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Summary 

In eukaryotes, transcription of protein-coding genes and many non-coding RNAs relies 

on RNA polymerase II, a common set of general transcription factors (GTF), namely 

TFIIA, -B, -D, -E, -F, -H, -S, and coactivator complexes such as Mediator. The GTF are 

required for core promoter recognition, promoter opening, transcription start site 

recognition and initial RNA synthesis. The large multiprotein complex Mediator 

promotes preinitiation complex (PIC) formation at the core promoter by bridging gene-

specific activators bound to upstream DNA elements to the basal transcription 

machinery. The 7-subunit Mediator head module plays a pivotal role during PIC 

formation, contacting Pol II-TFIIF, TATA-binding protein (TBP), TFIIB, and TFIIH.  

During this work a combination of X-ray crystallography, yeast genetics, biochemical 

assays, chromatin immunoprecipitation and genome-wide expression profiling was 

used to elucidate the submodular architecture and molecular mechanisms underlying 

Mediator head function. The conserved functional head submodules Med8C/18/20 and 

Med11/22 were identified and their distinct functions characterized. A conserved 

flexible anchoring mode to the head module was demonstrated for both submodules. 

While the non-essential Med8C/18/20 is required for low transcription levels of a 

specific subset of nonactivated genes, mutations in the essential Med11/22 submodule 

had a more pleiotropic effect on gene expression. Structure-guided mutagenesis of 

Med11/22 identified a highly conserved surface patch required for stable PIC formation 

in vitro and in vivo. Furthermore, the determined crystal structure of Med11/22 revealed 

an unexpected homology to the Med7/21 middle module subcomplex. Structure 

predictions identified a total of 9 out of 17 Mediator core subunits and two metazoan-

specific subunits sharing the heterodimeric four-helix bundle fold of Med11/22. During 

evolution this common structural building block appears to have duplicated and 

diversified to generate new protein interaction surfaces and thus accommodate the 

need for more complex regulatory mechanisms.  

Furthermore, reliable nuclear extract based assays for in vitro transcription and PIC 

assembly on native yeast promoter templates were established and optimized. The 

assays were used in several collaborations to characterize the role of individual 

factors/subcomplexes during Pol II transcription. In addition, a label-free mass 

spectrometry approach was used to identify factors depending on the Mediator head 

module for core promoter binding.  
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1 Introduction 

1.1 RNA polymerases 
The central dogma of molecular biology was first postulated by Francis Crick (Crick, 

1970). It describes the directional flow of genetic information from deoxyribonucleic 

acid (DNA) via ribonucleic acid (RNA) to proteins (Figure 1). The underlying 

fundamental biological processes of DNA replication, transcription and translation are 

found in all three kingdoms of life.  

 

 
 
Figure 1: The central dogma of of molecular biology  
 

 

Transcription, the process of synthesizing RNA from a DNA template, is carried out by 

DNA-dependent RNA polymerases (RNAP). In 1960, four laboratories had 

simultaneously discovered RNAP in E. coli lysate (Hurwitz et al, 1960; Stevens, 1960), 

rat liver nuclei (Weiss & Gladstone, 1959) and extracts from pea (Huang et al, 1960). In 

general, RNAPs can be divided into single-subunit and multisubunit enzyme families. 

The two families lack any sequence or structural homology and are probably the 

product of convergent evolution (Cramer, 2002a). Single-subunit RNAP are found in 

bacteriophages (e.g. T3 and T7) and mitochondria while multi-subunit RNA 

polymerases are found in all three kingdoms of life. Whereas bacteria and archaea rely 

on a single RNAP for RNA synthesis, eukaryotic cells contain at least three distinct 

enzymes (Roeder & Rutter, 1969). RNA polymerase I (Pol I) is located in the nucleoli 

and synthesizes 5.8S, 18S and 28S ribosomal RNA (rRNA). RNA Polymerase II (Pol II) 

is located in the nucleoplasm and synthesizes the messenger RNA (mRNA) of all 

protein coding genes, small nucleolar RNAs (snoRNAs) and some small nuclear RNAs 

(snRNAs). Pol III is also located in the nucleoplasm and synthesizes transfer RNAs 

(tRNAs), 5S rRNA, some snRNAs and other small RNAs. The recently discovered 
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plant-specific Pol IV and Pol V are dedicated to the formation and maintenance of 

heterochromatin through small interfering RNAs (siRNAs) (Lahmy et al, 2010).  

Although multisubunit RNAP differ widely in their subunit composition and molecular 

weight (Table 1), the structural core and enzymatic mechanism is conserved in all three 

kingdoms of life (Cramer, 2002b; Hirata & Murakami, 2009; Ream et al, 2009).  

 
Table 1: Subunit composition of multisubunit RNAP from all three kingdoms of life  

table adapted from (Cramer, 2002b; Hirata & Murakami, 2009; Ream et al, 2009) 
a Subunits shared between Pol II and other RNAP are highlighted in bold red 
b (Geiger et al, 2010)  
 
 

Differences in peripheral subunits of the RNAP and regulatory factors reflect the 

complexity of the respective system. In bacteria, RNAP initiation relies on a single 

regulatory factor sigma, which recognizes promoter sequences and recruits the 

enzyme directly (Mooney et al, 2005). In archaea, two factors, TFB and the TATA-

binding protein (TBP), are essential for transcription initiation (Geiduschek & 

Ouhammouch, 2005). The much bigger eukaryotic RNA polymerases depend on large 

sets of regulatory factors that differ between Pol I, Pol II and Pol III (Roeder, 1996).  

The highly regulated transcription of protein-coding genes by Pol II relies on a plethora 

of factors, including general transcription factors (GTF), negative and positive cofactors 

including chromatin modifying factors and coactivator complexes, elongation factors, 

RNA processing factors and termination factors (Hahn, 2004; Svejstrup, 2004). The 

unique C-terminal domain (CTD) of the largest subunit of Pol II serves a flexible binding 
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platform for many of these regulatory factors. The CTD consists of multiple highly 

conserved heptapeptide tandem repeats of the sequence Tyr1-Ser2-Pro3-Thr4-Ser5-

Pro6-Ser7 (Allison et al, 1985; Corden et al, 1985), which are heavily phosphorylated 

during transcription (Cadena & Dahmus, 1987). CTD truncations to less than 8 

heptarepeats or mutations of the phosphorylation sites Tyr1, Ser2 or Ser5 are lethal in 

yeast (West & Corden, 1995). Changes in the CTD phosphorylation pattern were 

shown to orchestrate the association of different sets of regulatory factors required 

during different phases of transcription (Phatnani & Greenleaf, 2006).  

 

 

1.2 The RNA polymerase II transcription cycle 

1.2.1 Initiation and the general transcription factors 
Eukaryotic transcription by Pol II has been structurally and biochemically characterized 

in detail.  

 
Figure 2: RNA polymerase II transcription cycle 
The main phases of the transcription cycle are colored orange, important events of regulation are 
highlighted in yellow. The circle in the middle depicts the occurrence of the events in relation to the 
position on the gene. GTFs = general transcription factors; ORF = open reading frame (Image courtesy of 
Stefan Dengl, Gene Center Munich). Adapted from (Hahn, 2004; Svejstrup, 2004) 
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Pol II transcription follows the so-called transcription cycle (Figure 2), which is divided 

into initiation, elongation, termination, and reinitiation (Hahn, 2004; Svejstrup, 2004). 

Each phase is regulated and requires a specific set of factors.  

Transcription initiation is a multi-step process involving over a 100 different 

polypeptides (Sikorski & Buratowski, 2009; Thomas & Chiang, 2006; Venters et al, 

2011). First, gene-specific activator proteins (activators) recognize and bind their 

cognate DNA motif, which is often located within the upstream-activating sequence 

(UAS). Activators can bind to the UAS of multiple genes to generate a highly 

coordinated regulation of gene expression. However, often a gene is controlled by the 

action of multiple activators, leading to combinatorial regulation. Next, chromatin 

remodelers/modifiers and coactivators, such as ISWI, RSC, SWI/SNF, NuA4, RSC, 

INO80, SAGA and Mediator, are recruited to alter the chromatin environment and 

promote preinitiation complex (PIC) formation at the core promoter (Figure 3) The PIC 

comprises Pol II and the GTFs, namely TFIIA, -B, -D, -E, -F, -H and -S. The GTFs are 

required for core promoter recognition, promoter opening, transcription start site 

selection, and initial RNA synthesis (Table 2).  

 
Figure 3: Regulatory factors and the basal transcription machinery at the core promoter 
Complexes involved in Pol II transcription initiation and important cis-regulatory elements are depicted (RE 
= regulatory element, TATA = TATA box, INR = Initiator, DPE = downstream promoter element). The 
transcription start site is indicated with an arrow. Gene looping through Mediator-Cohesin interaction is 
indicated. Modular architecture of the coactivator complex Mediator is shown (head = blue,  
middle = green, tail = pink, kinase = orange). Mediator subunits essential for yeast viability are outlined in 
yellow. All proteins and complexes are drawn approximately at relative scale. Image courtesy of T. 
Koschubs, Gene Center. 
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Upon ATP hydrolysis the promoter DNA is melted and the template strand is positioned 

into the active cleft of Pol II (open complex formation) (Wang et al, 1992). With the help 

of TFIIB, the transcription start site (TSS) is recognized and RNA synthesis is intitiated 

(initiation) (Cho & Buratowski, 1999; Pardee et al, 1998; Ranish et al, 1999). When the 

transcript reaches a length of at least seven nucleotides TFIIB is released and Pol II 

enters the elongation phase (promoter clearance) (Pal et al, 2005). Most of the 

initiation factors are left behind in the promoter-bound scaffold complex, which allows 

rapid transcription reinitiation of previously transcribed genes (Yudkovsky et al, 2000). 

 

1.2.2 Elongation and the CTD-code 
The elongating Pol II transcription complex undergoes several transitions accompanied 

by changes in the phosphorylation pattern of the CTD (CTD code). The CTD code 

determines the factors associating with Pol II ensuring cotranscriptional RNA 

processing and chromatin modifications (Buratowski, 2009; Meinhart et al, 2005; 

Phatnani & Greenleaf, 2006; Proudfoot et al, 2002). Upon transcription initiation the 

CTD of Pol II starts getting phosphorylated at Ser5 and Ser7 by the CTD kinases Kin28 

(TFIIH) and Cdk8 (Mediator) facilitating promoter escape (Liu et al, 2004). Shortly after 

transcription initiation, the heterodimeric elongation factor Spt4/5 (DSIF) associates 

with Pol II (Wada et al, 1998). In higher eukaryotes, the negative elongation factor 

(NELF) traps the transcription complex at promoter proximal sites (Yamaguchi et al, 

1999). The capping enzymes are recruited and the nascent mRNA is capped (Wen & 

Shatkin, 1999). The CTD kinase P-TEFb subsequently phosphorylates the C-terminal 

region of Spt5 and the CTD at Ser2 causing a release of the transcription machinery 

and the entry into productive transcript elongation (Kim & Sharp, 2001). In yeast, which 

lacks the mechanism of promoter proximal stalling, all elongation factors are recruited 

in a single 5’ transition approximately 150 nt downstream of the transcription start site 

(Mayer et al, 2010). During elongation, the complex interplay of CTD phosphatases 

and the CTD kinases Ctk1 and Bur1 changes the CTD code from high Ser5/Ser7 

phosphorylation at the 5’ end of the gene to high Ser2 phosphorylation at the 3’ end of 

the gene (Buratowski, 2009).  
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1.2.3 Termination and reinitiation 
When the transcription machinery encounters the poly (A) site at the 3’ end of genes 

the final phase of the transcription cycle is reached and the elongation factors are 

replaced by termination factors (Richard & Manley, 2009). During this phase transcript 

cleavage, polyadenylation and termination occurs. Similar to the preceding phases the 

underlying processes are highly regulated and require a specific set of factors, such as 

Pcf11, Rat1 and Rai1. At protein-coding genes, termination is coupled to RNA 

processing events and often occurs far downstream of the poly (A) site (Buratowski, 

2005; Proudfoot, 1989). The underlying mechanisms are still poorly understood.  

After termination, Pol II is released from the template DNA and can enter facilitated 

reinitiation through association with the promoter bound scaffold complex (Yudkovsky 

et al, 2000). This scaffold complex comprises TFIIA, -D, -E, -H and Mediator, and is 

stabilized by gene-specific activators. The direct recruitment of Pol II into the preformed 

complex was suggested to enable rapid PIC formation and consequently increased 

levels of gene transcription.  

 

 

1.3 Regulation of eukaryotic transcription initiation 

1.3.1 Core promoter elements 
Core promoter elements (CPE) are conserved cis-regulatory DNA motifs required for 

promoter recognition, PIC stability, promoter opening and transcription initiation. In 

eukaryotes, at least seven different CPE have been identified so far (Juven-Gershon et 

al, 2008). CPE are not universally present in all promoters, but occur in different 

combinations thus adding an additional layer of regulation (Müller et al, 2007).  

The evolutionary most ancient CPE, which are found in archaeal and eukaryotic 

promoters, comprise the TATA box, the TFIIB-recognition element (BRE) and the 

initiatior element (INR) (Soppa, 1999). The TATA box was the first described CPE and 

comprises the highly conserved consensus motif TATAWAWR. In most eukaryotes, it 

is located 25-30 bp upstream of the transcription start site (TSS) and marks the 

assembly point for the PIC. In yeast, the distance is more variable (40-120 bp) and 

therefore Pol II has to scan for the TSS after open complex formation (Struhl, 1989). In 

all species, the TATA box binding protein (TBP) binds directly to the TATA box bending 
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the promoter DNA (Kim et al, 1993a; Kim et al, 1993b). The TATA box is flanked up- 

and downstream by BREs, the BREu and BREd, respectively (Deng & Roberts, 2006). 

TFIIB, a GTF directly interacting with TBP and Pol II, contacts these elements further 

stabilizing the PIC and enforcing directionality (Tsai & Sigler, 2000). The INR overlaps 

with the TSS and is sufficient for directing accurate transcription from TATA-less 

promoters through direct interaction with TFIID (Chalkley & Verrijzer, 1999; Smale, 

1997). Interestingly, promoters of trichomonads (a very early-diverging eukaryotic 

lineage) seem to completely lack functional TATA boxes and rely on a highly 

conserved INR instead (Liston & Johnson, 1999).  

Other CPE described in metazoan promoters, like the downstream core promoter 

element (DPE), the motif ten element (MTE) and the downstream core element (DCE), 

are even less understood and further complicate the underlying regulatory mechanisms 

(Juven-Gershon et al, 2008). All efforts to identify CPE, other than the TATA box and a 

degenerate INR, in the well-characterized yeast species Saccharomyces cerevisaea 

(Sc) failed so far. Nevertheless, recent genome-wide studies revealed that TATA boxes 

are found in less than 20% of yeast and metazoan promoters, clearly indicating the 

presence of additional CPE (Basehoar et al, 2004). Identification of these elements 

using bioinformatics might be particularly difficult because they are either very 

degenerate, relying more on biophysical properties than DNA sequence or because 

other determinants like chromatin environment play an important role.  

 

1.3.2 Promoter accessibility and chromatin 
In contrast to the “naked” DNA in bacteria, the genomic DNA in eukaryotes, and to 

some extend in archaea, is bound by histone proteins (Reeve, 2003; Sandman & 

Reeve, 2005). Therefore, most CPE are not readily accessible for binding. In 

eukaryotic cells, a 146 base pair DNA stretch is wrapped around a histone octamer, 

formed by two H2A/H2B and two H3/H4 heterodimers (Luger et al, 1997). The so-

called nucleosomes represent the primary unit of chromatin structure. Chromatin 

serves a dual role within the cell by compacting the genome and by restricting the 

access of DNA-binding factors (Li et al, 2007).  

In bacteria, where DNA is always accessible, the RNAP has an inherent, sigma factor-

directed promoter-binding ability (Mooney et al, 2005). Therefore, binding affinities 

represent the major determinant of promoter strength and regulatory factors merely 

increase the affinity of RNAP.  
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In contrast, eukaryotic DNA is generally inaccessible and Pol II does not have inherent 

promoter binding abilities but relies on a set of positive cofactors, namely chromatin 

remodelers, chromatin modifiers and coactivator complexes, to promote PIC formation 

and transcription intiation (Table 2) (Sikorski & Buratowski, 2009; Thomas & Chiang, 

2006).  

 
Table 2: Factors involved in Pol II transcription initiation  

adapted from (Sikorski & Buratowski, 2009; Thomas & Chiang, 2006) 

 

 

Based on recent genome-wide nucleosome occupancy studies, promoters in 

eukaryotes can be classified into two contrasting categories, “open” and “covered”, 

comprising constitutive and highly regulated genes, respectively (Cairns, 2009; Field et 

al, 2008; Tirosh & Barkai, 2008). Computational analysis and predictions of 

nucleosome positions revealed that promoter accessibility is highly dependent on 

biophysical properties, like DNA curvature or stiffness (Segal & Widom, 2009; Struhl, 

1985). Open promoters contain an approximately 150 bp nucleosome-depleted region 
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directly upstream of the TSS enabling direct access for transcription factor binding. A 

combination of two sequence elements into a tripartite structure stabilizes this open 

architecture: a central poly(dA:dT) tract flanked by nucleosome positioning sequences, 

fixing the so-called -1 and +1 nucleosome in place (Segal et al, 2006; Struhl, 1985; 

Yuan et al, 2005). Interestingly, most of the open promoters lack a functional TATA box 

and contain the H2A variant H2A.Z (htz1 in yeast) at the +1 or -1 nucleosome (Raisner 

et al, 2005; Zhang et al, 2005). In contrast, in covered promoters TATA boxes are more 

enriched, but all CPE and most of the other cis-regulatory elements are masked 

through nucleosome binding (Basehoar et al, 2004; Huisinga & Pugh, 2004). Often a 

single transcription factor binding site is exposed, which is bound upon activation by a 

“pioneering” transcription factor (Cairns, 2009). Subsequent recruitment of chromatin 

remodelers and modifiers makes the core promoter accessible and enables recruitment 

of coactivator complexes facilitating PIC formation (Becker & Hörz, 2002; Sikorski & 

Buratowski, 2009). Therefore, chromatin structure and consequently chromatin 

remodeling represents an important additional layer of regulation in eukaryotic gene 

regulation.  

 

1.3.3 Positive cofactors 
Positive cofactors are typically subdivided based on their mechanism of facilitating 

Pol II transcription initiation into two classes, namely coactivators and chromatin 

remodelers/modifiers (Sikorski & Buratowski, 2009; Thomas & Chiang, 2006). 

However, many complexes have multiple roles making a clear classification difficult.  

Multiprotein coactivator complexes, such as the Mediator complex (Malik & Roeder, 

2010), the Spt-Ada-Gcn5-acetyltransferase complex (SAGA) (Rodríguez-Navarro, 

2009) and the basal transcription factor TFIID (Cler et al, 2009), are highly conserved 

from yeast to man. Gene specific activators recruit these coactivators to the core 

promoter, where they facilitate and stabilize PIC formation through multiple contacts 

with the basal transcription machinery (Sikorski & Buratowski, 2009). Whereas 

Mediator is considered a general coactivator complex required for transcription of most 

Pol II genes (see Chapter 1.4) (Kornberg, 2005), the role of SAGA and TFIID seems to 

be partially redundant (Basehoar et al, 2004; Huisinga & Pugh, 2004; Lee et al, 2000). 

While some activators, like the acidic activators Gal4 and Gcn4 target both complexes 

(Reeves & Hahn, 2005), other activators, like Rap1 seem to recruit only TFIID (Mencía 

et al, 2002). Recent genome-wide chromatin immunoprecipitation (ChIP) studies in 
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yeast revealed that highly regulated TATA-containing genes rely more on SAGA while 

constitutive TATA-less genes rely more on TFIID (Basehoar et al, 2004; Huisinga & 

Pugh, 2004). This is in accordance with previous observations in higher eukaryotes, 

where TFIID was shown to recognize and bind directly to the INR, not requiring a 

functional TATA box for transcription activation (Chalkley & Verrijzer, 1999). Taken 

together, several modes of promoter recognition and PIC formation seem to exist, 

which are determined by activator-coactivator and CPE-coactivator interactions 

(Bhaumik, 2011; Sikorski & Buratowski, 2009).  

