
Coping with new Challenges in

Clustering and Biomedical

Imaging

Annahita Oswald

München 2011

Coping with new Challenges in

Clustering and Biomedical

Imaging
Annahita Oswald

Dissertation

an der Fakultät für Mathematik, Informatik und

Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Annahita Oswald

aus München

München, den 23.05.2011

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Dr. Christian Baumgartner

Tag der mündlichen Prüfung: 21.07.2011

Contents

Acknowledgments ix

Abstract xi

Zusammenfassung xiii

I Preliminaries 1

1 Introduction 3

1.1 Open Challenges in Clustering and Biomedical Imaging 9

1.1.1 Clustering . 9

1.1.2 Biomedical Imaging . 11

1.2 Thesis Overview and Contributions 12

2 Survey 15

2.1 Clustering . 16

2.1.1 Partitioning Clustering 17

2.1.2 Hierarchical Clustering 20

2.1.3 Density-based Clustering 23

2.2 Validation of Clustering Results 25

2.3 Classification . 27

2.3.1 Support Vector Machines (SVM) 27

2.3.2 K-Nearest Neighbor Classifier (K-NN) 28

vi CONTENTS

2.3.3 Naive Bayes (NB) . 28

2.3.4 Decision Tree (DT) . 29

2.3.5 Artificial Neutral Networks (ANN) 29

2.3.6 Voting Feature Intervals 30

2.4 Validation of Classification Results 30

2.5 Medical Imaging Technologies 32

II Clustering Techniques 35

3 Hierarchical Clustering 37

3.1 Related Work . 39

3.2 Information-Theoretic Cluster Hierarchies 42

3.2.1 Information-theoretic Hierarchical Clustering 43

3.2.2 Hierarchical Cluster Structure 44

3.2.3 Generalization of the MDL Principle 47

3.2.4 Algorithm ITCH . 55

3.2.5 Experiments . 58

3.3 Genetic Algorithm for Finding Cluster Hierarchies 69

3.3.1 Using Genetic Algorithm for Finding Cluster Hierarchies 71

3.3.2 Algorithm GACH . 77

3.3.3 Experiments . 77

4 Clustering Mixed Type Data 87

4.1 Introduction . 88

4.2 Related Work . 89

4.3 Minimum Description Length for Integrative Clustering 92

4.4 Algorithm INTEGRATE . 97

4.5 Experiments . 100

4.5.1 Synthetic Data . 101

4.5.2 Real Data . 104

4.5.3 Finding the Optimal k. 105

CONTENTS vii

5 Clustering Skylines 107

5.1 Introduction . 108

5.2 Related Work . 110

5.2.1 Skyline Computation 110

5.2.2 Sweep-Line Methods 110

5.2.3 Clustering . 111

5.3 Theoretical Background . 112

5.4 Algorithms to Compute SkyDist 114

5.4.1 SkyDist by Monte-Carlo Sampling 114

5.4.2 SkyDist for 2-Dimensional Skylines 115

5.4.3 A Sweep-Plane Approach for the High-dimensional Case117

5.5 Experiments . 119

5.5.1 Efficiency . 119

5.5.2 Clustering Skylines of Real World Data. 120

III Techniques for Mining Biomedical Data 125

6 Detection of Brain Atrophy Patterns based on MRI 127

6.1 Introduction . 128

6.2 The FCC framework . 129

6.2.1 Feature Selection . 130

6.2.2 Clustering . 131

6.2.3 Classification . 132

6.2.4 Visualization . 133

6.3 Experiments . 133

6.3.1 Subjects . 134

6.3.2 MRI Acquisition . 135

6.3.3 MRI Processing . 135

6.3.4 Results . 137

6.4 Discussion . 146

viii Contents

7 Efficient Knowledge Extraction from MRI 153

7.1 Introduction . 154

7.2 JGrid/FCC . 156

7.2.1 Architecture . 157

7.2.2 The FCC Framework 160

7.3 Experiments . 162

8 Motif Discovery in Brain Networks 167

8.1 Introduction . 168

8.2 Related work . 170

8.2.1 Graph Data Set Mining 170

8.2.2 Large Graph Mining 171

8.3 Basic Definitions . 173

8.4 Finding Motifs in a Brain Network 174

8.4.1 Construction of Brain Co-Activation Networks Out of

fMRI Time Series . 175

8.4.2 Performing Frequent Subgraph Mining on Brain Co-

Activation Networks 176

8.4.3 Evaluation of Detected Motifs 176

8.5 Experiments . 177

IV Conclusions 185

9 Summary and Future Directions 187

9.1 Summary of Contributions . 187

9.2 Potentials for Future Work . 191

Acknowledgments

I would like to acknowledge all the people who supported me during the

development of this thesis. I can only mention some of them here, but my

thanks go to all.

First, I would like to thank my supervisor and first referee, Professor Dr.

Christian Böhm. I benefited a lot from his enthusiasm for data mining, and

enjoyed the inspiring working atmosphere he created. I want to extend my

warmest thanks to Professor Dr. Christian Baumgartner for his willingness

to be the second referee of this thesis. I would also like to thank the other

two members of my thesis committee, Professor Dr. Claudia Linnhoff-Popien

and Professor Dr. Hans Jürgen Ohlbach.

My research has profited a lot from the productive discussions and ex-

change of ideas with my colleagues at the database research group. In partic-

ular, I want to thank: Jing Feng, Frank Fiedler, Katrin Haegler, Dr. Tong He,

Xiao He, Bettina Konte, Son Mai Thai, Nikola Müller, Dr. Claudia Plant,

Michael Plavinski, Junming Shao, Bianca Wackersreuther, Peter Wacker-

sreuther, Qinli Yang and Andrew Zherdin.

This work would never have been possible without Bianca Wackersreuther,

who was not only a colleague, coauthor or collaborator, but became a lovely

friend. Thank you, for your unselfish help and support!

I do not want to miss all the students I have supervised during my thesis,

who supported my work, and who have been beneficial for this thesis. I want

to mention here, Timo Becker, Michael Dorn, Sebastian Goebl, Johannes

x Acknowledgments

Huber, Marcel v. Maltitz, Michael Plavinski, Christian Richter, and Felix

Sappelt.

I am also grateful to Susanne Grienberger and Franz Krojer for their

organizational and technical support during my time at the LMU.

During my thesis, I had the pleasure to work in collaboration with Dr.

Michael Ewers and Prof. Dr. Stefan Teipel. This fruitful cooperation had

an great impact on some solutions contained in this thesis.

I was honored to be a mentee of the LMU Mentoring program. Professor

Dr. Francesca Biagini always supported me and my work and afforded the

participation to various conferences.

Lastly, I want to thank my family Kian, Ariane, Inge, and Ebi, as well as

my friends for their love and encouragement, advice and support during the

last years, and most of all, Ivo, my better half, who always makes me smile.

Annahita Oswald

Munich, May 2011

Abstract

The last years have seen a tremendous increase of data acquisition in differ-

ent scientific fields such as molecular biology, bioinformatics or biomedicine.

Therefore, novel methods are needed for automatic data processing and anal-

ysis of this large amount of data. “Data mining” is the process of applying

methods like clustering or classification to large databases in order to un-

cover hidden patterns. Clustering is the task of partitioning points of a data

set into distinct groups in order to minimize the intra cluster similarity and

to maximize the inter cluster similarity. In contrast to unsupervised learn-

ing like clustering, the classification problem is known as supervised learning

that aims at the prediction of group membership of data objects on the basis

of rules learned from a training set where the group membership is known.

Specialized methods have been proposed for hierarchical and partition-

ing clustering. However, these methods suffer from several drawbacks. In

the first part of this work, new clustering methods are proposed that cope

with problems from conventional clustering algorithms. ITCH (Information-

Theoretic Cluster Hierarchies) is a hierarchical clustering method that is

based on a hierarchical variant of the Minimum Description Length (MDL)

principle which finds hierarchies of clusters without requiring input param-

eters. As ITCH may converge only to a local optimum we propose GACH

(Genetic Algorithm for Finding Cluster Hierarchies) that combines the ben-

efits from genetic algorithms with information-theory. In this way the search

space is explored more effectively. Furthermore, we propose INTEGRATE

xii Abstract

a novel clustering method for data with mixed numerical and categorical

attributes. Supported by the MDL principle our method integrates the in-

formation provided by heterogeneous numerical and categorical attributes

and thus naturally balances the influence of both sources of information. A

competitive evaluation illustrates that INTEGRATE is more effective than

existing clustering methods for mixed type data. Besides clustering meth-

ods for single data objects we provide a solution for clustering different data

sets that are represented by their skylines. The skyline operator is a well-

established database primitive for finding database objects which minimize

two or more attributes with an unknown weighting between these attributes.

In this thesis, we define a similarity measure, called SkyDist, for comparing

skylines of different data sets that can directly be integrated into different

data mining tasks such as clustering or classification. The experiments show

that SkyDist in combination with different clustering algorithms can give

useful insights into many applications.

In the second part, we focus on the analysis of high resolution magnetic

resonance images (MRI) that are clinically relevant and may allow for an

early detection and diagnosis of several diseases. In particular, we propose a

framework for the classification of Alzheimer’s disease in MR images combin-

ing the data mining steps of feature selection, clustering and classification.

As a result, a set of highly selective features discriminating patients with

Alzheimer and healthy people has been identified. However, the analysis of

the high dimensional MR images is extremely time-consuming. Therefore

we developed JGrid, a scalable distributed computing solution designed to

allow for a large scale analysis of MRI and thus an optimized prediction of

diagnosis. In another study we apply efficient algorithms for motif discov-

ery to task-fMRI scans in order to identify patterns in the brain that are

characteristic for patients with somatoform pain disorder. We find groups

of brain compartments that occur frequently within the brain networks and

discriminate well among healthy and diseased people.

Zusammenfassung

Die in den letzten Jahren aufgrund neuer Technologien in der Datenerhe-

bung entstandenen Datenmengen gerade in den Bereichen Biologie, Biome-

dizin oder Bioinformatik, können manuell nicht mehr verarbeitet werden.

Deshalb sind Techniken notwendig, die eine automatisierte Auswertung und

Analyse der Daten ermöglichen. Im “Data Mining” werden Methoden wie die

Clusteranalyse oder die Klassifikation eingesetzt, um bestimmte Muster in

einer großen Datenmenge zu finden. Beim Clustering werden Objekte eines

Datensatzes in Gruppen (sog. Cluster) eingeteilt, so dass die Ähnlichkeit von

Objekten innerhalb eines Clusters minimiert und die Ähnlichkeit zwischen

Objekten unterschiedlicher Cluster maximiert wird. Im Gegensatz zur Clus-

teranalyse (dem nicht überwachten Lernen), werden bei der Klassifikation die

Objekte mittels Regeln eingeteilt, die zuvor anhand bereits bekannter und

schon klassifizierter Fälle gelernt wurden.

In den letzten Jahren wurden viele Methoden im Bereich des hierarchi-

schen oder partitionieren Clustering entwickelt. Diese Verfahren unterliegen

jedoch einigen Schwächen. Im ersten Teil dieser Arbeit sollen daher Clus-

teringmethoden entwickelt werden, die die Probleme bestehender Verfahren

angehen. ITCH (Information-Theoretic Cluster Hierarchies) ist ein hierarchi-

scher Clusteringalgorithmus, der basierend auf einer hierarchischen Varian-

te des Minimum Description Length Prinzips (MDL) eine Clusterhierarchie

generiert, wobei keine Eingabeparameter zuvor spezifiziert werden müssen.

GACH (Genetic Algorithm for Finding Cluster Hierarchies) verbessert ITCH

xiv Zusammenfassung

dahingehend, dass der Algorithmus auf der Suche nach der optimalen Clus-

terstruktur nicht in einem lokalen Minimum stecken bleibt. Dies wird durch

eine Kombination aus genetischem Algorithmus und Informationstheorie er-

zielt. Des Weiteren stellen wir INTEGRATE vor, eine neue Clusteringmetho-

de für Daten mit gemischten numerischen und kategorischen Attributwerten.

Basierend auf einer informations-theoretischen Optimierungsfunktion für he-

terogene Attribute, werden die Informationen für numerische und kategori-

sche Attribute in geeigneter Weise einbezogen. Vergleichende Experimente

mit anderen Verfahren zeigen eine deutliche Überlegenheit von INTEGRA-

TE auf Datensätzen mit gemischten Datentypen. Mit SkyDist haben wir ein

Ähnlichkeitsmaß entwickelt, dass es erlaubt nicht einzelne Objekte mitein-

ander zu vergleichen, sondern ganze Datensätze, die durch ihre Skyline ap-

proximiert wurden. Die Sykline eines Datensatzes beschreibt die Menge aller

Punkte, die hinsichtlich zwei oder mehrerer Attribute optimal sind. Kom-

biniert mit Techniken des Data Mining wie Clustering oder Klassifikation,

liefert SkyDist gute Einblicke in vielen Anwendungsszenarien.

Der zweite Teil der Arbeit befasst sich mit der Analyse von biomedizini-

schen Bilddaten, genauer gesagt mit hochauflösenden Magnetresonanz Tomo-

graphien (MRT). Dazu haben wir ein System entwickelt, das bestehend aus

den Schritten Merkmalsextraktion, Clustering und Klassifikation Muster im

Gehirn erkennt, die Kranke von Gesunden unterscheiden. Da allerdings die

Verarbeitung solch hochauflösender Tomographien sehr zeitaufwendig ist, ha-

ben wir mit JGrid eine Lösung für verteiltes Rechnen vorgestellt, die eine groß

angelegte Studie und daher eine verbesserte Diagnosevorhersage ermöglicht.

Des Weiteren haben wir in einer anderen Studie ein Verfahren, das häufige

Muster innerhalb eines Netzwerks erkennt, auf funktionale MR Bilder von

Gesunden und Patienten mit somatoformen Schmerzstörungen angewandt.

Wir erhielten Muster im Gehirn, die eine Unterscheidung von Kranken und

Gesunden erlauben.

Part I

Preliminaries

Chapter 1

Introduction

With the advent of high-throughput experimental technologies in many scien-

tific domains like biology, medicine, economy, etc. large volumes of data have

been captured over the last decade. Large scale analysis of this vast amount

of data is not possible manually. In order to automatically “mine” large vol-

umes of data the discipline Knowledge Discovery in Databases (KDD) has

emerged as a concept in the field of computer science. The core part of the

KDD process is called Data Mining that aims at finding correlations or pat-

terns among dozens of fields in large databases.

Even in the field of biomedicine, biology, or bioinformatics data mining

techniques have been widely applied to understand the mechanisms in the

human body that are responsible for diseases like cancer or diabetes preva-

lent in modern society. The gained information can be used to improve the

diagnosis, prevention and treatment of the diseases. In economy, data mining

is an essential tool for enhancing productivity, reducing risk and maximizing

returns. It is widely believed that data mining will have profound impact on

our society and has therefore led to an explosion in demand for novel data

mining technologies.

4 1. Introduction

Data

Knowledge

Selection

Preprocessing

Transformation

Data Mining

Evaluation

Target Data

Preprocessed
Data

Transformed
Data

Patterns

Figure 1.1: The KDD process.

Knowledge Discovery in Databases (KDD) is the nontrivial process of

identifying valid, novel, potentially useful, and ultimately understandable pat-

terns in data. [60].

Figure 1.1 illustrates the KDD process which is an iterative sequence of

the following steps:

1. Data Selection. As a first step, the target data set needs to be created

by selecting a data set, or focusing on a subset of several attributes, or

data samples.

2. Preprocessing. As the target data often is contaminated by noise or

unnecessary information the data set needs to be preprocessed before

usage. Therefore, data cleaning operations such as removal of noise,

normalization of the data or handling missing values have to be applied.

3. Transformation. As in most cases only a small subset of the at-

tributes are relevant, techniques for feature selection need to be ap-

plied. Feature selection techniques identify those features which are

relevant for the goal of the discovery task.

5

4. Data Mining. This is the crucial step of the whole process. Depending

on the goal of the KDD process, a suitable data mining method has to

be selected and applied to the transformed data.

5. Evaluation. The results of the data mining algorithms need to be in-

terpreted and evaluated using expert knowledge or evaluation measures

applicable for the respective method. If the result is not satisfactory,

there may be the need to return to one of the previous steps, which

leads to an iterative process. At the end, the discovered knowledge

needs to be documented and reported to interested communities.

Data mining is a core step in the KDD process and therefore often used

as a synonym for KDD. In [60], data mining is formulated as follows:

Data Mining is a step in the KDD process consisting of applying data

analysis algorithms that, under acceptable computational efficiency limita-

tions, produce a particular enumeration of patterns over the data.

Following Han et al. [76] the data mining methods can be categorized as

follows:

• Clustering: group the objects of a database into clusters by maximiz-

ing the intra-cluster similarity and minimizing the inter-cluster simi-

larity.

• Outlier Detection: find outliers, i.e. data objects that appears to be

inconsistent with other members of the sample in which it occurs.

• Classification/Prediction: prediction of group membership of data

objects on the basis of rules learned from a training set where the group

membership is known.

• Association Analysis: discover relationships between attributes that

occur frequently together in the database.

6 1. Introduction

• Evolution Analysis: describe and model regularities or trends for

objects whose behavior changes over time.

• Characterization and Discrimination: summarize general features

of objects in a data set (characterization), or in a subset of the database

and compare particular subsets of the data with comparative subsets

(discrimination).

In this thesis, we focus on clustering and classification. Clustering al-

gorithms are essential for knowledge extraction as clusters represent novel

knowledge derived from the given database. Clustering can be categorized

as an unsupervised data mining task where no class information is required.

The objects in the data set are grouped or “clustered” according to its in-

trinsic structure.

In recent years, many clustering methods have been developed. The most

well-known algorithms are described in detail in Section 2.1. The clustering

methods can be divided into different categories. Partitioning methods, like

k-means [111] or EM [48], generally result in a set of k clusters, each object

belonging to one cluster where each cluster may be represented by a summary

description of all the objects contained in this cluster. The precise form of this

description will depend on the type of the object which is being clustered. In

case where real-valued data is available, the arithmetic mean of the attribute

vectors for all objects within a cluster provides an appropriate representative;

alternative types of centroid may be required in other cases, e.g., a cluster of

documents can be represented by a list of those keywords that occur in some

minimum number of documents within a cluster.

Hierarchical clustering algorithms find successive clusters using previ-

ously established clusters. These algorithms usually are either agglomerative

(”bottom-up”) or divisive (”top-down”). Agglomerative algorithms begin

with each element as a separate cluster and merge them into successively

larger clusters. Divisive algorithms begin with the whole set and proceed to

divide it into successively smaller clusters.

7

Density-based clustering algorithms are designed to find clusters of arbi-

trary shape. Clusters are regarded as regions in the data space in which the

objects are dense, and which are separated by regions of low object density

(noise). DBSCAN [55] and OPTICS [4] are two typical algorithms of this

kind.

In recent years, clustering methods for subspace clustering or projected

clustering have been emerged. These methods detect clusters as groups of

objects showing high similarity only on a subset of attributes.

In contrast to unsupervised learning, supervised data mining, like classi-

fication, aims at predicting class membership of unlabeled objects to prede-

fined classes on the basis of learned models from a training set, where the

class membership is known. More precisely, the classifier learns a model on a

set of training instances where the class labels are known. This model is then

applied to a set of unlabeled objects in order to predict a class membership.

The labeling of the training data is often done by experts.

Many classification algorithms have been established in the last years.

The most well-known classifiers are the support vector machine, the Naive

Bayes Classifier or the Decision Tree classification. A more detailed descrip-

tion on these classifiers is given in Section 2.3.

During last several decades, classification algorithms are applied in vari-

ous fields. One of the most important tasks is document classification, which

group documents into different topics or types according to their similarities

of content. One classical example in this line is to distinguish spam messages

from legitimate emails. The similarity between documents is usually mea-

sured with the associative coefficients from the vector space model, e.g., the

cosine coefficient.

In biology or bioinformatics, classification methods are often applied to

categorize organisms by biological type, or to assess the taxonomic content

of a sample.

8 1. Introduction

In the medical field, classification is mainly applied in medical imag-

ing. Here, different imaging modalities like Radiography, Magnetic resonance

imaging (MRI) or Diffusion tensor imaging (DTI) are used to obtain images

from the human body. Classifiers can be applied to a set of images in or-

der to make assumptions about the clinical condition of a subject where the

diagnosis is not yet known.

Usually, the medical data is high-dimensional, which may comprise mil-

lions of features. However, as only a small subset is relevant for the classi-

fication task, dimensionality reduction or feature selection techniques have

to be applied in order to train a classifier. Selecting the right set of features

for classification is a difficult and important problem when designing a good

classifier. Typically, one does not know a priori which features are relevant

for a particular classification task, and different classifiers may require dif-

ferent feature sets to construct a model for the same problem. The task of

finding an optimal subset of features is inherently combinatory. Therefore,

feature selection becomes an optimization problem that requires an optimal

approach to examine all possible subsets. However, investigating all possible

subsets of features is very time consuming even for high-dimensional data.

Therefore, computationally simple filter techniques like i.e. the Information

Gain, or the χ2-Statistics are good choices for this kind of data.

In this thesis, we have developed new clustering methods that try to

overcome limitations of existing methods. Furthermore, we demonstrate the

practical application of data mining methods in the field of medical imaging.

Here, we propose the integration of different methods from the field of graph

mining, clustering and classification in order to discriminate diseased from

healthy subjects.

In the following Section, we elaborate on open challenges in clustering

and biomedical imaging, and then provide a broad overview of the main

contributions of this thesis in Section 1.2.

1.1 Open Challenges in Clustering and Biomedical Imaging 9

1.1 Open Challenges in Clustering and Biomed-

ical Imaging

There are several open challenges in the area of clustering and biomedical

imaging, which will be described in this Section.

1.1.1 Clustering

Challenge 1. Parameter-Free Hierarchical Clustering.

Most clustering methods suffer from the drawback that the user has to

specify input parameters that usually differ with different data sets. To avoid

difficult parameter settings has attracted increased interest in the clustering

community in the last years, e.g. [18, 19, 85, 133] just to name a few.

Most methods for parameter-free clustering focus on model selection criteria

like Akaike Information Criterion (AIC), the Bayesian Information Criterion

(BIC), or the Minimum Description Length (MDL) [73] principle. The idea

behind AIC, BIC, and MDL is to penalize model complexity, in addition to

deviations from the cluster centers. However, most methods for parameter-

free clustering do not provide any cluster hierarchy. The aim is to develop a

hierarchical clustering methods that, based on an information-theoretic cri-

terion for model selection, automatically finds an optimal clustering without

user-defined parameters.

Challenge 2. Outlier Robustness.

Noise objects are those objects in the data set that do not follow the dis-

tribution as the other member of a cluster. On the other hand, outliers are

objects in a data set that deviate markedly from other members of the data

set. In the presence of outliers or noise objects, many clustering methods fail

to detect the true cluster structure that is present in the data. Therefore,

outliers should be separated from the cluster objects. Outlier detection is a

10 1. Introduction

challenging task by its own. Especially, measuring the degree of outlierness of

single objects has attracted increased interest in the data mining community.

Challenge 3. Sensitivity to Initialization and Local Optima.

The result of most clustering methods depend heavily on the given start-

ing condition or initial state. A common approach is to run the algorithm

several times and and rate the quality of the result. Furthermore, the result

may only constitute a local optimum. This problem can be solved by ex-

haustively searching the solution space for the overall optimum result, which

leads to high computation time and is not feasible for larger data sets. Ge-

netic algorithms (GA) are based on a stochastic optimization process that

thoroughly explores the data space for an optimal result.

Challenge 4. Mixed Type Attributes.

Many objects in real life application scenarios are described by numerous

attributes or features. These attributes can be real valued or categorical. The

degree in which categorical or numerical information should be used for the

clustering task is not trivial. In many existing methods for integrative clus-

tering, this weighting of heterogeneous numerical and categorical information

is often done by the user in form of parameters. It is therefore challenging to

develop a clustering method that is fully automatic and naturally balances

both sources of information provided by numerical and categorical attributes

in order to find a good clustering of the heterogeneous data.

Challenge 5. Mining More Complex Data Objects.

The skyline is a well established database primitive for finding database

objects which minimize two or more attributes and are therefore the most

interesting objects of the data set in some sense. The skyline is highly ex-

pressive for many applications. However, most studies focus on efficient algo-

rithms for finding the skyline of a data set and do not use skylines themselves

1.1 Open Challenges in Clustering and Biomedical Imaging 11

as objects for data exploration or data mining. Using skylines as objects in

data mining tasks such as clustering or classification can give useful insight

in many scientific domains. However, no similarity measure for skylines ex-

ists so far that can be used in combination with a clustering or classification

method.

1.1.2 Biomedical Imaging

Challenge 1. Automated Classification of Alzheimer’s Disease in

Magnetic Resonance Images.

Demographic changes led to an increasing prevalence of Alzheimer’s Dis-

ease (AD), the most frequent form of age-related dementia. Mild Cognitive

Impairment (MCI) is often regarded as an early stage of AD. The diagnosis

of AD or MCI mainly relies on clinical criteria so far. Magnetic Resonance

Imaging (MRI) allows to display brain structures with highest resolution

and is therefore an important technology in neuroradiology or neuroscience.

Sensitive and specific early stage diagnosis of AD is of prime importance to

therapeutic interventions. Therefore, data mining and pattern recognition

methods are required to extract from millions of voxels of an MRI image the

minimal set of voxels that shows systematic abnormalities in subjects with

AD or MCI.

Challenge 2. Computational Complexity of Knowledge Extraction.

Most studies for MRI analysis address the quality of the results and the

predictive power. However, to get a deeper insight into complex neurological

abnormalities like dementia or somatoform pain disorder large-scale analysis

is indispensable. Recently, many studies have been proposed that use data

from different centers in order to make detailed assumption. These data sets

comprise several hundred high-resolution images that have to be processed

and analyzed. Therefore, efficient methods are needed in order to manage

an efficient processing and analysis of this vast amount of data.

12 1. Introduction

Challenge 3. Common Patterns in Brain Co-Activation Networks.

Idiopathic chronic pain disorders constitute a large, clinically important

health care problem that urgently needs deeper pathophysiological insight.

The understanding which brain compartments are involved, is a very interest-

ing topic in neurological medicine. Mostly, not only single parts of the brain

are the crucial factor in neurological disorders like dementia, schizophrenia

or somatoform pain disorder. The challenge is to find those subunits in the

brain that interact with each other and govern these neuronal processes.

1.2 Thesis Overview and Contributions

In this thesis, novel clustering methods that can cope with the challenges

described in the previous Section are developed, and application of data

mining techniques in biomedical data is proposed. In this Section, we pro-

vide an overview of the major contributions of this thesis.

Chapter 2 starts with basic notations for clustering and classification and

then presents some fundamental algorithms in each field. Furthermore, val-

idation techniques for the evaluation of clustering and classification results

are surveyed.

Part II focuses on new challenges in the field of clustering. It presents inno-

vative clustering methods in the field of hierarchical and integrative clustering

as well as clustering of more complex objects.

Chapter 3 presents innovative methods for hierarchical clustering based

on an information-theoretic criterion for model selection. First, problems of

existing hierarchical clustering methods are discussed. Based on these for-

mulations, ITCH (Information-Theoretic Cluster Hierarchies) is presented,

1.2 Thesis Overview and Contributions 13

a hierarchical parameter-free clustering algorithm that overcomes these lim-

itations. As ITCH uses a Greedy-like traversal of the hierarchical cluster

structure in order to find the optimal one, GACH is proposed, that is based

on a genetic algorithm and therefore explores the data space more precisely.

Chapter 4 is dedicated to clustering methods that can cope with mixed

numerical and categorical attributes. Therefore, a new information-theoretic

criterion for mixed type data is introduced. This can be used as an objective

function for integrative clustering. Based on this new quality criterion we

present INTEGRATE, a clustering method for data with both numerical and

categorical attributes.

Chapter 5 deals with skylines. Traditionally, a single skyline of a data

set is determined. We focus on applications where the skylines of different

data sets have to be compared. Therefore, a similarity measure for skyline

objects is defined which is then integrated into several clustering methods.

The experiments demonstrate that using skylines themselves as objects for

data mining can give useful insights into many application domains.

Part III is dedicated to mining biomedical data. It describes the application

of clustering and classification methods on images from patients with differ-

ent symptoms to find patterns discriminating healthy from diseased people.

Chapter 6 introduces a framework combining elements from feature selec-

tion, clustering and classification (FCC) in order to reveal subtle differences

in the brain structure caused by disorders such as Mild Cognitive Impair-

ment, early stage Alzheimer’s disease and healthy controls. The results on

magnetic resonance images on patient data show excellent accuracies and

indicate that FCC is a valuable complement to existing methods.

14 1. Introduction

Chapter 7 proposes the tool JGrid, a highly efficient distributed com-

puting system that allows a distributed computation of the FCC framework

on a cluster of computers. In particular, some details about the implemen-

tation of the software are presented, including an application to a set of

high resolution magnetic resonance images. The experiments demonstrate

an tremendous increase in efficiency compared to non-parallelized analysis.

Chapter 8 describes the application of several graph mining algorithms

for motif discovery to functional magnetic resonance images of patients with

somatoform pain disorder and healthy controls in order to find frequent sub-

graphs in the brain that are characteristic for the disease. The found motifs

represent groups of brain compartment that covary in their activity and dif-

fer between diseased and healthy subjects.

Part IV summarizes the contributions of the thesis and points out some

directions for future research in this field.

Chapter 2

Survey

The Chapter starts with a general introduction to clustering. In the follow-

ing Sections, a brief survey on some examples of common partitioning (cf.

Section 2.1.1) and hierarchical clustering algorithms (cf. Section 2.1.2), as

well as density-based clustering methods (cf. Section 2.1.3) is provided. In

Section 2.2, quality measures for comparing different clustering results are

presented.

The second part of this Chapter introduces the problem of classification in

Section 2.3 and covers some selected classification algorithms in more detail.

Section 2.4 deals with the validation of the classification results and with

quality measures for comparing classifiers.

As there is a huge variety of clustering and classification algorithms, only

methods which are fundamental for the techniques described in this thesis

can be surveyed here.

In the last part of this Chapter, we elaborate on some common imaging

modalities in the medical field, which are relevant for this thesis (cf. Sec-

tion 2.5).

16 2. Survey

2.1 Clustering

Clustering aims at finding groups of objects in a data set, so called clusters,

that the intra cluster similarity is minimized while maximizing the inter

cluster similarity. Clustering has become very popular in many scientific

domains, as it extracts novel knowledge out of a given database.

An important step in clustering is to select a distance measure, which

determines how the similarity of two elements is calculated. This influences

the shape of the clusters, as some elements may be close to one another ac-

cording to one distance and further away according to another.

Some common distance functions are the Euclidean, Manhattan, Maha-

lanobis or Hamming distance.

Given two points x, and y in a data set DS that are described by a d-

dimensional feature vector donated by x = {x1, · · · , xd} and y = {y1, · · · , yd}.
The distance of these two objects

→
x and

→
y can be an arbitrary distance func-

tion dist. Let dist be one of the Lp norms the distance would be defined as

follows for an arbitrary p ∈ N:

dist(
→
x,
→
y) = p

√√√√ d∑
i=1

|xi − yi|p

The most widely used distance for numerical objects is the Euclidean

distance with p = 2. In Chapter 5, we have defined SkyDist, which is a

similarity measure for more complex object like skyline objects. In all other

Chapters, we have used the Euclidean distance for real valued objects.

Clustering methods can be grouped into partitioning, hierarchical and

density-based methods. In the following Sections, we present common algo-

rithms of each type.

2.1 Clustering 17

2.1.1 Partitioning Clustering

In partitioning clustering objects of a data set are grouped into a set of k

clusters, each object belonging to one cluster. This Section briefly surveys

prominent representatives of partitioning clustering methods.

K-Means

The k-means algorithm was first introduced by James MacQueen in 1967 [111].

It partitions the objects of a data set into k clusters where the number of

clusters k has to be predefined by the user.

First the k-means algorithm is initialized by randomly selecting k cluster

centers and the points are associated to the nearest cluster center. This point

to cluster assignment is then adjusted in an iterative way. In each iteration,

the steps recalculating the cluster centers and assigning the points to the

nearest center are performed. The cluster centers represent the mean value

of the coordinates of all points contained in this cluster. The algorithm stops,

if the objective function, squared error function is minimized. The sum of

squared distances is a measure for the compactness of a clustering and is

defined as follows:
k∑
i=1

n∑
j=1

dist(xj − µi)2

Although it can be proved that the procedure will always terminate, the

k-means algorithm does not necessarily find the most optimal configuration,

corresponding to the global objective function minimum. As the clustering

depends on the compactness measure the clustering result is very sensitive to

noise and outliers. Furthermore, k-means implicitly assumes a Gaussian data

distribution of the data, and is thus restricted to detect spherically compact

clusters. Another drawback of the algorithm is that the result is significantly

sensitive to the initial randomly selected cluster centers resulting in different

clusterings with different initializations. In addition to this, the number of

18 2. Survey

clusters have to be determined in advance. A common approach to find the

optimal number of clusters is to run the k-means algorithm several times

with different number of k and use a quality or error measure for clustering

to obtain the right number of clusters.

EM-clustering

The EM-algorithm [48] is a generalization of the k-means algorithm. In k-

means, we attempt to find centroids that are good representatives. We can

view the set of k centroids as a model that generates the data. Generating a

data set in this model consists of first picking a centroid at random and then

adding some noise. If the noise is normally distributed, this procedure will

result in clusters of spherical shape. Model-based clustering assumes that the

data were generated by a model and tries to recover the original model from

the data. More precisely, the data has been generated from a finite mixture

of k distributions, but that the cluster membership of each data point is not

observed. In the EM-algorithm the log-likelihood is used to calculate the

model parameters θ:

L(θ) = log
n∏
i=1

P (xi|θ) =
n∑
i=1

logP (xi|θ)

The goal of model-based clustering is to determine the parameter θ̂ that

maximizes the log-likelihood:

L(θ̂) = max
θ
L(θ) = max

θ

n∑
i=1

logP (xi|θ)

In the case of k clusters a vector
→
θ= {θ1, · · · , θk} has to be optimized:

L(
→
θ) =

n∑
i=1

logP (xi|
→
θ) =

n∑
i=1

k∑
j=1

logWj + logP (xi|θj)

2.1 Clustering 19

where Wj is the weight of the cluster that represents the number of objects

associated to that cluster.

EM can be applied to many different types of probabilistic modeling. In

case the probability density function (PDF) which is associated to a cluster

C is a multivariate Gaussian in a d-dimensional data space with parameters

µC and ΣC (where µC = (µC,1, ..., µC,d)
T, called the location parameter,

and ΣC is a d × d covariance matrix), the definition of P (x|θ) where θ =

{µ1, · · · , µk,Σ1, · · · ,Σk} is as follows:

P (x|µC ,ΣC) =
1√

(2π)d · |ΣC |
· e−

1
2

(x−µC)T·Σ−1
C ·(x−µC)

The EM algorithm is an iterative procedure where in each iteration step the

mixture model of the k distributions are optimized until no further significant

improvement of the log-likelihood of the data can be achieved. The EM al-

gorithm has similar drawbacks like k-means. As it is initialized by randomly

selecting the parameter vector
→
θ the result heavily depends on the initializa-

tion. Furthermore, like k-means the EM algorithm can get stuck in a local

maximum of the log-likelihood. However, usually a very fast convergence is

observed.

K-Medoid

The k-medoid algorithm is a clustering algorithm related to the k-means

algorithm. In contrast to k-means the cluster representatives are not calcu-

lated means of the points contained in the cluster, but medoids. A medoid

is a object of a cluster, whose average dissimilarity to all the objects in the

cluster is minimal i.e. it is a most centrally located point in the given data

set. The most common realization of k-medoid clustering are the methods

PAM or CLARANS. These algorithms perform two main steps:

1. Initialization, where an initial set of k objects are selected as medoids.

20 2. Survey

2. Evaluation, where they try to minimize an objective function usually

based on the sum of the total distance among non-selected objects and

their medoids, i.e., the evaluation step tries to minimize

n∑
i=1

dist(xi,mj)

where sj ∈ DS and mj ∈M , where M denotes the set of medoids and

dist(xi,mj) < dist(ml, xi),∀mj,ml ∈ M and mj 6= ml. The smaller

the sum of distances among the medoids and all the other objects of

their clusters, the better the clustering.

k-medoids based algorithms have been shown to be more robust than k-

means since they are less sensitive to the existence of outliers and do not

present limitations on continuous attribute types. The drawback of the k-

medoids based algorithms is that they are very time consuming and therefore

cannot be efficiently applied to large data sets. Furthermore, the number of

clusters k has to be selected a priori.

2.1.2 Hierarchical Clustering

In hierarchical clustering the data are not partitioned into a particular clus-

ter in a single step. Instead, a series of partitions takes place, which may

run from a single cluster containing all objects to n clusters each contain-

ing a single object. Hierarchical clustering is subdivided into agglomerative

methods, which proceed by series of fusions of the n objects into groups, and

divisive methods, which separate n objects successively into finer groupings.

Most hierarchical methods belong to the category of agglomerative cluster-

ing. Agglomerative procedures have the drawback that an incorrect merging

of clusters in an early stage often yields results which are far away from the

real cluster structure. Divisive procedures immediately start with interesting

cluster arrangements and are therefore more robust. Since usually agglom-

2.1 Clustering 21

1 5

1

5

a

c
b d

e
f

g
h i

a b c d e f g h i

d
istan

ce
1

2

0

Figure 2.1: Dendrogram (right) for a sample data set (left).

erative procedures are used because of their efficiency, the agglomerative

algorithm will be explained in detail in the following.

Single Link

The most well-known agglomerative hierarchical clustering algorithm is the

Single Link method [153] which requires no input parameters. Given a data

set DS = {x1, · · · , xn} the algorithms perform four steps:

1. Place each point xi ∈ DS in a single Cluster Ci which results in a set

of clusters C = {C1, · · · , Cn}

2. Find the two clusters Ci, Cj ∈ C with the minimum distance to each

other.

3. Merge the clusters Ci and Cj to create a new internal node Cij which

will be the parent of Ci and Cj in the resulting dendrogram. Remove

Ci and Cj from C.

4. Repeat step 2 and 3 until only one cluster in C is left.

In the first step of the algorithm, when each object represents its own

cluster, the distances between the clusters are defined by the chosen distance

function, e.g. Euclidean distance. However, once several objects have been

22 2. Survey

p

MinPts=4

o

p

q

p

qo

Core object density reachability density connectivity

ε

Figure 2.2: Basic notations of DBSCAN.

linked together, a linkage rule is needed to determine the actual distance

between two clusters. Single-Link defines the distance distSL between any

two clusters Ci and Cj as the minimum distance between them:

distSL(Ci, Cj) = min
xi∈Ci,yj∈Cj

dist(xi, xj)

The hierarchical cluster structure is visualized in a tree like structure the so

called dendrogram. The leaves of the dendrogram represent the single data

objects, the root the whole data set and the intermediate levels represent the

different steps of the cluster merging procedure. Figure 2.1 depicts the den-

drogram of an example data set. Using the Single Link method often causes

the chaining phenomenon, also called Single Link effect, which is a direct

consequence of the Single Link approach tending to force clusters together

due to single objects being close to each other regardless of the positions of

other entities in that cluster

Alternatives to the Single Link method are the Complete Linkage [44],

which defines the maximum distance between two clusters Ci and Cj and the

Average Linkage [170], which takes the mean distance between all possible

pairs of objects belonging to the two clusters to be merged. However, both

alternatives are more time consuming than the Single Link approach.

