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Summary

Spike-timing variability is a prevalent feature of neurons that is commonly believed
to impact neuronal information processing. Despite this variability of neuronal spike
responses, sensorimotor actions can be very precise. For example, if we hear a sound,
we are able to localize the sound source and to turn in its direction with a very high
accuracy.

So far, little is known about the nature of the sources of neuronal response variability.
The most functionally important intrinsic noise source of sensory neurons may arise from
the stochastic gating of ion channels. In this thesis, I investigate potential channel noise
sources in the auditory receptor neurons of Locusta migratoria. The auditory system of
locusts is a well-established system for studying the processing of acoustic patterns, and
the anatomical and functional properties of the receptor neurons are well understood.
To directly measure the noise characteristics of the underlying ionic currents, somatic
recordings of sensory neurons are required. These, however, are hard to achieve in the
locust auditory system without damaging the sensory transduction machinery. Here, I
therefore employ an indirect approach to assess the stochastic dynamics of the sensory
neurons based on interspike-interval and spike-count statistics of neuronal spike train
responses. This allowed me to record the spike responses of the auditory receptor
neurons intracellularly from the auditory nerve far away from the ear. The interspike
intervals (ISI) of the spike responses, i.e. the time between subsequent action potentials,
as well as the spike count, i.e. the number of action potentials fired in a defined time
frame, are statistically analyzed. By means of simulations of integrate-and-fire and
conductance-based models, different assumptions of possible noise sources are tested
which explain the ISI and spike-count statistics of the experimental data.

The results of this thesis are divided into four sections addressing the following
questions:

1. What are the sources of spike-response variability? The ISI statistics of the locust
auditory receptor cells are analyzed. Spike responses exhibit ISI distributions that can
be well described by the inverse Gaussian (IG) distribution and show negative serial
ISI correlations for sufficiently low sound intensities evoking spike frequencies of less
than 50 Hz. These findings can be explained by a white-noise source that interacts
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with an adaptation current. Stimulation with sound intensities that elicit firing rates
greater than 50 Hz, in contrast, results in more peaked distributions and positive serial
ISI correlations, as expected from an integrate-and-fire model of suprathreshold firing
driven by colored noise. Such colored noise potentially arises from a stochastic adaptation
current. Simulations of a minimal conductance-based model of the auditory receptor
neuron with single stochastic ionic currents exclude the delayed rectifier potassium
current as a possible noise source. The simulations instead suggest the receptor or
sodium current as possible candidates of the white-noise source while slow channel
noise from stochastic adaptation currents may act as the colored-noise source. This shows
for the first time that noise from stochastic adaptation currents may have a distinct effect
on the ISI statistics and, thus, on the neuronal spike-response variability.

2. How does adaptation contribute to the interspike-interval variability? The contribution of
adaptation to the interspike-interval variability is theoretically analyzed. I compare two
limit cases: (i) stochastic adaptation and (ii) the commonly studied case of a deterministic
adaptation current and additive white noise. For fast fluctuations and deterministic
adaptation, the ISI density is well approximated by the IG distribution and the ISI
correlations are negative. In contrast, for stochastic adaptation, the density is more
peaked and has a heavier tail than the IG density and the serial correlations are positive.
A mixed case study where both fast fluctuations and adaptation channel noise are present
reveals a smooth transition between the limit cases. By means of simulations of a minimal
conductance-based model of the auditory receptor neuron with a mixture of stochastic
ionic currents from adaptation channels and stochastic receptor or sodium channels the
ISI statistics of locust auditory receptor cells can be reproduced. This indicates that two
different types of noise sources shape the ISI variability, i.e. slow adaptation channel
noise effectively acting as colored noise and fast channel fluctuations effectively acting
as white noise. This combination of stochastic currents reproducing the ISI variability,
however, is not able to explain the spike-count variability of locust auditory receptor
neurons.

3. How does adaptation contribute to the spike-count variability? The spike-count variabil-
ity of locust auditory receptor neurons is analyzed which in contrast to the ISI variability
also captures noise processes on long time scales. The variability of the spike count is
measured by the Fano factor as a function of the counting time frame length. Locust
auditory receptor neurons show minimal Fano factor values for medium counting times
and increasing values for large counting times. Furthermore, the experimental data show
a shift of the Fano factor minimum and the exponent, that describes the Fano factor
increase for large counting times, with increasing sound intensities. Simulations of the
locust auditory receptor neurons with two stochastic adaptation currents can explain
both the ISI and spike-count statistics of the experimental data. The Fano factor curves
can be explained by a second additional adaptation current working on much slower
time scales of several seconds is also visible in intracellularly recorded spike responses
of long duration.

4. How do two time scales of adaptation shape spike-count variability? The contribution
of adaptation to the spike-count variability is theoretically analyzed. Simulations of
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both integrate-and-fire and conductance-based models reveal a mutual interaction of
two adaptation currents that also influences spike-count variability. Analytical solutions
for the firing-rate dynamics with two adaptation currents confirms this interaction.
Moreover, equations are derived which can be used to estimate the properties of two
adaptation currents, i.e. strengths and time constants, from experimentally measured
spike responses.

By comparing both the interspike-interval and spike-count statistics of experimental
data with the ones known from standard models we were able to infer two distinct noise
sources, white- and colored-noise sources, and several time scales of slow noise based on
recordings from the auditory nerve that left the delicate ear intact. This demonstrates
how higher-order statistics can be used to distinguish different kinds of noise sources.
Therefore, the indirect methods introduced in this thesis may be used to uncover potential
noise sources in various sensory systems that do not allow direct electrophysiological
measurements.





Zusammenfassung

Im zentralen Nervensystem ist Variabilität ein verbreitetes Phänomen in Erregungs-
mustern von Neuronen, das häufig als nachteilig für die neuronale Signalverarbeitung
betrachtet wird. Trotz dieser Variabilität neuronaler Antworten ist es uns jedoch möglich,
sensomotorische Abläufe sehr präzise auszuführen. Beispielsweise können wir eine
Geräuschquelle sehr genau lokalisieren und uns präzise in die Richtung drehen, aus der
das Geräusch kommt.

Bislang ist jedoch nur wenig über die Eigenschaften der Quellen bekannt, die neuro-
nale Variabilität verursachen. Die Stochastizität von Ionenkanälen wird häufig als die
funktionell bedeutendste intrinsische Rauschquelle in sensorischen Neuronen angese-
hen. Diese Arbeit untersucht daher potentielle Ionenkanal-Rauschquellen am Beispiel
der auditorischen Rezeptorneurone von Locusta migratoria (Wanderheuschrecke). Das
auditorische System der Wanderheuschrecke ist ein etabliertes Modellsystem für die
Untersuchung der Verarbeitung akustischer Signale. Sowohl die anatomischen als auch
die funktionellen Eigenschaften der auditorischen Rezeptorneurone sind sehr gut unter-
sucht. Direkte Messungen der fluktuierenden Ionenströme, die neuronale Variabilität
verursachen, erfordern intrazelluläre Ableitungen am Soma sensorischer Neurone. Diese
sind jedoch im auditorischen System der Wanderheuschrecke schwer durchzuführen,
ohne die sensorische Signalverarbeitung zu beeinträchtigen. Aus diesem Grund stelle
ich in dieser Dissertation eine indirekte Methode vor, die es erlaubt, die stochastische
Dynamik sensorischer Neurone auf der Grundlage von statistischen Untersuchungen
der neuronalen Antworten zu analysieren. Dies erlaubte mir, die neuronalen Antworten
der auditorischen Rezeptorneurone im Hörnerv intrazellulär abzuleiten, ohne die Signal-
verarbeitung im weiter entfernten Ohr zu beeinträchtigen. Die Interspike-Intervalle der
neuronalen Antworten, d.h. die Zeit zwischen zwei aufeinanderfolgenden Aktionspoten-
tialen, sowie die Spikeanzahl, d.h. die Anzahl an Aktionspotentialen in einem definierten
Zeitfenster, werden statistisch untersucht. Anhand von Computersimulationen werden
unterschiedliche Hypothesen möglicher Rauschquellen getestet, die die Statistik der
Interspike-Intervalle sowie der Spikeanzahl der experimentellen Daten erklären können.

Die Ergebnisse dieser Dissertation sind in vier Abschnitte gegliedert, welche folgende
Fragen behandeln:
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1. Was ist der Ursprung neuronaler Variabilität? Die Interspike-Intervall-Statistik der
auditorischen Rezeptorneurone der Wanderheuschrecke wird analysiert. Für Stimula-
tionen mit Schallintensitäten, die Feuerraten niedriger als 50 Hz hervorrufen, weisen
die neuronalen Antworten Interspike-Intervall-Verteilungen auf, die mit der inversen
Gauß-Verteilung beschrieben werden können. Die Spikeantworten zeigen weiterhin
negative Korrelationen zwischen aufeinanderfolgenden Aktionspotentialen. Dies be-
deutet, dass im Mittel entweder ein langes Interspike-Intervall auf ein kurzes folgt und
umgekehrt. Diese Ergebnisse können mit einer Rauschquelle erklärt werden, die weißes
Rauschen erzeugt und mit einem Adaptationsstrom interagiert, der die Frequenz an
Aktionspotentialen bei gleichbleibender Reizung abnehmen lässt. Für Stimulationen
mit Schallintensitäten, die Feuerraten höher als 50 Hz hervorrufen, zeigen die neuro-
nalen Antworten dagegen Interspike-Intervall-Verteilungen, die spitzer sind als die
inverse Gauß-Verteilung, sowie positive Korrelationen zwischen aufeinanderfolgenden
Aktionspotentialen. Diese Eigenschaften sind von überschwellig feuernden „Integrate-
and-Fire“ Modellen bekannt, die durch farbiges Rauschen getrieben werden. Farbiges
Rauschen kann von stochastischen Adaptationsströmen erzeugt werden. Simulatio-
nen minimaler Leitfähigkeitsmodelle auditorischer Rezeptorneurone mit einzelnen sto-
chastischen Ionenströmen schließen den verzögerten Gleichrichter-Kaliumstrom als
Rauschquelle aus. Die Simulationen deuten stattdessen darauf hin, dass stochastische
Ionenströme von Rezeptor- bzw. Natriumkanälen mögliche Quellen für weißes Rauschen
darstellen, während langsames Kanalrauschen stochastischer Adaptationsströme als
farbige Rauschquelle wirken kann. Diese Ergebnisse zeigen erstmals, dass Rauschen von
stochastischen Adaptationsströmen einen deutlichen Effekt auf die Interspike-Intervall-
Statistik und somit auch auf die Variabilität neuronaler Antworten haben kann.

2. Welchen Einfluss hat Adaptation auf die Interspike-Intervall Variabilität? Der Einfluss
von Adaptation auf die Interspike-Intervall Statistik wird theoretisch untersucht. Dabei
vergleiche ich zwei Grenzfälle miteinander: (i) stochastische Adaptation und (ii) deter-
ministische Adaptation plus additives weißes Rauschen. Der letztere Grenzfall zeigt
Interspike-Intervall-Wahrscheinlichkeitsdichten, die mit der inversen Gauß-Verteilung
beschrieben werden können, sowie negative Korrelationen zwischen benachbarten Akti-
onspotentialen. Im Gegensatz dazu weist der Grenzfall der stochastischen Adaptation
spitzere Verteilungen und positive Korrelationen auf. Simulationen, die sowohl schnelle
Fluktuationen als auch langsames Adaptationskanalrauschen beinhalten, ergeben einen
gleichmäßigen Übergang zwischen den beiden Grenzfällen. Simulationen minimaler
Leitfähigkeitsmodelle auditorischer Rezeptorneurone mit einer Kombination aus sto-
chastischen Adaptationsströmen und stochastischen Rezeptor- bzw. Natriumströmen
können die komplette Interspike-Intervall-Statistik der experimentellen Daten repro-
duzieren und erklären. Dies weist darauf hin, dass zwei unterschiedliche Typen von
Rauschquellen die Variabilität neuronaler Antworten der auditorischen Rezeptorzellen
der Wanderheuschrecke beeinflussen: Zum einen schnelle Ionenkanalfluktuationen, die
wie weißes Rauschen wirken, und zum anderen langsame Adaptationskanäle, die als
farbiges Rauschen wirken. Diese Kombination aus stochastistischen Ionenströmen, die
die Interspike-Intervall-Statistik der auditorischen Rezeptorneurone reproduzieren kann,
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erweist sich jedoch als nicht ausreichend, um die Variabilität in der Spikeanzahl zu
erklären.

3. Welchen Einfluss hat Adaptation auf die Variabilität in der Spikeanzahl? Die Variabilität
der Spikeanzahl neuronaler Antworten auditorischer Rezeptorneurone der Wanderheu-
schrecke wird analysiert. Diese zeigt im Gegensatz zur Interspike-Intervall Variabilität
zusätzlich Effekte von Rauschquellen, die auf langen Zeitskalen wirken. Die Variabilität
in der Spikeanzahl wird anhand des Fano-Faktors quantifiziert, der für verschiedene
Zeitfenster berechnet wird. Die auditorischen Rezeptorneurone zeigen minimale Fano-
Faktor-Werte für mittlere Zeitfenster und steigende Werte für lange Zeiten von mehreren
Sekunden. Außerdem weisen die experimentellen Daten eine Verschiebung des Mini-
mums und des Exponenten, mit dem die Fano-Faktor-Kurve ansteigt, für steigende
Schallintensitäten, die zur Stimulation genutzt wurden auf. Simulationen der audito-
rischen Rezeptorneurone zeigen, dass die Kombination aus stochastischen Rezeptor-
bzw. Natriumströmen sowie von Ionenströmen zweier stochastischer Adaptationskanäle
sowohl die Spikeanzahl- als auch Interspike-Intervall-Variabilität der experimentellen
Daten reproduzieren und erklären kann. Der zweite zusätzliche Adaptationsstrom, der
eine Zeitkonstante von mehreren Sekunden aufweist, erklärt die Verschiebungen so-
wie die hohen Fano-Faktor-Werte für lange Zeitskalen. Diese zusätzliche Adaptation
der Spikefrequenz wird auch in intrazellulären Ableitungen mit einer Dauer von einer
Minute sichtbar.

4. Wie beeinflussen zwei Adaptationsströme die Variabilität in der Spikeanzahl? Der Ein-
fluss von Adaptation auf die Statistik der Spikeanzahl wird theoretisch untersucht.
Simulationen von „Integrate-and-Fire“ als auch Leitfähigkeits-Modellen mit Adapta-
tion zeigen, dass zwei Adaptationsströme interagieren und einander entgegenwirken.
Diese Interaktion beeinflusst die Variabilität neuronaler Antworten und die Form der
Fano-Faktor-Kurven. Analytische Lösungen eines phänomenologischen Feuerratenmo-
dells mit Adaptation auf zwei Zeitskalen bestätigen diese Interaktion. Weiterhin werden
Gleichungen hergeleitet, die es erlauben, Adaptationsparameter, d.h. Stärken und Zeit-
konstanten zweier Adaptationsströme, von experimentell gemessenen Spikeantworten
zu bestimmen.

Durch den Vergleich der Spikeanzahl- und Interspike-Intervall-Statistiken experimen-
teller Daten mit denen, die von Standard-Neuronenmodellen bekannt sind, können in
dieser Arbeit zwei unterschiedliche Typen von Rauschquellen (weißes Rauschen und far-
biges Rauschen auf zwei Zeitskalen) anhand von intrazellulären Ableitungen im Hörnerv
unterschieden werden, die das empfindliche Ohr der Wanderheuschrecke unversehrt
lassen. Diese Ergebnisse zeigen, wie Statistik höherer Ordnung eine Unterscheidung
unterschiedlicher Rauschquelltypen ermöglicht. Die hier dargestellten indirekten Me-
thoden können daher auch in anderen sensorischen Systemen Anwendung finden, die
direkte elektrophysiologische Messungen ausschließen.





Part I. INTRODUCTION
Spike-response variability in the auditory system of
Locusta migratoria





Chapter 1
Spike-response variability

Spike-response variability is a prominent and ubiquitous characteristic of neuronal
responses (see Fig. 1.1 as example). These fluctuations, both in spike timing and in
spike count, can be observed both within (“intra-trial variability”) and across stimulus
repetitions (“trial-to-trial variability”). The variability can be expressed both in the
time between two action potentials, i.e. the interspike intervals (“interspike-interval
variability”), and in the number of spikes (“spike-count variability”). The question how
the nervous system is able to ensure reliable responses, such as a behavioral output,
within a noisy environment is a fundamental issue in neuroscience.

However, not all neurons were found to show equal variability. Neurons which were
stimulated intracellularly with a known time-dependent input current displayed spike
activity which seemed to be almost deterministic (Bryant and Segundo, 1976; Mainen
and Sejnowski, 1995). A much more regular spike timing was found in neurons during
stimulation with rapidly changing external stimuli in contrast to stimulations with
constant or slowly varying stimuli (Bair and Koch, 1996; Berry et al., 1997; de Ruyter van
Steveninck et al., 1997). On the other hand, neurons can also generate very irregular
spike responses in the absence of any temporally structured stimuli (Rose, 1979; Softky
and Koch, 1993; Kostál and Lánský, 2008). This suggests that a neuron’s spiking behavior
may depend on the stimulus itself.

Variability in neuronal responses may set limits to the discrimination of sensory
stimuli. In the brains of both vertebrates and invertebrates, it was shown that the degree
of neuronal variability even increases for higher stages of sensory processing. Given the
same stimulus, lowest variability was found for the periphery with increasing variability
for higher-order neurons, such as cortical neurons (Kara et al., 2000; Prut and Perlmutter,
2003; Vogel et al., 2005; Ronacher et al., 2008). Despite this variability it is astonishing
how precisely and reliably sensorimotor actions, for instance, can be performed. If we
hear a sound, we are able to localize the sound source and to turn in its direction with a
very high accuracy.

In order to comprehend neuronal codes used for the representation and processing
of a sensory input and how a reliable signal processing is possible, it is important to
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Figure 1.1: Spike-response variability. Three different traces of spike responses that were recorded
intracellularly from a locust auditory receptor neuron during stimulation with a pure-tone stimulus of
constant sound intensity (schematically drawn as slow sine wave).

understand the nature and origin of the observed response variability. To this end, the
focus of this thesis is what the sources of spike-response variability are and how we can
identify and analyze them.



Chapter 2
Sources of spike-response variability

In the nervous system, variability can be found at various levels which range from
the detection of sensory stimuli to the generation of motor responses. Spike-response
variability is usually considered to result from neuronal noise (Shadlen and Newsome,
1994, 1998). Various noise sources are known that have a strong contribution to neuronal
response variability (see Faisal et al., 2008 for a review). We can classify them into two
groups: (i) extrinsic and (ii) intrinsic noise sources.

Variability at the first stages of signal processing can arise from extrinsic noise which
enters with the sensory stimulus. Via the signal transduction pathway this noisy sensory
stimulus will be amplified and, subsequently, converted into an electrical signal by the
receptors. An example of such noise in the visual system is given by photon noise
which causes fluctuations of the depolarizing currents of photoreceptor neurons by
the quantal nature of light (Grewe et al., 2003, 2007). These fluctuations, in turn, may
cause variability in spike responses of higher-order neurons. In the auditory system, the
temporal structure of an acoustic stimulus may be distorted by environmental noise or
the interference from other objects before arriving at the ear (Richard and Wiley, 1980;
Römer and Lewald, 1992; Brumm et al., 2004).

A second type of extrinsic noise, which directly affects single neurons is given by
synaptic noise resulting from the synaptic bombardment of a myriad of synapses (Calvin
and Stevens, 1967, 1968). Synaptic noise is very complex and can originate from different
sources. Factors affecting the post-synaptic responses are e.g., the quantal release of neu-
rotransmitters (Castillo and Katz, 1954), variations in the neurotransmitter concentration
within the synaptic cleft (Franks et al., 2003) or stochastic fluctuations in the number of
activated postsynaptic receptors (Faber et al., 1992).

Noise sources which arise at the level of an individual neuron are called intrinsic
noise sources. Thermal noise is an ubiquitous intrinsic noise source. Thermal agitation of
electrons due to the passive membrane resistance gives rise to random fluctuations in the
membrane potential (“Johnson noise”, Johnson, 1928). Fluctuations can also arise from
the transmission of a finite number of electrons or ions through leak channels or other
pores in the neuronal membrane (“Shot noise”, Frehland and Faulhaber, 1980). In the
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auditory system, thermal noise can lead to thermal fluctuations of the hair bundles, e.g.
when fluid molecules collide with the auditory hair bundles due to Brownian motion
(Jaramillo and Wiesenfeld, 1998; Nadrowski et al., 2004). Thermodynamic noise can also
affect tastes and smells due to a random arrival of diffusing molecules at the receptor
sites (Berg and Purcell, 1977; Bialek and Setayeshgar, 2008). It was, however, shown that
the effect of these noise sources on the spike-response variability is very small (Lecar and
Nossal, 1971; Manwani and Koch, 1999).

The most functionally important intrinsic noise source of sensory neurons concerning
the neuronal dynamics may arise from ion channel noise (White et al., 2000). The
membrane conductance of a neuron is directly proportional to the number of open ion
channels which show an intrinsically stochastic behavior (Hille, 2001). The resulting
conductance fluctuations caused by a finite number of ion channels result in variability
in neuronal spike responses.

2.1 Channel noise

Already very early, with the work of Hodgkin and Huxley (1952), gating variables
were introduced which are nowadays interpreted as ion channel opening probabilities.
The first patch-clamp recordings of single ion channels by Neher and Sakmann (see
e.g., Sakmann and Neher, 1995) have then experimentally shown that ion channels
in the neuronal membrane are stochastic molecular structures. The recorded currents
demonstrated that ion channels can very rapidly switch between conducting and non-
conducting states.

The transitions between the different channel states are usually modeled based on
Markov schemes (Colquhoun and Hawkes, 1977). The most simple description of a
voltage-dependent ion channel is given by the following two-state scheme:

closed
α(V)−−⇀↽−−
β(V)

open (2.1)

where α(V) and β(V) define the voltage-dependent transition rates between the open
and closed state. Several ion channels, however, have more than two states. These are
defined by a Markov scheme with a specified number of states as well as rate constants
which define the transition between all possible states.

Each state of a Markov scheme corresponds biophysically to a change in the confor-
mation of the channel protein subunits (Hille, 2001). In the case of voltage-gated ion
channels, a depolarisation of the cell can cause the helix of a protein domain to move
and, as a consequence, change the protein conformation. The conformational change of
ligand-gated ion channels can be caused by the binding of a ligand at the receptor site of
the channel. In the case of mechanosensory ion channels, mechanical forces (e.g. stretch
or bending of the cell membrane, channel or membrane displacement by a tether) can
directly gate the channels which are attached to the membrane (Kung, 2005). Since not
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Figure 2.1: Conductance variance of a population of ion channels. The channel open probability
p = g/(Nγ) and the conductance variance σ2

g /(Nγ2) = p(1− p) are given by Eqs. (2.2)-(2.3). The

variance is maximal for an open probability p = 0.5 where the variance is 1
4 Nγ2 (black dashed line).

every transition between all states is possible, a Markov gating scheme defines only the
transitions that are permitted.

The probabilistic transitions between the states of each channel of a channel popu-
lation in a neuronal membrane causes fluctuations of the total membrane current in a
cell. Assuming that the channel states are independent, the total conductance g of N ion
channels and its variance σ2

g are given by (Ehrenstein et al., 1970; Begenisich and Stevens,
1975):

g = Npγ (2.2)

σ2
g = Np(1− p)γ2 (2.3)

where γ is the single-channel conductance and p = α/(α + β) is the mean steady-state
open probability of a channel.

The open probability p is one factor strongly influencing neuronal noise. Open prob-
abilities of voltage-dependent ion channels, for instance, change with the membrane
potential. For the steady-state open probability p = 0.5, the variance of the current pass-
ing the channels is highest (see Fig. 2.1, Sigworth, 1980), because the number of occurring
state transitions is maximal. For smaller and larger open probabilities, respectively, the
conductance/current fluctuations decrease. When all channels are either completely
open or closed, the noise level is zero.

The variance of the fluctuations is dependent on the number of channels. This
becomes obvious when we regard the number of open channel channels, No, as a function
of time (see Fig. 2.2). Small N yield large fluctuations in the number of open (conducting)
channels in relation to the mean No (see Fig. 2.2A,C). Large N, in contrast, result in small
relative variability (see Fig. 2.2B,D).

The fluctuations decline proportionally to the square root of the ion channel number
(White et al., 2000). Quantifying the conductance noise level by the coefficient of variation,
which is given by the ratio of the standard deviation to the mean (see Eq. (2.2)-(2.3)),
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C,D The distribution of No for the same simulation shown in A and B. CVNo defines the ratio of the
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gives us:

CVg =
σg

g
=

√
1− p
Np

. (2.4)

Hence, small N yields large relative fluctuations with a high CVg for a given steady-state
open probability p and vice versa.

Another factor which affects spike-response variability is given by the single-channel
conductance γ. In a current trace of a single-channel patch-clamp recording, this effect
becomes obvious when we look at the current steps when an ion channel opens (see
e.g., Neher and Stevens, 1977). The open-channel current is given by the product of the
voltage and the single-channel conductance, i(V) = γ(V − E) where V is the membrane
potential and E is the reversal potential. If γ is large, the current steps visible in current
traces are large. The contrary holds true for small γ. This effect can be shown in
simulations of action potential generation with different sodium and potassium channel
numbers, NK and NNa, and with a single-channel conductance which is proportional
to the channel numbers, γK = gK/NK and γNa = gNa/NNa where gK and gK are the
total-channel conductances (see Fig. 2.3). Simulations with large NK and NNa result in
voltage-dependent currents responsible for action potential generation that do not show
current steps and seem to behave like deterministic currents (see Fig. 2.3A). Small NK
and NNa, in contrast, yield large current steps demonstrating the stochastic nature of the
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Figure 2.3: The simulation of an action potential with deterministic and stochastic voltage-
dependent currents. The currents responsible for the generation of an action potential (AP, black
solid lines) causing a change of the membrane potential V were mediated by deterministic (dark and
light gray solid lines) or stochastic sodium and delayed-rectifier potassium channels (black dashed lines).
They are proportional to the open probabilities of the deterministic currents which are determined by the
Hodgkin-Huxley activation variables m3h defining the open state of the deterministic sodium channel
and n4 for the open state of the deterministic potassium channels. The corresponding stochastic
currents passing (A) NNa = 10000 sodium and NK = 10000 potassium channels and (B) NNa = 50
sodium and NK = 50 potassium channels, respectively, were simulated using Gillespie’s algorithm
(see section 7.4). The total-channel conductances were kept constant at gK = 80 mS/cm2 and
gNa = 100 mS/cm2, while the single-channel conductances were scaled with γK = gK/NK and
γNa = gNa/NNa.

ion channels, which in addition affect the evolution of the membrane potential during
an action potential (see Fig. 2.3B).

To understand the implications of biophysical noise sources, such as channel noise,
on signal processing in the nervous system, it will be important to decode the basic
concepts of channel noise in more detail.





Chapter 3
Role of noise in the nervous system

Noise in the nervous system is ubiquitous and has to be considered when discussing
neural information processing. Variability at the single neuron level translates into noise
at higher-order neurons which even increases with increasing neuronal level (Kara et al.,
2000; Prut and Perlmutter, 2003; Vogel et al., 2005; Ronacher et al., 2008). This suggests
that variability may place limits on the reliability of behavioral responses.