SAGA and TFIID appear similar in shape and share several TBP-associated factors 

(TAFs). Interestingly, many TAFs contain a conserved histone fold domain and form 

heterodimeric subcomplexes. These heterodimers appear to be a common building 

block important for the architecture and function of both complexes (Cler et al, 2009; 

Leurent et al, 2002). Nevertheless, the two complexes differ in several key features, 

which helps to explain their mechanistic specificity. The multisubunit TFIID comprises 

the TATA-binding protein (TBP) and 13-14 different TAFs, some of which appear to be 

present in at least two copies (Cler et al, 2009). The TFIID-specific subcomplex 

Taf1/Taf2 was shown to recognize and bind the INR (Kaufmann & Smale, 1994). In 

addition, the TFIID-specific subunit Taf3 interacts through a plant homeodomain (PHD) 

finger with trimethylated histone H3 at lysine 4 (H3K4me3) facilitating recruitment of 

TFIID. The recruitment is further stimulated by acetylation of H3 at lysine 9 (H3K9) and 

lysine 14 (H3K14) (Taverna et al, 2007).  

The multiprotein complex SAGA comprises 21 subunits in yeast. Only the 5 TAFs 

shared with TFIID and the ATM/PI-3-kinase Tra1 shared with NuA4 complex are 

essential for yeast viability (Bhaumik, 2011; Rodríguez-Navarro, 2009). In contrast to 

TFIID, TBP is not a stable subunit of SAGA, but interacts transiently with the SAGA-

specific subunit Spt3 during transcription activation (Mohibullah & Hahn, 2008). The 

two SAGA-specific subunits Gcn5 and Ubp8 possess histone acetyltransferase and 

deubiquitylase activities, respectively. Both subunits were shown to regulate gene 

expression of a subset of genes through modulation of the chromatin structure (Henry 

et al, 2003).  
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1.3.4 Negative cofactors 
In addition to the plethora of positive cofactors, three negative cofactors have been 

described in yeast so far (Sikorski & Buratowski, 2009). The Ssn6-Tup1 complex is 

considered a global repressor complex, antagonizing transcriptional activation through 

repressive nucleosome positioning, histone deacetylation and interference with Mediator 

function (Zhang & Reese, 2004). Interestingly, the other two negative cofactors, Mot1 and 

the heterodimeric NC2 complex, were identified in an extragenic suppressor screen of a 

temperature-sensitive Mediator mutation (Gadbois et al, 1997; Lee et al, 1998). Mutations 

in these factors compensate the loss of Mediator function at elevated temperatures. Both 

cofactors act very specifically through direct interactions with TBP. Mot1, a Snf2 ATPase, 

removes TBP from the promoter, whereas NC2 blocks TBP-TFIIA and TBP-TFIIB 

interactions (Auble, 2009; Pereira et al, 2003). While the mode of action is very different, 

the outcome of interfering with PIC formation and stability is the same. Interestingly, recent 

genome-wide ChIP studies found NC2 and Mot1 at many active yeast promoters (van 

Werven et al, 2008). While NC2 and Mot1 repress TATA box containing promoters, they 

seem to activate TATA-less promoters. Although the underlying mechanism is still unclear, 

it was suggested that Mot1 and NC2 might remove non-functional TBP from the promoter 

to enable binding of other factors (Sikorski & Buratowski, 2009).  

 
 

1.4 The general coactivator complex Mediator 

1.4.1 Discovery and conservation 
First evidence for the existence of Mediator came from squelching experiments in yeast 

(Gill & Ptashne, 1988) and mammalian cells (Triezenberg et al, 1988). Overexpression 

of one activator interfered with the activation of Pol II transcription by another activator. 

At the beginning the effect was attributed to competitive binding to the same target 

within the basal transcription machinery. However, addition of an excess of Pol II or 

any GTF to a crude yeast in vitro transcription system did not relieve the squelching 

effect, while addition of a crude yeast extract did (Flanagan et al, 1991; Kelleher et al, 

1990). This strongly indicated the existence of an intermediate layer of regulation 

between the activators and the transcription machinery in eukaryotes. The unknown 

factor was termed Mediator, but it took another four years until the Mediator complex 
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was first purified and characterized (Kim et al, 1994). In parallel, genetic screens in 

yeast had identified several suppressors of the cold-sensitve phenotype of a Pol II CTD 

truncation. The identified extragenic suppressors were termed suppressors of RNA 

polymerase B (Srb) (Nonet & Young, 1989). Later on, all 9 Srb proteins turned out to 

be subunits of the large coactivator complex Mediator.  

Mediator was subsequently purified from various fungi, metazoans and a plant 

(Bäckström et al, 2007; Boube et al, 2002). Comparative genomics identified an 

ancient 17-subunit core Mediator, which is conserved in all eukaryotes (Bourbon, 2008) 

(Table 3).  

 
Table 3: Mediator subunit composition and modular architecture  

a Subunits comprising the ancient core Mediator are shown in red (Bourbon, 2008); subunits that are 
essential for yeast viability are shown are underlined. 
b pdb code is given when structural information on individual subunits or subcomplexes is available  
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1.4.2 Modular architecture and structure 
Based on electron microscopy (Asturias et al, 1999; Davis et al, 2002; Dotson et al, 

2000), biochemical studies (Kang et al, 2001) and gene expression profiling (van de 

Peppel et al, 2005), Mediator subunits were suggested to reside in four flexibly linked 

modules, the head, middle, tail and the dissociable kinase modules (Figure 3). The 

modular architecture as well as the subunit composition appears to be conserved from 

yeast to man (Table 3).  

The Sc Mediator complex has a molecular weight of around 1.4 MDa and comprises 25 

subunits, which have all homologues in higher eukaryotes (Bourbon, 2008). 10 

subunits, which are all part of the core Mediator, are essential for cell viability (Table 3) 

(Myers & Kornberg, 2000). Many of the subunit-subunit interactions within Mediator are 

known from a large-scale yeast two-hybrid screen (Guglielmi et al, 2004) and 

biochemical studies (Baumli et al, 2005; Beve et al, 2005; Koschubs et al, 2010; 

Larivière et al, 2006; Takagi et al, 2006). Structural information on Mediator subunits is 

available for CycC (Hoeppner et al, 2005), Med7C/21 (Baumli et al, 2005), Med7N/31 

(Koschubs et al, 2009), Med8C/18/20 (Larivière et al, 2006), Med15 (Thakur et al, 

2008; Yang et al, 2006) and Med25 (Bontems et al, 2010) (Table 3). The architecture 

of the Mediator head (Takagi et al, 2006) and middle module (Baumli et al, 2005; 

Koschubs et al, 2010) is well established through recombinant coexpression and 

copurification studies. The two modules were suggested to interact through the head 

module subunit Med6 and the middle module subcomplex Med7C/21 (Baumli et al, 

2005). Numerous low resolution electron microscopic reconstructions of the complete 

Mediator from various species revealed the highly flexible nature of the complex and 

large conformational changes in response to activator binding (Asturias et al, 1999; Cai 

et al, 2009; Cai et al, 2010; Davis et al, 2002; Dotson et al, 2000; Elmlund et al, 2006; 

Näär et al, 2002; Taatjes et al, 2002; Taatjes et al, 2004).  

 

1.4.3 Mediator function in transcriptional regulation 
Mediator function is best described as integrating signals from various regulatory 

proteins and transferring a calibrated output to the basal transcription machinery 

(Bjorklund & Gustafsson, 2005; Kornberg, 2005; Malik & Roeder, 2010; Naar et al, 

2001). Mediator interacts with many medically important human transcription 

regulators, including hormone receptors (Taatjes et al, 2004), vitamin D receptor 

(Taatjes et al, 2004) and p53 (Meyer et al, 2010). Recent studies have linked Mediator 
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to various human diseases, like Alzheimer disease (Xu et al, 2011), congenital 

malformations (Muncke et al, 2003), mental retardation (Philibert & Madan, 2007) and 

cancer (Firestein et al, 2008; Morris et al, 2008; Zhu et al, 1999). In yeast, Mediator is 

globally required for Pol II transcription (Holstege et al, 1998). Mediator is thought to 

act by promoting transcription initiation complex assembly through activator-Mediator, 

Mediator-Pol II and Mediator-GTF contacts (Cantin et al, 2003). Mediator is recruited to 

the promoter by activators independent of Pol II recruitment (Cosma et al, 2001) and 

remains in the scaffold complex after initiation to enable rapid reinitiation of previously 

transcribed genes (Yudkovsky et al, 2000). A recent study has demonstrated a direct 

interaction between Mediator and cohesin at promoters in embryonic stem cells (Kagey 

et al, 2010). This interaction promotes gene looping and thus physically connects 

distant enhancer elements with the core promoter. The dissociable Mediator kinase 

module, comprising the Cdk8 kinase, CycC, Med12 and Med13, phophorylates the 

CTD at Ser5 together with Kin28 (TFIIH) and consequently facilitates transcription 

initiation and promoter escape (Liu et al, 2004).  

Global gene expression studies of Mediator deletion mutants have implicated the 

different modules in the regulation of different subsets of genes (Beve et al, 2005; 

Holstege et al, 1998; Singh et al, 2006; van de Peppel et al, 2005). The middle module 

is required for regulating HSP genes and low-iron response genes, the tail module for 

regulating HSP and OXPHOS genes, and the kinase module for regulating genes 

required during nutrient starvation.  

 

1.4.4 Head module architecture and function 
The Sc head module comprises five essential subunits (Med6, Med8, Med11, Med17, 

and Med22) and two non-essential subunits (Med18 and Med20) (Table 3). The head 

module architecture was characterized in detail by yeast-two-hybrid screens (Esnault et 

al, 2008; Guglielmi et al, 2004) as well as coexpression and copurification studies 

(Baumli et al, 2005; Larivière et al, 2006; Takagi et al, 2006). Med6, Med8, Med11 and 

Med22 interact directly with the central scaffolding subunit Med17, while the dimeric 

Med18/20 subcomplex interacts with the C-terminus of Med8 (Med8C). Structural 

information is only available for this non-essential Med8C/18/20 subcomplex (Larivière 

et al, 2006).  

The Mediator head module plays an important role during PIC assembly, contacting 

Pol II-TFIIF (Takagi et al, 2006), Pol II CTD (Kang et al, 2001; Näär et al, 2002), TATA-
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binding protein (TBP) (Kang et al, 2001; Larivière et al, 2006), TFIIB (Kang et al, 2001) 

and TFIIH (Esnault et al, 2008). A temperature-sensitive mutation in Med17 (med17-ts; 

srb4-138 strain) affecting head module integrity abolishes the stimulation of basal 

transcription in vitro (Ranish et al, 1999; Takagi et al, 2006), prevent association of Pol 

II and GTF with core promoters in vivo (Bhaumik et al, 2004) and cause a global 

shutdown of mRNA synthesis (Holstege et al, 1998; Thompson & Young, 1995). Sc 

Med11 and Med22 are important for head module architecture and function. They both 

bind and stabilize the central head subunit Med17 (Kang et al, 2001; Takagi et al, 

2006). A temperature-sensitive mutation in Med22 (srb6-107) causes similarly to 

med17-ts a global decrease in mRNA synthesis (Thompson & Young, 1995). Single 

point mutations in Med22 can act as extragenic suppressors of the med17-ts 

phenotype (Lee et al, 1998), of the cold-sensitive phenotype of Rpb1 CTD truncation 

(Thompson et al, 1993), and of the lethal CTD Ser2 phosphorylation site substitution 

mutation (Yuryev & Corden, 1996). Med11 was shown to directly interact with the Rad3 

subunit of TFIIH in yeast-two-hybrid assays and a point mutation in Med11 reduced 

promoter occupancy of TFIIH kinase module (TFIIK) and consequently CTD Ser5 

phosphorylation in vivo (Esnault et al, 2008). Despite the important role of Mediator 

head during transcription inititiation, the underlying molecular mechanisms as well as 

the functions of individual subcomplexes are still unclear.  
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1.5 Aims and scope of this work 
The general coactivator complex Mediator constitutes the central interface between 

activators and Pol II, enabling regulated transcription of most if not all protein-coding 

genes (Kornberg, 2005; Malik & Roeder, 2010). Despite its fundamental role in gene 

regulation, its three-dimensional structure and biochemical function are still poorly 

understood. The low abundance of Mediator in cells and its complex architecture made 

X-ray structure determination and high-resolution electron microscopy using natively 

purified complexes so far impossible. Nevertheless, only by correlating observed 

molecular interactions with functional roles in vitro and in vivo, the Mediator mechanism 

can be elucidated on a molecular level. 

This study focused on the 7-subunit Mediator head module, which plays a pivotal role 

during transcription initiation. Conditional mutations in the head module abolish 

association of Pol II and the GTF with promoters in vivo (Bhaumik et al, 2004) and 

consequently cause a global shutdown of Pol II transcription (Holstege et al, 1998; 

Thompson & Young, 1995). Furthermore, several direct interactions with PIC 

components, namely Pol II-TFIIF (Takagi et al, 2006), Pol II-CTD (Kang et al, 2001; 

Näär et al, 2002), TATA-binding protein (TBP) (Kang et al, 2001; Larivière et al, 2006), 

TFIIB (Kang et al, 2001) and TFIIH (Esnault et al, 2008), had been described. Despite 

the importance of Mediator head, high-resolution structural information was only 

available for the non-essential Med8C/18/20 subcomplex. Therefore, a structure-

function-system correlation, combining X-ray crystallography, yeast genetics, 

biochemical assays, chromatin immunoprecipitation, genome-wide expression profiling 

and label-free mass spectrometry, was used in this study to elucidate the submodular 

architecture and molecular mechanisms underlying Mediator head module function. In 

addition, in vitro transcription and PIC assembly assays using native yeast promoter 

templates, nuclear extracts and the corresponding yeast activator were established and 

optimized. These assays allow functional studies of Pol II transcription initiation in an in 

vivo like environment with the advantage of in vitro manipulations, like depletion and 

addition of recombinant factors. During the first main project, the function of the non-

essential Med8C/18/20 subcomplex was characterized in detail and correlated with 

structural data already available in the lab (Larivière et al, 2006). In the second main 

project, the essential Med11/22 subcomplex, which interacts directly with TFIIH 

(Esnault et al, 2008), was structurally and functionally characterized.  
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1.6 Additional contributions 
Additional experimental results leading to co-author publications are listed below. A 

more detailed description of the respective contributions is given in Chapter 3.4.  

The Mediator middle submodule Med7N/31 was functionally characterized (Chapter 

3.4.2). In vitro transcription with yeast nuclear extracts revealed a Med7N/31 

requirement for activation of Pol II transcription by acidic activators. Furthermore, a 

cooperation of Med31 and TFIIS during transcription initiation was established 

(Koschubs et al, 2009).  

The functional interaction of the metazoan Mediator subunit Med25 with the 

archetypical acidic transcription factor VP16 was analyzed (Chapter 3.4.3). An in vitro 

quenching assay was established to identify surface residues important for the Med25-

VP16 interaction. Additionally, the individual contributions of VP16 subdomains and the 

underlying cooperativity during transcription activation in yeast were characterized. The 

results contribute to the understanding of how activation domains have evolved to 

adapt to different unrelated target surfaces (Vojnic et al., in press).  

The functional role of TFIIB during scanning and transcription start site selection was 

analyzed (Chapter 3.4.4). In vitro assays with modified promoter templates were 

established to test mutations on the protein as well as on the DNA side. We could 

demonstrate that the INR alone determines TSS selection and that the -8 position is 

important for TSS recognition. Furthermore, our results suggest that the INR is 

recognized with the help of the TFIIB B-reader element during Pol II scanning 

(Kostrewa et al, 2009).  

Furthermore, in vitro assays using yeast nuclear extracts were established to study the 

function of Iwr1 (Czeko et al., in press) and the Prp19 complex (Chanarat et al., 

manuscript in revision) during transcription. All results and experimental details are 

described in detail in the PhD thesis of the respective first author and the respective 

publication.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Strains 
 
Table 4: Yeast strains (Sc) 
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Table 5: Yeast strains (Sp) 

 
Table 6: E. coli strains 

 

 

2.1.2 Plasmids 
 
Table 7: Plasmids used for recombinant expression of Med11/22 in E. coli 

table continued on next page 
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table continued on next page 
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Table 8: Plasmids used for recombinant expression of other proteins in E. coli  
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Table 9: Plasmids used as templates for yeast complementation experiments 

table continued on next page 
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table continued on next page 
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Table 10: Plasmids used for in vitro assays 
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2.1.3 Oligonucleotides 
A detailed list with all oligonucleotide used for molecular cloning is available through 

the Cramer laboratory. 

 

Table 11: Oligonucleotides used for in vitro experiments 

 
Table 12: Oligonucleotides used for quantitative real-time PCR 
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2.1.4 Antibodies 
 
Table 13: Antibodies used in this study 

 

2.1.5 Growth media and additives 
 
Table 14: Growth media 
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Table 15: Growth media additives 

 

2.1.6 Buffers and solutions 
Standard buffers and solutions were prepared as described (Sambrook & Russell, 

2001). 

 
Table 16: General buffers and solutions 
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Table 17: Recombinant protein purification buffers 
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Table 18: Buffers for in vitro biochemical assays 
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Table #: PCR program 

2.2 Methods 

2.2.1 Molecular cloning 
Preparation of chemically competent E. coli  
200 ml LB medium were inoculated with an overnight culture of the desired E. coli strain 

(Table 6) to a starting OD600 of 0.05. Cells were grown at 37°C to an OD600 of 0.5, then 

incubated on ice for 10 minutes. All following steps were carried out at 4°C. Cells were 

pelleted by centrifugation (3000 g / 10 min / 4°C) and washed with 50 ml TFB-1. Cells were 

again pelleted by centrifugation (3000 g / 10 min / 4°C) and resuspended in 4 ml of TFB-2. 

Cell suspension was aliquoted into tubes on dry ice and subsequently stored at – 80°C. 

 

Polymerase chain reaction (PCR) 
PCR primers usually contained a 5’ overhang (5’-GGGCCCGGG-3’) followed by the 

desired restriction site and 20-25 nt complementary to the target sequence. 

Hexahistidine (6His) tags and thrombin cleavage sites were introduced either by in-

frame cloning into the respective expression vector or by PCR. Bicistronic expression 

constructs were generated as described (Larivière et al, 2006). PCR reactions were 

carried out with Taq polymerase (Fermentas), Herculase or Herculase II polymerases 

(Stratagene), Pwo SuperYield DNA Polymerase (Roche) or Phusion High-Fidelity DNA 

Polymerase (Finnzymes) depending on the requirements and according to the 

manufacturerʼs manual. 50 µl PCR reactions typically contained 1-50 ng plasmid template 

or 100-500 ng yeast genomic DNA. Thermocycling programs usually comprised 30 cycles 

and were done on the Biometra T3000 Thermocycler. Annealing temperature and 

elongation times were adjusted to the specific needs of the individual reactions. PCR 

products were visualized by agarose gel electrophoresis (1-2% w/v agarose, 1:10000 

SYBR Safe DNA gel stain (Invitrogen) and 1x TBE buffer).  

 

Mutagenesis 
Point mutations and deletions were introduced using the PCR overlap extension 

method (Higuchi et al, 1988). Forward and reverse mutagenesis primers were 

designed carrying the mutation flanked by 20-25 nt complementary sequence on both 

sides. First two standard PCR reactions were done, amplifying the 5’ and 3’ end of the 

gene with an overlapping region containing the desired mutation. In a second step the 
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two overlapping fragments were used as templates to amplify the whole gene carrying 

the newly introduced mutation.  

 

Restriction digest, dephosphorylation and ligation 
PCR products were purified using the QIAquick PCR purification kit (Qiagen). Vectors 

and purified PCR product were typically digested over night using restriction 

endonucleases (New England Biolabs and Fermentas) according to the manufacturer’s 

manual. Digested vectors were subsequently dephosphorylated by addition of 1 u 

FastAP enzyme (Fermentas) according to the manufacturer’s manual. Typically, DNA 

fragments were separated by agarose gel electrophoresis (1-2% w/v agarose, 1:10000 

SYBR Safe DNA gel stain (Invitrogen) and 1x TBE buffer) and extracted using the 

QIAquick Gel Extraction Kit (Qiagen). PCR products and linearized vectors were 

typically ligated overnight at 16°C using 5 u of T4 DNA ligase (Fermentas) in a 20 µl 

reaction. A 5- to 10-fold molar excess of insert relative to the linearized vector was 

used.  