2.1 Clustering 23

2.1.3 Density-based Clustering

The key concept of density-based clustering is the observation that inside

a cluster the density of points is considerably higher than outside a clus-

ter. Furthermore, different clusters are separated by areas of noise, where

the density is lower than inside a cluster. In the following, we present two

approaches for density-based clustering, the DBSCAN algorithm which pro-

duces a partition of the data set, and OPTICS, a hierarchical extension of

DBSCAN.

DBSCAN

The DBSCAN algorithm [55] finds clusters of arbitrary shape and number

without requiring the user to specify the number of clusters k. DBSCAN

relies on a density-based clustering notion: Clusters are connected dense

regions in the feature space that are separated by regions of lower object

density. This idea is formalized by two parameters ε and MinPts, where

for each object of a cluster C the neighborhood of a given radius ε has to

contain at least MinPts objects. These two parameters define the density

of the cluster.

Figure 2.2 illustrates the concepts of density-based clustering given the

definitions necessary for DBSCAN.

An object is called a core object if there exist at least MinPts objects

in the ε-neighborhood. If one object o is in the ε-neighborhood of a core-

object p, then o is said to be directly density-reachable from p. The density-

connectivity is the symmetric, transitive closure of the direct density reach-

ability, and a density-based cluster is defined as a maximal set of density

connected objects.

In contrast to many other partitioning clustering methods such as k-

means and k-medoid methods, DBSCAN can detect clusters of arbitrary

shape and is robust against noise. However, the clustering result strongly

depends on an appropriate choice of the parameters ε and MinPts.

24 2. Survey

Figure 2.3: Reachability plot of OPTICS for three Gaussian clusters.

OPTICS

OPTICS [4] is the hierarchical extension to DBSCAN and avoids the chaining

effect of Single Link by requiring a minimum objects density. Like DBSCAN,

OPTICS requires the two parameters: ε, which describes the maximum dis-

tance (radius) to consider, and MinPts, describing the number of points in

the ε hyper-sphere.

The main idea of OPTICS is, that (for a constant MinPts-value) density-

based clusters w.r.t. a higher density are completely contained in density-

based clusters w.r.t. a lower density. Therefore, OPTICS works like an ex-

tended DBSCAN algorithm, computing the density connected clusters w.r.t.

all parameters εi that are smaller than a generic value ε during a single

traversal of the data set. In contrast to DBSCAN, OPTICS does not assign

cluster memberships, but stores linear order of the data objects according

their hierarchical cluster structure. This cluster structure can be visualized

by a so-called 2-dimensional reachability plot where the objects are plotted

according to the sequence specified in the cluster ordering along the x-axis,

and for each object, its reachability along the y-axis. Figure 2.3 depicts the

2.2 Validation of Clustering Results 25

reachability plot based on the cluster ordering computed by OPTICS for the

sample 2-dimensional data set that comprises three Gaussian clusters. Val-

leys in this plot indicate clusters: objects having a small reachability value

are closer and thus more similar to their predecessor objects than objects

having a higher reachability value.

2.2 Validation of Clustering Results

To compare the performance of different clustering methods usually a class

label has to be assigned to each object which is not used for clustering but

only validation purposes. Standard cost functions, such as the sum of squared

distances from the cluster centers, depend on metric interpretations of the

data. They cannot be used to compare techniques that use different distance

measures. Information-theoretic measures can be used to indicate the match

between cluster labels and class labels. In the following, we present four

different measures that we used in our experiments.

Most information-theoretic measures are based on the mutual information

(MI) of a clustering. Given two clusterings C = {C1, · · · , Cu} and C ′ =

{C ′1, · · · , C ′v} of a data set DS and a contingency table M = [mij]
i=1...u
j=1...v

where mij denotes the number of objects that are common to clusters Ci and

C ′j. Based on this contingency table, various cluster similarity measures can

be built. The mutual information is a symmetric measure that quantifies the

mutual dependence between two random variables, or the information that

C and C ′ share, and is defined as follows:

MI(C,C ′) =
u∑
i=1

v∑
j=1

p(i, j)log
p(i, j)

p(i)p(j)

where p(i, j) denotes the probability that a point belongs to cluster Ci ∈
C and cluster C ′j ∈ C ′. It quantifies the information shared by the two

clusterings and thus can be used as similarity measure in clustering.

26 2. Survey

The Normalized Mutual Information (NMI) [158] is a normalized ver-

sion of the mutual information. The mutual information of two clusterings

C and C ′ is divided by the maximum value of the index. It has fixed upper

and lower bounds and takes a value of 1 if two clusterings are identical and

0 if the two clusterings are independent.

The Adjusted Mutual Information (AMI) [127] is based on the Ex-

pected Mutual Information (EMI), has fixed bounds, and is corrected for

randomness. It takes a value of 1 if the two clusterings are identical and 0 if

the mutual information between the two clusterings equals its expected value.

The Expected Mutual Information (EMI) [127]. Given two cluster-

ing C and C ′ the EMI defines the average mutual information between all

clustering pairs that have the same number of clusters and objects in each

cluster as in C and C ′ respectively. Thus, the average of mutual information

value between all possible pairs of clustering is actually the expected value of

MI(M) over the set of associated contingency tables M . To generate two

random clusterings is done using the permutation model described in [104].

This ensures to correct the measure for randomness.

DOM et al. [49] proposed a measure, referred to as DOM in the following,

that corresponds to the number of bits required to encode the class labels

when the cluster labels are known. If the number of clusters is equal in both

clusterings C and C ′ the measure is equal to the mutual information. In

cases where the number of clusters are different it computes the reduction

in number of bits that would be required to encode the class labels. Small

values for the value refer to good clusterings. We refer to DOM in the rest

of this thesis.

2.3 Classification 27

2.3 Classification

Classification aims at learning a mapping from a vector of features
→
x to a

categorical variable l. The variable to be predicted is called the class label.

Therefore, a training data set is used in order to learn a model. This data

set used for training is of the form {x1, l1, · · · , xn, ln}, where each training

instance xi ∈ DSTRAIN is assigned a class label li ∈ L. This labeling is often

done by experts. The goal is, to learn a function f : DSTRAIN → L that

maps as much objects
→
x of a set of objects DSTRAIN to their correct class

l ∈ L. Many classification methods require a metric distance function dist

as specified in Section 2.1.

In the following, we will describe some common classification algorithms.

2.3.1 Support Vector Machines (SVM)

A Support Vector Machine [38] is a non-probabilistic binary classifier that

performs classification by constructing a d-dimensional maximum margin

hyperplane that optimally separates the data into two groups. A good sep-

aration is achieved by the hyperplane that has the largest distance to the

nearest training data points of any class, since in general the larger the mar-

gin the lower the generalization error of the classifier. Whereas the original

problem may be stated in a finite dimensional space, it often happens that

in that space the sets to be discriminated are not linearly separable. For this

reason, it was proposed that the original finite dimensional space be mapped

into a much higher dimensional space, presumably making the separation

easier in that space. SVM uses a mapping into a larger space so that cross

products may be computed easily and the data can be separated linearly. As

an alternative to maximum margin hyperplane, a soft margin can be used by

specifying a cost factor c which enables the separation of data that can not

be separated linearly. A way to create a non-linear classifier is to replace the

cross product by a nonlinear kernel function. This allows the algorithm to fit

28 2. Survey

the maximum-margin hyperplane in a transformed feature space. The trans-

formation may be nonlinear and the transformed space high dimensional;

thus though the classifier is a hyperplane in the high-dimensional feature

space, it may be nonlinear in the original input space.

SVM is widely used for classification of high-dimensional data which often

occurs in the field of biology or medicine.

2.3.2 K-Nearest Neighbor Classifier (K-NN)

The most basic instance-based method is the k-nearest neighbor method

(kNN). The prediction of class membership for each unlabeled object is based

on the majority class of the k closest training objects. One refinement to the

kNN method is to weight contribution of each of the k neighbors according

to their distance giving greater weight to closer neighbors.

kNN is robust against noisy training data and quite effective when it is

provided a sufficiently large set of training data. However, no model is learned

and thus no information about the training data is given as a result [120].

2.3.3 Naive Bayes (NB)

A Naive Bayes classifier is a simple probabilistic classifier based on applying

Bayes theorem with strong independence assumptions of single features. For

classification, an object is assigned a class label based on the probability of

each class given the object’s feature. However, the independence assumption

is not realistic in many applications. An advantage of the Naive Bayes clas-

sifier is that it only requires a small amount of training data to estimate the

parameters (means and variances of the variables) necessary for classification.

Furthermore, as independent variables are assumed, only the variances of the

variables for each class need to be determined and not the entire covariance

matrix [120, 89].

2.3 Classification 29

2.3.4 Decision Tree (DT)

In Decision tree learning, classification is based on a learned function that is

represented by a decision tree. Each node in the tree specifies a test of some

attribute, and each branch descending from the node corresponds to one of

the possible values for this attribute. The leaves specify the class labels. An

object is classified by traversing the tree by starting at the root node of the

tree, testing the attribute specified by this node, then moving down the tree

branch corresponding to the value of the attribute. This process is repeated

until the leave node is reached which species the class label. In general, each

path from the root to the leaf corresponds to a conjunction of attribute tests,

and the tree itself to a disjunction of these conjunctions. To build the tree,

information gain is used to select the candidate attributes that best separate

the training data according to their class label in each split [145, 146].

2.3.5 Artificial Neutral Networks (ANN)

Artificial neural networks are relatively crude electronic networks of several

layers of neurons based on the neural structure of the brain. In general, the

first layer has input neurons, which send data via synapses to the hidden

layers of neurons, and then via more synapses to the third layer of output

neurons. The synapses store weights that manipulate the data in the cal-

culations. The standard algorithm used for classification is a multi-layered

ANN that is trained using the backpropagation algorithm and the delta rule.

Neural networks are data driven self-adaptive methods in that they can

adjust themselves to the data without any explicit specification of functional

or distributional form for the underlying model. Classification with ANN is

very efficient, even though the time needed for training is very high. However,

too many hidden layers may lead to overfitting [120].

30 2. Survey

2.3.6 Voting Feature Intervals

Demiröz et al. [47] proposed the classification by voting feature intervals

(VFI), a simple entropy-based classifier that constructs intervals for each class

and each feature and records class counts. Each interval can be represented

as a vector < lower, count1, · · · , countk >, where lower denotes the lower

bound and count1, · · · , countk the votes for each class, thus, the number

of objects of each class having an feature value of fi within the interval.

Therefore, each feature participates in the classification by distributing real-

valued votes among classes. Classification is performed by voting. The class

receiving the highest vote is declared to be the predicted class.

2.4 Validation of Classification Results

To estimate the performance of a classifier two different validation techniques

can be applied.

Train and Test. Here, the data set is partitioned into a training and test

set. The classifier is trained on the training set and the obtained model is

then applied to the test set.

n-Fold Cross-Validation. This validation technique is often used in the

case of few training data. Therefore, the training data set is separated into

n subsets of equal size. The classifier is trained on n − 1 subsets and the

remaining subset is used for testing. The cross-validation process is then

repeated n times (the folds), with each of the n subsets used exactly once as

the validation data. In each fold quality measures are averaged to produce a

single estimation.

There are many different quality measures available for evaluating the

classification result. We focus on the most common ones that are used in

this thesis.

Accuracy denotes the proportion of true results (both true positives and

2.4 Validation of Classification Results 31

true negatives) and is given by the following formula:

acc =
TP + TN

|DS|

Precision can be seen as a measure of exactness and is defined as the propor-

tion of the true positives against all the positive results (both true positives

and false positives):

prec =
TP

TP + FP

Recall is a measure of completeness. The definition of the recall is defined

as the proportion of the true positives against all true positives and false

negatives:

recall =
TP

TP + FN

In case of a binary classification the measures Sensitivity and Specificity

can be used. In biomedical application, classification often aims at separating

diseased instances from a healthy control group. The test outcome can be

positive (predicting that the person has the disease) or negative (predicting

that the person does not have the disease). The test results for each subject

may or may not match the subject’s actual state.

• True positive: Diseased subjects correctly diseased as sick

• False positive: Healthy people incorrectly identified as sick

• True negative: Healthy people correctly identified as healthy

• False negative: Diseased people incorrectly identified as healthy.

Sensitivity measures the proportion of actual positives which are correctly

identified as such (e.g. the percentage of subjects who are correctly identified

as having the disease).

sen =
TP

TP + FN

32 2. Survey

Specificity measures the proportion of negatives which are correctly identi-

fied (e.g. the percentage of healthy subjects who are correctly identified as

not having the disease).

spec =
TN

TN + FP

The sensitivity of a classifier, also called the true positive rate corresponds

to the recall of the class representing the diseased individuals. Analogously,

the specificity or true negative rate corresponds to precision of the healthy

class.

2.5 Medical Imaging Technologies

In medicine, different imaging modalities are applied for clinical purposes. In

the following, we describe the most common imaging technologies that are

used in the clinical context for diagnosis or treatments of diseases.

Computed Tomography (CT)

Computed Tomography is a powerful tool in diagnostic medicine producing

three-dimensional cross-sectional images of the inside of an object. The image

is generated from a large series of two-dimensional X-ray images taken around

a single axis of rotation [79]. CT scanning of the head is typically used to

detect infarction, tumors, calcifications, and bone trauma. There are several

advantages that CT has over traditional 2-dimensional medical radiography.

CT completely eliminates the superimposition of images of structures outside

the area of interest. Moreover, even subtle differences between body tissues

can be detected because of the inherent high-contrast resolution of CT.

However, CT is regarded as a moderate- to high-radiation diagnostic tech-

nique [25] [28].

Magnetic Resonance Imaging (MRI)

In contrast to Computed Tomography, magnetic resonance imaging does not

2.5 Medical Imaging Technologies 33

x

z y

Figure 2.4: Slices of an MRI scan.

expose subjects to radiation. MRI uses strong magnetic fields to align atomic

nuclei within body tissues, then uses a radio signal to alter the axis of rotation

of these nuclei and observes the radio frequency signal generated as the nuclei

return to their baseline states. Like CT, MRI traditionally creates a 2-

dimensional image of a thin “slice” of the body. Figure 2.4 exemplarily shows

some of the slices of an MR image of the human brain. Each feature in the

image is called voxel which is defined by the location in x and y direction

and the slice z.

MRI scans provide best contrast between different soft tissues of the body.

Thus, MRI is widely used in imaging the brain, muscles, the heart, and

cancers.

Functional Magnetic Resonance Imaging (fMRI) is a type of specialized

MRI scan that uses MR imaging to measure metabolic changes that take

place in an active part of the brain. fMRI cannot detect absolute activ-

ity of brain regions. It can only detect difference of brain activity between

several conditions. During the fMRI image acquisitions, the patient has to

perform several tasks or is stimulated to trigger several processes or emo-

tions. These conditions are repeated several times and can be separated by

rest periods [128].

34 2. Survey

Diffusion Tensor Imaging (DTI)

DTI uses magnetic resonance imaging (MRI) to allow measuring restricted

diffusion of water through tissue. DTI is a new but rapidly evolving imaging

technology that is able to determine the direction of water diffusion within

cellular structures, such as nerve bundles, or fibers. Basically, magnetic field

variations of the MRI magnet are applied in at least six different directions,

which makes it possible to calculate a tensor for each voxel that shows the

three dimensional shape of the diffusion pattern.

DTI data not only yield information on the integrity of cellular structures,

but this data can also be used to create mathematical representations of the

cellular structures (such as nerve fibers) in three dimensions, which can be

used for diagnosis of specific diseases. Therefore, with DTI, white matter le-

sions can be found that do not show up on other imaging techniques, and can

also be used to localize tumors. The most advanced application is certainly

that of fiber tracking in the brain which provides exciting new opportunities

to study the anatomy of the central nervous system [105].

Part II

Clustering Techniques

Chapter 3

Hierarchical Clustering

Hierarchical clustering methods are widely used in various scientific domains

such as molecular biology, medicine, or economy as dendrograms and sim-

ilar hierarchical representations provide extremely useful insights into the

structure of a data set. Therefore, a large number of hierarchical clustering

methods such as Single Link [153] and its variants [125] or OPTICS [4] have

been proposed. Please refer to Chapter 2.1.2 for a detailed discussion.

A related problem of many existing approaches is that they are order-

sensitive as they may generate different clusters for different orders of the

same input data. Other methods heavily depend on the initialization or may

converge only to a local optimum as they suffer from the inability to perform

adjustments once the splitting or merging decision is made. Single Link and

OPTICS describe the result in form of a dendrogram or a reachability plot.

These hierarchical representations is often hard to interpret even for large

data sets. Many methods that overcome the problems need to specify a

non-intuitive parameter like the number of clusters or the minimum object

density for clustering in OPTICS.

Following four goals are not yet fully satisfied by previous methods: First,

to guide the hierarchical clustering algorithm to identify only meaningful and

38 3. Hierarchical Clustering

valid clusters. Second, to represent each cluster in the hierarchy by an intu-

itive description with, e.g. a probability density function. Third, to consis-

tently handle outliers, ideally by identifying and separating them. Fourth,

to avoid difficult parameter settings in order to provide a fully automatic

hierarchical clustering method. And finally, to be flexible enough finding the

correct hierarchical cluster structure of the data. Most of the existing meth-

ods address one or more of these goals, but do not satisfy all of them.

In this Chapter, two new approaches for hierarchical clustering are pro-

posed. First, Section 3.1 surveys related work in the area of hierarchical,

model-based, information-theoretic clustering and genetic algorithms. Then,

Section 3.2 introduces the algorithm ITCH (Information-Theoretic Cluster

Hierarchies). ITCH is a novel clustering method that is built on a hierar-

chical variant of the information-theoretic principle of Minimum Description

Length (MDL), referred to as hMDL. Interpreting the hierarchical cluster

structure as a statistical model of the data set, it can be used for the effec-

tive data compression by Huffman coding. Using the compression rate as an

objective function for clustering enables ITCH to fulfill the first four goals

mentioned above.

In Section 3.3 the algorithm GACH (Genetic Algorithm for Finding Clus-

ter Hierarchies) is presented which includes all advantages of ITCH, and fur-

thermore, can cope with the last goal mentioned before. GACH integrates

the idea of a Genetic Algorithm (GA) that is a stochastic optimization tech-

nique based on the mechanism of natural selection and genetics. Using this

GA-based stochastic search GACH thoroughly explores the solution space

more effectively than existing methods. GACH does not depend on the ini-

tialization and is flexible enough to find the correct hierarchy that is present

in the data.

3.1 Related Work 39

3.1 Related Work

Hierarchical Clustering. One of the most widespread approaches to hier-

archical clustering is the Single Link algorithm [153] and its variants [170, 44].

The resulting hierarchy obtained by the merging order is visualized as a tree,

which is called dendrogram. Cuts through the dendrogram at various levels

obtain partitioning clusterings. However, for complex data sets it is hard

to define appropriate splitting levels, which correspond to meaningful clus-

terings. Furthermore, outliers may cause the well-known Single Link effect.

OPTICS [4] avoids the Single Link effect by requiring a minimum object

density for clustering, i.e. MinPts number of objects are within a hyper-

sphere with radius ε. Additionally, it provides a more suitable visualization,

the reachability plot. However, the problem that only certain cuts represent

useful clusterings still remains unsolved.

Model-based Hierarchical and Semi-supervised Clustering. [167]

proposes a hierarchical extension of the EM algorithm [48] to speed up query

processing in an object recognition application. In [29] a hierarchical variant

of EM is applied for image segmentation. Goldberger and Roweis [71] focus

on reducing the number of clusters in a mixture model. The consistency with

the initial clustering is assured by the constraint that objects belonging to

the same initial cluster must end up after the reduction in the same new clus-

ter as well. Each of these approaches needs a suitable parameter setting for

the number of hierarchy levels. Clustering respecting some kind of hierarchy

can also be regarded as semi-supervised clustering, i.e. clustering with side

information. In most of some recent studies [110, 16, 13], this information

is introduced by constraints on the objects and typically consists of strong

expert knowledge.

Information Theory in the Field of Clustering. Only a few papers

on compression based clustering, that avoid difficult parameter settings have

40 3. Hierarchical Clustering

been published so far. X-means [133], G-means [75], RIC [18] and OCI [19]

focus on avoiding the choice of k in partitioning clustering by trying to bal-

ance data likelihood and model complexity. This sensitive trade-off can be

rated by model selection criteria, among them the Akaike Information Cri-

terion (AIC), the Bayesian Information Criterion (BIC) and Minimum De-

scription Length (MDL) [73]. X-means provides a parameter-free detection

of spherical Gaussian clusters by a top-down splitting algorithm, which in-

tegrates k-means clustering and BIC. G-means extends this idea to detect

non-spherical Gaussian clusters. The model selection criterion of RIC and

OCI is based on MDL, which allows to define a coding scheme for outliers

and to identify non-Gaussian clusters.

There is a family of further closely related ideas, such as Model-based

Clustering [11], the work of Still and Bialek [156] and the so-called Informa-

tion Bottleneck Method [165], introduced by Tishby et al. This technique

aims at providing a quantitative notation of meaningful or relevant infor-

mation. The authors formalize this perception by finding the best trade-

off between accuracy and complexity when clustering a random variable X,

given a joint probability distribution between X and an observed relevant

variable Y . It is used for clustering terms and documents [155]. However,

all parameter-free algorithms mentioned so far, do not provide any cluster

hierarchy. One recent paper [35] presents a new method for clustering based

on compression. In the first step, this method determines a parameter-free,

universal, similarity distance, computed from the lengths of compressed data

files. Afterwards a hierarchical clustering method is applied. However, this

work was not designed to handle outliers in an appropriate way. Further-

more, no description of the content of a cluster is available.

Genetic Clustering Algorithms. Krishna and Murty [99] introduced a

genetic k-means algorithm (GKA), which determines a global optimal par-

titioning of the given data into a specified number k of clusters. In their

3.1 Related Work 41

approach the clusters inside a chromosome are encoded by strings that hold

the IDs of the clusters in a given order. The selection function of GKA is the

so-called weighted roulette wheel. The total within-cluster variation serves as

a fitness indicator. Paul Scheunders [152] published a genetic variant of the

c-means clustering algorithm (GCMA). The genetic approach affects the run-

time drastically resulting in a trade-off between run time and quality of the

result. Some kind of semi-supervised evolutionary clustering were presented

by [46], which is also a k-means based approach. In [109] the optimization

of a clustering is tried to be achieved by using two fitness functions. Besides

that, the building block construction has a major influence on the behav-

ior of the genetic algorithm. Thus, this algorithm tries to improve a fitness

function concerning the space restrictions on the one hand and concerning

the building blocks on the other hand. One recent approach is the one by

Pernkopf and Bouchaffra [136], which combines the benefits of a GA with

model-based clustering to find a nearly optimal solution for a given number

of clusters. With the help of a MDL criterion the correct number of clusters

is determined fully automatically.

All these methods are only applicable to partitioning clustering and suffer

from the problem that human interaction is still necessary to enter a suitable

k for the number of clusters. The detection of noise and outliers is not

supported at all.

42 3. Hierarchical Clustering

3.2 Information-Theoretic Cluster Hierarchies

In recent years many algorithms for finding hierarchical dependencies be-

tween clusters in a data set have been proposed. However, these methods

often fail to detect the true cluster structure that is present in a data set

even in the presence of noise or outliers. “So how can we decide if a given

representation is really natural, valid, and therefore meaningful?” and “How

can we enforce a hierarchical clustering algorithm to identify only the mean-

ingful cluster structure?” We give the answer to these questions by relating

the hierarchical clustering problem to that of information theory and data

compression where we interpret the cluster hierarchy as a statistical model

of the data set, which defines more or less likely areas of the data space. The

knowledge of these probabilities can be used for an efficient compression of

the data set: Following the idea of (optimal) Huffman coding, we assign few

bits to points in areas of high probability and more bits to areas of low proba-

bility. The compression becomes the more effective, the better our statistical

model, the hierarchical cluster structure, fits to the data. In this Chapter

a new hierarchical clustering algorithm, called ITCH is proposed that relies

on a hierarchical variant of the MDL criterion (hMDL) and overcomes the

following limitations of existing approaches:

1. All single clusters as well as their hierarchical arrangement are guaran-

teed to be meaningful. Nodes only are placed in the cluster hierarchy

if they improve the data compression. This is achieved by optimizing

the hMDL criterion. Moreover, a maximal consistency with partition-

ing clustering methods is obtained.

2. Each cluster is represented by an intuitive description of its content

in form of a Gaussian probability density function (PDF). The output

of conventional methods is often just the (hierarchical) cluster structure

and the assignment of points.

3. ITCH is outlier-robust. Outliers are handled by assigning them to the

3.2 Information-Theoretic Cluster Hierarchies 43

root of the cluster hierarchy or to an appropriate inner node, depending

on the degree of outlierness.

4. ITCH is fully automatic meaning that no difficult parameter settings

are necessary.

The rest of this Chapter is organized as follows. Section 3.2.1 introduces

the hMDL criterion underlying ITCH. Section 3.2.4 provides the details of

the new ITCH algorithm. Several comparative experiments using synthetic

and real-world data sets show the performance and the effectiveness of ITCH

in Section 3.2.5. Parts of the material presented in this Chapter have been

published in [20].

3.2.1 Information-theoretic Hierarchical Clustering

The clustering problem is highly related to that of data compression: The

detected cluster structure can be interpreted as a PDF fΘ(x) where Θ =

{θ1, θ2, ...} is a set of parameters, and the PDF can be used for an efficient

compression of the data set. It is well-known that the compression by Huff-

man coding is optimal if the data distribution really corresponds to fΘ(x).

Huffman coding represents every point x by a number of bits which is equal

to the negative binary logarithm of the PDF:

Cdata(x) = − log2(fΘ(x)).

The better the point set corresponds to fΘ(x), the smaller the coding costs

Cdata(x) are. Hence, Cdata(x) can be used as the objective function in an

optimization algorithm. However, in data compression, Θ serves as a code

book which is required to decode the compressed data set again. Therefore,

we need to complement the compressed data set with a coding of this code

book, the parameter set Θ. When, for instance, a Gaussian Mixture Model

(GMM) is applied, Θ corresponds to the weights, the mean vectors and the

44 3. Hierarchical Clustering

variances of the single Gaussian functions in the GMM. Considering Θ in the

coding costs is also important for the clustering problem, because neglecting

it leads to overfitting. For partitioning (non-hierarchical) clustering struc-

tures, several approaches have been proposed for the coding of Θ [73, 133].

These approaches differ from each other because there is no unambiguous

and natural choice for a distribution function, which can be used for the

Huffman coding of Θ, and different assumptions lead to different objective

functions. In case of the hierarchical cluster structure in ITCH, a very nat-

ural distribution function for Θ exists: With the only exception of the root

node, every node in the hierarchy has a parent node. This parent node is

associated to a PDF which can naturally be used as a code book for the

mean vector (and indirectly also for the variances) of the child node. The

coding costs of the root node, however, is not important, because every valid

hierarchy has exactly one root node with a constant number of parameters,

and therefore, the coding costs of the root node is always constant.

3.2.2 Hierarchical Cluster Structure

In this Section, we formally introduce the notion of a hierarchical cluster

structure (HCS). A HCS contains clusters {A,B, ...} each of which is repre-

sented by a Gaussian distribution function. These clusters are arranged in a

tree:

Definition 1 (Hierarchical Cluster Structure) (1) A HCS is a tree

T = (N , E) consisting of a set of nodes N = {A,B, ...} and a set of directed

edges E = {e1, e2, ...} where A is a parent of B (B is a child of A) iff (A,B) ∈
E. Every node C ∈ N is associated to a weight WC and a Gaussian PDF

defined by the parameters µC and ΣC such that the sum of the weights equals

one: ∑
C∈N

WC = 1.

3.2 Information-Theoretic Cluster Hierarchies 45

(2) If a path from A to B exists in T (or A = B) we call A an ancestor of

B (B a descendant of A) and write B v A.

(3) The level lC of a node C is the height of the descendant subtree. If C is

a leaf, then C has level lC = 0. The root has the highest level (length of the

longest path to a leaf).

The PDF which is associated to a cluster C is a multivariate Gaussian in

a d-dimensional data space which is defined by the parameters µC and ΣC

(where µC = (µC,1, ..., µC,d)
T is a vector from a d-dimensional space, called

the location parameter, and ΣC is a d×d covariance matrix) by the following

formula:

N(µC ,ΣC , x) =
1√

(2π)d · |ΣC |
· e−

1
2

(x−µC)T·Σ−1
C ·(x−µC).

For simplicity we restrict ΣC = diag(σ2
C,1, ..., σ

2
C,d) to be diagonal such that

the multivariate Gaussian can also be expressed by the following product:

N(µC ,ΣC , x) =
∏

1≤i≤d

N(µC,i, σ
2
C,i, xi)

=
∏

1≤i≤d

1√
2πσ2

C,i

· e
−

(xi−µC,i)
2

2σ2
C,i .

Since we require the sum of all weights in a HCS to be 1, a HCS always defines

a function whose integral is ≤ 1. Therefore, the HCS can be interpreted as a

complex, multimodal, and multivariate PDF, defined by the mixture of the

Gaussians of the HCS T = (N , E):

fT (x) = max
C∈N
{WCN(µC ,ΣC , x)}with

∫
Rd
fT (x)dx ≤ 1.

If the Gaussians of the HCS do not overlap much, then the integral becomes

close to 1.

46 3. Hierarchical Clustering

The operations, described in Section 3.2.4, assign each point x ∈ DB to a

cluster of the HCS T = (N , E). We distinguish between the direct and the

indirect association. A point is directly associated to that cluster C ∈ N the

probability density of which is maximal at the position of x, and we write

C = Cl(x) and also x ∈ C, with:

Cl(x) = arg max
C∈N
{WC ·N(µC ,ΣC , x)} .

One of the main motivations of our hierarchical, information-theoretic clus-

tering method ITCH is to represent a sequence of clustering structures which

range from a very coarse (unimodal) view to the data distribution to a very

detailed (multi-modal) one, and that all these views are meaningful and rep-

resent an individual complex PDF. The ability to cut a HCS at a given level

L is obtained by the following definition:

Definition 2 (Hierarchical Cut) A HCS T ′ = (N ′, E ′) is a hierarchical

cut of a HCS T = (N , E) at level L (in symbols: T ′ = HCL(T)), if the

following properties hold:

(1) N ′ = {A ∈ N|lA ≥ L},
(2) E ′ = {(A,B) ∈ E|lA > lB ≥ L},
(3) For each A ∈ N ′ the following properties hold:

W ′
A =

{
WA if lA > L∑

B∈N ,BvAWB otherwise,

where WC and W ′
C is the weight of node C in T and T ′, respectively.

(4) Analogously, for the direct association of points to clusters the following

property holds: Let x be associated to Cluster B in T , i.e. Cl(x) = B. Then

in T ′, x is associated to:

Cl′(x) =

{
B if lB ≥ L

A|B v A ∧ lA = L otherwise.

3.2 Information-Theoretic Cluster Hierarchies 47

Here, the weights of the pruned nodes are automatically added to the leaf

nodes of the new HCS, which used to be the ancestors of the pruned nodes.

Therefore, the sum of all weights is maintained (and still equals 1), and the

obtained tree is again a HCS according to Definition 1. The same holds for

the point-to-cluster assignments.

3.2.3 Generalization of the MDL Principle

So how can we generalize the MDL principle for hierarchical clustering? Our

new objective function hMDL ensures that in the HCS nodes only pay off if

they optimize the overall data compression. Following the traditional MDL

principle, we compress the data points according to their negative log likeli-

hood corresponding to the PDF which is given by the HCS. In addition, we

penalize the model complexity by adding the code length of the HCS param-

eters to the negative log likelihood of the data. In a HCS, we can exploit

the fact that the parameters of a child node typically fit well into the PDF

of the parent node. The better the PDFs of child nodes fit into the PDFs

of the parent, the less the coding costs will be. Therefore, the overall coding

costs corresponds to the natural notion of a good hierarchical representation

of data by distribution functions. The discrete assignment of points to clus-

ters allows us to determine the coding costs of the points clusterwise and

dimensionwise, as explained in the following: The coding costs of the points

associated to the clusters C ∈ N of the HCS T = (N , E) corresponds to:

Cdata = − log2

∏
x∈DB

max
C∈N

{
WC

∏
1≤j≤d

N(µC,j, σ
2
C,j, xj)

}
.

Since every point x is associated to that cluster C in the HCS which has max-

imum probability density, we can rearrange the terms of the above formula

and combine the costs of all points that are in the same cluster:

48 3. Hierarchical Clustering

= −
∑
x∈DB

log2

(
WCl(x)

∏
1≤j≤d

N(µCl(x),j, σ
2
Cl(x),j, xj)

)
= −

((∑
C∈N

nWC log2WC

)
+

+

(∑
x∈DB;

∑
1≤j≤d

log2N(µCl(x),j, σ
2
Cl(x),j, xj)

))
= −

∑
C∈N

(
nWC log2WC +

∑
x∈C;

∑
1≤j≤d

log2N(µC,j, σ
2
C,j, xj)

)
.

The ability to model the coding costs of each cluster separately allows us

now, to focus on a single cluster, and even on a single dimension of a single

cluster.

A common interpretation of the term −nWC log2WC , which actually

comes from the weight a single Gaussian contributes to the GMM, is a Huff-

man coding of the cluster ID. We assume that every point carries the infor-

mation which cluster it belongs to, and a cluster with many points gets a

shortly coded cluster ID. These costs are referred to the ID cost of a cluster

C. Lets consider two clusters, A and B, where B v A. We now want to

derive the coding scheme for the cluster B and its associated points, given

the hierarchical relationship between A and B. Several points are associated

with B, where the overall weight of assignment sums up to WB. When cod-

ing the parameters of the associated PDF of B, i.e. µB, and σB, we have to

consider two aspects:

1. The precision both parameters should be coded to minimize the overall

description length depends on WB, as well as on σB. For instance, if

only few points are associated to cluster B and/or the variance σB is

very large, then it is not necessary to know the position of µB very

precisely and vice versa.

3.2 Information-Theoretic Cluster Hierarchies 49

μB μB
0.5b−1

μB

μA

μB

μ∼μ∼

μ
B

μ
B

μ
B

μ
BμBμB

B −0.5
b

B +0.5
b

B −0.5
b

B +0.5
b

(a) Exact coding of µB .

μB μB
0.5b−1

μB

μA

μB

μ∼μ∼

μ
B

μ
B

μ
B

μ
BμBμB

B −0.5
b

B +0.5
b

B −0.5
b

B +0.5
b

(b) Inexact coding of µB .

mB

~
mB

~

mB mB

0.5b-1

mB

mA

mB

(c) Gaussians w.r.t. different
grid positions.

mB

~
mB

~

mB mB

0.5b-1

mB

mA

mB

(d) All possible values for recovered
µB .

Figure 3.1: Optimization of the grid resolution for the hMDL criterion.

50 3. Hierarchical Clustering

2. The knowledge of the PDF of cluster A can be exploit for the coding

of µB, because for likely positions (according to the PDF of A) we can

assign fewer bits following the principle of Huffman coding.

Basically, model selection criteria, such as the Bayesian Information Criterion

(BIC) or the Aikake Information Criterion (AIC) already address the first

aspect, but not the hierarchical aspect (2). In contrast to BIC, which uses

the natural logarithm, we use the binary logarithm to represent the code

length in bits.

For simplicity, we assume that our PDF is univariate and the only pa-

rameter is its mean value µB. That means, we neglect σB by assuming e.g.

some fixed value for all clusters. We drop these assumptions at the end of

this Section. When the true PDF of cluster B with parameter µB is coded

inexactly by some parameter µ̃B, the coding costs for each point x (which

truly belongs to the distribution N(µB, σ
2
B, x)) in B is increased compared

to the exact coding of µB, which would result in cex bits per point:

cex =

∫ +∞

−∞
− log2(N(µB, σ

2
B, x)) ·N(µB, σ

2
B, x) dx

= log2(σB
√

2π · e).

If µ̃B instead of µB is applied for compression, we obtain:

c(µ̃B, µB) =

∫ +∞

−∞
− log2(N(µ̃B, σ

2
B, x)) ·N(µB, σ

2
B, x)dx.

The difference is visualized in Figure 3.1(a) and 3.1(b) respectively: In 3.1(a)

µ̃B of the coding PDF, depicted by the Gaussian function, fits exactly to µB

of the data distribution, represented by the histogram. This causes minimum

code lengths for the compressed points but also a considerable effort for the

coding of µB. In Figure 3.1(b) µB is coded by some regular quantization

grid. Thereby, the costs for the cluster points slightly increase, but the costs

for the location parameter decreases. The difference between µ̃B and µB

3.2 Information-Theoretic Cluster Hierarchies 51

depends on the bit resolution and on the position of the quantization grid.

One example is depicted in Figure 3.1(b) by five vertical lines, the Gaussian

curve is centered by the vertical line closest to µB. We derive lower and

upper limits of µ̃B ∈ [µB− 1/2b...µB + 1/2b] from the number of bits b, spent

for coding µ̃B. The real difference between µB and µ̃B depends again on

the grid position. Not to prefer clusters that are incidentally aligned with

the grid cells, we average over all possible positions of the discretization grid.

Figure 3.1(c) presents five different examples of the infinitely many Gaussians

that could be recovered w.r.t. different grid positions. Note that all positions

inside the given interval have equal probability. Hence, the average coding

costs for every possible position of µ̃B can be expressed by the following

integral:

cappx(b) = 2b−1

∫ µB+1/2b

µB−1/2b
c(µ̃B, µB) dµ̃B

=
1

2
log2(π · e · σ2

B) +
1

2
+

log2 e

6σ2
B

· 4−b.

Coding all n ·WB coordinates of the cluster points as well as the parameter

µB (neglecting the ID cost) requires then the following number of bits:

Cappx(B) = cappx(b) · n ·WB + b.

The optimal number bopt of bits is determined by setting the derivation of

the above term to zero.

d

db
Cappx(B) = 0 =⇒ bopt =

1

2
log2(

n ·WB

3 · σ2
B

).

The unique solution to this equation corresponds to a minimum, as can easily

be seen by the second derivative.

Utilization of the Hierarchical Relationship. We do not want to code

52 3. Hierarchical Clustering

the (inexact) position of µB without the prior knowledge of the PDF, associ-

ated to cluster A. Without this knowledge, we would have to select a suitable

range of values and code µB at the determined precision b assuming e.g. a

uniform distribution inside this range. In contrast, µB is a value taken from

the distribution function of cluster A. Hence, the number of bits used for

coding of µB corresponds to the overall density around the imprecise interval

defined by µB, i.e.

chMDL(µB) = − log2

∫ µB+1/2b

µB−1/2b
N(µA, σ

2
A, x) dx.

Figure 3.1(d) visualizes the complete interval of all possible values for the

recovered mean value (marked in red) and illustrates the PDF of the clusterA,

which is the predecessor of cluster B. µ̃B can be coded by determining

the whole area under the PDF of A where µ̃B could be. The area actually

corresponds to a probability value. The negative logarithm of this probability

represents the required code length for µB. The costs for coding all points of

cluster B and µB then corresponds to

cappx(b) · n ·WB + chMDL(µB).

Note, that it is also possible to optimize b directly by setting the derivative

of this formula to zero. However, this is impossible in an analytic way, and

the difference to the optimum which is obtained by minimizing Cappx(B)

is negligible. In addition, if the parent A of B is not the root of the HCS,

µB causes some own ID cost. In this case, µB is a sample from the complex

distribution function of the hierarchical cut (cf. Definition 2), which prunes

the complete level of B and all levels below. Hence, the weight of these

levels is added to the new leaf nodes (after cutting), and the ID costs of µB

correspond to:

− log2 (
∑
XvA

WX).

