
Fakultät für Mathematik, Informatik und Statistik
Ludwig–Maximilians–Universität

München

Mathematische Logik
Prof. Dr. Helmut Schwichtenberg

Refinement of Classical Proofs
for Program Extraction

Diana Ratiu

Refinement of Classical Proofs
for Program Extraction

Diana Ratiu

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

Ludwig–Maximilians–Universität
München

vorgelegt von
Diana Ratiu
April 2011

Diana Ratiu

Refinement of Classical Proofs for Program Extraction

Dissertation an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München

1. Berichterstatter: Prof. Dr. Helmut Schwichtenberg
2. Berichterstatter: Prof. Dr. Wilfried Buchholz
1. Prüfer: Prof. Dr. Otto Forster
2. Prüfer: Prof. Dr. Günther Kraus
Ersatzprüfer: Prof. Dr. Martin Schottenloher
Externer Gutachter: Prof. Dr. Hajime Ishihara

Datum der Einreichung: 4. April 2011
Tag der mündlichen Prüfung: 16. August 2011

iv

v

To my family

vi

Acknowledgments

”Should every one of those who have given
of themselves to us take their share back,

we could not possibly know what would be left of us;
therefore, we owe them all our gratitude.” (Teofil Pãrãian)

My gratitude goes to Prof. Helmut Schwichtenberg who has given me
the opportunity to be a PhD Student in the Mathlogaps Project. I have
learned from him a lot, in terms of Logics and in terms of research: his
rigor has taught me how proper mathematics is done. I am grateful that he
has encouraged me to visit other research groups and gave me the unique
opportunity to meet leading researchers in Munich.

I am honored to have Prof. Hajime Ishihara as a second reviewer of my
thesis. I would like to thank him in particular for his patience in clarifying
my questions during our long discussions both in Japan and in Munich.

During my PhD study, I benefited from the high-quality lectures of Prof.
Wilfried Buchholz. His talks in our group meetings were mind-provoking
and his precision motivating. I am thankful to him for accepting to be my
internal reviewer.

The Mathlogaps project has given me the chance to visit various research
groups and get valuable advice and a critical view of my work. Among
those which have contributed, I am grateful in particular to Ulrich Berger
and Monika Seisenberger for the illuminating discussions during my visit in
Swansea, to Roy Dyckhoff for inviting me to visit his research group in St.
Andrews and raising issues that shed a new light on my research, to Paulo
Oliva for sharing his perspective regarding proof interpretation; to Bruno
Buchberger for challenging me with questions on the importance of classical
proofs, during his Gröbner Bases Semester in Linz.

In Munich I had the opportunity to be part of a competitive and open
environment: I have exchanged ideas and worked together with many people.
First of all, I would like to thank Stefan Schimanski for taking the time to

vii

viii

read my blackboard notes on the intriguing parts of my work. On many
occasions he cleverly asked me questions; his insight has helped me clarify
many aspects regarding my research.

The underground seminar has been a valuable experience and I am
grateful to my colleagues for their wonderful talks and challenging ques-
tions: Basil Karadice, Freiric Baral, Luca Chiarabini, Dominik Schlenker
and Stefan Schimanski. Klaus Thiel was motivational with his perseverance
in tackling new theorems in Minlog.

I am also thankful to those who have their share in some of the chapters
of this thesis. Our long sessions with Trifon Trifonov on the example of the
Infinite Pigeonhole Principle has clarified many of the otherwise cumber-
some aspects of the associated program. The expertise of Josef Berger on
constructive mathematics has been helpful in investigating the strength of
Dickson’s Lemma and has opened the way to future research. I spend long
afternoons debating on the benefits and limitations of the double-negation
translation with Christian Urban.

Special thanks to Daniel Ratiu, Stefan Schimanski, Bogomil Kovachev,
Kenji Miyamoto, Roy McCasland and Martin Ochoa for putting aside their
own research to review my thesis and provide me with valuable feedback.

I grew to become what I am today professionally thanks to my mathe-
matics teachers Saveta Coste and Ruxanda Georgescu. Later, my BSc Thesis
supervisors Prof. Viorel Negru and Prof. Tudor Jebelean have given me the
first impulse towards research. My Master’s Thesis supervisor Prof. Dana
Petcu has been a role model, guiding me through my first research years
and inspiring me with her energy, motivation and willingness to explore new
ideas.

Last but not least, I dedicate this work to our little one, Stefan, to my
husband Daniel and my parents. I thank in particular my husband for his
support and for being an inspiration with his hard-work and perseverance.
I am most grateful to my parents - their love and care for me have guided
me throughout all my life. I owe them what I am today.

Abstract

The A-Translation enables us to unravel the computational information in
classical proofs, by first transforming them into constructive ones, however
at the cost of introducing redundancies in the extracted code. This is due
to the fact that all negations inserted during translation are replaced by the
computationally relevant form of the goal.

In this thesis we are concerned with eliminating such redundancies, in or-
der to obtain better extracted programs. For this, we propose two methods:
a controlled and minimal insertion of negations, such that a refinement of
the A-Translation can be used and an algorithmic decoration of the proofs,
in order to mark the computationally irrelevant components.

By restricting the logic to be minimal, the Double Negation Translation
is no longer necessary. On this fragment of minimal logic we apply the refined
A-Translation, as proposed in (Berger et al., 2002). This method identifies
further selected classes of formulas for which the negations do not need to be
substituted by computationally relevant formulas. However, the refinement
imposes restrictions which considerably narrow the applicability domain of
the A-Translation. We address this issue by proposing a controlled insertion
of double negations, with the benefit that some intuitionistically valid Π0

2-
formulas become provable in minimal logic and that certain formulas are
transformed to match the requirements of the refined A-Translation.

We present the outcome of applying the refined A-translation to a series
of examples. Their purpose is two folded. On one hand, they serve as
case studies for the role played by negations, by shedding a light on the
restrictions imposed by the translation method. On the other hand, the
extracted programs are characterized by a specific behaviour: they adhere
to the continuation passing style and the recursion is in general in tail form.

The second improvement concerns the detection of the computationally
irrelevant subformulas, such that no terms are extracted from them. In
order to achieve this, we assign decorations to the implication and universal
quantifier. The algorithm that we propose is shown to be optimal, correct
and terminating and is applied on the examples of factorial and list reversal.

ix

x

Kurzfassung

Die A-Übersetzung ermöglicht es, die rechnerische Information aus klassis-
chen Beweisen einzuholen. Dennoch hat sie den Nachteil, dass die Pro-
gramme, die man aus auf diese Weise transformierten Beweisen extrahiert,
viele redundante Teile enthalten. Das liegt daran, dass die A-Übersetzung
viele doppelte Negationen hinzufügt und alle diese Negationen durch die
rechnerisch relevante Form der Ziel-Formel substituiert werden.

In dieser Doktorarbeit werden Methoden dargestellt, um Teile der redun-
dante Information in den extrahierten Programen zu entfernen. Einerseits
wird das Einfügen der Negationen minimal gehalten und anderseits werden
die nicht rechnerischen Teile als solche indentifiziert und ausgezeichnet.

Wir bemerken zuerst, dass in der Minimallogik das Einfügen der doppel-
ten Negationen nicht mehr nötig ist. Darüber hinaus, um das Ersetzen aller
Negationen zu vermeiden, identifizieren Berger et al. (2002) diejenigen, wo
die Substitution nicht nötig ist. Diese verfeinerte A-Übersetzung hat aber
den Nachteil, dass sie den Anwendungsbereich begrenzt. Um das zu beseiti-
gen, wird in dieser Dissertation eine verfeinerte Doppel-Negation angewandt,
die bestimmte Formeln so umsetzt, dass die verfeinerte A-Übersetzung da-
rauf anwendbar ist. Als Zugabe kann diese Methode auch benutzt wer-
den, um konstruktive Beweise mancher Π0

2-Formeln in der Minimallogik
durchzuführen.

Dieses Verfahren wird durch Anwendung der verfeinerten A-Übersetzung
auf eine Reihe von bedeutenden Fallstudien illustriert. Es werden das Lemma
von Dickson, das unendliche Schubfachprinzip und das Erdös-Szekeres The-
orem betrachtet. Dabei wird es festgestellt, dass ein Zusammenhang zu der
Endrekursion und dem Rechnen mit Fortsezungen besteht.

Ferner, um möglichst viel der überflüssigen Information zu entfernen,
wird ein Dekorationsalgorithmus vorgelegt. Dadurch werden die rechnerisch
irrelevanten Komponenten identifiziert und entsprechend annotiert, so dass
sie während der Extraktion nicht berücksichtigt werden. Es wird gezeigt,
dass das vorgeschlagene Dekorationsverfahren, das auf Beweisebene einge-
setzt wird, optimal, korrekt und terminierend ist.

xi

xii

Contents

1 Introduction 1
1.1 The Problem and Proposed Solutions 2
1.2 Contributions . 4
1.3 Road-map of the Thesis . 5

2 NAω as the Negative Fragment of HAω 9
2.1 Language Specification . 10
2.2 Weak and Strong Operators 14
2.3 Axioms . 15

2.3.1 Induction and Cases 15
2.3.2 efq and Stab . 16
2.3.3 Other Axioms . 18

2.4 Natural Deduction . 18
2.5 Summary of the Chapter . 21

3 A-Translation and its Refined Version 23
3.1 The Double Negation Translation 24
3.2 A-Translation . 25

3.2.1 Friedman’s “trick” . 25
3.2.2 A-Translation . 26

3.3 The Refinement of the A-Translation 29
3.3.1 Definite and Goal Formulas 31
3.3.2 Properties of the Definite/Goal Formulas 34
3.3.3 Refined A-Translation 38

3.4 Program Extraction . 39
3.4.1 Modified Realizability. Extracted Terms 39
3.4.2 Program Extraction from A-Translated Proofs 42

3.5 Related Work . 44
3.6 Summary of the Chapter . 52

xiii

xiv CONTENTS

4 A-Translation and Programming 55
4.1 Tail Recursion . 56

4.1.1 Tail Recursion in Computer Science 56
4.1.2 Connection with the Refined A-Translation 57

4.2 Computing with Continuations 62
4.2.1 Classical Proofs and the Notion of Control 63
4.2.2 Connection with the Refined A-Translation 64

4.3 Summary of the Chapter . 66

5 The Infinite Pigeonhole Principle 69
5.1 The Infinite Boolean Tape . 69

5.1.1 Statement and Formalization 70
5.1.2 The Logical Falsity ⊥ 74
5.1.3 The Extracted Program 75
5.1.4 Related Work . 80

5.2 Generalization: IPH . 82
5.2.1 IPH - Statement and Proof 82
5.2.2 Double Negations . 85
5.2.3 The Π0

2-Corollary . 85
5.2.4 Results with A-Translation 87
5.2.5 Related work . 94

5.3 Summary of the Chapter . 94

6 The Erdös-Szekeres Theorem 97
6.1 The Finite Pigeonhole Principle 98

6.1.1 Formalization . 99
6.1.2 The Program Extracted from FPH 102

6.2 The Erdös-Szekeres theorem 107
6.2.1 Formalization Issues 109
6.2.2 The Double-negated FPH 114
6.2.3 Formalization of the Erdös-Szekeres Theorem 118
6.2.4 Extracted Program . 120

6.3 Summary of the Chapter . 123

7 Dickson’s Lemma 125
7.1 Terminology . 126
7.2 The Minimum Principle . 128
7.3 Equivalent Formulations . 129
7.4 A Π0

2-Corollary of Dickson’s Lemma 135
7.4.1 A Simplified Statement. 135

CONTENTS xv

7.4.2 Generalization . 142
7.5 Applications of Dickson’s Lemma 145

7.5.1 Further Terminology 145
7.5.2 Dickson’s Lemma in the Gröbner Bases Theory 147

7.6 Summary of the Chapter . 149

8 Refined Double-Negation 151
8.1 Negations . 152
8.2 Critical Predicate Symbols . 154
8.3 Refined Double Negation . 157

8.3.1 Obtaining Definite/Goal Formulas 157
8.3.2 Refined Double Negation of Proofs 160

8.4 Examples . 162
8.4.1 The ”Least” Element in a Well-Founded Set 162
8.4.2 The Infinite Pigeonhole Principle (Chapter 5) 164
8.4.3 Dickson’s Lemma (Chapter 7) 166
8.4.4 The Erdös-Szekeres Theorem (Chapter 6) 167

8.5 Further Refinement of the Double Negation 175
8.6 Summary of the Chapter . 178

9 Decoration of Proofs 181
9.1 Terminlogy . 182
9.2 Decoration of Axioms . 186
9.3 Decoration Algorithm . 189
9.4 Examples . 200

9.4.1 Decoration of Implication 200
9.4.2 Program Transformation by Decorations 200
9.4.3 List reversal . 206

9.5 Summary of the Chapter . 211

10 Concluding Remarks 213
10.1 Overview of this Thesis . 213
10.2 Contributions . 216
10.3 Future Lines of Research . 217

A Technical Details 221
A.1 The Erdös-Szekeres Theorem 221
A.2 Dickson’s Lemma . 226

xvi CONTENTS

Chapter 1

Introduction

In this thesis we are concerned with the interpretation of non-constructive
existence proofs, such that their computational content is extracted into
computable functionals. The reason why such proofs are of interest is that in
traditional mathematical textbooks no attention is payed to the distinction
between classical and constructive principles and many of the proofs are in-
direct, i.e., they show existential statements by contradiction. However, the
distinction is essential in regards to the interpretation given to the existen-
tial quantifier. Whereas intuitionistic logic requires a witness to be provided
in order to validate existential statements, in classical logic the existence is
seen merely as an abbreviation, in the sense: ∃̃xA ≡ (∀xA→ ⊥)→ ⊥.

As a consequence, when associating programs to existence proofs, the
classical components have the drawback that their computational content is
most often hidden. For this reason, efforts have been invested into uncover-
ing the computational meaning of classical1 proofs or, in other words, into
extracting the witness for y in ~G, when the goal formula is ∀x∃y ~G(x, y).

We read the Π0
2-formulas ∀x∃yG(x, y) as:

”Assume that an input x and a property G which x should fulfill are given.
Is there an algorithm which produces an output y from this input, such that
the requirement G on x is met?”.

It is known that the Π0
2- formulas with arithmetical and decidable kernel

are equiderivable in classical and intuitionistic logic2, i.e.

Γ `c ∀x∃yG(x, y) iff Γ′ `i ∀x∃yG(x, y) (1.1)

1By abuse of the language, we refer to classical proofs when in a strict sense we mean
the fragment of constructive logic in which ∃ is not explicit.

2 `c denotes derivability in classical and `i in intuitionistic logic.

1

2 CHAPTER 1. INTRODUCTION

This suggests that given proofs by contradiction of ∀x∃yG(x, y) it should
be possible to obtain their constructive counterpart and thus unravel the
computational content. In order to achieve this, we need to recover the con-
structive semantics of ∃ and identify the witness provided in the proof. For
this we need to either assign proper interpretations to the classical principles
or give some intuitionistically valid versions by adequate translations.

In the case of intuitionistic proofs the semantics associated to the logical
operators allows for their interpretation as programs, via the formulas-as-
types correspondence. Transforming classical proofs in their constructive
counterparts would also enable us to use this interpretation. By the Curry-
Howard isomorphism, it would then be possible to associate computational
λ-terms to the inference rules of Natural Deduction.

Beginning as early as the 1930’s with the work of Gödel, various methods
have been proposed in order to transform classical proofs into constructive
ones. Gödel (1933), in parallel with Gentzen (1936), developed a form of
double-negation translation, which has further developed into variants. Fur-
ther, Gödel (1958) introduced the so-called “Dialectica Interpretation”. In
this thesis, we focus on a transformation method as presented in (Fried-
man, 1978), which is a hybrid of the Gödel-Gentzen negative translation
and Friedman-Dragalin’s trick - also known as A-translation. We work with
a refinement of this method, as proposed in (Berger et al., 2002) and fur-
ther improved in (Schwichtenberg, 2007). The role of this refinement is to
minimize the occurrences of the logical falsity, with the purpose of brushing
up the associated programs of redundant computations.

1.1 The Problem and Proposed Solutions

Our work investigates under which circumstances and with what results we
can synthesize programs from classical proofs of Π0

2-formulas. More pre-
cisely, we analyze the computational potential of proofs in the fragment of
the intuitionistic logic which coincides with the classical logic. From this we
exclude not only Stab⊥, but also efq⊥, thus obtaining the minimal logic sys-
tem NAω. The interpretation given to the weak existential quantifier, seen
as an abbreviation for (∀xA→ ⊥)→ ⊥ delimits the system as “classical”.

In order to unravel the computational content in classical proofs we use
the A-Translation. However, as the PhD Thesis (Murthy, 1990) has re-
vealed, the introduction of double negations in the process of A-translating,
not only makes the proofs expand exponentially, but it consequently intro-
duces unnecessary computations in the extracted programs. By working in

1.1. THE PROBLEM AND PROPOSED SOLUTIONS 3

the fragment of minimal logic, the insertion of double negations is no longer
necessary. Moreover, (Berger et al., 2002) identifies a class of formulas for
which the number of computationally relevant negations can be further min-
imized. When it has no computational contribution, the logical falsity ⊥ is
substituted by a constant for ”false” (F) which is of null type. The remain-
ing ⊥ are substituted by the strong existence goal, such that the intended
semantics of ∃ is recovered. This is then coupled with modified realizability,
in order to associate computational terms to the translated proof terms.

The classes of formulas for which the refined A-Translation is defined
introduce significant constraints. In order to enhance the applicability do-
main of the method, we propose in this thesis to insert double negations in a
controlled and restrictive manner. For this, it suffices to negate only atoms
containing “critical predicate symbols” as defined in (Berger et al., 2002).

On top of these constraints, the minimal logic system NAω in which we
are working can be seen as rather restrictive, since efq⊥ and Stab⊥ are not
accepted. This makes the unification of the assumptions, among which we
have ∀x(G→ ⊥) resulting from unfolding the ∃̃, sometimes impossible. The
versions of efq and Stab in which negations are represented as constants
are provable; moreover, the double negations of efq⊥ and Stab⊥ are NAω-
provable. Thus, a careful manipulation of negations could enable us to
overcome the aforementioned restriction. For this purpose we identify in this
thesis the so-called L-critical atoms which we double negate with the purpose
of embedding some classically valid formulas into minimal logic. Because no
other atoms need to be double negated in the process of A-translation as a
result we minimize in the associated programs the redundant information,
arising from the use of logical falsity.

We will also show in this thesis that it is possible to further improve the
extracted terms, by associating so-called decorations to the logical opera-
tors. These can be seen as colorings, marking the operators according to
their computational relevance, such that when we apply the modified realiz-
ability, the terms associated to the irrelevant formulas are eliminated from
the extracted programs. Since in NAω we only have the ∀-quantifier and the
→ connector3, we will exemplify in this work only the decorations for these
operators. Further decorations for the strong ∃ and ∨ are also possible and
the decoration algorithm can be applied directly to constructive proofs.

The theoretical aspects are supported by some relevant examples. These
will serve a double-folded purpose: on one hand, we analyze the effects of
the refined A-translation in terms of the extracted programs, in view of its

3∃̃ and ∨̃ are seen as abbreviations.

4 CHAPTER 1. INTRODUCTION

relation to various programming techniques. On the other hand, based on
these examples, we identify the issues arising from the use of the method,
in the sense of the aforementioned restrictions. The case studies will serve
as a starting point for the statements which we make regarding the use of
double negation, inserted around special atoms, called L-critical, in order to
overcome these restrictions.

1.2 Contributions

The contributions of this dissertation evolve around the refined A-Translations
and can be divided in three main categories:

• the extention of the field of application of the translation method

• the application of the A-Translation to selected problems

• a decoration algorithm for the marking of quantifiers and connectors,
according to their computational relevance.

The third contribution is in fact a general method, independent of the trans-
lation procedure used to extract programs from classical proofs. It turns out
that the decoration procedure, applicable at the proof level, can be used also
directly on constructive proofs.

More precisely, the contributions, summarized also in Figure 1.1, are:

• an analysis of the specifics of the refined A-Translation, with an ex-
tension of its field of application:

– a new perspective on the classes of goal/definite formulas to which
A-Translation is applied: we introduce these classes in Chapter 3
and compare them to similar ones from the literature in Section 3.5,
in order to gain insight on the role of the imposed restrictions

– the “refined double negation” for a controlled insertion of negations,
in order to transform intuitionistic proofs into minimal logic ones
and to obtain definite/goal formulas, as described in Chapter 8

– observations regarding the correlation between A-Translation and
programming techniques (tail recursion and the control operators)
are made in Chapter 4

• the analysis of the programs extracted from non-constructive proofs of
some Π0

2-theorems, after transformation by the refined A-Translation.
The selected case studies are:

1.3. ROAD-MAP OF THE THESIS 5

– the corollary of the Infinite Pigeonhole Principle, both for a simpli-
fied and the general case (Chapter 5)

– a modified version of the Finite Pigeonhole Principle and the Erdös-
Szekeres Theorem (Chapter 6)

– a corollary of Dickson’s Lemma; we have investigated also the cor-
relations between various formulations of Dickson’s Lemma in view
of its applications in the Gröbner Basis Theory (Chapter 7)

We have formalized these examples in the proof assistant (Minlog),
which allows to exploit the proofs-as-programs paradigm for program
development. Based on minimal logic, Minlog allows the extraction of
programs from classical proofs, by providing a special package which
deploys the refined A-Translation method.

• the Decoration Algorithm used for marking operators according to
their computational relevance, in order to eliminate redundancies in
the extracted programs. In Chapter 9 we:

– refine the notions of computational types, proof terms, extracted
terms and the Natural Deduction rules, in order to incorporate these
markings

– provide the decorated form of the uninstantiated4 axioms

– describe the decoration algorithm and prove it to be correct, optimal
and terminating

– apply the decoration method to some test problems

1.3 Road-map of the Thesis

We work in this thesis in a negative fragment of Heyting’s arithmetic, re-
stricted to →, ¬ and ∀. We present our system NAω in Chapter 2 and give
the interpretation for the weak operators ∃̃ and ∨̃ . Negation plays a spe-
cial role in our system and can be taken to be either the constant F or the
predicate variable ⊥, as presented in Section 2.2. Consequently, a special
treatment concerns efq and Stab, which have two forms, depending on which
from of negation is used - Section 2.3.2 provides more detail on this.

As we have already mentioned, we build our interpretation of classical
proofs on a refined version of the Friedman-Dragalin (A-)Translation. In

4Uninstantiated in the sense that the axioms may contain predicate variables.

6 CHAPTER 1. INTRODUCTION

Chapter 5: The Infinite Pigeonhole Principle

Case Studies Chapter 6: The Erdős-Szekeres Theorem

Chapter 7: Dickson's Lemma

Refined
A-Translation

Chapter 5: The Infinite Pigeonhole Principle

Chapter 3: Definite and Goal Formulas

Chapter 5: The Infinite Pigeonhole Principle

Chapter 8: Refined Double Negation

Chapter 4: A-Translation and Programming Techniques

The Decoration
Algorithm Chapter 10: Decoration of Proofs

Figure 1.1: Contributions of the dissertation

Chapter 3 we overview the original method and give its refinement due to
(Berger et al., 2002). As central notions, we present in Section 3.3 some
special classes of formulas, called definite and goal, to which the refined A-
Translation can be applied. The machinery which identifies the terms that
do not contribute computationally - i.e., where ⊥ does not occur or can be
replaced by its computationally irrelevant variant F, with the purpose of
discarding the irrelevant components, is presented in Section 3.3. The next
Section 3.4 presents the mechanism by which programs are associated to
the A-Translated proofs. In Section 3.5 we make a comparison between the
definite/goal classes and a related work of (Ishihara, 2000). The aim was
to identify whether an extension of these classes to which the refined A-
Translation is applicable is possible - however, with a negative answer. The
comparison in Section 3.5 shows the necessity of the restrictions imposed on
the definite/goal formulas when proofs are carried out in minimal logic.

Chapter 4 underlines some specific programming techniques associated
with the extracted programs, in view of related work. On one hand, we

1.3. ROAD-MAP OF THE THESIS 7

establish connections with the concept of continuation passing style which
has been put by (Griffin, 1990) in correspondence with the computational
content of classical proofs. On the other hand, we observe that the tail form
of recursion resulting from the application of some transformation techniques
to constructive proofs as proposed in (Chiarabini, 2010) is in general implicit
in the corresponding A-translated classical proofs.

We present in the following chapters of this thesis the outcome of apply-
ing this refined form of A-translation to a series of interesting case studies:

• starting from Stolzenberg’s example, we have generalized it in Chapter 5
to the Infinite Pigeonhole Principle (IPH), stating that any infinite se-
quence that is colored with finitely many colors has an infinite monochro-
matic subsequence. We analyze the behavior of A-Translation on a corol-
lary of this principle and present the simplified case of a boolean sequence
in Section 5.1 and the generalization to r colors in Section 5.2. We carry
out in Section 5.2.4 an extensive analysis of the extracted program from
the corollary of (IPH).

• the finite version of the Pigeonhole Principle (FPH) is used to prove an
interesting result in combinatorics due to Erdös and Szekeres, showing the
existence of monotonically increasing/decreasing subsequences of a given
sequence. Unlike its infinite counterpart - which is however unrelated
computationally - (FPH) is a Π0

2-formula. Since the original formulation is
not appropriate in order to prove the Erdös-Szekeres Theorem in minimal
logic, a double-negated form of the assumption needs to be considered.
We present a classical proof of (FPH), its double negated variant and the
use of the latter in the proof of the Erdös-Szekeres Theorem in Chapter
6. In each case we present the corresponding extracted programs and
comment on the specifics arising from using the refined A-Translation.

• Dickson’s Lemma, which plays an essential role for Buchberger’s Algo-
rithm for computing the Gröbner Basis, asserts that for any (finite) num-
ber of infinite sequences of natural numbers, there exists an unbounded
set M , such that each of these sequence increases on M .

The strong version of Dickson’s Lemma is not suited for the refined A-
translation, as discussed in Chapter 7. In Section 7.3 we present the
correlations between the various formulations, in order to understand the
strength of the variant which we have analyzed. In Section 7.4 we carry
out a thorough analysis of the A-translated Π0

2-corollary of the lemma for
the case of two functions increasing in two distinct points and the general

8 CHAPTER 1. INTRODUCTION

case of arbitrary functions; we analyze the extracted program from the
perspective of the computation by continuations.

Our motivation for analyzing Dickson’s Lemma was its use in the Gröbner
Bases Theory, so we overview in Section 7.5 its applications in this context.
We propose further lines of investigation and suggest to shift the use of
the refined A-Translation to these applications. We also sketch a possible
relation between Dickson’s Lemma and some constructive and classical
principles, in order to determine the strength of the classical variant that
we have investigated in this thesis.

As a result of analyzing the above listed examples (see also Section 8.4),
we have observed that some parts of the proofs require efq⊥. Since the dou-
ble negated form of efq⊥ is NAω-provable, in order to carry out the proofs in
minimal logic, it is sufficient to modify the formulations of the theorems by
introducing some explicit negations. The aim is to keep the double-negations
under control, such that the extracted programs do not contain redundant
terms arising from substituting each logical falsity by computational formu-
las during the refined A-Translation. In order to insert only the necessary
double negations, we use in Chapter 8, Section 8.2, the concept of L-critical
predicate symbols from Berger et al. (2002) and introduce in Section 8.3 the
Refined Double Negation method. In Section 8.3.1 we show that by this
method one can obtain definite/goal formulas.

In Chapter 9 we go a step further in the brush-up of extracted pro-
grams and propose an annotation of the logical operators, by which the
non-computational ones are marked accordingly. Starting from the work
of (Berger, 2005), which introduces ∀nc, we propose to distinguish between
relevant/irrelevant implications and call the .c/.nc markings “decorations”.
The extraction procedure is adapted accordingly and the redundant parts
corresponding to the nc-operators are eliminated from the associated pro-
grams. Since this procedure is parameterized by the axioms and global
assumptions, we discuss the a-priori decoration of the relevant axioms in
Section 9.2. We present in Section 9.3 the algorithm introduced in (Ratiu
and Schwichtenberg, 2010) with the purpose of decorating the proofs in such
a way, that all computationally irrelevant universal quantifiers and implica-
tions are marked as such. We illustrate in Section 9.4 the application of the
decoration algorithm on some simple, but relevant examples and pointing
out the improvements in the extracted programs.

Concluding remarks and an overview of problems of interest for further
research are summarized in Chapter 10. Some implementation details and
unfoldings for some extracted terms are gathered in Appendixes A.1, A.2.

Chapter 2

NAω as the Negative
Fragment of HAω

We introduce in this chapter the language and the notations used throughout
the thesis. The system described in the following is based on Gödel’s System
T (Gödel, 1958) and constitutes a negative fragment of Heyting’s Arithmetic
(Heyting, 1966) with finite types (HAω) (cf. (Troelstra, 1973)). We restrict
the language to→ and ∀ for reasons that should become clear in Section 2.2,
in particular in the Paragraph “Weak and Strong Operators” on page 14, and
refer the resulting system as the Negative Arithmetic (NAω). For decidable
formulas this fragment of intuitionistic logic coincides with classical logic in
terms of provability, but differs with respect to the semantics associated to
some of the logical operators. In particular, the weak existential quantifier
is viewed only as an abbreviation for the formula (∀xG → ⊥) → ⊥, as
presented in Section 2.2, so it has no explicit constructive meaning.

We begin by defining in Section 2.1 the fundamental notions of types,
terms, formulas and proof terms. In the process of translating the proofs in
order to extract their computational content, negation will play an essential
role. Thus, special care is taken in defining negation and the weak operators
∃̃ and ∧̃ . Section 2.3 overviews the axioms on which the theory is built with
a special treatment in the case of efq and Stab, since they involve negations.
In Section 2.4 we summarize the inference rules of the Natural Deduction
system and we conclude the chapter with a brief summary in Section 2.5
justifying the choice for minimal logic.

9

10 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

2.1 Language Specification

We consider the following base types, having as domains free algebras,
defined in terms of their constructors:

Natural numbers: N := µα (α, α→ α), given by 0N, SuccN⇒N

Booleans: B := µα (α, α) , constructed by ttB,ffB

Lists: L(ρ) := µα (α, ρ → α → α), parameterized by the simple types of
their elements and built by nilρ, consρ⇒L(ρ)⇒L(ρ).

where α and ρ are type variables.

Notation 2.1. We abbreviate SuccnN by Sn and consxρ lL(ρ) by x :: l.

Definition 2.1 (Types). Starting from the base types, further simple types
(ρ, σ) are built by the function and product type constructors:

ρ, σ := N | B | L(ρ) | ρ⇒ σ | ρ× σ

Notation 2.2. Terms, as given by the following definition, are considered
to be always typed, but whenever clear from the context, the types will be
omitted. Otherwise, we write the type α of t either as a superscript (tα) or
following the term (t : α).

Definition 2.2 (Terms). Terms are defined inductively and are formed by
abstraction, application, pairing and projection from typed variables (xρ)
and constants (the previously introduced constructors, the recursion and the
cases operators):

s, t := xρ | (λxρtσ)ρ⇒σ | (sρ⇒σtρ)σ | 〈tρ, sσ〉ρ×σ | (tρ×σ)ρ0 | (t
ρ×σ)σ1 |

0N | SN→N | ttB | ffB | nilL(ρ) | consρ⇒L(ρ)⇒L(ρ) |
RσB | RσN | RσL(ρ) | C

σ
N | CσL(ρ)

The full typing for the recursion operators is as follows:

RσB : B⇒ σ ⇒ σ ⇒ σ,

RσN : N⇒ σ ⇒ (N⇒ σ ⇒ σ)⇒ σ,

RσL(ρ) : L(ρ)⇒ σ ⇒ (ρ⇒ L(ρ)⇒ σ ⇒ σ)⇒ σ.

2.1. LANGUAGE SPECIFICATION 11

The conversion rules are as known from Gödel’s T

RB(tt, f, g) = f, RB(ff, f, g) = g

RN(0, f, g) = f, RN(Sn, f, g) = g(n,RN(n, f, g))
RL(nil, f, g) = f, RL(n :: l, f, g) = g(n, l,RL(l, f, g)).

C (“Cases”) correspond to the if () then else constructs. Their typing is:

CσN : N⇒ σ ⇒ (N⇒ σ)⇒ σ

CσL(ρ) : L(ρ)⇒ σ ⇒ (ρ⇒ L(ρ)⇒ σ)⇒ σ,

and the conversion rules are:

CN,σ(n, f, g)=if (n = 0) then f else g (n− 1),
CL,σ(l, f, g) =if (l = nil) then f else (g l0 cdr l),

with (cdr l) denoting the list l without its head element.

Notation 2.3. The element at position mN in the list l is denoted by lm,
with l0 the head of the list. For the length of the list l we use the notation
|l|. Sometimes, when referring to lists over N we omit the type parameter.

We allow a special unit type which we denote by ε and, by abuse of
notation, take the terms of this special type to be also ε. As we will dis-
cuss in Section 3.4 on realizability, the ε is associated with computationally
irrelevant formulas. We make the following conventions:

εt := ε, tε := t, εε := ε
(ρ⇒ ε) := ε, (ε⇒ σ) := σ, (ε⇒ ε) := ε.

(ε red.)

Definition 2.3 (Formulas). Let P be a predicate variable of arity n and
signature ρ1 × . . .× ρn, t1, . . . , tn typed terms and r a boolean term.

Prime formulas, also called atoms are constructs of the form

P (tρ11 . . . , tρnn) | Eq(r, tt),

where Eq is the Leibniz Equality as defined in Section 2.2 and Eq(r, tt) lifts
the boolean term r to a formula.

Formulas are built from prime formulas by the connectors →, ∧ and the
universal quantifier ∀1:

A,B := P (tρ11 , . . . , t
ρn
n) | ⊥ | A→ B | A ∧B | ∀xσA.

1We refer generically to the connectors→, ∧ and the universal quantifier ∀ as operators.

12 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

Notation 2.4. Formulas are also denoted by ψ, φ,

In addition to → and ∀, we use the classical (or weak) logical operators
∃̃ and ∨̃ , but regard them only as abbreviations (see page 14).

Notation 2.5. We make the following conventions:

• ∀ and ¬ bind stronger than ∧, which binds stronger than →.

• → is associative to the right:

A→ B → C abbreviates A→ (B → C) and is equivalent to A∧B → C.

• we use the “dot”-notation, whenever this saves on parentheses

∀x. A1(x)→ · · · → An(x) stands for ∀x(A1(x)→ · · · → An(x)).

The scope of x extends up to the closing parenthesis corresponding to
the last one opened before ∀x. If all parenthesis opened before ∀x are
also closed before ∀x, then x is bound by the universal quantifier for
the remaining subformula.

Notation 2.6. We use the abbreviations ~A for A1...An and ~A → B for
A1 → ...→ An → B.

Definition 2.4. A formula is said to be arithmetical if the quantifiers do
not range over predicate variables.

Formulas are always arithmetical in our system, so no higher order quan-
tifiers are introduced in the language. Since they are viewed as place holders
for comprehension terms, the predicate variables allow us to “simulate” part
of the higher order logic. At the same time, our system is conservative over
the first order logic.

Definition 2.5. (a) Let A be an arithmetical formula. A comprehension
term is an entity of the form

λx1, . . . , xn.A,

also denoted by { ~x | A }, where ~x = {x1, ..., xn} may appear free in A,
which may contain further free variables.

(b) A predicate variable of arity n is seen as a place holder for a compre-
hension term λx1, . . . , xn.A as defined above.

2.1. LANGUAGE SPECIFICATION 13

Remark 2.1. In the comprehension term { ~x | A }, the formula A may
contain predicate variables.

The capture-free substitutions M [x/t] and M [u/N], are defined induc-
tively as usual (see for instance (Troelstra and Schwichtenberg, 2000)):

Definition 2.6 (Substitution). Let M [x/t] denote the substitution of the
term t for the variable x in the term/formula M . We have:

x[x/t] := t

y[x/t] := y, when y 6= x

(M1M2)[x/t] := (M1[x/t]) (M2[x/t])
(λx. M)[x/t] := λx. M

(λy. M)[x/t] := λy. M [x/t], when y 6= x,

where y 6∈ FV(t).

Notation 2.7. B[X/{ ~x | A }], B[{ ~x | A }] or B[A] are used to denote the
substitution of the comprehension term { ~x | A } for the predicate variable X
in the formula B.

Definition 2.7. A formula of the form ∀~x∃~y ~A(~x, ~y), with ~A ∈ NAω quanti-
fier free, is referred to as a Π2

0-formula.

Definition 2.8. We define positive, negative, strictly positive subformula
inductively 2

(a) A is a (strictly) positive subformula of itself

(b) if B ∧ C is a (strictly) positive (or negative) subformula of A, then so
are B and C

(c) if ∀xB(x) is a (strictly) positive (or negative) subformula of A, then so
is B(r), for any r free for x in B

(d) if B → C is a positive (negative) subformula of A, then B is a negative
(positive) subformula of A and C a positive (negative) subformula of A

(e) if B → C is a strictly positive subformula of A, then so is C.

Notation 2.8. We abbreviate “Truth”given by the formula Eq(tt, tt) as T.
AxT stands for the “Truth Axiom”, Ind for the Induction Axioms and

Cases for the Case Distinction Axioms.
2We use the formulation from (Schwichtenberg and Wainer, 2011)

14 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

Definition 2.9. Proof terms (M,N) of NAω are defined as follows:

M,N ::= uA | (λuAMB)A→B | (MA→BNA)B |
(∗) (λxρMA(x))∀xρA(x) | (M∀xρA(x)tρ)A(t) |

AxT : T | Ind
∀nN . A(0)→∀nN (A(n)→A(Sn))→A(n)

N,A(n) |

Ind
∀bB . A(tt)→A(ff)→A(b)

B,A(b) | Ind
∀lL . A(nil)→∀nN,l′L (A(l′)→A(n :: l′))→A(l)

L,A(l) |

Cases
∀nN . A(0)→∀nA(Sn)→A(n)

N,A(n) | Cases
∀lL . A(nil)→∀nN,l′LA(n :: l′)→A(l)

L,A(l) ,

with (∗) being the variable condition that the object variable x does not occur
freely in any of the open assumptions of M .

The sets of free variables FV(M) and free (open) assumption variables
FA(M) are introduced in Section 2.4.

2.2 Weak and Strong Operators

As we will see in Chapter 3 on the refined A-Translation - in particular
Lemma 3.6 -, when transforming the proofs by the Gödel-Gentzen- or the A-
Translation, negations play a special role. We therefore distinguish between
the arithmetical falsity F and the logical falsity ⊥. The first is defined as a
constant, while the latter is taken to be a predicate variable, which allows
to substitute arbitrary formulas for ⊥.

In order to introduce the arithmetical falsity, we consider the Leibniz
equality , defined inductively by the predicate Eq(x, y) in terms of

- the introduction axiom: Eq+ : ∀xEq(xρ, xρ)

- the elimination axiom: Eq− : ∀x,y
(
Eq(x, y)→ ∀zC(z, z)→ C(x, y)

)
.

With this, we have the following forms of negation:

• F, defined as Eq(ff, tt)

• ⊥, the (logical) falsity, defined as a 0-ary predicate variable and thus
a (special) prime formula.

Notation 2.9. We use the abbreviations ¬A := A→ F and ¬̃A := A→ ⊥.

Remark 2.2. When we do not need/want a predicate variable for “falsity”,
i.e. in the case when we want to inhibit substitution in a negated formula,
we use the arithmetical falsity, F.

2.3. AXIOMS 15

The classical (or weak) logical operators are viewed only as abbreviations
and we use the tilde (∃̃, ∨̃), in order to distinguish them from the usual
(strong or constructive) operators.

The existential quantifier. In the situations when we need to refer to
existentially-quantified formulas in a constructive (strong) sense, we will use
the standard notation, ∃xA. Otherwise, ∃̃ has the following meaning:

∃̃xA := ¬̃(∀x ¬̃A) = ∀x(A→ ⊥)→ ⊥.

If needed, the strong existential quantifier ∃ can be defined in terms of
introduction and elimination axioms.

Disjunction. ∨̃ can be expressed in many ways, due to the symmetry.
The interpretation is given by:

A ∨̃ B := ¬̃A→ ¬̃B → ⊥.

We will consider instead the formulas ¬̃A→ B or ¬̃B → A when this does
not come in conflict with the logic, i.e., camouflage a use of Stab⊥.

If needed, (strong) ∨ can be introduced by axioms, as on page 25.

Conjunction. If the conjunction appears in the kernel of a classical exis-
tence statement, then when unfolding the formula, ∧ needs to be changed
to →. More precisely, ∃̃x(A ∧ B) should unfold to ¬̃∀x. A → B → ⊥ and
not to ¬̃∀x. A ∧B → ⊥. To make this explicit, we use the notation ∧̃ :

∃̃x(A ∧̃ B) := ∀x(A→ B → ⊥)→ ⊥.

Otherwise, the conjunction has the known semantics and is given by the
Natural Deduction rules on page 20.

2.3 Axioms

2.3.1 Induction and Cases

We use the following induction schemes

Indb,A : ∀bB . A(tt)→ A(ff)→ A(b),
Indn,A : ∀mN . A(0)→ ∀nN(A(n)→ A(Sn))→ A(m),
Indl,A : ∀lL(ρ) . A(nil)→ ∀xN,l′L(ρ)(A(l′)→ A(x :: l′))→ A(l),

16 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

and the case distinction

Casesm,A : ∀mN . A(0)→ ∀nA(Sn)→ A(m)
Casesl,A : ∀lL(ρ) . A(nil)→ ∀n,l′A(n :: l′)→ A(l)

2.3.2 efq and Stab

As a consequence of distinguishing between F and ⊥, the axioms involving
negation have two forms, as is the case with “Ex falso quodlibet” (efq) and
the “Law of Stability” (Stab) :

efqA : F→ A efq⊥A : ⊥ → A

StabA : ¬¬A→ A Stab⊥A : ¬̃ ¬̃A→ A,

For reasons that will become clear once we introduce the refined A-
Translation, we choose to work in minimal logic, hence we do not allow efq⊥

and Stab⊥. We will explain this in more detail in Section 8.1. However,
for formulas A which do not have free predicate variables we can prove in
minimal logic both efqA and StabA.

Lemma 2.1. For any formula A with no free predicate variables,

`m efqA and `m StabA.

Proof. We show the two principles by structural induction on A. In the
derivation trees IH stands for Induction Hypothesis. The proofs are pre-
sented in Natural Deduction style (see Section 2.4 for the rules).

` efqA

Case A atomic. We use AxT and IndB.

By Indb,efq, it suffices to show efqF and efqT. We have

Indb,efqA

u : F →+ uF→ F
AxT →+

F→ T
→−efqA

Case A→ B

IH: F→ B u : F →−B →+
A→ B →+ uF→ (A→ B)

2.3. AXIOMS 17

Case A ∧B

IH: F→ A u : F →−A
IH: F→ B u : F →−B ∧+

A ∧B →+ uF → A ∧B

Case ∀xA

IH: F→ A u : F →−A ∀+x
∀xA →+ uF → ∀xA

` StabA

Case A atomic. We use AxT and IndB.

By Indb,Stab, it suffices to show StabF and StabT. We have

Indb,efqA

u2 : ¬¬F
u1 : F →+ u1F→ F

→−F →+ u2¬¬F→ F
AxT →+

¬¬T→ T
→−StabA

Case A→ B

We assume u1 : ¬¬(A→ B) and u2 : A and show B.

IH: ¬¬B → B

u1

u4 : ¬B
u3 : A→ B u2 →−B

→−F →+ u3¬(A→ B)
→−F →+ u4¬¬B →−B

Case A ∧B.

We assume u1 : ¬¬(A∧B) and show A∧B. We give only the derivation
of A, since B can be inferred in a very symmetrical way. A ∧ B can
be then obtained by ∧+.

18 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

IH: ¬¬A→ A

u1

u2 : ¬A
u3 : A ∧B

∧−A
→−F →+ u3¬(A ∧B)

→−F →+ u2¬¬A →−A

Case ∀xA.

We assume u1 : ¬¬∀xA, fix an arbitrary x and show A.

IH: ¬¬A→ A

u1

u3 : ¬A
u2 : ∀xA x ∀−

A
→−F →+ u2¬∀xA →−F →+ u3¬¬A →−A

Remark 2.3. In general, one can show in minimal logic Stab⊥ ¬̃A, for any
A. In particular, due to the interpretation given to ∃̃ Stab⊥∃̃xA is provable
in minimal logic, as follows

w: ¬̃ ¬̃(¬̃(∀x ¬̃A))

u: ¬̃(∀x ¬̃A) v: ∀x ¬̃A
→−⊥ →+ u¬̃(¬̃(∀x ¬̃A))

→−⊥ →+ v¬̃(∀x ¬̃A)

2.3.3 Other Axioms

We also allow in NAω the Axiom of Choice (AC) and the Axiom of Dependent
Choice (DC):

AC: ∀x∃̃yP (x, y)→ ∃̃f∀xP (x, fx)

DC: ∀n,x∃̃yP (n, x, y)→ ∀x∃̃f . f(0) = x ∧̃ ∀nP (n, fn, f(Sn))

2.4 Natural Deduction

We work with proofs in Natural Deduction-style. Introduced by (Gentzen,
1934), the system expresses the mathematical reasoning in terms of infer-

2.4. NATURAL DEDUCTION 19

ence rules. The set of rules come in pairs - introduction and elimination,
respectively.

We summarize in Table 2.1 the rules for the connectors that we have
defined. For the ∀+-rule, the (Eigen-) variable condition that the variable x
is free in the open/free assumptions of the derivation M3:

(∗)x 6∈ FV(FA(MA))

needs to be fulfilled.

Definition 2.10. The set of free variables of a derivation M , denoted by
FV(M), is defined inductively in the standard way:

FV(x) = {x}
FV(M N) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}
FV(M t) = FV(M) ∪ {t}

As can be seen in the table, Gentzen’s proof calculus allows us to illus-
trate the Curry-Howard correspondence, by which each inference rule has an
associated λ-term. By viewing formulas as types we are able to extract pro-
grams from the intuitionistic proofs. In what follows, we use alternatively
the representation of proofs as natural deduction trees and as lambda-terms,
having this correspondence in mind.

Notation 2.10. When writing proofs in natural deduction style we some-
times write [u : A] to mark that the assumption A is discharged in the proof.

Notation 2.11. We will sometimes omit the ∀-quantification, when it is
clear from the context that the terms appearing free should be universally
quantified. In such cases quantification is understood as ranging over the
entire formula.

Definition 2.11. The set of free assumptions of a derivation M , denoted
by FA(M), is defined inductively, according to the inference rules:

FA(u) = {u}
FA((λuA.MB)A→B) = FA(M) \ {u}
FA((MA→BNA)B) = FA(M) ∪ FA(N)

FA((λx.MA)∀xA) = FA(M)

FA((M∀xAt)A(t)) = FA(M)
3The sets FV and FA are given by Definitions 2.10 and 2.11 and FV(FA(M)) is taken

to be colection of the free variables in the free assumptions from the derivation M

20 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

Inference rule λ-term

u : A uA

[u : A]
|M
B →+ uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (∗)
∀xA

(λxMA)∀xA (∗)

|M
∀xA r

∀−
A(r)

(M∀xAr)A(r)

|M
A

| N
B ∧+

A ∧B
〈MA, NB〉A∧B

|M
A ∧B

[u : A] [v : B]
| N
C ∧−u, v

C

(MA∧B(uA, vB, NC))C

Table 2.1: Derivation terms for →, ∀ and ∧

2.5. SUMMARY OF THE CHAPTER 21

2.5 Summary of the Chapter

The Logic In this chapter we introduce the system NAω, which builds
on Gödel’s System T and is a negative fragment of Heyting’s Arithmetic
with finite types. We carry out the proofs in minimal logic, but when not
clear from the context or when we want to emphasize in which system the
formulas are valid, we use the following notation:

`m for derivability in minimal logic

`i for derivability in intuitionistic logic, i.e., minimal logic + efq⊥

`c for derivability in classical logic, i.e., intuitionistic logic + Stab⊥

A discussion at length on efq⊥A and the reason why we are excluding it
in addition to Stab⊥, in connection with the observations made in Subsection
2.3.2, is carried out in Section 8.1.

In our (minimal) setting, the distinction between classical and construc-
tive proofs relies (only) in the semantics that we fix a-priori for the existen-
tial quantifier. As seen in this chapter, the classical existential quantifier is
viewed as an abbreviation and thus proofs of ∃̃-formulas consist in deriving
⊥ and therefore they can be regarded as proofs by contradiction. To recover
the computational (or constructive) content in the classical proofs, we rely
on the fact that the Π0

2-formulas are equiderivable in both systems and use
the translation mechanism introduced in the following chapter.

Summary of this chapter. Among the key notions used throughout this
thesis, we define in Section 2.1 the types, terms, formulas and proof terms.
Since the terms are built using also the recursion operators which will be
associated to the induction axioms when extracting programs from proofs,
we have presented in this chapter the corresponding reduction rules. We
have given the main notations and abbreviations used in this thesis.

Special care is payed to the weak operators ∨̃ , ∃̃, ∧̃ and ¬̃, which we
see only as abbreviation and treat in Section 2.2. We distinguish among the
logical falsity ⊥ and the arithmetical F, since we want to allow substitution
of the former when A-translating the proofs. Consequently, the axioms efq
and efq⊥ require special treatment, as presented in Section 2.3.2.

Proofs are presented both as derivation trees in natural deduction style
and as λ-terms. In Section 2.4 we have presented the connection between
the two.

22 CHAPTER 2. NAω AS THE NEGATIVE FRAGMENT OF HAω

Chapter 3

A-Translation and its
Refined Version

By working in a fragment of classical logic in which ∃ is not explicit, but
rather an abbreviation, the proofs of Π0

2-formulas do not provide a witness in
an explicit manner. For this reason, recovering the computational content
of existential goals cannot be done in a direct way by the Curry-Howard
correspondence. Therefore, we need to apply first a transformation method
on the proofs, in order to lift them to a form in which the computational
content becomes explicit. In order to do this, we have to consider a special
treatment of the negation, which plays in this process the role of a place
holder for “strong” instances of the existential goal formula.

This chapter is organized as follows: Section 3.1 gives a brief exposition
of the Gödel-Gentzen translation which, combined with Friedman’s trick,
results in the so-called “A-Translation” presented in Section 3.2. In this
dissertation we work with a refinement due to (Berger et al., 2002), which we
overview in detail in Section 3.3. The key idea evolves around the concept
of definite/goal formulas, which are restricted classes introduced in order
to improve the original A-Translation. We will present them in Section
3.3.1 in a manner close to (Ishihara, 2000)’s approach, since we believe
that this illustrates better their structure. Once the proofs are lifted to
their constructive counterparts, we are able to unravel their computational
content by the extraction rules summarized in Section 3.4. We conclude
this chapter by comparing in Section 3.5 the classes defined for the purpose
of refining the A-Translation and the ones introduced by (Ishihara, 2000)
in order to determine which classical formulas are provable in constructive
logic.

23

24 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

3.1 The Double Negation Translation

A first step towards identifying the computational content in classical proofs
consists in translating them into constructively valid ones. In order to
achieve this, variants of the Double-Negation Translation have been pro-
posed in the literature. The first such translation, also called the Nega-
tive Translation, has been introduced (independently) by (Gödel, 1933) and
(Gentzen, 1936). The method consists in double negating all atomic formu-
las, a process by which also the translation of classical principles become
constructively valid.

Definition 3.1. Gödel-Gentzen’s Negative Translation ·g is given by

⊥g := ⊥,
ψg := ¬¬ψ,ψ atomic
(ψ1 ∧ ψ2)g := ψg1 ∧ ψ

g
2 ,

(ψ1 → ψ2)g := ψg1 → ψg2 ,

(∀xψ)g := ∀xψg.

Lemma 3.1. For any formula A of NAω,

`m (Stab⊥A)g and `m (efq⊥A)g.

Proof. By induction on A. Details in (Schwichtenberg and Wainer, 2011).

This translation preserves the classical validity of the formulas, as shown
by the following theorem. More importantly, as a consequence of Lemma 3.1
the double-negated formulas become NAω-valid.

Theorem 3.1. For any formula A of NAω we have

(a) `c A↔ Ag,

(b) Γ `c A iff Γg `m Ag, where Γg := {Bg | for all B ∈ Γ }.

Proof. By structural induction on A for (a) and induction on the derivation
for (b). The latter follows for each rule from the induction hypothesis using
again the same rule, because the Negative Translation acts as a homomor-
phism for the connectives of NAω (Troelstra and Schwichtenberg, 2000).

3.2. A-TRANSLATION 25

However, in the case when A is a Π0
2-formula, the translation does not

help us recover the constructive meaning of the existential quantifier. As
pointed out in the previous chapter (see Section 2.2 for an explanation on the
weak operators), a classical proof of ∃̃xA consists in deriving a contradiction
from the assumption ∀x.A → ⊥. It is in general not easy to read of the
means for constructing x, so the aim is to translate this proof in such a way
that the information on how to obtain the witness for x is recovered. The
following section presents a solution to this problem.

3.2 A-Translation

3.2.1 Friedman’s “trick”

The idea of A-translation is due (independently) to Friedman and Dra-
galin (Dragalin, 1979; Friedman, 1978) and is based on what is known as
“Friedman’s trick”: “Define the A-Translation ϕA of ϕ to be the result of
simultaneously replacing each atomic subformula ψ of ϕ by (ψ∨A)”, where
A is an arbitrary formula ((Friedman, 1978)).

Before we give a more formal definition of Friedman’s trick, we need to
introduce the (strong) disjunction, which we otherwise use only in its weak
form, as an abbreviation (see Section 2.2, page 15). The disjunction is given
by the following introduction and elimination axioms:

∨+,r : A→ A ∨B ∨+,l : B → A ∨B
∨− : A ∨B → (A→ C)→ (B → C)→ C

Remark 3.1. It is an easy exercise to show in intuitionistic logic by the
axioms ∨+,l, ∨− and efq⊥A that ⊥∨A↔ A, for A arbitrary. By this, when
ψ := ⊥ Friedman’s “trick” amounts to substituting ⊥ by A.

The following inductive definition rephrases Friedman’s “trick” formally:

Definition 3.2 (Friedman’s “trick”). Let A be any formula from our lan-
guage NAω. For a formula ψ ∈ NAω, we define its translation ψA to be:

ψA := ψ ∨A, for ψ atomic
(ψ1 ∧ ψ2)A := (ψ1)A ∧ (ψ2)A,
(ψ1 → ψ2)A := (ψ1)A → (ψ2)A
(∀xψ)A := ∀xψA.

By Remark 3.1 ⊥A := A.

26 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Friedman’s trick preserves provability, so it is an easy exercise to show
by induction on the formula ψ that:

Theorem 3.2. (Friedman, 1978) For ϕ,ψ formulas and ϕA, ψA their cor-
responding translations by Friedman’s trick, we have that

if ϕ `i ψ then ϕA `i ψA.