 

Transformation in E. coli and plasmid preparation 
Chemically competent E. coli XL-1 blue cells were transformed with DNA using a heat 

shock protocol. A 50 µl aliquot of cells was thawed on ice and either 5 µl of a ligation 

reaction or 1 µl of plasmid were added. After 15 min of incubation on ice, a heat shock 

was applied (45 sec / 42°C) followed by 2-5 min incubation on ice. 200 µl of LB 

medium were added and cells were incubated at for 1 h at 37°C shaking vigorously. 

Afterwards, cells were plated on LB-agar plates containing the corresponding 

antibiotics for selection of transformed cells and incubated over night at 37°C. A single 

colony was used to inoculate 5 ml LB-medium containing the corresponding antibiotics. 

The culture was grown over night at 37°C and plasmids were isolated using the 

QIAprep Spin MiniPrep kit (Qiagen). Newly generated plasmids were verified by 

restriction digest and DNA sequencing (Eurofins or GATC). 

 

2.2.2 General protein methods 
Protein expression and selenomethionine labeling  
Proteins were recombinantly expressed in E. coli BL21-Codon Plus (DE3)-RIL cells 

transformed with the respective expression plasmids as described previously (see 

2.2.1). LB medium, containing the corresponding antibiotics, was inoculated with a pre-
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culture to a starting OD600 of 0.1. Cultures were grown to an OD600 of 0.5-0.8 (37°C / 

140 rpm), then cooled down on ice for 30 min. Protein expression was induced by 

addition of 0.5 mM IPTG and incubation over night (18°C / 140 rpm). Cells were 

harvested by centrifugation (4400 g / 15 min / 4°C / Sorvall SLC6000 rotor). Cell pellets 

were flash-frozen in liquid N2 and stored at -80°C.  

Selenomethionine labeling of proteins was essentially done as described (Budisa et al, 

1995). Proteins were recombinantly expressed in methionine auxotroph E. coli Rosetta 

B834 (DE3) cells. LB medium, containing the corresponding antibiotics, was inoculated 

with a pre-culture to a starting OD600 of 0.1. Cultures were grown to an OD600 of 0.6 

(37°C / 140 rpm). Cells were then harvested (4400 g / 15 min / 4°C / Sorvall SLC6000 

rotor), washed and resuspended in minimal medium containing 50 mg/l 

selenomethionine and the corresponding antibiotics. Cultures were grown to OD600 0.8 

(37°C / 140 rpm) in the minimal medium. After cooling the culture down, protein 

expression was induced by addition of 0.5 mM IPTG and incubation over night (18°C / 

140 rpm). Cells were harvested by centrifugation (4400 g / 15 min / 4°C / Sorvall 

SLC6000 rotor). Cell pellets were flash-frozen in liquid N2 and stored at -80°C.  

 

Cell lysis 
Cell pellets were thawed on ice and then resuspended in the appropriate lysis buffer 

containing protease inhibitor cocktail. Cells were disrupted on ice by sonication (12 min 

/ 25% duty cycle / 30-40 output value). Afterwards the lysate was cleared by 

centrifugation (max. speed / 30 min / 4°C / Sorvall SS34 rotor). 

 

Protein purification 
Typically, recombinant proteins were purified using an initial affinity column followed by 

an ion exchange column and a size exclusion column. The specific purification 

protocols vary for each protein/subcomplex (see Chapter 2.2.3.). 

 

Protein concentration 
Purified proteins were concentrated using “Amicon Ultra” spin concentrators (Millipore) 

with appropriate sample volume and molecular weight cut-off. The manufacturer’s 

manual was followed.  
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Protein concentration determination 
Protein concentration was usually determined by the Bradford assay (Bradford, 1976). 

The assay was performed according to the manufacturer’s manual (Bio-Rad). A 

standard curve was generated for each batch of dye reagent using serum bovine 

albumin (Roth). Alternatively, protein concentrations were calculated from the 

absorbance at 280 nm measured with a NanoDrop spectrophotometer. Absorption 

coefficients were calculated using ProtParam (http://expasy.org/tools/protparam.html). 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
Protein samples were analyzed by SDS-PAGE (Laemmli, 1970) with 15-17 % 

acrylamide gels (acrylamide:bisacrylamide ratio = 37.5:1) in the Bio-Rad gel systems. 

Buffers and gel solutions are listed in Table 16. Before loading, SDS sample buffer was 

added and samples boiled for 2 min at 95°C. Samples requiring high resolution over a 

broad molecular weight range, like Mediator complex purifications and immobilized 

template assay elutions, were separated using pre-casted NuPAGE Novex Bis-Tris 

minigels (Invitrogen). MOPS and MES running buffers (Invitrogen) were used 

according to the manufacturer’s manual.  

Gels were stained with Coomassie gel staining solution for approximately1 h and 

subsequently destained with destaining solution over night. Alternatively, gels were 

used for Western blotting as described below.  

 

Western Blot 
Proteins were first separated by SDS-PAGE as described above and then transferred 

to a PVDF membrane (Schleicher & Schuell; pre-wet with 100% ethanol) using the wet 

blotting system from Bio-Rad. The manufacturer’s manual was followed. Transfer was 

done either at 100 V for 1 h on ice or at 35 V over night at 4°C. For pre-cast NuPAGE 

Novex Bis-Tris minigels (Invitrogen) the recommended NuPAGE transfer buffer 

containing 20% (v/v) ethanol was used. After transfer, the membranes were air-dried 

for 30 min and then blocked for at least 1 h with WB blocking buffer. The blot was then 

incubated for at least 3 h at room temperature with the primary antibody in WB blocking 

buffer followed by three washing steps with WB blocking buffer, incubating 10 min at 

each step. Afterwards, the membrane was incubated with the secondary antibody in 

WB blocking buffer for at least 1.5 h. The membrane was washed three times with 1x 

PBS, incubating 10 min at each step. Secondary antibodies were usually coupled to 
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horseradish peroxidase. Signals were detected using the chemiluminescence kit 

(Pierce) followed by exposure of the membrane to high-sensitivity films (Invitrogen) and 

subsequent developing using a X-omat M35 developing machine (Kodak). Alternatively 

the chemiluminscent signals were detected with the Mini-LAS300 System (Fujifilm Life 

Sciences) and quantified using the ImageQuant software suite (GE Healthcare).  

 

Edman sequencing 
Proteins were separated by SDS-PAGE, stained and destained as described above. 

The band of interest was excised, dried in a speed-vac and subsequently rehydrated in 

50 µl swelling buffer. Afterwards 200 µl of ddH2O and a small piece of PVDF 

membrane (Schleicher & Schuell), pre-wet with 100% methanol, were added. Once the 

solution turned blue, 20 µl of methanol were added. The sample was incubated 

approximately2 days at room temperature. Then the membrane piece was washed 5x 

with 10% (v/v) methanol by incubating for 1 min each time. Afterwards, the protein was 

N-terminally sequenced from the dry membrane using a PROCISE 491 sequencer 

(Applied Biosystems).  

 

Mass spectrometry 
Proteins were separated by SDS-PAGE, stained and destained as described above. 

For protein identification by mass spectrometry, the band of interest was excised, 

transferred to a tube containing 100 µl ddH2O and sent to the protein analysis core 

facility (Adolf-Butenandt-Institute, LMU). Analysis of immobilized template eluates by 

mass spectrometry was performed in collaboration with Dr. Ignasi Forné (Group of 

Prof. Axel Imhof, LMU, Munich) as described in Chapter 2.2.4.  

 

Limited proteolysis 
Limited proteolysis was typically done using chymotrypsin or trypsin proteases (Sigma). 

Usually, 20 µg of purified protein in the respective gelfiltration buffer were incubated 

with 100 ng of protease. Time courses were done by incubating the reactions at 37°C 

for 30 sec, 1 min, 3 min, 10 min, 30 min, and 60 min immediately followed by addition 

of SDS sample buffer and boiling for 2 min at 95°C. Fragments were separated by 

SDS-PAGE and identified by Edman sequencing as described above. 
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Static light scattering 
Static light scattering measurements were done with a triple detector TDA (Viscotek) 

connected to a Superose-6 gelfiltration column (GE Healthcare) preequilibrated with 

corresponding buffer. 200 µl of protein (approximately2 mg/ml) were injected on the 

column and the eluate analysed by the triple detector, recording refractive index, UV 

and viscosity. From these values the hydrodynamic radius and the molecular weight 

were calculated using the static light scattering software package (Viscotek).  

 

Crystallization and structure solution 
Initial crystallization screens were performed at the MPI crystallization facility (MPI of 

Biochemistry, Martinsried). Typically, six different 96-well crystallization screens 

(Hampton Index, Nextal Classics, Nextal - The Cations, Nextal – The Anions, MPI 

Magic I and MPI Magic II) with 200 nl drop size were set up at room temperature by a 

robot. Fine screens around promising conditions were done manually in 24-well 

hanging drop plates (Easy Xtal Tool, Qiagen). Usually pH, protein concentration, 

precipitant and additive concentration was varied. Crystallization drops were set up in 

different protein:buffer ratios (1:1, 1:2 and 2:1) for each condition.  

Crystals of Schizosaccharomyces pombe (Sp) Med18 and of the Sp Med8C/18 

heterodimer were grown at 20°C in hanging drops over reservoirs containing 100 mM 

Tris (pH 8.5), 2 M sodium acetate, and 2 M sodium formate. The Med18 structure was 

solved by the single-wavelength anomalous dispersion method using selenomethionine 

labeled protein crystals. The Med8C/Med18 structure was solved by molecular 

replacement using the Med18 structure as a model . 

Crystals of Med11/22 were grown at 20°C in hanging drops over reservoirs containing 

100 mM MES pH 6, 5.5% PEG 6000 and 100 mM MgCl2. Microseeding was performed 

to optimize crystals. Initial crystals were transferred into 100 µl reservoir solution and 

vortexed vigorously. 0.2 µl of the resulting microseeding solution was added to each 

2 µl drop to nucleate crystal growth. Optimized crystals were harvested by gradually 

adding glycerol to a final concentration of 34% (v/v) and were subsequently flash-

frozen in liquid nitrogen. Diffraction data was collected at 100 K on a PILATUS 6M 

detector at the Swiss Light Source SLS, Villigen, Switzerland. Diffraction data was 

processed using XDS and XSCALE (Kabsch, 1993). The program SOLVE (Terwilliger 

& Berendzen, 1999) identified 36 selenium sites in the asymmetric unit that were used 

for phasing. Solvent flattening, non-crystallographic symmetry averaging and initial 
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model building was done with RESOLVE (Terwilliger & Berendzen, 1999) and 

ARP/warp (Perrakis et al, 2001). The resulting electron density map allowed for manual 

building of most of Med11 and Med22 using COOT (Emsley & Cowtan, 2004). The 

model was refined using conjugate gradient minimization in PHENIX (McCoy et al, 

2007). The asymmetric unit contained twelve Med11/22 heterodimers that deviated 

only slightly at the C-termini of the proteins. The structures and diffraction data have 

been deposited in the Protein Data Bank. All structure figures depict chain A/B and 

were prepared using PyMol (DeLano, 2002) . 

 

2.2.3 Recombinant protein purification protocols 
Purification protocols for all recombinant proteins used in this study are listed below. All 

buffers are listed in Table 17. 

 

Med8C/18/20 and Med18/20 (Sc) 
The cleared lysate from two liters of culture was gradually precipitated by slowly adding 

saturated (NH4)2SO4 solution to a final concentration of 30%. Afterwards, suspension 

was stirred on ice for 30 min and centrifuged (15000 rpm / 30 min / 4°C / Sorvall SS34 

rotor). Supernatant was discarded and the pellet resuspended in 8 ml of buffer A. 

Buffer B was added to a final conductivity of 10-15 mS/cm. The proteins were further 

purified by anion exchange chromatography using a MonoQ 10/100 column  

(GE Healthcare). The column was equilibrated with buffer B containing 100 mM NaCl 

and the complex was eluted with a linear gradient of 20 CVs from 100 mM to 500 mM 

NaCl in buffer B. Subsequently, the sample was applied to a Superdex 200 size 

exclusion column (GE Healthcare) equilibrated with buffer A. The protein was 

concentrated to approximately1 mg/ml, flash frozen in small aliquots in liquid N2 and 

stored at -80°C. 

 

Med8C/18 (Sp) 
The cleared lysate from three liters of culture was loaded onto a 2 ml Ni-NTA column 

(Qiagen) equilibrated with buffer A. The column was washed with 10 CV of buffer A 

containing 10 mM imidazole and with 10 CV of buffer A containing 20 mM imidazole. 

The complex was eluted with buffer A containing 300 mM imidazole. Buffer B was 

added to a final conductivity of 10-15 mS/cm. The proteins were further purified by 

anion exchange chromatography using a MonoQ 10/100 column (GE Healthcare). The 
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column was equilibrated with buffer B containing 100 mM NaCl and the complex was 

eluted with a linear gradient of 10 CVs from 100 mM to 1 M NaCl in buffer B. After 

concentration the sample was applied to a Superose-12 size exclusion column (GE 

Healthcare) equilibrated with buffer A. The protein was concentrated to 

approximately40 mg/ml for crystallization. 

 

Med11/22 (Sc) 
The cleared lysate from three liters of culture was loaded onto a 2 ml Ni-NTA column 

(Qiagen) equilibrated with buffer A. The column was washed with 10 CV of buffer A 

containing 10 mM imidazole and with 10 CV of buffer A containing 20 mM imidazole. 

The complex was eluted with buffer A containing 300 mM imidazole followed by 

overnight cleavage with thrombin while dialyzing against buffer B. The proteins were 

further purified by anion exchange chromatography using a HiTrap Q HP column (GE 

Healthcare). The column was equilibrated with buffer B and the complex was eluted 

with a linear gradient of 25 CVs from 50 mM to 500 mM NaCl in buffer B. 

Subsequently, the sample was applied to a HiLoad Superdex-75 pg 26/60 size 

exclusion column (GE Healthcare) equilibrated with buffer A. 

 

Med25-ACID (Hs) 
The cleared lysate from four liters of culture was loaded twice onto a 2 ml Ni-NTA 

column (Qiagen) equilibrated with buffer A. The column was washed with 10 CV of 

buffer B containing 1 M NaCl, 10 CV of buffer A and 10 CV of buffer A containing 10 

mM imidazole. The protein was eluted with 10 CV of buffer A containing 200 mM 

imidazole, subsequently diluted with 10 CV of buffer B containing 50 mM NaCl and 

further purified by cation exchange chromatography using a MonoS column (GE 

Healthcare). The column was equilibrated with buffer B and the complex was eluted 

with a linear gradient of 10 CVs from 0 mM to 1 M NaCl in buffer B. Subsequently, the 

sample was applied to a Superose 6 size exclusion column (GE Healthcare) 

equilibrated with buffer C. The protein was concentrated to approximately5 mg/ml, flash 

frozen in small aliquots in liquid N2 and stored at -80°C. 
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Med7N/31 (Sc) 

The cleared lysate from 2 liters of culture was loaded onto a 3 ml Ni-NTA column (Qiagen) 

equilibrated with buffer A. The column was washed with 20 CV of buffer A containing 20 

mM imidazole. The complex was eluted with buffer A containing 200 mM imidazole. 

followed by overnight cleavage with thrombin. The proteins were further purified by 

anion exchange chromatography using a MonoQ 10/100 column (GE Healthcare). The 

column was equilibrated with buffer B and the complex was eluted with a linear 

gradient of 20 CVs from 100 mM to 1 M NaCl in buffer B. After concentration, the 

sample was applied to a HiLoad Superdex-200 size exclusion column (GE Healthcare) 

equilibrated with buffer C. 

 
TFIIB (Sc) 
The cleared lysate from one liter of culture was incubated in batch (20 min / 4°C).with 2 

ml Ni-NTA material (Qiagen) equilibrated with buffer A containing 5 mM imidazole, 

0.2% Tween and protease inhibitor cocktail. After transferring the material to a gravity 

flow column, it was washed with 10 CV buffer A containing 10 mM imidazole. The 

protein was eluted with 3 CV of buffer A containing 200 mM imidazole. The sample was 

diluted with buffer B to a final conductivity of 50 mSi/cm and further purified by cation 

exchange chromatography using a MonoS 10/100 GL column (GE Healthcare). The 

column was equilibrated with buffer C and the complex was eluted with a linear 

gradient of 15 CVs from 100 mM to 1 M NaCl in buffer C. Subsequently, the sample 

was applied to a Superdex 75 10/300 GL size exclusion column (GE Healthcare) 

equilibrated with buffer D. 

 

Gal4-VP16 
The cleared lysate from three liters of culture was loaded twice onto a 2 ml Ni-NTA 

column (Qiagen) equilibrated with buffer A. The column was washed with 10 CV of 

buffer A, 10 CV of buffer B and 5 CV of buffer B containing 20 mM imidazole. The 

protein was eluted with 10 CV of buffer B containing 200 mM imidazole and further 

purified by anion exchange chromatography using a HiTrap Q HP column (GE 

Healthcare). The column was equilibrated with buffer C and the complex was eluted 

with a linear gradient of 10 CVs from 0 mM to 700 mM NaCl in buffer C. Subsequently, 

the sample was applied to a Superose 12 size exclusion column (GE Healthcare) 
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equilibrated with buffer D. The sample was concentrated to approximately0.5 mg/ml, 

flash frozen in small aliquots in liquid N2 and stored at -80°C. 

 

Gal4-AH 
The cleared lysate from three liters of culture was loaded twice onto a 2 ml Ni-NTA 

column (Qiagen) equilibrated with buffer A. The column was washed with 10 CV of 

buffer A, 10 CV of buffer B and 5 CV of buffer B containing 20 mM imidazole. The 

protein was eluted with 10 CV of buffer B containing 200 mM imidazole and further 

purified by anion exchange chromatography using a HiTrap SP column (GE 

Healthcare). The column was equilibrated with buffer C and the complex was eluted 

with a linear gradient of 10 CVs from 0 mM to 700 mM NaCl in buffer C. Subsequently, 

the sample was applied to a Superose 12 size exclusion column (GE Healthcare) 

equilibrated with buffer D. The sample was concentrated to approximately0.5 mg/ml, 

flash frozen in small aliquots in liquid N2 and stored at -80°C. 

 

Gcn4 
The cleared lysate from two liters of culture was loaded twice onto a 2 ml Ni-NTA 

column (Qiagen) equilibrated with buffer A. The column was washed three times with 

10 CV of buffer A containing 20 mM imidazole. The protein was eluted with 10 CV of 

buffer A containing 500 mM imidazole, subsequently diluted 1:5 with buffer B and 

further purified by cation exchange chromatography using a HiTrap SP column (GE 

Healthcare). The column was equilibrated with buffer B and the complex was eluted 

with a linear gradient of 10 CVs from 0 mM to 1 M NaCl in buffer B. Subsequently, the 

sample was applied to a Superdex 200 size exclusion column (GE Healthcare) 

equilibrated with buffer C. The sample was concentrated to approximately0.5 mg/ml, 

flash frozen in small aliquots in liquid N2 and stored at -80°C. 
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2.2.4 In vitro biochemical assays 
Yeast nuclear extract preparation, in vitro transcription and immobilized template assay 

were done as described (Ranish & Hahn, 1991; Ranish et al, 1999) with some 

changes.  

 

Yeast nuclear extract preparation 
For yeast nuclear extract preparation three liters of Sc were grown to 5x107 cells/ml in 

YPD containing 50 µg/ml ampicillin. Cells were harvested by centrifugation and the 

pellet was resuspended in 30 ml buffer A and incubated at 30°C for 15 min. Afterwards, 

cells were centrifuged and resuspended in 20 ml YPD/S, 3 ml 2 M sorbitol, 3 ml buffer 

A containing 18 mg zymolyase (Seikagaku) and protease inhibitor cocktail. Cells were 

incubated at 30°C for 15 – 60 min until at least 85% of cells were spheroblasted, then 

100 ml of YPD/S was added and cells were centrifuged. Pellet was resuspended in 250 

ml YPD/S and incubated at 30°C for 30 min. Afterwards cells were washed twice with 

200 ml ice-cold YPD/S and once with 200 ml 1 M ice-cold sorbitol. Cells were 

resuspended in 100 ml ice-cold buffer B and lysed on ice in a Dounce glass 

homogenizer (Kontes) with a small pestle. Crude nuclei were isolated by centrifuging 

(5000 rpm / 4°C / SLA-1500 rotor) two times for 8 min and two times for 5 min, 

transferring the supernatant each time to a new bottle. Afterwards nuclei were pelleted 

by centrifugation (13000 rpm / 30 min / 4°C / SS34 rotor), washed once with 15 ml 

buffer C, resuspended in 15 ml buffer C, flash frozen in liquid N2 and stored at -80°C. 