In sensorimotor systems, a precise motor control requires accurate knowledge of the
current body position and reliable processing of the sensory input. A sensory input, for
instance, may be an acoustic signal eliciting a movement in the direction of the sound
source. For the performance of this task, it is important to precisely localize the acoustic
signal and, additionally, to accurately determine the movement angle to approach the
sound source. Although neuronal responses are quite variable, motor performance,
however, can be very precise. This suggests that the nervous system can cope with
noisy neuronal responses and that variability in the nervous system may offer distinct
advantages and play a specified functional role in information processing.

To analyze the role of noise in a sensorimotor system, it is important to first under-
stand the variability and its origin at the very early stages of signal processing. In this
thesis, we therefore focus on noise at the first stage of perception, i.e. on noise in sensory
receptors neurons.

3.1 Noise in sensory systems

In sensory systems, a basic but crucial task in perception is the recognition and localiza-
tion of stimuli, like objects, smells or sounds. The goal of the nervous system is to extract
the relevant stimulus characteristics while ignoring unwanted background information.

Subthreshold noise has been shown to help enhance the detection and the extraction
of the relevant information of weak signals when an optimal level of background noise is
present. This phenomenon is called “stochastic resonance” (Benzi et al., 1981; Wiesenfeld
and Moss, 1995; McDonnell and Abbott, 2009). Stochastic resonance can have a beneficial
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effect on the transmission of details for instance about the stimulus shape (see Fig. 3.1).
A subthreshold sine wave (see Fig. 3.1A) or square pulse stimulus (see Fig. 3.1B) with
added low-amplitude white noise can yield action potentials at a relatively fixed period
of the stimulus where the stimulus is closest to the spike threshold (see Fig. 3.1C,D).
These spike responses may be hardly distinguishable for sine and square wave stimuli
with the same cycle period. In this case, this means that it is not possible to extract
information about the stimulus shape from the spike responses. Adding stronger noise to
the same subthreshold stimuli, in contrast, can result in spike responses (averaged over
many stimulus repetitions) which follow the distinct stimulus shapes (see Fig. 3.1E,F).
At stimulus phases where the subthreshold stimulus is close to the spike threshold, the
neuron generates action potentials with higher probabilities and vice versa. Thus, a
higher noise level may yield spike responses with action potentials at all stimulus phases,
and the spike probability, hence, can follow the shape of the stimulus.

Stochastic resonance has been reported in a range of sensory systems. Examples
include the mechanoreceptor cells of crayfish (Douglass et al., 1993), shark multimodal
sensory cells (Braun et al., 1994), cercal sensory neurons of cricket (Levin and Miller, 1996)
and human muscle spindles (Cordo et al., 1996). One functional role was suggested in
the extension of the dynamic range of neurons (Stocks, 2000). Another role of noise was
reported in the alteration of firing patterns by means of changes of the noise level due to
temperature or electric-field gradients (Braun et al., 1994, 1997). In studies on paddlefish,
stochastic resonance was shown to enhance the detection and capture of Daphnia, i.e.
planktonic prey, which suggests a functional role in animal behavior (Russell et al., 1999).

The phenomenon of stochastic resonance is also known to occur in ion channels
that switch between two states that are separated by an energy barrier (Bezrukov and
Vodyanoy, 1995; White et al., 1998; Parc et al., 2009). To switch from one state to another,
the energy difference has to be overcome. A weak signal will not have enough energy
to induce a state transition. The addition of noise, however, will occasionally yield an
escape from the well and induce a transition. In sensory systems, an optimal noise level
will, hence, yield a maximal signal-to-noise ratio for which a weak sensory signal is
optimally transduced.

Suprathreshold stochastic resonance is a particular variant of stochastic resonance
which unlike the classical one is not restricted to a weak subthreshold signal. This type
reveals a facilitation of information by noise through a parallel array of independent
threshold devices (Stocks, 2000). Regarding the nervous system, this means that a
population of sensory neurons receiving the same input signal may collectively encode a
stimulus. The output from all devices or neurons is then summed up to give an overall
output response. This may be beneficial, for instance, for the detection of suprathreshold
acoustic stimuli in a loud environment.

A recent theoretical study showed that suprathreshold stochastic resonance may be
induced by ion channel fluctuations and that an optimal amount of channel fluctuations
may optimize signal transmission (Ashida and Kubo, 2010). This suggests that channel
noise potentially plays a crucial role in population coding in neurons.
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Figure 3.1: A potential beneficial effect of a high noise level. Leaky integrate-and-fire model
driven by a subthreshold A,C,E sine wave or B,D,F step pulse stimulus and additional white noise
input. C,D A low noise level yields spike responses (top: 40 out of 100 trials, bottom: mean event
rate across all trials) for both stimuli which occur at a relatively fixed phase of the cycle and which
are indistinguishable for a (A) sine and (B) square wave. E,F High noise, in contrast, results in spike
responses (top: 40 out of 100 trials, bottom: mean event rate across all trials) which last for the whole
cycle and follow the different shapes of the stimuli.
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Beside the effects of stochastic resonance, it was furthermore shown that noise in
combination with negative correlations between interspike intervals can improve infor-
mation transmission (Chacron et al., 2001). Positive interspike interval correlations give
rise to Fano factor curves quantifying spike-count variability which express a minimum
for a defined observation time (Middleton et al., 2003). This indicates that noise may
define time frames for which signal detectability is optimal.

Various studies have demonstrated a constructive role of noise in the transmission of
neuronal signals. However, little is known about the specific underlying mechanisms
causing variability and how they work.



Chapter 4
Spike-frequency adaptation in sensory
systems

Spike-frequency adaptation is a widespread phenomenon throughout the nervous system
and denotes the reduction of the firing rate of neurons to prolonged stimuli (see Fig. 4.1
as example). This phenomenon has been observed in many sensory neurons of both
vertebrates and invertebrates, such as in the visual (Laughlin, 1989; Peron and Gabbiani,
2009a), olfactory (Demmer and Kloppenburg, 2009), electrosensory (Nelson et al., 1997;
Benda et al., 2005) or auditory system (Westerman and Smith, 1984; Epping, 1990; Givois
and Pollack, 2000; Ronacher et al., 2004).

Spike-frequency adaptation is likely to play a crucial role in shaping spike-response
variability (Gabbiani and Krapp, 2006). Such noise shaping is known from models with
dynamic thresholds (Chacron et al., 2004). In a recent study, it was shown that adaptation
can account for a reduction of the noise level in neurons and facilitate population coding
in neural ensembles (Farkhooi et al., 2011). However, only little is known about a
potential functional role of spike-frequency adaptation in shaping the spike-response
variability of sensory neurons.

So far, three major functional roles of spike-frequency adaptation have been described.
Adaptation was shown to shift the dynamic range of neurons thereby causing forward
masking. Forward masking is a temporal analog to lateral inhibition in which a neuronal
response to a stronger stimulus, like a loud sound, suppresses the response to a subse-
quent weaker input (Sobel and Tank, 1994). This temporal inhibition may be used to
induce selective attention to preferred stimuli. Another role may be given by high-pass
filtering in sensory neurons. Using high-pass filter properties, neurons can separate fast
and slow stimulus components which yields an enhancement of the response to fast
stimulus components independent of the stimulus intensity (Benda et al., 2005). A third
role of spike-frequency adaptation has been described as a selectivity filter. This means
that adaptation selectively reduces the spike response to non-preferred stimuli (Peron
and Gabbiani, 2009a).

Spike-frequency adaptation can result from different mechanisms, such as the trans-
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Figure 4.1: Spike-frequency adaptation in an auditory receptor neuron. Spike-responses were
intracellularly recorded from axons in the locust auditory nerve during stimulation with a 2 kHz pure
tone of 75 dB SPL sound intensity (schematically drawn as a slow sine wave). top: The first 15 out of
70 recorded spike trains. bottom: The spike frequency calculated as the inverse interspike interval
shows spike-frequency adaptation, i.e. a reduction of an initially high spike frequency to prolonged
stimulation.

duction process of receptor neurons (Hudspeth et al., 2000; Gollisch and Herz, 2004;
Albert et al., 2007), synaptic depression (Abbott et al., 1997; Chance et al., 1998) or in-
hibitory inputs (Finlayson and Adam, 1997; Ingham and McAlpine, 2005). Within the
variety of mechanisms causing spike-frequency adaptation ionic currents that are in-
duced by the spike response of neurons are of particular importance. These ionic currents
can result from voltage-dependent M-type (Brown and Adams, 1980; Storm, 1990) or
calcium-activated potassium channels (Madison and Nicoll, 1984; Vergara et al., 1998;
Sah and Davies, 2000) which have an inhibitory effect on the spike-response. Another
important type of adaptation currents which are activated by the neuron’s output results
from the slow inactivation of voltage-dependent sodium channels (Fleidervish et al.,
1996; Vilin and Ruben, 2001; Torkkeli et al., 2001; Kim and Rieke, 2003). This type of
adaptation results from a reduction in the number of sodium channels available for the
generation of action potentials and, thus, reduces the excitability of a neuron.



Chapter 5
The auditory system of Locusta migratoria

The auditory system is a prominent sensory system where the action potential generation
is influenced by both stochastic current fluctuations and spike-frequency adaptation
(Manley and Müller-Preuss, 1978; Ingham and McAlpine, 2004; Schaette et al., 2005;
Avissar et al., 2007; Kuznetsova et al., 2008). In this thesis, we explore how spike-
frequency adaptation and other noise sources may contribute to the spike-response
variability in the auditory system. We analyze this issue in the auditory system of Locusta
migratoria which is simply structured and well established as a model system with several
parallels to the vertebrate auditory system.

In auditory systems, the most relevant information about a sender and its commu-
nication signals is carried by the temporal structure and by amplitude modulations of
an acoustic signal (Shannon et al., 1995; Joris et al., 2004). The reliable processing of
the signal’s information is, therefore, crucial for the recognition, localization, as well as
interpretation of acoustic signals especially with fast amplitude modulations and specific
temporal patterns. However, signal recognition and processing are usually constrained
by different noise sources on various levels of signal processing. This may limit for
instance the detection of weak signals in a loud environment (e.g. in a jungle) or the
discrimination of conspecific signals from songs of different species in the same biotope.

In many grasshopper species, acoustic communication signals play an important
role in mating in terms of attracting sexual partners. Acridid grasshoppers generate
their mating call songs by rubbing the inner side of the femur of their hind legs in a
species-specific temporal pattern against a vein of the forewings (“stridulation”, von
Helversen, 1972; von Helversen and von Helversen, 1997). The communication occurs in
a bidirectional manner. Male grasshoppers start the communication and produce calling
songs to attract females. If a female recognized and accepted the conspecific song, she
responds with a song of a similar pattern. Upon hearing this response, the male turns
very rapidly towards the direction of the female (“phonotaxis”) and moves forward. This
procedure is then repeated and, that way, the male approaches the female in a stepwise
manner.

The auditory receptor cells constitute the first stage of auditory signal processing in
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grasshoppers. They are mechanosensory and convert incoming sound pressure waves
into neuronal signals. In locusts, the somata of a total of 60-80 receptor cells are located
in the auditory ganglion (Popov and Svetlogorskaya, 1972; Michelsen, 1971), the so
called Müller’s organ, which is attached to the inner surface of the tympanal membrane
(eardrum) on both sides of the animal (see Fig. 5.1A-C). Their axons extend through the
auditory nerve to the metathoracic ganglion (Stumpner and Ronacher, 1991; Stumpner et
al., 1991). From there, they project onto local neurons which in turn are directly connected
to ascending neurons transmitting information to the brain. The auditory nerve is easily
accessible. This allows intracellular recordings of receptor spike responses from single
axons in the nerve without damaging the sensory transduction machinery.

The anatomy and organization of the auditory ganglion of Locusta migratoria was
described in detail by Gray (1960). The auditory receptor cells of locusts are chordotonal
organs which are prevalent structures in insect mechanoreception. They are composed
of specialized sensilla, the so called scolopidia, which contain one bipolar neuron, i.e.
the receptor neuron. Their dendrites bear a single cilium at its tips. This cilium is
connected to the tympanal membrane via an attachment cell. The dendrites of all receptor
neurons project to four different attachment sites each exhibiting different resonance
characteristics. The locations of maximal tympanal displacements were shown to depend
on the sound frequency (Michelsen, 1971). Characteristic frequencies are about 4 kHz for
low-frequency receptor cells, and about 15 kHz for high-frequency receptor cells (Römer,
1976). These tuning properties resemble a place principle similar to the one known for
vertebrates (Michelsen, 1971; Windmill et al., 2008).

The functional properties of locust auditory receptor cells and the transduction from
acoustic signals to receptor responses have been extensively investigated (Machens et
al., 2001, 2003; Gollisch et al., 2002; Gollisch and Herz, 2005; Rokem et al., 2006). Using
stimulus reconstruction techniques, it was shown that already single auditory receptor
cells are able to precisely represent amplitude modulations of an acoustic signal with
a high signal-to-noise ratio (Machens et al., 2001). Specifically, in response to stimuli
with steep amplitude rises, receptors show a very precise spiking behavior (Krahe and
Ronacher, 1993; Rokem et al., 2006). This is in marked contrast to acoustic stimuli
with small or no amplitude modulations which yield high spike-response variability in
auditory receptor cells (Machens et al., 2001; Schaette et al., 2005).

The underlying mechanosensory signal transduction process is well understood in
respect to a transduction cascade consisting of linear filters and static nonlinearities
(Gollisch et al., 2002; Gollisch and Herz, 2005). A schematic view of the locust auditory
transduction cascade from sound input to the generation of action potentials in auditory
receptor neurons is given in Fig. 5.2: A sound pressure wave causes the tympanal
membrane to vibrate (Schiolten et al., 1981; French, 1988; Robert and Göpfert, 2002). As
a result, mechanosensory ion channels in the membrane of auditory receptor neurons
open and transform the vibrations into electrical currents (Hill, 1983; Gillespie and
Walker, 2001). Our hypothesis is that this channel opening is a stochastic process causing
fluctuating ionic currents through the membrane which in turn are responsible for
spike-timing variability.
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Figure 5.1: Müller’s organ. A Photograph of the ear of Locusta migratoria from the inside of the
animal. The tympanal membrane (tm) is spanned up by a sclerotized ring (sr). The Müller’s organ
(mo) which contains 60-80 auditory receptor cells (rc) is attached to the inner surface of the tympanal
membrane via attachment cells (ac). B,C View of the Müller’s organ after a backfill with biocytin and
after fluorescence labeling with Streptavidin-Cy3 visualized with (B) a fluorescence microscope and (C)
a confocal laser scanning microscope. an: auditory nerve, sb: styliform body, pv : pyriform vesicle, fb:
folded body.

In this thesis, we investigate the source of the spike-response variability observed
in recordings of auditory receptor cells of Locusta migratoria (Hill, 1983; Ronacher et al.,
2004; Schaette et al., 2005, see also Fig. 1.1). The broad background of experimental
and theoretical studies on the auditory system of locusts makes this system a suitable
model system to analyze the biophysical mechanisms of the underlying auditory signal
transduction process causing variability.
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Figure 5.2: Auditory transduction cascade of locusts. Tympanal deflections induced by sound
waves of different intensities cause mechanosensory ion channels in the membrane of auditory receptor
neurons to open (schematically drawn). This mechanosensory transduction can be modeled as a
quadratic nonlinearity (Gollisch and Herz, 2005) which we model in this thesis as the sum of two
Boltzmann functions that describe the open probabilities (popen) of the mechanosensory ion channels.
The resulting ionic currents activate voltage-dependent ion channels which trigger action potentials.
Our hypthesis is that stochastic opening and closing of ion channels causes fluctuations of the mediated
ionic currents eventually causing variability in spike timing.



Part II. MATERIAL & METHODS

Experimental approaches and theoretical analysis





Chapter 6
Intracellular recordings from axons of
locust auditory receptor cells

6.1 Electrophysiology

Intracellular recordings were performed from axons of auditory receptor neurons of
adult Locusta migratoria. All experiments were done at room temperature (22–24 ◦C).
After decapitation and removal of legs and wings, the abdomen’s tip was cut to extract
the gut. The ventral side of the animal was then glued to an animal holder using sticking
wax. The upper part of the metathorax was removed and the torso was filled with locust
saline (Pearson and Robertson, 1981). After exposing the metathoracic ganglion and
the auditory nerve, the nerve was fixed with a custom-made forceps. The recordings
were performed from the proximal fibers in the auditory nerve. We used standard
glass microelectrodes (borosilicate; 1.5 mm outer diameter; World Precision Instruments,
Sarasota FL, USA, and GB150F-8P, Science Products, Hofheim, Germany) pulled to a
resistance of 30-80 MΩ (Model P-97, Sutter Instrument Co., Novato, CA, USA) and filled
with a 1 M KCl solution. The signals from the auditory receptor cells were amplified
(BRAMP-01 or SEC-05LX, npi electronic, Tamm, Germany) and recorded by a data
acquisition board (PCI-6229, National Instruments, Austin TX, USA) with a sampling
rate of 20 kHz. For online spike detection, data analysis, and the generation of acoustic
stimuli we used the software RELACS (www.relacs.net) running on a Debian Linux
computer. Acoustic stimuli transmitted by the acquisition board (sampling rate: 120
or 240 kHz) were sent to a custom-made attenuator (ATN-01M, npi electronic, Tamm,
Germany) based on the Chrystal CS3310 attenuator chip (Cirrus logic, Austin, TX,
USA) for adjusting the sound intensity, amplified (RKB-250, Rotel, North Reading, MA),
and then forwarded to two loudspeakers (DSM 25 FFL-8, Visaton, Haan, Germany).
The loudspeakers were positioned orthogonal to the locust body axis at a distance
of 25 cm. For calibrating the sound intensity we used a 1/2" microphone (40AC on a
26AM preamplifier, G.R.A.S., Holte, Denmark) on a constant voltage amplifier (12AK,

http://www.relacs.net
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G.R.A.S., Holte, Denmark ). To reduce echoes, the experimental setup was lined with
sound-attenuating foam.

6.2 Stimuli

For acoustic stimulation pure tones of different but constant sound intensities (measured
in dB SPL, sound pressure level) were presented ipsilaterally to the recorded auditory
neuron. The sound frequency was set to the characteristic frequency of the recorded
receptor neuron (2-17 kHz). All stimuli started and ended with a 2 ms ramp. Short
stimuli of 500 ms duration separated by gaps of 1 second were used for most of the
analysis of the interspike-interval (ISI) statistics. Long stimulus durations of 1 min were
used for measuring ISI correlations at spike frequencies below 50 Hz as well as for the
analysis of spike-count variability. For the determination of the effective time constants
of spike-frequency adaptation both types of stimuli were used (see section 6.3.3).

6.3 Data analysis

6.3.1 Interspike-interval statistics
For the analysis of the interspike-interval statistics, we used N = 12 recordings of
auditory receptor cells of different animals with stimulus durations of 500 ms (recording
duration > 20 min) and N = 14 recordings of different animals with stimulus durations
of 1 min. Due to the firing rate transients induced by spike-frequency adaptation we
disregarded the first 200 ms of each trial of 500 ms duration and the first 10 s of each trial
evoked by a 1 min pure tone stimulus.

ISI variability was quantified by both the coefficient of variation CV =
√
〈∆T2〉/ 〈T〉

and the quantity Drnwl =
〈
∆T2〉 /(2 〈T〉3) where 〈T〉 is the mean and

〈
∆T2〉 = 〈

T2〉−
〈T〉2 the variance of the ISIs. Drnwl corresponds to the the diffusion coefficient of the
spike count of the ISI shuffled spike train and will be referred in the following in short
as the diffusion coefficient. For a perfect integrate-and-fire (PIF) model driven by white
noise, Drnwl is proportional to the noise intensity of the driving fluctuations, i.e. to the
input noise intensity (e.g. Vilela and Lindner, 2009).

We also constructed ISI histograms and compared them with probability density
functions of simple noise-driven neuron models. The ISI density of a perfect integrate-
and-fire neuron with white noise driving (Gerstein and Mandelbrot, 1964) is given by

pwn(T) =
1√

4πDrnwlT3
exp

[
− (T − 〈T〉)2

4DrnwlT 〈T〉2

]
. (6.1)

This probability density is also known as the “inverse Gaussian”. The name was intro-
duced by Tweedie (1947) who noted the inverse relationship between cumulant gener-
ating functions of this distribution and those of a Gaussian distribution. The inverse
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Gaussian also approximates well the ISI density of a PIF neuron with a deterministic
adaptation current and additive white Gaussian noise of intensity Drnwl (Schwalger et
al., 2010). In contrast, an approximation of the ISI density of an adapting PIF neuron
with a stochastic adaptation current and no white noise driving is given by a probability
density resulting from a PIF neuron driven by exponentially correlated colored noise
(Ornstein-Uhlenbeck noise, Lindner, 2004):

pcn(T) =
1

2τ̃
√

4πεγ3
1

exp
[
− (T − 〈T〉)2

4ετ̃2γ1

]{
[(〈T〉 − T)γ2 + 2γ1τ̃]2

2γ1τ̃2 − ε(γ2
2 − 2γ1e−T/τ̃)

}
(6.2)

with γ1(T) = T/τ̃ + e−T/τ̃ − 1, γ2(T) = 1− e−T/τ̃ and the correlation time τ̃ which is
proportional to the adaptation time constant τ. The parameter ε = σ2/µ2 is the variance
of the noise rescaled by the square of the mean current µ of the PIF model. The squared
coefficient of variation of the density, Eq. (6.2), is given by

C2
V =

2
δ

[
ε

(
1− 1− e−δ

δ

)
+ ε2

(
e−δ +

(1− e−δ)(1− 2e−δ)

δ

)]
(6.3)

with δ = 〈T〉/τ̃. Given the mean and variance of the ISIs, we can eliminate ε via Eq. (6.3)
(the quadratic equation has only one positive solution in ε) and then fit pcn(T) to the ISI
histograms (ISIH) by a least-square fit of the unknown correlation time constant τ̃ using
a simplex algorithm. To quantify the fit quality of pwn and pcn to the ISIH, we used the
Kolmogorov-Smirnov (KS) test. This statistical test yields 1 if two probability densities
are completely identical and 0 if they completely differ.

To quantify the shape of the ISI densities we used two measures introduced by Schwal-
ger et al. (2010): rescaled versions of the skewness γs = 〈T〉3 /(

√
〈∆T2〉

〈
∆T2〉) and

kurtosis γe = 〈T〉4 /
〈
∆T2〉2 − 3 where 〈T〉3 =

〈
(T − 〈T〉)3〉 and 〈T〉4 =

〈
(T − 〈T〉)4〉

are the third and fourth moments about the mean ISI 〈T〉. These measures given by

αs =
γs

3CV
(6.4)

αe =
γe

15C2
V

(6.5)

are identical to one for the inverse Gaussian ISI density (Eq. (6.1)). Values larger than
one indicate that the density is more skewed and peaked compared to pwn(T). This is
the case for the colored noise distribution pcn (Eq. (6.2)) with τ̃ � 0.

We quantified the correlations among succeeding ISIs (k = 1) by the serial correlation
coefficient

ρk =
〈TiTi+k〉 − 〈Ti〉2〈

T2
i
〉
− 〈Ti〉2

. (6.6)

For the analysis of the spike train responses evoked by short acoustical stimuli of 500 ms,
we calculated ρ1 across all trials because the ISI statistics was too small to obtain reliable
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values for each spike train trial separately. In the cases where we used a 1 min stimulus,
we divided each trial in sections of 300 ISIs and calculated the mean serial correlation
coefficient by averaging over all sections.

To test the significance of negative serial correlations we determined the distribution
of correlations occurring by chance after shuffling the ISIs of each spike train section
2000 times. The measured serial correlation was considered significant if the integral
over the shuffled distribution up to this value was smaller than 0.05 (Fig. 10.5D).

6.3.2 Spike-count statistics
The Fano factor (Fano, 1947) is defined as the ratio of the variance and the mean of the
spike count N(tc) for different non-overlapping counting time frames of length tc:

F(tc) =

〈
∆N(tc)2〉
〈N(tc)〉

. (6.7)

It gives us a measure for the spike-count variability. For small tc, the Fano factor ap-
proaches F(tc) = 1 (Teich et al., 1997). For large tc, its steady-state F∞ is related to the ISI
correlations ρi of lag i and to the CV by (Cox and Lewis, 1966):

F∞ = CV2

(
1 + 2

∞

∑
i=0

ρi

)
. (6.8)

For a renewal process with uncorrelated ISIs the Fano factor for large tc is given by
F∞ = CV2. Negative ISI correlations give rise to a decreased spike-count variance
compared to the one of a renewal process, F∞ < CV2, while positive serial correlations
cause an increased count variance, F∞ > CV2.

For the PIF model with Ornstein-Uhlenbeck noise (Eq. (9.1)-(9.2)) which is known to
cause positive ISI correlations (Schwalger et al., 2010), Middleton et al. (2003) extensively
analyzed the Fano factor and derived analytic expressions for small and large counting
times, Fsmall and Flarge, as well as for the position of the Fano factor minimum tmin

c :

Fsmall(tc) ≈
vth

4µtc
(6.9)

Flarge(tc) =
2DOUτOU

vthµ

[
1− τOU

tc
(1− exp−tc/τOU

)

]
(6.10)

tmin
c ≈ vth

2
√

DOU
(6.11)

where vth is the spike threshold, µ is a constant input current and DOU and τOU are the
noise intensity and correlation time constant of the Ornstein-Uhlenbeck noise, respec-
tively. The Fano factor for moderate counting times, i.e. tc < τOU, follows a power-law
with exponent κ and is given by

F(tc) ≈ DOUtc
κ (6.12)



6.3 Data analysis 27

where κ = 1 for the colored noise driven PIF model. For F → ∞ (i.e. saturation) the Fano
factor can be approximated by

F(tc) ≈ DOUτOU. (6.13)

6.3.3 Effective time constants of adaptation
Short stimulus durations were used to calculate the effective time constants τe f fA of
the fast adaptation currents. The effective time constants τe f fB of the slow adaptation
currents were determined from recordings during stimulation with 1 min pure tones.

To determine τe f fA we used the recordings with 500 ms stimulus duration. From these
types of recordings, we received many trials (20-380) of short spike trains for a given
sound intensity where the mean spike frequency defined as the inverse interspike interval
gives smooth curves with a clear onset frequency f0 (see Fig. 12.2A). For recordings with
1 min stimulus duration the number of recorded spike trains is in the range of 1-6 trials.
Here, we calculated the mean firing rate which is given by the mean number of spikes in
a defined time window (see Fig. 12.2B). To eliminate the frequency decay resulting from
the fast adaptation current we chose a time window of 100 ms. We fitted (least-square fit)
a single exponential to both the mean spike frequency and firing rate of the following
form:

f (t) = ( f0 − f∞) exp−t/τe f f + f∞ (6.14)

where f0 and f∞ are the onset and steady-state spike frequency, respectively.





Chapter 7
Model of the locust auditory transduction
cascade

A schematic drawing of a locust auditory transduction cascade is given in Fig. 10.6 A.
Deflections of the tympanal membrane induced by a sound stimulus cause mechanosen-
sory ion channels in the membrane of auditory receptor cells to open. The resulting ionic
currents activate voltage-dependent ion channels triggering action potentials as well as
additional currents mediating spike-frequency adaptation. We separated these processes
in two parts: (i) the spike generating receptor neuron model with spike-frequency adap-
tation and (ii) the mechanosensory transduction cascade from the sound input to the
activation of the mechanosensory currents driving the spike generator.