3.2 Information-Theoretic Cluster Hierarchies 53

A similar analysis can be done for the second parameter of the distribution

function, σB. Since it is not straightforward to select a suitable distribution

function for the Huffman coding of variances, one can apply a simple trick:

Instead of coding σB, we code yB = µB±v ·σB, where v is a constant close to

zero. Then, yB is also a sample from the distribution function N(µA, σ
2
A, x)

and can be coded similar to µB. Therefore, chMDL(σB) = chMDL(µB),

and we write chMDL(param) for the coding costs per parameter instead. In

general, if the PDF, which is associated with a cluster has r parameters, then

the optimal number of bits can be obtained by the formula:

bopt =
1

2
log2(

n ·WB

3 · r · σ2
B

).

And the overall coding costs are:

ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

Until now, only the trade-off between coding costs of points and the parame-

ters of the assigned cluster are taken into account. If we go above the lowest

level of the HCS, we have to trade between coding costs of parameters at a

lower level and coding costs of the parameters at the next higher level. This

can be done in a similar way as before: Let bB be the precision, which has

already been determined for the representation of µB and σB, the parameters

for cluster B, which is a subcluster of A. However, this is the minimum cod-

ing costs assuming that µA and σA have been stored at maximum precision,

and that µB and σB are also given. Now, we assume that µB is an arbitrary

point selected from the distribution function N(µA, σ
2
A, x) and determine an

expectation for the cost:∫ +∞

−∞
− log2

∫ µB+1/2bB

µB−1/2bB
N(µA, σ

2
A, x)dx N(µA, σ

2
A, µB)dµB.

54 3. Hierarchical Clustering

Finally, we assume that µA is also coded inexactly by its own grid with

resolution bA. Then the expected costs are:

2bA−1

∫ µA+1/2bA

µA−1/2bA

∫ +∞

−∞

(
− log2

∫ µB+1/2bB

µB−1/2bB
N(y, σ2

A, x) dx

)
·

·N(µA, σ
2
A, µB) dµB dy.

Since it is analytically impossible to determine the optimal value of bA, we

can easily get an approximation of the optimum by simply treating µB and

σB like the points which are directly associated to the cluster A. The only

difference is the following. While the above integral considers that the PDF

varies inside the interval [µB−1/2bB , µB +1/2bB] and determines the average

costs in this interval, treating the parameters as points only considers the

PDF value at one fixed position. This difference is negligible provided that

σB < σA, which makes sense as child clusters should usually be much smaller

(in terms of σ) than their parent cluster.

Coding Costs for a Cluster. Summarizing, the coding costs for a cluster

can be obtained as follows:

(1) Determine the optimal resolution parameter for each dimension according

to the formula:

bopt =
1

2
log2(

n ·WB + r ·#ChildNodes(B)

3 · r · σ2
B

).

(2) Determine the coding costs for the data points and the parameters ac-

cording to:

ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

(3) Add the costs obtained in step (2) to the ID costs of the points (−nWB log2(WB))

and of the parameters (− log2(
∑

XvAWX)). Whereas the costs determined

3.2 Information-Theoretic Cluster Hierarchies 55

in (2) are individual in each dimension the costs in (3) occur only once per

stored point or parameter set of a cluster.

Coding Costs for the HCS. The coding costs for all clusters sum up to

the overall coding costs of the hierarchy where we define constant ID costs

for the parameters of the root:

hMDL =
∑
C∈N

(
ChMDL(C)− nWC log2(WC)− log2(

∑
Xvparent of C

WX)

)
·

3.2.4 Algorithm ITCH

This Section is devoted to efficient heuristics for obtaining and optimizing

the HCS according to hMDL. Basically, we optimize our objective function

in an EM-like clustering algorithm ITCH where all clusters compete for data

points. Reassignment of objects and re-estimation of the parameters of the

HCS are done interchangeably until convergence. Additionally, starting from

a suitable initialization, ITCH periodically modifies the HCS by two opera-

tions, delete and collapse.

Initialization of the HCS. Clustering algorithms that follow the EM-

scheme have to be suitable initialized before starting with the actual iter-

ations of E-step and M-step. An established method for the flat EM algo-

rithm is to initialize with the result of a k-means clustering. This is typically

repeated several times with different seeds and the result with best mean

squared overall deviation from the cluster centers is taken. Following this

idea, ITCH uses a initialization hierarchy determined by a bisecting k-means

algorithm taking the hMDL value of the HCS as a stopping criterion for

partitioning. First, a root node that contains all points is created. Then

this root node is partitioned into two subclusters by applying k-means with

k = 2. This is done recursively until the hMDL of the binary HCS does

56 3. Hierarchical Clustering

not improve anymore within three steps. This ensures not to get stuck in a

local minimum. Finally, after the best hierarchy is selected, µC and ΣC are

determined for each node C according to Section 3.2.3, and equal weights

are assigned to the nodes.

E-step and M-step. As indicated before, the points can be assigned di-

rectly and indirectly to the clusters of the HCS. Whenever a point is asso-

ciated directly to a cluster C then it is also indirectly associated to every

ancestor of C in the HCS. Nevertheless, points can also be directly associ-

ated not only to leaf nodes but also to inner nodes of the HCS. For instance,

if a point pi is an outlier that does not fit to any of the most specific clusters

at the bottom level of the hierarchy, then pi has to be associated to an inner

node or even the root of the HCS.

As established in Section 3.2.2, the clusters at all levels of the HCS com-

pete for the data points. A point x is directly associated to that Cluster

C ∈ N the probability density function of which is maximal:

Cl(x) = arg max
C∈N
{WC ·N(µC ,ΣC , x)} .

In the E-step of our hierarchical clustering algorithm, the direct association

Cl(x) for every object x is updated. Whereas, in the E-step only the direct

association is used (or updated) in the M-step which updates the location and

scale parameters of all clusters we use both the direct and indirect association.

The motivation is the following: The distribution function of every node in

the HCS should always represent the whole data set in this branch of the tree,

and the root node should even represent the complete data set. Therefore,

for the location and scale parameters, all directly and indirectly associated

objects are considered, as in the following formulas:

3.2 Information-Theoretic Cluster Hierarchies 57

µC =

∑
B∈N ,BvC

(∑
x∈B x

)∑
B∈N ,BvC |B|

σ2
C,j =

∑
B∈N ,BvC

(∑
x∈B(xj − µC,j)2

)∑
B∈N ,BvC |B|

ΣC = diag(σ2
C,1, ..., σ

2
C,d).

In contrast, the weights WC of each cluster in the HCS should reflect how

strong the individual Gaussian in the overall mixture of the HCS is and sum

up to 1 in order to define a valid PDF with an integral over the complete data

space of 1. Therefore, we only apply the direct association to the update rule

of the cluster weight, and we obtain:

WC = |C|.

Rearrangement of the HCS. The binary HCS that results from the ini-

tialization step does not limit our generality. ITCH is flexible enough to

reconstruct the HCS and thereby to change it into a general one. Given a

binary hierarchy which is deeper than any n-ary hierarchy with n > 2 ITCH

aims in flattening the HCS as far as the rearrangement improves our hMDL

criterion.

Therefore we trade off the following operations to eliminate clusters that do

not pay off any more:

• delete one node or

• collapse a node with all child nodes.

Figure 3.2 visualizes the operations for an extract of a given HCS. By deleting

a cluster C from the HCS the child nodes of C become child nodes of the par-

ent of C (Figure 3.2(b)). By collapsing C, all of its child nodes are merged

into a new cluster C ′ (including C), and therefore all of their child nodes

58 3. Hierarchical Clustering

C

C

(a) Initial state. (b) Deletion.

C´
C´

(c) Collapse.

Figure 3.2: Restructuring operations of ITCH.

become child nodes of C ′ (Figure 3.2(c)). Afterwards, all points are redis-

tributed and E-step and M-step are performed alternately until convergence.

Thus, the point to cluster assignment expressed by the weights may change.

ITCH processes the rearrangement in an iterative way. In each iteration it

tentatively deletes and collapses each node in the HCS and performs E- and

M-steps. The node and the operation that improves the hMDL criterion

best, lets call it winner cluster, is selected and then the local neighborhood

(parent, child and sibling nodes) is processed. These steps, detecting the

winner cluster and processing the local neighborhood, are performed until

convergence.

3.2.5 Experiments

This Section provides an extensive experimental evaluation on synthetic and

real-world data sets. In all experiments, the input parameters of all methods

have been optimized in terms of quality and the best results have been re-

ported in order to achieve a fair comparison. Since ITCH is a hybrid approach

combining the benefits of hierarchical, model-based and parameter-free clus-

tering, we compare to algorithms of these classes to demonstrate the effective-

ness of ITCH. More precisely, we selected the hierarchical clustering method

Single Link [153], OPTICS [4], a more outlier-robust hierarchical clustering

algorithm, and RIC [18] an outlier-robust and parameter-free state-of-the-art

3.2 Information-Theoretic Cluster Hierarchies 59

algorithm to model-based clustering. Class labels are assigned to the data

which was used only for evaluation but not for clustering. To relieve evalu-

ation w.r.t. outliers, we added a color bar below the dendrograms of Single

Link and the reachability plots of OPTICS, where colors refer to the class

labels in the original data. A quantitative comparison is performed using the

quality measures described in Section 2.2.

Synthetic Data

First, ITCH has been evaluated on several synthetic data sets. Exemplary,

the results on two data sets named DS1 and DS2 are shown. Data set DS1

comprises 3,662 2-dimensional points that form a hierarchy of 12 clusters. At

the bottom level, seven Gaussian clusters are located. The data set contains

several outliers at different levels of the hierarchy, cf. Figure 3.3(a).

DS2 is a non-hierarchical data set that is composed of two Gaussian

clusters with 1,650 points each, overlapping in the marginal area without

any global outliers (cf. Figure 3.4(a)).

Table 3.1: Quantitative evaluation on DS1.

ITCH RIC OPTICS Single Link

NMI 0.9895 0.8665 0.9585 0.9555
AMI 0.9894 0.8453 0.9461 0.9632
Prec 0.9958 0.8589 0.9654 0.9903
Rec 0.9956 0.8883 0.9719 0.9601
DOM 0.1334 0.4279 0.2167 0.2142

60 3. Hierarchical Clustering

(a) Synthetic data set DS1. (b) Result of RIC.

0 04

0.06

0.08

0.1

Cut w.r.t. reachability
distance = 0.025

0

0.02

0.04

(c) Result of OPTICS.

Cut w.r.t distance = 10

(d) Result of Single Link.

(e) Result of ITCH including the PDFs for each cluster at level 0 and 1.

Figure 3.3: Experimental evaluation on synthetic data set DS1.

3.2 Information-Theoretic Cluster Hierarchies 61

Experimental Evaluation on DS1. In order to apply RIC to the hierar-

chical data set, we preprocessed DS1 with Single Link and applied RIC as

postprocessing step. Figure 3.3(b) demonstrates the result of RIC (Precision:

85.89% Recall: 88.88%). It is obvious that RIC fails to successfully filter out

all outliers. More precisely, RIC assigns points (marked by a dark blue and

orange triangle in the original data) that obviously are outliers w.r.t. two

clusters on the left upper and lower side misleadingly to clusters. Also a

majority of the red outliers are incorrectly identified as cluster points. Fig-

ure 3.3(c) shows the result of OPTICS on DS1 with a cut at reachability

distance = 0.025. As Clusters can be recognized as valleys in the reacha-

bility plot, OPTICS yields a satisfactory result (Precision: 96.54% Recall:

97.19%). Also, the hierarchy produced by Single Link (Figure 3.3(d)) re-

flects the true hierarchy quite well. A cut through the hierarchy at distance

= 10 produces seven disjoint clusters. However, in terms of accuracy Single

Link and OPTICS show worse results than ITCH (cf. Table 3.1). ITCH

is the best method to detect the true cluster hierarchy including outliers

fully automatically (Precision: 99.58% Recall: 99.56%), and ITCH provides

meaningful models on the data for each level of the hierarchy (Figure 3.3(e)).

Futhermore, considering all quality measures, the result of ITCH is best in

terms of effectiveness.

Table 3.2: Quantitative evaluation on DS2.

ITCH RIC OPTICS Single Link

NMI 0.9586 0.0000 0.0000 0.0000
AMI 0.9586 0.0000 0.0000 0.0000
Prec 0.9949 0.2521 0.2521 0.5000
Rec 0.9948 0.5021 0.5021 1.0000
DOM 0.0332 0.6956 0.6956 0.6956

62 3. Hierarchical Clustering

(a) Synthetic data set DS2. (b) Result of RIC.

(c) Result of OPTICS. (d) Result of Single Link.

(e) Result of ITCH including the PDFs for both clusters at level 0.

Figure 3.4: Experimental evaluation on synthetic data set DS2.

3.2 Information-Theoretic Cluster Hierarchies 63

Experimental Evaluation on DS2. Figure 3.4(b) demonstrates that RIC

merges the two Gaussian clusters into only one cluster. Also with OPTICS,

it is impossible to detect the true structure of DS2. The color bar in Fig-

ure 3.4(c) indicates that OPTICS assigns the points in an almost arbitrary

order. Even when increasing the parameter for the minimum object density

per cluster to a large value, OPTICS fails in detecting two clusters. Single

Link miscarries due to the massive Single Link effect (Figure 3.4(d)). Here,

OPTICS is not suitable to cure that problem. Moreover, the hierarchies gen-

erated by OPTICS and Single Link are overly complex but do not capture any

cluster structure. Hence, for quantitative evaluation we assigned all points

to one cluster. Only ITCH discovers a meaningful result without requiring

any input parameters (Precision: 99.49% Recall: 99.48%). All clusters that

do not pay off w.r.t. our hMDL are pruned and hence, only two Gaussian

clusters remain which are described by an intuitive description in form of a

PDF (Figure 3.4(e)). The quantitative comparison of all methods is given in

Table 3.2.

Table 3.3: Quantitative evaluation on glass data.

ITCH RIC OPTICS Single Link

NMI 0.3390 0.1221 0.4029 0.4110
AMI 0.3222 0.0804 0.3092 0.3085
Prec 0.5350 0.1710 0.4739 0.3812
Rec 0.3551 0.1822 0.4626 0.4393
DOM 1.4805 1.5872 1.2980 1.5010

64 3. Hierarchical Clustering

29 headlamps9 tableware13 containers0 vehicle76 building17 vehicle70 building

float processed non float processed

window glass non window glass

glass types

building vehicle building vehicle container tableware headlamps

non float
processed

non
window glass

window
glass

float
processed

(a) Hierarchy in the original data set.

Cut w.r.t.
di 1 6distance = 1.6

(b) Result of Single Link.

1

1.5

2

Cut w.r.t. reachability
distance = 0.25

0

0.5

(c) Result of OPTICS.

(d) Result of ITCH.

Figure 3.5: Hierarchical clustering of 9-dimensional glass data (214 in-
stances). Figure 3.5(a) provides information about the number of instances,
which are associated with the particular classes in the original data set.

3.2 Information-Theoretic Cluster Hierarchies 65

Real World Data

In addition to the synthetic data sets, the effectiveness of ITCH has been

evaluated by using several real-world data sets available at UCI 1.

Glass Data. The Glass Identification data set comprises nine numerical

attributes representing different glass properties. 214 instances are labeled

according to seven different types of glass that form a hierarchy as presented

in Figure 3.5(a). ITCH perfectly separates window glass from non window

glass. Additionally, tableware and containers are almost perfectly separated

from headlamps. ITCH arranges the subclusters of window glass in the same

subtree. Some outliers are directly assigned to the cluster window glass. In

contrast to ITCH, neither Single Link nor OPTICS separates window glass

from non window glass perfectly as can be seen from the color bars below the

plots (cf. Figures 3.5(b) and 3.5(c)). Containers and tableware do not form

discrete clusters but are constituted as outliers instead. In the dendrogram

only the headlamps can be identified clearly, whereas in the reachability plot

this cluster is split into two clusters. Nevertheless, both approaches do not

reflect the original hierarchy successfully. As it is not clear where to define an

adequate cut through the dendrogram we applied RIC at the bottom level.

This results in only two clusters without any separation between window or

non window glass. Table 3.3 summarizes the quantitative evaluation on this

data set. For OPTICS, the results refer to the partitioning clustering with a

maximum reachability distance of 0.25. For Single Link, a cut through the

dendrogram at distance = 1.6 was used for the computation. In terms of

precision, ITCH outperforms all other methods.

Cancer Data. The Breast Cancer Wisconsin data set contains 569 in-

stances each describing 30 different characteristics of the cell nuclei present

in an digitized image of a breast cancer mass. There are two classes benign

1http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

66 3. Hierarchical Clustering

Cut w r tCut w.r.t.
distance = 60

(a) Result of Single Link.

1

1.5

2

Cut w.r.t. reachability
distance = 0.35

0

0.5

(b) Result of OPTICS.

(c) Result of ITCH.

Figure 3.6: Hierarchical clustering of 30-dimensional breast cancer data (569
instances).

3.2 Information-Theoretic Cluster Hierarchies 67

Table 3.4: Quantitative evaluation on cancer data.

ITCH RIC OPTICS Single Link

NMI 0.3832 0.4595 0.2835 0.3097
AMI 0.2044 0.3612 0.2518 0.2127
Prec 0.9574 0.9846 0.8033 0.8884
Rec 0.2830 0.6608 0.7575 0.6626
DOM 0.2635 0.3022 0.4752 0.4771

and malignant, represented by the colors blue and red, respectively. Both,

the dendrogram of Single Link, and the reachability plot of OPTICS show a

massive chaining effect (see Figures 3.6(a) and 3.6(b)). Even though, a cut

at reachability distance = 0.35 in the OPTICS plot results in three clusters.

However, no real cluster structure is visible within the clusters. The same

holds for the Single Link dendrogram. The color bars below the dendrogram

and the OPTICS plot indicate that both methods fail to separate benign

from malignant objects. For separating the two classes we applied RIC on

top of a k-Means clustering with k=15. However, RIC also fails to separate

the two classes and results in three mixed clusters with objects of class be-

nign and malignant. In contrast, despite the high dimensionality of the data,

ITCH almost perfectly separates the benign from the malignant cells which

are then split into different subclusters (cf. Figure 3.6(c)). Table 3.4 gives

the quantitative evaluation of the results with a cutoff value = 60 for Single

Link and a cut w.r.t. reachability distance = 0.35 for OPTICS.

Stability of ITCH

Since we do not want to rely on single results we additionally tested the

stability of ITCH over 20 runs for each data set. Figure 3.7 shows the variance

68 3. Hierarchical Clustering

-20000

-10000

0

10000

20000

30000

40000

50000

DS1 DS2 glass cancer wine

m
ea

n
 h

M
D

L
 v

al
u
e

data set

Figure 3.7: Stability of the ITCH result over 20 runs.

of the hMDL value in percent depending on the mean value. The result of

ITCH is highly stable within DS1 and DS2 having only a variance of 0.03%

and 0.12%, respectively. Also in the real world data sets the result of ITCH

shows only little variance.

3.3 Genetic Algorithm for Finding Cluster Hierarchies 69

3.3 Genetic Algorithm for Finding Cluster

Hierarchies

As mentioned before the result of many existing algorithms for hierarchical

clustering heavily depend on their initialization or vary with different pa-

rameter settings. Moreover, the identification of outliers and assignment to

adequate levels of the hierarchy is not considered properly by all methods.

ITCH is the only method that can cope with all these problems so far (cf.

Chapter 3.2). However, ITCH suffers from the following drawback. It uses

an optimization heuristic that inhibits the algorithm to exhaustively search

the space to find the correct cluster structure.

Many methods have been proposed that are based on a genetic algo-

rithm to solve the NP-hard clustering problem [99, 46, 112, 152, 109, 136].

A genetic algorithm (GA) is a stochastic optimization technique based on

the mechanism of natural selection and genetics, originally proposed by [81].

The general idea behind a GA is that the candidate solutions to an optimiza-

tion problem (called individuals) are often encoded as binary strings (called

chromosomes). A collection of these chromosomes forms a population. The

evolution initially starts from a random population that represents differ-

ent individuals in the search space. In each generation, the fitness of every

individual is evaluated, and multiple individuals are then selected from the

current population based on Darwin’s principle “Surviving of the fittest”.

These individuals build the mating pool for the next generation. The new

population is then formed by the application of recombination operations like

crossover and mutation. A GA commonly terminates when either a maxi-

mum number of generations has been produced, or a satisfactory fitness level

has been reached for the population.

However, all these methods mentioned before are non-hierarchical clus-

tering methods. Therefore, the hierarchical clustering algorithm GACH (Ge-

70 3. Hierarchical Clustering

netic Algorithm for Finding Cluster Hierarchies) is proposed in this Chapter

that is based on a stochastic optimization technique. GACH overcomes the

limitations of existing hierarchical clustering approaches mentioned before

and claims the following contributions:

• Fitness : The fitness of different chromosomes is optimized using a

MDL-based optimization technique.

• No difficult parameter-setting : Besides the parameters that are specific

for a genetic algorithm, GACH requires no expertise about the data

(e.g. the number of clusters).

• Flexibility : By the use of a GA-based stochastic search GACH thor-

oughly explores the search space and is therefore flexible enough to

find the correct hierarchical cluster structure and is not sensitive to the

initialization.

• Outlier-robust : Outliers are assigned to the root of the cluster hierarchy

or to an appropriate inner node, depending on the degree of outlierness.

• Model description: The content of each cluster is described by a PDF.

Section 3.3.1 introduces the basic definitions of a genetic algorithm and ex-

plains the necessary modifications to use a GA for cluster hierarchies. Sec-

tion 3.3.2 introduces the main concepts of the new GACH algorithm. An

extensive evaluation of GACH is provided in Section 3.3.3. First, the choice

and impact of the genetic parameters are discussed and then, an extensive

experimental evaluation shows that GACH outperforms state-of-the art hi-

erarchical clustering methods using synthetic and real data sets.

3.3 Genetic Algorithm for Finding Cluster Hierarchies 71

3.3.1 Using Genetic Algorithm for Finding Cluster Hi-

erarchies

Each chromosome specifies one solution to a defined problem. For GACH,

a chromosome is the encoding of a hierarchical cluster structure (HCS) that

was previously defined in ITCH (Section 3.2.2) and has to address the three

following features:

• Storage of a set of clusters C1, · · · , Cn.

• Representation of the hierarchical relationship between clusters forming

a tree T of clusters.

• Encoding of the cluster representatives, i.e. the parameters of the un-

derlying PDF. For GACH we represent each cluster by a Gaussian PDF.

Note that our model can be extended to a variety of other PDFs, e.g.

uniform or Laplacian.

With this requirements a chromosomal representation of a HCS is defined as

follows:

Definition 3 (Chromosomal HCS)

(1) A chromosomal HCS (HCSChrom) is a dynamic list storing a set of

cluster objects.

(2) Each cluster C holds references to its parent cluster and to its child nodes.

Besides that, the level lC of each cluster defines the height of the descendant

subtree in the HCS

(3) The parameters of the underlying Gaussian PDF of cluster C, the mean

value µC and σC, are modeled as additional parameters of the cluster C.

(4) Each cluster C is associated with a weight WC, where
∑k−1

i=0 WCi = 1.

The underlying PDF of a cluster C is a multivariate Gaussian in a d-dimensional

data space which is defined by the parameters µC and σC (where µC and σC

72 3. Hierarchical Clustering

are vectors from a d-dimensional space) by the following formula:

N(µC , σC , x) =
∏

1≤i≤d

1√
2πσ2

C,i

· e
−

(xi−µC,i)
2

2σ2
C,i

GACH assigns each point x directly to that cluster C ∈ HCSChrom the prob-

ability density of which is maximal at the position of x:

C(x) = arg max
Ci∈HCSChrom

{WCi ·N(µCi , σCi , x)} .

The parameters µC and σC of each cluster C are determined based on

the hierarchical relationship to all subclusters and calculated analogously to

ITCH as described in Section 3.2.4.

Initialization of GACH. Basically the initial set of a population consists

of a randomly generated set of individuals. This strategy is also processed

by GACH, where in a first step a random number of clusters k̃ is selected for

each structure HCSChrom. Then a simple k-means algorithm divides the data

set into k̃ clusters that act as the leafs of the initial hierarchy. Finally, these

clusters are combined by one additional root cluster. Hence, the initialization

process results in a 2-level hierarchy that consists of k̃+ 1 nodes. Each clus-

ter Ci is described by random parameters and is associated a weight WCi = 1
k
.

Reproduction. In order to generate the next population of cluster hierar-

chies GACH uses several genetic operators that are particularly defined for

the hierarchical clustering problem: mutations (delete, add, demote and

promote) and crossover.

The delete operator deletes a specific cluster C (except the root) with a

deletion rate pdel from the HCS. This results in structure HCS′ that does not

contain the cluster C any more. The proceeding of delete is illustrated in

Figure 3.8(a). Here, the cluster C is marked in dark blue color. By deleting

3.3 Genetic Algorithm for Finding Cluster Hierarchies 73

delete() Level 2

Level 1

Level 0

(a) delete one node of the hierarchy.

add()

Level 2

Level 1

Level 0

(b) add one node to the hierarchy.

demote()

Level 2

Level 1

Level 0

(c) demote two nodes to a lower level.

Level 3

Level 2

Level 1

Level 0

promote()

(d) promote one node to a higher level.

Figure 3.8: Summarization of the mutation operators used for GACH.

C the level of each direct and indirect subcluster of C (marked in red) is

decreased by 1. The former parent node of C, the root node in our example,

becomes the parent node of all direct subclusters of C.

The operator add adds direct subclusters to an arbitrary cluster C of the

hierarchy with an add rate padd (normally pdel = padd). The number of addi-

tional subclusters is bounded by an upper limit value maxnew. Figure 3.8(b)

illustrates an example for the application of the add operator to a HCS where

the cluster Cadd marked in dark blue color is added as a subcluster of the

red cluster C. Since the PDFs of subcluster Cadd should fit into the PDF of

C and therefor to get an valid hierarchical relationship between C and Cadd,

we calculate random parameters for Cadd based on µC and σC . In particular,

we add a random value r to both parameters, where r is a vector from a

d-dimensional space: µCadd = µC + r σCadd = σC + r.

The motivation behind the demote operator is the following. Assume a data

set consisting of three clusters C1, C2 and C3, where C1 holds a large number

of objects, clusters C2 and C3 are smaller ones but they are locally close to

74 3. Hierarchical Clustering

crossover

C0

C6

C5

C4

C3

C2

C1

C0

C1

C2 C3 C4

C5

C0

C1 C3

C2

C4

C5

C6

C0

C5

C1

C2 C3 C4

(a) Hierarchical representation.

C0
μ0 σ0 w0

C1
μ1 σ1 w1

C2
μ2 σ2 w2

C3
μ3 σ3 w3

C4
μ4 σ4 w4

C6
μ6 σ6 w6

C5
μ5 σ5 w5

C0
μ0 σ0 w0

C1
μ1 σ1 w1

C2
μ2 σ2 w2

C3
μ3 σ3 w3

C4
μ4 σ4 w4

C5
μ5 σ5 w5

c
r

o
s

s
o

v
e

r

(b) Chromosomal representation.

Figure 3.9: The crossover operator for two selected hierarchies. The subtree
T1 of the red hierarchy is exchanged with the subtree T2 of the blue hierar-
chy, visualized by a hierarchical (3.9(a)) and a chromosomal representation
(3.9(b)).

each other. An intuitive hierarchical representation would be a HCS with one

root node and C1, C2 and C3 as direct subclusters (cf. Figure 3.8(c)) which

provides only a very coarse view of the data set. But, if we combine the two

smaller clusters (marked in dark blue) and demote them with a demote rate

pdem to a lower level with a common parent cluster (marked in dark red),

we are able to get a more detailed look on our data. The parameters of the

inserted cluster Cin are obtained by the average of the parameters of the

demoted clusters. Note that demoting only one cluster corresponds to the

add operator. Hence, we apply demote on at least two clusters.

The promote operator lifts a cluster C from a lower level to the level right

above with a promotion rate ppro, if and only if C is at least two levels

underneath the root cluster. Consequently all subclusters of C are lifted

accordingly. In Figure 3.8(d) the dark blue cluster is promoted from level 3

to level 2. Hence, also the red subcluster is lifted to the next higher level.

The parent of the parent node of the dark blue cluster (here the root node)

3.3 Genetic Algorithm for Finding Cluster Hierarchies 75

becomes the parent node of C in the resulting hierarchy HCS′, together with

the correct rearrangement of all subclusters.

The operator crossover exchanges information among two different struc-

tures. In general the information of two different chromosomes is combined

in order to obtain a new individual with superior quality. GACH performs a

crossover between two selected hierarchies HCS1 and HCS2 with a crossover

rate pco as follows:

1. Remove a selected subtree T1 entirely from HCS1.

2. Remove a selected subtree T2 entirely from HCS2.

3. Select a random node in HCS1 and insert T2.

4. Select a random node in HCS2 and insert T1.

Figure 3.9(a) illustrates this procedure exemplarily for two selected hierar-

chies. The subtrees T1 and T2 are removed from the red and the blue HCS

respectively. T1 is then inserted into the blue HCS as subtree of the dark

blue node. Analogously T2 is inserted as subtree of the dark red cluster in the

red HCS. Figure 3.9(b) describes the same procedure w.r.t. a chromosomal

representation of both hierarchies. For simplicity, only the pointers to the

parent cluster are displayed.

Fitness Function. Following the Darwin‘s principle “Survival of the

fittest” naturally only individuals with highest fitness can survive and those

that are weaker become extinct. A GA adopts this aspect of evolution by

the use of a fitness function. GACH uses the hMDL criterion formalized in

Section 3.2.1 which evaluates the fitness of a chromosomal HCS by relating

the clustering problem to that of data compression by Huffman Coding:

76 3. Hierarchical Clustering

hMDLHCS =
∑

C∈HCS

(
cost(C)− nWC log2(WC)− log2(

∑
xvparent of C

Wx)

)

The coding cost for each cluster C ∈ HCS is determined separately and

summed up to the overall coding cost of the complete HCS. Points that are

directly assigned to the cluster C together with the parameters µC and σC

of the underlying Gausssian PDF are coded by cost(C). The point to cluster

assignment is coded by the so-called ID cost of each data point x ∈ C and

is given by −nWC log2(WC) where WC is the weight of cluster C and n the

number of points. The binary logarithm is used to represent the code length

in bits. Clusters with higher weight are coded by a short code pattern whereas

longer code patterns are assigned for smaller clusters with lower weight. The

ID costs for the parameters are formalized by − log2(
∑

xvparent of C Wx)

whereas constant ID costs are defined for the parameters of the root node.

The better the statistical model (the HCS) fits to the data the higher

the compression rate thus the lower the coding costs are. Using this cod-

ing scheme as fitness function ensures the selection of that chromosome

HCSChrom that fits best to the data.

Selection. The selection function chooses the best individuals out of a set of

given individuals to form the offspring population according to their fitness.

For GACH we use the well-known weighted roulette wheel strategy [117].

Imagine that each HCSChrom represents a number on a roulette wheel, where

the amount of numbers refers to the size of the population. In addition we

assign a weight to each number on the roulette wheel, depending on the

fitness of the underlying chromosome. That means the better the fitness of

a chromosome the higher its weight on the roulette wheel will be, i.e. the

higher the chance to get selected for the offspring population. Note that there

is the chance that one chromosome is selected multiple times. GACH forms

3.3 Genetic Algorithm for Finding Cluster Hierarchies 77

a new population that has as much individuals as the former population.

3.3.2 Algorithm GACH

The algorithm GACH is based on the combination of a genetic algorithm,

information theory and model-based clustering as described in the previous

Section. An initial population is built as described in Section 3.3.1. This

population is evaluated according to the fitness function hMDLHCS which

means that GACH determines the coding cost for each cluster hierarchy of

the population. The lower the coding costs the better the HCS fits to the

data. In order to optimize the point to cluster assignment of each HCS and

to provide an additional model of the data, we apply the same hierarchical E-

and M-steps formalized in ITCH (cf. Section 3.2.4) on each cluster structure.

The formalization of GACH is presented in Algorithm 1. The population

resulting from the initialization undergoes several mutation and crossover

operations within popmax number of generations in an iterative way. In each

iteration the next population is selected according to the weighted roulette

wheel strategy and undergoes several reproduction procedures as described

in the previous Section. Each operation (mutation or crossover) is processed

with a certain probability which is extensively evaluated in Section 3.3.3.

After optimizing the point to cluster assignment using E- and M-step as de-

scribed in ITCH (cf. Section 3.2.4), GACH determines the fitness of each

HCSChrom in the population by calculating the hMDLHCS value. The algo-

rithm terminates if a specified maximum number of new populations popmax

is reached. The experiments show that the HCS can be optimized even with

small generation sizes.

3.3.3 Experiments

Now we demonstrate that the genetic parameters (mutation rate, crossover

rate and population size) do not affect the effectiveness of GACH in a major

78 3. Hierarchical Clustering

Algorithm 1 GACH
1: countpop ← 0
2: initialize population(countpop)
3: evaluate population(countpop)
4: while (countpop ≤ popmax) do
5: countpop ← countpop + 1
6: select population(countpop) from population(countpop − 1)
7: reproduce population(countpop)
8: evaluate population(countpop)
9: end while

way. Nevertheless, we provide a suitable parametrization that enables the

user to receive good results independent of the used data set. Based on

this, we compare the performance of GACH to several representatives of

various clustering methods on synthetic and real world data. We selected

the hierarchical clustering method Single Link [153], the more outlier-robust

hierarchical clustering algorithm OPTICS [4], with optimal parameters w.r.t.

accuracy. Furthermore, we chose RIC [18], an outlier-robust and information-

theoretic clusterer, and finally ITCH (cf. Section 3.2). As ITCH strongly

depends on its initialization, we used the best out of 10 runs in this case.

In order to facilitate interpretation of the clustering result, we added color

bars below the plots of Single Link and OPTICS, where the colors refer to

the original class labels of the points in the data set. Furthermore, we chose

the measures described in Section 2.2 to provide a quantitative comparison

of the clustering results.

Evaluation of Genetic Parameters

We applied GACH on two different data sets to evaluate the mutation and

crossover rates and the impact of the population size on the quality of the

results w.r.t. the fitness function, introduced in Section 3.3.1. One data

set consists of 1360 2-dimensional data points that form a true hierarchy

of six clusters. The second data set covers 850 2-dimensional data points

3.3 Genetic Algorithm for Finding Cluster Hierarchies 79

that are grouped in two flat clusters. For each experiment, we present the

mean hMDL value and the corresponding standard deviation over ten runs.

GACH turned out to be very robust and determines very good clustering

results (Prec > 90%, Rec > 90%) indepent of the parametrizations.

Different Mutation Rates. We evaluated different mutation rates ranging

from 1% to 5% on two different population sizes and a fixed crossover rate of

15%. As a mutation within a HCS is performed by one of the four operations

delete, add, demote or promote the mutation rate is the sum of pdel, padd,

pdem and ppro (cf. Section 3.3.1). As demote and promote turned out to be

essential for the quality of the clustering results pdem and ppro are typically

parametrized by a multiple of pdel or padd. This is due to the fact that the

optimal number of clusters which is influenced by pdel and padd is determined

very fast by the fitness function, but pdem and ppro have an impact on the

hierarchical structure of the clusters that has to be adjusted during the run

of GACH. Figures 3.10(a) and 3.10(d) demonstrate that the mutation rate

has no outstanding effect on the clustering result, neither on a hierarchi-

cal nor on a flat data set. Higher mutation rates result in higher runtimes

(3388 ms for mutation rate = 0.05 vs. 1641 ms for mutation rate = 0.01 on

hierarchical data set, population size = 5). However, a higher mutation rate

provides more flexibility. Hence, we achieved slightly better results with a

mutation rate of 0.05 (hMDL = 10520) compared to a mutation rate of 0.01

(hMDL = 10542).

Different Crossover Rates. We compared the clustering result for different

crossover rates pco ranging from 0.05 to 0.25 in combination with a mutation

rate of 0.03 on two different population sizes. Figures 3.10(b) and 3.10(e)

show that the performance of GACH is almost stable w.r.t. the different

parameterizations of pco. Especially on the flat data set a higher value of

pco has no impact on the clustering result. GACH achieved a nearly optimal

80 3. Hierarchical Clustering

population size: 5 chromosomes
l i i 20 h

10700ue

population size: 20 chromosomes

10650
10700

va
lu

10550
10600

D
L

10500
10550

hM
D

10500
0.01 0.02 0.03 0.04 0.05ea

n
h

m
e

mutation rate
(a) H: mutation rate

population size: 5 chromosomes
l i i 20 h

10700ue

population size: 20 chromosomes

10650
10700

va
lu

10550
10600

D
L

10500
10550

hM
D

10500
0.05 0.10 0.15 0.20 0.25ea

n
h

m
e

crossover rate
(b) H: crossover rate

10500

10550

10600

10650

10700

5 10 15 20 25

m
ea

n
 h

M
D

L
 v

al
u
e

population size

(c) H: population size

7540
7560
7580
7600

D
L

va
lu

e

population size: 5 chromosomes
population size: 20 chromosomes

7500
7520

0.01 0.02 0.03 0.04 0.05

m
ea

n
hM

D

mutation rate
(d) F: mutation rate

population size: 5 chromosomes
l i i 20 h

7600ue

population size: 20 chromosomes

7560
7580
7600

va
lu

7540
7560

D
L

7500
7520

hM
D

7500
0.05 0.10 0.15 0.20 0.25ea

n
h

m
e

crossover rate
(e) F: crossover rate

7540
7560
7580
7600

D
L

va
lu

e

7500
7520

5 10 15 20 25

m
ea

n
hM

D

population size
(f) F: population size

Figure 3.10: Mean fitness of resulting clusterings over ten runs on
(H)ierarchical and (F)lat data sets w.r.t. the genetic parameters mutation
rate, crossover rate and population size.

3.3 Genetic Algorithm for Finding Cluster Hierarchies 81

hMDL value in almost every run, even for relatively small population sizes.

Higher pco values enable GACH to search the data space more effectively as

the crossover between two strong individuals produces an even fitter individ-

ual. Therefore, we need less generations to find good clustering results, e.g.

the result of GACH on the hierarchical data set using five structures was

determined after 75 generations (1993 ms per generation) with pco = 0.05,

and after 61 generations (2553 ms per generation) with an crossover rate of

pco = 0.25.

Different Population Sizes. We tested the impact of the population size

on the quality of the clustering result. We used populations that cover 5,

10, 15, 20 and 25 hierarchical cluster structures in combination with a mu-

tation rate of 3% and a crossover rate of 15%. Figures 3.10(c) and 3.10(f)

show again the mean hMDL value over ten runs for each population size

on two different data sets. Both plots demonstrate that a higher popula-

tion size tends to produce better results, which can be explained by the fact

that a higher population size provides more variation opportunities whereby

a global optimum can be reached easier. However, a large number of chro-

mosomes cause a considerable amount of runtime. One generation using 5

chromosomes took 2462 ms on average, the computation of a generation on

25 chromosomes took 9229 ms.

Hence we use a population size consisting of ten cluster structures in

combination with a mutation rate of 0.03 and pco = 0.15 in the following

experiments.

Synthetic Data

For these experiments we use two different synthetic data sets DS1 and DS2.

DS1 is composed of 987 2-dimensional data points that form a hierarchy of

six clusters surrounded by local and global noise (cf. Figure 3.11(a)). DS2

82 3. Hierarchical Clustering

Table 3.5: Performance of GACH on DS1.

GACH ITCH RIC OPTICS Single Link

NMI 0.9346 0.9265 0.8673 0.9045 0.7429
AMI 0.9159 0.8999 0.7678 0.8662 0.5611
Prec 0.9404 0.9222 0.6438 0.8626 0.2226
Rec 0.9514 0.9422 0.7720 0.9200 0.4620
DOM 0.4193 0.4454 0.6638 0.4960 1.0423

consists of 1,950 (2-dimensional data points that are grouped in three flat

strongly overlapping clusters (cf. Figure 3.11(d)).