We point out that Friedman’s trick is applied to intuitionistic proofs.
Therefore, if one works in the classical setting, the Gödel-Gentzen transla-
tion1 is necessary in order to first transform the classical proofs into intu-
itionistic ones, as depicted in Figure 3.1.

Γ├
c
φ Γg├

i
φg (Γg)

A
├

i
(φg)

A
 Gödel-Genzen

Translation
 Friedman's

trick

Figure 3.1: Proof translation: from classical to intuitionistic proofs

The achievement of combining the two translation methods is that not
only classical proofs are transposed in the constructive setting, but that
furthermore, proofs of ⊥ can be turned into proofs of A (by Remark 3.1).
Since A is arbitrary, we can take it to be ∃xG. By this we turn a classical
proof of a ∃̃xG, so of ⊥ from ∀x ¬̃G, into a constructive proof of ∃xG.

3.2.2 A-Translation

As Figure 3.1 shows, the “A-Translation” is given by combination of Fried-
man’s trick and the Gödel-Gentzen translation.

Notation 3.1. We use in what follows the abbreviation ¬Aψ := ψ → A.

Definition 3.3. Let A be some arbitrary formula. The Friedman-Dragalin

1We are not limited to the Gödel-Gentzen translation, but can use some equivalent
form of a double-negation translation

3.2. A-TRANSLATION 27

A-Translation ·fd is given inductively by:

⊥fd := A,

ψfd := ¬A¬Aψ, ψ atomic,

(ψ1 ∧ ψ2)fd := ψfd1 ∧ ψ
fd
2 ,

(ψ1 → ψ2)fd := ψfd1 → ψfd2 ,

(∀xψ)fd := ∀xψfd

We show in what follows that the A-Translation is indeed a combination
of the Double-Negation Translation and Friedman’s trick.

Lemma 3.2. For any formula ψ ∈ NAω, ` (ψg)A ↔ ψfd.

Proof. By induction on the structure of ψ, using Definitions 3.1 and 3.2.

Case ⊥ (⊥g)A = ⊥A = A, by Remark 3.1.

Case ψ atomic

(ψg)A := (¬¬ψ)A = ¬A¬AψA = ¬A¬A(ψ ∨A) and ψfd = ¬A¬Aψ.

“→”: ¬A¬A(ψ ∨A)→ ¬A¬Aψ

w : ¬A¬A(ψ ∨A)

v : ψ ∨A [A]
u : ψ → A [ψ]

→−A
∨−A →+ v(ψ ∨A)→ A

→−A →+ u
ψfd

“←”: ¬A¬Aψ → ¬A¬A(ψ ∨A)

v : ¬A¬Aψ

w : ¬A(ψ ∨A)
u : ψ

∨+
ψ ∨A

→−A →+ uψ → A
→−A →+ w(ψg)A

Cases ψ1 ◦ ψ2 , with ◦ ∈ {∧,→}. On one hand, (ψ1 ◦ψ2)gA = (ψg1)A ◦ (ψg2)A
and on the other, (ψ1 ◦ ψ2)fd = ψfd1 ◦ ψ

fd
2 . The equivalence follows

therefore easily by the (IH)2.
2We denote the induction hypothesis by (IH)

28 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Case ∀xψ This follows also directly by the (IH), since (∀xψ)gA = ∀x(ψg)A
and (∀xψ)fd = ∀x(ψ)fd.

The A-translated versions of classical axioms become intuitionistically
provable, as it is the case with Stab⊥. Based on a result from (Friedman,
1978) we have:

Lemma 3.3. For any formula ψ, `i ¬A¬Aψfd → ψfd.

A-Translation hence allows the transition from classical proofs to their
constructive equivalents, as depicted in Figure 3.2 and stated by the follow-
ing theorem.

Theorem 3.3. (Friedman, 1978) If ψ1, ..., ψk `c ψ then ψfd1 , ..., ψfdk `i ψ
fd.

Proof. Either by induction on the structure of ψ or immediate by Theorems
3.1 and 3.2 together with Lemma 3.2.

Γ├
c
φ Γg├

i
φg (Γg)

A
├

i
(φg)

A
 Gödel-Genzen

Translation
 Friedman's

trick

 Γfd├
i
φfd

A-
Translation

Figure 3.2: A-Translation

Remark 3.2. Since in general the A-Translation is applied to proof systems
involving strong quantifiers, it can be also defined for ∨ and ∃:

(ψ1 ∨ ψ2)fd := ¬A¬A(ψfd1 ∨ ψ
fd
2)

(∃xψ)fd := ¬A¬A(∃xψfd).

Example 1. (Peirce’s formula.) Let P and Q be atomic formulas.

F (P,Q) := ((P → Q)→ P)→ P

can be derived classically, but is not true intuitionistically.

3.3. THE REFINEMENT OF THE A-TRANSLATION 29

The proof of F (P,Q) needs Stab⊥ and efq⊥, as Figure 3.3 shows.
By Theorem 3.1, ((P → Q)→ P)→ P is classically trivially equivalent

to ((P g → Qg) → P g) → P g and the derivation above remains classically
valid for P g and Qg. Moreover, since Stab⊥

g
is derivable constructively by

the same theorem, the double negation of the above derivation is intuition-
istically (and even NAω-) valid. Hence, we can completely eliminate Stab⊥

and efq⊥ from the proof of F g(P,Q) and the minimal proof in Figure 3.4(a).
Since Stab⊥

fd
is constructively valid by Lemma 3.3, we can derive the

A-translated Peirce’s formula by the minimal proof in Figure 3.4(b).

v : ¬P
w : (P → Q)→ P

v : ¬P u : P →−⊥
efq⊥

Q
→+ uP → Q
→−P →−⊥ →+ v¬¬P

Stab⊥P →+ w((P → Q)→ P)→ P

Figure 3.3: The classical proof of Peirce’s formula

This example, however, does not exploit the full power of A-Translation,
since the negative translation suffices in order to obtain the constructive
proof. Friedman’s transformation mainly serves the purpose of transforming
the proof of a weak existential formula into a strong (constructive) existence
proof. In Chapters 5-7 we will present more elaborated examples, where
A-Translation is meaningful and necessary.

3.3 The Refinement of the A-Translation

The A-Translation presented in the previous section, resulting from the com-
position of the double negation translation and Friedman’s “trick”, intro-
duces many ⊥’s, some of which are unnecessary. Each of these ⊥’s is to be
substituted by some formula A. Therefore, when taking ∃xG for A, all these
negations gain computational meaning and as a consequence, the programs
extracted from the A-translated proofs are rather cumbersome and contain
unnecessary computations.

If we restrict the logic to be minimal, however, double negation is super-
fluous. We still need Friedman’s “trick”, since ∃̃ does not have the computa-

30 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

w : (P g → Qg)→ P g

u : ¬¬P v : ¬P →−⊥ →+ ¬̃Q
Qg

→+ uP g → Qg
→−¬¬P v : ¬P →−⊥ →+ v¬¬P →+ w((P g → Qg)→ P g)→ P g

(a) The negative translated proof of Peirce’s formula

w : (P fd → Qfd)→ P fd

u : ¬A¬AP v : ¬AP →−A →+

Qfd
→+ u

P fd → Qfd
→−¬A¬AP v : ¬AP →−A →+ v

P fd →+ w
((P fd → Qfd)→ P fd)→ P fd

(b) The A-translated proof of Peirce’s formula

Figure 3.4: Proofs of Peirce’s Formula and its translations

tional content that we want. On the other hand, ∃̃ rewrites into negations,
which trigger the use of further negations in the proof, so that the issue
of minimizing the number of ⊥-occurrences remains. Furthermore, in some
situations, as we will see in the case studies from Chapters 5-7, further in-
sertions of negations are necessary, if we want to limit ourselves to NAω. In
Section 8.1 we present an analysis of the distinction between ⊥ and F and
in Chapter 8 we propose a method by which double negations are inserted
in a minimal way, in order to obtain for some cases NAω-provable formulas.

We follow closely the work of Berger et al. (2002), where a refinement of
the A-Translation is proposed, with the purpose of eliminating unnecessary
occurrences of ⊥ from the proofs. The paper presents a mechanism for
identifying the relevant occurrences of⊥, which are substituted by the strong
existential goal. In all other cases, ⊥ is replaced by the arithmetical falsity
F which is a constant3, so it does not carry any computational meaning.

Remark 3.3. As discussed in Section 2.2 ∃̃ and ∨̃ are seen in NAω as
abbreviations. ∧ can be regarded as a special case of an inductively defined

3See Section 2.2 and Section 8.1 for explanations on the distinction between ⊥ and F.

3.3. THE REFINEMENT OF THE A-TRANSLATION 31

predicate and can be given in terms of introduction and elimination schemes.
For these reasons, we limit in the following the treatement of the logical
operators to → and ∀.

We work in this thesis with the following notion of “decidable formulas”
slightly extending the one from Seisenberger (2003):

Definition 3.4 (Decidable formulas). A formula is said to be decidable
if it is built from prime formulas only by propositional connectives and by
quantifiers which are either boolean or range over finite sets of naturals.

Lemma 3.4 (Case Distinction). Let B be an arbitrary formula and C a
decidable formula. Then we have

` (¬C → B)→ (C → B)→ B (Cases)

Proof. By boolean induction on C.

3.3.1 Definite and Goal Formulas

We identify in what follows the classes of formulas for which the substitution
of ⊥ by F is possible, as in Berger et al. (2002). We define these classes in the
same style as in the study presented in (Ishihara, 2000). We point out that
they are distinct classes of formulas, since (Ishihara, 2000) does not restrict
the logic to be minimal. We will give a detailed comparison in Section 3.5.

Definition 3.5. Let P 6= ⊥ range over prime L-formulas, and ⊥ be a
unary predicate variable. Let D, G, R and I range over D,G,RD and IG,
respectively, and D0 be a decidable formula from D.

The classes D,G,RD and IG are simultaneously generated by the clauses

P,∀xD,R, I → D ∈ D
⊥, I, R→ G,D0 → G ∈ G
⊥,∀xR,G→ R ∈ RD
P,∀xI,D → I ∈ IG

Lemma 3.5. We can make the following generalizations:

• ~G→ R ∈ RD

• ~I → D ∈ D

• ~R→ G ∈ G

32 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

• ~D0 → G ∈ G

• ~D → I ∈ IG

Proof. Follows by induction on the number of formulas in the premise from
the following observations

• if ~G→ R ∈ RD and G′ ∈ G then G′ → (~G→ R) ∈ RD.

• if ~I → D ∈ D and I ′ ∈ IG then I ′ → (~I → D) ∈ D.

• if ~R→ G ∈ G and R′ ∈ RD then R′ → (~R→ G) ∈ G.

• if ~D0 → G ∈ G an D′0 ∈ D decidable then D′0 → (~D0 → G) ∈ G.

• if ~D → I ∈ IG and D′ ∈ D then D′ → (~D → I) ∈ IG.

Remark 3.4. Clearly, RD ⊂ D and IG ⊂ G.

Comparison with Berger et al. (2002) In order to bridge Definition 3.5
and the one of the definite and goal formulas from Berger et al. (2002), we
recall the latter:

Definition 3.6. (a) If a formula “ends” with ⊥, it is said to be relevant
and otherwise it is called irrelevant. Thus, C is a relevant formula iff

C := ⊥ | B → C | ∀xC

(b) Let P ∗ range over atomic formulas (including ⊥). The definite formulas
D∗ and goal formulas G∗ are defined inductively

D∗ := P ∗ | G∗ → D∗ if D∗ relevant or G∗ irrelevant
| ∀xD∗,

G∗ := P ∗ | D∗ → G∗ if D∗ relevant or D∗ quantifier-free
| ∀xG∗ if G∗ irrelevant,

Remark 3.5. In the definition of the goal formula it is required that the
premise of G∗ is quantifier-free. The purpose is to allow case distinction for
these formulas and as seen in Lemma 3.4, it suffices to consider decidable
formulas, such that the above definition can be extended to:

D∗ → G∗ if D∗ relevant or decidable.

3.3. THE REFINEMENT OF THE A-TRANSLATION 33

Proposition 3.1. Let D,G,RD and IG be the classes of formulas as given
by Definition 3.5 and the relevant, definite and goal formulas as in Defini-
tion 3.6. Then:

1. D are the definite formulas

2. G are the goal formulas

3. RD are the relevant definite formulas

4. IG are the irrelevant goal formulas.

Proof. Let P range over prime L-formulas, D ∈ D, G ∈ G, R ∈ RD, I ∈ IG
and D0 be a decidable formula from D. Let P ∗ range over prime formulas,
including also ⊥, and D∗, G∗ be as in Definition 3.6.

We prove the claims by simultaneous induction on the formulas.

1. “⊂” We show: P,∀xD,R, I → D are the definite formulas.

Clearly, P is definite.

∀xD is definite, because D is definite by the induction hypothesis.

Let R ∈ RD. If R is ⊥, it is also definite. If it is ∀xR, then R is
by Remark 3.4 a (relevant) definite formula, so ∀xR is also a definite
formula. If G → R, then it is a definite formula, since by hypothesis
G is a goal formula and R a (relevant) definite formula.

I → D is definite, because I is an irrelevant goal formula (by Remark
3.4) and D is a definite formula.

“⊃” We show: P ∗, G∗ → D∗ (with D∗ relevant or G∗ irrelevant),
∀xD∗ ∈ D.

Cases P ∗ and ∀xD∗ are trivial.

Case G∗ → D∗ . If D∗ is a relevant (definite) formula, then by the
induction hypothesis D∗ ∈ RD. Since by (IH) G∗ ∈ G, it follows by
Remark 3.4 that G∗ → D∗ ∈ RD ⊂ D.

If D∗ is not relevant, then G∗ must be irrelevant, so G∗ ∈ IG. Since
D∗ ∈ D by (IH), it follows that G∗ → D∗ ∈ D.

2. ⊥, I, R → G,D0 → G are the goal formulas. ⊥ is clearly both in G
and a goal formula.

Case I ∈ IG. Since by (IH) IG is the class of irrelevant goal formulas,
I is a goal formula.

34 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

For →, we have:

“⊂” The case R→ G ∈ G coincides by (IH) with D∗ → G∗, D relevant,
so this is a goal formula.

Case D0 → G. If D0 is decidable, then by Remark 3.5 D0 → G is a
goal formula.

“⊃” When D∗ → G∗ is a goal formula, then D∗ is either relevant or
quantifier-free definite formula. In the first situation, we either have
R→ G , which is clearly in G, or R→ I. For the latter, observe that
by the (IH) and Remark 3.4, I ∈ IG ⊂ G, so R → I ∈ G. If D∗ is a
quantifier-free definite formula, we are in the case D0 → G ∈ G.

3. ⊥,∀xR,G→ R ∈ RD are the relevant definite formulas.

By Remark 3.4, RD ⊂ D and since all above formulas “end” in ⊥,
they are relevant.

For the reverse, if G → R is a relevant definite formula, then R must
be relevant and by (IH) this implies that R ∈ RD. Since G is a goal
formula, then by (IH) G ∈ G. Thus, we are in the case G→ R ∈ RD.

4. P,∀xI,D → I ∈ IG are the irrelevant goal formulas. By Remark 3.4
and (IH) IG ⊂ G, so by 2. such formulas are goal.

Since P does not range over ⊥, the formulas in IG cannot “end” in
bottom, so they are irrelevant by Definition 3.6.

3.3.2 Properties of the Definite/Goal Formulas

As already mentioned, the purpose of the restrictions introduced by Defini-
tion 3.5 is to allow substitution of ⊥ by F. By this, the computationally
relevant occurrences of negation are delimited from those to which no term
should be associated in the extraction process. The following lemma identi-
fies the relevant occurrences of ⊥.

Notation 3.2. Let AF denote A[⊥ := F].

Lemma 3.6. Let D ∈ D, R ∈ RD, G ∈ G and I ∈ IG, where the classes are
given by Definition 3.5. Using efq⊥ and efqP , the following formulas can be

3.3. THE REFINEMENT OF THE A-TRANSLATION 35

proved in minimal logic:

((RF → F)→ ⊥)→ R (3.1)

DF → D, (3.2)

I → IF , (3.3)

G→ (GF → ⊥)→ ⊥. (3.4)

Proof. The proof is treated in detail in (Schwichtenberg and Wainer, 2011).
However, since we will need it in order to illustrate how the case studies
presented in Chapters 5-7 work, we replicate it here.

(3.1)–(3.4) are proved simultaneously by induction on formulas.
(3.1). Case ⊥. Clearly ¬̃ ¬̃(F→ F) is derivable.
Case ∀xR.

(3.1): ¬̃¬RF → R

¬̃¬∀xRF

¬RF

∀xRF

RF

F
¬∀xRF

⊥
¬̃¬RF

R
∀xR

¬̃¬∀xRF → ∀xR

Case G→ R.

(3.1): ¬̃¬RF → R

(3.4): G→ ¬̃ ¬̃GF G

¬̃ ¬̃GF

¬̃¬(GF → RF)

¬RF
GF → RF GF

RF

F
¬(GF → RF)

⊥
¬̃GF

⊥
¬̃¬RF

R

¬̃¬(GF → RF)→ G→ R

(3.2). Case ⊥. Then ⊥F = F and we have efq⊥.
Case P . PF = P , so the case is trivial.

36 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Case ∀xD.

(3.2): DF → D

∀xDF

DF

D
∀xD

∀xDF → ∀xD
Case R.

(3.1): ¬̃¬RF → R

F→ ⊥
¬RF RF

F
⊥
¬̃¬RF

R

RF → R
Case I → D.

(3.2): DF → D

IF → DF

(3.3): I → IF I

IF

DF

D

(IF → DF)→ I → D

(3.3). Case P is trivial.
Case ∀xI.

(3.3): I → IF
∀xI
I

IF

∀xIF

∀xI → ∀xIF

Case D → I.

(3.3): I → IF
D → I

(3.2): DF → D DF

D
I

IF

(D → I)→ DF → IF

(3.4). Case ⊥. Follows immediately.
Case I.

(3.3): I → IF I

IF IF → ⊥
⊥

I → (IF → ⊥)→ ⊥

3.3. THE REFINEMENT OF THE A-TRANSLATION 37

Case R→ G.

(3.4): G→ ¬̃ ¬̃GF
R→ G R

G

¬̃ ¬̃GF

¬̃(RF → GF)
GF

RF → GF

⊥
¬̃GF

⊥
¬̃R (1)

¬̃(RF → GF)

¬RF RF

F efqGF
GF

RF → GF

⊥
¬̃¬RF (2)

Further,

(1): ¬̃R
(3.1): ¬̃¬RF → R (2): ¬̃¬RF

R

⊥
(R→ G)→ ¬̃ ¬̃(RF → GF)

Case D0 → G. ¬̃D0 and ¬̃¬DF
0 can be derived as (1) and (2) above.

In addition, we have:

(1): ¬̃D0

(3.2): DF
0 → D0 DF

0

D0

⊥
¬̃DF

0 (3)

If we now apply case distinction on DF
0 : (DF

0 → ⊥)→ (¬DF
0 → ⊥)→ ⊥

to (2) and (3), we can prove our claim.

We point out the importance of the last step in the above proof. Because
(Cases) is necessary, we need by Lemma 3.4 that D0 is decidable. Whenever
the proof transformation amounts to using this step, the extracted terms
contain the case distinction operator.

Lemma 3.6 provides a mechanism by which some of the ⊥-occurrences
can be safely replaced by F , using the derivation (3.2) in the case of definite
formulas and the proof of (3.4) for the goal formulas. For reasons that should
be clear from the above proof, these substitutions can only be performed

38 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

when the formulas are definite and goal, respectively. Moreover, by carefully
analyzing the above proof steps, we observe that for (3.2) and (3.4) we need
(3.1) and (3.3). This justifies the further restrictions (relevant and irrelevant,
respectively) on the D and G classes.

3.3.3 Refined A-Translation

We consider proofs of Π0
2-formulas, to which we have applied Lemma 3.6.

Having kept ⊥ only in the necessary positions, we can now substitute it
by A := ∃yG(x, y), as in the original A-Translation method. Figure 3.5
illustrates this process, which we summarize in the following lemma.

D∧ H∃ x G ,i.e. ,

DF
D G¬¬GF

DF
 H∀ x¬G

DF
 H∀ x¬GF



cut

cut

3.2. 3.4.
D H∀ x¬G

Friedman's Trick

DF
 H A

∀ x GF
 A  A

Figure 3.5: Refined A-Translation: substituting ⊥ by F.

Lemma 3.7. Consider that we are given a non-constructive proof of

~D → ~H → ∀x ∃̃y G(x, y), (3.5)

where G ∈ G and the assumptions are either definite (~D ∈ D) or arbitrary
(~H) formulas. Then

`i ∀x. ~DF → ~H[⊥ := ∃y ~GF (x, y)]→ ∃y ~GF (x, y). (3.6)

Proof Sketch. (3.5) can be seen as

∀x. ~D → ~H → ∀y(~G(x, y)→ ⊥)→ ⊥ (3.7)

3.4. PROGRAM EXTRACTION 39

Assume x. According to the Lemma 3.6, (3.7) can be transformed to

`i (F → ⊥)→ ~DF → ~H → ∀y(~GF (x, y)→ ⊥)→ ⊥.

We substitute in this latter ⊥ by ∃y ~GF (x, y). Since F → ∃y ~GF (x, y) holds
by efq and ∀y. ~GF (x, y)→ ∃y ~GF (x, y) by ∃+4, we obtain

`i ~DF → ~H[⊥ := ∃y ~GF (x, y)]→ ∃y ~GF (x, y). (3.8)

3.4 Program Extraction

We give in what follows the mechanism necessary in order to associate pro-
grams to proofs. We first introduce the notion of modified realizability and
then give the rules by which we recursively compute the extracted terms.
The soundness theorem will guarantee that the extracted terms are indeed
realizers for the proof terms. We show further how this procedure can be
applied to the A-Translated proofs.

3.4.1 Modified Realizability. Extracted Terms

Since we are interested in the computational content of proofs, we need to
carefully distinguish between computationally relevant and irrelevant for-
mulas. The latter class consists of formulas A whose proofs M have no
computational content and has been identified in (Troelstra and Schwicht-
enberg, 2000) with the Harrop formulas.

Definition 3.7 (Harrop Formulas). Computationally irrelevant (c.i.) or
Harrop formulas belong to the class H5

P,A→ H,∀xH ∈ H,

where P ranges over prime formulas and H ∈ H.
Formulas which are not Harrop are considered to be computationally

relevant (c.r.).

Remark 3.6. The irrelevant goal formulas IG are Harrop formulas.

4∃+ corresponds to the introduction axiom for the strong existential quantifier.
5Recall from Remark 3.3 that we do not need to treat conjunction explicitely.

40 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Notation 3.3. We assign to every formula a computational type τ(A) and
denote by [[M]] the program extracted from the proof of A.

In the special case when A is computationally irrelevant (c.i.), we as-
sign to it the type ε and let [[M]] := ε. Clearly, if τ(A) 6= ε, then A is a
computationally relevant formula.

Definition 3.8 (Computational type). Let P denote a predicate (variable or
constant). In case of a predicate variable, since we do not a priori know what
comprehension term will be substituted for it, we assign to P some generic
type variable αP . With the conventions made in (ε red.) on page 11, we
consider the following typing rules

τ(P (~r)) :=

{
ε if P does not have content
αP otherwise,

τ(A→ B) := τ(A)⇒ τ(B),
τ(∀xρA) := ρ⇒ τ(A),
τ(∃xρA) := ρ× τ(A).

As pointed out in Chapter 1, we view the formulas ∀x∃̃yG(x, y) as spec-
ifications of the form: “Given an input x and a requirement G on x, is there
an algorithm which produces from x an output y, such that G is met?” The
extracted program represents in this context a computational solution to the
problem of producing the data with the specified property. In the following,
we overview the rules by which such a solution is constructed.

Notation 3.4. Let rmrA denote (Kreisel’s) modified realizability.

rmrA reads as “the term r realizes the formula A” and represents the
answer to the aforementioned question. The following definitions give a
method to recursively construct the modified realizer of a formula.

Definition 3.9 (Modified realizability). Let P be a predicate: if P is a
predicate variable of signature ~σ and type αP , let P r be a new predicate
variable of signature (τ(r), ~σ) associated to P . rmrA is given inductively
for A by:

rmrP (~s) :=

{
P r(r, ~s) if P is a predicate variable
P (~s) if P is a predicate constant

rmr ∀xA := ∀x rxmrA

rmrA→ B := ∀x. xmrA → rxmrB

rmr∃xA(x) := r0 mrA(r1)

3.4. PROGRAM EXTRACTION 41

If τ(A) = ε, then rmr∃xA(x) := A(r).

Definition 3.10 (Extracted term). The extracted term of a derivation is
given by the following rules:

[[uA]] := xτ(A)
u (xu uniquely associated with u),

[[(λuAMB)A→B]] := λxτ(A)
u [[M]]τ(B),

[[MA→BNA]] := [[M]]τ(A→B)[[N]]τ(A),

[[(λxρMA)∀xA]] := λxρ[[M]]τ(A),

[[M∀xAr]] := [[M]]τ(∀xA)r.

In particular, when σ := τ(A) 6= ε, the following recursion operators are
associated to the induction schemes

[[Indb,A]] := RσB , [[Indn,A]]:= RσN , [[IndL,A]] := RσL(ρ)

with the typing and conversion rules from Section 2.1.
The Cases extracts to C,

[[Casesn,A]] := CσN , [[Casesl,A]]:= CσL,(ρ)

each of which, according to the conversion rules from Section 2.1, corre-
sponds to an “if ... then ... else” construct.

Since the boolean induction corresponds to proof by cases, one can view
the boolean recursion operator as a cases operator

RB(bB, f, g) := CσB (b, f, g) = if b then f else g

The soundness is guaranteed by the following theorem:

Theorem 3.4 (Soundness, Berger et al. (2002)). Let M be a derivation of
B and FA(M) collect its free assumptions. Then there exists a derivation
of [[M]] mrB from the assumptions {xτ(C)

u mrC|uC ∈ FA(M)}.

Proof. The proof, by induction on the logical rules of M , is given in detail
in (Schwichtenberg and Wainer, 2011). In the case of axioms, the realizers
are given explicitely and are shown to be correct.

42 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

3.4.2 Program Extraction from A-Translated Proofs

In this section, we apply the extraction mechanism to the proofs transformed
by the refined A-Translation. We follow the exposition in (Schwichtenberg
and Wainer, 2011). In order to determine the realizer for the A-translated
formula (3.8), we first need to construct the realizers for the proofs inserted
when replacing ⊥ by F - these can be obtained from Lemma 3.6.

Definition 3.11. A formula A is considered to be invariant when

εmrA = A.

Lemma 3.8. Under the assumption that all prime formulas P in DF and
GF are computationally irrelevant (c.i.) and invariant, we can construct
from the proofs of (3.2) and (3.4) terms tD and sG such that

(a) DF → tD mrD and

(b) ∀v,w. vmrG→ (GF → wmr⊥)→ sGw vmr⊥

are derivable from ∀y(F→ ymr⊥) and efqP .

Proof. Consider the formulas (3.2) and (3.4) from Lemma 3.6. Let ND be
the proof of DF → D and NG the derivation for G→ (GF → ⊥)→ ⊥.

By the Soundness Theorem we have tD = [[ND]] such that by Defini-
tion 3.9 and since DF is c.i.:

[[ND]] mrDF → D ⇔ DF → tD mrD

The Soundness Theorem gives us also sG = [[NG]], which is inferred using
Definition 3.9, as follows:

[[NG]] mr ((GF → ⊥)→ G→ ⊥)⇔
∀w. wmr (GF → ⊥)→ [[NG]]wmr (G→ ⊥)⇔
∀v,w. wmr (GF → ⊥)→ vmrG→ [[NG]]w vmr⊥

Since GF is c.i., we obtain:

∀v,w. (GF → wmr⊥)→ vmrG→ sGw vmr⊥

and this is equivalent to what we want to show.

3.4. PROGRAM EXTRACTION 43

In addition, we need external realizers for the non-definite assumptions
~H, i.e., terms ~r s.t.

` ~H∃yG
F (y) → ~rmr ~H∃yG

F (y). (3.9)

Let in the following M̃ be the initial derivation for ~D → ~H → ∃̃yG(y).

Remark 3.7. By Definition 3.9 tmr⊥ = ⊥r(t). Since GF is c.i. and
invariant we therefore have:

(tmr⊥)[⊥r/GF (·)] = GF (t) = tmr∃yGF (y). (3.10)

By structural induction on formulas we can thus construct for all H in which
⊥r does not occur:

(tmrH)[⊥r/GF (·)] = tmrH∃yG
F (y). (3.11)

Theorem 3.5. Assume that all prime formulas P in ~DF and GF are com-
putationally irrelevant and invariant. Let tD and sG be the realizers provided
by Lemma 3.8 and let ~rmr ~H∃yG

F (y) be given by (3.9).
Then, by the Soundness Theorem for realizability we can derive

~DF → ~H∃yG
F (y) → [[M̃]] ~tD ~r sG mr∃yGF .

Proof. By the Soundness Theorem,

[[M̃]] mr (~D → ~H → (∀y. G(y)→ ⊥)→ ⊥).

Using Definition 3.9 of modified realizability and the realizing terms that
we have from the hypothesis, we infer:

~tD mr ~D → [[M̃]] ~tD mr (~H → ∃̃yG(y))⇔
~tD mr ~D → ~rmr ~H → [[M̃]] ~tD ~rmr ∃̃yG(y)⇔
~tD mr ~D → ~rmr ~H → [[M̃]] ~tD ~rmr ((∀y. G(y)→ ⊥)→ ⊥)⇔
~tD mr ~D → ~rmr ~H → ∀s. smr (∀y. G(y)→ ⊥)→ [[M̃]] ~tD ~r smr⊥ ⇔
~tD mr ~D → ~rmr ~H → ∀s. ∀ys ymr (G(y)→ ⊥)→ [[M̃]] ~tD ~r smr⊥ ⇔
~tD mr ~D → ~rmr ~H → ∀s. ∀y,t(tmrG(y)→ s y tmr⊥)→ [[M̃]] ~tD ~r smr⊥

So, by Lemma 3.8a,

~DF → ~rmr ~H → ∀s. ∀y,t(tmrG(y)→ s y tmr⊥)→ [[M̃]] ~tD ~r smr⊥ (◦)

44 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

If we take s := sG in (◦) and use (3.9) we obtain by Remark 3.7:

~DF → ~H∃yG
F (y) → ∀y,t(tmrG(y)∃yG

F (y) → sG y tmr∃yGF (y))→
→ [[M̃]] ~tD ~r sG mr∃yGF (y)

(∗)

Let us substitute ⊥r by GF (·) in Lemma 3.8b. We get:

∀v,w. (GF (y)→ wmr∃yGF (y))→ vmrG(y)∃yG
F (y) → sGw vmr ∃yGF (y)

or, equivalenty (see (3.10))

∀v,w. (GF (y)→ GF (w))→ vmrG(y)∃yG
F (y) → GF (sGw v)

For w := y and v := t we obtain: tmrG(y)∃yG
F (y) → GF (sG y t). and from

(3.10) we have GF (sG y t) = sG y tmrG(y)∃yG
F (y). Hence, (∗) becomes:

~DF → ~H∃yG
F (y) → [[M̃]] ~tD ~r sG mr ∃yGF (y).

3.5 Related Work

We carry out in this section a thorough comparison between the definite and
goal formulas as introduced in Section 3.3.1 and similar classes introduced
in Ishihara (2000), with a two-folded purpose. On the one hand, we aim
at extending the former and on the other, we want to better understand
their structure. The first question has, however, a negative answer: it is
not possible to extend the definite/goal classes by formulas in Q,J and S
from Ishihara (2000), while guaranteeing the properties in Lemma 3.6. The
reason lies in the fact that Ishihara is only concerned with defining classes of
formulas for which one can infer intuitionistic validity from the classical one,
but not with restricting the logic to be minimal, in the sense of eliminating
efq⊥. Hence, for the formulas additional allowed in the classes Q,J and S
the transformations in Lemma 3.6 are not possible.

Ishihara (2000) does not envisage realizability, so no distinction between
week and strong operators is present. We will however restrict our attention
in what follows to the basic operators fixed in Chapter 2 and limit the
definitions of Q,J ,S below to the NAω-fragment.

Definition 3.12. (Ishihara (2000)) Let P (6= ⊥) range over prime formulas
and Q, J, S range over Q,J ,S, respectively.

3.5. RELATED WORK 45

1. Let Q,S,J be defined by the following inductive clauses

⊥, P, ∀xQ, J → Q ∈ Q,
⊥, P, S → J ∈ J
⊥, ∀xS, J → S ∈ S.

2. For K,K ′ ∈ K, the class K is generated inductively by

J, ∀xK,Q→ K ∈ K.

We first observe that there is a similarity between the above-defined
classes and the definite/goal formulas, which can be paired as follows:
Q and D, J and G, S and RD. We give a detailed comparison below.

The following remark is an easy exercise, using induction on formulas.

Remark 3.8. S (Q and J (K.

Notation 3.5. We denote by t the disjoint union of sets.

Convention. Throughout this section, P is used to denote a prime for-
mula distinct from ⊥. Q,S,J are given by Definition 3.12 and D,RD,G
and IG by Definition 3.6. We take S ∈ S, D ∈ D, G ∈ G, R ∈ RD, J ∈ J
and I ∈ IG.

Lemma 3.9. We define the set collecting all irrelevant formulas in J :

IJ := { ~S → P | S ∈ S, P 6= ⊥}., (IJ)

1. We have
IG ∩ J = IJ . (IJ)

Furthermore,

(a) IG \ J = {∀xI,D → I, for D /∈ S or I 6∈ IJ}
(b) J \ IG = { ~S → ⊥ | S ∈ S }.

2. J (G. Moreover, with D0 decidable formulas ranging over the D,

G = J t (IG \ J) t {D0 → G | D0 6∈ S or G /∈ J ∪ IG }. (3.12)

3. S (RD. More precisely,

RD = S t {G→ R | G /∈ J or R /∈ S }. (3.13)

46 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Proof. We prove the claims by simultaneous induction.

1. By Remark 3.4 it is immediate to see that IJ ⊂ IG ∩J . The converse
follows from (1a), (1b) and the definitions of J and IG.

(a) Let I ∈ IG.
If I is ∀xI, then I 6∈ J , since J does not allow outer universal
quantification.
If we have D → I then this is by definition not in J if D 6∈ S,
which is possible by 3. and Remark 3.10.
If we have D → I, but I 6∈ J , then D → I is clearly not in J .
This is for instance the case with the formulas D → ∀xI ∈ IG.
All other formulas in IG (P , D → I with D ∈ S, I ∈ IJ) are
collected in IJ .

(b) All formulas “ending” in ⊥ from J are clearly not in IG.
The other formulas from J , i.e., formulas of the kind S → J ,
with S ∈ S and J ∈ IJ are by Remark 3.4 and by 3. in IJ .

(b)2. We first show that J ⊂ G.

Let J ∈ J .

Cases ⊥ and P . Then clearly, J ∈ G.

Case S → J . Follows by the (IH) from S ∈ S ⊂ RD (3.) and
J ∈ J ⊂ G (2.)

J 6= G is an immediate consequence of (1a) and of Remark 3.4.

To show (3.12), let G ∈ G.

If G is ⊥ or P , it is already in J .

If ∀xI or if D → I, with D ∈ D \ S or I ∈ IG \ J (i.e., I 6∈ IJ), the
formulas are in G \ J and by (1a), also in IG \ J .

In the cases R → G with G ∈ G \ J and D0 → G with D0 6∈ S or
G ∈ G \ J , we are again outside J . The former is in IG \ J and so is
D0 → G, for G ∈ G.

”⊃” is trivial by the definition of J and 1a,.

3. We first show S ⊂ RD. Let S ∈ S.

Case ⊥ is clear and case ∀xS follows by the induction hypothesis.

Case J → S follows also by the induction hypothesis, using 2.

3.5. RELATED WORK 47

For RD 6= S and (3.13), by 2 we have J 6= G. Therefore, if G ∈ G \J ,
then G → R 6∈ S. By (IH), there is also some R /∈ S for which
G→ R /∈ S.

”⊃” is trivial.

Remark 3.9. Since IG 6⊂ J , this means that J does not capture all irrel-
evant goal formulas.

Remark 3.10. RD 6= Q

Proof. We only regard the formulas G→ R. As shown in (3.12), G) J , so
we can have G ∈ G, but G 6∈ J . In such cases, G→ R 6∈ Q.

Let us analyze the connection between D and Q. As we will see in the
following, neither D ⊂ Q, nor Q ⊂ D.

Lemma 3.10. The following relations exist between D and Q:

1. Q \ D = { J → Q | (J /∈ IJ ∧Q 6∈ RD) or Q 6∈ D } ∪ { ∀xQ | Q /∈ D }

2. D \ Q = {G → R | G /∈ J or R 6∈ Q } ∪ { I → D | I 6∈ J or D /∈ Q }
∪ { ∀xD | D /∈ Q}

3. Let IJ ∈ IJ be given by (IJ). We inductively define the class D̄ as

P,∀xD̄, S, IJ → D̄,G→ R ∈ D̄,

where D̄ ∈ D̄ and G ∈ J , R ∈ D̄ ∩ RD.

Then D̄ := D ∩Q.

Proof. We use Lemma 3.9 to show (1) and regard only the subformulas
which reside in the complement of each class with respect to D̄.

1. Q 6⊂ D. Case ⊥. This is in RD, therefore also in D.

Case P . This is in D as well.

Case ∀xQ. By the (IH) there is some Q /∈ D for which ∀xQ /∈ D.

Case J → Q. Since J contains also relevant formulas (for instance
⊥), in these cases J is not in IG, so J → Q 6∈ D when J /∈ IJ and
Q ∈ RD. Otherwise, if Q ∈ RD, then G → R ∈ RD ⊂ D. Clearly, if
D ∈ D \ Q, then J → D /∈ Q.

48 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

2. D 6⊂ Q. Case P . This is both in D and Q.

Case ∀xD. As above, for D ∈ D /∈ Q it follows that ∀xD /∈ Q.

Case R.

• ⊥ ∈ Q.

• Case ∀xR. Since RD 6= Q (Remark 3.10), it follows that for
R /∈ Q also ∀xR /∈ Q.

• Case G → R. As shown for Remark 3.10 (3.12), for G ∈ G \ J ,
we have that G→ R 6∈ Q.

Case I → D. By (1a), there exist some I 6∈ J , so in such cases
I → D 6∈ Q. Likewise, if D ∈ Q \ D.

3. Recall that IJ are the irrelevant J -formulas and IG∩J = IJ (Lemma 3.9).

Let D̄ ∈ D̄. We show that D̄ is in both D and Q..

Cases ⊥ and P are trivial. The case ∀xD̄ follows by the (IH).

Case S follows by Lemma 3.9, (3.13) and Remark 3.4 for D and by
Remark 3.10 for Q.

Case IJ → D̄. By (IH), D̄ ∈ D ∩ Q and by (IJ) IJ ∈ IG and IJ ∈ J .
Then, by the corresponding definitions, IJ → D̄ ∈ D ∩Q.

For the converse, notice that D̄ contains all the clauses defining D and
Q, with the exception of those excluded by (2) and (1).

From the above proof, it follows that:

Corollary 3.5.1. 1. D̄ = S ∪ {P,∀xD̄, IJ → D̄}.

2. RD \ D̄ = {G→ R | G /∈ IJ or R /∈ D̄ } ∪ { ∀xR | R /∈ D̄ }.

K seems similar in purpose to G. However, Lemmas 3.9 and 3.10 entitle
us to formulate right away the following:

Lemma 3.11. Neither G ⊂ K, nor G ⊃ K.

Proof Sketch. Clearly, if Q ∈ Q \ D̄, then Q→ K /∈ G.
Likewise, when R→ G ∈ G, if R ∈ RD \ D̄, then R→ G 6∈ K.

3.5. RELATED WORK 49

Summary. From the above analysis we draw the following conclusions:

• neither Q, nor D are an extension of the other, but they have in
common a superclass of S. Some, but not all relevant definite formulas
D lie in this common class.

• G is richer than J . However, since J does not separate the irrelevant
formulas from the relevant ones, no inclusion-relation can be estab-
lished with IG.

We summarize these conclusions below and depict them in Figure 3.6.

Q

J

J
G

I
J G D

S R
D

D

Figure 3.6: Relation among the classes definite-goal and Q,J ,S

Proposition 3.2 (Classification). The following relations can be identified
among the definite/goal formulas and the classes defined in Ishihara (2000):

1. Between S,RD,D and Q we have the following relations

• S ⊂ Q (Remark 3.10)

• S (RD ⊂ D (Remark 3.4 and Lemma 3.9)

• RD 6⊂ D ∩ Q (Corollary 2)

• D̄ = D ∩Q (Lemma 3.10).

2. Between J , IG and G we have the following relations

• IG ⊂ G (Remark 3.4).

• J (G (Lemma 3.9)

• IG ∩ J = IJ (Lemma 3.9)

50 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Based on these relations, we investigate whether it is possible to extend
the classes D and G. Since we require that for the definite/goal formulas the
transformations from Lemma 3.6 are NAω-valid, the extension by formulas
from Q and J is not possible.

• J → Q from Q \ D̄, with J 6∈ IG. Since J 6∈ IG it is relevant, so in
order to show J → JF as in Lemma 3.6 we would need efq⊥, which is
not permitted in NAω.

• J → Q from Q \ D̄, with Q 6∈ D. If Q 6∈ D, then it is not possible to
derive QF → Q, as required by Lemma 3.6.

• By the above, if Q 6∈ D̄, then ∀xQ cannot be included in the class D.

• In order to extend IG by J \ IG we need to consider S → ⊥. By
Lemma 3.6 this means that `m (S → ⊥) → SF → F. This is not
possible, since the derivation requires efq⊥F.

In fact, the converse is also the case: none of the formulas in the (rele-
vant) definite and (irrelevant) goal formulas would be appropriate for extend-
ing Q,J and S, while at the same time keeping the properties guaranteed
by (Ishihara, 2000). For instance, J cannot be extended by considering
universally quantified formulas, since ∀x ¬̃ ¬̃J 6→ ¬̃ ¬̃∀xJ .

In conclusion, by analyzing the formulas which are in Q and J , but not
in D and G, it becomes clear that the requirements imposed on the latter
are all necessary. This is due to the fact that the provability in NAω of the
transformations in Lemma 3.6 needs to be guaranteed. These restrictions
are relaxed in case one allows efq⊥, as it is the case with the system used in
(Ishihara, 2000).

Counterexample Following the analysis above, one is therefore tempted
believe that the refined A-Translation can only be applied to the classes of
formulas that we have introduced in Section 3.3.

Yet, (Schwichtenberg and Wainer, 2011) gives the following example:

S := ∀x. ((Qx→ F)→ F)→ Qx

D := (∀x. Qx→ ⊥)→ ⊥.

It easy to derive (S → D)F → S → D. However, since D 6∈ D, it follows
that S → D 6∈ D. In fact, since D 6∈ Q (and S 6∈ J), it is also the case that
D → S 6∈ Q.

3.5. RELATED WORK 51

We have not yet found in practice a use of such formulas, nor instances
in which this situation can occur. Nevertheless, the fact that there exist
formulas which are not definite/goal, but for which the properties specified
by Lemma 3.6 still hold, leaves as an open question the full characterization
of these classes.

A similar analysis can be carried out with respect to the wiping (W),
spreading (S) and isolating (I) formulas defined in (Troelstra and Van Dalen,
1988). We do not carry out this comparison here, since also in this case no
information on how to extend the definite/goal classes is obtained.

Connection with the critical formulas

Definition 3.13. We define recursively a new class of formulas, E by

⊥ → P, (~S → ⊥)→ E ∈ E , with E ∈ E .

Terminology : JR := J \ IJ = {~S → ⊥} are relevant J -formulas.

Lemma 3.12. 1. E ⊂ Q \ D.

2. Let E ∈ E, with P ∈ D decidable. Then

E′ := E[P/(P → ⊥)→ ⊥] ∈ D.

Thus, ` E′F → E′.

Proof. 1. “⊂” Let E ∈ E , i.e., E = (~S0 → ⊥)→ ...→ (~Sn → ⊥)→ P .

Since ~Si ∈ S and ⊥ ∈ J and by this ~Si → ⊥ ∈ J and since P ∈ Q, it
is clear that E is of the form J → Q ∈ Q.

On the other hand, E is neither of the form I → D (since clearly
~Sn → ⊥ 6∈ IG), nor is it relevant, since P /∈ RD.

Therefore, E /∈ D.

“⊃” Let now a formula be in Q \ D. Then this is either ∀xQ, with
Q ∈ Q \ D or J → Q, with Q ∈ Q \ D or

2. Let E = (~S0 → ⊥) → ... → (~Sn → ⊥) → P ∈ E , with P ∈ D
decidable. Then (P → ⊥)→ ⊥ ∈ Q, because P → ⊥ ∈ J , so E′ ∈ E .

Moreover, (P → ⊥) → ⊥ ∈ RD, because P → ⊥ ∈ G, when P ∈ D
decidable. Since ~Sn → ⊥ ∈ G, because S ⊂ RD, we have that E′ ∈ D.

Let us show that indeed ` E′F → E′. Assume E′F , ~Si → ⊥ and
P → ⊥. We show ⊥. For this, it suffices to show ~Si.

52 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Since ~Si ∈ S ⊂ RD, it suffices by Lemma 3.6 to infer (~SFi → F)→ ⊥.
Assume ~SFi → F . We need to infer ⊥; for this, it suffices to derive P .

Using the above assumptions on E′F := (~SF0 → F) → ... → (~SFn →
F)→ (P → F)→ F , we obtain (P → F)→ F . Since P is decidable,
this implies P .

From (Ishihara, 2000) we know that for any Q ∈ Q, we have ` QF → Qt,
where Qt is the double-negated formula Q. Thus, all E-formulas have also
this property and the proof is very similar to the one for Lemma 3.12.

We fix a set L of quantifier-free formulas and identify in this paragraph
which Q -formulas may contain L-critical atoms, as defined in Chapter 8.

Remark 3.11. The formulas in E are of the form

E := (~S0 → ⊥)→ ...→ (~Sn → ⊥)→ P.

Thus, for a fixed set L, if E ∈ L, then P is an L-critical predicate symbol.

Remark 3.12. Let L be a fixed set of quantifier-free formulas. For any
E ∈ Q of L, if E ∈ E, then E is L-critical. Hence, E captures the L-critical
formulas from Q.

3.6 Summary of the Chapter

In this chapter we have reviewed the A-Translation method which combines
Friedman’s “trick” with the Gödel-Gentzen Double-negation Translation.
Further, we have presented the (Berger et al., 2002) refinement of the A-
translation for minimal logic, while remarking that by working in NAω the
Double-negation translation can be avoided. A characteristic of the proposed
translation consists in regarding ⊥ as a placeholder, by defining it as a predi-
cate variable and allowing substitution of computationally relevant formulas
for it. In the refined method, some of the ⊥-negations are marked as compu-
tationally irrelevant, through their substitution by the constant F (Lemma
3.6). Only the remaining logical negations are replaced by Friedman’s trick
with the strong version of the goal formula, ∃x ~G. As a consequence of this
refinement, the extracted terms are “brushed-up” of irrelevant computations
present in the original proofs due to the inserted double negations.

A special emphasis lies on identifying the classes of formulas to which the
refined A-Translation can be applied. Lemma 3.6 limits the structure of the

3.6. SUMMARY OF THE CHAPTER 53

involved formulas and the resulting classes are called “definite” and “goal”.
We have compared in Section 3.5 the approaches from (Berger et al., 2002)
and (Ishihara, 2000), in order to get more insight regarding the structure
of the formulas and the role of the restrictions. We have concluded that
an extension of the definite/goal classes by the additional formulas from
(Ishihara, 2000) is not possible in NAω when we require that Lemma 3.6
holds. In order to transform further formulas into goal/definite ones, we
will propose in Chapter 8 a refined form of the double negation translation.

By the refined A-Translation, the proofs of ⊥ are transformed in proofs
of ∃xG, such that the constructive meaning of the existential quantifier is
recovered. The translated proofs can be interpreted by (modified) realizabil-
ity, such that computational terms are associated to these proofs. We have
given in Section 3.4.2 the extraction rules by which we associate realizers
to A-translated proofs. In Chapters 5-7 we will exemplify this extraction
procedure on interesting case studies. We will give in each case the proof
terms and for the simpler situations we will describe the way in which A-
translation is applied.

54 CHAPTER 3. A-TRANSLATION AND ITS REFINED VERSION

Chapter 4

A-Translation and
Programming

We overview in this chapter a couple of A-Translation specific program-
ming techniques. As a result of applying the refined method on classical
proofs, the extracted programs have properties which are desirable from the
programming point of view:

• they are in general in tail recursive form; tail recursion allows for an
easy transformation into iteration

• they give possibility to use abort, which can be seen as computing
with exceptions and to use continuations, which simulate jumps.

We will explain intuitively why the refined A-Translation results in general
in tail recursive programs and in which way the control/abort operators are
present in these programs. We argue that by using A-Translation no further
transformation of the proofs is required, in order to guarantee these features
of the extracted programs. In the following chapters, we will exemplify the
claims on concrete case studies.

In the first part, Section 4.1, we underline the connection with tail recur-
sion. We oppose this (Section 4.1.2) to a related work of (Chiarabini, 2010),
in which this programming feature is obtained by a careful manipulation of
the constructive proofs.

In the second part, Section 4.2, we present the work of (Griffin, 1990),
which uses continuation operators in order to realize the weak existence
quantifier (∃̃) and disjunction (∨̃) and in order to interpret some classical
principles, such as Peirce’s Formula. We observe that the programs ex-
tracted from the refined A-translated proofs also adhere to the continuation

55

56 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

passing style. We comment in Section 4.2.2 on these similarities and explain
intuitively the mechanism giving rise to programs using continuations.

4.1 Tail Recursion

Tail recursion is regarded in computer science as an efficient form of recursion
since it allows for an optimization in the sense that it can be easily trans-
formed into iteration. Based on the intuitive definition presented in what
follows, we give in this section a more formal one in terms of λ-calculus.

4.1.1 Tail Recursion in Computer Science

A recursion is considered to be in tail (or tail-end) form if the step of the
recursion consists of a tail call, i.e., the recursive call is the last operation
performed by the function.

Therefore, the following restrictions are imposed on program terms:

• An “if (c) then t else e” statement cannot contain the recursive call in-
side the condition c

• In the recursive terms, no other operation should be performed on top
of the recursive call.

• The kernels of the λ-expressions are in tail-form.

Intuitively, for these requirements to be met, it suffices that the recursive
call is the outmost function in the step term of a recursion operator.

Let us regard an example, written in meta-language:

Example 2. We define a function that computes the sum of a list of natural
numbers. We consider the following possibilities:

• sum(l) := if (l = nilN) then 0 else l0 + sum(cdr(l)).

In this case, sum is not a tail recursive function, since the addition is
performed after the recursive call.

• sum(l) := sumaux(l, 0), where
sumaux(l, r) := if (l = nilN) then r else sumaux(cdr(l), l0 + r).

The addition was pushed inside the recursive call of sumaux. Since
no further operations are performed after the recursive call., this is a
tail-recursive variant of sum.

4.1. TAIL RECURSION 57

We summarize the above conditions in the following inductive definition.

Definition 4.1 (Tail recursion). A term T is in tail form if

T :=[] | x | (λxT) | (T1 T2) | 〈T1, T2〉 | T0 | T1 | Rστ tτT1 (λt, p, ~x. p T2) | Cστ cτT1 T2,

with C T1 T2, denoting the if (c) thenT1 elseT2 construct.

Remark 4.1. The advantage of tail recursive functions is that they can
be easily transformed to iterations. This allows for compiler optimizations,
since the intermediate information does not need to be saved on - and there-
fore later on recovered from - the stack, as is the case with non-tail recursion.

The iterations obtained in this way are a form of recursion. For instance,
for the natural numbers we have ItσN : N⇒ σ ⇒ (N⇒ σ ⇒ σ)⇒ σ with

ItN(0, f, g) = f, ItN(Sn, f, g) = g(ItN(n, f, g))

The step case is similar to RN(Sn, f, g), with the exception that n is not
used by g to compute the final result.

4.1.2 Connection with the Refined A-Translation

Observation 4.1. The recursion extracted from an A-translated inductive
proof in NAω is in general in tail form.

Justification. The property that the recursion is in tail form characterizes
in fact the classical proofs and not the refined A-Translation. It is only
because the A-Translation preserves the structure of the classical proofs
to which it is applied and because these are in fact proofs of ⊥ that this
property propagates to the transformation method.

Let C be a formula shown by induction. In order for the realizer associ-
ated to the A-translated proof of C to be non-empty, the formula must be
relevant, i.e., C := ∀n ¬̃B(n).

In the step case of the inductive proof we show ∀n. ¬̃B(n)→ ¬̃B(Sn).
For this, we assume n, u1 : ¬̃B(n) and u2 : B(Sn) and need to infer ⊥.

Since u1 ends in ⊥, in general this is applied first (so in head position) to
a term deriving B(n), in order to prove ⊥. In fact, this is always the case
when B is irrelevant. In such cases, the proof term for the step case is

MStep := λn, u1, u2. N
⊥ = λn, u1, u2. u1 N

′[u2]B(n).

58 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

After A-Translation, by the rules from Section 3.4 and since the assump-
tion variables u1, u2 contain ⊥ (so are relevant), the computational term
associated to the step case is:

[[MStep]] = λt, xu1 , xu2 . xu1 [[N ′]],

where the typing is xτ(n)→(τ(n)→τ(~G))→τ(~G)
u1 , x

τ(n)→τ(~G)
u2 . Notice that xu1 is

the functional corresponding to the recursive call. As a consequence of the
fact that u1 is applied first, the recursive call invokes xu1 in tail position
and all subsequent computations corresponding to C[u2] take place inside
the recursion call.

We illustrate this in what follows by the example of the factorial problem.

Example 3. Let fN⇒N be the factorial function and fnk the specification
for k = f(n) = n!. Assuming

InitFact : f 0 1 and GenFact : ∀n,k(fnk → f Sn (Sn · k))1

we show:
FCl : ∀n∃̃kf n k

by:

MFCl := λn0. Ind n0 MBase MStep

MBase := λu
∀k(f 0 k→⊥)
1 . u1 1 InitFact

MStep := λn1, u
∃̃kfn1k
2 , u

∀k(f(Sn1)k→⊥)
3 .

u2 (λk, ufn1k
4 . (u3 (n1 · k + k) (GenFact n1 k u4))⊥)∀k ¬̃fn1k.