7.1 Spike generator with spike-frequency adaptation

For the simulation of the membrane potential dynamics and the generation of action po-
tentials, we used the single-compartment conductance-based Traub & Miles model with
spike-frequency adaptation modified by Ermentrout (1998). The membrane potential V
(in mV) is described by

Cm
dV
dt

= −INa − IK − IL − IA − IB − IR (7.1)

where Cm = 1 µF/cm2 and IR is the driving current passing through the mechanosensory
channels of an auditory receptor neuron (in µA/cm2). The deterministic ionic currents
responsible for the action potential generation are given by the following equations
(Ermentrout, 1998):

Sodium current: INa = ḡNam3h(V − ENa),
ḡNa = ϑ · 100 mS/cm2, ENa = +50 mV,
dm/dt = αm(V)(1−m)− βm(V)m, dh/dt = αh(V)(1− h)− βh(V)h,
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αm(V) = 0.32(V + 54)/(1− exp(−(V + 54)/4)),
βm(V) = 0.28(V + 27)/(exp((V + 27)/5)− 1),
αh(V) = 0.128 exp(−(V + 50)/18),
βh(V) = 4/(1 + exp(−(V + 27)/5)).

Potassium current: IK = ḡKn4(V − EK),
ḡK = ϑ · 80 mS/cm2, EK = −100 mV, dn/dt = αn(V)(1− n)− βn(V)n,
αn(V) = 0.032(V + 52)/(1− exp(−(V + 52)/5)),
βn(V) = 0.5 exp(−(V + 57)/40).

Leak current: IL = ḡL(V − EL),
ḡL = ϑ · 0.1 mS/cm2, EL = −67 mV.

To yield a membrane time constant in the sub-millisecond range (Gollisch and Herz, 2005),
the sodium, potassium and leak conductances were multiplied by ϑ = 20. The membrane
time constant for the model using ḡL = 2 mS/cm2 is then τm = Cm/ḡL = 0.5 ms. The
driving current IR described below was chosen to result in a steady-state firing rate at its
saturation level of 180 Hz which is about 150 Hz smaller than the onset-state firing rate
(Benda et al., 2001, see Fig. 10.1 B).

Spike-frequency adaptation on a fast time scale of a hundred milliseconds was medi-
ated by a fast M-type adaptation current IA, i.e. a slow voltage-dependent potassium
current:

Fast M-type adaptation current: IA = ḡA w (V − EA),
EA = −100 mV, τw(V)dw/dt = w∞(V)− w, τw(V) = 100 ms,
w∞(V) = 1/(1 + exp(−(V + 20)/5)).

In the model with one adaptation current, the conductivity ḡA was set to 5.0 mS/cm2

and the second adaptation current was set to IB = 0 µA/cm2 . In the model with two
adaptation currents ḡA was set to 3.0 mS/cm2.

In the model with two adaptation currents, the slow adaptation current IB was
either modeled as a voltage-dependent (M-type) current or a calcium-dependent (AHP)
potassium current:

Slow voltage-dependent potassium current: IB = ḡM v (V − EM),
ḡM = 5.0 mS/cm2, EM = −100 mV,
τv(V)dv/dt = v∞(V)− v, τv(V) = 9 s, v∞(V) = 1/(1 + exp(−(V + 20)/5)).

Slow calcium-dependent potassium current: IB = ḡAHP q (V − EAHP),
ḡAHP = 9.0 mS/cm2, EAHP = −100 mV,
q = 0.057([Ca]− 0.5)/(1.0− exp(−([Ca]− 0.5)/0.1)),
τAHP d[Ca]/dt = −0.16ICa − [Ca]), τAHP = 9 s

The dynamics of the AHP current was adopted from Ermentrout (1998) with a modified
activation function q.
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7.2 Model of the mechanosensory transduction process

The activating input signal for the mechanosensory transduction process was a pure
tone sound pressure wave s(t) of amplitude A and frequency f : s(t) = A sin(2π f t).
The sound frequency was set to f = 4 kHz, a typical characteristic frequency of low-
frequency receptors of locusts (Michelsen, 1971). The amplitude A can be calculated
from the sound intensity I by A = 20 µPa · 10I/20 in dB SPL (sound pressure level). It
was shown that the amplitude of the tympanal deflection depends linearly on the sound
pressure for pure tones (Michelsen and Rohrseitz, 1995). Thus, the tympanal vibration
x(t) is proportional to the sound pressure wave: x(t) = c̃ · s(t).

The cilia of the locust auditory receptor neurons are connected to the tympanum via
attachment cells (Gray, 1960). Gollisch and Herz (2005) have shown that the transmitted
signal during the transduction process between the mechanical vibration of the eardrum
and the accumulation of electrical charge at the receptor cell membrane undergoes a
squaring. Moreover, the spike frequency of spike train responses saturates at stimulus
intensities about 20 dB above threshold intensity (Römer, 1976). This saturation is
caused by the saturation of the mechanoelectrical transduction process (Wolf and Benda,
personal communication).

Based on this information, we assumed two populations of ion channels in the mem-
brane of the mechanosensory receptor neurons that open either for positive or negative
deflections of the eardrum and whose open probabilities follow a Boltzmann distribution.
The sum of the two Boltzmann functions of both receptor channel populations comprises,
thus, the quadratic nonlinearity at low and medium sound intensities and the saturation
of firing rates:

g(x) = p+o (x) + p−o (x) (7.2)

where p+o (x) and p−o (x) are the open probabilities for positive and negative tympanal
displacements, respectively. Assuming the channel gating acting as a spring following
Hooke’s law, the steady-state open probabilities are given by

p+o (x) = 1
1+exp(−c(x−x0))

(7.3)

p−o (x) = 1
1+exp(c(x+x0))

(7.4)

with the single channel gating force c indicating the channel sensitivity to the tympanal
deflections and x0 being the displacement for which the channel open probability is
0.5 (Howard and Hudspeth, 1988; Hudspeth et al., 2000). The parameters c̃, c and
x0 influence both the dynamic range of the auditory receptor neuron model and the
minimal open probability at the tympanal resting position. We chose c̃c = 250 µPa−1 and
x0/c̃ = 0.012 µPa so that the resulting f-I curves are comparable to the ones observed
in locust auditory receptor cells, in particular with a dynamic range that is about 20 dB
wide and with a peak of the diffusion coefficient Drnwl in the lower dynamic range (cf.
Fig. 10.2).
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In the models with deterministic receptor current mediated by an infinite population
of receptor channels (NR → ∞), the time evolution of the open probability is given by

τr ṗ+ = −p+ + p+o (x) (7.5)
τr ṗ− = −p− + p−o (x) (7.6)

with the receptor channel time constant τr = 0.1 ms if not otherwise stated. Here, the
mean number of open receptor channels corresponds to No =

1
2 NR p+ + 1

2 NR p− with
NR being the total number of channels of both receptor channel populations. Note that
in this study the total number of simulated receptor channels is always declared as
the sum of channel numbers of both channel populations whereas each population is
composed of identical channel numbers. The receptor current IR passing the fraction of
open channels W = No/NR is determined by

IR = ḡR W (V − ER) (7.7)

where ḡR denotes the maximal conductivity and ER constitutes the reversal potential
of the receptor current. We assumed ER = 0 mV so that the reversal potential is much
higher than the neuron’s resting potential.

In the stochastic models, the receptor channel gating was simulated using Gillespie’s
algorithm (see below). The transition rates αr and βr defined in the Markov scheme 7.9
are given by:

α
+/−
r =

p+/−
o (x)

τr
β
+/−
r =

1− p+/−
o (x)
τr

. (7.8)

According to the deterministic models, the current passing the receptor channels is
defined by the fraction of open channels W as defined in Eq. (7.7).

In the models with one adaptation current the maximal receptor channel conductivity
of ḡR = 0.6 mS/cm2 was chosen for both the deterministic and stochastic receptor
channels. In the models with two adaptation currents ḡR was set to 0.4 mS/cm2 to result
in the same f-I curves as the experimental data.

7.3 Kinetic schemes for the stochastic ion channel models

For the spike generating model, we employed diverse stochastic models. In the first
model type, one type of ion channel was simulated as a finite population of N channels
mediating a stochastic current while the remaining channel types corresponded to
infinite channel populations mediating deterministic ionic currents. The second type
of stochastic model only differed in the fact that we have a mixture of two ion channel
populations: One finite population of fast ion channels and one finite population of slow
adaptation channels working on a time scale of a hundred milliseconds. The third type is
an expansion of the second model type where we included a second adaptation current
working on a time scale of several seconds.
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Stochastic ion channels can be modeled as Markov processes (Neher and Stevens,
1977). Assuming the channels carrying the receptor current being simple ion channels
consisting of the two states closed and open, the kinetic scheme can be drawn as

r0
αr−⇀↽−
βr

r1 (7.9)

where αr and βr define the rates (transition probability per unit time) from r0 to r1
and vice versa. According to the Markov assumption the probability of an arbitrary
transition depends only on the state in which the system is and can thus be defined
by p∞ = αr/(αr + βr). The time which is required to perform a state transition is
τr = 1/(αr + βr).

Assuming a simple Markov process for the potassium channel composed of four
identical gates n with an opening transition rate αn and a closing transition rate of βn,
the potassium channel kinetic scheme can be written as

n0
4αn−−⇀↽−−
βn

n1
3αn−−⇀↽−−
2βn

n2
2αn−−⇀↽−−
3βn

n3
αn−−⇀↽−−
4βn

n4 (7.10)

where n4 corresponds to the open state where all four channel gates are open (Neher and
Stevens, 1977). The stochastic potassium current passing a fraction of open channels is
then given by IK = ḡK(No

K/NK)(V − EK).
The Markov kinetic scheme for a sodium channel with three activating gates m and

one inactivating gate h is expressed by

m0h0
3αm−−⇀↽−−
βm

m1h0
2αm−−⇀↽−−
2βm

m2h0
αm−−⇀↽−−
3βm

m3h0

αh��βh αh��βh αh��βh αh��βh

m0h1
3αm−−⇀↽−−
βm

m1h1
2αm−−⇀↽−−
2βm

m2h1
αm−−⇀↽−−
3βm

m3h1

(7.11)

where m3h1 defines the open state where the three activating gates m and the inactivating
gate h are open (Neher and Stevens, 1977). The stochastic sodium current passing a
fraction of open channels is given by INa = ḡNa(No

Na/NNa)(V − ENa).
For the channels carrying the voltage-dependent adaptation current we assumed just

as for the receptor channels a simple two state channel model:

w0
αw−⇀↽−
βw

w1 (7.12)

where αw = w∞/τw is the opening and βw = (1− w∞)/τw the closing transition rate
and where w1 defines the open state. Fast voltage-dependent adaptation channels were
modeled with a time constant τw = 0.1 s, while the slow ones were modeled with τw =
τv = 9 s. The stochastic voltage-dependent adaptation currents passing a fraction of open
channels were given by IA = ḡA(No

A/NA)(V − EA) and IB = ḡM(No
B/NB)(V − EM).
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In the model with one fast voltage-dependent and one slow calcium-dependent potas-
sium current, we modeled the stochastic calcium dynamics by d[Ca]/dt = −0.16ICa−[Ca]

τAHP
+√

2DCa
τAHP

ξ(t)) where DCa is the intensity of the Ornstein-Uhlenbeck noise where the adap-
tation current was given by IB = ḡAHP(No

B/NB)(V − EAHP).

7.4 Simulation of stochastic opening ion channels

The gating of the stochastic opening channels was simulated using Gillespie’s stochas-
tic integration algorithm modified for multiple ion channel populations and channels
with multiple states (Gillespie, 1976; Gibson and Bruck, 2000). In short, the algorithm
calculates the time interval until the next state transition, determines the reaction type,
i.e. which one of the possible state transitions A→ B occurs, and updates the number of
channels in each possible state accordingly. Using the kinetic schemes defined in section
7.3 and the model parameters of section 7.1 and 7.2 the stochastic ion channel opening
can be simulated by the following steps:

1. Specify the initial value of the number of open ion channels No
iy and closed channels

Nc
iy in state y for each of the i = 1, ..., k ion channel populations where Niy denotes

the total channel number of population i in state y.

2. Define a state transition rate vector η ε [η11, ..., ηij, ..., ηkl] with ηij being the product
of the channel number Niy of ion channel population i = 1, ..., k in state y and the
transition rate γj of the jth reaction with j = 1, ..., l. Thus, each element of the
transition vector is defined as ηij = Niy γj.

3. Construct a vector ζ ε [ζ11, ..., ζiy, ..., ζkz] of the sum of transition rates associated
with escapes from all possible states y = 1, .., z.

4. Calculate the effective rate constant of the next state transition: λ = ∑k
i=1 ∑z

y=1 Niyζiy.

5. Draw a random number u1 that is uniformly distributed [0,1) and compute the
time of the next state transition ∆t = −ln(u1)/λ.

6. If ∆t > tmax with tmax = 1µs, set ∆t = tmax and go back to step 3. Otherwise
increment time t by ∆t.

7. Draw a second random number u2 that is uniformly distributed [0,1) and determine
which reaction (i, j) with state transition rate ηij will occur by finding the smallest r
and s such that u2λ < ∑k

i=1 ∑l
j=1 ηij.

8. Perform the reaction (i = r, j = s) and update Niy.

9. Go back to step 3 and repeat loop.



Chapter 8
Effect of spike-frequency adaptation on
the interspike-interval statistics

8.1 Hodgkin-Huxley-type model with adaptation

To analyze the effect of adaptation on the interspike-interval statistics, we simulated
the conductance-based Traub & Miles model modified by Ermentrout et al. (2001). It
is a single-compartment model with an additional M-type current, i.e. a slow voltage-
dependent potassium current, inducing spike-frequency adaptation. In order to contrast
the effects of deterministic versus stochastic adaptation on the firing statistics of the
conductance-based model, we simulated two versions with either additive white Gaus-
sian noise or adaptation channel noise. For the first model with fast fluctuating current
noise and deterministic adaptation, the membrane potential V measured in mV is deter-
mined by

Cm
dV
dt

= −INa − IK − IL − IM + I +
√

2Dξ(t) , (8.1)

where Cm = 1 µF/cm2 denotes the membrane capacitance, I is the base current, and D
indicates the intensity of Gaussian white noise with correlation function 〈ξ(t)ξ(t′)〉 =
δ(t− t′). The deterministic ionic currents are given by the following equations (Ermen-
trout et al., 2001):

Sodium current: INa = ḡNam3h(V − ENa)

ḡNa = 100 mS/cm2, ENa = +50 mV,
dm/dt = αm(V)(1−m)− βm(V)m, dh/dt = αh(V)(1− h)− βh(V)h,
αm(V) = 0.32(V + 54)/(1− exp(−(V + 54)/4)),
βm(V) = 0.28(V + 27)/(exp((V + 27)/5)− 1),
αh(V) = 0.128 exp(−(V + 50)/18), βh(V) = 4/(1 + exp(−(V + 27)/5)).

Potassium current: IK = ḡKn4(V − EK)

ḡK = 80 mS/cm2, EK = −100 mV, dn/dt = αn(V)(1− n)− βn(V)n,
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αn(V) = 0.032(V + 52)/(1− exp(−(V + 52)/5)),
βn(V) = 0.5 exp(−(V + 57)/40).

Leak current: IL = ḡL(V − EL)

ḡL = 0.2 mS/cm2, EL = −67 mV.

M-type adaptation current: IM = ḡMw(V − EM)

ḡM = 1.15 mS/cm2, EM = −100 mV, dw/dt = (w∞(V)− w)/tw(V),
tw(V) = 11.4 τw/(3.3 exp((V + 35)/20) + exp(−(V + 35)/20)), τw = 100 ms,
w∞(V) = 1/(1 + exp(−(V + 35)/10)).

In this model, the adaptation time constant tw(V) is a voltage-dependent function that
we reparametrized such that τw roughly corresponds to the time constant governing the
exponential buildup of w during periodic firing at 100 Hz in a simulation of equation
(8.1) without the IM current and with D = 0.

For the second model with adaptation channel noise, the voltage is described by

Cm
dV
dt

= −INa − IK − IL − Is
M + I . (8.2)

The currents INa, IK and IL are the same as in the first model. The M-type adaptation
current, however, is modeled as a stochastic current Is

M = ḡMW(V − EM) where W =
Nop/Na indicates the fraction of open channels. We assumed the adaptation channels
to be two-state ion channels with the transition rates αw(V) = w∞(V)/tw(V) and
βw(V) = (1− w∞(V))/tw(V). The gating of the adaptation channels was simulated
using the Gillespie algorithm (see section 7.4).

In the model with stochastic adaptation current, the maximal channel conductance ḡM
and the constant base current (I = 18 µA/cm2) were chosen to result in a CV ≈ 0.6 and
a firing rate of 100 Hz for a simulation of Na = 100 ion channels carrying the adaptation
current. For the simulation with a deterministic adaptation current and additive white
noise the base current was adjusted to yield the same rate r = 100 Hz while keeping
the conductance ḡM the same. For D = 0 the base current I was 18 µA/cm2. With
increasing noise intensity I decreased to I = 4 µA/cm2 for D = 200. The units of the
noise intensities are (µA/cm2)2/ms, the ones of the ionic currents are given by µA/cm2.



Chapter 9
Effect of spike-frequency adaptation on
the spike-count statistics

9.1 Perfect integrate-and-fire model with Ornstein-Uhlen-
beck noise or stochastic adaptation currents

Perfect integrate-and-fire (PIF) models represent minimal models of spike activity (Ger-
stein and Mandelbrot, 1964) following a simple fire-and-reset rule. Once a threshold vth
is crossed, a spike is elicited and the voltage v is reset to vreset (vreset < v). Using such
simple models, Schwalger et al. (2010) have shown that a stochastic adaptation current
can be effectively described by an exponentially correlated colored Gaussian noise, i.e.
an Ornstein-Uhlenbeck (OU) process (cf. section 11.1). To analyze the effect of adaptation
on the spike-count variability, we therefore used PIF models with one and two OU noise
sources that we contrasted with PIF models with stochastic adaptation currents.

The dynamics of the membrane potential v of a PIF model with a single OU noise
source (Middleton et al., 2003; Lindner, 2004) are described by

v̇ = µ + wA(t) (9.1)

ẇA = −wA(t)
τOU

A
+

√
2DOU

A

τOU
A

ξ(t)) (9.2)

where µ is a constant input current and where τOU
A = 0.1 s and DOU

A are the correlation-
time constant and noise intensity of the OU process with correlation function 〈ξ(t)ξ(t′)〉 =
δ(t− t′), respectively.
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The dynamics of a PIF model with two OU processes is analogously described by

v̇ = µ + wA(t) + wB(t) (9.3)

ẇA = −wA(t)
τOU

A
+

√
2DOU

A

τOU
A

ξ(t)) (9.4)

ẇB = −wB(t)
τOU

B
+

√
2DOU

B

τOU
B

ξ(t)) (9.5)

with a second noise source characterized by the correlation-time constant τOU
B = 1 s and

noise intensity DOU
B . We contrasted these two models constituting OU noise with perfect

integrate-and-fire models with stochastic adaptation currents.
Accordingly, we regarded PIF models with one and two stochastic adaptation currents.

The dynamics of the former one is given by

v̇ = µ− αwA(t) (9.6)

ẇA = −wA(t)
τA

+

√
2DA

τA
ξ(t)) (9.7)

where α denotes the adaptation strength, τA = 0.1 s the adaptation time constant and
DA the noise intensity of the stochastic adaptation current. To achieve spike-frequency
adaptation, the fire-and-reset rule was extended so that the adaptation variable wA is
incremented by ∆wA = 0.005 at each spiking event: if(v ≥ vth) v→ 0, wA → w + ∆wA.

Analogously to the PIF with a single adaptation current the model with two adapta-
tion currents is described by

v̇ = µ− αwA(t)− βwB(t) (9.8)

ẇA = −wA(t)
τA

+

√
2DA

τA
ξ(t)) (9.9)

ẇB = −wB(t)
τB

+

√
2DB

τB
ξ(t)) (9.10)

with a second adaptation current decaying with the time constant τB = 1 s, with an
adaptation strength β, and with the adaptation noise intensity DB. The fire-and-reset
rule for this model is given by: if(v ≥ vth) v → 0, wA → wA + ∆wA, wB → wB + ∆wB
with ∆wA = 0.005 and ∆wB = 0.05.

Moreover, we analyzed the effect of a combination of deterministic and stochastic
adaptation currents on the spike-count variability. For simulations with a fast determin-
istic adaptation current, we set DA = 0. For models with slow deterministic adaptation,
we set DB = 0. The units of the noise intensities are v2

th/ms. In all models, we used
vth = 1, vreset = 0, and µ was chosen to result in a firing rate of 100 Hz.
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9.2 Hodgkin-Huxley-type model with two adaptation cur-
rents

For the simulation of a conductance-based model with two adaptation currents we used
the single-compartment Traub & Miles model modified by Ermentrout (1998). This model
includes a M-type current, i.e. a slow voltage-dependent potassium channel, mediating
spike-frequency adaptation. Since many neurons show spike-frequency adaptation on
multiple time scales (French, 1987, 1989; Xu et al., 1996; Nelson et al., 1997; Fairhall et al.,
2001a,b; Baccus and Meister, 2002; Ulanovsky et al., 2004; Wimmer et al., 2008), we here
extended the model by a second voltage-dependent potassium current. The membrane
potential V of this modified model is described by

CmV̇ = −INa − IK − IL − IA − IB − I (9.11)

where Cm = 1 µF/cm2 and I is the driving current (in µA/cm2) which was chosen to
result in a steady-state spike frequency of 100 Hz. The deterministic ionic currents are
given by the following equations (Ermentrout, 1998):

Sodium current: INa = ḡNam3h(V − ENa),
ḡNa = 100 mS/cm2, ENa = +50mV,
ṁ = αm(V)(1−m)− βm(V)m, ḣ = αh(V)(1− h)− βh(V)h,
αm(V) = 0.32(V + 54)/(1− exp(−(V + 54)/4)),
βm(V) = 0.28(V + 27)/(exp((V + 27)/5)− 1),
αh(V) = 0.128 exp(−(V + 50)/18), βh(V) = 4/(1 + exp(−(V + 27)/5)).

Potassium current: IK = ḡKn4(V − EK),
ḡK = 80 mS/cm2, EK = −100mV,
ṅ = αn(V)(1− n)− βn(V)n,
αn(V) = 0.032(V + 52)/(1− exp(−(V + 52)/5)), βn(V) = 0.5 exp(−(V + 57)/40).

Leak current: IL = ḡL(V − EL),
ḡL = 0.1 mS/cm2, EL = −67mV.

The two currents mediating spike-frequency adaptation were simulated by

Fast voltage-dependent adaptation currents: IA = ḡA(wA + ηA)(V − EM),
τAẇA = −wA + w∞
τAη̇A = −ηA +

√
2DAξ(t),

τA = 100ms

Slow voltage-dependent adaptation currents: IB = ḡB(wB + ηB)(V − EM),
τBẇB = −wB + w∞
τBη̇B = −ηB +

√
2DBξ(t)

τB = 1000ms.
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with EM = −100mV and w∞ = 1/(1 + exp(−(V + 20)/0.05)). The conductances ḡA
and ḡB (in mS/cm2) were set as indicated in the text. The adaptation currents were
simulated both as deterministic (DA = 0 or DB = 0) and as stochastic currents (DA > 0
or DB > 0). The units of the noise intensities are

(
µA/cm2)2 /ms, units of the ionic

currents are given by µA/cm2.



Part III. RESULTS

Interspike-interval and spike-count statistics





Chapter 10
What are the sources of spike-response
variability?

The variability of neuronal activity in response to repeated presentations of the same
stimulus is a common feature of sensory systems (Berry et al., 1997; de Ruyter van
Steveninck et al., 1997; Warzecha and Egelhaaf, 1999). This response variability has a
profound impact on subsequent sensory signal processing (Kara et al., 2000; Vogel et
al., 2005) and sets limits on the reliability of behavioral responses to external stimuli
(Tolhurst et al., 1983; Britten et al., 1996). Several noise sources arising at different
levels of a neuronal pathway cause this response variability (Faisal et al., 2008), e.g.
sensory noise by noisy external stimuli which are amplified during the transduction
process (Lillywhite and Laughlin, 1979; Laughlin and Lillywhite, 1982; Grewe et al.,
2003), synaptic noise resulting from the bombardment of a myriad of synapses (Calvin
and Stevens, 1967; Hessler et al., 1993), as well as electrical noise by stochastic gating of
ion channels (“channel noise”, Neher and Stevens, 1977; Chow and White, 1996; White
et al., 2000).

Already at the first stages of sensory pathways spike-timing variability emerges, as
for example in retinal ganglion cells (Levine and Shefner, 1977; Levine, 2007), olfactory
receptor neurons (Rospars et al., 1994; Duchamp-Viret et al., 2005), electroreceptor affer-
ents (Kreiman et al., 2000), as well as auditory receptor neurons of insects (Ronacher et
al., 2004; Schaette et al., 2005) and auditory nerve fibers of vertebrates (Teich and Khanna,
1985; Avissar et al., 2007). To characterize intrinsic stochastic properties of a neuron
directly, somatic or even dendritic recordings are necessary (Sigworth, 1980; Neher and
Stevens, 1977). In receptor neurons, however, such recordings are usually difficult to
achieve without severely damaging the sensory transduction machinery.

In this study we investigate spike-timing variability and potential noise sources in
auditory receptor neurons of Locusta migratoria. Although these neurons respond in a
quite variable manner to pure tones with constant amplitude (Schaette et al., 2005), they
transmit natural grasshopper songs as well as band-pass filtered white noise stimuli
remarkably well (Machens et al., 2001, 2005) based on precise spike-timing (Rokem et al.,



44 10. What are the sources of spike-response variability?

2006). The locust auditory receptor cells are bipolar neurons that are directly attached to
the tympanal membrane (Gray, 1960). The underlying mechanosensory transduction
process is well understood in terms of a cascade of linear filters and static nonlinearities
(Gollisch et al., 2002; Gollisch and Herz, 2005). Furthermore, these neurons exhibit both
input and output-driven spike-frequency adaptation (Römer, 1976; Benda et al., 2001;
Gollisch and Herz, 2004).

To uncover the primary noise sources in locust auditory receptor cells, we first
quantified the variability of interspike intervals (ISIs) and analyzed their statistics, i.e.
ISI distributions and correlations, during acoustic stimulation with pure tones of various
but fixed intensities. Secondly, we employed models of the locust auditory transduction
cascade in which the neuronal dynamics were affected by different channel noise sources.
In particular, we focused on channel noise resulting from stochastic gating of the channels
in the membrane of the receptor cells as well as on ion channels whose activation is
strongly correlated to sound intensity, like the ones carrying the adaptation current and
channels that play a significant role in spike generation.

10.1 Spike-response variability in locust auditory recep-
tor neurons

Stimulation of locust auditory receptor neurons with 500 ms pure tones of constant
intensity evokes a mean spike-frequency response which adapts over time (Römer, 1976;
Benda et al., 2001, Fig. 10.1A,B bottom). The initial high spike frequency directly after
the onset of the acoustic stimulus declines over a duration of several ten to hundred
milliseconds to its steady-state value. A sufficiently long interval of silence between
the acoustic stimuli assures that the cell completely recovers from adaptation between
successive stimuli.