Nuclei were lysed by adding 3 M (NH4)2SO4 (pH 7.5 at 20°C) to a final concentration of 

0.5 M and incubation (30 min / 4°C / turning wheel). Afterwards nuclear lysate was 

ultracentrifuged (28000 rpm / 90 min / 4°C). Nuclear proteins in the supernatant were 

precipitated by addition of 0.35 g solid (NH4)2SO4 per ml and incubation (30 min / 4°C /  

turning wheel).  After centrifugation the nuclear proteins were resuspended in 250-1000 

µl of buffer D and dialysed for 4.5 h against buffer D containing 75 mM (NH4)2SO4.  

Nuclear extracts were flash frozen in liquid nitrogen and stored at -80°C. Concentration 

of nuclear extracts was determined by Bradford assay diluting the sample appropriately 

with 0.1% (w/v) SDS.  
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Pol II in vitro transcription with nuclear extracts 

Pol II in vitro transcription was done on various yeast promoter DNA templates inserted 

into pBluescript II KS+ plasmid (Table 9). The 25 µl transcription reaction mixture 

contained 1x transcription buffer, 200 µg yeast nuclear extract, 200 ng of template 

plasmid, 192 µg of phosphocreatine, 0.2 µg of creatine phosphokinase, 10 U of 

RiboLock RNase inhibitor (Fermentas) and 100 µM nucleoside triphosphates (NTPs). 

For activated transcription, 150 ng of recombinant Gal4-VP16, 200 ng of Gal4-AH or 

200 ng of recombinant Gcn4 was added. The reaction was incubated for 60 min at 

18°C. For temperature-sensitive yeast nuclear extracts the reactions were incubated 

for 45 min at 30°C. RNA was isolated using the RNeasy MinElute kit (Qiagen) 

according to the manufacturer’s manual. RNA was eluted from the column with 14 µl 

RNase-free H2O and in vitro transcripts were subsequently analyzed by primer 

extension. The 20 µl primer annealing reaction contained 1x annealing buffer, 12 µl 

eluate from RNeasy MinElute column and 0.125 pmol fluorescently labeled oligo (Table 

11). After boiling the samples 3 min at 95°C, the primer was annealed for 45 min at 

48°C. Afterwards, 40 µl synthesis mix containing 1x synthesis buffer, 0.15 mM dNTPs, 

12.5 u MuLV reverse transcriptase (Roche) and 1 µg actinomycin D, was added. The 

reverse transcription reaction was incubated for 30 min at 37°C. The resulting cDNA 

was EtOH precipitated and resuspended in 4 µl RNAse A (40 µg/ml). After incubating 3 

min at 18°C, 4 µl formamide sample buffer were added and the samples were boiled 

for 1 min. Transcripts were separated on a mini sequencing gel in 1x TBE buffer, 

scanned with a Typhoon 9400 and quantified with the ImageQuant software 

(GE Healthcare). 

 

Pol II immobilized template assay with nuclear extracts 
Pol II immobilized template assays were done on various linear yeast promoter 

templates. Templates were amplified by PCR from the in vitro transcription template 

plasmids (Table 9) using a biotin labeled forward primer and a regular reverse primer 

(Table 11). Afterwards, the PCR products were purified with the QIAquick PCR 

purification kit (Qiagen) followed by phenol chloroform extraction. For each reaction 

approximately 4.5 pmol of biotin labeled template were coupled to 200 µg of magnetic 

streptavidin beads (Dynabeads M-280, Invitrogen). Coupled beads were blocked for 15 

min at 20°C with bead blocking buffer and subsequently for 15 min at 20°C with 1x 

transcription buffer containing 0.5 mM biotin. After washing with 1x transcription buffer, 
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beads were resuspended in 20 µl 1x transcription buffer and 5 pmol recombinant Gcn4 

were added. After incubating for 10 min at 20°C while shaking, the beads were washed 

twice with 1x transcription buffer and resuspended in 20 µl 1x transcription buffer. A 

100 µl immobilized template reaction contained 20 µl of prepared beads, 1 mg yeast 

nuclear extract, 5 µg competitor DNA (HaeIII digested genomic E. coli DNA), 1x 

transcription buffer, 768 µg of phosphocreatine, 0.8 µg of creatine phosphokinase, 

0.05% NP-40 and 2.5 mM DTT. Assembly was done for 1 h at 4°C while shaking. 

Templates were washed twice with 1x transcription buffer containing 2 µg/ml 

competitor DNA, twice with 1x transcription buffer containing 500 mM K acetate and 

twice with 1x transcription buffer. Proteins were eluted by boiling beads in SDS-loading 

dye and subsequently analyzed by SDS-PAGE and Western blotting.  

 

Analysis of immobilized template assays by tandem mass spectrometry 
For tandem mass spectrometry analysis, 5 identical immobilized template reactions 

were prepared as described above and pooled after the last washing step. Proteins 

were eluted by boiling beads in SDS-loading dye and subsequently loaded on a 15% 

SDS-polyacrylamide gel. The proteins were run approximately 1 cm into the resolving 

gel. Then the gel was stained with Coomassie and destained as described above. 

Each lane was cut horizontally in eight equally sized gel slices. Afterwards, proteins 

were reduced, alkylated and digested with trypsin. Peptides were analyzed by tandem 

mass spectrometry using a LTQ Orbitrap (Thermo) in collaboration with the Prof. Axel 

Imhof laboratory (LMU, Munich). Proteins were identified using MASCOT 

(www.matrixscience.com) and quantified label-free using spectral count analysis (Zhu 

et al, 2010). 

 

Electrophoretic mobility shift assays  
Binding reactions (20 µl) contained 5 pmol Gal4-VP16 and 5, 50 or 150 pmol ACID 

variants. We used 1 pmol of a DNA duplex containing a single Gal4-binding site (Table 

11). After incubation for 20 min at room temperature, ACID variants were added 

accordingly, and the mixture was incubated for 10 min. Formed complexes were 

separated on 5% acrylamide gels in TGOE buffer (0.25 M Tris, pH 8.3, 1.9 M glycine). 

Bands were quantified with a Typhoon 9400 scanner and the ImageQuant Software 

(Amersham Biosciences). 
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2.2.5 Yeast methods 
Cryo-stocks of yeast strains 
A single colony was restreaked on a YPD plate and incubated for 2 days at 30°C. All 

cells from the plate were transferred to 1 ml sterile 40 % v/v glycerol, vortexed and 

flash-frozen in liquid nitrogen. Cryo-stocks were stored at -80°C. 

 
Yeast transformation 
50 ml of YPD medium were inoculated with a pre-culture grown over night to a starting 

OD600 of 0.1 and grown to a final OD600 of 0.8 (30°C / 160 rpm). Cells were harvested 

by centrifugation (2500 rpm / 5 min / 4°C) and washed with 25 ml ddH2O. Afterwards, 

the cells were washed with 1 ml 100 mM lithium acetate, then resuspended in 400 µl 

100 mM lithium acetate and divided into 100 µl aliquots. After centrifugation (max. 

speed / 15 sec) the supernatant was discarded and 240 µl 50% (w/v) PEG 3350, 36 µl 

1 M lithium acetate, 50 µl boiled salmon sperm DNA (2 mg/ml) and 34 µl DNA (1-5 µg 

linear DNA or 200 ng plasmid DNA) were added. The cells were vortexed vigorously for 

1 min, incubated for 30 min at 30°C and then heat-shocked for 15 min at 42°C. 

Afterwards, cells were centrifuged (max. speed / 15 sec), the supernatant discarded 

and the pellet resuspended in 200 µl YPD medium. After recovery (30°C / 1 h / 

shaking), cells were centrifuged again and the pellet resuspended in 200 µl ddH2O. 50 

µl of the suspension was plated on the respective drop-out plates and incubated for 2-3 

days at 30°C.  

 

Sporulation and tetrad dissection 
Freshly grown diploid cells were restreaked on sporulation plates and incubated for 

several days at 30°C. Sporulation was monitored under the light microscope. When at 

least 5% of the cells had sporulated, a loop full of cells was washed twice with 500 µl 

ddH2O and resuspended in 100 µl ddH2O. The outer cell wall of the tetrads was 

destroyed by adding 10 µl Glusulase (Perkin-Elmer). After 5 min incubation at room 

temperature, suspension was put on ice and 400 µl of ddH2O were added. Fraction of 

cell suspension was streaked out on a YPD plate and spores were dissected using a 

tetrad microscope. Tetrads with four growing spores were restreaked on YPD plates 

and corresponding drop out plates to check for marker segregation.  
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Complementation assays 

To assess the phenotype of mutants, yeast complementation assays were performed. 

The respective shuffle strain, carrying a genomic knockout of the gene of interest and 

wild-type copy of the gene including promoter and terminator on plasmid pRS316, was 

used. Various constructs including the promoter and terminator region on plasmid 

pRS315, typically empty plasmid, wild-type gene and mutated gene, were transformed 

into the respective shuffle strain. After selection on drop-out plates, equal amounts of 

freshly grown yeast cells in SDC (-Ura/-Leu) were resuspended in water and and ten-

fold dilutions were spotted on 5-FOA and SDC (-Ura/-Leu) plates. Viable mutant strains 

were streaked twice on 5-FOA plates and then on SDC (-Leu). Equal amounts of 

freshly grown yeast cells in SDC (-Leu) were resuspended in water, ten-fold dilutions 

were spotted on YPD plates and plates were subsequently incubated at 30°C and 37°C 

to assess fitness and temperature sensitivity. 
 

Growth curves 

Growth curves were recorded by inoculating 50 ml YPD medium with a pre-culture 

grown over night to a starting OD600 of 0.1. The culture was grown at 30°C / 160 rpm 

for at least 10 h. Growth was monitored by measuring the OD600 of the culture every 

hour.  

 

Tandem affinity purification 
Tandem affinity purification (TAP) from 3 l of yeast culture (5x107 cells/ml) was 

essentially done as described (Puig et al, 2001).  

 

Denaturing protein extraction 
Denaturing protein extraction from yeast cells was carried out essentially as described 

(Knop et al, 1996). A 5 ml yeast culture was grown in YPD overnight (30°C / 160 rpm). 

5 OD600 of cells were washed with 1 ml ddH2O and subsequently resuspended in 500 

µl ddH2O. After addition of 150 µl 1.85 M NaOH containing 7.5% (v/v) β-

mercaptoethanol, the suspension was incubated for 20 min on ice. Proteins were 

precipitated by adding 150 µl of 55% trichloroacetic acid and incubation for another 20 

min on ice. After centrifugation (max. speed / 20 min / 4°C / table top centrifuge), the 

supernatant was removed and 1 ml of acetone added. After centrifugation (max. speed 

/ 10 min / 4°C / table top centrifuge) the pellet was air-dried. 100 µl of 2x SDS sample 
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buffer and 20 µl of 1 M Tris base were added. Samples were boiled for 2 min at 95°C 

before loading on a SDS-PAGE. 
 
Immunoprecipitation from whole cell extracts 
A 50 ml yeast culture was grown in YPD (30°C / 160 rpm) to an OD600 of approximately 

5. Cells corresponding to 160 OD600 were harvested by centrifugation, washed once 

with 25 ml ddH2O and resuspended in 1 ml TAP lysis buffer containing protease 

inhibitor cocktail and 0.5 mM DTT. Cell suspension was transferred to a 2 ml tube and 

1 ml of 0.5 mm Zirconia beads (Roth) were added. Cells were lysed in in a mixer mill 

(Retsch) for 30 min at 4°C. Lysate was transferred to a new tube and centrifuged (max. 

speed / 30 min / 4°C). 100 µl of the cleared lysate were set aside as input control. To 

the remaining sample the detergent Igepal CA-630 (Sigma) was added to a final 

concentration of 0.05%. 20 µl of IgG-coupled magnetic beads (Invitrogen) were 

washed twice twice with TAP lysis buffer containing 0.05% Igepal CA-630. Washed 

beads were added to the lysate and incubated on a turning wheel for 45 min at 4°C. 

Magnetic beads were subsequently washed 5 times with 1 ml TAP lysis buffer 

containing 0.05% Igepal CA-630, protease inhibitor cocktail and 0.5 mM DTT. After 

removing the last wash, 30 µl of 2x SDS sample buffer were added to the beads and 

samples were boiled for 2 min at 95°C.  

 

Chromatin immunoprecipitation 
All chromatin immunoprecipitation experiments were performed in biological duplicates 

in YPD as previously described in detail (Aparicio et al, 2005; Mayer et al, 2010). Since 

the Med11/22 mutant strains displayed severe growth defects and larger cell sizes 

compared to wild-type, cells were counted instead of measuring optical density. To 

minimize the risk of acquiring a rescue mutation and ensure biological significance of 

our observations, the used biological duplicates were already separated before 

shuffling out the respective rescue plasmid and several rounds of selection. Phenotype 

and growth was monitored closely at each step. Overnight cultures were diluted in 

fresh medium to 1x106 cells/ml (40 ml cultures, 160 rpm shaking incubator, 30°C) and 

grown to mid-log phase (1x107 cells/ml) before formaldeyde crosslinking. Input and 

immunoprecipitated samples were assayed by quantitative real-time PCR to assess 

occupancy of proteins at three different promoters. Primer pairs directed against the 

promoter of the highly transcribed ILV5 gene, the housekeeping gene ADH1, the 
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glucose-repressed GAL1 gene as well as against a heterochromatic control region of 

chromosome V were designed (Table 12) and the corresponding PCR efficiencies 

determined. All primer pairs used in this study had PCR efficiencies in the range of 

95-­‐100%. 25 µl PCR reactions contained 1 µl DNA template, 2 µl of 10 µM primer pairs 

and 12.5 µl iTaq SYBR Green Supermix (Bio-­‐Rad). Quantitative PCR was performed 

on a CFX96 Real-­‐Time System (Bio-­‐Rad) using a 3 min denaturing step at 95°C, 

followed by 49 cycles of 30 s at 95°C, 30 s at 61°C and 15 s at 72°C. Threshold cycle 

(Ct) values were determined using the Ct determination mode “Regression” of Bio-­‐Rad 

CFX Manager software package (Version 1.1). Fold enrichment over heterochromatic 

control region was determined and calculated as described (Aparicio et al, 2005).  

 

2.2.6 Gene-expression profiling 
Experimental setup for „Structure-system correlation defines the gene regulatory 
Mediator submodule Med8C/18/20“ (see Chapter 3.1) 
Gene expression profiling was done in collaboration with the laboratory of Prof. F. 

Holstege (University Medical Center Utrecht). All strains except med8C∆ are as 

described (van de Peppel et al, 2005). med8C∆ is isogenic to S288c. Truncation was 

made by using the ADH1 terminator from pFA6a-13myc-kanMX6 (Longtine et al, 

1998). All experiments were performed in SC medium with 2% glucose. For microarray 

analysis, two independent colonies were inoculated and overnight cultures were diluted 

in fresh medium to an OD600 of 0.15 (60 ml cultures, 250 rpm shaking incubator 30°C). 

Cells were harvested by centrifugation (4000 rpm, 3 min) at an OD600 of 0.6, and pellets 

were frozen in liquid nitrogen. The RNA reference was obtained as described (van de 

Peppel et al, 2003). Total RNA was prepared by hot phenol extraction. Additionally, 

RNA was treated with DNase (Qiagen) and cleaned up using the RNAeasy kit 

(Qiagen). The mRNA was amplified by in vitro transcription using T7 RNA polymerase 

on 1 µg of total RNA. During in vitro transcription, 5-(3-aminoallyl)-UTP (Ambion) was 

incorporated into the single-stranded cRNA. Cy3 or Cy5 fluorophores (Amersham) 

were coupled to 3 µg of cRNA. Before hybridization, free dyes were removed using 

RNAClean (Agencourt), and the efficiency of cDNA synthesis and dye incorporation 

was measured using a spectrophotometer (SpectraMax190, Molecular Devices). C6-

amino-linked oligonucleotides (70 nucleotides in length), the Yeast Genome 

ArrayReady (Operon) were purchased from Qiagen and were printed on Codelink 

slides following manufacturers instructions (GE Healthcare) with a MicroGrid II 
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(Apogent Discoveries) using 48-quill pins (Microspot2500; Apogent Discoveries). Each 

gene is represented twice and the arrays additionally contained 2838 control features 

for external control normalization and QC (van de Peppel et al, 2003). From each 

sample, 2 µg cRNA (with a specific activity of 2–6% dye-labeled nucleosides) was 

hybridized, together with 2 µg cRNA from the reference, for 16–20 h at 42 °C (Agilent 

microarray hybridisation chamber). After scanning (G2565AA Agilent scanner, 100% 

laser power, 30% photomultiplier tube), raw data was extracted with Imagene 7.5 

(Biodiscovery). After image quantification and local background subtraction, all 

negative values were replaced with the standard deviation of the local background. 

Print-tip with a span of 0.4 was applied to normalize genes (Yang et al, 2002). After 

averaging of duplicate spots for each gene on the array, data were visualized and 

clustered with GeneSpring 7.2 (SiliconGenetics). For each mutant individually, the 

replicate profiles were compared to the replicate wt profiles through the common 

reference with ANOVA (R/MAANOVA version 0.98-7 http://cran.r-

project.org/src/contrib/Descriptions/ maanova.html). In a fixed effect analysis, sample, 

array, spot, and dye effects were modeled. P-values were determined by a permutation 

F2 test in which residuals were shuffled 5000 times, Benjamini-Hochberg multiple-

testing correction was applied. Genes with p < 0.05 and an average fold change over 

the four measurements of at least 1.7 were considered significant. Pearson’s 

correlation was calculated in Microsoft Excel. For each pair of deletion strains the 

respective lists of significantly changed genes were merged and the respective 

correlation coefficient (R-value) was calculated. 

Overrepresented biological processes for genes with significant expression changes 

were determined using GO Slim Mapper (http://db.yeastgenome.org/cgi-

bin/GO/goSlimMapper.pl) based on the GO database (Ashburner et al, 2000). GO Slim 

Mapper distributes genes to 32 different biological processes according to their GO 

annotation. Additionally it provides the corresponding genomic background level for 

each process. All genes categorized with the GO term “Biological process” or “not 

mapped” were listed together as “not annotated”. 
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Experimental setup for „Mediator head subcomplex Med11/22 contains a 
common helix bundle building block with a specific function in transcription 
initiation complex stabilization“ (see Chapter 3.2) 
Gene expression profiling was done in the laboratory of Prof. P. Cramer. All 

experiments were performed in YPD medium with 2% glucose. For microarray 

analysis, at least two independent colonies were used for inoculation and overnight 

cultures were diluted in fresh medium to 1x106 cells/ml (25 ml cultures, 160 rpm 

shaking incubator, 30°C). Cells were harvested in early log-phase (1x107 cells/ml) by 

centrifugation. Total RNA was prepared after cell lysis using a mixer mill (Retsch) and 

subsequent purification using the RNAeasy kit (Qiagen). The total RNA preparation 

was treated on-column with DNase (Qiagen). All following steps were conducted 

according to the Affymetrix GeneChip Expression Analysis Technical Manual (P/N 

702232 Rev. 2). Briefly, one-cycle cDNA synthesis was performed with 1 µg of total 

RNA. In vitro transcription labeling was carried out for 16 h. The fragmented samples 

were hybridized for 16 h on Yeast Genome 2.0 expression arrays (Affymetrix), washed 

and stained using a Fluidics 450 station, and scanned on an Affymetrix GeneArray 

scanner 3000 7G. Data analysis was performed using R/Bioconductor (Gentleman et 

al, 2004). S. pombe probes were filtered out prior to normalization with the GCRMA 

algorithm (Wu et al, 2004). Linear model fitting and multiple testing correction using an 

empirical Bayes approach was performed using the LIMMA package (Smyth, 2004). 