We associate F N⇒N to the assumption variable u3 and H(N⇒N)⇒N to u2. Since
u4 is irrelevant, the associated term is ε. The program extracted from the
A-translated proof MFCl is:

P1 := λn0. R(N⇒N)⇒N
N n0 PBase PStep (λn. n),with

PBase := λF. F 1
PStep := λn1, H, F . H (λn2. F Sn1 · n2).

1S binds stronger than “·”.

4.1. TAIL RECURSION 59

Clearly, PStep fits Definition 4.1. The application of the recursion is the
outermost operation since H is the applied on top position in the step term
of P1. Thus, P1 is a tail-recursive program.

We take P ′1(n) := R n PBase PStep and have

P ′1(0) = PBase 0 = λF. F 1
P ′1(Sn) = R Sn PBase PStep =

= PStep n (R n PBase PStep) =
= PStep nP

′
1(n) =

= λF. P ′1(n)(λn2. F Sn · n2),

Thus, the program uses an auxiliary function G computing recursively the
result as follows:

G(0, F) = F 1 and G(Sn, F) = G(n, λn2. F Sn · n2).

The result is obtained by applying G to the identity function. G (and there-
fore P1) is tail recursive, since the computation is performed inside the re-
cursive call.

Proof Transformation vs. the refined A-Translation

In what follows, we compare the above results, obtained by applying the re-
fined A-Translation on classical proofs with the approach from (Chiarabini,
2010). In (Chiarabini, 2010) a proof transformation method is applied to
constructive proofs in order to obtain tail recursion in the extracted pro-
grams. The key idea is to replace the (Ind)-scheme by

P0→ ∀n(Pn→ P (Sn))→ ∀nPn, (IndCont)

proven by means of

P0→ ∀n(Pn→ P (Sn))→ ∀n∀ncm ((Pn→ P (n+m))→ P (n+m)).

By this, the computation of the recursion step is pushed inside the recursive
call.

We present this transformation in what follows on the factorial example
from Section 3. We will show that what is achieved in (Chiarabini, 2010)
by a clever proof transformation is a direct consequence (or side-effect) of
applying A-Translation to the classical variant of this proof.

60 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

Example 4. The goal formula of the factorial problem from Example 3 is
formulated by the strong form of ∃:

FCon : ∀n∃kf n k

and we make the same assumptions InitFact and GenFact.
Using the following instances of the axioms for ∃− and ∃+:

• ∃+ : ∀ncn . ∀m(f nm→ ∃kf n k)

• ∃− : ∀ncn . ∃mf nm→ ∀m(f nm→ ∃kf Snk)→ ∃kf Snk.

we construct the λ-proof:

MFCon := λn0. Ind n0 MBase MStep

MBase = ∃+ 0 1 InitFact

MStep = λn, IH∃kf n k. (∃− n IH)

λk,Hf n k. ∃+ Sn (Sn · k) (GenFact n k H).

Already at this level, we observe that the induction hypothesis is not applied
in head position. We obtain from MFCon the program:

P2 := λn0. RN⇒N n0 PBase PStep

PBase = 1
PStep = λn1, n2. n1 · n2 + n2.

This unfolds as:

P2(0) = 1
P2(Sn) = R (Sn) 1 (λn1, n2. n1 · n2 + n2) =

= (λn1, n2. n1 · n2 + n2) n (R n 1 (λn1, n2. n1 · n2 + n2)) =
= (λn1, n2. n1 · n2 + n2) n P2(n) =
= n · P2(n) + P2(n)

Thus, the constructive proof gives the recursive program

P2(0) = 1, P2(Sn) = Sn · P2(n),

which is clearly not tail recursive, because the multiplication is performed
outside the recursion.

4.1. TAIL RECURSION 61

We apply the proof transformation from (Chiarabini, 2010) and use
(IndCont), thus constructing the proof:

M3 := IndContM ′3, where
M ′3 := (∃+ 1 InitFact)

λn, IH∃kfnk. ∃− n IH (λk,Hfnk. ∃+ n Sn · k GenFact n k H).

Expanding IndCont we have:

M3 := λu1, u2, n. ((M3,Ind u1 u2 n 0)λu3. u3) M ′3
M3,Ind := λu4, u5, n

′. Ind n′ M3,Base M3,Step

M3,Base := λm, v1. v1 u4

M3,Base := λn, v2,m, v3. (λv4. v2 Sm v4)λv5. v3(u5 n v5),

where ∃+/∃− are the introduction/elimination axioms for the strong exis-
tential quantifier. The assumption variables have the following types:

u∃kf0k
1 , u

∀n. ∃kfnk→∃kf(Sn)k
2 , u∃kfnk3 , u∃kf0k

4 , u
∀n. (∃kfnk→∃kf(Sn)k)
5

v
∃kf0k→∃kf(0+m)k
1 v

∀ncm . (∃kfnk→∃kf(n+m)k)→∃kf(n+m)k
2 ,

v
∃kfSnk→∃kfS(n+m)k
3 , v

∃kfnk→∃kf(n+Sm)k
4 , v∃kfnk5

As a result of using this technique, we obtain the tail-recursive program:

P3 := λn0. RN⇒(N⇒N)⇒N n0

(λF. F 1)
(λn1, H, F . H (λn2. F (n1 · n2 + n2)))

(λn. n),

with F N⇒N and H(N⇒N)⇒N.
This is identical to P1 (on page 58), the program extracted from the

A-translated classical proof of the factorial.

Since the refined A-translated version of the classical proof already ex-
tracts into a tail recursive program, it is doubtful that in this case the trans-
formation procedure from (Chiarabini, 2010) would be of any computational
gain. Indeed, using (IndCont) to prove the factorial yields the program:

PBase :=λg. g (λF. F 1)
PStep :=λn1, Hc, g. Hc (λH. g (λF. H (λn2. F (n1 · n2 + n2))))

P4 := λn0. R n0 PBase PStep (λH. H) (λn. n),

62 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

where Hc(((N⇒N)⇒N)⇒(N⇒N)⇒N)⇒(N⇒N)⇒N and H(N⇒N)⇒N.
The type of the step function g is lifted to ((N⇒ N)⇒ N)⇒ (N⇒ N)⇒ N

and that of the recursion operator R to

N⇒ (((N⇒ N)⇒ N)⇒ (N⇒ N)⇒ N)⇒ (N⇒ N)⇒ N,

in order to accumulate the results inside the recursive call. However, this
brings no computational gain and the layer of imbrication is superfluous.

To sum up, while in the constructive case it is possible the directly ex-
tract programs from proofs, the recursions present in such programs are
not in tail form. (Chiarabini, 2010) proposed some transformations at the
proof-level in order to obtain tail-recursive programs, which are less expen-
sive computationally then their counterparts using standard recursion. In
the case of A-translated proofs, however, the recursion is in general in tail
form, since the structure of the classical proofs is preserved. We can view
this as a fortunate side-effect of working in NAω in which existence is shown
indirectly.

Further examples. In Chapters 5 - 7 we will present more complex case
studies. For each of these examples, we will provide the proof terms and the
extracted program, in order to illustrate the above observation.

Counter-example. In Observation 4.1 we have specified that there is
in general a connection between the refined A-translated proofs and tail
recursion. In what follows, we give an example to illustrate a situation
when this is not the case.

We regard the program extracted from the proof of the Corollary of
Infinite Pigeonhole Principle. The step term

G1 = λn1, g, f
′, h, p. p n1 (λn2, u1. g (λn3. f

′ (n2 t n3))M ′

for the recursion operator R1 in MIPHcor (given on page 89) is not in tail
form, since the step function g is applied inside the recursive call. This
comes from the proof strategy used to show IPH, where the term u for the
induction hypothesis is used inside MG(f,q).

4.2 Computing with Continuations

Another useful programming technique is that of computing with continua-
tions, by which constructs such as control operators or abort are added to

4.2. COMPUTING WITH CONTINUATIONS 63

the language. In what follows, we overview the results from (Griffin, 1990)
regarding the interpretation of classical principles via the control operators
and establish a connection with the programs that we extract from the re-
fined A-translated classical proofs. As we will see, an explicit extension
of NAω by control operators is not necessary, since the extracted programs
simulate the continuation passing style, due to the interpretation given to
⊥ in the process of refine A-translating.

4.2.1 Classical Proofs and the Notion of Control

Griffin bases his analysis on the work of Felleisen2, who has introduced the
notion of continuation/control context and the abort (A) and control (C)
operators. In (Griffin, 1990) these operators are associated to the classical
axioms and the weak operators, in a way which we briefly overview below.

Definition 4.2 (Continuation context). An evaluation context E is of the
form

E := [] | EN | V E,

where [] is a hole, N a λ-expression and V a value (variable or λ-expression).

The understanding is that the term E[M] is the result of placing M in
the hole of the evaluation context E. If M is not a value and E[M] is part
of an evaluation sequence, then E must wait for M to evaluate, in order
for the evaluation sequence to resume computing further subterms of E. In
such a case, E represents the continuation or control sequence of M .

Definition 4.3 (Control and abort operators). The λ-expressions are ex-
tended by the following operators:

• abort, A, given by the rule

E[A(M)] 7→A M.

Intuitively, this means that the control context in which M is placed is
abandoned and the computation resumes with M .

• control, C, with the semantics described in terms of

E[C(M)] 7→C Mλz. A(E[z]).
2Selected works of Felleisen cited by Griffin are (Felleisen et al., 1987), (Felleisen and

Friedman, 1986) and (Felleisen et al., 1986), but his work in this direction has further
developed.

64 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

The intended meaning of C becomes more clear by regarding the fol-
lowing situation

E′[(λz. A(E[z]))V] = E′[A(E[V])] 7→A E[V].

Intuitively, this means that the context E′ is abandoned and the control
returns to the context E.

Remark 4.2. A can be defined in terms of C, with d not free in M :

A(M) = C(λd. M).

Typing. For C, this is defined by (Griffin, 1990) to be:
“If M has the type (α→ β)→ β, then C(M) has type α”,

where, in order to be logically consistent, β must be a proposition which
has no proof, i.e. ⊥. As a consequence, C(M) is associated with Stab⊥ and
further, A(M) corresponds to efq⊥. Also, the typing for M implies that the
term is of the form λk ¬̃α. kM .

Further, (Griffin, 1990) introduces the computational terms for disjunc-
tion and conjunction, distinguishing between call-by-value and call-by-name
computations. Of interest to us is in particular the treatment of weak exis-
tential. For the ∃̃-introduction rule, the term considered is

P2 = λx,wα(x). λf∀y ¬̃α(y)f xw.

and for the ∃̃-elimination rule the computational term:

P1 := λp∃̃xα(x), f∀x. α(x)→β. C(λj ¬̃β. p (λx,w. j (f xw)))

Is is important to observe that the control operator is used to make the
transition from ¬̃ ¬̃β to β, thus mapping Stab⊥.

4.2.2 Connection with the Refined A-Translation

As briefly discussed in Chapter 2 - in Section 2.3.2 - and for reasons that
should become more clear in Chapter 8, we work in a (minimal) system
without Stab⊥ and efq⊥. The double negation of the logical stability axiom
and of the logical ex-falso are however provable. The logical falsity plays a
special role for the refined A-Translation: taken to be a predicate variable, ⊥
allows its substitution by computational terms. However, ⊥ in itself cannot
be interpreted computationally, so it plays the role of a hole in the compu-
tational context. Consequently, whenever ⊥ is present at the proof level,
this results in a computation by continuations in the extracted program.

4.2. COMPUTING WITH CONTINUATIONS 65

Observation 4.2. Assume that we have shown by the proof M a Π0
2-formula:

B := ∀~x. ~D → ~H → ∃̃y ~G (4.1)

The realizer for the proof of B depends on the realizers for the logical falsity
⊥ occurring in the proof after the refined A-translation. These realizers
simulate a controlled computation, in the sense that they allow to abort and
to compute with jumps.

Proof Sketch. We apply the refined A-Translation method to the proof of
B. Replacing ⊥ in this process helps recover the constructive meaning of ∃.
Further, we apply the modified realizability rules and by Theorem 3.5, the
refined A-translated B∃yG is realized by

[[M]] ~tD r sG mr∃yGF ,

where tD and sG are given by Lemma 3.8, such that

DF → tD mrD and ∀v,w. vmrG→ (GF → wmr⊥)→ sG v wmr⊥

are derivable from the proofs of (3.2) and (3.4) (given on page 35) using
∀y(F→ ymr⊥) and efqP .

The realizer for the goal, ⊥, thus depends on the realizers sG, v and
w. In particular the latter is a realizer for ⊥, thus only known when this
occurrence is instantiated by a computationally relevant formula (or some
dummy variable). Therefore, the realizer for the goal formula is part of a
context in which we need to wait for another value to be computed first.
To take this into consideration, we must allow for abort, to account for all
situations. By this, as soon as a suitable candidate for w is found, the context
in which this was computed exits with the current result. By a controlled
book-keeping of the ongoing computation, this result for w is passed to
the context waiting for it. In the case when the current context cannot
compute a satisfactory result based on the value for w, the computation must
backtrack, such that a new candidate for w is computed. As a consequence,
the goal ⊥ is placed in a context in which certain computations can be
abandoned, such that the control is passed on to the outer context. One
can also regard this as a computation with jumps. In the context of A-
translation, this is achieved implicitly, by generating a context similar to
the one involving the control operator from (Griffin, 1990).

66 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

We will see this phenomenon exemplified in the case of Stolzenberg’s
Principle and the Infinite Pigeonhole Principle in Chapter 5. In these exam-
ples, in case the evaluation fails for some conditions from the specification ~G,
the accumulated results intended to produce the output for ∃xG are aban-
doned. The computation resumes (or jumps back to) from the point where
the intermediate result used in the computation producing x was computed.
As a consequence of abandoning the intermediate results when constructing
x, the program does not use, in general, the first entries from the input
data producing the witness for x. A brute-force method would find the first
candidates, but might necessitate a longer computing time - the corollary
of Dickson’s Lemma presented in Chapter 7, Section 7.4 provides such an
example in which the computation with jumps is faster.

The implicit abort in the terms associated to classical proofs is correlated
with the fact that A-Translation enables us to extract programs from proofs
using classical principles, which cannot be otherwise interpreted by com-
putable functionals. Consider the example of Dickson’s Lemma, presented
in detail in Section 7.4. In the proof we use the minimum principle in order
to find two values with the desired properties. At the computational level
these values cannot be guaranteed to be the minimal values in an infinite
input sequence. This is a classical property for which it is not possible to
find an associated computable functional. It is rather the case that once a
potential suitable candidate is found, the verification whether this is indeed
a minimum is abandoned. A jump to the context in which this is compared
to the next value is performed; in case this pair of indices fulfills G, the result
is returned. If the pair fails the test, this computation is abandoned and a
new search for a potential candidate for first index is started, beginning at
a position in the sequence which was abandoned in the previous search. We
present in Chapter 7 some concrete runs of this program.

4.3 Summary of the Chapter

In this chapter we argue that transforming classical proofs by A-Translation
in order to synthesis their computational content has beneficial side-effects
from the computational point of view. In the case of constructive proofs,
as (Chiarabini, 2010) suggests, it is possible to obtain tail-recursive pro-
grams from inductive proofs, by applying transformations at the proof level.
However, as we have observed in this chapter, when using the refined A-
Translation on NAω-proofs we obtain in general recursions in tail form,
without further transformation of the proofs.

4.3. SUMMARY OF THE CHAPTER 67

We have also compared the effects of the refined A-Translation with the
work of (Griffin, 1990) in which control operators are associated to the clas-
sical principle efq⊥ and Peirce’s Law. (Griffin, 1990) interprets the existence
and disjunction operators in a manner identical to our distinction of weak
vs. strong operators and has also a special treatment of negation. In our
interpretation of ⊥, this plays the role of a placeholder and is substituted
during the translation by the (strong) ∃-goal. As a result, the extracted
program computes the results by means of the control and abort operators,
simulating the computation by continuations suggested in (Griffin, 1990).

68 CHAPTER 4. A-TRANSLATION AND PROGRAMMING

Chapter 5

The Infinite Pigeonhole
Principle

We apply in what follows the mechanism of the refined A-Translation cou-
pled with modified realizability to the theorem stipulating the existence of
a constant subsequence in an infinite sequence taking values from a finite
set. We will start with a simpler case and consider an infinite boolean se-
quence and then present the generalization to what is known as the Infinite
Pigeonhole Principle (IPH).

The example is suitable for understanding how the refined A-translation
affects proofs and enables program extraction, and for the simpler case we
will trace its steps in more detail. For the generalized version, we will
illustrate the strong connection with the Continuation Passing Style (CPS).
We will also emphasize other characteristics of the programs extracted from
A-Translated classical proofs, such as the asymmetrical behavior.

5.1 The Infinite Boolean Tape

We present in what follows a simplified version of IPH, in which we consider a
2-colored sequence or a “boolean tape”. The example is traced by (Coquand,
1995) back to Stolzenberg.

In his PhD thesis, (Urban, 2000) presents this case study in order to
illustrate the argument that by cut-elimination procedures one has more
flexibility in associating programs to proofs. For this, he gives four distinct
normal forms corresponding to the same proof of Stolzenberg’s example.
In the following, we will show how to achieve this by instead handling the
symmetries that we observe at the proof level. We claim that when using

69

70 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

A-Translation we can reach the same variety of extracted programs, by
carefully manipulating the formalization of the proof.

5.1.1 Statement and Formalization

Different formulations have been chosen in the literature, in order to state
Stolzenberg’s principle, which can be also viewed as an instance of the ex-
cluded middle:

• Given R infinite and R0 ⊆ R, either R0 or R1 := R \R0 is infinite.

• For any R ⊂ N there exists R0 ⊆ N infinite such that either R0 ⊂ R or
R0 ⊂ {R (Veldman and Bezem, 1993).

• Let S := { fN⇒N | ∀nf(n) < f(Sn) }. Then

∀A⊂N. ∃̃f∈S∀nf(n) 6∈ A ∨ ∃̃f∈S∀nf(n) ∈ A. (5.1)

Similarly, if we consider the characteristic function of A, we have

∀fN→B
A

. ∃̃f∈S∀nfA(f(n)) = 0 ∨ ∃̃f∈S∀nfA(f(n)) = 1 (5.2)

Our choice of formalization is as follows:

Proposition 5.1 (Stolzenberg’s Principle). On an infinite tape with cells
containing either 0 or 1, there exist two (distinct) cells having the same
content.

Proof Idea. We observe that an infinite boolean tape has either infinitely
many 0’s or infinitely many 1’s, from which our claim trivially follows.

We take fN⇒N to encode1 the infinite tape. Thus, our hypothesis is

A : ∀n. f(n) = 0 ∨̃ f(n) = 1 (5.3)

and we want to prove that

G : ∃̃n,m. n < m ∧̃ f(n) = f(m). (5.4)

As presented in Section 2.2 from the chapter introducing the language,
∨̃ is viewed only as an abbreviation. Thus, (5.3) can be expressed by
(variants of):

A : ∀n. (f(n) = 0→ ⊥)→ (f(n) = 1→ ⊥)→ ⊥ (5.5)
1We could take a two-valued function f N⇒{0,1} instead, but we choose the more general

form, in view of further generalizations of the proposition.

5.1. THE INFINITE BOOLEAN TAPE 71

Instead of directly proving Proposition 5.1, we formulate the proof idea
as the property:

∀n ∃̃k. n ≤ k ∧̃ fk = i, i = 0, 1 (∞i)

and use this to show G by splitting the proof in two parts; first, we show
the following lemmas:

A→∞0 ∨̃ ∞1 (∞0 or ∞1)
∞i → G, i ∈ {0, 1} (∞i → G)

and then put them together by a cut, to show Stolzenberg’s Principle.
As with (5.3), the ∨̃ in (∞0 or ∞1) needs to be rewritten, such that

we have (variants of)

A→ ¬̃(∞0)→ ¬̃(∞1)→ ⊥ (∞0 ∨̃ ∞1)

Remark 5.1. By ”variants of” (∞0 ∨̃ ∞1), we refer to the fact that, on
the one hand, if the double negation is not essential in order to carry on the
proof in minimal logic, then we can (classically) drop it. We will discuss in
Subsection 5.1.2 below and further in Chapter 8 when the double negations
are necessary. On the other hand, the symmetry enables us in addition to
consider either of the (classically) equivalent forms:

A→ ¬̃(∞0)→∞1 (¬∞0 →∞1)

A→ ¬̃(∞1)→∞0 (¬∞1 →∞0)

First Auxiliary Property. We first show the stronger statement:

Proposition 5.2. The infinite tape with cells containing either 0 or 1 has
either infinitely many 1’s or infinitely many 0’s.

Proof. We give the proofs in natural deduction style for both variants:
(¬∞0 →∞1) and (¬∞1 →∞0).

Let (m t n) abbreviate max(m,n) and P (s) : s ≤ (m t n). It is easy to
show the auxiliary properties ∀m,nP (m) and ∀m,nP (n), so we consider them
as part of the library of available lemmas.

Assume A and for i = 0, 1 let ui,s : ∀k. s ≤ k → f(k) = i→ ⊥.
We have:

(5.5): A (m t n)
u0,m(m t n) P (m)

→−
f(m t n) = 0→ ⊥

→−(f(m t n) = 1→ ⊥)→ ⊥
u1,n (m t n) P (n)

→−
f(m t n) = 1→ ⊥

→−⊥

72 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

Further, depending on whether we show (¬∞0 →∞1) or (¬∞1 →∞0):

w0 : ¬̃∞0

⊥ →+ u0,m
¬̃u0,m

∀+m∞0 →−⊥ →+ u1,n
¬̃u1,n

∀+n∞1 →+ w0¬̃∞0 →∞1 →+ AA→ ¬̃∞0 →∞1

w1 : ¬̃∞1

⊥ →+ u1,n
¬̃u1,n

∀+n∞1 →−⊥ →+ u0,m
¬̃u0,m

∀+m∞0 →+ w1¬̃∞1 →∞0 →+ AA→ ¬̃∞1 →∞0

The difference between these two last subproofs lies in the swap of 0 and
1. The symmetry will be reflected in the two distinct associated programs.
However, the choice whether to first consider 0 or 1 is essential, as this
consequently influences the order in which u1,n and u0,n are introduced and
whether ∞0 or ∞1 is used. As we will see, this triggers an asymmetry in
each of the extracted programs.

Second Auxiliary Property. The next step is to show (∞i → G), i.e.,
that G follows from either of ∞i, i ∈ {0, 1} and this is immediate.

Proposition 5.3. From infinitely many 0’s or 1’s, one can select two dis-
tinct occurrences of the same value2.

Proof. Let falseH : ∀n,m. n < m → f(n) = f(m) → ⊥. We assume that
we already have in our library the auxiliary properties

Lem=Trans : ∀f,k,n,m. f(n) = k → f(m) = k → f(m) = f(n)
LemSLeToLt : ∀n,m. S n ≤ m→ n < m.

We show ⊥.

Lem=Trans w1 : f(n) = i w2 : f(k) = i
→−

f(k) = f(n) (G1)

2One can easily generalize this to select finitely many occurrences of either 0 or 1.

5.1. THE INFINITE BOOLEAN TAPE 73

falseH k n

LemSLeToLt k n u : Sk ≤ n
→−k < n

→−
f(k) = f(n)→ ⊥ G1

→−⊥ →+ w1
f(n) = i→ ⊥

→+ u,∀+n
∀n. Sk ≤ n→ f(n) = i→ ⊥ (G2)

(∞i) i

(∞i) Sk G2
→−⊥ →+ w2

f(k) = i→ ⊥
→+ vi≤k, ∀+k

∀k. i ≤ k → f(k) = i→ ⊥
→−⊥

Excluded Middle. In order to show Proposition 5.1, we need to further
derive:

(∞i → G)→ (¬̃∞i → G)→ G (EMi)

Although in general not provable in minimal logic, this form of excluded
middle is in our case derivable due to the fact that G is relevant. The proof
is, for w : ∀n,m. n < m→ f(n) = f(m)→ ⊥:

u′2 : ¬̃∞i → G

u′1 :∞i → G v2 :∞i
→−G w →−⊥ →+ v2¬̃∞i
→−G w →−⊥ →+ wG

Final Step: the Cut. We conclude, for the case of (¬∞0 →∞1), with
the derivation3:

3EMi is as on page 73 and ∞0 → G and ∞1 → G are the corresponding instances
∞i → G for i = 0 and i = 1.

74 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

EMi ∞0 → G

∞1 → G

(¬∞0 →∞1) u:A
→−¬̃∞0 →∞1 v : ¬̃∞0 →−∞1 →−G →+ v¬̃∞0 → G

→−G →+ uA→ G

or, as a λ-term,

M(¬∞0 →∞1) :=λf,A, u∞0→⊥
⊥ , n, u1,n.

u⊥ λm, u0,m. A (m t n) (u0,m (m t n)P (m)) (u1,n (m t n)P (n))

M(∞i → G) :=λf, v(∞i)
2 , w. v2 0 λk, v0≤k, wfk=i

2 . v2 Sk

λn, uSk≤n, wfn=i
1 . (w k n (LemSLeToLtk nu))

(Lem=Transf 0 k nw2w1), i ∈ {0, 1}
M1 := λf,A.

(λEM0. EM0 M∞0→G λu⊥. M∞1→GM(¬∞0 →∞1)Au⊥)

λu′1, u
′
2, w. u

′
2 (λu∞0

0 . u′1 u0w)w,

where the variables have the typing as in the proofs and derivation trees
above.
Here, EM0 is (EMi) with i := 0 and the last line corresponds to its proof.

The proof using (¬∞1 →∞0) is symmetrical.

Remark 5.2. Another way to exploit the symmetry is by reformulating of
A to be

As : ∀n. (f(n) = 1→ ⊥)→ (f(n) = 0→ ⊥)→ ⊥ (5.6)

Consequently, if the assumption is As, then in the proof of (¬∞0 →∞1)
we need to first use ¬̃∞0 and then ¬̃∞1. Likewise, we can manipulate the
proof involving (¬∞1 →∞0) to use As. This will result in yet another pair
of symmetrical programs - symmetric with respect to each other, but also
correspondingly symmetric with respect to the programs associated with our
first pair of proofs.

5.1.2 The Logical Falsity ⊥

The reader might have noticed that, whereas for (∞0 ∨̃ ∞1) we have allowed
to rewrite ∨̃ into “variants”, we have been avoiding to do so for A and
did not consider for example Anp : ∀n. ¬̃f(n) = 0 → f(n) = 1. Although

5.1. THE INFINITE BOOLEAN TAPE 75

the proof of (¬∞0 →∞1) can be carried out with this version, Anp is not a
definite formula. In fact, “=” turns out to be an L-critical predicate symbol
in Anp, in the sense of Definition 8.1 from Section 8.2. Thus, the double
negation in the conclusion is needed in order to turn Anp into a definite
formula. This is exactly our chosen A.

Another option to express the hypothesis A is by the more natural ver-
sion

A(2) : ∀nf(n) < 2, (5.7)

which is a definite formula. From A(2) we can infer the properties of A that
we need in the proof by case distinction on the value of f(n). Using A(2)
would allow us to generalize the lemma to r values, i.e., to A(r) : ∀nf(n) < r
(see Section 5.2).

However, as we will further see in Section 5.2, the proof cannot be carried
out in minimal logic if we have A(r), so the double negation still needs to
be inserted explicitely. Moreover, if we would use A(2), we would not be
able to exploit the symmetry anymore, since the weak disjunction ∨̃ is not
explicit.

5.1.3 The Extracted Program

The A-Translation of the non-constructive proof

In order to apply the refined A-Translation we have to ensure first that A
is a definite formula and that G’s kernel consists of goal subformulas. The
latter is easy to see, since both subformulas of G (n < m and f(n) = f(m)
are atomic.

The analysis for A is immediate. We let Ai denote f(n) = i.

(A0 → ⊥) → (A1 → ⊥) → ⊥ ∈ D iff
(A0 → ⊥) ∈ G, (A1 → ⊥)→ ⊥ ∈ D iff

A0 ∈ D, (A1 → ⊥) ∈ G iff
A1 ∈ D

Since f(n) = 0, f(n) = 1 are atomic formulas, therefore definite, and ⊥
is both goal and definite, it follows that A is a (relevant) definite formula.
From the previous section we have:

Remark 5.3. Anp : ∀n. ¬A0 → A1 is not a definite formula because it is
not in RD (not relevant), nor is ¬A0 in IG (an irrelevant goal formula).

A and G are thus in the proper classes, so we can apply the refined
A-Translation.

76 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

Step 1: Eliminating logical falsity. Based on Lemma 3.6, we investi-
gate how are the following derivations for the definite formula A and goal
formula G produced:

` AF → A and ` G→ (GF → ⊥)→ ⊥

• We need to derive AF → A, i.e.,

(∀n. (A0 → F)→ (A1 → F)→ F)→ ∀n. (A0 → ⊥)→ (A1 → ⊥)→ ⊥.

We denote by CasesA Lemma 3.4 (Case Distinction). The derivation
MAF toA is presented below, with vi : ¬Ai and wi : ¬̃Ai.

efq : F→ ⊥

u : AF ∀−n
AF n v0 v1 →−F

→−⊥

CasesA1

CasesA0

⊥ →+ v0¬A0 → ⊥ w0
→−⊥ →+ v1¬A1 → ⊥ w1

→−⊥ →+ w0, w1,∀+n
A

As a λ-term, the above derivation is:

MAF→A =λu. λn,w0, w1.

CasesA1 (CasesA0(λv0. efqun v0 v1)w0) w1

• For G → (GF → ⊥) → ⊥, since both conjuncts of G are atomic and
without ⊥, there is nothing to prove.

Step 2: Friedman’s “trick” For the remaining occurrences of ⊥, we
use Friedman’s substitution of ⊥ by the strong version of G and thus have
no more free predicate variables occurring in the proof. We can associate a
program by the modified realizability using Lemma 3.7 and Lemma 3.8, as
illustrated in the following section.

Associated Realizers

The realizer sD from Lemma 3.8 is obtained by interpreting the proof in
the Step 1 above. The Case Distinction Lemma used to transform A to AF

5.1. THE INFINITE BOOLEAN TAPE 77

extracts to
λx1λx2. if tA then x1 else x2,

where tA represents a term s.t. A↔ tA is provable. This amounts to using
the if -operator with the test value f(n) = 0 and f(n) = 1, corresponding to
A0 and A1, since

[[MAF→A]] = λn, xw0 , xw1 . [[CasesA1]] ([[CasesA0]]xdummy xw0) xw1 ,

where xdummy is associated to efq.
Since no transformation was necessary in order to replace G by GF , the

associated realizer (sG in Lemma 3.8) is the identity.
By coupling these with the realizer associated with the initial proof using

Lemma 3.7 we obtain after normalization the programs P1 and P2 from
Figure 5.1, corresponding to the use of (¬∞0 →∞1) (to the right) and
(¬∞1 →∞0) (to the left). If we use As we obtain the pair of symmetrical
versions of programs depicted in Figure 5.2, which in fact mirror the first
two variants (while also swapping 0 and 1).

The symmetry is not easy to read from the structure of the extracted
programs, but a careful analysis reveals that if we consider a sequence s and
its complement s, then we have: P1(s) = P2(s). However, each of the two
programs is asymmetric, i.e., Pi(s) 6= Pi(s), i ∈ {1, 2}. This asymmetry
characterizes the classical proof and is a consequence of the interpretation
given to the weak existential quantifier. Since the refined A-Translation
preserves the structure of the proof, the assymetry is present in the ex-
tracted programs. We will analyze in the following section various runs of
the extracted programs, in order to illustrate these claims.

Experiments

We compare the first 2 versions of the programs on some systematic runs
for sequences of length 4. These examples are depicted in Figure 5.3 and a
generalization is presented in Section 5.2. On the one hand, they confirm
the symmetry that we expected to have between the two programs. This
can be seen for instance in the output of P1 for (0 1 0 0) and P2 for its
complement (1 0 1 1) or by comparing P1(1 0 1 0) and P2(0 1 0 1).

On the other hand, the runs of the same program on these sequences
show that Pi(s) 6= Pi(s), i ∈ {0, 1}. This is the consequence of the fact that
in the proof we have fixed the value i ∈ {0, 1} for which the search begins.
One can depict the programs as binary trees and observe that if the first
index in the output pair p is such that s(p1) = i and s(S(p1)) = 1− i, then

78 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

P1:= P2:=
[f] [f]
[if (f 0=1) [if (f 0=1)

[if (f 1=1) [if (f 1=1)
(0@1) (0@1)
[if (f 1=0) [if (f 1=0)

[if (f 2=1) [if (f 2=1)
(0@2) [if (f 3=1)
[if (f 2=0) (2@3)
(1@2) [if (f 3=0)
(0@0)]] (1@3)

(0@0)]] (0@0)]]
[if (f 0=0) [if (f 2=0)
[if (f 1=1) (1@2)

[if (f 2=1) (0@0)]]
(1@2) (0@0)]]
[if (f 2=0) [if (f 0=0)
[if (f 3=1) [if (f 1=1)

(1@3) [if (f 2=1)
[if (f 3=0) (1@2)
(2@3) (0@[if (f 2=0) 2 0])]
(0@0)]] (0@[if (f 1=0) 1 0])]

(0@0)]] (0@0)]]
(0@[if (f1=0) 1 0])]

(0@0)]]

Figure 5.1: First pair of programs associated to Stolzenberg’s Principle

5.1. THE INFINITE BOOLEAN TAPE 79

P3:= P4:=
[f] [f]
[if (f 0=0) [if (f 0=0)
[if (f 1=0) [if (f 1=0)
(0@1) (0@1)
[if (f 1=1) [if (f 1=1)
[if (f 2=0) [if (f 2=0)
[if (f 3=0) (0@2)

(2@3) [if (f 2=1)
[if (f 3=1) (1@2)
(1@3) (0@0)]]
(0@0)]] (0@0)]]

[if (f 2=1) [if (f 0=1)
(1@2) [if (f 1=0)
(0@0)]] [if (f 2=0)

(0@0)]] (1@2)
[if (f 0=1) [if (f 2=1)
[if (f 1=0) [if (f 3=0)
[if (f 2=0) (1@3)

(1@2) [if (f 3=1)
(0@[if (f 2=1) 2 0])] (2@3)

(0@[if (f 1=1) 1 0])] (0@0)]]
(0@0)]] (0@0)]]

(0@[if (f 1=1) 1 0])]
(0@0)]]

Figure 5.2: Second pair of programs associated to Stolzenberg’s Principle

80 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

this index is abandoned. In other words, the program returns the pair p
only if both of the following conditions are met

• p1 is the smallest index in the sequence

• 1− i does not appear between sp1 and sp2

As a side effect, we remark that it does not suffice to investigate a se-
quence of length 3, as it would be the case with the naive search. For the
programs to output correct values in all cases, we need to have at least 4
input values.

Test sequence 1st variant 2nd variant
(0 0 0 0) (0 . 1) (0 . 1)
(1 0 0 0) (1 . 2) (1 . 2)
(0 1 0 0) (2 . 3) (0 . 2)
(1 1 0 0) (0 . 1) (0 . 1)
(0 0 1 0) (0 . 1) (0 . 1)
(1 0 1 0) (0 . 2) (1 . 3)
(0 1 1 0) (1 . 2) (1 . 2)
(1 1 1 0) (0 . 1) (0 . 1)
(0 0 0 1) (0 . 1) (0 . 1)
(1 0 0 1) (1 . 2) (1 . 2)
(0 1 0 1) (1 . 3) (0 . 2)
(1 1 0 1) (0 . 1) (0 . 1)
(0 0 1 1) (0 . 1) (0 . 1)
(1 0 1 1) (0 . 2) (2 . 3)
(0 1 1 1) (1 . 2) (1 . 2)
(1 1 1 1) (0 . 1) (0 . 1)

Figure 5.3: Results of the different program variants extracted from the
Corollary of Stolzenberg’s principle

5.1.4 Related Work

The two pairs of proofs that we have presented are symmetrical to each
other, reflecting the variants in which ∨̃ has been rewritten. Consequently,
we were able to extract the same programs as (Urban, 2000), which uses the
cut elimination strategy as a transformation method, in order to associate
programs to classical proofs. However, the variants have been obtained in

5.1. THE INFINITE BOOLEAN TAPE 81

(Urban, 2000) by manipulating the cut elimination rather than altering the
proof. The key idea is to direct the normalization procedure to the left or
to the right, by strategically assigning colors to the formulas. This gives
therefore more freedom in how programs are associated to a fixed proof and
in Urban and Ratiu (2006) we went a step further and conjectured that
in this way one can extract more programs than by the double negation
translation. As the example of the infinite boolean tape shows, it is however
possible at least in some cases to obtain the same variety of associated
programs by considering all possible interpretations of the weak connectors.
More precisely, whereas it is true that by the (refined) A-Translation one
can only associate one program to a proof, the interpretation given to the
weak disjunction allows for flexibility in the formulation and consequently
in the proof of the theorem.

It would be interesting to investigate the correlation between the colored
cut-elimination procedure proposed in (Urban, 2000) and the interpretation
given to weak connectors, combined with the double negation. It seems
reasonable that a suitable strategy could be developed, in order to consider
all possible variants of rewriting the weak connectors of the formula to prove.
Further, one could investigate whether this corresponds to the coloring from
(Urban, 2000).

Another line of research in which Stolzenberg’s Principle has served the
role of a relevant case study is the composition of the refined A-Translation
and bar recursion. (Seisenberger, 2003) illustrates the interaction between
the refined A-Translation and external realizers, in this case computed by the
bar recursion, by considering a proof using the axiom of dependent choice.
(Seisenberger, 2003) has shown a generalization of Stolzenberg’s principle to

∀fA ∃̃
B
a ∃̃f∈S ∀k fA(f(Sk)) = a, (5.2)

i.e., the claim that a finite number of equally colored elements exist in a
two-colored sequence.

Thus, (Seisenberger, 2003) considers a different proof than the one that
we have presented, but uses the refined A-Translation as well, in order to
interpret it. ∃̃ is seen also as an abbreviation and the same interpretation is
given to the logical negation (⊥). Although (Seisenberger, 2003) considers
the generalization of Stolzenberg’s Principle and uses dependent choice in
the proof, the same behavior can be observed in the extracted program.
This consists in selecting the output subsequence s′ from the input sequence
s such that the color of interest (¬a in (5.2)) does not occur in s between the
first and the last index of s′. In the following section, we go a step further

82 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

in the direction of generalizing the principle, and allow that sequence is
“colored” by an arbitrary number of values. We will point out that the
same phenomenon occurs in the extracted program.

5.2 Generalization: IPH

In the following, we consider a generalization of Stolzenberg’s Principle, in
which the sequence is “colored by r colors”, i.e., the tape takes values from
{0, ..., r − 1}. This more general case in known in the literature as the
“Infinite Pigeonhole Principle” (IPH). We present in the section the results
from (Ratiu and Trifonov, 2010).

IPH states that any finitely colored infinite sequence has an infinite
monochromatic subsequence. In general, there is no computable functional
producing such an infinite subsequence. However, IPH can be used to give a
simple classical proof of the Π0

2-statement that a finite monochromatic sub-
sequence of any given length exists. For this reason, we will transform this
corollary by the refined A-Translation and then use the modified realizability
to produce a computable functional.

5.2.1 IPH - Statement and Proof

As with Stolzenberg’s Principle, IPH can be stated in various forms. For
instance:

Proposition 5.4. For r ∈ N and Ri ⊂ N, i ∈ {1, ..., r} disjoint sets,

if R :=
r⋃
i=1

Ri is infinite then ∃q ≤ r s.t. Rq infinite.

We work with the following statement:

Lemma 5.1 (Infinite Pigeonhole Principle). Any infinite sequence that is
colored with finitely many colors has an infinite monochromatic subsequence.

Proof. Let fN⇒N encode the infinite sequence colored by r colors, i.e. we
make the assumption

∀n f(n) < r.

We need to show that infinitely many positions on f are colored by some
color q:

G : ∃̃q∀n∃̃k. n ≤ k ∧̃ f(k) = q.

5.2. GENERALIZATION: IPH 83

We prove
∀f . ∀nf(n) < r → ∃̃q∀n∃̃k. n ≤ k ∧̃ f(k) = q (IPH)

by induction on the number of colors r.

Base case If r = 0, then the assumption f(n) < r is false, so we use efqG.

Step Assume that the statement to prove is true for r, i.e.,

∀f . ∀nf(n) < r → ∃̃q∀n∃̃k. n ≤ k ∧̃ f(k) = q (IH)

Let us fix an arbitrary f and assume

∀n f(n) < Sr (StepH)

∀q. (∀n ∃̃k. n ≤ k ∧̃ f(k) = q)→ ⊥, (NegG)

where (NegG) results from unfolding the weak existence ∃̃. It remains to
derive a contradiction (⊥) from the above.

We make a case distinction as to whether there is an infinite subsequence
of color r or not. If r appears infinitely often in the given sequence, i.e., if

∀n ∃̃k. n ≤ k ∧̃ f(k) = r, (Inf)

then this trivially leads to a contradiction, if we take q to be r in (NegG).
If this is not the case, then

∃̃n ∀k. n ≤ k → f(k) = r → ⊥, (NegInf)

which means that there exists an index n′, from which on the color r does
not appear anymore in the sequence. By (StepH) this means that from n′

on we have only r distinct colors. We therefore look at a variant of the
sequence f , in which we overwrite the positions up to n′ by f(n′). Formally,
this is the sequence

f ′ := λnf (n t n′),

where (xt y) denotes the maximum of x and y. The (IH) on f ′, colored by
r colors, provides a color q for which we can find an infinite monochromatic
subsequence:

∀n ∃̃k. n ≤ k ∧̃ f (k t n′) = q,

which contradicts (NegG).

84 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

Formalization. We give in the following the λ-terms expressing the in-
formal proof as presented above. For reasons that will be explained in
Section 5.2.2 and further in Chapter 8, we consider the double negation of
the assumption. Let

A(f, r) := ∀n. (fn < r → ⊥)→ ⊥
K(f, q, n) := ∀k. n ≤ k → f(k) = q → ⊥
G(f, q) := ∀n. K(f, q, n)→ ⊥ I.e., ∀n∃̃k. n ≤ k ∧̃ f(k) = q,

where we have expanded all ∃̃ according to the definition in Section 2.2.
The Infinite Pigeonhole Principle can be now formulated as:

∀f . A(f, r)→ (∀q. G(f, q)→ ⊥)→ ⊥. (IPHr)

We show ∀r IPH(r) by

MIPH := λr. IndIPH(r) rMBaseMStep,

where

MBase := λfλvA(f,0)λw∀q¬G(f,q). v 0 efq

MStep := λrλuIHλfλvA(f,r)λw∀q¬G(f,q). w rMG(f,r)

MG(f,r) := λnλw
K(f,r,n)
1 . u (λq. f(n t q))MA(f,r)M∀q¬G(f,q)

MA(f,r) := λn1λv
f(ntn1)<r→⊥
1 . v(n t n1)M⊥Cases

M⊥Cases := λv
f(ntn1)<Sr
2 . Lem<SCases r f(n t n1)v2

v1 (w1 (n t n1) (P (n)nn1))

M∀q ¬G(f,q) := λqλw
∀n1 ∃̃k. n1≤k ∧̃ f (ntk)=q
2 . w qMG(f,q)

MG(f,q) := λn1λw
K(f,q,n1)
3 . w2 n1 MK(f,q,(ntk))

MK(f,q,(ntk)) := λkλun1≤k
1 λu

f(ntk)=q
2 . w3 (n t k)Lu2

L := Lem≤Trans n1 k (n t k)u1 (P (k)nk),

with the types for the intermediate terms written respectively as subscripts.
As in the case of 2 colors, we assumed here that the following additional

lemmas are already available:

Lem<SCases : ∀n1,n2 . n2 < Sn1 → (n2 < n1 → ⊥)→ (n2 = n1 → ⊥)→ ⊥
Lem≤Trans : ∀n1,n2,n3 . n1 ≤ n2 → n2 ≤ n3 → n1 ≤ n3

P (s) : ∀n1,n2 . s ≤ (n1 t n2), with s either n1 or n2.

5.2. GENERALIZATION: IPH 85

5.2.2 Double Negations

In the Step Case, we assume that (NegInf) holds, i.e., that from an n onwards
the color r does not appear anymore in the sequence. We use the argument
to show that all subsequent values must be strictly smaller than r, since by
(StepH) we only have colors up to (including) r. This amounts however to
deriving something positive (i.e., “all values in f ′ are < r”) from a negation
(”it is not possible that the color r appears in the sequence f ′”). Since
(NegInf) contains a logical falsity this derivation cannot be carried out in the
minimal logic setting from which efq⊥ and Stab⊥ are excluded. Therefore,
we need to change (StepH), so that it contains logical negations as well, and
thus we double negate A and weaken it to

∀n ¬̃ ¬̃f(n) < r.

As it turns out, this double negation suffices in order to carry out the
proof in minimal logic and apply the refined A-Translation. This is the
least price to pay in order to recover the computational content, since no
further negations need to be inserted, as it would be the case with the double
negation translation.

The insertion of negations might seem rather ad-hoc. Yet, in Chapter 8
we present a systematic way by which we identify which double negations
are needed in order to avoid efq⊥ and Stab⊥. For this, we will define a class
of “critical atoms” which are the only ones that need to be double negated.
This is the case with f(n) < r. The example presented here, together with
the ones in the following two chapters have served as a basis for developing
the detection mechanism introduced in Chapter 8.

5.2.3 The Π0
2-Corollary

As we have already mentioned, we cannot expect to extract by A-Translation
a computable functional from Lemma 5.1. This is due to the fact that
IPH cannot be stated as a Π0

2-formula. Therefore, we analyze the following
corollary instead:

Corollary 5.0.2. In any infinite sequence f colored with a finite number of
colors and for any n ∈ N, one can find a finite monochromatic subsequence
of f of length n.

Proof. This follows trivially from Lemma 5.1, by taking the first n elements
of the infinite monochromatic subsequence. However, since we are interested
in the way this sequence is produced, we will analyze the formalization in

86 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

detail. We break the proof in two steps. First, we show how the sequence of a
given length n is obtained from an infinite monochromatic sequence. We cut
then this result with the IPH to get the finite monochromatic subsequence
from the given infinite sequence.

In the formalization, we store in a list l the indices at which the given
sequence f is of some color q. We will require that the list is strictly de-
creasing4, to ensure that we get distinct indices. Let G(f, n, l, q) gather
these specifications for the list l5:

∃̃l. |l| = n ∧̃ ∀m(Sm < n→ lSm < lm) ∧̃ ∀m(m < n→ f(lm) = q)
(G(f, n, l, q))

We show that for any color q,

if ∀n ∃̃k. n ≤ k ∧̃ f(k) = q, (Step1H)
then ∀nG(f, n, l, q) (Step1G)

and construct the list by induction on its length n.
For n = 0 our only choice is nil.
For n = 1, we take a list containing a single element, obtained from

(Step1H) applied at 0.
Finally, for the step case, assume that we have already a list l with n > 0

elements. (Step1H) on S(l0) gives a fresh element k > l0, which we add at
the beginning of l.

With this, we can infer that for any sequence f and number of colors r:

∀n((f(n) < r → ⊥)→ ⊥)→ ∀nG(f, n, l, q)

using IPH.

Formalization. We make the following notations:

G2(l, n) := ∀m. Sm < n→ lSm < lm

G3(l, n, q) := ∀m. m < n→ f(lm) = q

G̃(q, n) := ∀l. |l| = n→ G2(l, n)→ G3(l, n, q)→ ⊥

Step 1. We derive ∀f,q. G(f, q) → ∀n. G̃(q, n) → ⊥ (with G(f, q) as
defined on page 84) by

MauxL := λfλqλwG(f,q)λn. Ind¬G̃(q,n) nMbaseMstep,

4The list will be strictly decreasing rather than increasing, to avoid using “append”
when constructing it.

5We use the notations from 2.3.

5.2. GENERALIZATION: IPH 87

where

Mbase := λu
G̃(q,0)
0 . u0 nil AxT (λm. efq) (λm. efq)

Mstep := λn. Ind¬G̃(q,n)→¬G̃(q,Sn) nMn=0MSn

Mn=0 := λu
G̃(q,0)→⊥
1 λu

G̃(q,1)
2 . u1(λl λu|nil|=0

1,1 λu
G2(nil,0)
1,2 λu

G3(nil,0,q)
1,3 . w 0MK(f,q,0))

MK(f,q,0) := λkλv1
0≤kλw

f(k)=q
1 . u2 (k:) AxT (λm. efq) (λm. Indm (λu0<1w1)(λm. efq))

MSn := λnλu
G̃(q,n)→⊥
1 λu

G̃(q,Sn)
2 . u1(λl2. IndG̃(q,n) l2 efqMn1 :: l)

Mn1 :: l := λn1λlλu
|l|=n
1,1 λu

G2(n1 :: l,n)
1,2 λu

G3(n1 :: l,n,q)
1,3 . w (Sn1)MK(f,q,Sn1)

MK(f,q,Sn1) := λk1λv
Sn1≤k1
1 λw

f(k)1=q
2 . u2 (k1 ::n1 :: l) u1,1 MG2MG3

MG2 := λm. IndG2(k1 ::n1 :: l,Sn)m (λu. Lem4 n1 k1 v1) (λmλvSm<Sn
2 . u1,2mv2)

MG3 := λm. IndG3(k1 ::n1 :: l,Sn,q)m (λu w2) (λmλvSm<S(Sn)
3 . u1,3mv3)

In the above we have used Lem4 : ∀n1,n2 . Sn1 ≤ n2 → n1 < n2.
Step 2. The corollary now follows from IPH and Step 1:

MIPHcor := λfλrλvA(f,r)λnλu∀q G̃(q,n). MIPH r f v (λqλwG(f,q). MauxL f q w n(uq))

Remark 5.4. It is straightforward to infer that if all elements are of color
q, then each two are equal

∀q. ∀m(m < n→ f(lm) = q)→ ∀m(Sm < n→ f(lm) = f(lSm)). (5.8)

Since the color of the monochromatic subsequence is not relevant to us, we
could thus consider for simplification the modified goal formula:

∃̃l. |l| = n ∧̃ ∀m(Sm < n→ lSm < lm) ∧̃ ∀m(Sm < n→ f(lm) = f(lSm))
(G′(f, n, l))

5.2.4 Results with A-Translation

We first need to ensure that the specification conforms to our requirements.
We have already observed that the Infinite Pigeonhole Principle (IPH) is
clearly not a Π0

2-formula. Since the A-Translation mechanism is not mod-
ular, i.e., cannot be applied to intermediate lemmas unless they are Π0

2-
formulas, we apply it to the proof of the corollary

∀r,f . ∀n((f(n) < r → ⊥)→ ⊥)→ ∀nG(f, n, l, q), (IPHcor)

where the goal formula’s kernel can be also taken to be the conjunction
(G′(f, n, l)).

(IPHcor) is a Π0
2-formula and its subformulas definite and goal:

88 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

• D := ∀n. (f(n) < r → ⊥)→ ⊥ is a relevant formula of the form ∀nD,
with D = (D0 → G)→ R ∈ RD.

• ~G := G(f, n, l, q) consists of irrelevant conjuncts only, each of which is
a goal formula.

Therefore, we can apply the refined A-Translation to it.
In the first step of eliminating the irrelevant occurrences of⊥ by Lemma 3.6,

we have GF := G, so no transformation on the goal is needed.
D is, however, relevant and we need to derive (3.2): DF → D. We follow

the proof of Lemma 3.6 and break it down into steps

• first, we observe that we are in the case ∀nD′ with D′ = ¬̃ ¬̃f(n) < r.
Thus, it suffices to show D′F → D′;

• elaborating, D′ is a relevant formula of the form G → R, with G =
f(n) < r → ⊥ and R = ⊥;

• thus, it suffices to have the derivation ¬̃¬(G→ R)F → G→ R;

• we use the (IH) for G and R.

– Since R = ⊥, deriving ¬̃¬RF → R = ((F → F) → ⊥) → ⊥ is
trivial.

– For G, by (3.4) we have G→ (GF → ⊥)→ ⊥, i.e.,

(f(n) < r → ⊥)→ (f(n) < r → F→ ⊥)→ ⊥.

This later property is given by Lemma 3.4 (Case Distinction).

The essential observation in the above sketch of the way DF → D is
inferred, is to notice that such proofs usually amount to using case distinc-
tion. As it was the case with the boolean sequence, this will be reflected in
the extracted program, where we will need to investigate whether f(n) < r.

The next step in transforming our proof by the refined A-Translation
consists in replacing throughout the proof the remaining occurrences of ⊥
by the strong goal G(f, n, l, q). The constructive counterpart

∀f,r. ∀n((f(n) < r → F)→ F)→ ∀nG(f, n, l, q) (IPHcor-∃)

of our initial (classical) proof is now provable by plugging together the above
transformation on D and the derivation for MIPHcor. In the proof MIPHcor,
we will expand MIPH, such that its computational content is also exploited.

5.2. GENERALIZATION: IPH 89

The proof is now ready to be interpreted by the modified realizability, in
the way suggested by the Soundness Theorem 3.4 and Theorem 3.5. Thus,
with the rules from Definition 3.10, we are able to automatically extract the
following program6:

PIPHcor := λf, r, n. R1 r F1 G1 f

(λn1, ln1. [if (fn1 < r)ln1(nilN, 0)])
(λn1, w. [ifn(nilN, n1)(λn5. R3 n5 F3G3 λl. (l, n1))]) with

F1 := λf ′, h, p. h 0 (nilN, 0)
G1 := λn1, g, f

′, h, p. p n1 (λn2, u1. g (λn3. f
′ (n2 t n3))

(λn3, ln2. h (n2 t n3)(R2 n1 F2G2 f
′ (n2 t n3) ln2 (u1 (n2 t n3))))

(λn3, w. p n3 (λn5, u2. w n5 (λn4. u2 (n2 t n4)))))
F2 := λn5, ln3, ln4. [if (n5) ln4 λn6. ln3]
G2 := λn5, v, n7, ln5, ln6. [if (n7) ln5 λn8. v n8 ln5 ln6]
F3 := λL. w 0 (λn8. L n8 :)
G3 := λn9, H, L. H λl′. [if l′(nilN, 0)λn3, l. w Sn3 (λn5. L (n5 :: n3 :: l))],

where

LLN→LN×N, H(LN→LN×N)→LN×N, hN→LN×N→LN×N, pN→(N→(N→LN×N)→LN×N)→LN×N

g(N→N)→(N→LN×N→LN×N)→(N→(N→(N→LN×N)→LN×N)→LN×N)→LN×N

uN→LN×N, vN→LN×N→LN×N→LN×N, wN→(N→LN×N)→LN×N, lnLN×N

R1,N : (N→ N)→ (N→ σ → σ)→ (N→ (N→ (N→ σ)→ σ)→ σ)→ σ,

R2,N : N→ σ → σ → LN× N, R3,N : (LN→ σ)→ σ, with σ := LN× N

Let us first observe that all terms are in tail recursion form, with the
exception of G1. This results from the inductive proof of IPH in which the
proof MStep the induction hypothesis is not applied first, but only at the
level of MG(f,r). Since A-Translation preserves the structure of the proof,
this is reflected in the resulting step function for the recursion operator R1.