The steady-state spike frequency computed from the final 300 ms of the response
increases in a sigmoidal fashion with sound intensity and saturates at frequencies around
160 to 200 Hz (Fig. 10.2A,B). Although the sensitivity, i.e. the minimal sound intensity
required to evoke a response, varies considerably between receptor neurons, the overall
shape of the f -I curves (steady-state spike-frequency versus sound intensity) is similar
(Fig. 10.2B).

The spike trains evoked by the tones with constant sound intensity show notable
spike-time variability (Schaette et al., 2005, Fig. 10.1A,B top) that is most prominent at
low spike frequencies (Fig. 10.1A top). The corresponding ISI histograms are broad at
low sound intensities evoking low spike frequencies and get much narrower at higher
sound intensities and the resulting higher spike frequencies (Fig. 10.1C–E).

To quantify the dependence of the ISI variability on sound intensity, we computed
both the coefficient of variation, CV, as well as the diffusion coefficient, Drnwl. The CVs
start out with values up to 0.9 for sound intensities at the lower end of the dynamic range
(Fig. 10.2C,D) where spike frequencies are below 50 Hz (see Fig. 10.2B for comparison).
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Figure 10.1: Interspike-interval variability in auditory receptor neurons. A,B The first 10 of 131
(A) and 206 (B) spike trains of an auditory receptor neuron evoked by stimulation with a 4 kHz (cell’s
best frequency) pure tone (schematically drawn as a slow sine wave) of 58 dB SPL (A) and 73 dB SPL
(B), respectively (top). The interspike intervals (ISIs) within and across trials show high variability. The
resulting spike frequency depends on sound intensity and shows spike-frequency adaptation (bottom).
C–E: ISI histograms of the same cell obtained for different sound intensities I. The histograms in
C and E were computed from the spike trains shown in A and B, respectively. The ISI variability is
highest for sound intensities resulting in low spike frequencies ( f ).

With increasing sound intensity the CVs monotonically decline and saturate to low
values around 0.1–0.2. The maximum in the CV-versus-relative sound intensity curves
visible in a few cells and in the average of 12 cells is not significant (large error bars)
because of the low number of available ISIs at these low spike frequencies. The diffusion
coefficient Drnwl, in contrast, shows a pronounced peak at the lower end of the receptor
cells’ dynamic range (Fig. 10.2E,F). The peak height of Drnwl varies from cell to cell
(Mean: 9.36 Hz ± 4.87 Hz s.d.) while the overall shape of Drnwl is similar (Fig. 10.2F).
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Figure 10.2: Response characteristics of auditory receptor neurons. A The rate-level functions
(steady-state f -I curve) of two different auditory receptor neurons have a similar sigmoidal shape, but
differ in their sensitivity. B Rate-level functions of 12 different cells (gray lines) including the ones
shown in A shifted along the intensity axis such that they align at a spike frequency of 100 Hz. The
black line is the average ± s.d. over all cells. C Coefficient of variation (CV) as a function of sound
intensity for the two cells shown in A and D aligned for 12 neurons (as in B). The CVs monotonically
decrease over the cell’s dynamic range. E Drnwl as a function of sound intensity for the two cells
shown in A and F aligned (as in B). The curves show a pronounced peak in the lower part of the cells’
dynamic range.

10.1.1 Interspike-interval distributions

What is the origin of the spike-timing variability? To answer this question, we first
compared the observed ISI statistics with the ones known from canonical noise-driven
neuron models.
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Figure 10.3: Comparison of interspike-interval histograms with the colored- and white-noise
ISI distributions. Interspike-interval histograms (gray bars) computed from a recording of an auditory
receptor neuron during stimulation with three different sound intensities I in comparison with the
white-noise ISI density pwn (dashed black line, Eq. (6.1)) and the colored-noise ISI distribution pcn
(solid black line, Eq. (6.2)). τ̃ is the correlation time of the colored noise resulting from the fit of the
colored-noise ISI distribution to the data. f : spike frequency, CV: coefficient of variation. The bottom
row shows the same histograms on a logarithmic scale for emphasizing the tails. Note that the axes
have different scales in A, B, and C.

Given the high firing rates and the non-exponential ISI histograms (ISIH) (Fig. 10.1C–
E), these neurons most likely operate in their super-threshold regime. The canonical
model for this regime is the perfect integrate-and-fire (PIF) model. With additive white-
noise driving (a signal with equal spectral power at all frequencies) the resulting ISI
distribution is described by an “inverse Gaussian” density pwn (Eq. (6.1), Gerstein and
Mandelbrot, 1964), in the following referred to as white-noise density. With additional
slow adaptation this still holds true although the parameters of the white-noise density
are rescaled (Schwalger et al., 2010). Thus, we expect the ISI density pwn to describe the
measured ISI histograms, if the corresponding noise source is close to a white noise and
if the noise is sufficiently weak.

Because the white-noise ISI density, Eq. (6.1), is a function solely of the mean and
the standard deviation of the ISIs, it is completely determined by these two moments
that can be directly computed from the experimentally measured spike responses. The
resulting white-noise ISI density pwn matches the ISIH of spike responses with low spike
frequency (Fig. 10.3A, dashed line). However, with increasing spike frequencies, pwn
no longer provides a good description of the data (Fig. 10.3B,C, dashed line). The ISI
histograms of the auditory receptor cells exhibit a more prominent peak and a heavier
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tail in comparison to pwn. Also the Kolmogorov-Smirnov test indicates that at higher
spike frequencies the white-noise density pwn is not a valid approximation (Fig. 10.4A,
gray line), although the null hypothesis that the densities are drawn from the same
distribution could not be rejected.

Replacing the additive white noise of the PIF model by a colored noise, in particular
an Ornstein-Uhlenbeck noise, results in a different ISI density pcn (Eq. (6.2), Lindner,
2004). The colored-noise ISI density pcn depends, in contrast to pwn, additionally on the
correlation time constant τ̃ of the colored noise. We fitted pcn to the ISI histograms of
the recorded data, with τ̃ being the only fit parameter. The resulting colored-noise ISI
distributions describe the data remarkably well at both low and high spike frequencies
(see Fig. 10.3, solid line, and KS-test, Fig. 10.4A, black line). In the upper range of spike
frequencies τ̃ converges to the adaptation time constant, which is in the range of 100 ms
in the locust auditory system (Fig. 10.3C and Fig. 10.4B). For lower spike frequencies τ̃
decreases to values close to zero (Fig. 10.3A and Fig. 10.4B), that is the colored-noise ISI
density in fact approaches the white-noise ISI density (Lindner, 2004).

Following Schwalger et al. (2010), we further quantified the transition from a white-
noise ISI distribution to a colored-noise ISI distribution with non-zero correlation time
by computing rescaled variants of the skewness (αs, Eq. (6.4)) and kurtosis (αe, Eq. (6.5)).
These quantities assume unity for an inverse Gaussian distribution. Values larger than
one indicate a more skewed distribution with a stronger peak and a heavier tail as is
the case for the colored-noise ISI distribution. Indeed, at low spike frequencies, both αs
and αe are close to one indicating a dominating white-noise source (Fig. 10.4C). With
increasing spike frequency both αs and αe monotonically increase to values larger than
one further supporting our observation of a transition from an inverse Gaussian to the
more peaked colored-noise distribution arising from a dominating colored-noise source.

The shapes of the ISI histograms thus suggest the presence of two different types
of noise sources in the auditory receptor neurons of locusts: A white-noise source
dominating at low spike-frequencies, and a colored-noise source, whose effect is more
prominent at higher spike frequencies.

10.1.2 Interspike-interval correlations

Since the receptor neurons exhibit spike-frequency adaptation, we further investigated
correlations between successive ISIs that may result from the interaction of the noise with
the adaptation dynamics. In particular, we expect negative correlations for a deterministic
adaptation process interacting with a white-noise input (Chacron et al., 2001; Liu and
Wang, 2001; Schwalger et al., 2010) and positive correlations for colored noise arising from
the stochasticity of an adaptation current itself (Lindner, 2004; Schwalger et al., 2010).

For spike-frequencies above about 50 Hz we found positive correlations between suc-
cessive ISIs that monotonically increase with increasing spike frequency (Fig. 10.5A, black
line). The serial correlation coefficients at lag 1, ρ1, were obtained from the responses
to the 500 ms stimuli as used before for investigating the ISI distributions. Especially at
higher spike frequencies the responses are not stationary (see Fig. 10.1B). Over the time
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Figure 10.4: Shape of the interspike-interval histograms. Shown are data pooled from 12 auditory
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of the stimulus the mean spike frequency slowly declines. This non-stationarity intro-
duces positive serial correlations that may obscure correlations arising from a potential
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Figure 10.5: Correlations between successive interspike intervals. A Measured serial correlation
coefficient ρ1 ± s.d. (black lines) as a function of spike frequency f . The coefficients for f ≤ 50 Hz
were averaged over 14 cells (stimulus duration 1 min) while the ones for f > 50 Hz were averaged
over 12 cells (stimulus duration 500 ms). The gray line shows the ISI correlations arising solely from
the slight decrease of the spike frequency during the stimulus as computed from a PIF model (see
text for details). The black asterisks label the data points which are significantly different from zero
(Sign test, **: p<0.01, *: p<0.05). The gray asterisks indicate the data points for which the ISI
correlations of the experimental data and of the PIF model are significantly different (Wilcoxon test,
**: p<0.01). B top: Spike trains recorded intracellularly during stimulation with a 1 min pure tone of
65 dB SPL and 6 kHz. bottom: Mean firing rate (average number of spikes per 500 ms time window)
stays constant over time. C Comparison of the white noise distribution pwn (dashed line, Eq. (6.1)) to
the ISI histogram (gray boxes) obtained from the data shown in B. D The distribution of ISI correlations
after shuffling ISIs (boxes), the corresponding cumulative histogram (dashed line) and the measured
ρ1 (solid line) for the data shown in B. E Number of cells with and without significantly negative ρ1
(p<0.05) as a function of spike frequency.

colored-noise source. We therefore computed the ISI correlations of a PIF model without
spike-frequency adaptation with the time course of the input current adjusted such
that the resulting time course of the mean spike frequency matches the experimentally
measured one, and with an additive white noise that ensured the same CV of the ISIs as
observed in the experimental data. The resulting ISI correlations (Fig. 10.5A, gray line)
are significantly lower than the ones obtained from the data. Thus the observed positive
ISI correlations may indeed arise in part from a colored-noise source and not solely from
the slow decline of the spike frequency.

For measuring the ISI correlations at lower spike frequencies we had to use acoustic
stimuli of 1 min duration in order to obtain sufficiently large ISI statistics (≥ 300 ISIs per
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trial). At low sound intensities the mean firing rate remained constant for the whole
stimulus duration after an initial transient of a few hundred milliseconds (Fig. 10.5B),
which we discarded for the computation of correlations. Thus, the resulting ISI correla-
tions are not obscured by slow changes of the mean spike frequency. Furthermore, the
ISI histograms obtained from the spike responses to these long stimuli (Fig. 10.5C) are
also well described by the white-noise ISI density pwn (Eq. (6.1)).

Using the long stimuli we indeed found slightly negative ISI correlations (Fig. 10.5A).
We tested the significance of these correlations by first calculating the distribution of
serial correlation coefficients occurring by chance after shuffling the ISIs of each spike
train of a given sound intensity (Fig. 10.5D, gray bars). The correlation coefficient of the
non-shuffled data (Fig. 10.5D, solid line) was considered as significantly negative if the
integral over the shuffled distribution (cumulative histogram, Fig. 10.5D, dashed line)
up to this value was smaller than 0.05. At spike frequencies in the range of 20–45 Hz
most responses indeed showed significant negative ISI correlations (Fig. 10.5E).

The results on ISI correlations exactly match the expectations based on the ISI dis-
tributions we measured. At low spike-frequencies a white-noise source shapes the ISI
distribution and results, in interaction with an adaptation process, in negative ISI cor-
relations. With increasing spike-frequency we observed a transition to a regime that is
dominated by colored noise with the respective ISI distributions and the corresponding
positive ISI correlations. This suggests that the dominating biophysical mechanisms
generating the intrinsic noise change with increasing spike frequency.

10.2 Locust auditory transduction model with ion chan-
nel noise

To uncover potential biophysical mechanisms causing the observed interspike-interval
variability we employed a model of the locust auditory receptor neuron and compared
the interspike-interval statistics resulting from various possible noise sources with the
experimentally measured ones. In the model (see Fig. 10.6A, see chapter 7 for a detailed
description) sound waves cause vibrations of the tympanal membrane. As a result
mechanosensory ion channels in the membrane of auditory receptor neurons open
and close and this way transform the vibrations into electrical currents. Caused by
the resulting change of the receptor cell’s membrane potential, voltage-dependent ion
channels are activated that trigger action potentials.

Locust auditory receptor cells differ in their sensitivity but still have comparable
variability measures, CV and Drnwl, as a function of spike frequency (Fig. 10.2). This
excludes extrinsic noise and tympanal noise as possible noise sources. Furthermore,
synaptic noise can be ruled out because locust auditory receptors are bipolar neurons that
are directly attached to the eardrum (Gray, 1960) and generate action potentials without
intermediate synapses. Thermal noise due to the membrane resistance was shown to
have only a minor importance in neurons compared to other noise origins (Lecar and
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Nossal, 1971; Manwani and Koch, 1999; van Rossum et al., 2003). Therefore, we expect
that intrinsic noise caused by the random gating of ion channels is the main source of
noise (Fig. 10.6B). If a channel population is small, fluctuations between conducting and
non-conducting states of single ion channels give rise to fluctuations of the ionic currents
mediated by the channel population and cause membrane potential fluctuations as well
as variability in spike timing (Schneidman et al., 1998).

For a minimal single-compartment conductance-based model of the locust audi-
tory receptor neuron four different types of ionic currents need to be included: (i) the
mechanosensory receptor current transducing the sound wave into an electrical sig-
nal, the (ii) sodium and (iii) delayed-rectifier potassium current for action potential
generation, and (iv) an adaptation current mediating spike-frequency adaptation.

10.2.1 Mechanosensitive channel gating

A mechanosensory receptor channel in its simplest form includes two states, open and
closed. A transition between these states results from external mechanical action, here
the tension applied to the channel induced by tympanal vibration. These external forces

Figure 10.6: Auditory signal processing. A Schematic drawing of the auditory transduction cascade
of Locusta migratoria. Tympanal deflections induced by sound waves of different intensities cause
mechanosensory ion channels in the membrane of auditory receptor neurons to open and close. The
resulting ionic current activates voltage-dependent ion channels that trigger action potentials. R:
mechanosensory receptor channels, Adap: ion channels mediating spike-frequency adaptation, Na:
sodium channels, K : delayed-rectifier potassium channels. B Our hypothesis is that the ISI variability
originates from channel noise. Stochastic opening and closing of ion channels causes fluctuations of
the mediated ionic currents eventually causing variability in spike timing.



10.2 Locust auditory transduction model with ion channel noise 53

presumably alter the energy of both states. Hence, the relationship between the channel
open probability and the tympanal deflections is given by a Boltzmann relationship
defined by Eqs. (7.2) - (7.4) as it was shown for transducer channels of vertebrate hair
cells (Corey and Hudspeth, 1983; Howard and Hudspeth, 1988; Hudspeth et al., 2000).
In the locust auditory system, the transducer channels are not yet identified, but indirect
data (Gollisch and Herz, 2005) suggest the existence of two channel populations with
Boltzmann gating.

The mechanical responsiveness of a mechanosensory channel to the tympanal deflec-
tion depends both on the gating force c and on the displacement x0 of the tympanum
for which half the channels of one population are open. The gating force c defines the
sensitivity to a mechanical stimulus. It determines the slope of the Boltzmann function
and, hence, the range of tympanal deflections x causing an opening of ion channels (see
Fig. 10.7A, dashed line). For the case that the Boltzmann curves of two channel popula-
tions that open for opponent directions of tympanal vibration overlap, the transduction
function, defined by the sum of the Boltzmann functions, determines the channel open
probability at the tympanal resting position (x = 0) as well as the tympanal deflection
for which the open probability approaches one (see Fig. 10.7A, solid line). Although
the gating force defines the open probabilities for small and large tympanal deflections,
it predominantly affects the lower dynamic range of a receptor neuron and, thus, the
frequency of action potentials occurring spontaneously during absence of any stimulus
or for sound intensities inducing small tympanal deflections (see Fig. 10.7B). The reason
is that the average open probability determined over the whole tympanal deflection
range is roughly constant for every c. This causes high ISI variability in the lower dy-
namic range which can result in a lack of the diffusion coefficient peak Drnwl which
was observed in locust auditory receptor cells (see Fig. 10.7C). In contrast to the gating
force c, x0 shifts the Boltzmann functions to higher and smaller tympanal deflections,
respectively, while the slope remains unchanged (see Fig. 10.7D, dashed lines). This
causes a displacement of the transduction function g(x) to smaller and larger channel
open probabilities, respectively (see Fig. 10.7D, solid lines). Thus, x0 affects the spike
frequencies of the whole dynamic range of a receptor neuron (see Fig. 10.7E). The sound
intensities causing tympanal deflections which result in a mean channel open probability
〈g(x)〉 of 0.5 define the location of the diffusion coefficient peak Drnwl. This position
shifts with varying x0 (see Fig. 10.7F). For the sound intensity causing a peak of Drnwl
(〈g(x)〉 = 0.5), the number of ion channel state transitions within a given time interval is
maximal (Sigworth, 1980). No peak is observed for the case that combinations of c and
x0 result in g(0) ≥ 0.5 at the resting position x = 0.

For modelling the locust auditory transduction cascade, we chose x0 = 6 and c =
0.5 so that the dynamic range comprises an extent of about 40-50 dB SPL with low
spontaneous spiking activity for sound intensities at the spike threshold and a Drnwl
peak value in the lower part of the dynamic range as observed for locust auditory
receptor cells (cf. Fig. 10.2).

The time constant of the ion channels in the membrane of locust auditory receptor
cells, which defines how fast the channels can respond to the tympanal vibration, is
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Figure 10.7: Influence of the mechanosensitive channel gating on the response properties of
the auditory receptor cells. The relationship between the channel open probability and the tympanal
deflection can be well described by the sum of two Boltzmann functions (see section 7.2). The gating
force c as well as the tympanal displacement x0 for which half the channels are open define the
mechanical responsiveness of a channel to the tympanal deflection x. A The transduction function
g(x) (Eq. (7.2), solid lines) and the individual Boltzmann functions (dashed lines) as a function of the
tympanal deflection for constant x0 and varying c. B The spike frequency and C diffusion coefficient
Drnwl as a function of sound intensity for constant x0 and varying c. D-F show the same curves as in
A-C for constant c and varying x0.
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not known, yet. A short time constant τr of 1 µs causes an immediate response, i.e.
channel opening or closing, to the sound induced tympanal vibration (see Fig. 10.8A).
The channel opening can easily follow the tympanal deflections and the stochastic case
approaches the deterministic model. Hence, the ISI variability approaches zero (see
Fig. 10.8B). In contrast, longer activation time constants yield a delayed channel opening
and closing as response to the eardrum deflections (see Fig. 10.8A). Here, τr acts as a
low-pass filter of the tympanal vibration x and causes a rise of Drnwl (see Fig. 10.8 B). The
increased variability results from the fact that the receptor channels are more and more
driven into the regime where the mean open probability is 0.5 for which the variance
of the current passing the channels is maximal (Sigworth, 1980). For a given τr, the
standard deviation of the fraction of open receptor channels decreases at high spike
frequencies, because the increasing amplitude of the tympanal deflections drives the
receptor channels towards their fully open states where the fluctuations of the number of
open channels decrease. For the simulations of the locust auditory transduction model,
we chose τr = 0.1 ms which yields ISIs of intermediate variability.

10.2.2 Single-current stochasticity

In a first set of simulations we investigated the effects of ion-channel stochasticity for
each of the involved ionic currents individually. That is, in each of the simulations
either (i) the receptor current IR, (ii) the M-type adaptation current IA (IB = 0 µA/cm2)
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or the voltage-dependent (iii) sodium INa or (iv) potassium current IK was modeled
as a stochastic current resulting from a finite population of ion channels, while all
other ionic currents were modeled as deterministic currents corresponding to an infinite
population of ion channels. For each case we varied the number of channels carrying the
respective current and at the same time scaled the respective single-channel conductances
inversely proportional to the number of channels. This results roughly in the same spike
frequencies but different ISI variability as quantified by both the coefficient of variation,
CV, and the diffusion coefficient, Drnwl.

Simulations of stochastic receptor, sodium and adaptation currents result in a high
CV for stimuli close to the firing threshold that declines with increasing sound intensity
(see Fig. 10.9A,B,D). This is consistent with the observed statistics of the spike responses
of the auditory receptor cells. Simulations of stochastic potassium channels, in contrast,
yield CVs which remained roughly constant for all sound intensities (see Fig. 10.9C).

The diffusion coefficient Drnwl as a second measure for the regularity of a spike-count
distribution showed qualitatively similar results (see Fig. 10.10). Stochastic receptor chan-
nels generate a peak in Drnwl similar to the measured experimental data (cf. Fig. 10.2E,F).
The peak occurs at about the sound intensity inducing a tympanal displacement which
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Figure 10.10: Comparison of the diffusion coefficient resulting from different channel-noise
sources. Shown is the diffusion coefficient Drnwl as a measure for the ISI variability computed from
simulations of the auditory transduction cascade with different ionic currents modeled as populations
of N stochastic ion channels as indicated. The right ordinate shows the corresponding mean spike
frequency over sound intensity (dashed black line).

causes an opening of the receptor channels with a mean probability of 0.5 (as defined by
Eq. (7.2), Fig. 10.10A). For this open probability the variability of the ionic current and
thus of the interspike intervals is maximal (Sigworth, 1980).

The voltage-gated sodium channels are responsible for action potential initiation. At
membrane potentials close to the spike threshold, a random opening of channels can
easily initiate an action potential (Schneidman et al., 1998). Similarly as in the model
with stochastic receptor channels, sodium channel noise resulted in a peak of Drnwl in
the lower dynamic range of the receptor response comparable to the experimental data
(see Fig. 10.10B).

A stochastic delayed-rectifier potassium current responsible for the termination of
an action potential, however, resulted in a sigmoidal increase of Drnwl with increasing
sound intensity (see Fig. 10.10C) that definitely is not in agreement with the experimental
data.

For modeling the adaptation current we used a population of voltage-gated M-
type potassium channels. These channels are mainly activated during action potentials
and slowly deactivate between them. Stochasticity of the adaptation channels again
can reproduce the experimentally measured values of Drnwl with a peak in the lower
dynamic range (see Fig. 10.10D).
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To distinguish between stochastic currents showing similar ISI variability and to
explore possible mechanisms accounting for both different shapes of ISI distributions and
different ISI correlations observed in the experimental data, we furthermore investigated
the shapes of the ISI distributions as well as the correlations between successive interspike
intervals.

For the analysis of the ISIH shapes we adjusted the size of the stochastic channel
populations such that all simulations with the different stochastic ionic currents resulted
in the same steady-state spike frequency as well as the same CV and Drnwl. Stochastic
simulations of ionic currents with fast gating dynamics, i.e. sodium and receptor current,
yield ISI distributions which are well described by the white-noise density pwn (Eq. (6.1),
Fig. 10.11A,B). Simulations with stochastic M-type adaptation currents, however, result
in ISI distributions that are more peaked than pwn (see Fig. 10.11C). However, these
distributions can be well described by the colored-noise density pcn (Eq. (6.2)) with a
correlation time constant τ̃ which is similar to the adaptation time constant.

The serial correlations were determined from the ISIs of the same simulations used for
Fig. 10.10. The cases of both fast stochastic receptor (see Fig. 10.12A) and fast stochastic
sodium currents (see Fig. 10.12B) are characterized by negative correlations at lag one.
The case of slow stochastic adaptation currents, however, exhibits positive correlation
coefficients ρ1 (see Fig. 10.12C).

To complete the ISI statistics for all types of ionic currents, we also analyzed the
ISIH shape and the serial correlations for stochastic potassium currents which showed a
spike-response variability that is clearly not in agreement with the experimental data. For
a small number of potassium channels NK, which was necessary to yield high variability
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comparable to the one observed in locust auditory receptors, the ISI distributions show
a bimodal shape (see Fig. 10.13A). This bimodality results in slightly positive serial
correlations for succeeding ISIs (see Fig. 10.13B). Simulations with a large number of
potassium channels, in contrast, demonstrate that both the ISIH bimodality and the
positive correlations, are a result of small channel numbers. Large NK yields ISIH
which have an almost right-skewed exponential shape which is neither comparable
with a white-noise (see Fig. 10.13C) nor with a colored-noise ISI density (not shown, see
Fig. 10.11 for comparison). In addition, large NK results in negative ISI correlations (see
Fig. 10.13D).
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Chapter 11
How does adaptation contribute to the
interspike-interval variability?

In the previous chapter we have shown that spike responses of locust auditory receptor
neurons exhibit interspike-interval distributions that can be well described by the inverse
Gaussian (IG) distribution and show negative interspike-interval correlations for suffi-
ciently low sound intensities evoking spike frequencies of less than 50 Hz. These findings
can be explained by a white-noise source that interacts with an adaptation current. Stim-
ulations with sound intensities that elicit firing rates larger than 50 Hz result in more
peaked distributions and positive interspike-interval correlations, as expected from an
integrate-and-fire model of suprathreshold firing driven by colored noise. Simulations
of a minimal conductance-based model of the auditory receptor neuron with single
stochastic ionic currents suggest the receptor or sodium current as possible candidates of
the white-noise source while slow channel noise from stochastic adaptation currents may
act as the colored-noise source. This shows for the first time that noise from stochastic
adaptation currents has a distinct effect on the ISI statistics and, thus, on the neuronal
spike-response variability.