Evaluation w.r.t. Data Set D1. Table 3.5 presents the quantitative com-

parison of GACH on data set DS1 which is plotted in Figure 3.11(a). For

OPTICS, a reachability distance of 0.9, and for Single Link a cut at distance

= 0.007 was used for calculating the measures. It shows that GACH outper-

forms all other methods concerning the quality measures given in Table 3.5.

94% of all data points are assigned to the true cluster (precision) and 95% of

the cluster contents were detected correctly by GACH (recall). The reach-

ability plot of OPTICS is given in Figure 3.11(b) which finds the correct

cluster structure and separates the outliers from the cluster points. The den-

drogram of Single Link 3.11(c) seems to find the correct cluster structure but

performs worst when assigning the points to the correct clusters (Precision

22%, Recall 46%). However, the color bars below the plots of Single Link

and OPTICS indicate that outliers are wrongly assigned to clusters. ITCH

shows better results than OPTICS, RIC or Single Link but cannot measure

up to the results produced by GACH. However, both GACH and ITCH were

able to determine the right cluster structure but GACH outperformes ITCH

w.r.t. accuracy, as GACH results in a different points to clusters assignment.

3.3 Genetic Algorithm for Finding Cluster Hierarchies 83

(a) Plotted DS1.

0.05
Cut w r t reachability

0.04
Cut w.r.t. reachability

distance = 0.007

0 03

0 02

0.03

0.02

0.01

0

(b) OPTICS on DS1.

Cut w.r.t. distance = 0.9

(c) Single Link on DS1. (d) Plotted DS2.

(e) OPTICS on DS2. (f) Single Link on DS2.

Figure 3.11: Competitive evaluation of GACH on two different synthetic data
sets. DS1 forms a hierarchy including local and global noise, DS2 is a flat
data set of three overlapping clusters.

84 3. Hierarchical Clustering

Table 3.6: Performance of GACH on DS2.

GACH ITCH RIC OPTICS Single Link

NMI 0.6698 0.6316 0.0000 0.0029 0.0132
AMI 0.5877 0.4030 0.0000 0.0029 0.0000
Prec 0.9184 0.8227 0.2130 0.5016 0.6750
Rec 0.9226 0.8913 0.4615 0.4626 0.4631
DOM 0.3325 0.4226 0.9184 0.9199 0.9224

Evaluation w.r.t. Data Set D2. Neither OPTICS nor Single Link were

able to detect the true cluster structure of DS2. Both fail because of a

massive chaining effect and therefore the reachability plot provided by OP-

TICS (cf. Figure 3.11(e)) and the dendrogram produced by Single Link (cf.

Figure 3.11(f)) do not uncover any cluster structure. Furthermore, the color

bars below the plots indicate that the points are arranged in almost arbitrary

order. RIC determines only one single cluster. ITCH separates the two red

Gaussian clusters but fails in assigning the data points generated by the blue

cluster correctly. Hence, GACH turned out to be the only algorithm that

handles data sets with strongly overlapping clusters successfully. It shows the

best values w.r.t. the quality criteria, while being very accurate. Its result

causes only a DOM value of 0.3325 compared to more than 0.9 for almost

all other approaches. The evaluation on DS2 is summarized in Table 3.6.

GACH achieves best result w.r.t. all quality measures.

Application of GACH on Real World Data

The Wine data set, available at the UCI Machine Learning repository1 con-

tains 178 13-dimensional data objects resulting from a chemical analysis of

wines grown in the same region in Italy but derived from three different culti-

1http://archive.ics.uci.edu/ml/datasets/Wine

http://archive.ics.uci.edu/ml/datasets/Wine

3.3 Genetic Algorithm for Finding Cluster Hierarchies 85

0 4

0.6

0.8

1

Cut w.r.t. reachability
distance = 0.52

0

0.2

0.4

(a) OPTICS on wine data.

Cut w.r.t. distance = 40

(b) Single Link on wine data.

Figure 3.12: Clustering result on wine data.

vars. The data set provides a ground-truth classification that structures the

data into one root node covering the whole data set and three subclusters

defining the three cultivars. This structure was only determined by GACH

resulting in high validity values (cf. Table 3.7). Most of the competitors

did not even find the right number of clusters. With a cut at reachability

distance = 0.52, OPTICS detects two clusters and some outliers (cf. Fig-

ure 3.12(a)). The color bar below the OPTICS plot indicates that only one

cluster can be identified clearly. On the other hand, Single Link results in

four clusters when cutting the dendrogram at distance 40. RIC even merges

all data points in only one single cluster. The quantitative comparison pre-

Table 3.7: Performance on wine data.

GACH ITCH RIC OPTICS Single Link

NMI 0.7886 0.7615 0.0000 0.5079 0.0380
AMI 0.7813 0.6912 0.0000 0.4817 0.0084
Prec 0.9401 0.9737 0.1591 0.7466 0.1564
Rec 0.9326 0.8596 0.3989 0.6966 0.3876
DOM 0.3631 0.3285 1.1405 0.6853 1.1924

86 3. Hierarchical Clustering

sented in Table 3.7 shows that only ITCH is able to get similar results in

terms of accuracy. All other methods fail to find the correct cluster structure

nor the correct point to cluster assignment.

Chapter 4

Clustering Mixed Type Data

In the previous Chapter, novel algorithms for hierarchical clustering have

been proposed which are based on a hierarchical variant of the Minimum

Description Length (MDL) principle that interprets the hierarchical cluster

structure as a statistical model of the data set. In this way, no knowledge

about the data set is needed in order to identify valid and meaningful clusters

in the data space. However, these methods can only deal with numerical

valued attributes and cannot be applied to data sets with mixed-type valued

attributes. In this Chapter, we propose INTEGRATE, a novel clustering

method that integrates the information provided by heterogeneous numerical

and categorical attributes. Based on the MDL principle it allows a unified

view on numerical and categorical information and naturally balances the

influence of both sources of information.

After a general introduction to integrative clustering in the next Sec-

tion, Section 4.2 provides a survey on clustering methods for mixed-type

attributes. Section 4.3 introduces in detail iMDL, a novel information-

theoretic clustering quality criterion suitable for integrative clustering. Sec-

tion 4.4 provides the details of the new INTEGRATE algorithm that is ap-

plied to several synthetic and real-world data sets (cf. Section 4.5). The

basic ideas contained in this Chapter have been published in [21].

88 4. Clustering Mixed Type Data

4.1 Introduction

Integrative mining of heterogeneous data is one of the grand challenges for

data mining in the next decade. Recently, the need for integrative data min-

ing techniques has been emphasized in panel discussions, e.g. at KDD 2006

[139], in workshops [181] and in position papers, [177, 98]. Integrative data

mining is among the top 10 challenging problems in data mining identified in

[177]. Moreover, it is essential for solving many of the other top 10 challenges,

including data mining in social networks and data mining for biological and

environmental problems.

In the following Sections, we focus on integrative clustering and we ad-

dress the question of how to find a natural clustering of data with mixed

type attributes. Not only in social network analysis and bioinformatics, data

with mixed type attributes are prevalent. In everyday life, huge amounts of

such data are collected, for example from credit assessments. The collected

data include numerical attributes, such as credit amount and age, as well as

categorical attributes, such as personal status and the purpose of the credit.

A cluster analysis of credit assessment data is interesting, e.g., for target

marketing. However, finding a natural clustering of such data is a non-trivial

task. We identified two major problems:

• Problem 1: Much previous knowledge required.

• Problem 2: No adequate support of mixed type attributes.

Most clustering algorithms require previous knowledge on the data in the

form of input parameters which are difficult to estimate, for example the

number of desired clusters k. Recently, great efforts have been made in de-

veloping clustering methods that avoid such difficult parameter settings, e.g.

[18, 19, 20, 133]. However, as most approaches to clustering, these algorithms

are designed for clustering vector data and provide no support for mixed type

4.2 Related Work 89

attributes. Recently, some approaches for integrative clustering have been

proposed (cf. Section 4.2). However, the parametrization of most of these

algorithms is very difficult. Besides the parameters required for clustering

itself, mixed type attributes introduce additional parameters specifying the

relative importance of numerical and categorical attributes in the clustering

process.

To cope with these two major problems, we propose INTEGRATE, a

parameter-free technique for integrative clustering of data with mixed type

attributes. The major benefits can be summarized as follows:

1. Natural balance of numerical and categorical information in clustering

supported by information theory.

2. Parameter-free clustering.

3. Making most effective usage of numerical as well as categorical infor-

mation.

4. Scalability to large data sets.

INTEGRATE is based on iMDL, an information-theoretic clustering qual-

ity criterion suitable for integrative clustering. Regarding clustering as a data

compression problem, the Minimum Description Length (MDL) principle al-

lows a unified view on numerical and categorical information. This unified

view naturally balances the influence of numerical and categorical attributes

in clustering without requiring any weighting parameters.

4.2 Related Work

One of the first approaches to integrative clustering is k-prototypes[84] which

combines k-means for clustering numerical data with k-modes for categorical

90 4. Clustering Mixed Type Data

data for clustering data with mixed type attributes. This algorithm uses a

weighted sum of Euclidean distance for numeric attributes and the simple

matching dissimilarity measure for categorical attributes. However, the at-

tribute weights and the number of clusters have to be determined a priori.

CFIKP [178] can process large data sets using a CF*-tree to pre-cluster

the data set into dense regions which are then clustered by an improved k-

prototypes algorithm. Hence, the problem for selecting the number of clusters

still remains. Also the system by Hsu et al. [83] suffers from this drawback of

difficult parameter settings. CAVE is an incremental entropy-based method

which first selects k clusters and then assigns objects to these clusters based

on variance and entropy. The method combines variance for measuring the

similarity of numeric values and integrates entropy with distance hierarchies

for categorical attributes. Knowledge of the similarity among categorical

attributes is needed in order to construct the distance hierarchy for the cat-

egorical attributes.

The authors in [78] present the cluster ensemble approach CEBMDC

that overcomes the problem of selecting k but requires as input parameter

a threshold that defines the intra-cluster similarity between objects. In this

framework, a divide-and-conquer technique is applied to solve the clustering

problem separately for numerical and categorical data respectively, and to

combine the results to get the final clusters.

In [147] the authors introduce the CBC algorithm for clustering mixed

data type based on compressed data that is an extension of the BIRCH [179]

algorithm. This method uses a weight-balanced tree that needs two param-

eters: B and L. B defines the number of entries for non-leaf nodes whereas

L gives the number of entries for leaf nodes. Furthermore all entries in a leaf

node must satisfy a threshold requirement, w.r.t. a similarity value T . The

4.2 Related Work 91

method has good scalability but requires difficult parameter settings.

Ahmad and Dey [2] propose a k-means-based method for mixed numeric

and categorical attributes, but the process of solving the optimization of the

cost function is very complex and it is not efficient for large data sets.

The authors in [26] use standard fuzzy c-means on a set of feature vectors

with mixed features which was mapped to a set of feature vectors with only

real valued components. This new set of vectors with only numeric compo-

nents, is then clustered using the traditional fuzzy clustering method [15].

However, this mapping is computationally very intensive and is designed

rather for very low dimensional data. Moreover, the method uses an error

function that may have a large number of local optima.

A recently proposed study [107] by Li and Chen is the IWEKM algorithm

which extends the cost function of entropy weighting k-means clustering algo-

rithm [88] to more effectively specify the inter and intra-cluster similarities.

This is done by adding a variable that is linear to the square sum of the dis-

tances from the mean of all objects to the mean of all clusters and therefore

minimizes the distances between objects inside each cluster and maximizes

the inter cluster distances. Another variable is added that quotes the degree

similarity between two objects considering the categorical attributes. For

this method many input parameters have to be specified in advance which

cannot be chosen intuitively.

Many existing clustering methods for mixed type data are based on k-

means [111] and k-modes [84] which are most widely used methods for clus-

tering continuous or categorical data, respectively. A major drawback of

these methods is the difficult choice of the parameter k which defines the

number of clusters a priori.

92 4. Clustering Mixed Type Data

4.3 Minimum Description Length for Inte-

grative Clustering

Notations. In the following we consider a data set DS with n objects. Each

object x is represented by d attributes. Attributes are denoted by capital

letters and can be either numerical features or categorical variables with two

or more values. For a categorical attribute A, we denote a possible value of

A by a. The result of our algorithm is a disjoint partitioning of DS into k

clusters C1, ..., Ck.

Likelihood and Data Compression. One of the most challenging prob-

lems in clustering data with mixed attribute type is selecting a suitable dis-

tance function, or unifying clustering results obtained on the different repre-

sentations of the data. Often, the weighting between the different attribute

types needs to be specified by parameter settings, cf. Section 4.2. The min-

imum description length (MDL) principle provides an attractive theoretical

foundation for parameter-free integrative clustering avoiding this problem.

Recently, the MDL-principle and related ideas have been successfully ap-

plied to avoid crucial parameter settings in clustering vector data, but to

the best of our knowledge have not been applied to integrative clustering so

far. Regarding clustering as a data compression problem allows us a uni-

fying view, naturally balancing the influence of categorical and numerical

attributes. Probably the most important idea of MDL which allows integra-

tive clustering is relating the concepts of likelihood and data compression.

Imagine data needs to be transferred via a communication channel from a

sender to a receiver. If the data exhibits some regularities or patterns, the

communication cost can be minimized by applying an appropriate coding

scheme exploiting these patterns. Data compression can be maximized by

assigning short descriptions to regular data objects which exhibit the char-

acteristic patterns and longer descriptions to the few irregular objects.

4.3 Minimum Description Length for Integrative Clustering 93

Coding Categorical Data. To give a simple example, assume we need

to transfer 1,000 one-dimensional categorical data objects. Each object is

represented by a categorical attribute A with two possible values red and

blue. It can be shown that the code length to transfer this data is lower

bounded by the entropy of the attribute A. Thus, the coding cost cc of

attribute A is provided by:

CC(A) = −
∑
a∈A

p(a) · log2 p(a).

Here, a denotes each possible value or outcome of the categorical at-

tribute. By the application of the binary logarithm we obtain the code

length in bits. If we have no additional knowledge on the data we have

to assume that the probabilities for red and blue are both 0.5. With this

assumption, we need one bit to encode each data object and the commu-

nication cost would be 1,000 bits. Clustering, however, provides high-level

knowledge on the data which allows for a much more effective way to reduce

the communication cost. Even if the probabilities for the different outcomes

of the categorical attributes are approximately equal considering the whole

data set, often different clusters with non-uniform probabilities can be found.

As an example, refer to the data displayed in Figure 4.1. The data are

represented by two numerical attributes (which we ignore for the moment)

and one categorical attribute. The categorical attribute has two possible

values, red and blue, which are visualized by the corresponding colors. Con-

sidering all data, the probabilities for red and blue are both 0.5. However,

it is evident that the outcomes red and blue are not uniformly distributed in

all areas of the data space. Rather, we have two clusters, one preliminarily

hosts the red objects, and the other the blue ones. In fact, the data has been

generated such that in the cluster displayed on the left, we have 88% of blue

objects and 12% of red objects. For the cluster on the right, the ratio has

94 4. Clustering Mixed Type Data

10

8

6

4

2

0 x
-2 -1 0 1 2 3 4 5-3-4

Figure 4.1: Top: Example data set with two numerical and one categorical
attribute with the outcomes red and blue. Bottom: Cost curves assuming
two clusters: Considering the numerical information only (green), integrating
numerical and categorical information (red, blue). For each outcome and each
cluster, we have a unique cost curve. Intersection points mark the resulting
cluster borders.

been selected reciprocally. This clustering drastically reduces the entropy

and therefore the coding cost of the categorical attribute to CC(A) = 0.53

bits per data object, which corresponds to the entropy of A in both clusters.

However, we would need to transfer the clustering result itself, including the

cluster identifiers to the receiver. Before discussing how to encode the clus-

tering result, we will consider how to encode numerical data.

Coding Numerical Data. If our data set contains an additional numerical

attribute B we can also use the relationship between likelihood and data

compressibility to reduce the communication cost. To specify the probability

of each data object considering attribute B, we assign a probability density

function (PDF) toB. We apply a Gaussian PDF for each numerical attribute.

However, let us note that our ideas can be straightforwardly extended to other

types PDF, e.g. Laplacian or Generalized Gaussian. Thus, the probability

4.3 Minimum Description Length for Integrative Clustering 95

density function of a numerical attribute B is provided by:

p(b) =
1

σ
√

2π
exp

(
−(b− µB)2

2σ2
B

)
.

If the data distribution of attribute B is Gaussian with mean µB and standard

deviation σB, we minimize the communication cost of the data by a coding

scheme which assigns short bit strings to objects with coordinate values that

are in the area of high probability and longer bit strings to objects with lower

probability. Let us note that we do not consider how to actually construct

such code. Rather, we are interested in the code length as a measure for

clustering quality. The coding cost of attribute B is provided by:

CC(B) = −
∫
p(b) log2 p(b)db.

Again, if we have no knowledge on the data, we would have to assume that

each attribute is represented by a single Gaussian with mean and standard

deviation determined from all data objects. As discussed for categorical

data, clustering can often drastically reduce the communication cost. Most

importantly, relating clustering to data compression allows us a unified view

on data with mixed type attributes.

Consider again the data displayed in Figure 4.1. In addition to the cat-

egorical attribute we now consider the numerical x-coordinate, denoted by

X. To facilitate presentation, we ignore the y-coordinate which is processed

analogously. The two green curves at the bottom represent the coding costs

of the two clusters considering X. For both curves, the cost minimum coin-

cides with the mean of the Gaussian which generated the data. The cluster

on the right has been generated with slightly larger variance, resulting in

slightly higher coding costs. The intersection of both cost curves represents

the border between the two clusters provided by X, indicated by a green

vertical line. In addition, for each cluster and each outcome of the categori-

cal attribute, we have included a cost curve (displayed in the corresponding

96 4. Clustering Mixed Type Data

colors). Again, the intersection points mark the cluster borders provided by

the categorical attribute. Consider, e.g., the red vertical line. Red objects

with a value in X beyond that point are assigned to the cluster on the right.

Thus, in the area between the red and the blue vertical line, the categorical

value is the key information for clustering. Note that all borders are not

fixed but optimized during the run of our algorithm.

A Coding Scheme for Integrative Clustering. As mentioned, in

addition to the coding cost for categorical and numerical attributes of the

data objects, we need to elaborate a coding scheme describing the clustering

result itself. The additional coding cost for encoding the clustering result

can be classified into two categories: the parameter cost required to specify

the cluster model and the id-cost required to specify the cluster-id for each

object, i.e. the information to which cluster the object belongs.

For the parameter cost, let us focus on the set of objects belonging to

a single cluster C. To specify the cluster model, we need for each categor-

ical attribute A to encode the probability of each value or outcome a. For

a categorical attribute with |A| possible values, we need to encode |A| − 1

probabilities since the remaining probability is implicitly specified. For each

numerical attribute B we need to encode the parameters µB and σB of the

PDF. Following a central result from the theory of MDL [148], the param-

eter cost to model the |C| objects of the cluster can be approximated by

p/2 · log2 |C|, where p denotes the number of parameters. The parameter cost

depends logarithmically on the number of objects in the cluster. The consid-

erations behind this are that for clusters with few objects, the parameters do

not need to be coded with very high precision. To summarize, the parameter

cost for a cluster C are provided by

PC(C) =
1

2
· ((
∑
Acat

|A| − 1) + |Bnum| · 2)) · log2 |C|.

4.4 Algorithm INTEGRATE 97

Here Acat stands for all categorical attributes and Bnum for all numerical

attributes in the data. Besides the parameter cost, we need for each object

to encode the information to which of the k clusters it belongs. Also for

the id-cost, we apply the principle of Huffman coding which implies that we

assign shorter bit-strings to the larger clusters. Thus, the id-cost IDC of a

cluster C are provided by:

IDC(C) = log2

n

|C|
.

Putting it all together, we are now ready to define iMDL, our information-

theoretic optimization goal for integrative clustering.

iMDL =
∑
C

(
∑
Attr

|C| · CC(A)) + PC(C) + IDC(C).

For all clusters C we sum up the coding cost for all numerical and categor-

ical attributes Attr. To the coding cost we need to add the parameter cost

and the id-cost of the cluster, denoted by PC(C) and IDC(C), respectively.

Finally, we sum up these three terms, coding cost, parameter cost and id-cost

for all k clusters.

4.4 Algorithm INTEGRATE

INTEGRATE is designed to find the optimal clustering of a data set DS,

where each object x comprises both numerical and categorical attributes by

optimizing the overall compression rate. INTEGRATE is built on top of

a k-means algorithm. Therefore, a straightforward approach would be to

run INTEGRATE with a predefined number of clusters k in order to get a

partition of the data set into k clusters. The pseudocode for this baseline

approach is given in Algorithm 2.

98 4. Clustering Mixed Type Data

Algorithm 2 INTEGRATE(DS, k)

Initial clustering of DS with k initial clusters C1, . . . , Ck;
change = true;
while change do
change = false;
for all x ∈ DS do
mincost← cost(C1, . . . , Ck);
Assign x to cluster C1;
for all C ∈ {C1, . . . , Ck} do
newcost← cost(C)
if newcost < mincost then
mincost← newcost;
Assign x to cluster C;

end if
end for
if the cluster assignment of x changes then
change← true;

end if
for all C ∈ {C1, . . . , Ck} do

Recalculate the parameters of C according all assigned data objects;
end for

end for
end while

Ensure: Optimal clustering C1, . . . , Ck;

First, INTEGRATE builds an initial partitioning of k clusters. Each cluster

is represented by a Gaussian PDF in each numerical dimensionB with µB and

σB, and a probability for each value of the categorical attributes. All objects

are then assigned to the k clusters by minimizing the overall coding cost

iMDL. In the next step, the parameters of each cluster C are recalculated

according to the assigned objects. That implies the µ and the σ in each

numerical dimension B and the probabilities for each value of the categorical

attributes, respectively.

The µ and the σ for a numerical Attribute B is given by:

4.4 Algorithm INTEGRATE 99

µCB =

∑
x∈C

xi,B

|C|
, σCB =

√√√√∑
x∈C

(xi,B − µCB)2

|C|

The probability for the value a of a categorical attribute A is determined in

the following way:

p(a) =

∑
x∈C

1 ad = a

0 else

|C|
.

After initialization the following steps are performed repeatedly until con-

vergence.

First, the cost for coding the actual cluster partition are determined. Sec-

ond, assignment of objects to clusters is performed in order to decrease the

iMDL value. Third, the new parameters of each cluster are recalculated.

The algorithm terminates if no further changes of point to cluster assign-

ments occur. Finally, INTEGRATE returns the optimal clustering for data

set DS, represented by k clusters according to minimum coding costs.

The effectiveness of an algorithm often heavily depends on the quality of

the initialization, as it is often the case that the algorithm can get stuck in

a local optimum. Hence, we propose an initialization scheme technique to

avoid this effect.

Initialization of INTEGRATE. We have to find initial cluster representa-

tives that correspond best to the final representatives. An established method

for partitioning methods is to initialize with randomly chosen objects of the

data set. We adopt this idea and take the µ of the numerical attributes of

k randomly chosen objects as cluster representatives. During initialization,

we set σ = 1.0 in each numerical dimension. The probabilities of the values

for the categorical attributes are set to 1
|a| . Then a random set of 1

z
n objects

is selected, where n is the number of objects in data set DS and z = 10

100 4. Clustering Mixed Type Data

turned out to give satisfying results. Finally, we chose the clustering result

that minimizes the coding cost best, within m initialization runs. Typically

m = 100 runs suffice for an effective result.

Automatically Selecting the Number of Clusters k. The effective-

ness of INTEGRATE can further be improved using iDML as optimization

criterion to avoid difficult parameters like the number of clusters k. Using

the iMDL criterion for mixed type data, we can avoid the parameter k. As

an optimal clustering that represents the underlying data structure best has

minimum coding costs, iMDL can also be used to detect the number of clus-

ters. For this purpose, INTEGRATE uses iMDL no longer exclusively as

selection criterion for finding the correct object to cluster assignment. Rather

we now estimate the coding costs for each k where k is selected in a range of

1 ≤ k ≤ n. For efficiency reasons INTEGRATE performs this iteration step

on a z% sample of the data set. The global minimum of this cost function

gives the optimal k and thus the optimal number of clusters.

4.5 Experiments

This Section provides a detailed experimental evaluation of INTEGRATE.

Besides synthetic data, several real world data sets have been used. Since IN-

TEGRATE is a hybrid approach combining the benefits of clustering methods

using only numeric attributes and those for categorical attributes we compare

algorithms of both categories and algorithms that can also handle mixed type

attributes. In particular, we selected the k-means-based method by Ahmad

and Dey [2] denoted by KMM and the algorithm k-prototypes [84]. Further-

more, we compare to the k-means algorithm [111] which is probably the most

common approach to clustering numerical data. As a representative for clus-

tering categorical data we selected the widely used method k-modes [84]. For

k-means and k-modes the numerical and categorical attributes were ignored.

4.5 Experiments 101

For evaluation, we used the validity measure by [49] referred to as DOM in

the following. For details on clustering validation techniques, please refer to

Section 2.2. We report in each experiment the average performance of all

clustering algorithms over 10 runs.

4.5.1 Synthetic Data

If not otherwise specified the artificial data sets include three Gaussian clus-

ters with each object having two numerical attributes and one categorical

attribute. To validate the results we added a class label to each object which

was not used for clustering.

Varying Ratio of Categorical Attribute Values. In this experiment,

we generated three-dimensional synthetic data sets with 1,500 points includ-

ing two numerical and one two-valued categorical attribute. We varied the

ratio for each of the values of the categoric attributes from 1:0 to 0:1 clus-

terwise in each data set. Without need for difficult parameter setting our

proposed method performs best in all cases (cf. Figure 4.2(a)). Even in

the case of equally (5:5) distributed values, where the categorical attribute

gives no information for separating the objects, the cluster quality of INTE-

GRATE is best compared to all other methods. As k-means does not take

the categorical attributes into account the performance is relatively constant.

Varying Variance of Clusters. This experiment aims at comparing the

performance of the different methods on data sets with varying variances.

In particular, we generated synthetic data sets each comprising 1,500 points

including two numerical and one two-valued categorical attribute that form

three Gaussian clusters with a variance ranging from 0.5 to 2.0. Figure 4.2(b)

shows that INTEGRATE outperforms all competitors in all cases, in which

each case reflects different degree of overlap of the three clusters. Even at

a variance of 2.0 where the numerical attributes carry nearly no cluster in-

102 4. Clustering Mixed Type Data

formation, our proposed method shows best cluster quality as in this case

the categorical attributes are used to separate the clusters. On the contrary,

k-modes performs worst as it can only use the categorical attribute as single

source for clustering.

Varying Clustersize. In order to test the performance of the different

methods on data sets with unbalanced clustersize we generated three Gaus-

sian clusters with different variance and varied the ratio of number of points

per cluster from 1:10:1 to 10:1:10 in five steps. It is obvious from Figure 4.2(c)

that INTEGRATE best separates the three clusters even with highly unbal-

anced clustersizes. Only in the case of two very small clusters and one big

cluster (1:10:1) k-modes shows a slightly better cluster validity.

Varying Number of Numerical Dimensions. In this experiment, we

leave the number of categorical attributes to a constant value and succes-

sively add numerical dimensions to each object that are generated with a

variance of σ=1.8. INTEGRATE shows best performance in all cases (cf.

Figure 4.2(d)). All methods show a slight increase in cluster quality when

varying the numerical dimensionality, except k-modes that performs con-

stantly as it does not consider the numerical attributes.

Varying Number of Categorical Dimensions. For each object, we

added three-valued categorical attributes where we set the probablity of the

first value to 0.6 and the probability of the two remaining values to 0.2, re-

spectively. Figure 4.2(e) illustrates that our proposed method outperforms

the other methods and even k-modes by magnitudes which is a well-known

method for clustering categorical data. Whereas KMM shows a heavy de-

crease in clustering quality in the case of two and four additional categorical

attributes, our method performs relatively constant. Taking the numerical

attributes not into account the cluster validity of k-means remains constant.

4.5 Experiments 103

0.0
0.2
0.4
0.6
0.8
1.0
1.2

10:0 8:2 6:4 4:6 2:8 0:10

D
O

M

ratio of a

INTEGRATE k-modes k-means k-prototypes KMM

(a) Dom value vs. different ratio of at-
tribute values.

0.0

0.2

0.4

0.6

0.8

1.0

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

D
O

M

σ

INTEGRATE k-modes k-means k-prototypes KMM

(b) Dom value vs. different variance of the
clusters.

0.0

0.2

0.4

0.6

0.8

D
O

M

different clustersize

INTEGRATE k-modes k-means k-prototypes KMM

(c) Dom value vs. different clustersizes.

0
0.2
0.4
0.6
0.8

1
1.2

2 4 6 8 10 12 14 16 18 20

D
O

M

numerical dimensions

INTEGRATE k-modes k-means k-prototypes KMM

(d) Dom value vs. different number of nu-
merical dimensions.

0
0.2
0.4
0.6
0.8

1
1.2

0 2 4 6 8 10 12 14 16 18 20

D
O

M

categorical dimensions

INTEGRATE k-modes k-means k-prototypes KMM

(e) Dom value vs. different number of cat-
egorical dimensions.

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9

D
O

M

noise dimensions

INTEGRATE k-modes k-means k-prototypes KMM

(f) Dom value vs. number of noise dimen-
sions.

Figure 4.2: Synthetic data

104 4. Clustering Mixed Type Data

Noise Dimensions. Figure 4.2(f) illustrates the performance of the different

methods on noisy data. It it obvious that INTEGRATE outperforms all

compared methods when adding non-clustered noise dimensions to the data.

k-means shows a highly increase in the DOM values which refers to decreasing

cluster validity. Even in the case of nine noise dimensions INTEGRATE leads

to the best clustering result.

4.5.2 Real Data

Finally, we show the practical application of INTEGRATE on real world

data, available at the UCI repository [9]. We chose two different data sets

with mixed numerical and categorical attributes. An additional class at-

tribute allows for an evaluation of the results. Table 4.1 reports the µ and σ

of the DOM value for all methods within 10 runs. For all compared methods

we set k to the number of classes.

Heart Disease. The heart disease data set comprises 303 instances with six

numerical and eight categorical attributes each labeled to an integer value

between 0 and 4 which refers to the presence of heart disease. Without any

prior knowledge on the data set we obtained best cluster validity of 1.23

with INTEGRATE. KMM performed slightly worse. However, the runtime

of INTEGRATE is 0.1 seconds compared to KMM which took 2.8 seconds

to return the result.

Credit Approval. The Credit Approval data set contains results of credit

card applications. It has 690 instances, each being described by six numerical

and nine categorical attributes and classified to the two classes ’yes’ or ’no’.

With a mean DOM value of 0.61 INTEGRATE best separated the objects

into two clusters. It took 0.1 seconds to return the result. Note, that INTE-

GRATE requires no input parameter in order to find the optimal clustering

4.5 Experiments 105

Table 4.1: Results of INTEGRATE on real data.

INTEGRATE k-means k-modes kMM k-prototypes

Heart µ 1.23 1.33 1.26 1.24 1.33
Disease σ 0.02 0.01 0.03 0.02 0.00

Credit µ 0.61 0.66 0.70 0.63 0.66
Approval σ 0.03 0.00 0.00 0.09 0.00

of the data. This advantage is more explicitly analyzed in the next paragraph.

4.5.3 Finding the Optimal k.

On the basis of the data set illustrated in Figure 4.3(a) we want to high-

light the benefit of INTEGRATE for finding the correct number of clusters

that are present in the data set. The data set comprises six Gaussian clus-

ters with each object having two numerical attributes and one categorical

attribute with two different values that are marked in red and blue, respec-

tively. Figure 4.3(b) shows the iMDL of the data model for different values

of k. The cost function has its global minimum, which refers to the optimal

number of clusters, at k = 6. In the range of 1 ≤ k ≤ 4 the plotted function

shows an intense decrease in the coding costs and for k > 6 a slight increase

of the coding costs as in these cases the data does not optimally fit into the

data model and therefore causes high coding costs. Note, that there is a

local minimum at k = 4 which would also refer to a meaningful number of

clusters.

106 4. Clustering Mixed Type Data

(a) The data set.

(b) iMDL for 1 ≤ k ≤ 30.

Figure 4.3: Coding cost for different k according to a data set that consists
of k = 6 clusters.

Chapter 5

Clustering Skylines

In the previous Chapters, novel algorithms for clustering have been proposed.

All of them use a similarity measure for comparing single data points. In

this Chapter, we go one step ahead and define a more complex similarity

measure in order to compare different data sets that are represented by their

skylines. The skyline of a data set is a well-established database primitive for

finding objects in a data set which minimize two or more given attributes with

an unknown weighting between theses different attributes. In order to use

multiple skylines themselves as objects for data exploration and data mining

we defined SkyDist, a similarity measure for comparing different skylines. In

this way, SkyDist can be used for complex analysis tasks such as clustering,

classification, outlier detection, etc.

After an introduction in the next Section, Section 5.2 surveys related

work. Section 5.3 introduces basic definitions necessary for the main con-

cepts of SkyDist. In Section 5.4 we present two different algorithms for

computing SkyDist, based on Monte-Carlo sampling and on the plane sweep

paradigm. The Chapter ends with an experimental evaluation in Section 5.5.

The concepts described in this Chapter have been published in [22].

108 5. Clustering Skylines

5.1 Introduction

Skyline queries are an important area of current database research, and have

gained increasing interest in recent years [23, 97, 108, 131, 160]. Most papers

focus on efficient algorithms for the construction of a single skyline which is

the answer of a user’s query. In this Section, we extend the idea of skylines in

such a way that multiple skylines are treated as objects for data exploration

and data mining.

One of the most prominent applications of the skyline operator is to

support complex decisions. As an example, consider an online marketplace

for used cars, where the user wants to find out offers which optimize more

than one property of the car such as p (price) and m (mileage), with an

unknown weighting of the single conditions. The result of such a query has

to contain all offers which may be of interest: not only the cheapest offer

and that with lowest mileage but also all offers providing an outstanding

combination of p and m. This concept is illustrated in Figure 5.1(a) which

displays a set of database objects representing all car offers for an Audi A3

1.6 described by the attributes p and m. However, not all of these offers

are equally attractive to the user. For instance, offer A has both a lower

price and a lower mileage than G and many other offers. Therefore, we say

that A dominates G (in symbols A ≺ G), because A is better than G w.r.t.

any possible weighting of the criteria price and mileage. More generally, the

skyline contains all objects which are not dominated by any other objects

in the data set. That is, the skyline contains all objects that exhibiting

outstanding combinations of the attributes. All skyline points of the Audi

A3 are highlighted in red.

For the used car market, the skyline of each car model has a particular

meaning: Many arbitrarily bad offers may be present in the database but

only the offers in (or close to) the skyline have a high potential to find a

5.1 Introduction 109

G

m

p

Skyline of

Audi A3 1.6
A

(a) Database objects and their skyline.

BMW 7 3.0

Audi A8 3.3

Ford Focus 1.6

Audi A3 1.6

p

m
(b) Skylines of different car models.

Figure 5.1: Motivating examples for performing data mining on skylines.

customer. The skyline of the offers marks to some degree the fair value of a

car for each mileage in the market. Therefore, the skyline characterizes a car

model (or higher-order objects of other applications) in a highly expressive

way.

This high expressiveness leads us to the idea of treating the skylines

themselves as a measure of similarity. In this Chapter, we propose SkyDist,

a similarity measure for skylines. SkyDist is defined by the area between two

skylines. To determine SkyDist we propose two different algorithms, based

on Monte-Carlo sampling and on the plane sweep paradigm. Applied in a

recommender system, SkyDist can be used to point out the best alternatives

having an outstanding combination of two or more attributes defined by the

user. As an example, Figure 5.1(b) illustrates the skylines of four different car

models derived from real data of an online automotive market. Car models

which exhibit similar skylines (like Audi A3 1.6 and Ford Focus 1.6) may be

considered as similar. A recommender system might find out that the Focus

is a perfect alternative to the Audi A3.

However, SkyDist can also be used for more complex analysis tasks such

as clustering, classification or outlier detection.

110 5. Clustering Skylines

5.2 Related Work

In this Section, we briefly discuss related work. It surveys studies on skyline

computation and briefly introduces clustering approaches applied to demon-

strate the potential of data mining on skylines for knowledge discovery in

Section 5.5. A fundamental introduction to the problem of clustering is pro-

vided in Chapter 2.1.

5.2.1 Skyline Computation

The classical skyline problem has been studied extensively in recent years,

and many applications for skyline analysis have been designed. Börzsönyi

et al. [23] proposed a SQL syntax for skyline queries and developed the

Block-Nested-Loops (BNL) algorithm and the Extended Divide-Conquer al-

gorithm. The Sort-Filter-Skyline algorithm by Chomicki et al. [34] improves

BNL by presorting the entire data set. Tan et al. [160] presented two pro-

gressive algorithms, Bitmap and Index, to compute the skyline of a set of

points without scanning the whole data set. Another progressive algorithm

is presented by Kossmann et al. [97], which is based on a nearest neighbor

search. Papadias et al. [131] developed a progressive algorithm branch-and-

bound skyline, based on a nearest neighbor search technique, by browsing

the data set indexed by an R-tree. Lin et al. [108] developed an efficient

skyline computation method by determining the skyline for the most recent

N elements in a data stream. All the methods mentioned here are designed

for the computation of the skyline.

5.2.2 Sweep-Line Methods

The self-intersection problem of polygons is one of the main problems in

computational geometry, that can be handled by two different approaches,

namely line segments intersection [68, 138] and sweep-line methods [14].

Sweep-line methods are more efficient than line-segments intersections. Park

5.2 Related Work 111

et al. [132] presented a sweep-line algorithm for finding all intersections

among polygonal chains with an O((n + k) · log m) worst-case time com-

plexity, where n is the number of line segments in the polygonal chains, k

is the number of intersections, and m is the number of monotone chains.

Their proposed algorithm is based on the sweep line algorithm by Bentley

and Ottmann [14], which finds all intersections among a collection of line

segments with an O((n+ k) · log n) time complexity.

5.2.3 Clustering

In iterative partitioning clustering k-medoid methods such as PAM [94] or

CLARANS [126] aim at finding a set of k representatives among all objects

that characterize the objects in the data set best. Clusters are created by

assigning each object to the cluster of the medoid that is closest to that

object. One of the most wide spread approaches to hierarchical clustering

is the Single Link algorithm [153]. Starting with singleton clusters for each

object, the algorithm merges in each step the closest pair of clusters until it

ends up with the root which is one large cluster containing all objects. The

hierarchy obtained by the merging order is visualized as a tree which is called

dendrogram. In density-based clustering, clusters are regarded as areas of

high object density which are separated by areas of lower object density. The

algorithm DBSCAN [55] formalizes this idea by two parameters: MinPts

specifying a number of objects and ε specifying a volume. An object is

called core object if it has at least MinPts objects within its ε-neighborhood.

DBSCAN determines a non-hierarchical, disjoint partitioning of the data set

into clusters.

For a more detailed description of the clustering algorithms, please refer

to Chapter 2.1.

112 5. Clustering Skylines

5.3 Theoretical Background

We are given a set of objects in the database, each of which is already associ-

ated with an individual skyline which has been generated from the underlying

application. For instance, if our database objects are different car types, each

car type is associated with the skyline of the offers that have been made in

our used car market.

The objective of this Section is to define a useful distance measure for a

pair of database objects which are represented by these skylines. The distance

function should be useful in the sense that the characteristic properties of

the skyline concept are suitably reflected in the distance measure. Whenever

two skylines are similar in an intuitive sense, then the corresponding distance

measure should yield a small value. In order to define such a reasonable

distance measure, we recall here the central concept of the classical skyline

operator, the dominance relation which can be built on the preferences on

attributes D1, . . . ,Dd in a d-dimensional numeric space D.