In Figure 5.4 we present two extracted programs corresponding to the
proofs of IPHcor and IPH in a more readable form, with suggestive variable
names and separate definitions for functional arguments. In order to un-
derstand the program code better, it is helpful to consider Table 5.1, which
summarizes the computational types associated with the relevant subformu-
las of the two statements.

6We follow closely the output of (Minlog), in which we have extracted the program
from the refined A-translated proof of IPHcor.

90 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

Formula Specification Input Output
IPH IPH r, f,FC, IMS ⊥
∀n ¬̃ ¬̃f(n) < r FC n,⊥ ⊥
∀q∃̃n∀k. n ≤ k → ¬̃(f(k) = q) IMS q, IS ⊥
∀n∃̃k. n ≤ k ∧̃ f(k) = q IS n, SE ⊥
∀k. n ≤ k → ¬̃f(k) = q SE k ⊥
(Step1G) FS n, (⊥ ⇒ ⊥) ⊥
IPHcor-∃ IPHcor r, f, n ⊥

Table 5.1: A-Translation computational types

With ⊥ being a predicate variable, we regard here its computational type
as being abstract, i.e., a type variable that can be substituted with any type.7

Since ⊥ is to be substituted with the formula ∃xG, we can in fact think of
the computational type of ⊥ as the type of the final result x, which in our
case is determined by Corollary 5.0.2 (IPHcor). Computationally relevant
formulas always end in ⊥, so they correspond to computations producing
an output of the abstract type, i.e., a potential candidate for a final result,
as shown in the “Output” column in Table 5.1. The abstract view of ⊥
restricts the possible form of the extracted programs: they can either return
a dummy value, or refer to some of their (functional) parameters, whose
type end in ⊥. Thus, the program adheres to the continuation passing
style (CPS). This way of computing the values to be placed in the “hole”
corresponding to ⊥ captures the functionality of the operators abort A and
control C from Chapter 4.

In what follows, we analyze the separate computational components in
more detail.

• The program FC (Finitely Colored) is given an index n and a candidate
for the final result ⊥, which is correct if the color of f at n is below r,
according to the condition from our assumption.

• The program SE (Sequence Extension) has to produce the result given
an index k ≥ n, at which the sequence f is colored by q.

• The program IS (Infinite Sequence) takes an index n and is expected
to provide a next occurrence k of the color q in f . Note that IS

7By abuse of notation we will denote here by⊥ the predicate variable, its computational
type, and object variables of this type.

5.2. GENERALIZATION: IPH 91

cannot return k directly, because this could amount to computing
through an infinite sequence. Instead, it should return a final result
by passing a candidate for k to its parameter SE (traditionally called
a continuation), which verifies if k fits the requirement.

• Similarly, IMS (Infinite Monochromatic Sequence) takes a color q and
computes a final result by invoking IS for some indices n. Note that
IMS will not obtain the final result directly: in order to invoke IS
it needs to be provided with a program SE, which specifies how to
continue the computation after receiving an answer k with f(k) = q.

• The main program IPH can be used only after the continuations FC
and IMS have been provided.

• The conclusion (Step1G) of (IPHcor) states that the final result should
be a finite list l of indices. However, since we are using the weak
existence, the program FS (Finite Sequence) would not directly return
the final answer, but instead would feed the currently computed list
of length n to its continuation parameter, named P in Figure 5.4b).

• The final program IPHcor is the algorithm that we expect to extract:
given a sequence f , a number r of colors and the length n, it returns
a finite list l of indices at which the sequence f has the same color.
Note that the specification corresponds to the strong existence formula
(IPHcor-∃).

We will make use of the following two abbreviations:

(hdn)(m) := h (n tm) (hen)(m) := (n t h(m)). (5.9)

The program scheme IPH given in Figure 5.4a follows the proof structure
of IPH very closely by recursing on r. For the base case, the use of efq in the
proof is reflected by calling FC with a dummy candidate (�). The recursive
case calls IMS in an attempt to build a monochromatic subsequence of color
r − 1. For this, the program IS is expected to calculate an index after n of
this color and to pass it to its parameter SE. Following the proof, IS assumes
that r − 1 does not appear after n and attempts to obtain the final result
by a recursive call to IPH, with the parameters f , FC and IMS changed to
fd(n), FCn and IMSn respectively, thus disregarding indices smaller than
n. FCn deserves special attention: as noted above, it obtains an index n′

and a result ⊥, which will be correct if (∗) (fd(n))(n′) < r − 1. When
we know for a fact that this color differs from r − 1, (∗) is equivalent to

92 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

IPH(r, f,FC, IMS) := if r = 0 then FC(0,�) else IMS(r − 1, IS)
IS(n, SE) := IPH(r − 1, fd(n),FCn, IMSn)

FCn(n′,⊥) := FC
(
(n t n′), if f(n t n′) 6= r − 1 then ⊥ else SE (n t n′))

)
IMSn(q, IS′) := IMS(q, IS′n),

IS′n(k,SE) := IS′(k, SEdn)

a) A-Translation program for IPH

IPHcor(r, f, n) := IPH(r, f,FC, IMS)
FC(n,⊥) := if f(n) < r then ⊥ else �,

IMS(q, IS) := FS(n, λl l)
FS(n,P) := if n = 0 then nil else

if n = 1 then IS
(
0, λk. P(k:)

)
else FS(n− 1,P′)

P′(k :: l) := IS
(
k + 1, λk′. P(k′ :: k :: l)

)
b) A-Translation program for IPHcor

Figure 5.4: A-Translation programs for IPH and IPHcor

f (n t n′) < r, which allows us to pass ⊥ to FC in this case. If the color
happens to be r − 1, this contradicts the assumption under which IPH was
called recursively; however, we have found exactly an index that SE expects.

We now examine the main program given in Figure 5.4b. IPHcor can
be viewed as a “search breakpoint” - it overwrites the requirement that an
infinite subsequence exists, as soon as the specified number of elements, all
of the same color, have been found. Since the proof is obtained by a cut,
IPHcor is defined by a call to IPH with specially constructed parameters.
The program FC, being extracted from the Cases Lemma 3.4, acts as a
correctness guard: returns ⊥ on f(n) < r and a dummy value � otherwise.
FS corresponds to Step 1 of Corollary 5.0.2 and thus recursively extracts the
values of constant color. The role of the function SE is played by P, which
receives the next index of the infinite sequence and accumulates it in a list.

In order to understand the operational semantics of the obtained pro-
gram, we should note that both recursions on r and n unfold immediately
and the actual computation is carried out during the folding process, from
the base case up. This has the effect that for every color q < r a program
FS is started, each of them calculating a list of indices of the corresponding

5.2. GENERALIZATION: IPH 93

color. The program FS performs a “successful step” only when SE receives
some index k of color q; in this case IS is invoked, asking for the index after
k + 1. The process ends when some list reaches length n, and it is returned
as the final result. However, there is one important pitfall: the program
IS, called after each successful step, restarts IPH from the base case. This
invokes fresh programs FS for all colors below q, while the partially accu-
mulated lists for these colors are lost. As a result, the program in Figure
5.4, which generalizes the case of a 2-colored sequence, need not necessarily
find the first n occurrences of constant color; it returns a list of the smallest
possible indices of a color q, between which no color larger than q appears.

Experiments

In the following we give the results for selected runs of the extracted program
on uniformly distributed random sequences. The case studies have been
presented also in (Ratiu and Trifonov, 2010), where we go a step further
and compare the programs corresponding to the A-translated classical proof
with the one obtained by applying the Dialectica method.

n r last index time (ms)
10 2 18 < 1
100 2 184 48
200 2 390 133
500 2 988 835
10 3 33 2
10 4 45 6
50 4 205 289

Figure 5.5: Average runs of the extracted program

Complexity. In (Ratiu and Trifonov, 2010) we present a detailed com-
plex analysis, which our colleague Trifon Trifonov has carried out, in order
to compare the result of using Dialectica on classical proofs to the program
which we have presented above. The outcome is that the worst time com-
plexity is O(nr), while the average time complexity of IPHcor is O(r2 · n).
This relies on the characteristics that the programs extracted from the A-
translated proofs have: the returned subsequence is such that it has color
q and no color larger than q appears between its indices in the given se-
quence. This generalizes the boolean case, where we have already observed

94 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

that this amounts to inspecting sequences of length at least 4, as opposed to
the constructive case, where 3 elements suffice in order to verify the claim.
However, the average time complexity is the same as the worst (and the
average) time complexity of the direct näıve algorithm, which goes linearly
on the given sequence, constructing r lists until one of them reaches length
n. Moreover, the A-translated proof results in a program of better average
time complexity than the Dialectica-interpreted proof, while the worst time
complexity is the same in both cases.

5.2.5 Related work

In (Ratiu and Trifonov, 2010) we also present the program extracted from
IPHcor using Gödel’s Dialectica interpretation. Our colleague Trifon Tri-
fonov has carried out an extensive comparison between the two extraction
methods and treats this aspect also in his PhD Thesis (Trifonov, 2011). The
outcome is that each method has a certain advantage over the other. On the
one hand, unlike A-Translation, Dialectica allows for a modular interpreta-
tion of classical proofs, since it does not restrict the extracted functionals
to be computable and thus allows to interpret also formulas which are not
Π0

2, as it is the case with IPH. However, as a result of the fact that the
refined A-Translation is not modular, the components associated the non-
Π0

2-lemmas used in the proofs are much tightly connected in the extracted
program. As a consequence, A-Translation’s immediate backtracking in the
extracted program brings down its average time complexity, which is better
than the average time complexity of the Dialectica program. The worst time
complexity is the same for both algorithms.

Other solution using Dialectica interpretation are given in (Oliva and
Escardo, 2010), where products of selection functions are used in order to
simulate the game of producing an example and a counter-example for the
statement. In (Oliva, 2006) a finite version of Spector’s bar recursion is used
instead, in order to realize a negative translation of the IPH.

5.3 Summary of the Chapter

This chapter presents the effects of the refined A-Translation on the example
of the Infinite Pigeonhole Principle (IPH). We have started from the simpli-
fied case of a boolean tape in which we search for two identical values. The
extracted programs are easier to analyze and we were able to observe that
the same asymmetry as in (Seisenberger, 2003) is present. This is due to
the continuation passing style which characterizes the way classical proofs

5.3. SUMMARY OF THE CHAPTER 95

are interpreted - in our case by the A-Translation. Further, although A-
translation does not allow flexibility in the way proofs are translated, as is
the case with using cut-elimination in (Urban, 2000), in the boolean case we
were able to obtain the same extracted programs by manipulating the way
in which weak disjunction is rewritten.

We have generalized this to the full IPH and pointed out that applying
the A-translation on the IPH is not possible, since the statement is not a
Π0

2-formula. For this reason, we have restricted out attention to a corol-
lary. Its proof cannot be carried out in minimal logic unless we manually
insert negations, but as Section 5.2.1 demonstrates, it suffices to double
negate the assumptions. Therefore, at the cost of restricting the proof sys-
tem to NAω for the refined A-Translation, we benefit from the fact that
only these controlled double negations are necessary, as opposed to using the
Gödel-Gentzen transformation as it is the case for the original A-Translation
method. As a result, due to the computational relevance of ⊥, the extracted
programs are brushed-up of some irrelevant computations. It would be inter-
esting to compare the programs obtained by the refined A-Translation with
the corresponding programs resulting from using the original A-Translation
method and we leave this as a subject for investigation in future work.

In this chapter, we have given special attention to the formalization
of the Infinite Pigeonhole Principle, since this is mirrored in the extracted
programs. We have also illustrated the steps necessary in order to transform
the proof by the refined A-Translation and have interpreted the resulting
constructive proof. We have analyzed the extracted program from IPH
and pointed out the specific behavior resulting from using the refined A-
Translation: the search for the subsequence of color q is performed in such
a way that no color larger than q appears between its indices in the given
sequence. We have also drawn the attention to the fact that the refined A-
Translation proofs mimic the continuation passing style from programming
and hide a use of the control and abort operators, due to the special role
played by ⊥.

96 CHAPTER 5. THE INFINITE PIGEONHOLE PRINCIPLE

Chapter 6

The Erdös-Szekeres Theorem

An interesting property in the realm of combinatorics, the Erdös-Szekeres
Theorem (ES) states the existence of monotonically increasing/decreasing
subsequences of length at least Sn in a given sequence of n2+1 elements. The
theorem follows from the finite version of the Pigeonhole Principle (FPH)
and is shown by an indirect proof, using also a clever construction.

The focus in this chapter lies on the conditions that ES and its proof
need to fulfill in order to apply the refined A-Translation. We will emphasize
the formalization decisions with accent on the use of negations. As we will
see, the elaborated proof and all the necessary changes are reflected in rather
complicated extracted programs, but the effort invested in the formalization
is well-worth, since by this the correctness of the associated algorithm is
guaranteed.

The purpose of this chapter is two-folded. On the one hand, we have
investigated the effects of the refined A-Translation on the extracted pro-
grams and on the other we were confronted with the issue of having to
insert negations, in order to obtain NAω-provability. We point this out in
Sections 6.2.1 and 6.2.2. This theorem serves therefore also as a case study
for the general method proposed in Chapter 8 regarding the use of negations
in order to obtain minimal logic proofs from intuitionistically valid ones.

The chapter has two main components, structured around FPH and
ES. We will first show in Section 6.1 the finite version of the Pigeonhole
Principle and present its formalization, together with the result of applying
the A-Translation. In Section 6.2 we comment on the issues arising when
formalizing the Erdös-Szekeres Theorem (ES), in particular on the necessity
to adapt the Pigeonhole Principle by a controlled insertion of negations. The
new variant of FPH is presented in Section 6.2.2, in which we also compare

97

98 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

the extracted program with the one obtained in Section 6.1. We conclude by
presenting in Section 6.2.4 the result of applying the modified realizability
on the refined A-translated classical proof of the Erdös-Szekeres Theorem.
The extracted program is presented first by abstracting over FPH and then
by expanding it and normalizing the resulting term.

6.1 The Finite Pigeonhole Principle

We present in this section a formalization of the classical proof of FPH and
propose user-defined functions for the constructive part of this proof. Since
the formulation that we consider is a Π0

2-statement, we apply the modified
realizability on the A-translated proof and obtain a computable functional.
The program associated to FPH will illustrate how sensitive the extraction
procedure is to the proof strategy.

Lemma 6.1 (Finite Pigeonhole Principle (FPH)). Given n ∈ N objects,
r ∈ N colors and a coloring function c : {0, ..., n− 1} → {0, ..., r − 1}, if for
some k ∈ N we have k · r < n, then at least Sk objects have identical color.

Proof. Assume that each of the colors has at most k objects assigned to it.
Then there are in total at most k · r objects and since by the hypothesis
k · r < n, this contradicts the assumption that the r colors are assigned to
all n objects.

More concretely, let us group all objects by their colors and construct
the list ll, with lli collecting all objects of color i, 0 < i ≤ r. Thus, |ll| = r
and we assume that each sublist contains at most k objects, i.e., ∀i≤rlli ≤ k.
Then there are at most |lli| · |ll| = k · r objects in the list. Since k · r < n,
this contradicts the assumption that

∑n
i=1 |lli| = n.

In the following, we present the implementation of this proof, as done in
(Minlog). Since the proof contains constructive components, we formalize
these in terms of predefined functions. The proof remains however essentially
classical, since the existence is interpreted in a weak sense, so it is shown in
an indirect way.

We work as before in the system NAω introduced in Chapter 2. As a
consequence, we will need to avoid efq⊥ and Stab⊥.

6.1. THE FINITE PIGEONHOLE PRINCIPLE 99

6.1.1 Formalization

On the premise that c assigns to the objects at most r colors and that there
are more objects then k · r, we show that there exists a list of at least k
objects, all of the same color m:

∀k,n,r,c. ∀ic(i) < r → k · r < n→ ∃̃l. k < |l| ∧̃ ∃̃m∀i<|l|c(li) = m. (6.1)

For the constructive part of the proof concerning the grouping of objects
according to their colors we have defined the functions specified below. We
have also verified that the properties necessary in order to carry out the
proof are fulfilled. We give in what follows their formulations and labels
and leave further implementation details for Appendix A.1.

The main operation is performed by GroupbyCols, which distributes the
objects in lists according to their colors. We construct a list ll of type L(LN)
with the property that lli contains all objects of color i. For this, we define:

• ChangeAt(ll, i, nN), an auxiliary function that modifies the list ll, by
appending n to the sublist lli. The returned type is L(L N).

With the exception of the i-th sublist, the components in ll are not
affected. In addition, the length is not modified, unless i > |l|, in which
case a new component is created in ll and the positions in-between are
filled by empty lists. Thus,

∀iChangeAt(ll, i, n)i = (n :: lli) (ithchanged)
∀i∀j 6=iChangeAt(ll, i, n)j = llj (jthnotchanged)
|ChangeAt(ll, i, n)| = max(|ll|, Si) (LhChangeAt)

• GroupbyCols(c, n) groups the objects in lists according to their colors.
It uses ChangeAt in order to construct the list ll, such that the object
n is inserted in the c(n)-th list, i.e., at the position given by its color.
The returned type is L(L N).

Notation 6.1. For readability purposes, we use in what follows the
abbreviation

GC := GroupbyCols(c, n).

In order to use GroupbyCols for proving FPH, we need to know that
the grouping has been as expected, i.e., that the number of generated

100 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

lists does not exceed the number of colors and that all elements in a
sublist lli share the color given by its index i:

∀ic(i) < r → |GC| ≤ r (ColLists)
∀i≤r,j<|GCi|c(GCi,j) = i. (GroupByCols)

• In order to count all the objects in the list obtained from GC, we
construct the union of its sublists by flatten(ll). We thus need the
guarantee that the following properties hold:

– the number of elements in a list ll is at most the maximum length
of its sublists multiplied by the number of sublists:

∀ll,k. (∀i<|ll|. |lli| ≤ k)→ |flatten(ll)| ≤ k · |ll| (Lhflattenll)

– ChangeAt has only added an element to the list:

|flatten(ChangeAt(ll, i, n))| = S|flattenll| (LhflattenedChangeAt)

– all given objects and only those are grouped by GC:

|flatten(GC)| = Sn (ObjGrouped)

Since none of these properties has computational content, we omit their
proofs.

With these functions and properties we can now formally prove FPH.

Detailed formal proof. We fix arbitrary k, n, r and c and assume

∀i c(i) < r (H1)
k · r < n (H2)

∀l. k < |l| → ∃̃m∀i<|l|c(li) = m→ ⊥, (H3)

where (H3) results from rewriting the weak existence goal. It remains to
show ⊥.

Following the reasoning from the informal proof, ⊥ should be inferred
from (H2) and (Lhflattenll). More precisely, using (ObjGrouped), (H2) can
be turned into

k · r < |flatten(GC)|.

Using (ColLists) and (H1), we have further:

k · |GC| ≤ k · r < |flatten(GC)|. (6.2)

6.1. THE FINITE PIGEONHOLE PRINCIPLE 101

Let ll := GC in (Lhflattenll). We have

|flatten(GC)| ≤ k · |GC| (6.3)

provided that
∀k,i<|GC||GCi| ≤ k. (6.4)

From (6.3) and (6.2), we can derive F and by efq we reach the conclusion ⊥.
However, we have to verify that (6.4) is fulfilled. This can be inferred

from (H3) by taking l := GCi and observing that (GroupByCols) gives us
m := i which satisfies the requirement ∃̃m∀i<|l|c(li) = m of (H3).

Negations It remains to show

(k < |GCi| → ⊥)→ |GCi| ≤ k,

This is an instance of the lemma ∀i,j . (i < j → ⊥) → j ≤ i, which requires
in the proof (by induction on i and case distinction on j) an application of
efq⊥Sj≤0. As discussed in Section 8.1, efq⊥ is not acceptable in our system.

Thus, it would be more convenient to derive ∀k,i<|GC|. k < |GCi| → ⊥
instead of (6.4). For this reason, we introduce logical negations by “twisting”
(Lhflattenll):

∀ll,k. (∀i<|ll|. k < |lli| → ⊥)→ k · |ll| < |flatten(ll)| → ⊥, (nLhflattenll)

which turns out to be NAω-provable (we give the proof below).
With this, ⊥ follows naturally.

The λ- proof terms. We consider the following (typed) assumption vari-
ables

H
j<|GCi|
j , H

i<|GC|
i , H̃2

k<|GCi|

The proof of FPH in λ-form is

MFPH := λk, n, r, c, (H1), (H2), (H3).

(nLhflattenll GC k (λi,Hi, H̃2. H3 GCi H̃2 M1))
(Lem=−Compat k c n Sn |flatten(GC)| ObjGrouped M2),

where M ∃̃m∀j(j<|GCi|→c((GCi)j)=m)
1 and M

k·|GC|<n
2 are given by:

M1 := ∃̃+ n λj,Hj . GroupByCols c r n i

(LemTrans i |GC| r Hi (ColLists c r nH1))i≤r j Hj ,

M2 := LemTrans k · |GC| k · r n
(Lem≤Times k k |GC| r AxT (ColLists H1)|GC|≤r)k·|GC|≤k·r H2

102 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

We have left aside some intermediate lemmas related to the transitivity of
≤ and < (generically denoted by LemTrans). In addition to the properties
for our predefined functions, we have used

Lem=−Compat : ∀ncn1,n2
. n1 = n2 → P (n1)→ P (n2), with P (n) := k · |GC| < n

∃̃+ : ∀m. P (m)→ ∃̃mP (m), with P (m) := ∀j . j < |GCi| → c(GCi,j) = m

Lem≤Times : ∀m1,n1,m2,n2 . m1 ≤ n1 → m2 ≤ n2 → m1 ·m2 ≤ n1 · n2

Neither of these lemmas has computational content, with the exception
of ∃̃+ and (nLhflattenll); we give the detailed term of the latter. In order
to show (nLhflattenll) we need a lemma guaranteeing the compatibility of
+ with <. This needs to be adapted as well, by changing ≤ to its logical
complement:

∀m1,n1,m2,n2 . (m1 < n1 → ⊥)→ (m2 < n2 → ⊥)→ m1 +m2 < n1 +n2 → ⊥,
(LemnP lusLt)

which is easily provable by induction on m1 and case distinction on n1. As
we will see in what follows (page 104), there is a more suited proof, by
induction on m2 and n2, giving a better extracted term.

The proof of (nLhflattenll) in λ-notation is:

MnLhflattenll := λll. Ind ll MBase MStep, where
MBase := λk,HB. efq

MStep := λl, ll, IHll, k,HS . M
k·|l::ll|<|flatten(l::ll)|→⊥
L

ML := LemnP lusLt k |l| k · |ll| |flatten(ll)|
(HS 0 AxT)k<|l|→⊥ (IHll k λi. HS Si)k·|ll|<|flatten(ll)|→⊥,

where we have considered the typed assumption variables

H
nLhflattenll[ll:=(nil L N)]
B , IH

nLhflattenll(ll)
ll and H

∀i. i<|(l::ll)|→k<|(l::ll)i|→⊥
S .

6.1.2 The Program Extracted from FPH

In order to apply A-Translation, we first need to verify that the assump-
tions are in the class D and that the goal is a G-formula, according to
Definition 3.5.

We have

• D1 := ∀ic(i) < r ∈ D, since its kernel is atomic, so it is definite

• D2 := k · r < n ∈ D, since it is an atomic formula,

6.1. THE FINITE PIGEONHOLE PRINCIPLE 103

• GG1 := k < |l| ∈ G, since it is atomic,

• G2 := (∀m. ∀i(i < |l| → c(li) = m)→ ⊥)→ ⊥ ∈ G, because

– i < |l| ∈ D and c(li) = m ∈ IG ⇒
– i < |l| → c(li) = m ∈ IG ⊂ G ⇒
– ∀i(i < |l| → c(li) = m) ∈ G ⇒
– ∀i(i < |l| → c(li) = m)→ ⊥ ∈ RD ⇒
– ∀m. ∀i(i < |l| → c(li) = m)→ ⊥ ∈ RD

and ⊥ ∈ G.

We can therefore proceed by applying Lemma 3.6. Clearly, this only
affects G2, since the other formulas do not contain ⊥. From the above
analysis for G2 and the inductive proof of Lemma 3.6 it should be clear that
transforming G by (3.4) amounts to using (3.1): ((RF → F) → ⊥) → R
on the relevant definite subformula R := ∀i(i < |l| → c(li) = m) → ⊥.
Since for this we will need to perform a case distinction for i < |l|, we apply
Lemma 3.4 and as a result the extracted term will contain an if -operator.

Further, we apply the modified realizability and extract a program by
the rules from Definition 3.10. As with the other case studies, we use the
“recipe” suggested by Theorem 3.5 and obtain the following program

PFPH(GC) := λk, n, r, c. R1GCF1G1 k (λi. GCi),

with

F1 := λk′, f . (nilN)
G1 := λl, ll, g, k′, f . R2 k

′ F2G2M

F2 := λi, n0, n1, l1, l2. [if i l2 (λn2. l1)]
G2 := λi, h, i′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)]
M := |l| (k′ · |ll|) |flatten(ll)| (f0) (g k′ (λi. f Si))

where fN⇒LN, gN⇒(N⇒LN)⇒LN and hN⇒N⇒N⇒LN⇒LN⇒LN.
Here, R1 : Rσ1

L(ρ) and R2 : Rσ2
N with

ρ := LN, σ1 := N⇒ (N⇒ LN)⇒ LN

σ2 := N⇒ N⇒ N⇒ LN⇒ LN⇒ LN.

104 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

Analysis of the extracted program. In order to understand the func-
tionality of the extracted program, we unfold the recursions on the generic
data k, n, r, c. According to the values collected in GC, we have for

R1GCF1G1 k (λi. GCi)

the following situations1.

• GC = nil then PFPH k n r c = (nilN).

• GC = (l :: ll) in this case,

PFPH k n r c = R2 k F2G2M S,

where S is the substitution [l := l, ll := ll, g := R1 ll F1G1, k
′ :=

k, f := λi. GCi.] and we have the following two subcases,

PFPH(GC) 0n r c = [if |l| (PFPH(cdrGC) 0n r c) (λn2. GC0)]

PFPH(GC) Sk n r c = [if |l|
PFPH(cdr(GC)) k n r c

(λn2. G1 nilN (cdrGC) g k [|ll| := n2])]

As expected, the program reflects the decisions in the implementation:

• the main computation is performed, as expected, byGroupbyCols(c, n)
(GC), which is responsible for the grouping of objects by colors. Thus,
the first recursion proceeds according to the results returned by GC

• R1 corresponds to the use of (nLhflattenll) and the recursion step G1

performs the computation according to (LemnP lusLt)

• R2 corresponds to the use of (LemnP lusLt) and performs a recursion
on the constant k. This is an expected consequence of the way in
which induction is used for proving (LemnP lusLt) and is in fact rather
disturbing. We give in what follows the results of an alternative proof
of this auxiliary lemma, in which we use induction on m2 and n2;
consequently, we obtain the associated operator R′2 : Rσ

′
2

N , with the
new type:

σ′2 := N⇒ N⇒ LN⇒ LN⇒ LN

1For a detailed unfolding with application of β-reduction rules, see the Appendix A.1.

6.1. THE FINITE PIGEONHOLE PRINCIPLE 105

We make it a point here to underline how sensitive program extraction
is to the techniques used in the proof. The program terms reflect with
accuracy the proof terms, as it is the case with tail recursion when
using A-Translation. On top of this, the refined A-Translation adds a
specific behavior resulting from the treatment of ⊥, which triggers the
use of continuations in the computation.

The resulting program is P ′FPH(GC), which we present below.

• The induction step for (LemnP lusLt) has the associated term G2 in
which the recursive call is performed by h. The parameters taken by h
are gathered in the substitution term M and they have the following
meaning:

– l : + : ll is the list returned by GC

– the length of l corresponds to the number of objects of the current
color

– k′ · |ll| stands for the result of multiplying the constant k with the
number of remaining colors, after deleting the head component
of the list returned by GC

– |flatten(ll)| corresponds to the number of objects remaining in
the current list

– f0 is the first element in the list returned by GC and λi. fSi is
the element at position i in GC.

The program associated to FPH using the modified proof of (LemnP lusLt)
is:

P ′FPH(GC) := λk, n, r, c. R1GCF1G
′
1 k (λi. GCi),

where

F1 := λk′, f . (nilN)
G′1 := λl, ll, g, k′, f . R′2 k′ · |ll|F ′2G′2 M ′

F ′2 := λi, l1, l2. [if i l1 (λn2. l2)]
G′2 := λi, h′, i′, l1, l2. [if i′ (h′ 0 l1 l2) (λn2. h

′ n2 l1 l2)]
M ′ := |flatten ll| f0 (g k′ (λi. fSi))

and h′N⇒LN⇒LN⇒LN.
The change in the induction proof of (LemnP lusLt) affects the recursion

operator associated to it. Thus, R′2 operates on k′ · |ll|, i.e., the number

106 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

of objects in the current list. As a consequence, the step function h′ is
parameterized only by the number of colors and the remaining list, whereas
the number of objects in the head of the list and the result of k′ · |ll| are
dropped from its arguments.

Following the change in the proof of (LemnP lusLt), the recursion is per-
formed as long as the list ll is non-empty, as the following unfolding of P ′FPH

shows:

• Case GC = nil
P ′FPH(GC) k n r c = (nilN)

• Case GC = (l :: ll)

P ′FPH(GC) k n r c = R′2 k′ · |ll|F ′2G′2M ′ S,

where S := [l := l, ll := ll, g := R1 ll F1G
′
1, k
′ := k, f := λi. GCi.]

Further,

If k · |ll| = 0 then
P ′FPH(GC) k n r c = [if |flatten ll| GC0 (λn2. P

′
FPH(GC) k n r c)]

If k · |ll| 6= 0 then
P ′FPH(GC) k n r c = [if |flatten ll|

((R′2 k′ · |ll|F ′2G′2) 0 l1 l2)
(λn2. (R′2 k′ · |ll|F ′2G′2) n2 l1 l2)] S′

where S′ := [l1 := f0, l2 = g k′ (λi. fSi)] ∪ S.
With the abbreviations

T2 := R′2 k · |ll|F ′2G′2 and
Case(x) := T2 x GC0 (R1 ll F1G

′
1) k (λi. GCSi)

= T2 x GC0 P
′
FPH(cdr(GC)) k n r c.

we have

P ′FPH(GC) k n r c = [if |flatten ll| Case(0)(λn2. Case(n2))],

The unfolding for P ′FPH(GC) illustrates the runs based on the values for
k · |lh| and |flatten ll| 6= 0. In case k · |lh| = 0, but ll is not empty
(|flatten ll| 6= 0), the solution can be found already at GC0. Otherwise,
if the list ll is empty, the program proceeds recursively, but investigates the

6.2. THE ERDÖS-SZEKERES THEOREM 107

lists only from n2 onwards. In case k · |lh| 6= 0, GC is also investigated
recursively, but again from n2 onwards in case |flatten ll| 6= 0.

The programs PFPH(GC) and P ′FPH(GC) are both in tail recursive form
- which illustrates the observation from Section 4.1 that tail recursion is a
beneficial side-effect of using A-Translation. This can be identified in the
fact that each of the step functions g and h from G1 and respectively G2

occur in tail position. At each step of the program a verification is performed
as to whether the remaining sublists of GC still comply with the requirement
that the sum of their lengths coincides with the number of elements. This
reflects the computation by continuations strategy. It would be otherwise
unnecessary to perform this check at each step, but this can be viewed as
having equipped the program also with a verification procedure. By this,
we are guaranteed that each step of the program performs valid operations
on the list.

The Computational Role of Negations. The main computation of
P ′FPH(GC) depends on the result of (nLhflattenll). The verification whether
the current list ll satisfies the requirement k · r < n is in fact computed
by the term extracted from (LemnP lusLt). This performs the calculations
k 6< |l| → k · |ll| 6< |flatten ll| → Sk · |ll| 6< |l|+ |flatten ll|, with |ll| = r and
|l|+ |flatten ll| = n. These lemmas have computational terms associated to
their proofs only when the logical falsity occurs in the specifications. This
justifies the need to “manually” insert the double negations, which allow
to unravel the construction hidden in the classical proof. The refined A-
translation comes into effect only when⊥ is inserted in the relevant positions.
Since the construction hidden in the proof cannot be recovered from the use
of efq⊥, by requiring the underlying system to be the minimal logic, we shift
the use of ⊥ from efq⊥ to the formulas whose atoms are double negated.
These atoms will therefore contribute to the computations performed in
order to produce the end result - hence, they are involved in the construction
of the witness realizing the goal formula. The mechanism for a systematic
detection of these relevant atoms - called L-critical - is done in Chapter 8.

6.2 The Erdös-Szekeres theorem

The theorem presented in this chapter is an interesting combinatorial prop-
erty. It is based on the result of FPH, combining constructive and classical
proof strategies.

108 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

Theorem 6.1 (Erdös-Szekeres). Let n ∈ N be given and let s be a sequence
over N of length n2 + 1. There exists either an increasing or a decreasing
subsequence of s of length at least Sn.

Proof. In the following, we give an informal sketch of the proof using the
Finite Pigeonhole Principle.

Step one: The construction. Let fs,i and gs,i denote a longest increas-
ing and (respectively) decreasing subsequence of s ending in si. To
each si, we associate the pair (|fs,i|, |gs,i|). Note that there might be
more subsequences of the same length ending in si, as illustrated in
Example 5; we consider the first of them.

Step two: The false assumption. We will prove the claim by contradic-
tion. In addition to the given hypothesis, we also assume that all
increasing and decreasing subsequences of s are of length at most n:

∀i. |fs,i| ≤ n ∧ |gs,i| ≤ n (6.5)

Step three: Finite pigeonhole principle. The assumption (6.5) implies
there exist at most n2 distinct pairs (fs,i, gs,i) associated to the n2 + 1
elements of the sequence.

We can interpret “distinct” as referring to the colors associated to the
pairs. Therefore, we have n2 colors for the n2 + 1 objects. If this is
the case, then by the Finite Pigeonhole Principle

∃̃i<j(|fs,i|, |gs,i|) = (|fs,j |, |gs,j |), (6.6)

which means that for some i and j, fs,i = fs,j and gs,i = gs,j .

Step four: The contradiction. We compare si and sj .

If si ≤ sj, then the longest increasing subsequence for sj must be at
least by one element (sj) longer than fs,i, i.e., fs,i < fs,j . This
contradicts (6.6) from Step 3.
Observe that, as shown in Example 5, it is not necessarily the
case that fs,i ⊂ fs,j .

If si ≥ sj, then gs,i < gs,j , by the same reasoning as in the previous
case and this comes in contradiction with (6.6).

6.2. THE ERDÖS-SZEKERES THEOREM 109

Example 5. Let n := 10 and s := {7, 8, 2, 4, 10, 3, 9, 4, 5, 11}.
For i ∈ {1, 10} we have the following set of pairs (|fs,i|, |gs,i|)

{(1, 1), (2, 1), (1, 2), (2, 2), (3, 1), (2, 3), (3, 2), (3, 3), (4, 3), (4, 1)}

Consider the increasing subsequences associated to s6 = 9. The maxi-
mal length for such sequences is 3 and we have multiple options: {7, 8, 9},
{2, 4, 9}, {2, 3, 9}. We take fs,6 = {7, 8, 9}.

We also have s3 = 4 < s6 = 9. Consequently, |fs,3| = 2 < |fs,6| = 3,
although fs,3 = {2, 4} 6⊂ fs,6 = {7, 8, 9} .

If we take s1 = 8 and s9 = 11, then fs,2 = {7, 8} and fs,10 = {2, 4, 4, 5, 11},
so fs,2 and fs,10 are also disjoint. However, |fs,2| = 2 < |fs,10| = 5.

Any increasing sequence including fs,2 which ends in 11 is of length
smaller than 5 = |fs,10|: {7, 8, 9, 11} or {7, 8, 10, 11}.

6.2.1 Formalization Issues

The property to prove is the following (classical) existence statement:

∀nN,sL . |s| = n2 + 1→ ∃̃i. Sn ≤ |fs,i| ∨̃ Sn ≤ |gs,i| (ES ∨̃)

Before presenting the formalized proof of this statement, let us discuss
a few issues and the decisions that we made in approaching them.

First issue: the disjunction.

Recall that we regard disjunction only as an abbreviation. We can represent
“ ∨̃ ” in

∃̃i. Sn ≤ |fs,i| ∨̃ Sn ≤ |gs,i|. (GoalES)

as either of the following:

∃̃pB .(p→ Sn ≤ |fs,i|) ∧̃ (¬p→ Sn ≤ |gs,i|) (∨̃ 1)
(Sn ≤ |fs,i| → ⊥)→ Sn ≤ |gs,i| (∨̃ 2)
|fs,i| < Sn→ |gs,i| < Sn→ ⊥, (∨̃ 3)

In choosing the above formulations, the main concern was to minimize the
number of ⊥.

It is clear that there is much flexibility in how we unfold the weak dis-
junction. For instance, (∨̃ 3) may be formulated in a fashion similar to
(∨̃ 2) as |fs,i| < Sn → Sn ≤ |gs,i|. However, we have opted for (∨̃ 3),
which is closer to the false assumption (6.5) from Step 2 in the informal
presentation of the proof. At the cost of having reversed ≤, we have gained
the symmetry.

110 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

Solution. We have chosen (∨̃ 3), which reads “It cannot be the case that
both |fs,i| and |gs,i| are smaller than Sn” and is the closest to the informal
proof. As we shall see when discussing the fourth issue in Section 6.2.1, this
maps well to the use of (FPH).

Second issue: the construction of fs,i and gs,i.

For each si in the given sequence we need to find the longest increas-
ing/decreasing sequence ending in si. This is the “Longest increasing sub-
sequence” problem, known to be solvable in time O(n log n).

Solution. For this constructive component of the classical proof we will
give directly the algorithm.

In order to compute the longest sequence fs,Si associated to si, we define
the function Barf , which constructs the list fs,Si := (fs,1, ..., fs,Si) where
each fs,Sj with 0 ≤ j ≤ i is

1. a sequence ending with sj

2. monotonously increasing

3. a longest sequence with the above two properties.

We have broken down the definition of Barf into smaller functions, accord-
ing to the properties that it needs to fulfill. Since we regard them as built-in
functions, we give them in infix notation. For the same reason, we allow a
generic type α in the definition, whenever this is possible.

• lLα filter ψα⇒B selects from the given list l the elements that fulfill the
filtering criterion ψ. filter has the return type L α.

The purpose is to filter (fs,1, ..., fs,n) such that it fulfills 1. and 2.
above, i.e., the last element of fs,i, 1 ≤ i ≤ n must be smaller than sn.

Its functionality is described by

(nil α) filterψ := (nil α)
(x :: l) filterψ := if (ψx) then ((x :: l) filterψ) else (l filterψ)

• lLα maxwrt χα⇒N extracts from the list l the greatest element with
respect to the measure function χ.

The intention is to compare the lengths of the increasing subsequences
returned by filter and select the longest among them.

6.2. THE ERDÖS-SZEKERES THEOREM 111

Its functionality is described by

(nil α) maxwrt χ := (Inhab α)
(x :: l) maxwrt χ := (λy. if (χx ≤ χy) then y elsex) (l maxwrt χ),

where Inhab is a generic object inhabiting the nil list.

We want to guarantee that it determines indeed the maximal element
of the list:

∀l,i. i < |l| → |li| ≤ |lmaxwrt ||| (max|l|)

We can now define Barf(sL N, iN)L L N, in order to construct f s,i := (fs,1..., fs,i).
The new component fs,Si of f s,Si is determined as follows:

• compute a sublist f̂s,i by filtering out all lists in fs,i which do not fulfill
the requirement λl. last(l) ≤ si

• select from f̂s,i the list which is maximal w.r.t. the length | · |.

This functionality is expressed by

Barf(s, 0) := (nil L N)

Barf(s, Si) := Barf(s, i)++(f̂s,i maxwrt λl|l| :: si):,

where f̂s,i := Barf(s, i) filter λl.last(l) ≤ si
and maxwrt binds stronger than :: .

In a very symmetric way, we construct Barg(sL N, iN)L L N, by filtering
gs,i := (gs,1..., gs,i). according to the criterion λl. si < last(l).

Third issue: the coloring to use with the FPH

We define the coloring used to count the distinct pairs (fi, gi). Let n and
M ⊂ N be such that the function

col : { (a, b) | a, b ∈ N, a < n ∧ b < n } →M (6.7)

is bijective, i.e.,

• col(a1, b1) = col(a2, b2)→ a1 = a2 ∧ b1 = b2

• |M | := |{ (a, b) | a, b ∈ N ∧ a, b < n }| = n× n

112 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

We take
col(a, b) := a · n+ b (6.8)

This is of course not the only function fulfilling the requirements, but we
prefer it for its simplicity.

Lemma 6.2. col as defined by (6.8) meets the requirements that we need in
order to use FPH.

Proof. We show that col is injective and that its value is at most n2.

1. Let ai, bi ∈ N, i = 1, 2. We can show that:

a1,2, b1,2 < n→ col(a1, b1) = col(a2, b2)→ a1 = a2 ∧ b1 = b2. (2Col=)

Let col(a1, b1) = col(a2, b2).

Then a1 · n+ b1 = a2 · n+ b2 ⇔ (a1 − a2) · n = b2 − b1.

Since 0 ≤ b1, b2 < n, we have −n < b2 − b1 < n.

Thus, (a1 − a2) · n = b2 − b1 ⇔ b2 − b1 = 0 ∧ a1 − a2 = 0 i.e.,
a1 = a2 ∧ b1 = b2.

2. We want to show that n2 is the upper bound of the chosen coloring

∀a,b<ncol(a, b) < n2 (ColUB)

By the definition of col and the monotonicity of ≤ with respect to
multiplication and addition, we have

col(a, b) = a · n+ b ≤ (n− 1) · n+ n− 1 = n2 − 1 < n2.

Fourth issue: the negative assumption and usage of FPH

In the third step of our informal proof, we have used the false assumption

∀i.|fs,i| ≤ n ∧ |gs,i| ≤ n (6.5)

to infer that there exist at most n2 distinct pairs, as shown in (ColUB). This
property, together with the assumption for (ES ∨̃) that there are n2+1 pairs,
is part of the hypothesis for FPH.

6.2. THE ERDÖS-SZEKERES THEOREM 113

However, we cannot derive in minimal logic a positive (or irrelevant)
property from a negative (relevant) assumption. More precisely, (6.5) cannot
be obtained as it is from (GoalES):

∃̃i. Sn ≤ |fs,i| ∨̃ Sn ≤ |gs,i|

since, independent of the form in which we unfold ∨̃ , the (FalseH) for the
Erdös-Szekeres Theorem

∀i.(Sn ≤ |fs,i| ∨̃ Sn ≤ |gs,i|)→ ⊥ (FalseH)

will contain at least one occurrence of ⊥2.
Therefore, we need to change the assumption in FPH by explicitly in-

serting negations, either to say ∀i. n2 < c(i)→ ⊥ or ∀i. (c(i) ≤ n2 → ⊥)→
⊥. Concerning the former alternative, it is impossible to derive in NAω

∃̃i<j≤nc(i) = c(j), since this would amount to inferring ⊥ from two negative
assumptions. More precisely, we would have the following scenario:

Given ¬A show ∃̃xB.

That is, we need to combine ¬A and ∀x¬B in order to show ⊥. For this, we
either have to use ¬A to show B (at some fixed x) or use ∀x¬B to prove A.
Either of them means that a relevant formula should be used to derive an
irrelevant formula, which is not possible in minimal logic, since it requires
efq⊥.

Solution. In order to carry out the proof in minimal logic we need to
change the assumption in FPH by (manually) inserting a double negation:

∀i. (c(i) ≤ r → ⊥)→ ⊥

and explicitely write ∨̃ as suggested by (∨̃ 3):

|fs,i| < Sn→ |gs,i| < Sn→ ⊥.

Modified in this way FPH becomes

∀k,n,r,c. ∀i ¬̃ ¬̃(c(i) < r)→ k · r < n→
∃̃l. k < |l| ∧̃ ∀i(Si < |l| → lSi < li) ∧̃ ∃̃m∀i. i < |l| → c(li) = m

(FPHdn)

which is easy to prove in NAω, following the key ideas of FPH. We give in
the next section its proof and the associated realizer.

2The ⊥ comes from viewing ∃̃xA as a shortcut for ∀x¬A→ ⊥. Of course, we can shift
it around, depending on how we unfold ∨̃ , but we cannot completely avoid it.

114 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

6.2.2 The Double-negated FPH

We show (FPHdn), which is the modified version of FPH that enables us to
show ES in minimal logic.

Remark 6.1. As with IPH, the last property of the list can be formulated as
“all elements are of the same color”, instead of “there exists a color shared
by all elements in the list”. By this, we eliminate one ∃̃ from the goal of
(FPHdn).

We first analyze where our proof of FPH fails for (FPHdn), in order
to detect which lemmas need to be modified to accommodate the changes
in FPHdn. Since this is clearly connected with changing the assumption
c(i) < r into its double negated form, the use of “ColLists” is likely to be
problematic. Indeed, we cannot use it without Stab⊥, so we need to adapt
it by incorporating the double negation. We turn “ColLists”into:

”dnColLists” : ∀c,r,n. ∀i ¬̃ ¬̃c(i) < r → ¬̃ ¬̃|GC| ≤ r. (dnColLists)

Since “dnColLists” has computational content, we will present its proof.

Proof of (dnColLists). First, let us remark that “dnColLists” is the Gödel-
Gentzen Translation of “ColLists”, so it can be proved by the same deriva-
tion. In what follows, we give a separate proof and sketch a comparison
with the proof for “ColLists”.

Using the auxiliary property:

maxUB : ∀n,m,k. n ≤ k → m ≤ k → max(m,n) ≤ k.

and the compatibility lemma

Lem≤−Compat := ∀ncr,n1,n2
. n1 = n2 → n1 ≤ r → n2 ≤ r

we have

MdnColLists := λc, r, n. Ind n MBase MStep, where
MBase := λH2. Lem≤−Compat r t1((), 0) t2((), 0) t3((), 0)

(λH̃2. H2 0 (λHc(0)<r
0 . H̃2 H0))

MStep := λn, IH2, H2. Lem≤−Compat r t1(GC,Sn) t2(GC,Sn) t3(GC, Sn)

(λG̃1. IH2 H2 (λG̃2. H2 Sn (λHSn. G̃1 (maxUB Sc(Sn) |GC| r HSn G̃2))))

6.2. THE ERDÖS-SZEKERES THEOREM 115

The assumptions have the following typing:

H
∀i ¬̃ ¬̃(c(i)<r)
2 , IH

∀i ¬̃ ¬̃c(i)<r→ ¬̃ ¬̃|GC|≤r
2 , H

c(Sn)<r
Sn ,

G̃
t1(GC,Sn)≤r→⊥
1 , G̃

|GC|≤r
2 , H̃2

t1((),0)≤r→⊥

and we have used the abbreviations

t1(l, i) := max(|l|, Sc(i)),

t2(l, i) := |(ChangeAt l c(i) i)| LhChangeAt
= max(|l|, Sc(i)),

t3(l, i) := LhChangeAt l c(i) i.

None of the terms t1, t2, t3 have computational content.
In the above, we have regarded c(0) < r and Sc(0) ≤ r as being equiv-

alent and have also used implicitly the normalization of max(|()|,Sc(0)) to
Sc(0).

Comparison of the proofs of “ColLists” and “dnColLists”. For
“ColLists” the typing for the assumptions is H∀ic(i)<r1 , IH

∀ic(i)<r→|GC|≤r
1 .

Its proof is:

MColLists := λc, r, n. Ind c r n Mbase Mstep

Mbase := λH1. Lem≤−Compatr t1((), 0) t2((), 0) t3((), 0) (H1 0)
Mstep := λn, IH1, H1. Lem≤−Compat t1(GC, Sn) t2(GC,Sn) t3(GC, Sn)

(maxUB Sc(Sn) |GC| r (H1 Sn) (IH1 H1)),

We compare the two proofs, by presenting the terms in parallel in Table 6.1.
For simplification reasons, we omit from Mbase and MStep the identical terms
corresponding to the use of Lem≤−Compat.

ColLists dnColLists
M λc, r, n. Ind n Mbase Mstep λc, r, n. Ind n MBase MStep

Mbase λH1. H1 0 λH2, H̃2. H2 0 H̃2

Mstep λn, IH1, H1. λn, IH2, H2.

λG̃1. IH2 H2 (λG̃2. H2 Sn (λHSn. G̃1

maxUB Sc(Sn) |GC| r (H1 Sn) (IH1 H1) (maxUB Sc(Sn) |GC| r HSn G̃2)))

Table 6.1: Comparison between the proof terms of ColLists and dnColLists

116 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

Formalized proof of FPHdn. We can now prove (FPHdn), following the
pattern from FPH.

Proof. We use the same auxiliary lemma as for FPH, GroupByCols, nLhflattenll,
ObjGrouped, together with Lem≤−Compat, ∃̃+ and Lem≤Times. ColLists needs
to be modified to dnColLists . We take:

H
∀l(k<|l|→∃̃m∀i(i<|l|→c(li)=m)→⊥)
3 , H̃2

k<|GCi|
,

(H ′1)∀i. ¬̃ ¬̃c(i)<r, Hk·r<n
2 , H

i<|GC|
i , H |GC|≤r

The proof term for FPHdn is:

MFPHdn :=λk, n, r, c,H ′1, H2, H3.

(dnColLists c r n H ′1)
(λH.

(nLhflattenll GC k (λi,Hi, H̃2. (H3 GCi H̃2 N1)⊥))k·|GC|<|flatten(GC)|→⊥

(Lem≤−Compat k c n Sn |flatten(GC)| ObjGrouped N2)),

with

N1
∃̃m∀j . j<|GCi|→c(GCi,j)=m :=

∃̃+ i (GroupByCols c r n i (LemTrans i |GC| r Hi H)i≤r)∀j . j<|GCi|→c(GCi,j)=i

N2
k·|GC|≤n :=

LemTrans k · |GC| k · r n (Lem≤Times k k |GC| r AxT H)k·|GC|≤k·r H2

Extracted Program

For an easier comparison with PFPH, we make the same abbreviations, wher-
ever this is possible. Thus, we take fN⇒L N, gN⇒(N⇒LN)⇒LN, hN⇒N⇒N⇒LN⇒LN⇒LN

and R1 : Rσ1

L(ρ) and R2 : Rσ2
N , with

ρ := LN, σ1 := N⇒ (N⇒ LN)⇒ LN

σ2 := N⇒ N⇒ N⇒ LN⇒ LN⇒ LN

In addition, we use the functionals C(N⇒LN⇒LN)⇒LN⇒LN and pN⇒LN⇒LN and
we have one more recursion operator R3 : Rσ3

N coming from the proof of
“dnColLists”, where

σ3 := (N⇒ LN⇒ LN)⇒ LN⇒ LN.

6.2. THE ERDÖS-SZEKERES THEOREM 117

The program corresponding to (FPHdn) is:

PFPHdn := λk, n, r, c. R3 n F3 G3 (λm, l. [if (c(m) < r) l (nil N)])
(R1 GC F ′1 G

′
1 k (λi. GCi)), where

F ′1 := λk′, f . (nilN)
G′1 := λl, ll, g, k′, f . R2 k

′ F ′2 G
′
2 M

′

F ′2 := λi, n0, n1, l1, l2. [if i l2 (λn2. l1)]
G′2 := λi, h, i′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)]
M ′ := |l| (k′ · |ll|) |flatten(ll)| (f 0) (g k′ λi. f (Si))
F3 := λp. p 0
G3 := λn′, C, p, l. C p (pSn′ l)

P(FPHdn) vs. PFPH. The base and step functions for R1 and R2 (F ′i =
Fi, G

′
i = Gi, i = 1, 2) are identical in the case of FFPH and PFPHdn . We

observe that the last subterm is PFPH k n r c and thus have

P(FPHdn) := λk, n, r, c. R3 n F3 G3 (λi, l. [if (c(i) < r) l (nil N)])(PFPH k n r c)

On the one hand, since we have changed the assumption formula to a
(classically equivalent) relevant definite form, we have introduced additional
⊥-predicates. This triggers an application of Lemma 3.6 and as a conse-
quence, “Case Distinction” is necessary, resulting in the test on whether
c(i) < r.

On the other hand, as we have seen, using the “dnColLists” lemma
in order to prove (FPHdn) introduces an additional recursion, since the
induction needed to prove the lemma is captured by the supplementary ⊥.

We simulate below the runs of PFPHdn on generic values for k, n, r, c.

Analysis of the extracted program. Unfolding the runs of PFPHdn we
have:

PFPHdn k n r c := R3 n F3 G3 (λm, l. [if (c(m) < r) l (nil N)])(PFPH k n r c)

Due to R3, we need to distinguish on the values of n:

• n = 0. Then R3 0 F3 G3 = F3 = λp. p 0, thus

PFPHdn k 0 r c := if (c(0) < r) then (PFPH k 0 r c) else (nilN)

118 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

• Sn. In this case, we have R3 Sn F3 G3 = G3 n (R3 n F3 G3) =
(λm,C, p, l. C p (p Sml)) = λp, l. (R3 n F3 G3) p (p Sn l) and therefore

PFPHdn k Sn r c := (R3 n F3 G3) (λm, l. [if (c(m) < r) l (nilN)])
(if (c(Sn) < r) then (PFPH k Sn r c) else (nilN))

R3 is extracted from the proof of (dnColLists). The purpose of this lemma
is to validate the fact that the list constructed by GC has at most as many
objects as r (the number of colors). By double negating this specification
we incorporate this test in the extracted program, such that the search for
the list of k objects is performed as long as this condition is fulfilled.

6.2.3 Formalization of the Erdös-Szekeres Theorem

We first show the following lemma, which we need in the fourth step of the
proof. The properties that it specifies are not trivial, as one is tempted
to think, by considering that if si ≤ sj then fs,Si ⊂ fs,Sj . This is not
necessarily the case, as illustrated by the (counter-) Example 5 , in which
fs,Si is computed according to our definition of Barf .

Lemma 6.3. Let s be a finite sequence of natural numbers and for each
i < |s| let fs,Si and gs,Si be a longest increasing, respectively decreasing,
sequences ending in si. Then

∀i,j . i < j → si ≤ sj → |fs,Si| < |fs,Sj | (si ≤ sj)

∀i,j . i < j → sj ≤ si → |gs,Si| < |gs,Sj | (sj ≤ si)

Proof. The lemma does not have computational content, so we give only its
informal proof, with the intention of validating its claims.