Differentially expressed genes were defined as having an adjusted p-value smaller 

than 0.05 and an estimated fold change of at least 2.0 (calculated as the fold change of 

the average expression in the replicate measurements). Hierarchical clustering was 

calculated using TIGR MeV application (Saeed et al, 2003). Microarray data were 

submitted to the ArrayExpress database (http://www.ebi.ac.uk/microarray). Pearson’s 

correlation coefficients were calculated as described above. Overrepresented biological 

processes for genes with significant expression changes were determined using GO 

Term Finder tool (http://go.princeton.edu/cgi-bin/GOTermFinder) based on the GO 

database (Ashburner et al, 2000). 
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3 Results and Discussion 

3.1 Structure-system correlation defines the gene regulatory 
Mediator submodule Med8C/18/20 

3.1.1 Med8C/18/20 is a subcomplex of the Mediator head 
Previous results had revealed that Sc Med8 contains an essential N-terminal domain 

(Med8N, residues 1–137), followed by a nonessential linker (residues 138–189) and a 

C-terminal region that includes a α-helix (Med8C, residues 190–223) (Larivière et al, 

2006). Med8C had been proposed to tether the Med18/20 heterodimer to the essential 

part of the Mediator head (Figure 4A).  

 

 
 
Figure 4: Med8C/18/20 is a subcomplex of Mediator head.  
(A) Overview of the Mediator architecture with the four modules head, middle, tail, and kinase. The head 
module is separated in the core head, constituted of Med6, Med8N, Med11, Med17, Med22, and the 
nonessential subcomplex of Med8C, Med18, and Med20 (in orange, blue, and magenta, respectively).  
(B) Deletion of Med8C in vivo leads to loss of Med18/20 after Mediator purification. N-terminally TAP-
tagged Med17 was purified from wild-type yeast or from cells expressing Med8CΔ. The EGTA eluate after 
purification was separated using 4%–12% discontinuous SDS-PAGE and was analyzed by mass 
spectrometry after Coomassie staining. The copurifying proteins were identified by mass spectrometry. 
Arrows mark Med8, Med8CΔ, Med18, and Med20. An asterisk indicates TAP-tagged Med17. 
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To test this, we asked whether Med8C tethers the Med18/20 heterodimer to Mediator 

in vivo. We isolated Mediator by tandem affinity purification (TAP) from yeast strains 

expressing a TAP-tagged head subunit, Med17, and identified the copurifying Mediator 

subunits by mass spectrometry (Figure 4B). The same purification from a strain 

expressing a truncated version of Med8 that lacked Med8C (med8CΔ) resulted in a 

very similar pattern of protein bands, except that Med18 and Med20 were missing 

(Figure 4B). Therefore, retention of Med18 and Med20 in the Mediator complex 

requires Med8C. The truncated Med8 variant was, however, present in the preparation, 

showing that Med8C is not required to retain Med8 in the Mediator. These data are 

consistent with interaction data derived by coexpression and two-hybrid analysis 

(Guglielmi et al, 2004; Takagi et al, 2006) and suggest that the head contains two 

structural subcomplexes, the core head, consisting of all essential head subunits or 

subunit domains (Med6, Med8N, Med11, Med17, and Med22) and the nonessential 

Med8C/18/20 subcomplex (Figure 4A). 

 
Table 19: Data collection and refinement statistics for the Sp Med8C/18 structure 

a The numbers in parenthesis correspond to the highest resolution shell  
b 5% of the data were excluded from the refinement for free R-factor calculation 
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3.1.2 Conserved Med8C/18/20-core head interface 
Because of the low sequence homologies between Mediator subunits from different 

species, the architecture of the Sc head could be a species-specific feature. To inves- 

tigate this, we solved the crystal structure of the Med8C/18 complex from 

Schizosaccharomyces pombe (Sp). We coexpressed Sp Med18 with a hexahistidine-

tagged Sp Med8C fragment corresponding to the Sc Med8C fragment used previously 

(Larivière et al, 2006) from a bicistronic vector in E. coli. The Sp Med8C fragment was 

sufficient for interaction with Sp Med18. The resulting stoichiometric Med8C/18 

complex was crystallized and the structure solved (Table 19). Sp Med18 adopts a fold 

similar to its Sc ortholog (Figure 5A) with a root mean square deviation of 1.7 Å over 

173 Cα! atoms.  

 

 
Figure 5: Structural conservation of the Med8C/18 interaction 
(A) Superimposition of Cα traces of Med8C/18 from Sp (in cyan and red; this study) and from Sc (in blue 
and orange; (Larivière et al, 2006)). Med20 is shown in magenta. (B) Interaction of Sp Med8C with  
Sp Med18. The Med8C helix is shown in red sticks, with conserved or invariant residues in contact with 
Med18 labeled in red. Med18 is shown as a white surface, with conserved or invariant residues in contact 
with Med8C labeled in black. Residues that are invariant and conserved between Sc and Sp are in green 
and yellow, respectively.  
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Sp Med8C forms a α-helix, followed by a glycine-containing turn, and binds Sp Med18 

across its central β-barrel as observed for its Sc counterpart (Figure 5A). Key contact 

residues in the Med8C–Med18 interface are conserved between Sc and Sp (Figure 

5B). Given the large phylogenetic distance between these two fungi, the Med8C/18 

interface is apparently also conserved in Mediator complexes of higher eukaryotes. 

Indeed, modeling of the human Med8C–Med18 interface showed that key contacts are 

conserved. Thus, the structural tethering of the Med18/20 heterodimer to the core head 

module through Med8C is conserved among eukaryotes. 

 

3.1.3 Med8C/18/20 is required for activated transcription in vitro 
To investigate whether the structural subcomplex Med8C/18/20 is also a functional 

subcomplex of Mediator, we conducted in vitro transcription assays. We prepared 

nuclear extracts from yeast strains carrying a deletion of the gene for Med18 (med18Δ) 

or lacking the part of the Med8 gene coding for Med8C (med8CΔ).  

 

 
Figure 6: Med8C/18/20 is required for activated transcription in vitro.  
Med8C/18/20 is required for activated transcription in vitro. Assays were performed with med18Δ or 
med8CΔ nuclear extracts (lane 1), or extract to which 0.5 pmol TAP-purified Mediator was added, 
providing a positive control (lane 2), or extracts to which recombinant Med8C/18/20 (10x and 100x molar 
excess in lanes 3 and 4, respectively) or recombinant Med18/20 (10x and 100x molar excess in  
lanes 5 and 6, respectively) were added. 
 

 

Consistent with previous data (Ranish et al, 1999; Thompson et al, 1993), a med18Δ 

nuclear extract did not support activated transcription (Figure 6, lane 1), apparently as 

a result of Mediator lacking Med18 and Med20 in this mutant. The transcription defect 

could indeed be rescued by addition of recombinant Med18/20 (Figure 6, lanes 5 and 

6). This is consistent with the model that Med8C, which is present in the extract, tethers 

Med18/20 to the Mediator. Recombinant Med8C/18/20 subcomplex was far less 

efficient in rescue (Figure 6, lanes 3 and 4), likely because endogenous Med8C fails to 

replace recombinant Med8C for tethering Med18/20. Consistently, a nuclear extract 
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from the med8CΔ strain was inactive (Figure 6, lane 1), apparently as a result of 

Mediator lacking Med18 and Med20. Even a large excess of Med18/20 could not 

rescue the defect (Figure 6, lanes 5 and 6), but recombinant Med8C/18/20 could 

partially restore transcription (Figure 6, lanes 5 and 6). Thus, Med8C is essential for 

activated transcription in this assay. Since providing Med8C in trans can partially 

rescue the defect, Med8C apparently also interacts non-covalently with the core head, 

consistent with a reported two-hybrid interaction between Med8C and Med17 

(Guglielmi et al, 2004). These functional data are consistent with the two-subcomplex 

architecture of the head (Figure 4A), and highlight the critical functional role of Med8C 

in tethering the two subcomplexes together. 
 

3.1.4 Med8C/18/20 is a functional submodule in vivo 
To test whether the ‘two-subcomplex architecture’ of the Mediator head underlies 

Mediator function in vivo, and to determine whether the only role of Med8C is to tether 

Med18/20, we carried out comparative gene expression profiling with different yeast 

deletion strains. If the only role of Med8C is tethering of Med18/20 to Mediator, then the 

changes in gene expression observed in a Med8C deletion should be essentially the 

same as for deletion of either Med18 or Med20. We first used three strains of the same 

genetic background but specifically lacking one component of the Med8C/18/20 

subcomplex. The expression profiles for these med8CΔ, med18Δ, and med20Δ 
deletion strains showed virtually the same pattern of changes in mRNA levels (Figure 

7A). This is reflected in very high pairwise overall correlations (Figure 7B). For 

comparison, we repeated the analysis with two deletion strains that lacked genes for 

nonessential subunits Med2 or Med3 that reside in the tail module and also play a 

positive role in transcription (van de Peppel et al, 2005). Expression changes induced 

by Med2 or Med3 deletion correlate weakly with those induced by deletion of 

Med8C/18/20 components, although there is some overlap (Figure 7A and B). 

Therefore, the Med8C/18/20 subcomplex regulates transcription of a specific subset of 

genes and forms a functional submodule in vivo. The similarity in expression profiles is 

in agreement with the idea that the only role of Med8C is to tether Med18/20 to the 

core head. These results highlight the possibility to correlate structural data with 

transcriptome profiles, thereby identifying proteins and protein domains that reside in 

the same functional module. 
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Figure 7: Comparative gene expression profiling 
(A) Diagram of genes exhibiting significantly altered mRNA levels (vertical axis) for different Mediator 
deletion strains (horizontal axis), clustered alongside the med18Δ, med20Δ, and med8CΔ expression 
profiles (indicated by black bar). Changes in mRNA levels compared with the wild-type strain are depicted 
in red (up), green (down), or black (no change). (B) Pearson’s correlation matrix for expression profiles of 
strains med8CΔ, med18Δ, and med20Δ, and tail subunits deletion strains med2Δ and med3Δ. (C) Number 
of significantly altered genes in all three deletion strains of the Med8C/18/20 submodule. Genes not 
annotated in the GO database are depicted in gray, up-regulated genes are indicated in red, and down-
regulated genes are shown in green. (D) Percentage of genes for which expression was significantly 
changed in all deletion mutants of the Med8C/18/20 (blue) submodule or Med2 and Med3 (yellow) 
compared with the percentage of the genome (black). All 32 biological processes from GO Slim Mapper 
are shown as follows: amino acid derivative metabolic process (1), anatomical structure morphogenesis 
(2), carbohydrate metabolic process (3), cell budding (4), cell cycle (5), cell wall organization and 
biogenesis (6), cellular homeostasis (7), cellular respiration (8), conjugation (9), cytokinesis (10), 
cytoskeleton organization and biogenesis (11), DNA metabolic process (12), electron transport (13), 
generation of precursor metabolites and energy (14), lipid metabolic process (15), meiosis (16), membrane 
organization and biogenesis (17), nuclear organization and biogenesis (18), organelle organization and 
biogenesis (19), protein catabolic process (20), protein modification process (21), pseudohyphal growth 
(22), response to stress (23), ribosome biogenesis and assembly (24), RNA metabolic process (25), signal 
transduction (26), sporulation (27), transcription (28), translation (29), transport (30), vesicle-mediated 
transport (31), and vitamin metabolic process (32). Overrepresented processes are marked with a circle. 
(E) Percentage of genes involved in conjugation, sporulation, and vitamin metabolic process for which 
expression was significantly changed in all deletion mutants of the Med8C/18/20 submodule or Med2 and 
Med3. Red and green histograms correspond to up- and down-regulated genes, respectively. The dotted 
line represents the percentage of the genome involved in the respective process. 
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3.1.5 Med8C/18/20 is required for transcription of specific genes 
Analysis of the expression profiles revealed that a total of 165 mRNA levels were 

significantly altered in all three deletion strains of the Med8C/18/20 submodule. Of 

those, 117 were down-regulated, and 48 were up-regulated, showing that the module 

predominantly acts as a positive factor in transcription, but can also act as a negative 

factor for certain genes. Of the down- and up-regulated genes, 44% and 37%, 

respectively, were not annotated in the gene ontology (GO) database (Figure 7C) 

(Ashburner et al, 2000). Since it was previously shown that Med8C/18/20 binds to the 

TATA box-binding protein (TBP) in vitro (Larivière et al, 2006), we were encouraged to 

unravel a molecular basis for Med8C/18/20 function by searching for reoccurring 

promoter elements or upstream motifs in the deregulated genes, and for common 

transcription factors known to regulate these genes. This search was, however, 

unsuccessful, suggesting a complex context-dependent mechanism of Med8C/18/20 

function. 

We next analyzed the cellular function of genes regulated by Med8C/18/20 and by 

Med2 or Med3 with the GO Slim Mapper tool. Many of the affected biological 

processes, including amino acid derivative metabolism, carbohydrate metabolic 

process, and vitamin metabolic process, were overrepresented in both the 

Med8C/18/20-regulated and Med2/3-regulated genes (Figure 7D), reflecting the partial 

overlap of the expression profiles (Figure 7A). However, some biological processes 

were overrepresented only among Med8C/18/20- or Med2/Med3-regulated genes. In 

particular, genes involved in conjugation were specifically Med8C/18/20-regulated, 

whereas genes involved in sporulation as well as cell wall organization and biogenesis 

were specifically Med2/Med3-regulated (Figure 7E). These findings are consistent with 

the previously reported involvement of Med18 in conjugation (Holstege et al, 1998) and 

with a large-scale functional genomics analysis of sporulation efficiency (Enyenihi & 

Saunders, 2003). 

 

3.1.6 Down-regulation of nonactivated genes and basal promoter activity 
Down-regulation of conjugation genes in med8CΔ, med18Δ, and med20Δ deletion 

strains was surprising, since their transcription was expected to be repressed under our 

experimental conditions. However, the same phenomenon was observed for other 

genes that should be repressed under optimal growth conditions. The GAL4 gene is 

further down-regulated in the med8CΔ, med18Δ, and med20Δ deletion strains, but not 



                                                                RESULTS AND DISCUSSION 

56 
 

in the control strains med2Δ or med3Δ. Genes involved in the catabolism of serine and 

glycine are further down-regulated in all deletion strains, including CHA1, GCV1, 

GCV2, and GCV3. CHA1 shows the most down-regulated transcript levels, although it 

is expected to be expressed only under nitrogen-limiting conditions. Thus, 

Med8C/18/20 is required for low levels of transcription of nonactivated genes. 

Taken together, many genes that are repressed under our growth conditions were 

apparently transcribed at a low level in a Med8C/18/20-dependent manner. The 

requirement of Med8C/18/20 for low-level transcription of nonactivated genes is 

consistent with the observation that even low levels of transcription require Mediator 

(Kornberg, 2005; Takagi et al, 2006). Although an indirect effect cannot be ruled out, 

our data suggest that Med8C/18/20 is important for basal promoter activity, and are 

consistent with a possible TBP interaction in vivo. A role of Mediator in basal 

transcription may be further investigated by similar analyses of other Mediator 

submodules and transcriptome profiling of several mutant yeast strains under various 

growth conditions. 

 

3.1.7 Discussion 
The Mediator head module is essential for cell viability, and a temperature-sensitive 

point mutation in the head leads to a global defect in transcription (Holstege et al, 

1998). Here, we show that the head module contains the distinct conserved 

Med8C/18/20 submodule that is not essential for viability and regulates only a subset of 

genes. Identification and characterization of the Med8C/18/20 submodule required a 

combination of structural biology, yeast genetics, biochemistry, and transcriptome 

analysis. Our results support the idea that the known Mediator modules head, middle, 

and tail contain distinct submodules with different functions that are involved in the 

regulation of different subsets of genes. 

More generally, we demonstrate how structural and functional information obtained on 

the molecular level in vitro can be correlated with changes on the systems level in vivo. 

In particular, the structure-guided design of mutant yeast strains enabled a precise 

disruption of molecular interactions and their functional analysis in vitro and in vivo. 

This approach is superior to the generally used gene deletion analysis, which does not 

take into account the consequences of such deletions for native protein complex 

structures. Most proteins reside in complexes (Gavin et al, 2006; Gavin et al, 2002; 

Krogan et al, 2006), and gene deletion will often result in complex disintegration and 
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malfunction, and thus in complicated changes of the transcriptome, which renders 

correlations between the molecular and the systems level difficult or impossible. In 

contrast, the structure-based systems perturbation analysis conducted here reduces 

the complexity of differential gene expression patterns, and facilitates the dissection of 

transcriptional coregulatory complexes into distinct functional submodules. In the 

future, this approach may be used for a reliable analysis of gene regulatory molecular 

networks. In particular, structure-based perturbation of cooperative molecular 

interactions could elucidate combinatorial and context-dependent gene regulatory 

mechanisms on the system level. 
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3.2 Mediator head subcomplex Med11/22 contains a common 
helix bundle building block with a specific function in 
transcription initiation complex stabilization 

3.2.1 Revised Med11 N-terminus 
Based on published interaction data (Esnault et al, 2008; Guglielmi et al, 2004; Takagi 

et al, 2006) we assumed that Sc Med11 and Med22 form a stable heterodimer. Indeed, 

the two subunits could be co-expressed in recombinant form (Larivière et al, 2006) in 

E. coli and subsequently co-purified. When we analyzed recombinant Med11/22 and 

endogenous purified Mediator by SDS-PAGE, we noticed a discrepancy in the 

electrophoretic mobility of Med11 (not shown). A comparison of the annotated Med11 

open reading frame (ORF) with experimentally determined transcription start sites 

(Miura et al, 2006) revealed that the start codon of Med11 was incorrectly assigned in 

the databases. The real initiator methionine corresponds to residue 17 of the original 

annotation. We corrected the amino acid numbering and used the new numbering 

throughout. 

 

3.2.2 Med11/22 structure solution 
We prepared the correct full-length recombinant Med11/22 heterodimer in pure 

recombinant form. In contrast to the initial preparation, this complex crystallized. The 

crystals could however not be refined, likely due to flexibility in the poorly conserved  

C-termini of both subunits. We therefore tested various truncated protein variants for 

their solubility and crystallization behavior, and found that a variant comprising the 

highly conserved core of Med11/22 (Med115-89/Med221-89, Figure 8A) resulted in 

crystals diffracting up to a resolution of 2.1 Å. The X-ray structure was solved by 

selenomethionine labeling and multi-wavelength anomalous diffraction, and was 

refined to a free R-factor of 20.8 % (Table 20). The crystals contained an unusual 

sphere-like arrangement of 12 heterodimers in the asymmetric unit (Figure 8B). 

Disordered in the crystals was only a non-conserved Med22 linker (residues 33-40) 

between helix α1 and the non-conserved helix α*. Deletion of this linker in yeast had no 

phenotype (Figure 9A). 
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Figure 8: Structure of Med11/22 Mediator subcomplex 
(A) Multiple sequence alignment of the conserved core of Med11 and Med22 from Saccharomyces 
cerevisiae (Sc), Schizosaccharomyces pombe (Sp), Caenorhabditis elegans (Ce), Drosophila 
melanogaster (Dm) and Homo sapiens (Hs). The corrected numbering of Sc Med11 is used. Invariant and 
conserved residues are highlighted in green and yellow, respectively. Additionally, residues that are 
invariant or conserved among the yeast family Saccharomycotinae (Sc, Candida glabrata, Candida 
albicans, Ashbya gossypii, Kluyveromyce lactis and Debaryomyces hansenii) are highlighted with green 
and yellow frames on the Sc sequence, respectively. Surface accessibility is indicated below the 
sequences (blue, high; cyan, intermediate; white, buried). Secondary structure elements of the conserved 
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structural core are shown above the sequences (spirals, α-helices; lines, ordered but without secondary 
structure; dashed lines, disordered in crystal construct). In addition schematic views of the full proteins are 
shown. Consensus secondary structure predictions (Cuff & Barton, 1999; Jones, 1999; Ouali & King, 
2000) for the C-termini of Sc Med11 and Med22 are indicated with dashed lines and grey filling. All 
truncations relevant for this study are indicated with arrows and the residue number. Previously reported 
as well as mutations generated in this study are marked with black triangles. Sequence alignments were 
done with MUSCLE (Edgar, 2004) and figures were prepared with ESPript (Gouet et al, 1999). (B) Ribbon-
model representation of the 12 heterodimers within the asymmetric unit. Med11 and Med22 are depicted in 
brown and cyan, respectively. (C) Ribbon-model representation of the Med11/22 crystal structure. 
Secondary structure elements are labeled according to (A). The linker between helices α1 and α* of 
Med22 (residues 33-40) was disordered. C-termini of Med11 and Med22 had to be removed from 
crystallization construct and are therefore lacking in the structure. (D) Dimer interface conservation. On the 
left, Med11 is shown in surface representation together with a ribbon model of Med22. The view is related 
to (C) by a 90° rotation around a vertical axis. On the right, Med22 is shown in surface representation 
together with a ribbon model of Med11. The two views are related by a 180° rotation around a vertical axis. 
(E) Superimposition of Cα traces of the four-helix bundle folds of Med11/22 (brown and cyan; this study) 
and Med7C/21 (orange and purple; (Baumli et al, 2005)). (F) Ribbon-model representation of the complete 
Med7C/21 structure (pdb accession code 1YKE). The reported flexible hinge region is indicated. 
 