Definition 4 (Dominance) For two data points u and v, u is said to dom-

inate v, denoted by u ≺ v, if the following two conditions hold:

∀ dimensions Di∈{1,...,d}: u.Di ≤ v.Di
∃ dimension Dj∈{1,...,d}: u.Dj < v.Dj.

Definition 5 (Skyline Point / Skyline) Given a set of data points DS,

a data point u is a skyline point if there exists no other data point v ∈ DS
such that v dominates u. The skyline on DS is the set of all skyline points.

Two skylines are obviously equal when they consist of identical points. In-

tuitively, one can say that two skylines are similar, whenever they consist of

similar points. But in addition, two skylines may also be considered similar

if they dominate approximately the same points in the data space. This can

be grasped in a simple and efficient way by requiring that the one of the two

skylines should not change much whenever the points of the other skyline are

5.3 Theoretical Background 113

inserted into the first one and vice versa. This leads us to the idea to base

SkyDist on the set-theoretic difference among the parts of the data space

which are dominated by the two skylines. For a more formal view let us

define the terms dominance region and non-dominance region of a skyline.

Definition 6 (Dominance Region of a Skyline Point) Given a skyline

point xi of a skyline X = {x1, . . . , xn}. The dominance region of xi,

denoted by DOMxi, is the data space, where every data point u ∈ DOMxi

complies the condition xi ≺ u.

Definition 7 (Dominance Region of a Skyline) Given the set of all sky-

line points of a skyline X. The dominance region of the skyline X,

denoted by DOMX , is defined over the union of the dominance regions of

all skyline points xi∈{1,...,n}.

Figure 5.2 illustrates this notion for two given skylines X and Y . The green

and blue areas show the dominance regions of skylines X and Y , respectively.

Definition 8 (Non-Dominance Region of a Skyline) Given a numeric

space D = (D1, . . . ,Dd) and the dominance region DOMX of a skyline X.

The non-dominance region of X, denoted by DOMX , is D \ DOMX .

The basic idea behind SkyDist is to determine the data space that is repre-

sented by all possible data points that are located in the dominance region

of one skyline and, at the same time, the non-dominance region of the other

skyline. More formally we can say that SkyDist is the volume of the distance

area between two skylines which can be specified by the following equation.

SkyDist(X, Y) = Vol((DOMX \ DOMY) ∪ (DOMY \ DOMX)) (5.1)

In order to determine the value of the distance of two skylines X and Y based

on the concept described above, we have to limit the corresponding regions

in each dimension. Therefore we introduce the notion of a bounding skyline

point.

114 5. Clustering Skylines

Definition 9 (Bounding Skyline Point) Given a skyline X in a d-dimensional

numeric space D = (D1, . . . ,Dd), where xi ∈ [0, 1]. The bounding skyline

point of skyline X in dimension i, denoted by xBoundi, is defined as follows.

xBoundi .Dj =

1, if j = i

0, otherwise

The bounding skyline points for two

1.0

1.0

D1

D2

x2

x4

y4

y3 y2

y1

y5
x3

x1

Figure 5.2: Dominance regions of two

skylines X and Y .

2-dimensional skyline objectsX and

Y are marked in Figure 5.2 in red

color. We remark that this con-

cept is also applicable if the domain

of one or more dimensions is not

bounded. In this case the affected

dimensions are bounded by the high-

est value that occurs in either sky-

line object X or Y in the according

dimension. The coordinates of the

remaining skyline points are then

scaled respectively.

5.4 Algorithms to Compute SkyDist

In this Section, we present two approaches for computing SkyDist. MC-

SkyDist is based on a Monte-Carlo sampling approach whereas the second

method exactly determines SkyDist by a plane-sweep based approach.

5.4.1 SkyDist by Monte-Carlo Sampling

First we want to give an approximation of the distance of two skylines by

a Monte-Carlo Sampling approach (MCSkyDist). Therefore, SkyDist is ap-

5.4 Algorithms to Compute SkyDist 115

proximated by randomly sampling points and computing the ratio between

samples that fall into the region defined by Equation 5.1 and the ones that

do not. Let us consider Figure 5.3(a). The region marked in red illustrates

the region underlying SkyDist of two Skylines X and Y . This region is the

dominance region of skyline X and simultaneously the non-dominance region

of skyline Y , thus the distance of skyline X to Y . A user defined number

of points is randomly sampled and the amount of samples that fall into the

SkyDist region is determined. The ratio between the samples located in the

SkyDist region and the ones that do not give an approximation of the dis-

tance of the two skylines. We use this technique in our experiments as a

baseline for comparing a more sophisticated approach.

5.4.2 SkyDist for 2-Dimensional Skylines

Now we describe the method of computing the exact distance of two skylines

X and Y in 2-dimensional space. Let the skyline points of both skylines X

and Y be ordered by one dimension, e.g. D2. Note that the dominance region

of a skyline X is composed by the dominance regions of all of its skyline

points. For the computation of SkyDist, we consider only the dominance

regions that are exclusive for each skyline point. Meaning that when we look

at a particular skyline point xi, we assign the dominance region of xi and

discard all dominance regions of skyline points xj, where xj.D2 > xi.D2.

Figure 5.3(a) illustrates in red the region underlying SkyDist according

to skyline objects X and Y . This region can be considered as a sum of

rectangles as illustrated in Figure 5.3(b). To calculate the region between

the skylines X and Y and thus their distance we use the concept of a sweep-

line approach. For this purpose we store the skyline points of both skylines

X and Y in a heap structure called event point schedule (EPS), ordered by

one of the two dimensions (e.g. D2) ascending. The general idea behind the

sweep-line algorithm is that a line traverses across the plane, stopping at

every point that is stored in the EPS. In our example, the sweep line moves

116 5. Clustering Skylines

x2

y5

y3 y2

1.0

1.0

y4

y1

x4
x3

x1

D1

D2

(a) SkyDist in 2D space.

x2

y5

y3 y2

Sweep

-Line

1.0

1.0

y4

y1

x4
x3

x1

D1

D2

(b) SkyDist in 2D as sum of rectan-
gles.

x2

y5

y3 y2

1.0

1.0

y4

y1

x4
x3

x1

D1

D2

x2

y2

y1

(c) Exemplary computation of a rect-
angle area.

Figure 5.3: SkyDist Computation in 2-dimensional space.

along the axis of D2. Due to the ordering of the skyline points in the EPS

we can determine the area of the rectangle at every stop of the sweep-line

and calculate SkyDist in an incremental way. Figure 5.3(c) demonstrates

for example the calculation process wenn the sweep-line holds on the skyline

point y2. Now we can calculate the area of the rectangle horizontal limited

by the skyline points y2 and x2 as (x2.D1 − y1.D1)(y2.D2 − x2.D2).

5.4 Algorithms to Compute SkyDist 117

5.4.3 A Sweep-Plane Approach for the High-dimensional

Case

In this Section, we describe how to exactly determine the SkyDist between

skylines based on a sweep-plane paradigm referred to as SPSkyDist. We

consider a d-dimensional skyline as a sequence of skylines with dimension-

ality (d − 1) (see Figure 5.4). Here, we use D3 (in decreasing order) as the

ordering dimension and build a sequence of 2-dimensional skylines (each in

the D1/D2-plane).

Traversal. The event point sched-

X1

X2
X3

X4

X1
X2
X3

X4

D3

D1 D2

A

B

C

D E

Figure 5.4: 3-dimensional skyline.

ule (EPS) contains all points, ordered

by the last coordinate (decreasingly).

In each stop of the sweeping plane, we

want to obtain a valid skyline in the

space spanned by the remaining coor-

dinates. This sub-skyline is stored in

the sweep-plane status (SPS). In Fig-

ure 5.4, this refers to the four sub-sky-

linesX1, ..., X4. More precisely, in each

stop of the sweep-plane, this (d − 1)-

dimensional sub-skyline is updated by the following steps:

1. Projecting the current point of the EPS into the (d − 1)-dimensional

space,

2. Inserting the projected point into the skyline in the SPS,

3. Deleting those points from the skyline in the SPS which are dominated

by the new point in the (d− 1)-dimensional space,

4. Calling the traversal-algorithm recursively for the obtained (d − 1)-

dimensional skyline.

118 5. Clustering Skylines

In our example, the EPS has the order (A,B,C,D,E). The method starts

with an empty SPS, and at the first stopping point, the D1/D2-projection

of A is inserted into the SPS to obtain X1. No point is dominated at this

stage. Hence, we call the traversal algorithm for the obtained 2-dimensional

skyline A. At the next stop, the projection of B is inserted. Since the

projection of B dominates the projection of A, X2 only contains point B.

After the recursive call, in the next stop, the projection of C is inserted which

does not dominate object B in the skyline, and, therefore, the next skyline

X3 = (B,C). Finally, D and E are inserted into the skyline in the SPS

(which can be done in one single stop of the sweep-plane or in two separate

stops in any arbitrary order), to obtain X4 = (D,C,E), since B is dominated

by D in the (d− 1)-dimensional projection.

Simultaneous Traversal for SkyDist. The computation of

SkyDist(X, Y) requires a simultaneous traversal of the two skylines X and Y

to be compared. Thus, the EPS contains the points of both X and Y , simul-

taneously ordered by the last coordinate. Each of the stops of the sweep-plane

corresponds either to a point of X or a point of Y , and the corresponding

sub-skyline in the SPS must be updated accordingly. Having developed this

algorithmic template, we can easily obtain SkyDist(X, Y), because each stop

of the sweep-plane defines a disklet, the thickness of which is given by the

difference between the last and the current event point. This thickness must

be multiplied with the (d− 1)-dimensional volume which is returned by the

recursive call that computes SkyDist of the (d− 1)-dimensional sub-skylines

Xi and Yi. The volumes of all disklets of the obtained sub-skylines have

to be added. This works no matter whether current or the previous event

points belong to the same or different skylines or both skylines having iden-

tical values in the ordering coordinates or some points in the same skyline

having identical values. In this case, some disklets with thickness 0 are added

to the overall volume, and, therefore, the order in which the corresponding

sub-skylines are updated, does not change anything.

5.5 Experiments 119

5.5 Experiments

In this Section, we present an extensive experimental evaluation on syn-

thetic and real world data. We demonstrate that SkyDist is highly effective

and efficient. In order to demonstrate the potential of data mining on sky-

lines for knowledge discovery, we integrated SkyDist into different clustering

methods with different algorithmic paradigms. In particular, we selected

the partitioning clustering approach PAM [94], the density-based algorithm

DBSCAN [55] and Single Link [153] that forms a hierarchy of clusters. For

skyline construction, the approach of [23] is applied.

5.5.1 Efficiency

To evaluate the stability of the baseline approach MCSkyDist and the scal-

ability of both, MCSkyDist and SPSkyDist, we generate synthetic data of

various number of objects and dimensions. Unless otherwise specified, the

skyline is constructed from 1,000 uniformly distributed 2-dimensional data

objects.

Accuracy of MCSkyDist w.r.t. Sample Rate. In the first experiment,

we vary the sample rate in a range of 1 to 50,000 and quantify the accuracy

of SkyDist in each run. Figure 5.5 indicates that the accuracy of MCSkyDist

is very robust w.r.t. the number of samples. Its results achieve a constant

value even with a small sample rate. Actually with 1,000 samples a constant

SkyDist value can be achieved. Thus, we use a sample rate of 1,000 for MC-

SkyDist in the following experiments.

Runtime w.r.t. Number of Objects and Dimensionality. In order to

measure the runtime for varying data set size and dimensionality of the data,

we generate skylines of data sets with a size ranging from 10 to 10,000 points

and dimensionality two, three and four. In most real world applications,

120 5. Clustering Skylines

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000

S
k

y
D

is
t

sample rate

Figure 5.5: Varying sample rate of
MCSkyDist.

0

5000

10000

15000

20000

0 100000 200000 300000 400000

p
ri

ce
 (

E
u

ro
)

mileage (km)

Audi A8 3.3
BMW 7 3.0
BMW 316
MB C180

Audi A3 1.6
Toyota Avensis 1.6
Honda Accord 1.8

VW Golf 3 1.6
Opel Astra 1.6
Ford Focus 1.6

Figure 5.6: Clustering of car mod-
els represented by their skyline.

we are interested in the skyline w.r.t. a few selected dimensions. Hence,

in this experiments, we focus on skylines up to dimensionality d = 4. All

results are summarized in Table 5.1. In the 2-dimensional case the runtime

of SkyDist remains constant even with increasing data size. This is due to

the fact, that despite increasing database size the number of skyline points

remains relatively constant. It has been shown in [108] that for independent

distributed data the number of skyline objects is O(log2 n).

Also in the 3- and 4-dimensional case it is evident that considering the

skyline points instead of all data points is very efficient. It takes 78 and

266 ms for SPSkyDist and MCSkyDist respectively to return the result when

comparing two skylines X and Y each determined out of 10,000 data points.

MCSkyDist and SPSkyDist both scale linear with increasing dimensionality.

However, the sweep-plane approach outperforms the baseline by a factor of

two which confirms the effectiveness and scalability of an exact computation

of SkyDist even for large data sets with more than two dimensions.

5.5.2 Clustering Skylines of Real World Data.

In addition to synthetic data we used real world data to demonstrate the

potential of SkyDist for data mining. We demonstrate that interesting rea-

5.5 Experiments 121

Table 5.1: Runtime analysis for SPSkyDist and MCSkyDist.

data # skyline # skyline SPSkyDist MCSkyDist
points points of X points of Y

2D data 10 4 3 15 ms 47 ms
100 5 6 16 ms 47 ms

1000 9 5 15 ms 63 ms
10000 7 12 15 ms 78 ms

3D data 10 5 5 31 ms 62 ms
100 18 16 47 ms 109 ms

1000 29 19 63 ms 125 ms
10000 68 39 78 ms 266 ms

4D data 10 5 8 47 ms 78 ms
100 25 36 172 ms 141 ms

1000 80 61 203 ms 297 ms
10000 187 151 609 ms 1078 ms

sonable knowledge can be obtained by clustering skylines with SkyDist. In

particular, we focus on two case studies from different applications and we

apply three different clustering algorithms (PAM, Single Link and DBSCAN)

with SkyDist.

Case Study 1: Automotive Market. The data used in this experi-

ment is obtained from the online automotive market place (http://www.

autoscout24.de). The resulting data set comprises in total 1,519 used cars

constructed in the year 2000. Thus, each data point represents a specific offer

of a used car which are labeled to one of three classes compact, medium-sized

and luxury, respectively. This information allows for an evaluation of the re-

sults. Each car model is represented by one 2-dimensional skyline using the

http://www.autoscout24.de
http://www.autoscout24.de

122 5. Clustering Skylines

attributes mileage and price. Hence, each skyline point represents a specific

offer that provides an outstanding combination of these attributes, and there-

fore it is interesting for the user. PAM, DBSCAN and Single Link combined

with SkyDist create an identical clustering result (cf. Figure 5.6) using the

following parameterization: PAM (k = 3), DBSCAN (ε = 10, MinPts = 2)

and the dendrogram Single Link with a vertical cut at maxDistance = 90.

All algorithms produce 100% class-pure clusters w.r.t. the labelling provided

by the online market place. As expected the Audi A8 and BMW 7 of class

luxury are clustered together in the blue cluster with a very low distance.

Also the Mercedes Benz C180 (MB C180) and the Audi A3 belong to a com-

mon cluster (marked in red) and show a larger distance to the Toyota Avensis

or the Honda Accord. These two car models are clustered together in the

green cluster, whose members usually have a cheaper price. The clustering

result with SkyDist is very informative for a user interested in outstanding

combinations of mileage and price but not fixed on a specific car model. By

clustering, groups of models with similar skylines become evident.

SkyDist vs. Conventional Metrics. Conventional metrics can in prin-

ciple be applied for clustering skylines. For this purpose, we represent each

car model as a vector by calculating the average of the skyline points of

the respective car model in each dimension. Then we cluster the resulting

vectors with Single Link using the Euclidean, Manhattan and Cosine dis-

tance. In contrast to clustering skylines using SkyDist (cf. Figure 5.7(a)),

Figures 5.7(b), 5.7(c) and 5.7(d) demonstrates that no clear clusters are iden-

tifiable in the dendrogram and the result is not very comprehensible. In

Figure 5.7(b) and 5.7(c) it can easily be seen that Euclidean and Manhat-

tan distance lead to similar results. Both show the so called Single Link

effect, where no clear clusters can be identified. Using the Cosine distance

avoids this effect but does not produce meaningful clusters either. For exam-

ple, the luxury car model BMW 7 has minimum distance to the Opel Astra

5.5 Experiments 123

(a) SkyDist. (b) Euclidean.

(c) Manhattan. (d) Cosine.

Figure 5.7: The dendrogram of Single Link using SkyDist in comparison to
conventional metrics.

of class compact but has an unexpected high distance to the luxury Audi A8.

Case Study 2: Performance Statistics of Basketball Players. The

NBA game-by-game technical statistics are available at http://www.NBA.

com. We focus on the years 1991 to 2005. To facilitate demonstration and

interpretation, we select players who have played at minimum 500 games

and are noted for their skills and got various awards. The players are labeled

with the three different basketball positions guard (G), forward (F) and

center (C). The individual performance skyline of each player represents

the number of assists and points. We cluster the skylines using SkyDist.

http://www.NBA.com
http://www.NBA.com

124 5. Clustering Skylines

0

10

20

30

40

50

60

70

0 10 20

#
 p

o
in

ts

asissts

M. Jordan (G)
K. Bryant (G)
G. Payton (G)

S. Nash (G)
D. Nowitzki (F)

T. Duncan (F)
K. Malone (F)
C. Barkley (F)
K. Garnett (F)

P. Pierce (F)
C. Webber (F)
B. Wallace (C)
M. Camby (C)

D. Mutombo (C)
A. Mourning (C)

(a) Single Link, DBSCAN.

0

10

20

30

40

50

60

70

0 10 20

#
 p

o
in

ts

asissts

M. Jordan (G)
K. Bryant (G)
G. Payton (G)

S. Nash (G)
D. Nowitzki (F)

T. Duncan (F)
K. Malone (F)
C. Barkley (F)
K. Garnett (F)

P. Pierce (F)
C. Webber (F)
B. Wallace (C)
M. Camby (C)

D. Mutombo (C)
A. Mourning (C)

(b) PAM

Figure 5.8: Clustering of NBA Players represented as skylines.

Single Link with a vertical cut of the dendrogram at maxDistance = 96 and

DBSCAN (ε = 4, MinPts = 2) result in the same clustering. Figure 5.8(a)

shows that the players cluster very well in three clusters that refer to the

labels G, F and C. With PAM (k = 3) (cf. Figure 5.8(b)) only Steve Nash

(G) clusters into the red forward cluster. This can be explained by the fact,

that this player has performance statistics as a player in the position forward

concerning number of points and assists.

Part III

Techniques for Mining

Biomedical Data

Chapter 6

Automated Detection of Brain

Atrophy Patterns based on

MRI

Magnetic resonance imaging (MRI) allows to display brain structures with

highest resolution. To fully exploit the potential of this imagining modal-

ity, data mining methods are required to reveal subtle differences in brain

structure caused by disorders such as Mild Cognitive Impairment (MCI) and

early stage Alzheimer’s disease (AD). For a concise report on MRI please

refer to Chapter 2.5. In this Chapter, we present a data mining framework

which combines elements from feature selection, clustering and classification

in order to discriminate between diseased and healthy subjects.

The Chapter is organized as follows. After an introduction in the next

Section, we report related work in this field. In Section 6.2 we present the

framework combining feature selection, clustering and classification. The

classification accuracies and visualization of the affected areas are presented

in Section 6.3. In Section 6.4 we discuss the results. The concepts described

in this Chapter have been published in [141].

128 6. Detection of Brain Atrophy Patterns based on MRI

6.1 Introduction

Alzheimer’s disease (AD) is the most frequent cause of age-related demen-

tia. Due to the increasing proportion of elderly people in the Western soci-

eties, the prevalence of dementia is projected to double within the next three

decades [62]. The reliable and early detection of AD in pre-dementia stages

such as mild cognitive impairment (MCI) is the basis for the development of

preventive treatment approaches. However, especially the diagnosis of mild

AD and prediction of development of AD in at-risk groups remains challeng-

ing. In addition to cerebrospinal fluid derived markers [17, 56, 77, 80, 180],

neuroimaging markers have been recommended to be included in the revised

NINCDS-ADRDA diagnostic standard criteria [50] and proposed as predic-

tors of AD [137, 174]. The best established MRI derived marker of AD, hip-

pocampus volume, shows relatively high diagnostic accuracy for AD but clin-

ically insufficient predictive value for the prediction of progression from MCI

to AD when assessed as the sole predictor [39, 87, 90, 95, 134, 157, 169]. As

an alternative to ROI (Region of interest) based volumetry, automated mor-

phometry and deformation-based approaches have been developed to map

the pattern of structural brain changes across the entire brain [8, 72]. A

series of voxel-based morphometric studies in MCI and mild AD have shown

marked volume differences not only within the hippocampus area but also

distributed within cortical brain areas such as the precuneus and cingulate

gyrus [12, 31, 32, 64, 92, 135]. However, few statistical approaches have

been proposed to derive individual risk scores from such maps of atrophy for

the clinical prediction of AD. Data mining approaches and pattern recog-

nition methods provide a way to extract from millions of voxels within an

MRI the minimal set of voxel values necessary to attain a sufficiently high

accuracy for the prediction and diagnosis of AD. Multivariate approaches

such as principal component analysis (PCA) [65], independent component

analysis (ICA) [114], structural equation modeling [113], and support vector

machine [123, 124] are potential candidates but have mostly been applied to

6.2 The FCC framework 129

functional neuroimaging data so far. Recently, such multivariate methods

have been adopted for the analysis of structural MRI to detect spatial pat-

terns of atrophy in AD [30, 40, 43, 51, 52, 53, 57, 96, 119, 162, 168]. These

techniques allow for deriving a single value representing the degree to which

a disease specific spatial pattern of atrophy is present in a single individual.

The application of such classifiers of spatial pattern of atrophy in MCI has

shown promising results for the prediction of AD [40, 162]. We applied a

novel two-step approach combining a distribution-free feature selection al-

gorithm at the first stage and, at the second stage, different multivariate

classifiers for case-by-case decision making. The major aims were, first, to

develop a novel feature selection method to circumvent potential problems of

previous approaches for feature selection including lack of statistical power

due to multiple testing [57] or purely-data driven correlational patterns in

unsupervised dimensionality reduction (e.g. PCA [162, 163]). Secondly, we

compared different cross-validated classifiers including support vector ma-

chine (SVM), a Bayesian classifier, and voting feature intervals (VFI) com-

bined with unsupervised clustering algorithms to derive the minimal set of

voxels for optimized prediction of diagnosis (AD vs. HC) or prediction of

AD in MCI. The overall goal was to derive an optimized classification that

is sensitive for the early MRI-based detection of AD.

6.2 The FCC framework

We applied a multi-step data mining procedure including feature selection,

clustering and classification (FCC) to identify the best discriminating regions

in brain images. Given a data set DS consisting of MRI scans of n subjects

s1, · · · , sn labeled to a set of k discrete classes C = {c1, · · · , ck} (in our study

e.g. HC and AD), we denote the class label of subject si by si.c. For each

subject we have an MR image which is represented as a feature vector V

composed of d voxels v1, · · · , vd.

130 6. Detection of Brain Atrophy Patterns based on MRI

6.2.1 Feature Selection

First, we select the most discriminating features using a feature selection

criterion. We use the Information Gain [146] to rate the interestingness of a

voxel for class separation, which requires the following definitions.

Entropy of the Class Distribution. The entropy of the class distribution

H(C) is defined as H(C) =
∑
ci∈C

p(ci) · log2(p(ci)), where p(ci) denotes the

probability of class ci, i.e |{s|s ∈ DS∧s.c = ci}|/n. H(C) corresponds to the

required amount of bits to tell the class of an unknown subject and scales

between 0 and 1. In the case of k = 2, (e.g. we consider the two classes

HC and AD), if the number of subjects per class is equal for both classes,

H(C) = 1. In the case of unbalanced class sizes the entropy of the class

distribution is smaller than one and approaches zero if there are much more

instances of one class than of the other class.

Information Gain of a Voxel. Now we can define the Information Gain

(IG) of a voxel vi as the amount by which H(C) decreases through the

additional information provided by vi on the class, which is described by the

conditional entropy H(C|vi).

IG(vi) = H(C)−H(C|vi)

In the case of k=2, the Information Gain scales between 0 and 1, where 0

means that the corresponding voxel provides no information on class label

of the subjects. An Information Gain of 1 means that the class labels of all

subjects can be derived from the corresponding voxel without any errors. To

compute the conditional entropy, features with continuous values, as in our

case, need to be discretized using the algorithm of [59]. This method aims

at dividing the attribute range into class pure intervals. The cut points are

determined by the Information Gain of the split. Since a higher number of

6.2 The FCC framework 131

cut points always implies higher class purity but may lead to over fitting, an

information-theoretic criterion based on the Minimum Description Length

principle is used to determine the optimal number and location of the cut

points.

6.2.2 Clustering

After feature selection, we apply a clustering algorithm to identify groups

of adjacent voxels with a high discriminatory power and to remove noise.

Clustering algorithms aim at deriving a partitioning of a data set into groups

(clusters) such that similar objects are grouped together. We apply clustering

to group voxels with similar spatial location in the brain and similar (high)

IG. The density-based clustering algorithm DBSCAN [55] has been designed

to find clusters of arbitrary shape in databases with noise. In our context,

clusters are connected areas of voxels having a high IG which are separated

by areas of voxels of lower IG. DBSCAN has been originally designed for

clustering data objects represented by feature vectors. A detailed description

of DBSCAN is provided in Section 2.1. To adapt the algorithm to our setting,

we redefine the core object property and direct density reachability as follows:

Given two thresholds of Information Gain tcore and tborder and a minimum

number of voxels MinVox we call a voxel vi a core voxel if the IG of vi is

larger than tcore and vi is surrounded by at least MinVox voxels having an IG

of at least tborder. We allow for potentially different thresholds tcore > tborder

of IG for core voxels and voxels at the boundaries of the clusters to require

highly discriminative cluster centers and to model the natural fading of the

discriminatory power in the boundary areas of the clusters. However, it is

on our specific set of images not necessary to distinguish between tcore and

tborder since the voxels either have a significant Information Gain value or an

IG of zero. So we set tcore and tborder to the minimum IG in the data set and

used MinVox = 6, which means that we require a core voxel to be situated

in a neighborhood of highly discriminative voxels.

132 6. Detection of Brain Atrophy Patterns based on MRI

6.2.3 Classification

After clustering, the selected features represent spatially coherent regions

which exhibit significant differences among the groups. At this stage, clas-

sification algorithms can be applied to validate the discriminatory power of

these selected clusters. Classification is a data mining technique used to

predict group membership for data instances, which are the subjects in our

application. The task of classification involves two major steps: In the so-

called training phase, the classifier learns the separating information. To

achieve this, some amount of instances with known class labels is required.

In the test phase, the classifier predicts the class label of unlabeled instances

based on the learned information. For more information on the validation

of classifiers see Section 2.4. Among the large variety of classifiers we chose

three representative approaches with very different algorithmic paradigms.

• Linear Support Vector Machine (SVM). SVM aims at construct-

ing a hyperplane separating the training examples. Among all possible

hyperplanes, SVM selects the one with the maximum margin between

the training examples of both classes.

• Bayesian Classifier (Bayes). The fundamental idea of Bayesian

classification is to model each class of the training data by a probability

density function. Test objects are then assigned to most probable class.

• Voting Feature Intervals (VFI). Very different to SVM and Bayes,

VFI is a simple entropy-based classifier. In the training phase, VFI

constructs class-pure intervals for each feature and each class. Classi-

fication is performed by voting.

For more information on the classifiers, please refer to Section 2.3.

6.3 Experiments 133

6.2.4 Visualization

We display the spatial location of the features best discriminating the classes

HC and AD, and MCI-MCI and MCI-AD, respectively. For the ease of com-

parison, we display in Figures 6.1, 6.2(b) and 6.3(b) the features which are

relevant for classification in all folds. Note that this is only done to ob-

tain one common spatial map for interpretation of the best discriminating

regions and the reported classification accuracies are obtained by leave-one-

out cross-validation. To facilitate interpretation, we additionally highlight

the most interesting clusters in different colors in Figures 6.2 and 6.3. We

were interested in clusters which are as large as possible and exhibit an IG

as high as possible. Therefore, we selected those clusters in the visualiza-

tion exhibiting an outstanding combination of both criteria using the skyline

operator which has been successfully applied in many multi-criteria decision

making applications, e.g. in personalized information systems [82] or for

the selection of web services [154]. The skyline of a data set consists of all

data objects which are not dominated by any other object in the data set

w.r.t. any possible weighting of the studied criteria. We have already given

a detailed overview on skyline computation in Chapter 5. In our context,

we consider clusters of voxels which are described by the features size and

IG. To get the anatomical information of the clusters, we used the Talairach

Daemon software 1 after MNI to Talairach coordinate transformation with

the non-linear approach by Duncan et al. [54].

6.3 Experiments

We applied the FCC framework to a set of MRI scans of patients with amnes-

tic MCI, AD and healthy controls.

1http://www.talairach.org/

http://www.talairach.org/

134 6. Detection of Brain Atrophy Patterns based on MRI

 32

Figure 3: Selected features for the comparison between AD vs. HC.
z-coordinates in Talairach space: top row of images -45.5, -33.5, -26.5, -18.5, -13.5, -11.5,
-5.5; bottom row: -3.5, 0.5, 4.5, 8.5, 13.5, 15.5, 21.5.

Figure 6.1: Selected features for the comparison between AD vs. HC. z-
coordinates in Talairach space: top row of images -45.5, -33.5, -26.5, -18.5,
-13.5, -11.5, -5.5; bottom row: -3.5, 0.5, 4.5, 8.5, 13.5, 15.5, 21.5.

6.3.1 Subjects

32 patients with clinically probable AD, 24 patients with amnestic MCI and

18 healthy control subjects (HC) underwent MRI and clinical examinations

(cf. Table 6.1). AD patients fulfilled the criteria of the National Institute of

Neurological Communicative Disorders and Stroke and the Alzheimer Disease

and Related Disorders Association (NINCDS-ADRDA) criteria for clinically

probable AD [115]. MCI subjects fulfilled the Mayo criteria for amnestic

MCI [137]. All MCI subjects had subjective memory complaints, a delayed

verbal recall score at least 1.5 standard deviations below the respective age

norm, normal general cognitive function, and normal activities of daily liv-

ing. Severity of cognitive impairment was assessed by the Mini-Mental-State-

Examination (MMSE) [63]. Controls did not have cognitive complaints and

scored within 1 standard deviation from the age adjusted norm on all sub-

tests of the CERAD cognitive battery [122]. MCI patients received clinical

follow-up examinations over approximately 2.5 years, using clinical examina-

tion and neuropsychological testing to determine which subjects converted

to AD and which remained stable.

6.3 Experiments 135

Table 6.1: Demographic variables and MMSE for the different groups.

Group Women/men Age MMSE mean
in years)

Healthy controls 9/9 64.8 29.3
AD patients 20/12 68.8 23.4
MCI patients 13/11 69.7 27.0

6.3.2 MRI Acquisition

MRI examinations of the brain were performed on a 1.5 T MRI scanner

(Magnetom Vision, Siemens Medical Solutions, Erlangen, Germany). We

acquired a high-resolution T1-weighted Magnetisation Prepared Rapidly Ac-

quired Gradient echo (MPRAGE) 3D-sequence with a resolution of 0.55 by

0.55 by 1.1 mm3, TE = 3.9 ms, TI = 800 ms, and TR = 1,570 ms. The FOV

was 240 mm and the pixel matrix was 512 x 512.

6.3.3 MRI Processing

The preprocessing of the scans was conducted with the statistical software

package SPM2 1. The high-dimensional normalization of the MRI scans was

processed according to a protocol that has been described in detail previously

in [162] and [163]. First, we constructed a customized template across groups

averaged across images that were normalized to the standard MNI T1 MRI

template, using the low-dimensional transformation algorithm implemented

in SPM2[[8], [7]]. Next, one good quality MRI scan of a healthy control sub-

ject was normalized to this anatomical average image using high-dimensional

normalization with symmetric priors [6] resulting in a pre-template image.

1Wellcome Trust Centre for Neuroimaging, London, http://www.fil.ion.ucl.ac.

uk/spm/

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/

136 6. Detection of Brain Atrophy Patterns based on MRI

Finally, the MRI scan in native space of the same subject was normalized

to this pre-template image using high-dimensional normalization. The re-

sulting volume in standard space served as the anatomical template for sub-

sequent normalizations of the remaining scans. The individual anatomical

scans in standard space (after low-dimensional normalization) were normal-

ized to the anatomical template using high-dimensional image warping [6].

These normalized images were resliced to a final isotropic voxel size of 1.0

mm3. Finally, we derived Jacobian determinant maps from the voxel-based

transformation tensors. Values above 1 represent an expansion of the voxel,

values below 1 a contraction of the voxel from the template to the refer-

ence brain. The resulting Jacobian determinant maps were masked for brain

matter and cerebrospinal fluid (CSF) spaces using masks from the segmented

template MRI [7]. To obtain the brain mask, the template brain scan was seg-

mented into gray and white matter and CSF spaces. The gray matter (GM)

and white matter (WM) compartments then were combined to obtain a brain

mask excluding CSF: (GM+WM)/(WM+GM+CSF).*BRAIN with gray

matter, white matter, and CSF representing the gray and white matter and

CSF probabilistic maps obtained through segmentation and BRAIN repre-

senting the brain mask obtained from the brain extraction step in SPM2. We

took the logarithm of the masked maps of the Jacobian determinants [151]

and then applied a 10 mm full width at half maximum isotropic Gaussian

kernel. The masked smoothed Jacobian determinant maps were scaled to the

same mean value and standard deviation using a voxel-wise z-transformation:

zi,k =
xi,k − xk

sk

where xi,k is the FA value of voxel i in scan k, xk is the mean value across

all xi of scan k and s is the standard-deviation across all xi of scan k.

6.3 Experiments 137

6.3.4 Results

The mean age, MMSE and the gender distribution for AD, MCI, and HC

subjects are displayed in Table 6.1. Nine out of 24 MCI subjects converted

to AD after an average follow-up interval of 2.5 years. We applied our frame-

work with leave-one-out cross validation on three data sets to identify highly

selective brain regions for the differentiation between AD vs. HC, MCI vs.

HC, and MCI converter (MCI-AD) vs. MCI non-converters (MCI-MCI). For

the train-and-test validation, we used the brain regions identified in the AD

vs. HC for the prediction of conversion of patients with MCI. Table 6.2 sum-

marizes all experiments performed and Table 6.3 provides a summary of the

classification results for all group comparisons, which are explained below

in detail. For all classification results, also the 95% confidence interval is

provided in Table 6.3.

Table 6.2: Summary of classification experiments.

Task Comparison Validation Training Test

1 AD vs. HC Leave-one-out n.a. n.a.
2 MCI-MCI vs. MCI-AD Leave-one-out n.a. n.a.
3 MCI vs. HC Leave-one-out n.a. n.a.
4 MCI-MCI vs. MCI-AD Train-and-Test AD vs. HC MCI

138 6. Detection of Brain Atrophy Patterns based on MRI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1000 2000 3000 4000

m
a

x
 I

G

cluster size

(a) Cluster size and maximum Information
Gain for MCI converter vs. MCI non-
converter.

 34

Figure 4b: Selected features after HC vs. AD clustering.
Colors: Cluster 1 red, cluster 2 green, cluster 3: blue, cluster 4 purple cluster 5 orange.
remaining clusters gray. Displayed is every second slice starting with z= -31.5 to 22.5; 34.5
and 35.5.

(b) Selected features after HC vs. AD clustering. Colors: Cluster 1 red, cluster
2 green, cluster 3: blue, cluster 4 purple cluster 5 orange. remaining clusters
gray. Displayed is every second slice starting with z= -31.5 to 22.5; 34.5 and
35.5.

Figure 6.2: AD vs. HC. Discriminating regions in the brain with high IG
value.

6.3 Experiments 139

Task Measure SVM Bayes VFI

1 Accuracy 90% [77.41, 96.26] 92% [79.89, 97.41] 78% [63.67, 88.01]

Sensitivity 96.88% [82.01, 99.84] 93.75% [77.78, 98.27] 65.63% [46.78, 80.83]

Specificity 77.78% [51.92, 92.63] 88.89% [63.93, 98.05] 100% [78.12, 100]

2 Accuracy 95.83% [76.88, 99.78] 91.67% [71.53, 98.54] 95.83% [76.88, 99.78]

Sensitivity 88.89% [50.67, 99.42] 77.78% [40.19, 96.05] 100% [62.88, 100]

Specificity 100% [74.65, 100] 100% [74.65, 100] 93.33% [66.03, 99.65]

3 Accuracy 97.62% [85.91, 99.88] 85.71% [70.76, 94.05] 88.1% [73.57, 95.54]

Sensitivity 95.83% [76.88, 99.78] 83.33% [61.81, 94.52] 83.33% [61.81, 94.52]

Specificity 100% [78.12, 100] 88.89% [63.93, 98.05] 94.44% [70.62, 99.71]

4 Accuracy 50% [29.65, 70.35] 58.33% [28.99, 81.38] 75% [52.95, 89.40]

Sensitivity 55.56% [22.26, 84.66] 46.66% [22.22, 72.57] 55.56% [22.66, 84.66]

Specificity 46.47% [22.28, 72.58] 77.77% [40.19, 96.05] 86.67% [58.39, 97.66]

Table 6.3: Classification Results. For all classifiers and experiments, accu-

racy, sensitivity and specificity are provided together with the 95% confidence

intervals

Classification of AD vs. HC. For the differentiation between AD and HC,

a proportion of the voxels ranging between 97.48% and 98.04% have an Infor-

mation Gain of 0, i.e. they contain no information separating the groups and

are therefore excluded from further analysis. Theoretically, combinations of

these features may provide valuable information. However, due to the high

dimensionality of the data, an exhaustive search for feature combinations is

not applicable.

For one randomly selected fold the range of IG value among the remaining

87,416 voxels was between 0.18 and 0.69. The minimum IG of 0.18 was rela-

tively high, indicating that the voxels either contain a good deal of valuable

information to separate the classes or are completely irrelevant. Figure 6.1

displays the spatial distribution of the voxels with non-zero IG across all

folds.

For one randomly selected fold clustering reduced the 87,416 selected

features to 26,228. In total, 978 clusters containing at least one core ob-

ject exhibiting the maximum number of six neighbors were obtained. The

largest cluster comprised 3,445 voxels. Figure 6.2(a) summarizes the cluster

140 6. Detection of Brain Atrophy Patterns based on MRI

T
ab

le
6.4:

C
lu

sters
A

D
v
s.

H
C

.