We show only (si ≤ sj), since (sj ≤ si) is symmetrical.
Assume that for fixed s, i and j, H1 : i < j and H2 : si ≤ sj . We want

to prove that |fs,Si| < |fs,Sj |.
Let f̂s,i be the result of filtering Barf(s, i) according to the criterion

λl. last(l) ≤ si. Then

• For any k, if k > i and under the assumption H2, we have fs,Si ∈ f̂s,k.
Therefore, |fs,Si| ≤ |f̂s,k maxwrt λl|l||.

• In case k = j, f̂s,j is the filtered list used to construct fs,Sj .

Since fs,Sj = (f̂s,k maxwrt λl|l|): :: sSj , it follows that |fs,Si|+ 1 ≤ |fs,Sj |.

6.2. THE ERDÖS-SZEKERES THEOREM 119

The Erdös-Szekeres Theorem. The formula that we prove, correspond-
ing to (∨̃ 3) by which we have rewritten in Section 6.2.1 ∨̃ in (ES ∨̃) is:

∀nN,sL . |s| = Sn2 → ∃̃i. |fs,i| ≤ n→ |gs,i| ≤ n→ ⊥, (ES)

Formalized proof. We fix n and s and assume

H1 : |s| = Sn2 and H2 : ∀i. (|fs,i| ≤ n→ |gs,i| ≤ n→ ⊥)→ ⊥.

The goal is ⊥.
We use (FPHdn) with k = 1, n2 + 1 objects (the number of elements in

the sequence s), n2 colors (the number of distinct pairs (fs,i, gs,i)) and the
coloring as defined by (6.8), where we take (a, b) to be (|fs,i|, |gs,i|). In order
to apply (FPHdn), we first verify that its requirements are fulfilled.

In what follows, we will use the assumptions:

H3 : col(|fs,i|, |gs,i|) ≤ n2 and H4(h, i) : |hs,i| ≤ n, with h ∈ {f, g}.

• 0 < col(|fs,i|, |gs,i|) follows from the definition (6.8) of col and the
provable property 0 < |fs,i|, |gs,i|.

• We need to show ∀i ¬̃ ¬̃H3. We have the derivation:

H2 i

¬H3

(ColUB) |fs,i| |gs,i| H4(f, i) H4(g, i)
→−

col(|fs,i|, |gs,i|) ≤ n2

→−⊥ →+
H4(f, i)→ H4(g, i)→ ⊥

→−⊥

• n2 ≤ n2 + 1 is trivial.

FPH2,dn provides us therefore with i and j be such that

i < j ≤ n2 + 1 ∧ col(|fs,i|, |gs,i|) = col(|fs,j |, |gs,j |). (H5)

Assume H4(f, i), H4(g, i), H4(f, j) and H4(g, j). By (2Col=) we infer

|fs,i| = |fs,j | ∧ |gs,i| = |gs,j |. (H6)

We make the case distinction on si and sj .

Case si ≤ sj. By Lemma(si ≤ sj), it follows that |fs,i| < |fs,j | and by the
left conjunct of (H6) this implies |fs,i| < |fs,i| = F. Using efq we infer ⊥.

120 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

Case sj ≤ si This case follows the same argument, using (sj ≤ si) and the
right conjunct of (H6).

The λ-term corresponding to the proof of ES is MES, where the assump-
tion variables are typed as follows:

v
∀i. Si<|l|→lSi<li
1 , v

∃̃m∀i. i<|l|→col(s,n,li)=m
2 , v

∀i. i<|l|→m=col(s,n,li)
3

w
|Barh(s,Si)|≤n
h w

1<|l|
1 , w

col(s,n,i)<n2→⊥
2 , u

H4(h,k)
4,h k , h ∈ {f, g}i ∈ {0, 1},

csiLesj : sl1 ≤ sl0 and csjLesi : sl0 ≤ sl1
We implicitly use the transitivity for 0 < 1 < |l| and the lemmas:

Lem6= :∀i,j . Si ≤ j → i = j → ⊥
LemCase≤ :∀n1,n2 . (n1 ≤ n2 → ⊥)→ (n2 ≤ n1 → ⊥)→ ⊥

and make the abbreviations:

Lem1 :∀i,s,n. (ColUB)(|Barf(s, Si)| |Barg(s, Si)|)
Lem2 :∀i,j,s,n. (2Col=) |Barf(s, Si)| |Barg(s, Si)| |Barf(s, Sj)| |Barg(s, Sj)|

With this,

MES := λn, s, uH1
1 , uH2

2 . T1 λl, w1, v1, v2. (LemCase≤ l1,s l0,s) T21 T22,

where

T1 := (FPHdn) 1 Sn2 n2 col(s, n) λi, w2. u2 i λwf , wg. w2 (Lem1 i s n wf wg) T
T21 := λcsiLesj . u2 l1 λu4,f1, u4,g1. u2 l0 λu4,f0, u4,g0. T3(f, (si ≤ sj))

car(Lem2 l1 l0 s n u4,f1 u4,g1 u4,f0 u4,g0∃̃−1,1 l s n v2 T4)

T22 := λcsjLesi. u2 l1 λu4,f1, u4,g1. u2 l0 λu4,f0, u4,g0. T3(g, (sj ≤ si))
cdr(Lem2 l1 l0 s n u4,f1 u4,g1 u4,f0 u4,g0 ∃̃−1,1 l s n v2 T4)

T3(h,D) := Lem 6= |Barh s Sl1| |Barh s Sl0| (D s l1 l0 (v1 0) w1 cD),
D ∈ {(si ≤ sj), (sj ≤ si)}

T4 := λm, v3. Lem=Trans col(s, n, l1) m col(s, n, l0) (v3 1 w1) (v3 0 w1)

6.2.4 Extracted Program

We consider the following terms

Tf (s, i) := (Barf(s, i)filter(λl. l0 ≤ si))maxwrt(λl. |l|)
Tg(s, i) := (Barg(s, i)filter(λl. si < l0))maxwrt(λl. |l|).

6.2. THE ERDÖS-SZEKERES THEOREM 121

Tf (s, i) thus determines which list from fs,i ends in an element smaller3

than si and is of maximal length. Tg(s, i) applies the dual operation for
gs,i. These terms are the components by which the increasing or decreasing
subsequence of length greater than n is computed. For h ∈ {f, g},

|Th(s, i)| = |hs,i| and S|Th(s, i)| = |hs,Si|.

Let us regard the extracted terms and for a better understanding leave
first the program component corresponding to (FPHdn) unfolded.

FPHdn not expanded The term corresponding to PFPHdn in P ′(ES) is left
unexpanded. Denoted by cdnFPH, this term takes the arguments as specified
in the proof: k := 1, n := S(n2), r := n2 and the coloring λn1. |Tf (l, n1)| ·
n+ |Tg(l, n1)| = λn1. |fl,n1 | · n+ |gl,n1 |.

We leave the (Minlog) extracted term unchanged structurally, but make
a few abbreviations in order to improve its readability. Let in the following
Dh(i, j), h ∈ {f, g}, abbreviate the term

if (S|Tf (l, j)| ≤ n)
if (S|Tg(l, j)| ≤ n)

if (S|Tf (l, i)| ≤ n)
if (S|Th(l, i)| ≤ n)

0
i

i

j

j.

and D1(i, j) the term

if (S|Tf (l, i)| ≤ n)
if (S|Tg(l, i)| ≤ n)
j

i

i

3Since the lists are reversed, the elements are in fact monotonically decreasing and the
comparison with si is made considering the head of the list

122 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

With S|Th(s, i)| = |hs,Si|, h ∈ {f, g}, we can interpret Dh(i, j) as a test
on whether either of fs,Si or gs,Si is of length at least n. Should the answer
be in either case positive, the corresponding index is returned; otherwise,
Dh(i, j) returns 0. Likewise, D1(i, j) returns i if |hs,Si| > n for h ∈ {f, g}
and j if this is not the case.

With these abbreviations, the term extracted from the Erdös-Szekeres
Theorem, parameterized by the term cdnFPH, is

P ′(ES) := λn, l. cdnFPH 1 (Sn2) n2 (λn1. |Tf (l, n1)| · n+ |Tg(l, n1)|)

(λn1, n2. D1(n1, n2))
(λl′, C. R ll′1 F G ll′0 Dg(l′0, l

′
1) Df (l′0, l

′
1)),

with C(N⇒N)⇒N and R := RN⇒N⇒N⇒N
N having the base and step case

F :=λi, n0, k. n0, respectively
G :=λn0, g, k,m1, i. [if n0 i λm2. g m2m1 i]

Here, l′ corresponds the list returned by FPHdn containing the objects
of the same color. For ES we are interested in a list of two elements, hence
the occurrence in the extracted term of l′0, l

′
1.

Moreover, notice that G is in tail recursive form, since the operator
corresponding to the recursion step g occurs in tail position.

In what follows, we expand the term associated with the proof of (FPHdn).
This terms is coupled with the computational terms associated to the proof
of ES. We can now trace the computation made by (FPHdn) in order to
select the two components that have the same “color”.

FPHdn expanded We take p′N⇒N⇒N, C ′(N⇒N⇒N)⇒N⇒N, g′N⇒(N⇒N)⇒N and
h′N⇒N⇒N⇒N⇒N⇒N and let coli := col(l, n, i).

In the program extracted from the proof of the Erdös-Szekeres Theorem,
we use the following terms:

CA :=ChangeAt(GroupbyCols(λi. coli, n
2), colSn2 , Sn2)

D2 :=D1(CAm,1, D1(CAm,0, 0)).

The extracted program is:

P(ES) :=λn, l. R3 n
2 F3 G3(λn1, n2. D1(n1, n2))

D1(Sn2,R1 CA F1 G1 1 (λm. R lCAm,1 F G lCAm,0 D2 D2))

6.3. SUMMARY OF THE CHAPTER 123

where

F1 := λk′, f . 0
G1 := λl′, ll, g′, k′, f . R2 k

′ F2 G2 M

M := |l′| k · |ll| |flatten(ll)| (f 0) (g′ k λi. (f Si))
F2 := λi, n0, n1,m1,m2. [if i m2 (λn2. m1)]
G2 := λi, h′, i′, n0, n1,m1,m2. [if i′ m2 λn1. h

′ n1, n0, n1,m1,m2]
F3 := λp′. p′ 0
G3 := λn1, C

′, p′, k. C ′ p′ (p′ Sn1 k)
and

F := λi, n0, k. n0

G := λn0, g, k,m1, i. [if k i (λm2. g m2 m1 i)]

and the recursion operators occurring in the term have the following types:

(R1)N⇒(N⇒N)⇒N
LLN , (R2)N⇒N⇒N⇒N⇒N⇒N

N , (R3)(N⇒N⇒N)⇒N⇒N
N

As expected, the programs reflect closely the initial classical proofs. The
use of FPH to derive the contradiction the Erdös-Szekeres Theorem is re-
flected in the fact that the main computations of PES are performed by the
term associated to PFPHdn . As long as sequences fs,i and gs,i of length at
most n are found and used to validate FPH, the search continues recur-
sively, since for such sequences we reach a contradiction. As a consequence
of taking k := 1 in FPHdn the corresponding program outputs two objects
of identical color instead of a list of k objects. The types are therefore
simplified, as it is the case with the program constants C, g and h.

6.3 Summary of the Chapter

In this chapter we have analyzed the proof of the Erdös-Szekeres Theorem
(ES), specifying that any given sequence of n2 +1 elements contains a mono-
tonically increasing/decreasing subsequence of length at least Sn. Since the
proof of the theorem relies on the result known as the Pigeonhole Principle
(FPH), we have also investigated an indirect proof of this lemma.

The chapter serves as a case study for the application of the refined A-
Translation in order to extract the algorithms from the classical proofs. We
were interested in investigating not only the outcome of the transformation
method, but mostly on which conditions need to be fulfilled in order to

124 CHAPTER 6. THE ERDÖS-SZEKERES THEOREM

apply it. Due to the restrictions imposed on the definite/goal formulas and
to the fact that we need to limit ourselves to NAω, special care had to be
taken with respect to negations. This concerns on the one hand the proof
of FPH, which cannot be shown in minimal logic, unless it is weakened by
the insertion of double negations. Further, FPH cannot be used for the
proof of ES unless it is adapted by further insertion of double negations.
We have addressed all these issues in this chapter and have discussed in
detail our choice for which atoms are double negated. We have illustrated
the effects of this on the extracted program and have commented on the
fact that the negations are the actual carriers of the computational content.
Therefore, each proof component that performs actual calculations needs to
have the logical falsity in the specification, such that there is a correlation
between the restriction of the working system to NAω and the application
of the refined A-Translation. More precisely, ⊥ is the element that helps
us recover the computational content and its insertion is necessary on the
one hand in order to avoid efq⊥ and on the other in order to recover the
computational content. This is to be expected, since efq⊥ cannot provide a
constructive information, so the logical negation needs to be shifted in the
positions where it is relevant for the extracted term. In Chapter 8 we give
a systematic procedure by which we detect which atoms need to be double
negated in order to carry out the proofs in NAω.

Another idea for further investigation is to consider the alternative rep-
resentations of ∨̃ , such as (∨̃ 1). It would be interesting to compare the
programs extracted from this formalization and the ones that we have ob-
tained by (∨̃ 3) presented in this chapter.

Chapter 7

Dickson’s Lemma

Dickson’s Lemma (DL) represents a key component in guaranteeing the
termination of Buchberger’s Algorithm for computing the Gröbner basis of
a given ideal. Due to the importance of the Gröbner Basis Theory - which
has applications in a wide spectrum of domains - Dickson’s Lemma and
Buchberger’s Algorithm have been extensively analyzed from the perspective
of program extraction/verification. Such is the case with systems like Mizar
(see (Schwarzweller, 2005)), Coq (see (Coquand and Persson, 1999)) and
ACL2 (see (Martin-Mateos et al., 2003)).

However, whereas in such systems (e.g. Coq) the emphasis is on verifying
that the given algorithm is correct, our purpose is to extract the program
from the classical proof of DL and for this we use the refined A-Translation
method. As we will point out, one cannot associate a computable functional
to DL directly, but this is possible for a Π0

2-corollary.
In our literature survey, we have come across various formulations and

we investigate in Section 7.3 the connection among them. The proof that
we will analyze in this chapter relies on the Minimum Principle, which we
present in Section 7.2. We give the formalization and extracted program of a
Π0

2-corollary of DL in Section 7.4.1, while emphasizing in particular the use
of negations and the connection between the refined A-Translation and the
continuation passing style. In Section 7.4.2 we sketch a generalization of this
corollary, which is also a Π0

2 formula and thus suited for the A-Translation.
Future work ideas are gathered in Section 7.5 and in the concluding Sec-
tion 7.6, and are grouped in two research directions: on one hand we are
interested in the applications of Dickson’s Lemma and on the other in the
strength of the analyzed corollary with respect to the statement proving the
termination of Buchberger’s Algorithm.

125

126 CHAPTER 7. DICKSON’S LEMMA

7.1 Terminology

In this section we overview the main notions related to the Gröbner Basis
Theory, which we will further need when analyzing the different versions of
Dickson’s Lemma. We also need the terminology when discussing the role
played by Dickson’s Lemma with respect to Buchberger’s Algorithm.

Let in the following K be a field. We consider the ring of polyno-
mials in the variables X1, . . . , Xn with coefficients in K and denote it by
K[X1, . . . , Xn] or K[X].

Let p ∈ K[X] be a multivariate polynomial over K, i.e. a polynomial in
the variables X1, . . . , Xn,

p =
∑

α1,...αn∈N
aα1,...αnX

α1
1 . . . Xαn

n =:
∑
α∈Nn

aαX
α.

Definition 7.1 (Monomial, term, coefficient). We have the following ter-
minology1

1. The power product mα = Xα1
1 · . . . ·Xαn

n =: Xα, or m in short, is called
monomial in the indeterminates X1, . . . , Xn. Let in the following M
denote the set of all monomials and M(p) denote the monomials oc-
curring in the polynomial p.

2. t = aαX
α, aα 6= 0, is a term of p.

3. coeff(m, p) := aα ∈ K is called the coefficient of the term t in the
polynomial p. We have: t = coeff(m, p) ·m.

Example 6. Let p = 2x2y3 + 7xy4 + 3y ∈ N[x, y].

• M(p) = {x2y3, xy4, y} are the monomials occurring in p

• coeff(xy4, p) = 7

• The terms in p are 2x2y3, 7xy4 and 3y.

Definition 7.2 (Polynomial/Monomial degrees). Let Xα1
1 · . . . · Xαn

n be a
monomial in K[X] and p ∈ K[X] be some polynomial in the field.

• The monomial total degree of Xα is defined as α1 + α2 + . . .+ αn.

• The polynomial total degree , deg(p), is taken to be the maximum of
the monomial total degrees for the monomials of p.

1It is often the case in the literature that the notion of term and that of monomial are
exchanged. We use here the notions as given in (Cox et al., 1992).

7.1. TERMINOLOGY 127

Definition 7.3. We consider the natural partial order ≤n on Nn:

(m1, ...,mn) ≤n (k1, ..., kn) iff mi ≤ ki, ∀i ∈ 1, ..., n.

Definition 7.4. A linear order ≤ on M (or, equivalently, on the set I ⊂ N
of exponents) is a monomial order if it satisfies the following conditions:

(i) If m1 ≤ m2 then m1 · s ≤ m2 · s, for all m1,m2, s ∈M .

(ii) ≤ is a well-ordering, i.e. every nonempty subset of I has a smallest
element under ≤.

Example 7. ≤ is a lexicographical (or lexical) order on the set M if the
following holds:

Xα1
1 · . . . ·Xαn

n ≤ X
β1
1 · . . . ·X

βn
n iff (α1 . . . αn) = (β1 . . . βn) or

there exists some i ∈ {1, ..., n} s.t. αj = βj , 1 ≤ j < i and αi < βi.

Remark 7.1. The lexicographical order is a monomial order.

From now on, when otherwise not specified, the default order is taken
to be the lexicographical order.

Definition 7.5. Let p be a polynomial and aα the coefficients of its terms.
Let further β := max{α ∈ NN, aα 6= 0}.

• lm(p)= Xβ is called the leading monomial of p (also referred to in the
literature as the leading power product of p)

• lt(p) = aβX
β is referred to as the leading term of p

• lc(p) = aβ is the coefficient of the leading monomial of p.

For I a set of polynomials, we denote by lt(I) the set of leading terms of
the elements of I, i.e.

lt(I) = {lt(p), for some p ∈ I}.

Definition 7.6. Let m1,m2 ∈ M . We say that m1 divides m2 and write
m1|m2 if there exists an s ∈M s.t. m1 · s = m2.

Remark 7.2. The notions leading term and leading monomial can be used
interchangeably, since we can assume without loss of generality that the lead-
ing term has coefficient 1. For this we divide the polynomial by its leading
coefficient.

128 CHAPTER 7. DICKSON’S LEMMA

Definition 7.7 (Monomial Ideal). Let I ⊂ Nn, n ∈ N be a set of indices,
possibly infinite.

1. We call B a monomial basis of an ideal, if it is a basis consisting only
of monomials, i.e. if B = {Xα, α ∈ I}.

2. An ideal I ⊂ K[X] generated from a monomial basis is referred to as
a monomial ideal.

Remark 7.3. If B = {Xα, α ∈ I} is a monomial basis for I, then all
p ∈ I ⊂ K[X] are of the form

p =
∑
α∈I

pαX
α, pα ∈ K[α].

We write I =< Xα, α ∈ I >.

7.2 The Minimum Principle

In this section we overview the generalized induction scheme in its classically
equivalent form known as the “Minimum Principle”. We will use this in the
proof of the equivalent statements of Dickson’s Lemma and in Section 7.4
in the independent proof of the Π0

2-corollary.
Let mN⇒N be a measure function and P a predicate. The following non-

constructive axiom is known as the “Minimum Principle”:

∀m,P . ∃̃xP (x)→ ∃̃x. P (x) ∧̃ ∀y. m(y) < m(x)→ ¬P (y), (MinPr)

with ∧̃ and ∃̃ the classical (weak) operators as given in Section 2.2.
(MinPr) states that any non-empty set has a minimal element and is

classically equivalent to the course-of-values induction. To see this, we ab-
breviate ∀y. m(y) < m(x) → Q to ∀y|m(y)<m(x)Q and for readability omit
the implicit quantification ∀P,m. Using contraposition (in the step marked
below with (◦)) and given that ∃̃ is only an abbreviation, we have the fol-
lowing chain of (classically valid) transformations:

∃̃xP (x)→ ∃̃x. P (x) ∧̃ ∀y|m(y)<m(x)¬P (y) ≡
≡(∀x¬P (x)→ ⊥)→ ∀x¬(P (x) ∧̃ ∀y|m(y)<m(x)¬P (y))→ ⊥
(◦)
≡∀x¬(P (x) ∧̃ ∀y|m(y)<m(x)¬P (y))→ ∀x¬P (x)

≡∀x(P (x)→ ∀y|m(y)<m(x)¬P (y)→ ⊥)→ ∀x¬P (x)

≡∀x(∀y|m(y)<m(x)¬P (y)→ ¬P (x))→ ∀x¬P (x).

7.3. EQUIVALENT FORMULATIONS 129

By taking R(x) := ¬P (x), this can be rewritten to

∀x. ∀x(∀y|m(y)<m(x)R(y)→ R(x))→ R(x),

which is the generalized induction scheme or, in the case when the measure
function is the identity function on N, the course-of-values induction.

Associated computational content. For τ(x) = α and τ(m) = α→ N,
the general induction scheme

GIndm,x,R := ∀x(∀y|m(y)<m(x)R(y)→ R(x))→ R(x)

has the type

τ(GIndm,x,R) = (α→ N)→ α→ (α→ (α→ τ)→ τ)→ τ.

The associated general recursion operator is F , defined as in (Schwicht-
enberg and Wainer, 2011),

F(m,x,G) = Gx(λy.if (m(y) < m(x)) thenF(m, y,G) else ε) (7.1)

7.3 Equivalent Formulations

While surveying the literature on the topic “Dickson’s Lemma in the context
of the Gröbner Bases Theory”, we have come across various formulations
and approaches for formalizing the lemma. We have investigated how these
formulations connect, in order to determine the strength of the Π0

2-corollary
of DL presented in (Berger et al., 2002), which represented the staring point
of our survey.

The first formulation of the property known as “Dickson’s Lemma” has
been published in (Dickson, 1913) and is as follows:

Lemma 7.1. Any set S of functions of the type

F = xe11 x
e2
2 . . . xenn , e’s integers ≥ 0 (7.2)

contains a finite number of functions F1, . . . , Fj such that each function F
of the set S can be expressed as a product Fi ·f , where f is of the form (7.2),
but is not necessarily in the set S.

Lemma 7.2. The following statements are equivalent:

130 CHAPTER 7. DICKSON’S LEMMA

(1) Let S ⊂ N be unbounded, n ∈ N and f1, ..., fn : S → N. Then there
exists M ⊂ S unbounded s.t.

∀i,j∈M . i < j → fk(i) ≤ fk(j), (7.3)

for all k = 1, ..., n.

In other words, given a finite number of infinite sequences of natural
numbers, there exists an unbounded set M such that each of these
sequence increases on M . (Berger et al., 2002; Raffalli, 2004)

(2) Given an infinite sequence {fk : k ∈ N} of n-tuples of natural numbers,
there exists M ⊂ N unbounded s.t. ∀i,j∈M . i < j → fi ≤n fj, where ≤n
is given by Definition 7.3. (Martin-Mateos et al., 2003)

(3) Let n ∈ N and let S := {mk : k ∈ N} be an infinite sequence of monomi-
als in the variables {X1, ..., Xn}. There are finitely many monomials
m1, ...,ml in this sequence (for some l ∈ N), s.t. ∀mj∈S∃i∈{1,...,l}mi|mj.

(4) Let S ⊂ T , with T 6= ∅ a set of monomials. Then there exists B ⊂ S
finite s.t. for all s ∈ S there exists t ∈ B with t|s. In this case we call
“|” a Dickson partial order on T. (Becker and Weispfenning, 1993)

(5) Each monomial ideal has a finite basis. (Cox et al., 1992)

The formulation (3) is very similar to (7.2), so all of the above are seen
as variants of Dickson’s Lemma.

A couple of remarks:

• (Berger et al., 2001) treats in detail a corollary of (1), in which 2
functions and a 2-element set M are considered. We will also analyze
this case, while bringing some new insight on the formalization issues
and on the resulting associated algorithm.

• The formulation (5) is used in (Cox et al., 1992) in the context of
Gröbner Bases Theory. A simplification similar to the corollary pre-
sented in (Berger et al., 2001) is not possible and, most importantly,
is not sufficient in order to prove the termination of Buchberger’s Al-
gorithm, or the other results in the theory.

We split the proof of Lemma 7.2 in two and show the equivalences as
depicted in Figure 7.1. Due to our particular interest in (1) and (5), we
prove their equivalence separately, as marked in the figure.

7.3. EQUIVALENT FORMULATIONS 131

(1)

(2) (5) (4)

(3)

Figure 7.1: Equivalences showed for Lemma 7.2

Note that we can identify each monomial Xe = Xe1
1 ·X

e2
2 · ... ·Xen

n with
the tuple 〈e1, e2, ..., en〉 of the exponents, following the idea from (Martin-
Mateos et al., 2003). This way,

Xe|Xf iff 〈e1, e2, ..., en〉 ≤n 〈f1, f2, ..., fn〉.

We can therefore reformulate (2) as:

∀S∃M⊂S infinite ∀fi,fj∈M . i < j → fi|fj , (2’)

where S := {fk : k ∈ N} is an infinite set of monomials in the indeterminates
f1, ..., fn.

Proof. (1) ⇔ (2) (1) and (2) differ only in the formulation, as we can intu-
itively view the former as reading the matrix below and the latter its
transpose. More precisely, for (1), the column k depicts the values of
fk on the unbounded set S. For (2) the same matrix has at the inter-
section of the line i and column k the exponent of the indeterminate
fk in the monomial fi.

The bullets mark the generic points in which the k functions are proved
to increase for at least 2 values (i and j) (for (1)) and, respectively,
the case when at least for some i, j we have fi|fj (for (2)):

f1 · · · fn
f1 · · ·
... · · · · · · · · ·
fi • • •
... · · · · · · · · ·
fj • • •
... · · · · · · · · ·

132 CHAPTER 7. DICKSON’S LEMMA

(3) ⇔ (4) (4) is just a reformulation of (3).

(3) ⇒ (5) Let I = 〈Xα |α ∈ NN〉 be a monomial ideal in K[X] and suppose
that the system of generators, S = {Xα | α ∈ NN }, is infinite. By (3)
there exists a finite set of monomials B ⊂ S, such that for all Xα ∈ S
there exists Xβ ∈ B with Xβ|Xα. But then the monomial Xα belongs
to the ideal generated by B (the converse is in fact also provably true).
Thus, the finite set B generates the same ideal as S and is a system
of generators for I. By taking the linearly independent monomials in
B we have the finite basis that we need.

(5) ⇒ (3) Let S := {mk : k ∈ N} and consider the ideal I generated by S.
By (5), I has a finite basis B, so in particular any monomial in S is
divisible by some monomial in B. There is therefore a subset B′ of S
of the same cardinality as B which generates all S. Thus, for all s ∈ S
there exist some t ∈ B′ with t|s.

(1) ⇔ (5) We study the connection between the formulation in (Berger
et al., 2002) and the one in (Cox et al., 1992) in detail, in order to
understand whether the results from (Berger et al., 2001) can be con-
nected with the applications of Dickson’s Lemma in the Gröbner Basis
Theory, and in particular, for Buchberger’s Algorithm.

Correlation between (1) and (5). Without loss of generality, we
can restrict our attention to the simplified case of two functions for
(1) and correspondingly monomials in two indeterminates for (5).

”⇒” Let f1, f2 : S → N, with S ⊂ N unbounded, and a monomial ideal
I = 〈fk = X

f1(k)
1 X

f2(k)
2 , k ∈ N〉 be given. We want to construct a finite

basis B for I.

By (1), there exists an unbounded set M , s.t. (7.3) is fulfilled. We
select k1 as the minimal element in M and have:

∀i∈M (f1(k1), f2(k1)) ≤2 (f1(i), f2(i)).

Let S1 = S \M . We have two situations:

S1 finite. Then for S1,k1 := S1 ∪ {k1}, we have

∀j∈S ∃i∈S1,k1
(f1(i), f2(i)) ≤2 (f1(j), f2(j)),

7.3. EQUIVALENT FORMULATIONS 133

i.e., every monomial in I is generated by the monomials in the
set {Xf1(i)

1 X
f2(i)
2 , i ∈ S1,k1}. The linearly independent monomials

in this set form the finite basis B.

S1 infinite. We apply (1) with S := S1 and obtain an infinite subset
M1 of S1 for which

∀i,j∈M1 .i < j → (f1(i), f2(i)) ≤2 (f1(j), f2(j)).

By the Minimum Principle (MinPr) we obtain k1 as the minimal
element in M1. As in the previous step, we take S2 = S1\M1 and
make a case distinction on whether S2 is finite or infinite. In the
first case, we construct B and in the second, we proceed further.

We continue this process until some Sn := Sn−1 \Mn−1 is finite, n > 1
and S0 := S,M0 := M . The finite basis for I is therefore

B ⊂ {Xf1(i)
1 X

f2(i)
2 , i ∈ {k1, ..., kn} ∪ Sn}.

It remains to show that there is some n such that Sn is finite, i.e., that
the process stops after n steps.

Suppose that this is not the case and that we can construct infinitely
many such Si’s. For each Si, we can find by hypothesis (1) an infinite
set Mi and thus collect the Mi-minimal elements in an infinite set

K := {ki|ki the minimal element of Mi}.

Therefore, we can apply again (1), for S := K and obtain that at least
2 elements in K have the property (1):

∃ki,kj . ki < kj → f1(ki) ≤ f1(kj) ∧ f2(ki) ≤ f2(kj). (7.4)

However, Sj ⊂ Si \Mi, so kj 6∈ Mi and by (7.4) kj is above ki (w.r.t.
≤2). This comes into contradiction with the fact that Mi collects all
elements above ki.

”⇐” Let f1, f2 : S → N, with S ⊂ N unbounded. Consider the ideal

IS = 〈mk, k ∈ S〉, where mk = X
f1(k)
1 X

f2(k)
2 .

By (5) IS is finitely generated, i.e. there exists a finite set

N0 = {i1, ..., in} ⊂ S, s.t. BN0 = {mi, i ∈ N} is a basis for IS .

134 CHAPTER 7. DICKSON’S LEMMA

Therefore, ∀mk∈IS∃mi∈BN0
mi|mk, or

∀k0∈S∃i0∈N0 mi|mk. (7.5)

Let S1 := S \ N0 and IS1 = 〈mk, k ∈ S1〉. We apply (5) for IS1 and
obtain that there is some finite N1 ⊂ S1 s.t. BN1 = {mi, i ∈ N1} is a
finite basis for IS1 . Thus, ∀k1∈S1∃i1∈N1mi1 |mk1 .

On the other hand, since N1 ⊂ S1 ⊂ S, we have from (7.5) that

∀i1∈N1∃i0∈N0 mi|mi1 .

Thus,
∀k1∈S1∃i1∈N1∃i∈N . mi|mi1 ∧mi1 |mk1 . (7.6)

We can continue by taking S2 := S1 \N1 and IS2 = 〈mk, k ∈ S2〉. For
this, by (5) there exists a finite set N2 ⊂ S2, s.t. BN2 = {mi, i ∈ N2}
is a basis for I2. By a similar reasoning as the one leading to (7.6), we
obtain

∀k2∈S2∃i2∈N2∃i1∈N1,i0∈N0 . mi0 |mi1 ∧mi1 |mi2 ∧mi2 |mk2 . (7.7)

We can clearly continue this process, since whenever we take a subset
of Sn, this generates an ideal, for which (5) is applicable. That is,
suppose that for some n ≥ 1, we have

∀kn∈Sn∃in∈Nn...i1∈N1,i0∈N0 . ∀j<nmij |mij+1 ∧min |mkn . (7.8)

By taking Sn+1 = Sn \Nn and ISn+1 , we obtain a finite Nn+1 s.t. BNn
is a basis for ISn+1 . Thus, we have:

∀kn+1∈Sn+1∃in+1∈Nn+1⊂Sn . min+1 |mkn+1 .

By (7.8), this means that there is a sequence of n + 1 monomials
ordered by the “|”-relation. Thus, if we collect all these indexes in a
set, this would be an infinite set M for which (1) holds. I.e.,

∃Minfinite∀k,l∈M . l < k → (f1(l), f2(l)) ≤2 (f1(k), f2(k)). (7.9)

7.4. A Π0
2-COROLLARY OF DICKSON’S LEMMA 135

The formulation required for the Gröbner Bases Theory. The re-
fined A-Translation is not modular. More precisely, we cannot transform a
non-constructive property and associate an extracted term to it, unless this
can be formulated as a Π0

2-formula. Thus, since neither (1) nor (5) are Π0
2-

formulas, we cannot use the A-Translation to directly interpret them. For
this reason, we restrict our attention in Section 7.4 to a weakening of (1) to
a Π0

2-corollary. The corollary shows the existence of a finite subset of the
unbounded set M for a finite number of functions and is however not suffi-
cient in order to show the termination of Buchberger’s Algorithm. For the
algorithm, it is necessary that the finite basis covers an infinite space, the
ideal, by the linear combinations formed with its elements. This property
is, as demonstrated in this section, equivalent to (1). This problem does not
have a computational solution, in the sense that it is impossible to verify
that this infinite space is indeed covered by the given basis. On the other
hand, (5) cannot be weakened to an equivalent form of the Π0

2-corollary as-
sociated with (1). As we have seen in the proof of this equivalence, it is
essential and necessary to know from (1) that at each step an unbounded set
Mi can be constructed and this cannot be formulated as a Π0

2 property.

7.4 A Π0
2-Corollary of Dickson’s Lemma

As aforementioned, (1) is not a Π0
2 formula and thus A-Translation cannot

be applied to it. Therefore, we weaken it to a constructive principle and
present in this section a corollary in which we treat the case of two func-
tions which are proven to simultaneously increase in two points. We analyze
on the extracted program and compare it to a brute-force one. This inves-
tigation will provide us with useful information regarding the application
of A-Translation, such as the role of negations and the fact that the ex-
tracted term adheres to the continuation passing style. Further, we sketch
the generalization to a finite number of points, which follows as a conse-
quence of the provable fact that any given functions increase monotonically
on an unbounded subset of their infinite domain.

7.4.1 A Simplified Statement.

Formulation and proof.

Proposition 7.1. Any two functions of natural numbers increase simultane-
ously for at least two distinct values. This can be stated as the Π0

2-statement:

∀f,g∃̃i,j . i < j ∧̃ f(i) ≤ f(j) ∧̃ g(i) ≤ g(j). (DL2)

136 CHAPTER 7. DICKSON’S LEMMA

We give an independent proof, following the lines of (Berger et al., 2002).

Notation 7.1. M(x) abbreviates x ∈M .

Proof. We fix arbitrary f and g and define as in (Berger et al., 2001) the set

M := {x | ∀y≥xf(x) ≤ f(y) }.

Using (MinPr) with m := f and P (x) := T , we can infer that M 6= ∅.
Therefore, we can apply (MinPr) again with m := g and P (x) := M(x), to
obtain the M -minimum w.r.t. the measure g. From

∃̃x. M(x) ∧̃ ∀y. g(y) < g(x)→ ¬M(y), (7.10)

we have the desired i. In order to obtain j, it suffices to take the next value
above i in M , since

• for every j ≥ i in M , f(i) ≤ f(j), by the definition of M

• i is minimal w.r.t. g, since by (7.10), M(j)→ g(j) 6< g(i).

We obtain by the Minimum Principle on P (x) := x > i and m := f that

∃̃x. x > i ∧̃ ∀y. f(y) < f(x)→ y 6> i. (7.11)

For x fulfilling (7.11), it follows easily that x ∈ M , since for any y ≥ x, we
can infer that y > i. By (7.11) this implies that f(x) ≤ f(y). Thus, such
an x has exactly the properties required for j.

Negations

The Minimum Principle (MinPr) provides an x with the properties P (x)
and ∀y. m(y) < m(x) → ¬̃P (y) or the (classically) equivalent ∀y. P (y) →
m(y) < m(x)→ ⊥. In order to use this together with the negative assump-
tions from (DL2) we need to eliminate the logical falsity ⊥ by efq⊥ or Stab⊥.
As discussed in Section 2.3.2 neither of them is allowed in NAω.

More precisely, we would need the lemma

` (f(y) < f(x)→ ⊥)→ f(x) ≤ f(y),

and its proof requires efq⊥.
We can overcome this, by noticing that f(x) ≤ f(y) is equivalent to

f(y) < f(x) → F. To match this negative version with (MinPr), we take
the logical falsity and rewrite (DL2) to its classically equivalent:

∀f,g∃̃i,j . i < j ∧̃ (f(j) < f(i)→ ⊥) ∧̃ (g(j) < g(i)→ ⊥). (DLCor)

7.4. A Π0
2-COROLLARY OF DICKSON’S LEMMA 137

Formal proof.

For P a unary predicate, we use the abbreviations

R(m,x) := ∀y. m(y) < m(x)→ ¬̃P (y)
Q(m,x) := R(m,x)→ ¬̃P (x) = ∀y. m(y) < m(x)→ ¬̃P (y)→ ¬̃P (x)

and thus (MinPr) is ∀m. ∃̃xP (x) → ∀xQ(m,x) → ⊥ or its (classically)
equivalent by contraposition ∀m,x. ∀xQ(m,x)→ ¬̃P (x).

For the proof of Proposition 7.1, we have m1 := f,m2 := g,m3 := f and
P1(n) := T, P3(n) := ∀m. n < Sm→ fm < fn→ ⊥, P3(i, n) := i < n. GInd
is the general induction scheme introduced on page 129. The assumption
variables have the types:

u
∃̃nPk(n)
k , u

∀nQk(n,mk)
3+k , k ∈ {1, 2, 3}

H
R1(n))
1,MP , H

P1(n)
1 , H

R2(n)
2,MP , H

P2(i)
2 , H

R3(i,n)
3,MP , H

P3(i,j)
3

and we use the following abbreviations

T1 := ∃̃−1 (λu1, u4. u1 λn. GInd1 f n u4) (λw∀n(T→⊥). w 0 T)

T2 := ∃̃−2 (λu2, u5. (u2 λn. GInd2 f g n u5)

(∃̃+
2 n λi, vn<i+1

1 , vfi<fn2 . H1,MP i v2 T))

T3 := ∃̃−3 (λu3, u6. (u3 λl. GInd3 i f l u6) ∃̃+
3 Si T).

Each of these terms corresponds to an application of the Minimum Principle,
as described in the informal proof. The term M(DLCor) associated to the
proof of the corollary of Dickson’s Lemma is:

M(DLCor) := λf, g. T1 (λn,H1,MP, H1. T2) (λi,H2,MP, H2. T3)

λj,H3,MP, H3. (∃̃+ i j H3 (H2 j H3))

λvgj<gi3 . H2,MP j v3

(λm, vj<m+1
4 , vfm<fj5 . H3,MP m v5 (LemTrans H3 v4)),

where we have used the lemmas for ∃̃-introduction and elimination and the
transitivity lemma Lem◦Trans with ◦ ∈ {<,≤}.

Extracted Program

All three subformulas of the goal are atomic - positive or negated, so they
are goal formulas, in the sense of Definition 3.5. The relevant conjuncts

138 CHAPTER 7. DICKSON’S LEMMA

f(j) < f(i) → ⊥ and g(j) < g(i) → ⊥ require the transformation by (3.4)
from Lemma 3.6. Since they are in the form D0 → G, we will apply Lemma
3.4 (Case Distinction) to f(j) < f(i) and f(j) < f(i). This extracts to the
conditionals on the values of f and g.

Let F N⇒N×N
i , i ∈ {0, 1} and HN⇒(N⇒N×N)⇒N×N. The program extracted

from the proof of the corollary of Dickson’s Lemma is

PDL := λf, g. (F1)N×NN f 0G1, with

G1 := λn. (F2)(N⇒N×N)⇒N×N
N g nG2,

G2 := λn0, H, F1. (F3)N×NN f (Sn0)G3,

G3 := λn1, F0. [if (fn1 < fn0) (F1 n1) [if (gn1 < gn0) (Hn1F0) (n0, n1)]],

with Fσi,N the general recursion operators associated to the GInd.
With the reduction rules (7.1), we can unfold2 this to

PDL(k, T1, T2, T3) =
λf, g. if (fSk < fk) then T1(k) Sk

else if (gSk < gk) then T2(k) Sk T3(Sk),
else (k,Sk)

with T1(k) := λy.if (f(y) < f(k)) thenF1(f, y,G1) else ε (7.12)
T2(k) := λy.if (g(y) < g(k)) thenF2(g, y,G2) else ε (7.13)
T3(k) := λy.if (f(y) < f(k)) thenF3(f, y,G3) else ε. (7.14)

T3 gets evaluated if ¬(fSk < fk) and gSk < gk, i.e., if k is suitable for
f , but not for g. If this is the case, then

TP := T2(k) Sk T3(Sk) = F2(g,Sk,G2)T3(Sk).

Unfolding again, we obtain (see Appendix A.2 for details):

TP := if (f S(Sk) < f Sk) then T3(Sk) S(Sk)
else if (gS(Sk) < gSk) then T2(Sk) S(Sk)T3(SSk)

else (Sk,S(Sk)),

so TP = PDL(Sk, T3, T2, T3) f g.
2For a detailed presentation of this unfolding please refer to Appendix A.2.

7.4. A Π0
2-COROLLARY OF DICKSON’S LEMMA 139

Summarizing the above unfoldings, the program is

PDL(k, T1, T2, T3) := λf, g. if (fSk < fk)
then if (fSk < fk)

then F1(f, Sk,G1)
else ε

else if (gSk < gk)
then PDL(Sk, T3, T2, T3) f g
else (k,Sk),

where the recursive call to PDL corresponds TP := F2(g,Sk,G2)T3(Sk).

Interpretation. The recursion operators illustrate the functionality of the
Minimum Principle: F1 investigates whether the current value k is the ”min-
imal” value of f and in case of a positive answer, it moves onward to the
second recursion. The second operator tests whether the value is suitable
also for g and if this is the case (i has been found), then it searches for
the second value (j) for f . Notice that in order to find j, the program
investigates the successor of i.

In the above unfoldings (see Appendix A.2) we have used the substitu-
tions

F0 := T3(Sk), F1 := T2(k), H := T1(k) for PDL
F0 := T3(SSk), F1 := T2(Sk), H := T3(Sk) for TP ,

where the terms Ti’s are given by (7.12) - (7.14).
Hence, via the parameters F0, F1 and H, the term G3 directs the com-

putation to look for further values or to return the answer (k, Sk), which
represents the instance for (n0, n1) satisfying the required properties on f
and g. However, the real computation is “on hold” until the pair (n0, n1)
is available and happens only when G3 is computed. In case suitable values
for (k, Sk) are found, this pair is returned.

Continuation passing style. What did we mean in the above by “the
computation is on hold”? In what way are we able to associate a program
to a proof which uses the property that minimal elements exist in infinite
sequences? The Minimum Principle is non-constructive in essence, so how
come that we are able to involve it in a computable functional returning the
values at which the functions increase?

140 CHAPTER 7. DICKSON’S LEMMA

First, let us make the observation that the computation is clearly possible
only when we search for a finite number of points with the desired property.
Thus, in order to computing the two values, the first question to ask is: “Are
the i and j indeed the minimal elements of the two functions?”. The answer
is “Not necessarily!”. In fact, it is impossible to guarantee this property and
the important fact is that is not required in order to answer the question
“What are the two values on which both f and g are increasing?”.

The essential aspect which enables to output the correct result is the
interpretation given to the logical falsity. ⊥ plays the role of a hole, which
puts the current computation on hold until the result is known. Thus, the
program searches for a “small enough” i, rather than a minimal one. As soon
as a small enough i is detected, in the sense that there exists a j above it with
the property that the first function increases in these two indices, the hole for
the first recursion is filled and the program exits the current computation.
Further, a check is performed, whether this pair satisfies the property for
the second function. Should an appropriate pair (i, j) be found, the last
recursion stops as well, fills in the corresponding hole and the program exits.
Should the pair satisfying f be unsuited for g the program returns computing
the pair for f , by continuing with the i above the last investigated j.

The actual computation is performed by the termG3, which tests whether
the current values fulfill the desired properties and directs the search further
in case they fail for one or the other function. Thus, the extracted program
does not guarantee that the (i, j) that are picked are minimal with respect
to all the values that function takes (so infinitely many), but rather that
each such pair is “good enough”.

Experiments

We depict in Figure 7.2 some runs on randomly generated sequences. We
represent the values of f and g in the lists lf and lg. PDL denotes the pro-
gram extracted by the A-Translation and PBF be the brute-force program.

For the brute-force program, the following strategy was considered: f
and g are investigated in parallel at points (i, j) with j ≤ |lf | = |lg| and i ≤ j.
The first suitable pair - i.e., for which f(i) ≤ f(j) and g(i) ≤ g(j) is picked.
A concrete run for this brute-force algorithm is presented in Figure 7.3(b).

Let us analyze a run in more detail on some input data.

Example 8. Assume that we start with the sequences:

lf = (80, 20, 53, 5, 48, 43, 75, 37, 18, 65), lg = (73, 48, 11, 46, 34, 85, 56, 41, 28, 48).

7.4. A Π0
2-COROLLARY OF DICKSON’S LEMMA 141

lf lg PBF PDL
(76,59,48,62,92,93,29,40,17) (93,87,76,99,97,47,7,61,12) (1 . 3) (2 . 3)
(78,7,55,37,89,66,21,47,27) (51,71,32,51,89,67,7,2,66) (0 . 4) (3 . 4)
(41,33,53,56,44,25,48,12,73) (60,59,33,77,49,45,60,4,2) (0 . 3) (2 . 3)
(36,43,64,17,17,31,4,86,12) (93,9,27,14,0,15,13,88,25) (1 . 2) (1 . 2)
(14,98,51,45,10,98,94,45,7) (90,9,45,39,15,45,19,82,48) (1 . 5) (4 . 5)

Figure 7.2: Average runs of the programs obtained with A-Translation vs.
the brute-force method

Figure 7.3 presents the step-wise computation for this example, opposing
the runs for A-Translation (subfigure 7.3(a)) to the runs for the brute-force
method (subfigure 7.3(b)). The first column represents the indices in the
current run, while the second and third column output the values at these
indices for f and g, respectively. The pair fulfilling the requirements is
marked in bold.

(i,j) (fi,fj) (gi,gj)
(0, 1) (80, 20)
(1, 2) (20, 53) (48, 11)
(2, 3) (53, 5)
(1, 3) (20, 5)
(3, 4) (5, 48) (46, 34)
(4, 5) (48, 43)
(3, 5) (5, 43) (46, 85)

(a) The program obtained after
A-translation

(i,j) (fi,fj) (gi,gj)
(0, 1) (80, 20) (73, 48)
(0, 2) (80, 53) (73, 11)
(1, 2) (20, 53) (48, 11)
(0, 3) (80, 5) (73, 46)
(1, 3) (20, 5) (48, 46)
(2, 3) (53, 5) (11, 46)
(0, 4) (80, 48) (73, 34)
(1, 4) (20, 48) (48, 34)
(2, 4) (53, 48) (11, 34)
(3, 4) (5, 48) (46, 34)
(0, 5) (80, 43) (73, 85)
(1, 5) (20, 43) (48, 85)

(b) The brute-force method

Figure 7.3: The runs for Example 8

As we can see, although the brute force algorithm finds the first suitable
pair, i.e. the smallest values for which the property is satisfied, it also needs
more runs. We expect to have better computational complexity for PDL
since computing with continuations optimizes the search, as follows:

• the pair (i, j) is investigated whether it is suitable for f . This results

142 CHAPTER 7. DICKSON’S LEMMA

as a consequence of taking H := T1(k) in PDL;

• should (i, j) be unsatisfying for f , the search is resumed for f , without
investigating the values at g. The next pair of indexes (i′, j′) considered
are the last i at which g failed and the last j at which f failed;

• should (i, j) be appropriate for f , the values are tested for g;

• in case they fail for g, the search continues with i′ := j and j′ := i+ 1.
This follows from resuming the computation with H := T3(k) in TP .
Otherwise, the hole for ⊥ is filled and the result is returned.

Let us trace another example to illustrate our argument.

Example 9. We take lf = (41, 52, 18, 64, 55, 28) and lg = (71, 41, 77, 54, 19, 50, 82)
- the run is presented in Figure 7.4.

(i,j) (fi,fj) (gi,gj)
(0, 1) (41,52) (71,41)
(1, 2) (52,18)
(0, 2) (41,18)
(2, 3) (18,64) (77,54)
(3, 4) (64,55)
(2, 4) (18,55) (77,19)
(4, 5) (55,16)
(2, 5) (18,16)
(5, 6) (16,28) (50,82)

Figure 7.4: An example for the run of PDL.

Conclusion. At the cost of not computing the least values at which the
functions are found to increase, the A-translated program performs less steps
and the search is faster. This is a consequence of computing with con-
tinuations, which characterizes the programs extracted from A-translated
classical proofs.

7.4.2 Generalization

Proposition 7.1 can be viewed also as a corollary of the stronger version
(7.3), which follows as a consequence of the following property:

7.4. A Π0
2-COROLLARY OF DICKSON’S LEMMA 143

Lemma 7.3. Given an unbounded set S ⊂ N and f : S → N, the set

Sf := {m | S(m) ∧ ∀n. S(n)→ m < n→ f(m) ≤ f(n) }

of the left f -minima w.r.t. S is unbounded as well.

Proof idea. We fix an arbitrary m with Sf (m). Using the fact that S is
unbounded, we can find an n s.t. m < n and Sf (n). For this we apply
(MinPr) with measure f to {n | S(n) ∧ m < n }. The detailed proof of
Lemma 7.3 can be found in (Berger et al., 2002).

With this property, we can show (7.3):

Lemma 7.4. Let S ⊂ N be unbounded, n ∈ N and f1, ..., fn : S → N. Then
there exists a finite M ⊂ S, such that

∀k<n∀i,j∈M . i < j → fk(i) ≤ fk(j),

Proof. By induction on n. For details, please refer to (Berger et al., 2002).

Implementation idea. We represent the functions f1, ..., fn : S → N by
a generic function f with signature N ⇒ α ⇒ N, where the first parameter
maps the indices.

For each of the functions, we define the corresponding set Sk+1 to be the
left fk+1-minima w.r.t. to Sk, i.e.,

S1 := {m | ∀n. m < n→ ¬̃f1n < f1m }
Sk+1 := {m | Sk(m) ∧ ∀n. Sk(n) ∧m ≤ n→ ¬̃fk+1n < fk+1m }, k ≥ 1.

Thus, the set Sk+1 is built from Sk and consists only of those points in Sk
where in addition fk+1 increases.

We start from the premises:

• S is unbounded3,
∀f,m∃̃n. m < n ∧̃ S(n) (S∞)

• SSk can be constructed from Sk by

∀f,m,k. (Sk(m)∧∀n. Sk(n)→ m < n→ ¬̃fSkn < fSkm)→ SSk(m) (S→)

3For simplification, we can consider S := N.

144 CHAPTER 7. DICKSON’S LEMMA

Since both clauses have computational content, due do the presence of ⊥,
they will occur as parameters in the extracted program.

Proposition 7.1 is now an easy consequence of Lemma 7.4. Moreover, it
is possible to infer that:

∀k,f ∃̃i,j . (i < j) ∧̃ ∀m≤k. fSmj < fSmi→ ⊥. (DLk)

In what follows, we present the program associated with the proof of this
generalized version (DLk).

Extracted program. Let τ := N×N×α×α. We take aα, bα (with α some
arbitrary type) and F N⇒α⇒τ , HN⇒(N⇒α⇒τ)⇒τ . Further, we have the typing
RN⇒(N⇒α⇒τ)⇒τ

N for all the recursion operators involved and Fα⇒τN for all the
general recursion operators. The auxiliary assumptions have computational
content, so are typed as cSα,τ→ and cSα,τ∞ . We abbreviate the terms to:

f1 := λn, F1. cS∞ f n(λm. F1 f1 m G1 T)
G1 := λn′, F2, a1. F1 n

′ (cS→ f n′ 0 (a1, F2))
g1 := λn,H,m,F3. H m (λn′. F2 (f SSn) n′ G2 T)
G2 := λn′′, F4, a2. F3 n

′′ (cS→ f n′′ (Sn) (a2, F4))
f2 := λm,F5. cS∞ f m (λn′. F3 f1 n′G3T)
G3 := λn′′, F6, a2. F5 n

′′ (cS→ f n′′ 0 (a2, F6))
g2 := λm,H ′, n′, F7. H

′ n′ (λn′′. F4 (f SSm)n′′G4T)
G4 := λn′′′, F8, a3. F7 n

′′′ (cS→ f n′′′ (Sm) (a3, F8)).

Due to the similarity, we can write, with i = 1, 2:

fi := λn, Fi. cS∞ f n(λj. F1 f1 j G1 T)
Gi := λk, Fi+1, a. Fi k (cS→ f k 0 (a, Fi+1))
gi := λn,H,m,Fi+2. H m (λj. Fi+1 (f SSn))) j Gi+2 T)

Gi+2 := λk, Fi+3, b. Fi+2 k (cS→ f k (Sn) (b, Fi+3))

With this, the program associated to the derivation of the corollary
(DLk) from Lemma 7.4 is:

PDLk := λf, k. (R1 k f1 g1) 0 (λn, a. (R2 k f2 g2) n (λm, b. (n,m, a, b)))

As can be seen from the step terms g1 and g2 for R1 and respectively
R2, these are in tail recursive form, since both H and H ′ are applied in
head position in the step functions. However, no similar concept has been
developed for the general recursion operator and it would be interesting to
investigate whether the same observation can be made for Gi, i ∈ {1, ...4}.

7.5. APPLICATIONS OF DICKSON’S LEMMA 145

7.5 Applications of Dickson’s Lemma

In this section, we overview some of the applications of the strong version of
Dickson’s Lemma in the Gröbner Basis Theory, as presented in (Cox et al.,
1992). Although these are not formulated as Π0

2-statements, we envisage
for further investigation to weaken them such that that they fit the require-
ments of A-Translation. We are interested in using Dickson’s Lemma as a
parameter in these proofs and thus abstracting from the fact that its strong
version is not a Π0

2-statement.

7.5.1 Further Terminology

We give in the following a few concepts necessary to illustrate some of the
applications of Dickson’s Lemma.

Definition 7.8 (Reducibility modulo). Let f, p be given. If there exists
m ∈M(f) s.t. lm(p)|m, let t := coeff(m, f) ·m (i.e., t is the corresponding
term to m in f). We define:

λp,m(f) :=
coeff(m, f) ·m

lt(p)
=

t

lt(p)
.