So far, spike-frequency adaptation has been demonstrated to play a functional role
in the context of forward masking (Sobel and Tank, 1994), high-pass filtering (Benda et
al., 2005; Benda and Hennig, 2008; Glantz and Schroeter, 2004), and response selectivity
(Gabbiani and Krapp, 2006; Peron and Gabbiani, 2009a,b). If the neuron is driven by
fast fluctuations, adaptation reveals itself in the interspike-interval statistics of neuronal
firing, most prominently in the occurrence of negative correlations among interspike
intervals (Wang, 1998; Ratnam and Nelson, 2000; Chacron et al., 2000; Liu and Wang,
2001; Chacron et al., 2001; Engel et al., 2008). These features can be phenomenologically
captured in generalized integrate-and-fire models by introducing a slow inhibitory
feedback variable, either acting as a dynamic threshold or as an inhibitory conductance
or current (Geisler and Goldberg, 1966; Chacron et al., 2000; Liu and Wang, 2001; Muller
et al., 2007; Benda et al., 2010), or in even more simplified models (Chacron et al., 2004;
Lindner et al., 2005a; Schwalger and Lindner, 2010).
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In previous studies on stochastic models with adaptation, fluctuations were con-
sidered to be fast, e.g. Poissonian synaptic spike trains passing through fast synapses
or a white Gaussian input current representing a mixture of intrinsic fluctuations and
background synaptic input. Channel noise, in contrast, is not only contributed by the
fast ionic conductances, which establish the spike generating mechanism, but also by
the ion channels that mediate adaptation currents. If the number of adaptation channels
is not too large, the stochastic opening and closing of single channels will contribute a
fluctuating component to the adaptation current. This noise contribution, which was
so far ignored in the literature, and its impact on the ISI statistics is the subject of this
chapter. Based on our findings regarding the dissimilarity of the ISI statistics resulting
from fast stochastic ion channels and slow stochastic adaptation channels in section 10.2,
the results described in this chapter arose from a cooperation with Benjamin Lindner
and Tilo Schwalger from the Max Planck Institute for the Physics of Complex Systems in
Dresden. The results summarized in section 11.1 and 11.2 have been published already
in Schwalger et al. (2010). Within the scope of this cooperation, Tilo Schwalger studied
the effect of adaptation noise on the ISI statistics of a perfect integrate-and-fire (PIF)
model neuron by means of analytical techniques and numerical simulations. He con-
trasted stochastic adaptation with the commonly studied case of a fast fluctuating current
noise and a deterministic adaptation current (corresponding to an infinite population
of adaptation channels). The results of his work are summarized in short in section
11.1. I performed extensive simulations of a biophysically more realistic conductance-
based model for these two limit cases of deterministic and stochastic adaptation. The
results qualitatively confirm the ones for the PIF model and support the generality of
our findings (see section 11.2). In addition, I performed simulations of locust auditory
transduction model which comprised both fast current fluctuations and slow stochastic
adaptation currents to test our hypothesis that a mixture of noise sources is necessary to
explain the ISI statistics of spike responses of locust auditory receptor cells (see section
11.3, not part of the collaborative project published in Schwalger et al. (2010)).

11.1 How noisy adaptation of neurons shapes interspike
interval histograms and correlations

This section gives a short review of the work of Tilo Schwalger that was initiated by our
experimental findings. A detailed description can be found in Schwalger et al. (2010).

Tilo Schwalger analyzed the effect of adaptation noise on the ISI statistics of a PIF
model. A PIF model represents a reasonable description in the suprathreshold firing
regime, in which a neuron exhibits a stable limit cycle (tonic firing). The dynamics of the
membrane potential V read:

V̇ = µ− βW +
√

2Dξ(t), (11.1)

where µ = I0/Cm, I0 is the base current, Cm is the membrane capacitance and W =
Nop/Na is the fraction of open adaptation channels. The scaling factor for the adaptation
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current passing the Nop open channels reads β = ḡa(〈V〉 − Ea)/Cm with the reversal
potential Ea and with the average voltage 〈V〉 to obtain a voltage-independent adaptation
current. The model was augmented with an inhibitory adaptation current mediated
by a population of Na adaptation channels (Fig. 11.1A). For simplicity, binary channels
were assumed that switch stochastically between an open and a closed state (cf. Eq. (7.12),
kinetic scheme). The transition rates depend on the presence or absence of an action
potential. This can be approximated by passing the membrane potential V through a
steady-state activation probability, w∞(V), that attains values close to unity during action
potentials, i.e. when the voltage exceeds the threshold, and is near zero for potentials
below the firing threshold (Fig. 11.1B).

Although this model aims at the stationary firing statistics, we would like to stress
that it exhibits spike-frequency adaptation in the presence of time-varying stimuli. In

Figure 11.1: Integrate-and-fire dynamics with adaptation channels (taken from Schwalger et
al., 2010). A Channel model: a population of Na independent voltage-gated ion channels, which can
be either in an open or closed state, mediate an adaptation current through a neuron’s membrane. B
Perfect integrate-and-fire (PIF) model: Subthreshold dynamics of the membrane potential V (bottom).
The variable V (in units of Vth) is reset to a value Vreset = 0 after crossing the threshold at V = Vth.
Action potentials are not generated explicitly. Instead, the effect of an action potential is captured
by the activation function w∞(t), which is set to one in a short time window of 1 ms following each
threshold crossing of the model (middle panel). The adaptation current is proportional to the fraction
of open channels W (top panel). The sample traces were obtained from a simulation of a PIF model
with Na = 1000 adaptation channels, white noise intensity D = 0.01V2

th/ms, adaptation time constant
τw = 100 ms, base current µ = 0.4Vth/ms and maximal adaptation current β = 3Vth/ms. C The
time-dependent firing rate (top) in response to a step stimulus (bottom) is independent of the noise
source (stochastic adaptation – solid line, deterministic adaptation plus white noise – dashed line). The
gray line shows the mean adaptation of the non-dimensional theory derived in Schwalger et al. (2010).
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particular, spike-frequency adaptation in response to a step stimulus is retained regard-
less of the considered noise source, channel numbers or approximations made during
the theoretical analysis (Fig. 11.1C). This is a nice feature of the PIF model, for which the
firing rate does not depend on the nature and magnitude of the noise. This allowed to
vary the noise properties without altering the adaptation properties.

The stochastic ion channel model describing the dynamics of each individual adapta-
tion channel could be considerably simplified by a diffusion approximation (Schwalger et
al., 2010). The dynamics of the finite population of adaptation channels can be described
by (i) the deterministic adaptation current and (ii) additional Gaussian fluctuations
with the same filter time as the adaptation dynamics. The obtained multi-dimensional
Langevin model ("diffusion model") that approximates the integrate-and-fire model with
stochastic ion channels is hence given by

V̇ =µ− β(w + η) +
√

2Dξ(t) (11.2a)
τwẇ =− w + w∞(t) (11.2b)

τwη̇ =− η +

√
2τwσ2

Na
ξa(t). (11.2c)

This shows that a finite population of slow adaptation channels (instead of an infinite
population and hence a deterministic adaption dynamics) entails the presence of an
additional noise η(t) with a correlation time τw (time scale of the deterministic adaptation)
and a variance which is inversely proportional to the number of channels. The membrane
potential V of the PIF model is thus driven by four processes: (i) the base current µ, (ii) the
white current fluctuations ξ(t) of intensity D (representing an applied current stimulus,
channel noise originating from fast sodium or delayed-rectifier potassium currents, or
shot-noise synaptic background input), (iii) a slow Ornstein-Uhlenbeck noise η(t) due
to stochasticity of the adaptation dynamics, and (iv) the deterministic feedback of the
neuron’s spike train w(t) due to the deterministic part of the adaptation. In Eq. (11.2),
the parameter β determines the strength of adaptation and σ2 the noise strength.

To study the effect of the two different kinds of noise, the two limit cases were
analyzed: In the limit of infinitely many channels, the adapting PIF model is only driven
by white noise and µ. In this case, Eq. (11.2) reads

V̇ = µ− βw +
√

2Dξ(t), (11.3a)
τwẇ = −w + w∞(t). (11.3b)

We call this case deterministic adaptation.

In the opposite limit, only the stochasticity of the adaptation current but not the white
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noise were considered. Setting D = 0 gives then

V̇ =µ− β(w + η) (11.4a)
τwẇ =− w + w∞(t) (11.4b)

τwη̇ =− η +

√
2τwσ2

Na
ξa(t). (11.4c)

We call this case stochastic adaptation. For this limit case, the adaptation variable can be
approximated by an effective colored noise (Ornstein-Uhlenbeck noise; "colored noise
approximation"). Hence, the dynamics of the model can be reduced to

V̇ =µ̃− βη̃ (11.5a)

τ̃ ˙̃η =− η̃ +

√
2τ̃σ̃2

Na
ξa(t), (11.5b)

where the effective parameters are scaled by a common scaling factor:

µ̃ = λµ, τ̃ = λτw, σ̃2 = λσ2 (11.6)

with λ = (1 + ατw(∆w/vth))
−1.

ISI density

For the case of deterministic adaptation, the ISI densities can be well described by the
IG probability density pwn (Eq. (6.1)). Slight deviations of the simulated ISIH from the
IG can only be seen for large intervals where the simulated density displays a stronger
decay than the IG. Accordingly, the rescaled skewness, Eq. (6.4), and kurtosis, Eq. (6.5),
show values slightly smaller than one.

In the opposite case of stochastic adaptation, the IG fails to describe the ISI histograms.
The ISIHs possess a much stronger peak and decay slower at large interspike intervals
compared to the IG with the same mean and variance of the ISIs. Hence, the rescaled
skewness and kurtosis show values clearly larger than one. In addition, the ISIHs of the
channel model are well approximated by both the diffusion model, Eq. (11.2), and the
colored noise approximation, Eq. (11.5).

ISI correlations

Another clear distinction between stochastic and deterministic adaptation is revealed by
the correlations between succeeding ISIs. For the case of deterministic adaptation purely
negative correlation with an exponential decay are observed. In contrast, stochastic
adaptation results in positive serial correlations with a slow exponential decay. This
is also in agreement with the diffusion model. In addition, the good agreement of the
colored-noise theory suggests, that adaptation noise effectively acts as a colored noise
that slowly modulates the ISIs.
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Mixed case of fast and slow noises

So far, it was that the two limit cases of the adapting PIF model can be well distinguished
by the values of the shape parameters αs and αe relative to unity and the correlation coef-
ficient ρ1 relative to zero. Do these quantities also allow for an unambiguous distinction
of the dominating source of noise in the more realistic case where both kinds of noise
are present? To answer this question, simulations of the adapting PIF model for a fixed
intensity of the white noise (“fast fluctuations”) but different sizes of the population of
adaptation channels were performed.

For small channel numbers, i.e. large channel noise, both large values of the rescaled
kurtosis αe > 1 and a positive serial correlation coefficient of adjacent ISIs were observed,
indicating the strong impact of the colored-noise effect. As expected, at the other end of
large channel population sizes the pure white-noise case can be recovered. In between,
there is a critical channel number at which both the rescaled kurtosis crosses the line
αe = 1 and the serial correlation coefficient changes its sign.

11.2 Effects of a stochastic adaptation current on the ISI
statistics of a Hodgkin-Huxley-type model

In this section, we investigate whether the theoretical predictions based on the previously
described PIF model are robust with respect to a more detailed Hodgkin-Huxley-type
model. To this end, I performed simulations of the conductance-based Traub-Miles
model with a M-type adaptation current (Eq. (8.1), Ermentrout et al., 2001).

11.2.1 Interspike-interval distributions

We separately considered the two cases of white noise input and a slow M-type channel
noise to get an intuition of the individual effects on the ISI statistics. For deterministic
adaptation, i.e. in the case of white noise input, the shape of the interspike-interval
histograms can be well approximated by the IG distribution which was uniquely deter-
mined by the firing rate and the CV (see Fig. 11.2A). In the opposite case of a stochastic
M-type current, the ISI variability solely depends on the number of slow adaptation
channels (see Fig. 11.2B). The ISIHs show a strong disagreement with the IG exhibiting
the same rate and CV. In particular, ISIHs exhibited a sharper peak compared to the rela-
tively broad IG. In addition, for a small channel population (Na = 100) the discreteness
of the adaptation appears in the ISIH as single peaks that cannot be averaged out. This is
related to realizations of the channel noise for which the fraction of open channels does
not change during the ISI; realizations for which the fraction changes at least once lead
to the continuous part of the ISI density.

The difference of the ISIHs observed both for a PIF and here for a Traub-Miles model
with (i) deterministic and (ii) stochastic adaptation suggests that these two cases might
be distinguishable from the shape of the ISIHs. To this end, we analyzed the ISIH
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Figure 11.2: ISI histograms of the Traub-Miles model – deterministic vs. stochastic adapta-
tion. A The ISI densities of the Traub-Miles neuron model with a deterministic M-type adaptation
current (Na = ∞) and white-noise driving (Eq. (8.1) – gray bars) is shown along with an inverse
Gaussian (Eq. (6.1)) with the same mean and CV (dashed lines). To keep the firing rate at about
r = 100 Hz the external driving current was adjusted from top to bottom according to I = 9, 16.5, 17.7,
17.9 (in µA/cm2). B The ISI densities of the Traub-Miles model in the presence of a stochastic M-type
adaptation current (Eq. (8.2) – gray bars) is shown along with an inverse Gaussian (Eq. (6.1)) with the
same mean and CV (dashed line). Here, the external driving current was in all cases I = 18 µA/cm2.

shapes using the rescaled skewness αs, Eq. (6.4), and kurtosis αe, Eq. (6.5), introduced by
Schwalger et al. (2010). The rescaled skewness and kurtosis are significantly smaller for
white noise than for adaptation noise in a wide range of CVs (see Fig. 11.3). This is in
accordance with the pronounced peak of the ISIH in the case of stochastic adaptation (see
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Figure 11.3: Shape parameters of the ISIH for deterministic and stochastic adaptation. A
Rescaled skewness αs, Eq. (6.4), and B rescaled kurtosis αe, Eq. (6.5), as a function of the coefficient
of variation (CV). For stochastic adaptation (Eq. (8.2), D = 0 – black curve) the number of channels
was varied from Na = 2000 to Na = 80; for deterministic adaptation (Eq. (8.1), Na = ∞ – gray
curve), the noise intensity was varied from D = 0.1 to D = 200. The corresponding inverse Gaussian
statistics, Eq. (6.1), is indicated by the dotted line.

Fig. 11.2B). However, the values are not strictly separated by αs/e = 1 as in the PIF model
(see section 11.1, Schwalger et al., 2010). This discrepancy is not surprising, given that the
Traub-Miles dynamics with constant input and white noise driving does not exactly yield
an inverse Gaussian ISI density but only an approximate one. Importantly, however, the
rescaled kurtosis αe and skewness αs for the case of deterministic adaptation quickly
saturate at a finite value in the large τw limit (albeit not at unity, see Fig. 11.4, gray curves).
This is markedly different from the case of stochastic adaptation. In this case, the rescaled
kurtosis increases strongly as it was observed for the PIF model (see Fig. 11.4A,C, black
curves). In a similar manner, the rescaled skewness also shows this distinct behavior for
stochastic vs. deterministic adaptation, although the increase of the rescaled skewness is
not as strong as for the rescaled kurtosis (see Fig. 11.4B,D, black curves).

11.2.2 Interspike-interval correlations

Another clear distinction between deterministic and stochastic adaptation appears in
the serial correlations of ISIs (see Fig. 11.5). Similar as in the PIF model, the case of
deterministic adaptation is characterized by negative ISI correlations at lag one, which
are strongest at an intermediate time scale τw. In the limits rτw → 0 and rτw → ∞ where
r denotes the stationary firing rate, however, the correlation coefficient at lag one, ρ1,
vanishes as predicted by the theory of serial correlations (Schwalger et al., 2010) and as
observed in previous studies (Liu and Wang, 2001; Benda et al., 2010). In contrast, the
case of stochastic adaptation exhibits positive correlation coefficients ρ1, which show a
maximum at an intermediate value of τw. For large rτw the correlations decrease again.
This is in agreement with the colored-noise approximation (cf. section 11.1, Schwalger et
al., 2010). The decrease might be due to the fact that the ISI variance grows faster with



11.2 ISI statistics of a Hodgkin-Huxley-type model with stochastic adaptation 69

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

α e

r τw

A stochastic adap.

deterministic adap.

 0.1

 1

 10

 100

 0.1  1  10  100  1000

α s

r τw

B

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000

r τw

α e

C

 0.1

 1

 10

 100

 0.1  1  10  100  1000

α s

r τw

D

Figure 11.4: Shape parameters of the ISIH as a function of the time scale separation. A,C
Rescaled kurtosis αe, Eq. (6.5), and B,D rescaled skewness αs, Eq. (6.4), as a function of the time
scale separation rτw for stochastic adaptation (Eq. (8.2), D = 0, (A,B): Na = 200; (C,D): Na = 400
– black curve) and deterministic adaptation (Eq. (8.1), Na = ∞, (A,B): D = 10; (C,D): D = 2 – gray
curve). The corresponding inverse Gaussian statistics, Eq. (6.1), is indicated by the dotted line.

rτw than the covariance 〈TiTi+1〉 − 〈Ti〉2, thus the correlation coefficient is suppressed
by the variance. A similar effect has been observed for a leaky integrate-and-fire model
(Schwalger and Lindner, 2008).

Furthermore, the correlations show a rapid decay with the lag for deterministic
adaptation (Fig. 11.6A) and an exponential decay for stochastic adaptation (Fig. 11.6B).
As in the PIF model, the exponential decay is slower for large time constants τw.

11.2.3 Mixed-case model with fast and slow noise sources

Finally, we inspected the case in which both white noise and slow adaptation noise
is present (Fig. 11.7). We fixed the noise intensity of the white noise and varied the
number of adaptation channels Na. In the Traub-Miles model one finds qualitatively
similar curves as in the PIF model. In particular, the serial correlation coefficient at lag
one shows a transition from positive to negative ISI correlations at a certain number of
adaptation channels (Fig. 11.7A). This value can be used to define two regimes – one
dominated by adaptation noise (white region) and another one dominated by white noise
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(gray-shaded region). In the adaptation-noise dominated regime the scaled kurtosis αe is
larger than in the white-noise dominated regime (Fig. 11.7B).

The observation that key features of the ISI statistics in the presence of a stochastic
adaptation current seem to be conserved across different models suggests a common
mechanism underlying these features. This mechanism is based upon the fact that a
stochastic adaptation current can be effectively described by an independent colored
noise. The long-range temporal correlations of this noise naturally yield positive ISI
correlations and a slow modulation of the instantaneous spike frequency. The latter
typically involves a large kurtosis due to the increased accumulation of both short
and long ISIs. A significant amount of colored noise can effect the kurtosis and the
ISI correlations so strongly, that details of the spike generation seem to be of minor
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Figure 11.7: ISI statistics of the Traub-Miles model in the presence of both stochastic adap-
tation and white noise. A The serial correlation coefficient ρ1, Eq. (6.6), at lag one in the mixed
case at a fixed amount of white noise (D = 10) and varying channel numbers Na. The intersection of
the ρ1 curve with the zero line (dotted line) defines the adaptation-noise dominated regime (white
region) and the white-noise dominated regime (gray-shaded region). B The corresponding values of
the rescaled kurtosis αe, Eq. (6.5).

importance. Thus, it becomes plausible that the spike statistics of a real neuron could be
used to infer the dominant source of noise.

11.3 Locust auditory transduction model with mixed chan-
nel noise sources

The simulations of the locust auditory transduction model with single stochastic ionic
currents (see section 10.2.2) showed that stochastic M-type adaptation currents explain
both the ISI distributions and positive correlations of the experimentally measured spike
responses of the upper dynamic range. In contrast, both stochastically gated sodium as
well as receptor channels reproduce the ISI distributions of the lower dynamic range
and in interaction with the deterministic adaptation current also reproduce the observed
negative correlations.

This suggests that at least two processes are needed to explain the experimental data:
(i) a process generating fast current fluctuations, which dominate at low sound intensities,
and (ii) a slow adaptation process both for generating negative correlations in interaction
with the fast noise and for generating slow current fluctuations, which dominate at high
sound intensities.

In the previous section, we have shown that a mixed-case model with both white
noise and slow stochastic adaptation gives rise to a transition from positive to negative
ISI correlations as well as to a transition of the ISIH shape. This suggests that stochastic
channels working on a fast time scale and slow stochastic adaptation channels might
explain the ISI variability observed in locust auditory receptor cells. In order to test
this hypothesis, we simulated the locust auditory transduction model with a stochastic
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Figure 11.8: Interspike-interval statistics of the mixed stochastic channel models. Shown are
the spike frequency (top) and the diffusion coefficient Drnwl (bottom) as a function of sound intensity
of the locust auditory transduction model with stochastic adaptation channels and either A stochastic
receptor or B stochastic sodium channels with the channel numbers N as indicated.

M-type adaptation current in combination with stochastic currents mediated by either
mechanosensory receptor (Figs. 11.8A, 11.9D-F) or voltage-dependent sodium channels
(Figs. 11.8B, 11.9G-I) and contrasted the ISI statistics to the ones of the experimental data
(Figs. 11.9A-C).

Both mixed-case models are able to explain the ISI statistics of the auditory receptor
cells’ spike responses. The ISI variability quantified by Drnwl shows a peak at the lower
dynamic range of the receptor response (Fig. 11.8). The coefficient of variation reveals
high variability for low steady-state spike frequencies which declines with increasing
rate (Figs. 11.9D,G). In addition to the CV, both the rescaled skewness αs and kurtosis
αe confirm the transition from an inverse Gaussian to the more peaked colored-noise
distribution (Figs. 11.9E,H). For low spike frequencies, αe and αs take values close to one
indicating a strong white-noise influence. With increasing spike frequency, αe and αs
show a monotonic rise to large values. This implies that the ISI density is more skewed
and more peaked compared to an IG which illustrates the prevalence of colored noise in
this firing rate regime. Furthermore, with increasing spike frequency, the ISI correlations
exhibit a transition from negative correlations resulting from predominant white noise
driving interacting with the adaptation current to positive correlations indicating strong
impact of colored noise (see Figs. 11.9F,I).
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of data shown in Figs.10.2 C,D, 10.4 C, and 10.5 A. The serial correlation coefficients shown in C are
taken from two auditory receptor cells which were recorded during stimulation with different pure-tone
durations: 1 min stimulus for data of low spike frequency, 500 ms stimulus for data of high spike
frequency (same cell as in A and B). For the simulation of the model with stochastic receptor and
adaptation channels (D-F) we used NR = 20 and NA = 600 number of channels. For the simulation
with stochastic sodium and adaptation channels (G-I) we used NNa = 40000 and NA = 2000.





Chapter 12
How does adaptation contribute to the
spike-count variability?

Two types of neuronal variability are usually discriminated: Interspike-interval and
spike-count variability. In the previous chapter, we have shown that a mixture of fast
stochastic ionic currents and stochastic currents mediating spike-frequency adaptation
shape the interspike-interval variability in locust auditory receptor cells. In this chapter,
we analyze the latter type of spike-response variability. We quantify the spike-count
variability of locust auditory receptor cells by the Fano factor which is calculated for
different counting time frame lengths. Furthermore, we compare the experimental Fano-
factor curves to the stochastic channel model of the locust auditory transduction cascade
with stochastic adaptation currents.

12.1 The auditory system of locusts comprises spike-fre-
quency adaptation with two time constants

Spike-count variability quantified by the Fano factor can quantify variability on different
time scales. To measure variability on longer time scales, it is necessary to have record-
ings of the neuronal responses of locust auditory receptor neurons with a long spike
train duration. So far, locust auditory spike responses have not been measured during
stimulation with tones of long time duration. To this end, we performed intracellular
recordings during stimulation with long-lasting pure tones of 1 minute duration.

The spike frequency of locust auditory receptor cells is known to decay during the
first one hundred milliseconds after onset of a pure-tone stimulus of constant intensity
(Römer, 1976; Benda et al., 2001). The spike responses of the auditory receptors recorded
during stimulation with long-lasting tones show a mean spike frequency which decays
over two timescales and which can be described by the sum of two exponential equations
(see Fig. 12.1).

We measured the effective time constants of the two adaptation processes by fitting
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Figure 12.1: Two processes mediating spike-frequency adaptation in locust auditory receptor
neurons. The mean spike frequency defined by the inverse interspike intervals across 15 spike trains
(1 min duration) shows a frequency decay over two time scales. The fast adaptation current reduces
the spike frequency over a range of approximately 100 ms (see inlet, marked as fine dashed line in
the main figure) and results in a temporary steady-state spike frequency f∞A . Subsequently, the slow
component adapts the neuron in the range of several seconds to the final steady-state spike frequency
f∞B . The black dotted line shows a fit of f (t) = fA expt/τe f fA + fB expt/τe f fB + f∞B to the data.

exponentials to the mean spike frequency as a function of time (see Fig. 12.2A,B). The
first adaptation process causes a spike-frequency decay with effective time constants in
the range of 100 ms which is the time scale already known for locust auditory receptor
cells (see Fig. 12.2C). The second adaptation process causes additionally a decay of the
spike frequency with effective times constants of several seconds depending on sound
intensity (Fig. 12.2D).

12.2 Spike-count variability in locust auditory receptors

In the previous chapter, we have shown that stochastic adaptation currents working on
a time scale of a hundred milliseconds contribute to the interspike-interval variability
and shape both ISI histograms and correlations. In contrast to fast adaptation processes,
slow processes mediating spike-frequency adaptation on a time scale of several seconds,
however, scarcely affect the statistics of interspike-intervals. Such slow processes instead
can show distinct effects on the spike-count statistics quantified by the Fano factor F(tc)
(Eq. (6.7), Middleton et al., 2003). This measure may depend on the observation time
frame tc and can signify variability additionally on a long time scale of several seconds
or even minutes. Hence, spike-count variability can incorporate processes working not
only on fast time scales but also on slow ones, such as a slow adaptation current with a
time constant of several seconds.

The Fano factor approaches F(tc) = 1 for small tc (Teich et al., 1997). For large tc,
F(tc) is related to the ISI correlations and the coefficient of variation (Eq. (6.8), Cox and
Lewis, 1966). For a renewal process with uncorrelated ISIs the Fano factor for large tc is
given by F∞ = CV2. Negative ISI correlations, in contrast, yield a decreased spike-count
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Figure 12.2: Effective time constants of two adaptation processes. A The mean spike frequencies
of one receptor neuron (Stimuli: 500 ms pure tones of different sound intensities) defined as the
inverse interspike interval show spike-frequency adaptation with a fast time scale. B The firing rate
of another receptor neuron (Stimuli: 1 min pure tones of different sound intensities) defined as the
average number of spikes per time window shows a slow component of spike-frequency adaptation.
Here, the fast adaptation time constant shown in A was averaged out by using a time window of 100
ms. In A and B the spike frequencies decay in an approximately exponential manner (dashed lines) to
their steady-states with effective time constants τe f f . C,D The mean effective time constants ± s.d.
of the fast (C, τe f fA ) and the slow adaptation process (D, τe f fB ) measured from recordings of N = 12
receptor cells stimulated with 500 ms pure tones and N = 19 receptor cells stimulated with 1 min pure
tones, respectively, show short time constants τe f fA in the range of 100 ms and long time constants
τe f fB in the range of several seconds. The time constants are shown as a function of sound intensity
relative to the threshold intensity (0 dB SPL) of a receptor cell.

variance compared to the one of a renewal process, while positive serial correlations
cause Fano factors increasing as a power-law function with exponent κ which gives rise
to a minimum of F(tc) at defined counting times tc (Middleton et al., 2003).

The Fano factor curves estimated from spike responses of locust auditory receptor
neurons, recorded during stimulation with tones of 1 minute duration, show a minimum
at moderate counting times and a rise of F(tc) at large tc (see Fig. 12.3A). Furthermore,
depending on sound intensity, the experimental data display a shift of both the Fano
factor minimum tmin

c and the exponent κ (see Fig. 12.3A-C). The Fano factor curves of the
lower and medium/upper dynamic range (see Fig. 12.3D) highly differ in their shape.
For sound intensities close to the spike threshold, the position of the minimum is in
the range of 250 ms (see Fig. 12.3A,B,E). For sound intensities of the medium to upper
dynamic range, tmin

c shifts to smaller counting times down to 25 ms (see Fig. 12.3A,B,F). In



78 12. How does adaptation contribute to the spike-count variability?