 
Table 20: Data collection and refinement statistics for Med11/22 structure 

a The numbers in parenthesis correspond to the highest resolution shell 
b 5% of the data were set aside for free R-factor calculation 
 



                                                                RESULTS AND DISCUSSION 

61 
 

3.2.3 A helix bundle building block in Mediator 
Med11/22 forms an anti-parallel four-helix bundle (Figure 8C). This bundle fold is 

required in vivo since deletion of Med11 helix α1 (med1143-115) was lethal in yeast, and 

deletion of α1 and α* of Med22 (med2254-121) caused a growth defect (Figure 9B). 

 

 

 

 

 

 

 

 
Figure 9: In vivo phenotyping of Med11/22 
truncations 
Yeast complementation assays. Med11 and Med22 
constructs including 500 bp upstream of the start 
codon and 300 bp downstream of the stop codon 
were cloned into a pRS315 plasmid (LEU2) and 
transformed into the respective yeast shuffle strains. 
On 5FOA plates the URA3 shuffle plasmid encoding 
the respective full-length gene is shuffled out. Yeast 
cells lacking either the N- or C-terminus of Med11 or 
the C-terminus of Med22 are inviable. Cells lacking 
the N-terminal helix of Med22 or the last 10 amino 
acids of Med11 display a slow growth phenotype. 
 

 

 

Unexpectedly, the bundle fold resembles the previously reported structure of the 

heterodimeric Med7C/21 subcomplex of the middle module (Baumli et al, 2005). The 

Med11/22 and Med7C/21 structures show a root mean square deviation of 3.1 Å over 

121 Cα atoms (Figure 8E). By combining results from HHPred (Söding et al, 2005) and 

secondary structure predictions, we detected a total of six possible heterodimeric four-

helix bundles in Mediator. Nine out of 17 Mediator core subunits and two metazoan-

specific subunits could participate in bundle formation (Figure 10). Heterodimer 

formation has been experimentally verified for Med11/22 in the head (this study), 

Med4/9 (Koschubs et al, 2010), and Med7/21 (Baumli et al, 2005) in the middle, and 

Med2/3 in the tail (Beve et al, 2005). Additional possible bundles include a Med10/14 

heterodimer in the middle module (Koschubs et al, 2010) and a metazoan-specific 

Med28/30 subcomplex. These results establish the four-helix bundle fold as a common 
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building block of Mediator that is apparently found in all modules except for the 

dissociable kinase module. 

 

 
 
Figure 10: A heterodimeric four-helix bundle building block in Mediator 
Schematic depiction of Mediator subunits predicted to share the heterodimeric bundle fold of Med11/22. α-
helices from crystal structures or from predictions (Cuff & Barton, 1999; Jones, 1999; Ouali & King, 2000) 
are indicated as boxes drawn to scale. Helix α1, α2 and C-terminal helical extensions are colored in black, 
grey and white, respectively. Check marks indicate experimentally confirmed heterodimers (co-expression 
and co-purification). Structural homology to the published Med7C/21 structure was predicted with HHPred 
(http://toolkit.lmb.uni-muenchen.de/hhpred) for all listed subunits except the highly divergent Sc subunits 
Med2 and Med3. The p-value and score for the HHPred searches are given. When the human protein 
sequence was used for the HHPred search, the p-values are marked with an asterisk. 
 

 

3.2.4 Essential C-terminal helices extend from the Med11/22 helix bundle 
In the structure of Med7C/21 (Baumli et al, 2005), the four-helix bundle is connected to 

C-terminal helical extensions from both subunits that form a coiled-coil (Figure 8F). The 

C-terminal extensions of Med11 and Med22 lack in the Med11/22 structure, but are 

predicted to each contain an additional helix (Figure 8A and Figure 11). However, in 

contrast to Med7C/21, the C-terminal helices are not predicted to form a coiled-coil, 

and are connected to the bundle through longer, probably flexible linkers. To 
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investigate the importance of the predicted Med11/22 C-terminal helices in vivo, we 

generated several Med11/22 truncation variants (Figure 8A) and tested them in yeast 

complementation assays (Figure 9A and B). Removal of either helix (med111-89 or 

med221-89) or even partial truncation of the Med22 C-terminal helix (med221-108) was 

lethal under standard conditions. Thus, the apparently flexible and helical C-terminal 

extensions from the Med11/22 bundle are required for normal cell growth. 

 

 
 
Figure 11: C-terminal helices in Med11/22 are conserved across species 
Conservation of secondary structure elements in Med11 and Med22 across species (Saccharomyces 
cerevisiae (Sc), Schizosaccharomyces pombe (Sp) and Homo sapiens (Hs)). All secondary structure 
elements from crystal structures (when available) or from consensus secondary structure predictions are 
drawn to scale (boxes, α-helices; lines, ordered but without secondary structure). Helix α1, α2 and  
C-terminal helical extensions are colored in black, grey and white, respectively. 
 

 

3.2.5 Med11/22 extensions bind a Med17 C-terminal domain 
We next asked whether the C-terminal extensions anchor the Med11/22 bundle within 

the head module by an interaction with Med17, the architectural head subunit. We 

could indeed detect in vitro binding of Med11/22 to a soluble C-terminal domain of 

Med17 (Med17C, residues 377-687) (Figure 12A, lane 1 and 3). To map the Med17 

binding determinant in Med11/22, we co-expressed and co-purified truncated 

Med11/22 variants with Med17C in E. coli. Recombinant Med11/22 heterodimers 

containing Med1143-115 could not be co-purified, whereas Med111-89, Med111-105, 

Med2254-121, and Med221-89 all formed stable complexes (Figure 12A). Truncation of 

either predicted C-terminal helix (Figure 12A, lane 6, 7, 10-12) prevented  

co-purification of Med17C with Med11/22, while truncation of the Med22 N-terminus 

(Figure 12A, lane 4) or C-terminal truncations that did not affect the C-terminal helices 
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(Figure 12A, lane 5 and 9) had no effect. We conclude that the C-terminal helices of 

Med11/22 anchor the four-helix bundle to Med17C, and that the C-terminus of Med22 

is absolutely required for this interaction in vitro and in vivo. This is in accordance with 

yeast-two-hybrid results showing that the Sc Med11-Med17 interaction is lost upon C-

terminal truncation of Med11 (Esnault et al, 2008). The consistency of these in vitro 

binding data with the above in vivo phenotyping further suggests that Med11/22 

anchoring to Med17C is essential for cellular growth. 

 

 
 
Figure 12: C-terminal extensions of Med11/22 bind a Med17 C-terminal domain 
(A) Co-expression in E. coli and co-purification of Sc a C-terminal domain of Med17C (residues 377-687) 
with Sc 6His-Med22/Med11 constructs using nickel magnetic beads. A co-purifying contaminant is marked 
with an asterisk. (B) Co-immunoprecipitation of the putative Sp Med11-3HA with Sp Med7-TAP from Sp 
lysate using IgG agarose beads. (C) Co-expression in E. coli and co-purification of Sp Med17 (lanes 1-3) 
and Sp Med17C (residues 257-545; lanes 4-6) with Sp His6-Med22/Med11 constructs using nickel 
magnetic beads.  
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3.2.6 A conserved Med17C/11/22 Mediator subcomplex 
The helix bundle of Med11/22 appears to be conserved among eukaryotes, because 

amino acid residues that constitute the Med11-Med22 interface are conserved (Figure 

8D). However, a Med11 homologue has thus far not been found in Sp (Spahr et al, 

2001). We could however predict a remote Med11 homology in the Sp protein 

SPAC644.10 (Wood et al, 2002). Indeed, Sp SPAC644.10 could be co-

immunoprecipitated with Med7, suggesting it is a Mediator subunit (Figure 12B). 

Amplification and sequencing of the SPAC644.10 cDNA clone revealed the absence of 

an annotated intron, and enabled co-expression and co-purification of recombinant  

Sp SPAC644.10 with Sp Med22 (Figure 12C). This establishes SPAC644.10 as the  

Sp Med11 homologue and confirms the conservation of the Med11/22 bundle. To 

investigate whether the conservation extends to the anchoring of Med11/22 on 

Med17C, we tested whether a trimeric Sp Med17/11/22 subcomplex could be obtained 

after subunit co-expression in E. coli, and this was indeed achieved (Figure 12C, lane 

1). We mapped a soluble C-terminal domain of Sp Med17 (Med17C, residues 257-545) 

that was sufficient for Med11/22 binding (Figure 12C, lane 4). Truncation of the  

C-terminus of Sp Med22 did not affect Med11/22 heterodimer formation, but abolished 

Med17 binding (Figure 12C, lane 3 and 6). Truncation of the C-terminus of Sp Med11 

(Med111-91) had almost no effect (Figure 12C, lane 2 and 5). Thus, the interaction of the 

C-terminal extension from the Med11/22 bundle with Med17C is conserved between 

the distantly related yeast species Sp and Sc, and the Med17C/11/22 subcomplex is 

therefore a conserved architectural unit of the Mediator head. 

 

3.2.7 A highly conserved interaction patch on Med11/22  
Despite the importance of the head module for PIC formation, only few contacts 

between PIC components and head module subunits have been reported. Thus, we 

wanted to identify potential interaction surfaces on Med11/22 that could account for 

contacts to PIC components. Plotting sequence conservation (Figure 13A) and 

electrostatic surface charge (Figure 13B) onto the Med11/22 structure revealed a large, 

highly conserved surface patch with exposed hydrophobic residues on one side of the 

bundle domain. Several known Med11/22 mutations (Esnault et al, 2008; Lee et al, 

1998; Thompson et al, 1993), namely srb6-201 (med22-N59H), srb6-1 (med22-N86H), 

med11-T31A, are located around this patch (Figure 13A and B). 
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Figure 13: Surface of Med11/22 helix bundle. 
(A) Surface conservation of the Med11/22 four-helix bundle. Invariant and conserved residues from yeast 
to human are highlighted in green and yellow, respectively. Residues of Med11 (brown) and Med22 (cyan) 
targeted by mutagenesis in this study and in previous reports are indicated with arrows. The orientation is 
identical to Figure 8C. The two views are related by a 180° rotation around the vertical axis. (B) Surface 
charge distribution. Red, blue and white areas indicate negative, positive and neutral charges, 
respectively. The two views and labeled residues are the same as in (A). 
 

 

Mutations reported to affect interaction of Med11 with Med22 or Med17 (Esnault et al, 

2008; Han et al, 1999), namely med11-V52D, med11-G92S and med11-L73P, are 

however located distant from this patch or in the hydrophobic core (Figure 13A and 

Figure 8D). This suggests that the conserved surface patch is involved in the 

interaction with components of the PIC.  

To investigate the functional importance of this patch we generated structure-based 

surface mutations. Strains carrying double point mutations of adjacent surface residues 

(med11-E17K/L24K, med22-L73E/K80E and med22-K80E/L84E) exhibited various 

degrees of temperature-sensitivity (Figure 14A). The med11-E17K/L24K strain 

exhibited a strong growth defect at all temperatures, similar to med111-105. However, 

unlike the Med11 truncation, the patch mutation did not affect anchoring of Med11/22 

to Med17C in vitro (Figure 14B). Since Med11/22 is essential for Med17 stability 

(Takagi et al, 2006) we purified Mediator from MED11, med111-105 and  

med11-E17K/L24K yeast strains. Mediator composition and integrity appeared 

unchanged on a Coomassie-stained SDS-PAGE (Figure 14C) and was additionally 

confirmed by co-immunoprecipitation and Western Blot (Figure 14D). Thus the 
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phenotype observed for the Med11 mutants is not the result of impaired Mediator 

integrity, but apparently a direct effect of impaired Med11/22 interactions with other 

factors. 

 

 
 
Figure 14: A conserved interaction patch on Med11/22 
(A) Spot dilutions of yeast strains carrying structure-based mutations on the conserved surface patch and 
viable truncations (Figure 2) on YPD plates at 30°C and 37°C. (B) Co-expression in E. coli and co-
purification of Sc Med17C with Sc 6His-Med22/Med11 and Sc 6His-Med22/Med11-E17K/L24K using 
nickel magnetic beads. (C) Mediator tandem affinity purification through Med7-TAP from wild-type, 
med111-105 and med11-E17K/L24K yeast strains. Co-purifying proteins were separated on a 5-12% 
gradient gel (Invitrogen) and bands were stained with Coomassie blue. Mediator subunits and common co-
purifying contaminants are labeled. Med7-CBP marks Med7 after tandem-affinity purification still carrying 
the calmodulin binding protein-tag but lacking the cleaved protein A-tag. (D) Co-immunoprecipitation of Sc 
Med11-3HA (Mediator head module) and Sc Med2 (Mediator tail module) with Sc Med7-TAP (Mediator 
middle module) from wild-type, med111-105 and med11-E17K/L24K yeast strains.  
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3.2.8 Med11/22 is a functionally distinct submodule 
To test whether mutations in Med11/22 affect transcription in vivo, we performed 

genome-wide gene-expression profiling of the med111-105 and med11-E17K/L24K yeast 

strains (Figure 15A).  

 

 
Figure 15: Med11/22 is a functional submodule regulating a specific subset of genes 
(A) Hierarchical cluster diagram (Pearson correlation) of genes exhibiting significantly altered mRNA levels 
(at least 2-fold, vertical axis) for different Mediator mutant strains (horizontal axis). Changes in mRNA 
levels compared to the wild-type strain are depicted in yellow (up), blue (down), or black (no change). (B) 
Pearson correlation matrix for expression profiles of different Mediator mutants (1, very high correlation; 0, 
no correlation; -1, very high anti-correlation). (C) Number of genes significantly (fold change > 2.0,  
p-value < 0.05) up-regulated (yellow) and down-regulated (blue) in med111-105, med11-E17K/L24K and in 
both strains. (D) Comparison of gene expression changes of all mutants analyzed in this study. Number of 
genes significantly (fold change > 2.0, p-value < 0.05) up-regulated (yellow) and down-regulated (blue) is 
shown. 
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The Med11 mutants form a distinct cluster with a Pearson correlation coefficient of 

0.94, correlating only moderately with med20∆ (head module), med2∆ (tail module) and 

with mutations affecting the previously described functional submodule Med7N/31 

(middle module) (Koschubs et al, 2009) (Figure 15B). In total, 604 and 450 genes were 

significantly changed (fold expression change > 2-fold; p-value < 0.05) in med111-105 

and med11-E17K/L24K, respectively. A total of 401 genes were significantly changed 

in both mutants, with 160 genes up-regulated and 241 genes down-regulated (Figure 

15C). The number of significantly changed genes in both Med11 mutant strains is 

higher than in any other Mediator mutant tested (Figure 15D). The effect on gene 

expression is rather pleiotropic without any significant enrichment for specific Gene 

Ontology terms (Boyle et al, 2004). This indicates a distinct function of the Med11/22 

subcomplex in gene regulation, and a more global role in contrast to the more gene-

specific roles of previously reported non-essential Mediator submodules (Koschubs et 

al, 2009; Larivière et al, 2008; van de Peppel et al, 2005).  

 

3.2.9 The Med11/22 surface patch functions in PIC stabilization 
Since Med11 was previously reported to stabilize the TFIIK subcomplex of TFIIH and, 

to some extent, Pol II at promoters (Esnault et al, 2008), we performed chromatin 

immunoprecipitations of Kin28, the kinase subunit of TFIIK, and the Pol II subunit Rpb3 

in wild-type, med111-105, and med11-E17K/L24K strains (Figure 16A). In the mutant 

strains, we observed decreased occupancies for both Kin28 and Rpb3 at active 

promoters, indicating a defect in stable PIC formation. To test whether the decrease is 

a direct effect of impaired Med11/22 function or an indirect effect of global deregulation 

of gene expression, we performed in vitro immobilized template assays with yeast 

nuclear extracts (Figure 16B). PICs were assembled on an immobilized HIS4 yeast 

promoter in a Gcn4-dependent manner, washed and subsequently analyzed by 

Western blot. Consistent with the in vivo results, both mutant extracts displayed a 

decreased occupancy of Pol II after washing. As expected, the occupancy of TFIIB, 

interacting directly with Pol II, is also decreased. Mediator and TFIID, which are 

recruited directly by the transcriptional activator Gcn4 (Herbig et al, 2010), remain 

unaffected. Consistently, nuclear extracts from the Med11 mutant strains were inactive 

in in vitro transcription assays (Figure 16C). Since addition of purified wild-type 

Mediator to the mutant extracts partially rescued the recruitment of the basal machinery 

and consequently also transcriptional activity, the observed defects can be directly 
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linked to Mediator function. These results show that the conserved surface patch on 

the Med11/22 bundle is required for stable PIC formation. 

 

 
Figure 16: Med11/22 is required for stable PIC formation in vitro and in vivo 
(A) Chromatin immunoprecipitation of Rpb3-TAP (Pol II) and Kin28-TAP (TFIIH kinase module) in wild-
type, med111-105 and med11-E17K/L24K strains grown to early exponential phase in YP medium 
containing 2% glucose. Fold enrichment over a heterochromatic control region is shown for the yeast 
promoters of a highly expressed gene (ILV5), a housekeeping gene (ADH1) and a glucose-repressed 
gene (GAL1). (B) In vitro PIC assembly of wild-type, med111-105 and med11-E17K/L24K nuclear extracts 
(NE) on the immobilized HIS4 yeast promoter. PIC formation of mutant extracts was partially rescued by 
adding 2 pmol tandem-affinity purified Mediator complex (TAP-Med) to the nuclear extracts prior to PIC 
assembly. Presence of Pol II (Rpb3 & Rpb11), TFIIB, Mediator (Med17) and TFIID (Taf4) was tested by 
Western Blot. (C) In vitro transcription assay with wild-type, med111-105 and med11-E17K/L24K nuclear 
extracts (NE) on the HIS4 yeast promoter. Order of addition is shown on top. Transcription was partially 
rescued by adding 2 pmol tandem-affinity purified Mediator complex (TAP-Med). 
 

 

3.2.10 Discussion 
To understand the regulatory mechanisms of eukaryotic transcription, a detailed 

structural and functional dissection of the involved multiprotein complexes is required. 

In this study, we extend our previous structure-function analysis of the general 

transcription coactivator Mediator. We combine structural biology, yeast genetics, 

biochemistry, and gene-expression profiling, to define and functionally characterize the 

Mediator subcomplex Med11/22, to provide a more detailed understanding of Mediator 

head module architecture, and to obtain insights into Mediator conservation and 

evolution. We report the structure of a conserved four-helix bundle domain in Med11/22 

that puts reported mutations (Esnault et al, 2008; Han et al, 1999) into a molecular 
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framework and identifies a highly conserved surface patch that is required for a distinct 

widespread function of the Med11/22 subcomplex. 

We suggest that the Med11/22 surface patch mediates an essential interaction with 

TFIIH, because the previously described temperature-sensitive mutation med11-T31A 

(Esnault et al, 2008) locates near the patch. This mutation was shown to decrease 

interaction of Med11 with the TFIIH subunit Rad3 in yeast-two hybrid assays, and 

promoter occupancy of the TFIIH kinase module TFIIK. In contrast to the mutation 

med11-T31A, which was discovered genetically, the mutation med11-E17K/L24K 

reported here was identified based on structural data, and had a strong general growth 

defect that allowed us to conduct functional studies under standard growth conditions. 

Chromatin immunoprecipitation showed a decrease of TFIIK and Pol II occupancies at 

active promoters in vivo, indicating a defect in PIC formation. Yeast nuclear extracts 

from the mutant strain were defective in stable PIC formation and inactive in 

transcription in vitro. The defects result from impairing the function of the Med11/22 

submodule, and not the head module per se, since, in contrast to the reported Med17 

mutant srb4-138 (Ranish et al, 1999), activator-mediated recruitment of Mediator to the 

promoter was not affected. Thus the Med11/22 submodule specifically functions in 

promoting stable PIC formation. We propose that the conserved submodular 

architecture of the Mediator head enables multiple transient interactions with PIC 

components, including TBP (Kang et al, 2001) and TFIIH (Esnault et al, 2008) (Figure 

7), thereby stabilizing the PIC and facilitating open complex formation and initial RNA 

synthesis. 