We say that:

(i) f reduces to g modulo p by eliminating t if
there is m as above and g = f − λp,m(f) · p. Notation: f −→

p
g[m].

(ii) f reduces to g modulo p if
for some m, f −→

p
g[m]. We denote this by f −→

p
g.

(iii) f reduces to g modulo P if
for some p ∈ P , f −→

p
g. This will be denoted by f −→

P
g.

(iv) f is reducible modulo p (P) if
for there exists g ∈ K[X] s.t. f −→

p
g (respectively, f −→

P
g).

Theorem 7.1 (Division Theorem for multivariate polynomials). Let poly-
nomials g1, . . . , gl ∈ K[X] be fixed. Every f ∈ K[X] can be expressed as:

f = p1g1 + . . .+ plgl + r (7.15)

where pi, r ∈ K[X] and either r = 0 or else it is the case that none of the
terms in r is divisible by any of lt(g1), . . . , lt(gl) .

146 CHAPTER 7. DICKSON’S LEMMA

Proof. The theorem can be interpreted as an existence theorem, in which,
given g1, . . . , gl, we need to show that for any f ∈ K[X], there exist polyno-
mials p1, . . . , pl ∈ K[X] with the property (7.15).

Instead of proving the theorem by giving the division algorithm and
showing that it is correct and it terminates, we incorporate the algorithmic
content in our proof. Namely, we show that p1, . . . , pl exists by constructing
them. We consider the term ordering ≥ to be a priory fixed and g1, ..., gl to
be ordered by lt(g1) ≥ . . . ≥ lt(gl). With the notation from Definition 7.8,
λg,lt(f)(f) := lm(f)

lm(g) and we denote by Rf,g = f − λg,lt(f)(f) · g. Notice that
lm(f) 6∈ Rf,g.

We proceed by induction on the lm(f), the monomial with the highest
sequence of exponents, w.r.t. the term ordering which we fixed.

(IH): For any g with lt(g) ≤ lt(f), where f is the polynomial given in
the theorem, we have a pair pi, r, i ∈ {1, ..., l} such that:

g = p1g1 + . . .+ plgl + r,

with r fulfilling the condition in Theorem 7.1.
Suppose now for f that there is a gj for some j ∈ {1, . . . , s} s.t. lt(gi) | lt(f).
If this is not the case, let r = lt(f) and f ′ = f − r. Clearly, we have

lt(f ′) ≤ lt(f), so we can apply the induction hypothesis on f ′ and obtain
p′1, . . . , p

′
l such that:

f ′ = p′1g1 + . . .+ p′lgl + r′,

with r′ satisfying the condition in Theorem 7.1. Thus,

f = f ′ + lt(f)
= p′1g1 + . . .+ p′lgl + r′ + r

where the rest is r + r′. Since none of the terms in r or r′ is divisible by
any of lt(g1), . . . , lt(gl), the same holds for r+ r′, so this requirement of the
theorem is fulfilled.

Otherwise, if there is a gj as above, we compute λg1,lt(f)(f) and let
f ′ = Rf,gj . By the remark on Rf,gj , lt(f) 6∈ f ′ and it is also the case that
lt(f ′) ≤ lt(f). Thus, we can apply (IH) for f ′ and obtain p′1, . . . , p

′
l such

that:
f ′ = p′1g1 + . . .+ p′lgl + r′,

where r′ = 0 or else none of the terms in r′ is divisible by any of lt(g1), . . . , lt(gl).

7.5. APPLICATIONS OF DICKSON’S LEMMA 147

With this,

f = f ′ + λgj ,lt(f)(f) · gj

= p′1g1 + . . .+ p′lgl + r′ +
lm(f)
lm(gj)

· gj

= p′1g1 + . . .+ (p′j +
lm(f)
lm(gj)

) · gj + . . .+ p′lgl + r′

Remark. Whereas for univariate polynomials, the quotient and rest are
uniquely determined by the division, in the multivariate polynomial field this
is not the case anymore. We give a counterexample below.

Example 10. Let g1, g2, f ∈ R[X1, X2].

g1 = X1
2X2 +X1

g2 = X1X2 −X2
2

f = X3
1X2 +X1X2.

If we divide f first by g1, and then by g2, we get f = X1
2g1 +X2g2.

If we choose first g2 and then g1, then we obtain f = X1g2−g1−X1
2 +X2

2.

From the first decomposition in this example, we conclude that f is in the
ideal < g1, g2 >, whereas this is not obvious in the second division. Thus, it
can happen that a polynomial is in the ideal generated by some polynomials,
and yet, it would not give the rest 0 by division to those polynomials.

7.5.2 Dickson’s Lemma in the Gröbner Bases Theory

The theory which has evolved around ideals is confronted with decision
problems such as Ideal Description, Ideal Membership Problem or Nullstel-
lensatz. These problems gain in complexity when one regards ideals over
multivariate fields. The Gröbner Basis Theory offers positive answers to
these questions.

In particular, Dickson’s Lemma can be used to answer the following:

Ideal Description Problem. Let I be an ideal in K[X]. Is it possible
to find f1, ..., fk ∈ K[X], such that I =< f1, ..., fk >?

Clearly, the question can be answered positively. Furthermore, it can be
used to decide the ideal membership:

148 CHAPTER 7. DICKSON’S LEMMA

Ideal Membership Problem. Given f1, ..., fk ∈ K[X], decide whether
some f ∈ K[X] is in the ideal < f1, ..., fk >.

Whereas in the one variable case deciding the ideal membership problem
comes down to computing the GCD of the given polynomials and determin-
ing whether f divided by the GCD gives the rest 0, in the multivariate
case the problem is not as simple. This is because in the division algorithm
for multivariate polynomials (see Theorem 7.1), the rest is in general not
uniquely determined.

However, by choosing the appropriate basis for the ideal < f1, ..., fk >,
one can achieve the uniqueness property. Such bases are the Gröbner Bases,
for the computation of which (Buchberger, 1965) proposed his well-known
algorithm. The termination of the algorithm is guaranteed by the ascending
chain condition, which at its turn is proven using Hilbert’s Basis Theorem
and this follows from Dickson’s Lemma, as shown in what follows.

Theorem 7.2 (Hilbert Basis Theorem). Let I be an ideal of K[X] 6= {0}.
Then there exist finitely many polynomials g1, . . . , gt ∈ I generating I, i.e.
I has a finite basis.

Proof. If I = {0}, then it is generated by {0}.
Otherwise, by Dickson’s Lemma (4), the monomial ideal generated by

lt(I) has a finite basis, i.e.

〈lt(I)〉 = 〈lm(g1), . . . , lm(gn)〉 = 〈lt(g1), . . . , lt(gn)〉,

for g1, . . . , gn ∈ I (finitely many).
Let now f ∈ I some polynomial. By the Division Theorem 7.1, if f is

divided by g1, . . . , gn, then

f = p1g1 + . . .+ pngn + r,

where p1, . . . , pn, r ∈ K[X] and either r = 0, or else no monomial in r is
divisible by any of lt(g1), . . . , lt(gn). If the later was the case, since r =
f − p1g1 − . . . − pngn ∈ I, then lt(r) ∈ 〈lt(I)〉. However, from 〈lt(I)〉 =
〈lt(g1), . . . , lt(gn)〉 it would follow that at least some lt(gi) from the basis
divides lt(r), which is a contradiction.

Thus, r = 0 and f = p1g1+. . .+pngn, hence f ∈ 〈lt(g1), . . . , lt(gn)〉.

In order to apply the refined A-translation to the above applications
of Dickson’s Lemma it is necessary to find meaningful Π0

2-corollaries of
these theorems. We leave this for further investigation. It is possible to
A-translate these applications, even when they use DL, unless we envisage
a modular translation and program extraction.

7.6. SUMMARY OF THE CHAPTER 149

7.6 Summary of the Chapter

Dickson’s Lemma has raised our interest due to its application in the Gröbner
Bases Theory and we envisaged the ambitious goal of synthesizing Buch-
berger’s Algorithm. During our investigations it turned out that the clas-
sical proof of Dickson’s Lemma cannot be A-translated in its general form,
since it is not a Π0

2-formula. Neither the simplified corollary which we have
presented, nor its generalizations, suffice in order to guarantee the termi-
nation of Buchberger’s Algorithm. In order to justify this observation we
have compared in Section 7.3 various formulations of Dickson’s Lemma and
have pointed out which one is necessary in order to prove that the algorithm
computing the Gröbner Basis of a given ideal terminates.

The limitation imposed by refined A-Translation resides on the one hand
in restricting the working system to NAω and on the other in its lack of mod-
ularity. For this reason, it would be interesting to analyze the strong version
of Dickson’s Lemma by a different method, such as bar recursion or Dialec-
tica and use its extracted term as a parameter in the theorem specifying the
termination of Buchberger’s Algorithm. We do not yet know of related work
interpreting the classical proof Dickson’s Lemma with appropriate methods.

The program extracted from the Π0
2-corollary of Dickson’s Lemma is

based on existing work, but is presented from a new perspective. We have
added the treatment of the Minimum Principle with its associated realizer:
the general recursion operator. Further, we have illustrated the observation
from Chapter 4 that the programs obtained from refined A-translated proofs
adhere to the continuation passing style. We have also emphasized the role
of negations with respect to the restrictions imposed by working in minimal
logic and by requiring the formulas to be in the definite/goal classes.

Future work

As observed in Chapter 4, the induction proofs transformed by A-Translation
result in general in tail recursive procedures. It would be interesting to ex-
tend the notion of tail recursion in the case of the general recursion operator
and investigate whether the course-of-values induction used in the proof of
Dickson’s Lemma in the form of Minimum Principle has the same property.

Another interesting line for further investigation is the analysis of the
programs associated with the equivalent formulations presented in Section 7.3
or their weakening to Π0

2-formulas, where such meaningful corollaries exist.
We have seen in Section 7.5 that, according to the equivalences in Sec-

tion 7.3, a Π0
2-form of Dickson’s Lemma is too weak to be used in the context

150 CHAPTER 7. DICKSON’S LEMMA

of the Gröbner Bases Theory, where the generators need to cover an infinite
space - the ideal. On the other hand, A-Translation can only be applied
to Π0

2-formulas, so we cannot provide in this way an independent realizer
for Dickson’s Lemma, so that we further use this for its applications. How-
ever, we have already encountered situations - for instance in the case of
IPH in Chapter 5 - where the intermediate lemmas/axioms could be used,
without requiring them to be Π0

2-formulas. If they are replaced by their
proofs before applying the refined A-Translation, then whether or not they
are Π0

2-formulas is not relevant anymore. Thus, one can further investigate
whether some of the applications of the strong form of Dickson’s Lemma are
Π0

2-formulas or have interesting Π0
2-corollaries.

On the other hand, as suggested by (Seisenberger, 2003), one can couple
A-translation with modified bar recursion (see (Berger and Oliva, 2006)
for more on this), in order to provide realizers for the assumptions which
are not definite formulas. This idea can be used to find the realizer for
Dickson’s Lemma independently and then couple this with the extraction
from Π0

2-statements in which the lemma is used. This way, even though
the refined A-Translation cannot be used directly on Dickson’s Lemma, its
computational content could be exploited by finding applications which are
compatible with the refined A-Translation.

Related Classical and Constructive Principles. We have presented
in Section 7.3 equivalent formulations of Dickson’s Lemma. This has enabled
us to determine the strength of the formulation (7.3) and, more importantly,
of the Π0

2-corollary that we have analyzed.
Following some interesting discussions with Paulo Oliva and Josef Berger,

there seem to be tight connections with well-known classical and constructive
principles. We would like to investigate this and determine the relationship
between DL and principles such as Principle of Omniscience (LPO), Ax-
iom of (Dependent) Choice (AC, respectively DC), Double negation shift
(DNS) or Weak König’s Lemma (WKL). It would be interesting to bridge
also Stolzenberg’s Principle from Chapter 5 with Dickson’s Lemma or its Π0

2-
corollary, following the results from (Berardi, 2006) and compare the com-
putational content extracted by A-Translation from suited forms of these
principles. In particular, we are interested whether the following are true:

• IHP ⇔ σ0
1 − LLPO.

• DL⇒ σ0
1 − LPO.

• LPO +AC ⇒ DL.

Chapter 8

Refined Double-Negation

The refinement of the Friedman-Dragalin Translation presented in Chap-
ter 3 can be applied, as we have seen in the previous chapters, only to the
restricted classes of formulas given by Definition 3.5, called definite and goal.
These restrictions are imposed by Lemma 3.6, such that for these formulas
it is possible to replace some of the logical negations (⊥) by the arithmetical
falsity (F), while still keeping ⊥ in relevant positions. The purpose of ⊥,
seen as a placeholder, is to enable the recovery of the constructive content
hidden in the classical proofs, by allowing computationally relevant formu-
las to be substituted for it. A complete characterization of the definite/goal
formulas is still an open problem, but in this chapter we aim at shedding
some light in this respect, by showing how to insert negations, in order to
turn other formulas into definite or goal. By this we extend the domain of
applicability of the A-Translation.

An important contribution of this chapter is to further exploit the idea
of minimal insertion of negations, in order to find the NAω-provable for-
mulas corresponding to intuitionistically valid ones. The NAω-validity is a
necessary condition in order to apply the refined A-Translation, but this
introduces a further restriction, by prohibiting the use of efq⊥. However, as
we have seen in Chapter 2 (Section 2.3.2), efq is NA-provable, so a careful
distinction needs to be made for the two forms of negations.

We begin by overviewing in Section 8.1 the distinction between arith-
metical and logical falsity and describe the influence exerted by this distinc-
tion on the axioms efq and Stab. This also serves as a justification as to why
the working system needs to be minimal logic. Working in NAω makes the
double negation translation superfluous, at the price of restricting the class
of formulas to which the refined A-Translation can be applied. We therefore

151

152 CHAPTER 8. REFINED DOUBLE-NEGATION

try to loosen these conditions, by introducing in Section 8.3 a refinement
of the Gödel-Gentzen translation. We also give sufficient conditions such
that some formulas are turned into NAω-provable ones by this (minimal)
insertion of double negations.

The theory developed in this chapter evolves around the notion of L-
critical predicate symbols, as introduced in Section 8.2. Based on this notion,
we propose to double negate only atoms containing predicate symbols. We
show in Section 8.3 that this is a correct translation, preserving provability.

We illustrate our claims by the examples treated in the Chapters 5 -7.
These have constituted the starting point in formulating the refinement of
the double negation translation, by which we insert negations in a controlled
and minimal manner. In Chapters 5 -7 the insertion of negations has been
done manually and not systematically, but based on the expertise gained
from these case studies from the previous chapters we give in Section 8.3
a general method for the detection of the formulas that need double nega-
tion. In Section 8.5 we propose a further refinement of the double negation
translation, by which we minimize even more the number of logical falsifies
inserted in order to achieve NAω-provability. For this, we consider a mix of
⊥ and F , whenever we use relation symbols that have a complement.

In what follows, we use the notion of definite/goal formulas as introduced
by Definition 3.5.

8.1 Negations

As we have already pointed out when describing the system NAω in Sec-
tion 2.2, we distinguish between two forms of negations:

• F, the arithmetical falsity, defined in terms of the inductive predicate
for the Leibnitz equality as F := Eq(ff, tt)

• ⊥, taken to be a predicate variable for the purpose of A-Translation,
such that it plays the role of a placeholder for arbitrary formulas,
envisaging the substitution by the strong existential goal.

This distinction triggers a corresponding differentiation in the treatment of
formulas and axioms involving negations, as described further.

efq and Stab

In this section we overview the axioms efq, Stab and their logical variant
efq⊥ and Stab⊥.

8.1. NEGATIONS 153

Let B be some arbitrary formula. The proofs carried out in this work
are in minimal logic, so in our system NAω the logical axioms efq⊥B and
Stab⊥B are not permitted. However, their arithmetical counterparts efqB
and StabB are provable (see Lemma 2.1) and are therefore allowed in NAω. In
the following, we give an intuition in order to understand why it is necessary
to exclude the logical forms, by analyzing the way in which A-Translation
affects these axioms.

Let A be any formula. We recall the notation used in Chapter 3:

BA := B[⊥ := A].

efqB Under A-Translation, efqAB = (F → B)A = F → BA = efqBA . Since
this is (provably) valid by Lemma 2.1, we allow efqB in NAω.

StabB StabAB is permitted in NAω, because

StabAB = [((B → F)→ F)→ B]A = ((BA → F)→ F)→ BA = StabBA .

Hence, StabAB also remains provable in minimal logic after A-translation.

efq⊥B The A-translation of the logical variant of ex-falso axiom is

efqAB := (⊥ → B)A = A→ BA,

where A can be any formula. In particular, if A := T, then any formula
BT would be provable in the system(!).

Thus, we cannot accept efq⊥B in NAω.

Stab⊥B ((B → ⊥)→ ⊥)→ B is not accepted in our system either, since

StabT
B = (((BT → T)→ T)→ BT)↔ BT ,

which makes any formula BT true when StabB is true (!). Moreover,
should Stab⊥B be allowed, efq⊥B can be easily derivable from it.

This analysis makes it clear that we need to work in the minimal setting
- i.e., intuitionistic logic without efq⊥A - when we want to apply the refined
A-Translation without further concerns. This constraint has the benefit
that as a consequence, in NAω the Double-Negation Translation becomes
superfluous. In what follows, we identify some classes of Π0

2-formulas which
are intuitionistically valid, but for which it is possible to construct by a
minimal insertion of negations their NAω-provable classical equivalents.

154 CHAPTER 8. REFINED DOUBLE-NEGATION

8.2 Critical Predicate Symbols

(Berger et al., 2002) identifies the atoms containing some special predi-
cate symbols, called L-critical, within a class of formulas that are not def-
inite/goal formulas. In what follows, we prove that double negating these
atoms is sufficient in order to turn these formulas into definite/goal ones.

The notion of “positive subformulas” is as given by Definition 2.8.

Definition 8.1 (L-critical predicate symbols). We consider Π0
2-formulas:

∀xH1 → ...→ ∀xHn → ∀y(~G→ ⊥)→ ⊥, (8.1)

with Hi, i ∈ {1, ..., n} and G quantifier-free and take L to be

L := {H1, ...,Hn, ~G→ ⊥}. (8.2)

Let Ci be quantifier-free and Ri predicate symbols occurring in L. Then
L-critical predicate symbols are specified by

• ⊥ is L-critical

• if (~C1 → R1) → ...→ (~Cm → Rm)→ R is a positive subformula of L
and if some Ri is L-critical, then R is L-critical (∗).

An atom formed with L-critical predicate symbols is called an L-critical
atom.

Remark 8.1. The set of L-critical predicate symbols is the least set of pred-
icate symbols containing ⊥ and closed under (∗).

Let us illustrate the intended meaning of Definition 8.1 by some simple
and intuitive examples.

Example 11. We consider a fixed set L and A′i, Ai, B,Bi, i = 1, 2 atomic
formulas different from ⊥, such that the formulas C1, ..., C4 are positive
subformulas of L. In the following formulas the conclusion B is an L-critical
atom:

• C1 := (~A→ ⊥)→ B

• C2 := ~A′ → (~A→ ⊥)→ B

• C3 := (~A→ ⊥)→ ~A′ → B.

8.2. CRITICAL PREDICATE SYMBOLS 155

C2 and C3 indicate that the order of premise does not play any role. Notice
that the premise needs to contain a negation in order for the conclusion to
be L-critical. However, in

• C4 := ((~A→ ⊥)→ ~A′)→ B.

A′ is not L-critical, since it occurs in a negative formula of L, B is not
L-critical either.

Definition 8.1 identifies the situations in which the premise of an impli-
cation is relevant, whereas the conclusion is an atom different from ⊥, so is
an irrelevant formula. Such formulas are also not definite. We illustrate this
by the following example:

Example 12. We consider C1, C2, C3 as in Example 11.

• C1 is not a definite formula, because it is neither relevant, nor is ¬̃ ~A
in IG.

• Since C1 is not a definite formula, neither is C2 = ~A′ → C1.

• C3 is also not definite, since it is not in RD and since ~A→ ⊥ 6∈ IG.

• Since C3 is neither in RD, nor in D, the formula H := C → C3 is
also not definite, for any formula C.

• C3 is however an irrelevant goal formula, since its premise is in RD
and its conclusion is clearly irrelevant. Thus C3 → C is a definite
formula, when C is definite.

C4 is a definite formula, since its premise is an irrelevant goal formula.

(Berger et al., 2002) proposes to repair some of the situations in which
we need the formulas to be definite/goal. In case they are not as such, but
contain L-critical atoms, it is possible to transform them into definite/goal
formulas, by double negating the atoms formed with L-critical predicate
symbols different from ⊥. By carrying this out recursively over the formulas,
we obtain definite/goal formulas, as shown in what follows.

Note: By definition all atomic formulas belong to both D and G.
In order to understand why the L-critical predicate symbols were defined

only for positive subformulas of L, we formulate the following consequence
of Definition 3.5, using Definition 2.8 for the notions of positive/negative
subformulas:

156 CHAPTER 8. REFINED DOUBLE-NEGATION

Lemma 8.1. For D and G the classes of definite, respectively goal formulas,
we have that:

(1) each positive subformula of a D-formula is definite.

(2) each negative subformula of a D-formula is goal.

(3) each positive subformula of a G-formula is goal.

(4) each negative subformula of a G-formula is definite.

Proof. We show each claim by case distinction on the subformulas and treat
(1) and (2) simultaneously. The proof for (3) and (4) is very similar, so we
leave it as an exercise.

Let A be a definite formula.

(1) We show that its positive subformulas are definite.

Case P . P is a positive subformula of itself and definite.

Case ∀xB(x). By Definition 3.5, B(x) is also a positive subformula
of A and thus by the induction hypothesis it is definite. Then,
by Definition 2.8 ∀xB(x) is definite.

Case B → C. If B → C is a positive subformula of A, then B is
a negative subformula and C a positive subformula of B → C.
Using the induction hypothesis, we have from (2) that B ∈ G
and from (1) that C ∈ D. Thus, by Definition 3.5, B → C is a
definite formula.

(2) We show that the negative subformulas of A are in G. If the negative
subformula of A is

P , then this is a negative subformula of itself and in G.

∀xB(x), then by Definition 2.8 B(x) is also a negative subformula
of A and thus by the induction hypothesis it is in G. Then, by
Definition 3.5 ∀xB(x) is also in G.

B → C, then B is a positive subformula and C a negative subformula
of A. Using the induction hypothesis, we have A ∈ D (by (1))
and B ∈ G (by (2)). By Definition 3.5, A→ B is therefore a goal
formula.

8.3. REFINED DOUBLE NEGATION 157

Example 13. (Intuitive view of Lemma 8.1)
Consider the formula D := (A→ B)→ C to be a definite formula.
By Definition 2.8, A is a positive subformula, B a negative subformula

and C a positive subformula of D. The notions of positive and negative
subformula are thus alternating.

Likewise, for D to be definite, by Definition 3.5, A needs to be a defi-
nite, B a goal (such that A→ B is in G) and C a definite formula. Hence,
definite/goal subformulas are alternating in the same manner as the posi-
tive/negative subformulas.

Thus, Lemma 8.1 can be viewed as mapping these notions - positive/negative
formulas to definite/goal formulas.

8.3 Refined Double Negation

We introduce a special form of double negation, refining the Gödel-Gentzen
Translation, in order to turn formulas containing L-critical predicate sym-
bols into definite/goal formulas.

In what follows, we consider as in Definition 8.1 a Π0
2 formula A for which

we have a fixed set L of its quantifier-free assumptions (∃̃ being unfolded
and the actual goal being ⊥).

Definition 8.2. [Refined Double-Negation ·rgL]
We call the double negation applied only to the atoms formed by L-critical

predicate symbols the refined double-negation translation.
The refined double-negation translation ·rgL is given inductively by:

⊥rgL := ⊥,

ψrgL :=

{
¬̃ ¬̃ψ, ψ is an L-critical atom
ψ, ψ is not L-critical

(ψ1 ∧ ψ2)rgL := ψrgL1 ∧ ψrgL2 ,

(ψ1 → ψ2)rgL := ψrgL1 → ψrgL2 ,

(∀xψ)rgL := ∀xψrgL .

8.3.1 Obtaining Definite/Goal Formulas

We show in this section how to obtain definite and goal formulas by double
negating critical atoms. We illustrate the method on one of the examples
shown in previous chapters.

158 CHAPTER 8. REFINED DOUBLE-NEGATION

Lemma 8.2. The refined negative translation turns every positive subfor-
mula of L into a definite formula, and every negative subformula of L into
a goal formula.

Proof. Let D be a positive subformula of L with

D = (~C1 → R1)→ ...→ (~Cm → Rm)→ R, (8.3)

with R,Ri predicate symbols.
We show by induction on formulas that

DrgL = (~CrgL1 → RrgL1)→ ...→ (~CrgLm → RrgLm)→ RrgL

is a definite formula. Since D is a positive subformula of L, then so are Ci
and by the (IH) every ~CrgLi is thus a definite formula. We distinguish the
following two situations:

• if some Ri, 1 ≤ i ≤ m, is L-critical then R is L-critical, so it appears
double negated in DrgL . Since ~CrgLi is definite and quantifier-free and
every Ri is atomic, each premise ~CrgLi → RrgLi is a goal formula. Thus,
by Remark 3.5, (~CrgLi → RrgLi)→ · · · → (~CrgLn → RrgLn)→ ¬̃ ¬̃R is a
relevant definite formula.

• if none of the Ri, 1 ≤ i ≤ m, is L-critical, then each ~CrgLi → Ri is
an irrelevant goal formula. Then, since R is atomic and thus definite
(~CrgL1 → R1)→ · · · → (~CrgLn → Rn)→ R is a definite formula.

Example: Infinite boolean tape We illustrate this method on Stolzen-
berg’s Principle presented in Section 5.1. We regard the following formula-
tion of Stolzenberg’s Principle (SP):

∀n(f(n) = 0 ∨̃ f(n) = 1)→ ∃̃n,m. n < m ∧̃ f(n) = f(m).

Since the disjunction is not an implicit connector in NAω, in Section 5.1.2
we consider rewriting the assumption into the following alternatives:

A :∀n. ¬̃f(n) = 0→ ¬̃f(n) = 1→ ⊥
Anp :∀n. ¬̃f(n) = 0→ f(n) = 1.

In order to explore the symmetry so that we can obtain different program in
Section 5.1 we have formalized SP using A. It is an easy exercise to verify

8.3. REFINED DOUBLE NEGATION 159

that it is also possible to carry out the proof using Anp, by slightly changing
the proof term for (∞0 or ∞1).

However, the refined A-Translation cannot be applied to the proof of

∀n. ¬̃f(n) = 0→ f(n) = 1→ ∃̃n,m. n < m ∧̃ f(n) = f(m). (8.4)

The reason is that Anp is not a definite formula, since ¬̃f(n) = 0 6∈ IG and
f(n) = 1 6∈ RD. In fact, if we define for (8.4) the set

LSP = { ¬̃f(n) = 0→ f(n) = 1, n < m→ f(n) = f(m)→ ⊥}

then by Definition 8.1 the predicate symbol “=” in ¬̃f(n) = 0→ f(n) = 1
turns out to be LSP-critical. Thus, f(n) = 1 is an LSP-critical atom. If we
double negate all atoms in Anp containing the LSP-critical “=” we obtain:

(Anp)rgL : ∀n. ¬̃ ¬̃ ¬̃f(n) = 0→ ¬̃f(n) = 1→ ⊥ ∈ D.

It is however not necessary to double negate all LSP-critical atoms in
SP, since we have (also in NAω) ¬̃ ¬̃ ¬̃f(n) = 0 ≡ ¬̃f(n) = 0. The double
negation of f(n) = 1 gives us A. Likewise, it is not necessary to change
G → ⊥ := n < m → f(n) = f(m) → ⊥ by the refined double negation
translation. In Section 5.1.2 we have given a proof of

∀n. ¬̃f(n) = 0→ ¬̃ ¬̃f(n) = 1→ ∃̃n,m. n < m ∧̃ f(n) = f(m).

We observe that as it is the case with ⊥, the refined negative translation
does not change ¬̃R, even for an L-critical R.

Remark 8.2. It is an easy exercise to show

`m (Anp → G)→ A→ G.

Since Anp clearly follows from A we can thus view Anp → G as a weakening
of the form of SP shown in Section 5.1.

In conclusion, for formulas A as in (8.1) the refined double negation
allows us to change positive formulas D (which are of the kind (8.3) since
they are quantifier-free) of LA into definite formulas. For this it suffices to
detect the LA-critical predicate symbols. The same applies to the negative
formulas, which can be turned into goal formulas and this enables us to use
the refined A-translation in order to extract programs.

160 CHAPTER 8. REFINED DOUBLE-NEGATION

8.3.2 Refined Double Negation of Proofs

In the analysis performed in Chapters 5-7 we have encountered situations
where the manual insertion of double negations was necessary in order to
carry out the proofs in NAω. We have observed that there is a connection
with the notion of L-critical atoms, which we will generalize in this section.
The claim is that we can eliminate efq⊥ and Stab⊥ from the proofs of some
Π0

2-formulas by the refined Double Negation Translation, with the benefit
of avoiding Gödel-Gentzen Translation. Negating only certain atoms is the
least price to pay, in order to be able to apply the refined A-Translation.

In short, the aim is to repair situations of the kind

NAω ∪ {efq⊥F,Stab⊥F} ` (B → ⊥)→ B → F
but NAω 6` (B → ⊥)→ B → F,

where B is a formula in NAω such that NAω ` B or B relevant.

Remark 8.3. Let L be a fixed set of the quantifier-free assumptions in
some Π0

2-formula A and efq⊥ ~B→R,Stab ~B→R positive subformulas of L. Then
by Definition 8.1, R is an L-critical predicate symbol in efq⊥ ~B→R and in
Stab⊥ ~B→R and we have:

(1) (efq⊥ ~B→R)rgL := ⊥ → ~BrgL → ¬̃ ¬̃R, so trivially

`m (efq⊥ ~B→R)rgL .

(2) We have

(Stab⊥ ~B→R)rgL := ¬̃ ¬̃(~BrgL → ¬̃ ¬̃R)→ ~BrgL → ¬̃ ¬̃R,

so `m (Stab⊥ ~B→R)rgL by the NAω-proof

¬̃ ¬̃(~BrgL → ¬̃ ¬̃R)

~BrgL → ¬̃ ¬̃R ~BrgL
→−¬̃ ¬̃R ¬̃R →−⊥ →+

¬̃(~BrgL → ¬̃ ¬̃R)
→−⊥

Theorem 8.1 (Refined Double-Negation of Proofs). Let an NAω-proof of
the Π0

2-formula A := ∀~xH1 → ...→ ∀~xHn → ∀~y(~G→ ⊥)→ ⊥ be given.
The refined negative translation of A remains NAω-provable, i.e.,

`m ArgL .

8.3. REFINED DOUBLE NEGATION 161

Proof. By induction on the derivations.
We consider L := {H1, ...,Hn, ~G→ ⊥} and let

C := (~C1 → R1)→ ...→ (~Cn → Rn)→ R

be a positive subformula of L. C can occur in the proof of A in the sub-
derivations M consisting of →+ and →−, as follows:

v : C

[u1 : ~C1]
| N1

R1 →+ u1
~C1 → R1 →−

(~C2 → R2)→ ...→ (~Cn → Rn)→ R

| ...
(~Cn → Rn)→ R

[un : ~Cn]
| Nn

Rn →+ un
~Cn → Rn

R

If R is L-critical, then it needs to be double negated in CrgL . However,
the double negation is propagated to all occurrences of R, so the above
derivation remains valid.

Further, R can occur in an →−-rule. Since R might contain free vari-
ables, it can happen that in the proof a ∀+-rule is applied first to R:

∀xR→ B

|M
R ∀+x
∀xR →−B

Even if R is L-critical, the last inference remains valid also after the
refined double negation, since we have:

∀x ¬̃ ¬̃R→ BrgL

|?
¬̃ ¬̃R ∀+x
∀x ¬̃ ¬̃R →−BrgL

Since ¬̃ ¬̃R = RrgL , this is by the induction hypothesis derivable in
minimal logic from a modified proof of M . Further, the variable condition is
unaffected by the refined double negation, such that ∀+x remains valid.

In the next section we summarize the examples from the previous chap-
ters and present them from the perspective of the notion of L-critical predi-
cate symbols introduced in this chapter. As we will see, all choices for double

162 CHAPTER 8. REFINED DOUBLE-NEGATION

negation of the selected atoms can be now justified by the application of ·rgL ,
such that these transformations are not ad-hoc, but systematic. In each of
the examples presented below it suffices to apply the double negation only to
some of the atoms containing L-critical predicate symbols, for a case-specific
set L. More precisely, in practice we have that:

Remark 8.4. For certain intuitionistic proofs, it is not necessary to double
negate all occurrences of the L-critical predicate symbols, in oder to translate
them into minimal logic proofs.

This suggests that further improvements of the refined double negation
are possible, by which the initial structure of the arithmetical axioms re-
mains unchanged. We will illustrate this by examples.

Remark 8.5. The Gödel-Gentzen Translation can be viewed as transform-
ing by the refined Double Negation ·rgL formulas consisting of only L-critical
atoms. In the next section we will be concerned with using appropriate spec-
ifications, such that the number of L-critical predicate symbols is kept to a
minimum. This is achieved for instance by rewriting a ≤ b to a < Sb or
a < b to a 6= b.

8.4 Examples

In the following, we illustrate the above claims on some examples. We first
present the problem of finding the least element in a well-founded set, by
showing that each such set must increase in two consecutive points. Further,
we overview the more complex situations arising in the studies presented
Chapters 5, 6 and 7. In each of these examples, the double negation of the
L-critical predicate symbols was necessary and sufficient in order to prove
in minimal logic the otherwise only intuitionistically valid formulas. In this
section, we justify by the notion of L-critical predicate symbols the seemingly
ad-hoc decisions of double negating only certain atoms from the previous
chapters. We refer the reader to Chapters 5-7 for further details and the
context.

Notation 8.1. <, ≤ and = bind stronger then ¬̃.

8.4.1 The ”Least” Element in a Well-Founded Set

We first present a “fresh” example, which we hope offers a better under-
standing of the refined Double Negation due to its simplicity.

8.4. EXAMPLES 163

We show that each function on natural numbers must increase weakly
in (at least) two distinct points, i.e.

A := ∀f (∀m,n((m < n→ ⊥)→ n ≤ m)→ ∃̃kf k ≤ f Sk)

The function on N cannot strictly decrease in all points. To show this, we
first select from the domain of f the values x such that f increases in all
points above x. We collect these values in the set

M := {x | ∀y≥xf(x) ≤ f(y) }.

By the (MinPr) we have that such a set is not empty, so for some x its
successor belongs to the M , so the requirement in A is fulfilled at this x.

For the formal proof, we instantiate (MinPr) with m := f and P (k) :=
∃̃kT. For this, we use GIndQ : ∀f,n. ∀j ¬̃Q(j) → ∀bB(b → ¬̃T), where
Q(n) := ∀i(f n < f i → ¬̃T) ∧̃ T. We also use the existence elimination
(∃̃−2,1) and introduction (∃̃+

1,1) axioms.
The λ-term of the proof is

MA+ := λf, u1. (∃̃−2,1 f λu2. ∃̃+
1,1 0 T λi. u2 i M1)

λk, u3, u4, u5. u5 k M
f k≤f Sk
2 , where

M1 := (λn. GIndQ f n u2 (f n < f i))∀n. f n<f i→ ¬̃T

M2 := u1 (f Sk) (f k) (λu6. u3 Sk u6 T)f Sk<f k→⊥,

with the typed assumption variables: u∀m,n. (m<n→⊥)→n≤m
1 , u∀n ¬̃Q(n)

2 , u∀n. f n<f k→ ¬̃T
3 ,

uT
4 , u∀k. f k≤f Sk→⊥

5 and uf Sk<f k
6 .

With the terminology from Theorem 8.1 we have

H1 := (m < n→ ⊥)→ n ≤ m and G := f k ≤ f Sk ⇒ LA = {H1, G→ ⊥}

The proof of H1 requires efq⊥Sn≤0, so ≤ is an LA-critical predicate symbol.
If we double negate it, then

H
rgLA
1 := (m < n→ ⊥)→ (n ≤ m→ ⊥)→ ⊥,

coincides with the Gödel-Gentzen Translation of H1, so HrgL
1 is provable

by the same proof as H1. Since `m efq⊥ ¬̃ ¬̃Sn≤0 by Remark 8.3, HrgL
1 is

provable in minimal logic. In addition, `m H1 → HrgL
1 .

Hence,

ArgLA = ∀f . ∀m,n((m < n→ ⊥)→ ¬̃ ¬̃n ≤ m)→ ∃̃k ¬̃ ¬̃f k ≤ f Sk

164 CHAPTER 8. REFINED DOUBLE-NEGATION

is also NAω-provable.
However, we can further minimize the ⊥-occurrences in the minimal logic

proof, by observing that fk ≤ fSk → ⊥ can be interpreted as fSk < fk.
The modified version is:

A⊥ := ∀f (∀m(m < 0→ ⊥)→ ∃̃k(f Sk < f k → ⊥)

With the improved refined double negation, (m < n → ⊥) → ¬̃ ¬̃n ≤ m)
becomes trivial and m < 0 → ⊥ reduces efq⊥, so it is harmless in NAω.
Consequently, A⊥ can be proved in minimal logic by:

MA⊥ := λf , v1. (∃̃−2,1f λu2. ∃̃+
1,1 0 T λi1. u2 i1M1)

λk, u3, u4, v2. v2 k λu6. u3 Sk u6 T,

with the additional typed assumption variables v∀m(m<0→⊥)
1 and v∀k. ¬̃ ¬̃f Sk<f k

2 .

8.4.2 The Infinite Pigeonhole Principle (Chapter 5)

In Section 5.2 we give the following specification of IPH:

∀f .∀nf(n) < r → ∃̃q∀n∃̃k. n ≤ k ∧̃ f(k) = q, (IPH+)

or, equivalently, ∀f . ∀nf(n) < r → ∀n∃̃q,k. n ≤ k ∧̃ f(k) = q. For this, we
use the induction axiom, the cases axiom and the following lemmas:

∀i,jH1 : ∀i,j(i < Sj → (i < j → ⊥)→ (i = j → ⊥)→ ⊥) (Lem<SCases)
∀i,jH2,n : ∀i,jn ≤ (i t j), n ∈ {i, j} (Lemn≤(t))

∀i,j,kH3,◦ : ∀i,j,k(j ◦ i→ i ◦ k → j ◦ k), ◦ ∈ {<,≤} (Lem◦Trans)

Additionally, as discussed in Section 5.2.2 and explained below, in the proof
of (IPH+) we need

H4 : efq⊥f (ntm)<r

Hence, the set of quantifier-free formulas associated to the proof of
(IPH+) is

LIPH+ = {f(n) < r, n ≤ k → f(k) = q → ⊥}∪
∪ {H1, H2,i, H2,j , H3,<, H3,≤, H4}.

Let us overview the situation requiring the use of efq⊥. In the induction
step we want to use

(StepH) : ∀n f(n) < Sr

(NegInf)m : ∀k. m ≤ k → f(k) = r → ⊥,

8.4. EXAMPLES 165

in order to infer f (n tm) < r, where (n tm) is used as in Section 5.2.2 to
denote the maximum of n and m.

(StepH) abbreviates a case distinction, so we use Lem<SCases to “unfold”
it. We use the substitutions i := f(n tm), j := r and take P := ⊥. If we
apply this to (StepH) in which we take n to be (ntm), then it only remains
to show that f(ntm) = r → f(ntm) < r. From (NegInf) with k := (ntm)
we know that the equality does not hold. Thus, it suffices to show:

(f (n tm) = r → ⊥)→ f (n tm) = r → f (n tm) < r,

which amounts to using efq⊥f (ntm)<r. This makes “<” an LIPH+-critical
predicate symbol.

An analysis of the formulas in L shows that no further predicate symbols
are L-critical. Therefore, it suffices to double-negate the atoms containing
“<” and we have1:

LrgL
IPH+ = { ¬̃ ¬̃f(n) < r, n ≤ k → f(k) = q → ⊥} ∪ {⊥ → ¬̃ ¬̃f(n tm) < r}∪

∪ { ¬̃ ¬̃i < Sj → (i < j → ⊥)→ (i = j → ⊥)→ ⊥}∪
∪ {H2,i, H2,j , H3,≤, ¬̃ ¬̃j < i→ ¬̃ ¬̃i < k → ¬̃ ¬̃j < k}.

Thus, Lem<SCases and Lem<Trans have been changed by taking the double
negation of the LIPH+-critical predicate symbols. Their refined double nega-
tion coincides in this case with the Gödel-Gentzen translation, so we know
that Lemrg

<SCases and Lemrg
<Trans are also valid and provable by the same

derivations as the original lemmas.
Since it was necessary to double negate only the atoms containing < and

we have changed all these atoms, all the inference rules in which these atoms
occur remain valid. Any other rules remain intact. Further, (efq⊥f(ntm)<r)rgL

is NAω-provable and thus the refined double-negated translation of IPH+:

(IPH+)rgL : ∀f . ∀n ¬̃ ¬̃f(n) < r → ∃̃q∀n∃̃k. n ≤ k ∧̃ f(k) = q

is also provable in minimal logic.

Remark 8.6. In Section 5.2.1 we show on page 84 an improved2 version
of IPH, in which we use the original variants of the lemmas Lem<SCases

and Lem<Trans. Hence, it turns out that it suffices to double negate the

1We can safely take i < j → ⊥ instead of ¬̃ ¬̃i < j → ⊥.
2Improved with respect to the refined double negation in the sense that even fewer

double negations are inserted.

166 CHAPTER 8. REFINED DOUBLE-NEGATION

LIPH+-critical atom f(n) < r, which is equivalent modulo the substitution of
n by (n tm) to the atom occurring in the intuitionistically-valid H4.

For this proof we have:

L(IPHr) = { ¬̃ ¬̃f(n) < r, n ≤ k → f(k) = q → ⊥} ∪ {⊥ → ¬̃ ¬̃f(n tm) < r}∪
∪ {H1, H2,i, H2,j , H3,<, H3,≤, H4}

8.4.3 Dickson’s Lemma (Chapter 7)

In the case study concerning Dickson’s Lemma we show the Π0
2-corollary:

∀f,g∃̃i,j . i < j ∧̃ f(i) ≤ f(j) ∧̃ g(i) ≤ g(j). (DL+)

using the Minimum Principle (MinPr), which follows from the generalized
induction scheme:

∀m,x. ∀x(∀y|m(y)<m(x)R(y)→ R(x))→ R(x)

We also use the following lemmas (where the free variables are considered
to be universally quantified)

H1,◦ : i < j → j ◦ k → i < k, ◦ ∈ {<,≤} (Lem◦Trans)
H2 : i < Sj → i ≤ j (Lem<STo≤)
H3 : (i < j → ⊥)→ j ≤ i (Lem6<To≤)

Thus,

LDL+ = {i < j → f(i) ≤ f(j)→ g(i) ≤ g(j)→ ⊥}∪
∪ {H1,<, H1,≤, H2, H3}

By Definition 8.1, H3 makes ≤ an LDL+-critical predicate symbol.
Let us first overview the context from Section 7.4.1 in which the use of

H3 was necessary. We have used the properties for i and j resulting from
the application of (MinPr) and have reached an impasse when we had to
show in minimal logic that

(f(j) < f(i)→ ⊥)→ f(i) ≤ f(j). (8.5)

This is equivalent to H3 and its proof by induction requires efq⊥Sm≤0.
The use of Lem≤Trans turns < into an LDL+-critical predicate symbol

as well. However, this can be avoided by noticing that the lemma can be
safely replaced in the proof of DL+ by

LemSTrans : ∀i,j,k. i < j → j < Sk → i < k

In general we have that:

8.4. EXAMPLES 167

Remark 8.7. In order to minimize the number of double negations inserted,
it is essential to avoid the alternation of predicate symbols and to keep the
lemmas as uniform as possible in this respect.

The refined double negation of Lem≤Trans coincides in this case with
the Gödel-Gentzen Translation, so its proof remains unchanged, and HrgL

2

can be easily inferred from H2 (Lem<STo≤). However, as one can see in the
proof of DL+ in Section 7.4, these auxiliary lemmas on the natural numbers
do not need to be changed by the insertion of double negations.

Thus,

LrgL
DL+ = {i < j → ¬̃ ¬̃f(i) ≤ f(j)→ ¬̃ ¬̃g(i) ≤ g(j)→ ⊥}∪
∪ {H1,<, i < j → j < Sk → i < k,H2, (i < j → ⊥)→ ¬̃ ¬̃j ≤ i}

HrgL
3 becomes provable in minimal logic, since we have:

`m efq⊥ ¬̃ ¬̃Sm≤0.

In Section 7.4 we show in fact an improved form of the refined double
negation of DL+, (DLCor):

∃̃i,j . i < j ∧̃ ¬̃(f(j) < f(i)) ∧̃ ¬̃(g(j) < g(i))

This is based on an observation which we generalize in Section 8.5 that

¬̃(f(i) ≤ f(j)) is the complement of f(j) < f(i).

Hence, we can take the simple negation of f(j) < f(i) and eliminate some of
the (logical) negations. Further, H

rgLDL
3 (i < j → ⊥) → ¬̃ ¬̃j ≤ i becomes

(i < j → ⊥)→ ¬̃i < j, which trivially holds. We therefore have:

LDL = {i < j → ¬̃f(j) < f(i)→ ¬̃g(j) < g(i)→ ⊥}∪
∪ {H1,<, i < j → j < Sk → i < k,H2}

A proof in minimal logic of this simplified refined double negation of DL
has been given in Section 7.4.1.

8.4.4 The Erdös-Szekeres Theorem (Chapter 6)

This is the most elaborated example with respect to the insertion of nega-
tions. In the proof of the Erdös-Szekeres Theorem, the double negations
were necessary from a two-folded perspective. First, as underlined in Sec-
tion 6.2.1, in order to use FPH in a minimal logic proof of the Erdös-Szekeres

168 CHAPTER 8. REFINED DOUBLE-NEGATION

Theorem, the assumption formula in ES requires to be double negated. Ac-
cordingly, the assumption in FPH needs to be matched. Initially, the formu-
lation of FPH was unaffected by the double negations, although its auxiliary
lemmas needed to be modified, in order for FPH to be NAω-provable. The
proof of FPH is presented in Section 6.1. The refined double-negated version
of FPH needed in the proof of ES is provable in minimal logic - as presented
in Section 6.2.2, but as a consequence of double negating the LES-critical
atoms in FPH, its auxiliary lemmas (such as ”dnColLists”) need to be also
adapted. In this section, we overview these situations and give a more
systematic interpretation, in view of the notion of (L-) critical predicate
symbols.

For this, we have to first determine LFPH and LES. In Chapter 6 we have
given an overview of the relevant lemmas used in order to prove FPH and
ES - for the purpose of completion, we explicitely state in what follows the
other lemmas used in the proofs. We refer the reader to Chapter 6 and to
Appendix A.1 for an overview of the other lemmas used. The free variables
in these lemmas are universally quantified, unless otherwise specified. We
capture these lemmas in the following sets:

LN
FPH = {i ◦ j → j ◦ k → i ◦ k, i < Sj → i ≤ j}∪
∪ {i1 ≤ j1 → i2 ≤ j2 → i1 · i2 ≤ j1 · j2}, ◦ ∈ {<,≤}

LN
ES = {i ◦ j → j ◦ k → i ◦ k, i = j → j = i}∪
∪ {Si ≤ j → i = j → ⊥, (i ≤ j → P)→ (j ≤ i→ P)→ P}, ◦ ∈ {<,=}

FPH

In Section 6.1 we show

∀k,n,r,c. ∀ic(i) < r → k · r < n→ ∃̃l. k < |l| ∧̃ ∃̃m∀i<|l|c(li) = m

using the auxiliary properties3

H1 : (i < |ll| → |lli| ≤ k)→ |flatten(ll)| ≤ k · |ll| (Lhflattenll)
H2 : i ≤ r → j < |GCi| → c(GCi,j) = i (GroupByCols)
H3 : c(i) < r → |GC| ≤ r (ColLists)
H4 : |flatten(GC)| = Sn (ObjGrouped)
H5 : i ≤ r → Sj < |GCi| → GCi,Sj < GCi,j (GCDistinct)

3We consider the free variables in these lemmas to be implicitly universally quantified.

8.4. EXAMPLES 169

The proof requires also

H6 : (i < j → ⊥)→ j ≤ i, (Lem6<To≤)

which in turn amounts to using efq⊥Sj≤0. For an explanation why Lem6<To≤
is needed in the proof of FPH, please refer to the discussion on page 101.
We collect all these assumptions in LFPH+ :

LFPH+ = {c(i) < r, k · r < n, k < |l| → (i < |l| → c(li) = m)→ ⊥}∪
∪ {H1, H2, H3, H4, H5, H6} ∪ {(i < j → ⊥)→ j ≤ i} ∪ LN

FPH

where for brevity we have used GC := GroupbyCols(c, n) as in Chapter 6.
Thus because of H6 “≤” is an LFPH+-critical predicate symbol.
Double negating the atoms containing ≤ triggers the need to change all

lemmas in which “≤” appears. This is the case first of all with (Lhflattenll):

∀ll,k. (∀i. i < |ll| → ¬̃ ¬̃|lli| ≤ k)→ ¬̃ ¬̃|flatten(ll)| ≤ k · |ll|

Changing (Lhflattenll) means that we need to readapt its proof by double
negating all atoms containing “≤”. In the proof of (Lhflattenll), we have
used the lemmas:

H ′1 : ∀i,j . i+ j = j + i (Lem+Com)
H ′2 : ∀i1,i2,j1,j2 . i1 ≤ j1 → i2 ≤ j2 → i1 + i2 ≤ j1 + j2 (LemPlusLt)

Since “≤” is LFPH+-critical in (Lhflattenll), we need to adapt H ′2 by consid-
ering LemrgL

PlusLt, which is valid because the refined double negation coincides
with the Gödel-Gentzen translation.

This is the first case when the negative subformula is not atomic. Let
us verify that this complies with the requirements from Theorem 8.1. The
negative subformula of (Lhflattenll) is i < |ll| → |lli| ≤ k and since ≤ is
L-critical, we need to require that < is also L-critical. We can avoid this if
we use the same “trick” as for Dickson’s Lemma: the observation that “≤”
is the complement relation to “<”. If we replace the double negation of “≤”
by the simple negation of “<”, then we obtain (nLhflattenll):

∀ll,k. (∀i<|ll|. k < |lli| → ⊥)→ k · |ll| < |flatten(ll)| → ⊥,

in which < does not need to be L-critical. In Section 6.1.1 we give the proof
of (nLhflattenll) using LemrgL

PlusLt (labeled in Chapter 6 as (LemnP lusLt)):

∀i1,j1,i2,j2 . (i1 < j1 → ⊥)→ (i2 < j2 → ⊥)→ i1 + i2 < j1 + j2 → ⊥.

No further predicate symbol in FPH is LFPH+-critical. This is a conse-
quence of the fact that certain occurrences of “≤” can be safely changed to
“< S”, as follows:

170 CHAPTER 8. REFINED DOUBLE-NEGATION

• (GroupByCols) (H2) stated initially as

∀i,j . i ≤ r → j < |GCi| → c(GCi,j) = i

turns “=” into an LFPH+-critical predicate symbol. However, we can
safely reformulate the lemma as

∀i,j . i < Sr → j < |GCi| → c(GCi,j) = i

and eliminate this issue.

• LemGCdistinct (H5):

i ≤ r → Sj < |GCi| → GCi,Sj < GCi,j

can be changed to

i < Sr → Sj < |GCi| → GCi,Sj < GCi,j .

• Further, although in the statement of (ColLists) (H3)

∀ic(i) < r → |GC| ≤ r

“≤” is L-critical and the atom |GC| ≤ r needs to be double negated,
we can avoid this if we formulate (ColLists) as

∀ic(i) < r → |GC| < Sr.

Remark 8.8. It should be clear from the explanation on page 101 (Chap-
ter 6) that replacing ≤ by its complement in (Lhflattenll) would not be
enough in order to carry out the proof of FPH in minimal logic. We would
still need to eliminate ⊥ from the assumption corresponding to the unfolding
of ∃̃. More precisely, we would have to show (k < |GCi| → ⊥)→ |GCi| < Sk,
which amounts to using efq⊥.

In Section 6.1.1 we show that all the above changes are valid and that the
lemmas on natural numbers which we have gathered in LN

FPH do not need
to be changed. We give the proof terms of FPH in which the only double
negated atoms are those occurring in (nLhflattenll) and (LemnP lusLt).

8.4. EXAMPLES 171

Since i < j → ⊥ → ¬̃i < j is trivial, we have correspondingly the
following refined double negation of LFPH+ :

LrgL
FPH+ = {c(i) < r, k · r < n, k < |l| → (i < |l| → c(li) = m)→ ⊥}∪

∪ {(i < |ll| → ¬̃k < |lli|)→ ¬̃k · |ll| < |flatten(ll)|} ∪
∪ {i < Sr → j < |GCi| → c(GCi,j) = i}∪
∪ {c(i) < r → |GC| < Sr, |flatten(GC)| = Sn}∪
∪ {i < Sr → Sj < |GCi| → GCi,Sj < GCi,j}∪
∪ {(i < j → ⊥)→ ¬̃ ¬̃j ≤ i} ∪ LN

FPH

Since ≤ does not occur in the formulation of FPH the initial statement

∀k,n,r,c. ∀ic(i) < r → k · r < n→ ∃̃l. k < |l| ∧̃ ∃̃m∀i<|l|c(li) = m.

does not change under the refined double-negation translation. In Sec-
tion 6.1 we give its NAω-proof.