 0

 50

 100

 150

 200

 10  20  30  40  50  60

sound intensity [dB SPL]

S
p

ik
e
 f

r
e
q

u
e
n

c
y

 [
H

z
]

D

f∞Α
f∞Β

 0.1

 1

 10

 0.001  0.01  0.1  1  10

counting time tc [s]

F
(t

c
)

57 dB
45 dB

A

35 dB

16 dB

20 dB

30 dB

 0.1

 1

 10

 0.001  0.01  0.1  1  10

counting time tc [s]

F
(t

c
)

E

τOU
 = 3 s

D = 0.75
κ = 0.5

CV
2

16 dB SPL

F(tc) = D τOU

F(tc) = D tc
κ

 0.1

 1

 10

 0.001  0.01  0.1  1  10

counting time tc [s]

F
(t

c
)

F

τOU
 = 8.5 s

D = 0.83
κ = 0.93

CV
2

35 dB SPL

F(tc) = D τOU

F(tc) = D tc
κ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

spike frequency [Hz]

κ

C

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80  100

spike frequency [Hz]

t c
m

in
 [

s
]

B

Figure 12.3: Fano factor analysis of the spike trains of an auditory receptor neuron for
different sound intensities. A Fano factor curves for the steady-state spike trains of an intracellularly
recorded receptor neuron for six different sound intensities (dB as abbreviation for dB SPL). B,C
The counting time of the Fano factor minimum tmin

c (B) and the exponent κ (C, cf. Eq. (6.12)) as
a function of spike frequency. D The steady-state spike frequency of the receptor neuron shown in
A after the frequency decay resulting from the fast adaptation process ( f∞A , black line) and after
the second decay resulting from the slow adaptation process ( f∞B , gray line) as a function of sound
intensity (cf. Fig. 12.1). E,F The Fano factor curves of the original spike trains (dark curve) and of
the spike trains where the interspike intervals were shuffled (light curve) for a sound intensity of the
lower (E) and upper dynamic range (F) of the same auditory receptor cell shown in A. The dashed lines
show the theoretical curves derived by Middleton et al. (2003) for moderate counting times (tc < τOU,
Eq. (6.12)) and for tc → ∞ defining the saturation regime (Eq. (6.13)).
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all cases, there is no saturation of F(tc) visible up to a counting time of 10 s. Furthermore,
the exponent κ of the rising curve part increases with increasing sound intensity. Only
for sound intensities of the upper dynamic range, the exponents seem to remain constant
at values close to one (see Fig. 12.3A,C).

The Fano factor curves obtained by a random shuffling of the interspike intervals
(see Fig. 12.3E,F, light gray curve), where any ISI correlation has been removed, tend
toward CV2 as it is known for a renewal process. The measured Fano factor curves
(see Fig. 12.3E,F, dark gray curve) show larger F(tc) values for large tc compared to the
shuffled ones (see Fig. 12.3E,F, light gray curve) demonstrating that the large F(tc) values
at tc = 10 s and the rising exponent κ result from positive ISI correlations.

Stochastic adaptation is a mechanism effectively acting as colored noise (Ornstein-
Uhlenbeck noise) that slowly modulates the ISIs and thus yields positive ISI correlations
(Schwalger et al., 2010). As shown before, auditory receptors of locusts display spike-
frequency adaptation on two time scales. The steady-state spike frequencies f∞A and f∞B

which are the mean rates after the decay due to the fast and slow adaptation process (cf.
Fig. 12.1), respectively, show that the slow adaptation process starts interfering primarily
for sound intensities of the medium dynamic range (see Fig. 12.3D). For sound intensities
close to the spike threshold, f∞A and f∞B overlap indicating that the spike response of
the neuron in the lower dynamic range is mainly adapted by the fast adaptation current
and not by the second adaptation process working on a slow time scale.

Stochastic adaptation can be split into a deterministic adaptation part and an Ornstein-
Uhlenbeck noise with a correlation time τOU which is equal to the effective adaptation
time constant τe f f (see section 11.1, Schwalger et al., 2010). For a perfect integrate-and-fire
model driven by one long-range correlated Ornstein-Uhlenbeck noise source, the Fano
factor has been extensively analyzed and analytic expressions have been derived for
the position of the minimum tmin

c as well as for F(tc) for small and large counting times,
respectively (see Eq. (6.9)-(6.11), Middleton et al., 2003). The level of F(tc), at which the
Fano factor curve saturates at large counting times, is approximately defined by the
product of the correlation time τOU and the intensity DOU of the Ornstein-Uhlenbeck
noise (Eq. (6.13)). For moderate counting times tc, Middleton et al. (2003) indicated that
the Fano factor for the PIF model with colored noise driving is solely dependent on
DOU (Eq. (6.12)) and the exponent is defined by κ = 1 for the case that tc < τOU. A
least-square fit of these two theoretical approximations, Eq. (6.12) and Eq. (6.13), show
that the experimental Fano factor curves have an exponent κ 6= 1 and that κ rises from
values close to 0.5 to approximately 1 with increasing sound intensity (see Fig. 12.3A,C).
Furthermore, the data show that the correlation time constant for a sound intensity of
the lower dynamic range has a value of τOU > 3 s because a saturation of the Fano
factor curve is not visible at F(tc) = DOUτOU = 2.25 (τOU = τe f f ) where tc = 10 s and
τOU = 3 s (see Fig. 12.3E). The Fano factor curve for a sound intensity of the upper
dynamic range shows in the same way that τOU > 8.5 s (see Fig. 12.3F). This time
constant, however, is larger than the effective time constants τe f f measured from the
mean spike-frequency as a function of time (see Fig. 12.2) suggesting that the theory of the
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PIF model with a single colored-noise source is not sufficient to explain the experimental
data. Additionally, the fact that locust auditory receptor neurons show spike-frequency
adaptation over two time scales indicate that the combination of two adaptation currents
may shape the spike-count variability.

In the following section, we therefore simulate a second adaptation current or the
combination of a fast and slow adaptation current which may explain (i) the experi-
mentally observed Fano factor curves with changing κ and tmin

c for increasing sound
intensities, and (ii) the fact that the analytical approximations of the PIF model with a
single colored-noise source, where τOU = τe f f , do not agree with the experimental data.

12.3 Locust auditory transduction model with two stochas-
tic adaptation currents

In the previous chapter, we have shown that the ISI statistics, i.e. the ISI distributions
and correlations, of locust receptor cell responses can be replicated by means of a mixed
channel noise model where both fast channel noise and slow fluctuations caused by
one population of stochastic adaptation channels are present (see section 11.3). This
model, however, is not able to explain the spike-count statistics showing a shift of the
Fano factor curves for different sound intensities and reaching high values F(tc) for
large counting times for sound intensities of the upper dynamic range that elicit high
spike frequencies (see Fig. 12.4A). The reason for the good agreement of the model to the
ISI statistics of the experimental data is that a second adaptation current possessing a
long time constant of several seconds has no additional significant influence on the ISI
variability. This is in contrast to the spike-count variability quantified by the Fano factor,
determined for different counting time frames up to several seconds, on which slow
processes can have distinct effects (see e.g. Middleton et al., 2003). Since we have shown
that (i) locust auditory receptor cells comprise spike-frequency adaptation mediated by
two adaptation processes (see Fig. 12.1 and Fig. 12.2) and (ii) the experimental Fano factor
curves suggest correlation time constants of several seconds which are larger than the
measured effective adaptation time constants (see Fig. 12.3), we hypothesized a strong
contribution of the slow adaptation process and furthermore a potential interaction with
the fast adaptation process.

To this end, we first simulated the locust auditory transduction cascade with a single
slow stochastic adaptation current IB (IA = 0 µA/cm2). The relation between the original
adaptation time constant, τ, and the effective one, τe f f , is given by the relation of the
slopes of the onset- and steady-state f-I curve (Benda and Herz, 2003). For the recorded
auditory receptor neuron shown in Fig. 12.3, we yielded a scaling factor of approximately
3, i.e. τ ≈ 3τe f f , which gives us a time constant τB = 9 s for the slow adaptation current.
This time constant was used in the models of the auditory receptor neuron with slow
adaptation currents.

The simulations showed that one population of slow stochastic adaptation channels
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Figure 12.4: Fano factor curves of the locust auditory transduction model with one and two
stochastic voltage-dependent adaptation currents. A Fano factor curves of the locust auditory
transduction model with NR = 20 stochastic receptor and NA = 600 stochastic voltage-dependent
adaptation channels with a fast adaptation time constant of 100 ms as used for Fig. 11.9D-F. The
slow adaptation current was set to IB = 0 µA/cm2. B Fano factor curves of the locust auditory
transduction model with NR = 20 stochastic receptor and NB = 2000 stochastic voltage-dependent
adaptation channels with a slow adaptation time constant of 9 s. The fast adaptation current was set to
IA = 0 µA/cm2. C Fano factor curves of the locust auditory transduction model with two stochastic
voltage-dependent adaptation currents. We used NR = 2 stochastic receptor and NA = 8000 and
NB = 500 stochastic adaptation channels.

alone cannot explain the experimental Fano factor curves (see Fig. 12.4B). The resulting
Fano factor curves shift approximately parallel to each other for increasing sound in-
tensities evoking high spike frequencies. In addition, they show neither a shift of the
minimal Fano factor position tmin

c to smaller counting times nor an increase of the Fano
factor values, F(tc), for large counting times with increasing sound intensity.

We therefore simulated the locust auditory transduction model with two populations
of stochastic adaptation currents IA and IB. The adaptation time constants were chosen as
τA =100 ms and τB =9 s as observed from the experimental data. The model parameters
were tuned so that the steady-state spike frequencies f∞A and f∞B correspond roughly
to the ones of the auditory receptor cells (cf. Fig. 12.3D). The mixed channel noise
model with two stochastic voltage-dependent adaptation currents can explain both the
shift of tmin

c to smaller counting times and the change of the exponent κ for increasing
sound intensities (Fig. 12.4C). For sound intensities of the lower dynamic range, these
simulations, however, show Fano factor curves exhibiting higher levels of F(tc) for large
counting times (tc = 10 s) compared to the experimental data (cf. Fig. 12.3A). The reason
is that the voltage-dependent voltage-dependent adaptation currents are already strongly
activated during stimulation with low sound intensities eliciting small spike frequencies
f . The experimental data, however, show for these sound intensities no visible decay
of the spike frequency by the slow adaptation process with a time constant of several
seconds (cf. Fig. 12.3D). For f < 40Hz the steady-state spike frequencies f∞A and f∞B are
identical. This effect might be explained by currents passing slow calcium-dependent
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potassium channels which only open if a sufficient amount of calcium ions has been
accumulated.

To this end, we modeled the second slower adaptation current as slow calcium-
dependent potassium currents mediating spike-frequency adaptation which are activated
for spike frequencies approximately f > 40Hz (see Fig. 12.5A). This model with a fast
stochastic voltage-dependent and a slow stochastic calcium-dependent potassium current
is able to explain both the ISI statistics (data not shown) and the spike-count statistics of
locust auditory receptor cells (see Fig. 12.5B). With increasing sound intensity, the Fano
factor curves show a shift of the position of their minimum tmin

c to smaller counting times
(see Fig. 12.5B,C) as well as an increase of both the Fano factor values and the exponent κ
for large counting times (see Fig. 12.5B,D).

Two adaptation currents with time constants measured from step experiments can
explain the spike-count variability of locust auditory receptor neurons quantified by the
Fano factor. In the following chapter, we will analyze how the Fano factor is influenced
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Figure 12.5: Fano factor curves of the locust auditory transduction model with one fast
stochastic M-type and one slow stochastic calcium-dependent potassium currents. A The
steady-state spike frequencies f∞A and f∞B and B the Fano factor curves of the locust auditory
transduction model with a fast stochastic M-type and a slow stochastic calcium-dependent potassium
current. We used NR = 20 stochastic receptor and NA = 600 M-type stochastic adaptation channels
and a colored noise intensity DCa = 0.01 for the slow stochastic calcium-dependent potassium current.
C,D The counting time of the Fano factor minimum tmin

c (C) and the exponent κ (D, cf. Eq. (6.12))
as a function of spike frequency.



12.3 Locust auditory transduction model with two stochastic adaptation currents 83

by two adaptation currents and if a potential interaction of the two processes may shape
the spike-count variability.





Chapter 13
How do two time scales of adaptation
shape the spike-count variability?

Spike-frequency adaptation can act on different time scales from a few tens or hundreds
of milliseconds (Benda et al., 2005; Peron and Gabbiani, 2009a) to several seconds (Pollack,
1988; Sobel and Tank, 1994). Neurons, however, are not restricted to spike-frequency
adaptation on a single time scale. A variety of neurons exist which exhibit multiple time
scales of adaptation as response to sensory stimuli. Examples can be found on both
the level of primary receptors and cortical neurons of the visual system (Fairhall et al.,
2001a,b; Baccus and Meister, 2002), electrosensory system (Xu et al., 1996; Nelson et al.,
1997), motor system (French, 1987, 1989; Spain et al., 1991a,b; Sawczuk et al., 1995, 1997)
and auditory system (Nelken et al., 2003; Ulanovsky et al., 2004; Wimmer et al., 2008).

In the previous chapter, we have shown that the primary auditory receptor neurons
of Locusta migratoria exhibit spike-frequency adaptation at least on two time scales.
Furthermore, we have demonstrated that a model of the auditory transduction cascade
with two stochastic adaptation currents is able to explain both the interspike-interval
and spike-count variability observed in neuronal responses of locust auditory receptor
neurons.

In this chapter, we analyze how two stochastic adaptation currents shape the spike-
count variability. We first analyze the Fano factor for a perfect integrate-and-fire model
with one and two colored noise sources since stochastic adaptation effectively acts as
colored noise (Schwalger et al., 2010). Furthermore, we derive analytical approximations
for the Fano factor for small, moderate and large counting times as well as for the position
of the Fano factor minimum.

Additionally, we analyze both the Fano factor and the dynamics of a perfect integrate-
and-fire and a Hodgkin-Huxley-type model with two adaptation currents. We show
that two adaptation currents shape the spike-count variability by mutual interaction
which we verify by means of a phenomenological firing-rate model with two currents
mediating spike-frequency adaptation.
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13.1 Spike-count variability in models with two adapta-
tion currents

We first analyze the spike-count variability quantified by the Fano factor in perfect
integrate-and-fire models. We analyze the Fano factor curves of PIF models with one and
two colored noise sources and and compare them to PIF models with two stochastic adap-
tation currents. Furthermore, we validate the results in more realistic single-compartment
conductance-based models with spike-frequency adaptation.

13.1.1 PIF model driven by colored noise

Stochastic adaptation effectively acts as colored noise (Ornstein-Uhlenbeck noise, Schwal-
ger et al., 2010). For a perfect integrate-and-fire model driven by a single Ornstein-
Uhlenbeck (OU) noise source, whose dynamics are given by Eq. (9.1)-(9.2),s analytic
expressions for the Fano factor have been derived for small and large counting times,
Fsmall and Flarge, as well as for the position tmin

c where the Fano factor curve exhibits a
minimum due to the effect of positive ISI correlations (see Eq. (6.9)-(6.11), Middleton et
al., 2003). In this model, the exponent of the Fano factor curve for moderate counting
times, Eq. (6.12), is given by κ = 1 if tc < τOU. For fast correlation time constants close
to tmin

c , however, the exponent κ = 1 is not visible in the Fano factor curves because the
curve already begins to saturate for tmin

c < tc < tsat
c (see Fig. 13.1, tsat

c : counting time for
which F(tc) starts saturating). A colored noise source with a correlation time constant of
a hundred milliseconds, for instance, results in an apparent exponent κ much smaller
than one, whereas for correlation time constants of several seconds the linear part is
clearly visible.
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Figure 13.1: The exponent κ for different correlation time constants. Fano factor curves of
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et al. (2003) (Eq. (6.10)).
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The dynamics of the membrane voltage of the PIF model with a noisy current driving
the model is equivalent to a random walk model (Gerstein and Mandelbrot, 1964). If we
increment the spike threshold by vth each time the membrane voltage reaches it instead
of resetting the voltage, the dynamics of the PIF model with OU noise (Eq. (9.1)-(9.2)) is
equivalent to a Brownian motion with positive drift. The parameters v(t) and µ + wA(t)
can, hence, be regarded as the position and the velocity of particles, respectively, with a
positive bias µ > 0.

The same concept of Brownian motion of particles can be applied to an integrate-
and-fire model with more than one dimension. The dynamics of a PIF model with two
independent driving colored-noise sources (Eq. (9.3)-(9.5)) can be mapped to a two-
dimensional biased Brownian motion with positive drift (Risken, 1996; Middleton et al.,
2003). As long as the two noise sources are independent, the variance of the position
x(t) of the motion starting at time t = 0, where x(t) = x0, is defined by the sum of the
motion variances for the one-dimensional case of each individual colored noise source.
The Fano factor for Brownian motion at time t is equivalent to the ratio of the variance
and the mean drift. The variance in the larger time limit is given by the mean-squared
displacement (MSD) for a Brownian motion (Risken, 1996):

< (x(t)− x0)
2 > =

n

∑
i=0

< (xi(t)− xi(0))2 > (13.1)

=
n

∑
i=0

2kTτit
mi

(1− τi

t
(1− e−t/τi)) (13.2)

where k is the Boltzmann constant, T is the temperature, mi is the mass and τi is the
relaxation time of the velocity of the ith dimension.

In a PIF model, the position of the Brownian motion x(t) corresponds to the evolving
membrane potential v(t). For a PIF model with multiple independent colored noise
sources, the Fano factor (Eq. (6.7)) of the spike count for large counting times tc is
defined by the variance (Eq. (13.2)) divided by the drift µt/vth. The variance of the
Brownian motion is divided by v2

th to achieve the variance of the spike count. Identifying
DOU

i =̂kT/mi, τOU
i =̂τi, and tc=̂t results in:

Flarge(tc) =
2

vthµ

n

∑
i=0

DOU
i τOU

i

[
1−

τOU
i
tc

(1− exp−tc/τOU
i )

]
. (13.3)

For moderate counting times tc < τOU
i=0 , where τOU

i=0 is the fastest time constant, the Fano
factor is given by

Fmod(tc) =
1

vthµ

n

∑
i=0

DOU
i tc . (13.4)

Since the Fano factor for small counting times is independent of the noise, Fsmall is given
by Eq. (6.9). The position of tmin

c can be determined by solving the differential equation

d
dt
[
Fsmall(tc) + Flarge(tc)

]
= 0 . (13.5)
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Figure 13.2: Fano factor curves of a PIF model driven by Ornstein-Uhlenbeck (OU) noise.
A,B Fano factor curves (black lines) of a PIF model with a single OU noise source (Eq. (9.1)-(9.2))
and the theoretical approximations (dashed gray lines) Fsmall (Eq. (6.9)), Flarge (Eq. (6.10)) and tmin

c
(Eq. (6.11)) derived by Middleton et al. (2003) for the correlation time constants τOU

A and noise
intensities DOU

A as indicated. C Fano factor curve (black line) of a PIF model with both OU noise
sources from A and B combined (Eq. (9.3)-(9.5)). The dashed gray lines are the same theoretical
approximations as shown in A and B. The solid gray lines are the theoretical approximations Fsmall
(Eq. (6.9)), Flarge (Eq. (13.3)) and tmin

c (Eq. (13.6)) for a PIF model with n OU noise sources.

The approximate position of the minimum of the Fano factor is then given by:

tmin
c ≈ vth

2

√
n
∑

i=0
DOU

i

. (13.6)

Fano factor curves of a PIF model with two independent OU noise sources show
that the two individual noise sources shape the curves mainly in the counting time
regime corresponding to their noise correlation times (see Fig. 13.2). The colored-noise
source with the faster correlation time constant τOU

A primarily influences the position of
the minimum tmin

c and the onset of the rising part of Flarge (see Fig. 13.2A,C) while the
saturation of the Fano factor curve is mainly determined by the process exhibiting the
slower correlation time constant τOU

B (see Fig. 13.2B,C). Since Fsmall does not depend on
the OU noise intensity and correlation time constant, the Fano factors for small counting
times are identical independent of the number of noise sources and their characteristics.

For the PIF model with a single colored-noise source, the Fano factor rises for moder-
ate counting times only with an apparent exponent κ = 1 if τOU � tmin

c (see Fig. 13.1).
The same holds true for the PIF model driven by two colored-noise sources if τOU

A � tmin
c

(see Fig. 13.3). Thus, the increase of the Fano factor curve for moderate counting times is
dependent on both the noise intensities and time constants of the adaptation processes.



13.1 Spike-count variability in models with two adaptation currents 89

 0.01

 0.1

 1

 0.01  0.1  1  10

counting time tc [s]

F
(t

c
)

τA
OU

=0.1s

τB
OU

=2s

A

DA=40, DB=0

DA=0, DB=20

DA=40, DB=20

 0.01

 0.1

 1

 0.01  0.1  1  10

counting time tc [s]

τA
OU

=0.1s

τB
OU

=10s

B

DA=40, DB=0

DA=0, DB=20

DA=40, DB=20

 0.01

 0.1

 1

 0.01  0.1  1  10

counting time tc [s]

τA
OU

=2s

τB
OU

=10s

C

DA=40, DB=0

DA=0, DB=20

DA=40, DB=20

Figure 13.3: The exponent κ for different correlation time constants of one vs. two Ornstein-
Uhlenbeck noise sources. Fano factor curves of a PIF model with one (DA = 0 or DB = 0) or
two (DA 6= 0 and DB 6= 0) colored noise sources (black dashed lines) and the respective theoretical
approximations Fmod(tc) for moderate counting times (Eq. (13.4), different gray dashed-dotted lines)
and Flarge(tc) for large counting times (Eq. (13.3), different gray solid lines). The noise intensities

(DA, DB) were changed while the respective correlation time constants τOU were kept constant (as
indicated).

13.1.2 PIF model with adaptation currents
Stochastic adaptation does effectively act as colored noise (Schwalger et al., 2010), but in
contrast to colored noise is voltage-dependent and hence correlated with the firing rate.
Thus, the assumption about independent noise processes previously made for a PIF with
colored noise (see section 13.1.1) does not apply for a PIF with adaptation currents.

The dynamics of a PIF model with a single adaptation current are given by Eq. (9.6)-
(9.7). The Fano factor for small and large counting times, Fsmall and Flarge, as well as the
position of the Fano factor minimum, tmin

c , can be determined by Eq. (6.9)-(6.11) using
the scaled effective parameters derived by Schwalger et al. (2010):

µ̃ = λµ (13.7)
D̃ = λDα2 (13.8)

τ̃A = λτA (13.9)

with the scaling factor λ = (1 + ατA(∆wA/vth))
−1 (cf. section 9.1). The analytic expres-

sions for the Fano factor hence read:

Fsmall(tc) ≈
vth

4λµtc
(13.10)

Flarge(tc) =
2λDα2τA

vthµ

[
1− λτA

tc
(1− exp−tc/(λτA))

]
(13.11)

tmin
c ≈ vth

2
√

λDα2
. (13.12)

Examples of Fano factor curves of the PIF model with one and two stochastic adap-
tation currents are shown in Fig. 13.4. Similar to the PIF model with colored noise, the
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Figure 13.4: Fano factor curves of a PIF model with stochastic adaptation currents. A,B Fano
factor curves (black lines) of a PIF model with a single stochastic adaptation current (Eq. (9.6)-(9.7))
and the theoretical approximations (dashed gray lines) Fsmall (Eq. (13.10)), Flarge (Eq. (13.11)) and

tmin
c (Eq. (13.12)) for different adaptation time constants τ and noise intensities DA as indicated. C

Fano factor curve (black line) of a PIF model with both adaptation currents from A and B combined
(Eq. (9.8)-(9.10)). The dashed gray lines are the same theoretical approximations shown in A and B.

Fano factor curve of the PIF model with two adaptation currents shows a major impact
of the adaptation currents on the Fano factor values in the counting time regime that
corresponds to their adaptation time constants. The adaptation current with the fast
decay time constant τA primarily influences the position of the minimum tmin

c and the
onset of the rising part of Flarge (see Fig. 13.4A,C). The saturation of the Fano factor curve,
in contrast, is mainly determined by the adaptation current with the slower time constant
τB (see Fig. 13.4B,C). Fsmall is independent of the noise sources and hence identical for
small counting times for all settings.

All parameters of the adaptation currents, i.e. adaptation time constant, noise inten-
sity and strength, affect the shape of the Fano factor curves (see Fig. 13.5). For a PIF
model with a fast and a slow adaptation current, an increasing noise intensity DA of the
fast adaptation current shifts the Fano factor minimum both to higher F(tc) values and
to smaller counting times (see Fig. 13.5A). The noise intensity DB of the slow adaptation
process, on the other hand, shapes mainly the Fano factors for large counting times and
determines the position where the Fano factor curve saturates (see Fig. 13.5B): The larger
DB, the higher F(tc) in its saturation. If the slow adaptation current is deterministic
(DB = 0), the Fano factor decreases for large counting times. This is caused by a major
impact of negative ISI correlations in the large counting time regime as a result of deter-
ministic adaptation (cf. Eq. (6.8), Schwalger et al., 2010). Increasing adaptation strength
α of the fast adaptation current raises the Fano factor minimum to higher F(tmin

c ) values
and slightly decreases F(tc) in the saturating curve part (see Fig. 13.5C). In contrast,
raising strength β of the slow adaptation current increases F(tc) both at the minimal
position tmin

c and at the saturation (see Fig. 13.5D). Likewise as for the model with colored
noise, the position of tmin

c is independent of the adaptation time constant τA or τB. The
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Figure 13.5: Effect of adaptation strength, noise intensity and time constant on the Fano
factor curve. Fano factor curves for a PIF model with two stochastic adaptation currents A and B
(Eq. (9.8)-(9.10)) reducing the spike-frequency with a short and long adaptation time constant τA
and τB. In each panel one parameter of the model was changed (as indicated) while the others were
kept constant. The black lines indicate Fano factor curves for the PIF model with identical parameters
(DA = 1, DB = 1, α = 25, β = 25, τA = 0.1 s, τB = 1 s). DA, DB: noise intensity of the adaptation
currents A and B; α, β: adaptation strengths of the adaptation currents A and B.

decay time τA of the fast adaptation current has only a slight impact on the Fano factor
values in the medium counting time regime (see Fig. 13.5E). The time constant τB of
the slow adaptation current, in contrast, determines the position, where the Fano factor
curve saturates, and the saturation level (see Fig. 13.5F).

13.1.3 Interaction of two adaptation currents

The main difference between a perfect integrate-and-fire model with two colored noise
sources and one with two adaptation currents, effectively acting as colored noise, is that
a deterministic adaptation current with noise intensity DA = 0 still can influence the
spike-count variability in the latter model (see Fig. 13.6A-C).

