easily achieved in an Extremely
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Large Telescope. With monochromatic light, the capture range of the Zernike Phase Con-
trast Sensor is limited to half of the central wavelength of a color filter. We show that with
the coherence method, a technique which has already been successfully demonstrated at
the Keck telescopes with the Shack-Harmann sensor, the capture range can be increased
from ±λ/4 to several wavelengths, and even to a range of ±30 µm. The precision obtained
with the sensor for the measurement of the phase steps is of the order of 4 nm RMS in the
laboratory. Finally, the equivalent limiting star magnitude obtained in the laboratory is
18.

On sky, the APE Active Segmented Mirror, of 61 segments was conjugated to the
primary mirror of a Unit Telescope of the ESO VLT. The sensor could measure the piston
error with an accuracy which has always been below 15 nm RMS wavefront under seeing
conditions up to 1.2”. The performance which has been achieved lies well within the
requirements of 30 nm RMS. The sensitivity to seeing can be minimized by adapting the
size of the phase mask in its focal plane to the seeing conditions. Three different phase
masks are sufficient to cover a range of seeing from 0.3” up to 2”. The best performance
achieved under good seeing conditions was 6.7 nm RMS wavefront. A star magnitude of
15.7 was sufficient to achieve an accuracy of 14 nm RMS wavefront. By measuring the
discontinuities at two locations along each segment border, the Zernike Phase Contrast
Sensor is also capable of measuring the tip-tilt of the individual segments.

We have also analyzed the results obtained on sky with a complementary approach,
based on the theory of diffraction for segmented mirrors. Our study demonstrates that
the Zernike Phase Contrast Sensor can be modeled as a high-pass phase filter. With the
expression derived for this filter, one could confirm the average values for the RMS of the
piston steps obtained on sky with other types of measurements.

Perspectives

The Zernike Phase Contrast Sensor is a good candidate to phase the primary mirrors of
future Extremely Large Telescopes.

For a 40 meter telescope and a CCD with a sampling of 2048× 2048 pixels, the size of
a hexagon, from corner to corner, on the CCD would be of the order of 50 pixels, which
corresponds to a higher sampling than the one used in this experiment and leaves the
possibility to configure the CCD to a 2 × 2 binning to allow the use of the sensor with
fainter stars.

No precise alignment of the pupil on the detector is required as in the case of the Shack-
Hartmann type detector, since the position of the pupil on the detector is determined by a
registration algorithm. We have shown that the alignment of the phase mask with respect
to the focal plane is easy to achieve for an Extremely Large Telescope: it must be better
than 0.25” on sky, which corresponds to a displacement of 0.9 mm in the focal plane.

We have shown that Zernike Phase Contrast Sensor can also cope with bad seeing
conditions in the range [1.5”, 2”].

There is also the possibility to perform optical phasing during observations with the
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Zernike Phase Contrast Sensor. The stars, with which a sufficiently accurate alignment
was achieved, are faint enough to cover the entire sky, even close to the Galactic pole.
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Appendix A

First annex

Figure A.1: Indexation of the Active Segmented Mirror
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Notations and acronyms

Units

arcmin (or ′) minute of arc (2.90888× 10−4 radian)
arcsec (or ”) second of arc (4.848137× 10−6 radian)
mas milli-arcsec (10−3 arcsec)

Notations

λ wavelength of the light
k = 2π/λ wavenumber
r0 atmospheric coherence length
θseeing seeing disk
Ω Optical Transfer Function
a Diameter of the pinhole
δ0 Optical Path Difference
ψ0 = kδ0 Phase shift introduced by the Optical Path Difference
∆ϕ Differential phase generated by the differential piston ∆p
∆p Differential piston, measured on the wavefront
N Number of segments
M Number of edgeŝ Fourier transform

Acronyms
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ADUs Analog to Digital Units
AO Adaptive Optics
APE Active Phasing Experiment
ASM Active Segmented Mirror
CCD Charged Coupled Device
DM Deformable mirror
DIPSI Diffraction Image Phase Sensing Instrument
ELT Extremely Large Telescope
E-ELT European Extremely Large Telescope
ESO European Southern Observatory
FWHM Full Width at Half Maximum
GTC Gran Telescopio Canarias
HST Hubble Space Telescope
IM Internal Metrology
JWST James Webb Space Telescope
MAPS Multi Atmospheric Phase screens and Stars
NTT New Technology Telescope
MZ Mach-Zehnder
PS Phase Screen
PSD Power Spectral Density
PSF Point Spread Function
OPD Optical Path Difference
OTF Optical Transfer Function
OWL OverWhelmingly Large Telescope
PDS Phase Discontinuity Sensing
PEACE Phasing ELT with Adaptive Optics Control Experiment
PSF Point Spread Function
PSD Power Spectral Density
PtV Peak to Valley
PWFS Phasing WaveFront Sensor
RMS root mean square
SALT South African Large Telescope
SVD Singular Value Decomposition
PTT Piston Tip Tilt
PYPS PYramid Phasing Sensor
SHAPS Shack-Hartmann Phasing Sensor
TMT Thirty Meter Telescope
UT Unit Telescope
VLT Very Large Telescope
WFS WaveFront Sensor
ZEUS Zernike Unit for Segment phasing
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[36] F. Gonté, C. Araujo, R. Bourtembourg, R. Brast, F. Derie, P. Duhoux, C. Dupuy,
C. Frank, R. Karban, R. Mazzoleni, L. Noethe, B. Sedghi, I. Surdej, N. Yaitskova,
B. Luong, S. Chueca, M. Reyes, S. Esposito, E. Pinna, A. Puglisi, F. Quiros Pacheco,
K. Dohlen, and A. Vigan. On-sky testing of the Active Phasing Experiment. The
Messenger, 136:25–31, June 2009.
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