C
lu

ster-ID
S

ize(#
v
o
x
els)

M
a
x

IG
L

o
ca

tio
n

R
eg

io
n

s

5
(o

ra
n

g
e)

3
,4

4
5

0
.6

2
4
1
.5

8
,

2
8
.2

8
,

-1
6
.9

8
F

ro
n
ta

l
L

o
b

e,
In

ferio
r

F
ro

n
ta

l
G

y
ru

s,
W

h
ite

M
a
tter

4
0
.5

9
,

3
3
.4

2
,

-1
1
.3

4
F

ro
n
ta

l
L

o
b

e,
M

id
d

le
F

ro
n
ta

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

1
1

3
4
.6

5
,

1
6
.9

6
,

-1
0
.5

2
F

ro
n
ta

l
L

o
b

e,
E

x
tra

-N
u

clea
r,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

4
7

4
2
.5

7
,

3
1
.3

2
,

-1
4
.6

1
F

ro
n
ta

l
L

o
b

e,
In

ferio
r

F
ro

n
ta

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

1
1

3
4
.6

5
,

2
4
.4

7
,

3
.8

4
F

ro
n
ta

l
L

o
b

e,
In

ferio
r

F
ro

n
ta

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

4
5

4
1
.5

8
,

2
6
.3

1
,

-1
7
.7

2
F

ro
n
ta

l
L

o
b

e,
In

ferio
r

F
ro

n
ta

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

4
7

4
1
.5

8
,

1
1
.0

2
,

-1
2
.7

5
S

u
b

-lo
b

a
r,

E
x
tra

-N
u

clea
r,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

1
3

3
7
.6

2
,

2
2
.0

5
,

-5
.7

3
S

u
b

-lo
b

a
r,

E
x
tra

-N
u

clea
r,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

4
7

3
4
.6

5
,

1
2
.4

1
,

-4
.4

1
S

u
b

-lo
b

a
r,

In
su

la
,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

1
3

3
4
.6

5
,

1
7
.3

8
,

-2
.1

3
S

u
b

-lo
b

a
r,

In
su

la
,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

4
7

4
1
.5

8
,

1
1
.9

4
,

-1
3
.6

4
T

em
p

o
ra

l
L

o
b

e,
S

u
p

erio
r

T
em

p
o
ra

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

3
8

4
(p

u
rp

le)
3
,1

3
5

0
.5

7
2
3
.7

6
,

-4
.3

6
,

-9
.4

5
L

im
b

ic
L

o
b

e,
P

a
ra

h
ip

p
o
ca

m
p

a
l

G
y
ru

s,
G

ra
y

M
a
tter,

A
m

y
g
d

a
la

2
4
.7

5
,

-0
.6

1
,

-1
2
.1

6
L

im
b

ic
L

o
b

e,
P

a
ra

h
ip

p
o
ca

m
p

a
l

G
y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n
n

a
rea

3
4

2
6
.7

3
,

2
.3

4
,

-1
1
.4

7
L

im
b

ic
L

o
b

e,
S

u
b

ca
llo

sa
l

G
y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

3
4

3
3
.6

6
,

-4
.4

5
,

8
.0

5
S

u
b

-lo
b

a
r,

C
la

u
stru

m
,

G
ra

y
M

a
tter

2
9
.7

,
-6

.3
0
,

9
.9

9
S

u
b

-lo
b

a
r,

L
en

tifo
rm

N
u

cleu
s,

G
ra

y
M

a
tter,

P
u

ta
m

en
3
2
.6

7
,

7
.3

1
,

1
0
.2

3
S

u
b

-lo
b

a
r,

C
la

u
stru

m
,

G
ra

y
M

a
tter

3
2
.6

7
,

8
.3

7
,

1
2
.0

2
R

ig
h
t

C
ereb

ru
m

,
S

u
b

-lo
b

a
r,

In
su

la
,

G
ra

y
M

a
tter,

B
ro

d
m

a
n

n
a
rea

1
3

2
4
.7

5
,

-6
.2

5
,

-8
.5

2
S

u
b

-lo
b

a
r,

L
en

tifo
rm

N
u

cleu
s,

G
ra

y
M

a
tter,

L
a
tera

l
G

lo
b

u
s

P
a
llid

u
s

2
5
.7

4
,

-4
.3

2
,

-8
.6

2
S

u
b

-lo
b

a
r,

L
en

tifo
rm

N
u

cleu
s,

G
ra

y
M

a
tter,

P
u

ta
m

en
2
2
.7

7
,

9
.9

2
,

-1
5
.2

1
F

ro
n
ta

l
L

o
b

e,
In

ferio
r

F
ro

n
ta

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

4
7

2
5
.7

4
,

4
.1

9
,

-1
3
.2

4
F

ro
n
ta

l
L

o
b

e,
S

u
b

ca
llo

sa
l

G
y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

3
4

3
(b

lu
e)

8
6
2

0
.5

2
-2

4
.7

5
,

-0
.7

6
,

4
.1

8
S

u
b

-lo
b

a
r,

L
en

tifo
rm

N
u

cleu
s,

G
ra

y
M

a
tter,

P
u

ta
m

en
-2

3
.7

6
,

6
.3

4
,

1
0
.2

8
S

u
b

-lo
b

a
r,

E
x
tra

-N
u

clea
r,

W
h

ite
M

a
tter

-2
6
.7

3
,

1
1
.0

9
,

8
.2

0
S

u
b

-lo
b

a
r,

C
la

u
stru

m
,

G
ra

y
M

a
tter

-1
9
.8

,
0
.9

0
5
8
,

-1
.3

0
S

u
b

-lo
b

a
r,

L
en

tifo
rm

N
u

cleu
s,

G
ra

y
M

a
tter,

L
a
tera

l
G

lo
b

u
s

P
a
llid

u
s

2
(g

reen
)

2
9
3

0
.5

8
-4

9
.5

,
-3

.1
3
,

-2
3
.8

1
T

em
p

o
ra

l
L

o
b

e,
F

u
sifo

rm
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

2
0

-5
0
.4

9
,

-1
.1

5
,

-2
3
.0

7
T

em
p

o
ra

l
L

o
b

e,
M

id
d

le
T

em
p

o
ra

l
G

y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

2
1

1
(red

)
7

0
.5

9
-3

3
.6

6
,

-2
3
.5

1
,

3
4
.8

1
P

a
rieta

l
L

o
b

e,
P

o
stcen

tra
l

G
y
ru

s,
G

ra
y

M
a
tter,

B
ro

d
m

a
n

n
a
rea

2

6.3 Experiments 141

T
ab

le
6.

5:
C

lu
st

er
s

M
C

I-
A

D
v
s.

M
C

I-
M

C
I.

C
lu

st
er

-I
D

S
iz

e(
#

v
o
x
el

s)
M

a
x

IG
L

o
ca

ti
o
n

R
eg

io
n

s

5
(o

ra
n

g
e)

1
,3

2
0

0
.6

1
-1

.9
8
,

4
7
.8

7
,

-5
.5

9
A

n
te

ri
o
r

L
o
b

e,
C

u
lm

en
,

G
ra

y
M

a
tt

er
4

(v
io

le
t)

5
7
3

0
.6

2
1
5
.8

4
,

-0
.2

7
,

-5
.4

5
S

u
b

-l
o
b

a
r,

L
en

ti
fo

rm
N

u
cl

eu
s,

G
ra

y
M

a
tt

er
,

M
ed

ia
l

G
lo

b
u

s
P

a
ll
id

u
s

1
5
.8

4
,

1
.6

6
,

-5
.5

5
S

u
b

-l
o
b

a
r,

L
en

ti
fo

rm
N

u
cl

eu
s,

G
ra

y
M

a
tt

er
,

L
a
te

ra
l

G
lo

b
u

s
P

a
ll
id

u
s

1
4
.8

5
,

-7
.8

5
,

-1
.7

1
S

u
b

-l
o
b

a
r,

E
x
tr

a
-N

u
cl

ea
r,

W
h

it
e

M
a
tt

er
1
9
.8

0
,

3
.6

9
,

-3
.9

7
S

u
b

-l
o
b

a
r,

L
en

ti
fo

rm
N

u
cl

eu
s,

G
ra

y
M

a
tt

er
,

P
u

ta
m

en
3

(b
lu

e)
1
3
5

0
.9

3
1
6
.8

3
,

1
4
.5

0
,

3
7
.5

0
F

ro
n
ta

l
L

o
b

e,
C

in
g
u

la
te

G
y
ru

s,
G

ra
y

M
a
tt

er
,

B
ro

d
m

a
n

n
a
re

a
3
2

1
8
.8

1
,

1
5
.3

3
,

3
4
.6

7
F

ro
n
ta

l
L

o
b

e,
C

in
g
u

la
te

G
y
ru

s,
W

h
it

e
M

a
tt

er
2
0
.7

9
,

1
6
.3

4
,

3
5
.5

7
F

ro
n
ta

l
L

o
b

e,
S

u
b

-G
y
ra

l,
W

h
it

e
M

a
tt

er
1
8
.8

1
,

1
6
.2

6
,

3
3
.7

3
L

im
b

ic
L

o
b

e,
C

in
g
u

la
te

G
y
ru

s,
W

h
it

e
M

a
tt

er
1
4
.8

5
,

1
9
.3

9
,

3
8
.1

8
L

im
b

ic
L

o
b

e,
S

u
b

-G
y
ra

l,
W

h
it

e
M

a
tt

er
2

(g
re

en
)

3
5

0
.9

3
6
7
.3

2
,

-0
.6

7
,

6
.0

2
T

em
p

o
ra

l
L

o
b

e,
S

u
p

er
io

r
T

em
p

o
ra

l
G

y
ru

s
1

(r
ed

)
7

0
.9

3
-2

7
.7

2
,

-2
3
.6

5
,

3
2
.0

4
F

ro
n
ta

l
L

o
b

e,
S

u
b

-G
y
ra

l,
W

h
it

e
M

a
tt

er

142 6. Detection of Brain Atrophy Patterns based on MRI

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500
m

a
x

 I
G

size

(a) Cluster size and maximum Information
Gain for MCI converter vs. MCI non-
converter.

 36

Figure 5b: Skyline clusters of MCI-AD vs. MCI-MCI.
Colors: cluster 1: red, cluster 2: green, cluster 3: blue, cluster 4: purple, cluster 5 orange.
Displayed are some representative slices containing clusters: z-coordinates in Talairch space:
-12.5 to 5.5 and 34.5 to 42.5 (every second slice).

(b) Skyline clusters of MCI-AD vs. MCI-MCI. Colors: cluster 1: red, cluster
2: green, cluster 3: blue, cluster 4: purple, cluster 5 orange. Displayed are
some representative slices containing clusters: z-coordinates in Talairch space:
-12.5 to 5.5 and 34.5 to 42.5 (every second slice).

Figure 6.3: MCI-AD vs. MCI-MCI. Discriminating regions in the brain with
high IG value.

6.3 Experiments 143

statistics with respect to the two most important criteria: the size of the

clusters and value of IG. The anatomical locations of the skyline clusters

have been highlighted with the same colors in Figure 6.2(b). Table 6.4 pro-

vides a summary of the clusters including the anatomical location. Due to

space limitation, only the anatomical location of the best separating regions

with an IG of at least 0.3 for the large clusters 3 to 5 are included in Ta-

ble 6.4. The clusters were centered within the medial temporal lobe including

the hippocampus, parahippocampus, amygdala, adjacent basal ganglia, the

right anterior cingulate gyrus extending towards the prefrontal cortex, left

insula, and claustrum (Table 6.4). On the basis of the selected clusters, a

classification accuracy of 92% with Bayes (sensitivity: 94%, specificity: 89%),

90% with SVM (sensitivity: 97%, specificity: 78%) and 78% with VFI (sen-

sitivity: 66%, specificity: 100%) was obtained (cf. classification task 1 in

Table 6.2).

Classification of MCI-AD vs. MCI-MCI. When applying feature se-

lection on the brain images of the group of MCI with respect to conversion

between 97.82% and 98.73% of the voxels have an Information Gain of 0.

For one randomly selected fold we obtained 74,680 features with IG greater

than zero. The minimum occurring IG was 0.32. Clustering reduced the

number of features to 10,775. The selected clusters separated converters

and non-converters with high accuracy: 95.83% accuracy was obtained with

SVM and VFI (sensitivity SVM: 89%, VFI 100%, specificity SVM 100%, VFI

93%), cf. task 2 in Table 6.2. With Bayes, an accuracy of 91.67% has been

obtained (sensitivity: 78% specificity: 100%). The skyline clusters for the

separation of converters and non-converters are displayed in Figure 6.3(a)

and 6.3(b). The corresponding anatomical regions are provided in Table 6.5.

In total, 276 clusters were obtained.

Using AD vs. HC as training data and MCI as test data, best results

have been obtained with VFI. Conversion was predicted with an accuracy of

144 6. Detection of Brain Atrophy Patterns based on MRI

75% (sensitivity: 56%, specificity: 87%).

When contrasting the group of subjects with MCI against the HC for one

randomly selected fold, a total of 37,504 characteristic features were obtained.

Clustering reduced the number of features to 2,190. On the clustered data

linear SVM performed best with 97.62% accuracy (sensitivity: 96%, speci-

ficity: 100%), cf. task 3 in Table 6.2. With VFI, we obtained an accuracy

of 88.1% (sensitivity: 83%, specificity: 94%), and with Bayes an accuracy of

85.71% (sensitivity: 83%, specificity: 88%). The spatial location of the best

discriminating clusters was similar to that of MCI-MCI vs. MCI-AD and

therefore was not displayed.

0

20

40

60

80

100

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A
cc

u
ra

cy

log10(C)

training data test data

(a) Task 1

0

20

40

60

80

100

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A
cc

u
ra

cy

log10(C)

training data test data

(b) Task 4

Figure 6.4: Effect of the parameter C on the classification accuracy of SVM
in task 1 (a) and task 4 (b). For both tasks we can observe only minor
influence of C for very small C (log10(C) < −3).

Parameter Settings for Classification. An important parameter for

SVM is the complexity constant C. For the soft margin SVM, the parameter

C > 0 determines the trade-off between margin maximization and train-

ing error minimization. To systematically investigate the influence of the

complexity constant on the classification accuracy, we repeated the exper-

iments with various settings for C in the range of log10(C) = −7 to +6.

The analysis was applied to 2 out of the 4 classification tasks: task 1 which

6.3 Experiments 145

involves the classification of AD vs. HC with leave-one-out cross-validation

and task 4 which involves the prediction of conversion in MCI based on the

model learned from AD vs. HC with train-and-test validation. We selected

those two tasks for two reasons: SVM is outperformed by other classifiers in

these settings (see Table 6.3) and the classification accuracy of SVM varies,

depending upon the validation procedure applied in task 1 and 4.

The classification result of task 1 for various settings of C is displayed

in Figure 6.4(a). Since task 1 included a leave-one-out cross-validation, the

accuracy on both training and test data, respectively, were averaged among

all folds. As can be seen in figure 6.4, the parameter C had only very minor

influence on the classification accuracy. The classification accuracy for the

training data (90%) and the accuracy for the test data (91.84%) were constant

for a wide range of parameter settings (of log10(C) = −3 to 6). Only for a

very small C, the classification accuracies for both the training and test data

sets decreased numerically (log10(C) < −3). For log10(C) < −5 we observed

a trend towards a statistically significant decrease in classification accuracy

compared to the optimal level, i.e. the accuracy was 66% (95%CI = [52.15,

77.56]) for log10(C) < −5 vs. 90% (95%CI [77.41, 96.26]) for log10(C) = −3

to 6 when applied to the test data set. Figure 6.4(b) displays the result

of an analogous analysis for task 4. Note that this is the most difficult

classification task since the training and the test data stem from different

groups of subjects. Thus, the whole data mining pipeline including feature

selection, clustering and training of the SVM is applied to the training data

AD vs. HC. Based on the learned model, the SVM predicts the conversion of

test subjects with MCI. Figure 6.4(b) displays the accuracy for the training

data, i.e. the accuracy of the SVM applied to AD vs. HC for varying settings

of the complexity constant C. In addition, the accuracy for the test data is

displayed, i.e. the accuracy to predict conversion in MCI subjects. We can

observe two different aspects from Figure 6.4(b). First, the training data

could be well separated using a linear kernel. Since more complex kernels

146 6. Detection of Brain Atrophy Patterns based on MRI

(like polynomial, radial basis, etc.) lead more likely to overfitting and thus

lower classification accuracy when applied to the test data, their application

is indicated only in the case when the training data cannot be well separated

using the linear kernel. Second, visual inspection of Figure 6.4(b) shows that

the choice of the complexity parameter C had only very minor influence on

the accuracy. Within the range of log10(C) = −3 to 6, the classification

accuracy for the training data was constantly 90% and the accuracy for the

test data was constantly 50%. Similar to the results for task 1 (see above),

the classification accuracy for both the training and test data decreased only

for very small C values. There was one single exception from this trend:

For log10(C) < −3, we observed that the accuracy for the training data

decreased from 90% to 88%, while there was a numerical increase of the

accuracy from 50% to 62.5% for the test data set. However, the increase

of the classification accuracy to 62.5% at C = 0.001 was not significantly,

as it fell within the 95%CI of the classification accuracy of 50% at C = 1.0

(95%CI [29.65, 70.35]). Note, that the parameter setting associated with a

numerical increase in prediction accuracy could not be predicted on the basis

of the training data, since the accuracy on training data was for C = 0.001

(88%) lower than for C = 1 (90%).

6.4 Discussion

In this Chapter, we presented a framework combining data mining methods

to extract AD-typical patterns of brain atrophy using three different clas-

sifiers. We classified AD vs. HC, MCI-AD vs. MCI-MCI, and MCI vs.

HC with excellent accuracy between 92% and 97.62% based upon leave-one-

out validation. For the prediction of conversion from MCI to AD, the best

predictive value was achieved with the VFI classifier reaching a predictive

accuracy of about 75% validated in a train-and-test setting. As a proof of

concept we first established the AD-specific spatial pattern of atrophy using

6.4 Discussion 147

classifiers for the discrimination between AD and HC. Those brain regions

that best discriminated AD from elderly HC included the medial temporal

lobe, anterior cingulate gyrus extending towards the orbitofrontal cortex as

well as the subcortical thalamic-basal ganglia brain areas, which were reli-

ably identified using leave-one-out cross validation. These results are largely

consistent with a previous PCA-based analysis [162], providing support for

the convergent validity across different analysis methods. The pattern of

atrophy we detected, agrees with findings of a range of previous indepen-

dent MRI-based [116, 151] and neuropathological studies showing AD-typical

predilection sites of pathological changes [143, 144]. For the classification of

MCI-AD vs. MCI-MCI we obtained excellent results with a classification

accuracy ranging from 91.97% to 95.83% with leave-one-out cross-validation.

The skyline clusters are roughly a subset of the clusters identified for the

separation of AD vs. HC, extending towards the temporal lobe including the

superior temporal gyrus. Using AD and HC as training data and MCI as

test data, we achieved an accuracy of 50% - 75% to predict conversion into

AD. As expected, the performance of all classifiers declines in comparison to

leave-one-out-cross-validation, since the test data originates from a data set

that is expected to differ in the extent of pathological brain changes from the

training data.

In our experiments, Bayes and VFI yielded superior results compared to

the SVM approach. The leave-one-out experiments showed that the most se-

lective regions for the discrimination of MCI-AD and MCI-MCI are roughly

a subset of the most selective regions for AD vs. HC. Consequently, the

training data contains many superfluous features, i.e. regions which are not

selective to distinguish MCI-AD from MCI-MCI. VFI performs best on this

difficult classification task, probably because this classifier is by design most

robust w.r.t. superfluous information. The votes of these features approxi-

mately sum up to zero and thus have only minor effect on the classification

accuracy. There is much more chance that random variations of the superflu-

148 6. Detection of Brain Atrophy Patterns based on MRI

ous features cause overfitting in SVM. We detected structural changes within

the anterior cingulate gyrus, the hippocampus and the basal ganglia in MCI

converters, consistent with the previously found pattern of atrophy in MCI

compared to HC [135]. The major brain regions that separated best between

HC and AD included primarily the prefrontal cortex especially the inferior

and middle frontal gyri, the hippocampal region and adjacent subcortical

basal ganglia, as well as more posterior brain regions within the parietal

lobe. The hippocampal, frontal and parietal brain regions are well docu-

mented to be affected in AD. We detected also significant changes within the

subcortical brain regions of AD.

Furthermore, the findings on the gray matter changes within the basal

ganglia are consistent with previous results in the same patients data with a

PCA based approach where the component that separated best between AD

and HC was strongly associated with reduced volume of subcortical brain

areas including the thalamus and caudate nucleus [162]. Thus, there is con-

siderable overlap between different methodological approaches with regard to

the detection of brain regions altered in an AD specific way. Previous inde-

pendent studies have shown that considerable atrophic progression is found in

subcallosal basal ganglia brain structures [61, 91, 92], and was demonstrated

to show one of the fastest atrophy rates within the brain of AD patients

(>15% per year, [164]). Although there is strong evidence of atrophy within

these brain regions in AD, less attention may have been spent on the basal

ganglia, since the cognitive function of these brain areas is not well known.

A recent study, however, that detected strong atrophy within the thalamus

and putamen of AD patients showed an association with global cognitive

performance and executive functions independently from hippocampus grey

matter atrophy [42]. Thus, the basal ganglia structures show pronounced

volume reductions, consistent with our findings.

We aimed to render our analysis especially sensitive towards the detec-

tion of subtle brain abnormalities by employing a non-linear supervised fea-

6.4 Discussion 149

ture selection method that is less dependent upon sample-size restrained

power due to cross-validation and train-and-test than previous analysis for

dimensionality reduction [40, 57, 161]. As an alternative to feature selection,

dimensionality reduction can be achieved for example by principal compo-

nent analysis and subsequently rated for class separation, using MANCOVA

[161, 162, 163]. However, these methods depend entirely upon data-driven

transformations and thus do not reduce variability in an informed way. There

exist few supervised versions of singular value decomposition (SVD) and in-

dependent component analysis (ICA, e.g. [10, 149]) which consider the class

labels during feature transformation. However, the results of these methods

are difficult to interpret, since the amount of supervision is typically con-

trolled by parameter settings. In contrast, the result of supervised feature

selection is very intuitive because the interesting voxels are selected in the

original image space. We decided to use the Information Gain as feature selec-

tion criterion, because it provides a very general rating of the discriminatory

power, is highly efficient to compute and has been successfully applied in a

large variety of applications, e. g. in information retrieval [121], object recog-

nition [37] and bioinformatics [159, 140]. Correlation-based feature selection

criteria, e.g. based on Pearson correlation, are closely related; however, the

Information Gain is not restricted to linear correlations but captures any

form of dependency between features and class labels. The applied feature

selection technique can generally be used with a wide variety of classifiers.

We selected three classifiers which represent different algorithmic paradigms

and therefore provide a comprehensive evaluation of the discriminatory power

of the selected features.

The majority of previous studies described characteristically altered brain

areas in AD or MCI on a group-level [5, 24, 27, 41]. However, the diagnostic

value of group-level analysis is limited. Some studies used multivariate meth-

ods which provide the potential to draw conclusions on a single-subject level

but these papers do not report validated classification results [30]. Recent

150 6. Detection of Brain Atrophy Patterns based on MRI

studies reported validated classification results for the identification of AD.

Duchesne and colleagues proposed to apply a support vector machine classi-

fier based on least squares optimization on a selected volume of interest con-

sisting of Jacobian determinants resulting from spatial normalization within

the temporal lobe [52]. In contrast, we used the whole images of the subjects

as single source for feature selection and classification. Fan et al. [58] present

an approach for identification of schizophrenia relying on deformation-based

morphometry and machine learning. They achieve high classification accu-

racy (91.8% for female subjects and 90.8% for male subjects). This approach

is conceptually similar to ours since it also applies feature selection and water-

shed segmentation which can be regarded as some kind of clustering, before

performing classification with SVM. For each voxel, a score is computed by

linearly combining the discriminatory power for classification as measured by

Pearson-moment correlation with the aspect of spatial consistency which is

measured by intra-class correlation. Using a similar approach, Davatzikos et

al. [40] report an accuracy of 90% for the identification of MCI in a leave-

one-out validation setting. Our approach also emphasizes both aspects, the

discriminatory power and the spatial coherency. However, very different def-

initions are applied to formalize these concepts. The discriminatory power

is defined by the Information Gain, with the benefit to allow for arbitrary

and not only linear correlations with the class label. Spatial coherency is

achieved by density-based clustering which refines the selected features to

form coherent regions. The result of watershed segmentation strongly de-

pends on suitable selection of the thresholds which is very difficult especially

in the presence of noise [69]. By the application of a modified density-based

clustering technique our approach allows identifying the best discriminating

brain regions without requiring any parameter settings or thresholds which

are difficult to estimate.

It should be noted, that our study is based on a limited number of pa-

tients. In order to validate the utility of the classifiers further application to a

6.4 Discussion 151

larger multicenter data set is necessary. In smaller samples the variability of

the classification accuracy based upon the classifiers may be larger and thus

less reliable (see [66] correspondence to [96]). The robustness of the results

and potential influence of outliers has been tested by the leave-one-out vali-

dation, but may still need further testing in larger data sets. Another caveat

of the current study is that the HC group was younger when compared to the

MCI group. This age difference may have influenced the results. However, in

a previous study it was shown in the same data set that age and gender were

not significant predictors to group separation based upon a PCA scores [162].

Furthermore, the focus was on distinguishing between MCI converters and

non-converters who did not differ in age in the current study.

Concerning the parameter settings for classification, for SVM there are

two parameter choices which may have an impact on the classification result,

the choice of the kernel and the choice of the complexity constant C. Due

to the high dimensionality of the solution space (i.e. the high number of

variables) it is indicated to use a linear kernel. Other, more complex kernel

functions (such as polynomial, Gaussian, radial basis, etc.) are known to be

subject to overfitting effects in presence of very high-dimensional spaces, i.e.

good separation of the training data but deteriorated accuracy of the final

classification result after validation. Therefore, more complex kernels should

be used only if the training data is not well separable using the linear kernel.

The results of the second tunable parameter of the SVM, the complexity

constant C, show that varying of this parameter in a wide range did not lead

to any significant differences in the classification accuracy with either the

leave one-out paradigm or within the training-test validation scheme. This

is probably due to the fact that in all our experiments the training data

is sufficiently separable by a SVM using a linear kernel. In this case, the

trade-off between margin maximization and training error minimization is of

minor relevance in the optimization problem solved by SVM. Our results are

consistent with those of LaConte et al. [103] who observed that the parameter

152 6. Detection of Brain Atrophy Patterns based on MRI

C has no influence on SVM as applied to fMRI data, unless the C value is

very small (C = 0.001) [103]. Vemuri et al. [168] observed some influence

of the parameter C on the classification result. For the classification of AD

vs. HC based on MRI data only, best results with 85.8% in accuracy have

been obtained using C = 0.01. With our method we achieved a classification

accuracy of 90% for this task, independent of the selection of the parameter C

between 0.001 and 1,000,000. Let us note that these findings are not directly

comparable for several reasons: First, the study of Vemuri et al. is based on

a larger collective involving 140 subjects with AD and 140 healthy controls

and a different validation strategy has been applied. In our study, we applied

leave-one-out cross-validation whereas Vemuri et al. applied four-fold cross

validation.

In conclusion, we showed a novel approach to identify regions of high

discriminatory power for the identification of AD and the prediction of con-

version to AD among MCI. Our method combines data mining techniques

from feature selection, clustering and classification and provides a concise vi-

sualization of the most selective regions in the original native image space.

Chapter 7

JGrid/FCC: Efficient Know-

ledge Extraction from MRI

Magnetic Resonance Imaging (MRI) allows to display different kinds of soft

tissue with highest resolution and has attracted increased interest in the

analysis of anatomical differences between normal and pathologic popula-

tions even in the field of neuroscience. Therefore, in the last Chapter, we

have proposed the FCC framework combining several data mining techniques

in order to provide a concise classification of pathogenous areas in the brain.

However, to get a deeper insight into complex neurological abnormalities

like dementia or somatoform disorder large-scale analysis is indispensable

but mostly difficult and time consuming. As the FCC framework is only

applicable to a small data set, in this Chapter, we propose JGrid, a highly

efficient distributed computing system that allows a distributed computation

of the FCC framework on a cluster of computers. Conforming to a standard-

ized API provided by JGrid arbitrary software systems can be executed in

a distributed fashion. After an introduction in the next Section, Section 7.2

describes the architecture of JGrid and the integration of FCC into an embed-

ded system JGrid/FCC. The experiments (cf. Section 7.3) demonstrate the

reduce in time usage distributing the computation to several client machines.

154 7. Efficient Knowledge Extraction from MRI

7.1 Introduction

Magnetic Resonance Imaging (MRI) has become an increasingly important

role in understanding brain structure and analysis of anatomical differences

between normal and pathologic populations. Despite the increasing interest

in MRI studies, large-scale analysis of these images remains challenging as

the processing and subsequent analysis of these high-dimensional MR images

is very time consuming.

In Chapter 6, the framework FCC was presented that combines tech-

niques from the field of data mining and machine learning to find patterns

that are characteristic for a certain disease. In the first step, feature se-

lection was applied followed by a density-based clustering algorithm on the

reduced feature set to guarantee an examination of affected adjacent features

in the brain. This clustering method produces clusters of features according

to their spatial location and discriminatory power. In the second step, cross-

validated classifiers derive a minimal set of features that enables the user

for an optimized prediction of diagnosis and discrimination between diseased

and healthy subjects. However, this framework is limited in its efficiency and

therefore only applicable to small data sets.

In order to decrease the time consumption for the entire analysis a dis-

tributed computing system is required to use the capacity of several work-

stations. The most well-known software package for distributed comput-

ing is BOINC, the Berkley Open Infrastructure for Network Computing [3].

BOINC is a quasi-supercomputer for public-resource distributed computing

that distributes the computing power to personal computers all over the

world. With currently over 6,172,239 hosts and a processing rate of over

5,529 TeraFLOPS1 BOINC outperforms the largest conventional supercom-

1http://boincstats.com/, Retrieved 03/15/2011

http://boincstats.com/

7.1 Introduction 155

puter, the Tianhe-1A, that provides about 2,566 TeraFLOPs1.

Oracle Grid Engine (OGE)2, another well-known and widely used dis-

tributed computing software, is typically used on a computer farm or high-

performance computing (HPC) cluster and supports automated load-balancing

and distributed execution of large numbers of standalone, parallel or interac-

tive user jobs on the best-suited machines in the cluster. Like BOINC, OGE

supports the usage of very large clusters and provides features like shadow

masters that take over in case of a crash of the controlling machines.

In this Chapter, we present JGrid that is implemented as a client/server

system to manage a distributed computation of software that conforms to the

API provided by JGrid. In contrast to most existing methods for distributed

computing, JGrid is designed to handle small clusters of up to 30 nodes,

has no permanently running daemon processes and no built-in features for

remotely starting arbitrary processes or a dedicated command-line interface.

Instead, it is tightly integrated into the Java ecosystem and controlled from

within Java code using a specialized API or via a built-in graphical user

interface. Furthermore, instead of remotely starting static programs, actual

live Java Runnable objects are sent to and executed within special client

processes on the remote machines.

By integrating FCC into JGrid to an embedded system JGrid/FCC, we

provide a system that facilitates the execution of the whole framework on

a cluster of computers and therefore reduces the computing time by magni-

tudes. We demonstrate in the experiments, that using JGrid/FCC on a set

of 181 MRI scans reduces the computation time by 80% on a cluster of 10

client machines.

1http://www.top500.org/list/2010/11/100, latest TOP500 List November 2010,
Retrieved 03/15/2011

2http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html.
Retrieved 03/15/2011

http://www.top500.org/list/2010/11/100
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

156 7. Efficient Knowledge Extraction from MRI

7.2 JGrid/FCC

In this Section, we present JGrid, a solution for the distributed computation

of the FCC framework presented in Chapter 6 including feature selection,

clustering and classification in order to allow for a user friendly large scale

analysis of MR images. We have implemented JGrid in Java and tailored it

toward easy integration into existing software. This goal was realized mainly

by relying on a Java API designed to integrate neatly into the Java ecosystem.

The underlying concept of JGrid is based on serializing Runnable objects.

The interface Runnable, used in Java to encapsulate small bits of logic to be

executed at a later time, was used to run the application logic on individual

nodes of the computing cluster. JGrid adds on facilities to serialize these

Runnable objects, distribute them over a network to a set of computers and

execute the application logic on these; all of these features are accessible

through a Java API.

Several functions like automatic classpath management, collecting out-

put and error messages from the clients, functionality to coordinate access to

load-sensitive resources and an API to load external JAR files into the remote

JVM on the client side are implemented to obey to a set of standardized inter-

faces. This enables developers to easily add additional functionality. In this

way, JGrid can be used to execute arbitrary software packages conforming

to its built-in API.

A graphical user interface (GUI) allows for an easy handling of the soft-

ware and the potential to easily integrate additional custom options and dis-

play custom information. External software that implements the provided

interfaces can easily be loaded and executed by JGrid via the GUI.

In the following, we first provide an overview of the fundamental classes

of JGrid and then describe the embedding of FCC into an integrated system

JGrid/FCC.

7.2 JGrid/FCC 157

TCP Server

Execution Handler

Client SideServer Side

Grid Server

I/O Lock Handler

Jar Handler

Execution Handler

I/O Lock Handler

Jar Handler

Grid Client

TCP Client

Status

Dialog
GUI

1

1

1

n

n

n

1 n
1

2

3

Figure 7.1: Distributed architecture of JGrid

7.2.1 Architecture

The JGrid software is organized in three distinct layers (cf. Figure 7.1). Each

of them was designed to be functional without any of the other layers.

First Layer. This layer is comprised of the TCPServer and TCPClient com-

ponents. These contain the logic for basic TCP/IP connection, exchange of

serialized Java objects over the network and related functionality. TCPServer

implements the server part of the first layer. It contains a Server Socket that

listens for connecting clients. TCPClient implements the client side of the

network. It supports connecting to a TCPServer instance over a network and

receiving incoming serialized objects.

Second Layer. This layer contains the primary application logic of JGrid.

It contains two components, GridServer and GridClient, which extend the

afore-mentioned TCPServer and TCPClient components and add on facilities

to run custom workflows on the grid, manage the execution of Runnable

158 7. Efficient Knowledge Extraction from MRI

objects on remote machines, synchronize the client nodes classpaths with the

server and pool log and error messages on the server. In case external libraries

are needed on the client machines, the JarHandler distributes the Jar files

among the clients and inserts them to the clients’ classpath at run time. A

networked file system (NFS) is used in order to share data among clients.

However, a NFS is not designed to handle large amount of simultaneous file

I/O and does not support file locking. To avoid overloading the networked

file system the I/O LockHandler ensures that no more than a given number

of file system I/O operations are running at any given time. Executing

Runnable objects on remote machines and keeping track of their state is done

by the ExecutionHandler module, which also has both a server and client

version. These communicate with each other using the facilities provided

by the first layer to request and send Runnable objects, execute them and

report status and result to the server.

Third Layer. This topmost layer adds on functionality to configure and run

JGrid using a graphical user interface (GUI), shown in Figure 7.3. It should

be noted that JGrid can also be used without this layer and controlled solely

using its API. A StatusDialog is provided that can be used both standalone

and as part of the third layer. It offers a straightforward display of the state

and output of all clients.

The GUI consists of three important dialogs: A LaunchPad dialog used

for configuration of the application, a StatusDialog to provide information

on connected clients and running tasks and finally, an application-specific

ResultsDialog used to present the results.

There are several ways to extend and customize the GUI: The launch pad

dialog offers API functions to extend it with custom application specific set-

tings. The status dialog allows for a custom progress section to be integrated

and the results dialog content is completely customizable.

Another important functionality of the GUI layer is the ability to handle

7.2 JGrid/FCC 159

Figure 7.2: Graphical User Interface.

160 7. Efficient Knowledge Extraction from MRI

Figure 7.3: Status Dialog.

payload JAR archives. These are JAR files containing one or several classes

conforming to the Payload interface provided by JGrid’s API. This allows

users to build self-contained application packages that can be loaded and

used completely via the JGrid GUI and to make use of the convenience to

distribute their own software to a cluster of computers.

7.2.2 The FCC Framework

The FCC framework is a multi-step data mining approach including feature

selection, clustering and classification in order to find patterns in a set of MR

images that are characteristic for a certain pathology. In the following, we

provide a short description of the single steps. For a more detailed descrip-

tion, please refer to Chapter 6.

7.2 JGrid/FCC 161

Feature Selection. MR images are composed of several million voxels that

display the signal intensity of the contents of the corresponding volume ele-

ment or voxel of the object being imaged. In order to fit into the available

memory the data has to be split in several bins which can then be processed

separately. The choice of the bin size has an effect on the runtime, as demon-

strated in the experiments. Furthermore, as only a subset of the voxels carry

information for class separation, feature selection has to be applied to reduce

the amount of voxels and to select the most discriminating features. The

Information Gain (IG) [146] rates the interestingness of a voxel for class sep-

aration. Let DS be a set of MRI scans each being labeled to a set of discrete

classes C = {c1, · · · , ck}, where each class corresponds to a certain pathol-

ogy. The IG of a voxel vi is defined by the amount by which the entropy

of the class distribution H(C) decreases through the additional information

provided by vi on the class, which is described by the conditional entropy

H(C|vi) [141].

IG(vi) = H(C)−H(C|vi)

Clustering. After feature selection, clustering is applied on the whole re-

duced feature set to find groups of adjacent voxels in the scans that have

high discriminatory power. Therefore, the density-based clustering approach

DBSCAN [55] has been modified for clustering voxels. The definition for core

object property and direct density reachability has been adjusted as follows:

A voxel vi is called a core voxel if the IG of the voxel is larger than a pre-

defined threshold t and is surrounded by at least MinVox voxels also having

an IG at least t.

Feature Classification. After clustering, several classification algorithms

are applied to validate the discriminatory power of the selected features.

These classification algorithms include Linear Support Vector Machine [142],

Bayesian Classifier [89] and Voting Feature Intervals [47]. To validate the

162 7. Efficient Knowledge Extraction from MRI

found discriminatory patterns, two different validation techniques, train-and-

test and cross-validation, are applied.

Result. As a result the spatial location of the high discriminating clusters

are obtained together with a quantitative validation. Furthermore, several

statistics concerning the number of clusters as well as the size and the IG of

the clusters are provided. This enables the user for a concise interpretation

of the results as well as an effective diagnosis.

The whole FCC framework was implemented to conform to the payload

interface and packed into a JAR-file. Loading this JAR-file by the JGrid

GUI the integrated JGrid/FCC system enables the user for an distributed

computation on a cluster of computers. For this purpose, the whole workflow

is split into parallelizable Runnables objects which are organized in a data

structure that manages the dependencies between the different Runnables.

This ensures the compliance of the workflow and a correct execution of the

Runnables in correct order. External libraries are automatically loaded and

distributed to the clients machines. Several user interaction including data se-

lection and parameter settings as e.g. number of fold for the cross-validation

scheme can be done using the graphical user interface. However, distributing

the workflow to a cluster of computers does not influence the comprehensive

power of the FCC framework.

7.3 Experiments

We evaluated JGrid/FCC on a set of 181 MRI scans obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)1. MRI examinations

were performed on a 1.5 Tesla MRI scanner. This set comprises images of

patients that suffer from Mild Cognitive Impairment (MCI) that underwent

1http://adni.loni.ucla.edu/

http://adni.loni.ucla.edu/

7.3 Experiments 163

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

ti
m

e
(h

)

clients

bin size 10 M

bin size 1 M

Figure 7.4: Runtime of the whole
workflow vs. number of clients.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

ti
m

e
(m

)

clients

bin size 10 M

bin size 1 M

Figure 7.5: I/O lock and waiting
time vs. number of clients.

a five year follow-up study. All images were preprocessed using the statistical

software package SMP81. In order to test the performance of JGrid/FCC we

applied a tenfold cross-validation in each experiment. All tests were per-

formed on workstations equipped with AMD Phenom(tm) II X4 B95 Pro-

cessors and 8 GByte of RAM on each machine. The MR images are stored

in a public NFS. To protect it from overload we allowed for a maximum of

four concurrent I/O locks. All tests were conducted for two different bin size

values of one and ten million.