The dynamics of the adaptation variables wA and wB (Eq. (9.9)-(9.10)) are dependent
on the occurrence of an action potential. The time constant of an adaptation current
determines how fast adaptation currents are accumulated. Hence, adaptation with a
fast time constant can react more rapidly on a change of the firing rate in comparison to
slow adaptation currents. This can be seen in a simulation of a PIF model with one fast
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Figure 13.6: Two adaptation currents counteract and affect the ISI and spike-count variability.
A-C PIF model (Eq. (9.8)-(9.10)) with one fast deterministic (DA = 0, τA = 0.1s) for three different
adaptation strength α as indicated and one slow stochastic adaptation current (DB = 2, β = 25,
τB = 1s). A Adaptation variables wA and wB over time (α = 0). B Mean spike frequency of one trial
over time for three different strengths α of the deterministic adaptation current as indicated. C Fano
factor curves for the model with the three different adaptation strengths shown in B. D-F Traub-Miles
model (Eq. (9.11)) with one fast deterministic (DA = 0, τA = 0.1s) for three different conductances
gA in mS/cm2 as indicated and one slow stochastic adaptation current (DB = 0.00006, gB = 5,
τB = 1s). D Adaptation variables wA and wB over time (gA = 0). E Mean spike frequency of one
trial over time for three different conductances gA of the deterministic adaptation current as indicated.
F Fano factor curves for the model with the three different adaptation strengths shown in E.

deterministic and one slow stochastic adaptation current (see Fig. 13.6A,B). A random
decline of the adaptation variable wB of the slow stochastic adaptation current leads to a
degrading adaptation current and thus to an increase of the spike frequency. As a result,
the activation variable wA of the fast adaptation current increases and reduces spike
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frequency again. This demonstrates that fast and slow adaptation currents counteract. If
wB decreases, the firing rate and hence wA rises (see Fig. 13.6A) which in turn decreases
the rate. By means of this antagonistic behavior, a fast adaptation current is able to
regularize spike-response variability (see Fig. 13.6A-C). An increase of the adaptation
strength α of the fast adaptation current amplifies the countervailing action and reduces
the variability of the mean spike frequency (see Fig. 13.6B). Thus, both interspike-interval
as well as spike-count variability quantified by the CV and the Fano factor, respectively,
decline with increasing α (see Fig. 13.6C). These observations do not only apply for a
simple adapting perfect integrate-and-fire model but are also valid for a more realistic
conductance-based Traub-Miles model with a fast deterministic and a slow stochastic
current mediating spike-frequency adaptation (see Fig. 13.6D-F).

The same counteracting behavior is observed for a PIF and Traub-Miles model with
two stochastic adaptation currents (see Fig. 13.7A). In these models, however, a rise of
the adaptation strength (α or gA) of the fast stochastic adaptation current results in an
increase of the coefficient of variation (see Fig. 13.7B,C). The Fano factor, though, is only
increased for medium counting times while the values for large counting times are still
reduced. The rise of the adaptation strength (β or gB) of the slow stochastic adaptation
current, in contrast, yields an increase of both the CV and the Fano factor for all counting
times.

In models with a fast stochastic and a slow deterministic adaptation current, the
counteraction of the two currents is less pronounced because the deterministic current
is too slow to react on the fast random changes of the stochastic current (Fig. 13.8A).
In simulations of the PIF model, an increase of the strength β of the slow adaptation
current has no significant effect on the ISI variability quantified by the CV (Fig. 13.8B).
Nevertheless, the spike-count variability is decreased at large counting times. For this
combination of adaptation currents, the Traub-Miles model shows slightly different
results (Fig. 13.8C). Here, the variability at medium counting times is additionally
slightly increased. This leads to increasing CVs and a rising Fano factor minimum for
increasing gB, while the Fano factor for large counting times is similarly reduced as for
the PIF model. It is, however, unclear what the reason is for this discrepancy between
the models.

13.2 Firing-rate models for spike-frequency adaptation
with two adaptation currents

Simulations of both perfect integrate-and-fire and Hodgkin-Huxley-type models with
spike-frequency adaptation on two time scales suggest an interaction of two adaptation
currents. To gain more insight into the dynamics and interaction of adaptation cur-
rents, we theoretically analyze a phenomenological firing-rate model for spike-frequency
adaptation on two time scales. Moreover, we derive equations which can be used to
estimate the adaptation properties, i.e. adaptation strengths and time constants, from
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Figure 13.7: Variability in a PIF and Traub-Miles model with two stochastic adaptation
currents. A The adaptation variables wA and wB (top) and the mean spike frequency of one trial
(bottom) of the PIF model as a function of time (DA = 3, DB = 3, α = 10, β = 10, τA = 0.1 s,
τB = 1 s). B,C The Fano factor curves for the PIF and Traub-Miles model. In both models the noise
intensities, DA and DB, of both adaptation currents were kept constant while the adaptation strengths,
α and β, were changed (parameters as indicated, τA and τB as in A).

experimentally measured spike responses.
A firing-rate model for spike-frequency adaptation mediated by a single adaptation

current has been derived by Benda and Herz (2003). The dynamics of this model are
given by

f = c(I − A) (13.13)
τA Ȧ = α f − A (13.14)

where f0 = cI is the linearized onset f-I curve with the onset gain c and input current I.
The adaptation state A decays with the adaptation time constant τA and is driven by α f
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Figure 13.8: Variability in a PIF and Traub-Miles model with one fast stochastic and one
slow deterministic adaptation current. A The adaptation variables wA and wB (top) and the mean
spike frequency of one trial (bottom) of the PIF model as a function of time (DA = 2, DB = 0,
α = 20, β = 20, τA = 0.1 s, τB = 1 s). B,C The Fano factor curves for the PIF and Traub-Miles
model. In both models, the noise intensity DA as well as the adaptation strength α and conductance
gA, respectively, of the fast stochastic adaptation current were kept constant while the adaptation
strength β and conductance gB, respectively, of the slow deterministic adaptation current (DB = 0)
were changed (parameters as indicated, τA and τB as in A).

where α is the adaptation strength.
Substituting the spike frequency f , Eq. (13.13), into Eq. (13.14) gives us the effective

time constant τ
e f f
A = τA/(αc + 1). The effective time constant τ

e f f
A is the time constant

which can be measured by fitting an exponential function to the mean spike frequency
(cf. Fig. 12.1 and Fig. 12.2). In general, the two time constants τA and τ

e f f
A differ (Benda

and Herz, 2003). The main reason for that is that the strength of the spike-frequency
adaptation is driven by α f (see Eq. (13.14)). Thus, the adaptation strength is dependent
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on the actual spike frequency.
In the following, we expand this phenomenological firing-rate model by a second

adaptation current and analyze its dynamics.

13.2.1 Linear adaptation model
Expanding the formalism by Benda and Herz (2003) by a second adaptation current
yields a firing-rate model for spike-frequency adaptation which is given by:

f = c(I − A− B) (13.15)
τA Ȧ = α f − A (13.16)
τBḂ = β f − B . (13.17)

The adaptation states A and B decay with the corresponding adaptation time constants
τA and τB. The adaptation strengths are given by α and β. The onset spike-frequency is
defined by f0(I) = cI where I is the input current, A = B = 0, and where c is a constant
defining the slope of the onset f-I curve (c = f ′0(I)). In this model, we assume both a
linear onset f-I curve and a linear adaptation α f and β f . The subtractive effect of the
adaptation currents A and B results in a shift of the neuron’s f-I curve in the direction of
higher input currents. Substituting f , Eq. (13.15), into Eq. (13.16) - (13.17) yields:

τA Ȧ = (−αc− 1)A− αcB + αcI (13.18)
τBḂ = −βcA− (βc + 1)B + βcI . (13.19)

We can rewrite these equations in matrix form:

(
Ȧ
Ḃ

)
=


−αc− 1

τA
− αc

τA

−βc
τB

−βc− 1
τB

(A
B

)
+


αcI
τA
βcI
τB

 . (13.20)

The matrix has the eigenvalues

λ1 =
1

2τAτB
(−τA(βc + 1)− τB(αc + 1)− w) (13.21a)

λ2 =
1

2τAτB
(−τA(βc + 1)− τB(αc + 1) + w) (13.21b)

and the corresponding eigenvectors

~v1 =

(
τB(αc + 1)− τA(βc + 1) + w

2βcτA

)
(13.22a)

~v2 =

(
τB(αc + 1)− τA(βc + 1)− w

2βcτA

)
(13.22b)
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where w =
√

τ2
A(βc + 1)2 + τ2

B(αc + 1)2 + 2τAτB(αβc2 − βc− αc− 1).
The spike frequency as a function of time of the linear firing-rate model with two

adaptation currents is determined by the sum of the adaptation variables A and B
(see Fig. 13.9). The evolution of A and B over time can be described by means of the
eigenvalues λ1,2, Eq. (13.21), and eigenvectors ~v1,2, Eq. (13.22):(

A(t)
B(t)

)
= k1~v1eλ1t + k2~v2eλ2t +

(
A∞(t)
B∞(t)

)
(13.23)

where A∞ = αcI/(αc + βc + 1), B∞ = βcI/(αc + βc + 1), and where k1,2 are constants
(see Fig. 13.9 top – dashed lines). Substituting A and B in Eq. (13.15) by A(t) and B(t) of
Eq. (13.23) gives us then:

f (t) = −ck1ṽ1eλ1t − ck2ṽ2eλ2t + c(I − A∞ − B∞) (13.24)

where ṽ1 = ~v11 + ~v12 and ṽ2 = ~v21 + ~v22 are the sums of the eigenvector elements.
The function f (t) describes the spike-frequency which decays over time t due to the
adaptation processes A and B (see Fig. 13.9 bottom). The fast adaptation variable A
first increases rapidly with −λ−1

1 and declines then with a slower time constant given
by −λ−1

2 to its steady-state (see Fig. 13.9 top – dashed lines). The final decline results
from the rise of the slower adaptation variable B which slowly increases to its steady-
state exceeding the one of the fast adaptation variable. −λ−1

1 and −λ−1
2 are also the

two time constants determining the decay of f in response to a step stimulus. Each of
the eigenvalues λ1 and λ2 depend on both adaptation time constants τA and τB (see
Eq. (13.21)). This again reflects the interaction of both adaptation processes which is
confirmed by the previously described simulations of a PIF and Traub-Miles model with
two adaptation currents.

Before we will describe in the following how we can deduce the adaptation strengths
and time constants from experimentally measured spike responses, we will first have a
closer look on the effective time constants τe f f of the model with one (Eqs. (13.13)-(13.14))
and two adaptation currents (Eqs. (13.15)-(13.17)). To test if it was valid in chapter 10
to analyze the effect of the fast adaptation current on the interspike-interval variability
without considering a potential interaction of a slower adaptation process, we compared
the effective time constants of the two models for different adaptation properties (see
Fig. 13.10). Varying the adaptation strength of the fast adaptation current (defined by αc)
yields effective time constants of the fast process which are comparable for both models,
thus−λ−1

1 = τ
e f f
A (Fig. 13.10A). The same is true when we change the adaptation strength

of the slow adaptation process (defined by βc, Fig. 13.10B). Varying the adaptation time
constants τA or τB shows that the effective time constants of both models, i.e. τ

e f f
A and

−λ−1
1 , are comparable when τB � τA (Fig. 13.10C,D). And this is the case for locust

auditory receptor neurons whose spike responses show adaptation over two time scales
in the range of a hundred milliseconds and several seconds. The effective time constants
of the slow adaptation process, however, differ for both models (−λ−1

2 6= τ
e f f
B ) showing
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Figure 13.9: Linear firing-rate model with two adaptation currents. The adaptation variables of
the fast (A(t)) and slow adaptation current (B(t)) as a function of time for an input current I = 20
starting at time t = 0 ms (top). The analytical expressions given by Eq. (13.23) are drawn as dashed
lines. The sum of both (A(t) + B(t)) determines the adaptation of the spike frequency from its
onset- to its steady-state (bottom). The analytical expression f (t) for the spike frequency, given by
Eq. (13.24), is drawn as gray dotted line.

that this process cannot be analyzed without considering both adaptation mechanisms
(Fig. 13.10A-D). This suggests that the interspike-interval statistics can be analyzed just
by considering the fast adaptation process but that it is important to take both adaptation
mechanisms into account when analyzing the spike-count variability on time scales
comparable or longer than −λ−1

2 .
From experimental measurements we are able to fit the following two-exponential

function to the mean spike frequency over time measured in response to a step stimulus:

f (t) = C1eλ1t + C2eλ2t + C3 (13.25)

where C3 = f∞(t) is the steady-state spike frequency (cf. Fig. 12.1). Given a fit of
f (t), Eq. (13.25), to a measured spike-frequency over time of a recorded neuron, the fit
parameters can be described as C1 = −ck1ṽ1, C2 = −ck2ṽ2. and C3 = c(I − A∞ − B∞)
with the unknowns k1,2 and ṽ1,2 (cf. Eq. (13.24)). For t = 0, Eq. (13.23) can be solved for
k1 and k2:

k1 = − (λ1λ2ṽ2 − λ2
2ṽ1 + 2λ2 − 2λ1)I

λ2(ṽ2 − ṽ1)(λ1ṽ2 − λ2ṽ1)
(13.26)

k2 =
(λ2

1ṽ2 − λ1λ2ṽ1 + 2λ2 − 2λ1)I
λ1(ṽ2 − ṽ1)(λ1ṽ2 − λ2ṽ1)

. (13.27)

Solving C1 = −ck1ṽ1 and C2 = −ck2ṽ2 for ṽ1 and ṽ2 using the solutions for k1 and k2,
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Figure 13.10: Comparison of the effective time constants of the firing-rate model with one
and two adaptation currents. The effective time constant of the firing-rate model with a single
adaptation current, Eqs. (13.13)-(13.14), is given by τe f f = τ/(1 + s) where s is the product of the
adaptation strength (α or β) and the onset gain c and where τ is the original adaptation time constant.
The ones of the firing-rate model with two adaptation currents, Eqs. (13.15)-(13.17), are given by
−λ−1

1 and −λ−1
2 (Eq. (13.21)). We compared the effective time constants of the model with two

adaptation currents to the model with one adaptation current but the same parameters of the fast and
slow adaptation current (A and B) for different (A) αc, (B) βc, (C) τA and (D) τB. The comparison
shows that −λ−1

1 and τA/(1 + αc) are comparable if τB � τA.

Eq. (13.26)-(13.27), results in:

ṽ1 =
I(λ2 − λ1)− C2

c λ2 − C1
c λ1 + z

λ1λ2 I − C2
c λ1λ2 − C1

c λ1λ2
(13.28)

ṽ2 =
I(λ1 − λ2)− C2

c λ2 − C1
c λ1 + z

λ1λ2 I − C2
c λ1λ2 − C1

c λ1λ2
(13.29)

where z =
√

I2(λ2 − λ1)2 − 2I
c (λ2 − λ1)(λ2C2 − λ1C1) +

1
c2 (λ2C2 + λ1C1)2.

Using the fit parameters C1, C2, λ1 and λ2 of a fit of Eq. (13.25) to the experimental
mean spike frequency over time for a given input current I, ṽ1 and ṽ2 can be calculated
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by Eqs. (13.28) - (13.29). The parameters λ1, λ2, ṽ1 and ṽ2 can then be used to estimate the
adaptation properties. These are achieved by solving the 4-dimensional equation system
consisting of both the eigenvalues λ1 and λ2 (Eq. (13.21)) and the eigenvectors ~v1 and ~v2
(Eq. (13.22)) for the adaptation strengths α and β and the adaptation time constants τA
and τB:

α = −
(ṽ2 − ṽ1)(λ

2
1ṽ2 − λ1λ2ṽ1 + 2λ2 − 2λ1)(λ1λ2ṽ2 − λ2

2ṽ1 + 2λ2 − 2λ1)

2c(λ2 − λ1)(λ
2
1ṽ2

2 − 2λ1λ2ṽ1ṽ2 + 2λ2ṽ2 − 2λ1ṽ2 + λ2
2ṽ2

1 − 2λ2ṽ1 + 2λ1ṽ1)
(13.30)

β = − (λ2 − λ1)
2ṽ1ṽ2

c(λ2
1ṽ2

2 − 2λ1λ2ṽ1ṽ2 + 2λ2ṽ2 − 2λ1ṽ2 + λ2
2ṽ2

1 − 2λ2ṽ1 + 2λ1ṽ1)
(13.31)

τA =
λ1ṽ2 − λ2ṽ1

2(λ2 − λ1)
(13.32)

τB =
ṽ1 − ṽ2

λ1ṽ2 − λ2ṽ1
. (13.33)

These adaptation properties can be calculated just based on a fit of the two-exponential
function, Eq. (13.25), to the measured spike-frequency of a neuron (see Fig. 13.11A,B and
Table 13.1)

13.2.2 Non-linear adaptation model
F-I curves of real neurons are non-linear and very often described by a square-root
function (Ermentrout, 1998). A simple non-linear firing rate model with two adaptation
currents is hence given by:

f = c̃
√

I − A− B (13.34)
τA Ȧ = α f − A (13.35)
τBḂ = β f − B. (13.36)

where I is an input current, A and B two deterministic adaptation currents and c̃ a
constant.

For the linear firing-rate model we have shown that the adaptation properties, i.e.
adaptation strengths and time constants, can be calculated by Eqs. (13.30) - (13.33) using
the eigenvectors and eigenvalues determined from a fit of a two-exponential function,
Eq. (13.25), to the experimentally measured mean spike frequency. The gain constant c of
the linear model is given by the slope of the onset f-I curve. For the non-linear firing-rate
model, we estimated c by linearizing the onset f-I curve f0(I), Eq. (13.34), for which
A = 0 and B = 0.

We used three different methods to determine c and tested them by means of the
linear (Eq. (13.15)-(13.17)) and non-linear firing-rate model (see Eq. (13.34)-(13.36)) and,
additionally, based on a more realistic single-compartment conductance-based Traub-
Miles model with spike-frequency adaptation (see section 9.2, Eq. (9.11) with DA = 0 and
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Figure 13.11: Generalized firing-rate models with two adaptation currents in comparison to
a Traub-Miles model. A,C,E Onset- (black lines) and steady-state f-I curves (gray lines) for the
linear (Eqs. (13.15)-(13.17)) and non-linear adaptation model (Eqs. (13.34)-(13.36)) as well as for the
Traub-Miles model (Eq. (9.11)) with a fast (τA = 0.1s) and slow adaptation current (τB = 1s). B,D,F
(top) The adaptation variables of the fast and slow adaptation current over time (light and dark gray
lines) for a defined input current I as marked in A,C,E as dashed line. The adaptation variables are
voltage-dependent and the sum of both (black line) determines the adaptation of the spike frequency
from its onset- to its steady-state. (bottom) The mean spike frequency of the current over time (black
line) with a fit of Eq. (13.25) (gray dashed lines).

DB = 0). Simulations of these three models show that the adaptation variables follow
a similar time course independent of the individual model dynamics and shape of f-I
curve (see Fig. 13.11A,C,E and B,D,F top). The sum of the adaptation variables defines
the decay of the spike frequency which can be fitted using a two-exponential function,
Eq. (13.25), in all three models (see Fig. 13.11B,D,F bottom). For the different models,
the estimated adaptation properties, i.e. the strengths and time constants of the two
adaptation currents, are illustrated in Table 13.1 for respectively one exemplary input
current I (same ones as used in Fig. 13.11B,D,F).

In Benda and Herz (2003), the constant c of the linear model was calculated by
expanding the f-I curve around f∞(I):

c = f ′0( f−1
0 ( f∞(I))) (13.37)

where f−1
0 is the inverse function of the onset f-I curve f0. This method, however, is only
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Model c = f ′0( f−1
0 ( f∞(I))) α β τA[ms] τB[ms]

Linear 12.5 0.099 0.20 98.23 994.07
Non-linear 35.14 0.009 0.005 69.93 534.76
Traub-Miles 24.8 0.023 0.026 101.32 596.50

c = ( f0 − f∞)/(I − f−1
0 ( f∞(I))) α β τA[ms] τB[ms]

Linear 12.52 0.099 0.198 98.03 990.05
Non-linear 12.4 0.101 1.496 144.41 3577.52
Traub-Miles 15.77 0.062 0.363 144.44 1440.77

c = f0(I)/I α β τA[ms] τB[ms]
Linear 12.5 0.099 0.20 98.23 994.07
Non-linear 14.55 0.073 0.223 120.12 1097.39
Traub-Miles 15.86 0.062 0.343 143.60 1393.86

Table 13.1: Calculation of the adaptation strengths α and β as well as the time constants
τA and τB of the two adaptation currents from the mean spike frequency over time. Using
Eqs. (13.30)-(13.33) we are able to calculate the original adaptation properties, which were α = 0.1,
β = 0.2, τA = 100ms and τB = 1000ms, from the fit of Eq. (13.25) to the mean spike frequency
over time (data here are exemplary for the samples shown in Fig. 13.11B,D,F). We used different
linearization procedures to determine the gain parameter c which is constant for every input current I
of the linear adaptation model (Eqs. (13.15)-(13.17)) but changes for every I of non-linear models.
For models whose f-I curves are roughly the square root of the input current I the gain parameter
c = f0(I)/I provided the best approximation for the calculation of the adaptation properties α, β, τA
and τB.

correct for small deviations of f∞ from f0. In the case of a two-fold adapting model the
spike frequencies of the onset- and steady-state deviate a lot. Thus, the calculation of the
adaptation properties results in an underestimation of the adaptation strengths and time
constants for both non-linear models.

Following Benda and Herz (2003), the steady-state of the non-linear firing rate model
is given by

A∞ + B∞ = f−1
∞ ( f∞(I))− f−1

0 ( f∞(I)) = I − f−1
0 ( f∞(I)). (13.38)

For the linear firing-rate model we have shown that A∞ = αcI/(αc + βc + 1) and
B∞ = βcI/(αc + βc + 1). Solving A∞ + B∞ for c results in c = (A∞ + B∞)/((α + β)(I −
A∞ − B∞). Substituting α and β by Eq. (13.30)-(13.31) and Eq. (13.28)-(13.29) gives us
then c = (C1 + C2)/(A∞ + B∞). Since C1 and C2 describe the frequency decay from f0
to f∞ (see Eq. (13.25)), c can be determined by

c = ( f0 − f∞)/(I − f−1
0 ( f∞(I))). (13.39)

Similarly as for the estimation of c given by Eq. (13.37), this solution is just correct for
small deviations of f∞ from f0. The calculation of the adaptation properties results
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here in large deviations of the adaptation time constants in particular for the non-linear
firing-rate model.

A third way of linearization is given by squaring f0(I) and solving for c. This gives
us the slope of the tangent line at I:

c = f0(I)/I. (13.40)

For models featuring an onset f-I curve which is in approximation described by a square-
root function (or a linear function), this solution for c yielded the best estimates of the
adaptation properties.

The nonlinear dynamics of a neuron’s spike-generating mechanism make it hard to
achieve the correct adaptation properties just based on the spike-frequency of a recorded
neuron. However, the method described here allows to get an approximation of the
properties of spike-frequency adaptation mediated by two adaptation currents. The
firing-rate models, furthermore, support an important role of the interaction of two
adaptation currents on long time scales. However, for the case that the adaptation
processes are working on separate time scales, the models, additionally, suggest that the
interaction can be ignored for short time scales in the range of the fast adaptation time
constant.

Simulations of the locust auditory transduction cascade suggested that the spike-
count variability observed in spike responses of locust auditory receptor neurons can
be explained by two adaptation currents. In this chapter, we analyzed how two adapta-
tion currents shape the spike-count variability. By means of theoretical investigations,
we demonstrated that two adaptation currents shape the Fano factor by mutual inter-
action and that the fast adaptation process reduces the noise of the slow process at
low-frequencies.





Part IV. DISCUSSION
The contribution of different noise sources to the
spike-response variability in locust auditory recep-
tor neurons





Chapter 14
Spike-response variability in locust
auditory receptor neurons

Spike-response variability is a common feature of sensory neurons that impacts neural
information processing. However, little is known about the nature of the noise sources
causing variability. In this thesis, we investigated potential sources of spike-response
variability in auditory receptor neurons of Locusta migratoria. In particular, we focused on
the stochastic opening of the mechanosensory receptor channels and other ion channels
whose activation is strongly correlated to sound intensity, like the ones carrying the
adaptation current and channels that play a significant role in the generation of action
potentials.

By means of interspike-interval statistics, we were able to distinguish different kinds
of channel noise sources. Simulations of a minimal conductance-based model suggested
that fast stochastic ionic currents and slow stochastic adaptation currents contribute
differentially to the spike-response variability in locust auditory receptor cells. Moreover,
they suggested channel noise from an adaptation current and from the receptor or
sodium current as the main sources for the spike-response variability.

Furthermore, we analyzed both the dynamics and the spike-count variability of
models with two adaptation currents. The findings suggested that two adaptation
currents shape the spike-count variability by mutual interaction and that at least two
adaptation processes are responsible for the long-range variability in locust auditory
receptor neurons.





Chapter 15
Different noise sources and how they
contribute to the ISI variability

The aim of chapter 10 and 11 of this thesis was to infer properties of the dominating
intrinsic neuronal noise source solely from the statistics of interspike intervals. Our
data obtained from in vivo axonal recordings of locust auditory receptor neurons show a
transition from a white-noise dominated regime at low spike frequencies to a colored-
noise dominated regime at high spike frequencies. In particular, the ISIs in the lower
dynamic range of the receptor response have a high variability with CVs up to 0.9 as
well as a pronounced peak of Drnwl. With increasing spike frequency the shape of the ISI
histograms changed from an inverse Gaussian, that typically results from white noise
sources (Gerstein and Mandelbrot, 1964), to more peaked probability densities with
heavier tails, indicating a colored-noise source (Lindner, 2004). In accordance with the
ISI distributions, the corresponding ISI correlations showed a transition from slightly
negative values to positive coefficients with increasing spike frequency.

In response to pure tones with constant sound intensities the auditory receptor
neurons of locusts respond with firing rates of up to a few hundred Hertz (Römer, 1976).
This and the non-exponential shape of the ISI distributions (Schaette et al., 2005) strongly
indicate that these neurons operate in the super-threshold regime. In this regime the
neurons would regularly oscillate, i.e. they would generate periodic spike trains, if they
were noiseless and driven by a constant input. The canonical model for such a limit-cycle
dynamics is the perfect integrate-and-fire (PIF) model. The simplest way to introduce
spike-timing variability in this model is to add a white-noise driving. The evolution
of the state variable of the PIF model is then equivalent to a random walk with drift
towards an absorbing barrier for which the inverse Gaussian is known to describe the
first-passage-time distribution, which in our case yields the ISI distribution (Gerstein
and Mandelbrot, 1964).

The locust receptor neurons also show pronounced spike-frequency adaptation
(Römer, 1976; Benda et al., 2001). Despite the presence of an additional slow dynamics
causing spike-frequency adaptation the ISI density of a PIF neuron model with additive
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white noise can still be well approximated by an inverse Gaussian (Schwalger et al.,
2010). However, the interaction of the white noise with the adaptation dynamics results
in negative ISI correlations (Wang et al., 1998; Chacron et al., 2000; Liu and Wang, 2001;
Benda et al., 2010; Schwalger et al., 2010) – a feature that is absent in a white-noise driven
PIF model without adaptation. Negative ISI correlations have been reported for various
preparations (see Farkhooi et al., 2009 for a review), and have been suggested to play a
role in reducing long-term variability (Ratnam and Nelson, 2000; Chacron et al., 2001,
2007).

At low spike frequencies our recorded ISI distributions are well described by inverse
Gaussians and we also found small but significant negative correlations in this regime.
Both findings suggest that at low spike frequencies the dominating noise source of locust
auditory receptors generates white noise that interacts with a deterministic adaptation
dynamics.

By means of simulations of Hodgkin-Huxley-type models we tested different hypothe-
ses on possible white-noise sources that could account for the experimentally observed
results. Channel noise originating from the delayed rectifier failed to reproduce either
the peak in Drnwl or the ISI distributions and correlations. However, both stochastic
receptor currents as well as stochastic sodium currents reproduced this peak as well as
the white-noise ISI distributions and the negative ISI correlations in interaction with
a deterministic adaptation current. These findings suggested that stochastic sodium
or receptor currents may strongly shape the lower dynamic range of locust auditory
receptor neurons.