Another intriguing observation is the presence of up to six related helix bundle folds, to 

which about half of the Mediator core subunits contribute. The presence of related 

bundle domains in different Mediator modules elucidates the evolutionary origin of 

Mediator. Large protein complexes with high functional modularity might generally have 

evolved through duplication of genes encoding dimers (Pereira-Leal et al, 2007). For 

example, the 15-subunit TFIID complex contains five heterodimeric subcomplexes 

interacting through a common histone-fold domain (Gangloff et al, 2001; Leurent et al, 

2002). Subsequent divergent evolution of paralogous subunits could then generate 

asymmetry and diversification of protein interactions for functional specialization. Rapid 

evolution of Mediator by dimer duplication and diversification could explain how it is 

possible that the general transcription machineries are conserved between archaea 

and eukaryotes, whereas Mediator is only present in eukaryotes. 
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3.3 Mediator head module controls preinitiation complex 
formation 

3.3.1 A recombinant head module is functionally active 
In our previous studies we had used structure-function analyses to demonstrate the 

existence of two functionally distinct submodules, Med8C/18/20 (Chapter 3.1) and 

Med11/22 (Chapter 3.2), within the Sc Mediator head module (Figure 14). To further 

characterize the architecture of the Mediator head module and its essential role during 

PIC assembly, structural and functional information on the complete head module is 

required. Therefore, the recombinant coexpression in E. coli and subsequent 

copurification of all seven Sc head subunits was established (Figure 18A; unpublished 

results from the Cramer laboratory). A similar approach using multicistronic expression 

plasmids had already been established for the 7-subunit Sc Mediator middle module 

(Koschubs et al, 2010). 

 

 
 

 

 

 

 

 

 

Figure 17: Model of the submodular 
architecture of Mediator and PIC contacts 
Crystal structures of the essential Med11/22 
four-helix bundle (this work), the previously 
described non-essential Med8C/18/20 
subcomplex (Larivière et al, 2006), and a 
molecular model of the Pol II–TBP–TFIIB–DNA 
promoter closed complex (Kostrewa et al, 2009) 
are drawn to scale. Locations of the general 
factors TFIIF and –H, as determined by 
biochemical probing (Chen et al, 2007; Kim et al, 
2000), are indicated by semi-transparent 
ellipsoids. Mediator head interactions with PIC 
components, namely Med8/18/20 - TBP 
(Larivière et al, 2006) and Med11/22 – TFIIH 
(Esnault et al, 2008), are indicated by arrows. 
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To test the biological activity of the recombinant head module, we performed in vitro 

transcription assays in a nuclear extract from the temperature-sensitive yeast strain 

med17-ts (srb4-138 strain). Whole cell extracts from this strain had been previously 

shown to be impaired in basal and activated transcription in vitro (Takagi & Kornberg, 

2006). Indeed, in vitro transcription in med17-ts nuclear extracts was specifically 

impaired at the non-permissive temperature (Figure 18B, lanes 1 and 2). Addition of 

recombinant 7-subunit head module rescued the defect in activated transcription 

(Figure 18B, lanes 3 and 4). Addition of TAP-purified wild-type Mediator rescued the 

defect to a similar extent (Figure 18C). 

 

 
 
Figure 18: Recombinant Sc Mediator head module is functionally active 
(A) Recombinant Sc Mediator head module preparation. All seven subunit were coexpressed in E. coli and 
subsequently copurified to homogeneity. (B) In vitro transcription in a temperature-sensitive nuclear extract 
prepared from the srb4-138 yeast strain (med17-ts). The recombinant fusion activator Gal4-VP16 was 
added to all samples to monitor activated transcription. In vitro transcription was performed either at the 
permissive temperature (18°C; lane 1 and 3) or the non-permissive temperature (30°C; lane 2 and 4). 
Defect in activated transcription was rescued by addition of 2 pmol recombinant head (rHead). (C) In vitro 
transcription at 30°C as in (A). Addition of approximately2 pmol TAP-purified Mediator (lane 2) rescues to 
transcription to a similar extend as addition of 2 pmol rHead (lane 3). (D) In vitro transcription at 30°C as in 
(A). Additionally Gal4-AH activated transcription was tested. Only addition of 2 pmol recombinant wild-type 
head module (WT; lane 3 and 4) rescued transcription while addition of 2 pmol recombinant head module 
containing a N-terminally truncated Med22 variant (22NΔ; residues 54-121) did not. 
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Furthermore, the rescue of activated transcription in vitro was observed with different 

activation domains (Figure 18D, lanes 1-4) and relied on the functional activity of the 

recombinant head module (Figure 18D, lanes 5 and 6). Similar to a med22NΔ yeast 

nuclear extract, which was unable to support activated transcription in vitro (Chapter 

3.2), addition of a recombinant head module lacking the N-terminus of Med22 did not 

rescue activated transcription (Figure 18D, lane 5 and 6). These results demonstrate 

that the recombinant 7-subunit Sc Mediator head module preparation is biologically 

active and can be used for further biochemical and structural studies.  

 

3.3.2 Preinitiation complex formation requires the head module 
Since activated transcription in a med17-ts nuclear extract depends on a functional 

Mediator head module in vitro, we wanted to determine the factors specifically recruited 

by the Mediator head module. Previous studies had suggested that PIC formation as 

well as Mediator recruitment is abolished in a med17-ts nuclear extract (Ranish et al, 

1999). This makes a distinction between complete Mediator and Mediator head module 

function impossible. However, due to the lack of a recombinant head module for add-

back experiments, secondary effects from extract preparation could not be ruled out. 

Furthermore, the immobilized template assays had been performed with an artificial 

fusion template comprising a modified HIS4 core promoter but lacking the native 

upstream activating sequence. We hypothesized that the upstream activating 

sequence and the respective bound activators could influence the stability of Mediator 

and the basal transcription machinery at the core promoter. Therefore, we performed 

immobilized template assays with yeast nuclear extracts on a native HIS4 promoter 

template. Since the HIS4 UAS comprises several Gcn4 binding sites, we used 

recombinant full-length Gcn4 for activator-dependent PIC assembly. Consistent with 

the in vitro transcription assays (Figure 18B) we performed a 30°C heat step with all 

extracts prior to PIC assembly (Figure 19A). In a wild-type nuclear extract Mediator and 

PIC components were recruited to this native promoter template in a Gcn4 dependent 

manner (Figure 19B, lanes 3 and 4). Consistent with previous reports, TBP was 

recruited independent of the activator through a direct interaction with the TATA box 

(Ranish et al, 1999). Suprisingly and in contrast to previous studies, recruitment of 

Mediator middle and tail modules (Figure 19B, lanes 5) was not affected in the med17-

ts nuclear extract. Only the recruitment of the head module (Med17) and PIC formation 

(Pol II and TFIIB) was abolished. Addition of recombinant 7-subunit head module 
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restored PIC formation (Figure 19B, lanes 6) consistent with the observed rescue of 

activated transcription in vitro (Figure 18). These results suggest that a stable head-

less Mediator (termed Mediator body), comprising the middle and tail module but 

lacking the head module, can be recruited to the promoter by gene specific activators. 

However, only when the head module is bound, a stable PIC is formed.  

 

 
 
Figure 19: PIC formation requires the Mediator Head module 
(A) Order of addition and incubation steps for immobilized template assay. Heat inactivation of 
temperature-sensitive nuclear extracts is done for 10 min at 30°C in the presence of rHead where 
applicable. (B) Immobilized template assays using yeast nuclear extracts from a wild-type strain (WT NE) 
and a temperature-sensitive srb4-138 strain (med17-ts NE) as shown in (A). The native HIS4 core 
promoter and upstream activating sequence were used. Recombinant activator (rGcn4) was added where 
applicable. 5% of the supernatant after heat inactivation and subsequent centrifugation were used as input 
controls (lane 1 and 2).  
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3.3.3 A label-free mass spectrometry approach to study PIC assembly  
To study in more detail PIC assembly in vitro, we established the analysis of 

immobilized template eluates by tandem mass spectrometry and subsequent label-free 

quantitation using spectral counting. A similar method had been previously used to 

characterize RNA polymerases (Mosley et al, 2010) and mammalian Mediator (Paoletti 

et al, 2006). However, in these studies the complexes were purified by chromatography 

and consequently contained only a very limited number of proteins. Based on a 

previous mass spectrometry analysis of immobilized template eluates (Kim et al, 2007), 

we expected our samples to contain more than a hundred different polypeptides, 

including many unspecific DNA binding factors. Therefore, we first validated our label-

free mass spectrometry approach by analyzing three replicates of immobilized template 

assays using the native HIS4 promoter template, recombinant Gcn4 and a wild-type 

yeast nuclear extract. 178 polypeptides were reliably detected in all three replicates, 

comprising 143 nuclear proteins, 23 cytosolic proteins and 12 other or unknown 

proteins (Figure 20). 118 proteins are annotated with the Gene ontology term 

“Transcription” and 85 proteins with the more specific term “Transcription from RNA 

polymerase II promoter”. Proteins not involved in Pol II transcription include DNA repair 

factors, chromosome maintenance factors as well as Pol I and Pol III components. In 

total 10 out of 12 Pol II subunits and 22 out of 25 Mediator subunits were reliably 

detected in all three replicates (Table 21). Similarly, most of the subunits of other 

multiprotein complexes involved in regulation of transcription initiation, like TFIID  

(13 out of 17 subunits), SAGA (18 out of 20 subunits), SLIK (SAGA-like complex,  

15 out of 17 subunits), SWI/SNF (10 out of 12 subunits) and NuA4 (11 out of  

13 subunits) were detected. No factors involved in transcription elongation, mRNA 

processing and termination were found.  

 

 

 

 

 
Figure 20: Localization of proteins identified by tandem mass 
spectrometry  
Proteins were classified according to their localization using the Gene 
ontology term finder tool (http://go.princeton.edu). Other includes factors 
that are associated with specific organelles like mitochondria or that are 
not annotated. 
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Table 21: Mediator and Pol II subunits detected by tandem mass spectrometry analysis of wild-type 
immobilized template eluates 

a specific subunits only found in Pol II 
b shared subunits between Pol I, Pol II and Pol III 
c IT1-3 lists the spectral counts for the respective subunit in three replicates 
d nd = subunit not detected by tandem mass spectrometry 
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It is important to notice that this unbiased quantitation by tandem mass spectrometry 

and spectral counting cannot be used for absolute quantitation. Spectral counts for a 

given protein depend on various factors, including the number of peptides and 

consequently also on the molecular weight of the protein. Small proteins are typically 

more difficult to detect. Therefore, not detecting a protein by tandem mass 

spectrometry does not necessarily mean it is absent. However, a very high linear 

correlation between spectral counts and relative abundance was shown (Zhu et al, 

2010). Consequently, a relative quantification between different samples is possible 

and was used in the following experiments. 

 

3.3.4 Mediator body is recruited independent of head module 
Next, we wanted to confirm the specificity of Mediator recruitment to the promoter 

template. We performed immobilized template assays in a wild-type nuclear extract 

with and without addition of recombinant activator and analyzed the eluates by tandem 

mass spectrometry.  

Consistent with Western blotting analysis (Figure 19B, lanes 3 and 4), Mediator 

subunits were only detected when Gcn4 was added (Figure 21A) confirming an 

activator dependent recruitment of Mediator to the promoter template. Next, we 

performed immobilized template assays in a med17-ts nuclear extract with and without 

addition of recombinant head module. Consistent with Western blotting analysis (Figure 

19B, lanes 5 and 6), Mediator body was recruited to the promoter even in the absence 

of a functional head module (Figure 21A). None of the seven head subunits, but most 

of the middle and tail subunits were detected. At this point, the presence of the kinase 

module remains unconclusive due to the low number of spectral counts in all samples. 

Addition of recombinant head module restored Mediator integrity. Subunits from head, 

middle and tail were detected (Figure 21A). These results clearly demonstrate the 

recruitment of a stable Mediator body comprising the middle, tail and kinase module to 

the promoter even in the absence of functional head module. 
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Figure 21: Analysis of immobilized template assays by tandem mass spectrometry  
Immobilized template assays were performed in wild-type nuclear extracts with and without recombinant 
Gcn4; and in med17-ts nuclear extracts with and without recombinant head module (recombinant Gcn4 
was added to both samples). Activator dependent enrichment (Act) and head dependent enrichment 
(Head) were calculated (1 = positive correlation; 0 = no change; 0 = negative correlation; nd = subunit was 
not detected in any of the samples). (A) spectral counts for each subunit were used for calculation.  
(B) Sum of spectral counts for all unique subunits of the respective complex were used for calculation. In 
addition the gene-specific activators Gcn4 and Rap1, which are directly recruited to the HIS4 UAS are 
shown.  
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3.3.5 Head module is only required for the recruitment of the basal 
machinery 

Next, we asked which factors depend on the head module for promoter recruitment. 

Due to the lack of recombinant head module and appropriate assays, a dissection of 

the recruitment dependencies of various coactivator complex was not possible in the 

past. As expected from previous studies and Western Blot analysis (Figure 19B, lanes 

3 and 4), Pol II recruitment was abolished in med17-ts nuclear extracts. Consistent with 

the previously observed rescue of in vitro transcription (Figure 18) and PIC formation 

(Figure 19B), recruitment of Pol II was restored upon addition of recombinant head 

module  (Figure 21B). Interestingly, recruitment of many cofactors was not affected by 

med17-ts (TFIID, SAGA, NuA4, RSC and Ino80). Only SWI/SNF recruitment showed a 

weak dependence on Mediator head (Figure 21B).  

 

3.3.6 Discussion 
Taken together, our results demonstrate that Mediator is a modular coactivator 

complex, which can be stably recruited by gene-specific activators to a yeast promoter 

even in the absence of the essential head module. This observation is in contrast with 

previous ChIP studies of Mediator promoter occupancy in a med17-ts strain. At the 

non-permissive temperature only the tail module (Ansari et al, 2009) or no Mediator at 

all (Takagi et al, 2006) was observed at the promoter. The lack of add-back 

experiments to rule out secondary effects, the difficulty to chromatin immunoprecipitate 

Mediator at standard growth conditions (Fan & Struhl, 2009) and the monitoring of only 

one representative subunit for each module might explain these differences. 

Furthermore, our results demonstrate that the previously shown interdependent 

recruitment of SAGA, SWI/SNF and Mediator to the core-promoter (Qiu et al, 2005) 

does not require the head module. Our results demonstrate that despite the presence 

of Mediator body, TFIID, SAGA and SWI/SNF at the promoter, PIC formation does not 

occur. Only addition of recombinant head module restores Pol II recruitment and 

consequently PIC formation. This is particularly intriguing since TFIID and SAGA are 

also recruited by activators and were suggested to facilitate alternative PIC assemblies, 

which might not rely on Mediator (reviewed in (Sikorski & Buratowski, 2009)). This 

suggests that although promoters might differ in their dependence on TFIID and SAGA 

(Basehoar et al, 2004; Huisinga & Pugh, 2004) functional Mediator is always required. 
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This is consistent with a previously suggested role of Mediator as a general 

transcription factor (Takagi & Kornberg, 2006) and the global shutdown of Pol II 

transcription in a med17-ts strain (Holstege et al, 1998; Thompson & Young, 1995). 

Another intriguing observation is the presence of TFIID on the HIS4 promoter in the 

absence of Gcn4 and other cofactors (Figure 21B). Previous studies had already 

shown that TFIID can be directly recruited to promoters through interaction with the 

Rap1 transcription factor thereby facilitating PIC formation (Papai et al, 2010). 

Consistently, we found a predicted Rap1 binding site in the HIS4 UAS and detected 

Rap1 in all samples by mass spectrometry (Figure 21B). However, the fact that Rap1 

recruits TFIID without facilitating PIC formation might suggest the existence of a two-

step mechanism during PIC formation. At first, TFIID is loaded to the promoter. 

Afterwards, other gene-specific activators recruit the remaining cofactors like Mediator 

thereby facilitating PIC assembly and transcription initiation. Additional experiments 

and cross-validation of the observations have to be done to validate a sequential PIC 

assembly at the HIS4 promoter.  
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3.4 Additional contributions 

3.4.1 Overview 
The following chapters describe additional experimental results obtained during this 

thesis, which lead to co-author publications. Each chapter starts with a short 

background overview and the relevant biological question. Afterwards, the specific 

experimental contributions to the respective publication are described in detail. 

Additional experiments are only shown and discussed when required for understanding 

the context. All results, detailed methods and a broad discussion of the findings can be 

found in the respective publication and/or thesis of the first author.  

 

3.4.2 Mediator middle submodule Med7N/31 cooperates with TFIIS during 
activated transcription in vitro 

Recombinant coexpression, copurification and subsequent limited proteolysis of the 

trimeric Med7/Med21/Med31 Mediator middle subcomplex had revealed the existence 

of two stable subcomplexes. On the one hand, a dimeric subcomplex comprising 

Med21 and the C-terminus of Med7 (Med7C; residues 103-222) which had been 

previously characterized (Baumli et al, 2005) and on the other hand, a dimeric 

subcomplex comprising Med31 and the N-terminus of Med7 (Med7N; residues 1-83) 

(Figure 22A). The Mediator middle subunit Med31 is particularly interesting since it is 

not essential for yeast viability, but highly conserved from yeast to human (Bourbon, 

2008). Several large-scale studies had already shown that Med31 is required for an 

efficient stress response, e.g. during ethanol, cycloheximide, hydroxyurea and heat 

stress (Alamgir et al, 2010; Teixeira et al, 2009). Furthermore, Med31 had been shown 

to interact genetically with the general transcription factor TFIIS (Malagon et al, 2004) 

and had been implicated to act in conjuction with TFIIS during PIC formation (Guglielmi 

et al, 2007). In this study, we used a combination of structural biology, yeast genetics, 

biochemical assays and global gene expression profiling to demonstrate that 

Med7N/31 is a functional submodule within Mediator required for the expression of a 

specific subset of genes.  

To characterize the function of Med7N/31 during activated transcription and its 

functional cooperativity with TFIIS, we performed in vitro transcription assays with 

yeast nuclear extracts. We used a plasmid-based template comprising the yeast HIS4 
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core promoter and a single upstream Gal4-binding site (Ranish et al, 1999). This 

template enabled us to use two different recombinant fusion activators. Both comprised 

the DNA binding domain of Gal4 and additionally either the activation domain of the 

strong viral activator VP16 (Gal4-VP16) or the acidic yeast activator Gal4 (Gal4-AH).  

 

 
Figure 22: Med7N/31 is a functional submodule in vitro 
(A) Structural overview of the trimeric Med7/21/31 complex architecture. Structures of the non-essential 
Med7N/31 submodule (this study) and the previously described essential Med7C/21 subcomplex (Baumli 
et al, 2005) are drawn to scale. (B) In vitro transcription in a med7N/31Δ yeast nuclear activated with  
Gal4-VP16 is inactive (lane 1). Transcription can be rescued by the addition of TAP-purified Mediator (0.2 
pmol, lane 2) or recombinant Med7N/31 (2–200 pmol, lanes 3–5). 
 

First, we tested whether Med7N/31 is required for activated transcription in vitro. A 

nuclear extract from the med7N/31Δ strain was defective in transcription activated with 

either activator (Figure 22, lane 1; Figure 23B, lane 2). Addition of TAP-purified 

Mediator restored transcription (Figure 22, lane 2), providing a positive control. 

Transcription could also be restored by the addition of recombinant Med7N/31, 

demonstrating that the subcomplex can act in trans without being covalently tethered to 

the Mediator complex (Figure 22, lane 3-5; Figure 23B, lane 2).  

Next, we tested whether Med7N/31 cooperates with TFIIS during activated 

transcription in vitro. Indeed, transcription in a med7N/31Δ nuclear extract that was 

rescued by recombinant Med7N/31 could be enhanced by the addition of recombinant 

TFIIS approximately 4x and 2.5x for Gal4-VP16 (Figure 23A) and Gal4-AH (Figure 

23B) activated transcription, respectively. In wild-type nuclear extracts, TFIIS addition 



                                                                RESULTS AND DISCUSSION 

84 
 

had only a weak stimulatory effect (1.5x; Figure 23D, lane 1-3) and addition of 

Med7N/31 had no effect (Figure 23D, lane 4). Interestingly, addition of TFIIS to a 

med7N/31Δ extract could partially rescue transcription even in the absence of 

recombinant Med7N/31 (Figure 23A, lane 3-4). TFIIS was not limiting in the extracts, as 

a three-fold higher concentration did not further increase the signal. To determine 

whether the observed effect is specific for the Med7N/31 submodule, we prepared a 

nuclear extract from the Mediator head subunit deletion strain med18Δ. Mediator in the 

med18Δ extract specifically lacks the Med18/20 submodule, is inactive for transcription 

in vitro and can be rescued by addition of recombinant Med18/20 in trans (see Chapter 

3.1). In contrast to the med7N/31Δ extract, transcription in the med18Δ nuclear extract 

was not enhanced by TFIIS addition (Figure 23C, lane 3 and 4). Furthermore, the 

med18Δ nuclear extract, which was rescued by the addition of recombinant Med18/20, 

was not further stimulated by the addition of recombinant TFIIS (Figure 23C, lane 5).  