Figure 7.4 shows the runtime for JGrid/FCC with different number of

clients. It can be seen that the bin size has no significant impact on the per-

formance even though a bin size of 10 million leads to slightly better results.

Greatest decrease of overall runtime can be achieved with eight clients and

bin size set to ten million reducing the runtime to process the whole workflow

by 82% from 6.68 hours to 1.16 hours. Increasing the number of clusters to

nine or ten results in marginally worse results. This trend correlates with a

dramatic increase in time spent waiting for I/O locks to be granted as can

be seen in Figure 7.5.

This diagram illustrates the correlation between the number of clients,

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

164 7. Efficient Knowledge Extraction from MRI

4

6

8

10

12

tim
e

(h
)

overall runnable time
overall lock hold time
overall lock wait time

0

2

1 2 3 4 5 6 7 8 9 10
clients

Figure 7.6: Runtime in different
states of the workflow vs. number
of clients.

the bin size and the overall time spent waiting for I/O locks to be granted.

The waiting time increases drastically with higher number of clients. Apart

from that, here the choice of the bin size has a great effect on the waiting

time, too, with a smaller value causing a large decrease in speed. A bin size

of one million leads to significantly worse performance compared to a value

of ten million. This is due to the greater number of individual Runnables

to which the same amount of data is assigned, resulting in shorter runtime

per Runnable and a larger number of I/O locks that need to be requested

and granted. There is also a small overhead in the I/O lock mechanism due

to requesting, granting and revoking locks and sums up to higher waiting

time for many short-duration I/O locks then with only a few high-volume

file system operations.

The time waiting for I/O locks to be granted has an effect on the overall

runtime. This can be seen when measuring the time spent executing the

Runnables summed up over all clients. Figure 7.6 illustrates the time needed

for executing the Runnables, holding and waiting for the I/O locks with a

bin size of ten million summed up over all clients, respectively. The time

spent holding the I/O locks remains relatively constant even when increas-

ing the number of clients. Marginal fluctuation in I/O lock hold time is due

7.3 Experiments 165

to varying load of the NFS resulting in varying time-use for read and write

operations. The time spent for waiting for an I/O lock confirms to the val-

ues charted in Figure 7.5. As already mentioned, a higher number of clients

causes an increased I/O lock waiting time. Apart from this, a consistent in-

crease in overall Runnable execution time is visible, which includes both I/O

wait and hold time, since I/O locks are requested and used within Runnables

exclusively. The increase in I/O wait time with additional clients and worse

NFS performance mostly explain the Runnable execution time increase.

However, while the result of JGrid/FCC is guaranteed to be equivalent to

that of FCC, we demonstrate a high speed-up distributing the application

logic to a cluster of computers.

166 7. Efficient Knowledge Extraction from MRI

Chapter 8

Motif Discovery in Brain

Networks of Patients with

Somatoform Pain Disorder

In the last Chapter we have considered single voxels in MRI scans for analysis

but did not consider the relationship among them. In this Chapter, we go

one step ahead, and model the image data as a graph, where nodes repre-

sent single voxels and edges connections between voxels that share same or

similar activation of the underlying brain compartment. More precisely, we

applied different graph mining algorithms to brain co-activation networks of

patients with somatoform pain disorder and healthy controls in order to find

frequent subgraphs in the brain that are characteristic for the disease. After

a general introduction, Section 8.2 surveys related work in the area of fre-

quent subgraph mining. Section 8.3 introduces basic definitions from graph

theory. Details about network construction and evaluation of detected mo-

tifs are described in Section 8.4. We applied the heuristic approach GREW

and the exhaustive approach FANMOD to these networks. The results are

presented in Section 8.5. Basic ideas of this Chapter have been published

in [130].

168 8. Motif Discovery in Brain Networks

8.1 Introduction

Graph mining or network analysis has become increasingly important in the

last decade, even in the area of Web 2.0 [129] which is associated with web

applications that facilitate user interaction in form of social networks, blogs,

etc. [45]. The analysis of these networks is both of scientific and commercial

interest. On the one hand, psychologists want to study the complex social

dynamics between individuals, and industry wants to analyze these networks

for marketing purposes. Detecting influential individuals in a group of people,

often referred to as ‘key-players’ or ‘trend-setters’, is relevant for marketing,

as companies could then focus their advertising efforts on persons known to

influence the behavior of a larger group of people.

In the field of bioinformatics, the influence of chemical compounds on

physiological processes, e.g. toxicity, protein protein interaction (PPI) net-

works or regulatory networks are studied extensively. Furthermore, char-

acterization of these complex structures can be accomplished through the

discovery of basic substructures that are frequently occurring. Identification

of such repeating patterns might be useful for diverse biological applications

such as classification of protein structural families, investigation of large and

frequent sub-pathways in metabolic networks, and decomposition of PPI net-

works into motifs. Motifs are substructures that appear in at least t of the

graphs in the data set.

In this Chapter, we focus on the mechanisms in the brain that are as-

sociated with somatoform pain disorder. Somatization disorders constitute

a large, clinically important health care problem that urgently needs deeper

insight [173]. Earlier studies have revealed that different subunits within the

human brain interact among each other, when particular stimuli are trans-

mitted to the brain. Hence, the different components form a network. From

an algorithmic point of view, interacting subunits act as specific subgraphs

8.1 Introduction 169

http://public.kitware.com/

Figure 8.1: Brain network.

within the network. From a medical perspective, it is interesting to ask to

which degree interactions of subunits are correlated with medical disorders.

We give an answer to the question whether brain compartments of patients

with somatoform pain disorder form motifs that differ from brain compart-

ments of healthy controls. For this purpose, we analyze task-fMRI scans of

the brain of ten subjects, six patients with somatoform pain disorder and four

healthy controls that attended the study of [74]. In this study both groups

underwent alternate phases of non-pain and pain stimuli during the fMRI

scanning. We construct a brain co-activation network for each subject where

each node represents a voxel in the fMRI image (cf. Figure 8.1). Voxels are

grouped together in 90 so-called regions of interest (ROIs) using the template

of [166]. To uncover frequent subgraphs in each of these networks, we apply

two approaches, the efficient heuristic approach GREW [102] and the exhaus-

tive sampling technique FANMOD by [172]. While an heuristic approach

allows for finding motifs of arbitrary size, an exhaustive sampling algorithm

can be applied to find all frequent subgraphs, but in this case we are limited

in the size of the subgraphs. Both algorithms are designed to operate on one

large graph and to find patterns corresponding to connected subgraphs that

have a large number of vertex-disjoint embeddings. We demonstrate that pa-

tients with somatoform disorder show activation patterns in the brain that

are different from those of healthy subjects.

170 8. Motif Discovery in Brain Networks

8.2 Related work

Several algorithms have been defined for finding frequent subgraphs and their

embeddings in one large graph or in a data set of graphs. We distinguish

algorithms for ‘graph data set mining’ that work on a data set of graphs,

and algorithms for ‘large graph mining’ that discover frequent motifs in one

large graph. While frequent subgraph algorithms that work on large graphs

can directly be applied to data sets of graphs, the other direction is more

complicated. However, by splitting a large graph into subgraphs, one can

still use a graph data set mining algorithm for frequent subgraph discovery

on the large graph (albeit some subgraphs might be lost by the splitting).

8.2.1 Graph Data Set Mining

For the graph data set mining task, approaches can be broadly divided into

two classes, apriori-based approaches and pattern-growth based approaches.

AGM (Apriori-based Graph Mining)[86] determines subgraphs G′ in a data

set DS of graphs that occur in at least minsup percentage of all graphs in

the data set. AGM works on graphs with edge and node labels. In principle,

AGM uses the famous apriori [1] principle of iterated candidate generation

and candidate evaluation. Candidate generation means that candidate sub-

graphs are created by joining subgraphs that have been shown to be frequent

in earlier iterations. In the candidate evaluation phase, these candidates are

tested, i.e. it is checked whether their frequency is greater than minsup,

and then the whole process is iterated until all frequent patterns have been

found. AGM uses a canonical form and a normal form to represent subgraphs

to reduce runtime cost for subgraph isomorphism checking.

Similar to AGM, FSG (Frequent SubGraph Discovery) [100] uses a canon-

ical labeling based on the adjacency matrix. Canonical labeling, candidate

generation and evaluation are sped up in FSG by using graph invariants and

8.2 Related work 171

the Transaction ID principle, which stores the ID of transactions a subgraph

appeared in. This speed-up is paid for by reducing the class of subgraphs

discovered to connected subgraphs, i.e. subgraphs where a path exists be-

tween all pairs of nodes.

The most well-known member of the class of pattern-growth algorithms,

gSpan (graph-based Substructure pattern mining), discovers frequent sub-

structures efficiently without candidate generation [175]. Tree representa-

tions of graphs are encoded using a Depth First Search (DFS) code, amongst

which a minimum DFS code is chosen according to some lexicographic or-

der. Pre-order DFS-tree search is then conducted to find the complete set of

frequent subgraphs in a set of graphs. gSpan is efficient, both w.r.t. runtime

and memory requirements, making it one of the best state-of-the-art algo-

rithms for graph data set mining.

CloseGraph [176] extends gSpan by limiting the search to frequent complete

graphs, i.e. subgraphs without supergraphs that have the same support,

thereby increasing the efficiency of mining substantially.

8.2.2 Large Graph Mining

Unlike graph data set mining, large graph mining intends to find subgraphs

that have minsup embeddings in one large graph.

Milo et al. [118] was the first to define network motifs and find them. By

exhaustively enumerating all subgraphs this method is limited to subgraphs

with three or four nodes.

SUBDUE [36] tries to minimize the minimum description length (MDL)

of a graph by compressing frequent subgraphs. Frequent subgraphs are re-

placed by one single node and the MDL of the remaining graph is then

172 8. Motif Discovery in Brain Networks

determined. Those subgraphs whose compression minimizes the MDL are

considered as frequent patterns in the input graph. The candidate graphs

are generated starting from single nodes to subgraphs with several nodes,

using a computationally-constrained beam search.

GREW [102] and SUBDUE are greedy heuristic approaches to frequent

graph mining that trade speed for completeness of the solution. GREW it-

eratively joins frequent pairs of nodes into one super-node and determines

disjoint embeddings of connected subgraphs by a maximal independent set

algorithm. Similarly, vSIGRAM and hSIGRAM [101] find subgraphs that

are frequently embedded within a large sparse graph, using “horizontal”(h)

breadth-first search and “vertical” (v) depth-first search, respectively. They

employ efficient algorithms for candidate generation and candidate evalua-

tion that exploit the sparseness of the graph.

In [106], different sampling methods for a single large graph are compared.

These algorithms sample subgraphs from a large network and estimate their

frequency rather than resorting to heuristics.

Kashtan et al. [93] presented a sampling method for subgraph counting by

picking a random edge from the network and then expanding the correspond-

ing subgraph by successively picking neighboring random edges. In contrast

to picking only one single edge, Zhou et al. [182] presented a method for

frequent subgraph mining using the sampling method ’random areas selec-

tion sampling’ that randomly selects one area of the large graph. FANMOD,

the algorithm by [172] uses a randomized enumeration strategy for sampling

subgraphs. If one does not want to resort to any heuristics and miss out on

any embeddings of a frequent subgraph, one may employ this enumeration

strategy for exhaustively enumerating all subgraphs rather than randomly

sampling from this enumeration.

8.3 Basic Definitions 173

8.3 Basic Definitions

We start with a brief summary of necessary definitions from the field of graph

mining.

Definition 10 (Labeled graph / network) A labeled graph is repre-

sented by a 4-tuple G = (V,E, L, l), where V is a set of vertices (i.e. nodes),

E ⊆ V × V is a set of edges, L is a set of labels, and l : V ∪ E → L is a

mapping that assigns labels to vertices V and edges E. If labels are not of

decisive importance, we will use the short definition of a graph G = (V,E).

In the following we also use network as a synonym for graph.

Definition 11 (Subgraph) Let G1 = (V1, E1, L1, l1) and G2 = (V2, E2, L2, l2)

be labeled graphs. G1 is a subgraph of G2 (G1 v G2) if the following con-

ditions hold: V1 ⊆ V2, E1 ⊆ E2, L1 ⊆ L2, l1 = l2. If G1 is a subgraph of G2,

then G2 contains G1.

Definition 12 (Isomorphism) Two graphs are isomorphic if there exists

a bijection f between the nodes of two graphs G1 = (V1, E1) and G2 = (V2, E2)

such that (v1a, v1b) ∈ E1 iff (v2a, v2b) ∈ E2 where v2a = f(v1a) and v2b =

f(v1b). If G1 is isomorphic to G2, we will refer to (v1a, v1b) and (v2a, v2b) as

corresponding edges in the following.

The problem to decide whether two graphs are isomorphic, i.e. the graph

isomorphism problem, is not yet known to be NP-complete or in P. Given

two graphs G1 = (V1, E1) and G2 = (V2, E2), the subgraph isomorphism

problem consists in finding a subgraph of G2 that is isomorphic to G1. This

problem is known to be NP-complete [67].

Definition 13 (Embedding) If graph G1 is isomorphic to a subgraph S of

graph G2, then S is referred to as an embedding of G1 in G2.

174 8. Motif Discovery in Brain Networks

Figure 8.2: Transformation from a time series of three labeled graphs into
the corresponding union graph.

Definition 14 (Frequent subgraph / motif) A graph G1 is a frequent

subgraph of graph G2 if G2 contains at least t embeddings of G1, where t is

a user-set frequency threshold parameter. Such a frequent subgraph is often

called a motif.

Definition 15 (Union graph) Given a time series of graphs Gts with n

states. Then the union graph DG(Gts) of Gts is defined as DG(Gts) =

(VDG, EDG, `), where VDG = Vi for all 1 ≤ i ≤ n and EDG = ∪1≤i≤nEi.

An example for the transformation of a time series of graphs into a union

graph is depicted in Figure 8.2. Note that the union of all edges of the time

series is the set of edges of the union graph.

8.4 Finding Motifs in a Brain Network

In this Section, we first describe how a time series of fMRI image data is

converted into a labeled graph, and then we describe how frequent subgraph

mining algorithms can be applied to these networks. At the end, we present

the evaluation of the detected motifs.

8.4 Finding Motifs in a Brain Network 175

8.4.1 Construction of Brain Co-Activation Networks

Out of fMRI Time Series

As we are interested in topological patterns that are characteristic for pa-

tients with somatoform pain disorder, we perform graph mining on brain

co-activation networks. Each detected motif represents interacting regions of

the brain.

In order to receive such network models, fMRI time series data can be

transformed in the following manner. We define the voxels of the fMRI image

data as the vertex set V . The measured value of a voxel indicates the degree

of blood circulation in the particular brain region. The darker the voxel, the

more blood is present in the compartment, thus the higher the activation is.

Edges between two vertices v1 and v2 stand for a similar level of activation

of the two corresponding voxels. We distinguish two categories of activation

levels for each voxel v at each time point i, denoted by vi. a(i) stands for

its activation level at time point i. We determine an activity–score for each

voxel vi by comparing the median activation level of v across the time series

with a(i) in order to assign activation categories.

activity–score(vi) =
a(i)−medianj∈{1,..,n}a(j)

mediank∈{1,..,n}|(a(k)−medianj∈{1,..,n}a(j)|

We use a median-based activity–score rather than a mean-based as we want

to detect unusually high activation levels. In contrast to a mean-based

activity–score a median-based activity–score is more robust with respect

to these extremes and better suited for detecting them, as validated in initial

experiments (not shown here).

• high activation: a(i) is significantly higher than the median activation

level of v.

(activity–score(v(i)) ≥ 7.0)

176 8. Motif Discovery in Brain Networks

• no significant activation: a(i) is not significantly higher than the

median activation level of v.

(activation–score(v(i)) < 7.0).

Edges between vertices v1 and v2 are assigned if v1 and v2 both show high

activation. Finally, we perform frequent subgraph mining on the resulting

union graph.

8.4.2 Performing Frequent Subgraph Mining on Brain

Co-Activation Networks

In order to find frequent subgraphs in our network, we have to group our

nodes and assign each group a labeling. A meaningful grouping of nodes when

considering brain networks is a mapping of the nodes to their corresponding

brain compartments. Thus, motifs in those networks represent compartments

of the brain that show a similar activation profile. We remove edges between

nodes that share the same label, as a correlated degree of activation within

one region is trivial, and we are interested in activity of different regions.

Then we apply two large graph mining algorithms for finding motifs in

our labeled graphs. First, we employ the heuristic approach GREW [102], as

the runtime effort for exhaustive enumeration grows exponentially in the size

of the subgraphs. This enables us to find frequent subgraphs in a large graph

rather than to restrict ourselves to small frequent subgraphs. Nevertheless, as

we want to avoid missing out on embeddings of motifs that consist of a small

number of vertices (up to six), we also employ the exhaustive enumeration

strategy FANMOD by [172].

8.4.3 Evaluation of Detected Motifs

To find motifs that are characteristic for a disease, we have to analyze the

motifs separately. Therefore, we want to detect motifs that occur in patients

8.5 Experiments 177

but not in the control group and vice versa. Another class of motifs that

might be interesting are motifs that occur in all subjects that attend a certain

study.

Another aspect that should be considered is the label distribution across

motifs. A label that is used for a large number of vertices inside the network

model of a particular subject s has a higher probability to appear in a motif

than a label that covers a small number of nodes. Hence, we have to define

the normalized frequency of a node label l, denoted by freqnorm(l).

freqnorm(l) =
∑
s∈S

freqm∈{1,...,n}(l) ·#Embeddings(m|s)
freqBackground(l|s)

freqm∈{1,...,n} stands for the number of occurrences of label l in a motif m.

This number has to be multiplied by the number of isomorphic subgraphs of

m found in a subject s, its embeddings found in s. The freqBackground(l|s)
describes the number of occurrences of label l with respect to all vertices of

the network that refers to subject s. In our case this is equivalent to the size

of a ROI. Finally, we sum up over all subjects given in the data set.

8.5 Experiments

First, we summarize the construction of the network models, including a de-

tailed description of the used data set and the labeling scheme for the vertices

of the networks. Then we perform motif discovery using the heuristic algo-

rithm GREW to allow for finding motifs of arbitrary size. As an evaluation

of these results indicates that a multitude of the motifs found by GREW con-

sist of only a small number of vertices, we go a step further and additionally

apply the exhaustive sampling technique FANMOD by [172] on the network

models. Finally, we compare the results of both algorithms and give repre-

sentative motifs for the group of subjects that suffer from the somatoform

pain disorder and typical motifs for the group of healthy controls.

178 8. Motif Discovery in Brain Networks

Construction of the Brain Network Models. We created networks for

10 subjects that attended the studies of [74]. The resulting networks com-

prise 66 to 440 nodes with 90 different classes of node labels and 358 to

13,548 edges. In addition, the network models indicate different number of

edge types. These refer to the concatenation of the labels of the adjacent

nodes. All edges are undirected because in the relationship ‘both adjacent

voxels show high activation’ a direction makes no sense. The exact statistics

of each subject are depicted in Table 8.1.

Table 8.1: Statistics of the network models for each subject.

Subject # Vertices # Different # Edges # Edge # Different Motifs
Labels Types by GREW

Patient 1 102 31 453 91 38
Patient 2 185 32 1,961 84 706
Patient 3 241 35 3,506 90 505
Patient 4 263 46 5,152 293 752
Patient 5 313 46 10,977 372 4,154
Patient 6 440 58 13,548 475 4,256
Control 1 66 10 358 15 15
Control 2 99 33 407 111 32
Control 3 109 18 1,093 13 133
Control 4 202 35 2,045 133 236

Time Series Data Sets. We used fMRI time series data (1.5 T MR scan-

ner) of six female somatoform patients and four healthy controls. Standard

data preprocessing including realignment, correction for motion artifacts and

normalization to standard space have been performed using SPM2 (available

at http://www.fil.ion.ucl.ac.uk/spm/). In addition, to remove global

effects the voxel time series have been corrected regressing out the global

mean, as suggested in [150].

http://www.fil.ion.ucl.ac.uk/spm/

8.5 Experiments 179

Vertex Labels. We labeled all nodes in our network model by regional par-

cellation of the voxels into 90 brain regions using the template of Tzourio-

Mazoyer et al. [166].

Finding Motifs With GREW. To allow for finding motifs of arbitrary size,

we searched for topological motifs using GREW with a frequency threshold

of t = 5. In these experiments, we searched for motifs with a minimum

number of one edge. The total number of different motifs found in the ten

networks is depicted in the last column of Table 8.1.

Evaluation of the Motifs Detected by GREW. Altogether we found

10,530 different motifs in somatoform patients and healthy controls. 10,173

different motifs were detected among patients, 413 within the group of healthy

subjects, where some of these motifs were also found among the patients and

vice versa.

For validation, we divided the subjects into three classes. Class (1) con-

tains only the somatoform patients, class (2) consists of the controls exclu-

sively and class (3) composes the union of class (1) and (2). Figure 8.3 shows

typical representatives of each class. The two motifs on the left occur in 57%

of the patients but in no healthy subject. The middle motif arises in 50% of

the class (2)–subjects but in no patient. The upper motif on the right-hand

side was found in 50% of the control group and in 14% of the patients, the

lower motif in 25% of the control group and in 43% of the patient group.

Most of the typical representatives of both groups comprise only a small

number of vertices.

The largest motifs (highest number of vertices and edges) of class (1)

were found in subject ‘patient 5’. They consist of 28 vertices and 29 edges,

five different brain compartments are involved in this motif. A total of 34

motifs of this kind were found in this subject. The largest motifs in class

180 8. Motif Discovery in Brain Networks

Figure 8.3: Typical representatives of motifs found in the groups of somato-
form patients, healthy controls respectively and the group of all subjects.

(2) were detected in subject ‘control 3’. We found two motifs that comprise

12 nodes with two different labels and 17 edges. An example of the largest

motifs found in class (1) and the two largest motifs of class (2) are shown in

Figure 8.4. Note that no motif occurs in all subjects.

Evaluation of ROIs. We found motifs that can discriminate well between

somatoform patients and controls. In the next step, we determined the nor-

malized frequencies of the ROIs in patients and controls, respectively. Fig-

ure 8.5 illustrates the results for the 15 most frequent ROIs w.r.t. the patient

group, and Figure 8.6 for the group of healthy controls, respectively. Within

the motifs found in the patient group, Caudate R is the most frequent ROI

(freqnorm = 6.43%). The most frequent brain region w.r.t. the motifs of

the control group is Frontal Mid Orb R (freqnorm = 22.04%). ROIs that

show a small frequency are summarized by the label Miscellaneous. Our

results are consistent with a previous study [74]. They report different acti-

vation pattern in the regions Insula L (Patients: freqnorm = 5.29% Controls:

freqnorm = 1.95%) and Frontal Mid Orb R (Patients: freqnorm = 3.38%

Controls: freqnorm = 22.04%), the key-player in the group of healthy con-

trols. Our results of different activation of the parahippocampal cortex in

8.5 Experiments 181

Figure 8.4: Largest motifs found in the groups of somatoform patients and
healthy controls.

patients and controls (not depicted in Figures 8.5 and 8.6) supports a recent

study that suggests that patients with posttraumatic stress disorder showed

also an altered activation pattern in the parahippocampal cortex in compar-

ison to healthy controls when subjected to painful heat stimuli [70]. In addi-

tion, we found that patients show increased activation in Rolandic Oper L,

Caudate R and Rectus R whereas the control group is activated in the re-

gions Temporal Inf L, Heschl R and Lingual R to a higher degree. Also, the

olfactory region shows alterations in the activation of patients and controls.

Whereas Olfactory R occurs to a much higher degree in motifs found in pa-

tients, motifs found in the networks of controls are labeled more often with

Olfactory L.

182 8. Motif Discovery in Brain Networks

Caudate_R

Rectus_R

Insula_L

Occipital_Mid_L

Temporal_Sup_R

Rolandic_Oper_L

Frontal_Sup_Medial_L

Putamen_L

Thalamus_L

Frontal_Mid_L

Frontal_Mid_Orb_R

Olfactory_R

Rectus_L

Frontal_Sup_Orb_R

Temporal_Mid_L

Figure 8.5: Frequencies of ROIs in motifs of patients.

Frontal_Mid_Orb_R

Temporal_Inf_L

Lingual_R

Paracentral_Lobule_R

Calcarine_L

Postcentral_R

Olfactory_L

Caudate_L

Temporal_Sup_L

Fusiform_R

Precuneus_R

Temporal_Pole_Sup_R

Frontal_Mid_L

Frontal_Mid_Orb_L

Insula_L

Figure 8.6: Frequencies of ROIs in motifs of controls.

8.5 Experiments 183

Finding Motifs With FANMOD. The public disposable implementation1

of the exhaustive sampling algorithm by [172] is restricted to networks with

a maximum number of 16 different vertex labels. Hence, we map the orig-

inal network data to a modified version where only the 15 most frequent

ROIs are kept. The remaining vertices are labeled by Miscellaneous. This

labeling scheme refers to the ROI distribution among motifs detected by

GREW as shown in Figure 8.5 or 8.6 . As edges of the type Miscellaneous–

Miscellaneous occur disproportional frequent within the network, and would

therefore tamper with the real frequencies of the results, we deleted that kind

of interaction.

We searched for motifs, consisting of up to six vertices and used a sample

rate of 100,000 to estimate the number of subgraphs which is the default

parameterization, as recommended by the authors. Table 8.2 illustrates the

number of motifs that comprise 3 ≤ k ≤ 6 vertices for each subject. We

compared these results by applying GREW (t = 5) to the same modified

networks. The last column of Table 8.2 demonstrates that for small subgraph

sizes an exhaustive method provides significant more information about the

graph structure. Note that the total number of detected motifs by FANMOD

with a limited number of vertices exceeds the total number of motifs found by

GREW with arbitrary size in most cases. However, an exhaustive method

is only applicable for finding subgraphs that consist of a small number of

vertices.

1http://theinf1.informatik.uni-jena.de/motifs/

http://theinf1.informatik.uni-jena.de/motifs/

184 8. Motif Discovery in Brain Networks

Table 8.2: Motifs detected by FANMOD for different number of vertices
compared to the number of motifs found by GREW under the same condi-
tions. For some motif sizes, FANMOD is not applicable as the runtime effort
for exhaustive enumeration grows exponentially in the size of the subgraphs.

Subject # Motifs # Motifs # Motifs # Motifs # Motifs # Motifs
(k = 3) (k = 4) (k = 5) (k = 6) (3 ≤ k ≤ 6) by GREW

Patient 1 9 13 28 42 92 4
Patient 2 42 121 288 - 451 406
Patient 3 5 6 7 8 26 4
Patient 4 22 91 374 - 487 56
Patient 5 139 509 - - 648 988
Patient 6 431 3,292 - - 3,723 1,861
Control 1 6 10 16 22 54 34
Control 2 18 32 51 78 179 56
Control 3 9 26 - - 35 161
Control 4 137 565 2,399 - 3,101 472

Part IV

Conclusions

Chapter 9

Summary and Future

Directions

Data mining is the key part of the KDD process and is the application of

algorithms to discover patterns in large databases. Clustering and Classifi-

cation are among the most important data mining tasks. In this thesis, we

focus on new clustering methods and application in biomedical databases.

This Chapter summarizes the main contributions of this thesis in Section 9.1

and shows some directions for future work in Section 9.2.

9.1 Summary of Contributions

The rapidly increasing amount of data even in the field of biology or medicine,

requires effective and efficient data mining methods to gain new information

contained in the collected data. In this thesis, we developed new clustering

methods and demonstrated the application of data mining methods like clus-

tering, classification or graph mining to medical images in order to get deeper

insight into neurological diseases like Alzheimer’s disease or somatoform pain

disorder. In the following, a detailed summary of the contributions is given.

188 9. Summary and Future Directions

Preliminaries (Part I)

The preliminaries in Part I provides an introduction to the KDD process in

general and discusses open challenges in clustering and biomedical imaging.

In Section 2 we introduce common algorithms in clustering and classification

as well as quality measures that are used in this thesis to quantify the quality

of the results. Furthermore, we give an introduction to different imaging

technologies that are used for clinical purposes.

Clustering Techniques (Part II)

Part II is dedicated to the development of new clustering methods. In partic-

ular, we focus on hierarchical and integrative clustering as well as clustering

of complex objects like skyline object. The main advantages of the proposed

methods can be summarized as follows:

• In the field of hierarchical clustering, ITCH (Information Theoretic

Cluster Hierarchies) has been proposed in Section 3.2. This method

overcomes several drawbacks of existing methods for hierarchical clus-

tering. ITCH is built on a hierarchical variant of the information-

theoretic principle of Minimum Description Length (hMDL). The hi-

erarchical cluster structure is interpreted as a statistical model of the

data and can thus be used for effective data compression by Huffman

coding. The achievable compression rate induces the objective func-

tion for clustering. Using this objective function in combination with

an hierarchical EM-like optimization technique, ITCH can find only

only meaningful and valid clusters and handle outliers consistently by

assigning them to an appropriate level of the hierarchy. ITCH is fully

automatic and requires no difficult parameter setting. Furthermore,

each cluster in the hierarchy is represented by an intuitive description.

ITCH has been evaluated on several synthetic and real data sets, which

shows that ITCH outperforms all competitors by magnitudes.

9.1 Summary of Contributions 189

• In Section 3.3 we have proposed GACH (Genetic Algorithm for find-

ing Cluster Hierarchies) which is based on a genetic algorithm (GA).

A genetic algorithm is a stochastic optimization technique based on

the mechanism of natural selection and genetics. A fitness function is

used to select the best individuals in each generation. The hMDL cri-

terion described in Section 3.2 is used as fitness function together with

an GA based optimization technique which enables a more thorough

exploration of the solution space to find the correct cluster structure.

As GACH uses a MDL-based fitness function, it can be easily applied

to real world applications without requiring any expertise about the

data, like e.g. the real number of clusters. Due to the fact that GACH

integrates an EM-like strategy, the content of all clusters is described

by an intuitive description in form of a PDF. Outliers, i.e. data ob-

jects that to not belong to a certain cluster are assigned to appropriate

inner nodes of the hierarchy, depending on their degree of outlierness.

Our experimental evaluation demonstrates that GACH outperforms a

multitude of other clustering approaches.

• The algorithm INTEGRATE has been introduced in Chapter 4 which

is designed to cluster heterogeneous data that is described by numerical

and categorical attributes. We have defined iMDL, an information the-

oretic clustering quality criterion suitable for integrative clustering. Us-

ing iMDL as objective function for clustering, INTEGRATE naturally

balances the influence of numerical and categorical attributes without

requiring any weighting parameters. We applied INTEGRATE to sev-

eral data sets with mixed numerical and categorical attributes. The

experiments show that INTEGRATE outperforms existing clustering

methods for mixed type attributes.

• In Chapter 5, we use skylines as objects for data mining. Skylines

give an optimized approximation of a data set w.r.t. two or more at-

190 9. Summary and Future Directions

tributes. Therefore, many techniques for determining the skyline of

a data set have been proposed. We have defined a distance measure

SkyDist that defines the distance between two skylines considering the

dominance and non-dominance regions of both skylines. We propose

two methods for computing SkyDist based on Monte-Carlo sampling

(MCSkyDist) that gives an approximation of the distance and SPSky-

Dist that is based on the plane sweep paradigm and exactly determines

the distance. In an extensive experimental evaluation, we demonstrate

the efficiency of SkyDist and integrate SkyDist into different clustering

algorithms to show the usefulness of SkyDist for a number of applica-

tions.

Techniques for Mining Biomedical Data (Part III)

In Part III we focus on the application of data mining techniques for biomed-

ical applications. In particular, we apply techniques from feature selection,

clustering, classification and graph mining to find patterns in the human

brain that cause several neurological diseases.

• In Chapter 6, we have proposed the framework FCC to identify regions

of high discriminatory power in high resolution magnetic resonance

images of the brain. FCC combines data mining techniques from fea-

ture selection, clustering and classification. The results show excellent

accuracies to identify Alzheimer’s disease (AD) and Mild Cognitive Im-

pairment (MCI) on high resolution MR images and indicate that it is

a valuable complement to existing methods.

• In Chapter 7 we have presented the efficient toolkit JGrid, a distributed

computing system that allows for a large scale comparative analysis on

magnetic resonance images in order to get a deeper insight in diseases

that cause abnormalities in the brain. JGrid provides a Java API that

facilitates arbitrary software to be executed on a cluster of computers.

9.2 Potentials for Future Work 191

For this purpose, the FCC framework was implemented to conform to

this API and applied to a set of 181 MR scans. The results show that an

increase in efficiency of 80% could be achieved on a cluster of 10 com-

puters and facilitates a not only effective but also efficient classification

of several pathologies like Alzheimer’s disease or schizophrenia.

• We applied several methods for motif discovery to task fMRI images

of patients that suffer from somatoform pain disorder and healthy con-

trols in Chapter 8. In particular, we applied the heuristic approach

GREW and FANMOD, an exhaustive sampling method for frequent

subgraph discovery to brain co-activation networks of 6 somatoform

patients and 4 healthy controls. These motifs represent groups of brain

compartments that covary in their activity during the process of pain

stimulation. We found motifs that are characteristic for patients and

healthy subjects, respectively.

9.2 Potentials for Future Work

At the end of this thesis, we describe some major directions for future research

in the field of clustering and on mining biomedical data.

• ITCH and GACH, both rely on a coding scheme that is based on axis

parallel Gaussian distribution functions. However, this is not the case

in many real world applications. Extending the coding scheme to more

general distribution functions would therefore be a next step.

• Ensembles are a simple but effective type of a multi-learner system,

wherein each component tries to solve the same task. Cluster ensembles

provide a tool for consolidation of results from a portfolio of individ-

ual clustering results. Many methods have recently been proposed for

comparing different clustering results [158, 127, 49]. Combining several

clusterings can lead to improved quality and robustness of the results

192 9. Summary and Future Directions

and has therefore high potential for future research. In this way, the

results of ITCH and GACH can be combined to give more sophisticated

results.

• INTEGRATE is based on a k-means algorithm. Finding the right k

in partitioning clustering is an unsolved problem so far. INTEGRATE

uses the iMDL criterion to select the correct k in a number of potential

number of clusters. The baseline solution would be to try all k ranging

from 1 to the number of points in the data set. However, this is not fea-

sible for large data sets. One solution is, to try a sample of the data set

but this is not satisfying either. Different strategies have been emerged

in the last years for finding the right k [75, 33]. These strategies in

combination with our new developed iMDL criterion could give more

precise results.

• Using the FCC framework on a set of MRI images has led to promising

results for research of brain atrophy pattern in the brain of patients with

Alzheimer’s disease. To further validate the regions identified for AD

and MCI we intend to apply or technique on a larger data set. Going

beyond imaging, it is also very interesting to combine these findings

with the clinical scores which are currently applied for diagnosis of AD.

In addition, this or similar methods could successfully be applied to

other pathologies, such es schizophrenia and other imaging modalities

such es positron emission tomography.

• JGrid is designed for the analysis of MRI images. However, integrating

other image modalities like e.g. positron emission tomography (PET)

would have high potential for a better understanding of the anatomical

changes in the human body. While imaging scans such as CT and MRI

isolate organic anatomic changes in the body, PET is capable of detect-

ing areas of molecular biology detail (even prior to anatomic change).

PET scanning does this using radio-labeled molecular probes that have

9.2 Potentials for Future Work 193

different rates of uptake depending on the type and function of tissue

involved. Changing of regional blood flow in various anatomic struc-

tures (as a measure of the injected positron emitter) can be visualized

and relatively quantified with a PET scan. However, PET imaging

is most useful in combination with anatomical imaging such as MRI,

as in this way areas of abnormality on the PET images can be more

perfectly correlated with anatomy on the MRI images.

• We applied several graph mining methods for frequent subgraph dis-

covery to time-series data of patients with somatoform pain disorder

and healthy controls. While these processes are dynamic, the models

we considered were all static. In [171] a framework for finding dynamic

motifs is proposed. Applying this framework to the task fMRI data

will gain information about the temporal order of the motifs.

194 9. Summary and Future Directions

List of Figures

1.1 The KDD process. 4

2.1 Dendrogram for a sample data set. 21

2.2 Basic notations of DBSCAN. 22

2.3 Reachability plot of OPTICS for three Gaussian clusters. . . . 24

2.4 Slices of an MRI scan. 33

3.1 Optimization of the grid resolution for the hMDL criterion. . 49

3.2 Restructuring operations of ITCH. 58

3.3 Competitive evaluation of ITCH on DS1. 60

3.4 Competitive evaluation of ITCH on DS2. 62

3.5 Competitive evaluation of ITCH on glass data set. 64

3.6 Competitive evaluation of ITCH on breast cancer data set. . . 66

3.7 Stability of ITCH . 68

3.8 Mutation operations of GACH 73

3.9 Crossover operator of GACH 74

3.10 Mean fitness of GACH w.r.t. the genetic parameters. 80

3.11 Competitive evaluation of GACH on DS1 and DS2. 83

3.12 Competitive evaluation of GACH on wine data set. 85

4.1 Running example for the algorithm INTEGRATE. 94

4.2 Evaluation of INTEGRATE on synthetic data. 103

4.3 Coding costs for different k values. 106

196 Abbildungsverzeichnis

5.1 Motivating examples for SkyDist. 109

5.2 Dominance regions of two skylines X and Y 114

5.3 Computation of SkyDist in 2-dimensional space. 116

5.4 Structure of a 3-dimensional skyline 117

5.5 Varying sample rate of MCSkyDist. 120

5.6 Clustering result on car data using SkyDist. 120

5.7 The dendrogram of Single Link using SkyDist in comparison

to conventional metrics. 123

5.8 Clustering result on NBA data using SkyDist. 124

6.1 Features with high IG in MRI of AD vs. HC. 134

6.2 AD vs. HC: Discriminating regions in the brain. 138

6.3 MCI-AD vs. MCI-MCI: Discriminating regions in the brain. . 142

6.4 Effect of the parameter C on the classification accuracy of SVM.144

7.1 Distributed architecture of JGrid 157

7.2 Graphical User Interface of JGrid 159

7.3 Status Dialog of JGrid. 160

7.4 Runtime analysis of JGrid. 163

7.5 I/O lock and waiting time analysis of JGrid. 163

7.6 Runtime of JGrid in different states of the workflow. 164

8.1 Brain network. 169

8.2 Transformation from a time series of three labeled graphs into

the corresponding union graph. 174

8.3 Typical representatives of subgraphs found in brain network

data. 180

8.4 Largest subgraphs found in brain network data. 181

8.5 Frequencies of ROIs in motifs of patients. 182

8.6 Frequencies of ROIs in motifs of controls. 182

List of Tables

3.1 Quantitative evaluation of ITCH on DS1. 59

3.2 Quantitative evaluation of ITCH on DS2. 61

3.3 Quantitative evaluation of ITCH on glass data set. 63

3.4 Quantitative evaluation of ITCH on cancer data set. 67

3.5 Quantitative evaluation of GACH on DS1. 82

3.6 Quantitative evaluation of GACH on DS2. 84

3.7 Quantitative evaluation of GACH on wine data set. 85

4.1 Results of INTEGRATE on real data. 105

5.1 Runtime analysis for SPSkyDist and MCSkyDist. 121

6.1 Demographic variables and MMSE for the different groups. . . 135

6.2 Different classification experiments on MRI data. 137

6.3 Classification results on MRI data. 139

6.4 Discriminative patterns in AD vs. HC. 140

6.5 Discriminative patterns in MCI-AD vs. MCI-MCI. 141

8.1 Statistics of the network models for each subject. 178

8.2 Motifs detected by FANMOD and GREW in fMRI data. . . . 184

198 Tabellenverzeichnis

Bibliography

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules

between Sets of Items in Large Databases. In SIGMOD Conference,

pages 207–216, 1993.