Colored noise like Ornstein-Uhlenbeck noise with sufficiently long correlation times
results in different ISI statistics. The ISI distributions are more peaked and have longer
tails compared to the inverse Gaussian, and the correlations of the noise directly translate
to positive correlations between successive ISIs (Lindner, 2004; Schwalger et al., 2010).
Positive correlations have been observed in other neural systems (Lowen and Teich,
1992; Gabbiani and Krapp, 2006) but the origin of the corresponding colored noise was
unknown or hypothesized to be of synaptic origin (Chacron et al., 2001; Middleton et al.,
2003).

Let us note that estimates of ISI correlations calculated from too few ISIs are strongly
biased towards negative numbers (Flyvbjerg and Petersen, 1989). This can easily happen
when calculating the correlations from responses to short stimuli for each trial separately.
For this reason it might be that Schaette et al. (2005) did not observe any positive ISI
correlations in their recordings from the locust auditory receptor neuron.

Our simulations of the locust auditory transduction cascade with single stochastically
gated channels demonstrated that stochastic adaptation currents can account for peaked
ISI histograms which can be described by the colored-noise probability density. Further-
more, stochastic adaptation produced positive ISI correlations and reproduced the peak
in Drnwl. These results suggested that stochastic adaptation may strongly contribute to
the spike-response variability in the upper dynamic range.

How does a noisy adaptation current shape the ISI histograms and the correlations
between ISIs? We analyzed this question for the limit case of pure stochastic adaptation
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and for the case of a deterministic adaptation current and an additional white noise
current.

For a PIF model, it was shown that stochasticity in the adaptation leads to pronounced
peaks and a heavy tail compared to the case of deterministic adaptation, for which the
ISI density is close to an inverse Gaussian (Schwalger et al., 2010). Furthermore, the
limit cases showed a pronounced difference in the ISI correlations. For a deterministic
adaptation current and a white noise driving one observes negative correlations between
ISIs as reported previously (e.g. Liu and Wang, 2001). In contrast, with slow adaptation
noise ISIs exhibit long-range positive correlations. The underlying mechanism leading to
the large kurtosis and the positive ISI correlations in the case of stochastic adaptation
rests upon the fact that slow adaptation noise effectively acts as an independent colored
noise with a large correlation time (Schwalger et al., 2010). One can think of the colored
noise as a slow external process that slowly modulates the instantaneous firing rate or,
equivalently, slowly changes the ISIs in the sequence. Such a sequence of many short
ISIs in a row and a few long ISIs gives rise to a large skewness and kurtosis and positive
serial correlations.

Our simulations of a more realistic Hodgkin-Huxley-type model with stochastic adap-
tation or deterministic adaptation plus white noise predicted all the features observed in
the perfect integrate-and-fire model augmented with an adaptation mechanism. This
indicates the generality and robustness of our findings.

The peaked shape of the ISI distributions as well as the positive ISI correlations
we observed at higher spike frequencies in the receptor neurons of locusts can thus
be explained by a colored-noise source. The additional match of the correlation time-
constant of the noise obtained from the ISI distributions with the time constant of
the apparent spike-frequency adaptation further suggests that the stochasticity of an
adaptation current is the source of the colored noise (Schwalger et al., 2010).

Our simulations confirm that a stochastic adaptation current together with fast chan-
nel noise indeed reproduces both the white-noise ISI distributions and negative ISI
correlations at low spike frequencies and the colored-noise ISI distributions and positive
correlations at higher spike frequencies. The impact of the colored noise in relation to
the white noise increases with spike frequency for two reasons. First, the ratio between
adaptation time scale and mean ISI becomes larger with increasing firing rate. The
strength of positive ISI correlations and the deviations of the ISI density from an IG
grow if this ratio increases. Second, the mean fraction of open adaptation channels
increases with spike frequency from values close to zero to less than 10 %, as measured
in the simulations of the modified Traub-Miles model (Ermentrout, 1998). Because the
standard deviation of the fraction of open channels is zero when all channels are closed
and monotonically rises until half of the channels are open (a state that is never reached
here), the fluctuations of the adaptation current increase with spike frequency and so
does the strength of the resulting colored noise. In marked contrast, the level of fluctu-
ations for the fast noise sources saturates at large signal amplitude or high firing rates
(simulation data not shown). We note that a stochastic adaptation current could also
explain very similar data on CV and ISI correlations found in response to current pulse
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injections in a looming-sensitive neuron (Gabbiani and Krapp, 2006), in particular, the
observed transition from negative ISI correlations at low rate and high CV to positive ISI
correlations at high firing rate and low CV.

Gollisch and Herz (2004) have shown that spike-frequency adaptation of locust
receptor neurons has both an input- and an output-driven component. The input-driven
component could be due to fatigue of the tympanum or the transducer channels and
directly depend on the acoustic input. In contrast, the output-driven component could
be attributed to adaptation currents that are activated by the resulting action potentials.
However, they were not able to quantify the relative strength of the two adaptation
components. Because in these neurons the adaptation time constant depends on spike
frequency and thus on the spike response (Benda et al., 2001; Benda and Herz, 2003),
output-driven adaptation currents seem to be the dominant adaptation mechanism. This
further supports our finding of a colored-noise source possibly originating from an
adaptation current.

There is a vast variety of output-driven ionic currents causing spike-frequency adap-
tation. The most prominent ones are voltage-gated M-type currents (Brown and Adams,
1980) and calcium-activated potassium currents (Madison and Nicoll, 1984; Sah and
Davies, 2000). Also, slow inactivation of the voltage-gated sodium current is a possible
source of output-driven spike-frequency adaptation (Fleidervish et al., 1996; Torkkeli et
al., 2001). In cockroach tactile spine neurons the rapid adaptation component is caused
by slow inactivation of the sodium current (French, 1987), whereas the slow adaptation
current can be attributed to the activation of an electrogenic sodium pump (French,
1989). Which of these adaptation mechanisms is causing spike-frequency adaptation
and the colored noise in the locust auditory receptor neuron is not known and cannot
be deduced by our indirect methods from the ISI statistics. For the simulations we used
M-type currents as a prototype for any adaptation mechanism. In the super-threshold
regime, both the deterministic component of the adaptation dynamics and the effects of
the stochasticity are similar for the different adaptation mechanisms on the level of spike
timing (Benda and Herz, 2003; Schwalger et al., 2010). This suggests that the main results
derived here are not specific to a certain adaptation current, but apply quite generally to
any noise associated to the slow dynamics of adaptation.

What, however, is a possible source of the white noise? Thermal noise due to the
membrane resistance has only a minor importance in neurons compared to other noise
origins (Lecar and Nossal, 1971; Manwani and Koch, 1999; van Rossum et al., 2003). In
the auditory system, thermal noise may also result from pressure fluctuations caused
by collisions of air molecules with the eardrum. However, when simulating eardrum
oscillations with additive Gaussian noise, the strength of the noise needed to reproduce
the experimentally observed interspike-interval variability was so high that the neuron
was not able to code for sound intensity any more (data not shown).

Synaptic noise is considered as one of the major noise sources in the nervous system.
Locust auditory receptors, however, are bipolar neurons that are directly attached to the
eardrum (Gray, 1960) and generate action potentials without intermediate synapses and,
hence, in absence of synaptic noise.
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The most likely candidate for the white noise therefore is channel noise resulting from
random opening and closing of ion channels (White et al., 2000). From experimental
studies using non-stationary noise analysis sodium (Sigworth, 1980), receptor (Holton
and Hudspeth, 1986), and adaption currents (Villarroel, 1997) are known for contributing
to current fluctuations. Modeling studies addressed the distinct effects of channel
noise from different ionic currents on spike-timing variability (Chow and White, 1996;
Schneidman et al., 1998; van Rossum et al., 2003). Dorval and White (2005) demonstrated
experimentally that channel noise from sodium currents drive sub-threshold oscillations.

The simulations demonstrated that noise from different types of finite ion channel
populations can have a profound influence on neuronal action potential generation.
However, the simulations do not allow to accurately estimate the actual number of
ion channels of the receptor, sodium or adaptation current, since there are too many
degrees of freedom. In particular, the number of ion channels of a population and
the single-channel conductivity to some degree counteract each other so that different
combinations of these two parameter result in similar ISI statistics. Still, the number of
receptor channels we used in the mixed-case model (NR = 20, Fig. 11.9) matches the
reported order of magnitude of channel numbers of other mechanosensory transducer
currents (Drosophila: N ≈ 20 per sensory neuron, Nadrowski et al., 2008; bullfrog:
N = 85± 45 per hair bundle, Howard and Hudspeth, 1988).

Note that especially at higher firing rates the ISI variability is quite small in locust
auditory receptor cells, quantified both by relative (CV ≈ 0.1) and absolute measures
(
√
〈∆T2〉 < 1 ms). Such high spike-timing precision in these neurons was also observed

during natural (Ronacher et al., 2004, 2008) and dynamic stimulation and underlies
their coding efficiency (Machens et al., 2001; Rokem et al., 2006). Thus, the positive
correlations we observed in this regime affect the ISIs by less than a millisecond. Also,
the small negative correlations at low spike frequencies might be negligible in the
context of encoding the amplitude modulation of an acoustic stimulus. This explains
the good performance of a renewal model in reproducing mean firing rate and spike-
count statistics in response to dynamic stimuli (Schaette et al., 2005) by utilizing the
regularizing effect of neural refractoriness (Berry and Meister, 1998).

At low spike frequencies, however, the variability becomes quite large with CVs
ranging from about 0.5 up to 0.9. Here, two opposing hypothesis on why the spike
timing variability is so high in this regime are possible. First, although this variability
might deteriorate coding fidelity of a single receptor, this regime might not play an
important role for the whole population of receptor neurons to encode sound stimuli and
thus this noise could be tolerated. Second, because averaging over trials in these neuron
improves stimulus representation (Machens et al., 2001), noise might be advantageous.
This would suggest that the number of receptor or sodium channels is on purpose small,
in order to result in the necessary amount of noise for improving the representation of
the sound stimuli in the population of receptor neurons.

Direct measurements of the current noise close to the site of receptor current and
spike generation, for example by non-stationary noise analysis under voltage-clamp,
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potentially damage the delicate sensory structures and thus bias the obtained results.
This is in particular a problem in auditory systems of both insects and vertebrates.
Therefore, indirect methods that infer properties of the transduction cascade and the
spike generator from recordings of the auditory nerve, that leave the ear intact, allow
to investigate functional aspects of sensory transduction and set detailed references for
future invasive measurements. Using the iso-response method, Gollisch et al. (2002);
Gollisch and Herz (2005) have been able to characterize the auditory transduction cascade
of locust auditory receptor neurons and to differentiate between input- and output-driven
adaptation processes in these neurons (Gollisch and Herz, 2004).

We here recorded interspike-interval statistics generated from the intact locust ear
from the auditory nerve far away from the ear. By comparing higher-order statistics
of the data with the properties known from canonical models for spiking neurons in
their super-threshold regime we were able to demonstrate that white- and colored-noise
sources dominate the interspike-interval statistics in different firing regimes. Additional
simulations of conductance-based models as well as the analytical study by Schwalger et
al. (2010) strongly suggest a stochastic adaptation current as the source for the colored
noise and the receptor or sodium current as the possible sources for the white noise.
Because the theories we used for interpreting our results are so general, our approach
for dissecting intrinsic sources of neural noise can be applied to many other neurons as
well.



Chapter 16
Effect of multiple time scales of
adaptation on the spike-count variability

The aim of chapter 12 was to analyze the contribution of neuronal noise sources to
the spike-count variability observed in spike responses of auditory receptor neurons
of Locusta migratoria. We quantified the spike-count variability by the Fano factor that
was calculated for different counting time frame lengths. Spike responses of one minute
duration that were used to measure the Fano factor for counting time frames up to
tc = 10 s, demonstrated for the first time that the spike responses of locust auditory
receptor neurons adapt at least over two time scales in the range of 0.1 s and several
seconds.

The Fano factor curves of the auditory spike responses exhibit a minimum at moderate
counting times and monotonically increase as power-law functions with exponent κ
to values up to F(tc) ≈ 10 at large counting times depending on sound intensity. No
saturation of F(tc) is visible for counting time frames up to 10 s. With increasing sound
intensity the position of the Fano factor minimum, tmin

c , shifts to smaller counting times
and the exponent increases from κ ≈ 0.5 to exponents close to one. The increase of
the Fano factor curve for moderate and large counting times is caused by positive ISI
correlations (Cox and Lewis, 1966).

Positive ISI correlations arise from colored noise (Lindner, 2004; Schwalger et al., 2010).
For a PIF model driven by an exponentially correlated (colored) Ornstein-Uhlenbeck
(OU) noise with large correlation time constant, the Fano factor has been extensively
analyzed and analytical expressions have been derived (Middleton et al., 2003). OU noise
increases the Fano factor with exponent κ = 1 for moderate counting times tc < τOU

depending on the noise intensity. The counting time at which the Fano factor curve
saturates is close to the finite correlation time of the colored noise. The noise intensity
determines at which Fano factor level the curve saturates.

The shift of the Fano factor curves of the locust auditory receptor neurons, i.e. the
decrease of tmin

c and increase of κ, with increasing sound intensities cannot be explained
by the PIF model driven by a single colored noise source because (i) an OU process with
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a fast correlation time constant does not yield large F(tc) at large counting times, and (ii)
an OU process with a slow correlation time constant, that could explain the Fano factor
at large tc, does not yield exponents κ < 1.

In a similar way, the locust auditory transduction model with a single stochastic
adaptation current, effectively acting as colored noise, cannot explain the measured Fano
factor curves. Simulations of the locust auditory transduction cascade with both the fast
and the slow stochastic adaptation current can indeed reproduce the ISI statistics and
both the decrease of tmin

c and increase of κ with increasing sound intensities.
Spike responses of the locust auditory receptor neurons show that the slow adaptation

process is only activated for firing rates f > 40 Hz. We therefore modeled the slow
adaptation current as a Ca2+-activated (AHP) potassium current. We assumed that the
AHP current is only activated by calcium concentrations exceeding a certain threshold.

Ca2+-activated potassium currents mediating spike-frequency adaptation are known
to have a slow time course in the range of seconds (Sah, 1996; Faber and Sah, 2003).
So far, however, it is not known which currents are responsible for spike-frequency
adaptation in the auditory receptors of Locusta migratoria. Future experiments, in which
the ionic currents responsible for spike-frequency adaptation are pharmacologically
blocked, could verify our hypothesis that the slow adaptation in locust auditory receptor
neurons is mediated by Ca2+-activated potassium currents.

In chapter 13, we analyzed a PIF model with one and two independent colored noise
sources. Middleton et al. (2003) showed for the PIF model with a single OU noise source
with a large correlation time constant τOU that the exponent κ, which defines the Fano
factor rise at moderate counting times tmin

c < tc < τOU, equals one. This, however, is
only true for tc � τOU. A PIF model driven by a colored noise with τOU = 0.1 s, that
is equal to the fast adaptation time constant of locust auditory receptor neurons, yields
Fano factor curves with an apparent exponent κ much smaller than one. The reason is
that we do not see the linear part but only the shallower (κ < 1) curve close to saturation.
This would explain why the Fano factor curves of locust auditory receptor neurons show
exponents κ ≈ 0.5 for low sound intensities where the fast adaptation process with a
time constant τ = 0.1 s alone mediates spike-frequency adaptation and where tmin

c takes
values even larger than τ. Large tmin

c result from a low noise level. An increase of the
noise level with increasing sound intensities, that results in decreased tmin

c , might be
caused by a second noise process starting at higher sound intensities that additionally
affects the spike-response variability.

For the Fano factor curves of a PIF model with two independent colored noise sources,
the same holds true. If the correlation time constant τOU

A of the fast colored noise source
is close to tmin

c and the intensity of the slower colored noise source is not too large, we
again do not see the linear part of F(tc) but only the shallower part close to saturation
with κ < 1. This suggests that the decrease of tmin

c and increase of κ observed for the
Fano factor curves of locust auditory receptor neurons with increasing sound intensity
is caused by a transition of a major contribution of the fast adaptation process for low
sound intensities to a major contribution of the slower adaptation process for larger
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sound intensities.
Adaptation currents are driven by action potentials (Benda and Herz, 2003). In con-

trast to independent colored noise sources, they are therefore correlated to each other.
The dynamics of a PIF model and a more realistic Hodgkin-Huxley-type model with
two adaptation processes show a mutual interaction of two currents mediating spike-
frequency adaptation. Analytical expressions, that we have derived for a firing-rate
model with two adaptation processes, confirm this mutual interaction. The two inter-
acting currents show an antagonistic behavior which can regularize the spike-response
variability. A rapid deterministic current counteracts a slow stochastic adaptation current
and, thus, decreases both ISI and spike-count variability. Fast adaptation regularizes the
variability arising from a slower noise source by reducing noise power at low frequencies.
In contrast to the noise shaping of a fast deterministic adaptation current in interaction
with white noise described by Chacron et al. (2004), this is a reduction of the total noise
level.

Let us note that the effective time constant τ
e f f
A of the fast adaptation process is not

altered by the presence of an additional slow adaptation process provided τB � τA.
For the locust auditory system, the slow adaptation process with a time constant τB of
several seconds is much slower than the rapid one with a time constant τA of a hundred
milliseconds. This independence of the existence of a second slower adaptation process
demonstrates and justifies the analysis of the ISI statistics on short time scales without
considering an interaction of a slower adaptation process as we have done in chapter 10.

Fano factor curves exhibiting a minimum were observed in cat auditory nerve fibers
(Teich, 1989), in the cat visual system (Teich et al., 1997), and in electroreceptors of weakly
electric fish (Chacron et al., 2001). Fano factor curves of cat auditory hair cells show Fano
factor curves similar to the ones of locust auditory receptor cells where the exponent of
the curve for moderate counting times is given by

√
tc (exponent: κ = 0.5, Teich, 1989).

Additionally, the Fano factor rises to large values F(tc) ≈ 10 without a visible saturation
up to the measured counting time of 20 s. This suggests a potential interaction of a rapid
and a slow colored noise source in the cat auditory system. Teich (1989) attributed the
increase of the Fano factor curve to the fractal nature of the auditory neuronal spike
responses. Similar Fano factor curves were also found in cat retinal ganglion cells (RGC)
and lateral-geniculate-nucleus cells (LGN) which both exhibit exponents κ < 1 (RGC:
mean κ = 0.76± 0.22 s.d.; LGN: mean κ = 0.64± 0.23 s.d.) and F(tc) > 10 for tc = 1000 s
without visible saturation (Teich et al., 1997). The spike-count and interspike-interval
variability of RGC and LGN could be explained by a fractal binomial-noise-driven
doubly stochastic gamma point process where the fractal binomial noise is generated
from the sum of K alternating fractal renewal processes. Fractal binomial noise is used to
describe the fractal bahavior of stochastic ion channel opening (Lowen and Teich, 1995).
Our results suggest that these data could also be explained by stochastic ionic currents
effectively acting as colored noise, such as multiple stochastic adaptation currents.

For weakly electric fish, the counting time frame defining the Fano factor minimum
corresponded to the time scale which is used to detect prey (Nelson and Maciver, 1999).
In general, a single stochastic adaptation current, effectively acting as colored noise,



118 16. Effect of multiple time scales of adaptation on the spike-count variability

is sufficient to cause such a minimum. A second colored noise source, additionally
affecting the spike-response variability and increasing the noise level, shifts tmin

c to
smaller counting times. The resulting increase of the spike-count variability of auditory
receptor neurons for large counting times is most probable not relevant for locusts. For
example, for the grasshopper Chorthippus biguttulus, which exhibits a similar spike-count
variability compared to Locusta migratoria (Ronacher and Krahe, 2000), the first 250 ms
of a calling song is sufficient for a reliable recognition of a song (Ronacher and Krahe,
1998; Ronacher et al., 2008). The minimal counting time tmin

c of the Fano factor curves of
locust auditory receptor neurons decreases from 250 ms to 25 ms with increasing sound
intensity. This could be explained by a reduction of the signal duration that is necessary
for a reliable recognition of calling songs with higher sound intensity.



Chapter 17
Functional role of channel noise

In this thesis, both experimental findings and simulations of minimal conductance-based
models of auditory receptor neurons of Locusta migratoria suggest ion channel noise from
adaptation currents as well as from the receptor or sodium current as the main source of
the interspike-interval and spike-count variability. But what may be the functional role
of such channel noise in the auditory system?

Experimental and theoretical studies have shown that noise in general can play
a beneficial functional role in a variety of biological systems (Douglass et al., 1993;
Bezrukov and Vodyanoy, 1995; Collins et al., 1995; Wiesenfeld and Moss, 1995; Levin
and Miller, 1996). In these studies, they particularly focused on stochastic resonance,
i.e. the noise-induced enhancement of weak signals. Experiments have demonstrated
that auditory hair cells exhibit stochastic resonance at physiologically relevant noise
levels (Jaramillo and Wiesenfeld, 1998, 2000; Zeng et al., 2000; Indresano et al., 2003).
Furthermore, a theoretical study on stochastic resonance in a system with white- and
colored-noise driving demonstrated that colored noise may be better for enhancing the
neuron’s response to a weak signal in comparison to white noise (Nozaki et al., 1999).
This is valid for the case that the noise bandwidth is sufficiently high and, thus, the noise
can be used in this regime to detect subthreshold signals with a smaller noise level. A
model of the mechanoelectrical transduction of auditory hair cells demonstrated that two
colored-noise sources (gate and bundle noise) were able to explain the experimentally
measured signal-to-noise ratios of frog saccular hair cells (Lindner et al., 2005b). Like
in locust auditory receptor neurons, two different adaptation mechanism, a fast and
a slow one, are known for auditory hair cells (Eatock, 2000; Gillespie, 2004). These
may effectively work as two colored-noise sources. A theoretical study showed that
the combination of two adaptation processes can produce oscillations at a characteristic
frequency and, thus, provide an active amplifier mechanism (Vilfan and Duke, 2003).
However, if subthreshold stochastic resonance or active amplification mechanisms may
play a functional role in the locust auditory system is not known yet.

The transmission of suprathreshold signals was commonly believed to be impaired
by noise. A recent theoretical study, however, showed that noise can have a beneficial
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role also in the suprathreshold signal transduction of auditory hair cells (Xiang-Hui et
al., 2008). Classical stochastic resonance was shown to extend the dynamic range of a
system to subthreshold signals, whereas suprathreshold stochastic resonance enhances it
at larger signal intensities (Stocks, 2000). Suprathreshold stochastic resonance reveals
a facilitation of signal transmission by a population of sensory neurons which receive
the same input and collectively encode the signal. Population coding was suggested to
average variable responses of individual neurons to achieve reliable responses (Sakurai,
1996; Pouget et al., 2000; Averbeck and Lee, 2004; Averbeck et al., 2006). Recently, a
theoretical study, in which the effect of suprathreshold resonance has been analyzed,
demonstrated that the signal detection of a population of neurons could be enhanced by
an optimal amount of ion channel noise (Ashida and Kubo, 2010). This indicates that
channel noise may play an essential role in population coding and in the optimization
of responses of a population of sensory neurons. So far, however, only theoretical
studies exist about suprathreshold resonance. Locust auditory receptor cells are neurons
which fire action potentials in the suprathreshold regime with high spike frequencies.
Furthermore, Machens et al. (2001) showed that the rate of information about signal
features in locust auditory receptor neurons is improved when neuronal responses are
pooled. This suggests that rather suprathreshold than classical subthreshold stochastic
resonance may play a functional role in the locust auditory system.

In single neurons, the transmission of information may be limited by the stochasticity
of ion channels (Laughlin et al., 1998; White et al., 2000). To increase information it would
be necessary to increase the number of channels in the membrane so that fluctuations are
averaged out. An increase of the channel number, however, increases the consumption of
energy used for signal transmission (Laughlin et al., 1998). On the contrary, a low number
of ion channels yield low energy costs but poor information transmission. In a theoretical
study, it was shown that an optimal energy efficiency is gained for a specific medium
number of ion channels (Schreiber et al., 2002). This study additionally demonstrated
that noisy input signals reduce the optimal number of ion channels. This suggests that a
low number of channels in locust auditory receptor neurons may yield an energy efficient
signal transmission in the presence of additional background noise, such as in a loud
environment. The preferred habitat of locusts is in fields and meadows. At such places,
background noise from the environment, such as from moving water or from sounds
made by animals of identical or different species, may add noise to the communication
signals allowing an energy efficient information processing with a low number of ion
channels in the membrane of the auditory receptor neurons.

The effects of correlations between successive interspike intervals which arise from
different noise sources on neuronal coding was recently reviewed in Avila-Akerberg
and Chacron (2011). Already in a very early experimental study, the importance and
effects of ISI correlations on the activity of muscles has been demonstrated. In this study,
Sugano and Tsukada (1978) stimulated excitatory motor axons electrically with three
different types of spike sequences with (i) negative, (ii) positive, and (iii) uncorrelated
ISI correlations. Using these different statistical stimuli, they were able to show that the
opening movement of crayfish opener muscles varies significantly for the three types
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of correlated spike sequence stimuli. Spike sequences with negative ISI correlations
resulted in less variable motor responses in comparison to sequences with the same spike
frequency but uncorrelated or positive correlated ISIs (Birk, 1972; Sugano and Tsukada,
1978). Likewise, spike responses with negative ISI correlations display less variable
spike-count distributions which can increase the discriminability and detectability of
weak signals (Ratnam and Nelson, 2000; Chacron et al., 2001; Goense and Ratnam,
2003). The functional role of positive ISI correlations, in contrast, is less understood.
Positive correlated ISI sequences electrically stimulating the motor axons of the crayfish
opener muscle yielded larger movement amplitudes in contrast to negative correlated
or uncorrelated spike sequences (Sugano and Tsukada, 1978). In studies concerning
spike-count variability, positive ISI correlations have been shown to increase variability
for large counting times. This, in turn, yields a minimum for specific time frames for
which variability is smallest (Chacron et al., 2001; Longtin et al., 2003; Middleton et
al., 2003). Thus, this defines an optimal time scale for the detection of signals. The
combination of negative and positive correlations may therefore yield optimal noise
levels for behaviorally relevant time scales.

In clinical applications, neuronal noise, such as channel noise, can have a beneficial
role in cochlear implants. Cochlear implants are medical devices which can help patients
who suffer from deafness caused by a loss of sensory hair cells in the cochlea (Rubinstein
and Miller, 1999). Using electrical stimulation of auditory nerve fibers, cochlear implants
try to evoke neuronal responses which are normally generated by acoustic stimulation.
Inner hair cells, however, are known to release neurotransmitters in a stochastic manner
and with a high degree of spontaneous release. Electric stimulation, in contrast, lacks
spontaneous activity and evokes deterministic responses (Kiang and Moxon, 1972). The
addition of an optimal level of external noise induces stochastic responses and enhances
the signal detection and discrimination (Morse and Evans, 1996; Zeng et al., 2000). This
suggests that it may be possible to improve hearing and speech comprehension using
cochlear implants by means of the addition of noise. A theoretical study confirmed this
indication and showed additionally that suprathreshold resonance provides a mechanism
which can improve information transmission in cochlear implants (Stocks et al., 2002).
Further studies also showed that noise is able to increase the dynamic range of patients
with implanted cochlear implants as well as to improve their ability to encode temporal
information (Morse and Evans, 1999a,b; Matsuoka et al., 2000).
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