 

 
 
Figure 23: Med7N/31 cooperates with TFIIS during activated transcription in vitro 
(A) In vitro transcription in a med7N/31Δ yeast nuclear extract supplemented with Gal4-VP16 is inactive. 
Addition of recombinant Med7N/31 (r7N/31; 200 pmol; lane 2) could rescue transcription. Addition of 
recombinant TFIIS (rTFIIS; 20 and 60 pmol; lane 3 and 4, respectively) can partially compensate for the 
loss of Med7N/31. (B) In vitro transcription as described for (A) but supplemented with Gal4-AH instead of 
Gal4-VP16. (C) In vitro transcription in a med18Δ yeast nuclear extract supplemented with Gal4-VP16 is 
inactive. Addition of recombinant Med18/20 (r18/20; 20 pmol; lane 2) could rescue transcription. Addition 
of rTFIIS (20 and 60 pmol; lane 3 and 4, respectively) cannot compensate the loss of Med18/20.  
(D) In vitro transcription in a wild-type yeast nuclear extract supplemented with Gal4-VP16 is active (lane 
1). Addition of rTFIIS has only a weak stimulatory effect (20 and 60 pmol; lane 2 and 3, respectively). 
Addition of r18/20 (20 pmol; lane 4) or r7N/31 (200 pmol; lane 5) to a wild-type yeast nuclear extract.had 
no effect. 
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Taken together, our results demonstrate that TFIIS can partially compensate for the 

loss of Med7N/31, and that highest transcript levels required the addition of both TFIIS 

and Med7N/31. These observations were specific for the med7N/31Δ extract, as this 

effect was not obtained in corresponding experiments with a med18Δ extract. These 

results demonstrate the specific functional cooperativity between the Mediator 

submodule Med7N/31 and TFIIS during Pol II transcription initiation in an in vitro 

system.  
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3.4.3 The archetypical activator VP16 targets the Mediator subunit Med25 
through a conserved synergistic use of subdomains 

The herpes simplex virus protein 16 (VP16) is an archetypical acidic activator, which 

activates expression of immediate early viral genes during infection. The C-terminal 

VP16 transactivation domain (TAD; residues 410-490) is widely used for studying 

transcription activation, typically by fusing it to the DNA-binding domain of Gal4  

(Gal4-VP16). The VP16 TAD contains two functional subdomains, H1 (residues  

410-452) and H2 (residues 453-490), which activate transcription independently. VP16 

facilitates PIC formation through targeting several GTF, including TFIIA, TFIIB, TFIID, 

and TFIIH as well as Mediator. The metazoan Mediator subunit Med25 was shown to 

directly interact with VP16 TAD through the activator interaction domain (ACID). In this 

study we solved the NMR structure of Med25 ACID. Chemical shift perturbation 

experiments indicated that VP16 TAD interacts with an extended surface of Med25 

(Figure 24A,B; for details see (Vojnić et al, 2011)). 

 
Figure 24: NMR structure of Med25 and interaction with VP16 TAD 
(A) Ribbon model representation of the Med25 ACID NMR structure. The two views are related by a 180° 
rotation around the vertical axis. Residues that undergo chemical shift changes (Δδ > 0.6 ppm) in the 1H, 
15N HSQC spectra upon VP16 TAD binding onto the ACID structure are highlighted. Rising red color 
intensities correspond to increasing chemical shift changes. Spheres indicate residues with signals that 
show binding in intermediate exchange. (B) Surface representation of the Med25 ACID structure shown in 
the same orientations and colors as in (A). Dashed lines indicate binding surfaces of VP16-H1 and VP16-
H2 activation subdomains as determined by chemical shift perturbation experiments. Interaction “hotspot” 
R466, identified by biochemical assays, is highlighted. 
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To biochemically validate the observations from NMR chemical shift perturbation 

experiments and further characterize the VP16 activation mechanism, we established 

and performed several biochemical assays.  

First, we validated the VP16-ACID interaction with electrophoretic mobility shift assays 

(EMSA). A fluorescently labeled DNA encompassing a Gal4-binding site enabled us to 

monitor formation of a binary complex of Gal4-VP16 with DNA (Figure 25, lane 2), and 

also formation of a ternary complex of the Gal4-VP16/DNA complex with ACID (Figure 

25, lane 4-6). VP16-ACID interaction and consequently ternary complex formation 

could be observed as a supershift in the EMSA. To probe structural determinants in the 

interface, we mutated sites on ACID that showed strong chemical shift perturbations in 

the NMR titration experiments. All ACID variants still bound VP16 in the EMSA (data 

not shown), except the charge-reversal variant R466E, which completely abolished the 

supershift (Figure 25, lane 7-9). These results demonstrate that VP16 binding to ACID 

is robust and probably relies on multiple redundant contacts, and show that ACID 

residue R466 forms a critical interaction ‘hot spot’. This basic residue lies within the H2-

binding face (Figure 24B) and is conserved among ACID homologues.  

 

 
Figure 25: ACID-VP16 interaction assay 
EMSA supershift assay reveals the importance of ACID residue R466 for VP16 binding. The binary 
complex formed by DNA and Gal4-VP16 (lane 2) undergoes a supershift upon addition of increasing 
concentrations of wild-type ACID (lanes 4-6). This supershift is abolished by ACID point mutation R466E 
(lane 7-9). 
 

 

Next, we established a quenching assay to investigate whether the characterized 

VP16-ACID interaction is of functional significance during activated transcription. We 

performed in vitro activated transcription assays with yeast nuclear extracts on the 
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widely used HIS4 promoter with an upstream Gal4-binding site (Ranish et al, 1999). 

The Gal4-VP16 fusion protein is a potent transcriptional activator in this system (Figure 

26A, lane 1). Addition of recombinant ACID quenched the transcription signal through 

an apparent competition with VP16 targets in the yeast extract (Figure 26A, lane 2-4). 

Thus this assay monitored interference of human ACID with functional interactions 

between VP16 and the basal Pol II machinery during activated transcription in vitro. 

The ACID variant R466E had the strongest effect and only quenched transcription to a 

low extent (Figure 26A, lane 5-7), consistent with its critical role in VP16 binding as 

observed in the EMSA assay. Similar experiments with a mammalian B-cell in vitro 

transcription system showed the same effects (Figure 26B; done by collaborators).  

 
Figure 26: VP16 activation is quenched 
by ACID in yeast and mammalian 
system 
(A) ACID quenches VP16 activation in a 
yeast in vitro transcription system. Assays 
were performed with wild-type yeast 
nuclear extracts (lane 1). Increasing 
amounts (10, 100 or 400 pmol) of either 
wild-type ACID (lanes 2-4) or ACID 
variant R466E were added (lanes 5-7). 
Transcription is quenched with 
recombinant ACID, but not with ACID 
variant R466E. (B) ACID quenches VP16 
activation in a mammalian in vitro 
transcription system. Assays were 
performed with B-cell nuclear extracts 
(lane 1). Increasing amounts (530 or 850 
pmol) of either wild-type ACID (lanes 2, 3) 
or specific ACID point mutant variants 
were added (lanes 4-13). ACID R466E 
variant hardly quenches transcription 
(lanes 4, 5), whereas other ACID variants 
do to various extents (lanes 6-13). Data 
are presented as average values of three 
experiments ± S.D., and one 
representative gel is shown. 

 

 

To evaluate the contributions of the VP16 subdomains to transcription activation in 

yeast, we prepared fusion proteins of the Gal4 DNA-binding domain with H1, H2, 

mutated H1 (H1mt) and mutated H2 (H2mt). The mutations targeted functionally 

required hydrophobic residues. Additionally fusions with TAD that was mutated at 

functionally required hydrophobic residues in H1 or H2 (TAD H1mt and TAD H2mt, 

respectively) were prepared. In these assays, H2, but not H1, was alone able to 

activate transcription, although weakly (Figure 27, lanes 6, 7, 15, 16). Consistently, 
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TAD that carried a mutation in H2 supported activated transcription only weakly (Figure 

27, lanes 13, 14), whereas TAD that carried a mutation in H1 strongly activated 

transcription, to nearly the levels of wild-type TAD (Figure 27, lanes 4 and 5). Thus, the 

VP16 TAD subdomains H1 and H2 cooperate during activated transcription in the yeast 

system, with the main contribution coming from H2. 

 

 
Figure 27: VP16 subdomains H1 and H2 activate yeast transcription synergistically 
In vitro transcription with yeast nuclear extracts Transcription in yeast nuclear extracts was monitored in 
the absence (lanes 1, 10) or the presence of different Gal4-VP16 variants, including Gal4 fusions with 
VP16 TAD (lanes 2, 3, 11, 12), TAD carrying the H1 subdomain mutation F442P (H1mt, lanes 4, 5), H1 
(lanes 6, 7), H1mt (lanes 8, 9), TAD carrying the H2 subdomain mutations F473A, F475A, and F479A 
(H2mt, lanes 13, 14), H2 (lanes 15, 16), and H2mt (lanes 17, 18). 
 

 

Taken together, our results characterize the interaction of the metazoan Mediator 

subunit Med25 with the archetypical acidic transcription factor VP16. Strikingly, the 

synergistic activation mode of VP16 is conserved, although it binds different target 

proteins in the yeast and human systems. Yeast Mediator contains neither Med25 nor 

another subunit with ACID homology. In both systems VP16 TAD uses its two 

subdomains H1 and H2 in a synergistic manner, indicating that the yeast transcription 

machinery contains at least two non-overlapping sites capable of binding to the two 

TAD subdomains. Our results contribute to the understanding of how activation 

domains may have evolved to adapt to different unrelated target surfaces. 
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3.4.4 General transcription factor TFIIB controls transcription start site 
selection 

The general transcription factor TFIIB plays an important role during Pol II transcription 

initiation. TFIIB recruits Pol II to the promoter with its N-terminal zinc-ribbon domain (B-

ribbon) (Bushnell et al, 2004; Chen & Hahn, 2003), and at same time contacts TBP and 

DNA through its C-terminal domain (B-core) (Nikolov et al, 1995).  

 

 

Figure 28: Models of the Pol II closed and open complex 
(A) Model of the closed complex (minimal PIC) based on the Pol II-TFIIB crystal structure. DNA template 
and non-template strands are in blue and cyan, respectively. The TATA element is in black and the 
nucleotide in the template strand that represents position 11 in the open complex is shown as a space-
filling model. (B) Model of the open complex (minimal PIC) in the same orientation as in (A). (C) Location 
of nucleotides in DNA template strand initiator consensus sequence and mutations influencing start site 
selection and DNA opening. The open complex model is shown around the active centre. Positions -8 and 
+1 of the template strand are labelled. Position +8 lies adjacent to the B-reader helix that contains residues 
important for TSS selection (Glu 62, Trp 63, Arg 64, Phe 66, pale green spheres). The mobile B-reader 
loop (green-yellow), which contains residues Arg 78 and Val 79 required for initial transcription and TSS 
selection, could reach near positions -1 and +1. Sites of mutations abolishing DNA opening in archaeal 
transcription are shown as salmon spheres. 
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Interestingly, TFIIB has an additional postrecruitment function after PIC formation. 

Mutations in the region connecting the B-ribbon and the B-core had been previously 

shown to affect transcription and transcription start site (TSS) selection, but not PIC 

formation. Several lines of evidence indicated that yeast Pol II scans the DNA for an 

INR sequence motif that defines the TSS. This scanning apparently involves threading 

of the DNA template strand through the template tunnel until an INR is detected by 

sequence-specific interactions. Since the template tunnel passes the active site, INR 

detection must occur near the active site where RNA synthesis is initiated. Previous 

studies had shown that TSS shifts induced by TFIIB mutations depend on the INR 

sequence and that Pol II and TFIIB are alone responsible for TSS selection. 

In this study we solved the crystal structure of a Pol II-TFIIB complex at 4.3 Å and 

proposed a model for the Pol II closed and open complex (Figure 28A and B, 

respectively). Furthermore, two novel structural elements in TFIIB were identified, the 

‘B-linker’ and the ‘B-reader’ element (Figure 28C). In vitro biochemical assays 

demonstrated that the B-linker is involved in promoter opening (not shown). Strikingly, 

the highly conserved B-reader flanks the template tunnel in our open complex model 

(Figure 28B and C), and mutations reported to specifically affect TSS selection mapped 

to this region (Figure 28C). Therefore we hypothesized that the B-reader is involved in 

INR recognition and TSS selection during Pol II scanning.  

To test the scanning model and to demonstrate a B-reader dependent INR recognition 

mechanism, we designed a specialized in vitro transcription template. This template 

comprised the yeast HIS4 core promoter sequence around the TATA box, a single 

upstream Gal4-DNA binding site and a duplicated INR of the yeast SNR14 (Figure 

29A). This fusion template generated transcripts that initiated at the previously mapped 

TSS of the SNR14 promoter (Figure 29B, lane 2). Thus, the INR alone determined the 

TSS, consistent with the scanning model. The yeast INR consensus motif had been 

shown to comprise a conserved residue at position -8, and a CA or TG dinucleotide at 

positions -1/+1 of the non-template strand. Consistently, mutation of the -8 position in 

the first INR of the fusion promoter led to an almost complete loss of the corresponding 

transcript (Figure 29B, lane 3). When both positions -8 and -7 were mutated, 

transcription from the first TSS was totally abolished (Figure 29B, lane 4). Mutation of 

the TATA box abolished transcription from all TSS (Figure 29B, lane 5). In the open 

complex model, the complementary template T residue at -8 is adjacent to the B-reader 

(Figure 28B and C). To test mutations in TFIIB, we prepared a nuclear extract from a 
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strain carrying a temperature-sensitive mutation in TFIIB (TFIIB-ts). This extract is 

inactive in in vitro transcription but can be restored by addition of recombinant TFIIB 

(Figure 29C). We used this system to test several mutant variants of TFIIB in their 

ability to rescue in vitro transcription and changes in TSS selection. Consistent with the 

modelling and published data, mutation of the respective B-reader residues decreased 

transcription efficiency and in some cases led to detectable changes in TSS selection 

(Figure 29D).   

Taken together, our results demonstrate that the INR alone determines TSS selection 

and that the -8 position is important for the INR recognition. Furthermore, our results 

suggest that the INR is recognized with the help of the B-reader during Pol II scanning. 

 

 
 
Figure 29: B-reader and transcription start site selection 
(A) Design of the fusion promoter template HIS4-SNR14. In promoters A[-8]C and A[-7, -8]C, adenines at 
position -8 or at -8 and -7, respectively, relative to the first TSS were replaced by cytosines (white). Arrows 
indicate in vitro TSSs in HIS4 and HIS4-SNR14 fusion promoters, respectively. (B) Three different TSSs 
are used during in vitro transcription in yeast extracts with the HIS4-SNR14 fusion promoter (lane 2). The 
mutations in promoters A[-8]C and A[-7,-8]C gradually eliminate recognition of the first TSS (lanes 3 and 
4). (C) Nuclear extract from a temperature-sensitive yeast strain with a mutation in TFIIB (TFIIBts) is 
essentially inactive in in vitro transcription (lane 3). Activity is restored when recombinant wild-type (WT) 
TFIIB is added (lane 5). Asterisk denotes a non-specific band. The HIS4-SNR14 template and the location 
of the observed TSSs (+1 upstream (u), +1 downstream (d), +7 downstream) (D) Mutations in the yeast B-
reader residues Arg 64, Phe 66, Arg 78 and Val 79, but not Asn 68, lead to TSS shifts. 
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4 Conclusion and Outlook 
The head module of the general coactivator complex Mediator plays an important role 

during Pol II transcription initiation. In this study, we used a structure-function-system 

correlation, combining X-ray crystallography, yeast genetics, biochemical assays, 

chromatin immunoprecipitation, genome-wide expression profiling and label-free mass 

spectrometry, to further characterize its architecture and function. Small-structure 

guided system perturbations were used to dissect the distinct roles of the Med8C/18/20 

and Med11/22 submodules without affecting head module integrity per se. This 

approach is in general superior to classic gene deletion studies since it does not affect 

complex integrity. Therefore, effects can be directly attributed to the mutated subunit. A 

similar approach was established for studying recombinant 7-subunit head modules. In 

the future, the combination of functional in vitro assays supplemented with recombinant 

subcomplexes and an unbiased analysis of promoter-associated factors by label-free 

tandem mass spectrometry will enable a precise dissection of Mediator function.  

 

Future goals include the following: 

 

1) Further characterization of Med11/22 function during Pol II transcription 

In this study, structure-guided Med11/22 mutations were shown to affect the 

expression of at least 400 genes. In contrast, previous studies had shown that 

the med17-ts mutation in the head module affects the expression of most if not 

all genes. To test whether Med11/22 is also globally required for gene 

expression, the structure-based temperature-sensitive mutation med11-

L73K/K80E could be used. Global synthesis rates of med17-ts and med11-

L73K/K80E could be determined and compared by dynamic transcriptome 

analysis (Miller et al, 2011). Directly after heat inactivation the nascent 

transcripts would be labeled and subsequently analyzed. This approach 

minimizes secondary effects, since the mutation has no effect on gene 

expression at the permissive temperature.  

Furthermore, site-directing crosslinking approaches could be used to 

characterize the interaction surface of Med11/22. Site-directed crosslinkers 

could be easily introduced into the recombinant head module. In vitro PIC 

assembly with a med17-ts nuclear extract and the modified recombinant head 
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module followed by crosslinking could potentially confirm the reported yeast-

two-hybrid interaction with TFIIH and identify additional interaction partners.  

 

2) Functional characterization of other head module subunits 

The versatile in vitro assays based on med17-ts nuclear extracts and 

recombinant Mediator head module can be used in the future to characterize 

the remaining essential subunits, Med6, Med8 and Med17. Mutant variants of 

the recombinant head module could be generated and tested for the rescue of 

in vitro transcription similar to the approach used to characterize TFIIB (see 

Chapter 3.4.4). Furthermore PIC assembly of various mutants could be tested. 

Similar to the approach described above, site-directed crosslinkers could be 

introduced to identify interaction partners in Pol II and the GTF.  

 

3) Structural and functional studies of recombinant core Mediator  

Recombinant coexpression and copurification strategies for Mediator head and 

middle modules are already available in the laboratory. In the future, a similar 

strategy could be used to obtain recombinant core Mediator comprising all 

essential subunits. This complex could be used for high-resolution electron 

microscopy and crosslinking mass spectrometry. Fusion of recombinant core 

Mediator with a DNA-binding domain, like the bacterial lexA-DNA binding 

domain, could be used to study the role of Mediator during PIC formation 

isolated from other coactivator complexes.  

 

4) Identification and characterization of inter-module interactions within Mediator 

Although the architecture of individual Mediator modules has been 

characterized in detail (Koschubs et al, 2010; Takagi et al, 2006), the inter-

module interactions remain largely unclear. In this study, we demonstrated the 

existence of a stable head-less Mediator (termed Mediator body). A 

recombinant head module can associate with Mediator body and thus rescue 

Mediator function. In the future, mutant variants of the recombinant head 

module could be used to indentify the molecular interaction between Mediator 

head and body.  
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5) Characterization of the interplay between Mediator and other coactivators at 

different Pol II promoter classes 

Recent genome-wide studies had suggested that different Pol II promoters are 

dominated by different coactivator complexes (Basehoar et al, 2004; Huisinga & 

Pugh, 2004). While TATA box containing promoters rely on SAGA, TATA-less 

promoters rely on TFIID for activation. In this study, we demonstrated that 

several coactivator complexes including Mediator, SAGA and TFIID, are 

recruited to a TATA box containing yeast promoter in vitro. In the future, a 

TATA-less promoter template for immobilized template assays could be 

established. Differences in factor recruitment as well as the role of Mediator 

could be determined using the unbiased label-free mass spectrometry approach 

established in this study.  
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