ES

We have presented in Section 6.2 and formalized in Section 6.2.3 a proof of
the following formulation of the Erdös-Szekeres Theorem:

∀nN,sL . |s| = n2 + 1→ ∃̃i. Sn ≤ |fs,i| ∨̃ Sn ≤ |gs,i| (8.6)

Rewriting ∨ according to the interpretation given in Chapter 2 (page 15)
turns this into

∀nN,sL . |s| = n2 + 1→ ∃̃i. ¬̃(Sn ≤ |fs,i|)→ ¬̃(Sn ≤ |gs,i|)→ ⊥

In order to show ES, we use FPH

∀kN,nN,rN,cN⇒N . ∀ic(i) < r → k · r < n→ ∃̃l,m. k < |l| ∧̃ ∀i<|l|c(li) = m

and the further additional lemmas:

H1 : i < j → si ≤ sj → S|ai| ≤ |aj | (si ≤ sj)
H2 : ai ≤ n→ bi ≤ n→ c(ai, bi) ≤ n2 (ColUB)
H3 : |ai| ≤ n→ |bi| ≤ n→ |aj | ≤ n→ |bj | ≤ n→

c(ai, bi) = c(aj , bj)→ |ai| = |aj | ∧ |bi| = |bj | (2Col=)

172 CHAPTER 8. REFINED DOUBLE-NEGATION

As discussed below, in order to carry out the proof we also need H4,
with

H4 : (n ≤ m→ ⊥)→ m < n. (Lem6≤To<)

Collecting all these formulas and using the abbreviations ak := Barf(s, Sk), bk :=
Barf(s, Sk), k ∈ {i, j} and c for the coloring function col, we construct:

LES+ := {|s| = n2 + 1, (¬̃(Sn ≤ |fs,i|)→ ¬̃(Sn ≤ |gs,i|)→ ⊥)→ ⊥}∪
∪ {c(i) < r, k · r < n, k < |l| → (i < |l| → c(li) = m)→ ⊥}∪
∪ {H1, H2, H3, H4} ∪ LN

ES

Let us explain why Lem6≤To< is needed in order to prove ES. For this,
we introduce the abbreviations:

A := Sn ≤ |fs,i| B := Sn ≤ |gs,i|
An := |fs,i| < Sn ≡ |fs,i| ≤ n Bn := |gs,i| < Sn ≡ |gs,i| ≤ n

and C(n, r) := c(fs,i, gs,i) ≤ n2,

with A and An, respectively B and Bn being complementary.
In the informal proof (on page 107), we have reached the desired con-

tradiction using FPH. In order to validate the hypothesis of FPH, we have
assumed An and Bn and used them to derive C(n, r). For this, it suffices to
use (ColUB), with the appropriate NAω-valid instance:

An → Bn → C(n, r). (AnBnC)

However, our assumption is (¬̃A → ¬̃B → ⊥) → ⊥, so in order to derive
C(n, r) in minimal logic, we need (Lem 6≤To<). The proof by induction of
this lemma needs `m efq⊥ ¬̃ ¬̃m<0 for the base step, so it is not NAω-valid.
Its refined double negation

∀n,m. (n ≤ m→ ⊥)→ (m < n→ ⊥)→ ⊥

is provable in minimal logic, since by Remark 8.3 `m efq⊥ ¬̃ ¬̃m<0.
(Lem6≤To<) turns “<” into an LES+-critical predicate symbol.
Therefore, we need to consider the double negations of the atoms con-

taining it. As the proof in Section 6.2 shows, it suffices however to double
negate the critical atom c(i) < r. More precisely, we observe that:

• The refined double negation affects only FPH. As in the previous ex-
amples, it is important to note that in the proof given in Section 6.2 we

8.4. EXAMPLES 173

consider an improvement of the refined double negation, by which not
all atoms in which “<” occurs are double negated. Indeed, it suffices
to consider the atom for which efq⊥ was necessary. The (improved)
refined double negation of FPH is (FPHdn):

∀k,n,r,c. ∀i ¬̃ ¬̃(c(i) < r)→ k · r < n→
∃̃l. k < |l| ∧̃ ∃̃m∀i. i < |l| → c(li) = m.

For this, we have to revise LrgLFPH, in order to prove (FPHdn) in minimal
logic, since this contains the LES+-critical predicate symbol <. We
have given in Section 6.2.2 a proof of FPHdn from which it is clear that
we need to adapt4 (ColLists), but that (GroupByCols), LemGCdistinct

and (nLhflattenll) can be left unchanged. By Theorem 8.1 “<” is L-
critical in k < |l| → (i < |l| → c(li) = m)→ ⊥, so “=” should also be
L-critical by Definition 8.1. As it turns out these atoms and k · r < n
do not occur in the same rules as c(i) < r, so they can be left intact.
We thus take:

LrgLFPHdn
= { ¬̃ ¬̃c(i) < r, k · r < n, k < |l| → (i < |l| → c(li) = m)→ ⊥}∪
∪ {(i < |ll| → ¬̃k < |lli|)→ ¬̃k · |ll| < |flatten(ll)|} ∪
∪ {i < Sr → j < |GCi| → c(GCi,j) = i}∪
∪ { ¬̃ ¬̃c(i) < r → ¬̃ ¬̃|GC| < Sr, |flatten(GC)| = Sn}∪
∪ {i < Sr → Sj < |GCi| → GCi,Sj < GCi,j}∪
∪ {(i < j → ⊥)→ ¬̃ ¬̃j ≤ i} ∪ LN

FPH

In the case of (ColLists), double negating the atom c(i) < r imposes
the double negation of the atom |GC| < Sr. In this case the refined dou-
ble negation coincides with the Gödel-Gentzen Translation. Thus, the
proof of “dnColLists” can be constructed from the proof of (ColLists);
on page 114 we have given an alternative proof, which we compare to
that of (ColLists).

• Because of (si ≤ sj), “≤” should be by Definition 8.1 an LES+-critical
predicate symbol. However, the intended meaning of i < j is i 6= j, so
that we can take (si ≤ sj) to be

H ′2 : (i = j → F)→ si ≤ sj → S|ai| ≤ |aj |.
4Adapt in the sense of double negating the occurrences of the LES+ -critical (hence

LrgL

FPH+ -critical) predicate symbol “<”.

174 CHAPTER 8. REFINED DOUBLE-NEGATION

• Since the LES+-critical predicate symbol “<” does not occur in the
formulation of ES, this does not need to be changed.

Remark 8.9. As we have seen when analyzing the proof of FPH, “≤” is an
LFPH+-critical predicate symbol. However, since this does not occur in the
formulation of FPH, but only in the lemmas used to prove it, and the latter
are not explicit in the proof of LES+, “≤” is not LES+-critical.

Summing up, we have the following collection of refined double-negated
formulas used to prove ES:

LrgL
ES+ := {|s| = n2 + 1, (¬̃(Sn ≤ |fs,i|)→ ¬̃(Sn ≤ |gs,i|)→ ⊥)→ ⊥}∪
∪ { ¬̃ ¬̃c(i) < r, k · r < n, k < |l| → (i < |l| → c(li) = m)→ ⊥}∪
∪ {(n ≤ m→ ⊥)→ ¬̃ ¬̃m < n}∪
∪ {H1, H

′
2, H3} ∪ LN

ES

where the latter set is unchanged, since we do not need to modify the lemmas
on the natural numbers.

Section 6.2.3 demonstrates that with these changes ES becomes provable
in minimal logic.

To sum up, the case studies from previous chapters have revealed that

• the refined double negation is necessary not only in order to obtain
definite/goal formulas, but also in order to obtain minimal logic proofs

• it is not necessary to double negate all occurrences of the L-critical
predicate symbols; in some cases, it suffices to consider only the atoms
for which efq is applied. We have considered in the above examples
such improved variants, but we would have obtained NAω-derivability
by the application of ·rgL . Although this would have introduced more
negations then these improved variants, the logical falseties that are in-
serted in this way are clearly fewer then the ones in the Gödel-Gentzen
translated proofs, in particular in view of the next observation.

• it is essential to find suitable formulations of the lemmas, such that the
variety of predicate symbols occurring in one formula is minimized. If,
on the contrary, the predicate symbols are mixed in a subformula, one
risks of unnecessarily turning further predicates into L-critical ones,
which propagates further in the other premises.

In what follows, we give a further improvement of the double negation, by
which we insert only one logical falsity instead of two.

8.5. FURTHER REFINEMENT OF THE DOUBLE NEGATION 175

8.5 Further Refinement of the Double Negation

Based on the case studies presented in the previous chapters, we can go even
a step further and in some cases insert only one logical falsity (⊥), instead
of double-negating all predicate symbols occurring in the proof.

In general one negation is not enough for obtaining definite/goal formu-
las:

Remark 8.10. The (simple) negation of

• a decidable or relevant D-formula is in the G \ D-class.

• a formula from G belongs to RD \G (therefore implicitly also to D\G).

It is however possible to mix the logical and arithmetical falseties in the
following way:

Remark 8.11. • If ~D ∈ D, then (~D → F)→ ⊥ ∈ D.

• If ~G ∈ IG decidable, then (~G→ F)→ ⊥ ∈ G.

Let us investigate in which situations it is possible to replace the first
negation by the arithmetical version, while aiming for the same results as
with the refined double-negation translation.

We first make the following observation:

Remark 8.12. (a) If NAω ` B → C then

NAω ` ((B → F)→ ⊥)→ (C → F)→ ⊥.

(b) If NAω ` (B → F)→ (C → F) then

NAω ` (B → ⊥)→ C → ⊥,

provided that B has no free predicate variables.

Proof. (a) Assume Ha : B → C.

|
Ha u1 : B

→−C u2 : C → F
F →+ u1

B → F u3 : (B → F)→ ⊥
→−⊥

176 CHAPTER 8. REFINED DOUBLE-NEGATION

(b) Assume Hb : (B → F)→ (C → F).

|
Hb u1 : B → F

→−C → F u2 : C
→−F →+ u1

(B → F)→ F
StabB

B u4 : B → ⊥
→−⊥

We thus define a mixed double negation to be:

Definition 8.3. Let ArgL be the refined double-negation translation of a
formula A. Then AFgL consist in replacing the first logical falsity in the
double negation by F:

⊥rgL := ⊥,

ψrgL :=

{
¬̃¬ψ,ψ is an L-critical atom
ψ,ψ not L-critical

(ψ1 ∧ ψ2)FgL := ψFgL1 ∧ ψFgL2 ,

(ψ1 → ψ2)FgL := ψFgL1 → ψFgL2 ,

(∀xψ)FgL := ∀xψFgL .

It is easy to see that the following can be proved using efq⊥:

Proposition 8.1. If NAω ` ArgL then NAω ` AFgL.

Double negation of relations The mixed negation is of particular im-
portance when the formulas involve a relation R with an explicit comple-
ment. For instance, x ≤ y can be seen as an abbreviation of y < x → F,
so its “logical” dual is y < x → ⊥ (and variants). The reverse can be also
applied: y < x→ ⊥ has x ≤ y as dual.

As a consequence, wherever meaningful, we can substitute the first oc-
currence of ⊥ in the refined double-negation of the L-critical formulas by F
and replace R by its complement - for instance, y < x→ F by x ≤ y.

Example 14. We overview the situations in Chapters 5-7 in which this
observation is applicable.

8.5. FURTHER REFINEMENT OF THE DOUBLE NEGATION 177

• Dickson’s Lemma. We have already exploited this idea and have rewrit-
ten f(i) ≤ f(j) to ¬̃f(j) < f(i), in order to unify the specification with
the use of the Minimum Principle. The double negation of f(i) ≤ f(j)
was substituted by ¬̃f(j) < f(i), and as a result, the formulation of
the simplified corollary for Dickson’s lemma was as in (DL2).

• In the proof of FPH from Chapter 6, we use the same “trick” for the
property (nLhflattenll). This situation arises when we need to unify
k < |GCi| → ⊥ from (6.4) with |GCi| ≤ k. Since this amounts to using
efq⊥, we rewrite the inequality in the lemma (Lhflattenll) to

∀ll,k. (∀i<|ll|. k < |lli| → ⊥)→ k · |ll| < |flatten(ll)| → ⊥

and avoid the use of efq⊥.

• The same idea can be applied to the IPH presented in Chapter 5. We
can take ¬̃r ≤ f(n) instead of the double negation of f(n) < r pre-
sented in the Subsection 8.4.2 above.

This change affects the first recursion occurring in the extracted pro-
gram - the resulting differences are presented in Table 8.1, where the
identical terms are not given explicitely,

IPHcor with ¬̃ ¬̃f(n) < r IPHcor’ with ¬̃r ≤ f(n)
M := λf, r, n. M ′ := λf, r, n.
R1 rMB1MS1 R′1 rMB1MS1

f (λn1, x. [if (fn1 < r)x (NilN, 0)])T1 f (λn1. (NilN, 0))T1

MB1 := λf ′, z, t. z 0 (NilN, 0) M ′B1 := λf ′, y1, t. y1 0
MS1 := λn1, h1, f

′, z, t. t n1 M ′S1 := λn1, h2, f
′, y1, t. t n1

(λm, y2. h1 (λk. f ′ (m t k)) (λm, y2. h2 (λk. f ′ (m t k))
(λk, x. z (m t k)T2)T3) (λk. T ′2)T3)

T2 := (R2 n1MB2MS2 T ′2 := R2 (f ′(m t k))MB2MS2

(f ′ (m t k))x (y2 (m t k))) n1 (y1 (m t k)) (y2 (m t k))

Table 8.1: Comparison between the programs extracted from IPHcor

The typing for the terms isRτ11 ,R
′ τ2
1 , xLN×N, zγ1 , yγ2 , tN⇒σ⇒LN×N, hτ11 , h

τ2
2 ,

178 CHAPTER 8. REFINED DOUBLE-NEGATION

with

γ1 := N⇒ LN× N⇒ LN× N, γ2 := N⇒ LN× N

σ := N⇒ (N⇒ LN× N)⇒ LN× N

τ1 := (N⇒ N)⇒ γ1 ⇒ (N⇒ σ ⇒ LN× N)⇒ LN× N

τ2 := (N⇒ N)⇒ γ2 ⇒ (N⇒ σ ⇒ LN× N)⇒ LN× N.

We observe that in the case of IPHcor’ the type of R′1 has been simplified.

8.6 Summary of the Chapter

This chapter evolves around the desiderate of inserting double negations in
a minimal way, such that the refined A-Translation is applied to an enlarged
domain of formulas. For this, we need to overcome the restrictions imposed
on the definite/goal formulas and the requirement of working in NAω. For a
certain class of formulas, this can be achieved by inserting double negations.
However, since ⊥ is replaced by formulas with computational content in the
process of A-translation, we propose to minimize the insertion of double
negations, by identifying the so-called L-critical atoms.

Initially, the L-critical predicate symbols have been proposed in Berger
et al. (2002), in order to extend the scope of A-Translation by transforming
some formulas into definite/goal. In this chapter we have proven that this
can be indeed achieved and have exemplified this on Stolzenberg’s Principle
treated in Chapter 5.

Further, we exploit the idea from Berger et al. (2002) and propose to
double negate the atoms containing L-critical predicate symbols in order
to obtain NAω-validity. We have shown that for some Π0

2-formulas this
double negation is not only necessary, but also sufficient. In order to further
minimize the number of ⊥, we propose to mix the logical falsity with the
arithmetical one, in the cases when it is possible to use the complement of
the relations.

Due to the role played by the logical falsety for the refined A-Translation,
we can view ⊥ as pinning down the computational content of the proof.
The formulas in which ⊥ does not occur do not contribute to the extracted
programs. If they do need to contribute, then we need to insert double
negations - we detect such formulas by identifying the L-critical predicate
symbols in the proof. In this way, we shift the use of ⊥ from the axioms
efq⊥ and Stab⊥ to the L-critical atoms. This helps unravel the construction
hidden in the classical proof, since the L-critical atoms provide information
on how the witness for the goal formula is constructed.

8.6. SUMMARY OF THE CHAPTER 179

We have illustrated our claims on the example of well-founded sets and
on the case studies presented in Chapters 5-7. We have given a detailed
exposition of the transformations necessary in each case, in order to obtain
NAω-provability in view of Theorem 8.1. As we have seen in these con-
crete situations, it is possible to further minimize the insertion of double
negations. Therefore, we are interested in finding a general frame in which
we determine the premises for which the L-critical atoms do not need to
be double negations. Also, we think that it should be possible to identify
further situations to which Theorem 8.1 is applicable.

180 CHAPTER 8. REFINED DOUBLE-NEGATION

Chapter 9

Decoration of Proofs

The refinement of the A-Translation introduced in Chapter 3 allows for a
minimization of the relevant negations ⊥, which helps to eliminate a signif-
icant number of redundancies in programs extracted using the standard A-
translation traditionally combined with the Gödel-Gentzen Translation. In
this chapter we go a step further in the direction of optimizing the extracted
terms, by refining the notion of computationally relevant (c.r.) formulas in-
troduced by Definition 3.7.

Our work extends the concept of ”non-computational universal quan-
tifiers” introduced by Ulrich Berger in (Berger, 2005) to the implication
connector, while proposing a method such that these nc-decorations are in-
serted in an automatic way. While ∀ and → suffice in order to express
formulas in NAω (see Chapter 2 for details), an extension of the decorations
to ∃, ∧ and ∨ is also possible, as presented in (Ratiu and Schwichtenberg,
2010).

The operators will carry these additional markings (called decorations),
based on the computational relevance of their components: the premise, in
case of an implication and the variable on which it is being quantified, in
case of an universal formula. As a result, the terms extracted from formulas
involving non-computational (nc) operators are simplified and thus further
redundancies in the programs can be eliminated.

We begin by introducing the terminology in Section 9.1 and by refin-
ing the notions of proof terms and extracted terms, to accommodate the
decorated operators. Special care is taken in Section 9.2 in treating the
axioms, since we start from the premise that they are a-priori marked and
thus have fixed computational content. An automated decoration procedure
is described in Section 9.3 and is proven to be optimal and terminating. We

181

182 CHAPTER 9. DECORATION OF PROOFS

conclude in Section 9.4 with an illustration of the effects of this procedure
on some examples: the factorial problem and the list reversal algorithm.
While the latter has been already presented in (Berger, 2005), in our work
it is used to demonstrate the automatic detection of ∀nc.

As aforementioned, the decoration algorithm can be used in a larger
context than NAω. In fact, since it is applied directly in a constructive
setting, it is also independent of the translation method by which classical
proofs are transformed into constructive ones.

9.1 Terminlogy

In the following we give in Definition 9.1 an intuition over the terminology
used in this chapter. In Table 9.1 we introduce formally the decorated
versions of the operators in terms of the corresponding inference rules of the
Natural Deduction calculus.

Definition 9.1 (Uniform, decorated and extended formulas/derivations).
.

• In the case when the premise of an implication contributes computa-
tionally to the extracted term, we mark the implication accordingly as
→c and call it a decorated implication

Likewise, if the variable over which it is being universally quantified has
computational relevance, then ∀c is referred to as a decorated universal
quantifier.

The restrictions regarding the introduction of such markings are un-
derlined in Table 9.1.

• Operators which do not carry any markings are called uniform and an-
notated with the superscript nc - these are the undecorated versions of
operators. The nc-flag makes explicit the fact that certain components
do not contribute computationally to the extracted program:

– the premise, in case of an implication; in this case, we write→nc.

– the quantified variable, in case of a universally quantified formula;
if this is the case, then we write ∀nc.

The nc-marking is subject to the conditions (◦) and (�) (page 185).

9.1. TERMINLOGY 183

• A formula is called undecorated or uniform when none of the operators
occurring in this formula carries the computational marking. Thus, the
only operators occurring in uniform formulas are →nc,∀nc.

Likewise, a derivation is called uniform when all its formulas are un-
decorated, except for the uninstantiated formulas corresponding to the
axioms and theorems.

• A formula A′ is considered to be an extension of A (or we say that A′

extends A), if A′ is obtained by adding the computational marking to
some operator(s) in A.

A′ does not need to be a proper extension of A: it can happen that
none of the operators receives a computational marking in the process
of extension.

A derivation K is an extension of a given proof M if some of the
formulas occurring in M are extended in K.

• Given a proof M , the derivation obtained by turning all its the opera-
tors into uniform ones is referred to as the undecorated counterpart or
proof pattern of M and denoted by MU . Exception from this process
are the axioms and theorems, which, as we will see, have pre-assigned
markings for the uninstantiated formulas.

• A proof M is said to be decoration of U when MU = U .

Remark 9.1. Given a proof M , its proof pattern MU is not necessarily
a valid proof anymore. In practice, in most cases it is not, since for the
inference rules involving axioms, the formulas do not match.

Notation 9.1. We write →̆ and ∀̆, respectively, when we do not need to
distinguish between the markings that the operators are carrying. We some-
times omit any notation altogether - so from this point on,

→, →̆ ∈ {→nc,→c} and ∀, ∀̆ ∈ {∀nc, ∀c}.

In Section 3.4, the computational irrelevant formulas were associated the
type ε. Using the conventions in (ε red.), we refine the notion of computa-
tional type from Definition 3.8 to include the decoration of the operators.

184 CHAPTER 9. DECORATION OF PROOFS

derivation term

u : A uA

[u : A]
|M
B →nc+ u (◦)

A→ncB

(λuAMB)A→
ncB (◦)

[u : A]
|M
B →+ uA→ B

(λuAMB)A→B

|M
A →̆B

| N
A →̆−B

(MA →̆BNA)B

|M
A ∀nc+x (�) and (∗)
∀ncx A

(λxMA)∀
nc
x A (�) and (∗)

|M
A ∀+x (∗)
∀xA

(λxMA)∀xA(∗)

|M
∀̆xA r

∀̆−
A(r)

(M ∀̆xAr)A(r)

Table 9.1: Derivation terms for →̆ and ∀̆

9.1. TERMINLOGY 185

Definition 9.2 ((Revised) Computational type). Let P denote a decidable
prime formula.We distinguish the types based on the markings of the opera-
tors and have the following typing rules:

τ(P) := αP , if P is c.r. τ(P) := ε, if P is c.i.
τ(A→cB) := τ(A)⇒ τ(B), τ(A→ncB) := τ(B),
τ(∀cxρA) := ρ⇒ τ(A), τ(∀ncxρA) := τ(A).

with αP some generic type variable.

We need to also extend the natural deduction inference rules, in order
to incorporate the new operators →nc and ∀nc. The introduction and elim-
ination rules are summarized in Table 9.1 and are based on the definition
for proof terms and extracted terms.

In addition to the (Eigen-) variable condition x 6∈ FV (FA(MA))(∗), we
require that in the rules →nc and ∀nc the following are respectively fulfilled

xu 6∈ FV ([[M]]) (◦)

x 6∈ FV ([[M]]). (�)

These conditions ensure that the premise of→nc and the variable quantified
by ∀nc have no computational contribution to the extracted term.

We extend Definition 2.9 of proof terms and Definition 3.10 of extracted
terms, to make the distinction for the uniform connectors.

Definition 9.3. We define proof terms and extracted terms simultaneously:

Proof terms 1:

M,N ::= AxT : atom(tt) | uA | (MA→BNA)B |
(λuAMB)A→

cB | (λuAMB)A→
ncB(◦) |

(λxρMA(x))∀
c
xρ
A(x)(∗) | (λxρMA(x))∀

nc
xρ
A(x)(�) |

(M∀xρA(x)t)A(t)

Extracted terms from decorated inference-rules:

[[uA]] := xτ(A)
u , with xτ(A)

u uniquely associated to uA

1Although we still regard the induction axioms as part of the proof terms, we present
them separately in Section 9.2, since their treatment is more elaborated

186 CHAPTER 9. DECORATION OF PROOFS

and further

[[(λuAM)A→
cB]] := λxτ(A)

u [[M]], [[(λuAM)A→
ncB]]:= [[M]]

[[MA→cBN]] := [[M]][[N]], [[MA→ncBN]]:= [[M]]

[[(λxρM)∀
c
xA]] := λxρ[[M]], [[(λxρM)∀

nc
x A]]:= [[M]]

[[M∀
c
xAr]] := [[M]]r, [[M∀

nc
x Ar]]:= [[M]]

The notion of modified realizability needs to be also adapted, so that it
allows a treatment of the uniform operators. We extend below Definition 3.9.

Definition 9.4. Let P be a decidable prime formula, A be a formula and r
a term of type τ(A), if A is c.r. and ε, if A is c.i.

εmrP := P

rmrA→cB := ∀ncx . xmrA →nc rxmrB

rmrA→ncB := ∀ncx . xmrA →nc rmrB

rmr∀cxA := ∀ncx rxmrA

rmr∀ncx A := ∀ncx rmrA

We make the following observation ((Schwichtenberg and Wainer, 2011)):

Remark 9.2. For computationally irrelevant (c.i.) A the formulas A→cB
and A→ncB are computationally equivalent, in the sense that they compu-
tationally imply each other. Likewise for ∀xA and ∀ncx A. Therefore, since
the formula tmrA is c.i. we can take in the definition of realizability →
and ∀ instead of →nc and ∀nc.

9.2 Decoration of Axioms

The uninstantiated forms of the axioms have fixed decorations, which are
determined by the associated realizers. They represent one of the parameters
in our decoration algorithm. In this section we give the decorations for the
axioms which are used in the examples investigated in this thesis.

The Induction Axiom. As presented in Section 2.3, we work with the
following induction schemes

Indn,A : ∀mN . A(0)→ ∀n(A(n)→ A(Sn))→ A(m),
Indl,A : ∀lL(ρ) . A(nil)→ ∀x,l′(A(l′)→ A(x :: l′))→ A(l),
Indb,A : ∀bB . A(tt)→ A(ff)→ A(b),

9.2. DECORATION OF AXIOMS 187

The decoration of the induction axiom is chosen in view of what its
expected content is.

Indn,A The options are:

• The fully decorated version

Indcn,A : ∀cm. A(0)→c ∀cn(A(n)→cA(Sn))→cA(m),

which has as associated realizer the recursion operator RσN , as known
from Chapter 2 and from Section 3.4 in the A-Translation Chapter.

• In order to extract the cases operator CσN , we need to consider the
following decoration

Indncn,A : ∀cm. A(0)→c ∀ncn (A(n)→ncA(Sn))→cA(m),

in which the hypothesis plays no computational contribution in the
induction step.

Note that Indncn,A expresses Casesn,A.

• In order to express iteration in terms of the recursion operator, we
consider the following decoration of induction, in which we mark the
recursion variable as not computational:

Indc,ncn,A : ∀cm. A(0)→c ∀ncn (A(n)→cA(Sn))→cA(m).

The conversion rules for its associated realizer ItN = [[Indc,ncn,A]] are:

ItN(0, f, g) = f, ItN(Sn, f, g) = g(ItN(n, f, g)).

The recursion variable n is not used in the step, as it is the case for
RN given in Section 2.1. ItN is in fact the iteration operator.

Indl,A. The same reasoning is valid as for Indn,A, leading to the decorated
versions Indcl,A and Indc,ncl,A .

IndbA. For the boolean induction only the fully decorated version makes
sense.

While in each of these induction variants the decorations of the con-
nectors are fixed, we are flexible regarding the comprehension terms which
instantiate the predicate A. However, special care needs to be taken in order
to unify the decorated comprehension terms. We give in what follows the
criterion for this unification.

188 CHAPTER 9. DECORATION OF PROOFS

Definition 9.5. Let A1, A2 be two decorations of some formula A. We take
lub(A1, A2) to be the least upper bound on the common extensions of A1

and A2. Equivalently, lub(A1, A2) can be thought of as the least common
decorated formula extending both A1 and A2.

More precisely, if an operator occurs decorated in any of A1 and A2, then
in lub(A1, A2) we take its decorated form; otherwise we take the uniform
version of the operator.

Example 15. For instance,

• lub(A→ncB→ncC,A→cB→ncC) := A→cB→ncC.

• lub(A→cB→ncC,A→ncB→cC) := A→cB→cC.

Instantiation of Indcn,A. Given

∀cm. A1(0)→c ∀cn(A2(n)→cA3(Sn))→cA4(m),

with Ai, 1 ≤ i ≤ 4 all extending some substitution formula for A, a valid
instantiation of the axiom is

Indcn,A′ : ∀cm. A′(0)→c ∀cn(A′(n)→cA′(Sn))→cA′(m),

with A′ = lub(A1, A2, A3, A4) given by Definition 9.5.

Generalized Induction. The general induction scheme, as defined in
Chapter 7 needs full decoration:

GIndcm,x,R : ∀cm,x. ∀cx(∀cy(m(y) < m(x)→cR(y))→cR(x))→cR(x).

The typing is:

τ(GIndcm,x,R) = (α→ N)→ α→ (α→ (α→ τ)→ τ)→ τ

and associated general recursion operator F , with

F(m,x,G) = Gx(λy.if (m(y) < m(x)) thenF(m, y,G) else ε).

Again, if we have R1, R2, R3 extending R, then the instantiation to con-
sider is the extension of ∀cm,x. ∀cx(∀cy(m(y) < m(x)→cR1(y))→cR2(x))→cR3(x)
in which we take R′ := lub(R1, R2, R3). Thus, the correct instantiated for-
mula extending GIndcm,x,R is

∀cm,x. ∀cx(∀cy(m(y) < m(x)→cR′(y))→cR′(x))→cR′(x).

9.3. DECORATION ALGORITHM 189

Compatibility Axiom. This uses the predicate Eq for Leibniz Equality
defined in Chapter 2. Its decorated version is

∀ncx1,x2
. Eq(x1, x2)→ncA(x1)→cA(x2) (CompatA)

Axioms of Choice. The decorated Axiom of Choice is:

AC: ∀cx∃̃cyA(x, y)→c ∃̃cf∀cxA(x, fx)

and the decorated Axiom of Dependent Choice:

DC: ∀cn,x∃cyA(n, x, y)→c ∀cx∃̃cf . f(0) = x ∧c A(n, fn, f(Sn))

Again, when we are provided with (possibly decorated) instantiations
A1, A2 for A we take

A′ := lub(A1, A2)

as an instance in place of A1 and A2.

9.3 Decoration Algorithm

Definition 9.6 (Sequent). Given the derivation M : Γ ` A we call the se-
quent of M the set of assumption and goal formulas, i.e., Seq(M) := {Γ, A}.

Remark 9.3. When KL is an extension of MN then, clearly, K is an
extension of M and L is an extension of N .

In order to decorate correctly and optimal, we need to make sure that
the conditions (◦) and (�) imposed on the inference rules (see Table 9.1 on
page 184) are compatible with the extension of derivations. The following
lemma guarantees that this is indeed the case.

Lemma 9.1. Let K be a derivation, possibly decorated, and K1 an extension
of K. Then FV ([[K]]) ⊆ FV ([[K1]]), up to extension of the assumption
formulas.

Proof. By induction on the derivations.

Case of an Axiom FV ([[Ax]]) = ∅ for all axioms Ax, so this case is trivial.

Case →̆+ I.e.,
[u : C]
| K
D →̆+ uC →̆D

(λuK)

190 CHAPTER 9. DECORATION OF PROOFS

Let λuK1 be an extension of λuK. We make a case distinction on the
last rule of λuK.

Case →nc,+ In this case

xuC 6∈ FV ([[K]]) (9.1)

[[λuK]])
Def9.3

= [[K]] (9.2)

We distinguish on the last rule of λuK.

Case →nc,+ FV ([[λuK1]])
Def [[.]]

= FV ([[K1]])
(IH)
⊃ FV ([[K]])

(9.2)
=

FV (λu[[K]]).

Case →c,+ FV ([[λuK1]]) = FV (λxu [[K1]]) = FV ([[K1]])\{xu}
(IH)
⊃

FV ([[K]]) \ {xu}
(9.1)
= FV ([[K]])

(9.2)
= FV (λu[[K]]).

Case →c,+ As an extension of λuK1, λuK must also end with →c,+.

We have FV ([[λuK]])
Def [[.]]

= FV (λxu [[K]])
Def FV

= FV ([[K]])\{xu}
(IH)
⊂

FV ([[K1]]) \ {xu}
Def FV

= FV (λxu [[K1]])
Def [[.]]

= FV ([[λuK1]]).

Case →̆− Assuming that we have applied the modus -ponens rule,

| K
C →̆D

| L
C →̆−D

(KL)

and that K1L1 would be an extension of KL.

We make a case distinction on the last rule of KL.

Case →nc,− In this case,

FV ([[KL]])
Def
= FV ([[K]])

(IH)
⊂ FV ([[K1]]). (9.3)

Case →nc,− in K1L1 Then, FV ([[K1L1]])
Def
= FV ([[K1]])

(9.3)
⊃ FV ([[KL]]).

Case →c,− in K1L1 We have FV ([[K1L1]])
Def [[.]]

= FV ([[K1]][[L1]]) ⊃
Def FV
⊃ FV ([[K1]]) ∪ FV ([[L1]]) ⊃ FV ([[K1]])

(9.3)
⊃ FV ([[KL]]).

Case →c,− Then also in K1L1 the last →− needs to be decorated.
Since from Remark 9.3, K1 and L1 extend K and L, respectively,

we can apply the (IH) component-wise. We have FV ([[KL]])
Def [[.]]

=

FV ([[K]][[L]])
Def FV

= FV ([[K]])∪FV ([[L]])
(IH)
⊂ FV ([[K1]])∪FV ([[L1]]) =

Def [[.]], FV
= FV ([[K1L1]]).

9.3. DECORATION ALGORITHM 191

Case ∀̆+ Assume that the last rule was an introduction rule for ∀̆

| K
C ∀̆+

x
∀̆xC

, (λxK)

subject of course to the Eigen-variable condition. Let λxK1 be an
extension of λxK.

We distinguish on whether the last ∀ introduced is uniform or deco-
rated.

Case ∀nc,+ By definition, in this case

x 6∈ FV ([[K]]) (9.4)
[[λxK]] = [[K]] (9.5)

We investigate the last rule of λxK1.

Case ∀nc,+ FV ([[λxK1]])
Def [[.]]

= FV ([[K1]])
(IH)
⊃ FV ([[K]]) = FV ([[λxK]]).

Case ∀c,+ FV ([[λxK1]])
Def [[.]]

= FV (λx[[K1]])
Def
= FV ([[K1]])\{x}

(IH)
⊃

FV ([[K]]) \ {x} 9.4= FV ([[K]]) 9.5= FV ([[λxK]]) .

Case ∀c,+ Since λxK1 extends λxK, its last rule must also be ∀c,+.

We have FV ([[λxK1]])
Def [[.]]

= FV (λx[[K1]])
Def
= FV ([[K1]])\{x}

(IH)
⊃

FV ([[K]]) \ {x} Def FV= FV (λx[[K]])
Def [[.]]

= FV ([[λxK]]).

Case ∀̆− The elimination rule for the universal quantifier is

| K
∀̆xC(x) r

∀̆−
C(r)

. (Kr)

Let K1r be its extension.

Case K∀
nc
x C By definition of [[.]] and the (IH)

FV ([[Kr]]) = FV ([[K]]) ⊂ FV ([[K1]]) (9.6)

Case K
∀ncx C′

1 Then FV ([[K1r]])
Def [[.]]

= FV ([[K1]])
(9.6)
⊃ FV ([[Kr]].

Case K
∀cxC′
1 We have in this case FV ([[K1r]])

Def [[.]]
= FV ([[K1]]r) =

Def FV
= FV ([[K1]]) ∪ FV (r)

(9.6)
⊃ FV ([[Kr]].

192 CHAPTER 9. DECORATION OF PROOFS

Case K∀
c
xC Since K1 extends K, it must be also that K∀xC

′

1 and

we have FV ([[Kr]])
Def [[.]]

= FV ([[K]]) ∪ FV (r)
(IH)
⊂ FV ([[K1]]) ∪

FV (r)
Def [[.]]

= FV ([[K1r]]).

Definition 9.7 (Optimality.). Consider M : Γ ⇒ A to be the undecorated
counterpart of a correct proof and let an extension {Φ, C} for Seq(M) be
given.

We call an extension K∞ of M optimal with respect to {Φ, C} when it
fulfills simultaneously the following two requirements

• K∞ is a correct proof of an appropriate extension of {Φ, C}

• K∞ is the minimal such correct extension.

In other words, any other extension K of M deriving {Φ, C} or an ex-
tension of it must be an extension of K∞ and, accordingly, Seq(K) must
extend Seq(K∞).

The theorem that we will state and prove below, results in an algorithm
which produces an optimal decoration2, provided that it receives the correct
arguments, as enumerated in what follows.

• A correct proof, which may contain decorated quantifiers. This proof
will be in the first step turned into its undecorated counterpart, i.e.,
all its formulas will be made uniform.

• Correct extensions of the open assumptions. This means that the oper-
ators of the uninstantiated3 open assumptions are fixed and carry the
appropriate markings (see Section 9.2 on axioms for this). Should the
decoration procedure enforce markings on the fixed uniform operators,
we signal a contradiction and output an error.

• The goal. It is up to the user to decide which components in the goal
are computationally relevant and to mark them as such. Should one
try to pass on a decorated goal which is not an extension of the initial
goal, the algorithm exits with an error message. The default form of
the goal is its proper uniform variant, i.e., all logical operators are
marked by nc.

2“Optimal” in the sense of Definition 9.7
3The assumptions may contain uninstantiated predicate variables.

9.3. DECORATION ALGORITHM 193

Theorem 9.1 (Decorations of Proofs). Let MU : Γ ` A be the undecorated
counterpart (or proof pattern) of a correct proof M and {Φ, C} be an ex-
tension of Seq(M). If a correct extension of M for the given {Φ, C} exists,
then

(i) we can construct this derivation, K∞, and extensions {Φ∞, C∞} of
{Φ, C} such that K∞ : Φ∞ ` C∞.

(ii) K∞ obtained in (i) is the optimal extension of M .

Proof. By structural induction on the derivations. We treat the two parts
of the theorem simultaneously.

Axioms/Auxiliary theorems. We assume that all uninstantiated axioms
and auxiliary lemmas/theorems have been a priori decorated. The
valid decorations for the axioms used in this thesis are as presented
in Section 9.2. The correct instantiations of the predicate variables is
by the lub() of the corresponding comprehension terms, as introduced
by Definition 9.5. Should there be more decorated versions for one
axiom/theorem, we pick the least decorated one which allows to obtain
a correct proof.

Let us consider for exemplification the induction axiom for natural
numbers Indn,A. As explained in Section 9.2, the options are Indcn,A,
Indncn,A and Indc,ncn,A . Depending on which extension is provided for the
axiom, say Ind̆ n,A, we need to choose among these possible decora-
tions the one minimally extending Ind̆ n,A. In case they all fit, we
choose Indncn,A, as being the version with the least number of decorated
operators. Further, assuming that we are provided with the substitu-
tions

Q1(0), Q2(n), Q3(Sn) and Q4(m) (9.7)

for the corresponding instances of A in Ind, where Q1, Q2, Q3, Q4 all
extend A, we take

Q∞ = lub(Q1, Q2, Q3, Q4).

By the induction hypothesis, Q∞ is an extension of each Qi, so all
subproofs deriving Qi are correctly and optimally decorated.

Similarly, in case auxiliary lemmas are used, we have by (IH) optimal
decorations for them, so we only need to adjust the instantiations of
their predicate variables by taking their lub().

194 CHAPTER 9. DECORATION OF PROOFS

Case u : A Suppose that we start from

Γ, u : A

and are given C extending A and Φ an extension of Γ. We need to
prove the extensions for the given assumptions. No uniform operator
can be decorated in the process, unless it appears in a comprehension
term substituting a predicate. Thus, in case C or Φ attempt to change
the fixed uniformities, we reach a contradiction and exit with an error
message.

Case →nc+

Γ,[u : A]

|MU

B →nc+ uA→ncB

(λuMU)

Suppose that we are given the extensions C →̆D of A→ncB and Φ of
Γ.

(i) We apply the (IH) on MU and the extensions {Φ, C,D} and ob-
tain K∞ : Φ∞, C∞ ` D∞, if this exists, with {Φ∞, C∞, D∞}
possible extensions of the given {Φ, C,D}.
If we were given C→ncD, then if xu 6∈ FV ([[K∞]]) we keep
the uniformity on the implication, thus deriving C∞→ncD∞ by
→nc+.
If given C→ncD, but xu ∈ FV ([[K∞]]) or if given C→cD, then
we need a decorated implication and thus derive C∞→cD∞ by
→c+.

(ii) Optimality Assume λuK to be another extension of λuM , given
{Φ, C,D}. By the (IH) on MU and {Φ, C,D}, K∞ is an optimal
extension of MU , so K must be an extension of K∞. Thus, by
Lemma 9.1, if xu ∈ FV ([[K∞]]) then xu ∈ FV ([[K]]), so when the
last implication must be decorated for λuK∞, then it must be
also for λuK. Thus, λuK is an extension of λuK∞.

Case →nc,− Assuming that we had an application of the modus -ponens
rule

Γ,∆
|MU

A→ncB

∆,Π
| NU

A →nc−
B

((M N)U)

and that extensions {Φ,Ψ,Θ} and D of Seq(M N) are given.

9.3. DECORATION ALGORITHM 195

(i) Step 1. For MU and the extensions Φ,Ψ and A→ncD, the (IH)
provides us with an extension K1, a valid proof of the (possibly)
extended Φ1,Ψ1 ` C1 →̆D1

Φ1,Ψ1

| K1

C1 →̆D1

∆,Π
| NU

A →̆−(!)
D1

(Step 1)

However, this is not a valid proof, unless the right premise of the
rule agrees with the left and the assumptions are synchronized.
If we adjust them, we need a further application of the induction
hypothesis
Step 2. We are given {Ψ1,Θ} and C1 extending ∆,Π and A,
respectively. By the (IH) on NU and these extensions we obtain
L2 proving C2, (possibly) extending C1, from {Ψ2,Θ2}

Φ1,Ψ1

| K1

C1 →̆D1

Ψ2,Θ2

| L2

C2 →̆−(!)
D1

. (Step 2)

Thus, we again need to adapt the left premise to C2 →̆D1 and to
synchronize the assumptions, for the implication elimination to
be valid. Since K1 is not necessarily a correct proof of C2 →̆D1

from Φ1,Ψ2, we need to apply the (IH) again:
Step 3. (IH) on MU (the undecorated counterpart of K1) and the
extensions {Φ1,Ψ2, C2 →̆D1} of {Γ,∆, A→ncB} gives an exten-
sion K3 proving C3 →̆D3

Φ3,Ψ3

| K3

C3 →̆D3

Ψ2,Θ2

| L2

C2 →̆−(!)
D3

. (Step 3)

This, however, brings us to the above step again, having to adapt
the right premise and apply the (IH) to extend L2.
Step 4. By the (IH) on NU and the extensions {Ψ3,Θ2} and C3

we obtain L4 proving C4 (possibly extending C3) from {Ψ4,Θ4}
Φ3,Ψ2

| K3

C3 →̆D3

Ψ4,Θ4

| L4

C4 →̆−(!)
D3

. (Step 4)

196 CHAPTER 9. DECORATION OF PROOFS

The process will loop until there is nothing more to change, i.e.,
when there is an agreement between the sequences of the two
derivations. This terminates in the worst case when all operators
are decorated.
In the case of the left premise, it is important to note that →nc

can turn at some point into →c, by the application of the (IH).
In this case we need to accordingly adapt the →nc− rule to→c−.
Thus, after a finite number of steps, we retrieve the extension
K∞L∞ of the given M N , such that the two premises of →̆−
agree, i.e,

Φ∞,Ψ∞
| K∞

C∞ →̆D∞

Ψ∞,Θ∞
| L∞
C∞ →̆−D∞

withD∞ extendingD and {Φ∞,Ψ∞,Θ∞} extensions of {Γ,∆,Π},
respectively.

(ii) Optimality. Assume KL

Φ0,Ψ0

| K
C0 →̆D0

Ψ0,Θ0

| L
C0 →̆−D0

extends MN for the given {D,Ψ,Θ}. We want to show that KL
and Seq(KL) are respective extensions ofK∞L∞ and Seq(K∞L∞)
constructed in (i).
We use the argument of (bounded) induction on the number of
iterative steps. First, we show that at each iterative step of (i)
we constructed an optimal extension. Let j be an odd4 natural
less then the number of iterations.

Base Case. We analyze the first couple of iterations in (i)

Φ1,Ψ1

| K1

C1 →̆D1

Ψ2,Θ2

| L2

C2 →̆−D2

(Steps 1 and 2 from (i))

4Each iteration on the left premise is followed by an iteration on the right premise, so
by taking an odd we start the analysis from the left premise.

9.3. DECORATION ALGORITHM 197

By the (IH) on MU and the extensions Φ,Ψ and A→ncD, it
follows that K must be an extension of K1 (obtained in (Step 1))
and that {C0, D0,Φ0,Ψ0} extend {C1, D1,Φ1,Ψ1}, respectively.
Further, by (IH) on NU and C1, since L2 constructed in (i).(Step
2) is the optimal extension of N , it follows that L must be an
extension of L2, C0 of C2 and Ψ0,Θ0 respective extensions of
Ψ2,Θ2.
Thus, KL extends K1L2 and Seq(KL) extends Seq(K1L2).

Step Case. Assume we are at some intermediate couple of steps
in the derivation from (i) and at the (j + 1)th step we have

Φj ,Ψj

| Kj

Cj →̆Dj

Ψj+1,Θj+1

| Lj+1

Cj+1
→̆−Dj+1

(Step j+1)

We denote the induction hypothesis (IHj) to distinguish it from
the hypothesis of the meta-induction that we use throughout this
proof. By the (IHj)

K : Φ0,Ψ0 ` C0 →̆D0 extends Kj−2 : Φj−2,Ψj−2 ` Cj−2 →̆Dj−2.

L : Ψ0,Θ0 ` C0 extends Lj−1 : Ψj−1,Θj−1 ` Cj−1,

where extension is meant component-wise.
At the jth step, we thus assume that we are given the extensions
Φj−2,Ψj−1 and Cj−1 →̆Dj−2. We apply (IH) on MU and these
extensions, obtaining the extension Kj : Φj ,Ψj ` Cj →̆Dj , which
by the (IH) is optimal. This means that K : Φ0,Ψ0 ` C0 →̆D0

must be an extension of it.
Likewise, by the (IH) at the (j + 1)th Step, given Ψj ,Θj−1 and
Cj we obtain an extension Lj+1 : Ψj+1,Θj+1 ` Cj+1 which is
optimal, i.e., L : Ψ0,Θ0 ` C0 must be an extension of it.

Last iteration. We know from (i) that the iterations ends with
some k, for which, after Step k + 1: Ψk = Ψk+1 and Ck = Ck+1.
Thus, putting together the results of induction above, it fol-
lows that K must be an extension of Kk := K∞, L must be
an extension of Lk+1 := L∞ and {C0, D0,Φ0,Ψ0,Θ0} extend re-
spectively {Ck, Dk,Φk,Ψk,Θk} (or, with the notation from (i),
{C∞, D∞,Φ∞,Ψ∞,Θ∞}).

198 CHAPTER 9. DECORATION OF PROOFS

→nc− changed to →c−. By Lemma 9.1, FV ([[K∞]]) ⊂ FV ([[K]]).
Thus, since the uniformity was eliminated only when necessary
and we assume that the derivation given in (ii) is a correct one, if
the implication Cj→ncDj needs the decoration, then → cannot
be uniform in C0 → D0 either. This is a consequence of the above
argument that C0 →̆D0 extends all of the intermediary Cj →̆Dj .
We can therefore conclude that KL extends K∞L∞.

Case (∀nc)+ Assume that the last rule of the undecorated counterpart was

Γ
|MU

A (∀nc)+x
∀ncx A

. (λxMU)

This implies that the appropriate variable conditions are fulfilled, i.e.,

x 6∈ FV (FA(MA))
xu 6∈ FV ([[M]]),

the latter being only necessary when the last rule introduces a uniform
(undecorated) universal quantifier in M .

Assume also that we are given an extension Φ of Γ and extension ∀̆xC
of ∀ncx A.

(i) To find λxK∞, we apply the (IH) on the derivation MU and on
the given extensions Φ, C. We first obtain K∞ : Φ∞ ` C∞, which
(possibly) extends K : Φ ` C. With an appropriate introduction
of the universal quantifier, we construct the extension of λxM , as
follows

• if ∀ncx C was given and x 6∈ FV ([[K∞]]) then, since we want
a minimal extension, we apply (∀nc)+ and obtain λxK∞ :
Φ∞ ` ∀ncx C∞.
• if ∀ncx C was given, but x ∈ FV ([[K∞]]) or if ∀cxC was given,

then the minimal possible extension is ∀cxC∞ and we need to
apply (∀c)+, thus building the proof λxK∞ : Φ∞ ` ∀cxC∞.

Since the extensions do not change the proof structurally, the
Eigen-variable condition is met in all above cases. In addition, in
the construction of λxK∞ we also ensured that xu 6∈ FV ([[M]]),
so by the (IH) and the definition of ∀̆+ this is a correct proof.

9.3. DECORATION ALGORITHM 199

(ii) Optimality. We want to show that λxK∞ : Φ∞ ` ∀̆xC∞ is the
optimal extension of λxM : Γ ` ∀ncx A obtained when provided
with the extensions Φ, ∀̆xC
Assume that λxK : Φ2 ` ∀̆xC2 is another extension of the given
{M,Φ, ∀̆xC}.
By the (IH) on MU and {Φ, C}, K∞ is optimal, i.e., K must be
an extension of K∞.
If λxK ends with (∀ncx)−, then we are in the case when are given
∀ncx C and when x 6∈ FV ([[K]]). By Lemma 9.1, since K∞ extends
K, FV ([[K∞]]) ⊂ FV ([[K]]). This means that λxK∞ must have
also ended with (∀ncx)+ (we are in the first case of the above
analysis), so λxK must be an extension of it.
In the case when λxK is obtained by ∀+x then it clearly extends
λxK∞, no matter whether the last rule in K∞ is decorated or
not.

Case (∀nc)− The elimination rule for the ∀nc quantifier is

Γ
|MU

∀ncx A(x) r
(∀nc)−

A(r)

(MU r)

Let {Φ, C(r)} extending {Γ, A(r)} be given. We need to find the cor-
rect derivation K∞ r of (the extension) Φ∞ ` C∞(r).

(i) The (IH) on MU ,Φ and ∀ncx C(x) gives K∞ : Φ∞ ` ∀̆xC∞(x). Ac-
cording to whether K∞ proves ∀ncx C∞(x) or ∀cxC∞(x), we apply
(∀nc)− or (∀c)−, respectively, and obtain K∞ r deriving C∞(r).

(ii) Optimality. Assume that K r : Φ2 ` C2(r) extends M r and
that Seq(K r) extends {Φ, C(r)}. By the (IH), K∞ is optimal,
so K must extend it. By Lemma 9.1, this implies FV ([[K∞]]) ⊂
FV ([[K]]), soK derives ∀ncx C2(x) at most whenK∞ proves ∀ncx C∞(x).
This means that Kr extends K∞r as well.

We point to the fact that the case when the decoration cannot be de-
tected at the axiom or assumption level.

Theorem 9.2 (Termination). The decoration algorithm given in Theorem
9.1 always terminates.

200 CHAPTER 9. DECORATION OF PROOFS

Proof. Since this property of the decoration algorithm is an immediate con-
sequence of Theorem 9.1, we only informally sketch the proof, rather than
giving a formal presentation. We need to distinguish among the axiom case
and the inference steps.

In case we are at an axiom or auxiliary lemma/theorem, we might need to
search in our database and choose among various decorations of the axiom,
lemma or theorem that our derivation is using. Since we have limited ways
of decorating a formula, there must be a finite number of decorated axioms
and theorems in our database to choose from. For each of these possible
decorations we have to verify whether it is suitable and by the induction
hypothesis, this verification is a process which terminates.

In case we are already at the level of inference rules, the choice whether
to decorate them or not depends on the situations presented in Theorem
9.1. By the (IH), decoration terminates. As we have seen in the proofs of
Theorem 9.1, the only problematic case is that of→−-rule, but as discussed,
its decoration is also a terminating process, having at most as many steps as
are necessary to fully decorate the formulas above in the proof tree. By the
induction hypothesis, the rest of the proof is decorated in a finite number
of steps, so the decoration of the entire derivation always terminates.

9.4 Examples

9.4.1 Decoration of Implication

We first illustrate the benefits of decoration on a simple example involving
implications. Consider A→ B → A with the trivial proof M := λuA1 , u

B
2 . u1.

Let U be the proof pattern corresponding to M . Clearly, the premise of
the second implication (B) is not of computational relevance, so we apply
the decoration algorithm and specify as extension of Seq(U) the formula
A→ncB→ncA. The algorithm detects that the first implication needs to
be decorated, since the abstracted assumption variable is computational.
The second implication can be however left undecorated, while still having
a correct proof. The derivation of A→ B→ncA is constructed from M .

9.4.2 Program Transformation by Decorations

Proof Transformation for Tail Recursion

In order to optimize the programs extracted from proofs using induction,
(Chiarabini, 2010) proposes a series of techniques, with the purpose of trans-
forming the extracted programs into tail-recursive form and of using accu-

9.4. EXAMPLES 201

mulators. These techniques are applied at proof level and consist in using
special lemma, as shown in what follows. In order to achieve the desired
results (Chiarabini, 2010) marks some operators as non-computational, but
this is done in a rather ad-hoc manner or by following the intuition. We
show in this chapter that such a decoration can be detected in a systematic
way by the algorithm that we have proposed in Theorem 9.1.

We begin by reviewing the methods suggested Chapter 7 “Tail Recur-
sion” and Chapter 8 “Beyond Primitive Recursion” in (Chiarabini, 2010).
Next, we show the effects of the decoration algorithm proposed in Theorem
9.1, when coupled with the techniques from (Chiarabini, 2010). For a better
understanding of the benefits of such methods, we conclude by illustrating
them on the example of the factorial algorithm.

Turning recursion into iteration. For this, one needs a form of the in-
duction axiom in which the induction step does not use the quantified
variable computationally:

∀cnNA(0)→c ∀ncn (A(n)→cA(Sn))→cA(n) (Indit)

In order to transform a recursion operator into its iterative variant,
the proof by induction of ∀nA(n) is replaced with a proof by Indit of
∀n∃̃m(m = A(n))

Continuations. These can be forced in the extracted term by turning the
Induction axiom into a lemma, provable from

PA := ∀cn∀ncm (A(n)→cA(n+m))→cA(n+m)

In (Chiarabini, 2010) it is shown by (Proposition 7.2.3.) using induc-
tion on n that:

` A(0)→c ∀cn(A(n)→cA(Sn))→c PA (9.8)

and thus the induction becomes provable from (9.8). Based on this
observation, the transformation method proposed (Chiarabini, 2010)
consists in replacing the induction axiom by the lemma:

A(0)→c ∀cn(A(n)→cA(Sn))→c ∀cmA(m), (IndLem)

As a result of applying this transformation, one extracts programs in
a continuation-passing style from constructive proofs.

202 CHAPTER 9. DECORATION OF PROOFS

Accumulator-based tail recursion (Chiarabini, 2010) proposes to replace
the formula ∀nA(n) proven by induction by the formula

∀cn,m. A(m)→cA(n+m).

For this, we have by Proposition 7.2.8 in (Chiarabini, 2010), shown by
induction on n, that:

` ∀cn(A(n)→cA(Sn))→c ∀cn,m. A(m)→cA(n+m) (9.9)

With this, induction follows easily (Proposition 7.2.9 in (Chiarabini,
2010)) from (9.9). Thus, one can replace the goal ∀nA(n) by

∀cn,m. A(m)→cA(n+m),

which is provable from the original proof. With this “trick”, the recur-
sion associated with this new version of the proof is an accumulator-
based recursion.

Automatic Decoration

The “iterative” variant of induction in the first transformation method
above, as proposed by (Chiarabini, 2010), has already been presented as
an option for the decoration of Ind to Indc,nc in Section 9.2.