[2] A. Ahmad and L. Dey. A k-mean clustering algorithm for mixed

numeric and categorical data. Data and Knowledge Engineering,

63(2):503 – 527, 2007.

[3] D. P. Anderson. Boinc: A system for public-resource computing and

storage. In Proceedings of the 5th IEEE/ACM International Workshop

on Grid Computing, GRID, pages 4–10, Washington, DC, USA, 2004.

IEEE Computer Society.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS:

Ordering Points To Identify the Clustering Structure. In SIGMOD,

pages 49–60, 1999.

[5] L. G. Apostolova, C. A. Steiner, G. G. Akopyan, R. A. Dutton, K. M.

Hayashi, A. W. Toga, J. L. Cummings, and P. M. Thompson. Three-

dimensional gray matter atrophy mapping in mild cognitive impair-

ment and mild Alzheimer disease. Arch. Neurol., 64:1489–1495, Oct

2007.

200 BIBLIOGRAPHY

[6] J. Ashburner, J. L. Andersson, and K. J. Friston. High-dimensional

image registration using symmetric priors. Neuroimage, 9:619–628,

Jun 1999.

[7] J. Ashburner and K. Friston. Multimodal image coregistration and

partitioning–a unified framework. Neuroimage, 6:209–217, Oct 1997.

[8] J. Ashburner and K. J. Friston. Voxel-based morphometry–the meth-

ods. Neuroimage, 11:805–821, Jun 2000.

[9] A. Asuncion and D. Newman. UCI Machine Learning Repository, 2007.

[10] E. Bair, T. Hastie, D. Paul, and R. Tibshirani. Prediction by supervised

principal components. Journal of the American Statistical Association,

101:119–137, 2006.

[11] J. D. Banfield and A. E. Raftery. Model-Based Gaussian and Non-

Gaussian Clustering. Biometrics, 49(3):803–821, 1993.

[12] J. C. Baron, G. Chetelat, B. Desgranges, G. Perchey, B. Landeau,

V. de la Sayette, and F. Eustache. In vivo mapping of gray matter loss

with voxel-based morphometry in mild Alzheimer’s disease. Neuroim-

age, 14:298–309, Aug 2001.

[13] S. Basu, M. Bilenko, and R. J. Mooney. A Probabilistic Framework for

Semi-supervised Clustering. In KDD, pages 59–68, 2004.

[14] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting

geometric intersections. IEEE Trans. Computers, 28(9):643–647, 1979.

[15] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Al-

gorithms. Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[16] M. Bilenko, S. Basu, and R. J. Mooney. Integrating Constraints and

Metric Learning in Semi-supervised Clustering. In ICML, 2004.

BIBLIOGRAPHY 201

[17] K. Blennow and H. Hampel. Csf markers for incipient alzheimer’s

disease. The Lancet Neurology, 2(10):605 – 613, 2003.

[18] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust Information-

theoretic Clustering. In KDD, pages 65–75, 2006.

[19] C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using

independent components. In J. T.-L. Wang, editor, SIGMOD Confer-

ence, pages 185–198. ACM, 2008.

[20] C. Böhm, F. Fiedler, A. Oswald, C. Plant, B. Wackersreuther, and

P. Wackersreuther. ITCH: Information-Theoretic Cluster Hierarchies.

In ECML/PKDD (1), pages 151–167, 2010.

[21] C. Böhm, S. Goebl, A. Oswald, C. Plant, M. Plavinski, and B. Wack-

ersreuther. Integrative parameter-free clustering of data with mixed

type attributes. In PAKDD (1), pages 38–47, 2010.

[22] C. Böhm, A. Oswald, C. Plant, M. Plavinski, and B. Wackersreuther.

Skydist: Data mining on skyline objects. In PAKDD (1), pages 461–

470, 2010.

[23] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In

ICDE, pages 421–430, 2001.

[24] M. Bozzali, M. Filippi, G. Magnani, M. Cercignani, M. Franceschi,

E. Schiatti, S. Castiglioni, R. Mossini, M. Falautano, G. Scotti,

G. Comi, and A. Falini. The contribution of voxel-based morphom-

etry in staging patients with mild cognitive impairment. Neurology,

67:453–460, Aug 2006.

[25] D. J. Brenner and E. J. Hall. Computed tomography–an increasing

source of radiation exposure. N. Engl. J. Med., 357:2277–2284, Nov

2007.

202 BIBLIOGRAPHY

[26] R. K. Brouwer. Clustering feature vectors with mixed numerical and

categorical attributes. IJCIS, 1-4:285–298, 2008.

[27] N. E. Carlson, M. M. Moore, A. Dame, D. Howieson, L. C. Silbert,

J. F. Quinn, and J. A. Kaye. Trajectories of brain loss in aging and

the development of cognitive impairment. Neurology, 70:828–833, Mar

2008.

[28] L. Y. Carreon, S. D. Glassman, J. D. Schwender, B. R. Subach, M. F.

Gornet, and S. Ohno. Reliability and accuracy of fine-cut computed

tomography scans to determine the status of anterior interbody fusions

with metallic cages. Spine J, 8:998–1002, 2008.

[29] A. Chardin and P. Pérez. Unsupervised Image Classification with a

Hierarchical EM Algorithm. In ICCV, pages 969–974, 1999.

[30] R. Chen and E. H. Herskovits. Network analysis of mild cognitive

impairment. Neuroimage, 29:1252–1259, Feb 2006.

[31] G. Chetelat, B. Desgranges, V. De La Sayette, F. Viader, F. Eustache,

and J. C. Baron. Mapping gray matter loss with voxel-based mor-

phometry in mild cognitive impairment. Neuroreport, 13:1939–1943,

Oct 2002.

[32] G. Chetelat, B. Landeau, F. Eustache, F. Mezenge, F. Viader, V. de la

Sayette, B. Desgranges, and J. C. Baron. Using voxel-based morphom-

etry to map the structural changes associated with rapid conversion in

MCI: a longitudinal MRI study. Neuroimage, 27:934–946, Oct 2005.

[33] M. M.-T. Chiang and B. Mirkin. Intelligent choice of the number of

clusters in -means clustering: An experimental study with different

cluster spreads. J. Classification, 27(1):3–40, 2010.

BIBLIOGRAPHY 203

[34] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presort-

ing: Theory and optimizations. In Intelligent Information Systems,

pages 595–604, 2005.

[35] R. Cilibrasi and P. M. B. Vitányi. Clustering by Compression. IEEE

Transactions on Information Theory, 51(4):1523–1545, 2005.

[36] D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum

Description Length and Background Knowledge. J. Artif. Intell. Res.

(JAIR), 1:231–255, 1994.

[37] M. L. Cooper. Information measures for object recognition: accommo-

dating signature variability. PhD thesis, St. Louis, MO, USA, 1999.

AAI9959927.

[38] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, 1995.

[39] J. G. Csernansky, L. Wang, J. Swank, J. P. Miller, M. Gado, D. McKeel,

M. I. Miller, and J. C. Morris. Preclinical detection of Alzheimer’s

disease: hippocampal shape and volume predict dementia onset in the

elderly. Neuroimage, 25:783–792, Apr 2005.

[40] C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick. Detection

of prodromal Alzheimer’s disease via pattern classification of magnetic

resonance imaging. Neurobiol. Aging, 29:514–523, Apr 2008.

[41] C. Davatzikos, A. Genc, D. Xu, and S. M. Resnick. Voxel-based mor-

phometry using the RAVENS maps: methods and validation using

simulated longitudinal atrophy. Neuroimage, 14:1361–1369, Dec 2001.

[42] L. W. de Jong, K. van der Hiele, I. M. Veer, J. J. Houwing, R. G.

Westendorp, E. L. Bollen, P. W. de Bruin, H. A. Middelkoop, M. A. van

Buchem, and J. van der Grond. Strongly reduced volumes of putamen

204 BIBLIOGRAPHY

and thalamus in Alzheimer’s disease: an MRI study. Brain, 131:3277–

3285, Dec 2008.

[43] C. DeCarli, D. G. Murphy, A. R. McIntosh, D. Teichberg, M. B.

Schapiro, and B. Horwitz. Discriminant analysis of MRI measures

as a method to determine the presence of dementia of the Alzheimer

type. Psychiatry Res, 57:119–130, Jul 1995.

[44] D. Defays. An efficient algorithm for a complete link method. Comput.

J., 20(4):364–366, 1977.

[45] D. Dekker and P. H. J. Hendriks. Social network analysis. In Encyclo-

pedia of Knowledge Management, pages 1460–1469. 2011.

[46] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised

clustering using genetic algorithms. Artificial neural networks in engi-

neering, pages 809–814, 1999.

[47] G. Demiröz and H. A. Güvenir. Classification by voting feature inter-

vals. In ECML, pages 85–92, 1997.

[48] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likeli-

hood from Incomplete Data via the EM Algorithm. In J Roy Stat Soc,

number 39, pages 1–31, 1977.

[49] B. Dom. An Information-Theoretic External Cluster-Validity Measure.

In UAI, pages 137–145, 2002.

[50] B. Dubois, H. H. Feldman, C. Jacova, S. T. Dekosky, P. Barberger-

Gateau, J. Cummings, A. Delacourte, D. Galasko, S. Gauthier,

G. Jicha, K. Meguro, J. O’brien, F. Pasquier, P. Robert, M. Rossor,

S. Salloway, Y. Stern, P. J. Visser, and P. Scheltens. Research criteria

for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA

criteria. Lancet Neurol, 6:734–746, Aug 2007.

BIBLIOGRAPHY 205

[51] S. Duchesne, C. Bocti, K. De Sousa, G. B. Frisoni, H. Chertkow, and

D. L. Collins. Amnestic MCI future clinical status prediction using

baseline MRI features. Neurobiol. Aging, 31:1606–1617, Sep 2010.

[52] S. Duchesne, A. Caroli, C. Geroldi, C. Barillot, G. B. Frisoni, and D. L.

Collins. MRI-based automated computer classification of probable AD

versus normal controls. IEEE Trans Med Imaging, 27:509–520, Apr

2008.

[53] S. Duchesne, A. Caroli, C. Geroldi, D. L. Collins, and G. B. Frisoni.

Relating one-year cognitive change in mild cognitive impairment to

baseline MRI features. Neuroimage, 47:1363–1370, Oct 2009.

[54] J. Duncan, R. J. Seitz, J. Kolodny, D. Bor, H. Herzog, A. Ahmed, F. N.

Newell, and H. Emslie. A neural basis for general intelligence. Science,

289:457–460, Jul 2000.

[55] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algo-

rithm for Discovering Clusters in Large Spatial Databases with Noise.

In KDD, pages 226–231, 1996.

[56] M. Ewers, K. Buerger, S. J. Teipel, P. Scheltens, J. Schroder,

R. P. Zinkowski, F. H. Bouwman, P. Schonknecht, N. S. Schoonen-

boom, N. Andreasen, A. Wallin, J. F. DeBernardis, D. J. Kerkman,

B. Heindl, K. Blennow, and H. Hampel. Multicenter assessment of

CSF-phosphorylated tau for the prediction of conversion of MCI. Neu-

rology, 69:2205–2212, Dec 2007.

[57] Y. Fan, N. Batmanghelich, C. M. Clark, and C. Davatzikos. Spatial pat-

terns of brain atrophy in MCI patients, identified via high-dimensional

pattern classification, predict subsequent cognitive decline. Neuroim-

age, 39:1731–1743, Feb 2008.

206 BIBLIOGRAPHY

[58] Y. Fan, D. Shen, R. C. Gur, R. E. Gur, and C. Davatzikos. COM-

PARE: classification of morphological patterns using adaptive regional

elements. IEEE Trans Med Imaging, 26:93–105, Jan 2007.

[59] U. M. Fayyad and K. B. Irani. Multi-interval discretization of

continuous-valued attributes for classification learning. In IJCAI, pages

1022–1029, 1993.

[60] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discov-

ery and data mining: Towards a unifying framework. In KDD, pages

82–88, 1996.

[61] L. Ferrarini, W. M. Palm, H. Olofsen, M. A. van Buchem, J. H. Reiber,

and F. Admiraal-Behloul. Shape differences of the brain ventricles in

Alzheimer’s disease. Neuroimage, 32:1060–1069, Sep 2006.

[62] C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Gan-

guli, K. Hall, K. Hasegawa, H. Hendrie, and Y. Huang. Global

prevalence of dementia: a Delphi consensus study. The Lancet,

366(9503):2112–2117, January 2006.

[63] M. F. Folstein, S. E. Folstein, and P. R. McHugh. ”Mini-mental state”.

A practical method for grading the cognitive state of patients for the

clinician. J Psychiatr Res, 12:189–198, Nov 1975.

[64] G. B. Frisoni, C. Testa, A. Zorzan, F. Sabattoli, A. Beltramello,

H. Soininen, and M. P. Laakso. Detection of grey matter loss in mild

Alzheimer’s disease with voxel based morphometry. J. Neurol. Neuro-

surg. Psychiatr., 73:657–664, Dec 2002.

[65] K. J. Friston, J. B. Poline, A. P. Holmes, C. D. Frith, and R. S. Frack-

owiak. A multivariate analysis of PET activation studies. Hum Brain

Mapp, 4:140–151, 1996.

BIBLIOGRAPHY 207

[66] C. Frost and C. Kallis. Reply: A plea for confidence intervals and

consideration of generalizability in diagnostic studies. Brain, 132:e103;

author reply e102, Apr 2009.

[67] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. Series of Books in Mathematical

Sciences. W. H. Freeman, 1979.

[68] M. L. Gavrilova and J. G. Rokne. Reliable line segment intersection

testing. Computer-Aided Design, 32(12):737–745, 2000.

[69] G. Gerig, O. Kubler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic

filtering of MRI data. IEEE Trans Med Imaging, 11:221–232, 1992.

[70] E. Geuze, H. Westenberg, A. Jochims, C. de Kloet, M. Bohus, E. Ver-

metten, and C. Schmahl. Altered Pain Processing in Veterans with

Posttraumatic Stress Disorder. Arch. Gen. Psychiatry, 64:76–85, Jan

2007.

[71] J. Goldberger and S. T. Roweis. Hierarchical Clustering of a Mixture

Model. In NIPS, 2004.

[72] C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. Henson, K. J. Friston,

and R. S. Frackowiak. A voxel-based morphometric study of ageing in

465 normal adult human brains. Neuroimage, 14:21–36, Jul 2001.

[73] P. Grünwald. A Tutorial Introduction to the Minimum Description

Length Principle. CoRR, math.ST/0406077, 2004.

[74] H. Gündel, M. Valet, C. Sorg, D. Huber, C. Zimmer, T. Sprenger, and

T. R. Tölle. Altered Cerebral Response to Noxious Heat Stimulation in

Patients with Somatoform Pain Disorder. Pain, 137(2):413–421, July

2008.

[75] G. Hamerly and C. Elkan. Learning the k in k-means. In NIPS, 2003.

208 BIBLIOGRAPHY

[76] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Mor-

gan Kaufmann, 2000.

[77] O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow,

and L. Minthon. Association between CSF biomarkers and incipi-

ent Alzheimer’s disease in patients with mild cognitive impairment:

a follow-up study. Lancet Neurol, 5:228–234, Mar 2006.

[78] Z. He, X. Xu, and S. Deng. Clustering mixed numeric and categorical

data: A cluster ensemble approach. CoRR, abs/cs/0509011, 2005.

[79] G. T. Herman. Fundamentals of Computerized Tomography: Image

Reconstruction from Projections. Springer Publishing Company, Incor-

porated, 2nd edition, 2009.

[80] S. K. Herukka, S. Helisalmi, M. Hallikainen, S. Tervo, H. Soininen,

and T. Pirttila. CSF Abeta42, Tau and phosphorylated Tau, APOE

epsilon4 allele and MCI type in progressive MCI. Neurobiol. Aging,

28:507–514, Apr 2007.

[81] J. H. Holland. Genetic algorithms and the optimal allocation of trials.

SIAM J. Comput., 2(2):88–105, 1973.

[82] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A sys-

tem for the efficient execution of multi-parametric ranked queries. In

SIGMOD Conference, pages 259–270, 2001.

[83] C.-C. Hsu and Y.-C. Chen. Mining of mixed data with application to

catalog marketing. Expert Syst. Appl., 32(1):12–23, 2007.

[84] Z. Huang. Extensions to the k-means algorithm for clustering large

data sets with categorical values. Data Min. Knowl. Discov., 2(3):283–

304, 1998.

BIBLIOGRAPHY 209

[85] D. Ienco, R. G. Pensa, and R. Meo. Parameter-free hierarchical co-

clustering by n-ary splits. In ECML/PKDD (1), pages 580–595, 2009.

[86] A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Fre-

quent Patterns from Graphs: Mining Graph Data. Machine Learning,

50(3):321–354, 2003.

[87] C. R. Jack, R. C. Petersen, Y. C. Xu, P. C. O’Brien, G. E. Smith,

R. J. Ivnik, B. F. Boeve, S. C. Waring, E. G. Tangalos, and E. Kok-

men. Prediction of AD with MRI-based hippocampal volume in mild

cognitive impairment. Neurology, 52:1397–1403, Apr 1999.

[88] L. Jing, M. K. Ng, and J. Z. Huang. An entropy weighting k-means al-

gorithm for subspace clustering of high-dimensional sparse data. IEEE

Trans. Knowl. Data Eng., 19(8):1026–1041, 2007.

[89] G. H. John and P. Langley. Estimating continuous distributions in

bayesian classifiers. In UAI, pages 338–345, 1995.

[90] K. Kantarci and C. R. Jack. Neuroimaging in Alzheimer disease: an

evidence-based review. Neuroimaging Clin. N. Am., 13:197–209, May

2003.

[91] G. B. Karas, E. J. Burton, S. A. Rombouts, R. A. van Schijndel, J. T.

O’Brien, P. Scheltens, I. G. McKeith, D. Williams, C. Ballard, and

F. Barkhof. A comprehensive study of gray matter loss in patients

with Alzheimer’s disease using optimized voxel-based morphometry.

Neuroimage, 18:895–907, Apr 2003.

[92] G. B. Karas, P. Scheltens, S. A. Rombouts, P. J. Visser, R. A. van

Schijndel, N. C. Fox, and F. Barkhof. Global and local gray matter

loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage,

23:708–716, Oct 2004.

210 BIBLIOGRAPHY

[93] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient Sampling Al-

gorithm for Estimating Subgraph Concentrations and Detecting Net-

work Motifs. Bioinformatics, 20(11):1746–1758, Jul 2004.

[94] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Intro-

duction to Cluster Analysis. John Wiley, 1990.

[95] R. J. Killiany, B. T. Hyman, T. Gomez-Isla, M. B. Moss, R. Kiki-

nis, F. Jolesz, R. Tanzi, K. Jones, and M. S. Albert. MRI measures

of entorhinal cortex vs hippocampus in preclinical AD. Neurology,

58:1188–1196, Apr 2002.

[96] S. Kl̈ı¿1
2
ppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill,

J. D. Rohrer, N. C. Fox, C. R. Jack, J. Ashburner, and R. S. Frack-

owiak. Automatic classification of MR scans in Alzheimer’s disease.

Brain, 131:681–689, Mar 2008.

[97] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An

online algorithm for skyline queries. In VLDB, pages 275–286, 2002.

[98] H.-P. Kriegel, K. M. Borgwardt, P. Kröger, A. Pryakhin, M. Schu-

bert, and A. Zimek. Future trends in data mining. Data Min. Knowl.

Discov., 15(1):87–97, 2007.

[99] K. Krishna and M. N. Murty. Genetic K-means algorithm. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 29(3):433–

439, 1999.

[100] M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In

ICDM, pages 313–320, 2001.

[101] M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large

Sparse Graph. In SDM, 2004.

BIBLIOGRAPHY 211

[102] M. Kuramochi and G. Karypis. GREW-A Scalable Frequent Subgraph

Discovery Algorithm. In ICDM, pages 439–442, 2004.

[103] S. LaConte, S. Strother, V. Cherkassky, J. Anderson, and X. Hu. Sup-

port vector machines for temporal classification of block design fMRI

data. Neuroimage, 26:317–329, Jun 2005.

[104] H. O. Lancaster. The chi-squared distribution. Wiley New York,, 1969.

[105] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata,

N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and

applications. J Magn Reson Imaging, 13:534–546, Apr 2001.

[106] J. Leskovec and C. Faloutsos. Sampling from large graphs. In KDD,

pages 631–636, 2006.

[107] T. Li and Y. Chen. A weight entropy k-means algorithm for clustering

dataset with mixed numeric and categorical data. In FSKD (1), pages

36–41, 2008.

[108] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient

skyline computation over sliding windows. In ICDE, pages 502–513,

2005.

[109] L. A. N. Lorena and J. C. Furtado. Constructive Genetic Algorithm for

Clustering Problems. Evolutionary Computation, 9(3):309–328, 2001.

[110] Z. Lu and T. K. Leen. Semi-supervised Learning with Penalized Prob-

abilistic Clustering. In NIPS, 2004.

[111] J. B. Macqueen. Some methods of classification and analysis of multi-

variate observations. In Proceedings of the Fifth Berkeley Symposium

on Mathematical Statistics and Probability, pages 281–297, 1967.

[112] U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering

technique. Pattern Recognition, 33(9):1455–1465, 2000.

212 BIBLIOGRAPHY

[113] A. R. McIntosh, C. L. Grady, L. G. Ungerleider, J. V. Haxby, S. I.

Rapoport, and B. Horwitz. Network analysis of cortical visual pathways

mapped with PET. J. Neurosci., 14:655–666, Feb 1994.

[114] M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kinder-

mann, A. J. Bell, and T. J. Sejnowski. Analysis of fMRI data by blind

separation into independent spatial components. Hum Brain Mapp,

6:160–188, 1998.

[115] G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, and

E. M. Stadlan. Clinical diagnosis of Alzheimer’s disease: report of

the NINCDS-ADRDA Work Group under the auspices of Department

of Health and Human Services Task Force on Alzheimer’s Disease.

Neurology, 34:939–944, Jul 1984.

[116] K. Meguro, C. LeMestric, B. Landeau, B. Desgranges, F. Eustache, and

J. C. Baron. Relations between hypometabolism in the posterior asso-

ciation neocortex and hippocampal atrophy in Alzheimer’s disease: a

PET/MRI correlative study. J. Neurol. Neurosurg. Psychiatr., 71:315–

321, Sep 2001.

[117] Z. Michalewicz. Genetic algorithms + data structures = evolution pro-

grams (3rd ed.). Springer, 1996.

[118] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon. Network Motifs: Simple Building Blocks of Complex Net-

works. Science, 298(5594):824–827, Oct. 2002.

[119] C. Misra, Y. Fan, and C. Davatzikos. Baseline and longitudinal pat-

terns of brain atrophy in MCI patients, and their use in prediction

of short-term conversion to AD: results from ADNI. Neuroimage,

44:1415–1422, Feb 2009.

BIBLIOGRAPHY 213

[120] T. M. Mitchell. Machine learning. McGraw Hill series in computer

science. McGraw-Hill, 1997.

[121] T. Mori, M. Kikuchi, and K. Yoshida. Term weighting method based

on information gain ratio for summarizing documents retrieved by ir

systems. In Journal of Natural Language Processing, 9(4):3–32, 2003.

[122] J. C. Morris, A. Heyman, R. C. Mohs, J. P. Hughes, G. van Belle,

G. Fillenbaum, E. D. Mellits, and C. Clark. The Consortium to Es-

tablish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical

and neuropsychological assessment of Alzheimer’s disease. Neurology,

39:1159–1165, Sep 1989.

[123] J. Mourao-Miranda, A. L. Bokde, C. Born, H. Hampel, and M. Stetter.

Classifying brain states and determining the discriminating activation

patterns: Support Vector Machine on functional MRI data. Neuroim-

age, 28:980–995, Dec 2005.

[124] J. Mourao-Miranda, E. Reynaud, F. McGlone, G. Calvert, and

M. Brammer. The impact of temporal compression and space selec-

tion on SVM analysis of single-subject and multi-subject fMRI data.

Neuroimage, 33:1055–1065, Dec 2006.

[125] F. Murtagh. A Survey of Recent Advances in Hierarchical Clustering

Algorithms. Comput. J., 26(4):354–359, 1983.

[126] R. T. Ng and J. Han. Efficient and Effective Clustering Methods for

Spatial Data Mining. In VLDB, pages 144–155, 1994.

[127] X. V. Nguyen, J. Epps, and J. Bailey. Information theoretic measures

for clusterings comparison: is a correction for chance necessary? In

ICML, page 135, 2009.

[128] R. A. Novelline. Squire’s fundamentals of radiology. Harvard University

Press., 1997.

214 BIBLIOGRAPHY

[129] T. O’Reilly. What is web 2.0, design patterns and business models for

the next generation of software. Internet, September 2005.

[130] A. Oswald and B. Wackersreuther. Motif discovery in brain networks of

patients with somatoform pain disorder. In DEXA Workshops, pages

328–332, 2009.

[131] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive

algorithm for skyline queries. In SIGMOD Conference, pages 467–478,

2003.

[132] S. C. Park, H. Shin, and B. K. Choi. A sweep line algorithm for

polygonal chain intersection and its applications. In IFIP WG5.2 GEO-

6, pages 187–195, 1998.

[133] D. Pelleg and A. W. Moore. X-means: Extending K-means with Effi-

cient Estimation of the Number of Clusters. In ICML, pages 727–734,

2000.

[134] C. Pennanen, M. Kivipelto, S. Tuomainen, P. Hartikainen, T. Hanni-

nen, M. P. Laakso, M. Hallikainen, M. Vanhanen, A. Nissinen, E. L.

Helkala, P. Vainio, R. Vanninen, K. Partanen, and H. Soininen. Hip-

pocampus and entorhinal cortex in mild cognitive impairment and early

AD. Neurobiol. Aging, 25:303–310, Mar 2004.

[135] C. Pennanen, C. Testa, M. P. Laakso, M. Hallikainen, E. L. Hel-

kala, T. Hanninen, M. Kivipelto, M. Kononen, A. Nissinen, S. Tervo,

M. Vanhanen, R. Vanninen, G. B. Frisoni, and H. Soininen. A voxel

based morphometry study on mild cognitive impairment. J. Neurol.

Neurosurg. Psychiatr., 76:11–14, Jan 2005.

[136] F. Pernkopf and D. Bouchaffra. Genetic-Based EM Algorithm for

Learning Gaussian Mixture Models. IEEE Trans. Pattern Anal. Mach.

Intell., 27(8):1344–1348, 2005.

BIBLIOGRAPHY 215

[137] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V.

Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad. Current

concepts in mild cognitive impairment. Arch. Neurol., 58:1985–1992,

Dec 2001.

[138] B. Pham. Offset curves and surfaces: a brief survey. Computer-Aided

Design, 24(4):223–229, 1992.

[139] G. Piatetsky-Shapiro, R. Grossman, C. Djeraba, R. Feldman,

L. Getoor, and M. Zaki. Is there a grand challenge or x-prize for data

mining? In KDD, pages 954–956, 2006.

[140] C. Plant, M. Osl, B. Tilg, and C. Baumgartner. Feature selection

on high throughput seldi-tof mass-spectrometry data for identifying

biomarker candidates in ovarian and prostate cancer. In ICDM Work-

shops, pages 174–179, 2006.

[141] C. Plant, S. J. Teipel, A. Oswald, C. Bohm, T. Meindl, J. Mourao-

Miranda, A. W. Bokde, H. Hampel, and M. Ewers. Automated de-

tection of brain atrophy patterns based on MRI for the prediction of

Alzheimer’s disease. Neuroimage, 50:162–174, Mar 2010.

[142] J. Platt. Machines using Sequential Minimal Optimization. In

B. Schoelkopf, C. Burges, and A. Smola, editors, Advances in Kernel

Methods - Support Vector Learning. MIT Press, 1998.

[143] J. L. Price, P. B. Davis, J. C. Morris, and D. L. White. The distribu-

tion of tangles, plaques and related immunohistochemical markers in

healthy aging and Alzheimer’s disease. Neurobiol. Aging, 12:295–312,

1991.

[144] J. L. Price, A. I. Ko, M. J. Wade, S. K. Tsou, D. W. McKeel, and J. C.

Morris. Neuron number in the entorhinal cortex and CA1 in preclinical

Alzheimer disease. Arch. Neurol., 58:1395–1402, Sep 2001.

216 BIBLIOGRAPHY

[145] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–

106, 1986.

[146] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, 1993.

[147] E. Rendon and J. S. Sánchez. Clustering based on compressed data for

categorical and mixed attributes. In SSPR/SPR, pages 817–825, 2006.

[148] J. Rissanen. An introduction to the mdl principle. Technical report,

Helsinkin Institute for Information Technology, 2005.

[149] Y. Sakaguchi, S. Ozawa, and M. Kotani. Feature extraction using

supervised independent component analysis by maximizing class dis-

tance. volume 5, pages 2502–2506, 2002.

[150] G. E. Sarty. Computing Brain Activity Maps from fMRI Time-Series

Images. Cambridge University Press, 2007.

[151] R. I. Scahill, J. M. Schott, J. M. Stevens, M. N. Rossor, and N. C.

Fox. Mapping the evolution of regional atrophy in Alzheimer’s disease:

unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci.

U.S.A., 99:4703–4707, Apr 2002.

[152] P. Scheunders. A genetic c-Means clustering algorithm applied to color

image quantization. Pattern Recognition, 30(6):859–866, 1997.

[153] R. Sibson. Slink: An optimally efficient algorithm for the single-link

cluster method. Comput. J., 16(1):30–34, 1973.

[154] D. Skoutas, D. Sacharidis, A. Simitsis, and T. K. Sellis. Serving the

sky: Discovering and selecting semantic web services through dynamic

skyline queries. In ICSC, pages 222–229, 2008.

BIBLIOGRAPHY 217

[155] N. Slonim and N. Tishby. Document Clustering using Word Clusters

via the Information Bottleneck Method. In SIGIR, pages 208–215,

2000.

[156] S. Still and W. Bialek. How Many Clusters? An Information-Theoretic

Perspective. Neural Computation, 16(12):2483–2506, 2004.

[157] T. R. Stoub, M. Bulgakova, S. Leurgans, D. A. Bennett, D. Fleischman,

D. A. Turner, and L. deToledo Morrell. MRI predictors of risk of

incident Alzheimer disease: a longitudinal study. Neurology, 64:1520–

1524, May 2005.

[158] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse frame-

work for combining multiple partitions. Journal of Machine Learning

Research, 3:583–617, 2002.

[159] Y. Su, T. M. Murali, V. Pavlovic, M. Schaffer, and S. Kasif. RankGene:

identification of diagnostic genes based on expression data. Bioinfor-

matics, 19:1578–1579, Aug 2003.

[160] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline

computation. In VLDB, pages 301–310, 2001.

[161] S. Teipel, M. Ewers, O. Dietrich, S. Schoenberg, F. Jessen, R. Heun,

N. Freymann, H. J. Moller, and H. Hampel. [Reliability of multicenter

magnetic resonance imaging. Results of a phantom test and in vivo

measurements by the German Dementia Competence Network]. Ner-

venarzt, 77:1086–1092, Sep 2006.

[162] S. J. Teipel, C. Born, M. Ewers, A. L. Bokde, M. F. Reiser, H. J.

Moller, and H. Hampel. Multivariate deformation-based analysis of

brain atrophy to predict Alzheimer’s disease in mild cognitive impair-

ment. Neuroimage, 38:13–24, Oct 2007.

218 BIBLIOGRAPHY

[163] S. J. Teipel, R. Stahl, O. Dietrich, S. O. Schoenberg, R. Perneczky,

A. L. Bokde, M. F. Reiser, H. J. Moller, and H. Hampel. Multivariate

network analysis of fiber tract integrity in Alzheimer’s disease. Neu-

roimage, 34:985–995, Feb 2007.

[164] P. M. Thompson, K. M. Hayashi, G. de Zubicaray, A. L. Janke, S. E.

Rose, J. Semple, D. Herman, M. S. Hong, S. S. Dittmer, D. M. Dod-

drell, and A. W. Toga. Dynamics of gray matter loss in Alzheimer’s

disease. J. Neurosci., 23:994–1005, Feb 2003.

[165] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck

method. CoRR, physics/0004057, 2000.

[166] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello,

O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated Anatom-

ical Labeling of Activations in SPM using a Macroscopic Anatomi-

cal Parcellation of the MNI MRI Single-subject Brain. NeuroImage,

1(15):273–289, January 2002.

[167] N. Vasconcelos and A. Lippman. Learning Mixture Hierarchies. In

NIPS, pages 606–612, 1998.

[168] P. Vemuri, J. L. Gunter, M. L. Senjem, J. L. Whitwell, K. Kantarci,

D. S. Knopman, B. F. Boeve, R. C. Petersen, and C. R. Jack.

Alzheimer’s disease diagnosis in individual subjects using structural

MR images: validation studies. Neuroimage, 39:1186–1197, Feb 2008.

[169] P. J. Visser, P. Scheltens, F. R. Verhey, B. Schmand, L. J. Launer,

J. Jolles, and C. Jonker. Medial temporal lobe atrophy and memory

dysfunction as predictors for dementia in subjects with mild cognitive

impairment. J. Neurol., 246:477–485, Jun 1999.

BIBLIOGRAPHY 219

[170] E. M. Voorhees. Implementing agglomerative hierarchic clustering algo-

rithms for use in document retrieval. Inf. Process. Manage., 22(6):465–

476, 1986.

[171] B. Wackersreuther, P. Wackersreuther, A. Oswald, C. Böhm, and K. M.

Borgwardt. Frequent subgraph discovery in dynamic networks. In Pro-

ceedings of the Eighth Workshop on Mining and Learning with Graphs,

MLG ’10, pages 155–162, New York, NY, USA, 2010. ACM.

[172] S. Wernicke. Efficient Detection of Network Motifs. IEEE/ACM Trans.

Comput. Biology Bioinform., 3(4):347–359, 2006.

[173] S. Wessely, C. Nimnuan, and M. Sharpe. Functional Somatic Syn-

dromes: One or Many? Lancet, 354:936–939, September 1999.

[174] B. Winblad, K. Palmer, M. Kivipelto, V. Jelic, L. Fratiglioni, L. O.

Wahlund, A. Nordberg, L. Backman, M. Albert, O. Almkvist, H. Arai,

H. Basun, K. Blennow, M. de Leon, C. DeCarli, T. Erkinjuntti, E. Gia-

cobini, C. Graff, J. Hardy, C. Jack, A. Jorm, K. Ritchie, C. van Duijn,

P. Visser, and R. C. Petersen. Mild cognitive impairment–beyond con-

troversies, towards a consensus: report of the International Working

Group on Mild Cognitive Impairment. J. Intern. Med., 256:240–246,

Sep 2004.

[175] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining.

In ICDM, pages 721–724, 2002.

[176] X. Yan and J. Han. CloseGraph: Mining Closed Frequent Graph Pat-

terns. In KDD, pages 286–295, 2003.

[177] Q. Yang and X. Wu. 10 challenging problems in data mining research.

IJITDM, 5(4):597–604, 2006.

[178] J. Yin and Z. Tan. Clustering mixed type attributes in large dataset.

In ISPA, pages 655–661, 2005.

220

[179] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data

Clustering Method for Very Large Databases. In SIGMOD, pages 103–

114, 1996.

[180] Z. Zhong, M. Ewers, S. Teipel, K. Burger, A. Wallin, K. Blennow,

P. He, C. McAllister, H. Hampel, and Y. Shen. Levels of beta-secretase

(BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive

impairment. Arch. Gen. Psychiatry, 64:718–726, Jun 2007.

[181] X. Zhu, R. Jin, Y. Breitbart, and G. Agrawal. Mmis07, 08: mining mul-

tiple information sources workshop report. SIGKDD Explor. Newsl.,

10(2):61–65, 2008.

[182] R. Zou and L. B. Holder. Frequent subgraph mining on a single large

graph using sampling techniques. In Proceedings of the Eighth Work-

shop on Mining and Learning with Graphs, MLG ’10, pages 171–178,

New York, NY, USA, 2010. ACM.

	Acknowledgments
	Abstract
	Zusammenfassung
	I Preliminaries
	1 Introduction
	1.1 Open Challenges in Clustering and Biomedical Imaging
	1.1.1 Clustering
	1.1.2 Biomedical Imaging

	1.2 Thesis Overview and Contributions

	2 Survey
	2.1 Clustering
	2.1.1 Partitioning Clustering
	2.1.2 Hierarchical Clustering
	2.1.3 Density-based Clustering

	2.2 Validation of Clustering Results
	2.3 Classification
	2.3.1 Support Vector Machines (SVM)
	2.3.2 K-Nearest Neighbor Classifier (K-NN)
	2.3.3 Naive Bayes (NB)
	2.3.4 Decision Tree (DT)
	2.3.5 Artificial Neutral Networks (ANN)
	2.3.6 Voting Feature Intervals

	2.4 Validation of Classification Results
	2.5 Medical Imaging Technologies

	II Clustering Techniques
	3 Hierarchical Clustering
	3.1 Related Work
	3.2 Information-Theoretic Cluster Hierarchies
	3.2.1 Information-theoretic Hierarchical Clustering
	3.2.2 Hierarchical Cluster Structure
	3.2.3 Generalization of the MDL Principle
	3.2.4 Algorithm ITCH
	3.2.5 Experiments

	3.3 Genetic Algorithm for Finding Cluster Hierarchies
	3.3.1 Using Genetic Algorithm for Finding Cluster Hierarchies
	3.3.2 Algorithm GACH
	3.3.3 Experiments

	4 Clustering Mixed Type Data
	4.1 Introduction
	4.2 Related Work
	4.3 Minimum Description Length for Integrative Clustering
	4.4 Algorithm INTEGRATE
	4.5 Experiments
	4.5.1 Synthetic Data
	4.5.2 Real Data
	4.5.3 Finding the Optimal k.

	5 Clustering Skylines
	5.1 Introduction
	5.2 Related Work
	5.2.1 Skyline Computation
	5.2.2 Sweep-Line Methods
	5.2.3 Clustering

	5.3 Theoretical Background
	5.4 Algorithms to Compute SkyDist
	5.4.1 SkyDist by Monte-Carlo Sampling
	5.4.2 SkyDist for 2-Dimensional Skylines
	5.4.3 A Sweep-Plane Approach for the High-dimensional Case

	5.5 Experiments
	5.5.1 Efficiency
	5.5.2 Clustering Skylines of Real World Data.

	III Techniques for Mining Biomedical Data
	6 Detection of Brain Atrophy Patterns based on MRI
	6.1 Introduction
	6.2 The FCC framework
	6.2.1 Feature Selection
	6.2.2 Clustering
	6.2.3 Classification
	6.2.4 Visualization

	6.3 Experiments
	6.3.1 Subjects
	6.3.2 MRI Acquisition
	6.3.3 MRI Processing
	6.3.4 Results

	6.4 Discussion

	7 Efficient Knowledge Extraction from MRI
	7.1 Introduction
	7.2 JGrid/FCC
	7.2.1 Architecture
	7.2.2 The FCC Framework

	7.3 Experiments

	8 Motif Discovery in Brain Networks
	8.1 Introduction
	8.2 Related work
	8.2.1 Graph Data Set Mining
	8.2.2 Large Graph Mining

	8.3 Basic Definitions
	8.4 Finding Motifs in a Brain Network
	8.4.1 Construction of Brain Co-Activation Networks Out of fMRI Time Series
	8.4.2 Performing Frequent Subgraph Mining on Brain Co-Activation Networks
	8.4.3 Evaluation of Detected Motifs

	8.5 Experiments

	IV Conclusions
	9 Summary and Future Directions
	9.1 Summary of Contributions
	9.2 Potentials for Future Work