In what follows, we apply the decoration procedure in order to algo-
rithmically detect the nc-quantifier in the second transformation method
presented above. We start with the fully decorated version - or proper ex-
tension, in the sense of Definition 9.1 - of the formula:

∀cn∀cm(A(n)→cA(n+m))→cA(n+m). (P cA)

The proof by induction of the decorated version of (9.8) is

A0→c ∀cn(An→cA(Sn))→c P cA (AuxLem)

is MAuxLem := λtA0
B , t

∀cn. An→A(Sn)
S , n. IndP cA n MBase MStep, where

MBase := λm, uA0→c A(0+m). u tB

MStep := λn,w
P cA n
1 ,m, uA(Sn)→c A(Sn+m).

(λwAn→
c A(n+Sm)

2 . (w1 Sm w2)A(n+Sm))P
c
A n Sm

λvAn. (u (tS n v))A(Sn+m)

9.4. EXAMPLES 203

With this lemma, induction can now be proven by

MIndLem := λtA0
B , t

∀cn(An→A(Sn))
S , n. AuxLem tB tS n 0 λvAn. v.

Expanding the proof of AuxLem we have

MIndLem := λuA0
0 , u1, n. Ind n MB MS 0 λuAn6 . u6, where

MB := λm, u2. u2 u0

MS := λn, u3,m, u4. (u3Sm) λu5. u4 ((u1n)u5),

where the assumption variables are typed as

u
∀n(An→A(Sn))
1 , u

A0→A(0+m)
2 , u

P cA n
3 , u

A(Sn)→A(Sn+m)
4 and uAn5 .

The term extracted from MIndLem. We consider the typed auxiliary
terms

xα, kα⇒α, hN⇒α⇒α, gN⇒(α⇒α)⇒α

and have the following associated computational term

[[MIndLem]] = λx, h, n. RN⇒(α⇒α)⇒α
N n

(λm, k. k x)
(λn, g,m, k. g Sm (λx1. k (h n x1))),

which is in tail recursive form.

Algorithmic decoration. Before we give the results obtained after ap-
plying the decoration algorithm and the corresponding extracted terms, we
present the step-wise decoration, in order to illustrate how the mechanism
works. For this we give the proof of MIndLem and its decorated version
M c

IndLem in Gentzen-style. The arguments passed to the algorithm are the
initial derivation, the fully decorated variant of the induction axiom, Indcn,P cA

,
and the decorated lemma (IndLem) replacing the induction axiom.

In a first step the proof pattern of MIndLem is constructed, by turning
all operators into their undecorated versions, with the two aforementioned
exceptions. These decorations impose the synchronization of the formulas
derived by MB and MS , so that the operators are matched and the→− -rule
is applied correctly. For this the proof needs the following decorations:

204 CHAPTER 9. DECORATION OF PROOFS

• in order to adjust the proof pattern to Indcn,P cA
:

Indcn,PA n

|MB

P cA 0
|MS

∀cn. P cA n→c P cA Sn
→c,

P cA n

• and further, for agreement with the decorations in (IndLem):

P cA n 0
→nc−

P cA n 0
u5 : An

→nc+ u5
An→ An

→nc−
An ∀c+n∀cnAn →c+ uc0, u

c
1

IndLem

,

where u0 and u1 have the types A0 and ∀n(An→ A(Sn)), respectively.
Note that at this point, P cA can still be fully undecorated. However, since

A(n) is used computationally in (IndLem), we need to adjust the derivation,
so that it complies with the requirement (◦). For this we must change
the implication introduction of u5 from →+ to →c+. For the same rea-
son, since this triggers the decoration of u2 and u5, these assumptions gain
computational relevance, so they can only be introduced by the →c+-rule.
Consequently, P cA n needs the following decorations:

∀ncm (A(n)→cA(n+m))→cA(n+m) (P dA).

At this point, we need to backtrack to the above subproofs and change P cA
to P dA accordingly. In addition, the rules in the second subproof need to be
adjusted. We have

P dA n 0
→nc−

P dA n 0
u5 : An

→c+ u5
An→cAn

→c−
An ∀c+n∀cnAn →c+ uc0, u

c
1

IndLem

Since the proof patterns of MB and MS need to be corrected to match
their conclusions P dA 0 and ∀cn. P dA n→c P dA Sn, in a next step we work
bottom-up on both.

The proof of MB needs to be decorated to

9.4. EXAMPLES 205

uc2 : A0→cA(0 +m) u0 : A0
→c−

A(0 +m)
→c+ uc2

(A0→cA(0 +m))→cA(0 +m)
∀nc+m

P dA 0

The proof of MS is decorated as follows

uc3 : Pd
A n Sm

∀nc−uc3 Sm

|
An→cA(Sn+m)

→nc−
A(Sn+m)

→c+ uc4
P cA Sn m

∀nc+mP cA Sn
→c+ u3

P cA n→c P cA Sn
∀c+n∀cn. P cA n→c P cA Sn

with

u4 : A(Sn)→cA(Sn+m)

uc1 : ∀cn(An→cA(Sn)) n
∀c−u1 n u5 : An

→c−
A(Sn)

→c−
A(Sn+m)

→c+ u5
An→cA(Sn+m)

Tracing in parallel the rules in MB and MS and the induction subproof
using both, we can see that no further restriction is imposed when introduc-
ing m, so we can safely conclude by applying ∀nc+. The implementation in
Minlog5 of the decoration algorithm has provided exactly this result. As a
result, the decoration algorithm detects the non computational character of
m.

The program extracted from MIndLem. After decoration we have

[[M c
IndLem]] = λx, h, n. R(α⇒α)⇒α

N n

(λk. k x)
(λn, g′, k. g′ (λx. k (h n1 x1)))

(λx2. x2),

5See (Minlog)

206 CHAPTER 9. DECORATION OF PROOFS

with xα, kα⇒α, hN⇒α⇒α, and g′(α⇒α)⇒α.
If we now compare [[M c

IndLem]] with [[MIndLem]], we see that the variable m
is eliminated. The type of the R-operator and of the step function g have
been changed accordingly.

Application. In order to investigate the effects of this proof transforma-
tion method, combined with the decoration algorithm, we have analyzed
the proof by induction of the lemma stating the existence of the factorial
function:

(G 0 1)→ ∀n,k(G n k → G Sn Sn · k)→ ∀n∃kG n k,

with Gnk the graph of the factorial function, reading n! = k.
The proof is by induction on “n”, using the first premise in the base case

and observing that Sn · k is the wanted k, by the second premise.
The results are summarized in Table 9.2, where the auxiliary variables

have the following typing: gN⇒(N⇒N)⇒N, fN⇒N and g′(N⇒N)⇒N.
As can be seen in Table 9.2, the classical proof extracts into a tail-

recursive program, without any further transformations other than the A-
Translation. The same program can be obtained from the constructive vari-
ant if one uses IndLem and decorates the proof, in order to eliminate m from
the step case. The decoration algorithm detects in this case that the vari-
able m has no computational contribution and hence this is removed from
the extracted term. Note that using IndLem alone does not extract into an
optimal program, since the step function computes unnecessarily Sm and
for this the decoration algorithm needs to be applied.

9.4.3 List reversal

The list reversal example has already been treated in (Berger, 2005) to
demonstrate how ∀nc is used. However, whereas in the paper the analysis
has been carried out by hand, (Ratiu and Schwichtenberg, 2010) gives the
program obtained in a mechanized way6, by the decoration algorithm.

We give the informal weak existence proof for list reversal and refer the
reader to (Ratiu and Schwichtenberg, 2010) for its formal presentation as
λ-term. We use the same notation:

• vw for the list w appended to the list v

• vx for appending the one element list x: to the list v
6The tests have been performed with the (Minlog) system

9.4. EXAMPLES 207

Proof method Extracted program

Classical, by the Ind-Axiom

λn0. R(N⇒N)⇒N
N n0

(λf. f 1)
(λn1, g

′, f . g′ (λn2. f(n1 · n2 + n2)))
(λn1. n1)

Constructive, by Ind-Axiom λn0. RN
N n0 1λn1, n2. n1 · n2 + n2

Constructive, by M(IndLem)

λn0. RN⇒(N⇒N)⇒N
N n0

(λn1, f . f 1)
(λn1, g,m, f. g Sm (λn2. f (n1 · n2 + n2)))

0 (λn1. n1)

Constructive, by M c
(IndLem)

λn0. R(N⇒N)⇒N
N n0

(λf. f 1)
(λn1, g

′, f . g′ (λn2. f (n1 · n2 + n2)))
i.e., after decoration (λn1. n1)

Table 9.2: Factorial, with variants of proof techniques

• xv for the list obtained by writing an element x in front of a list v

We show that every list has a reverse

∀v∃̃wR(v, w) (9.10)

starting from the assumptions

InitRev : R(nil, nil), (9.11)
GenRev : ∀v, w, x(R(v, w)→ R(vx, xw)) (9.12)

Proof. We fix an arbitrary v and assume u : ∀w¬R(v, w). We are left to
show ⊥. For this, we prove that all initial segments of v are non-revertible,
which contradicts (9.11).

More precisely, from u and (9.12) we prove by induction on v2 that

∀v2∀v1(v1v2 = v → ∀w¬Rv1w).

208 CHAPTER 9. DECORATION OF PROOFS

For v2 = nil this follows from our initial assumption u.
For the step case, assume v1(xv2) = v, fix w and assume further R(v1, w).
We must derive a contradiction. By (9.12) we conclude that R(v1x, xw).

From the properties of the append function we have that (v1x)v2 = v.
The induction for v1x gives ∀w¬R(v1x,w), so by taking xw for w leads to
the desired contradiction.

We now have a classical proof M of ∀v∃̃wR(v, w) from the clauses InitRev
and GenRev, to which we can apply the refined A-Translation.

Both assumptions are irrelevant goal formulas, so no substitution of the
logical falsity by F is necessary. Likewise, the kernel of the goal formula
is atomic, so no application of Lemma 3.6 is required. Using the refined
A-Translation we replace ⊥ throughout by ∃wR(v, w). The goal formula
∀v∃̃wR(v, w) is turned into ∀v(∀w(R(v, w) → ∃wR(v, w)) → ∃wR(v, w)).
Since its premise is an instance of existence introduction we obtain a deriva-
tion M∃ of ∀v∃wRvw. Moreover, since neither of the assumptions, nor any
of the axioms used involves ⊥ in the uninstantiated formulas, the correctness
of the proof is not affected by the substitution.

Let PRevList denote the term extracted in Minlog from a formalization
of the above proof. This is

PRevlist =λv0 RLN→LN→LN v0

(λv2, v3. v3)
(λx, v1, g, v2, v3. g (v2 : + : x :) (x :: v3))

(nil N)
(nil N).

with g a variable for binary functions on lists. To better see what the
underlying algorithm looks like, let us unfold the recursion:

PRevList nil = (λv2, v3. v3) (nilN) (nilN)
PRevList xv1 = (λv2, v3. R v1 v2 x x v3) (nilN) (nilN)

In other words, the algorithm defines an auxiliary function h by

h(nil, v2, v3) := v3, h(xv1, v2, v3) := h(v1, v2 x, x v3)

and gives the result by applying h to the original list and twice nil.
Notice that the parameter v2 is not needed. However, its presence makes

the algorithm quadratic rather than linear, because in each recursion step

9.4. EXAMPLES 209

v2 x is computed, and the list append function is defined by recursion on
its first argument. Therefore, it is desired to get rid of this superfluous
parameter and in order to achieve this, we decorate the proof. It will
turn out that in the proof (by induction on v2) of the auxiliary formula
A(v2) := ∀v1(v1v2 = v3 → ∀w¬Rv1w)), the variable v1 is not used compu-
tationally. Hence, in the decorated version of the proof, we can use ∀ncv1 .

Let us now apply the general method of decorating proofs. In or-
der to better see the effects of the algorithm, we present our proof in a
formal way by writing proof trees with formulas. The arguments to the
decoration algorithm are the proof pattern of the correct initial deriva-
tion, the axioms and the sequent consisting of the context R(nil, nil) and
∀ncv,w,x(R(v, w)→ncR(vx, xw)) and the end formula ∀ncv ∃lwR(v, w). ∃l is a
decorated variant of the strong existence quantifier7, given by the rules

∃l+ : ∀cx(A→nc ∃l
xA) ∃l− : ∃l

xA→c ∀cx(A→ncB)→cB

In order to obtain a correct proof we need to extend the context, in a
first step such that the rules involving the c.r. axioms match their decorated
forms. Thus, we need to pay special attention how we apply the inference
rules for the compatibility axiom in its decorated form (CompatA) and the
list induction in the variant Indcl,A with

A(v2) := ∀ncv1 (v1v2=v→nc ∀cw. Rv1w→nc ∃l
wR(v, w)).

M∃Base is the derivation8:

Compat∀cw(Rvw→∃lwR(v,w)) v v1

[u1 : v1 nil=v]
| N

v=v1

∀cw(Rvw → ∃l
wR(v, w))→c ∀cwRv1w → ∃l

wR(v, w) ∃l+(w,Rvw)
→c −

∀cwRv1w → ∃l
wR(v, w)

(→nc)+u1
v1 nil = v→nc ∀cwRv1w→nc ∃l

wR(v, w)
∀nc+v1

∀ncv1 (v1 nil = v → ∀cwRv1w → ∃l
wR(v, w)) (= A(nil))

where N is a derivation involving the lemma ∀v(v = v nil) with a free as-
sumption u1 : v1 nil=v. We have depicted the computational rule (→c)+ and

7For the complete list of decorations of the strong quantifiers, see (Ratiu and Schwicht-
enberg, 2010).

8→ abbreviates in this case the non-computational variant →nc.

210 CHAPTER 9. DECORATION OF PROOFS

pointed to the nc-rules which can be left as such in the proof pattern, while
obtaining a valid proof. By this, we have inserted the nc-marking in ∀v1 .

M∃Step is the following derivation:

[u0 : A(v2)] v1x

[u1 : v1(xv2)=v]
| N1

(v1x)v2=v
∀cw. R(v1x,w)→ ∃l

wR(v, w) xw
(∀c)−

R(v1x, xw)→ ∃l
xwR(v, xw)

[u2 : Rv1w]
| N2

R(v1x, xw)
∃l
wR(v, w)

Rv1w→nc ∃l
wR(v, w)

(∀c)+w
∀cw(Rv1w→nc ∃l

wR(v, w))
v1(xv2)=v→nc ∀cw(Rv1w→nc ∃l

wR(v, w))
(∀nc)+v1

∀ncv1 (v1(xv2)=v→nc ∀cw(Rv1w→nc ∃l
wR(v, w)))

A(v2)→cA(xv2)
∀cx,v2(A(v2)→cA(xv2))

where N1 is a derivation involving the lemma ∀v1,x,v2((v1x)v2 = v1(xv2)),
with free assumption u1 : v1(xv2)=v, and N2 is one involving GenRev with
the free assumption u2 : Rv1w. We point again to the rules which need to be
computational in order to match the decorated form of induction and the
requirement that the goal formula must be universally quantified. Every
other rule can remain non-computational, including the introduction of v1,
for which the variable condition and (�) are fulfilled.

The extracted term in the case of the decorated proof is

P cRevListλv0. RLN→LNv0

(λvv)
(λx, v, f, v3f (x :: v3))

(nil N)

with f a variable for unary functions on lists. Thus, this time, the underlying
algorithm defines an auxiliary function g by

g(nil, w) := w, g(x :: v, w) := g(v, x :: w)

and gives the result by applying g to the original list and nil. In conclusion,
we have obtained by machine extraction from an automated decoration of a
weak existence proof the standard linear algorithm for list reversal, with its
use of an accumulator.

9.5. SUMMARY OF THE CHAPTER 211

9.5 Summary of the Chapter

In this chapter we have proposed a method by which the programs ex-
tracted from proofs are further optimized by eliminating some redundancies
resulting from irrelevant terms. This work extends the concept of “non-
computational universal quantifiers” introduced in (Berger, 1993) to the
decoration of implication. In addition to precisely defining the notions of
nc (or uniform) and c (or decorated) logical operators, we propose an al-
gorithm, by which the these are marked in a systematic way according to
their computational relevance. The extension to the strong operators is also
possible and has been given in (Ratiu and Schwichtenberg, 2010), but in
NAω these are not used, so we have limited the decoration to → and ∀.

In order to correctly use the decorations, we have extended the rules
of natural deduction and clearly specified the conditions that need to be
fulfilled, in order to mark operators as uniform (or non-computational).
We have also revised the notions of computational type, proof terms and
extracted terms. The modified realizability has been adapted to take into
consideration such markings and associate the ε null-term to these non-
computational operators. More precisely, the term-extraction is defined such
that in the case of →nc the empty realizer is associated to the premise and
in the case of ∀nc the quantified variable is eliminated from the extracted
term and by the ε-reduction the terms are simplified.

Special care is payed to the axioms - their uninstantiated versions are
a-priori decorated. The formulas substituting the predicate variables in the
formulations of the axioms can receive further decorations, but they need to
be unified by taking the least upped bound of their decorated versions.

The algorithm that we have proposed in Section 9.3 has been proven to
be correct, optimal and terminating. Its results have been illustrated on a
series of examples in Section 9.4. We have pointed out to the fact that the
decoration method is independent of the refined A-Translation, although it
maps well to its use, as the example of the reverse list shows. However, it is
possible to apply the decoration algorithm also to the constructive proofs.

212 CHAPTER 9. DECORATION OF PROOFS

Chapter 10

Concluding Remarks

10.1 Overview of this Thesis

In this thesis we have focused on program extraction from classical proofs
transformed by A-Translation. The main focus was on improving the ex-
tracted terms by eliminating redundancies and for this we have proposed two
methods. The first consists in using a refinement of the A-Translation and
in order to use it on a larger class of formulas, we propose to insert double
negations in a restrictive manner. The other technique consists in marking
universal quantifiers and implications as either computationally relevant or
irrelevant by a Decoration Algorithm.

Traditionally, the A-Translation method combines Friedman’s trick with
Gödel-Gentzen’s double negation translation. This introduces however many
redundancies in the extracted programs, due to the role played by the log-
ical negation. Represented as a predicate variable, ⊥ constitutes a place
holder which is substituted in the process of A-translation by the strong
existence goal, thus gaining computational relevance. In order to minimize
the insertion of double negations, (Berger et al., 2002) proposes to work
in a system from which efq⊥ and Stab⊥ are eliminated and this makes the
double negation superfluous. We call this system NAω and introduce it in
Chapter 2. Further, by restricting the classes of formulas to which the trans-
lation method is applied, it is possible to substitute selected occurrences of
⊥ by F, where the latter is regarded as a constant in the system and thus
has no computational content. Such classes of formulas, called definite/goal
formulas, are presented in Chapter 3 in a fashion similar to Ishihara (2000).
Since the classes introduced in the work of Ishihara are not identical to our
definite/goal formulas, we have compared these concepts in Section 3.5, with

213

214 CHAPTER 10. CONCLUDING REMARKS

the purpose of understanding better the constraints imposed on the latter.
We have concluded that all restrictions are necessary for the application of
the refined A-Translation.

In order to enlarge the applicability domain of the refined A-Translation,
we identify in this thesis the formulas which can be included in the defi-
nite/goal classes, by the insertion of double negations. Since we want to
keep the occurrences of ⊥ to a minimum necessary, we have singled out in
Chapter 8 the so called L-critical atoms1, as the only ones which need to be
double negated. We have proposed to use this refined Double Negation in
order to obtain NAω-validity and have found a class of formulas for which
the double negation of the L-critical atoms enables us to eliminate efq⊥ and
Stab⊥. Such formulas are NAω-valid, which is a requirement that needs to be
fulfilled in order to apply the refined A-Translation. We propose in Chapter
8 an even further refinement: a mixed use of ⊥ and F, in the case when we
have relations R for which it is easy to find a complement R := R→ F .

In Chapter 4 we have compared the specifics of the programs extracted
from A-translated proofs, with respect to the programming techniques pre-
sented in (Griffin, 1990) and (Chiarabini, 2010). The former addresses the
interpretation by control operators and the latter presents proof transforma-
tion techniques in order to obtain tail recursive programs. The NAω- proofs
that we regard involve relevant goals, so they can be seen as proofs of ⊥. We
have argued that on the one hand, since the refined A-Translation preserves
the structure of the proofs, the relevant formulas shown by induction extract
in general in tail recursive programs. On the other hand, due to the special
role played by ⊥ in the process of A-translating the proofs, the associated
programs adhere to the continuation passing style.

All these results concerning the refined A-Translation were based on the
expertise gained by analyzing some relevant case studies, presented Chapters
5 - 7. The selected case studies are significant problems in their field. On
one hand, by analyzing the extracted programs, we were able to validate the
intuitive corelation made in Chapter 4 with respect to tail recursion and the
continuation passing style. On the other hand, they have given us insight
with respect to the application of the refined A-Translation and have pro-
vided also useful information needed in order to develop the aforementioned
strategy of the refined double negation translation.

In the field of combinatorics, the Infinite Pigeonhole Principle has been
studied for its various applications, for instance in connection with Ramsey’s

1The sets L are fixed and collect the quantifier-free formulas in Π0
2-statements that we

want to show

10.1. OVERVIEW OF THIS THESIS 215

Theorem, which generalizes it. The Infinite Pigeonhole Principle states that
any infinite sequence that is colored with finitely many colors has an infinite
monochromatic subsequence. We have treated in Chapter 5 a simplified ver-
sion for a bicolor sequence and then extended this to the Infinite Pigeonhole
Principle. We have analyzed the programs extracted from the corollaries of
these properties, to which we have applied of the refined A-translation.

Another interesting result in combinatorics is the Erdös-Szekeres The-
orem, which follows as a consequence of the Finite Pigeonhole Principle.
The theorem goes further than Ramsey’s Theorem, showing the existence of
monotonically increasing/decreasing subsequences of a given sequence. We
have transformed both the principle and the theorem by the A-Translation
and have analyzed in Chapter 6 the programs extracted after applying the
modified realizability. This study was of particular interest due to the situ-
ations in which the insertion of the double negation was necessary, in order
to prove the translated theorems in minimal logic.

Dickson’s Lemma, investigated in Chapter 7, proves that each monomial
ideal has a finite basis. This is a necessary property in the Gröbner Basis
Theory, since its consequence, Hilbert’s Basis Theorem, is needed in order
to ensure the termination of Buchberger’s Algorithm. We have pointed out
the correlation of the specification of interest to us with related formulations
from the literature. This was of particular interest since the lemma is not
a Π0

2-property, so in order to extract a computable functional, we need to
regard a corollary. The proof requires the application of the minimum prin-
ciple, provable by general induction, and it was very interesting to analyze
the outcome of A-translation on the proof using this classical principle.

The conclusions drawn from these examples concerning the role played
by negations and the possible extension of the applicability of the refined
A-Translation are presented in Chapter 8. We offer a systematic view of the
“tricks” deployed in each of the chapters in order to adapt the proofs to our
system NAω. For this, we use the concept of L-critical atoms, which are the
only ones requiring double negation. We prove that for a certain class of
formulas, the refined double negation of formulas is NAω-provable and the
some formulas can be transformed in this way into definite/goal ones.

Due to the interpretation given to the logical falsity and its role for
the refined A-Translation, we can view it as pin-pointing the computational
content of the proof. The proof terms in which ⊥ does not occur do not
contribute to the extracted programs. If they do need to contribute, then
we need to insert double negations “manually” and by this unravel the con-
struction hidden in the classical proof. Such atoms are detected by the
mechanism identifying the L-critical predicate symbols, described in Chap-

216 CHAPTER 10. CONCLUDING REMARKS

ter 8. This justifies also the elimination of efq⊥ and Stab⊥ - they do not
provide explicit information on how the witness for the goal formula is con-
structed. By inserting double negations in order to eliminate these axioms
from the constructive proofs, we shift the use of ⊥ to the L-critical atoms,
which will contribute in this way to the extracted programs.

In Chapter 9 we go further and propose an improvement on top of the
refined A-Translation and classical proofs. The method consists in identify-
ing universal quantifiers and implications as either computationally relevant
or irrelevant and marking them accordingly. We call such a procedure “dec-
oration” and propose an algorithm by which the computationally irrelevant
operators are automatically detected. We have shown that this algorithm
is correct, optimal and terminating. The modified realizability has been
adapted accordingly to deal with the markings and eliminate from the ex-
tracted programs the terms associated to the non-computational operators.
We conclude Chapter 9 by presenting the effects of this Decoration Algo-
rithm on some case studies.

10.2 Contributions

The contributions of this dissertations, in order of their importance, are:

• an enhancement of the applicability domain of A-Translation by a
restrictive and controlled insertion of double negations. We have de-
scribed in Chapter 8 a method by which we detect the atoms that need
to be double negated. By this refined double negation we can obtain
further definite/goal formulas. For some classes of intuitionistically
valid formulas it is also possible to obtain their minimal logic-valid
variants by the refined double negation. By this we avoid the addi-
tional negations inserted by the Gödel-Gentzen translation. Examples
for this refined negative translation are presented in Chapters 5 - 7

• the elimination of part of unnecessary computations in the extracted
programs, arising from associating realizers to variables which do not
contribute computationally to the final result. For this, we have pro-
posed to mark universal quantifiers/implications according to the com-
putational relevance of their variables/premises by the Decoration Al-
gorithm proposed in Chapter 9

• a comparison in Chapter 3 with related work identifying restricted
classes of formulas for which it is possible to construct intuitionistic

10.3. FUTURE LINES OF RESEARCH 217

proofs from classical ones. The purpose of this analysis was to under-
stand the role of the restrictions imposed on the definite/goal formulas

• exemplifications of the application of the refined A-Translation to
proofs, by considering relevant case studies: the Infinite Pigeonhole
Principle (Chapter 5), the Erdös-Szekeres Theorem (Chapter 6) and
Dickson’s Lemma (Chapter 7)

• observations regarding the correlation with continuation passing style
and tail recursion. We have explained intuitively in Chapter 4 why the
refined A-translated proofs offer such functionalities in the extracted
programs without the need for further transformations and have illus-
trated this on the analyzed examples.

10.3 Future Lines of Research

Abstracting over repeating subterms. In Chapters 8 and 9 we have
focused on methods designed to improve the extracted programs. With A-
translation this is achieved by manipulating ⊥. On top of it we proposed a
Decoration Algorithm, in order to identify and mark accordingly the compu-
tationally irrelevant operators and consequently clean the extracted terms
from unnecessary computations. (Trifonov, 2010) proposes another method
for improving the terms extracted using Gödel’s Dialectica Interpretation.
Trifonov uses the “let” construct in order to avoid subterm repetition in the
programs associated to classical existence proofs. The claim from (Trifonov,
2010) is that by abstracting over repeating terms using the let-construct, an
“almost linear bound” on the size of extracted programs is achieved, since
re-evaluation of equal subterms is avoided. We believe that the programs
extracted using the A-translation can be also improved by some similar
technique. The way in which the programs extracted from the A-translated
proofs can benefit from this concept requires however further investigation.

Tail recursion; connection with general induction. As presented
in Chapter 4, the A-translated induction proofs extract in general to tail
recursive programs. We have illustrated this claim through the examples
studied in this thesis, but have also seen a counter-example when this is
not the case. Hence, a more rigorous classification of the situations when
the inductive proofs result in tail recursive programs is desirable. It would
be interesting to investigate whether the proof transformation method as

218 CHAPTER 10. CONCLUDING REMARKS

proposed by (Chiarabini, 2010) has effect in the cases when the proofs do
not extract directly in tail recursive programs.

Further, in the case of Dickson’s Lemma the minimum principle is used
and this is shown by general recursion, for which no connection with tail
recursion has been yet established. Therefore, it would be very interesting
to investigate whether general recursion extracts also into some form of tail
recursion. In order to validate the general observation, one could already
benefit from having an example at hand in the case of DL.

Dickson’s Lemma and related results. We have already discussed the
special role played by Dickson’s Lemma in the Gröbner Basis Theory, but
have pointed out that the A-Translation is not powerful enough to exploit
the full version of the lemma. This is due to the fact that as it is, DL
is not a Π0

2-property, in neither of the versions investigated in Chapter 7.
However, even if we cannot expect a computable functional to be associated
with Dickson’s Lemma, one could search for Π0

2-applications, to which the
refined A-Translation can be applied. For this, we have overviewed the
theorems for which it is necessary that DL holds and left it as future work
to find suitable weakenings of these theorems.

Another way to exploit DL is to associate it a realizer by a different
method and then use the refined A-Translation on Π0

2-corollaries of the
lemma. (Seisenberger, 2003) gives an example (Stolzenberg’s Principle) in
which A-translation is coupled with bar recursion, in order to provide real-
izers for non-definite assumptions.

It is of major interest to us to investigate the connections that can be
established between Dickson’s Lemma and other classical and constructive
principles, as we have briefly mentioned at the end of Chapter 7. Determin-
ing the strength of the full Dickson’s Lemma can help towards identifying its
computational potential. The results from (Berardi, 2006) suggest that one
can make a correlation with other principles, such as Weak König’s Lemma
or the simplified version of the Infinite Pigeonhole Principle.

The theory translated in sequent calculus. We have worked in Gentzen’s
Natural Deduction, as presented in Chapter 2, but it is worth to investigate
whether the results from our work apply to sequent calculus. It would be
interesting to analyze in this context the role of the definite/goal formulas.

Extending the definite/goal classes of formulas. As we have seen in
Section 3.5 in which we compared the definite/goal classes with a very similar

10.3. FUTURE LINES OF RESEARCH 219

approach of Ishihara (2000), it is not easy to extend the defined classes, if
at all meaningful. However, (Schwichtenberg and Wainer, 2011) presents a
counterexample for a formula which is not definite (see the paragraph 3.5
in Section 3.5), yet fulfills the property from Lemma 3.6. The question of
finding the maximal class conforming with the restrictions imposed on the
definite/goal remains therefore open.

220 CHAPTER 10. CONCLUDING REMARKS

Appendix A

Technical Details

A.1 The Erdös-Szekeres Theorem

Auxiliary Functions needed for FPH

• ChangeAt(llL(LN), i, nN), which modifies at each call the list ll, by ap-
pending n to the sublist lli, is given by the following computational
rules:

ChangeAt((nil L), 0, n) = (n :) :
ChangeAt((nil L), (Si), n) = (nil N) :: ChangeAt((nil L), i, n)

ChangeAt((l :: ll), 0, n) = (n :: l) :: ll
ChangeAt((l :: ll), Si, n) = l :: ChangeAt(ll, i, n)

• GroupbyCols(c, n) constructs the list ll, such that each sublist lli con-
tains all objects of color i, as follows:

GroupbyCols(c, 0) = ChangeAt((nil L), c(0), 0)
GroupbyCols(c,Si)) = ChangeAt(GroupbyCols(c, i), c(Si),Si)

• The flattening of a lists of lists to a list of natural numbers is done by

flatten(nil L) = (nil N)
flatten(l :: ll) = l : + : flatten(ll)

221

222 APPENDIX A. TECHNICAL DETAILS

Unfolding of Extracted Programs The program extracted from the
Finite Pigeonhole Principle FPH is:

PFPH(GC) := λk, n, r, c. R1GCF1G1 k (λi. GCi),

with

F1 := λk′, f . (nilN)
G1 := λl, ll, g, k′, f . R2 k

′ F2G2M

F2 := λi, n0, n1, l1, l2. [if i l2 (λn2. l1)]
G2 := λi, h, i′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)]
M := |l| (k′ · |ll|) |flatten(ll)| (f0) (g k′ (λi. f Si))

According to the values collected in GC, we have forR1GCF1G1 k (λi. GCi)
the following situations

• GC = nil

PFPH k n r c = R1nilF1G1 k (λi. GCi)
= F1 k (λi. GCi)
= λk′, f . (nilN) k (λi. GCi) = (nilN)

• GC = (l :: ll)

PFPH k n r c = G1 l ll (R1 ll F1G1) k (λi. GCi)
= (λl, ll, g, k′, f . R2 k

′ F2G2M) l ll (R1 ll F1G1) k (λi. GCi)
= R2 k F2G2M S

where S is the substitution

[l := l, ll := ll, g := R1 ll F1G1, k
′ := k, f := λi. GCi.]

and we have the following two cases,

PFPH(GC) 0n r c = R20F2G2M S

= F2M S

= λi, n0, n1, l1, l2. [if i l2 (λn2. l1)]M S

= [if |l| (g k′ (λi. f Si)) (λn2. (f 0))] S

= [if |l| ((R1 ll F1G1) 0 (λi. (λi. GCi) Si)) (λn2. (λi. GCi) 0)]
= [if |l| ((R1 ll F1G1) 0 (λi. GCSi)) (λn2. GC0)]
= [if |l| (PFPH(cdrGC) 0n r c) (λn2. GC0)]

A.1. THE ERDÖS-SZEKERES THEOREM 223

PFPH Sk n r c = R2 Sk F2G2M S

= G2 k (R2 k F2G2)M S

= (λi, h, i′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)])
k (R2 k F2G2)M S

= (λi′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)]M) S′

where S′ := S ∪ [i := k, h := R2 k F2G2],

so further

PFPH Sk n r c = [if |l|
(g k′ (λi. f Si))
(λn2. h n2 k

′ · |ll| |flatten(ll)| (f 0) (g k′ (λi. GCSi)))] S′

= [if |l|
((R1 ll F1G1) k (λi. GCSi))
(λn2. (R2 k F2G2) n2 k · |ll| |flatten(ll)| GC0

((R1 ll F1G1) k (λi. GCSi)))]
= [if |l|

PFPH(cdr(GC)) k n r c
(λn2. (R2 k F2G2) n2 k · |ll| |flatten(ll)| GC0

((R1 ll F1G1) k (λi. GCSi)))]
= [if |l|

PFPH(cdr(GC)) k n r c
(λn2. G1 nilN (cdrGC) g k [|ll| := n2])]

For the FPH with modified (LemnP lusLt), we have:

P ′FPH(GC) := λk, n, r, c. R1GCF1G
′
1 k (λi. GCi)

which unfolds to

• Case GC = nil

P ′FPH(GC) k n r c = R1nilF1G
′
1 k (λi. GCi) = (nilN)

• Case GC = (l :: ll)

P ′FPH(GC) k n r c = G′1 l ll (R1 ll F1G
′
1) k (λi. GCi)

= (λl, ll, g, k′, f . R′2 k′ · |ll|F ′2G′2M ′) l ll (R1 ll F1G
′
1) k (λi. GCi)

= R′2 k′ · |ll|F ′2G′2M ′ S

224 APPENDIX A. TECHNICAL DETAILS

where S is the substitution

[l := l, ll := ll, g := R1 ll F1G
′
1, k
′ := k, f := λi. GCi.]

Further,

If k · |ll| = 0
P ′FPH(GC) k n r c = R′2k · |ll|F ′2G′2M ′ S

= F ′2M
′ S

= λi, l1, l2. [if i l1 (λn2. l2)]M ′ S
= [if |flatten ll| f0 (λn2. (g k′ (λi. fSi)))] S

= [if |flatten ll| GC0 (λn2. ((R1 ll F1G
′
1) k (λi. GCSi)))]

= [if |flatten ll| GC0 (λn2. P
′
FPH(GC) k n r c)]

If k · |ll| 6= 0
P ′FPH(GC) k n r c = R′2 S(k′ · |ll|)F ′2G′2M ′ S

= G2 k
′ · |ll|R′2 k′ · |ll|F ′2G′2M ′ S

= (λi, h′, i′, l1, l2. [if i′ (h′ 0 l1 l2) (λn2. h
′ n2 l1 l2)])

k′ · |ll|R′2 k′|ll|F ′2G′2M ′ S
= [if (|flatten ll|) ((R′2 k′ · |ll|F ′2G′2) 0 l1 l2)

(λn2. (R′2 k′ · |ll|F ′2G′2) n2 l1 l2)] S′

where S′ := [l1 := f0, l2 = g k′ (λi. fSi)] ∪ S.
We let T2 := R′2 k · |ll|F ′2G′2 and we have further

P ′FPH(GC) k n r c = [if (|flatten ll|) (T2 0 l1 l2)(λn2. T2 n2 l1 l2)] S′

= [if (|flatten ll|) (T2 0 GC0 g k (λi. GCSi))
(λn2. T2 n2 GC0 g k (λi. GCSi))] S

= [if (|flatten ll|) Case(0)(λn2. Case(n2))],

where Case(x) := T2 x GC0 (R1 ll F1G
′
1) k (λi. GCSi)

= T2 x GC0 P
′
FPH(cdr(GC)) k n r c.

dnFPH The program associated to the double negated form of the Finite
Pigeonhole Principle (FPHdn) is:

PFPHdn := λk, n, r, c. R3 n F3 G3 (λm, l. [if (c(m) < r) l (nil N)])
(R1 GC F ′1 G

′
1 k (λi. GCi)),

A.1. THE ERDÖS-SZEKERES THEOREM 225

where

F ′1 := λk′, f . (nilN)
G′1 := λl, ll, g, k′, f . R2 k

′ F ′2 G
′
2 M

′

F ′2 := λi, n0, n1, l1, l2. [if i l2 (λn2. l1)]
G′2 := λi, h, i′, n0, n1, l1, l2. [if i′ l2 (λn2. h n2 n0 n1 l1 l2)]
M ′ := |l| (k′ · |ll|) |flatten(ll)| (f 0) (g k′ λi. f (Si))
F3 := λp. p 0
G3 := λm,C, p, l. C p (p Sml)

In order to unfold it, for R3, we need to distinguish on the values of n:

• n = 0. Then R3 0 F3 G3 = F3 = λp. p 0, thus

PFPHdn k 0 r c := (λp. p 0)(λm, l. [if (cm < r) l (nilN)]) (PFPH k n r c)
:= (λm, l. [if (cm < r) l (nilN)]) 0 (PFPH k 0 r c)
:= if (c 0 < r) then (PFPH k 0 r c) else (nilN)

• n := Sn. In this case, we have R3 Sn F3 G3 = G3 n (R3 n F3 G3) =
(λm,C, p, l. C p (p Sml)) = λp, l. (R3 n F3 G3) p (p Sn l) and therefore

PFPHdn k Sn r c := (λp, l. (R3 n F3 G3) p (p Sn l))
(λm, l. [if (cm < r) l (nilN)])(PFPH k Sn r c)

:= (R3 n F3 G3) (λm, l. [if (cm < r) l (nilN)])
((λm, l. [if (cm < r) l (nil N)]) Sn (PFPH k Sn r c))

:= (R3 n F3 G3) (λm, l. [if (c(m) < r) l (nilN)])
(if (c (Sn) < r) then (PFPH k Sn r c) else (nilN))

226 APPENDIX A. TECHNICAL DETAILS

A.2 Dickson’s Lemma

Unfolding of Extracted Programs

PDL := λf, g. F1(f, k,G1)
= λf, g. G1k(λy.if (f(y) < f(k)) thenF1(f, y,G1) else ε)
= λf, g. G1k T1(k)
= λf, g. (λn. F2(g, n,G2)) k T1(k)
= λf, g. F2(g, k,G2)T1(k)
= λf, g. (G2k(λy.if (g(y) < g(k)) thenF2(g, y,G2) else ε))T1(k)
= λf, g. (G2k T2(k))T1(k)
= λf, g. (λn0, H, F1. F3(f,Sn0, G3))k T2(k))T1(k)
= λf, g.

((
λn0, H, F1. G3 (Sn0) (λy.if (f(y) < f(Sn0)) thenF3(f, y,G3) else ε)

)
k T2(k)

)
T1(k)

(◦)
= λf, g. ((λH,F1. G

k
3 (Sk) (λy.if (f(y) < f(Sk)) thenF3(f, y,Gk3) else ε))T2(k))T1(k)

(◦)
= λf, g. ((λH,F1. G

k
3 (Sk)T3(Sk))T2(k))T1(k)

= λf, g.
((
λH,F1. (λn1, F0. [if (fn1 < fk) (F1 n1) [if (gn1 < gk) (Hn1F0) (k, n1)]])

Sk T3(Sk)
)
T2(k)

)
T1(k)

(?)
= λf, g.

((
λH,F1. (λF0. [if (fSk < fk) (F1 Sk) [if (gSk < gk) (H Sk F0) (k, Sk)]])

T3(Sk)
)
T2(k)

)
T1(k)

= λf, g.
((
λH,F1. [if (fSk < fk) (F1 Sk) [if (gSk < gk) (H Sk T3(Sk)) (k, Sk)]]

)
T2(k)

)
T1(k)

= λf, g. (λF1. [if (fSk < fk) (F1 Sk) [if (gSk < gk) (T2(k) Sk T3(Sk)) (k, Sk)]])T1(k)
= λf, g. [if (fSk < fk) (T1(k) Sk) [if (gSk < gk) (T2(k) Sk T3(Sk)) (k,Sk)]]
= λf, g. if (fSk < fk) then T1(k) Sk

else if (gSk < gk) then T2(k) Sk T3(Sk).

where we have used the abbreviations Gk3 for G3[n0 := k] in (◦) and G3 for
G3[n0 := n] in (∗):

T1(k) := λy.if (f(y) < f(k)) thenF1(f, y,G1) else ε (A.1)
T2(k) := λy.if (g(y) < g(k)) thenF2(g, y,G2) else ε (A.2)
T3(k) := λy.if (f(y) < f(k)) thenF3(f, y,G3) else ε. (A.3)

A.2. DICKSON’S LEMMA 227

In the unfolding of PDL, we have the substitution

F0 := T3(Sk), F1 := T2(k) and H := T1(k).

T3 gets evaluated if ¬(fSk < fk) and gSk < gk, i.e., if k is suitable for
f , but not for g. Should this be the case, we have:

TP := F2(g,Sk,G2)T3(Sk)
= G2(Sk)(λy. if (gy < gSk) thenF2(g, y,G2) else ε)T3(Sk)
= G2(Sk)T2(Sk)T3(Sk)
= (λn0, H, F1. F3(f, Sn0, G3)) (Sk)T2(Sk)T3(Sk)
(•)
= (λH,F1. F3(f, SSk,GSk

3))T2(Sk)T3(Sk)
(•)
= (λH,F1. G

Sk
3 SSk (λy. if (fy < f(SSk)) thenF3(f, y,G3) else ε))T2(Sk)T3(Sk)

= (λH,F1. G3 SSk T3(SSk))T2(Sk)T3(Sk)
= (λH,F1. G3 SSk T3(SSk))T2(Sk)T3(Sk)
(∗)
= (λH,F1. (λn1, F0. if (fn1 < fSk) (F1 n1) if (gn1 < gSk) (Hn1F0) (Sk, n1))

SSk T3(SSk))T2(Sk)T3(Sk)
= if (fSSk < fSk) (T3(Sk) SSk)

if (gSSk < gSk) (T2(Sk) SSk T3(SSk)) (Sk,SSk)

where in ((•)) GSk
3 abbreviates G3[n0 := Sk] and in (∗) we have the substi-

tution
F0 := T3(SSk), F1 := T2(Sk) and H := T3(Sk)

is used, where the terms Ti’s are given by (A.1) - (A.3).

228 APPENDIX A. TECHNICAL DETAILS

Bibliography

T. Becker and V. Weispfenning. Gröbner Bases. A Computational Approach
to Commutative Algebra. Number 141 in Graduate Texts in Mathematics.
Springer-Verlag, New York, 1993. 4

S. Berardi. Some intuitionistic equivalents of classical principles for degree
2 formulas. Annals of Pure and Applied Logic, 139:185–200, 2006. 7.6,
10.3

U. Berger. Uniform Heyting arithmetic. Annals Pure Applied Logic, 133
(1-3):125–148, 2005. 1.3, 9, 9.4.3

U. Berger. Program extraction from normalization proofs. In M. Bezem and
J. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of
LNCS, pages 91–106, 1993. 9.5

U. Berger and P. Oliva. Modified bar recursion. Mathematical Structures in
Computer Science, 16(2):163–183, 2006. 7.6

U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algo-
rithm and Dickson’s lemma: Two examples of realistic program extrac-
tion. Journal of Automated Reasoning, 26:205–221, 2001. 7.3, 7.3, 7.4.1

U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extrac-
tion from classical proofs. Annals of Pure and Applied Logic, 114:3–25,
2002. (document), 1, 1.1, 1.3, 3, 3.3, 3.3.1, 3.3.1, 3.4, 3.6, 7.3, 1, 7.3, 7.4.1,
7.4.2, 7.4.2, 8.2, 8.2, 8.6, 10.1

B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal (An Algo-
rithm for Finding the Basis Elements in the Residue Class Ring Modulo
a Zero Dimensional Polynomial Ideal). PhD thesis, English translation
in Journal of Symbolic Computation, 2004, Mathematical Institute, Uni-
versity of Innsbruck, Austria, 1965. 7.5.2

229

230 BIBLIOGRAPHY

L. Chiarabini. Program Development by Proof Transformation. PhD the-
sis, Ludwig Maximilian University of Munich, http://www.mathematik.
uni-muenchen.de/~chiarabi/research/PhdThesis.pdf, 2010. 1.3, 4,
4.1.2, 4.1.2, 4, 4.1.2, 4.3, 9.4.2, 9.4.2, 9.4.2, 9.4.2, 9.4.2, 9.4.2, 10.1, 10.3

T. Coquand. A semantics of evidence for classical arithemtic. Journal of
Symbolic Logic, Volume 60(Issue 1):325–337, Mar. 1995. 5.1

T. Coquand and H. Persson. Gröbner bases in type theory. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs,
volume 1657 of LNCS. Springer Verlag, Berlin, Heidelberg, New York,
1999. 7

D. Cox, J. Little, and D. O’Shea. Ideal, Varieties, and Algorithms. An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer Verlag, 1992. 1, 5, 7.3,
7.3, 7.5

L. E. Dickson. Finitness of the odd perfect and primitive abundant numbers
with n distinct prime factors. American Journal of Mathematics, 35:413–
422, 1913. 7.3

A. Dragalin. New kinds of realizability. In Abstracts of the 6th International
Congress of Logic, Methodology and Philosophy of Sciences, pages 20–24,
Hannover, Germany, 1979. 3.2.1

M. Felleisen and D. P. Friedman. Control operators, the secd-machine, and
the lambda-calculus. 3rd Working Conference on the Formal Description
of Programming Concepts, 1986. 2

M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. Reasoning with
continuations. In Proceedings of 1st Annual IEEE Symposium on Logic
in Computer Science, LICS’86, pages 131–141, Washington, DC, 1986.
IEEE Computer Society Press. 2

M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic
theory of sequential control. Theoretical Computer Science, 52(3):205–
237, 1987. 2

H. Friedman. Classically and intuitionistically provably recursive functions.
In D. S. Scott and G. H. Müller, editors, Higher Set Theory, volume 669
of Lecture Notes in Mathematics, pages 21–28. Springer Verlag, Berlin,
Heidelberg, New York, 1978. 1, 3.2.1, 3.2, 3.2.2, 3.3

http://www.mathematik.uni-muenchen.de/~chiarabi/research/PhdThesis.pdf
http://www.mathematik.uni-muenchen.de/~chiarabi/research/PhdThesis.pdf

BIBLIOGRAPHY 231

G. Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1934. 2.4

G. Gentzen. Die widerspruchfreiheit der reinen zahlentheorie. Mathematis-
che Annalen, 112:493565, 1936. 1, 3.1

K. Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse
eines mathematischen Kolloquiums, 4:34–38, 1933. 1, 3.1

K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunkts. Dialectica, 12:280–287, 1958. 1, 2

T. G. Griffin. A formulae-as-types notion of control. In Conference Record of
the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 47–58. ACM Press, 1990. 1.3, 4, 4.2, 4.2.1, 4.2.1, 4.2.2,
4.3, 10.1

A. Heyting. Intuitionism: An introduction. North-Holland Publishing Co.,
Amsterdam, second revised edition edition, 1966. 2

H. Ishihara. A note on the Goedel-Gentzen translation. Matematical Logic
Quarterly, 46:135–137, 2000. 1.3, 3, 3.3.1, 3.5, 3.12, 3.2, 3.5, 3.5, 3.6, 10.1,
10.3

F. Martin-Mateos, J. Alonso, M. Hidalgo, and J. Ruiz-Reina. A formal proof
of Dickson’s lemma in acl2. In 10th International Conference on Logic for
Programming Artificial Intelligence and Reasoning, 2003. 7, 2, 7.3

Minlog. The minlog proof assistant. http://www.minlog-system.de/. 1.2,
6, 6.1, 6.2.4, 5, 6

C. Murthy. Extracting constructive content from classical proofs. Technical
Report 90–1151, Cornell University, Ithaca, NY, USA, 1990. PhD thesis.
1.1

P. Oliva. Understanding and using spector’s bar recursive interpretation of
classical analysis. Proceedings of CiE’2006, 3988:423–434, 2006. 5.2.5

P. Oliva and M. Escardo. Selection functions, bar recursion and backward
induction. Mathematical Structures in Computer Science, 20(2):127–168,
2010. 5.2.5

C. Raffalli. Getting results from programs extracted from classical proofs.
Theoretical Computer Science, 323:49–70, 2004. 1

http://www.minlog-system.de/

232 BIBLIOGRAPHY

D. Ratiu and H. Schwichtenberg. Decorating proofs. In S. Feferman and
W. Sieg, editors, Proofs, Categories and Computations. Essays in honor
of Grigori Mints, pages 171–188. College Publications, 2010. 1.3, 9, 9.4.3,
7, 9.5

D. Ratiu and T. Trifonov. Exploring the computational content of the in-
finite pigeonhole principle. Journal of Logic and Computation, 0:11–22,
2010. 5.2, 5.2.4, 5.2.4, 5.2.5

C. Schwarzweller. Groebner bases - theory refinement in the Mizar system.
In Lecture Notes in Artificial Intelligence, volume 3863, pages 299–314.
Springer Verlag, 2005. 7

H. Schwichtenberg. Content in proofs of list reversal. Proceedings of the
Marktoberdorf Summer School, 2007. 1

H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives
in Mathematical Logic. Cambridge University Press, 2011. 2, 3.1, 3.3.2,
3.4.1, 3.4.2, 3.5, 7.2, 9.1, 10.3

M. Seisenberger. On the Constructive Content of Proofs. PhD thesis,
Mathematisches Institut der Universität München, http://edoc.ub.uni-
muenchen.de/1619/, 2003. PhD thesis, Supervised by Helmut Schwicht-
enberg. 3.3, 5.1.4, 5.3, 7.6, 10.3

T. Trifonov. Quasi-linear dialectica extraction. In Lecture Notes in Com-
puter Science, volume 6158, pages 417–426, 2010. 10.3

T. Trifonov. Analysis of Methods for Extraction from Non-constructive
Proofs. PhD thesis, Ludwig-Maximilian Universität — München, 2011.
In progress. 5.2.5

A. S. Troelstra. Mathematical investigation of intuitionistic arithmetic and
analysis. In A. S. Troelstra, editor, Lecture Notes in Mathematics, volume
344. Springer-Verlag, Berlin, Heidelberg, New York, 1973. 2

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2nd edition, 2000. 2.1, 3.1, 3.4.1

A. S. Troelstra and D. Van Dalen. Constructivism in Mathematics: An In-
troduction. Studies in Logic and the Foundations of Mathematics. Elsevier
Science and Technology, 1988. 3.5

BIBLIOGRAPHY 233

C. Urban. Classical Logic and Computation. PhD thesis, Univer-
sity of Cambridge, http://www4.in.tum.de/~urbanc/Publications/
Phd-Urban.ps.gz, October 2000. 5.1, 5.1.4, 5.3

C. Urban and D. Ratiu. Classical logic is better than intuitionistic logic:
A conjecture about double-negation translations. In Proceedings of the
1st International Workshop on Classical Logic and Computation, CL&C
2006, Venice, Italy, page 20, 2006. 5.1.4

W. Veldman and M. Bezem. Ramsey’s theorem and the pigeonhole prin-
ciple in intuitionistic mathematics. Journal of the London Mathematical
Society, s2-47(2):193–211, 1993. 5.1.1

http://www4.in.tum.de/~urbanc/Publications/Phd-Urban.ps.gz
http://www4.in.tum.de/~urbanc/Publications/Phd-Urban.ps.gz

	Introduction
	The Problem and Proposed Solutions
	Contributions
	Road-map of the Thesis

	NA as the Negative Fragment of HA
	Language Specification
	Weak and Strong Operators
	Axioms
	Induction and Cases
	efq and Stab
	Other Axioms

	Natural Deduction
	Summary of the Chapter

	A-Translation and its Refined Version
	The Double Negation Translation
	A-Translation
	Friedman's ``trick''
	A-Translation

	The Refinement of the A-Translation
	Definite and Goal Formulas
	Properties of the Definite/Goal Formulas
	Refined A-Translation

	Program Extraction
	Modified Realizability. Extracted Terms
	Program Extraction from A-Translated Proofs

	Related Work
	Summary of the Chapter

	A-Translation and Programming
	Tail Recursion
	Tail Recursion in Computer Science
	Connection with the Refined A-Translation

	Computing with Continuations
	Classical Proofs and the Notion of Control
	Connection with the Refined A-Translation

	Summary of the Chapter

	The Infinite Pigeonhole Principle
	The Infinite Boolean Tape
	Statement and Formalization
	The Logical Falsity
	The Extracted Program
	Related Work

	Generalization: IPH
	IPH - Statement and Proof
	Double Negations
	The 02-Corollary
	Results with A-Translation
	Related work

	Summary of the Chapter

	The Erdösâ•ﬁ-Szekeres Theorem
	The Finite Pigeonhole Principle
	Formalization
	The Program Extracted from FPH

	The Erdösâ•ﬁ-Szekeres theorem
	Formalization Issues
	The Double-negated FPH
	Formalization of the Erdös-Szekeres Theorem
	Extracted Program

	Summary of the Chapter

	Dickson's Lemma
	Terminology
	The Minimum Principle
	Equivalent Formulations
	A 02-Corollary of Dickson's Lemma
	A Simplified Statement.
	Generalization

	Applications of Dickson's Lemma
	Further Terminology
	Dickson's Lemma in the Gröbner Bases Theory

	Summary of the Chapter

	Refined Double-Negation
	Negations
	Critical Predicate Symbols
	Refined Double Negation
	Obtaining Definite/Goal Formulas
	Refined Double Negation of Proofs

	Examples
	The "Least" Element in a Well-Founded Set
	The Infinite Pigeonhole Principle (Chapter 5)
	Dickson's Lemma (Chapter 7)
	The Erdös-Szekeres Theorem (Chapter 6)

	Further Refinement of the Double Negation
	Summary of the Chapter

	Decoration of Proofs
	Terminlogy
	Decoration of Axioms
	Decoration Algorithm
	Examples
	Decoration of Implication
	Program Transformation by Decorations
	List reversal

	Summary of the Chapter

	Concluding Remarks
	Overview of this Thesis
	Contributions
	Future Lines of Research

	Technical Details
	The Erdös-Szekeres Theorem
	Dickson's Lemma

